xref: /titanic_52/usr/src/uts/common/inet/ipf/fil.c (revision d22e11eb92a44ef85ea64989dbff7134a35829cc)
1 /*
2  * Copyright (C) 1993-2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #if defined(KERNEL) || defined(_KERNEL)
11 # undef KERNEL
12 # undef _KERNEL
13 # define        KERNEL	1
14 # define        _KERNEL	1
15 #endif
16 #include <sys/errno.h>
17 #include <sys/types.h>
18 #include <sys/param.h>
19 #include <sys/time.h>
20 #if defined(__NetBSD__)
21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
22 #  include "opt_ipfilter_log.h"
23 # endif
24 #endif
25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
26     (__FreeBSD_version >= 220000)
27 # if (__FreeBSD_version >= 400000)
28 #  if !defined(IPFILTER_LKM)
29 #   include "opt_inet6.h"
30 #  endif
31 #  if (__FreeBSD_version == 400019)
32 #   define CSUM_DELAY_DATA
33 #  endif
34 # endif
35 # include <sys/filio.h>
36 #else
37 # include <sys/ioctl.h>
38 #endif
39 #if !defined(_AIX51)
40 # include <sys/fcntl.h>
41 #endif
42 #if defined(_KERNEL)
43 # include <sys/systm.h>
44 # include <sys/file.h>
45 #else
46 # include <stdio.h>
47 # include <string.h>
48 # include <stdlib.h>
49 # include <stddef.h>
50 # include <sys/file.h>
51 # define _KERNEL
52 # ifdef __OpenBSD__
53 struct file;
54 # endif
55 # include <sys/uio.h>
56 # undef _KERNEL
57 #endif
58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
59     !defined(linux)
60 # include <sys/mbuf.h>
61 #else
62 # if !defined(linux)
63 #  include <sys/byteorder.h>
64 # endif
65 # if (SOLARIS2 < 5) && defined(sun)
66 #  include <sys/dditypes.h>
67 # endif
68 #endif
69 #ifdef __hpux
70 # define _NET_ROUTE_INCLUDED
71 #endif
72 #if !defined(linux)
73 # include <sys/protosw.h>
74 #endif
75 #include <sys/socket.h>
76 #include <net/if.h>
77 #ifdef sun
78 # include <net/af.h>
79 #endif
80 #if !defined(_KERNEL) && defined(__FreeBSD__)
81 # include "radix_ipf.h"
82 #endif
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #if !defined(linux)
88 # include <netinet/ip_var.h>
89 #endif
90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
91 # include <sys/hashing.h>
92 # include <netinet/in_var.h>
93 #endif
94 #include <netinet/tcp.h>
95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
96 # include <netinet/udp.h>
97 # include <netinet/ip_icmp.h>
98 #endif
99 #ifdef __hpux
100 # undef _NET_ROUTE_INCLUDED
101 #endif
102 #include "netinet/ip_compat.h"
103 #ifdef	USE_INET6
104 # include <netinet/icmp6.h>
105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
106 #  include <netinet6/in6_var.h>
107 # endif
108 #endif
109 #include <netinet/tcpip.h>
110 #include "netinet/ip_fil.h"
111 #include "netinet/ip_nat.h"
112 #include "netinet/ip_frag.h"
113 #include "netinet/ip_state.h"
114 #include "netinet/ip_proxy.h"
115 #include "netinet/ip_auth.h"
116 #include "netinet/ipf_stack.h"
117 #ifdef IPFILTER_SCAN
118 # include "netinet/ip_scan.h"
119 #endif
120 #ifdef IPFILTER_SYNC
121 # include "netinet/ip_sync.h"
122 #endif
123 #include "netinet/ip_pool.h"
124 #include "netinet/ip_htable.h"
125 #ifdef IPFILTER_COMPILED
126 # include "netinet/ip_rules.h"
127 #endif
128 #if defined(IPFILTER_BPF) && defined(_KERNEL)
129 # include <net/bpf.h>
130 #endif
131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
132 # include <sys/malloc.h>
133 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
134 #  include "opt_ipfilter.h"
135 # endif
136 #endif
137 #include "netinet/ipl.h"
138 /* END OF INCLUDES */
139 
140 #if !defined(lint)
141 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
143 #endif
144 
145 #ifndef	_KERNEL
146 # include "ipf.h"
147 # include "ipt.h"
148 # include "bpf-ipf.h"
149 extern	int	opts;
150 
151 # define	FR_VERBOSE(verb_pr)			verbose verb_pr
152 # define	FR_DEBUG(verb_pr)			debug verb_pr
153 #else /* #ifndef _KERNEL */
154 # define	FR_VERBOSE(verb_pr)
155 # define	FR_DEBUG(verb_pr)
156 #endif /* _KERNEL */
157 
158 
159 char	ipfilter_version[] = IPL_VERSION;
160 int	fr_features = 0
161 #ifdef	IPFILTER_LKM
162 		| IPF_FEAT_LKM
163 #endif
164 #ifdef	IPFILTER_LOG
165 		| IPF_FEAT_LOG
166 #endif
167 #ifdef	IPFILTER_LOOKUP
168 		| IPF_FEAT_LOOKUP
169 #endif
170 #ifdef	IPFILTER_BPF
171 		| IPF_FEAT_BPF
172 #endif
173 #ifdef	IPFILTER_COMPILED
174 		| IPF_FEAT_COMPILED
175 #endif
176 #ifdef	IPFILTER_CKSUM
177 		| IPF_FEAT_CKSUM
178 #endif
179 #ifdef	IPFILTER_SYNC
180 		| IPF_FEAT_SYNC
181 #endif
182 #ifdef	IPFILTER_SCAN
183 		| IPF_FEAT_SCAN
184 #endif
185 #ifdef	USE_INET6
186 		| IPF_FEAT_IPV6
187 #endif
188 	;
189 
190 #define	IPF_BUMP(x)	(x)++
191 
192 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
193 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
194 static	int		fr_portcheck __P((frpcmp_t *, u_short *));
195 static	int		frflushlist __P((int, minor_t, int *, frentry_t **,
196 					 ipf_stack_t *));
197 static	ipfunc_t	fr_findfunc __P((ipfunc_t));
198 static	frentry_t	*fr_firewall __P((fr_info_t *, u_32_t *));
199 static	int		fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
200 static	INLINE void	frpr_ah __P((fr_info_t *));
201 static	INLINE void	frpr_esp __P((fr_info_t *));
202 static	INLINE void	frpr_gre __P((fr_info_t *));
203 static	INLINE void	frpr_udp __P((fr_info_t *));
204 static	INLINE void	frpr_tcp __P((fr_info_t *));
205 static	INLINE void	frpr_icmp __P((fr_info_t *));
206 static	INLINE void	frpr_ipv4hdr __P((fr_info_t *));
207 static	INLINE int	frpr_pullup __P((fr_info_t *, int));
208 static	INLINE void	frpr_short __P((fr_info_t *, int));
209 static	INLINE void	frpr_tcpcommon __P((fr_info_t *));
210 static	INLINE void	frpr_udpcommon __P((fr_info_t *));
211 static	INLINE int	fr_updateipid __P((fr_info_t *));
212 #ifdef	IPFILTER_LOOKUP
213 static	int		fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
214 static	INLINE void	*fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
215 					       ipf_stack_t *));
216 #endif
217 static	void		frsynclist __P((int, int, void *, char *, frentry_t *,
218     ipf_stack_t *));
219 static	void		*fr_ifsync __P((int, int, char *, char *,
220 					void *, void *, ipf_stack_t *));
221 static	ipftuneable_t	*fr_findtunebyname __P((const char *, ipf_stack_t *));
222 static	ipftuneable_t	*fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
223 
224 
225 /*
226  * bit values for identifying presence of individual IP options
227  * All of these tables should be ordered by increasing key value on the left
228  * hand side to allow for binary searching of the array and include a trailer
229  * with a 0 for the bitmask for linear searches to easily find the end with.
230  */
231 const	struct	optlist	ipopts[20] = {
232 	{ IPOPT_NOP,	0x000001 },
233 	{ IPOPT_RR,	0x000002 },
234 	{ IPOPT_ZSU,	0x000004 },
235 	{ IPOPT_MTUP,	0x000008 },
236 	{ IPOPT_MTUR,	0x000010 },
237 	{ IPOPT_ENCODE,	0x000020 },
238 	{ IPOPT_TS,	0x000040 },
239 	{ IPOPT_TR,	0x000080 },
240 	{ IPOPT_SECURITY, 0x000100 },
241 	{ IPOPT_LSRR,	0x000200 },
242 	{ IPOPT_E_SEC,	0x000400 },
243 	{ IPOPT_CIPSO,	0x000800 },
244 	{ IPOPT_SATID,	0x001000 },
245 	{ IPOPT_SSRR,	0x002000 },
246 	{ IPOPT_ADDEXT,	0x004000 },
247 	{ IPOPT_VISA,	0x008000 },
248 	{ IPOPT_IMITD,	0x010000 },
249 	{ IPOPT_EIP,	0x020000 },
250 	{ IPOPT_FINN,	0x040000 },
251 	{ 0,		0x000000 }
252 };
253 
254 #ifdef USE_INET6
255 struct optlist ip6exthdr[] = {
256 	{ IPPROTO_HOPOPTS,		0x000001 },
257 	{ IPPROTO_IPV6,			0x000002 },
258 	{ IPPROTO_ROUTING,		0x000004 },
259 	{ IPPROTO_FRAGMENT,		0x000008 },
260 	{ IPPROTO_ESP,			0x000010 },
261 	{ IPPROTO_AH,			0x000020 },
262 	{ IPPROTO_NONE,			0x000040 },
263 	{ IPPROTO_DSTOPTS,		0x000080 },
264 	{ 0,				0 }
265 };
266 #endif
267 
268 struct optlist tcpopts[] = {
269 	{ TCPOPT_NOP,			0x000001 },
270 	{ TCPOPT_MAXSEG,		0x000002 },
271 	{ TCPOPT_WINDOW,		0x000004 },
272 	{ TCPOPT_SACK_PERMITTED,	0x000008 },
273 	{ TCPOPT_SACK,			0x000010 },
274 	{ TCPOPT_TIMESTAMP,		0x000020 },
275 	{ 0,				0x000000 }
276 };
277 
278 /*
279  * bit values for identifying presence of individual IP security options
280  */
281 const	struct	optlist	secopt[8] = {
282 	{ IPSO_CLASS_RES4,	0x01 },
283 	{ IPSO_CLASS_TOPS,	0x02 },
284 	{ IPSO_CLASS_SECR,	0x04 },
285 	{ IPSO_CLASS_RES3,	0x08 },
286 	{ IPSO_CLASS_CONF,	0x10 },
287 	{ IPSO_CLASS_UNCL,	0x20 },
288 	{ IPSO_CLASS_RES2,	0x40 },
289 	{ IPSO_CLASS_RES1,	0x80 }
290 };
291 
292 
293 /*
294  * Table of functions available for use with call rules.
295  */
296 static ipfunc_resolve_t fr_availfuncs[] = {
297 #ifdef	IPFILTER_LOOKUP
298 	{ "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
299 	{ "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
300 #endif
301 	{ "", NULL }
302 };
303 
304 
305 /*
306  * The next section of code is a a collection of small routines that set
307  * fields in the fr_info_t structure passed based on properties of the
308  * current packet.  There are different routines for the same protocol
309  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
310  * will "special" inspection for setup, is now more easily done by adding
311  * a new routine and expanding the frpr_ipinit*() function rather than by
312  * adding more code to a growing switch statement.
313  */
314 #ifdef USE_INET6
315 static	INLINE int	frpr_ah6 __P((fr_info_t *));
316 static	INLINE void	frpr_esp6 __P((fr_info_t *));
317 static	INLINE void	frpr_gre6 __P((fr_info_t *));
318 static	INLINE void	frpr_udp6 __P((fr_info_t *));
319 static	INLINE void	frpr_tcp6 __P((fr_info_t *));
320 static	INLINE void	frpr_icmp6 __P((fr_info_t *));
321 static	INLINE int	frpr_ipv6hdr __P((fr_info_t *));
322 static	INLINE void	frpr_short6 __P((fr_info_t *, int));
323 static	INLINE int	frpr_hopopts6 __P((fr_info_t *));
324 static	INLINE int	frpr_routing6 __P((fr_info_t *));
325 static	INLINE int	frpr_dstopts6 __P((fr_info_t *));
326 static	INLINE int	frpr_fragment6 __P((fr_info_t *));
327 static	INLINE int	frpr_ipv6exthdr __P((fr_info_t *, int, int));
328 
329 
330 /* ------------------------------------------------------------------------ */
331 /* Function:    frpr_short6                                                 */
332 /* Returns:     void                                                        */
333 /* Parameters:  fin(I) - pointer to packet information                      */
334 /*                                                                          */
335 /* IPv6 Only                                                                */
336 /* This is function enforces the 'is a packet too short to be legit' rule   */
337 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
338 /* for frpr_short() for more details.                                       */
339 /* ------------------------------------------------------------------------ */
340 static INLINE void frpr_short6(fin, xmin)
341 fr_info_t *fin;
342 int xmin;
343 {
344 
345 	if (fin->fin_dlen < xmin)
346 		fin->fin_flx |= FI_SHORT;
347 }
348 
349 
350 /* ------------------------------------------------------------------------ */
351 /* Function:    frpr_ipv6hdr                                                */
352 /* Returns:     int                                                         */
353 /* Parameters:  fin(I) - pointer to packet information                      */
354 /*                                                                          */
355 /* IPv6 Only                                                                */
356 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
357 /* per-protocol analyzer if it exists.                                      */
358 /* ------------------------------------------------------------------------ */
359 static INLINE int frpr_ipv6hdr(fin)
360 fr_info_t *fin;
361 {
362 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
363 	int p, go = 1, i, hdrcount;
364 	fr_ip_t *fi = &fin->fin_fi;
365 
366 	fin->fin_off = 0;
367 
368 	fi->fi_tos = 0;
369 	fi->fi_optmsk = 0;
370 	fi->fi_secmsk = 0;
371 	fi->fi_auth = 0;
372 
373 	p = ip6->ip6_nxt;
374 	fi->fi_ttl = ip6->ip6_hlim;
375 	fi->fi_src.in6 = ip6->ip6_src;
376 	fi->fi_dst.in6 = ip6->ip6_dst;
377 	fin->fin_id = 0;
378 
379 	hdrcount = 0;
380 	while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
381 		switch (p)
382 		{
383 		case IPPROTO_UDP :
384 			frpr_udp6(fin);
385 			go = 0;
386 			break;
387 
388 		case IPPROTO_TCP :
389 			frpr_tcp6(fin);
390 			go = 0;
391 			break;
392 
393 		case IPPROTO_ICMPV6 :
394 			frpr_icmp6(fin);
395 			go = 0;
396 			break;
397 
398 		case IPPROTO_GRE :
399 			frpr_gre6(fin);
400 			go = 0;
401 			break;
402 
403 		case IPPROTO_HOPOPTS :
404 			/*
405 			 * hop by hop ext header is only allowed
406 			 * right after IPv6 header.
407 			 */
408 			if (hdrcount != 0) {
409 				fin->fin_flx |= FI_BAD;
410 				p = IPPROTO_NONE;
411 			} else {
412 				p = frpr_hopopts6(fin);
413 			}
414 			break;
415 
416 		case IPPROTO_DSTOPTS :
417 			p = frpr_dstopts6(fin);
418 			break;
419 
420 		case IPPROTO_ROUTING :
421 			p = frpr_routing6(fin);
422 			break;
423 
424 		case IPPROTO_AH :
425 			p = frpr_ah6(fin);
426 			break;
427 
428 		case IPPROTO_ESP :
429 			frpr_esp6(fin);
430 			go = 0;
431 			break;
432 
433 		case IPPROTO_IPV6 :
434 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
435 				if (ip6exthdr[i].ol_val == p) {
436 					fin->fin_flx |= ip6exthdr[i].ol_bit;
437 					break;
438 				}
439 			go = 0;
440 			break;
441 
442 		case IPPROTO_NONE :
443 			go = 0;
444 			break;
445 
446 		case IPPROTO_FRAGMENT :
447 			p = frpr_fragment6(fin);
448 			if (fin->fin_off != 0)  /* Not the first frag */
449 				go = 0;
450 			break;
451 
452 		default :
453 			go = 0;
454 			break;
455 		}
456 		hdrcount++;
457 
458 		/*
459 		 * It is important to note that at this point, for the
460 		 * extension headers (go != 0), the entire header may not have
461 		 * been pulled up when the code gets to this point.  This is
462 		 * only done for "go != 0" because the other header handlers
463 		 * will all pullup their complete header.  The other indicator
464 		 * of an incomplete packet is that this was just an extension
465 		 * header.
466 		 */
467 		if ((go != 0) && (p != IPPROTO_NONE) &&
468 		    (frpr_pullup(fin, 0) == -1)) {
469 			p = IPPROTO_NONE;
470 			go = 0;
471 		}
472 	}
473 	fi->fi_p = p;
474 
475 	if (fin->fin_flx & FI_BAD)
476 		return -1;
477 
478 	return 0;
479 }
480 
481 
482 /* ------------------------------------------------------------------------ */
483 /* Function:    frpr_ipv6exthdr                                             */
484 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
485 /* Parameters:  fin(I)      - pointer to packet information                 */
486 /*              multiple(I) - flag indicating yes/no if multiple occurances */
487 /*                            of this extension header are allowed.         */
488 /*              proto(I)    - protocol number for this extension header     */
489 /*                                                                          */
490 /* IPv6 Only                                                                */
491 /* ------------------------------------------------------------------------ */
492 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
493 fr_info_t *fin;
494 int multiple, proto;
495 {
496 	struct ip6_ext *hdr;
497 	u_short shift;
498 	int i;
499 
500 	fin->fin_flx |= FI_V6EXTHDR;
501 
502 				/* 8 is default length of extension hdr */
503 	if ((fin->fin_dlen - 8) < 0) {
504 		fin->fin_flx |= FI_SHORT;
505 		return IPPROTO_NONE;
506 	}
507 
508 	if (frpr_pullup(fin, 8) == -1)
509 		return IPPROTO_NONE;
510 
511 	hdr = fin->fin_dp;
512 	shift = 8 + (hdr->ip6e_len << 3);
513 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
514 		fin->fin_flx |= FI_BAD;
515 		return IPPROTO_NONE;
516 	}
517 
518 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
519 		if (ip6exthdr[i].ol_val == proto) {
520 			/*
521 			 * Most IPv6 extension headers are only allowed once.
522 			 */
523 			if ((multiple == 0) &&
524 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
525 				fin->fin_flx |= FI_BAD;
526 			else
527 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
528 			break;
529 		}
530 
531 	fin->fin_dp = (char *)fin->fin_dp + shift;
532 	fin->fin_dlen -= shift;
533 
534 	return hdr->ip6e_nxt;
535 }
536 
537 
538 /* ------------------------------------------------------------------------ */
539 /* Function:    frpr_hopopts6                                               */
540 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
541 /* Parameters:  fin(I) - pointer to packet information                      */
542 /*                                                                          */
543 /* IPv6 Only                                                                */
544 /* This is function checks pending hop by hop options extension header      */
545 /* ------------------------------------------------------------------------ */
546 static INLINE int frpr_hopopts6(fin)
547 fr_info_t *fin;
548 {
549 	return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
550 }
551 
552 
553 /* ------------------------------------------------------------------------ */
554 /* Function:    frpr_routing6                                               */
555 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
556 /* Parameters:  fin(I) - pointer to packet information                      */
557 /*                                                                          */
558 /* IPv6 Only                                                                */
559 /* This is function checks pending routing extension header                 */
560 /* ------------------------------------------------------------------------ */
561 static INLINE int frpr_routing6(fin)
562 fr_info_t *fin;
563 {
564 	struct ip6_ext *hdr;
565 	int shift;
566 
567 	hdr = fin->fin_dp;
568 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
569 		return IPPROTO_NONE;
570 
571 	shift = 8 + (hdr->ip6e_len << 3);
572 	/*
573 	 * Nasty extension header length?
574 	 */
575 	if ((hdr->ip6e_len << 3) & 15) {
576 		fin->fin_flx |= FI_BAD;
577 		/*
578 		 * Compensate for the changes made in frpr_ipv6exthdr()
579 		 */
580 		fin->fin_dlen += shift;
581 		fin->fin_dp = (char *)fin->fin_dp - shift;
582 		return IPPROTO_NONE;
583 	}
584 
585 	return hdr->ip6e_nxt;
586 }
587 
588 
589 /* ------------------------------------------------------------------------ */
590 /* Function:    frpr_fragment6                                              */
591 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
592 /* Parameters:  fin(I) - pointer to packet information                      */
593 /*                                                                          */
594 /* IPv6 Only                                                                */
595 /* Examine the IPv6 fragment header and extract fragment offset information.*/
596 /*                                                                          */
597 /* We don't know where the transport layer header (or whatever is next is), */
598 /* as it could be behind destination options (amongst others).  Because     */
599 /* there is no fragment cache, there is no knowledge about whether or not an*/
600 /* upper layer header has been seen (or where it ends) and thus we are not  */
601 /* able to continue processing beyond this header with any confidence.      */
602 /* ------------------------------------------------------------------------ */
603 static INLINE int frpr_fragment6(fin)
604 fr_info_t *fin;
605 {
606 	struct ip6_frag *frag;
607 	int dlen;
608 
609 	fin->fin_flx |= FI_FRAG;
610 
611 	dlen = fin->fin_dlen;
612 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
613 		return IPPROTO_NONE;
614 
615 	if (frpr_pullup(fin, sizeof(*frag)) == -1)
616 		return IPPROTO_NONE;
617 
618 	frpr_short6(fin, sizeof(*frag));
619 
620 	if ((fin->fin_flx & FI_SHORT) != 0)
621 		return IPPROTO_NONE;
622 
623 	frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
624 	/*
625 	 * Fragment but no fragmentation info set?  Bad packet...
626 	 */
627 	if (frag->ip6f_offlg == 0) {
628 		fin->fin_flx |= FI_BAD;
629 		return IPPROTO_NONE;
630 	}
631 
632 	fin->fin_id = frag->ip6f_ident;
633 	fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK;
634 	fin->fin_off = ntohs(fin->fin_off);
635 	if (fin->fin_off != 0)
636 		fin->fin_flx |= FI_FRAGBODY;
637 
638 	fin->fin_dp = (char *)frag + sizeof(*frag);
639 	fin->fin_dlen = dlen - sizeof(*frag);
640 
641 	/* length of hdrs(after frag hdr) + data */
642 	fin->fin_flen = fin->fin_dlen;
643 
644 	/*
645 	 * If the frag is not the last one and the payload length
646 	 * is not multiple of 8, it must be dropped.
647 	 */
648 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) {
649 		fin->fin_flx |= FI_BAD;
650 		return IPPROTO_NONE;
651 	}
652 
653 	return frag->ip6f_nxt;
654 }
655 
656 
657 /* ------------------------------------------------------------------------ */
658 /* Function:    frpr_dstopts6                                               */
659 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
660 /* Parameters:  fin(I) - pointer to packet information                      */
661 /*              nextheader(I) - stores next header value                    */
662 /*                                                                          */
663 /* IPv6 Only                                                                */
664 /* This is function checks pending destination options extension header     */
665 /* ------------------------------------------------------------------------ */
666 static INLINE int frpr_dstopts6(fin)
667 fr_info_t *fin;
668 {
669 	return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
670 }
671 
672 
673 /* ------------------------------------------------------------------------ */
674 /* Function:    frpr_icmp6                                                  */
675 /* Returns:     void                                                        */
676 /* Parameters:  fin(I) - pointer to packet information                      */
677 /*                                                                          */
678 /* IPv6 Only                                                                */
679 /* This routine is mainly concerned with determining the minimum valid size */
680 /* for an ICMPv6 packet.                                                    */
681 /* ------------------------------------------------------------------------ */
682 static INLINE void frpr_icmp6(fin)
683 fr_info_t *fin;
684 {
685 	int minicmpsz = sizeof(struct icmp6_hdr);
686 	struct icmp6_hdr *icmp6;
687 
688 	if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
689 		return;
690 
691 	if (fin->fin_dlen > 1) {
692 		icmp6 = fin->fin_dp;
693 
694 		fin->fin_data[0] = *(u_short *)icmp6;
695 
696 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
697 			fin->fin_flx |= FI_ICMPQUERY;
698 
699 		switch (icmp6->icmp6_type)
700 		{
701 		case ICMP6_ECHO_REPLY :
702 		case ICMP6_ECHO_REQUEST :
703 			if (fin->fin_dlen >= 6)
704 				fin->fin_data[1] = icmp6->icmp6_id;
705 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
706 			break;
707 		case ICMP6_DST_UNREACH :
708 		case ICMP6_PACKET_TOO_BIG :
709 		case ICMP6_TIME_EXCEEDED :
710 		case ICMP6_PARAM_PROB :
711 			if ((fin->fin_m != NULL) &&
712 			    (M_LEN(fin->fin_m) < fin->fin_plen)) {
713 				if (fr_coalesce(fin) != 1)
714 					return;
715 			}
716 			fin->fin_flx |= FI_ICMPERR;
717 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
718 			break;
719 		default :
720 			break;
721 		}
722 	}
723 
724 	frpr_short6(fin, minicmpsz);
725 	fin->fin_flen -= fin->fin_dlen - minicmpsz;
726 }
727 
728 
729 /* ------------------------------------------------------------------------ */
730 /* Function:    frpr_udp6                                                   */
731 /* Returns:     void                                                        */
732 /* Parameters:  fin(I) - pointer to packet information                      */
733 /*                                                                          */
734 /* IPv6 Only                                                                */
735 /* Analyse the packet for IPv6/UDP properties.                              */
736 /* Is not expected to be called for fragmented packets.                     */
737 /* ------------------------------------------------------------------------ */
738 static INLINE void frpr_udp6(fin)
739 fr_info_t *fin;
740 {
741 
742 	fr_checkv6sum(fin);
743 
744 	frpr_short6(fin, sizeof(struct udphdr));
745 	if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
746 		return;
747 
748 	fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr);
749 
750 	frpr_udpcommon(fin);
751 }
752 
753 
754 /* ------------------------------------------------------------------------ */
755 /* Function:    frpr_tcp6                                                   */
756 /* Returns:     void                                                        */
757 /* Parameters:  fin(I) - pointer to packet information                      */
758 /*                                                                          */
759 /* IPv6 Only                                                                */
760 /* Analyse the packet for IPv6/TCP properties.                              */
761 /* Is not expected to be called for fragmented packets.                     */
762 /* ------------------------------------------------------------------------ */
763 static INLINE void frpr_tcp6(fin)
764 fr_info_t *fin;
765 {
766 
767 	fr_checkv6sum(fin);
768 
769 	frpr_short6(fin, sizeof(struct tcphdr));
770 	if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
771 		return;
772 
773 	fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr);
774 
775 	frpr_tcpcommon(fin);
776 }
777 
778 
779 /* ------------------------------------------------------------------------ */
780 /* Function:    frpr_esp6                                                   */
781 /* Returns:     void                                                        */
782 /* Parameters:  fin(I) - pointer to packet information                      */
783 /*                                                                          */
784 /* IPv6 Only                                                                */
785 /* Analyse the packet for ESP properties.                                   */
786 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
787 /* even though the newer ESP packets must also have a sequence number that  */
788 /* is 32bits as well, it is not possible(?) to determine the version from a */
789 /* simple packet header.                                                    */
790 /* ------------------------------------------------------------------------ */
791 static INLINE void frpr_esp6(fin)
792 fr_info_t *fin;
793 {
794 	int i;
795 	frpr_short6(fin, sizeof(grehdr_t));
796 
797 	(void) frpr_pullup(fin, 8);
798 
799 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
800 		if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
801 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
802 			break;
803 		}
804 }
805 
806 
807 /* ------------------------------------------------------------------------ */
808 /* Function:    frpr_ah6                                                    */
809 /* Returns:     void                                                        */
810 /* Parameters:  fin(I) - pointer to packet information                      */
811 /*                                                                          */
812 /* IPv6 Only                                                                */
813 /* Analyse the packet for AH properties.                                    */
814 /* The minimum length is taken to be the combination of all fields in the   */
815 /* header being present and no authentication data (null algorithm used.)   */
816 /* ------------------------------------------------------------------------ */
817 static INLINE int frpr_ah6(fin)
818 fr_info_t *fin;
819 {
820 	authhdr_t *ah;
821 	int i, shift;
822 
823 	frpr_short6(fin, 12);
824 
825 	if (frpr_pullup(fin, sizeof(*ah)) == -1)
826 		return IPPROTO_NONE;
827 
828 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
829 		if (ip6exthdr[i].ol_val == IPPROTO_AH) {
830 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
831 			break;
832 		}
833 
834 	ah = (authhdr_t *)fin->fin_dp;
835 
836 	shift = (ah->ah_plen + 2) * 4;
837 	fin->fin_dlen -= shift;
838 	fin->fin_dp = (char*)fin->fin_dp + shift;
839 
840 	return ah->ah_next;
841 }
842 
843 
844 /* ------------------------------------------------------------------------ */
845 /* Function:    frpr_gre6                                                   */
846 /* Returns:     void                                                        */
847 /* Parameters:  fin(I) - pointer to packet information                      */
848 /*                                                                          */
849 /* Analyse the packet for GRE properties.                                   */
850 /* ------------------------------------------------------------------------ */
851 static INLINE void frpr_gre6(fin)
852 fr_info_t *fin;
853 {
854 	grehdr_t *gre;
855 
856 	frpr_short6(fin, sizeof(grehdr_t));
857 
858 	if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
859 		return;
860 
861 	gre = fin->fin_dp;
862 	if (GRE_REV(gre->gr_flags) == 1)
863 		fin->fin_data[0] = gre->gr_call;
864 }
865 #endif	/* USE_INET6 */
866 
867 
868 /* ------------------------------------------------------------------------ */
869 /* Function:    frpr_pullup                                                 */
870 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
871 /* Parameters:  fin(I)  - pointer to packet information                     */
872 /*              plen(I) - length (excluding L3 header) to pullup            */
873 /*                                                                          */
874 /* Short inline function to cut down on code duplication to perform a call  */
875 /* to fr_pullup to ensure there is the required amount of data,             */
876 /* consecutively in the packet buffer.                                      */
877 /* ------------------------------------------------------------------------ */
878 static INLINE int frpr_pullup(fin, plen)
879 fr_info_t *fin;
880 int plen;
881 {
882 #if defined(_KERNEL)
883 	if (fin->fin_m != NULL) {
884 		int ipoff;
885 
886 		ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *);
887 
888 		if (fin->fin_dp != NULL)
889 			plen += (char *)fin->fin_dp -
890 				((char *)fin->fin_ip + fin->fin_hlen);
891 		plen += fin->fin_hlen;
892 		/*
893 		 * We don't do 'plen += ipoff;' here. The fr_pullup() will
894 		 * do it for us.
