1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * IPsec Security Policy Database. 31 * 32 * This module maintains the SPD and provides routines used by ip and ip6 33 * to apply IPsec policy to inbound and outbound datagrams. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/stream.h> 38 #include <sys/stropts.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strsubr.h> 41 #include <sys/strlog.h> 42 #include <sys/cmn_err.h> 43 #include <sys/zone.h> 44 45 #include <sys/systm.h> 46 #include <sys/param.h> 47 #include <sys/kmem.h> 48 49 #include <sys/crypto/api.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 54 #include <netinet/ip6.h> 55 #include <netinet/icmp6.h> 56 #include <netinet/udp.h> 57 58 #include <inet/ip.h> 59 #include <inet/ip6.h> 60 61 #include <net/pfkeyv2.h> 62 #include <net/pfpolicy.h> 63 #include <inet/ipsec_info.h> 64 #include <inet/sadb.h> 65 #include <inet/ipsec_impl.h> 66 #include <inet/ipsecah.h> 67 #include <inet/ipsecesp.h> 68 #include <inet/ipdrop.h> 69 #include <inet/ipclassifier.h> 70 71 static void ipsec_update_present_flags(); 72 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *); 73 static void ipsec_out_free(void *); 74 static void ipsec_in_free(void *); 75 static boolean_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *, 76 ipha_t *, ip6_t *); 77 static mblk_t *ipsec_attach_global_policy(mblk_t *, conn_t *, 78 ipsec_selector_t *); 79 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *, 80 ipsec_selector_t *); 81 static mblk_t *ipsec_check_ipsecin_policy(queue_t *, mblk_t *, 82 ipsec_policy_t *, ipha_t *, ip6_t *); 83 static void ipsec_in_release_refs(ipsec_in_t *); 84 static void ipsec_out_release_refs(ipsec_out_t *); 85 static void ipsec_action_reclaim(void *); 86 static void ipsid_init(void); 87 static void ipsid_fini(void); 88 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *, 89 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **, 90 kstat_named_t **); 91 static int32_t ipsec_act_ovhd(const ipsec_act_t *act); 92 static void ipsec_unregister_prov_update(void); 93 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *); 94 static uint32_t selector_hash(ipsec_selector_t *); 95 96 /* 97 * Policy rule index generator. We assume this won't wrap in the 98 * lifetime of a system. If we make 2^20 policy changes per second, 99 * this will last 2^44 seconds, or roughly 500,000 years, so we don't 100 * have to worry about reusing policy index values. 101 * 102 * Protected by ipsec_conf_lock. 103 */ 104 uint64_t ipsec_next_policy_index = 1; 105 106 /* 107 * Active & Inactive system policy roots 108 */ 109 static ipsec_policy_head_t system_policy; 110 static ipsec_policy_head_t inactive_policy; 111 112 /* Packet dropper for generic SPD drops. */ 113 static ipdropper_t spd_dropper; 114 115 /* 116 * For now, use a trivially sized hash table for actions. 117 * In the future we can add the structure canonicalization necessary 118 * to get the hash function to behave correctly.. 119 */ 120 #define IPSEC_ACTION_HASH_SIZE 1 121 122 /* 123 * Selector hash table is statically sized at module load time. 124 * we default to 251 buckets, which is the largest prime number under 255 125 */ 126 127 #define IPSEC_SPDHASH_DEFAULT 251 128 uint32_t ipsec_spd_hashsize = 0; 129 130 #define IPSEC_SEL_NOHASH ((uint32_t)(~0)) 131 132 static HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE]; 133 static HASH_HEAD(ipsec_sel) *ipsec_sel_hash; 134 135 static kmem_cache_t *ipsec_action_cache; 136 static kmem_cache_t *ipsec_sel_cache; 137 static kmem_cache_t *ipsec_pol_cache; 138 static kmem_cache_t *ipsec_info_cache; 139 140 boolean_t ipsec_inbound_v4_policy_present = B_FALSE; 141 boolean_t ipsec_outbound_v4_policy_present = B_FALSE; 142 boolean_t ipsec_inbound_v6_policy_present = B_FALSE; 143 boolean_t ipsec_outbound_v6_policy_present = B_FALSE; 144 145 /* 146 * Because policy needs to know what algorithms are supported, keep the 147 * lists of algorithms here. 148 */ 149 150 kmutex_t alg_lock; 151 uint8_t ipsec_nalgs[IPSEC_NALGTYPES]; 152 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 153 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; 154 ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES]; 155 static crypto_notify_handle_t prov_update_handle = NULL; 156 157 int ipsec_hdr_pullup_needed = 0; 158 int ipsec_weird_null_inbound_policy = 0; 159 160 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align)) 161 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align) 162 163 /* 164 * Inbound traffic should have matching identities for both SA's. 165 */ 166 167 #define SA_IDS_MATCH(sa1, sa2) \ 168 (((sa1) == NULL) || ((sa2) == NULL) || \ 169 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \ 170 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid)))) 171 172 #define IPPOL_UNCHAIN(php, ip) \ 173 HASHLIST_UNCHAIN((ip), ipsp_hash); \ 174 avl_remove(&(php)->iph_rulebyid, (ip)); \ 175 IPPOL_REFRELE(ip); 176 177 /* 178 * Policy failure messages. 179 */ 180 static char *ipsec_policy_failure_msgs[] = { 181 182 /* IPSEC_POLICY_NOT_NEEDED */ 183 "%s: Dropping the datagram because the incoming packet " 184 "is %s, but the recipient expects clear; Source %s, " 185 "Destination %s.\n", 186 187 /* IPSEC_POLICY_MISMATCH */ 188 "%s: Policy Failure for the incoming packet (%s); Source %s, " 189 "Destination %s.\n", 190 191 /* IPSEC_POLICY_AUTH_NOT_NEEDED */ 192 "%s: Authentication present while not expected in the " 193 "incoming %s packet; Source %s, Destination %s.\n", 194 195 /* IPSEC_POLICY_ENCR_NOT_NEEDED */ 196 "%s: Encryption present while not expected in the " 197 "incoming %s packet; Source %s, Destination %s.\n", 198 199 /* IPSEC_POLICY_SE_NOT_NEEDED */ 200 "%s: Self-Encapsulation present while not expected in the " 201 "incoming %s packet; Source %s, Destination %s.\n", 202 }; 203 /* 204 * Have a counter for every possible policy message in the previous array. 205 */ 206 static uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX]; 207 /* Time since last ipsec policy failure that printed a message. */ 208 hrtime_t ipsec_policy_failure_last = 0; 209 210 /* 211 * General overviews: 212 * 213 * Locking: 214 * 215 * All of the system policy structures are protected by a single 216 * rwlock, ipsec_conf_lock. These structures are threaded in a 217 * fairly complex fashion and are not expected to change on a 218 * regular basis, so this should not cause scaling/contention 219 * problems. As a result, policy checks should (hopefully) be MT-hot. 220 * 221 * Allocation policy: 222 * 223 * We use custom kmem cache types for the various 224 * bits & pieces of the policy data structures. All allocations 225 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The 226 * policy table is of potentially unbounded size, so we don't 227 * want to provide a way to hog all system memory with policy 228 * entries.. 229 */ 230 231 232 /* 233 * AVL tree comparison function. 234 * the in-kernel avl assumes unique keys for all objects. 235 * Since sometimes policy will duplicate rules, we may insert 236 * multiple rules with the same rule id, so we need a tie-breaker. 237 */ 238 static int 239 ipsec_policy_cmpbyid(const void *a, const void *b) 240 { 241 const ipsec_policy_t *ipa, *ipb; 242 uint64_t idxa, idxb; 243 244 ipa = (const ipsec_policy_t *)a; 245 ipb = (const ipsec_policy_t *)b; 246 idxa = ipa->ipsp_index; 247 idxb = ipb->ipsp_index; 248 249 if (idxa < idxb) 250 return (-1); 251 if (idxa > idxb) 252 return (1); 253 /* 254 * Tie-breaker #1: All installed policy rules have a non-NULL 255 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not 256 * actually in-tree but rather a template node being used in 257 * an avl_find query; see ipsec_policy_delete(). This gives us 258 * a placeholder in the ordering just before the the first entry with 259 * a key >= the one we're looking for, so we can walk forward from 260 * that point to get the remaining entries with the same id. 261 */ 262 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL)) 263 return (-1); 264 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL)) 265 return (1); 266 /* 267 * At most one of the arguments to the comparison should have a 268 * NULL selector pointer; if not, the tree is broken. 269 */ 270 ASSERT(ipa->ipsp_sel != NULL); 271 ASSERT(ipb->ipsp_sel != NULL); 272 /* 273 * Tie-breaker #2: use the virtual address of the policy node 274 * to arbitrarily break ties. Since we use the new tree node in 275 * the avl_find() in ipsec_insert_always, the new node will be 276 * inserted into the tree in the right place in the sequence. 277 */ 278 if (ipa < ipb) 279 return (-1); 280 if (ipa > ipb) 281 return (1); 282 return (0); 283 } 284 285 static void 286 ipsec_polhead_free_table(ipsec_policy_head_t *iph) 287 { 288 int dir, nchains; 289 290 nchains = ipsec_spd_hashsize; 291 292 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 293 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 294 295 if (ipr->ipr_hash == NULL) 296 continue; 297 298 kmem_free(ipr->ipr_hash, nchains * 299 sizeof (ipsec_policy_hash_t)); 300 } 301 } 302 303 static void 304 ipsec_polhead_destroy(ipsec_policy_head_t *iph) 305 { 306 int dir; 307 308 avl_destroy(&iph->iph_rulebyid); 309 rw_destroy(&iph->iph_lock); 310 311 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 312 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 313 int nchains = ipr->ipr_nchains; 314 int chain; 315 316 for (chain = 0; chain < nchains; chain++) 317 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 318 319 } 320 ipsec_polhead_free_table(iph); 321 } 322 323 /* 324 * Module unload hook. 325 */ 326 void 327 ipsec_policy_destroy(void) 328 { 329 int i; 330 331 ip_drop_unregister(&spd_dropper); 332 ip_drop_destroy(); 333 334 ipsec_polhead_destroy(&system_policy); 335 ipsec_polhead_destroy(&inactive_policy); 336 337 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 338 mutex_destroy(&(ipsec_action_hash[i].hash_lock)); 339 340 for (i = 0; i < ipsec_spd_hashsize; i++) 341 mutex_destroy(&(ipsec_sel_hash[i].hash_lock)); 342 343 ipsec_unregister_prov_update(); 344 345 mutex_destroy(&alg_lock); 346 347 kmem_cache_destroy(ipsec_action_cache); 348 kmem_cache_destroy(ipsec_sel_cache); 349 kmem_cache_destroy(ipsec_pol_cache); 350 kmem_cache_destroy(ipsec_info_cache); 351 ipsid_gc(); 352 ipsid_fini(); 353 } 354 355 356 /* 357 * Called when table allocation fails to free the table. 358 */ 359 static int 360 ipsec_alloc_tables_failed() 361 { 362 if (ipsec_sel_hash != NULL) { 363 kmem_free(ipsec_sel_hash, ipsec_spd_hashsize * 364 sizeof (*ipsec_sel_hash)); 365 ipsec_sel_hash = NULL; 366 } 367 ipsec_polhead_free_table(&system_policy); 368 ipsec_polhead_free_table(&inactive_policy); 369 370 return (ENOMEM); 371 } 372 373 /* 374 * Attempt to allocate the tables in a single policy head. 375 * Return nonzero on failure after cleaning up any work in progress. 376 */ 377 static int 378 ipsec_alloc_table(ipsec_policy_head_t *iph, int kmflag) 379 { 380 int dir, nchains; 381 382 nchains = ipsec_spd_hashsize; 383 384 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 385 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 386 387 ipr->ipr_hash = kmem_zalloc(nchains * 388 sizeof (ipsec_policy_hash_t), kmflag); 389 if (ipr->ipr_hash == NULL) 390 return (ipsec_alloc_tables_failed()); 391 } 392 return (0); 393 } 394 395 /* 396 * Attempt to allocate the various tables. Return nonzero on failure 397 * after cleaning up any work in progress. 398 */ 399 static int 400 ipsec_alloc_tables(int kmflag) 401 { 402 int error; 403 404 error = ipsec_alloc_table(&system_policy, kmflag); 405 if (error != 0) 406 return (error); 407 408 error = ipsec_alloc_table(&inactive_policy, kmflag); 409 if (error != 0) 410 return (error); 411 412 ipsec_sel_hash = kmem_zalloc(ipsec_spd_hashsize * 413 sizeof (*ipsec_sel_hash), kmflag); 414 415 if (ipsec_sel_hash == NULL) 416 return (ipsec_alloc_tables_failed()); 417 418 return (0); 419 } 420 421 /* 422 * After table allocation, initialize a policy head. 423 */ 424 static void 425 ipsec_polhead_init(ipsec_policy_head_t *iph) 426 { 427 int dir, chain, nchains; 428 429 nchains = ipsec_spd_hashsize; 430 431 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 432 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid, 433 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 434 435 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 436 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 437 ipr->ipr_nchains = nchains; 438 439 for (chain = 0; chain < nchains; chain++) { 440 mutex_init(&(ipr->ipr_hash[chain].hash_lock), 441 NULL, MUTEX_DEFAULT, NULL); 442 } 443 } 444 } 445 446 /* 447 * Module load hook. 448 */ 449 void 450 ipsec_policy_init() 451 { 452 int i; 453 454 /* 455 * Make two attempts to allocate policy hash tables; try it at 456 * the "preferred" size (may be set in /etc/system) first, 457 * then fall back to the default size. 458 */ 459 if (ipsec_spd_hashsize == 0) 460 ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 461 462 if (ipsec_alloc_tables(KM_NOSLEEP) != 0) { 463 cmn_err(CE_WARN, 464 "Unable to allocate %d entry IPsec policy hash table", 465 ipsec_spd_hashsize); 466 ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 467 cmn_err(CE_WARN, "Falling back to %d entries", 468 ipsec_spd_hashsize); 469 (void) ipsec_alloc_tables(KM_SLEEP); 470 } 471 472 ipsid_init(); 473 ipsec_polhead_init(&system_policy); 474 ipsec_polhead_init(&inactive_policy); 475 476 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 477 mutex_init(&(ipsec_action_hash[i].hash_lock), 478 NULL, MUTEX_DEFAULT, NULL); 479 480 for (i = 0; i < ipsec_spd_hashsize; i++) 481 mutex_init(&(ipsec_sel_hash[i].hash_lock), 482 NULL, MUTEX_DEFAULT, NULL); 483 484 mutex_init(&alg_lock, NULL, MUTEX_DEFAULT, NULL); 485 486 for (i = 0; i < IPSEC_NALGTYPES; i++) 487 ipsec_nalgs[i] = 0; 488 489 ipsec_action_cache = kmem_cache_create("ipsec_actions", 490 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL, 491 ipsec_action_reclaim, NULL, NULL, 0); 492 ipsec_sel_cache = kmem_cache_create("ipsec_selectors", 493 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL, 494 NULL, NULL, NULL, 0); 495 ipsec_pol_cache = kmem_cache_create("ipsec_policy", 496 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL, 497 NULL, NULL, NULL, 0); 498 ipsec_info_cache = kmem_cache_create("ipsec_info", 499 sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL, 500 NULL, NULL, NULL, 0); 501 502 ip_drop_init(); 503 ip_drop_register(&spd_dropper, "IPsec SPD"); 504 } 505 506 /* 507 * Sort algorithm lists. 508 * 509 * I may need to split this based on 510 * authentication/encryption, and I may wish to have an administrator 511 * configure this list. Hold on to some NDD variables... 512 * 513 * XXX For now, sort on minimum key size (GAG!). While minimum key size is 514 * not the ideal metric, it's the only quantifiable measure available. 515 * We need a better metric for sorting algorithms by preference. 516 */ 517 static void 518 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid) 519 { 520 ipsec_alginfo_t *ai = ipsec_alglists[at][algid]; 521 uint8_t holder, swap; 522 uint_t i; 523 uint_t count = ipsec_nalgs[at]; 524 ASSERT(ai != NULL); 525 ASSERT(algid == ai->alg_id); 526 527 ASSERT(MUTEX_HELD(&alg_lock)); 528 529 holder = algid; 530 531 for (i = 0; i < count - 1; i++) { 532 ipsec_alginfo_t *alt; 533 534 alt = ipsec_alglists[at][ipsec_sortlist[at][i]]; 535 /* 536 * If you want to give precedence to newly added algs, 537 * add the = in the > comparison. 538 */ 539 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) { 540 /* Swap sortlist[i] and holder. */ 541 swap = ipsec_sortlist[at][i]; 542 ipsec_sortlist[at][i] = holder; 543 holder = swap; 544 ai = alt; 545 } /* Else just continue. */ 546 } 547 548 /* Store holder in last slot. */ 549 ipsec_sortlist[at][i] = holder; 550 } 551 552 /* 553 * Remove an algorithm from a sorted algorithm list. 554 * This should be considerably easier, even with complex sorting. 555 */ 556 static void 557 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid) 558 { 559 boolean_t copyback = B_FALSE; 560 int i; 561 int newcount = ipsec_nalgs[at]; 562 563 ASSERT(MUTEX_HELD(&alg_lock)); 564 565 for (i = 0; i <= newcount; i++) { 566 if (copyback) 567 ipsec_sortlist[at][i-1] = ipsec_sortlist[at][i]; 568 else if (ipsec_sortlist[at][i] == algid) 569 copyback = B_TRUE; 570 } 571 } 572 573 /* 574 * Add the specified algorithm to the algorithm tables. 575 * Must be called while holding the algorithm table writer lock. 576 */ 577 void 578 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg) 579 { 580 ASSERT(MUTEX_HELD(&alg_lock)); 581 582 ASSERT(ipsec_alglists[algtype][alg->alg_id] == NULL); 583 ipsec_alg_fix_min_max(alg, algtype); 584 ipsec_alglists[algtype][alg->alg_id] = alg; 585 586 ipsec_nalgs[algtype]++; 587 alg_insert_sortlist(algtype, alg->alg_id); 588 } 589 590 /* 591 * Remove the specified algorithm from the algorithm tables. 592 * Must be called while holding the algorithm table writer lock. 593 */ 594 void 595 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid) 596 { 597 ASSERT(MUTEX_HELD(&alg_lock)); 598 599 ASSERT(ipsec_alglists[algtype][algid] != NULL); 600 ipsec_alg_free(ipsec_alglists[algtype][algid]); 601 ipsec_alglists[algtype][algid] = NULL; 602 603 ipsec_nalgs[algtype]--; 604 alg_remove_sortlist(algtype, algid); 605 } 606 607 /* 608 * Hooks for spdsock to get a grip on system policy. 