1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 7 * Use is subject to license terms. 8 */ 9 10 #if defined(KERNEL) || defined(_KERNEL) 11 # undef KERNEL 12 # undef _KERNEL 13 # define KERNEL 1 14 # define _KERNEL 1 15 #endif 16 #include <sys/errno.h> 17 #include <sys/types.h> 18 #include <sys/param.h> 19 #include <sys/time.h> 20 #if defined(__NetBSD__) 21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 22 # include "opt_ipfilter_log.h" 23 # endif 24 #endif 25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 26 (__FreeBSD_version >= 220000) 27 # if (__FreeBSD_version >= 400000) 28 # if !defined(IPFILTER_LKM) 29 # include "opt_inet6.h" 30 # endif 31 # if (__FreeBSD_version == 400019) 32 # define CSUM_DELAY_DATA 33 # endif 34 # endif 35 # include <sys/filio.h> 36 #else 37 # include <sys/ioctl.h> 38 #endif 39 #if !defined(_AIX51) 40 # include <sys/fcntl.h> 41 #endif 42 #if defined(_KERNEL) 43 # include <sys/systm.h> 44 # include <sys/file.h> 45 #else 46 # include <stdio.h> 47 # include <string.h> 48 # include <stdlib.h> 49 # include <stddef.h> 50 # include <sys/file.h> 51 # define _KERNEL 52 # ifdef __OpenBSD__ 53 struct file; 54 # endif 55 # include <sys/uio.h> 56 # undef _KERNEL 57 #endif 58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 59 !defined(linux) 60 # include <sys/mbuf.h> 61 #else 62 # if !defined(linux) 63 # include <sys/byteorder.h> 64 # endif 65 # if (SOLARIS2 < 5) && defined(sun) 66 # include <sys/dditypes.h> 67 # endif 68 #endif 69 #ifdef __hpux 70 # define _NET_ROUTE_INCLUDED 71 #endif 72 #if !defined(linux) 73 # include <sys/protosw.h> 74 #endif 75 #include <sys/socket.h> 76 #include <net/if.h> 77 #ifdef sun 78 # include <net/af.h> 79 #endif 80 #if !defined(_KERNEL) && defined(__FreeBSD__) 81 # include "radix_ipf.h" 82 #endif 83 #include <net/route.h> 84 #include <netinet/in.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/ip.h> 87 #if !defined(linux) 88 # include <netinet/ip_var.h> 89 #endif 90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 91 # include <sys/hashing.h> 92 # include <netinet/in_var.h> 93 #endif 94 #include <netinet/tcp.h> 95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 96 # include <netinet/udp.h> 97 # include <netinet/ip_icmp.h> 98 #endif 99 #ifdef __hpux 100 # undef _NET_ROUTE_INCLUDED 101 #endif 102 #include "netinet/ip_compat.h" 103 #ifdef USE_INET6 104 # include <netinet/icmp6.h> 105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 106 # include <netinet6/in6_var.h> 107 # endif 108 #endif 109 #include <netinet/tcpip.h> 110 #include "netinet/ip_fil.h" 111 #include "netinet/ip_nat.h" 112 #include "netinet/ip_frag.h" 113 #include "netinet/ip_state.h" 114 #include "netinet/ip_proxy.h" 115 #include "netinet/ip_auth.h" 116 #include "netinet/ipf_stack.h" 117 #ifdef IPFILTER_SCAN 118 # include "netinet/ip_scan.h" 119 #endif 120 #ifdef IPFILTER_SYNC 121 # include "netinet/ip_sync.h" 122 #endif 123 #include "netinet/ip_pool.h" 124 #include "netinet/ip_htable.h" 125 #ifdef IPFILTER_COMPILED 126 # include "netinet/ip_rules.h" 127 #endif 128 #if defined(IPFILTER_BPF) && defined(_KERNEL) 129 # include <net/bpf.h> 130 #endif 131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 132 # include <sys/malloc.h> 133 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 134 # include "opt_ipfilter.h" 135 # endif 136 #endif 137 #include "netinet/ipl.h" 138 /* END OF INCLUDES */ 139 140 #if !defined(lint) 141 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 143 #endif 144 145 #ifndef _KERNEL 146 # include "ipf.h" 147 # include "ipt.h" 148 # include "bpf-ipf.h" 149 extern int opts; 150 151 # define FR_VERBOSE(verb_pr) verbose verb_pr 152 # define FR_DEBUG(verb_pr) debug verb_pr 153 #else /* #ifndef _KERNEL */ 154 # define FR_VERBOSE(verb_pr) 155 # define FR_DEBUG(verb_pr) 156 #endif /* _KERNEL */ 157 158 159 char ipfilter_version[] = IPL_VERSION; 160 int fr_features = 0 161 #ifdef IPFILTER_LKM 162 | IPF_FEAT_LKM 163 #endif 164 #ifdef IPFILTER_LOG 165 | IPF_FEAT_LOG 166 #endif 167 #ifdef IPFILTER_LOOKUP 168 | IPF_FEAT_LOOKUP 169 #endif 170 #ifdef IPFILTER_BPF 171 | IPF_FEAT_BPF 172 #endif 173 #ifdef IPFILTER_COMPILED 174 | IPF_FEAT_COMPILED 175 #endif 176 #ifdef IPFILTER_CKSUM 177 | IPF_FEAT_CKSUM 178 #endif 179 #ifdef IPFILTER_SYNC 180 | IPF_FEAT_SYNC 181 #endif 182 #ifdef IPFILTER_SCAN 183 | IPF_FEAT_SCAN 184 #endif 185 #ifdef USE_INET6 186 | IPF_FEAT_IPV6 187 #endif 188 ; 189 190 #define IPF_BUMP(x) (x)++ 191 192 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 193 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 194 static int fr_portcheck __P((frpcmp_t *, u_short *)); 195 static int frflushlist __P((int, minor_t, int *, frentry_t **, 196 ipf_stack_t *)); 197 static ipfunc_t fr_findfunc __P((ipfunc_t)); 198 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 199 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 200 static INLINE void frpr_ah __P((fr_info_t *)); 201 static INLINE void frpr_esp __P((fr_info_t *)); 202 static INLINE void frpr_gre __P((fr_info_t *)); 203 static INLINE void frpr_udp __P((fr_info_t *)); 204 static INLINE void frpr_tcp __P((fr_info_t *)); 205 static INLINE void frpr_icmp __P((fr_info_t *)); 206 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 207 static INLINE int frpr_pullup __P((fr_info_t *, int)); 208 static INLINE void frpr_short __P((fr_info_t *, int)); 209 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 210 static INLINE void frpr_udpcommon __P((fr_info_t *)); 211 static INLINE int fr_updateipid __P((fr_info_t *)); 212 #ifdef IPFILTER_LOOKUP 213 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 214 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 215 ipf_stack_t *)); 216 #endif 217 static void frsynclist __P((int, int, void *, char *, frentry_t *, 218 ipf_stack_t *)); 219 static void *fr_ifsync __P((int, int, char *, char *, 220 void *, void *, ipf_stack_t *)); 221 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 222 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 223 224 225 /* 226 * bit values for identifying presence of individual IP options 227 * All of these tables should be ordered by increasing key value on the left 228 * hand side to allow for binary searching of the array and include a trailer 229 * with a 0 for the bitmask for linear searches to easily find the end with. 230 */ 231 const struct optlist ipopts[20] = { 232 { IPOPT_NOP, 0x000001 }, 233 { IPOPT_RR, 0x000002 }, 234 { IPOPT_ZSU, 0x000004 }, 235 { IPOPT_MTUP, 0x000008 }, 236 { IPOPT_MTUR, 0x000010 }, 237 { IPOPT_ENCODE, 0x000020 }, 238 { IPOPT_TS, 0x000040 }, 239 { IPOPT_TR, 0x000080 }, 240 { IPOPT_SECURITY, 0x000100 }, 241 { IPOPT_LSRR, 0x000200 }, 242 { IPOPT_E_SEC, 0x000400 }, 243 { IPOPT_CIPSO, 0x000800 }, 244 { IPOPT_SATID, 0x001000 }, 245 { IPOPT_SSRR, 0x002000 }, 246 { IPOPT_ADDEXT, 0x004000 }, 247 { IPOPT_VISA, 0x008000 }, 248 { IPOPT_IMITD, 0x010000 }, 249 { IPOPT_EIP, 0x020000 }, 250 { IPOPT_FINN, 0x040000 }, 251 { 0, 0x000000 } 252 }; 253 254 #ifdef USE_INET6 255 struct optlist ip6exthdr[] = { 256 { IPPROTO_HOPOPTS, 0x000001 }, 257 { IPPROTO_IPV6, 0x000002 }, 258 { IPPROTO_ROUTING, 0x000004 }, 259 { IPPROTO_FRAGMENT, 0x000008 }, 260 { IPPROTO_ESP, 0x000010 }, 261 { IPPROTO_AH, 0x000020 }, 262 { IPPROTO_NONE, 0x000040 }, 263 { IPPROTO_DSTOPTS, 0x000080 }, 264 { 0, 0 } 265 }; 266 #endif 267 268 struct optlist tcpopts[] = { 269 { TCPOPT_NOP, 0x000001 }, 270 { TCPOPT_MAXSEG, 0x000002 }, 271 { TCPOPT_WINDOW, 0x000004 }, 272 { TCPOPT_SACK_PERMITTED, 0x000008 }, 273 { TCPOPT_SACK, 0x000010 }, 274 { TCPOPT_TIMESTAMP, 0x000020 }, 275 { 0, 0x000000 } 276 }; 277 278 /* 279 * bit values for identifying presence of individual IP security options 280 */ 281 const struct optlist secopt[8] = { 282 { IPSO_CLASS_RES4, 0x01 }, 283 { IPSO_CLASS_TOPS, 0x02 }, 284 { IPSO_CLASS_SECR, 0x04 }, 285 { IPSO_CLASS_RES3, 0x08 }, 286 { IPSO_CLASS_CONF, 0x10 }, 287 { IPSO_CLASS_UNCL, 0x20 }, 288 { IPSO_CLASS_RES2, 0x40 }, 289 { IPSO_CLASS_RES1, 0x80 } 290 }; 291 292 293 /* 294 * Table of functions available for use with call rules. 295 */ 296 static ipfunc_resolve_t fr_availfuncs[] = { 297 #ifdef IPFILTER_LOOKUP 298 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 299 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 300 #endif 301 { "", NULL } 302 }; 303 304 305 /* 306 * The next section of code is a a collection of small routines that set 307 * fields in the fr_info_t structure passed based on properties of the 308 * current packet. There are different routines for the same protocol 309 * for each of IPv4 and IPv6. Adding a new protocol, for which there 310 * will "special" inspection for setup, is now more easily done by adding 311 * a new routine and expanding the frpr_ipinit*() function rather than by 312 * adding more code to a growing switch statement. 313 */ 314 #ifdef USE_INET6 315 static INLINE int frpr_ah6 __P((fr_info_t *)); 316 static INLINE void frpr_esp6 __P((fr_info_t *)); 317 static INLINE void frpr_gre6 __P((fr_info_t *)); 318 static INLINE void frpr_udp6 __P((fr_info_t *)); 319 static INLINE void frpr_tcp6 __P((fr_info_t *)); 320 static INLINE void frpr_icmp6 __P((fr_info_t *)); 321 static INLINE int frpr_ipv6hdr __P((fr_info_t *)); 322 static INLINE void frpr_short6 __P((fr_info_t *, int)); 323 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 324 static INLINE int frpr_routing6 __P((fr_info_t *)); 325 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 326 static INLINE int frpr_fragment6 __P((fr_info_t *)); 327 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 328 329 330 /* ------------------------------------------------------------------------ */ 331 /* Function: frpr_short6 */ 332 /* Returns: void */ 333 /* Parameters: fin(I) - pointer to packet information */ 334 /* */ 335 /* IPv6 Only */ 336 /* This is function enforces the 'is a packet too short to be legit' rule */ 337 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 338 /* for frpr_short() for more details. */ 339 /* ------------------------------------------------------------------------ */ 340 static INLINE void frpr_short6(fin, xmin) 341 fr_info_t *fin; 342 int xmin; 343 { 344 345 if (fin->fin_dlen < xmin) 346 fin->fin_flx |= FI_SHORT; 347 } 348 349 350 /* ------------------------------------------------------------------------ */ 351 /* Function: frpr_ipv6hdr */ 352 /* Returns: int */ 353 /* Parameters: fin(I) - pointer to packet information */ 354 /* */ 355 /* IPv6 Only */ 356 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 357 /* per-protocol analyzer if it exists. */ 358 /* ------------------------------------------------------------------------ */ 359 static INLINE int frpr_ipv6hdr(fin) 360 fr_info_t *fin; 361 { 362 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 363 int p, go = 1, i, hdrcount; 364 fr_ip_t *fi = &fin->fin_fi; 365 366 fin->fin_off = 0; 367 368 fi->fi_tos = 0; 369 fi->fi_optmsk = 0; 370 fi->fi_secmsk = 0; 371 fi->fi_auth = 0; 372 373 p = ip6->ip6_nxt; 374 fi->fi_ttl = ip6->ip6_hlim; 375 fi->fi_src.in6 = ip6->ip6_src; 376 fi->fi_dst.in6 = ip6->ip6_dst; 377 fin->fin_id = 0; 378 379 hdrcount = 0; 380 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 381 switch (p) 382 { 383 case IPPROTO_UDP : 384 frpr_udp6(fin); 385 go = 0; 386 break; 387 388 case IPPROTO_TCP : 389 frpr_tcp6(fin); 390 go = 0; 391 break; 392 393 case IPPROTO_ICMPV6 : 394 frpr_icmp6(fin); 395 go = 0; 396 break; 397 398 case IPPROTO_GRE : 399 frpr_gre6(fin); 400 go = 0; 401 break; 402 403 case IPPROTO_HOPOPTS : 404 /* 405 * hop by hop ext header is only allowed 406 * right after IPv6 header. 407 */ 408 if (hdrcount != 0) { 409 fin->fin_flx |= FI_BAD; 410 p = IPPROTO_NONE; 411 } else { 412 p = frpr_hopopts6(fin); 413 } 414 break; 415 416 case IPPROTO_DSTOPTS : 417 p = frpr_dstopts6(fin); 418 break; 419 420 case IPPROTO_ROUTING : 421 p = frpr_routing6(fin); 422 break; 423 424 case IPPROTO_AH : 425 p = frpr_ah6(fin); 426 break; 427 428 case IPPROTO_ESP : 429 frpr_esp6(fin); 430 go = 0; 431 break; 432 433 case IPPROTO_IPV6 : 434 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 435 if (ip6exthdr[i].ol_val == p) { 436 fin->fin_flx |= ip6exthdr[i].ol_bit; 437 break; 438 } 439 go = 0; 440 break; 441 442 case IPPROTO_NONE : 443 go = 0; 444 break; 445 446 case IPPROTO_FRAGMENT : 447 p = frpr_fragment6(fin); 448 if (fin->fin_off != 0) /* Not the first frag */ 449 go = 0; 450 break; 451 452 default : 453 go = 0; 454 break; 455 } 456 hdrcount++; 457 458 /* 459 * It is important to note that at this point, for the 460 * extension headers (go != 0), the entire header may not have 461 * been pulled up when the code gets to this point. This is 462 * only done for "go != 0" because the other header handlers 463 * will all pullup their complete header. The other indicator 464 * of an incomplete packet is that this was just an extension 465 * header. 466 */ 467 if ((go != 0) && (p != IPPROTO_NONE) && 468 (frpr_pullup(fin, 0) == -1)) { 469 p = IPPROTO_NONE; 470 go = 0; 471 } 472 } 473 fi->fi_p = p; 474 475 if (fin->fin_flx & FI_BAD) 476 return -1; 477 478 return 0; 479 } 480 481 482 /* ------------------------------------------------------------------------ */ 483 /* Function: frpr_ipv6exthdr */ 484 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 485 /* Parameters: fin(I) - pointer to packet information */ 486 /* multiple(I) - flag indicating yes/no if multiple occurances */ 487 /* of this extension header are allowed. */ 488 /* proto(I) - protocol number for this extension header */ 489 /* */ 490 /* IPv6 Only */ 491 /* ------------------------------------------------------------------------ */ 492 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 493 fr_info_t *fin; 494 int multiple, proto; 495 { 496 struct ip6_ext *hdr; 497 u_short shift; 498 int i; 499 500 fin->fin_flx |= FI_V6EXTHDR; 501 502 /* 8 is default length of extension hdr */ 503 if ((fin->fin_dlen - 8) < 0) { 504 fin->fin_flx |= FI_SHORT; 505 return IPPROTO_NONE; 506 } 507 508 if (frpr_pullup(fin, 8) == -1) 509 return IPPROTO_NONE; 510 511 hdr = fin->fin_dp; 512 shift = 8 + (hdr->ip6e_len << 3); 513 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 514 fin->fin_flx |= FI_BAD; 515 return IPPROTO_NONE; 516 } 517 518 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 519 if (ip6exthdr[i].ol_val == proto) { 520 /* 521 * Most IPv6 extension headers are only allowed once. 522 */ 523 if ((multiple == 0) && 524 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 525 fin->fin_flx |= FI_BAD; 526 else 527 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 528 break; 529 } 530 531 fin->fin_dp = (char *)fin->fin_dp + shift; 532 fin->fin_dlen -= shift; 533 534 return hdr->ip6e_nxt; 535 } 536 537 538 /* ------------------------------------------------------------------------ */ 539 /* Function: frpr_hopopts6 */ 540 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 541 /* Parameters: fin(I) - pointer to packet information */ 542 /* */ 543 /* IPv6 Only */ 544 /* This is function checks pending hop by hop options extension header */ 545 /* ------------------------------------------------------------------------ */ 546 static INLINE int frpr_hopopts6(fin) 547 fr_info_t *fin; 548 { 549 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 550 } 551 552 553 /* ------------------------------------------------------------------------ */ 554 /* Function: frpr_routing6 */ 555 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 556 /* Parameters: fin(I) - pointer to packet information */ 557 /* */ 558 /* IPv6 Only */ 559 /* This is function checks pending routing extension header */ 560 /* ------------------------------------------------------------------------ */ 561 static INLINE int frpr_routing6(fin) 562 fr_info_t *fin; 563 { 564 struct ip6_ext *hdr; 565 int shift; 566 567 hdr = fin->fin_dp; 568 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 569 return IPPROTO_NONE; 570 571 shift = 8 + (hdr->ip6e_len << 3); 572 /* 573 * Nasty extension header length? 574 */ 575 if ((hdr->ip6e_len << 3) & 15) { 576 fin->fin_flx |= FI_BAD; 577 /* 578 * Compensate for the changes made in frpr_ipv6exthdr() 579 */ 580 fin->fin_dlen += shift; 581 fin->fin_dp = (char *)fin->fin_dp - shift; 582 return IPPROTO_NONE; 583 } 584 585 return hdr->ip6e_nxt; 586 } 587 588 589 /* ------------------------------------------------------------------------ */ 590 /* Function: frpr_fragment6 */ 591 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 592 /* Parameters: fin(I) - pointer to packet information */ 593 /* */ 594 /* IPv6 Only */ 595 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 596 /* */ 597 /* We don't know where the transport layer header (or whatever is next is), */ 598 /* as it could be behind destination options (amongst others). Because */ 599 /* there is no fragment cache, there is no knowledge about whether or not an*/ 600 /* upper layer header has been seen (or where it ends) and thus we are not */ 601 /* able to continue processing beyond this header with any confidence. */ 602 /* ------------------------------------------------------------------------ */ 603 static INLINE int frpr_fragment6(fin) 604 fr_info_t *fin; 605 { 606 struct ip6_frag *frag; 607 int dlen; 608 609 fin->fin_flx |= FI_FRAG; 610 611 dlen = fin->fin_dlen; 612 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 613 return IPPROTO_NONE; 614 615 if (frpr_pullup(fin, sizeof(*frag)) == -1) 616 return IPPROTO_NONE; 617 618 frpr_short6(fin, sizeof(*frag)); 619 620 if ((fin->fin_flx & FI_SHORT) != 0) 621 return IPPROTO_NONE; 622 623 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 624 /* 625 * Fragment but no fragmentation info set? Bad packet... 626 */ 627 if (frag->ip6f_offlg == 0) { 628 fin->fin_flx |= FI_BAD; 629 return IPPROTO_NONE; 630 } 631 632 fin->fin_id = frag->ip6f_ident; 633 fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK; 634 fin->fin_off = ntohs(fin->fin_off); 635 if (fin->fin_off != 0) 636 fin->fin_flx |= FI_FRAGBODY; 637 638 fin->fin_dp = (char *)frag + sizeof(*frag); 639 fin->fin_dlen = dlen - sizeof(*frag); 640 641 /* length of hdrs(after frag hdr) + data */ 642 fin->fin_flen = fin->fin_dlen; 643 644 /* 645 * If the frag is not the last one and the payload length 646 * is not multiple of 8, it must be dropped. 647 */ 648 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) { 649 fin->fin_flx |= FI_BAD; 650 return IPPROTO_NONE; 651 } 652 653 return frag->ip6f_nxt; 654 } 655 656 657 /* ------------------------------------------------------------------------ */ 658 /* Function: frpr_dstopts6 */ 659 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 660 /* Parameters: fin(I) - pointer to packet information */ 661 /* nextheader(I) - stores next header value */ 662 /* */ 663 /* IPv6 Only */ 664 /* This is function checks pending destination options extension header */ 665 /* ------------------------------------------------------------------------ */ 666 static INLINE int frpr_dstopts6(fin) 667 fr_info_t *fin; 668 { 669 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 670 } 671 672 673 /* ------------------------------------------------------------------------ */ 674 /* Function: frpr_icmp6 */ 675 /* Returns: void */ 676 /* Parameters: fin(I) - pointer to packet information */ 677 /* */ 678 /* IPv6 Only */ 679 /* This routine is mainly concerned with determining the minimum valid size */ 680 /* for an ICMPv6 packet. */ 681 /* ------------------------------------------------------------------------ */ 682 static INLINE void frpr_icmp6(fin) 683 fr_info_t *fin; 684 { 685 int minicmpsz = sizeof(struct icmp6_hdr); 686 struct icmp6_hdr *icmp6; 687 688 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 689 return; 690 691 if (fin->fin_dlen > 1) { 692 icmp6 = fin->fin_dp; 693 694 fin->fin_data[0] = *(u_short *)icmp6; 695 696 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0) 697 fin->fin_flx |= FI_ICMPQUERY; 698 699 switch (icmp6->icmp6_type) 700 { 701 case ICMP6_ECHO_REPLY : 702 case ICMP6_ECHO_REQUEST : 703 if (fin->fin_dlen >= 6) 704 fin->fin_data[1] = icmp6->icmp6_id; 705 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 706 break; 707 case ICMP6_DST_UNREACH : 708 case ICMP6_PACKET_TOO_BIG : 709 case ICMP6_TIME_EXCEEDED : 710 case ICMP6_PARAM_PROB : 711 if ((fin->fin_m != NULL) && 712 (M_LEN(fin->fin_m) < fin->fin_plen)) { 713 if (fr_coalesce(fin) != 1) 714 return; 715 } 716 fin->fin_flx |= FI_ICMPERR; 717 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 718 break; 719 default : 720 break; 721 } 722 } 723 724 frpr_short6(fin, minicmpsz); 725 fin->fin_flen -= fin->fin_dlen - minicmpsz; 726 } 727 728 729 /* ------------------------------------------------------------------------ */ 730 /* Function: frpr_udp6 */ 731 /* Returns: void */ 732 /* Parameters: fin(I) - pointer to packet information */ 733 /* */ 734 /* IPv6 Only */ 735 /* Analyse the packet for IPv6/UDP properties. */ 736 /* Is not expected to be called for fragmented packets. */ 737 /* ------------------------------------------------------------------------ */ 738 static INLINE void frpr_udp6(fin) 739 fr_info_t *fin; 740 { 741 742 fr_checkv6sum(fin); 743 744 frpr_short6(fin, sizeof(struct udphdr)); 745 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 746 return; 747 748 fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr); 749 750 frpr_udpcommon(fin); 751 } 752 753 754 /* ------------------------------------------------------------------------ */ 755 /* Function: frpr_tcp6 */ 756 /* Returns: void */ 757 /* Parameters: fin(I) - pointer to packet information */ 758 /* */ 759 /* IPv6 Only */ 760 /* Analyse the packet for IPv6/TCP properties. */ 761 /* Is not expected to be called for fragmented packets. */ 762 /* ------------------------------------------------------------------------ */ 763 static INLINE void frpr_tcp6(fin) 764 fr_info_t *fin; 765 { 766 767 fr_checkv6sum(fin); 768 769 frpr_short6(fin, sizeof(struct tcphdr)); 770 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 771 return; 772 773 fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr); 774 775 frpr_tcpcommon(fin); 776 } 777 778 779 /* ------------------------------------------------------------------------ */ 780 /* Function: frpr_esp6 */ 781 /* Returns: void */ 782 /* Parameters: fin(I) - pointer to packet information */ 783 /* */ 784 /* IPv6 Only */ 785 /* Analyse the packet for ESP properties. */ 786 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 787 /* even though the newer ESP packets must also have a sequence number that */ 788 /* is 32bits as well, it is not possible(?) to determine the version from a */ 789 /* simple packet header. */ 790 /* ------------------------------------------------------------------------ */ 791 static INLINE void frpr_esp6(fin) 792 fr_info_t *fin; 793 { 794 int i; 795 frpr_short6(fin, sizeof(grehdr_t)); 796 797 (void) frpr_pullup(fin, 8); 798 799 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 800 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 801 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 802 break; 803 } 804 } 805 806 807 /* ------------------------------------------------------------------------ */ 808 /* Function: frpr_ah6 */ 809 /* Returns: void */ 810 /* Parameters: fin(I) - pointer to packet information */ 811 /* */ 812 /* IPv6 Only */ 813 /* Analyse the packet for AH properties. */ 814 /* The minimum length is taken to be the combination of all fields in the */ 815 /* header being present and no authentication data (null algorithm used.) */ 816 /* ------------------------------------------------------------------------ */ 817 static INLINE int frpr_ah6(fin) 818 fr_info_t *fin; 819 { 820 authhdr_t *ah; 821 int i, shift; 822 823 frpr_short6(fin, 12); 824 825 if (frpr_pullup(fin, sizeof(*ah)) == -1) 826 return IPPROTO_NONE; 827 828 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 829 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 830 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 831 break; 832 } 833 834 ah = (authhdr_t *)fin->fin_dp; 835 836 shift = (ah->ah_plen + 2) * 4; 837 fin->fin_dlen -= shift; 838 fin->fin_dp = (char*)fin->fin_dp + shift; 839 840 return ah->ah_next; 841 } 842 843 844 /* ------------------------------------------------------------------------ */ 845 /* Function: frpr_gre6 */ 846 /* Returns: void */ 847 /* Parameters: fin(I) - pointer to packet information */ 848 /* */ 849 /* Analyse the packet for GRE properties. */ 850 /* ------------------------------------------------------------------------ */ 851 static INLINE void frpr_gre6(fin) 852 fr_info_t *fin; 853 { 854 grehdr_t *gre; 855 856 frpr_short6(fin, sizeof(grehdr_t)); 857 858 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 859 return; 860 861 gre = fin->fin_dp; 862 if (GRE_REV(gre->gr_flags) == 1) 863 fin->fin_data[0] = gre->gr_call; 864 } 865 #endif /* USE_INET6 */ 866 867 868 /* ------------------------------------------------------------------------ */ 869 /* Function: frpr_pullup */ 870 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 871 /* Parameters: fin(I) - pointer to packet information */ 872 /* plen(I) - length (excluding L3 header) to pullup */ 873 /* */ 874 /* Short inline function to cut down on code duplication to perform a call */ 875 /* to fr_pullup to ensure there is the required amount of data, */ 876 /* consecutively in the packet buffer. */ 877 /* ------------------------------------------------------------------------ */ 878 static INLINE int frpr_pullup(fin, plen) 879 fr_info_t *fin; 880 int plen; 881 { 882 #if defined(_KERNEL) 883 if (fin->fin_m != NULL) { 884 int ipoff; 885 886 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *); 887 888 if (fin->fin_dp != NULL) 889 plen += (char *)fin->fin_dp - 890 ((char *)fin->fin_ip + fin->fin_hlen); 891 plen += fin->fin_hlen; 892 /* 893 * We don't do 'plen += ipoff;' here. The fr_pullup() will 894 * do it for us. 895 */ 896 if (M_LEN(fin->fin_m) < plen + ipoff) { 897 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 898 return -1; 899 } 900 } 901 #endif 902 return 0; 903 } 904 905 906 /* ------------------------------------------------------------------------ */ 907 /* Function: frpr_short */ 908 /* Returns: void */ 909 /* Parameters: fin(I) - pointer to packet information */ 910 /* xmin(I) - minimum header size */ 911 /* */ 912 /* Check if a packet is "short" as defined by xmin. The rule we are */ 913 /* applying here is that the packet must not be fragmented within the layer */ 914 /* 4 header. That is, it must not be a fragment that has its offset set to */ 915 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 916 /* entire layer 4 header must be present (min). */ 917 /* ------------------------------------------------------------------------ */ 918 static INLINE void frpr_short(fin, xmin) 919 fr_info_t *fin; 920 int xmin; 921 { 922 923 if (fin->fin_off == 0) { 924 if (fin->fin_dlen < xmin) 925 fin->fin_flx |= FI_SHORT; 926 } else if (fin->fin_off < xmin) { 927 fin->fin_flx |= FI_SHORT; 928 } 929 } 930 931 932 /* ------------------------------------------------------------------------ */ 933 /* Function: frpr_icmp */ 934 /* Returns: void */ 935 /* Parameters: fin(I) - pointer to packet information */ 936 /* */ 937 /* IPv4 Only */ 938 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 939 /* except extrememly bad packets, both type and code will be present. */ 940 /* The expected minimum size of an ICMP packet is very much dependent on */ 941 /* the type of it. */ 942 /* */ 943 /* XXX - other ICMP sanity checks? */ 944 /* ------------------------------------------------------------------------ */ 945 static INLINE void frpr_icmp(fin) 946 fr_info_t *fin; 947 { 948 int minicmpsz = sizeof(struct icmp); 949 icmphdr_t *icmp; 950 ip_t *oip; 951 ipf_stack_t *ifs = fin->fin_ifs; 952 953 if (fin->fin_off != 0) { 954 frpr_short(fin, ICMPERR_ICMPHLEN); 955 return; 956 } 957 958 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 959 return; 960 961 fr_checkv4sum(fin); 962 963 if (fin->fin_dlen > 1) { 964 icmp = fin->fin_dp; 965 966 fin->fin_data[0] = *(u_short *)icmp; 967 968 switch (icmp->icmp_type) 969 { 970 case ICMP_ECHOREPLY : 971 case ICMP_ECHO : 972 /* Router discovery messaes - RFC 1256 */ 973 case ICMP_ROUTERADVERT : 974 case ICMP_ROUTERSOLICIT : 975 minicmpsz = ICMP_MINLEN; 976 break; 977 /* 978 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 979 * 3 * timestamp(3 * 4) 980 */ 981 case ICMP_TSTAMP : 982 case ICMP_TSTAMPREPLY : 983 minicmpsz = 20; 984 break; 985 /* 986 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 987 * mask(4) 988 */ 989 case ICMP_MASKREQ : 990 case ICMP_MASKREPLY : 991 minicmpsz = 12; 992 break; 993 /* 994 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 995 */ 996 case ICMP_UNREACH : 997 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 998 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 999 fin->fin_flx |= FI_BAD; 1000 } 1001 /* FALLTHRU */ 1002 case ICMP_SOURCEQUENCH : 1003 case ICMP_REDIRECT : 1004 case ICMP_TIMXCEED : 1005 case ICMP_PARAMPROB : 1006 fin->fin_flx |= FI_ICMPERR; 1007 if (fr_coalesce(fin) != 1) 1008 return; 1009 /* 1010 * ICMP error packets should not be generated for IP 1011 * packets that are a fragment that isn't the first 1012 * fragment. 