895 		 */
896 		if (M_LEN(fin->fin_m) < plen + ipoff) {
897 			if (fr_pullup(fin->fin_m, fin, plen) == NULL)
898 				return -1;
899 		}
900 	}
901 #endif
902 	return 0;
903 }
904 
905 
906 /* ------------------------------------------------------------------------ */
907 /* Function:    frpr_short                                                  */
908 /* Returns:     void                                                        */
909 /* Parameters:  fin(I)  - pointer to packet information                     */
910 /*              xmin(I) - minimum header size                               */
911 /*                                                                          */
912 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
913 /* applying here is that the packet must not be fragmented within the layer */
914 /* 4 header.  That is, it must not be a fragment that has its offset set to */
915 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
916 /* entire layer 4 header must be present (min).                             */
917 /* ------------------------------------------------------------------------ */
918 static INLINE void frpr_short(fin, xmin)
919 fr_info_t *fin;
920 int xmin;
921 {
922 
923 	if (fin->fin_off == 0) {
924 		if (fin->fin_dlen < xmin)
925 			fin->fin_flx |= FI_SHORT;
926 	} else if (fin->fin_off < xmin) {
927 		fin->fin_flx |= FI_SHORT;
928 	}
929 }
930 
931 
932 /* ------------------------------------------------------------------------ */
933 /* Function:    frpr_icmp                                                   */
934 /* Returns:     void                                                        */
935 /* Parameters:  fin(I) - pointer to packet information                      */
936 /*                                                                          */
937 /* IPv4 Only                                                                */
938 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
939 /* except extrememly bad packets, both type and code will be present.       */
940 /* The expected minimum size of an ICMP packet is very much dependent on    */
941 /* the type of it.                                                          */
942 /*                                                                          */
943 /* XXX - other ICMP sanity checks?                                          */
944 /* ------------------------------------------------------------------------ */
945 static INLINE void frpr_icmp(fin)
946 fr_info_t *fin;
947 {
948 	int minicmpsz = sizeof(struct icmp);
949 	icmphdr_t *icmp;
950 	ip_t *oip;
951 	ipf_stack_t *ifs = fin->fin_ifs;
952 
953 	if (fin->fin_off != 0) {
954 		frpr_short(fin, ICMPERR_ICMPHLEN);
955 		return;
956 	}
957 
958 	if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
959 		return;
960 
961 	fr_checkv4sum(fin);
962 
963 	if (fin->fin_dlen > 1) {
964 		icmp = fin->fin_dp;
965 
966 		fin->fin_data[0] = *(u_short *)icmp;
967 
968 		switch (icmp->icmp_type)
969 		{
970 		case ICMP_ECHOREPLY :
971 		case ICMP_ECHO :
972 		/* Router discovery messaes - RFC 1256 */
973 		case ICMP_ROUTERADVERT :
974 		case ICMP_ROUTERSOLICIT :
975 			minicmpsz = ICMP_MINLEN;
976 			break;
977 		/*
978 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
979 		 * 3 * timestamp(3 * 4)
980 		 */
981 		case ICMP_TSTAMP :
982 		case ICMP_TSTAMPREPLY :
983 			minicmpsz = 20;
984 			break;
985 		/*
986 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
987 		 * mask(4)
988 		 */
989 		case ICMP_MASKREQ :
990 		case ICMP_MASKREPLY :
991 			minicmpsz = 12;
992 			break;
993 		/*
994 		 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
995 		 */
996 		case ICMP_UNREACH :
997 			if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
998 				if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
999 					fin->fin_flx |= FI_BAD;
1000 			}
1001 			/* FALLTHRU */
1002 		case ICMP_SOURCEQUENCH :
1003 		case ICMP_REDIRECT :
1004 		case ICMP_TIMXCEED :
1005 		case ICMP_PARAMPROB :
1006 			fin->fin_flx |= FI_ICMPERR;
1007 			if (fr_coalesce(fin) != 1)
1008 				return;
1009 			/*
1010 			 * ICMP error packets should not be generated for IP
1011 			 * packets that are a fragment that isn't the first
1012 			 * fragment.
1013 			 */
1014 			oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1015 			if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1016 				fin->fin_flx |= FI_BAD;
1017 			break;
1018 		default :
1019 			break;
1020 		}
1021 
1022 		if (fin->fin_dlen >= 6)				/* ID field */
1023 			fin->fin_data[1] = icmp->icmp_id;
1024 	}
1025 
1026 	frpr_short(fin, minicmpsz);
1027 }
1028 
1029 
1030 /* ------------------------------------------------------------------------ */
1031 /* Function:    frpr_tcpcommon                                              */
1032 /* Returns:     void                                                        */
1033 /* Parameters:  fin(I) - pointer to packet information                      */
1034 /*                                                                          */
1035 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1036 /* and make some checks with how they interact with other fields.           */
1037 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1038 /* valid and mark the packet as bad if not.                                 */
1039 /* ------------------------------------------------------------------------ */
1040 static INLINE void frpr_tcpcommon(fin)
1041 fr_info_t *fin;
1042 {
1043 	int flags, tlen;
1044 	tcphdr_t *tcp;
1045 
1046 	fin->fin_flx |= FI_TCPUDP;
1047 	if (fin->fin_off != 0)
1048 		return;
1049 
1050 	if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1051 		return;
1052 	tcp = fin->fin_dp;
1053 
1054 	if (fin->fin_dlen > 3) {
1055 		fin->fin_sport = ntohs(tcp->th_sport);
1056 		fin->fin_dport = ntohs(tcp->th_dport);
1057 	}
1058 
1059 	if ((fin->fin_flx & FI_SHORT) != 0)
1060 		return;
1061 
1062 	/*
1063 	 * Use of the TCP data offset *must* result in a value that is at
1064 	 * least the same size as the TCP header.
1065 	 */
1066 	tlen = TCP_OFF(tcp) << 2;
1067 	if (tlen < sizeof(tcphdr_t)) {
1068 		fin->fin_flx |= FI_BAD;
1069 		return;
1070 	}
1071 
1072 	flags = tcp->th_flags;
1073 	fin->fin_tcpf = tcp->th_flags;
1074 
1075 	/*
1076 	 * If the urgent flag is set, then the urgent pointer must
1077 	 * also be set and vice versa.  Good TCP packets do not have
1078 	 * just one of these set.
1079 	 */
1080 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1081 		fin->fin_flx |= FI_BAD;
1082 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1083 		/* Ignore this case, it shows up in "real" traffic with */
1084 		/* bogus values in the urgent pointer field. */
1085 		flags = flags; /* LINT */
1086 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1087 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1088 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1089 		fin->fin_flx |= FI_BAD;
1090 	} else if (!(flags & TH_ACK)) {
1091 		/*
1092 		 * If the ack bit isn't set, then either the SYN or
1093 		 * RST bit must be set.  If the SYN bit is set, then
1094 		 * we expect the ACK field to be 0.  If the ACK is
1095 		 * not set and if URG, PSH or FIN are set, consdier
1096 		 * that to indicate a bad TCP packet.
1097 		 */
1098 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1099 			/*
1100 			 * Cisco PIX sets the ACK field to a random value.
1101 			 * In light of this, do not set FI_BAD until a patch
1102 			 * is available from Cisco to ensure that
1103 			 * interoperability between existing systems is
1104 			 * achieved.
1105 			 */
1106 			/*fin->fin_flx |= FI_BAD*/;
1107 			flags = flags; /* LINT */
1108 		} else if (!(flags & (TH_RST|TH_SYN))) {
1109 			fin->fin_flx |= FI_BAD;
1110 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1111 			fin->fin_flx |= FI_BAD;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * At this point, it's not exactly clear what is to be gained by
1117 	 * marking up which TCP options are and are not present.  The one we
1118 	 * are most interested in is the TCP window scale.  This is only in
1119 	 * a SYN packet [RFC1323] so we don't need this here...?
1120 	 * Now if we were to analyse the header for passive fingerprinting,
1121 	 * then that might add some weight to adding this...
1122 	 */
1123 	if (tlen == sizeof(tcphdr_t))
1124 		return;
1125 
1126 	if (frpr_pullup(fin, tlen) == -1)
1127 		return;
1128 
1129 #if 0
1130 	ip = fin->fin_ip;
1131 	s = (u_char *)(tcp + 1);
1132 	off = IP_HL(ip) << 2;
1133 # ifdef _KERNEL
1134 	if (fin->fin_mp != NULL) {
1135 		mb_t *m = *fin->fin_mp;
1136 
1137 		if (off + tlen > M_LEN(m))
1138 			return;
1139 	}
1140 # endif
1141 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1142 		opt = *s;
1143 		if (opt == '\0')
1144 			break;
1145 		else if (opt == TCPOPT_NOP)
1146 			ol = 1;
1147 		else {
1148 			if (tlen < 2)
1149 				break;
1150 			ol = (int)*(s + 1);
1151 			if (ol < 2 || ol > tlen)
1152 				break;
1153 		}
1154 
1155 		for (i = 9, mv = 4; mv >= 0; ) {
1156 			op = ipopts + i;
1157 			if (opt == (u_char)op->ol_val) {
1158 				optmsk |= op->ol_bit;
1159 				break;
1160 			}
1161 		}
1162 		tlen -= ol;
1163 		s += ol;
1164 	}
1165 #endif /* 0 */
1166 }
1167 
1168 
1169 
1170 /* ------------------------------------------------------------------------ */
1171 /* Function:    frpr_udpcommon                                              */
1172 /* Returns:     void                                                        */
1173 /* Parameters:  fin(I) - pointer to packet information                      */
1174 /*                                                                          */
1175 /* Extract the UDP source and destination ports, if present.  If compiled   */
1176 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1177 /* ------------------------------------------------------------------------ */
1178 static INLINE void frpr_udpcommon(fin)
1179 fr_info_t *fin;
1180 {
1181 	udphdr_t *udp;
1182 
1183 	fin->fin_flx |= FI_TCPUDP;
1184 
1185 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1186 		if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1187 			fin->fin_flx |= FI_SHORT;
1188 			return;
1189 		}
1190 
1191 		udp = fin->fin_dp;
1192 
1193 		fin->fin_sport = ntohs(udp->uh_sport);
1194 		fin->fin_dport = ntohs(udp->uh_dport);
1195 	}
1196 }
1197 
1198 
1199 /* ------------------------------------------------------------------------ */
1200 /* Function:    frpr_tcp                                                    */
1201 /* Returns:     void                                                        */
1202 /* Parameters:  fin(I) - pointer to packet information                      */
1203 /*                                                                          */
1204 /* IPv4 Only                                                                */
1205 /* Analyse the packet for IPv4/TCP properties.                              */
1206 /* ------------------------------------------------------------------------ */
1207 static INLINE void frpr_tcp(fin)
1208 fr_info_t *fin;
1209 {
1210 
1211 	fr_checkv4sum(fin);
1212 
1213 	frpr_short(fin, sizeof(tcphdr_t));
1214 
1215 	frpr_tcpcommon(fin);
1216 }
1217 
1218 
1219 /* ------------------------------------------------------------------------ */
1220 /* Function:    frpr_udp                                                    */
1221 /* Returns:     void                                                        */
1222 /* Parameters:  fin(I) - pointer to packet information                      */
1223 /*                                                                          */
1224 /* IPv4 Only                                                                */
1225 /* Analyse the packet for IPv4/UDP properties.                              */
1226 /* ------------------------------------------------------------------------ */
1227 static INLINE void frpr_udp(fin)
1228 fr_info_t *fin;
1229 {
1230 
1231 	fr_checkv4sum(fin);
1232 
1233 	frpr_short(fin, sizeof(udphdr_t));
1234 
1235 	frpr_udpcommon(fin);
1236 }
1237 
1238 
1239 /* ------------------------------------------------------------------------ */
1240 /* Function:    frpr_esp                                                    */
1241 /* Returns:     void                                                        */
1242 /* Parameters:  fin(I) - pointer to packet information                      */
1243 /*                                                                          */
1244 /* Analyse the packet for ESP properties.                                   */
1245 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1246 /* even though the newer ESP packets must also have a sequence number that  */
1247 /* is 32bits as well, it is not possible(?) to determine the version from a */
1248 /* simple packet header.                                                    */
1249 /* ------------------------------------------------------------------------ */
1250 static INLINE void frpr_esp(fin)
1251 fr_info_t *fin;
1252 {
1253 	if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1254 		return;
1255 
1256 	frpr_short(fin, 8);
1257 }
1258 
1259 
1260 /* ------------------------------------------------------------------------ */
1261 /* Function:    frpr_ah                                                     */
1262 /* Returns:     void                                                        */
1263 /* Parameters:  fin(I) - pointer to packet information                      */
1264 /*                                                                          */
1265 /* Analyse the packet for AH properties.                                    */
1266 /* The minimum length is taken to be the combination of all fields in the   */
1267 /* header being present and no authentication data (null algorithm used.)   */
1268 /* ------------------------------------------------------------------------ */
1269 static INLINE void frpr_ah(fin)
1270 fr_info_t *fin;
1271 {
1272 	authhdr_t *ah;
1273 	int len;
1274 
1275 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1276 		return;
1277 
1278 	ah = (authhdr_t *)fin->fin_dp;
1279 
1280 	len = (ah->ah_plen + 2) << 2;
1281 	frpr_short(fin, len);
1282 }
1283 
1284 
1285 /* ------------------------------------------------------------------------ */
1286 /* Function:    frpr_gre                                                    */
1287 /* Returns:     void                                                        */
1288 /* Parameters:  fin(I) - pointer to packet information                      */
1289 /*                                                                          */
1290 /* Analyse the packet for GRE properties.                                   */
1291 /* ------------------------------------------------------------------------ */
1292 static INLINE void frpr_gre(fin)
1293 fr_info_t *fin;
1294 {
1295 	grehdr_t *gre;
1296 
1297 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1298 		return;
1299 
1300 	frpr_short(fin, sizeof(grehdr_t));
1301 
1302 	if (fin->fin_off == 0) {
1303 		gre = fin->fin_dp;
1304 		if (GRE_REV(gre->gr_flags) == 1)
1305 			fin->fin_data[0] = gre->gr_call;
1306 	}
1307 }
1308 
1309 
1310 /* ------------------------------------------------------------------------ */
1311 /* Function:    frpr_ipv4hdr                                                */
1312 /* Returns:     void                                                        */
1313 /* Parameters:  fin(I) - pointer to packet information                      */
1314 /*                                                                          */
1315 /* IPv4 Only                                                                */
1316 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1317 /* Check all options present and flag their presence if any exist.          */
1318 /* ------------------------------------------------------------------------ */
1319 static INLINE void frpr_ipv4hdr(fin)
1320 fr_info_t *fin;
1321 {
1322 	u_short optmsk = 0, secmsk = 0, auth = 0;
1323 	int hlen, ol, mv, p, i;
1324 	const struct optlist *op;
1325 	u_char *s, opt;
1326 	u_short off;
1327 	fr_ip_t *fi;
1328 	ip_t *ip;
1329 
1330 	fi = &fin->fin_fi;
1331 	hlen = fin->fin_hlen;
1332 
1333 	ip = fin->fin_ip;
1334 	p = ip->ip_p;
1335 	fi->fi_p = p;
1336 	fi->fi_tos = ip->ip_tos;
1337 	fin->fin_id = ip->ip_id;
1338 	off = ip->ip_off;
1339 
1340 	/* Get both TTL and protocol */
1341 	fi->fi_p = ip->ip_p;
1342 	fi->fi_ttl = ip->ip_ttl;
1343 #if 0
1344 	(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1345 #endif
1346 
1347 	/* Zero out bits not used in IPv6 address */
1348 	fi->fi_src.i6[1] = 0;
1349 	fi->fi_src.i6[2] = 0;
1350 	fi->fi_src.i6[3] = 0;
1351 	fi->fi_dst.i6[1] = 0;
1352 	fi->fi_dst.i6[2] = 0;
1353 	fi->fi_dst.i6[3] = 0;
1354 
1355 	fi->fi_saddr = ip->ip_src.s_addr;
1356 	fi->fi_daddr = ip->ip_dst.s_addr;
1357 
1358 	/*
1359 	 * set packet attribute flags based on the offset and
1360 	 * calculate the byte offset that it represents.
1361 	 */
1362 	off &= IP_MF|IP_OFFMASK;
1363 	if (off != 0) {
1364 		fi->fi_flx |= FI_FRAG;
1365 		off &= IP_OFFMASK;
1366 		if (off != 0) {
1367 			fin->fin_flx |= FI_FRAGBODY;
1368 			off <<= 3;
1369 			if ((off + fin->fin_dlen > 65535) ||
1370 			    (fin->fin_dlen == 0) ||
1371 			    ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) {
1372 				/*
1373 				 * The length of the packet, starting at its
1374 				 * offset cannot exceed 65535 (0xffff) as the
1375 				 * length of an IP packet is only 16 bits.
1376 				 *
1377 				 * Any fragment that isn't the last fragment
1378 				 * must have a length greater than 0 and it
1379 				 * must be an even multiple of 8.
1380 				 */
1381 				fi->fi_flx |= FI_BAD;
1382 			}
1383 		}
1384 	}
1385 	fin->fin_off = off;
1386 
1387 	/*
1388 	 * Call per-protocol setup and checking
1389 	 */
1390 	switch (p)
1391 	{
1392 	case IPPROTO_UDP :
1393 		frpr_udp(fin);
1394 		break;
1395 	case IPPROTO_TCP :
1396 		frpr_tcp(fin);
1397 		break;
1398 	case IPPROTO_ICMP :
1399 		frpr_icmp(fin);
1400 		break;
1401 	case IPPROTO_AH :
1402 		frpr_ah(fin);
1403 		break;
1404 	case IPPROTO_ESP :
1405 		frpr_esp(fin);
1406 		break;
1407 	case IPPROTO_GRE :
1408 		frpr_gre(fin);
1409 		break;
1410 	}
1411 
1412 	ip = fin->fin_ip;
1413 	if (ip == NULL)
1414 		return;
1415 
1416 	/*
1417 	 * If it is a standard IP header (no options), set the flag fields
1418 	 * which relate to options to 0.
1419 	 */
1420 	if (hlen == sizeof(*ip)) {
1421 		fi->fi_optmsk = 0;
1422 		fi->fi_secmsk = 0;
1423 		fi->fi_auth = 0;
1424 		return;
1425 	}
1426 
1427 	/*
1428 	 * So the IP header has some IP options attached.  Walk the entire
1429 	 * list of options present with this packet and set flags to indicate
1430 	 * which ones are here and which ones are not.  For the somewhat out
1431 	 * of date and obscure security classification options, set a flag to
1432 	 * represent which classification is present.
1433 	 */
1434 	fi->fi_flx |= FI_OPTIONS;
1435 
1436 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1437 		opt = *s;
1438 		if (opt == '\0')
1439 			break;
1440 		else if (opt == IPOPT_NOP)
1441 			ol = 1;
1442 		else {
1443 			if (hlen < 2)
1444 				break;
1445 			ol = (int)*(s + 1);
1446 			if (ol < 2 || ol > hlen)
1447 				break;
1448 		}
1449 		for (i = 9, mv = 4; mv >= 0; ) {
1450 			op = ipopts + i;
1451 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1452 				optmsk |= op->ol_bit;
1453 				if (opt == IPOPT_SECURITY) {
1454 					const struct optlist *sp;
1455 					u_char	sec;
1456 					int j, m;
1457 
1458 					sec = *(s + 2);	/* classification */
1459 					for (j = 3, m = 2; m >= 0; ) {
1460 						sp = secopt + j;
1461 						if (sec == sp->ol_val) {
1462 							secmsk |= sp->ol_bit;
1463 							auth = *(s + 3);
1464 							auth *= 256;
1465 							auth += *(s + 4);
1466 							break;
1467 						}
1468 						if (sec < sp->ol_val)
1469 							j -= m;
1470 						else
1471 							j += m;
1472 						m--;
1473 					}
1474 				}
1475 				break;
1476 			}
1477 			if (opt < op->ol_val)
1478 				i -= mv;
1479 			else
1480 				i += mv;
1481 			mv--;
1482 		}
1483 		hlen -= ol;
1484 		s += ol;
1485 	}
1486 
1487 	/*
1488 	 *
1489 	 */
1490 	if (auth && !(auth & 0x0100))
1491 		auth &= 0xff00;
1492 	fi->fi_optmsk = optmsk;
1493 	fi->fi_secmsk = secmsk;
1494 	fi->fi_auth = auth;
1495 }
1496 
1497 
1498 /* ------------------------------------------------------------------------ */
1499 /* Function:    fr_makefrip                                                 */
1500 /* Returns:     int - 1 == hdr checking error, 0 == OK                      */
1501 /* Parameters:  hlen(I) - length of IP packet header                        */
1502 /*              ip(I)   - pointer to the IP header                          */
1503 /*              fin(IO) - pointer to packet information                     */
1504 /*                                                                          */
1505 /* Compact the IP header into a structure which contains just the info.     */
1506 /* which is useful for comparing IP headers with and store this information */
1507 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1508 /* this function will be called with either an IPv4 or IPv6 packet.         */
1509 /* ------------------------------------------------------------------------ */
1510 int	fr_makefrip(hlen, ip, fin)
1511 int hlen;
1512 ip_t *ip;
1513 fr_info_t *fin;
1514 {
1515 	int v;
1516 
1517 	fin->fin_nat = NULL;
1518 	fin->fin_state = NULL;
1519 	fin->fin_depth = 0;
1520 	fin->fin_hlen = (u_short)hlen;
1521 	fin->fin_ip = ip;
1522 	fin->fin_rule = 0xffffffff;
1523 	fin->fin_group[0] = -1;
1524 	fin->fin_group[1] = '\0';
1525 	fin->fin_dlen = fin->fin_plen - hlen;
1526 	fin->fin_dp = (char *)ip + hlen;
1527 
1528 	v = fin->fin_v;
1529 	if (v == 4)
1530 		frpr_ipv4hdr(fin);
1531 #ifdef	USE_INET6
1532 	else if (v == 6) {
1533 		if (frpr_ipv6hdr(fin) == -1)
1534 			return -1;
1535 	}
1536 #endif
1537 	if (fin->fin_ip == NULL)
1538 		return -1;
1539 	return 0;
1540 }
1541 
1542 
1543 /* ------------------------------------------------------------------------ */
1544 /* Function:    fr_portcheck                                                */
1545 /* Returns:     int - 1 == port matched, 0 == port match failed             */
1546 /* Parameters:  frp(I) - pointer to port check `expression'                 */
1547 /*              pop(I) - pointer to port number to evaluate                 */
1548 /*                                                                          */
1549 /* Perform a comparison of a port number against some other(s), using a     */
1550 /* structure with compare information stored in it.                         */
1551 /* ------------------------------------------------------------------------ */
1552 static INLINE int fr_portcheck(frp, pop)
1553 frpcmp_t *frp;
1554 u_short *pop;
1555 {
1556 	u_short tup, po;
1557 	int err = 1;
1558 
1559 	tup = *pop;
1560 	po = frp->frp_port;
1561 
1562 	/*
1563 	 * Do opposite test to that required and continue if that succeeds.
1564 	 */
1565 	switch (frp->frp_cmp)
1566 	{
1567 	case FR_EQUAL :
1568 		if (tup != po) /* EQUAL */
1569 			err = 0;
1570 		break;
1571 	case FR_NEQUAL :
1572 		if (tup == po) /* NOTEQUAL */
1573 			err = 0;
1574 		break;
1575 	case FR_LESST :
1576 		if (tup >= po) /* LESSTHAN */
1577 			err = 0;
1578 		break;
1579 	case FR_GREATERT :
1580 		if (tup <= po) /* GREATERTHAN */
1581 			err = 0;
1582 		break;
1583 	case FR_LESSTE :
1584 		if (tup > po) /* LT or EQ */
1585 			err = 0;
1586 		break;
1587 	case FR_GREATERTE :
1588 		if (tup < po) /* GT or EQ */
1589 			err = 0;
1590 		break;
1591 	case FR_OUTRANGE :
1592 		if (tup >= po && tup <= frp->frp_top) /* Out of range */
1593 			err = 0;
1594 		break;
1595 	case FR_INRANGE :
1596 		if (tup <= po || tup >= frp->frp_top) /* In range */
1597 			err = 0;
1598 		break;
1599 	case FR_INCRANGE :
1600 		if (tup < po || tup > frp->frp_top) /* Inclusive range */
1601 			err = 0;
1602 		break;
1603 	default :
1604 		break;
1605 	}
1606 	return err;
1607 }
1608 
1609 
1610 /* ------------------------------------------------------------------------ */
1611 /* Function:    fr_tcpudpchk                                                */
1612 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
1613 /* Parameters:  fin(I) - pointer to packet information                      */
1614 /*              ft(I)  - pointer to structure with comparison data          */
1615 /*                                                                          */
1616 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
1617 /* structure containing information that we want to match against.          */
1618 /* ------------------------------------------------------------------------ */
1619 int fr_tcpudpchk(fin, ft)
1620 fr_info_t *fin;
1621 frtuc_t *ft;
1622 {
1623 	int err = 1;
1624 
1625 	/*
1626 	 * Both ports should *always* be in the first fragment.
1627 	 * So far, I cannot find any cases where they can not be.
1628 	 *
1629 	 * compare destination ports
1630 	 */
1631 	if (ft->ftu_dcmp)
1632 		err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1633 
1634 	/*
1635 	 * compare source ports
1636 	 */
1637 	if (err && ft->ftu_scmp)
1638 		err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1639 
1640 	/*
1641 	 * If we don't have all the TCP/UDP header, then how can we
1642 	 * expect to do any sort of match on it ?  If we were looking for
1643 	 * TCP flags, then NO match.  If not, then match (which should
1644 	 * satisfy the "short" class too).
1645 	 */
1646 	if (err && (fin->fin_p == IPPROTO_TCP)) {
1647 		if (fin->fin_flx & FI_SHORT)
1648 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1649 		/*
1650 		 * Match the flags ?  If not, abort this match.
1651 		 */
1652 		if (ft->ftu_tcpfm &&
1653 		    ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1654 			FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1655 				 ft->ftu_tcpfm, ft->ftu_tcpf));
1656 			err = 0;
1657 		}
1658 	}
1659 	return err;
1660 }
1661 
1662 
1663 /* ------------------------------------------------------------------------ */
1664 /* Function:    fr_ipfcheck                                                 */
1665 /* Returns:     int - 0 == match, 1 == no match                             */
1666 /* Parameters:  fin(I)     - pointer to packet information                  */
1667 /*              fr(I)      - pointer to filter rule                         */
1668 /*              portcmp(I) - flag indicating whether to attempt matching on */
1669 /*                           TCP/UDP port data.                             */
1670 /*                                                                          */
1671 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
1672 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1673 /* this function.                                                           */
1674 /* ------------------------------------------------------------------------ */
1675 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1676 fr_info_t *fin;
1677 frentry_t *fr;
1678 int portcmp;
1679 {
1680 	u_32_t	*ld, *lm, *lip;
1681 	fripf_t *fri;
1682 	fr_ip_t *fi;
1683 	int i;
1684 	ipf_stack_t *ifs = fin->fin_ifs;
1685 
1686 	fi = &fin->fin_fi;
1687 	fri = fr->fr_ipf;
1688 	lip = (u_32_t *)fi;
1689 	lm = (u_32_t *)&fri->fri_mip;
1690 	ld = (u_32_t *)&fri->fri_ip;
1691 
1692 	/*
1693 	 * first 32 bits to check coversion:
1694 	 * IP version, TOS, TTL, protocol
1695 	 */
1696 	i = ((*lip & *lm) != *ld);
1697 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1698 		   *lip, *lm, *ld));
1699 	if (i)
1700 		return 1;
1701 
1702 	/*
1703 	 * Next 32 bits is a constructed bitmask indicating which IP options
1704 	 * are present (if any) in this packet.
1705 	 */
1706 	lip++, lm++, ld++;
1707 	i |= ((*lip & *lm) != *ld);
1708 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1709 		   *lip, *lm, *ld));
1710 	if (i)
1711 		return 1;
1712 
1713 	lip++, lm++, ld++;
1714 	/*
1715 	 * Unrolled loops (4 each, for 32 bits) for address checks.
1716 	 */
1717 	/*
1718 	 * Check the source address.
1719 	 */
1720 #ifdef	IPFILTER_LOOKUP
1721 	if (fr->fr_satype == FRI_LOOKUP) {
1722 		i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs);
1723 		if (i == -1)
1724 			return 1;
1725 		lip += 3;
1726 		lm += 3;
1727 		ld += 3;
1728 	} else {
1729 #endif
1730 		i = ((*lip & *lm) != *ld);
1731 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1732 			   *lip, *lm, *ld));
1733 		if (fi->fi_v == 6) {
1734 			lip++, lm++, ld++;
1735 			i |= ((*lip & *lm) != *ld);
1736 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1737 				   *lip, *lm, *ld));
1738 			lip++, lm++, ld++;
1739 			i |= ((*lip & *lm) != *ld);
1740 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1741 				   *lip, *lm, *ld));
1742 			lip++, lm++, ld++;
1743 			i |= ((*lip & *lm) != *ld);
1744 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1745 				   *lip, *lm, *ld));
1746 		} else {
1747 			lip += 3;
1748 			lm += 3;
1749 			ld += 3;
1750 		}
1751 #ifdef	IPFILTER_LOOKUP
1752 	}
1753 #endif
1754 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1755 	if (i)
1756 		return 1;
1757 
1758 	/*
1759 	 * Check the destination address.
1760 	 */
1761 	lip++, lm++, ld++;
1762 #ifdef	IPFILTER_LOOKUP
1763 	if (fr->fr_datype == FRI_LOOKUP) {
1764 		i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs);
1765 		if (i == -1)
1766 			return 1;
1767 		lip += 3;
1768 		lm += 3;
1769 		ld += 3;
1770 	} else {
1771 #endif
1772 		i = ((*lip & *lm) != *ld);
1773 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1774 			   *lip, *lm, *ld));
1775 		if (fi->fi_v == 6) {
1776 			lip++, lm++, ld++;
1777 			i |= ((*lip & *lm) != *ld);
1778 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1779 				   *lip, *lm, *ld));
1780 			lip++, lm++, ld++;
1781 			i |= ((*lip & *lm) != *ld);
1782 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1783 				   *lip, *lm, *ld));
1784 			lip++, lm++, ld++;
1785 			i |= ((*lip & *lm) != *ld);
1786 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1787 				   *lip, *lm, *ld));
1788 		} else {
1789 			lip += 3;
1790 			lm += 3;
1791 			ld += 3;
1792 		}
1793 #ifdef	IPFILTER_LOOKUP
1794 	}
1795 #endif
1796 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1797 	if (i)
1798 		return 1;
1799 	/*
1800 	 * IP addresses matched.  The next 32bits contains:
1801 	 * mast of old IP header security & authentication bits.
1802 	 */
1803 	lip++, lm++, ld++;
1804 	i |= ((*lip & *lm) != *ld);
1805 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1806 		   *lip, *lm, *ld));
1807 
1808 	/*
1809 	 * Next we have 32 bits of packet flags.
1810 	 */
1811 	lip++, lm++, ld++;
1812 	i |= ((*lip & *lm) != *ld);
1813 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1814 		   *lip, *lm, *ld));
1815 
1816 	if (i == 0) {
1817 		/*
1818 		 * If a fragment, then only the first has what we're
1819 		 * looking for here...