609 */ 610 611 ipsec_policy_head_t * 612 ipsec_system_policy(void) 613 { 614 ipsec_policy_head_t *h = &system_policy; 615 IPPH_REFHOLD(h); 616 return (h); 617 } 618 619 ipsec_policy_head_t * 620 ipsec_inactive_policy(void) 621 { 622 ipsec_policy_head_t *h = &inactive_policy; 623 IPPH_REFHOLD(h); 624 return (h); 625 } 626 627 /* 628 * Lock inactive policy, then active policy, then exchange policy root 629 * pointers. 630 */ 631 void 632 ipsec_swap_policy(void) 633 { 634 int af, dir; 635 avl_tree_t r1, r2; 636 637 rw_enter(&inactive_policy.iph_lock, RW_WRITER); 638 rw_enter(&system_policy.iph_lock, RW_WRITER); 639 640 r1 = system_policy.iph_rulebyid; 641 r2 = inactive_policy.iph_rulebyid; 642 system_policy.iph_rulebyid = r2; 643 inactive_policy.iph_rulebyid = r1; 644 645 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 646 ipsec_policy_hash_t *h1, *h2; 647 648 h1 = system_policy.iph_root[dir].ipr_hash; 649 h2 = inactive_policy.iph_root[dir].ipr_hash; 650 system_policy.iph_root[dir].ipr_hash = h2; 651 inactive_policy.iph_root[dir].ipr_hash = h1; 652 653 for (af = 0; af < IPSEC_NAF; af++) { 654 ipsec_policy_t *t1, *t2; 655 656 t1 = system_policy.iph_root[dir].ipr_nonhash[af]; 657 t2 = inactive_policy.iph_root[dir].ipr_nonhash[af]; 658 system_policy.iph_root[dir].ipr_nonhash[af] = t2; 659 inactive_policy.iph_root[dir].ipr_nonhash[af] = t1; 660 if (t1 != NULL) { 661 t1->ipsp_hash.hash_pp = 662 &(inactive_policy.iph_root[dir]. 663 ipr_nonhash[af]); 664 } 665 if (t2 != NULL) { 666 t2->ipsp_hash.hash_pp = 667 &(system_policy.iph_root[dir]. 668 ipr_nonhash[af]); 669 } 670 671 } 672 } 673 system_policy.iph_gen++; 674 inactive_policy.iph_gen++; 675 ipsec_update_present_flags(); 676 rw_exit(&system_policy.iph_lock); 677 rw_exit(&inactive_policy.iph_lock); 678 } 679 680 /* 681 * Clone one policy rule.. 682 */ 683 static ipsec_policy_t * 684 ipsec_copy_policy(const ipsec_policy_t *src) 685 { 686 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 687 688 if (dst == NULL) 689 return (NULL); 690 691 /* 692 * Adjust refcounts of cloned state. 693 */ 694 IPACT_REFHOLD(src->ipsp_act); 695 src->ipsp_sel->ipsl_refs++; 696 697 HASH_NULL(dst, ipsp_hash); 698 dst->ipsp_refs = 1; 699 dst->ipsp_sel = src->ipsp_sel; 700 dst->ipsp_act = src->ipsp_act; 701 dst->ipsp_prio = src->ipsp_prio; 702 dst->ipsp_index = src->ipsp_index; 703 704 return (dst); 705 } 706 707 void 708 ipsec_insert_always(avl_tree_t *tree, void *new_node) 709 { 710 void *node; 711 avl_index_t where; 712 713 node = avl_find(tree, new_node, &where); 714 ASSERT(node == NULL); 715 avl_insert(tree, new_node, where); 716 } 717 718 719 static int 720 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src, 721 ipsec_policy_t **dstp) 722 { 723 for (; src != NULL; src = src->ipsp_hash.hash_next) { 724 ipsec_policy_t *dst = ipsec_copy_policy(src); 725 if (dst == NULL) 726 return (ENOMEM); 727 728 HASHLIST_INSERT(dst, ipsp_hash, *dstp); 729 ipsec_insert_always(&dph->iph_rulebyid, dst); 730 } 731 return (0); 732 } 733 734 735 736 /* 737 * Make one policy head look exactly like another. 738 * 739 * As with ipsec_swap_policy, we lock the destination policy head first, then 740 * the source policy head. Note that we only need to read-lock the source 741 * policy head as we are not changing it. 742 */ 743 static int 744 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph) 745 { 746 int af, dir, chain, nchains; 747 748 rw_enter(&dph->iph_lock, RW_WRITER); 749 750 ipsec_polhead_flush(dph); 751 752 rw_enter(&sph->iph_lock, RW_READER); 753 754 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 755 ipsec_policy_root_t *dpr = &dph->iph_root[dir]; 756 ipsec_policy_root_t *spr = &sph->iph_root[dir]; 757 nchains = dpr->ipr_nchains; 758 759 ASSERT(dpr->ipr_nchains == spr->ipr_nchains); 760 761 for (af = 0; af < IPSEC_NAF; af++) { 762 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af], 763 &dpr->ipr_nonhash[af])) 764 goto abort_copy; 765 } 766 767 for (chain = 0; chain < nchains; chain++) { 768 if (ipsec_copy_chain(dph, 769 spr->ipr_hash[chain].hash_head, 770 &dpr->ipr_hash[chain].hash_head)) 771 goto abort_copy; 772 } 773 } 774 775 dph->iph_gen++; 776 777 rw_exit(&sph->iph_lock); 778 rw_exit(&dph->iph_lock); 779 return (0); 780 781 abort_copy: 782 ipsec_polhead_flush(dph); 783 rw_exit(&sph->iph_lock); 784 rw_exit(&dph->iph_lock); 785 return (ENOMEM); 786 } 787 788 /* 789 * Clone currently active policy to the inactive policy list. 790 */ 791 int 792 ipsec_clone_system_policy(void) 793 { 794 return (ipsec_copy_polhead(&system_policy, &inactive_policy)); 795 } 796 797 798 /* 799 * Extract the string from ipsec_policy_failure_msgs[type] and 800 * log it. 801 * 802 * This function needs to be kept in synch with ipsec_rl_strlog() in 803 * sadb.c. 804 * XXX this function should be combined with the ipsec_rl_strlog() function. 805 */ 806 void 807 ipsec_log_policy_failure(queue_t *q, int type, char *func_name, ipha_t *ipha, 808 ip6_t *ip6h, boolean_t secure) 809 { 810 char sbuf[INET6_ADDRSTRLEN]; 811 char dbuf[INET6_ADDRSTRLEN]; 812 char *s; 813 char *d; 814 hrtime_t current = gethrtime(); 815 816 ASSERT((ipha == NULL && ip6h != NULL) || 817 (ip6h == NULL && ipha != NULL)); 818 819 if (ipha != NULL) { 820 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf)); 821 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf)); 822 } else { 823 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf)); 824 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf)); 825 826 } 827 828 /* Always bump the policy failure counter. */ 829 ipsec_policy_failure_count[type]++; 830 831 /* Convert interval (in msec) to hrtime (in nsec), which means * 10^6 */ 832 if (ipsec_policy_failure_last + 833 ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <= 834 current) { 835 /* 836 * Throttle the logging such that I only log one message 837 * every 'ipsec_policy_log_interval' amount of time. 838 */ 839 (void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 840 ipsec_policy_failure_msgs[type], 841 func_name, 842 (secure ? "secure" : "not secure"), s, d); 843 ipsec_policy_failure_last = current; 844 } 845 } 846 847 void 848 ipsec_config_flush() 849 { 850 rw_enter(&system_policy.iph_lock, RW_WRITER); 851 ipsec_polhead_flush(&system_policy); 852 ipsec_next_policy_index = 1; 853 rw_exit(&system_policy.iph_lock); 854 ipsec_action_reclaim(0); 855 } 856 857 /* 858 * Clip a policy's min/max keybits vs. the capabilities of the 859 * algorithm. 860 */ 861 static void 862 act_alg_adjust(uint_t algtype, uint_t algid, 863 uint16_t *minbits, uint16_t *maxbits) 864 { 865 ipsec_alginfo_t *algp = ipsec_alglists[algtype][algid]; 866 if (algp != NULL) { 867 /* 868 * If passed-in minbits is zero, we assume the caller trusts 869 * us with setting the minimum key size. We pick the 870 * algorithms DEFAULT key size for the minimum in this case. 871 */ 872 if (*minbits == 0) { 873 *minbits = algp->alg_default_bits; 874 ASSERT(*minbits >= algp->alg_minbits); 875 } else { 876 *minbits = MAX(*minbits, algp->alg_minbits); 877 } 878 if (*maxbits == 0) 879 *maxbits = algp->alg_maxbits; 880 else 881 *maxbits = MIN(*maxbits, algp->alg_maxbits); 882 ASSERT(*minbits <= *maxbits); 883 } else { 884 *minbits = 0; 885 *maxbits = 0; 886 } 887 } 888 889 /* 890 * Check an action's requested algorithms against the algorithms currently 891 * loaded in the system. 892 */ 893 boolean_t 894 ipsec_check_action(ipsec_act_t *act, int *diag) 895 { 896 ipsec_prot_t *ipp; 897 898 ipp = &act->ipa_apply; 899 900 if (ipp->ipp_use_ah && 901 ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) { 902 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG; 903 return (B_FALSE); 904 } 905 if (ipp->ipp_use_espa && 906 ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == NULL) { 907 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG; 908 return (B_FALSE); 909 } 910 if (ipp->ipp_use_esp && 911 ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) { 912 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG; 913 return (B_FALSE); 914 } 915 916 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg, 917 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits); 918 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg, 919 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits); 920 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg, 921 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits); 922 923 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) { 924 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE; 925 return (B_FALSE); 926 } 927 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) { 928 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE; 929 return (B_FALSE); 930 } 931 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) { 932 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE; 933 return (B_FALSE); 934 } 935 /* TODO: sanity check lifetimes */ 936 return (B_TRUE); 937 } 938 939 /* 940 * Set up a single action during wildcard expansion.. 941 */ 942 static void 943 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act, 944 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg) 945 { 946 ipsec_prot_t *ipp; 947 948 *outact = *act; 949 ipp = &outact->ipa_apply; 950 ipp->ipp_auth_alg = (uint8_t)auth_alg; 951 ipp->ipp_encr_alg = (uint8_t)encr_alg; 952 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg; 953 954 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg, 955 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits); 956 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg, 957 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits); 958 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg, 959 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits); 960 } 961 962 /* 963 * combinatoric expansion time: expand a wildcarded action into an 964 * array of wildcarded actions; we return the exploded action list, 965 * and return a count in *nact (output only). 966 */ 967 static ipsec_act_t * 968 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact) 969 { 970 boolean_t use_ah, use_esp, use_espa; 971 boolean_t wild_auth, wild_encr, wild_eauth; 972 uint_t auth_alg, auth_idx, auth_min, auth_max; 973 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max; 974 uint_t encr_alg, encr_idx, encr_min, encr_max; 975 uint_t action_count, ai; 976 ipsec_act_t *outact; 977 978 if (act->ipa_type != IPSEC_ACT_APPLY) { 979 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP); 980 *nact = 1; 981 if (outact != NULL) 982 bcopy(act, outact, sizeof (*act)); 983 return (outact); 984 } 985 /* 986 * compute the combinatoric explosion.. 987 * 988 * we assume a request for encr if esp_req is PREF_REQUIRED 989 * we assume a request for ah auth if ah_req is PREF_REQUIRED. 990 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED 991 */ 992 993 use_ah = act->ipa_apply.ipp_use_ah; 994 use_esp = act->ipa_apply.ipp_use_esp; 995 use_espa = act->ipa_apply.ipp_use_espa; 996 auth_alg = act->ipa_apply.ipp_auth_alg; 997 eauth_alg = act->ipa_apply.ipp_esp_auth_alg; 998 encr_alg = act->ipa_apply.ipp_encr_alg; 999 1000 wild_auth = use_ah && (auth_alg == 0); 1001 wild_eauth = use_espa && (eauth_alg == 0); 1002 wild_encr = use_esp && (encr_alg == 0); 1003 1004 action_count = 1; 1005 auth_min = auth_max = auth_alg; 1006 eauth_min = eauth_max = eauth_alg; 1007 encr_min = encr_max = encr_alg; 1008 1009 /* 1010 * set up for explosion.. for each dimension, expand output 1011 * size by the explosion factor. 1012 * 1013 * Don't include the "any" algorithms, if defined, as no 1014 * kernel policies should be set for these algorithms. 1015 */ 1016 1017 #define SET_EXP_MINMAX(type, wild, alg, min, max) if (wild) { \ 1018 int nalgs = ipsec_nalgs[type]; \ 1019 if (ipsec_alglists[type][alg] != NULL) \ 1020 nalgs--; \ 1021 action_count *= nalgs; \ 1022 min = 0; \ 1023 max = ipsec_nalgs[type] - 1; \ 1024 } 1025 1026 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE, 1027 auth_min, auth_max); 1028 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE, 1029 eauth_min, eauth_max); 1030 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE, 1031 encr_min, encr_max); 1032 1033 #undef SET_EXP_MINMAX 1034 1035 /* 1036 * ok, allocate the whole mess.. 1037 */ 1038 1039 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP); 1040 if (outact == NULL) 1041 return (NULL); 1042 1043 /* 1044 * Now compute all combinations. Note that non-wildcarded 1045 * dimensions just get a single value from auth_min, while 1046 * wildcarded dimensions indirect through the sortlist. 1047 * 1048 * We do encryption outermost since, at this time, there's 1049 * greater difference in security and performance between 1050 * encryption algorithms vs. authentication algorithms. 1051 */ 1052 1053 ai = 0; 1054 1055 #define WHICH_ALG(type, wild, idx) ((wild)?(ipsec_sortlist[type][idx]):(idx)) 1056 1057 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) { 1058 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx); 1059 if (wild_encr && encr_alg == SADB_EALG_NONE) 1060 continue; 1061 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) { 1062 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth, 1063 auth_idx); 1064 if (wild_auth && auth_alg == SADB_AALG_NONE) 1065 continue; 1066 for (eauth_idx = eauth_min; eauth_idx <= eauth_max; 1067 eauth_idx++) { 1068 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH, 1069 wild_eauth, eauth_idx); 1070 if (wild_eauth && eauth_alg == SADB_AALG_NONE) 1071 continue; 1072 1073 ipsec_setup_act(&outact[ai], act, 1074 auth_alg, encr_alg, eauth_alg); 1075 ai++; 1076 } 1077 } 1078 } 1079 1080 #undef WHICH_ALG 1081 1082 ASSERT(ai == action_count); 1083 *nact = action_count; 1084 return (outact); 1085 } 1086 1087 /* 1088 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t. 1089 */ 1090 static void 1091 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp) 1092 { 1093 bzero(ipp, sizeof (*ipp)); 1094 /* 1095 * ipp_use_* are bitfields. Look at "!!" in the following as a 1096 * "boolean canonicalization" operator. 1097 */ 1098 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED); 1099 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED); 1100 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah; 1101 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED); 1102 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) & 1103 IPSEC_PREF_UNIQUE); 1104 ipp->ipp_encr_alg = req->ipsr_esp_alg; 1105 ipp->ipp_auth_alg = req->ipsr_auth_alg; 1106 ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg; 1107 } 1108 1109 /* 1110 * Extract a new-style action from a request. 1111 */ 1112 void 1113 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp) 1114 { 1115 struct ipsec_act act; 1116 bzero(&act, sizeof (act)); 1117 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) && 1118 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) { 1119 act.ipa_type = IPSEC_ACT_BYPASS; 1120 } else { 1121 act.ipa_type = IPSEC_ACT_APPLY; 1122 ipsec_prot_from_req(req, &act.ipa_apply); 1123 } 1124 *actp = ipsec_act_wildcard_expand(&act, nactp); 1125 } 1126 1127 /* 1128 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat). 1129 * We assume caller has already zero'ed *req for us. 1130 */ 1131 static int 1132 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req) 1133 { 1134 req->ipsr_esp_alg = ipp->ipp_encr_alg; 1135 req->ipsr_auth_alg = ipp->ipp_auth_alg; 1136 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg; 1137 1138 if (ipp->ipp_use_unique) { 1139 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE; 1140 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE; 1141 } 1142 if (ipp->ipp_use_se) 1143 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED; 1144 if (ipp->ipp_use_ah) 1145 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED; 1146 if (ipp->ipp_use_esp) 1147 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED; 1148 return (sizeof (*req)); 1149 } 1150 1151 /* 1152 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1153 * We assume caller has already zero'ed *req for us. 1154 */ 1155 static int 1156 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req) 1157 { 1158 switch (ap->ipa_act.ipa_type) { 1159 case IPSEC_ACT_BYPASS: 1160 req->ipsr_ah_req = IPSEC_PREF_NEVER; 1161 req->ipsr_esp_req = IPSEC_PREF_NEVER; 1162 return (sizeof (*req)); 1163 case IPSEC_ACT_APPLY: 1164 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req)); 1165 } 1166 return (sizeof (*req)); 1167 } 1168 1169 /* 1170 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1171 * We assume caller has already zero'ed *req for us. 1172 */ 1173 static int 1174 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af) 1175 { 1176 ipsec_policy_t *p; 1177 1178 /* 1179 * FULL-PERSOCK: consult hash table, too? 1180 */ 1181 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af]; 1182 p != NULL; 1183 p = p->ipsp_hash.hash_next) { 1184 if ((p->ipsp_sel->ipsl_key.ipsl_valid&IPSL_WILDCARD) == 0) 1185 return (ipsec_req_from_act(p->ipsp_act, req)); 1186 } 1187 return (sizeof (*req)); 1188 } 1189 1190 /* 1191 * Based on per-socket or latched policy, convert to an appropriate 1192 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can 1193 * be tail-called from ip. 1194 */ 1195 int 1196 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af) 1197 { 1198 ipsec_latch_t *ipl; 1199 int rv = sizeof (ipsec_req_t); 1200 1201 bzero(req, sizeof (*req)); 1202 1203 mutex_enter(&connp->conn_lock); 1204 ipl = connp->conn_latch; 1205 1206 /* 1207 * Find appropriate policy. First choice is latched action; 1208 * failing that, see latched policy; failing that, 1209 * look at configured policy. 