xref: /titanic_52/usr/src/uts/common/inet/sadb.h (revision d7448364b360ed82582291005bd9831f2a5d18a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_INET_SADB_H
27 #define	_INET_SADB_H
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #ifdef	__cplusplus
32 extern "C" {
33 #endif
34 
35 #include <inet/ipsec_info.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/api.h>
38 #include <sys/note.h>
39 
40 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
41 
42 /*
43  * Return codes of IPsec processing functions.
44  */
45 typedef enum {
46 	IPSEC_STATUS_SUCCESS = 1,
47 	IPSEC_STATUS_FAILED = 2,
48 	IPSEC_STATUS_PENDING = 3
49 } ipsec_status_t;
50 
51 /*
52  * IP security association.  Synchronization assumes 32-bit loads, so
53  * the 64-bit quantities can't even be be read w/o locking it down!
54  */
55 
56 /* keying info */
57 typedef struct ipsa_key_s {
58 	void *sak_key;		/* Algorithm key. */
59 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
60 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
61 	uint_t sak_algid;	/* Algorithm ID number. */
62 } ipsa_key_t;
63 
64 /* the security association */
65 typedef struct ipsa_s {
66 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
67 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
68 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
69 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
70 	/*
71 	 * NOTE: I may need more pointers, depending on future SA
72 	 * requirements.
73 	 */
74 	ipsa_key_t ipsa_authkeydata;
75 #define	ipsa_authkey ipsa_authkeydata.sak_key
76 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
77 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
78 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
79 	ipsa_key_t ipsa_encrkeydata;
80 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
81 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
82 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
83 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
84 
85 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
86 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
87 	uint64_t *ipsa_integ;	/* Integrity bitmap */
88 	uint64_t *ipsa_sens;	/* Sensitivity bitmap */
89 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
90 
91 	/*
92 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
93 	 * need a bit vector to support a replay window of 255.  256 is a nice
94 	 * round number, so I support that.
95 	 *
96 	 * Use an array of uint64_t for best performance on 64-bit
97 	 * processors.  (And hope that 32-bit compilers can handle things
98 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
99 	 * ints.
100 	 */
101 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
102 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
103 
104 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
105 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
106 
107 	/*
108 	 * Reference count semantics:
109 	 *
110 	 *	An SA has a reference count of 1 if something's pointing
111 	 *	to it.  This includes being in a hash table.  So if an
112 	 *	SA is in a hash table, it has a reference count of at least 1.
113 	 *
114 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
115 	 *	said assignment.  When a ptr. to an IPSA is released
116 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
117 	 *	will free the IPSA.
118 	 */
119 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
120 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
121 	uint_t ipsa_refcnt;	/* Reference count. */
122 
123 	/*
124 	 * The following four time fields are the ones monitored by ah_ager()
125 	 * and esp_ager() respectively.  They are all absolute wall-clock
126 	 * times.  The times of creation (i.e. add time) and first use are
127 	 * pretty straightforward.  The soft and hard expire times are
128 	 * derived from the times of first use and creation, plus the minimum
129 	 * expiration times in the fields that follow this.
130 	 *
131 	 * For example, if I had a hard add time of 30 seconds, and a hard
132 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
133 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
134 	 * seconds would be earlier than the add time plus 30 seconds, then
135 	 * ipsa_hardexpiretime would become this earlier time.
136 	 */
137 	time_t ipsa_addtime;	/* Time I was added. */
138 	time_t ipsa_usetime;	/* Time of my first use. */
139 	time_t ipsa_lastuse;	/* Time of my last use. */
140 	time_t ipsa_last_nat_t_ka;	/* Time of my last NAT-T keepalive. */
141 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
142 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
143 
144 	/*
145 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
146 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
147 	 * are in... bytes.
148 	 */
149 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
150 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
151 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
152 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
153 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
154 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
155 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
156 
157 	/*
158 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
159 	 * support them, except to record them per the PF_KEYv2 spec.
