1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/mi.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <net/pfkeyv2.h> 86 #include <inet/ipsec_info.h> 87 #include <inet/ipdrop.h> 88 #include <inet/tcp_trace.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <sys/squeue.h> 95 96 /* 97 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 98 * 99 * (Read the detailed design doc in PSARC case directory) 100 * 101 * The entire tcp state is contained in tcp_t and conn_t structure 102 * which are allocated in tandem using ipcl_conn_create() and passing 103 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 104 * the references on the tcp_t. The tcp_t structure is never compressed 105 * and packets always land on the correct TCP perimeter from the time 106 * eager is created till the time tcp_t dies (as such the old mentat 107 * TCP global queue is not used for detached state and no IPSEC checking 108 * is required). The global queue is still allocated to send out resets 109 * for connection which have no listeners and IP directly calls 110 * tcp_xmit_listeners_reset() which does any policy check. 111 * 112 * Protection and Synchronisation mechanism: 113 * 114 * The tcp data structure does not use any kind of lock for protecting 115 * its state but instead uses 'squeues' for mutual exclusion from various 116 * read and write side threads. To access a tcp member, the thread should 117 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 118 * squeue_fill). Since the squeues allow a direct function call, caller 119 * can pass any tcp function having prototype of edesc_t as argument 120 * (different from traditional STREAMs model where packets come in only 121 * designated entry points). The list of functions that can be directly 122 * called via squeue are listed before the usual function prototype. 123 * 124 * Referencing: 125 * 126 * TCP is MT-Hot and we use a reference based scheme to make sure that the 127 * tcp structure doesn't disappear when its needed. When the application 128 * creates an outgoing connection or accepts an incoming connection, we 129 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 130 * The IP reference is just a symbolic reference since ip_tcpclose() 131 * looks at tcp structure after tcp_close_output() returns which could 132 * have dropped the last TCP reference. So as long as the connection is 133 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 134 * conn_t. The classifier puts its own reference when the connection is 135 * inserted in listen or connected hash. Anytime a thread needs to enter 136 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 137 * on write side or by doing a classify on read side and then puts a 138 * reference on the conn before doing squeue_enter/tryenter/fill. For 139 * read side, the classifier itself puts the reference under fanout lock 140 * to make sure that tcp can't disappear before it gets processed. The 141 * squeue will drop this reference automatically so the called function 142 * doesn't have to do a DEC_REF. 143 * 144 * Opening a new connection: 145 * 146 * The outgoing connection open is pretty simple. ip_tcpopen() does the 147 * work in creating the conn/tcp structure and initializing it. The 148 * squeue assignment is done based on the CPU the application 149 * is running on. So for outbound connections, processing is always done 150 * on application CPU which might be different from the incoming CPU 151 * being interrupted by the NIC. An optimal way would be to figure out 152 * the NIC <-> CPU binding at listen time, and assign the outgoing 153 * connection to the squeue attached to the CPU that will be interrupted 154 * for incoming packets (we know the NIC based on the bind IP address). 155 * This might seem like a problem if more data is going out but the 156 * fact is that in most cases the transmit is ACK driven transmit where 157 * the outgoing data normally sits on TCP's xmit queue waiting to be 158 * transmitted. 159 * 160 * Accepting a connection: 161 * 162 * This is a more interesting case because of various races involved in 163 * establishing a eager in its own perimeter. Read the meta comment on 164 * top of tcp_conn_request(). But briefly, the squeue is picked by 165 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 166 * 167 * Closing a connection: 168 * 169 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 170 * via squeue to do the close and mark the tcp as detached if the connection 171 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 172 * reference but tcp_close() drop IP's reference always. So if tcp was 173 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 174 * and 1 because it is in classifier's connected hash. This is the condition 175 * we use to determine that its OK to clean up the tcp outside of squeue 176 * when time wait expires (check the ref under fanout and conn_lock and 177 * if it is 2, remove it from fanout hash and kill it). 178 * 179 * Although close just drops the necessary references and marks the 180 * tcp_detached state, tcp_close needs to know the tcp_detached has been 181 * set (under squeue) before letting the STREAM go away (because a 182 * inbound packet might attempt to go up the STREAM while the close 183 * has happened and tcp_detached is not set). So a special lock and 184 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 185 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 186 * tcp_detached. 187 * 188 * Special provisions and fast paths: 189 * 190 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 191 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 192 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 193 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 194 * check to send packets directly to tcp_rput_data via squeue. Everyone 195 * else comes through tcp_input() on the read side. 196 * 197 * We also make special provisions for sockfs by marking tcp_issocket 198 * whenever we have only sockfs on top of TCP. This allows us to skip 199 * putting the tcp in acceptor hash since a sockfs listener can never 200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 201 * since eager has already been allocated and the accept now happens 202 * on acceptor STREAM. There is a big blob of comment on top of 203 * tcp_conn_request explaining the new accept. When socket is POP'd, 204 * sockfs sends us an ioctl to mark the fact and we go back to old 205 * behaviour. Once tcp_issocket is unset, its never set for the 206 * life of that connection. 207 * 208 * IPsec notes : 209 * 210 * Since a packet is always executed on the correct TCP perimeter 211 * all IPsec processing is defered to IP including checking new 212 * connections and setting IPSEC policies for new connection. The 213 * only exception is tcp_xmit_listeners_reset() which is called 214 * directly from IP and needs to policy check to see if TH_RST 215 * can be sent out. 216 */ 217 218 219 extern major_t TCP6_MAJ; 220 221 /* 222 * Values for squeue switch: 223 * 1: squeue_enter_nodrain 224 * 2: squeue_enter 225 * 3: squeue_fill 226 */ 227 int tcp_squeue_close = 2; 228 int tcp_squeue_wput = 2; 229 230 squeue_func_t tcp_squeue_close_proc; 231 squeue_func_t tcp_squeue_wput_proc; 232 233 extern vmem_t *ip_minor_arena; 234 235 /* 236 * This controls how tiny a write must be before we try to copy it 237 * into the the mblk on the tail of the transmit queue. Not much 238 * speedup is observed for values larger than sixteen. Zero will 239 * disable the optimisation. 240 */ 241 int tcp_tx_pull_len = 16; 242 243 /* 244 * TCP Statistics. 245 * 246 * How TCP statistics work. 247 * 248 * There are two types of statistics invoked by two macros. 249 * 250 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 251 * supposed to be used in non MT-hot paths of the code. 252 * 253 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 254 * supposed to be used for DEBUG purposes and may be used on a hot path. 255 * 256 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 257 * (use "kstat tcp" to get them). 258 * 259 * There is also additional debugging facility that marks tcp_clean_death() 260 * instances and saves them in tcp_t structure. It is triggered by 261 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 262 * tcp_clean_death() calls that counts the number of times each tag was hit. It 263 * is triggered by TCP_CLD_COUNTERS define. 264 * 265 * How to add new counters. 266 * 267 * 1) Add a field in the tcp_stat structure describing your counter. 268 * 2) Add a line in tcp_statistics with the name of the counter. 269 * 270 * IMPORTANT!! - make sure that both are in sync !! 271 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 272 * 273 * Please avoid using private counters which are not kstat-exported. 274 * 275 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 276 * in tcp_t structure. 277 * 278 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 279 */ 280 281 #define TCP_COUNTERS 1 282 #define TCP_CLD_COUNTERS 0 283 284 #ifndef TCP_DEBUG_COUNTER 285 #ifdef DEBUG 286 #define TCP_DEBUG_COUNTER 1 287 #else 288 #define TCP_DEBUG_COUNTER 0 289 #endif 290 #endif 291 292 293 #define TCP_TAG_CLEAN_DEATH 1 294 #define TCP_MAX_CLEAN_DEATH_TAG 32 295 296 #ifdef lint 297 static int _lint_dummy_; 298 #endif 299 300 #if TCP_COUNTERS 301 #define TCP_STAT(x) (tcp_statistics.x.value.ui64++) 302 #define TCP_STAT_UPDATE(x, n) (tcp_statistics.x.value.ui64 += (n)) 303 #define TCP_STAT_SET(x, n) (tcp_statistics.x.value.ui64 = (n)) 304 #elif defined(lint) 305 #define TCP_STAT(x) ASSERT(_lint_dummy_ == 0); 306 #define TCP_STAT_UPDATE(x, n) ASSERT(_lint_dummy_ == 0); 307 #define TCP_STAT_SET(x, n) ASSERT(_lint_dummy_ == 0); 308 #else 309 #define TCP_STAT(x) 310 #define TCP_STAT_UPDATE(x, n) 311 #define TCP_STAT_SET(x, n) 312 #endif 313 314 #if TCP_CLD_COUNTERS 315 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 316 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 317 #elif defined(lint) 318 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 319 #else 320 #define TCP_CLD_STAT(x) 321 #endif 322 323 #if TCP_DEBUG_COUNTER 324 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 325 #elif defined(lint) 326 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 327 #else 328 #define TCP_DBGSTAT(x) 329 #endif 330 331 typedef struct tcp_stat { 332 kstat_named_t tcp_time_wait; 333 kstat_named_t tcp_time_wait_syn; 334 kstat_named_t tcp_time_wait_syn_success; 335 kstat_named_t tcp_time_wait_syn_fail; 336 kstat_named_t tcp_reinput_syn; 337 kstat_named_t tcp_ip_output; 338 kstat_named_t tcp_detach_non_time_wait; 339 kstat_named_t tcp_detach_time_wait; 340 kstat_named_t tcp_time_wait_reap; 341 kstat_named_t tcp_clean_death_nondetached; 342 kstat_named_t tcp_reinit_calls; 343 kstat_named_t tcp_eager_err1; 344 kstat_named_t tcp_eager_err2; 345 kstat_named_t tcp_eager_blowoff_calls; 346 kstat_named_t tcp_eager_blowoff_q; 347 kstat_named_t tcp_eager_blowoff_q0; 348 kstat_named_t tcp_not_hard_bound; 349 kstat_named_t tcp_no_listener; 350 kstat_named_t tcp_found_eager; 351 kstat_named_t tcp_wrong_queue; 352 kstat_named_t tcp_found_eager_binding1; 353 kstat_named_t tcp_found_eager_bound1; 354 kstat_named_t tcp_eager_has_listener1; 355 kstat_named_t tcp_open_alloc; 356 kstat_named_t tcp_open_detached_alloc; 357 kstat_named_t tcp_rput_time_wait; 358 kstat_named_t tcp_listendrop; 359 kstat_named_t tcp_listendropq0; 360 kstat_named_t tcp_wrong_rq; 361 kstat_named_t tcp_rsrv_calls; 362 kstat_named_t tcp_eagerfree2; 363 kstat_named_t tcp_eagerfree3; 364 kstat_named_t tcp_eagerfree4; 365 kstat_named_t tcp_eagerfree5; 366 kstat_named_t tcp_timewait_syn_fail; 367 kstat_named_t tcp_listen_badflags; 368 kstat_named_t tcp_timeout_calls; 369 kstat_named_t tcp_timeout_cached_alloc; 370 kstat_named_t tcp_timeout_cancel_reqs; 371 kstat_named_t tcp_timeout_canceled; 372 kstat_named_t tcp_timermp_alloced; 373 kstat_named_t tcp_timermp_freed; 374 kstat_named_t tcp_timermp_allocfail; 375 kstat_named_t tcp_timermp_allocdblfail; 376 kstat_named_t tcp_push_timer_cnt; 377 kstat_named_t tcp_ack_timer_cnt; 378 kstat_named_t tcp_ire_null1; 379 kstat_named_t tcp_ire_null; 380 kstat_named_t tcp_ip_send; 381 kstat_named_t tcp_ip_ire_send; 382 kstat_named_t tcp_wsrv_called; 383 kstat_named_t tcp_flwctl_on; 384 kstat_named_t tcp_timer_fire_early; 385 kstat_named_t tcp_timer_fire_miss; 386 kstat_named_t tcp_freelist_cleanup; 387 kstat_named_t tcp_rput_v6_error; 388 kstat_named_t tcp_out_sw_cksum; 389 kstat_named_t tcp_zcopy_on; 390 kstat_named_t tcp_zcopy_off; 391 kstat_named_t tcp_zcopy_backoff; 392 kstat_named_t tcp_zcopy_disable; 393 kstat_named_t tcp_mdt_pkt_out; 394 kstat_named_t tcp_mdt_pkt_out_v4; 395 kstat_named_t tcp_mdt_pkt_out_v6; 396 kstat_named_t tcp_mdt_discarded; 397 kstat_named_t tcp_mdt_conn_halted1; 398 kstat_named_t tcp_mdt_conn_halted2; 399 kstat_named_t tcp_mdt_conn_halted3; 400 kstat_named_t tcp_mdt_conn_resumed1; 401 kstat_named_t tcp_mdt_conn_resumed2; 402 kstat_named_t tcp_mdt_legacy_small; 403 kstat_named_t tcp_mdt_legacy_all; 404 kstat_named_t tcp_mdt_legacy_ret; 405 kstat_named_t tcp_mdt_allocfail; 406 kstat_named_t tcp_mdt_addpdescfail; 407 kstat_named_t tcp_mdt_allocd; 408 kstat_named_t tcp_mdt_linked; 409 kstat_named_t tcp_fusion_flowctl; 410 kstat_named_t tcp_fusion_backenabled; 411 kstat_named_t tcp_fusion_urg; 412 kstat_named_t tcp_fusion_putnext; 413 kstat_named_t tcp_fusion_unfusable; 414 kstat_named_t tcp_fusion_aborted; 415 kstat_named_t tcp_fusion_unqualified; 416 kstat_named_t tcp_in_ack_unsent_drop; 417 } tcp_stat_t; 418 419 #if (TCP_COUNTERS || TCP_DEBUG_COUNTER) 420 static tcp_stat_t tcp_statistics = { 421 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 422 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 423 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 424 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 425 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 426 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 427 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 428 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 429 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 430 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 431 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 432 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 433 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 434 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 435 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 436 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 437 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 438 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 439 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 440 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 441 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 442 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 443 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 444 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 445 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 446 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 447 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 448 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 449 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 450 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 451 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 452 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 453 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 454 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 455 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 456 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 457 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 458 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 459 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 460 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 461 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 462 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 463 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 464 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 465 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 466 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 467 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 468 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 469 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 470 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 471 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 472 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 473 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 474 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 475 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 476 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 477 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 478 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 479 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 480 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 481 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 482 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 483 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 484 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 485 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 486 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 487 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 488 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 489 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 490 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 491 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 492 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 493 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 494 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 495 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 496 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 497 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 498 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 499 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 500 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 501 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 502 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 503 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 504 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 505 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 506 }; 507 508 static kstat_t *tcp_kstat; 509 510 #endif 511 512 /* 513 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 514 * tcp write side. 515 */ 516 #define CALL_IP_WPUT(connp, q, mp) { \ 517 ASSERT(((q)->q_flag & QREADR) == 0); \ 518 TCP_DBGSTAT(tcp_ip_output); \ 519 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 520 } 521 522 /* 523 * Was this tcp created via socket() interface? 524 */ 525 #define TCP_IS_SOCKET(tcp) ((tcp)->tcp_issocket) 526 527 528 /* Macros for timestamp comparisons */ 529 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 530 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 531 532 /* 533 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 534 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 535 * by adding three components: a time component which grows by 1 every 4096 536 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 537 * a per-connection component which grows by 125000 for every new connection; 538 * and an "extra" component that grows by a random amount centered 539 * approximately on 64000. This causes the the ISS generator to cycle every 540 * 4.89 hours if no TCP connections are made, and faster if connections are 541 * made. 542 * 543 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 544 * components: a time component which grows by 250000 every second; and 545 * a per-connection component which grows by 125000 for every new connections. 546 * 547 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 548 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 549 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 550 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 551 * password. 552 */ 553 #define ISS_INCR 250000 554 #define ISS_NSEC_SHT 12 555 556 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 557 static kmutex_t tcp_iss_key_lock; 558 static MD5_CTX tcp_iss_key; 559 static sin_t sin_null; /* Zero address for quick clears */ 560 static sin6_t sin6_null; /* Zero address for quick clears */ 561 562 /* Packet dropper for TCP IPsec policy drops. */ 563 static ipdropper_t tcp_dropper; 564 565 /* 566 * This implementation follows the 4.3BSD interpretation of the urgent 567 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 568 * incompatible changes in protocols like telnet and rlogin. 569 */ 570 #define TCP_OLD_URP_INTERPRETATION 1 571 572 #define TCP_IS_DETACHED(tcp) ((tcp)->tcp_detached) 573 574 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 575 (TCP_IS_DETACHED(tcp) && \ 576 (!(tcp)->tcp_hard_binding)) 577 578 /* 579 * TCP reassembly macros. We hide starting and ending sequence numbers in 580 * b_next and b_prev of messages on the reassembly queue. The messages are 581 * chained using b_cont. These macros are used in tcp_reass() so we don't 582 * have to see the ugly casts and assignments. 583 */ 584 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 585 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 586 (mblk_t *)(uintptr_t)(u)) 587 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 588 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 589 (mblk_t *)(uintptr_t)(u)) 590 591 /* 592 * Implementation of TCP Timers. 593 * ============================= 594 * 595 * INTERFACE: 596 * 597 * There are two basic functions dealing with tcp timers: 598 * 599 * timeout_id_t tcp_timeout(connp, func, time) 600 * clock_t tcp_timeout_cancel(connp, timeout_id) 601 * TCP_TIMER_RESTART(tcp, intvl) 602 * 603 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 604 * after 'time' ticks passed. The function called by timeout() must adhere to 605 * the same restrictions as a driver soft interrupt handler - it must not sleep 606 * or call other functions that might sleep. The value returned is the opaque 607 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 608 * cancel the request. The call to tcp_timeout() may fail in which case it 609 * returns zero. This is different from the timeout(9F) function which never 610 * fails. 611 * 612 * The call-back function 'func' always receives 'connp' as its single 613 * argument. It is always executed in the squeue corresponding to the tcp 614 * structure. The tcp structure is guaranteed to be present at the time the 615 * call-back is called. 616 * 617 * NOTE: The call-back function 'func' is never called if tcp is in 618 * the TCPS_CLOSED state. 619 * 620 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 621 * request. locks acquired by the call-back routine should not be held across 622 * the call to tcp_timeout_cancel() or a deadlock may result. 623 * 624 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 625 * Otherwise, it returns an integer value greater than or equal to 0. In 626 * particular, if the call-back function is already placed on the squeue, it can 627 * not be canceled. 628 * 629 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 630 * within squeue context corresponding to the tcp instance. Since the 631 * call-back is also called via the same squeue, there are no race 632 * conditions described in untimeout(9F) manual page since all calls are 633 * strictly serialized. 634 * 635 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 636 * stored in tcp_timer_tid and starts a new one using 637 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 638 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 639 * field. 640 * 641 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 642 * call-back may still be called, so it is possible tcp_timer() will be 643 * called several times. This should not be a problem since tcp_timer() 644 * should always check the tcp instance state. 645 * 646 * 647 * IMPLEMENTATION: 648 * 649 * TCP timers are implemented using three-stage process. The call to 650 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 651 * when the timer expires. The tcp_timer_callback() arranges the call of the 652 * tcp_timer_handler() function via squeue corresponding to the tcp 653 * instance. The tcp_timer_handler() calls actual requested timeout call-back 654 * and passes tcp instance as an argument to it. Information is passed between 655 * stages using the tcp_timer_t structure which contains the connp pointer, the 656 * tcp call-back to call and the timeout id returned by the timeout(9F). 657 * 658 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 659 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 660 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 661 * returns the pointer to this mblk. 662 * 663 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 664 * looks like a normal mblk without actual dblk attached to it. 665 * 666 * To optimize performance each tcp instance holds a small cache of timer 667 * mblocks. In the current implementation it caches up to two timer mblocks per 668 * tcp instance. The cache is preserved over tcp frees and is only freed when 669 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 670 * timer processing happens on a corresponding squeue, the cache manipulation 671 * does not require any locks. Experiments show that majority of timer mblocks 672 * allocations are satisfied from the tcp cache and do not involve kmem calls. 673 * 674 * The tcp_timeout() places a refhold on the connp instance which guarantees 675 * that it will be present at the time the call-back function fires. The 676 * tcp_timer_handler() drops the reference after calling the call-back, so the 677 * call-back function does not need to manipulate the references explicitly. 678 */ 679 680 typedef struct tcp_timer_s { 681 conn_t *connp; 682 void (*tcpt_proc)(void *); 683 timeout_id_t tcpt_tid; 684 } tcp_timer_t; 685 686 static kmem_cache_t *tcp_timercache; 687 kmem_cache_t *tcp_sack_info_cache; 688 kmem_cache_t *tcp_iphc_cache; 689 690 #define TCP_TIMER(tcp, f, tim) tcp_timeout(tcp->tcp_connp, f, tim) 691 #define TCP_TIMER_CANCEL(tcp, id) tcp_timeout_cancel(tcp->tcp_connp, id) 692 693 /* 694 * To restart the TCP retransmission timer. 695 */ 696 #define TCP_TIMER_RESTART(tcp, intvl) \ 697 { \ 698 if ((tcp)->tcp_timer_tid != 0) { \ 699 (void) TCP_TIMER_CANCEL((tcp), \ 700 (tcp)->tcp_timer_tid); \ 701 } \ 702 (tcp)->tcp_timer_tid = TCP_TIMER((tcp), tcp_timer, \ 703 MSEC_TO_TICK(intvl)); \ 704 } 705 706 /* 707 * For scalability, we must not run a timer for every TCP connection 708 * in TIME_WAIT state. To see why, consider (for time wait interval of 709 * 4 minutes): 710 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 711 * 712 * This list is ordered by time, so you need only delete from the head 713 * until you get to entries which aren't old enough to delete yet. 714 * The list consists of only the detached TIME_WAIT connections. 715 * 716 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 717 * becomes detached TIME_WAIT (either by changing the state and already 718 * being detached or the other way around). This means that the TIME_WAIT 719 * state can be extended (up to doubled) if the connection doesn't become 720 * detached for a long time. 721 * 722 * The list manipulations (including tcp_time_wait_next/prev) 723 * are protected by the tcp_time_wait_lock. The content of the 724 * detached TIME_WAIT connections is protected by the normal perimeters. 725 */ 726 727 typedef struct tcp_squeue_priv_s { 728 kmutex_t tcp_time_wait_lock; 729 /* Protects the next 3 globals */ 730 timeout_id_t tcp_time_wait_tid; 731 tcp_t *tcp_time_wait_head; 732 tcp_t *tcp_time_wait_tail; 733 tcp_t *tcp_free_list; 734 } tcp_squeue_priv_t; 735 736 /* 737 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 738 * Running it every 5 seconds seems to give the best results. 739 */ 740 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 741 742 743 #define TCP_XMIT_LOWATER 4096 744 #define TCP_XMIT_HIWATER 49152 745 #define TCP_RECV_LOWATER 2048 746 #define TCP_RECV_HIWATER 49152 747 748 /* 749 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 750 */ 751 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 752 753 #define TIDUSZ 4096 /* transport interface data unit size */ 754 755 /* 756 * Bind hash list size and has function. It has to be a power of 2 for 757 * hashing. 758 */ 759 #define TCP_BIND_FANOUT_SIZE 512 760 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 761 /* 762 * Size of listen and acceptor hash list. It has to be a power of 2 for 763 * hashing. 764 */ 765 #define TCP_FANOUT_SIZE 256 766 767 #ifdef _ILP32 768 #define TCP_ACCEPTOR_HASH(accid) \ 769 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 770 #else 771 #define TCP_ACCEPTOR_HASH(accid) \ 772 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 773 #endif /* _ILP32 */ 774 775 #define IP_ADDR_CACHE_SIZE 2048 776 #define IP_ADDR_CACHE_HASH(faddr) \ 777 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 778 779 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 780 #define TCP_HSP_HASH_SIZE 256 781 782 #define TCP_HSP_HASH(addr) \ 783 (((addr>>24) ^ (addr >>16) ^ \ 784 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 785 786 /* 787 * TCP options struct returned from tcp_parse_options. 788 */ 789 typedef struct tcp_opt_s { 790 uint32_t tcp_opt_mss; 791 uint32_t tcp_opt_wscale; 792 uint32_t tcp_opt_ts_val; 793 uint32_t tcp_opt_ts_ecr; 794 tcp_t *tcp; 795 } tcp_opt_t; 796 797 /* 798 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 799 */ 800 801 #ifdef _BIG_ENDIAN 802 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 803 (TCPOPT_TSTAMP << 8) | 10) 804 #else 805 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 806 (TCPOPT_NOP << 8) | TCPOPT_NOP) 807 #endif 808 809 /* 810 * Flags returned from tcp_parse_options. 811 */ 812 #define TCP_OPT_MSS_PRESENT 1 813 #define TCP_OPT_WSCALE_PRESENT 2 814 #define TCP_OPT_TSTAMP_PRESENT 4 815 #define TCP_OPT_SACK_OK_PRESENT 8 816 #define TCP_OPT_SACK_PRESENT 16 817 818 /* TCP option length */ 819 #define TCPOPT_NOP_LEN 1 820 #define TCPOPT_MAXSEG_LEN 4 821 #define TCPOPT_WS_LEN 3 822 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 823 #define TCPOPT_TSTAMP_LEN 10 824 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 825 #define TCPOPT_SACK_OK_LEN 2 826 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 827 #define TCPOPT_REAL_SACK_LEN 4 828 #define TCPOPT_MAX_SACK_LEN 36 829 #define TCPOPT_HEADER_LEN 2 830 831 /* TCP cwnd burst factor. */ 832 #define TCP_CWND_INFINITE 65535 833 #define TCP_CWND_SS 3 834 #define TCP_CWND_NORMAL 5 835 836 /* Maximum TCP initial cwin (start/restart). */ 837 #define TCP_MAX_INIT_CWND 8 838 839 /* 840 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 841 * either tcp_slow_start_initial or tcp_slow_start_after idle 842 * depending on the caller. If the upper layer has not used the 843 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 844 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 845 * If the upper layer has changed set the tcp_init_cwnd, just use 846 * it to calculate the tcp_cwnd. 847 */ 848 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 849 { \ 850 if ((tcp)->tcp_init_cwnd == 0) { \ 851 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 852 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 853 } else { \ 854 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 855 } \ 856 tcp->tcp_cwnd_cnt = 0; \ 857 } 858 859 /* TCP Timer control structure */ 860 typedef struct tcpt_s { 861 pfv_t tcpt_pfv; /* The routine we are to call */ 862 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 863 } tcpt_t; 864 865 /* Host Specific Parameter structure */ 866 typedef struct tcp_hsp { 867 struct tcp_hsp *tcp_hsp_next; 868 in6_addr_t tcp_hsp_addr_v6; 869 in6_addr_t tcp_hsp_subnet_v6; 870 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 871 int32_t tcp_hsp_sendspace; 872 int32_t tcp_hsp_recvspace; 873 int32_t tcp_hsp_tstamp; 874 } tcp_hsp_t; 875 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 876 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 877 878 /* 879 * Functions called directly via squeue having a prototype of edesc_t. 880 */ 881 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 882 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 883 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 884 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 885 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 886 void tcp_input(void *arg, mblk_t *mp, void *arg2); 887 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 888 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 889 static void tcp_output(void *arg, mblk_t *mp, void *arg2); 890 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 891 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 892 893 894 /* Prototype for TCP functions */ 895 static void tcp_random_init(void); 896 int tcp_random(void); 897 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 898 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 899 tcp_t *eager); 900 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 901 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 902 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 903 boolean_t user_specified); 904 static void tcp_closei_local(tcp_t *tcp); 905 static void tcp_close_detached(tcp_t *tcp); 906 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 907 mblk_t *idmp, mblk_t **defermp); 908 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 909 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 910 in_port_t dstport, uint_t srcid); 911 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 912 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 913 uint32_t scope_id); 914 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 915 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 916 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 917 static char *tcp_display(tcp_t *tcp, char *, char); 918 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 919 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 920 static void tcp_eager_unlink(tcp_t *tcp); 921 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 922 int unixerr); 923 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 924 int tlierr, int unixerr); 925 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 926 cred_t *cr); 927 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 928 char *value, caddr_t cp, cred_t *cr); 929 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 930 char *value, caddr_t cp, cred_t *cr); 931 static int tcp_tpistate(tcp_t *tcp); 932 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 933 int caller_holds_lock); 934 static void tcp_bind_hash_remove(tcp_t *tcp); 935 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 936 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 937 static void tcp_acceptor_hash_remove(tcp_t *tcp); 938 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 939 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 940 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 941 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 942 static int tcp_header_init_ipv4(tcp_t *tcp); 943 static int tcp_header_init_ipv6(tcp_t *tcp); 944 int tcp_init(tcp_t *tcp, queue_t *q); 945 static int tcp_init_values(tcp_t *tcp); 946 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 947 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 948 t_scalar_t addr_length); 949 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 950 static void tcp_ip_notify(tcp_t *tcp); 951 static mblk_t *tcp_ire_mp(mblk_t *mp); 952 static void tcp_iss_init(tcp_t *tcp); 953 static void tcp_keepalive_killer(void *arg); 954 static int tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk); 955 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 956 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 957 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 958 int *do_disconnectp, int *t_errorp, int *sys_errorp); 959 static boolean_t tcp_allow_connopt_set(int level, int name); 960 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 961 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 962 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 963 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 964 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 965 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 966 mblk_t *mblk); 967 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 968 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 969 uchar_t *ptr, uint_t len); 970 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 971 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 972 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 973 caddr_t cp, cred_t *cr); 974 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 975 caddr_t cp, cred_t *cr); 976 static void tcp_iss_key_init(uint8_t *phrase, int len); 977 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 978 caddr_t cp, cred_t *cr); 979 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 980 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 981 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 982 static void tcp_reinit(tcp_t *tcp); 983 static void tcp_reinit_values(tcp_t *tcp); 984 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 985 tcp_t *thisstream, cred_t *cr); 986 987 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 988 static void tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len); 989 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 990 static boolean_t tcp_send_rst_chk(void); 991 static void tcp_ss_rexmit(tcp_t *tcp); 992 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 993 static void tcp_process_options(tcp_t *, tcph_t *); 994 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 995 static void tcp_rsrv(queue_t *q); 996 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 997 static int tcp_snmp_get(queue_t *q, mblk_t *mpctl); 998 static int tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, 999 int len); 1000 static int tcp_snmp_state(tcp_t *tcp); 1001 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 1002 cred_t *cr); 1003 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1004 cred_t *cr); 1005 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1006 cred_t *cr); 1007 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1008 cred_t *cr); 1009 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 1010 cred_t *cr); 1011 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 1012 caddr_t cp, cred_t *cr); 1013 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 1014 caddr_t cp, cred_t *cr); 1015 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 1016 cred_t *cr); 1017 static void tcp_timer(void *arg); 1018 static void tcp_timer_callback(void *); 1019 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 1020 static in_port_t tcp_get_next_priv_port(void); 1021 static void tcp_wput(queue_t *q, mblk_t *mp); 1022 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 1023 void tcp_wput_accept(queue_t *q, mblk_t *mp); 1024 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 1025 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 1026 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 1027 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 1028 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 1029 const int num_sack_blk, int *usable, uint_t *snxt, 1030 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 1031 const int mdt_thres); 1032 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 1033 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 1034 const int num_sack_blk, int *usable, uint_t *snxt, 1035 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 1036 const int mdt_thres); 1037 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 1038 int num_sack_blk); 1039 static void tcp_wsrv(queue_t *q); 1040 static int tcp_xmit_end(tcp_t *tcp); 1041 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 1042 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 1043 int32_t *offset, mblk_t **end_mp, uint32_t seq, 1044 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 1045 static void tcp_ack_timer(void *arg); 1046 static mblk_t *tcp_ack_mp(tcp_t *tcp); 1047 static void tcp_push_timer(void *arg); 1048 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 1049 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 1050 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 1051 uint32_t ack, int ctl); 1052 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 1053 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 1054 static int setmaxps(queue_t *q, int maxpsz); 1055 static void tcp_set_rto(tcp_t *, time_t); 1056 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 1057 boolean_t, boolean_t); 1058 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 1059 boolean_t ipsec_mctl); 1060 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 1061 boolean_t b_valid, void *b, uint_t blen); 1062 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 1063 boolean_t src_valid, void *src, uint_t srclen); 1064 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 1065 boolean_t src_valid, void *src, uint_t srclen); 1066 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 1067 char *opt, int optlen); 1068 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 1069 static int tcp_build_hdrs(queue_t *, tcp_t *); 1070 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 1071 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 1072 tcph_t *tcph); 1073 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 1074 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 1075 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 1076 boolean_t tcp_reserved_port_check(in_port_t); 1077 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 1078 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 1079 static void tcp_timers_stop(tcp_t *); 1080 static timeout_id_t tcp_timeout(conn_t *, void (*)(void *), clock_t); 1081 static clock_t tcp_timeout_cancel(conn_t *, timeout_id_t); 1082 static mblk_t *tcp_mdt_info_mp(mblk_t *); 1083 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 1084 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 1085 const boolean_t, const uint32_t, const uint32_t, 1086 const uint32_t, const uint32_t); 1087 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 1088 const uint_t, const uint_t, boolean_t *); 1089 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 1090 extern mblk_t *tcp_timermp_alloc(int); 1091 extern void tcp_timermp_free(tcp_t *); 1092 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 1093 static void tcp_stop_lingering(tcp_t *tcp); 1094 static void tcp_close_linger_timeout(void *arg); 1095 void tcp_ddi_init(void); 1096 void tcp_ddi_destroy(void); 1097 static void tcp_kstat_init(void); 1098 static void tcp_kstat_fini(void); 1099 static int tcp_kstat_update(kstat_t *kp, int rw); 1100 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 1101 conn_t *tcp_get_next_conn(connf_t *, conn_t *); 1102 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 1103 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 1104 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 1105 tcph_t *tcph, mblk_t *idmp); 1106 static squeue_func_t tcp_squeue_switch(int); 1107 1108 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 1109 static int tcp_close(queue_t *, int); 1110 static int tcpclose_accept(queue_t *); 1111 static int tcp_modclose(queue_t *); 1112 static void tcp_wput_mod(queue_t *, mblk_t *); 1113 1114 static void tcp_squeue_add(squeue_t *); 1115 static boolean_t tcp_zcopy_check(tcp_t *); 1116 static void tcp_zcopy_notify(tcp_t *); 1117 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 1118 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1119 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1120 1121 static void tcp_fuse(tcp_t *, uchar_t *, tcph_t *); 1122 static void tcp_unfuse(tcp_t *); 1123 static boolean_t tcp_fuse_output(tcp_t *, mblk_t *); 1124 static void tcp_fuse_output_urg(tcp_t *, mblk_t *); 1125 static boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **); 1126 1127 extern mblk_t *allocb_tryhard(size_t); 1128 1129 /* 1130 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1131 * 1132 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1133 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1134 * (defined in tcp.h) needs to be filled in and passed into the kernel 1135 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1136 * structure contains the four-tuple of a TCP connection and a range of TCP 1137 * states (specified by ac_start and ac_end). The use of wildcard addresses 1138 * and ports is allowed. Connections with a matching four tuple and a state 1139 * within the specified range will be aborted. The valid states for the 1140 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1141 * inclusive. 1142 * 1143 * An application which has its connection aborted by this ioctl will receive 1144 * an error that is dependent on the connection state at the time of the abort. 1145 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1146 * though a RST packet has been received. If the connection state is equal to 1147 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1148 * and all resources associated with the connection will be freed. 1149 */ 1150 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1151 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1152 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1153 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1154 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1155 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1156 boolean_t); 1157 1158 1159 static void tcp_clrqfull(tcp_t *); 1160 static void tcp_setqfull(tcp_t *); 1161 1162 static struct module_info tcp_rinfo = { 1163 #define TCP_MODULE_ID 5105 1164 TCP_MODULE_ID, "tcp", 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1165 }; 1166 1167 static struct module_info tcp_winfo = { 1168 TCP_MODULE_ID, "tcp", 0, INFPSZ, 127, 16 1169 }; 1170 1171 /* 1172 * Entry points for TCP as a module. It only allows SNMP requests 1173 * to pass through. 1174 */ 1175 struct qinit tcp_mod_rinit = { 1176 (pfi_t)putnext, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo 1177 }; 1178 1179 struct qinit tcp_mod_winit = { 1180 (pfi_t)tcp_wput_mod, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo 1181 }; 1182 1183 /* 1184 * Entry points for TCP as a device. The normal case which supports 1185 * the TCP functionality. 1186 */ 1187 struct qinit tcp_rinit = { 1188 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1189 }; 1190 1191 struct qinit tcp_winit = { 1192 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1193 }; 1194 1195 /* Initial entry point for TCP in socket mode. */ 1196 struct qinit tcp_sock_winit = { 1197 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1198 }; 1199 1200 /* 1201 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1202 * an accept. Avoid allocating data structures since eager has already 1203 * been created. 1204 */ 1205 struct qinit tcp_acceptor_rinit = { 1206 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1207 }; 1208 1209 struct qinit tcp_acceptor_winit = { 1210 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1211 }; 1212 1213 struct streamtab tcpinfo = { 1214 &tcp_rinit, &tcp_winit 1215 }; 1216 1217 1218 extern squeue_func_t tcp_squeue_wput_proc; 1219 extern squeue_func_t tcp_squeue_timer_proc; 1220 1221 /* Protected by tcp_g_q_lock */ 1222 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1223 kmutex_t tcp_g_q_lock; 1224 1225 /* Protected by tcp_hsp_lock */ 1226 /* 1227 * XXX The host param mechanism should go away and instead we should use 1228 * the metrics associated with the routes to determine the default sndspace 1229 * and rcvspace. 1230 */ 1231 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1232 krwlock_t tcp_hsp_lock; 1233 1234 /* 1235 * Extra privileged ports. In host byte order. 1236 * Protected by tcp_epriv_port_lock. 1237 */ 1238 #define TCP_NUM_EPRIV_PORTS 64 1239 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1240 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1241 kmutex_t tcp_epriv_port_lock; 1242 1243 /* 1244 * The smallest anonymous port in the priviledged port range which TCP 1245 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1246 */ 1247 static in_port_t tcp_min_anonpriv_port = 512; 1248 1249 /* Only modified during _init and _fini thus no locking is needed. */ 1250 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1251 1252 /* Hint not protected by any lock */ 1253 static uint_t tcp_next_port_to_try; 1254 1255 1256 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1257 static tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1258 1259 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1260 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1261 1262 /* 1263 * TCP has a private interface for other kernel modules to reserve a 1264 * port range for them to use. Once reserved, TCP will not use any ports 1265 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1266 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1267 * has to be verified. 1268 * 1269 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1270 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1271 * range is [port a, port b] inclusive. And each port range is between 1272 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1273 * 1274 * Note that the default anonymous port range starts from 32768. There is 1275 * no port "collision" between that and the reserved port range. If there 1276 * is port collision (because the default smallest anonymous port is lowered 1277 * or some apps specifically bind to ports in the reserved port range), the 1278 * system may not be able to reserve a port range even there are enough 1279 * unbound ports as a reserved port range contains consecutive ports . 1280 */ 1281 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1282 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1283 #define TCP_SMALLEST_RESERVED_PORT 10240 1284 #define TCP_LARGEST_RESERVED_PORT 20480 1285 1286 /* Structure to represent those reserved port ranges. */ 1287 typedef struct tcp_rport_s { 1288 in_port_t lo_port; 1289 in_port_t hi_port; 1290 tcp_t **temp_tcp_array; 1291 } tcp_rport_t; 1292 1293 /* The reserved port array. */ 1294 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1295 1296 /* Locks to protect the tcp_reserved_ports array. */ 1297 static krwlock_t tcp_reserved_port_lock; 1298 1299 /* The number of ranges in the array. */ 1300 uint32_t tcp_reserved_port_array_size = 0; 1301 1302 /* 1303 * MIB-2 stuff for SNMP 1304 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1305 */ 1306 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1307 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1308 1309 /* 1310 * Object to represent database of options to search passed to 1311 * {sock,tpi}optcom_req() interface routine to take care of option 1312 * management and associated methods. 1313 * XXX These and other externs should ideally move to a TCP header 1314 */ 1315 extern optdb_obj_t tcp_opt_obj; 1316 extern uint_t tcp_max_optsize; 1317 1318 boolean_t tcp_icmp_source_quench = B_FALSE; 1319 /* 1320 * Following assumes TPI alignment requirements stay along 32 bit 1321 * boundaries 1322 */ 1323 #define ROUNDUP32(x) \ 1324 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1325 1326 /* Template for response to info request. */ 1327 static struct T_info_ack tcp_g_t_info_ack = { 1328 T_INFO_ACK, /* PRIM_type */ 1329 0, /* TSDU_size */ 1330 T_INFINITE, /* ETSDU_size */ 1331 T_INVALID, /* CDATA_size */ 1332 T_INVALID, /* DDATA_size */ 1333 sizeof (sin_t), /* ADDR_size */ 1334 0, /* OPT_size - not initialized here */ 1335 TIDUSZ, /* TIDU_size */ 1336 T_COTS_ORD, /* SERV_type */ 1337 TCPS_IDLE, /* CURRENT_state */ 1338 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1339 }; 1340 1341 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1342 T_INFO_ACK, /* PRIM_type */ 1343 0, /* TSDU_size */ 1344 T_INFINITE, /* ETSDU_size */ 1345 T_INVALID, /* CDATA_size */ 1346 T_INVALID, /* DDATA_size */ 1347 sizeof (sin6_t), /* ADDR_size */ 1348 0, /* OPT_size - not initialized here */ 1349 TIDUSZ, /* TIDU_size */ 1350 T_COTS_ORD, /* SERV_type */ 1351 TCPS_IDLE, /* CURRENT_state */ 1352 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1353 }; 1354 1355 #define MS 1L 1356 #define SECONDS (1000 * MS) 1357 #define MINUTES (60 * SECONDS) 1358 #define HOURS (60 * MINUTES) 1359 #define DAYS (24 * HOURS) 1360 1361 #define PARAM_MAX (~(uint32_t)0) 1362 1363 /* Max size IP datagram is 64k - 1 */ 1364 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1365 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1366 /* Max of the above */ 1367 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1368 1369 /* Largest TCP port number */ 1370 #define TCP_MAX_PORT (64 * 1024 - 1) 1371 1372 /* 1373 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1374 * layer header. It has to be a multiple of 4. 1375 */ 1376 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1377 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1378 1379 /* 1380 * All of these are alterable, within the min/max values given, at run time. 1381 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1382 * per the TCP spec. 1383 */ 1384 /* BEGIN CSTYLED */ 1385 tcpparam_t tcp_param_arr[] = { 1386 /*min max value name */ 1387 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1388 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1389 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1390 { 1, 1024, 1, "tcp_conn_req_min" }, 1391 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1392 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1393 { 0, 10, 0, "tcp_debug" }, 1394 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1395 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1396 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1397 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1398 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1399 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1400 { 1, 255, 64, "tcp_ipv4_ttl"}, 1401 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1402 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1403 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1404 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1405 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1406 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1407 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1408 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1409 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1410 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1411 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1412 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1413 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1414 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1415 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1416 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1417 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1418 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1419 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1420 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1421 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1422 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1423 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1424 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1425 /* 1426 * Question: What default value should I set for tcp_strong_iss? 1427 */ 1428 { 0, 2, 1, "tcp_strong_iss"}, 1429 { 0, 65536, 20, "tcp_rtt_updates"}, 1430 { 0, 1, 1, "tcp_wscale_always"}, 1431 { 0, 1, 0, "tcp_tstamp_always"}, 1432 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1433 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1434 { 0, 16, 2, "tcp_deferred_acks_max"}, 1435 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1436 { 1, 4, 4, "tcp_slow_start_initial"}, 1437 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1438 { 0, 2, 2, "tcp_sack_permitted"}, 1439 { 0, 1, 0, "tcp_trace"}, 1440 { 0, 1, 1, "tcp_compression_enabled"}, 1441 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1442 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1443 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1444 { 0, 1, 0, "tcp_rev_src_routes"}, 1445 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1446 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1447 { 0, 16, 8, "tcp_local_dacks_max"}, 1448 { 0, 2, 1, "tcp_ecn_permitted"}, 1449 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1450 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1451 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1452 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1453 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1454 }; 1455 /* END CSTYLED */ 1456 1457 1458 #define tcp_time_wait_interval tcp_param_arr[0].tcp_param_val 1459 #define tcp_conn_req_max_q tcp_param_arr[1].tcp_param_val 1460 #define tcp_conn_req_max_q0 tcp_param_arr[2].tcp_param_val 1461 #define tcp_conn_req_min tcp_param_arr[3].tcp_param_val 1462 #define tcp_conn_grace_period tcp_param_arr[4].tcp_param_val 1463 #define tcp_cwnd_max_ tcp_param_arr[5].tcp_param_val 1464 #define tcp_dbg tcp_param_arr[6].tcp_param_val 1465 #define tcp_smallest_nonpriv_port tcp_param_arr[7].tcp_param_val 1466 #define tcp_ip_abort_cinterval tcp_param_arr[8].tcp_param_val 1467 #define tcp_ip_abort_linterval tcp_param_arr[9].tcp_param_val 1468 #define tcp_ip_abort_interval tcp_param_arr[10].tcp_param_val 1469 #define tcp_ip_notify_cinterval tcp_param_arr[11].tcp_param_val 1470 #define tcp_ip_notify_interval tcp_param_arr[12].tcp_param_val 1471 #define tcp_ipv4_ttl tcp_param_arr[13].tcp_param_val 1472 #define tcp_keepalive_interval_high tcp_param_arr[14].tcp_param_max 1473 #define tcp_keepalive_interval tcp_param_arr[14].tcp_param_val 1474 #define tcp_keepalive_interval_low tcp_param_arr[14].tcp_param_min 1475 #define tcp_maxpsz_multiplier tcp_param_arr[15].tcp_param_val 1476 #define tcp_mss_def_ipv4 tcp_param_arr[16].tcp_param_val 1477 #define tcp_mss_max_ipv4 tcp_param_arr[17].tcp_param_val 1478 #define tcp_mss_min tcp_param_arr[18].tcp_param_val 1479 #define tcp_naglim_def tcp_param_arr[19].tcp_param_val 1480 #define tcp_rexmit_interval_initial tcp_param_arr[20].tcp_param_val 1481 #define tcp_rexmit_interval_max tcp_param_arr[21].tcp_param_val 1482 #define tcp_rexmit_interval_min tcp_param_arr[22].tcp_param_val 1483 #define tcp_deferred_ack_interval tcp_param_arr[23].tcp_param_val 1484 #define tcp_snd_lowat_fraction tcp_param_arr[24].tcp_param_val 1485 #define tcp_sth_rcv_hiwat tcp_param_arr[25].tcp_param_val 1486 #define tcp_sth_rcv_lowat tcp_param_arr[26].tcp_param_val 1487 #define tcp_dupack_fast_retransmit tcp_param_arr[27].tcp_param_val 1488 #define tcp_ignore_path_mtu tcp_param_arr[28].tcp_param_val 1489 #define tcp_smallest_anon_port tcp_param_arr[29].tcp_param_val 1490 #define tcp_largest_anon_port tcp_param_arr[30].tcp_param_val 1491 #define tcp_xmit_hiwat tcp_param_arr[31].tcp_param_val 1492 #define tcp_xmit_lowat tcp_param_arr[32].tcp_param_val 1493 #define tcp_recv_hiwat tcp_param_arr[33].tcp_param_val 1494 #define tcp_recv_hiwat_minmss tcp_param_arr[34].tcp_param_val 1495 #define tcp_fin_wait_2_flush_interval tcp_param_arr[35].tcp_param_val 1496 #define tcp_co_min tcp_param_arr[36].tcp_param_val 1497 #define tcp_max_buf tcp_param_arr[37].tcp_param_val 1498 #define tcp_strong_iss tcp_param_arr[38].tcp_param_val 1499 #define tcp_rtt_updates tcp_param_arr[39].tcp_param_val 1500 #define tcp_wscale_always tcp_param_arr[40].tcp_param_val 1501 #define tcp_tstamp_always tcp_param_arr[41].tcp_param_val 1502 #define tcp_tstamp_if_wscale tcp_param_arr[42].tcp_param_val 1503 #define tcp_rexmit_interval_extra tcp_param_arr[43].tcp_param_val 1504 #define tcp_deferred_acks_max tcp_param_arr[44].tcp_param_val 1505 #define tcp_slow_start_after_idle tcp_param_arr[45].tcp_param_val 1506 #define tcp_slow_start_initial tcp_param_arr[46].tcp_param_val 1507 #define tcp_co_timer_interval tcp_param_arr[47].tcp_param_val 1508 #define tcp_sack_permitted tcp_param_arr[48].tcp_param_val 1509 #define tcp_trace tcp_param_arr[49].tcp_param_val 1510 #define tcp_compression_enabled tcp_param_arr[50].tcp_param_val 1511 #define tcp_ipv6_hoplimit tcp_param_arr[51].tcp_param_val 1512 #define tcp_mss_def_ipv6 tcp_param_arr[52].tcp_param_val 1513 #define tcp_mss_max_ipv6 tcp_param_arr[53].tcp_param_val 1514 #define tcp_rev_src_routes tcp_param_arr[54].tcp_param_val 1515 #define tcp_local_dack_interval tcp_param_arr[55].tcp_param_val 1516 #define tcp_ndd_get_info_interval tcp_param_arr[56].tcp_param_val 1517 #define tcp_local_dacks_max tcp_param_arr[57].tcp_param_val 1518 #define tcp_ecn_permitted tcp_param_arr[58].tcp_param_val 1519 #define tcp_rst_sent_rate_enabled tcp_param_arr[59].tcp_param_val 1520 #define tcp_rst_sent_rate tcp_param_arr[60].tcp_param_val 1521 #define tcp_push_timer_interval tcp_param_arr[61].tcp_param_val 1522 #define tcp_use_smss_as_mss_opt tcp_param_arr[62].tcp_param_val 1523 #define tcp_keepalive_abort_interval_high tcp_param_arr[63].tcp_param_max 1524 #define tcp_keepalive_abort_interval tcp_param_arr[63].tcp_param_val 1525 #define tcp_keepalive_abort_interval_low tcp_param_arr[63].tcp_param_min 1526 1527 /* 1528 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1529 * each header fragment in the header buffer. Each parameter value has 1530 * to be a multiple of 4 (32-bit aligned). 1531 */ 1532 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1533 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1534 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1535 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1536 1537 /* 1538 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1539 * the maximum number of payload buffers associated per Multidata. 1540 */ 1541 static tcpparam_t tcp_mdt_max_pbufs_param = 1542 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1543 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1544 1545 /* Round up the value to the nearest mss. */ 1546 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1547 1548 /* 1549 * Set ECN capable transport (ECT) code point in IP header. 1550 * 1551 * Note that there are 2 ECT code points '01' and '10', which are called 1552 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1553 * point ECT(0) for TCP as described in RFC 2481. 1554 */ 1555 #define SET_ECT(tcp, iph) \ 1556 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1557 /* We need to clear the code point first. */ \ 1558 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1559 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1560 } else { \ 1561 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1562 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1563 } 1564 1565 /* 1566 * The format argument to pass to tcp_display(). 1567 * DISP_PORT_ONLY means that the returned string has only port info. 1568 * DISP_ADDR_AND_PORT means that the returned string also contains the 1569 * remote and local IP address. 1570 */ 1571 #define DISP_PORT_ONLY 1 1572 #define DISP_ADDR_AND_PORT 2 1573 1574 /* 1575 * This controls the rate some ndd info report functions can be used 1576 * by non-priviledged users. It stores the last time such info is 1577 * requested. When those report functions are called again, this 1578 * is checked with the current time and compare with the ndd param 1579 * tcp_ndd_get_info_interval. 1580 */ 1581 static clock_t tcp_last_ndd_get_info_time = 0; 1582 #define NDD_TOO_QUICK_MSG \ 1583 "ndd get info rate too high for non-priviledged users, try again " \ 1584 "later.\n" 1585 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1586 1587 #define IS_VMLOANED_MBLK(mp) \ 1588 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1589 1590 /* 1591 * These two variables control the rate for TCP to generate RSTs in 1592 * response to segments not belonging to any connections. We limit 1593 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1594 * each 1 second interval. This is to protect TCP against DoS attack. 1595 */ 1596 static clock_t tcp_last_rst_intrvl; 1597 static uint32_t tcp_rst_cnt; 1598 1599 /* The number of RST not sent because of the rate limit. */ 1600 static uint32_t tcp_rst_unsent; 1601 1602 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1603 boolean_t tcp_mdt_chain = B_TRUE; 1604 1605 /* 1606 * MDT threshold in the form of effective send MSS multiplier; we take 1607 * the MDT path if the amount of unsent data exceeds the threshold value 1608 * (default threshold is 1*SMSS). 1609 */ 1610 uint_t tcp_mdt_smss_threshold = 1; 1611 1612 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1613 1614 /* 1615 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1616 * tunable settable via NDD. Otherwise, the per-connection behavior is 1617 * determined dynamically during tcp_adapt_ire(), which is the default. 1618 */ 1619 boolean_t tcp_static_maxpsz = B_FALSE; 1620 1621 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1622 uint32_t tcp_random_anon_port = 1; 1623 1624 /* 1625 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1626 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1627 * data, TCP will not respond with an ACK. RFC 793 requires that 1628 * TCP responds with an ACK for such a bogus ACK. By not following 1629 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1630 * an attacker successfully spoofs an acceptable segment to our 1631 * peer; or when our peer is "confused." 1632 */ 1633 uint32_t tcp_drop_ack_unsent_cnt = 10; 1634 1635 /* 1636 * Hook functions to enable cluster networking 1637 * On non-clustered systems these vectors must always be NULL. 1638 */ 1639 1640 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1641 uint8_t *laddrp, in_port_t lport) = NULL; 1642 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1643 uint8_t *laddrp, in_port_t lport) = NULL; 1644 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1645 uint8_t *laddrp, in_port_t lport, 1646 uint8_t *faddrp, in_port_t fport) = NULL; 1647 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1648 uint8_t *laddrp, in_port_t lport, 1649 uint8_t *faddrp, in_port_t fport) = NULL; 1650 1651 /* 1652 * The following are defined in ip.c 1653 */ 1654 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1655 uint8_t *laddrp); 1656 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1657 uint8_t *laddrp, uint8_t *faddrp); 1658 1659 #define CL_INET_CONNECT(tcp) { \ 1660 if (cl_inet_connect != NULL) { \ 1661 /* \ 1662 * Running in cluster mode - register active connection \ 1663 * information \ 1664 */ \ 1665 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1666 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1667 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1668 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1669 (in_port_t)(tcp)->tcp_lport, \ 1670 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1671 (in_port_t)(tcp)->tcp_fport); \ 1672 } \ 1673 } else { \ 1674 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1675 &(tcp)->tcp_ip6h->ip6_src)) {\ 1676 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1677 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1678 (in_port_t)(tcp)->tcp_lport, \ 1679 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1680 (in_port_t)(tcp)->tcp_fport); \ 1681 } \ 1682 } \ 1683 } \ 1684 } 1685 1686 #define CL_INET_DISCONNECT(tcp) { \ 1687 if (cl_inet_disconnect != NULL) { \ 1688 /* \ 1689 * Running in cluster mode - deregister active \ 1690 * connection information \ 1691 */ \ 1692 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1693 if ((tcp)->tcp_ip_src != 0) { \ 1694 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1695 AF_INET, \ 1696 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1697 (in_port_t)(tcp)->tcp_lport, \ 1698 (uint8_t *) \ 1699 (&((tcp)->tcp_ipha->ipha_dst)),\ 1700 (in_port_t)(tcp)->tcp_fport); \ 1701 } \ 1702 } else { \ 1703 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1704 &(tcp)->tcp_ip_src_v6)) { \ 1705 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1706 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1707 (in_port_t)(tcp)->tcp_lport, \ 1708 (uint8_t *) \ 1709 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1710 (in_port_t)(tcp)->tcp_fport); \ 1711 } \ 1712 } \ 1713 } \ 1714 } 1715 1716 /* 1717 * Cluster networking hook for traversing current connection list. 1718 * This routine is used to extract the current list of live connections 1719 * which must continue to to be dispatched to this node. 1720 */ 1721 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1722 1723 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 1724 ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + 16))) 1725 1726 #ifdef _BIG_ENDIAN 1727 #define IP_TCP_CSUM_COMP IPPROTO_TCP 1728 #else 1729 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 1730 #endif 1731 1732 #define IP_HDR_CKSUM(ipha, sum, v_hlen_tos_len, ttl_protocol) { \ 1733 (sum) += (ttl_protocol) + (ipha)->ipha_ident + \ 1734 ((v_hlen_tos_len) >> 16) + \ 1735 ((v_hlen_tos_len) & 0xFFFF) + \ 1736 (ipha)->ipha_fragment_offset_and_flags; \ 1737 (sum) = (((sum) & 0xFFFF) + ((sum) >> 16)); \ 1738 (sum) = ~((sum) + ((sum) >> 16)); \ 1739 (ipha)->ipha_hdr_checksum = (uint16_t)(sum); \ 1740 } 1741 1742 /* 1743 * Macros that determine whether or not IP processing is needed for TCP. 1744 */ 1745 #define TCP_IPOPT_POLICY_V4(tcp) \ 1746 ((tcp)->tcp_ipversion == IPV4_VERSION && \ 1747 ((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH || \ 1748 CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) || \ 1749 CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp))) 1750 1751 #define TCP_IPOPT_POLICY_V6(tcp) \ 1752 ((tcp)->tcp_ipversion == IPV6_VERSION && \ 1753 ((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN || \ 1754 CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) || \ 1755 CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp))) 1756 1757 #define TCP_LOOPBACK_IP(tcp) \ 1758 (TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) || \ 1759 !CONN_IS_MD_FASTPATH((tcp)->tcp_connp)) 1760 1761 boolean_t do_tcp_fusion = B_TRUE; 1762 1763 /* 1764 * This routine gets called by the eager tcp upon changing state from 1765 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 1766 * and the active connect tcp such that the regular tcp processings 1767 * may be bypassed under allowable circumstances. Because the fusion 1768 * requires both endpoints to be in the same squeue, it does not work 1769 * for simultaneous active connects because there is no easy way to 1770 * switch from one squeue to another once the connection is created. 1771 * This is different from the eager tcp case where we assign it the 1772 * same squeue as the one given to the active connect tcp during open. 1773 */ 1774 static void 1775 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph) 1776 { 1777 conn_t *peer_connp, *connp = tcp->tcp_connp; 1778 tcp_t *peer_tcp; 1779 1780 ASSERT(!tcp->tcp_fused); 1781 ASSERT(tcp->tcp_loopback); 1782 ASSERT(tcp->tcp_loopback_peer == NULL); 1783 /* 1784 * We need to check the listener tcp to make sure it's a socket 1785 * endpoint, but we can't really use tcp_listener since we get 1786 * here after sending up T_CONN_IND and tcp_wput_accept() may be 1787 * called independently, at which point tcp_listener is cleared; 1788 * this is why we use tcp_saved_listener. The listener itself 1789 * is guaranteed to be around until tcp_accept_finish() is called 1790 * on this eager -- this won't happen until we're done since 1791 * we're inside the eager's perimeter now. 1792 */ 1793 ASSERT(tcp->tcp_saved_listener != NULL); 1794 1795 /* 1796 * Lookup peer endpoint; search for the remote endpoint having 1797 * the reversed address-port quadruplet in ESTABLISHED state, 1798 * which is guaranteed to be unique in the system. Zone check 1799 * is applied accordingly for loopback address, but not for 1800 * local address since we want fusion to happen across Zones. 1801 */ 1802 if (tcp->tcp_ipversion == IPV4_VERSION) { 1803 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 1804 (ipha_t *)iphdr, tcph); 1805 } else { 1806 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 1807 (ip6_t *)iphdr, tcph); 1808 } 1809 1810 /* 1811 * We can only proceed if peer exists, resides in the same squeue 1812 * as our conn and is not raw-socket. The squeue assignment of 1813 * this eager tcp was done earlier at the time of SYN processing 1814 * in ip_fanout_tcp{_v6}. Note that similar squeues by itself 1815 * doesn't guarantee a safe condition to fuse, hence we perform 1816 * additional tests below. 1817 */ 1818 ASSERT(peer_connp == NULL || peer_connp != connp); 1819 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 1820 !IPCL_IS_TCP(peer_connp)) { 1821 if (peer_connp != NULL) { 1822 TCP_STAT(tcp_fusion_unqualified); 1823 CONN_DEC_REF(peer_connp); 1824 } 1825 return; 1826 } 1827 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 1828 1829 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 1830 ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL); 1831 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 1832 1833 /* 1834 * Fuse the endpoints; we perform further checks against both 1835 * tcp endpoints to ensure that a fusion is allowed to happen. 1836 * In particular we bail out for TPI, non-simple TCP/IP or if 1837 * IPsec/IPQoS policy exists. We could actually do it for the 1838 * XTI/TLI/TPI case but this requires more testing, so for now 1839 * we handle only the socket case. 1840 */ 1841 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 1842 TCP_IS_SOCKET(tcp->tcp_saved_listener) && TCP_IS_SOCKET(peer_tcp) && 1843 !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) && 1844 !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 1845 mblk_t *mp; 1846 struct stroptions *stropt; 1847 queue_t *peer_rq = peer_tcp->tcp_rq; 1848 size_t sth_hiwat; 1849 1850 ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL); 1851 1852 /* 1853 * We need to drain data on both endpoints during unfuse. 1854 * If we need to send up SIGURG at the time of draining, 1855 * we want to be sure that an mblk is readily available. 1856 * This is why we pre-allocate the M_PCSIG mblks for both 1857 * endpoints which will only be used during/after unfuse. 1858 */ 1859 if ((mp = allocb(1, BPRI_HI)) == NULL) { 1860 CONN_DEC_REF(peer_connp); 1861 return; 1862 } 1863 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 1864 tcp->tcp_fused_sigurg_mp = mp; 1865 1866 if ((mp = allocb(1, BPRI_HI)) == NULL) { 1867 freeb(tcp->tcp_fused_sigurg_mp); 1868 tcp->tcp_fused_sigurg_mp = NULL; 1869 CONN_DEC_REF(peer_connp); 1870 return; 1871 } 1872 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 1873 peer_tcp->tcp_fused_sigurg_mp = mp; 1874 1875 /* Allocate M_SETOPTS mblk */ 1876 mp = allocb(sizeof (*stropt), BPRI_HI); 1877 if (mp == NULL) { 1878 freeb(tcp->tcp_fused_sigurg_mp); 1879 tcp->tcp_fused_sigurg_mp = NULL; 1880 freeb(peer_tcp->tcp_fused_sigurg_mp); 1881 peer_tcp->tcp_fused_sigurg_mp = NULL; 1882 CONN_DEC_REF(peer_connp); 1883 return; 1884 } 1885 1886 /* Fuse both endpoints */ 1887 peer_tcp->tcp_loopback_peer = tcp; 1888 tcp->tcp_loopback_peer = peer_tcp; 1889 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 1890 1891 /* 1892 * We never use regular tcp paths in fusion and should 1893 * therefore clear tcp_unsent on both endpoints. Having 1894 * them set to non-zero values means asking for trouble 1895 * especially after unfuse, where we may end up sending 1896 * through regular tcp paths which expect xmit_list and 1897 * friends to be correctly setup. 1898 */ 1899 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 1900 1901 tcp_timers_stop(tcp); 1902 tcp_timers_stop(peer_tcp); 1903 1904 /* 1905 * Set the stream head's write offset value to zero, since we 1906 * won't be needing any room for TCP/IP headers, and tell it 1907 * to not break up the writes. This would reduce the amount 1908 * of work done by kmem. In addition, we set the receive 1909 * buffer to twice that of q_hiwat in order to simulate the 1910 * non-fusion case. Note that we can only do this for the 1911 * active connect tcp since our eager is still detached; 1912 * it will be dealt with later in tcp_accept_finish(). 1913 */ 1914 DB_TYPE(mp) = M_SETOPTS; 1915 mp->b_wptr += sizeof (*stropt); 1916 1917 sth_hiwat = peer_rq->q_hiwat << 1; 1918 if (sth_hiwat > tcp_max_buf) 1919 sth_hiwat = tcp_max_buf; 1920 1921 stropt = (struct stroptions *)mp->b_rptr; 1922 stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT; 1923 stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE); 1924 stropt->so_wroff = 0; 1925 stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat); 1926 1927 /* Send the options up */ 1928 putnext(peer_rq, mp); 1929 } else { 1930 TCP_STAT(tcp_fusion_unqualified); 1931 } 1932 CONN_DEC_REF(peer_connp); 1933 } 1934 1935 /* 1936 * Unfuse a previously-fused pair of tcp loopback endpoints. 1937 */ 1938 static void 1939 tcp_unfuse(tcp_t *tcp) 1940 { 1941 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 1942 1943 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 1944 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 1945 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 1946 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 1947 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 1948 ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL); 1949 1950 /* 1951 * Drain any pending data; the detached check is needed because 1952 * we may be called from tcp_fuse_output(). Note that in case of 1953 * a detached tcp, the draining will happen later after the tcp 1954 * is unfused. For non-urgent data, this can be handled by the 1955 * regular tcp_rcv_drain(). If we have urgent data sitting in 1956 * the receive list, we will need to send up a SIGURG signal first 1957 * before draining the data. All of these will be handled by the 1958 * code in tcp_fuse_rcv_drain() when called from tcp_rcv_drain(). 1959 */ 1960 if (!TCP_IS_DETACHED(tcp)) { 1961 (void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, 1962 &tcp->tcp_fused_sigurg_mp); 1963 } 1964 if (!TCP_IS_DETACHED(peer_tcp)) { 1965 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp, 1966 &peer_tcp->tcp_fused_sigurg_mp); 1967 } 1968 /* Lift up any flow-control conditions */ 1969 if (tcp->tcp_flow_stopped) { 1970 tcp_clrqfull(tcp); 1971 tcp->tcp_flow_stopped = B_FALSE; 1972 TCP_STAT(tcp_fusion_backenabled); 1973 } 1974 if (peer_tcp->tcp_flow_stopped) { 1975 tcp_clrqfull(peer_tcp); 1976 peer_tcp->tcp_flow_stopped = B_FALSE; 1977 TCP_STAT(tcp_fusion_backenabled); 1978 } 1979 1980 /* Free up M_PCSIG mblk(s) if not needed */ 1981 if (!tcp->tcp_fused_sigurg && tcp->tcp_fused_sigurg_mp != NULL) { 1982 freeb(tcp->tcp_fused_sigurg_mp); 1983 tcp->tcp_fused_sigurg_mp = NULL; 1984 } 1985 if (!peer_tcp->tcp_fused_sigurg && 1986 peer_tcp->tcp_fused_sigurg_mp != NULL) { 1987 freeb(peer_tcp->tcp_fused_sigurg_mp); 1988 peer_tcp->tcp_fused_sigurg_mp = NULL; 1989 } 1990 1991 /* 1992 * Update th_seq and th_ack in the header template 1993 */ 1994 U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq); 1995 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 1996 U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq); 1997 U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack); 1998 1999 /* Unfuse the endpoints */ 2000 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 2001 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 2002 } 2003 2004 /* 2005 * Fusion output routine for urgent data. This routine is called by 2006 * tcp_fuse_output() for handling non-M_DATA mblks. 2007 */ 2008 static void 2009 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 2010 { 2011 mblk_t *mp1; 2012 struct T_exdata_ind *tei; 2013 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2014 mblk_t *head, *prev_head = NULL; 2015 2016 ASSERT(tcp->tcp_fused); 2017 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 2018 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 2019 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 2020 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 2021 2022 /* 2023 * Urgent data arrives in the form of T_EXDATA_REQ from above. 2024 * Each occurence denotes a new urgent pointer. For each new 2025 * urgent pointer we signal (SIGURG) the receiving app to indicate 2026 * that it needs to go into urgent mode. This is similar to the 2027 * urgent data handling in the regular tcp. We don't need to keep 2028 * track of where the urgent pointer is, because each T_EXDATA_REQ 2029 * "advances" the urgent pointer for us. 2030 * 2031 * The actual urgent data carried by T_EXDATA_REQ is then prepended 2032 * by a T_EXDATA_IND before being enqueued behind any existing data 2033 * destined for the receiving app. There is only a single urgent 2034 * pointer (out-of-band mark) for a given tcp. If the new urgent 2035 * data arrives before the receiving app reads some existing urgent 2036 * data, the previous marker is lost. This behavior is emulated 2037 * accordingly below, by removing any existing T_EXDATA_IND messages 2038 * and essentially converting old urgent data into non-urgent. 2039 */ 2040 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 2041 /* Let sender get out of urgent mode */ 2042 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 2043 2044 /* 2045 * Send up SIGURG to the receiving peer; if the peer is detached 2046 * or if we can't allocate the M_PCSIG, indicate that we need to 2047 * signal upon draining to the peer by marking tcp_fused_sigurg. 2048 * This flag will only get cleared once SIGURG is delivered and 2049 * is not affected by the tcp_fused flag -- delivery will still 2050 * happen even after an endpoint is unfused, to handle the case 2051 * where the sending endpoint immediately closes/unfuses after 2052 * sending urgent data and the accept is not yet finished. 2053 */ 2054 if (!TCP_IS_DETACHED(peer_tcp) && 2055 ((mp1 = allocb(1, BPRI_HI)) != NULL || 2056 (mp1 = allocb_tryhard(1)) != NULL)) { 2057 peer_tcp->tcp_fused_sigurg = B_FALSE; 2058 /* Send up the signal */ 2059 DB_TYPE(mp1) = M_PCSIG; 2060 *mp1->b_wptr++ = (uchar_t)SIGURG; 2061 putnext(peer_tcp->tcp_rq, mp1); 2062 } else { 2063 peer_tcp->tcp_fused_sigurg = B_TRUE; 2064 } 2065 2066 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 2067 DB_TYPE(mp) = M_PROTO; 2068 tei = (struct T_exdata_ind *)mp->b_rptr; 2069 tei->PRIM_type = T_EXDATA_IND; 2070 tei->MORE_flag = 0; 2071 mp->b_wptr = (uchar_t *)&tei[1]; 2072 2073 TCP_STAT(tcp_fusion_urg); 2074 BUMP_MIB(&tcp_mib, tcpOutUrg); 2075 2076 head = peer_tcp->tcp_rcv_list; 2077 while (head != NULL) { 2078 /* 2079 * Remove existing T_EXDATA_IND, keep the data which follows 2080 * it and relink our list. Note that we don't modify the 2081 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 2082 */ 2083 if (DB_TYPE(head) != M_DATA) { 2084 mp1 = head; 2085 2086 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 2087 head = mp1->b_cont; 2088 mp1->b_cont = NULL; 2089 head->b_next = mp1->b_next; 2090 mp1->b_next = NULL; 2091 if (prev_head != NULL) 2092 prev_head->b_next = head; 2093 if (peer_tcp->tcp_rcv_list == mp1) 2094 peer_tcp->tcp_rcv_list = head; 2095 if (peer_tcp->tcp_rcv_last_head == mp1) 2096 peer_tcp->tcp_rcv_last_head = head; 2097 freeb(mp1); 2098 } 2099 prev_head = head; 2100 head = head->b_next; 2101 } 2102 } 2103 2104 /* 2105 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 2106 */ 2107 static boolean_t 2108 tcp_fuse_output(tcp_t *tcp, mblk_t *mp) 2109 { 2110 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2111 queue_t *peer_rq; 2112 mblk_t *mp_tail = mp; 2113 uint32_t send_size = 0; 2114 2115 ASSERT(tcp->tcp_fused); 2116 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 2117 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 2118 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 2119 DB_TYPE(mp) == M_PCPROTO); 2120 2121 peer_rq = peer_tcp->tcp_rq; 2122 2123 /* If this connection requires IP, unfuse and use regular path */ 2124 if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) || 2125 IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) { 2126 TCP_STAT(tcp_fusion_aborted); 2127 tcp_unfuse(tcp); 2128 return (B_FALSE); 2129 } 2130 2131 for (;;) { 2132 if (DB_TYPE(mp_tail) == M_DATA) 2133 send_size += MBLKL(mp_tail); 2134 if (mp_tail->b_cont == NULL) 2135 break; 2136 mp_tail = mp_tail->b_cont; 2137 } 2138 2139 if (send_size == 0) { 2140 freemsg(mp); 2141 return (B_TRUE); 2142 } 2143 2144 /* 2145 * Handle urgent data; we either send up SIGURG to the peer now 2146 * or do it later when we drain, in case the peer is detached 2147 * or if we're short of memory for M_PCSIG mblk. 2148 */ 2149 if (DB_TYPE(mp) != M_DATA) 2150 tcp_fuse_output_urg(tcp, mp); 2151 2152 /* 2153 * Enqueue data into the peer's receive list; we may or may not 2154 * drain the contents depending on the conditions below. 2155 */ 2156 tcp_rcv_enqueue(peer_tcp, mp, send_size); 2157 2158 /* In case it wrapped around and also to keep it constant */ 2159 peer_tcp->tcp_rwnd += send_size; 2160 2161 /* 2162 * If peer is detached, exercise flow-control when needed; we will 2163 * get back-enabled either in tcp_accept_finish() or tcp_unfuse(). 2164 */ 2165 if (TCP_IS_DETACHED(peer_tcp) && 2166 peer_tcp->tcp_rcv_cnt > peer_rq->q_hiwat) { 2167 tcp_setqfull(tcp); 2168 tcp->tcp_flow_stopped = B_TRUE; 2169 TCP_STAT(tcp_fusion_flowctl); 2170 } 2171 2172 loopback_packets++; 2173 tcp->tcp_last_sent_len = send_size; 2174 2175 /* Need to adjust the following SNMP MIB-related variables */ 2176 tcp->tcp_snxt += send_size; 2177 tcp->tcp_suna = tcp->tcp_snxt; 2178 peer_tcp->tcp_rnxt += send_size; 2179 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 2180 2181 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 2182 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size); 2183 2184 BUMP_MIB(&tcp_mib, tcpInSegs); 2185 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 2186 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size); 2187 2188 BUMP_LOCAL(tcp->tcp_obsegs); 2189 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 2190 2191 if (!TCP_IS_DETACHED(peer_tcp)) { 2192 /* 2193 * If we can't send SIGURG above due to lack of memory, 2194 * schedule push timer and try again. Otherwise drain 2195 * the data if we're not flow-controlled. 2196 */ 2197 if (peer_tcp->tcp_fused_sigurg) { 2198 if (peer_tcp->tcp_push_tid == 0) { 2199 peer_tcp->tcp_push_tid = 2200 TCP_TIMER(peer_tcp, tcp_push_timer, 2201 MSEC_TO_TICK(tcp_push_timer_interval)); 2202 } 2203 } else if (!tcp->tcp_flow_stopped) { 2204 if (!canputnext(peer_rq)) { 2205 tcp_setqfull(tcp); 2206 tcp->tcp_flow_stopped = B_TRUE; 2207 TCP_STAT(tcp_fusion_flowctl); 2208 } else { 2209 ASSERT(peer_tcp->tcp_rcv_list != NULL); 2210 (void) tcp_fuse_rcv_drain(peer_rq, 2211 peer_tcp, NULL); 2212 TCP_STAT(tcp_fusion_putnext); 2213 } 2214 } 2215 } 2216 return (B_TRUE); 2217 } 2218 2219 /* 2220 * This routine gets called to deliver data upstream on a fused or 2221 * previously fused tcp loopback endpoint; the latter happens only 2222 * when there is a pending SIGURG signal plus urgent data that can't 2223 * be sent upstream in the past. 2224 */ 2225 static boolean_t 2226 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 2227 { 2228 mblk_t *mp; 2229 #ifdef DEBUG 2230 uint_t cnt = 0; 2231 #endif 2232 2233 ASSERT(tcp->tcp_loopback); 2234 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 2235 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 2236 ASSERT(sigurg_mpp != NULL || tcp->tcp_fused); 2237 2238 /* No need for the push timer now, in case it was scheduled */ 2239 if (tcp->tcp_push_tid != 0) { 2240 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2241 tcp->tcp_push_tid = 0; 2242 } 2243 /* 2244 * If there's urgent data sitting in receive list and we didn't 2245 * get a chance to send up a SIGURG signal, make sure we send 2246 * it first before draining in order to ensure that SIOCATMARK 2247 * works properly. 2248 */ 2249 if (tcp->tcp_fused_sigurg) { 2250 /* 2251 * sigurg_mpp is normally NULL, i.e. when we're still 2252 * fused and didn't get here because of tcp_unfuse(). 2253 * In this case try hard to allocate the M_PCSIG mblk. 2254 */ 2255 if (sigurg_mpp == NULL && 2256 (mp = allocb(1, BPRI_HI)) == NULL && 2257 (mp = allocb_tryhard(1)) == NULL) { 2258 /* Alloc failed; try again next time */ 2259 tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, 2260 MSEC_TO_TICK(tcp_push_timer_interval)); 2261 return (B_TRUE); 2262 } else if (sigurg_mpp != NULL) { 2263 /* 2264 * Use the supplied M_PCSIG mblk; it means we're 2265 * either unfused or in the process of unfusing, 2266 * and the drain must happen now. 2267 */ 2268 mp = *sigurg_mpp; 2269 *sigurg_mpp = NULL; 2270 } 2271 ASSERT(mp != NULL); 2272 2273 tcp->tcp_fused_sigurg = B_FALSE; 2274 /* Send up the signal */ 2275 DB_TYPE(mp) = M_PCSIG; 2276 *mp->b_wptr++ = (uchar_t)SIGURG; 2277 putnext(q, mp); 2278 /* 2279 * Let the regular tcp_rcv_drain() path handle 2280 * draining the data if we're no longer fused. 2281 */ 2282 if (!tcp->tcp_fused) 2283 return (B_FALSE); 2284 } 2285 2286 /* Drain the data */ 2287 while ((mp = tcp->tcp_rcv_list) != NULL) { 2288 tcp->tcp_rcv_list = mp->b_next; 2289 mp->b_next = NULL; 2290 #ifdef DEBUG 2291 cnt += msgdsize(mp); 2292 #endif 2293 putnext(q, mp); 2294 } 2295 2296 ASSERT(cnt == tcp->tcp_rcv_cnt); 2297 tcp->tcp_rcv_last_head = NULL; 2298 tcp->tcp_rcv_last_tail = NULL; 2299 tcp->tcp_rcv_cnt = 0; 2300 tcp->tcp_rwnd = q->q_hiwat; 2301 2302 return (B_TRUE); 2303 } 2304 2305 /* 2306 * This is the walker function, which is TCP specific. 2307 * It walks through the conn_hash bucket searching for the 2308 * next valid connp/tcp in the list, selecting connp/tcp 2309 * which haven't closed or condemned. It also REFHOLDS the 2310 * reference for the tcp, ensuring that the tcp exists 2311 * when the caller uses the tcp. 2312 * 2313 * tcp_get_next_conn 2314 * get the next entry in the conn global list 2315 * and put a reference on the next_conn. 2316 * decrement the reference on the current conn. 2317 */ 2318 conn_t * 2319 tcp_get_next_conn(connf_t *connfp, conn_t *connp) 2320 { 2321 conn_t *next_connp; 2322 2323 if (connfp == NULL) 2324 return (NULL); 2325 2326 mutex_enter(&connfp->connf_lock); 2327 2328 next_connp = (connp == NULL) ? 2329 connfp->connf_head : connp->conn_g_next; 2330 2331 while (next_connp != NULL) { 2332 mutex_enter(&next_connp->conn_lock); 2333 if ((next_connp->conn_state_flags & 2334 (CONN_CONDEMNED | CONN_INCIPIENT)) || 2335 !IPCL_IS_TCP(next_connp)) { 2336 /* 2337 * This conn has been condemned or 2338 * is closing. 2339 */ 2340 mutex_exit(&next_connp->conn_lock); 2341 next_connp = next_connp->conn_g_next; 2342 continue; 2343 } 2344 ASSERT(next_connp->conn_tcp != NULL); 2345 CONN_INC_REF_LOCKED(next_connp); 2346 mutex_exit(&next_connp->conn_lock); 2347 break; 2348 } 2349 2350 mutex_exit(&connfp->connf_lock); 2351 2352 if (connp != NULL) { 2353 CONN_DEC_REF(connp); 2354 } 2355 2356 return (next_connp); 2357 } 2358 2359 /* 2360 * Figure out the value of window scale opton. Note that the rwnd is 2361 * ASSUMED to be rounded up to the nearest MSS before the calculation. 2362 * We cannot find the scale value and then do a round up of tcp_rwnd 2363 * because the scale value may not be correct after that. 2364 * 2365 * Set the compiler flag to make this function inline. 2366 */ 2367 static void 2368 tcp_set_ws_value(tcp_t *tcp) 2369 { 2370 int i; 2371 uint32_t rwnd = tcp->tcp_rwnd; 2372 2373 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 2374 i++, rwnd >>= 1) 2375 ; 2376 tcp->tcp_rcv_ws = i; 2377 } 2378 2379 /* 2380 * Remove a connection from the list of detached TIME_WAIT connections. 2381 */ 2382 static void 2383 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 2384 { 2385 boolean_t locked = B_FALSE; 2386 2387 if (tcp_time_wait == NULL) { 2388 tcp_time_wait = *((tcp_squeue_priv_t **) 2389 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 2390 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2391 locked = B_TRUE; 2392 } 2393 2394 if (tcp->tcp_time_wait_expire == 0) { 2395 ASSERT(tcp->tcp_time_wait_next == NULL); 2396 ASSERT(tcp->tcp_time_wait_prev == NULL); 2397 if (locked) 2398 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2399 return; 2400 } 2401 ASSERT(TCP_IS_DETACHED(tcp)); 2402 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 2403 2404 if (tcp == tcp_time_wait->tcp_time_wait_head) { 2405 ASSERT(tcp->tcp_time_wait_prev == NULL); 2406 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 2407 if (tcp_time_wait->tcp_time_wait_head != NULL) { 2408 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 2409 NULL; 2410 } else { 2411 tcp_time_wait->tcp_time_wait_tail = NULL; 2412 } 2413 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 2414 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 2415 ASSERT(tcp->tcp_time_wait_next == NULL); 2416 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 2417 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 2418 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 2419 } else { 2420 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 2421 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 2422 tcp->tcp_time_wait_prev->tcp_time_wait_next = 2423 tcp->tcp_time_wait_next; 2424 tcp->tcp_time_wait_next->tcp_time_wait_prev = 2425 tcp->tcp_time_wait_prev; 2426 } 2427 tcp->tcp_time_wait_next = NULL; 2428 tcp->tcp_time_wait_prev = NULL; 2429 tcp->tcp_time_wait_expire = 0; 2430 2431 if (locked) 2432 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2433 } 2434 2435 /* 2436 * Add a connection to the list of detached TIME_WAIT connections 2437 * and set its time to expire. 2438 */ 2439 static void 2440 tcp_time_wait_append(tcp_t *tcp) 2441 { 2442 tcp_squeue_priv_t *tcp_time_wait = 2443 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 2444 SQPRIVATE_TCP)); 2445 2446 tcp_timers_stop(tcp); 2447 2448 /* Freed above */ 2449 ASSERT(tcp->tcp_timer_tid == 0); 2450 ASSERT(tcp->tcp_ack_tid == 0); 2451 2452 /* must have happened at the time of detaching the tcp */ 2453 ASSERT(tcp->tcp_ptpahn == NULL); 2454 ASSERT(tcp->tcp_flow_stopped == 0); 2455 ASSERT(tcp->tcp_time_wait_next == NULL); 2456 ASSERT(tcp->tcp_time_wait_prev == NULL); 2457 ASSERT(tcp->tcp_time_wait_expire == NULL); 2458 ASSERT(tcp->tcp_listener == NULL); 2459 2460 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 2461 /* 2462 * The value computed below in tcp->tcp_time_wait_expire may 2463 * appear negative or wrap around. That is ok since our 2464 * interest is only in the difference between the current lbolt 2465 * value and tcp->tcp_time_wait_expire. But the value should not 2466 * be zero, since it means the tcp is not in the TIME_WAIT list. 2467 * The corresponding comparison in tcp_time_wait_collector() uses 2468 * modular arithmetic. 2469 */ 2470 tcp->tcp_time_wait_expire += 2471 drv_usectohz(tcp_time_wait_interval * 1000); 2472 if (tcp->tcp_time_wait_expire == 0) 2473 tcp->tcp_time_wait_expire = 1; 2474 2475 ASSERT(TCP_IS_DETACHED(tcp)); 2476 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 2477 ASSERT(tcp->tcp_time_wait_next == NULL); 2478 ASSERT(tcp->tcp_time_wait_prev == NULL); 2479 TCP_DBGSTAT(tcp_time_wait); 2480 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2481 if (tcp_time_wait->tcp_time_wait_head == NULL) { 2482 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 2483 tcp_time_wait->tcp_time_wait_head = tcp; 2484 } else { 2485 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 2486 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 2487 TCPS_TIME_WAIT); 2488 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 2489 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 2490 } 2491 tcp_time_wait->tcp_time_wait_tail = tcp; 2492 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2493 } 2494 2495 /* ARGSUSED */ 2496 void 2497 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 2498 { 2499 conn_t *connp = (conn_t *)arg; 2500 tcp_t *tcp = connp->conn_tcp; 2501 2502 ASSERT(tcp != NULL); 2503 if (tcp->tcp_state == TCPS_CLOSED) { 2504 return; 2505 } 2506 2507 ASSERT((tcp->tcp_family == AF_INET && 2508 tcp->tcp_ipversion == IPV4_VERSION) || 2509 (tcp->tcp_family == AF_INET6 && 2510 (tcp->tcp_ipversion == IPV4_VERSION || 2511 tcp->tcp_ipversion == IPV6_VERSION))); 2512 ASSERT(!tcp->tcp_listener); 2513 2514 TCP_STAT(tcp_time_wait_reap); 2515 ASSERT(TCP_IS_DETACHED(tcp)); 2516 2517 /* 2518 * Because they have no upstream client to rebind or tcp_close() 2519 * them later, we axe the connection here and now. 2520 */ 2521 tcp_close_detached(tcp); 2522 } 2523 2524 void 2525 tcp_cleanup(tcp_t *tcp) 2526 { 2527 mblk_t *mp; 2528 char *tcp_iphc; 2529 int tcp_iphc_len; 2530 int tcp_hdr_grown; 2531 tcp_sack_info_t *tcp_sack_info; 2532 conn_t *connp = tcp->tcp_connp; 2533 2534 tcp_bind_hash_remove(tcp); 2535 tcp_free(tcp); 2536 2537 conn_delete_ire(connp, NULL); 2538 if (connp->conn_flags & IPCL_TCPCONN) { 2539 if (connp->conn_latch != NULL) 2540 IPLATCH_REFRELE(connp->conn_latch); 2541 if (connp->conn_policy != NULL) 2542 IPPH_REFRELE(connp->conn_policy); 2543 } 2544 2545 /* 2546 * Since we will bzero the entire structure, we need to 2547 * remove it and reinsert it in global hash list. We 2548 * know the walkers can't get to this conn because we 2549 * had set CONDEMNED flag earlier and checked reference 2550 * under conn_lock so walker won't pick it and when we 2551 * go the ipcl_globalhash_remove() below, no walker 2552 * can get to it. 2553 */ 2554 ipcl_globalhash_remove(connp); 2555 2556 /* Save some state */ 2557 mp = tcp->tcp_timercache; 2558 2559 tcp_sack_info = tcp->tcp_sack_info; 2560 tcp_iphc = tcp->tcp_iphc; 2561 tcp_iphc_len = tcp->tcp_iphc_len; 2562 tcp_hdr_grown = tcp->tcp_hdr_grown; 2563 2564 bzero(connp, sizeof (conn_t)); 2565 bzero(tcp, sizeof (tcp_t)); 2566 2567 /* restore the state */ 2568 tcp->tcp_timercache = mp; 2569 2570 tcp->tcp_sack_info = tcp_sack_info; 2571 tcp->tcp_iphc = tcp_iphc; 2572 tcp->tcp_iphc_len = tcp_iphc_len; 2573 tcp->tcp_hdr_grown = tcp_hdr_grown; 2574 2575 2576 tcp->tcp_connp = connp; 2577 2578 connp->conn_tcp = tcp; 2579 connp->conn_flags = IPCL_TCPCONN; 2580 connp->conn_state_flags = CONN_INCIPIENT; 2581 connp->conn_ulp = IPPROTO_TCP; 2582 connp->conn_ref = 1; 2583 2584 ipcl_globalhash_insert(connp); 2585 } 2586 2587 /* 2588 * Blows away all tcps whose TIME_WAIT has expired. List traversal 2589 * is done forwards from the head. 2590 */ 2591 /* ARGSUSED */ 2592 void 2593 tcp_time_wait_collector(void *arg) 2594 { 2595 tcp_t *tcp; 2596 clock_t now; 2597 mblk_t *mp; 2598 conn_t *connp; 2599 kmutex_t *lock; 2600 2601 squeue_t *sqp = (squeue_t *)arg; 2602 tcp_squeue_priv_t *tcp_time_wait = 2603 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 2604 2605 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2606 tcp_time_wait->tcp_time_wait_tid = 0; 2607 2608 if (tcp_time_wait->tcp_free_list != NULL && 2609 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 2610 TCP_STAT(tcp_freelist_cleanup); 2611 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 2612 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 2613 CONN_DEC_REF(tcp->tcp_connp); 2614 } 2615 } 2616 2617 /* 2618 * In order to reap time waits reliably, we should use a 2619 * source of time that is not adjustable by the user -- hence 2620 * the call to ddi_get_lbolt(). 2621 */ 2622 now = ddi_get_lbolt(); 2623 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 2624 /* 2625 * Compare times using modular arithmetic, since 2626 * lbolt can wrapover. 2627 */ 2628 if ((now - tcp->tcp_time_wait_expire) < 0) { 2629 break; 2630 } 2631 2632 tcp_time_wait_remove(tcp, tcp_time_wait); 2633 2634 connp = tcp->tcp_connp; 2635 ASSERT(connp->conn_fanout != NULL); 2636 lock = &connp->conn_fanout->connf_lock; 2637 /* 2638 * This is essentially a TW reclaim fast path optimization for 2639 * performance where the timewait collector checks under the 2640 * fanout lock (so that no one else can get access to the 2641 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 2642 * the classifier hash list. If ref count is indeed 2, we can 2643 * just remove the conn under the fanout lock and avoid 2644 * cleaning up the conn under the squeue, provided that 2645 * clustering callbacks are not enabled. If clustering is 2646 * enabled, we need to make the clustering callback before 2647 * setting the CONDEMNED flag and after dropping all locks and 2648 * so we forego this optimization and fall back to the slow 2649 * path. Also please see the comments in tcp_closei_local 2650 * regarding the refcnt logic. 2651 * 2652 * Since we are holding the tcp_time_wait_lock, its better 2653 * not to block on the fanout_lock because other connections 2654 * can't add themselves to time_wait list. So we do a 2655 * tryenter instead of mutex_enter. 2656 */ 2657 if (mutex_tryenter(lock)) { 2658 mutex_enter(&connp->conn_lock); 2659 if ((connp->conn_ref == 2) && 2660 (cl_inet_disconnect == NULL)) { 2661 ipcl_hash_remove_locked(connp, 2662 connp->conn_fanout); 2663 /* 2664 * Set the CONDEMNED flag now itself so that 2665 * the refcnt cannot increase due to any 2666 * walker. But we have still not cleaned up 2667 * conn_ire_cache. This is still ok since 2668 * we are going to clean it up in tcp_cleanup 2669 * immediately and any interface unplumb 2670 * thread will wait till the ire is blown away 2671 */ 2672 connp->conn_state_flags |= CONN_CONDEMNED; 2673 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2674 mutex_exit(lock); 2675 mutex_exit(&connp->conn_lock); 2676 tcp_cleanup(tcp); 2677 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2678 tcp->tcp_time_wait_next = 2679 tcp_time_wait->tcp_free_list; 2680 tcp_time_wait->tcp_free_list = tcp; 2681 continue; 2682 } else { 2683 CONN_INC_REF_LOCKED(connp); 2684 mutex_exit(lock); 2685 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2686 mutex_exit(&connp->conn_lock); 2687 /* 2688 * We can reuse the closemp here since conn has 2689 * detached (otherwise we wouldn't even be in 2690 * time_wait list). 