1210 */ 1211 if (ipl != NULL) { 1212 if (ipl->ipl_in_action != NULL) { 1213 rv = ipsec_req_from_act(ipl->ipl_in_action, req); 1214 goto done; 1215 } 1216 if (ipl->ipl_in_policy != NULL) { 1217 rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act, 1218 req); 1219 goto done; 1220 } 1221 } 1222 if (connp->conn_policy != NULL) 1223 rv = ipsec_req_from_head(connp->conn_policy, req, af); 1224 done: 1225 mutex_exit(&connp->conn_lock); 1226 return (rv); 1227 } 1228 1229 void 1230 ipsec_actvec_free(ipsec_act_t *act, uint_t nact) 1231 { 1232 kmem_free(act, nact * sizeof (*act)); 1233 } 1234 1235 /* 1236 * When outbound policy is not cached, look it up the hard way and attach 1237 * an ipsec_out_t to the packet.. 1238 */ 1239 static mblk_t * 1240 ipsec_attach_global_policy(mblk_t *mp, conn_t *connp, ipsec_selector_t *sel) 1241 { 1242 ipsec_policy_t *p; 1243 1244 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel); 1245 1246 if (p == NULL) 1247 return (NULL); 1248 return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol)); 1249 } 1250 1251 /* 1252 * We have an ipsec_out already, but don't have cached policy; fill it in 1253 * with the right actions. 1254 */ 1255 static mblk_t * 1256 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp, 1257 ipsec_selector_t *sel) 1258 { 1259 ipsec_out_t *io; 1260 ipsec_policy_t *p; 1261 1262 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 1263 ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA); 1264 1265 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1266 1267 if (io->ipsec_out_policy == NULL) { 1268 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel); 1269 io->ipsec_out_policy = p; 1270 } 1271 return (ipsec_mp); 1272 } 1273 1274 1275 /* ARGSUSED */ 1276 /* 1277 * Consumes a reference to ipsp. 1278 */ 1279 static mblk_t * 1280 ipsec_check_loopback_policy(queue_t *q, mblk_t *first_mp, 1281 boolean_t mctl_present, ipsec_policy_t *ipsp) 1282 { 1283 mblk_t *ipsec_mp; 1284 ipsec_in_t *ii; 1285 1286 if (!mctl_present) 1287 return (first_mp); 1288 1289 ipsec_mp = first_mp; 1290 1291 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1292 ASSERT(ii->ipsec_in_loopback); 1293 IPPOL_REFRELE(ipsp); 1294 1295 /* 1296 * We should do an actual policy check here. Revisit this 1297 * when we revisit the IPsec API. 1298 */ 1299 1300 return (first_mp); 1301 } 1302 1303 /* 1304 * Check that packet's inbound ports & proto match the selectors 1305 * expected by the SAs it traversed on the way in. 1306 */ 1307 static boolean_t 1308 ipsec_check_ipsecin_unique(ipsec_in_t *ii, mblk_t *mp, 1309 ipha_t *ipha, ip6_t *ip6h, 1310 const char **reason, kstat_named_t **counter) 1311 { 1312 uint64_t pkt_unique, ah_mask, esp_mask; 1313 ipsa_t *ah_assoc = ii->ipsec_in_ah_sa; 1314 ipsa_t *esp_assoc = ii->ipsec_in_esp_sa; 1315 ipsec_selector_t sel; 1316 1317 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL)); 1318 1319 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0; 1320 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0; 1321 1322 if ((ah_mask == 0) && (esp_mask == 0)) 1323 return (B_TRUE); 1324 1325 if (!ipsec_init_inbound_sel(&sel, mp, ipha, ip6h)) { 1326 /* 1327 * Technically not a policy mismatch, but it is 1328 * an internal failure. 1329 */ 1330 *reason = "ipsec_init_inbound_sel"; 1331 *counter = &ipdrops_spd_nomem; 1332 return (B_FALSE); 1333 } 1334 1335 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port, 1336 sel.ips_protocol); 1337 1338 if (ah_mask != 0) { 1339 if (ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) { 1340 *reason = "AH inner header mismatch"; 1341 *counter = &ipdrops_spd_ah_innermismatch; 1342 return (B_FALSE); 1343 } 1344 } 1345 if (esp_mask != 0) { 1346 if (esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) { 1347 *reason = "ESP inner header mismatch"; 1348 *counter = &ipdrops_spd_esp_innermismatch; 1349 return (B_FALSE); 1350 } 1351 } 1352 return (B_TRUE); 1353 } 1354 1355 static boolean_t 1356 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap, 1357 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter) 1358 { 1359 boolean_t ret = B_TRUE; 1360 ipsec_prot_t *ipp; 1361 ipsa_t *ah_assoc; 1362 ipsa_t *esp_assoc; 1363 boolean_t decaps; 1364 1365 ASSERT((ipha == NULL && ip6h != NULL) || 1366 (ip6h == NULL && ipha != NULL)); 1367 1368 if (ii->ipsec_in_loopback) { 1369 /* 1370 * Besides accepting pointer-equivalent actions, we also 1371 * accept any ICMP errors we generated for ourselves, 1372 * regardless of policy. If we do not wish to make this 1373 * assumption in the future, check here, and where 1374 * icmp_loopback is initialized in ip.c and ip6.c. (Look for 1375 * ipsec_out_icmp_loopback.) 1376 */ 1377 if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback) 1378 return (B_TRUE); 1379 1380 /* Deep compare necessary here?? */ 1381 *counter = &ipdrops_spd_loopback_mismatch; 1382 *reason = "loopback policy mismatch"; 1383 return (B_FALSE); 1384 } 1385 ASSERT(!ii->ipsec_in_icmp_loopback); 1386 1387 ah_assoc = ii->ipsec_in_ah_sa; 1388 esp_assoc = ii->ipsec_in_esp_sa; 1389 1390 decaps = ii->ipsec_in_decaps; 1391 1392 switch (ap->ipa_act.ipa_type) { 1393 case IPSEC_ACT_DISCARD: 1394 case IPSEC_ACT_REJECT: 1395 /* Should "fail hard" */ 1396 *counter = &ipdrops_spd_explicit; 1397 *reason = "blocked by policy"; 1398 return (B_FALSE); 1399 1400 case IPSEC_ACT_BYPASS: 1401 case IPSEC_ACT_CLEAR: 1402 *counter = &ipdrops_spd_got_secure; 1403 *reason = "expected clear, got protected"; 1404 return (B_FALSE); 1405 1406 case IPSEC_ACT_APPLY: 1407 ipp = &ap->ipa_act.ipa_apply; 1408 /* 1409 * As of now we do the simple checks of whether 1410 * the datagram has gone through the required IPSEC 1411 * protocol constraints or not. We might have more 1412 * in the future like sensitive levels, key bits, etc. 1413 * If it fails the constraints, check whether we would 1414 * have accepted this if it had come in clear. 1415 */ 1416 if (ipp->ipp_use_ah) { 1417 if (ah_assoc == NULL) { 1418 ret = ipsec_inbound_accept_clear(mp, ipha, 1419 ip6h); 1420 *counter = &ipdrops_spd_got_clear; 1421 *reason = "unprotected not accepted"; 1422 break; 1423 } 1424 ASSERT(ah_assoc != NULL); 1425 ASSERT(ipp->ipp_auth_alg != 0); 1426 1427 if (ah_assoc->ipsa_auth_alg != 1428 ipp->ipp_auth_alg) { 1429 *counter = &ipdrops_spd_bad_ahalg; 1430 *reason = "unacceptable ah alg"; 1431 ret = B_FALSE; 1432 break; 1433 } 1434 } else if (ah_assoc != NULL) { 1435 /* 1436 * Don't allow this. Check IPSEC NOTE above 1437 * ip_fanout_proto(). 1438 */ 1439 *counter = &ipdrops_spd_got_ah; 1440 *reason = "unexpected AH"; 1441 ret = B_FALSE; 1442 break; 1443 } 1444 if (ipp->ipp_use_esp) { 1445 if (esp_assoc == NULL) { 1446 ret = ipsec_inbound_accept_clear(mp, ipha, 1447 ip6h); 1448 *counter = &ipdrops_spd_got_clear; 1449 *reason = "unprotected not accepted"; 1450 break; 1451 } 1452 ASSERT(esp_assoc != NULL); 1453 ASSERT(ipp->ipp_encr_alg != 0); 1454 1455 if (esp_assoc->ipsa_encr_alg != 1456 ipp->ipp_encr_alg) { 1457 *counter = &ipdrops_spd_bad_espealg; 1458 *reason = "unacceptable esp alg"; 1459 ret = B_FALSE; 1460 break; 1461 } 1462 /* 1463 * If the client does not need authentication, 1464 * we don't verify the alogrithm. 1465 */ 1466 if (ipp->ipp_use_espa) { 1467 if (esp_assoc->ipsa_auth_alg != 1468 ipp->ipp_esp_auth_alg) { 1469 *counter = &ipdrops_spd_bad_espaalg; 1470 *reason = "unacceptable esp auth alg"; 1471 ret = B_FALSE; 1472 break; 1473 } 1474 } 1475 } else if (esp_assoc != NULL) { 1476 /* 1477 * Don't allow this. Check IPSEC NOTE above 1478 * ip_fanout_proto(). 1479 */ 1480 *counter = &ipdrops_spd_got_esp; 1481 *reason = "unexpected ESP"; 1482 ret = B_FALSE; 1483 break; 1484 } 1485 if (ipp->ipp_use_se) { 1486 if (!decaps) { 1487 ret = ipsec_inbound_accept_clear(mp, ipha, 1488 ip6h); 1489 if (!ret) { 1490 /* XXX mutant? */ 1491 *counter = &ipdrops_spd_bad_selfencap; 1492 *reason = "self encap not found"; 1493 break; 1494 } 1495 } 1496 } else if (decaps) { 1497 /* 1498 * XXX If the packet comes in tunneled and the 1499 * recipient does not expect it to be tunneled, it 1500 * is okay. But we drop to be consistent with the 1501 * other cases. 1502 */ 1503 *counter = &ipdrops_spd_got_selfencap; 1504 *reason = "unexpected self encap"; 1505 ret = B_FALSE; 1506 break; 1507 } 1508 if (ii->ipsec_in_action != NULL) { 1509 /* 1510 * This can happen if we do a double policy-check on 1511 * a packet 1512 * XXX XXX should fix this case! 1513 */ 1514 IPACT_REFRELE(ii->ipsec_in_action); 1515 } 1516 ASSERT(ii->ipsec_in_action == NULL); 1517 IPACT_REFHOLD(ap); 1518 ii->ipsec_in_action = ap; 1519 break; /* from switch */ 1520 } 1521 return (ret); 1522 } 1523 1524 static boolean_t 1525 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa) 1526 { 1527 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1528 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) && 1529 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid); 1530 } 1531 1532 /* 1533 * Called to check policy on a latched connection, both from this file 1534 * and from tcp.c 1535 */ 1536 boolean_t 1537 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl, 1538 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter) 1539 { 1540 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1541 1542 if ((ii->ipsec_in_ah_sa != NULL) && 1543 (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) { 1544 *counter = &ipdrops_spd_ah_badid; 1545 *reason = "AH identity mismatch"; 1546 return (B_FALSE); 1547 } 1548 1549 if ((ii->ipsec_in_esp_sa != NULL) && 1550 (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) { 1551 *counter = &ipdrops_spd_esp_badid; 1552 *reason = "ESP identity mismatch"; 1553 return (B_FALSE); 1554 } 1555 1556 if (!ipsec_check_ipsecin_unique(ii, mp, ipha, ip6h, reason, counter)) 1557 return (B_FALSE); 1558 1559 return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action, 1560 ipha, ip6h, reason, counter)); 1561 } 1562 1563 /* 1564 * Check to see whether this secured datagram meets the policy 1565 * constraints specified in ipsp. 1566 * 1567 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy. 1568 * 1569 * Consumes a reference to ipsp. 1570 */ 1571 static mblk_t * 1572 ipsec_check_ipsecin_policy(queue_t *q, mblk_t *first_mp, ipsec_policy_t *ipsp, 1573 ipha_t *ipha, ip6_t *ip6h) 1574 { 1575 ipsec_in_t *ii; 1576 ipsec_action_t *ap; 1577 const char *reason = "no policy actions found"; 1578 mblk_t *data_mp, *ipsec_mp; 1579 kstat_named_t *counter = &ipdrops_spd_got_secure; 1580 1581 data_mp = first_mp->b_cont; 1582 ipsec_mp = first_mp; 1583 1584 ASSERT(ipsp != NULL); 1585 1586 ASSERT((ipha == NULL && ip6h != NULL) || 1587 (ip6h == NULL && ipha != NULL)); 1588 1589 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1590 1591 if (ii->ipsec_in_loopback) 1592 return (ipsec_check_loopback_policy(q, first_mp, B_TRUE, ipsp)); 1593 1594 ASSERT(ii->ipsec_in_type == IPSEC_IN); 1595 if (ii->ipsec_in_action != NULL) { 1596 /* 1597 * this can happen if we do a double policy-check on a packet 1598 * Would be nice to be able to delete this test.. 1599 */ 1600 IPACT_REFRELE(ii->ipsec_in_action); 1601 } 1602 ASSERT(ii->ipsec_in_action == NULL); 1603 1604 if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) { 1605 reason = "inbound AH and ESP identities differ"; 1606 counter = &ipdrops_spd_ahesp_diffid; 1607 goto drop; 1608 } 1609 1610 if (!ipsec_check_ipsecin_unique(ii, data_mp, ipha, ip6h, 1611 &reason, &counter)) 1612 goto drop; 1613 1614 /* 1615 * Ok, now loop through the possible actions and see if any 1616 * of them work for us. 1617 */ 1618 1619 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) { 1620 if (ipsec_check_ipsecin_action(ii, data_mp, ap, 1621 ipha, ip6h, &reason, &counter)) { 1622 BUMP_MIB(&ip_mib, ipsecInSucceeded); 1623 IPPOL_REFRELE(ipsp); 1624 return (first_mp); 1625 } 1626 } 1627 drop: 1628 (void) mi_strlog(q, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1629 "ipsec inbound policy mismatch: %s, packet dropped\n", 1630 reason); 1631 IPPOL_REFRELE(ipsp); 1632 ASSERT(ii->ipsec_in_action == NULL); 1633 BUMP_MIB(&ip_mib, ipsecInFailed); 1634 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper); 1635 return (NULL); 1636 } 1637 1638 /* 1639 * sleazy prefix-length-based compare. 1640 * another inlining candidate.. 1641 */ 1642 static boolean_t 1643 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p) 1644 { 1645 int offset = pfxlen>>3; 1646 int bitsleft = pfxlen & 7; 1647 uint8_t *addr2 = (uint8_t *)addr2p; 1648 1649 /* 1650 * and there was much evil.. 1651 * XXX should inline-expand the bcmp here and do this 32 bits 1652 * or 64 bits at a time.. 1653 */ 1654 return ((bcmp(addr1, addr2, offset) == 0) && 1655 ((bitsleft == 0) || 1656 (((addr1[offset] ^ addr2[offset]) & 1657 (0xff<<(8-bitsleft))) == 0))); 1658 } 1659 1660 static ipsec_policy_t * 1661 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain, 1662 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq) 1663 { 1664 ipsec_selkey_t *isel; 1665 ipsec_policy_t *p; 1666 int bpri = best ? best->ipsp_prio : 0; 1667 1668 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) { 1669 uint32_t valid; 1670 1671 if (p->ipsp_prio <= bpri) 1672 continue; 1673 isel = &p->ipsp_sel->ipsl_key; 1674 valid = isel->ipsl_valid; 1675 1676 if ((valid & IPSL_PROTOCOL) && 1677 (isel->ipsl_proto != sel->ips_protocol)) 1678 continue; 1679 1680 if ((valid & IPSL_REMOTE_ADDR) && 1681 !ip_addr_match((uint8_t *)&isel->ipsl_remote, 1682 isel->ipsl_remote_pfxlen, 1683 &sel->ips_remote_addr_v6)) 1684 continue; 1685 1686 if ((valid & IPSL_LOCAL_ADDR) && 1687 !ip_addr_match((uint8_t *)&isel->ipsl_local, 1688 isel->ipsl_local_pfxlen, 1689 &sel->ips_local_addr_v6)) 1690 continue; 1691 1692 if ((valid & IPSL_REMOTE_PORT) && 1693 isel->ipsl_rport != sel->ips_remote_port) 1694 continue; 1695 1696 if ((valid & IPSL_LOCAL_PORT) && 1697 isel->ipsl_lport != sel->ips_local_port) 1698 continue; 1699 1700 if (!is_icmp_inv_acq) { 1701 if ((valid & IPSL_ICMP_TYPE) && 1702 (isel->ipsl_icmp_type > sel->ips_icmp_type || 1703 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) { 1704 continue; 1705 } 1706 1707 if ((valid & IPSL_ICMP_CODE) && 1708 (isel->ipsl_icmp_code > sel->ips_icmp_code || 1709 isel->ipsl_icmp_code_end < 1710 sel->ips_icmp_code)) { 1711 continue; 1712 } 1713 } else { 1714 /* 1715 * special case for icmp inverse acquire 1716 * we only want policies that aren't drop/pass 1717 */ 1718 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY) 1719 continue; 1720 } 1721 1722 /* we matched all the packet-port-field selectors! */ 1723 best = p; 1724 bpri = p->ipsp_prio; 1725 } 1726 1727 return (best); 1728 } 1729 1730 /* 1731 * Try to find and return the best policy entry under a given policy 1732 * root for a given set of selectors; the first parameter "best" is 1733 * the current best policy so far. If "best" is non-null, we have a 1734 * reference to it. We return a reference to a policy; if that policy 1735 * is not the original "best", we need to release that reference 1736 * before returning. 1737 */ 1738 static ipsec_policy_t * 1739 ipsec_find_policy_head(ipsec_policy_t *best, 1740 ipsec_policy_head_t *head, int direction, ipsec_selector_t *sel, 1741 int selhash) 1742 { 1743 ipsec_policy_t *curbest; 1744 ipsec_policy_root_t *root; 1745 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq; 1746 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6; 1747 1748 curbest = best; 1749 root = &head->iph_root[direction]; 1750 1751 #ifdef DEBUG 1752 if (is_icmp_inv_acq) { 1753 if (sel->ips_isv4) { 1754 if (sel->ips_protocol != IPPROTO_ICMP) { 1755 cmn_err(CE_WARN, "ipsec_find_policy_head:" 1756 " expecting icmp, got %d", sel->ips_protocol); 1757 } 1758 } else { 1759 if (sel->ips_protocol != IPPROTO_ICMPV6) { 1760 cmn_err(CE_WARN, "ipsec_find_policy_head:" 1761 " expecting icmpv6, got %d", sel->ips_protocol); 1762 } 1763 } 1764 } 1765 #endif 1766 1767 rw_enter(&head->iph_lock, RW_READER); 1768 1769 if (root->ipr_nchains > 0) { 1770 curbest = ipsec_find_policy_chain(curbest, 1771 root->ipr_hash[selhash].hash_head, sel, is_icmp_inv_acq); 1772 } 1773 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel, 1774 is_icmp_inv_acq); 1775 1776 /* 1777 * Adjust reference counts if we found anything new. 1778 */ 1779 if (curbest != best) { 1780 ASSERT(curbest != NULL); 1781 IPPOL_REFHOLD(curbest); 1782 1783 if (best != NULL) { 1784 IPPOL_REFRELE(best); 1785 } 1786 } 1787 1788 rw_exit(&head->iph_lock); 1789 1790 return (curbest); 1791 } 1792 1793 /* 1794 * Find the best system policy (either global or per-interface) which 1795 * applies to the given selector; look in all the relevant policy roots 1796 * to figure out which policy wins. 1797 * 1798 * Returns a reference to a policy; caller must release this 1799 * reference when done. 1800 */ 1801 ipsec_policy_t * 1802 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io, 1803 ipsec_selector_t *sel) 1804 { 1805 ipsec_policy_t *p; 1806 int selhash = selector_hash(sel); 1807 1808 p = ipsec_find_policy_head(NULL, &system_policy, direction, sel, 1809 selhash); 1810 if ((connp != NULL) && (connp->conn_policy != NULL)) { 1811 p = ipsec_find_policy_head(p, connp->conn_policy, 1812 direction, sel, selhash); 1813 } else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) { 1814 p = ipsec_find_policy_head(p, io->ipsec_out_polhead, 1815 direction, sel, selhash); 1816 } 1817 1818 return (p); 1819 } 1820 1821 /* 1822 * Check with global policy and see whether this inbound 1823 * packet meets the policy constraints. 1824 * 1825 * Locate appropriate policy from global policy, supplemented by the 1826 * conn's configured and/or cached policy if the conn is supplied. 