1013 */ 1014 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1015 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1016 fin->fin_flx |= FI_BAD; 1017 break; 1018 default : 1019 break; 1020 } 1021 1022 if (fin->fin_dlen >= 6) /* ID field */ 1023 fin->fin_data[1] = icmp->icmp_id; 1024 } 1025 1026 frpr_short(fin, minicmpsz); 1027 } 1028 1029 1030 /* ------------------------------------------------------------------------ */ 1031 /* Function: frpr_tcpcommon */ 1032 /* Returns: void */ 1033 /* Parameters: fin(I) - pointer to packet information */ 1034 /* */ 1035 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1036 /* and make some checks with how they interact with other fields. */ 1037 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1038 /* valid and mark the packet as bad if not. */ 1039 /* ------------------------------------------------------------------------ */ 1040 static INLINE void frpr_tcpcommon(fin) 1041 fr_info_t *fin; 1042 { 1043 int flags, tlen; 1044 tcphdr_t *tcp; 1045 1046 fin->fin_flx |= FI_TCPUDP; 1047 if (fin->fin_off != 0) 1048 return; 1049 1050 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1051 return; 1052 tcp = fin->fin_dp; 1053 1054 if (fin->fin_dlen > 3) { 1055 fin->fin_sport = ntohs(tcp->th_sport); 1056 fin->fin_dport = ntohs(tcp->th_dport); 1057 } 1058 1059 if ((fin->fin_flx & FI_SHORT) != 0) 1060 return; 1061 1062 /* 1063 * Use of the TCP data offset *must* result in a value that is at 1064 * least the same size as the TCP header. 1065 */ 1066 tlen = TCP_OFF(tcp) << 2; 1067 if (tlen < sizeof(tcphdr_t)) { 1068 fin->fin_flx |= FI_BAD; 1069 return; 1070 } 1071 1072 flags = tcp->th_flags; 1073 fin->fin_tcpf = tcp->th_flags; 1074 1075 /* 1076 * If the urgent flag is set, then the urgent pointer must 1077 * also be set and vice versa. Good TCP packets do not have 1078 * just one of these set. 1079 */ 1080 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1081 fin->fin_flx |= FI_BAD; 1082 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1083 /* Ignore this case, it shows up in "real" traffic with */ 1084 /* bogus values in the urgent pointer field. */ 1085 flags = flags; /* LINT */ 1086 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1087 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1088 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1089 fin->fin_flx |= FI_BAD; 1090 } else if (!(flags & TH_ACK)) { 1091 /* 1092 * If the ack bit isn't set, then either the SYN or 1093 * RST bit must be set. If the SYN bit is set, then 1094 * we expect the ACK field to be 0. If the ACK is 1095 * not set and if URG, PSH or FIN are set, consdier 1096 * that to indicate a bad TCP packet. 1097 */ 1098 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1099 /* 1100 * Cisco PIX sets the ACK field to a random value. 1101 * In light of this, do not set FI_BAD until a patch 1102 * is available from Cisco to ensure that 1103 * interoperability between existing systems is 1104 * achieved. 1105 */ 1106 /*fin->fin_flx |= FI_BAD*/; 1107 flags = flags; /* LINT */ 1108 } else if (!(flags & (TH_RST|TH_SYN))) { 1109 fin->fin_flx |= FI_BAD; 1110 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1111 fin->fin_flx |= FI_BAD; 1112 } 1113 } 1114 1115 /* 1116 * At this point, it's not exactly clear what is to be gained by 1117 * marking up which TCP options are and are not present. The one we 1118 * are most interested in is the TCP window scale. This is only in 1119 * a SYN packet [RFC1323] so we don't need this here...? 1120 * Now if we were to analyse the header for passive fingerprinting, 1121 * then that might add some weight to adding this... 1122 */ 1123 if (tlen == sizeof(tcphdr_t)) 1124 return; 1125 1126 if (frpr_pullup(fin, tlen) == -1) 1127 return; 1128 1129 #if 0 1130 ip = fin->fin_ip; 1131 s = (u_char *)(tcp + 1); 1132 off = IP_HL(ip) << 2; 1133 # ifdef _KERNEL 1134 if (fin->fin_mp != NULL) { 1135 mb_t *m = *fin->fin_mp; 1136 1137 if (off + tlen > M_LEN(m)) 1138 return; 1139 } 1140 # endif 1141 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1142 opt = *s; 1143 if (opt == '\0') 1144 break; 1145 else if (opt == TCPOPT_NOP) 1146 ol = 1; 1147 else { 1148 if (tlen < 2) 1149 break; 1150 ol = (int)*(s + 1); 1151 if (ol < 2 || ol > tlen) 1152 break; 1153 } 1154 1155 for (i = 9, mv = 4; mv >= 0; ) { 1156 op = ipopts + i; 1157 if (opt == (u_char)op->ol_val) { 1158 optmsk |= op->ol_bit; 1159 break; 1160 } 1161 } 1162 tlen -= ol; 1163 s += ol; 1164 } 1165 #endif /* 0 */ 1166 } 1167 1168 1169 1170 /* ------------------------------------------------------------------------ */ 1171 /* Function: frpr_udpcommon */ 1172 /* Returns: void */ 1173 /* Parameters: fin(I) - pointer to packet information */ 1174 /* */ 1175 /* Extract the UDP source and destination ports, if present. If compiled */ 1176 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1177 /* ------------------------------------------------------------------------ */ 1178 static INLINE void frpr_udpcommon(fin) 1179 fr_info_t *fin; 1180 { 1181 udphdr_t *udp; 1182 1183 fin->fin_flx |= FI_TCPUDP; 1184 1185 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1186 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1187 fin->fin_flx |= FI_SHORT; 1188 return; 1189 } 1190 1191 udp = fin->fin_dp; 1192 1193 fin->fin_sport = ntohs(udp->uh_sport); 1194 fin->fin_dport = ntohs(udp->uh_dport); 1195 } 1196 } 1197 1198 1199 /* ------------------------------------------------------------------------ */ 1200 /* Function: frpr_tcp */ 1201 /* Returns: void */ 1202 /* Parameters: fin(I) - pointer to packet information */ 1203 /* */ 1204 /* IPv4 Only */ 1205 /* Analyse the packet for IPv4/TCP properties. */ 1206 /* ------------------------------------------------------------------------ */ 1207 static INLINE void frpr_tcp(fin) 1208 fr_info_t *fin; 1209 { 1210 1211 fr_checkv4sum(fin); 1212 1213 frpr_short(fin, sizeof(tcphdr_t)); 1214 1215 frpr_tcpcommon(fin); 1216 } 1217 1218 1219 /* ------------------------------------------------------------------------ */ 1220 /* Function: frpr_udp */ 1221 /* Returns: void */ 1222 /* Parameters: fin(I) - pointer to packet information */ 1223 /* */ 1224 /* IPv4 Only */ 1225 /* Analyse the packet for IPv4/UDP properties. */ 1226 /* ------------------------------------------------------------------------ */ 1227 static INLINE void frpr_udp(fin) 1228 fr_info_t *fin; 1229 { 1230 1231 fr_checkv4sum(fin); 1232 1233 frpr_short(fin, sizeof(udphdr_t)); 1234 1235 frpr_udpcommon(fin); 1236 } 1237 1238 1239 /* ------------------------------------------------------------------------ */ 1240 /* Function: frpr_esp */ 1241 /* Returns: void */ 1242 /* Parameters: fin(I) - pointer to packet information */ 1243 /* */ 1244 /* Analyse the packet for ESP properties. */ 1245 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1246 /* even though the newer ESP packets must also have a sequence number that */ 1247 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1248 /* simple packet header. */ 1249 /* ------------------------------------------------------------------------ */ 1250 static INLINE void frpr_esp(fin) 1251 fr_info_t *fin; 1252 { 1253 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1254 return; 1255 1256 frpr_short(fin, 8); 1257 } 1258 1259 1260 /* ------------------------------------------------------------------------ */ 1261 /* Function: frpr_ah */ 1262 /* Returns: void */ 1263 /* Parameters: fin(I) - pointer to packet information */ 1264 /* */ 1265 /* Analyse the packet for AH properties. */ 1266 /* The minimum length is taken to be the combination of all fields in the */ 1267 /* header being present and no authentication data (null algorithm used.) */ 1268 /* ------------------------------------------------------------------------ */ 1269 static INLINE void frpr_ah(fin) 1270 fr_info_t *fin; 1271 { 1272 authhdr_t *ah; 1273 int len; 1274 1275 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1276 return; 1277 1278 ah = (authhdr_t *)fin->fin_dp; 1279 1280 len = (ah->ah_plen + 2) << 2; 1281 frpr_short(fin, len); 1282 } 1283 1284 1285 /* ------------------------------------------------------------------------ */ 1286 /* Function: frpr_gre */ 1287 /* Returns: void */ 1288 /* Parameters: fin(I) - pointer to packet information */ 1289 /* */ 1290 /* Analyse the packet for GRE properties. */ 1291 /* ------------------------------------------------------------------------ */ 1292 static INLINE void frpr_gre(fin) 1293 fr_info_t *fin; 1294 { 1295 grehdr_t *gre; 1296 1297 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1298 return; 1299 1300 frpr_short(fin, sizeof(grehdr_t)); 1301 1302 if (fin->fin_off == 0) { 1303 gre = fin->fin_dp; 1304 if (GRE_REV(gre->gr_flags) == 1) 1305 fin->fin_data[0] = gre->gr_call; 1306 } 1307 } 1308 1309 1310 /* ------------------------------------------------------------------------ */ 1311 /* Function: frpr_ipv4hdr */ 1312 /* Returns: void */ 1313 /* Parameters: fin(I) - pointer to packet information */ 1314 /* */ 1315 /* IPv4 Only */ 1316 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1317 /* Check all options present and flag their presence if any exist. */ 1318 /* ------------------------------------------------------------------------ */ 1319 static INLINE void frpr_ipv4hdr(fin) 1320 fr_info_t *fin; 1321 { 1322 u_short optmsk = 0, secmsk = 0, auth = 0; 1323 int hlen, ol, mv, p, i; 1324 const struct optlist *op; 1325 u_char *s, opt; 1326 u_short off; 1327 fr_ip_t *fi; 1328 ip_t *ip; 1329 1330 fi = &fin->fin_fi; 1331 hlen = fin->fin_hlen; 1332 1333 ip = fin->fin_ip; 1334 p = ip->ip_p; 1335 fi->fi_p = p; 1336 fi->fi_tos = ip->ip_tos; 1337 fin->fin_id = ip->ip_id; 1338 off = ip->ip_off; 1339 1340 /* Get both TTL and protocol */ 1341 fi->fi_p = ip->ip_p; 1342 fi->fi_ttl = ip->ip_ttl; 1343 #if 0 1344 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1345 #endif 1346 1347 /* Zero out bits not used in IPv6 address */ 1348 fi->fi_src.i6[1] = 0; 1349 fi->fi_src.i6[2] = 0; 1350 fi->fi_src.i6[3] = 0; 1351 fi->fi_dst.i6[1] = 0; 1352 fi->fi_dst.i6[2] = 0; 1353 fi->fi_dst.i6[3] = 0; 1354 1355 fi->fi_saddr = ip->ip_src.s_addr; 1356 fi->fi_daddr = ip->ip_dst.s_addr; 1357 1358 /* 1359 * set packet attribute flags based on the offset and 1360 * calculate the byte offset that it represents. 1361 */ 1362 off &= IP_MF|IP_OFFMASK; 1363 if (off != 0) { 1364 fi->fi_flx |= FI_FRAG; 1365 off &= IP_OFFMASK; 1366 if (off != 0) { 1367 fin->fin_flx |= FI_FRAGBODY; 1368 off <<= 3; 1369 if ((off + fin->fin_dlen > 65535) || 1370 (fin->fin_dlen == 0) || 1371 ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) { 1372 /* 1373 * The length of the packet, starting at its 1374 * offset cannot exceed 65535 (0xffff) as the 1375 * length of an IP packet is only 16 bits. 1376 * 1377 * Any fragment that isn't the last fragment 1378 * must have a length greater than 0 and it 1379 * must be an even multiple of 8. 1380 */ 1381 fi->fi_flx |= FI_BAD; 1382 } 1383 } 1384 } 1385 fin->fin_off = off; 1386 1387 /* 1388 * Call per-protocol setup and checking 1389 */ 1390 switch (p) 1391 { 1392 case IPPROTO_UDP : 1393 frpr_udp(fin); 1394 break; 1395 case IPPROTO_TCP : 1396 frpr_tcp(fin); 1397 break; 1398 case IPPROTO_ICMP : 1399 frpr_icmp(fin); 1400 break; 1401 case IPPROTO_AH : 1402 frpr_ah(fin); 1403 break; 1404 case IPPROTO_ESP : 1405 frpr_esp(fin); 1406 break; 1407 case IPPROTO_GRE : 1408 frpr_gre(fin); 1409 break; 1410 } 1411 1412 ip = fin->fin_ip; 1413 if (ip == NULL) 1414 return; 1415 1416 /* 1417 * If it is a standard IP header (no options), set the flag fields 1418 * which relate to options to 0. 1419 */ 1420 if (hlen == sizeof(*ip)) { 1421 fi->fi_optmsk = 0; 1422 fi->fi_secmsk = 0; 1423 fi->fi_auth = 0; 1424 return; 1425 } 1426 1427 /* 1428 * So the IP header has some IP options attached. Walk the entire 1429 * list of options present with this packet and set flags to indicate 1430 * which ones are here and which ones are not. For the somewhat out 1431 * of date and obscure security classification options, set a flag to 1432 * represent which classification is present. 1433 */ 1434 fi->fi_flx |= FI_OPTIONS; 1435 1436 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1437 opt = *s; 1438 if (opt == '\0') 1439 break; 1440 else if (opt == IPOPT_NOP) 1441 ol = 1; 1442 else { 1443 if (hlen < 2) 1444 break; 1445 ol = (int)*(s + 1); 1446 if (ol < 2 || ol > hlen) 1447 break; 1448 } 1449 for (i = 9, mv = 4; mv >= 0; ) { 1450 op = ipopts + i; 1451 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1452 optmsk |= op->ol_bit; 1453 if (opt == IPOPT_SECURITY) { 1454 const struct optlist *sp; 1455 u_char sec; 1456 int j, m; 1457 1458 sec = *(s + 2); /* classification */ 1459 for (j = 3, m = 2; m >= 0; ) { 1460 sp = secopt + j; 1461 if (sec == sp->ol_val) { 1462 secmsk |= sp->ol_bit; 1463 auth = *(s + 3); 1464 auth *= 256; 1465 auth += *(s + 4); 1466 break; 1467 } 1468 if (sec < sp->ol_val) 1469 j -= m; 1470 else 1471 j += m; 1472 m--; 1473 } 1474 } 1475 break; 1476 } 1477 if (opt < op->ol_val) 1478 i -= mv; 1479 else 1480 i += mv; 1481 mv--; 1482 } 1483 hlen -= ol; 1484 s += ol; 1485 } 1486 1487 /* 1488 * 1489 */ 1490 if (auth && !(auth & 0x0100)) 1491 auth &= 0xff00; 1492 fi->fi_optmsk = optmsk; 1493 fi->fi_secmsk = secmsk; 1494 fi->fi_auth = auth; 1495 } 1496 1497 1498 /* ------------------------------------------------------------------------ */ 1499 /* Function: fr_makefrip */ 1500 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1501 /* Parameters: hlen(I) - length of IP packet header */ 1502 /* ip(I) - pointer to the IP header */ 1503 /* fin(IO) - pointer to packet information */ 1504 /* */ 1505 /* Compact the IP header into a structure which contains just the info. */ 1506 /* which is useful for comparing IP headers with and store this information */ 1507 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1508 /* this function will be called with either an IPv4 or IPv6 packet. */ 1509 /* ------------------------------------------------------------------------ */ 1510 int fr_makefrip(hlen, ip, fin) 1511 int hlen; 1512 ip_t *ip; 1513 fr_info_t *fin; 1514 { 1515 int v; 1516 1517 fin->fin_nat = NULL; 1518 fin->fin_state = NULL; 1519 fin->fin_depth = 0; 1520 fin->fin_hlen = (u_short)hlen; 1521 fin->fin_ip = ip; 1522 fin->fin_rule = 0xffffffff; 1523 fin->fin_group[0] = -1; 1524 fin->fin_group[1] = '\0'; 1525 fin->fin_dlen = fin->fin_plen - hlen; 1526 fin->fin_dp = (char *)ip + hlen; 1527 1528 v = fin->fin_v; 1529 if (v == 4) 1530 frpr_ipv4hdr(fin); 1531 #ifdef USE_INET6 1532 else if (v == 6) { 1533 if (frpr_ipv6hdr(fin) == -1) 1534 return -1; 1535 } 1536 #endif 1537 if (fin->fin_ip == NULL) 1538 return -1; 1539 return 0; 1540 } 1541 1542 1543 /* ------------------------------------------------------------------------ */ 1544 /* Function: fr_portcheck */ 1545 /* Returns: int - 1 == port matched, 0 == port match failed */ 1546 /* Parameters: frp(I) - pointer to port check `expression' */ 1547 /* pop(I) - pointer to port number to evaluate */ 1548 /* */ 1549 /* Perform a comparison of a port number against some other(s), using a */ 1550 /* structure with compare information stored in it. */ 1551 /* ------------------------------------------------------------------------ */ 1552 static INLINE int fr_portcheck(frp, pop) 1553 frpcmp_t *frp; 1554 u_short *pop; 1555 { 1556 u_short tup, po; 1557 int err = 1; 1558 1559 tup = *pop; 1560 po = frp->frp_port; 1561 1562 /* 1563 * Do opposite test to that required and continue if that succeeds. 1564 */ 1565 switch (frp->frp_cmp) 1566 { 1567 case FR_EQUAL : 1568 if (tup != po) /* EQUAL */ 1569 err = 0; 1570 break; 1571 case FR_NEQUAL : 1572 if (tup == po) /* NOTEQUAL */ 1573 err = 0; 1574 break; 1575 case FR_LESST : 1576 if (tup >= po) /* LESSTHAN */ 1577 err = 0; 1578 break; 1579 case FR_GREATERT : 1580 if (tup <= po) /* GREATERTHAN */ 1581 err = 0; 1582 break; 1583 case FR_LESSTE : 1584 if (tup > po) /* LT or EQ */ 1585 err = 0; 1586 break; 1587 case FR_GREATERTE : 1588 if (tup < po) /* GT or EQ */ 1589 err = 0; 1590 break; 1591 case FR_OUTRANGE : 1592 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1593 err = 0; 1594 break; 1595 case FR_INRANGE : 1596 if (tup <= po || tup >= frp->frp_top) /* In range */ 1597 err = 0; 1598 break; 1599 case FR_INCRANGE : 1600 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1601 err = 0; 1602 break; 1603 default : 1604 break; 1605 } 1606 return err; 1607 } 1608 1609 1610 /* ------------------------------------------------------------------------ */ 1611 /* Function: fr_tcpudpchk */ 1612 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1613 /* Parameters: fin(I) - pointer to packet information */ 1614 /* ft(I) - pointer to structure with comparison data */ 1615 /* */ 1616 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1617 /* structure containing information that we want to match against. */ 1618 /* ------------------------------------------------------------------------ */ 1619 int fr_tcpudpchk(fin, ft) 1620 fr_info_t *fin; 1621 frtuc_t *ft; 1622 { 1623 int err = 1; 1624 1625 /* 1626 * Both ports should *always* be in the first fragment. 1627 * So far, I cannot find any cases where they can not be. 1628 * 1629 * compare destination ports 1630 */ 1631 if (ft->ftu_dcmp) 1632 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1633 1634 /* 1635 * compare source ports 1636 */ 1637 if (err && ft->ftu_scmp) 1638 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1639 1640 /* 1641 * If we don't have all the TCP/UDP header, then how can we 1642 * expect to do any sort of match on it ? If we were looking for 1643 * TCP flags, then NO match. If not, then match (which should 1644 * satisfy the "short" class too). 1645 */ 1646 if (err && (fin->fin_p == IPPROTO_TCP)) { 1647 if (fin->fin_flx & FI_SHORT) 1648 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1649 /* 1650 * Match the flags ? If not, abort this match. 1651 */ 1652 if (ft->ftu_tcpfm && 1653 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1654 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1655 ft->ftu_tcpfm, ft->ftu_tcpf)); 1656 err = 0; 1657 } 1658 } 1659 return err; 1660 } 1661 1662 1663 /* ------------------------------------------------------------------------ */ 1664 /* Function: fr_ipfcheck */ 1665 /* Returns: int - 0 == match, 1 == no match */ 1666 /* Parameters: fin(I) - pointer to packet information */ 1667 /* fr(I) - pointer to filter rule */ 1668 /* portcmp(I) - flag indicating whether to attempt matching on */ 1669 /* TCP/UDP port data. */ 1670 /* */ 1671 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1672 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1673 /* this function. */ 1674 /* ------------------------------------------------------------------------ */ 1675 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1676 fr_info_t *fin; 1677 frentry_t *fr; 1678 int portcmp; 1679 { 1680 u_32_t *ld, *lm, *lip; 1681 fripf_t *fri; 1682 fr_ip_t *fi; 1683 int i; 1684 ipf_stack_t *ifs = fin->fin_ifs; 1685 1686 fi = &fin->fin_fi; 1687 fri = fr->fr_ipf; 1688 lip = (u_32_t *)fi; 1689 lm = (u_32_t *)&fri->fri_mip; 1690 ld = (u_32_t *)&fri->fri_ip; 1691 1692 /* 1693 * first 32 bits to check coversion: 1694 * IP version, TOS, TTL, protocol 1695 */ 1696 i = ((*lip & *lm) != *ld); 1697 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1698 *lip, *lm, *ld)); 1699 if (i) 1700 return 1; 1701 1702 /* 1703 * Next 32 bits is a constructed bitmask indicating which IP options 1704 * are present (if any) in this packet. 1705 */ 1706 lip++, lm++, ld++; 1707 i |= ((*lip & *lm) != *ld); 1708 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1709 *lip, *lm, *ld)); 1710 if (i) 1711 return 1; 1712 1713 lip++, lm++, ld++; 1714 /* 1715 * Unrolled loops (4 each, for 32 bits) for address checks. 1716 */ 1717 /* 1718 * Check the source address. 1719 */ 1720 #ifdef IPFILTER_LOOKUP 1721 if (fr->fr_satype == FRI_LOOKUP) { 1722 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs); 1723 if (i == -1) 1724 return 1; 1725 lip += 3; 1726 lm += 3; 1727 ld += 3; 1728 } else { 1729 #endif 1730 i = ((*lip & *lm) != *ld); 1731 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1732 *lip, *lm, *ld)); 1733 if (fi->fi_v == 6) { 1734 lip++, lm++, ld++; 1735 i |= ((*lip & *lm) != *ld); 1736 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1737 *lip, *lm, *ld)); 1738 lip++, lm++, ld++; 1739 i |= ((*lip & *lm) != *ld); 1740 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1741 *lip, *lm, *ld)); 1742 lip++, lm++, ld++; 1743 i |= ((*lip & *lm) != *ld); 1744 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1745 *lip, *lm, *ld)); 1746 } else { 1747 lip += 3; 1748 lm += 3; 1749 ld += 3; 1750 } 1751 #ifdef IPFILTER_LOOKUP 1752 } 1753 #endif 1754 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1755 if (i) 1756 return 1; 1757 1758 /* 1759 * Check the destination address. 1760 */ 1761 lip++, lm++, ld++; 1762 #ifdef IPFILTER_LOOKUP 1763 if (fr->fr_datype == FRI_LOOKUP) { 1764 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs); 1765 if (i == -1) 1766 return 1; 1767 lip += 3; 1768 lm += 3; 1769 ld += 3; 1770 } else { 1771 #endif 1772 i = ((*lip & *lm) != *ld); 1773 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1774 *lip, *lm, *ld)); 1775 if (fi->fi_v == 6) { 1776 lip++, lm++, ld++; 1777 i |= ((*lip & *lm) != *ld); 1778 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1779 *lip, *lm, *ld)); 1780 lip++, lm++, ld++; 1781 i |= ((*lip & *lm) != *ld); 1782 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1783 *lip, *lm, *ld)); 1784 lip++, lm++, ld++; 1785 i |= ((*lip & *lm) != *ld); 1786 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1787 *lip, *lm, *ld)); 1788 } else { 1789 lip += 3; 1790 lm += 3; 1791 ld += 3; 1792 } 1793 #ifdef IPFILTER_LOOKUP 1794 } 1795 #endif 1796 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1797 if (i) 1798 return 1; 1799 /* 1800 * IP addresses matched. The next 32bits contains: 1801 * mast of old IP header security & authentication bits. 1802 */ 1803 lip++, lm++, ld++; 1804 i |= ((*lip & *lm) != *ld); 1805 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1806 *lip, *lm, *ld)); 1807 1808 /* 1809 * Next we have 32 bits of packet flags. 1810 */ 1811 lip++, lm++, ld++; 1812 i |= ((*lip & *lm) != *ld); 1813 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1814 *lip, *lm, *ld)); 1815 1816 if (i == 0) { 1817 /* 1818 * If a fragment, then only the first has what we're 1819 * looking for here... 1820 */ 1821 if (portcmp) { 1822 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1823 i = 1; 1824 } else { 1825 if (fr->fr_dcmp || fr->fr_scmp || 1826 fr->fr_tcpf || fr->fr_tcpfm) 1827 i = 1; 1828 if (fr->fr_icmpm || fr->fr_icmp) { 1829 if (((fi->fi_p != IPPROTO_ICMP) && 1830 (fi->fi_p != IPPROTO_ICMPV6)) || 1831 fin->fin_off || (fin->fin_dlen < 2)) 1832 i = 1; 1833 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1834 fr->fr_icmp) { 1835 FR_DEBUG(("i. %#x & %#x != %#x\n", 1836 fin->fin_data[0], 1837 fr->fr_icmpm, fr->fr_icmp)); 1838 i = 1; 1839 } 1840 } 1841 } 1842 } 1843 return i; 1844 } 1845 1846 1847 /* ------------------------------------------------------------------------ */ 1848 /* Function: fr_scanlist */ 1849 /* Returns: int - result flags of scanning filter list */ 1850 /* Parameters: fin(I) - pointer to packet information */ 1851 /* pass(I) - default result to return for filtering */ 1852 /* */ 1853 /* Check the input/output list of rules for a match to the current packet. */ 1854 /* If a match is found, the value of fr_flags from the rule becomes the */ 1855 /* return value and fin->fin_fr points to the matched rule. */ 1856 /* */ 1857 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1858 /* When unwinding, it should finish up with fin_depth as 0. */ 1859 /* */ 1860 /* Could be per interface, but this gets real nasty when you don't have, */ 1861 /* or can't easily change, the kernel source code to . */ 1862 /* ------------------------------------------------------------------------ */ 1863 int fr_scanlist(fin, pass) 1864 fr_info_t *fin; 1865 u_32_t pass; 1866 { 1867 int rulen, portcmp, off, logged, skip; 1868 struct frentry *fr, *fnext; 1869 u_32_t passt, passo; 1870 ipf_stack_t *ifs = fin->fin_ifs; 1871 1872 /* 1873 * Do not allow nesting deeper than 16 levels. 1874 */ 1875 if (fin->fin_depth >= 16) 1876 return pass; 1877 1878 fr = fin->fin_fr; 1879 1880 /* 1881 * If there are no rules in this list, return now. 1882 */ 1883 if (fr == NULL) 1884 return pass; 1885 1886 skip = 0; 1887 logged = 0; 1888 portcmp = 0; 1889 fin->fin_depth++; 1890 fin->fin_fr = NULL; 1891 off = fin->fin_off; 1892 1893 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1894 portcmp = 1; 1895 1896 for (rulen = 0; fr; fr = fnext, rulen++) { 1897 fnext = fr->fr_next; 1898 if (skip != 0) { 1899 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1900 skip--; 1901 continue; 1902 } 1903 1904 /* 1905 * In all checks below, a null (zero) value in the 1906 * filter struture is taken to mean a wildcard. 1907 * 1908 * check that we are working for the right interface 1909 */ 1910 #ifdef _KERNEL 1911 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1912 continue; 1913 #else 1914 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1915 printf("\n"); 1916 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1917 FR_ISPASS(pass) ? 'p' : 1918 FR_ISACCOUNT(pass) ? 'A' : 1919 FR_ISAUTH(pass) ? 'a' : 1920 (pass & FR_NOMATCH) ? 