160 	 */
161 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
162 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
163 	uint_t ipsa_alloc;	/* Allocations made. */
164 
165 	uint_t ipsa_integlen;	/* Length of the integrity bitmap (bytes). */
166 	uint_t ipsa_senslen;	/* Length of the sensitivity bitmap (bytes). */
167 
168 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
169 	uint_t ipsa_dpd;	/* Domain for sensitivity bit vectors. */
170 	uint_t ipsa_senslevel;	/* Sensitivity level. */
171 	uint_t ipsa_integlevel;	/* Integrity level. */
172 	uint_t ipsa_state;	/* State of my association. */
173 	uint_t ipsa_replay_wsize; /* Size of replay window */
174 	uint32_t ipsa_flags;	/* Flags for security association. */
175 	uint32_t ipsa_spi;	/* Security parameters index. */
176 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
177 	uint32_t ipsa_kmp;	/* key management proto */
178 	uint32_t ipsa_kmc;	/* key management cookie */
179 
180 	boolean_t ipsa_haspeer;		/* Has peer in another table. */
181 
182 	/*
183 	 * Address storage.
184 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
185 	 *
186 	 * Address families (per sys/socket.h) guide us.  We could have just
187 	 * used sockaddr_storage
188 	 */
189 	sa_family_t ipsa_addrfam;
190 	sa_family_t ipsa_innerfam;	/* Inner AF can be != src/dst AF. */
191 
192 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
193 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
194 	uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
195 	uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
196 
197 	uint8_t ipsa_innersrcpfx;
198 	uint8_t ipsa_innerdstpfx;
199 
200 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
201 	uint16_t ipsa_local_nat_port;	/* Local NAT-T port.  (0 --> 4500) */
202 	uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
203 
204 	/* these can only be v4 */
205 	uint32_t ipsa_natt_addr_loc;
206 	uint32_t ipsa_natt_addr_rem;
207 
208 	/*
209 	 * icmp type and code. *_end are to specify ranges. if only
210 	 * a single value, * and *_end are the same value.
211 	 */
212 	uint8_t ipsa_icmp_type;
213 	uint8_t ipsa_icmp_type_end;
214 	uint8_t ipsa_icmp_code;
215 	uint8_t ipsa_icmp_code_end;
216 
217 	/*
218 	 * For the kernel crypto framework.
219 	 */
220 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
221 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
222 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
223 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
224 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
225 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
226 	size_t ipsa_mac_len;			/* auth MAC length */
227 	size_t ipsa_iv_len;			/* encr IV length */
228 
229 	/*
230 	 * Input and output processing functions called from IP.
231 	 */
232 	ipsec_status_t (*ipsa_output_func)(mblk_t *);
233 	ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
234 
235 	/*
236 	 * Soft reference to paired SA
237 	 */
238 	uint32_t	ipsa_otherspi;
239 
240 	/* MLS boxen will probably need more fields in here. */
241 
242 	netstack_t	*ipsa_netstack;	/* Does not have a netstack_hold */
243 } ipsa_t;
244 
245 /*
246  * ipsa_t address handling macros.  We want these to be inlined, and deal
247  * with 32-bit words to avoid bcmp/bcopy calls.
248  *
249  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
250  * that we have 32-bit alignment on everything.
251  */
252 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
253 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
254 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
255 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
256 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
257 	(((fam) == AF_INET) || \
258 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
259 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
260 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
261 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
262 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
263 	if ((fam) == AF_INET6) {\
264 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
265 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
266 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
267 
268 /*
269  * ipsa_t reference hold/release macros.
270  *
271  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
272  * REFRELE.  An ipsa_t that is newly inserted into the table should have
273  * a reference count of 1 (for the table's pointer), plus 1 more for every
274  * pointer that is referencing the ipsa_t.
275  */
276 
277 #define	IPSA_REFHOLD(ipsa) {			\
278 	atomic_add_32(&(ipsa)->ipsa_refcnt, 1);	\
279 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
280 }
281 
282 /*
283  * Decrement the reference count on the SA.
284  * In architectures e.g sun4u, where atomic_add_32_nv is just
285  * a cas, we need to maintain the right memory barrier semantics
286  * as that of mutex_exit i.e all the loads and stores should complete
287  * before the cas is executed. membar_exit() does that here.