1827 * 1828 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an 1829 * encrypted packet to see if they match. 1830 * 1831 * Otherwise, see if the policy allows cleartext; if not, drop it on the 1832 * floor. 1833 */ 1834 mblk_t * 1835 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp, 1836 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present) 1837 { 1838 ipsec_policy_t *p; 1839 ipsec_selector_t sel; 1840 queue_t *q = NULL; 1841 mblk_t *data_mp, *ipsec_mp; 1842 boolean_t policy_present; 1843 kstat_named_t *counter; 1844 1845 data_mp = mctl_present ? first_mp->b_cont : first_mp; 1846 ipsec_mp = mctl_present ? first_mp : NULL; 1847 1848 sel.ips_is_icmp_inv_acq = 0; 1849 1850 ASSERT((ipha == NULL && ip6h != NULL) || 1851 (ip6h == NULL && ipha != NULL)); 1852 1853 if (ipha != NULL) 1854 policy_present = ipsec_inbound_v4_policy_present; 1855 else 1856 policy_present = ipsec_inbound_v6_policy_present; 1857 1858 if (!policy_present && connp == NULL) { 1859 /* 1860 * No global policy and no per-socket policy; 1861 * just pass it back (but we shouldn't get here in that case) 1862 */ 1863 return (first_mp); 1864 } 1865 1866 if (connp != NULL) 1867 q = CONNP_TO_WQ(connp); 1868 1869 if (ipsec_mp != NULL) { 1870 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 1871 ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->ipsec_in_type == 1872 IPSEC_IN); 1873 } 1874 1875 /* 1876 * If we have cached policy, use it. 1877 * Otherwise consult system policy. 1878 */ 1879 if ((connp != NULL) && (connp->conn_latch != NULL)) { 1880 p = connp->conn_latch->ipl_in_policy; 1881 if (p != NULL) { 1882 IPPOL_REFHOLD(p); 1883 } 1884 } else { 1885 /* Initialize the ports in the selector */ 1886 if (!ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h)) { 1887 /* 1888 * Technically not a policy mismatch, but it is 1889 * an internal failure. 1890 */ 1891 ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH, 1892 "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE); 1893 counter = &ipdrops_spd_nomem; 1894 goto fail; 1895 } 1896 1897 /* 1898 * Find the policy which best applies. 1899 * 1900 * If we find global policy, we should look at both 1901 * local policy and global policy and see which is 1902 * stronger and match accordingly. 1903 * 1904 * If we don't find a global policy, check with 1905 * local policy alone. 1906 */ 1907 1908 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel); 1909 } 1910 1911 if (p == NULL) { 1912 if (ipsec_mp == NULL) { 1913 /* 1914 * We have no policy; default to succeeding. 1915 * XXX paranoid system design doesn't do this. 1916 */ 1917 BUMP_MIB(&ip_mib, ipsecInSucceeded); 1918 return (first_mp); 1919 } else { 1920 counter = &ipdrops_spd_got_secure; 1921 ipsec_log_policy_failure(q, IPSEC_POLICY_NOT_NEEDED, 1922 "ipsec_check_global_policy", ipha, ip6h, B_TRUE); 1923 goto fail; 1924 } 1925 } 1926 if (ipsec_mp != NULL) 1927 return (ipsec_check_ipsecin_policy(q, ipsec_mp, p, ipha, ip6h)); 1928 if (p->ipsp_act->ipa_allow_clear) { 1929 BUMP_MIB(&ip_mib, ipsecInSucceeded); 1930 IPPOL_REFRELE(p); 1931 return (first_mp); 1932 } 1933 IPPOL_REFRELE(p); 1934 /* 1935 * If we reach here, we will drop the packet because it failed the 1936 * global policy check because the packet was cleartext, and it 1937 * should not have been. 1938 */ 1939 ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH, 1940 "ipsec_check_global_policy", ipha, ip6h, B_FALSE); 1941 counter = &ipdrops_spd_got_clear; 1942 1943 fail: 1944 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper); 1945 BUMP_MIB(&ip_mib, ipsecInFailed); 1946 return (NULL); 1947 } 1948 1949 /* 1950 * We check whether an inbound datagram is a valid one 1951 * to accept in clear. If it is secure, it is the job 1952 * of IPSEC to log information appropriately if it 1953 * suspects that it may not be the real one. 1954 * 1955 * It is called only while fanning out to the ULP 1956 * where ULP accepts only secure data and the incoming 1957 * is clear. Usually we never accept clear datagrams in 1958 * such cases. ICMP is the only exception. 1959 * 1960 * NOTE : We don't call this function if the client (ULP) 1961 * is willing to accept things in clear. 1962 */ 1963 boolean_t 1964 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h) 1965 { 1966 ushort_t iph_hdr_length; 1967 icmph_t *icmph; 1968 icmp6_t *icmp6; 1969 uint8_t *nexthdrp; 1970 1971 ASSERT((ipha != NULL && ip6h == NULL) || 1972 (ipha == NULL && ip6h != NULL)); 1973 1974 if (ip6h != NULL) { 1975 iph_hdr_length = ip_hdr_length_v6(mp, ip6h); 1976 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 1977 &nexthdrp)) { 1978 return (B_FALSE); 1979 } 1980 if (*nexthdrp != IPPROTO_ICMPV6) 1981 return (B_FALSE); 1982 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]); 1983 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */ 1984 switch (icmp6->icmp6_type) { 1985 case ICMP6_PARAM_PROB: 1986 /* Corresponds to port/proto unreach in IPv4. */ 1987 case ICMP6_ECHO_REQUEST: 1988 /* Just like IPv4. */ 1989 return (B_FALSE); 1990 1991 case MLD_LISTENER_QUERY: 1992 case MLD_LISTENER_REPORT: 1993 case MLD_LISTENER_REDUCTION: 1994 /* 1995 * XXX Seperate NDD in IPv4 what about here? 1996 * Plus, mcast is important to ND. 1997 */ 1998 case ICMP6_DST_UNREACH: 1999 /* Corresponds to HOST/NET unreachable in IPv4. */ 2000 case ICMP6_PACKET_TOO_BIG: 2001 case ICMP6_ECHO_REPLY: 2002 /* These are trusted in IPv4. */ 2003 case ND_ROUTER_SOLICIT: 2004 case ND_ROUTER_ADVERT: 2005 case ND_NEIGHBOR_SOLICIT: 2006 case ND_NEIGHBOR_ADVERT: 2007 case ND_REDIRECT: 2008 /* Trust ND messages for now. */ 2009 case ICMP6_TIME_EXCEEDED: 2010 default: 2011 return (B_TRUE); 2012 } 2013 } else { 2014 /* 2015 * If it is not ICMP, fail this request. 2016 */ 2017 if (ipha->ipha_protocol != IPPROTO_ICMP) 2018 return (B_FALSE); 2019 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2020 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2021 /* 2022 * It is an insecure icmp message. Check to see whether we are 2023 * willing to accept this one. 2024 */ 2025 2026 switch (icmph->icmph_type) { 2027 case ICMP_ECHO_REPLY: 2028 case ICMP_TIME_STAMP_REPLY: 2029 case ICMP_INFO_REPLY: 2030 case ICMP_ROUTER_ADVERTISEMENT: 2031 /* 2032 * We should not encourage clear replies if this 2033 * client expects secure. If somebody is replying 2034 * in clear some mailicious user watching both the 2035 * request and reply, can do chosen-plain-text attacks. 2036 * With global policy we might be just expecting secure 2037 * but sending out clear. We don't know what the right 2038 * thing is. We can't do much here as we can't control 2039 * the sender here. Till we are sure of what to do, 2040 * accept them. 2041 */ 2042 return (B_TRUE); 2043 case ICMP_ECHO_REQUEST: 2044 case ICMP_TIME_STAMP_REQUEST: 2045 case ICMP_INFO_REQUEST: 2046 case ICMP_ADDRESS_MASK_REQUEST: 2047 case ICMP_ROUTER_SOLICITATION: 2048 case ICMP_ADDRESS_MASK_REPLY: 2049 /* 2050 * Don't accept this as somebody could be sending 2051 * us plain text to get encrypted data. If we reply, 2052 * it will lead to chosen plain text attack. 2053 */ 2054 return (B_FALSE); 2055 case ICMP_DEST_UNREACHABLE: 2056 switch (icmph->icmph_code) { 2057 case ICMP_FRAGMENTATION_NEEDED: 2058 /* 2059 * Be in sync with icmp_inbound, where we have 2060 * already set ire_max_frag. 2061 */ 2062 return (B_TRUE); 2063 case ICMP_HOST_UNREACHABLE: 2064 case ICMP_NET_UNREACHABLE: 2065 /* 2066 * By accepting, we could reset a connection. 2067 * How do we solve the problem of some 2068 * intermediate router sending in-secure ICMP 2069 * messages ? 2070 */ 2071 return (B_TRUE); 2072 case ICMP_PORT_UNREACHABLE: 2073 case ICMP_PROTOCOL_UNREACHABLE: 2074 default : 2075 return (B_FALSE); 2076 } 2077 case ICMP_SOURCE_QUENCH: 2078 /* 2079 * If this is an attack, TCP will slow start 2080 * because of this. Is it very harmful ? 2081 */ 2082 return (B_TRUE); 2083 case ICMP_PARAM_PROBLEM: 2084 return (B_FALSE); 2085 case ICMP_TIME_EXCEEDED: 2086 return (B_TRUE); 2087 case ICMP_REDIRECT: 2088 return (B_FALSE); 2089 default : 2090 return (B_FALSE); 2091 } 2092 } 2093 } 2094 2095 void 2096 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote) 2097 { 2098 mutex_enter(&ipl->ipl_lock); 2099 2100 if (ipl->ipl_ids_latched) { 2101 /* I lost, someone else got here before me */ 2102 mutex_exit(&ipl->ipl_lock); 2103 return; 2104 } 2105 2106 if (local != NULL) 2107 IPSID_REFHOLD(local); 2108 if (remote != NULL) 2109 IPSID_REFHOLD(remote); 2110 2111 ipl->ipl_local_cid = local; 2112 ipl->ipl_remote_cid = remote; 2113 ipl->ipl_ids_latched = B_TRUE; 2114 mutex_exit(&ipl->ipl_lock); 2115 } 2116 2117 void 2118 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii) 2119 { 2120 ipsa_t *sa; 2121 2122 if (!ipl->ipl_ids_latched) { 2123 ipsid_t *local = NULL; 2124 ipsid_t *remote = NULL; 2125 2126 if (!ii->ipsec_in_loopback) { 2127 if (ii->ipsec_in_esp_sa != NULL) 2128 sa = ii->ipsec_in_esp_sa; 2129 else 2130 sa = ii->ipsec_in_ah_sa; 2131 ASSERT(sa != NULL); 2132 local = sa->ipsa_dst_cid; 2133 remote = sa->ipsa_src_cid; 2134 } 2135 ipsec_latch_ids(ipl, local, remote); 2136 } 2137 ipl->ipl_in_action = ii->ipsec_in_action; 2138 IPACT_REFHOLD(ipl->ipl_in_action); 2139 } 2140 2141 /* 2142 * Check whether the policy constraints are met either for an 2143 * inbound datagram; called from IP in numerous places. 2144 * 2145 * Note that this is not a chokepoint for inbound policy checks; 2146 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy() 2147 */ 2148 mblk_t * 2149 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp, 2150 ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present) 2151 { 2152 ipsec_in_t *ii; 2153 boolean_t ret; 2154 mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp; 2155 mblk_t *ipsec_mp = mctl_present ? first_mp : NULL; 2156 ipsec_latch_t *ipl; 2157 2158 ASSERT(connp != NULL); 2159 ipl = connp->conn_latch; 2160 2161 if (ipsec_mp == NULL) { 2162 /* 2163 * This is the case where the incoming datagram is 2164 * cleartext and we need to see whether this client 2165 * would like to receive such untrustworthy things from 2166 * the wire. 2167 */ 2168 ASSERT(mp != NULL); 2169 2170 if (ipl != NULL) { 2171 /* 2172 * Policy is cached in the conn. 2173 */ 2174 if ((ipl->ipl_in_policy != NULL) && 2175 (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) { 2176 ret = ipsec_inbound_accept_clear(mp, 2177 ipha, ip6h); 2178 if (ret) { 2179 BUMP_MIB(&ip_mib, ipsecInSucceeded); 2180 return (first_mp); 2181 } else { 2182 ip_drop_packet(first_mp, B_TRUE, NULL, 2183 NULL, &ipdrops_spd_got_clear, 2184 &spd_dropper); 2185 ipsec_log_policy_failure( 2186 CONNP_TO_WQ(connp), 2187 IPSEC_POLICY_MISMATCH, 2188 "ipsec_check_inbound_policy", ipha, 2189 ip6h, B_FALSE); 2190 BUMP_MIB(&ip_mib, ipsecInFailed); 2191 return (NULL); 2192 } 2193 } else { 2194 BUMP_MIB(&ip_mib, ipsecInSucceeded); 2195 return (first_mp); 2196 } 2197 } else { 2198 /* 2199 * As this is a non-hardbound connection we need 2200 * to look at both per-socket policy and global 2201 * policy. As this is cleartext, mark the mp as 2202 * M_DATA in case if it is an ICMP error being 2203 * reported before calling ipsec_check_global_policy 2204 * so that it does not mistake it for IPSEC_IN. 2205 */ 2206 uchar_t db_type = mp->b_datap->db_type; 2207 mp->b_datap->db_type = M_DATA; 2208 first_mp = ipsec_check_global_policy(first_mp, connp, 2209 ipha, ip6h, mctl_present); 2210 if (first_mp != NULL) 2211 mp->b_datap->db_type = db_type; 2212 return (first_mp); 2213 } 2214 } 2215 /* 2216 * If it is inbound check whether the attached message 2217 * is secure or not. We have a special case for ICMP, 2218 * where we have a IPSEC_IN message and the attached 2219 * message is not secure. See icmp_inbound_error_fanout 2220 * for details. 2221 */ 2222 ASSERT(ipsec_mp != NULL); 2223 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 2224 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2225 2226 /* 2227 * mp->b_cont could be either a M_CTL message 2228 * for icmp errors being sent up or a M_DATA message. 2229 */ 2230 ASSERT(mp->b_datap->db_type == M_CTL || 2231 mp->b_datap->db_type == M_DATA); 2232 2233 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2234 2235 if (ipl == NULL) { 2236 /* 2237 * We don't have policies cached in the conn 2238 * for this stream. So, look at the global 2239 * policy. It will check against conn or global 2240 * depending on whichever is stronger. 2241 */ 2242 return (ipsec_check_global_policy(first_mp, connp, 2243 ipha, ip6h, mctl_present)); 2244 } 2245 2246 if (ipl->ipl_in_action != NULL) { 2247 /* Policy is cached & latched; fast(er) path */ 2248 const char *reason; 2249 kstat_named_t *counter; 2250 if (ipsec_check_ipsecin_latch(ii, mp, ipl, 2251 ipha, ip6h, &reason, &counter)) { 2252 BUMP_MIB(&ip_mib, ipsecInSucceeded); 2253 return (first_mp); 2254 } 2255 (void) mi_strlog(CONNP_TO_WQ(connp), 0, 2256 SL_ERROR|SL_WARN|SL_CONSOLE, 2257 "ipsec inbound policy mismatch: %s, packet dropped\n", 2258 reason); 2259 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 2260 &spd_dropper); 2261 BUMP_MIB(&ip_mib, ipsecInFailed); 2262 return (NULL); 2263 } else if (ipl->ipl_in_policy == NULL) { 2264 ipsec_weird_null_inbound_policy++; 2265 return (first_mp); 2266 } 2267 2268 IPPOL_REFHOLD(ipl->ipl_in_policy); 2269 first_mp = ipsec_check_ipsecin_policy(CONNP_TO_WQ(connp), first_mp, 2270 ipl->ipl_in_policy, ipha, ip6h); 2271 /* 2272 * NOTE: ipsecIn{Failed,Succeeeded} bumped by 2273 * ipsec_check_ipsecin_policy(). 2274 */ 2275 if (first_mp != NULL) 2276 ipsec_latch_inbound(ipl, ii); 2277 return (first_mp); 2278 } 2279 2280 boolean_t 2281 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, 2282 ipha_t *ipha, ip6_t *ip6h) 2283 { 2284 uint16_t *ports; 2285 ushort_t hdr_len; 2286 mblk_t *spare_mp = NULL; 2287 uint8_t *nexthdrp; 2288 uint8_t nexthdr; 2289 uint8_t *typecode; 2290 uint8_t check_proto; 2291 2292 ASSERT((ipha == NULL && ip6h != NULL) || 2293 (ipha != NULL && ip6h == NULL)); 2294 2295 if (ip6h != NULL) { 2296 check_proto = IPPROTO_ICMPV6; 2297 sel->ips_isv4 = B_FALSE; 2298 sel->ips_local_addr_v6 = ip6h->ip6_dst; 2299 sel->ips_remote_addr_v6 = ip6h->ip6_src; 2300 2301 nexthdr = ip6h->ip6_nxt; 2302 switch (nexthdr) { 2303 case IPPROTO_HOPOPTS: 2304 case IPPROTO_ROUTING: 2305 case IPPROTO_DSTOPTS: 2306 /* 2307 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2308 * mblk that's contiguous to feed it 2309 */ 2310 if ((spare_mp = msgpullup(mp, -1)) == NULL) 2311 return (B_FALSE); 2312 if (!ip_hdr_length_nexthdr_v6(spare_mp, 2313 (ip6_t *)spare_mp->b_rptr, &hdr_len, &nexthdrp)) { 2314 /* Malformed packet - XXX ip_drop_packet()? */ 2315 freemsg(spare_mp); 2316 return (B_FALSE); 2317 } 2318 nexthdr = *nexthdrp; 2319 /* We can just extract based on hdr_len now. */ 2320 break; 2321 default: 2322 hdr_len = IPV6_HDR_LEN; 2323 break; 2324 } 2325 } else { 2326 check_proto = IPPROTO_ICMP; 2327 sel->ips_isv4 = B_TRUE; 2328 sel->ips_local_addr_v4 = ipha->ipha_dst; 2329 sel->ips_remote_addr_v4 = ipha->ipha_src; 2330 nexthdr = ipha->ipha_protocol; 2331 hdr_len = IPH_HDR_LENGTH(ipha); 2332 } 2333 sel->ips_protocol = nexthdr; 2334 2335 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2336 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2337 sel->ips_remote_port = sel->ips_local_port = 0; 2338 freemsg(spare_mp); /* Always works, even if NULL. */ 2339 return (B_TRUE); 2340 } 2341 2342 if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) { 2343 /* If we didn't pullup a copy already, do so now. */ 2344 /* 2345 * XXX performance, will upper-layers frequently split TCP/UDP 2346 * apart from IP or options? If so, perhaps we should revisit 2347 * the spare_mp strategy. 2348 */ 2349 ipsec_hdr_pullup_needed++; 2350 if (spare_mp == NULL && 2351 (spare_mp = msgpullup(mp, -1)) == NULL) { 2352 return (B_FALSE); 2353 } 2354 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len]; 2355 } else { 2356 ports = (uint16_t *)&mp->b_rptr[hdr_len]; 2357 } 2358 2359 if (nexthdr == check_proto) { 2360 typecode = (uint8_t *)ports; 2361 sel->ips_icmp_type = *typecode++; 2362 sel->ips_icmp_code = *typecode; 2363 sel->ips_remote_port = sel->ips_local_port = 0; 2364 freemsg(spare_mp); /* Always works, even if NULL */ 2365 return (B_TRUE); 2366 } 2367 2368 sel->ips_remote_port = *ports++; 2369 sel->ips_local_port = *ports; 2370 freemsg(spare_mp); /* Always works, even if NULL */ 2371 return (B_TRUE); 2372 } 2373 2374 static boolean_t 2375 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2376 ip6_t *ip6h) 2377 { 2378 /* 2379 * XXX cut&paste shared with ipsec_init_inbound_sel 2380 */ 2381 uint16_t *ports; 2382 ushort_t hdr_len; 2383 mblk_t *spare_mp = NULL; 2384 uint8_t *nexthdrp; 2385 uint8_t nexthdr; 2386 uint8_t *typecode; 2387 uint8_t check_proto; 2388 2389 ASSERT((ipha == NULL && ip6h != NULL) || 2390 (ipha != NULL && ip6h == NULL)); 2391 2392 if (ip6h != NULL) { 2393 check_proto = IPPROTO_ICMPV6; 2394 nexthdr = ip6h->ip6_nxt; 2395 switch (nexthdr) { 2396 case IPPROTO_HOPOPTS: 2397 case IPPROTO_ROUTING: 2398 case IPPROTO_DSTOPTS: 2399 /* 2400 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2401 * mblk that's contiguous to feed it 2402 */ 2403 spare_mp = msgpullup(mp, -1); 2404 if (spare_mp == NULL || 2405 !ip_hdr_length_nexthdr_v6(spare_mp, 2406 (ip6_t *)spare_mp->b_rptr, &hdr_len, 2407 &nexthdrp)) { 2408 /* Always works, even if NULL. */ 2409 freemsg(spare_mp); 2410 freemsg(mp); 2411 return (B_FALSE); 2412 } else { 2413 nexthdr = *nexthdrp; 2414 /* We can just extract based on hdr_len now. */ 2415 } 2416 break; 2417 default: 2418 hdr_len = IPV6_HDR_LEN; 2419 break; 2420 } 2421 } else { 2422 check_proto = IPPROTO_ICMP; 2423 hdr_len = IPH_HDR_LENGTH(ipha); 2424 nexthdr = ipha->ipha_protocol; 2425 } 2426 2427 sel->ips_protocol = nexthdr; 2428 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2429 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2430 sel->ips_local_port = sel->ips_remote_port = 0; 2431 freemsg(spare_mp); /* Always works, even if NULL. */ 2432 return (B_TRUE); 2433 } 2434 2435 if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) { 2436 /* If we didn't pullup a copy already, do so now. */ 2437 /* 2438 * XXX performance, will upper-layers frequently split TCP/UDP 2439 * apart from IP or options? If so, perhaps we should revisit 2440 * the spare_mp strategy. 