'n' :'b')); 1921 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1922 continue; 1923 FR_VERBOSE((":i")); 1924 #endif 1925 1926 switch (fr->fr_type) 1927 { 1928 case FR_T_IPF : 1929 case FR_T_IPF|FR_T_BUILTIN : 1930 if (fr_ipfcheck(fin, fr, portcmp)) 1931 continue; 1932 break; 1933 #if defined(IPFILTER_BPF) 1934 case FR_T_BPFOPC : 1935 case FR_T_BPFOPC|FR_T_BUILTIN : 1936 { 1937 u_char *mc; 1938 1939 if (*fin->fin_mp == NULL) 1940 continue; 1941 if (fin->fin_v != fr->fr_v) 1942 continue; 1943 mc = (u_char *)fin->fin_m; 1944 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1945 continue; 1946 break; 1947 } 1948 #endif 1949 case FR_T_CALLFUNC|FR_T_BUILTIN : 1950 { 1951 frentry_t *f; 1952 1953 f = (*fr->fr_func)(fin, &pass); 1954 if (f != NULL) 1955 fr = f; 1956 else 1957 continue; 1958 break; 1959 } 1960 default : 1961 break; 1962 } 1963 1964 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1965 if (fin->fin_nattag == NULL) 1966 continue; 1967 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1968 continue; 1969 } 1970 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1971 1972 passt = fr->fr_flags; 1973 1974 /* 1975 * Allowing a rule with the "keep state" flag set to match 1976 * packets that have been tagged "out of window" by the TCP 1977 * state tracking is foolish as the attempt to add a new 1978 * state entry to the table will fail. 1979 */ 1980 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1981 continue; 1982 1983 /* 1984 * If the rule is a "call now" rule, then call the function 1985 * in the rule, if it exists and use the results from that. 1986 * If the function pointer is bad, just make like we ignore 1987 * it, except for increasing the hit counter. 1988 */ 1989 if ((passt & FR_CALLNOW) != 0) { 1990 IPF_BUMP(fr->fr_hits); 1991 if ((fr->fr_func != NULL) && 1992 (fr->fr_func != (ipfunc_t)-1)) { 1993 frentry_t *frs; 1994 1995 frs = fin->fin_fr; 1996 fin->fin_fr = fr; 1997 fr = (*fr->fr_func)(fin, &passt); 1998 if (fr == NULL) { 1999 fin->fin_fr = frs; 2000 continue; 2001 } 2002 passt = fr->fr_flags; 2003 fin->fin_fr = fr; 2004 } 2005 } else { 2006 fin->fin_fr = fr; 2007 } 2008 2009 #ifdef IPFILTER_LOG 2010 /* 2011 * Just log this packet... 2012 */ 2013 if ((passt & FR_LOGMASK) == FR_LOG) { 2014 if (ipflog(fin, passt) == -1) { 2015 if (passt & FR_LOGORBLOCK) { 2016 passt &= ~FR_CMDMASK; 2017 passt |= FR_BLOCK|FR_QUICK; 2018 } 2019 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip); 2020 } 2021 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2022 logged = 1; 2023 } 2024 #endif /* IPFILTER_LOG */ 2025 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2026 passo = pass; 2027 if (FR_ISSKIP(passt)) 2028 skip = fr->fr_arg; 2029 else if ((passt & FR_LOGMASK) != FR_LOG) 2030 pass = passt; 2031 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2032 fin->fin_icode = fr->fr_icode; 2033 FR_DEBUG(("pass %#x\n", pass)); 2034 IPF_BUMP(fr->fr_hits); 2035 fin->fin_rule = rulen; 2036 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2037 if (fr->fr_grp != NULL) { 2038 fin->fin_fr = *fr->fr_grp; 2039 pass = fr_scanlist(fin, pass); 2040 if (fin->fin_fr == NULL) { 2041 fin->fin_rule = rulen; 2042 (void) strncpy(fin->fin_group, fr->fr_group, 2043 FR_GROUPLEN); 2044 fin->fin_fr = fr; 2045 } 2046 if (fin->fin_flx & FI_DONTCACHE) 2047 logged = 1; 2048 } 2049 2050 if (pass & FR_QUICK) { 2051 /* 2052 * Finally, if we've asked to track state for this 2053 * packet, set it up. Add state for "quick" rules 2054 * here so that if the action fails we can consider 2055 * the rule to "not match" and keep on processing 2056 * filter rules. 2057 */ 2058 if ((pass & FR_KEEPSTATE) && 2059 !(fin->fin_flx & FI_STATE)) { 2060 int out = fin->fin_out; 2061 2062 if (fr_addstate(fin, NULL, 0) != NULL) { 2063 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2064 } else { 2065 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2066 pass = passo; 2067 continue; 2068 } 2069 } 2070 break; 2071 } 2072 } 2073 if (logged) 2074 fin->fin_flx |= FI_DONTCACHE; 2075 fin->fin_depth--; 2076 return pass; 2077 } 2078 2079 2080 /* ------------------------------------------------------------------------ */ 2081 /* Function: fr_acctpkt */ 2082 /* Returns: frentry_t* - always returns NULL */ 2083 /* Parameters: fin(I) - pointer to packet information */ 2084 /* passp(IO) - pointer to current/new filter decision (unused) */ 2085 /* */ 2086 /* Checks a packet against accounting rules, if there are any for the given */ 2087 /* IP protocol version. */ 2088 /* */ 2089 /* N.B.: this function returns NULL to match the prototype used by other */ 2090 /* functions called from the IPFilter "mainline" in fr_check(). */ 2091 /* ------------------------------------------------------------------------ */ 2092 frentry_t *fr_acctpkt(fin, passp) 2093 fr_info_t *fin; 2094 u_32_t *passp; 2095 { 2096 char group[FR_GROUPLEN]; 2097 frentry_t *fr, *frsave; 2098 u_32_t pass, rulen; 2099 ipf_stack_t *ifs = fin->fin_ifs; 2100 2101 passp = passp; 2102 #ifdef USE_INET6 2103 if (fin->fin_v == 6) 2104 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2105 else 2106 #endif 2107 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2108 2109 if (fr != NULL) { 2110 frsave = fin->fin_fr; 2111 bcopy(fin->fin_group, group, FR_GROUPLEN); 2112 rulen = fin->fin_rule; 2113 fin->fin_fr = fr; 2114 pass = fr_scanlist(fin, FR_NOMATCH); 2115 if (FR_ISACCOUNT(pass)) { 2116 IPF_BUMP(ifs->ifs_frstats[0].fr_acct); 2117 } 2118 fin->fin_fr = frsave; 2119 bcopy(group, fin->fin_group, FR_GROUPLEN); 2120 fin->fin_rule = rulen; 2121 } 2122 return NULL; 2123 } 2124 2125 2126 /* ------------------------------------------------------------------------ */ 2127 /* Function: fr_firewall */ 2128 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2129 /* were found, returns NULL. */ 2130 /* Parameters: fin(I) - pointer to packet information */ 2131 /* passp(IO) - pointer to current/new filter decision (unused) */ 2132 /* */ 2133 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2134 /* there are any matches. The first check is to see if a match can be seen */ 2135 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2136 /* matching rule is found, take any appropriate actions as defined by the */ 2137 /* rule - except logging. */ 2138 /* ------------------------------------------------------------------------ */ 2139 static frentry_t *fr_firewall(fin, passp) 2140 fr_info_t *fin; 2141 u_32_t *passp; 2142 { 2143 frentry_t *fr; 2144 u_32_t pass; 2145 int out; 2146 ipf_stack_t *ifs = fin->fin_ifs; 2147 2148 out = fin->fin_out; 2149 pass = *passp; 2150 2151 #ifdef USE_INET6 2152 if (fin->fin_v == 6) 2153 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2154 else 2155 #endif 2156 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2157 if (fin->fin_fr != NULL) 2158 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2159 2160 if ((pass & FR_NOMATCH)) { 2161 IPF_BUMP(ifs->ifs_frstats[out].fr_nom); 2162 } 2163 fr = fin->fin_fr; 2164 2165 /* 2166 * Apply packets per second rate-limiting to a rule as required. 2167 */ 2168 if ((fr != NULL) && (fr->fr_pps != 0) && 2169 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2170 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2171 pass |= FR_BLOCK; 2172 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit); 2173 } 2174 2175 /* 2176 * If we fail to add a packet to the authorization queue, then we 2177 * drop the packet later. However, if it was added then pretend 2178 * we've dropped it already. 2179 */ 2180 if (FR_ISAUTH(pass)) { 2181 if (fr_newauth(fin->fin_m, fin) != 0) { 2182 #ifdef _KERNEL 2183 fin->fin_m = *fin->fin_mp = NULL; 2184 #else 2185 ; 2186 #endif 2187 fin->fin_error = 0; 2188 } else 2189 fin->fin_error = ENOSPC; 2190 } 2191 2192 if ((fr != NULL) && (fr->fr_func != NULL) && 2193 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2194 (void) (*fr->fr_func)(fin, &pass); 2195 2196 /* 2197 * If a rule is a pre-auth rule, check again in the list of rules 2198 * loaded for authenticated use. It does not particulary matter 2199 * if this search fails because a "preauth" result, from a rule, 2200 * is treated as "not a pass", hence the packet is blocked. 2201 */ 2202 if (FR_ISPREAUTH(pass)) { 2203 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2204 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2205 } 2206 2207 /* 2208 * If the rule has "keep frag" and the packet is actually a fragment, 2209 * then create a fragment state entry. 2210 */ 2211 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2212 if (fin->fin_flx & FI_FRAG) { 2213 if (fr_newfrag(fin, pass) == -1) { 2214 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr); 2215 } else { 2216 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr); 2217 } 2218 } else { 2219 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr); 2220 } 2221 } 2222 2223 /* 2224 * Finally, if we've asked to track state for this packet, set it up. 2225 */ 2226 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2227 if (fr_addstate(fin, NULL, 0) != NULL) { 2228 IPF_BUMP(ifs->ifs_frstats[out].fr_ads); 2229 } else { 2230 IPF_BUMP(ifs->ifs_frstats[out].fr_bads); 2231 if (FR_ISPASS(pass)) { 2232 pass &= ~FR_CMDMASK; 2233 pass |= FR_BLOCK; 2234 } 2235 } 2236 } 2237 2238 fr = fin->fin_fr; 2239 2240 if (passp != NULL) 2241 *passp = pass; 2242 2243 return fr; 2244 } 2245 2246 2247 /* ------------------------------------------------------------------------ */ 2248 /* Function: fr_check */ 2249 /* Returns: int - 0 == packet allowed through, */ 2250 /* User space: */ 2251 /* -1 == packet blocked */ 2252 /* 1 == packet not matched */ 2253 /* -2 == requires authentication */ 2254 /* Kernel: */ 2255 /* > 0 == filter error # for packet */ 2256 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2257 /* hlen(I) - length of header */ 2258 /* ifp(I) - pointer to interface this packet is on */ 2259 /* out(I) - 0 == packet going in, 1 == packet going out */ 2260 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2261 /* IP packet. */ 2262 /* Solaris & HP-UX ONLY : */ 2263 /* qpi(I) - pointer to STREAMS queue information for this */ 2264 /* interface & direction. */ 2265 /* */ 2266 /* fr_check() is the master function for all IPFilter packet processing. */ 2267 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2268 /* authorisation (or pre-authorisation), presence of related state info., */ 2269 /* generating log entries, IP packet accounting, routing of packets as */ 2270 /* directed by firewall rules and of course whether or not to allow the */ 2271 /* packet to be further processed by the kernel. */ 2272 /* */ 2273 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2274 /* freed. Packets passed may be returned with the pointer pointed to by */ 2275 /* by "mp" changed to a new buffer. */ 2276 /* ------------------------------------------------------------------------ */ 2277 int fr_check(ip, hlen, ifp, out 2278 #if defined(_KERNEL) && defined(MENTAT) 2279 , qif, mp, ifs) 2280 void *qif; 2281 #else 2282 , mp, ifs) 2283 #endif 2284 mb_t **mp; 2285 ip_t *ip; 2286 int hlen; 2287 void *ifp; 2288 int out; 2289 ipf_stack_t *ifs; 2290 { 2291 /* 2292 * The above really sucks, but short of writing a diff 2293 */ 2294 fr_info_t frinfo; 2295 fr_info_t *fin = &frinfo; 2296 u_32_t pass; 2297 frentry_t *fr = NULL; 2298 int v = IP_V(ip); 2299 mb_t *mc = NULL; 2300 mb_t *m; 2301 #ifdef USE_INET6 2302 ip6_t *ip6; 2303 #endif 2304 #ifdef _KERNEL 2305 # ifdef MENTAT 2306 qpktinfo_t *qpi = qif; 2307 #endif 2308 #endif 2309 2310 SPL_INT(s); 2311 pass = ifs->ifs_fr_pass; 2312 2313 /* 2314 * The first part of fr_check() deals with making sure that what goes 2315 * into the filtering engine makes some sense. Information about the 2316 * the packet is distilled, collected into a fr_info_t structure and 2317 * the an attempt to ensure the buffer the packet is in is big enough 2318 * to hold all the required packet headers. 2319 */ 2320 #ifdef _KERNEL 2321 # ifdef MENTAT 2322 if (!OK_32PTR(ip)) 2323 return 2; 2324 # endif 2325 2326 2327 if (ifs->ifs_fr_running <= 0) { 2328 return 0; 2329 } 2330 2331 bzero((char *)fin, sizeof(*fin)); 2332 2333 # ifdef MENTAT 2334 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST| 2335 FI_BROADCAST); 2336 m = qpi->qpi_m; 2337 fin->fin_qfm = m; 2338 fin->fin_qpi = qpi; 2339 # else /* MENTAT */ 2340 2341 m = *mp; 2342 2343 # if defined(M_MCAST) 2344 if ((m->m_flags & M_MCAST) != 0) 2345 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2346 # endif 2347 # if defined(M_MLOOP) 2348 if ((m->m_flags & M_MLOOP) != 0) 2349 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2350 # endif 2351 # if defined(M_BCAST) 2352 if ((m->m_flags & M_BCAST) != 0) 2353 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2354 # endif 2355 # ifdef M_CANFASTFWD 2356 /* 2357 * XXX For now, IP Filter and fast-forwarding of cached flows 2358 * XXX are mutually exclusive. Eventually, IP Filter should 2359 * XXX get a "can-fast-forward" filter rule. 2360 */ 2361 m->m_flags &= ~M_CANFASTFWD; 2362 # endif /* M_CANFASTFWD */ 2363 # ifdef CSUM_DELAY_DATA 2364 /* 2365 * disable delayed checksums. 2366 */ 2367 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2368 in_delayed_cksum(m); 2369 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2370 } 2371 # endif /* CSUM_DELAY_DATA */ 2372 # endif /* MENTAT */ 2373 #else 2374 2375 bzero((char *)fin, sizeof(*fin)); 2376 m = *mp; 2377 #endif /* _KERNEL */ 2378 2379 fin->fin_v = v; 2380 fin->fin_m = m; 2381 fin->fin_ip = ip; 2382 fin->fin_mp = mp; 2383 fin->fin_out = out; 2384 fin->fin_ifp = ifp; 2385 fin->fin_error = ENETUNREACH; 2386 fin->fin_hlen = (u_short)hlen; 2387 fin->fin_dp = (char *)ip + hlen; 2388 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2389 fin->fin_ifs = ifs; 2390 2391 SPL_NET(s); 2392 2393 #ifdef USE_INET6 2394 if (v == 6) { 2395 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6); 2396 /* 2397 * Jumbo grams are quite likely too big for internal buffer 2398 * structures to handle comfortably, for now, so just drop 2399 * them. 2400 */ 2401 ip6 = (ip6_t *)ip; 2402 fin->fin_plen = ntohs(ip6->ip6_plen); 2403 if (fin->fin_plen == 0) { 2404 READ_ENTER(&ifs->ifs_ipf_mutex); 2405 pass = FR_BLOCK|FR_NOMATCH; 2406 goto filtered; 2407 } 2408 fin->fin_plen += sizeof(ip6_t); 2409 } else 2410 #endif 2411 { 2412 #if (OpenBSD >= 200311) && defined(_KERNEL) 2413 ip->ip_len = ntohs(ip->ip_len); 2414 ip->ip_off = ntohs(ip->ip_off); 2415 #endif 2416 fin->fin_plen = ip->ip_len; 2417 } 2418 2419 if (fr_makefrip(hlen, ip, fin) == -1) { 2420 READ_ENTER(&ifs->ifs_ipf_mutex); 2421 pass = FR_BLOCK; 2422 goto filtered; 2423 } 2424 2425 /* 2426 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2427 * becomes NULL and so we have no packet to free. 2428 */ 2429 if (*fin->fin_mp == NULL) 2430 goto finished; 2431 2432 if (!out) { 2433 if (v == 4) { 2434 #ifdef _KERNEL 2435 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2436 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2437 fin->fin_flx |= FI_BADSRC; 2438 } 2439 #endif 2440 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2441 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2442 fin->fin_flx |= FI_LOWTTL; 2443 } 2444 } 2445 #ifdef USE_INET6 2446 else if (v == 6) { 2447 ip6 = (ip6_t *)ip; 2448 #ifdef _KERNEL 2449 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2450 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc); 2451 fin->fin_flx |= FI_BADSRC; 2452 } 2453 #endif 2454 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2455 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl); 2456 fin->fin_flx |= FI_LOWTTL; 2457 } 2458 } 2459 #endif 2460 } 2461 2462 if (fin->fin_flx & FI_SHORT) { 2463 IPF_BUMP(ifs->ifs_frstats[out].fr_short); 2464 } 2465 2466 READ_ENTER(&ifs->ifs_ipf_mutex); 2467 2468 /* 2469 * Check auth now. This, combined with the check below to see if apass 2470 * is 0 is to ensure that we don't count the packet twice, which can 2471 * otherwise occur when we reprocess it. As it is, we only count it 2472 * after it has no auth. table matchup. This also stops NAT from 2473 * occuring until after the packet has been auth'd. 2474 */ 2475 fr = fr_checkauth(fin, &pass); 2476 if (!out) { 2477 switch (fin->fin_v) 2478 { 2479 case 4 : 2480 if (fr_checknatin(fin, &pass) == -1) { 2481 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2482 goto finished; 2483 } 2484 break; 2485 #ifdef USE_INET6 2486 case 6 : 2487 if (fr_checknat6in(fin, &pass) == -1) { 2488 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2489 goto finished; 2490 } 2491 break; 2492 #endif 2493 default : 2494 break; 2495 } 2496 } 2497 if (!out) 2498 (void) fr_acctpkt(fin, NULL); 2499 2500 if (fr == NULL) 2501 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2502 fr = fr_knownfrag(fin, &pass); 2503 if (fr == NULL) 2504 fr = fr_checkstate(fin, &pass); 2505 2506 if ((pass & FR_NOMATCH) || (fr == NULL)) 2507 fr = fr_firewall(fin, &pass); 2508 2509 fin->fin_fr = fr; 2510 2511 /* 2512 * Only count/translate packets which will be passed on, out the 2513 * interface. 2514 */ 2515 if (out && FR_ISPASS(pass)) { 2516 (void) fr_acctpkt(fin, NULL); 2517 2518 switch (fin->fin_v) 2519 { 2520 case 4 : 2521 if (fr_checknatout(fin, &pass) == -1) { 2522 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2523 goto finished; 2524 } 2525 break; 2526 #ifdef USE_INET6 2527 case 6 : 2528 if (fr_checknat6out(fin, &pass) == -1) { 2529 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2530 goto finished; 2531 } 2532 break; 2533 #endif 2534 default : 2535 break; 2536 } 2537 2538 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2539 if (fr_updateipid(fin) == -1) { 2540 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud); 2541 pass &= ~FR_CMDMASK; 2542 pass |= FR_BLOCK; 2543 } else { 2544 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud); 2545 } 2546 } 2547 } 2548 2549 #ifdef IPFILTER_LOG 2550 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2551 (void) fr_dolog(fin, &pass); 2552 } 2553 #endif 2554 2555 if (fin->fin_state != NULL) 2556 fr_statederef((ipstate_t **)&fin->fin_state, ifs); 2557 2558 if (fin->fin_nat != NULL) { 2559 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT)) { 2560 WRITE_ENTER(&ifs->ifs_ipf_nat); 2561 nat_delete((nat_t *)fin->fin_nat, NL_DESTROY, ifs); 2562 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 2563 fin->fin_nat = NULL; 2564 } else { 2565 fr_natderef((nat_t **)&fin->fin_nat, ifs); 2566 } 2567 } 2568 2569 /* 2570 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2571 * set FR_DUP as a "default" as there are no instructions about where 2572 * to send the packet. Use fin_m here because it may have changed 2573 * (without an update of 'm') in prior processing. 2574 */ 2575 if ((fr != NULL) && (pass & FR_DUP)) { 2576 mc = M_DUPLICATE(fin->fin_m); 2577 } 2578 2579 if (pass & (FR_RETRST|FR_RETICMP)) { 2580 /* 2581 * Should we return an ICMP packet to indicate error 2582 * status passing through the packet filter ? 2583 * WARNING: ICMP error packets AND TCP RST packets should 2584 * ONLY be sent in repsonse to incoming packets. Sending them 2585 * in response to outbound packets can result in a panic on 2586 * some operating systems. 2587 */ 2588 if (!out) { 2589 if (pass & FR_RETICMP) { 2590 int dst; 2591 2592 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2593 dst = 1; 2594 else 2595 dst = 0; 2596 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2597 IPF_BUMP(ifs->ifs_frstats[0].fr_ret); 2598 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2599 !(fin->fin_flx & FI_SHORT)) { 2600 if (fr_send_reset(fin) == 0) { 2601 IPF_BUMP(ifs->ifs_frstats[1].fr_ret); 2602 } 2603 } 2604 } else { 2605 if (pass & FR_RETRST) 2606 fin->fin_error = ECONNRESET; 2607 } 2608 } 2609 2610 /* 2611 * If we didn't drop off the bottom of the list of rules (and thus 2612 * the 'current' rule fr is not NULL), then we may have some extra 2613 * instructions about what to do with a packet. 2614 * Once we're finished return to our caller, freeing the packet if 2615 * we are dropping it (* BSD ONLY *). 2616 * Reassign m from fin_m as we may have a new buffer, now. 2617 */ 2618 filtered: 2619 m = fin->fin_m; 2620 2621 if (fr != NULL) { 2622 frdest_t *fdp; 2623 2624 fdp = &fr->fr_tifs[fin->fin_rev]; 2625 2626 if (!out && (pass & FR_FASTROUTE)) { 2627 /* 2628 * For fastroute rule, no destioation interface defined 2629 * so pass NULL as the frdest_t parameter 2630 */ 2631 (void) fr_fastroute(m, mp, fin, NULL); 2632 m = *mp = NULL; 2633 } else if ((fdp->fd_ifp != NULL) && 2634 (fdp->fd_ifp != (struct ifnet *)-1)) { 2635 /* this is for to rules: */ 2636 (void) fr_fastroute(m, mp, fin, fdp); 2637 m = *mp = NULL; 2638 } 2639 2640 /* 2641 * Generate a duplicated packet. 2642 */ 2643 if (mc != NULL) 2644 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2645 } 2646 2647 /* 2648 * This late because the likes of fr_fastroute() use fin_fr. 2649 */ 2650 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2651 2652 finished: 2653 if (!FR_ISPASS(pass)) { 2654 IPF_BUMP(ifs->ifs_frstats[out].fr_block); 2655 if (*mp != NULL) { 2656 FREE_MB_T(*mp); 2657 m = *mp = NULL; 2658 } 2659 } else { 2660 IPF_BUMP(ifs->ifs_frstats[out].fr_pass); 2661 #if defined(_KERNEL) && defined(__sgi) 2662 if ((fin->fin_hbuf != NULL) && 2663 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2664 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2665 } 2666 #endif 2667 } 2668 2669 SPL_X(s); 2670 2671 #ifdef _KERNEL 2672 # if OpenBSD >= 200311 2673 if (FR_ISPASS(pass) && (v == 4)) { 2674 ip = fin->fin_ip; 2675 ip->ip_len = ntohs(ip->ip_len); 2676 ip->ip_off = ntohs(ip->ip_off); 2677 } 2678 # endif 2679 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2680 #else /* _KERNEL */ 2681 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2682 if ((pass & FR_NOMATCH) != 0) 2683 return 1; 2684 2685 if ((pass & FR_RETMASK) != 0) 2686 switch (pass & FR_RETMASK) 2687 { 2688 case FR_RETRST : 2689 return 3; 2690 case FR_RETICMP : 2691 return 4; 2692 case FR_FAKEICMP : 2693 return 5; 2694 } 2695 2696 switch (pass & FR_CMDMASK) 2697 { 2698 case FR_PASS : 2699 return 0; 2700 case FR_BLOCK : 2701 return -1; 2702 case FR_AUTH : 2703 return -2; 2704 case FR_ACCOUNT : 2705 return -3; 2706 case FR_PREAUTH : 2707 return -4; 2708 } 2709 return 2; 2710 #endif /* _KERNEL */ 2711 } 2712 2713 2714 #ifdef IPFILTER_LOG 2715 /* ------------------------------------------------------------------------ */ 2716 /* Function: fr_dolog */ 2717 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2718 /* Parameters: fin(I) - pointer to packet information */ 2719 /* passp(IO) - pointer to current/new filter decision (unused) */ 2720 /* */ 2721 /* Checks flags set to see how a packet should be logged, if it is to be */ 2722 /* logged. Adjust statistics based on its success or not. */ 2723 /* ------------------------------------------------------------------------ */ 2724 frentry_t *fr_dolog(fin, passp) 2725 fr_info_t *fin; 2726 u_32_t *passp; 2727 { 2728 u_32_t pass; 2729 int out; 2730 ipf_stack_t *ifs = fin->fin_ifs; 2731 2732 out = fin->fin_out; 2733 pass = *passp; 2734 2735 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2736 pass |= FF_LOGNOMATCH; 2737 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl); 2738 goto logit; 2739 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2740 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2741 if ((pass & FR_LOGMASK) != FR_LOGP) 2742 pass |= FF_LOGPASS; 2743 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl); 2744 goto logit; 2745 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2746 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2747 if ((pass & FR_LOGMASK) != FR_LOGB) 2748 pass |= FF_LOGBLOCK; 2749 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl); 2750 logit: 2751 if (ipflog(fin, pass) == -1) { 2752 IPF_BUMP(ifs->ifs_frstats[out].fr_skip); 2753 2754 /* 2755 * If the "or-block" option has been used then 2756 * block the packet if we failed to log it. 2757 */ 2758 if ((pass & FR_LOGORBLOCK) && 2759 FR_ISPASS(pass)) { 2760 pass &= ~FR_CMDMASK; 2761 pass |= FR_BLOCK; 2762 } 2763 } 2764 *passp = pass; 2765 } 2766 2767 return fin->fin_fr; 2768 } 2769 #endif /* IPFILTER_LOG */ 2770 2771 2772 /* ------------------------------------------------------------------------ */ 2773 /* Function: ipf_cksum */ 2774 /* Returns: u_short - IP header checksum */ 2775 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2776 /* len(I) - length of buffer in bytes */ 2777 /* */ 2778 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2779 /* */ 2780 /* N.B.: addr should be 16bit aligned. */ 2781 /* ------------------------------------------------------------------------ */ 2782 u_short ipf_cksum(addr, len) 2783 u_short *addr; 2784 int len; 2785 { 2786 u_32_t sum = 0; 2787 2788 for (sum = 0; len > 1; len -= 2) 2789 sum += *addr++; 2790 2791 /* mop up an odd byte, if necessary */ 2792 if (len == 1) 2793 sum += *(u_char *)addr; 2794 2795 /* 2796 * add back carry outs from top 16 bits to low 16 bits 2797 */ 2798 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2799 sum += (sum >> 16); /* add carry */ 2800 return (u_short)(~sum); 2801 } 2802 2803 2804 /* ------------------------------------------------------------------------ */ 2805 /* Function: fr_cksum */ 2806 /* Returns: u_short - layer 4 checksum */ 2807 /* Parameters: m(I ) - pointer to buffer holding packet */ 2808 /* ip(I) - pointer to IP header */ 2809 /* l4proto(I) - protocol to caclulate checksum for */ 2810 /* l4hdr(I) - pointer to layer 4 header */ 2811 /* */ 2812 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2813 /* in the IP header "ip" to seed it. */ 2814 /* */ 2815 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2816 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2817 /* odd sizes. */ 2818 /* */ 2819 /* Expects ip_len to be in host byte order when called. */ 2820 /* ------------------------------------------------------------------------ */ 2821 u_short fr_cksum(m, ip, l4proto, l4hdr) 2822 mb_t *m; 2823 ip_t *ip; 2824 int l4proto; 2825 void *l4hdr; 2826 { 2827 u_short *sp, slen, sumsave, l4hlen, *csump; 2828 u_int sum, sum2; 2829 int hlen; 2830 #ifdef USE_INET6 2831 ip6_t *ip6; 2832 #endif 2833 2834 csump = NULL; 2835 sumsave = 0; 2836 l4hlen = 0; 2837 sp = NULL; 2838 slen = 0; 2839 hlen = 0; 2840 sum = 0; 2841 2842 /* 2843 * Add up IP Header portion 2844 */ 2845 #ifdef USE_INET6 2846 if (IP_V(ip) == 4) { 2847 #endif 2848 hlen = IP_HL(ip) << 2; 2849 slen = ip->ip_len - hlen; 2850 sum = htons((u_short)l4proto); 2851 sum += htons(slen); 2852 sp = (u_short *)&ip->ip_src; 2853 sum += *sp++; /* ip_src */ 2854 sum += *sp++; 2855 sum += *sp++; /* ip_dst */ 2856 sum += *sp++; 2857 #ifdef USE_INET6 2858 } else if (IP_V(ip) == 6) { 2859 ip6 = (ip6_t *)ip; 2860 hlen = sizeof(*ip6); 2861 slen = ntohs(ip6->ip6_plen); 2862 sum = htons((u_short)l4proto); 2863 sum += htons(slen); 2864 sp = (u_short *)&ip6->ip6_src; 2865 sum += *sp++; /* ip6_src */ 2866 sum += *sp++; 2867 sum += *sp++; 2868 sum += *sp++; 2869 sum += *sp++; 2870 sum += *sp++; 2871 sum += *sp++; 2872 sum += *sp++; 2873 sum += *sp++; /* ip6_dst */ 2874 sum += *sp++; 2875 sum += *sp++; 2876 sum += *sp++; 2877 sum += *sp++; 2878 sum += *sp++; 2879 sum += *sp++; 2880 sum += *sp++; 2881 } 2882 #endif 2883 2884 switch (l4proto) 2885 { 2886 case IPPROTO_UDP : 2887 csump = &((udphdr_t *)l4hdr)->uh_sum; 2888 l4hlen = sizeof(udphdr_t); 2889 break; 2890 2891 case IPPROTO_TCP : 2892 csump = &((tcphdr_t *)l4hdr)->th_sum; 2893 l4hlen = sizeof(tcphdr_t); 2894 break; 2895 case IPPROTO_ICMP : 2896 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 2897 l4hlen = 4; 2898 sum = 0; 2899 break; 2900 default : 2901 break; 2902 } 2903 2904 if (csump != NULL) { 2905 sumsave = *csump; 2906 *csump = 0; 2907 } 2908 2909 l4hlen = l4hlen; /* LINT */ 2910 2911 #ifdef _KERNEL 2912 # ifdef MENTAT 2913 { 2914 void *rp = m->b_rptr; 2915 2916 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 2917 m->b_rptr = (u_char *)ip; 2918 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 2919 m->b_rptr = rp; 2920 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 2921 sum2 = ~sum2 & 0xffff; 2922 } 2923 # else /* MENTAT */ 2924 # if defined(BSD) || defined(sun) 2925 # if BSD >= 199103 2926 m->m_data += hlen; 2927 # else 2928 m->m_off += hlen; 2929 # endif 2930 m->m_len -= hlen; 2931 sum2 = in_cksum(m, slen); 2932 m->m_len += hlen; 2933 # if BSD >= 199103 2934 m->m_data -= hlen; 2935 # else 2936 m->m_off -= hlen; 2937 # endif 2938 /* 2939 * Both sum and sum2 are partial sums, so combine them together. 