xref: /titanic_52/usr/src/uts/common/inet/sadb.h (revision 98c507c4288789fc67365c4cb51f80eb641e7182)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_INET_SADB_H
27 #define	_INET_SADB_H
28 
29 #ifdef	__cplusplus
30 extern "C" {
31 #endif
32 
33 #include <inet/ipsec_info.h>
34 #include <sys/crypto/common.h>
35 #include <sys/crypto/api.h>
36 #include <sys/note.h>
37 
38 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
39 
40 /*
41  * Return codes of IPsec processing functions.
42  */
43 typedef enum {
44 	IPSEC_STATUS_SUCCESS = 1,
45 	IPSEC_STATUS_FAILED = 2,
46 	IPSEC_STATUS_PENDING = 3
47 } ipsec_status_t;
48 
49 /*
50  * The Initialization Vector (also known as IV or Nonce) used to
51  * initialize the Block Cipher, is made up of a Counter and a Salt.
52  * The Counter is fixed at 64 bits and is incremented for each packet.
53  * The Salt value can be any whole byte value upto 64 bits. This is
54  * algorithm mode specific and can be configured with ipsecalgs(1m).
55  *
56  * We only support whole byte salt lengths, this is because the salt is
57  * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
58  * which configures the salt length as a number of bytes. Checks are
59  * made to ensure the salt length defined in ipsecalgs(1m) fits in
60  * the ipsec_nonce_t.
61  *
62  * The Salt value remains constant for the life of the SA, the Salt is
63  * know to both peers, but NOT transmitted on the network. The Counter
64  * portion of the nonce is transmitted over the network with each packet
65  * and is confusingly described as the Initialization Vector by RFCs
66  * 4309/4106.
67  *
68  * The maximum Initialization Vector length is 128 bits, if the actual
69  * size is less, its padded internally by the algorithm.
70  *
71  * The nonce structure is defined like this in the SA (ipsa_t)to ensure
72  * the Initilization Vector (counter) is 64 bit aligned, because it will
73  * be incremented as an uint64_t. The nonce as used by the algorithms is
74  * a straight uint8_t array.
75  *
76  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
77  *                     | | | | |x|x|x|x|               |
78  *                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
79  * salt_offset         <------>
80  * ipsa_saltlen                <------->
81  * ipsa_nonce_buf------^
82  * ipsa_salt-------------~~~~~~^
83  * ipsa_nonce------------~~~~~~^
84  * ipsa_iv-----------------------------^
85  */
86 typedef struct ipsec_nonce_s {
87 	uint8_t		salt[MAXSALTSIZE];
88 	uint64_t	iv;
89 } ipsec_nonce_t;
90 
91 /*
92  * IP security association.  Synchronization assumes 32-bit loads, so
93  * the 64-bit quantities can't even be be read w/o locking it down!
94  */
95 
96 /* keying info */
97 typedef struct ipsa_key_s {
98 	uint8_t *sak_key;		/* Algorithm key. */
99 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
100 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
101 	uint_t sak_algid;	/* Algorithm ID number. */
102 } ipsa_key_t;
103 
104 typedef struct ipsa_s {
105 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
106 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
107 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
108 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
109 	void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
110 	    uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
111 	/*
112 	 * NOTE: I may need more pointers, depending on future SA
113 	 * requirements.
114 	 */
115 	ipsa_key_t ipsa_authkeydata;
116 #define	ipsa_authkey ipsa_authkeydata.sak_key
117 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
118 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
119 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
120 	ipsa_key_t ipsa_encrkeydata;
121 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
122 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
123 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
124 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
125 
126 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
127 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
128 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
129 	mblk_t	*ipsa_bpkt_head;	/* Packets received while idle */
130 	mblk_t	*ipsa_bpkt_tail;
131 #define	SADB_MAX_IDLEPKTS	100
132 	uint8_t	ipsa_mblkcnt;	/* Number of packets received while idle */
133 
134 	/*
135 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
136 	 * need a bit vector to support a replay window of 255.  256 is a nice
137 	 * round number, so I support that.