2441 * 2442 * XXX should this be msgpullup(mp, hdr_len+4) ??? 2443 */ 2444 if (spare_mp == NULL && 2445 (spare_mp = msgpullup(mp, -1)) == NULL) { 2446 freemsg(mp); 2447 return (B_FALSE); 2448 } 2449 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len]; 2450 } else { 2451 ports = (uint16_t *)&mp->b_rptr[hdr_len]; 2452 } 2453 2454 if (nexthdr == check_proto) { 2455 typecode = (uint8_t *)ports; 2456 sel->ips_icmp_type = *typecode++; 2457 sel->ips_icmp_code = *typecode; 2458 sel->ips_remote_port = sel->ips_local_port = 0; 2459 freemsg(spare_mp); /* Always works, even if NULL */ 2460 return (B_TRUE); 2461 } 2462 2463 sel->ips_local_port = *ports++; 2464 sel->ips_remote_port = *ports; 2465 freemsg(spare_mp); /* Always works, even if NULL */ 2466 return (B_TRUE); 2467 } 2468 2469 /* 2470 * Create an ipsec_action_t based on the way an inbound packet was protected. 2471 * Used to reflect traffic back to a sender. 2472 * 2473 * We don't bother interning the action into the hash table. 2474 */ 2475 ipsec_action_t * 2476 ipsec_in_to_out_action(ipsec_in_t *ii) 2477 { 2478 ipsa_t *ah_assoc, *esp_assoc; 2479 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0; 2480 ipsec_action_t *ap; 2481 boolean_t unique; 2482 2483 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 2484 2485 if (ap == NULL) 2486 return (NULL); 2487 2488 bzero(ap, sizeof (*ap)); 2489 HASH_NULL(ap, ipa_hash); 2490 ap->ipa_next = NULL; 2491 ap->ipa_refs = 1; 2492 2493 /* 2494 * Get the algorithms that were used for this packet. 2495 */ 2496 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY; 2497 ap->ipa_act.ipa_log = 0; 2498 ah_assoc = ii->ipsec_in_ah_sa; 2499 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL); 2500 2501 esp_assoc = ii->ipsec_in_esp_sa; 2502 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL); 2503 2504 if (esp_assoc != NULL) { 2505 encr_alg = esp_assoc->ipsa_encr_alg; 2506 espa_alg = esp_assoc->ipsa_auth_alg; 2507 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0); 2508 } 2509 if (ah_assoc != NULL) 2510 auth_alg = ah_assoc->ipsa_auth_alg; 2511 2512 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg; 2513 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg; 2514 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg; 2515 ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps; 2516 unique = B_FALSE; 2517 2518 if (esp_assoc != NULL) { 2519 ap->ipa_act.ipa_apply.ipp_espa_minbits = 2520 esp_assoc->ipsa_authkeybits; 2521 ap->ipa_act.ipa_apply.ipp_espa_maxbits = 2522 esp_assoc->ipsa_authkeybits; 2523 ap->ipa_act.ipa_apply.ipp_espe_minbits = 2524 esp_assoc->ipsa_encrkeybits; 2525 ap->ipa_act.ipa_apply.ipp_espe_maxbits = 2526 esp_assoc->ipsa_encrkeybits; 2527 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp; 2528 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc; 2529 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE) 2530 unique = B_TRUE; 2531 } 2532 if (ah_assoc != NULL) { 2533 ap->ipa_act.ipa_apply.ipp_ah_minbits = 2534 ah_assoc->ipsa_authkeybits; 2535 ap->ipa_act.ipa_apply.ipp_ah_maxbits = 2536 ah_assoc->ipsa_authkeybits; 2537 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp; 2538 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc; 2539 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE) 2540 unique = B_TRUE; 2541 } 2542 ap->ipa_act.ipa_apply.ipp_use_unique = unique; 2543 ap->ipa_want_unique = unique; 2544 ap->ipa_allow_clear = B_FALSE; 2545 ap->ipa_want_se = ii->ipsec_in_decaps; 2546 ap->ipa_want_ah = (ah_assoc != NULL); 2547 ap->ipa_want_esp = (esp_assoc != NULL); 2548 2549 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act); 2550 2551 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */ 2552 2553 return (ap); 2554 } 2555 2556 2557 /* 2558 * Compute the worst-case amount of extra space required by an action. 2559 * Note that, because of the ESP considerations listed below, this is 2560 * actually not the same as the best-case reduction in the MTU; in the 2561 * future, we should pass additional information to this function to 2562 * allow the actual MTU impact to be computed. 2563 * 2564 * AH: Revisit this if we implement algorithms with 2565 * a verifier size of more than 12 bytes. 2566 * 2567 * ESP: A more exact but more messy computation would take into 2568 * account the interaction between the cipher block size and the 2569 * effective MTU, yielding the inner payload size which reflects a 2570 * packet with *minimum* ESP padding.. 2571 */ 2572 static int32_t 2573 ipsec_act_ovhd(const ipsec_act_t *act) 2574 { 2575 int32_t overhead = 0; 2576 2577 if (act->ipa_type == IPSEC_ACT_APPLY) { 2578 const ipsec_prot_t *ipp = &act->ipa_apply; 2579 2580 if (ipp->ipp_use_ah) 2581 overhead += IPSEC_MAX_AH_HDR_SIZE; 2582 if (ipp->ipp_use_esp) { 2583 overhead += IPSEC_MAX_ESP_HDR_SIZE; 2584 overhead += sizeof (struct udphdr); 2585 } 2586 if (ipp->ipp_use_se) 2587 overhead += IP_SIMPLE_HDR_LENGTH; 2588 } 2589 return (overhead); 2590 } 2591 2592 /* 2593 * This hash function is used only when creating policies and thus is not 2594 * performance-critical for packet flows. 2595 * 2596 * Future work: canonicalize the structures hashed with this (i.e., 2597 * zeroize padding) so the hash works correctly. 2598 */ 2599 /* ARGSUSED */ 2600 static uint32_t 2601 policy_hash(int size, const void *start, const void *end) 2602 { 2603 return (0); 2604 } 2605 2606 2607 /* 2608 * Hash function macros for each address type. 2609 * 2610 * The IPV6 hash function assumes that the low order 32-bits of the 2611 * address (typically containing the low order 24 bits of the mac 2612 * address) are reasonably well-distributed. Revisit this if we run 2613 * into trouble from lots of collisions on ::1 addresses and the like 2614 * (seems unlikely). 2615 */ 2616 #define IPSEC_IPV4_HASH(a) ((a) % ipsec_spd_hashsize) 2617 #define IPSEC_IPV6_HASH(a) ((a.s6_addr32[3]) % ipsec_spd_hashsize) 2618 2619 /* 2620 * These two hash functions should produce coordinated values 2621 * but have slightly different roles. 2622 */ 2623 static uint32_t 2624 selkey_hash(const ipsec_selkey_t *selkey) 2625 { 2626 uint32_t valid = selkey->ipsl_valid; 2627 2628 if (!(valid & IPSL_REMOTE_ADDR)) 2629 return (IPSEC_SEL_NOHASH); 2630 2631 if (valid & IPSL_IPV4) { 2632 if (selkey->ipsl_remote_pfxlen == 32) 2633 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4)); 2634 } 2635 if (valid & IPSL_IPV6) { 2636 if (selkey->ipsl_remote_pfxlen == 128) 2637 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6)); 2638 } 2639 return (IPSEC_SEL_NOHASH); 2640 } 2641 2642 static uint32_t 2643 selector_hash(ipsec_selector_t *sel) 2644 { 2645 if (sel->ips_isv4) { 2646 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4)); 2647 } 2648 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6)); 2649 } 2650 2651 /* 2652 * Intern actions into the action hash table. 2653 */ 2654 ipsec_action_t * 2655 ipsec_act_find(const ipsec_act_t *a, int n) 2656 { 2657 int i; 2658 uint32_t hval; 2659 ipsec_action_t *ap; 2660 ipsec_action_t *prev = NULL; 2661 int32_t overhead, maxovhd = 0; 2662 boolean_t allow_clear = B_FALSE; 2663 boolean_t want_ah = B_FALSE; 2664 boolean_t want_esp = B_FALSE; 2665 boolean_t want_se = B_FALSE; 2666 boolean_t want_unique = B_FALSE; 2667 2668 /* 2669 * TODO: should canonicalize a[] (i.e., zeroize any padding) 2670 * so we can use a non-trivial policy_hash function. 2671 */ 2672 for (i = n-1; i >= 0; i--) { 2673 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]); 2674 2675 HASH_LOCK(ipsec_action_hash, hval); 2676 2677 for (HASH_ITERATE(ap, ipa_hash, ipsec_action_hash, hval)) { 2678 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0) 2679 continue; 2680 if (ap->ipa_next != prev) 2681 continue; 2682 break; 2683 } 2684 if (ap != NULL) { 2685 HASH_UNLOCK(ipsec_action_hash, hval); 2686 prev = ap; 2687 continue; 2688 } 2689 /* 2690 * need to allocate a new one.. 2691 */ 2692 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 2693 if (ap == NULL) { 2694 HASH_UNLOCK(ipsec_action_hash, hval); 2695 if (prev != NULL) 2696 ipsec_action_free(prev); 2697 return (NULL); 2698 } 2699 HASH_INSERT(ap, ipa_hash, ipsec_action_hash, hval); 2700 2701 ap->ipa_next = prev; 2702 ap->ipa_act = a[i]; 2703 2704 overhead = ipsec_act_ovhd(&a[i]); 2705 if (maxovhd < overhead) 2706 maxovhd = overhead; 2707 2708 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) || 2709 (a[i].ipa_type == IPSEC_ACT_CLEAR)) 2710 allow_clear = B_TRUE; 2711 if (a[i].ipa_type == IPSEC_ACT_APPLY) { 2712 const ipsec_prot_t *ipp = &a[i].ipa_apply; 2713 2714 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp); 2715 want_ah |= ipp->ipp_use_ah; 2716 want_esp |= ipp->ipp_use_esp; 2717 want_se |= ipp->ipp_use_se; 2718 want_unique |= ipp->ipp_use_unique; 2719 } 2720 ap->ipa_allow_clear = allow_clear; 2721 ap->ipa_want_ah = want_ah; 2722 ap->ipa_want_esp = want_esp; 2723 ap->ipa_want_se = want_se; 2724 ap->ipa_want_unique = want_unique; 2725 ap->ipa_refs = 1; /* from the hash table */ 2726 ap->ipa_ovhd = maxovhd; 2727 if (prev) 2728 prev->ipa_refs++; 2729 prev = ap; 2730 HASH_UNLOCK(ipsec_action_hash, hval); 2731 } 2732 2733 ap->ipa_refs++; /* caller's reference */ 2734 2735 return (ap); 2736 } 2737 2738 /* 2739 * Called when refcount goes to 0, indicating that all references to this 2740 * node are gone. 2741 * 2742 * This does not unchain the action from the hash table. 2743 */ 2744 void 2745 ipsec_action_free(ipsec_action_t *ap) 2746 { 2747 for (;;) { 2748 ipsec_action_t *np = ap->ipa_next; 2749 ASSERT(ap->ipa_refs == 0); 2750 ASSERT(ap->ipa_hash.hash_pp == NULL); 2751 kmem_cache_free(ipsec_action_cache, ap); 2752 ap = np; 2753 /* Inlined IPACT_REFRELE -- avoid recursion */ 2754 if (ap == NULL) 2755 break; 2756 membar_exit(); 2757 if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0) 2758 break; 2759 /* End inlined IPACT_REFRELE */ 2760 } 2761 } 2762 2763 /* 2764 * Periodically sweep action hash table for actions with refcount==1, and 2765 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE) 2766 * because we can't close the race between another thread finding the action 2767 * in the hash table without holding the bucket lock during IPACT_REFRELE. 2768 * Instead, we run this function sporadically to clean up after ourselves; 2769 * we also set it as the "reclaim" function for the action kmem_cache. 2770 * 2771 * Note that it may take several passes of ipsec_action_gc() to free all 2772 * "stale" actions. 2773 */ 2774 /* ARGSUSED */ 2775 static void 2776 ipsec_action_reclaim(void *dummy) 2777 { 2778 int i; 2779 2780 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 2781 ipsec_action_t *ap, *np; 2782 2783 /* skip the lock if nobody home */ 2784 if (ipsec_action_hash[i].hash_head == NULL) 2785 continue; 2786 2787 HASH_LOCK(ipsec_action_hash, i); 2788 for (ap = ipsec_action_hash[i].hash_head; 2789 ap != NULL; ap = np) { 2790 ASSERT(ap->ipa_refs > 0); 2791 np = ap->ipa_hash.hash_next; 2792 if (ap->ipa_refs > 1) 2793 continue; 2794 HASH_UNCHAIN(ap, ipa_hash, ipsec_action_hash, i); 2795 IPACT_REFRELE(ap); 2796 } 2797 HASH_UNLOCK(ipsec_action_hash, i); 2798 } 2799 } 2800 2801 /* 2802 * Intern a selector set into the selector set hash table. 2803 * This is simpler than the actions case.. 2804 */ 2805 static ipsec_sel_t * 2806 ipsec_find_sel(ipsec_selkey_t *selkey) 2807 { 2808 ipsec_sel_t *sp; 2809 uint32_t hval, bucket; 2810 2811 /* 2812 * Exactly one AF bit should be set in selkey. 2813 */ 2814 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^ 2815 !(selkey->ipsl_valid & IPSL_IPV6)); 2816 2817 hval = selkey_hash(selkey); 2818 selkey->ipsl_hval = hval; 2819 2820 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval; 2821 2822 ASSERT(!HASH_LOCKED(ipsec_sel_hash, bucket)); 2823 HASH_LOCK(ipsec_sel_hash, bucket); 2824 2825 for (HASH_ITERATE(sp, ipsl_hash, ipsec_sel_hash, bucket)) { 2826 if (bcmp(&sp->ipsl_key, selkey, sizeof (*selkey)) == 0) 2827 break; 2828 } 2829 if (sp != NULL) { 2830 sp->ipsl_refs++; 2831 2832 HASH_UNLOCK(ipsec_sel_hash, bucket); 2833 return (sp); 2834 } 2835 2836 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP); 2837 if (sp == NULL) { 2838 HASH_UNLOCK(ipsec_sel_hash, bucket); 2839 return (NULL); 2840 } 2841 2842 HASH_INSERT(sp, ipsl_hash, ipsec_sel_hash, bucket); 2843 sp->ipsl_refs = 2; /* one for hash table, one for caller */ 2844 sp->ipsl_key = *selkey; 2845 2846 HASH_UNLOCK(ipsec_sel_hash, bucket); 2847 2848 return (sp); 2849 } 2850 2851 static void 2852 ipsec_sel_rel(ipsec_sel_t **spp) 2853 { 2854 ipsec_sel_t *sp = *spp; 2855 int hval = sp->ipsl_key.ipsl_hval; 2856 *spp = NULL; 2857 2858 if (hval == IPSEC_SEL_NOHASH) 2859 hval = 0; 2860 2861 ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval)); 2862 HASH_LOCK(ipsec_sel_hash, hval); 2863 if (--sp->ipsl_refs == 1) { 2864 HASH_UNCHAIN(sp, ipsl_hash, ipsec_sel_hash, hval); 2865 sp->ipsl_refs--; 2866 HASH_UNLOCK(ipsec_sel_hash, hval); 2867 ASSERT(sp->ipsl_refs == 0); 2868 kmem_cache_free(ipsec_sel_cache, sp); 2869 /* Caller unlocks */ 2870 return; 2871 } 2872 2873 HASH_UNLOCK(ipsec_sel_hash, hval); 2874 } 2875 2876 /* 2877 * Free a policy rule which we know is no longer being referenced. 2878 */ 2879 void 2880 ipsec_policy_free(ipsec_policy_t *ipp) 2881 { 2882 ASSERT(ipp->ipsp_refs == 0); 2883 ASSERT(ipp->ipsp_sel != NULL); 2884 ASSERT(ipp->ipsp_act != NULL); 2885 ipsec_sel_rel(&ipp->ipsp_sel); 2886 IPACT_REFRELE(ipp->ipsp_act); 2887 kmem_cache_free(ipsec_pol_cache, ipp); 2888 } 2889 2890 /* 2891 * Construction of new policy rules; construct a policy, and add it to 2892 * the appropriate tables. 2893 */ 2894 ipsec_policy_t * 2895 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a, 2896 int nacts, int prio) 2897 { 2898 ipsec_action_t *ap; 2899 ipsec_sel_t *sp; 2900 ipsec_policy_t *ipp; 2901 2902 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 2903 ap = ipsec_act_find(a, nacts); 2904 sp = ipsec_find_sel(keys); 2905 2906 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) { 2907 if (ap != NULL) { 2908 IPACT_REFRELE(ap); 2909 } 2910 if (sp != NULL) 2911 ipsec_sel_rel(&sp); 2912 if (ipp != NULL) 2913 kmem_cache_free(ipsec_pol_cache, ipp); 2914 return (NULL); 2915 } 2916 2917 HASH_NULL(ipp, ipsp_hash); 2918 2919 ipp->ipsp_refs = 1; /* caller's reference */ 2920 ipp->ipsp_sel = sp; 2921 ipp->ipsp_act = ap; 2922 ipp->ipsp_prio = prio; /* rule priority */ 2923 ipp->ipsp_index = ipsec_next_policy_index++; 2924 2925 return (ipp); 2926 } 2927 2928 static void 2929 ipsec_update_present_flags() 2930 { 2931 boolean_t hashpol = (avl_numnodes(&system_policy.iph_rulebyid) > 0); 2932 2933 if (hashpol) { 2934 ipsec_outbound_v4_policy_present = B_TRUE; 2935 ipsec_outbound_v6_policy_present = B_TRUE; 2936 ipsec_inbound_v4_policy_present = B_TRUE; 2937 ipsec_inbound_v6_policy_present = B_TRUE; 2938 return; 2939 } 2940 2941 ipsec_outbound_v4_policy_present = (NULL != 2942 system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 2943 ipr_nonhash[IPSEC_AF_V4]); 2944 ipsec_outbound_v6_policy_present = (NULL != 2945 system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 2946 ipr_nonhash[IPSEC_AF_V6]); 2947 ipsec_inbound_v4_policy_present = (NULL != 2948 system_policy.iph_root[IPSEC_TYPE_INBOUND]. 2949 ipr_nonhash[IPSEC_AF_V4]); 2950 ipsec_inbound_v6_policy_present = (NULL != 2951 system_policy.iph_root[IPSEC_TYPE_INBOUND]. 2952 ipr_nonhash[IPSEC_AF_V6]); 2953 } 2954 2955 boolean_t 2956 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir) 2957 { 2958 ipsec_sel_t *sp; 2959 ipsec_policy_t *ip, *nip, *head; 2960 int af; 2961 ipsec_policy_root_t *pr = &php->iph_root[dir]; 2962 2963 sp = ipsec_find_sel(keys); 2964 2965 if (sp == NULL) 2966 return (B_FALSE); 2967 2968 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6; 2969 2970 rw_enter(&php->iph_lock, RW_WRITER); 2971 2972 if (keys->ipsl_hval == IPSEC_SEL_NOHASH) { 2973 head = pr->ipr_nonhash[af]; 2974 } else { 2975 head = pr->ipr_hash[keys->ipsl_hval].hash_head; 2976 } 2977 2978 for (ip = head; ip != NULL; ip = nip) { 2979 nip = ip->ipsp_hash.hash_next; 2980 if (ip->ipsp_sel != sp) { 2981 continue; 2982 } 2983 2984 IPPOL_UNCHAIN(php, ip); 2985 2986 php->iph_gen++; 2987 ipsec_update_present_flags(); 2988 2989 rw_exit(&php->iph_lock); 2990 2991 ipsec_sel_rel(&sp); 2992 2993 return (B_TRUE); 2994 } 2995 2996 rw_exit(&php->iph_lock); 2997 ipsec_sel_rel(&sp); 2998 return (B_FALSE); 2999 } 3000 3001 int 3002 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index) 3003 { 3004 boolean_t found = B_FALSE; 3005 ipsec_policy_t ipkey; 3006 ipsec_policy_t *ip; 3007 avl_index_t where; 3008 3009 (void) memset(&ipkey, 0, sizeof (ipkey)); 3010 ipkey.ipsp_index = policy_index; 3011 3012 rw_enter(&php->iph_lock, RW_WRITER); 3013 3014 /* 3015 * We could be cleverer here about the walk. 3016 * but well, (k+1)*log(N) will do for now (k==number of matches, 3017 * N==number of table entries 3018 */ 3019 for (;;) { 3020 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid, 3021 (void *)&ipkey, &where); 3022 ASSERT(ip == NULL); 3023 3024 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER); 3025 3026 if (ip == NULL) 3027 break; 3028 3029 if (ip->ipsp_index != policy_index) { 3030 ASSERT(ip->ipsp_index > policy_index); 3031 break; 3032 } 3033 3034 IPPOL_UNCHAIN(php, ip); 3035 found = B_TRUE; 3036 } 3037 3038 if (found) { 3039 php->iph_gen++; 3040 ipsec_update_present_flags(); 3041 } 3042 3043 rw_exit(&php->iph_lock); 3044 3045 return (found ? 