2691 */ 2692 mp = &tcp->tcp_closemp; 2693 squeue_fill(connp->conn_sqp, mp, 2694 tcp_timewait_output, connp, 2695 SQTAG_TCP_TIMEWAIT); 2696 } 2697 } else { 2698 mutex_enter(&connp->conn_lock); 2699 CONN_INC_REF_LOCKED(connp); 2700 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2701 mutex_exit(&connp->conn_lock); 2702 /* 2703 * We can reuse the closemp here since conn has 2704 * detached (otherwise we wouldn't even be in 2705 * time_wait list). 2706 */ 2707 mp = &tcp->tcp_closemp; 2708 squeue_fill(connp->conn_sqp, mp, 2709 tcp_timewait_output, connp, 0); 2710 } 2711 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 2712 } 2713 2714 if (tcp_time_wait->tcp_free_list != NULL) 2715 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 2716 2717 tcp_time_wait->tcp_time_wait_tid = 2718 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 2719 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 2720 } 2721 2722 /* 2723 * Reply to a clients T_CONN_RES TPI message. This function 2724 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 2725 * on the acceptor STREAM and processed in tcp_wput_accept(). 2726 * Read the block comment on top of tcp_conn_request(). 2727 */ 2728 static void 2729 tcp_accept(tcp_t *listener, mblk_t *mp) 2730 { 2731 tcp_t *acceptor; 2732 tcp_t *eager; 2733 tcp_t *tcp; 2734 struct T_conn_res *tcr; 2735 t_uscalar_t acceptor_id; 2736 t_scalar_t seqnum; 2737 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2738 mblk_t *ok_mp; 2739 mblk_t *mp1; 2740 2741 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2742 tcp_err_ack(listener, mp, TPROTO, 0); 2743 return; 2744 } 2745 tcr = (struct T_conn_res *)mp->b_rptr; 2746 2747 /* 2748 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2749 * read side queue of the streams device underneath us i.e. the 2750 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2751 * look it up in the queue_hash. Under LP64 it sends down the 2752 * minor_t of the accepting endpoint. 2753 * 2754 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2755 * fanout hash lock is held. 2756 * This prevents any thread from entering the acceptor queue from 2757 * below (since it has not been hard bound yet i.e. any inbound 2758 * packets will arrive on the listener or default tcp queue and 2759 * go through tcp_lookup). 2760 * The CONN_INC_REF will prevent the acceptor from closing. 2761 * 2762 * XXX It is still possible for a tli application to send down data 2763 * on the accepting stream while another thread calls t_accept. 2764 * This should not be a problem for well-behaved applications since 2765 * the T_OK_ACK is sent after the queue swapping is completed. 2766 * 2767 * If the accepting fd is the same as the listening fd, avoid 2768 * queue hash lookup since that will return an eager listener in a 2769 * already established state. 2770 */ 2771 acceptor_id = tcr->ACCEPTOR_id; 2772 mutex_enter(&listener->tcp_eager_lock); 2773 if (listener->tcp_acceptor_id == acceptor_id) { 2774 eager = listener->tcp_eager_next_q; 2775 /* only count how many T_CONN_INDs so don't count q0 */ 2776 if ((listener->tcp_conn_req_cnt_q != 1) || 2777 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2778 mutex_exit(&listener->tcp_eager_lock); 2779 tcp_err_ack(listener, mp, TBADF, 0); 2780 return; 2781 } 2782 if (listener->tcp_conn_req_cnt_q0 != 0) { 2783 /* Throw away all the eagers on q0. */ 2784 tcp_eager_cleanup(listener, 1); 2785 } 2786 if (listener->tcp_syn_defense) { 2787 listener->tcp_syn_defense = B_FALSE; 2788 if (listener->tcp_ip_addr_cache != NULL) { 2789 kmem_free(listener->tcp_ip_addr_cache, 2790 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2791 listener->tcp_ip_addr_cache = NULL; 2792 } 2793 } 2794 /* 2795 * Transfer tcp_conn_req_max to the eager so that when 2796 * a disconnect occurs we can revert the endpoint to the 2797 * listen state. 2798 */ 2799 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2800 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2801 /* 2802 * Get a reference on the acceptor just like the 2803 * tcp_acceptor_hash_lookup below. 2804 */ 2805 acceptor = listener; 2806 CONN_INC_REF(acceptor->tcp_connp); 2807 } else { 2808 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2809 if (acceptor == NULL) { 2810 if (listener->tcp_debug) { 2811 (void) strlog(TCP_MODULE_ID, 0, 1, 2812 SL_ERROR|SL_TRACE, 2813 "tcp_accept: did not find acceptor 0x%x\n", 2814 acceptor_id); 2815 } 2816 mutex_exit(&listener->tcp_eager_lock); 2817 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2818 return; 2819 } 2820 /* 2821 * Verify acceptor state. The acceptable states for an acceptor 2822 * include TCPS_IDLE and TCPS_BOUND. 2823 */ 2824 switch (acceptor->tcp_state) { 2825 case TCPS_IDLE: 2826 /* FALLTHRU */ 2827 case TCPS_BOUND: 2828 break; 2829 default: 2830 CONN_DEC_REF(acceptor->tcp_connp); 2831 mutex_exit(&listener->tcp_eager_lock); 2832 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2833 return; 2834 } 2835 } 2836 2837 /* The listener must be in TCPS_LISTEN */ 2838 if (listener->tcp_state != TCPS_LISTEN) { 2839 CONN_DEC_REF(acceptor->tcp_connp); 2840 mutex_exit(&listener->tcp_eager_lock); 2841 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2842 return; 2843 } 2844 2845 /* 2846 * Rendezvous with an eager connection request packet hanging off 2847 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2848 * tcp structure when the connection packet arrived in 2849 * tcp_conn_request(). 2850 */ 2851 seqnum = tcr->SEQ_number; 2852 eager = listener; 2853 do { 2854 eager = eager->tcp_eager_next_q; 2855 if (eager == NULL) { 2856 CONN_DEC_REF(acceptor->tcp_connp); 2857 mutex_exit(&listener->tcp_eager_lock); 2858 tcp_err_ack(listener, mp, TBADSEQ, 0); 2859 return; 2860 } 2861 } while (eager->tcp_conn_req_seqnum != seqnum); 2862 mutex_exit(&listener->tcp_eager_lock); 2863 2864 /* 2865 * At this point, both acceptor and listener have 2 ref 2866 * that they begin with. Acceptor has one additional ref 2867 * we placed in lookup while listener has 3 additional 2868 * ref for being behind the squeue (tcp_accept() is 2869 * done on listener's squeue); being in classifier hash; 2870 * and eager's ref on listener. 2871 */ 2872 ASSERT(listener->tcp_connp->conn_ref >= 5); 2873 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2874 2875 /* 2876 * The eager at this point is set in its own squeue and 2877 * could easily have been killed (tcp_accept_finish will 2878 * deal with that) because of a TH_RST so we can only 2879 * ASSERT for a single ref. 2880 */ 2881 ASSERT(eager->tcp_connp->conn_ref >= 1); 2882 2883 /* Pre allocate the stroptions mblk also */ 2884 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2885 if (opt_mp == NULL) { 2886 CONN_DEC_REF(acceptor->tcp_connp); 2887 CONN_DEC_REF(eager->tcp_connp); 2888 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2889 return; 2890 } 2891 DB_TYPE(opt_mp) = M_SETOPTS; 2892 opt_mp->b_wptr += sizeof (struct stroptions); 2893 2894 /* 2895 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2896 * from listener to acceptor. The message is chained on opt_mp 2897 * which will be sent onto eager's squeue. 2898 */ 2899 if (listener->tcp_bound_if != 0) { 2900 /* allocate optmgmt req */ 2901 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2902 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2903 sizeof (int)); 2904 if (mp1 != NULL) 2905 linkb(opt_mp, mp1); 2906 } 2907 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2908 uint_t on = 1; 2909 2910 /* allocate optmgmt req */ 2911 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2912 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2913 if (mp1 != NULL) 2914 linkb(opt_mp, mp1); 2915 } 2916 2917 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2918 if ((mp1 = copymsg(mp)) == NULL) { 2919 CONN_DEC_REF(acceptor->tcp_connp); 2920 CONN_DEC_REF(eager->tcp_connp); 2921 freemsg(opt_mp); 2922 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2923 return; 2924 } 2925 2926 tcr = (struct T_conn_res *)mp1->b_rptr; 2927 2928 /* 2929 * This is an expanded version of mi_tpi_ok_ack_alloc() 2930 * which allocates a larger mblk and appends the new 2931 * local address to the ok_ack. The address is copied by 2932 * soaccept() for getsockname(). 2933 */ 2934 { 2935 int extra; 2936 2937 extra = (eager->tcp_family == AF_INET) ? 2938 sizeof (sin_t) : sizeof (sin6_t); 2939 2940 /* 2941 * Try to re-use mp, if possible. Otherwise, allocate 2942 * an mblk and return it as ok_mp. In any case, mp 2943 * is no longer usable upon return. 2944 */ 2945 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2946 CONN_DEC_REF(acceptor->tcp_connp); 2947 CONN_DEC_REF(eager->tcp_connp); 2948 freemsg(opt_mp); 2949 /* Original mp has been freed by now, so use mp1 */ 2950 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2951 return; 2952 } 2953 2954 mp = NULL; /* We should never use mp after this point */ 2955 2956 switch (extra) { 2957 case sizeof (sin_t): { 2958 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2959 2960 ok_mp->b_wptr += extra; 2961 sin->sin_family = AF_INET; 2962 sin->sin_port = eager->tcp_lport; 2963 sin->sin_addr.s_addr = 2964 eager->tcp_ipha->ipha_src; 2965 break; 2966 } 2967 case sizeof (sin6_t): { 2968 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2969 2970 ok_mp->b_wptr += extra; 2971 sin6->sin6_family = AF_INET6; 2972 sin6->sin6_port = eager->tcp_lport; 2973 if (eager->tcp_ipversion == IPV4_VERSION) { 2974 sin6->sin6_flowinfo = 0; 2975 IN6_IPADDR_TO_V4MAPPED( 2976 eager->tcp_ipha->ipha_src, 2977 &sin6->sin6_addr); 2978 } else { 2979 ASSERT(eager->tcp_ip6h != NULL); 2980 sin6->sin6_flowinfo = 2981 eager->tcp_ip6h->ip6_vcf & 2982 ~IPV6_VERS_AND_FLOW_MASK; 2983 sin6->sin6_addr = 2984 eager->tcp_ip6h->ip6_src; 2985 } 2986 break; 2987 } 2988 default: 2989 break; 2990 } 2991 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2992 } 2993 2994 /* 2995 * If there are no options we know that the T_CONN_RES will 2996 * succeed. However, we can't send the T_OK_ACK upstream until 2997 * the tcp_accept_swap is done since it would be dangerous to 2998 * let the application start using the new fd prior to the swap. 2999 */ 3000 tcp_accept_swap(listener, acceptor, eager); 3001 3002 /* 3003 * tcp_accept_swap unlinks eager from listener but does not drop 3004 * the eager's reference on the listener. 3005 */ 3006 ASSERT(eager->tcp_listener == NULL); 3007 ASSERT(listener->tcp_connp->conn_ref >= 5); 3008 3009 /* 3010 * The eager is now associated with its own queue. Insert in 3011 * the hash so that the connection can be reused for a future 3012 * T_CONN_RES. 3013 */ 3014 tcp_acceptor_hash_insert(acceptor_id, eager); 3015 3016 /* 3017 * We now do the processing of options with T_CONN_RES. 3018 * We delay till now since we wanted to have queue to pass to 3019 * option processing routines that points back to the right 3020 * instance structure which does not happen until after 3021 * tcp_accept_swap(). 3022 * 3023 * Note: 3024 * The sanity of the logic here assumes that whatever options 3025 * are appropriate to inherit from listner=>eager are done 3026 * before this point, and whatever were to be overridden (or not) 3027 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 3028 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 3029 * before its ACCEPTOR_id comes down in T_CONN_RES ] 3030 * This may not be true at this point in time but can be fixed 3031 * independently. This option processing code starts with 3032 * the instantiated acceptor instance and the final queue at 3033 * this point. 3034 */ 3035 3036 if (tcr->OPT_length != 0) { 3037 /* Options to process */ 3038 int t_error = 0; 3039 int sys_error = 0; 3040 int do_disconnect = 0; 3041 3042 if (tcp_conprim_opt_process(eager, mp1, 3043 &do_disconnect, &t_error, &sys_error) < 0) { 3044 eager->tcp_accept_error = 1; 3045 if (do_disconnect) { 3046 /* 3047 * An option failed which does not allow 3048 * connection to be accepted. 3049 * 3050 * We allow T_CONN_RES to succeed and 3051 * put a T_DISCON_IND on the eager queue. 3052 */ 3053 ASSERT(t_error == 0 && sys_error == 0); 3054 eager->tcp_send_discon_ind = 1; 3055 } else { 3056 ASSERT(t_error != 0); 3057 freemsg(ok_mp); 3058 /* 3059 * Original mp was either freed or set 3060 * to ok_mp above, so use mp1 instead. 3061 */ 3062 tcp_err_ack(listener, mp1, t_error, sys_error); 3063 goto finish; 3064 } 3065 } 3066 /* 3067 * Most likely success in setting options (except if 3068 * eager->tcp_send_discon_ind set). 3069 * mp1 option buffer represented by OPT_length/offset 3070 * potentially modified and contains results of setting 3071 * options at this point 3072 */ 3073 } 3074 3075 /* We no longer need mp1, since all options processing has passed */ 3076 freemsg(mp1); 3077 3078 putnext(listener->tcp_rq, ok_mp); 3079 3080 mutex_enter(&listener->tcp_eager_lock); 3081 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 3082 tcp_t *tail; 3083 mblk_t *conn_ind; 3084 3085 /* 3086 * This path should not be executed if listener and 3087 * acceptor streams are the same. 3088 */ 3089 ASSERT(listener != acceptor); 3090 3091 tcp = listener->tcp_eager_prev_q0; 3092 /* 3093 * listener->tcp_eager_prev_q0 points to the TAIL of the 3094 * deferred T_conn_ind queue. We need to get to the head of 3095 * the queue in order to send up T_conn_ind the same order as 3096 * how the 3WHS is completed. 3097 */ 3098 while (tcp != listener) { 3099 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 3100 break; 3101 else 3102 tcp = tcp->tcp_eager_prev_q0; 3103 } 3104 ASSERT(tcp != listener); 3105 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 3106 ASSERT(conn_ind != NULL); 3107 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3108 3109 /* Move from q0 to q */ 3110 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 3111 listener->tcp_conn_req_cnt_q0--; 3112 listener->tcp_conn_req_cnt_q++; 3113 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 3114 tcp->tcp_eager_prev_q0; 3115 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 3116 tcp->tcp_eager_next_q0; 3117 tcp->tcp_eager_prev_q0 = NULL; 3118 tcp->tcp_eager_next_q0 = NULL; 3119 tcp->tcp_conn_def_q0 = B_FALSE; 3120 3121 /* 3122 * Insert at end of the queue because sockfs sends 3123 * down T_CONN_RES in chronological order. Leaving 3124 * the older conn indications at front of the queue 3125 * helps reducing search time. 3126 */ 3127 tail = listener->tcp_eager_last_q; 3128 if (tail != NULL) 3129 tail->tcp_eager_next_q = tcp; 3130 else 3131 listener->tcp_eager_next_q = tcp; 3132 listener->tcp_eager_last_q = tcp; 3133 tcp->tcp_eager_next_q = NULL; 3134 mutex_exit(&listener->tcp_eager_lock); 3135 putnext(tcp->tcp_rq, conn_ind); 3136 } else { 3137 mutex_exit(&listener->tcp_eager_lock); 3138 } 3139 3140 /* 3141 * Done with the acceptor - free it 3142 * 3143 * Note: from this point on, no access to listener should be made 3144 * as listener can be equal to acceptor. 3145 */ 3146 finish: 3147 ASSERT(acceptor->tcp_detached); 3148 acceptor->tcp_rq = tcp_g_q; 3149 acceptor->tcp_wq = WR(tcp_g_q); 3150 (void) tcp_clean_death(acceptor, 0, 2); 3151 CONN_DEC_REF(acceptor->tcp_connp); 3152 3153 /* 3154 * In case we already received a FIN we have to make tcp_rput send 3155 * the ordrel_ind. This will also send up a window update if the window 3156 * has opened up. 3157 * 3158 * In the normal case of a successful connection acceptance 3159 * we give the O_T_BIND_REQ to the read side put procedure as an 3160 * indication that this was just accepted. This tells tcp_rput to 3161 * pass up any data queued in tcp_rcv_list. 3162 * 3163 * In the fringe case where options sent with T_CONN_RES failed and 3164 * we required, we would be indicating a T_DISCON_IND to blow 3165 * away this connection. 3166 */ 3167 3168 /* 3169 * XXX: we currently have a problem if XTI application closes the 3170 * acceptor stream in between. This problem exists in on10-gate also 3171 * and is well know but nothing can be done short of major rewrite 3172 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 3173 * eager same squeue as listener (we can distinguish non socket 3174 * listeners at the time of handling a SYN in tcp_conn_request) 3175 * and do most of the work that tcp_accept_finish does here itself 3176 * and then get behind the acceptor squeue to access the acceptor 3177 * queue. 3178 */ 3179 /* 3180 * We already have a ref on tcp so no need to do one before squeue_fill 3181 */ 3182 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 3183 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 3184 } 3185 3186 /* 3187 * Swap information between the eager and acceptor for a TLI/XTI client. 3188 * The sockfs accept is done on the acceptor stream and control goes 3189 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 3190 * called. In either case, both the eager and listener are in their own 3191 * perimeter (squeue) and the code has to deal with potential race. 3192 * 3193 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 3194 */ 3195 static void 3196 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 3197 { 3198 conn_t *econnp, *aconnp; 3199 3200 ASSERT(eager->tcp_rq == listener->tcp_rq); 3201 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 3202 ASSERT(!eager->tcp_hard_bound); 3203 ASSERT(!TCP_IS_SOCKET(acceptor)); 3204 ASSERT(!TCP_IS_SOCKET(eager)); 3205 ASSERT(!TCP_IS_SOCKET(listener)); 3206 3207 acceptor->tcp_detached = B_TRUE; 3208 /* 3209 * To permit stream re-use by TLI/XTI, the eager needs a copy of 3210 * the acceptor id. 3211 */ 3212 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 3213 3214 /* remove eager from listen list... */ 3215 mutex_enter(&listener->tcp_eager_lock); 3216 tcp_eager_unlink(eager); 3217 ASSERT(eager->tcp_eager_next_q == NULL && 3218 eager->tcp_eager_last_q == NULL); 3219 ASSERT(eager->tcp_eager_next_q0 == NULL && 3220 eager->tcp_eager_prev_q0 == NULL); 3221 mutex_exit(&listener->tcp_eager_lock); 3222 eager->tcp_rq = acceptor->tcp_rq; 3223 eager->tcp_wq = acceptor->tcp_wq; 3224 3225 econnp = eager->tcp_connp; 3226 aconnp = acceptor->tcp_connp; 3227 3228 eager->tcp_rq->q_ptr = econnp; 3229 eager->tcp_wq->q_ptr = econnp; 3230 eager->tcp_detached = B_FALSE; 3231 3232 ASSERT(eager->tcp_ack_tid == 0); 3233 3234 econnp->conn_dev = aconnp->conn_dev; 3235 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 3236 econnp->conn_zoneid = aconnp->conn_zoneid; 3237 aconnp->conn_cred = NULL; 3238 3239 /* Do the IPC initialization */ 3240 CONN_INC_REF(econnp); 3241 3242 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 3243 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 3244 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 3245 econnp->conn_ulp = aconnp->conn_ulp; 3246 3247 /* Done with old IPC. Drop its ref on its connp */ 3248 CONN_DEC_REF(aconnp); 3249 } 3250 3251 3252 /* 3253 * Adapt to the information, such as rtt and rtt_sd, provided from the 3254 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 3255 * 3256 * Checks for multicast and broadcast destination address. 3257 * Returns zero on failure; non-zero if ok. 3258 * 3259 * Note that the MSS calculation here is based on the info given in 3260 * the IRE. We do not do any calculation based on TCP options. They 3261 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 3262 * knows which options to use. 3263 * 3264 * Note on how TCP gets its parameters for a connection. 3265 * 3266 * When a tcp_t structure is allocated, it gets all the default parameters. 3267 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 3268 * spipe, rpipe, ... from the route metrics. Route metric overrides the 3269 * default. But if there is an associated tcp_host_param, it will override 3270 * the metrics. 3271 * 3272 * An incoming SYN with a multicast or broadcast destination address, is dropped 3273 * in 1 of 2 places. 3274 * 3275 * 1. If the packet was received over the wire it is dropped in 3276 * ip_rput_process_broadcast() 3277 * 3278 * 2. If the packet was received through internal IP loopback, i.e. the packet 3279 * was generated and received on the same machine, it is dropped in 3280 * ip_wput_local() 3281 * 3282 * An incoming SYN with a multicast or broadcast source address is always 3283 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 3284 * reject an attempt to connect to a broadcast or multicast (destination) 3285 * address. 3286 */ 3287 static int 3288 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 3289 { 3290 tcp_hsp_t *hsp; 3291 ire_t *ire; 3292 ire_t *sire = NULL; 3293 iulp_t *ire_uinfo; 3294 uint32_t mss_max; 3295 uint32_t mss; 3296 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 3297 conn_t *connp = tcp->tcp_connp; 3298 boolean_t ire_cacheable = B_FALSE; 3299 zoneid_t zoneid = connp->conn_zoneid; 3300 ill_t *ill = NULL; 3301 boolean_t incoming = (ire_mp == NULL); 3302 3303 ASSERT(connp->conn_ire_cache == NULL); 3304 3305 if (tcp->tcp_ipversion == IPV4_VERSION) { 3306 3307 if (CLASSD(tcp->tcp_connp->conn_rem)) { 3308 BUMP_MIB(&ip_mib, ipInDiscards); 3309 return (0); 3310 } 3311 3312 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 3313 if (ire != NULL) { 3314 ire_cacheable = B_TRUE; 3315 ire_uinfo = (ire_mp != NULL) ? 3316 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 3317 &ire->ire_uinfo; 3318 3319 } else { 3320 if (ire_mp == NULL) { 3321 ire = ire_ftable_lookup( 3322 tcp->tcp_connp->conn_rem, 3323 0, 0, 0, NULL, &sire, zoneid, 0, 3324 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 3325 if (ire == NULL) 3326 return (0); 3327 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 3328 &ire->ire_uinfo; 3329 } else { 3330 ire = (ire_t *)ire_mp->b_rptr; 3331 ire_uinfo = 3332 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 3333 } 3334 } 3335 ASSERT(ire != NULL); 3336 ASSERT(ire_uinfo != NULL); 3337 3338 if ((ire->ire_src_addr == INADDR_ANY) || 3339 (ire->ire_type & IRE_BROADCAST)) { 3340 /* 3341 * ire->ire_mp is non null when ire_mp passed in is used 3342 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 3343 */ 3344 if (ire->ire_mp == NULL) 3345 ire_refrele(ire); 3346 if (sire != NULL) 3347 ire_refrele(sire); 3348 return (0); 3349 } 3350 3351 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 3352 ipaddr_t src_addr; 3353 3354 /* 3355 * ip_bind_connected() has stored the correct source 3356 * address in conn_src. 3357 */ 3358 src_addr = tcp->tcp_connp->conn_src; 3359 tcp->tcp_ipha->ipha_src = src_addr; 3360 /* 3361 * Copy of the src addr. in tcp_t is needed 3362 * for the lookup funcs. 3363 */ 3364 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 3365 } 3366 /* 3367 * Set the fragment bit so that IP will tell us if the MTU 3368 * should change. IP tells us the latest setting of 3369 * ip_path_mtu_discovery through ire_frag_flag. 3370 */ 3371 if (ip_path_mtu_discovery) { 3372 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 3373 htons(IPH_DF); 3374 } 3375 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 3376 } else { 3377 /* 3378 * For incoming connection ire_mp = NULL 3379 * For outgoing connection ire_mp != NULL 3380 * Technically we should check conn_incoming_ill 3381 * when ire_mp is NULL and conn_outgoing_ill when 3382 * ire_mp is non-NULL. But this is performance 3383 * critical path and for IPV*_BOUND_IF, outgoing 3384 * and incoming ill are always set to the same value. 3385 */ 3386 ill_t *dst_ill = NULL; 3387 ipif_t *dst_ipif = NULL; 3388 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 3389 3390 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 3391 3392 if (connp->conn_outgoing_ill != NULL) { 3393 /* Outgoing or incoming path */ 3394 int err; 3395 3396 dst_ill = conn_get_held_ill(connp, 3397 &connp->conn_outgoing_ill, &err); 3398 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 3399 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 3400 return (0); 3401 } 3402 match_flags |= MATCH_IRE_ILL; 3403 dst_ipif = dst_ill->ill_ipif; 3404 } 3405 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 3406 0, 0, dst_ipif, zoneid, match_flags); 3407 3408 if (ire != NULL) { 3409 ire_cacheable = B_TRUE; 3410 ire_uinfo = (ire_mp != NULL) ? 3411 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 3412 &ire->ire_uinfo; 3413 } else { 3414 if (ire_mp == NULL) { 3415 ire = ire_ftable_lookup_v6( 3416 &tcp->tcp_connp->conn_remv6, 3417 0, 0, 0, dst_ipif, &sire, zoneid, 3418 0, match_flags); 3419 if (ire == NULL) { 3420 if (dst_ill != NULL) 3421 ill_refrele(dst_ill); 3422 return (0); 3423 } 3424 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 3425 &ire->ire_uinfo; 3426 } else { 3427 ire = (ire_t *)ire_mp->b_rptr; 3428 ire_uinfo = 3429 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 3430 } 3431 } 3432 if (dst_ill != NULL) 3433 ill_refrele(dst_ill); 3434 3435 ASSERT(ire != NULL); 3436 ASSERT(ire_uinfo != NULL); 3437 3438 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 3439 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 3440 /* 3441 * ire->ire_mp is non null when ire_mp passed in is used 3442 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 3443 */ 3444 if (ire->ire_mp == NULL) 3445 ire_refrele(ire); 3446 if (sire != NULL) 3447 ire_refrele(sire); 3448 return (0); 3449 } 3450 3451 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 3452 in6_addr_t src_addr; 3453 3454 /* 3455 * ip_bind_connected_v6() has stored the correct source 3456 * address per IPv6 addr. selection policy in 3457 * conn_src_v6. 3458 */ 3459 src_addr = tcp->tcp_connp->conn_srcv6; 3460 3461 tcp->tcp_ip6h->ip6_src = src_addr; 3462 /* 3463 * Copy of the src addr. in tcp_t is needed 3464 * for the lookup funcs. 3465 */ 3466 tcp->tcp_ip_src_v6 = src_addr; 3467 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 3468 &connp->conn_srcv6)); 3469 } 3470 tcp->tcp_localnet = 3471 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 3472 } 3473 3474 /* 3475 * This allows applications to fail quickly when connections are made 3476 * to dead hosts. Hosts can be labeled dead by adding a reject route 3477 * with both the RTF_REJECT and RTF_PRIVATE flags set. 3478 */ 3479 if ((ire->ire_flags & RTF_REJECT) && 3480 (ire->ire_flags & RTF_PRIVATE)) 3481 goto error; 3482 3483 /* 3484 * Make use of the cached rtt and rtt_sd values to calculate the 3485 * initial RTO. Note that they are already initialized in 3486 * tcp_init_values(). 3487 */ 3488 if (ire_uinfo->iulp_rtt != 0) { 3489 clock_t rto; 3490 3491 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 3492 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 3493 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 3494 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 3495 3496 if (rto > tcp_rexmit_interval_max) { 3497 tcp->tcp_rto = tcp_rexmit_interval_max; 3498 } else if (rto < tcp_rexmit_interval_min) { 3499 tcp->tcp_rto = tcp_rexmit_interval_min; 3500 } else { 3501 tcp->tcp_rto = rto; 3502 } 3503 } 3504 if (ire_uinfo->iulp_ssthresh != 0) 3505 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 3506 else 3507 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 3508 if (ire_uinfo->iulp_spipe > 0) { 3509 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 3510 tcp_max_buf); 3511 if (tcp_snd_lowat_fraction != 0) 3512 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 3513 tcp_snd_lowat_fraction; 3514 (void) tcp_maxpsz_set(tcp, B_TRUE); 3515 } 3516 /* 3517 * Note that up till now, acceptor always inherits receive 3518 * window from the listener. But if there is a metrics associated 3519 * with a host, we should use that instead of inheriting it from 3520 * listener. Thus we need to pass this info back to the caller. 3521 */ 3522 if (ire_uinfo->iulp_rpipe > 0) { 3523 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 3524 } else { 3525 /* 3526 * For passive open, set tcp_rwnd to 0 so that the caller 3527 * knows that there is no rpipe metric for this connection. 3528 */ 3529 if (tcp_detached) 3530 tcp->tcp_rwnd = 0; 3531 } 3532 if (ire_uinfo->iulp_rtomax > 0) { 3533 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 3534 } 3535 3536 /* 3537 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 3538 * only for active open. What this means is that if the other side 3539 * uses timestamp or window scale option, TCP will also use those 3540 * options. That is for passive open. If the application sets a 3541 * large window, window scale is enabled regardless of the value in 3542 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 3543 * The only case left in passive open processing is the check for SACK. 3544 * 3545 * For ECN, it should probably be like SACK. But the current 3546 * value is binary, so we treat it like the other cases. The 3547 * metric only controls active open. For passive open, the ndd 3548 * param, tcp_ecn_permitted, controls the behavior. 3549 */ 3550 if (!tcp_detached) { 3551 /* 3552 * The if check means that the following can only be turned 3553 * on by the metrics only IRE, but not off. 3554 */ 3555 if (ire_uinfo->iulp_tstamp_ok) 3556 tcp->tcp_snd_ts_ok = B_TRUE; 3557 if (ire_uinfo->iulp_wscale_ok) 3558 tcp->tcp_snd_ws_ok = B_TRUE; 3559 if (ire_uinfo->iulp_sack == 2) 3560 tcp->tcp_snd_sack_ok = B_TRUE; 3561 if (ire_uinfo->iulp_ecn_ok) 3562 tcp->tcp_ecn_ok = B_TRUE; 3563 } else { 3564 /* 3565 * Passive open. 3566 * 3567 * As above, the if check means that SACK can only be 3568 * turned on by the metric only IRE. 3569 */ 3570 if (ire_uinfo->iulp_sack > 0) { 3571 tcp->tcp_snd_sack_ok = B_TRUE; 3572 } 3573 } 3574 3575 /* 3576 * XXX: Note that currently, ire_max_frag can be as small as 68 3577 * because of PMTUd. So tcp_mss may go to negative if combined 3578 * length of all those options exceeds 28 bytes. But because 3579 * of the tcp_mss_min check below, we may not have a problem if 3580 * tcp_mss_min is of a reasonable value. The default is 1 so 3581 * the negative problem still exists. And the check defeats PMTUd. 3582 * In fact, if PMTUd finds that the MSS should be smaller than 3583 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 3584 * value. 3585 * 3586 * We do not deal with that now. All those problems related to 3587 * PMTUd will be fixed later. 3588 */ 3589 ASSERT(ire->ire_max_frag != 0); 3590 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 3591 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 3592 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 3593 mss = MIN(mss, IPV6_MIN_MTU); 3594 } 3595 } 3596 3597 /* Sanity check for MSS value. */ 3598 if (tcp->tcp_ipversion == IPV4_VERSION) 3599 mss_max = tcp_mss_max_ipv4; 3600 else 3601 mss_max = tcp_mss_max_ipv6; 3602 3603 if (tcp->tcp_ipversion == IPV6_VERSION && 3604 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 3605 /* 3606 * After receiving an ICMPv6 "packet too big" message with a 3607 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3608 * will insert a 8-byte fragment header in every packet; we 3609 * reduce the MSS by that amount here. 3610 */ 3611 mss -= sizeof (ip6_frag_t); 3612 } 3613 3614 if (tcp->tcp_ipsec_overhead == 0) 3615 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 3616 3617 mss -= tcp->tcp_ipsec_overhead; 3618 3619 if (mss < tcp_mss_min) 3620 mss = tcp_mss_min; 3621 if (mss > mss_max) 3622 mss = mss_max; 3623 3624 /* Note that this is the maximum MSS, excluding all options. */ 3625 tcp->tcp_mss = mss; 3626 3627 /* 3628 * Initialize the ISS here now that we have the full connection ID. 3629 * The RFC 1948 method of initial sequence number generation requires 3630 * knowledge of the full connection ID before setting the ISS. 3631 */ 3632 3633 tcp_iss_init(tcp); 3634 3635 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 3636 tcp->tcp_loopback = B_TRUE; 3637 3638 if (tcp->tcp_ipversion == IPV4_VERSION) { 3639 hsp = tcp_hsp_lookup(tcp->tcp_remote); 3640 } else { 3641 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 3642 } 3643 3644 if (hsp != NULL) { 3645 /* Only modify if we're going to make them bigger */ 3646 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 3647 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 3648 if (tcp_snd_lowat_fraction != 0) 3649 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 3650 tcp_snd_lowat_fraction; 3651 } 3652 3653 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 3654 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 3655 } 3656 3657 /* Copy timestamp flag only for active open */ 3658 if (!tcp_detached) 3659 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3660 } 3661 3662 if (sire != NULL) 3663 IRE_REFRELE(sire); 3664 3665 /* 3666 * If we got an IRE_CACHE and an ILL, go through their properties; 3667 * otherwise, this is deferred until later when we have an IRE_CACHE. 3668 */ 3669 if (tcp->tcp_loopback || 3670 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3671 /* 3672 * For incoming, see if this tcp may be MDT-capable. For 3673 * outgoing, this process has been taken care of through 3674 * tcp_rput_other. 3675 */ 3676 tcp_ire_ill_check(tcp, ire, ill, incoming); 3677 tcp->tcp_ire_ill_check_done = B_TRUE; 3678 } 3679 3680 mutex_enter(&connp->conn_lock); 3681 /* 3682 * Make sure that conn is not marked incipient 3683 * for incoming connections. A blind 3684 * removal of incipient flag is cheaper than 3685 * check and removal. 3686 */ 3687 connp->conn_state_flags &= ~CONN_INCIPIENT; 3688 3689 /* Must not cache forwarding table routes. */ 3690 if (ire_cacheable) { 3691 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3692 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3693 connp->conn_ire_cache = ire; 3694 IRE_UNTRACE_REF(ire); 3695 rw_exit(&ire->ire_bucket->irb_lock); 3696 mutex_exit(&connp->conn_lock); 3697 return (1); 3698 } 3699 rw_exit(&ire->ire_bucket->irb_lock); 3700 } 3701 mutex_exit(&connp->conn_lock); 3702 3703 if (ire->ire_mp == NULL) 3704 ire_refrele(ire); 3705 return (1); 3706 3707 error: 3708 if (ire->ire_mp == NULL) 3709 ire_refrele(ire); 3710 if (sire != NULL) 3711 ire_refrele(sire); 3712 return (0); 3713 } 3714 3715 /* 3716 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3717 * O_T_BIND_REQ/T_BIND_REQ message. 3718 */ 3719 static void 3720 tcp_bind(tcp_t *tcp, mblk_t *mp) 3721 { 3722 sin_t *sin; 3723 sin6_t *sin6; 3724 mblk_t *mp1; 3725 in_port_t requested_port; 3726 in_port_t allocated_port; 3727 struct T_bind_req *tbr; 3728 boolean_t bind_to_req_port_only; 3729 boolean_t backlog_update = B_FALSE; 3730 boolean_t user_specified; 3731 in6_addr_t v6addr; 3732 ipaddr_t v4addr; 3733 uint_t origipversion; 3734 int err; 3735 queue_t *q = tcp->tcp_wq; 3736 3737 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3738 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3739 if (tcp->tcp_debug) { 3740 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3741 "tcp_bind: bad req, len %u", 3742 (uint_t)(mp->b_wptr - mp->b_rptr)); 3743 } 3744 tcp_err_ack(tcp, mp, TPROTO, 0); 3745 return; 3746 } 3747 /* Make sure the largest address fits */ 3748 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3749 if (mp1 == NULL) { 3750 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3751 return; 3752 } 3753 mp = mp1; 3754 tbr = (struct T_bind_req *)mp->b_rptr; 3755 if (tcp->tcp_state >= TCPS_BOUND) { 3756 if ((tcp->tcp_state == TCPS_BOUND || 3757 tcp->tcp_state == TCPS_LISTEN) && 3758 tcp->tcp_conn_req_max != tbr->CONIND_number && 3759 tbr->CONIND_number > 0) { 3760 /* 3761 * Handle listen() increasing CONIND_number. 3762 * This is more "liberal" then what the TPI spec 3763 * requires but is needed to avoid a t_unbind 3764 * when handling listen() since the port number 3765 * might be "stolen" between the unbind and bind. 3766 */ 3767 backlog_update = B_TRUE; 3768 goto do_bind; 3769 } 3770 if (tcp->tcp_debug) { 3771 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3772 "tcp_bind: bad state, %d", tcp->tcp_state); 3773 } 3774 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3775 return; 3776 } 3777 origipversion = tcp->tcp_ipversion; 3778 3779 switch (tbr->ADDR_length) { 3780 case 0: /* request for a generic port */ 3781 tbr->ADDR_offset = sizeof (struct T_bind_req); 3782 if (tcp->tcp_family == AF_INET) { 3783 tbr->ADDR_length = sizeof (sin_t); 3784 sin = (sin_t *)&tbr[1]; 3785 *sin = sin_null; 3786 sin->sin_family = AF_INET; 3787 mp->b_wptr = (uchar_t *)&sin[1]; 3788 tcp->tcp_ipversion = IPV4_VERSION; 3789 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3790 } else { 3791 ASSERT(tcp->tcp_family == AF_INET6); 3792 tbr->ADDR_length = sizeof (sin6_t); 3793 sin6 = (sin6_t *)&tbr[1]; 3794 *sin6 = sin6_null; 3795 sin6->sin6_family = AF_INET6; 3796 mp->b_wptr = (uchar_t *)&sin6[1]; 3797 tcp->tcp_ipversion = IPV6_VERSION; 3798 V6_SET_ZERO(v6addr); 3799 } 3800 requested_port = 0; 3801 break; 3802 3803 case sizeof (sin_t): /* Complete IPv4 address */ 3804 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3805 sizeof (sin_t)); 3806 if (sin == NULL || !OK_32PTR((char *)sin)) { 3807 if (tcp->tcp_debug) { 3808 (void) strlog(TCP_MODULE_ID, 0, 1, 3809 SL_ERROR|SL_TRACE, 3810 "tcp_bind: bad address parameter, " 3811 "offset %d, len %d", 3812 tbr->ADDR_offset, tbr->ADDR_length); 3813 } 3814 tcp_err_ack(tcp, mp, TPROTO, 0); 3815 return; 3816 } 3817 /* 3818 * With sockets sockfs will accept bogus sin_family in 3819 * bind() and replace it with the family used in the socket 3820 * call. 3821 */ 3822 if (sin->sin_family != AF_INET || 3823 tcp->tcp_family != AF_INET) { 3824 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3825 return; 3826 } 3827 requested_port = ntohs(sin->sin_port); 3828 tcp->tcp_ipversion = IPV4_VERSION; 3829 v4addr = sin->sin_addr.s_addr; 3830 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3831 break; 3832 3833 case sizeof (sin6_t): /* Complete IPv6 address */ 3834 sin6 = (sin6_t *)mi_offset_param(mp, 3835 tbr->ADDR_offset, sizeof (sin6_t)); 3836 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3837 if (tcp->tcp_debug) { 3838 (void) strlog(TCP_MODULE_ID, 0, 1, 3839 SL_ERROR|SL_TRACE, 3840 "tcp_bind: bad IPv6 address parameter, " 3841 "offset %d, len %d", tbr->ADDR_offset, 3842 tbr->ADDR_length); 3843 } 3844 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3845 return; 3846 } 3847 if (sin6->sin6_family != AF_INET6 || 3848 tcp->tcp_family != AF_INET6) { 3849 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3850 return; 3851 } 3852 requested_port = ntohs(sin6->sin6_port); 3853 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3854 IPV4_VERSION : IPV6_VERSION; 3855 v6addr = sin6->sin6_addr; 3856 break; 3857 3858 default: 3859 if (tcp->tcp_debug) { 3860 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 3861 "tcp_bind: bad address length, %d", 3862 tbr->ADDR_length); 3863 } 3864 tcp_err_ack(tcp, mp, TBADADDR, 0); 3865 return; 3866 } 3867 tcp->tcp_bound_source_v6 = v6addr; 3868 3869 /* Check for change in ipversion */ 3870 if (origipversion != tcp->tcp_ipversion) { 3871 ASSERT(tcp->tcp_family == AF_INET6); 3872 err = tcp->tcp_ipversion == IPV6_VERSION ? 3873 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3874 if (err) { 3875 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3876 return; 3877 } 3878 } 3879 3880 /* 3881 * Initialize family specific fields. Copy of the src addr. 3882 * in tcp_t is needed for the lookup funcs. 3883 */ 3884 if (tcp->tcp_ipversion == IPV6_VERSION) { 3885 tcp->tcp_ip6h->ip6_src = v6addr; 3886 } else { 3887 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3888 } 3889 tcp->tcp_ip_src_v6 = v6addr; 3890 3891 /* 3892 * For O_T_BIND_REQ: 3893 * Verify that the target port/addr is available, or choose 3894 * another. 3895 * For T_BIND_REQ: 3896 * Verify that the target port/addr is available or fail. 3897 * In both cases when it succeeds the tcp is inserted in the 3898 * bind hash table. This ensures that the operation is atomic 3899 * under the lock on the hash bucket. 3900 */ 3901 bind_to_req_port_only = requested_port != 0 && 3902 tbr->PRIM_type != O_T_BIND_REQ; 3903 /* 3904 * Get a valid port (within the anonymous range and should not 3905 * be a privileged one) to use if the user has not given a port. 3906 * If multiple threads are here, they may all start with 3907 * with the same initial port. But, it should be fine as long as 3908 * tcp_bindi will ensure that no two threads will be assigned 3909 * the same port. 3910 * 3911 * NOTE: XXX If a privileged process asks for an anonymous port, we 3912 * still check for ports only in the range > tcp_smallest_non_priv_port, 3913 * unless TCP_ANONPRIVBIND option is set. 3914 */ 3915 if (requested_port == 0) { 3916 requested_port = tcp->tcp_anon_priv_bind ? 3917 tcp_get_next_priv_port() : 3918 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3919 user_specified = B_FALSE; 3920 } else { 3921 int i; 3922 boolean_t priv = B_FALSE; 3923 /* 3924 * If the requested_port is in the well-known privileged range, 3925 * verify that the stream was opened by a privileged user. 3926 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3927 * but instead the code relies on: 3928 * - the fact that the address of the array and its size never 3929 * changes 3930 * - the atomic assignment of the elements of the array 3931 */ 3932 if (requested_port < tcp_smallest_nonpriv_port) { 3933 priv = B_TRUE; 3934 } else { 3935 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3936 if (requested_port == 3937 tcp_g_epriv_ports[i]) { 3938 priv = B_TRUE; 3939 break; 3940 } 3941 } 3942 } 3943 if (priv) { 3944 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3945 3946 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3947 if (tcp->tcp_debug) { 3948 (void) strlog(TCP_MODULE_ID, 0, 1, 3949 SL_ERROR|SL_TRACE, 3950 "tcp_bind: no priv for port %d", 3951 requested_port); 3952 } 3953 tcp_err_ack(tcp, mp, TACCES, 0); 3954 return; 3955 } 3956 } 3957 user_specified = B_TRUE; 3958 } 3959 3960 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3961 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3962 3963 if (allocated_port == 0) { 3964 if (bind_to_req_port_only) { 3965 if (tcp->tcp_debug) { 3966 (void) strlog(TCP_MODULE_ID, 0, 1, 3967 SL_ERROR|SL_TRACE, 3968 "tcp_bind: requested addr busy"); 3969 } 3970 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3971 } else { 3972 /* If we are out of ports, fail the bind. */ 3973 if (tcp->tcp_debug) { 3974 (void) strlog(TCP_MODULE_ID, 0, 1, 3975 SL_ERROR|SL_TRACE, 3976 "tcp_bind: out of ports?"); 3977 } 3978 tcp_err_ack(tcp, mp, TNOADDR, 0); 3979 } 3980 return; 3981 } 3982 ASSERT(tcp->tcp_state == TCPS_BOUND); 3983 do_bind: 3984 if (!backlog_update) { 3985 if (tcp->tcp_family == AF_INET) 3986 sin->sin_port = htons(allocated_port); 3987 else 3988 sin6->sin6_port = htons(allocated_port); 3989 } 3990 if (tcp->tcp_family == AF_INET) { 3991 if (tbr->CONIND_number != 0) { 3992 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3993 sizeof (sin_t)); 3994 } else { 3995 /* Just verify the local IP address */ 3996 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3997 } 3998 } else { 3999 if (tbr->CONIND_number != 0) { 4000 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 4001 sizeof (sin6_t)); 4002 } else { 4003 /* Just verify the local IP address */ 4004 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 4005 IPV6_ADDR_LEN); 4006 } 4007 } 4008 if (!mp1) { 4009 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 4010 return; 4011 } 4012 4013 tbr->PRIM_type = T_BIND_ACK; 4014 mp->b_datap->db_type = M_PCPROTO; 4015 4016 /* Chain in the reply mp for tcp_rput() */ 4017 mp1->b_cont = mp; 4018 mp = mp1; 4019 4020 tcp->tcp_conn_req_max = tbr->CONIND_number; 4021 if (tcp->tcp_conn_req_max) { 4022 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 4023 tcp->tcp_conn_req_max = tcp_conn_req_min; 4024 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 4025 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 4026 /* 4027 * If this is a listener, do not reset the eager list 4028 * and other stuffs. Note that we don't check if the 4029 * existing eager list meets the new tcp_conn_req_max 4030 * requirement. 4031 */ 4032 if (tcp->tcp_state != TCPS_LISTEN) { 4033 tcp->tcp_state = TCPS_LISTEN; 4034 /* Initialize the chain. Don't need the eager_lock */ 4035 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4036 tcp->tcp_second_ctimer_threshold = 4037 tcp_ip_abort_linterval; 4038 } 4039 } 4040 4041 /* 4042 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 4043 * processing continues in tcp_rput_other(). 4044 */ 4045 if (tcp->tcp_family == AF_INET6) { 4046 ASSERT(tcp->tcp_connp->conn_af_isv6); 4047 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 4048 } else { 4049 ASSERT(!tcp->tcp_connp->conn_af_isv6); 4050 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 4051 } 4052 /* 4053 * If the bind cannot complete immediately 4054 * IP will arrange to call tcp_rput_other 4055 * when the bind completes. 4056 */ 4057 if (mp != NULL) { 4058 tcp_rput_other(tcp, mp); 4059 } else { 4060 /* 4061 * Bind will be resumed later. Need to ensure 4062 * that conn doesn't disappear when that happens. 4063 * This will be decremented in ip_resume_tcp_bind(). 4064 */ 4065 CONN_INC_REF(tcp->tcp_connp); 4066 } 4067 } 4068 4069 4070 /* 4071 * If the "bind_to_req_port_only" parameter is set, if the requested port 4072 * number is available, return it, If not return 0 4073 * 4074 * If "bind_to_req_port_only" parameter is not set and 4075 * If the requested port number is available, return it. If not, return 4076 * the first anonymous port we happen across. If no anonymous ports are 4077 * available, return 0. addr is the requested local address, if any. 4078 * 4079 * In either case, when succeeding update the tcp_t to record the port number 4080 * and insert it in the bind hash table. 4081 * 4082 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 4083 * without setting SO_REUSEADDR. This is needed so that they 4084 * can be viewed as two independent transport protocols. 4085 */ 4086 static in_port_t 4087 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 4088 int reuseaddr, boolean_t quick_connect, 4089 boolean_t bind_to_req_port_only, boolean_t user_specified) 4090 { 4091 /* number of times we have run around the loop */ 4092 int count = 0; 4093 /* maximum number of times to run around the loop */ 4094 int loopmax; 4095 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 4096 4097 /* 4098 * Lookup for free addresses is done in a loop and "loopmax" 4099 * influences how long we spin in the loop 4100 */ 4101 if (bind_to_req_port_only) { 4102 /* 4103 * If the requested port is busy, don't bother to look 4104 * for a new one. Setting loop maximum count to 1 has 4105 * that effect. 4106 */ 4107 loopmax = 1; 4108 } else { 4109 /* 4110 * If the requested port is busy, look for a free one 4111 * in the anonymous port range. 4112 * Set loopmax appropriately so that one does not look 4113 * forever in the case all of the anonymous ports are in use. 4114 */ 4115 if (tcp->tcp_anon_priv_bind) { 4116 /* 4117 * loopmax = 4118 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 4119 */ 4120 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 4121 } else { 4122 loopmax = (tcp_largest_anon_port - 4123 tcp_smallest_anon_port + 1); 4124 } 4125 } 4126 do { 4127 uint16_t lport; 4128 tf_t *tbf; 4129 tcp_t *ltcp; 4130 4131 lport = htons(port); 4132 4133 /* 4134 * Ensure that the tcp_t is not currently in the bind hash. 4135 * Hold the lock on the hash bucket to ensure that 4136 * the duplicate check plus the insertion is an atomic 4137 * operation. 4138 * 4139 * This function does an inline lookup on the bind hash list 4140 * Make sure that we access only members of tcp_t 4141 * and that we don't look at tcp_tcp, since we are not 4142 * doing a CONN_INC_REF. 4143 */ 4144 tcp_bind_hash_remove(tcp); 4145 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 4146 mutex_enter(&tbf->tf_lock); 4147 for (ltcp = tbf->tf_tcp; ltcp != NULL; 4148 ltcp = ltcp->tcp_bind_hash) { 4149 if (lport != ltcp->tcp_lport || 4150 ltcp->tcp_connp->conn_zoneid != zoneid) { 4151 continue; 4152 } 4153 4154 /* 4155 * If TCP_EXCLBIND is set for either the bound or 4156 * binding endpoint, the semantics of bind 4157 * is changed according to the following. 4158 * 4159 * spec = specified address (v4 or v6) 4160 * unspec = unspecified address (v4 or v6) 4161 * A = specified addresses are different for endpoints 4162 * 4163 * bound bind to allowed 4164 * ------------------------------------- 4165 * unspec unspec no 4166 * unspec spec no 4167 * spec unspec no 4168 * spec spec yes if A 4169 * 4170 * Note: 4171 * 4172 * 1. Because of TLI semantics, an endpoint can go 4173 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 4174 * TCPS_BOUND, depending on whether it is originally 4175 * a listener or not. That is why we need to check 4176 * for states greater than or equal to TCPS_BOUND 4177 * here. 4178 * 4179 * 2. Ideally, we should only check for state equals 4180 * to TCPS_LISTEN. And the following check should be 4181 * added. 4182 * 4183 * if (ltcp->tcp_state == TCPS_LISTEN || 4184 * !reuseaddr || !ltcp->tcp_reuseaddr) { 4185 * ... 4186 * } 4187 * 4188 * The semantics will be changed to this. If the 4189 * endpoint on the list is in state not equal to 4190 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 4191 * set, let the bind succeed. 4192 * 4193 * But because of (1), we cannot do that now. If 4194 * in future, we can change this going back semantics, 4195 * we can add the above check. 4196 */ 4197 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 4198 if (V6_OR_V4_INADDR_ANY( 4199 ltcp->tcp_bound_source_v6) || 4200 V6_OR_V4_INADDR_ANY(*laddr) || 4201 IN6_ARE_ADDR_EQUAL(laddr, 4202 <cp->tcp_bound_source_v6)) { 4203 break; 4204 } 4205 continue; 4206 } 4207 4208 /* 4209 * Check ipversion to allow IPv4 and IPv6 sockets to 4210 * have disjoint port number spaces, if *_EXCLBIND 4211 * is not set and only if the application binds to a 4212 * specific port. We use the same autoassigned port 4213 * number space for IPv4 and IPv6 sockets. 4214 */ 4215 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 4216 bind_to_req_port_only) 4217 continue; 4218 4219 /* 4220 * Ideally, we should make sure that the source 4221 * address, remote address, and remote port in the 4222 * four tuple for this tcp-connection is unique. 4223 * However, trying to find out the local source 4224 * address would require too much code duplication 4225 * with IP, since IP needs needs to have that code 4226 * to support userland TCP implementations. 4227 */ 4228 if (quick_connect && 4229 (ltcp->tcp_state > TCPS_LISTEN) && 4230 ((tcp->tcp_fport != ltcp->tcp_fport) || 4231 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 4232 <cp->tcp_remote_v6))) 4233 continue; 4234 4235 if (!reuseaddr) { 4236 /* 4237 * No socket option SO_REUSEADDR. 4238 * If existing port is bound to 4239 * a non-wildcard IP address 4240 * and the requesting stream is 4241 * bound to a distinct 4242 * different IP addresses 4243 * (non-wildcard, also), keep 4244 * going. 4245 */ 4246 if (!V6_OR_V4_INADDR_ANY(*laddr) && 4247 !V6_OR_V4_INADDR_ANY( 4248 ltcp->tcp_bound_source_v6) && 4249 !IN6_ARE_ADDR_EQUAL(laddr, 4250 <cp->tcp_bound_source_v6)) 4251 continue; 4252 if (ltcp->tcp_state >= TCPS_BOUND) { 4253 /* 4254 * This port is being used and 4255 * its state is >= TCPS_BOUND, 4256 * so we can't bind to it. 4257 */ 4258 break; 4259 } 4260 } else { 4261 /* 4262 * socket option SO_REUSEADDR is set on the 4263 * binding tcp_t. 4264 * 4265 * If two streams are bound to 4266 * same IP address or both addr 4267 * and bound source are wildcards 4268 * (INADDR_ANY), we want to stop 4269 * searching. 4270 * We have found a match of IP source 4271 * address and source port, which is 4272 * refused regardless of the 4273 * SO_REUSEADDR setting, so we break. 4274 */ 4275 if (IN6_ARE_ADDR_EQUAL(laddr, 4276 <cp->tcp_bound_source_v6) && 4277 (ltcp->tcp_state == TCPS_LISTEN || 4278 ltcp->tcp_state == TCPS_BOUND)) 4279 break; 4280 } 4281 } 4282 if (ltcp != NULL) { 4283 /* The port number is busy */ 4284 mutex_exit(&tbf->tf_lock); 4285 } else { 4286 /* 4287 * This port is ours. Insert in fanout and mark as 4288 * bound to prevent others from getting the port 4289 * number. 4290 */ 4291 tcp->tcp_state = TCPS_BOUND; 4292 tcp->tcp_lport = htons(port); 4293 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 4294 4295 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 4296 tcp->tcp_lport)] == tbf); 4297 tcp_bind_hash_insert(tbf, tcp, 1); 4298 4299 mutex_exit(&tbf->tf_lock); 4300 4301 /* 4302 * We don't want tcp_next_port_to_try to "inherit" 4303 * a port number supplied by the user in a bind. 4304 */ 4305 if (user_specified) 4306 return (port); 4307 4308 /* 4309 * This is the only place where tcp_next_port_to_try 4310 * is updated. After the update, it may or may not 4311 * be in the valid range. 4312 */ 4313 if (!tcp->tcp_anon_priv_bind) 4314 tcp_next_port_to_try = port + 1; 4315 return (port); 4316 } 4317 4318 if (tcp->tcp_anon_priv_bind) { 4319 port = tcp_get_next_priv_port(); 4320 } else { 4321 if (count == 0 && user_specified) { 4322 /* 4323 * We may have to return an anonymous port. So 4324 * get one to start with. 4325 */ 4326 port = 4327 tcp_update_next_port(tcp_next_port_to_try, 4328 B_TRUE); 4329 user_specified = B_FALSE; 4330 } else { 4331 port = tcp_update_next_port(port + 1, B_FALSE); 4332 } 4333 } 4334 4335 /* 4336 * Don't let this loop run forever in the case where 4337 * all of the anonymous ports are in use. 4338 */ 4339 } while (++count < loopmax); 4340 return (0); 4341 } 4342 4343 /* 4344 * We are dying for some reason. Try to do it gracefully. (May be called 4345 * as writer.) 4346 * 4347 * Return -1 if the structure was not cleaned up (if the cleanup had to be 4348 * done by a service procedure). 4349 * TBD - Should the return value distinguish between the tcp_t being 4350 * freed and it being reinitialized? 4351 */ 4352 static int 4353 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 4354 { 4355 mblk_t *mp; 4356 queue_t *q; 4357 4358 TCP_CLD_STAT(tag); 4359 4360 #if TCP_TAG_CLEAN_DEATH 4361 tcp->tcp_cleandeathtag = tag; 4362 #endif 4363 4364 if (tcp->tcp_linger_tid != 0 && 4365 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4366 tcp_stop_lingering(tcp); 4367 } 4368 4369 ASSERT(tcp != NULL); 4370 ASSERT((tcp->tcp_family == AF_INET && 4371 tcp->tcp_ipversion == IPV4_VERSION) || 4372 (tcp->tcp_family == AF_INET6 && 4373 (tcp->tcp_ipversion == IPV4_VERSION || 4374 tcp->tcp_ipversion == IPV6_VERSION))); 4375 4376 if (TCP_IS_DETACHED(tcp)) { 4377 if (tcp->tcp_hard_binding) { 4378 /* 4379 * Its an eager that we are dealing with. We close the 4380 * eager but in case a conn_ind has already gone to the 4381 * listener, let tcp_accept_finish() send a discon_ind 4382 * to the listener and drop the last reference. If the 4383 * listener doesn't even know about the eager i.e. the 4384 * conn_ind hasn't gone up, blow away the eager and drop 4385 * the last reference as well. If the conn_ind has gone 4386 * up, state should be BOUND. tcp_accept_finish 4387 * will figure out that the connection has received a 4388 * RST and will send a DISCON_IND to the application. 4389 */ 4390 tcp_closei_local(tcp); 4391 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4392 CONN_DEC_REF(tcp->tcp_connp); 4393 } else { 4394 tcp->tcp_state = TCPS_BOUND; 4395 } 4396 } else { 4397 tcp_close_detached(tcp); 4398 } 4399 return (0); 4400 } 4401 4402 TCP_STAT(tcp_clean_death_nondetached); 4403 4404 /* 4405 * If T_ORDREL_IND has not been sent yet (done when service routine 4406 * is run) postpone cleaning up the endpoint until service routine 4407 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 4408 * client_errno since tcp_close uses the client_errno field. 4409 */ 4410 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 4411 if (err != 0) 4412 tcp->tcp_client_errno = err; 4413 4414 tcp->tcp_deferred_clean_death = B_TRUE; 4415 return (-1); 4416 } 4417 4418 q = tcp->tcp_rq; 4419 4420 /* Trash all inbound data */ 4421 flushq(q, FLUSHALL); 4422 4423 /* 4424 * If we are at least part way open and there is error 4425 * (err==0 implies no error) 4426 * notify our client by a T_DISCON_IND. 4427 */ 4428 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 4429 if (tcp->tcp_state >= TCPS_ESTABLISHED && 4430 !TCP_IS_SOCKET(tcp)) { 4431 /* 4432 * Send M_FLUSH according to TPI. Because sockets will 4433 * (and must) ignore FLUSHR we do that only for TPI 4434 * endpoints and sockets in STREAMS mode. 4435 */ 4436 (void) putnextctl1(q, M_FLUSH, FLUSHR); 4437 } 4438 if (tcp->tcp_debug) { 4439 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 4440 "tcp_clean_death: discon err %d", err); 4441 } 4442 mp = mi_tpi_discon_ind(NULL, err, 0); 4443 if (mp != NULL) { 4444 putnext(q, mp); 4445 } else { 4446 if (tcp->tcp_debug) { 4447 (void) strlog(TCP_MODULE_ID, 0, 1, 4448 SL_ERROR|SL_TRACE, 4449 "tcp_clean_death, sending M_ERROR"); 4450 } 4451 (void) putnextctl1(q, M_ERROR, EPROTO); 4452 } 4453 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 4454 /* SYN_SENT or SYN_RCVD */ 4455 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4456 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 4457 /* ESTABLISHED or CLOSE_WAIT */ 4458 BUMP_MIB(&tcp_mib, tcpEstabResets); 4459 } 4460 } 4461 4462 tcp_reinit(tcp); 4463 return (-1); 4464 } 4465 4466 /* 4467 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 4468 * to expire, stop the wait and finish the close. 4469 */ 4470 static void 4471 tcp_stop_lingering(tcp_t *tcp) 4472 { 4473 clock_t delta = 0; 4474 4475 tcp->tcp_linger_tid = 0; 4476 if (tcp->tcp_state > TCPS_LISTEN) { 4477 tcp_acceptor_hash_remove(tcp); 4478 if (tcp->tcp_flow_stopped) { 4479 tcp->tcp_flow_stopped = B_FALSE; 4480 tcp_clrqfull(tcp); 4481 } 4482 4483 if (tcp->tcp_timer_tid != 0) { 4484 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4485 tcp->tcp_timer_tid = 0; 4486 } 4487 /* 4488 * Need to cancel those timers which will not be used when 4489 * TCP is detached. This has to be done before the tcp_wq 4490 * is set to the global queue. 4491 */ 4492 tcp_timers_stop(tcp); 4493 4494 4495 tcp->tcp_detached = B_TRUE; 4496 tcp->tcp_rq = tcp_g_q; 4497 tcp->tcp_wq = WR(tcp_g_q); 4498 4499 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4500 tcp_time_wait_append(tcp); 4501 TCP_DBGSTAT(tcp_detach_time_wait); 4502 goto finish; 4503 } 4504 4505 /* 4506 * If delta is zero the timer event wasn't executed and was 4507 * successfully canceled. In this case we need to restart it 4508 * with the minimal delta possible. 4509 */ 4510 if (delta >= 0) { 4511 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4512 delta ? delta : 1); 4513 } 4514 } else { 4515 tcp_closei_local(tcp); 4516 CONN_DEC_REF(tcp->tcp_connp); 4517 } 4518 finish: 4519 /* Signal closing thread that it can complete close */ 4520 mutex_enter(&tcp->tcp_closelock); 4521 tcp->tcp_detached = B_TRUE; 4522 tcp->tcp_rq = tcp_g_q; 4523 tcp->tcp_wq = WR(tcp_g_q); 4524 tcp->tcp_closed = 1; 4525 cv_signal(&tcp->tcp_closecv); 4526 mutex_exit(&tcp->tcp_closelock); 4527 } 4528 4529 /* 4530 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4531 * expires. 4532 */ 4533 static void 4534 tcp_close_linger_timeout(void *arg) 4535 { 4536 conn_t *connp = (conn_t *)arg; 4537 tcp_t *tcp = connp->conn_tcp; 4538 4539 tcp->tcp_client_errno = ETIMEDOUT; 4540 tcp_stop_lingering(tcp); 4541 } 4542 4543 static int 4544 tcp_close(queue_t *q, int flags) 4545 { 4546 conn_t *connp = Q_TO_CONN(q); 4547 tcp_t *tcp = connp->conn_tcp; 4548 mblk_t *mp = &tcp->tcp_closemp; 4549 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4550 4551 ASSERT(WR(q)->q_next == NULL); 4552 ASSERT(connp->conn_ref >= 2); 4553 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4554 4555 /* 4556 * We are being closed as /dev/tcp or /dev/tcp6. 4557 * 4558 * Mark the conn as closing. ill_pending_mp_add will not 4559 * add any mp to the pending mp list, after this conn has 4560 * started closing. Same for sq_pending_mp_add 4561 */ 4562 mutex_enter(&connp->conn_lock); 4563 connp->conn_state_flags |= CONN_CLOSING; 4564 if (connp->conn_oper_pending_ill != NULL) 4565 conn_ioctl_cleanup_reqd = B_TRUE; 4566 CONN_INC_REF_LOCKED(connp); 4567 mutex_exit(&connp->conn_lock); 4568 tcp->tcp_closeflags = (uint8_t)flags; 4569 ASSERT(connp->conn_ref >= 3); 4570 4571 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4572 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4573 4574 mutex_enter(&tcp->tcp_closelock); 4575 while (!tcp->tcp_closed) 4576 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4577 mutex_exit(&tcp->tcp_closelock); 4578 /* 4579 * In the case of listener streams that have eagers in the q or q0 4580 * we wait for the eagers to drop their reference to us. tcp_rq and 4581 * tcp_wq of the eagers point to our queues. By waiting for the 4582 * refcnt to drop to 1, we are sure that the eagers have cleaned 4583 * up their queue pointers and also dropped their references to us. 4584 */ 4585 if (tcp->tcp_wait_for_eagers) { 4586 mutex_enter(&connp->conn_lock); 4587 while (connp->conn_ref != 1) { 4588 cv_wait(&connp->conn_cv, &connp->conn_lock); 4589 } 4590 mutex_exit(&connp->conn_lock); 4591 } 4592 /* 4593 * ioctl cleanup. The mp is queued in the 4594 * ill_pending_mp or in the sq_pending_mp. 4595 */ 4596 if (conn_ioctl_cleanup_reqd) 4597 conn_ioctl_cleanup(connp); 4598 4599 qprocsoff(q); 4600 inet_minor_free(ip_minor_arena, connp->conn_dev); 4601 4602 ASSERT(connp->conn_cred != NULL); 4603 crfree(connp->conn_cred); 4604 tcp->tcp_cred = connp->conn_cred = NULL; 4605 tcp->tcp_cpid = -1; 4606 4607 /* 4608 * Drop IP's reference on the conn. This is the last reference 4609 * on the connp if the state was less than established. If the 4610 * connection has gone into timewait state, then we will have 4611 * one ref for the TCP and one more ref (total of two) for the 4612 * classifier connected hash list (a timewait connections stays 4613 * in connected hash till closed). 4614 * 4615 * We can't assert the references because there might be other 4616 * transient reference places because of some walkers or queued 4617 * packets in squeue for the timewait state. 4618 */ 4619 CONN_DEC_REF(connp); 4620 q->q_ptr = WR(q)->q_ptr = NULL; 4621 return (0); 4622 } 4623 4624 int 4625 tcp_modclose(queue_t *q) 4626 { 4627 conn_t *connp = Q_TO_CONN(q); 4628 ASSERT((connp->conn_flags & IPCL_TCPMOD) != 0); 4629 4630 qprocsoff(q); 4631 4632 if (connp->conn_cred != NULL) { 4633 crfree(connp->conn_cred); 4634 connp->conn_cred = NULL; 4635 } 4636 CONN_DEC_REF(connp); 4637 q->q_ptr = WR(q)->q_ptr = NULL; 4638 return (0); 4639 } 4640 4641 static int 4642 tcpclose_accept(queue_t *q) 4643 { 4644 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4645 4646 /* 4647 * We had opened an acceptor STREAM for sockfs which is 4648 * now being closed due to some error. 4649 */ 4650 qprocsoff(q); 4651 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4652 q->q_ptr = WR(q)->q_ptr = NULL; 4653 return (0); 4654 } 4655 4656 4657 /* 4658 * Called by streams close routine via squeues when our client blows off her 4659 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4660 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4661 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4662 * acked. 4663 * 4664 * NOTE: tcp_close potentially returns error when lingering. 4665 * However, the stream head currently does not pass these errors 4666 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4667 * errors to the application (from tsleep()) and not errors 4668 * like ECONNRESET caused by receiving a reset packet. 4669 */ 4670 4671 /* ARGSUSED */ 4672 static void 4673 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4674 { 4675 char *msg; 4676 conn_t *connp = (conn_t *)arg; 4677 tcp_t *tcp = connp->conn_tcp; 4678 clock_t delta = 0; 4679 4680 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4681 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4682 4683 /* Cancel any pending timeout */ 4684 if (tcp->tcp_ordrelid != 0) { 4685 if (tcp->tcp_timeout) { 4686 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4687 } 4688 tcp->tcp_ordrelid = 0; 4689 tcp->tcp_timeout = B_FALSE; 4690 } 4691 4692 mutex_enter(&tcp->tcp_eager_lock); 4693 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4694 /* Cleanup for listener */ 4695 tcp_eager_cleanup(tcp, 0); 4696 tcp->tcp_wait_for_eagers = 1; 4697 } 4698 mutex_exit(&tcp->tcp_eager_lock); 4699 4700 connp->conn_mdt_ok = B_FALSE; 4701 tcp->tcp_mdt = B_FALSE; 4702 4703 msg = NULL; 4704 switch (tcp->tcp_state) { 4705 case TCPS_CLOSED: 4706 case TCPS_IDLE: 4707 case TCPS_BOUND: 4708 case TCPS_LISTEN: 4709 break; 4710 case TCPS_SYN_SENT: 4711 msg = "tcp_close, during connect"; 4712 break; 4713 case TCPS_SYN_RCVD: 4714 /* 4715 * Close during the connect 3-way handshake 4716 * but here there may or may not be pending data 4717 * already on queue. Process almost same as in 4718 * the ESTABLISHED state. 4719 */ 4720 /* FALLTHRU */ 4721 default: 4722 if (tcp->tcp_fused) 4723 tcp_unfuse(tcp); 4724 4725 /* 4726 * If SO_LINGER has set a zero linger time, abort the 4727 * connection with a reset. 4728 */ 4729 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4730 msg = "tcp_close, zero lingertime"; 4731 break; 4732 } 4733 4734 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4735 /* 4736 * Abort connection if there is unread data queued. 4737 */ 4738 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4739 msg = "tcp_close, unread data"; 4740 break; 4741 } 4742 /* 4743 * tcp_hard_bound is now cleared thus all packets go through 4744 * tcp_lookup. This fact is used by tcp_detach below. 4745 * 4746 * We have done a qwait() above which could have possibly 4747 * drained more messages in turn causing transition to a 4748 * different state. Check whether we have to do the rest 4749 * of the processing or not. 4750 */ 4751 if (tcp->tcp_state <= TCPS_LISTEN) 4752 break; 4753 4754 /* 4755 * Transmit the FIN before detaching the tcp_t. 4756 * After tcp_detach returns this queue/perimeter 4757 * no longer owns the tcp_t thus others can modify it. 4758 */ 4759 (void) tcp_xmit_end(tcp); 4760 4761 /* 4762 * If lingering on close then wait until the fin is acked, 4763 * the SO_LINGER time passes, or a reset is sent/received. 4764 */ 4765 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4766 !(tcp->tcp_fin_acked) && 4767 tcp->tcp_state >= TCPS_ESTABLISHED) { 4768 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4769 tcp->tcp_client_errno = EWOULDBLOCK; 4770 } else if (tcp->tcp_client_errno == 0) { 4771 4772 ASSERT(tcp->tcp_linger_tid == 0); 4773 4774 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4775 tcp_close_linger_timeout, 4776 tcp->tcp_lingertime * hz); 4777 4778 /* tcp_close_linger_timeout will finish close */ 4779 if (tcp->tcp_linger_tid == 0) 4780 tcp->tcp_client_errno = ENOSR; 4781 else 4782 return; 4783 } 4784 4785 /* 4786 * Check if we need to detach or just close 4787 * the instance. 4788 */ 4789 if (tcp->tcp_state <= TCPS_LISTEN) 4790 break; 4791 } 4792 4793 /* 4794 * Make sure that no other thread will access the tcp_rq of 4795 * this instance (through lookups etc.) as tcp_rq will go 4796 * away shortly. 4797 */ 4798 tcp_acceptor_hash_remove(tcp); 4799 4800 if (tcp->tcp_flow_stopped) { 4801 tcp->tcp_flow_stopped = B_FALSE; 4802 tcp_clrqfull(tcp); 4803 } 4804 4805 if (tcp->tcp_timer_tid != 0) { 4806 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4807 tcp->tcp_timer_tid = 0; 4808 } 4809 /* 4810 * Need to cancel those timers which will not be used when 4811 * TCP is detached. This has to be done before the tcp_wq 4812 * is set to the global queue. 4813 */ 4814 tcp_timers_stop(tcp); 4815 4816 tcp->tcp_detached = B_TRUE; 4817 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4818 tcp_time_wait_append(tcp); 4819 TCP_DBGSTAT(tcp_detach_time_wait); 4820 ASSERT(connp->conn_ref >= 3); 4821 goto finish; 4822 } 4823 4824 /* 4825 * If delta is zero the timer event wasn't executed and was 4826 * successfully canceled. In this case we need to restart it 4827 * with the minimal delta possible. 4828 */ 4829 if (delta >= 0) 4830 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4831 delta ? delta : 1); 4832 4833 ASSERT(connp->conn_ref >= 3); 4834 goto finish; 4835 } 4836 4837 /* Detach did not complete. Still need to remove q from stream. */ 4838 if (msg) { 4839 if (tcp->tcp_state == TCPS_ESTABLISHED || 4840 tcp->tcp_state == TCPS_CLOSE_WAIT) 4841 BUMP_MIB(&tcp_mib, tcpEstabResets); 4842 if (tcp->tcp_state == TCPS_SYN_SENT || 4843 tcp->tcp_state == TCPS_SYN_RCVD) 4844 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4845 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4846 } 4847 4848 tcp_closei_local(tcp); 4849 CONN_DEC_REF(connp); 4850 ASSERT(connp->conn_ref >= 2); 4851 4852 finish: 4853 /* 4854 * Although packets are always processed on the correct 4855 * tcp's perimeter and access is serialized via squeue's, 4856 * IP still needs a queue when sending packets in time_wait 4857 * state so use WR(tcp_g_q) till ip_output() can be 4858 * changed to deal with just connp. For read side, we 4859 * could have set tcp_rq to NULL but there are some cases 4860 * in tcp_rput_data() from early days of this code which 4861 * do a putnext without checking if tcp is closed. Those 4862 * need to be identified before both tcp_rq and tcp_wq 4863 * can be set to NULL and tcp_q_q can disappear forever. 4864 */ 4865 mutex_enter(&tcp->tcp_closelock); 4866 /* 4867 * Don't change the queues in the case of a listener that has 4868 * eagers in its q or q0. It could surprise the eagers. 4869 * Instead wait for the eagers outside the squeue. 4870 */ 4871 if (!tcp->tcp_wait_for_eagers) { 4872 tcp->tcp_detached = B_TRUE; 4873 tcp->tcp_rq = tcp_g_q; 4874 tcp->tcp_wq = WR(tcp_g_q); 4875 } 4876 /* Signal tcp_close() to finish closing. */ 4877 tcp->tcp_closed = 1; 4878 cv_signal(&tcp->tcp_closecv); 4879 mutex_exit(&tcp->tcp_closelock); 4880 } 4881 4882 4883 /* 4884 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4885 * Some stream heads get upset if they see these later on as anything but NULL. 4886 */ 4887 static void 4888 tcp_close_mpp(mblk_t **mpp) 4889 { 4890 mblk_t *mp; 4891 4892 if ((mp = *mpp) != NULL) { 4893 do { 4894 mp->b_next = NULL; 4895 mp->b_prev = NULL; 4896 } while ((mp = mp->b_cont) != NULL); 4897 4898 mp = *mpp; 4899 *mpp = NULL; 4900 freemsg(mp); 4901 } 4902 } 4903 4904 /* Do detached close. */ 4905 static void 4906 tcp_close_detached(tcp_t *tcp) 4907 { 4908 if (tcp->tcp_fused) 4909 tcp_unfuse(tcp); 4910 4911 /* 4912 * Clustering code serializes TCP disconnect callbacks and 4913 * cluster tcp list walks by blocking a TCP disconnect callback 4914 * if a cluster tcp list walk is in progress. This ensures 4915 * accurate accounting of TCPs in the cluster code even though 4916 * the TCP list walk itself is not atomic. 4917 */ 4918 tcp_closei_local(tcp); 4919 CONN_DEC_REF(tcp->tcp_connp); 4920 } 4921 4922 /* 4923 * Stop all TCP timers, and free the timer mblks if requested. 4924 */ 4925 static void 4926 tcp_timers_stop(tcp_t *tcp) 4927 { 4928 if (tcp->tcp_timer_tid != 0) { 4929 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4930 tcp->tcp_timer_tid = 0; 4931 } 4932 if (tcp->tcp_ka_tid != 0) { 4933 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4934 tcp->tcp_ka_tid = 0; 4935 } 4936 if (tcp->tcp_ack_tid != 0) { 4937 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4938 tcp->tcp_ack_tid = 0; 4939 } 4940 if (tcp->tcp_push_tid != 0) { 4941 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4942 tcp->tcp_push_tid = 0; 4943 } 4944 } 4945 4946 /* 4947 * The tcp_t is going away. Remove it from all lists and set it 4948 * to TCPS_CLOSED. The freeing up of memory is deferred until 4949 * tcp_inactive. This is needed since a thread in tcp_rput might have 4950 * done a CONN_INC_REF on this structure before it was removed from the 4951 * hashes. 4952 */ 4953 static void 4954 tcp_closei_local(tcp_t *tcp) 4955 { 4956 ire_t *ire; 4957 conn_t *connp = tcp->tcp_connp; 4958 4959 if (!TCP_IS_SOCKET(tcp)) 4960 tcp_acceptor_hash_remove(tcp); 4961 4962 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4963 tcp->tcp_ibsegs = 0; 4964 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4965 tcp->tcp_obsegs = 0; 4966 /* 4967 * If we are an eager connection hanging off a listener that 4968 * hasn't formally accepted the connection yet, get off his 4969 * list and blow off any data that we have accumulated. 4970 */ 4971 if (tcp->tcp_listener != NULL) { 4972 tcp_t *listener = tcp->tcp_listener; 4973 mutex_enter(&listener->tcp_eager_lock); 4974 /* 4975 * tcp_eager_conn_ind == NULL means that the 4976 * conn_ind has already gone to listener. At 4977 * this point, eager will be closed but we 4978 * leave it in listeners eager list so that 4979 * if listener decides to close without doing 4980 * accept, we can clean this up. In tcp_wput_accept 4981 * we take case of the case of accept on closed 4982 * eager. 4983 */ 4984 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4985 tcp_eager_unlink(tcp); 4986 mutex_exit(&listener->tcp_eager_lock); 4987 /* 4988 * We don't want to have any pointers to the 4989 * listener queue, after we have released our 4990 * reference on the listener 4991 */ 4992 tcp->tcp_rq = tcp_g_q; 4993 tcp->tcp_wq = WR(tcp_g_q); 4994 CONN_DEC_REF(listener->tcp_connp); 4995 } else { 4996 mutex_exit(&listener->tcp_eager_lock); 4997 } 4998 } 4999 5000 /* Stop all the timers */ 5001 tcp_timers_stop(tcp); 5002 5003 if (tcp->tcp_state == TCPS_LISTEN) { 5004 if (tcp->tcp_ip_addr_cache) { 5005 kmem_free((void *)tcp->tcp_ip_addr_cache, 5006 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 5007 tcp->tcp_ip_addr_cache = NULL; 5008 } 5009 } 5010 if (tcp->tcp_flow_stopped) 5011 tcp_clrqfull(tcp); 5012 5013 tcp_bind_hash_remove(tcp); 5014 /* 5015 * If the tcp_time_wait_collector (which runs outside the squeue) 5016 * is trying to remove this tcp from the time wait list, we will 5017 * block in tcp_time_wait_remove while trying to acquire the 5018 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 5019 * requires the ipcl_hash_remove to be ordered after the 5020 * tcp_time_wait_remove for the refcnt checks to work correctly. 5021 */ 5022 if (tcp->tcp_state == TCPS_TIME_WAIT) 5023 tcp_time_wait_remove(tcp, NULL); 5024 CL_INET_DISCONNECT(tcp); 5025 ipcl_hash_remove(connp); 5026 5027 /* 5028 * Delete the cached ire in conn_ire_cache and also mark 5029 * the conn as CONDEMNED 5030 */ 5031 mutex_enter(&connp->conn_lock); 5032 connp->conn_state_flags |= CONN_CONDEMNED; 5033 ire = connp->conn_ire_cache; 5034 connp->conn_ire_cache = NULL; 5035 mutex_exit(&connp->conn_lock); 5036 if (ire != NULL) 5037 IRE_REFRELE_NOTR(ire); 5038 5039 /* Need to cleanup any pending ioctls */ 5040 ASSERT(tcp->tcp_time_wait_next == NULL); 5041 ASSERT(tcp->tcp_time_wait_prev == NULL); 5042 ASSERT(tcp->tcp_time_wait_expire == 0); 5043 tcp->tcp_state = TCPS_CLOSED; 5044 } 5045 5046 /* 5047 * tcp is dying (called from ipcl_conn_destroy and error cases). 5048 * Free the tcp_t in either case. 5049 */ 5050 void 5051 tcp_free(tcp_t *tcp) 5052 { 5053 mblk_t *mp; 5054 ip6_pkt_t *ipp; 5055 5056 ASSERT(tcp != NULL); 5057 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 5058 5059 tcp->tcp_rq = NULL; 5060 tcp->tcp_wq = NULL; 5061 5062 tcp_close_mpp(&tcp->tcp_xmit_head); 5063 tcp_close_mpp(&tcp->tcp_reass_head); 5064 if (tcp->tcp_rcv_list != NULL) { 5065 /* Free b_next chain */ 5066 tcp_close_mpp(&tcp->tcp_rcv_list); 5067 } 5068 if ((mp = tcp->tcp_urp_mp) != NULL) { 5069 freemsg(mp); 5070 } 5071 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 5072 freemsg(mp); 5073 } 5074 5075 if (tcp->tcp_fused_sigurg_mp != NULL) { 5076 freeb(tcp->tcp_fused_sigurg_mp); 5077 tcp->tcp_fused_sigurg_mp = NULL; 5078 } 5079 5080 if (tcp->tcp_sack_info != NULL) { 5081 if (tcp->tcp_notsack_list != NULL) { 5082 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 5083 } 5084 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 5085 } 5086 5087 if (tcp->tcp_hopopts != NULL) { 5088 mi_free(tcp->tcp_hopopts); 5089 tcp->tcp_hopopts = NULL; 5090 tcp->tcp_hopoptslen = 0; 5091 } 5092 ASSERT(tcp->tcp_hopoptslen == 0); 5093 if (tcp->tcp_dstopts != NULL) { 5094 mi_free(tcp->tcp_dstopts); 5095 tcp->tcp_dstopts = NULL; 5096 tcp->tcp_dstoptslen = 0; 5097 } 5098 ASSERT(tcp->tcp_dstoptslen == 0); 5099 if (tcp->tcp_rtdstopts != NULL) { 5100 mi_free(tcp->tcp_rtdstopts); 5101 tcp->tcp_rtdstopts = NULL; 5102 tcp->tcp_rtdstoptslen = 0; 5103 } 5104 ASSERT(tcp->tcp_rtdstoptslen == 0); 5105 if (tcp->tcp_rthdr != NULL) { 5106 mi_free(tcp->tcp_rthdr); 5107 tcp->tcp_rthdr = NULL; 5108 tcp->tcp_rthdrlen = 0; 5109 } 5110 ASSERT(tcp->tcp_rthdrlen == 0); 5111 5112 ipp = &tcp->tcp_sticky_ipp; 5113 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 5114 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 5115 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 5116 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5117 ipp->ipp_hopopts = NULL; 5118 ipp->ipp_hopoptslen = 0; 5119 } 5120 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 5121 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 5122 ipp->ipp_rtdstopts = NULL; 5123 ipp->ipp_rtdstoptslen = 0; 5124 } 5125 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 5126 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5127 ipp->ipp_dstopts = NULL; 5128 ipp->ipp_dstoptslen = 0; 5129 } 5130 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 5131 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5132 ipp->ipp_rthdr = NULL; 5133 ipp->ipp_rthdrlen = 0; 5134 } 5135 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 5136 IPPF_DSTOPTS | IPPF_RTHDR); 5137 } 5138 5139 /* 5140 * Free memory associated with the tcp/ip header template. 5141 */ 5142 5143 if (tcp->tcp_iphc != NULL) 5144 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5145 5146 /* 5147 * Following is really a blowing away a union. 5148 * It happens to have exactly two members of identical size 5149 * the following code is enough. 5150 */ 5151 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 5152 5153 if (tcp->tcp_tracebuf != NULL) { 5154 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 5155 tcp->tcp_tracebuf = NULL; 5156 } 5157 } 5158 5159 5160 /* 5161 * Put a connection confirmation message upstream built from the 5162 * address information within 'iph' and 'tcph'. Report our success or failure. 5163 */ 5164 static boolean_t 5165 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 5166 mblk_t **defermp) 5167 { 5168 sin_t sin; 5169 sin6_t sin6; 5170 mblk_t *mp; 5171 char *optp = NULL; 5172 int optlen = 0; 5173 cred_t *cr; 5174 5175 if (defermp != NULL) 5176 *defermp = NULL; 5177 5178 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 5179 /* 5180 * Return in T_CONN_CON results of option negotiation through 5181 * the T_CONN_REQ. Note: If there is an real end-to-end option 5182 * negotiation, then what is received from remote end needs 5183 * to be taken into account but there is no such thing (yet?) 5184 * in our TCP/IP. 5185 * Note: We do not use mi_offset_param() here as 5186 * tcp_opts_conn_req contents do not directly come from 5187 * an application and are either generated in kernel or 5188 * from user input that was already verified. 5189 */ 5190 mp = tcp->tcp_conn.tcp_opts_conn_req; 5191 optp = (char *)(mp->b_rptr + 5192 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 5193 optlen = (int) 5194 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 5195 } 5196 5197 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 5198 ipha_t *ipha = (ipha_t *)iphdr; 5199 5200 /* packet is IPv4 */ 5201 if (tcp->tcp_family == AF_INET) { 5202 sin = sin_null; 5203 sin.sin_addr.s_addr = ipha->ipha_src; 5204 sin.sin_port = *(uint16_t *)tcph->th_lport; 5205 sin.sin_family = AF_INET; 5206 mp = mi_tpi_conn_con(NULL, (char *)&sin, 5207 (int)sizeof (sin_t), optp, optlen); 5208 } else { 5209 sin6 = sin6_null; 5210 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 5211 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5212 sin6.sin6_family = AF_INET6; 5213 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 5214 (int)sizeof (sin6_t), optp, optlen); 5215 5216 } 5217 } else { 5218 ip6_t *ip6h = (ip6_t *)iphdr; 5219 5220 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 5221 ASSERT(tcp->tcp_family == AF_INET6); 5222 sin6 = sin6_null; 5223 sin6.sin6_addr = ip6h->ip6_src; 5224 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5225 sin6.sin6_family = AF_INET6; 5226 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 5227 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 5228 (int)sizeof (sin6_t), optp, optlen); 5229 } 5230 5231 if (!mp) 5232 return (B_FALSE); 5233 5234 if ((cr = DB_CRED(idmp)) != NULL) { 5235 mblk_setcred(mp, cr); 5236 DB_CPID(mp) = DB_CPID(idmp); 5237 } 5238 5239 if (defermp == NULL) 5240 putnext(tcp->tcp_rq, mp); 5241 else 5242 *defermp = mp; 5243 5244 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5245 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5246 return (B_TRUE); 5247 } 5248 5249 /* 5250 * Defense for the SYN attack - 5251 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 5252 * one that doesn't have the dontdrop bit set. 5253 * 2. Don't drop a SYN request before its first timeout. This gives every 5254 * request at least til the first timeout to complete its 3-way handshake. 5255 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 5256 * requests currently on the queue that has timed out. This will be used 5257 * as an indicator of whether an attack is under way, so that appropriate 5258 * actions can be taken. (It's incremented in tcp_timer() and decremented 5259 * either when eager goes into ESTABLISHED, or gets freed up.) 5260 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 5261 * # of timeout drops back to <= q0len/32 => SYN alert off 5262 */ 5263 static boolean_t 5264 tcp_drop_q0(tcp_t *tcp) 5265 { 5266 tcp_t *eager; 5267 5268 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 5269 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 5270 /* 5271 * New one is added after next_q0 so prev_q0 points to the oldest 5272 * Also do not drop any established connections that are deferred on 5273 * q0 due to q being full 5274 */ 5275 5276 eager = tcp->tcp_eager_prev_q0; 5277 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 5278 eager = eager->tcp_eager_prev_q0; 5279 if (eager == tcp) { 5280 eager = tcp->tcp_eager_prev_q0; 5281 break; 5282 } 5283 } 5284 if (eager->tcp_syn_rcvd_timeout == 0) 5285 return (B_FALSE); 5286 5287 if (tcp->tcp_debug) { 5288 (void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE, 5289 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 5290 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 5291 tcp->tcp_conn_req_cnt_q0, 5292 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5293 } 5294 5295 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 5296 5297 /* 5298 * need to do refhold here because the selected eager could 5299 * be removed by someone else if we release the eager lock. 5300 */ 5301 CONN_INC_REF(eager->tcp_connp); 5302 mutex_exit(&tcp->tcp_eager_lock); 5303 5304 /* Mark the IRE created for this SYN request temporary */ 5305 tcp_ip_ire_mark_advice(eager); 5306 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 5307 CONN_DEC_REF(eager->tcp_connp); 5308 5309 mutex_enter(&tcp->tcp_eager_lock); 5310 return (B_TRUE); 5311 } 5312 5313 int 5314 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 5315 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 5316 { 5317 tcp_t *ltcp = lconnp->conn_tcp; 5318 tcp_t *tcp = connp->conn_tcp; 5319 mblk_t *tpi_mp; 5320 ipha_t *ipha; 5321 ip6_t *ip6h; 5322 sin6_t sin6; 5323 in6_addr_t v6dst; 5324 int err; 5325 int ifindex = 0; 5326 cred_t *cr; 5327 5328 if (ipvers == IPV4_VERSION) { 5329 ipha = (ipha_t *)mp->b_rptr; 5330 5331 connp->conn_send = ip_output; 5332 connp->conn_recv = tcp_input; 5333 5334 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5335 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5336 5337 sin6 = sin6_null; 5338 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 5339 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 5340 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5341 sin6.sin6_family = AF_INET6; 5342 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 5343 lconnp->conn_zoneid); 5344 if (tcp->tcp_recvdstaddr) { 5345 sin6_t sin6d; 5346 5347 sin6d = sin6_null; 5348 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 5349 &sin6d.sin6_addr); 5350 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 5351 sin6d.sin6_family = AF_INET; 5352 tpi_mp = mi_tpi_extconn_ind(NULL, 5353 (char *)&sin6d, sizeof (sin6_t), 5354 (char *)&tcp, 5355 (t_scalar_t)sizeof (intptr_t), 5356 (char *)&sin6d, sizeof (sin6_t), 5357 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5358 } else { 5359 tpi_mp = mi_tpi_conn_ind(NULL, 5360 (char *)&sin6, sizeof (sin6_t), 5361 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5362 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5363 } 5364 } else { 5365 ip6h = (ip6_t *)mp->b_rptr; 5366 5367 connp->conn_send = ip_output_v6; 5368 connp->conn_recv = tcp_input; 5369 5370 connp->conn_srcv6 = ip6h->ip6_dst; 5371 connp->conn_remv6 = ip6h->ip6_src; 5372 5373 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 5374 ifindex = (int)mp->b_datap->db_cksumstuff; 5375 mp->b_datap->db_cksumstuff = 0; 5376 5377 sin6 = sin6_null; 5378 sin6.sin6_addr = ip6h->ip6_src; 5379 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 5380 sin6.sin6_family = AF_INET6; 5381 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 5382 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 5383 lconnp->conn_zoneid); 5384 5385 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 5386 /* Pass up the scope_id of remote addr */ 5387 sin6.sin6_scope_id = ifindex; 5388 } else { 5389 sin6.sin6_scope_id = 0; 5390 } 5391 if (tcp->tcp_recvdstaddr) { 5392 sin6_t sin6d; 5393 5394 sin6d = sin6_null; 5395 sin6.sin6_addr = ip6h->ip6_dst; 5396 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 5397 sin6d.sin6_family = AF_INET; 5398 tpi_mp = mi_tpi_extconn_ind(NULL, 5399 (char *)&sin6d, sizeof (sin6_t), 5400 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5401 (char *)&sin6d, sizeof (sin6_t), 5402 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5403 } else { 5404 tpi_mp = mi_tpi_conn_ind(NULL, 5405 (char *)&sin6, sizeof (sin6_t), 5406 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5407 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5408 } 5409 } 5410 5411 if (tpi_mp == NULL) 5412 return (ENOMEM); 5413 5414 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5415 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5416 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 5417 connp->conn_fully_bound = B_FALSE; 5418 5419 if (tcp_trace) 5420 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5421 5422 /* Inherit information from the "parent" */ 5423 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5424 tcp->tcp_family = ltcp->tcp_family; 5425 tcp->tcp_wq = ltcp->tcp_wq; 5426 tcp->tcp_rq = ltcp->tcp_rq; 5427 tcp->tcp_mss = tcp_mss_def_ipv6; 5428 tcp->tcp_detached = B_TRUE; 5429 if ((err = tcp_init_values(tcp)) != 0) { 5430 freemsg(tpi_mp); 5431 return (err); 5432 } 5433 5434 if (ipvers == IPV4_VERSION) { 5435 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 5436 freemsg(tpi_mp); 5437 return (err); 5438 } 5439 ASSERT(tcp->tcp_ipha != NULL); 5440 } else { 5441 /* ifindex must be already set */ 5442 ASSERT(ifindex != 0); 5443 5444 if (ltcp->tcp_bound_if != 0) { 5445 /* 5446 * Set newtcp's bound_if equal to 5447 * listener's value. If ifindex is 5448 * not the same as ltcp->tcp_bound_if, 5449 * it must be a packet for the ipmp group 5450 * of interfaces 5451 */ 5452 tcp->tcp_bound_if = ltcp->tcp_bound_if; 5453 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 5454 tcp->tcp_bound_if = ifindex; 5455 } 5456 5457 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 5458 tcp->tcp_recvifindex = 0; 5459 tcp->tcp_recvhops = 0xffffffffU; 5460 ASSERT(tcp->tcp_ip6h != NULL); 5461 } 5462 5463 tcp->tcp_lport = ltcp->tcp_lport; 5464 5465 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5466 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5467 /* 5468 * Listener had options of some sort; eager inherits. 5469 * Free up the eager template and allocate one 5470 * of the right size. 5471 */ 5472 if (tcp->tcp_hdr_grown) { 5473 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5474 } else { 5475 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5476 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5477 } 5478 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5479 KM_NOSLEEP); 5480 if (tcp->tcp_iphc == NULL) { 5481 tcp->tcp_iphc_len = 0; 5482 freemsg(tpi_mp); 5483 return (ENOMEM); 5484 } 5485 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5486 tcp->tcp_hdr_grown = B_TRUE; 5487 } 5488 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5489 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5490 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5491 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5492 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5493 5494 /* 5495 * Copy the IP+TCP header template from listener to eager 5496 */ 5497 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5498 if (tcp->tcp_ipversion == IPV6_VERSION) { 5499 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5500 IPPROTO_RAW) { 5501 tcp->tcp_ip6h = 5502 (ip6_t *)(tcp->tcp_iphc + 5503 sizeof (ip6i_t)); 5504 } else { 5505 tcp->tcp_ip6h = 5506 (ip6_t *)(tcp->tcp_iphc); 5507 } 5508 tcp->tcp_ipha = NULL; 5509 } else { 5510 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5511 tcp->tcp_ip6h = NULL; 5512 } 5513 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5514 tcp->tcp_ip_hdr_len); 5515 } else { 5516 /* 5517 * only valid case when ipversion of listener and 5518 * eager differ is when listener is IPv6 and 5519 * eager is IPv4. 5520 * Eager header template has been initialized to the 5521 * maximum v4 header sizes, which includes space for 5522 * TCP and IP options. 5523 */ 5524 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5525 (tcp->tcp_ipversion == IPV4_VERSION)); 5526 ASSERT(tcp->tcp_iphc_len >= 5527 TCP_MAX_COMBINED_HEADER_LENGTH); 5528 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5529 /* copy IP header fields individually */ 5530 tcp->tcp_ipha->ipha_ttl = 5531 ltcp->tcp_ip6h->ip6_hops; 5532 bcopy(ltcp->tcp_tcph->th_lport, 5533 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5534 } 5535 5536 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5537 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5538 sizeof (in_port_t)); 5539 5540 if (ltcp->tcp_lport == 0) { 5541 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5542 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5543 sizeof (in_port_t)); 5544 } 5545 5546 if (tcp->tcp_ipversion == IPV4_VERSION) { 5547 ASSERT(ipha != NULL); 5548 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5549 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5550 5551 /* Source routing option copyover (reverse it) */ 5552 if (tcp_rev_src_routes) 5553 tcp_opt_reverse(tcp, ipha); 5554 } else { 5555 ASSERT(ip6h != NULL); 5556 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5557 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5558 } 5559 5560 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5561 /* 5562 * If the SYN contains a credential, it's a loopback packet; attach 5563 * the credential to the TPI message. 5564 */ 5565 if ((cr = DB_CRED(idmp)) != NULL) { 5566 mblk_setcred(tpi_mp, cr); 5567 DB_CPID(tpi_mp) = DB_CPID(idmp); 5568 } 5569 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5570 5571 return (0); 5572 } 5573 5574 5575 int 5576 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5577 tcph_t *tcph, mblk_t *idmp) 5578 { 5579 tcp_t *ltcp = lconnp->conn_tcp; 5580 tcp_t *tcp = connp->conn_tcp; 5581 sin_t sin; 5582 mblk_t *tpi_mp = NULL; 5583 int err; 5584 cred_t *cr; 5585 5586 sin = sin_null; 5587 sin.sin_addr.s_addr = ipha->ipha_src; 5588 sin.sin_port = *(uint16_t *)tcph->th_lport; 5589 sin.sin_family = AF_INET; 5590 if (ltcp->tcp_recvdstaddr) { 5591 sin_t sind; 5592 5593 sind = sin_null; 5594 sind.sin_addr.s_addr = ipha->ipha_dst; 5595 sind.sin_port = *(uint16_t *)tcph->th_fport; 5596 sind.sin_family = AF_INET; 5597 tpi_mp = mi_tpi_extconn_ind(NULL, 5598 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5599 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5600 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5601 } else { 5602 tpi_mp = mi_tpi_conn_ind(NULL, 5603 (char *)&sin, sizeof (sin_t), 5604 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5605 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5606 } 5607 5608 if (tpi_mp == NULL) { 5609 return (ENOMEM); 5610 } 5611 5612 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5613 connp->conn_send = ip_output; 5614 connp->conn_recv = tcp_input; 5615 connp->conn_fully_bound = B_FALSE; 5616 5617 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5618 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5619 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5620 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5621 5622 if (tcp_trace) { 5623 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5624 } 5625 5626 /* Inherit information from the "parent" */ 5627 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5628 tcp->tcp_family = ltcp->tcp_family; 5629 tcp->tcp_wq = ltcp->tcp_wq; 5630 tcp->tcp_rq = ltcp->tcp_rq; 5631 tcp->tcp_mss = tcp_mss_def_ipv4; 5632 tcp->tcp_detached = B_TRUE; 5633 if ((err = tcp_init_values(tcp)) != 0) { 5634 freemsg(tpi_mp); 5635 return (err); 5636 } 5637 5638 /* 5639 * Let's make sure that eager tcp template has enough space to 5640 * copy IPv4 listener's tcp template. Since the conn_t structure is 5641 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5642 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5643 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5644 * extension headers or with ip6i_t struct). Note that bcopy() below 5645 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5646 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5647 */ 5648 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5649 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5650 5651 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5652 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5653 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5654 tcp->tcp_ttl = ltcp->tcp_ttl; 5655 tcp->tcp_tos = ltcp->tcp_tos; 5656 5657 /* Copy the IP+TCP header template from listener to eager */ 5658 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5659 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5660 tcp->tcp_ip6h = NULL; 5661 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5662 tcp->tcp_ip_hdr_len); 5663 5664 /* Initialize the IP addresses and Ports */ 5665 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5666 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5667 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5668 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5669 5670 /* Source routing option copyover (reverse it) */ 5671 if (tcp_rev_src_routes) 5672 tcp_opt_reverse(tcp, ipha); 5673 5674 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5675 5676 /* 5677 * If the SYN contains a credential, it's a loopback packet; attach 5678 * the credential to the TPI message. 5679 */ 5680 if ((cr = DB_CRED(idmp)) != NULL) { 5681 mblk_setcred(tpi_mp, cr); 5682 DB_CPID(tpi_mp) = DB_CPID(idmp); 5683 } 5684 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5685 5686 return (0); 5687 } 5688 5689 /* 5690 * sets up conn for ipsec. 5691 * if the first mblk is M_CTL it is consumed and mpp is updated. 5692 * in case of error mpp is freed. 5693 */ 5694 conn_t * 5695 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5696 { 5697 conn_t *connp = tcp->tcp_connp; 5698 conn_t *econnp; 5699 squeue_t *new_sqp; 5700 mblk_t *first_mp = *mpp; 5701 mblk_t *mp = *mpp; 5702 boolean_t mctl_present = B_FALSE; 5703 uint_t ipvers; 5704 5705 econnp = tcp_get_conn(sqp); 5706 if (econnp == NULL) { 5707 freemsg(first_mp); 5708 return (NULL); 5709 } 5710 if (DB_TYPE(mp) == M_CTL) { 5711 if (mp->b_cont == NULL || 5712 mp->b_cont->b_datap->db_type != M_DATA) { 5713 freemsg(first_mp); 5714 return (NULL); 5715 } 5716 mp = mp->b_cont; 5717 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5718 freemsg(first_mp); 5719 return (NULL); 5720 } 5721 5722 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5723 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5724 mctl_present = B_TRUE; 5725 } else { 5726 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5727 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5728 } 5729 5730 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 5731 mp->b_datap->db_cksumstart = 0; 5732 5733 ASSERT(OK_32PTR(mp->b_rptr)); 5734 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5735 if (ipvers == IPV4_VERSION) { 5736 uint16_t *up; 5737 uint32_t ports; 5738 ipha_t *ipha; 5739 5740 ipha = (ipha_t *)mp->b_rptr; 5741 up = (uint16_t *)((uchar_t *)ipha + 5742 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5743 ports = *(uint32_t *)up; 5744 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5745 ipha->ipha_dst, ipha->ipha_src, ports); 5746 } else { 5747 uint16_t *up; 5748 uint32_t ports; 5749 uint16_t ip_hdr_len; 5750 uint8_t *nexthdrp; 5751 ip6_t *ip6h; 5752 tcph_t *tcph; 5753 5754 ip6h = (ip6_t *)mp->b_rptr; 5755 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5756 ip_hdr_len = IPV6_HDR_LEN; 5757 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5758 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5759 CONN_DEC_REF(econnp); 5760 freemsg(first_mp); 5761 return (NULL); 5762 } 5763 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5764 up = (uint16_t *)tcph->th_lport; 5765 ports = *(uint32_t *)up; 5766 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5767 ip6h->ip6_dst, ip6h->ip6_src, ports); 5768 } 5769 5770 /* 5771 * The caller already ensured that there is a sqp present. 5772 */ 5773 econnp->conn_sqp = new_sqp; 5774 5775 if (connp->conn_policy != NULL) { 5776 ipsec_in_t *ii; 5777 ii = (ipsec_in_t *)(first_mp->b_rptr); 5778 ASSERT(ii->ipsec_in_policy == NULL); 5779 IPPH_REFHOLD(connp->conn_policy); 5780 ii->ipsec_in_policy = connp->conn_policy; 5781 5782 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5783 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5784 CONN_DEC_REF(econnp); 5785 freemsg(first_mp); 5786 return (NULL); 5787 } 5788 } 5789 5790 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5791 CONN_DEC_REF(econnp); 5792 freemsg(first_mp); 5793 return (NULL); 5794 } 5795 5796 /* 5797 * If we know we have some policy, pass the "IPSEC" 5798 * options size TCP uses this adjust the MSS. 5799 */ 5800 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5801 if (mctl_present) { 5802 freeb(first_mp); 5803 *mpp = mp; 5804 } 5805 5806 return (econnp); 5807 } 5808 5809 /* 5810 * tcp_get_conn/tcp_free_conn 5811 * 5812 * tcp_get_conn is used to get a clean tcp connection structure. 5813 * It tries to reuse the connections put on the freelist by the 5814 * time_wait_collector failing which it goes to kmem_cache. This 5815 * way has two benefits compared to just allocating from and 5816 * freeing to kmem_cache. 5817 * 1) The time_wait_collector can free (which includes the cleanup) 5818 * outside the squeue. So when the interrupt comes, we have a clean 5819 * connection sitting in the freelist. Obviously, this buys us 5820 * performance. 5821 * 5822 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5823 * has multiple disadvantages - tying up the squeue during alloc, and the 5824 * fact that IPSec policy initialization has to happen here which 5825 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5826 * But allocating the conn/tcp in IP land is also not the best since 5827 * we can't check the 'q' and 'q0' which are protected by squeue and 5828 * blindly allocate memory which might have to be freed here if we are 5829 * not allowed to accept the connection. By using the freelist and 5830 * putting the conn/tcp back in freelist, we don't pay a penalty for 5831 * allocating memory without checking 'q/q0' and freeing it if we can't 5832 * accept the connection. 5833 * 5834 * Care should be taken to put the conn back in the same squeue's freelist 5835 * from which it was allocated. Best results are obtained if conn is 5836 * allocated from listener's squeue and freed to the same. Time wait 5837 * collector will free up the freelist is the connection ends up sitting 5838 * there for too long. 5839 */ 5840 void * 5841 tcp_get_conn(void *arg) 5842 { 5843 tcp_t *tcp = NULL; 5844 conn_t *connp = NULL; 5845 squeue_t *sqp = (squeue_t *)arg; 5846 tcp_squeue_priv_t *tcp_time_wait; 5847 5848 tcp_time_wait = 5849 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5850 5851 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5852 tcp = tcp_time_wait->tcp_free_list; 5853 if (tcp != NULL) { 5854 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5855 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5856 tcp->tcp_time_wait_next = NULL; 5857 connp = tcp->tcp_connp; 5858 connp->conn_flags |= IPCL_REUSED; 5859 return ((void *)connp); 5860 } 5861 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5862 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5863 return (NULL); 5864 return ((void *)connp); 5865 } 5866 5867 /* BEGIN CSTYLED */ 5868 /* 5869 * 5870 * The sockfs ACCEPT path: 5871 * ======================= 5872 * 5873 * The eager is now established in its own perimeter as soon as SYN is 5874 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5875 * completes the accept processing on the acceptor STREAM. The sending 5876 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5877 * listener but a TLI/XTI listener completes the accept processing 5878 * on the listener perimeter. 