1820 		 */
1821 		if (portcmp) {
1822 			if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1823 				i = 1;
1824 		} else {
1825 			if (fr->fr_dcmp || fr->fr_scmp ||
1826 			    fr->fr_tcpf || fr->fr_tcpfm)
1827 				i = 1;
1828 			if (fr->fr_icmpm || fr->fr_icmp) {
1829 				if (((fi->fi_p != IPPROTO_ICMP) &&
1830 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
1831 				    fin->fin_off || (fin->fin_dlen < 2))
1832 					i = 1;
1833 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1834 					 fr->fr_icmp) {
1835 					FR_DEBUG(("i. %#x & %#x != %#x\n",
1836 						 fin->fin_data[0],
1837 						 fr->fr_icmpm, fr->fr_icmp));
1838 					i = 1;
1839 				}
1840 			}
1841 		}
1842 	}
1843 	return i;
1844 }
1845 
1846 
1847 /* ------------------------------------------------------------------------ */
1848 /* Function:    fr_scanlist                                                 */
1849 /* Returns:     int - result flags of scanning filter list                  */
1850 /* Parameters:  fin(I) - pointer to packet information                      */
1851 /*              pass(I) - default result to return for filtering            */
1852 /*                                                                          */
1853 /* Check the input/output list of rules for a match to the current packet.  */
1854 /* If a match is found, the value of fr_flags from the rule becomes the     */
1855 /* return value and fin->fin_fr points to the matched rule.                 */
1856 /*                                                                          */
1857 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
1858 /* When unwinding, it should finish up with fin_depth as 0.                 */
1859 /*                                                                          */
1860 /* Could be per interface, but this gets real nasty when you don't have,    */
1861 /* or can't easily change, the kernel source code to .                      */
1862 /* ------------------------------------------------------------------------ */
1863 int fr_scanlist(fin, pass)
1864 fr_info_t *fin;
1865 u_32_t pass;
1866 {
1867 	int rulen, portcmp, off, logged, skip;
1868 	struct frentry *fr, *fnext;
1869 	u_32_t passt, passo;
1870 	ipf_stack_t *ifs = fin->fin_ifs;
1871 
1872 	/*
1873 	 * Do not allow nesting deeper than 16 levels.
1874 	 */
1875 	if (fin->fin_depth >= 16)
1876 		return pass;
1877 
1878 	fr = fin->fin_fr;
1879 
1880 	/*
1881 	 * If there are no rules in this list, return now.
1882 	 */
1883 	if (fr == NULL)
1884 		return pass;
1885 
1886 	skip = 0;
1887 	logged = 0;
1888 	portcmp = 0;
1889 	fin->fin_depth++;
1890 	fin->fin_fr = NULL;
1891 	off = fin->fin_off;
1892 
1893 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1894 		portcmp = 1;
1895 
1896 	for (rulen = 0; fr; fr = fnext, rulen++) {
1897 		fnext = fr->fr_next;
1898 		if (skip != 0) {
1899 			FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1900 			skip--;
1901 			continue;
1902 		}
1903 
1904 		/*
1905 		 * In all checks below, a null (zero) value in the
1906 		 * filter struture is taken to mean a wildcard.
1907 		 *
1908 		 * check that we are working for the right interface
1909 		 */
1910 #ifdef	_KERNEL
1911 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1912 			continue;
1913 #else
1914 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
1915 			printf("\n");
1916 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1917 				  FR_ISPASS(pass) ? 'p' :
1918 				  FR_ISACCOUNT(pass) ? 'A' :
1919 				  FR_ISAUTH(pass) ? 'a' :
1920 				  (pass & FR_NOMATCH) ? 'n' :'b'));
1921 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1922 			continue;
1923 		FR_VERBOSE((":i"));
1924 #endif
1925 
1926 		switch (fr->fr_type)
1927 		{
1928 		case FR_T_IPF :
1929 		case FR_T_IPF|FR_T_BUILTIN :
1930 			if (fr_ipfcheck(fin, fr, portcmp))
1931 				continue;
1932 			break;
1933 #if defined(IPFILTER_BPF)
1934 		case FR_T_BPFOPC :
1935 		case FR_T_BPFOPC|FR_T_BUILTIN :
1936 		    {
1937 			u_char *mc;
1938 
1939 			if (*fin->fin_mp == NULL)
1940 				continue;
1941 			if (fin->fin_v != fr->fr_v)
1942 				continue;
1943 			mc = (u_char *)fin->fin_m;
1944 			if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1945 				continue;
1946 			break;
1947 		    }
1948 #endif
1949 		case FR_T_CALLFUNC|FR_T_BUILTIN :
1950 		    {
1951 			frentry_t *f;
1952 
1953 			f = (*fr->fr_func)(fin, &pass);
1954 			if (f != NULL)
1955 				fr = f;
1956 			else
1957 				continue;
1958 			break;
1959 		    }
1960 		default :
1961 			break;
1962 		}
1963 
1964 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1965 			if (fin->fin_nattag == NULL)
1966 				continue;
1967 			if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1968 				continue;
1969 		}
1970 		FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1971 
1972 		passt = fr->fr_flags;
1973 
1974 		/*
1975 		 * Allowing a rule with the "keep state" flag set to match
1976 		 * packets that have been tagged "out of window" by the TCP
1977 		 * state tracking is foolish as the attempt to add a new
1978 		 * state entry to the table will fail.
1979 		 */
1980 		if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1981 			continue;
1982 
1983 		/*
1984 		 * If the rule is a "call now" rule, then call the function
1985 		 * in the rule, if it exists and use the results from that.
1986 		 * If the function pointer is bad, just make like we ignore
1987 		 * it, except for increasing the hit counter.
1988 		 */
1989 		if ((passt & FR_CALLNOW) != 0) {
1990 			IPF_BUMP(fr->fr_hits);
1991 			if ((fr->fr_func != NULL) &&
1992 			    (fr->fr_func != (ipfunc_t)-1)) {
1993 				frentry_t *frs;
1994 
1995 				frs = fin->fin_fr;
1996 				fin->fin_fr = fr;
1997 				fr = (*fr->fr_func)(fin, &passt);
1998 				if (fr == NULL) {
1999 					fin->fin_fr = frs;
2000 					continue;
2001 				}
2002 				passt = fr->fr_flags;
2003 				fin->fin_fr = fr;
2004 			}
2005 		} else {
2006 			fin->fin_fr = fr;
2007 		}
2008 
2009 #ifdef  IPFILTER_LOG
2010 		/*
2011 		 * Just log this packet...
2012 		 */
2013 		if ((passt & FR_LOGMASK) == FR_LOG) {
2014 			if (ipflog(fin, passt) == -1) {
2015 				if (passt & FR_LOGORBLOCK) {
2016 					passt &= ~FR_CMDMASK;
2017 					passt |= FR_BLOCK|FR_QUICK;
2018 				}
2019 				IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2020 			}
2021 			IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2022 			logged = 1;
2023 		}
2024 #endif /* IPFILTER_LOG */
2025 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2026 		passo = pass;
2027 		if (FR_ISSKIP(passt))
2028 			skip = fr->fr_arg;
2029 		else if ((passt & FR_LOGMASK) != FR_LOG)
2030 			pass = passt;
2031 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2032 			fin->fin_icode = fr->fr_icode;
2033 		FR_DEBUG(("pass %#x\n", pass));
2034 		IPF_BUMP(fr->fr_hits);
2035 		fin->fin_rule = rulen;
2036 		(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2037 		if (fr->fr_grp != NULL) {
2038 			fin->fin_fr = *fr->fr_grp;
2039 			pass = fr_scanlist(fin, pass);
2040 			if (fin->fin_fr == NULL) {
2041 				fin->fin_rule = rulen;
2042 				(void) strncpy(fin->fin_group, fr->fr_group,
2043 					       FR_GROUPLEN);
2044 				fin->fin_fr = fr;
2045 			}
2046 			if (fin->fin_flx & FI_DONTCACHE)
2047 				logged = 1;
2048 		}
2049 
2050 		if (pass & FR_QUICK) {
2051 			/*
2052 			 * Finally, if we've asked to track state for this
2053 			 * packet, set it up.  Add state for "quick" rules
2054 			 * here so that if the action fails we can consider
2055 			 * the rule to "not match" and keep on processing
2056 			 * filter rules.
2057 			 */
2058 			if ((pass & FR_KEEPSTATE) &&
2059 			    !(fin->fin_flx & FI_STATE)) {
2060 				int out = fin->fin_out;
2061 
2062 				if (fr_addstate(fin, NULL, 0) != NULL) {
2063 					IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2064 				} else {
2065 					IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2066 					pass = passo;
2067 					continue;
2068 				}
2069 			}
2070 			break;
2071 		}
2072 	}
2073 	if (logged)
2074 		fin->fin_flx |= FI_DONTCACHE;
2075 	fin->fin_depth--;
2076 	return pass;
2077 }
2078 
2079 
2080 /* ------------------------------------------------------------------------ */
2081 /* Function:    fr_acctpkt                                                  */
2082 /* Returns:     frentry_t* - always returns NULL                            */
2083 /* Parameters:  fin(I) - pointer to packet information                      */
2084 /*              passp(IO) - pointer to current/new filter decision (unused) */
2085 /*                                                                          */
2086 /* Checks a packet against accounting rules, if there are any for the given */
2087 /* IP protocol version.                                                     */
2088 /*                                                                          */
2089 /* N.B.: this function returns NULL to match the prototype used by other    */
2090 /* functions called from the IPFilter "mainline" in fr_check().             */
2091 /* ------------------------------------------------------------------------ */
2092 frentry_t *fr_acctpkt(fin, passp)
2093 fr_info_t *fin;
2094 u_32_t *passp;
2095 {
2096 	char group[FR_GROUPLEN];
2097 	frentry_t *fr, *frsave;
2098 	u_32_t pass, rulen;
2099 	ipf_stack_t *ifs = fin->fin_ifs;
2100 
2101 	passp = passp;
2102 #ifdef	USE_INET6
2103 	if (fin->fin_v == 6)
2104 		fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2105 	else
2106 #endif
2107 		fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2108 
2109 	if (fr != NULL) {
2110 		frsave = fin->fin_fr;
2111 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2112 		rulen = fin->fin_rule;
2113 		fin->fin_fr = fr;
2114 		pass = fr_scanlist(fin, FR_NOMATCH);
2115 		if (FR_ISACCOUNT(pass)) {
2116 			IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2117 		}
2118 		fin->fin_fr = frsave;
2119 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2120 		fin->fin_rule = rulen;
2121 	}
2122 	return NULL;
2123 }
2124 
2125 
2126 /* ------------------------------------------------------------------------ */
2127 /* Function:    fr_firewall                                                 */
2128 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2129 /*                           were found, returns NULL.                      */
2130 /* Parameters:  fin(I) - pointer to packet information                      */
2131 /*              passp(IO) - pointer to current/new filter decision (unused) */
2132 /*                                                                          */
2133 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2134 /* there are any matches.  The first check is to see if a match can be seen */
2135 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2136 /* matching rule is found, take any appropriate actions as defined by the   */
2137 /* rule - except logging.                                                   */
2138 /* ------------------------------------------------------------------------ */
2139 static frentry_t *fr_firewall(fin, passp)
2140 fr_info_t *fin;
2141 u_32_t *passp;
2142 {
2143 	frentry_t *fr;
2144 	u_32_t pass;
2145 	int out;
2146 	ipf_stack_t *ifs = fin->fin_ifs;
2147 
2148 	out = fin->fin_out;
2149 	pass = *passp;
2150 
2151 #ifdef	USE_INET6
2152 	if (fin->fin_v == 6)
2153 		fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2154 	else
2155 #endif
2156 		fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2157 	if (fin->fin_fr != NULL)
2158 		pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2159 
2160 	if ((pass & FR_NOMATCH)) {
2161 		IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2162 	}
2163 	fr = fin->fin_fr;
2164 
2165 	/*
2166 	 * Apply packets per second rate-limiting to a rule as required.
2167 	 */
2168 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2169 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2170 		pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2171 		pass |= FR_BLOCK;
2172 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2173 	}
2174 
2175 	/*
2176 	 * If we fail to add a packet to the authorization queue, then we
2177 	 * drop the packet later.  However, if it was added then pretend
2178 	 * we've dropped it already.
2179 	 */
2180 	if (FR_ISAUTH(pass)) {
2181 		if (fr_newauth(fin->fin_m, fin) != 0) {
2182 #ifdef	_KERNEL
2183 			fin->fin_m = *fin->fin_mp = NULL;
2184 #else
2185 			;
2186 #endif
2187 			fin->fin_error = 0;
2188 		} else
2189 			fin->fin_error = ENOSPC;
2190 	}
2191 
2192 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2193 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2194 		(void) (*fr->fr_func)(fin, &pass);
2195 
2196 	/*
2197 	 * If a rule is a pre-auth rule, check again in the list of rules
2198 	 * loaded for authenticated use.  It does not particulary matter
2199 	 * if this search fails because a "preauth" result, from a rule,
2200 	 * is treated as "not a pass", hence the packet is blocked.
2201 	 */
2202 	if (FR_ISPREAUTH(pass)) {
2203 		if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2204 			pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2205 	}
2206 
2207 	/*
2208 	 * If the rule has "keep frag" and the packet is actually a fragment,
2209 	 * then create a fragment state entry.
2210 	 */
2211 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2212 		if (fin->fin_flx & FI_FRAG) {
2213 			if (fr_newfrag(fin, pass) == -1) {
2214 				IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2215 			} else {
2216 				IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2217 			}
2218 		} else {
2219 			IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2220 		}
2221 	}
2222 
2223 	/*
2224 	 * Finally, if we've asked to track state for this packet, set it up.
2225 	 */
2226 	if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2227 		if (fr_addstate(fin, NULL, 0) != NULL) {
2228 			IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2229 		} else {
2230 			IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2231 			if (FR_ISPASS(pass)) {
2232 				pass &= ~FR_CMDMASK;
2233 				pass |= FR_BLOCK;
2234 			}
2235 		}
2236 	}
2237 
2238 	fr = fin->fin_fr;
2239 
2240 	if (passp != NULL)
2241 		*passp = pass;
2242 
2243 	return fr;
2244 }
2245 
2246 
2247 /* ------------------------------------------------------------------------ */
2248 /* Function:    fr_check                                                    */
2249 /* Returns:     int -  0 == packet allowed through,                         */
2250 /*              User space:                                                 */
2251 /*                    -1 == packet blocked                                  */
2252 /*                     1 == packet not matched                              */
2253 /*                    -2 == requires authentication                         */
2254 /*              Kernel:                                                     */
2255 /*                   > 0 == filter error # for packet                       */
2256 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2257 /*             hlen(I) - length of header                                   */
2258 /*             ifp(I)  - pointer to interface this packet is on             */
2259 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2260 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2261 /*                       IP packet.                                         */
2262 /* Solaris & HP-UX ONLY :                                                   */
2263 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2264 /*                       interface & direction.                             */
2265 /*                                                                          */
2266 /* fr_check() is the master function for all IPFilter packet processing.    */
2267 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2268 /* authorisation (or pre-authorisation), presence of related state info.,   */
2269 /* generating log entries, IP packet accounting, routing of packets as      */
2270 /* directed by firewall rules and of course whether or not to allow the     */
2271 /* packet to be further processed by the kernel.                            */
2272 /*                                                                          */
2273 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2274 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2275 /* by "mp" changed to a new buffer.                                         */
2276 /* ------------------------------------------------------------------------ */
2277 int fr_check(ip, hlen, ifp, out
2278 #if defined(_KERNEL) && defined(MENTAT)
2279 , qif, mp, ifs)
2280 void *qif;
2281 #else
2282 , mp, ifs)
2283 #endif
2284 mb_t **mp;
2285 ip_t *ip;
2286 int hlen;
2287 void *ifp;
2288 int out;
2289 ipf_stack_t *ifs;
2290 {
2291 	/*
2292 	 * The above really sucks, but short of writing a diff
2293 	 */
2294 	fr_info_t frinfo;
2295 	fr_info_t *fin = &frinfo;
2296 	u_32_t pass;
2297 	frentry_t *fr = NULL;
2298 	int v = IP_V(ip);
2299 	mb_t *mc = NULL;
2300 	mb_t *m;
2301 #ifdef USE_INET6
2302 	ip6_t *ip6;
2303 #endif
2304 #ifdef	_KERNEL
2305 # ifdef MENTAT
2306 	qpktinfo_t *qpi = qif;
2307 #endif
2308 #endif
2309 
2310 	SPL_INT(s);
2311 	pass = ifs->ifs_fr_pass;
2312 
2313 	/*
2314 	 * The first part of fr_check() deals with making sure that what goes
2315 	 * into the filtering engine makes some sense.  Information about the
2316 	 * the packet is distilled, collected into a fr_info_t structure and
2317 	 * the an attempt to ensure the buffer the packet is in is big enough
2318 	 * to hold all the required packet headers.
2319 	 */
2320 #ifdef	_KERNEL
2321 # ifdef MENTAT
2322 	if (!OK_32PTR(ip))
2323 		return 2;
2324 # endif
2325 
2326 
2327 	if (ifs->ifs_fr_running <= 0) {
2328 		return 0;
2329 	}
2330 
2331 	bzero((char *)fin, sizeof(*fin));
2332 
2333 # ifdef MENTAT
2334 	fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2335 					 FI_BROADCAST);
2336 	m = qpi->qpi_m;
2337 	fin->fin_qfm = m;
2338 	fin->fin_qpi = qpi;
2339 # else /* MENTAT */
2340 
2341 	m = *mp;
2342 
2343 #  if defined(M_MCAST)
2344 	if ((m->m_flags & M_MCAST) != 0)
2345 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2346 #  endif
2347 #  if defined(M_MLOOP)
2348 	if ((m->m_flags & M_MLOOP) != 0)
2349 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2350 #  endif
2351 #  if defined(M_BCAST)
2352 	if ((m->m_flags & M_BCAST) != 0)
2353 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2354 #  endif
2355 #  ifdef M_CANFASTFWD
2356 	/*
2357 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2358 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2359 	 * XXX get a "can-fast-forward" filter rule.
2360 	 */
2361 	m->m_flags &= ~M_CANFASTFWD;
2362 #  endif /* M_CANFASTFWD */
2363 #  ifdef CSUM_DELAY_DATA
2364 	/*
2365 	 * disable delayed checksums.
2366 	 */
2367 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2368 		in_delayed_cksum(m);
2369 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2370 	}
2371 #  endif /* CSUM_DELAY_DATA */
2372 # endif /* MENTAT */
2373 #else
2374 
2375 	bzero((char *)fin, sizeof(*fin));
2376 	m = *mp;
2377 #endif /* _KERNEL */
2378 
2379 	fin->fin_v = v;
2380 	fin->fin_m = m;
2381 	fin->fin_ip = ip;
2382 	fin->fin_mp = mp;
2383 	fin->fin_out = out;
2384 	fin->fin_ifp = ifp;
2385 	fin->fin_error = ENETUNREACH;
2386 	fin->fin_hlen = (u_short)hlen;
2387 	fin->fin_dp = (char *)ip + hlen;
2388 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2389 	fin->fin_ifs = ifs;
2390 
2391 	SPL_NET(s);
2392 
2393 #ifdef	USE_INET6
2394 	if (v == 6) {
2395 		IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2396 		/*
2397 		 * Jumbo grams are quite likely too big for internal buffer
2398 		 * structures to handle comfortably, for now, so just drop
2399 		 * them.
2400 		 */
2401 		ip6 = (ip6_t *)ip;
2402 		fin->fin_plen = ntohs(ip6->ip6_plen);
2403 		if (fin->fin_plen == 0) {
2404 			READ_ENTER(&ifs->ifs_ipf_mutex);
2405 			pass = FR_BLOCK|FR_NOMATCH;
2406 			goto filtered;
2407 		}
2408 		fin->fin_plen += sizeof(ip6_t);
2409 	} else
2410 #endif
2411 	{
2412 #if (OpenBSD >= 200311) && defined(_KERNEL)
2413 		ip->ip_len = ntohs(ip->ip_len);
2414 		ip->ip_off = ntohs(ip->ip_off);
2415 #endif
2416 		fin->fin_plen = ip->ip_len;
2417 	}
2418 
2419 	if (fr_makefrip(hlen, ip, fin) == -1) {
2420 		READ_ENTER(&ifs->ifs_ipf_mutex);
2421 		pass = FR_BLOCK;
2422 		goto filtered;
2423 	}
2424 
2425 	/*
2426 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2427 	 * becomes NULL and so we have no packet to free.
2428 	 */
2429 	if (*fin->fin_mp == NULL)
2430 		goto finished;
2431 
2432 	if (!out) {
2433 		if (v == 4) {
2434 #ifdef _KERNEL
2435 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2436 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2437 				fin->fin_flx |= FI_BADSRC;
2438 			}
2439 #endif
2440 			if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2441 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2442 				fin->fin_flx |= FI_LOWTTL;
2443 			}
2444 		}
2445 #ifdef USE_INET6
2446 		else  if (v == 6) {
2447 			ip6 = (ip6_t *)ip;
2448 #ifdef _KERNEL
2449 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2450 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2451 				fin->fin_flx |= FI_BADSRC;
2452 			}
2453 #endif
2454 			if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2455 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2456 				fin->fin_flx |= FI_LOWTTL;
2457 			}
2458 		}
2459 #endif
2460 	}
2461 
2462 	if (fin->fin_flx & FI_SHORT) {
2463 		IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2464 	}
2465 
2466 	READ_ENTER(&ifs->ifs_ipf_mutex);
2467 
2468 	/*
2469 	 * Check auth now.  This, combined with the check below to see if apass
2470 	 * is 0 is to ensure that we don't count the packet twice, which can
2471 	 * otherwise occur when we reprocess it.  As it is, we only count it
2472 	 * after it has no auth. table matchup.  This also stops NAT from
2473 	 * occuring until after the packet has been auth'd.
2474 	 */
2475 	fr = fr_checkauth(fin, &pass);
2476 	if (!out) {
2477 		switch (fin->fin_v)
2478 		{
2479 		case 4 :
2480 			if (fr_checknatin(fin, &pass) == -1) {
2481 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2482 				goto finished;
2483 			}
2484 			break;
2485 #ifdef	USE_INET6
2486 		case 6 :
2487 			if (fr_checknat6in(fin, &pass) == -1) {
2488 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2489 				goto finished;
2490 			}
2491 			break;
2492 #endif
2493 		default :
2494 			break;
2495 		}
2496 	}
2497 	if (!out)
2498 		(void) fr_acctpkt(fin, NULL);
2499 
2500 	if (fr == NULL)
2501 		if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2502 			fr = fr_knownfrag(fin, &pass);
2503 	if (fr == NULL)
2504 		fr = fr_checkstate(fin, &pass);
2505 
2506 	if ((pass & FR_NOMATCH) || (fr == NULL))
2507 		fr = fr_firewall(fin, &pass);
2508 
2509 	fin->fin_fr = fr;
2510 
2511 	/*
2512 	 * Only count/translate packets which will be passed on, out the
2513 	 * interface.
2514 	 */
2515 	if (out && FR_ISPASS(pass)) {
2516 		(void) fr_acctpkt(fin, NULL);
2517 
2518 		switch (fin->fin_v)
2519 		{
2520 		case 4 :
2521 			if (fr_checknatout(fin, &pass) == -1) {
2522 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2523 				goto finished;
2524 			}
2525 			break;
2526 #ifdef	USE_INET6
2527 		case 6 :
2528 			if (fr_checknat6out(fin, &pass) == -1) {
2529 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2530 				goto finished;
2531 			}
2532 			break;
2533 #endif
2534 		default :
2535 			break;
2536 		}
2537 
2538 		if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2539 			if (fr_updateipid(fin) == -1) {
2540 				IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2541 				pass &= ~FR_CMDMASK;
2542 				pass |= FR_BLOCK;
2543 			} else {
2544 				IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2545 			}
2546 		}
2547 	}
2548 
2549 #ifdef	IPFILTER_LOG
2550 	if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2551 		(void) fr_dolog(fin, &pass);
2552 	}
2553 #endif
2554 
2555 	if (fin->fin_state != NULL)
2556 		fr_statederef((ipstate_t **)&fin->fin_state, ifs);
2557 
2558 	/*
2559 	 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2560 	 * set FR_DUP as a "default" as there are no instructions about where
2561 	 * to send the packet.  Use fin_m here because it may have changed
2562 	 * (without an update of 'm') in prior processing.
2563 	 */
2564 	if ((fr != NULL) && (pass & FR_DUP)) {
2565 		mc = M_DUPLICATE(fin->fin_m);
2566 	}
2567 
2568 	if (pass & (FR_RETRST|FR_RETICMP)) {
2569 		/*
2570 		 * Should we return an ICMP packet to indicate error
2571 		 * status passing through the packet filter ?
2572 		 * WARNING: ICMP error packets AND TCP RST packets should
2573 		 * ONLY be sent in repsonse to incoming packets.  Sending them
2574 		 * in response to outbound packets can result in a panic on
2575 		 * some operating systems.
2576 		 */
2577 		if (!out) {
2578 			nat_t *savenat;
2579 
2580 			/*
2581 			 * In case this packet is associated with a NAT entry,
2582 			 * we need to save a pointer to it, set it to NULL,
2583 			 * and restore the pointer after any return packets
2584 			 * have been sent.
2585 			 *
2586 			 * We must do this to keep calls to fr_send_icmp_err()
2587 			 * and fr_send_reset() from trying to dereference the
2588 			 * entry; as the dereference happens (for all packets)
2589  			 * later on.
2590 			 */
2591 			savenat = fin->fin_nat;
2592 			fin->fin_nat = NULL;
2593 
2594 			if (pass & FR_RETICMP) {
2595 				int dst;
2596 
2597 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
2598 					dst = 1;
2599 				else
2600 					dst = 0;
2601 				(void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2602 				IPF_BUMP(ifs->ifs_frstats[0].fr_ret);
2603 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
2604 				   !(fin->fin_flx & FI_SHORT)) {
2605 				if (fr_send_reset(fin) == 0) {
2606 					IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2607 				}
2608 			}
2609 
2610 			fin->fin_nat = savenat;
2611 		} else {
2612 			if (pass & FR_RETRST)
2613 				fin->fin_error = ECONNRESET;
2614 		}
2615 	}
2616 
2617 	/*
2618 	 * fr_send_icmp_err() and fr_send_reset() are the last functions that
2619 	 * could require use of a NAT entry.  If this packet is associated with
2620 	 * one, it's time to clean up our reference to it.
2621 	 *
2622 	 * Note:
2623 	 * If a new NAT entry was created as result of this packet, and the
2624 	 * packet was blocked, then the entry should be forcibly removed
2625 	 * from the table.  Otherwise, it's sufficient to simply give up the
2626 	 * reference to it.
2627 	 */
2628 	if (fin->fin_nat != NULL) {
2629 		if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) {
2630 			WRITE_ENTER(&ifs->ifs_ipf_nat);
2631 			nat_delete((nat_t *)fin->fin_nat, NL_DESTROY, ifs);
2632 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
2633 			fin->fin_nat = NULL;
2634 		} else {
2635 			fr_natderef((nat_t **)&fin->fin_nat, ifs);
2636 		}
2637 	}
2638 
2639 	/*
2640 	 * If we didn't drop off the bottom of the list of rules (and thus
2641 	 * the 'current' rule fr is not NULL), then we may have some extra
2642 	 * instructions about what to do with a packet.
2643 	 * Once we're finished return to our caller, freeing the packet if
2644 	 * we are dropping it (* BSD ONLY *).
2645 	 * Reassign m from fin_m as we may have a new buffer, now.
2646 	 */
2647 filtered:
2648 	m = fin->fin_m;
2649 
2650 	if (fr != NULL) {
2651 		frdest_t *fdp;
2652 
2653 		fdp = &fr->fr_tifs[fin->fin_rev];
2654 
2655 		if (!out && (pass & FR_FASTROUTE)) {
2656 			/*
2657 			 * For fastroute rule, no destioation interface defined
2658 			 * so pass NULL as the frdest_t parameter
2659 			 */
2660 			(void) fr_fastroute(m, mp, fin, NULL);
2661 			m = *mp = NULL;
2662 		} else if ((fdp->fd_ifp != NULL) &&
2663 			   (fdp->fd_ifp != (struct ifnet *)-1)) {
2664 			/* this is for to rules: */
2665 			(void) fr_fastroute(m, mp, fin, fdp);
2666 			m = *mp = NULL;
2667 		}
2668 
2669 		/*
2670 		 * Generate a duplicated packet.
2671 		 */
2672 		if (mc != NULL)
2673 			(void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2674 	}
2675 
2676 	/*
2677 	 * This late because the likes of fr_fastroute() use fin_fr.
2678 	 */
2679 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2680 
2681 finished:
2682 	if (!FR_ISPASS(pass)) {
2683 		IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2684 		if (*mp != NULL) {
2685 			FREE_MB_T(*mp);
2686 			m = *mp = NULL;
2687 		}
2688 	} else {
2689 		IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2690 #if defined(_KERNEL) && defined(__sgi)
2691 		if ((fin->fin_hbuf != NULL) &&
2692 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2693 			COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2694 		}
2695 #endif
2696 	}
2697 
2698 	SPL_X(s);
2699 
2700 #ifdef _KERNEL
2701 # if OpenBSD >= 200311
2702 	if (FR_ISPASS(pass) && (v == 4)) {
2703 		ip = fin->fin_ip;
2704 		ip->ip_len = ntohs(ip->ip_len);
2705 		ip->ip_off = ntohs(ip->ip_off);
2706 	}
2707 # endif
2708 	return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2709 #else /* _KERNEL */
2710 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2711 	if ((pass & FR_NOMATCH) != 0)
2712 		return 1;
2713 
2714 	if ((pass & FR_RETMASK) != 0)
2715 		switch (pass & FR_RETMASK)
2716 		{
2717 		case FR_RETRST :
2718 			return 3;
2719 		case FR_RETICMP :
2720 			return 4;
2721 		case FR_FAKEICMP :
2722 			return 5;
2723 		}
2724 
2725 	switch (pass & FR_CMDMASK)
2726 	{
2727 	case FR_PASS :
2728 		return 0;
2729 	case FR_BLOCK :
2730 		return -1;
2731 	case FR_AUTH :
2732 		return -2;
2733 	case FR_ACCOUNT :
2734 		return -3;
2735 	case FR_PREAUTH :
2736 		return -4;
2737 	}
2738 	return 2;
2739 #endif /* _KERNEL */
2740 }
2741 
2742 
2743 #ifdef	IPFILTER_LOG
2744 /* ------------------------------------------------------------------------ */
2745 /* Function:    fr_dolog                                                    */
2746 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
2747 /* Parameters:  fin(I) - pointer to packet information                      */
2748 /*              passp(IO) - pointer to current/new filter decision (unused) */
2749 /*                                                                          */
2750 /* Checks flags set to see how a packet should be logged, if it is to be    */
2751 /* logged.  Adjust statistics based on its success or not.                  */
2752 /* ------------------------------------------------------------------------ */
2753 frentry_t *fr_dolog(fin, passp)
2754 fr_info_t *fin;
2755 u_32_t *passp;
2756 {
2757 	u_32_t pass;
2758 	int out;
2759 	ipf_stack_t *ifs = fin->fin_ifs;
2760 
2761 	out = fin->fin_out;
2762 	pass = *passp;
2763 
2764 	if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2765 		pass |= FF_LOGNOMATCH;
2766 		IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2767 		goto logit;
2768 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2769 	    (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2770 		if ((pass & FR_LOGMASK) != FR_LOGP)
2771 			pass |= FF_LOGPASS;
2772 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2773 		goto logit;
2774 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2775 		   (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2776 		if ((pass & FR_LOGMASK) != FR_LOGB)
2777 			pass |= FF_LOGBLOCK;
2778 		IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2779 logit:
2780 		if (ipflog(fin, pass) == -1) {
2781 			IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2782 
2783 			/*
2784 			 * If the "or-block" option has been used then
2785 			 * block the packet if we failed to log it.