2940 */ 2941 sum += ~sum2 & 0xffff; 2942 while (sum > 0xffff) 2943 sum = (sum & 0xffff) + (sum >> 16); 2944 sum2 = ~sum & 0xffff; 2945 # else /* defined(BSD) || defined(sun) */ 2946 { 2947 union { 2948 u_char c[2]; 2949 u_short s; 2950 } bytes; 2951 u_short len = ip->ip_len; 2952 # if defined(__sgi) 2953 int add; 2954 # endif 2955 2956 /* 2957 * Add up IP Header portion 2958 */ 2959 if (sp != (u_short *)l4hdr) 2960 sp = (u_short *)l4hdr; 2961 2962 switch (l4proto) 2963 { 2964 case IPPROTO_UDP : 2965 sum += *sp++; /* sport */ 2966 sum += *sp++; /* dport */ 2967 sum += *sp++; /* udp length */ 2968 sum += *sp++; /* checksum */ 2969 break; 2970 2971 case IPPROTO_TCP : 2972 sum += *sp++; /* sport */ 2973 sum += *sp++; /* dport */ 2974 sum += *sp++; /* seq */ 2975 sum += *sp++; 2976 sum += *sp++; /* ack */ 2977 sum += *sp++; 2978 sum += *sp++; /* off */ 2979 sum += *sp++; /* win */ 2980 sum += *sp++; /* checksum */ 2981 sum += *sp++; /* urp */ 2982 break; 2983 case IPPROTO_ICMP : 2984 sum = *sp++; /* type/code */ 2985 sum += *sp++; /* checksum */ 2986 break; 2987 } 2988 2989 # ifdef __sgi 2990 /* 2991 * In case we had to copy the IP & TCP header out of mbufs, 2992 * skip over the mbuf bits which are the header 2993 */ 2994 if ((caddr_t)ip != mtod(m, caddr_t)) { 2995 hlen = (caddr_t)sp - (caddr_t)ip; 2996 while (hlen) { 2997 add = MIN(hlen, m->m_len); 2998 sp = (u_short *)(mtod(m, caddr_t) + add); 2999 hlen -= add; 3000 if (add == m->m_len) { 3001 m = m->m_next; 3002 if (!hlen) { 3003 if (!m) 3004 break; 3005 sp = mtod(m, u_short *); 3006 } 3007 PANIC((!m),("fr_cksum(1): not enough data")); 3008 } 3009 } 3010 } 3011 # endif 3012 3013 len -= (l4hlen + hlen); 3014 if (len <= 0) 3015 goto nodata; 3016 3017 while (len > 1) { 3018 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3019 m = m->m_next; 3020 PANIC((!m),("fr_cksum(2): not enough data")); 3021 sp = mtod(m, u_short *); 3022 } 3023 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3024 bytes.c[0] = *(u_char *)sp; 3025 m = m->m_next; 3026 PANIC((!m),("fr_cksum(3): not enough data")); 3027 sp = mtod(m, u_short *); 3028 bytes.c[1] = *(u_char *)sp; 3029 sum += bytes.s; 3030 sp = (u_short *)((u_char *)sp + 1); 3031 } 3032 if ((u_long)sp & 1) { 3033 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3034 sum += bytes.s; 3035 } else 3036 sum += *sp++; 3037 len -= 2; 3038 } 3039 3040 if (len != 0) 3041 sum += ntohs(*(u_char *)sp << 8); 3042 nodata: 3043 while (sum > 0xffff) 3044 sum = (sum & 0xffff) + (sum >> 16); 3045 sum2 = (u_short)(~sum & 0xffff); 3046 } 3047 # endif /* defined(BSD) || defined(sun) */ 3048 # endif /* MENTAT */ 3049 #else /* _KERNEL */ 3050 for (; slen > 1; slen -= 2) 3051 sum += *sp++; 3052 if (slen) 3053 sum += ntohs(*(u_char *)sp << 8); 3054 while (sum > 0xffff) 3055 sum = (sum & 0xffff) + (sum >> 16); 3056 sum2 = (u_short)(~sum & 0xffff); 3057 #endif /* _KERNEL */ 3058 if (csump != NULL) 3059 *csump = sumsave; 3060 return sum2; 3061 } 3062 3063 3064 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3065 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3066 /* 3067 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3068 * The Regents of the University of California. All rights reserved. 3069 * 3070 * Redistribution and use in source and binary forms, with or without 3071 * modification, are permitted provided that the following conditions 3072 * are met: 3073 * 1. Redistributions of source code must retain the above copyright 3074 * notice, this list of conditions and the following disclaimer. 3075 * 2. Redistributions in binary form must reproduce the above copyright 3076 * notice, this list of conditions and the following disclaimer in the 3077 * documentation and/or other materials provided with the distribution. 3078 * 3. Neither the name of the University nor the names of its contributors 3079 * may be used to endorse or promote products derived from this software 3080 * without specific prior written permission. 3081 * 3082 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3083 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3084 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3085 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3086 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3087 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3088 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3089 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3090 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3091 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3092 * SUCH DAMAGE. 3093 * 3094 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3095 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3096 */ 3097 /* 3098 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3099 * continuing for "len" bytes, into the indicated buffer. 3100 */ 3101 void 3102 m_copydata(m, off, len, cp) 3103 mb_t *m; 3104 int off; 3105 int len; 3106 caddr_t cp; 3107 { 3108 unsigned count; 3109 3110 if (off < 0 || len < 0) 3111 panic("m_copydata"); 3112 while (off > 0) { 3113 if (m == 0) 3114 panic("m_copydata"); 3115 if (off < m->m_len) 3116 break; 3117 off -= m->m_len; 3118 m = m->m_next; 3119 } 3120 while (len > 0) { 3121 if (m == 0) 3122 panic("m_copydata"); 3123 count = MIN(m->m_len - off, len); 3124 bcopy(mtod(m, caddr_t) + off, cp, count); 3125 len -= count; 3126 cp += count; 3127 off = 0; 3128 m = m->m_next; 3129 } 3130 } 3131 3132 3133 /* 3134 * Copy data from a buffer back into the indicated mbuf chain, 3135 * starting "off" bytes from the beginning, extending the mbuf 3136 * chain if necessary. 3137 */ 3138 void 3139 m_copyback(m0, off, len, cp) 3140 struct mbuf *m0; 3141 int off; 3142 int len; 3143 caddr_t cp; 3144 { 3145 int mlen; 3146 struct mbuf *m = m0, *n; 3147 int totlen = 0; 3148 3149 if (m0 == 0) 3150 return; 3151 while (off > (mlen = m->m_len)) { 3152 off -= mlen; 3153 totlen += mlen; 3154 if (m->m_next == 0) { 3155 n = m_getclr(M_DONTWAIT, m->m_type); 3156 if (n == 0) 3157 goto out; 3158 n->m_len = min(MLEN, len + off); 3159 m->m_next = n; 3160 } 3161 m = m->m_next; 3162 } 3163 while (len > 0) { 3164 mlen = min(m->m_len - off, len); 3165 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3166 cp += mlen; 3167 len -= mlen; 3168 mlen += off; 3169 off = 0; 3170 totlen += mlen; 3171 if (len == 0) 3172 break; 3173 if (m->m_next == 0) { 3174 n = m_get(M_DONTWAIT, m->m_type); 3175 if (n == 0) 3176 break; 3177 n->m_len = min(MLEN, len); 3178 m->m_next = n; 3179 } 3180 m = m->m_next; 3181 } 3182 out: 3183 #if 0 3184 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3185 m->m_pkthdr.len = totlen; 3186 #endif 3187 return; 3188 } 3189 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3190 3191 3192 /* ------------------------------------------------------------------------ */ 3193 /* Function: fr_findgroup */ 3194 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3195 /* Parameters: group(I) - group name to search for */ 3196 /* unit(I) - device to which this group belongs */ 3197 /* set(I) - which set of rules (inactive/inactive) this is */ 3198 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3199 /* to where to add the next (last) group or where */ 3200 /* to delete group from. */ 3201 /* */ 3202 /* Search amongst the defined groups for a particular group number. */ 3203 /* ------------------------------------------------------------------------ */ 3204 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3205 char *group; 3206 minor_t unit; 3207 int set; 3208 frgroup_t ***fgpp; 3209 ipf_stack_t *ifs; 3210 { 3211 frgroup_t *fg, **fgp; 3212 3213 /* 3214 * Which list of groups to search in is dependent on which list of 3215 * rules are being operated on. 3216 */ 3217 fgp = &ifs->ifs_ipfgroups[unit][set]; 3218 3219 while ((fg = *fgp) != NULL) { 3220 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3221 break; 3222 else 3223 fgp = &fg->fg_next; 3224 } 3225 if (fgpp != NULL) 3226 *fgpp = fgp; 3227 return fg; 3228 } 3229 3230 3231 /* ------------------------------------------------------------------------ */ 3232 /* Function: fr_addgroup */ 3233 /* Returns: frgroup_t * - NULL == did not create group, */ 3234 /* != NULL == pointer to the group */ 3235 /* Parameters: num(I) - group number to add */ 3236 /* head(I) - rule pointer that is using this as the head */ 3237 /* flags(I) - rule flags which describe the type of rule it is */ 3238 /* unit(I) - device to which this group will belong to */ 3239 /* set(I) - which set of rules (inactive/inactive) this is */ 3240 /* Write Locks: ipf_mutex */ 3241 /* */ 3242 /* Add a new group head, or if it already exists, increase the reference */ 3243 /* count to it. */ 3244 /* ------------------------------------------------------------------------ */ 3245 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3246 char *group; 3247 void *head; 3248 u_32_t flags; 3249 minor_t unit; 3250 int set; 3251 ipf_stack_t *ifs; 3252 { 3253 frgroup_t *fg, **fgp; 3254 u_32_t gflags; 3255 3256 if (group == NULL) 3257 return NULL; 3258 3259 if (unit == IPL_LOGIPF && *group == '\0') 3260 return NULL; 3261 3262 fgp = NULL; 3263 gflags = flags & FR_INOUT; 3264 3265 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3266 if (fg != NULL) { 3267 if (fg->fg_flags == 0) 3268 fg->fg_flags = gflags; 3269 else if (gflags != fg->fg_flags) 3270 return NULL; 3271 fg->fg_ref++; 3272 return fg; 3273 } 3274 KMALLOC(fg, frgroup_t *); 3275 if (fg != NULL) { 3276 fg->fg_head = head; 3277 fg->fg_start = NULL; 3278 fg->fg_next = *fgp; 3279 bcopy(group, fg->fg_name, FR_GROUPLEN); 3280 fg->fg_flags = gflags; 3281 fg->fg_ref = 1; 3282 *fgp = fg; 3283 } 3284 return fg; 3285 } 3286 3287 3288 /* ------------------------------------------------------------------------ */ 3289 /* Function: fr_delgroup */ 3290 /* Returns: Nil */ 3291 /* Parameters: group(I) - group name to delete */ 3292 /* unit(I) - device to which this group belongs */ 3293 /* set(I) - which set of rules (inactive/inactive) this is */ 3294 /* Write Locks: ipf_mutex */ 3295 /* */ 3296 /* Attempt to delete a group head. */ 3297 /* Only do this when its reference count reaches 0. */ 3298 /* ------------------------------------------------------------------------ */ 3299 void fr_delgroup(group, unit, set, ifs) 3300 char *group; 3301 minor_t unit; 3302 int set; 3303 ipf_stack_t *ifs; 3304 { 3305 frgroup_t *fg, **fgp; 3306 3307 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3308 if (fg == NULL) 3309 return; 3310 3311 fg->fg_ref--; 3312 if (fg->fg_ref == 0) { 3313 *fgp = fg->fg_next; 3314 KFREE(fg); 3315 } 3316 } 3317 3318 3319 /* ------------------------------------------------------------------------ */ 3320 /* Function: fr_getrulen */ 3321 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3322 /* Parameters: unit(I) - device for which to count the rule's number */ 3323 /* flags(I) - which set of rules to find the rule in */ 3324 /* group(I) - group name */ 3325 /* n(I) - rule number to find */ 3326 /* */ 3327 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3328 /* group # g doesn't exist or there are less than n rules in the group. */ 3329 /* ------------------------------------------------------------------------ */ 3330 frentry_t *fr_getrulen(unit, group, n, ifs) 3331 int unit; 3332 char *group; 3333 u_32_t n; 3334 ipf_stack_t *ifs; 3335 { 3336 frentry_t *fr; 3337 frgroup_t *fg; 3338 3339 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3340 if (fg == NULL) 3341 return NULL; 3342 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3343 ; 3344 if (n != 0) 3345 return NULL; 3346 return fr; 3347 } 3348 3349 3350 /* ------------------------------------------------------------------------ */ 3351 /* Function: fr_rulen */ 3352 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3353 /* Parameters: unit(I) - device for which to count the rule's number */ 3354 /* fr(I) - pointer to rule to match */ 3355 /* */ 3356 /* Return the number for a rule on a specific filtering device. */ 3357 /* ------------------------------------------------------------------------ */ 3358 int fr_rulen(unit, fr, ifs) 3359 int unit; 3360 frentry_t *fr; 3361 ipf_stack_t *ifs; 3362 { 3363 frentry_t *fh; 3364 frgroup_t *fg; 3365 u_32_t n = 0; 3366 3367 if (fr == NULL) 3368 return -1; 3369 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3370 if (fg == NULL) 3371 return -1; 3372 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3373 if (fh == fr) 3374 break; 3375 if (fh == NULL) 3376 return -1; 3377 return n; 3378 } 3379 3380 3381 /* ------------------------------------------------------------------------ */ 3382 /* Function: frflushlist */ 3383 /* Returns: int - >= 0 - number of flushed rules */ 3384 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3385 /* unit(I) - device for which to flush rules */ 3386 /* flags(I) - which set of rules to flush */ 3387 /* nfreedp(O) - pointer to int where flush count is stored */ 3388 /* listp(I) - pointer to list to flush pointer */ 3389 /* Write Locks: ipf_mutex */ 3390 /* */ 3391 /* Recursively flush rules from the list, descending groups as they are */ 3392 /* encountered. if a rule is the head of a group and it has lost all its */ 3393 /* group members, then also delete the group reference. nfreedp is needed */ 3394 /* to store the accumulating count of rules removed, whereas the returned */ 3395 /* value is just the number removed from the current list. The latter is */ 3396 /* needed to correctly adjust reference counts on rules that define groups. */ 3397 /* */ 3398 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3399 /* ------------------------------------------------------------------------ */ 3400 static int frflushlist(set, unit, nfreedp, listp, ifs) 3401 int set; 3402 minor_t unit; 3403 int *nfreedp; 3404 frentry_t **listp; 3405 ipf_stack_t *ifs; 3406 { 3407 int freed = 0; 3408 frentry_t *fp; 3409 3410 while ((fp = *listp) != NULL) { 3411 if ((fp->fr_type & FR_T_BUILTIN) || 3412 !(fp->fr_flags & FR_COPIED)) { 3413 listp = &fp->fr_next; 3414 continue; 3415 } 3416 *listp = fp->fr_next; 3417 if (fp->fr_grp != NULL) { 3418 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3419 } 3420 3421 if (fp->fr_grhead != NULL) { 3422 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3423 *fp->fr_grhead = '\0'; 3424 } 3425 3426 ASSERT(fp->fr_ref > 0); 3427 fp->fr_next = NULL; 3428 if (fr_derefrule(&fp, ifs) == 0) 3429 freed++; 3430 } 3431 *nfreedp += freed; 3432 return freed; 3433 } 3434 3435 3436 /* ------------------------------------------------------------------------ */ 3437 /* Function: frflush */ 3438 /* Returns: int - >= 0 - number of flushed rules */ 3439 /* Parameters: unit(I) - device for which to flush rules */ 3440 /* flags(I) - which set of rules to flush */ 3441 /* */ 3442 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3443 /* and IPv6) as defined by the value of flags. */ 3444 /* ------------------------------------------------------------------------ */ 3445 int frflush(unit, proto, flags, ifs) 3446 minor_t unit; 3447 int proto, flags; 3448 ipf_stack_t *ifs; 3449 { 3450 int flushed = 0, set; 3451 3452 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3453 3454 set = ifs->ifs_fr_active; 3455 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3456 set = 1 - set; 3457 3458 if (flags & FR_OUTQUE) { 3459 if (proto == 0 || proto == 6) { 3460 (void) frflushlist(set, unit, 3461 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3462 (void) frflushlist(set, unit, 3463 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3464 } 3465 if (proto == 0 || proto == 4) { 3466 (void) frflushlist(set, unit, 3467 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3468 (void) frflushlist(set, unit, 3469 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3470 } 3471 } 3472 if (flags & FR_INQUE) { 3473 if (proto == 0 || proto == 6) { 3474 (void) frflushlist(set, unit, 3475 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3476 (void) frflushlist(set, unit, 3477 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3478 } 3479 if (proto == 0 || proto == 4) { 3480 (void) frflushlist(set, unit, 3481 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3482 (void) frflushlist(set, unit, 3483 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3484 } 3485 } 3486 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3487 3488 if (unit == IPL_LOGIPF) { 3489 int tmp; 3490 3491 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3492 if (tmp >= 0) 3493 flushed += tmp; 3494 } 3495 return flushed; 3496 } 3497 3498 3499 /* ------------------------------------------------------------------------ */ 3500 /* Function: memstr */ 3501 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3502 /* Parameters: src(I) - pointer to byte sequence to match */ 3503 /* dst(I) - pointer to byte sequence to search */ 3504 /* slen(I) - match length */ 3505 /* dlen(I) - length available to search in */ 3506 /* */ 3507 /* Search dst for a sequence of bytes matching those at src and extend for */ 3508 /* slen bytes. */ 3509 /* ------------------------------------------------------------------------ */ 3510 char *memstr(src, dst, slen, dlen) 3511 char *src, *dst; 3512 int slen, dlen; 3513 { 3514 char *s = NULL; 3515 3516 while (dlen >= slen) { 3517 if (bcmp(src, dst, slen) == 0) { 3518 s = dst; 3519 break; 3520 } 3521 dst++; 3522 dlen--; 3523 } 3524 return s; 3525 } 3526 /* ------------------------------------------------------------------------ */ 3527 /* Function: fr_fixskip */ 3528 /* Returns: Nil */ 3529 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3530 /* rp(I) - rule added/removed with skip in it. */ 3531 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3532 /* depending on whether a rule was just added */ 3533 /* or removed. */ 3534 /* */ 3535 /* Adjust all the rules in a list which would have skip'd past the position */ 3536 /* where we are inserting to skip to the right place given the change. */ 3537 /* ------------------------------------------------------------------------ */ 3538 void fr_fixskip(listp, rp, addremove) 3539 frentry_t **listp, *rp; 3540 int addremove; 3541 { 3542 int rules, rn; 3543 frentry_t *fp; 3544 3545 rules = 0; 3546 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3547 rules++; 3548 3549 if (!fp) 3550 return; 3551 3552 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3553 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3554 fp->fr_arg += addremove; 3555 } 3556 3557 3558 #ifdef _KERNEL 3559 /* ------------------------------------------------------------------------ */ 3560 /* Function: count4bits */ 3561 /* Returns: int - >= 0 - number of consecutive bits in input */ 3562 /* Parameters: ip(I) - 32bit IP address */ 3563 /* */ 3564 /* IPv4 ONLY */ 3565 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3566 /* consecutive 1's is different to that passed, return -1, else return # */ 3567 /* of bits. */ 3568 /* ------------------------------------------------------------------------ */ 3569 int count4bits(ip) 3570 u_32_t ip; 3571 { 3572 u_32_t ipn; 3573 int cnt = 0, i, j; 3574 3575 ip = ipn = ntohl(ip); 3576 for (i = 32; i; i--, ipn *= 2) 3577 if (ipn & 0x80000000) 3578 cnt++; 3579 else 3580 break; 3581 ipn = 0; 3582 for (i = 32, j = cnt; i; i--, j--) { 3583 ipn *= 2; 3584 if (j > 0) 3585 ipn++; 3586 } 3587 if (ipn == ip) 3588 return cnt; 3589 return -1; 3590 } 3591 3592 3593 #ifdef USE_INET6 3594 /* ------------------------------------------------------------------------ */ 3595 /* Function: count6bits */ 3596 /* Returns: int - >= 0 - number of consecutive bits in input */ 3597 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3598 /* */ 3599 /* IPv6 ONLY */ 3600 /* count consecutive 1's in bit mask. */ 3601 /* ------------------------------------------------------------------------ */ 3602 int count6bits(msk) 3603 u_32_t *msk; 3604 { 3605 int i = 0, k; 3606 u_32_t j; 3607 3608 for (k = 3; k >= 0; k--) 3609 if (msk[k] == 0xffffffff) 3610 i += 32; 3611 else { 3612 for (j = msk[k]; j; j <<= 1) 3613 if (j & 0x80000000) 3614 i++; 3615 } 3616 return i; 3617 } 3618 # endif 3619 #endif /* _KERNEL */ 3620 3621 3622 /* ------------------------------------------------------------------------ */ 3623 /* Function: fr_ifsync */ 3624 /* Returns: void * - new interface identifier */ 3625 /* Parameters: action(I) - type of synchronisation to do */ 3626 /* v(I) - IP version being sync'd (v4 or v6) */ 3627 /* newifp(I) - interface identifier being introduced/removed */ 3628 /* oldifp(I) - interface identifier in a filter rule */ 3629 /* newname(I) - name associated with newifp interface */ 3630 /* oldname(I) - name associated with oldifp interface */ 3631 /* ifs - pointer to IPF stack instance */ 3632 /* */ 3633 /* This function returns what the new value for "oldifp" should be for its */ 3634 /* caller. In some cases it will not change, in some it will. */ 3635 /* action == IPFSYNC_RESYNC */ 3636 /* a new value for oldifp will always be looked up, according to oldname, */ 3637 /* the values of newname and newifp are ignored. */ 3638 /* action == IPFSYNC_NEWIFP */ 3639 /* if oldname matches newname then we are doing a sync for the matching */ 3640 /* interface, so we return newifp to be used in place of oldifp. If the */ 3641 /* the names don't match, just return oldifp. */ 3642 /* action == IPFSYNC_OLDIFP */ 3643 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3644 /* references to oldifp, so we return "-1". */ 3645 /* ----- */ 3646 /* NOTE: */ 3647 /* This function processes NIC event from PF_HOOKS. The action parameter */ 3648 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */ 3649 /* one single switch statement() in ipf_nic_event_vx() function, which */ 3650 /* translates the HOOK event type to action parameter passed to fr_ifsync. */ 3651 /* The translation table looks as follows: */ 3652 /* event | action */ 3653 /* ----------------+------------- */ 3654 /* NE_PLUMB | IPFSYNC_NEWIFP */ 3655 /* NE_UNPLUMB | IPFSYNC_OLDIFP */ 3656 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */ 3657 /* */ 3658 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */ 3659 /* table entry, NAT table entry, fragment ...). The newname and newifp */ 3660 /* parameters come from hook event data, parameters are taken from event */ 3661 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */ 3662 /* notified by hook function. */ 3663 /* */ 3664 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */ 3665 /* to plumb the interface, which is already plumbed. In such case we always */ 3666 /* get the event from PF_HOOKS as follows: */ 3667 /* event: NE_PLUMB */ 3668 /* NIC: 0x0 */ 3669 /* ------------------------------------------------------------------------ */ 3670 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3671 int action, v; 3672 char *newname, *oldname; 3673 void *newifp, *oldifp; 3674 ipf_stack_t *ifs; 3675 { 3676 void *rval = oldifp; 3677 3678 switch (action) 3679 { 3680 case IPFSYNC_RESYNC : 3681 if (oldname[0] != '\0') { 3682 rval = fr_resolvenic(oldname, v, ifs); 3683 } 3684 break; 3685 case IPFSYNC_NEWIFP : 3686 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3687 rval = newifp; 3688 break; 3689 case IPFSYNC_OLDIFP : 3690 /* 3691 * If interface gets unplumbed it must be invalidated, which 3692 * means set all existing references to the interface to -1. 3693 * We don't want to invalidate references for wildcard 3694 * (unbound) rules (entries). 3695 */ 3696 if (newifp == oldifp) 3697 rval = (oldifp) ? (void *)-1 : NULL; 3698 break; 3699 } 3700 3701 return rval; 3702 } 3703 3704 3705 /* ------------------------------------------------------------------------ */ 3706 /* Function: frsynclist */ 3707 /* Returns: void */ 3708 /* Parameters: action(I) - type of synchronisation to do */ 3709 /* v(I) - IP version being sync'd (v4 or v6) */ 3710 /* ifp(I) - interface identifier associated with action */ 3711 /* ifname(I) - name associated with ifp parameter */ 3712 /* fr(I) - pointer to filter rule */ 3713 /* ifs - pointer to IPF stack instance */ 3714 /* Write Locks: ipf_mutex */ 3715 /* */ 3716 /* Walk through a list of filter rules and resolve any interface names into */ 3717 /* pointers. Where dynamic addresses are used, also update the IP address */ 3718 /* used in the rule. The interface pointer is used to limit the lookups to */ 3719 /* a specific set of matching names if it is non-NULL. */ 3720 /* ------------------------------------------------------------------------ */ 3721 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3722 int action, v; 3723 void *ifp; 3724 char *ifname; 3725 frentry_t *fr; 3726 ipf_stack_t *ifs; 3727 { 3728 frdest_t *fdp; 3729 int rv, i; 3730 3731 for (; fr; fr = fr->fr_next) { 3732 rv = fr->fr_v; 3733 if (v != 0 && v != rv) 3734 continue; 3735 3736 /* 3737 * Lookup all the interface names that are part of the rule. 3738 */ 3739 for (i = 0; i < 4; i++) { 3740 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3741 fr->fr_ifnames[i], 3742 ifp, fr->fr_ifas[i], 3743 ifs); 3744 } 3745 3746 fdp = &fr->fr_tifs[0]; 3747 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3748 ifp, fdp->fd_ifp, ifs); 3749 3750 fdp = &fr->fr_tifs[1]; 3751 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3752 ifp, fdp->fd_ifp, ifs); 3753 3754 fdp = &fr->fr_dif; 3755 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3756 ifp, fdp->fd_ifp, ifs); 3757 3758 if (action != IPFSYNC_RESYNC) 3759 continue; 3760 3761 if (fr->fr_type == FR_T_IPF) { 3762 if (fr->fr_satype != FRI_NORMAL && 3763 fr->fr_satype != FRI_LOOKUP) { 3764 (void)fr_ifpaddr(rv, fr->fr_satype, 3765 fr->fr_ifas[fr->fr_sifpidx], 3766 &fr->fr_src, &fr->fr_smsk, 3767 ifs); 3768 } 3769 if (fr->fr_datype != FRI_NORMAL && 3770 fr->fr_datype != FRI_LOOKUP) { 3771 (void)fr_ifpaddr(rv, fr->fr_datype, 3772 fr->fr_ifas[fr->fr_difpidx], 3773 &fr->fr_dst, &fr->fr_dmsk, 3774 ifs); 3775 } 3776 } 3777 3778 #ifdef IPFILTER_LOOKUP 3779 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3780 fr->fr_srcptr == NULL) { 3781 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3782 fr->fr_srcnum, 3783 &fr->fr_srcfunc, ifs); 3784 } 3785 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3786 fr->fr_dstptr == NULL) { 3787 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3788 fr->fr_dstnum, 3789 &fr->fr_dstfunc, ifs); 3790 } 3791 #endif 3792 } 3793 } 3794 3795 3796 #ifdef _KERNEL 3797 /* ------------------------------------------------------------------------ */ 3798 /* Function: frsync */ 3799 /* Returns: void */ 3800 /* Parameters: action(I) - type of synchronisation to do */ 3801 /* v(I) - IP version being sync'd (v4 or v6) */ 3802 /* ifp(I) - interface identifier associated with action */ 3803 /* name(I) - name associated with ifp parameter */ 3804 /* */ 3805 /* frsync() is called when we suspect that the interface list or */ 3806 /* information about interfaces (like IP#) has changed. Go through all */ 3807 /* filter rules, NAT entries and the state table and check if anything */ 3808 /* needs to be changed/updated. */ 3809 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3810 /* in which this was done to support three different types of sync: */ 3811 /* - complete resync of all interface name/identifiers */ 3812 /* - new interface being announced with its name and identifier */ 3813 /* - interface removal being announced by only its identifier */ 3814 /* ------------------------------------------------------------------------ */ 3815 void frsync(action, v, ifp, name, ifs) 3816 int action, v; 3817 void *ifp; 3818 char *name; 3819 ipf_stack_t *ifs; 3820 { 3821 int i; 3822 3823 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3824 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3825 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3826 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3827 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3828 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3829 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3830 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3831 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3832 3833 for (i = 0; i < IPL_LOGSIZE; i++) { 3834 frgroup_t *g; 3835 3836 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3837 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3838 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3839 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3840 } 3841 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3842 } 3843 3844 3845 /* 3846 * In the functions below, bcopy() is called because the pointer being 3847 * copied _from_ in this instance is a pointer to a char buf (which could 3848 * end up being unaligned) and on the kernel's local stack. 