5879 * 5880 * Common control flow for 3 way handshake: 5881 * ---------------------------------------- 5882 * 5883 * incoming SYN (listener perimeter) -> tcp_rput_data() 5884 * -> tcp_conn_request() 5885 * 5886 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5887 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5888 * 5889 * Sockfs ACCEPT Path: 5890 * ------------------- 5891 * 5892 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5893 * as STREAM entry point) 5894 * 5895 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5896 * 5897 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5898 * association (we are not behind eager's squeue but sockfs is protecting us 5899 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5900 * is changed to point at tcp_wput(). 5901 * 5902 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5903 * listener (done on listener's perimeter). 5904 * 5905 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5906 * accept. 5907 * 5908 * TLI/XTI client ACCEPT path: 5909 * --------------------------- 5910 * 5911 * soaccept() sends T_CONN_RES on the listener STREAM. 5912 * 5913 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5914 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5915 * 5916 * Locks: 5917 * ====== 5918 * 5919 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5920 * and listeners->tcp_eager_next_q. 5921 * 5922 * Referencing: 5923 * ============ 5924 * 5925 * 1) We start out in tcp_conn_request by eager placing a ref on 5926 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5927 * 5928 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5929 * doing so we place a ref on the eager. This ref is finally dropped at the 5930 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5931 * reference is dropped by the squeue framework. 5932 * 5933 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5934 * 5935 * The reference must be released by the same entity that added the reference 5936 * In the above scheme, the eager is the entity that adds and releases the 5937 * references. Note that tcp_accept_finish executes in the squeue of the eager 5938 * (albeit after it is attached to the acceptor stream). Though 1. executes 5939 * in the listener's squeue, the eager is nascent at this point and the 5940 * reference can be considered to have been added on behalf of the eager. 5941 * 5942 * Eager getting a Reset or listener closing: 5943 * ========================================== 5944 * 5945 * Once the listener and eager are linked, the listener never does the unlink. 5946 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5947 * a message on all eager perimeter. The eager then does the unlink, clears 5948 * any pointers to the listener's queue and drops the reference to the 5949 * listener. The listener waits in tcp_close outside the squeue until its 5950 * refcount has dropped to 1. This ensures that the listener has waited for 5951 * all eagers to clear their association with the listener. 5952 * 5953 * Similarly, if eager decides to go away, it can unlink itself and close. 5954 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5955 * the reference to eager is still valid because of the extra ref we put 5956 * in tcp_send_conn_ind. 5957 * 5958 * Listener can always locate the eager under the protection 5959 * of the listener->tcp_eager_lock, and then do a refhold 5960 * on the eager during the accept processing. 5961 * 5962 * The acceptor stream accesses the eager in the accept processing 5963 * based on the ref placed on eager before sending T_conn_ind. 5964 * The only entity that can negate this refhold is a listener close 5965 * which is mutually exclusive with an active acceptor stream. 5966 * 5967 * Eager's reference on the listener 5968 * =================================== 5969 * 5970 * If the accept happens (even on a closed eager) the eager drops its 5971 * reference on the listener at the start of tcp_accept_finish. If the 5972 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5973 * the reference is dropped in tcp_closei_local. If the listener closes, 5974 * the reference is dropped in tcp_eager_kill. In all cases the reference 5975 * is dropped while executing in the eager's context (squeue). 5976 */ 5977 /* END CSTYLED */ 5978 5979 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5980 5981 /* 5982 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5983 * tcp_rput_data will not see any SYN packets. 5984 */ 5985 /* ARGSUSED */ 5986 void 5987 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5988 { 5989 tcph_t *tcph; 5990 uint32_t seg_seq; 5991 tcp_t *eager; 5992 uint_t ipvers; 5993 ipha_t *ipha; 5994 ip6_t *ip6h; 5995 int err; 5996 conn_t *econnp = NULL; 5997 squeue_t *new_sqp; 5998 mblk_t *mp1; 5999 uint_t ip_hdr_len; 6000 conn_t *connp = (conn_t *)arg; 6001 tcp_t *tcp = connp->conn_tcp; 6002 ire_t *ire; 6003 6004 if (tcp->tcp_state != TCPS_LISTEN) 6005 goto error2; 6006 6007 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 6008 6009 mutex_enter(&tcp->tcp_eager_lock); 6010 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 6011 mutex_exit(&tcp->tcp_eager_lock); 6012 TCP_STAT(tcp_listendrop); 6013 BUMP_MIB(&tcp_mib, tcpListenDrop); 6014 if (tcp->tcp_debug) { 6015 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 6016 "tcp_conn_request: listen backlog (max=%d) " 6017 "overflow (%d pending) on %s", 6018 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 6019 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 6020 } 6021 goto error2; 6022 } 6023 6024 if (tcp->tcp_conn_req_cnt_q0 >= 6025 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 6026 /* 6027 * Q0 is full. Drop a pending half-open req from the queue 6028 * to make room for the new SYN req. Also mark the time we 6029 * drop a SYN. 6030 * 6031 * A more aggressive defense against SYN attack will 6032 * be to set the "tcp_syn_defense" flag now. 6033 */ 6034 TCP_STAT(tcp_listendropq0); 6035 tcp->tcp_last_rcv_lbolt = lbolt64; 6036 if (!tcp_drop_q0(tcp)) { 6037 mutex_exit(&tcp->tcp_eager_lock); 6038 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 6039 if (tcp->tcp_debug) { 6040 (void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE, 6041 "tcp_conn_request: listen half-open queue " 6042 "(max=%d) full (%d pending) on %s", 6043 tcp_conn_req_max_q0, 6044 tcp->tcp_conn_req_cnt_q0, 6045 tcp_display(tcp, NULL, 6046 DISP_PORT_ONLY)); 6047 } 6048 goto error2; 6049 } 6050 } 6051 mutex_exit(&tcp->tcp_eager_lock); 6052 6053 /* 6054 * IP adds STRUIO_EAGER and ensures that the received packet is 6055 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 6056 * link local address. If IPSec is enabled, db_struioflag has 6057 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 6058 * otherwise an error case if neither of them is set. 6059 */ 6060 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6061 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 6062 mp->b_datap->db_cksumstart = 0; 6063 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 6064 econnp = (conn_t *)tcp_get_conn(arg2); 6065 if (econnp == NULL) 6066 goto error2; 6067 econnp->conn_sqp = new_sqp; 6068 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 6069 /* 6070 * mp is updated in tcp_get_ipsec_conn(). 6071 */ 6072 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 6073 if (econnp == NULL) { 6074 /* 6075 * mp freed by tcp_get_ipsec_conn. 6076 */ 6077 return; 6078 } 6079 } else { 6080 goto error2; 6081 } 6082 6083 ASSERT(DB_TYPE(mp) == M_DATA); 6084 6085 ipvers = IPH_HDR_VERSION(mp->b_rptr); 6086 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 6087 ASSERT(OK_32PTR(mp->b_rptr)); 6088 if (ipvers == IPV4_VERSION) { 6089 ipha = (ipha_t *)mp->b_rptr; 6090 ip_hdr_len = IPH_HDR_LENGTH(ipha); 6091 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6092 } else { 6093 ip6h = (ip6_t *)mp->b_rptr; 6094 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 6095 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6096 } 6097 6098 if (tcp->tcp_family == AF_INET) { 6099 ASSERT(ipvers == IPV4_VERSION); 6100 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 6101 } else { 6102 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 6103 } 6104 6105 if (err) 6106 goto error3; 6107 6108 eager = econnp->conn_tcp; 6109 6110 /* Inherit various TCP parameters from the listener */ 6111 eager->tcp_naglim = tcp->tcp_naglim; 6112 eager->tcp_first_timer_threshold = 6113 tcp->tcp_first_timer_threshold; 6114 eager->tcp_second_timer_threshold = 6115 tcp->tcp_second_timer_threshold; 6116 6117 eager->tcp_first_ctimer_threshold = 6118 tcp->tcp_first_ctimer_threshold; 6119 eager->tcp_second_ctimer_threshold = 6120 tcp->tcp_second_ctimer_threshold; 6121 6122 /* 6123 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 6124 * zone id before the accept is completed in tcp_wput_accept(). 6125 */ 6126 econnp->conn_zoneid = connp->conn_zoneid; 6127 6128 eager->tcp_hard_binding = B_TRUE; 6129 6130 tcp_bind_hash_insert(&tcp_bind_fanout[ 6131 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 6132 6133 CL_INET_CONNECT(eager); 6134 6135 /* 6136 * No need to check for multicast destination since ip will only pass 6137 * up multicasts to those that have expressed interest 6138 * TODO: what about rejecting broadcasts? 6139 * Also check that source is not a multicast or broadcast address. 6140 */ 6141 eager->tcp_state = TCPS_SYN_RCVD; 6142 6143 6144 /* 6145 * There should be no ire in the mp as we are being called after 6146 * receiving the SYN. 6147 */ 6148 ASSERT(tcp_ire_mp(mp) == NULL); 6149 6150 /* 6151 * Adapt our mss, ttl, ... according to information provided in IRE. 6152 */ 6153 6154 if (tcp_adapt_ire(eager, NULL) == 0) { 6155 /* Undo the bind_hash_insert */ 6156 tcp_bind_hash_remove(eager); 6157 goto error3; 6158 } 6159 6160 /* Process all TCP options. */ 6161 tcp_process_options(eager, tcph); 6162 6163 /* Is the other end ECN capable? */ 6164 if (tcp_ecn_permitted >= 1 && 6165 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 6166 eager->tcp_ecn_ok = B_TRUE; 6167 } 6168 6169 /* 6170 * listener->tcp_rq->q_hiwat should be the default window size or a 6171 * window size changed via SO_RCVBUF option. First round up the 6172 * eager's tcp_rwnd to the nearest MSS. Then find out the window 6173 * scale option value if needed. Call tcp_rwnd_set() to finish the 6174 * setting. 6175 * 6176 * Note if there is a rpipe metric associated with the remote host, 6177 * we should not inherit receive window size from listener. 6178 */ 6179 eager->tcp_rwnd = MSS_ROUNDUP( 6180 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 6181 eager->tcp_rwnd), eager->tcp_mss); 6182 if (eager->tcp_snd_ws_ok) 6183 tcp_set_ws_value(eager); 6184 /* 6185 * Note that this is the only place tcp_rwnd_set() is called for 6186 * accepting a connection. We need to call it here instead of 6187 * after the 3-way handshake because we need to tell the other 6188 * side our rwnd in the SYN-ACK segment. 6189 */ 6190 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 6191 6192 /* 6193 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 6194 * via soaccept()->soinheritoptions() which essentially applies 6195 * all the listener options to the new STREAM. The options that we 6196 * need to take care of are: 6197 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 6198 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 6199 * SO_SNDBUF, SO_RCVBUF. 6200 * 6201 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 6202 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 6203 * tcp_maxpsz_set() gets called later from 6204 * tcp_accept_finish(), the option takes effect. 6205 * 6206 */ 6207 /* Set the TCP options */ 6208 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 6209 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 6210 eager->tcp_oobinline = tcp->tcp_oobinline; 6211 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 6212 eager->tcp_broadcast = tcp->tcp_broadcast; 6213 eager->tcp_useloopback = tcp->tcp_useloopback; 6214 eager->tcp_dontroute = tcp->tcp_dontroute; 6215 eager->tcp_linger = tcp->tcp_linger; 6216 eager->tcp_lingertime = tcp->tcp_lingertime; 6217 if (tcp->tcp_ka_enabled) 6218 eager->tcp_ka_enabled = 1; 6219 6220 /* Set the IP options */ 6221 econnp->conn_broadcast = connp->conn_broadcast; 6222 econnp->conn_loopback = connp->conn_loopback; 6223 econnp->conn_dontroute = connp->conn_dontroute; 6224 econnp->conn_reuseaddr = connp->conn_reuseaddr; 6225 6226 /* Put a ref on the listener for the eager. */ 6227 CONN_INC_REF(connp); 6228 mutex_enter(&tcp->tcp_eager_lock); 6229 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 6230 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 6231 tcp->tcp_eager_next_q0 = eager; 6232 eager->tcp_eager_prev_q0 = tcp; 6233 6234 /* Set tcp_listener before adding it to tcp_conn_fanout */ 6235 eager->tcp_listener = tcp; 6236 eager->tcp_saved_listener = tcp; 6237 6238 /* 6239 * Tag this detached tcp vector for later retrieval 6240 * by our listener client in tcp_accept(). 6241 */ 6242 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 6243 tcp->tcp_conn_req_cnt_q0++; 6244 if (++tcp->tcp_conn_req_seqnum == -1) { 6245 /* 6246 * -1 is "special" and defined in TPI as something 6247 * that should never be used in T_CONN_IND 6248 */ 6249 ++tcp->tcp_conn_req_seqnum; 6250 } 6251 mutex_exit(&tcp->tcp_eager_lock); 6252 6253 if (tcp->tcp_syn_defense) { 6254 /* Don't drop the SYN that comes from a good IP source */ 6255 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 6256 if (addr_cache != NULL && eager->tcp_remote == 6257 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 6258 eager->tcp_dontdrop = B_TRUE; 6259 } 6260 } 6261 6262 /* 6263 * We need to insert the eager in its own perimeter but as soon 6264 * as we do that, we expose the eager to the classifier and 6265 * should not touch any field outside the eager's perimeter. 6266 * So do all the work necessary before inserting the eager 6267 * in its own perimeter. Be optimistic that ipcl_conn_insert() 6268 * will succeed but undo everything if it fails. 6269 */ 6270 seg_seq = ABE32_TO_U32(tcph->th_seq); 6271 eager->tcp_irs = seg_seq; 6272 eager->tcp_rack = seg_seq; 6273 eager->tcp_rnxt = seg_seq + 1; 6274 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 6275 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 6276 eager->tcp_state = TCPS_SYN_RCVD; 6277 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 6278 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 6279 if (mp1 == NULL) 6280 goto error1; 6281 mblk_setcred(mp1, tcp->tcp_cred); 6282 DB_CPID(mp1) = tcp->tcp_cpid; 6283 6284 /* 6285 * We need to start the rto timer. In normal case, we start 6286 * the timer after sending the packet on the wire (or at 6287 * least believing that packet was sent by waiting for 6288 * CALL_IP_WPUT() to return). Since this is the first packet 6289 * being sent on the wire for the eager, our initial tcp_rto 6290 * is at least tcp_rexmit_interval_min which is a fairly 6291 * large value to allow the algorithm to adjust slowly to large 6292 * fluctuations of RTT during first few transmissions. 6293 * 6294 * Starting the timer first and then sending the packet in this 6295 * case shouldn't make much difference since tcp_rexmit_interval_min 6296 * is of the order of several 100ms and starting the timer 6297 * first and then sending the packet will result in difference 6298 * of few micro seconds. 6299 * 6300 * Without this optimization, we are forced to hold the fanout 6301 * lock across the ipcl_bind_insert() and sending the packet 6302 * so that we don't race against an incoming packet (maybe RST) 6303 * for this eager. 6304 */ 6305 6306 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 6307 TCP_TIMER_RESTART(eager, eager->tcp_rto); 6308 6309 6310 /* 6311 * Insert the eager in its own perimeter now. We are ready to deal 6312 * with any packets on eager. 6313 */ 6314 if (eager->tcp_ipversion == IPV4_VERSION) { 6315 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6316 goto error; 6317 } 6318 } else { 6319 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6320 goto error; 6321 } 6322 } 6323 6324 /* mark conn as fully-bound */ 6325 econnp->conn_fully_bound = B_TRUE; 6326 6327 /* Send the SYN-ACK */ 6328 tcp_send_data(eager, eager->tcp_wq, mp1); 6329 freemsg(mp); 6330 6331 return; 6332 error: 6333 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6334 freemsg(mp1); 6335 error1: 6336 /* Undo what we did above */ 6337 mutex_enter(&tcp->tcp_eager_lock); 6338 tcp_eager_unlink(eager); 6339 mutex_exit(&tcp->tcp_eager_lock); 6340 /* Drop eager's reference on the listener */ 6341 CONN_DEC_REF(connp); 6342 6343 /* 6344 * Delete the cached ire in conn_ire_cache and also mark 6345 * the conn as CONDEMNED 6346 */ 6347 mutex_enter(&econnp->conn_lock); 6348 econnp->conn_state_flags |= CONN_CONDEMNED; 6349 ire = econnp->conn_ire_cache; 6350 econnp->conn_ire_cache = NULL; 6351 mutex_exit(&econnp->conn_lock); 6352 if (ire != NULL) 6353 IRE_REFRELE_NOTR(ire); 6354 6355 /* 6356 * tcp_accept_comm inserts the eager to the bind_hash 6357 * we need to remove it from the hash if ipcl_conn_insert 6358 * fails. 6359 */ 6360 tcp_bind_hash_remove(eager); 6361 /* Drop the eager ref placed in tcp_open_detached */ 6362 CONN_DEC_REF(econnp); 6363 6364 /* 6365 * If a connection already exists, send the mp to that connections so 6366 * that it can be appropriately dealt with. 6367 */ 6368 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6369 if (!IPCL_IS_CONNECTED(econnp)) { 6370 /* 6371 * Something bad happened. ipcl_conn_insert() 6372 * failed because a connection already existed 6373 * in connected hash but we can't find it 6374 * anymore (someone blew it away). Just 6375 * free this message and hopefully remote 6376 * will retransmit at which time the SYN can be 6377 * treated as a new connection or dealth with 6378 * a TH_RST if a connection already exists. 6379 */ 6380 freemsg(mp); 6381 } else { 6382 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6383 econnp, SQTAG_TCP_CONN_REQ); 6384 } 6385 } else { 6386 /* Nobody wants this packet */ 6387 freemsg(mp); 6388 } 6389 return; 6390 error2: 6391 freemsg(mp); 6392 return; 6393 error3: 6394 CONN_DEC_REF(econnp); 6395 freemsg(mp); 6396 } 6397 6398 /* 6399 * In an ideal case of vertical partition in NUMA architecture, its 6400 * beneficial to have the listener and all the incoming connections 6401 * tied to the same squeue. The other constraint is that incoming 6402 * connections should be tied to the squeue attached to interrupted 6403 * CPU for obvious locality reason so this leaves the listener to 6404 * be tied to the same squeue. Our only problem is that when listener 6405 * is binding, the CPU that will get interrupted by the NIC whose 6406 * IP address the listener is binding to is not even known. So 6407 * the code below allows us to change that binding at the time the 6408 * CPU is interrupted by virtue of incoming connection's squeue. 6409 * 6410 * This is usefull only in case of a listener bound to a specific IP 6411 * address. For other kind of listeners, they get bound the 6412 * very first time and there is no attempt to rebind them. 6413 */ 6414 void 6415 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6416 { 6417 conn_t *connp = (conn_t *)arg; 6418 squeue_t *sqp = (squeue_t *)arg2; 6419 squeue_t *new_sqp; 6420 uint32_t conn_flags; 6421 6422 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6423 new_sqp = (squeue_t *)mp->b_datap->db_cksumstart; 6424 } else { 6425 goto done; 6426 } 6427 6428 if (connp->conn_fanout == NULL) 6429 goto done; 6430 6431 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6432 mutex_enter(&connp->conn_fanout->connf_lock); 6433 mutex_enter(&connp->conn_lock); 6434 /* 6435 * No one from read or write side can access us now 6436 * except for already queued packets on this squeue. 6437 * But since we haven't changed the squeue yet, they 6438 * can't execute. If they are processed after we have 6439 * changed the squeue, they are sent back to the 6440 * correct squeue down below. 6441 */ 6442 if (connp->conn_sqp != new_sqp) { 6443 while (connp->conn_sqp != new_sqp) 6444 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6445 } 6446 6447 do { 6448 conn_flags = connp->conn_flags; 6449 conn_flags |= IPCL_FULLY_BOUND; 6450 (void) cas32(&connp->conn_flags, connp->conn_flags, 6451 conn_flags); 6452 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6453 6454 mutex_exit(&connp->conn_fanout->connf_lock); 6455 mutex_exit(&connp->conn_lock); 6456 } 6457 6458 done: 6459 if (connp->conn_sqp != sqp) { 6460 CONN_INC_REF(connp); 6461 squeue_fill(connp->conn_sqp, mp, 6462 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6463 } else { 6464 tcp_conn_request(connp, mp, sqp); 6465 } 6466 } 6467 6468 /* 6469 * Successful connect request processing begins when our client passes 6470 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6471 * our T_OK_ACK reply message upstream. The control flow looks like this: 6472 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6473 * upstream <- tcp_rput() <- IP 6474 * After various error checks are completed, tcp_connect() lays 6475 * the target address and port into the composite header template, 6476 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6477 * request followed by an IRE request, and passes the three mblk message 6478 * down to IP looking like this: 6479 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6480 * Processing continues in tcp_rput() when we receive the following message: 6481 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6482 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6483 * to fire off the connection request, and then passes the T_OK_ACK mblk 6484 * upstream that we filled in below. There are, of course, numerous 6485 * error conditions along the way which truncate the processing described 6486 * above. 6487 */ 6488 static void 6489 tcp_connect(tcp_t *tcp, mblk_t *mp) 6490 { 6491 sin_t *sin; 6492 sin6_t *sin6; 6493 queue_t *q = tcp->tcp_wq; 6494 struct T_conn_req *tcr; 6495 ipaddr_t *dstaddrp; 6496 in_port_t dstport; 6497 uint_t srcid; 6498 6499 tcr = (struct T_conn_req *)mp->b_rptr; 6500 6501 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6502 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6503 tcp_err_ack(tcp, mp, TPROTO, 0); 6504 return; 6505 } 6506 6507 /* 6508 * Determine packet type based on type of address passed in 6509 * the request should contain an IPv4 or IPv6 address. 6510 * Make sure that address family matches the type of 6511 * family of the the address passed down 6512 */ 6513 switch (tcr->DEST_length) { 6514 default: 6515 tcp_err_ack(tcp, mp, TBADADDR, 0); 6516 return; 6517 6518 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6519 /* 6520 * XXX: The check for valid DEST_length was not there 6521 * in earlier releases and some buggy 6522 * TLI apps (e.g Sybase) got away with not feeding 6523 * in sin_zero part of address. 6524 * We allow that bug to keep those buggy apps humming. 6525 * Test suites require the check on DEST_length. 6526 * We construct a new mblk with valid DEST_length 6527 * free the original so the rest of the code does 6528 * not have to keep track of this special shorter 6529 * length address case. 6530 */ 6531 mblk_t *nmp; 6532 struct T_conn_req *ntcr; 6533 sin_t *nsin; 6534 6535 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6536 tcr->OPT_length, BPRI_HI); 6537 if (nmp == NULL) { 6538 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6539 return; 6540 } 6541 ntcr = (struct T_conn_req *)nmp->b_rptr; 6542 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6543 ntcr->PRIM_type = T_CONN_REQ; 6544 ntcr->DEST_length = sizeof (sin_t); 6545 ntcr->DEST_offset = sizeof (struct T_conn_req); 6546 6547 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6548 *nsin = sin_null; 6549 /* Get pointer to shorter address to copy from original mp */ 6550 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6551 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6552 if (sin == NULL || !OK_32PTR((char *)sin)) { 6553 freemsg(nmp); 6554 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6555 return; 6556 } 6557 nsin->sin_family = sin->sin_family; 6558 nsin->sin_port = sin->sin_port; 6559 nsin->sin_addr = sin->sin_addr; 6560 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6561 nmp->b_wptr = (uchar_t *)&nsin[1]; 6562 if (tcr->OPT_length != 0) { 6563 ntcr->OPT_length = tcr->OPT_length; 6564 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6565 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6566 (uchar_t *)ntcr + ntcr->OPT_offset, 6567 tcr->OPT_length); 6568 nmp->b_wptr += tcr->OPT_length; 6569 } 6570 freemsg(mp); /* original mp freed */ 6571 mp = nmp; /* re-initialize original variables */ 6572 tcr = ntcr; 6573 } 6574 /* FALLTHRU */ 6575 6576 case sizeof (sin_t): 6577 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6578 sizeof (sin_t)); 6579 if (sin == NULL || !OK_32PTR((char *)sin)) { 6580 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6581 return; 6582 } 6583 if (tcp->tcp_family != AF_INET || 6584 sin->sin_family != AF_INET) { 6585 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6586 return; 6587 } 6588 if (sin->sin_port == 0) { 6589 tcp_err_ack(tcp, mp, TBADADDR, 0); 6590 return; 6591 } 6592 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6593 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6594 return; 6595 } 6596 6597 break; 6598 6599 case sizeof (sin6_t): 6600 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6601 sizeof (sin6_t)); 6602 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6603 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6604 return; 6605 } 6606 if (tcp->tcp_family != AF_INET6 || 6607 sin6->sin6_family != AF_INET6) { 6608 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6609 return; 6610 } 6611 if (sin6->sin6_port == 0) { 6612 tcp_err_ack(tcp, mp, TBADADDR, 0); 6613 return; 6614 } 6615 break; 6616 } 6617 /* 6618 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6619 * should key on their sequence number and cut them loose. 6620 */ 6621 6622 /* 6623 * If options passed in, feed it for verification and handling 6624 */ 6625 if (tcr->OPT_length != 0) { 6626 mblk_t *ok_mp; 6627 mblk_t *discon_mp; 6628 mblk_t *conn_opts_mp; 6629 int t_error, sys_error, do_disconnect; 6630 6631 conn_opts_mp = NULL; 6632 6633 if (tcp_conprim_opt_process(tcp, mp, 6634 &do_disconnect, &t_error, &sys_error) < 0) { 6635 if (do_disconnect) { 6636 ASSERT(t_error == 0 && sys_error == 0); 6637 discon_mp = mi_tpi_discon_ind(NULL, 6638 ECONNREFUSED, 0); 6639 if (!discon_mp) { 6640 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6641 TSYSERR, ENOMEM); 6642 return; 6643 } 6644 ok_mp = mi_tpi_ok_ack_alloc(mp); 6645 if (!ok_mp) { 6646 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6647 TSYSERR, ENOMEM); 6648 return; 6649 } 6650 qreply(q, ok_mp); 6651 qreply(q, discon_mp); /* no flush! */ 6652 } else { 6653 ASSERT(t_error != 0); 6654 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6655 sys_error); 6656 } 6657 return; 6658 } 6659 /* 6660 * Success in setting options, the mp option buffer represented 6661 * by OPT_length/offset has been potentially modified and 6662 * contains results of option processing. We copy it in 6663 * another mp to save it for potentially influencing returning 6664 * it in T_CONN_CONN. 6665 */ 6666 if (tcr->OPT_length != 0) { /* there are resulting options */ 6667 conn_opts_mp = copyb(mp); 6668 if (!conn_opts_mp) { 6669 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6670 TSYSERR, ENOMEM); 6671 return; 6672 } 6673 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6674 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6675 /* 6676 * Note: 6677 * These resulting option negotiation can include any 6678 * end-to-end negotiation options but there no such 6679 * thing (yet?) in our TCP/IP. 6680 */ 6681 } 6682 } 6683 6684 /* 6685 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6686 * make sure that the template IP header in the tcp structure is an 6687 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6688 * need to this before we call tcp_bindi() so that the port lookup 6689 * code will look for ports in the correct port space (IPv4 and 6690 * IPv6 have separate port spaces). 6691 */ 6692 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6693 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6694 int err = 0; 6695 6696 err = tcp_header_init_ipv4(tcp); 6697 if (err != 0) { 6698 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6699 goto connect_failed; 6700 } 6701 if (tcp->tcp_lport != 0) 6702 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6703 } 6704 6705 switch (tcp->tcp_state) { 6706 case TCPS_IDLE: 6707 /* 6708 * We support quick connect, refer to comments in 6709 * tcp_connect_*() 6710 */ 6711 /* FALLTHRU */ 6712 case TCPS_BOUND: 6713 case TCPS_LISTEN: 6714 if (tcp->tcp_family == AF_INET6) { 6715 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6716 tcp_connect_ipv6(tcp, mp, 6717 &sin6->sin6_addr, 6718 sin6->sin6_port, sin6->sin6_flowinfo, 6719 sin6->__sin6_src_id, sin6->sin6_scope_id); 6720 return; 6721 } 6722 /* 6723 * Destination adress is mapped IPv6 address. 6724 * Source bound address should be unspecified or 6725 * IPv6 mapped address as well. 6726 */ 6727 if (!IN6_IS_ADDR_UNSPECIFIED( 6728 &tcp->tcp_bound_source_v6) && 6729 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6730 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6731 EADDRNOTAVAIL); 6732 break; 6733 } 6734 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6735 dstport = sin6->sin6_port; 6736 srcid = sin6->__sin6_src_id; 6737 } else { 6738 dstaddrp = &sin->sin_addr.s_addr; 6739 dstport = sin->sin_port; 6740 srcid = 0; 6741 } 6742 6743 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6744 return; 6745 default: 6746 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6747 break; 6748 } 6749 /* 6750 * Note: Code below is the "failure" case 6751 */ 6752 /* return error ack and blow away saved option results if any */ 6753 connect_failed: 6754 if (mp != NULL) 6755 putnext(tcp->tcp_rq, mp); 6756 else { 6757 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6758 TSYSERR, ENOMEM); 6759 } 6760 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6761 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6762 } 6763 6764 /* 6765 * Handle connect to IPv4 destinations, including connections for AF_INET6 6766 * sockets connecting to IPv4 mapped IPv6 destinations. 6767 */ 6768 static void 6769 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6770 uint_t srcid) 6771 { 6772 tcph_t *tcph; 6773 mblk_t *mp1; 6774 ipaddr_t dstaddr = *dstaddrp; 6775 int32_t oldstate; 6776 uint16_t lport; 6777 6778 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6779 6780 /* Check for attempt to connect to INADDR_ANY */ 6781 if (dstaddr == INADDR_ANY) { 6782 /* 6783 * SunOS 4.x and 4.3 BSD allow an application 6784 * to connect a TCP socket to INADDR_ANY. 6785 * When they do this, the kernel picks the 6786 * address of one interface and uses it 6787 * instead. The kernel usually ends up 6788 * picking the address of the loopback 6789 * interface. This is an undocumented feature. 6790 * However, we provide the same thing here 6791 * in order to have source and binary 6792 * compatibility with SunOS 4.x. 6793 * Update the T_CONN_REQ (sin/sin6) since it is used to 6794 * generate the T_CONN_CON. 6795 */ 6796 dstaddr = htonl(INADDR_LOOPBACK); 6797 *dstaddrp = dstaddr; 6798 } 6799 6800 /* Handle __sin6_src_id if socket not bound to an IP address */ 6801 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6802 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6803 tcp->tcp_connp->conn_zoneid); 6804 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6805 tcp->tcp_ipha->ipha_src); 6806 } 6807 6808 /* 6809 * Don't let an endpoint connect to itself. Note that 6810 * the test here does not catch the case where the 6811 * source IP addr was left unspecified by the user. In 6812 * this case, the source addr is set in tcp_adapt_ire() 6813 * using the reply to the T_BIND message that we send 6814 * down to IP here and the check is repeated in tcp_rput_other. 6815 */ 6816 if (dstaddr == tcp->tcp_ipha->ipha_src && 6817 dstport == tcp->tcp_lport) { 6818 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6819 goto failed; 6820 } 6821 6822 tcp->tcp_ipha->ipha_dst = dstaddr; 6823 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6824 6825 /* 6826 * Massage a source route if any putting the first hop 6827 * in iph_dst. Compute a starting value for the checksum which 6828 * takes into account that the original iph_dst should be 6829 * included in the checksum but that ip will include the 6830 * first hop in the source route in the tcp checksum. 6831 */ 6832 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6833 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6834 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6835 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6836 if ((int)tcp->tcp_sum < 0) 6837 tcp->tcp_sum--; 6838 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6839 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6840 (tcp->tcp_sum >> 16)); 6841 tcph = tcp->tcp_tcph; 6842 *(uint16_t *)tcph->th_fport = dstport; 6843 tcp->tcp_fport = dstport; 6844 6845 oldstate = tcp->tcp_state; 6846 /* 6847 * At this point the remote destination address and remote port fields 6848 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6849 * have to see which state tcp was in so we can take apropriate action. 6850 */ 6851 if (oldstate == TCPS_IDLE) { 6852 /* 6853 * We support a quick connect capability here, allowing 6854 * clients to transition directly from IDLE to SYN_SENT 6855 * tcp_bindi will pick an unused port, insert the connection 6856 * in the bind hash and transition to BOUND state. 6857 */ 6858 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6859 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6860 B_FALSE, B_FALSE); 6861 if (lport == 0) { 6862 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6863 goto failed; 6864 } 6865 } 6866 tcp->tcp_state = TCPS_SYN_SENT; 6867 6868 /* 6869 * TODO: allow data with connect requests 6870 * by unlinking M_DATA trailers here and 6871 * linking them in behind the T_OK_ACK mblk. 6872 * The tcp_rput() bind ack handler would then 6873 * feed them to tcp_wput_data() rather than call 6874 * tcp_timer(). 6875 */ 6876 mp = mi_tpi_ok_ack_alloc(mp); 6877 if (!mp) { 6878 tcp->tcp_state = oldstate; 6879 goto failed; 6880 } 6881 if (tcp->tcp_family == AF_INET) { 6882 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6883 sizeof (ipa_conn_t)); 6884 } else { 6885 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6886 sizeof (ipa6_conn_t)); 6887 } 6888 if (mp1) { 6889 /* Hang onto the T_OK_ACK for later. */ 6890 linkb(mp1, mp); 6891 if (tcp->tcp_family == AF_INET) 6892 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6893 else { 6894 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6895 &tcp->tcp_sticky_ipp); 6896 } 6897 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6898 tcp->tcp_active_open = 1; 6899 /* 6900 * If the bind cannot complete immediately 6901 * IP will arrange to call tcp_rput_other 6902 * when the bind completes. 6903 */ 6904 if (mp1 != NULL) 6905 tcp_rput_other(tcp, mp1); 6906 return; 6907 } 6908 /* Error case */ 6909 tcp->tcp_state = oldstate; 6910 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6911 6912 failed: 6913 /* return error ack and blow away saved option results if any */ 6914 if (mp != NULL) 6915 putnext(tcp->tcp_rq, mp); 6916 else { 6917 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6918 TSYSERR, ENOMEM); 6919 } 6920 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6921 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6922 6923 } 6924 6925 /* 6926 * Handle connect to IPv6 destinations. 6927 */ 6928 static void 6929 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6930 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6931 { 6932 tcph_t *tcph; 6933 mblk_t *mp1; 6934 ip6_rthdr_t *rth; 6935 int32_t oldstate; 6936 uint16_t lport; 6937 6938 ASSERT(tcp->tcp_family == AF_INET6); 6939 6940 /* 6941 * If we're here, it means that the destination address is a native 6942 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6943 * reason why it might not be IPv6 is if the socket was bound to an 6944 * IPv4-mapped IPv6 address. 6945 */ 6946 if (tcp->tcp_ipversion != IPV6_VERSION) { 6947 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6948 goto failed; 6949 } 6950 6951 /* 6952 * Interpret a zero destination to mean loopback. 6953 * Update the T_CONN_REQ (sin/sin6) since it is used to 6954 * generate the T_CONN_CON. 6955 */ 6956 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6957 *dstaddrp = ipv6_loopback; 6958 } 6959 6960 /* Handle __sin6_src_id if socket not bound to an IP address */ 6961 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6962 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6963 tcp->tcp_connp->conn_zoneid); 6964 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6965 } 6966 6967 /* 6968 * Take care of the scope_id now and add ip6i_t 6969 * if ip6i_t is not already allocated through TCP 6970 * sticky options. At this point tcp_ip6h does not 6971 * have dst info, thus use dstaddrp. 6972 */ 6973 if (scope_id != 0 && 6974 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6975 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6976 ip6i_t *ip6i; 6977 6978 ipp->ipp_ifindex = scope_id; 6979 ip6i = (ip6i_t *)tcp->tcp_iphc; 6980 6981 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6982 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6983 /* Already allocated */ 6984 ip6i->ip6i_flags |= IP6I_IFINDEX; 6985 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6986 ipp->ipp_fields |= IPPF_SCOPE_ID; 6987 } else { 6988 int reterr; 6989 6990 ipp->ipp_fields |= IPPF_SCOPE_ID; 6991 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6992 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6993 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6994 if (reterr != 0) 6995 goto failed; 6996 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6997 } 6998 } 6999 7000 /* 7001 * Don't let an endpoint connect to itself. Note that 7002 * the test here does not catch the case where the 7003 * source IP addr was left unspecified by the user. In 7004 * this case, the source addr is set in tcp_adapt_ire() 7005 * using the reply to the T_BIND message that we send 7006 * down to IP here and the check is repeated in tcp_rput_other. 7007 */ 7008 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 7009 (dstport == tcp->tcp_lport)) { 7010 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 7011 goto failed; 7012 } 7013 7014 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 7015 tcp->tcp_remote_v6 = *dstaddrp; 7016 tcp->tcp_ip6h->ip6_vcf = 7017 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7018 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7019 7020 7021 /* 7022 * Massage a routing header (if present) putting the first hop 7023 * in ip6_dst. Compute a starting value for the checksum which 7024 * takes into account that the original ip6_dst should be 7025 * included in the checksum but that ip will include the 7026 * first hop in the source route in the tcp checksum. 7027 */ 7028 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 7029 if (rth != NULL) { 7030 7031 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 7032 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 7033 (tcp->tcp_sum >> 16)); 7034 } else { 7035 tcp->tcp_sum = 0; 7036 } 7037 7038 tcph = tcp->tcp_tcph; 7039 *(uint16_t *)tcph->th_fport = dstport; 7040 tcp->tcp_fport = dstport; 7041 7042 oldstate = tcp->tcp_state; 7043 /* 7044 * At this point the remote destination address and remote port fields 7045 * in the tcp-four-tuple have been filled in the tcp structure. Now we 7046 * have to see which state tcp was in so we can take apropriate action. 7047 */ 7048 if (oldstate == TCPS_IDLE) { 7049 /* 7050 * We support a quick connect capability here, allowing 7051 * clients to transition directly from IDLE to SYN_SENT 7052 * tcp_bindi will pick an unused port, insert the connection 7053 * in the bind hash and transition to BOUND state. 7054 */ 7055 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 7056 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 7057 B_FALSE, B_FALSE); 7058 if (lport == 0) { 7059 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 7060 goto failed; 7061 } 7062 } 7063 tcp->tcp_state = TCPS_SYN_SENT; 7064 /* 7065 * TODO: allow data with connect requests 7066 * by unlinking M_DATA trailers here and 7067 * linking them in behind the T_OK_ACK mblk. 7068 * The tcp_rput() bind ack handler would then 7069 * feed them to tcp_wput_data() rather than call 7070 * tcp_timer(). 7071 */ 7072 mp = mi_tpi_ok_ack_alloc(mp); 7073 if (!mp) { 7074 tcp->tcp_state = oldstate; 7075 goto failed; 7076 } 7077 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 7078 if (mp1) { 7079 /* Hang onto the T_OK_ACK for later. */ 7080 linkb(mp1, mp); 7081 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 7082 &tcp->tcp_sticky_ipp); 7083 BUMP_MIB(&tcp_mib, tcpActiveOpens); 7084 tcp->tcp_active_open = 1; 7085 /* ip_bind_v6() may return ACK or ERROR */ 7086 if (mp1 != NULL) 7087 tcp_rput_other(tcp, mp1); 7088 return; 7089 } 7090 /* Error case */ 7091 tcp->tcp_state = oldstate; 7092 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 7093 7094 failed: 7095 /* return error ack and blow away saved option results if any */ 7096 if (mp != NULL) 7097 putnext(tcp->tcp_rq, mp); 7098 else { 7099 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 7100 TSYSERR, ENOMEM); 7101 } 7102 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 7103 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 7104 } 7105 7106 /* 7107 * We need a stream q for detached closing tcp connections 7108 * to use. Our client hereby indicates that this q is the 7109 * one to use. 7110 */ 7111 static void 7112 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 7113 { 7114 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7115 queue_t *q = tcp->tcp_wq; 7116 7117 mp->b_datap->db_type = M_IOCACK; 7118 iocp->ioc_count = 0; 7119 mutex_enter(&tcp_g_q_lock); 7120 if (tcp_g_q != NULL) { 7121 mutex_exit(&tcp_g_q_lock); 7122 iocp->ioc_error = EALREADY; 7123 } else { 7124 mblk_t *mp1; 7125 7126 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 7127 if (mp1 == NULL) { 7128 mutex_exit(&tcp_g_q_lock); 7129 iocp->ioc_error = ENOMEM; 7130 } else { 7131 tcp_g_q = tcp->tcp_rq; 7132 mutex_exit(&tcp_g_q_lock); 7133 iocp->ioc_error = 0; 7134 iocp->ioc_rval = 0; 7135 /* 7136 * We are passing tcp_sticky_ipp as NULL 7137 * as it is not useful for tcp_default queue 7138 */ 7139 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 7140 if (mp1 != NULL) 7141 tcp_rput_other(tcp, mp1); 7142 } 7143 } 7144 qreply(q, mp); 7145 } 7146 7147 /* 7148 * Our client hereby directs us to reject the connection request 7149 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 7150 * of sending the appropriate RST, not an ICMP error. 7151 */ 7152 static void 7153 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 7154 { 7155 tcp_t *ltcp = NULL; 7156 t_scalar_t seqnum; 7157 conn_t *connp; 7158 7159 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 7160 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 7161 tcp_err_ack(tcp, mp, TPROTO, 0); 7162 return; 7163 } 7164 7165 /* 7166 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 7167 * when the stream is in BOUND state. Do not send a reset, 7168 * since the destination IP address is not valid, and it can 7169 * be the initialized value of all zeros (broadcast address). 7170 * 7171 * If TCP has sent down a bind request to IP and has not 7172 * received the reply, reject the request. Otherwise, TCP 7173 * will be confused. 7174 */ 7175 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 7176 if (tcp->tcp_debug) { 7177 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 7178 "tcp_disconnect: bad state, %d", tcp->tcp_state); 7179 } 7180 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 7181 return; 7182 } 7183 7184 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 7185 7186 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 7187 7188 /* 7189 * According to TPI, for non-listeners, ignore seqnum 7190 * and disconnect. 7191 * Following interpretation of -1 seqnum is historical 7192 * and implied TPI ? (TPI only states that for T_CONN_IND, 7193 * a valid seqnum should not be -1). 7194 * 7195 * -1 means disconnect everything 7196 * regardless even on a listener. 7197 */ 7198 7199 int old_state = tcp->tcp_state; 7200 7201 /* 7202 * The connection can't be on the tcp_time_wait_head list 7203 * since it is not detached. 7204 */ 7205 ASSERT(tcp->tcp_time_wait_next == NULL); 7206 ASSERT(tcp->tcp_time_wait_prev == NULL); 7207 ASSERT(tcp->tcp_time_wait_expire == 0); 7208 ltcp = NULL; 7209 /* 7210 * If it used to be a listener, check to make sure no one else 7211 * has taken the port before switching back to LISTEN state. 7212 */ 7213 if (tcp->tcp_ipversion == IPV4_VERSION) { 7214 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 7215 tcp->tcp_ipha->ipha_src, 7216 tcp->tcp_connp->conn_zoneid); 7217 if (connp != NULL) 7218 ltcp = connp->conn_tcp; 7219 } else { 7220 /* Allow tcp_bound_if listeners? */ 7221 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 7222 &tcp->tcp_ip6h->ip6_src, 0, 7223 tcp->tcp_connp->conn_zoneid); 7224 if (connp != NULL) 7225 ltcp = connp->conn_tcp; 7226 } 7227 if (tcp->tcp_conn_req_max && ltcp == NULL) { 7228 tcp->tcp_state = TCPS_LISTEN; 7229 } else if (old_state > TCPS_BOUND) { 7230 tcp->tcp_conn_req_max = 0; 7231 tcp->tcp_state = TCPS_BOUND; 7232 } 7233 if (ltcp != NULL) 7234 CONN_DEC_REF(ltcp->tcp_connp); 7235 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 7236 BUMP_MIB(&tcp_mib, tcpAttemptFails); 7237 } else if (old_state == TCPS_ESTABLISHED || 7238 old_state == TCPS_CLOSE_WAIT) { 7239 BUMP_MIB(&tcp_mib, tcpEstabResets); 7240 } 7241 7242 if (tcp->tcp_fused) 7243 tcp_unfuse(tcp); 7244 7245 mutex_enter(&tcp->tcp_eager_lock); 7246 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 7247 (tcp->tcp_conn_req_cnt_q != 0)) { 7248 tcp_eager_cleanup(tcp, 0); 7249 } 7250 mutex_exit(&tcp->tcp_eager_lock); 7251 7252 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 7253 tcp->tcp_rnxt, TH_RST | TH_ACK); 7254 7255 tcp_reinit(tcp); 7256 7257 if (old_state >= TCPS_ESTABLISHED) { 7258 /* Send M_FLUSH according to TPI */ 7259 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7260 } 7261 mp = mi_tpi_ok_ack_alloc(mp); 7262 if (mp) 7263 putnext(tcp->tcp_rq, mp); 7264 return; 7265 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 7266 tcp_err_ack(tcp, mp, TBADSEQ, 0); 7267 return; 7268 } 7269 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 7270 /* Send M_FLUSH according to TPI */ 7271 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 7272 } 7273 mp = mi_tpi_ok_ack_alloc(mp); 7274 if (mp) 7275 putnext(tcp->tcp_rq, mp); 7276 } 7277 7278 /* 7279 * Diagnostic routine used to return a string associated with the tcp state. 7280 * Note that if the caller does not supply a buffer, it will use an internal 7281 * static string. This means that if multiple threads call this function at 7282 * the same time, output can be corrupted... Note also that this function 7283 * does not check the size of the supplied buffer. The caller has to make 7284 * sure that it is big enough. 7285 */ 7286 static char * 7287 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7288 { 7289 char buf1[30]; 7290 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7291 char *buf; 7292 char *cp; 7293 in6_addr_t local, remote; 7294 char local_addrbuf[INET6_ADDRSTRLEN]; 7295 char remote_addrbuf[INET6_ADDRSTRLEN]; 7296 7297 if (sup_buf != NULL) 7298 buf = sup_buf; 7299 else 7300 buf = priv_buf; 7301 7302 if (tcp == NULL) 7303 return ("NULL_TCP"); 7304 switch (tcp->tcp_state) { 7305 case TCPS_CLOSED: 7306 cp = "TCP_CLOSED"; 7307 break; 7308 case TCPS_IDLE: 7309 cp = "TCP_IDLE"; 7310 break; 7311 case TCPS_BOUND: 7312 cp = "TCP_BOUND"; 7313 break; 7314 case TCPS_LISTEN: 7315 cp = "TCP_LISTEN"; 7316 break; 7317 case TCPS_SYN_SENT: 7318 cp = "TCP_SYN_SENT"; 7319 break; 7320 case TCPS_SYN_RCVD: 7321 cp = "TCP_SYN_RCVD"; 7322 break; 7323 case TCPS_ESTABLISHED: 7324 cp = "TCP_ESTABLISHED"; 7325 break; 7326 case TCPS_CLOSE_WAIT: 7327 cp = "TCP_CLOSE_WAIT"; 7328 break; 7329 case TCPS_FIN_WAIT_1: 7330 cp = "TCP_FIN_WAIT_1"; 7331 break; 7332 case TCPS_CLOSING: 7333 cp = "TCP_CLOSING"; 7334 break; 7335 case TCPS_LAST_ACK: 7336 cp = "TCP_LAST_ACK"; 7337 break; 7338 case TCPS_FIN_WAIT_2: 7339 cp = "TCP_FIN_WAIT_2"; 7340 break; 7341 case TCPS_TIME_WAIT: 7342 cp = "TCP_TIME_WAIT"; 7343 break; 7344 default: 7345 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7346 cp = buf1; 7347 break; 7348 } 7349 switch (format) { 7350 case DISP_ADDR_AND_PORT: 7351 if (tcp->tcp_ipversion == IPV4_VERSION) { 7352 /* 7353 * Note that we use the remote address in the tcp_b 7354 * structure. This means that it will print out 7355 * the real destination address, not the next hop's 7356 * address if source routing is used. 7357 */ 7358 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7359 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7360 7361 } else { 7362 local = tcp->tcp_ip_src_v6; 7363 remote = tcp->tcp_remote_v6; 7364 } 7365 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7366 sizeof (local_addrbuf)); 7367 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7368 sizeof (remote_addrbuf)); 7369 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7370 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7371 ntohs(tcp->tcp_fport), cp); 7372 break; 7373 case DISP_PORT_ONLY: 7374 default: 7375 (void) mi_sprintf(buf, "[%u, %u] %s", 7376 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7377 break; 7378 } 7379 7380 return (buf); 7381 } 7382 7383 /* 7384 * Called via squeue to get on to eager's perimeter to send a 7385 * TH_RST. The listener wants the eager to disappear either 7386 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7387 * being called. 7388 */ 7389 /* ARGSUSED */ 7390 void 7391 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7392 { 7393 conn_t *econnp = (conn_t *)arg; 7394 tcp_t *eager = econnp->conn_tcp; 7395 tcp_t *listener = eager->tcp_listener; 7396 7397 /* 7398 * We could be called because listener is closing. Since 7399 * the eager is using listener's queue's, its not safe. 7400 * Better use the default queue just to send the TH_RST 7401 * out. 7402 */ 7403 eager->tcp_rq = tcp_g_q; 7404 eager->tcp_wq = WR(tcp_g_q); 7405 7406 if (eager->tcp_state > TCPS_LISTEN) { 7407 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7408 eager, eager->tcp_snxt, 0, TH_RST); 7409 } 7410 7411 /* We are here because listener wants this eager gone */ 7412 if (listener != NULL) { 7413 mutex_enter(&listener->tcp_eager_lock); 7414 tcp_eager_unlink(eager); 7415 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 7416 /* 7417 * The eager has sent a conn_ind up to the 7418 * listener but listener decides to close 7419 * instead. We need to drop the extra ref 7420 * placed on eager in tcp_rput_data() before 7421 * sending the conn_ind to listener. 7422 */ 7423 CONN_DEC_REF(econnp); 7424 } 7425 mutex_exit(&listener->tcp_eager_lock); 7426 CONN_DEC_REF(listener->tcp_connp); 7427 } 7428 7429 if (eager->tcp_state > TCPS_BOUND) 7430 tcp_close_detached(eager); 7431 } 7432 7433 /* 7434 * Reset any eager connection hanging off this listener marked 7435 * with 'seqnum' and then reclaim it's resources. 7436 */ 7437 static boolean_t 7438 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7439 { 7440 tcp_t *eager; 7441 mblk_t *mp; 7442 7443 TCP_STAT(tcp_eager_blowoff_calls); 7444 eager = listener; 7445 mutex_enter(&listener->tcp_eager_lock); 7446 do { 7447 eager = eager->tcp_eager_next_q; 7448 if (eager == NULL) { 7449 mutex_exit(&listener->tcp_eager_lock); 7450 return (B_FALSE); 7451 } 7452 } while (eager->tcp_conn_req_seqnum != seqnum); 7453 CONN_INC_REF(eager->tcp_connp); 7454 mutex_exit(&listener->tcp_eager_lock); 7455 mp = &eager->tcp_closemp; 7456 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7457 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7458 return (B_TRUE); 7459 } 7460 7461 /* 7462 * Reset any eager connection hanging off this listener 7463 * and then reclaim it's resources. 7464 */ 7465 static void 7466 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7467 { 7468 tcp_t *eager; 7469 mblk_t *mp; 7470 7471 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7472 7473 if (!q0_only) { 7474 /* First cleanup q */ 7475 TCP_STAT(tcp_eager_blowoff_q); 7476 eager = listener->tcp_eager_next_q; 7477 while (eager != NULL) { 7478 CONN_INC_REF(eager->tcp_connp); 7479 mp = &eager->tcp_closemp; 7480 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7481 tcp_eager_kill, eager->tcp_connp, 7482 SQTAG_TCP_EAGER_CLEANUP); 7483 eager = eager->tcp_eager_next_q; 7484 } 7485 } 7486 /* Then cleanup q0 */ 7487 TCP_STAT(tcp_eager_blowoff_q0); 7488 eager = listener->tcp_eager_next_q0; 7489 while (eager != listener) { 7490 CONN_INC_REF(eager->tcp_connp); 7491 mp = &eager->tcp_closemp; 7492 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7493 tcp_eager_kill, eager->tcp_connp, 7494 SQTAG_TCP_EAGER_CLEANUP_Q0); 7495 eager = eager->tcp_eager_next_q0; 7496 } 7497 } 7498 7499 /* 7500 * If we are an eager connection hanging off a listener that hasn't 7501 * formally accepted the connection yet, get off his list and blow off 7502 * any data that we have accumulated. 7503 */ 7504 static void 7505 tcp_eager_unlink(tcp_t *tcp) 7506 { 7507 tcp_t *listener = tcp->tcp_listener; 7508 7509 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7510 ASSERT(listener != NULL); 7511 if (tcp->tcp_eager_next_q0 != NULL) { 7512 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7513 7514 /* Remove the eager tcp from q0 */ 7515 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7516 tcp->tcp_eager_prev_q0; 7517 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7518 tcp->tcp_eager_next_q0; 7519 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7520 listener->tcp_conn_req_cnt_q0--; 7521 7522 tcp->tcp_eager_next_q0 = NULL; 7523 tcp->tcp_eager_prev_q0 = NULL; 7524 7525 if (tcp->tcp_syn_rcvd_timeout != 0) { 7526 /* we have timed out before */ 7527 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7528 listener->tcp_syn_rcvd_timeout--; 7529 } 7530 } else { 7531 tcp_t **tcpp = &listener->tcp_eager_next_q; 7532 tcp_t *prev = NULL; 7533 7534 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7535 if (tcpp[0] == tcp) { 7536 if (listener->tcp_eager_last_q == tcp) { 7537 /* 7538 * If we are unlinking the last 7539 * element on the list, adjust 7540 * tail pointer. Set tail pointer 7541 * to nil when list is empty. 7542 */ 7543 ASSERT(tcp->tcp_eager_next_q == NULL); 7544 if (listener->tcp_eager_last_q == 7545 listener->tcp_eager_next_q) { 7546 listener->tcp_eager_last_q = 7547 NULL; 7548 } else { 7549 /* 7550 * We won't get here if there 7551 * is only one eager in the 7552 * list. 7553 */ 7554 ASSERT(prev != NULL); 7555 listener->tcp_eager_last_q = 7556 prev; 7557 } 7558 } 7559 tcpp[0] = tcp->tcp_eager_next_q; 7560 tcp->tcp_eager_next_q = NULL; 7561 tcp->tcp_eager_last_q = NULL; 7562 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7563 listener->tcp_conn_req_cnt_q--; 7564 break; 7565 } 7566 prev = tcpp[0]; 7567 } 7568 } 7569 tcp->tcp_listener = NULL; 7570 } 7571 7572 /* Shorthand to generate and send TPI error acks to our client */ 7573 static void 7574 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7575 { 7576 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7577 putnext(tcp->tcp_rq, mp); 7578 } 7579 7580 /* Shorthand to generate and send TPI error acks to our client */ 7581 static void 7582 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7583 int t_error, int sys_error) 7584 { 7585 struct T_error_ack *teackp; 7586 7587 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7588 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7589 teackp = (struct T_error_ack *)mp->b_rptr; 7590 teackp->ERROR_prim = primitive; 7591 teackp->TLI_error = t_error; 7592 teackp->UNIX_error = sys_error; 7593 putnext(tcp->tcp_rq, mp); 7594 } 7595 } 7596 7597 /* 7598 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7599 * but instead the code relies on: 7600 * - the fact that the address of the array and its size never changes 7601 * - the atomic assignment of the elements of the array 7602 */ 7603 /* ARGSUSED */ 7604 static int 7605 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7606 { 7607 int i; 7608 7609 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7610 if (tcp_g_epriv_ports[i] != 0) 7611 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7612 } 7613 return (0); 7614 } 7615 7616 /* 7617 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7618 * threads from changing it at the same time. 7619 */ 7620 /* ARGSUSED */ 7621 static int 7622 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7623 cred_t *cr) 7624 { 7625 long new_value; 7626 int i; 7627 7628 /* 7629 * Fail the request if the new value does not lie within the 7630 * port number limits. 7631 */ 7632 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7633 new_value <= 0 || new_value >= 65536) { 7634 return (EINVAL); 7635 } 7636 7637 mutex_enter(&tcp_epriv_port_lock); 7638 /* Check if the value is already in the list */ 7639 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7640 if (new_value == tcp_g_epriv_ports[i]) { 7641 mutex_exit(&tcp_epriv_port_lock); 7642 return (EEXIST); 7643 } 7644 } 7645 /* Find an empty slot */ 7646 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7647 if (tcp_g_epriv_ports[i] == 0) 7648 break; 7649 } 7650 if (i == tcp_g_num_epriv_ports) { 7651 mutex_exit(&tcp_epriv_port_lock); 7652 return (EOVERFLOW); 7653 } 7654 /* Set the new value */ 7655 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7656 mutex_exit(&tcp_epriv_port_lock); 7657 return (0); 7658 } 7659 7660 /* 7661 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7662 * threads from changing it at the same time. 7663 */ 7664 /* ARGSUSED */ 7665 static int 7666 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7667 cred_t *cr) 7668 { 7669 long new_value; 7670 int i; 7671 7672 /* 7673 * Fail the request if the new value does not lie within the 7674 * port number limits. 7675 */ 7676 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7677 new_value >= 65536) { 7678 return (EINVAL); 7679 } 7680 7681 mutex_enter(&tcp_epriv_port_lock); 7682 /* Check that the value is already in the list */ 7683 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7684 if (tcp_g_epriv_ports[i] == new_value) 7685 break; 7686 } 7687 if (i == tcp_g_num_epriv_ports) { 7688 mutex_exit(&tcp_epriv_port_lock); 7689 return (ESRCH); 7690 } 7691 /* Clear the value */ 7692 tcp_g_epriv_ports[i] = 0; 7693 mutex_exit(&tcp_epriv_port_lock); 7694 return (0); 7695 } 7696 7697 /* Return the TPI/TLI equivalent of our current tcp_state */ 7698 static int 7699 tcp_tpistate(tcp_t *tcp) 7700 { 7701 switch (tcp->tcp_state) { 7702 case TCPS_IDLE: 7703 return (TS_UNBND); 7704 case TCPS_LISTEN: 7705 /* 7706 * Return whether there are outstanding T_CONN_IND waiting 7707 * for the matching T_CONN_RES. Therefore don't count q0. 7708 */ 7709 if (tcp->tcp_conn_req_cnt_q > 0) 7710 return (TS_WRES_CIND); 7711 else 7712 return (TS_IDLE); 7713 case TCPS_BOUND: 7714 return (TS_IDLE); 7715 case TCPS_SYN_SENT: 7716 return (TS_WCON_CREQ); 7717 case TCPS_SYN_RCVD: 7718 /* 7719 * Note: assumption: this has to the active open SYN_RCVD. 7720 * The passive instance is detached in SYN_RCVD stage of 7721 * incoming connection processing so we cannot get request 7722 * for T_info_ack on it. 7723 */ 7724 return (TS_WACK_CRES); 7725 case TCPS_ESTABLISHED: 7726 return (TS_DATA_XFER); 7727 case TCPS_CLOSE_WAIT: 7728 return (TS_WREQ_ORDREL); 7729 case TCPS_FIN_WAIT_1: 7730 return (TS_WIND_ORDREL); 7731 case TCPS_FIN_WAIT_2: 7732 return (TS_WIND_ORDREL); 7733 7734 case TCPS_CLOSING: 7735 case TCPS_LAST_ACK: 7736 case TCPS_TIME_WAIT: 7737 case TCPS_CLOSED: 7738 /* 7739 * Following TS_WACK_DREQ7 is a rendition of "not 7740 * yet TS_IDLE" TPI state. There is no best match to any 7741 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7742 * choose a value chosen that will map to TLI/XTI level 7743 * state of TSTATECHNG (state is process of changing) which 7744 * captures what this dummy state represents. 7745 */ 7746 return (TS_WACK_DREQ7); 7747 default: 7748 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7749 tcp->tcp_state, tcp_display(tcp, NULL, 7750 DISP_PORT_ONLY)); 7751 return (TS_UNBND); 7752 } 7753 } 7754 7755 static void 7756 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7757 { 7758 if (tcp->tcp_family == AF_INET6) 7759 *tia = tcp_g_t_info_ack_v6; 7760 else 7761 *tia = tcp_g_t_info_ack; 7762 tia->CURRENT_state = tcp_tpistate(tcp); 7763 tia->OPT_size = tcp_max_optsize; 7764 if (tcp->tcp_mss == 0) { 7765 /* Not yet set - tcp_open does not set mss */ 7766 if (tcp->tcp_ipversion == IPV4_VERSION) 7767 tia->TIDU_size = tcp_mss_def_ipv4; 7768 else 7769 tia->TIDU_size = tcp_mss_def_ipv6; 7770 } else { 7771 tia->TIDU_size = tcp->tcp_mss; 7772 } 7773 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7774 } 7775 7776 /* 7777 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7778 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7779 * tcp_g_t_info_ack. The current state of the stream is copied from 7780 * tcp_state. 7781 */ 7782 static void 7783 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7784 { 7785 t_uscalar_t cap_bits1; 7786 struct T_capability_ack *tcap; 7787 7788 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7789 freemsg(mp); 7790 return; 7791 } 7792 7793 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7794 7795 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7796 mp->b_datap->db_type, T_CAPABILITY_ACK); 7797 if (mp == NULL) 7798 return; 7799 7800 tcap = (struct T_capability_ack *)mp->b_rptr; 7801 tcap->CAP_bits1 = 0; 7802 7803 if (cap_bits1 & TC1_INFO) { 7804 tcp_copy_info(&tcap->INFO_ack, tcp); 7805 tcap->CAP_bits1 |= TC1_INFO; 7806 } 7807 7808 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7809 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7810 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7811 } 7812 7813 putnext(tcp->tcp_rq, mp); 7814 } 7815 7816 /* 7817 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7818 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7819 * The current state of the stream is copied from tcp_state. 7820 */ 7821 static void 7822 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7823 { 7824 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7825 T_INFO_ACK); 7826 if (!mp) { 7827 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7828 return; 7829 } 7830 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7831 putnext(tcp->tcp_rq, mp); 7832 } 7833 7834 /* Respond to the TPI addr request */ 7835 static void 7836 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7837 { 7838 sin_t *sin; 7839 mblk_t *ackmp; 7840 struct T_addr_ack *taa; 7841 7842 /* Make it large enough for worst case */ 7843 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7844 2 * sizeof (sin6_t), 1); 7845 if (ackmp == NULL) { 7846 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7847 return; 7848 } 7849 7850 if (tcp->tcp_ipversion == IPV6_VERSION) { 7851 tcp_addr_req_ipv6(tcp, ackmp); 7852 return; 7853 } 7854 taa = (struct T_addr_ack *)ackmp->b_rptr; 7855 7856 bzero(taa, sizeof (struct T_addr_ack)); 7857 ackmp->b_wptr = (uchar_t *)&taa[1]; 7858 7859 taa->PRIM_type = T_ADDR_ACK; 7860 ackmp->b_datap->db_type = M_PCPROTO; 7861 7862 /* 7863 * Note: Following code assumes 32 bit alignment of basic 7864 * data structures like sin_t and struct T_addr_ack. 7865 */ 7866 if (tcp->tcp_state >= TCPS_BOUND) { 7867 /* 7868 * Fill in local address 7869 */ 7870 taa->LOCADDR_length = sizeof (sin_t); 7871 taa->LOCADDR_offset = sizeof (*taa); 7872 7873 sin = (sin_t *)&taa[1]; 7874 7875 /* Fill zeroes and then intialize non-zero fields */ 7876 *sin = sin_null; 7877 7878 sin->sin_family = AF_INET; 7879 7880 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7881 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7882 7883 ackmp->b_wptr = (uchar_t *)&sin[1]; 7884 7885 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7886 /* 7887 * Fill in Remote address 7888 */ 7889 taa->REMADDR_length = sizeof (sin_t); 7890 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7891 taa->LOCADDR_length); 7892 7893 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7894 *sin = sin_null; 7895 sin->sin_family = AF_INET; 7896 sin->sin_addr.s_addr = tcp->tcp_remote; 7897 sin->sin_port = tcp->tcp_fport; 7898 7899 ackmp->b_wptr = (uchar_t *)&sin[1]; 7900 } 7901 } 7902 putnext(tcp->tcp_rq, ackmp); 7903 } 7904 7905 /* Assumes that tcp_addr_req gets enough space and alignment */ 7906 static void 7907 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7908 { 7909 sin6_t *sin6; 7910 struct T_addr_ack *taa; 7911 7912 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7913 ASSERT(OK_32PTR(ackmp->b_rptr)); 7914 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7915 2 * sizeof (sin6_t)); 7916 7917 taa = (struct T_addr_ack *)ackmp->b_rptr; 7918 7919 bzero(taa, sizeof (struct T_addr_ack)); 7920 ackmp->b_wptr = (uchar_t *)&taa[1]; 7921 7922 taa->PRIM_type = T_ADDR_ACK; 7923 ackmp->b_datap->db_type = M_PCPROTO; 7924 7925 /* 7926 * Note: Following code assumes 32 bit alignment of basic 7927 * data structures like sin6_t and struct T_addr_ack. 7928 */ 7929 if (tcp->tcp_state >= TCPS_BOUND) { 7930 /* 7931 * Fill in local address 7932 */ 7933 taa->LOCADDR_length = sizeof (sin6_t); 7934 taa->LOCADDR_offset = sizeof (*taa); 7935 7936 sin6 = (sin6_t *)&taa[1]; 7937 *sin6 = sin6_null; 7938 7939 sin6->sin6_family = AF_INET6; 7940 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7941 sin6->sin6_port = tcp->tcp_lport; 7942 7943 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7944 7945 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7946 /* 7947 * Fill in Remote address 7948 */ 7949 taa->REMADDR_length = sizeof (sin6_t); 7950 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7951 taa->LOCADDR_length); 7952 7953 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7954 *sin6 = sin6_null; 7955 sin6->sin6_family = AF_INET6; 7956 sin6->sin6_flowinfo = 7957 tcp->tcp_ip6h->ip6_vcf & 7958 ~IPV6_VERS_AND_FLOW_MASK; 7959 sin6->sin6_addr = tcp->tcp_remote_v6; 7960 sin6->sin6_port = tcp->tcp_fport; 7961 7962 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7963 } 7964 } 7965 putnext(tcp->tcp_rq, ackmp); 7966 } 7967 7968 /* 7969 * Handle reinitialization of a tcp structure. 7970 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7971 */ 7972 static void 7973 tcp_reinit(tcp_t *tcp) 7974 { 7975 mblk_t *mp; 7976 int err; 7977 7978 TCP_STAT(tcp_reinit_calls); 7979 7980 /* tcp_reinit should never be called for detached tcp_t's */ 7981 ASSERT(tcp->tcp_listener == NULL); 7982 ASSERT((tcp->tcp_family == AF_INET && 7983 tcp->tcp_ipversion == IPV4_VERSION) || 7984 (tcp->tcp_family == AF_INET6 && 7985 (tcp->tcp_ipversion == IPV4_VERSION || 7986 tcp->tcp_ipversion == IPV6_VERSION))); 7987 7988 /* Cancel outstanding timers */ 7989 tcp_timers_stop(tcp); 7990 7991 if (tcp->tcp_flow_stopped) { 7992 tcp->tcp_flow_stopped = B_FALSE; 7993 tcp_clrqfull(tcp); 7994 } 7995 /* 7996 * Reset everything in the state vector, after updating global 7997 * MIB data from instance counters. 7998 */ 7999 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 8000 tcp->tcp_ibsegs = 0; 8001 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 8002 tcp->tcp_obsegs = 0; 8003 8004 tcp_close_mpp(&tcp->tcp_xmit_head); 8005 if (tcp->tcp_snd_zcopy_aware) 8006 tcp_zcopy_notify(tcp); 8007 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 8008 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 8009 tcp_close_mpp(&tcp->tcp_reass_head); 8010 tcp->tcp_reass_tail = NULL; 8011 if (tcp->tcp_rcv_list != NULL) { 8012 /* Free b_next chain */ 8013 tcp_close_mpp(&tcp->tcp_rcv_list); 8014 tcp->tcp_rcv_last_head = NULL; 8015 tcp->tcp_rcv_last_tail = NULL; 8016 tcp->tcp_rcv_cnt = 0; 8017 } 8018 tcp->tcp_rcv_last_tail = NULL; 8019 8020 if ((mp = tcp->tcp_urp_mp) != NULL) { 8021 freemsg(mp); 8022 tcp->tcp_urp_mp = NULL; 8023 } 8024 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 8025 freemsg(mp); 8026 tcp->tcp_urp_mark_mp = NULL; 8027 } 8028 if (tcp->tcp_fused_sigurg_mp != NULL) { 8029 freeb(tcp->tcp_fused_sigurg_mp); 8030 tcp->tcp_fused_sigurg_mp = NULL; 8031 } 8032 8033 /* 8034 * Following is a union with two members which are 8035 * identical types and size so the following cleanup 8036 * is enough. 8037 */ 8038 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 8039 8040 CL_INET_DISCONNECT(tcp); 8041 8042 /* 8043 * The connection can't be on the tcp_time_wait_head list 8044 * since it is not detached. 8045 */ 8046 ASSERT(tcp->tcp_time_wait_next == NULL); 8047 ASSERT(tcp->tcp_time_wait_prev == NULL); 8048 ASSERT(tcp->tcp_time_wait_expire == 0); 8049 8050 /* 8051 * Reset/preserve other values 8052 */ 8053 tcp_reinit_values(tcp); 8054 ipcl_hash_remove(tcp->tcp_connp); 8055 conn_delete_ire(tcp->tcp_connp, NULL); 8056 8057 if (tcp->tcp_conn_req_max != 0) { 8058 /* 8059 * This is the case when a TLI program uses the same 8060 * transport end point to accept a connection. This 8061 * makes the TCP both a listener and acceptor. When 8062 * this connection is closed, we need to set the state 8063 * back to TCPS_LISTEN. Make sure that the eager list 8064 * is reinitialized. 8065 * 8066 * Note that this stream is still bound to the four 8067 * tuples of the previous connection in IP. If a new 8068 * SYN with different foreign address comes in, IP will 8069 * not find it and will send it to the global queue. In 8070 * the global queue, TCP will do a tcp_lookup_listener() 8071 * to find this stream. This works because this stream 8072 * is only removed from connected hash. 8073 * 8074 */ 8075 tcp->tcp_state = TCPS_LISTEN; 8076 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 8077 tcp->tcp_connp->conn_recv = tcp_conn_request; 8078 if (tcp->tcp_family == AF_INET6) { 8079 ASSERT(tcp->tcp_connp->conn_af_isv6); 8080 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 8081 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 8082 } else { 8083 ASSERT(!tcp->tcp_connp->conn_af_isv6); 8084 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 8085 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 8086 } 8087 } else { 8088 tcp->tcp_state = TCPS_BOUND; 8089 } 8090 8091 /* 8092 * Initialize to default values 8093 * Can't fail since enough header template space already allocated 8094 * at open(). 8095 */ 8096 err = tcp_init_values(tcp); 8097 ASSERT(err == 0); 8098 /* Restore state in tcp_tcph */ 8099 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 8100 if (tcp->tcp_ipversion == IPV4_VERSION) 8101 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 8102 else 8103 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 8104 /* 8105 * Copy of the src addr. in tcp_t is needed in tcp_t 8106 * since the lookup funcs can only lookup on tcp_t 8107 */ 8108 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 8109 8110 ASSERT(tcp->tcp_ptpbhn != NULL); 8111 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 8112 tcp->tcp_rwnd = tcp_recv_hiwat; 8113 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 8114 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 8115 } 8116 8117 /* 8118 * Force values to zero that need be zero. 8119 * Do not touch values asociated with the BOUND or LISTEN state 8120 * since the connection will end up in that state after the reinit. 8121 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 8122 * structure! 8123 */ 8124 static void 8125 tcp_reinit_values(tcp) 8126 tcp_t *tcp; 8127 { 8128 #ifndef lint 8129 #define DONTCARE(x) 8130 #define PRESERVE(x) 8131 #else 8132 #define DONTCARE(x) ((x) = (x)) 8133 #define PRESERVE(x) ((x) = (x)) 8134 #endif /* lint */ 8135 8136 PRESERVE(tcp->tcp_bind_hash); 8137 PRESERVE(tcp->tcp_ptpbhn); 8138 PRESERVE(tcp->tcp_acceptor_hash); 8139 PRESERVE(tcp->tcp_ptpahn); 8140 8141 /* Should be ASSERT NULL on these with new code! */ 8142 ASSERT(tcp->tcp_time_wait_next == NULL); 8143 ASSERT(tcp->tcp_time_wait_prev == NULL); 8144 ASSERT(tcp->tcp_time_wait_expire == 0); 8145 PRESERVE(tcp->tcp_state); 8146 PRESERVE(tcp->tcp_rq); 8147 PRESERVE(tcp->tcp_wq); 8148 8149 ASSERT(tcp->tcp_xmit_head == NULL); 8150 ASSERT(tcp->tcp_xmit_last == NULL); 8151 ASSERT(tcp->tcp_unsent == 0); 8152 ASSERT(tcp->tcp_xmit_tail == NULL); 8153 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 8154 8155 tcp->tcp_snxt = 0; /* Displayed in mib */ 8156 tcp->tcp_suna = 0; /* Displayed in mib */ 8157 tcp->tcp_swnd = 0; 8158 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 8159 8160 ASSERT(tcp->tcp_ibsegs == 0); 8161 ASSERT(tcp->tcp_obsegs == 0); 8162 8163 if (tcp->tcp_iphc != NULL) { 8164 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8165 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 8166 } 8167 8168 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 8169 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 8170 DONTCARE(tcp->tcp_ipha); 8171 DONTCARE(tcp->tcp_ip6h); 8172 DONTCARE(tcp->tcp_ip_hdr_len); 8173 DONTCARE(tcp->tcp_tcph); 8174 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 8175 tcp->tcp_valid_bits = 0; 8176 8177 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 8178 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 8179 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 8180 tcp->tcp_last_rcv_lbolt = 0; 8181 8182 tcp->tcp_init_cwnd = 0; 8183 8184 tcp->tcp_urp_last_valid = 0; 8185 tcp->tcp_hard_binding = 0; 8186 tcp->tcp_hard_bound = 0; 8187 PRESERVE(tcp->tcp_cred); 8188 PRESERVE(tcp->tcp_cpid); 8189 PRESERVE(tcp->tcp_exclbind); 8190 8191 tcp->tcp_fin_acked = 0; 8192 tcp->tcp_fin_rcvd = 0; 8193 tcp->tcp_fin_sent = 0; 8194 tcp->tcp_ordrel_done = 0; 8195 8196 ASSERT(tcp->tcp_flow_stopped == 0); 8197 tcp->tcp_debug = 0; 8198 tcp->tcp_dontroute = 0; 8199 tcp->tcp_broadcast = 0; 8200 8201 tcp->tcp_useloopback = 0; 8202 tcp->tcp_reuseaddr = 0; 8203 tcp->tcp_oobinline = 0; 8204 tcp->tcp_dgram_errind = 0; 8205 8206 tcp->tcp_detached = 0; 8207 tcp->tcp_bind_pending = 0; 8208 tcp->tcp_unbind_pending = 0; 8209 tcp->tcp_deferred_clean_death = 0; 8210 8211 tcp->tcp_snd_ws_ok = B_FALSE; 8212 tcp->tcp_snd_ts_ok = B_FALSE; 8213 tcp->tcp_linger = 0; 8214 tcp->tcp_ka_enabled = 0; 8215 tcp->tcp_zero_win_probe = 0; 8216 8217 tcp->tcp_loopback = 0; 8218 tcp->tcp_localnet = 0; 8219 tcp->tcp_syn_defense = 0; 8220 tcp->tcp_set_timer = 0; 8221 8222 tcp->tcp_active_open = 0; 8223 ASSERT(tcp->tcp_timeout == B_FALSE); 8224 tcp->tcp_rexmit = B_FALSE; 8225 tcp->tcp_xmit_zc_clean = B_FALSE; 8226 8227 tcp->tcp_snd_sack_ok = B_FALSE; 8228 PRESERVE(tcp->tcp_recvdstaddr); 8229 tcp->tcp_hwcksum = B_FALSE; 8230 8231 tcp->tcp_ire_ill_check_done = B_FALSE; 8232 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8233 8234 tcp->tcp_mdt = B_FALSE; 8235 tcp->tcp_mdt_hdr_head = 0; 8236 tcp->tcp_mdt_hdr_tail = 0; 8237 8238 tcp->tcp_conn_def_q0 = 0; 8239 tcp->tcp_ip_forward_progress = B_FALSE; 8240 tcp->tcp_anon_priv_bind = 0; 8241 tcp->tcp_ecn_ok = B_FALSE; 8242 8243 tcp->tcp_cwr = B_FALSE; 8244 tcp->tcp_ecn_echo_on = B_FALSE; 8245 8246 if (tcp->tcp_sack_info != NULL) { 8247 if (tcp->tcp_notsack_list != NULL) { 8248 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8249 } 8250 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8251 tcp->tcp_sack_info = NULL; 8252 } 8253 8254 tcp->tcp_rcv_ws = 0; 8255 tcp->tcp_snd_ws = 0; 8256 tcp->tcp_ts_recent = 0; 8257 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8258 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8259 tcp->tcp_if_mtu = 0; 8260 8261 ASSERT(tcp->tcp_reass_head == NULL); 8262 ASSERT(tcp->tcp_reass_tail == NULL); 8263 8264 tcp->tcp_cwnd_cnt = 0; 8265 8266 ASSERT(tcp->tcp_rcv_list == NULL); 8267 ASSERT(tcp->tcp_rcv_last_head == NULL); 8268 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8269 ASSERT(tcp->tcp_rcv_cnt == 0); 8270 8271 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8272 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8273 tcp->tcp_csuna = 0; 8274 8275 tcp->tcp_rto = 0; /* Displayed in MIB */ 8276 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8277 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8278 tcp->tcp_rtt_update = 0; 8279 8280 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8281 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8282 8283 tcp->tcp_rack = 0; /* Displayed in mib */ 8284 tcp->tcp_rack_cnt = 0; 8285 tcp->tcp_rack_cur_max = 0; 8286 tcp->tcp_rack_abs_max = 0; 8287 8288 tcp->tcp_max_swnd = 0; 8289 8290 ASSERT(tcp->tcp_listener == NULL); 8291 8292 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8293 8294 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8295 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8296 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8297 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8298 8299 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8300 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8301 PRESERVE(tcp->tcp_conn_req_max); 8302 PRESERVE(tcp->tcp_conn_req_seqnum); 8303 8304 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8305 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8306 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8307 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8308 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8309 8310 tcp->tcp_lingertime = 0; 8311 8312 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8313 ASSERT(tcp->tcp_urp_mp == NULL); 8314 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8315 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8316 8317 ASSERT(tcp->tcp_eager_next_q == NULL); 8318 ASSERT(tcp->tcp_eager_last_q == NULL); 8319 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8320 tcp->tcp_eager_prev_q0 == NULL) || 8321 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8322 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8323 8324 tcp->tcp_client_errno = 0; 8325 8326 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8327 8328 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8329 8330 PRESERVE(tcp->tcp_bound_source_v6); 8331 tcp->tcp_last_sent_len = 0; 8332 tcp->tcp_dupack_cnt = 0; 8333 8334 tcp->tcp_fport = 0; /* Displayed in MIB */ 8335 PRESERVE(tcp->tcp_lport); 8336 8337 PRESERVE(tcp->tcp_acceptor_lockp); 8338 8339 ASSERT(tcp->tcp_ordrelid == 0); 8340 PRESERVE(tcp->tcp_acceptor_id); 8341 DONTCARE(tcp->tcp_ipsec_overhead); 8342 8343 /* 8344 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8345 * in tcp structure and now tracing), Re-initialize all 8346 * members of tcp_traceinfo. 8347 */ 8348 if (tcp->tcp_tracebuf != NULL) { 8349 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8350 } 8351 8352 PRESERVE(tcp->tcp_family); 8353 if (tcp->tcp_family == AF_INET6) { 8354 tcp->tcp_ipversion = IPV6_VERSION; 8355 tcp->tcp_mss = tcp_mss_def_ipv6; 8356 } else { 8357 tcp->tcp_ipversion = IPV4_VERSION; 8358 tcp->tcp_mss = tcp_mss_def_ipv4; 8359 } 8360 8361 tcp->tcp_bound_if = 0; 8362 tcp->tcp_ipv6_recvancillary = 0; 8363 tcp->tcp_recvifindex = 0; 8364 tcp->tcp_recvhops = 0; 8365 tcp->tcp_closed = 0; 8366 tcp->tcp_cleandeathtag = 0; 8367 if (tcp->tcp_hopopts != NULL) { 8368 mi_free(tcp->tcp_hopopts); 8369 tcp->tcp_hopopts = NULL; 8370 tcp->tcp_hopoptslen = 0; 8371 } 8372 ASSERT(tcp->tcp_hopoptslen == 0); 8373 if (tcp->tcp_dstopts != NULL) { 8374 mi_free(tcp->tcp_dstopts); 8375 tcp->tcp_dstopts = NULL; 8376 tcp->tcp_dstoptslen = 0; 8377 } 8378 ASSERT(tcp->tcp_dstoptslen == 0); 8379 if (tcp->tcp_rtdstopts != NULL) { 8380 mi_free(tcp->tcp_rtdstopts); 8381 tcp->tcp_rtdstopts = NULL; 8382 tcp->tcp_rtdstoptslen = 0; 8383 } 8384 ASSERT(tcp->tcp_rtdstoptslen == 0); 8385 if (tcp->tcp_rthdr != NULL) { 8386 mi_free(tcp->tcp_rthdr); 8387 tcp->tcp_rthdr = NULL; 8388 tcp->tcp_rthdrlen = 0; 8389 } 8390 ASSERT(tcp->tcp_rthdrlen == 0); 8391 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8392 8393 tcp->tcp_fused = B_FALSE; 8394 tcp->tcp_unfusable = B_FALSE; 8395 tcp->tcp_fused_sigurg = B_FALSE; 8396 tcp->tcp_loopback_peer = NULL; 8397 8398 tcp->tcp_in_ack_unsent = 0; 8399 tcp->tcp_cork = B_FALSE; 8400 8401 #undef DONTCARE 8402 #undef PRESERVE 8403 } 8404 8405 /* 8406 * Allocate necessary resources and initialize state vector. 8407 * Guaranteed not to fail so that when an error is returned, 8408 * the caller doesn't need to do any additional cleanup. 8409 */ 8410 int 8411 tcp_init(tcp_t *tcp, queue_t *q) 8412 { 8413 int err; 8414 8415 tcp->tcp_rq = q; 8416 tcp->tcp_wq = WR(q); 8417 tcp->tcp_state = TCPS_IDLE; 8418 if ((err = tcp_init_values(tcp)) != 0) 8419 tcp_timers_stop(tcp); 8420 return (err); 8421 } 8422 8423 static int 8424 tcp_init_values(tcp_t *tcp) 8425 { 8426 int err; 8427 8428 ASSERT((tcp->tcp_family == AF_INET && 8429 tcp->tcp_ipversion == IPV4_VERSION) || 8430 (tcp->tcp_family == AF_INET6 && 8431 (tcp->tcp_ipversion == IPV4_VERSION || 8432 tcp->tcp_ipversion == IPV6_VERSION))); 8433 8434 /* 8435 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8436 * will be close to tcp_rexmit_interval_initial. By doing this, we 8437 * allow the algorithm to adjust slowly to large fluctuations of RTT 8438 * during first few transmissions of a connection as seen in slow 8439 * links. 8440 */ 8441 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8442 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8443 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8444 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8445 tcp_conn_grace_period; 8446 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8447 tcp->tcp_rto = tcp_rexmit_interval_min; 8448 tcp->tcp_timer_backoff = 0; 8449 tcp->tcp_ms_we_have_waited = 0; 8450 tcp->tcp_last_recv_time = lbolt; 8451 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8452 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8453 8454 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8455 8456 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8457 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8458 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8459 /* 8460 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8461 * passive open. 8462 */ 8463 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8464 8465 tcp->tcp_naglim = tcp_naglim_def; 8466 8467 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8468 8469 tcp->tcp_mdt_hdr_head = 0; 8470 tcp->tcp_mdt_hdr_tail = 0; 8471 8472 tcp->tcp_fused = B_FALSE; 8473 tcp->tcp_unfusable = B_FALSE; 8474 tcp->tcp_fused_sigurg = B_FALSE; 8475 tcp->tcp_loopback_peer = NULL; 8476 8477 /* Initialize the header template */ 8478 if (tcp->tcp_ipversion == IPV4_VERSION) { 8479 err = tcp_header_init_ipv4(tcp); 8480 } else { 8481 err = tcp_header_init_ipv6(tcp); 8482 } 8483 if (err) 8484 return (err); 8485 8486 /* 8487 * Init the window scale to the max so tcp_rwnd_set() won't pare 8488 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8489 */ 8490 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8491 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8492 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8493 8494 tcp->tcp_cork = B_FALSE; 8495 /* 8496 * Init the tcp_debug option. This value determines whether TCP 8497 * calls strlog() to print out debug messages. Doing this 8498 * initialization here means that this value is not inherited thru 8499 * tcp_reinit(). 8500 */ 8501 tcp->tcp_debug = tcp_dbg; 8502 8503 tcp->tcp_ka_interval = tcp_keepalive_interval; 8504 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8505 8506 return (0); 8507 } 8508 8509 /* 8510 * Initialize the IPv4 header. Loses any record of any IP options. 8511 */ 8512 static int 8513 tcp_header_init_ipv4(tcp_t *tcp) 8514 { 8515 tcph_t *tcph; 8516 uint32_t sum; 8517 8518 /* 8519 * This is a simple initialization. If there's 8520 * already a template, it should never be too small, 8521 * so reuse it. Otherwise, allocate space for the new one. 8522 */ 8523 if (tcp->tcp_iphc == NULL) { 8524 ASSERT(tcp->tcp_iphc_len == 0); 8525 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8526 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8527 if (tcp->tcp_iphc == NULL) { 8528 tcp->tcp_iphc_len = 0; 8529 return (ENOMEM); 8530 } 8531 } 8532 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8533 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8534 tcp->tcp_ip6h = NULL; 8535 tcp->tcp_ipversion = IPV4_VERSION; 8536 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8537 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8538 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8539 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8540 tcp->tcp_ipha->ipha_version_and_hdr_length 8541 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8542 tcp->tcp_ipha->ipha_ident = 0; 8543 8544 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8545 tcp->tcp_tos = 0; 8546 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8547 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8548 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8549 8550 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8551 tcp->tcp_tcph = tcph; 8552 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8553 /* 8554 * IP wants our header length in the checksum field to 8555 * allow it to perform a single pseudo-header+checksum 8556 * calculation on behalf of TCP. 8557 * Include the adjustment for a source route once IP_OPTIONS is set. 8558 */ 8559 sum = sizeof (tcph_t) + tcp->tcp_sum; 8560 sum = (sum >> 16) + (sum & 0xFFFF); 8561 U16_TO_ABE16(sum, tcph->th_sum); 8562 return (0); 8563 } 8564 8565 /* 8566 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8567 */ 8568 static int 8569 tcp_header_init_ipv6(tcp_t *tcp) 8570 { 8571 tcph_t *tcph; 8572 uint32_t sum; 8573 8574 /* 8575 * This is a simple initialization. If there's 8576 * already a template, it should never be too small, 8577 * so reuse it. Otherwise, allocate space for the new one. 8578 * Ensure that there is enough space to "downgrade" the tcp_t 8579 * to an IPv4 tcp_t. This requires having space for a full load 8580 * of IPv4 options, as well as a full load of TCP options 8581 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8582 * than a v6 header and a TCP header with a full load of TCP options 8583 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8584 * We want to avoid reallocation in the "downgraded" case when 8585 * processing outbound IPv4 options. 8586 */ 8587 if (tcp->tcp_iphc == NULL) { 8588 ASSERT(tcp->tcp_iphc_len == 0); 8589 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8590 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8591 if (tcp->tcp_iphc == NULL) { 8592 tcp->tcp_iphc_len = 0; 8593 return (ENOMEM); 8594 } 8595 } 8596 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8597 tcp->tcp_ipversion = IPV6_VERSION; 8598 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8599 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8600 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8601 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8602 tcp->tcp_ipha = NULL; 8603 8604 /* Initialize the header template */ 8605 8606 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8607 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8608 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8609 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8610 8611 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8612 tcp->tcp_tcph = tcph; 8613 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8614 /* 8615 * IP wants our header length in the checksum field to 8616 * allow it to perform a single psuedo-header+checksum 8617 * calculation on behalf of TCP. 8618 * Include the adjustment for a source route when IPV6_RTHDR is set. 8619 */ 8620 sum = sizeof (tcph_t) + tcp->tcp_sum; 8621 sum = (sum >> 16) + (sum & 0xFFFF); 8622 U16_TO_ABE16(sum, tcph->th_sum); 8623 return (0); 8624 } 8625 8626 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8627 #define ICMP_MIN_TCP_HDR 4 8628 8629 /* 8630 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8631 * passed up by IP. The message is always received on the correct tcp_t. 8632 * Assumes that IP has pulled up everything up to and including the ICMP header. 8633 */ 8634 void 8635 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8636 { 8637 icmph_t *icmph; 8638 ipha_t *ipha; 8639 int iph_hdr_length; 8640 tcph_t *tcph; 8641 boolean_t ipsec_mctl = B_FALSE; 8642 boolean_t secure; 8643 mblk_t *first_mp = mp; 8644 uint32_t new_mss; 8645 uint32_t ratio; 8646 size_t mp_size = MBLKL(mp); 8647 uint32_t seg_ack; 8648 uint32_t seg_seq; 8649 8650 /* Assume IP provides aligned packets - otherwise toss */ 8651 if (!OK_32PTR(mp->b_rptr)) { 8652 freemsg(mp); 8653 return; 8654 } 8655 8656 /* 8657 * Since ICMP errors are normal data marked with M_CTL when sent 8658 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8659 * packets starting with an ipsec_info_t, see ipsec_info.h. 8660 */ 8661 if ((mp_size == sizeof (ipsec_info_t)) && 8662 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8663 ASSERT(mp->b_cont != NULL); 8664 mp = mp->b_cont; 8665 /* IP should have done this */ 8666 ASSERT(OK_32PTR(mp->b_rptr)); 8667 mp_size = MBLKL(mp); 8668 ipsec_mctl = B_TRUE; 8669 } 8670 8671 /* 8672 * Verify that we have a complete outer IP header. If not, drop it. 8673 */ 8674 if (mp_size < sizeof (ipha_t)) { 8675 noticmpv4: 8676 freemsg(first_mp); 8677 return; 8678 } 8679 8680 ipha = (ipha_t *)mp->b_rptr; 8681 /* 8682 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8683 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8684 */ 8685 switch (IPH_HDR_VERSION(ipha)) { 8686 case IPV6_VERSION: 8687 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8688 return; 8689 case IPV4_VERSION: 8690 break; 8691 default: 8692 goto noticmpv4; 8693 } 8694 8695 /* Skip past the outer IP and ICMP headers */ 8696 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8698 /* 8699 * If we don't have the correct outer IP header length or if the ULP 8700 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8701 * send it upstream. 8702 */ 8703 if (iph_hdr_length < sizeof (ipha_t) || 8704 ipha->ipha_protocol != IPPROTO_ICMP || 8705 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8706 goto noticmpv4; 8707 } 8708 ipha = (ipha_t *)&icmph[1]; 8709 8710 /* Skip past the inner IP and find the ULP header */ 8711 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8712 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8713 /* 8714 * If we don't have the correct inner IP header length or if the ULP 8715 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8716 * bytes of TCP header, drop it. 8717 */ 8718 if (iph_hdr_length < sizeof (ipha_t) || 8719 ipha->ipha_protocol != IPPROTO_TCP || 8720 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8721 goto noticmpv4; 8722 } 8723 8724 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8725 if (ipsec_mctl) { 8726 secure = ipsec_in_is_secure(first_mp); 8727 } else { 8728 secure = B_FALSE; 8729 } 8730 if (secure) { 8731 /* 8732 * If we are willing to accept this in clear 8733 * we don't have to verify policy. 8734 */ 8735 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8736 if (!tcp_check_policy(tcp, first_mp, 8737 ipha, NULL, secure, ipsec_mctl)) { 8738 /* 8739 * tcp_check_policy called 8740 * ip_drop_packet() on failure. 8741 */ 8742 return; 8743 } 8744 } 8745 } 8746 } else if (ipsec_mctl) { 8747 /* 8748 * This is a hard_bound connection. IP has already 8749 * verified policy. We don't have to do it again. 8750 */ 8751 freeb(first_mp); 8752 first_mp = mp; 8753 ipsec_mctl = B_FALSE; 8754 } 8755 8756 seg_ack = ABE32_TO_U32(tcph->th_ack); 8757 seg_seq = ABE32_TO_U32(tcph->th_seq); 8758 /* 8759 * TCP SHOULD check that the TCP sequence number contained in 8760 * payload of the ICMP error message is within the range 8761 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8762 */ 8763 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8764 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8765 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8766 /* 8767 * If the ICMP message is bogus, should we kill the 8768 * connection, or should we just drop the bogus ICMP 8769 * message? It would probably make more sense to just 8770 * drop the message so that if this one managed to get 8771 * in, the real connection should not suffer. 8772 */ 8773 goto noticmpv4; 8774 } 8775 8776 switch (icmph->icmph_type) { 8777 case ICMP_DEST_UNREACHABLE: 8778 switch (icmph->icmph_code) { 8779 case ICMP_FRAGMENTATION_NEEDED: 8780 /* 8781 * Reduce the MSS based on the new MTU. This will 8782 * eliminate any fragmentation locally. 8783 * N.B. There may well be some funny side-effects on 8784 * the local send policy and the remote receive policy. 8785 * Pending further research, we provide 8786 * tcp_ignore_path_mtu just in case this proves 8787 * disastrous somewhere. 8788 * 8789 * After updating the MSS, retransmit part of the 8790 * dropped segment using the new mss by calling 8791 * tcp_wput_data(). Need to adjust all those 8792 * params to make sure tcp_wput_data() work properly. 8793 */ 8794 if (tcp_ignore_path_mtu) 8795 break; 8796 8797 /* 8798 * Decrease the MSS by time stamp options 8799 * IP options and IPSEC options. tcp_hdr_len 8800 * includes time stamp option and IP option 8801 * length. 8802 */ 8803 8804 new_mss = ntohs(icmph->icmph_du_mtu) - 8805 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8806 8807 /* 8808 * Only update the MSS if the new one is 8809 * smaller than the previous one. This is 8810 * to avoid problems when getting multiple 8811 * ICMP errors for the same MTU. 8812 */ 8813 if (new_mss >= tcp->tcp_mss) 8814 break; 8815 8816 /* 8817 * Stop doing PMTU if new_mss is less than 68 8818 * or less than tcp_mss_min. 8819 * The value 68 comes from rfc 1191. 8820 */ 8821 if (new_mss < MAX(68, tcp_mss_min)) 8822 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8823 0; 8824 8825 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8826 ASSERT(ratio >= 1); 8827 tcp_mss_set(tcp, new_mss); 8828 8829 /* 8830 * Make sure we have something to 8831 * send. 8832 */ 8833 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8834 (tcp->tcp_xmit_head != NULL)) { 8835 /* 8836 * Shrink tcp_cwnd in 8837 * proportion to the old MSS/new MSS. 8838 */ 8839 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8840 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8841 (tcp->tcp_unsent == 0)) { 8842 tcp->tcp_rexmit_max = tcp->tcp_fss; 8843 } else { 8844 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8845 } 8846 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8847 tcp->tcp_rexmit = B_TRUE; 8848 tcp->tcp_dupack_cnt = 0; 8849 tcp->tcp_snd_burst = TCP_CWND_SS; 8850 tcp_ss_rexmit(tcp); 8851 } 8852 break; 8853 case ICMP_PORT_UNREACHABLE: 8854 case ICMP_PROTOCOL_UNREACHABLE: 8855 switch (tcp->tcp_state) { 8856 case TCPS_SYN_SENT: 8857 case TCPS_SYN_RCVD: 8858 /* 8859 * ICMP can snipe away incipient 8860 * TCP connections as long as 8861 * seq number is same as initial 8862 * send seq number. 8863 */ 8864 if (seg_seq == tcp->tcp_iss) { 8865 (void) tcp_clean_death(tcp, 8866 ECONNREFUSED, 6); 8867 } 8868 break; 8869 } 8870 break; 8871 case ICMP_HOST_UNREACHABLE: 8872 case ICMP_NET_UNREACHABLE: 8873 /* Record the error in case we finally time out. */ 8874 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8875 tcp->tcp_client_errno = EHOSTUNREACH; 8876 else 8877 tcp->tcp_client_errno = ENETUNREACH; 8878 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8879 if (tcp->tcp_listener != NULL && 8880 tcp->tcp_listener->tcp_syn_defense) { 8881 /* 8882 * Ditch the half-open connection if we 8883 * suspect a SYN attack is under way. 8884 */ 8885 tcp_ip_ire_mark_advice(tcp); 8886 (void) tcp_clean_death(tcp, 8887 tcp->tcp_client_errno, 7); 8888 } 8889 } 8890 break; 8891 default: 8892 break; 8893 } 8894 break; 8895 case ICMP_SOURCE_QUENCH: { 8896 /* 8897 * use a global boolean to control 8898 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8899 * The default is false. 8900 */ 8901 if (tcp_icmp_source_quench) { 8902 /* 8903 * Reduce the sending rate as if we got a 8904 * retransmit timeout 8905 */ 8906 uint32_t npkt; 8907 8908 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8909 tcp->tcp_mss; 8910 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8911 tcp->tcp_cwnd = tcp->tcp_mss; 8912 tcp->tcp_cwnd_cnt = 0; 8913 } 8914 break; 8915 } 8916 } 8917 freemsg(first_mp); 8918 } 8919 8920 /* 8921 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8922 * error messages passed up by IP. 8923 * Assumes that IP has pulled up all the extension headers as well 8924 * as the ICMPv6 header. 8925 */ 8926 static void 8927 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8928 { 8929 icmp6_t *icmp6; 8930 ip6_t *ip6h; 8931 uint16_t iph_hdr_length; 8932 tcpha_t *tcpha; 8933 uint8_t *nexthdrp; 8934 uint32_t new_mss; 8935 uint32_t ratio; 8936 boolean_t secure; 8937 mblk_t *first_mp = mp; 8938 size_t mp_size; 8939 uint32_t seg_ack; 8940 uint32_t seg_seq; 8941 8942 /* 8943 * The caller has determined if this is an IPSEC_IN packet and 8944 * set ipsec_mctl appropriately (see tcp_icmp_error). 8945 */ 8946 if (ipsec_mctl) 8947 mp = mp->b_cont; 8948 8949 mp_size = MBLKL(mp); 8950 8951 /* 8952 * Verify that we have a complete IP header. If not, send it upstream. 8953 */ 8954 if (mp_size < sizeof (ip6_t)) { 8955 noticmpv6: 8956 freemsg(first_mp); 8957 return; 8958 } 8959 8960 /* 8961 * Verify this is an ICMPV6 packet, else send it upstream. 8962 */ 8963 ip6h = (ip6_t *)mp->b_rptr; 8964 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8965 iph_hdr_length = IPV6_HDR_LEN; 8966 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8967 &nexthdrp) || 8968 *nexthdrp != IPPROTO_ICMPV6) { 8969 goto noticmpv6; 8970 } 8971 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8972 ip6h = (ip6_t *)&icmp6[1]; 8973 /* 8974 * Verify if we have a complete ICMP and inner IP header. 8975 */ 8976 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8977 goto noticmpv6; 8978 8979 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8980 goto noticmpv6; 8981 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8982 /* 8983 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8984 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8985 * packet. 8986 */ 8987 if ((*nexthdrp != IPPROTO_TCP) || 8988 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8989 goto noticmpv6; 8990 } 8991 8992 /* 8993 * ICMP errors come on the right queue or come on 8994 * listener/global queue for detached connections and 8995 * get switched to the right queue. If it comes on the 8996 * right queue, policy check has already been done by IP 8997 * and thus free the first_mp without verifying the policy. 8998 * If it has come for a non-hard bound connection, we need 8999 * to verify policy as IP may not have done it. 9000 */ 9001 if (!tcp->tcp_hard_bound) { 9002 if (ipsec_mctl) { 9003 secure = ipsec_in_is_secure(first_mp); 9004 } else { 9005 secure = B_FALSE; 9006 } 9007 if (secure) { 9008 /* 9009 * If we are willing to accept this in clear 9010 * we don't have to verify policy. 9011 */ 9012 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 9013 if (!tcp_check_policy(tcp, first_mp, 9014 NULL, ip6h, secure, ipsec_mctl)) { 9015 /* 9016 * tcp_check_policy called 9017 * ip_drop_packet() on failure. 9018 */ 9019 return; 9020 } 9021 } 9022 } 9023 } else if (ipsec_mctl) { 9024 /* 9025 * This is a hard_bound connection. IP has already 9026 * verified policy. We don't have to do it again. 9027 */ 9028 freeb(first_mp); 9029 first_mp = mp; 9030 ipsec_mctl = B_FALSE; 9031 } 9032 9033 seg_ack = ntohl(tcpha->tha_ack); 9034 seg_seq = ntohl(tcpha->tha_seq); 9035 /* 9036 * TCP SHOULD check that the TCP sequence number contained in 9037 * payload of the ICMP error message is within the range 9038 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 9039 */ 9040 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 9041 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 9042 /* 9043 * If the ICMP message is bogus, should we kill the 9044 * connection, or should we just drop the bogus ICMP 9045 * message? It would probably make more sense to just 9046 * drop the message so that if this one managed to get 9047 * in, the real connection should not suffer. 9048 */ 9049 goto noticmpv6; 9050 } 9051 9052 switch (icmp6->icmp6_type) { 9053 case ICMP6_PACKET_TOO_BIG: 9054 /* 9055 * Reduce the MSS based on the new MTU. This will 9056 * eliminate any fragmentation locally. 9057 * N.B. There may well be some funny side-effects on 9058 * the local send policy and the remote receive policy. 9059 * Pending further research, we provide 9060 * tcp_ignore_path_mtu just in case this proves 9061 * disastrous somewhere. 9062 * 9063 * After updating the MSS, retransmit part of the 9064 * dropped segment using the new mss by calling 9065 * tcp_wput_data(). Need to adjust all those 9066 * params to make sure tcp_wput_data() work properly. 9067 */ 9068 if (tcp_ignore_path_mtu) 9069 break; 9070 9071 /* 9072 * Decrease the MSS by time stamp options 9073 * IP options and IPSEC options. tcp_hdr_len 9074 * includes time stamp option and IP option 9075 * length. 