2786 			 */
2787 			if ((pass & FR_LOGORBLOCK) &&
2788 			    FR_ISPASS(pass)) {
2789 				pass &= ~FR_CMDMASK;
2790 				pass |= FR_BLOCK;
2791 			}
2792 		}
2793 		*passp = pass;
2794 	}
2795 
2796 	return fin->fin_fr;
2797 }
2798 #endif /* IPFILTER_LOG */
2799 
2800 
2801 /* ------------------------------------------------------------------------ */
2802 /* Function:    ipf_cksum                                                   */
2803 /* Returns:     u_short - IP header checksum                                */
2804 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
2805 /*              len(I)  - length of buffer in bytes                         */
2806 /*                                                                          */
2807 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
2808 /*                                                                          */
2809 /* N.B.: addr should be 16bit aligned.                                      */
2810 /* ------------------------------------------------------------------------ */
2811 u_short ipf_cksum(addr, len)
2812 u_short *addr;
2813 int len;
2814 {
2815 	u_32_t sum = 0;
2816 
2817 	for (sum = 0; len > 1; len -= 2)
2818 		sum += *addr++;
2819 
2820 	/* mop up an odd byte, if necessary */
2821 	if (len == 1)
2822 		sum += *(u_char *)addr;
2823 
2824 	/*
2825 	 * add back carry outs from top 16 bits to low 16 bits
2826 	 */
2827 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2828 	sum += (sum >> 16);			/* add carry */
2829 	return (u_short)(~sum);
2830 }
2831 
2832 
2833 /* ------------------------------------------------------------------------ */
2834 /* Function:    fr_cksum                                                    */
2835 /* Returns:     u_short - layer 4 checksum                                  */
2836 /* Parameters:  m(I  )     - pointer to buffer holding packet               */
2837 /*              ip(I)      - pointer to IP header                           */
2838 /*              l4proto(I) - protocol to caclulate checksum for             */
2839 /*              l4hdr(I)   - pointer to layer 4 header                      */
2840 /*                                                                          */
2841 /* Calculates the TCP checksum for the packet held in "m", using the data   */
2842 /* in the IP header "ip" to seed it.                                        */
2843 /*                                                                          */
2844 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2845 /* and the TCP header.  We also assume that data blocks aren't allocated in */
2846 /* odd sizes.                                                               */
2847 /*                                                                          */
2848 /* Expects ip_len to be in host byte order when called.                     */
2849 /* ------------------------------------------------------------------------ */
2850 u_short fr_cksum(m, ip, l4proto, l4hdr)
2851 mb_t *m;
2852 ip_t *ip;
2853 int l4proto;
2854 void *l4hdr;
2855 {
2856 	u_short *sp, slen, sumsave, l4hlen, *csump;
2857 	u_int sum, sum2;
2858 	int hlen;
2859 #ifdef	USE_INET6
2860 	ip6_t *ip6;
2861 #endif
2862 
2863 	csump = NULL;
2864 	sumsave = 0;
2865 	l4hlen = 0;
2866 	sp = NULL;
2867 	slen = 0;
2868 	hlen = 0;
2869 	sum = 0;
2870 
2871 	/*
2872 	 * Add up IP Header portion
2873 	 */
2874 #ifdef	USE_INET6
2875 	if (IP_V(ip) == 4) {
2876 #endif
2877 		hlen = IP_HL(ip) << 2;
2878 		slen = ip->ip_len - hlen;
2879 		sum = htons((u_short)l4proto);
2880 		sum += htons(slen);
2881 		sp = (u_short *)&ip->ip_src;
2882 		sum += *sp++;	/* ip_src */
2883 		sum += *sp++;
2884 		sum += *sp++;	/* ip_dst */
2885 		sum += *sp++;
2886 #ifdef	USE_INET6
2887 	} else if (IP_V(ip) == 6) {
2888 		ip6 = (ip6_t *)ip;
2889 		hlen = sizeof(*ip6);
2890 		slen = ntohs(ip6->ip6_plen);
2891 		sum = htons((u_short)l4proto);
2892 		sum += htons(slen);
2893 		sp = (u_short *)&ip6->ip6_src;
2894 		sum += *sp++;	/* ip6_src */
2895 		sum += *sp++;
2896 		sum += *sp++;
2897 		sum += *sp++;
2898 		sum += *sp++;
2899 		sum += *sp++;
2900 		sum += *sp++;
2901 		sum += *sp++;
2902 		sum += *sp++;	/* ip6_dst */
2903 		sum += *sp++;
2904 		sum += *sp++;
2905 		sum += *sp++;
2906 		sum += *sp++;
2907 		sum += *sp++;
2908 		sum += *sp++;
2909 		sum += *sp++;
2910 	}
2911 #endif
2912 
2913 	switch (l4proto)
2914 	{
2915 	case IPPROTO_UDP :
2916 		csump = &((udphdr_t *)l4hdr)->uh_sum;
2917 		l4hlen = sizeof(udphdr_t);
2918 		break;
2919 
2920 	case IPPROTO_TCP :
2921 		csump = &((tcphdr_t *)l4hdr)->th_sum;
2922 		l4hlen = sizeof(tcphdr_t);
2923 		break;
2924 	case IPPROTO_ICMP :
2925 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
2926 		l4hlen = 4;
2927 		sum = 0;
2928 		break;
2929 	default :
2930 		break;
2931 	}
2932 
2933 	if (csump != NULL) {
2934 		sumsave = *csump;
2935 		*csump = 0;
2936 	}
2937 
2938 	l4hlen = l4hlen;	/* LINT */
2939 
2940 #ifdef	_KERNEL
2941 # ifdef MENTAT
2942 	{
2943 	void *rp = m->b_rptr;
2944 
2945 	if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
2946 		m->b_rptr = (u_char *)ip;
2947 	sum2 = ip_cksum(m, hlen, sum);	/* hlen == offset */
2948 	m->b_rptr = rp;
2949 	sum2 = (sum2 & 0xffff) + (sum2 >> 16);
2950 	sum2 = ~sum2 & 0xffff;
2951 	}
2952 # else /* MENTAT */
2953 #  if defined(BSD) || defined(sun)
2954 #   if BSD >= 199103
2955 	m->m_data += hlen;
2956 #   else
2957 	m->m_off += hlen;
2958 #   endif
2959 	m->m_len -= hlen;
2960 	sum2 = in_cksum(m, slen);
2961 	m->m_len += hlen;
2962 #   if BSD >= 199103
2963 	m->m_data -= hlen;
2964 #   else
2965 	m->m_off -= hlen;
2966 #   endif
2967 	/*
2968 	 * Both sum and sum2 are partial sums, so combine them together.
2969 	 */
2970 	sum += ~sum2 & 0xffff;
2971 	while (sum > 0xffff)
2972 		sum = (sum & 0xffff) + (sum >> 16);
2973 	sum2 = ~sum & 0xffff;
2974 #  else /* defined(BSD) || defined(sun) */
2975 {
2976 	union {
2977 		u_char	c[2];
2978 		u_short	s;
2979 	} bytes;
2980 	u_short len = ip->ip_len;
2981 #   if defined(__sgi)
2982 	int add;
2983 #   endif
2984 
2985 	/*
2986 	 * Add up IP Header portion
2987 	 */
2988 	if (sp != (u_short *)l4hdr)
2989 		sp = (u_short *)l4hdr;
2990 
2991 	switch (l4proto)
2992 	{
2993 	case IPPROTO_UDP :
2994 		sum += *sp++;	/* sport */
2995 		sum += *sp++;	/* dport */
2996 		sum += *sp++;	/* udp length */
2997 		sum += *sp++;	/* checksum */
2998 		break;
2999 
3000 	case IPPROTO_TCP :
3001 		sum += *sp++;	/* sport */
3002 		sum += *sp++;	/* dport */
3003 		sum += *sp++;	/* seq */
3004 		sum += *sp++;
3005 		sum += *sp++;	/* ack */
3006 		sum += *sp++;
3007 		sum += *sp++;	/* off */
3008 		sum += *sp++;	/* win */
3009 		sum += *sp++;	/* checksum */
3010 		sum += *sp++;	/* urp */
3011 		break;
3012 	case IPPROTO_ICMP :
3013 		sum = *sp++;	/* type/code */
3014 		sum += *sp++;	/* checksum */
3015 		break;
3016 	}
3017 
3018 #   ifdef	__sgi
3019 	/*
3020 	 * In case we had to copy the IP & TCP header out of mbufs,
3021 	 * skip over the mbuf bits which are the header
3022 	 */
3023 	if ((caddr_t)ip != mtod(m, caddr_t)) {
3024 		hlen = (caddr_t)sp - (caddr_t)ip;
3025 		while (hlen) {
3026 			add = MIN(hlen, m->m_len);
3027 			sp = (u_short *)(mtod(m, caddr_t) + add);
3028 			hlen -= add;
3029 			if (add == m->m_len) {
3030 				m = m->m_next;
3031 				if (!hlen) {
3032 					if (!m)
3033 						break;
3034 					sp = mtod(m, u_short *);
3035 				}
3036 				PANIC((!m),("fr_cksum(1): not enough data"));
3037 			}
3038 		}
3039 	}
3040 #   endif
3041 
3042 	len -= (l4hlen + hlen);
3043 	if (len <= 0)
3044 		goto nodata;
3045 
3046 	while (len > 1) {
3047 		if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
3048 			m = m->m_next;
3049 			PANIC((!m),("fr_cksum(2): not enough data"));
3050 			sp = mtod(m, u_short *);
3051 		}
3052 		if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
3053 			bytes.c[0] = *(u_char *)sp;
3054 			m = m->m_next;
3055 			PANIC((!m),("fr_cksum(3): not enough data"));
3056 			sp = mtod(m, u_short *);
3057 			bytes.c[1] = *(u_char *)sp;
3058 			sum += bytes.s;
3059 			sp = (u_short *)((u_char *)sp + 1);
3060 		}
3061 		if ((u_long)sp & 1) {
3062 			bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
3063 			sum += bytes.s;
3064 		} else
3065 			sum += *sp++;
3066 		len -= 2;
3067 	}
3068 
3069 	if (len != 0)
3070 		sum += ntohs(*(u_char *)sp << 8);
3071 nodata:
3072 	while (sum > 0xffff)
3073 		sum = (sum & 0xffff) + (sum >> 16);
3074 	sum2 = (u_short)(~sum & 0xffff);
3075 }
3076 #  endif /*  defined(BSD) || defined(sun) */
3077 # endif /* MENTAT */
3078 #else /* _KERNEL */
3079 	for (; slen > 1; slen -= 2)
3080 	        sum += *sp++;
3081 	if (slen)
3082 		sum += ntohs(*(u_char *)sp << 8);
3083 	while (sum > 0xffff)
3084 		sum = (sum & 0xffff) + (sum >> 16);
3085 	sum2 = (u_short)(~sum & 0xffff);
3086 #endif /* _KERNEL */
3087 	if (csump != NULL)
3088 		*csump = sumsave;
3089 	return sum2;
3090 }
3091 
3092 
3093 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3094     defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3095 /*
3096  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3097  *	The Regents of the University of California.  All rights reserved.
3098  *
3099  * Redistribution and use in source and binary forms, with or without
3100  * modification, are permitted provided that the following conditions
3101  * are met:
3102  * 1. Redistributions of source code must retain the above copyright
3103  *    notice, this list of conditions and the following disclaimer.
3104  * 2. Redistributions in binary form must reproduce the above copyright
3105  *    notice, this list of conditions and the following disclaimer in the
3106  *    documentation and/or other materials provided with the distribution.
3107  * 3. Neither the name of the University nor the names of its contributors
3108  *    may be used to endorse or promote products derived from this software
3109  *    without specific prior written permission.
3110  *
3111  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3112  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3113  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3114  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3115  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3116  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3117  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3121  * SUCH DAMAGE.
3122  *
3123  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
3124  * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3125  */
3126 /*
3127  * Copy data from an mbuf chain starting "off" bytes from the beginning,
3128  * continuing for "len" bytes, into the indicated buffer.
3129  */
3130 void
3131 m_copydata(m, off, len, cp)
3132 	mb_t *m;
3133 	int off;
3134 	int len;
3135 	caddr_t cp;
3136 {
3137 	unsigned count;
3138 
3139 	if (off < 0 || len < 0)
3140 		panic("m_copydata");
3141 	while (off > 0) {
3142 		if (m == 0)
3143 			panic("m_copydata");
3144 		if (off < m->m_len)
3145 			break;
3146 		off -= m->m_len;
3147 		m = m->m_next;
3148 	}
3149 	while (len > 0) {
3150 		if (m == 0)
3151 			panic("m_copydata");
3152 		count = MIN(m->m_len - off, len);
3153 		bcopy(mtod(m, caddr_t) + off, cp, count);
3154 		len -= count;
3155 		cp += count;
3156 		off = 0;
3157 		m = m->m_next;
3158 	}
3159 }
3160 
3161 
3162 /*
3163  * Copy data from a buffer back into the indicated mbuf chain,
3164  * starting "off" bytes from the beginning, extending the mbuf
3165  * chain if necessary.
3166  */
3167 void
3168 m_copyback(m0, off, len, cp)
3169 	struct	mbuf *m0;
3170 	int off;
3171 	int len;
3172 	caddr_t cp;
3173 {
3174 	int mlen;
3175 	struct mbuf *m = m0, *n;
3176 	int totlen = 0;
3177 
3178 	if (m0 == 0)
3179 		return;
3180 	while (off > (mlen = m->m_len)) {
3181 		off -= mlen;
3182 		totlen += mlen;
3183 		if (m->m_next == 0) {
3184 			n = m_getclr(M_DONTWAIT, m->m_type);
3185 			if (n == 0)
3186 				goto out;
3187 			n->m_len = min(MLEN, len + off);
3188 			m->m_next = n;
3189 		}
3190 		m = m->m_next;
3191 	}
3192 	while (len > 0) {
3193 		mlen = min(m->m_len - off, len);
3194 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3195 		cp += mlen;
3196 		len -= mlen;
3197 		mlen += off;
3198 		off = 0;
3199 		totlen += mlen;
3200 		if (len == 0)
3201 			break;
3202 		if (m->m_next == 0) {
3203 			n = m_get(M_DONTWAIT, m->m_type);
3204 			if (n == 0)
3205 				break;
3206 			n->m_len = min(MLEN, len);
3207 			m->m_next = n;
3208 		}
3209 		m = m->m_next;
3210 	}
3211 out:
3212 #if 0
3213 	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3214 		m->m_pkthdr.len = totlen;
3215 #endif
3216 	return;
3217 }
3218 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3219 
3220 
3221 /* ------------------------------------------------------------------------ */
3222 /* Function:    fr_findgroup                                                */
3223 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3224 /* Parameters:  group(I) - group name to search for                         */
3225 /*              unit(I)  - device to which this group belongs               */
3226 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3227 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3228 /*                         to where to add the next (last) group or where   */
3229 /*                         to delete group from.                            */
3230 /*                                                                          */
3231 /* Search amongst the defined groups for a particular group number.         */
3232 /* ------------------------------------------------------------------------ */
3233 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3234 char *group;
3235 minor_t unit;
3236 int set;
3237 frgroup_t ***fgpp;
3238 ipf_stack_t *ifs;
3239 {
3240 	frgroup_t *fg, **fgp;
3241 
3242 	/*
3243 	 * Which list of groups to search in is dependent on which list of
3244 	 * rules are being operated on.
3245 	 */
3246 	fgp = &ifs->ifs_ipfgroups[unit][set];
3247 
3248 	while ((fg = *fgp) != NULL) {
3249 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3250 			break;
3251 		else
3252 			fgp = &fg->fg_next;
3253 	}
3254 	if (fgpp != NULL)
3255 		*fgpp = fgp;
3256 	return fg;
3257 }
3258 
3259 
3260 /* ------------------------------------------------------------------------ */
3261 /* Function:    fr_addgroup                                                 */
3262 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3263 /*                            != NULL == pointer to the group               */
3264 /* Parameters:  num(I)   - group number to add                              */
3265 /*              head(I)  - rule pointer that is using this as the head      */
3266 /*              flags(I) - rule flags which describe the type of rule it is */
3267 /*              unit(I)  - device to which this group will belong to        */
3268 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3269 /* Write Locks: ipf_mutex                                                   */
3270 /*                                                                          */
3271 /* Add a new group head, or if it already exists, increase the reference    */
3272 /* count to it.                                                             */
3273 /* ------------------------------------------------------------------------ */
3274 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3275 char *group;
3276 void *head;
3277 u_32_t flags;
3278 minor_t unit;
3279 int set;
3280 ipf_stack_t *ifs;
3281 {
3282 	frgroup_t *fg, **fgp;
3283 	u_32_t gflags;
3284 
3285 	if (group == NULL)
3286 		return NULL;
3287 
3288 	if (unit == IPL_LOGIPF && *group == '\0')
3289 		return NULL;
3290 
3291 	fgp = NULL;
3292 	gflags = flags & FR_INOUT;
3293 
3294 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3295 	if (fg != NULL) {
3296 		if (fg->fg_flags == 0)
3297 			fg->fg_flags = gflags;
3298 		else if (gflags != fg->fg_flags)
3299 			return NULL;
3300 		fg->fg_ref++;
3301 		return fg;
3302 	}
3303 	KMALLOC(fg, frgroup_t *);
3304 	if (fg != NULL) {
3305 		fg->fg_head = head;
3306 		fg->fg_start = NULL;
3307 		fg->fg_next = *fgp;
3308 		bcopy(group, fg->fg_name, FR_GROUPLEN);
3309 		fg->fg_flags = gflags;
3310 		fg->fg_ref = 1;
3311 		*fgp = fg;
3312 	}
3313 	return fg;
3314 }
3315 
3316 
3317 /* ------------------------------------------------------------------------ */
3318 /* Function:    fr_delgroup                                                 */
3319 /* Returns:     Nil                                                         */
3320 /* Parameters:  group(I) - group name to delete                             */
3321 /*              unit(I)  - device to which this group belongs               */
3322 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3323 /* Write Locks: ipf_mutex                                                   */
3324 /*                                                                          */
3325 /* Attempt to delete a group head.                                          */
3326 /* Only do this when its reference count reaches 0.                         */
3327 /* ------------------------------------------------------------------------ */
3328 void fr_delgroup(group, unit, set, ifs)
3329 char *group;
3330 minor_t unit;
3331 int set;
3332 ipf_stack_t *ifs;
3333 {
3334 	frgroup_t *fg, **fgp;
3335 
3336 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3337 	if (fg == NULL)
3338 		return;
3339 
3340 	fg->fg_ref--;
3341 	if (fg->fg_ref == 0) {
3342 		*fgp = fg->fg_next;
3343 		KFREE(fg);
3344 	}
3345 }
3346 
3347 
3348 /* ------------------------------------------------------------------------ */
3349 /* Function:    fr_getrulen                                                 */
3350 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3351 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3352 /*              flags(I) - which set of rules to find the rule in           */
3353 /*              group(I) - group name                                       */
3354 /*              n(I)     - rule number to find                              */
3355 /*                                                                          */
3356 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3357 /* group # g doesn't exist or there are less than n rules in the group.     */
3358 /* ------------------------------------------------------------------------ */
3359 frentry_t *fr_getrulen(unit, group, n, ifs)
3360 int unit;
3361 char *group;
3362 u_32_t n;
3363 ipf_stack_t *ifs;
3364 {
3365 	frentry_t *fr;
3366 	frgroup_t *fg;
3367 
3368 	fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3369 	if (fg == NULL)
3370 		return NULL;
3371 	for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3372 		;
3373 	if (n != 0)
3374 		return NULL;
3375 	return fr;
3376 }
3377 
3378 
3379 /* ------------------------------------------------------------------------ */
3380 /* Function:    fr_rulen                                                    */
3381 /* Returns:     int - >= 0 - rule number, -1 == search failed               */
3382 /* Parameters:  unit(I) - device for which to count the rule's number       */
3383 /*              fr(I)   - pointer to rule to match                          */
3384 /*                                                                          */
3385 /* Return the number for a rule on a specific filtering device.             */
3386 /* ------------------------------------------------------------------------ */
3387 int fr_rulen(unit, fr, ifs)
3388 int unit;
3389 frentry_t *fr;
3390 ipf_stack_t *ifs;
3391 {
3392 	frentry_t *fh;
3393 	frgroup_t *fg;
3394 	u_32_t n = 0;
3395 
3396 	if (fr == NULL)
3397 		return -1;
3398 	fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3399 	if (fg == NULL)
3400 		return -1;
3401 	for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3402 		if (fh == fr)
3403 			break;
3404 	if (fh == NULL)
3405 		return -1;
3406 	return n;
3407 }
3408 
3409 
3410 /* ------------------------------------------------------------------------ */
3411 /* Function:    frflushlist                                                 */
3412 /* Returns:     int - >= 0 - number of flushed rules                        */
3413 /* Parameters:  set(I)   - which set of rules (inactive/inactive) this is   */
3414 /*              unit(I)  - device for which to flush rules                  */
3415 /*              flags(I) - which set of rules to flush                      */
3416 /*              nfreedp(O) - pointer to int where flush count is stored     */
3417 /*              listp(I)   - pointer to list to flush pointer               */
3418 /* Write Locks: ipf_mutex                                                   */
3419 /*                                                                          */
3420 /* Recursively flush rules from the list, descending groups as they are     */
3421 /* encountered.  if a rule is the head of a group and it has lost all its   */
3422 /* group members, then also delete the group reference.  nfreedp is needed  */
3423 /* to store the accumulating count of rules removed, whereas the returned   */
3424 /* value is just the number removed from the current list.  The latter is   */
3425 /* needed to correctly adjust reference counts on rules that define groups. */
3426 /*                                                                          */
3427 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3428 /* ------------------------------------------------------------------------ */
3429 static int frflushlist(set, unit, nfreedp, listp, ifs)
3430 int set;
3431 minor_t unit;
3432 int *nfreedp;
3433 frentry_t **listp;
3434 ipf_stack_t *ifs;
3435 {
3436 	int freed = 0;
3437 	frentry_t *fp;
3438 
3439 	while ((fp = *listp) != NULL) {
3440 		if ((fp->fr_type & FR_T_BUILTIN) ||
3441 		    !(fp->fr_flags & FR_COPIED)) {
3442 			listp = &fp->fr_next;
3443 			continue;
3444 		}
3445 		*listp = fp->fr_next;
3446 		if (fp->fr_grp != NULL) {
3447 			(void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3448 		}
3449 
3450 		if (fp->fr_grhead != NULL) {
3451 			fr_delgroup(fp->fr_grhead, unit, set, ifs);
3452 			*fp->fr_grhead = '\0';
3453 		}
3454 
3455 		ASSERT(fp->fr_ref > 0);
3456 		fp->fr_next = NULL;
3457 		if (fr_derefrule(&fp, ifs) == 0)
3458 			freed++;
3459 	}
3460 	*nfreedp += freed;
3461 	return freed;
3462 }
3463 
3464 
3465 /* ------------------------------------------------------------------------ */
3466 /* Function:    frflush                                                     */
3467 /* Returns:     int - >= 0 - number of flushed rules                        */
3468 /* Parameters:  unit(I)  - device for which to flush rules                  */
3469 /*              flags(I) - which set of rules to flush                      */
3470 /*                                                                          */
3471 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3472 /* and IPv6) as defined by the value of flags.                              */
3473 /* ------------------------------------------------------------------------ */
3474 int frflush(unit, proto, flags, ifs)
3475 minor_t unit;
3476 int proto, flags;
3477 ipf_stack_t *ifs;
3478 {
3479 	int flushed = 0, set;
3480 
3481 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3482 
3483 	set = ifs->ifs_fr_active;
3484 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3485 		set = 1 - set;
3486 
3487 	if (flags & FR_OUTQUE) {
3488 		if (proto == 0 || proto == 6) {
3489 			(void) frflushlist(set, unit,
3490 			    &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3491 			(void) frflushlist(set, unit,
3492 			    &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3493 		}
3494 		if (proto == 0 || proto == 4) {
3495 			(void) frflushlist(set, unit,
3496 			    &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3497 			(void) frflushlist(set, unit,
3498 			    &flushed, &ifs->ifs_ipacct[1][set], ifs);
3499 		}
3500 	}
3501 	if (flags & FR_INQUE) {
3502 		if (proto == 0 || proto == 6) {
3503 			(void) frflushlist(set, unit,
3504 			    &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3505 			(void) frflushlist(set, unit,
3506 			    &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3507 		}
3508 		if (proto == 0 || proto == 4) {
3509 			(void) frflushlist(set, unit,
3510 			    &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3511 			(void) frflushlist(set, unit,
3512 			    &flushed, &ifs->ifs_ipacct[0][set], ifs);
3513 		}
3514 	}
3515 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3516 
3517 	if (unit == IPL_LOGIPF) {
3518 		int tmp;
3519 
3520 		tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3521 		if (tmp >= 0)
3522 			flushed += tmp;
3523 	}
3524 	return flushed;
3525 }
3526 
3527 
3528 /* ------------------------------------------------------------------------ */
3529 /* Function:    memstr                                                      */
3530 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3531 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3532 /*              dst(I)  - pointer to byte sequence to search                */
3533 /*              slen(I) - match length                                      */
3534 /*              dlen(I) - length available to search in                     */
3535 /*                                                                          */
3536 /* Search dst for a sequence of bytes matching those at src and extend for  */
3537 /* slen bytes.                                                              */
3538 /* ------------------------------------------------------------------------ */
3539 char *memstr(src, dst, slen, dlen)
3540 char *src, *dst;
3541 int slen, dlen;
3542 {
3543 	char *s = NULL;
3544 
3545 	while (dlen >= slen) {
3546 		if (bcmp(src, dst, slen) == 0) {
3547 			s = dst;
3548 			break;
3549 		}
3550 		dst++;
3551 		dlen--;
3552 	}
3553 	return s;
3554 }
3555 /* ------------------------------------------------------------------------ */
3556 /* Function:    fr_fixskip                                                  */
3557 /* Returns:     Nil                                                         */
3558 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3559 /*              rp(I)        - rule added/removed with skip in it.          */
3560 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3561 /*                             depending on whether a rule was just added   */
3562 /*                             or removed.                                  */
3563 /*                                                                          */
3564 /* Adjust all the rules in a list which would have skip'd past the position */
3565 /* where we are inserting to skip to the right place given the change.      */
3566 /* ------------------------------------------------------------------------ */
3567 void fr_fixskip(listp, rp, addremove)
3568 frentry_t **listp, *rp;
3569 int addremove;
3570 {
3571 	int rules, rn;
3572 	frentry_t *fp;
3573 
3574 	rules = 0;
3575 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3576 		rules++;
3577 
3578 	if (!fp)
3579 		return;
3580 
3581 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3582 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3583 			fp->fr_arg += addremove;
3584 }
3585 
3586 
3587 #ifdef	_KERNEL
3588 /* ------------------------------------------------------------------------ */
3589 /* Function:    count4bits                                                  */
3590 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3591 /* Parameters:  ip(I) - 32bit IP address                                    */
3592 /*                                                                          */
3593 /* IPv4 ONLY                                                                */
3594 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3595 /* consecutive 1's is different to that passed, return -1, else return #    */
3596 /* of bits.                                                                 */
3597 /* ------------------------------------------------------------------------ */
3598 int	count4bits(ip)
3599 u_32_t	ip;
3600 {
3601 	u_32_t	ipn;
3602 	int	cnt = 0, i, j;
3603 
3604 	ip = ipn = ntohl(ip);
3605 	for (i = 32; i; i--, ipn *= 2)
3606 		if (ipn & 0x80000000)
3607 			cnt++;
3608 		else
3609 			break;
3610 	ipn = 0;
3611 	for (i = 32, j = cnt; i; i--, j--) {
3612 		ipn *= 2;
3613 		if (j > 0)
3614 			ipn++;
3615 	}
3616 	if (ipn == ip)
3617 		return cnt;
3618 	return -1;
3619 }
3620 
3621 
3622 #ifdef USE_INET6
3623 /* ------------------------------------------------------------------------ */
3624 /* Function:    count6bits                                                  */
3625 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3626 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3627 /*                                                                          */
3628 /* IPv6 ONLY                                                                */
3629 /* count consecutive 1's in bit mask.                                       */
3630 /* ------------------------------------------------------------------------ */
3631 int count6bits(msk)
3632 u_32_t *msk;
3633 {
3634 	int i = 0, k;
3635 	u_32_t j;
3636 
3637 	for (k = 3; k >= 0; k--)
3638 		if (msk[k] == 0xffffffff)
3639 			i += 32;
3640 		else {
3641 			for (j = msk[k]; j; j <<= 1)
3642 				if (j & 0x80000000)
3643 					i++;
3644 		}
3645 	return i;
3646 }
3647 # endif
3648 #endif /* _KERNEL */
3649 
3650 
3651 /* ------------------------------------------------------------------------ */
3652 /* Function:    fr_ifsync                                                   */
3653 /* Returns:     void *    - new interface identifier                        */
3654 /* Parameters:  action(I)  - type of synchronisation to do                  */
3655 /*              v(I)       - IP version being sync'd (v4 or v6)             */
3656 /*              newifp(I)  - interface identifier being introduced/removed  */
3657 /*              oldifp(I)  - interface identifier in a filter rule          */
3658 /*              newname(I) - name associated with newifp interface          */
3659 /*              oldname(I) - name associated with oldifp interface          */
3660 /*		ifs       - pointer to IPF stack instance		    */
3661 /*                                                                          */
3662 /* This function returns what the new value for "oldifp" should be for its  */
3663 /* caller.  In some cases it will not change, in some it will.              */
3664 /* action == IPFSYNC_RESYNC                                                 */
3665 /*   a new value for oldifp will always be looked up, according to oldname, */
3666 /*   the values of newname and newifp are ignored.                          */
3667 /* action == IPFSYNC_NEWIFP                                                 */
3668 /*   if oldname matches newname then we are doing a sync for the matching   */
3669 /*   interface, so we return newifp to be used in place of oldifp.  If the  */
3670 /*   the names don't match, just return oldifp.                             */
3671 /* action == IPFSYNC_OLDIFP                                                 */
3672 /*   if oldifp matches newifp then we are are doing a sync to remove any    */
3673 /*   references to oldifp, so we return "-1".                               */
3674 /* -----								    */
3675 /* NOTE:								    */
3676 /* This function processes NIC event from PF_HOOKS. The action parameter    */
3677 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is	    */
3678 /* one single switch statement() in ipf_nic_event_vx() function, which	    */
3679 /* translates the HOOK event type to action parameter passed to fr_ifsync.  */
3680 /* The translation table looks as follows:				    */
3681 /*	event		| action					    */
3682 /*	----------------+-------------					    */
3683 /*	NE_PLUMB	| IPFSYNC_NEWIFP				    */
3684 /*	NE_UNPLUMB	| IPFSYNC_OLDIFP				    */
3685 /*    NE_ADDRESS_CHANGE	| IPFSYNC_RESYNC				    */
3686 /*									    */
3687 /* The oldname and oldifp parameters are taken from IPF entry (rule, state  */
3688 /* table entry, NAT table entry, fragment ...). The newname and newifp	    */
3689 /* parameters come from hook event data, parameters are taken from event    */
3690 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is	    */
3691 /* notified by hook function.						    */
3692 /*									    */
3693 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */
3694 /* to plumb the interface, which is already plumbed. In such case we always */
3695 /* get the event from PF_HOOKS as follows:				    */
3696 /*	event:	NE_PLUMB						    */
3697 /*	NIC:	0x0							    */
3698 /* ------------------------------------------------------------------------ */
3699 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3700 int action, v;
3701 char *newname, *oldname;
3702 void *newifp, *oldifp;
3703 ipf_stack_t *ifs;
3704 {
3705 	void *rval = oldifp;
3706 
3707 	switch (action)
3708 	{
3709 	case IPFSYNC_RESYNC :
3710 		if (oldname[0] != '\0') {
3711 			rval = fr_resolvenic(oldname, v, ifs);
3712 		}
3713 		break;
3714 	case IPFSYNC_NEWIFP :
3715 		if (!strncmp(newname, oldname, LIFNAMSIZ))
3716 			rval = newifp;
3717 		break;
3718 	case IPFSYNC_OLDIFP :
3719 		/*
3720 		 * If interface gets unplumbed it must be invalidated, which
3721 		 * means set all existing references to the interface to -1.