138 	 *
139 	 * Use an array of uint64_t for best performance on 64-bit
140 	 * processors.  (And hope that 32-bit compilers can handle things
141 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
142 	 * ints.
143 	 */
144 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
145 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
146 
147 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
148 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
149 
150 	/*
151 	 * Reference count semantics:
152 	 *
153 	 *	An SA has a reference count of 1 if something's pointing
154 	 *	to it.  This includes being in a hash table.  So if an
155 	 *	SA is in a hash table, it has a reference count of at least 1.
156 	 *
157 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
158 	 *	said assignment.  When a ptr. to an IPSA is released
159 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
160 	 *	will free the IPSA.
161 	 */
162 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
163 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
164 	uint_t ipsa_refcnt;	/* Reference count. */
165 
166 	/*
167 	 * The following four time fields are the ones monitored by ah_ager()
168 	 * and esp_ager() respectively.  They are all absolute wall-clock
169 	 * times.  The times of creation (i.e. add time) and first use are
170 	 * pretty straightforward.  The soft and hard expire times are
171 	 * derived from the times of first use and creation, plus the minimum
172 	 * expiration times in the fields that follow this.
173 	 *
174 	 * For example, if I had a hard add time of 30 seconds, and a hard
175 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
176 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
177 	 * seconds would be earlier than the add time plus 30 seconds, then
178 	 * ipsa_hardexpiretime would become this earlier time.
179 	 */
180 	time_t ipsa_addtime;	/* Time I was added. */
181 	time_t ipsa_usetime;	/* Time of my first use. */
182 	time_t ipsa_lastuse;	/* Time of my last use. */
183 	time_t ipsa_idletime;	/* Seconds of idle time */
184 	time_t ipsa_last_nat_t_ka;	/* Time of my last NAT-T keepalive. */
185 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
186 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
187 	time_t ipsa_idleexpiretime;	/* Time of my next idle expire time */
188 
189 	struct ipsec_nonce_s *ipsa_nonce_buf;
190 	uint8_t	*ipsa_nonce;
191 	uint_t ipsa_nonce_len;
192 	uint8_t	*ipsa_salt;
193 	uint_t ipsa_saltbits;
194 	uint_t ipsa_saltlen;
195 	uint64_t *ipsa_iv;
196 
197 	uint64_t ipsa_iv_hardexpire;
198 	uint64_t ipsa_iv_softexpire;
199 	/*
200 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
201 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
202 	 * are in... bytes.
203 	 */
204 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
205 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
206 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
207 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
208 	time_t ipsa_idleaddlt;	/* Seconds of idle time after add */
209 	time_t ipsa_idleuselt;	/* Seconds of idle time after first use */
210 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
211 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
212 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
213 
214 	/*
215 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
216 	 * support them, except to record them per the PF_KEYv2 spec.
217 	 */
218 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
219 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
220 	uint_t ipsa_alloc;	/* Allocations made. */
221 
222 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
223 	uint_t ipsa_state;	/* State of my association. */
224 	uint_t ipsa_replay_wsize; /* Size of replay window */
225 	uint32_t ipsa_flags;	/* Flags for security association. */
226 	uint32_t ipsa_spi;	/* Security parameters index. */
227 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
228 	uint32_t ipsa_kmp;	/* key management proto */
229 	uint32_t ipsa_kmc;	/* key management cookie */
230 
231 	boolean_t ipsa_haspeer;		/* Has peer in another table. */
232 
233 	/*
234 	 * Address storage.