9076 */ 9077 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 9078 tcp->tcp_ipsec_overhead; 9079 9080 /* 9081 * Only update the MSS if the new one is 9082 * smaller than the previous one. This is 9083 * to avoid problems when getting multiple 9084 * ICMP errors for the same MTU. 9085 */ 9086 if (new_mss >= tcp->tcp_mss) 9087 break; 9088 9089 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 9090 ASSERT(ratio >= 1); 9091 tcp_mss_set(tcp, new_mss); 9092 9093 /* 9094 * Make sure we have something to 9095 * send. 9096 */ 9097 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 9098 (tcp->tcp_xmit_head != NULL)) { 9099 /* 9100 * Shrink tcp_cwnd in 9101 * proportion to the old MSS/new MSS. 9102 */ 9103 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 9104 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 9105 (tcp->tcp_unsent == 0)) { 9106 tcp->tcp_rexmit_max = tcp->tcp_fss; 9107 } else { 9108 tcp->tcp_rexmit_max = tcp->tcp_snxt; 9109 } 9110 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 9111 tcp->tcp_rexmit = B_TRUE; 9112 tcp->tcp_dupack_cnt = 0; 9113 tcp->tcp_snd_burst = TCP_CWND_SS; 9114 tcp_ss_rexmit(tcp); 9115 } 9116 break; 9117 9118 case ICMP6_DST_UNREACH: 9119 switch (icmp6->icmp6_code) { 9120 case ICMP6_DST_UNREACH_NOPORT: 9121 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9122 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9123 (tcpha->tha_seq == tcp->tcp_iss)) { 9124 (void) tcp_clean_death(tcp, 9125 ECONNREFUSED, 8); 9126 } 9127 break; 9128 9129 case ICMP6_DST_UNREACH_ADMIN: 9130 case ICMP6_DST_UNREACH_NOROUTE: 9131 case ICMP6_DST_UNREACH_BEYONDSCOPE: 9132 case ICMP6_DST_UNREACH_ADDR: 9133 /* Record the error in case we finally time out. */ 9134 tcp->tcp_client_errno = EHOSTUNREACH; 9135 if (((tcp->tcp_state == TCPS_SYN_SENT) || 9136 (tcp->tcp_state == TCPS_SYN_RCVD)) && 9137 (tcpha->tha_seq == tcp->tcp_iss)) { 9138 if (tcp->tcp_listener != NULL && 9139 tcp->tcp_listener->tcp_syn_defense) { 9140 /* 9141 * Ditch the half-open connection if we 9142 * suspect a SYN attack is under way. 9143 */ 9144 tcp_ip_ire_mark_advice(tcp); 9145 (void) tcp_clean_death(tcp, 9146 tcp->tcp_client_errno, 9); 9147 } 9148 } 9149 9150 9151 break; 9152 default: 9153 break; 9154 } 9155 break; 9156 9157 case ICMP6_PARAM_PROB: 9158 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 9159 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 9160 (uchar_t *)ip6h + icmp6->icmp6_pptr == 9161 (uchar_t *)nexthdrp) { 9162 if (tcp->tcp_state == TCPS_SYN_SENT || 9163 tcp->tcp_state == TCPS_SYN_RCVD) { 9164 (void) tcp_clean_death(tcp, 9165 ECONNREFUSED, 10); 9166 } 9167 break; 9168 } 9169 break; 9170 9171 case ICMP6_TIME_EXCEEDED: 9172 default: 9173 break; 9174 } 9175 freemsg(first_mp); 9176 } 9177 9178 /* 9179 * IP recognizes seven kinds of bind requests: 9180 * 9181 * - A zero-length address binds only to the protocol number. 9182 * 9183 * - A 4-byte address is treated as a request to 9184 * validate that the address is a valid local IPv4 9185 * address, appropriate for an application to bind to. 9186 * IP does the verification, but does not make any note 9187 * of the address at this time. 9188 * 9189 * - A 16-byte address contains is treated as a request 9190 * to validate a local IPv6 address, as the 4-byte 9191 * address case above. 9192 * 9193 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9194 * use it for the inbound fanout of packets. 9195 * 9196 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9197 * use it for the inbound fanout of packets. 9198 * 9199 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9200 * information consisting of local and remote addresses 9201 * and ports. In this case, the addresses are both 9202 * validated as appropriate for this operation, and, if 9203 * so, the information is retained for use in the 9204 * inbound fanout. 9205 * 9206 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9207 * fanout information, like the 12-byte case above. 9208 * 9209 * IP will also fill in the IRE request mblk with information 9210 * regarding our peer. In all cases, we notify IP of our protocol 9211 * type by appending a single protocol byte to the bind request. 9212 */ 9213 static mblk_t * 9214 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9215 { 9216 char *cp; 9217 mblk_t *mp; 9218 struct T_bind_req *tbr; 9219 ipa_conn_t *ac; 9220 ipa6_conn_t *ac6; 9221 sin_t *sin; 9222 sin6_t *sin6; 9223 9224 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9225 ASSERT((tcp->tcp_family == AF_INET && 9226 tcp->tcp_ipversion == IPV4_VERSION) || 9227 (tcp->tcp_family == AF_INET6 && 9228 (tcp->tcp_ipversion == IPV4_VERSION || 9229 tcp->tcp_ipversion == IPV6_VERSION))); 9230 9231 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9232 if (!mp) 9233 return (mp); 9234 mp->b_datap->db_type = M_PROTO; 9235 tbr = (struct T_bind_req *)mp->b_rptr; 9236 tbr->PRIM_type = bind_prim; 9237 tbr->ADDR_offset = sizeof (*tbr); 9238 tbr->CONIND_number = 0; 9239 tbr->ADDR_length = addr_length; 9240 cp = (char *)&tbr[1]; 9241 switch (addr_length) { 9242 case sizeof (ipa_conn_t): 9243 ASSERT(tcp->tcp_family == AF_INET); 9244 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9245 9246 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9247 if (mp->b_cont == NULL) { 9248 freemsg(mp); 9249 return (NULL); 9250 } 9251 mp->b_cont->b_wptr += sizeof (ire_t); 9252 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9253 9254 /* cp known to be 32 bit aligned */ 9255 ac = (ipa_conn_t *)cp; 9256 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9257 ac->ac_faddr = tcp->tcp_remote; 9258 ac->ac_fport = tcp->tcp_fport; 9259 ac->ac_lport = tcp->tcp_lport; 9260 tcp->tcp_hard_binding = 1; 9261 break; 9262 9263 case sizeof (ipa6_conn_t): 9264 ASSERT(tcp->tcp_family == AF_INET6); 9265 9266 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9267 if (mp->b_cont == NULL) { 9268 freemsg(mp); 9269 return (NULL); 9270 } 9271 mp->b_cont->b_wptr += sizeof (ire_t); 9272 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9273 9274 /* cp known to be 32 bit aligned */ 9275 ac6 = (ipa6_conn_t *)cp; 9276 if (tcp->tcp_ipversion == IPV4_VERSION) { 9277 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9278 &ac6->ac6_laddr); 9279 } else { 9280 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9281 } 9282 ac6->ac6_faddr = tcp->tcp_remote_v6; 9283 ac6->ac6_fport = tcp->tcp_fport; 9284 ac6->ac6_lport = tcp->tcp_lport; 9285 tcp->tcp_hard_binding = 1; 9286 break; 9287 9288 case sizeof (sin_t): 9289 /* 9290 * NOTE: IPV6_ADDR_LEN also has same size. 9291 * Use family to discriminate. 9292 */ 9293 if (tcp->tcp_family == AF_INET) { 9294 sin = (sin_t *)cp; 9295 9296 *sin = sin_null; 9297 sin->sin_family = AF_INET; 9298 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9299 sin->sin_port = tcp->tcp_lport; 9300 break; 9301 } else { 9302 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9303 } 9304 break; 9305 9306 case sizeof (sin6_t): 9307 ASSERT(tcp->tcp_family == AF_INET6); 9308 sin6 = (sin6_t *)cp; 9309 9310 *sin6 = sin6_null; 9311 sin6->sin6_family = AF_INET6; 9312 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9313 sin6->sin6_port = tcp->tcp_lport; 9314 break; 9315 9316 case IP_ADDR_LEN: 9317 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9318 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9319 break; 9320 9321 } 9322 /* Add protocol number to end */ 9323 cp[addr_length] = (char)IPPROTO_TCP; 9324 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9325 return (mp); 9326 } 9327 9328 /* 9329 * Notify IP that we are having trouble with this connection. IP should 9330 * blow the IRE away and start over. 9331 */ 9332 static void 9333 tcp_ip_notify(tcp_t *tcp) 9334 { 9335 struct iocblk *iocp; 9336 ipid_t *ipid; 9337 mblk_t *mp; 9338 9339 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9340 if (tcp->tcp_ipversion == IPV6_VERSION) 9341 return; 9342 9343 mp = mkiocb(IP_IOCTL); 9344 if (mp == NULL) 9345 return; 9346 9347 iocp = (struct iocblk *)mp->b_rptr; 9348 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9349 9350 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9351 if (!mp->b_cont) { 9352 freeb(mp); 9353 return; 9354 } 9355 9356 ipid = (ipid_t *)mp->b_cont->b_rptr; 9357 mp->b_cont->b_wptr += iocp->ioc_count; 9358 bzero(ipid, sizeof (*ipid)); 9359 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9360 ipid->ipid_ire_type = IRE_CACHE; 9361 ipid->ipid_addr_offset = sizeof (ipid_t); 9362 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9363 /* 9364 * Note: in the case of source routing we want to blow away the 9365 * route to the first source route hop. 9366 */ 9367 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9368 sizeof (tcp->tcp_ipha->ipha_dst)); 9369 9370 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9371 } 9372 9373 /* Unlink and return any mblk that looks like it contains an ire */ 9374 static mblk_t * 9375 tcp_ire_mp(mblk_t *mp) 9376 { 9377 mblk_t *prev_mp; 9378 9379 for (;;) { 9380 prev_mp = mp; 9381 mp = mp->b_cont; 9382 if (mp == NULL) 9383 break; 9384 switch (DB_TYPE(mp)) { 9385 case IRE_DB_TYPE: 9386 case IRE_DB_REQ_TYPE: 9387 if (prev_mp != NULL) 9388 prev_mp->b_cont = mp->b_cont; 9389 mp->b_cont = NULL; 9390 return (mp); 9391 default: 9392 break; 9393 } 9394 } 9395 return (mp); 9396 } 9397 9398 /* 9399 * Timer callback routine for keepalive probe. We do a fake resend of 9400 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9401 * check to see if we have heard anything from the other end for the last 9402 * RTO period. If we have, set the timer to expire for another 9403 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9404 * RTO << 1 and check again when it expires. Keep exponentially increasing 9405 * the timeout if we have not heard from the other side. If for more than 9406 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9407 * kill the connection unless the keepalive abort threshold is 0. In 9408 * that case, we will probe "forever." 9409 */ 9410 static void 9411 tcp_keepalive_killer(void *arg) 9412 { 9413 mblk_t *mp; 9414 conn_t *connp = (conn_t *)arg; 9415 tcp_t *tcp = connp->conn_tcp; 9416 int32_t firetime; 9417 int32_t idletime; 9418 int32_t ka_intrvl; 9419 9420 tcp->tcp_ka_tid = 0; 9421 9422 if (tcp->tcp_fused) 9423 return; 9424 9425 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9426 ka_intrvl = tcp->tcp_ka_interval; 9427 9428 /* 9429 * Keepalive probe should only be sent if the application has not 9430 * done a close on the connection. 9431 */ 9432 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9433 return; 9434 } 9435 /* Timer fired too early, restart it. */ 9436 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9437 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9438 MSEC_TO_TICK(ka_intrvl)); 9439 return; 9440 } 9441 9442 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9443 /* 9444 * If we have not heard from the other side for a long 9445 * time, kill the connection unless the keepalive abort 9446 * threshold is 0. In that case, we will probe "forever." 9447 */ 9448 if (tcp->tcp_ka_abort_thres != 0 && 9449 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9450 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9451 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9452 tcp->tcp_client_errno : ETIMEDOUT, 11); 9453 return; 9454 } 9455 9456 if (tcp->tcp_snxt == tcp->tcp_suna && 9457 idletime >= ka_intrvl) { 9458 /* Fake resend of last ACKed byte. */ 9459 mblk_t *mp1 = allocb(1, BPRI_LO); 9460 9461 if (mp1 != NULL) { 9462 *mp1->b_wptr++ = '\0'; 9463 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9464 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9465 freeb(mp1); 9466 /* 9467 * if allocation failed, fall through to start the 9468 * timer back. 9469 */ 9470 if (mp != NULL) { 9471 TCP_RECORD_TRACE(tcp, mp, 9472 TCP_TRACE_SEND_PKT); 9473 tcp_send_data(tcp, tcp->tcp_wq, mp); 9474 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9475 if (tcp->tcp_ka_last_intrvl != 0) { 9476 /* 9477 * We should probe again at least 9478 * in ka_intrvl, but not more than 9479 * tcp_rexmit_interval_max. 9480 */ 9481 firetime = MIN(ka_intrvl - 1, 9482 tcp->tcp_ka_last_intrvl << 1); 9483 if (firetime > tcp_rexmit_interval_max) 9484 firetime = 9485 tcp_rexmit_interval_max; 9486 } else { 9487 firetime = tcp->tcp_rto; 9488 } 9489 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9490 tcp_keepalive_killer, 9491 MSEC_TO_TICK(firetime)); 9492 tcp->tcp_ka_last_intrvl = firetime; 9493 return; 9494 } 9495 } 9496 } else { 9497 tcp->tcp_ka_last_intrvl = 0; 9498 } 9499 9500 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9501 if ((firetime = ka_intrvl - idletime) < 0) { 9502 firetime = ka_intrvl; 9503 } 9504 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9505 MSEC_TO_TICK(firetime)); 9506 } 9507 9508 static int 9509 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9510 { 9511 queue_t *q = tcp->tcp_rq; 9512 int32_t mss = tcp->tcp_mss; 9513 int maxpsz; 9514 9515 if (TCP_IS_DETACHED(tcp)) 9516 return (mss); 9517 9518 if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9519 /* 9520 * Set the sd_qn_maxpsz according to the socket send buffer 9521 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9522 * instruct the stream head to copyin user data into contiguous 9523 * kernel-allocated buffers without breaking it up into smaller 9524 * chunks. We round up the buffer size to the nearest SMSS. 9525 */ 9526 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9527 mss = INFPSZ; 9528 } else { 9529 /* 9530 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9531 * (and a multiple of the mss). This instructs the stream 9532 * head to break down larger than SMSS writes into SMSS- 9533 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9534 */ 9535 maxpsz = tcp->tcp_maxpsz * mss; 9536 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9537 maxpsz = tcp->tcp_xmit_hiwater/2; 9538 /* Round up to nearest mss */ 9539 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9540 } 9541 } 9542 (void) setmaxps(q, maxpsz); 9543 tcp->tcp_wq->q_maxpsz = maxpsz; 9544 9545 if (set_maxblk) 9546 (void) mi_set_sth_maxblk(q, mss); 9547 9548 if (tcp->tcp_loopback) 9549 (void) mi_set_sth_copyopt(tcp->tcp_rq, COPYCACHED); 9550 9551 return (mss); 9552 } 9553 9554 /* 9555 * Extract option values from a tcp header. We put any found values into the 9556 * tcpopt struct and return a bitmask saying which options were found. 9557 */ 9558 static int 9559 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9560 { 9561 uchar_t *endp; 9562 int len; 9563 uint32_t mss; 9564 uchar_t *up = (uchar_t *)tcph; 9565 int found = 0; 9566 int32_t sack_len; 9567 tcp_seq sack_begin, sack_end; 9568 tcp_t *tcp; 9569 9570 endp = up + TCP_HDR_LENGTH(tcph); 9571 up += TCP_MIN_HEADER_LENGTH; 9572 while (up < endp) { 9573 len = endp - up; 9574 switch (*up) { 9575 case TCPOPT_EOL: 9576 break; 9577 9578 case TCPOPT_NOP: 9579 up++; 9580 continue; 9581 9582 case TCPOPT_MAXSEG: 9583 if (len < TCPOPT_MAXSEG_LEN || 9584 up[1] != TCPOPT_MAXSEG_LEN) 9585 break; 9586 9587 mss = BE16_TO_U16(up+2); 9588 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9589 tcpopt->tcp_opt_mss = mss; 9590 found |= TCP_OPT_MSS_PRESENT; 9591 9592 up += TCPOPT_MAXSEG_LEN; 9593 continue; 9594 9595 case TCPOPT_WSCALE: 9596 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9597 break; 9598 9599 if (up[2] > TCP_MAX_WINSHIFT) 9600 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9601 else 9602 tcpopt->tcp_opt_wscale = up[2]; 9603 found |= TCP_OPT_WSCALE_PRESENT; 9604 9605 up += TCPOPT_WS_LEN; 9606 continue; 9607 9608 case TCPOPT_SACK_PERMITTED: 9609 if (len < TCPOPT_SACK_OK_LEN || 9610 up[1] != TCPOPT_SACK_OK_LEN) 9611 break; 9612 found |= TCP_OPT_SACK_OK_PRESENT; 9613 up += TCPOPT_SACK_OK_LEN; 9614 continue; 9615 9616 case TCPOPT_SACK: 9617 if (len <= 2 || up[1] <= 2 || len < up[1]) 9618 break; 9619 9620 /* If TCP is not interested in SACK blks... */ 9621 if ((tcp = tcpopt->tcp) == NULL) { 9622 up += up[1]; 9623 continue; 9624 } 9625 sack_len = up[1] - TCPOPT_HEADER_LEN; 9626 up += TCPOPT_HEADER_LEN; 9627 9628 /* 9629 * If the list is empty, allocate one and assume 9630 * nothing is sack'ed. 9631 */ 9632 ASSERT(tcp->tcp_sack_info != NULL); 9633 if (tcp->tcp_notsack_list == NULL) { 9634 tcp_notsack_update(&(tcp->tcp_notsack_list), 9635 tcp->tcp_suna, tcp->tcp_snxt, 9636 &(tcp->tcp_num_notsack_blk), 9637 &(tcp->tcp_cnt_notsack_list)); 9638 9639 /* 9640 * Make sure tcp_notsack_list is not NULL. 9641 * This happens when kmem_alloc(KM_NOSLEEP) 9642 * returns NULL. 9643 */ 9644 if (tcp->tcp_notsack_list == NULL) { 9645 up += sack_len; 9646 continue; 9647 } 9648 tcp->tcp_fack = tcp->tcp_suna; 9649 } 9650 9651 while (sack_len > 0) { 9652 if (up + 8 > endp) { 9653 up = endp; 9654 break; 9655 } 9656 sack_begin = BE32_TO_U32(up); 9657 up += 4; 9658 sack_end = BE32_TO_U32(up); 9659 up += 4; 9660 sack_len -= 8; 9661 /* 9662 * Bounds checking. Make sure the SACK 9663 * info is within tcp_suna and tcp_snxt. 9664 * If this SACK blk is out of bound, ignore 9665 * it but continue to parse the following 9666 * blks. 9667 */ 9668 if (SEQ_LEQ(sack_end, sack_begin) || 9669 SEQ_LT(sack_begin, tcp->tcp_suna) || 9670 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9671 continue; 9672 } 9673 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9674 sack_begin, sack_end, 9675 &(tcp->tcp_num_notsack_blk), 9676 &(tcp->tcp_cnt_notsack_list)); 9677 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9678 tcp->tcp_fack = sack_end; 9679 } 9680 } 9681 found |= TCP_OPT_SACK_PRESENT; 9682 continue; 9683 9684 case TCPOPT_TSTAMP: 9685 if (len < TCPOPT_TSTAMP_LEN || 9686 up[1] != TCPOPT_TSTAMP_LEN) 9687 break; 9688 9689 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9690 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9691 9692 found |= TCP_OPT_TSTAMP_PRESENT; 9693 9694 up += TCPOPT_TSTAMP_LEN; 9695 continue; 9696 9697 default: 9698 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9699 break; 9700 up += up[1]; 9701 continue; 9702 } 9703 break; 9704 } 9705 return (found); 9706 } 9707 9708 /* 9709 * Set the mss associated with a particular tcp based on its current value, 9710 * and a new one passed in. Observe minimums and maximums, and reset 9711 * other state variables that we want to view as multiples of mss. 9712 * 9713 * This function is called in various places mainly because 9714 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9715 * other side's SYN/SYN-ACK packet arrives. 9716 * 2) PMTUd may get us a new MSS. 9717 * 3) If the other side stops sending us timestamp option, we need to 9718 * increase the MSS size to use the extra bytes available. 9719 */ 9720 static void 9721 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9722 { 9723 uint32_t mss_max; 9724 9725 if (tcp->tcp_ipversion == IPV4_VERSION) 9726 mss_max = tcp_mss_max_ipv4; 9727 else 9728 mss_max = tcp_mss_max_ipv6; 9729 9730 if (mss < tcp_mss_min) 9731 mss = tcp_mss_min; 9732 if (mss > mss_max) 9733 mss = mss_max; 9734 /* 9735 * Unless naglim has been set by our client to 9736 * a non-mss value, force naglim to track mss. 9737 * This can help to aggregate small writes. 9738 */ 9739 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9740 tcp->tcp_naglim = mss; 9741 /* 9742 * TCP should be able to buffer at least 4 MSS data for obvious 9743 * performance reason. 9744 */ 9745 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9746 tcp->tcp_xmit_hiwater = mss << 2; 9747 9748 /* 9749 * Check if we need to apply the tcp_init_cwnd here. If 9750 * it is set and the MSS gets bigger (should not happen 9751 * normally), we need to adjust the resulting tcp_cwnd properly. 9752 * The new tcp_cwnd should not get bigger. 9753 */ 9754 if (tcp->tcp_init_cwnd == 0) { 9755 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9756 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9757 } else { 9758 if (tcp->tcp_mss < mss) { 9759 tcp->tcp_cwnd = MAX(1, 9760 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9761 } else { 9762 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9763 } 9764 } 9765 tcp->tcp_mss = mss; 9766 tcp->tcp_cwnd_cnt = 0; 9767 (void) tcp_maxpsz_set(tcp, B_TRUE); 9768 } 9769 9770 static int 9771 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9772 { 9773 tcp_t *tcp = NULL; 9774 conn_t *connp; 9775 int err; 9776 dev_t conn_dev; 9777 zoneid_t zoneid = getzoneid(); 9778 9779 if (q->q_ptr != NULL) 9780 return (0); 9781 9782 if (sflag == MODOPEN) { 9783 /* 9784 * This is a special case. The purpose of a modopen 9785 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9786 * through for MIB browsers. Everything else is failed. 9787 */ 9788 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9789 9790 if (connp == NULL) 9791 return (ENOMEM); 9792 9793 connp->conn_flags |= IPCL_TCPMOD; 9794 connp->conn_cred = credp; 9795 connp->conn_zoneid = zoneid; 9796 q->q_ptr = WR(q)->q_ptr = connp; 9797 crhold(credp); 9798 q->q_qinfo = &tcp_mod_rinit; 9799 WR(q)->q_qinfo = &tcp_mod_winit; 9800 qprocson(q); 9801 return (0); 9802 } 9803 9804 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9805 return (EBUSY); 9806 9807 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9808 9809 if (flag & SO_ACCEPTOR) { 9810 q->q_qinfo = &tcp_acceptor_rinit; 9811 q->q_ptr = (void *)conn_dev; 9812 WR(q)->q_qinfo = &tcp_acceptor_winit; 9813 WR(q)->q_ptr = (void *)conn_dev; 9814 qprocson(q); 9815 return (0); 9816 } 9817 9818 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9819 if (connp == NULL) { 9820 inet_minor_free(ip_minor_arena, conn_dev); 9821 q->q_ptr = NULL; 9822 return (ENOSR); 9823 } 9824 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9825 tcp = connp->conn_tcp; 9826 9827 q->q_ptr = WR(q)->q_ptr = connp; 9828 if (getmajor(*devp) == TCP6_MAJ) { 9829 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9830 connp->conn_send = ip_output_v6; 9831 connp->conn_af_isv6 = B_TRUE; 9832 connp->conn_pkt_isv6 = B_TRUE; 9833 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9834 tcp->tcp_ipversion = IPV6_VERSION; 9835 tcp->tcp_family = AF_INET6; 9836 tcp->tcp_mss = tcp_mss_def_ipv6; 9837 } else { 9838 connp->conn_flags |= IPCL_TCP4; 9839 connp->conn_send = ip_output; 9840 connp->conn_af_isv6 = B_FALSE; 9841 connp->conn_pkt_isv6 = B_FALSE; 9842 tcp->tcp_ipversion = IPV4_VERSION; 9843 tcp->tcp_family = AF_INET; 9844 tcp->tcp_mss = tcp_mss_def_ipv4; 9845 } 9846 9847 /* 9848 * TCP keeps a copy of cred for cache locality reasons but 9849 * we put a reference only once. If connp->conn_cred 9850 * becomes invalid, tcp_cred should also be set to NULL. 9851 */ 9852 tcp->tcp_cred = connp->conn_cred = credp; 9853 crhold(connp->conn_cred); 9854 tcp->tcp_cpid = curproc->p_pid; 9855 connp->conn_zoneid = zoneid; 9856 9857 connp->conn_dev = conn_dev; 9858 9859 ASSERT(q->q_qinfo == &tcp_rinit); 9860 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9861 9862 if (flag & SO_SOCKSTR) { 9863 /* 9864 * No need to insert a socket in tcp acceptor hash. 9865 * If it was a socket acceptor stream, we dealt with 9866 * it above. A socket listener can never accept a 9867 * connection and doesn't need acceptor_id. 9868 */ 9869 connp->conn_flags |= IPCL_SOCKET; 9870 tcp->tcp_issocket = 1; 9871 9872 WR(q)->q_qinfo = &tcp_sock_winit; 9873 } else { 9874 #ifdef _ILP32 9875 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9876 #else 9877 tcp->tcp_acceptor_id = conn_dev; 9878 #endif /* _ILP32 */ 9879 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9880 } 9881 9882 if (tcp_trace) 9883 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9884 9885 err = tcp_init(tcp, q); 9886 if (err != 0) { 9887 inet_minor_free(ip_minor_arena, connp->conn_dev); 9888 tcp_acceptor_hash_remove(tcp); 9889 CONN_DEC_REF(connp); 9890 q->q_ptr = WR(q)->q_ptr = NULL; 9891 return (err); 9892 } 9893 9894 RD(q)->q_hiwat = tcp_recv_hiwat; 9895 tcp->tcp_rwnd = tcp_recv_hiwat; 9896 9897 /* Non-zero default values */ 9898 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9899 /* 9900 * Put the ref for TCP. Ref for IP was already put 9901 * by ipcl_conn_create. Also Make the conn_t globally 9902 * visible to walkers 9903 */ 9904 mutex_enter(&connp->conn_lock); 9905 CONN_INC_REF_LOCKED(connp); 9906 ASSERT(connp->conn_ref == 2); 9907 connp->conn_state_flags &= ~CONN_INCIPIENT; 9908 mutex_exit(&connp->conn_lock); 9909 9910 qprocson(q); 9911 return (0); 9912 } 9913 9914 /* 9915 * Some TCP options can be "set" by requesting them in the option 9916 * buffer. This is needed for XTI feature test though we do not 9917 * allow it in general. We interpret that this mechanism is more 9918 * applicable to OSI protocols and need not be allowed in general. 9919 * This routine filters out options for which it is not allowed (most) 9920 * and lets through those (few) for which it is. [ The XTI interface 9921 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9922 * ever implemented will have to be allowed here ]. 9923 */ 9924 static boolean_t 9925 tcp_allow_connopt_set(int level, int name) 9926 { 9927 9928 switch (level) { 9929 case IPPROTO_TCP: 9930 switch (name) { 9931 case TCP_NODELAY: 9932 return (B_TRUE); 9933 default: 9934 return (B_FALSE); 9935 } 9936 /*NOTREACHED*/ 9937 default: 9938 return (B_FALSE); 9939 } 9940 /*NOTREACHED*/ 9941 } 9942 9943 /* 9944 * This routine gets default values of certain options whose default 9945 * values are maintained by protocol specific code 9946 */ 9947 /* ARGSUSED */ 9948 int 9949 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9950 { 9951 int32_t *i1 = (int32_t *)ptr; 9952 9953 switch (level) { 9954 case IPPROTO_TCP: 9955 switch (name) { 9956 case TCP_NOTIFY_THRESHOLD: 9957 *i1 = tcp_ip_notify_interval; 9958 break; 9959 case TCP_ABORT_THRESHOLD: 9960 *i1 = tcp_ip_abort_interval; 9961 break; 9962 case TCP_CONN_NOTIFY_THRESHOLD: 9963 *i1 = tcp_ip_notify_cinterval; 9964 break; 9965 case TCP_CONN_ABORT_THRESHOLD: 9966 *i1 = tcp_ip_abort_cinterval; 9967 break; 9968 default: 9969 return (-1); 9970 } 9971 break; 9972 case IPPROTO_IP: 9973 switch (name) { 9974 case IP_TTL: 9975 *i1 = tcp_ipv4_ttl; 9976 break; 9977 default: 9978 return (-1); 9979 } 9980 break; 9981 case IPPROTO_IPV6: 9982 switch (name) { 9983 case IPV6_UNICAST_HOPS: 9984 *i1 = tcp_ipv6_hoplimit; 9985 break; 9986 default: 9987 return (-1); 9988 } 9989 break; 9990 default: 9991 return (-1); 9992 } 9993 return (sizeof (int)); 9994 } 9995 9996 9997 /* 9998 * TCP routine to get the values of options. 9999 */ 10000 int 10001 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10002 { 10003 int *i1 = (int *)ptr; 10004 conn_t *connp = Q_TO_CONN(q); 10005 tcp_t *tcp = connp->conn_tcp; 10006 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10007 10008 switch (level) { 10009 case SOL_SOCKET: 10010 switch (name) { 10011 case SO_LINGER: { 10012 struct linger *lgr = (struct linger *)ptr; 10013 10014 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 10015 lgr->l_linger = tcp->tcp_lingertime; 10016 } 10017 return (sizeof (struct linger)); 10018 case SO_DEBUG: 10019 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 10020 break; 10021 case SO_KEEPALIVE: 10022 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 10023 break; 10024 case SO_DONTROUTE: 10025 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 10026 break; 10027 case SO_USELOOPBACK: 10028 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 10029 break; 10030 case SO_BROADCAST: 10031 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 10032 break; 10033 case SO_REUSEADDR: 10034 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 10035 break; 10036 case SO_OOBINLINE: 10037 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 10038 break; 10039 case SO_DGRAM_ERRIND: 10040 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 10041 break; 10042 case SO_TYPE: 10043 *i1 = SOCK_STREAM; 10044 break; 10045 case SO_SNDBUF: 10046 *i1 = tcp->tcp_xmit_hiwater; 10047 break; 10048 case SO_RCVBUF: 10049 *i1 = RD(q)->q_hiwat; 10050 break; 10051 case SO_SND_COPYAVOID: 10052 *i1 = tcp->tcp_snd_zcopy_on ? 10053 SO_SND_COPYAVOID : 0; 10054 break; 10055 default: 10056 return (-1); 10057 } 10058 break; 10059 case IPPROTO_TCP: 10060 switch (name) { 10061 case TCP_NODELAY: 10062 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 10063 break; 10064 case TCP_MAXSEG: 10065 *i1 = tcp->tcp_mss; 10066 break; 10067 case TCP_NOTIFY_THRESHOLD: 10068 *i1 = (int)tcp->tcp_first_timer_threshold; 10069 break; 10070 case TCP_ABORT_THRESHOLD: 10071 *i1 = tcp->tcp_second_timer_threshold; 10072 break; 10073 case TCP_CONN_NOTIFY_THRESHOLD: 10074 *i1 = tcp->tcp_first_ctimer_threshold; 10075 break; 10076 case TCP_CONN_ABORT_THRESHOLD: 10077 *i1 = tcp->tcp_second_ctimer_threshold; 10078 break; 10079 case TCP_RECVDSTADDR: 10080 *i1 = tcp->tcp_recvdstaddr; 10081 break; 10082 case TCP_ANONPRIVBIND: 10083 *i1 = tcp->tcp_anon_priv_bind; 10084 break; 10085 case TCP_EXCLBIND: 10086 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10087 break; 10088 case TCP_INIT_CWND: 10089 *i1 = tcp->tcp_init_cwnd; 10090 break; 10091 case TCP_KEEPALIVE_THRESHOLD: 10092 *i1 = tcp->tcp_ka_interval; 10093 break; 10094 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10095 *i1 = tcp->tcp_ka_abort_thres; 10096 break; 10097 case TCP_CORK: 10098 *i1 = tcp->tcp_cork; 10099 break; 10100 default: 10101 return (-1); 10102 } 10103 break; 10104 case IPPROTO_IP: 10105 if (tcp->tcp_family != AF_INET) 10106 return (-1); 10107 switch (name) { 10108 case IP_OPTIONS: 10109 case T_IP_OPTIONS: { 10110 /* 10111 * This is compatible with BSD in that in only return 10112 * the reverse source route with the final destination 10113 * as the last entry. The first 4 bytes of the option 10114 * will contain the final destination. 10115 */ 10116 char *opt_ptr; 10117 int opt_len; 10118 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10119 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 10120 /* Caller ensures enough space */ 10121 if (opt_len > 0) { 10122 /* 10123 * TODO: Do we have to handle getsockopt on an 10124 * initiator as well? 10125 */ 10126 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 10127 } 10128 return (0); 10129 } 10130 case IP_TOS: 10131 case T_IP_TOS: 10132 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10133 break; 10134 case IP_TTL: 10135 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10136 break; 10137 default: 10138 return (-1); 10139 } 10140 break; 10141 case IPPROTO_IPV6: 10142 /* 10143 * IPPROTO_IPV6 options are only supported for sockets 10144 * that are using IPv6 on the wire. 10145 */ 10146 if (tcp->tcp_ipversion != IPV6_VERSION) { 10147 return (-1); 10148 } 10149 switch (name) { 10150 case IPV6_UNICAST_HOPS: 10151 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10152 break; /* goto sizeof (int) option return */ 10153 case IPV6_BOUND_IF: 10154 /* Zero if not set */ 10155 *i1 = tcp->tcp_bound_if; 10156 break; /* goto sizeof (int) option return */ 10157 case IPV6_RECVPKTINFO: 10158 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10159 *i1 = 1; 10160 else 10161 *i1 = 0; 10162 break; /* goto sizeof (int) option return */ 10163 case IPV6_RECVTCLASS: 10164 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10165 *i1 = 1; 10166 else 10167 *i1 = 0; 10168 break; /* goto sizeof (int) option return */ 10169 case IPV6_RECVHOPLIMIT: 10170 if (tcp->tcp_ipv6_recvancillary & 10171 TCP_IPV6_RECVHOPLIMIT) 10172 *i1 = 1; 10173 else 10174 *i1 = 0; 10175 break; /* goto sizeof (int) option return */ 10176 case IPV6_RECVHOPOPTS: 10177 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10178 *i1 = 1; 10179 else 10180 *i1 = 0; 10181 break; /* goto sizeof (int) option return */ 10182 case IPV6_RECVDSTOPTS: 10183 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10184 *i1 = 1; 10185 else 10186 *i1 = 0; 10187 break; /* goto sizeof (int) option return */ 10188 case _OLD_IPV6_RECVDSTOPTS: 10189 if (tcp->tcp_ipv6_recvancillary & 10190 TCP_OLD_IPV6_RECVDSTOPTS) 10191 *i1 = 1; 10192 else 10193 *i1 = 0; 10194 break; /* goto sizeof (int) option return */ 10195 case IPV6_RECVRTHDR: 10196 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10197 *i1 = 1; 10198 else 10199 *i1 = 0; 10200 break; /* goto sizeof (int) option return */ 10201 case IPV6_RECVRTHDRDSTOPTS: 10202 if (tcp->tcp_ipv6_recvancillary & 10203 TCP_IPV6_RECVRTDSTOPTS) 10204 *i1 = 1; 10205 else 10206 *i1 = 0; 10207 break; /* goto sizeof (int) option return */ 10208 case IPV6_PKTINFO: { 10209 /* XXX assumes that caller has room for max size! */ 10210 struct in6_pktinfo *pkti; 10211 10212 pkti = (struct in6_pktinfo *)ptr; 10213 if (ipp->ipp_fields & IPPF_IFINDEX) 10214 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10215 else 10216 pkti->ipi6_ifindex = 0; 10217 if (ipp->ipp_fields & IPPF_ADDR) 10218 pkti->ipi6_addr = ipp->ipp_addr; 10219 else 10220 pkti->ipi6_addr = ipv6_all_zeros; 10221 return (sizeof (struct in6_pktinfo)); 10222 } 10223 case IPV6_HOPLIMIT: 10224 if (ipp->ipp_fields & IPPF_HOPLIMIT) 10225 *i1 = ipp->ipp_hoplimit; 10226 else 10227 *i1 = -1; /* Not set */ 10228 break; /* goto sizeof (int) option return */ 10229 case IPV6_TCLASS: 10230 if (ipp->ipp_fields & IPPF_TCLASS) 10231 *i1 = ipp->ipp_tclass; 10232 else 10233 *i1 = IPV6_FLOW_TCLASS( 10234 IPV6_DEFAULT_VERS_AND_FLOW); 10235 break; /* goto sizeof (int) option return */ 10236 case IPV6_NEXTHOP: { 10237 sin6_t *sin6 = (sin6_t *)ptr; 10238 10239 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10240 return (0); 10241 *sin6 = sin6_null; 10242 sin6->sin6_family = AF_INET6; 10243 sin6->sin6_addr = ipp->ipp_nexthop; 10244 return (sizeof (sin6_t)); 10245 } 10246 case IPV6_HOPOPTS: 10247 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10248 return (0); 10249 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 10250 return (ipp->ipp_hopoptslen); 10251 case IPV6_RTHDRDSTOPTS: 10252 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10253 return (0); 10254 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10255 return (ipp->ipp_rtdstoptslen); 10256 case IPV6_RTHDR: 10257 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10258 return (0); 10259 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10260 return (ipp->ipp_rthdrlen); 10261 case IPV6_DSTOPTS: 10262 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10263 return (0); 10264 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10265 return (ipp->ipp_dstoptslen); 10266 case IPV6_SRC_PREFERENCES: 10267 return (ip6_get_src_preferences(connp, 10268 (uint32_t *)ptr)); 10269 case IPV6_PATHMTU: { 10270 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10271 10272 if (tcp->tcp_state < TCPS_ESTABLISHED) 10273 return (-1); 10274 10275 return (ip_fill_mtuinfo(&connp->conn_remv6, 10276 connp->conn_fport, mtuinfo)); 10277 } 10278 default: 10279 return (-1); 10280 } 10281 break; 10282 default: 10283 return (-1); 10284 } 10285 return (sizeof (int)); 10286 } 10287 10288 /* 10289 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10290 * Parameters are assumed to be verified by the caller. 10291 */ 10292 /* ARGSUSED */ 10293 int 10294 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10295 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10296 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10297 { 10298 tcp_t *tcp = Q_TO_TCP(q); 10299 int *i1 = (int *)invalp; 10300 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10301 boolean_t checkonly; 10302 int reterr; 10303 10304 switch (optset_context) { 10305 case SETFN_OPTCOM_CHECKONLY: 10306 checkonly = B_TRUE; 10307 /* 10308 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10309 * inlen != 0 implies value supplied and 10310 * we have to "pretend" to set it. 10311 * inlen == 0 implies that there is no 10312 * value part in T_CHECK request and just validation 10313 * done elsewhere should be enough, we just return here. 10314 */ 10315 if (inlen == 0) { 10316 *outlenp = 0; 10317 return (0); 10318 } 10319 break; 10320 case SETFN_OPTCOM_NEGOTIATE: 10321 checkonly = B_FALSE; 10322 break; 10323 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10324 case SETFN_CONN_NEGOTIATE: 10325 checkonly = B_FALSE; 10326 /* 10327 * Negotiating local and "association-related" options 10328 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10329 * primitives is allowed by XTI, but we choose 10330 * to not implement this style negotiation for Internet 10331 * protocols (We interpret it is a must for OSI world but 10332 * optional for Internet protocols) for all options. 10333 * [ Will do only for the few options that enable test 10334 * suites that our XTI implementation of this feature 10335 * works for transports that do allow it ] 10336 */ 10337 if (!tcp_allow_connopt_set(level, name)) { 10338 *outlenp = 0; 10339 return (EINVAL); 10340 } 10341 break; 10342 default: 10343 /* 10344 * We should never get here 10345 */ 10346 *outlenp = 0; 10347 return (EINVAL); 10348 } 10349 10350 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10351 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10352 10353 /* 10354 * For TCP, we should have no ancillary data sent down 10355 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10356 * has to be zero. 10357 */ 10358 ASSERT(thisdg_attrs == NULL); 10359 10360 /* 10361 * For fixed length options, no sanity check 10362 * of passed in length is done. It is assumed *_optcom_req() 10363 * routines do the right thing. 10364 */ 10365 10366 switch (level) { 10367 case SOL_SOCKET: 10368 switch (name) { 10369 case SO_LINGER: { 10370 struct linger *lgr = (struct linger *)invalp; 10371 10372 if (!checkonly) { 10373 if (lgr->l_onoff) { 10374 tcp->tcp_linger = 1; 10375 tcp->tcp_lingertime = lgr->l_linger; 10376 } else { 10377 tcp->tcp_linger = 0; 10378 tcp->tcp_lingertime = 0; 10379 } 10380 /* struct copy */ 10381 *(struct linger *)outvalp = *lgr; 10382 } else { 10383 if (!lgr->l_onoff) { 10384 ((struct linger *)outvalp)->l_onoff = 0; 10385 ((struct linger *)outvalp)->l_linger = 0; 10386 } else { 10387 /* struct copy */ 10388 *(struct linger *)outvalp = *lgr; 10389 } 10390 } 10391 *outlenp = sizeof (struct linger); 10392 return (0); 10393 } 10394 case SO_DEBUG: 10395 if (!checkonly) 10396 tcp->tcp_debug = onoff; 10397 break; 10398 case SO_KEEPALIVE: 10399 if (checkonly) { 10400 /* T_CHECK case */ 10401 break; 10402 } 10403 10404 if (!onoff) { 10405 if (tcp->tcp_ka_enabled) { 10406 if (tcp->tcp_ka_tid != 0) { 10407 (void) TCP_TIMER_CANCEL(tcp, 10408 tcp->tcp_ka_tid); 10409 tcp->tcp_ka_tid = 0; 10410 } 10411 tcp->tcp_ka_enabled = 0; 10412 } 10413 break; 10414 } 10415 if (!tcp->tcp_ka_enabled) { 10416 /* Crank up the keepalive timer */ 10417 tcp->tcp_ka_last_intrvl = 0; 10418 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10419 tcp_keepalive_killer, 10420 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10421 tcp->tcp_ka_enabled = 1; 10422 } 10423 break; 10424 case SO_DONTROUTE: 10425 /* 10426 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 10427 * only of interest to IP. We track them here only so 10428 * that we can report their current value. 10429 */ 10430 if (!checkonly) { 10431 tcp->tcp_dontroute = onoff; 10432 tcp->tcp_connp->conn_dontroute = onoff; 10433 } 10434 break; 10435 case SO_USELOOPBACK: 10436 if (!checkonly) { 10437 tcp->tcp_useloopback = onoff; 10438 tcp->tcp_connp->conn_loopback = onoff; 10439 } 10440 break; 10441 case SO_BROADCAST: 10442 if (!checkonly) { 10443 tcp->tcp_broadcast = onoff; 10444 tcp->tcp_connp->conn_broadcast = onoff; 10445 } 10446 break; 10447 case SO_REUSEADDR: 10448 if (!checkonly) { 10449 tcp->tcp_reuseaddr = onoff; 10450 tcp->tcp_connp->conn_reuseaddr = onoff; 10451 } 10452 break; 10453 case SO_OOBINLINE: 10454 if (!checkonly) 10455 tcp->tcp_oobinline = onoff; 10456 break; 10457 case SO_DGRAM_ERRIND: 10458 if (!checkonly) 10459 tcp->tcp_dgram_errind = onoff; 10460 break; 10461 case SO_SNDBUF: 10462 if (*i1 > tcp_max_buf) { 10463 *outlenp = 0; 10464 return (ENOBUFS); 10465 } 10466 if (!checkonly) { 10467 tcp->tcp_xmit_hiwater = *i1; 10468 if (tcp_snd_lowat_fraction != 0) 10469 tcp->tcp_xmit_lowater = 10470 tcp->tcp_xmit_hiwater / 10471 tcp_snd_lowat_fraction; 10472 (void) tcp_maxpsz_set(tcp, B_TRUE); 10473 /* 10474 * If we are flow-controlled, recheck the 10475 * condition. There are apps that increase 10476 * SO_SNDBUF size when flow-controlled 10477 * (EWOULDBLOCK), and expect the flow control 10478 * condition to be lifted right away. 10479 */ 10480 if (tcp->tcp_flow_stopped && 10481 tcp->tcp_unsent < tcp->tcp_xmit_hiwater) { 10482 tcp->tcp_flow_stopped = B_FALSE; 10483 tcp_clrqfull(tcp); 10484 } 10485 } 10486 break; 10487 case SO_RCVBUF: 10488 if (*i1 > tcp_max_buf) { 10489 *outlenp = 0; 10490 return (ENOBUFS); 10491 } 10492 /* Silently ignore zero */ 10493 if (!checkonly && *i1 != 0) { 10494 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10495 (void) tcp_rwnd_set(tcp, *i1); 10496 } 10497 /* 10498 * XXX should we return the rwnd here 10499 * and tcp_opt_get ? 10500 */ 10501 break; 10502 case SO_SND_COPYAVOID: 10503 if (!checkonly) { 10504 /* we only allow enable at most once for now */ 10505 if (tcp->tcp_loopback || 10506 (!tcp->tcp_snd_zcopy_aware && 10507 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10508 *outlenp = 0; 10509 return (EOPNOTSUPP); 10510 } 10511 tcp->tcp_snd_zcopy_aware = 1; 10512 } 10513 break; 10514 default: 10515 *outlenp = 0; 10516 return (EINVAL); 10517 } 10518 break; 10519 case IPPROTO_TCP: 10520 switch (name) { 10521 case TCP_NODELAY: 10522 if (!checkonly) 10523 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10524 break; 10525 case TCP_NOTIFY_THRESHOLD: 10526 if (!checkonly) 10527 tcp->tcp_first_timer_threshold = *i1; 10528 break; 10529 case TCP_ABORT_THRESHOLD: 10530 if (!checkonly) 10531 tcp->tcp_second_timer_threshold = *i1; 10532 break; 10533 case TCP_CONN_NOTIFY_THRESHOLD: 10534 if (!checkonly) 10535 tcp->tcp_first_ctimer_threshold = *i1; 10536 break; 10537 case TCP_CONN_ABORT_THRESHOLD: 10538 if (!checkonly) 10539 tcp->tcp_second_ctimer_threshold = *i1; 10540 break; 10541 case TCP_RECVDSTADDR: 10542 if (tcp->tcp_state > TCPS_LISTEN) 10543 return (EOPNOTSUPP); 10544 if (!checkonly) 10545 tcp->tcp_recvdstaddr = onoff; 10546 break; 10547 case TCP_ANONPRIVBIND: 10548 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10549 *outlenp = 0; 10550 return (reterr); 10551 } 10552 if (!checkonly) { 10553 tcp->tcp_anon_priv_bind = onoff; 10554 } 10555 break; 10556 case TCP_EXCLBIND: 10557 if (!checkonly) 10558 tcp->tcp_exclbind = onoff; 10559 break; /* goto sizeof (int) option return */ 10560 case TCP_INIT_CWND: { 10561 uint32_t init_cwnd = *((uint32_t *)invalp); 10562 10563 if (checkonly) 10564 break; 10565 10566 /* 10567 * Only allow socket with network configuration 10568 * privilege to set the initial cwnd to be larger 10569 * than allowed by RFC 3390. 10570 */ 10571 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10572 tcp->tcp_init_cwnd = init_cwnd; 10573 break; 10574 } 10575 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10576 *outlenp = 0; 10577 return (reterr); 10578 } 10579 if (init_cwnd > TCP_MAX_INIT_CWND) { 10580 *outlenp = 0; 10581 return (EINVAL); 10582 } 10583 tcp->tcp_init_cwnd = init_cwnd; 10584 break; 10585 } 10586 case TCP_KEEPALIVE_THRESHOLD: 10587 if (checkonly) 10588 break; 10589 10590 if (*i1 < tcp_keepalive_interval_low || 10591 *i1 > tcp_keepalive_interval_high) { 10592 *outlenp = 0; 10593 return (EINVAL); 10594 } 10595 if (*i1 != tcp->tcp_ka_interval) { 10596 tcp->tcp_ka_interval = *i1; 10597 /* 10598 * Check if we need to restart the 10599 * keepalive timer. 10600 */ 10601 if (tcp->tcp_ka_tid != 0) { 10602 ASSERT(tcp->tcp_ka_enabled); 10603 (void) TCP_TIMER_CANCEL(tcp, 10604 tcp->tcp_ka_tid); 10605 tcp->tcp_ka_last_intrvl = 0; 10606 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10607 tcp_keepalive_killer, 10608 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10609 } 10610 } 10611 break; 10612 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10613 if (!checkonly) { 10614 if (*i1 < tcp_keepalive_abort_interval_low || 10615 *i1 > tcp_keepalive_abort_interval_high) { 10616 *outlenp = 0; 10617 return (EINVAL); 10618 } 10619 tcp->tcp_ka_abort_thres = *i1; 10620 } 10621 break; 10622 case TCP_CORK: 10623 if (!checkonly) { 10624 /* 10625 * if tcp->tcp_cork was set and is now 10626 * being unset, we have to make sure that 10627 * the remaining data gets sent out. Also 10628 * unset tcp->tcp_cork so that tcp_wput_data() 10629 * can send data even if it is less than mss 10630 */ 10631 if (tcp->tcp_cork && onoff == 0 && 10632 tcp->tcp_unsent > 0) { 10633 tcp->tcp_cork = B_FALSE; 10634 tcp_wput_data(tcp, NULL, B_FALSE); 10635 } 10636 tcp->tcp_cork = onoff; 10637 } 10638 break; 10639 default: 10640 *outlenp = 0; 10641 return (EINVAL); 10642 } 10643 break; 10644 case IPPROTO_IP: 10645 if (tcp->tcp_family != AF_INET) { 10646 *outlenp = 0; 10647 return (ENOPROTOOPT); 10648 } 10649 switch (name) { 10650 case IP_OPTIONS: 10651 case T_IP_OPTIONS: 10652 reterr = tcp_opt_set_header(tcp, checkonly, 10653 invalp, inlen); 10654 if (reterr) { 10655 *outlenp = 0; 10656 return (reterr); 10657 } 10658 /* OK return - copy input buffer into output buffer */ 10659 if (invalp != outvalp) { 10660 /* don't trust bcopy for identical src/dst */ 10661 bcopy(invalp, outvalp, inlen); 10662 } 10663 *outlenp = inlen; 10664 return (0); 10665 case IP_TOS: 10666 case T_IP_TOS: 10667 if (!checkonly) { 10668 tcp->tcp_ipha->ipha_type_of_service = 10669 (uchar_t)*i1; 10670 tcp->tcp_tos = (uchar_t)*i1; 10671 } 10672 break; 10673 case IP_TTL: 10674 if (!checkonly) { 10675 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10676 tcp->tcp_ttl = (uchar_t)*i1; 10677 } 10678 break; 10679 case IP_BOUND_IF: 10680 /* Handled at the IP level */ 10681 return (-EINVAL); 10682 case IP_SEC_OPT: 10683 /* 10684 * We should not allow policy setting after 10685 * we start listening for connections. 10686 */ 10687 if (tcp->tcp_state == TCPS_LISTEN) { 10688 return (EINVAL); 10689 } else { 10690 /* Handled at the IP level */ 10691 return (-EINVAL); 10692 } 10693 default: 10694 *outlenp = 0; 10695 return (EINVAL); 10696 } 10697 break; 10698 case IPPROTO_IPV6: { 10699 ip6_pkt_t *ipp; 10700 10701 /* 10702 * IPPROTO_IPV6 options are only supported for sockets 10703 * that are using IPv6 on the wire. 10704 */ 10705 if (tcp->tcp_ipversion != IPV6_VERSION) { 10706 *outlenp = 0; 10707 return (ENOPROTOOPT); 10708 } 10709 /* 10710 * Only sticky options; no ancillary data 10711 */ 10712 ASSERT(thisdg_attrs == NULL); 10713 ipp = &tcp->tcp_sticky_ipp; 10714 10715 switch (name) { 10716 case IPV6_UNICAST_HOPS: 10717 /* -1 means use default */ 10718 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10719 *outlenp = 0; 10720 return (EINVAL); 10721 } 10722 if (!checkonly) { 10723 if (*i1 == -1) { 10724 tcp->tcp_ip6h->ip6_hops = 10725 ipp->ipp_hoplimit = 10726 (uint8_t)tcp_ipv6_hoplimit; 10727 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 10728 /* Pass modified value to IP. */ 10729 *i1 = tcp->tcp_ip6h->ip6_hops; 10730 } else { 10731 tcp->tcp_ip6h->ip6_hops = 10732 ipp->ipp_hoplimit = (uint8_t)*i1; 10733 ipp->ipp_fields |= IPPF_HOPLIMIT; 10734 } 10735 } 10736 break; 10737 case IPV6_BOUND_IF: 10738 if (!checkonly) { 10739 int error = 0; 10740 10741 tcp->tcp_bound_if = *i1; 10742 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10743 B_TRUE, checkonly, level, name, mblk); 10744 if (error != 0) { 10745 *outlenp = 0; 10746 return (error); 10747 } 10748 } 10749 break; 10750 /* 10751 * Set boolean switches for ancillary data delivery 10752 */ 10753 case IPV6_RECVPKTINFO: 10754 if (!checkonly) { 10755 if (onoff) 10756 tcp->tcp_ipv6_recvancillary |= 10757 TCP_IPV6_RECVPKTINFO; 10758 else 10759 tcp->tcp_ipv6_recvancillary &= 10760 ~TCP_IPV6_RECVPKTINFO; 10761 /* Force it to be sent up with the next msg */ 10762 tcp->tcp_recvifindex = 0; 10763 } 10764 break; 10765 case IPV6_RECVTCLASS: 10766 if (!checkonly) { 10767 if (onoff) 10768 tcp->tcp_ipv6_recvancillary |= 10769 TCP_IPV6_RECVTCLASS; 10770 else 10771 tcp->tcp_ipv6_recvancillary &= 10772 ~TCP_IPV6_RECVTCLASS; 10773 } 10774 break; 10775 case IPV6_RECVHOPLIMIT: 10776 if (!checkonly) { 10777 if (onoff) 10778 tcp->tcp_ipv6_recvancillary |= 10779 TCP_IPV6_RECVHOPLIMIT; 10780 else 10781 tcp->tcp_ipv6_recvancillary &= 10782 ~TCP_IPV6_RECVHOPLIMIT; 10783 /* Force it to be sent up with the next msg */ 10784 tcp->tcp_recvhops = 0xffffffffU; 10785 } 10786 break; 10787 case IPV6_RECVHOPOPTS: 10788 if (!checkonly) { 10789 if (onoff) 10790 tcp->tcp_ipv6_recvancillary |= 10791 TCP_IPV6_RECVHOPOPTS; 10792 else 10793 tcp->tcp_ipv6_recvancillary &= 10794 ~TCP_IPV6_RECVHOPOPTS; 10795 } 10796 break; 10797 case IPV6_RECVDSTOPTS: 10798 if (!checkonly) { 10799 if (onoff) 10800 tcp->tcp_ipv6_recvancillary |= 10801 TCP_IPV6_RECVDSTOPTS; 10802 else 10803 tcp->tcp_ipv6_recvancillary &= 10804 ~TCP_IPV6_RECVDSTOPTS; 10805 } 10806 break; 10807 case _OLD_IPV6_RECVDSTOPTS: 10808 if (!checkonly) { 10809 if (onoff) 10810 tcp->tcp_ipv6_recvancillary |= 10811 TCP_OLD_IPV6_RECVDSTOPTS; 10812 else 10813 tcp->tcp_ipv6_recvancillary &= 10814 ~TCP_OLD_IPV6_RECVDSTOPTS; 10815 } 10816 break; 10817 case IPV6_RECVRTHDR: 10818 if (!checkonly) { 10819 if (onoff) 10820 tcp->tcp_ipv6_recvancillary |= 10821 TCP_IPV6_RECVRTHDR; 10822 else 10823 tcp->tcp_ipv6_recvancillary &= 10824 ~TCP_IPV6_RECVRTHDR; 10825 } 10826 break; 10827 case IPV6_RECVRTHDRDSTOPTS: 10828 if (!checkonly) { 10829 if (onoff) 10830 tcp->tcp_ipv6_recvancillary |= 10831 TCP_IPV6_RECVRTDSTOPTS; 10832 else 10833 tcp->tcp_ipv6_recvancillary &= 10834 ~TCP_IPV6_RECVRTDSTOPTS; 10835 } 10836 break; 10837 case IPV6_PKTINFO: 10838 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10839 return (EINVAL); 10840 if (checkonly) 10841 break; 10842 10843 if (inlen == 0) { 10844 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10845 } else { 10846 struct in6_pktinfo *pkti; 10847 10848 pkti = (struct in6_pktinfo *)invalp; 10849 /* 10850 * RFC 3542 states that ipi6_addr must be 10851 * the unspecified address when setting the 10852 * IPV6_PKTINFO sticky socket option on a 10853 * TCP socket. 10854 */ 10855 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10856 return (EINVAL); 10857 /* 10858 * ip6_set_pktinfo() validates the source 10859 * address and interface index. 10860 */ 10861 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10862 pkti, mblk); 10863 if (reterr != 0) 10864 return (reterr); 10865 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10866 ipp->ipp_addr = pkti->ipi6_addr; 10867 if (ipp->ipp_ifindex != 0) 10868 ipp->ipp_fields |= IPPF_IFINDEX; 10869 else 10870 ipp->ipp_fields &= ~IPPF_IFINDEX; 10871 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10872 ipp->ipp_fields |= IPPF_ADDR; 10873 else 10874 ipp->ipp_fields &= ~IPPF_ADDR; 10875 } 10876 reterr = tcp_build_hdrs(q, tcp); 10877 if (reterr != 0) 10878 return (reterr); 10879 break; 10880 case IPV6_HOPLIMIT: 10881 if (inlen != 0 && inlen != sizeof (int)) 10882 return (EINVAL); 10883 if (checkonly) 10884 break; 10885 10886 if (inlen == 0) { 10887 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 10888 tcp->tcp_ip6_hops = 10889 (uint8_t)tcp_ipv6_hoplimit; 10890 } else { 10891 if (*i1 > 255 || *i1 < -1) 10892 return (EINVAL); 10893 if (*i1 == -1) { 10894 ipp->ipp_hoplimit = tcp_ipv6_hoplimit; 10895 *i1 = tcp_ipv6_hoplimit; 10896 } else { 10897 ipp->ipp_hoplimit = *i1; 10898 } 10899 ipp->ipp_fields |= IPPF_HOPLIMIT; 10900 tcp->tcp_ip6_hops = 10901 ipp->ipp_hoplimit; 10902 } 10903 reterr = tcp_build_hdrs(q, tcp); 10904 if (reterr != 0) 10905 return (reterr); 10906 break; 10907 case IPV6_TCLASS: 10908 if (inlen != 0 && inlen != sizeof (int)) 10909 return (EINVAL); 10910 if (checkonly) 10911 break; 10912 10913 if (inlen == 0) { 10914 ipp->ipp_fields &= ~IPPF_TCLASS; 10915 } else { 10916 if (*i1 > 255 || *i1 < -1) 10917 return (EINVAL); 10918 if (*i1 == -1) { 10919 ipp->ipp_tclass = 0; 10920 *i1 = 0; 10921 } else { 10922 ipp->ipp_tclass = *i1; 10923 } 10924 ipp->ipp_fields |= IPPF_TCLASS; 10925 } 10926 reterr = tcp_build_hdrs(q, tcp); 10927 if (reterr != 0) 10928 return (reterr); 10929 break; 10930 case IPV6_NEXTHOP: 10931 /* 10932 * IP will verify that the nexthop is reachable 10933 * and fail for sticky options. 10934 */ 10935 if (inlen != 0 && inlen != sizeof (sin6_t)) 10936 return (EINVAL); 10937 if (checkonly) 10938 break; 10939 10940 if (inlen == 0) { 10941 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10942 } else { 10943 sin6_t *sin6 = (sin6_t *)invalp; 10944 10945 if (sin6->sin6_family != AF_INET6) 10946 return (EAFNOSUPPORT); 10947 if (IN6_IS_ADDR_V4MAPPED( 10948 &sin6->sin6_addr)) 10949 return (EADDRNOTAVAIL); 10950 ipp->ipp_nexthop = sin6->sin6_addr; 10951 if (!IN6_IS_ADDR_UNSPECIFIED( 10952 &ipp->ipp_nexthop)) 10953 ipp->ipp_fields |= IPPF_NEXTHOP; 10954 else 10955 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10956 } 10957 reterr = tcp_build_hdrs(q, tcp); 10958 if (reterr != 0) 10959 return (reterr); 10960 break; 10961 case IPV6_HOPOPTS: { 10962 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10963 /* 10964 * Sanity checks - minimum size, size a multiple of 10965 * eight bytes, and matching size passed in. 10966 */ 10967 if (inlen != 0 && 10968 inlen != (8 * (hopts->ip6h_len + 1))) 10969 return (EINVAL); 10970 10971 if (checkonly) 10972 break; 10973 10974 if (inlen == 0) { 10975 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10976 kmem_free(ipp->ipp_hopopts, 10977 ipp->ipp_hopoptslen); 10978 ipp->ipp_hopopts = NULL; 10979 ipp->ipp_hopoptslen = 0; 10980 } 10981 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10982 } else { 10983 reterr = tcp_pkt_set(invalp, inlen, 10984 (uchar_t **)&ipp->ipp_hopopts, 10985 &ipp->ipp_hopoptslen); 10986 if (reterr != 0) 10987 return (reterr); 10988 ipp->ipp_fields |= IPPF_HOPOPTS; 10989 } 10990 reterr = tcp_build_hdrs(q, tcp); 10991 if (reterr != 0) 10992 return (reterr); 10993 break; 10994 } 10995 case IPV6_RTHDRDSTOPTS: { 10996 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10997 10998 /* 10999 * Sanity checks - minimum size, size a multiple of 11000 * eight bytes, and matching size passed in. 11001 */ 11002 if (inlen != 0 && 11003 inlen != (8 * (dopts->ip6d_len + 1))) 11004 return (EINVAL); 11005 11006 if (checkonly) 11007 break; 11008 11009 if (inlen == 0) { 11010 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 11011 kmem_free(ipp->ipp_rtdstopts, 11012 ipp->ipp_rtdstoptslen); 11013 ipp->ipp_rtdstopts = NULL; 11014 ipp->ipp_rtdstoptslen = 0; 11015 } 11016 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 11017 } else { 11018 reterr = tcp_pkt_set(invalp, inlen, 11019 (uchar_t **)&ipp->ipp_rtdstopts, 11020 &ipp->ipp_rtdstoptslen); 11021 if (reterr != 0) 11022 return (reterr); 11023 ipp->ipp_fields |= IPPF_RTDSTOPTS; 11024 } 11025 reterr = tcp_build_hdrs(q, tcp); 11026 if (reterr != 0) 11027 return (reterr); 11028 break; 11029 } 11030 case IPV6_DSTOPTS: { 11031 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 11032 11033 /* 11034 * Sanity checks - minimum size, size a multiple of 11035 * eight bytes, and matching size passed in. 11036 */ 11037 if (inlen != 0 && 11038 inlen != (8 * (dopts->ip6d_len + 1))) 11039 return (EINVAL); 11040 11041 if (checkonly) 11042 break; 11043 11044 if (inlen == 0) { 11045 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 11046 kmem_free(ipp->ipp_dstopts, 11047 ipp->ipp_dstoptslen); 11048 ipp->ipp_dstopts = NULL; 11049 ipp->ipp_dstoptslen = 0; 11050 } 11051 ipp->ipp_fields &= ~IPPF_DSTOPTS; 11052 } else { 11053 reterr = tcp_pkt_set(invalp, inlen, 11054 (uchar_t **)&ipp->ipp_dstopts, 11055 &ipp->ipp_dstoptslen); 11056 if (reterr != 0) 11057 return (reterr); 11058 ipp->ipp_fields |= IPPF_DSTOPTS; 11059 } 11060 reterr = tcp_build_hdrs(q, tcp); 11061 if (reterr != 0) 11062 return (reterr); 11063 break; 11064 } 11065 case IPV6_RTHDR: { 11066 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 11067 11068 /* 11069 * Sanity checks - minimum size, size a multiple of 11070 * eight bytes, and matching size passed in. 11071 */ 11072 if (inlen != 0 && 11073 inlen != (8 * (rt->ip6r_len + 1))) 11074 return (EINVAL); 11075 11076 if (checkonly) 11077 break; 11078 11079 if (inlen == 0) { 11080 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 11081 kmem_free(ipp->ipp_rthdr, 11082 ipp->ipp_rthdrlen); 11083 ipp->ipp_rthdr = NULL; 11084 ipp->ipp_rthdrlen = 0; 11085 } 11086 ipp->ipp_fields &= ~IPPF_RTHDR; 11087 } else { 11088 reterr = tcp_pkt_set(invalp, inlen, 11089 (uchar_t **)&ipp->ipp_rthdr, 11090 &ipp->ipp_rthdrlen); 11091 if (reterr != 0) 11092 return (reterr); 11093 ipp->ipp_fields |= IPPF_RTHDR; 11094 } 11095 reterr = tcp_build_hdrs(q, tcp); 11096 if (reterr != 0) 11097 return (reterr); 11098 break; 11099 } 11100 case IPV6_V6ONLY: 11101 if (!checkonly) 11102 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11103 break; 11104 case IPV6_USE_MIN_MTU: 11105 if (inlen != sizeof (int)) 11106 return (EINVAL); 11107 11108 if (*i1 < -1 || *i1 > 1) 11109 return (EINVAL); 11110 11111 if (checkonly) 11112 break; 11113 11114 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11115 ipp->ipp_use_min_mtu = *i1; 11116 break; 11117 case IPV6_BOUND_PIF: 11118 /* Handled at the IP level */ 11119 return (-EINVAL); 11120 case IPV6_SEC_OPT: 11121 /* 11122 * We should not allow policy setting after 11123 * we start listening for connections. 11124 */ 11125 if (tcp->tcp_state == TCPS_LISTEN) { 11126 return (EINVAL); 11127 } else { 11128 /* Handled at the IP level */ 11129 return (-EINVAL); 11130 } 11131 case IPV6_SRC_PREFERENCES: 11132 if (inlen != sizeof (uint32_t)) 11133 return (EINVAL); 11134 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11135 *(uint32_t *)invalp); 11136 if (reterr != 0) { 11137 *outlenp = 0; 11138 return (reterr); 11139 } 11140 break; 11141 default: 11142 *outlenp = 0; 11143 return (EINVAL); 11144 } 11145 break; 11146 } /* end IPPROTO_IPV6 */ 11147 default: 11148 *outlenp = 0; 11149 return (EINVAL); 11150 } 11151 /* 11152 * Common case of OK return with outval same as inval 11153 */ 11154 if (invalp != outvalp) { 11155 /* don't trust bcopy for identical src/dst */ 11156 (void) bcopy(invalp, outvalp, inlen); 11157 } 11158 *outlenp = inlen; 11159 return (0); 11160 } 11161 11162 /* 11163 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11164 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11165 * headers, and the maximum size tcp header (to avoid reallocation 11166 * on the fly for additional tcp options). 11167 * Returns failure if can't allocate memory. 11168 */ 11169 static int 11170 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11171 { 11172 char *hdrs; 11173 uint_t hdrs_len; 11174 ip6i_t *ip6i; 11175 char buf[TCP_MAX_HDR_LENGTH]; 11176 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11177 in6_addr_t src, dst; 11178 uint8_t hops; 11179 11180 /* 11181 * save the existing tcp header and source/dest IP addresses 11182 */ 11183 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11184 src = tcp->tcp_ip6h->ip6_src; 11185 dst = tcp->tcp_ip6h->ip6_dst; 11186 hops = tcp->tcp_ip6h->ip6_hops; 11187 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11188 ASSERT(hdrs_len != 0); 11189 if (hdrs_len > tcp->tcp_iphc_len) { 11190 /* Need to reallocate */ 11191 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11192 if (hdrs == NULL) 11193 return (ENOMEM); 11194 if (tcp->tcp_iphc != NULL) { 11195 if (tcp->tcp_hdr_grown) { 11196 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11197 } else { 11198 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11199 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11200 } 11201 tcp->tcp_iphc_len = 0; 11202 } 11203 ASSERT(tcp->tcp_iphc_len == 0); 11204 tcp->tcp_iphc = hdrs; 11205 tcp->tcp_iphc_len = hdrs_len; 11206 tcp->tcp_hdr_grown = B_TRUE; 11207 } 11208 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11209 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11210 11211 /* Set header fields not in ipp */ 11212 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11213 ip6i = (ip6i_t *)tcp->tcp_iphc; 11214 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11215 } else { 11216 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11217 } 11218 /* 11219 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11220 * 11221 * tcp->tcp_tcp_hdr_len doesn't change here. 11222 */ 11223 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11224 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11225 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11226 11227 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11228 11229 tcp->tcp_ip6h->ip6_src = src; 11230 tcp->tcp_ip6h->ip6_dst = dst; 11231 11232 /* 11233 * If the hop limit was not set by ip_build_hdrs_v6(), restore 11234 * the saved value. 11235 */ 11236 if (!(ipp->ipp_fields & IPPF_HOPLIMIT)) 11237 tcp->tcp_ip6h->ip6_hops = hops; 11238 11239 /* 11240 * Set the IPv6 header payload length. 11241 * If there's an ip6i_t included, don't count it in the length. 11242 */ 11243 tcp->tcp_ip6h->ip6_plen = tcp->tcp_hdr_len - IPV6_HDR_LEN; 11244 if (ipp->ipp_fields & IPPF_HAS_IP6I) 11245 tcp->tcp_ip6h->ip6_plen -= sizeof (ip6i_t); 11246 /* 11247 * If we're setting extension headers after a connection 11248 * has been established, and if we have a routing header 11249 * among the extension headers, call ip_massage_options_v6 to 11250 * manipulate the routing header/ip6_dst set the checksum 11251 * difference in the tcp header template. 11252 * (This happens in tcp_connect_ipv6 if the routing header 11253 * is set prior to the connect.) 11254 * Set the tcp_sum to zero first in case we've cleared a 11255 * routing header or don't have one at all. 11256 */ 11257 tcp->tcp_sum = 0; 11258 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11259 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11260 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11261 (uint8_t *)tcp->tcp_tcph); 11262 if (rth != NULL) { 11263 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11264 rth); 11265 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11266 (tcp->tcp_sum >> 16)); 11267 } 11268 } 11269 11270 /* Try to get everything in a single mblk */ 11271 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11272 return (0); 11273 } 11274 11275 /* 11276 * Set optbuf and optlen for the option. 11277 * Allocate memory (if not already present). 11278 * Otherwise just point optbuf and optlen at invalp and inlen. 11279 * Returns failure if memory can not be allocated. 11280 */ 11281 static int 11282 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 11283 { 11284 uchar_t *optbuf; 11285 11286 if (inlen == *optlenp) { 11287 /* Unchanged length - no need to realocate */ 11288 bcopy(invalp, *optbufp, inlen); 11289 return (0); 11290 } 11291 if (inlen != 0) { 11292 /* Allocate new buffer before free */ 11293 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 11294 if (optbuf == NULL) 11295 return (ENOMEM); 11296 } else { 11297 optbuf = NULL; 11298 } 11299 /* Free old buffer */ 11300 if (*optlenp != 0) 11301 kmem_free(*optbufp, *optlenp); 11302 11303 bcopy(invalp, optbuf, inlen); 11304 *optbufp = optbuf; 11305 *optlenp = inlen; 11306 return (0); 11307 } 11308 11309 11310 /* 11311 * Use the outgoing IP header to create an IP_OPTIONS option the way 11312 * it was passed down from the application. 11313 */ 11314 static int 11315 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 11316 { 11317 ipoptp_t opts; 11318 uchar_t *opt; 11319 uint8_t optval; 11320 uint8_t optlen; 11321 uint32_t len = 0; 11322 uchar_t *buf1 = buf; 11323 11324 buf += IP_ADDR_LEN; /* Leave room for final destination */ 11325 len += IP_ADDR_LEN; 11326 bzero(buf1, IP_ADDR_LEN); 11327 11328 for (optval = ipoptp_first(&opts, ipha); 11329 optval != IPOPT_EOL; 11330 optval = ipoptp_next(&opts)) { 11331 opt = opts.ipoptp_cur; 11332 optlen = opts.ipoptp_len; 11333 switch (optval) { 11334 int off; 11335 case IPOPT_SSRR: 11336 case IPOPT_LSRR: 11337 11338 /* 11339 * Insert ipha_dst as the first entry in the source 11340 * route and move down the entries on step. 11341 * The last entry gets placed at buf1. 11342 */ 11343 buf[IPOPT_OPTVAL] = optval; 11344 buf[IPOPT_OLEN] = optlen; 11345 buf[IPOPT_OFFSET] = optlen; 11346 11347 off = optlen - IP_ADDR_LEN; 11348 if (off < 0) { 11349 /* No entries in source route */ 11350 break; 11351 } 11352 /* Last entry in source route */ 11353 bcopy(opt + off, buf1, IP_ADDR_LEN); 11354 off -= IP_ADDR_LEN; 11355 11356 while (off > 0) { 11357 bcopy(opt + off, 11358 buf + off + IP_ADDR_LEN, 11359 IP_ADDR_LEN); 11360 off -= IP_ADDR_LEN; 11361 } 11362 /* ipha_dst into first slot */ 11363 bcopy(&ipha->ipha_dst, 11364 buf + off + IP_ADDR_LEN, 11365 IP_ADDR_LEN); 11366 buf += optlen; 11367 len += optlen; 11368 break; 11369 default: 11370 bcopy(opt, buf, optlen); 11371 buf += optlen; 11372 len += optlen; 11373 break; 11374 } 11375 } 11376 done: 11377 /* Pad the resulting options */ 11378 while (len & 0x3) { 11379 *buf++ = IPOPT_EOL; 11380 len++; 11381 } 11382 return (len); 11383 } 11384 11385 /* 11386 * Transfer any source route option from ipha to buf/dst in reversed form. 11387 */ 11388 static int 11389 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11390 { 11391 ipoptp_t opts; 11392 uchar_t *opt; 11393 uint8_t optval; 11394 uint8_t optlen; 11395 uint32_t len = 0; 11396 11397 for (optval = ipoptp_first(&opts, ipha); 11398 optval != IPOPT_EOL; 11399 optval = ipoptp_next(&opts)) { 11400 opt = opts.ipoptp_cur; 11401 optlen = opts.ipoptp_len; 11402 switch (optval) { 11403 int off1, off2; 11404 case IPOPT_SSRR: 11405 case IPOPT_LSRR: 11406 11407 /* Reverse source route */ 11408 /* 11409 * First entry should be the next to last one in the 11410 * current source route (the last entry is our 11411 * address.) 11412 * The last entry should be the final destination. 11413 */ 11414 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11415 buf[IPOPT_OLEN] = (uint8_t)optlen; 11416 off1 = IPOPT_MINOFF_SR - 1; 11417 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11418 if (off2 < 0) { 11419 /* No entries in source route */ 11420 break; 11421 } 11422 bcopy(opt + off2, dst, IP_ADDR_LEN); 11423 /* 11424 * Note: use src since ipha has not had its src 11425 * and dst reversed (it is in the state it was 11426 * received. 11427 */ 11428 bcopy(&ipha->ipha_src, buf + off2, 11429 IP_ADDR_LEN); 11430 off2 -= IP_ADDR_LEN; 11431 11432 while (off2 > 0) { 11433 bcopy(opt + off2, buf + off1, 11434 IP_ADDR_LEN); 11435 off1 += IP_ADDR_LEN; 11436 off2 -= IP_ADDR_LEN; 11437 } 11438 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11439 buf += optlen; 11440 len += optlen; 11441 break; 11442 } 11443 } 11444 done: 11445 /* Pad the resulting options */ 11446 while (len & 0x3) { 11447 *buf++ = IPOPT_EOL; 11448 len++; 11449 } 11450 return (len); 11451 } 11452 11453 11454 /* 11455 * Extract and revert a source route from ipha (if any) 11456 * and then update the relevant fields in both tcp_t and the standard header. 11457 */ 11458 static void 11459 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11460 { 11461 char buf[TCP_MAX_HDR_LENGTH]; 11462 uint_t tcph_len; 11463 int len; 11464 11465 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11466 len = IPH_HDR_LENGTH(ipha); 11467 if (len == IP_SIMPLE_HDR_LENGTH) 11468 /* Nothing to do */ 11469 return; 11470 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11471 (len & 0x3)) 11472 return; 11473 11474 tcph_len = tcp->tcp_tcp_hdr_len; 11475 bcopy(tcp->tcp_tcph, buf, tcph_len); 11476 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11477 (tcp->tcp_ipha->ipha_dst & 0xffff); 11478 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11479 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11480 len += IP_SIMPLE_HDR_LENGTH; 11481 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11482 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11483 if ((int)tcp->tcp_sum < 0) 11484 tcp->tcp_sum--; 11485 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11486 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11487 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11488 bcopy(buf, tcp->tcp_tcph, tcph_len); 11489 tcp->tcp_ip_hdr_len = len; 11490 tcp->tcp_ipha->ipha_version_and_hdr_length = 11491 (IP_VERSION << 4) | (len >> 2); 11492 len += tcph_len; 11493 tcp->tcp_hdr_len = len; 11494 } 11495 11496 /* 11497 * Copy the standard header into its new location, 11498 * lay in the new options and then update the relevant 11499 * fields in both tcp_t and the standard header. 11500 */ 11501 static int 11502 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11503 { 11504 uint_t tcph_len; 11505 char *ip_optp; 11506 tcph_t *new_tcph; 11507 11508 if (checkonly) { 11509 /* 11510 * do not really set, just pretend to - T_CHECK 11511 */ 11512 if (len != 0) { 11513 /* 11514 * there is value supplied, validate it as if 11515 * for a real set operation. 11516 */ 11517 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11518 return (EINVAL); 11519 } 11520 return (0); 11521 } 11522 11523 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11524 return (EINVAL); 11525 11526 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11527 tcph_len = tcp->tcp_tcp_hdr_len; 11528 new_tcph = (tcph_t *)(ip_optp + len); 11529 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 11530 tcp->tcp_tcph = new_tcph; 11531 bcopy(ptr, ip_optp, len); 11532 11533 len += IP_SIMPLE_HDR_LENGTH; 11534 11535 tcp->tcp_ip_hdr_len = len; 11536 tcp->tcp_ipha->ipha_version_and_hdr_length = 11537 (IP_VERSION << 4) | (len >> 2); 11538 len += tcph_len; 11539 tcp->tcp_hdr_len = len; 11540 if (!TCP_IS_DETACHED(tcp)) { 11541 /* Always allocate room for all options. */ 11542 (void) mi_set_sth_wroff(tcp->tcp_rq, 11543 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11544 } 11545 return (0); 11546 } 11547 11548 /* Get callback routine passed to nd_load by tcp_param_register */ 11549 /* ARGSUSED */ 11550 static int 11551 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11552 { 11553 tcpparam_t *tcppa = (tcpparam_t *)cp; 11554 11555 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11556 return (0); 11557 } 11558 11559 /* 11560 * Walk through the param array specified registering each element with the 11561 * named dispatch handler. 11562 */ 11563 static boolean_t 11564 tcp_param_register(tcpparam_t *tcppa, int cnt) 11565 { 11566 for (; cnt-- > 0; tcppa++) { 11567 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11568 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11569 tcp_param_get, tcp_param_set, 11570 (caddr_t)tcppa)) { 11571 nd_free(&tcp_g_nd); 11572 return (B_FALSE); 11573 } 11574 } 11575 } 11576 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11577 tcp_param_get, tcp_param_set_aligned, 11578 (caddr_t)&tcp_wroff_xtra_param)) { 11579 nd_free(&tcp_g_nd); 11580 return (B_FALSE); 11581 } 11582 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11583 tcp_param_get, tcp_param_set_aligned, 11584 (caddr_t)&tcp_mdt_head_param)) { 11585 nd_free(&tcp_g_nd); 11586 return (B_FALSE); 11587 } 11588 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11589 tcp_param_get, tcp_param_set_aligned, 11590 (caddr_t)&tcp_mdt_tail_param)) { 11591 nd_free(&tcp_g_nd); 11592 return (B_FALSE); 11593 } 11594 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11595 tcp_param_get, tcp_param_set, 11596 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11597 nd_free(&tcp_g_nd); 11598 return (B_FALSE); 11599 } 11600 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11601 tcp_extra_priv_ports_get, NULL, NULL)) { 11602 nd_free(&tcp_g_nd); 11603 return (B_FALSE); 11604 } 11605 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11606 NULL, tcp_extra_priv_ports_add, NULL)) { 11607 nd_free(&tcp_g_nd); 11608 return (B_FALSE); 11609 } 11610 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11611 NULL, tcp_extra_priv_ports_del, NULL)) { 11612 nd_free(&tcp_g_nd); 11613 return (B_FALSE); 11614 } 11615 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11616 NULL)) { 11617 nd_free(&tcp_g_nd); 11618 return (B_FALSE); 11619 } 11620 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11621 NULL, NULL)) { 11622 nd_free(&tcp_g_nd); 11623 return (B_FALSE); 11624 } 11625 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11626 NULL, NULL)) { 11627 nd_free(&tcp_g_nd); 11628 return (B_FALSE); 11629 } 11630 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11631 NULL, NULL)) { 11632 nd_free(&tcp_g_nd); 11633 return (B_FALSE); 11634 } 11635 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11636 NULL, NULL)) { 11637 nd_free(&tcp_g_nd); 11638 return (B_FALSE); 11639 } 11640 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11641 tcp_host_param_set, NULL)) { 11642 nd_free(&tcp_g_nd); 11643 return (B_FALSE); 11644 } 11645 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11646 tcp_host_param_set_ipv6, NULL)) { 11647 nd_free(&tcp_g_nd); 11648 return (B_FALSE); 11649 } 11650 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11651 NULL)) { 11652 nd_free(&tcp_g_nd); 11653 return (B_FALSE); 11654 } 11655 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11656 tcp_reserved_port_list, NULL, NULL)) { 11657 nd_free(&tcp_g_nd); 11658 return (B_FALSE); 11659 } 11660 /* 11661 * Dummy ndd variables - only to convey obsolescence information 11662 * through printing of their name (no get or set routines) 11663 * XXX Remove in future releases ? 11664 */ 11665 if (!nd_load(&tcp_g_nd, 11666 "tcp_close_wait_interval(obsoleted - " 11667 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11668 nd_free(&tcp_g_nd); 11669 return (B_FALSE); 11670 } 11671 return (B_TRUE); 11672 } 11673 11674 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11675 /* ARGSUSED */ 11676 static int 11677 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11678 cred_t *cr) 11679 { 11680 long new_value; 11681 tcpparam_t *tcppa = (tcpparam_t *)cp; 11682 11683 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11684 new_value < tcppa->tcp_param_min || 11685 new_value > tcppa->tcp_param_max) { 11686 return (EINVAL); 11687 } 11688 /* 11689 * Need to make sure new_value is a multiple of 4. If it is not, 11690 * round it up. For future 64 bit requirement, we actually make it 11691 * a multiple of 8. 11692 */ 11693 if (new_value & 0x7) { 11694 new_value = (new_value & ~0x7) + 0x8; 11695 } 11696 tcppa->tcp_param_val = new_value; 11697 return (0); 11698 } 11699 11700 /* Set callback routine passed to nd_load by tcp_param_register */ 11701 /* ARGSUSED */ 11702 static int 11703 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11704 { 11705 long new_value; 11706 tcpparam_t *tcppa = (tcpparam_t *)cp; 11707 11708 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11709 new_value < tcppa->tcp_param_min || 11710 new_value > tcppa->tcp_param_max) { 11711 return (EINVAL); 11712 } 11713 tcppa->tcp_param_val = new_value; 11714 return (0); 11715 } 11716 11717 /* 11718 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11719 * is filled, return as much as we can. The message passed in may be 11720 * multi-part, chained using b_cont. "start" is the starting sequence 11721 * number for this piece. 11722 */ 11723 static mblk_t * 11724 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11725 { 11726 uint32_t end; 11727 mblk_t *mp1; 11728 mblk_t *mp2; 11729 mblk_t *next_mp; 11730 uint32_t u1; 11731 11732 /* Walk through all the new pieces. */ 11733 do { 11734 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11735 (uintptr_t)INT_MAX); 11736 end = start + (int)(mp->b_wptr - mp->b_rptr); 11737 next_mp = mp->b_cont; 11738 if (start == end) { 11739 /* Empty. Blast it. */ 11740 freeb(mp); 11741 continue; 11742 } 11743 mp->b_cont = NULL; 11744 TCP_REASS_SET_SEQ(mp, start); 11745 TCP_REASS_SET_END(mp, end); 11746 mp1 = tcp->tcp_reass_tail; 11747 if (!mp1) { 11748 tcp->tcp_reass_tail = mp; 11749 tcp->tcp_reass_head = mp; 11750 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11751 UPDATE_MIB(&tcp_mib, 11752 tcpInDataUnorderBytes, end - start); 11753 continue; 11754 } 11755 /* New stuff completely beyond tail? */ 11756 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11757 /* Link it on end. */ 11758 mp1->b_cont = mp; 11759 tcp->tcp_reass_tail = mp; 11760 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11761 UPDATE_MIB(&tcp_mib, 11762 tcpInDataUnorderBytes, end - start); 11763 continue; 11764 } 11765 mp1 = tcp->tcp_reass_head; 11766 u1 = TCP_REASS_SEQ(mp1); 11767 /* New stuff at the front? */ 11768 if (SEQ_LT(start, u1)) { 11769 /* Yes... Check for overlap. */ 11770 mp->b_cont = mp1; 11771 tcp->tcp_reass_head = mp; 11772 tcp_reass_elim_overlap(tcp, mp); 11773 continue; 11774 } 11775 /* 11776 * The new piece fits somewhere between the head and tail. 11777 * We find our slot, where mp1 precedes us and mp2 trails. 11778 */ 11779 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11780 u1 = TCP_REASS_SEQ(mp2); 11781 if (SEQ_LEQ(start, u1)) 11782 break; 11783 } 11784 /* Link ourselves in */ 11785 mp->b_cont = mp2; 11786 mp1->b_cont = mp; 11787 11788 /* Trim overlap with following mblk(s) first */ 11789 tcp_reass_elim_overlap(tcp, mp); 11790 11791 /* Trim overlap with preceding mblk */ 11792 tcp_reass_elim_overlap(tcp, mp1); 11793 11794 } while (start = end, mp = next_mp); 11795 mp1 = tcp->tcp_reass_head; 11796 /* Anything ready to go? */ 11797 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11798 return (NULL); 11799 /* Eat what we can off the queue */ 11800 for (;;) { 11801 mp = mp1->b_cont; 11802 end = TCP_REASS_END(mp1); 11803 TCP_REASS_SET_SEQ(mp1, 0); 11804 TCP_REASS_SET_END(mp1, 0); 11805 if (!mp) { 11806 tcp->tcp_reass_tail = NULL; 11807 break; 11808 } 11809 if (end != TCP_REASS_SEQ(mp)) { 11810 mp1->b_cont = NULL; 11811 break; 11812 } 11813 mp1 = mp; 11814 } 11815 mp1 = tcp->tcp_reass_head; 11816 tcp->tcp_reass_head = mp; 11817 return (mp1); 11818 } 11819 11820 /* Eliminate any overlap that mp may have over later mblks */ 11821 static void 11822 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11823 { 11824 uint32_t end; 11825 mblk_t *mp1; 11826 uint32_t u1; 11827 11828 end = TCP_REASS_END(mp); 11829 while ((mp1 = mp->b_cont) != NULL) { 11830 u1 = TCP_REASS_SEQ(mp1); 11831 if (!SEQ_GT(end, u1)) 11832 break; 11833 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11834 mp->b_wptr -= end - u1; 11835 TCP_REASS_SET_END(mp, u1); 11836 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11837 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11838 break; 11839 } 11840 mp->b_cont = mp1->b_cont; 11841 TCP_REASS_SET_SEQ(mp1, 0); 11842 TCP_REASS_SET_END(mp1, 0); 11843 freeb(mp1); 11844 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11845 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11846 } 11847 if (!mp1) 11848 tcp->tcp_reass_tail = mp; 11849 } 11850 11851 /* 11852 * Send up all messages queued on tcp_rcv_list. 11853 */ 11854 static uint_t 11855 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11856 { 11857 mblk_t *mp; 11858 uint_t ret = 0; 11859 uint_t thwin; 11860 #ifdef DEBUG 11861 uint_t cnt = 0; 11862 #endif 11863 /* Can't drain on an eager connection */ 11864 if (tcp->tcp_listener != NULL) 11865 return (ret); 11866 11867 /* 11868 * Handle two cases here: we are currently fused or we were 11869 * previously fused and have some urgent data to be delivered 11870 * upstream. The latter happens because we either ran out of 11871 * memory or were detached and therefore sending the SIGURG was 11872 * deferred until this point. In either case we pass control 11873 * over to tcp_fuse_rcv_drain() since it may need to complete 11874 * some work. 11875 */ 11876 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11877 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11878 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11879 &tcp->tcp_fused_sigurg_mp)) 11880 return (ret); 11881 } 11882 11883 while ((mp = tcp->tcp_rcv_list) != NULL) { 11884 tcp->tcp_rcv_list = mp->b_next; 11885 mp->b_next = NULL; 11886 #ifdef DEBUG 11887 cnt += msgdsize(mp); 11888 #endif 11889 putnext(q, mp); 11890 } 11891 ASSERT(cnt == tcp->tcp_rcv_cnt); 11892 tcp->tcp_rcv_last_head = NULL; 11893 tcp->tcp_rcv_last_tail = NULL; 11894 tcp->tcp_rcv_cnt = 0; 11895 11896 /* Learn the latest rwnd information that we sent to the other side. */ 11897 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11898 << tcp->tcp_rcv_ws; 11899 /* This is peer's calculated send window (our receive window). */ 11900 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11901 /* 11902 * Increase the receive window to max. But we need to do receiver 11903 * SWS avoidance. This means that we need to check the increase of 11904 * of receive window is at least 1 MSS. 11905 */ 11906 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11907 /* 11908 * If the window that the other side knows is less than max 11909 * deferred acks segments, send an update immediately. 11910 */ 11911 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11912 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11913 ret = TH_ACK_NEEDED; 11914 } 11915 tcp->tcp_rwnd = q->q_hiwat; 11916 } 11917 /* No need for the push timer now. */ 11918 if (tcp->tcp_push_tid != 0) { 11919 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11920 tcp->tcp_push_tid = 0; 11921 } 11922 return (ret); 11923 } 11924 11925 /* 11926 * Queue data on tcp_rcv_list which is a b_next chain. 11927 * tcp_rcv_last_head/tail is the last element of this chain. 11928 * Each element of the chain is a b_cont chain. 11929 * 11930 * M_DATA messages are added to the current element. 11931 * Other messages are added as new (b_next) elements. 11932 */ 11933 static void 11934 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11935 { 11936 ASSERT(seg_len == msgdsize(mp)); 11937 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11938 11939 if (tcp->tcp_rcv_list == NULL) { 11940 ASSERT(tcp->tcp_rcv_last_head == NULL); 11941 tcp->tcp_rcv_list = mp; 11942 tcp->tcp_rcv_last_head = mp; 11943 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11944 tcp->tcp_rcv_last_tail->b_cont = mp; 11945 } else { 11946 tcp->tcp_rcv_last_head->b_next = mp; 11947 tcp->tcp_rcv_last_head = mp; 11948 } 11949 11950 while (mp->b_cont) 11951 mp = mp->b_cont; 11952 11953 tcp->tcp_rcv_last_tail = mp; 11954 tcp->tcp_rcv_cnt += seg_len; 11955 tcp->tcp_rwnd -= seg_len; 11956 } 11957 11958 /* 11959 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11960 * 11961 * This is the default entry function into TCP on the read side. TCP is 11962 * always entered via squeue i.e. using squeue's for mutual exclusion. 11963 * When classifier does a lookup to find the tcp, it also puts a reference 11964 * on the conn structure associated so the tcp is guaranteed to exist 11965 * when we come here. We still need to check the state because it might 11966 * as well has been closed. The squeue processing function i.e. squeue_enter, 11967 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11968 * CONN_DEC_REF. 11969 * 11970 * Apart from the default entry point, IP also sends packets directly to 11971 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11972 * connections. 11973 */ 11974 void 11975 tcp_input(void *arg, mblk_t *mp, void *arg2) 11976 { 11977 conn_t *connp = (conn_t *)arg; 11978 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11979 11980 /* arg2 is the sqp */ 11981 ASSERT(arg2 != NULL); 11982 ASSERT(mp != NULL); 11983 11984 /* 11985 * Don't accept any input on a closed tcp as this TCP logically does 11986 * not exist on the system. Don't proceed further with this TCP. 11987 * For eg. this packet could trigger another close of this tcp 11988 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11989 * tcp_clean_death / tcp_closei_local must be called at most once 11990 * on a TCP. In this case we need to refeed the packet into the 11991 * classifier and figure out where the packet should go. Need to 11992 * preserve the recv_ill somehow. Until we figure that out, for 11993 * now just drop the packet if we can't classify the packet. 11994 */ 11995 if (tcp->tcp_state == TCPS_CLOSED || 11996 tcp->tcp_state == TCPS_BOUND) { 11997 conn_t *new_connp; 11998 11999 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12000 if (new_connp != NULL) { 12001 tcp_reinput(new_connp, mp, arg2); 12002 return; 12003 } 12004 /* We failed to classify. For now just drop the packet */ 12005 freemsg(mp); 12006 return; 12007 } 12008 12009 if (DB_TYPE(mp) == M_DATA) 12010 tcp_rput_data(connp, mp, arg2); 12011 else 12012 tcp_rput_common(tcp, mp); 12013 } 12014 12015 /* 12016 * The read side put procedure. 12017 * The packets passed up by ip are assume to be aligned according to 12018 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 12019 */ 12020 static void 12021 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 12022 { 12023 /* 12024 * tcp_rput_data() does not expect M_CTL except for the case 12025 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 12026 * type. Need to make sure that any other M_CTLs don't make 12027 * it to tcp_rput_data since it is not expecting any and doesn't 12028 * check for it. 12029 */ 12030 if (DB_TYPE(mp) == M_CTL) { 12031 switch (*(uint32_t *)(mp->b_rptr)) { 12032 case TCP_IOC_ABORT_CONN: 12033 /* 12034 * Handle connection abort request. 12035 */ 12036 tcp_ioctl_abort_handler(tcp, mp); 12037 return; 12038 case IPSEC_IN: 12039 /* 12040 * Only secure icmp arrive in TCP and they 12041 * don't go through data path. 12042 */ 12043 tcp_icmp_error(tcp, mp); 12044 return; 12045 case IN_PKTINFO: 12046 /* 12047 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 12048 * sockets that are receiving IPv4 traffic. tcp 12049 */ 12050 ASSERT(tcp->tcp_family == AF_INET6); 12051 ASSERT(tcp->tcp_ipv6_recvancillary & 12052 TCP_IPV6_RECVPKTINFO); 12053 tcp_rput_data(tcp->tcp_connp, mp, 12054 tcp->tcp_connp->conn_sqp); 12055 return; 12056 case MDT_IOC_INFO_UPDATE: 12057 /* 12058 * Handle Multidata information update; the 12059 * following routine will free the message. 12060 */ 12061 if (tcp->tcp_connp->conn_mdt_ok) { 12062 tcp_mdt_update(tcp, 12063 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 12064 B_FALSE); 12065 } 12066 freemsg(mp); 12067 return; 12068 default: 12069 break; 12070 } 12071 } 12072 12073 /* No point processing the message if tcp is already closed */ 12074 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 12075 freemsg(mp); 12076 return; 12077 } 12078 12079 tcp_rput_other(tcp, mp); 12080 } 12081 12082 12083 /* The minimum of smoothed mean deviation in RTO calculation. */ 12084 #define TCP_SD_MIN 400 12085 12086 /* 12087 * Set RTO for this connection. The formula is from Jacobson and Karels' 12088 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 12089 * are the same as those in Appendix A.2 of that paper. 12090 * 12091 * m = new measurement 12092 * sa = smoothed RTT average (8 * average estimates). 12093 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 12094 */ 12095 static void 12096 tcp_set_rto(tcp_t *tcp, clock_t rtt) 12097 { 12098 long m = TICK_TO_MSEC(rtt); 12099 clock_t sa = tcp->tcp_rtt_sa; 12100 clock_t sv = tcp->tcp_rtt_sd; 12101 clock_t rto; 12102 12103 BUMP_MIB(&tcp_mib, tcpRttUpdate); 12104 tcp->tcp_rtt_update++; 12105 12106 /* tcp_rtt_sa is not 0 means this is a new sample. */ 12107 if (sa != 0) { 12108 /* 12109 * Update average estimator: 12110 * new rtt = 7/8 old rtt + 1/8 Error 12111 */ 12112 12113 /* m is now Error in estimate. */ 12114 m -= sa >> 3; 12115 if ((sa += m) <= 0) { 12116 /* 12117 * Don't allow the smoothed average to be negative. 12118 * We use 0 to denote reinitialization of the 12119 * variables. 12120 */ 12121 sa = 1; 12122 } 12123 12124 /* 12125 * Update deviation estimator: 12126 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 12127 */ 12128 if (m < 0) 12129 m = -m; 12130 m -= sv >> 2; 12131 sv += m; 12132 } else { 12133 /* 12134 * This follows BSD's implementation. So the reinitialized 12135 * RTO is 3 * m. We cannot go less than 2 because if the 12136 * link is bandwidth dominated, doubling the window size 12137 * during slow start means doubling the RTT. We want to be 12138 * more conservative when we reinitialize our estimates. 3 12139 * is just a convenient number. 12140 */ 12141 sa = m << 3; 12142 sv = m << 1; 12143 } 12144 if (sv < TCP_SD_MIN) { 12145 /* 12146 * We do not know that if sa captures the delay ACK 12147 * effect as in a long train of segments, a receiver 12148 * does not delay its ACKs. So set the minimum of sv 12149 * to be TCP_SD_MIN, which is default to 400 ms, twice 12150 * of BSD DATO. That means the minimum of mean 12151 * deviation is 100 ms. 12152 * 12153 */ 12154 sv = TCP_SD_MIN; 12155 } 12156 tcp->tcp_rtt_sa = sa; 12157 tcp->tcp_rtt_sd = sv; 12158 /* 12159 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12160 * 12161 * Add tcp_rexmit_interval extra in case of extreme environment 12162 * where the algorithm fails to work. The default value of 12163 * tcp_rexmit_interval_extra should be 0. 12164 * 12165 * As we use a finer grained clock than BSD and update 12166 * RTO for every ACKs, add in another .25 of RTT to the 12167 * deviation of RTO to accomodate burstiness of 1/4 of 12168 * window size. 12169 */ 12170 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 12171 12172 if (rto > tcp_rexmit_interval_max) { 12173 tcp->tcp_rto = tcp_rexmit_interval_max; 12174 } else if (rto < tcp_rexmit_interval_min) { 12175 tcp->tcp_rto = tcp_rexmit_interval_min; 12176 } else { 12177 tcp->tcp_rto = rto; 12178 } 12179 12180 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12181 tcp->tcp_timer_backoff = 0; 12182 } 12183 12184 /* 12185 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12186 * send queue which starts at the given seq. no. 12187 * 12188 * Parameters: 12189 * tcp_t *tcp: the tcp instance pointer. 12190 * uint32_t seq: the starting seq. no of the requested segment. 12191 * int32_t *off: after the execution, *off will be the offset to 12192 * the returned mblk which points to the requested seq no. 12193 * It is the caller's responsibility to send in a non-null off. 12194 * 12195 * Return: 12196 * A mblk_t pointer pointing to the requested segment in send queue. 12197 */ 12198 static mblk_t * 12199 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12200 { 12201 int32_t cnt; 12202 mblk_t *mp; 12203 12204 /* Defensive coding. Make sure we don't send incorrect data. */ 12205 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12206 return (NULL); 12207 12208 cnt = seq - tcp->tcp_suna; 12209 mp = tcp->tcp_xmit_head; 12210 while (cnt > 0 && mp != NULL) { 12211 cnt -= mp->b_wptr - mp->b_rptr; 12212 if (cnt < 0) { 12213 cnt += mp->b_wptr - mp->b_rptr; 12214 break; 12215 } 12216 mp = mp->b_cont; 12217 } 12218 ASSERT(mp != NULL); 12219 *off = cnt; 12220 return (mp); 12221 } 12222 12223 /* 12224 * This function handles all retransmissions if SACK is enabled for this 12225 * connection. First it calculates how many segments can be retransmitted 12226 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12227 * segments. A segment is eligible if sack_cnt for that segment is greater 12228 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12229 * all eligible segments, it checks to see if TCP can send some new segments 12230 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12231 * 12232 * Parameters: 12233 * tcp_t *tcp: the tcp structure of the connection. 12234 * uint_t *flags: in return, appropriate value will be set for 12235 * tcp_rput_data(). 12236 */ 12237 static void 12238 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12239 { 12240 notsack_blk_t *notsack_blk; 12241 int32_t usable_swnd; 12242 int32_t mss; 12243 uint32_t seg_len; 12244 mblk_t *xmit_mp; 12245 12246 ASSERT(tcp->tcp_sack_info != NULL); 12247 ASSERT(tcp->tcp_notsack_list != NULL); 12248 ASSERT(tcp->tcp_rexmit == B_FALSE); 12249 12250 /* Defensive coding in case there is a bug... */ 12251 if (tcp->tcp_notsack_list == NULL) { 12252 return; 12253 } 12254 notsack_blk = tcp->tcp_notsack_list; 12255 mss = tcp->tcp_mss; 12256 12257 /* 12258 * Limit the num of outstanding data in the network to be 12259 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12260 */ 12261 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12262 12263 /* At least retransmit 1 MSS of data. */ 12264 if (usable_swnd <= 0) { 12265 usable_swnd = mss; 12266 } 12267 12268 /* Make sure no new RTT samples will be taken. */ 12269 tcp->tcp_csuna = tcp->tcp_snxt; 12270 12271 notsack_blk = tcp->tcp_notsack_list; 12272 while (usable_swnd > 0) { 12273 mblk_t *snxt_mp, *tmp_mp; 12274 tcp_seq begin = tcp->tcp_sack_snxt; 12275 tcp_seq end; 12276 int32_t off; 12277 12278 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12279 if (SEQ_GT(notsack_blk->end, begin) && 12280 (notsack_blk->sack_cnt >= 12281 tcp_dupack_fast_retransmit)) { 12282 end = notsack_blk->end; 12283 if (SEQ_LT(begin, notsack_blk->begin)) { 12284 begin = notsack_blk->begin; 12285 } 12286 break; 12287 } 12288 } 12289 /* 12290 * All holes are filled. Manipulate tcp_cwnd to send more 12291 * if we can. Note that after the SACK recovery, tcp_cwnd is 12292 * set to tcp_cwnd_ssthresh. 12293 */ 12294 if (notsack_blk == NULL) { 12295 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12296 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12297 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12298 ASSERT(tcp->tcp_cwnd > 0); 12299 return; 12300 } else { 12301 usable_swnd = usable_swnd / mss; 12302 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12303 MAX(usable_swnd * mss, mss); 12304 *flags |= TH_XMIT_NEEDED; 12305 return; 12306 } 12307 } 12308 12309 /* 12310 * Note that we may send more than usable_swnd allows here 12311 * because of round off, but no more than 1 MSS of data. 12312 */ 12313 seg_len = end - begin; 12314 if (seg_len > mss) 12315 seg_len = mss; 12316 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12317 ASSERT(snxt_mp != NULL); 12318 /* This should not happen. Defensive coding again... */ 12319 if (snxt_mp == NULL) { 12320 return; 12321 } 12322 12323 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12324 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12325 if (xmit_mp == NULL) 12326 return; 12327 12328 usable_swnd -= seg_len; 12329 tcp->tcp_pipe += seg_len; 12330 tcp->tcp_sack_snxt = begin + seg_len; 12331 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12332 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12333 12334 /* 12335 * Update the send timestamp to avoid false retransmission. 12336 */ 12337 snxt_mp->b_prev = (mblk_t *)lbolt; 12338 12339 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12340 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12341 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12342 /* 12343 * Update tcp_rexmit_max to extend this SACK recovery phase. 12344 * This happens when new data sent during fast recovery is 12345 * also lost. If TCP retransmits those new data, it needs 12346 * to extend SACK recover phase to avoid starting another 12347 * fast retransmit/recovery unnecessarily. 12348 */ 12349 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12350 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12351 } 12352 } 12353 } 12354 12355 /* 12356 * This function handles policy checking at TCP level for non-hard_bound/ 12357 * detached connections. 12358 */ 12359 static boolean_t 12360 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12361 boolean_t secure, boolean_t mctl_present) 12362 { 12363 ipsec_latch_t *ipl = NULL; 12364 ipsec_action_t *act = NULL; 12365 mblk_t *data_mp; 12366 ipsec_in_t *ii; 12367 const char *reason; 12368 kstat_named_t *counter; 12369 12370 ASSERT(mctl_present || !secure); 12371 12372 ASSERT((ipha == NULL && ip6h != NULL) || 12373 (ip6h == NULL && ipha != NULL)); 12374 12375 /* 12376 * We don't necessarily have an ipsec_in_act action to verify 12377 * policy because of assymetrical policy where we have only 12378 * outbound policy and no inbound policy (possible with global 12379 * policy). 12380 */ 12381 if (!secure) { 12382 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12383 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12384 return (B_TRUE); 12385 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 12386 "tcp_check_policy", ipha, ip6h, secure); 12387 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12388 &ipdrops_tcp_clear, &tcp_dropper); 12389 return (B_FALSE); 12390 } 12391 12392 /* 12393 * We have a secure packet. 12394 */ 12395 if (act == NULL) { 12396 ipsec_log_policy_failure(tcp->tcp_wq, 12397 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 12398 secure); 12399 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12400 &ipdrops_tcp_secure, &tcp_dropper); 12401 return (B_FALSE); 12402 } 12403 12404 /* 12405 * XXX This whole routine is currently incorrect. ipl should 12406 * be set to the latch pointer, but is currently not set, so 12407 * we initialize it to NULL to avoid picking up random garbage. 12408 */ 12409 if (ipl == NULL) 12410 return (B_TRUE); 12411 12412 data_mp = first_mp->b_cont; 12413 12414 ii = (ipsec_in_t *)first_mp->b_rptr; 12415 12416 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12417 &counter)) { 12418 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12419 return (B_TRUE); 12420 } 12421 (void) strlog(TCP_MODULE_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12422 "tcp inbound policy mismatch: %s, packet dropped\n", 12423 reason); 12424 BUMP_MIB(&ip_mib, ipsecInFailed); 12425 12426 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12427 return (B_FALSE); 12428 } 12429 12430 /* 12431 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12432 * retransmission after a timeout. 12433 * 12434 * To limit the number of duplicate segments, we limit the number of segment 12435 * to be sent in one time to tcp_snd_burst, the burst variable. 12436 */ 12437 static void 12438 tcp_ss_rexmit(tcp_t *tcp) 12439 { 12440 uint32_t snxt; 12441 uint32_t smax; 12442 int32_t win; 12443 int32_t mss; 12444 int32_t off; 12445 int32_t burst = tcp->tcp_snd_burst; 12446 mblk_t *snxt_mp; 12447 12448 /* 12449 * Note that tcp_rexmit can be set even though TCP has retransmitted 12450 * all unack'ed segments. 12451 */ 12452 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12453 smax = tcp->tcp_rexmit_max; 12454 snxt = tcp->tcp_rexmit_nxt; 12455 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12456 snxt = tcp->tcp_suna; 12457 } 12458 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12459 win -= snxt - tcp->tcp_suna; 12460 mss = tcp->tcp_mss; 12461 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12462 12463 while (SEQ_LT(snxt, smax) && (win > 0) && 12464 (burst > 0) && (snxt_mp != NULL)) { 12465 mblk_t *xmit_mp; 12466 mblk_t *old_snxt_mp = snxt_mp; 12467 uint32_t cnt = mss; 12468 12469 if (win < cnt) { 12470 cnt = win; 12471 } 12472 if (SEQ_GT(snxt + cnt, smax)) { 12473 cnt = smax - snxt; 12474 } 12475 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12476 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12477 if (xmit_mp == NULL) 12478 return; 12479 12480 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12481 12482 snxt += cnt; 12483 win -= cnt; 12484 /* 12485 * Update the send timestamp to avoid false 12486 * retransmission. 12487 */ 12488 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12489 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12490 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12491 12492 tcp->tcp_rexmit_nxt = snxt; 12493 burst--; 12494 } 12495 /* 12496 * If we have transmitted all we have at the time 12497 * we started the retranmission, we can leave 12498 * the rest of the job to tcp_wput_data(). But we 12499 * need to check the send window first. If the 12500 * win is not 0, go on with tcp_wput_data(). 12501 */ 12502 if (SEQ_LT(snxt, smax) || win == 0) { 12503 return; 12504 } 12505 } 12506 /* Only call tcp_wput_data() if there is data to be sent. */ 12507 if (tcp->tcp_unsent) { 12508 tcp_wput_data(tcp, NULL, B_FALSE); 12509 } 12510 } 12511 12512 /* 12513 * Process all TCP option in SYN segment. Note that this function should 12514 * be called after tcp_adapt_ire() is called so that the necessary info 12515 * from IRE is already set in the tcp structure. 12516 * 12517 * This function sets up the correct tcp_mss value according to the 12518 * MSS option value and our header size. It also sets up the window scale 12519 * and timestamp values, and initialize SACK info blocks. But it does not 12520 * change receive window size after setting the tcp_mss value. The caller 12521 * should do the appropriate change. 12522 */ 12523 void 12524 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12525 { 12526 int options; 12527 tcp_opt_t tcpopt; 12528 uint32_t mss_max; 12529 char *tmp_tcph; 12530 12531 tcpopt.tcp = NULL; 12532 options = tcp_parse_options(tcph, &tcpopt); 12533 12534 /* 12535 * Process MSS option. Note that MSS option value does not account 12536 * for IP or TCP options. This means that it is equal to MTU - minimum 12537 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12538 * IPv6. 12539 */ 12540 if (!(options & TCP_OPT_MSS_PRESENT)) { 12541 if (tcp->tcp_ipversion == IPV4_VERSION) 12542 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12543 else 12544 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12545 } else { 12546 if (tcp->tcp_ipversion == IPV4_VERSION) 12547 mss_max = tcp_mss_max_ipv4; 12548 else 12549 mss_max = tcp_mss_max_ipv6; 12550 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12551 tcpopt.tcp_opt_mss = tcp_mss_min; 12552 else if (tcpopt.tcp_opt_mss > mss_max) 12553 tcpopt.tcp_opt_mss = mss_max; 12554 } 12555 12556 /* Process Window Scale option. */ 12557 if (options & TCP_OPT_WSCALE_PRESENT) { 12558 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12559 tcp->tcp_snd_ws_ok = B_TRUE; 12560 } else { 12561 tcp->tcp_snd_ws = B_FALSE; 12562 tcp->tcp_snd_ws_ok = B_FALSE; 12563 tcp->tcp_rcv_ws = B_FALSE; 12564 } 12565 12566 /* Process Timestamp option. */ 12567 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12568 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12569 tmp_tcph = (char *)tcp->tcp_tcph; 12570 12571 tcp->tcp_snd_ts_ok = B_TRUE; 12572 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12573 tcp->tcp_last_rcv_lbolt = lbolt64; 12574 ASSERT(OK_32PTR(tmp_tcph)); 12575 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12576 12577 /* Fill in our template header with basic timestamp option. */ 12578 tmp_tcph += tcp->tcp_tcp_hdr_len; 12579 tmp_tcph[0] = TCPOPT_NOP; 12580 tmp_tcph[1] = TCPOPT_NOP; 12581 tmp_tcph[2] = TCPOPT_TSTAMP; 12582 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12583 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12584 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12585 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12586 } else { 12587 tcp->tcp_snd_ts_ok = B_FALSE; 12588 } 12589 12590 /* 12591 * Process SACK options. If SACK is enabled for this connection, 12592 * then allocate the SACK info structure. Note the following ways 12593 * when tcp_snd_sack_ok is set to true. 12594 * 12595 * For active connection: in tcp_adapt_ire() called in 12596 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12597 * is checked. 