1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * IPsec Security Policy Database. 28 * 29 * This module maintains the SPD and provides routines used by ip and ip6 30 * to apply IPsec policy to inbound and outbound datagrams. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/stropts.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strsun.h> 39 #include <sys/strlog.h> 40 #include <sys/strsun.h> 41 #include <sys/cmn_err.h> 42 #include <sys/zone.h> 43 44 #include <sys/systm.h> 45 #include <sys/param.h> 46 #include <sys/kmem.h> 47 #include <sys/ddi.h> 48 49 #include <sys/crypto/api.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 54 #include <netinet/ip6.h> 55 #include <netinet/icmp6.h> 56 #include <netinet/udp.h> 57 58 #include <inet/ip.h> 59 #include <inet/ip6.h> 60 61 #include <net/pfkeyv2.h> 62 #include <net/pfpolicy.h> 63 #include <inet/sadb.h> 64 #include <inet/ipsec_impl.h> 65 66 #include <inet/ip_impl.h> /* For IP_MOD_ID */ 67 68 #include <inet/ipsecah.h> 69 #include <inet/ipsecesp.h> 70 #include <inet/ipdrop.h> 71 #include <inet/ipclassifier.h> 72 #include <inet/iptun.h> 73 #include <inet/iptun/iptun_impl.h> 74 75 static void ipsec_update_present_flags(ipsec_stack_t *); 76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *, 77 netstack_t *); 78 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *, 79 ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *); 80 static void ipsec_action_free_table(ipsec_action_t *); 81 static void ipsec_action_reclaim(void *); 82 static void ipsec_action_reclaim_stack(netstack_t *); 83 static void ipsid_init(netstack_t *); 84 static void ipsid_fini(netstack_t *); 85 86 /* sel_flags values for ipsec_init_inbound_sel(). */ 87 #define SEL_NONE 0x0000 88 #define SEL_PORT_POLICY 0x0001 89 #define SEL_IS_ICMP 0x0002 90 #define SEL_TUNNEL_MODE 0x0004 91 #define SEL_POST_FRAG 0x0008 92 93 /* Return values for ipsec_init_inbound_sel(). */ 94 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG} 95 selret_t; 96 97 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *, 98 ipha_t *, ip6_t *, uint8_t); 99 100 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *, 101 struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **, 102 kstat_named_t **, netstack_t *); 103 static void ipsec_unregister_prov_update(void); 104 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *); 105 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *); 106 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *); 107 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 108 static void ipsec_kstat_destroy(ipsec_stack_t *); 109 static int ipsec_free_tables(ipsec_stack_t *); 110 static int tunnel_compare(const void *, const void *); 111 static void ipsec_freemsg_chain(mblk_t *); 112 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, 113 struct kstat_named *, ipdropper_t *); 114 static boolean_t ipsec_kstat_init(ipsec_stack_t *); 115 static void ipsec_kstat_destroy(ipsec_stack_t *); 116 static int ipsec_free_tables(ipsec_stack_t *); 117 static int tunnel_compare(const void *, const void *); 118 static void ipsec_freemsg_chain(mblk_t *); 119 120 /* 121 * Selector hash table is statically sized at module load time. 122 * we default to 251 buckets, which is the largest prime number under 255 123 */ 124 125 #define IPSEC_SPDHASH_DEFAULT 251 126 127 /* SPD hash-size tunable per tunnel. */ 128 #define TUN_SPDHASH_DEFAULT 5 129 130 uint32_t ipsec_spd_hashsize; 131 uint32_t tun_spd_hashsize; 132 133 #define IPSEC_SEL_NOHASH ((uint32_t)(~0)) 134 135 /* 136 * Handle global across all stack instances 137 */ 138 static crypto_notify_handle_t prov_update_handle = NULL; 139 140 static kmem_cache_t *ipsec_action_cache; 141 static kmem_cache_t *ipsec_sel_cache; 142 static kmem_cache_t *ipsec_pol_cache; 143 144 /* Frag cache prototypes */ 145 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *); 146 static ipsec_fragcache_entry_t *fragcache_delentry(int, 147 ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *); 148 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *); 149 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss); 150 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, 151 int, ipsec_stack_t *); 152 153 int ipsec_hdr_pullup_needed = 0; 154 int ipsec_weird_null_inbound_policy = 0; 155 156 #define ALGBITS_ROUND_DOWN(x, align) (((x)/(align))*(align)) 157 #define ALGBITS_ROUND_UP(x, align) ALGBITS_ROUND_DOWN((x)+(align)-1, align) 158 159 /* 160 * Inbound traffic should have matching identities for both SA's. 161 */ 162 163 #define SA_IDS_MATCH(sa1, sa2) \ 164 (((sa1) == NULL) || ((sa2) == NULL) || \ 165 (((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) && \ 166 (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid)))) 167 168 /* 169 * IPv6 Fragments 170 */ 171 #define IS_V6_FRAGMENT(ipp) (ipp.ipp_fields & IPPF_FRAGHDR) 172 173 /* 174 * Policy failure messages. 175 */ 176 static char *ipsec_policy_failure_msgs[] = { 177 178 /* IPSEC_POLICY_NOT_NEEDED */ 179 "%s: Dropping the datagram because the incoming packet " 180 "is %s, but the recipient expects clear; Source %s, " 181 "Destination %s.\n", 182 183 /* IPSEC_POLICY_MISMATCH */ 184 "%s: Policy Failure for the incoming packet (%s); Source %s, " 185 "Destination %s.\n", 186 187 /* IPSEC_POLICY_AUTH_NOT_NEEDED */ 188 "%s: Authentication present while not expected in the " 189 "incoming %s packet; Source %s, Destination %s.\n", 190 191 /* IPSEC_POLICY_ENCR_NOT_NEEDED */ 192 "%s: Encryption present while not expected in the " 193 "incoming %s packet; Source %s, Destination %s.\n", 194 195 /* IPSEC_POLICY_SE_NOT_NEEDED */ 196 "%s: Self-Encapsulation present while not expected in the " 197 "incoming %s packet; Source %s, Destination %s.\n", 198 }; 199 200 /* 201 * General overviews: 202 * 203 * Locking: 204 * 205 * All of the system policy structures are protected by a single 206 * rwlock. These structures are threaded in a 207 * fairly complex fashion and are not expected to change on a 208 * regular basis, so this should not cause scaling/contention 209 * problems. As a result, policy checks should (hopefully) be MT-hot. 210 * 211 * Allocation policy: 212 * 213 * We use custom kmem cache types for the various 214 * bits & pieces of the policy data structures. All allocations 215 * use KM_NOSLEEP instead of KM_SLEEP for policy allocation. The 216 * policy table is of potentially unbounded size, so we don't 217 * want to provide a way to hog all system memory with policy 218 * entries.. 219 */ 220 221 /* Convenient functions for freeing or dropping a b_next linked mblk chain */ 222 223 /* Free all messages in an mblk chain */ 224 static void 225 ipsec_freemsg_chain(mblk_t *mp) 226 { 227 mblk_t *mpnext; 228 while (mp != NULL) { 229 ASSERT(mp->b_prev == NULL); 230 mpnext = mp->b_next; 231 mp->b_next = NULL; 232 freemsg(mp); 233 mp = mpnext; 234 } 235 } 236 237 /* 238 * ip_drop all messages in an mblk chain 239 * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain 240 * of data. 241 */ 242 static void 243 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill, 244 struct kstat_named *counter, ipdropper_t *who_called) 245 { 246 mblk_t *mpnext; 247 while (mp != NULL) { 248 ASSERT(mp->b_prev == NULL); 249 mpnext = mp->b_next; 250 mp->b_next = NULL; 251 if (ip_recv_attr_is_mblk(mp)) 252 mp = ip_recv_attr_free_mblk(mp); 253 ip_drop_packet(mp, inbound, ill, counter, who_called); 254 mp = mpnext; 255 } 256 } 257 258 /* 259 * AVL tree comparison function. 260 * the in-kernel avl assumes unique keys for all objects. 261 * Since sometimes policy will duplicate rules, we may insert 262 * multiple rules with the same rule id, so we need a tie-breaker. 263 */ 264 static int 265 ipsec_policy_cmpbyid(const void *a, const void *b) 266 { 267 const ipsec_policy_t *ipa, *ipb; 268 uint64_t idxa, idxb; 269 270 ipa = (const ipsec_policy_t *)a; 271 ipb = (const ipsec_policy_t *)b; 272 idxa = ipa->ipsp_index; 273 idxb = ipb->ipsp_index; 274 275 if (idxa < idxb) 276 return (-1); 277 if (idxa > idxb) 278 return (1); 279 /* 280 * Tie-breaker #1: All installed policy rules have a non-NULL 281 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not 282 * actually in-tree but rather a template node being used in 283 * an avl_find query; see ipsec_policy_delete(). This gives us 284 * a placeholder in the ordering just before the first entry with 285 * a key >= the one we're looking for, so we can walk forward from 286 * that point to get the remaining entries with the same id. 287 */ 288 if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL)) 289 return (-1); 290 if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL)) 291 return (1); 292 /* 293 * At most one of the arguments to the comparison should have a 294 * NULL selector pointer; if not, the tree is broken. 295 */ 296 ASSERT(ipa->ipsp_sel != NULL); 297 ASSERT(ipb->ipsp_sel != NULL); 298 /* 299 * Tie-breaker #2: use the virtual address of the policy node 300 * to arbitrarily break ties. Since we use the new tree node in 301 * the avl_find() in ipsec_insert_always, the new node will be 302 * inserted into the tree in the right place in the sequence. 303 */ 304 if (ipa < ipb) 305 return (-1); 306 if (ipa > ipb) 307 return (1); 308 return (0); 309 } 310 311 /* 312 * Free what ipsec_alloc_table allocated. 313 */ 314 void 315 ipsec_polhead_free_table(ipsec_policy_head_t *iph) 316 { 317 int dir; 318 int i; 319 320 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 321 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 322 323 if (ipr->ipr_hash == NULL) 324 continue; 325 326 for (i = 0; i < ipr->ipr_nchains; i++) { 327 ASSERT(ipr->ipr_hash[i].hash_head == NULL); 328 } 329 kmem_free(ipr->ipr_hash, ipr->ipr_nchains * 330 sizeof (ipsec_policy_hash_t)); 331 ipr->ipr_hash = NULL; 332 } 333 } 334 335 void 336 ipsec_polhead_destroy(ipsec_policy_head_t *iph) 337 { 338 int dir; 339 340 avl_destroy(&iph->iph_rulebyid); 341 rw_destroy(&iph->iph_lock); 342 343 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 344 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 345 int chain; 346 347 for (chain = 0; chain < ipr->ipr_nchains; chain++) 348 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 349 350 } 351 ipsec_polhead_free_table(iph); 352 } 353 354 /* 355 * Free the IPsec stack instance. 356 */ 357 /* ARGSUSED */ 358 static void 359 ipsec_stack_fini(netstackid_t stackid, void *arg) 360 { 361 ipsec_stack_t *ipss = (ipsec_stack_t *)arg; 362 void *cookie; 363 ipsec_tun_pol_t *node; 364 netstack_t *ns = ipss->ipsec_netstack; 365 int i; 366 ipsec_algtype_t algtype; 367 368 ipsec_loader_destroy(ipss); 369 370 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 371 /* 372 * It's possible we can just ASSERT() the tree is empty. After all, 373 * we aren't called until IP is ready to unload (and presumably all 374 * tunnels have been unplumbed). But we'll play it safe for now, the 375 * loop will just exit immediately if it's empty. 376 */ 377 cookie = NULL; 378 while ((node = (ipsec_tun_pol_t *) 379 avl_destroy_nodes(&ipss->ipsec_tunnel_policies, 380 &cookie)) != NULL) { 381 ITP_REFRELE(node, ns); 382 } 383 avl_destroy(&ipss->ipsec_tunnel_policies); 384 rw_exit(&ipss->ipsec_tunnel_policy_lock); 385 rw_destroy(&ipss->ipsec_tunnel_policy_lock); 386 387 ipsec_config_flush(ns); 388 389 ipsec_kstat_destroy(ipss); 390 391 ip_drop_unregister(&ipss->ipsec_dropper); 392 393 ip_drop_unregister(&ipss->ipsec_spd_dropper); 394 ip_drop_destroy(ipss); 395 /* 396 * Globals start with ref == 1 to prevent IPPH_REFRELE() from 397 * attempting to free them, hence they should have 1 now. 398 */ 399 ipsec_polhead_destroy(&ipss->ipsec_system_policy); 400 ASSERT(ipss->ipsec_system_policy.iph_refs == 1); 401 ipsec_polhead_destroy(&ipss->ipsec_inactive_policy); 402 ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1); 403 404 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 405 ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head); 406 ipss->ipsec_action_hash[i].hash_head = NULL; 407 mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock)); 408 } 409 410 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 411 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 412 mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock)); 413 } 414 415 mutex_enter(&ipss->ipsec_alg_lock); 416 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) { 417 int nalgs = ipss->ipsec_nalgs[algtype]; 418 419 for (i = 0; i < nalgs; i++) { 420 if (ipss->ipsec_alglists[algtype][i] != NULL) 421 ipsec_alg_unreg(algtype, i, ns); 422 } 423 } 424 mutex_exit(&ipss->ipsec_alg_lock); 425 mutex_destroy(&ipss->ipsec_alg_lock); 426 427 ipsid_gc(ns); 428 ipsid_fini(ns); 429 430 (void) ipsec_free_tables(ipss); 431 kmem_free(ipss, sizeof (*ipss)); 432 } 433 434 void 435 ipsec_policy_g_destroy(void) 436 { 437 kmem_cache_destroy(ipsec_action_cache); 438 kmem_cache_destroy(ipsec_sel_cache); 439 kmem_cache_destroy(ipsec_pol_cache); 440 441 ipsec_unregister_prov_update(); 442 443 netstack_unregister(NS_IPSEC); 444 } 445 446 447 /* 448 * Free what ipsec_alloc_tables allocated. 449 * Called when table allocation fails to free the table. 450 */ 451 static int 452 ipsec_free_tables(ipsec_stack_t *ipss) 453 { 454 int i; 455 456 if (ipss->ipsec_sel_hash != NULL) { 457 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) { 458 ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL); 459 } 460 kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize * 461 sizeof (*ipss->ipsec_sel_hash)); 462 ipss->ipsec_sel_hash = NULL; 463 ipss->ipsec_spd_hashsize = 0; 464 } 465 ipsec_polhead_free_table(&ipss->ipsec_system_policy); 466 ipsec_polhead_free_table(&ipss->ipsec_inactive_policy); 467 468 return (ENOMEM); 469 } 470 471 /* 472 * Attempt to allocate the tables in a single policy head. 473 * Return nonzero on failure after cleaning up any work in progress. 474 */ 475 int 476 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag, 477 boolean_t global_cleanup, netstack_t *ns) 478 { 479 int dir; 480 481 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 482 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 483 484 ipr->ipr_nchains = nchains; 485 ipr->ipr_hash = kmem_zalloc(nchains * 486 sizeof (ipsec_policy_hash_t), kmflag); 487 if (ipr->ipr_hash == NULL) 488 return (global_cleanup ? 489 ipsec_free_tables(ns->netstack_ipsec) : 490 ENOMEM); 491 } 492 return (0); 493 } 494 495 /* 496 * Attempt to allocate the various tables. Return nonzero on failure 497 * after cleaning up any work in progress. 498 */ 499 static int 500 ipsec_alloc_tables(int kmflag, netstack_t *ns) 501 { 502 int error; 503 ipsec_stack_t *ipss = ns->netstack_ipsec; 504 505 error = ipsec_alloc_table(&ipss->ipsec_system_policy, 506 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 507 if (error != 0) 508 return (error); 509 510 error = ipsec_alloc_table(&ipss->ipsec_inactive_policy, 511 ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns); 512 if (error != 0) 513 return (error); 514 515 ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize * 516 sizeof (*ipss->ipsec_sel_hash), kmflag); 517 518 if (ipss->ipsec_sel_hash == NULL) 519 return (ipsec_free_tables(ipss)); 520 521 return (0); 522 } 523 524 /* 525 * After table allocation, initialize a policy head. 526 */ 527 void 528 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains) 529 { 530 int dir, chain; 531 532 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 533 avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid, 534 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 535 536 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 537 ipsec_policy_root_t *ipr = &iph->iph_root[dir]; 538 ipr->ipr_nchains = nchains; 539 540 for (chain = 0; chain < nchains; chain++) { 541 mutex_init(&(ipr->ipr_hash[chain].hash_lock), 542 NULL, MUTEX_DEFAULT, NULL); 543 } 544 } 545 } 546 547 static boolean_t 548 ipsec_kstat_init(ipsec_stack_t *ipss) 549 { 550 ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net", 551 KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t), 552 KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid); 553 554 if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL) 555 return (B_FALSE); 556 557 ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data; 558 559 #define KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64) 560 KI(esp_stat_in_requests); 561 KI(esp_stat_in_discards); 562 KI(esp_stat_lookup_failure); 563 KI(ah_stat_in_requests); 564 KI(ah_stat_in_discards); 565 KI(ah_stat_lookup_failure); 566 KI(sadb_acquire_maxpackets); 567 KI(sadb_acquire_qhiwater); 568 #undef KI 569 570 kstat_install(ipss->ipsec_ksp); 571 return (B_TRUE); 572 } 573 574 static void 575 ipsec_kstat_destroy(ipsec_stack_t *ipss) 576 { 577 kstat_delete_netstack(ipss->ipsec_ksp, 578 ipss->ipsec_netstack->netstack_stackid); 579 ipss->ipsec_kstats = NULL; 580 581 } 582 583 /* 584 * Initialize the IPsec stack instance. 585 */ 586 /* ARGSUSED */ 587 static void * 588 ipsec_stack_init(netstackid_t stackid, netstack_t *ns) 589 { 590 ipsec_stack_t *ipss; 591 int i; 592 593 ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP); 594 ipss->ipsec_netstack = ns; 595 596 /* 597 * FIXME: netstack_ipsec is used by some of the routines we call 598 * below, but it isn't set until this routine returns. 599 * Either we introduce optional xxx_stack_alloc() functions 600 * that will be called by the netstack framework before xxx_stack_init, 601 * or we switch spd.c and sadb.c to operate on ipsec_stack_t 602 * (latter has some include file order issues for sadb.h, but makes 603 * sense if we merge some of the ipsec related stack_t's together. 604 */ 605 ns->netstack_ipsec = ipss; 606 607 /* 608 * Make two attempts to allocate policy hash tables; try it at 609 * the "preferred" size (may be set in /etc/system) first, 610 * then fall back to the default size. 611 */ 612 ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ? 613 IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize; 614 615 if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) { 616 cmn_err(CE_WARN, 617 "Unable to allocate %d entry IPsec policy hash table", 618 ipss->ipsec_spd_hashsize); 619 ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT; 620 cmn_err(CE_WARN, "Falling back to %d entries", 621 ipss->ipsec_spd_hashsize); 622 (void) ipsec_alloc_tables(KM_SLEEP, ns); 623 } 624 625 /* Just set a default for tunnels. */ 626 ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ? 627 TUN_SPDHASH_DEFAULT : tun_spd_hashsize; 628 629 ipsid_init(ns); 630 /* 631 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting 632 * to free them. 633 */ 634 ipss->ipsec_system_policy.iph_refs = 1; 635 ipss->ipsec_inactive_policy.iph_refs = 1; 636 ipsec_polhead_init(&ipss->ipsec_system_policy, 637 ipss->ipsec_spd_hashsize); 638 ipsec_polhead_init(&ipss->ipsec_inactive_policy, 639 ipss->ipsec_spd_hashsize); 640 rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL); 641 avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare, 642 sizeof (ipsec_tun_pol_t), 0); 643 644 ipss->ipsec_next_policy_index = 1; 645 646 rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL); 647 rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL); 648 649 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) 650 mutex_init(&(ipss->ipsec_action_hash[i].hash_lock), 651 NULL, MUTEX_DEFAULT, NULL); 652 653 for (i = 0; i < ipss->ipsec_spd_hashsize; i++) 654 mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock), 655 NULL, MUTEX_DEFAULT, NULL); 656 657 mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL); 658 for (i = 0; i < IPSEC_NALGTYPES; i++) { 659 ipss->ipsec_nalgs[i] = 0; 660 } 661 662 ip_drop_init(ipss); 663 ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD"); 664 665 /* IP's IPsec code calls the packet dropper */ 666 ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing"); 667 668 (void) ipsec_kstat_init(ipss); 669 670 ipsec_loader_init(ipss); 671 ipsec_loader_start(ipss); 672 673 return (ipss); 674 } 675 676 /* Global across all stack instances */ 677 void 678 ipsec_policy_g_init(void) 679 { 680 ipsec_action_cache = kmem_cache_create("ipsec_actions", 681 sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL, 682 ipsec_action_reclaim, NULL, NULL, 0); 683 ipsec_sel_cache = kmem_cache_create("ipsec_selectors", 684 sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL, 685 NULL, NULL, NULL, 0); 686 ipsec_pol_cache = kmem_cache_create("ipsec_policy", 687 sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL, 688 NULL, NULL, NULL, 0); 689 690 /* 691 * We want to be informed each time a stack is created or 692 * destroyed in the kernel, so we can maintain the 693 * set of ipsec_stack_t's. 694 */ 695 netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini); 696 } 697 698 /* 699 * Sort algorithm lists. 700 * 701 * I may need to split this based on 702 * authentication/encryption, and I may wish to have an administrator 703 * configure this list. Hold on to some NDD variables... 704 * 705 * XXX For now, sort on minimum key size (GAG!). While minimum key size is 706 * not the ideal metric, it's the only quantifiable measure available. 707 * We need a better metric for sorting algorithms by preference. 708 */ 709 static void 710 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 711 { 712 ipsec_stack_t *ipss = ns->netstack_ipsec; 713 ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid]; 714 uint8_t holder, swap; 715 uint_t i; 716 uint_t count = ipss->ipsec_nalgs[at]; 717 ASSERT(ai != NULL); 718 ASSERT(algid == ai->alg_id); 719 720 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 721 722 holder = algid; 723 724 for (i = 0; i < count - 1; i++) { 725 ipsec_alginfo_t *alt; 726 727 alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]]; 728 /* 729 * If you want to give precedence to newly added algs, 730 * add the = in the > comparison. 