235 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
236 	 *
237 	 * Address families (per sys/socket.h) guide us.  We could have just
238 	 * used sockaddr_storage
239 	 */
240 	sa_family_t ipsa_addrfam;
241 	sa_family_t ipsa_innerfam;	/* Inner AF can be != src/dst AF. */
242 
243 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
244 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
245 	uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
246 	uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
247 
248 	uint8_t ipsa_innersrcpfx;
249 	uint8_t ipsa_innerdstpfx;
250 
251 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
252 	uint16_t ipsa_local_nat_port;	/* Local NAT-T port.  (0 --> 4500) */
253 	uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
254 
255 	/* these can only be v4 */
256 	uint32_t ipsa_natt_addr_loc;
257 	uint32_t ipsa_natt_addr_rem;
258 
259 	/*
260 	 * icmp type and code. *_end are to specify ranges. if only
261 	 * a single value, * and *_end are the same value.
262 	 */
263 	uint8_t ipsa_icmp_type;
264 	uint8_t ipsa_icmp_type_end;
265 	uint8_t ipsa_icmp_code;
266 	uint8_t ipsa_icmp_code_end;
267 
268 	/*
269 	 * For the kernel crypto framework.
270 	 */
271 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
272 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
273 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
274 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
275 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
276 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
277 	size_t ipsa_mac_len;			/* auth MAC/ICV length */
278 	size_t ipsa_iv_len;			/* encr IV length */
279 	size_t ipsa_datalen;			/* block length in bytes. */
280 
281 	/*
282 	 * Input and output processing functions called from IP.
283 	 */
284 	ipsec_status_t (*ipsa_output_func)(mblk_t *);
285 	ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
286 
287 	/*
288 	 * Soft reference to paired SA
289 	 */
290 	uint32_t	ipsa_otherspi;
291 	netstack_t	*ipsa_netstack;	/* Does not have a netstack_hold */
292 
293 	cred_t *ipsa_cred;			/* MLS: cred_t attributes */
294 	cred_t *ipsa_ocred;			/* MLS: outer label */
295 	uint8_t	ipsa_mac_exempt;		/* MLS: mac exempt flag */
296 	uchar_t	ipsa_opt_storage[IP_MAX_OPT_LENGTH];
297 } ipsa_t;
298 
299 /*
300  * ipsa_t address handling macros.  We want these to be inlined, and deal
301  * with 32-bit words to avoid bcmp/bcopy calls.
302  *
303  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
304  * that we have 32-bit alignment on everything.
305  */
306 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
307 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
308 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
309 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
310 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
311 	(((fam) == AF_INET) || \
312 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
313 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
314 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
315 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
316 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
317 	if ((fam) == AF_INET6) {\
318 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
319 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
320 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
321 
322 /*
323  * ipsa_t reference hold/release macros.
324  *
325  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
326  * REFRELE.  An ipsa_t that is newly inserted into the table should have
327  * a reference count of 1 (for the table's pointer), plus 1 more for every
328  * pointer that is referencing the ipsa_t.
329  */
330 
331 #define	IPSA_REFHOLD(ipsa) {			\
332 	atomic_add_32(&(ipsa)->ipsa_refcnt, 1);	\
333 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
334 }
335 
336 /*
337  * Decrement the reference count on the SA.
338  * In architectures e.g sun4u, where atomic_add_32_nv is just
339  * a cas, we need to maintain the right memory barrier semantics
340  * as that of mutex_exit i.e all the loads and stores should complete
341  * before the cas is executed. membar_exit() does that here.
342  */
343 
344 #define	IPSA_REFRELE(ipsa) {					\
345 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
346 	membar_exit();						\
347 	if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0)	\
348 		((ipsa)->ipsa_freefunc)(ipsa);			\
349 }
350 
351 /*
352  * Security association hash macros and definitions.  For now, assume the
353  * IPsec model, and hash outbounds on destination address, and inbounds on
354  * SPI.
355  */
356 
357 #define	IPSEC_DEFAULT_HASH_SIZE 256
358 
359 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
360 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
361 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
362 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
363 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
364 
365 /*
366  * Syntactic sugar to find the appropriate hash bucket directly.