12598 * 12599 * For passive connection: in tcp_adapt_ire() called in 12600 * tcp_accept_comm(). 12601 * 12602 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12603 * That check makes sure that if we did not send a SACK OK option, 12604 * we will not enable SACK for this connection even though the other 12605 * side sends us SACK OK option. For active connection, the SACK 12606 * info structure has already been allocated. So we need to free 12607 * it if SACK is disabled. 12608 */ 12609 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12610 (tcp->tcp_snd_sack_ok || 12611 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12612 /* This should be true only in the passive case. */ 12613 if (tcp->tcp_sack_info == NULL) { 12614 ASSERT(TCP_IS_DETACHED(tcp)); 12615 tcp->tcp_sack_info = 12616 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12617 } 12618 if (tcp->tcp_sack_info == NULL) { 12619 tcp->tcp_snd_sack_ok = B_FALSE; 12620 } else { 12621 tcp->tcp_snd_sack_ok = B_TRUE; 12622 if (tcp->tcp_snd_ts_ok) { 12623 tcp->tcp_max_sack_blk = 3; 12624 } else { 12625 tcp->tcp_max_sack_blk = 4; 12626 } 12627 } 12628 } else { 12629 /* 12630 * Resetting tcp_snd_sack_ok to B_FALSE so that 12631 * no SACK info will be used for this 12632 * connection. This assumes that SACK usage 12633 * permission is negotiated. This may need 12634 * to be changed once this is clarified. 12635 */ 12636 if (tcp->tcp_sack_info != NULL) { 12637 ASSERT(tcp->tcp_notsack_list == NULL); 12638 kmem_cache_free(tcp_sack_info_cache, 12639 tcp->tcp_sack_info); 12640 tcp->tcp_sack_info = NULL; 12641 } 12642 tcp->tcp_snd_sack_ok = B_FALSE; 12643 } 12644 12645 /* 12646 * Now we know the exact TCP/IP header length, subtract 12647 * that from tcp_mss to get our side's MSS. 12648 */ 12649 tcp->tcp_mss -= tcp->tcp_hdr_len; 12650 /* 12651 * Here we assume that the other side's header size will be equal to 12652 * our header size. We calculate the real MSS accordingly. Need to 12653 * take into additional stuffs IPsec puts in. 12654 * 12655 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12656 */ 12657 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12658 ((tcp->tcp_ipversion == IPV4_VERSION ? 12659 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12660 12661 /* 12662 * Set MSS to the smaller one of both ends of the connection. 12663 * We should not have called tcp_mss_set() before, but our 12664 * side of the MSS should have been set to a proper value 12665 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12666 * STREAM head parameters properly. 12667 * 12668 * If we have a larger-than-16-bit window but the other side 12669 * didn't want to do window scale, tcp_rwnd_set() will take 12670 * care of that. 12671 */ 12672 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12673 } 12674 12675 /* 12676 * Sends the T_CONN_IND to the listener. The caller calls this 12677 * functions via squeue to get inside the listener's perimeter 12678 * once the 3 way hand shake is done a T_CONN_IND needs to be 12679 * sent. As an optimization, the caller can call this directly 12680 * if listener's perimeter is same as eager's. 12681 */ 12682 /* ARGSUSED */ 12683 void 12684 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12685 { 12686 conn_t *lconnp = (conn_t *)arg; 12687 tcp_t *listener = lconnp->conn_tcp; 12688 tcp_t *tcp; 12689 struct T_conn_ind *conn_ind; 12690 ipaddr_t *addr_cache; 12691 boolean_t need_send_conn_ind = B_FALSE; 12692 12693 /* retrieve the eager */ 12694 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12695 ASSERT(conn_ind->OPT_offset != 0 && 12696 conn_ind->OPT_length == sizeof (intptr_t)); 12697 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12698 conn_ind->OPT_length); 12699 12700 /* 12701 * TLI/XTI applications will get confused by 12702 * sending eager as an option since it violates 12703 * the option semantics. So remove the eager as 12704 * option since TLI/XTI app doesn't need it anyway. 12705 */ 12706 if (!TCP_IS_SOCKET(listener)) { 12707 conn_ind->OPT_length = 0; 12708 conn_ind->OPT_offset = 0; 12709 } 12710 if (listener->tcp_state == TCPS_CLOSED || 12711 TCP_IS_DETACHED(listener)) { 12712 /* 12713 * If listener has closed, it would have caused a 12714 * a cleanup/blowoff to happen for the eager. We 12715 * just need to return. 12716 */ 12717 freemsg(mp); 12718 return; 12719 } 12720 12721 12722 /* 12723 * if the conn_req_q is full defer passing up the 12724 * T_CONN_IND until space is availabe after t_accept() 12725 * processing 12726 */ 12727 mutex_enter(&listener->tcp_eager_lock); 12728 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12729 tcp_t *tail; 12730 12731 /* 12732 * The eager already has an extra ref put in tcp_rput_data 12733 * so that it stays till accept comes back even though it 12734 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12735 */ 12736 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12737 listener->tcp_conn_req_cnt_q0--; 12738 listener->tcp_conn_req_cnt_q++; 12739 12740 /* Move from SYN_RCVD to ESTABLISHED list */ 12741 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12742 tcp->tcp_eager_prev_q0; 12743 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12744 tcp->tcp_eager_next_q0; 12745 tcp->tcp_eager_prev_q0 = NULL; 12746 tcp->tcp_eager_next_q0 = NULL; 12747 12748 /* 12749 * Insert at end of the queue because sockfs 12750 * sends down T_CONN_RES in chronological 12751 * order. Leaving the older conn indications 12752 * at front of the queue helps reducing search 12753 * time. 12754 */ 12755 tail = listener->tcp_eager_last_q; 12756 if (tail != NULL) 12757 tail->tcp_eager_next_q = tcp; 12758 else 12759 listener->tcp_eager_next_q = tcp; 12760 listener->tcp_eager_last_q = tcp; 12761 tcp->tcp_eager_next_q = NULL; 12762 /* 12763 * Delay sending up the T_conn_ind until we are 12764 * done with the eager. Once we have have sent up 12765 * the T_conn_ind, the accept can potentially complete 12766 * any time and release the refhold we have on the eager. 12767 */ 12768 need_send_conn_ind = B_TRUE; 12769 } else { 12770 /* 12771 * Defer connection on q0 and set deferred 12772 * connection bit true 12773 */ 12774 tcp->tcp_conn_def_q0 = B_TRUE; 12775 12776 /* take tcp out of q0 ... */ 12777 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12778 tcp->tcp_eager_next_q0; 12779 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12780 tcp->tcp_eager_prev_q0; 12781 12782 /* ... and place it at the end of q0 */ 12783 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12784 tcp->tcp_eager_next_q0 = listener; 12785 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12786 listener->tcp_eager_prev_q0 = tcp; 12787 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12788 } 12789 12790 /* we have timed out before */ 12791 if (tcp->tcp_syn_rcvd_timeout != 0) { 12792 tcp->tcp_syn_rcvd_timeout = 0; 12793 listener->tcp_syn_rcvd_timeout--; 12794 if (listener->tcp_syn_defense && 12795 listener->tcp_syn_rcvd_timeout <= 12796 (tcp_conn_req_max_q0 >> 5) && 12797 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12798 listener->tcp_last_rcv_lbolt)) { 12799 /* 12800 * Turn off the defense mode if we 12801 * believe the SYN attack is over. 12802 */ 12803 listener->tcp_syn_defense = B_FALSE; 12804 if (listener->tcp_ip_addr_cache) { 12805 kmem_free((void *)listener->tcp_ip_addr_cache, 12806 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12807 listener->tcp_ip_addr_cache = NULL; 12808 } 12809 } 12810 } 12811 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12812 if (addr_cache != NULL) { 12813 /* 12814 * We have finished a 3-way handshake with this 12815 * remote host. This proves the IP addr is good. 12816 * Cache it! 12817 */ 12818 addr_cache[IP_ADDR_CACHE_HASH( 12819 tcp->tcp_remote)] = tcp->tcp_remote; 12820 } 12821 mutex_exit(&listener->tcp_eager_lock); 12822 if (need_send_conn_ind) 12823 putnext(listener->tcp_rq, mp); 12824 } 12825 12826 mblk_t * 12827 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12828 uint_t *ifindexp, ip6_pkt_t *ippp) 12829 { 12830 in_pktinfo_t *pinfo; 12831 ip6_t *ip6h; 12832 uchar_t *rptr; 12833 mblk_t *first_mp = mp; 12834 boolean_t mctl_present = B_FALSE; 12835 uint_t ifindex = 0; 12836 ip6_pkt_t ipp; 12837 uint_t ipvers; 12838 uint_t ip_hdr_len; 12839 12840 rptr = mp->b_rptr; 12841 ASSERT(OK_32PTR(rptr)); 12842 ASSERT(tcp != NULL); 12843 ipp.ipp_fields = 0; 12844 12845 switch DB_TYPE(mp) { 12846 case M_CTL: 12847 mp = mp->b_cont; 12848 if (mp == NULL) { 12849 freemsg(first_mp); 12850 return (NULL); 12851 } 12852 if (DB_TYPE(mp) != M_DATA) { 12853 freemsg(first_mp); 12854 return (NULL); 12855 } 12856 mctl_present = B_TRUE; 12857 break; 12858 case M_DATA: 12859 break; 12860 default: 12861 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12862 freemsg(mp); 12863 return (NULL); 12864 } 12865 ipvers = IPH_HDR_VERSION(rptr); 12866 if (ipvers == IPV4_VERSION) { 12867 if (tcp == NULL) { 12868 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12869 goto done; 12870 } 12871 12872 ipp.ipp_fields |= IPPF_HOPLIMIT; 12873 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12874 12875 /* 12876 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12877 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12878 */ 12879 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12880 mctl_present) { 12881 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12882 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12883 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12884 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12885 ipp.ipp_fields |= IPPF_IFINDEX; 12886 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12887 ifindex = pinfo->in_pkt_ifindex; 12888 } 12889 freeb(first_mp); 12890 mctl_present = B_FALSE; 12891 } 12892 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12893 } else { 12894 ip6h = (ip6_t *)rptr; 12895 12896 ASSERT(ipvers == IPV6_VERSION); 12897 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12898 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12899 ipp.ipp_hoplimit = ip6h->ip6_hops; 12900 12901 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12902 uint8_t nexthdrp; 12903 12904 /* Look for ifindex information */ 12905 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12906 ip6i_t *ip6i = (ip6i_t *)ip6h; 12907 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12908 BUMP_MIB(&ip_mib, tcpInErrs); 12909 freemsg(first_mp); 12910 return (NULL); 12911 } 12912 12913 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12914 ASSERT(ip6i->ip6i_ifindex != 0); 12915 ipp.ipp_fields |= IPPF_IFINDEX; 12916 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12917 ifindex = ip6i->ip6i_ifindex; 12918 } 12919 rptr = (uchar_t *)&ip6i[1]; 12920 mp->b_rptr = rptr; 12921 if (rptr == mp->b_wptr) { 12922 mblk_t *mp1; 12923 mp1 = mp->b_cont; 12924 freeb(mp); 12925 mp = mp1; 12926 rptr = mp->b_rptr; 12927 } 12928 if (MBLKL(mp) < IPV6_HDR_LEN + 12929 sizeof (tcph_t)) { 12930 BUMP_MIB(&ip_mib, tcpInErrs); 12931 freemsg(first_mp); 12932 return (NULL); 12933 } 12934 ip6h = (ip6_t *)rptr; 12935 } 12936 12937 /* 12938 * Find any potentially interesting extension headers 12939 * as well as the length of the IPv6 + extension 12940 * headers. 12941 */ 12942 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12943 /* Verify if this is a TCP packet */ 12944 if (nexthdrp != IPPROTO_TCP) { 12945 BUMP_MIB(&ip_mib, tcpInErrs); 12946 freemsg(first_mp); 12947 return (NULL); 12948 } 12949 } else { 12950 ip_hdr_len = IPV6_HDR_LEN; 12951 } 12952 } 12953 12954 done: 12955 if (ipversp != NULL) 12956 *ipversp = ipvers; 12957 if (ip_hdr_lenp != NULL) 12958 *ip_hdr_lenp = ip_hdr_len; 12959 if (ippp != NULL) 12960 *ippp = ipp; 12961 if (ifindexp != NULL) 12962 *ifindexp = ifindex; 12963 if (mctl_present) { 12964 freeb(first_mp); 12965 } 12966 return (mp); 12967 } 12968 12969 /* 12970 * Handle M_DATA messages from IP. Its called directly from IP via 12971 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12972 * in this path. 12973 * 12974 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12975 * v4 and v6), we are called through tcp_input() and a M_CTL can 12976 * be present for options but tcp_find_pktinfo() deals with it. We 12977 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12978 * 12979 * The first argument is always the connp/tcp to which the mp belongs. 12980 * There are no exceptions to this rule. The caller has already put 12981 * a reference on this connp/tcp and once tcp_rput_data() returns, 12982 * the squeue will do the refrele. 12983 * 12984 * The TH_SYN for the listener directly go to tcp_conn_request via 12985 * squeue. 12986 * 12987 * sqp: NULL = recursive, sqp != NULL means called from squeue 12988 */ 12989 void 12990 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12991 { 12992 int32_t bytes_acked; 12993 int32_t gap; 12994 mblk_t *mp1; 12995 uint_t flags; 12996 uint32_t new_swnd = 0; 12997 uchar_t *iphdr; 12998 uchar_t *rptr; 12999 int32_t rgap; 13000 uint32_t seg_ack; 13001 int seg_len; 13002 uint_t ip_hdr_len; 13003 uint32_t seg_seq; 13004 tcph_t *tcph; 13005 int urp; 13006 tcp_opt_t tcpopt; 13007 uint_t ipvers; 13008 ip6_pkt_t ipp; 13009 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 13010 uint32_t cwnd; 13011 uint32_t add; 13012 int npkt; 13013 int mss; 13014 conn_t *connp = (conn_t *)arg; 13015 squeue_t *sqp = (squeue_t *)arg2; 13016 tcp_t *tcp = connp->conn_tcp; 13017 13018 /* 13019 * RST from fused tcp loopback peer should trigger an unfuse. 13020 */ 13021 if (tcp->tcp_fused) { 13022 TCP_STAT(tcp_fusion_aborted); 13023 tcp_unfuse(tcp); 13024 } 13025 13026 iphdr = mp->b_rptr; 13027 rptr = mp->b_rptr; 13028 ASSERT(OK_32PTR(rptr)); 13029 13030 /* 13031 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 13032 * processing here. For rest call tcp_find_pktinfo to fill up the 13033 * necessary information. 13034 */ 13035 if (IPCL_IS_TCP4(connp)) { 13036 ipvers = IPV4_VERSION; 13037 ip_hdr_len = IPH_HDR_LENGTH(rptr); 13038 } else { 13039 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 13040 NULL, &ipp); 13041 if (mp == NULL) { 13042 TCP_STAT(tcp_rput_v6_error); 13043 return; 13044 } 13045 iphdr = mp->b_rptr; 13046 rptr = mp->b_rptr; 13047 } 13048 ASSERT(DB_TYPE(mp) == M_DATA); 13049 13050 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13051 seg_seq = ABE32_TO_U32(tcph->th_seq); 13052 seg_ack = ABE32_TO_U32(tcph->th_ack); 13053 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 13054 seg_len = (int)(mp->b_wptr - rptr) - 13055 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 13056 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 13057 do { 13058 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13059 (uintptr_t)INT_MAX); 13060 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 13061 } while ((mp1 = mp1->b_cont) != NULL && 13062 mp1->b_datap->db_type == M_DATA); 13063 } 13064 13065 if (tcp->tcp_state == TCPS_TIME_WAIT) { 13066 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 13067 seg_len, tcph); 13068 return; 13069 } 13070 13071 if (sqp != NULL) { 13072 /* 13073 * This is the correct place to update tcp_last_recv_time. Note 13074 * that it is also updated for tcp structure that belongs to 13075 * global and listener queues which do not really need updating. 13076 * But that should not cause any harm. And it is updated for 13077 * all kinds of incoming segments, not only for data segments. 13078 */ 13079 tcp->tcp_last_recv_time = lbolt; 13080 } 13081 13082 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13083 13084 BUMP_LOCAL(tcp->tcp_ibsegs); 13085 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 13086 13087 if ((flags & TH_URG) && sqp != NULL) { 13088 /* 13089 * TCP can't handle urgent pointers that arrive before 13090 * the connection has been accept()ed since it can't 13091 * buffer OOB data. Discard segment if this happens. 13092 * 13093 * Nor can it reassemble urgent pointers, so discard 13094 * if it's not the next segment expected. 13095 * 13096 * Otherwise, collapse chain into one mblk (discard if 13097 * that fails). This makes sure the headers, retransmitted 13098 * data, and new data all are in the same mblk. 13099 */ 13100 ASSERT(mp != NULL); 13101 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 13102 freemsg(mp); 13103 return; 13104 } 13105 /* Update pointers into message */ 13106 iphdr = rptr = mp->b_rptr; 13107 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13108 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13109 /* 13110 * Since we can't handle any data with this urgent 13111 * pointer that is out of sequence, we expunge 13112 * the data. This allows us to still register 13113 * the urgent mark and generate the M_PCSIG, 13114 * which we can do. 13115 */ 13116 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13117 seg_len = 0; 13118 } 13119 } 13120 13121 switch (tcp->tcp_state) { 13122 case TCPS_SYN_SENT: 13123 if (flags & TH_ACK) { 13124 /* 13125 * Note that our stack cannot send data before a 13126 * connection is established, therefore the 13127 * following check is valid. Otherwise, it has 13128 * to be changed. 13129 */ 13130 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13131 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13132 freemsg(mp); 13133 if (flags & TH_RST) 13134 return; 13135 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13136 tcp, seg_ack, 0, TH_RST); 13137 return; 13138 } 13139 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13140 } 13141 if (flags & TH_RST) { 13142 freemsg(mp); 13143 if (flags & TH_ACK) 13144 (void) tcp_clean_death(tcp, 13145 ECONNREFUSED, 13); 13146 return; 13147 } 13148 if (!(flags & TH_SYN)) { 13149 freemsg(mp); 13150 return; 13151 } 13152 13153 /* Process all TCP options. */ 13154 tcp_process_options(tcp, tcph); 13155 /* 13156 * The following changes our rwnd to be a multiple of the 13157 * MIN(peer MSS, our MSS) for performance reason. 13158 */ 13159 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13160 tcp->tcp_mss)); 13161 13162 /* Is the other end ECN capable? */ 13163 if (tcp->tcp_ecn_ok) { 13164 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13165 tcp->tcp_ecn_ok = B_FALSE; 13166 } 13167 } 13168 /* 13169 * Clear ECN flags because it may interfere with later 13170 * processing. 13171 */ 13172 flags &= ~(TH_ECE|TH_CWR); 13173 13174 tcp->tcp_irs = seg_seq; 13175 tcp->tcp_rack = seg_seq; 13176 tcp->tcp_rnxt = seg_seq + 1; 13177 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13178 if (!TCP_IS_DETACHED(tcp)) { 13179 /* Allocate room for SACK options if needed. */ 13180 if (tcp->tcp_snd_sack_ok) { 13181 (void) mi_set_sth_wroff(tcp->tcp_rq, 13182 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13183 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 13184 } else { 13185 (void) mi_set_sth_wroff(tcp->tcp_rq, 13186 tcp->tcp_hdr_len + 13187 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 13188 } 13189 } 13190 if (flags & TH_ACK) { 13191 /* 13192 * If we can't get the confirmation upstream, pretend 13193 * we didn't even see this one. 13194 * 13195 * XXX: how can we pretend we didn't see it if we 13196 * have updated rnxt et. al. 13197 * 13198 * For loopback we defer sending up the T_CONN_CON 13199 * until after some checks below. 13200 */ 13201 mp1 = NULL; 13202 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13203 tcp->tcp_loopback ? &mp1 : NULL)) { 13204 freemsg(mp); 13205 return; 13206 } 13207 /* SYN was acked - making progress */ 13208 if (tcp->tcp_ipversion == IPV6_VERSION) 13209 tcp->tcp_ip_forward_progress = B_TRUE; 13210 13211 /* One for the SYN */ 13212 tcp->tcp_suna = tcp->tcp_iss + 1; 13213 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13214 tcp->tcp_state = TCPS_ESTABLISHED; 13215 13216 /* 13217 * If SYN was retransmitted, need to reset all 13218 * retransmission info. This is because this 13219 * segment will be treated as a dup ACK. 13220 */ 13221 if (tcp->tcp_rexmit) { 13222 tcp->tcp_rexmit = B_FALSE; 13223 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13224 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13225 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13226 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13227 tcp->tcp_ms_we_have_waited = 0; 13228 13229 /* 13230 * Set tcp_cwnd back to 1 MSS, per 13231 * recommendation from 13232 * draft-floyd-incr-init-win-01.txt, 13233 * Increasing TCP's Initial Window. 13234 */ 13235 tcp->tcp_cwnd = tcp->tcp_mss; 13236 } 13237 13238 tcp->tcp_swl1 = seg_seq; 13239 tcp->tcp_swl2 = seg_ack; 13240 13241 new_swnd = BE16_TO_U16(tcph->th_win); 13242 tcp->tcp_swnd = new_swnd; 13243 if (new_swnd > tcp->tcp_max_swnd) 13244 tcp->tcp_max_swnd = new_swnd; 13245 13246 /* 13247 * Always send the three-way handshake ack immediately 13248 * in order to make the connection complete as soon as 13249 * possible on the accepting host. 13250 */ 13251 flags |= TH_ACK_NEEDED; 13252 13253 /* 13254 * Special case for loopback. At this point we have 13255 * received SYN-ACK from the remote endpoint. In 13256 * order to ensure that both endpoints reach the 13257 * fused state prior to any data exchange, the final 13258 * ACK needs to be sent before we indicate T_CONN_CON 13259 * to the module upstream. 13260 */ 13261 if (tcp->tcp_loopback) { 13262 mblk_t *ack_mp; 13263 13264 ASSERT(!tcp->tcp_unfusable); 13265 ASSERT(mp1 != NULL); 13266 /* 13267 * For loopback, we always get a pure SYN-ACK 13268 * and only need to send back the final ACK 13269 * with no data (this is because the other 13270 * tcp is ours and we don't do T/TCP). This 13271 * final ACK triggers the passive side to 13272 * perform fusion in ESTABLISHED state. 13273 */ 13274 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13275 if (tcp->tcp_ack_tid != 0) { 13276 (void) TCP_TIMER_CANCEL(tcp, 13277 tcp->tcp_ack_tid); 13278 tcp->tcp_ack_tid = 0; 13279 } 13280 TCP_RECORD_TRACE(tcp, ack_mp, 13281 TCP_TRACE_SEND_PKT); 13282 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13283 BUMP_LOCAL(tcp->tcp_obsegs); 13284 BUMP_MIB(&tcp_mib, tcpOutAck); 13285 13286 /* Send up T_CONN_CON */ 13287 putnext(tcp->tcp_rq, mp1); 13288 13289 freemsg(mp); 13290 return; 13291 } 13292 /* 13293 * Forget fusion; we need to handle more 13294 * complex cases below. Send the deferred 13295 * T_CONN_CON message upstream and proceed 13296 * as usual. Mark this tcp as not capable 13297 * of fusion. 13298 */ 13299 TCP_STAT(tcp_fusion_unfusable); 13300 tcp->tcp_unfusable = B_TRUE; 13301 putnext(tcp->tcp_rq, mp1); 13302 } 13303 13304 /* 13305 * Check to see if there is data to be sent. If 13306 * yes, set the transmit flag. Then check to see 13307 * if received data processing needs to be done. 13308 * If not, go straight to xmit_check. This short 13309 * cut is OK as we don't support T/TCP. 13310 */ 13311 if (tcp->tcp_unsent) 13312 flags |= TH_XMIT_NEEDED; 13313 13314 if (seg_len == 0 && !(flags & TH_URG)) { 13315 freemsg(mp); 13316 goto xmit_check; 13317 } 13318 13319 flags &= ~TH_SYN; 13320 seg_seq++; 13321 break; 13322 } 13323 tcp->tcp_state = TCPS_SYN_RCVD; 13324 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13325 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13326 if (mp1) { 13327 mblk_setcred(mp1, tcp->tcp_cred); 13328 DB_CPID(mp1) = tcp->tcp_cpid; 13329 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13330 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13331 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13332 } 13333 freemsg(mp); 13334 return; 13335 case TCPS_SYN_RCVD: 13336 if (flags & TH_ACK) { 13337 /* 13338 * In this state, a SYN|ACK packet is either bogus 13339 * because the other side must be ACKing our SYN which 13340 * indicates it has seen the ACK for their SYN and 13341 * shouldn't retransmit it or we're crossing SYNs 13342 * on active open. 13343 */ 13344 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13345 freemsg(mp); 13346 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13347 tcp, seg_ack, 0, TH_RST); 13348 return; 13349 } 13350 /* 13351 * NOTE: RFC 793 pg. 72 says this should be 13352 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13353 * but that would mean we have an ack that ignored 13354 * our SYN. 13355 */ 13356 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13357 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13358 freemsg(mp); 13359 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13360 tcp, seg_ack, 0, TH_RST); 13361 return; 13362 } 13363 } 13364 break; 13365 case TCPS_LISTEN: 13366 /* 13367 * Only a TLI listener can come through this path when a 13368 * acceptor is going back to be a listener and a packet 13369 * for the acceptor hits the classifier. For a socket 13370 * listener, this can never happen because a listener 13371 * can never accept connection on itself and hence a 13372 * socket acceptor can not go back to being a listener. 13373 */ 13374 ASSERT(!TCP_IS_SOCKET(tcp)); 13375 /*FALLTHRU*/ 13376 case TCPS_CLOSED: 13377 case TCPS_BOUND: { 13378 conn_t *new_connp; 13379 13380 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13381 if (new_connp != NULL) { 13382 tcp_reinput(new_connp, mp, connp->conn_sqp); 13383 return; 13384 } 13385 /* We failed to classify. For now just drop the packet */ 13386 freemsg(mp); 13387 return; 13388 } 13389 case TCPS_IDLE: 13390 /* 13391 * Handle the case where the tcp_clean_death() has happened 13392 * on a connection (application hasn't closed yet) but a packet 13393 * was already queued on squeue before tcp_clean_death() 13394 * was processed. Calling tcp_clean_death() twice on same 13395 * connection can result in weird behaviour. 13396 */ 13397 freemsg(mp); 13398 return; 13399 default: 13400 break; 13401 } 13402 13403 /* 13404 * Already on the correct queue/perimeter. 13405 * If this is a detached connection and not an eager 13406 * connection hanging off a listener then new data 13407 * (past the FIN) will cause a reset. 13408 * We do a special check here where it 13409 * is out of the main line, rather than check 13410 * if we are detached every time we see new 13411 * data down below. 13412 */ 13413 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13414 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13415 BUMP_MIB(&tcp_mib, tcpInClosed); 13416 TCP_RECORD_TRACE(tcp, 13417 mp, TCP_TRACE_RECV_PKT); 13418 freemsg(mp); 13419 tcp_xmit_ctl("new data when detached", tcp, 13420 tcp->tcp_snxt, 0, TH_RST); 13421 (void) tcp_clean_death(tcp, EPROTO, 12); 13422 return; 13423 } 13424 13425 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13426 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13427 new_swnd = BE16_TO_U16(tcph->th_win) << 13428 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13429 mss = tcp->tcp_mss; 13430 13431 if (tcp->tcp_snd_ts_ok) { 13432 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13433 /* 13434 * This segment is not acceptable. 13435 * Drop it and send back an ACK. 13436 */ 13437 freemsg(mp); 13438 flags |= TH_ACK_NEEDED; 13439 goto ack_check; 13440 } 13441 } else if (tcp->tcp_snd_sack_ok) { 13442 ASSERT(tcp->tcp_sack_info != NULL); 13443 tcpopt.tcp = tcp; 13444 /* 13445 * SACK info in already updated in tcp_parse_options. Ignore 13446 * all other TCP options... 13447 */ 13448 (void) tcp_parse_options(tcph, &tcpopt); 13449 } 13450 try_again:; 13451 gap = seg_seq - tcp->tcp_rnxt; 13452 rgap = tcp->tcp_rwnd - (gap + seg_len); 13453 /* 13454 * gap is the amount of sequence space between what we expect to see 13455 * and what we got for seg_seq. A positive value for gap means 13456 * something got lost. A negative value means we got some old stuff. 13457 */ 13458 if (gap < 0) { 13459 /* Old stuff present. Is the SYN in there? */ 13460 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13461 (seg_len != 0)) { 13462 flags &= ~TH_SYN; 13463 seg_seq++; 13464 urp--; 13465 /* Recompute the gaps after noting the SYN. */ 13466 goto try_again; 13467 } 13468 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13469 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13470 (seg_len > -gap ? -gap : seg_len)); 13471 /* Remove the old stuff from seg_len. */ 13472 seg_len += gap; 13473 /* 13474 * Anything left? 13475 * Make sure to check for unack'd FIN when rest of data 13476 * has been previously ack'd. 13477 */ 13478 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13479 /* 13480 * Resets are only valid if they lie within our offered 13481 * window. If the RST bit is set, we just ignore this 13482 * segment. 13483 */ 13484 if (flags & TH_RST) { 13485 freemsg(mp); 13486 return; 13487 } 13488 13489 /* 13490 * The arriving of dup data packets indicate that we 13491 * may have postponed an ack for too long, or the other 13492 * side's RTT estimate is out of shape. Start acking 13493 * more often. 13494 */ 13495 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13496 tcp->tcp_rack_cnt >= 1 && 13497 tcp->tcp_rack_abs_max > 2) { 13498 tcp->tcp_rack_abs_max--; 13499 } 13500 tcp->tcp_rack_cur_max = 1; 13501 13502 /* 13503 * This segment is "unacceptable". None of its 13504 * sequence space lies within our advertized window. 13505 * 13506 * Adjust seg_len to the original value for tracing. 13507 */ 13508 seg_len -= gap; 13509 if (tcp->tcp_debug) { 13510 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 13511 "tcp_rput: unacceptable, gap %d, rgap %d, " 13512 "flags 0x%x, seg_seq %u, seg_ack %u, " 13513 "seg_len %d, rnxt %u, snxt %u, %s", 13514 gap, rgap, flags, seg_seq, seg_ack, 13515 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13516 tcp_display(tcp, NULL, 13517 DISP_ADDR_AND_PORT)); 13518 } 13519 13520 /* 13521 * Arrange to send an ACK in response to the 13522 * unacceptable segment per RFC 793 page 69. There 13523 * is only one small difference between ours and the 13524 * acceptability test in the RFC - we accept ACK-only 13525 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13526 * will be generated. 13527 * 13528 * Note that we have to ACK an ACK-only packet at least 13529 * for stacks that send 0-length keep-alives with 13530 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13531 * section 4.2.3.6. As long as we don't ever generate 13532 * an unacceptable packet in response to an incoming 13533 * packet that is unacceptable, it should not cause 13534 * "ACK wars". 13535 */ 13536 flags |= TH_ACK_NEEDED; 13537 13538 /* 13539 * Continue processing this segment in order to use the 13540 * ACK information it contains, but skip all other 13541 * sequence-number processing. Processing the ACK 13542 * information is necessary in order to 13543 * re-synchronize connections that may have lost 13544 * synchronization. 13545 * 13546 * We clear seg_len and flag fields related to 13547 * sequence number processing as they are not 13548 * to be trusted for an unacceptable segment. 13549 */ 13550 seg_len = 0; 13551 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13552 goto process_ack; 13553 } 13554 13555 /* Fix seg_seq, and chew the gap off the front. */ 13556 seg_seq = tcp->tcp_rnxt; 13557 urp += gap; 13558 do { 13559 mblk_t *mp2; 13560 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13561 (uintptr_t)UINT_MAX); 13562 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13563 if (gap > 0) { 13564 mp->b_rptr = mp->b_wptr - gap; 13565 break; 13566 } 13567 mp2 = mp; 13568 mp = mp->b_cont; 13569 freeb(mp2); 13570 } while (gap < 0); 13571 /* 13572 * If the urgent data has already been acknowledged, we 13573 * should ignore TH_URG below 13574 */ 13575 if (urp < 0) 13576 flags &= ~TH_URG; 13577 } 13578 /* 13579 * rgap is the amount of stuff received out of window. A negative 13580 * value is the amount out of window. 13581 */ 13582 if (rgap < 0) { 13583 mblk_t *mp2; 13584 13585 if (tcp->tcp_rwnd == 0) { 13586 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13587 } else { 13588 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13589 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13590 } 13591 13592 /* 13593 * seg_len does not include the FIN, so if more than 13594 * just the FIN is out of window, we act like we don't 13595 * see it. (If just the FIN is out of window, rgap 13596 * will be zero and we will go ahead and acknowledge 13597 * the FIN.) 13598 */ 13599 flags &= ~TH_FIN; 13600 13601 /* Fix seg_len and make sure there is something left. */ 13602 seg_len += rgap; 13603 if (seg_len <= 0) { 13604 /* 13605 * Resets are only valid if they lie within our offered 13606 * window. If the RST bit is set, we just ignore this 13607 * segment. 13608 */ 13609 if (flags & TH_RST) { 13610 freemsg(mp); 13611 return; 13612 } 13613 13614 /* Per RFC 793, we need to send back an ACK. */ 13615 flags |= TH_ACK_NEEDED; 13616 13617 /* 13618 * Send SIGURG as soon as possible i.e. even 13619 * if the TH_URG was delivered in a window probe 13620 * packet (which will be unacceptable). 13621 * 13622 * We generate a signal if none has been generated 13623 * for this connection or if this is a new urgent 13624 * byte. Also send a zero-length "unmarked" message 13625 * to inform SIOCATMARK that this is not the mark. 13626 * 13627 * tcp_urp_last_valid is cleared when the T_exdata_ind 13628 * is sent up. This plus the check for old data 13629 * (gap >= 0) handles the wraparound of the sequence 13630 * number space without having to always track the 13631 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13632 * this max in its rcv_up variable). 13633 * 13634 * This prevents duplicate SIGURGS due to a "late" 13635 * zero-window probe when the T_EXDATA_IND has already 13636 * been sent up. 13637 */ 13638 if ((flags & TH_URG) && 13639 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13640 tcp->tcp_urp_last))) { 13641 mp1 = allocb(0, BPRI_MED); 13642 if (mp1 == NULL) { 13643 freemsg(mp); 13644 return; 13645 } 13646 if (!TCP_IS_DETACHED(tcp) && 13647 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13648 SIGURG)) { 13649 /* Try again on the rexmit. */ 13650 freemsg(mp1); 13651 freemsg(mp); 13652 return; 13653 } 13654 /* 13655 * If the next byte would be the mark 13656 * then mark with MARKNEXT else mark 13657 * with NOTMARKNEXT. 13658 */ 13659 if (gap == 0 && urp == 0) 13660 mp1->b_flag |= MSGMARKNEXT; 13661 else 13662 mp1->b_flag |= MSGNOTMARKNEXT; 13663 freemsg(tcp->tcp_urp_mark_mp); 13664 tcp->tcp_urp_mark_mp = mp1; 13665 flags |= TH_SEND_URP_MARK; 13666 tcp->tcp_urp_last_valid = B_TRUE; 13667 tcp->tcp_urp_last = urp + seg_seq; 13668 } 13669 /* 13670 * If this is a zero window probe, continue to 13671 * process the ACK part. But we need to set seg_len 13672 * to 0 to avoid data processing. Otherwise just 13673 * drop the segment and send back an ACK. 13674 */ 13675 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13676 flags &= ~(TH_SYN | TH_URG); 13677 seg_len = 0; 13678 goto process_ack; 13679 } else { 13680 freemsg(mp); 13681 goto ack_check; 13682 } 13683 } 13684 /* Pitch out of window stuff off the end. */ 13685 rgap = seg_len; 13686 mp2 = mp; 13687 do { 13688 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13689 (uintptr_t)INT_MAX); 13690 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13691 if (rgap < 0) { 13692 mp2->b_wptr += rgap; 13693 if ((mp1 = mp2->b_cont) != NULL) { 13694 mp2->b_cont = NULL; 13695 freemsg(mp1); 13696 } 13697 break; 13698 } 13699 } while ((mp2 = mp2->b_cont) != NULL); 13700 } 13701 ok:; 13702 /* 13703 * TCP should check ECN info for segments inside the window only. 13704 * Therefore the check should be done here. 13705 */ 13706 if (tcp->tcp_ecn_ok) { 13707 if (flags & TH_CWR) { 13708 tcp->tcp_ecn_echo_on = B_FALSE; 13709 } 13710 /* 13711 * Note that both ECN_CE and CWR can be set in the 13712 * same segment. In this case, we once again turn 13713 * on ECN_ECHO. 13714 */ 13715 if (tcp->tcp_ipversion == IPV4_VERSION) { 13716 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13717 13718 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13719 tcp->tcp_ecn_echo_on = B_TRUE; 13720 } 13721 } else { 13722 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13723 13724 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13725 htonl(IPH_ECN_CE << 20)) { 13726 tcp->tcp_ecn_echo_on = B_TRUE; 13727 } 13728 } 13729 } 13730 13731 /* 13732 * Check whether we can update tcp_ts_recent. This test is 13733 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13734 * Extensions for High Performance: An Update", Internet Draft. 13735 */ 13736 if (tcp->tcp_snd_ts_ok && 13737 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13738 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13739 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13740 tcp->tcp_last_rcv_lbolt = lbolt64; 13741 } 13742 13743 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13744 /* 13745 * FIN in an out of order segment. We record this in 13746 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13747 * Clear the FIN so that any check on FIN flag will fail. 13748 * Remember that FIN also counts in the sequence number 13749 * space. So we need to ack out of order FIN only segments. 13750 */ 13751 if (flags & TH_FIN) { 13752 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13753 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13754 flags &= ~TH_FIN; 13755 flags |= TH_ACK_NEEDED; 13756 } 13757 if (seg_len > 0) { 13758 /* Fill in the SACK blk list. */ 13759 if (tcp->tcp_snd_sack_ok) { 13760 ASSERT(tcp->tcp_sack_info != NULL); 13761 tcp_sack_insert(tcp->tcp_sack_list, 13762 seg_seq, seg_seq + seg_len, 13763 &(tcp->tcp_num_sack_blk)); 13764 } 13765 13766 /* 13767 * Attempt reassembly and see if we have something 13768 * ready to go. 13769 */ 13770 mp = tcp_reass(tcp, mp, seg_seq); 13771 /* Always ack out of order packets */ 13772 flags |= TH_ACK_NEEDED | TH_PUSH; 13773 if (mp) { 13774 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13775 (uintptr_t)INT_MAX); 13776 seg_len = mp->b_cont ? msgdsize(mp) : 13777 (int)(mp->b_wptr - mp->b_rptr); 13778 seg_seq = tcp->tcp_rnxt; 13779 /* 13780 * A gap is filled and the seq num and len 13781 * of the gap match that of a previously 13782 * received FIN, put the FIN flag back in. 13783 */ 13784 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13785 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13786 flags |= TH_FIN; 13787 tcp->tcp_valid_bits &= 13788 ~TCP_OFO_FIN_VALID; 13789 } 13790 } else { 13791 /* 13792 * Keep going even with NULL mp. 13793 * There may be a useful ACK or something else 13794 * we don't want to miss. 13795 * 13796 * But TCP should not perform fast retransmit 13797 * because of the ack number. TCP uses 13798 * seg_len == 0 to determine if it is a pure 13799 * ACK. And this is not a pure ACK. 13800 */ 13801 seg_len = 0; 13802 ofo_seg = B_TRUE; 13803 } 13804 } 13805 } else if (seg_len > 0) { 13806 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13807 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13808 /* 13809 * If an out of order FIN was received before, and the seq 13810 * num and len of the new segment match that of the FIN, 13811 * put the FIN flag back in. 13812 */ 13813 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13814 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13815 flags |= TH_FIN; 13816 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13817 } 13818 } 13819 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13820 if (flags & TH_RST) { 13821 freemsg(mp); 13822 switch (tcp->tcp_state) { 13823 case TCPS_SYN_RCVD: 13824 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13825 break; 13826 case TCPS_ESTABLISHED: 13827 case TCPS_FIN_WAIT_1: 13828 case TCPS_FIN_WAIT_2: 13829 case TCPS_CLOSE_WAIT: 13830 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13831 break; 13832 case TCPS_CLOSING: 13833 case TCPS_LAST_ACK: 13834 (void) tcp_clean_death(tcp, 0, 16); 13835 break; 13836 default: 13837 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13838 (void) tcp_clean_death(tcp, ENXIO, 17); 13839 break; 13840 } 13841 return; 13842 } 13843 if (flags & TH_SYN) { 13844 /* 13845 * See RFC 793, Page 71 13846 * 13847 * The seq number must be in the window as it should 13848 * be "fixed" above. If it is outside window, it should 13849 * be already rejected. Note that we allow seg_seq to be 13850 * rnxt + rwnd because we want to accept 0 window probe. 13851 */ 13852 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13853 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13854 freemsg(mp); 13855 /* 13856 * If the ACK flag is not set, just use our snxt as the 13857 * seq number of the RST segment. 13858 */ 13859 if (!(flags & TH_ACK)) { 13860 seg_ack = tcp->tcp_snxt; 13861 } 13862 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13863 TH_RST|TH_ACK); 13864 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13865 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13866 return; 13867 } 13868 /* 13869 * urp could be -1 when the urp field in the packet is 0 13870 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13871 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13872 */ 13873 if (flags & TH_URG && urp >= 0) { 13874 if (!tcp->tcp_urp_last_valid || 13875 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13876 /* 13877 * If we haven't generated the signal yet for this 13878 * urgent pointer value, do it now. Also, send up a 13879 * zero-length M_DATA indicating whether or not this is 13880 * the mark. The latter is not needed when a 13881 * T_EXDATA_IND is sent up. However, if there are 13882 * allocation failures this code relies on the sender 13883 * retransmitting and the socket code for determining 13884 * the mark should not block waiting for the peer to 13885 * transmit. Thus, for simplicity we always send up the 13886 * mark indication. 13887 */ 13888 mp1 = allocb(0, BPRI_MED); 13889 if (mp1 == NULL) { 13890 freemsg(mp); 13891 return; 13892 } 13893 if (!TCP_IS_DETACHED(tcp) && 13894 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13895 /* Try again on the rexmit. */ 13896 freemsg(mp1); 13897 freemsg(mp); 13898 return; 13899 } 13900 /* 13901 * Mark with NOTMARKNEXT for now. 13902 * The code below will change this to MARKNEXT 13903 * if we are at the mark. 13904 * 13905 * If there are allocation failures (e.g. in dupmsg 13906 * below) the next time tcp_rput_data sees the urgent 13907 * segment it will send up the MSG*MARKNEXT message. 13908 */ 13909 mp1->b_flag |= MSGNOTMARKNEXT; 13910 freemsg(tcp->tcp_urp_mark_mp); 13911 tcp->tcp_urp_mark_mp = mp1; 13912 flags |= TH_SEND_URP_MARK; 13913 #ifdef DEBUG 13914 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 13915 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13916 "last %x, %s", 13917 seg_seq, urp, tcp->tcp_urp_last, 13918 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13919 #endif /* DEBUG */ 13920 tcp->tcp_urp_last_valid = B_TRUE; 13921 tcp->tcp_urp_last = urp + seg_seq; 13922 } else if (tcp->tcp_urp_mark_mp != NULL) { 13923 /* 13924 * An allocation failure prevented the previous 13925 * tcp_rput_data from sending up the allocated 13926 * MSG*MARKNEXT message - send it up this time 13927 * around. 13928 */ 13929 flags |= TH_SEND_URP_MARK; 13930 } 13931 13932 /* 13933 * If the urgent byte is in this segment, make sure that it is 13934 * all by itself. This makes it much easier to deal with the 13935 * possibility of an allocation failure on the T_exdata_ind. 13936 * Note that seg_len is the number of bytes in the segment, and 13937 * urp is the offset into the segment of the urgent byte. 13938 * urp < seg_len means that the urgent byte is in this segment. 13939 */ 13940 if (urp < seg_len) { 13941 if (seg_len != 1) { 13942 uint32_t tmp_rnxt; 13943 /* 13944 * Break it up and feed it back in. 13945 * Re-attach the IP header. 13946 */ 13947 mp->b_rptr = iphdr; 13948 if (urp > 0) { 13949 /* 13950 * There is stuff before the urgent 13951 * byte. 13952 */ 13953 mp1 = dupmsg(mp); 13954 if (!mp1) { 13955 /* 13956 * Trim from urgent byte on. 13957 * The rest will come back. 13958 */ 13959 (void) adjmsg(mp, 13960 urp - seg_len); 13961 tcp_rput_data(connp, 13962 mp, NULL); 13963 return; 13964 } 13965 (void) adjmsg(mp1, urp - seg_len); 13966 /* Feed this piece back in. */ 13967 tmp_rnxt = tcp->tcp_rnxt; 13968 tcp_rput_data(connp, mp1, NULL); 13969 /* 13970 * If the data passed back in was not 13971 * processed (ie: bad ACK) sending 13972 * the remainder back in will cause a 13973 * loop. In this case, drop the 13974 * packet and let the sender try 13975 * sending a good packet. 13976 */ 13977 if (tmp_rnxt == tcp->tcp_rnxt) { 13978 freemsg(mp); 13979 return; 13980 } 13981 } 13982 if (urp != seg_len - 1) { 13983 uint32_t tmp_rnxt; 13984 /* 13985 * There is stuff after the urgent 13986 * byte. 13987 */ 13988 mp1 = dupmsg(mp); 13989 if (!mp1) { 13990 /* 13991 * Trim everything beyond the 13992 * urgent byte. The rest will 13993 * come back. 13994 */ 13995 (void) adjmsg(mp, 13996 urp + 1 - seg_len); 13997 tcp_rput_data(connp, 13998 mp, NULL); 13999 return; 14000 } 14001 (void) adjmsg(mp1, urp + 1 - seg_len); 14002 tmp_rnxt = tcp->tcp_rnxt; 14003 tcp_rput_data(connp, mp1, NULL); 14004 /* 14005 * If the data passed back in was not 14006 * processed (ie: bad ACK) sending 14007 * the remainder back in will cause a 14008 * loop. In this case, drop the 14009 * packet and let the sender try 14010 * sending a good packet. 14011 */ 14012 if (tmp_rnxt == tcp->tcp_rnxt) { 14013 freemsg(mp); 14014 return; 14015 } 14016 } 14017 tcp_rput_data(connp, mp, NULL); 14018 return; 14019 } 14020 /* 14021 * This segment contains only the urgent byte. We 14022 * have to allocate the T_exdata_ind, if we can. 14023 */ 14024 if (!tcp->tcp_urp_mp) { 14025 struct T_exdata_ind *tei; 14026 mp1 = allocb(sizeof (struct T_exdata_ind), 14027 BPRI_MED); 14028 if (!mp1) { 14029 /* 14030 * Sigh... It'll be back. 14031 * Generate any MSG*MARK message now. 14032 */ 14033 freemsg(mp); 14034 seg_len = 0; 14035 if (flags & TH_SEND_URP_MARK) { 14036 14037 14038 ASSERT(tcp->tcp_urp_mark_mp); 14039 tcp->tcp_urp_mark_mp->b_flag &= 14040 ~MSGNOTMARKNEXT; 14041 tcp->tcp_urp_mark_mp->b_flag |= 14042 MSGMARKNEXT; 14043 } 14044 goto ack_check; 14045 } 14046 mp1->b_datap->db_type = M_PROTO; 14047 tei = (struct T_exdata_ind *)mp1->b_rptr; 14048 tei->PRIM_type = T_EXDATA_IND; 14049 tei->MORE_flag = 0; 14050 mp1->b_wptr = (uchar_t *)&tei[1]; 14051 tcp->tcp_urp_mp = mp1; 14052 #ifdef DEBUG 14053 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14054 "tcp_rput: allocated exdata_ind %s", 14055 tcp_display(tcp, NULL, 14056 DISP_PORT_ONLY)); 14057 #endif /* DEBUG */ 14058 /* 14059 * There is no need to send a separate MSG*MARK 14060 * message since the T_EXDATA_IND will be sent 14061 * now. 14062 */ 14063 flags &= ~TH_SEND_URP_MARK; 14064 freemsg(tcp->tcp_urp_mark_mp); 14065 tcp->tcp_urp_mark_mp = NULL; 14066 } 14067 /* 14068 * Now we are all set. On the next putnext upstream, 14069 * tcp_urp_mp will be non-NULL and will get prepended 14070 * to what has to be this piece containing the urgent 14071 * byte. If for any reason we abort this segment below, 14072 * if it comes back, we will have this ready, or it 14073 * will get blown off in close. 14074 */ 14075 } else if (urp == seg_len) { 14076 /* 14077 * The urgent byte is the next byte after this sequence 14078 * number. If there is data it is marked with 14079 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14080 * since it is not needed. Otherwise, if the code 14081 * above just allocated a zero-length tcp_urp_mark_mp 14082 * message, that message is tagged with MSGMARKNEXT. 14083 * Sending up these MSGMARKNEXT messages makes 14084 * SIOCATMARK work correctly even though 14085 * the T_EXDATA_IND will not be sent up until the 14086 * urgent byte arrives. 14087 */ 14088 if (seg_len != 0) { 14089 flags |= TH_MARKNEXT_NEEDED; 14090 freemsg(tcp->tcp_urp_mark_mp); 14091 tcp->tcp_urp_mark_mp = NULL; 14092 flags &= ~TH_SEND_URP_MARK; 14093 } else if (tcp->tcp_urp_mark_mp != NULL) { 14094 flags |= TH_SEND_URP_MARK; 14095 tcp->tcp_urp_mark_mp->b_flag &= 14096 ~MSGNOTMARKNEXT; 14097 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14098 } 14099 #ifdef DEBUG 14100 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14101 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14102 seg_len, flags, 14103 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14104 #endif /* DEBUG */ 14105 } else { 14106 /* Data left until we hit mark */ 14107 #ifdef DEBUG 14108 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 14109 "tcp_rput: URP %d bytes left, %s", 14110 urp - seg_len, tcp_display(tcp, NULL, 14111 DISP_PORT_ONLY)); 14112 #endif /* DEBUG */ 14113 } 14114 } 14115 14116 process_ack: 14117 if (!(flags & TH_ACK)) { 14118 freemsg(mp); 14119 goto xmit_check; 14120 } 14121 } 14122 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14123 14124 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14125 tcp->tcp_ip_forward_progress = B_TRUE; 14126 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14127 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 14128 /* 3-way handshake complete - pass up the T_CONN_IND */ 14129 tcp_t *listener = tcp->tcp_listener; 14130 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14131 14132 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14133 /* 14134 * We are here means eager is fine but it can 14135 * get a TH_RST at any point between now and till 14136 * accept completes and disappear. We need to 14137 * ensure that reference to eager is valid after 14138 * we get out of eager's perimeter. So we do 14139 * an extra refhold. 14140 */ 14141 CONN_INC_REF(connp); 14142 14143 /* 14144 * The listener also exists because of the refhold 14145 * done in tcp_conn_request. Its possible that it 14146 * might have closed. We will check that once we 14147 * get inside listeners context. 14148 */ 14149 CONN_INC_REF(listener->tcp_connp); 14150 if (listener->tcp_connp->conn_sqp == 14151 connp->conn_sqp) { 14152 tcp_send_conn_ind(listener->tcp_connp, mp, 14153 listener->tcp_connp->conn_sqp); 14154 CONN_DEC_REF(listener->tcp_connp); 14155 } else if (!tcp->tcp_loopback) { 14156 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14157 tcp_send_conn_ind, 14158 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14159 } else { 14160 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14161 tcp_send_conn_ind, listener->tcp_connp, 14162 SQTAG_TCP_CONN_IND); 14163 } 14164 } 14165 14166 if (tcp->tcp_active_open) { 14167 /* 14168 * We are seeing the final ack in the three way 14169 * hand shake of a active open'ed connection 14170 * so we must send up a T_CONN_CON 14171 */ 14172 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14173 freemsg(mp); 14174 return; 14175 } 14176 /* 14177 * Don't fuse the loopback endpoints for 14178 * simultaneous active opens. 14179 */ 14180 if (tcp->tcp_loopback) { 14181 TCP_STAT(tcp_fusion_unfusable); 14182 tcp->tcp_unfusable = B_TRUE; 14183 } 14184 } 14185 14186 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14187 bytes_acked--; 14188 /* SYN was acked - making progress */ 14189 if (tcp->tcp_ipversion == IPV6_VERSION) 14190 tcp->tcp_ip_forward_progress = B_TRUE; 14191 14192 /* 14193 * If SYN was retransmitted, need to reset all 14194 * retransmission info as this segment will be 14195 * treated as a dup ACK. 14196 */ 14197 if (tcp->tcp_rexmit) { 14198 tcp->tcp_rexmit = B_FALSE; 14199 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14200 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14201 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14202 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14203 tcp->tcp_ms_we_have_waited = 0; 14204 tcp->tcp_cwnd = mss; 14205 } 14206 14207 /* 14208 * We set the send window to zero here. 14209 * This is needed if there is data to be 14210 * processed already on the queue. 14211 * Later (at swnd_update label), the 14212 * "new_swnd > tcp_swnd" condition is satisfied 14213 * the XMIT_NEEDED flag is set in the current 14214 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14215 * called if there is already data on queue in 14216 * this state. 14217 */ 14218 tcp->tcp_swnd = 0; 14219 14220 if (new_swnd > tcp->tcp_max_swnd) 14221 tcp->tcp_max_swnd = new_swnd; 14222 tcp->tcp_swl1 = seg_seq; 14223 tcp->tcp_swl2 = seg_ack; 14224 tcp->tcp_state = TCPS_ESTABLISHED; 14225 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14226 14227 /* Fuse when both sides are in ESTABLISHED state */ 14228 if (tcp->tcp_loopback && do_tcp_fusion) 14229 tcp_fuse(tcp, iphdr, tcph); 14230 14231 } 14232 /* This code follows 4.4BSD-Lite2 mostly. */ 14233 if (bytes_acked < 0) 14234 goto est; 14235 14236 /* 14237 * If TCP is ECN capable and the congestion experience bit is 14238 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14239 * done once per window (or more loosely, per RTT). 14240 */ 14241 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14242 tcp->tcp_cwr = B_FALSE; 14243 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14244 if (!tcp->tcp_cwr) { 14245 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14246 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14247 tcp->tcp_cwnd = npkt * mss; 14248 /* 14249 * If the cwnd is 0, use the timer to clock out 14250 * new segments. This is required by the ECN spec. 14251 */ 14252 if (npkt == 0) { 14253 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14254 /* 14255 * This makes sure that when the ACK comes 14256 * back, we will increase tcp_cwnd by 1 MSS. 14257 */ 14258 tcp->tcp_cwnd_cnt = 0; 14259 } 14260 tcp->tcp_cwr = B_TRUE; 14261 /* 14262 * This marks the end of the current window of in 14263 * flight data. That is why we don't use 14264 * tcp_suna + tcp_swnd. Only data in flight can 14265 * provide ECN info. 14266 */ 14267 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14268 tcp->tcp_ecn_cwr_sent = B_FALSE; 14269 } 14270 } 14271 14272 mp1 = tcp->tcp_xmit_head; 14273 if (bytes_acked == 0) { 14274 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14275 int dupack_cnt; 14276 14277 BUMP_MIB(&tcp_mib, tcpInDupAck); 14278 /* 14279 * Fast retransmit. When we have seen exactly three 14280 * identical ACKs while we have unacked data 14281 * outstanding we take it as a hint that our peer 14282 * dropped something. 14283 * 14284 * If TCP is retransmitting, don't do fast retransmit. 14285 */ 14286 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14287 ! tcp->tcp_rexmit) { 14288 /* Do Limited Transmit */ 14289 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14290 tcp_dupack_fast_retransmit) { 14291 /* 14292 * RFC 3042 14293 * 14294 * What we need to do is temporarily 14295 * increase tcp_cwnd so that new 14296 * data can be sent if it is allowed 14297 * by the receive window (tcp_rwnd). 14298 * tcp_wput_data() will take care of 14299 * the rest. 14300 * 14301 * If the connection is SACK capable, 14302 * only do limited xmit when there 14303 * is SACK info. 14304 * 14305 * Note how tcp_cwnd is incremented. 14306 * The first dup ACK will increase 14307 * it by 1 MSS. The second dup ACK 14308 * will increase it by 2 MSS. This 14309 * means that only 1 new segment will 14310 * be sent for each dup ACK. 14311 */ 14312 if (tcp->tcp_unsent > 0 && 14313 (!tcp->tcp_snd_sack_ok || 14314 (tcp->tcp_snd_sack_ok && 14315 tcp->tcp_notsack_list != NULL))) { 14316 tcp->tcp_cwnd += mss << 14317 (tcp->tcp_dupack_cnt - 1); 14318 flags |= TH_LIMIT_XMIT; 14319 } 14320 } else if (dupack_cnt == 14321 tcp_dupack_fast_retransmit) { 14322 14323 /* 14324 * If we have reduced tcp_ssthresh 14325 * because of ECN, do not reduce it again 14326 * unless it is already one window of data 14327 * away. After one window of data, tcp_cwr 14328 * should then be cleared. Note that 14329 * for non ECN capable connection, tcp_cwr 14330 * should always be false. 14331 * 14332 * Adjust cwnd since the duplicate 14333 * ack indicates that a packet was 14334 * dropped (due to congestion.) 14335 */ 14336 if (!tcp->tcp_cwr) { 14337 npkt = ((tcp->tcp_snxt - 14338 tcp->tcp_suna) >> 1) / mss; 14339 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14340 mss; 14341 tcp->tcp_cwnd = (npkt + 14342 tcp->tcp_dupack_cnt) * mss; 14343 } 14344 if (tcp->tcp_ecn_ok) { 14345 tcp->tcp_cwr = B_TRUE; 14346 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14347 tcp->tcp_ecn_cwr_sent = B_FALSE; 14348 } 14349 14350 /* 14351 * We do Hoe's algorithm. Refer to her 14352 * paper "Improving the Start-up Behavior 14353 * of a Congestion Control Scheme for TCP," 14354 * appeared in SIGCOMM'96. 14355 * 14356 * Save highest seq no we have sent so far. 14357 * Be careful about the invisible FIN byte. 14358 */ 14359 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14360 (tcp->tcp_unsent == 0)) { 14361 tcp->tcp_rexmit_max = tcp->tcp_fss; 14362 } else { 14363 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14364 } 14365 14366 /* 14367 * Do not allow bursty traffic during. 14368 * fast recovery. Refer to Fall and Floyd's 14369 * paper "Simulation-based Comparisons of 14370 * Tahoe, Reno and SACK TCP" (in CCR?) 14371 * This is a best current practise. 14372 */ 14373 tcp->tcp_snd_burst = TCP_CWND_SS; 14374 14375 /* 14376 * For SACK: 14377 * Calculate tcp_pipe, which is the 14378 * estimated number of bytes in 14379 * network. 14380 * 14381 * tcp_fack is the highest sack'ed seq num 14382 * TCP has received. 14383 * 14384 * tcp_pipe is explained in the above quoted 14385 * Fall and Floyd's paper. tcp_fack is 14386 * explained in Mathis and Mahdavi's 14387 * "Forward Acknowledgment: Refining TCP 14388 * Congestion Control" in SIGCOMM '96. 14389 */ 14390 if (tcp->tcp_snd_sack_ok) { 14391 ASSERT(tcp->tcp_sack_info != NULL); 14392 if (tcp->tcp_notsack_list != NULL) { 14393 tcp->tcp_pipe = tcp->tcp_snxt - 14394 tcp->tcp_fack; 14395 tcp->tcp_sack_snxt = seg_ack; 14396 flags |= TH_NEED_SACK_REXMIT; 14397 } else { 14398 /* 14399 * Always initialize tcp_pipe 14400 * even though we don't have 14401 * any SACK info. If later 14402 * we get SACK info and 14403 * tcp_pipe is not initialized, 14404 * funny things will happen. 14405 */ 14406 tcp->tcp_pipe = 14407 tcp->tcp_cwnd_ssthresh; 14408 } 14409 } else { 14410 flags |= TH_REXMIT_NEEDED; 14411 } /* tcp_snd_sack_ok */ 14412 14413 } else { 14414 /* 14415 * Here we perform congestion 14416 * avoidance, but NOT slow start. 14417 * This is known as the Fast 14418 * Recovery Algorithm. 14419 */ 14420 if (tcp->tcp_snd_sack_ok && 14421 tcp->tcp_notsack_list != NULL) { 14422 flags |= TH_NEED_SACK_REXMIT; 14423 tcp->tcp_pipe -= mss; 14424 if (tcp->tcp_pipe < 0) 14425 tcp->tcp_pipe = 0; 14426 } else { 14427 /* 14428 * We know that one more packet has 14429 * left the pipe thus we can update 14430 * cwnd. 14431 */ 14432 cwnd = tcp->tcp_cwnd + mss; 14433 if (cwnd > tcp->tcp_cwnd_max) 14434 cwnd = tcp->tcp_cwnd_max; 14435 tcp->tcp_cwnd = cwnd; 14436 if (tcp->tcp_unsent > 0) 14437 flags |= TH_XMIT_NEEDED; 14438 } 14439 } 14440 } 14441 } else if (tcp->tcp_zero_win_probe) { 14442 /* 14443 * If the window has opened, need to arrange 14444 * to send additional data. 14445 */ 14446 if (new_swnd != 0) { 14447 /* tcp_suna != tcp_snxt */ 14448 /* Packet contains a window update */ 14449 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14450 tcp->tcp_zero_win_probe = 0; 14451 tcp->tcp_timer_backoff = 0; 14452 tcp->tcp_ms_we_have_waited = 0; 14453 14454 /* 14455 * Transmit starting with tcp_suna since 14456 * the one byte probe is not ack'ed. 14457 * If TCP has sent more than one identical 14458 * probe, tcp_rexmit will be set. That means 14459 * tcp_ss_rexmit() will send out the one 14460 * byte along with new data. Otherwise, 14461 * fake the retransmission. 14462 */ 14463 flags |= TH_XMIT_NEEDED; 14464 if (!tcp->tcp_rexmit) { 14465 tcp->tcp_rexmit = B_TRUE; 14466 tcp->tcp_dupack_cnt = 0; 14467 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14468 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14469 } 14470 } 14471 } 14472 goto swnd_update; 14473 } 14474 14475 /* 14476 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14477 * If the ACK value acks something that we have not yet sent, it might 14478 * be an old duplicate segment. Send an ACK to re-synchronize the 14479 * other side. 14480 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14481 * state is handled above, so we can always just drop the segment and 14482 * send an ACK here. 14483 * 14484 * Should we send ACKs in response to ACK only segments? 14485 */ 14486 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14487 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14488 /* drop the received segment */ 14489 freemsg(mp); 14490 14491 /* 14492 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14493 * greater than 0, check if the number of such 14494 * bogus ACks is greater than that count. If yes, 14495 * don't send back any ACK. This prevents TCP from 14496 * getting into an ACK storm if somehow an attacker 14497 * successfully spoofs an acceptable segment to our 14498 * peer. 14499 */ 14500 if (tcp_drop_ack_unsent_cnt > 0 && 14501 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14502 TCP_STAT(tcp_in_ack_unsent_drop); 14503 return; 14504 } 14505 mp = tcp_ack_mp(tcp); 14506 if (mp != NULL) { 14507 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14508 BUMP_LOCAL(tcp->tcp_obsegs); 14509 BUMP_MIB(&tcp_mib, tcpOutAck); 14510 tcp_send_data(tcp, tcp->tcp_wq, mp); 14511 } 14512 return; 14513 } 14514 14515 /* 14516 * TCP gets a new ACK, update the notsack'ed list to delete those 14517 * blocks that are covered by this ACK. 14518 */ 14519 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14520 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14521 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14522 } 14523 14524 /* 14525 * If we got an ACK after fast retransmit, check to see 14526 * if it is a partial ACK. If it is not and the congestion 14527 * window was inflated to account for the other side's 14528 * cached packets, retract it. If it is, do Hoe's algorithm. 14529 */ 14530 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14531 ASSERT(tcp->tcp_rexmit == B_FALSE); 14532 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14533 tcp->tcp_dupack_cnt = 0; 14534 /* 14535 * Restore the orig tcp_cwnd_ssthresh after 14536 * fast retransmit phase. 14537 */ 14538 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14539 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14540 } 14541 tcp->tcp_rexmit_max = seg_ack; 14542 tcp->tcp_cwnd_cnt = 0; 14543 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14544 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14545 14546 /* 14547 * Remove all notsack info to avoid confusion with 14548 * the next fast retrasnmit/recovery phase. 14549 */ 14550 if (tcp->tcp_snd_sack_ok && 14551 tcp->tcp_notsack_list != NULL) { 14552 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14553 } 14554 } else { 14555 if (tcp->tcp_snd_sack_ok && 14556 tcp->tcp_notsack_list != NULL) { 14557 flags |= TH_NEED_SACK_REXMIT; 14558 tcp->tcp_pipe -= mss; 14559 if (tcp->tcp_pipe < 0) 14560 tcp->tcp_pipe = 0; 14561 } else { 14562 /* 14563 * Hoe's algorithm: 14564 * 14565 * Retransmit the unack'ed segment and 14566 * restart fast recovery. Note that we 14567 * need to scale back tcp_cwnd to the 14568 * original value when we started fast 14569 * recovery. This is to prevent overly 14570 * aggressive behaviour in sending new 14571 * segments. 14572 */ 14573 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14574 tcp_dupack_fast_retransmit * mss; 14575 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14576 flags |= TH_REXMIT_NEEDED; 14577 } 14578 } 14579 } else { 14580 tcp->tcp_dupack_cnt = 0; 14581 if (tcp->tcp_rexmit) { 14582 /* 14583 * TCP is retranmitting. If the ACK ack's all 14584 * outstanding data, update tcp_rexmit_max and 14585 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14586 * to the correct value. 14587 * 14588 * Note that SEQ_LEQ() is used. This is to avoid 14589 * unnecessary fast retransmit caused by dup ACKs 14590 * received when TCP does slow start retransmission 14591 * after a time out. During this phase, TCP may 14592 * send out segments which are already received. 14593 * This causes dup ACKs to be sent back. 14594 */ 14595 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14596 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14597 tcp->tcp_rexmit_nxt = seg_ack; 14598 } 14599 if (seg_ack != tcp->tcp_rexmit_max) { 14600 flags |= TH_XMIT_NEEDED; 14601 } 14602 } else { 14603 tcp->tcp_rexmit = B_FALSE; 14604 tcp->tcp_xmit_zc_clean = B_FALSE; 14605 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14606 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14607 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14608 } 14609 tcp->tcp_ms_we_have_waited = 0; 14610 } 14611 } 14612 14613 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14614 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14615 tcp->tcp_suna = seg_ack; 14616 if (tcp->tcp_zero_win_probe != 0) { 14617 tcp->tcp_zero_win_probe = 0; 14618 tcp->tcp_timer_backoff = 0; 14619 } 14620 14621 /* 14622 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14623 * Note that it cannot be the SYN being ack'ed. The code flow 14624 * will not reach here. 14625 */ 14626 if (mp1 == NULL) { 14627 goto fin_acked; 14628 } 14629 14630 /* 14631 * Update the congestion window. 14632 * 14633 * If TCP is not ECN capable or TCP is ECN capable but the 14634 * congestion experience bit is not set, increase the tcp_cwnd as 14635 * usual. 14636 */ 14637 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14638 cwnd = tcp->tcp_cwnd; 14639 add = mss; 14640 14641 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14642 /* 14643 * This is to prevent an increase of less than 1 MSS of 14644 * tcp_cwnd. With partial increase, tcp_wput_data() 14645 * may send out tinygrams in order to preserve mblk 14646 * boundaries. 14647 * 14648 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14649 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14650 * increased by 1 MSS for every RTTs. 14651 */ 14652 if (tcp->tcp_cwnd_cnt <= 0) { 14653 tcp->tcp_cwnd_cnt = cwnd + add; 14654 } else { 14655 tcp->tcp_cwnd_cnt -= add; 14656 add = 0; 14657 } 14658 } 14659 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14660 } 14661 14662 /* See if the latest urgent data has been acknowledged */ 14663 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14664 SEQ_GT(seg_ack, tcp->tcp_urg)) 14665 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14666 14667 /* Can we update the RTT estimates? */ 14668 if (tcp->tcp_snd_ts_ok) { 14669 /* Ignore zero timestamp echo-reply. */ 14670 if (tcpopt.tcp_opt_ts_ecr != 0) { 14671 tcp_set_rto(tcp, (int32_t)lbolt - 14672 (int32_t)tcpopt.tcp_opt_ts_ecr); 14673 } 14674 14675 /* If needed, restart the timer. */ 14676 if (tcp->tcp_set_timer == 1) { 14677 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14678 tcp->tcp_set_timer = 0; 14679 } 14680 /* 14681 * Update tcp_csuna in case the other side stops sending 14682 * us timestamps. 14683 */ 14684 tcp->tcp_csuna = tcp->tcp_snxt; 14685 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14686 /* 14687 * An ACK sequence we haven't seen before, so get the RTT 14688 * and update the RTO. But first check if the timestamp is 14689 * valid to use. 14690 */ 14691 if ((mp1->b_next != NULL) && 14692 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14693 tcp_set_rto(tcp, (int32_t)lbolt - 14694 (int32_t)(intptr_t)mp1->b_prev); 14695 else 14696 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14697 14698 /* Remeber the last sequence to be ACKed */ 14699 tcp->tcp_csuna = seg_ack; 14700 if (tcp->tcp_set_timer == 1) { 14701 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14702 tcp->tcp_set_timer = 0; 14703 } 14704 } else { 14705 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14706 } 14707 14708 /* Eat acknowledged bytes off the xmit queue. */ 14709 for (;;) { 14710 mblk_t *mp2; 14711 uchar_t *wptr; 14712 14713 wptr = mp1->b_wptr; 14714 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14715 bytes_acked -= (int)(wptr - mp1->b_rptr); 14716 if (bytes_acked < 0) { 14717 mp1->b_rptr = wptr + bytes_acked; 14718 /* 14719 * Set a new timestamp if all the bytes timed by the 14720 * old timestamp have been ack'ed. 14721 */ 14722 if (SEQ_GT(seg_ack, 14723 (uint32_t)(uintptr_t)(mp1->b_next))) { 14724 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14725 mp1->b_next = NULL; 14726 } 14727 break; 14728 } 14729 mp1->b_next = NULL; 14730 mp1->b_prev = NULL; 14731 mp2 = mp1; 14732 mp1 = mp1->b_cont; 14733 14734 /* 14735 * This notification is required for some zero-copy 14736 * clients to maintain a copy semantic. After the data 14737 * is ack'ed, client is safe to modify or reuse the buffer. 14738 */ 14739 if (tcp->tcp_snd_zcopy_aware && 14740 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14741 tcp_zcopy_notify(tcp); 14742 freeb(mp2); 14743 if (bytes_acked == 0) { 14744 if (mp1 == NULL) { 14745 /* Everything is ack'ed, clear the tail. */ 14746 tcp->tcp_xmit_tail = NULL; 14747 /* 14748 * Cancel the timer unless we are still 14749 * waiting for an ACK for the FIN packet. 14750 */ 14751 if (tcp->tcp_timer_tid != 0 && 14752 tcp->tcp_snxt == tcp->tcp_suna) { 14753 (void) TCP_TIMER_CANCEL(tcp, 14754 tcp->tcp_timer_tid); 14755 tcp->tcp_timer_tid = 0; 14756 } 14757 goto pre_swnd_update; 14758 } 14759 if (mp2 != tcp->tcp_xmit_tail) 14760 break; 14761 tcp->tcp_xmit_tail = mp1; 14762 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14763 (uintptr_t)INT_MAX); 14764 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14765 mp1->b_rptr); 14766 break; 14767 } 14768 if (mp1 == NULL) { 14769 /* 14770 * More was acked but there is nothing more 14771 * outstanding. This means that the FIN was 14772 * just acked or that we're talking to a clown. 14773 */ 14774 fin_acked: 14775 ASSERT(tcp->tcp_fin_sent); 14776 tcp->tcp_xmit_tail = NULL; 14777 if (tcp->tcp_fin_sent) { 14778 /* FIN was acked - making progress */ 14779 if (tcp->tcp_ipversion == IPV6_VERSION && 14780 !tcp->tcp_fin_acked) 14781 tcp->tcp_ip_forward_progress = B_TRUE; 14782 tcp->tcp_fin_acked = B_TRUE; 14783 if (tcp->tcp_linger_tid != 0 && 14784 TCP_TIMER_CANCEL(tcp, 14785 tcp->tcp_linger_tid) >= 0) { 14786 tcp_stop_lingering(tcp); 14787 } 14788 } else { 14789 /* 14790 * We should never get here because 14791 * we have already checked that the 14792 * number of bytes ack'ed should be 14793 * smaller than or equal to what we 14794 * have sent so far (it is the 14795 * acceptability check of the ACK). 14796 * We can only get here if the send 14797 * queue is corrupted. 14798 * 14799 * Terminate the connection and 14800 * panic the system. It is better 14801 * for us to panic instead of 14802 * continuing to avoid other disaster. 14803 */ 14804 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14805 tcp->tcp_rnxt, TH_RST|TH_ACK); 14806 panic("Memory corruption " 14807 "detected for connection %s.", 14808 tcp_display(tcp, NULL, 14809 DISP_ADDR_AND_PORT)); 14810 /*NOTREACHED*/ 14811 } 14812 goto pre_swnd_update; 14813 } 14814 ASSERT(mp2 != tcp->tcp_xmit_tail); 14815 } 14816 if (tcp->tcp_unsent) { 14817 flags |= TH_XMIT_NEEDED; 14818 } 14819 pre_swnd_update: 14820 tcp->tcp_xmit_head = mp1; 14821 swnd_update: 14822 /* 14823 * The following check is different from most other implementations. 14824 * For bi-directional transfer, when segments are dropped, the 14825 * "normal" check will not accept a window update in those 14826 * retransmitted segemnts. Failing to do that, TCP may send out 14827 * segments which are outside receiver's window. As TCP accepts 14828 * the ack in those retransmitted segments, if the window update in 14829 * the same segment is not accepted, TCP will incorrectly calculates 14830 * that it can send more segments. This can create a deadlock 14831 * with the receiver if its window becomes zero. 14832 */ 14833 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14834 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14835 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14836 /* 14837 * The criteria for update is: 14838 * 14839 * 1. the segment acknowledges some data. Or 14840 * 2. the segment is new, i.e. it has a higher seq num. Or 14841 * 3. the segment is not old and the advertised window is 14842 * larger than the previous advertised window. 14843 */ 14844 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14845 flags |= TH_XMIT_NEEDED; 14846 tcp->tcp_swnd = new_swnd; 14847 if (new_swnd > tcp->tcp_max_swnd) 14848 tcp->tcp_max_swnd = new_swnd; 14849 tcp->tcp_swl1 = seg_seq; 14850 tcp->tcp_swl2 = seg_ack; 14851 } 14852 est: 14853 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14854 switch (tcp->tcp_state) { 14855 case TCPS_FIN_WAIT_1: 14856 if (tcp->tcp_fin_acked) { 14857 tcp->tcp_state = TCPS_FIN_WAIT_2; 14858 /* 14859 * We implement the non-standard BSD/SunOS 14860 * FIN_WAIT_2 flushing algorithm. 14861 * If there is no user attached to this 14862 * TCP endpoint, then this TCP struct 14863 * could hang around forever in FIN_WAIT_2 14864 * state if the peer forgets to send us 14865 * a FIN. To prevent this, we wait only 14866 * 2*MSL (a convenient time value) for 14867 * the FIN to arrive. If it doesn't show up, 14868 * we flush the TCP endpoint. This algorithm, 14869 * though a violation of RFC-793, has worked 14870 * for over 10 years in BSD systems. 14871 * Note: SunOS 4.x waits 675 seconds before 14872 * flushing the FIN_WAIT_2 connection. 14873 */ 14874 TCP_TIMER_RESTART(tcp, 14875 tcp_fin_wait_2_flush_interval); 14876 } 14877 break; 14878 case TCPS_FIN_WAIT_2: 14879 break; /* Shutdown hook? */ 14880 case TCPS_LAST_ACK: 14881 freemsg(mp); 14882 if (tcp->tcp_fin_acked) { 14883 (void) tcp_clean_death(tcp, 0, 19); 14884 return; 14885 } 14886 goto xmit_check; 14887 case TCPS_CLOSING: 14888 if (tcp->tcp_fin_acked) { 14889 tcp->tcp_state = TCPS_TIME_WAIT; 14890 if (!TCP_IS_DETACHED(tcp)) { 14891 TCP_TIMER_RESTART(tcp, 14892 tcp_time_wait_interval); 14893 } else { 14894 tcp_time_wait_append(tcp); 14895 TCP_DBGSTAT(tcp_rput_time_wait); 14896 } 14897 } 14898 /*FALLTHRU*/ 14899 case TCPS_CLOSE_WAIT: 14900 freemsg(mp); 14901 goto xmit_check; 14902 default: 14903 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14904 break; 14905 } 14906 } 14907 if (flags & TH_FIN) { 14908 /* Make sure we ack the fin */ 14909 flags |= TH_ACK_NEEDED; 14910 if (!tcp->tcp_fin_rcvd) { 14911 tcp->tcp_fin_rcvd = B_TRUE; 14912 tcp->tcp_rnxt++; 14913 tcph = tcp->tcp_tcph; 14914 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14915 14916 /* 14917 * Generate the ordrel_ind at the end unless we 14918 * are an eager guy. 14919 * In the eager case tcp_rsrv will do this when run 14920 * after tcp_accept is done. 14921 */ 14922 if (tcp->tcp_listener == NULL && 14923 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14924 flags |= TH_ORDREL_NEEDED; 14925 switch (tcp->tcp_state) { 14926 case TCPS_SYN_RCVD: 14927 case TCPS_ESTABLISHED: 14928 tcp->tcp_state = TCPS_CLOSE_WAIT; 14929 /* Keepalive? */ 14930 break; 14931 case TCPS_FIN_WAIT_1: 14932 if (!tcp->tcp_fin_acked) { 14933 tcp->tcp_state = TCPS_CLOSING; 14934 break; 14935 } 14936 /* FALLTHRU */ 14937 case TCPS_FIN_WAIT_2: 14938 tcp->tcp_state = TCPS_TIME_WAIT; 14939 if (!TCP_IS_DETACHED(tcp)) { 14940 TCP_TIMER_RESTART(tcp, 14941 tcp_time_wait_interval); 14942 } else { 14943 tcp_time_wait_append(tcp); 14944 TCP_DBGSTAT(tcp_rput_time_wait); 14945 } 14946 if (seg_len) { 14947 /* 14948 * implies data piggybacked on FIN. 14949 * break to handle data. 14950 */ 14951 break; 14952 } 14953 freemsg(mp); 14954 goto ack_check; 14955 } 14956 } 14957 } 14958 if (mp == NULL) 14959 goto xmit_check; 14960 if (seg_len == 0) { 14961 freemsg(mp); 14962 goto xmit_check; 14963 } 14964 if (mp->b_rptr == mp->b_wptr) { 14965 /* 14966 * The header has been consumed, so we remove the 14967 * zero-length mblk here. 14968 */ 14969 mp1 = mp; 14970 mp = mp->b_cont; 14971 freeb(mp1); 14972 } 14973 tcph = tcp->tcp_tcph; 14974 tcp->tcp_rack_cnt++; 14975 { 14976 uint32_t cur_max; 14977 14978 cur_max = tcp->tcp_rack_cur_max; 14979 if (tcp->tcp_rack_cnt >= cur_max) { 14980 /* 14981 * We have more unacked data than we should - send 14982 * an ACK now. 14983 */ 14984 flags |= TH_ACK_NEEDED; 14985 cur_max++; 14986 if (cur_max > tcp->tcp_rack_abs_max) 14987 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14988 else 14989 tcp->tcp_rack_cur_max = cur_max; 14990 } else if (TCP_IS_DETACHED(tcp)) { 14991 /* We don't have an ACK timer for detached TCP. */ 14992 flags |= TH_ACK_NEEDED; 14993 } else if (seg_len < mss) { 14994 /* 14995 * If we get a segment that is less than an mss, and we 14996 * already have unacknowledged data, and the amount 14997 * unacknowledged is not a multiple of mss, then we 14998 * better generate an ACK now. Otherwise, this may be 14999 * the tail piece of a transaction, and we would rather 15000 * wait for the response. 15001 */ 15002 uint32_t udif; 15003 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 15004 (uintptr_t)INT_MAX); 15005 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 15006 if (udif && (udif % mss)) 15007 flags |= TH_ACK_NEEDED; 15008 else 15009 flags |= TH_ACK_TIMER_NEEDED; 15010 } else { 15011 /* Start delayed ack timer */ 15012 flags |= TH_ACK_TIMER_NEEDED; 15013 } 15014 } 15015 tcp->tcp_rnxt += seg_len; 15016 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15017 15018 /* Update SACK list */ 15019 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15020 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15021 &(tcp->tcp_num_sack_blk)); 15022 } 15023 15024 if (tcp->tcp_urp_mp) { 15025 tcp->tcp_urp_mp->b_cont = mp; 15026 mp = tcp->tcp_urp_mp; 15027 tcp->tcp_urp_mp = NULL; 15028 /* Ready for a new signal. */ 15029 tcp->tcp_urp_last_valid = B_FALSE; 15030 #ifdef DEBUG 15031 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15032 "tcp_rput: sending exdata_ind %s", 15033 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15034 #endif /* DEBUG */ 15035 } 15036 15037 /* 15038 * Check for ancillary data changes compared to last segment. 15039 */ 15040 if (tcp->tcp_ipv6_recvancillary != 0) { 15041 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15042 if (mp == NULL) 15043 return; 15044 } 15045 15046 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15047 /* 15048 * Side queue inbound data until the accept happens. 15049 * tcp_accept/tcp_rput drains this when the accept happens. 15050 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15051 * T_EXDATA_IND) it is queued on b_next. 15052 * XXX Make urgent data use this. Requires: 15053 * Removing tcp_listener check for TH_URG 15054 * Making M_PCPROTO and MARK messages skip the eager case 15055 */ 15056 tcp_rcv_enqueue(tcp, mp, seg_len); 15057 } else { 15058 if (mp->b_datap->db_type != M_DATA || 15059 (flags & TH_MARKNEXT_NEEDED)) { 15060 if (tcp->tcp_rcv_list != NULL) { 15061 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15062 } 15063 ASSERT(tcp->tcp_rcv_list == NULL || 15064 tcp->tcp_fused_sigurg); 15065 if (flags & TH_MARKNEXT_NEEDED) { 15066 #ifdef DEBUG 15067 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15068 "tcp_rput: sending MSGMARKNEXT %s", 15069 tcp_display(tcp, NULL, 15070 DISP_PORT_ONLY)); 15071 #endif /* DEBUG */ 15072 mp->b_flag |= MSGMARKNEXT; 15073 flags &= ~TH_MARKNEXT_NEEDED; 15074 } 15075 putnext(tcp->tcp_rq, mp); 15076 if (!canputnext(tcp->tcp_rq)) 15077 tcp->tcp_rwnd -= seg_len; 15078 } else if (((flags & (TH_PUSH|TH_FIN)) || 15079 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 15080 (sqp != NULL)) { 15081 if (tcp->tcp_rcv_list != NULL) { 15082 /* 15083 * Enqueue the new segment first and then 15084 * call tcp_rcv_drain() to send all data 15085 * up. The other way to do this is to 15086 * send all queued data up and then call 15087 * putnext() to send the new segment up. 15088 * This way can remove the else part later 15089 * on. 15090 * 15091 * We don't this to avoid one more call to 15092 * canputnext() as tcp_rcv_drain() needs to 15093 * call canputnext(). 15094 */ 15095 tcp_rcv_enqueue(tcp, mp, seg_len); 15096 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15097 } else { 15098 putnext(tcp->tcp_rq, mp); 15099 if (!canputnext(tcp->tcp_rq)) 15100 tcp->tcp_rwnd -= seg_len; 15101 } 15102 } else { 15103 /* 15104 * Enqueue all packets when processing an mblk 15105 * from the co queue and also enqueue normal packets. 15106 */ 15107 tcp_rcv_enqueue(tcp, mp, seg_len); 15108 } 15109 /* 15110 * Make sure the timer is running if we have data waiting 15111 * for a push bit. This provides resiliency against 15112 * implementations that do not correctly generate push bits. 15113 */ 15114 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 15115 tcp->tcp_push_tid == 0) { 15116 /* 15117 * The connection may be closed at this point, so don't 15118 * do anything for a detached tcp. 15119 */ 15120 if (!TCP_IS_DETACHED(tcp)) 15121 tcp->tcp_push_tid = TCP_TIMER(tcp, 15122 tcp_push_timer, 15123 MSEC_TO_TICK(tcp_push_timer_interval)); 15124 } 15125 } 15126 xmit_check: 15127 /* Is there anything left to do? */ 15128 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15129 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15130 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15131 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15132 goto done; 15133 15134 /* Any transmit work to do and a non-zero window? */ 15135 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15136 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15137 if (flags & TH_REXMIT_NEEDED) { 15138 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15139 15140 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 15141 if (snd_size > mss) 15142 snd_size = mss; 15143 if (snd_size > tcp->tcp_swnd) 15144 snd_size = tcp->tcp_swnd; 15145 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15146 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15147 B_TRUE); 15148 15149 if (mp1 != NULL) { 15150 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15151 tcp->tcp_csuna = tcp->tcp_snxt; 15152 BUMP_MIB(&tcp_mib, tcpRetransSegs); 15153 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 15154 TCP_RECORD_TRACE(tcp, mp1, 15155 TCP_TRACE_SEND_PKT); 15156 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15157 } 15158 } 15159 if (flags & TH_NEED_SACK_REXMIT) { 15160 tcp_sack_rxmit(tcp, &flags); 15161 } 15162 /* 15163 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15164 * out new segment. Note that tcp_rexmit should not be 15165 * set, otherwise TH_LIMIT_XMIT should not be set. 15166 */ 15167 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15168 if (!tcp->tcp_rexmit) { 15169 tcp_wput_data(tcp, NULL, B_FALSE); 15170 } else { 15171 tcp_ss_rexmit(tcp); 15172 } 15173 } 15174 /* 15175 * Adjust tcp_cwnd back to normal value after sending 15176 * new data segments. 15177 */ 15178 if (flags & TH_LIMIT_XMIT) { 15179 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15180 /* 15181 * This will restart the timer. Restarting the 15182 * timer is used to avoid a timeout before the 15183 * limited transmitted segment's ACK gets back. 15184 */ 15185 if (tcp->tcp_xmit_head != NULL) 15186 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15187 } 15188 15189 /* Anything more to do? */ 15190 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15191 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15192 goto done; 15193 } 15194 ack_check: 15195 if (flags & TH_SEND_URP_MARK) { 15196 ASSERT(tcp->tcp_urp_mark_mp); 15197 /* 15198 * Send up any queued data and then send the mark message 15199 */ 15200 if (tcp->tcp_rcv_list != NULL) { 15201 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15202 } 15203 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15204 15205 mp1 = tcp->tcp_urp_mark_mp; 15206 tcp->tcp_urp_mark_mp = NULL; 15207 #ifdef DEBUG 15208 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 15209 "tcp_rput: sending zero-length %s %s", 15210 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15211 "MSGNOTMARKNEXT"), 15212 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15213 #endif /* DEBUG */ 15214 putnext(tcp->tcp_rq, mp1); 15215 flags &= ~TH_SEND_URP_MARK; 15216 } 15217 if (flags & TH_ACK_NEEDED) { 15218 /* 15219 * Time to send an ack for some reason. 15220 */ 15221 mp1 = tcp_ack_mp(tcp); 15222 15223 if (mp1 != NULL) { 15224 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15225 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15226 BUMP_LOCAL(tcp->tcp_obsegs); 15227 BUMP_MIB(&tcp_mib, tcpOutAck); 15228 } 15229 if (tcp->tcp_ack_tid != 0) { 15230 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15231 tcp->tcp_ack_tid = 0; 15232 } 15233 } 15234 if (flags & TH_ACK_TIMER_NEEDED) { 15235 /* 15236 * Arrange for deferred ACK or push wait timeout. 15237 * Start timer if it is not already running. 15238 */ 15239 if (tcp->tcp_ack_tid == 0) { 15240 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15241 MSEC_TO_TICK(tcp->tcp_localnet ? 15242 (clock_t)tcp_local_dack_interval : 15243 (clock_t)tcp_deferred_ack_interval)); 15244 } 15245 } 15246 if (flags & TH_ORDREL_NEEDED) { 15247 /* 15248 * Send up the ordrel_ind unless we are an eager guy. 15249 * In the eager case tcp_rsrv will do this when run 15250 * after tcp_accept is done. 15251 */ 15252 ASSERT(tcp->tcp_listener == NULL); 15253 if (tcp->tcp_rcv_list != NULL) { 15254 /* 15255 * Push any mblk(s) enqueued from co processing. 15256 */ 15257 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15258 } 15259 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15260 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15261 tcp->tcp_ordrel_done = B_TRUE; 15262 putnext(tcp->tcp_rq, mp1); 15263 if (tcp->tcp_deferred_clean_death) { 15264 /* 15265 * tcp_clean_death was deferred 15266 * for T_ORDREL_IND - do it now 15267 */ 15268 (void) tcp_clean_death(tcp, 15269 tcp->tcp_client_errno, 20); 15270 tcp->tcp_deferred_clean_death = B_FALSE; 15271 } 15272 } else { 15273 /* 15274 * Run the orderly release in the 15275 * service routine. 15276 */ 15277 qenable(tcp->tcp_rq); 15278 /* 15279 * Caveat(XXX): The machine may be so 15280 * overloaded that tcp_rsrv() is not scheduled 15281 * until after the endpoint has transitioned 15282 * to TCPS_TIME_WAIT 15283 * and tcp_time_wait_interval expires. Then 15284 * tcp_timer() will blow away state in tcp_t 15285 * and T_ORDREL_IND will never be delivered 15286 * upstream. Unlikely but potentially 15287 * a problem. 15288 */ 15289 } 15290 } 15291 done: 15292 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15293 } 15294 15295 /* 15296 * This function does PAWS protection check. Returns B_TRUE if the 15297 * segment passes the PAWS test, else returns B_FALSE. 15298 */ 15299 boolean_t 15300 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15301 { 15302 uint8_t flags; 15303 int options; 15304 uint8_t *up; 15305 15306 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15307 /* 15308 * If timestamp option is aligned nicely, get values inline, 15309 * otherwise call general routine to parse. Only do that 15310 * if timestamp is the only option. 15311 */ 15312 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15313 TCPOPT_REAL_TS_LEN && 15314 OK_32PTR((up = ((uint8_t *)tcph) + 15315 TCP_MIN_HEADER_LENGTH)) && 15316 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15317 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15318 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15319 15320 options = TCP_OPT_TSTAMP_PRESENT; 15321 } else { 15322 if (tcp->tcp_snd_sack_ok) { 15323 tcpoptp->tcp = tcp; 15324 } else { 15325 tcpoptp->tcp = NULL; 15326 } 15327 options = tcp_parse_options(tcph, tcpoptp); 15328 } 15329 15330 if (options & TCP_OPT_TSTAMP_PRESENT) { 15331 /* 15332 * Do PAWS per RFC 1323 section 4.2. Accept RST 15333 * regardless of the timestamp, page 18 RFC 1323.bis. 15334 */ 15335 if ((flags & TH_RST) == 0 && 15336 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15337 tcp->tcp_ts_recent)) { 15338 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15339 PAWS_TIMEOUT)) { 15340 /* This segment is not acceptable. */ 15341 return (B_FALSE); 15342 } else { 15343 /* 15344 * Connection has been idle for 15345 * too long. Reset the timestamp 15346 * and assume the segment is valid. 15347 */ 15348 tcp->tcp_ts_recent = 15349 tcpoptp->tcp_opt_ts_val; 15350 } 15351 } 15352 } else { 15353 /* 15354 * If we don't get a timestamp on every packet, we 15355 * figure we can't really trust 'em, so we stop sending 15356 * and parsing them. 15357 */ 15358 tcp->tcp_snd_ts_ok = B_FALSE; 15359 15360 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15361 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15362 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15363 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15364 if (tcp->tcp_snd_sack_ok) { 15365 ASSERT(tcp->tcp_sack_info != NULL); 15366 tcp->tcp_max_sack_blk = 4; 15367 } 15368 } 15369 return (B_TRUE); 15370 } 15371 15372 /* 15373 * Attach ancillary data to a received TCP segments for the 15374 * ancillary pieces requested by the application that are 15375 * different than they were in the previous data segment. 15376 * 15377 * Save the "current" values once memory allocation is ok so that 15378 * when memory allocation fails we can just wait for the next data segment. 15379 */ 15380 static mblk_t * 15381 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15382 { 15383 struct T_optdata_ind *todi; 15384 int optlen; 15385 uchar_t *optptr; 15386 struct T_opthdr *toh; 15387 uint_t addflag; /* Which pieces to add */ 15388 mblk_t *mp1; 15389 15390 optlen = 0; 15391 addflag = 0; 15392 /* If app asked for pktinfo and the index has changed ... */ 15393 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15394 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15395 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15396 optlen += sizeof (struct T_opthdr) + 15397 sizeof (struct in6_pktinfo); 15398 addflag |= TCP_IPV6_RECVPKTINFO; 15399 } 15400 /* If app asked for hoplimit and it has changed ... */ 15401 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15402 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15403 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15404 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15405 addflag |= TCP_IPV6_RECVHOPLIMIT; 15406 } 15407 /* If app asked for tclass and it has changed ... */ 15408 if ((ipp->ipp_fields & IPPF_TCLASS) && 15409 ipp->ipp_tclass != tcp->tcp_recvtclass && 15410 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15411 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15412 addflag |= TCP_IPV6_RECVTCLASS; 15413 } 15414 /* If app asked for hopbyhop headers and it has changed ... */ 15415 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15416 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15417 (ipp->ipp_fields & IPPF_HOPOPTS), 15418 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15419 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 15420 addflag |= TCP_IPV6_RECVHOPOPTS; 15421 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 15422 &tcp->tcp_hopoptslen, 15423 (ipp->ipp_fields & IPPF_HOPOPTS), 15424 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15425 return (mp); 15426 } 15427 /* If app asked for dst headers before routing headers ... */ 15428 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15429 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15430 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15431 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15432 optlen += sizeof (struct T_opthdr) + 15433 ipp->ipp_rtdstoptslen; 15434 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15435 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 15436 &tcp->tcp_rtdstoptslen, 15437 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15438 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15439 return (mp); 15440 } 15441 /* If app asked for routing headers and it has changed ... */ 15442 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15443 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15444 (ipp->ipp_fields & IPPF_RTHDR), 15445 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15446 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15447 addflag |= TCP_IPV6_RECVRTHDR; 15448 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 15449 &tcp->tcp_rthdrlen, 15450 (ipp->ipp_fields & IPPF_RTHDR), 15451 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15452 return (mp); 15453 } 15454 /* If app asked for dest headers and it has changed ... */ 15455 if ((tcp->tcp_ipv6_recvancillary & 15456 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15457 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15458 (ipp->ipp_fields & IPPF_DSTOPTS), 15459 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15460 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15461 addflag |= TCP_IPV6_RECVDSTOPTS; 15462 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 15463 &tcp->tcp_dstoptslen, 15464 (ipp->ipp_fields & IPPF_DSTOPTS), 15465 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15466 return (mp); 15467 } 15468 15469 if (optlen == 0) { 15470 /* Nothing to add */ 15471 return (mp); 15472 } 15473 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15474 if (mp1 == NULL) { 15475 /* 15476 * Defer sending ancillary data until the next TCP segment 15477 * arrives. 15478 */ 15479 return (mp); 15480 } 15481 mp1->b_cont = mp; 15482 mp = mp1; 15483 mp->b_wptr += sizeof (*todi) + optlen; 15484 mp->b_datap->db_type = M_PROTO; 15485 todi = (struct T_optdata_ind *)mp->b_rptr; 15486 todi->PRIM_type = T_OPTDATA_IND; 15487 todi->DATA_flag = 1; /* MORE data */ 15488 todi->OPT_length = optlen; 15489 todi->OPT_offset = sizeof (*todi); 15490 optptr = (uchar_t *)&todi[1]; 15491 /* 15492 * If app asked for pktinfo and the index has changed ... 15493 * Note that the local address never changes for the connection. 15494 */ 15495 if (addflag & TCP_IPV6_RECVPKTINFO) { 15496 struct in6_pktinfo *pkti; 15497 15498 toh = (struct T_opthdr *)optptr; 15499 toh->level = IPPROTO_IPV6; 15500 toh->name = IPV6_PKTINFO; 15501 toh->len = sizeof (*toh) + sizeof (*pkti); 15502 toh->status = 0; 15503 optptr += sizeof (*toh); 15504 pkti = (struct in6_pktinfo *)optptr; 15505 if (tcp->tcp_ipversion == IPV6_VERSION) 15506 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15507 else 15508 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15509 &pkti->ipi6_addr); 15510 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15511 optptr += sizeof (*pkti); 15512 ASSERT(OK_32PTR(optptr)); 15513 /* Save as "last" value */ 15514 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15515 } 15516 /* If app asked for hoplimit and it has changed ... */ 15517 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15518 toh = (struct T_opthdr *)optptr; 15519 toh->level = IPPROTO_IPV6; 15520 toh->name = IPV6_HOPLIMIT; 15521 toh->len = sizeof (*toh) + sizeof (uint_t); 15522 toh->status = 0; 15523 optptr += sizeof (*toh); 15524 *(uint_t *)optptr = ipp->ipp_hoplimit; 15525 optptr += sizeof (uint_t); 15526 ASSERT(OK_32PTR(optptr)); 15527 /* Save as "last" value */ 15528 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15529 } 15530 /* If app asked for tclass and it has changed ... */ 15531 if (addflag & TCP_IPV6_RECVTCLASS) { 15532 toh = (struct T_opthdr *)optptr; 15533 toh->level = IPPROTO_IPV6; 15534 toh->name = IPV6_TCLASS; 15535 toh->len = sizeof (*toh) + sizeof (uint_t); 15536 toh->status = 0; 15537 optptr += sizeof (*toh); 15538 *(uint_t *)optptr = ipp->ipp_tclass; 15539 optptr += sizeof (uint_t); 15540 ASSERT(OK_32PTR(optptr)); 15541 /* Save as "last" value */ 15542 tcp->tcp_recvtclass = ipp->ipp_tclass; 15543 } 15544 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15545 toh = (struct T_opthdr *)optptr; 15546 toh->level = IPPROTO_IPV6; 15547 toh->name = IPV6_HOPOPTS; 15548 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 15549 toh->status = 0; 15550 optptr += sizeof (*toh); 15551 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 15552 optptr += ipp->ipp_hopoptslen; 15553 ASSERT(OK_32PTR(optptr)); 15554 /* Save as last value */ 15555 tcp_savebuf((void **)&tcp->tcp_hopopts, 15556 &tcp->tcp_hopoptslen, 15557 (ipp->ipp_fields & IPPF_HOPOPTS), 15558 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15559 } 15560 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15561 toh = (struct T_opthdr *)optptr; 15562 toh->level = IPPROTO_IPV6; 15563 toh->name = IPV6_RTHDRDSTOPTS; 15564 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15565 toh->status = 0; 15566 optptr += sizeof (*toh); 15567 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15568 optptr += ipp->ipp_rtdstoptslen; 15569 ASSERT(OK_32PTR(optptr)); 15570 /* Save as last value */ 15571 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 15572 &tcp->tcp_rtdstoptslen, 15573 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15574 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15575 } 15576 if (addflag & TCP_IPV6_RECVRTHDR) { 15577 toh = (struct T_opthdr *)optptr; 15578 toh->level = IPPROTO_IPV6; 15579 toh->name = IPV6_RTHDR; 15580 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15581 toh->status = 0; 15582 optptr += sizeof (*toh); 15583 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15584 optptr += ipp->ipp_rthdrlen; 15585 ASSERT(OK_32PTR(optptr)); 15586 /* Save as last value */ 15587 tcp_savebuf((void **)&tcp->tcp_rthdr, 15588 &tcp->tcp_rthdrlen, 15589 (ipp->ipp_fields & IPPF_RTHDR), 15590 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15591 } 15592 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15593 toh = (struct T_opthdr *)optptr; 15594 toh->level = IPPROTO_IPV6; 15595 toh->name = IPV6_DSTOPTS; 15596 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15597 toh->status = 0; 15598 optptr += sizeof (*toh); 15599 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15600 optptr += ipp->ipp_dstoptslen; 15601 ASSERT(OK_32PTR(optptr)); 15602 /* Save as last value */ 15603 tcp_savebuf((void **)&tcp->tcp_dstopts, 15604 &tcp->tcp_dstoptslen, 15605 (ipp->ipp_fields & IPPF_DSTOPTS), 15606 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15607 } 15608 ASSERT(optptr == mp->b_wptr); 15609 return (mp); 15610 } 15611 15612 15613 /* 15614 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15615 * or a "bad" IRE detected by tcp_adapt_ire. 15616 * We can't tell if the failure was due to the laddr or the faddr 15617 * thus we clear out all addresses and ports. 15618 */ 15619 static void 15620 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15621 { 15622 queue_t *q = tcp->tcp_rq; 15623 tcph_t *tcph; 15624 struct T_error_ack *tea; 15625 conn_t *connp = tcp->tcp_connp; 15626 15627 15628 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15629 15630 if (mp->b_cont) { 15631 freemsg(mp->b_cont); 15632 mp->b_cont = NULL; 15633 } 15634 tea = (struct T_error_ack *)mp->b_rptr; 15635 switch (tea->PRIM_type) { 15636 case T_BIND_ACK: 15637 /* 15638 * Need to unbind with classifier since we were just told that 15639 * our bind succeeded. 15640 */ 15641 tcp->tcp_hard_bound = B_FALSE; 15642 tcp->tcp_hard_binding = B_FALSE; 15643 15644 ipcl_hash_remove(connp); 15645 /* Reuse the mblk if possible */ 15646 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15647 sizeof (*tea)); 15648 mp->b_rptr = mp->b_datap->db_base; 15649 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15650 tea = (struct T_error_ack *)mp->b_rptr; 15651 tea->PRIM_type = T_ERROR_ACK; 15652 tea->TLI_error = TSYSERR; 15653 tea->UNIX_error = error; 15654 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15655 tea->ERROR_prim = T_CONN_REQ; 15656 } else { 15657 tea->ERROR_prim = O_T_BIND_REQ; 15658 } 15659 break; 15660 15661 case T_ERROR_ACK: 15662 if (tcp->tcp_state >= TCPS_SYN_SENT) 15663 tea->ERROR_prim = T_CONN_REQ; 15664 break; 15665 default: 15666 panic("tcp_bind_failed: unexpected TPI type"); 15667 /*NOTREACHED*/ 15668 } 15669 15670 tcp->tcp_state = TCPS_IDLE; 15671 if (tcp->tcp_ipversion == IPV4_VERSION) 15672 tcp->tcp_ipha->ipha_src = 0; 15673 else 15674 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15675 /* 15676 * Copy of the src addr. in tcp_t is needed since 15677 * the lookup funcs. can only look at tcp_t 15678 */ 15679 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15680 15681 tcph = tcp->tcp_tcph; 15682 tcph->th_lport[0] = 0; 15683 tcph->th_lport[1] = 0; 15684 tcp_bind_hash_remove(tcp); 15685 bzero(&connp->u_port, sizeof (connp->u_port)); 15686 /* blow away saved option results if any */ 15687 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15688 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15689 15690 conn_delete_ire(tcp->tcp_connp, NULL); 15691 putnext(q, mp); 15692 } 15693 15694 /* 15695 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15696 * messages. 15697 */ 15698 void 15699 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15700 { 15701 mblk_t *mp1; 15702 uchar_t *rptr = mp->b_rptr; 15703 queue_t *q = tcp->tcp_rq; 15704 struct T_error_ack *tea; 15705 uint32_t mss; 15706 mblk_t *syn_mp; 15707 mblk_t *mdti; 15708 int retval; 15709 mblk_t *ire_mp; 15710 15711 switch (mp->b_datap->db_type) { 15712 case M_PROTO: 15713 case M_PCPROTO: 15714 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15715 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15716 break; 15717 tea = (struct T_error_ack *)rptr; 15718 switch (tea->PRIM_type) { 15719 case T_BIND_ACK: 15720 /* 15721 * Adapt Multidata information, if any. The 15722 * following tcp_mdt_update routine will free 15723 * the message. 