3722 		 * We don't want to invalidate references for wildcard
3723 		 * (unbound) rules (entries).
3724 		 */
3725 		if (newifp == oldifp)
3726 			rval = (oldifp) ? (void *)-1 : NULL;
3727 		break;
3728 	}
3729 
3730 	return rval;
3731 }
3732 
3733 
3734 /* ------------------------------------------------------------------------ */
3735 /* Function:    frsynclist                                                  */
3736 /* Returns:     void                                                        */
3737 /* Parameters:  action(I) - type of synchronisation to do                   */
3738 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3739 /*              ifp(I)    - interface identifier associated with action     */
3740 /*              ifname(I) - name associated with ifp parameter              */
3741 /*              fr(I)     - pointer to filter rule                          */
3742 /*		ifs       - pointer to IPF stack instance		    */
3743 /* Write Locks: ipf_mutex                                                   */
3744 /*                                                                          */
3745 /* Walk through a list of filter rules and resolve any interface names into */
3746 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3747 /* used in the rule.  The interface pointer is used to limit the lookups to */
3748 /* a specific set of matching names if it is non-NULL.                      */
3749 /* ------------------------------------------------------------------------ */
3750 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3751 int action, v;
3752 void *ifp;
3753 char *ifname;
3754 frentry_t *fr;
3755 ipf_stack_t *ifs;
3756 {
3757 	frdest_t *fdp;
3758 	int rv, i;
3759 
3760 	for (; fr; fr = fr->fr_next) {
3761 		rv = fr->fr_v;
3762 		if (v != 0 && v != rv)
3763 			continue;
3764 
3765 		/*
3766 		 * Lookup all the interface names that are part of the rule.
3767 		 */
3768 		for (i = 0; i < 4; i++) {
3769 			fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3770 						   fr->fr_ifnames[i],
3771 						   ifp, fr->fr_ifas[i],
3772 						   ifs);
3773 		}
3774 
3775 		fdp = &fr->fr_tifs[0];
3776 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3777 					   ifp, fdp->fd_ifp, ifs);
3778 
3779 		fdp = &fr->fr_tifs[1];
3780 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3781 					   ifp, fdp->fd_ifp, ifs);
3782 
3783 		fdp = &fr->fr_dif;
3784 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3785 					   ifp, fdp->fd_ifp, ifs);
3786 
3787 		if (action != IPFSYNC_RESYNC)
3788 			continue;
3789 
3790 		if (fr->fr_type == FR_T_IPF) {
3791 			if (fr->fr_satype != FRI_NORMAL &&
3792 			    fr->fr_satype != FRI_LOOKUP) {
3793 				(void)fr_ifpaddr(rv, fr->fr_satype,
3794 						 fr->fr_ifas[fr->fr_sifpidx],
3795 						 &fr->fr_src, &fr->fr_smsk,
3796 						 ifs);
3797 			}
3798 			if (fr->fr_datype != FRI_NORMAL &&
3799 			    fr->fr_datype != FRI_LOOKUP) {
3800 				(void)fr_ifpaddr(rv, fr->fr_datype,
3801 						 fr->fr_ifas[fr->fr_difpidx],
3802 						 &fr->fr_dst, &fr->fr_dmsk,
3803 						 ifs);
3804 			}
3805 		}
3806 
3807 #ifdef	IPFILTER_LOOKUP
3808 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3809 		    fr->fr_srcptr == NULL) {
3810 			fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3811 							 fr->fr_srcnum,
3812 							 &fr->fr_srcfunc, ifs);
3813 		}
3814 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3815 		    fr->fr_dstptr == NULL) {
3816 			fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3817 							 fr->fr_dstnum,
3818 							 &fr->fr_dstfunc, ifs);
3819 		}
3820 #endif
3821 	}
3822 }
3823 
3824 
3825 #ifdef	_KERNEL
3826 /* ------------------------------------------------------------------------ */
3827 /* Function:    frsync                                                      */
3828 /* Returns:     void                                                        */
3829 /* Parameters:  action(I) - type of synchronisation to do                   */
3830 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3831 /*              ifp(I)    - interface identifier associated with action     */
3832 /*              name(I)   - name associated with ifp parameter              */
3833 /*                                                                          */
3834 /* frsync() is called when we suspect that the interface list or            */
3835 /* information about interfaces (like IP#) has changed.  Go through all     */
3836 /* filter rules, NAT entries and the state table and check if anything      */
3837 /* needs to be changed/updated.                                             */
3838 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3839 /* in which this was done to support three different types of sync:         */
3840 /* - complete resync of all interface name/identifiers                      */
3841 /* - new interface being announced with its name and identifier             */
3842 /* - interface removal being announced by only its identifier               */
3843 /* ------------------------------------------------------------------------ */
3844 void frsync(action, v, ifp, name, ifs)
3845 int action, v;
3846 void *ifp;
3847 char *name;
3848 ipf_stack_t *ifs;
3849 {
3850 	int i;
3851 
3852 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3853 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3854 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3855 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3856 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3857 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3858 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3859 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3860 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3861 
3862 	for (i = 0; i < IPL_LOGSIZE; i++) {
3863 		frgroup_t *g;
3864 
3865 		for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3866 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3867 		for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3868 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3869 	}
3870 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3871 }
3872 
3873 
3874 /*
3875  * In the functions below, bcopy() is called because the pointer being
3876  * copied _from_ in this instance is a pointer to a char buf (which could
3877  * end up being unaligned) and on the kernel's local stack.
3878  */
3879 /* ------------------------------------------------------------------------ */
3880 /* Function:    copyinptr                                                   */
3881 /* Returns:     int - 0 = success, else failure                             */
3882 /* Parameters:  src(I)  - pointer to the source address                     */
3883 /*              dst(I)  - destination address                               */
3884 /*              size(I) - number of bytes to copy                           */
3885 /*                                                                          */
3886 /* Copy a block of data in from user space, given a pointer to the pointer  */
3887 /* to start copying from (src) and a pointer to where to store it (dst).    */
3888 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
3889 /* ------------------------------------------------------------------------ */
3890 int copyinptr(src, dst, size)
3891 void *src, *dst;
3892 size_t size;
3893 {
3894 	caddr_t ca;
3895 	int err;
3896 
3897 # if SOLARIS
3898 	err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
3899 	if (err != 0)
3900 		return err;
3901 # else
3902 	bcopy(src, (caddr_t)&ca, sizeof(ca));
3903 # endif
3904 	err = COPYIN(ca, dst, size);
3905 	return err;
3906 }
3907 
3908 
3909 /* ------------------------------------------------------------------------ */
3910 /* Function:    copyoutptr                                                  */
3911 /* Returns:     int - 0 = success, else failure                             */
3912 /* Parameters:  src(I)  - pointer to the source address                     */
3913 /*              dst(I)  - destination address                               */
3914 /*              size(I) - number of bytes to copy                           */
3915 /*                                                                          */
3916 /* Copy a block of data out to user space, given a pointer to the pointer   */
3917 /* to start copying from (src) and a pointer to where to store it (dst).    */
3918 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
3919 /* ------------------------------------------------------------------------ */
3920 int copyoutptr(src, dst, size)
3921 void *src, *dst;
3922 size_t size;
3923 {
3924 	caddr_t ca;
3925 	int err;
3926 
3927 # if SOLARIS
3928 	err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
3929 	if (err != 0)
3930 		return err;
3931 # else
3932 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
3933 # endif
3934 	err = COPYOUT(src, ca, size);
3935 	return err;
3936 }
3937 #endif
3938 
3939 
3940 /* ------------------------------------------------------------------------ */
3941 /* Function:    fr_lock                                                     */
3942 /* Returns:	int - 0 = success, else error				    */
3943 /* Parameters:  data(I)  - pointer to lock value to set                     */
3944 /*              lockp(O) - pointer to location to store old lock value      */
3945 /*                                                                          */
3946 /* Get the new value for the lock integer, set it and return the old value  */
3947 /* in *lockp.                                                               */
3948 /* ------------------------------------------------------------------------ */
3949 int fr_lock(data, lockp)
3950 caddr_t data;
3951 int *lockp;
3952 {
3953 	int arg, err;
3954 
3955 	err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
3956 	if (err != 0)
3957 		return (EFAULT);
3958 	err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
3959 	if (err != 0)
3960 		return (EFAULT);
3961 	*lockp = arg;
3962 	return (0);
3963 }
3964 
3965 
3966 /* ------------------------------------------------------------------------ */
3967 /* Function:    fr_getstat                                                  */
3968 /* Returns:     Nil                                                         */
3969 /* Parameters:  fiop(I)  - pointer to ipfilter stats structure              */
3970 /*                                                                          */
3971 /* Stores a copy of current pointers, counters, etc, in the friostat        */
3972 /* structure.                                                               */
3973 /* ------------------------------------------------------------------------ */
3974 void fr_getstat(fiop, ifs)
3975 friostat_t *fiop;
3976 ipf_stack_t *ifs;
3977 {
3978 	int i, j;
3979 
3980 	bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
3981 	    sizeof(filterstats_t) * 2);
3982 	fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
3983 	fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
3984 	fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
3985 	fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
3986 
3987 	for (i = 0; i < 2; i++)
3988 		for (j = 0; j < 2; j++) {
3989 			fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
3990 			fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
3991 			fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
3992 			fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
3993 		}
3994 
3995 	fiop->f_ticks = ifs->ifs_fr_ticks;
3996 	fiop->f_active = ifs->ifs_fr_active;
3997 	fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
3998 	fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
3999 
4000 	fiop->f_running = ifs->ifs_fr_running;
4001 	for (i = 0; i < IPL_LOGSIZE; i++) {
4002 		fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
4003 		fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
4004 	}
4005 #ifdef  IPFILTER_LOG
4006 	fiop->f_logging = 1;
4007 #else
4008 	fiop->f_logging = 0;
4009 #endif
4010 	fiop->f_defpass = ifs->ifs_fr_pass;
4011 	fiop->f_features = fr_features;
4012 	(void) strncpy(fiop->f_version, ipfilter_version,
4013 		       sizeof(fiop->f_version));
4014 }
4015 
4016 
4017 #ifdef	USE_INET6
4018 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4019 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4020 	-1,			/* 1: UNUSED */
4021 	-1,			/* 2: UNUSED */
4022 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4023 	-1,			/* 4: ICMP_SOURCEQUENCH */
4024 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4025 	-1,			/* 6: UNUSED */
4026 	-1,			/* 7: UNUSED */
4027 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4028 	-1,			/* 9: UNUSED */
4029 	-1,			/* 10: UNUSED */
4030 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4031 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4032 	-1,			/* 13: ICMP_TSTAMP */
4033 	-1,			/* 14: ICMP_TSTAMPREPLY */
4034 	-1,			/* 15: ICMP_IREQ */
4035 	-1,			/* 16: ICMP_IREQREPLY */
4036 	-1,			/* 17: ICMP_MASKREQ */
4037 	-1,			/* 18: ICMP_MASKREPLY */
4038 };
4039 
4040 
4041 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4042 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4043 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4044 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4045 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4046 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4047 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4048 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4049 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4050 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4051 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4052 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4053 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4054 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4055 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4056 };
4057 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4058 #endif
4059 
4060 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4061 
4062 
4063 /* ------------------------------------------------------------------------ */
4064 /* Function:    fr_matchicmpqueryreply                                      */
4065 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4066 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4067 /*              ic(I)   - ICMP information                                  */
4068 /*              icmp(I) - ICMP packet header                                */
4069 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4070 /*                                                                          */
4071 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4072 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4073 /* else return 0 for no match.                                              */
4074 /* ------------------------------------------------------------------------ */
4075 int fr_matchicmpqueryreply(v, ic, icmp, rev)
4076 int v;
4077 icmpinfo_t *ic;
4078 icmphdr_t *icmp;
4079 int rev;
4080 {
4081 	int ictype;
4082 
4083 	ictype = ic->ici_type;
4084 
4085 	if (v == 4) {
4086 		/*
4087 		 * If we matched its type on the way in, then when going out
4088 		 * it will still be the same type.
4089 		 */
4090 		if ((!rev && (icmp->icmp_type == ictype)) ||
4091 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4092 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4093 				return 1;
4094 			if (icmp->icmp_id == ic->ici_id)
4095 				return 1;
4096 		}
4097 	}
4098 #ifdef	USE_INET6
4099 	else if (v == 6) {
4100 		if ((!rev && (icmp->icmp_type == ictype)) ||
4101 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4102 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4103 				return 1;
4104 			if (icmp->icmp_id == ic->ici_id)
4105 				return 1;
4106 		}
4107 	}
4108 #endif
4109 	return 0;
4110 }
4111 
4112 
4113 #ifdef	IPFILTER_LOOKUP
4114 /* ------------------------------------------------------------------------ */
4115 /* Function:    fr_resolvelookup                                            */
4116 /* Returns:     void * - NULL = failure, else success.                      */
4117 /* Parameters:  type(I)     - type of lookup these parameters are for.      */
4118 /*              number(I)   - table number to use when searching            */
4119 /*              funcptr(IO) - pointer to pointer for storing IP address     */
4120 /*                           searching function.                            */
4121 /*                                                                          */
4122 /* Search for the "table" number passed in amongst those configured for     */
4123 /* that particular type.  If the type is recognised then the function to    */
4124 /* call to do the IP address search will be change, regardless of whether   */
4125 /* or not the "table" number exists.                                        */
4126 /* ------------------------------------------------------------------------ */
4127 static void *fr_resolvelookup(type, number, funcptr, ifs)
4128 u_int type, number;
4129 lookupfunc_t *funcptr;
4130 ipf_stack_t *ifs;
4131 {
4132 	char name[FR_GROUPLEN];
4133 	iphtable_t *iph;
4134 	ip_pool_t *ipo;
4135 	void *ptr;
4136 
4137 #if defined(SNPRINTF) && defined(_KERNEL)
4138 	(void) SNPRINTF(name, sizeof(name), "%u", number);
4139 #else
4140 	(void) sprintf(name, "%u", number);
4141 #endif
4142 
4143 	READ_ENTER(&ifs->ifs_ip_poolrw);
4144 
4145 	switch (type)
4146 	{
4147 	case IPLT_POOL :
4148 # if (defined(__osf__) && defined(_KERNEL))
4149 		ptr = NULL;
4150 		*funcptr = NULL;
4151 # else
4152 		ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4153 		ptr = ipo;
4154 		if (ipo != NULL) {
4155 			ATOMIC_INC32(ipo->ipo_ref);
4156 		}
4157 		*funcptr = ip_pool_search;
4158 # endif
4159 		break;
4160 	case IPLT_HASH :
4161 		iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4162 		ptr = iph;
4163 		if (iph != NULL) {
4164 			ATOMIC_INC32(iph->iph_ref);
4165 		}
4166 		*funcptr = fr_iphmfindip;
4167 		break;
4168 	default:
4169 		ptr = NULL;
4170 		*funcptr = NULL;
4171 		break;
4172 	}
4173 	RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4174 
4175 	return ptr;
4176 }
4177 #endif
4178 
4179 
4180 /* ------------------------------------------------------------------------ */
4181 /* Function:    frrequest                                                   */
4182 /* Returns:     int - 0 == success, > 0 == errno value                      */
4183 /* Parameters:  unit(I)     - device for which this is for                  */
4184 /*              req(I)      - ioctl command (SIOC*)                         */
4185 /*              data(I)     - pointr to ioctl data                          */
4186 /*              set(I)      - 1 or 0 (filter set)                           */
4187 /*              makecopy(I) - flag indicating whether data points to a rule */
4188 /*                            in kernel space & hence doesn't need copying. */
4189 /*                                                                          */
4190 /* This function handles all the requests which operate on the list of      */
4191 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4192 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4193 /* names are resolved here and other sanity checks are made on the content  */
4194 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4195 /* then make sure they are created and initialised before exiting.          */
4196 /* ------------------------------------------------------------------------ */
4197 int frrequest(unit, req, data, set, makecopy, ifs)
4198 int unit;
4199 ioctlcmd_t req;
4200 int set, makecopy;
4201 caddr_t data;
4202 ipf_stack_t *ifs;
4203 {
4204 	frentry_t frd, *fp, *f, **fprev, **ftail;
4205 	int error = 0, in, v;
4206 	void *ptr, *uptr;
4207 	u_int *p, *pp;
4208 	frgroup_t *fg;
4209 	char *group;
4210 
4211 	fg = NULL;
4212 	fp = &frd;
4213 	if (makecopy != 0) {
4214 		error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4215 		if (error)
4216 			return EFAULT;
4217 		if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4218 			return EINVAL;
4219 		fp->fr_ref = 0;
4220 		fp->fr_flags |= FR_COPIED;
4221 	} else {
4222 		fp = (frentry_t *)data;
4223 		if ((fp->fr_type & FR_T_BUILTIN) == 0)
4224 			return EINVAL;
4225 		fp->fr_flags &= ~FR_COPIED;
4226 	}
4227 
4228 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4229 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4230 		return EINVAL;
4231 
4232 	v = fp->fr_v;
4233 	uptr = fp->fr_data;
4234 
4235 	/*
4236 	 * Only filter rules for IPv4 or IPv6 are accepted.
4237 	 */
4238 	if (v == 4)
4239 		/*EMPTY*/;
4240 #ifdef	USE_INET6
4241 	else if (v == 6)
4242 		/*EMPTY*/;
4243 #endif
4244 	else {
4245 		return EINVAL;
4246 	}
4247 
4248 	/*
4249 	 * If the rule is being loaded from user space, i.e. we had to copy it
4250 	 * into kernel space, then do not trust the function pointer in the
4251 	 * rule.
4252 	 */
4253 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4254 		if (fr_findfunc(fp->fr_func) == NULL)
4255 			return ESRCH;
4256 		error = fr_funcinit(fp, ifs);
4257 		if (error != 0)
4258 			return error;
4259 	}
4260 
4261 	ptr = NULL;
4262 	/*
4263 	 * Check that the group number does exist and that its use (in/out)
4264 	 * matches what the rule is.
4265 	 */
4266 	if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4267 		*fp->fr_grhead = '\0';
4268 	group = fp->fr_group;
4269 	if (!strncmp(group, "0", FR_GROUPLEN))
4270 		*group = '\0';
4271 
4272 	if (FR_ISACCOUNT(fp->fr_flags))
4273 		unit = IPL_LOGCOUNT;
4274 
4275 	if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4276 		fg = fr_findgroup(group, unit, set, NULL, ifs);
4277 		if (fg == NULL)
4278 			return ESRCH;
4279 		if (fg->fg_flags == 0)
4280 			fg->fg_flags = fp->fr_flags & FR_INOUT;
4281 		else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4282 			return ESRCH;
4283 	}
4284 
4285 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4286 
4287 	/*
4288 	 * Work out which rule list this change is being applied to.
4289 	 */
4290 	ftail = NULL;
4291 	fprev = NULL;
4292 	if (unit == IPL_LOGAUTH)
4293 		fprev = &ifs->ifs_ipauth;
4294 	else if (v == 4) {
4295 		if (FR_ISACCOUNT(fp->fr_flags))
4296 			fprev = &ifs->ifs_ipacct[in][set];
4297 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4298 			fprev = &ifs->ifs_ipfilter[in][set];
4299 	} else if (v == 6) {
4300 		if (FR_ISACCOUNT(fp->fr_flags))
4301 			fprev = &ifs->ifs_ipacct6[in][set];
4302 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4303 			fprev = &ifs->ifs_ipfilter6[in][set];
4304 	}
4305 	if (fprev == NULL)
4306 		return ESRCH;
4307 
4308 	if (*group != '\0') {
4309 	    if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4310 			return ESRCH;
4311 		fprev = &fg->fg_start;
4312 	}
4313 
4314 	ftail = fprev;
4315 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4316 		if (fp->fr_collect <= f->fr_collect) {
4317 			ftail = fprev;
4318 			f = NULL;
4319 			break;
4320 		}
4321 		fprev = ftail;
4322 	}
4323 
4324 	/*
4325 	 * Copy in extra data for the rule.
4326 	 */
4327 	if (fp->fr_dsize != 0) {
4328 		if (makecopy != 0) {
4329 			KMALLOCS(ptr, void *, fp->fr_dsize);
4330 			if (!ptr)
4331 				return ENOMEM;
4332 			error = COPYIN(uptr, ptr, fp->fr_dsize);
4333 		} else {
4334 			ptr = uptr;
4335 			error = 0;
4336 		}
4337 		if (error != 0) {
4338 			KFREES(ptr, fp->fr_dsize);
4339 			return ENOMEM;
4340 		}
4341 		fp->fr_data = ptr;
4342 	} else
4343 		fp->fr_data = NULL;
4344 
4345 	/*
4346 	 * Perform per-rule type sanity checks of their members.
4347 	 */
4348 	switch (fp->fr_type & ~FR_T_BUILTIN)
4349 	{
4350 #if defined(IPFILTER_BPF)
4351 	case FR_T_BPFOPC :
4352 		if (fp->fr_dsize == 0)
4353 			return EINVAL;
4354 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4355 			if (makecopy && fp->fr_data != NULL) {
4356 				KFREES(fp->fr_data, fp->fr_dsize);
4357 			}
4358 			return EINVAL;
4359 		}
4360 		break;
4361 #endif
4362 	case FR_T_IPF :
4363 		if (fp->fr_dsize != sizeof(fripf_t))
4364 			return EINVAL;
4365 
4366 		/*
4367 		 * Allowing a rule with both "keep state" and "with oow" is
4368 		 * pointless because adding a state entry to the table will
4369 		 * fail with the out of window (oow) flag set.
4370 		 */
4371 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW))
4372 			return EINVAL;
4373 
4374 		switch (fp->fr_satype)
4375 		{
4376 		case FRI_BROADCAST :
4377 		case FRI_DYNAMIC :
4378 		case FRI_NETWORK :
4379 		case FRI_NETMASKED :
4380 		case FRI_PEERADDR :
4381 			if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4382 				if (makecopy && fp->fr_data != NULL) {
4383 					KFREES(fp->fr_data, fp->fr_dsize);
4384 				}
4385 				return EINVAL;
4386 			}
4387 			break;
4388 #ifdef	IPFILTER_LOOKUP
4389 		case FRI_LOOKUP :
4390 			fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4391 							 fp->fr_srcnum,
4392 							 &fp->fr_srcfunc, ifs);
4393 			break;
4394 #endif
4395 		default :
4396 			break;
4397 		}
4398 
4399 		switch (fp->fr_datype)
4400 		{
4401 		case FRI_BROADCAST :
4402 		case FRI_DYNAMIC :
4403 		case FRI_NETWORK :
4404 		case FRI_NETMASKED :
4405 		case FRI_PEERADDR :
4406 			if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4407 				if (makecopy && fp->fr_data != NULL) {
4408 					KFREES(fp->fr_data, fp->fr_dsize);
4409 				}
4410 				return EINVAL;
4411 			}
4412 			break;
4413 #ifdef	IPFILTER_LOOKUP
4414 		case FRI_LOOKUP :
4415 			fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4416 							 fp->fr_dstnum,
4417 							 &fp->fr_dstfunc, ifs);
4418 			break;
4419 #endif
4420 		default :
4421 			break;
4422 		}
4423 		break;
4424 	case FR_T_NONE :
4425 		break;
4426 	case FR_T_CALLFUNC :
4427 		break;
4428 	case FR_T_COMPIPF :
4429 		break;
4430 	default :
4431 		if (makecopy && fp->fr_data != NULL) {
4432 			KFREES(fp->fr_data, fp->fr_dsize);
4433 		}
4434 		return EINVAL;
4435 	}
4436 
4437 	/*
4438 	 * Lookup all the interface names that are part of the rule.
4439 	 */
4440 	frsynclist(0, 0, NULL, NULL, fp, ifs);
4441 	fp->fr_statecnt = 0;
4442 
4443 	/*
4444 	 * Look for an existing matching filter rule, but don't include the
4445 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4446 	 * This elminates rules which are indentical being loaded.  Checksum
4447 	 * the constant part of the filter rule to make comparisons quicker
4448 	 * (this meaning no pointers are included).
4449 	 */
4450 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4451 	     p < pp; p++)
4452 		fp->fr_cksum += *p;
4453 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4454 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4455 		fp->fr_cksum += *p;
4456 
4457 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
4458 
4459 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4460 		if ((fp->fr_cksum != f->fr_cksum) ||
4461 		    (f->fr_dsize != fp->fr_dsize))
4462 			continue;
4463 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4464 			continue;
4465 		if ((!ptr && !f->fr_data) ||
4466 		    (ptr && f->fr_data &&
4467 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4468 			break;
4469 	}
4470 
4471 	/*
4472 	 * If zero'ing statistics, copy current to caller and zero.
4473 	 */
4474 	if (req == (ioctlcmd_t)SIOCZRLST) {
4475 		if (f == NULL)
4476 			error = ESRCH;
4477 		else {
4478 			/*
4479 			 * Copy and reduce lock because of impending copyout.
4480 			 * Well we should, but if we do then the atomicity of
4481 			 * this call and the correctness of fr_hits and
4482 			 * fr_bytes cannot be guaranteed.  As it is, this code
4483 			 * only resets them to 0 if they are successfully
4484 			 * copied out into user space.
4485 			 */
4486 			bcopy((char *)f, (char *)fp, sizeof(*f));
4487 
4488 			/*
4489 			 * When we copy this rule back out, set the data
4490 			 * pointer to be what it was in user space.
4491 			 */
4492 			fp->fr_data = uptr;
4493 			error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4494 
4495 			if (error == 0) {
4496 				if ((f->fr_dsize != 0) && (uptr != NULL))
4497 					error = COPYOUT(f->fr_data, uptr,
4498 							f->fr_dsize);
4499 				if (error == 0) {
4500 					f->fr_hits = 0;
4501 					f->fr_bytes = 0;
4502 				}
4503 			}
4504 		}
4505 
4506 		if ((ptr != NULL) && (makecopy != 0)) {
4507 			KFREES(ptr, fp->fr_dsize);
4508 		}
4509 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4510 		return error;
4511 	}
4512 
4513 	if (!f) {
4514 		/*
4515 		 * At the end of this, ftail must point to the place where the
4516 		 * new rule is to be saved/inserted/added.
4517 		 * For SIOCAD*FR, this should be the last rule in the group of
4518 		 * rules that have equal fr_collect fields.
4519 		 * For SIOCIN*FR, ...
4520 		 */
4521 		if (req == (ioctlcmd_t)SIOCADAFR ||
4522 		    req == (ioctlcmd_t)SIOCADIFR) {
4523 
4524 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4525 				if (f->fr_collect > fp->fr_collect)
4526 					break;
4527 				ftail = &f->fr_next;
4528 			}
4529 			f = NULL;
4530 			ptr = NULL;
4531 			error = 0;
4532 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4533 			   req == (ioctlcmd_t)SIOCINIFR) {
4534 			while ((f = *fprev) != NULL) {
4535 				if (f->fr_collect >= fp->fr_collect)
4536 					break;
4537 				fprev = &f->fr_next;
4538 			}
4539 			ftail = fprev;
4540 			if (fp->fr_hits != 0) {
4541 				while (fp->fr_hits && (f = *ftail)) {
4542 					if (f->fr_collect != fp->fr_collect)
4543 						break;
4544 					fprev = ftail;
4545 					ftail = &f->fr_next;
4546 					fp->fr_hits--;
4547 				}
4548 			}
4549 			f = NULL;
4550 			ptr = NULL;
4551 			error = 0;
4552 		}
4553 	}
4554 
4555 	/*
4556 	 * Request to remove a rule.
4557 	 */
4558 	if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4559 		if (!f)
4560 			error = ESRCH;
4561 		else {
4562 			/*
4563 			 * Do not allow activity from user space to interfere
4564 			 * with rules not loaded that way.
4565 			 */
4566 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4567 				error = EPERM;
4568 				goto done;
4569 			}
4570 
4571 			/*
4572 			 * Return EBUSY if the rule is being reference by
4573 			 * something else (eg state information.
4574 			 */
4575 			if (f->fr_ref > 1) {
4576 				error = EBUSY;
4577 				goto done;
4578 			}
4579 #ifdef	IPFILTER_SCAN
4580 			if (f->fr_isctag[0] != '\0' &&
4581 			    (f->fr_isc != (struct ipscan *)-1))
4582 				ipsc_detachfr(f);
4583 #endif
4584 			if (unit == IPL_LOGAUTH) {
4585 				error = fr_preauthcmd(req, f, ftail, ifs);
4586 				goto done;
4587 			}
4588 			if (*f->fr_grhead != '\0')
4589 				fr_delgroup(f->fr_grhead, unit, set, ifs);
4590 			fr_fixskip(ftail, f, -1);
4591 			*ftail = f->fr_next;
4592 			f->fr_next = NULL;
4593 			(void)fr_derefrule(&f, ifs);
4594 		}
4595 	} else {
4596 		/*
4597 		 * Not removing, so we must be adding/inserting a rule.