367  */
368 
369 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
370 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
371 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
372 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
373 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
374 
375 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
376 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
377 						/* backward compat. */
378 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
379 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
380 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
381 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
382 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
383 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
384 
385 #define	IPSA_F_HW	0x200000		/* hwaccel capable SA */
386 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
387 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
388 #define	IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
389 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
390 	SADB_X_SAFLAGS_NATTED)
391 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
392 #define	IPSA_F_PAIRED	SADB_X_SAFLAGS_PAIRED	/* SA is one of a pair */
393 #define	IPSA_F_OUTBOUND	SADB_X_SAFLAGS_OUTBOUND	/* SA direction bit */
394 #define	IPSA_F_INBOUND	SADB_X_SAFLAGS_INBOUND	/* SA direction bit */
395 #define	IPSA_F_TUNNEL	SADB_X_SAFLAGS_TUNNEL
396 /*
397  * These flags are only defined here to prevent a flag value collision.
398  */
399 #define	IPSA_F_COMBINED	SADB_X_SAFLAGS_EALG1	/* Defined in pfkeyv2.h */
400 #define	IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2	/* Defined in pfkeyv2.h */
401 
402 /*
403  * Sets of flags that are allowed to by set or modified by PF_KEY apps.
404  */
405 #define	AH_UPDATE_SETTABLE_FLAGS \
406 	(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
407 	SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
408 	SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
409 	SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
410 
411 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
412 #define	ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
413 
414 #define	AH_ADD_SETTABLE_FLAGS \
415 	(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
416 	SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
417 	SADB_SAFLAGS_NOREPLAY)
418 
419 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
420 #define	ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
421 	SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
422 
423 
424 
425 /* SA states are important for handling UPDATE PF_KEY messages. */
426 #define	IPSA_STATE_LARVAL		SADB_SASTATE_LARVAL
427 #define	IPSA_STATE_MATURE		SADB_SASTATE_MATURE
428 #define	IPSA_STATE_DYING		SADB_SASTATE_DYING
429 #define	IPSA_STATE_DEAD			SADB_SASTATE_DEAD
430 #define	IPSA_STATE_IDLE			SADB_X_SASTATE_IDLE
431 #define	IPSA_STATE_ACTIVE_ELSEWHERE	SADB_X_SASTATE_ACTIVE_ELSEWHERE
432 
433 /*
434  * NOTE:  If the document authors do things right in defining algorithms, we'll
435  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
436  *	  etc.
437  */
438 
439 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
440 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
441 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
442 
443 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
444 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
445 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
446 
447 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
448 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
449 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
450 
451 /*
452  * Protect each ipsa_t bucket (and linkage) with a lock.
453  */
454 
455 typedef struct isaf_s {
456 	ipsa_t *isaf_ipsa;
457 	kmutex_t isaf_lock;
458 	uint64_t isaf_gen;
459 } isaf_t;
460 
461 /*
462  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
463  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
464  */
465 
466 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
467 				/* waiting for an ACQUIRE to finish. */
468 
469 typedef struct ipsacq_s {
470 	struct ipsacq_s *ipsacq_next;
471 	struct ipsacq_s **ipsacq_ptpn;
472 	kmutex_t *ipsacq_linklock;
473 	struct ipsec_policy_s  *ipsacq_policy;
474 	struct ipsec_action_s  *ipsacq_act;
475 
476 	sa_family_t ipsacq_addrfam;	/* Address family. */
477 	sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
478 	int ipsacq_numpackets;		/* How many packets queued up so far. */
479 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
480 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
481 
482 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
483 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
484 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
485 
486 	/* These two point inside the last mblk inserted. */
487 	uint32_t *ipsacq_srcaddr;
488 	uint32_t *ipsacq_dstaddr;
489 
490 	/* Cache these instead of point so we can mask off accordingly */
491 	uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
492 	uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
493 
494 	/* These may change per-acquire. */
495 	uint16_t ipsacq_srcport;
496 	uint16_t ipsacq_dstport;
497 	uint8_t ipsacq_proto;
498 	uint8_t ipsacq_inner_proto;
499 	uint8_t ipsacq_innersrcpfx;
500 	uint8_t ipsacq_innerdstpfx;
501 
502 	/* icmp type and code of triggering packet (if applicable) */
503 	uint8_t	ipsacq_icmp_type;
504 	uint8_t ipsacq_icmp_code;
505 
506 	/* credentials associated with triggering packet */
507 	cred_t	*ipsacq_cred;
508 } ipsacq_t;
509 
510 /*
511  * Kernel-generated sequence numbers will be no less than 0x80000000 to
512  * forestall any cretinous problems with manual keying accidentally updating
513  * an ACQUIRE entry.