731 */ 732 if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) { 733 /* Swap sortlist[i] and holder. */ 734 swap = ipss->ipsec_sortlist[at][i]; 735 ipss->ipsec_sortlist[at][i] = holder; 736 holder = swap; 737 ai = alt; 738 } /* Else just continue. */ 739 } 740 741 /* Store holder in last slot. */ 742 ipss->ipsec_sortlist[at][i] = holder; 743 } 744 745 /* 746 * Remove an algorithm from a sorted algorithm list. 747 * This should be considerably easier, even with complex sorting. 748 */ 749 static void 750 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns) 751 { 752 boolean_t copyback = B_FALSE; 753 int i; 754 ipsec_stack_t *ipss = ns->netstack_ipsec; 755 int newcount = ipss->ipsec_nalgs[at]; 756 757 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 758 759 for (i = 0; i <= newcount; i++) { 760 if (copyback) { 761 ipss->ipsec_sortlist[at][i-1] = 762 ipss->ipsec_sortlist[at][i]; 763 } else if (ipss->ipsec_sortlist[at][i] == algid) { 764 copyback = B_TRUE; 765 } 766 } 767 } 768 769 /* 770 * Add the specified algorithm to the algorithm tables. 771 * Must be called while holding the algorithm table writer lock. 772 */ 773 void 774 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns) 775 { 776 ipsec_stack_t *ipss = ns->netstack_ipsec; 777 778 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 779 780 ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL); 781 ipsec_alg_fix_min_max(alg, algtype, ns); 782 ipss->ipsec_alglists[algtype][alg->alg_id] = alg; 783 784 ipss->ipsec_nalgs[algtype]++; 785 alg_insert_sortlist(algtype, alg->alg_id, ns); 786 } 787 788 /* 789 * Remove the specified algorithm from the algorithm tables. 790 * Must be called while holding the algorithm table writer lock. 791 */ 792 void 793 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns) 794 { 795 ipsec_stack_t *ipss = ns->netstack_ipsec; 796 797 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 798 799 ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL); 800 ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]); 801 ipss->ipsec_alglists[algtype][algid] = NULL; 802 803 ipss->ipsec_nalgs[algtype]--; 804 alg_remove_sortlist(algtype, algid, ns); 805 } 806 807 /* 808 * Hooks for spdsock to get a grip on system policy. 809 */ 810 811 ipsec_policy_head_t * 812 ipsec_system_policy(netstack_t *ns) 813 { 814 ipsec_stack_t *ipss = ns->netstack_ipsec; 815 ipsec_policy_head_t *h = &ipss->ipsec_system_policy; 816 817 IPPH_REFHOLD(h); 818 return (h); 819 } 820 821 ipsec_policy_head_t * 822 ipsec_inactive_policy(netstack_t *ns) 823 { 824 ipsec_stack_t *ipss = ns->netstack_ipsec; 825 ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy; 826 827 IPPH_REFHOLD(h); 828 return (h); 829 } 830 831 /* 832 * Lock inactive policy, then active policy, then exchange policy root 833 * pointers. 834 */ 835 void 836 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive, 837 netstack_t *ns) 838 { 839 int af, dir; 840 avl_tree_t r1, r2; 841 842 rw_enter(&inactive->iph_lock, RW_WRITER); 843 rw_enter(&active->iph_lock, RW_WRITER); 844 845 r1 = active->iph_rulebyid; 846 r2 = inactive->iph_rulebyid; 847 active->iph_rulebyid = r2; 848 inactive->iph_rulebyid = r1; 849 850 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 851 ipsec_policy_hash_t *h1, *h2; 852 853 h1 = active->iph_root[dir].ipr_hash; 854 h2 = inactive->iph_root[dir].ipr_hash; 855 active->iph_root[dir].ipr_hash = h2; 856 inactive->iph_root[dir].ipr_hash = h1; 857 858 for (af = 0; af < IPSEC_NAF; af++) { 859 ipsec_policy_t *t1, *t2; 860 861 t1 = active->iph_root[dir].ipr_nonhash[af]; 862 t2 = inactive->iph_root[dir].ipr_nonhash[af]; 863 active->iph_root[dir].ipr_nonhash[af] = t2; 864 inactive->iph_root[dir].ipr_nonhash[af] = t1; 865 if (t1 != NULL) { 866 t1->ipsp_hash.hash_pp = 867 &(inactive->iph_root[dir].ipr_nonhash[af]); 868 } 869 if (t2 != NULL) { 870 t2->ipsp_hash.hash_pp = 871 &(active->iph_root[dir].ipr_nonhash[af]); 872 } 873 874 } 875 } 876 active->iph_gen++; 877 inactive->iph_gen++; 878 ipsec_update_present_flags(ns->netstack_ipsec); 879 rw_exit(&active->iph_lock); 880 rw_exit(&inactive->iph_lock); 881 } 882 883 /* 884 * Swap global policy primary/secondary. 885 */ 886 void 887 ipsec_swap_global_policy(netstack_t *ns) 888 { 889 ipsec_stack_t *ipss = ns->netstack_ipsec; 890 891 ipsec_swap_policy(&ipss->ipsec_system_policy, 892 &ipss->ipsec_inactive_policy, ns); 893 } 894 895 /* 896 * Clone one policy rule.. 897 */ 898 static ipsec_policy_t * 899 ipsec_copy_policy(const ipsec_policy_t *src) 900 { 901 ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 902 903 if (dst == NULL) 904 return (NULL); 905 906 /* 907 * Adjust refcounts of cloned state. 908 */ 909 IPACT_REFHOLD(src->ipsp_act); 910 src->ipsp_sel->ipsl_refs++; 911 912 HASH_NULL(dst, ipsp_hash); 913 dst->ipsp_netstack = src->ipsp_netstack; 914 dst->ipsp_refs = 1; 915 dst->ipsp_sel = src->ipsp_sel; 916 dst->ipsp_act = src->ipsp_act; 917 dst->ipsp_prio = src->ipsp_prio; 918 dst->ipsp_index = src->ipsp_index; 919 920 return (dst); 921 } 922 923 void 924 ipsec_insert_always(avl_tree_t *tree, void *new_node) 925 { 926 void *node; 927 avl_index_t where; 928 929 node = avl_find(tree, new_node, &where); 930 ASSERT(node == NULL); 931 avl_insert(tree, new_node, where); 932 } 933 934 935 static int 936 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src, 937 ipsec_policy_t **dstp) 938 { 939 for (; src != NULL; src = src->ipsp_hash.hash_next) { 940 ipsec_policy_t *dst = ipsec_copy_policy(src); 941 if (dst == NULL) 942 return (ENOMEM); 943 944 HASHLIST_INSERT(dst, ipsp_hash, *dstp); 945 ipsec_insert_always(&dph->iph_rulebyid, dst); 946 } 947 return (0); 948 } 949 950 951 952 /* 953 * Make one policy head look exactly like another. 954 * 955 * As with ipsec_swap_policy, we lock the destination policy head first, then 956 * the source policy head. Note that we only need to read-lock the source 957 * policy head as we are not changing it. 958 */ 959 int 960 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph, 961 netstack_t *ns) 962 { 963 int af, dir, chain, nchains; 964 965 rw_enter(&dph->iph_lock, RW_WRITER); 966 967 ipsec_polhead_flush(dph, ns); 968 969 rw_enter(&sph->iph_lock, RW_READER); 970 971 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 972 ipsec_policy_root_t *dpr = &dph->iph_root[dir]; 973 ipsec_policy_root_t *spr = &sph->iph_root[dir]; 974 nchains = dpr->ipr_nchains; 975 976 ASSERT(dpr->ipr_nchains == spr->ipr_nchains); 977 978 for (af = 0; af < IPSEC_NAF; af++) { 979 if (ipsec_copy_chain(dph, spr->ipr_nonhash[af], 980 &dpr->ipr_nonhash[af])) 981 goto abort_copy; 982 } 983 984 for (chain = 0; chain < nchains; chain++) { 985 if (ipsec_copy_chain(dph, 986 spr->ipr_hash[chain].hash_head, 987 &dpr->ipr_hash[chain].hash_head)) 988 goto abort_copy; 989 } 990 } 991 992 dph->iph_gen++; 993 994 rw_exit(&sph->iph_lock); 995 rw_exit(&dph->iph_lock); 996 return (0); 997 998 abort_copy: 999 ipsec_polhead_flush(dph, ns); 1000 rw_exit(&sph->iph_lock); 1001 rw_exit(&dph->iph_lock); 1002 return (ENOMEM); 1003 } 1004 1005 /* 1006 * Clone currently active policy to the inactive policy list. 1007 */ 1008 int 1009 ipsec_clone_system_policy(netstack_t *ns) 1010 { 1011 ipsec_stack_t *ipss = ns->netstack_ipsec; 1012 1013 return (ipsec_copy_polhead(&ipss->ipsec_system_policy, 1014 &ipss->ipsec_inactive_policy, ns)); 1015 } 1016 1017 /* 1018 * Extract the string from ipsec_policy_failure_msgs[type] and 1019 * log it. 1020 * 1021 */ 1022 void 1023 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h, 1024 boolean_t secure, netstack_t *ns) 1025 { 1026 char sbuf[INET6_ADDRSTRLEN]; 1027 char dbuf[INET6_ADDRSTRLEN]; 1028 char *s; 1029 char *d; 1030 ipsec_stack_t *ipss = ns->netstack_ipsec; 1031 1032 ASSERT((ipha == NULL && ip6h != NULL) || 1033 (ip6h == NULL && ipha != NULL)); 1034 1035 if (ipha != NULL) { 1036 s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf)); 1037 d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf)); 1038 } else { 1039 s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf)); 1040 d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf)); 1041 1042 } 1043 1044 /* Always bump the policy failure counter. */ 1045 ipss->ipsec_policy_failure_count[type]++; 1046 1047 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1048 ipsec_policy_failure_msgs[type], func_name, 1049 (secure ? "secure" : "not secure"), s, d); 1050 } 1051 1052 /* 1053 * Rate-limiting front-end to strlog() for AH and ESP. Uses the ndd variables 1054 * in /dev/ip and the same rate-limiting clock so that there's a single 1055 * knob to turn to throttle the rate of messages. 1056 */ 1057 void 1058 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl, 1059 char *fmt, ...) 1060 { 1061 va_list adx; 1062 hrtime_t current = gethrtime(); 1063 ip_stack_t *ipst = ns->netstack_ip; 1064 ipsec_stack_t *ipss = ns->netstack_ipsec; 1065 1066 sl |= SL_CONSOLE; 1067 /* 1068 * Throttle logging to stop syslog from being swamped. If variable 1069 * 'ipsec_policy_log_interval' is zero, don't log any messages at 1070 * all, otherwise log only one message every 'ipsec_policy_log_interval' 1071 * msec. Convert interval (in msec) to hrtime (in nsec). 1072 */ 1073 1074 if (ipst->ips_ipsec_policy_log_interval) { 1075 if (ipss->ipsec_policy_failure_last + 1076 ((hrtime_t)ipst->ips_ipsec_policy_log_interval * 1077 (hrtime_t)1000000) <= current) { 1078 va_start(adx, fmt); 1079 (void) vstrlog(mid, sid, level, sl, fmt, adx); 1080 va_end(adx); 1081 ipss->ipsec_policy_failure_last = current; 1082 } 1083 } 1084 } 1085 1086 void 1087 ipsec_config_flush(netstack_t *ns) 1088 { 1089 ipsec_stack_t *ipss = ns->netstack_ipsec; 1090 1091 rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER); 1092 ipsec_polhead_flush(&ipss->ipsec_system_policy, ns); 1093 ipss->ipsec_next_policy_index = 1; 1094 rw_exit(&ipss->ipsec_system_policy.iph_lock); 1095 ipsec_action_reclaim_stack(ns); 1096 } 1097 1098 /* 1099 * Clip a policy's min/max keybits vs. the capabilities of the 1100 * algorithm. 1101 */ 1102 static void 1103 act_alg_adjust(uint_t algtype, uint_t algid, 1104 uint16_t *minbits, uint16_t *maxbits, netstack_t *ns) 1105 { 1106 ipsec_stack_t *ipss = ns->netstack_ipsec; 1107 ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid]; 1108 1109 if (algp != NULL) { 1110 /* 1111 * If passed-in minbits is zero, we assume the caller trusts 1112 * us with setting the minimum key size. We pick the 1113 * algorithms DEFAULT key size for the minimum in this case. 1114 */ 1115 if (*minbits == 0) { 1116 *minbits = algp->alg_default_bits; 1117 ASSERT(*minbits >= algp->alg_minbits); 1118 } else { 1119 *minbits = MAX(MIN(*minbits, algp->alg_maxbits), 1120 algp->alg_minbits); 1121 } 1122 if (*maxbits == 0) 1123 *maxbits = algp->alg_maxbits; 1124 else 1125 *maxbits = MIN(MAX(*maxbits, algp->alg_minbits), 1126 algp->alg_maxbits); 1127 ASSERT(*minbits <= *maxbits); 1128 } else { 1129 *minbits = 0; 1130 *maxbits = 0; 1131 } 1132 } 1133 1134 /* 1135 * Check an action's requested algorithms against the algorithms currently 1136 * loaded in the system. 1137 */ 1138 boolean_t 1139 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns) 1140 { 1141 ipsec_prot_t *ipp; 1142 ipsec_stack_t *ipss = ns->netstack_ipsec; 1143 1144 ipp = &act->ipa_apply; 1145 1146 if (ipp->ipp_use_ah && 1147 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) { 1148 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG; 1149 return (B_FALSE); 1150 } 1151 if (ipp->ipp_use_espa && 1152 ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == 1153 NULL) { 1154 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG; 1155 return (B_FALSE); 1156 } 1157 if (ipp->ipp_use_esp && 1158 ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) { 1159 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG; 1160 return (B_FALSE); 1161 } 1162 1163 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg, 1164 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1165 act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg, 1166 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1167 act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg, 1168 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1169 1170 if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) { 1171 *diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE; 1172 return (B_FALSE); 1173 } 1174 if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) { 1175 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE; 1176 return (B_FALSE); 1177 } 1178 if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) { 1179 *diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE; 1180 return (B_FALSE); 1181 } 1182 /* TODO: sanity check lifetimes */ 1183 return (B_TRUE); 1184 } 1185 1186 /* 1187 * Set up a single action during wildcard expansion.. 1188 */ 1189 static void 1190 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act, 1191 uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns) 1192 { 1193 ipsec_prot_t *ipp; 1194 1195 *outact = *act; 1196 ipp = &outact->ipa_apply; 1197 ipp->ipp_auth_alg = (uint8_t)auth_alg; 1198 ipp->ipp_encr_alg = (uint8_t)encr_alg; 1199 ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg; 1200 1201 act_alg_adjust(IPSEC_ALG_AUTH, auth_alg, 1202 &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns); 1203 act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg, 1204 &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns); 1205 act_alg_adjust(IPSEC_ALG_ENCR, encr_alg, 1206 &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns); 1207 } 1208 1209 /* 1210 * combinatoric expansion time: expand a wildcarded action into an 1211 * array of wildcarded actions; we return the exploded action list, 1212 * and return a count in *nact (output only). 1213 */ 1214 static ipsec_act_t * 1215 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns) 1216 { 1217 boolean_t use_ah, use_esp, use_espa; 1218 boolean_t wild_auth, wild_encr, wild_eauth; 1219 uint_t auth_alg, auth_idx, auth_min, auth_max; 1220 uint_t eauth_alg, eauth_idx, eauth_min, eauth_max; 1221 uint_t encr_alg, encr_idx, encr_min, encr_max; 1222 uint_t action_count, ai; 1223 ipsec_act_t *outact; 1224 ipsec_stack_t *ipss = ns->netstack_ipsec; 1225 1226 if (act->ipa_type != IPSEC_ACT_APPLY) { 1227 outact = kmem_alloc(sizeof (*act), KM_NOSLEEP); 1228 *nact = 1; 1229 if (outact != NULL) 1230 bcopy(act, outact, sizeof (*act)); 1231 return (outact); 1232 } 1233 /* 1234 * compute the combinatoric explosion.. 1235 * 1236 * we assume a request for encr if esp_req is PREF_REQUIRED 1237 * we assume a request for ah auth if ah_req is PREF_REQUIRED. 1238 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED 1239 */ 1240 1241 use_ah = act->ipa_apply.ipp_use_ah; 1242 use_esp = act->ipa_apply.ipp_use_esp; 1243 use_espa = act->ipa_apply.ipp_use_espa; 1244 auth_alg = act->ipa_apply.ipp_auth_alg; 1245 eauth_alg = act->ipa_apply.ipp_esp_auth_alg; 1246 encr_alg = act->ipa_apply.ipp_encr_alg; 1247 1248 wild_auth = use_ah && (auth_alg == 0); 1249 wild_eauth = use_espa && (eauth_alg == 0); 1250 wild_encr = use_esp && (encr_alg == 0); 1251 1252 action_count = 1; 1253 auth_min = auth_max = auth_alg; 1254 eauth_min = eauth_max = eauth_alg; 1255 encr_min = encr_max = encr_alg; 1256 1257 /* 1258 * set up for explosion.. for each dimension, expand output 1259 * size by the explosion factor. 1260 * 1261 * Don't include the "any" algorithms, if defined, as no 1262 * kernel policies should be set for these algorithms. 1263 */ 1264 1265 #define SET_EXP_MINMAX(type, wild, alg, min, max, ipss) \ 1266 if (wild) { \ 1267 int nalgs = ipss->ipsec_nalgs[type]; \ 1268 if (ipss->ipsec_alglists[type][alg] != NULL) \ 1269 nalgs--; \ 1270 action_count *= nalgs; \ 1271 min = 0; \ 1272 max = ipss->ipsec_nalgs[type] - 1; \ 1273 } 1274 1275 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE, 1276 auth_min, auth_max, ipss); 1277 SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE, 1278 eauth_min, eauth_max, ipss); 1279 SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE, 1280 encr_min, encr_max, ipss); 1281 1282 #undef SET_EXP_MINMAX 1283 1284 /* 1285 * ok, allocate the whole mess.. 1286 */ 1287 1288 outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP); 1289 if (outact == NULL) 1290 return (NULL); 1291 1292 /* 1293 * Now compute all combinations. Note that non-wildcarded 1294 * dimensions just get a single value from auth_min, while 1295 * wildcarded dimensions indirect through the sortlist. 1296 * 1297 * We do encryption outermost since, at this time, there's 1298 * greater difference in security and performance between 1299 * encryption algorithms vs. authentication algorithms. 1300 */ 1301 1302 ai = 0; 1303 1304 #define WHICH_ALG(type, wild, idx, ipss) \ 1305 ((wild)?(ipss->ipsec_sortlist[type][idx]):(idx)) 1306 1307 for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) { 1308 encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss); 1309 if (wild_encr && encr_alg == SADB_EALG_NONE) 1310 continue; 1311 for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) { 1312 auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth, 1313 auth_idx, ipss); 1314 if (wild_auth && auth_alg == SADB_AALG_NONE) 1315 continue; 1316 for (eauth_idx = eauth_min; eauth_idx <= eauth_max; 1317 eauth_idx++) { 1318 eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH, 1319 wild_eauth, eauth_idx, ipss); 1320 if (wild_eauth && eauth_alg == SADB_AALG_NONE) 1321 continue; 1322 1323 ipsec_setup_act(&outact[ai], act, 1324 auth_alg, encr_alg, eauth_alg, ns); 1325 ai++; 1326 } 1327 } 1328 } 1329 1330 #undef WHICH_ALG 1331 1332 ASSERT(ai == action_count); 1333 *nact = action_count; 1334 return (outact); 1335 } 1336 1337 /* 1338 * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t. 1339 */ 1340 static void 1341 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp) 1342 { 1343 bzero(ipp, sizeof (*ipp)); 1344 /* 1345 * ipp_use_* are bitfields. Look at "!!" in the following as a 1346 * "boolean canonicalization" operator. 1347 */ 1348 ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED); 1349 ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED); 1350 ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg); 1351 ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED); 1352 ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) & 1353 IPSEC_PREF_UNIQUE); 1354 ipp->ipp_encr_alg = req->ipsr_esp_alg; 1355 /* 1356 * SADB_AALG_ANY is a placeholder to distinguish "any" from 1357 * "none" above. If auth is required, as determined above, 1358 * SADB_AALG_ANY becomes 0, which is the representation 1359 * of "any" and "none" in PF_KEY v2. 1360 */ 1361 ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ? 1362 req->ipsr_auth_alg : 0; 1363 ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ? 1364 req->ipsr_esp_auth_alg : 0; 1365 } 1366 1367 /* 1368 * Extract a new-style action from a request. 1369 */ 1370 void 1371 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp, 1372 netstack_t *ns) 1373 { 1374 struct ipsec_act act; 1375 1376 bzero(&act, sizeof (act)); 1377 if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) && 1378 (req->ipsr_esp_req & IPSEC_PREF_NEVER)) { 1379 act.ipa_type = IPSEC_ACT_BYPASS; 1380 } else { 1381 act.ipa_type = IPSEC_ACT_APPLY; 1382 ipsec_prot_from_req(req, &act.ipa_apply); 1383 } 1384 *actp = ipsec_act_wildcard_expand(&act, nactp, ns); 1385 } 1386 1387 /* 1388 * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat). 1389 * We assume caller has already zero'ed *req for us. 1390 */ 1391 static int 1392 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req) 1393 { 1394 req->ipsr_esp_alg = ipp->ipp_encr_alg; 1395 req->ipsr_auth_alg = ipp->ipp_auth_alg; 1396 req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg; 1397 1398 if (ipp->ipp_use_unique) { 1399 req->ipsr_ah_req |= IPSEC_PREF_UNIQUE; 1400 req->ipsr_esp_req |= IPSEC_PREF_UNIQUE; 1401 } 1402 if (ipp->ipp_use_se) 1403 req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED; 1404 if (ipp->ipp_use_ah) 1405 req->ipsr_ah_req |= IPSEC_PREF_REQUIRED; 1406 if (ipp->ipp_use_esp) 1407 req->ipsr_esp_req |= IPSEC_PREF_REQUIRED; 1408 return (sizeof (*req)); 1409 } 1410 1411 /* 1412 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1413 * We assume caller has already zero'ed *req for us. 1414 */ 1415 static int 1416 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req) 1417 { 1418 switch (ap->ipa_act.ipa_type) { 1419 case IPSEC_ACT_BYPASS: 1420 req->ipsr_ah_req = IPSEC_PREF_NEVER; 1421 req->ipsr_esp_req = IPSEC_PREF_NEVER; 1422 return (sizeof (*req)); 1423 case IPSEC_ACT_APPLY: 1424 return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req)); 1425 } 1426 return (sizeof (*req)); 1427 } 1428 1429 /* 1430 * Convert a new-style action back to an ipsec_req_t (more backwards compat). 1431 * We assume caller has already zero'ed *req for us. 1432 */ 1433 int 1434 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af) 1435 { 1436 ipsec_policy_t *p; 1437 1438 /* 1439 * FULL-PERSOCK: consult hash table, too? 1440 */ 1441 for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af]; 1442 p != NULL; 1443 p = p->ipsp_hash.hash_next) { 1444 if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0) 1445 return (ipsec_req_from_act(p->ipsp_act, req)); 1446 } 1447 return (sizeof (*req)); 1448 } 1449 1450 /* 1451 * Based on per-socket or latched policy, convert to an appropriate 1452 * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can 1453 * be tail-called from ip. 1454 */ 1455 int 1456 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af) 1457 { 1458 ipsec_latch_t *ipl; 1459 int rv = sizeof (ipsec_req_t); 1460 1461 bzero(req, sizeof (*req)); 1462 1463 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1464 ipl = connp->conn_latch; 1465 1466 /* 1467 * Find appropriate policy. First choice is latched action; 1468 * failing that, see latched policy; failing that, 1469 * look at configured policy. 