15724 */ 15725 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15726 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15727 b_rptr)->mdt_capab, B_TRUE); 15728 freemsg(mdti); 15729 } 15730 15731 /* Get the IRE, if we had requested for it */ 15732 ire_mp = tcp_ire_mp(mp); 15733 15734 if (tcp->tcp_hard_binding) { 15735 tcp->tcp_hard_binding = B_FALSE; 15736 tcp->tcp_hard_bound = B_TRUE; 15737 CL_INET_CONNECT(tcp); 15738 } else { 15739 if (ire_mp != NULL) 15740 freeb(ire_mp); 15741 goto after_syn_sent; 15742 } 15743 15744 retval = tcp_adapt_ire(tcp, ire_mp); 15745 if (ire_mp != NULL) 15746 freeb(ire_mp); 15747 if (retval == 0) { 15748 tcp_bind_failed(tcp, mp, 15749 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15750 ENETUNREACH : EADDRNOTAVAIL)); 15751 return; 15752 } 15753 /* 15754 * Don't let an endpoint connect to itself. 15755 * Also checked in tcp_connect() but that 15756 * check can't handle the case when the 15757 * local IP address is INADDR_ANY. 15758 */ 15759 if (tcp->tcp_ipversion == IPV4_VERSION) { 15760 if ((tcp->tcp_ipha->ipha_dst == 15761 tcp->tcp_ipha->ipha_src) && 15762 (BE16_EQL(tcp->tcp_tcph->th_lport, 15763 tcp->tcp_tcph->th_fport))) { 15764 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15765 return; 15766 } 15767 } else { 15768 if (IN6_ARE_ADDR_EQUAL( 15769 &tcp->tcp_ip6h->ip6_dst, 15770 &tcp->tcp_ip6h->ip6_src) && 15771 (BE16_EQL(tcp->tcp_tcph->th_lport, 15772 tcp->tcp_tcph->th_fport))) { 15773 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15774 return; 15775 } 15776 } 15777 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15778 /* 15779 * This should not be possible! Just for 15780 * defensive coding... 15781 */ 15782 if (tcp->tcp_state != TCPS_SYN_SENT) 15783 goto after_syn_sent; 15784 15785 ASSERT(q == tcp->tcp_rq); 15786 /* 15787 * tcp_adapt_ire() does not adjust 15788 * for TCP/IP header length. 15789 */ 15790 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15791 15792 /* 15793 * Just make sure our rwnd is at 15794 * least tcp_recv_hiwat_mss * MSS 15795 * large, and round up to the nearest 15796 * MSS. 15797 * 15798 * We do the round up here because 15799 * we need to get the interface 15800 * MTU first before we can do the 15801 * round up. 15802 */ 15803 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15804 tcp_recv_hiwat_minmss * mss); 15805 q->q_hiwat = tcp->tcp_rwnd; 15806 tcp_set_ws_value(tcp); 15807 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15808 tcp->tcp_tcph->th_win); 15809 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15810 tcp->tcp_snd_ws_ok = B_TRUE; 15811 15812 /* 15813 * Set tcp_snd_ts_ok to true 15814 * so that tcp_xmit_mp will 15815 * include the timestamp 15816 * option in the SYN segment. 15817 */ 15818 if (tcp_tstamp_always || 15819 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15820 tcp->tcp_snd_ts_ok = B_TRUE; 15821 } 15822 15823 /* 15824 * tcp_snd_sack_ok can be set in 15825 * tcp_adapt_ire() if the sack metric 15826 * is set. So check it here also. 15827 */ 15828 if (tcp_sack_permitted == 2 || 15829 tcp->tcp_snd_sack_ok) { 15830 if (tcp->tcp_sack_info == NULL) { 15831 tcp->tcp_sack_info = 15832 kmem_cache_alloc(tcp_sack_info_cache, 15833 KM_SLEEP); 15834 } 15835 tcp->tcp_snd_sack_ok = B_TRUE; 15836 } 15837 15838 /* 15839 * Should we use ECN? Note that the current 15840 * default value (SunOS 5.9) of tcp_ecn_permitted 15841 * is 1. The reason for doing this is that there 15842 * are equipments out there that will drop ECN 15843 * enabled IP packets. Setting it to 1 avoids 15844 * compatibility problems. 15845 */ 15846 if (tcp_ecn_permitted == 2) 15847 tcp->tcp_ecn_ok = B_TRUE; 15848 15849 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15850 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15851 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15852 if (syn_mp) { 15853 cred_t *cr; 15854 pid_t pid; 15855 15856 /* 15857 * Obtain the credential from the 15858 * thread calling connect(); the credential 15859 * lives on in the second mblk which 15860 * originated from T_CONN_REQ and is echoed 15861 * with the T_BIND_ACK from ip. If none 15862 * can be found, default to the creator 15863 * of the socket. 15864 */ 15865 if (mp->b_cont == NULL || 15866 (cr = DB_CRED(mp->b_cont)) == NULL) { 15867 cr = tcp->tcp_cred; 15868 pid = tcp->tcp_cpid; 15869 } else { 15870 pid = DB_CPID(mp->b_cont); 15871 } 15872 15873 TCP_RECORD_TRACE(tcp, syn_mp, 15874 TCP_TRACE_SEND_PKT); 15875 mblk_setcred(syn_mp, cr); 15876 DB_CPID(syn_mp) = pid; 15877 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15878 } 15879 after_syn_sent: 15880 /* 15881 * A trailer mblk indicates a waiting client upstream. 15882 * We complete here the processing begun in 15883 * either tcp_bind() or tcp_connect() by passing 15884 * upstream the reply message they supplied. 15885 */ 15886 mp1 = mp; 15887 mp = mp->b_cont; 15888 freeb(mp1); 15889 if (mp) 15890 break; 15891 return; 15892 case T_ERROR_ACK: 15893 if (tcp->tcp_debug) { 15894 (void) strlog(TCP_MODULE_ID, 0, 1, 15895 SL_TRACE|SL_ERROR, 15896 "tcp_rput_other: case T_ERROR_ACK, " 15897 "ERROR_prim == %d", 15898 tea->ERROR_prim); 15899 } 15900 switch (tea->ERROR_prim) { 15901 case O_T_BIND_REQ: 15902 case T_BIND_REQ: 15903 tcp_bind_failed(tcp, mp, 15904 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15905 ENETUNREACH : EADDRNOTAVAIL)); 15906 return; 15907 case T_UNBIND_REQ: 15908 tcp->tcp_hard_binding = B_FALSE; 15909 tcp->tcp_hard_bound = B_FALSE; 15910 if (mp->b_cont) { 15911 freemsg(mp->b_cont); 15912 mp->b_cont = NULL; 15913 } 15914 if (tcp->tcp_unbind_pending) 15915 tcp->tcp_unbind_pending = 0; 15916 else { 15917 /* From tcp_ip_unbind() - free */ 15918 freemsg(mp); 15919 return; 15920 } 15921 break; 15922 case T_SVR4_OPTMGMT_REQ: 15923 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15924 /* T_OPTMGMT_REQ generated by TCP */ 15925 printf("T_SVR4_OPTMGMT_REQ failed " 15926 "%d/%d - dropped (cnt %d)\n", 15927 tea->TLI_error, tea->UNIX_error, 15928 tcp->tcp_drop_opt_ack_cnt); 15929 freemsg(mp); 15930 tcp->tcp_drop_opt_ack_cnt--; 15931 return; 15932 } 15933 break; 15934 } 15935 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15936 tcp->tcp_drop_opt_ack_cnt > 0) { 15937 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15938 "- dropped (cnt %d)\n", 15939 tea->TLI_error, tea->UNIX_error, 15940 tcp->tcp_drop_opt_ack_cnt); 15941 freemsg(mp); 15942 tcp->tcp_drop_opt_ack_cnt--; 15943 return; 15944 } 15945 break; 15946 case T_OPTMGMT_ACK: 15947 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15948 /* T_OPTMGMT_REQ generated by TCP */ 15949 freemsg(mp); 15950 tcp->tcp_drop_opt_ack_cnt--; 15951 return; 15952 } 15953 break; 15954 default: 15955 break; 15956 } 15957 break; 15958 case M_CTL: 15959 /* 15960 * ICMP messages. 15961 */ 15962 tcp_icmp_error(tcp, mp); 15963 return; 15964 case M_FLUSH: 15965 if (*rptr & FLUSHR) 15966 flushq(q, FLUSHDATA); 15967 break; 15968 default: 15969 break; 15970 } 15971 /* 15972 * Make sure we set this bit before sending the ACK for 15973 * bind. Otherwise accept could possibly run and free 15974 * this tcp struct. 15975 */ 15976 putnext(q, mp); 15977 } 15978 15979 /* 15980 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15981 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15982 * tcp_rsrv() try again. 15983 */ 15984 static void 15985 tcp_ordrel_kick(void *arg) 15986 { 15987 conn_t *connp = (conn_t *)arg; 15988 tcp_t *tcp = connp->conn_tcp; 15989 15990 tcp->tcp_ordrelid = 0; 15991 tcp->tcp_timeout = B_FALSE; 15992 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15993 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15994 qenable(tcp->tcp_rq); 15995 } 15996 } 15997 15998 /* ARGSUSED */ 15999 static void 16000 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 16001 { 16002 conn_t *connp = (conn_t *)arg; 16003 tcp_t *tcp = connp->conn_tcp; 16004 queue_t *q = tcp->tcp_rq; 16005 uint_t thwin; 16006 16007 freeb(mp); 16008 16009 TCP_STAT(tcp_rsrv_calls); 16010 16011 if (TCP_IS_DETACHED(tcp) || q == NULL) { 16012 return; 16013 } 16014 16015 if (tcp->tcp_fused) { 16016 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16017 16018 ASSERT(tcp->tcp_fused); 16019 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 16020 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 16021 ASSERT(!TCP_IS_DETACHED(tcp)); 16022 ASSERT(tcp->tcp_connp->conn_sqp == 16023 peer_tcp->tcp_connp->conn_sqp); 16024 16025 if (tcp->tcp_rcv_list != NULL) 16026 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16027 16028 tcp_clrqfull(peer_tcp); 16029 peer_tcp->tcp_flow_stopped = B_FALSE; 16030 TCP_STAT(tcp_fusion_backenabled); 16031 return; 16032 } 16033 16034 if (canputnext(q)) { 16035 tcp->tcp_rwnd = q->q_hiwat; 16036 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16037 << tcp->tcp_rcv_ws; 16038 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16039 /* 16040 * Send back a window update immediately if TCP is above 16041 * ESTABLISHED state and the increase of the rcv window 16042 * that the other side knows is at least 1 MSS after flow 16043 * control is lifted. 16044 */ 16045 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16046 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16047 tcp_xmit_ctl(NULL, tcp, 16048 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16049 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16050 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 16051 } 16052 } 16053 /* Handle a failure to allocate a T_ORDREL_IND here */ 16054 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16055 ASSERT(tcp->tcp_listener == NULL); 16056 if (tcp->tcp_rcv_list != NULL) { 16057 (void) tcp_rcv_drain(q, tcp); 16058 } 16059 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16060 mp = mi_tpi_ordrel_ind(); 16061 if (mp) { 16062 tcp->tcp_ordrel_done = B_TRUE; 16063 putnext(q, mp); 16064 if (tcp->tcp_deferred_clean_death) { 16065 /* 16066 * tcp_clean_death was deferred for 16067 * T_ORDREL_IND - do it now 16068 */ 16069 tcp->tcp_deferred_clean_death = B_FALSE; 16070 (void) tcp_clean_death(tcp, 16071 tcp->tcp_client_errno, 22); 16072 } 16073 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16074 /* 16075 * If there isn't already a timer running 16076 * start one. Use a 4 second 16077 * timer as a fallback since it can't fail. 16078 */ 16079 tcp->tcp_timeout = B_TRUE; 16080 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16081 MSEC_TO_TICK(4000)); 16082 } 16083 } 16084 } 16085 16086 /* 16087 * The read side service routine is called mostly when we get back-enabled as a 16088 * result of flow control relief. Since we don't actually queue anything in 16089 * TCP, we have no data to send out of here. What we do is clear the receive 16090 * window, and send out a window update. 16091 * This routine is also called to drive an orderly release message upstream 16092 * if the attempt in tcp_rput failed. 16093 */ 16094 static void 16095 tcp_rsrv(queue_t *q) 16096 { 16097 conn_t *connp = Q_TO_CONN(q); 16098 tcp_t *tcp = connp->conn_tcp; 16099 mblk_t *mp; 16100 16101 /* No code does a putq on the read side */ 16102 ASSERT(q->q_first == NULL); 16103 16104 /* Nothing to do for the default queue */ 16105 if (q == tcp_g_q) { 16106 return; 16107 } 16108 16109 mp = allocb(0, BPRI_HI); 16110 if (mp == NULL) { 16111 /* 16112 * We are under memory pressure. Return for now and we 16113 * we will be called again later. 16114 */ 16115 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16116 /* 16117 * If there isn't already a timer running 16118 * start one. Use a 4 second 16119 * timer as a fallback since it can't fail. 16120 */ 16121 tcp->tcp_timeout = B_TRUE; 16122 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16123 MSEC_TO_TICK(4000)); 16124 } 16125 return; 16126 } 16127 CONN_INC_REF(connp); 16128 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16129 SQTAG_TCP_RSRV); 16130 } 16131 16132 /* 16133 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16134 * We do not allow the receive window to shrink. After setting rwnd, 16135 * set the flow control hiwat of the stream. 16136 * 16137 * This function is called in 2 cases: 16138 * 16139 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16140 * connection (passive open) and in tcp_rput_data() for active connect. 16141 * This is called after tcp_mss_set() when the desired MSS value is known. 16142 * This makes sure that our window size is a mutiple of the other side's 16143 * MSS. 16144 * 2) Handling SO_RCVBUF option. 16145 * 16146 * It is ASSUMED that the requested size is a multiple of the current MSS. 16147 * 16148 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16149 * user requests so. 16150 */ 16151 static int 16152 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16153 { 16154 uint32_t mss = tcp->tcp_mss; 16155 uint32_t old_max_rwnd; 16156 uint32_t max_transmittable_rwnd; 16157 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16158 16159 if (tcp_detached) 16160 old_max_rwnd = tcp->tcp_rwnd; 16161 else 16162 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16163 16164 /* 16165 * Insist on a receive window that is at least 16166 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16167 * funny TCP interactions of Nagle algorithm, SWS avoidance 16168 * and delayed acknowledgement. 16169 */ 16170 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 16171 16172 /* 16173 * If window size info has already been exchanged, TCP should not 16174 * shrink the window. Shrinking window is doable if done carefully. 16175 * We may add that support later. But so far there is not a real 16176 * need to do that. 16177 */ 16178 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16179 /* MSS may have changed, do a round up again. */ 16180 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16181 } 16182 16183 /* 16184 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16185 * can be applied even before the window scale option is decided. 16186 */ 16187 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16188 if (rwnd > max_transmittable_rwnd) { 16189 rwnd = max_transmittable_rwnd - 16190 (max_transmittable_rwnd % mss); 16191 if (rwnd < mss) 16192 rwnd = max_transmittable_rwnd; 16193 /* 16194 * If we're over the limit we may have to back down tcp_rwnd. 16195 * The increment below won't work for us. So we set all three 16196 * here and the increment below will have no effect. 16197 */ 16198 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16199 } 16200 if (tcp->tcp_localnet) { 16201 tcp->tcp_rack_abs_max = 16202 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16203 } else { 16204 /* 16205 * For a remote host on a different subnet (through a router), 16206 * we ack every other packet to be conforming to RFC1122. 16207 * tcp_deferred_acks_max is default to 2. 16208 */ 16209 tcp->tcp_rack_abs_max = 16210 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16211 } 16212 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16213 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16214 else 16215 tcp->tcp_rack_cur_max = 0; 16216 /* 16217 * Increment the current rwnd by the amount the maximum grew (we 16218 * can not overwrite it since we might be in the middle of a 16219 * connection.) 16220 */ 16221 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16222 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16223 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16224 tcp->tcp_cwnd_max = rwnd; 16225 16226 if (tcp_detached) 16227 return (rwnd); 16228 /* 16229 * We set the maximum receive window into rq->q_hiwat. 16230 * This is not actually used for flow control. 16231 */ 16232 tcp->tcp_rq->q_hiwat = rwnd; 16233 /* 16234 * Set the Stream head high water mark. This doesn't have to be 16235 * here, since we are simply using default values, but we would 16236 * prefer to choose these values algorithmically, with a likely 16237 * relationship to rwnd. For fused loopback tcp, we double the 16238 * amount of buffer in order to simulate the normal tcp case. 16239 */ 16240 if (tcp->tcp_fused) { 16241 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd << 1, 16242 tcp_sth_rcv_hiwat)); 16243 } else { 16244 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, 16245 tcp_sth_rcv_hiwat)); 16246 } 16247 return (rwnd); 16248 } 16249 16250 /* 16251 * Return SNMP stuff in buffer in mpdata. 16252 */ 16253 static int 16254 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16255 { 16256 mblk_t *mpdata; 16257 mblk_t *mp_conn_ctl = NULL; 16258 mblk_t *mp_conn_data; 16259 mblk_t *mp6_conn_ctl = NULL; 16260 mblk_t *mp6_conn_data; 16261 mblk_t *mp_conn_tail = NULL; 16262 mblk_t *mp6_conn_tail = NULL; 16263 struct opthdr *optp; 16264 mib2_tcpConnEntry_t tce; 16265 mib2_tcp6ConnEntry_t tce6; 16266 connf_t *connfp; 16267 conn_t *connp; 16268 int i; 16269 boolean_t ispriv; 16270 zoneid_t zoneid; 16271 16272 if (mpctl == NULL || 16273 (mpdata = mpctl->b_cont) == NULL || 16274 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16275 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 16276 if (mp_conn_ctl != NULL) 16277 freemsg(mp_conn_ctl); 16278 if (mp6_conn_ctl != NULL) 16279 freemsg(mp6_conn_ctl); 16280 return (0); 16281 } 16282 16283 /* build table of connections -- need count in fixed part */ 16284 mp_conn_data = mp_conn_ctl->b_cont; 16285 mp6_conn_data = mp6_conn_ctl->b_cont; 16286 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16287 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16288 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16289 SET_MIB(tcp_mib.tcpMaxConn, -1); 16290 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16291 16292 ispriv = 16293 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16294 zoneid = Q_TO_CONN(q)->conn_zoneid; 16295 16296 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16297 16298 connfp = &ipcl_globalhash_fanout[i]; 16299 16300 connp = NULL; 16301 16302 while ((connp = tcp_get_next_conn(connfp, connp))) { 16303 tcp_t *tcp; 16304 16305 if (connp->conn_zoneid != zoneid) 16306 continue; /* not in this zone */ 16307 16308 tcp = connp->conn_tcp; 16309 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 16310 tcp->tcp_ibsegs = 0; 16311 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 16312 tcp->tcp_obsegs = 0; 16313 16314 tce6.tcp6ConnState = tce.tcpConnState = 16315 tcp_snmp_state(tcp); 16316 if (tce.tcpConnState == MIB2_TCP_established || 16317 tce.tcpConnState == MIB2_TCP_closeWait) 16318 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16319 16320 /* Create a message to report on IPv6 entries */ 16321 if (tcp->tcp_ipversion == IPV6_VERSION) { 16322 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16323 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16324 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16325 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16326 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16327 /* Don't want just anybody seeing these... */ 16328 if (ispriv) { 16329 tce6.tcp6ConnEntryInfo.ce_snxt = 16330 tcp->tcp_snxt; 16331 tce6.tcp6ConnEntryInfo.ce_suna = 16332 tcp->tcp_suna; 16333 tce6.tcp6ConnEntryInfo.ce_rnxt = 16334 tcp->tcp_rnxt; 16335 tce6.tcp6ConnEntryInfo.ce_rack = 16336 tcp->tcp_rack; 16337 } else { 16338 /* 16339 * Netstat, unfortunately, uses this to 16340 * get send/receive queue sizes. How to fix? 16341 * Why not compute the difference only? 16342 */ 16343 tce6.tcp6ConnEntryInfo.ce_snxt = 16344 tcp->tcp_snxt - tcp->tcp_suna; 16345 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16346 tce6.tcp6ConnEntryInfo.ce_rnxt = 16347 tcp->tcp_rnxt - tcp->tcp_rack; 16348 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16349 } 16350 16351 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16352 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16353 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16354 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16355 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16356 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 16357 (char *)&tce6, sizeof (tce6)); 16358 } 16359 /* 16360 * Create an IPv4 table entry for IPv4 entries and also 16361 * for IPv6 entries which are bound to in6addr_any 16362 * but don't have IPV6_V6ONLY set. 16363 * (i.e. anything an IPv4 peer could connect to) 16364 */ 16365 if (tcp->tcp_ipversion == IPV4_VERSION || 16366 (tcp->tcp_state <= TCPS_LISTEN && 16367 !tcp->tcp_connp->conn_ipv6_v6only && 16368 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16369 if (tcp->tcp_ipversion == IPV6_VERSION) { 16370 tce.tcpConnRemAddress = INADDR_ANY; 16371 tce.tcpConnLocalAddress = INADDR_ANY; 16372 } else { 16373 tce.tcpConnRemAddress = 16374 tcp->tcp_remote; 16375 tce.tcpConnLocalAddress = 16376 tcp->tcp_ip_src; 16377 } 16378 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16379 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16380 /* Don't want just anybody seeing these... */ 16381 if (ispriv) { 16382 tce.tcpConnEntryInfo.ce_snxt = 16383 tcp->tcp_snxt; 16384 tce.tcpConnEntryInfo.ce_suna = 16385 tcp->tcp_suna; 16386 tce.tcpConnEntryInfo.ce_rnxt = 16387 tcp->tcp_rnxt; 16388 tce.tcpConnEntryInfo.ce_rack = 16389 tcp->tcp_rack; 16390 } else { 16391 /* 16392 * Netstat, unfortunately, uses this to 16393 * get send/receive queue sizes. How 16394 * to fix? 16395 * Why not compute the difference only? 16396 */ 16397 tce.tcpConnEntryInfo.ce_snxt = 16398 tcp->tcp_snxt - tcp->tcp_suna; 16399 tce.tcpConnEntryInfo.ce_suna = 0; 16400 tce.tcpConnEntryInfo.ce_rnxt = 16401 tcp->tcp_rnxt - tcp->tcp_rack; 16402 tce.tcpConnEntryInfo.ce_rack = 0; 16403 } 16404 16405 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16406 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16407 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16408 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16409 tce.tcpConnEntryInfo.ce_state = 16410 tcp->tcp_state; 16411 (void) snmp_append_data2(mp_conn_data, 16412 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16413 } 16414 } 16415 } 16416 16417 /* fixed length structure for IPv4 and IPv6 counters */ 16418 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16419 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16420 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16421 optp->level = MIB2_TCP; 16422 optp->name = 0; 16423 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16424 optp->len = msgdsize(mpdata); 16425 qreply(q, mpctl); 16426 16427 /* table of connections... */ 16428 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16429 sizeof (struct T_optmgmt_ack)]; 16430 optp->level = MIB2_TCP; 16431 optp->name = MIB2_TCP_CONN; 16432 optp->len = msgdsize(mp_conn_data); 16433 qreply(q, mp_conn_ctl); 16434 16435 /* table of IPv6 connections... */ 16436 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16437 sizeof (struct T_optmgmt_ack)]; 16438 optp->level = MIB2_TCP6; 16439 optp->name = MIB2_TCP6_CONN; 16440 optp->len = msgdsize(mp6_conn_data); 16441 qreply(q, mp6_conn_ctl); 16442 return (1); 16443 } 16444 16445 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16446 /* ARGSUSED */ 16447 static int 16448 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16449 { 16450 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16451 16452 switch (level) { 16453 case MIB2_TCP: 16454 switch (name) { 16455 case 13: 16456 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16457 return (0); 16458 /* TODO: delete entry defined by tce */ 16459 return (1); 16460 default: 16461 return (0); 16462 } 16463 default: 16464 return (1); 16465 } 16466 } 16467 16468 /* Translate TCP state to MIB2 TCP state. */ 16469 static int 16470 tcp_snmp_state(tcp_t *tcp) 16471 { 16472 if (tcp == NULL) 16473 return (0); 16474 16475 switch (tcp->tcp_state) { 16476 case TCPS_CLOSED: 16477 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16478 case TCPS_BOUND: 16479 return (MIB2_TCP_closed); 16480 case TCPS_LISTEN: 16481 return (MIB2_TCP_listen); 16482 case TCPS_SYN_SENT: 16483 return (MIB2_TCP_synSent); 16484 case TCPS_SYN_RCVD: 16485 return (MIB2_TCP_synReceived); 16486 case TCPS_ESTABLISHED: 16487 return (MIB2_TCP_established); 16488 case TCPS_CLOSE_WAIT: 16489 return (MIB2_TCP_closeWait); 16490 case TCPS_FIN_WAIT_1: 16491 return (MIB2_TCP_finWait1); 16492 case TCPS_CLOSING: 16493 return (MIB2_TCP_closing); 16494 case TCPS_LAST_ACK: 16495 return (MIB2_TCP_lastAck); 16496 case TCPS_FIN_WAIT_2: 16497 return (MIB2_TCP_finWait2); 16498 case TCPS_TIME_WAIT: 16499 return (MIB2_TCP_timeWait); 16500 default: 16501 return (0); 16502 } 16503 } 16504 16505 static char tcp_report_header[] = 16506 "TCP " MI_COL_HDRPAD_STR 16507 "zone dest snxt suna " 16508 "swnd rnxt rack rwnd rto mss w sw rw t " 16509 "recent [lport,fport] state"; 16510 16511 /* 16512 * TCP status report triggered via the Named Dispatch mechanism. 16513 */ 16514 /* ARGSUSED */ 16515 static void 16516 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16517 cred_t *cr) 16518 { 16519 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16520 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16521 char cflag; 16522 in6_addr_t v6dst; 16523 char buf[80]; 16524 uint_t print_len, buf_len; 16525 16526 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16527 if (buf_len <= 0) 16528 return; 16529 16530 if (hashval >= 0) 16531 (void) sprintf(hash, "%03d ", hashval); 16532 else 16533 hash[0] = '\0'; 16534 16535 /* 16536 * Note that we use the remote address in the tcp_b structure. 16537 * This means that it will print out the real destination address, 16538 * not the next hop's address if source routing is used. This 16539 * avoid the confusion on the output because user may not 16540 * know that source routing is used for a connection. 16541 */ 16542 if (tcp->tcp_ipversion == IPV4_VERSION) { 16543 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16544 } else { 16545 v6dst = tcp->tcp_remote_v6; 16546 } 16547 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16548 /* 16549 * the ispriv checks are so that normal users cannot determine 16550 * sequence number information using NDD. 16551 */ 16552 16553 if (TCP_IS_DETACHED(tcp)) 16554 cflag = '*'; 16555 else 16556 cflag = ' '; 16557 print_len = snprintf((char *)mp->b_wptr, buf_len, 16558 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16559 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16560 hash, 16561 (void *)tcp, 16562 tcp->tcp_connp->conn_zoneid, 16563 addrbuf, 16564 (ispriv) ? tcp->tcp_snxt : 0, 16565 (ispriv) ? tcp->tcp_suna : 0, 16566 tcp->tcp_swnd, 16567 (ispriv) ? tcp->tcp_rnxt : 0, 16568 (ispriv) ? tcp->tcp_rack : 0, 16569 tcp->tcp_rwnd, 16570 tcp->tcp_rto, 16571 tcp->tcp_mss, 16572 tcp->tcp_snd_ws_ok, 16573 tcp->tcp_snd_ws, 16574 tcp->tcp_rcv_ws, 16575 tcp->tcp_snd_ts_ok, 16576 tcp->tcp_ts_recent, 16577 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16578 if (print_len < buf_len) { 16579 ((mblk_t *)mp)->b_wptr += print_len; 16580 } else { 16581 ((mblk_t *)mp)->b_wptr += buf_len; 16582 } 16583 } 16584 16585 /* 16586 * TCP status report (for listeners only) triggered via the Named Dispatch 16587 * mechanism. 16588 */ 16589 /* ARGSUSED */ 16590 static void 16591 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16592 { 16593 char addrbuf[INET6_ADDRSTRLEN]; 16594 in6_addr_t v6dst; 16595 uint_t print_len, buf_len; 16596 16597 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16598 if (buf_len <= 0) 16599 return; 16600 16601 if (tcp->tcp_ipversion == IPV4_VERSION) { 16602 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16603 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16604 } else { 16605 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16606 addrbuf, sizeof (addrbuf)); 16607 } 16608 print_len = snprintf((char *)mp->b_wptr, buf_len, 16609 "%03d " 16610 MI_COL_PTRFMT_STR 16611 "%d %s %05u %08u %d/%d/%d%c\n", 16612 hashval, (void *)tcp, 16613 tcp->tcp_connp->conn_zoneid, 16614 addrbuf, 16615 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16616 tcp->tcp_conn_req_seqnum, 16617 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16618 tcp->tcp_conn_req_max, 16619 tcp->tcp_syn_defense ? '*' : ' '); 16620 if (print_len < buf_len) { 16621 ((mblk_t *)mp)->b_wptr += print_len; 16622 } else { 16623 ((mblk_t *)mp)->b_wptr += buf_len; 16624 } 16625 } 16626 16627 /* TCP status report triggered via the Named Dispatch mechanism. */ 16628 /* ARGSUSED */ 16629 static int 16630 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16631 { 16632 tcp_t *tcp; 16633 int i; 16634 conn_t *connp; 16635 connf_t *connfp; 16636 zoneid_t zoneid; 16637 16638 /* 16639 * Because of the ndd constraint, at most we can have 64K buffer 16640 * to put in all TCP info. So to be more efficient, just 16641 * allocate a 64K buffer here, assuming we need that large buffer. 16642 * This may be a problem as any user can read tcp_status. Therefore 16643 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16644 * This should be OK as normal users should not do this too often. 16645 */ 16646 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16647 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16648 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16649 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16650 return (0); 16651 } 16652 } 16653 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16654 /* The following may work even if we cannot get a large buf. */ 16655 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16656 return (0); 16657 } 16658 16659 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16660 16661 zoneid = Q_TO_CONN(q)->conn_zoneid; 16662 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16663 16664 connfp = &ipcl_globalhash_fanout[i]; 16665 16666 connp = NULL; 16667 16668 while ((connp = tcp_get_next_conn(connfp, connp))) { 16669 tcp = connp->conn_tcp; 16670 if (zoneid != GLOBAL_ZONEID && 16671 zoneid != connp->conn_zoneid) 16672 continue; 16673 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16674 cr); 16675 } 16676 16677 } 16678 16679 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16680 return (0); 16681 } 16682 16683 /* TCP status report triggered via the Named Dispatch mechanism. */ 16684 /* ARGSUSED */ 16685 static int 16686 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16687 { 16688 tf_t *tbf; 16689 tcp_t *tcp; 16690 int i; 16691 zoneid_t zoneid; 16692 16693 /* Refer to comments in tcp_status_report(). */ 16694 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16695 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16696 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16697 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16698 return (0); 16699 } 16700 } 16701 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16702 /* The following may work even if we cannot get a large buf. */ 16703 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16704 return (0); 16705 } 16706 16707 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16708 16709 zoneid = Q_TO_CONN(q)->conn_zoneid; 16710 16711 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16712 tbf = &tcp_bind_fanout[i]; 16713 mutex_enter(&tbf->tf_lock); 16714 for (tcp = tbf->tf_tcp; tcp != NULL; 16715 tcp = tcp->tcp_bind_hash) { 16716 if (zoneid != GLOBAL_ZONEID && 16717 zoneid != tcp->tcp_connp->conn_zoneid) 16718 continue; 16719 CONN_INC_REF(tcp->tcp_connp); 16720 tcp_report_item(mp->b_cont, tcp, i, 16721 Q_TO_TCP(q), cr); 16722 CONN_DEC_REF(tcp->tcp_connp); 16723 } 16724 mutex_exit(&tbf->tf_lock); 16725 } 16726 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16727 return (0); 16728 } 16729 16730 /* TCP status report triggered via the Named Dispatch mechanism. */ 16731 /* ARGSUSED */ 16732 static int 16733 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16734 { 16735 connf_t *connfp; 16736 conn_t *connp; 16737 tcp_t *tcp; 16738 int i; 16739 zoneid_t zoneid; 16740 16741 /* Refer to comments in tcp_status_report(). */ 16742 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16743 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16744 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16745 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16746 return (0); 16747 } 16748 } 16749 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16750 /* The following may work even if we cannot get a large buf. */ 16751 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16752 return (0); 16753 } 16754 16755 (void) mi_mpprintf(mp, 16756 " TCP " MI_COL_HDRPAD_STR 16757 "zone IP addr port seqnum backlog (q0/q/max)"); 16758 16759 zoneid = Q_TO_CONN(q)->conn_zoneid; 16760 16761 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16762 connfp = &ipcl_bind_fanout[i]; 16763 connp = NULL; 16764 while ((connp = tcp_get_next_conn(connfp, connp))) { 16765 tcp = connp->conn_tcp; 16766 if (zoneid != GLOBAL_ZONEID && 16767 zoneid != connp->conn_zoneid) 16768 continue; 16769 tcp_report_listener(mp->b_cont, tcp, i); 16770 } 16771 } 16772 16773 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16774 return (0); 16775 } 16776 16777 /* TCP status report triggered via the Named Dispatch mechanism. */ 16778 /* ARGSUSED */ 16779 static int 16780 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16781 { 16782 connf_t *connfp; 16783 conn_t *connp; 16784 tcp_t *tcp; 16785 int i; 16786 zoneid_t zoneid; 16787 16788 /* Refer to comments in tcp_status_report(). */ 16789 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16790 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16791 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16792 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16793 return (0); 16794 } 16795 } 16796 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16797 /* The following may work even if we cannot get a large buf. */ 16798 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16799 return (0); 16800 } 16801 16802 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16803 ipcl_conn_fanout_size); 16804 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16805 16806 zoneid = Q_TO_CONN(q)->conn_zoneid; 16807 16808 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16809 connfp = &ipcl_conn_fanout[i]; 16810 connp = NULL; 16811 while ((connp = tcp_get_next_conn(connfp, connp))) { 16812 tcp = connp->conn_tcp; 16813 if (zoneid != GLOBAL_ZONEID && 16814 zoneid != connp->conn_zoneid) 16815 continue; 16816 tcp_report_item(mp->b_cont, tcp, i, 16817 Q_TO_TCP(q), cr); 16818 } 16819 } 16820 16821 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16822 return (0); 16823 } 16824 16825 /* TCP status report triggered via the Named Dispatch mechanism. */ 16826 /* ARGSUSED */ 16827 static int 16828 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16829 { 16830 tf_t *tf; 16831 tcp_t *tcp; 16832 int i; 16833 zoneid_t zoneid; 16834 16835 /* Refer to comments in tcp_status_report(). */ 16836 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16837 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16838 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16839 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16840 return (0); 16841 } 16842 } 16843 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16844 /* The following may work even if we cannot get a large buf. */ 16845 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16846 return (0); 16847 } 16848 16849 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16850 16851 zoneid = Q_TO_CONN(q)->conn_zoneid; 16852 16853 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16854 tf = &tcp_acceptor_fanout[i]; 16855 mutex_enter(&tf->tf_lock); 16856 for (tcp = tf->tf_tcp; tcp != NULL; 16857 tcp = tcp->tcp_acceptor_hash) { 16858 if (zoneid != GLOBAL_ZONEID && 16859 zoneid != tcp->tcp_connp->conn_zoneid) 16860 continue; 16861 tcp_report_item(mp->b_cont, tcp, i, 16862 Q_TO_TCP(q), cr); 16863 } 16864 mutex_exit(&tf->tf_lock); 16865 } 16866 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16867 return (0); 16868 } 16869 16870 /* 16871 * tcp_timer is the timer service routine. It handles the retransmission, 16872 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16873 * from the state of the tcp instance what kind of action needs to be done 16874 * at the time it is called. 16875 */ 16876 static void 16877 tcp_timer(void *arg) 16878 { 16879 mblk_t *mp; 16880 clock_t first_threshold; 16881 clock_t second_threshold; 16882 clock_t ms; 16883 uint32_t mss; 16884 conn_t *connp = (conn_t *)arg; 16885 tcp_t *tcp = connp->conn_tcp; 16886 16887 tcp->tcp_timer_tid = 0; 16888 16889 if (tcp->tcp_fused) 16890 return; 16891 16892 first_threshold = tcp->tcp_first_timer_threshold; 16893 second_threshold = tcp->tcp_second_timer_threshold; 16894 switch (tcp->tcp_state) { 16895 case TCPS_IDLE: 16896 case TCPS_BOUND: 16897 case TCPS_LISTEN: 16898 return; 16899 case TCPS_SYN_RCVD: { 16900 tcp_t *listener = tcp->tcp_listener; 16901 16902 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16903 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16904 /* it's our first timeout */ 16905 tcp->tcp_syn_rcvd_timeout = 1; 16906 mutex_enter(&listener->tcp_eager_lock); 16907 listener->tcp_syn_rcvd_timeout++; 16908 if (!listener->tcp_syn_defense && 16909 (listener->tcp_syn_rcvd_timeout > 16910 (tcp_conn_req_max_q0 >> 2)) && 16911 (tcp_conn_req_max_q0 > 200)) { 16912 /* We may be under attack. Put on a defense. */ 16913 listener->tcp_syn_defense = B_TRUE; 16914 cmn_err(CE_WARN, "High TCP connect timeout " 16915 "rate! System (port %d) may be under a " 16916 "SYN flood attack!", 16917 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16918 16919 listener->tcp_ip_addr_cache = kmem_zalloc( 16920 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16921 KM_NOSLEEP); 16922 } 16923 mutex_exit(&listener->tcp_eager_lock); 16924 } 16925 } 16926 /* FALLTHRU */ 16927 case TCPS_SYN_SENT: 16928 first_threshold = tcp->tcp_first_ctimer_threshold; 16929 second_threshold = tcp->tcp_second_ctimer_threshold; 16930 break; 16931 case TCPS_ESTABLISHED: 16932 case TCPS_FIN_WAIT_1: 16933 case TCPS_CLOSING: 16934 case TCPS_CLOSE_WAIT: 16935 case TCPS_LAST_ACK: 16936 /* If we have data to rexmit */ 16937 if (tcp->tcp_suna != tcp->tcp_snxt) { 16938 clock_t time_to_wait; 16939 16940 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16941 if (!tcp->tcp_xmit_head) 16942 break; 16943 time_to_wait = lbolt - 16944 (clock_t)tcp->tcp_xmit_head->b_prev; 16945 time_to_wait = tcp->tcp_rto - 16946 TICK_TO_MSEC(time_to_wait); 16947 /* 16948 * If the timer fires too early, 1 clock tick earlier, 16949 * restart the timer. 16950 */ 16951 if (time_to_wait > msec_per_tick) { 16952 TCP_STAT(tcp_timer_fire_early); 16953 TCP_TIMER_RESTART(tcp, time_to_wait); 16954 return; 16955 } 16956 /* 16957 * When we probe zero windows, we force the swnd open. 16958 * If our peer acks with a closed window swnd will be 16959 * set to zero by tcp_rput(). As long as we are 16960 * receiving acks tcp_rput will 16961 * reset 'tcp_ms_we_have_waited' so as not to trip the 16962 * first and second interval actions. NOTE: the timer 16963 * interval is allowed to continue its exponential 16964 * backoff. 16965 */ 16966 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16967 if (tcp->tcp_debug) { 16968 (void) strlog(TCP_MODULE_ID, 0, 1, 16969 SL_TRACE, "tcp_timer: zero win"); 16970 } 16971 } else { 16972 /* 16973 * After retransmission, we need to do 16974 * slow start. Set the ssthresh to one 16975 * half of current effective window and 16976 * cwnd to one MSS. Also reset 16977 * tcp_cwnd_cnt. 16978 * 16979 * Note that if tcp_ssthresh is reduced because 16980 * of ECN, do not reduce it again unless it is 16981 * already one window of data away (tcp_cwr 16982 * should then be cleared) or this is a 16983 * timeout for a retransmitted segment. 16984 */ 16985 uint32_t npkt; 16986 16987 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16988 npkt = ((tcp->tcp_timer_backoff ? 16989 tcp->tcp_cwnd_ssthresh : 16990 tcp->tcp_snxt - 16991 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16992 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16993 tcp->tcp_mss; 16994 } 16995 tcp->tcp_cwnd = tcp->tcp_mss; 16996 tcp->tcp_cwnd_cnt = 0; 16997 if (tcp->tcp_ecn_ok) { 16998 tcp->tcp_cwr = B_TRUE; 16999 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17000 tcp->tcp_ecn_cwr_sent = B_FALSE; 17001 } 17002 } 17003 break; 17004 } 17005 /* 17006 * We have something to send yet we cannot send. The 17007 * reason can be: 17008 * 17009 * 1. Zero send window: we need to do zero window probe. 17010 * 2. Zero cwnd: because of ECN, we need to "clock out 17011 * segments. 17012 * 3. SWS avoidance: receiver may have shrunk window, 17013 * reset our knowledge. 17014 * 17015 * Note that condition 2 can happen with either 1 or 17016 * 3. But 1 and 3 are exclusive. 17017 */ 17018 if (tcp->tcp_unsent != 0) { 17019 if (tcp->tcp_cwnd == 0) { 17020 /* 17021 * Set tcp_cwnd to 1 MSS so that a 17022 * new segment can be sent out. We 17023 * are "clocking out" new data when 17024 * the network is really congested. 17025 */ 17026 ASSERT(tcp->tcp_ecn_ok); 17027 tcp->tcp_cwnd = tcp->tcp_mss; 17028 } 17029 if (tcp->tcp_swnd == 0) { 17030 /* Extend window for zero window probe */ 17031 tcp->tcp_swnd++; 17032 tcp->tcp_zero_win_probe = B_TRUE; 17033 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 17034 } else { 17035 /* 17036 * Handle timeout from sender SWS avoidance. 17037 * Reset our knowledge of the max send window 17038 * since the receiver might have reduced its 17039 * receive buffer. Avoid setting tcp_max_swnd 17040 * to one since that will essentially disable 17041 * the SWS checks. 17042 * 17043 * Note that since we don't have a SWS 17044 * state variable, if the timeout is set 17045 * for ECN but not for SWS, this 17046 * code will also be executed. This is 17047 * fine as tcp_max_swnd is updated 17048 * constantly and it will not affect 17049 * anything. 17050 */ 17051 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17052 } 17053 tcp_wput_data(tcp, NULL, B_FALSE); 17054 return; 17055 } 17056 /* Is there a FIN that needs to be to re retransmitted? */ 17057 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17058 !tcp->tcp_fin_acked) 17059 break; 17060 /* Nothing to do, return without restarting timer. */ 17061 TCP_STAT(tcp_timer_fire_miss); 17062 return; 17063 case TCPS_FIN_WAIT_2: 17064 /* 17065 * User closed the TCP endpoint and peer ACK'ed our FIN. 17066 * We waited some time for for peer's FIN, but it hasn't 17067 * arrived. We flush the connection now to avoid 17068 * case where the peer has rebooted. 17069 */ 17070 if (TCP_IS_DETACHED(tcp)) { 17071 (void) tcp_clean_death(tcp, 0, 23); 17072 } else { 17073 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 17074 } 17075 return; 17076 case TCPS_TIME_WAIT: 17077 (void) tcp_clean_death(tcp, 0, 24); 17078 return; 17079 default: 17080 if (tcp->tcp_debug) { 17081 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR, 17082 "tcp_timer: strange state (%d) %s", 17083 tcp->tcp_state, tcp_display(tcp, NULL, 17084 DISP_PORT_ONLY)); 17085 } 17086 return; 17087 } 17088 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17089 /* 17090 * For zero window probe, we need to send indefinitely, 17091 * unless we have not heard from the other side for some 17092 * time... 17093 */ 17094 if ((tcp->tcp_zero_win_probe == 0) || 17095 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17096 second_threshold)) { 17097 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 17098 /* 17099 * If TCP is in SYN_RCVD state, send back a 17100 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17101 * should be zero in TCPS_SYN_RCVD state. 17102 */ 17103 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17104 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17105 "in SYN_RCVD", 17106 tcp, tcp->tcp_snxt, 17107 tcp->tcp_rnxt, TH_RST | TH_ACK); 17108 } 17109 (void) tcp_clean_death(tcp, 17110 tcp->tcp_client_errno ? 17111 tcp->tcp_client_errno : ETIMEDOUT, 25); 17112 return; 17113 } else { 17114 /* 17115 * Set tcp_ms_we_have_waited to second_threshold 17116 * so that in next timeout, we will do the above 17117 * check (lbolt - tcp_last_recv_time). This is 17118 * also to avoid overflow. 17119 * 17120 * We don't need to decrement tcp_timer_backoff 17121 * to avoid overflow because it will be decremented 17122 * later if new timeout value is greater than 17123 * tcp_rexmit_interval_max. In the case when 17124 * tcp_rexmit_interval_max is greater than 17125 * second_threshold, it means that we will wait 17126 * longer than second_threshold to send the next 17127 * window probe. 17128 */ 17129 tcp->tcp_ms_we_have_waited = second_threshold; 17130 } 17131 } else if (ms > first_threshold) { 17132 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17133 tcp->tcp_xmit_head != NULL) { 17134 tcp->tcp_xmit_head = 17135 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17136 } 17137 /* 17138 * We have been retransmitting for too long... The RTT 17139 * we calculated is probably incorrect. Reinitialize it. 17140 * Need to compensate for 0 tcp_rtt_sa. Reset 17141 * tcp_rtt_update so that we won't accidentally cache a 17142 * bad value. But only do this if this is not a zero 17143 * window probe. 17144 */ 17145 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17146 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17147 (tcp->tcp_rtt_sa >> 5); 17148 tcp->tcp_rtt_sa = 0; 17149 tcp_ip_notify(tcp); 17150 tcp->tcp_rtt_update = 0; 17151 } 17152 } 17153 tcp->tcp_timer_backoff++; 17154 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17155 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17156 tcp_rexmit_interval_min) { 17157 /* 17158 * This means the original RTO is tcp_rexmit_interval_min. 17159 * So we will use tcp_rexmit_interval_min as the RTO value 17160 * and do the backoff. 17161 */ 17162 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17163 } else { 17164 ms <<= tcp->tcp_timer_backoff; 17165 } 17166 if (ms > tcp_rexmit_interval_max) { 17167 ms = tcp_rexmit_interval_max; 17168 /* 17169 * ms is at max, decrement tcp_timer_backoff to avoid 17170 * overflow. 17171 */ 17172 tcp->tcp_timer_backoff--; 17173 } 17174 tcp->tcp_ms_we_have_waited += ms; 17175 if (tcp->tcp_zero_win_probe == 0) { 17176 tcp->tcp_rto = ms; 17177 } 17178 TCP_TIMER_RESTART(tcp, ms); 17179 /* 17180 * This is after a timeout and tcp_rto is backed off. Set 17181 * tcp_set_timer to 1 so that next time RTO is updated, we will 17182 * restart the timer with a correct value. 17183 */ 17184 tcp->tcp_set_timer = 1; 17185 mss = tcp->tcp_snxt - tcp->tcp_suna; 17186 if (mss > tcp->tcp_mss) 17187 mss = tcp->tcp_mss; 17188 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17189 mss = tcp->tcp_swnd; 17190 17191 if ((mp = tcp->tcp_xmit_head) != NULL) 17192 mp->b_prev = (mblk_t *)lbolt; 17193 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17194 B_TRUE); 17195 17196 /* 17197 * When slow start after retransmission begins, start with 17198 * this seq no. tcp_rexmit_max marks the end of special slow 17199 * start phase. tcp_snd_burst controls how many segments 17200 * can be sent because of an ack. 17201 */ 17202 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17203 tcp->tcp_snd_burst = TCP_CWND_SS; 17204 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17205 (tcp->tcp_unsent == 0)) { 17206 tcp->tcp_rexmit_max = tcp->tcp_fss; 17207 } else { 17208 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17209 } 17210 tcp->tcp_rexmit = B_TRUE; 17211 tcp->tcp_dupack_cnt = 0; 17212 17213 /* 17214 * Remove all rexmit SACK blk to start from fresh. 17215 */ 17216 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17217 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17218 tcp->tcp_num_notsack_blk = 0; 17219 tcp->tcp_cnt_notsack_list = 0; 17220 } 17221 if (mp == NULL) { 17222 return; 17223 } 17224 /* Attach credentials to retransmitted initial SYNs. */ 17225 if (tcp->tcp_state == TCPS_SYN_SENT) { 17226 mblk_setcred(mp, tcp->tcp_cred); 17227 DB_CPID(mp) = tcp->tcp_cpid; 17228 } 17229 17230 tcp->tcp_csuna = tcp->tcp_snxt; 17231 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17232 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17233 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17234 tcp_send_data(tcp, tcp->tcp_wq, mp); 17235 17236 } 17237 17238 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17239 static void 17240 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17241 { 17242 conn_t *connp; 17243 17244 switch (tcp->tcp_state) { 17245 case TCPS_BOUND: 17246 case TCPS_LISTEN: 17247 break; 17248 default: 17249 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17250 return; 17251 } 17252 17253 /* 17254 * Need to clean up all the eagers since after the unbind, segments 17255 * will no longer be delivered to this listener stream. 17256 */ 17257 mutex_enter(&tcp->tcp_eager_lock); 17258 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17259 tcp_eager_cleanup(tcp, 0); 17260 } 17261 mutex_exit(&tcp->tcp_eager_lock); 17262 17263 if (tcp->tcp_ipversion == IPV4_VERSION) { 17264 tcp->tcp_ipha->ipha_src = 0; 17265 } else { 17266 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17267 } 17268 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17269 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17270 tcp_bind_hash_remove(tcp); 17271 tcp->tcp_state = TCPS_IDLE; 17272 tcp->tcp_mdt = B_FALSE; 17273 /* Send M_FLUSH according to TPI */ 17274 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17275 connp = tcp->tcp_connp; 17276 connp->conn_mdt_ok = B_FALSE; 17277 ipcl_hash_remove(connp); 17278 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17279 mp = mi_tpi_ok_ack_alloc(mp); 17280 putnext(tcp->tcp_rq, mp); 17281 } 17282 17283 /* 17284 * Don't let port fall into the privileged range. 17285 * Since the extra privileged ports can be arbitrary we also 17286 * ensure that we exclude those from consideration. 17287 * tcp_g_epriv_ports is not sorted thus we loop over it until 17288 * there are no changes. 17289 * 17290 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17291 * but instead the code relies on: 17292 * - the fact that the address of the array and its size never changes 17293 * - the atomic assignment of the elements of the array 17294 */ 17295 static in_port_t 17296 tcp_update_next_port(in_port_t port, boolean_t random) 17297 { 17298 int i; 17299 17300 if (random && tcp_random_anon_port != 0) { 17301 (void) random_get_pseudo_bytes((uint8_t *)&port, 17302 sizeof (in_port_t)); 17303 /* 17304 * Unless changed by a sys admin, the smallest anon port 17305 * is 32768 and the largest anon port is 65535. It is 17306 * very likely (50%) for the random port to be smaller 17307 * than the smallest anon port. When that happens, 17308 * add port % (anon port range) to the smallest anon 17309 * port to get the random port. It should fall into the 17310 * valid anon port range. 17311 */ 17312 if (port < tcp_smallest_anon_port) { 17313 port = tcp_smallest_anon_port + 17314 port % (tcp_largest_anon_port - 17315 tcp_smallest_anon_port); 17316 } 17317 } 17318 17319 retry: 17320 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 17321 port = (in_port_t)tcp_smallest_anon_port; 17322 17323 if (port < tcp_smallest_nonpriv_port) 17324 port = (in_port_t)tcp_smallest_nonpriv_port; 17325 17326 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17327 if (port == tcp_g_epriv_ports[i]) { 17328 port++; 17329 /* 17330 * Make sure whether the port is in the 17331 * valid range. 17332 * 17333 * XXX Note that if tcp_g_epriv_ports contains 17334 * all the anonymous ports this will be an 17335 * infinite loop. 17336 */ 17337 goto retry; 17338 } 17339 } 17340 return (port); 17341 } 17342 17343 /* 17344 * Return the next anonymous port in the priviledged port range for 17345 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17346 * downwards. This is the same behavior as documented in the userland 17347 * library call rresvport(3N). 17348 */ 17349 static in_port_t 17350 tcp_get_next_priv_port(void) 17351 { 17352 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17353 17354 if (next_priv_port < tcp_min_anonpriv_port) { 17355 next_priv_port = IPPORT_RESERVED - 1; 17356 } 17357 return (next_priv_port--); 17358 } 17359 17360 /* The write side r/w procedure. */ 17361 17362 #if CCS_STATS 17363 struct { 17364 struct { 17365 int64_t count, bytes; 17366 } tot, hit; 17367 } wrw_stats; 17368 #endif 17369 17370 /* 17371 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17372 * messages. 17373 */ 17374 /* ARGSUSED */ 17375 static void 17376 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17377 { 17378 conn_t *connp = (conn_t *)arg; 17379 tcp_t *tcp = connp->conn_tcp; 17380 queue_t *q = tcp->tcp_wq; 17381 17382 ASSERT(DB_TYPE(mp) != M_IOCTL); 17383 /* 17384 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17385 * Once the close starts, streamhead and sockfs will not let any data 17386 * packets come down (close ensures that there are no threads using the 17387 * queue and no new threads will come down) but since qprocsoff() 17388 * hasn't happened yet, a M_FLUSH or some non data message might 17389 * get reflected back (in response to our own FLUSHRW) and get 17390 * processed after tcp_close() is done. The conn would still be valid 17391 * because a ref would have added but we need to check the state 17392 * before actually processing the packet. 17393 */ 17394 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17395 freemsg(mp); 17396 return; 17397 } 17398 17399 switch (DB_TYPE(mp)) { 17400 case M_IOCDATA: 17401 tcp_wput_iocdata(tcp, mp); 17402 break; 17403 case M_FLUSH: 17404 tcp_wput_flush(tcp, mp); 17405 break; 17406 default: 17407 CALL_IP_WPUT(connp, q, mp); 17408 break; 17409 } 17410 } 17411 17412 /* 17413 * Write side put procedure for TCP module instance. 17414 * TCP as a module is only used for MIB browsers that push TCP over IP or 17415 * ARP. The only supported primitives are T_SVR4_OPTMGMT_REQ and 17416 * T_OPTMGMT_REQ. M_FLUSH messages are only passed downstream; we don't flush 17417 * our queues as we never enqueue messages there. All ioctls are NAKed and 17418 * everything else is freed. 17419 */ 17420 static void 17421 tcp_wput_mod(queue_t *q, mblk_t *mp) 17422 { 17423 switch (DB_TYPE(mp)) { 17424 case M_PROTO: 17425 case M_PCPROTO: 17426 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 17427 ((((union T_primitives *)mp->b_rptr)->type == 17428 T_SVR4_OPTMGMT_REQ) || 17429 (((union T_primitives *)mp->b_rptr)->type == 17430 T_OPTMGMT_REQ))) { 17431 /* 17432 * This is the only TPI primitive supported. Its 17433 * handling does not require tcp_t, but it does require 17434 * conn_t to check permissions. 17435 */ 17436 cred_t *cr = DB_CREDDEF(mp, Q_TO_CONN(q)->conn_cred); 17437 if (!snmpcom_req(q, mp, tcp_snmp_set, 17438 tcp_snmp_get, cr)) { 17439 freemsg(mp); 17440 return; 17441 } 17442 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 17443 != NULL) 17444 qreply(q, mp); 17445 break; 17446 case M_FLUSH: 17447 putnext(q, mp); 17448 break; 17449 case M_IOCTL: 17450 miocnak(q, mp, 0, ENOTSUP); 17451 break; 17452 default: 17453 freemsg(mp); 17454 break; 17455 } 17456 } 17457 17458 /* 17459 * The TCP fast path write put procedure. 17460 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17461 */ 17462 /* ARGSUSED */ 17463 static void 17464 tcp_output(void *arg, mblk_t *mp, void *arg2) 17465 { 17466 int len; 17467 int hdrlen; 17468 int plen; 17469 mblk_t *mp1; 17470 uchar_t *rptr; 17471 uint32_t snxt; 17472 tcph_t *tcph; 17473 struct datab *db; 17474 uint32_t suna; 17475 uint32_t mss; 17476 ipaddr_t *dst; 17477 ipaddr_t *src; 17478 uint32_t sum; 17479 int usable; 17480 conn_t *connp = (conn_t *)arg; 17481 tcp_t *tcp = connp->conn_tcp; 17482 17483 /* 17484 * Try and ASSERT the minimum possible references on the 17485 * conn early enough. Since we are executing on write side, 17486 * the connection is obviously not detached and that means 17487 * there is a ref each for TCP and IP. Since we are behind 17488 * the squeue, the minimum references needed are 3. If the 17489 * conn is in classifier hash list, there should be an 17490 * extra ref for that (we check both the possibilities). 17491 */ 17492 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17493 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17494 17495 /* Bypass tcp protocol for fused tcp loopback */ 17496 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp)) 17497 return; 17498 17499 mss = tcp->tcp_mss; 17500 if (tcp->tcp_xmit_zc_clean) 17501 mp = tcp_zcopy_backoff(tcp, mp, 0); 17502 17503 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17504 len = (int)(mp->b_wptr - mp->b_rptr); 17505 17506 /* 17507 * Criteria for fast path: 17508 * 17509 * 1. no unsent data 17510 * 2. single mblk in request 17511 * 3. connection established 17512 * 4. data in mblk 17513 * 5. len <= mss 17514 * 6. no tcp_valid bits 17515 */ 17516 if ((tcp->tcp_unsent != 0) || 17517 (tcp->tcp_cork) || 17518 (mp->b_cont != NULL) || 17519 (tcp->tcp_state != TCPS_ESTABLISHED) || 17520 (len == 0) || 17521 (len > mss) || 17522 (tcp->tcp_valid_bits != 0)) { 17523 tcp_wput_data(tcp, mp, B_FALSE); 17524 return; 17525 } 17526 17527 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17528 ASSERT(tcp->tcp_fin_sent == 0); 17529 17530 /* queue new packet onto retransmission queue */ 17531 if (tcp->tcp_xmit_head == NULL) { 17532 tcp->tcp_xmit_head = mp; 17533 } else { 17534 tcp->tcp_xmit_last->b_cont = mp; 17535 } 17536 tcp->tcp_xmit_last = mp; 17537 tcp->tcp_xmit_tail = mp; 17538 17539 /* find out how much we can send */ 17540 /* BEGIN CSTYLED */ 17541 /* 17542 * un-acked usable 17543 * |--------------|-----------------| 17544 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17545 */ 17546 /* END CSTYLED */ 17547 17548 /* start sending from tcp_snxt */ 17549 snxt = tcp->tcp_snxt; 17550 17551 /* 17552 * Check to see if this connection has been idled for some 17553 * time and no ACK is expected. If it is, we need to slow 17554 * start again to get back the connection's "self-clock" as 17555 * described in VJ's paper. 17556 * 17557 * Refer to the comment in tcp_mss_set() for the calculation 17558 * of tcp_cwnd after idle. 17559 */ 17560 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17561 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17562 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17563 } 17564 17565 usable = tcp->tcp_swnd; /* tcp window size */ 17566 if (usable > tcp->tcp_cwnd) 17567 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17568 usable -= snxt; /* subtract stuff already sent */ 17569 suna = tcp->tcp_suna; 17570 usable += suna; 17571 /* usable can be < 0 if the congestion window is smaller */ 17572 if (len > usable) { 17573 /* Can't send complete M_DATA in one shot */ 17574 goto slow; 17575 } 17576 17577 /* 17578 * determine if anything to send (Nagle). 17579 * 17580 * 1. len < tcp_mss (i.e. small) 17581 * 2. unacknowledged data present 17582 * 3. len < nagle limit 17583 * 4. last packet sent < nagle limit (previous packet sent) 17584 */ 17585 if ((len < mss) && (snxt != suna) && 17586 (len < (int)tcp->tcp_naglim) && 17587 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17588 /* 17589 * This was the first unsent packet and normally 17590 * mss < xmit_hiwater so there is no need to worry 17591 * about flow control. The next packet will go 17592 * through the flow control check in tcp_wput_data(). 17593 */ 17594 /* leftover work from above */ 17595 tcp->tcp_unsent = len; 17596 tcp->tcp_xmit_tail_unsent = len; 17597 17598 return; 17599 } 17600 17601 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17602 17603 if (snxt == suna) { 17604 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17605 } 17606 17607 /* we have always sent something */ 17608 tcp->tcp_rack_cnt = 0; 17609 17610 tcp->tcp_snxt = snxt + len; 17611 tcp->tcp_rack = tcp->tcp_rnxt; 17612 17613 if ((mp1 = dupb(mp)) == 0) 17614 goto no_memory; 17615 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17616 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17617 17618 /* adjust tcp header information */ 17619 tcph = tcp->tcp_tcph; 17620 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17621 17622 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17623 sum = (sum >> 16) + (sum & 0xFFFF); 17624 U16_TO_ABE16(sum, tcph->th_sum); 17625 17626 U32_TO_ABE32(snxt, tcph->th_seq); 17627 17628 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17629 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17630 BUMP_LOCAL(tcp->tcp_obsegs); 17631 17632 /* Update the latest receive window size in TCP header. */ 17633 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17634 tcph->th_win); 17635 17636 tcp->tcp_last_sent_len = (ushort_t)len; 17637 17638 plen = len + tcp->tcp_hdr_len; 17639 17640 if (tcp->tcp_ipversion == IPV4_VERSION) { 17641 tcp->tcp_ipha->ipha_length = htons(plen); 17642 } else { 17643 tcp->tcp_ip6h->ip6_plen = htons(plen - 17644 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17645 } 17646 17647 /* see if we need to allocate a mblk for the headers */ 17648 hdrlen = tcp->tcp_hdr_len; 17649 rptr = mp1->b_rptr - hdrlen; 17650 db = mp1->b_datap; 17651 if ((db->db_ref != 2) || rptr < db->db_base || 17652 (!OK_32PTR(rptr))) { 17653 /* NOTE: we assume allocb returns an OK_32PTR */ 17654 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17655 tcp_wroff_xtra, BPRI_MED); 17656 if (!mp) { 17657 freemsg(mp1); 17658 goto no_memory; 17659 } 17660 mp->b_cont = mp1; 17661 mp1 = mp; 17662 /* Leave room for Link Level header */ 17663 /* hdrlen = tcp->tcp_hdr_len; */ 17664 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17665 mp1->b_wptr = &rptr[hdrlen]; 17666 } 17667 mp1->b_rptr = rptr; 17668 17669 /* Fill in the timestamp option. */ 17670 if (tcp->tcp_snd_ts_ok) { 17671 U32_TO_BE32((uint32_t)lbolt, 17672 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17673 U32_TO_BE32(tcp->tcp_ts_recent, 17674 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17675 } else { 17676 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17677 } 17678 17679 /* copy header into outgoing packet */ 17680 dst = (ipaddr_t *)rptr; 17681 src = (ipaddr_t *)tcp->tcp_iphc; 17682 dst[0] = src[0]; 17683 dst[1] = src[1]; 17684 dst[2] = src[2]; 17685 dst[3] = src[3]; 17686 dst[4] = src[4]; 17687 dst[5] = src[5]; 17688 dst[6] = src[6]; 17689 dst[7] = src[7]; 17690 dst[8] = src[8]; 17691 dst[9] = src[9]; 17692 if (hdrlen -= 40) { 17693 hdrlen >>= 2; 17694 dst += 10; 17695 src += 10; 17696 do { 17697 *dst++ = *src++; 17698 } while (--hdrlen); 17699 } 17700 17701 /* 17702 * Set the ECN info in the TCP header. Note that this 17703 * is not the template header. 17704 */ 17705 if (tcp->tcp_ecn_ok) { 17706 SET_ECT(tcp, rptr); 17707 17708 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17709 if (tcp->tcp_ecn_echo_on) 17710 tcph->th_flags[0] |= TH_ECE; 17711 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17712 tcph->th_flags[0] |= TH_CWR; 17713 tcp->tcp_ecn_cwr_sent = B_TRUE; 17714 } 17715 } 17716 17717 if (tcp->tcp_ip_forward_progress) { 17718 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17719 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17720 tcp->tcp_ip_forward_progress = B_FALSE; 17721 } 17722 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17723 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17724 return; 17725 17726 /* 17727 * If we ran out of memory, we pretend to have sent the packet 17728 * and that it was lost on the wire. 17729 */ 17730 no_memory: 17731 return; 17732 17733 slow: 17734 /* leftover work from above */ 17735 tcp->tcp_unsent = len; 17736 tcp->tcp_xmit_tail_unsent = len; 17737 tcp_wput_data(tcp, NULL, B_FALSE); 17738 } 17739 17740 /* 17741 * The function called through squeue to get behind eager's perimeter to 17742 * finish the accept processing. 17743 */ 17744 /* ARGSUSED */ 17745 void 17746 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17747 { 17748 conn_t *connp = (conn_t *)arg; 17749 tcp_t *tcp = connp->conn_tcp; 17750 queue_t *q = tcp->tcp_rq; 17751 mblk_t *mp1; 17752 mblk_t *stropt_mp = mp; 17753 struct stroptions *stropt; 17754 uint_t thwin; 17755 17756 /* 17757 * Drop the eager's ref on the listener, that was placed when 17758 * this eager began life in tcp_conn_request. 17759 */ 17760 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17761 17762 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17763 /* 17764 * Someone blewoff the eager before we could finish 17765 * the accept. 17766 * 17767 * The only reason eager exists it because we put in 17768 * a ref on it when conn ind went up. We need to send 17769 * a disconnect indication up while the last reference 17770 * on the eager will be dropped by the squeue when we 17771 * return. 17772 */ 17773 ASSERT(tcp->tcp_listener == NULL); 17774 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17775 struct T_discon_ind *tdi; 17776 17777 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17778 /* 17779 * Let us reuse the incoming mblk to avoid memory 17780 * allocation failure problems. We know that the 17781 * size of the incoming mblk i.e. stroptions is greater 17782 * than sizeof T_discon_ind. So the reallocb below 17783 * can't fail. 17784 */ 17785 freemsg(mp->b_cont); 17786 mp->b_cont = NULL; 17787 ASSERT(DB_REF(mp) == 1); 17788 mp = reallocb(mp, sizeof (struct T_discon_ind), 17789 B_FALSE); 17790 ASSERT(mp != NULL); 17791 DB_TYPE(mp) = M_PROTO; 17792 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17793 tdi = (struct T_discon_ind *)mp->b_rptr; 17794 if (tcp->tcp_issocket) { 17795 tdi->DISCON_reason = ECONNREFUSED; 17796 tdi->SEQ_number = 0; 17797 } else { 17798 tdi->DISCON_reason = ENOPROTOOPT; 17799 tdi->SEQ_number = 17800 tcp->tcp_conn_req_seqnum; 17801 } 17802 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17803 putnext(q, mp); 17804 } else { 17805 freemsg(mp); 17806 } 17807 if (tcp->tcp_hard_binding) { 17808 tcp->tcp_hard_binding = B_FALSE; 17809 tcp->tcp_hard_bound = B_TRUE; 17810 } 17811 tcp->tcp_detached = B_FALSE; 17812 return; 17813 } 17814 17815 mp1 = stropt_mp->b_cont; 17816 stropt_mp->b_cont = NULL; 17817 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17818 stropt = (struct stroptions *)stropt_mp->b_rptr; 17819 17820 while (mp1 != NULL) { 17821 mp = mp1; 17822 mp1 = mp1->b_cont; 17823 mp->b_cont = NULL; 17824 tcp->tcp_drop_opt_ack_cnt++; 17825 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17826 } 17827 mp = NULL; 17828 17829 /* 17830 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17831 * properly. This is the first time we know of the acceptor' 17832 * queue. So we do it here. 17833 */ 17834 if (tcp->tcp_rcv_list == NULL) { 17835 /* 17836 * Recv queue is empty, tcp_rwnd should not have changed. 17837 * That means it should be equal to the listener's tcp_rwnd. 17838 */ 17839 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17840 } else { 17841 #ifdef DEBUG 17842 uint_t cnt = 0; 17843 17844 mp1 = tcp->tcp_rcv_list; 17845 while ((mp = mp1) != NULL) { 17846 mp1 = mp->b_next; 17847 cnt += msgdsize(mp); 17848 } 17849 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17850 #endif 17851 /* There is some data, add them back to get the max. */ 17852 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17853 } 17854 17855 stropt->so_flags = SO_HIWAT; 17856 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17857 17858 stropt->so_flags |= SO_MAXBLK; 17859 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17860 17861 /* 17862 * This is the first time we run on the correct 17863 * queue after tcp_accept. So fix all the q parameters 17864 * here. 17865 */ 17866 /* Allocate room for SACK options if needed. */ 17867 stropt->so_flags |= SO_WROFF; 17868 if (tcp->tcp_fused) { 17869 size_t sth_hiwat; 17870 17871 ASSERT(tcp->tcp_loopback); 17872 /* 17873 * For fused tcp loopback, set the stream head's write 17874 * offset value to zero since we won't be needing any room 17875 * for TCP/IP headers. This would also improve performance 17876 * since it would reduce the amount of work done by kmem. 17877 * Non-fused tcp loopback case is handled separately below. 17878 */ 17879 stropt->so_wroff = 0; 17880 17881 /* 17882 * Override q_hiwat and set it to be twice that of the 17883 * previous value; this is to simulate non-fusion case. 17884 */ 17885 sth_hiwat = q->q_hiwat << 1; 17886 if (sth_hiwat > tcp_max_buf) 17887 sth_hiwat = tcp_max_buf; 17888 17889 stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat); 17890 } else if (tcp->tcp_snd_sack_ok) { 17891 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17892 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17893 } else { 17894 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17895 tcp_wroff_xtra); 17896 } 17897 17898 /* 17899 * If loopback, set COPYCACHED option to make sure NOT to use 17900 * non-temporal access. 17901 */ 17902 if (tcp->tcp_loopback) { 17903 stropt->so_flags |= SO_COPYOPT; 17904 stropt->so_copyopt = COPYCACHED; 17905 } 17906 17907 /* Send the options up */ 17908 putnext(q, stropt_mp); 17909 17910 /* 17911 * Pass up any data and/or a fin that has been received. 17912 * 17913 * Adjust receive window in case it had decreased 17914 * (because there is data <=> tcp_rcv_list != NULL) 17915 * while the connection was detached. Note that 17916 * in case the eager was flow-controlled, w/o this 17917 * code, the rwnd may never open up again! 17918 */ 17919 if (tcp->tcp_rcv_list != NULL) { 17920 /* We drain directly in case of fused tcp loopback */ 17921 if (!tcp->tcp_fused && canputnext(q)) { 17922 tcp->tcp_rwnd = q->q_hiwat; 17923 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17924 << tcp->tcp_rcv_ws; 17925 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17926 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17927 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17928 tcp_xmit_ctl(NULL, 17929 tcp, (tcp->tcp_swnd == 0) ? 17930 tcp->tcp_suna : tcp->tcp_snxt, 17931 tcp->tcp_rnxt, TH_ACK); 17932 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17933 } 17934 17935 } 17936 (void) tcp_rcv_drain(q, tcp); 17937 17938 /* 17939 * For fused tcp loopback, back-enable peer endpoint 17940 * if it's currently flow-controlled. 17941 */ 17942 if (tcp->tcp_fused && 17943 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17944 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17945 17946 ASSERT(peer_tcp != NULL); 17947 ASSERT(peer_tcp->tcp_fused); 17948 17949 tcp_clrqfull(peer_tcp); 17950 peer_tcp->tcp_flow_stopped = B_FALSE; 17951 TCP_STAT(tcp_fusion_backenabled); 17952 } 17953 } 17954 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17955 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17956 mp = mi_tpi_ordrel_ind(); 17957 if (mp) { 17958 tcp->tcp_ordrel_done = B_TRUE; 17959 putnext(q, mp); 17960 if (tcp->tcp_deferred_clean_death) { 17961 /* 17962 * tcp_clean_death was deferred 17963 * for T_ORDREL_IND - do it now 17964 */ 17965 (void) tcp_clean_death( 17966 tcp, 17967 tcp->tcp_client_errno, 21); 17968 tcp->tcp_deferred_clean_death = 17969 B_FALSE; 17970 } 17971 } else { 17972 /* 17973 * Run the orderly release in the 17974 * service routine. 17975 */ 17976 qenable(q); 17977 } 17978 } 17979 if (tcp->tcp_hard_binding) { 17980 tcp->tcp_hard_binding = B_FALSE; 17981 tcp->tcp_hard_bound = B_TRUE; 17982 } 17983 tcp->tcp_detached = B_FALSE; 17984 17985 if (tcp->tcp_ka_enabled) { 17986 tcp->tcp_ka_last_intrvl = 0; 17987 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17988 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17989 } 17990 17991 /* 17992 * At this point, eager is fully established and will 17993 * have the following references - 17994 * 17995 * 2 references for connection to exist (1 for TCP and 1 for IP). 17996 * 1 reference for the squeue which will be dropped by the squeue as 17997 * soon as this function returns. 17998 * There will be 1 additonal reference for being in classifier 17999 * hash list provided something bad hasn't happened. 18000 */ 18001 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18002 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18003 } 18004 18005 /* 18006 * The function called through squeue to get behind listener's perimeter to 18007 * send a deffered conn_ind. 18008 */ 18009 /* ARGSUSED */ 18010 void 18011 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18012 { 18013 conn_t *connp = (conn_t *)arg; 18014 tcp_t *listener = connp->conn_tcp; 18015 18016 if (listener->tcp_state == TCPS_CLOSED || 18017 TCP_IS_DETACHED(listener)) { 18018 /* 18019 * If listener has closed, it would have caused a 18020 * a cleanup/blowoff to happen for the eager. 18021 */ 18022 tcp_t *tcp; 18023 struct T_conn_ind *conn_ind; 18024 18025 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18026 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18027 conn_ind->OPT_length); 18028 /* 18029 * We need to drop the ref on eager that was put 18030 * tcp_rput_data() before trying to send the conn_ind 18031 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18032 * and tcp_wput_accept() is sending this deferred conn_ind but 18033 * listener is closed so we drop the ref. 18034 */ 18035 CONN_DEC_REF(tcp->tcp_connp); 18036 freemsg(mp); 18037 return; 18038 } 18039 putnext(listener->tcp_rq, mp); 18040 } 18041 18042 18043 /* 18044 * This is the STREAMS entry point for T_CONN_RES coming down on 18045 * Acceptor STREAM when sockfs listener does accept processing. 18046 * Read the block comment on top pf tcp_conn_request(). 18047 */ 18048 void 18049 tcp_wput_accept(queue_t *q, mblk_t *mp) 18050 { 18051 queue_t *rq = RD(q); 18052 struct T_conn_res *conn_res; 18053 tcp_t *eager; 18054 tcp_t *listener; 18055 struct T_ok_ack *ok; 18056 t_scalar_t PRIM_type; 18057 mblk_t *opt_mp; 18058 conn_t *econnp; 18059 18060 ASSERT(DB_TYPE(mp) == M_PROTO); 18061 18062 conn_res = (struct T_conn_res *)mp->b_rptr; 18063 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18064 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18065 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18066 if (mp != NULL) 18067 putnext(rq, mp); 18068 return; 18069 } 18070 switch (conn_res->PRIM_type) { 18071 case O_T_CONN_RES: 18072 case T_CONN_RES: 18073 /* 18074 * We pass up an err ack if allocb fails. This will 18075 * cause sockfs to issue a T_DISCON_REQ which will cause 18076 * tcp_eager_blowoff to be called. sockfs will then call 18077 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18078 * we need to do the allocb up here because we have to 18079 * make sure rq->q_qinfo->qi_qclose still points to the 18080 * correct function (tcpclose_accept) in case allocb 18081 * fails. 18082 */ 18083 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18084 if (opt_mp == NULL) { 18085 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18086 if (mp != NULL) 18087 putnext(rq, mp); 18088 return; 18089 } 18090 18091 bcopy(mp->b_rptr + conn_res->OPT_offset, 18092 &eager, conn_res->OPT_length); 18093 PRIM_type = conn_res->PRIM_type; 18094 mp->b_datap->db_type = M_PCPROTO; 18095 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18096 ok = (struct T_ok_ack *)mp->b_rptr; 18097 ok->PRIM_type = T_OK_ACK; 18098 ok->CORRECT_prim = PRIM_type; 18099 econnp = eager->tcp_connp; 18100 econnp->conn_dev = (dev_t)q->q_ptr; 18101 eager->tcp_rq = rq; 18102 eager->tcp_wq = q; 18103 rq->q_ptr = econnp; 18104 rq->q_qinfo = &tcp_rinit; 18105 q->q_ptr = econnp; 18106 q->q_qinfo = &tcp_winit; 18107 listener = eager->tcp_listener; 18108 eager->tcp_issocket = B_TRUE; 18109 eager->tcp_cred = econnp->conn_cred = 18110 listener->tcp_connp->conn_cred; 18111 crhold(econnp->conn_cred); 18112 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18113 18114 /* Put the ref for IP */ 18115 CONN_INC_REF(econnp); 18116 18117 /* 18118 * We should have minimum of 3 references on the conn 18119 * at this point. One each for TCP and IP and one for 18120 * the T_conn_ind that was sent up when the 3-way handshake 18121 * completed. In the normal case we would also have another 18122 * reference (making a total of 4) for the conn being in the 18123 * classifier hash list. However the eager could have received 18124 * an RST subsequently and tcp_closei_local could have removed 18125 * the eager from the classifier hash list, hence we can't 18126 * assert that reference. 18127 */ 18128 ASSERT(econnp->conn_ref >= 3); 18129 18130 /* 18131 * Send the new local address also up to sockfs. There 18132 * should already be enough space in the mp that came 18133 * down from soaccept(). 18134 */ 18135 if (eager->tcp_family == AF_INET) { 18136 sin_t *sin; 18137 18138 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18139 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18140 sin = (sin_t *)mp->b_wptr; 18141 mp->b_wptr += sizeof (sin_t); 18142 sin->sin_family = AF_INET; 18143 sin->sin_port = eager->tcp_lport; 18144 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18145 } else { 18146 sin6_t *sin6; 18147 18148 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18149 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18150 sin6 = (sin6_t *)mp->b_wptr; 18151 mp->b_wptr += sizeof (sin6_t); 18152 sin6->sin6_family = AF_INET6; 18153 sin6->sin6_port = eager->tcp_lport; 18154 if (eager->tcp_ipversion == IPV4_VERSION) { 18155 sin6->sin6_flowinfo = 0; 18156 IN6_IPADDR_TO_V4MAPPED( 18157 eager->tcp_ipha->ipha_src, 18158 &sin6->sin6_addr); 18159 } else { 18160 ASSERT(eager->tcp_ip6h != NULL); 18161 sin6->sin6_flowinfo = 18162 eager->tcp_ip6h->ip6_vcf & 18163 ~IPV6_VERS_AND_FLOW_MASK; 18164 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18165 } 18166 sin6->sin6_scope_id = 0; 18167 sin6->__sin6_src_id = 0; 18168 } 18169 18170 putnext(rq, mp); 18171 18172 opt_mp->b_datap->db_type = M_SETOPTS; 18173 opt_mp->b_wptr += sizeof (struct stroptions); 18174 18175 /* 18176 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18177 * from listener to acceptor. The message is chained on the 18178 * bind_mp which tcp_rput_other will send down to IP. 18179 */ 18180 if (listener->tcp_bound_if != 0) { 18181 /* allocate optmgmt req */ 18182 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18183 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18184 sizeof (int)); 18185 if (mp != NULL) 18186 linkb(opt_mp, mp); 18187 } 18188 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18189 uint_t on = 1; 18190 18191 /* allocate optmgmt req */ 18192 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18193 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18194 if (mp != NULL) 18195 linkb(opt_mp, mp); 18196 } 18197 18198 18199 mutex_enter(&listener->tcp_eager_lock); 18200 18201 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18202 18203 tcp_t *tail; 18204 tcp_t *tcp; 18205 mblk_t *mp1; 18206 18207 tcp = listener->tcp_eager_prev_q0; 18208 /* 18209 * listener->tcp_eager_prev_q0 points to the TAIL of the 18210 * deferred T_conn_ind queue. We need to get to the head 18211 * of the queue in order to send up T_conn_ind the same 18212 * order as how the 3WHS is completed. 18213 */ 18214 while (tcp != listener) { 18215 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 18216 break; 18217 else 18218 tcp = tcp->tcp_eager_prev_q0; 18219 } 18220 ASSERT(tcp != listener); 18221 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18222 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18223 /* Move from q0 to q */ 18224 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18225 listener->tcp_conn_req_cnt_q0--; 18226 listener->tcp_conn_req_cnt_q++; 18227 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18228 tcp->tcp_eager_prev_q0; 18229 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18230 tcp->tcp_eager_next_q0; 18231 tcp->tcp_eager_prev_q0 = NULL; 18232 tcp->tcp_eager_next_q0 = NULL; 18233 tcp->tcp_conn_def_q0 = B_FALSE; 18234 18235 /* 18236 * Insert at end of the queue because sockfs sends 18237 * down T_CONN_RES in chronological order. Leaving 18238 * the older conn indications at front of the queue 18239 * helps reducing search time. 18240 */ 18241 tail = listener->tcp_eager_last_q; 18242 if (tail != NULL) { 18243 tail->tcp_eager_next_q = tcp; 18244 } else { 18245 listener->tcp_eager_next_q = tcp; 18246 } 18247 listener->tcp_eager_last_q = tcp; 18248 tcp->tcp_eager_next_q = NULL; 18249 18250 /* Need to get inside the listener perimeter */ 18251 CONN_INC_REF(listener->tcp_connp); 18252 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18253 tcp_send_pending, listener->tcp_connp, 18254 SQTAG_TCP_SEND_PENDING); 18255 } 18256 tcp_eager_unlink(eager); 18257 mutex_exit(&listener->tcp_eager_lock); 18258 18259 /* 18260 * At this point, the eager is detached from the listener 18261 * but we still have an extra refs on eager (apart from the 18262 * usual tcp references). The ref was placed in tcp_rput_data 18263 * before sending the conn_ind in tcp_send_conn_ind. 18264 * The ref will be dropped in tcp_accept_finish(). 18265 */ 18266 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18267 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18268 return; 18269 default: 18270 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18271 if (mp != NULL) 18272 putnext(rq, mp); 18273 return; 18274 } 18275 } 18276 18277 static void 18278 tcp_wput(queue_t *q, mblk_t *mp) 18279 { 18280 conn_t *connp = Q_TO_CONN(q); 18281 tcp_t *tcp; 18282 void (*output_proc)(); 18283 t_scalar_t type; 18284 uchar_t *rptr; 18285 struct iocblk *iocp; 18286 18287 ASSERT(connp->conn_ref >= 2); 18288 18289 switch (DB_TYPE(mp)) { 18290 case M_DATA: 18291 CONN_INC_REF(connp); 18292 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18293 tcp_output, connp, SQTAG_TCP_OUTPUT); 18294 return; 18295 case M_PROTO: 18296 case M_PCPROTO: 18297 /* 18298 * if it is a snmp message, don't get behind the squeue 18299 */ 18300 tcp = connp->conn_tcp; 18301 rptr = mp->b_rptr; 18302 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18303 type = ((union T_primitives *)rptr)->type; 18304 } else { 18305 if (tcp->tcp_debug) { 18306 (void) strlog(TCP_MODULE_ID, 0, 1, 18307 SL_ERROR|SL_TRACE, 18308 "tcp_wput_proto, dropping one..."); 18309 } 18310 freemsg(mp); 18311 return; 18312 } 18313 if (type == T_SVR4_OPTMGMT_REQ) { 18314 cred_t *cr = DB_CREDDEF(mp, 18315 tcp->tcp_cred); 18316 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18317 cr)) { 18318 /* 18319 * This was a SNMP request 18320 */ 18321 return; 18322 } else { 18323 output_proc = tcp_wput_proto; 18324 } 18325 } else { 18326 output_proc = tcp_wput_proto; 18327 } 18328 break; 18329 case M_IOCTL: 18330 /* 18331 * Most ioctls can be processed right away without going via 18332 * squeues - process them right here. Those that do require 18333 * squeue (currently TCP_IOC_DEFAULT_Q and SIOCPOPSOCKFS) 18334 * are processed by tcp_wput_ioctl(). 18335 */ 18336 iocp = (struct iocblk *)mp->b_rptr; 18337 tcp = connp->conn_tcp; 18338 18339 switch (iocp->ioc_cmd) { 18340 case TCP_IOC_ABORT_CONN: 18341 tcp_ioctl_abort_conn(q, mp); 18342 return; 18343 case TI_GETPEERNAME: 18344 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18345 iocp->ioc_error = ENOTCONN; 18346 iocp->ioc_count = 0; 18347 mp->b_datap->db_type = M_IOCACK; 18348 qreply(q, mp); 18349 return; 18350 } 18351 /* FALLTHRU */ 18352 case TI_GETMYNAME: 18353 mi_copyin(q, mp, NULL, 18354 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18355 return; 18356 case ND_SET: 18357 /* nd_getset does the necessary checks */ 18358 case ND_GET: 18359 if (!nd_getset(q, tcp_g_nd, mp)) { 18360 CALL_IP_WPUT(connp, q, mp); 18361 return; 18362 } 18363 qreply(q, mp); 18364 return; 18365 case TCP_IOC_DEFAULT_Q: 18366 /* 18367 * Wants to be the default wq. Check the credentials 18368 * first, the rest is executed via squeue. 18369 */ 18370 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18371 iocp->ioc_error = EPERM; 18372 iocp->ioc_count = 0; 18373 mp->b_datap->db_type = M_IOCACK; 18374 qreply(q, mp); 18375 return; 18376 } 18377 output_proc = tcp_wput_ioctl; 18378 break; 18379 default: 18380 output_proc = tcp_wput_ioctl; 18381 break; 18382 } 18383 break; 18384 default: 18385 output_proc = tcp_wput_nondata; 18386 break; 18387 } 18388 18389 CONN_INC_REF(connp); 18390 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18391 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18392 } 18393 18394 /* 18395 * Initial STREAMS write side put() procedure for sockets. It tries to 18396 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18397 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18398 * are handled by tcp_wput() as usual. 18399 * 18400 * All further messages will also be handled by tcp_wput() because we cannot 18401 * be sure that the above short cut is safe later. 18402 */ 18403 static void 18404 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18405 { 18406 conn_t *connp = Q_TO_CONN(wq); 18407 tcp_t *tcp = connp->conn_tcp; 18408 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18409 18410 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18411 wq->q_qinfo = &tcp_winit; 18412 18413 ASSERT(IS_TCP_CONN(connp)); 18414 ASSERT(TCP_IS_SOCKET(tcp)); 18415 18416 if (DB_TYPE(mp) == M_PCPROTO && 18417 MBLKL(mp) == sizeof (struct T_capability_req) && 18418 car->PRIM_type == T_CAPABILITY_REQ) { 18419 tcp_capability_req(tcp, mp); 18420 return; 18421 } 18422 18423 tcp_wput(wq, mp); 18424 } 18425 18426 static boolean_t 18427 tcp_zcopy_check(tcp_t *tcp) 18428 { 18429 conn_t *connp = tcp->tcp_connp; 18430 ire_t *ire; 18431 boolean_t zc_enabled = B_FALSE; 18432 18433 if (do_tcpzcopy == 2) 18434 zc_enabled = B_TRUE; 18435 else if (tcp->tcp_ipversion == IPV4_VERSION && 18436 IPCL_IS_CONNECTED(connp) && 18437 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18438 connp->conn_dontroute == 0 && 18439 connp->conn_xmit_if_ill == NULL && 18440 connp->conn_nofailover_ill == NULL && 18441 do_tcpzcopy == 1) { 18442 /* 18443 * the checks above closely resemble the fast path checks 18444 * in tcp_send_data(). 18445 */ 18446 mutex_enter(&connp->conn_lock); 18447 ire = connp->conn_ire_cache; 18448 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18449 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18450 IRE_REFHOLD(ire); 18451 if (ire->ire_stq != NULL) { 18452 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18453 18454 zc_enabled = ill && (ill->ill_capabilities & 18455 ILL_CAPAB_ZEROCOPY) && 18456 (ill->ill_zerocopy_capab-> 18457 ill_zerocopy_flags != 0); 18458 } 18459 IRE_REFRELE(ire); 18460 } 18461 mutex_exit(&connp->conn_lock); 18462 } 18463 tcp->tcp_snd_zcopy_on = zc_enabled; 18464 if (!TCP_IS_DETACHED(tcp)) { 18465 if (zc_enabled) { 18466 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18467 TCP_STAT(tcp_zcopy_on); 18468 } else { 18469 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18470 TCP_STAT(tcp_zcopy_off); 18471 } 18472 } 18473 return (zc_enabled); 18474 } 18475 18476 static mblk_t * 18477 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18478 { 18479 if (do_tcpzcopy == 2) 18480 return (bp); 18481 else if (tcp->tcp_snd_zcopy_on) { 18482 tcp->tcp_snd_zcopy_on = B_FALSE; 18483 if (!TCP_IS_DETACHED(tcp)) { 18484 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18485 TCP_STAT(tcp_zcopy_disable); 18486 } 18487 } 18488 return (tcp_zcopy_backoff(tcp, bp, 0)); 18489 } 18490 18491 /* 18492 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18493 * the original desballoca'ed segmapped mblk. 18494 */ 18495 static mblk_t * 18496 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18497 { 18498 mblk_t *head, *tail, *nbp; 18499 if (IS_VMLOANED_MBLK(bp)) { 18500 TCP_STAT(tcp_zcopy_backoff); 18501 if ((head = copyb(bp)) == NULL) { 18502 /* fail to backoff; leave it for the next backoff */ 18503 tcp->tcp_xmit_zc_clean = B_FALSE; 18504 return (bp); 18505 } 18506 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18507 if (fix_xmitlist) 18508 tcp_zcopy_notify(tcp); 18509 else 18510 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18511 } 18512 nbp = bp->b_cont; 18513 if (fix_xmitlist) { 18514 head->b_prev = bp->b_prev; 18515 head->b_next = bp->b_next; 18516 if (tcp->tcp_xmit_tail == bp) 18517 tcp->tcp_xmit_tail = head; 18518 } 18519 bp->b_next = NULL; 18520 bp->b_prev = NULL; 18521 freeb(bp); 18522 } else { 18523 head = bp; 18524 nbp = bp->b_cont; 18525 } 18526 tail = head; 18527 while (nbp) { 18528 if (IS_VMLOANED_MBLK(nbp)) { 18529 TCP_STAT(tcp_zcopy_backoff); 18530 if ((tail->b_cont = copyb(nbp)) == NULL) { 18531 tcp->tcp_xmit_zc_clean = B_FALSE; 18532 tail->b_cont = nbp; 18533 return (head); 18534 } 18535 tail = tail->b_cont; 18536 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18537 if (fix_xmitlist) 18538 tcp_zcopy_notify(tcp); 18539 else 18540 tail->b_datap->db_struioflag |= 18541 STRUIO_ZCNOTIFY; 18542 } 18543 bp = nbp; 18544 nbp = nbp->b_cont; 18545 if (fix_xmitlist) { 18546 tail->b_prev = bp->b_prev; 18547 tail->b_next = bp->b_next; 18548 if (tcp->tcp_xmit_tail == bp) 18549 tcp->tcp_xmit_tail = tail; 18550 } 18551 bp->b_next = NULL; 18552 bp->b_prev = NULL; 18553 freeb(bp); 18554 } else { 18555 tail->b_cont = nbp; 18556 tail = nbp; 18557 nbp = nbp->b_cont; 18558 } 18559 } 18560 if (fix_xmitlist) { 18561 tcp->tcp_xmit_last = tail; 18562 tcp->tcp_xmit_zc_clean = B_TRUE; 18563 } 18564 return (head); 18565 } 18566 18567 static void 18568 tcp_zcopy_notify(tcp_t *tcp) 18569 { 18570 struct stdata *stp; 18571 18572 if (tcp->tcp_detached) 18573 return; 18574 stp = STREAM(tcp->tcp_rq); 18575 mutex_enter(&stp->sd_lock); 18576 stp->sd_flag |= STZCNOTIFY; 18577 cv_broadcast(&stp->sd_zcopy_wait); 18578 mutex_exit(&stp->sd_lock); 18579 } 18580 18581 18582 static void 18583 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18584 { 18585 ipha_t *ipha; 18586 ipaddr_t src; 18587 ipaddr_t dst; 18588 uint32_t cksum; 18589 ire_t *ire; 18590 uint16_t *up; 18591 ill_t *ill; 18592 conn_t *connp = tcp->tcp_connp; 18593 uint32_t hcksum_txflags = 0; 18594 mblk_t *ire_fp_mp; 18595 uint_t ire_fp_mp_len; 18596 ill_poll_capab_t *ill_poll; 18597 18598 ASSERT(DB_TYPE(mp) == M_DATA); 18599 18600 ipha = (ipha_t *)mp->b_rptr; 18601 src = ipha->ipha_src; 18602 dst = ipha->ipha_dst; 18603 18604 /* 18605 * Drop off slow path for IPv6 and also if options are present. 18606 */ 18607 if (tcp->tcp_ipversion != IPV4_VERSION || 18608 !IPCL_IS_CONNECTED(connp) || 18609 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18610 connp->conn_dontroute || 18611 connp->conn_xmit_if_ill != NULL || 18612 connp->conn_nofailover_ill != NULL || 18613 ipha->ipha_ident == IP_HDR_INCLUDED || 18614 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18615 IPP_ENABLED(IPP_LOCAL_OUT)) { 18616 if (tcp->tcp_snd_zcopy_aware) 18617 mp = tcp_zcopy_disable(tcp, mp); 18618 TCP_STAT(tcp_ip_send); 18619 CALL_IP_WPUT(connp, q, mp); 18620 return; 18621 } 18622 18623 mutex_enter(&connp->conn_lock); 18624 ire = connp->conn_ire_cache; 18625 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18626 if (ire != NULL && ire->ire_addr == dst && 18627 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18628 IRE_REFHOLD(ire); 18629 mutex_exit(&connp->conn_lock); 18630 } else { 18631 boolean_t cached = B_FALSE; 18632 18633 /* force a recheck later on */ 18634 tcp->tcp_ire_ill_check_done = B_FALSE; 18635 18636 TCP_DBGSTAT(tcp_ire_null1); 18637 connp->conn_ire_cache = NULL; 18638 mutex_exit(&connp->conn_lock); 18639 if (ire != NULL) 18640 IRE_REFRELE_NOTR(ire); 18641 ire = ire_cache_lookup(dst, connp->conn_zoneid); 18642 if (ire == NULL) { 18643 if (tcp->tcp_snd_zcopy_aware) 18644 mp = tcp_zcopy_backoff(tcp, mp, 0); 18645 TCP_STAT(tcp_ire_null); 18646 CALL_IP_WPUT(connp, q, mp); 18647 return; 18648 } 18649 IRE_REFHOLD_NOTR(ire); 18650 /* 18651 * Since we are inside the squeue, there cannot be another 18652 * thread in TCP trying to set the conn_ire_cache now. The 18653 * check for IRE_MARK_CONDEMNED ensures that an interface 18654 * unplumb thread has not yet started cleaning up the conns. 18655 * Hence we don't need to grab the conn lock. 18656 */ 18657 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18658 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18659 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18660 connp->conn_ire_cache = ire; 18661 cached = B_TRUE; 18662 } 18663 rw_exit(&ire->ire_bucket->irb_lock); 18664 } 18665 18666 /* 18667 * We can continue to use the ire but since it was 18668 * not cached, we should drop the extra reference. 18669 */ 18670 if (!cached) 18671 IRE_REFRELE_NOTR(ire); 18672 } 18673 18674 if (ire->ire_flags & RTF_MULTIRT || 18675 ire->ire_stq == NULL || 18676 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18677 (ire_fp_mp = ire->ire_fp_mp) == NULL || 18678 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18679 if (tcp->tcp_snd_zcopy_aware) 18680 mp = tcp_zcopy_disable(tcp, mp); 18681 TCP_STAT(tcp_ip_ire_send); 18682 IRE_REFRELE(ire); 18683 CALL_IP_WPUT(connp, q, mp); 18684 return; 18685 } 18686 18687 ill = ire_to_ill(ire); 18688 if (connp->conn_outgoing_ill != NULL) { 18689 ill_t *conn_outgoing_ill = NULL; 18690 /* 18691 * Choose a good ill in the group to send the packets on. 18692 */ 18693 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18694 ill = ire_to_ill(ire); 18695 } 18696 ASSERT(ill != NULL); 18697 18698 if (!tcp->tcp_ire_ill_check_done) { 18699 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18700 tcp->tcp_ire_ill_check_done = B_TRUE; 18701 } 18702 18703 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18704 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18705 #ifndef _BIG_ENDIAN 18706 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18707 #endif 18708 18709 /* 18710 * Check to see if we need to re-enable MDT for this connection 18711 * because it was previously disabled due to changes in the ill; 18712 * note that by doing it here, this re-enabling only applies when 18713 * the packet is not dispatched through CALL_IP_WPUT(). 18714 * 18715 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18716 * case, since that's how we ended up here. For IPv6, we do the 18717 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18718 */ 18719 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18720 /* 18721 * Restore MDT for this connection, so that next time around 18722 * it is eligible to go through tcp_multisend() path again. 18723 */ 18724 TCP_STAT(tcp_mdt_conn_resumed1); 18725 tcp->tcp_mdt = B_TRUE; 18726 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18727 "interface %s\n", (void *)connp, ill->ill_name)); 18728 } 18729 18730 if (tcp->tcp_snd_zcopy_aware) { 18731 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18732 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18733 mp = tcp_zcopy_disable(tcp, mp); 18734 /* 18735 * we shouldn't need to reset ipha as the mp containing 18736 * ipha should never be a zero-copy mp. 18737 */ 18738 } 18739 18740 if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) && dohwcksum) { 18741 ASSERT(ill->ill_hcksum_capab != NULL); 18742 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18743 } 18744 18745 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18746 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18747 18748 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18749 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18750 18751 /* 18752 * Underlying interface supports hardware checksum offload for 18753 * the tcp payload, along with M_DATA fast path; leave the payload 18754 * checksum for the hardware to calculate. 18755 * 18756 * N.B: We only need to set up checksum info on the first mblk. 18757 */ 18758 if (hcksum_txflags & HCKSUM_INET_FULL_V4) { 18759 /* 18760 * Hardware calculates pseudo-header, header and payload 18761 * checksums, so clear checksum field in TCP header. 18762 */ 18763 *up = 0; 18764 mp->b_datap->db_struioun.cksum.flags |= HCK_FULLCKSUM; 18765 } else if (hcksum_txflags & HCKSUM_INET_PARTIAL) { 18766 uint32_t sum; 18767 /* 18768 * Partial checksum offload has been enabled. Fill the 18769 * checksum field in the TCP header with the pseudo-header 18770 * checksum value. 18771 */ 18772 sum = *up + cksum + IP_TCP_CSUM_COMP; 18773 sum = (sum & 0xFFFF) + (sum >> 16); 18774 *up = (sum & 0xFFFF) + (sum >> 16); 18775 mp->b_datap->db_cksumstart = IP_SIMPLE_HDR_LENGTH; 18776 mp->b_datap->db_cksumstuff = IP_SIMPLE_HDR_LENGTH + 16; 18777 mp->b_datap->db_cksumend = ntohs(ipha->ipha_length); 18778 mp->b_datap->db_struioun.cksum.flags |= HCK_PARTIALCKSUM; 18779 } else { 18780 /* software checksumming */ 18781 TCP_STAT(tcp_out_sw_cksum); 18782 *up = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, 18783 cksum + IP_TCP_CSUM_COMP); 18784 mp->b_datap->db_struioun.cksum.flags = 0; 18785 } 18786 18787 ipha->ipha_fragment_offset_and_flags |= 18788 (uint32_t)htons(ire->ire_frag_flag); 18789 18790 /* 18791 * Hardware supports IP header checksum offload; clear contents 18792 * of IP header checksum field. Otherwise we calculate it. 18793 */ 18794 if (hcksum_txflags & HCKSUM_IPHDRCKSUM) { 18795 ipha->ipha_hdr_checksum = 0; 18796 mp->b_datap->db_struioun.cksum.flags |= HCK_IPV4_HDRCKSUM; 18797 } else { 18798 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18799 ((uint16_t *)ipha)[4]); 18800 } 18801 18802 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18803 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18804 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18805 18806 UPDATE_OB_PKT_COUNT(ire); 18807 ire->ire_last_used_time = lbolt; 18808 BUMP_MIB(&ip_mib, ipOutRequests); 18809 18810 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 18811 ill_poll = ill->ill_poll_capab; 18812 ASSERT(ill_poll != NULL); 18813 ASSERT(ill_poll->ill_tx != NULL); 18814 ASSERT(ill_poll->ill_tx_handle != NULL); 18815 18816 ill_poll->ill_tx(ill_poll->ill_tx_handle, mp); 18817 } else { 18818 putnext(ire->ire_stq, mp); 18819 } 18820 IRE_REFRELE(ire); 18821 } 18822 18823 /* 18824 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18825 * if the receiver shrinks the window, i.e. moves the right window to the 18826 * left, the we should not send new data, but should retransmit normally the 18827 * old unacked data between suna and suna + swnd. We might has sent data 18828 * that is now outside the new window, pretend that we didn't send it. 18829 */ 18830 static void 18831 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18832 { 18833 uint32_t snxt = tcp->tcp_snxt; 18834 mblk_t *xmit_tail; 18835 int32_t offset; 18836 18837 ASSERT(shrunk_count > 0); 18838 18839 /* Pretend we didn't send the data outside the window */ 18840 snxt -= shrunk_count; 18841 18842 /* Get the mblk and the offset in it per the shrunk window */ 18843 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18844 18845 ASSERT(xmit_tail != NULL); 18846 18847 /* Reset all the values per the now shrunk window */ 18848 tcp->tcp_snxt = snxt; 18849 tcp->tcp_xmit_tail = xmit_tail; 18850 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18851 offset; 18852 tcp->tcp_unsent += shrunk_count; 18853 18854 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18855 /* 18856 * Make sure the timer is running so that we will probe a zero 18857 * window. 18858 */ 18859 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18860 } 18861 18862 18863 /* 18864 * The TCP normal data output path. 18865 * NOTE: the logic of the fast path is duplicated from this function. 18866 */ 18867 static void 18868 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18869 { 18870 int len; 18871 mblk_t *local_time; 18872 mblk_t *mp1; 18873 uint32_t snxt; 18874 int tail_unsent; 18875 int tcpstate; 18876 int usable = 0; 18877 mblk_t *xmit_tail; 18878 queue_t *q = tcp->tcp_wq; 18879 int32_t mss; 18880 int32_t num_sack_blk = 0; 18881 int32_t tcp_hdr_len; 18882 int32_t tcp_tcp_hdr_len; 18883 int mdt_thres; 18884 int rc; 18885 18886 tcpstate = tcp->tcp_state; 18887 if (mp == NULL) { 18888 /* 18889 * tcp_wput_data() with NULL mp should only be called when 18890 * there is unsent data. 18891 */ 18892 ASSERT(tcp->tcp_unsent > 0); 18893 /* Really tacky... but we need this for detached closes. */ 18894 len = tcp->tcp_unsent; 18895 goto data_null; 18896 } 18897 18898 #if CCS_STATS 18899 wrw_stats.tot.count++; 18900 wrw_stats.tot.bytes += msgdsize(mp); 18901 #endif 18902 ASSERT(mp->b_datap->db_type == M_DATA); 18903 /* 18904 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18905 * or before a connection attempt has begun. 18906 */ 18907 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18908 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18909 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18910 #ifdef DEBUG 18911 cmn_err(CE_WARN, 18912 "tcp_wput_data: data after ordrel, %s", 18913 tcp_display(tcp, NULL, 18914 DISP_ADDR_AND_PORT)); 18915 #else 18916 if (tcp->tcp_debug) { 18917 (void) strlog(TCP_MODULE_ID, 0, 1, 18918 SL_TRACE|SL_ERROR, 18919 "tcp_wput_data: data after ordrel, %s\n", 18920 tcp_display(tcp, NULL, 18921 DISP_ADDR_AND_PORT)); 18922 } 18923 #endif /* DEBUG */ 18924 } 18925 if (tcp->tcp_snd_zcopy_aware && 18926 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18927 tcp_zcopy_notify(tcp); 18928 freemsg(mp); 18929 return; 18930 } 18931 18932 /* Strip empties */ 18933 for (;;) { 18934 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18935 (uintptr_t)INT_MAX); 18936 len = (int)(mp->b_wptr - mp->b_rptr); 18937 if (len > 0) 18938 break; 18939 mp1 = mp; 18940 mp = mp->b_cont; 18941 freeb(mp1); 18942 if (!mp) { 18943 return; 18944 } 18945 } 18946 18947 /* If we are the first on the list ... */ 18948 if (tcp->tcp_xmit_head == NULL) { 18949 tcp->tcp_xmit_head = mp; 18950 tcp->tcp_xmit_tail = mp; 18951 tcp->tcp_xmit_tail_unsent = len; 18952 } else { 18953 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18954 struct datab *dp; 18955 18956 mp1 = tcp->tcp_xmit_last; 18957 if (len < tcp_tx_pull_len && 18958 (dp = mp1->b_datap)->db_ref == 1 && 18959 dp->db_lim - mp1->b_wptr >= len) { 18960 ASSERT(len > 0); 18961 ASSERT(!mp1->b_cont); 18962 if (len == 1) { 18963 *mp1->b_wptr++ = *mp->b_rptr; 18964 } else { 18965 bcopy(mp->b_rptr, mp1->b_wptr, len); 18966 mp1->b_wptr += len; 18967 } 18968 if (mp1 == tcp->tcp_xmit_tail) 18969 tcp->tcp_xmit_tail_unsent += len; 18970 mp1->b_cont = mp->b_cont; 18971 if (tcp->tcp_snd_zcopy_aware && 18972 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18973 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18974 freeb(mp); 18975 mp = mp1; 18976 } else { 18977 tcp->tcp_xmit_last->b_cont = mp; 18978 } 18979 len += tcp->tcp_unsent; 18980 } 18981 18982 /* Tack on however many more positive length mblks we have */ 18983 if ((mp1 = mp->b_cont) != NULL) { 18984 do { 18985 int tlen; 18986 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18987 (uintptr_t)INT_MAX); 18988 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18989 if (tlen <= 0) { 18990 mp->b_cont = mp1->b_cont; 18991 freeb(mp1); 18992 } else { 18993 len += tlen; 18994 mp = mp1; 18995 } 18996 } while ((mp1 = mp->b_cont) != NULL); 18997 } 18998 tcp->tcp_xmit_last = mp; 18999 tcp->tcp_unsent = len; 19000 19001 if (urgent) 19002 usable = 1; 19003 19004 data_null: 19005 snxt = tcp->tcp_snxt; 19006 xmit_tail = tcp->tcp_xmit_tail; 19007 tail_unsent = tcp->tcp_xmit_tail_unsent; 19008 19009 /* 19010 * Note that tcp_mss has been adjusted to take into account the 19011 * timestamp option if applicable. Because SACK options do not 19012 * appear in every TCP segments and they are of variable lengths, 19013 * they cannot be included in tcp_mss. Thus we need to calculate 19014 * the actual segment length when we need to send a segment which 19015 * includes SACK options. 