0 : ENOENT); 3046 } 3047 3048 /* 3049 * Given a constructed ipsec_policy_t policy rule, see if it can be entered 3050 * into the correct policy ruleset. 3051 * 3052 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a 3053 * duplicate policy exists with exactly the same selectors), or an icmp 3054 * rule exists with a different encryption/authentication action. 3055 */ 3056 boolean_t 3057 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3058 { 3059 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3060 int af = -1; 3061 ipsec_policy_t *p2, *head; 3062 uint8_t check_proto; 3063 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3064 uint32_t valid = selkey->ipsl_valid; 3065 3066 if (valid & IPSL_IPV6) { 3067 ASSERT(!(valid & IPSL_IPV4)); 3068 af = IPSEC_AF_V6; 3069 check_proto = IPPROTO_ICMPV6; 3070 } else { 3071 ASSERT(valid & IPSL_IPV4); 3072 af = IPSEC_AF_V4; 3073 check_proto = IPPROTO_ICMP; 3074 } 3075 3076 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3077 3078 /* 3079 * Double-check that we don't have any duplicate selectors here. 3080 * Because selectors are interned below, we need only compare pointers 3081 * for equality. 3082 */ 3083 if (selkey->ipsl_hval == IPSEC_SEL_NOHASH) { 3084 head = pr->ipr_nonhash[af]; 3085 } else { 3086 head = pr->ipr_hash[selkey->ipsl_hval].hash_head; 3087 } 3088 3089 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3090 if (p2->ipsp_sel == ipp->ipsp_sel) 3091 return (B_FALSE); 3092 } 3093 3094 /* 3095 * If it's ICMP and not a drop or pass rule, run through the ICMP 3096 * rules and make sure the action is either new or the same as any 3097 * other actions. We don't have to check the full chain because 3098 * discard and bypass will override all other actions 3099 */ 3100 3101 if (valid & IPSL_PROTOCOL && 3102 selkey->ipsl_proto == check_proto && 3103 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) { 3104 3105 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3106 3107 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL && 3108 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto && 3109 (p2->ipsp_act->ipa_act.ipa_type == 3110 IPSEC_ACT_APPLY)) { 3111 return (ipsec_compare_action(p2, ipp)); 3112 } 3113 } 3114 } 3115 3116 return (B_TRUE); 3117 } 3118 3119 /* 3120 * compare the action chains of two policies for equality 3121 * B_TRUE -> effective equality 3122 */ 3123 3124 static boolean_t 3125 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2) 3126 { 3127 3128 ipsec_action_t *act1, *act2; 3129 3130 /* We have a valid rule. Let's compare the actions */ 3131 if (p1->ipsp_act == p2->ipsp_act) { 3132 /* same action. We are good */ 3133 return (B_TRUE); 3134 } 3135 3136 /* we have to walk the chain */ 3137 3138 act1 = p1->ipsp_act; 3139 act2 = p2->ipsp_act; 3140 3141 while (act1 != NULL && act2 != NULL) { 3142 3143 /* otherwise, Are we close enough? */ 3144 if (act1->ipa_allow_clear != act2->ipa_allow_clear || 3145 act1->ipa_want_ah != act2->ipa_want_ah || 3146 act1->ipa_want_esp != act2->ipa_want_esp || 3147 act1->ipa_want_se != act2->ipa_want_se) { 3148 /* Nope, we aren't */ 3149 return (B_FALSE); 3150 } 3151 3152 if (act1->ipa_want_ah) { 3153 if (act1->ipa_act.ipa_apply.ipp_auth_alg != 3154 act2->ipa_act.ipa_apply.ipp_auth_alg) { 3155 return (B_FALSE); 3156 } 3157 3158 if (act1->ipa_act.ipa_apply.ipp_ah_minbits != 3159 act2->ipa_act.ipa_apply.ipp_ah_minbits || 3160 act1->ipa_act.ipa_apply.ipp_ah_maxbits != 3161 act2->ipa_act.ipa_apply.ipp_ah_maxbits) { 3162 return (B_FALSE); 3163 } 3164 } 3165 3166 if (act1->ipa_want_esp) { 3167 if (act1->ipa_act.ipa_apply.ipp_use_esp != 3168 act2->ipa_act.ipa_apply.ipp_use_esp || 3169 act1->ipa_act.ipa_apply.ipp_use_espa != 3170 act2->ipa_act.ipa_apply.ipp_use_espa) { 3171 return (B_FALSE); 3172 } 3173 3174 if (act1->ipa_act.ipa_apply.ipp_use_esp) { 3175 if (act1->ipa_act.ipa_apply.ipp_encr_alg != 3176 act2->ipa_act.ipa_apply.ipp_encr_alg) { 3177 return (B_FALSE); 3178 } 3179 3180 if (act1->ipa_act.ipa_apply.ipp_espe_minbits != 3181 act2->ipa_act.ipa_apply.ipp_espe_minbits || 3182 act1->ipa_act.ipa_apply.ipp_espe_maxbits != 3183 act2->ipa_act.ipa_apply.ipp_espe_maxbits) { 3184 return (B_FALSE); 3185 } 3186 } 3187 3188 if (act1->ipa_act.ipa_apply.ipp_use_espa) { 3189 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg != 3190 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) { 3191 return (B_FALSE); 3192 } 3193 3194 if (act1->ipa_act.ipa_apply.ipp_espa_minbits != 3195 act2->ipa_act.ipa_apply.ipp_espa_minbits || 3196 act1->ipa_act.ipa_apply.ipp_espa_maxbits != 3197 act2->ipa_act.ipa_apply.ipp_espa_maxbits) { 3198 return (B_FALSE); 3199 } 3200 } 3201 3202 } 3203 3204 act1 = act1->ipa_next; 3205 act2 = act2->ipa_next; 3206 } 3207 3208 if (act1 != NULL || act2 != NULL) { 3209 return (B_FALSE); 3210 } 3211 3212 return (B_TRUE); 3213 } 3214 3215 3216 /* 3217 * Given a constructed ipsec_policy_t policy rule, enter it into 3218 * the correct policy ruleset. 3219 * 3220 * ipsec_check_policy() is assumed to have succeeded first (to check for 3221 * duplicates). 3222 */ 3223 void 3224 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3225 { 3226 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3227 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3228 uint32_t valid = selkey->ipsl_valid; 3229 uint32_t hval = selkey->ipsl_hval; 3230 int af = -1; 3231 3232 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3233 3234 if (valid & IPSL_IPV6) { 3235 ASSERT(!(valid & IPSL_IPV4)); 3236 af = IPSEC_AF_V6; 3237 } else { 3238 ASSERT(valid & IPSL_IPV4); 3239 af = IPSEC_AF_V4; 3240 } 3241 3242 php->iph_gen++; 3243 3244 if (hval == IPSEC_SEL_NOHASH) { 3245 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]); 3246 } else { 3247 HASH_LOCK(pr->ipr_hash, hval); 3248 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval); 3249 HASH_UNLOCK(pr->ipr_hash, hval); 3250 } 3251 3252 ipsec_insert_always(&php->iph_rulebyid, ipp); 3253 3254 ipsec_update_present_flags(); 3255 } 3256 3257 static void 3258 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr) 3259 { 3260 ipsec_policy_t *ip, *nip; 3261 3262 int af, chain, nchain; 3263 3264 for (af = 0; af < IPSEC_NAF; af++) { 3265 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) { 3266 nip = ip->ipsp_hash.hash_next; 3267 IPPOL_UNCHAIN(php, ip); 3268 } 3269 ipr->ipr_nonhash[af] = NULL; 3270 } 3271 nchain = ipr->ipr_nchains; 3272 3273 for (chain = 0; chain < nchain; chain++) { 3274 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL; 3275 ip = nip) { 3276 nip = ip->ipsp_hash.hash_next; 3277 IPPOL_UNCHAIN(php, ip); 3278 } 3279 ipr->ipr_hash[chain].hash_head = NULL; 3280 } 3281 } 3282 3283 3284 void 3285 ipsec_polhead_flush(ipsec_policy_head_t *php) 3286 { 3287 int dir; 3288 3289 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3290 3291 for (dir = 0; dir < IPSEC_NTYPES; dir++) 3292 ipsec_ipr_flush(php, &php->iph_root[dir]); 3293 3294 ipsec_update_present_flags(); 3295 } 3296 3297 void 3298 ipsec_polhead_free(ipsec_policy_head_t *php) 3299 { 3300 ASSERT(php->iph_refs == 0); 3301 rw_enter(&php->iph_lock, RW_WRITER); 3302 ipsec_polhead_flush(php); 3303 rw_exit(&php->iph_lock); 3304 rw_destroy(&php->iph_lock); 3305 kmem_free(php, sizeof (*php)); 3306 } 3307 3308 static void 3309 ipsec_ipr_init(ipsec_policy_root_t *ipr) 3310 { 3311 int af; 3312 3313 ipr->ipr_nchains = 0; 3314 ipr->ipr_hash = NULL; 3315 3316 for (af = 0; af < IPSEC_NAF; af++) { 3317 ipr->ipr_nonhash[af] = NULL; 3318 } 3319 } 3320 3321 extern ipsec_policy_head_t * 3322 ipsec_polhead_create(void) 3323 { 3324 ipsec_policy_head_t *php; 3325 3326 php = kmem_alloc(sizeof (*php), KM_NOSLEEP); 3327 if (php == NULL) 3328 return (php); 3329 3330 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL); 3331 php->iph_refs = 1; 3332 php->iph_gen = 0; 3333 3334 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]); 3335 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]); 3336 3337 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid, 3338 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 3339 3340 return (php); 3341 } 3342 3343 /* 3344 * Clone the policy head into a new polhead; release one reference to the 3345 * old one and return the only reference to the new one. 3346 * If the old one had a refcount of 1, just return it. 3347 */ 3348 extern ipsec_policy_head_t * 3349 ipsec_polhead_split(ipsec_policy_head_t *php) 3350 { 3351 ipsec_policy_head_t *nphp; 3352 3353 if (php == NULL) 3354 return (ipsec_polhead_create()); 3355 else if (php->iph_refs == 1) 3356 return (php); 3357 3358 nphp = ipsec_polhead_create(); 3359 if (nphp == NULL) 3360 return (NULL); 3361 3362 if (ipsec_copy_polhead(php, nphp) != 0) { 3363 ipsec_polhead_free(nphp); 3364 return (NULL); 3365 } 3366 IPPH_REFRELE(php); 3367 return (nphp); 3368 } 3369 3370 /* 3371 * When sending a response to a ICMP request or generating a RST 3372 * in the TCP case, the outbound packets need to go at the same level 3373 * of protection as the incoming ones i.e we associate our outbound 3374 * policy with how the packet came in. We call this after we have 3375 * accepted the incoming packet which may or may not have been in 3376 * clear and hence we are sending the reply back with the policy 3377 * matching the incoming datagram's policy. 3378 * 3379 * NOTE : This technology serves two purposes : 3380 * 3381 * 1) If we have multiple outbound policies, we send out a reply 3382 * matching with how it came in rather than matching the outbound 3383 * policy. 3384 * 3385 * 2) For assymetric policies, we want to make sure that incoming 3386 * and outgoing has the same level of protection. Assymetric 3387 * policies exist only with global policy where we may not have 3388 * both outbound and inbound at the same time. 3389 * 3390 * NOTE2: This function is called by cleartext cases, so it needs to be 3391 * in IP proper. 3392 */ 3393 boolean_t 3394 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h) 3395 { 3396 ipsec_in_t *ii; 3397 ipsec_out_t *io; 3398 boolean_t v4; 3399 mblk_t *mp; 3400 boolean_t secure, attach_if; 3401 uint_t ifindex; 3402 ipsec_selector_t sel; 3403 ipsec_action_t *reflect_action = NULL; 3404 zoneid_t zoneid; 3405 3406 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 3407 3408 bzero((void*)&sel, sizeof (sel)); 3409 3410 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3411 3412 mp = ipsec_mp->b_cont; 3413 ASSERT(mp != NULL); 3414 3415 if (ii->ipsec_in_action != NULL) { 3416 /* transfer reference.. */ 3417 reflect_action = ii->ipsec_in_action; 3418 ii->ipsec_in_action = NULL; 3419 } else if (!ii->ipsec_in_loopback) 3420 reflect_action = ipsec_in_to_out_action(ii); 3421 secure = ii->ipsec_in_secure; 3422 attach_if = ii->ipsec_in_attach_if; 3423 ifindex = ii->ipsec_in_ill_index; 3424 zoneid = ii->ipsec_in_zoneid; 3425 v4 = ii->ipsec_in_v4; 3426 3427 ipsec_in_release_refs(ii); 3428 3429 /* 3430 * The caller is going to send the datagram out which might 3431 * go on the wire or delivered locally through ip_wput_local. 3432 * 3433 * 1) If it goes out on the wire, new associations will be 3434 * obtained. 3435 * 2) If it is delivered locally, ip_wput_local will convert 3436 * this IPSEC_OUT to a IPSEC_IN looking at the requests. 3437 */ 3438 3439 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3440 bzero(io, sizeof (ipsec_out_t)); 3441 io->ipsec_out_type = IPSEC_OUT; 3442 io->ipsec_out_len = sizeof (ipsec_out_t); 3443 io->ipsec_out_frtn.free_func = ipsec_out_free; 3444 io->ipsec_out_frtn.free_arg = (char *)io; 3445 io->ipsec_out_act = reflect_action; 3446 3447 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) 3448 return (B_FALSE); 3449 3450 io->ipsec_out_src_port = sel.ips_local_port; 3451 io->ipsec_out_dst_port = sel.ips_remote_port; 3452 io->ipsec_out_proto = sel.ips_protocol; 3453 io->ipsec_out_icmp_type = sel.ips_icmp_type; 3454 io->ipsec_out_icmp_code = sel.ips_icmp_code; 3455 3456 /* 3457 * Don't use global policy for this, as we want 3458 * to use the same protection that was applied to the inbound packet. 3459 */ 3460 io->ipsec_out_use_global_policy = B_FALSE; 3461 io->ipsec_out_proc_begin = B_FALSE; 3462 io->ipsec_out_secure = secure; 3463 io->ipsec_out_v4 = v4; 3464 io->ipsec_out_attach_if = attach_if; 3465 io->ipsec_out_ill_index = ifindex; 3466 io->ipsec_out_zoneid = zoneid; 3467 return (B_TRUE); 3468 } 3469 3470 mblk_t * 3471 ipsec_in_tag(mblk_t *mp, mblk_t *cont) 3472 { 3473 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 3474 ipsec_in_t *nii; 3475 mblk_t *nmp; 3476 frtn_t nfrtn; 3477 3478 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3479 ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t)); 3480 3481 nmp = ipsec_in_alloc(ii->ipsec_in_v4); 3482 3483 ASSERT(nmp->b_datap->db_type == M_CTL); 3484 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 3485 3486 /* 3487 * Bump refcounts. 3488 */ 3489 if (ii->ipsec_in_ah_sa != NULL) 3490 IPSA_REFHOLD(ii->ipsec_in_ah_sa); 3491 if (ii->ipsec_in_esp_sa != NULL) 3492 IPSA_REFHOLD(ii->ipsec_in_esp_sa); 3493 if (ii->ipsec_in_policy != NULL) 3494 IPPH_REFHOLD(ii->ipsec_in_policy); 3495 3496 /* 3497 * Copy everything, but preserve the free routine provided by 3498 * ipsec_in_alloc(). 3499 */ 3500 nii = (ipsec_in_t *)nmp->b_rptr; 3501 nfrtn = nii->ipsec_in_frtn; 3502 bcopy(ii, nii, sizeof (*ii)); 3503 nii->ipsec_in_frtn = nfrtn; 3504 3505 nmp->b_cont = cont; 3506 3507 return (nmp); 3508 } 3509 3510 mblk_t * 3511 ipsec_out_tag(mblk_t *mp, mblk_t *cont) 3512 { 3513 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 3514 ipsec_out_t *nio; 3515 mblk_t *nmp; 3516 frtn_t nfrtn; 3517 3518 ASSERT(io->ipsec_out_type == IPSEC_OUT); 3519 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 3520 3521 nmp = ipsec_alloc_ipsec_out(); 3522 if (nmp == NULL) { 3523 freemsg(cont); /* XXX ip_drop_packet() ? */ 3524 return (NULL); 3525 } 3526 ASSERT(nmp->b_datap->db_type == M_CTL); 3527 ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t))); 3528 3529 /* 3530 * Bump refcounts. 3531 */ 3532 if (io->ipsec_out_ah_sa != NULL) 3533 IPSA_REFHOLD(io->ipsec_out_ah_sa); 3534 if (io->ipsec_out_esp_sa != NULL) 3535 IPSA_REFHOLD(io->ipsec_out_esp_sa); 3536 if (io->ipsec_out_polhead != NULL) 3537 IPPH_REFHOLD(io->ipsec_out_polhead); 3538 if (io->ipsec_out_policy != NULL) 3539 IPPOL_REFHOLD(io->ipsec_out_policy); 3540 if (io->ipsec_out_act != NULL) 3541 IPACT_REFHOLD(io->ipsec_out_act); 3542 if (io->ipsec_out_latch != NULL) 3543 IPLATCH_REFHOLD(io->ipsec_out_latch); 3544 if (io->ipsec_out_cred != NULL) 3545 crhold(io->ipsec_out_cred); 3546 3547 /* 3548 * Copy everything, but preserve the free routine provided by 3549 * ipsec_alloc_ipsec_out(). 3550 */ 3551 nio = (ipsec_out_t *)nmp->b_rptr; 3552 nfrtn = nio->ipsec_out_frtn; 3553 bcopy(io, nio, sizeof (*io)); 3554 nio->ipsec_out_frtn = nfrtn; 3555 3556 nmp->b_cont = cont; 3557 3558 return (nmp); 3559 } 3560 3561 static void 3562 ipsec_out_release_refs(ipsec_out_t *io) 3563 { 3564 ASSERT(io->ipsec_out_type == IPSEC_OUT); 3565 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 3566 3567 /* Note: IPSA_REFRELE is multi-line macro */ 3568 if (io->ipsec_out_ah_sa != NULL) 3569 IPSA_REFRELE(io->ipsec_out_ah_sa); 3570 if (io->ipsec_out_esp_sa != NULL) 3571 IPSA_REFRELE(io->ipsec_out_esp_sa); 3572 if (io->ipsec_out_polhead != NULL) 3573 IPPH_REFRELE(io->ipsec_out_polhead); 3574 if (io->ipsec_out_policy != NULL) 3575 IPPOL_REFRELE(io->ipsec_out_policy); 3576 if (io->ipsec_out_act != NULL) 3577 IPACT_REFRELE(io->ipsec_out_act); 3578 if (io->ipsec_out_cred != NULL) { 3579 crfree(io->ipsec_out_cred); 3580 io->ipsec_out_cred = NULL; 3581 } 3582 if (io->ipsec_out_latch) { 3583 IPLATCH_REFRELE(io->ipsec_out_latch); 3584 io->ipsec_out_latch = NULL; 3585 } 3586 } 3587 3588 static void 3589 ipsec_out_free(void *arg) 3590 { 3591 ipsec_out_t *io = (ipsec_out_t *)arg; 3592 ipsec_out_release_refs(io); 3593 kmem_cache_free(ipsec_info_cache, arg); 3594 } 3595 3596 static void 3597 ipsec_in_release_refs(ipsec_in_t *ii) 3598 { 3599 /* Note: IPSA_REFRELE is multi-line macro */ 3600 if (ii->ipsec_in_ah_sa != NULL) 3601 IPSA_REFRELE(ii->ipsec_in_ah_sa); 3602 if (ii->ipsec_in_esp_sa != NULL) 3603 IPSA_REFRELE(ii->ipsec_in_esp_sa); 3604 if (ii->ipsec_in_policy != NULL) 3605 IPPH_REFRELE(ii->ipsec_in_policy); 3606 if (ii->ipsec_in_da != NULL) { 3607 freeb(ii->ipsec_in_da); 3608 ii->ipsec_in_da = NULL; 3609 } 3610 } 3611 3612 static void 3613 ipsec_in_free(void *arg) 3614 { 3615 ipsec_in_t *ii = (ipsec_in_t *)arg; 3616 ipsec_in_release_refs(ii); 3617 kmem_cache_free(ipsec_info_cache, arg); 3618 } 3619 3620 /* 3621 * This is called only for outbound datagrams if the datagram needs to 3622 * go out secure. A NULL mp can be passed to get an ipsec_out. This 3623 * facility is used by ip_unbind. 