1470 */ 1471 if (ipl != NULL) { 1472 if (connp->conn_latch_in_action != NULL) { 1473 rv = ipsec_req_from_act(connp->conn_latch_in_action, 1474 req); 1475 goto done; 1476 } 1477 if (connp->conn_latch_in_policy != NULL) { 1478 rv = ipsec_req_from_act( 1479 connp->conn_latch_in_policy->ipsp_act, req); 1480 goto done; 1481 } 1482 } 1483 if (connp->conn_policy != NULL) 1484 rv = ipsec_req_from_head(connp->conn_policy, req, af); 1485 done: 1486 return (rv); 1487 } 1488 1489 void 1490 ipsec_actvec_free(ipsec_act_t *act, uint_t nact) 1491 { 1492 kmem_free(act, nact * sizeof (*act)); 1493 } 1494 1495 /* 1496 * Consumes a reference to ipsp. 1497 */ 1498 static mblk_t * 1499 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira, 1500 ipsec_policy_t *ipsp) 1501 { 1502 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) 1503 return (data_mp); 1504 1505 ASSERT(ira->ira_flags & IRAF_LOOPBACK); 1506 1507 IPPOL_REFRELE(ipsp); 1508 1509 /* 1510 * We should do an actual policy check here. Revisit this 1511 * when we revisit the IPsec API. (And pass a conn_t in when we 1512 * get there.) 1513 */ 1514 1515 return (data_mp); 1516 } 1517 1518 /* 1519 * Check that packet's inbound ports & proto match the selectors 1520 * expected by the SAs it traversed on the way in. 1521 */ 1522 static boolean_t 1523 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason, 1524 kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns) 1525 { 1526 uint64_t ah_mask, esp_mask; 1527 ipsa_t *ah_assoc; 1528 ipsa_t *esp_assoc; 1529 ipsec_stack_t *ipss = ns->netstack_ipsec; 1530 1531 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1532 ASSERT(!(ira->ira_flags & IRAF_LOOPBACK)); 1533 1534 ah_assoc = ira->ira_ipsec_ah_sa; 1535 esp_assoc = ira->ira_ipsec_esp_sa; 1536 ASSERT((ah_assoc != NULL) || (esp_assoc != NULL)); 1537 1538 ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0; 1539 esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0; 1540 1541 if ((ah_mask == 0) && (esp_mask == 0)) 1542 return (B_TRUE); 1543 1544 /* 1545 * The pkt_unique check will also check for tunnel mode on the SA 1546 * vs. the tunneled_packet boolean. "Be liberal in what you receive" 1547 * should not apply in this case. ;) 1548 */ 1549 1550 if (ah_mask != 0 && 1551 ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) { 1552 *reason = "AH inner header mismatch"; 1553 *counter = DROPPER(ipss, ipds_spd_ah_innermismatch); 1554 return (B_FALSE); 1555 } 1556 if (esp_mask != 0 && 1557 esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) { 1558 *reason = "ESP inner header mismatch"; 1559 *counter = DROPPER(ipss, ipds_spd_esp_innermismatch); 1560 return (B_FALSE); 1561 } 1562 return (B_TRUE); 1563 } 1564 1565 static boolean_t 1566 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap, 1567 ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter, 1568 netstack_t *ns) 1569 { 1570 boolean_t ret = B_TRUE; 1571 ipsec_prot_t *ipp; 1572 ipsa_t *ah_assoc; 1573 ipsa_t *esp_assoc; 1574 boolean_t decaps; 1575 ipsec_stack_t *ipss = ns->netstack_ipsec; 1576 1577 ASSERT((ipha == NULL && ip6h != NULL) || 1578 (ip6h == NULL && ipha != NULL)); 1579 1580 if (ira->ira_flags & IRAF_LOOPBACK) { 1581 /* 1582 * Besides accepting pointer-equivalent actions, we also 1583 * accept any ICMP errors we generated for ourselves, 1584 * regardless of policy. If we do not wish to make this 1585 * assumption in the future, check here, and where 1586 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c. 1587 */ 1588 if (ap == ira->ira_ipsec_action || 1589 (ira->ira_flags & IRAF_TRUSTED_ICMP)) 1590 return (B_TRUE); 1591 1592 /* Deep compare necessary here?? */ 1593 *counter = DROPPER(ipss, ipds_spd_loopback_mismatch); 1594 *reason = "loopback policy mismatch"; 1595 return (B_FALSE); 1596 } 1597 ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP)); 1598 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1599 1600 ah_assoc = ira->ira_ipsec_ah_sa; 1601 esp_assoc = ira->ira_ipsec_esp_sa; 1602 1603 decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS); 1604 1605 switch (ap->ipa_act.ipa_type) { 1606 case IPSEC_ACT_DISCARD: 1607 case IPSEC_ACT_REJECT: 1608 /* Should "fail hard" */ 1609 *counter = DROPPER(ipss, ipds_spd_explicit); 1610 *reason = "blocked by policy"; 1611 return (B_FALSE); 1612 1613 case IPSEC_ACT_BYPASS: 1614 case IPSEC_ACT_CLEAR: 1615 *counter = DROPPER(ipss, ipds_spd_got_secure); 1616 *reason = "expected clear, got protected"; 1617 return (B_FALSE); 1618 1619 case IPSEC_ACT_APPLY: 1620 ipp = &ap->ipa_act.ipa_apply; 1621 /* 1622 * As of now we do the simple checks of whether 1623 * the datagram has gone through the required IPSEC 1624 * protocol constraints or not. We might have more 1625 * in the future like sensitive levels, key bits, etc. 1626 * If it fails the constraints, check whether we would 1627 * have accepted this if it had come in clear. 1628 */ 1629 if (ipp->ipp_use_ah) { 1630 if (ah_assoc == NULL) { 1631 ret = ipsec_inbound_accept_clear(mp, ipha, 1632 ip6h); 1633 *counter = DROPPER(ipss, ipds_spd_got_clear); 1634 *reason = "unprotected not accepted"; 1635 break; 1636 } 1637 ASSERT(ah_assoc != NULL); 1638 ASSERT(ipp->ipp_auth_alg != 0); 1639 1640 if (ah_assoc->ipsa_auth_alg != 1641 ipp->ipp_auth_alg) { 1642 *counter = DROPPER(ipss, ipds_spd_bad_ahalg); 1643 *reason = "unacceptable ah alg"; 1644 ret = B_FALSE; 1645 break; 1646 } 1647 } else if (ah_assoc != NULL) { 1648 /* 1649 * Don't allow this. Check IPSEC NOTE above 1650 * ip_fanout_proto(). 1651 */ 1652 *counter = DROPPER(ipss, ipds_spd_got_ah); 1653 *reason = "unexpected AH"; 1654 ret = B_FALSE; 1655 break; 1656 } 1657 if (ipp->ipp_use_esp) { 1658 if (esp_assoc == NULL) { 1659 ret = ipsec_inbound_accept_clear(mp, ipha, 1660 ip6h); 1661 *counter = DROPPER(ipss, ipds_spd_got_clear); 1662 *reason = "unprotected not accepted"; 1663 break; 1664 } 1665 ASSERT(esp_assoc != NULL); 1666 ASSERT(ipp->ipp_encr_alg != 0); 1667 1668 if (esp_assoc->ipsa_encr_alg != 1669 ipp->ipp_encr_alg) { 1670 *counter = DROPPER(ipss, ipds_spd_bad_espealg); 1671 *reason = "unacceptable esp alg"; 1672 ret = B_FALSE; 1673 break; 1674 } 1675 /* 1676 * If the client does not need authentication, 1677 * we don't verify the alogrithm. 1678 */ 1679 if (ipp->ipp_use_espa) { 1680 if (esp_assoc->ipsa_auth_alg != 1681 ipp->ipp_esp_auth_alg) { 1682 *counter = DROPPER(ipss, 1683 ipds_spd_bad_espaalg); 1684 *reason = "unacceptable esp auth alg"; 1685 ret = B_FALSE; 1686 break; 1687 } 1688 } 1689 } else if (esp_assoc != NULL) { 1690 /* 1691 * Don't allow this. Check IPSEC NOTE above 1692 * ip_fanout_proto(). 1693 */ 1694 *counter = DROPPER(ipss, ipds_spd_got_esp); 1695 *reason = "unexpected ESP"; 1696 ret = B_FALSE; 1697 break; 1698 } 1699 if (ipp->ipp_use_se) { 1700 if (!decaps) { 1701 ret = ipsec_inbound_accept_clear(mp, ipha, 1702 ip6h); 1703 if (!ret) { 1704 /* XXX mutant? */ 1705 *counter = DROPPER(ipss, 1706 ipds_spd_bad_selfencap); 1707 *reason = "self encap not found"; 1708 break; 1709 } 1710 } 1711 } else if (decaps) { 1712 /* 1713 * XXX If the packet comes in tunneled and the 1714 * recipient does not expect it to be tunneled, it 1715 * is okay. But we drop to be consistent with the 1716 * other cases. 1717 */ 1718 *counter = DROPPER(ipss, ipds_spd_got_selfencap); 1719 *reason = "unexpected self encap"; 1720 ret = B_FALSE; 1721 break; 1722 } 1723 if (ira->ira_ipsec_action != NULL) { 1724 /* 1725 * This can happen if we do a double policy-check on 1726 * a packet 1727 * XXX XXX should fix this case! 1728 */ 1729 IPACT_REFRELE(ira->ira_ipsec_action); 1730 } 1731 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1732 ASSERT(ira->ira_ipsec_action == NULL); 1733 IPACT_REFHOLD(ap); 1734 ira->ira_ipsec_action = ap; 1735 break; /* from switch */ 1736 } 1737 return (ret); 1738 } 1739 1740 static boolean_t 1741 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa) 1742 { 1743 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1744 return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) && 1745 ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid); 1746 } 1747 1748 /* 1749 * Takes a latched conn and an inbound packet and returns a unique_id suitable 1750 * for SA comparisons. Most of the time we will copy from the conn_t, but 1751 * there are cases when the conn_t is latched but it has wildcard selectors, 1752 * and then we need to fallback to scooping them out of the packet. 1753 * 1754 * Assume we'll never have 0 with a conn_t present, so use 0 as a failure. We 1755 * can get away with this because we only have non-zero ports/proto for 1756 * latched conn_ts. 1757 * 1758 * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough 1759 * to not be a nice macro. 1760 */ 1761 static uint64_t 1762 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h) 1763 { 1764 ipsec_selector_t sel; 1765 uint8_t ulp = connp->conn_proto; 1766 1767 ASSERT(connp->conn_latch_in_policy != NULL); 1768 1769 if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) && 1770 (connp->conn_fport == 0 || connp->conn_lport == 0)) { 1771 /* Slow path - we gotta grab from the packet. */ 1772 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 1773 SEL_NONE) != SELRET_SUCCESS) { 1774 /* Failure -> have caller free packet with ENOMEM. */ 1775 return (0); 1776 } 1777 return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port, 1778 sel.ips_protocol, 0)); 1779 } 1780 1781 #ifdef DEBUG_NOT_UNTIL_6478464 1782 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) == 1783 SELRET_SUCCESS) { 1784 ASSERT(sel.ips_local_port == connp->conn_lport); 1785 ASSERT(sel.ips_remote_port == connp->conn_fport); 1786 ASSERT(sel.ips_protocol == connp->conn_proto); 1787 } 1788 ASSERT(connp->conn_proto != 0); 1789 #endif 1790 1791 return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0)); 1792 } 1793 1794 /* 1795 * Called to check policy on a latched connection. 1796 * Note that we don't dereference conn_latch or conn_ihere since the conn might 1797 * be closing. The caller passes a held ipsec_latch_t instead. 1798 */ 1799 static boolean_t 1800 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl, 1801 ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason, 1802 kstat_named_t **counter, conn_t *connp, netstack_t *ns) 1803 { 1804 ipsec_stack_t *ipss = ns->netstack_ipsec; 1805 1806 ASSERT(ipl->ipl_ids_latched == B_TRUE); 1807 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1808 1809 if (!(ira->ira_flags & IRAF_LOOPBACK)) { 1810 /* 1811 * Over loopback, there aren't real security associations, 1812 * so there are neither identities nor "unique" values 1813 * for us to check the packet against. 1814 */ 1815 if (ira->ira_ipsec_ah_sa != NULL) { 1816 if (!spd_match_inbound_ids(ipl, 1817 ira->ira_ipsec_ah_sa)) { 1818 *counter = DROPPER(ipss, ipds_spd_ah_badid); 1819 *reason = "AH identity mismatch"; 1820 return (B_FALSE); 1821 } 1822 } 1823 1824 if (ira->ira_ipsec_esp_sa != NULL) { 1825 if (!spd_match_inbound_ids(ipl, 1826 ira->ira_ipsec_esp_sa)) { 1827 *counter = DROPPER(ipss, ipds_spd_esp_badid); 1828 *reason = "ESP identity mismatch"; 1829 return (B_FALSE); 1830 } 1831 } 1832 1833 /* 1834 * Can fudge pkt_unique from connp because we're latched. 1835 * In DEBUG kernels (see conn_to_unique()'s implementation), 1836 * verify this even if it REALLY slows things down. 1837 */ 1838 if (!ipsec_check_ipsecin_unique(ira, reason, counter, 1839 conn_to_unique(connp, mp, ipha, ip6h), ns)) { 1840 return (B_FALSE); 1841 } 1842 } 1843 return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason, 1844 counter, ns)); 1845 } 1846 1847 /* 1848 * Check to see whether this secured datagram meets the policy 1849 * constraints specified in ipsp. 1850 * 1851 * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy. 1852 * 1853 * Consumes a reference to ipsp. 1854 * Returns the mblk if ok. 1855 */ 1856 static mblk_t * 1857 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp, 1858 ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira, 1859 netstack_t *ns) 1860 { 1861 ipsec_action_t *ap; 1862 const char *reason = "no policy actions found"; 1863 ip_stack_t *ipst = ns->netstack_ip; 1864 ipsec_stack_t *ipss = ns->netstack_ipsec; 1865 kstat_named_t *counter; 1866 1867 counter = DROPPER(ipss, ipds_spd_got_secure); 1868 1869 ASSERT(ipsp != NULL); 1870 1871 ASSERT((ipha == NULL && ip6h != NULL) || 1872 (ip6h == NULL && ipha != NULL)); 1873 1874 if (ira->ira_flags & IRAF_LOOPBACK) 1875 return (ipsec_check_loopback_policy(data_mp, ira, ipsp)); 1876 1877 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 1878 1879 if (ira->ira_ipsec_action != NULL) { 1880 /* 1881 * this can happen if we do a double policy-check on a packet 1882 * Would be nice to be able to delete this test.. 1883 */ 1884 IPACT_REFRELE(ira->ira_ipsec_action); 1885 } 1886 ASSERT(ira->ira_ipsec_action == NULL); 1887 1888 if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) { 1889 reason = "inbound AH and ESP identities differ"; 1890 counter = DROPPER(ipss, ipds_spd_ahesp_diffid); 1891 goto drop; 1892 } 1893 1894 if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique, 1895 ns)) 1896 goto drop; 1897 1898 /* 1899 * Ok, now loop through the possible actions and see if any 1900 * of them work for us. 1901 */ 1902 1903 for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) { 1904 if (ipsec_check_ipsecin_action(ira, data_mp, ap, 1905 ipha, ip6h, &reason, &counter, ns)) { 1906 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 1907 IPPOL_REFRELE(ipsp); 1908 return (data_mp); 1909 } 1910 } 1911 drop: 1912 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 1913 "ipsec inbound policy mismatch: %s, packet dropped\n", 1914 reason); 1915 IPPOL_REFRELE(ipsp); 1916 ASSERT(ira->ira_ipsec_action == NULL); 1917 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 1918 ip_drop_packet(data_mp, B_TRUE, NULL, counter, 1919 &ipss->ipsec_spd_dropper); 1920 return (NULL); 1921 } 1922 1923 /* 1924 * sleazy prefix-length-based compare. 1925 * another inlining candidate.. 1926 */ 1927 boolean_t 1928 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p) 1929 { 1930 int offset = pfxlen>>3; 1931 int bitsleft = pfxlen & 7; 1932 uint8_t *addr2 = (uint8_t *)addr2p; 1933 1934 /* 1935 * and there was much evil.. 1936 * XXX should inline-expand the bcmp here and do this 32 bits 1937 * or 64 bits at a time.. 1938 */ 1939 return ((bcmp(addr1, addr2, offset) == 0) && 1940 ((bitsleft == 0) || 1941 (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0))); 1942 } 1943 1944 static ipsec_policy_t * 1945 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain, 1946 ipsec_selector_t *sel, boolean_t is_icmp_inv_acq) 1947 { 1948 ipsec_selkey_t *isel; 1949 ipsec_policy_t *p; 1950 int bpri = best ? best->ipsp_prio : 0; 1951 1952 for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) { 1953 uint32_t valid; 1954 1955 if (p->ipsp_prio <= bpri) 1956 continue; 1957 isel = &p->ipsp_sel->ipsl_key; 1958 valid = isel->ipsl_valid; 1959 1960 if ((valid & IPSL_PROTOCOL) && 1961 (isel->ipsl_proto != sel->ips_protocol)) 1962 continue; 1963 1964 if ((valid & IPSL_REMOTE_ADDR) && 1965 !ip_addr_match((uint8_t *)&isel->ipsl_remote, 1966 isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6)) 1967 continue; 1968 1969 if ((valid & IPSL_LOCAL_ADDR) && 1970 !ip_addr_match((uint8_t *)&isel->ipsl_local, 1971 isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6)) 1972 continue; 1973 1974 if ((valid & IPSL_REMOTE_PORT) && 1975 isel->ipsl_rport != sel->ips_remote_port) 1976 continue; 1977 1978 if ((valid & IPSL_LOCAL_PORT) && 1979 isel->ipsl_lport != sel->ips_local_port) 1980 continue; 1981 1982 if (!is_icmp_inv_acq) { 1983 if ((valid & IPSL_ICMP_TYPE) && 1984 (isel->ipsl_icmp_type > sel->ips_icmp_type || 1985 isel->ipsl_icmp_type_end < sel->ips_icmp_type)) { 1986 continue; 1987 } 1988 1989 if ((valid & IPSL_ICMP_CODE) && 1990 (isel->ipsl_icmp_code > sel->ips_icmp_code || 1991 isel->ipsl_icmp_code_end < 1992 sel->ips_icmp_code)) { 1993 continue; 1994 } 1995 } else { 1996 /* 1997 * special case for icmp inverse acquire 1998 * we only want policies that aren't drop/pass 1999 */ 2000 if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY) 2001 continue; 2002 } 2003 2004 /* we matched all the packet-port-field selectors! */ 2005 best = p; 2006 bpri = p->ipsp_prio; 2007 } 2008 2009 return (best); 2010 } 2011 2012 /* 2013 * Try to find and return the best policy entry under a given policy 2014 * root for a given set of selectors; the first parameter "best" is 2015 * the current best policy so far. If "best" is non-null, we have a 2016 * reference to it. We return a reference to a policy; if that policy 2017 * is not the original "best", we need to release that reference 2018 * before returning. 2019 */ 2020 ipsec_policy_t * 2021 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head, 2022 int direction, ipsec_selector_t *sel) 2023 { 2024 ipsec_policy_t *curbest; 2025 ipsec_policy_root_t *root; 2026 uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq; 2027 int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6; 2028 2029 curbest = best; 2030 root = &head->iph_root[direction]; 2031 2032 #ifdef DEBUG 2033 if (is_icmp_inv_acq) { 2034 if (sel->ips_isv4) { 2035 if (sel->ips_protocol != IPPROTO_ICMP) { 2036 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2037 " expecting icmp, got %d", 2038 sel->ips_protocol); 2039 } 2040 } else { 2041 if (sel->ips_protocol != IPPROTO_ICMPV6) { 2042 cmn_err(CE_WARN, "ipsec_find_policy_head:" 2043 " expecting icmpv6, got %d", 2044 sel->ips_protocol); 2045 } 2046 } 2047 } 2048 #endif 2049 2050 rw_enter(&head->iph_lock, RW_READER); 2051 2052 if (root->ipr_nchains > 0) { 2053 curbest = ipsec_find_policy_chain(curbest, 2054 root->ipr_hash[selector_hash(sel, root)].hash_head, sel, 2055 is_icmp_inv_acq); 2056 } 2057 curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel, 2058 is_icmp_inv_acq); 2059 2060 /* 2061 * Adjust reference counts if we found anything new. 2062 */ 2063 if (curbest != best) { 2064 ASSERT(curbest != NULL); 2065 IPPOL_REFHOLD(curbest); 2066 2067 if (best != NULL) { 2068 IPPOL_REFRELE(best); 2069 } 2070 } 2071 2072 rw_exit(&head->iph_lock); 2073 2074 return (curbest); 2075 } 2076 2077 /* 2078 * Find the best system policy (either global or per-interface) which 2079 * applies to the given selector; look in all the relevant policy roots 2080 * to figure out which policy wins. 2081 * 2082 * Returns a reference to a policy; caller must release this 2083 * reference when done. 2084 */ 2085 ipsec_policy_t * 2086 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel, 2087 netstack_t *ns) 2088 { 2089 ipsec_policy_t *p; 2090 ipsec_stack_t *ipss = ns->netstack_ipsec; 2091 2092 p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy, 2093 direction, sel); 2094 if ((connp != NULL) && (connp->conn_policy != NULL)) { 2095 p = ipsec_find_policy_head(p, connp->conn_policy, 2096 direction, sel); 2097 } 2098 2099 return (p); 2100 } 2101 2102 /* 2103 * Check with global policy and see whether this inbound 2104 * packet meets the policy constraints. 2105 * 2106 * Locate appropriate policy from global policy, supplemented by the 2107 * conn's configured and/or cached policy if the conn is supplied. 2108 * 2109 * Dispatch to ipsec_check_ipsecin_policy if we have policy and an 2110 * encrypted packet to see if they match. 2111 * 2112 * Otherwise, see if the policy allows cleartext; if not, drop it on the 2113 * floor. 2114 */ 2115 mblk_t * 2116 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp, 2117 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns) 2118 { 2119 ipsec_policy_t *p; 2120 ipsec_selector_t sel; 2121 boolean_t policy_present; 2122 kstat_named_t *counter; 2123 uint64_t pkt_unique; 2124 ip_stack_t *ipst = ns->netstack_ip; 2125 ipsec_stack_t *ipss = ns->netstack_ipsec; 2126 2127 sel.ips_is_icmp_inv_acq = 0; 2128 2129 ASSERT((ipha == NULL && ip6h != NULL) || 2130 (ip6h == NULL && ipha != NULL)); 2131 2132 if (ipha != NULL) 2133 policy_present = ipss->ipsec_inbound_v4_policy_present; 2134 else 2135 policy_present = ipss->ipsec_inbound_v6_policy_present; 2136 2137 if (!policy_present && connp == NULL) { 2138 /* 2139 * No global policy and no per-socket policy; 2140 * just pass it back (but we shouldn't get here in that case) 2141 */ 2142 return (data_mp); 2143 } 2144 2145 /* 2146 * If we have cached policy, use it. 2147 * Otherwise consult system policy. 2148 */ 2149 if ((connp != NULL) && (connp->conn_latch != NULL)) { 2150 p = connp->conn_latch_in_policy; 2151 if (p != NULL) { 2152 IPPOL_REFHOLD(p); 2153 } 2154 /* 2155 * Fudge sel for UNIQUE_ID setting below. 2156 */ 2157 pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h); 2158 } else { 2159 /* Initialize the ports in the selector */ 2160 if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, 2161 SEL_NONE) == SELRET_NOMEM) { 2162 /* 2163 * Technically not a policy mismatch, but it is 2164 * an internal failure. 2165 */ 2166 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2167 "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns); 2168 counter = DROPPER(ipss, ipds_spd_nomem); 2169 goto fail; 2170 } 2171 2172 /* 2173 * Find the policy which best applies. 2174 * 2175 * If we find global policy, we should look at both 2176 * local policy and global policy and see which is 2177 * stronger and match accordingly. 2178 * 2179 * If we don't find a global policy, check with 2180 * local policy alone. 