514  */
515 #define	IACQF_LOWEST_SEQ 0x80000000
516 
517 #define	SADB_AGE_INTERVAL_DEFAULT 8000
518 
519 /*
520  * ACQUIRE fanout.  Protect each linkage with a lock.
521  */
522 
523 typedef struct iacqf_s {
524 	ipsacq_t *iacqf_ipsacq;
525 	kmutex_t iacqf_lock;
526 } iacqf_t;
527 
528 /*
529  * A (network protocol, ipsec protocol) specific SADB.
530  * (i.e., one each for {ah, esp} and {v4, v6}.
531  *
532  * Keep outbound assocs about the same as ire_cache entries for now.
533  * One danger point, multiple SAs for a single dest will clog a bucket.
534  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
535  */
536 
537 typedef struct sadb_s
538 {
539 	isaf_t	*sdb_of;
540 	isaf_t	*sdb_if;
541 	iacqf_t	*sdb_acq;
542 	int	sdb_hashsize;
543 } sadb_t;
544 
545 /*
546  * A pair of SADB's (one for v4, one for v6), and related state (including
547  * acquire callbacks).
548  */
549 
550 typedef struct sadbp_s
551 {
552 	uint32_t	s_satype;
553 	queue_t		*s_ip_q;
554 	uint32_t	*s_acquire_timeout;
555 	void 		(*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
556 	sadb_t		s_v4;
557 	sadb_t		s_v6;
558 	uint32_t	s_addflags;
559 	uint32_t	s_updateflags;
560 } sadbp_t;
561 
562 /*
563  * A pair of SA's for a single connection, the structure contains a
564  * pointer to a SA and the SA its paired with (opposite direction) as well
565  * as the SA's respective hash buckets.
566  */
567 typedef struct ipsap_s
568 {
569 	boolean_t	in_inbound_table;
570 	isaf_t		*ipsap_bucket;
571 	ipsa_t		*ipsap_sa_ptr;
572 	isaf_t		*ipsap_pbucket;
573 	ipsa_t		*ipsap_psa_ptr;
574 } ipsap_t;
575 
576 typedef struct templist_s
577 {
578 	ipsa_t		*ipsa;
579 	struct templist_s	*next;
580 } templist_t;
581 
582 /* Pointer to an all-zeroes IPv6 address. */
583 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
584 
585 /*
586  * Form unique id from ipsec_out_t
587  */
588 
589 #define	SA_FORM_UNIQUE_ID(io)				\
590 	SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
591 		((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \
592 		    IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \
593 		((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0))
594 
595 /*
596  * This macro is used to generate unique ids (along with the addresses, both
597  * inner and outer) for outbound datagrams that require unique SAs.
598  *
599  * N.B. casts and unsigned shift amounts discourage unwarranted
600  * sign extension of dstport, proto, and iproto.
601  *
602  * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
603  *
604  *   6               4      43      33              11
605  *   3               7      09      21              65              0
606  *   +---------------*-------+-------+--------------+---------------+
607  *   |  MUST-BE-ZERO |<iprot>|<proto>| <src port>   |  <dest port>  |
608  *   +---------------*-------+-------+--------------+---------------+
609  *
610  * If there are inner addresses (tunnel mode) the ports come from the
611  * inner addresses.  If there are no inner addresses, the ports come from
612  * the outer addresses (transport mode).  Tunnel mode MUST have <proto>
613  * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
614  */
615 #define	SA_UNIQUE_ID(srcport, dstport, proto, iproto) 	\
616 	((srcport) | ((uint64_t)(dstport) << 16U) | \
617 	((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
618 
619 /*
620  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
621  * from a packet to an SA.