3849 */ 3850 /* ------------------------------------------------------------------------ */ 3851 /* Function: copyinptr */ 3852 /* Returns: int - 0 = success, else failure */ 3853 /* Parameters: src(I) - pointer to the source address */ 3854 /* dst(I) - destination address */ 3855 /* size(I) - number of bytes to copy */ 3856 /* */ 3857 /* Copy a block of data in from user space, given a pointer to the pointer */ 3858 /* to start copying from (src) and a pointer to where to store it (dst). */ 3859 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 3860 /* ------------------------------------------------------------------------ */ 3861 int copyinptr(src, dst, size) 3862 void *src, *dst; 3863 size_t size; 3864 { 3865 caddr_t ca; 3866 int err; 3867 3868 # if SOLARIS 3869 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 3870 if (err != 0) 3871 return err; 3872 # else 3873 bcopy(src, (caddr_t)&ca, sizeof(ca)); 3874 # endif 3875 err = COPYIN(ca, dst, size); 3876 return err; 3877 } 3878 3879 3880 /* ------------------------------------------------------------------------ */ 3881 /* Function: copyoutptr */ 3882 /* Returns: int - 0 = success, else failure */ 3883 /* Parameters: src(I) - pointer to the source address */ 3884 /* dst(I) - destination address */ 3885 /* size(I) - number of bytes to copy */ 3886 /* */ 3887 /* Copy a block of data out to user space, given a pointer to the pointer */ 3888 /* to start copying from (src) and a pointer to where to store it (dst). */ 3889 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 3890 /* ------------------------------------------------------------------------ */ 3891 int copyoutptr(src, dst, size) 3892 void *src, *dst; 3893 size_t size; 3894 { 3895 caddr_t ca; 3896 int err; 3897 3898 # if SOLARIS 3899 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 3900 if (err != 0) 3901 return err; 3902 # else 3903 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 3904 # endif 3905 err = COPYOUT(src, ca, size); 3906 return err; 3907 } 3908 #endif 3909 3910 3911 /* ------------------------------------------------------------------------ */ 3912 /* Function: fr_lock */ 3913 /* Returns: int - 0 = success, else error */ 3914 /* Parameters: data(I) - pointer to lock value to set */ 3915 /* lockp(O) - pointer to location to store old lock value */ 3916 /* */ 3917 /* Get the new value for the lock integer, set it and return the old value */ 3918 /* in *lockp. */ 3919 /* ------------------------------------------------------------------------ */ 3920 int fr_lock(data, lockp) 3921 caddr_t data; 3922 int *lockp; 3923 { 3924 int arg, err; 3925 3926 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 3927 if (err != 0) 3928 return (EFAULT); 3929 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 3930 if (err != 0) 3931 return (EFAULT); 3932 *lockp = arg; 3933 return (0); 3934 } 3935 3936 3937 /* ------------------------------------------------------------------------ */ 3938 /* Function: fr_getstat */ 3939 /* Returns: Nil */ 3940 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 3941 /* */ 3942 /* Stores a copy of current pointers, counters, etc, in the friostat */ 3943 /* structure. */ 3944 /* ------------------------------------------------------------------------ */ 3945 void fr_getstat(fiop, ifs) 3946 friostat_t *fiop; 3947 ipf_stack_t *ifs; 3948 { 3949 int i, j; 3950 3951 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 3952 sizeof(filterstats_t) * 2); 3953 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 3954 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 3955 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 3956 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 3957 3958 for (i = 0; i < 2; i++) 3959 for (j = 0; j < 2; j++) { 3960 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 3961 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 3962 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 3963 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 3964 } 3965 3966 fiop->f_ticks = ifs->ifs_fr_ticks; 3967 fiop->f_active = ifs->ifs_fr_active; 3968 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 3969 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 3970 3971 fiop->f_running = ifs->ifs_fr_running; 3972 for (i = 0; i < IPL_LOGSIZE; i++) { 3973 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 3974 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 3975 } 3976 #ifdef IPFILTER_LOG 3977 fiop->f_logging = 1; 3978 #else 3979 fiop->f_logging = 0; 3980 #endif 3981 fiop->f_defpass = ifs->ifs_fr_pass; 3982 fiop->f_features = fr_features; 3983 (void) strncpy(fiop->f_version, ipfilter_version, 3984 sizeof(fiop->f_version)); 3985 } 3986 3987 3988 #ifdef USE_INET6 3989 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 3990 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 3991 -1, /* 1: UNUSED */ 3992 -1, /* 2: UNUSED */ 3993 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 3994 -1, /* 4: ICMP_SOURCEQUENCH */ 3995 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 3996 -1, /* 6: UNUSED */ 3997 -1, /* 7: UNUSED */ 3998 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 3999 -1, /* 9: UNUSED */ 4000 -1, /* 10: UNUSED */ 4001 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 4002 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 4003 -1, /* 13: ICMP_TSTAMP */ 4004 -1, /* 14: ICMP_TSTAMPREPLY */ 4005 -1, /* 15: ICMP_IREQ */ 4006 -1, /* 16: ICMP_IREQREPLY */ 4007 -1, /* 17: ICMP_MASKREQ */ 4008 -1, /* 18: ICMP_MASKREPLY */ 4009 }; 4010 4011 4012 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 4013 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 4014 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 4015 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 4016 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 4017 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 4018 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 4019 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 4020 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 4021 -1, /* 8: ICMP_UNREACH_ISOLATED */ 4022 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 4023 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 4024 -1, /* 11: ICMP_UNREACH_TOSNET */ 4025 -1, /* 12: ICMP_UNREACH_TOSHOST */ 4026 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 4027 }; 4028 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 4029 #endif 4030 4031 int icmpreplytype4[ICMP_MAXTYPE + 1]; 4032 4033 4034 /* ------------------------------------------------------------------------ */ 4035 /* Function: fr_matchicmpqueryreply */ 4036 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 4037 /* Parameters: v(I) - IP protocol version (4 or 6) */ 4038 /* ic(I) - ICMP information */ 4039 /* icmp(I) - ICMP packet header */ 4040 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 4041 /* */ 4042 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 4043 /* reply to one as described by what's in ic. If it is a match, return 1, */ 4044 /* else return 0 for no match. */ 4045 /* ------------------------------------------------------------------------ */ 4046 int fr_matchicmpqueryreply(v, ic, icmp, rev) 4047 int v; 4048 icmpinfo_t *ic; 4049 icmphdr_t *icmp; 4050 int rev; 4051 { 4052 int ictype; 4053 4054 ictype = ic->ici_type; 4055 4056 if (v == 4) { 4057 /* 4058 * If we matched its type on the way in, then when going out 4059 * it will still be the same type. 4060 */ 4061 if ((!rev && (icmp->icmp_type == ictype)) || 4062 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4063 if (icmp->icmp_type != ICMP_ECHOREPLY) 4064 return 1; 4065 if (icmp->icmp_id == ic->ici_id) 4066 return 1; 4067 } 4068 } 4069 #ifdef USE_INET6 4070 else if (v == 6) { 4071 if ((!rev && (icmp->icmp_type == ictype)) || 4072 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4073 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4074 return 1; 4075 if (icmp->icmp_id == ic->ici_id) 4076 return 1; 4077 } 4078 } 4079 #endif 4080 return 0; 4081 } 4082 4083 4084 #ifdef IPFILTER_LOOKUP 4085 /* ------------------------------------------------------------------------ */ 4086 /* Function: fr_resolvelookup */ 4087 /* Returns: void * - NULL = failure, else success. */ 4088 /* Parameters: type(I) - type of lookup these parameters are for. */ 4089 /* number(I) - table number to use when searching */ 4090 /* funcptr(IO) - pointer to pointer for storing IP address */ 4091 /* searching function. */ 4092 /* */ 4093 /* Search for the "table" number passed in amongst those configured for */ 4094 /* that particular type. If the type is recognised then the function to */ 4095 /* call to do the IP address search will be change, regardless of whether */ 4096 /* or not the "table" number exists. */ 4097 /* ------------------------------------------------------------------------ */ 4098 static void *fr_resolvelookup(type, number, funcptr, ifs) 4099 u_int type, number; 4100 lookupfunc_t *funcptr; 4101 ipf_stack_t *ifs; 4102 { 4103 char name[FR_GROUPLEN]; 4104 iphtable_t *iph; 4105 ip_pool_t *ipo; 4106 void *ptr; 4107 4108 #if defined(SNPRINTF) && defined(_KERNEL) 4109 (void) SNPRINTF(name, sizeof(name), "%u", number); 4110 #else 4111 (void) sprintf(name, "%u", number); 4112 #endif 4113 4114 READ_ENTER(&ifs->ifs_ip_poolrw); 4115 4116 switch (type) 4117 { 4118 case IPLT_POOL : 4119 # if (defined(__osf__) && defined(_KERNEL)) 4120 ptr = NULL; 4121 *funcptr = NULL; 4122 # else 4123 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4124 ptr = ipo; 4125 if (ipo != NULL) { 4126 ATOMIC_INC32(ipo->ipo_ref); 4127 } 4128 *funcptr = ip_pool_search; 4129 # endif 4130 break; 4131 case IPLT_HASH : 4132 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4133 ptr = iph; 4134 if (iph != NULL) { 4135 ATOMIC_INC32(iph->iph_ref); 4136 } 4137 *funcptr = fr_iphmfindip; 4138 break; 4139 default: 4140 ptr = NULL; 4141 *funcptr = NULL; 4142 break; 4143 } 4144 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4145 4146 return ptr; 4147 } 4148 #endif 4149 4150 4151 /* ------------------------------------------------------------------------ */ 4152 /* Function: frrequest */ 4153 /* Returns: int - 0 == success, > 0 == errno value */ 4154 /* Parameters: unit(I) - device for which this is for */ 4155 /* req(I) - ioctl command (SIOC*) */ 4156 /* data(I) - pointr to ioctl data */ 4157 /* set(I) - 1 or 0 (filter set) */ 4158 /* makecopy(I) - flag indicating whether data points to a rule */ 4159 /* in kernel space & hence doesn't need copying. */ 4160 /* */ 4161 /* This function handles all the requests which operate on the list of */ 4162 /* filter rules. This includes adding, deleting, insertion. It is also */ 4163 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4164 /* names are resolved here and other sanity checks are made on the content */ 4165 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4166 /* then make sure they are created and initialised before exiting. */ 4167 /* ------------------------------------------------------------------------ */ 4168 int frrequest(unit, req, data, set, makecopy, ifs) 4169 int unit; 4170 ioctlcmd_t req; 4171 int set, makecopy; 4172 caddr_t data; 4173 ipf_stack_t *ifs; 4174 { 4175 frentry_t frd, *fp, *f, **fprev, **ftail; 4176 int error = 0, in, v; 4177 void *ptr, *uptr; 4178 u_int *p, *pp; 4179 frgroup_t *fg; 4180 char *group; 4181 4182 fg = NULL; 4183 fp = &frd; 4184 if (makecopy != 0) { 4185 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4186 if (error) 4187 return EFAULT; 4188 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4189 return EINVAL; 4190 fp->fr_ref = 0; 4191 fp->fr_flags |= FR_COPIED; 4192 } else { 4193 fp = (frentry_t *)data; 4194 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4195 return EINVAL; 4196 fp->fr_flags &= ~FR_COPIED; 4197 } 4198 4199 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4200 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4201 return EINVAL; 4202 4203 v = fp->fr_v; 4204 uptr = fp->fr_data; 4205 4206 /* 4207 * Only filter rules for IPv4 or IPv6 are accepted. 4208 */ 4209 if (v == 4) 4210 /*EMPTY*/; 4211 #ifdef USE_INET6 4212 else if (v == 6) 4213 /*EMPTY*/; 4214 #endif 4215 else { 4216 return EINVAL; 4217 } 4218 4219 /* 4220 * If the rule is being loaded from user space, i.e. we had to copy it 4221 * into kernel space, then do not trust the function pointer in the 4222 * rule. 4223 */ 4224 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4225 if (fr_findfunc(fp->fr_func) == NULL) 4226 return ESRCH; 4227 error = fr_funcinit(fp, ifs); 4228 if (error != 0) 4229 return error; 4230 } 4231 4232 ptr = NULL; 4233 /* 4234 * Check that the group number does exist and that its use (in/out) 4235 * matches what the rule is. 4236 */ 4237 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4238 *fp->fr_grhead = '\0'; 4239 group = fp->fr_group; 4240 if (!strncmp(group, "0", FR_GROUPLEN)) 4241 *group = '\0'; 4242 4243 if (FR_ISACCOUNT(fp->fr_flags)) 4244 unit = IPL_LOGCOUNT; 4245 4246 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4247 fg = fr_findgroup(group, unit, set, NULL, ifs); 4248 if (fg == NULL) 4249 return ESRCH; 4250 if (fg->fg_flags == 0) 4251 fg->fg_flags = fp->fr_flags & FR_INOUT; 4252 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4253 return ESRCH; 4254 } 4255 4256 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4257 4258 /* 4259 * Work out which rule list this change is being applied to. 4260 */ 4261 ftail = NULL; 4262 fprev = NULL; 4263 if (unit == IPL_LOGAUTH) 4264 fprev = &ifs->ifs_ipauth; 4265 else if (v == 4) { 4266 if (FR_ISACCOUNT(fp->fr_flags)) 4267 fprev = &ifs->ifs_ipacct[in][set]; 4268 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4269 fprev = &ifs->ifs_ipfilter[in][set]; 4270 } else if (v == 6) { 4271 if (FR_ISACCOUNT(fp->fr_flags)) 4272 fprev = &ifs->ifs_ipacct6[in][set]; 4273 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4274 fprev = &ifs->ifs_ipfilter6[in][set]; 4275 } 4276 if (fprev == NULL) 4277 return ESRCH; 4278 4279 if (*group != '\0') { 4280 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4281 return ESRCH; 4282 fprev = &fg->fg_start; 4283 } 4284 4285 ftail = fprev; 4286 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4287 if (fp->fr_collect <= f->fr_collect) { 4288 ftail = fprev; 4289 f = NULL; 4290 break; 4291 } 4292 fprev = ftail; 4293 } 4294 4295 /* 4296 * Copy in extra data for the rule. 4297 */ 4298 if (fp->fr_dsize != 0) { 4299 if (makecopy != 0) { 4300 KMALLOCS(ptr, void *, fp->fr_dsize); 4301 if (!ptr) 4302 return ENOMEM; 4303 error = COPYIN(uptr, ptr, fp->fr_dsize); 4304 } else { 4305 ptr = uptr; 4306 error = 0; 4307 } 4308 if (error != 0) { 4309 KFREES(ptr, fp->fr_dsize); 4310 return ENOMEM; 4311 } 4312 fp->fr_data = ptr; 4313 } else 4314 fp->fr_data = NULL; 4315 4316 /* 4317 * Perform per-rule type sanity checks of their members. 4318 */ 4319 switch (fp->fr_type & ~FR_T_BUILTIN) 4320 { 4321 #if defined(IPFILTER_BPF) 4322 case FR_T_BPFOPC : 4323 if (fp->fr_dsize == 0) 4324 return EINVAL; 4325 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4326 if (makecopy && fp->fr_data != NULL) { 4327 KFREES(fp->fr_data, fp->fr_dsize); 4328 } 4329 return EINVAL; 4330 } 4331 break; 4332 #endif 4333 case FR_T_IPF : 4334 if (fp->fr_dsize != sizeof(fripf_t)) 4335 return EINVAL; 4336 4337 /* 4338 * Allowing a rule with both "keep state" and "with oow" is 4339 * pointless because adding a state entry to the table will 4340 * fail with the out of window (oow) flag set. 4341 */ 4342 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) 4343 return EINVAL; 4344 4345 switch (fp->fr_satype) 4346 { 4347 case FRI_BROADCAST : 4348 case FRI_DYNAMIC : 4349 case FRI_NETWORK : 4350 case FRI_NETMASKED : 4351 case FRI_PEERADDR : 4352 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4353 if (makecopy && fp->fr_data != NULL) { 4354 KFREES(fp->fr_data, fp->fr_dsize); 4355 } 4356 return EINVAL; 4357 } 4358 break; 4359 #ifdef IPFILTER_LOOKUP 4360 case FRI_LOOKUP : 4361 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4362 fp->fr_srcnum, 4363 &fp->fr_srcfunc, ifs); 4364 break; 4365 #endif 4366 default : 4367 break; 4368 } 4369 4370 switch (fp->fr_datype) 4371 { 4372 case FRI_BROADCAST : 4373 case FRI_DYNAMIC : 4374 case FRI_NETWORK : 4375 case FRI_NETMASKED : 4376 case FRI_PEERADDR : 4377 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4378 if (makecopy && fp->fr_data != NULL) { 4379 KFREES(fp->fr_data, fp->fr_dsize); 4380 } 4381 return EINVAL; 4382 } 4383 break; 4384 #ifdef IPFILTER_LOOKUP 4385 case FRI_LOOKUP : 4386 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4387 fp->fr_dstnum, 4388 &fp->fr_dstfunc, ifs); 4389 break; 4390 #endif 4391 default : 4392 break; 4393 } 4394 break; 4395 case FR_T_NONE : 4396 break; 4397 case FR_T_CALLFUNC : 4398 break; 4399 case FR_T_COMPIPF : 4400 break; 4401 default : 4402 if (makecopy && fp->fr_data != NULL) { 4403 KFREES(fp->fr_data, fp->fr_dsize); 4404 } 4405 return EINVAL; 4406 } 4407 4408 /* 4409 * Lookup all the interface names that are part of the rule. 4410 */ 4411 frsynclist(0, 0, NULL, NULL, fp, ifs); 4412 fp->fr_statecnt = 0; 4413 4414 /* 4415 * Look for an existing matching filter rule, but don't include the 4416 * next or interface pointer in the comparison (fr_next, fr_ifa). 4417 * This elminates rules which are indentical being loaded. Checksum 4418 * the constant part of the filter rule to make comparisons quicker 4419 * (this meaning no pointers are included). 4420 */ 4421 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4422 p < pp; p++) 4423 fp->fr_cksum += *p; 4424 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4425 for (p = (u_int *)fp->fr_data; p < pp; p++) 4426 fp->fr_cksum += *p; 4427 4428 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4429 4430 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4431 if ((fp->fr_cksum != f->fr_cksum) || 4432 (f->fr_dsize != fp->fr_dsize)) 4433 continue; 4434 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4435 continue; 4436 if ((!ptr && !f->fr_data) || 4437 (ptr && f->fr_data && 4438 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4439 break; 4440 } 4441 4442 /* 4443 * If zero'ing statistics, copy current to caller and zero. 4444 */ 4445 if (req == (ioctlcmd_t)SIOCZRLST) { 4446 if (f == NULL) 4447 error = ESRCH; 4448 else { 4449 /* 4450 * Copy and reduce lock because of impending copyout. 4451 * Well we should, but if we do then the atomicity of 4452 * this call and the correctness of fr_hits and 4453 * fr_bytes cannot be guaranteed. As it is, this code 4454 * only resets them to 0 if they are successfully 4455 * copied out into user space. 4456 */ 4457 bcopy((char *)f, (char *)fp, sizeof(*f)); 4458 4459 /* 4460 * When we copy this rule back out, set the data 4461 * pointer to be what it was in user space. 4462 */ 4463 fp->fr_data = uptr; 4464 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4465 4466 if (error == 0) { 4467 if ((f->fr_dsize != 0) && (uptr != NULL)) 4468 error = COPYOUT(f->fr_data, uptr, 4469 f->fr_dsize); 4470 if (error == 0) { 4471 f->fr_hits = 0; 4472 f->fr_bytes = 0; 4473 } 4474 } 4475 } 4476 4477 if ((ptr != NULL) && (makecopy != 0)) { 4478 KFREES(ptr, fp->fr_dsize); 4479 } 4480 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4481 return error; 4482 } 4483 4484 if (!f) { 4485 /* 4486 * At the end of this, ftail must point to the place where the 4487 * new rule is to be saved/inserted/added. 4488 * For SIOCAD*FR, this should be the last rule in the group of 4489 * rules that have equal fr_collect fields. 4490 * For SIOCIN*FR, ... 4491 */ 4492 if (req == (ioctlcmd_t)SIOCADAFR || 4493 req == (ioctlcmd_t)SIOCADIFR) { 4494 4495 for (ftail = fprev; (f = *ftail) != NULL; ) { 4496 if (f->fr_collect > fp->fr_collect) 4497 break; 4498 ftail = &f->fr_next; 4499 } 4500 f = NULL; 4501 ptr = NULL; 4502 error = 0; 4503 } else if (req == (ioctlcmd_t)SIOCINAFR || 4504 req == (ioctlcmd_t)SIOCINIFR) { 4505 while ((f = *fprev) != NULL) { 4506 if (f->fr_collect >= fp->fr_collect) 4507 break; 4508 fprev = &f->fr_next; 4509 } 4510 ftail = fprev; 4511 if (fp->fr_hits != 0) { 4512 while (fp->fr_hits && (f = *ftail)) { 4513 if (f->fr_collect != fp->fr_collect) 4514 break; 4515 fprev = ftail; 4516 ftail = &f->fr_next; 4517 fp->fr_hits--; 4518 } 4519 } 4520 f = NULL; 4521 ptr = NULL; 4522 error = 0; 4523 } 4524 } 4525 4526 /* 4527 * Request to remove a rule. 4528 */ 4529 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4530 if (!f) 4531 error = ESRCH; 4532 else { 4533 /* 4534 * Do not allow activity from user space to interfere 4535 * with rules not loaded that way. 4536 */ 4537 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4538 error = EPERM; 4539 goto done; 4540 } 4541 4542 /* 4543 * Return EBUSY if the rule is being reference by 4544 * something else (eg state information. 4545 */ 4546 if (f->fr_ref > 1) { 4547 error = EBUSY; 4548 goto done; 4549 } 4550 #ifdef IPFILTER_SCAN 4551 if (f->fr_isctag[0] != '\0' && 4552 (f->fr_isc != (struct ipscan *)-1)) 4553 ipsc_detachfr(f); 4554 #endif 4555 if (unit == IPL_LOGAUTH) { 4556 error = fr_preauthcmd(req, f, ftail, ifs); 4557 goto done; 4558 } 4559 if (*f->fr_grhead != '\0') 4560 fr_delgroup(f->fr_grhead, unit, set, ifs); 4561 fr_fixskip(ftail, f, -1); 4562 *ftail = f->fr_next; 4563 f->fr_next = NULL; 4564 (void)fr_derefrule(&f, ifs); 4565 } 4566 } else { 4567 /* 4568 * Not removing, so we must be adding/inserting a rule. 4569 */ 4570 if (f) 4571 error = EEXIST; 4572 else { 4573 if (unit == IPL_LOGAUTH) { 4574 error = fr_preauthcmd(req, fp, ftail, ifs); 4575 goto done; 4576 } 4577 if (makecopy) { 4578 KMALLOC(f, frentry_t *); 4579 } else 4580 f = fp; 4581 if (f != NULL) { 4582 if (fp != f) 4583 bcopy((char *)fp, (char *)f, 4584 sizeof(*f)); 4585 MUTEX_NUKE(&f->fr_lock); 4586 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4587 #ifdef IPFILTER_SCAN 4588 if (f->fr_isctag[0] != '\0' && 4589 ipsc_attachfr(f)) 4590 f->fr_isc = (struct ipscan *)-1; 4591 #endif 4592 f->fr_hits = 0; 4593 if (makecopy != 0) 4594 f->fr_ref = 1; 4595 f->fr_next = *ftail; 4596 *ftail = f; 4597 if (req == (ioctlcmd_t)SIOCINIFR || 4598 req == (ioctlcmd_t)SIOCINAFR) 4599 fr_fixskip(ftail, f, 1); 4600 f->fr_grp = NULL; 4601 group = f->fr_grhead; 4602 if (*group != '\0') { 4603 fg = fr_addgroup(group, f, f->fr_flags, 4604 unit, set, ifs); 4605 if (fg != NULL) 4606 f->fr_grp = &fg->fg_start; 4607 } 4608 } else 4609 error = ENOMEM; 4610 } 4611 } 4612 done: 4613 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4614 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4615 KFREES(ptr, fp->fr_dsize); 4616 } 4617 return (error); 4618 } 4619 4620 4621 /* ------------------------------------------------------------------------ */ 4622 /* Function: fr_funcinit */ 4623 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4624 /* Parameters: fr(I) - pointer to filter rule */ 4625 /* */ 4626 /* If a rule is a call rule, then check if the function it points to needs */ 4627 /* an init function to be called now the rule has been loaded. */ 4628 /* ------------------------------------------------------------------------ */ 4629 static int fr_funcinit(fr, ifs) 4630 frentry_t *fr; 4631 ipf_stack_t *ifs; 4632 { 4633 ipfunc_resolve_t *ft; 4634 int err; 4635 4636 err = ESRCH; 4637 4638 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4639 if (ft->ipfu_addr == fr->fr_func) { 4640 err = 0; 4641 if (ft->ipfu_init != NULL) 4642 err = (*ft->ipfu_init)(fr, ifs); 4643 break; 4644 } 4645 return err; 4646 } 4647 4648 4649 /* ------------------------------------------------------------------------ */ 4650 /* Function: fr_findfunc */ 4651 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4652 /* Parameters: funcptr(I) - function pointer to lookup */ 4653 /* */ 4654 /* Look for a function in the table of known functions. */ 4655 /* ------------------------------------------------------------------------ */ 4656 static ipfunc_t fr_findfunc(funcptr) 4657 ipfunc_t funcptr; 4658 { 4659 ipfunc_resolve_t *ft; 4660 4661 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4662 if (ft->ipfu_addr == funcptr) 4663 return funcptr; 4664 return NULL; 4665 } 4666 4667 4668 /* ------------------------------------------------------------------------ */ 4669 /* Function: fr_resolvefunc */ 4670 /* Returns: int - 0 == success, else error */ 4671 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4672 /* */ 4673 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4674 /* This will either be the function name (if the pointer is set) or the */ 4675 /* function pointer if the name is set. When found, fill in the other one */ 4676 /* so that the entire, complete, structure can be copied back to user space.