2181 */ 2182 2183 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns); 2184 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 2185 sel.ips_local_port, sel.ips_protocol, 0); 2186 } 2187 2188 if (p == NULL) { 2189 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 2190 /* 2191 * We have no policy; default to succeeding. 2192 * XXX paranoid system design doesn't do this. 2193 */ 2194 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2195 return (data_mp); 2196 } else { 2197 counter = DROPPER(ipss, ipds_spd_got_secure); 2198 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 2199 "ipsec_check_global_policy", ipha, ip6h, B_TRUE, 2200 ns); 2201 goto fail; 2202 } 2203 } 2204 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2205 return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h, 2206 pkt_unique, ira, ns)); 2207 } 2208 if (p->ipsp_act->ipa_allow_clear) { 2209 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2210 IPPOL_REFRELE(p); 2211 return (data_mp); 2212 } 2213 IPPOL_REFRELE(p); 2214 /* 2215 * If we reach here, we will drop the packet because it failed the 2216 * global policy check because the packet was cleartext, and it 2217 * should not have been. 2218 */ 2219 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 2220 "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns); 2221 counter = DROPPER(ipss, ipds_spd_got_clear); 2222 2223 fail: 2224 ip_drop_packet(data_mp, B_TRUE, NULL, counter, 2225 &ipss->ipsec_spd_dropper); 2226 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2227 return (NULL); 2228 } 2229 2230 /* 2231 * We check whether an inbound datagram is a valid one 2232 * to accept in clear. If it is secure, it is the job 2233 * of IPSEC to log information appropriately if it 2234 * suspects that it may not be the real one. 2235 * 2236 * It is called only while fanning out to the ULP 2237 * where ULP accepts only secure data and the incoming 2238 * is clear. Usually we never accept clear datagrams in 2239 * such cases. ICMP is the only exception. 2240 * 2241 * NOTE : We don't call this function if the client (ULP) 2242 * is willing to accept things in clear. 2243 */ 2244 boolean_t 2245 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h) 2246 { 2247 ushort_t iph_hdr_length; 2248 icmph_t *icmph; 2249 icmp6_t *icmp6; 2250 uint8_t *nexthdrp; 2251 2252 ASSERT((ipha != NULL && ip6h == NULL) || 2253 (ipha == NULL && ip6h != NULL)); 2254 2255 if (ip6h != NULL) { 2256 iph_hdr_length = ip_hdr_length_v6(mp, ip6h); 2257 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 2258 &nexthdrp)) { 2259 return (B_FALSE); 2260 } 2261 if (*nexthdrp != IPPROTO_ICMPV6) 2262 return (B_FALSE); 2263 icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]); 2264 /* Match IPv6 ICMP policy as closely as IPv4 as possible. */ 2265 switch (icmp6->icmp6_type) { 2266 case ICMP6_PARAM_PROB: 2267 /* Corresponds to port/proto unreach in IPv4. */ 2268 case ICMP6_ECHO_REQUEST: 2269 /* Just like IPv4. */ 2270 return (B_FALSE); 2271 2272 case MLD_LISTENER_QUERY: 2273 case MLD_LISTENER_REPORT: 2274 case MLD_LISTENER_REDUCTION: 2275 /* 2276 * XXX Seperate NDD in IPv4 what about here? 2277 * Plus, mcast is important to ND. 2278 */ 2279 case ICMP6_DST_UNREACH: 2280 /* Corresponds to HOST/NET unreachable in IPv4. */ 2281 case ICMP6_PACKET_TOO_BIG: 2282 case ICMP6_ECHO_REPLY: 2283 /* These are trusted in IPv4. */ 2284 case ND_ROUTER_SOLICIT: 2285 case ND_ROUTER_ADVERT: 2286 case ND_NEIGHBOR_SOLICIT: 2287 case ND_NEIGHBOR_ADVERT: 2288 case ND_REDIRECT: 2289 /* Trust ND messages for now. */ 2290 case ICMP6_TIME_EXCEEDED: 2291 default: 2292 return (B_TRUE); 2293 } 2294 } else { 2295 /* 2296 * If it is not ICMP, fail this request. 2297 */ 2298 if (ipha->ipha_protocol != IPPROTO_ICMP) { 2299 #ifdef FRAGCACHE_DEBUG 2300 cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n", 2301 ipha->ipha_protocol); 2302 #endif 2303 return (B_FALSE); 2304 } 2305 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2306 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2307 /* 2308 * It is an insecure icmp message. Check to see whether we are 2309 * willing to accept this one. 2310 */ 2311 2312 switch (icmph->icmph_type) { 2313 case ICMP_ECHO_REPLY: 2314 case ICMP_TIME_STAMP_REPLY: 2315 case ICMP_INFO_REPLY: 2316 case ICMP_ROUTER_ADVERTISEMENT: 2317 /* 2318 * We should not encourage clear replies if this 2319 * client expects secure. If somebody is replying 2320 * in clear some mailicious user watching both the 2321 * request and reply, can do chosen-plain-text attacks. 2322 * With global policy we might be just expecting secure 2323 * but sending out clear. We don't know what the right 2324 * thing is. We can't do much here as we can't control 2325 * the sender here. Till we are sure of what to do, 2326 * accept them. 2327 */ 2328 return (B_TRUE); 2329 case ICMP_ECHO_REQUEST: 2330 case ICMP_TIME_STAMP_REQUEST: 2331 case ICMP_INFO_REQUEST: 2332 case ICMP_ADDRESS_MASK_REQUEST: 2333 case ICMP_ROUTER_SOLICITATION: 2334 case ICMP_ADDRESS_MASK_REPLY: 2335 /* 2336 * Don't accept this as somebody could be sending 2337 * us plain text to get encrypted data. If we reply, 2338 * it will lead to chosen plain text attack. 2339 */ 2340 return (B_FALSE); 2341 case ICMP_DEST_UNREACHABLE: 2342 switch (icmph->icmph_code) { 2343 case ICMP_FRAGMENTATION_NEEDED: 2344 /* 2345 * Be in sync with icmp_inbound, where we have 2346 * already set dce_pmtu 2347 */ 2348 #ifdef FRAGCACHE_DEBUG 2349 cmn_err(CE_WARN, "ICMP frag needed\n"); 2350 #endif 2351 return (B_TRUE); 2352 case ICMP_HOST_UNREACHABLE: 2353 case ICMP_NET_UNREACHABLE: 2354 /* 2355 * By accepting, we could reset a connection. 2356 * How do we solve the problem of some 2357 * intermediate router sending in-secure ICMP 2358 * messages ? 2359 */ 2360 return (B_TRUE); 2361 case ICMP_PORT_UNREACHABLE: 2362 case ICMP_PROTOCOL_UNREACHABLE: 2363 default : 2364 return (B_FALSE); 2365 } 2366 case ICMP_SOURCE_QUENCH: 2367 /* 2368 * If this is an attack, TCP will slow start 2369 * because of this. Is it very harmful ? 2370 */ 2371 return (B_TRUE); 2372 case ICMP_PARAM_PROBLEM: 2373 return (B_FALSE); 2374 case ICMP_TIME_EXCEEDED: 2375 return (B_TRUE); 2376 case ICMP_REDIRECT: 2377 return (B_FALSE); 2378 default : 2379 return (B_FALSE); 2380 } 2381 } 2382 } 2383 2384 void 2385 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote) 2386 { 2387 mutex_enter(&ipl->ipl_lock); 2388 2389 if (ipl->ipl_ids_latched) { 2390 /* I lost, someone else got here before me */ 2391 mutex_exit(&ipl->ipl_lock); 2392 return; 2393 } 2394 2395 if (local != NULL) 2396 IPSID_REFHOLD(local); 2397 if (remote != NULL) 2398 IPSID_REFHOLD(remote); 2399 2400 ipl->ipl_local_cid = local; 2401 ipl->ipl_remote_cid = remote; 2402 ipl->ipl_ids_latched = B_TRUE; 2403 mutex_exit(&ipl->ipl_lock); 2404 } 2405 2406 void 2407 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira) 2408 { 2409 ipsa_t *sa; 2410 ipsec_latch_t *ipl = connp->conn_latch; 2411 2412 if (!ipl->ipl_ids_latched) { 2413 ipsid_t *local = NULL; 2414 ipsid_t *remote = NULL; 2415 2416 if (!(ira->ira_flags & IRAF_LOOPBACK)) { 2417 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 2418 if (ira->ira_ipsec_esp_sa != NULL) 2419 sa = ira->ira_ipsec_esp_sa; 2420 else 2421 sa = ira->ira_ipsec_ah_sa; 2422 ASSERT(sa != NULL); 2423 local = sa->ipsa_dst_cid; 2424 remote = sa->ipsa_src_cid; 2425 } 2426 ipsec_latch_ids(ipl, local, remote); 2427 } 2428 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2429 if (connp->conn_latch_in_action != NULL) { 2430 /* 2431 * Previously cached action. This is probably 2432 * harmless, but in DEBUG kernels, check for 2433 * action equality. 2434 * 2435 * Preserve the existing action to preserve latch 2436 * invariance. 2437 */ 2438 ASSERT(connp->conn_latch_in_action == 2439 ira->ira_ipsec_action); 2440 return; 2441 } 2442 connp->conn_latch_in_action = ira->ira_ipsec_action; 2443 IPACT_REFHOLD(connp->conn_latch_in_action); 2444 } 2445 } 2446 2447 /* 2448 * Check whether the policy constraints are met either for an 2449 * inbound datagram; called from IP in numerous places. 2450 * 2451 * Note that this is not a chokepoint for inbound policy checks; 2452 * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy() 2453 */ 2454 mblk_t * 2455 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp, 2456 ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira) 2457 { 2458 boolean_t ret; 2459 ipsec_latch_t *ipl; 2460 ipsec_action_t *ap; 2461 uint64_t unique_id; 2462 ipsec_stack_t *ipss; 2463 ip_stack_t *ipst; 2464 netstack_t *ns; 2465 ipsec_policy_head_t *policy_head; 2466 ipsec_policy_t *p = NULL; 2467 2468 ASSERT(connp != NULL); 2469 ns = connp->conn_netstack; 2470 ipss = ns->netstack_ipsec; 2471 ipst = ns->netstack_ip; 2472 2473 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 2474 /* 2475 * This is the case where the incoming datagram is 2476 * cleartext and we need to see whether this client 2477 * would like to receive such untrustworthy things from 2478 * the wire. 2479 */ 2480 ASSERT(mp != NULL); 2481 2482 mutex_enter(&connp->conn_lock); 2483 if (connp->conn_state_flags & CONN_CONDEMNED) { 2484 mutex_exit(&connp->conn_lock); 2485 ip_drop_packet(mp, B_TRUE, NULL, 2486 DROPPER(ipss, ipds_spd_got_clear), 2487 &ipss->ipsec_spd_dropper); 2488 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2489 return (NULL); 2490 } 2491 if (connp->conn_latch != NULL) { 2492 /* Hold a reference in case the conn is closing */ 2493 p = connp->conn_latch_in_policy; 2494 if (p != NULL) 2495 IPPOL_REFHOLD(p); 2496 mutex_exit(&connp->conn_lock); 2497 /* 2498 * Policy is cached in the conn. 2499 */ 2500 if (p != NULL && !p->ipsp_act->ipa_allow_clear) { 2501 ret = ipsec_inbound_accept_clear(mp, 2502 ipha, ip6h); 2503 if (ret) { 2504 BUMP_MIB(&ipst->ips_ip_mib, 2505 ipsecInSucceeded); 2506 IPPOL_REFRELE(p); 2507 return (mp); 2508 } else { 2509 ipsec_log_policy_failure( 2510 IPSEC_POLICY_MISMATCH, 2511 "ipsec_check_inbound_policy", ipha, 2512 ip6h, B_FALSE, ns); 2513 ip_drop_packet(mp, B_TRUE, NULL, 2514 DROPPER(ipss, ipds_spd_got_clear), 2515 &ipss->ipsec_spd_dropper); 2516 BUMP_MIB(&ipst->ips_ip_mib, 2517 ipsecInFailed); 2518 IPPOL_REFRELE(p); 2519 return (NULL); 2520 } 2521 } else { 2522 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2523 if (p != NULL) 2524 IPPOL_REFRELE(p); 2525 return (mp); 2526 } 2527 } else { 2528 policy_head = connp->conn_policy; 2529 2530 /* Hold a reference in case the conn is closing */ 2531 if (policy_head != NULL) 2532 IPPH_REFHOLD(policy_head); 2533 mutex_exit(&connp->conn_lock); 2534 /* 2535 * As this is a non-hardbound connection we need 2536 * to look at both per-socket policy and global 2537 * policy. 2538 */ 2539 mp = ipsec_check_global_policy(mp, connp, 2540 ipha, ip6h, ira, ns); 2541 if (policy_head != NULL) 2542 IPPH_REFRELE(policy_head, ns); 2543 return (mp); 2544 } 2545 } 2546 2547 mutex_enter(&connp->conn_lock); 2548 /* Connection is closing */ 2549 if (connp->conn_state_flags & CONN_CONDEMNED) { 2550 mutex_exit(&connp->conn_lock); 2551 ip_drop_packet(mp, B_TRUE, NULL, 2552 DROPPER(ipss, ipds_spd_got_clear), 2553 &ipss->ipsec_spd_dropper); 2554 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2555 return (NULL); 2556 } 2557 2558 /* 2559 * Once a connection is latched it remains so for life, the conn_latch 2560 * pointer on the conn has not changed, simply initializing ipl here 2561 * as the earlier initialization was done only in the cleartext case. 2562 */ 2563 if ((ipl = connp->conn_latch) == NULL) { 2564 mblk_t *retmp; 2565 policy_head = connp->conn_policy; 2566 2567 /* Hold a reference in case the conn is closing */ 2568 if (policy_head != NULL) 2569 IPPH_REFHOLD(policy_head); 2570 mutex_exit(&connp->conn_lock); 2571 /* 2572 * We don't have policies cached in the conn 2573 * for this stream. So, look at the global 2574 * policy. It will check against conn or global 2575 * depending on whichever is stronger. 2576 */ 2577 retmp = ipsec_check_global_policy(mp, connp, 2578 ipha, ip6h, ira, ns); 2579 if (policy_head != NULL) 2580 IPPH_REFRELE(policy_head, ns); 2581 return (retmp); 2582 } 2583 2584 IPLATCH_REFHOLD(ipl); 2585 /* Hold reference on conn_latch_in_action in case conn is closing */ 2586 ap = connp->conn_latch_in_action; 2587 if (ap != NULL) 2588 IPACT_REFHOLD(ap); 2589 mutex_exit(&connp->conn_lock); 2590 2591 if (ap != NULL) { 2592 /* Policy is cached & latched; fast(er) path */ 2593 const char *reason; 2594 kstat_named_t *counter; 2595 2596 if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap, 2597 ipha, ip6h, &reason, &counter, connp, ns)) { 2598 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 2599 IPLATCH_REFRELE(ipl); 2600 IPACT_REFRELE(ap); 2601 return (mp); 2602 } 2603 ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, 2604 SL_ERROR|SL_WARN|SL_CONSOLE, 2605 "ipsec inbound policy mismatch: %s, packet dropped\n", 2606 reason); 2607 ip_drop_packet(mp, B_TRUE, NULL, counter, 2608 &ipss->ipsec_spd_dropper); 2609 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 2610 IPLATCH_REFRELE(ipl); 2611 IPACT_REFRELE(ap); 2612 return (NULL); 2613 } 2614 if ((p = connp->conn_latch_in_policy) == NULL) { 2615 ipsec_weird_null_inbound_policy++; 2616 IPLATCH_REFRELE(ipl); 2617 return (mp); 2618 } 2619 2620 unique_id = conn_to_unique(connp, mp, ipha, ip6h); 2621 IPPOL_REFHOLD(p); 2622 mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns); 2623 /* 2624 * NOTE: ipsecIn{Failed,Succeeeded} bumped by 2625 * ipsec_check_ipsecin_policy(). 2626 */ 2627 if (mp != NULL) 2628 ipsec_latch_inbound(connp, ira); 2629 IPLATCH_REFRELE(ipl); 2630 return (mp); 2631 } 2632 2633 /* 2634 * Handle all sorts of cases like tunnel-mode and ICMP. 2635 */ 2636 static int 2637 prepended_length(mblk_t *mp, uintptr_t hptr) 2638 { 2639 int rc = 0; 2640 2641 while (mp != NULL) { 2642 if (hptr >= (uintptr_t)mp->b_rptr && hptr < 2643 (uintptr_t)mp->b_wptr) { 2644 rc += (int)(hptr - (uintptr_t)mp->b_rptr); 2645 break; /* out of while loop */ 2646 } 2647 rc += (int)MBLKL(mp); 2648 mp = mp->b_cont; 2649 } 2650 2651 if (mp == NULL) { 2652 /* 2653 * IF (big IF) we make it here by naturally exiting the loop, 2654 * then ip6h isn't in the mblk chain "mp" at all. 2655 * 2656 * The only case where this happens is with a reversed IP 2657 * header that gets passed up by inbound ICMP processing. 2658 * This unfortunately triggers longstanding bug 6478464. For 2659 * now, just pass up 0 for the answer. 2660 */ 2661 #ifdef DEBUG_NOT_UNTIL_6478464 2662 ASSERT(mp != NULL); 2663 #endif 2664 rc = 0; 2665 } 2666 2667 return (rc); 2668 } 2669 2670 /* 2671 * Returns: 2672 * 2673 * SELRET_NOMEM --> msgpullup() needed to gather things failed. 2674 * SELRET_BADPKT --> If we're being called after tunnel-mode fragment 2675 * gathering, the initial fragment is too short for 2676 * useful data. Only returned if SEL_TUNNEL_FIRSTFRAG is 2677 * set. 2678 * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data. 2679 * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet. Caller 2680 * should put this packet in a fragment-gathering queue. 2681 * Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY 2682 * is set. 2683 * 2684 * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case 2685 * of tunneled packets. 2686 * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in 2687 * error past the ICMP error. 2688 */ 2689 static selret_t 2690 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2691 ip6_t *ip6h, uint8_t sel_flags) 2692 { 2693 uint16_t *ports; 2694 int outer_hdr_len = 0; /* For ICMP or tunnel-mode cases... */ 2695 ushort_t hdr_len; 2696 mblk_t *spare_mp = NULL; 2697 uint8_t *nexthdrp, *transportp; 2698 uint8_t nexthdr; 2699 uint8_t icmp_proto; 2700 ip_pkt_t ipp; 2701 boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY); 2702 boolean_t is_icmp = (sel_flags & SEL_IS_ICMP); 2703 boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE); 2704 boolean_t post_frag = (sel_flags & SEL_POST_FRAG); 2705 2706 ASSERT((ipha == NULL && ip6h != NULL) || 2707 (ipha != NULL && ip6h == NULL)); 2708 2709 if (ip6h != NULL) { 2710 outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h); 2711 nexthdr = ip6h->ip6_nxt; 2712 icmp_proto = IPPROTO_ICMPV6; 2713 sel->ips_isv4 = B_FALSE; 2714 sel->ips_local_addr_v6 = ip6h->ip6_dst; 2715 sel->ips_remote_addr_v6 = ip6h->ip6_src; 2716 2717 bzero(&ipp, sizeof (ipp)); 2718 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL); 2719 2720 switch (nexthdr) { 2721 case IPPROTO_HOPOPTS: 2722 case IPPROTO_ROUTING: 2723 case IPPROTO_DSTOPTS: 2724 case IPPROTO_FRAGMENT: 2725 /* 2726 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2727 * mblk that's contiguous to feed it 2728 */ 2729 if ((spare_mp = msgpullup(mp, -1)) == NULL) 2730 return (SELRET_NOMEM); 2731 if (!ip_hdr_length_nexthdr_v6(spare_mp, 2732 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2733 &hdr_len, &nexthdrp)) { 2734 /* Malformed packet - caller frees. */ 2735 ipsec_freemsg_chain(spare_mp); 2736 return (SELRET_BADPKT); 2737 } 2738 nexthdr = *nexthdrp; 2739 /* We can just extract based on hdr_len now. */ 2740 break; 2741 default: 2742 hdr_len = IPV6_HDR_LEN; 2743 break; 2744 } 2745 2746 if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) { 2747 /* IPv6 Fragment */ 2748 ipsec_freemsg_chain(spare_mp); 2749 return (SELRET_TUNFRAG); 2750 } 2751 transportp = (uint8_t *)ip6h + hdr_len; 2752 } else { 2753 outer_hdr_len = prepended_length(mp, (uintptr_t)ipha); 2754 icmp_proto = IPPROTO_ICMP; 2755 sel->ips_isv4 = B_TRUE; 2756 sel->ips_local_addr_v4 = ipha->ipha_dst; 2757 sel->ips_remote_addr_v4 = ipha->ipha_src; 2758 nexthdr = ipha->ipha_protocol; 2759 hdr_len = IPH_HDR_LENGTH(ipha); 2760 2761 if (port_policy_present && 2762 IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) && 2763 !is_icmp) { 2764 /* IPv4 Fragment */ 2765 ipsec_freemsg_chain(spare_mp); 2766 return (SELRET_TUNFRAG); 2767 } 2768 transportp = (uint8_t *)ipha + hdr_len; 2769 } 2770 sel->ips_protocol = nexthdr; 2771 2772 if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2773 nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) || 2774 (!port_policy_present && !post_frag && tunnel_mode)) { 2775 sel->ips_remote_port = sel->ips_local_port = 0; 2776 ipsec_freemsg_chain(spare_mp); 2777 return (SELRET_SUCCESS); 2778 } 2779 2780 if (transportp + 4 > mp->b_wptr) { 2781 /* If we didn't pullup a copy already, do so now. */ 2782 /* 2783 * XXX performance, will upper-layers frequently split TCP/UDP 2784 * apart from IP or options? If so, perhaps we should revisit 2785 * the spare_mp strategy. 2786 */ 2787 ipsec_hdr_pullup_needed++; 2788 if (spare_mp == NULL && 2789 (spare_mp = msgpullup(mp, -1)) == NULL) { 2790 return (SELRET_NOMEM); 2791 } 2792 transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2793 } 2794 2795 if (nexthdr == icmp_proto) { 2796 sel->ips_icmp_type = *transportp++; 2797 sel->ips_icmp_code = *transportp; 2798 sel->ips_remote_port = sel->ips_local_port = 0; 2799 } else { 2800 ports = (uint16_t *)transportp; 2801 sel->ips_remote_port = *ports++; 2802 sel->ips_local_port = *ports; 2803 } 2804 ipsec_freemsg_chain(spare_mp); 2805 return (SELRET_SUCCESS); 2806 } 2807 2808 /* 2809 * This is called with a b_next chain of messages from the fragcache code, 2810 * hence it needs to discard a chain on error. 2811 */ 2812 static boolean_t 2813 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha, 2814 ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss) 2815 { 2816 /* 2817 * XXX cut&paste shared with ipsec_init_inbound_sel 2818 */ 2819 uint16_t *ports; 2820 ushort_t hdr_len; 2821 mblk_t *spare_mp = NULL; 2822 uint8_t *nexthdrp; 2823 uint8_t nexthdr; 2824 uint8_t *typecode; 2825 uint8_t check_proto; 2826 2827 ASSERT((ipha == NULL && ip6h != NULL) || 2828 (ipha != NULL && ip6h == NULL)); 2829 2830 if (ip6h != NULL) { 2831 check_proto = IPPROTO_ICMPV6; 2832 nexthdr = ip6h->ip6_nxt; 2833 switch (nexthdr) { 2834 case IPPROTO_HOPOPTS: 2835 case IPPROTO_ROUTING: 2836 case IPPROTO_DSTOPTS: 2837 case IPPROTO_FRAGMENT: 2838 /* 2839 * Use ip_hdr_length_nexthdr_v6(). And have a spare 2840 * mblk that's contiguous to feed it 2841 */ 2842 spare_mp = msgpullup(mp, -1); 2843 if (spare_mp == NULL || 2844 !ip_hdr_length_nexthdr_v6(spare_mp, 2845 (ip6_t *)(spare_mp->b_rptr + outer_hdr_len), 2846 &hdr_len, &nexthdrp)) { 2847 /* Always works, even if NULL. */ 2848 ipsec_freemsg_chain(spare_mp); 2849 ip_drop_packet_chain(mp, B_FALSE, NULL, 2850 DROPPER(ipss, ipds_spd_nomem), 2851 &ipss->ipsec_spd_dropper); 2852 return (B_FALSE); 2853 } else { 2854 nexthdr = *nexthdrp; 2855 /* We can just extract based on hdr_len now. */ 2856 } 2857 break; 2858 default: 2859 hdr_len = IPV6_HDR_LEN; 2860 break; 2861 } 2862 } else { 2863 check_proto = IPPROTO_ICMP; 2864 hdr_len = IPH_HDR_LENGTH(ipha); 2865 nexthdr = ipha->ipha_protocol; 2866 } 2867 2868 sel->ips_protocol = nexthdr; 2869 if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP && 2870 nexthdr != IPPROTO_SCTP && nexthdr != check_proto) { 2871 sel->ips_local_port = sel->ips_remote_port = 0; 2872 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2873 return (B_TRUE); 2874 } 2875 2876 if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) { 2877 /* If we didn't pullup a copy already, do so now. */ 2878 /* 2879 * XXX performance, will upper-layers frequently split TCP/UDP 2880 * apart from IP or options? If so, perhaps we should revisit 2881 * the spare_mp strategy. 2882 * 2883 * XXX should this be msgpullup(mp, hdr_len+4) ??? 