4598 		 */
4599 		if (f)
4600 			error = EEXIST;
4601 		else {
4602 			if (unit == IPL_LOGAUTH) {
4603 				error = fr_preauthcmd(req, fp, ftail, ifs);
4604 				goto done;
4605 			}
4606 			if (makecopy) {
4607 				KMALLOC(f, frentry_t *);
4608 			} else
4609 				f = fp;
4610 			if (f != NULL) {
4611 				if (fp != f)
4612 					bcopy((char *)fp, (char *)f,
4613 					      sizeof(*f));
4614 				MUTEX_NUKE(&f->fr_lock);
4615 				MUTEX_INIT(&f->fr_lock, "filter rule lock");
4616 #ifdef	IPFILTER_SCAN
4617 				if (f->fr_isctag[0] != '\0' &&
4618 				    ipsc_attachfr(f))
4619 					f->fr_isc = (struct ipscan *)-1;
4620 #endif
4621 				f->fr_hits = 0;
4622 				if (makecopy != 0)
4623 					f->fr_ref = 1;
4624 				f->fr_next = *ftail;
4625 				*ftail = f;
4626 				if (req == (ioctlcmd_t)SIOCINIFR ||
4627 				    req == (ioctlcmd_t)SIOCINAFR)
4628 					fr_fixskip(ftail, f, 1);
4629 				f->fr_grp = NULL;
4630 				group = f->fr_grhead;
4631 				if (*group != '\0') {
4632 					fg = fr_addgroup(group, f, f->fr_flags,
4633 							 unit, set, ifs);
4634 					if (fg != NULL)
4635 						f->fr_grp = &fg->fg_start;
4636 				}
4637 			} else
4638 				error = ENOMEM;
4639 		}
4640 	}
4641 done:
4642 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4643 	if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4644 		KFREES(ptr, fp->fr_dsize);
4645 	}
4646 	return (error);
4647 }
4648 
4649 
4650 /* ------------------------------------------------------------------------ */
4651 /* Function:    fr_funcinit                                                 */
4652 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
4653 /* Parameters:  fr(I) - pointer to filter rule                              */
4654 /*                                                                          */
4655 /* If a rule is a call rule, then check if the function it points to needs  */
4656 /* an init function to be called now the rule has been loaded.              */
4657 /* ------------------------------------------------------------------------ */
4658 static int fr_funcinit(fr, ifs)
4659 frentry_t *fr;
4660 ipf_stack_t *ifs;
4661 {
4662 	ipfunc_resolve_t *ft;
4663 	int err;
4664 
4665 	err = ESRCH;
4666 
4667 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4668 		if (ft->ipfu_addr == fr->fr_func) {
4669 			err = 0;
4670 			if (ft->ipfu_init != NULL)
4671 				err = (*ft->ipfu_init)(fr, ifs);
4672 			break;
4673 		}
4674 	return err;
4675 }
4676 
4677 
4678 /* ------------------------------------------------------------------------ */
4679 /* Function:    fr_findfunc                                                 */
4680 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
4681 /* Parameters:  funcptr(I) - function pointer to lookup                     */
4682 /*                                                                          */
4683 /* Look for a function in the table of known functions.                     */
4684 /* ------------------------------------------------------------------------ */
4685 static ipfunc_t fr_findfunc(funcptr)
4686 ipfunc_t funcptr;
4687 {
4688 	ipfunc_resolve_t *ft;
4689 
4690 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4691 		if (ft->ipfu_addr == funcptr)
4692 			return funcptr;
4693 	return NULL;
4694 }
4695 
4696 
4697 /* ------------------------------------------------------------------------ */
4698 /* Function:    fr_resolvefunc                                              */
4699 /* Returns:     int - 0 == success, else error                              */
4700 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
4701 /*                                                                          */
4702 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4703 /* This will either be the function name (if the pointer is set) or the     */
4704 /* function pointer if the name is set.  When found, fill in the other one  */
4705 /* so that the entire, complete, structure can be copied back to user space.*/
4706 /* ------------------------------------------------------------------------ */
4707 int fr_resolvefunc(data)
4708 void *data;
4709 {
4710 	ipfunc_resolve_t res, *ft;
4711 	int err;
4712 
4713 	err = BCOPYIN(data, &res, sizeof(res));
4714 	if (err != 0)
4715 		return EFAULT;
4716 
4717 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4718 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4719 			if (strncmp(res.ipfu_name, ft->ipfu_name,
4720 				    sizeof(res.ipfu_name)) == 0) {
4721 				res.ipfu_addr = ft->ipfu_addr;
4722 				res.ipfu_init = ft->ipfu_init;
4723 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4724 					return EFAULT;
4725 				return 0;
4726 			}
4727 	}
4728 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4729 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4730 			if (ft->ipfu_addr == res.ipfu_addr) {
4731 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
4732 					       sizeof(res.ipfu_name));
4733 				res.ipfu_init = ft->ipfu_init;
4734 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4735 					return EFAULT;
4736 				return 0;
4737 			}
4738 	}
4739 	return ESRCH;
4740 }
4741 
4742 
4743 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4744     (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4745     (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4746     (defined(__OpenBSD__) && (OpenBSD < 200006))
4747 /*
4748  * From: NetBSD
4749  * ppsratecheck(): packets (or events) per second limitation.
4750  */
4751 int
4752 ppsratecheck(lasttime, curpps, maxpps)
4753 	struct timeval *lasttime;
4754 	int *curpps;
4755 	int maxpps;	/* maximum pps allowed */
4756 {
4757 	struct timeval tv, delta;
4758 	int rv;
4759 
4760 	GETKTIME(&tv);
4761 
4762 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4763 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4764 	if (delta.tv_usec < 0) {
4765 		delta.tv_sec--;
4766 		delta.tv_usec += 1000000;
4767 	}
4768 
4769 	/*
4770 	 * check for 0,0 is so that the message will be seen at least once.
4771 	 * if more than one second have passed since the last update of
4772 	 * lasttime, reset the counter.
4773 	 *
4774 	 * we do increment *curpps even in *curpps < maxpps case, as some may
4775 	 * try to use *curpps for stat purposes as well.
4776 	 */
4777 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4778 	    delta.tv_sec >= 1) {
4779 		*lasttime = tv;
4780 		*curpps = 0;
4781 		rv = 1;
4782 	} else if (maxpps < 0)
4783 		rv = 1;
4784 	else if (*curpps < maxpps)
4785 		rv = 1;
4786 	else
4787 		rv = 0;
4788 	*curpps = *curpps + 1;
4789 
4790 	return (rv);
4791 }
4792 #endif
4793 
4794 
4795 /* ------------------------------------------------------------------------ */
4796 /* Function:    fr_derefrule                                                */
4797 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
4798 /* Parameters:  fr(I) - pointer to filter rule                              */
4799 /*                                                                          */
4800 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
4801 /* free it and any associated storage space being used by it.               */
4802 /* ------------------------------------------------------------------------ */
4803 int fr_derefrule(frp, ifs)
4804 frentry_t **frp;
4805 ipf_stack_t *ifs;
4806 {
4807 	frentry_t *fr;
4808 
4809 	fr = *frp;
4810 
4811 	MUTEX_ENTER(&fr->fr_lock);
4812 	fr->fr_ref--;
4813 	if (fr->fr_ref == 0) {
4814 		MUTEX_EXIT(&fr->fr_lock);
4815 		MUTEX_DESTROY(&fr->fr_lock);
4816 
4817 #ifdef IPFILTER_LOOKUP
4818 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
4819 		    ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
4820 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
4821 		    ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
4822 #endif
4823 
4824 		if (fr->fr_dsize) {
4825 			KFREES(fr->fr_data, fr->fr_dsize);
4826 		}
4827 		if ((fr->fr_flags & FR_COPIED) != 0) {
4828 			KFREE(fr);
4829 			return 0;
4830 		}
4831 		return 1;
4832 	} else {
4833 		MUTEX_EXIT(&fr->fr_lock);
4834 	}
4835 	*frp = NULL;
4836 	return -1;
4837 }
4838 
4839 
4840 #ifdef	IPFILTER_LOOKUP
4841 /* ------------------------------------------------------------------------ */
4842 /* Function:    fr_grpmapinit                                               */
4843 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
4844 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
4845 /*                                                                          */
4846 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
4847 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap.                   */
4848 /* ------------------------------------------------------------------------ */
4849 static int fr_grpmapinit(fr, ifs)
4850 frentry_t *fr;
4851 ipf_stack_t *ifs;
4852 {
4853 	char name[FR_GROUPLEN];
4854 	iphtable_t *iph;
4855 
4856 #if defined(SNPRINTF) && defined(_KERNEL)
4857 	(void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
4858 #else
4859 	(void) sprintf(name, "%d", fr->fr_arg);
4860 #endif
4861 	iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4862 	if (iph == NULL)
4863 		return ESRCH;
4864 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
4865 		return ESRCH;
4866 	fr->fr_ptr = iph;
4867 	return 0;
4868 }
4869 
4870 
4871 /* ------------------------------------------------------------------------ */
4872 /* Function:    fr_srcgrpmap                                                */
4873 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4874 /* Parameters:  fin(I)    - pointer to packet information                   */
4875 /*              passp(IO) - pointer to current/new filter decision (unused) */
4876 /*                                                                          */
4877 /* Look for a rule group head in a hash table, using the source address as  */
4878 /* the key, and descend into that group and continue matching rules against */
4879 /* the packet.                                                              */
4880 /* ------------------------------------------------------------------------ */
4881 frentry_t *fr_srcgrpmap(fin, passp)
4882 fr_info_t *fin;
4883 u_32_t *passp;
4884 {
4885 	frgroup_t *fg;
4886 	void *rval;
4887 	ipf_stack_t *ifs = fin->fin_ifs;
4888 
4889 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
4890 	if (rval == NULL)
4891 		return NULL;
4892 
4893 	fg = rval;
4894 	fin->fin_fr = fg->fg_start;
4895 	(void) fr_scanlist(fin, *passp);
4896 	return fin->fin_fr;
4897 }
4898 
4899 
4900 /* ------------------------------------------------------------------------ */
4901 /* Function:    fr_dstgrpmap                                                */
4902 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4903 /* Parameters:  fin(I)    - pointer to packet information                   */
4904 /*              passp(IO) - pointer to current/new filter decision (unused) */
4905 /*                                                                          */
4906 /* Look for a rule group head in a hash table, using the destination        */
4907 /* address as the key, and descend into that group and continue matching    */
4908 /* rules against  the packet.                                               */
4909 /* ------------------------------------------------------------------------ */
4910 frentry_t *fr_dstgrpmap(fin, passp)
4911 fr_info_t *fin;
4912 u_32_t *passp;
4913 {
4914 	frgroup_t *fg;
4915 	void *rval;
4916 	ipf_stack_t *ifs = fin->fin_ifs;
4917 
4918 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
4919 	if (rval == NULL)
4920 		return NULL;
4921 
4922 	fg = rval;
4923 	fin->fin_fr = fg->fg_start;
4924 	(void) fr_scanlist(fin, *passp);
4925 	return fin->fin_fr;
4926 }
4927 #endif /* IPFILTER_LOOKUP */
4928 
4929 /*
4930  * Queue functions
4931  * ===============
4932  * These functions manage objects on queues for efficient timeouts.  There are
4933  * a number of system defined queues as well as user defined timeouts.  It is
4934  * expected that a lock is held in the domain in which the queue belongs
4935  * (i.e. either state or NAT) when calling any of these functions that prevents
4936  * fr_freetimeoutqueue() from being called at the same time as any other.
4937  */
4938 
4939 
4940 /* ------------------------------------------------------------------------ */
4941 /* Function:    fr_addtimeoutqueue                                          */
4942 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
4943 /*                               timeout queue with given interval.         */
4944 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
4945 /*                           of interface queues.                           */
4946 /*              seconds(I) - timeout value in seconds for this queue.       */
4947 /*                                                                          */
4948 /* This routine first looks for a timeout queue that matches the interval   */
4949 /* being requested.  If it finds one, increments the reference counter and  */
4950 /* returns a pointer to it.  If none are found, it allocates a new one and  */
4951 /* inserts it at the top of the list.                                       */
4952 /*                                                                          */
4953 /* Locking.                                                                 */
4954 /* It is assumed that the caller of this function has an appropriate lock   */
4955 /* held (exclusively) in the domain that encompases 'parent'.               */
4956 /* ------------------------------------------------------------------------ */
4957 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
4958 ipftq_t **parent;
4959 u_int seconds;
4960 ipf_stack_t *ifs;
4961 {
4962 	ipftq_t *ifq;
4963 	u_int period;
4964 
4965 	period = seconds * IPF_HZ_DIVIDE;
4966 
4967 	MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
4968 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
4969 		if (ifq->ifq_ttl == period) {
4970 			/*
4971 			 * Reset the delete flag, if set, so the structure
4972 			 * gets reused rather than freed and reallocated.
4973 			 */
4974 			MUTEX_ENTER(&ifq->ifq_lock);
4975 			ifq->ifq_flags &= ~IFQF_DELETE;
4976 			ifq->ifq_ref++;
4977 			MUTEX_EXIT(&ifq->ifq_lock);
4978 			MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4979 
4980 			return ifq;
4981 		}
4982 	}
4983 
4984 	KMALLOC(ifq, ipftq_t *);
4985 	if (ifq != NULL) {
4986 		ifq->ifq_ttl = period;
4987 		ifq->ifq_head = NULL;
4988 		ifq->ifq_tail = &ifq->ifq_head;
4989 		ifq->ifq_next = *parent;
4990 		ifq->ifq_pnext = parent;
4991 		ifq->ifq_ref = 1;
4992 		ifq->ifq_flags = IFQF_USER;
4993 		*parent = ifq;
4994 		ifs->ifs_fr_userifqs++;
4995 		MUTEX_NUKE(&ifq->ifq_lock);
4996 		MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
4997 	}
4998 	MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
4999 	return ifq;
5000 }
5001 
5002 
5003 /* ------------------------------------------------------------------------ */
5004 /* Function:    fr_deletetimeoutqueue                                       */
5005 /* Returns:     int    - new reference count value of the timeout queue     */
5006 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5007 /* Locks:       ifq->ifq_lock                                               */
5008 /*                                                                          */
5009 /* This routine must be called when we're discarding a pointer to a timeout */
5010 /* queue object, taking care of the reference counter.                      */
5011 /*                                                                          */
5012 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5013 /* check the list of user defined timeout queues and call the free function */
5014 /* below (currently commented out) to stop memory leaking.  It is done this */
5015 /* way because the locking may not be sufficient to safely do a free when   */
5016 /* this function is called.                                                 */
5017 /* ------------------------------------------------------------------------ */
5018 int fr_deletetimeoutqueue(ifq)
5019 ipftq_t *ifq;
5020 {
5021 
5022 	ifq->ifq_ref--;
5023 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5024 		ifq->ifq_flags |= IFQF_DELETE;
5025 	}
5026 
5027 	return ifq->ifq_ref;
5028 }
5029 
5030 
5031 /* ------------------------------------------------------------------------ */
5032 /* Function:    fr_freetimeoutqueue                                         */
5033 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5034 /* Returns:     Nil                                                         */
5035 /*                                                                          */
5036 /* Locking:                                                                 */
5037 /* It is assumed that the caller of this function has an appropriate lock   */
5038 /* held (exclusively) in the domain that encompases the callers "domain".   */
5039 /* The ifq_lock for this structure should not be held.                      */
5040 /*                                                                          */
5041 /* Remove a user definde timeout queue from the list of queues it is in and */
5042 /* tidy up after this is done.                                              */
5043 /* ------------------------------------------------------------------------ */
5044 void fr_freetimeoutqueue(ifq, ifs)
5045 ipftq_t *ifq;
5046 ipf_stack_t *ifs;
5047 {
5048 
5049 
5050 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5051 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5052 		printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5053 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5054 		       ifq->ifq_ref);
5055 		return;
5056 	}
5057 
5058 	/*
5059 	 * Remove from its position in the list.
5060 	 */
5061 	*ifq->ifq_pnext = ifq->ifq_next;
5062 	if (ifq->ifq_next != NULL)
5063 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5064 
5065 	MUTEX_DESTROY(&ifq->ifq_lock);
5066 	ifs->ifs_fr_userifqs--;
5067 	KFREE(ifq);
5068 }
5069 
5070 
5071 /* ------------------------------------------------------------------------ */
5072 /* Function:    fr_deletequeueentry                                         */
5073 /* Returns:     Nil                                                         */
5074 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5075 /*              ifq(I) - timeout queue to remove entry from                 */
5076 /*                                                                          */
5077 /* Remove a tail queue entry from its queue and make it an orphan.          */
5078 /* fr_deletetimeoutqueue is called to make sure the reference count on the  */
5079 /* queue is correct.  We can't, however, call fr_freetimeoutqueue because   */
5080 /* the correct lock(s) may not be held that would make it safe to do so.    */
5081 /* ------------------------------------------------------------------------ */
5082 void fr_deletequeueentry(tqe)
5083 ipftqent_t *tqe;
5084 {
5085 	ipftq_t *ifq;
5086 
5087 	ifq = tqe->tqe_ifq;
5088 	if (ifq == NULL)
5089 		return;
5090 
5091 	MUTEX_ENTER(&ifq->ifq_lock);
5092 
5093 	if (tqe->tqe_pnext != NULL) {
5094 		*tqe->tqe_pnext = tqe->tqe_next;
5095 		if (tqe->tqe_next != NULL)
5096 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5097 		else    /* we must be the tail anyway */
5098 			ifq->ifq_tail = tqe->tqe_pnext;
5099 
5100 		tqe->tqe_pnext = NULL;
5101 		tqe->tqe_ifq = NULL;
5102 	}
5103 
5104 	(void) fr_deletetimeoutqueue(ifq);
5105 
5106 	MUTEX_EXIT(&ifq->ifq_lock);
5107 }
5108 
5109 
5110 /* ------------------------------------------------------------------------ */
5111 /* Function:    fr_queuefront                                               */
5112 /* Returns:     Nil                                                         */
5113 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5114 /*                                                                          */
5115 /* Move a queue entry to the front of the queue, if it isn't already there. */
5116 /* ------------------------------------------------------------------------ */
5117 void fr_queuefront(tqe)
5118 ipftqent_t *tqe;
5119 {
5120 	ipftq_t *ifq;
5121 
5122 	ifq = tqe->tqe_ifq;
5123 	if (ifq == NULL)
5124 		return;
5125 
5126 	MUTEX_ENTER(&ifq->ifq_lock);
5127 	if (ifq->ifq_head != tqe) {
5128 		*tqe->tqe_pnext = tqe->tqe_next;
5129 		if (tqe->tqe_next)
5130 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5131 		else
5132 			ifq->ifq_tail = tqe->tqe_pnext;
5133 
5134 		tqe->tqe_next = ifq->ifq_head;
5135 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5136 		ifq->ifq_head = tqe;
5137 		tqe->tqe_pnext = &ifq->ifq_head;
5138 	}
5139 	MUTEX_EXIT(&ifq->ifq_lock);
5140 }
5141 
5142 
5143 /* ------------------------------------------------------------------------ */
5144 /* Function:    fr_queueback                                                */
5145 /* Returns:     Nil                                                         */
5146 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5147 /*                                                                          */
5148 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5149 /* ------------------------------------------------------------------------ */
5150 void fr_queueback(tqe, ifs)
5151 ipftqent_t *tqe;
5152 ipf_stack_t *ifs;
5153 {
5154 	ipftq_t *ifq;
5155 
5156 	ifq = tqe->tqe_ifq;
5157 	if (ifq == NULL)
5158 		return;
5159 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5160 
5161 	MUTEX_ENTER(&ifq->ifq_lock);
5162 	if (tqe->tqe_next == NULL) {		/* at the end already ? */
5163 		MUTEX_EXIT(&ifq->ifq_lock);
5164 		return;
5165 	}
5166 
5167 	/*
5168 	 * Remove from list
5169 	 */
5170 	*tqe->tqe_pnext = tqe->tqe_next;
5171 	tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5172 
5173 	/*
5174 	 * Make it the last entry.
5175 	 */
5176 	tqe->tqe_next = NULL;
5177 	tqe->tqe_pnext = ifq->ifq_tail;
5178 	*ifq->ifq_tail = tqe;
5179 	ifq->ifq_tail = &tqe->tqe_next;
5180 	MUTEX_EXIT(&ifq->ifq_lock);
5181 }
5182 
5183 
5184 /* ------------------------------------------------------------------------ */
5185 /* Function:    fr_queueappend                                              */
5186 /* Returns:     Nil                                                         */
5187 /* Parameters:  tqe(I)    - pointer to timeout queue entry                  */
5188 /*              ifq(I)    - pointer to timeout queue                        */
5189 /*              parent(I) - owing object pointer                            */
5190 /*                                                                          */
5191 /* Add a new item to this queue and put it on the very end.                 */
5192 /* ------------------------------------------------------------------------ */
5193 void fr_queueappend(tqe, ifq, parent, ifs)
5194 ipftqent_t *tqe;
5195 ipftq_t *ifq;
5196 void *parent;
5197 ipf_stack_t *ifs;
5198 {
5199 
5200 	MUTEX_ENTER(&ifq->ifq_lock);
5201 	tqe->tqe_parent = parent;
5202 	tqe->tqe_pnext = ifq->ifq_tail;
5203 	*ifq->ifq_tail = tqe;
5204 	ifq->ifq_tail = &tqe->tqe_next;
5205 	tqe->tqe_next = NULL;
5206 	tqe->tqe_ifq = ifq;
5207 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5208 	ifq->ifq_ref++;
5209 	MUTEX_EXIT(&ifq->ifq_lock);
5210 }
5211 
5212 
5213 /* ------------------------------------------------------------------------ */
5214 /* Function:    fr_movequeue                                                */
5215 /* Returns:     Nil                                                         */
5216 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5217 /*              oifp(I) - old timeout queue entry was on                    */
5218 /*              nifp(I) - new timeout queue to put entry on                 */
5219 /*		ifs	- ipf stack instance				    */
5220 /*                                                                          */
5221 /* Move a queue entry from one timeout queue to another timeout queue.      */
5222 /* If it notices that the current entry is already last and does not need   */
5223 /* to move queue, the return.                                               */
5224 /* ------------------------------------------------------------------------ */
5225 void fr_movequeue(tqe, oifq, nifq, ifs)
5226 ipftqent_t *tqe;
5227 ipftq_t *oifq, *nifq;
5228 ipf_stack_t *ifs;
5229 {
5230 	/*
5231 	 * If the queue isn't changing, and the clock hasn't ticked
5232 	 * since the last update, the operation will be a no-op.
5233 	 */
5234 	if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks)
5235 		return;
5236 
5237 	/*
5238 	 * Grab the lock and update the timers.
5239 	 */
5240 	MUTEX_ENTER(&oifq->ifq_lock);
5241 	tqe->tqe_touched = ifs->ifs_fr_ticks;
5242 	tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5243 
5244 	/*
5245 	 * The remainder of the operation can still be a no-op.
5246 	 *
5247 	 * If the queue isn't changing, check to see if
5248 	 * an update would be meaningless.
5249 	 */
5250 	if (oifq == nifq) {
5251 		if ((tqe->tqe_next == NULL) ||
5252 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5253 			MUTEX_EXIT(&oifq->ifq_lock);
5254 			return;
5255 		}
5256 	}
5257 
5258 	/*
5259 	 * Remove from the old queue
5260 	 */
5261 	*tqe->tqe_pnext = tqe->tqe_next;
5262 	if (tqe->tqe_next)
5263 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5264 	else
5265 		oifq->ifq_tail = tqe->tqe_pnext;
5266 	tqe->tqe_next = NULL;
5267 
5268 	/*
5269 	 * If we're moving from one queue to another, release the lock on the
5270 	 * old queue and get a lock on the new queue.  For user defined queues,
5271 	 * if we're moving off it, call delete in case it can now be freed.
5272 	 */
5273 	if (oifq != nifq) {
5274 		tqe->tqe_ifq = NULL;
5275 
5276 		(void) fr_deletetimeoutqueue(oifq);
5277 
5278 		MUTEX_EXIT(&oifq->ifq_lock);
5279 
5280 		MUTEX_ENTER(&nifq->ifq_lock);
5281 
5282 		tqe->tqe_ifq = nifq;
5283 		nifq->ifq_ref++;
5284 	}
5285 
5286 	/*
5287 	 * Add to the bottom of the new queue
5288 	 */
5289 	tqe->tqe_pnext = nifq->ifq_tail;
5290 	*nifq->ifq_tail = tqe;
5291 	nifq->ifq_tail = &tqe->tqe_next;
5292 	MUTEX_EXIT(&nifq->ifq_lock);
5293 }
5294 
5295 
5296 /* ------------------------------------------------------------------------ */
5297 /* Function:    fr_updateipid                                               */
5298 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5299 /* Parameters:  fin(I) - pointer to packet information                      */
5300 /*                                                                          */
5301 /* When we are doing NAT, change the IP of every packet to represent a      */
5302 /* single sequence of packets coming from the host, hiding any host         */
5303 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5304 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5305 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5306 /* has no match in the cache, return an error.                              */
5307 /* ------------------------------------------------------------------------ */
5308 static INLINE int fr_updateipid(fin)
5309 fr_info_t *fin;
5310 {
5311 	u_short id, ido, sums;
5312 	u_32_t sumd, sum;
5313 	ip_t *ip;
5314 
5315 	if (fin->fin_off != 0) {
5316 		sum = fr_ipid_knownfrag(fin);
5317 		if (sum == 0xffffffff)
5318 			return -1;
5319 		sum &= 0xffff;
5320 		id = (u_short)sum;
5321 	} else {
5322 		id = fr_nextipid(fin);
5323 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5324 			(void) fr_ipid_newfrag(fin, (u_32_t)id);
5325 	}
5326 
5327 	ip = fin->fin_ip;
5328 	ido = ntohs(ip->ip_id);
5329 	if (id == ido)
5330 		return 0;
5331 	ip->ip_id = htons(id);
5332 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5333 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5334 	sum += sumd;
5335 	sum = (sum >> 16) + (sum & 0xffff);
5336 	sum = (sum >> 16) + (sum & 0xffff);
5337 	sums = ~(u_short)sum;
5338 	ip->ip_sum = htons(sums);
5339 	return 0;
5340 }
5341 
5342 
5343 #ifdef	NEED_FRGETIFNAME
5344 /* ------------------------------------------------------------------------ */
5345 /* Function:    fr_getifname                                                */
5346 /* Returns:     char *    - pointer to interface name                       */
5347 /* Parameters:  ifp(I)    - pointer to network interface                    */
5348 /*              buffer(O) - pointer to where to store interface name        */
5349 /*                                                                          */
5350 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5351 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5352 /* as a NULL pointer then return a pointer to a static array.               */
5353 /* ------------------------------------------------------------------------ */
5354 char *fr_getifname(ifp, buffer)
5355 struct ifnet *ifp;
5356 char *buffer;
5357 {
5358 	static char namebuf[LIFNAMSIZ];
5359 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5360      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5361      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5362 	int unit, space;
5363 	char temp[20];
5364 	char *s;
5365 # endif
5366 
5367 	ASSERT(buffer != NULL);
5368 #ifdef notdef
5369 	if (buffer == NULL)
5370 		buffer = namebuf;
5371 #endif
5372 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5373 	buffer[LIFNAMSIZ - 1] = '\0';
5374 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5375      defined(__sgi) || defined(_AIX51) || \
5376      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5377 	for (s = buffer; *s; s++)
5378 		;
5379 	unit = ifp->if_unit;
5380 	space = LIFNAMSIZ - (s - buffer);
5381 	if (space > 0) {
5382 #  if defined(SNPRINTF) && defined(_KERNEL)
5383 		(void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5384 #  else
5385 		(void) sprintf(temp, "%d", unit);
5386 #  endif
5387 		(void) strncpy(s, temp, space);
5388 	}
5389 # endif
5390 	return buffer;
5391 }
5392 #endif
5393 
5394 
5395 /* ------------------------------------------------------------------------ */
5396 /* Function:    fr_ioctlswitch                                              */
5397 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5398 /* Parameters:  unit(I) - device unit opened                                */
5399 /*              data(I) - pointer to ioctl data                             */
5400 /*              cmd(I)  - ioctl command                                     */
5401 /*              mode(I) - mode value                                        */
5402 /*                                                                          */
5403 /* Based on the value of unit, call the appropriate ioctl handler or return */
5404 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5405 /* for the device in order to execute the ioctl.                            */
5406 /* ------------------------------------------------------------------------ */
5407 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5408 int unit, mode, uid;
5409 ioctlcmd_t cmd;
5410 void *data, *ctx;
5411 ipf_stack_t *ifs;
5412 {
5413 	int error = 0;
5414 
5415 	switch (unit)
5416 	{
5417 	case IPL_LOGIPF :
5418 		error = -1;
5419 		break;
5420 	case IPL_LOGNAT :
5421 		if (ifs->ifs_fr_running > 0)
5422 			error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5423 		else
5424 			error = EIO;
5425 		break;
5426 	case IPL_LOGSTATE :
5427 		if (ifs->ifs_fr_running > 0)
5428 			error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5429 		else
5430 			error = EIO;
5431 		break;
5432 	case IPL_LOGAUTH :
5433 		if (ifs->ifs_fr_running > 0) {
5434 			if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5435 			    (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5436 				if (!(mode & FWRITE)) {
5437 					error = EPERM;
5438 				} else {
5439 					error = frrequest(unit, cmd, data,
5440 						  ifs->ifs_fr_active, 1, ifs);
5441 				}
5442 			} else {
5443 				error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5444 			}
5445 		} else
5446 			error = EIO;
5447 		break;
5448 	case IPL_LOGSYNC :
5449 #ifdef IPFILTER_SYNC
5450 		if (ifs->ifs_fr_running > 0)
5451 			error = fr_sync_ioctl(data, cmd, mode, ifs);
5452 		else
5453 #endif
5454 			error = EIO;
5455 		break;
5456 	case IPL_LOGSCAN :
5457 #ifdef IPFILTER_SCAN
5458 		if (ifs->ifs_fr_running > 0)
5459 			error = fr_scan_ioctl(data, cmd, mode, ifs);
5460 		else
5461 #endif
5462 			error = EIO;
5463 		break;
5464 	case IPL_LOGLOOKUP :
5465 #ifdef IPFILTER_LOOKUP
5466 		if (ifs->ifs_fr_running > 0)
5467 			error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5468 		else
5469 #endif
5470 			error = EIO;
5471 		break;
5472 	default :
5473 		error = EIO;
5474 		break;
5475 	}
5476 
5477 	return error;
5478 }
5479 
5480 
5481 /*
5482  * This array defines the expected size of objects coming into the kernel
5483  * for the various recognised object types.