*/ 4677 /* ------------------------------------------------------------------------ */ 4678 int fr_resolvefunc(data) 4679 void *data; 4680 { 4681 ipfunc_resolve_t res, *ft; 4682 int err; 4683 4684 err = BCOPYIN(data, &res, sizeof(res)); 4685 if (err != 0) 4686 return EFAULT; 4687 4688 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4689 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4690 if (strncmp(res.ipfu_name, ft->ipfu_name, 4691 sizeof(res.ipfu_name)) == 0) { 4692 res.ipfu_addr = ft->ipfu_addr; 4693 res.ipfu_init = ft->ipfu_init; 4694 if (COPYOUT(&res, data, sizeof(res)) != 0) 4695 return EFAULT; 4696 return 0; 4697 } 4698 } 4699 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4700 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4701 if (ft->ipfu_addr == res.ipfu_addr) { 4702 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4703 sizeof(res.ipfu_name)); 4704 res.ipfu_init = ft->ipfu_init; 4705 if (COPYOUT(&res, data, sizeof(res)) != 0) 4706 return EFAULT; 4707 return 0; 4708 } 4709 } 4710 return ESRCH; 4711 } 4712 4713 4714 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4715 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4716 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4717 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4718 /* 4719 * From: NetBSD 4720 * ppsratecheck(): packets (or events) per second limitation. 4721 */ 4722 int 4723 ppsratecheck(lasttime, curpps, maxpps) 4724 struct timeval *lasttime; 4725 int *curpps; 4726 int maxpps; /* maximum pps allowed */ 4727 { 4728 struct timeval tv, delta; 4729 int rv; 4730 4731 GETKTIME(&tv); 4732 4733 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4734 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4735 if (delta.tv_usec < 0) { 4736 delta.tv_sec--; 4737 delta.tv_usec += 1000000; 4738 } 4739 4740 /* 4741 * check for 0,0 is so that the message will be seen at least once. 4742 * if more than one second have passed since the last update of 4743 * lasttime, reset the counter. 4744 * 4745 * we do increment *curpps even in *curpps < maxpps case, as some may 4746 * try to use *curpps for stat purposes as well. 4747 */ 4748 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4749 delta.tv_sec >= 1) { 4750 *lasttime = tv; 4751 *curpps = 0; 4752 rv = 1; 4753 } else if (maxpps < 0) 4754 rv = 1; 4755 else if (*curpps < maxpps) 4756 rv = 1; 4757 else 4758 rv = 0; 4759 *curpps = *curpps + 1; 4760 4761 return (rv); 4762 } 4763 #endif 4764 4765 4766 /* ------------------------------------------------------------------------ */ 4767 /* Function: fr_derefrule */ 4768 /* Returns: int - 0 == rule freed up, else rule not freed */ 4769 /* Parameters: fr(I) - pointer to filter rule */ 4770 /* */ 4771 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4772 /* free it and any associated storage space being used by it. */ 4773 /* ------------------------------------------------------------------------ */ 4774 int fr_derefrule(frp, ifs) 4775 frentry_t **frp; 4776 ipf_stack_t *ifs; 4777 { 4778 frentry_t *fr; 4779 4780 fr = *frp; 4781 4782 MUTEX_ENTER(&fr->fr_lock); 4783 fr->fr_ref--; 4784 if (fr->fr_ref == 0) { 4785 MUTEX_EXIT(&fr->fr_lock); 4786 MUTEX_DESTROY(&fr->fr_lock); 4787 4788 #ifdef IPFILTER_LOOKUP 4789 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 4790 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 4791 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 4792 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 4793 #endif 4794 4795 if (fr->fr_dsize) { 4796 KFREES(fr->fr_data, fr->fr_dsize); 4797 } 4798 if ((fr->fr_flags & FR_COPIED) != 0) { 4799 KFREE(fr); 4800 return 0; 4801 } 4802 return 1; 4803 } else { 4804 MUTEX_EXIT(&fr->fr_lock); 4805 } 4806 *frp = NULL; 4807 return -1; 4808 } 4809 4810 4811 #ifdef IPFILTER_LOOKUP 4812 /* ------------------------------------------------------------------------ */ 4813 /* Function: fr_grpmapinit */ 4814 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 4815 /* Parameters: fr(I) - pointer to rule to find hash table for */ 4816 /* */ 4817 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 4818 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 4819 /* ------------------------------------------------------------------------ */ 4820 static int fr_grpmapinit(fr, ifs) 4821 frentry_t *fr; 4822 ipf_stack_t *ifs; 4823 { 4824 char name[FR_GROUPLEN]; 4825 iphtable_t *iph; 4826 4827 #if defined(SNPRINTF) && defined(_KERNEL) 4828 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 4829 #else 4830 (void) sprintf(name, "%d", fr->fr_arg); 4831 #endif 4832 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4833 if (iph == NULL) 4834 return ESRCH; 4835 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 4836 return ESRCH; 4837 fr->fr_ptr = iph; 4838 return 0; 4839 } 4840 4841 4842 /* ------------------------------------------------------------------------ */ 4843 /* Function: fr_srcgrpmap */ 4844 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4845 /* Parameters: fin(I) - pointer to packet information */ 4846 /* passp(IO) - pointer to current/new filter decision (unused) */ 4847 /* */ 4848 /* Look for a rule group head in a hash table, using the source address as */ 4849 /* the key, and descend into that group and continue matching rules against */ 4850 /* the packet. */ 4851 /* ------------------------------------------------------------------------ */ 4852 frentry_t *fr_srcgrpmap(fin, passp) 4853 fr_info_t *fin; 4854 u_32_t *passp; 4855 { 4856 frgroup_t *fg; 4857 void *rval; 4858 ipf_stack_t *ifs = fin->fin_ifs; 4859 4860 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 4861 if (rval == NULL) 4862 return NULL; 4863 4864 fg = rval; 4865 fin->fin_fr = fg->fg_start; 4866 (void) fr_scanlist(fin, *passp); 4867 return fin->fin_fr; 4868 } 4869 4870 4871 /* ------------------------------------------------------------------------ */ 4872 /* Function: fr_dstgrpmap */ 4873 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4874 /* Parameters: fin(I) - pointer to packet information */ 4875 /* passp(IO) - pointer to current/new filter decision (unused) */ 4876 /* */ 4877 /* Look for a rule group head in a hash table, using the destination */ 4878 /* address as the key, and descend into that group and continue matching */ 4879 /* rules against the packet. */ 4880 /* ------------------------------------------------------------------------ */ 4881 frentry_t *fr_dstgrpmap(fin, passp) 4882 fr_info_t *fin; 4883 u_32_t *passp; 4884 { 4885 frgroup_t *fg; 4886 void *rval; 4887 ipf_stack_t *ifs = fin->fin_ifs; 4888 4889 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 4890 if (rval == NULL) 4891 return NULL; 4892 4893 fg = rval; 4894 fin->fin_fr = fg->fg_start; 4895 (void) fr_scanlist(fin, *passp); 4896 return fin->fin_fr; 4897 } 4898 #endif /* IPFILTER_LOOKUP */ 4899 4900 /* 4901 * Queue functions 4902 * =============== 4903 * These functions manage objects on queues for efficient timeouts. There are 4904 * a number of system defined queues as well as user defined timeouts. It is 4905 * expected that a lock is held in the domain in which the queue belongs 4906 * (i.e. either state or NAT) when calling any of these functions that prevents 4907 * fr_freetimeoutqueue() from being called at the same time as any other. 4908 */ 4909 4910 4911 /* ------------------------------------------------------------------------ */ 4912 /* Function: fr_addtimeoutqueue */ 4913 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 4914 /* timeout queue with given interval. */ 4915 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 4916 /* of interface queues. */ 4917 /* seconds(I) - timeout value in seconds for this queue. */ 4918 /* */ 4919 /* This routine first looks for a timeout queue that matches the interval */ 4920 /* being requested. If it finds one, increments the reference counter and */ 4921 /* returns a pointer to it. If none are found, it allocates a new one and */ 4922 /* inserts it at the top of the list. */ 4923 /* */ 4924 /* Locking. */ 4925 /* It is assumed that the caller of this function has an appropriate lock */ 4926 /* held (exclusively) in the domain that encompases 'parent'. */ 4927 /* ------------------------------------------------------------------------ */ 4928 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 4929 ipftq_t **parent; 4930 u_int seconds; 4931 ipf_stack_t *ifs; 4932 { 4933 ipftq_t *ifq; 4934 u_int period; 4935 4936 period = seconds * IPF_HZ_DIVIDE; 4937 4938 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 4939 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 4940 if (ifq->ifq_ttl == period) { 4941 /* 4942 * Reset the delete flag, if set, so the structure 4943 * gets reused rather than freed and reallocated. 4944 */ 4945 MUTEX_ENTER(&ifq->ifq_lock); 4946 ifq->ifq_flags &= ~IFQF_DELETE; 4947 ifq->ifq_ref++; 4948 MUTEX_EXIT(&ifq->ifq_lock); 4949 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4950 4951 return ifq; 4952 } 4953 } 4954 4955 KMALLOC(ifq, ipftq_t *); 4956 if (ifq != NULL) { 4957 ifq->ifq_ttl = period; 4958 ifq->ifq_head = NULL; 4959 ifq->ifq_tail = &ifq->ifq_head; 4960 ifq->ifq_next = *parent; 4961 ifq->ifq_pnext = parent; 4962 ifq->ifq_ref = 1; 4963 ifq->ifq_flags = IFQF_USER; 4964 *parent = ifq; 4965 ifs->ifs_fr_userifqs++; 4966 MUTEX_NUKE(&ifq->ifq_lock); 4967 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 4968 } 4969 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4970 return ifq; 4971 } 4972 4973 4974 /* ------------------------------------------------------------------------ */ 4975 /* Function: fr_deletetimeoutqueue */ 4976 /* Returns: int - new reference count value of the timeout queue */ 4977 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 4978 /* Locks: ifq->ifq_lock */ 4979 /* */ 4980 /* This routine must be called when we're discarding a pointer to a timeout */ 4981 /* queue object, taking care of the reference counter. */ 4982 /* */ 4983 /* Now that this just sets a DELETE flag, it requires the expire code to */ 4984 /* check the list of user defined timeout queues and call the free function */ 4985 /* below (currently commented out) to stop memory leaking. It is done this */ 4986 /* way because the locking may not be sufficient to safely do a free when */ 4987 /* this function is called. */ 4988 /* ------------------------------------------------------------------------ */ 4989 int fr_deletetimeoutqueue(ifq) 4990 ipftq_t *ifq; 4991 { 4992 4993 ifq->ifq_ref--; 4994 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 4995 ifq->ifq_flags |= IFQF_DELETE; 4996 } 4997 4998 return ifq->ifq_ref; 4999 } 5000 5001 5002 /* ------------------------------------------------------------------------ */ 5003 /* Function: fr_freetimeoutqueue */ 5004 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 5005 /* Returns: Nil */ 5006 /* */ 5007 /* Locking: */ 5008 /* It is assumed that the caller of this function has an appropriate lock */ 5009 /* held (exclusively) in the domain that encompases the callers "domain". */ 5010 /* The ifq_lock for this structure should not be held. */ 5011 /* */ 5012 /* Remove a user definde timeout queue from the list of queues it is in and */ 5013 /* tidy up after this is done. */ 5014 /* ------------------------------------------------------------------------ */ 5015 void fr_freetimeoutqueue(ifq, ifs) 5016 ipftq_t *ifq; 5017 ipf_stack_t *ifs; 5018 { 5019 5020 5021 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 5022 ((ifq->ifq_flags & IFQF_USER) == 0)) { 5023 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 5024 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 5025 ifq->ifq_ref); 5026 return; 5027 } 5028 5029 /* 5030 * Remove from its position in the list. 5031 */ 5032 *ifq->ifq_pnext = ifq->ifq_next; 5033 if (ifq->ifq_next != NULL) 5034 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 5035 5036 MUTEX_DESTROY(&ifq->ifq_lock); 5037 ifs->ifs_fr_userifqs--; 5038 KFREE(ifq); 5039 } 5040 5041 5042 /* ------------------------------------------------------------------------ */ 5043 /* Function: fr_deletequeueentry */ 5044 /* Returns: Nil */ 5045 /* Parameters: tqe(I) - timeout queue entry to delete */ 5046 /* ifq(I) - timeout queue to remove entry from */ 5047 /* */ 5048 /* Remove a tail queue entry from its queue and make it an orphan. */ 5049 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 5050 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 5051 /* the correct lock(s) may not be held that would make it safe to do so. */ 5052 /* ------------------------------------------------------------------------ */ 5053 void fr_deletequeueentry(tqe) 5054 ipftqent_t *tqe; 5055 { 5056 ipftq_t *ifq; 5057 5058 ifq = tqe->tqe_ifq; 5059 if (ifq == NULL) 5060 return; 5061 5062 MUTEX_ENTER(&ifq->ifq_lock); 5063 5064 if (tqe->tqe_pnext != NULL) { 5065 *tqe->tqe_pnext = tqe->tqe_next; 5066 if (tqe->tqe_next != NULL) 5067 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5068 else /* we must be the tail anyway */ 5069 ifq->ifq_tail = tqe->tqe_pnext; 5070 5071 tqe->tqe_pnext = NULL; 5072 tqe->tqe_ifq = NULL; 5073 } 5074 5075 (void) fr_deletetimeoutqueue(ifq); 5076 5077 MUTEX_EXIT(&ifq->ifq_lock); 5078 } 5079 5080 5081 /* ------------------------------------------------------------------------ */ 5082 /* Function: fr_queuefront */ 5083 /* Returns: Nil */ 5084 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5085 /* */ 5086 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5087 /* ------------------------------------------------------------------------ */ 5088 void fr_queuefront(tqe) 5089 ipftqent_t *tqe; 5090 { 5091 ipftq_t *ifq; 5092 5093 ifq = tqe->tqe_ifq; 5094 if (ifq == NULL) 5095 return; 5096 5097 MUTEX_ENTER(&ifq->ifq_lock); 5098 if (ifq->ifq_head != tqe) { 5099 *tqe->tqe_pnext = tqe->tqe_next; 5100 if (tqe->tqe_next) 5101 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5102 else 5103 ifq->ifq_tail = tqe->tqe_pnext; 5104 5105 tqe->tqe_next = ifq->ifq_head; 5106 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5107 ifq->ifq_head = tqe; 5108 tqe->tqe_pnext = &ifq->ifq_head; 5109 } 5110 MUTEX_EXIT(&ifq->ifq_lock); 5111 } 5112 5113 5114 /* ------------------------------------------------------------------------ */ 5115 /* Function: fr_queueback */ 5116 /* Returns: Nil */ 5117 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5118 /* */ 5119 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5120 /* ------------------------------------------------------------------------ */ 5121 void fr_queueback(tqe, ifs) 5122 ipftqent_t *tqe; 5123 ipf_stack_t *ifs; 5124 { 5125 ipftq_t *ifq; 5126 5127 ifq = tqe->tqe_ifq; 5128 if (ifq == NULL) 5129 return; 5130 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5131 5132 MUTEX_ENTER(&ifq->ifq_lock); 5133 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5134 MUTEX_EXIT(&ifq->ifq_lock); 5135 return; 5136 } 5137 5138 /* 5139 * Remove from list 5140 */ 5141 *tqe->tqe_pnext = tqe->tqe_next; 5142 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5143 5144 /* 5145 * Make it the last entry. 5146 */ 5147 tqe->tqe_next = NULL; 5148 tqe->tqe_pnext = ifq->ifq_tail; 5149 *ifq->ifq_tail = tqe; 5150 ifq->ifq_tail = &tqe->tqe_next; 5151 MUTEX_EXIT(&ifq->ifq_lock); 5152 } 5153 5154 5155 /* ------------------------------------------------------------------------ */ 5156 /* Function: fr_queueappend */ 5157 /* Returns: Nil */ 5158 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5159 /* ifq(I) - pointer to timeout queue */ 5160 /* parent(I) - owing object pointer */ 5161 /* */ 5162 /* Add a new item to this queue and put it on the very end. */ 5163 /* ------------------------------------------------------------------------ */ 5164 void fr_queueappend(tqe, ifq, parent, ifs) 5165 ipftqent_t *tqe; 5166 ipftq_t *ifq; 5167 void *parent; 5168 ipf_stack_t *ifs; 5169 { 5170 5171 MUTEX_ENTER(&ifq->ifq_lock); 5172 tqe->tqe_parent = parent; 5173 tqe->tqe_pnext = ifq->ifq_tail; 5174 *ifq->ifq_tail = tqe; 5175 ifq->ifq_tail = &tqe->tqe_next; 5176 tqe->tqe_next = NULL; 5177 tqe->tqe_ifq = ifq; 5178 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5179 ifq->ifq_ref++; 5180 MUTEX_EXIT(&ifq->ifq_lock); 5181 } 5182 5183 5184 /* ------------------------------------------------------------------------ */ 5185 /* Function: fr_movequeue */ 5186 /* Returns: Nil */ 5187 /* Parameters: tq(I) - pointer to timeout queue information */ 5188 /* oifp(I) - old timeout queue entry was on */ 5189 /* nifp(I) - new timeout queue to put entry on */ 5190 /* ifs - ipf stack instance */ 5191 /* */ 5192 /* Move a queue entry from one timeout queue to another timeout queue. */ 5193 /* If it notices that the current entry is already last and does not need */ 5194 /* to move queue, the return. */ 5195 /* ------------------------------------------------------------------------ */ 5196 void fr_movequeue(tqe, oifq, nifq, ifs) 5197 ipftqent_t *tqe; 5198 ipftq_t *oifq, *nifq; 5199 ipf_stack_t *ifs; 5200 { 5201 /* 5202 * If the queue isn't changing, and the clock hasn't ticked 5203 * since the last update, the operation will be a no-op. 5204 */ 5205 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks) 5206 return; 5207 5208 /* 5209 * Grab the lock and update the timers. 5210 */ 5211 MUTEX_ENTER(&oifq->ifq_lock); 5212 tqe->tqe_touched = ifs->ifs_fr_ticks; 5213 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5214 5215 /* 5216 * The remainder of the operation can still be a no-op. 5217 * 5218 * If the queue isn't changing, check to see if 5219 * an update would be meaningless. 5220 */ 5221 if (oifq == nifq) { 5222 if ((tqe->tqe_next == NULL) || 5223 (tqe->tqe_next->tqe_die == tqe->tqe_die)) { 5224 MUTEX_EXIT(&oifq->ifq_lock); 5225 return; 5226 } 5227 } 5228 5229 /* 5230 * Remove from the old queue 5231 */ 5232 *tqe->tqe_pnext = tqe->tqe_next; 5233 if (tqe->tqe_next) 5234 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5235 else 5236 oifq->ifq_tail = tqe->tqe_pnext; 5237 tqe->tqe_next = NULL; 5238 5239 /* 5240 * If we're moving from one queue to another, release the lock on the 5241 * old queue and get a lock on the new queue. For user defined queues, 5242 * if we're moving off it, call delete in case it can now be freed. 5243 */ 5244 if (oifq != nifq) { 5245 tqe->tqe_ifq = NULL; 5246 5247 (void) fr_deletetimeoutqueue(oifq); 5248 5249 MUTEX_EXIT(&oifq->ifq_lock); 5250 5251 MUTEX_ENTER(&nifq->ifq_lock); 5252 5253 tqe->tqe_ifq = nifq; 5254 nifq->ifq_ref++; 5255 } 5256 5257 /* 5258 * Add to the bottom of the new queue 5259 */ 5260 tqe->tqe_pnext = nifq->ifq_tail; 5261 *nifq->ifq_tail = tqe; 5262 nifq->ifq_tail = &tqe->tqe_next; 5263 MUTEX_EXIT(&nifq->ifq_lock); 5264 } 5265 5266 5267 /* ------------------------------------------------------------------------ */ 5268 /* Function: fr_updateipid */ 5269 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5270 /* Parameters: fin(I) - pointer to packet information */ 5271 /* */ 5272 /* When we are doing NAT, change the IP of every packet to represent a */ 5273 /* single sequence of packets coming from the host, hiding any host */ 5274 /* specific sequencing that might otherwise be revealed. If the packet is */ 5275 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5276 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5277 /* has no match in the cache, return an error. */ 5278 /* ------------------------------------------------------------------------ */ 5279 static INLINE int fr_updateipid(fin) 5280 fr_info_t *fin; 5281 { 5282 u_short id, ido, sums; 5283 u_32_t sumd, sum; 5284 ip_t *ip; 5285 5286 if (fin->fin_off != 0) { 5287 sum = fr_ipid_knownfrag(fin); 5288 if (sum == 0xffffffff) 5289 return -1; 5290 sum &= 0xffff; 5291 id = (u_short)sum; 5292 } else { 5293 id = fr_nextipid(fin); 5294 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5295 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5296 } 5297 5298 ip = fin->fin_ip; 5299 ido = ntohs(ip->ip_id); 5300 if (id == ido) 5301 return 0; 5302 ip->ip_id = htons(id); 5303 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5304 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5305 sum += sumd; 5306 sum = (sum >> 16) + (sum & 0xffff); 5307 sum = (sum >> 16) + (sum & 0xffff); 5308 sums = ~(u_short)sum; 5309 ip->ip_sum = htons(sums); 5310 return 0; 5311 } 5312 5313 5314 #ifdef NEED_FRGETIFNAME 5315 /* ------------------------------------------------------------------------ */ 5316 /* Function: fr_getifname */ 5317 /* Returns: char * - pointer to interface name */ 5318 /* Parameters: ifp(I) - pointer to network interface */ 5319 /* buffer(O) - pointer to where to store interface name */ 5320 /* */ 5321 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5322 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5323 /* as a NULL pointer then return a pointer to a static array. */ 5324 /* ------------------------------------------------------------------------ */ 5325 char *fr_getifname(ifp, buffer) 5326 struct ifnet *ifp; 5327 char *buffer; 5328 { 5329 static char namebuf[LIFNAMSIZ]; 5330 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5331 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5332 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5333 int unit, space; 5334 char temp[20]; 5335 char *s; 5336 # endif 5337 5338 ASSERT(buffer != NULL); 5339 #ifdef notdef 5340 if (buffer == NULL) 5341 buffer = namebuf; 5342 #endif 5343 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5344 buffer[LIFNAMSIZ - 1] = '\0'; 5345 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5346 defined(__sgi) || defined(_AIX51) || \ 5347 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5348 for (s = buffer; *s; s++) 5349 ; 5350 unit = ifp->if_unit; 5351 space = LIFNAMSIZ - (s - buffer); 5352 if (space > 0) { 5353 # if defined(SNPRINTF) && defined(_KERNEL) 5354 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5355 # else 5356 (void) sprintf(temp, "%d", unit); 5357 # endif 5358 (void) strncpy(s, temp, space); 5359 } 5360 # endif 5361 return buffer; 5362 } 5363 #endif 5364 5365 5366 /* ------------------------------------------------------------------------ */ 5367 /* Function: fr_ioctlswitch */ 5368 /* Returns: int - -1 continue processing, else ioctl return value */ 5369 /* Parameters: unit(I) - device unit opened */ 5370 /* data(I) - pointer to ioctl data */ 5371 /* cmd(I) - ioctl command */ 5372 /* mode(I) - mode value */ 5373 /* */ 5374 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5375 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5376 /* for the device in order to execute the ioctl. */ 5377 /* ------------------------------------------------------------------------ */ 5378 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5379 int unit, mode, uid; 5380 ioctlcmd_t cmd; 5381 void *data, *ctx; 5382 ipf_stack_t *ifs; 5383 { 5384 int error = 0; 5385 5386 switch (unit) 5387 { 5388 case IPL_LOGIPF : 5389 error = -1; 5390 break; 5391 case IPL_LOGNAT : 5392 if (ifs->ifs_fr_running > 0) 5393 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5394 else 5395 error = EIO; 5396 break; 5397 case IPL_LOGSTATE : 5398 if (ifs->ifs_fr_running > 0) 5399 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5400 else 5401 error = EIO; 5402 break; 5403 case IPL_LOGAUTH : 5404 if (ifs->ifs_fr_running > 0) { 5405 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5406 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5407 if (!(mode & FWRITE)) { 5408 error = EPERM; 5409 } else { 5410 error = frrequest(unit, cmd, data, 5411 ifs->ifs_fr_active, 1, ifs); 5412 } 5413 } else { 5414 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5415 } 5416 } else 5417 error = EIO; 5418 break; 5419 case IPL_LOGSYNC : 5420 #ifdef IPFILTER_SYNC 5421 if (ifs->ifs_fr_running > 0) 5422 error = fr_sync_ioctl(data, cmd, mode, ifs); 5423 else 5424 #endif 5425 error = EIO; 5426 break; 5427 case IPL_LOGSCAN : 5428 #ifdef IPFILTER_SCAN 5429 if (ifs->ifs_fr_running > 0) 5430 error = fr_scan_ioctl(data, cmd, mode, ifs); 5431 else 5432 #endif 5433 error = EIO; 5434 break; 5435 case IPL_LOGLOOKUP : 5436 #ifdef IPFILTER_LOOKUP 5437 if (ifs->ifs_fr_running > 0) 5438 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5439 else 5440 #endif 5441 error = EIO; 5442 break; 5443 default : 5444 error = EIO; 5445 break; 5446 } 5447 5448 return error; 5449 } 5450 5451 5452 /* 5453 * This array defines the expected size of objects coming into the kernel 5454 * for the various recognised object types. 