622  */
623 
624 #define	SA_UNIQUE_MASK(srcport, dstport, proto, iproto) 	\
625 	SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0,		\
626 		    (dstport != 0) ? 0xffff : 0,		\
627 		    (proto != 0) ? 0xff : 0,			\
628 		    (iproto != 0) ? 0xff : 0)
629 
630 /*
631  * Decompose unique id back into its original fields.
632  */
633 #define	SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
634 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
635 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
636 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
637 
638 typedef struct ipsa_query_s ipsa_query_t;
639 
640 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
641 
642 #define	IPSA_NMATCH	10
643 
644 /*
645  * SADB query structure.
646  *
647  * Provide a generalized mechanism for matching entries in the SADB;
648  * one of these structures is initialized using sadb_form_query(),
649  * and then can be used as a parameter to sadb_match_query() which returns
650  * B_TRUE if the SA matches the query.
651  *
652  * Under the covers, sadb_form_query populates the matchers[] array with
653  * functions which are called one at a time until one fails to match.
654  */
655 struct ipsa_query_s {
656 	uint32_t req, match;
657 	sadb_address_t *srcext, *dstext;
658 	sadb_ident_t *srcid, *dstid;
659 	sadb_x_kmc_t *kmcext;
660 	sadb_sa_t *assoc;
661 	uint32_t spi;
662 	struct sockaddr_in *src;
663 	struct sockaddr_in6 *src6;
664 	struct sockaddr_in *dst;
665 	struct sockaddr_in6 *dst6;
666 	sa_family_t af;
667 	uint32_t *srcaddr, *dstaddr;
668 	uint32_t ifindex;
669 	uint32_t kmc, kmp;
670 	char *didstr, *sidstr;
671 	uint16_t didtype, sidtype;
672 	sadbp_t *spp;
673 	sadb_t *sp;
674 	isaf_t	*inbound, *outbound;
675 	uint32_t outhash;
676 	uint32_t inhash;
677 	ipsa_match_fn_t matchers[IPSA_NMATCH];
678 };
679 
680 #define	IPSA_Q_SA		0x00000001
681 #define	IPSA_Q_DST		0x00000002
682 #define	IPSA_Q_SRC		0x00000004
683 #define	IPSA_Q_DSTID		0x00000008
684 #define	IPSA_Q_SRCID		0x00000010
685 #define	IPSA_Q_KMC		0x00000020
686 #define	IPSA_Q_INBOUND		0x00000040 /* fill in inbound isaf_t */
687 #define	IPSA_Q_OUTBOUND		0x00000080 /* fill in outbound isaf_t */
688 
689 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
690 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
691 
692 
693 /*
694  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
695  * already called.