2884 */ 2885 if (spare_mp == NULL && 2886 (spare_mp = msgpullup(mp, -1)) == NULL) { 2887 ip_drop_packet_chain(mp, B_FALSE, NULL, 2888 DROPPER(ipss, ipds_spd_nomem), 2889 &ipss->ipsec_spd_dropper); 2890 return (B_FALSE); 2891 } 2892 ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len]; 2893 } else { 2894 ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len]; 2895 } 2896 2897 if (nexthdr == check_proto) { 2898 typecode = (uint8_t *)ports; 2899 sel->ips_icmp_type = *typecode++; 2900 sel->ips_icmp_code = *typecode; 2901 sel->ips_remote_port = sel->ips_local_port = 0; 2902 } else { 2903 sel->ips_local_port = *ports++; 2904 sel->ips_remote_port = *ports; 2905 } 2906 ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */ 2907 return (B_TRUE); 2908 } 2909 2910 /* 2911 * Prepend an mblk with a ipsec_crypto_t to the message chain. 2912 * Frees the argument and returns NULL should the allocation fail. 2913 * Returns the pointer to the crypto data part. 2914 */ 2915 mblk_t * 2916 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp) 2917 { 2918 mblk_t *mp; 2919 2920 mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED); 2921 if (mp == NULL) { 2922 freemsg(data_mp); 2923 return (NULL); 2924 } 2925 bzero(mp->b_rptr, sizeof (ipsec_crypto_t)); 2926 mp->b_wptr += sizeof (ipsec_crypto_t); 2927 mp->b_cont = data_mp; 2928 mp->b_datap->db_type = M_EVENT; /* For ASSERT */ 2929 *icp = (ipsec_crypto_t *)mp->b_rptr; 2930 return (mp); 2931 } 2932 2933 /* 2934 * Remove what was prepended above. Return b_cont and a pointer to the 2935 * crypto data. 2936 * The caller must call ipsec_free_crypto_data for mblk once it is done 2937 * with the crypto data. 2938 */ 2939 mblk_t * 2940 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp) 2941 { 2942 ASSERT(crypto_mp->b_datap->db_type == M_EVENT); 2943 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t)); 2944 2945 *icp = (ipsec_crypto_t *)crypto_mp->b_rptr; 2946 return (crypto_mp->b_cont); 2947 } 2948 2949 /* 2950 * Free what was prepended above. Return b_cont. 2951 */ 2952 mblk_t * 2953 ipsec_free_crypto_data(mblk_t *crypto_mp) 2954 { 2955 mblk_t *mp; 2956 2957 ASSERT(crypto_mp->b_datap->db_type == M_EVENT); 2958 ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t)); 2959 2960 mp = crypto_mp->b_cont; 2961 freeb(crypto_mp); 2962 return (mp); 2963 } 2964 2965 /* 2966 * Create an ipsec_action_t based on the way an inbound packet was protected. 2967 * Used to reflect traffic back to a sender. 2968 * 2969 * We don't bother interning the action into the hash table. 2970 */ 2971 ipsec_action_t * 2972 ipsec_in_to_out_action(ip_recv_attr_t *ira) 2973 { 2974 ipsa_t *ah_assoc, *esp_assoc; 2975 uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0; 2976 ipsec_action_t *ap; 2977 boolean_t unique; 2978 2979 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 2980 2981 if (ap == NULL) 2982 return (NULL); 2983 2984 bzero(ap, sizeof (*ap)); 2985 HASH_NULL(ap, ipa_hash); 2986 ap->ipa_next = NULL; 2987 ap->ipa_refs = 1; 2988 2989 /* 2990 * Get the algorithms that were used for this packet. 2991 */ 2992 ap->ipa_act.ipa_type = IPSEC_ACT_APPLY; 2993 ap->ipa_act.ipa_log = 0; 2994 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE); 2995 2996 ah_assoc = ira->ira_ipsec_ah_sa; 2997 ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL); 2998 2999 esp_assoc = ira->ira_ipsec_esp_sa; 3000 ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL); 3001 3002 if (esp_assoc != NULL) { 3003 encr_alg = esp_assoc->ipsa_encr_alg; 3004 espa_alg = esp_assoc->ipsa_auth_alg; 3005 ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0); 3006 } 3007 if (ah_assoc != NULL) 3008 auth_alg = ah_assoc->ipsa_auth_alg; 3009 3010 ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg; 3011 ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg; 3012 ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg; 3013 ap->ipa_act.ipa_apply.ipp_use_se = 3014 !!(ira->ira_flags & IRAF_IPSEC_DECAPS); 3015 unique = B_FALSE; 3016 3017 if (esp_assoc != NULL) { 3018 ap->ipa_act.ipa_apply.ipp_espa_minbits = 3019 esp_assoc->ipsa_authkeybits; 3020 ap->ipa_act.ipa_apply.ipp_espa_maxbits = 3021 esp_assoc->ipsa_authkeybits; 3022 ap->ipa_act.ipa_apply.ipp_espe_minbits = 3023 esp_assoc->ipsa_encrkeybits; 3024 ap->ipa_act.ipa_apply.ipp_espe_maxbits = 3025 esp_assoc->ipsa_encrkeybits; 3026 ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp; 3027 ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc; 3028 if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE) 3029 unique = B_TRUE; 3030 } 3031 if (ah_assoc != NULL) { 3032 ap->ipa_act.ipa_apply.ipp_ah_minbits = 3033 ah_assoc->ipsa_authkeybits; 3034 ap->ipa_act.ipa_apply.ipp_ah_maxbits = 3035 ah_assoc->ipsa_authkeybits; 3036 ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp; 3037 ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc; 3038 if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE) 3039 unique = B_TRUE; 3040 } 3041 ap->ipa_act.ipa_apply.ipp_use_unique = unique; 3042 ap->ipa_want_unique = unique; 3043 ap->ipa_allow_clear = B_FALSE; 3044 ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS); 3045 ap->ipa_want_ah = (ah_assoc != NULL); 3046 ap->ipa_want_esp = (esp_assoc != NULL); 3047 3048 ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act); 3049 3050 ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */ 3051 3052 return (ap); 3053 } 3054 3055 3056 /* 3057 * Compute the worst-case amount of extra space required by an action. 3058 * Note that, because of the ESP considerations listed below, this is 3059 * actually not the same as the best-case reduction in the MTU; in the 3060 * future, we should pass additional information to this function to 3061 * allow the actual MTU impact to be computed. 3062 * 3063 * AH: Revisit this if we implement algorithms with 3064 * a verifier size of more than 12 bytes. 3065 * 3066 * ESP: A more exact but more messy computation would take into 3067 * account the interaction between the cipher block size and the 3068 * effective MTU, yielding the inner payload size which reflects a 3069 * packet with *minimum* ESP padding.. 3070 */ 3071 int32_t 3072 ipsec_act_ovhd(const ipsec_act_t *act) 3073 { 3074 int32_t overhead = 0; 3075 3076 if (act->ipa_type == IPSEC_ACT_APPLY) { 3077 const ipsec_prot_t *ipp = &act->ipa_apply; 3078 3079 if (ipp->ipp_use_ah) 3080 overhead += IPSEC_MAX_AH_HDR_SIZE; 3081 if (ipp->ipp_use_esp) { 3082 overhead += IPSEC_MAX_ESP_HDR_SIZE; 3083 overhead += sizeof (struct udphdr); 3084 } 3085 if (ipp->ipp_use_se) 3086 overhead += IP_SIMPLE_HDR_LENGTH; 3087 } 3088 return (overhead); 3089 } 3090 3091 /* 3092 * This hash function is used only when creating policies and thus is not 3093 * performance-critical for packet flows. 3094 * 3095 * Future work: canonicalize the structures hashed with this (i.e., 3096 * zeroize padding) so the hash works correctly. 3097 */ 3098 /* ARGSUSED */ 3099 static uint32_t 3100 policy_hash(int size, const void *start, const void *end) 3101 { 3102 return (0); 3103 } 3104 3105 3106 /* 3107 * Hash function macros for each address type. 3108 * 3109 * The IPV6 hash function assumes that the low order 32-bits of the 3110 * address (typically containing the low order 24 bits of the mac 3111 * address) are reasonably well-distributed. Revisit this if we run 3112 * into trouble from lots of collisions on ::1 addresses and the like 3113 * (seems unlikely). 3114 */ 3115 #define IPSEC_IPV4_HASH(a, n) ((a) % (n)) 3116 #define IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n)) 3117 3118 /* 3119 * These two hash functions should produce coordinated values 3120 * but have slightly different roles. 3121 */ 3122 static uint32_t 3123 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns) 3124 { 3125 uint32_t valid = selkey->ipsl_valid; 3126 ipsec_stack_t *ipss = ns->netstack_ipsec; 3127 3128 if (!(valid & IPSL_REMOTE_ADDR)) 3129 return (IPSEC_SEL_NOHASH); 3130 3131 if (valid & IPSL_IPV4) { 3132 if (selkey->ipsl_remote_pfxlen == 32) { 3133 return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3134 ipss->ipsec_spd_hashsize)); 3135 } 3136 } 3137 if (valid & IPSL_IPV6) { 3138 if (selkey->ipsl_remote_pfxlen == 128) { 3139 return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3140 ipss->ipsec_spd_hashsize)); 3141 } 3142 } 3143 return (IPSEC_SEL_NOHASH); 3144 } 3145 3146 static uint32_t 3147 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root) 3148 { 3149 if (sel->ips_isv4) { 3150 return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4, 3151 root->ipr_nchains)); 3152 } 3153 return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains)); 3154 } 3155 3156 /* 3157 * Intern actions into the action hash table. 3158 */ 3159 ipsec_action_t * 3160 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns) 3161 { 3162 int i; 3163 uint32_t hval; 3164 ipsec_action_t *ap; 3165 ipsec_action_t *prev = NULL; 3166 int32_t overhead, maxovhd = 0; 3167 boolean_t allow_clear = B_FALSE; 3168 boolean_t want_ah = B_FALSE; 3169 boolean_t want_esp = B_FALSE; 3170 boolean_t want_se = B_FALSE; 3171 boolean_t want_unique = B_FALSE; 3172 ipsec_stack_t *ipss = ns->netstack_ipsec; 3173 3174 /* 3175 * TODO: should canonicalize a[] (i.e., zeroize any padding) 3176 * so we can use a non-trivial policy_hash function. 3177 */ 3178 for (i = n-1; i >= 0; i--) { 3179 hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]); 3180 3181 HASH_LOCK(ipss->ipsec_action_hash, hval); 3182 3183 for (HASH_ITERATE(ap, ipa_hash, 3184 ipss->ipsec_action_hash, hval)) { 3185 if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0) 3186 continue; 3187 if (ap->ipa_next != prev) 3188 continue; 3189 break; 3190 } 3191 if (ap != NULL) { 3192 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3193 prev = ap; 3194 continue; 3195 } 3196 /* 3197 * need to allocate a new one.. 3198 */ 3199 ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP); 3200 if (ap == NULL) { 3201 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3202 if (prev != NULL) 3203 ipsec_action_free(prev); 3204 return (NULL); 3205 } 3206 HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval); 3207 3208 ap->ipa_next = prev; 3209 ap->ipa_act = a[i]; 3210 3211 overhead = ipsec_act_ovhd(&a[i]); 3212 if (maxovhd < overhead) 3213 maxovhd = overhead; 3214 3215 if ((a[i].ipa_type == IPSEC_ACT_BYPASS) || 3216 (a[i].ipa_type == IPSEC_ACT_CLEAR)) 3217 allow_clear = B_TRUE; 3218 if (a[i].ipa_type == IPSEC_ACT_APPLY) { 3219 const ipsec_prot_t *ipp = &a[i].ipa_apply; 3220 3221 ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp); 3222 want_ah |= ipp->ipp_use_ah; 3223 want_esp |= ipp->ipp_use_esp; 3224 want_se |= ipp->ipp_use_se; 3225 want_unique |= ipp->ipp_use_unique; 3226 } 3227 ap->ipa_allow_clear = allow_clear; 3228 ap->ipa_want_ah = want_ah; 3229 ap->ipa_want_esp = want_esp; 3230 ap->ipa_want_se = want_se; 3231 ap->ipa_want_unique = want_unique; 3232 ap->ipa_refs = 1; /* from the hash table */ 3233 ap->ipa_ovhd = maxovhd; 3234 if (prev) 3235 prev->ipa_refs++; 3236 prev = ap; 3237 HASH_UNLOCK(ipss->ipsec_action_hash, hval); 3238 } 3239 3240 ap->ipa_refs++; /* caller's reference */ 3241 3242 return (ap); 3243 } 3244 3245 /* 3246 * Called when refcount goes to 0, indicating that all references to this 3247 * node are gone. 3248 * 3249 * This does not unchain the action from the hash table. 3250 */ 3251 void 3252 ipsec_action_free(ipsec_action_t *ap) 3253 { 3254 for (;;) { 3255 ipsec_action_t *np = ap->ipa_next; 3256 ASSERT(ap->ipa_refs == 0); 3257 ASSERT(ap->ipa_hash.hash_pp == NULL); 3258 kmem_cache_free(ipsec_action_cache, ap); 3259 ap = np; 3260 /* Inlined IPACT_REFRELE -- avoid recursion */ 3261 if (ap == NULL) 3262 break; 3263 membar_exit(); 3264 if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0) 3265 break; 3266 /* End inlined IPACT_REFRELE */ 3267 } 3268 } 3269 3270 /* 3271 * Called when the action hash table goes away. 3272 * 3273 * The actions can be queued on an mblk with ipsec_in or 3274 * ipsec_out, hence the actions might still be around. 3275 * But we decrement ipa_refs here since we no longer have 3276 * a reference to the action from the hash table. 3277 */ 3278 static void 3279 ipsec_action_free_table(ipsec_action_t *ap) 3280 { 3281 while (ap != NULL) { 3282 ipsec_action_t *np = ap->ipa_next; 3283 3284 /* FIXME: remove? */ 3285 (void) printf("ipsec_action_free_table(%p) ref %d\n", 3286 (void *)ap, ap->ipa_refs); 3287 ASSERT(ap->ipa_refs > 0); 3288 IPACT_REFRELE(ap); 3289 ap = np; 3290 } 3291 } 3292 3293 /* 3294 * Need to walk all stack instances since the reclaim function 3295 * is global for all instances 3296 */ 3297 /* ARGSUSED */ 3298 static void 3299 ipsec_action_reclaim(void *arg) 3300 { 3301 netstack_handle_t nh; 3302 netstack_t *ns; 3303 3304 netstack_next_init(&nh); 3305 while ((ns = netstack_next(&nh)) != NULL) { 3306 ipsec_action_reclaim_stack(ns); 3307 netstack_rele(ns); 3308 } 3309 netstack_next_fini(&nh); 3310 } 3311 3312 /* 3313 * Periodically sweep action hash table for actions with refcount==1, and 3314 * nuke them. We cannot do this "on demand" (i.e., from IPACT_REFRELE) 3315 * because we can't close the race between another thread finding the action 3316 * in the hash table without holding the bucket lock during IPACT_REFRELE. 3317 * Instead, we run this function sporadically to clean up after ourselves; 3318 * we also set it as the "reclaim" function for the action kmem_cache. 3319 * 3320 * Note that it may take several passes of ipsec_action_gc() to free all 3321 * "stale" actions. 3322 */ 3323 static void 3324 ipsec_action_reclaim_stack(netstack_t *ns) 3325 { 3326 int i; 3327 ipsec_stack_t *ipss = ns->netstack_ipsec; 3328 3329 for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) { 3330 ipsec_action_t *ap, *np; 3331 3332 /* skip the lock if nobody home */ 3333 if (ipss->ipsec_action_hash[i].hash_head == NULL) 3334 continue; 3335 3336 HASH_LOCK(ipss->ipsec_action_hash, i); 3337 for (ap = ipss->ipsec_action_hash[i].hash_head; 3338 ap != NULL; ap = np) { 3339 ASSERT(ap->ipa_refs > 0); 3340 np = ap->ipa_hash.hash_next; 3341 if (ap->ipa_refs > 1) 3342 continue; 3343 HASH_UNCHAIN(ap, ipa_hash, 3344 ipss->ipsec_action_hash, i); 3345 IPACT_REFRELE(ap); 3346 } 3347 HASH_UNLOCK(ipss->ipsec_action_hash, i); 3348 } 3349 } 3350 3351 /* 3352 * Intern a selector set into the selector set hash table. 3353 * This is simpler than the actions case.. 3354 */ 3355 static ipsec_sel_t * 3356 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns) 3357 { 3358 ipsec_sel_t *sp; 3359 uint32_t hval, bucket; 3360 ipsec_stack_t *ipss = ns->netstack_ipsec; 3361 3362 /* 3363 * Exactly one AF bit should be set in selkey. 3364 */ 3365 ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^ 3366 !(selkey->ipsl_valid & IPSL_IPV6)); 3367 3368 hval = selkey_hash(selkey, ns); 3369 /* Set pol_hval to uninitialized until we put it in a polhead. */ 3370 selkey->ipsl_sel_hval = hval; 3371 3372 bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval; 3373 3374 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket)); 3375 HASH_LOCK(ipss->ipsec_sel_hash, bucket); 3376 3377 for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) { 3378 if (bcmp(&sp->ipsl_key, selkey, 3379 offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0) 3380 break; 3381 } 3382 if (sp != NULL) { 3383 sp->ipsl_refs++; 3384 3385 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3386 return (sp); 3387 } 3388 3389 sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP); 3390 if (sp == NULL) { 3391 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3392 return (NULL); 3393 } 3394 3395 HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket); 3396 sp->ipsl_refs = 2; /* one for hash table, one for caller */ 3397 sp->ipsl_key = *selkey; 3398 /* Set to uninitalized and have insertion into polhead fix things. */ 3399 if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH) 3400 sp->ipsl_key.ipsl_pol_hval = 0; 3401 else 3402 sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH; 3403 3404 HASH_UNLOCK(ipss->ipsec_sel_hash, bucket); 3405 3406 return (sp); 3407 } 3408 3409 static void 3410 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns) 3411 { 3412 ipsec_sel_t *sp = *spp; 3413 int hval = sp->ipsl_key.ipsl_sel_hval; 3414 ipsec_stack_t *ipss = ns->netstack_ipsec; 3415 3416 *spp = NULL; 3417 3418 if (hval == IPSEC_SEL_NOHASH) 3419 hval = 0; 3420 3421 ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval)); 3422 HASH_LOCK(ipss->ipsec_sel_hash, hval); 3423 if (--sp->ipsl_refs == 1) { 3424 HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval); 3425 sp->ipsl_refs--; 3426 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3427 ASSERT(sp->ipsl_refs == 0); 3428 kmem_cache_free(ipsec_sel_cache, sp); 3429 /* Caller unlocks */ 3430 return; 3431 } 3432 3433 HASH_UNLOCK(ipss->ipsec_sel_hash, hval); 3434 } 3435 3436 /* 3437 * Free a policy rule which we know is no longer being referenced. 3438 */ 3439 void 3440 ipsec_policy_free(ipsec_policy_t *ipp) 3441 { 3442 ASSERT(ipp->ipsp_refs == 0); 3443 ASSERT(ipp->ipsp_sel != NULL); 3444 ASSERT(ipp->ipsp_act != NULL); 3445 ASSERT(ipp->ipsp_netstack != NULL); 3446 3447 ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack); 3448 IPACT_REFRELE(ipp->ipsp_act); 3449 kmem_cache_free(ipsec_pol_cache, ipp); 3450 } 3451 3452 /* 3453 * Construction of new policy rules; construct a policy, and add it to 3454 * the appropriate tables. 3455 */ 3456 ipsec_policy_t * 3457 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a, 3458 int nacts, int prio, uint64_t *index_ptr, netstack_t *ns) 3459 { 3460 ipsec_action_t *ap; 3461 ipsec_sel_t *sp; 3462 ipsec_policy_t *ipp; 3463 ipsec_stack_t *ipss = ns->netstack_ipsec; 3464 3465 if (index_ptr == NULL) 3466 index_ptr = &ipss->ipsec_next_policy_index; 3467 3468 ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP); 3469 ap = ipsec_act_find(a, nacts, ns); 3470 sp = ipsec_find_sel(keys, ns); 3471 3472 if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) { 3473 if (ap != NULL) { 3474 IPACT_REFRELE(ap); 3475 } 3476 if (sp != NULL) 3477 ipsec_sel_rel(&sp, ns); 3478 if (ipp != NULL) 3479 kmem_cache_free(ipsec_pol_cache, ipp); 3480 return (NULL); 3481 } 3482 3483 HASH_NULL(ipp, ipsp_hash); 3484 3485 ipp->ipsp_netstack = ns; /* Needed for ipsec_policy_free */ 3486 ipp->ipsp_refs = 1; /* caller's reference */ 3487 ipp->ipsp_sel = sp; 3488 ipp->ipsp_act = ap; 3489 ipp->ipsp_prio = prio; /* rule priority */ 3490 ipp->ipsp_index = *index_ptr; 3491 (*index_ptr)++; 3492 3493 return (ipp); 3494 } 3495 3496 static void 3497 ipsec_update_present_flags(ipsec_stack_t *ipss) 3498 { 3499 boolean_t hashpol; 3500 3501 hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0); 3502 3503 if (hashpol) { 3504 ipss->ipsec_outbound_v4_policy_present = B_TRUE; 3505 ipss->ipsec_outbound_v6_policy_present = B_TRUE; 3506 ipss->ipsec_inbound_v4_policy_present = B_TRUE; 3507 ipss->ipsec_inbound_v6_policy_present = B_TRUE; 3508 return; 3509 } 3510 3511 ipss->ipsec_outbound_v4_policy_present = (NULL != 3512 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3513 ipr_nonhash[IPSEC_AF_V4]); 3514 ipss->ipsec_outbound_v6_policy_present = (NULL != 3515 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND]. 3516 ipr_nonhash[IPSEC_AF_V6]); 3517 ipss->ipsec_inbound_v4_policy_present = (NULL != 3518 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3519 ipr_nonhash[IPSEC_AF_V4]); 3520 ipss->ipsec_inbound_v6_policy_present = (NULL != 3521 ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND]. 3522 ipr_nonhash[IPSEC_AF_V6]); 3523 } 3524 3525 boolean_t 3526 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir, 3527 netstack_t *ns) 3528 { 3529 ipsec_sel_t *sp; 3530 ipsec_policy_t *ip, *nip, *head; 3531 int af; 3532 ipsec_policy_root_t *pr = &php->iph_root[dir]; 3533 3534 sp = ipsec_find_sel(keys, ns); 3535 3536 if (sp == NULL) 3537 return (B_FALSE); 3538 3539 af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6; 3540 3541 rw_enter(&php->iph_lock, RW_WRITER); 3542 3543 if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) { 3544 head = pr->ipr_nonhash[af]; 3545 } else { 3546 head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head; 3547 } 3548 3549 for (ip = head; ip != NULL; ip = nip) { 3550 nip = ip->ipsp_hash.hash_next; 3551 if (ip->ipsp_sel != sp) { 3552 continue; 3553 } 3554 3555 IPPOL_UNCHAIN(php, ip); 3556 3557 php->iph_gen++; 3558 ipsec_update_present_flags(ns->netstack_ipsec); 3559 3560 rw_exit(&php->iph_lock); 3561 3562 ipsec_sel_rel(&sp, ns); 3563 3564 return (B_TRUE); 3565 } 3566 3567 rw_exit(&php->iph_lock); 3568 ipsec_sel_rel(&sp, ns); 3569 return (B_FALSE); 3570 } 3571 3572 int 3573 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index, 3574 netstack_t *ns) 3575 { 3576 boolean_t found = B_FALSE; 3577 ipsec_policy_t ipkey; 3578 ipsec_policy_t *ip; 3579 avl_index_t where; 3580 3581 bzero(&ipkey, sizeof (ipkey)); 3582 ipkey.ipsp_index = policy_index; 3583 3584 rw_enter(&php->iph_lock, RW_WRITER); 3585 3586 /* 3587 * We could be cleverer here about the walk. 3588 * but well, (k+1)*log(N) will do for now (k==number of matches, 3589 * N==number of table entries 3590 */ 3591 for (;;) { 3592 ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid, 3593 (void *)&ipkey, &where); 3594 ASSERT(ip == NULL); 3595 3596 ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER); 3597 3598 if (ip == NULL) 3599 break; 3600 3601 if (ip->ipsp_index != policy_index) { 3602 ASSERT(ip->ipsp_index > policy_index); 3603 break; 3604 } 3605 3606 IPPOL_UNCHAIN(php, ip); 3607 found = B_TRUE; 3608 } 3609 3610 if (found) { 3611 php->iph_gen++; 3612 ipsec_update_present_flags(ns->netstack_ipsec); 3613 } 3614 3615 rw_exit(&php->iph_lock); 3616 3617 return (found ? 0 : ENOENT); 3618 } 3619 3620 /* 3621 * Given a constructed ipsec_policy_t policy rule, see if it can be entered 3622 * into the correct policy ruleset. As a side-effect, it sets the hash 3623 * entries on "ipp"'s ipsp_pol_hval. 3624 * 3625 * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a 3626 * duplicate policy exists with exactly the same selectors), or an icmp 3627 * rule exists with a different encryption/authentication action. 