19016 */ 19017 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19018 int32_t opt_len; 19019 19020 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19021 tcp->tcp_num_sack_blk); 19022 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19023 2 + TCPOPT_HEADER_LEN; 19024 mss = tcp->tcp_mss - opt_len; 19025 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19026 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19027 } else { 19028 mss = tcp->tcp_mss; 19029 tcp_hdr_len = tcp->tcp_hdr_len; 19030 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19031 } 19032 19033 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19034 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19035 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19036 } 19037 if (tcpstate == TCPS_SYN_RCVD) { 19038 /* 19039 * The three-way connection establishment handshake is not 19040 * complete yet. We want to queue the data for transmission 19041 * after entering ESTABLISHED state (RFC793). A jump to 19042 * "done" label effectively leaves data on the queue. 19043 */ 19044 goto done; 19045 } else { 19046 int usable_r = tcp->tcp_swnd; 19047 19048 /* 19049 * In the special case when cwnd is zero, which can only 19050 * happen if the connection is ECN capable, return now. 19051 * New segments is sent using tcp_timer(). The timer 19052 * is set in tcp_rput_data(). 19053 */ 19054 if (tcp->tcp_cwnd == 0) { 19055 /* 19056 * Note that tcp_cwnd is 0 before 3-way handshake is 19057 * finished. 19058 */ 19059 ASSERT(tcp->tcp_ecn_ok || 19060 tcp->tcp_state < TCPS_ESTABLISHED); 19061 return; 19062 } 19063 19064 /* NOTE: trouble if xmitting while SYN not acked? */ 19065 usable_r -= snxt; 19066 usable_r += tcp->tcp_suna; 19067 19068 /* 19069 * Check if the receiver has shrunk the window. If 19070 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19071 * cannot be set as there is unsent data, so FIN cannot 19072 * be sent out. Otherwise, we need to take into account 19073 * of FIN as it consumes an "invisible" sequence number. 19074 */ 19075 ASSERT(tcp->tcp_fin_sent == 0); 19076 if (usable_r < 0) { 19077 /* 19078 * The receiver has shrunk the window and we have sent 19079 * -usable_r date beyond the window, re-adjust. 19080 * 19081 * If TCP window scaling is enabled, there can be 19082 * round down error as the advertised receive window 19083 * is actually right shifted n bits. This means that 19084 * the lower n bits info is wiped out. It will look 19085 * like the window is shrunk. Do a check here to 19086 * see if the shrunk amount is actually within the 19087 * error in window calculation. If it is, just 19088 * return. Note that this check is inside the 19089 * shrunk window check. This makes sure that even 19090 * though tcp_process_shrunk_swnd() is not called, 19091 * we will stop further processing. 19092 */ 19093 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19094 tcp_process_shrunk_swnd(tcp, -usable_r); 19095 } 19096 return; 19097 } 19098 19099 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19100 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19101 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19102 19103 /* usable = MIN(usable, unsent) */ 19104 if (usable_r > len) 19105 usable_r = len; 19106 19107 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19108 if (usable_r > 0) { 19109 usable = usable_r; 19110 } else { 19111 /* Bypass all other unnecessary processing. */ 19112 goto done; 19113 } 19114 } 19115 19116 local_time = (mblk_t *)lbolt; 19117 19118 /* 19119 * "Our" Nagle Algorithm. This is not the same as in the old 19120 * BSD. This is more in line with the true intent of Nagle. 19121 * 19122 * The conditions are: 19123 * 1. The amount of unsent data (or amount of data which can be 19124 * sent, whichever is smaller) is less than Nagle limit. 19125 * 2. The last sent size is also less than Nagle limit. 19126 * 3. There is unack'ed data. 19127 * 4. Urgent pointer is not set. Send urgent data ignoring the 19128 * Nagle algorithm. This reduces the probability that urgent 19129 * bytes get "merged" together. 19130 * 5. The app has not closed the connection. This eliminates the 19131 * wait time of the receiving side waiting for the last piece of 19132 * (small) data. 19133 * 19134 * If all are satisified, exit without sending anything. Note 19135 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19136 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19137 * 4095). 19138 */ 19139 if (usable < (int)tcp->tcp_naglim && 19140 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19141 snxt != tcp->tcp_suna && 19142 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19143 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19144 goto done; 19145 } 19146 19147 if (tcp->tcp_cork) { 19148 /* 19149 * if the tcp->tcp_cork option is set, then we have to force 19150 * TCP not to send partial segment (smaller than MSS bytes). 19151 * We are calculating the usable now based on full mss and 19152 * will save the rest of remaining data for later. 19153 */ 19154 if (usable < mss) 19155 goto done; 19156 usable = (usable / mss) * mss; 19157 } 19158 19159 /* Update the latest receive window size in TCP header. */ 19160 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19161 tcp->tcp_tcph->th_win); 19162 19163 /* 19164 * Determine if it's worthwhile to attempt MDT, based on: 19165 * 19166 * 1. Simple TCP/IP{v4,v6} (no options). 19167 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19168 * 3. If the TCP connection is in ESTABLISHED state. 19169 * 4. The TCP is not detached. 19170 * 19171 * If any of the above conditions have changed during the 19172 * connection, stop using MDT and restore the stream head 19173 * parameters accordingly. 19174 */ 19175 if (tcp->tcp_mdt && 19176 ((tcp->tcp_ipversion == IPV4_VERSION && 19177 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19178 (tcp->tcp_ipversion == IPV6_VERSION && 19179 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19180 tcp->tcp_state != TCPS_ESTABLISHED || 19181 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 19182 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19183 IPP_ENABLED(IPP_LOCAL_OUT))) { 19184 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19185 tcp->tcp_mdt = B_FALSE; 19186 19187 /* Anything other than detached is considered pathological */ 19188 if (!TCP_IS_DETACHED(tcp)) { 19189 TCP_STAT(tcp_mdt_conn_halted1); 19190 (void) tcp_maxpsz_set(tcp, B_TRUE); 19191 } 19192 } 19193 19194 /* Use MDT if sendable amount is greater than the threshold */ 19195 if (tcp->tcp_mdt && 19196 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19197 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19198 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19199 (tcp->tcp_valid_bits == 0 || 19200 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19201 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19202 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19203 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19204 local_time, mdt_thres); 19205 } else { 19206 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19207 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19208 local_time, INT_MAX); 19209 } 19210 19211 /* Pretend that all we were trying to send really got sent */ 19212 if (rc < 0 && tail_unsent < 0) { 19213 do { 19214 xmit_tail = xmit_tail->b_cont; 19215 xmit_tail->b_prev = local_time; 19216 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19217 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19218 tail_unsent += (int)(xmit_tail->b_wptr - 19219 xmit_tail->b_rptr); 19220 } while (tail_unsent < 0); 19221 } 19222 done:; 19223 tcp->tcp_xmit_tail = xmit_tail; 19224 tcp->tcp_xmit_tail_unsent = tail_unsent; 19225 len = tcp->tcp_snxt - snxt; 19226 if (len) { 19227 /* 19228 * If new data was sent, need to update the notsack 19229 * list, which is, afterall, data blocks that have 19230 * not been sack'ed by the receiver. New data is 19231 * not sack'ed. 19232 */ 19233 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19234 /* len is a negative value. */ 19235 tcp->tcp_pipe -= len; 19236 tcp_notsack_update(&(tcp->tcp_notsack_list), 19237 tcp->tcp_snxt, snxt, 19238 &(tcp->tcp_num_notsack_blk), 19239 &(tcp->tcp_cnt_notsack_list)); 19240 } 19241 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19242 tcp->tcp_rack = tcp->tcp_rnxt; 19243 tcp->tcp_rack_cnt = 0; 19244 if ((snxt + len) == tcp->tcp_suna) { 19245 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19246 } 19247 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19248 /* 19249 * Didn't send anything. Make sure the timer is running 19250 * so that we will probe a zero window. 19251 */ 19252 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19253 } 19254 /* Note that len is the amount we just sent but with a negative sign */ 19255 len += tcp->tcp_unsent; 19256 tcp->tcp_unsent = len; 19257 if (tcp->tcp_flow_stopped) { 19258 if (len <= tcp->tcp_xmit_lowater) { 19259 tcp->tcp_flow_stopped = B_FALSE; 19260 tcp_clrqfull(tcp); 19261 } 19262 } else if (len >= tcp->tcp_xmit_hiwater) { 19263 tcp->tcp_flow_stopped = B_TRUE; 19264 tcp_setqfull(tcp); 19265 } 19266 } 19267 19268 /* 19269 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19270 * outgoing TCP header with the template header, as well as other 19271 * options such as time-stamp, ECN and/or SACK. 19272 */ 19273 static void 19274 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19275 { 19276 tcph_t *tcp_tmpl, *tcp_h; 19277 uint32_t *dst, *src; 19278 int hdrlen; 19279 19280 ASSERT(OK_32PTR(rptr)); 19281 19282 /* Template header */ 19283 tcp_tmpl = tcp->tcp_tcph; 19284 19285 /* Header of outgoing packet */ 19286 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19287 19288 /* dst and src are opaque 32-bit fields, used for copying */ 19289 dst = (uint32_t *)rptr; 19290 src = (uint32_t *)tcp->tcp_iphc; 19291 hdrlen = tcp->tcp_hdr_len; 19292 19293 /* Fill time-stamp option if needed */ 19294 if (tcp->tcp_snd_ts_ok) { 19295 U32_TO_BE32((uint32_t)now, 19296 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19297 U32_TO_BE32(tcp->tcp_ts_recent, 19298 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19299 } else { 19300 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19301 } 19302 19303 /* 19304 * Copy the template header; is this really more efficient than 19305 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19306 * but perhaps not for other scenarios. 19307 */ 19308 dst[0] = src[0]; 19309 dst[1] = src[1]; 19310 dst[2] = src[2]; 19311 dst[3] = src[3]; 19312 dst[4] = src[4]; 19313 dst[5] = src[5]; 19314 dst[6] = src[6]; 19315 dst[7] = src[7]; 19316 dst[8] = src[8]; 19317 dst[9] = src[9]; 19318 if (hdrlen -= 40) { 19319 hdrlen >>= 2; 19320 dst += 10; 19321 src += 10; 19322 do { 19323 *dst++ = *src++; 19324 } while (--hdrlen); 19325 } 19326 19327 /* 19328 * Set the ECN info in the TCP header if it is not a zero 19329 * window probe. Zero window probe is only sent in 19330 * tcp_wput_data() and tcp_timer(). 19331 */ 19332 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19333 SET_ECT(tcp, rptr); 19334 19335 if (tcp->tcp_ecn_echo_on) 19336 tcp_h->th_flags[0] |= TH_ECE; 19337 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19338 tcp_h->th_flags[0] |= TH_CWR; 19339 tcp->tcp_ecn_cwr_sent = B_TRUE; 19340 } 19341 } 19342 19343 /* Fill in SACK options */ 19344 if (num_sack_blk > 0) { 19345 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19346 sack_blk_t *tmp; 19347 int32_t i; 19348 19349 wptr[0] = TCPOPT_NOP; 19350 wptr[1] = TCPOPT_NOP; 19351 wptr[2] = TCPOPT_SACK; 19352 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19353 sizeof (sack_blk_t); 19354 wptr += TCPOPT_REAL_SACK_LEN; 19355 19356 tmp = tcp->tcp_sack_list; 19357 for (i = 0; i < num_sack_blk; i++) { 19358 U32_TO_BE32(tmp[i].begin, wptr); 19359 wptr += sizeof (tcp_seq); 19360 U32_TO_BE32(tmp[i].end, wptr); 19361 wptr += sizeof (tcp_seq); 19362 } 19363 tcp_h->th_offset_and_rsrvd[0] += 19364 ((num_sack_blk * 2 + 1) << 4); 19365 } 19366 } 19367 19368 /* 19369 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19370 * the destination address and SAP attribute, and if necessary, the 19371 * hardware checksum offload attribute to a Multidata message. 19372 */ 19373 static int 19374 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19375 const uint32_t start, const uint32_t stuff, const uint32_t end, 19376 const uint32_t flags) 19377 { 19378 /* Add global destination address & SAP attribute */ 19379 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19380 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19381 "destination address+SAP\n")); 19382 19383 if (dlmp != NULL) 19384 TCP_STAT(tcp_mdt_allocfail); 19385 return (-1); 19386 } 19387 19388 /* Add global hwcksum attribute */ 19389 if (hwcksum && 19390 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19391 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19392 "checksum attribute\n")); 19393 19394 TCP_STAT(tcp_mdt_allocfail); 19395 return (-1); 19396 } 19397 19398 return (0); 19399 } 19400 19401 /* 19402 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19403 * scheme, and returns one the following: 19404 * 19405 * -1 = failed allocation. 19406 * 0 = success; burst count reached, or usable send window is too small, 19407 * and that we'd rather wait until later before sending again. 19408 */ 19409 static int 19410 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19411 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19412 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19413 const int mdt_thres) 19414 { 19415 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19416 multidata_t *mmd; 19417 uint_t obsegs, obbytes, hdr_frag_sz; 19418 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19419 int num_burst_seg, max_pld; 19420 pdesc_t *pkt; 19421 tcp_pdescinfo_t tcp_pkt_info; 19422 pdescinfo_t *pkt_info; 19423 int pbuf_idx, pbuf_idx_nxt; 19424 int seg_len, len, spill, af; 19425 boolean_t add_buffer, zcopy, clusterwide; 19426 boolean_t rconfirm = B_FALSE; 19427 boolean_t done = B_FALSE; 19428 uint32_t cksum; 19429 uint32_t hwcksum_flags; 19430 ire_t *ire; 19431 ill_t *ill; 19432 ipha_t *ipha; 19433 ip6_t *ip6h; 19434 ipaddr_t src, dst; 19435 ill_zerocopy_capab_t *zc_cap = NULL; 19436 uint16_t *up; 19437 int err; 19438 19439 #ifdef _BIG_ENDIAN 19440 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19441 #else 19442 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19443 #endif 19444 19445 #define TCP_CSUM_OFFSET 16 19446 #define TCP_CSUM_SIZE 2 19447 19448 #define PREP_NEW_MULTIDATA() { \ 19449 mmd = NULL; \ 19450 md_mp = md_hbuf = NULL; \ 19451 cur_hdr_off = 0; \ 19452 max_pld = tcp->tcp_mdt_max_pld; \ 19453 pbuf_idx = pbuf_idx_nxt = -1; \ 19454 add_buffer = B_TRUE; \ 19455 zcopy = B_FALSE; \ 19456 } 19457 19458 #define PREP_NEW_PBUF() { \ 19459 md_pbuf = md_pbuf_nxt = NULL; \ 19460 pbuf_idx = pbuf_idx_nxt = -1; \ 19461 cur_pld_off = 0; \ 19462 first_snxt = *snxt; \ 19463 ASSERT(*tail_unsent > 0); \ 19464 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19465 } 19466 19467 ASSERT(mdt_thres >= mss); 19468 ASSERT(*usable > 0 && *usable > mdt_thres); 19469 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19470 ASSERT(!TCP_IS_DETACHED(tcp)); 19471 ASSERT(tcp->tcp_valid_bits == 0 || 19472 tcp->tcp_valid_bits == TCP_FSS_VALID); 19473 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19474 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19475 (tcp->tcp_ipversion == IPV6_VERSION && 19476 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19477 ASSERT(tcp->tcp_connp != NULL); 19478 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 19479 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 19480 19481 /* 19482 * Note that tcp will only declare at most 2 payload spans per 19483 * packet, which is much lower than the maximum allowable number 19484 * of packet spans per Multidata. For this reason, we use the 19485 * privately declared and smaller descriptor info structure, in 19486 * order to save some stack space. 19487 */ 19488 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19489 19490 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19491 if (af == AF_INET) { 19492 dst = tcp->tcp_ipha->ipha_dst; 19493 src = tcp->tcp_ipha->ipha_src; 19494 ASSERT(!CLASSD(dst)); 19495 } 19496 ASSERT(af == AF_INET || 19497 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19498 19499 obsegs = obbytes = 0; 19500 num_burst_seg = tcp->tcp_snd_burst; 19501 md_mp_head = NULL; 19502 PREP_NEW_MULTIDATA(); 19503 19504 /* 19505 * Before we go on further, make sure there is an IRE that we can 19506 * use, and that the ILL supports MDT. Otherwise, there's no point 19507 * in proceeding any further, and we should just hand everything 19508 * off to the legacy path. 19509 */ 19510 mutex_enter(&tcp->tcp_connp->conn_lock); 19511 ire = tcp->tcp_connp->conn_ire_cache; 19512 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 19513 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19514 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19515 &tcp->tcp_ip6h->ip6_dst))) && 19516 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19517 IRE_REFHOLD(ire); 19518 mutex_exit(&tcp->tcp_connp->conn_lock); 19519 } else { 19520 boolean_t cached = B_FALSE; 19521 19522 /* force a recheck later on */ 19523 tcp->tcp_ire_ill_check_done = B_FALSE; 19524 19525 TCP_DBGSTAT(tcp_ire_null1); 19526 tcp->tcp_connp->conn_ire_cache = NULL; 19527 mutex_exit(&tcp->tcp_connp->conn_lock); 19528 19529 /* Release the old ire */ 19530 if (ire != NULL) 19531 IRE_REFRELE_NOTR(ire); 19532 19533 ire = (af == AF_INET) ? 19534 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 19535 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19536 tcp->tcp_connp->conn_zoneid); 19537 19538 if (ire == NULL) { 19539 TCP_STAT(tcp_ire_null); 19540 goto legacy_send_no_md; 19541 } 19542 19543 IRE_REFHOLD_NOTR(ire); 19544 /* 19545 * Since we are inside the squeue, there cannot be another 19546 * thread in TCP trying to set the conn_ire_cache now. The 19547 * check for IRE_MARK_CONDEMNED ensures that an interface 19548 * unplumb thread has not yet started cleaning up the conns. 19549 * Hence we don't need to grab the conn lock. 19550 */ 19551 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 19552 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19553 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19554 tcp->tcp_connp->conn_ire_cache = ire; 19555 cached = B_TRUE; 19556 } 19557 rw_exit(&ire->ire_bucket->irb_lock); 19558 } 19559 19560 /* 19561 * We can continue to use the ire but since it was not 19562 * cached, we should drop the extra reference. 19563 */ 19564 if (!cached) 19565 IRE_REFRELE_NOTR(ire); 19566 } 19567 19568 ASSERT(ire != NULL); 19569 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19570 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19571 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19572 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19573 /* 19574 * If we do support loopback for MDT (which requires modifications 19575 * to the receiving paths), the following assertions should go away, 19576 * and we would be sending the Multidata to loopback conn later on. 19577 */ 19578 ASSERT(!IRE_IS_LOCAL(ire)); 19579 ASSERT(ire->ire_stq != NULL); 19580 19581 ill = ire_to_ill(ire); 19582 ASSERT(ill != NULL); 19583 ASSERT((ill->ill_capabilities & ILL_CAPAB_MDT) == 0 || 19584 ill->ill_mdt_capab != NULL); 19585 19586 if (!tcp->tcp_ire_ill_check_done) { 19587 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19588 tcp->tcp_ire_ill_check_done = B_TRUE; 19589 } 19590 19591 /* 19592 * If the underlying interface conditions have changed, or if the 19593 * new interface does not support MDT, go back to legacy path. 19594 */ 19595 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19596 /* don't go through this path anymore for this connection */ 19597 TCP_STAT(tcp_mdt_conn_halted2); 19598 tcp->tcp_mdt = B_FALSE; 19599 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19600 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 19601 /* IRE will be released prior to returning */ 19602 goto legacy_send_no_md; 19603 } 19604 19605 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19606 zc_cap = ill->ill_zerocopy_capab; 19607 19608 /* go to legacy path if interface doesn't support zerocopy */ 19609 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19610 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19611 /* IRE will be released prior to returning */ 19612 goto legacy_send_no_md; 19613 } 19614 19615 /* does the interface support hardware checksum offload? */ 19616 hwcksum_flags = 0; 19617 if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) && 19618 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19619 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM)) && 19620 dohwcksum) { 19621 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19622 HCKSUM_IPHDRCKSUM) 19623 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19624 19625 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19626 HCKSUM_INET_FULL_V4) 19627 hwcksum_flags |= HCK_FULLCKSUM; 19628 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19629 HCKSUM_INET_PARTIAL) 19630 hwcksum_flags |= HCK_PARTIALCKSUM; 19631 } 19632 19633 /* 19634 * Each header fragment consists of the leading extra space, 19635 * followed by the TCP/IP header, and the trailing extra space. 19636 * We make sure that each header fragment begins on a 32-bit 19637 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19638 * aligned in tcp_mdt_update). 19639 */ 19640 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19641 tcp->tcp_mdt_hdr_tail), 4); 19642 19643 /* are we starting from the beginning of data block? */ 19644 if (*tail_unsent == 0) { 19645 *xmit_tail = (*xmit_tail)->b_cont; 19646 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19647 *tail_unsent = (int)MBLKL(*xmit_tail); 19648 } 19649 19650 /* 19651 * Here we create one or more Multidata messages, each made up of 19652 * one header buffer and up to N payload buffers. This entire 19653 * operation is done within two loops: 19654 * 19655 * The outer loop mostly deals with creating the Multidata message, 19656 * as well as the header buffer that gets added to it. It also 19657 * links the Multidata messages together such that all of them can 19658 * be sent down to the lower layer in a single putnext call; this 19659 * linking behavior depends on the tcp_mdt_chain tunable. 19660 * 19661 * The inner loop takes an existing Multidata message, and adds 19662 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19663 * packetizes those buffers by filling up the corresponding header 19664 * buffer fragments with the proper IP and TCP headers, and by 19665 * describing the layout of each packet in the packet descriptors 19666 * that get added to the Multidata. 19667 */ 19668 do { 19669 /* 19670 * If usable send window is too small, or data blocks in 19671 * transmit list are smaller than our threshold (i.e. app 19672 * performs large writes followed by small ones), we hand 19673 * off the control over to the legacy path. Note that we'll 19674 * get back the control once it encounters a large block. 19675 */ 19676 if (*usable < mss || (*tail_unsent <= mdt_thres && 19677 (*xmit_tail)->b_cont != NULL && 19678 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19679 /* send down what we've got so far */ 19680 if (md_mp_head != NULL) { 19681 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19682 obsegs, obbytes, &rconfirm); 19683 } 19684 /* 19685 * Pass control over to tcp_send(), but tell it to 19686 * return to us once a large-size transmission is 19687 * possible. 19688 */ 19689 TCP_STAT(tcp_mdt_legacy_small); 19690 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19691 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19692 tail_unsent, xmit_tail, local_time, 19693 mdt_thres)) <= 0) { 19694 /* burst count reached, or alloc failed */ 19695 IRE_REFRELE(ire); 19696 return (err); 19697 } 19698 19699 /* tcp_send() may have sent everything, so check */ 19700 if (*usable <= 0) { 19701 IRE_REFRELE(ire); 19702 return (0); 19703 } 19704 19705 TCP_STAT(tcp_mdt_legacy_ret); 19706 /* 19707 * We may have delivered the Multidata, so make sure 19708 * to re-initialize before the next round. 19709 */ 19710 md_mp_head = NULL; 19711 obsegs = obbytes = 0; 19712 num_burst_seg = tcp->tcp_snd_burst; 19713 PREP_NEW_MULTIDATA(); 19714 19715 /* are we starting from the beginning of data block? */ 19716 if (*tail_unsent == 0) { 19717 *xmit_tail = (*xmit_tail)->b_cont; 19718 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19719 (uintptr_t)INT_MAX); 19720 *tail_unsent = (int)MBLKL(*xmit_tail); 19721 } 19722 } 19723 19724 /* 19725 * max_pld limits the number of mblks in tcp's transmit 19726 * queue that can be added to a Multidata message. Once 19727 * this counter reaches zero, no more additional mblks 19728 * can be added to it. What happens afterwards depends 19729 * on whether or not we are set to chain the Multidata 19730 * messages. If we are to link them together, reset 19731 * max_pld to its original value (tcp_mdt_max_pld) and 19732 * prepare to create a new Multidata message which will 19733 * get linked to md_mp_head. Else, leave it alone and 19734 * let the inner loop break on its own. 19735 */ 19736 if (tcp_mdt_chain && max_pld == 0) 19737 PREP_NEW_MULTIDATA(); 19738 19739 /* adding a payload buffer; re-initialize values */ 19740 if (add_buffer) 19741 PREP_NEW_PBUF(); 19742 19743 /* 19744 * If we don't have a Multidata, either because we just 19745 * (re)entered this outer loop, or after we branched off 19746 * to tcp_send above, setup the Multidata and header 19747 * buffer to be used. 19748 */ 19749 if (md_mp == NULL) { 19750 int md_hbuflen; 19751 uint32_t start, stuff; 19752 19753 /* 19754 * Calculate Multidata header buffer size large enough 19755 * to hold all of the headers that can possibly be 19756 * sent at this moment. We'd rather over-estimate 19757 * the size than running out of space; this is okay 19758 * since this buffer is small anyway. 19759 */ 19760 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19761 19762 /* 19763 * Start and stuff offset for partial hardware 19764 * checksum offload; these are currently for IPv4. 19765 * For full checksum offload, they are set to zero. 19766 */ 19767 if (af == AF_INET && 19768 (hwcksum_flags & HCK_PARTIALCKSUM)) { 19769 start = IP_SIMPLE_HDR_LENGTH; 19770 stuff = IP_SIMPLE_HDR_LENGTH + TCP_CSUM_OFFSET; 19771 } else { 19772 start = stuff = 0; 19773 } 19774 19775 /* 19776 * Create the header buffer, Multidata, as well as 19777 * any necessary attributes (destination address, 19778 * SAP and hardware checksum offload) that should 19779 * be associated with the Multidata message. 19780 */ 19781 ASSERT(cur_hdr_off == 0); 19782 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19783 ((md_hbuf->b_wptr += md_hbuflen), 19784 (mmd = mmd_alloc(md_hbuf, &md_mp, 19785 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19786 /* fastpath mblk */ 19787 (af == AF_INET) ? ire->ire_dlureq_mp : 19788 ire->ire_nce->nce_res_mp, 19789 /* hardware checksum enabled (IPv4 only) */ 19790 (af == AF_INET && hwcksum_flags != 0), 19791 /* hardware checksum offsets */ 19792 start, stuff, 0, 19793 /* hardware checksum flag */ 19794 hwcksum_flags) != 0)) { 19795 legacy_send: 19796 if (md_mp != NULL) { 19797 /* Unlink message from the chain */ 19798 if (md_mp_head != NULL) { 19799 err = (intptr_t)rmvb(md_mp_head, 19800 md_mp); 19801 /* 19802 * We can't assert that rmvb 19803 * did not return -1, since we 19804 * may get here before linkb 19805 * happens. We do, however, 19806 * check if we just removed the 19807 * only element in the list. 19808 */ 19809 if (err == 0) 19810 md_mp_head = NULL; 19811 } 19812 /* md_hbuf gets freed automatically */ 19813 TCP_STAT(tcp_mdt_discarded); 19814 freeb(md_mp); 19815 } else { 19816 /* Either allocb or mmd_alloc failed */ 19817 TCP_STAT(tcp_mdt_allocfail); 19818 if (md_hbuf != NULL) 19819 freeb(md_hbuf); 19820 } 19821 19822 /* send down what we've got so far */ 19823 if (md_mp_head != NULL) { 19824 tcp_multisend_data(tcp, ire, ill, 19825 md_mp_head, obsegs, obbytes, 19826 &rconfirm); 19827 } 19828 legacy_send_no_md: 19829 if (ire != NULL) 19830 IRE_REFRELE(ire); 19831 /* 19832 * Too bad; let the legacy path handle this. 19833 * We specify INT_MAX for the threshold, since 19834 * we gave up with the Multidata processings 19835 * and let the old path have it all. 19836 */ 19837 TCP_STAT(tcp_mdt_legacy_all); 19838 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19839 tcp_tcp_hdr_len, num_sack_blk, usable, 19840 snxt, tail_unsent, xmit_tail, local_time, 19841 INT_MAX)); 19842 } 19843 19844 /* link to any existing ones, if applicable */ 19845 TCP_STAT(tcp_mdt_allocd); 19846 if (md_mp_head == NULL) { 19847 md_mp_head = md_mp; 19848 } else if (tcp_mdt_chain) { 19849 TCP_STAT(tcp_mdt_linked); 19850 linkb(md_mp_head, md_mp); 19851 } 19852 } 19853 19854 ASSERT(md_mp_head != NULL); 19855 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19856 ASSERT(md_mp != NULL && mmd != NULL); 19857 ASSERT(md_hbuf != NULL); 19858 19859 /* 19860 * Packetize the transmittable portion of the data block; 19861 * each data block is essentially added to the Multidata 19862 * as a payload buffer. We also deal with adding more 19863 * than one payload buffers, which happens when the remaining 19864 * packetized portion of the current payload buffer is less 19865 * than MSS, while the next data block in transmit queue 19866 * has enough data to make up for one. This "spillover" 19867 * case essentially creates a split-packet, where portions 19868 * of the packet's payload fragments may span across two 19869 * virtually discontiguous address blocks. 19870 */ 19871 seg_len = mss; 19872 do { 19873 len = seg_len; 19874 19875 ASSERT(len > 0); 19876 ASSERT(max_pld >= 0); 19877 ASSERT(!add_buffer || cur_pld_off == 0); 19878 19879 /* 19880 * First time around for this payload buffer; note 19881 * in the case of a spillover, the following has 19882 * been done prior to adding the split-packet 19883 * descriptor to Multidata, and we don't want to 19884 * repeat the process. 19885 */ 19886 if (add_buffer) { 19887 ASSERT(mmd != NULL); 19888 ASSERT(md_pbuf == NULL); 19889 ASSERT(md_pbuf_nxt == NULL); 19890 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19891 19892 /* 19893 * Have we reached the limit? We'd get to 19894 * this case when we're not chaining the 19895 * Multidata messages together, and since 19896 * we're done, terminate this loop. 19897 */ 19898 if (max_pld == 0) 19899 break; /* done */ 19900 19901 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19902 TCP_STAT(tcp_mdt_allocfail); 19903 goto legacy_send; /* out_of_mem */ 19904 } 19905 19906 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19907 zc_cap != NULL) { 19908 if (!ip_md_zcopy_attr(mmd, NULL, 19909 zc_cap->ill_zerocopy_flags)) { 19910 freeb(md_pbuf); 19911 TCP_STAT(tcp_mdt_allocfail); 19912 /* out_of_mem */ 19913 goto legacy_send; 19914 } 19915 zcopy = B_TRUE; 19916 } 19917 19918 md_pbuf->b_rptr += base_pld_off; 19919 19920 /* 19921 * Add a payload buffer to the Multidata; this 19922 * operation must not fail, or otherwise our 19923 * logic in this routine is broken. There 19924 * is no memory allocation done by the 19925 * routine, so any returned failure simply 19926 * tells us that we've done something wrong. 19927 * 19928 * A failure tells us that either we're adding 19929 * the same payload buffer more than once, or 19930 * we're trying to add more buffers than 19931 * allowed (max_pld calculation is wrong). 19932 * None of the above cases should happen, and 19933 * we panic because either there's horrible 19934 * heap corruption, and/or programming mistake. 19935 */ 19936 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19937 if (pbuf_idx < 0) { 19938 cmn_err(CE_PANIC, "tcp_multisend: " 19939 "payload buffer logic error " 19940 "detected for tcp %p mmd %p " 19941 "pbuf %p (%d)\n", 19942 (void *)tcp, (void *)mmd, 19943 (void *)md_pbuf, pbuf_idx); 19944 } 19945 19946 ASSERT(max_pld > 0); 19947 --max_pld; 19948 add_buffer = B_FALSE; 19949 } 19950 19951 ASSERT(md_mp_head != NULL); 19952 ASSERT(md_pbuf != NULL); 19953 ASSERT(md_pbuf_nxt == NULL); 19954 ASSERT(pbuf_idx != -1); 19955 ASSERT(pbuf_idx_nxt == -1); 19956 ASSERT(*usable > 0); 19957 19958 /* 19959 * We spillover to the next payload buffer only 19960 * if all of the following is true: 19961 * 19962 * 1. There is not enough data on the current 19963 * payload buffer to make up `len', 19964 * 2. We are allowed to send `len', 19965 * 3. The next payload buffer length is large 19966 * enough to accomodate `spill'. 19967 */ 19968 if ((spill = len - *tail_unsent) > 0 && 19969 *usable >= len && 19970 MBLKL((*xmit_tail)->b_cont) >= spill && 19971 max_pld > 0) { 19972 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19973 if (md_pbuf_nxt == NULL) { 19974 TCP_STAT(tcp_mdt_allocfail); 19975 goto legacy_send; /* out_of_mem */ 19976 } 19977 19978 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19979 zc_cap != NULL) { 19980 if (!ip_md_zcopy_attr(mmd, NULL, 19981 zc_cap->ill_zerocopy_flags)) { 19982 freeb(md_pbuf_nxt); 19983 TCP_STAT(tcp_mdt_allocfail); 19984 /* out_of_mem */ 19985 goto legacy_send; 19986 } 19987 zcopy = B_TRUE; 19988 } 19989 19990 /* 19991 * See comments above on the first call to 19992 * mmd_addpldbuf for explanation on the panic. 19993 */ 19994 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19995 if (pbuf_idx_nxt < 0) { 19996 panic("tcp_multisend: " 19997 "next payload buffer logic error " 19998 "detected for tcp %p mmd %p " 19999 "pbuf %p (%d)\n", 20000 (void *)tcp, (void *)mmd, 20001 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20002 } 20003 20004 ASSERT(max_pld > 0); 20005 --max_pld; 20006 } else if (spill > 0) { 20007 /* 20008 * If there's a spillover, but the following 20009 * xmit_tail couldn't give us enough octets 20010 * to reach "len", then stop the current 20011 * Multidata creation and let the legacy 20012 * tcp_send() path take over. We don't want 20013 * to send the tiny segment as part of this 20014 * Multidata for performance reasons; instead, 20015 * we let the legacy path deal with grouping 20016 * it with the subsequent small mblks. 20017 */ 20018 if (*usable >= len && 20019 MBLKL((*xmit_tail)->b_cont) < spill) { 20020 max_pld = 0; 20021 break; /* done */ 20022 } 20023 20024 /* 20025 * We can't spillover, and we are near 20026 * the end of the current payload buffer, 20027 * so send what's left. 20028 */ 20029 ASSERT(*tail_unsent > 0); 20030 len = *tail_unsent; 20031 } 20032 20033 /* tail_unsent is negated if there is a spillover */ 20034 *tail_unsent -= len; 20035 *usable -= len; 20036 ASSERT(*usable >= 0); 20037 20038 if (*usable < mss) 20039 seg_len = *usable; 20040 /* 20041 * Sender SWS avoidance; see comments in tcp_send(); 20042 * everything else is the same, except that we only 20043 * do this here if there is no more data to be sent 20044 * following the current xmit_tail. We don't check 20045 * for 1-byte urgent data because we shouldn't get 20046 * here if TCP_URG_VALID is set. 20047 */ 20048 if (*usable > 0 && *usable < mss && 20049 ((md_pbuf_nxt == NULL && 20050 (*xmit_tail)->b_cont == NULL) || 20051 (md_pbuf_nxt != NULL && 20052 (*xmit_tail)->b_cont->b_cont == NULL)) && 20053 seg_len < (tcp->tcp_max_swnd >> 1) && 20054 (tcp->tcp_unsent - 20055 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20056 !tcp->tcp_zero_win_probe) { 20057 if ((*snxt + len) == tcp->tcp_snxt && 20058 (*snxt + len) == tcp->tcp_suna) { 20059 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20060 } 20061 done = B_TRUE; 20062 } 20063 20064 /* 20065 * Prime pump for IP's checksumming on our behalf; 20066 * include the adjustment for a source route if any. 20067 * Do this only for software/partial hardware checksum 20068 * offload, as this field gets zeroed out later for 20069 * the full hardware checksum offload case. 20070 */ 20071 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20072 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20073 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20074 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20075 } 20076 20077 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20078 *snxt += len; 20079 20080 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20081 /* 20082 * We set the PUSH bit only if TCP has no more buffered 20083 * data to be transmitted (or if sender SWS avoidance 20084 * takes place), as opposed to setting it for every 20085 * last packet in the burst. 20086 */ 20087 if (done || 20088 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20089 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20090 20091 /* 20092 * Set FIN bit if this is our last segment; snxt 20093 * already includes its length, and it will not 20094 * be adjusted after this point. 20095 */ 20096 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20097 *snxt == tcp->tcp_fss) { 20098 if (!tcp->tcp_fin_acked) { 20099 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20100 BUMP_MIB(&tcp_mib, tcpOutControl); 20101 } 20102 if (!tcp->tcp_fin_sent) { 20103 tcp->tcp_fin_sent = B_TRUE; 20104 /* 20105 * tcp state must be ESTABLISHED 20106 * in order for us to get here in 20107 * the first place. 20108 */ 20109 tcp->tcp_state = TCPS_FIN_WAIT_1; 20110 20111 /* 20112 * Upon returning from this routine, 20113 * tcp_wput_data() will set tcp_snxt 20114 * to be equal to snxt + tcp_fin_sent. 20115 * This is essentially the same as 20116 * setting it to tcp_fss + 1. 20117 */ 20118 } 20119 } 20120 20121 tcp->tcp_last_sent_len = (ushort_t)len; 20122 20123 len += tcp_hdr_len; 20124 if (tcp->tcp_ipversion == IPV4_VERSION) 20125 tcp->tcp_ipha->ipha_length = htons(len); 20126 else 20127 tcp->tcp_ip6h->ip6_plen = htons(len - 20128 ((char *)&tcp->tcp_ip6h[1] - 20129 tcp->tcp_iphc)); 20130 20131 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20132 20133 /* setup header fragment */ 20134 PDESC_HDR_ADD(pkt_info, 20135 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20136 tcp->tcp_mdt_hdr_head, /* head room */ 20137 tcp_hdr_len, /* len */ 20138 tcp->tcp_mdt_hdr_tail); /* tail room */ 20139 20140 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20141 hdr_frag_sz); 20142 ASSERT(MBLKIN(md_hbuf, 20143 (pkt_info->hdr_base - md_hbuf->b_rptr), 20144 PDESC_HDRSIZE(pkt_info))); 20145 20146 /* setup first payload fragment */ 20147 PDESC_PLD_INIT(pkt_info); 20148 PDESC_PLD_SPAN_ADD(pkt_info, 20149 pbuf_idx, /* index */ 20150 md_pbuf->b_rptr + cur_pld_off, /* start */ 20151 tcp->tcp_last_sent_len); /* len */ 20152 20153 /* create a split-packet in case of a spillover */ 20154 if (md_pbuf_nxt != NULL) { 20155 ASSERT(spill > 0); 20156 ASSERT(pbuf_idx_nxt > pbuf_idx); 20157 ASSERT(!add_buffer); 20158 20159 md_pbuf = md_pbuf_nxt; 20160 md_pbuf_nxt = NULL; 20161 pbuf_idx = pbuf_idx_nxt; 20162 pbuf_idx_nxt = -1; 20163 cur_pld_off = spill; 20164 20165 /* trim out first payload fragment */ 20166 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20167 20168 /* setup second payload fragment */ 20169 PDESC_PLD_SPAN_ADD(pkt_info, 20170 pbuf_idx, /* index */ 20171 md_pbuf->b_rptr, /* start */ 20172 spill); /* len */ 20173 20174 if ((*xmit_tail)->b_next == NULL) { 20175 /* 20176 * Store the lbolt used for RTT 20177 * estimation. We can only record one 20178 * timestamp per mblk so we do it when 20179 * we reach the end of the payload 20180 * buffer. Also we only take a new 20181 * timestamp sample when the previous 20182 * timed data from the same mblk has 20183 * been ack'ed. 20184 */ 20185 (*xmit_tail)->b_prev = local_time; 20186 (*xmit_tail)->b_next = 20187 (mblk_t *)(uintptr_t)first_snxt; 20188 } 20189 20190 first_snxt = *snxt - spill; 20191 20192 /* 20193 * Advance xmit_tail; usable could be 0 by 20194 * the time we got here, but we made sure 20195 * above that we would only spillover to 20196 * the next data block if usable includes 20197 * the spilled-over amount prior to the 20198 * subtraction. Therefore, we are sure 20199 * that xmit_tail->b_cont can't be NULL. 20200 */ 20201 ASSERT((*xmit_tail)->b_cont != NULL); 20202 *xmit_tail = (*xmit_tail)->b_cont; 20203 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20204 (uintptr_t)INT_MAX); 20205 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20206 } else { 20207 cur_pld_off += tcp->tcp_last_sent_len; 20208 } 20209 20210 /* 20211 * Fill in the header using the template header, and 20212 * add options such as time-stamp, ECN and/or SACK, 20213 * as needed. 20214 */ 20215 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20216 (clock_t)local_time, num_sack_blk); 20217 20218 /* take care of some IP header businesses */ 20219 if (af == AF_INET) { 20220 ipha = (ipha_t *)pkt_info->hdr_rptr; 20221 20222 ASSERT(OK_32PTR((uchar_t *)ipha)); 20223 ASSERT(PDESC_HDRL(pkt_info) >= 20224 IP_SIMPLE_HDR_LENGTH); 20225 ASSERT(ipha->ipha_version_and_hdr_length == 20226 IP_SIMPLE_HDR_VERSION); 20227 20228 /* 20229 * Assign ident value for current packet; see 20230 * related comments in ip_wput_ire() about the 20231 * contract private interface with clustering 20232 * group. 20233 */ 20234 clusterwide = B_FALSE; 20235 if (cl_inet_ipident != NULL) { 20236 ASSERT(cl_inet_isclusterwide != NULL); 20237 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20238 AF_INET, 20239 (uint8_t *)(uintptr_t)src)) { 20240 ipha->ipha_ident = 20241 (*cl_inet_ipident) 20242 (IPPROTO_IP, AF_INET, 20243 (uint8_t *)(uintptr_t)src, 20244 (uint8_t *)(uintptr_t)dst); 20245 clusterwide = B_TRUE; 20246 } 20247 } 20248 20249 if (!clusterwide) { 20250 ipha->ipha_ident = (uint16_t) 20251 atomic_add_32_nv( 20252 &ire->ire_ident, 1); 20253 } 20254 #ifndef _BIG_ENDIAN 20255 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20256 (ipha->ipha_ident >> 8); 20257 #endif 20258 } else { 20259 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20260 20261 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20262 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20263 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20264 ASSERT(PDESC_HDRL(pkt_info) >= 20265 (IPV6_HDR_LEN + TCP_CSUM_OFFSET + 20266 TCP_CSUM_SIZE)); 20267 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20268 20269 if (tcp->tcp_ip_forward_progress) { 20270 rconfirm = B_TRUE; 20271 tcp->tcp_ip_forward_progress = B_FALSE; 20272 } 20273 } 20274 20275 /* at least one payload span, and at most two */ 20276 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20277 20278 /* add the packet descriptor to Multidata */ 20279 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20280 KM_NOSLEEP)) == NULL) { 20281 /* 20282 * Any failure other than ENOMEM indicates 20283 * that we have passed in invalid pkt_info 20284 * or parameters to mmd_addpdesc, which must 20285 * not happen. 20286 * 20287 * EINVAL is a result of failure on boundary 20288 * checks against the pkt_info contents. It 20289 * should not happen, and we panic because 20290 * either there's horrible heap corruption, 20291 * and/or programming mistake. 20292 */ 20293 if (err != ENOMEM) { 20294 cmn_err(CE_PANIC, "tcp_multisend: " 20295 "pdesc logic error detected for " 20296 "tcp %p mmd %p pinfo %p (%d)\n", 20297 (void *)tcp, (void *)mmd, 20298 (void *)pkt_info, err); 20299 } 20300 TCP_STAT(tcp_mdt_addpdescfail); 20301 goto legacy_send; /* out_of_mem */ 20302 } 20303 ASSERT(pkt != NULL); 20304 20305 /* calculate IP header and TCP checksums */ 20306 if (af == AF_INET) { 20307 /* calculate pseudo-header checksum */ 20308 cksum = (dst >> 16) + (dst & 0xFFFF) + 20309 (src >> 16) + (src & 0xFFFF); 20310 20311 /* offset for TCP header checksum */ 20312 up = IPH_TCPH_CHECKSUMP(ipha, 20313 IP_SIMPLE_HDR_LENGTH); 20314 20315 if (hwcksum_flags & HCK_FULLCKSUM) { 20316 /* 20317 * Hardware calculates pseudo-header, 20318 * header and payload checksums, so 20319 * zero out this field. 20320 */ 20321 *up = 0; 20322 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20323 uint32_t sum; 20324 20325 /* pseudo-header checksumming */ 20326 sum = *up + cksum + IP_TCP_CSUM_COMP; 20327 sum = (sum & 0xFFFF) + (sum >> 16); 20328 *up = (sum & 0xFFFF) + (sum >> 16); 20329 } else { 20330 /* software checksumming */ 20331 TCP_STAT(tcp_out_sw_cksum); 20332 *up = IP_MD_CSUM(pkt, 20333 IP_SIMPLE_HDR_LENGTH, 20334 cksum + IP_TCP_CSUM_COMP); 20335 } 20336 20337 ipha->ipha_fragment_offset_and_flags |= 20338 (uint32_t)htons(ire->ire_frag_flag); 20339 20340 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20341 ipha->ipha_hdr_checksum = 0; 20342 } else { 20343 IP_HDR_CKSUM(ipha, cksum, 20344 ((uint32_t *)ipha)[0], 20345 ((uint16_t *)ipha)[4]); 20346 } 20347 } else { 20348 up = (uint16_t *)(((uchar_t *)ip6h) + 20349 IPV6_HDR_LEN + TCP_CSUM_OFFSET); 20350 20351 /* 20352 * Software checksumming (hardware checksum 20353 * offload for IPv6 will hopefully be 20354 * implemented one day). 20355 */ 20356 TCP_STAT(tcp_out_sw_cksum); 20357 *up = IP_MD_CSUM(pkt, 20358 IPV6_HDR_LEN - 2 * sizeof (in6_addr_t), 20359 htons(IPPROTO_TCP)); 20360 } 20361 20362 /* advance header offset */ 20363 cur_hdr_off += hdr_frag_sz; 20364 20365 obbytes += tcp->tcp_last_sent_len; 20366 ++obsegs; 20367 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20368 *tail_unsent > 0); 20369 20370 if ((*xmit_tail)->b_next == NULL) { 20371 /* 20372 * Store the lbolt used for RTT estimation. We can only 20373 * record one timestamp per mblk so we do it when we 20374 * reach the end of the payload buffer. Also we only 20375 * take a new timestamp sample when the previous timed 20376 * data from the same mblk has been ack'ed. 20377 */ 20378 (*xmit_tail)->b_prev = local_time; 20379 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20380 } 20381 20382 ASSERT(*tail_unsent >= 0); 20383 if (*tail_unsent > 0) { 20384 /* 20385 * We got here because we broke out of the above 20386 * loop due to of one of the following cases: 20387 * 20388 * 1. len < adjusted MSS (i.e. small), 20389 * 2. Sender SWS avoidance, 20390 * 3. max_pld is zero. 20391 * 20392 * We are done for this Multidata, so trim our 20393 * last payload buffer (if any) accordingly. 20394 */ 20395 if (md_pbuf != NULL) 20396 md_pbuf->b_wptr -= *tail_unsent; 20397 } else if (*usable > 0) { 20398 *xmit_tail = (*xmit_tail)->b_cont; 20399 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20400 (uintptr_t)INT_MAX); 20401 *tail_unsent = (int)MBLKL(*xmit_tail); 20402 add_buffer = B_TRUE; 20403 } 20404 } while (!done && *usable > 0 && num_burst_seg > 0 && 20405 (tcp_mdt_chain || max_pld > 0)); 20406 20407 /* send everything down */ 20408 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20409 &rconfirm); 20410 20411 #undef PREP_NEW_MULTIDATA 20412 #undef PREP_NEW_PBUF 20413 #undef IPVER 20414 #undef TCP_CSUM_OFFSET 20415 #undef TCP_CSUM_SIZE 20416 20417 IRE_REFRELE(ire); 20418 return (0); 20419 } 20420 20421 /* 20422 * A wrapper function for sending one or more Multidata messages down to 20423 * the module below ip; this routine does not release the reference of the 20424 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20425 */ 20426 static void 20427 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20428 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20429 { 20430 uint64_t delta; 20431 nce_t *nce; 20432 20433 ASSERT(ire != NULL && ill != NULL); 20434 ASSERT(ire->ire_stq != NULL); 20435 ASSERT(md_mp_head != NULL); 20436 ASSERT(rconfirm != NULL); 20437 20438 /* adjust MIBs and IRE timestamp */ 20439 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20440 tcp->tcp_obsegs += obsegs; 20441 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20442 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20443 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20444 20445 if (tcp->tcp_ipversion == IPV4_VERSION) { 20446 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20447 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20448 } else { 20449 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20450 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20451 } 20452 20453 ire->ire_ob_pkt_count += obsegs; 20454 if (ire->ire_ipif != NULL) 20455 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20456 ire->ire_last_used_time = lbolt; 20457 20458 /* send it down */ 20459 putnext(ire->ire_stq, md_mp_head); 20460 20461 /* we're done for TCP/IPv4 */ 20462 if (tcp->tcp_ipversion == IPV4_VERSION) 20463 return; 20464 20465 nce = ire->ire_nce; 20466 20467 ASSERT(nce != NULL); 20468 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20469 ASSERT(nce->nce_state != ND_INCOMPLETE); 20470 20471 /* reachability confirmation? */ 20472 if (*rconfirm) { 20473 nce->nce_last = TICK_TO_MSEC(lbolt64); 20474 if (nce->nce_state != ND_REACHABLE) { 20475 mutex_enter(&nce->nce_lock); 20476 nce->nce_state = ND_REACHABLE; 20477 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20478 mutex_exit(&nce->nce_lock); 20479 (void) untimeout(nce->nce_timeout_id); 20480 if (ip_debug > 2) { 20481 /* ip1dbg */ 20482 pr_addr_dbg("tcp_multisend_data: state " 20483 "for %s changed to REACHABLE\n", 20484 AF_INET6, &ire->ire_addr_v6); 20485 } 20486 } 20487 /* reset transport reachability confirmation */ 20488 *rconfirm = B_FALSE; 20489 } 20490 20491 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20492 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20493 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20494 20495 if (delta > (uint64_t)ill->ill_reachable_time) { 20496 mutex_enter(&nce->nce_lock); 20497 switch (nce->nce_state) { 20498 case ND_REACHABLE: 20499 case ND_STALE: 20500 /* 20501 * ND_REACHABLE is identical to ND_STALE in this 20502 * specific case. If reachable time has expired for 20503 * this neighbor (delta is greater than reachable 20504 * time), conceptually, the neighbor cache is no 20505 * longer in REACHABLE state, but already in STALE 20506 * state. So the correct transition here is to 20507 * ND_DELAY. 20508 */ 20509 nce->nce_state = ND_DELAY; 20510 mutex_exit(&nce->nce_lock); 20511 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20512 if (ip_debug > 3) { 20513 /* ip2dbg */ 20514 pr_addr_dbg("tcp_multisend_data: state " 20515 "for %s changed to DELAY\n", 20516 AF_INET6, &ire->ire_addr_v6); 20517 } 20518 break; 20519 case ND_DELAY: 20520 case ND_PROBE: 20521 mutex_exit(&nce->nce_lock); 20522 /* Timers have already started */ 20523 break; 20524 case ND_UNREACHABLE: 20525 /* 20526 * ndp timer has detected that this nce is 20527 * unreachable and initiated deleting this nce 20528 * and all its associated IREs. This is a race 20529 * where we found the ire before it was deleted 20530 * and have just sent out a packet using this 20531 * unreachable nce. 20532 */ 20533 mutex_exit(&nce->nce_lock); 20534 break; 20535 default: 20536 ASSERT(0); 20537 } 20538 } 20539 } 20540 20541 /* 20542 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20543 * scheme, and returns one of the following: 20544 * 20545 * -1 = failed allocation. 20546 * 0 = success; burst count reached, or usable send window is too small, 20547 * and that we'd rather wait until later before sending again. 20548 * 1 = success; we are called from tcp_multisend(), and both usable send 20549 * window and tail_unsent are greater than the MDT threshold, and thus 20550 * Multidata Transmit should be used instead. 20551 */ 20552 static int 20553 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20554 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20555 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20556 const int mdt_thres) 20557 { 20558 int num_burst_seg = tcp->tcp_snd_burst; 20559 20560 for (;;) { 20561 struct datab *db; 20562 tcph_t *tcph; 20563 uint32_t sum; 20564 mblk_t *mp, *mp1; 20565 uchar_t *rptr; 20566 int len; 20567 20568 /* 20569 * If we're called by tcp_multisend(), and the amount of 20570 * sendable data as well as the size of current xmit_tail 20571 * is beyond the MDT threshold, return to the caller and 20572 * let the large data transmit be done using MDT. 20573 */ 20574 if (*usable > 0 && *usable > mdt_thres && 20575 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20576 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20577 ASSERT(tcp->tcp_mdt); 20578 return (1); /* success; do large send */ 20579 } 20580 20581 if (num_burst_seg-- == 0) 20582 break; /* success; burst count reached */ 20583 20584 len = mss; 20585 if (len > *usable) { 20586 len = *usable; 20587 if (len <= 0) { 20588 /* Terminate the loop */ 20589 break; /* success; too small */ 20590 } 20591 /* 20592 * Sender silly-window avoidance. 20593 * Ignore this if we are going to send a 20594 * zero window probe out. 20595 * 20596 * TODO: force data into microscopic window? 20597 * ==> (!pushed || (unsent > usable)) 20598 */ 20599 if (len < (tcp->tcp_max_swnd >> 1) && 20600 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20601 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20602 len == 1) && (! tcp->tcp_zero_win_probe)) { 20603 /* 20604 * If the retransmit timer is not running 20605 * we start it so that we will retransmit 20606 * in the case when the the receiver has 20607 * decremented the window. 20608 */ 20609 if (*snxt == tcp->tcp_snxt && 20610 *snxt == tcp->tcp_suna) { 20611 /* 20612 * We are not supposed to send 20613 * anything. So let's wait a little 20614 * bit longer before breaking SWS 20615 * avoidance. 20616 * 20617 * What should the value be? 20618 * Suggestion: MAX(init rexmit time, 20619 * tcp->tcp_rto) 20620 */ 20621 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20622 } 20623 break; /* success; too small */ 20624 } 20625 } 20626 20627 tcph = tcp->tcp_tcph; 20628 20629 *usable -= len; /* Approximate - can be adjusted later */ 20630 if (*usable > 0) 20631 tcph->th_flags[0] = TH_ACK; 20632 else 20633 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20634 20635 /* 20636 * Prime pump for IP's checksumming on our behalf 20637 * Include the adjustment for a source route if any. 20638 */ 20639 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20640 sum = (sum >> 16) + (sum & 0xFFFF); 20641 U16_TO_ABE16(sum, tcph->th_sum); 20642 20643 U32_TO_ABE32(*snxt, tcph->th_seq); 20644 20645 /* 20646 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20647 * set. For the case when TCP_FSS_VALID is the only valid 20648 * bit (normal active close), branch off only when we think 20649 * that the FIN flag needs to be set. Note for this case, 20650 * that (snxt + len) may not reflect the actual seg_len, 20651 * as len may be further reduced in tcp_xmit_mp(). If len 20652 * gets modified, we will end up here again. 20653 */ 20654 if (tcp->tcp_valid_bits != 0 && 20655 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20656 ((*snxt + len) == tcp->tcp_fss))) { 20657 uchar_t *prev_rptr; 20658 uint32_t prev_snxt = tcp->tcp_snxt; 20659 20660 if (*tail_unsent == 0) { 20661 ASSERT((*xmit_tail)->b_cont != NULL); 20662 *xmit_tail = (*xmit_tail)->b_cont; 20663 prev_rptr = (*xmit_tail)->b_rptr; 20664 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20665 (*xmit_tail)->b_rptr); 20666 } else { 20667 prev_rptr = (*xmit_tail)->b_rptr; 20668 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20669 *tail_unsent; 20670 } 20671 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20672 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20673 /* Restore tcp_snxt so we get amount sent right. */ 20674 tcp->tcp_snxt = prev_snxt; 20675 if (prev_rptr == (*xmit_tail)->b_rptr) { 20676 /* 20677 * If the previous timestamp is still in use, 20678 * don't stomp on it. 20679 */ 20680 if ((*xmit_tail)->b_next == NULL) { 20681 (*xmit_tail)->b_prev = local_time; 20682 (*xmit_tail)->b_next = 20683 (mblk_t *)(uintptr_t)(*snxt); 20684 } 20685 } else 20686 (*xmit_tail)->b_rptr = prev_rptr; 20687 20688 if (mp == NULL) 20689 return (-1); 20690 mp1 = mp->b_cont; 20691 20692 tcp->tcp_last_sent_len = (ushort_t)len; 20693 while (mp1->b_cont) { 20694 *xmit_tail = (*xmit_tail)->b_cont; 20695 (*xmit_tail)->b_prev = local_time; 20696 (*xmit_tail)->b_next = 20697 (mblk_t *)(uintptr_t)(*snxt); 20698 mp1 = mp1->b_cont; 20699 } 20700 *snxt += len; 20701 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20702 BUMP_LOCAL(tcp->tcp_obsegs); 20703 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20704 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20705 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20706 tcp_send_data(tcp, q, mp); 20707 continue; 20708 } 20709 20710 *snxt += len; /* Adjust later if we don't send all of len */ 20711 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20712 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20713 20714 if (*tail_unsent) { 20715 /* Are the bytes above us in flight? */ 20716 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20717 if (rptr != (*xmit_tail)->b_rptr) { 20718 *tail_unsent -= len; 20719 tcp->tcp_last_sent_len = (ushort_t)len; 20720 len += tcp_hdr_len; 20721 if (tcp->tcp_ipversion == IPV4_VERSION) 20722 tcp->tcp_ipha->ipha_length = htons(len); 20723 else 20724 tcp->tcp_ip6h->ip6_plen = 20725 htons(len - 20726 ((char *)&tcp->tcp_ip6h[1] - 20727 tcp->tcp_iphc)); 20728 mp = dupb(*xmit_tail); 20729 if (!mp) 20730 return (-1); /* out_of_mem */ 20731 mp->b_rptr = rptr; 20732 /* 20733 * If the old timestamp is no longer in use, 20734 * sample a new timestamp now. 20735 */ 20736 if ((*xmit_tail)->b_next == NULL) { 20737 (*xmit_tail)->b_prev = local_time; 20738 (*xmit_tail)->b_next = 20739 (mblk_t *)(uintptr_t)(*snxt-len); 20740 } 20741 goto must_alloc; 20742 } 20743 } else { 20744 *xmit_tail = (*xmit_tail)->b_cont; 20745 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20746 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20747 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20748 (*xmit_tail)->b_rptr); 20749 } 20750 20751 (*xmit_tail)->b_prev = local_time; 20752 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20753 20754 *tail_unsent -= len; 20755 tcp->tcp_last_sent_len = (ushort_t)len; 20756 20757 len += tcp_hdr_len; 20758 if (tcp->tcp_ipversion == IPV4_VERSION) 20759 tcp->tcp_ipha->ipha_length = htons(len); 20760 else 20761 tcp->tcp_ip6h->ip6_plen = htons(len - 20762 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20763 20764 mp = dupb(*xmit_tail); 20765 if (!mp) 20766 return (-1); /* out_of_mem */ 20767 20768 len = tcp_hdr_len; 20769 /* 20770 * There are four reasons to allocate a new hdr mblk: 20771 * 1) The bytes above us are in use by another packet 20772 * 2) We don't have good alignment 20773 * 3) The mblk is being shared 20774 * 4) We don't have enough room for a header 20775 */ 20776 rptr = mp->b_rptr - len; 20777 if (!OK_32PTR(rptr) || 20778 ((db = mp->b_datap), db->db_ref != 2) || 20779 rptr < db->db_base) { 20780 /* NOTE: we assume allocb returns an OK_32PTR */ 20781 20782 must_alloc:; 20783 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20784 tcp_wroff_xtra, BPRI_MED); 20785 if (!mp1) { 20786 freemsg(mp); 20787 return (-1); /* out_of_mem */ 20788 } 20789 mp1->b_cont = mp; 20790 mp = mp1; 20791 /* Leave room for Link Level header */ 20792 len = tcp_hdr_len; 20793 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20794 mp->b_wptr = &rptr[len]; 20795 } 20796 20797 /* 20798 * Fill in the header using the template header, and add 20799 * options such as time-stamp, ECN and/or SACK, as needed. 20800 */ 20801 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20802 20803 mp->b_rptr = rptr; 20804 20805 if (*tail_unsent) { 20806 int spill = *tail_unsent; 20807 20808 mp1 = mp->b_cont; 20809 if (!mp1) 20810 mp1 = mp; 20811 20812 /* 20813 * If we're a little short, tack on more mblks until 20814 * there is no more spillover. 20815 */ 20816 while (spill < 0) { 20817 mblk_t *nmp; 20818 int nmpsz; 20819 20820 nmp = (*xmit_tail)->b_cont; 20821 nmpsz = MBLKL(nmp); 20822 20823 /* 20824 * Excess data in mblk; can we split it? 20825 * If MDT is enabled for the connection, 20826 * keep on splitting as this is a transient 20827 * send path. 20828 */ 20829 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20830 /* 20831 * Don't split if stream head was 20832 * told to break up larger writes 20833 * into smaller ones. 20834 */ 20835 if (tcp->tcp_maxpsz > 0) 20836 break; 20837 20838 /* 20839 * Next mblk is less than SMSS/2 20840 * rounded up to nearest 64-byte; 20841 * let it get sent as part of the 20842 * next segment. 20843 */ 20844 if (tcp->tcp_localnet && 20845 !tcp->tcp_cork && 20846 (nmpsz < roundup((mss >> 1), 64))) 20847 break; 20848 } 20849 20850 *xmit_tail = nmp; 20851 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20852 /* Stash for rtt use later */ 20853 (*xmit_tail)->b_prev = local_time; 20854 (*xmit_tail)->b_next = 20855 (mblk_t *)(uintptr_t)(*snxt - len); 20856 mp1->b_cont = dupb(*xmit_tail); 20857 mp1 = mp1->b_cont; 20858 20859 spill += nmpsz; 20860 if (mp1 == NULL) { 20861 *tail_unsent = spill; 20862 freemsg(mp); 20863 return (-1); /* out_of_mem */ 20864 } 20865 } 20866 20867 /* Trim back any surplus on the last mblk */ 20868 if (spill >= 0) { 20869 mp1->b_wptr -= spill; 20870 *tail_unsent = spill; 20871 } else { 20872 /* 20873 * We did not send everything we could in 20874 * order to remain within the b_cont limit. 20875 */ 20876 *usable -= spill; 20877 *snxt += spill; 20878 tcp->tcp_last_sent_len += spill; 20879 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20880 /* 20881 * Adjust the checksum 20882 */ 20883 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20884 sum += spill; 20885 sum = (sum >> 16) + (sum & 0xFFFF); 20886 U16_TO_ABE16(sum, tcph->th_sum); 20887 if (tcp->tcp_ipversion == IPV4_VERSION) { 20888 sum = ntohs( 20889 ((ipha_t *)rptr)->ipha_length) + 20890 spill; 20891 ((ipha_t *)rptr)->ipha_length = 20892 htons(sum); 20893 } else { 20894 sum = ntohs( 20895 ((ip6_t *)rptr)->ip6_plen) + 20896 spill; 20897 ((ip6_t *)rptr)->ip6_plen = 20898 htons(sum); 20899 } 20900 *tail_unsent = 0; 20901 } 20902 } 20903 if (tcp->tcp_ip_forward_progress) { 20904 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20905 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20906 tcp->tcp_ip_forward_progress = B_FALSE; 20907 } 20908 20909 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20910 tcp_send_data(tcp, q, mp); 20911 BUMP_LOCAL(tcp->tcp_obsegs); 20912 } 20913 20914 return (0); 20915 } 20916 20917 /* Unlink and return any mblk that looks like it contains a MDT info */ 20918 static mblk_t * 20919 tcp_mdt_info_mp(mblk_t *mp) 20920 { 20921 mblk_t *prev_mp; 20922 20923 for (;;) { 20924 prev_mp = mp; 20925 /* no more to process? */ 20926 if ((mp = mp->b_cont) == NULL) 20927 break; 20928 20929 switch (DB_TYPE(mp)) { 20930 case M_CTL: 20931 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20932 continue; 20933 ASSERT(prev_mp != NULL); 20934 prev_mp->b_cont = mp->b_cont; 20935 mp->b_cont = NULL; 20936 return (mp); 20937 default: 20938 break; 20939 } 20940 } 20941 return (mp); 20942 } 20943 20944 /* MDT info update routine, called when IP notifies us about MDT */ 20945 static void 20946 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20947 { 20948 boolean_t prev_state; 20949 20950 /* 20951 * IP is telling us to abort MDT on this connection? We know 20952 * this because the capability is only turned off when IP 20953 * encounters some pathological cases, e.g. link-layer change 20954 * where the new driver doesn't support MDT, or in situation 20955 * where MDT usage on the link-layer has been switched off. 20956 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20957 * if the link-layer doesn't support MDT, and if it does, it 20958 * will indicate that the feature is to be turned on. 20959 */ 20960 prev_state = tcp->tcp_mdt; 20961 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20962 if (!tcp->tcp_mdt && !first) { 20963 TCP_STAT(tcp_mdt_conn_halted3); 20964 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20965 (void *)tcp->tcp_connp)); 20966 } 20967 20968 /* 20969 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20970 * so disable MDT otherwise. The checks are done here 20971 * and in tcp_wput_data(). 20972 */ 20973 if (tcp->tcp_mdt && 20974 (tcp->tcp_ipversion == IPV4_VERSION && 20975 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20976 (tcp->tcp_ipversion == IPV6_VERSION && 20977 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20978 tcp->tcp_mdt = B_FALSE; 20979 20980 if (tcp->tcp_mdt) { 20981 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20982 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20983 "version (%d), expected version is %d", 20984 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20985 tcp->tcp_mdt = B_FALSE; 20986 return; 20987 } 20988 20989 /* 20990 * We need the driver to be able to handle at least three 20991 * spans per packet in order for tcp MDT to be utilized. 20992 * The first is for the header portion, while the rest are 20993 * needed to handle a packet that straddles across two 20994 * virtually non-contiguous buffers; a typical tcp packet 20995 * therefore consists of only two spans. Note that we take 20996 * a zero as "don't care". 20997 */ 20998 if (mdt_capab->ill_mdt_span_limit > 0 && 20999 mdt_capab->ill_mdt_span_limit < 3) { 21000 tcp->tcp_mdt = B_FALSE; 21001 return; 21002 } 21003 21004 /* a zero means driver wants default value */ 21005 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21006 tcp_mdt_max_pbufs); 21007 if (tcp->tcp_mdt_max_pld == 0) 21008 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21009 21010 /* ensure 32-bit alignment */ 21011 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21012 mdt_capab->ill_mdt_hdr_head), 4); 21013 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21014 mdt_capab->ill_mdt_hdr_tail), 4); 21015 21016 if (!first && !prev_state) { 21017 TCP_STAT(tcp_mdt_conn_resumed2); 21018 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21019 (void *)tcp->tcp_connp)); 21020 } 21021 } 21022 } 21023 21024 static void 21025 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 21026 { 21027 conn_t *connp = tcp->tcp_connp; 21028 21029 ASSERT(ire != NULL); 21030 21031 /* 21032 * We may be in the fastpath here, and although we essentially do 21033 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 21034 * we try to keep things as brief as possible. After all, these 21035 * are only best-effort checks, and we do more thorough ones prior 21036 * to calling tcp_multisend(). 21037 */ 21038 if (ip_multidata_outbound && check_mdt && 21039 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21040 ill != NULL && (ill->ill_capabilities & ILL_CAPAB_MDT) && 21041 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21042 !(ire->ire_flags & RTF_MULTIRT) && 21043 !IPP_ENABLED(IPP_LOCAL_OUT) && 21044 CONN_IS_MD_FASTPATH(connp)) { 21045 /* Remember the result */ 21046 connp->conn_mdt_ok = B_TRUE; 21047 21048 ASSERT(ill->ill_mdt_capab != NULL); 21049 if (!ill->ill_mdt_capab->ill_mdt_on) { 21050 /* 21051 * If MDT has been previously turned off in the past, 21052 * and we currently can do MDT (due to IPQoS policy 21053 * removal, etc.) then enable it for this interface. 21054 */ 21055 ill->ill_mdt_capab->ill_mdt_on = 1; 21056 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 21057 "interface %s\n", (void *)connp, ill->ill_name)); 21058 } 21059 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21060 } 21061 21062 /* 21063 * The goal is to reduce the number of generated tcp segments by 21064 * setting the maxpsz multiplier to 0; this will have an affect on 21065 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21066 * into each packet, up to SMSS bytes. Doing this reduces the number 21067 * of outbound segments and incoming ACKs, thus allowing for better 21068 * network and system performance. In contrast the legacy behavior 21069 * may result in sending less than SMSS size, because the last mblk 21070 * for some packets may have more data than needed to make up SMSS, 21071 * and the legacy code refused to "split" it. 21072 * 21073 * We apply the new behavior on following situations: 21074 * 21075 * 1) Loopback connections, 21076 * 2) Connections in which the remote peer is not on local subnet, 21077 * 3) Local subnet connections over the bge interface (see below). 21078 * 21079 * Ideally, we would like this behavior to apply for interfaces other 21080 * than bge. However, doing so would negatively impact drivers which 21081 * perform dynamic mapping and unmapping of DMA resources, which are 21082 * increased by setting the maxpsz multiplier to 0 (more mblks per 21083 * packet will be generated by tcp). The bge driver does not suffer 21084 * from this, as it copies the mblks into pre-mapped buffers, and 21085 * therefore does not require more I/O resources than before. 21086 * 21087 * Otherwise, this behavior is present on all network interfaces when 21088 * the destination endpoint is non-local, since reducing the number 21089 * of packets in general is good for the network. 21090 * 21091 * TODO We need to remove this hard-coded conditional for bge once 21092 * a better "self-tuning" mechanism, or a way to comprehend 21093 * the driver transmit strategy is devised. Until the solution 21094 * is found and well understood, we live with this hack. 21095 */ 21096 if (!tcp_static_maxpsz && 21097 (tcp->tcp_loopback || !tcp->tcp_localnet || 21098 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21099 /* override the default value */ 21100 tcp->tcp_maxpsz = 0; 21101 21102 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21103 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21104 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21105 } 21106 21107 /* set the stream head parameters accordingly */ 21108 (void) tcp_maxpsz_set(tcp, B_TRUE); 21109 } 21110 21111 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21112 static void 21113 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21114 { 21115 uchar_t fval = *mp->b_rptr; 21116 mblk_t *tail; 21117 queue_t *q = tcp->tcp_wq; 21118 21119 /* TODO: How should flush interact with urgent data? */ 21120 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21121 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21122 /* 21123 * Flush only data that has not yet been put on the wire. If 21124 * we flush data that we have already transmitted, life, as we 21125 * know it, may come to an end. 21126 */ 21127 tail = tcp->tcp_xmit_tail; 21128 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21129 tcp->tcp_xmit_tail_unsent = 0; 21130 tcp->tcp_unsent = 0; 21131 if (tail->b_wptr != tail->b_rptr) 21132 tail = tail->b_cont; 21133 if (tail) { 21134 mblk_t **excess = &tcp->tcp_xmit_head; 21135 for (;;) { 21136 mblk_t *mp1 = *excess; 21137 if (mp1 == tail) 21138 break; 21139 tcp->tcp_xmit_tail = mp1; 21140 tcp->tcp_xmit_last = mp1; 21141 excess = &mp1->b_cont; 21142 } 21143 *excess = NULL; 21144 tcp_close_mpp(&tail); 21145 if (tcp->tcp_snd_zcopy_aware) 21146 tcp_zcopy_notify(tcp); 21147 } 21148 /* 21149 * We have no unsent data, so unsent must be less than 21150 * tcp_xmit_lowater, so re-enable flow. 21151 */ 21152 if (tcp->tcp_flow_stopped) { 21153 tcp->tcp_flow_stopped = B_FALSE; 21154 tcp_clrqfull(tcp); 21155 } 21156 } 21157 /* 21158 * TODO: you can't just flush these, you have to increase rwnd for one 21159 * thing. For another, how should urgent data interact? 21160 */ 21161 if (fval & FLUSHR) { 21162 *mp->b_rptr = fval & ~FLUSHW; 21163 /* XXX */ 21164 qreply(q, mp); 21165 return; 21166 } 21167 freemsg(mp); 21168 } 21169 21170 /* 21171 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21172 * messages. 21173 */ 21174 static void 21175 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21176 { 21177 mblk_t *mp1; 21178 STRUCT_HANDLE(strbuf, sb); 21179 uint16_t port; 21180 queue_t *q = tcp->tcp_wq; 21181 in6_addr_t v6addr; 21182 ipaddr_t v4addr; 21183 uint32_t flowinfo = 0; 21184 int addrlen; 21185 21186 /* Make sure it is one of ours. */ 21187 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21188 case TI_GETMYNAME: 21189 case TI_GETPEERNAME: 21190 break; 21191 default: 21192 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21193 return; 21194 } 21195 switch (mi_copy_state(q, mp, &mp1)) { 21196 case -1: 21197 return; 21198 case MI_COPY_CASE(MI_COPY_IN, 1): 21199 break; 21200 case MI_COPY_CASE(MI_COPY_OUT, 1): 21201 /* Copy out the strbuf. */ 21202 mi_copyout(q, mp); 21203 return; 21204 case MI_COPY_CASE(MI_COPY_OUT, 2): 21205 /* All done. */ 21206 mi_copy_done(q, mp, 0); 21207 return; 21208 default: 21209 mi_copy_done(q, mp, EPROTO); 21210 return; 21211 } 21212 /* Check alignment of the strbuf */ 21213 if (!OK_32PTR(mp1->b_rptr)) { 21214 mi_copy_done(q, mp, EINVAL); 21215 return; 21216 } 21217 21218 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21219 (void *)mp1->b_rptr); 21220 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21221 21222 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21223 mi_copy_done(q, mp, EINVAL); 21224 return; 21225 } 21226 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21227 case TI_GETMYNAME: 21228 if (tcp->tcp_family == AF_INET) { 21229 if (tcp->tcp_ipversion == IPV4_VERSION) { 21230 v4addr = tcp->tcp_ipha->ipha_src; 21231 } else { 21232 /* can't return an address in this case */ 21233 v4addr = 0; 21234 } 21235 } else { 21236 /* tcp->tcp_family == AF_INET6 */ 21237 if (tcp->tcp_ipversion == IPV4_VERSION) { 21238 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21239 &v6addr); 21240 } else { 21241 v6addr = tcp->tcp_ip6h->ip6_src; 21242 } 21243 } 21244 port = tcp->tcp_lport; 21245 break; 21246 case TI_GETPEERNAME: 21247 if (tcp->tcp_family == AF_INET) { 21248 if (tcp->tcp_ipversion == IPV4_VERSION) { 21249 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21250 v4addr); 21251 } else { 21252 /* can't return an address in this case */ 21253 v4addr = 0; 21254 } 21255 } else { 21256 /* tcp->tcp_family == AF_INET6) */ 21257 v6addr = tcp->tcp_remote_v6; 21258 if (tcp->tcp_ipversion == IPV6_VERSION) { 21259 /* 21260 * No flowinfo if tcp->tcp_ipversion is v4. 21261 * 21262 * flowinfo was already initialized to zero 21263 * where it was declared above, so only 21264 * set it if ipversion is v6. 21265 */ 21266 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21267 ~IPV6_VERS_AND_FLOW_MASK; 21268 } 21269 } 21270 port = tcp->tcp_fport; 21271 break; 21272 default: 21273 mi_copy_done(q, mp, EPROTO); 21274 return; 21275 } 21276 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21277 if (!mp1) 21278 return; 21279 21280 if (tcp->tcp_family == AF_INET) { 21281 sin_t *sin; 21282 21283 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21284 sin = (sin_t *)mp1->b_rptr; 21285 mp1->b_wptr = (uchar_t *)&sin[1]; 21286 *sin = sin_null; 21287 sin->sin_family = AF_INET; 21288 sin->sin_addr.s_addr = v4addr; 21289 sin->sin_port = port; 21290 } else { 21291 /* tcp->tcp_family == AF_INET6 */ 21292 sin6_t *sin6; 21293 21294 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21295 sin6 = (sin6_t *)mp1->b_rptr; 21296 mp1->b_wptr = (uchar_t *)&sin6[1]; 21297 *sin6 = sin6_null; 21298 sin6->sin6_family = AF_INET6; 21299 sin6->sin6_flowinfo = flowinfo; 21300 sin6->sin6_addr = v6addr; 21301 sin6->sin6_port = port; 21302 } 21303 /* Copy out the address */ 21304 mi_copyout(q, mp); 21305 } 21306 21307 /* 21308 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21309 * messages. 21310 */ 21311 /* ARGSUSED */ 21312 static void 21313 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21314 { 21315 conn_t *connp = (conn_t *)arg; 21316 tcp_t *tcp = connp->conn_tcp; 21317 queue_t *q = tcp->tcp_wq; 21318 struct iocblk *iocp; 21319 21320 ASSERT(DB_TYPE(mp) == M_IOCTL); 21321 /* 21322 * Try and ASSERT the minimum possible references on the 21323 * conn early enough. Since we are executing on write side, 21324 * the connection is obviously not detached and that means 21325 * there is a ref each for TCP and IP. Since we are behind 21326 * the squeue, the minimum references needed are 3. If the 21327 * conn is in classifier hash list, there should be an 21328 * extra ref for that (we check both the possibilities). 21329 */ 21330 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21331 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21332 21333 iocp = (struct iocblk *)mp->b_rptr; 21334 switch (iocp->ioc_cmd) { 21335 case TCP_IOC_DEFAULT_Q: 21336 /* Wants to be the default wq. */ 21337 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21338 iocp->ioc_error = EPERM; 21339 iocp->ioc_count = 0; 21340 mp->b_datap->db_type = M_IOCACK; 21341 qreply(q, mp); 21342 return; 21343 } 21344 tcp_def_q_set(tcp, mp); 21345 return; 21346 case SIOCPOPSOCKFS: 21347 /* 21348 * sockfs is being I_POP'ed, reset the flag 21349 * indicating this 21350 */ 21351 tcp->tcp_issocket = B_FALSE; 21352 21353 /* 21354 * Insert this socket into the acceptor hash. 21355 * We might need it for T_CONN_RES message 21356 */ 21357 #ifdef _ILP32 21358 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21359 #else 21360 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21361 #endif 21362 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21363 mp->b_datap->db_type = M_IOCACK; 21364 iocp->ioc_count = 0; 21365 iocp->ioc_error = 0; 21366 iocp->ioc_rval = 0; 21367 qreply(q, mp); 21368 return; 21369 } 21370 CALL_IP_WPUT(connp, q, mp); 21371 } 21372 21373 /* 21374 * This routine is called by tcp_wput() to handle all TPI requests. 21375 */ 21376 /* ARGSUSED */ 21377 static void 21378 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21379 { 21380 conn_t *connp = (conn_t *)arg; 21381 tcp_t *tcp = connp->conn_tcp; 21382 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21383 uchar_t *rptr; 21384 t_scalar_t type; 21385 int len; 21386 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21387 21388 /* 21389 * Try and ASSERT the minimum possible references on the 21390 * conn early enough. Since we are executing on write side, 21391 * the connection is obviously not detached and that means 21392 * there is a ref each for TCP and IP. Since we are behind 21393 * the squeue, the minimum references needed are 3. If the 21394 * conn is in classifier hash list, there should be an 21395 * extra ref for that (we check both the possibilities). 21396 */ 21397 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21398 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21399 21400 rptr = mp->b_rptr; 21401 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21402 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21403 type = ((union T_primitives *)rptr)->type; 21404 if (type == T_EXDATA_REQ) { 21405 len = msgdsize(mp->b_cont) - 1; 21406 if (len < 0) { 21407 freemsg(mp); 21408 return; 21409 } 21410 /* 21411 * Try to force urgent data out on the wire. 21412 * Even if we have unsent data this will 21413 * at least send the urgent flag. 21414 * XXX does not handle more flag correctly. 21415 */ 21416 len += tcp->tcp_unsent; 21417 len += tcp->tcp_snxt; 21418 tcp->tcp_urg = len; 21419 tcp->tcp_valid_bits |= TCP_URG_VALID; 21420 21421 /* Bypass tcp protocol for fused tcp loopback */ 21422 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp)) 21423 return; 21424 } else if (type != T_DATA_REQ) { 21425 goto non_urgent_data; 21426 } 21427 /* TODO: options, flags, ... from user */ 21428 /* Set length to zero for reclamation below */ 21429 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21430 freeb(mp); 21431 return; 21432 } else { 21433 if (tcp->tcp_debug) { 21434 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 21435 "tcp_wput_proto, dropping one..."); 21436 } 21437 freemsg(mp); 21438 return; 21439 } 21440 21441 non_urgent_data: 21442 21443 switch ((int)tprim->type) { 21444 case O_T_BIND_REQ: /* bind request */ 21445 case T_BIND_REQ: /* new semantics bind request */ 21446 tcp_bind(tcp, mp); 21447 break; 21448 case T_UNBIND_REQ: /* unbind request */ 21449 tcp_unbind(tcp, mp); 21450 break; 21451 case O_T_CONN_RES: /* old connection response XXX */ 21452 case T_CONN_RES: /* connection response */ 21453 tcp_accept(tcp, mp); 21454 break; 21455 case T_CONN_REQ: /* connection request */ 21456 tcp_connect(tcp, mp); 21457 break; 21458 case T_DISCON_REQ: /* disconnect request */ 21459 tcp_disconnect(tcp, mp); 21460 break; 21461 case T_CAPABILITY_REQ: 21462 tcp_capability_req(tcp, mp); /* capability request */ 21463 break; 21464 case T_INFO_REQ: /* information request */ 21465 tcp_info_req(tcp, mp); 21466 break; 21467 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21468 /* Only IP is allowed to return meaningful value */ 21469 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21470 break; 21471 case T_OPTMGMT_REQ: 21472 /* 21473 * Note: no support for snmpcom_req() through new 21474 * T_OPTMGMT_REQ. See comments in ip.c 21475 */ 21476 /* Only IP is allowed to return meaningful value */ 21477 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21478 break; 21479 21480 case T_UNITDATA_REQ: /* unitdata request */ 21481 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21482 break; 21483 case T_ORDREL_REQ: /* orderly release req */ 21484 freemsg(mp); 21485 21486 if (tcp->tcp_fused) 21487 tcp_unfuse(tcp); 21488 21489 if (tcp_xmit_end(tcp) != 0) { 21490 /* 21491 * We were crossing FINs and got a reset from 21492 * the other side. Just ignore it. 21493 */ 21494 if (tcp->tcp_debug) { 21495 (void) strlog(TCP_MODULE_ID, 0, 1, 21496 SL_ERROR|SL_TRACE, 21497 "tcp_wput_proto, T_ORDREL_REQ out of " 21498 "state %s", 21499 tcp_display(tcp, NULL, 21500 DISP_ADDR_AND_PORT)); 21501 } 21502 } 21503 break; 21504 case T_ADDR_REQ: 21505 tcp_addr_req(tcp, mp); 21506 break; 21507 default: 21508 if (tcp->tcp_debug) { 21509 (void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE, 21510 "tcp_wput_proto, bogus TPI msg, type %d", 21511 tprim->type); 21512 } 21513 /* 21514 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21515 * to recover. 21516 */ 21517 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21518 break; 21519 } 21520 } 21521 21522 /* 21523 * The TCP write service routine should never be called... 21524 */ 21525 /* ARGSUSED */ 21526 static void 21527 tcp_wsrv(queue_t *q) 21528 { 21529 TCP_STAT(tcp_wsrv_called); 21530 } 21531 21532 /* Non overlapping byte exchanger */ 21533 static void 21534 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21535 { 21536 uchar_t uch; 21537 21538 while (len-- > 0) { 21539 uch = a[len]; 21540 a[len] = b[len]; 21541 b[len] = uch; 21542 } 21543 } 21544 21545 /* 21546 * Send out a control packet on the tcp connection specified. This routine 21547 * is typically called where we need a simple ACK or RST generated. 21548 */ 21549 static void 21550 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21551 { 21552 uchar_t *rptr; 21553 tcph_t *tcph; 21554 ipha_t *ipha = NULL; 21555 ip6_t *ip6h = NULL; 21556 uint32_t sum; 21557 int tcp_hdr_len; 21558 int tcp_ip_hdr_len; 21559 mblk_t *mp; 21560 21561 /* 21562 * Save sum for use in source route later. 21563 */ 21564 ASSERT(tcp != NULL); 21565 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21566 tcp_hdr_len = tcp->tcp_hdr_len; 21567 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21568 21569 /* If a text string is passed in with the request, pass it to strlog. */ 21570 if (str != NULL && tcp->tcp_debug) { 21571 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 21572 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21573 str, seq, ack, ctl); 21574 } 21575 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21576 BPRI_MED); 21577 if (mp == NULL) { 21578 return; 21579 } 21580 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21581 mp->b_rptr = rptr; 21582 mp->b_wptr = &rptr[tcp_hdr_len]; 21583 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21584 21585 if (tcp->tcp_ipversion == IPV4_VERSION) { 21586 ipha = (ipha_t *)rptr; 21587 ipha->ipha_length = htons(tcp_hdr_len); 21588 } else { 21589 ip6h = (ip6_t *)rptr; 21590 ASSERT(tcp != NULL); 21591 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21592 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21593 } 21594 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21595 tcph->th_flags[0] = (uint8_t)ctl; 21596 if (ctl & TH_RST) { 21597 BUMP_MIB(&tcp_mib, tcpOutRsts); 21598 BUMP_MIB(&tcp_mib, tcpOutControl); 21599 /* 21600 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21601 */ 21602 if (tcp->tcp_snd_ts_ok && 21603 tcp->tcp_state > TCPS_SYN_SENT) { 21604 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21605 *(mp->b_wptr) = TCPOPT_EOL; 21606 if (tcp->tcp_ipversion == IPV4_VERSION) { 21607 ipha->ipha_length = htons(tcp_hdr_len - 21608 TCPOPT_REAL_TS_LEN); 21609 } else { 21610 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21611 TCPOPT_REAL_TS_LEN); 21612 } 21613 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21614 sum -= TCPOPT_REAL_TS_LEN; 21615 } 21616 } 21617 if (ctl & TH_ACK) { 21618 if (tcp->tcp_snd_ts_ok) { 21619 U32_TO_BE32(lbolt, 21620 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21621 U32_TO_BE32(tcp->tcp_ts_recent, 21622 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21623 } 21624 21625 /* Update the latest receive window size in TCP header. */ 21626 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21627 tcph->th_win); 21628 tcp->tcp_rack = ack; 21629 tcp->tcp_rack_cnt = 0; 21630 BUMP_MIB(&tcp_mib, tcpOutAck); 21631 } 21632 BUMP_LOCAL(tcp->tcp_obsegs); 21633 U32_TO_BE32(seq, tcph->th_seq); 21634 U32_TO_BE32(ack, tcph->th_ack); 21635 /* 21636 * Include the adjustment for a source route if any. 21637 */ 21638 sum = (sum >> 16) + (sum & 0xFFFF); 21639 U16_TO_BE16(sum, tcph->th_sum); 21640 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21641 tcp_send_data(tcp, tcp->tcp_wq, mp); 21642 } 21643 21644 /* 21645 * If this routine returns B_TRUE, TCP can generate a RST in response 21646 * to a segment. If it returns B_FALSE, TCP should not respond. 21647 */ 21648 static boolean_t 21649 tcp_send_rst_chk(void) 21650 { 21651 clock_t now; 21652 21653 /* 21654 * TCP needs to protect itself from generating too many RSTs. 21655 * This can be a DoS attack by sending us random segments 21656 * soliciting RSTs. 21657 * 21658 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21659 * in each 1 second interval. In this way, TCP still generate 21660 * RSTs in normal cases but when under attack, the impact is 21661 * limited. 21662 */ 21663 if (tcp_rst_sent_rate_enabled != 0) { 21664 now = lbolt; 21665 /* lbolt can wrap around. */ 21666 if ((tcp_last_rst_intrvl > now) || 21667 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21668 tcp_last_rst_intrvl = now; 21669 tcp_rst_cnt = 1; 21670 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21671 return (B_FALSE); 21672 } 21673 } 21674 return (B_TRUE); 21675 } 21676 21677 /* 21678 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21679 */ 21680 static void 21681 tcp_ip_ire_mark_advice(tcp_t *tcp) 21682 { 21683 mblk_t *mp; 21684 ipic_t *ipic; 21685 21686 if (tcp->tcp_ipversion == IPV4_VERSION) { 21687 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21688 &ipic); 21689 } else { 21690 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21691 &ipic); 21692 } 21693 if (mp == NULL) 21694 return; 21695 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21696 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21697 } 21698 21699 /* 21700 * Return an IP advice ioctl mblk and set ipic to be the pointer 21701 * to the advice structure. 21702 */ 21703 static mblk_t * 21704 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21705 { 21706 struct iocblk *ioc; 21707 mblk_t *mp, *mp1; 21708 21709 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21710 if (mp == NULL) 21711 return (NULL); 21712 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21713 *ipic = (ipic_t *)mp->b_rptr; 21714 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21715 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21716 21717 bcopy(addr, *ipic + 1, addr_len); 21718 21719 (*ipic)->ipic_addr_length = addr_len; 21720 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21721 21722 mp1 = mkiocb(IP_IOCTL); 21723 if (mp1 == NULL) { 21724 freemsg(mp); 21725 return (NULL); 21726 } 21727 mp1->b_cont = mp; 21728 ioc = (struct iocblk *)mp1->b_rptr; 21729 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21730 21731 return (mp1); 21732 } 21733 21734 /* 21735 * Generate a reset based on an inbound packet for which there is no active 21736 * tcp state that we can find. 21737 * 21738 * IPSEC NOTE : Try to send the reply with the same protection as it came 21739 * in. We still have the ipsec_mp that the packet was attached to. Thus 21740 * the packet will go out at the same level of protection as it came in by 21741 * converting the IPSEC_IN to IPSEC_OUT. 21742 */ 21743 static void 21744 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21745 uint32_t ack, int ctl, uint_t ip_hdr_len) 21746 { 21747 ipha_t *ipha = NULL; 21748 ip6_t *ip6h = NULL; 21749 ushort_t len; 21750 tcph_t *tcph; 21751 int i; 21752 mblk_t *ipsec_mp; 21753 boolean_t mctl_present; 21754 ipic_t *ipic; 21755 ipaddr_t v4addr; 21756 in6_addr_t v6addr; 21757 int addr_len; 21758 void *addr; 21759 queue_t *q = tcp_g_q; 21760 tcp_t *tcp = Q_TO_TCP(q); 21761 21762 if (!tcp_send_rst_chk()) { 21763 tcp_rst_unsent++; 21764 freemsg(mp); 21765 return; 21766 } 21767 21768 if (mp->b_datap->db_type == M_CTL) { 21769 ipsec_mp = mp; 21770 mp = mp->b_cont; 21771 mctl_present = B_TRUE; 21772 } else { 21773 ipsec_mp = mp; 21774 mctl_present = B_FALSE; 21775 } 21776 21777 if (str && q && tcp_dbg) { 21778 (void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE, 21779 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21780 "flags 0x%x", 21781 str, seq, ack, ctl); 21782 } 21783 if (mp->b_datap->db_ref != 1) { 21784 mblk_t *mp1 = copyb(mp); 21785 freemsg(mp); 21786 mp = mp1; 21787 if (!mp) { 21788 if (mctl_present) 21789 freeb(ipsec_mp); 21790 return; 21791 } else { 21792 if (mctl_present) { 21793 ipsec_mp->b_cont = mp; 21794 } else { 21795 ipsec_mp = mp; 21796 } 21797 } 21798 } else if (mp->b_cont) { 21799 freemsg(mp->b_cont); 21800 mp->b_cont = NULL; 21801 } 21802 /* 21803 * We skip reversing source route here. 21804 * (for now we replace all IP options with EOL) 21805 */ 21806 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21807 ipha = (ipha_t *)mp->b_rptr; 21808 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21809 mp->b_rptr[i] = IPOPT_EOL; 21810 /* 21811 * Make sure that src address isn't flagrantly invalid. 21812 * Not all broadcast address checking for the src address 21813 * is possible, since we don't know the netmask of the src 21814 * addr. No check for destination address is done, since 21815 * IP will not pass up a packet with a broadcast dest 21816 * address to TCP. Similar checks are done below for IPv6. 21817 */ 21818 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21819 CLASSD(ipha->ipha_src)) { 21820 freemsg(ipsec_mp); 21821 BUMP_MIB(&ip_mib, ipInDiscards); 21822 return; 21823 } 21824 } else { 21825 ip6h = (ip6_t *)mp->b_rptr; 21826 21827 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21828 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21829 freemsg(ipsec_mp); 21830 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21831 return; 21832 } 21833 21834 /* Remove any extension headers assuming partial overlay */ 21835 if (ip_hdr_len > IPV6_HDR_LEN) { 21836 uint8_t *to; 21837 21838 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21839 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21840 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21841 ip_hdr_len = IPV6_HDR_LEN; 21842 ip6h = (ip6_t *)mp->b_rptr; 21843 ip6h->ip6_nxt = IPPROTO_TCP; 21844 } 21845 } 21846 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21847 if (tcph->th_flags[0] & TH_RST) { 21848 freemsg(ipsec_mp); 21849 return; 21850 } 21851 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21852 len = ip_hdr_len + sizeof (tcph_t); 21853 mp->b_wptr = &mp->b_rptr[len]; 21854 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21855 ipha->ipha_length = htons(len); 21856 /* Swap addresses */ 21857 v4addr = ipha->ipha_src; 21858 ipha->ipha_src = ipha->ipha_dst; 21859 ipha->ipha_dst = v4addr; 21860 ipha->ipha_ident = 0; 21861 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21862 addr_len = IP_ADDR_LEN; 21863 addr = &v4addr; 21864 } else { 21865 /* No ip6i_t in this case */ 21866 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21867 /* Swap addresses */ 21868 v6addr = ip6h->ip6_src; 21869 ip6h->ip6_src = ip6h->ip6_dst; 21870 ip6h->ip6_dst = v6addr; 21871 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21872 addr_len = IPV6_ADDR_LEN; 21873 addr = &v6addr; 21874 } 21875 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21876 U32_TO_BE32(ack, tcph->th_ack); 21877 U32_TO_BE32(seq, tcph->th_seq); 21878 U16_TO_BE16(0, tcph->th_win); 21879 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21880 tcph->th_flags[0] = (uint8_t)ctl; 21881 if (ctl & TH_RST) { 21882 BUMP_MIB(&tcp_mib, tcpOutRsts); 21883 BUMP_MIB(&tcp_mib, tcpOutControl); 21884 } 21885 if (mctl_present) { 21886 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21887 21888 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21889 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21890 return; 21891 } 21892 } 21893 /* 21894 * NOTE: one might consider tracing a TCP packet here, but 21895 * this function has no active TCP state nd no tcp structure 21896 * which has trace buffer. If we traced here, we would have 21897 * to keep a local trace buffer in tcp_record_trace(). 21898 */ 21899 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21900 21901 /* 21902 * Tell IP to mark the IRE used for this destination temporary. 21903 * This way, we can limit our exposure to DoS attack because IP 21904 * creates an IRE for each destination. If there are too many, 21905 * the time to do any routing lookup will be extremely long. And 21906 * the lookup can be in interrupt context. 21907 * 21908 * Note that in normal circumstances, this marking should not 21909 * affect anything. It would be nice if only 1 message is 21910 * needed to inform IP that the IRE created for this RST should 21911 * not be added to the cache table. But there is currently 21912 * not such communication mechanism between TCP and IP. So 21913 * the best we can do now is to send the advice ioctl to IP 21914 * to mark the IRE temporary. 21915 */ 21916 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21917 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21918 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21919 } 21920 } 21921 21922 /* 21923 * Initiate closedown sequence on an active connection. (May be called as 21924 * writer.) Return value zero for OK return, non-zero for error return. 21925 */ 21926 static int 21927 tcp_xmit_end(tcp_t *tcp) 21928 { 21929 ipic_t *ipic; 21930 mblk_t *mp; 21931 21932 if (tcp->tcp_state < TCPS_SYN_RCVD || 21933 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21934 /* 21935 * Invalid state, only states TCPS_SYN_RCVD, 21936 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21937 */ 21938 return (-1); 21939 } 21940 21941 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21942 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21943 /* 21944 * If there is nothing more unsent, send the FIN now. 21945 * Otherwise, it will go out with the last segment. 21946 */ 21947 if (tcp->tcp_unsent == 0) { 21948 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21949 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21950 21951 if (mp) { 21952 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21953 tcp_send_data(tcp, tcp->tcp_wq, mp); 21954 } else { 21955 /* 21956 * Couldn't allocate msg. Pretend we got it out. 21957 * Wait for rexmit timeout. 21958 */ 21959 tcp->tcp_snxt = tcp->tcp_fss + 1; 21960 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21961 } 21962 21963 /* 21964 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21965 * changed. 21966 */ 21967 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21968 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21969 } 21970 } else { 21971 /* 21972 * If tcp->tcp_cork is set, then the data will not get sent, 21973 * so we have to check that and unset it first. 21974 */ 21975 if (tcp->tcp_cork) 21976 tcp->tcp_cork = B_FALSE; 21977 tcp_wput_data(tcp, NULL, B_FALSE); 21978 } 21979 21980 /* 21981 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21982 * is 0, don't update the cache. 21983 */ 21984 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21985 return (0); 21986 21987 /* 21988 * NOTE: should not update if source routes i.e. if tcp_remote if 21989 * different from the destination. 21990 */ 21991 if (tcp->tcp_ipversion == IPV4_VERSION) { 21992 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21993 return (0); 21994 } 21995 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21996 &ipic); 21997 } else { 21998 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21999 &tcp->tcp_ip6h->ip6_dst))) { 22000 return (0); 22001 } 22002 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22003 &ipic); 22004 } 22005 22006 /* Record route attributes in the IRE for use by future connections. */ 22007 if (mp == NULL) 22008 return (0); 22009 22010 /* 22011 * We do not have a good algorithm to update ssthresh at this time. 22012 * So don't do any update. 22013 */ 22014 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22015 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22016 22017 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22018 return (0); 22019 } 22020 22021 /* 22022 * Generate a "no listener here" RST in response to an "unknown" segment. 22023 * Note that we are reusing the incoming mp to construct the outgoing 22024 * RST. 22025 */ 22026 void 22027 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 22028 { 22029 uchar_t *rptr; 22030 uint32_t seg_len; 22031 tcph_t *tcph; 22032 uint32_t seg_seq; 22033 uint32_t seg_ack; 22034 uint_t flags; 22035 mblk_t *ipsec_mp; 22036 ipha_t *ipha; 22037 ip6_t *ip6h; 22038 boolean_t mctl_present = B_FALSE; 22039 boolean_t check = B_TRUE; 22040 boolean_t policy_present; 22041 22042 TCP_STAT(tcp_no_listener); 22043 22044 ipsec_mp = mp; 22045 22046 if (mp->b_datap->db_type == M_CTL) { 22047 ipsec_in_t *ii; 22048 22049 mctl_present = B_TRUE; 22050 mp = mp->b_cont; 22051 22052 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22053 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22054 if (ii->ipsec_in_dont_check) { 22055 check = B_FALSE; 22056 if (!ii->ipsec_in_secure) { 22057 freeb(ipsec_mp); 22058 mctl_present = B_FALSE; 22059 ipsec_mp = mp; 22060 } 22061 } 22062 } 22063 22064 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22065 policy_present = ipsec_inbound_v4_policy_present; 22066 ipha = (ipha_t *)mp->b_rptr; 22067 ip6h = NULL; 22068 } else { 22069 policy_present = ipsec_inbound_v6_policy_present; 22070 ipha = NULL; 22071 ip6h = (ip6_t *)mp->b_rptr; 22072 } 22073 22074 if (check && policy_present) { 22075 /* 22076 * The conn_t parameter is NULL because we already know 22077 * nobody's home. 22078 */ 22079 ipsec_mp = ipsec_check_global_policy( 22080 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22081 if (ipsec_mp == NULL) 22082 return; 22083 } 22084 22085 22086 rptr = mp->b_rptr; 22087 22088 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22089 seg_seq = BE32_TO_U32(tcph->th_seq); 22090 seg_ack = BE32_TO_U32(tcph->th_ack); 22091 flags = tcph->th_flags[0]; 22092 22093 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22094 if (flags & TH_RST) { 22095 freemsg(ipsec_mp); 22096 } else if (flags & TH_ACK) { 22097 tcp_xmit_early_reset("no tcp, reset", 22098 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 22099 } else { 22100 if (flags & TH_SYN) { 22101 seg_len++; 22102 } else { 22103 /* 22104 * Here we violate the RFC. Note that a normal 22105 * TCP will never send a segment without the ACK 22106 * flag, except for RST or SYN segment. This 22107 * segment is neither. Just drop it on the 22108 * floor. 22109 */ 22110 freemsg(ipsec_mp); 22111 tcp_rst_unsent++; 22112 return; 22113 } 22114 22115 tcp_xmit_early_reset("no tcp, reset/ack", 22116 ipsec_mp, 0, seg_seq + seg_len, 22117 TH_RST | TH_ACK, ip_hdr_len); 22118 } 22119 } 22120 22121 /* 22122 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22123 * ip and tcp header ready to pass down to IP. If the mp passed in is 22124 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22125 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22126 * otherwise it will dup partial mblks.) 22127 * Otherwise, an appropriate ACK packet will be generated. This 22128 * routine is not usually called to send new data for the first time. It 22129 * is mostly called out of the timer for retransmits, and to generate ACKs. 22130 * 22131 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22132 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22133 * of the original mblk chain will be returned in *offset and *end_mp. 22134 */ 22135 static mblk_t * 22136 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22137 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22138 boolean_t rexmit) 22139 { 22140 int data_length; 22141 int32_t off = 0; 22142 uint_t flags; 22143 mblk_t *mp1; 22144 mblk_t *mp2; 22145 uchar_t *rptr; 22146 tcph_t *tcph; 22147 int32_t num_sack_blk = 0; 22148 int32_t sack_opt_len = 0; 22149 22150 /* Allocate for our maximum TCP header + link-level */ 22151 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22152 BPRI_MED); 22153 if (!mp1) 22154 return (NULL); 22155 data_length = 0; 22156 22157 /* 22158 * Note that tcp_mss has been adjusted to take into account the 22159 * timestamp option if applicable. Because SACK options do not 22160 * appear in every TCP segments and they are of variable lengths, 22161 * they cannot be included in tcp_mss. Thus we need to calculate 22162 * the actual segment length when we need to send a segment which 22163 * includes SACK options. 