5455 */ 5456 #define NUM_OBJ_TYPES 19 5457 5458 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5459 { 1, sizeof(struct frentry) }, /* frentry */ 5460 { 0, sizeof(struct friostat) }, 5461 { 0, sizeof(struct fr_info) }, 5462 { 0, sizeof(struct fr_authstat) }, 5463 { 0, sizeof(struct ipfrstat) }, 5464 { 0, sizeof(struct ipnat) }, 5465 { 0, sizeof(struct natstat) }, 5466 { 0, sizeof(struct ipstate_save) }, 5467 { 1, sizeof(struct nat_save) }, /* nat_save */ 5468 { 0, sizeof(struct natlookup) }, 5469 { 1, sizeof(struct ipstate) }, /* ipstate */ 5470 { 0, sizeof(struct ips_stat) }, 5471 { 0, sizeof(struct frauth) }, 5472 { 0, sizeof(struct ipftune) }, 5473 { 0, sizeof(struct nat) }, /* nat_t */ 5474 { 0, sizeof(struct ipfruleiter) }, 5475 { 0, sizeof(struct ipfgeniter) }, 5476 { 0, sizeof(struct ipftable) }, 5477 { 0, sizeof(struct ipflookupiter) } 5478 }; 5479 5480 5481 /* ------------------------------------------------------------------------ */ 5482 /* Function: fr_inobj */ 5483 /* Returns: int - 0 = success, else failure */ 5484 /* Parameters: data(I) - pointer to ioctl data */ 5485 /* ptr(I) - pointer to store real data in */ 5486 /* type(I) - type of structure being moved */ 5487 /* */ 5488 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5489 /* add things to check for version numbers, sizes, etc, to make it backward */ 5490 /* compatible at the ABI for user land. */ 5491 /* ------------------------------------------------------------------------ */ 5492 int fr_inobj(data, ptr, type) 5493 void *data; 5494 void *ptr; 5495 int type; 5496 { 5497 ipfobj_t obj; 5498 int error = 0; 5499 5500 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5501 return EINVAL; 5502 5503 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5504 if (error != 0) 5505 return EFAULT; 5506 5507 if (obj.ipfo_type != type) 5508 return EINVAL; 5509 5510 #ifndef IPFILTER_COMPAT 5511 if ((fr_objbytes[type][0] & 1) != 0) { 5512 if (obj.ipfo_size < fr_objbytes[type][1]) 5513 return EINVAL; 5514 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5515 return EINVAL; 5516 #else 5517 if (obj.ipfo_rev != IPFILTER_VERSION) { 5518 error = fr_incomptrans(&obj, ptr); 5519 return error; 5520 } 5521 5522 if ((fr_objbytes[type][0] & 1) != 0 && 5523 obj.ipfo_size < fr_objbytes[type][1] || 5524 obj.ipfo_size != fr_objbytes[type][1]) 5525 return EINVAL; 5526 #endif 5527 5528 if ((fr_objbytes[type][0] & 1) != 0) { 5529 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5530 fr_objbytes[type][1]); 5531 } else { 5532 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5533 obj.ipfo_size); 5534 } 5535 return error; 5536 } 5537 5538 5539 /* ------------------------------------------------------------------------ */ 5540 /* Function: fr_inobjsz */ 5541 /* Returns: int - 0 = success, else failure */ 5542 /* Parameters: data(I) - pointer to ioctl data */ 5543 /* ptr(I) - pointer to store real data in */ 5544 /* type(I) - type of structure being moved */ 5545 /* sz(I) - size of data to copy */ 5546 /* */ 5547 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5548 /* but it must not be smaller than the size defined for the type and the */ 5549 /* type must allow for varied sized objects. The extra requirement here is */ 5550 /* that sz must match the size of the object being passed in - this is not */ 5551 /* not possible nor required in fr_inobj(). */ 5552 /* ------------------------------------------------------------------------ */ 5553 int fr_inobjsz(data, ptr, type, sz) 5554 void *data; 5555 void *ptr; 5556 int type, sz; 5557 { 5558 ipfobj_t obj; 5559 int error; 5560 5561 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5562 return EINVAL; 5563 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5564 return EINVAL; 5565 5566 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5567 if (error != 0) 5568 return EFAULT; 5569 5570 if (obj.ipfo_type != type) 5571 return EINVAL; 5572 5573 #ifndef IPFILTER_COMPAT 5574 if (obj.ipfo_size != sz) 5575 return EINVAL; 5576 #else 5577 if (obj.ipfo_rev != IPFILTER_VERSION) 5578 /*XXX compatibility hook here */ 5579 /*EMPTY*/; 5580 if (obj.ipfo_size != sz) 5581 /* XXX compatibility hook here */ 5582 return EINVAL; 5583 #endif 5584 5585 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5586 return error; 5587 } 5588 5589 5590 /* ------------------------------------------------------------------------ */ 5591 /* Function: fr_outobjsz */ 5592 /* Returns: int - 0 = success, else failure */ 5593 /* Parameters: data(I) - pointer to ioctl data */ 5594 /* ptr(I) - pointer to store real data in */ 5595 /* type(I) - type of structure being moved */ 5596 /* sz(I) - size of data to copy */ 5597 /* */ 5598 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5599 /* but it must not be smaller than the size defined for the type and the */ 5600 /* type must allow for varied sized objects. The extra requirement here is */ 5601 /* that sz must match the size of the object being passed in - this is not */ 5602 /* not possible nor required in fr_outobj(). */ 5603 /* ------------------------------------------------------------------------ */ 5604 int fr_outobjsz(data, ptr, type, sz) 5605 void *data; 5606 void *ptr; 5607 int type, sz; 5608 { 5609 ipfobj_t obj; 5610 int error; 5611 5612 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5613 ((fr_objbytes[type][0] & 1) == 0) || 5614 (sz < fr_objbytes[type][1])) 5615 return EINVAL; 5616 5617 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5618 if (error != 0) 5619 return EFAULT; 5620 5621 if (obj.ipfo_type != type) 5622 return EINVAL; 5623 5624 #ifndef IPFILTER_COMPAT 5625 if (obj.ipfo_size != sz) 5626 return EINVAL; 5627 #else 5628 if (obj.ipfo_rev != IPFILTER_VERSION) 5629 /* XXX compatibility hook here */ 5630 /*EMPTY*/; 5631 if (obj.ipfo_size != sz) 5632 /* XXX compatibility hook here */ 5633 return EINVAL; 5634 #endif 5635 5636 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5637 return error; 5638 } 5639 5640 5641 /* ------------------------------------------------------------------------ */ 5642 /* Function: fr_outobj */ 5643 /* Returns: int - 0 = success, else failure */ 5644 /* Parameters: data(I) - pointer to ioctl data */ 5645 /* ptr(I) - pointer to store real data in */ 5646 /* type(I) - type of structure being moved */ 5647 /* */ 5648 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5649 /* future, we add things to check for version numbers, sizes, etc, to make */ 5650 /* it backward compatible at the ABI for user land. */ 5651 /* ------------------------------------------------------------------------ */ 5652 int fr_outobj(data, ptr, type) 5653 void *data; 5654 void *ptr; 5655 int type; 5656 { 5657 ipfobj_t obj; 5658 int error; 5659 5660 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5661 return EINVAL; 5662 5663 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5664 if (error != 0) 5665 return EFAULT; 5666 5667 if (obj.ipfo_type != type) 5668 return EINVAL; 5669 5670 #ifndef IPFILTER_COMPAT 5671 if ((fr_objbytes[type][0] & 1) != 0) { 5672 if (obj.ipfo_size < fr_objbytes[type][1]) 5673 return EINVAL; 5674 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5675 return EINVAL; 5676 #else 5677 if (obj.ipfo_rev != IPFILTER_VERSION) { 5678 error = fr_outcomptrans(&obj, ptr); 5679 return error; 5680 } 5681 5682 if ((fr_objbytes[type][0] & 1) != 0 && 5683 obj.ipfo_size < fr_objbytes[type][1] || 5684 obj.ipfo_size != fr_objbytes[type][1]) 5685 return EINVAL; 5686 #endif 5687 5688 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5689 return error; 5690 } 5691 5692 5693 /* ------------------------------------------------------------------------ */ 5694 /* Function: fr_checkl4sum */ 5695 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5696 /* Parameters: fin(I) - pointer to packet information */ 5697 /* */ 5698 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5699 /* not possible, return without indicating a failure or success but in a */ 5700 /* way that is ditinguishable. */ 5701 /* ------------------------------------------------------------------------ */ 5702 int fr_checkl4sum(fin) 5703 fr_info_t *fin; 5704 { 5705 u_short sum, hdrsum, *csump; 5706 udphdr_t *udp; 5707 int dosum; 5708 ipf_stack_t *ifs = fin->fin_ifs; 5709 5710 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5711 net_handle_t net_data_p; 5712 if (fin->fin_v == 4) 5713 net_data_p = ifs->ifs_ipf_ipv4; 5714 else 5715 net_data_p = ifs->ifs_ipf_ipv6; 5716 #endif 5717 5718 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5719 return 0; 5720 5721 /* 5722 * If the TCP packet isn't a fragment, isn't too short and otherwise 5723 * isn't already considered "bad", then validate the checksum. If 5724 * this check fails then considered the packet to be "bad". 5725 */ 5726 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5727 return 1; 5728 5729 csump = NULL; 5730 hdrsum = 0; 5731 dosum = 0; 5732 sum = 0; 5733 5734 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5735 ASSERT(fin->fin_m != NULL); 5736 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 5737 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 5738 hdrsum = 0; 5739 sum = 0; 5740 } else { 5741 #endif 5742 switch (fin->fin_p) 5743 { 5744 case IPPROTO_TCP : 5745 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 5746 dosum = 1; 5747 break; 5748 5749 case IPPROTO_UDP : 5750 udp = fin->fin_dp; 5751 if (udp->uh_sum != 0) { 5752 csump = &udp->uh_sum; 5753 dosum = 1; 5754 } 5755 break; 5756 5757 case IPPROTO_ICMP : 5758 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 5759 dosum = 1; 5760 break; 5761 5762 default : 5763 return 1; 5764 /*NOTREACHED*/ 5765 } 5766 5767 if (csump != NULL) 5768 hdrsum = *csump; 5769 5770 if (dosum) 5771 sum = fr_cksum(fin->fin_m, fin->fin_ip, 5772 fin->fin_p, fin->fin_dp); 5773 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5774 } 5775 #endif 5776 #if !defined(_KERNEL) 5777 if (sum == hdrsum) { 5778 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 5779 } else { 5780 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 5781 } 5782 #endif 5783 if (hdrsum == sum) 5784 return 0; 5785 return -1; 5786 } 5787 5788 5789 /* ------------------------------------------------------------------------ */ 5790 /* Function: fr_ifpfillv4addr */ 5791 /* Returns: int - 0 = address update, -1 = address not updated */ 5792 /* Parameters: atype(I) - type of network address update to perform */ 5793 /* sin(I) - pointer to source of address information */ 5794 /* mask(I) - pointer to source of netmask information */ 5795 /* inp(I) - pointer to destination address store */ 5796 /* inpmask(I) - pointer to destination netmask store */ 5797 /* */ 5798 /* Given a type of network address update (atype) to perform, copy */ 5799 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5800 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5801 /* which case the operation fails. For all values of atype other than */ 5802 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5803 /* value. */ 5804 /* ------------------------------------------------------------------------ */ 5805 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 5806 int atype; 5807 struct sockaddr_in *sin, *mask; 5808 struct in_addr *inp, *inpmask; 5809 { 5810 if (inpmask != NULL && atype != FRI_NETMASKED) 5811 inpmask->s_addr = 0xffffffff; 5812 5813 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5814 if (atype == FRI_NETMASKED) { 5815 if (inpmask == NULL) 5816 return -1; 5817 inpmask->s_addr = mask->sin_addr.s_addr; 5818 } 5819 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 5820 } else { 5821 inp->s_addr = sin->sin_addr.s_addr; 5822 } 5823 return 0; 5824 } 5825 5826 5827 #ifdef USE_INET6 5828 /* ------------------------------------------------------------------------ */ 5829 /* Function: fr_ifpfillv6addr */ 5830 /* Returns: int - 0 = address update, -1 = address not updated */ 5831 /* Parameters: atype(I) - type of network address update to perform */ 5832 /* sin(I) - pointer to source of address information */ 5833 /* mask(I) - pointer to source of netmask information */ 5834 /* inp(I) - pointer to destination address store */ 5835 /* inpmask(I) - pointer to destination netmask store */ 5836 /* */ 5837 /* Given a type of network address update (atype) to perform, copy */ 5838 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5839 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5840 /* which case the operation fails. For all values of atype other than */ 5841 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5842 /* value. */ 5843 /* ------------------------------------------------------------------------ */ 5844 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 5845 int atype; 5846 struct sockaddr_in6 *sin, *mask; 5847 struct in_addr *inp, *inpmask; 5848 { 5849 i6addr_t *src, *dst, *and, *dmask; 5850 5851 src = (i6addr_t *)&sin->sin6_addr; 5852 and = (i6addr_t *)&mask->sin6_addr; 5853 dst = (i6addr_t *)inp; 5854 dmask = (i6addr_t *)inpmask; 5855 5856 if (inpmask != NULL && atype != FRI_NETMASKED) { 5857 dmask->i6[0] = 0xffffffff; 5858 dmask->i6[1] = 0xffffffff; 5859 dmask->i6[2] = 0xffffffff; 5860 dmask->i6[3] = 0xffffffff; 5861 } 5862 5863 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5864 if (atype == FRI_NETMASKED) { 5865 if (inpmask == NULL) 5866 return -1; 5867 dmask->i6[0] = and->i6[0]; 5868 dmask->i6[1] = and->i6[1]; 5869 dmask->i6[2] = and->i6[2]; 5870 dmask->i6[3] = and->i6[3]; 5871 } 5872 5873 dst->i6[0] = src->i6[0] & and->i6[0]; 5874 dst->i6[1] = src->i6[1] & and->i6[1]; 5875 dst->i6[2] = src->i6[2] & and->i6[2]; 5876 dst->i6[3] = src->i6[3] & and->i6[3]; 5877 } else { 5878 dst->i6[0] = src->i6[0]; 5879 dst->i6[1] = src->i6[1]; 5880 dst->i6[2] = src->i6[2]; 5881 dst->i6[3] = src->i6[3]; 5882 } 5883 return 0; 5884 } 5885 #endif 5886 5887 5888 /* ------------------------------------------------------------------------ */ 5889 /* Function: fr_matchtag */ 5890 /* Returns: 0 == mismatch, 1 == match. */ 5891 /* Parameters: tag1(I) - pointer to first tag to compare */ 5892 /* tag2(I) - pointer to second tag to compare */ 5893 /* */ 5894 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 5895 /* considered to be a match or not match, respectively. The tag is 16 */ 5896 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 5897 /* compare the ints instead, for speed. tag1 is the master of the */ 5898 /* comparison. This function should only be called with both tag1 and tag2 */ 5899 /* as non-NULL pointers. */ 5900 /* ------------------------------------------------------------------------ */ 5901 int fr_matchtag(tag1, tag2) 5902 ipftag_t *tag1, *tag2; 5903 { 5904 if (tag1 == tag2) 5905 return 1; 5906 5907 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 5908 return 1; 5909 5910 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 5911 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 5912 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 5913 (tag1->ipt_num[3] == tag2->ipt_num[3])) 5914 return 1; 5915 return 0; 5916 } 5917 5918 5919 /* ------------------------------------------------------------------------ */ 5920 /* Function: fr_coalesce */ 5921 /* Returns: 1 == success, -1 == failure, 0 == no change */ 5922 /* Parameters: fin(I) - pointer to packet information */ 5923 /* */ 5924 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 5925 /* If this call returns a failure then the buffers have also been freed. */ 5926 /* ------------------------------------------------------------------------ */ 5927 int fr_coalesce(fin) 5928 fr_info_t *fin; 5929 { 5930 ipf_stack_t *ifs = fin->fin_ifs; 5931 if ((fin->fin_flx & FI_COALESCE) != 0) 5932 return 1; 5933 5934 /* 5935 * If the mbuf pointers indicate that there is no mbuf to work with, 5936 * return but do not indicate success or failure. 5937 */ 5938 if (fin->fin_m == NULL || fin->fin_mp == NULL) 5939 return 0; 5940 5941 #if defined(_KERNEL) 5942 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 5943 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]); 5944 # ifdef MENTAT 5945 FREE_MB_T(*fin->fin_mp); 5946 # endif 5947 *fin->fin_mp = NULL; 5948 fin->fin_m = NULL; 5949 return -1; 5950 } 5951 #else 5952 fin = fin; /* LINT */ 5953 #endif 5954 return 1; 5955 } 5956 5957 5958 /* 5959 * The following table lists all of the tunable variables that can be 5960 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 5961 * in the table below is as follows: 5962 * 5963 * pointer to value, name of value, minimum, maximum, size of the value's 5964 * container, value attribute flags 5965 * 5966 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 5967 * means the value can only be written to when IPFilter is loaded but disabled. 5968 * The obvious implication is if neither of these are set then the value can be 5969 * changed at any time without harm. 5970 */ 5971 ipftuneable_t lcl_ipf_tuneables[] = { 5972 /* filtering */ 5973 { { NULL }, "fr_flags", 0, 0xffffffff, 5974 0, 0 }, 5975 { { NULL }, "fr_active", 0, 0, 5976 0, IPFT_RDONLY }, 5977 { { NULL }, "fr_control_forwarding", 0, 1, 5978 0, 0 }, 5979 { { NULL }, "fr_update_ipid", 0, 1, 5980 0, 0 }, 5981 { { NULL }, "fr_chksrc", 0, 1, 5982 0, 0 }, 5983 { { NULL }, "fr_minttl", 0, 1, 5984 0, 0 }, 5985 { { NULL }, "fr_icmpminfragmtu", 0, 1, 5986 0, 0 }, 5987 { { NULL }, "fr_pass", 0, 0xffffffff, 5988 0, 0 }, 5989 #if SOLARIS2 >= 10 5990 { { NULL }, "ipf_loopback", 0, 1, 5991 0, IPFT_WRDISABLED }, 5992 #endif 5993 /* state */ 5994 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 5995 0, IPFT_WRDISABLED }, 5996 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 5997 0, IPFT_WRDISABLED }, 5998 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 5999 0, IPFT_WRDISABLED }, 6000 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 6001 0, IPFT_WRDISABLED }, 6002 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 6003 0, IPFT_WRDISABLED }, 6004 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 6005 0, IPFT_WRDISABLED }, 6006 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 6007 0, IPFT_WRDISABLED }, 6008 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 6009 0, IPFT_WRDISABLED }, 6010 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 6011 0, IPFT_WRDISABLED }, 6012 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 6013 0, IPFT_WRDISABLED }, 6014 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 6015 0, IPFT_WRDISABLED }, 6016 { { NULL }, "fr_statemax", 1, 0x7fffffff, 6017 0, 0 }, 6018 { { NULL }, "fr_statesize", 1, 0x7fffffff, 6019 0, IPFT_WRDISABLED }, 6020 { { NULL }, "fr_state_lock", 0, 1, 6021 0, IPFT_RDONLY }, 6022 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 6023 0, IPFT_WRDISABLED }, 6024 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 6025 0, IPFT_WRDISABLED }, 6026 { { NULL }, "ipstate_logging", 0, 1, 6027 0, 0 }, 6028 /* nat */ 6029 { { NULL }, "fr_nat_lock", 0, 1, 6030 0, IPFT_RDONLY }, 6031 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 6032 0, IPFT_WRDISABLED }, 6033 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 6034 0, 0 }, 6035 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 6036 0, IPFT_WRDISABLED }, 6037 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 6038 0, IPFT_WRDISABLED }, 6039 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 6040 0, IPFT_WRDISABLED }, 6041 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 6042 0, IPFT_WRDISABLED }, 6043 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 6044 0, IPFT_WRDISABLED }, 6045 { { NULL }, "nat_logging", 0, 1, 6046 0, 0 }, 6047 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 6048 0, IPFT_WRDISABLED }, 6049 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 6050 0, IPFT_WRDISABLED }, 6051 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 6052 0, IPFT_WRDISABLED }, 6053 { { NULL }, "nat_flush_lvl_hi", 1, 100, 6054 0, 0 }, 6055 { { NULL }, "nat_flush_lvl_lo", 1, 100, 6056 0, 0 }, 6057 /* frag */ 6058 { { NULL }, "ipfr_size", 1, 0x7fffffff, 6059 0, IPFT_WRDISABLED }, 6060 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 6061 0, IPFT_WRDISABLED }, 6062 #ifdef IPFILTER_LOG 6063 /* log */ 6064 { { NULL }, "ipl_suppress", 0, 1, 6065 0, 0 }, 6066 { { NULL }, "ipl_buffer_sz", 0, 0, 6067 0, IPFT_RDONLY }, 6068 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 6069 0, IPFT_WRDISABLED }, 6070 { { NULL }, "ipl_logall", 0, 1, 6071 0, 0 }, 6072 { { NULL }, "ipl_logsize", 0, 0x80000, 6073 0, 0 }, 6074 #endif 6075 { { NULL }, NULL, 0, 0 } 6076 }; 6077 6078 static ipftuneable_t * 6079 tune_lookup(ipf_stack_t *ifs, char *name) 6080 { 6081 int i; 6082 6083 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6084 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6085 return (&ifs->ifs_ipf_tuneables[i]); 6086 } 6087 return (NULL); 6088 } 6089 6090 #ifdef _KERNEL 6091 extern dev_info_t *ipf_dev_info; 6092 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6093 #endif 6094 6095 /* -------------------------------------------------------------------- */ 6096 /* Function: ipftuneable_setdefs() */ 6097 /* Returns: void */ 6098 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6099 /* assigned to IP instance */ 6100 /* */ 6101 /* Function initializes IPF instance variables. Function is invoked */ 6102 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6103 /* time during IP instance lifetime - at the time of IP instance */ 6104 /* creation. Anytime IP instance is being created new private IPF */ 6105 /* instance is allocated and assigned to it. The moment of IP */ 6106 /* instance creation is the right time to initialize those IPF */ 6107 /* variables. */ 6108 /* */ 6109 /* -------------------------------------------------------------------- */ 6110 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6111 { 6112 ifs->ifs_ipfr_size = IPFT_SIZE; 6113 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6114 6115 /* it comes from fr_authinit() in IPF auth */ 6116 ifs->ifs_fr_authsize = FR_NUMAUTH; 6117 ifs->ifs_fr_defaultauthage = 600; 6118 6119 /* it comes from fr_stateinit() in IPF state */ 6120 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6121 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6122 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6123 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6124 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6125 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6126 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6127 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6128 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6129 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6130 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6131 ifs->ifs_fr_statemax = IPSTATE_MAX; 6132 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6133 ifs->ifs_fr_state_maxbucket_reset = 1; 6134 6135 /* it comes from fr_natinit() in ipnat */ 6136 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6137 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6138 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6139 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6140 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6141 ifs->ifs_fr_nat_maxbucket_reset = 1; 6142 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6143 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6144 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6145 ifs->ifs_nat_flush_lvl_hi = NAT_FLUSH_HI; 6146 ifs->ifs_nat_flush_lvl_lo = NAT_FLUSH_LO; 6147 6148 #ifdef IPFILTER_LOG 6149 /* it comes from fr_loginit() in IPF log */ 6150 ifs->ifs_ipl_suppress = 1; 6151 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6152 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6153 6154 /* from fr_natinit() */ 6155 ifs->ifs_nat_logging = 1; 6156 6157 /* from fr_stateinit() */ 6158 ifs->ifs_ipstate_logging = 1; 6159 #else 6160 /* from fr_natinit() */ 6161 ifs->ifs_nat_logging = 0; 6162 6163 /* from fr_stateinit() */ 6164 ifs->ifs_ipstate_logging = 0; 6165 #endif 6166 ifs->ifs_ipf_loopback = 0; 6167 6168 } 6169 /* 6170 * Allocate a per-stack tuneable and copy in the names. Then 6171 * set it to point to each of the per-stack tunables. 6172 */ 6173 void 6174 ipftuneable_alloc(ipf_stack_t *ifs) 6175 { 6176 ipftuneable_t *item; 6177 6178 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6179 sizeof (lcl_ipf_tuneables)); 6180 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6181 sizeof (lcl_ipf_tuneables)); 6182 6183 #define TUNE_SET(_ifs, _name, _field) \ 6184 item = tune_lookup((_ifs), (_name)); \ 6185 if (item != NULL) { \ 6186 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6187 item->ipft_sz = sizeof ((_ifs)->_field); \ 6188 } 6189 6190 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6191 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6192 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6193 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6194 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6195 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6196 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6197 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6198 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6199 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6200 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6201 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6202 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6203 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6204 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6205 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6206 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6207 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6208 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6209 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6210 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6211 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6212 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6213 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6214 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6215 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6216 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6217 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6218 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6219 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6220 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6221 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6222 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6223 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6224 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6225 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage); 6226 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6227 TUNE_SET(ifs, "nat_flush_lvl_hi", ifs_nat_flush_lvl_hi); 6228 TUNE_SET(ifs, "nat_flush_lvl_lo", ifs_nat_flush_lvl_lo); 6229 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6230 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6231 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback); 6232 #ifdef IPFILTER_LOG 6233 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6234 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6235 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6236 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6237 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6238 #endif 6239 #undef TUNE_SET 6240 6241 ipftuneable_setdefs(ifs); 6242 6243 #ifdef _KERNEL 6244 (void) ipf_property_update(ipf_dev_info, ifs); 6245 #endif 6246 } 6247 6248 void 6249 ipftuneable_free(ipf_stack_t *ifs) 6250 { 6251 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6252 ifs->ifs_ipf_tuneables = NULL; 6253 } 6254 6255 /* ------------------------------------------------------------------------ */ 6256 /* Function: fr_findtunebycookie */ 6257 /* Returns: NULL = search failed, else pointer to tune struct */ 6258 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6259 /* next(O) - pointer to place to store the cookie for the */ 6260 /* "next" tuneable, if it is desired. */ 6261 /* */ 6262 /* This function is used to walk through all of the existing tunables with */ 6263 /* successive calls. It searches the known tunables for the one which has */ 6264 /* a matching value for "cookie" - ie its address. When returning a match, */ 6265 /* the next one to be found may be returned inside next. */ 6266 /* ------------------------------------------------------------------------ */ 6267 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6268 void *cookie, **next; 6269 ipf_stack_t * ifs; 6270 { 6271 ipftuneable_t *ta, **tap; 6272 6273 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6274 if (ta == cookie) { 6275 if (next != NULL) { 6276 /* 6277 * If the next entry in the array has a name 6278 * present, then return a pointer to it for 6279 * where to go next, else return a pointer to 6280 * the dynaminc list as a key to search there 6281 * next. This facilitates a weak linking of 6282 * the two "lists" together. 