3624 * 3625 * NOTE : o As the data part could be modified by ipsec_out_process etc. 3626 * we can't make it fast by calling a dup. 3627 */ 3628 mblk_t * 3629 ipsec_alloc_ipsec_out() 3630 { 3631 mblk_t *ipsec_mp; 3632 3633 ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 3634 3635 if (io == NULL) 3636 return (NULL); 3637 3638 bzero(io, sizeof (ipsec_out_t)); 3639 3640 io->ipsec_out_type = IPSEC_OUT; 3641 io->ipsec_out_len = sizeof (ipsec_out_t); 3642 io->ipsec_out_frtn.free_func = ipsec_out_free; 3643 io->ipsec_out_frtn.free_arg = (char *)io; 3644 3645 /* 3646 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code 3647 * using ipsec_out_zoneid should assert that the zoneid has been set to 3648 * a sane value. 3649 */ 3650 io->ipsec_out_zoneid = ALL_ZONES; 3651 3652 ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI, 3653 &io->ipsec_out_frtn); 3654 if (ipsec_mp == NULL) { 3655 ipsec_out_free(io); 3656 3657 return (NULL); 3658 } 3659 ipsec_mp->b_datap->db_type = M_CTL; 3660 ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t); 3661 3662 return (ipsec_mp); 3663 } 3664 3665 /* 3666 * Attach an IPSEC_OUT; use pol for policy if it is non-null. 3667 * Otherwise initialize using conn. 3668 * 3669 * If pol is non-null, we consume a reference to it. 3670 */ 3671 mblk_t * 3672 ipsec_attach_ipsec_out(mblk_t *mp, conn_t *connp, ipsec_policy_t *pol, 3673 uint8_t proto) 3674 { 3675 mblk_t *ipsec_mp; 3676 3677 ASSERT((pol != NULL) || (connp != NULL)); 3678 3679 ipsec_mp = ipsec_alloc_ipsec_out(); 3680 if (ipsec_mp == NULL) { 3681 (void) mi_strlog(CONNP_TO_WQ(connp), 0, SL_ERROR|SL_NOTE, 3682 "ipsec_attach_ipsec_out: Allocation failure\n"); 3683 BUMP_MIB(&ip_mib, ipOutDiscards); 3684 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem, 3685 &spd_dropper); 3686 return (NULL); 3687 } 3688 ipsec_mp->b_cont = mp; 3689 return (ipsec_init_ipsec_out(ipsec_mp, connp, pol, proto)); 3690 } 3691 3692 /* 3693 * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null. 3694 * Otherwise initialize using conn. 3695 * 3696 * If pol is non-null, we consume a reference to it. 3697 */ 3698 mblk_t * 3699 ipsec_init_ipsec_out(mblk_t *ipsec_mp, conn_t *connp, ipsec_policy_t *pol, 3700 uint8_t proto) 3701 { 3702 mblk_t *mp; 3703 ipsec_out_t *io; 3704 ipsec_policy_t *p; 3705 ipha_t *ipha; 3706 ip6_t *ip6h; 3707 3708 ASSERT((pol != NULL) || (connp != NULL)); 3709 3710 /* 3711 * If mp is NULL, we won't/should not be using it. 3712 */ 3713 mp = ipsec_mp->b_cont; 3714 3715 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 3716 ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t))); 3717 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3718 ASSERT(io->ipsec_out_type == IPSEC_OUT); 3719 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 3720 io->ipsec_out_latch = NULL; 3721 /* 3722 * Set the zoneid when we have the connp. 3723 * Otherwise, we're called from ip_wput_attach_policy() who will take 3724 * care of setting the zoneid. 3725 */ 3726 if (connp != NULL) 3727 io->ipsec_out_zoneid = connp->conn_zoneid; 3728 3729 if (mp != NULL) { 3730 ipha = (ipha_t *)mp->b_rptr; 3731 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 3732 io->ipsec_out_v4 = B_TRUE; 3733 ip6h = NULL; 3734 } else { 3735 io->ipsec_out_v4 = B_FALSE; 3736 ip6h = (ip6_t *)ipha; 3737 ipha = NULL; 3738 } 3739 } else { 3740 ASSERT(connp != NULL && connp->conn_policy_cached); 3741 ip6h = NULL; 3742 ipha = NULL; 3743 io->ipsec_out_v4 = !connp->conn_pkt_isv6; 3744 } 3745 3746 p = NULL; 3747 3748 /* 3749 * Take latched policies over global policy. Check here again for 3750 * this, in case we had conn_latch set while the packet was flying 3751 * around in IP. 3752 */ 3753 if (connp != NULL && connp->conn_latch != NULL) { 3754 p = connp->conn_latch->ipl_out_policy; 3755 io->ipsec_out_latch = connp->conn_latch; 3756 IPLATCH_REFHOLD(connp->conn_latch); 3757 if (p != NULL) { 3758 IPPOL_REFHOLD(p); 3759 } 3760 io->ipsec_out_src_port = connp->conn_lport; 3761 io->ipsec_out_dst_port = connp->conn_fport; 3762 io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0; 3763 if (pol != NULL) 3764 IPPOL_REFRELE(pol); 3765 } else if (pol != NULL) { 3766 ipsec_selector_t sel; 3767 3768 bzero((void*)&sel, sizeof (sel)); 3769 3770 p = pol; 3771 /* 3772 * conn does not have the port information. Get 3773 * it from the packet. 3774 */ 3775 3776 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) { 3777 /* XXX any cleanup required here?? */ 3778 return (NULL); 3779 } 3780 io->ipsec_out_src_port = sel.ips_local_port; 3781 io->ipsec_out_dst_port = sel.ips_remote_port; 3782 io->ipsec_out_icmp_type = sel.ips_icmp_type; 3783 io->ipsec_out_icmp_code = sel.ips_icmp_code; 3784 } 3785 3786 io->ipsec_out_proto = proto; 3787 io->ipsec_out_use_global_policy = B_TRUE; 3788 io->ipsec_out_secure = (p != NULL); 3789 io->ipsec_out_policy = p; 3790 3791 if (p == NULL) { 3792 if (connp->conn_policy != NULL) { 3793 io->ipsec_out_secure = B_TRUE; 3794 ASSERT(io->ipsec_out_latch == NULL); 3795 ASSERT(io->ipsec_out_use_global_policy == B_TRUE); 3796 io->ipsec_out_need_policy = B_TRUE; 3797 ASSERT(io->ipsec_out_polhead == NULL); 3798 IPPH_REFHOLD(connp->conn_policy); 3799 io->ipsec_out_polhead = connp->conn_policy; 3800 } 3801 } 3802 return (ipsec_mp); 3803 } 3804 3805 /* 3806 * Allocate an IPSEC_IN mblk. This will be prepended to an inbound datagram 3807 * and keep track of what-if-any IPsec processing will be applied to the 3808 * datagram. 3809 */ 3810 mblk_t * 3811 ipsec_in_alloc(boolean_t isv4) 3812 { 3813 mblk_t *ipsec_in; 3814 ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP); 3815 3816 if (ii == NULL) 3817 return (NULL); 3818 3819 bzero(ii, sizeof (ipsec_info_t)); 3820 ii->ipsec_in_type = IPSEC_IN; 3821 ii->ipsec_in_len = sizeof (ipsec_in_t); 3822 3823 ii->ipsec_in_v4 = isv4; 3824 ii->ipsec_in_secure = B_TRUE; 3825 3826 ii->ipsec_in_frtn.free_func = ipsec_in_free; 3827 ii->ipsec_in_frtn.free_arg = (char *)ii; 3828 3829 ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI, 3830 &ii->ipsec_in_frtn); 3831 if (ipsec_in == NULL) { 3832 ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n")); 3833 ipsec_in_free(ii); 3834 return (NULL); 3835 } 3836 3837 ipsec_in->b_datap->db_type = M_CTL; 3838 ipsec_in->b_wptr += sizeof (ipsec_info_t); 3839 3840 return (ipsec_in); 3841 } 3842 3843 /* 3844 * This is called from ip_wput_local when a packet which needs 3845 * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN 3846 * before fanout, where the policy check happens. In most of the 3847 * cases, IPSEC processing has *never* been done. There is one case 3848 * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where 3849 * the packet is destined for localhost, IPSEC processing has already 3850 * been done. 3851 * 3852 * Future: This could happen after SA selection has occurred for 3853 * outbound.. which will tell us who the src and dst identities are.. 3854 * Then it's just a matter of splicing the ah/esp SA pointers from the 3855 * ipsec_out_t to the ipsec_in_t. 3856 */ 3857 void 3858 ipsec_out_to_in(mblk_t *ipsec_mp) 3859 { 3860 ipsec_in_t *ii; 3861 ipsec_out_t *io; 3862 ipsec_policy_t *pol; 3863 ipsec_action_t *act; 3864 boolean_t v4, icmp_loopback; 3865 3866 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 3867 3868 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3869 3870 v4 = io->ipsec_out_v4; 3871 icmp_loopback = io->ipsec_out_icmp_loopback; 3872 3873 act = io->ipsec_out_act; 3874 if (act == NULL) { 3875 pol = io->ipsec_out_policy; 3876 if (pol != NULL) { 3877 act = pol->ipsp_act; 3878 IPACT_REFHOLD(act); 3879 } 3880 } 3881 io->ipsec_out_act = NULL; 3882 3883 ipsec_out_release_refs(io); 3884 3885 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3886 bzero(ii, sizeof (ipsec_in_t)); 3887 ii->ipsec_in_type = IPSEC_IN; 3888 ii->ipsec_in_len = sizeof (ipsec_in_t); 3889 ii->ipsec_in_loopback = B_TRUE; 3890 ii->ipsec_in_frtn.free_func = ipsec_in_free; 3891 ii->ipsec_in_frtn.free_arg = (char *)ii; 3892 ii->ipsec_in_action = act; 3893 3894 /* 3895 * In most of the cases, we can't look at the ipsec_out_XXX_sa 3896 * because this never went through IPSEC processing. So, look at 3897 * the requests and infer whether it would have gone through 3898 * IPSEC processing or not. Initialize the "done" fields with 3899 * the requests. The possible values for "done" fields are : 3900 * 3901 * 1) zero, indicates that a particular preference was never 3902 * requested. 3903 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/ 3904 * IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that 3905 * IPSEC processing has been completed. 3906 */ 3907 ii->ipsec_in_secure = B_TRUE; 3908 ii->ipsec_in_v4 = v4; 3909 ii->ipsec_in_icmp_loopback = icmp_loopback; 3910 ii->ipsec_in_attach_if = B_FALSE; 3911 } 3912 3913 /* 3914 * Consults global policy to see whether this datagram should 3915 * go out secure. If so it attaches a ipsec_mp in front and 3916 * returns. 3917 */ 3918 mblk_t * 3919 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 3920 conn_t *connp, boolean_t unspec_src) 3921 { 3922 mblk_t *mp; 3923 ipsec_out_t *io = NULL; 3924 ipsec_selector_t sel; 3925 uint_t ill_index; 3926 boolean_t conn_dontroutex; 3927 boolean_t conn_multicast_loopx; 3928 boolean_t policy_present; 3929 3930 ASSERT((ipha != NULL && ip6h == NULL) || 3931 (ip6h != NULL && ipha == NULL)); 3932 3933 bzero((void*)&sel, sizeof (sel)); 3934 3935 if (ipha != NULL) 3936 policy_present = ipsec_outbound_v4_policy_present; 3937 else 3938 policy_present = ipsec_outbound_v6_policy_present; 3939 /* 3940 * Fast Path to see if there is any policy. 3941 */ 3942 if (!policy_present) { 3943 if (ipsec_mp->b_datap->db_type == M_CTL) { 3944 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3945 if (!io->ipsec_out_secure) { 3946 /* 3947 * If there is no global policy and ip_wput 3948 * or ip_wput_multicast has attached this mp 3949 * for multicast case, free the ipsec_mp and 3950 * return the original mp. 3951 */ 3952 mp = ipsec_mp->b_cont; 3953 freeb(ipsec_mp); 3954 ipsec_mp = mp; 3955 io = NULL; 3956 } 3957 } 3958 if (((io == NULL) || (io->ipsec_out_polhead == NULL)) && 3959 ((connp == NULL) || (connp->conn_policy == NULL))) 3960 return (ipsec_mp); 3961 } 3962 3963 ill_index = 0; 3964 conn_multicast_loopx = conn_dontroutex = B_FALSE; 3965 mp = ipsec_mp; 3966 if (ipsec_mp->b_datap->db_type == M_CTL) { 3967 mp = ipsec_mp->b_cont; 3968 /* 3969 * This is a connection where we have some per-socket 3970 * policy or ip_wput has attached an ipsec_mp for 3971 * the multicast datagram. 3972 */ 3973 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3974 if (!io->ipsec_out_secure) { 3975 /* 3976 * This ipsec_mp was allocated in ip_wput or 3977 * ip_wput_multicast so that we will know the 3978 * value of ill_index, conn_dontroute, 3979 * conn_multicast_loop in the multicast case if 3980 * we inherit global policy here. 3981 */ 3982 ill_index = io->ipsec_out_ill_index; 3983 conn_dontroutex = io->ipsec_out_dontroute; 3984 conn_multicast_loopx = io->ipsec_out_multicast_loop; 3985 freeb(ipsec_mp); 3986 ipsec_mp = mp; 3987 io = NULL; 3988 } 3989 } 3990 3991 if (ipha != NULL) { 3992 sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ? 3993 ipha->ipha_src : ire->ire_src_addr); 3994 sel.ips_remote_addr_v4 = ip_get_dst(ipha); 3995 sel.ips_protocol = (uint8_t)ipha->ipha_protocol; 3996 sel.ips_isv4 = B_TRUE; 3997 } else { 3998 ushort_t hdr_len; 3999 uint8_t *nexthdrp; 4000 boolean_t is_fragment; 4001 4002 sel.ips_isv4 = B_FALSE; 4003 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 4004 if (!unspec_src) 4005 sel.ips_local_addr_v6 = ire->ire_src_addr_v6; 4006 } else { 4007 sel.ips_local_addr_v6 = ip6h->ip6_src; 4008 } 4009 4010 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment); 4011 if (is_fragment) { 4012 /* 4013 * It's a packet fragment for a packet that 4014 * we have already processed (since IPsec processing 4015 * is done before fragmentation), so we don't 4016 * have to do policy checks again. Fragments can 4017 * come back to us for processing if they have 4018 * been queued up due to flow control. 4019 */ 4020 if (ipsec_mp->b_datap->db_type == M_CTL) { 4021 mp = ipsec_mp->b_cont; 4022 freeb(ipsec_mp); 4023 ipsec_mp = mp; 4024 } 4025 return (ipsec_mp); 4026 } 4027 4028 /* IPv6 common-case. */ 4029 sel.ips_protocol = ip6h->ip6_nxt; 4030 switch (ip6h->ip6_nxt) { 4031 case IPPROTO_TCP: 4032 case IPPROTO_UDP: 4033 case IPPROTO_SCTP: 4034 case IPPROTO_ICMPV6: 4035 break; 4036 default: 4037 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 4038 &hdr_len, &nexthdrp)) { 4039 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 4040 freemsg(ipsec_mp); /* Not IPsec-related drop. */ 4041 return (NULL); 4042 } 4043 sel.ips_protocol = *nexthdrp; 4044 break; 4045 } 4046 } 4047 4048 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h)) { 4049 if (ipha != NULL) { 4050 BUMP_MIB(&ip_mib, ipOutDiscards); 4051 } else { 4052 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 4053 } 4054 4055 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 4056 &ipdrops_spd_nomem, &spd_dropper); 4057 return (NULL); 4058 } 4059 4060 if (io != NULL) { 4061 /* 4062 * We seem to have some local policy (we already have 4063 * an ipsec_out). Look at global policy and see 4064 * whether we have to inherit or not. 4065 */ 4066 io->ipsec_out_need_policy = B_FALSE; 4067 ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, &sel); 4068 ASSERT((io->ipsec_out_policy != NULL) || 4069 (io->ipsec_out_act != NULL)); 4070 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4071 return (ipsec_mp); 4072 } 4073 ipsec_mp = ipsec_attach_global_policy(mp, connp, &sel); 4074 if (ipsec_mp == NULL) 4075 return (mp); 4076 4077 /* 4078 * Copy the right port information. 4079 */ 4080 ASSERT(ipsec_mp->b_datap->db_type == M_CTL); 4081 io = (ipsec_out_t *)ipsec_mp->b_rptr; 4082 4083 ASSERT(io->ipsec_out_need_policy == B_FALSE); 4084 ASSERT((io->ipsec_out_policy != NULL) || 4085 (io->ipsec_out_act != NULL)); 4086 io->ipsec_out_src_port = sel.ips_local_port; 4087 io->ipsec_out_dst_port = sel.ips_remote_port; 4088 io->ipsec_out_icmp_type = sel.ips_icmp_type; 4089 io->ipsec_out_icmp_code = sel.ips_icmp_code; 4090 /* 4091 * Set ill_index, conn_dontroute and conn_multicast_loop 4092 * for multicast datagrams. 4093 */ 4094 io->ipsec_out_ill_index = ill_index; 4095 io->ipsec_out_dontroute = conn_dontroutex; 4096 io->ipsec_out_multicast_loop = conn_multicast_loopx; 4097 /* 4098 * When conn is non-NULL, the zoneid is set by ipsec_init_ipsec_out(). 4099 * Otherwise set the zoneid based on the ire. 4100 */ 4101 if (connp == NULL) 4102 io->ipsec_out_zoneid = ire->ire_zoneid; 4103 return (ipsec_mp); 4104 } 4105 4106 /* 4107 * When appropriate, this function caches inbound and outbound policy 4108 * for this connection. 4109 * 4110 * XXX need to work out more details about per-interface policy and 4111 * caching here! 4112 * 4113 * XXX may want to split inbound and outbound caching for ill.. 4114 */ 4115 int 4116 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4) 4117 { 4118 boolean_t global_policy_present; 4119 4120 /* 4121 * There is no policy latching for ICMP sockets because we can't 4122 * decide on which policy to use until we see the packet and get 4123 * type/code selectors. 4124 */ 4125 if (connp->conn_ulp == IPPROTO_ICMP || 4126 connp->conn_ulp == IPPROTO_ICMPV6) { 4127 connp->conn_in_enforce_policy = 4128 connp->conn_out_enforce_policy = B_TRUE; 4129 if (connp->conn_latch != NULL) { 4130 IPLATCH_REFRELE(connp->conn_latch); 4131 connp->conn_latch = NULL; 4132 } 4133 connp->conn_flags |= IPCL_CHECK_POLICY; 4134 return (0); 4135 } 4136 4137 global_policy_present = isv4 ? 4138 (ipsec_outbound_v4_policy_present || 4139 ipsec_inbound_v4_policy_present) : 4140 (ipsec_outbound_v6_policy_present || 4141 ipsec_inbound_v6_policy_present); 4142 4143 if ((connp->conn_policy != NULL) || global_policy_present) { 4144 ipsec_selector_t sel; 4145 ipsec_policy_t *p; 4146 4147 if (connp->conn_latch == NULL && 4148 (connp->conn_latch = iplatch_create()) == NULL) { 4149 return (ENOMEM); 4150 } 4151 4152 sel.ips_protocol = connp->conn_ulp; 4153 sel.ips_local_port = connp->conn_lport; 4154 sel.ips_remote_port = connp->conn_fport; 4155 sel.ips_is_icmp_inv_acq = 0; 4156 sel.ips_isv4 = isv4; 4157 if (isv4) { 4158 sel.ips_local_addr_v4 = connp->conn_src; 4159 sel.ips_remote_addr_v4 = connp->conn_rem; 4160 } else { 4161 sel.ips_local_addr_v6 = connp->conn_srcv6; 4162 sel.ips_remote_addr_v6 = connp->conn_remv6; 4163 } 4164 4165 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel); 4166 if (connp->conn_latch->ipl_in_policy != NULL) 4167 IPPOL_REFRELE(connp->conn_latch->ipl_in_policy); 4168 connp->conn_latch->ipl_in_policy = p; 4169 connp->conn_in_enforce_policy = (p != NULL); 4170 4171 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel); 4172 if (connp->conn_latch->ipl_out_policy != NULL) 4173 IPPOL_REFRELE(connp->conn_latch->ipl_out_policy); 4174 connp->conn_latch->ipl_out_policy = p; 4175 connp->conn_out_enforce_policy = (p != NULL); 4176 4177 /* Clear the latched actions too, in case we're recaching. */ 4178 if (connp->conn_latch->ipl_out_action != NULL) 4179 IPACT_REFRELE(connp->conn_latch->ipl_out_action); 4180 if (connp->conn_latch->ipl_in_action != NULL) 4181 IPACT_REFRELE(connp->conn_latch->ipl_in_action); 4182 } 4183 4184 /* 4185 * We may or may not have policy for this endpoint. We still set 4186 * conn_policy_cached so that inbound datagrams don't have to look 4187 * at global policy as policy is considered latched for these 4188 * endpoints. We should not set conn_policy_cached until the conn 4189 * reflects the actual policy. If we *set* this before inheriting 4190 * the policy there is a window where the check 4191 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy 4192 * on the conn (because we have not yet copied the policy on to 4193 * conn and hence not set conn_in_enforce_policy) nor with the 4194 * global policy (because conn_policy_cached is already set). 