288  */
289 
290 #define	IPSA_REFRELE(ipsa) {					\
291 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
292 	membar_exit();						\
293 	if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0)	\
294 		((ipsa)->ipsa_freefunc)(ipsa);			\
295 }
296 
297 /*
298  * Security association hash macros and definitions.  For now, assume the
299  * IPsec model, and hash outbounds on destination address, and inbounds on
300  * SPI.
301  */
302 
303 #define	IPSEC_DEFAULT_HASH_SIZE 256
304 
305 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
306 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
307 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
308 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
309 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
310 
311 /*
312  * Syntactic sugar to find the appropriate hash bucket directly.
313  */
314 
315 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
316 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
317 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
318 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
319 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
320 
321 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
322 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
323 						/* backward compat. */
324 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
325 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
326 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
327 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
328 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
329 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
330 
331 #define	IPSA_F_HW	0x200000		/* hwaccel capable SA */
332 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
333 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
334 #define	IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
335 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
336 	SADB_X_SAFLAGS_NATTED)
337 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
338 #define	IPSA_F_PAIRED	SADB_X_SAFLAGS_PAIRED	/* SA is one of a pair */
339 #define	IPSA_F_OUTBOUND	SADB_X_SAFLAGS_OUTBOUND	/* SA direction bit */
340 #define	IPSA_F_INBOUND	SADB_X_SAFLAGS_INBOUND	/* SA direction bit */
341 #define	IPSA_F_TUNNEL	SADB_X_SAFLAGS_TUNNEL
342 
343 /*
344  * Sets of flags that are allowed to by set or modified by PF_KEY apps.
345  */
346 #define	AH_UPDATE_SETTABLE_FLAGS \
347 	(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
348 	SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
349 	SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
350 	SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
351 
352 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
353 #define	ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
354 
355 #define	AH_ADD_SETTABLE_FLAGS \
356 	(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
357 	SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
358 	SADB_SAFLAGS_NOREPLAY)
359 
360 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
361 #define	ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
362 	SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
363 
364 
365 
366 /* SA states are important for handling UPDATE PF_KEY messages. */
367 #define	IPSA_STATE_LARVAL	SADB_SASTATE_LARVAL
368 #define	IPSA_STATE_MATURE	SADB_SASTATE_MATURE
369 #define	IPSA_STATE_DYING	SADB_SASTATE_DYING
370 #define	IPSA_STATE_DEAD		SADB_SASTATE_DEAD
371 
372 /*
373  * NOTE:  If the document authors do things right in defining algorithms, we'll
374  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
375  *	  etc.
376  */
377 
378 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
379 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
380 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
381 
382 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
383 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
384 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
385 
386 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
387 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
388 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
389 
390 /*
391  * Protect each ipsa_t bucket (and linkage) with a lock.
392  */
393 
394 typedef struct isaf_s {
395 	ipsa_t *isaf_ipsa;
396 	kmutex_t isaf_lock;
397 	uint64_t isaf_gen;
398 } isaf_t;
399 
400 /*
401  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
402  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
403  */
404 
405 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
406 				/* waiting for an ACQUIRE to finish. */
407 
408 typedef struct ipsacq_s {
409 	struct ipsacq_s *ipsacq_next;
410 	struct ipsacq_s **ipsacq_ptpn;
411 	kmutex_t *ipsacq_linklock;
412 	struct ipsec_policy_s  *ipsacq_policy;
413 	struct ipsec_action_s  *ipsacq_act;
414 
415 	sa_family_t ipsacq_addrfam;	/* Address family. */
416 	sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
417 	int ipsacq_numpackets;		/* How many packets queued up so far. */
418 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
419 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
420 
421 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
422 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
423 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
424 
425 	/* These two point inside the last mblk inserted. */
426 	uint32_t *ipsacq_srcaddr;
427 	uint32_t *ipsacq_dstaddr;
428 
429 	/* Cache these instead of point so we can mask off accordingly */
430 	uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
431 	uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
432 
433 	/* These may change per-acquire. */
434 	uint16_t ipsacq_srcport;
435 	uint16_t ipsacq_dstport;
436 	uint8_t ipsacq_proto;
437 	uint8_t ipsacq_inner_proto;
438 	uint8_t ipsacq_innersrcpfx;
439 	uint8_t ipsacq_innerdstpfx;
440 
441 	/* icmp type and code of triggering packet (if applicable) */
442 	uint8_t	ipsacq_icmp_type;
443 	uint8_t ipsacq_icmp_code;
444 } ipsacq_t;
445 
446 /*
447  * Kernel-generated sequence numbers will be no less than 0x80000000 to
448  * forestall any cretinous problems with manual keying accidentally updating
449  * an ACQUIRE entry.