696  */
697 
698 /* SA retrieval (inbound and outbound) */
699 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
700     sa_family_t);
701 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
702     sa_family_t, uint8_t, cred_t *);
703 
704 /* SA insertion. */
705 int sadb_insertassoc(ipsa_t *, isaf_t *);
706 
707 /* SA table construction and destruction. */
708 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
709 void sadbp_flush(sadbp_t *, netstack_t *);
710 void sadbp_destroy(sadbp_t *, netstack_t *);
711 
712 /* SA insertion and deletion. */
713 int sadb_insertassoc(ipsa_t *, isaf_t *);
714 void sadb_unlinkassoc(ipsa_t *);
715 
716 /* Support routines to interface a keysock consumer to PF_KEY. */
717 mblk_t *sadb_keysock_out(minor_t);
718 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
719 int sadb_labelchk(struct keysock_in_s *);
720 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
721     ipsa_t *);
722 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
723 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
724     void *, timeout_id_t *, int);
725 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
726 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
727 int sadb_addrset(ire_t *);
728 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
729     uint8_t);
730 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *,
731     queue_t *);
732 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
733     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
734     netstack_t *, sadbp_t *);
735 void sadb_set_usetime(ipsa_t *);
736 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
737 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
738     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
739     netstack_t *, uint8_t);
740 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
741 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
742     crypto_data_t *);
743 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
744     crypto_data_t *);
745 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
746     crypto_data_t *);
747 
748 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
749 struct ipsec_stack;
750 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
751 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
752 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
753 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
754 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
755 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
756 void sadb_replay_delete(ipsa_t *);
757 void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *);
758 
759 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
760     uint_t *, uint_t, short);
761 void sadb_sa_refrele(void *target);
762 boolean_t sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *);
763 mblk_t *sadb_clear_lpkt(ipsa_t *);
764 void sadb_buf_pkt(ipsa_t *, mblk_t *, netstack_t *);
765 void sadb_clear_buf_pkt(void *ipkt);
766 
767 #define	HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt)			\
768 {									\
769 	if (buf_pkt != NULL) {						\
770 		if (taskq_dispatch(taskq, sadb_clear_buf_pkt,		\
771 		    (void *) buf_pkt, TQ_NOSLEEP) == 0) {		\
772 		    /* Dispatch was unsuccessful drop the packets. */	\
773 			mblk_t		*tmp;				\
774 			while (buf_pkt != NULL) {			\
775 				tmp = buf_pkt->b_next;			\
776 				buf_pkt->b_next = NULL;			\
777 				ip_drop_packet(buf_pkt, B_TRUE, NULL,	\
778 				    NULL, DROPPER(stack,		\
779 				    ipds_sadb_inidle_timeout),		\
780 				    &dropper);				\
781 				buf_pkt = tmp;				\
782 			}						\
783 		}							\
784 	}								\
785 }									\
786 
787 /*
788  * Hw accel-related calls (downloading sadb to driver)
789  */
790 void sadb_ill_download(ill_t *, uint_t);
791 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
792 /*
793  * Sub-set of the IPsec hardware acceleration capabilities functions
794  * implemented by ip_if.c
795  */
796 extern	boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *,
797     netstack_t *);
798 extern	void	ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *,
799     netstack_t *);
800 
801 
802 /*
803  * One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
804  */
805 extern boolean_t sadb_t_bind_req(queue_t *, int);
806 /*PRINTFLIKE6*/
807 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
808     ushort_t, char *, ...)
809     __KPRINTFLIKE(6);
810 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
811     void *, int, netstack_t *);
812 
813 /*
814  * Algorithm types.
815  */
816 
817 #define	IPSEC_NALGTYPES 	2
818 
819 typedef enum ipsec_algtype {
820 	IPSEC_ALG_AUTH = 0,
821 	IPSEC_ALG_ENCR = 1
822 } ipsec_algtype_t;
823 
824 /*
825  * Definitions as per IPsec/ISAKMP DOI.
826  */
827 
828 #define	IPSEC_MAX_ALGS		256
829 #define	PROTO_IPSEC_AH		2
830 #define	PROTO_IPSEC_ESP		3
831 
832 /*
833  * Common algorithm info.
834  */
835 typedef struct ipsec_alginfo
836 {
837 	uint8_t		alg_id;
838 	uint8_t		alg_flags;
839 	uint16_t	*alg_key_sizes;
840 	uint16_t	*alg_block_sizes;
841 	uint16_t	*alg_params;
842 	uint16_t	alg_nkey_sizes;
843 	uint16_t	alg_ivlen;
844 	uint16_t	alg_icvlen;
845 	uint8_t		alg_saltlen;
846 	uint16_t	alg_nblock_sizes;
847 	uint16_t	alg_nparams;
848 	uint16_t	alg_minbits;
849 	uint16_t	alg_maxbits;
850 	uint16_t	alg_datalen;
851 	/*
852 	 * increment: number of bits from keysize to keysize
853 	 * default: # of increments from min to default key len
854 	 */
855 	uint16_t	alg_increment;
856 	uint16_t	alg_default;
857 	uint16_t	alg_default_bits;
858 	/*
859 	 * Min, max, and default key sizes effectively supported
860 	 * by the encryption framework.