4195 */ 4196 connp->conn_policy_cached = B_TRUE; 4197 if (connp->conn_in_enforce_policy) 4198 connp->conn_flags |= IPCL_CHECK_POLICY; 4199 return (0); 4200 } 4201 4202 void 4203 iplatch_free(ipsec_latch_t *ipl) 4204 { 4205 if (ipl->ipl_out_policy != NULL) 4206 IPPOL_REFRELE(ipl->ipl_out_policy); 4207 if (ipl->ipl_in_policy != NULL) 4208 IPPOL_REFRELE(ipl->ipl_in_policy); 4209 if (ipl->ipl_in_action != NULL) 4210 IPACT_REFRELE(ipl->ipl_in_action); 4211 if (ipl->ipl_out_action != NULL) 4212 IPACT_REFRELE(ipl->ipl_out_action); 4213 if (ipl->ipl_local_cid != NULL) 4214 IPSID_REFRELE(ipl->ipl_local_cid); 4215 if (ipl->ipl_remote_cid != NULL) 4216 IPSID_REFRELE(ipl->ipl_remote_cid); 4217 if (ipl->ipl_local_id != NULL) 4218 crfree(ipl->ipl_local_id); 4219 mutex_destroy(&ipl->ipl_lock); 4220 kmem_free(ipl, sizeof (*ipl)); 4221 } 4222 4223 ipsec_latch_t * 4224 iplatch_create() 4225 { 4226 ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP); 4227 if (ipl == NULL) 4228 return (ipl); 4229 bzero(ipl, sizeof (*ipl)); 4230 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL); 4231 ipl->ipl_refcnt = 1; 4232 return (ipl); 4233 } 4234 4235 /* 4236 * Identity hash table. 4237 * 4238 * Identities are refcounted and "interned" into the hash table. 4239 * Only references coming from other objects (SA's, latching state) 4240 * are counted in ipsid_refcnt. 4241 * 4242 * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket 4243 * is locked, (b) we know that the refcount must be > 0. 4244 * 4245 * The ipsid_next and ipsid_ptpn fields are only to be referenced or 4246 * modified when the bucket lock is held; in particular, we only 4247 * delete objects while holding the bucket lock, and we only increase 4248 * the refcount from 0 to 1 while the bucket lock is held. 4249 */ 4250 4251 #define IPSID_HASHSIZE 64 4252 4253 typedef struct ipsif_s 4254 { 4255 ipsid_t *ipsif_head; 4256 kmutex_t ipsif_lock; 4257 } ipsif_t; 4258 4259 ipsif_t ipsid_buckets[IPSID_HASHSIZE]; 4260 4261 /* 4262 * Hash function for ID hash table. 4263 */ 4264 static uint32_t 4265 ipsid_hash(int idtype, char *idstring) 4266 { 4267 uint32_t hval = idtype; 4268 unsigned char c; 4269 4270 while ((c = *idstring++) != 0) { 4271 hval = (hval << 4) | (hval >> 28); 4272 hval ^= c; 4273 } 4274 hval = hval ^ (hval >> 16); 4275 return (hval & (IPSID_HASHSIZE-1)); 4276 } 4277 4278 /* 4279 * Look up identity string in hash table. Return identity object 4280 * corresponding to the name -- either preexisting, or newly allocated. 4281 * 4282 * Return NULL if we need to allocate a new one and can't get memory. 4283 */ 4284 ipsid_t * 4285 ipsid_lookup(int idtype, char *idstring) 4286 { 4287 ipsid_t *retval; 4288 char *nstr; 4289 int idlen = strlen(idstring) + 1; 4290 4291 ipsif_t *bucket = &ipsid_buckets[ipsid_hash(idtype, idstring)]; 4292 4293 mutex_enter(&bucket->ipsif_lock); 4294 4295 for (retval = bucket->ipsif_head; retval != NULL; 4296 retval = retval->ipsid_next) { 4297 if (idtype != retval->ipsid_type) 4298 continue; 4299 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0) 4300 continue; 4301 4302 IPSID_REFHOLD(retval); 4303 mutex_exit(&bucket->ipsif_lock); 4304 return (retval); 4305 } 4306 4307 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP); 4308 if (!retval) { 4309 mutex_exit(&bucket->ipsif_lock); 4310 return (NULL); 4311 } 4312 4313 nstr = kmem_alloc(idlen, KM_NOSLEEP); 4314 if (!nstr) { 4315 mutex_exit(&bucket->ipsif_lock); 4316 kmem_free(retval, sizeof (*retval)); 4317 return (NULL); 4318 } 4319 4320 retval->ipsid_refcnt = 1; 4321 retval->ipsid_next = bucket->ipsif_head; 4322 if (retval->ipsid_next != NULL) 4323 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next; 4324 retval->ipsid_ptpn = &bucket->ipsif_head; 4325 retval->ipsid_type = idtype; 4326 retval->ipsid_cid = nstr; 4327 bucket->ipsif_head = retval; 4328 bcopy(idstring, nstr, idlen); 4329 mutex_exit(&bucket->ipsif_lock); 4330 4331 return (retval); 4332 } 4333 4334 /* 4335 * Garbage collect the identity hash table. 4336 */ 4337 void 4338 ipsid_gc() 4339 { 4340 int i, len; 4341 ipsid_t *id, *nid; 4342 ipsif_t *bucket; 4343 4344 for (i = 0; i < IPSID_HASHSIZE; i++) { 4345 bucket = &ipsid_buckets[i]; 4346 mutex_enter(&bucket->ipsif_lock); 4347 for (id = bucket->ipsif_head; id != NULL; id = nid) { 4348 nid = id->ipsid_next; 4349 if (id->ipsid_refcnt == 0) { 4350 *id->ipsid_ptpn = nid; 4351 if (nid != NULL) 4352 nid->ipsid_ptpn = id->ipsid_ptpn; 4353 len = strlen(id->ipsid_cid) + 1; 4354 kmem_free(id->ipsid_cid, len); 4355 kmem_free(id, sizeof (*id)); 4356 } 4357 } 4358 mutex_exit(&bucket->ipsif_lock); 4359 } 4360 } 4361 4362 /* 4363 * Return true if two identities are the same. 4364 */ 4365 boolean_t 4366 ipsid_equal(ipsid_t *id1, ipsid_t *id2) 4367 { 4368 if (id1 == id2) 4369 return (B_TRUE); 4370 #ifdef DEBUG 4371 if ((id1 == NULL) || (id2 == NULL)) 4372 return (B_FALSE); 4373 /* 4374 * test that we're interning id's correctly.. 4375 */ 4376 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) || 4377 (id1->ipsid_type != id2->ipsid_type)); 4378 #endif 4379 return (B_FALSE); 4380 } 4381 4382 /* 4383 * Initialize identity table; called during module initialization. 4384 */ 4385 static void 4386 ipsid_init() 4387 { 4388 ipsif_t *bucket; 4389 int i; 4390 4391 for (i = 0; i < IPSID_HASHSIZE; i++) { 4392 bucket = &ipsid_buckets[i]; 4393 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL); 4394 } 4395 } 4396 4397 /* 4398 * Free identity table (preparatory to module unload) 4399 */ 4400 static void 4401 ipsid_fini() 4402 { 4403 ipsif_t *bucket; 4404 int i; 4405 4406 for (i = 0; i < IPSID_HASHSIZE; i++) { 4407 bucket = &ipsid_buckets[i]; 4408 mutex_destroy(&bucket->ipsif_lock); 4409 } 4410 } 4411 4412 /* 4413 * Update the minimum and maximum supported key sizes for the 4414 * specified algorithm. Must be called while holding the algorithms lock. 4415 */ 4416 void 4417 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type) 4418 { 4419 size_t crypto_min = (size_t)-1, crypto_max = 0; 4420 size_t cur_crypto_min, cur_crypto_max; 4421 boolean_t is_valid; 4422 crypto_mechanism_info_t *mech_infos; 4423 uint_t nmech_infos; 4424 int crypto_rc, i; 4425 crypto_mech_usage_t mask; 4426 4427 ASSERT(MUTEX_HELD(&alg_lock)); 4428 4429 /* 4430 * Compute the min, max, and default key sizes (in number of 4431 * increments to the default key size in bits) as defined 4432 * by the algorithm mappings. This range of key sizes is used 4433 * for policy related operations. The effective key sizes 4434 * supported by the framework could be more limited than 4435 * those defined for an algorithm. 4436 */ 4437 alg->alg_default_bits = alg->alg_key_sizes[0]; 4438 if (alg->alg_increment != 0) { 4439 /* key sizes are defined by range & increment */ 4440 alg->alg_minbits = alg->alg_key_sizes[1]; 4441 alg->alg_maxbits = alg->alg_key_sizes[2]; 4442 4443 alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits, 4444 alg->alg_increment, alg->alg_default_bits); 4445 } else if (alg->alg_nkey_sizes == 0) { 4446 /* no specified key size for algorithm */ 4447 alg->alg_minbits = alg->alg_maxbits = 0; 4448 } else { 4449 /* key sizes are defined by enumeration */ 4450 alg->alg_minbits = (uint16_t)-1; 4451 alg->alg_maxbits = 0; 4452 4453 for (i = 0; i < alg->alg_nkey_sizes; i++) { 4454 if (alg->alg_key_sizes[i] < alg->alg_minbits) 4455 alg->alg_minbits = alg->alg_key_sizes[i]; 4456 if (alg->alg_key_sizes[i] > alg->alg_maxbits) 4457 alg->alg_maxbits = alg->alg_key_sizes[i]; 4458 } 4459 alg->alg_default = 0; 4460 } 4461 4462 if (!(alg->alg_flags & ALG_FLAG_VALID)) 4463 return; 4464 4465 /* 4466 * Mechanisms do not apply to the NULL encryption 4467 * algorithm, so simply return for this case. 4468 */ 4469 if (alg->alg_id == SADB_EALG_NULL) 4470 return; 4471 4472 /* 4473 * Find the min and max key sizes supported by the cryptographic 4474 * framework providers. 4475 */ 4476 4477 /* get the key sizes supported by the framework */ 4478 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type, 4479 &mech_infos, &nmech_infos, KM_SLEEP); 4480 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) { 4481 alg->alg_flags &= ~ALG_FLAG_VALID; 4482 return; 4483 } 4484 4485 /* min and max key sizes supported by framework */ 4486 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) { 4487 int unit_bits; 4488 4489 /* 4490 * Ignore entries that do not support the operations 4491 * needed for the algorithm type. 4492 */ 4493 if (alg_type == IPSEC_ALG_AUTH) 4494 mask = CRYPTO_MECH_USAGE_MAC; 4495 else 4496 mask = CRYPTO_MECH_USAGE_ENCRYPT | 4497 CRYPTO_MECH_USAGE_DECRYPT; 4498 if ((mech_infos[i].mi_usage & mask) != mask) 4499 continue; 4500 4501 unit_bits = (mech_infos[i].mi_keysize_unit == 4502 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1; 4503 /* adjust min/max supported by framework */ 4504 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits; 4505 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits; 4506 4507 if (cur_crypto_min < crypto_min) 4508 crypto_min = cur_crypto_min; 4509 4510 /* 4511 * CRYPTO_EFFECTIVELY_INFINITE is a special value of 4512 * the crypto framework which means "no upper limit". 4513 */ 4514 if (mech_infos[i].mi_max_key_size == 4515 CRYPTO_EFFECTIVELY_INFINITE) 4516 crypto_max = (size_t)-1; 4517 else if (cur_crypto_max > crypto_max) 4518 crypto_max = cur_crypto_max; 4519 4520 is_valid = B_TRUE; 4521 } 4522 4523 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) * 4524 nmech_infos); 4525 4526 if (!is_valid) { 4527 /* no key sizes supported by framework */ 4528 alg->alg_flags &= ~ALG_FLAG_VALID; 4529 return; 4530 } 4531 4532 /* 4533 * Determine min and max key sizes from alg_key_sizes[]. 4534 * defined for the algorithm entry. Adjust key sizes based on 4535 * those supported by the framework. 4536 */ 4537 alg->alg_ef_default_bits = alg->alg_key_sizes[0]; 4538 if (alg->alg_increment != 0) { 4539 /* supported key sizes are defined by range & increment */ 4540 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment); 4541 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment); 4542 4543 alg->alg_ef_minbits = MAX(alg->alg_minbits, 4544 (uint16_t)crypto_min); 4545 alg->alg_ef_maxbits = MIN(alg->alg_maxbits, 4546 (uint16_t)crypto_max); 4547 4548 /* 4549 * If the sizes supported by the framework are outside 4550 * the range of sizes defined by the algorithm mappings, 4551 * the algorithm cannot be used. Check for this 4552 * condition here. 4553 */ 4554 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) { 4555 alg->alg_flags &= ~ALG_FLAG_VALID; 4556 return; 4557 } 4558 4559 if (alg->alg_ef_default_bits < alg->alg_ef_minbits) 4560 alg->alg_ef_default_bits = alg->alg_ef_minbits; 4561 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits) 4562 alg->alg_ef_default_bits = alg->alg_ef_maxbits; 4563 4564 alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits, 4565 alg->alg_increment, alg->alg_ef_default_bits); 4566 } else if (alg->alg_nkey_sizes == 0) { 4567 /* no specified key size for algorithm */ 4568 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0; 4569 } else { 4570 /* supported key sizes are defined by enumeration */ 4571 alg->alg_ef_minbits = (uint16_t)-1; 4572 alg->alg_ef_maxbits = 0; 4573 4574 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) { 4575 /* 4576 * Ignore the current key size if it is not in the 4577 * range of sizes supported by the framework. 4578 */ 4579 if (alg->alg_key_sizes[i] < crypto_min || 4580 alg->alg_key_sizes[i] > crypto_max) 4581 continue; 4582 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits) 4583 alg->alg_ef_minbits = alg->alg_key_sizes[i]; 4584 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits) 4585 alg->alg_ef_maxbits = alg->alg_key_sizes[i]; 4586 is_valid = B_TRUE; 4587 } 4588 4589 if (!is_valid) { 4590 alg->alg_flags &= ~ALG_FLAG_VALID; 4591 return; 4592 } 4593 alg->alg_ef_default = 0; 4594 } 4595 } 4596 4597 /* 4598 * Free the memory used by the specified algorithm. 4599 */ 4600 void 4601 ipsec_alg_free(ipsec_alginfo_t *alg) 4602 { 4603 if (alg == NULL) 4604 return; 4605 4606 if (alg->alg_key_sizes != NULL) 4607 kmem_free(alg->alg_key_sizes, 4608 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t)); 4609 4610 if (alg->alg_block_sizes != NULL) 4611 kmem_free(alg->alg_block_sizes, 4612 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t)); 4613 4614 kmem_free(alg, sizeof (*alg)); 4615 } 4616 4617 /* 4618 * Check the validity of the specified key size for an algorithm. 4619 * Returns B_TRUE if key size is valid, B_FALSE otherwise. 4620 */ 4621 boolean_t 4622 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg) 4623 { 4624 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits) 4625 return (B_FALSE); 4626 4627 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) { 4628 /* 4629 * If the key sizes are defined by enumeration, the new 4630 * key size must be equal to one of the supported values. 4631 */ 4632 int i; 4633 4634 for (i = 0; i < alg->alg_nkey_sizes; i++) 4635 if (key_size == alg->alg_key_sizes[i]) 4636 break; 4637 if (i == alg->alg_nkey_sizes) 4638 return (B_FALSE); 4639 } 4640 4641 return (B_TRUE); 4642 } 4643 4644 /* 4645 * Callback function invoked by the crypto framework when a provider 4646 * registers or unregisters. This callback updates the algorithms 4647 * tables when a crypto algorithm is no longer available or becomes 4648 * available, and triggers the freeing/creation of context templates 4649 * associated with existing SAs, if needed. 4650 */ 4651 void 4652 ipsec_prov_update_callback(uint32_t event, void *event_arg) 4653 { 4654 crypto_notify_event_change_t *prov_change = 4655 (crypto_notify_event_change_t *)event_arg; 4656 uint_t algidx, algid, algtype, mech_count, mech_idx; 4657 ipsec_alginfo_t *alg; 4658 ipsec_alginfo_t oalg; 4659 crypto_mech_name_t *mechs; 4660 boolean_t alg_changed = B_FALSE; 4661 4662 /* ignore events for which we didn't register */ 4663 if (event != CRYPTO_EVENT_PROVIDERS_CHANGE) { 4664 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x " 4665 " received from crypto framework\n", event)); 4666 return; 4667 } 4668 4669 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); 4670 if (mechs == NULL) 4671 return; 4672 4673 /* 4674 * Walk the list of currently defined IPsec algorithm. Update 4675 * the algorithm valid flag and trigger an update of the 4676 * SAs that depend on that algorithm. 4677 */ 4678 mutex_enter(&alg_lock); 4679 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { 4680 for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) { 4681 4682 algid = ipsec_sortlist[algtype][algidx]; 4683 alg = ipsec_alglists[algtype][algid]; 4684 ASSERT(alg != NULL); 4685 4686 /* 4687 * Skip the algorithms which do not map to the 4688 * crypto framework provider being added or removed. 4689 */ 4690 if (strncmp(alg->alg_mech_name, 4691 prov_change->ec_mech_name, 4692 CRYPTO_MAX_MECH_NAME) != 0) 4693 continue; 4694 4695 /* 4696 * Determine if the mechanism is valid. If it 4697 * is not, mark the algorithm as being invalid. If 4698 * it is, mark the algorithm as being valid. 4699 */ 4700 for (mech_idx = 0; mech_idx < mech_count; mech_idx++) 4701 if (strncmp(alg->alg_mech_name, 4702 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) 4703 break; 4704 if (mech_idx == mech_count && 4705 alg->alg_flags & ALG_FLAG_VALID) { 4706 alg->alg_flags &= ~ALG_FLAG_VALID; 4707 alg_changed = B_TRUE; 4708 } else if (mech_idx < mech_count && 4709 !(alg->alg_flags & ALG_FLAG_VALID)) { 4710 alg->alg_flags |= ALG_FLAG_VALID; 4711 alg_changed = B_TRUE; 4712 } 4713 4714 /* 4715 * Update the supported key sizes, regardless 4716 * of whether a crypto provider was added or 4717 * removed. 4718 */ 4719 oalg = *alg; 4720 ipsec_alg_fix_min_max(alg, algtype); 4721 if (!alg_changed && 4722 alg->alg_ef_minbits != oalg.alg_ef_minbits || 4723 alg->alg_ef_maxbits != oalg.alg_ef_maxbits || 4724 alg->alg_ef_default != oalg.alg_ef_default || 4725 alg->alg_ef_default_bits != 4726 oalg.alg_ef_default_bits) 4727 alg_changed = B_TRUE; 4728 4729 /* 4730 * Update the affected SAs if a software provider is 4731 * being added or removed. 4732 */ 4733 if (prov_change->ec_provider_type == 4734 CRYPTO_SW_PROVIDER) 4735 sadb_alg_update(algtype, alg->alg_id, 4736 prov_change->ec_change == 4737 CRYPTO_EVENT_CHANGE_ADDED); 4738 } 4739 } 4740 mutex_exit(&alg_lock); 4741 crypto_free_mech_list(mechs, mech_count); 4742 4743 if (alg_changed) { 4744 /* 4745 * An algorithm has changed, i.e. it became valid or 4746 * invalid, or its support key sizes have changed. 4747 * Notify ipsecah and ipsecesp of this change so 4748 * that they can send a SADB_REGISTER to their consumers. 4749 */ 4750 ipsecah_algs_changed(); 4751 ipsecesp_algs_changed(); 4752 } 4753 } 4754 4755 /* 4756 * Registers with the crypto framework to be notified of crypto 4757 * providers changes. Used to update the algorithm tables and 4758 * to free or create context templates if needed. Invoked after IPsec 4759 * is loaded successfully. 4760 */ 4761 void 4762 ipsec_register_prov_update(void) 4763 { 4764 prov_update_handle = crypto_notify_events( 4765 ipsec_prov_update_callback, CRYPTO_EVENT_PROVIDERS_CHANGE); 4766 } 4767 4768 /* 4769 * Unregisters from the framework to be notified of crypto providers 4770 * changes. Called from ipsec_policy_destroy(). 4771 */ 4772 static void 4773 ipsec_unregister_prov_update(void) 4774 { 4775 if (prov_update_handle != NULL) 4776 crypto_unnotify_events(prov_update_handle); 4777 } 4778