5484  */
5485 #define	NUM_OBJ_TYPES	19
5486 
5487 static	int	fr_objbytes[NUM_OBJ_TYPES][2] = {
5488 	{ 1,	sizeof(struct frentry) },		/* frentry */
5489 	{ 0,	sizeof(struct friostat) },
5490 	{ 0,	sizeof(struct fr_info) },
5491 	{ 0,	sizeof(struct fr_authstat) },
5492 	{ 0,	sizeof(struct ipfrstat) },
5493 	{ 0,	sizeof(struct ipnat) },
5494 	{ 0,	sizeof(struct natstat) },
5495 	{ 0,	sizeof(struct ipstate_save) },
5496 	{ 1,	sizeof(struct nat_save) },		/* nat_save */
5497 	{ 0,	sizeof(struct natlookup) },
5498 	{ 1,	sizeof(struct ipstate) },		/* ipstate */
5499 	{ 0,	sizeof(struct ips_stat) },
5500 	{ 0,	sizeof(struct frauth) },
5501 	{ 0,	sizeof(struct ipftune) },
5502 	{ 0,	sizeof(struct nat) },                   /* nat_t */
5503 	{ 0,	sizeof(struct ipfruleiter) },
5504 	{ 0,	sizeof(struct ipfgeniter) },
5505 	{ 0,	sizeof(struct ipftable) },
5506 	{ 0,	sizeof(struct ipflookupiter) }
5507 };
5508 
5509 
5510 /* ------------------------------------------------------------------------ */
5511 /* Function:    fr_inobj                                                    */
5512 /* Returns:     int     - 0 = success, else failure                         */
5513 /* Parameters:  data(I) - pointer to ioctl data                             */
5514 /*              ptr(I)  - pointer to store real data in                     */
5515 /*              type(I) - type of structure being moved                     */
5516 /*                                                                          */
5517 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
5518 /* add things to check for version numbers, sizes, etc, to make it backward */
5519 /* compatible at the ABI for user land.                                     */
5520 /* ------------------------------------------------------------------------ */
5521 int fr_inobj(data, ptr, type)
5522 void *data;
5523 void *ptr;
5524 int type;
5525 {
5526 	ipfobj_t obj;
5527 	int error = 0;
5528 
5529 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5530 		return EINVAL;
5531 
5532 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5533 	if (error != 0)
5534 		return EFAULT;
5535 
5536 	if (obj.ipfo_type != type)
5537 		return EINVAL;
5538 
5539 #ifndef	IPFILTER_COMPAT
5540 	if ((fr_objbytes[type][0] & 1) != 0) {
5541 		if (obj.ipfo_size < fr_objbytes[type][1])
5542 			return EINVAL;
5543 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5544 		return EINVAL;
5545 #else
5546 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5547 		error = fr_incomptrans(&obj, ptr);
5548 		return error;
5549 	}
5550 
5551 	if ((fr_objbytes[type][0] & 1) != 0 &&
5552 	    obj.ipfo_size < fr_objbytes[type][1] ||
5553 	    obj.ipfo_size != fr_objbytes[type][1])
5554 		return EINVAL;
5555 #endif
5556 
5557 	if ((fr_objbytes[type][0] & 1) != 0) {
5558 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5559 				fr_objbytes[type][1]);
5560 	} else {
5561 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5562 				obj.ipfo_size);
5563 	}
5564 	return error;
5565 }
5566 
5567 
5568 /* ------------------------------------------------------------------------ */
5569 /* Function:    fr_inobjsz                                                  */
5570 /* Returns:     int     - 0 = success, else failure                         */
5571 /* Parameters:  data(I) - pointer to ioctl data                             */
5572 /*              ptr(I)  - pointer to store real data in                     */
5573 /*              type(I) - type of structure being moved                     */
5574 /*              sz(I)   - size of data to copy                              */
5575 /*                                                                          */
5576 /* As per fr_inobj, except the size of the object to copy in is passed in   */
5577 /* but it must not be smaller than the size defined for the type and the    */
5578 /* type must allow for varied sized objects.  The extra requirement here is */
5579 /* that sz must match the size of the object being passed in - this is not  */
5580 /* not possible nor required in fr_inobj().                                 */
5581 /* ------------------------------------------------------------------------ */
5582 int fr_inobjsz(data, ptr, type, sz)
5583 void *data;
5584 void *ptr;
5585 int type, sz;
5586 {
5587 	ipfobj_t obj;
5588 	int error;
5589 
5590 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5591 		return EINVAL;
5592 	if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5593 		return EINVAL;
5594 
5595 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5596 	if (error != 0)
5597 		return EFAULT;
5598 
5599 	if (obj.ipfo_type != type)
5600 		return EINVAL;
5601 
5602 #ifndef	IPFILTER_COMPAT
5603 	if (obj.ipfo_size != sz)
5604 		return EINVAL;
5605 #else
5606 	if (obj.ipfo_rev != IPFILTER_VERSION)
5607 		/*XXX compatibility hook here */
5608 		/*EMPTY*/;
5609 	if (obj.ipfo_size != sz)
5610 		/* XXX compatibility hook here */
5611 		return EINVAL;
5612 #endif
5613 
5614 	error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5615 	return error;
5616 }
5617 
5618 
5619 /* ------------------------------------------------------------------------ */
5620 /* Function:    fr_outobjsz                                                 */
5621 /* Returns:     int     - 0 = success, else failure                         */
5622 /* Parameters:  data(I) - pointer to ioctl data                             */
5623 /*              ptr(I)  - pointer to store real data in                     */
5624 /*              type(I) - type of structure being moved                     */
5625 /*              sz(I)   - size of data to copy                              */
5626 /*                                                                          */
5627 /* As per fr_outobj, except the size of the object to copy out is passed in */
5628 /* but it must not be smaller than the size defined for the type and the    */
5629 /* type must allow for varied sized objects.  The extra requirement here is */
5630 /* that sz must match the size of the object being passed in - this is not  */
5631 /* not possible nor required in fr_outobj().                                */
5632 /* ------------------------------------------------------------------------ */
5633 int fr_outobjsz(data, ptr, type, sz)
5634 void *data;
5635 void *ptr;
5636 int type, sz;
5637 {
5638 	ipfobj_t obj;
5639 	int error;
5640 
5641 	if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5642 	    ((fr_objbytes[type][0] & 1) == 0) ||
5643 	    (sz < fr_objbytes[type][1]))
5644 		return EINVAL;
5645 
5646 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5647 	if (error != 0)
5648 		return EFAULT;
5649 
5650 	if (obj.ipfo_type != type)
5651 		return EINVAL;
5652 
5653 #ifndef	IPFILTER_COMPAT
5654 	if (obj.ipfo_size != sz)
5655 		return EINVAL;
5656 #else
5657 	if (obj.ipfo_rev != IPFILTER_VERSION)
5658 		/* XXX compatibility hook here */
5659 		/*EMPTY*/;
5660 	if (obj.ipfo_size != sz)
5661 		/* XXX compatibility hook here */
5662 		return EINVAL;
5663 #endif
5664 
5665 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5666 	return error;
5667 }
5668 
5669 
5670 /* ------------------------------------------------------------------------ */
5671 /* Function:    fr_outobj                                                   */
5672 /* Returns:     int     - 0 = success, else failure                         */
5673 /* Parameters:  data(I) - pointer to ioctl data                             */
5674 /*              ptr(I)  - pointer to store real data in                     */
5675 /*              type(I) - type of structure being moved                     */
5676 /*                                                                          */
5677 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
5678 /* future, we add things to check for version numbers, sizes, etc, to make  */
5679 /* it backward  compatible at the ABI for user land.                        */
5680 /* ------------------------------------------------------------------------ */
5681 int fr_outobj(data, ptr, type)
5682 void *data;
5683 void *ptr;
5684 int type;
5685 {
5686 	ipfobj_t obj;
5687 	int error;
5688 
5689 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5690 		return EINVAL;
5691 
5692 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5693 	if (error != 0)
5694 		return EFAULT;
5695 
5696 	if (obj.ipfo_type != type)
5697 		return EINVAL;
5698 
5699 #ifndef	IPFILTER_COMPAT
5700 	if ((fr_objbytes[type][0] & 1) != 0) {
5701 		if (obj.ipfo_size < fr_objbytes[type][1])
5702 			return EINVAL;
5703 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5704 		return EINVAL;
5705 #else
5706 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5707 		error = fr_outcomptrans(&obj, ptr);
5708 		return error;
5709 	}
5710 
5711 	if ((fr_objbytes[type][0] & 1) != 0 &&
5712 	    obj.ipfo_size < fr_objbytes[type][1] ||
5713 	    obj.ipfo_size != fr_objbytes[type][1])
5714 		return EINVAL;
5715 #endif
5716 
5717 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5718 	return error;
5719 }
5720 
5721 
5722 /* ------------------------------------------------------------------------ */
5723 /* Function:    fr_checkl4sum                                               */
5724 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
5725 /* Parameters:  fin(I) - pointer to packet information                      */
5726 /*                                                                          */
5727 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
5728 /* not possible, return without indicating a failure or success but in a    */
5729 /* way that is ditinguishable.                                              */
5730 /* ------------------------------------------------------------------------ */
5731 int fr_checkl4sum(fin)
5732 fr_info_t *fin;
5733 {
5734 	u_short sum, hdrsum, *csump;
5735 	udphdr_t *udp;
5736 	int dosum;
5737 	ipf_stack_t *ifs = fin->fin_ifs;
5738 
5739 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5740 	net_handle_t net_data_p;
5741 	if (fin->fin_v == 4)
5742 		net_data_p = ifs->ifs_ipf_ipv4;
5743 	else
5744 		net_data_p = ifs->ifs_ipf_ipv6;
5745 #endif
5746 
5747 	if ((fin->fin_flx & FI_NOCKSUM) != 0)
5748 		return 0;
5749 
5750 	/*
5751 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
5752 	 * isn't already considered "bad", then validate the checksum.  If
5753 	 * this check fails then considered the packet to be "bad".
5754 	 */
5755 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5756 		return 1;
5757 
5758 	csump = NULL;
5759 	hdrsum = 0;
5760 	dosum = 0;
5761 	sum = 0;
5762 
5763 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5764 	ASSERT(fin->fin_m != NULL);
5765 	if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5766 	    NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5767 			hdrsum = 0;
5768 			sum = 0;
5769 	} else {
5770 #endif
5771 		switch (fin->fin_p)
5772 		{
5773 		case IPPROTO_TCP :
5774 			csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5775 			dosum = 1;
5776 			break;
5777 
5778 		case IPPROTO_UDP :
5779 			udp = fin->fin_dp;
5780 			if (udp->uh_sum != 0) {
5781 				csump = &udp->uh_sum;
5782 				dosum = 1;
5783 			}
5784 			break;
5785 
5786 		case IPPROTO_ICMP :
5787 			csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5788 			dosum = 1;
5789 			break;
5790 
5791 		default :
5792 			return 1;
5793 			/*NOTREACHED*/
5794 		}
5795 
5796 		if (csump != NULL)
5797 			hdrsum = *csump;
5798 
5799 		if (dosum)
5800 			sum = fr_cksum(fin->fin_m, fin->fin_ip,
5801 				       fin->fin_p, fin->fin_dp);
5802 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5803 	}
5804 #endif
5805 #if !defined(_KERNEL)
5806 	if (sum == hdrsum) {
5807 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5808 	} else {
5809 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5810 	}
5811 #endif
5812 	if (hdrsum == sum)
5813 		return 0;
5814 	return -1;
5815 }
5816 
5817 
5818 /* ------------------------------------------------------------------------ */
5819 /* Function:    fr_ifpfillv4addr                                            */
5820 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5821 /* Parameters:  atype(I)   - type of network address update to perform      */
5822 /*              sin(I)     - pointer to source of address information       */
5823 /*              mask(I)    - pointer to source of netmask information       */
5824 /*              inp(I)     - pointer to destination address store           */
5825 /*              inpmask(I) - pointer to destination netmask store           */
5826 /*                                                                          */
5827 /* Given a type of network address update (atype) to perform, copy          */
5828 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5829 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5830 /* which case the operation fails.  For all values of atype other than      */
5831 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5832 /* value.                                                                   */
5833 /* ------------------------------------------------------------------------ */
5834 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
5835 int atype;
5836 struct sockaddr_in *sin, *mask;
5837 struct in_addr *inp, *inpmask;
5838 {
5839 	if (inpmask != NULL && atype != FRI_NETMASKED)
5840 		inpmask->s_addr = 0xffffffff;
5841 
5842 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5843 		if (atype == FRI_NETMASKED) {
5844 			if (inpmask == NULL)
5845 				return -1;
5846 			inpmask->s_addr = mask->sin_addr.s_addr;
5847 		}
5848 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
5849 	} else {
5850 		inp->s_addr = sin->sin_addr.s_addr;
5851 	}
5852 	return 0;
5853 }
5854 
5855 
5856 #ifdef	USE_INET6
5857 /* ------------------------------------------------------------------------ */
5858 /* Function:    fr_ifpfillv6addr                                            */
5859 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5860 /* Parameters:  atype(I)   - type of network address update to perform      */
5861 /*              sin(I)     - pointer to source of address information       */
5862 /*              mask(I)    - pointer to source of netmask information       */
5863 /*              inp(I)     - pointer to destination address store           */
5864 /*              inpmask(I) - pointer to destination netmask store           */
5865 /*                                                                          */
5866 /* Given a type of network address update (atype) to perform, copy          */
5867 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5868 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5869 /* which case the operation fails.  For all values of atype other than      */
5870 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5871 /* value.                                                                   */
5872 /* ------------------------------------------------------------------------ */
5873 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
5874 int atype;
5875 struct sockaddr_in6 *sin, *mask;
5876 struct in_addr *inp, *inpmask;
5877 {
5878 	i6addr_t *src, *dst, *and, *dmask;
5879 
5880 	src = (i6addr_t *)&sin->sin6_addr;
5881 	and = (i6addr_t *)&mask->sin6_addr;
5882 	dst = (i6addr_t *)inp;
5883 	dmask = (i6addr_t *)inpmask;
5884 
5885 	if (inpmask != NULL && atype != FRI_NETMASKED) {
5886 		dmask->i6[0] = 0xffffffff;
5887 		dmask->i6[1] = 0xffffffff;
5888 		dmask->i6[2] = 0xffffffff;
5889 		dmask->i6[3] = 0xffffffff;
5890 	}
5891 
5892 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5893 		if (atype == FRI_NETMASKED) {
5894 			if (inpmask == NULL)
5895 				return -1;
5896 			dmask->i6[0] = and->i6[0];
5897 			dmask->i6[1] = and->i6[1];
5898 			dmask->i6[2] = and->i6[2];
5899 			dmask->i6[3] = and->i6[3];
5900 		}
5901 
5902 		dst->i6[0] = src->i6[0] & and->i6[0];
5903 		dst->i6[1] = src->i6[1] & and->i6[1];
5904 		dst->i6[2] = src->i6[2] & and->i6[2];
5905 		dst->i6[3] = src->i6[3] & and->i6[3];
5906 	} else {
5907 		dst->i6[0] = src->i6[0];
5908 		dst->i6[1] = src->i6[1];
5909 		dst->i6[2] = src->i6[2];
5910 		dst->i6[3] = src->i6[3];
5911 	}
5912 	return 0;
5913 }
5914 #endif
5915 
5916 
5917 /* ------------------------------------------------------------------------ */
5918 /* Function:    fr_matchtag                                                 */
5919 /* Returns:     0 == mismatch, 1 == match.                                  */
5920 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
5921 /*              tag2(I) - pointer to second tag to compare                  */
5922 /*                                                                          */
5923 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
5924 /* considered to be a match or not match, respectively.  The tag is 16      */
5925 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
5926 /* compare the ints instead, for speed. tag1 is the master of the           */
5927 /* comparison.  This function should only be called with both tag1 and tag2 */
5928 /* as non-NULL pointers.                                                    */
5929 /* ------------------------------------------------------------------------ */
5930 int fr_matchtag(tag1, tag2)
5931 ipftag_t *tag1, *tag2;
5932 {
5933 	if (tag1 == tag2)
5934 		return 1;
5935 
5936 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
5937 		return 1;
5938 
5939 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
5940 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
5941 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
5942 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
5943 		return 1;
5944 	return 0;
5945 }
5946 
5947 
5948 /* ------------------------------------------------------------------------ */
5949 /* Function:    fr_coalesce                                                 */
5950 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
5951 /* Parameters:  fin(I) - pointer to packet information                      */
5952 /*                                                                          */
5953 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
5954 /* If this call returns a failure then the buffers have also been freed.    */
5955 /* ------------------------------------------------------------------------ */
5956 int fr_coalesce(fin)
5957 fr_info_t *fin;
5958 {
5959 	ipf_stack_t *ifs = fin->fin_ifs;
5960 	if ((fin->fin_flx & FI_COALESCE) != 0)
5961 		return 1;
5962 
5963 	/*
5964 	 * If the mbuf pointers indicate that there is no mbuf to work with,
5965 	 * return but do not indicate success or failure.
5966 	 */
5967 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
5968 		return 0;
5969 
5970 #if defined(_KERNEL)
5971 	if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
5972 		IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
5973 # ifdef MENTAT
5974 		FREE_MB_T(*fin->fin_mp);
5975 # endif
5976 		*fin->fin_mp = NULL;
5977 		fin->fin_m = NULL;
5978 		return -1;
5979 	}
5980 #else
5981 	fin = fin;	/* LINT */
5982 #endif
5983 	return 1;
5984 }
5985 
5986 
5987 /*
5988  * The following table lists all of the tunable variables that can be
5989  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT.  The format of each row
5990  * in the table below is as follows:
5991  *
5992  * pointer to value, name of value, minimum, maximum, size of the value's
5993  *     container, value attribute flags
5994  *
5995  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
5996  * means the value can only be written to when IPFilter is loaded but disabled.
5997  * The obvious implication is if neither of these are set then the value can be
5998  * changed at any time without harm.
5999  */
6000 ipftuneable_t lcl_ipf_tuneables[] = {
6001 	/* filtering */
6002 	{ { NULL },	"fr_flags",		0,	0xffffffff,
6003 			0,		0 },
6004 	{ { NULL },	"fr_active",		0,	0,
6005 			0,		IPFT_RDONLY },
6006 	{ { NULL },	"fr_control_forwarding",	0, 1,
6007 			0,		0 },
6008 	{ { NULL },	"fr_update_ipid",	0,	1,
6009 			0,		0 },
6010 	{ { NULL },	"fr_chksrc",		0,	1,
6011 			0,		0 },
6012 	{ { NULL },	"fr_minttl",		0,	1,
6013 			0,		0 },
6014 	{ { NULL }, 	"fr_icmpminfragmtu",	0,	1,
6015 			0,		0 },
6016 	{ { NULL },		"fr_pass",		0,	0xffffffff,
6017 			0,		0 },
6018 #if SOLARIS2 >= 10
6019 	{ { NULL },	"ipf_loopback",		0,	1,
6020 			0,		IPFT_WRDISABLED },
6021 #endif
6022 	/* state */
6023 	{ { NULL }, "fr_tcpidletimeout",	1,	0x7fffffff,
6024 			0,	IPFT_WRDISABLED },
6025 	{ { NULL },	"fr_tcpclosewait",	1,	0x7fffffff,
6026 			0,	IPFT_WRDISABLED },
6027 	{ { NULL },	"fr_tcplastack",	1,	0x7fffffff,
6028 			0,		IPFT_WRDISABLED },
6029 	{ { NULL },	"fr_tcptimeout",	1,	0x7fffffff,
6030 			0,		IPFT_WRDISABLED },
6031 	{ { NULL },	"fr_tcpclosed",		1,	0x7fffffff,
6032 			0,		IPFT_WRDISABLED },
6033 	{ { NULL },	"fr_tcphalfclosed",	1,	0x7fffffff,
6034 			0,	IPFT_WRDISABLED },
6035 	{ { NULL },	"fr_udptimeout",	1,	0x7fffffff,
6036 			0,		IPFT_WRDISABLED },
6037 	{ { NULL }, "fr_udpacktimeout",	1,	0x7fffffff,
6038 			0,	IPFT_WRDISABLED },
6039 	{ { NULL },	"fr_icmptimeout",	1,	0x7fffffff,
6040 			0,		IPFT_WRDISABLED },
6041 	{ { NULL }, "fr_icmpacktimeout",	1,	0x7fffffff,
6042 			0,	IPFT_WRDISABLED },
6043 	{ { NULL }, "fr_iptimeout",		1,	0x7fffffff,
6044 			0,		IPFT_WRDISABLED },
6045 	{ { NULL },	"fr_statemax",		1,	0x7fffffff,
6046 			0,		0 },
6047 	{ { NULL },	"fr_statesize",		1,	0x7fffffff,
6048 			0,		IPFT_WRDISABLED },
6049 	{ { NULL },	"fr_state_lock",	0,	1,
6050 			0,		IPFT_RDONLY },
6051 	{ { NULL }, "fr_state_maxbucket", 1,	0x7fffffff,
6052 			0,	IPFT_WRDISABLED },
6053 	{ { NULL }, "fr_state_maxbucket_reset",	0, 1,
6054 			0, IPFT_WRDISABLED },
6055 	{ { NULL },	"ipstate_logging",	0,	1,
6056 			0,	0 },
6057 	/* nat */
6058 	{ { NULL },		"fr_nat_lock",		0,	1,
6059 			0,		IPFT_RDONLY },
6060 	{ { NULL },	"ipf_nattable_sz",	1,	0x7fffffff,
6061 			0,	IPFT_WRDISABLED },
6062 	{ { NULL }, "ipf_nattable_max",	1,	0x7fffffff,
6063 			0,	0 },
6064 	{ { NULL },	"ipf_natrules_sz",	1,	0x7fffffff,
6065 			0,	IPFT_WRDISABLED },
6066 	{ { NULL },	"ipf_rdrrules_sz",	1,	0x7fffffff,
6067 			0,	IPFT_WRDISABLED },
6068 	{ { NULL },	"ipf_hostmap_sz",	1,	0x7fffffff,
6069 			0,		IPFT_WRDISABLED },
6070 	{ { NULL }, "fr_nat_maxbucket",	1,	0x7fffffff,
6071 			0,	IPFT_WRDISABLED },
6072 	{ { NULL },	"fr_nat_maxbucket_reset",	0, 1,
6073 			0,	IPFT_WRDISABLED },
6074 	{ { NULL },		"nat_logging",		0,	1,
6075 			0,		0 },
6076 	{ { NULL },	"fr_defnatage",		1,	0x7fffffff,
6077 			0,		IPFT_WRDISABLED },
6078 	{ { NULL },	"fr_defnatipage",	1,	0x7fffffff,
6079 			0,		IPFT_WRDISABLED },
6080 	{ { NULL }, "fr_defnaticmpage",	1,	0x7fffffff,
6081 			0,	IPFT_WRDISABLED },
6082 	{ { NULL },	"nat_flush_lvl_hi",	1,	100,
6083 			0,		0 },
6084 	{ { NULL },	"nat_flush_lvl_lo",	1,	100,
6085 			0,		0 },
6086 	/* frag */
6087 	{ { NULL },	"ipfr_size",		1,	0x7fffffff,
6088 			0,		IPFT_WRDISABLED },
6089 	{ { NULL },	"fr_ipfrttl",		1,	0x7fffffff,
6090 			0,		IPFT_WRDISABLED },
6091 #ifdef IPFILTER_LOG
6092 	/* log */
6093 	{ { NULL },	"ipl_suppress",		0,	1,
6094 			0,		0 },
6095 	{ { NULL },	"ipl_buffer_sz",	0,	0,
6096 			0,		IPFT_RDONLY },
6097 	{ { NULL },	"ipl_logmax",		0,	0x7fffffff,
6098 			0,		IPFT_WRDISABLED },
6099 	{ { NULL },	"ipl_logall",		0,	1,
6100 			0,		0 },
6101 	{ { NULL },	"ipl_logsize",		0,	0x80000,
6102 			0,		0 },
6103 #endif
6104 	{ { NULL },		NULL,			0,	0 }
6105 };
6106 
6107 static ipftuneable_t *
6108 tune_lookup(ipf_stack_t *ifs, char *name)
6109 {
6110     int i;
6111 
6112     for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
6113 	if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
6114 	    return (&ifs->ifs_ipf_tuneables[i]);
6115     }
6116     return (NULL);
6117 }
6118 
6119 #ifdef _KERNEL
6120 extern dev_info_t *ipf_dev_info;
6121 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
6122 #endif
6123 
6124 /* -------------------------------------------------------------------- */
6125 /* Function:	ipftuneable_setdefs()					*/
6126 /* Returns:		void						*/
6127 /* Parameters:	ifs - pointer to newly allocated IPF instance		*/
6128 /*				assigned to	IP instance		*/
6129 /*									*/
6130 /* Function initializes IPF instance variables. Function is invoked	*/
6131 /* from	ipftuneable_alloc(). ipftuneable_alloc() is called only one	*/
6132 /* time during IP instance lifetime - at the time of IP instance	*/
6133 /* creation. Anytime IP	instance is being created new private IPF	*/
6134 /* instance is allocated and assigned to it. The moment of IP 		*/
6135 /* instance creation is the right time to initialize those IPF 		*/
6136 /* variables.								*/
6137 /*									*/
6138 /* -------------------------------------------------------------------- */
6139 static void ipftuneable_setdefs(ipf_stack_t *ifs)
6140 {
6141 	ifs->ifs_ipfr_size = IPFT_SIZE;
6142 	ifs->ifs_fr_ipfrttl = 120;	/* 60 seconds */
6143 
6144 	/* it comes from fr_authinit() in IPF auth */
6145 	ifs->ifs_fr_authsize = FR_NUMAUTH;
6146 	ifs->ifs_fr_defaultauthage = 600;
6147 
6148 	/* it comes from fr_stateinit() in IPF state */
6149 	ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5);	/* five days */
6150 	ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6151 	ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6152 	ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6153 	ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6154 	ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600);	/* 2 hours */
6155 	ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6156 	ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6157 	ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6158 	ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6159 	ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6160 	ifs->ifs_fr_statemax = IPSTATE_MAX;
6161 	ifs->ifs_fr_statesize = IPSTATE_SIZE;
6162 	ifs->ifs_fr_state_maxbucket_reset = 1;
6163 
6164 	/* it comes from fr_natinit() in ipnat */
6165 	ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6166 	ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6167 	ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6168 	ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6169 	ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6170 	ifs->ifs_fr_nat_maxbucket_reset = 1;
6171 	ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6172 	ifs->ifs_fr_defnatipage = 120;		/* 60 seconds */
6173 	ifs->ifs_fr_defnaticmpage = 6;		/* 3 seconds */
6174 	ifs->ifs_nat_flush_lvl_hi = NAT_FLUSH_HI;
6175 	ifs->ifs_nat_flush_lvl_lo = NAT_FLUSH_LO;
6176 
6177 #ifdef IPFILTER_LOG
6178 	/* it comes from fr_loginit() in IPF log */
6179 	ifs->ifs_ipl_suppress = 1;
6180 	ifs->ifs_ipl_logmax = IPL_LOGMAX;
6181 	ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6182 
6183 	/* from fr_natinit() */
6184 	ifs->ifs_nat_logging = 1;
6185 
6186 	/* from fr_stateinit() */
6187 	ifs->ifs_ipstate_logging = 1;
6188 #else
6189 	/* from fr_natinit() */
6190 	ifs->ifs_nat_logging = 0;
6191 
6192 	/* from fr_stateinit() */
6193 	ifs->ifs_ipstate_logging = 0;
6194 #endif
6195 	ifs->ifs_ipf_loopback = 0;
6196 
6197 }
6198 /*
6199  * Allocate a per-stack tuneable and copy in the names. Then
6200  * set it to point to each of the per-stack tunables.
6201  */
6202 void
6203 ipftuneable_alloc(ipf_stack_t *ifs)
6204 {
6205     ipftuneable_t *item;
6206 
6207     KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6208 	sizeof (lcl_ipf_tuneables));
6209     bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6210 	sizeof (lcl_ipf_tuneables));
6211 
6212 #define TUNE_SET(_ifs, _name, _field)			\
6213     item = tune_lookup((_ifs), (_name));		\
6214     if (item != NULL) {					\
6215 	item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field);	\
6216 	item->ipft_sz = sizeof ((_ifs)->_field);	\
6217     }
6218 
6219     TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6220     TUNE_SET(ifs, "fr_active", ifs_fr_active);
6221     TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6222     TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6223     TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6224     TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6225     TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6226     TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6227     TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6228     TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6229     TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6230     TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6231     TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6232     TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6233     TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6234     TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6235     TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6236     TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6237     TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6238     TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6239     TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6240     TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6241     TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6242     TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6243     TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6244     TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6245     TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6246     TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6247     TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6248     TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6249     TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6250     TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6251     TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6252     TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6253     TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6254     TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6255     TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6256     TUNE_SET(ifs, "nat_flush_lvl_hi", ifs_nat_flush_lvl_hi);
6257     TUNE_SET(ifs, "nat_flush_lvl_lo", ifs_nat_flush_lvl_lo);
6258     TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6259     TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6260     TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6261 #ifdef IPFILTER_LOG
6262     TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6263     TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6264     TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6265     TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6266     TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6267 #endif
6268 #undef TUNE_SET
6269 
6270 	ipftuneable_setdefs(ifs);
6271 
6272 #ifdef _KERNEL
6273     (void) ipf_property_update(ipf_dev_info, ifs);
6274 #endif
6275 }
6276 
6277 void
6278 ipftuneable_free(ipf_stack_t *ifs)
6279 {
6280 	KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6281 	ifs->ifs_ipf_tuneables = NULL;
6282 }
6283 
6284 /* ------------------------------------------------------------------------ */
6285 /* Function:    fr_findtunebycookie                                         */
6286 /* Returns:     NULL = search failed, else pointer to tune struct           */
6287 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6288 /*              next(O)   - pointer to place to store the cookie for the    */
6289 /*                          "next" tuneable, if it is desired.              */
6290 /*                                                                          */
6291 /* This function is used to walk through all of the existing tunables with  */
6292 /* successive calls.  It searches the known tunables for the one which has  */
6293 /* a matching value for "cookie" - ie its address.  When returning a match, */
6294 /* the next one to be found may be returned inside next.                    */
6295 /* ------------------------------------------------------------------------ */
6296 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6297 void *cookie, **next;
6298 ipf_stack_t * ifs;
6299 {
6300 	ipftuneable_t *ta, **tap;
6301 
6302 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6303 		if (ta == cookie) {
6304 			if (next != NULL) {
6305 				/*
6306 				 * If the next entry in the array has a name
6307 				 * present, then return a pointer to it for
6308 				 * where to go next, else return a pointer to
6309 				 * the dynaminc list as a key to search there
6310 				 * next.  This facilitates a weak linking of
6311 				 * the two "lists" together.