861 	 */
862 	uint16_t	alg_ef_minbits;
863 	uint16_t	alg_ef_maxbits;
864 	uint16_t	alg_ef_default;
865 	uint16_t	alg_ef_default_bits;
866 
867 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
868 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
869 } ipsec_alginfo_t;
870 
871 #define	alg_datalen alg_block_sizes[0]
872 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
873 
874 /*
875  * Software crypto execution mode.
876  */
877 typedef enum {
878 	IPSEC_ALGS_EXEC_SYNC = 0,
879 	IPSEC_ALGS_EXEC_ASYNC = 1
880 } ipsec_algs_exec_mode_t;
881 
882 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
883 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
884 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
885     netstack_t *ns);
886 extern void alg_flag_check(ipsec_alginfo_t *);
887 extern void ipsec_alg_free(ipsec_alginfo_t *);
888 extern void ipsec_register_prov_update(void);
889 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t,
890     netstack_t *);
891 
892 extern int sadb_sens_len_from_cred(cred_t *);
893 extern void sadb_sens_from_cred(sadb_sens_t *, int, cred_t *, int);
894 
895 /*
896  * Context templates management.
897  */
898 
899 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
900 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
901 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
902 		mutex_enter(&assoc->ipsa_lock);				\
903 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
904 			ipsec_stack_t *ipss;				\
905 									\
906 			ipss = assoc->ipsa_netstack->netstack_ipsec;	\
907 			mutex_enter(&ipss->ipsec_alg_lock);		\
908 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
909 			mutex_exit(&ipss->ipsec_alg_lock);		\
910 		}							\
911 		mutex_exit(&assoc->ipsa_lock);				\
912 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
913 			_tmpl = NULL;					\
914 	}								\
915 }
916 
917 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
918 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
919 
920 /* key checking */
921 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
922 
923 typedef struct ipsec_kstats_s {
924 	kstat_named_t esp_stat_in_requests;
925 	kstat_named_t esp_stat_in_discards;
926 	kstat_named_t esp_stat_lookup_failure;
927 	kstat_named_t ah_stat_in_requests;
928 	kstat_named_t ah_stat_in_discards;
929 	kstat_named_t ah_stat_lookup_failure;
930 	kstat_named_t sadb_acquire_maxpackets;
931 	kstat_named_t sadb_acquire_qhiwater;
932 } ipsec_kstats_t;
933 
934 /*
935  * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
936  * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
937  * fails, it will be NULL. Note this is done for all stack instances,
938  * so it *could* fail. hence a non-NULL checking is done for
939  * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
940  */
941 #define	IP_ESP_BUMP_STAT(ipss, x)					\
942 do {									\
943 	if ((ipss)->ipsec_kstats != NULL)				\
944 		((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++;	\
945 _NOTE(CONSTCOND)							\
946 } while (0)
947 
948 #define	IP_AH_BUMP_STAT(ipss, x)					\
949 do {									\
950 	if ((ipss)->ipsec_kstats != NULL)				\
951 		((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++;	\
952 _NOTE(CONSTCOND)							\
953 } while (0)
954 
955 #define	IP_ACQUIRE_STAT(ipss, val, new)					\
956 do {									\
957 	if ((ipss)->ipsec_kstats != NULL &&				\
958 	    ((uint64_t)(new)) >						\
959 	    ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64)	\
960 		((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
961 			((uint64_t)(new));				\
962 _NOTE(CONSTCOND)							\
963 } while (0)
964 
965 
966 #ifdef	__cplusplus
967 }
968 #endif
969 
970 #endif /* _INET_SADB_H */
971