450  */
451 #define	IACQF_LOWEST_SEQ 0x80000000
452 
453 #define	SADB_AGE_INTERVAL_DEFAULT 1000
454 
455 /*
456  * ACQUIRE fanout.  Protect each linkage with a lock.
457  */
458 
459 typedef struct iacqf_s {
460 	ipsacq_t *iacqf_ipsacq;
461 	kmutex_t iacqf_lock;
462 } iacqf_t;
463 
464 /*
465  * A (network protocol, ipsec protocol) specific SADB.
466  * (i.e., one each for {ah, esp} and {v4, v6}.
467  *
468  * Keep outbound assocs about the same as ire_cache entries for now.
469  * One danger point, multiple SAs for a single dest will clog a bucket.
470  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
471  */
472 
473 typedef struct sadb_s
474 {
475 	isaf_t	*sdb_of;
476 	isaf_t	*sdb_if;
477 	iacqf_t	*sdb_acq;
478 	int	sdb_hashsize;
479 } sadb_t;
480 
481 /*
482  * A pair of SADB's (one for v4, one for v6), and related state (including
483  * acquire callbacks).
484  */
485 
486 typedef struct sadbp_s
487 {
488 	uint32_t	s_satype;
489 	queue_t		*s_ip_q;
490 	uint32_t	*s_acquire_timeout;
491 	void 		(*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
492 	sadb_t		s_v4;
493 	sadb_t		s_v6;
494 	uint32_t	s_addflags;
495 	uint32_t	s_updateflags;
496 } sadbp_t;
497 
498 /*
499  * A pair of SA's for a single connection, the structure contains a
500  * pointer to a SA and the SA its paired with (opposite direction) as well
501  * as the SA's respective hash buckets.
502  */
503 typedef struct ipsap_s
504 {
505 	isaf_t		*ipsap_bucket;
506 	ipsa_t		*ipsap_sa_ptr;
507 	isaf_t		*ipsap_pbucket;
508 	ipsa_t		*ipsap_psa_ptr;
509 } ipsap_t;
510 
511 typedef struct templist_s
512 {
513 	ipsa_t		*ipsa;
514 	struct templist_s	*next;
515 } templist_t;
516 
517 /* Pointer to an all-zeroes IPv6 address. */
518 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
519 
520 /*
521  * Form unique id from ipsec_out_t
522  */
523 
524 #define	SA_FORM_UNIQUE_ID(io)				\
525 	SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
526 		((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \
527 		    IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \
528 		((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0))
529 
530 /*
531  * This macro is used to generate unique ids (along with the addresses, both
532  * inner and outer) for outbound datagrams that require unique SAs.
533  *
534  * N.B. casts and unsigned shift amounts discourage unwarranted
535  * sign extension of dstport, proto, and iproto.
536  *
537  * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
538  *
539  *   6               4      43      33              11
540  *   3               7      09      21              65              0
541  *   +---------------*-------+-------+--------------+---------------+
542  *   |  MUST-BE-ZERO |<iprot>|<proto>| <src port>   |  <dest port>  |
543  *   +---------------*-------+-------+--------------+---------------+
544  *
545  * If there are inner addresses (tunnel mode) the ports come from the
546  * inner addresses.  If there are no inner addresses, the ports come from
547  * the outer addresses (transport mode).  Tunnel mode MUST have <proto>
548  * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
549  */
550 #define	SA_UNIQUE_ID(srcport, dstport, proto, iproto) 	\
551 	((srcport) | ((uint64_t)(dstport) << 16U) | \
552 	((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
553 
554 /*
555  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
556  * from a packet to an SA.