6283 */ 6284 if ((ta + 1)->ipft_name != NULL) 6285 *next = ta + 1; 6286 else 6287 *next = &ifs->ifs_ipf_tunelist; 6288 } 6289 return ta; 6290 } 6291 6292 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6293 if (tap == cookie) { 6294 if (next != NULL) 6295 *next = &ta->ipft_next; 6296 return ta; 6297 } 6298 6299 if (next != NULL) 6300 *next = NULL; 6301 return NULL; 6302 } 6303 6304 6305 /* ------------------------------------------------------------------------ */ 6306 /* Function: fr_findtunebyname */ 6307 /* Returns: NULL = search failed, else pointer to tune struct */ 6308 /* Parameters: name(I) - name of the tuneable entry to find. */ 6309 /* */ 6310 /* Search the static array of tuneables and the list of dynamic tuneables */ 6311 /* for an entry with a matching name. If we can find one, return a pointer */ 6312 /* to the matching structure. */ 6313 /* ------------------------------------------------------------------------ */ 6314 static ipftuneable_t *fr_findtunebyname(name, ifs) 6315 const char *name; 6316 ipf_stack_t *ifs; 6317 { 6318 ipftuneable_t *ta; 6319 6320 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6321 if (!strcmp(ta->ipft_name, name)) { 6322 return ta; 6323 } 6324 6325 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6326 if (!strcmp(ta->ipft_name, name)) { 6327 return ta; 6328 } 6329 6330 return NULL; 6331 } 6332 6333 6334 /* ------------------------------------------------------------------------ */ 6335 /* Function: fr_addipftune */ 6336 /* Returns: int - 0 == success, else failure */ 6337 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6338 /* */ 6339 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6340 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6341 /* of the object is not expected to ever change "ipft_next". */ 6342 /* ------------------------------------------------------------------------ */ 6343 int fr_addipftune(newtune, ifs) 6344 ipftuneable_t *newtune; 6345 ipf_stack_t *ifs; 6346 { 6347 ipftuneable_t *ta, **tap; 6348 6349 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6350 if (ta != NULL) 6351 return EEXIST; 6352 6353 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6354 ; 6355 6356 newtune->ipft_next = NULL; 6357 *tap = newtune; 6358 return 0; 6359 } 6360 6361 6362 /* ------------------------------------------------------------------------ */ 6363 /* Function: fr_delipftune */ 6364 /* Returns: int - 0 == success, else failure */ 6365 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6366 /* current dynamic tuneables */ 6367 /* */ 6368 /* Search for the tune structure, by pointer, in the list of those that are */ 6369 /* dynamically added at run time. If found, adjust the list so that this */ 6370 /* structure is no longer part of it. */ 6371 /* ------------------------------------------------------------------------ */ 6372 int fr_delipftune(oldtune, ifs) 6373 ipftuneable_t *oldtune; 6374 ipf_stack_t *ifs; 6375 { 6376 ipftuneable_t *ta, **tap; 6377 6378 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6379 if (ta == oldtune) { 6380 *tap = oldtune->ipft_next; 6381 oldtune->ipft_next = NULL; 6382 return 0; 6383 } 6384 6385 return ESRCH; 6386 } 6387 6388 6389 /* ------------------------------------------------------------------------ */ 6390 /* Function: fr_ipftune */ 6391 /* Returns: int - 0 == success, else failure */ 6392 /* Parameters: cmd(I) - ioctl command number */ 6393 /* data(I) - pointer to ioctl data structure */ 6394 /* */ 6395 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6396 /* three ioctls provide the means to access and control global variables */ 6397 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6398 /* changed without rebooting, reloading or recompiling. The initialisation */ 6399 /* and 'destruction' routines of the various components of ipfilter are all */ 6400 /* each responsible for handling their own values being too big. */ 6401 /* ------------------------------------------------------------------------ */ 6402 int fr_ipftune(cmd, data, ifs) 6403 ioctlcmd_t cmd; 6404 void *data; 6405 ipf_stack_t *ifs; 6406 { 6407 ipftuneable_t *ta; 6408 ipftune_t tu; 6409 void *cookie; 6410 int error; 6411 6412 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6413 if (error != 0) 6414 return error; 6415 6416 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6417 cookie = tu.ipft_cookie; 6418 ta = NULL; 6419 6420 switch (cmd) 6421 { 6422 case SIOCIPFGETNEXT : 6423 /* 6424 * If cookie is non-NULL, assume it to be a pointer to the last 6425 * entry we looked at, so find it (if possible) and return a 6426 * pointer to the next one after it. The last entry in the 6427 * the table is a NULL entry, so when we get to it, set cookie 6428 * to NULL and return that, indicating end of list, erstwhile 6429 * if we come in with cookie set to NULL, we are starting anew 6430 * at the front of the list. 6431 */ 6432 if (cookie != NULL) { 6433 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6434 } else { 6435 ta = ifs->ifs_ipf_tuneables; 6436 tu.ipft_cookie = ta + 1; 6437 } 6438 if (ta != NULL) { 6439 /* 6440 * Entry found, but does the data pointed to by that 6441 * row fit in what we can return? 6442 */ 6443 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6444 return EINVAL; 6445 6446 tu.ipft_vlong = 0; 6447 if (ta->ipft_sz == sizeof(u_long)) 6448 tu.ipft_vlong = *ta->ipft_plong; 6449 else if (ta->ipft_sz == sizeof(u_int)) 6450 tu.ipft_vint = *ta->ipft_pint; 6451 else if (ta->ipft_sz == sizeof(u_short)) 6452 tu.ipft_vshort = *ta->ipft_pshort; 6453 else if (ta->ipft_sz == sizeof(u_char)) 6454 tu.ipft_vchar = *ta->ipft_pchar; 6455 6456 tu.ipft_sz = ta->ipft_sz; 6457 tu.ipft_min = ta->ipft_min; 6458 tu.ipft_max = ta->ipft_max; 6459 tu.ipft_flags = ta->ipft_flags; 6460 bcopy(ta->ipft_name, tu.ipft_name, 6461 MIN(sizeof(tu.ipft_name), 6462 strlen(ta->ipft_name) + 1)); 6463 } 6464 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6465 break; 6466 6467 case SIOCIPFGET : 6468 case SIOCIPFSET : 6469 /* 6470 * Search by name or by cookie value for a particular entry 6471 * in the tuning paramter table. 6472 */ 6473 error = ESRCH; 6474 if (cookie != NULL) { 6475 ta = fr_findtunebycookie(cookie, NULL, ifs); 6476 if (ta != NULL) 6477 error = 0; 6478 } else if (tu.ipft_name[0] != '\0') { 6479 ta = fr_findtunebyname(tu.ipft_name, ifs); 6480 if (ta != NULL) 6481 error = 0; 6482 } 6483 if (error != 0) 6484 break; 6485 6486 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6487 /* 6488 * Fetch the tuning parameters for a particular value 6489 */ 6490 tu.ipft_vlong = 0; 6491 if (ta->ipft_sz == sizeof(u_long)) 6492 tu.ipft_vlong = *ta->ipft_plong; 6493 else if (ta->ipft_sz == sizeof(u_int)) 6494 tu.ipft_vint = *ta->ipft_pint; 6495 else if (ta->ipft_sz == sizeof(u_short)) 6496 tu.ipft_vshort = *ta->ipft_pshort; 6497 else if (ta->ipft_sz == sizeof(u_char)) 6498 tu.ipft_vchar = *ta->ipft_pchar; 6499 tu.ipft_cookie = ta; 6500 tu.ipft_sz = ta->ipft_sz; 6501 tu.ipft_min = ta->ipft_min; 6502 tu.ipft_max = ta->ipft_max; 6503 tu.ipft_flags = ta->ipft_flags; 6504 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6505 6506 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6507 /* 6508 * Set an internal parameter. The hard part here is 6509 * getting the new value safely and correctly out of 6510 * the kernel (given we only know its size, not type.) 6511 */ 6512 u_long in; 6513 6514 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6515 (ifs->ifs_fr_running > 0)) { 6516 error = EBUSY; 6517 break; 6518 } 6519 6520 in = tu.ipft_vlong; 6521 if (in < ta->ipft_min || in > ta->ipft_max) { 6522 error = EINVAL; 6523 break; 6524 } 6525 6526 if (ta->ipft_sz == sizeof(u_long)) { 6527 tu.ipft_vlong = *ta->ipft_plong; 6528 *ta->ipft_plong = in; 6529 } else if (ta->ipft_sz == sizeof(u_int)) { 6530 tu.ipft_vint = *ta->ipft_pint; 6531 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6532 } else if (ta->ipft_sz == sizeof(u_short)) { 6533 tu.ipft_vshort = *ta->ipft_pshort; 6534 *ta->ipft_pshort = (u_short)(in & 0xffff); 6535 } else if (ta->ipft_sz == sizeof(u_char)) { 6536 tu.ipft_vchar = *ta->ipft_pchar; 6537 *ta->ipft_pchar = (u_char)(in & 0xff); 6538 } 6539 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6540 } 6541 break; 6542 6543 default : 6544 error = EINVAL; 6545 break; 6546 } 6547 6548 return error; 6549 } 6550 6551 6552 /* ------------------------------------------------------------------------ */ 6553 /* Function: fr_initialise */ 6554 /* Returns: int - 0 == success, < 0 == failure */ 6555 /* Parameters: None. */ 6556 /* */ 6557 /* Call of the initialise functions for all the various subsystems inside */ 6558 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6559 /* BUT do not try to recover from the error here. */ 6560 /* ------------------------------------------------------------------------ */ 6561 int fr_initialise(ifs) 6562 ipf_stack_t *ifs; 6563 { 6564 int i; 6565 6566 #ifdef IPFILTER_LOG 6567 i = fr_loginit(ifs); 6568 if (i < 0) 6569 return -10 + i; 6570 #endif 6571 i = fr_natinit(ifs); 6572 if (i < 0) 6573 return -20 + i; 6574 6575 i = fr_stateinit(ifs); 6576 if (i < 0) 6577 return -30 + i; 6578 6579 i = fr_authinit(ifs); 6580 if (i < 0) 6581 return -40 + i; 6582 6583 i = fr_fraginit(ifs); 6584 if (i < 0) 6585 return -50 + i; 6586 6587 i = appr_init(ifs); 6588 if (i < 0) 6589 return -60 + i; 6590 6591 #ifdef IPFILTER_SYNC 6592 i = ipfsync_init(ifs); 6593 if (i < 0) 6594 return -70 + i; 6595 #endif 6596 #ifdef IPFILTER_SCAN 6597 i = ipsc_init(ifs); 6598 if (i < 0) 6599 return -80 + i; 6600 #endif 6601 #ifdef IPFILTER_LOOKUP 6602 i = ip_lookup_init(ifs); 6603 if (i < 0) 6604 return -90 + i; 6605 #endif 6606 #ifdef IPFILTER_COMPILED 6607 ipfrule_add(ifs); 6608 #endif 6609 return 0; 6610 } 6611 6612 6613 /* ------------------------------------------------------------------------ */ 6614 /* Function: fr_deinitialise */ 6615 /* Returns: None. */ 6616 /* Parameters: None. */ 6617 /* */ 6618 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6619 /* destroy locks or whatever they've done that they need to now undo. */ 6620 /* The order here IS important as there are some cross references of */ 6621 /* internal data structures. */ 6622 /* ------------------------------------------------------------------------ */ 6623 void fr_deinitialise(ifs) 6624 ipf_stack_t *ifs; 6625 { 6626 fr_fragunload(ifs); 6627 fr_authunload(ifs); 6628 fr_natunload(ifs); 6629 fr_stateunload(ifs); 6630 #ifdef IPFILTER_SCAN 6631 fr_scanunload(ifs); 6632 #endif 6633 appr_unload(ifs); 6634 6635 #ifdef IPFILTER_COMPILED 6636 ipfrule_remove(ifs); 6637 #endif 6638 6639 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6640 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6641 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6642 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6643 6644 #ifdef IPFILTER_LOOKUP 6645 ip_lookup_unload(ifs); 6646 #endif 6647 6648 #ifdef IPFILTER_LOG 6649 fr_logunload(ifs); 6650 #endif 6651 } 6652 6653 6654 /* ------------------------------------------------------------------------ */ 6655 /* Function: fr_zerostats */ 6656 /* Returns: int - 0 = success, else failure */ 6657 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6658 /* */ 6659 /* Copies the current statistics out to userspace and then zero's the */ 6660 /* current ones in the kernel. The lock is only held across the bzero() as */ 6661 /* the copyout may result in paging (ie network activity.) */ 6662 /* ------------------------------------------------------------------------ */ 6663 int fr_zerostats(data, ifs) 6664 caddr_t data; 6665 ipf_stack_t *ifs; 6666 { 6667 friostat_t fio; 6668 int error; 6669 6670 fr_getstat(&fio, ifs); 6671 error = copyoutptr(&fio, data, sizeof(fio)); 6672 if (error) 6673 return EFAULT; 6674 6675 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6676 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6677 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6678 6679 return 0; 6680 } 6681 6682 6683 #ifdef _KERNEL 6684 /* ------------------------------------------------------------------------ */ 6685 /* Function: fr_resolvedest */ 6686 /* Returns: Nil */ 6687 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6688 /* v(I) - IP protocol version to match */ 6689 /* */ 6690 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6691 /* if a matching name can be found for the particular IP protocol version */ 6692 /* then store the interface pointer in the frdest struct. If no match is */ 6693 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6694 /* indicate there is no information at all in the structure. */ 6695 /* ------------------------------------------------------------------------ */ 6696 void fr_resolvedest(fdp, v, ifs) 6697 frdest_t *fdp; 6698 int v; 6699 ipf_stack_t *ifs; 6700 { 6701 fdp->fd_ifp = NULL; 6702 6703 if (*fdp->fd_ifname != '\0') { 6704 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6705 if (fdp->fd_ifp == NULL) 6706 fdp->fd_ifp = (void *)-1; 6707 } 6708 } 6709 #endif /* _KERNEL */ 6710 6711 6712 /* ------------------------------------------------------------------------ */ 6713 /* Function: fr_resolvenic */ 6714 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6715 /* pointer to interface structure for NIC */ 6716 /* Parameters: name(I) - complete interface name */ 6717 /* v(I) - IP protocol version */ 6718 /* */ 6719 /* Look for a network interface structure that firstly has a matching name */ 6720 /* to that passed in and that is also being used for that IP protocol */ 6721 /* version (necessary on some platforms where there are separate listings */ 6722 /* for both IPv4 and IPv6 on the same physical NIC. */ 6723 /* */ 6724 /* One might wonder why name gets terminated with a \0 byte in here. The */ 6725 /* reason is an interface name could get into the kernel structures of ipf */ 6726 /* in any number of ways and so long as they all use the same sized array */ 6727 /* to put the name in, it makes sense to ensure it gets null terminated */ 6728 /* before it is used for its intended purpose - finding its match in the */ 6729 /* kernel's list of configured interfaces. */ 6730 /* */ 6731 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 6732 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 6733 /* ------------------------------------------------------------------------ */ 6734 void *fr_resolvenic(name, v, ifs) 6735 char *name; 6736 int v; 6737 ipf_stack_t *ifs; 6738 { 6739 void *nic; 6740 6741 if (name[0] == '\0') 6742 return NULL; 6743 6744 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 6745 return NULL; 6746 } 6747 6748 name[LIFNAMSIZ - 1] = '\0'; 6749 6750 nic = GETIFP(name, v, ifs); 6751 if (nic == NULL) 6752 nic = (void *)-1; 6753 return nic; 6754 } 6755 6756 6757 /* ------------------------------------------------------------------------ */ 6758 /* Function: ipf_expiretokens */ 6759 /* Returns: None. */ 6760 /* Parameters: ifs - ipf stack instance */ 6761 /* */ 6762 /* This function is run every ipf tick to see if there are any tokens that */ 6763 /* have been held for too long and need to be freed up. */ 6764 /* ------------------------------------------------------------------------ */ 6765 void ipf_expiretokens(ifs) 6766 ipf_stack_t *ifs; 6767 { 6768 ipftoken_t *it; 6769 6770 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6771 while ((it = ifs->ifs_ipftokenhead) != NULL) { 6772 if (it->ipt_die > ifs->ifs_fr_ticks) 6773 break; 6774 6775 ipf_freetoken(it, ifs); 6776 } 6777 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6778 } 6779 6780 6781 /* ------------------------------------------------------------------------ */ 6782 /* Function: ipf_deltoken */ 6783 /* Returns: int - 0 = success, else error */ 6784 /* Parameters: type(I) - the token type to match */ 6785 /* uid(I) - uid owning the token */ 6786 /* ptr(I) - context pointer for the token */ 6787 /* ifs - ipf stack instance */ 6788 /* */ 6789 /* This function looks for a a token in the current list that matches up */ 6790 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */ 6791 /* call ipf_freetoken() to remove it from the list. */ 6792 /* ------------------------------------------------------------------------ */ 6793 int ipf_deltoken(type, uid, ptr, ifs) 6794 int type, uid; 6795 void *ptr; 6796 ipf_stack_t *ifs; 6797 { 6798 ipftoken_t *it; 6799 int error = ESRCH; 6800 6801 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6802 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 6803 if (ptr == it->ipt_ctx && type == it->ipt_type && 6804 uid == it->ipt_uid) { 6805 ipf_freetoken(it, ifs); 6806 error = 0; 6807 break; 6808 } 6809 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6810 6811 return error; 6812 } 6813 6814 6815 /* ------------------------------------------------------------------------ */ 6816 /* Function: ipf_unlinktoken */ 6817 /* Returns: None. */ 6818 /* Parameters: token(I) - pointer to token structure */ 6819 /* ifs - ipf stack instance */ 6820 /* */ 6821 /* This function unlinks a token structure from the linked list of tokens */ 6822 /* that it belongs to. The head pointer never needs to be explicitly */ 6823 /* adjusted, but the tail does due to the linked list implementation. */ 6824 /* ------------------------------------------------------------------------ */ 6825 static void ipf_unlinktoken(token, ifs) 6826 ipftoken_t *token; 6827 ipf_stack_t *ifs; 6828 { 6829 6830 if (ifs->ifs_ipftokentail == &token->ipt_next) 6831 ifs->ifs_ipftokentail = token->ipt_pnext; 6832 6833 *token->ipt_pnext = token->ipt_next; 6834 if (token->ipt_next != NULL) 6835 token->ipt_next->ipt_pnext = token->ipt_pnext; 6836 } 6837 6838 6839 /* ------------------------------------------------------------------------ */ 6840 /* Function: ipf_findtoken */ 6841 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */ 6842 /* Parameters: type(I) - the token type to match */ 6843 /* uid(I) - uid owning the token */ 6844 /* ptr(I) - context pointer for the token */ 6845 /* ifs - ipf stack instance */ 6846 /* */ 6847 /* This function looks for a live token in the list of current tokens that */ 6848 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */ 6849 /* allocated. If one is found then it is moved to the top of the list of */ 6850 /* currently active tokens. */ 6851 /* */ 6852 /* NOTE: It is by design that this function returns holding a read lock on */ 6853 /* ipf_tokens. Callers must make sure they release it! */ 6854 /* ------------------------------------------------------------------------ */ 6855 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 6856 int type, uid; 6857 void *ptr; 6858 ipf_stack_t *ifs; 6859 { 6860 ipftoken_t *it, *new; 6861 6862 KMALLOC(new, ipftoken_t *); 6863 6864 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6865 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 6866 if (it->ipt_alive == 0) 6867 continue; 6868 if (ptr == it->ipt_ctx && type == it->ipt_type && 6869 uid == it->ipt_uid) 6870 break; 6871 } 6872 6873 if (it == NULL) { 6874 it = new; 6875 new = NULL; 6876 if (it == NULL) 6877 return NULL; 6878 it->ipt_data = NULL; 6879 it->ipt_ctx = ptr; 6880 it->ipt_uid = uid; 6881 it->ipt_type = type; 6882 it->ipt_next = NULL; 6883 it->ipt_alive = 1; 6884 } else { 6885 if (new != NULL) { 6886 KFREE(new); 6887 new = NULL; 6888 } 6889 6890 ipf_unlinktoken(it, ifs); 6891 } 6892 it->ipt_pnext = ifs->ifs_ipftokentail; 6893 *ifs->ifs_ipftokentail = it; 6894 ifs->ifs_ipftokentail = &it->ipt_next; 6895 it->ipt_next = NULL; 6896 6897 it->ipt_die = ifs->ifs_fr_ticks + 2; 6898 6899 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 6900 6901 return it; 6902 } 6903 6904 6905 /* ------------------------------------------------------------------------ */ 6906 /* Function: ipf_freetoken */ 6907 /* Returns: None. */ 6908 /* Parameters: token(I) - pointer to token structure */ 6909 /* ifs - ipf stack instance */ 6910 /* */ 6911 /* This function unlinks a token from the linked list and on the path to */ 6912 /* free'ing the data, it calls the dereference function that is associated */ 6913 /* with the type of data pointed to by the token as it is considered to */ 6914 /* hold a reference to it. */ 6915 /* ------------------------------------------------------------------------ */ 6916 void ipf_freetoken(token, ifs) 6917 ipftoken_t *token; 6918 ipf_stack_t *ifs; 6919 { 6920 void *data, **datap; 6921 6922 ipf_unlinktoken(token, ifs); 6923 6924 data = token->ipt_data; 6925 datap = &data; 6926 6927 if ((data != NULL) && (data != (void *)-1)) { 6928 switch (token->ipt_type) 6929 { 6930 case IPFGENITER_IPF : 6931 (void)fr_derefrule((frentry_t **)datap, ifs); 6932 break; 6933 case IPFGENITER_IPNAT : 6934 WRITE_ENTER(&ifs->ifs_ipf_nat); 6935 fr_ipnatderef((ipnat_t **)datap, ifs); 6936 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 6937 break; 6938 case IPFGENITER_NAT : 6939 fr_natderef((nat_t **)datap, ifs); 6940 break; 6941 case IPFGENITER_STATE : 6942 fr_statederef((ipstate_t **)datap, ifs); 6943 break; 6944 case IPFGENITER_FRAG : 6945 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs); 6946 break; 6947 case IPFGENITER_NATFRAG : 6948 fr_fragderef((ipfr_t **)datap, 6949 &ifs->ifs_ipf_natfrag, ifs); 6950 break; 6951 case IPFGENITER_HOSTMAP : 6952 WRITE_ENTER(&ifs->ifs_ipf_nat); 6953 fr_hostmapdel((hostmap_t **)datap); 6954 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 6955 break; 6956 default : 6957 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 6958 break; 6959 } 6960 } 6961 6962 KFREE(token); 6963 } 6964 6965 6966 /* ------------------------------------------------------------------------ */ 6967 /* Function: ipf_getnextrule */ 6968 /* Returns: int - 0 = success, else error */ 6969 /* Parameters: t(I) - pointer to destination information to resolve */ 6970 /* ptr(I) - pointer to ipfobj_t to copyin from user space */ 6971 /* ifs - ipf stack instance */ 6972 /* */ 6973 /* This function's first job is to bring in the ipfruleiter_t structure via */ 6974 /* the ipfobj_t structure to determine what should be the next rule to */ 6975 /* return. Once the ipfruleiter_t has been brought in, it then tries to */ 6976 /* find the 'next rule'. This may include searching rule group lists or */ 6977 /* just be as simple as looking at the 'next' field in the rule structure. */ 6978 /* When we have found the rule to return, increase its reference count and */ 6979 /* if we used an existing rule to get here, decrease its reference count. */ 6980 /* ------------------------------------------------------------------------ */ 6981 int ipf_getnextrule(t, ptr, ifs) 6982 ipftoken_t *t; 6983 void *ptr; 6984 ipf_stack_t *ifs; 6985 { 6986 frentry_t *fr, *next, zero; 6987 int error, out, count; 6988 ipfruleiter_t it; 6989 frgroup_t *fg; 6990 char *dst; 6991 6992 if (t == NULL || ptr == NULL) 6993 return EFAULT; 6994 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 6995 if (error != 0) 6996 return error; 6997 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 6998 return EINVAL; 6999 if ((it.iri_inout < 0) || (it.iri_inout > 3)) 7000 return EINVAL; 7001 if (it.iri_nrules == 0) 7002 return EINVAL; 7003 if ((it.iri_active != 0) && (it.iri_active != 1)) 7004 return EINVAL; 7005 if (it.iri_rule == NULL) 7006 return EFAULT; 7007 7008 /* 7009 * Use bitmask on it.iri_inout to determine direction. 7010 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while 7011 * F_IN (0) and F_ACIN (2) mask to out = 0. 7012 */ 7013 out = it.iri_inout & F_OUT; 7014 READ_ENTER(&ifs->ifs_ipf_mutex); 7015 7016 /* 7017 * Retrieve "previous" entry from token and find the next entry. 7018 */ 7019 fr = t->ipt_data; 7020 if (fr == NULL) { 7021 if (*it.iri_group == '\0') { 7022 /* 7023 * Use bitmask again to determine accounting or not. 7024 * F_ACIN will mask to accounting cases F_ACIN (2) 7025 * or F_ACOUT (3), but not F_IN or F_OUT. 7026 */ 7027 if ((it.iri_inout & F_ACIN) != 0) { 7028 if (it.iri_ver == AF_INET) 7029 next = ifs->ifs_ipacct 7030 [out][it.iri_active]; 7031 else 7032 next = ifs->ifs_ipacct6 7033 [out][it.iri_active]; 7034 } else { 7035 if (it.iri_ver == AF_INET) 7036 next = ifs->ifs_ipfilter 7037 [out][it.iri_active]; 7038 else 7039 next = ifs->ifs_ipfilter6 7040 [out][it.iri_active]; 7041 } 7042 } else { 7043 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 7044 it.iri_active, NULL, ifs); 7045 if (fg != NULL) 7046 next = fg->fg_start; 7047 else 7048 next = NULL; 7049 } 7050 } else { 7051 next = fr->fr_next; 7052 } 7053 7054 dst = (char *)it.iri_rule; 7055 /* 7056 * The ipfruleiter may ask for more than 1 rule at a time to be 7057 * copied out, so long as that many exist in the list to start with! 7058 */ 7059 for (count = it.iri_nrules; count > 0; count--) { 7060 /* 7061 * If we found an entry, add reference to it and update token. 7062 * Otherwise, zero out data to be returned and NULL out token. 7063 */ 7064 if (next != NULL) { 7065 MUTEX_ENTER(&next->fr_lock); 7066 next->fr_ref++; 7067 MUTEX_EXIT(&next->fr_lock); 7068 t->ipt_data = next; 7069 } else { 7070 bzero(&zero, sizeof(zero)); 7071 next = &zero; 7072 t->ipt_data = NULL; 7073 } 7074 7075 /* 7076 * Now that we have ref, it's save to give up lock. 7077 */ 7078 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 7079 7080 /* 7081 * Copy out data and clean up references and token as needed. 7082 */ 7083 error = COPYOUT(next, dst, sizeof(*next)); 7084 if (error != 0) 7085 error = EFAULT; 7086 if (t->ipt_data == NULL) { 7087 ipf_freetoken(t, ifs); 7088 break; 7089 } else { 7090 if (fr != NULL) 7091 (void) fr_derefrule(&fr, ifs); 7092 if (next->fr_data != NULL) { 7093 dst += sizeof(*next); 7094 error = COPYOUT(next->fr_data, dst, 7095 next->fr_dsize); 7096 if (error != 0) 7097 error = EFAULT; 7098 else 7099 dst += next->fr_dsize; 7100 } 7101 if (next->fr_next == NULL) { 7102 ipf_freetoken(t, ifs); 7103 break; 7104 } 7105 } 7106 7107 if ((count == 1) || (error != 0)) 7108 break; 7109 7110 READ_ENTER(&ifs->ifs_ipf_mutex); 7111 fr = next; 7112 next = fr->fr_next; 7113 } 7114 7115 return error; 7116 } 7117 7118 7119 /* ------------------------------------------------------------------------ */ 7120 /* Function: fr_frruleiter */ 7121 /* Returns: int - 0 = success, else error */ 7122 /* Parameters: data(I) - the token type to match */ 7123 /* uid(I) - uid owning the token */ 7124 /* ptr(I) - context pointer for the token */ 7125 /* ifs - ipf stack instance */ 7126 /* */ 7127 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7128 /* ipf_getnextrule. It's role is to find the right token in the kernel for */ 7129 /* the process doing the ioctl and use that to ask for the next rule. */ 7130 /* ------------------------------------------------------------------------ */ 7131 int ipf_frruleiter(data, uid, ctx, ifs) 7132 void *data, *ctx; 7133 int uid; 7134 ipf_stack_t *ifs; 7135 { 7136 ipftoken_t *token; 7137 int error; 7138 7139 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 7140 if (token != NULL) 7141 error = ipf_getnextrule(token, data, ifs); 7142 else 7143 error = EFAULT; 7144 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7145 7146 return error; 7147 } 7148 7149 7150 /* ------------------------------------------------------------------------ */ 7151 /* Function: ipf_geniter */ 7152 /* Returns: int - 0 = success, else error */ 7153 /* Parameters: token(I) - pointer to ipftoken structure */ 7154 /* itp(I) - pointer to ipfgeniter structure */ 7155 /* ifs - ipf stack instance */ 7156 /* */ 7157 /* Generic iterator called from ipf_genericiter. Currently only used for */ 7158 /* walking through list of fragments. */ 7159 /* ------------------------------------------------------------------------ */ 7160 int ipf_geniter(token, itp, ifs) 7161 ipftoken_t *token; 7162 ipfgeniter_t *itp; 7163 ipf_stack_t *ifs; 7164 { 7165 int error; 7166 7167 switch (itp->igi_type) 7168 { 7169 case IPFGENITER_FRAG : 7170 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 7171 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, 7172 ifs); 7173 break; 7174 default : 7175 error = EINVAL; 7176 break; 7177 } 7178 7179 return error; 7180 } 7181 7182 7183 /* ------------------------------------------------------------------------ */ 7184 /* Function: ipf_genericiter */ 7185 /* Returns: int - 0 = success, else error */ 7186 /* Parameters: data(I) - the token type to match */ 7187 /* uid(I) - uid owning the token */ 7188 /* ptr(I) - context pointer for the token */ 7189 /* ifs - ipf stack instance */ 7190 /* */ 7191 /* This function serves as a stepping stone between fr_ipf_ioctl and */ 7192 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */ 7193 /* token in the kernel for the process using the ioctl, and to use that */ 7194 /* token when calling ipf_geniter. */ 7195 /* ------------------------------------------------------------------------ */ 7196 int ipf_genericiter(data, uid, ctx, ifs) 7197 void *data, *ctx; 7198 int uid; 7199 ipf_stack_t *ifs; 7200 { 7201 ipftoken_t *token; 7202 ipfgeniter_t iter; 7203 int error; 7204 7205 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 7206 if (error != 0) 7207 return error; 7208 7209 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 7210 if (token != NULL) { 7211 token->ipt_subtype = iter.igi_type; 7212 error = ipf_geniter(token, &iter, ifs); 7213 } else 7214 error = EFAULT; 7215 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 7216 7217 return error; 7218 } 7219