3628 */ 3629 boolean_t 3630 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction) 3631 { 3632 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3633 int af = -1; 3634 ipsec_policy_t *p2, *head; 3635 uint8_t check_proto; 3636 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3637 uint32_t valid = selkey->ipsl_valid; 3638 3639 if (valid & IPSL_IPV6) { 3640 ASSERT(!(valid & IPSL_IPV4)); 3641 af = IPSEC_AF_V6; 3642 check_proto = IPPROTO_ICMPV6; 3643 } else { 3644 ASSERT(valid & IPSL_IPV4); 3645 af = IPSEC_AF_V4; 3646 check_proto = IPPROTO_ICMP; 3647 } 3648 3649 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3650 3651 /* 3652 * Double-check that we don't have any duplicate selectors here. 3653 * Because selectors are interned below, we need only compare pointers 3654 * for equality. 3655 */ 3656 if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) { 3657 head = pr->ipr_nonhash[af]; 3658 } else { 3659 selkey->ipsl_pol_hval = 3660 (selkey->ipsl_valid & IPSL_IPV4) ? 3661 IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4, 3662 pr->ipr_nchains) : 3663 IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6, 3664 pr->ipr_nchains); 3665 3666 head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head; 3667 } 3668 3669 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3670 if (p2->ipsp_sel == ipp->ipsp_sel) 3671 return (B_FALSE); 3672 } 3673 3674 /* 3675 * If it's ICMP and not a drop or pass rule, run through the ICMP 3676 * rules and make sure the action is either new or the same as any 3677 * other actions. We don't have to check the full chain because 3678 * discard and bypass will override all other actions 3679 */ 3680 3681 if (valid & IPSL_PROTOCOL && 3682 selkey->ipsl_proto == check_proto && 3683 (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) { 3684 3685 for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) { 3686 3687 if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL && 3688 p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto && 3689 (p2->ipsp_act->ipa_act.ipa_type == 3690 IPSEC_ACT_APPLY)) { 3691 return (ipsec_compare_action(p2, ipp)); 3692 } 3693 } 3694 } 3695 3696 return (B_TRUE); 3697 } 3698 3699 /* 3700 * compare the action chains of two policies for equality 3701 * B_TRUE -> effective equality 3702 */ 3703 3704 static boolean_t 3705 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2) 3706 { 3707 3708 ipsec_action_t *act1, *act2; 3709 3710 /* We have a valid rule. Let's compare the actions */ 3711 if (p1->ipsp_act == p2->ipsp_act) { 3712 /* same action. We are good */ 3713 return (B_TRUE); 3714 } 3715 3716 /* we have to walk the chain */ 3717 3718 act1 = p1->ipsp_act; 3719 act2 = p2->ipsp_act; 3720 3721 while (act1 != NULL && act2 != NULL) { 3722 3723 /* otherwise, Are we close enough? */ 3724 if (act1->ipa_allow_clear != act2->ipa_allow_clear || 3725 act1->ipa_want_ah != act2->ipa_want_ah || 3726 act1->ipa_want_esp != act2->ipa_want_esp || 3727 act1->ipa_want_se != act2->ipa_want_se) { 3728 /* Nope, we aren't */ 3729 return (B_FALSE); 3730 } 3731 3732 if (act1->ipa_want_ah) { 3733 if (act1->ipa_act.ipa_apply.ipp_auth_alg != 3734 act2->ipa_act.ipa_apply.ipp_auth_alg) { 3735 return (B_FALSE); 3736 } 3737 3738 if (act1->ipa_act.ipa_apply.ipp_ah_minbits != 3739 act2->ipa_act.ipa_apply.ipp_ah_minbits || 3740 act1->ipa_act.ipa_apply.ipp_ah_maxbits != 3741 act2->ipa_act.ipa_apply.ipp_ah_maxbits) { 3742 return (B_FALSE); 3743 } 3744 } 3745 3746 if (act1->ipa_want_esp) { 3747 if (act1->ipa_act.ipa_apply.ipp_use_esp != 3748 act2->ipa_act.ipa_apply.ipp_use_esp || 3749 act1->ipa_act.ipa_apply.ipp_use_espa != 3750 act2->ipa_act.ipa_apply.ipp_use_espa) { 3751 return (B_FALSE); 3752 } 3753 3754 if (act1->ipa_act.ipa_apply.ipp_use_esp) { 3755 if (act1->ipa_act.ipa_apply.ipp_encr_alg != 3756 act2->ipa_act.ipa_apply.ipp_encr_alg) { 3757 return (B_FALSE); 3758 } 3759 3760 if (act1->ipa_act.ipa_apply.ipp_espe_minbits != 3761 act2->ipa_act.ipa_apply.ipp_espe_minbits || 3762 act1->ipa_act.ipa_apply.ipp_espe_maxbits != 3763 act2->ipa_act.ipa_apply.ipp_espe_maxbits) { 3764 return (B_FALSE); 3765 } 3766 } 3767 3768 if (act1->ipa_act.ipa_apply.ipp_use_espa) { 3769 if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg != 3770 act2->ipa_act.ipa_apply.ipp_esp_auth_alg) { 3771 return (B_FALSE); 3772 } 3773 3774 if (act1->ipa_act.ipa_apply.ipp_espa_minbits != 3775 act2->ipa_act.ipa_apply.ipp_espa_minbits || 3776 act1->ipa_act.ipa_apply.ipp_espa_maxbits != 3777 act2->ipa_act.ipa_apply.ipp_espa_maxbits) { 3778 return (B_FALSE); 3779 } 3780 } 3781 3782 } 3783 3784 act1 = act1->ipa_next; 3785 act2 = act2->ipa_next; 3786 } 3787 3788 if (act1 != NULL || act2 != NULL) { 3789 return (B_FALSE); 3790 } 3791 3792 return (B_TRUE); 3793 } 3794 3795 3796 /* 3797 * Given a constructed ipsec_policy_t policy rule, enter it into 3798 * the correct policy ruleset. 3799 * 3800 * ipsec_check_policy() is assumed to have succeeded first (to check for 3801 * duplicates). 3802 */ 3803 void 3804 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction, 3805 netstack_t *ns) 3806 { 3807 ipsec_policy_root_t *pr = &php->iph_root[direction]; 3808 ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key; 3809 uint32_t valid = selkey->ipsl_valid; 3810 uint32_t hval = selkey->ipsl_pol_hval; 3811 int af = -1; 3812 3813 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3814 3815 if (valid & IPSL_IPV6) { 3816 ASSERT(!(valid & IPSL_IPV4)); 3817 af = IPSEC_AF_V6; 3818 } else { 3819 ASSERT(valid & IPSL_IPV4); 3820 af = IPSEC_AF_V4; 3821 } 3822 3823 php->iph_gen++; 3824 3825 if (hval == IPSEC_SEL_NOHASH) { 3826 HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]); 3827 } else { 3828 HASH_LOCK(pr->ipr_hash, hval); 3829 HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval); 3830 HASH_UNLOCK(pr->ipr_hash, hval); 3831 } 3832 3833 ipsec_insert_always(&php->iph_rulebyid, ipp); 3834 3835 ipsec_update_present_flags(ns->netstack_ipsec); 3836 } 3837 3838 static void 3839 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr) 3840 { 3841 ipsec_policy_t *ip, *nip; 3842 int af, chain, nchain; 3843 3844 for (af = 0; af < IPSEC_NAF; af++) { 3845 for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) { 3846 nip = ip->ipsp_hash.hash_next; 3847 IPPOL_UNCHAIN(php, ip); 3848 } 3849 ipr->ipr_nonhash[af] = NULL; 3850 } 3851 nchain = ipr->ipr_nchains; 3852 3853 for (chain = 0; chain < nchain; chain++) { 3854 for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL; 3855 ip = nip) { 3856 nip = ip->ipsp_hash.hash_next; 3857 IPPOL_UNCHAIN(php, ip); 3858 } 3859 ipr->ipr_hash[chain].hash_head = NULL; 3860 } 3861 } 3862 3863 /* 3864 * Create and insert inbound or outbound policy associated with actp for the 3865 * address family fam into the policy head ph. Returns B_TRUE if policy was 3866 * inserted, and B_FALSE otherwise. 3867 */ 3868 boolean_t 3869 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact, 3870 int fam, int ptype, netstack_t *ns) 3871 { 3872 ipsec_selkey_t sel; 3873 ipsec_policy_t *pol; 3874 ipsec_policy_root_t *pr; 3875 3876 bzero(&sel, sizeof (sel)); 3877 sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6); 3878 if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, 3879 NULL, ns)) != NULL) { 3880 pr = &ph->iph_root[ptype]; 3881 HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]); 3882 ipsec_insert_always(&ph->iph_rulebyid, pol); 3883 } 3884 return (pol != NULL); 3885 } 3886 3887 void 3888 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns) 3889 { 3890 int dir; 3891 3892 ASSERT(RW_WRITE_HELD(&php->iph_lock)); 3893 3894 for (dir = 0; dir < IPSEC_NTYPES; dir++) 3895 ipsec_ipr_flush(php, &php->iph_root[dir]); 3896 3897 php->iph_gen++; 3898 ipsec_update_present_flags(ns->netstack_ipsec); 3899 } 3900 3901 void 3902 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns) 3903 { 3904 int dir; 3905 3906 ASSERT(php->iph_refs == 0); 3907 3908 rw_enter(&php->iph_lock, RW_WRITER); 3909 ipsec_polhead_flush(php, ns); 3910 rw_exit(&php->iph_lock); 3911 rw_destroy(&php->iph_lock); 3912 for (dir = 0; dir < IPSEC_NTYPES; dir++) { 3913 ipsec_policy_root_t *ipr = &php->iph_root[dir]; 3914 int chain; 3915 3916 for (chain = 0; chain < ipr->ipr_nchains; chain++) 3917 mutex_destroy(&(ipr->ipr_hash[chain].hash_lock)); 3918 3919 } 3920 ipsec_polhead_free_table(php); 3921 kmem_free(php, sizeof (*php)); 3922 } 3923 3924 static void 3925 ipsec_ipr_init(ipsec_policy_root_t *ipr) 3926 { 3927 int af; 3928 3929 ipr->ipr_nchains = 0; 3930 ipr->ipr_hash = NULL; 3931 3932 for (af = 0; af < IPSEC_NAF; af++) { 3933 ipr->ipr_nonhash[af] = NULL; 3934 } 3935 } 3936 3937 ipsec_policy_head_t * 3938 ipsec_polhead_create(void) 3939 { 3940 ipsec_policy_head_t *php; 3941 3942 php = kmem_alloc(sizeof (*php), KM_NOSLEEP); 3943 if (php == NULL) 3944 return (php); 3945 3946 rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL); 3947 php->iph_refs = 1; 3948 php->iph_gen = 0; 3949 3950 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]); 3951 ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]); 3952 3953 avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid, 3954 sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid)); 3955 3956 return (php); 3957 } 3958 3959 /* 3960 * Clone the policy head into a new polhead; release one reference to the 3961 * old one and return the only reference to the new one. 3962 * If the old one had a refcount of 1, just return it. 3963 */ 3964 ipsec_policy_head_t * 3965 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns) 3966 { 3967 ipsec_policy_head_t *nphp; 3968 3969 if (php == NULL) 3970 return (ipsec_polhead_create()); 3971 else if (php->iph_refs == 1) 3972 return (php); 3973 3974 nphp = ipsec_polhead_create(); 3975 if (nphp == NULL) 3976 return (NULL); 3977 3978 if (ipsec_copy_polhead(php, nphp, ns) != 0) { 3979 ipsec_polhead_free(nphp, ns); 3980 return (NULL); 3981 } 3982 IPPH_REFRELE(php, ns); 3983 return (nphp); 3984 } 3985 3986 /* 3987 * When sending a response to a ICMP request or generating a RST 3988 * in the TCP case, the outbound packets need to go at the same level 3989 * of protection as the incoming ones i.e we associate our outbound 3990 * policy with how the packet came in. We call this after we have 3991 * accepted the incoming packet which may or may not have been in 3992 * clear and hence we are sending the reply back with the policy 3993 * matching the incoming datagram's policy. 3994 * 3995 * NOTE : This technology serves two purposes : 3996 * 3997 * 1) If we have multiple outbound policies, we send out a reply 3998 * matching with how it came in rather than matching the outbound 3999 * policy. 4000 * 4001 * 2) For assymetric policies, we want to make sure that incoming 4002 * and outgoing has the same level of protection. Assymetric 4003 * policies exist only with global policy where we may not have 4004 * both outbound and inbound at the same time. 4005 * 4006 * NOTE2: This function is called by cleartext cases, so it needs to be 4007 * in IP proper. 4008 * 4009 * Note: the caller has moved other parts of ira into ixa already. 4010 */ 4011 boolean_t 4012 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp, 4013 ipha_t *ipha, ip6_t *ip6h) 4014 { 4015 ipsec_selector_t sel; 4016 ipsec_action_t *reflect_action = NULL; 4017 netstack_t *ns = ixa->ixa_ipst->ips_netstack; 4018 4019 bzero((void*)&sel, sizeof (sel)); 4020 4021 if (ira->ira_ipsec_action != NULL) { 4022 /* transfer reference.. */ 4023 reflect_action = ira->ira_ipsec_action; 4024 ira->ira_ipsec_action = NULL; 4025 } else if (!(ira->ira_flags & IRAF_LOOPBACK)) 4026 reflect_action = ipsec_in_to_out_action(ira); 4027 4028 /* 4029 * The caller is going to send the datagram out which might 4030 * go on the wire or delivered locally through ire_send_local. 4031 * 4032 * 1) If it goes out on the wire, new associations will be 4033 * obtained. 4034 * 2) If it is delivered locally, ire_send_local will convert 4035 * this ip_xmit_attr_t back to a ip_recv_attr_t looking at the 4036 * requests. 4037 */ 4038 ixa->ixa_ipsec_action = reflect_action; 4039 4040 if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0, 4041 ns->netstack_ipsec)) { 4042 /* Note: data_mp already consumed and ip_drop_packet done */ 4043 return (B_FALSE); 4044 } 4045 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4046 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4047 ixa->ixa_ipsec_proto = sel.ips_protocol; 4048 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4049 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4050 4051 /* 4052 * Don't use global policy for this, as we want 4053 * to use the same protection that was applied to the inbound packet. 4054 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make 4055 * it be sent in the clear. 4056 */ 4057 if (ira->ira_flags & IRAF_IPSEC_SECURE) 4058 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4059 else 4060 ixa->ixa_flags |= IXAF_NO_IPSEC; 4061 4062 return (B_TRUE); 4063 } 4064 4065 void 4066 ipsec_out_release_refs(ip_xmit_attr_t *ixa) 4067 { 4068 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 4069 return; 4070 4071 if (ixa->ixa_ipsec_ah_sa != NULL) { 4072 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 4073 ixa->ixa_ipsec_ah_sa = NULL; 4074 } 4075 if (ixa->ixa_ipsec_esp_sa != NULL) { 4076 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 4077 ixa->ixa_ipsec_esp_sa = NULL; 4078 } 4079 if (ixa->ixa_ipsec_policy != NULL) { 4080 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4081 ixa->ixa_ipsec_policy = NULL; 4082 } 4083 if (ixa->ixa_ipsec_action != NULL) { 4084 IPACT_REFRELE(ixa->ixa_ipsec_action); 4085 ixa->ixa_ipsec_action = NULL; 4086 } 4087 if (ixa->ixa_ipsec_latch) { 4088 IPLATCH_REFRELE(ixa->ixa_ipsec_latch); 4089 ixa->ixa_ipsec_latch = NULL; 4090 } 4091 /* Clear the soft references to the SAs */ 4092 ixa->ixa_ipsec_ref[0].ipsr_sa = NULL; 4093 ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL; 4094 ixa->ixa_ipsec_ref[0].ipsr_gen = 0; 4095 ixa->ixa_ipsec_ref[1].ipsr_sa = NULL; 4096 ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL; 4097 ixa->ixa_ipsec_ref[1].ipsr_gen = 0; 4098 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4099 } 4100 4101 void 4102 ipsec_in_release_refs(ip_recv_attr_t *ira) 4103 { 4104 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) 4105 return; 4106 4107 if (ira->ira_ipsec_ah_sa != NULL) { 4108 IPSA_REFRELE(ira->ira_ipsec_ah_sa); 4109 ira->ira_ipsec_ah_sa = NULL; 4110 } 4111 if (ira->ira_ipsec_esp_sa != NULL) { 4112 IPSA_REFRELE(ira->ira_ipsec_esp_sa); 4113 ira->ira_ipsec_esp_sa = NULL; 4114 } 4115 ira->ira_flags &= ~IRAF_IPSEC_SECURE; 4116 } 4117 4118 /* 4119 * This is called from ire_send_local when a packet 4120 * is looped back. We setup the ip_recv_attr_t "borrowing" the references 4121 * held by the callers. 4122 * Note that we don't do any IPsec but we carry the actions and IPSEC flags 4123 * across so that the fanout policy checks see that IPsec was applied. 4124 * 4125 * The caller should do ipsec_in_release_refs() on the ira by calling 4126 * ira_cleanup(). 4127 */ 4128 void 4129 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira) 4130 { 4131 ipsec_policy_t *pol; 4132 ipsec_action_t *act; 4133 4134 /* Non-IPsec operations */ 4135 ira->ira_free_flags = 0; 4136 ira->ira_zoneid = ixa->ixa_zoneid; 4137 ira->ira_cred = ixa->ixa_cred; 4138 ira->ira_cpid = ixa->ixa_cpid; 4139 ira->ira_tsl = ixa->ixa_tsl; 4140 ira->ira_ill = ira->ira_rill = ill; 4141 ira->ira_flags = ixa->ixa_flags & IAF_MASK; 4142 ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid; 4143 ira->ira_pktlen = ixa->ixa_pktlen; 4144 ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length; 4145 ira->ira_protocol = ixa->ixa_protocol; 4146 ira->ira_mhip = NULL; 4147 4148 ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK; 4149 4150 ira->ira_sqp = ixa->ixa_sqp; 4151 ira->ira_ring = NULL; 4152 4153 ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex; 4154 ira->ira_rifindex = ira->ira_ruifindex; 4155 4156 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 4157 return; 4158 4159 ira->ira_flags |= IRAF_IPSEC_SECURE; 4160 4161 ira->ira_ipsec_ah_sa = NULL; 4162 ira->ira_ipsec_esp_sa = NULL; 4163 4164 act = ixa->ixa_ipsec_action; 4165 if (act == NULL) { 4166 pol = ixa->ixa_ipsec_policy; 4167 if (pol != NULL) { 4168 act = pol->ipsp_act; 4169 IPACT_REFHOLD(act); 4170 } 4171 } 4172 ixa->ixa_ipsec_action = NULL; 4173 ira->ira_ipsec_action = act; 4174 } 4175 4176 /* 4177 * Consults global policy and per-socket policy to see whether this datagram 4178 * should go out secure. If so it updates the ip_xmit_attr_t 4179 * Should not be used when connecting, since then we want to latch the policy. 4180 * 4181 * If connp is NULL we just look at the global policy. 4182 * 4183 * Returns NULL if the packet was dropped, in which case the MIB has 4184 * been incremented and ip_drop_packet done. 4185 */ 4186 mblk_t * 4187 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4188 const conn_t *connp, ip_xmit_attr_t *ixa) 4189 { 4190 ipsec_selector_t sel; 4191 boolean_t policy_present; 4192 ip_stack_t *ipst = ixa->ixa_ipst; 4193 netstack_t *ns = ipst->ips_netstack; 4194 ipsec_stack_t *ipss = ns->netstack_ipsec; 4195 ipsec_policy_t *p; 4196 4197 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen; 4198 ASSERT((ipha != NULL && ip6h == NULL) || 4199 (ip6h != NULL && ipha == NULL)); 4200 4201 if (ipha != NULL) 4202 policy_present = ipss->ipsec_outbound_v4_policy_present; 4203 else 4204 policy_present = ipss->ipsec_outbound_v6_policy_present; 4205 4206 if (!policy_present && (connp == NULL || connp->conn_policy == NULL)) 4207 return (mp); 4208 4209 bzero((void*)&sel, sizeof (sel)); 4210 4211 if (ipha != NULL) { 4212 sel.ips_local_addr_v4 = ipha->ipha_src; 4213 sel.ips_remote_addr_v4 = ip_get_dst(ipha); 4214 sel.ips_isv4 = B_TRUE; 4215 } else { 4216 sel.ips_isv4 = B_FALSE; 4217 sel.ips_local_addr_v6 = ip6h->ip6_src; 4218 sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL); 4219 } 4220 sel.ips_protocol = ixa->ixa_protocol; 4221 4222 if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) { 4223 if (ipha != NULL) { 4224 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 4225 } else { 4226 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 4227 } 4228 /* Note: mp already consumed and ip_drop_packet done */ 4229 return (NULL); 4230 } 4231 4232 ASSERT(ixa->ixa_ipsec_policy == NULL); 4233 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4234 ixa->ixa_ipsec_policy = p; 4235 if (p != NULL) { 4236 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4237 if (connp == NULL || connp->conn_policy == NULL) 4238 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY; 4239 } else { 4240 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4241 } 4242 4243 /* 4244 * Copy the right port information. 4245 */ 4246 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4247 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4248 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4249 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4250 ixa->ixa_ipsec_proto = sel.ips_protocol; 4251 return (mp); 4252 } 4253 4254 /* 4255 * When appropriate, this function caches inbound and outbound policy 4256 * for this connection. The outbound policy is stored in conn_ixa. 4257 * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP. 4258 * 4259 * XXX need to work out more details about per-interface policy and 4260 * caching here! 4261 * 4262 * XXX may want to split inbound and outbound caching for ill.. 4263 */ 4264 int 4265 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4) 4266 { 4267 boolean_t global_policy_present; 4268 netstack_t *ns = connp->conn_netstack; 4269 ipsec_stack_t *ipss = ns->netstack_ipsec; 4270 4271 connp->conn_ixa->ixa_ipsec_policy_gen = 4272 ipss->ipsec_system_policy.iph_gen; 4273 /* 4274 * There is no policy latching for ICMP sockets because we can't 4275 * decide on which policy to use until we see the packet and get 4276 * type/code selectors. 4277 */ 4278 if (connp->conn_proto == IPPROTO_ICMP || 4279 connp->conn_proto == IPPROTO_ICMPV6) { 4280 connp->conn_in_enforce_policy = 4281 connp->conn_out_enforce_policy = B_TRUE; 4282 if (connp->conn_latch != NULL) { 4283 IPLATCH_REFRELE(connp->conn_latch); 4284 connp->conn_latch = NULL; 4285 } 4286 if (connp->conn_latch_in_policy != NULL) { 4287 IPPOL_REFRELE(connp->conn_latch_in_policy); 4288 connp->conn_latch_in_policy = NULL; 4289 } 4290 if (connp->conn_latch_in_action != NULL) { 4291 IPACT_REFRELE(connp->conn_latch_in_action); 4292 connp->conn_latch_in_action = NULL; 4293 } 4294 if (connp->conn_ixa->ixa_ipsec_policy != NULL) { 4295 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy); 4296 connp->conn_ixa->ixa_ipsec_policy = NULL; 4297 } 4298 if (connp->conn_ixa->ixa_ipsec_action != NULL) { 4299 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action); 4300 connp->conn_ixa->ixa_ipsec_action = NULL; 4301 } 4302 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4303 return (0); 4304 } 4305 4306 global_policy_present = isv4 ? 