6312 				 */
6313 				if ((ta + 1)->ipft_name != NULL)
6314 					*next = ta + 1;
6315 				else
6316 					*next = &ifs->ifs_ipf_tunelist;
6317 			}
6318 			return ta;
6319 		}
6320 
6321 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6322 		if (tap == cookie) {
6323 			if (next != NULL)
6324 				*next = &ta->ipft_next;
6325 			return ta;
6326 		}
6327 
6328 	if (next != NULL)
6329 		*next = NULL;
6330 	return NULL;
6331 }
6332 
6333 
6334 /* ------------------------------------------------------------------------ */
6335 /* Function:    fr_findtunebyname                                           */
6336 /* Returns:     NULL = search failed, else pointer to tune struct           */
6337 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6338 /*                                                                          */
6339 /* Search the static array of tuneables and the list of dynamic tuneables   */
6340 /* for an entry with a matching name.  If we can find one, return a pointer */
6341 /* to the matching structure.                                               */
6342 /* ------------------------------------------------------------------------ */
6343 static ipftuneable_t *fr_findtunebyname(name, ifs)
6344 const char *name;
6345 ipf_stack_t *ifs;
6346 {
6347 	ipftuneable_t *ta;
6348 
6349 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6350 		if (!strcmp(ta->ipft_name, name)) {
6351 			return ta;
6352 		}
6353 
6354 	for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6355 		if (!strcmp(ta->ipft_name, name)) {
6356 			return ta;
6357 		}
6358 
6359 	return NULL;
6360 }
6361 
6362 
6363 /* ------------------------------------------------------------------------ */
6364 /* Function:    fr_addipftune                                               */
6365 /* Returns:     int - 0 == success, else failure                            */
6366 /* Parameters:  newtune - pointer to new tune struct to add to tuneables    */
6367 /*                                                                          */
6368 /* Appends the tune structure pointer to by "newtune" to the end of the     */
6369 /* current list of "dynamic" tuneable parameters.  Once added, the owner    */
6370 /* of the object is not expected to ever change "ipft_next".                */
6371 /* ------------------------------------------------------------------------ */
6372 int fr_addipftune(newtune, ifs)
6373 ipftuneable_t *newtune;
6374 ipf_stack_t *ifs;
6375 {
6376 	ipftuneable_t *ta, **tap;
6377 
6378 	ta = fr_findtunebyname(newtune->ipft_name, ifs);
6379 	if (ta != NULL)
6380 		return EEXIST;
6381 
6382 	for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6383 		;
6384 
6385 	newtune->ipft_next = NULL;
6386 	*tap = newtune;
6387 	return 0;
6388 }
6389 
6390 
6391 /* ------------------------------------------------------------------------ */
6392 /* Function:    fr_delipftune                                               */
6393 /* Returns:     int - 0 == success, else failure                            */
6394 /* Parameters:  oldtune - pointer to tune struct to remove from the list of */
6395 /*                        current dynamic tuneables                         */
6396 /*                                                                          */
6397 /* Search for the tune structure, by pointer, in the list of those that are */
6398 /* dynamically added at run time.  If found, adjust the list so that this   */
6399 /* structure is no longer part of it.                                       */
6400 /* ------------------------------------------------------------------------ */
6401 int fr_delipftune(oldtune, ifs)
6402 ipftuneable_t *oldtune;
6403 ipf_stack_t *ifs;
6404 {
6405 	ipftuneable_t *ta, **tap;
6406 
6407 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6408 		if (ta == oldtune) {
6409 			*tap = oldtune->ipft_next;
6410 			oldtune->ipft_next = NULL;
6411 			return 0;
6412 		}
6413 
6414 	return ESRCH;
6415 }
6416 
6417 
6418 /* ------------------------------------------------------------------------ */
6419 /* Function:    fr_ipftune                                                  */
6420 /* Returns:     int - 0 == success, else failure                            */
6421 /* Parameters:  cmd(I)  - ioctl command number                              */
6422 /*              data(I) - pointer to ioctl data structure                   */
6423 /*                                                                          */
6424 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6425 /* three ioctls provide the means to access and control global variables    */
6426 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6427 /* changed without rebooting, reloading or recompiling.  The initialisation */
6428 /* and 'destruction' routines of the various components of ipfilter are all */
6429 /* each responsible for handling their own values being too big.            */
6430 /* ------------------------------------------------------------------------ */
6431 int fr_ipftune(cmd, data, ifs)
6432 ioctlcmd_t cmd;
6433 void *data;
6434 ipf_stack_t *ifs;
6435 {
6436 	ipftuneable_t *ta;
6437 	ipftune_t tu;
6438 	void *cookie;
6439 	int error;
6440 
6441 	error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6442 	if (error != 0)
6443 		return error;
6444 
6445 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6446 	cookie = tu.ipft_cookie;
6447 	ta = NULL;
6448 
6449 	switch (cmd)
6450 	{
6451 	case SIOCIPFGETNEXT :
6452 		/*
6453 		 * If cookie is non-NULL, assume it to be a pointer to the last
6454 		 * entry we looked at, so find it (if possible) and return a
6455 		 * pointer to the next one after it.  The last entry in the
6456 		 * the table is a NULL entry, so when we get to it, set cookie
6457 		 * to NULL and return that, indicating end of list, erstwhile
6458 		 * if we come in with cookie set to NULL, we are starting anew
6459 		 * at the front of the list.
6460 		 */
6461 		if (cookie != NULL) {
6462 			ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6463 		} else {
6464 			ta = ifs->ifs_ipf_tuneables;
6465 			tu.ipft_cookie = ta + 1;
6466 		}
6467 		if (ta != NULL) {
6468 			/*
6469 			 * Entry found, but does the data pointed to by that
6470 			 * row fit in what we can return?
6471 			 */
6472 			if (ta->ipft_sz > sizeof(tu.ipft_un))
6473 				return EINVAL;
6474 
6475 			tu.ipft_vlong = 0;
6476 			if (ta->ipft_sz == sizeof(u_long))
6477 				tu.ipft_vlong = *ta->ipft_plong;
6478 			else if (ta->ipft_sz == sizeof(u_int))
6479 				tu.ipft_vint = *ta->ipft_pint;
6480 			else if (ta->ipft_sz == sizeof(u_short))
6481 				tu.ipft_vshort = *ta->ipft_pshort;
6482 			else if (ta->ipft_sz == sizeof(u_char))
6483 				tu.ipft_vchar = *ta->ipft_pchar;
6484 
6485 			tu.ipft_sz = ta->ipft_sz;
6486 			tu.ipft_min = ta->ipft_min;
6487 			tu.ipft_max = ta->ipft_max;
6488 			tu.ipft_flags = ta->ipft_flags;
6489 			bcopy(ta->ipft_name, tu.ipft_name,
6490 			      MIN(sizeof(tu.ipft_name),
6491 				  strlen(ta->ipft_name) + 1));
6492 		}
6493 		error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6494 		break;
6495 
6496 	case SIOCIPFGET :
6497 	case SIOCIPFSET :
6498 		/*
6499 		 * Search by name or by cookie value for a particular entry
6500 		 * in the tuning paramter table.
6501 		 */
6502 		error = ESRCH;
6503 		if (cookie != NULL) {
6504 			ta = fr_findtunebycookie(cookie, NULL, ifs);
6505 			if (ta != NULL)
6506 				error = 0;
6507 		} else if (tu.ipft_name[0] != '\0') {
6508 			ta = fr_findtunebyname(tu.ipft_name, ifs);
6509 			if (ta != NULL)
6510 				error = 0;
6511 		}
6512 		if (error != 0)
6513 			break;
6514 
6515 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6516 			/*
6517 			 * Fetch the tuning parameters for a particular value
6518 			 */
6519 			tu.ipft_vlong = 0;
6520 			if (ta->ipft_sz == sizeof(u_long))
6521 				tu.ipft_vlong = *ta->ipft_plong;
6522 			else if (ta->ipft_sz == sizeof(u_int))
6523 				tu.ipft_vint = *ta->ipft_pint;
6524 			else if (ta->ipft_sz == sizeof(u_short))
6525 				tu.ipft_vshort = *ta->ipft_pshort;
6526 			else if (ta->ipft_sz == sizeof(u_char))
6527 				tu.ipft_vchar = *ta->ipft_pchar;
6528 			tu.ipft_cookie = ta;
6529 			tu.ipft_sz = ta->ipft_sz;
6530 			tu.ipft_min = ta->ipft_min;
6531 			tu.ipft_max = ta->ipft_max;
6532 			tu.ipft_flags = ta->ipft_flags;
6533 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6534 
6535 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6536 			/*
6537 			 * Set an internal parameter.  The hard part here is
6538 			 * getting the new value safely and correctly out of
6539 			 * the kernel (given we only know its size, not type.)
6540 			 */
6541 			u_long in;
6542 
6543 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6544 			    (ifs->ifs_fr_running > 0)) {
6545 				error = EBUSY;
6546 				break;
6547 			}
6548 
6549 			in = tu.ipft_vlong;
6550 			if (in < ta->ipft_min || in > ta->ipft_max) {
6551 				error = EINVAL;
6552 				break;
6553 			}
6554 
6555 			if (ta->ipft_sz == sizeof(u_long)) {
6556 				tu.ipft_vlong = *ta->ipft_plong;
6557 				*ta->ipft_plong = in;
6558 			} else if (ta->ipft_sz == sizeof(u_int)) {
6559 				tu.ipft_vint = *ta->ipft_pint;
6560 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
6561 			} else if (ta->ipft_sz == sizeof(u_short)) {
6562 				tu.ipft_vshort = *ta->ipft_pshort;
6563 				*ta->ipft_pshort = (u_short)(in & 0xffff);
6564 			} else if (ta->ipft_sz == sizeof(u_char)) {
6565 				tu.ipft_vchar = *ta->ipft_pchar;
6566 				*ta->ipft_pchar = (u_char)(in & 0xff);
6567 			}
6568 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6569 		}
6570 		break;
6571 
6572 	default :
6573 		error = EINVAL;
6574 		break;
6575 	}
6576 
6577 	return error;
6578 }
6579 
6580 
6581 /* ------------------------------------------------------------------------ */
6582 /* Function:    fr_initialise                                               */
6583 /* Returns:     int - 0 == success,  < 0 == failure                         */
6584 /* Parameters:  None.                                                       */
6585 /*                                                                          */
6586 /* Call of the initialise functions for all the various subsystems inside   */
6587 /* of IPFilter.  If any of them should fail, return immeadiately a failure  */
6588 /* BUT do not try to recover from the error here.                           */
6589 /* ------------------------------------------------------------------------ */
6590 int fr_initialise(ifs)
6591 ipf_stack_t *ifs;
6592 {
6593 	int i;
6594 
6595 #ifdef IPFILTER_LOG
6596 	i = fr_loginit(ifs);
6597 	if (i < 0)
6598 		return -10 + i;
6599 #endif
6600 	i = fr_natinit(ifs);
6601 	if (i < 0)
6602 		return -20 + i;
6603 
6604 	i = fr_stateinit(ifs);
6605 	if (i < 0)
6606 		return -30 + i;
6607 
6608 	i = fr_authinit(ifs);
6609 	if (i < 0)
6610 		return -40 + i;
6611 
6612 	i = fr_fraginit(ifs);
6613 	if (i < 0)
6614 		return -50 + i;
6615 
6616 	i = appr_init(ifs);
6617 	if (i < 0)
6618 		return -60 + i;
6619 
6620 #ifdef IPFILTER_SYNC
6621 	i = ipfsync_init(ifs);
6622 	if (i < 0)
6623 		return -70 + i;
6624 #endif
6625 #ifdef IPFILTER_SCAN
6626 	i = ipsc_init(ifs);
6627 	if (i < 0)
6628 		return -80 + i;
6629 #endif
6630 #ifdef IPFILTER_LOOKUP
6631 	i = ip_lookup_init(ifs);
6632 	if (i < 0)
6633 		return -90 + i;
6634 #endif
6635 #ifdef IPFILTER_COMPILED
6636 	ipfrule_add(ifs);
6637 #endif
6638 	return 0;
6639 }
6640 
6641 
6642 /* ------------------------------------------------------------------------ */
6643 /* Function:    fr_deinitialise                                             */
6644 /* Returns:     None.                                                       */
6645 /* Parameters:  None.                                                       */
6646 /*                                                                          */
6647 /* Call all the various subsystem cleanup routines to deallocate memory or  */
6648 /* destroy locks or whatever they've done that they need to now undo.       */
6649 /* The order here IS important as there are some cross references of        */
6650 /* internal data structures.                                                */
6651 /* ------------------------------------------------------------------------ */
6652 void fr_deinitialise(ifs)
6653 ipf_stack_t *ifs;
6654 {
6655 	fr_fragunload(ifs);
6656 	fr_authunload(ifs);
6657 	fr_natunload(ifs);
6658 	fr_stateunload(ifs);
6659 #ifdef IPFILTER_SCAN
6660 	fr_scanunload(ifs);
6661 #endif
6662 	appr_unload(ifs);
6663 
6664 #ifdef IPFILTER_COMPILED
6665 	ipfrule_remove(ifs);
6666 #endif
6667 
6668 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6669 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6670 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6671 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6672 
6673 #ifdef IPFILTER_LOOKUP
6674 	ip_lookup_unload(ifs);
6675 #endif
6676 
6677 #ifdef IPFILTER_LOG
6678 	fr_logunload(ifs);
6679 #endif
6680 }
6681 
6682 
6683 /* ------------------------------------------------------------------------ */
6684 /* Function:    fr_zerostats                                                */
6685 /* Returns:     int - 0 = success, else failure                             */
6686 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
6687 /*                                                                          */
6688 /* Copies the current statistics out to userspace and then zero's the       */
6689 /* current ones in the kernel. The lock is only held across the bzero() as  */
6690 /* the copyout may result in paging (ie network activity.)                  */
6691 /* ------------------------------------------------------------------------ */
6692 int	fr_zerostats(data, ifs)
6693 caddr_t	data;
6694 ipf_stack_t *ifs;
6695 {
6696 	friostat_t fio;
6697 	int error;
6698 
6699 	fr_getstat(&fio, ifs);
6700 	error = copyoutptr(&fio, data, sizeof(fio));
6701 	if (error)
6702 		return EFAULT;
6703 
6704 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
6705 	bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6706 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6707 
6708 	return 0;
6709 }
6710 
6711 
6712 #ifdef _KERNEL
6713 /* ------------------------------------------------------------------------ */
6714 /* Function:    fr_resolvedest                                              */
6715 /* Returns:     Nil                                                         */
6716 /* Parameters:  fdp(IO) - pointer to destination information to resolve     */
6717 /*              v(I)    - IP protocol version to match                      */
6718 /*                                                                          */
6719 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6720 /* if a matching name can be found for the particular IP protocol version   */
6721 /* then store the interface pointer in the frdest struct.  If no match is   */
6722 /* found, then set the interface pointer to be -1 as NULL is considered to  */
6723 /* indicate there is no information at all in the structure.                */
6724 /* ------------------------------------------------------------------------ */
6725 void fr_resolvedest(fdp, v, ifs)
6726 frdest_t *fdp;
6727 int v;
6728 ipf_stack_t *ifs;
6729 {
6730 	fdp->fd_ifp = NULL;
6731 
6732   	if (*fdp->fd_ifname != '\0') {
6733  		fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6734 		if (fdp->fd_ifp == NULL)
6735 			fdp->fd_ifp = (void *)-1;
6736 	}
6737 }
6738 #endif /* _KERNEL */
6739 
6740 
6741 /* ------------------------------------------------------------------------ */
6742 /* Function:    fr_resolvenic                                               */
6743 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
6744 /*                      pointer to interface structure for NIC              */
6745 /* Parameters:  name(I) - complete interface name                           */
6746 /*              v(I)    - IP protocol version                               */
6747 /*                                                                          */
6748 /* Look for a network interface structure that firstly has a matching name  */
6749 /* to that passed in and that is also being used for that IP protocol       */
6750 /* version (necessary on some platforms where there are separate listings   */
6751 /* for both IPv4 and IPv6 on the same physical NIC.                         */
6752 /*                                                                          */
6753 /* One might wonder why name gets terminated with a \0 byte in here.  The   */
6754 /* reason is an interface name could get into the kernel structures of ipf  */
6755 /* in any number of ways and so long as they all use the same sized array   */
6756 /* to put the name in, it makes sense to ensure it gets null terminated     */
6757 /* before it is used for its intended purpose - finding its match in the    */
6758 /* kernel's list of configured interfaces.                                  */
6759 /*                                                                          */
6760 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an     */
6761 /*       array for the name that is LIFNAMSIZ bytes (at least) in length.   */
6762 /* ------------------------------------------------------------------------ */
6763 void *fr_resolvenic(name, v, ifs)
6764 char *name;
6765 int v;
6766 ipf_stack_t *ifs;
6767 {
6768 	void *nic;
6769 
6770 	if (name[0] == '\0')
6771 		return NULL;
6772 
6773 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6774 		return NULL;
6775 	}
6776 
6777 	name[LIFNAMSIZ - 1] = '\0';
6778 
6779 	nic = GETIFP(name, v, ifs);
6780 	if (nic == NULL)
6781 		nic = (void *)-1;
6782 	return nic;
6783 }
6784 
6785 
6786 /* ------------------------------------------------------------------------ */
6787 /* Function:    ipf_expiretokens                                            */
6788 /* Returns:     None.                                                       */
6789 /* Parameters:  ifs - ipf stack instance                                    */
6790 /*                                                                          */
6791 /* This function is run every ipf tick to see if there are any tokens that  */
6792 /* have been held for too long and need to be freed up.                     */
6793 /* ------------------------------------------------------------------------ */
6794 void ipf_expiretokens(ifs)
6795 ipf_stack_t *ifs;
6796 {
6797 	ipftoken_t *it;
6798 
6799 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6800 	while ((it = ifs->ifs_ipftokenhead) != NULL) {
6801 		if (it->ipt_die > ifs->ifs_fr_ticks)
6802 			break;
6803 
6804 		ipf_freetoken(it, ifs);
6805 	}
6806 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6807 }
6808 
6809 
6810 /* ------------------------------------------------------------------------ */
6811 /* Function:    ipf_deltoken                                                */
6812 /* Returns:     int - 0 = success, else error                               */
6813 /* Parameters:  type(I) - the token type to match                           */
6814 /*              uid(I)  - uid owning the token                              */
6815 /*              ptr(I)  - context pointer for the token                     */
6816 /*              ifs - ipf stack instance                                    */
6817 /*                                                                          */
6818 /* This function looks for a a token in the current list that matches up    */
6819 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
6820 /* call ipf_freetoken() to remove it from the list.                         */
6821 /* ------------------------------------------------------------------------ */
6822 int ipf_deltoken(type, uid, ptr, ifs)
6823 int type, uid;
6824 void *ptr;
6825 ipf_stack_t *ifs;
6826 {
6827 	ipftoken_t *it;
6828 	int error = ESRCH;
6829 
6830 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6831 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
6832 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6833 		    uid == it->ipt_uid) {
6834 			ipf_freetoken(it, ifs);
6835 			error = 0;
6836 			break;
6837 	}
6838 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6839 
6840 	return error;
6841 }
6842 
6843 
6844 /* ------------------------------------------------------------------------ */
6845 /* Function:    ipf_unlinktoken                                             */
6846 /* Returns:     None.                                                       */
6847 /* Parameters:  token(I) - pointer to token structure                       */
6848 /*              ifs - ipf stack instance                                    */
6849 /*                                                                          */
6850 /* This function unlinks a token structure from the linked list of tokens   */
6851 /* that it belongs to.  The head pointer never needs to be explicitly       */
6852 /* adjusted, but the tail does due to the linked list implementation.       */
6853 /* ------------------------------------------------------------------------ */
6854 static void ipf_unlinktoken(token, ifs)
6855 ipftoken_t *token;
6856 ipf_stack_t *ifs;
6857 {
6858 
6859 	if (ifs->ifs_ipftokentail == &token->ipt_next)
6860 		ifs->ifs_ipftokentail = token->ipt_pnext;
6861 
6862 	*token->ipt_pnext = token->ipt_next;
6863 	if (token->ipt_next != NULL)
6864 		token->ipt_next->ipt_pnext = token->ipt_pnext;
6865 }
6866 
6867 
6868 /* ------------------------------------------------------------------------ */
6869 /* Function:    ipf_findtoken                                               */
6870 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
6871 /* Parameters:  type(I) - the token type to match                           */
6872 /*              uid(I) - uid owning the token                               */
6873 /*              ptr(I) - context pointer for the token                      */
6874 /*              ifs - ipf stack instance                                    */
6875 /*                                                                          */
6876 /* This function looks for a live token in the list of current tokens that  */
6877 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
6878 /* allocated.  If one is found then it is moved to the top of the list of   */
6879 /* currently active tokens.                                                 */
6880 /*                                                                          */
6881 /* NOTE: It is by design that this function returns holding a read lock on  */
6882 /*       ipf_tokens.  Callers must make sure they release it!               */
6883 /* ------------------------------------------------------------------------ */
6884 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
6885 int type, uid;
6886 void *ptr;
6887 ipf_stack_t *ifs;
6888 {
6889 	ipftoken_t *it, *new;
6890 
6891 	KMALLOC(new, ipftoken_t *);
6892 
6893 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6894 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
6895 		if (it->ipt_alive == 0)
6896 			continue;
6897 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6898 		    uid == it->ipt_uid)
6899 			break;
6900 	}
6901 
6902 	if (it == NULL) {
6903 		it = new;
6904 		new = NULL;
6905 		if (it == NULL)
6906 			return NULL;
6907 		it->ipt_data = NULL;
6908 		it->ipt_ctx = ptr;
6909 		it->ipt_uid = uid;
6910 		it->ipt_type = type;
6911 		it->ipt_next = NULL;
6912 		it->ipt_alive = 1;
6913 	} else {
6914 		if (new != NULL) {
6915 			KFREE(new);
6916 			new = NULL;
6917 		}
6918 
6919 		ipf_unlinktoken(it, ifs);
6920 	}
6921 	it->ipt_pnext = ifs->ifs_ipftokentail;
6922 	*ifs->ifs_ipftokentail = it;
6923 	ifs->ifs_ipftokentail = &it->ipt_next;
6924 	it->ipt_next = NULL;
6925 
6926 	it->ipt_die = ifs->ifs_fr_ticks + 2;
6927 
6928 	MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
6929 
6930 	return it;
6931 }
6932 
6933 
6934 /* ------------------------------------------------------------------------ */
6935 /* Function:    ipf_freetoken                                               */
6936 /* Returns:     None.                                                       */
6937 /* Parameters:  token(I) - pointer to token structure                       */
6938 /*              ifs - ipf stack instance                                    */
6939 /*                                                                          */
6940 /* This function unlinks a token from the linked list and on the path to    */
6941 /* free'ing the data, it calls the dereference function that is associated  */
6942 /* with the type of data pointed to by the token as it is considered to     */
6943 /* hold a reference to it.                                                  */
6944 /* ------------------------------------------------------------------------ */
6945 void ipf_freetoken(token, ifs)
6946 ipftoken_t *token;
6947 ipf_stack_t *ifs;
6948 {
6949 	void *data, **datap;
6950 
6951 	ipf_unlinktoken(token, ifs);
6952 
6953 	data = token->ipt_data;
6954 	datap = &data;
6955 
6956 	if ((data != NULL) && (data != (void *)-1)) {
6957 		switch (token->ipt_type)
6958 		{
6959 		case IPFGENITER_IPF :
6960 			(void)fr_derefrule((frentry_t **)datap, ifs);
6961 			break;
6962 		case IPFGENITER_IPNAT :
6963 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6964 			fr_ipnatderef((ipnat_t **)datap, ifs);
6965 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6966 			break;
6967 		case IPFGENITER_NAT :
6968 			fr_natderef((nat_t **)datap, ifs);
6969 			break;
6970 		case IPFGENITER_STATE :
6971 			fr_statederef((ipstate_t **)datap, ifs);
6972 			break;
6973 		case IPFGENITER_FRAG :
6974 			fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
6975 			break;
6976 		case IPFGENITER_NATFRAG :
6977  			fr_fragderef((ipfr_t **)datap,
6978 				     &ifs->ifs_ipf_natfrag, ifs);
6979 			break;
6980 		case IPFGENITER_HOSTMAP :
6981 			WRITE_ENTER(&ifs->ifs_ipf_nat);
6982 			fr_hostmapdel((hostmap_t **)datap);
6983 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
6984 			break;
6985 		default :
6986 			(void) ip_lookup_iterderef(token->ipt_type, data, ifs);
6987 			break;
6988 		}
6989 	}
6990 
6991 	KFREE(token);
6992 }
6993 
6994 
6995 /* ------------------------------------------------------------------------ */
6996 /* Function:    ipf_getnextrule                                             */
6997 /* Returns:     int - 0 = success, else error                               */
6998 /* Parameters:  t(I)   - pointer to destination information to resolve      */
6999 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7000 /*              ifs - ipf stack instance                                    */
7001 /*                                                                          */
7002 /* This function's first job is to bring in the ipfruleiter_t structure via */
7003 /* the ipfobj_t structure to determine what should be the next rule to      */
7004 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7005 /* find the 'next rule'.  This may include searching rule group lists or    */
7006 /* just be as simple as looking at the 'next' field in the rule structure.  */
7007 /* When we have found the rule to return, increase its reference count and  */
7008 /* if we used an existing rule to get here, decrease its reference count.   */
7009 /* ------------------------------------------------------------------------ */
7010 int ipf_getnextrule(t, ptr, ifs)
7011 ipftoken_t *t;
7012 void *ptr;
7013 ipf_stack_t *ifs;
7014 {
7015 	frentry_t *fr, *next, zero;
7016 	int error, out, count;
7017 	ipfruleiter_t it;
7018 	frgroup_t *fg;
7019 	char *dst;
7020 
7021 	if (t == NULL || ptr == NULL)
7022 		return EFAULT;
7023 	error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
7024 	if (error != 0)
7025 		return error;
7026 	if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
7027 		return EINVAL;
7028 	if ((it.iri_inout < 0) || (it.iri_inout > 3))
7029 		return EINVAL;
7030 	if (it.iri_nrules == 0)
7031 		return EINVAL;
7032 	if ((it.iri_active != 0) && (it.iri_active != 1))
7033 		return EINVAL;
7034 	if (it.iri_rule == NULL)
7035 		return EFAULT;
7036 
7037 	/*
7038 	 * Use bitmask on it.iri_inout to determine direction.
7039 	 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
7040 	 * F_IN (0) and F_ACIN (2) mask to out = 0.
7041 	 */
7042 	out = it.iri_inout & F_OUT;
7043 	READ_ENTER(&ifs->ifs_ipf_mutex);
7044 
7045 	/*
7046 	 * Retrieve "previous" entry from token and find the next entry.
7047 	 */
7048 	fr = t->ipt_data;
7049 	if (fr == NULL) {
7050 		if (*it.iri_group == '\0') {
7051 			/*
7052 			 * Use bitmask again to determine accounting or not.
7053 			 * F_ACIN will mask to accounting cases F_ACIN (2)
7054 			 * or F_ACOUT (3), but not F_IN or F_OUT.
7055 			 */
7056 			if ((it.iri_inout & F_ACIN) != 0) {
7057 				if (it.iri_ver == AF_INET)
7058 					next = ifs->ifs_ipacct
7059 					    [out][it.iri_active];
7060 				else
7061 					next = ifs->ifs_ipacct6
7062 					    [out][it.iri_active];
7063 			} else {
7064 				if (it.iri_ver == AF_INET)
7065 					next = ifs->ifs_ipfilter
7066 					    [out][it.iri_active];
7067 				else
7068 					next = ifs->ifs_ipfilter6
7069 					    [out][it.iri_active];
7070 			}
7071 		} else {
7072 			fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
7073 					  it.iri_active, NULL, ifs);
7074 			if (fg != NULL)
7075 				next = fg->fg_start;
7076 			else
7077 				next = NULL;
7078 		}
7079 	} else {
7080 		next = fr->fr_next;
7081 	}
7082 
7083 	dst = (char *)it.iri_rule;
7084 	/*
7085 	 * The ipfruleiter may ask for more than 1 rule at a time to be
7086 	 * copied out, so long as that many exist in the list to start with!
7087 	 */
7088 	for (count = it.iri_nrules; count > 0; count--) {
7089 		/*
7090 		 * If we found an entry, add reference to it and update token.
7091 		 * Otherwise, zero out data to be returned and NULL out token.
7092 		 */
7093 		if (next != NULL) {
7094 			MUTEX_ENTER(&next->fr_lock);
7095 			next->fr_ref++;
7096 			MUTEX_EXIT(&next->fr_lock);
7097 			t->ipt_data = next;
7098 		} else {
7099 			bzero(&zero, sizeof(zero));
7100 			next = &zero;
7101 			t->ipt_data = NULL;
7102 		}
7103 
7104 		/*
7105 		 * Now that we have ref, it's save to give up lock.
7106 		 */
7107 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
7108 
7109 		/*
7110 		 * Copy out data and clean up references and token as needed.
7111 		 */
7112 		error = COPYOUT(next, dst, sizeof(*next));
7113 		if (error != 0)
7114 			error = EFAULT;
7115 		if (t->ipt_data == NULL) {
7116 			ipf_freetoken(t, ifs);
7117 			break;
7118 		} else {
7119 			if (fr != NULL)
7120 				(void) fr_derefrule(&fr, ifs);
7121 			if (next->fr_data != NULL) {
7122 				dst += sizeof(*next);
7123 				error = COPYOUT(next->fr_data, dst,
7124 						next->fr_dsize);
7125 				if (error != 0)
7126 					error = EFAULT;
7127 				else
7128 					dst += next->fr_dsize;
7129 			}
7130 			if (next->fr_next == NULL) {
7131 				ipf_freetoken(t, ifs);
7132 				break;
7133 			}
7134 		}
7135 
7136 		if ((count == 1) || (error != 0))
7137 			break;
7138 
7139 		READ_ENTER(&ifs->ifs_ipf_mutex);
7140 		fr = next;
7141 		next = fr->fr_next;
7142 	}
7143 
7144 	return error;
7145 }
7146 
7147 
7148 /* ------------------------------------------------------------------------ */
7149 /* Function:    fr_frruleiter                                               */
7150 /* Returns:     int - 0 = success, else error                               */
7151 /* Parameters:  data(I) - the token type to match                           */
7152 /*              uid(I) - uid owning the token                               */
7153 /*              ptr(I) - context pointer for the token                      */
7154 /*              ifs - ipf stack instance                                    */
7155 /*                                                                          */
7156 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7157 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7158 /* the process doing the ioctl and use that to ask for the next rule.       */
7159 /* ------------------------------------------------------------------------ */
7160 int ipf_frruleiter(data, uid, ctx, ifs)
7161 void *data, *ctx;
7162 int uid;
7163 ipf_stack_t *ifs;
7164 {
7165 	ipftoken_t *token;
7166 	int error;
7167 
7168 	token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7169 	if (token != NULL)
7170 		error = ipf_getnextrule(token, data, ifs);
7171 	else
7172 		error = EFAULT;
7173 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7174 
7175 	return error;
7176 }
7177 
7178 
7179 /* ------------------------------------------------------------------------ */
7180 /* Function:    ipf_geniter                                                 */
7181 /* Returns:     int - 0 = success, else error                               */
7182 /* Parameters:  token(I) - pointer to ipftoken structure                    */
7183 /*              itp(I) - pointer to ipfgeniter structure                    */
7184 /*              ifs - ipf stack instance                                    */
7185 /*                                                                          */
7186 /* Generic iterator called from ipf_genericiter.  Currently only used for   */
7187 /* walking through list of fragments.                                       */
7188 /* ------------------------------------------------------------------------ */
7189 int ipf_geniter(token, itp, ifs)
7190 ipftoken_t *token;
7191 ipfgeniter_t *itp;
7192 ipf_stack_t *ifs;
7193 {
7194 	int error;
7195 
7196 	switch (itp->igi_type)
7197 	{
7198 	case IPFGENITER_FRAG :
7199 		error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7200 				    &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7201 				    ifs);
7202 		break;
7203 	default :
7204 		error = EINVAL;
7205 		break;
7206 	}
7207 
7208 	return error;
7209 }
7210 
7211 
7212 /* ------------------------------------------------------------------------ */
7213 /* Function:    ipf_genericiter                                             */
7214 /* Returns:     int - 0 = success, else error                               */
7215 /* Parameters:  data(I) - the token type to match                           */
7216 /*              uid(I) - uid owning the token                               */
7217 /*              ptr(I) - context pointer for the token                      */
7218 /*              ifs - ipf stack instance                                    */
7219 /*                                                                          */
7220 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7221 /* ipf_geniter when handling SIOCGENITER.  It's role is to find the right   */
7222 /* token in the kernel for the process using the ioctl, and to use that     */
7223 /* token when calling ipf_geniter.                                          */
7224 /* ------------------------------------------------------------------------ */
7225 int ipf_genericiter(data, uid, ctx, ifs)
7226 void *data, *ctx;
7227 int uid;
7228 ipf_stack_t *ifs;
7229 {
7230 	ipftoken_t *token;
7231 	ipfgeniter_t iter;
7232 	int error;
7233 
7234 	error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7235 	if (error != 0)
7236 		return error;
7237 
7238 	token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7239 	if (token != NULL) {
7240 		token->ipt_subtype = iter.igi_type;
7241 		error = ipf_geniter(token, &iter, ifs);
7242 	} else
7243 		error = EFAULT;
7244 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7245 
7246 	return error;
7247 }
7248