557  */
558 
559 #define	SA_UNIQUE_MASK(srcport, dstport, proto, iproto) 	\
560 	SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0,		\
561 		    (dstport != 0) ? 0xffff : 0,		\
562 		    (proto != 0) ? 0xff : 0,			\
563 		    (iproto != 0) ? 0xff : 0)
564 
565 /*
566  * Decompose unique id back into its original fields.
567  */
568 #define	SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
569 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
570 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
571 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
572 
573 /*
574  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
575  * already called.
576  */
577 
578 /* SA retrieval (inbound and outbound) */
579 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
580     sa_family_t);
581 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
582     sa_family_t, uint8_t);
583 ipsap_t *get_ipsa_pair(sadb_sa_t *, sadb_address_t *, sadb_address_t *,
584     sadbp_t *);
585 void destroy_ipsa_pair(ipsap_t *);
586 int update_pairing(ipsap_t *, keysock_in_t *, int *, sadbp_t *);
587 
588 /* SA insertion. */
589 int sadb_insertassoc(ipsa_t *, isaf_t *);
590 
591 /* SA table construction and destruction. */
592 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
593 void sadbp_flush(sadbp_t *, netstack_t *);
594 void sadbp_destroy(sadbp_t *, netstack_t *);
595 
596 /* SA insertion and deletion. */
597 int sadb_insertassoc(ipsa_t *, isaf_t *);
598 void sadb_unlinkassoc(ipsa_t *);
599 
600 /* Support routines to interface a keysock consumer to PF_KEY. */
601 mblk_t *sadb_keysock_out(minor_t);
602 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *);
603 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
604     ipsa_t *);
605 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
606 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
607     void *, timeout_id_t *, int);
608 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
609 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
610 int sadb_addrset(ire_t *);
611 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
612     uint8_t);
613 
614 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *);
615 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
616     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
617     netstack_t *, sadbp_t *);
618 void sadb_set_usetime(ipsa_t *);
619 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
620 int sadb_update_sa(mblk_t *, keysock_in_t *, sadbp_t *,
621     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
622     netstack_t *, uint8_t);
623 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
624 
625 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
626 struct ipsec_stack;
627 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
628 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *);
629 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
630 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
631 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
632 int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *);
633 void sadb_replay_delete(ipsa_t *);
634 void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *);
635 
636 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
637     uint_t *, uint_t, short);
638 void sadb_sa_refrele(void *target);
639 void sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *);
640 mblk_t *sadb_clear_lpkt(ipsa_t *);
641 
642 /*
643  * Hw accel-related calls (downloading sadb to driver)
644  */
645 void sadb_ill_download(ill_t *, uint_t);
646 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
647 /*
648  * Sub-set of the IPsec hardware acceleration capabilities functions
649  * implemented by ip_if.c
650  */
651 extern	boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *,
652     netstack_t *);
653 extern	void	ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *,
654     netstack_t *);
655 
656 
657 /*
658  * One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
659  */
660 extern boolean_t sadb_t_bind_req(queue_t *, int);
661 /*PRINTFLIKE6*/
662 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
663     ushort_t, char *, ...)
664     __KPRINTFLIKE(6);
665 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
666     void *, int, netstack_t *);
667 
668 /*
669  * Algorithm types.
670  */
671 
672 #define	IPSEC_NALGTYPES 	2
673 
674 typedef enum ipsec_algtype {
675 	IPSEC_ALG_AUTH = 0,
676 	IPSEC_ALG_ENCR = 1
677 } ipsec_algtype_t;
678 
679 /*
680  * Definitions as per IPsec/ISAKMP DOI.
681  */
682 
683 #define	IPSEC_MAX_ALGS		256
684 #define	PROTO_IPSEC_AH		2
685 #define	PROTO_IPSEC_ESP		3
686 
687 /*
688  * Common algorithm info.