4307 (ipss->ipsec_outbound_v4_policy_present || 4308 ipss->ipsec_inbound_v4_policy_present) : 4309 (ipss->ipsec_outbound_v6_policy_present || 4310 ipss->ipsec_inbound_v6_policy_present); 4311 4312 if ((connp->conn_policy != NULL) || global_policy_present) { 4313 ipsec_selector_t sel; 4314 ipsec_policy_t *p; 4315 4316 if (connp->conn_latch == NULL && 4317 (connp->conn_latch = iplatch_create()) == NULL) { 4318 return (ENOMEM); 4319 } 4320 4321 bzero((void*)&sel, sizeof (sel)); 4322 4323 sel.ips_protocol = connp->conn_proto; 4324 sel.ips_local_port = connp->conn_lport; 4325 sel.ips_remote_port = connp->conn_fport; 4326 sel.ips_is_icmp_inv_acq = 0; 4327 sel.ips_isv4 = isv4; 4328 if (isv4) { 4329 sel.ips_local_addr_v4 = connp->conn_laddr_v4; 4330 sel.ips_remote_addr_v4 = connp->conn_faddr_v4; 4331 } else { 4332 sel.ips_local_addr_v6 = connp->conn_laddr_v6; 4333 sel.ips_remote_addr_v6 = connp->conn_faddr_v6; 4334 } 4335 4336 p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns); 4337 if (connp->conn_latch_in_policy != NULL) 4338 IPPOL_REFRELE(connp->conn_latch_in_policy); 4339 connp->conn_latch_in_policy = p; 4340 connp->conn_in_enforce_policy = (p != NULL); 4341 4342 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4343 if (connp->conn_ixa->ixa_ipsec_policy != NULL) 4344 IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy); 4345 connp->conn_ixa->ixa_ipsec_policy = p; 4346 connp->conn_out_enforce_policy = (p != NULL); 4347 if (p != NULL) { 4348 connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4349 if (connp->conn_policy == NULL) { 4350 connp->conn_ixa->ixa_flags |= 4351 IXAF_IPSEC_GLOBAL_POLICY; 4352 } 4353 } else { 4354 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4355 } 4356 /* Clear the latched actions too, in case we're recaching. */ 4357 if (connp->conn_ixa->ixa_ipsec_action != NULL) { 4358 IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action); 4359 connp->conn_ixa->ixa_ipsec_action = NULL; 4360 } 4361 if (connp->conn_latch_in_action != NULL) { 4362 IPACT_REFRELE(connp->conn_latch_in_action); 4363 connp->conn_latch_in_action = NULL; 4364 } 4365 connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port; 4366 connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4367 connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4368 connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4369 connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol; 4370 } else { 4371 connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4372 } 4373 4374 /* 4375 * We may or may not have policy for this endpoint. We still set 4376 * conn_policy_cached so that inbound datagrams don't have to look 4377 * at global policy as policy is considered latched for these 4378 * endpoints. We should not set conn_policy_cached until the conn 4379 * reflects the actual policy. If we *set* this before inheriting 4380 * the policy there is a window where the check 4381 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy 4382 * on the conn (because we have not yet copied the policy on to 4383 * conn and hence not set conn_in_enforce_policy) nor with the 4384 * global policy (because conn_policy_cached is already set). 4385 */ 4386 connp->conn_policy_cached = B_TRUE; 4387 return (0); 4388 } 4389 4390 /* 4391 * When appropriate, this function caches outbound policy for faddr/fport. 4392 * It is used when we are not connected i.e., when we can not latch the 4393 * policy. 4394 */ 4395 void 4396 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src, 4397 const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa) 4398 { 4399 boolean_t isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0; 4400 boolean_t global_policy_present; 4401 netstack_t *ns = connp->conn_netstack; 4402 ipsec_stack_t *ipss = ns->netstack_ipsec; 4403 4404 ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen; 4405 4406 /* 4407 * There is no policy caching for ICMP sockets because we can't 4408 * decide on which policy to use until we see the packet and get 4409 * type/code selectors. 4410 */ 4411 if (connp->conn_proto == IPPROTO_ICMP || 4412 connp->conn_proto == IPPROTO_ICMPV6) { 4413 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4414 if (ixa->ixa_ipsec_policy != NULL) { 4415 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4416 ixa->ixa_ipsec_policy = NULL; 4417 } 4418 if (ixa->ixa_ipsec_action != NULL) { 4419 IPACT_REFRELE(ixa->ixa_ipsec_action); 4420 ixa->ixa_ipsec_action = NULL; 4421 } 4422 return; 4423 } 4424 4425 global_policy_present = isv4 ? 4426 (ipss->ipsec_outbound_v4_policy_present || 4427 ipss->ipsec_inbound_v4_policy_present) : 4428 (ipss->ipsec_outbound_v6_policy_present || 4429 ipss->ipsec_inbound_v6_policy_present); 4430 4431 if ((connp->conn_policy != NULL) || global_policy_present) { 4432 ipsec_selector_t sel; 4433 ipsec_policy_t *p; 4434 4435 bzero((void*)&sel, sizeof (sel)); 4436 4437 sel.ips_protocol = connp->conn_proto; 4438 sel.ips_local_port = connp->conn_lport; 4439 sel.ips_remote_port = dstport; 4440 sel.ips_is_icmp_inv_acq = 0; 4441 sel.ips_isv4 = isv4; 4442 if (isv4) { 4443 IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4); 4444 IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4); 4445 } else { 4446 sel.ips_local_addr_v6 = *v6src; 4447 sel.ips_remote_addr_v6 = *v6dst; 4448 } 4449 4450 p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns); 4451 if (ixa->ixa_ipsec_policy != NULL) 4452 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4453 ixa->ixa_ipsec_policy = p; 4454 if (p != NULL) { 4455 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 4456 if (connp->conn_policy == NULL) 4457 ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY; 4458 } else { 4459 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4460 } 4461 /* Clear the latched actions too, in case we're recaching. */ 4462 if (ixa->ixa_ipsec_action != NULL) { 4463 IPACT_REFRELE(ixa->ixa_ipsec_action); 4464 ixa->ixa_ipsec_action = NULL; 4465 } 4466 4467 ixa->ixa_ipsec_src_port = sel.ips_local_port; 4468 ixa->ixa_ipsec_dst_port = sel.ips_remote_port; 4469 ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type; 4470 ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code; 4471 ixa->ixa_ipsec_proto = sel.ips_protocol; 4472 } else { 4473 ixa->ixa_flags &= ~IXAF_IPSEC_SECURE; 4474 if (ixa->ixa_ipsec_policy != NULL) { 4475 IPPOL_REFRELE(ixa->ixa_ipsec_policy); 4476 ixa->ixa_ipsec_policy = NULL; 4477 } 4478 if (ixa->ixa_ipsec_action != NULL) { 4479 IPACT_REFRELE(ixa->ixa_ipsec_action); 4480 ixa->ixa_ipsec_action = NULL; 4481 } 4482 } 4483 } 4484 4485 /* 4486 * Returns B_FALSE if the policy has gone stale. 4487 */ 4488 boolean_t 4489 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa) 4490 { 4491 ipsec_stack_t *ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec; 4492 4493 if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY)) 4494 return (B_TRUE); 4495 4496 return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen); 4497 } 4498 4499 void 4500 iplatch_free(ipsec_latch_t *ipl) 4501 { 4502 if (ipl->ipl_local_cid != NULL) 4503 IPSID_REFRELE(ipl->ipl_local_cid); 4504 if (ipl->ipl_remote_cid != NULL) 4505 IPSID_REFRELE(ipl->ipl_remote_cid); 4506 mutex_destroy(&ipl->ipl_lock); 4507 kmem_free(ipl, sizeof (*ipl)); 4508 } 4509 4510 ipsec_latch_t * 4511 iplatch_create() 4512 { 4513 ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP); 4514 if (ipl == NULL) 4515 return (ipl); 4516 bzero(ipl, sizeof (*ipl)); 4517 mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL); 4518 ipl->ipl_refcnt = 1; 4519 return (ipl); 4520 } 4521 4522 /* 4523 * Hash function for ID hash table. 4524 */ 4525 static uint32_t 4526 ipsid_hash(int idtype, char *idstring) 4527 { 4528 uint32_t hval = idtype; 4529 unsigned char c; 4530 4531 while ((c = *idstring++) != 0) { 4532 hval = (hval << 4) | (hval >> 28); 4533 hval ^= c; 4534 } 4535 hval = hval ^ (hval >> 16); 4536 return (hval & (IPSID_HASHSIZE-1)); 4537 } 4538 4539 /* 4540 * Look up identity string in hash table. Return identity object 4541 * corresponding to the name -- either preexisting, or newly allocated. 4542 * 4543 * Return NULL if we need to allocate a new one and can't get memory. 4544 */ 4545 ipsid_t * 4546 ipsid_lookup(int idtype, char *idstring, netstack_t *ns) 4547 { 4548 ipsid_t *retval; 4549 char *nstr; 4550 int idlen = strlen(idstring) + 1; 4551 ipsec_stack_t *ipss = ns->netstack_ipsec; 4552 ipsif_t *bucket; 4553 4554 bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)]; 4555 4556 mutex_enter(&bucket->ipsif_lock); 4557 4558 for (retval = bucket->ipsif_head; retval != NULL; 4559 retval = retval->ipsid_next) { 4560 if (idtype != retval->ipsid_type) 4561 continue; 4562 if (bcmp(idstring, retval->ipsid_cid, idlen) != 0) 4563 continue; 4564 4565 IPSID_REFHOLD(retval); 4566 mutex_exit(&bucket->ipsif_lock); 4567 return (retval); 4568 } 4569 4570 retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP); 4571 if (!retval) { 4572 mutex_exit(&bucket->ipsif_lock); 4573 return (NULL); 4574 } 4575 4576 nstr = kmem_alloc(idlen, KM_NOSLEEP); 4577 if (!nstr) { 4578 mutex_exit(&bucket->ipsif_lock); 4579 kmem_free(retval, sizeof (*retval)); 4580 return (NULL); 4581 } 4582 4583 retval->ipsid_refcnt = 1; 4584 retval->ipsid_next = bucket->ipsif_head; 4585 if (retval->ipsid_next != NULL) 4586 retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next; 4587 retval->ipsid_ptpn = &bucket->ipsif_head; 4588 retval->ipsid_type = idtype; 4589 retval->ipsid_cid = nstr; 4590 bucket->ipsif_head = retval; 4591 bcopy(idstring, nstr, idlen); 4592 mutex_exit(&bucket->ipsif_lock); 4593 4594 return (retval); 4595 } 4596 4597 /* 4598 * Garbage collect the identity hash table. 4599 */ 4600 void 4601 ipsid_gc(netstack_t *ns) 4602 { 4603 int i, len; 4604 ipsid_t *id, *nid; 4605 ipsif_t *bucket; 4606 ipsec_stack_t *ipss = ns->netstack_ipsec; 4607 4608 for (i = 0; i < IPSID_HASHSIZE; i++) { 4609 bucket = &ipss->ipsec_ipsid_buckets[i]; 4610 mutex_enter(&bucket->ipsif_lock); 4611 for (id = bucket->ipsif_head; id != NULL; id = nid) { 4612 nid = id->ipsid_next; 4613 if (id->ipsid_refcnt == 0) { 4614 *id->ipsid_ptpn = nid; 4615 if (nid != NULL) 4616 nid->ipsid_ptpn = id->ipsid_ptpn; 4617 len = strlen(id->ipsid_cid) + 1; 4618 kmem_free(id->ipsid_cid, len); 4619 kmem_free(id, sizeof (*id)); 4620 } 4621 } 4622 mutex_exit(&bucket->ipsif_lock); 4623 } 4624 } 4625 4626 /* 4627 * Return true if two identities are the same. 4628 */ 4629 boolean_t 4630 ipsid_equal(ipsid_t *id1, ipsid_t *id2) 4631 { 4632 if (id1 == id2) 4633 return (B_TRUE); 4634 #ifdef DEBUG 4635 if ((id1 == NULL) || (id2 == NULL)) 4636 return (B_FALSE); 4637 /* 4638 * test that we're interning id's correctly.. 4639 */ 4640 ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) || 4641 (id1->ipsid_type != id2->ipsid_type)); 4642 #endif 4643 return (B_FALSE); 4644 } 4645 4646 /* 4647 * Initialize identity table; called during module initialization. 4648 */ 4649 static void 4650 ipsid_init(netstack_t *ns) 4651 { 4652 ipsif_t *bucket; 4653 int i; 4654 ipsec_stack_t *ipss = ns->netstack_ipsec; 4655 4656 for (i = 0; i < IPSID_HASHSIZE; i++) { 4657 bucket = &ipss->ipsec_ipsid_buckets[i]; 4658 mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL); 4659 } 4660 } 4661 4662 /* 4663 * Free identity table (preparatory to module unload) 4664 */ 4665 static void 4666 ipsid_fini(netstack_t *ns) 4667 { 4668 ipsif_t *bucket; 4669 int i; 4670 ipsec_stack_t *ipss = ns->netstack_ipsec; 4671 4672 for (i = 0; i < IPSID_HASHSIZE; i++) { 4673 bucket = &ipss->ipsec_ipsid_buckets[i]; 4674 ASSERT(bucket->ipsif_head == NULL); 4675 mutex_destroy(&bucket->ipsif_lock); 4676 } 4677 } 4678 4679 /* 4680 * Update the minimum and maximum supported key sizes for the 4681 * specified algorithm. Must be called while holding the algorithms lock. 4682 */ 4683 void 4684 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type, 4685 netstack_t *ns) 4686 { 4687 size_t crypto_min = (size_t)-1, crypto_max = 0; 4688 size_t cur_crypto_min, cur_crypto_max; 4689 boolean_t is_valid; 4690 crypto_mechanism_info_t *mech_infos; 4691 uint_t nmech_infos; 4692 int crypto_rc, i; 4693 crypto_mech_usage_t mask; 4694 ipsec_stack_t *ipss = ns->netstack_ipsec; 4695 4696 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 4697 4698 /* 4699 * Compute the min, max, and default key sizes (in number of 4700 * increments to the default key size in bits) as defined 4701 * by the algorithm mappings. This range of key sizes is used 4702 * for policy related operations. The effective key sizes 4703 * supported by the framework could be more limited than 4704 * those defined for an algorithm. 4705 */ 4706 alg->alg_default_bits = alg->alg_key_sizes[0]; 4707 alg->alg_default = 0; 4708 if (alg->alg_increment != 0) { 4709 /* key sizes are defined by range & increment */ 4710 alg->alg_minbits = alg->alg_key_sizes[1]; 4711 alg->alg_maxbits = alg->alg_key_sizes[2]; 4712 } else if (alg->alg_nkey_sizes == 0) { 4713 /* no specified key size for algorithm */ 4714 alg->alg_minbits = alg->alg_maxbits = 0; 4715 } else { 4716 /* key sizes are defined by enumeration */ 4717 alg->alg_minbits = (uint16_t)-1; 4718 alg->alg_maxbits = 0; 4719 4720 for (i = 0; i < alg->alg_nkey_sizes; i++) { 4721 if (alg->alg_key_sizes[i] < alg->alg_minbits) 4722 alg->alg_minbits = alg->alg_key_sizes[i]; 4723 if (alg->alg_key_sizes[i] > alg->alg_maxbits) 4724 alg->alg_maxbits = alg->alg_key_sizes[i]; 4725 } 4726 } 4727 4728 if (!(alg->alg_flags & ALG_FLAG_VALID)) 4729 return; 4730 4731 /* 4732 * Mechanisms do not apply to the NULL encryption 4733 * algorithm, so simply return for this case. 4734 */ 4735 if (alg->alg_id == SADB_EALG_NULL) 4736 return; 4737 4738 /* 4739 * Find the min and max key sizes supported by the cryptographic 4740 * framework providers. 4741 */ 4742 4743 /* get the key sizes supported by the framework */ 4744 crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type, 4745 &mech_infos, &nmech_infos, KM_SLEEP); 4746 if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) { 4747 alg->alg_flags &= ~ALG_FLAG_VALID; 4748 return; 4749 } 4750 4751 /* min and max key sizes supported by framework */ 4752 for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) { 4753 int unit_bits; 4754 4755 /* 4756 * Ignore entries that do not support the operations 4757 * needed for the algorithm type. 4758 */ 4759 if (alg_type == IPSEC_ALG_AUTH) { 4760 mask = CRYPTO_MECH_USAGE_MAC; 4761 } else { 4762 mask = CRYPTO_MECH_USAGE_ENCRYPT | 4763 CRYPTO_MECH_USAGE_DECRYPT; 4764 } 4765 if ((mech_infos[i].mi_usage & mask) != mask) 4766 continue; 4767 4768 unit_bits = (mech_infos[i].mi_keysize_unit == 4769 CRYPTO_KEYSIZE_UNIT_IN_BYTES) ? 8 : 1; 4770 /* adjust min/max supported by framework */ 4771 cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits; 4772 cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits; 4773 4774 if (cur_crypto_min < crypto_min) 4775 crypto_min = cur_crypto_min; 4776 4777 /* 4778 * CRYPTO_EFFECTIVELY_INFINITE is a special value of 4779 * the crypto framework which means "no upper limit". 4780 */ 4781 if (mech_infos[i].mi_max_key_size == 4782 CRYPTO_EFFECTIVELY_INFINITE) { 4783 crypto_max = (size_t)-1; 4784 } else if (cur_crypto_max > crypto_max) { 4785 crypto_max = cur_crypto_max; 4786 } 4787 4788 is_valid = B_TRUE; 4789 } 4790 4791 kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) * 4792 nmech_infos); 4793 4794 if (!is_valid) { 4795 /* no key sizes supported by framework */ 4796 alg->alg_flags &= ~ALG_FLAG_VALID; 4797 return; 4798 } 4799 4800 /* 4801 * Determine min and max key sizes from alg_key_sizes[]. 4802 * defined for the algorithm entry. Adjust key sizes based on 4803 * those supported by the framework. 4804 */ 4805 alg->alg_ef_default_bits = alg->alg_key_sizes[0]; 4806 4807 /* 4808 * For backwards compatability, assume that the IV length 4809 * is the same as the data length. 4810 */ 4811 alg->alg_ivlen = alg->alg_datalen; 4812 4813 /* 4814 * Copy any algorithm parameters (if provided) into dedicated 4815 * elements in the ipsec_alginfo_t structure. 4816 * There may be a better place to put this code. 4817 */ 4818 for (i = 0; i < alg->alg_nparams; i++) { 4819 switch (i) { 4820 case 0: 4821 /* Initialisation Vector length (bytes) */ 4822 alg->alg_ivlen = alg->alg_params[0]; 4823 break; 4824 case 1: 4825 /* Integrity Check Vector length (bytes) */ 4826 alg->alg_icvlen = alg->alg_params[1]; 4827 break; 4828 case 2: 4829 /* Salt length (bytes) */ 4830 alg->alg_saltlen = (uint8_t)alg->alg_params[2]; 4831 break; 4832 default: 4833 break; 4834 } 4835 } 4836 4837 /* Default if the IV length is not specified. */ 4838 if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0) 4839 alg->alg_ivlen = alg->alg_datalen; 4840 4841 alg_flag_check(alg); 4842 4843 if (alg->alg_increment != 0) { 4844 /* supported key sizes are defined by range & increment */ 4845 crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment); 4846 crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment); 4847 4848 alg->alg_ef_minbits = MAX(alg->alg_minbits, 4849 (uint16_t)crypto_min); 4850 alg->alg_ef_maxbits = MIN(alg->alg_maxbits, 4851 (uint16_t)crypto_max); 4852 4853 /* 4854 * If the sizes supported by the framework are outside 4855 * the range of sizes defined by the algorithm mappings, 4856 * the algorithm cannot be used. Check for this 4857 * condition here. 4858 */ 4859 if (alg->alg_ef_minbits > alg->alg_ef_maxbits) { 4860 alg->alg_flags &= ~ALG_FLAG_VALID; 4861 return; 4862 } 4863 if (alg->alg_ef_default_bits < alg->alg_ef_minbits) 4864 alg->alg_ef_default_bits = alg->alg_ef_minbits; 4865 if (alg->alg_ef_default_bits > alg->alg_ef_maxbits) 4866 alg->alg_ef_default_bits = alg->alg_ef_maxbits; 4867 } else if (alg->alg_nkey_sizes == 0) { 4868 /* no specified key size for algorithm */ 4869 alg->alg_ef_minbits = alg->alg_ef_maxbits = 0; 4870 } else { 4871 /* supported key sizes are defined by enumeration */ 4872 alg->alg_ef_minbits = (uint16_t)-1; 4873 alg->alg_ef_maxbits = 0; 4874 4875 for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) { 4876 /* 4877 * Ignore the current key size if it is not in the 4878 * range of sizes supported by the framework. 4879 */ 4880 if (alg->alg_key_sizes[i] < crypto_min || 4881 alg->alg_key_sizes[i] > crypto_max) 4882 continue; 4883 if (alg->alg_key_sizes[i] < alg->alg_ef_minbits) 4884 alg->alg_ef_minbits = alg->alg_key_sizes[i]; 4885 if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits) 4886 alg->alg_ef_maxbits = alg->alg_key_sizes[i]; 4887 is_valid = B_TRUE; 4888 } 4889 4890 if (!is_valid) { 4891 alg->alg_flags &= ~ALG_FLAG_VALID; 4892 return; 4893 } 4894 alg->alg_ef_default = 0; 4895 } 4896 } 4897 4898 /* 4899 * Sanity check parameters provided by ipsecalgs(1m). Assume that 4900 * the algoritm is marked as valid, there is a check at the top 4901 * of this function. If any of the checks below fail, the algorithm 4902 * entry is invalid. 4903 */ 4904 void 4905 alg_flag_check(ipsec_alginfo_t *alg) 4906 { 4907 alg->alg_flags &= ~ALG_FLAG_VALID; 4908 4909 /* 4910 * Can't have the algorithm marked as CCM and GCM. 4911 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE 4912 * flags are set for CCM & GCM. 4913 */ 4914 if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) == 4915 (ALG_FLAG_CCM|ALG_FLAG_GCM)) 4916 return; 4917 if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) { 4918 if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE)) 4919 return; 4920 if (!(alg->alg_flags & ALG_FLAG_COMBINED)) 4921 return; 4922 } 4923 4924 /* 4925 * For ALG_FLAG_COUNTERMODE, check the parameters 4926 * fit in the ipsec_nonce_t structure. 4927 */ 4928 if (alg->alg_flags & ALG_FLAG_COUNTERMODE) { 4929 if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv)) 4930 return; 4931 if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt)) 4932 return; 4933 } 4934 if ((alg->alg_flags & ALG_FLAG_COMBINED) && 4935 (alg->alg_icvlen == 0)) 4936 return; 4937 4938 /* all is well. */ 4939 alg->alg_flags |= ALG_FLAG_VALID; 4940 } 4941 4942 /* 4943 * Free the memory used by the specified algorithm. 4944 */ 4945 void 4946 ipsec_alg_free(ipsec_alginfo_t *alg) 4947 { 4948 if (alg == NULL) 4949 return; 4950 4951 if (alg->alg_key_sizes != NULL) { 4952 kmem_free(alg->alg_key_sizes, 4953 (alg->alg_nkey_sizes + 1) * sizeof (uint16_t)); 4954 alg->alg_key_sizes = NULL; 4955 } 4956 if (alg->alg_block_sizes != NULL) { 4957 kmem_free(alg->alg_block_sizes, 4958 (alg->alg_nblock_sizes + 1) * sizeof (uint16_t)); 4959 alg->alg_block_sizes = NULL; 4960 } 4961 if (alg->alg_params != NULL) { 4962 kmem_free(alg->alg_params, 4963 (alg->alg_nparams + 1) * sizeof (uint16_t)); 4964 alg->alg_params = NULL; 4965 } 4966 kmem_free(alg, sizeof (*alg)); 4967 } 4968 4969 /* 4970 * Check the validity of the specified key size for an algorithm. 4971 * Returns B_TRUE if key size is valid, B_FALSE otherwise. 4972 */ 4973 boolean_t 4974 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg) 4975 { 4976 if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits) 4977 return (B_FALSE); 4978 4979 if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) { 4980 /* 4981 * If the key sizes are defined by enumeration, the new 4982 * key size must be equal to one of the supported values. 4983 */ 4984 int i; 4985 4986 for (i = 0; i < alg->alg_nkey_sizes; i++) 4987 if (key_size == alg->alg_key_sizes[i]) 4988 break; 4989 if (i == alg->alg_nkey_sizes) 4990 return (B_FALSE); 4991 } 4992 4993 return (B_TRUE); 4994 } 4995 4996 /* 4997 * Callback function invoked by the crypto framework when a provider 4998 * registers or unregisters. This callback updates the algorithms 4999 * tables when a crypto algorithm is no longer available or becomes 5000 * available, and triggers the freeing/creation of context templates 5001 * associated with existing SAs, if needed. 