22164 */ 22165 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22166 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22167 tcp->tcp_num_sack_blk); 22168 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22169 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22170 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22171 max_to_send -= sack_opt_len; 22172 } 22173 22174 if (offset != NULL) { 22175 off = *offset; 22176 /* We use offset as an indicator that end_mp is not NULL. */ 22177 *end_mp = NULL; 22178 } 22179 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22180 /* This could be faster with cooperation from downstream */ 22181 if (mp2 != mp1 && !sendall && 22182 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22183 max_to_send) 22184 /* 22185 * Don't send the next mblk since the whole mblk 22186 * does not fit. 22187 */ 22188 break; 22189 mp2->b_cont = dupb(mp); 22190 mp2 = mp2->b_cont; 22191 if (!mp2) { 22192 freemsg(mp1); 22193 return (NULL); 22194 } 22195 mp2->b_rptr += off; 22196 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22197 (uintptr_t)INT_MAX); 22198 22199 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22200 if (data_length > max_to_send) { 22201 mp2->b_wptr -= data_length - max_to_send; 22202 data_length = max_to_send; 22203 off = mp2->b_wptr - mp->b_rptr; 22204 break; 22205 } else { 22206 off = 0; 22207 } 22208 } 22209 if (offset != NULL) { 22210 *offset = off; 22211 *end_mp = mp; 22212 } 22213 if (seg_len != NULL) { 22214 *seg_len = data_length; 22215 } 22216 22217 /* Update the latest receive window size in TCP header. */ 22218 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22219 tcp->tcp_tcph->th_win); 22220 22221 rptr = mp1->b_rptr + tcp_wroff_xtra; 22222 mp1->b_rptr = rptr; 22223 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22224 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22225 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22226 U32_TO_ABE32(seq, tcph->th_seq); 22227 22228 /* 22229 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22230 * that this function was called from tcp_wput_data. Thus, when called 22231 * to retransmit data the setting of the PUSH bit may appear some 22232 * what random in that it might get set when it should not. This 22233 * should not pose any performance issues. 22234 */ 22235 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22236 tcp->tcp_unsent == data_length)) { 22237 flags = TH_ACK | TH_PUSH; 22238 } else { 22239 flags = TH_ACK; 22240 } 22241 22242 if (tcp->tcp_ecn_ok) { 22243 if (tcp->tcp_ecn_echo_on) 22244 flags |= TH_ECE; 22245 22246 /* 22247 * Only set ECT bit and ECN_CWR if a segment contains new data. 22248 * There is no TCP flow control for non-data segments, and 22249 * only data segment is transmitted reliably. 22250 */ 22251 if (data_length > 0 && !rexmit) { 22252 SET_ECT(tcp, rptr); 22253 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22254 flags |= TH_CWR; 22255 tcp->tcp_ecn_cwr_sent = B_TRUE; 22256 } 22257 } 22258 } 22259 22260 if (tcp->tcp_valid_bits) { 22261 uint32_t u1; 22262 22263 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22264 seq == tcp->tcp_iss) { 22265 uchar_t *wptr; 22266 22267 /* 22268 * If TCP_ISS_VALID and the seq number is tcp_iss, 22269 * TCP can only be in SYN-SENT, SYN-RCVD or 22270 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22271 * our SYN is not ack'ed but the app closes this 22272 * TCP connection. 22273 */ 22274 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22275 tcp->tcp_state == TCPS_SYN_RCVD || 22276 tcp->tcp_state == TCPS_FIN_WAIT_1); 22277 22278 /* 22279 * Tack on the MSS option. It is always needed 22280 * for both active and passive open. 22281 * 22282 * MSS option value should be interface MTU - MIN 22283 * TCP/IP header according to RFC 793 as it means 22284 * the maximum segment size TCP can receive. But 22285 * to get around some broken middle boxes/end hosts 22286 * out there, we allow the option value to be the 22287 * same as the MSS option size on the peer side. 22288 * In this way, the other side will not send 22289 * anything larger than they can receive. 22290 * 22291 * Note that for SYN_SENT state, the ndd param 22292 * tcp_use_smss_as_mss_opt has no effect as we 22293 * don't know the peer's MSS option value. So 22294 * the only case we need to take care of is in 22295 * SYN_RCVD state, which is done later. 22296 */ 22297 wptr = mp1->b_wptr; 22298 wptr[0] = TCPOPT_MAXSEG; 22299 wptr[1] = TCPOPT_MAXSEG_LEN; 22300 wptr += 2; 22301 u1 = tcp->tcp_if_mtu - 22302 (tcp->tcp_ipversion == IPV4_VERSION ? 22303 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22304 TCP_MIN_HEADER_LENGTH; 22305 U16_TO_BE16(u1, wptr); 22306 mp1->b_wptr = wptr + 2; 22307 /* Update the offset to cover the additional word */ 22308 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22309 22310 /* 22311 * Note that the following way of filling in 22312 * TCP options are not optimal. Some NOPs can 22313 * be saved. But there is no need at this time 22314 * to optimize it. When it is needed, we will 22315 * do it. 22316 */ 22317 switch (tcp->tcp_state) { 22318 case TCPS_SYN_SENT: 22319 flags = TH_SYN; 22320 22321 if (tcp->tcp_snd_ts_ok) { 22322 uint32_t llbolt = (uint32_t)lbolt; 22323 22324 wptr = mp1->b_wptr; 22325 wptr[0] = TCPOPT_NOP; 22326 wptr[1] = TCPOPT_NOP; 22327 wptr[2] = TCPOPT_TSTAMP; 22328 wptr[3] = TCPOPT_TSTAMP_LEN; 22329 wptr += 4; 22330 U32_TO_BE32(llbolt, wptr); 22331 wptr += 4; 22332 ASSERT(tcp->tcp_ts_recent == 0); 22333 U32_TO_BE32(0L, wptr); 22334 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22335 tcph->th_offset_and_rsrvd[0] += 22336 (3 << 4); 22337 } 22338 22339 /* 22340 * Set up all the bits to tell other side 22341 * we are ECN capable. 22342 */ 22343 if (tcp->tcp_ecn_ok) { 22344 flags |= (TH_ECE | TH_CWR); 22345 } 22346 break; 22347 case TCPS_SYN_RCVD: 22348 flags |= TH_SYN; 22349 22350 /* 22351 * Reset the MSS option value to be SMSS 22352 * We should probably add back the bytes 22353 * for timestamp option and IPsec. We 22354 * don't do that as this is a workaround 22355 * for broken middle boxes/end hosts, it 22356 * is better for us to be more cautious. 22357 * They may not take these things into 22358 * account in their SMSS calculation. Thus 22359 * the peer's calculated SMSS may be smaller 22360 * than what it can be. This should be OK. 22361 */ 22362 if (tcp_use_smss_as_mss_opt) { 22363 u1 = tcp->tcp_mss; 22364 U16_TO_BE16(u1, wptr); 22365 } 22366 22367 /* 22368 * If the other side is ECN capable, reply 22369 * that we are also ECN capable. 22370 */ 22371 if (tcp->tcp_ecn_ok) 22372 flags |= TH_ECE; 22373 break; 22374 default: 22375 /* 22376 * The above ASSERT() makes sure that this 22377 * must be FIN-WAIT-1 state. Our SYN has 22378 * not been ack'ed so retransmit it. 22379 */ 22380 flags |= TH_SYN; 22381 break; 22382 } 22383 22384 if (tcp->tcp_snd_ws_ok) { 22385 wptr = mp1->b_wptr; 22386 wptr[0] = TCPOPT_NOP; 22387 wptr[1] = TCPOPT_WSCALE; 22388 wptr[2] = TCPOPT_WS_LEN; 22389 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22390 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22391 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22392 } 22393 22394 if (tcp->tcp_snd_sack_ok) { 22395 wptr = mp1->b_wptr; 22396 wptr[0] = TCPOPT_NOP; 22397 wptr[1] = TCPOPT_NOP; 22398 wptr[2] = TCPOPT_SACK_PERMITTED; 22399 wptr[3] = TCPOPT_SACK_OK_LEN; 22400 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22401 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22402 } 22403 22404 /* allocb() of adequate mblk assures space */ 22405 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22406 (uintptr_t)INT_MAX); 22407 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22408 /* 22409 * Get IP set to checksum on our behalf 22410 * Include the adjustment for a source route if any. 22411 */ 22412 u1 += tcp->tcp_sum; 22413 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22414 U16_TO_BE16(u1, tcph->th_sum); 22415 BUMP_MIB(&tcp_mib, tcpOutControl); 22416 } 22417 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22418 (seq + data_length) == tcp->tcp_fss) { 22419 if (!tcp->tcp_fin_acked) { 22420 flags |= TH_FIN; 22421 BUMP_MIB(&tcp_mib, tcpOutControl); 22422 } 22423 if (!tcp->tcp_fin_sent) { 22424 tcp->tcp_fin_sent = B_TRUE; 22425 switch (tcp->tcp_state) { 22426 case TCPS_SYN_RCVD: 22427 case TCPS_ESTABLISHED: 22428 tcp->tcp_state = TCPS_FIN_WAIT_1; 22429 break; 22430 case TCPS_CLOSE_WAIT: 22431 tcp->tcp_state = TCPS_LAST_ACK; 22432 break; 22433 } 22434 if (tcp->tcp_suna == tcp->tcp_snxt) 22435 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22436 tcp->tcp_snxt = tcp->tcp_fss + 1; 22437 } 22438 } 22439 /* 22440 * Note the trick here. u1 is unsigned. When tcp_urg 22441 * is smaller than seq, u1 will become a very huge value. 22442 * So the comparison will fail. Also note that tcp_urp 22443 * should be positive, see RFC 793 page 17. 22444 */ 22445 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22446 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22447 u1 < (uint32_t)(64 * 1024)) { 22448 flags |= TH_URG; 22449 BUMP_MIB(&tcp_mib, tcpOutUrg); 22450 U32_TO_ABE16(u1, tcph->th_urp); 22451 } 22452 } 22453 tcph->th_flags[0] = (uchar_t)flags; 22454 tcp->tcp_rack = tcp->tcp_rnxt; 22455 tcp->tcp_rack_cnt = 0; 22456 22457 if (tcp->tcp_snd_ts_ok) { 22458 if (tcp->tcp_state != TCPS_SYN_SENT) { 22459 uint32_t llbolt = (uint32_t)lbolt; 22460 22461 U32_TO_BE32(llbolt, 22462 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22463 U32_TO_BE32(tcp->tcp_ts_recent, 22464 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22465 } 22466 } 22467 22468 if (num_sack_blk > 0) { 22469 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22470 sack_blk_t *tmp; 22471 int32_t i; 22472 22473 wptr[0] = TCPOPT_NOP; 22474 wptr[1] = TCPOPT_NOP; 22475 wptr[2] = TCPOPT_SACK; 22476 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22477 sizeof (sack_blk_t); 22478 wptr += TCPOPT_REAL_SACK_LEN; 22479 22480 tmp = tcp->tcp_sack_list; 22481 for (i = 0; i < num_sack_blk; i++) { 22482 U32_TO_BE32(tmp[i].begin, wptr); 22483 wptr += sizeof (tcp_seq); 22484 U32_TO_BE32(tmp[i].end, wptr); 22485 wptr += sizeof (tcp_seq); 22486 } 22487 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22488 } 22489 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22490 data_length += (int)(mp1->b_wptr - rptr); 22491 if (tcp->tcp_ipversion == IPV4_VERSION) { 22492 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22493 } else { 22494 ip6_t *ip6 = (ip6_t *)(rptr + 22495 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22496 sizeof (ip6i_t) : 0)); 22497 22498 ip6->ip6_plen = htons(data_length - 22499 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22500 } 22501 22502 /* 22503 * Prime pump for IP 22504 * Include the adjustment for a source route if any. 22505 */ 22506 data_length -= tcp->tcp_ip_hdr_len; 22507 data_length += tcp->tcp_sum; 22508 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22509 U16_TO_ABE16(data_length, tcph->th_sum); 22510 if (tcp->tcp_ip_forward_progress) { 22511 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22512 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22513 tcp->tcp_ip_forward_progress = B_FALSE; 22514 } 22515 return (mp1); 22516 } 22517 22518 /* This function handles the push timeout. */ 22519 static void 22520 tcp_push_timer(void *arg) 22521 { 22522 conn_t *connp = (conn_t *)arg; 22523 tcp_t *tcp = connp->conn_tcp; 22524 22525 TCP_DBGSTAT(tcp_push_timer_cnt); 22526 22527 ASSERT(tcp->tcp_listener == NULL); 22528 22529 tcp->tcp_push_tid = 0; 22530 if ((tcp->tcp_rcv_list != NULL) && 22531 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22532 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22533 } 22534 22535 /* 22536 * This function handles delayed ACK timeout. 22537 */ 22538 static void 22539 tcp_ack_timer(void *arg) 22540 { 22541 conn_t *connp = (conn_t *)arg; 22542 tcp_t *tcp = connp->conn_tcp; 22543 mblk_t *mp; 22544 22545 TCP_DBGSTAT(tcp_ack_timer_cnt); 22546 22547 tcp->tcp_ack_tid = 0; 22548 22549 if (tcp->tcp_fused) 22550 return; 22551 22552 /* 22553 * Do not send ACK if there is no outstanding unack'ed data. 22554 */ 22555 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22556 return; 22557 } 22558 22559 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22560 /* 22561 * Make sure we don't allow deferred ACKs to result in 22562 * timer-based ACKing. If we have held off an ACK 22563 * when there was more than an mss here, and the timer 22564 * goes off, we have to worry about the possibility 22565 * that the sender isn't doing slow-start, or is out 22566 * of step with us for some other reason. We fall 22567 * permanently back in the direction of 22568 * ACK-every-other-packet as suggested in RFC 1122. 22569 */ 22570 if (tcp->tcp_rack_abs_max > 2) 22571 tcp->tcp_rack_abs_max--; 22572 tcp->tcp_rack_cur_max = 2; 22573 } 22574 mp = tcp_ack_mp(tcp); 22575 22576 if (mp != NULL) { 22577 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22578 BUMP_LOCAL(tcp->tcp_obsegs); 22579 BUMP_MIB(&tcp_mib, tcpOutAck); 22580 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22581 tcp_send_data(tcp, tcp->tcp_wq, mp); 22582 } 22583 } 22584 22585 22586 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22587 static mblk_t * 22588 tcp_ack_mp(tcp_t *tcp) 22589 { 22590 uint32_t seq_no; 22591 22592 /* 22593 * There are a few cases to be considered while setting the sequence no. 22594 * Essentially, we can come here while processing an unacceptable pkt 22595 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22596 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22597 * If we are here for a zero window probe, stick with suna. In all 22598 * other cases, we check if suna + swnd encompasses snxt and set 22599 * the sequence number to snxt, if so. If snxt falls outside the 22600 * window (the receiver probably shrunk its window), we will go with 22601 * suna + swnd, otherwise the sequence no will be unacceptable to the 22602 * receiver. 22603 */ 22604 if (tcp->tcp_zero_win_probe) { 22605 seq_no = tcp->tcp_suna; 22606 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22607 ASSERT(tcp->tcp_swnd == 0); 22608 seq_no = tcp->tcp_snxt; 22609 } else { 22610 seq_no = SEQ_GT(tcp->tcp_snxt, 22611 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22612 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22613 } 22614 22615 if (tcp->tcp_valid_bits) { 22616 /* 22617 * For the complex case where we have to send some 22618 * controls (FIN or SYN), let tcp_xmit_mp do it. 22619 */ 22620 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22621 NULL, B_FALSE)); 22622 } else { 22623 /* Generate a simple ACK */ 22624 int data_length; 22625 uchar_t *rptr; 22626 tcph_t *tcph; 22627 mblk_t *mp1; 22628 int32_t tcp_hdr_len; 22629 int32_t tcp_tcp_hdr_len; 22630 int32_t num_sack_blk = 0; 22631 int32_t sack_opt_len; 22632 22633 /* 22634 * Allocate space for TCP + IP headers 22635 * and link-level header 22636 */ 22637 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22638 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22639 tcp->tcp_num_sack_blk); 22640 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22641 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22642 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22643 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22644 } else { 22645 tcp_hdr_len = tcp->tcp_hdr_len; 22646 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22647 } 22648 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22649 if (!mp1) 22650 return (NULL); 22651 22652 /* Update the latest receive window size in TCP header. */ 22653 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22654 tcp->tcp_tcph->th_win); 22655 /* copy in prototype TCP + IP header */ 22656 rptr = mp1->b_rptr + tcp_wroff_xtra; 22657 mp1->b_rptr = rptr; 22658 mp1->b_wptr = rptr + tcp_hdr_len; 22659 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22660 22661 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22662 22663 /* Set the TCP sequence number. */ 22664 U32_TO_ABE32(seq_no, tcph->th_seq); 22665 22666 /* Set up the TCP flag field. */ 22667 tcph->th_flags[0] = (uchar_t)TH_ACK; 22668 if (tcp->tcp_ecn_echo_on) 22669 tcph->th_flags[0] |= TH_ECE; 22670 22671 tcp->tcp_rack = tcp->tcp_rnxt; 22672 tcp->tcp_rack_cnt = 0; 22673 22674 /* fill in timestamp option if in use */ 22675 if (tcp->tcp_snd_ts_ok) { 22676 uint32_t llbolt = (uint32_t)lbolt; 22677 22678 U32_TO_BE32(llbolt, 22679 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22680 U32_TO_BE32(tcp->tcp_ts_recent, 22681 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22682 } 22683 22684 /* Fill in SACK options */ 22685 if (num_sack_blk > 0) { 22686 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22687 sack_blk_t *tmp; 22688 int32_t i; 22689 22690 wptr[0] = TCPOPT_NOP; 22691 wptr[1] = TCPOPT_NOP; 22692 wptr[2] = TCPOPT_SACK; 22693 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22694 sizeof (sack_blk_t); 22695 wptr += TCPOPT_REAL_SACK_LEN; 22696 22697 tmp = tcp->tcp_sack_list; 22698 for (i = 0; i < num_sack_blk; i++) { 22699 U32_TO_BE32(tmp[i].begin, wptr); 22700 wptr += sizeof (tcp_seq); 22701 U32_TO_BE32(tmp[i].end, wptr); 22702 wptr += sizeof (tcp_seq); 22703 } 22704 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22705 << 4); 22706 } 22707 22708 if (tcp->tcp_ipversion == IPV4_VERSION) { 22709 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22710 } else { 22711 /* Check for ip6i_t header in sticky hdrs */ 22712 ip6_t *ip6 = (ip6_t *)(rptr + 22713 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22714 sizeof (ip6i_t) : 0)); 22715 22716 ip6->ip6_plen = htons(tcp_hdr_len - 22717 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22718 } 22719 22720 /* 22721 * Prime pump for checksum calculation in IP. Include the 22722 * adjustment for a source route if any. 22723 */ 22724 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22725 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22726 U16_TO_ABE16(data_length, tcph->th_sum); 22727 22728 if (tcp->tcp_ip_forward_progress) { 22729 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22730 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22731 tcp->tcp_ip_forward_progress = B_FALSE; 22732 } 22733 return (mp1); 22734 } 22735 } 22736 22737 /* 22738 * To create a temporary tcp structure for inserting into bind hash list. 22739 * The parameter is assumed to be in network byte order, ready for use. 22740 */ 22741 /* ARGSUSED */ 22742 static tcp_t * 22743 tcp_alloc_temp_tcp(in_port_t port) 22744 { 22745 conn_t *connp; 22746 tcp_t *tcp; 22747 22748 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22749 if (connp == NULL) 22750 return (NULL); 22751 22752 tcp = connp->conn_tcp; 22753 22754 /* 22755 * Only initialize the necessary info in those structures. Note 22756 * that since INADDR_ANY is all 0, we do not need to set 22757 * tcp_bound_source to INADDR_ANY here. 22758 */ 22759 tcp->tcp_state = TCPS_BOUND; 22760 tcp->tcp_lport = port; 22761 tcp->tcp_exclbind = 1; 22762 tcp->tcp_reserved_port = 1; 22763 22764 /* Just for place holding... */ 22765 tcp->tcp_ipversion = IPV4_VERSION; 22766 22767 return (tcp); 22768 } 22769 22770 /* 22771 * To remove a port range specified by lo_port and hi_port from the 22772 * reserved port ranges. This is one of the three public functions of 22773 * the reserved port interface. Note that a port range has to be removed 22774 * as a whole. Ports in a range cannot be removed individually. 22775 * 22776 * Params: 22777 * in_port_t lo_port: the beginning port of the reserved port range to 22778 * be deleted. 22779 * in_port_t hi_port: the ending port of the reserved port range to 22780 * be deleted. 22781 * 22782 * Return: 22783 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22784 */ 22785 boolean_t 22786 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22787 { 22788 int i, j; 22789 int size; 22790 tcp_t **temp_tcp_array; 22791 tcp_t *tcp; 22792 22793 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22794 22795 /* First make sure that the port ranage is indeed reserved. */ 22796 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22797 if (tcp_reserved_port[i].lo_port == lo_port) { 22798 hi_port = tcp_reserved_port[i].hi_port; 22799 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22800 break; 22801 } 22802 } 22803 if (i == tcp_reserved_port_array_size) { 22804 rw_exit(&tcp_reserved_port_lock); 22805 return (B_FALSE); 22806 } 22807 22808 /* 22809 * Remove the range from the array. This simple loop is possible 22810 * because port ranges are inserted in ascending order. 22811 */ 22812 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22813 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22814 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22815 tcp_reserved_port[j].temp_tcp_array = 22816 tcp_reserved_port[j+1].temp_tcp_array; 22817 } 22818 22819 /* Remove all the temporary tcp structures. */ 22820 size = hi_port - lo_port + 1; 22821 while (size > 0) { 22822 tcp = temp_tcp_array[size - 1]; 22823 ASSERT(tcp != NULL); 22824 tcp_bind_hash_remove(tcp); 22825 CONN_DEC_REF(tcp->tcp_connp); 22826 size--; 22827 } 22828 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22829 tcp_reserved_port_array_size--; 22830 rw_exit(&tcp_reserved_port_lock); 22831 return (B_TRUE); 22832 } 22833 22834 /* 22835 * Macro to remove temporary tcp structure from the bind hash list. The 22836 * first parameter is the list of tcp to be removed. The second parameter 22837 * is the number of tcps in the array. 22838 */ 22839 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22840 { \ 22841 while ((num) > 0) { \ 22842 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22843 tf_t *tbf; \ 22844 tcp_t *tcpnext; \ 22845 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22846 mutex_enter(&tbf->tf_lock); \ 22847 tcpnext = tcp->tcp_bind_hash; \ 22848 if (tcpnext) { \ 22849 tcpnext->tcp_ptpbhn = \ 22850 tcp->tcp_ptpbhn; \ 22851 } \ 22852 *tcp->tcp_ptpbhn = tcpnext; \ 22853 mutex_exit(&tbf->tf_lock); \ 22854 kmem_free(tcp, sizeof (tcp_t)); \ 22855 (tcp_array)[(num) - 1] = NULL; \ 22856 (num)--; \ 22857 } \ 22858 } 22859 22860 /* 22861 * The public interface for other modules to call to reserve a port range 22862 * in TCP. The caller passes in how large a port range it wants. TCP 22863 * will try to find a range and return it via lo_port and hi_port. This is 22864 * used by NCA's nca_conn_init. 22865 * NCA can only be used in the global zone so this only affects the global 22866 * zone's ports. 22867 * 22868 * Params: 22869 * int size: the size of the port range to be reserved. 22870 * in_port_t *lo_port (referenced): returns the beginning port of the 22871 * reserved port range added. 22872 * in_port_t *hi_port (referenced): returns the ending port of the 22873 * reserved port range added. 22874 * 22875 * Return: 22876 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22877 */ 22878 boolean_t 22879 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22880 { 22881 tcp_t *tcp; 22882 tcp_t *tmp_tcp; 22883 tcp_t **temp_tcp_array; 22884 tf_t *tbf; 22885 in_port_t net_port; 22886 in_port_t port; 22887 int32_t cur_size; 22888 int i, j; 22889 boolean_t used; 22890 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22891 zoneid_t zoneid = GLOBAL_ZONEID; 22892 22893 /* Sanity check. */ 22894 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22895 return (B_FALSE); 22896 } 22897 22898 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22899 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22900 rw_exit(&tcp_reserved_port_lock); 22901 return (B_FALSE); 22902 } 22903 22904 /* 22905 * Find the starting port to try. Since the port ranges are ordered 22906 * in the reserved port array, we can do a simple search here. 22907 */ 22908 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22909 *hi_port = TCP_LARGEST_RESERVED_PORT; 22910 for (i = 0; i < tcp_reserved_port_array_size; 22911 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22912 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22913 *hi_port = tcp_reserved_port[i].lo_port - 1; 22914 break; 22915 } 22916 } 22917 /* No available port range. */ 22918 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22919 rw_exit(&tcp_reserved_port_lock); 22920 return (B_FALSE); 22921 } 22922 22923 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22924 if (temp_tcp_array == NULL) { 22925 rw_exit(&tcp_reserved_port_lock); 22926 return (B_FALSE); 22927 } 22928 22929 /* Go thru the port range to see if some ports are already bound. */ 22930 for (port = *lo_port, cur_size = 0; 22931 cur_size < size && port <= *hi_port; 22932 cur_size++, port++) { 22933 used = B_FALSE; 22934 net_port = htons(port); 22935 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22936 mutex_enter(&tbf->tf_lock); 22937 for (tcp = tbf->tf_tcp; tcp != NULL; 22938 tcp = tcp->tcp_bind_hash) { 22939 if (zoneid == tcp->tcp_connp->conn_zoneid && 22940 net_port == tcp->tcp_lport) { 22941 /* 22942 * A port is already bound. Search again 22943 * starting from port + 1. Release all 22944 * temporary tcps. 22945 */ 22946 mutex_exit(&tbf->tf_lock); 22947 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22948 *lo_port = port + 1; 22949 cur_size = -1; 22950 used = B_TRUE; 22951 break; 22952 } 22953 } 22954 if (!used) { 22955 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22956 /* 22957 * Allocation failure. Just fail the request. 22958 * Need to remove all those temporary tcp 22959 * structures. 22960 */ 22961 mutex_exit(&tbf->tf_lock); 22962 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22963 rw_exit(&tcp_reserved_port_lock); 22964 kmem_free(temp_tcp_array, 22965 (hi_port - lo_port + 1) * 22966 sizeof (tcp_t *)); 22967 return (B_FALSE); 22968 } 22969 temp_tcp_array[cur_size] = tmp_tcp; 22970 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22971 mutex_exit(&tbf->tf_lock); 22972 } 22973 } 22974 22975 /* 22976 * The current range is not large enough. We can actually do another 22977 * search if this search is done between 2 reserved port ranges. But 22978 * for first release, we just stop here and return saying that no port 22979 * range is available. 22980 */ 22981 if (cur_size < size) { 22982 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22983 rw_exit(&tcp_reserved_port_lock); 22984 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22985 return (B_FALSE); 22986 } 22987 *hi_port = port - 1; 22988 22989 /* 22990 * Insert range into array in ascending order. Since this function 22991 * must not be called often, we choose to use the simplest method. 22992 * The above array should not consume excessive stack space as 22993 * the size must be very small. If in future releases, we find 22994 * that we should provide more reserved port ranges, this function 22995 * has to be modified to be more efficient. 22996 */ 22997 if (tcp_reserved_port_array_size == 0) { 22998 tcp_reserved_port[0].lo_port = *lo_port; 22999 tcp_reserved_port[0].hi_port = *hi_port; 23000 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23001 } else { 23002 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23003 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23004 tmp_ports[j].lo_port = *lo_port; 23005 tmp_ports[j].hi_port = *hi_port; 23006 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23007 j++; 23008 } 23009 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23010 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23011 tmp_ports[j].temp_tcp_array = 23012 tcp_reserved_port[i].temp_tcp_array; 23013 } 23014 if (j == i) { 23015 tmp_ports[j].lo_port = *lo_port; 23016 tmp_ports[j].hi_port = *hi_port; 23017 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23018 } 23019 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23020 } 23021 tcp_reserved_port_array_size++; 23022 rw_exit(&tcp_reserved_port_lock); 23023 return (B_TRUE); 23024 } 23025 23026 /* 23027 * Check to see if a port is in any reserved port range. 23028 * 23029 * Params: 23030 * in_port_t port: the port to be verified. 23031 * 23032 * Return: 23033 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23034 */ 23035 boolean_t 23036 tcp_reserved_port_check(in_port_t port) 23037 { 23038 int i; 23039 23040 rw_enter(&tcp_reserved_port_lock, RW_READER); 23041 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23042 if (port >= tcp_reserved_port[i].lo_port || 23043 port <= tcp_reserved_port[i].hi_port) { 23044 rw_exit(&tcp_reserved_port_lock); 23045 return (B_TRUE); 23046 } 23047 } 23048 rw_exit(&tcp_reserved_port_lock); 23049 return (B_FALSE); 23050 } 23051 23052 /* 23053 * To list all reserved port ranges. This is the function to handle 23054 * ndd tcp_reserved_port_list. 23055 */ 23056 /* ARGSUSED */ 23057 static int 23058 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23059 { 23060 int i; 23061 23062 rw_enter(&tcp_reserved_port_lock, RW_READER); 23063 if (tcp_reserved_port_array_size > 0) 23064 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23065 else 23066 (void) mi_mpprintf(mp, "No port is reserved."); 23067 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23068 (void) mi_mpprintf(mp, "%d-%d", 23069 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23070 } 23071 rw_exit(&tcp_reserved_port_lock); 23072 return (0); 23073 } 23074 23075 /* 23076 * Hash list insertion routine for tcp_t structures. 23077 * Inserts entries with the ones bound to a specific IP address first 23078 * followed by those bound to INADDR_ANY. 23079 */ 23080 static void 23081 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23082 { 23083 tcp_t **tcpp; 23084 tcp_t *tcpnext; 23085 23086 if (tcp->tcp_ptpbhn != NULL) { 23087 ASSERT(!caller_holds_lock); 23088 tcp_bind_hash_remove(tcp); 23089 } 23090 tcpp = &tbf->tf_tcp; 23091 if (!caller_holds_lock) { 23092 mutex_enter(&tbf->tf_lock); 23093 } else { 23094 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23095 } 23096 tcpnext = tcpp[0]; 23097 if (tcpnext) { 23098 /* 23099 * If the new tcp bound to the INADDR_ANY address 23100 * and the first one in the list is not bound to 23101 * INADDR_ANY we skip all entries until we find the 23102 * first one bound to INADDR_ANY. 23103 * This makes sure that applications binding to a 23104 * specific address get preference over those binding to 23105 * INADDR_ANY. 23106 */ 23107 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23108 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23109 while ((tcpnext = tcpp[0]) != NULL && 23110 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23111 tcpp = &(tcpnext->tcp_bind_hash); 23112 if (tcpnext) 23113 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23114 } else 23115 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23116 } 23117 tcp->tcp_bind_hash = tcpnext; 23118 tcp->tcp_ptpbhn = tcpp; 23119 tcpp[0] = tcp; 23120 if (!caller_holds_lock) 23121 mutex_exit(&tbf->tf_lock); 23122 } 23123 23124 /* 23125 * Hash list removal routine for tcp_t structures. 23126 */ 23127 static void 23128 tcp_bind_hash_remove(tcp_t *tcp) 23129 { 23130 tcp_t *tcpnext; 23131 kmutex_t *lockp; 23132 23133 if (tcp->tcp_ptpbhn == NULL) 23134 return; 23135 23136 /* 23137 * Extract the lock pointer in case there are concurrent 23138 * hash_remove's for this instance. 23139 */ 23140 ASSERT(tcp->tcp_lport != 0); 23141 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23142 23143 ASSERT(lockp != NULL); 23144 mutex_enter(lockp); 23145 if (tcp->tcp_ptpbhn) { 23146 tcpnext = tcp->tcp_bind_hash; 23147 if (tcpnext) { 23148 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23149 tcp->tcp_bind_hash = NULL; 23150 } 23151 *tcp->tcp_ptpbhn = tcpnext; 23152 tcp->tcp_ptpbhn = NULL; 23153 } 23154 mutex_exit(lockp); 23155 } 23156 23157 23158 /* 23159 * Hash list lookup routine for tcp_t structures. 23160 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23161 */ 23162 static tcp_t * 23163 tcp_acceptor_hash_lookup(t_uscalar_t id) 23164 { 23165 tf_t *tf; 23166 tcp_t *tcp; 23167 23168 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23169 mutex_enter(&tf->tf_lock); 23170 for (tcp = tf->tf_tcp; tcp != NULL; 23171 tcp = tcp->tcp_acceptor_hash) { 23172 if (tcp->tcp_acceptor_id == id) { 23173 CONN_INC_REF(tcp->tcp_connp); 23174 mutex_exit(&tf->tf_lock); 23175 return (tcp); 23176 } 23177 } 23178 mutex_exit(&tf->tf_lock); 23179 return (NULL); 23180 } 23181 23182 23183 /* 23184 * Hash list insertion routine for tcp_t structures. 23185 */ 23186 void 23187 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23188 { 23189 tf_t *tf; 23190 tcp_t **tcpp; 23191 tcp_t *tcpnext; 23192 23193 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23194 23195 if (tcp->tcp_ptpahn != NULL) 23196 tcp_acceptor_hash_remove(tcp); 23197 tcpp = &tf->tf_tcp; 23198 mutex_enter(&tf->tf_lock); 23199 tcpnext = tcpp[0]; 23200 if (tcpnext) 23201 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23202 tcp->tcp_acceptor_hash = tcpnext; 23203 tcp->tcp_ptpahn = tcpp; 23204 tcpp[0] = tcp; 23205 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23206 mutex_exit(&tf->tf_lock); 23207 } 23208 23209 /* 23210 * Hash list removal routine for tcp_t structures. 23211 */ 23212 static void 23213 tcp_acceptor_hash_remove(tcp_t *tcp) 23214 { 23215 tcp_t *tcpnext; 23216 kmutex_t *lockp; 23217 23218 /* 23219 * Extract the lock pointer in case there are concurrent 23220 * hash_remove's for this instance. 23221 */ 23222 lockp = tcp->tcp_acceptor_lockp; 23223 23224 if (tcp->tcp_ptpahn == NULL) 23225 return; 23226 23227 ASSERT(lockp != NULL); 23228 mutex_enter(lockp); 23229 if (tcp->tcp_ptpahn) { 23230 tcpnext = tcp->tcp_acceptor_hash; 23231 if (tcpnext) { 23232 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23233 tcp->tcp_acceptor_hash = NULL; 23234 } 23235 *tcp->tcp_ptpahn = tcpnext; 23236 tcp->tcp_ptpahn = NULL; 23237 } 23238 mutex_exit(lockp); 23239 tcp->tcp_acceptor_lockp = NULL; 23240 } 23241 23242 /* ARGSUSED */ 23243 static int 23244 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23245 { 23246 int error = 0; 23247 int retval; 23248 char *end; 23249 23250 tcp_hsp_t *hsp; 23251 tcp_hsp_t *hspprev; 23252 23253 ipaddr_t addr = 0; /* Address we're looking for */ 23254 in6_addr_t v6addr; /* Address we're looking for */ 23255 uint32_t hash; /* Hash of that address */ 23256 23257 /* 23258 * If the following variables are still zero after parsing the input 23259 * string, the user didn't specify them and we don't change them in 23260 * the HSP. 23261 */ 23262 23263 ipaddr_t mask = 0; /* Subnet mask */ 23264 in6_addr_t v6mask; 23265 long sendspace = 0; /* Send buffer size */ 23266 long recvspace = 0; /* Receive buffer size */ 23267 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23268 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23269 23270 rw_enter(&tcp_hsp_lock, RW_WRITER); 23271 23272 /* Parse and validate address */ 23273 if (af == AF_INET) { 23274 retval = inet_pton(af, value, &addr); 23275 if (retval == 1) 23276 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23277 } else if (af == AF_INET6) { 23278 retval = inet_pton(af, value, &v6addr); 23279 } else { 23280 error = EINVAL; 23281 goto done; 23282 } 23283 if (retval == 0) { 23284 error = EINVAL; 23285 goto done; 23286 } 23287 23288 while ((*value) && *value != ' ') 23289 value++; 23290 23291 /* Parse individual keywords, set variables if found */ 23292 while (*value) { 23293 /* Skip leading blanks */ 23294 23295 while (*value == ' ' || *value == '\t') 23296 value++; 23297 23298 /* If at end of string, we're done */ 23299 23300 if (!*value) 23301 break; 23302 23303 /* We have a word, figure out what it is */ 23304 23305 if (strncmp("mask", value, 4) == 0) { 23306 value += 4; 23307 while (*value == ' ' || *value == '\t') 23308 value++; 23309 /* Parse subnet mask */ 23310 if (af == AF_INET) { 23311 retval = inet_pton(af, value, &mask); 23312 if (retval == 1) { 23313 V4MASK_TO_V6(mask, v6mask); 23314 } 23315 } else if (af == AF_INET6) { 23316 retval = inet_pton(af, value, &v6mask); 23317 } 23318 if (retval != 1) { 23319 error = EINVAL; 23320 goto done; 23321 } 23322 while ((*value) && *value != ' ') 23323 value++; 23324 } else if (strncmp("sendspace", value, 9) == 0) { 23325 value += 9; 23326 23327 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23328 sendspace < TCP_XMIT_HIWATER || 23329 sendspace >= (1L<<30)) { 23330 error = EINVAL; 23331 goto done; 23332 } 23333 value = end; 23334 } else if (strncmp("recvspace", value, 9) == 0) { 23335 value += 9; 23336 23337 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23338 recvspace < TCP_RECV_HIWATER || 23339 recvspace >= (1L<<30)) { 23340 error = EINVAL; 23341 goto done; 23342 } 23343 value = end; 23344 } else if (strncmp("timestamp", value, 9) == 0) { 23345 value += 9; 23346 23347 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23348 timestamp < 0 || timestamp > 1) { 23349 error = EINVAL; 23350 goto done; 23351 } 23352 23353 /* 23354 * We increment timestamp so we know it's been set; 23355 * this is undone when we put it in the HSP 23356 */ 23357 timestamp++; 23358 value = end; 23359 } else if (strncmp("delete", value, 6) == 0) { 23360 value += 6; 23361 delete = B_TRUE; 23362 } else { 23363 error = EINVAL; 23364 goto done; 23365 } 23366 } 23367 23368 /* Hash address for lookup */ 23369 23370 hash = TCP_HSP_HASH(addr); 23371 23372 if (delete) { 23373 /* 23374 * Note that deletes don't return an error if the thing 23375 * we're trying to delete isn't there. 23376 */ 23377 if (tcp_hsp_hash == NULL) 23378 goto done; 23379 hsp = tcp_hsp_hash[hash]; 23380 23381 if (hsp) { 23382 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23383 &v6addr)) { 23384 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23385 mi_free((char *)hsp); 23386 } else { 23387 hspprev = hsp; 23388 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23389 if (IN6_ARE_ADDR_EQUAL( 23390 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23391 hspprev->tcp_hsp_next = 23392 hsp->tcp_hsp_next; 23393 mi_free((char *)hsp); 23394 break; 23395 } 23396 hspprev = hsp; 23397 } 23398 } 23399 } 23400 } else { 23401 /* 23402 * We're adding/modifying an HSP. If we haven't already done 23403 * so, allocate the hash table. 23404 */ 23405 23406 if (!tcp_hsp_hash) { 23407 tcp_hsp_hash = (tcp_hsp_t **) 23408 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23409 if (!tcp_hsp_hash) { 23410 error = EINVAL; 23411 goto done; 23412 } 23413 } 23414 23415 /* Get head of hash chain */ 23416 23417 hsp = tcp_hsp_hash[hash]; 23418 23419 /* Try to find pre-existing hsp on hash chain */ 23420 /* Doesn't handle CIDR prefixes. */ 23421 while (hsp) { 23422 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23423 break; 23424 hsp = hsp->tcp_hsp_next; 23425 } 23426 23427 /* 23428 * If we didn't, create one with default values and put it 23429 * at head of hash chain 23430 */ 23431 23432 if (!hsp) { 23433 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23434 if (!hsp) { 23435 error = EINVAL; 23436 goto done; 23437 } 23438 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23439 tcp_hsp_hash[hash] = hsp; 23440 } 23441 23442 /* Set values that the user asked us to change */ 23443 23444 hsp->tcp_hsp_addr_v6 = v6addr; 23445 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23446 hsp->tcp_hsp_vers = IPV4_VERSION; 23447 else 23448 hsp->tcp_hsp_vers = IPV6_VERSION; 23449 hsp->tcp_hsp_subnet_v6 = v6mask; 23450 if (sendspace > 0) 23451 hsp->tcp_hsp_sendspace = sendspace; 23452 if (recvspace > 0) 23453 hsp->tcp_hsp_recvspace = recvspace; 23454 if (timestamp > 0) 23455 hsp->tcp_hsp_tstamp = timestamp - 1; 23456 } 23457 23458 done: 23459 rw_exit(&tcp_hsp_lock); 23460 return (error); 23461 } 23462 23463 /* Set callback routine passed to nd_load by tcp_param_register. */ 23464 /* ARGSUSED */ 23465 static int 23466 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23467 { 23468 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23469 } 23470 /* ARGSUSED */ 23471 static int 23472 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23473 cred_t *cr) 23474 { 23475 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23476 } 23477 23478 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23479 /* ARGSUSED */ 23480 static int 23481 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23482 { 23483 tcp_hsp_t *hsp; 23484 int i; 23485 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23486 23487 rw_enter(&tcp_hsp_lock, RW_READER); 23488 (void) mi_mpprintf(mp, 23489 "Hash HSP " MI_COL_HDRPAD_STR 23490 "Address Subnet Mask Send Receive TStamp"); 23491 if (tcp_hsp_hash) { 23492 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23493 hsp = tcp_hsp_hash[i]; 23494 while (hsp) { 23495 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23496 (void) inet_ntop(AF_INET, 23497 &hsp->tcp_hsp_addr, 23498 addrbuf, sizeof (addrbuf)); 23499 (void) inet_ntop(AF_INET, 23500 &hsp->tcp_hsp_subnet, 23501 subnetbuf, sizeof (subnetbuf)); 23502 } else { 23503 (void) inet_ntop(AF_INET6, 23504 &hsp->tcp_hsp_addr_v6, 23505 addrbuf, sizeof (addrbuf)); 23506 (void) inet_ntop(AF_INET6, 23507 &hsp->tcp_hsp_subnet_v6, 23508 subnetbuf, sizeof (subnetbuf)); 23509 } 23510 (void) mi_mpprintf(mp, 23511 " %03d " MI_COL_PTRFMT_STR 23512 "%s %s %010d %010d %d", 23513 i, 23514 (void *)hsp, 23515 addrbuf, 23516 subnetbuf, 23517 hsp->tcp_hsp_sendspace, 23518 hsp->tcp_hsp_recvspace, 23519 hsp->tcp_hsp_tstamp); 23520 23521 hsp = hsp->tcp_hsp_next; 23522 } 23523 } 23524 } 23525 rw_exit(&tcp_hsp_lock); 23526 return (0); 23527 } 23528 23529 23530 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23531 23532 static ipaddr_t netmasks[] = { 23533 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23534 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23535 }; 23536 23537 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23538 23539 /* 23540 * XXX This routine should go away and instead we should use the metrics 23541 * associated with the routes to determine the default sndspace and rcvspace. 23542 */ 23543 static tcp_hsp_t * 23544 tcp_hsp_lookup(ipaddr_t addr) 23545 { 23546 tcp_hsp_t *hsp = NULL; 23547 23548 /* Quick check without acquiring the lock. */ 23549 if (tcp_hsp_hash == NULL) 23550 return (NULL); 23551 23552 rw_enter(&tcp_hsp_lock, RW_READER); 23553 23554 /* This routine finds the best-matching HSP for address addr. */ 23555 23556 if (tcp_hsp_hash) { 23557 int i; 23558 ipaddr_t srchaddr; 23559 tcp_hsp_t *hsp_net; 23560 23561 /* We do three passes: host, network, and subnet. */ 23562 23563 srchaddr = addr; 23564 23565 for (i = 1; i <= 3; i++) { 23566 /* Look for exact match on srchaddr */ 23567 23568 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23569 while (hsp) { 23570 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23571 hsp->tcp_hsp_addr == srchaddr) 23572 break; 23573 hsp = hsp->tcp_hsp_next; 23574 } 23575 ASSERT(hsp == NULL || 23576 hsp->tcp_hsp_vers == IPV4_VERSION); 23577 23578 /* 23579 * If this is the first pass: 23580 * If we found a match, great, return it. 23581 * If not, search for the network on the second pass. 23582 */ 23583 23584 if (i == 1) 23585 if (hsp) 23586 break; 23587 else 23588 { 23589 srchaddr = addr & netmask(addr); 23590 continue; 23591 } 23592 23593 /* 23594 * If this is the second pass: 23595 * If we found a match, but there's a subnet mask, 23596 * save the match but try again using the subnet 23597 * mask on the third pass. 23598 * Otherwise, return whatever we found. 23599 */ 23600 23601 if (i == 2) { 23602 if (hsp && hsp->tcp_hsp_subnet) { 23603 hsp_net = hsp; 23604 srchaddr = addr & hsp->tcp_hsp_subnet; 23605 continue; 23606 } else { 23607 break; 23608 } 23609 } 23610 23611 /* 23612 * This must be the third pass. If we didn't find 23613 * anything, return the saved network HSP instead. 23614 */ 23615 23616 if (!hsp) 23617 hsp = hsp_net; 23618 } 23619 } 23620 23621 rw_exit(&tcp_hsp_lock); 23622 return (hsp); 23623 } 23624 23625 /* 23626 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23627 * match lookup. 23628 */ 23629 static tcp_hsp_t * 23630 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23631 { 23632 tcp_hsp_t *hsp = NULL; 23633 23634 /* Quick check without acquiring the lock. */ 23635 if (tcp_hsp_hash == NULL) 23636 return (NULL); 23637 23638 rw_enter(&tcp_hsp_lock, RW_READER); 23639 23640 /* This routine finds the best-matching HSP for address addr. */ 23641 23642 if (tcp_hsp_hash) { 23643 int i; 23644 in6_addr_t v6srchaddr; 23645 tcp_hsp_t *hsp_net; 23646 23647 /* We do three passes: host, network, and subnet. */ 23648 23649 v6srchaddr = *v6addr; 23650 23651 for (i = 1; i <= 3; i++) { 23652 /* Look for exact match on srchaddr */ 23653 23654 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23655 V4_PART_OF_V6(v6srchaddr))]; 23656 while (hsp) { 23657 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23658 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23659 &v6srchaddr)) 23660 break; 23661 hsp = hsp->tcp_hsp_next; 23662 } 23663 23664 /* 23665 * If this is the first pass: 23666 * If we found a match, great, return it. 23667 * If not, search for the network on the second pass. 23668 */ 23669 23670 if (i == 1) 23671 if (hsp) 23672 break; 23673 else { 23674 /* Assume a 64 bit mask */ 23675 v6srchaddr.s6_addr32[0] = 23676 v6addr->s6_addr32[0]; 23677 v6srchaddr.s6_addr32[1] = 23678 v6addr->s6_addr32[1]; 23679 v6srchaddr.s6_addr32[2] = 0; 23680 v6srchaddr.s6_addr32[3] = 0; 23681 continue; 23682 } 23683 23684 /* 23685 * If this is the second pass: 23686 * If we found a match, but there's a subnet mask, 23687 * save the match but try again using the subnet 23688 * mask on the third pass. 23689 * Otherwise, return whatever we found. 23690 */ 23691 23692 if (i == 2) { 23693 ASSERT(hsp == NULL || 23694 hsp->tcp_hsp_vers == IPV6_VERSION); 23695 if (hsp && 23696 !IN6_IS_ADDR_UNSPECIFIED( 23697 &hsp->tcp_hsp_subnet_v6)) { 23698 hsp_net = hsp; 23699 V6_MASK_COPY(*v6addr, 23700 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23701 continue; 23702 } else { 23703 break; 23704 } 23705 } 23706 23707 /* 23708 * This must be the third pass. If we didn't find 23709 * anything, return the saved network HSP instead. 23710 */ 23711 23712 if (!hsp) 23713 hsp = hsp_net; 23714 } 23715 } 23716 23717 rw_exit(&tcp_hsp_lock); 23718 return (hsp); 23719 } 23720 23721 /* 23722 * Type three generator adapted from the random() function in 4.4 BSD: 23723 */ 23724 23725 /* 23726 * Copyright (c) 1983, 1993 23727 * The Regents of the University of California. All rights reserved. 23728 * 23729 * Redistribution and use in source and binary forms, with or without 23730 * modification, are permitted provided that the following conditions 23731 * are met: 23732 * 1. Redistributions of source code must retain the above copyright 23733 * notice, this list of conditions and the following disclaimer. 23734 * 2. Redistributions in binary form must reproduce the above copyright 23735 * notice, this list of conditions and the following disclaimer in the 23736 * documentation and/or other materials provided with the distribution. 23737 * 3. All advertising materials mentioning features or use of this software 23738 * must display the following acknowledgement: 23739 * This product includes software developed by the University of 23740 * California, Berkeley and its contributors. 23741 * 4. Neither the name of the University nor the names of its contributors 23742 * may be used to endorse or promote products derived from this software 23743 * without specific prior written permission. 23744 * 23745 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23746 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23747 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23748 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23749 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23750 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23751 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23752 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23753 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23754 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23755 * SUCH DAMAGE. 23756 */ 23757 23758 /* Type 3 -- x**31 + x**3 + 1 */ 23759 #define DEG_3 31 23760 #define SEP_3 3 23761 23762 23763 /* Protected by tcp_random_lock */ 23764 static int tcp_randtbl[DEG_3 + 1]; 23765 23766 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23767 static int *tcp_random_rptr = &tcp_randtbl[1]; 23768 23769 static int *tcp_random_state = &tcp_randtbl[1]; 23770 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23771 23772 kmutex_t tcp_random_lock; 23773 23774 void 23775 tcp_random_init(void) 23776 { 23777 int i; 23778 hrtime_t hrt; 23779 time_t wallclock; 23780 uint64_t result; 23781 23782 /* 23783 * Use high-res timer and current time for seed. Gethrtime() returns 23784 * a longlong, which may contain resolution down to nanoseconds. 23785 * The current time will either be a 32-bit or a 64-bit quantity. 23786 * XOR the two together in a 64-bit result variable. 23787 * Convert the result to a 32-bit value by multiplying the high-order 23788 * 32-bits by the low-order 32-bits. 23789 */ 23790 23791 hrt = gethrtime(); 23792 (void) drv_getparm(TIME, &wallclock); 23793 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23794 mutex_enter(&tcp_random_lock); 23795 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23796 (result & 0xffffffff); 23797 23798 for (i = 1; i < DEG_3; i++) 23799 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23800 + 12345; 23801 tcp_random_fptr = &tcp_random_state[SEP_3]; 23802 tcp_random_rptr = &tcp_random_state[0]; 23803 mutex_exit(&tcp_random_lock); 23804 for (i = 0; i < 10 * DEG_3; i++) 23805 (void) tcp_random(); 23806 } 23807 23808 /* 23809 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23810 * This range is selected to be approximately centered on TCP_ISS / 2, 23811 * and easy to compute. We get this value by generating a 32-bit random 23812 * number, selecting out the high-order 17 bits, and then adding one so 23813 * that we never return zero. 23814 */ 23815 int 23816 tcp_random(void) 23817 { 23818 int i; 23819 23820 mutex_enter(&tcp_random_lock); 23821 *tcp_random_fptr += *tcp_random_rptr; 23822 23823 /* 23824 * The high-order bits are more random than the low-order bits, 23825 * so we select out the high-order 17 bits and add one so that 23826 * we never return zero. 23827 */ 23828 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23829 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23830 tcp_random_fptr = tcp_random_state; 23831 ++tcp_random_rptr; 23832 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23833 tcp_random_rptr = tcp_random_state; 23834 23835 mutex_exit(&tcp_random_lock); 23836 return (i); 23837 } 23838 23839 /* 23840 * XXX This will go away when TPI is extended to send 23841 * info reqs to sockfs/timod ..... 23842 * Given a queue, set the max packet size for the write 23843 * side of the queue below stream head. This value is 23844 * cached on the stream head. 23845 * Returns 1 on success, 0 otherwise. 23846 */ 23847 static int 23848 setmaxps(queue_t *q, int maxpsz) 23849 { 23850 struct stdata *stp; 23851 queue_t *wq; 23852 stp = STREAM(q); 23853 23854 /* 23855 * At this point change of a queue parameter is not allowed 23856 * when a multiplexor is sitting on top. 23857 */ 23858 if (stp->sd_flag & STPLEX) 23859 return (0); 23860 23861 claimstr(stp->sd_wrq); 23862 wq = stp->sd_wrq->q_next; 23863 ASSERT(wq != NULL); 23864 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23865 releasestr(stp->sd_wrq); 23866 return (1); 23867 } 23868 23869 static int 23870 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23871 int *t_errorp, int *sys_errorp) 23872 { 23873 int error; 23874 int is_absreq_failure; 23875 t_scalar_t *opt_lenp; 23876 t_scalar_t opt_offset; 23877 int prim_type; 23878 struct T_conn_req *tcreqp; 23879 struct T_conn_res *tcresp; 23880 cred_t *cr; 23881 23882 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23883 23884 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23885 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23886 prim_type == T_CONN_RES); 23887 23888 switch (prim_type) { 23889 case T_CONN_REQ: 23890 tcreqp = (struct T_conn_req *)mp->b_rptr; 23891 opt_offset = tcreqp->OPT_offset; 23892 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23893 break; 23894 case O_T_CONN_RES: 23895 case T_CONN_RES: 23896 tcresp = (struct T_conn_res *)mp->b_rptr; 23897 opt_offset = tcresp->OPT_offset; 23898 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23899 break; 23900 } 23901 23902 *t_errorp = 0; 23903 *sys_errorp = 0; 23904 *do_disconnectp = 0; 23905 23906 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23907 opt_offset, cr, &tcp_opt_obj, 23908 NULL, &is_absreq_failure); 23909 23910 switch (error) { 23911 case 0: /* no error */ 23912 ASSERT(is_absreq_failure == 0); 23913 return (0); 23914 case ENOPROTOOPT: 23915 *t_errorp = TBADOPT; 23916 break; 23917 case EACCES: 23918 *t_errorp = TACCES; 23919 break; 23920 default: 23921 *t_errorp = TSYSERR; *sys_errorp = error; 23922 break; 23923 } 23924 if (is_absreq_failure != 0) { 23925 /* 23926 * The connection request should get the local ack 23927 * T_OK_ACK and then a T_DISCON_IND. 23928 */ 23929 *do_disconnectp = 1; 23930 } 23931 return (-1); 23932 } 23933 23934 /* 23935 * Split this function out so that if the secret changes, I'm okay. 23936 * 23937 * Initialize the tcp_iss_cookie and tcp_iss_key. 23938 */ 23939 23940 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23941 23942 static void 23943 tcp_iss_key_init(uint8_t *phrase, int len) 23944 { 23945 struct { 23946 int32_t current_time; 23947 uint32_t randnum; 23948 uint16_t pad; 23949 uint8_t ether[6]; 23950 uint8_t passwd[PASSWD_SIZE]; 23951 } tcp_iss_cookie; 23952 time_t t; 23953 23954 /* 23955 * Start with the current absolute time. 23956 */ 23957 (void) drv_getparm(TIME, &t); 23958 tcp_iss_cookie.current_time = t; 23959 23960 /* 23961 * XXX - Need a more random number per RFC 1750, not this crap. 23962 * OTOH, if what follows is pretty random, then I'm in better shape. 23963 */ 23964 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23965 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23966 23967 /* 23968 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23969 * as a good template. 23970 */ 23971 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23972 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23973 23974 /* 23975 * The pass-phrase. Normally this is supplied by user-called NDD. 23976 */ 23977 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23978 23979 /* 23980 * See 4010593 if this section becomes a problem again, 23981 * but the local ethernet address is useful here. 23982 */ 23983 (void) localetheraddr(NULL, 23984 (struct ether_addr *)&tcp_iss_cookie.ether); 23985 23986 /* 23987 * Hash 'em all together. The MD5Final is called per-connection. 23988 */ 23989 mutex_enter(&tcp_iss_key_lock); 23990 MD5Init(&tcp_iss_key); 23991 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23992 sizeof (tcp_iss_cookie)); 23993 mutex_exit(&tcp_iss_key_lock); 23994 } 23995 23996 /* 23997 * Set the RFC 1948 pass phrase 23998 */ 23999 /* ARGSUSED */ 24000 static int 24001 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24002 cred_t *cr) 24003 { 24004 /* 24005 * Basically, value contains a new pass phrase. Pass it along! 24006 */ 24007 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24008 return (0); 24009 } 24010 24011 /* ARGSUSED */ 24012 static int 24013 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24014 { 24015 bzero(buf, sizeof (tcp_sack_info_t)); 24016 return (0); 24017 } 24018 24019 /* ARGSUSED */ 24020 static int 24021 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24022 { 24023 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24024 return (0); 24025 } 24026 24027 void 24028 tcp_ddi_init(void) 24029 { 24030 int i; 24031 24032 /* Initialize locks */ 24033 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24034 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24035 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24036 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24037 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24038 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24039 24040 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24041 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24042 MUTEX_DEFAULT, NULL); 24043 } 24044 24045 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24046 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24047 MUTEX_DEFAULT, NULL); 24048 } 24049 24050 /* TCP's IPsec code calls the packet dropper. */ 24051 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24052 24053 if (!tcp_g_nd) { 24054 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24055 nd_free(&tcp_g_nd); 24056 } 24057 } 24058 24059 /* 24060 * Note: To really walk the device tree you need the devinfo 24061 * pointer to your device which is only available after probe/attach. 24062 * The following is safe only because it uses ddi_root_node() 24063 */ 24064 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24065 tcp_opt_obj.odb_opt_arr_cnt); 24066 24067 tcp_timercache = kmem_cache_create("tcp_timercache", 24068 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24069 NULL, NULL, NULL, NULL, NULL, 0); 24070 24071 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24072 sizeof (tcp_sack_info_t), 0, 24073 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24074 24075 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24076 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24077 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24078 24079 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24080 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24081 24082 ip_squeue_init(tcp_squeue_add); 24083 24084 /* Initialize the random number generator */ 24085 tcp_random_init(); 24086 24087 /* 24088 * Initialize RFC 1948 secret values. This will probably be reset once 24089 * by the boot scripts. 24090 * 24091 * Use NULL name, as the name is caught by the new lockstats. 24092 * 24093 * Initialize with some random, non-guessable string, like the global 24094 * T_INFO_ACK. 24095 */ 24096 24097 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24098 sizeof (tcp_g_t_info_ack)); 24099 24100 #if TCP_COUNTERS || TCP_DEBUG_COUNTER 24101 if ((tcp_kstat = kstat_create("tcp", 0, "tcpstat", 24102 "net", KSTAT_TYPE_NAMED, 24103 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24104 KSTAT_FLAG_VIRTUAL)) != NULL) { 24105 tcp_kstat->ks_data = &tcp_statistics; 24106 kstat_install(tcp_kstat); 24107 } 24108 #endif 24109 tcp_kstat_init(); 24110 } 24111 24112 void 24113 tcp_ddi_destroy(void) 24114 { 24115 int i; 24116 24117 nd_free(&tcp_g_nd); 24118 24119 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24120 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24121 } 24122 24123 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24124 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24125 } 24126 24127 mutex_destroy(&tcp_iss_key_lock); 24128 rw_destroy(&tcp_hsp_lock); 24129 mutex_destroy(&tcp_g_q_lock); 24130 mutex_destroy(&tcp_random_lock); 24131 mutex_destroy(&tcp_epriv_port_lock); 24132 rw_destroy(&tcp_reserved_port_lock); 24133 24134 ip_drop_unregister(&tcp_dropper); 24135 24136 kmem_cache_destroy(tcp_timercache); 24137 kmem_cache_destroy(tcp_sack_info_cache); 24138 kmem_cache_destroy(tcp_iphc_cache); 24139 24140 tcp_kstat_fini(); 24141 } 24142 24143 /* 24144 * Generate ISS, taking into account NDD changes may happen halfway through. 24145 * (If the iss is not zero, set it.) 24146 */ 24147 24148 static void 24149 tcp_iss_init(tcp_t *tcp) 24150 { 24151 MD5_CTX context; 24152 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24153 uint32_t answer[4]; 24154 24155 tcp_iss_incr_extra += (ISS_INCR >> 1); 24156 tcp->tcp_iss = tcp_iss_incr_extra; 24157 switch (tcp_strong_iss) { 24158 case 2: 24159 mutex_enter(&tcp_iss_key_lock); 24160 context = tcp_iss_key; 24161 mutex_exit(&tcp_iss_key_lock); 24162 arg.ports = tcp->tcp_ports; 24163 if (tcp->tcp_ipversion == IPV4_VERSION) { 24164 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24165 &arg.src); 24166 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24167 &arg.dst); 24168 } else { 24169 arg.src = tcp->tcp_ip6h->ip6_src; 24170 arg.dst = tcp->tcp_ip6h->ip6_dst; 24171 } 24172 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24173 MD5Final((uchar_t *)answer, &context); 24174 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24175 /* 24176 * Now that we've hashed into a unique per-connection sequence 24177 * space, add a random increment per strong_iss == 1. So I 24178 * guess we'll have to... 24179 */ 24180 /* FALLTHRU */ 24181 case 1: 24182 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24183 break; 24184 default: 24185 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24186 break; 24187 } 24188 tcp->tcp_valid_bits = TCP_ISS_VALID; 24189 tcp->tcp_fss = tcp->tcp_iss - 1; 24190 tcp->tcp_suna = tcp->tcp_iss; 24191 tcp->tcp_snxt = tcp->tcp_iss + 1; 24192 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24193 tcp->tcp_csuna = tcp->tcp_snxt; 24194 } 24195 24196 /* 24197 * Exported routine for extracting active tcp connection status. 24198 * 24199 * This is used by the Solaris Cluster Networking software to 24200 * gather a list of connections that need to be forwarded to 24201 * specific nodes in the cluster when configuration changes occur. 24202 * 24203 * The callback is invoked for each tcp_t structure. Returning 24204 * non-zero from the callback routine terminates the search. 24205 */ 24206 int 24207 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24208 { 24209 tcp_t *tcp; 24210 cl_tcp_info_t cl_tcpi; 24211 connf_t *connfp; 24212 conn_t *connp; 24213 int i; 24214 24215 ASSERT(callback != NULL); 24216 24217 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24218 24219 connfp = &ipcl_globalhash_fanout[i]; 24220 connp = NULL; 24221 24222 while ((connp = tcp_get_next_conn(connfp, connp))) { 24223 24224 tcp = connp->conn_tcp; 24225 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24226 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24227 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24228 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24229 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24230 /* 24231 * The macros tcp_laddr and tcp_faddr give the IPv4 24232 * addresses. They are copied implicitly below as 24233 * mapped addresses. 24234 */ 24235 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24236 if (tcp->tcp_ipversion == IPV4_VERSION) { 24237 cl_tcpi.cl_tcpi_faddr = 24238 tcp->tcp_ipha->ipha_dst; 24239 } else { 24240 cl_tcpi.cl_tcpi_faddr_v6 = 24241 tcp->tcp_ip6h->ip6_dst; 24242 } 24243 24244 /* 24245 * If the callback returns non-zero 24246 * we terminate the traversal. 24247 */ 24248 if ((*callback)(&cl_tcpi, arg) != 0) { 24249 CONN_DEC_REF(tcp->tcp_connp); 24250 return (1); 24251 } 24252 } 24253 } 24254 24255 return (0); 24256 } 24257 24258 /* 24259 * Macros used for accessing the different types of sockaddr 24260 * structures inside a tcp_ioc_abort_conn_t. 24261 */ 24262 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24263 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24264 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24265 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24266 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24267 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24268 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24269 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24270 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24271 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24272 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24273 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24274 24275 /* 24276 * Return the correct error code to mimic the behavior 24277 * of a connection reset. 24278 */ 24279 #define TCP_AC_GET_ERRCODE(state, err) { \ 24280 switch ((state)) { \ 24281 case TCPS_SYN_SENT: \ 24282 case TCPS_SYN_RCVD: \ 24283 (err) = ECONNREFUSED; \ 24284 break; \ 24285 case TCPS_ESTABLISHED: \ 24286 case TCPS_FIN_WAIT_1: \ 24287 case TCPS_FIN_WAIT_2: \ 24288 case TCPS_CLOSE_WAIT: \ 24289 (err) = ECONNRESET; \ 24290 break; \ 24291 case TCPS_CLOSING: \ 24292 case TCPS_LAST_ACK: \ 24293 case TCPS_TIME_WAIT: \ 24294 (err) = 0; \ 24295 break; \ 24296 default: \ 24297 (err) = ENXIO; \ 24298 } \ 24299 } 24300 24301 /* 24302 * Check if a tcp structure matches the info in acp. 24303 */ 24304 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24305 (((acp)->ac_local.ss_family == AF_INET) ? \ 24306 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24307 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24308 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24309 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24310 (TCP_AC_V4LPORT((acp)) == 0 || \ 24311 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24312 (TCP_AC_V4RPORT((acp)) == 0 || \ 24313 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24314 (acp)->ac_start <= (tcp)->tcp_state && \ 24315 (acp)->ac_end >= (tcp)->tcp_state) : \ 24316 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24317 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24318 &(tcp)->tcp_ip_src_v6)) && \ 24319 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24320 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24321 &(tcp)->tcp_remote_v6)) && \ 24322 (TCP_AC_V6LPORT((acp)) == 0 || \ 24323 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24324 (TCP_AC_V6RPORT((acp)) == 0 || \ 24325 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24326 (acp)->ac_start <= (tcp)->tcp_state && \ 24327 (acp)->ac_end >= (tcp)->tcp_state)) 24328 24329 #define TCP_AC_MATCH(acp, tcp) \ 24330 (((acp)->ac_zoneid == ALL_ZONES || \ 24331 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24332 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24333 24334 /* 24335 * Build a message containing a tcp_ioc_abort_conn_t structure 24336 * which is filled in with information from acp and tp. 24337 */ 24338 static mblk_t * 24339 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24340 { 24341 mblk_t *mp; 24342 tcp_ioc_abort_conn_t *tacp; 24343 24344 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24345 if (mp == NULL) 24346 return (NULL); 24347 24348 mp->b_datap->db_type = M_CTL; 24349 24350 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24351 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24352 sizeof (uint32_t)); 24353 24354 tacp->ac_start = acp->ac_start; 24355 tacp->ac_end = acp->ac_end; 24356 tacp->ac_zoneid = acp->ac_zoneid; 24357 24358 if (acp->ac_local.ss_family == AF_INET) { 24359 tacp->ac_local.ss_family = AF_INET; 24360 tacp->ac_remote.ss_family = AF_INET; 24361 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24362 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24363 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24364 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24365 } else { 24366 tacp->ac_local.ss_family = AF_INET6; 24367 tacp->ac_remote.ss_family = AF_INET6; 24368 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24369 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24370 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24371 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24372 } 24373 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24374 return (mp); 24375 } 24376 24377 /* 24378 * Print a tcp_ioc_abort_conn_t structure. 24379 */ 24380 static void 24381 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24382 { 24383 char lbuf[128]; 24384 char rbuf[128]; 24385 sa_family_t af; 24386 in_port_t lport, rport; 24387 ushort_t logflags; 24388 24389 af = acp->ac_local.ss_family; 24390 24391 if (af == AF_INET) { 24392 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24393 lbuf, 128); 24394 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24395 rbuf, 128); 24396 lport = ntohs(TCP_AC_V4LPORT(acp)); 24397 rport = ntohs(TCP_AC_V4RPORT(acp)); 24398 } else { 24399 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24400 lbuf, 128); 24401 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24402 rbuf, 128); 24403 lport = ntohs(TCP_AC_V6LPORT(acp)); 24404 rport = ntohs(TCP_AC_V6RPORT(acp)); 24405 } 24406 24407 logflags = SL_TRACE | SL_NOTE; 24408 /* 24409 * Don't print this message to the console if the operation was done 24410 * to a non-global zone. 24411 */ 24412 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24413 logflags |= SL_CONSOLE; 24414 (void) strlog(TCP_MODULE_ID, 0, 1, logflags, 24415 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24416 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24417 acp->ac_start, acp->ac_end); 24418 } 24419 24420 /* 24421 * Called inside tcp_rput when a message built using 24422 * tcp_ioctl_abort_build_msg is put into a queue. 24423 * Note that when we get here there is no wildcard in acp any more. 24424 */ 24425 static void 24426 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24427 { 24428 tcp_ioc_abort_conn_t *acp; 24429 24430 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24431 if (tcp->tcp_state <= acp->ac_end) { 24432 /* 24433 * If we get here, we are already on the correct 24434 * squeue. This ioctl follows the following path 24435 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24436 * ->tcp_ioctl_abort->squeue_fill (if on a 24437 * different squeue) 24438 */ 24439 int errcode; 24440 24441 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24442 (void) tcp_clean_death(tcp, errcode, 26); 24443 } 24444 freemsg(mp); 24445 } 24446 24447 /* 24448 * Abort all matching connections on a hash chain. 24449 */ 24450 static int 24451 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24452 boolean_t exact) 24453 { 24454 int nmatch, err = 0; 24455 tcp_t *tcp; 24456 MBLKP mp, last, listhead = NULL; 24457 conn_t *tconnp; 24458 connf_t *connfp = &ipcl_conn_fanout[index]; 24459 24460 startover: 24461 nmatch = 0; 24462 24463 mutex_enter(&connfp->connf_lock); 24464 for (tconnp = connfp->connf_head; tconnp != NULL; 24465 tconnp = tconnp->conn_next) { 24466 tcp = tconnp->conn_tcp; 24467 if (TCP_AC_MATCH(acp, tcp)) { 24468 CONN_INC_REF(tcp->tcp_connp); 24469 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24470 if (mp == NULL) { 24471 err = ENOMEM; 24472 CONN_DEC_REF(tcp->tcp_connp); 24473 break; 24474 } 24475 mp->b_prev = (mblk_t *)tcp; 24476 24477 if (listhead == NULL) { 24478 listhead = mp; 24479 last = mp; 24480 } else { 24481 last->b_next = mp; 24482 last = mp; 24483 } 24484 nmatch++; 24485 if (exact) 24486 break; 24487 } 24488 24489 /* Avoid holding lock for too long. */ 24490 if (nmatch >= 500) 24491 break; 24492 } 24493 mutex_exit(&connfp->connf_lock); 24494 24495 /* Pass mp into the correct tcp */ 24496 while ((mp = listhead) != NULL) { 24497 listhead = listhead->b_next; 24498 tcp = (tcp_t *)mp->b_prev; 24499 mp->b_next = mp->b_prev = NULL; 24500 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24501 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24502 } 24503 24504 *count += nmatch; 24505 if (nmatch >= 500 && err == 0) 24506 goto startover; 24507 return (err); 24508 } 24509 24510 /* 24511 * Abort all connections that matches the attributes specified in acp. 24512 */ 24513 static int 24514 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24515 { 24516 sa_family_t af; 24517 uint32_t ports; 24518 uint16_t *pports; 24519 int err = 0, count = 0; 24520 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24521 int index = -1; 24522 ushort_t logflags; 24523 24524 af = acp->ac_local.ss_family; 24525 24526 if (af == AF_INET) { 24527 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24528 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24529 pports = (uint16_t *)&ports; 24530 pports[1] = TCP_AC_V4LPORT(acp); 24531 pports[0] = TCP_AC_V4RPORT(acp); 24532 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24533 } 24534 } else { 24535 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24536 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24537 pports = (uint16_t *)&ports; 24538 pports[1] = TCP_AC_V6LPORT(acp); 24539 pports[0] = TCP_AC_V6RPORT(acp); 24540 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24541 } 24542 } 24543 24544 /* 24545 * For cases where remote addr, local port, and remote port are non- 24546 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24547 */ 24548 if (index != -1) { 24549 err = tcp_ioctl_abort_bucket(acp, index, 24550 &count, exact); 24551 } else { 24552 /* 24553 * loop through all entries for wildcard case 24554 */ 24555 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24556 err = tcp_ioctl_abort_bucket(acp, index, 24557 &count, exact); 24558 if (err != 0) 24559 break; 24560 } 24561 } 24562 24563 logflags = SL_TRACE | SL_NOTE; 24564 /* 24565 * Don't print this message to the console if the operation was done 24566 * to a non-global zone. 24567 */ 24568 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24569 logflags |= SL_CONSOLE; 24570 (void) strlog(TCP_MODULE_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24571 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24572 if (err == 0 && count == 0) 24573 err = ENOENT; 24574 return (err); 24575 } 24576 24577 /* 24578 * Process the TCP_IOC_ABORT_CONN ioctl request. 24579 */ 24580 static void 24581 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24582 { 24583 int err; 24584 IOCP iocp; 24585 MBLKP mp1; 24586 sa_family_t laf, raf; 24587 tcp_ioc_abort_conn_t *acp; 24588 zone_t *zptr; 24589 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24590 24591 iocp = (IOCP)mp->b_rptr; 24592 24593 if ((mp1 = mp->b_cont) == NULL || 24594 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24595 err = EINVAL; 24596 goto out; 24597 } 24598 24599 /* check permissions */ 24600 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24601 err = EPERM; 24602 goto out; 24603 } 24604 24605 if (mp1->b_cont != NULL) { 24606 freemsg(mp1->b_cont); 24607 mp1->b_cont = NULL; 24608 } 24609 24610 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24611 laf = acp->ac_local.ss_family; 24612 raf = acp->ac_remote.ss_family; 24613 24614 /* check that a zone with the supplied zoneid exists */ 24615 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24616 zptr = zone_find_by_id(zoneid); 24617 if (zptr != NULL) { 24618 zone_rele(zptr); 24619 } else { 24620 err = EINVAL; 24621 goto out; 24622 } 24623 } 24624 24625 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24626 acp->ac_start > acp->ac_end || laf != raf || 24627 (laf != AF_INET && laf != AF_INET6)) { 24628 err = EINVAL; 24629 goto out; 24630 } 24631 24632 tcp_ioctl_abort_dump(acp); 24633 err = tcp_ioctl_abort(acp); 24634 24635 out: 24636 if (mp1 != NULL) { 24637 freemsg(mp1); 24638 mp->b_cont = NULL; 24639 } 24640 24641 if (err != 0) 24642 miocnak(q, mp, 0, err); 24643 else 24644 miocack(q, mp, 0, 0); 24645 } 24646 24647 /* 24648 * tcp_time_wait_processing() handles processing of incoming packets when 24649 * the tcp is in the TIME_WAIT state. 24650 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24651 * on the time wait list. 24652 */ 24653 void 24654 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24655 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24656 { 24657 int32_t bytes_acked; 24658 int32_t gap; 24659 int32_t rgap; 24660 tcp_opt_t tcpopt; 24661 uint_t flags; 24662 uint32_t new_swnd = 0; 24663 conn_t *connp; 24664 24665 BUMP_LOCAL(tcp->tcp_ibsegs); 24666 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24667 24668 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24669 new_swnd = BE16_TO_U16(tcph->th_win) << 24670 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24671 if (tcp->tcp_snd_ts_ok) { 24672 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24673 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24674 tcp->tcp_rnxt, TH_ACK); 24675 goto done; 24676 } 24677 } 24678 gap = seg_seq - tcp->tcp_rnxt; 24679 rgap = tcp->tcp_rwnd - (gap + seg_len); 24680 if (gap < 0) { 24681 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24682 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24683 (seg_len > -gap ? -gap : seg_len)); 24684 seg_len += gap; 24685 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24686 if (flags & TH_RST) { 24687 goto done; 24688 } 24689 if ((flags & TH_FIN) && seg_len == -1) { 24690 /* 24691 * When TCP receives a duplicate FIN in 24692 * TIME_WAIT state, restart the 2 MSL timer. 24693 * See page 73 in RFC 793. Make sure this TCP 24694 * is already on the TIME_WAIT list. If not, 24695 * just restart the timer. 24696 */ 24697 if (TCP_IS_DETACHED(tcp)) { 24698 tcp_time_wait_remove(tcp, NULL); 24699 tcp_time_wait_append(tcp); 24700 TCP_DBGSTAT(tcp_rput_time_wait); 24701 } else { 24702 ASSERT(tcp != NULL); 24703 TCP_TIMER_RESTART(tcp, 24704 tcp_time_wait_interval); 24705 } 24706 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24707 tcp->tcp_rnxt, TH_ACK); 24708 goto done; 24709 } 24710 flags |= TH_ACK_NEEDED; 24711 seg_len = 0; 24712 goto process_ack; 24713 } 24714 24715 /* Fix seg_seq, and chew the gap off the front. */ 24716 seg_seq = tcp->tcp_rnxt; 24717 } 24718 24719 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24720 /* 24721 * Make sure that when we accept the connection, pick 24722 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24723 * old connection. 24724 * 24725 * The next ISS generated is equal to tcp_iss_incr_extra 24726 * + ISS_INCR/2 + other components depending on the 24727 * value of tcp_strong_iss. We pre-calculate the new 24728 * ISS here and compare with tcp_snxt to determine if 24729 * we need to make adjustment to tcp_iss_incr_extra. 24730 * 24731 * The above calculation is ugly and is a 24732 * waste of CPU cycles... 24733 */ 24734 uint32_t new_iss = tcp_iss_incr_extra; 24735 int32_t adj; 24736 24737 switch (tcp_strong_iss) { 24738 case 2: { 24739 /* Add time and MD5 components. */ 24740 uint32_t answer[4]; 24741 struct { 24742 uint32_t ports; 24743 in6_addr_t src; 24744 in6_addr_t dst; 24745 } arg; 24746 MD5_CTX context; 24747 24748 mutex_enter(&tcp_iss_key_lock); 24749 context = tcp_iss_key; 24750 mutex_exit(&tcp_iss_key_lock); 24751 arg.ports = tcp->tcp_ports; 24752 /* We use MAPPED addresses in tcp_iss_init */ 24753 arg.src = tcp->tcp_ip_src_v6; 24754 if (tcp->tcp_ipversion == IPV4_VERSION) { 24755 IN6_IPADDR_TO_V4MAPPED( 24756 tcp->tcp_ipha->ipha_dst, 24757 &arg.dst); 24758 } else { 24759 arg.dst = 24760 tcp->tcp_ip6h->ip6_dst; 24761 } 24762 MD5Update(&context, (uchar_t *)&arg, 24763 sizeof (arg)); 24764 MD5Final((uchar_t *)answer, &context); 24765 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24766 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24767 break; 24768 } 24769 case 1: 24770 /* Add time component and min random (i.e. 1). */ 24771 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24772 break; 24773 default: 24774 /* Add only time component. */ 24775 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24776 break; 24777 } 24778 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24779 /* 24780 * New ISS not guaranteed to be ISS_INCR/2 24781 * ahead of the current tcp_snxt, so add the 24782 * difference to tcp_iss_incr_extra. 24783 */ 24784 tcp_iss_incr_extra += adj; 24785 } 24786 /* 24787 * If tcp_clean_death() can not perform the task now, 24788 * drop the SYN packet and let the other side re-xmit. 24789 * Otherwise pass the SYN packet back in, since the 24790 * old tcp state has been cleaned up or freed. 24791 */ 24792 if (tcp_clean_death(tcp, 0, 27) == -1) 24793 goto done; 24794 /* 24795 * We will come back to tcp_rput_data 24796 * on the global queue. Packets destined 24797 * for the global queue will be checked 24798 * with global policy. But the policy for 24799 * this packet has already been checked as 24800 * this was destined for the detached 24801 * connection. We need to bypass policy 24802 * check this time by attaching a dummy 24803 * ipsec_in with ipsec_in_dont_check set. 24804 */ 24805 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24806 NULL) { 24807 TCP_STAT(tcp_time_wait_syn_success); 24808 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24809 return; 24810 } 24811 goto done; 24812 } 24813 24814 /* 24815 * rgap is the amount of stuff received out of window. A negative 24816 * value is the amount out of window. 24817 */ 24818 if (rgap < 0) { 24819 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24820 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24821 /* Fix seg_len and make sure there is something left. */ 24822 seg_len += rgap; 24823 if (seg_len <= 0) { 24824 if (flags & TH_RST) { 24825 goto done; 24826 } 24827 flags |= TH_ACK_NEEDED; 24828 seg_len = 0; 24829 goto process_ack; 24830 } 24831 } 24832 /* 24833 * Check whether we can update tcp_ts_recent. This test is 24834 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24835 * Extensions for High Performance: An Update", Internet Draft. 24836 */ 24837 if (tcp->tcp_snd_ts_ok && 24838 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24839 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24840 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24841 tcp->tcp_last_rcv_lbolt = lbolt64; 24842 } 24843 24844 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24845 /* Always ack out of order packets */ 24846 flags |= TH_ACK_NEEDED; 24847 seg_len = 0; 24848 } else if (seg_len > 0) { 24849 BUMP_MIB(&tcp_mib, tcpInClosed); 24850 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24851 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24852 } 24853 if (flags & TH_RST) { 24854 (void) tcp_clean_death(tcp, 0, 28); 24855 goto done; 24856 } 24857 if (flags & TH_SYN) { 24858 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24859 TH_RST|TH_ACK); 24860 /* 24861 * Do not delete the TCP structure if it is in 24862 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24863 */ 24864 goto done; 24865 } 24866 process_ack: 24867 if (flags & TH_ACK) { 24868 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24869 if (bytes_acked <= 0) { 24870 if (bytes_acked == 0 && seg_len == 0 && 24871 new_swnd == tcp->tcp_swnd) 24872 BUMP_MIB(&tcp_mib, tcpInDupAck); 24873 } else { 24874 /* Acks something not sent */ 24875 flags |= TH_ACK_NEEDED; 24876 } 24877 } 24878 if (flags & TH_ACK_NEEDED) { 24879 /* 24880 * Time to send an ack for some reason. 24881 */ 24882 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24883 tcp->tcp_rnxt, TH_ACK); 24884 } 24885 done: 24886 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24887 mp->b_datap->db_cksumstart = 0; 24888 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24889 TCP_STAT(tcp_time_wait_syn_fail); 24890 } 24891 freemsg(mp); 24892 } 24893 24894 /* 24895 * Return zero if the buffers are identical in length and content. 24896 * This is used for comparing extension header buffers. 24897 * Note that an extension header would be declared different 24898 * even if all that changed was the next header value in that header i.e. 24899 * what really changed is the next extension header. 24900 */ 24901 static boolean_t 24902 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24903 { 24904 if (!b_valid) 24905 blen = 0; 24906 24907 if (alen != blen) 24908 return (B_TRUE); 24909 if (alen == 0) 24910 return (B_FALSE); /* Both zero length */ 24911 return (bcmp(a, b, alen)); 24912 } 24913 24914 /* 24915 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24916 * Return B_FALSE if memory allocation fails - don't change any state! 24917 */ 24918 static boolean_t 24919 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24920 void *src, uint_t srclen) 24921 { 24922 void *dst; 24923 24924 if (!src_valid) 24925 srclen = 0; 24926 24927 ASSERT(*dstlenp == 0); 24928 if (src != NULL && srclen != 0) { 24929 dst = mi_alloc(srclen, BPRI_MED); 24930 if (dst == NULL) 24931 return (B_FALSE); 24932 } else { 24933 dst = NULL; 24934 } 24935 if (*dstp != NULL) { 24936 mi_free(*dstp); 24937 *dstp = NULL; 24938 *dstlenp = 0; 24939 } 24940 *dstp = dst; 24941 if (dst != NULL) 24942 *dstlenp = srclen; 24943 else 24944 *dstlenp = 0; 24945 return (B_TRUE); 24946 } 24947 24948 /* 24949 * Replace what is in *dst, *dstlen with the source. 24950 * Assumes tcp_allocbuf has already been called. 24951 */ 24952 static void 24953 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24954 void *src, uint_t srclen) 24955 { 24956 if (!src_valid) 24957 srclen = 0; 24958 24959 ASSERT(*dstlenp == srclen); 24960 if (src != NULL && srclen != 0) { 24961 bcopy(src, *dstp, srclen); 24962 } 24963 } 24964 24965 /* 24966 * Allocate a T_SVR4_OPTMGMT_REQ. 24967 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24968 * that tcp_rput_other can drop the acks. 24969 */ 24970 static mblk_t * 24971 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24972 { 24973 mblk_t *mp; 24974 struct T_optmgmt_req *tor; 24975 struct opthdr *oh; 24976 uint_t size; 24977 char *optptr; 24978 24979 size = sizeof (*tor) + sizeof (*oh) + optlen; 24980 mp = allocb(size, BPRI_MED); 24981 if (mp == NULL) 24982 return (NULL); 24983 24984 mp->b_wptr += size; 24985 mp->b_datap->db_type = M_PROTO; 24986 tor = (struct T_optmgmt_req *)mp->b_rptr; 24987 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24988 tor->MGMT_flags = T_NEGOTIATE; 24989 tor->OPT_length = sizeof (*oh) + optlen; 24990 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24991 24992 oh = (struct opthdr *)&tor[1]; 24993 oh->level = level; 24994 oh->name = cmd; 24995 oh->len = optlen; 24996 if (optlen != 0) { 24997 optptr = (char *)&oh[1]; 24998 bcopy(opt, optptr, optlen); 24999 } 25000 return (mp); 25001 } 25002 25003 /* 25004 * TCP Timers Implementation. 25005 */ 25006 static timeout_id_t 25007 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25008 { 25009 mblk_t *mp; 25010 tcp_timer_t *tcpt; 25011 tcp_t *tcp = connp->conn_tcp; 25012 25013 ASSERT(connp->conn_sqp != NULL); 25014 25015 TCP_DBGSTAT(tcp_timeout_calls); 25016 25017 if (tcp->tcp_timercache == NULL) { 25018 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25019 } else { 25020 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25021 mp = tcp->tcp_timercache; 25022 tcp->tcp_timercache = mp->b_next; 25023 mp->b_next = NULL; 25024 ASSERT(mp->b_wptr == NULL); 25025 } 25026 25027 CONN_INC_REF(connp); 25028 tcpt = (tcp_timer_t *)mp->b_rptr; 25029 tcpt->connp = connp; 25030 tcpt->tcpt_proc = f; 25031 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25032 return ((timeout_id_t)mp); 25033 } 25034 25035 static void 25036 tcp_timer_callback(void *arg) 25037 { 25038 mblk_t *mp = (mblk_t *)arg; 25039 tcp_timer_t *tcpt; 25040 conn_t *connp; 25041 25042 tcpt = (tcp_timer_t *)mp->b_rptr; 25043 connp = tcpt->connp; 25044 squeue_fill(connp->conn_sqp, mp, 25045 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25046 } 25047 25048 static void 25049 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25050 { 25051 tcp_timer_t *tcpt; 25052 conn_t *connp = (conn_t *)arg; 25053 tcp_t *tcp = connp->conn_tcp; 25054 25055 tcpt = (tcp_timer_t *)mp->b_rptr; 25056 ASSERT(connp == tcpt->connp); 25057 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25058 25059 /* 25060 * If the TCP has reached the closed state, don't proceed any 25061 * further. This TCP logically does not exist on the system. 25062 * tcpt_proc could for example access queues, that have already 25063 * been qprocoff'ed off. Also see comments at the start of tcp_input 25064 */ 25065 if (tcp->tcp_state != TCPS_CLOSED) { 25066 (*tcpt->tcpt_proc)(connp); 25067 } else { 25068 tcp->tcp_timer_tid = 0; 25069 } 25070 tcp_timer_free(connp->conn_tcp, mp); 25071 } 25072 25073 /* 25074 * There is potential race with untimeout and the handler firing at the same 25075 * time. The mblock may be freed by the handler while we are trying to use 25076 * it. But since both should execute on the same squeue, this race should not 25077 * occur. 25078 */ 25079 static clock_t 25080 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25081 { 25082 mblk_t *mp = (mblk_t *)id; 25083 tcp_timer_t *tcpt; 25084 clock_t delta; 25085 25086 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25087 25088 if (mp == NULL) 25089 return (-1); 25090 25091 tcpt = (tcp_timer_t *)mp->b_rptr; 25092 ASSERT(tcpt->connp == connp); 25093 25094 delta = untimeout(tcpt->tcpt_tid); 25095 25096 if (delta >= 0) { 25097 TCP_DBGSTAT(tcp_timeout_canceled); 25098 tcp_timer_free(connp->conn_tcp, mp); 25099 CONN_DEC_REF(connp); 25100 } 25101 25102 return (delta); 25103 } 25104 25105 /* 25106 * Allocate space for the timer event. The allocation looks like mblk, but it is 25107 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25108 * 25109 * Dealing with failures: If we can't allocate from the timer cache we try 25110 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25111 * points to b_rptr. 25112 * If we can't allocate anything using allocb_tryhard(), we perform a last 25113 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25114 * save the actual allocation size in b_datap. 25115 */ 25116 mblk_t * 25117 tcp_timermp_alloc(int kmflags) 25118 { 25119 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25120 kmflags & ~KM_PANIC); 25121 25122 if (mp != NULL) { 25123 mp->b_next = mp->b_prev = NULL; 25124 mp->b_rptr = (uchar_t *)(&mp[1]); 25125 mp->b_wptr = NULL; 25126 mp->b_datap = NULL; 25127 mp->b_queue = NULL; 25128 } else if (kmflags & KM_PANIC) { 25129 /* 25130 * Failed to allocate memory for the timer. Try allocating from 25131 * dblock caches. 25132 */ 25133 TCP_STAT(tcp_timermp_allocfail); 25134 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25135 if (mp == NULL) { 25136 size_t size = 0; 25137 /* 25138 * Memory is really low. Try tryhard allocation. 25139 */ 25140 TCP_STAT(tcp_timermp_allocdblfail); 25141 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25142 sizeof (tcp_timer_t), &size, kmflags); 25143 mp->b_rptr = (uchar_t *)(&mp[1]); 25144 mp->b_next = mp->b_prev = NULL; 25145 mp->b_wptr = (uchar_t *)-1; 25146 mp->b_datap = (dblk_t *)size; 25147 mp->b_queue = NULL; 25148 } 25149 ASSERT(mp->b_wptr != NULL); 25150 } 25151 TCP_DBGSTAT(tcp_timermp_alloced); 25152 25153 return (mp); 25154 } 25155 25156 /* 25157 * Free per-tcp timer cache. 25158 * It can only contain entries from tcp_timercache. 25159 */ 25160 void 25161 tcp_timermp_free(tcp_t *tcp) 25162 { 25163 mblk_t *mp; 25164 25165 while ((mp = tcp->tcp_timercache) != NULL) { 25166 ASSERT(mp->b_wptr == NULL); 25167 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25168 kmem_cache_free(tcp_timercache, mp); 25169 } 25170 } 25171 25172 /* 25173 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25174 * events there already (currently at most two events are cached). 25175 * If the event is not allocated from the timer cache, free it right away. 25176 */ 25177 static void 25178 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25179 { 25180 mblk_t *mp1 = tcp->tcp_timercache; 25181 25182 if (mp->b_wptr != NULL) { 25183 /* 25184 * This allocation is not from a timer cache, free it right 25185 * away. 25186 */ 25187 if (mp->b_wptr != (uchar_t *)-1) 25188 freeb(mp); 25189 else 25190 kmem_free(mp, (size_t)mp->b_datap); 25191 } else if (mp1 == NULL || mp1->b_next == NULL) { 25192 /* Cache this timer block for future allocations */ 25193 mp->b_rptr = (uchar_t *)(&mp[1]); 25194 mp->b_next = mp1; 25195 tcp->tcp_timercache = mp; 25196 } else { 25197 kmem_cache_free(tcp_timercache, mp); 25198 TCP_DBGSTAT(tcp_timermp_freed); 25199 } 25200 } 25201 25202 /* 25203 * End of TCP Timers implementation. 25204 */ 25205 25206 static void 25207 tcp_setqfull(tcp_t *tcp) 25208 { 25209 queue_t *q = tcp->tcp_wq; 25210 25211 if (!(q->q_flag & QFULL)) { 25212 TCP_STAT(tcp_flwctl_on); 25213 mutex_enter(QLOCK(q)); 25214 q->q_flag |= QFULL; 25215 mutex_exit(QLOCK(q)); 25216 } 25217 } 25218 25219 static void 25220 tcp_clrqfull(tcp_t *tcp) 25221 { 25222 queue_t *q = tcp->tcp_wq; 25223 25224 if (q->q_flag & QFULL) { 25225 mutex_enter(QLOCK(q)); 25226 q->q_flag &= ~QFULL; 25227 mutex_exit(QLOCK(q)); 25228 if (q->q_flag & QWANTW) 25229 qbackenable(q, 0); 25230 } 25231 } 25232 25233 /* 25234 * TCP Kstats implementation 25235 */ 25236 static void 25237 tcp_kstat_init(void) 25238 { 25239 tcp_named_kstat_t template = { 25240 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25241 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25242 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25243 { "maxConn", KSTAT_DATA_INT32, 0 }, 25244 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25245 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25246 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25247 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25248 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25249 { "inSegs", KSTAT_DATA_UINT32, 0 }, 25250 { "outSegs", KSTAT_DATA_UINT32, 0 }, 25251 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25252 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25253 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25254 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25255 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25256 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25257 { "outAck", KSTAT_DATA_UINT32, 0 }, 25258 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25259 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25260 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25261 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25262 { "outControl", KSTAT_DATA_UINT32, 0 }, 25263 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25264 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25265 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25266 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25267 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25268 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25269 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25270 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25271 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25272 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25273 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25274 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25275 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25276 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25277 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25278 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25279 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25280 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25281 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25282 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25283 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25284 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25285 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25286 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25287 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25288 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25289 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25290 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25291 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25292 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25293 }; 25294 25295 tcp_mibkp = kstat_create("tcp", 0, "tcp", "mib2", KSTAT_TYPE_NAMED, 25296 NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25297 25298 if (tcp_mibkp == NULL) 25299 return; 25300 25301 template.rtoAlgorithm.value.ui32 = 4; 25302 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25303 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25304 template.maxConn.value.i32 = -1; 25305 25306 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25307 25308 tcp_mibkp->ks_update = tcp_kstat_update; 25309 25310 kstat_install(tcp_mibkp); 25311 } 25312 25313 static void 25314 tcp_kstat_fini(void) 25315 { 25316 25317 if (tcp_mibkp != NULL) { 25318 kstat_delete(tcp_mibkp); 25319 tcp_mibkp = NULL; 25320 } 25321 } 25322 25323 static int 25324 tcp_kstat_update(kstat_t *kp, int rw) 25325 { 25326 tcp_named_kstat_t *tcpkp; 25327 tcp_t *tcp; 25328 connf_t *connfp; 25329 conn_t *connp; 25330 int i; 25331 25332 if (!kp || !kp->ks_data) 25333 return (EIO); 25334 25335 if (rw == KSTAT_WRITE) 25336 return (EACCES); 25337 25338 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25339 25340 tcpkp->currEstab.value.ui32 = 0; 25341 25342 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25343 connfp = &ipcl_globalhash_fanout[i]; 25344 connp = NULL; 25345 while ((connp = tcp_get_next_conn(connfp, connp))) { 25346 tcp = connp->conn_tcp; 25347 switch (tcp_snmp_state(tcp)) { 25348 case MIB2_TCP_established: 25349 case MIB2_TCP_closeWait: 25350 tcpkp->currEstab.value.ui32++; 25351 break; 25352 } 25353 } 25354 } 25355 25356 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25357 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25358 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25359 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25360 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25361 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25362 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25363 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25364 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25365 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25366 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25367 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25368 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25369 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25370 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25371 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25372 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25373 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25374 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25375 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25376 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25377 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25378 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25379 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25380 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25381 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25382 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25383 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25384 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25385 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25386 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25387 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25388 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25389 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25390 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25391 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25392 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25393 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25394 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25395 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25396 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25397 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25398 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25399 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25400 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25401 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25402 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25403 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25404 25405 return (0); 25406 } 25407 25408 void 25409 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25410 { 25411 uint16_t hdr_len; 25412 ipha_t *ipha; 25413 uint8_t *nexthdrp; 25414 tcph_t *tcph; 25415 25416 /* Already has an eager */ 25417 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25418 TCP_STAT(tcp_reinput_syn); 25419 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25420 connp, SQTAG_TCP_REINPUT_EAGER); 25421 return; 25422 } 25423 25424 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25425 case IPV4_VERSION: 25426 ipha = (ipha_t *)mp->b_rptr; 25427 hdr_len = IPH_HDR_LENGTH(ipha); 25428 break; 25429 case IPV6_VERSION: 25430 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25431 &hdr_len, &nexthdrp)) { 25432 CONN_DEC_REF(connp); 25433 freemsg(mp); 25434 return; 25435 } 25436 break; 25437 } 25438 25439 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25440 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25441 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25442 mp->b_datap->db_cksumstart = (intptr_t)sqp; 25443 } 25444 25445 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25446 SQTAG_TCP_REINPUT); 25447 } 25448 25449 static squeue_func_t 25450 tcp_squeue_switch(int val) 25451 { 25452 squeue_func_t rval = squeue_fill; 25453 25454 switch (val) { 25455 case 1: 25456 rval = squeue_enter_nodrain; 25457 break; 25458 case 2: 25459 rval = squeue_enter; 25460 break; 25461 default: 25462 break; 25463 } 25464 return (rval); 25465 } 25466 25467 static void 25468 tcp_squeue_add(squeue_t *sqp) 25469 { 25470 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25471 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25472 25473 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25474 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25475 sqp, TCP_TIME_WAIT_DELAY); 25476 } 25477