689  */
690 typedef struct ipsec_alginfo
691 {
692 	uint8_t		alg_id;
693 	uint8_t		alg_flags;
694 	uint16_t	*alg_key_sizes;
695 	uint16_t	*alg_block_sizes;
696 	uint16_t	alg_nkey_sizes;
697 	uint16_t	alg_nblock_sizes;
698 	uint16_t	alg_minbits;
699 	uint16_t	alg_maxbits;
700 	uint16_t	alg_datalen;
701 	/*
702 	 * increment: number of bits from keysize to keysize
703 	 * default: # of increments from min to default key len
704 	 */
705 	uint16_t	alg_increment;
706 	uint16_t	alg_default;
707 	uint16_t	alg_default_bits;
708 	/*
709 	 * Min, max, and default key sizes effectively supported
710 	 * by the encryption framework.
711 	 */
712 	uint16_t	alg_ef_minbits;
713 	uint16_t	alg_ef_maxbits;
714 	uint16_t	alg_ef_default;
715 	uint16_t	alg_ef_default_bits;
716 
717 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
718 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
719 } ipsec_alginfo_t;
720 
721 #define	alg_datalen alg_block_sizes[0]
722 
723 #define	ALG_FLAG_VALID	0x01
724 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
725 
726 /*
727  * Software crypto execution mode.
728  */
729 typedef enum {
730 	IPSEC_ALGS_EXEC_SYNC = 0,
731 	IPSEC_ALGS_EXEC_ASYNC = 1
732 } ipsec_algs_exec_mode_t;
733 
734 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
735 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
736 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
737     netstack_t *ns);
738 extern void ipsec_alg_free(ipsec_alginfo_t *);
739 extern void ipsec_register_prov_update(void);
740 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t,
741     netstack_t *);
742 
743 /*
744  * Context templates management.
745  */
746 
747 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
748 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
749 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
750 		mutex_enter(&assoc->ipsa_lock);				\
751 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
752 			ipsec_stack_t *ipss;				\
753 									\
754 			ipss = assoc->ipsa_netstack->netstack_ipsec;	\
755 			mutex_enter(&ipss->ipsec_alg_lock);		\
756 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
757 			mutex_exit(&ipss->ipsec_alg_lock);		\
758 		}							\
759 		mutex_exit(&assoc->ipsa_lock);				\
760 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
761 			_tmpl = NULL;					\
762 	}								\
763 }
764 
765 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
766 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
767 
768 /* key checking */
769 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
770 
771 typedef struct ipsec_kstats_s {
772 	kstat_named_t esp_stat_in_requests;
773 	kstat_named_t esp_stat_in_discards;
774 	kstat_named_t esp_stat_lookup_failure;
775 	kstat_named_t ah_stat_in_requests;
776 	kstat_named_t ah_stat_in_discards;
777 	kstat_named_t ah_stat_lookup_failure;
778 	kstat_named_t sadb_acquire_maxpackets;
779 	kstat_named_t sadb_acquire_qhiwater;
780 } ipsec_kstats_t;
781 
782 /*
783  * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
784  * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
785  * fails, it will be NULL. Note this is done for all stack instances,
786  * so it *could* fail. hence a non-NULL checking is done for
787  * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
788  */
789 #define	IP_ESP_BUMP_STAT(ipss, x)					\
790 do {									\
791 	if ((ipss)->ipsec_kstats != NULL)				\
792 		((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++;	\
793 _NOTE(CONSTCOND)							\
794 } while (0)
795 
796 #define	IP_AH_BUMP_STAT(ipss, x)					\
797 do {									\
798 	if ((ipss)->ipsec_kstats != NULL)				\
799 		((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++;	\
800 _NOTE(CONSTCOND)							\
801 } while (0)
802 
803 #define	IP_ACQUIRE_STAT(ipss, val, new)					\
804 do {									\
805 	if ((ipss)->ipsec_kstats != NULL &&				\
806 	    ((uint64_t)(new)) >						\
807 	    ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64)	\
808 		((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
809 			((uint64_t)(new));				\
810 _NOTE(CONSTCOND)							\
811 } while (0)
812 
813 #ifdef	__cplusplus
814 }
815 #endif
816 
817 #endif /* _INET_SADB_H */
818