5002 * 5003 * Need to walk all stack instances since the callback is global 5004 * for all instances 5005 */ 5006 void 5007 ipsec_prov_update_callback(uint32_t event, void *event_arg) 5008 { 5009 netstack_handle_t nh; 5010 netstack_t *ns; 5011 5012 netstack_next_init(&nh); 5013 while ((ns = netstack_next(&nh)) != NULL) { 5014 ipsec_prov_update_callback_stack(event, event_arg, ns); 5015 netstack_rele(ns); 5016 } 5017 netstack_next_fini(&nh); 5018 } 5019 5020 static void 5021 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg, 5022 netstack_t *ns) 5023 { 5024 crypto_notify_event_change_t *prov_change = 5025 (crypto_notify_event_change_t *)event_arg; 5026 uint_t algidx, algid, algtype, mech_count, mech_idx; 5027 ipsec_alginfo_t *alg; 5028 ipsec_alginfo_t oalg; 5029 crypto_mech_name_t *mechs; 5030 boolean_t alg_changed = B_FALSE; 5031 ipsec_stack_t *ipss = ns->netstack_ipsec; 5032 5033 /* ignore events for which we didn't register */ 5034 if (event != CRYPTO_EVENT_MECHS_CHANGED) { 5035 ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x " 5036 " received from crypto framework\n", event)); 5037 return; 5038 } 5039 5040 mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); 5041 if (mechs == NULL) 5042 return; 5043 5044 /* 5045 * Walk the list of currently defined IPsec algorithm. Update 5046 * the algorithm valid flag and trigger an update of the 5047 * SAs that depend on that algorithm. 5048 */ 5049 mutex_enter(&ipss->ipsec_alg_lock); 5050 for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { 5051 for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype]; 5052 algidx++) { 5053 5054 algid = ipss->ipsec_sortlist[algtype][algidx]; 5055 alg = ipss->ipsec_alglists[algtype][algid]; 5056 ASSERT(alg != NULL); 5057 5058 /* 5059 * Skip the algorithms which do not map to the 5060 * crypto framework provider being added or removed. 5061 */ 5062 if (strncmp(alg->alg_mech_name, 5063 prov_change->ec_mech_name, 5064 CRYPTO_MAX_MECH_NAME) != 0) 5065 continue; 5066 5067 /* 5068 * Determine if the mechanism is valid. If it 5069 * is not, mark the algorithm as being invalid. If 5070 * it is, mark the algorithm as being valid. 5071 */ 5072 for (mech_idx = 0; mech_idx < mech_count; mech_idx++) 5073 if (strncmp(alg->alg_mech_name, 5074 mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) 5075 break; 5076 if (mech_idx == mech_count && 5077 alg->alg_flags & ALG_FLAG_VALID) { 5078 alg->alg_flags &= ~ALG_FLAG_VALID; 5079 alg_changed = B_TRUE; 5080 } else if (mech_idx < mech_count && 5081 !(alg->alg_flags & ALG_FLAG_VALID)) { 5082 alg->alg_flags |= ALG_FLAG_VALID; 5083 alg_changed = B_TRUE; 5084 } 5085 5086 /* 5087 * Update the supported key sizes, regardless 5088 * of whether a crypto provider was added or 5089 * removed. 5090 */ 5091 oalg = *alg; 5092 ipsec_alg_fix_min_max(alg, algtype, ns); 5093 if (!alg_changed && 5094 alg->alg_ef_minbits != oalg.alg_ef_minbits || 5095 alg->alg_ef_maxbits != oalg.alg_ef_maxbits || 5096 alg->alg_ef_default != oalg.alg_ef_default || 5097 alg->alg_ef_default_bits != 5098 oalg.alg_ef_default_bits) 5099 alg_changed = B_TRUE; 5100 5101 /* 5102 * Update the affected SAs if a software provider is 5103 * being added or removed. 5104 */ 5105 if (prov_change->ec_provider_type == 5106 CRYPTO_SW_PROVIDER) 5107 sadb_alg_update(algtype, alg->alg_id, 5108 prov_change->ec_change == 5109 CRYPTO_MECH_ADDED, ns); 5110 } 5111 } 5112 mutex_exit(&ipss->ipsec_alg_lock); 5113 crypto_free_mech_list(mechs, mech_count); 5114 5115 if (alg_changed) { 5116 /* 5117 * An algorithm has changed, i.e. it became valid or 5118 * invalid, or its support key sizes have changed. 5119 * Notify ipsecah and ipsecesp of this change so 5120 * that they can send a SADB_REGISTER to their consumers. 5121 */ 5122 ipsecah_algs_changed(ns); 5123 ipsecesp_algs_changed(ns); 5124 } 5125 } 5126 5127 /* 5128 * Registers with the crypto framework to be notified of crypto 5129 * providers changes. Used to update the algorithm tables and 5130 * to free or create context templates if needed. Invoked after IPsec 5131 * is loaded successfully. 5132 * 5133 * This is called separately for each IP instance, so we ensure we only 5134 * register once. 5135 */ 5136 void 5137 ipsec_register_prov_update(void) 5138 { 5139 if (prov_update_handle != NULL) 5140 return; 5141 5142 prov_update_handle = crypto_notify_events( 5143 ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED); 5144 } 5145 5146 /* 5147 * Unregisters from the framework to be notified of crypto providers 5148 * changes. Called from ipsec_policy_g_destroy(). 5149 */ 5150 static void 5151 ipsec_unregister_prov_update(void) 5152 { 5153 if (prov_update_handle != NULL) 5154 crypto_unnotify_events(prov_update_handle); 5155 } 5156 5157 /* 5158 * Tunnel-mode support routines. 5159 */ 5160 5161 /* 5162 * Returns an mblk chain suitable for putnext() if policies match and IPsec 5163 * SAs are available. If there's no per-tunnel policy, or a match comes back 5164 * with no match, then still return the packet and have global policy take 5165 * a crack at it in IP. 5166 * This updates the ip_xmit_attr with the IPsec policy. 5167 * 5168 * Remember -> we can be forwarding packets. Keep that in mind w.r.t. 5169 * inner-packet contents. 5170 */ 5171 mblk_t * 5172 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4, 5173 ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len, 5174 ip_xmit_attr_t *ixa) 5175 { 5176 ipsec_policy_head_t *polhead; 5177 ipsec_selector_t sel; 5178 mblk_t *nmp; 5179 boolean_t is_fragment; 5180 ipsec_policy_t *pol; 5181 ipsec_tun_pol_t *itp = iptun->iptun_itp; 5182 netstack_t *ns = iptun->iptun_ns; 5183 ipsec_stack_t *ipss = ns->netstack_ipsec; 5184 5185 ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL || 5186 outer_ipv4 != NULL && outer_ipv6 == NULL); 5187 /* We take care of inners in a bit. */ 5188 5189 /* Are the IPsec fields initialized at all? */ 5190 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) { 5191 ASSERT(ixa->ixa_ipsec_policy == NULL); 5192 ASSERT(ixa->ixa_ipsec_latch == NULL); 5193 ASSERT(ixa->ixa_ipsec_action == NULL); 5194 ASSERT(ixa->ixa_ipsec_ah_sa == NULL); 5195 ASSERT(ixa->ixa_ipsec_esp_sa == NULL); 5196 } 5197 5198 ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)); 5199 polhead = itp->itp_policy; 5200 5201 bzero(&sel, sizeof (sel)); 5202 if (inner_ipv4 != NULL) { 5203 ASSERT(inner_ipv6 == NULL); 5204 sel.ips_isv4 = B_TRUE; 5205 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5206 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5207 sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol; 5208 } else { 5209 ASSERT(inner_ipv6 != NULL); 5210 sel.ips_isv4 = B_FALSE; 5211 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5212 /* 5213 * We don't care about routing-header dests in the 5214 * forwarding/tunnel path, so just grab ip6_dst. 5215 */ 5216 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5217 } 5218 5219 if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) { 5220 /* 5221 * Caller can prepend the outer header, which means 5222 * inner_ipv[46] may be stuck in the middle. Pullup the whole 5223 * mess now if need-be, for easier processing later. Don't 5224 * forget to rewire the outer header too. 5225 */ 5226 if (mp->b_cont != NULL) { 5227 nmp = msgpullup(mp, -1); 5228 if (nmp == NULL) { 5229 ip_drop_packet(mp, B_FALSE, NULL, 5230 DROPPER(ipss, ipds_spd_nomem), 5231 &ipss->ipsec_spd_dropper); 5232 return (NULL); 5233 } 5234 freemsg(mp); 5235 mp = nmp; 5236 if (outer_ipv4 != NULL) 5237 outer_ipv4 = (ipha_t *)mp->b_rptr; 5238 else 5239 outer_ipv6 = (ip6_t *)mp->b_rptr; 5240 if (inner_ipv4 != NULL) { 5241 inner_ipv4 = 5242 (ipha_t *)(mp->b_rptr + outer_hdr_len); 5243 } else { 5244 inner_ipv6 = 5245 (ip6_t *)(mp->b_rptr + outer_hdr_len); 5246 } 5247 } 5248 if (inner_ipv4 != NULL) { 5249 is_fragment = IS_V4_FRAGMENT( 5250 inner_ipv4->ipha_fragment_offset_and_flags); 5251 } else { 5252 sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp, 5253 &is_fragment); 5254 } 5255 5256 if (is_fragment) { 5257 ipha_t *oiph; 5258 ipha_t *iph = NULL; 5259 ip6_t *ip6h = NULL; 5260 int hdr_len; 5261 uint16_t ip6_hdr_length; 5262 uint8_t v6_proto; 5263 uint8_t *v6_proto_p; 5264 5265 /* 5266 * We have a fragment we need to track! 5267 */ 5268 mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp, 5269 outer_hdr_len, ipss); 5270 if (mp == NULL) 5271 return (NULL); 5272 ASSERT(mp->b_cont == NULL); 5273 5274 /* 5275 * If we get here, we have a full fragment chain 5276 */ 5277 5278 oiph = (ipha_t *)mp->b_rptr; 5279 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 5280 hdr_len = ((outer_hdr_len != 0) ? 5281 IPH_HDR_LENGTH(oiph) : 0); 5282 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5283 } else { 5284 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 5285 ip6h = (ip6_t *)mp->b_rptr; 5286 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, 5287 &ip6_hdr_length, &v6_proto_p)) { 5288 ip_drop_packet_chain(mp, B_FALSE, NULL, 5289 DROPPER(ipss, 5290 ipds_spd_malformed_packet), 5291 &ipss->ipsec_spd_dropper); 5292 return (NULL); 5293 } 5294 hdr_len = ip6_hdr_length; 5295 } 5296 outer_hdr_len = hdr_len; 5297 5298 if (sel.ips_isv4) { 5299 if (iph == NULL) { 5300 /* Was v6 outer */ 5301 iph = (ipha_t *)(mp->b_rptr + hdr_len); 5302 } 5303 inner_ipv4 = iph; 5304 sel.ips_local_addr_v4 = inner_ipv4->ipha_src; 5305 sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst; 5306 sel.ips_protocol = 5307 (uint8_t)inner_ipv4->ipha_protocol; 5308 } else { 5309 inner_ipv6 = (ip6_t *)(mp->b_rptr + 5310 hdr_len); 5311 sel.ips_local_addr_v6 = inner_ipv6->ip6_src; 5312 sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst; 5313 if (!ip_hdr_length_nexthdr_v6(mp, 5314 inner_ipv6, &ip6_hdr_length, &v6_proto_p)) { 5315 ip_drop_packet_chain(mp, B_FALSE, NULL, 5316 DROPPER(ipss, 5317 ipds_spd_malformed_frag), 5318 &ipss->ipsec_spd_dropper); 5319 return (NULL); 5320 } 5321 v6_proto = *v6_proto_p; 5322 sel.ips_protocol = v6_proto; 5323 #ifdef FRAGCACHE_DEBUG 5324 cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n", 5325 sel.ips_protocol); 5326 #endif 5327 } 5328 /* Ports are extracted below */ 5329 } 5330 5331 /* Get ports... */ 5332 if (!ipsec_init_outbound_ports(&sel, mp, 5333 inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) { 5334 /* callee did ip_drop_packet_chain() on mp. */ 5335 return (NULL); 5336 } 5337 #ifdef FRAGCACHE_DEBUG 5338 if (inner_ipv4 != NULL) 5339 cmn_err(CE_WARN, 5340 "(v4) sel.ips_protocol = %d, " 5341 "sel.ips_local_port = %d, " 5342 "sel.ips_remote_port = %d\n", 5343 sel.ips_protocol, ntohs(sel.ips_local_port), 5344 ntohs(sel.ips_remote_port)); 5345 if (inner_ipv6 != NULL) 5346 cmn_err(CE_WARN, 5347 "(v6) sel.ips_protocol = %d, " 5348 "sel.ips_local_port = %d, " 5349 "sel.ips_remote_port = %d\n", 5350 sel.ips_protocol, ntohs(sel.ips_local_port), 5351 ntohs(sel.ips_remote_port)); 5352 #endif 5353 /* Success so far! */ 5354 } 5355 rw_enter(&polhead->iph_lock, RW_READER); 5356 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel); 5357 rw_exit(&polhead->iph_lock); 5358 if (pol == NULL) { 5359 /* 5360 * No matching policy on this tunnel, drop the packet. 5361 * 5362 * NOTE: Tunnel-mode tunnels are different from the 5363 * IP global transport mode policy head. For a tunnel-mode 5364 * tunnel, we drop the packet in lieu of passing it 5365 * along accepted the way a global-policy miss would. 5366 * 5367 * NOTE2: "negotiate transport" tunnels should match ALL 5368 * inbound packets, but we do not uncomment the ASSERT() 5369 * below because if/when we open PF_POLICY, a user can 5370 * shoot him/her-self in the foot with a 0 priority. 5371 */ 5372 5373 /* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */ 5374 #ifdef FRAGCACHE_DEBUG 5375 cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel " 5376 "per-port policy\n"); 5377 #endif 5378 ip_drop_packet_chain(mp, B_FALSE, NULL, 5379 DROPPER(ipss, ipds_spd_explicit), 5380 &ipss->ipsec_spd_dropper); 5381 return (NULL); 5382 } 5383 5384 #ifdef FRAGCACHE_DEBUG 5385 cmn_err(CE_WARN, "Having matching tunnel per-port policy\n"); 5386 #endif 5387 5388 /* 5389 * NOTE: ixa_cleanup() function will release pol references. 5390 */ 5391 ixa->ixa_ipsec_policy = pol; 5392 /* 5393 * NOTE: There is a subtle difference between iptun_zoneid and 5394 * iptun_connp->conn_zoneid explained in iptun_conn_create(). When 5395 * interacting with the ip module, we must use conn_zoneid. 5396 */ 5397 ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid; 5398 5399 ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) : 5400 !(ixa->ixa_flags & IXAF_IS_IPV4)); 5401 ASSERT(ixa->ixa_ipsec_policy != NULL); 5402 ixa->ixa_flags |= IXAF_IPSEC_SECURE; 5403 5404 if (!(itp->itp_flags & ITPF_P_TUNNEL)) { 5405 /* Set up transport mode for tunnelled packets. */ 5406 ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP : 5407 IPPROTO_IPV6; 5408 return (mp); 5409 } 5410 5411 /* Fill in tunnel-mode goodies here. */ 5412 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 5413 /* XXX Do I need to fill in all of the goodies here? */ 5414 if (inner_ipv4) { 5415 ixa->ixa_ipsec_inaf = AF_INET; 5416 ixa->ixa_ipsec_insrc[0] = 5417 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4; 5418 ixa->ixa_ipsec_indst[0] = 5419 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4; 5420 } else { 5421 ixa->ixa_ipsec_inaf = AF_INET6; 5422 ixa->ixa_ipsec_insrc[0] = 5423 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0]; 5424 ixa->ixa_ipsec_insrc[1] = 5425 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1]; 5426 ixa->ixa_ipsec_insrc[2] = 5427 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2]; 5428 ixa->ixa_ipsec_insrc[3] = 5429 pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3]; 5430 ixa->ixa_ipsec_indst[0] = 5431 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0]; 5432 ixa->ixa_ipsec_indst[1] = 5433 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1]; 5434 ixa->ixa_ipsec_indst[2] = 5435 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2]; 5436 ixa->ixa_ipsec_indst[3] = 5437 pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3]; 5438 } 5439 ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen; 5440 ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen; 5441 /* NOTE: These are used for transport mode too. */ 5442 ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport; 5443 ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport; 5444 ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto; 5445 5446 return (mp); 5447 } 5448 5449 /* 5450 * NOTE: The following releases pol's reference and 5451 * calls ip_drop_packet() for me on NULL returns. 5452 */ 5453 mblk_t * 5454 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol, 5455 ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns) 5456 { 5457 /* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */ 5458 mblk_t *data_chain = NULL, *data_tail = NULL; 5459 mblk_t *next; 5460 mblk_t *data_mp; 5461 ip_recv_attr_t iras; 5462 5463 while (attr_mp != NULL) { 5464 ASSERT(ip_recv_attr_is_mblk(attr_mp)); 5465 next = attr_mp->b_next; 5466 attr_mp->b_next = NULL; /* No tripping asserts. */ 5467 5468 data_mp = attr_mp->b_cont; 5469 attr_mp->b_cont = NULL; 5470 if (!ip_recv_attr_from_mblk(attr_mp, &iras)) { 5471 /* The ill or ip_stack_t disappeared on us */ 5472 freemsg(data_mp); /* ip_drop_packet?? */ 5473 ira_cleanup(&iras, B_TRUE); 5474 goto fail; 5475 } 5476 5477 /* 5478 * Need IPPOL_REFHOLD(pol) for extras because 5479 * ipsecin_policy does the refrele. 5480 */ 5481 IPPOL_REFHOLD(pol); 5482 5483 data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4, 5484 inner_ipv6, pkt_unique, &iras, ns); 5485 ira_cleanup(&iras, B_TRUE); 5486 5487 if (data_mp == NULL) 5488 goto fail; 5489 5490 if (data_tail == NULL) { 5491 /* First one */ 5492 data_chain = data_tail = data_mp; 5493 } else { 5494 data_tail->b_next = data_mp; 5495 data_tail = data_mp; 5496 } 5497 attr_mp = next; 5498 } 5499 /* 5500 * One last release because either the loop bumped it up, or we never 5501 * called ipsec_check_ipsecin_policy(). 5502 */ 5503 IPPOL_REFRELE(pol); 5504 5505 /* data_chain is ready for return to tun module. */ 5506 return (data_chain); 5507 5508 fail: 5509 /* 5510 * Need to get rid of any extra pol 5511 * references, and any remaining bits as well. 5512 */ 5513 IPPOL_REFRELE(pol); 5514 ipsec_freemsg_chain(data_chain); 5515 ipsec_freemsg_chain(next); /* ipdrop stats? */ 5516 return (NULL); 5517 } 5518 5519 /* 5520 * Return a message if the inbound packet passed an IPsec policy check. Returns 5521 * NULL if it failed or if it is a fragment needing its friends before a 5522 * policy check can be performed. 5523 * 5524 * Expects a non-NULL data_mp, and a non-NULL polhead. 5525 * The returned mblk may be a b_next chain of packets if fragments 5526 * neeeded to be collected for a proper policy check. 5527 * 5528 * This function calls ip_drop_packet() on data_mp if need be. 5529 * 5530 * NOTE: outer_hdr_len is signed. If it's a negative value, the caller 5531 * is inspecting an ICMP packet. 5532 */ 5533 mblk_t * 5534 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp, 5535 ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4, 5536 ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns) 5537 { 5538 ipsec_policy_head_t *polhead; 5539 ipsec_selector_t sel; 5540 ipsec_policy_t *pol; 5541 uint16_t tmpport; 5542 selret_t rc; 5543 boolean_t port_policy_present, is_icmp, global_present; 5544 in6_addr_t tmpaddr; 5545 ipaddr_t tmp4; 5546 uint8_t flags, *inner_hdr; 5547 ipsec_stack_t *ipss = ns->netstack_ipsec; 5548 5549 sel.ips_is_icmp_inv_acq = 0; 5550 5551 if (outer_ipv4 != NULL) { 5552 ASSERT(outer_ipv6 == NULL); 5553 global_present = ipss->ipsec_inbound_v4_policy_present; 5554 } else { 5555 ASSERT(outer_ipv6 != NULL); 5556 global_present = ipss->ipsec_inbound_v6_policy_present; 5557 } 5558 5559 ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL || 5560 inner_ipv4 == NULL && inner_ipv6 != NULL); 5561 5562 if (outer_hdr_len < 0) { 5563 outer_hdr_len = (-outer_hdr_len); 5564 is_icmp = B_TRUE; 5565 } else { 5566 is_icmp = B_FALSE; 5567 } 5568 5569 if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) { 5570 mblk_t *mp = data_mp; 5571 5572 polhead = itp->itp_policy; 5573 /* 5574 * We need to perform full Tunnel-Mode enforcement, 5575 * and we need to have inner-header data for such enforcement. 5576 * 5577 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound 5578 * and on return. 5579 */ 5580 5581 port_policy_present = ((itp->itp_flags & 5582 ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE); 5583 /* 5584 * NOTE: Even if our policy is transport mode, set the 5585 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can 5586 * do the right thing w.r.t. outer headers. 5587 */ 5588 flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) | 5589 (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE); 5590 5591 rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4, 5592 inner_ipv6, flags); 5593 5594 switch (rc) { 5595 case SELRET_NOMEM: 5596 ip_drop_packet(data_mp, B_TRUE, NULL, 5597 DROPPER(ipss, ipds_spd_nomem), 5598 &ipss->ipsec_spd_dropper); 5599 return (NULL); 5600 case SELRET_TUNFRAG: 5601 /* 5602 * At this point, if we're cleartext, we don't want 5603 * to go there. 5604 */ 5605 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 5606 ip_drop_packet(data_mp, B_TRUE, NULL, 5607 DROPPER(ipss, ipds_spd_got_clear), 5608 &ipss->ipsec_spd_dropper); 5609 return (NULL); 5610 } 5611 /* 5612 * If we need to queue the packet. First we 5613 * get an mblk with the attributes. ipsec_fragcache_add 5614 * will prepend that to the queued data and return 5615 * a list of b_next messages each of which starts with 5616 * the attribute mblk. 5617 */ 5618 mp = ip_recv_attr_to_mblk(ira); 5619 if (mp == NULL) { 5620 ip_drop_packet(data_mp, B_TRUE, NULL, 5621 DROPPER(ipss, ipds_spd_nomem), 5622 &ipss->ipsec_spd_dropper); 5623 return (NULL); 5624 } 5625 mp = ipsec_fragcache_add(&itp->itp_fragcache, 5626 mp, data_mp, outer_hdr_len, ipss); 5627 5628 if (mp == NULL) { 5629 /* 5630 * Data is cached, fragment chain is not 5631 * complete. 5632 */ 5633 return (NULL); 5634 } 5635 5636 /* 5637 * If we get here, we have a full fragment chain. 5638 * Reacquire headers and selectors from first fragment. 5639 */ 5640 ASSERT(ip_recv_attr_is_mblk(mp)); 5641 data_mp = mp->b_cont; 5642 inner_hdr = data_mp->b_rptr; 5643 if (outer_ipv4 != NULL) { 5644 inner_hdr += IPH_HDR_LENGTH( 5645 (ipha_t *)data_mp->b_rptr); 5646 } else { 5647 inner_hdr += ip_hdr_length_v6(data_mp, 5648 (ip6_t *)data_mp->b_rptr); 5649 } 5650 ASSERT(inner_hdr <= data_mp->b_wptr); 5651 5652 if (inner_ipv4 != NULL) { 5653 inner_ipv4 = (ipha_t *)inner_hdr; 5654 inner_ipv6 = NULL; 5655 } else { 5656 inner_ipv6 = (ip6_t *)inner_hdr; 5657 inner_ipv4 = NULL; 5658 } 5659 5660 /* 5661 * Use SEL_TUNNEL_MODE to take into account the outer 5662 * header. Use SEL_POST_FRAG so we always get ports. 5663 */ 5664 rc = ipsec_init_inbound_sel(&sel, data_mp, 5665 inner_ipv4, inner_ipv6, 5666 SEL_TUNNEL_MODE | SEL_POST_FRAG); 5667 switch (rc) { 5668 case SELRET_SUCCESS: 5669 /* 5670 * Get to same place as first caller's 5671 * SELRET_SUCCESS case. 5672 */ 5673 break; 5674 case SELRET_NOMEM: 5675 ip_drop_packet_chain(mp, B_TRUE, NULL, 5676 DROPPER(ipss, ipds_spd_nomem), 5677 &ipss->ipsec_spd_dropper); 5678 return (NULL); 5679 case SELRET_BADPKT: 5680 ip_drop_packet_chain(mp, B_TRUE, NULL, 5681 DROPPER(ipss, ipds_spd_malformed_frag), 5682 &ipss->ipsec_spd_dropper); 5683 return (NULL); 5684 case SELRET_TUNFRAG: 5685 cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)"); 5686 /* FALLTHRU */ 5687 default: 5688 cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)" 5689 " returns bizarro 0x%x", rc); 5690 /* Guaranteed panic! */ 5691 ASSERT(rc == SELRET_NOMEM); 5692 return (NULL); 5693 } 5694 /* FALLTHRU */ 5695 case SELRET_SUCCESS: 5696 /* 5697 * Common case: 5698 * No per-port policy or a non-fragment. Keep going. 5699 */ 5700 break; 5701 case SELRET_BADPKT: 5702 /* 5703 * We may receive ICMP (with IPv6 inner) packets that 5704 * trigger this return value. Send 'em in for 5705 * enforcement checking. 5706 */ 5707 cmn_err(CE_NOTE, "ipsec_tun_inbound(): " 5708 "sending 'bad packet' in for enforcement"); 5709 break; 5710 default: 5711 cmn_err(CE_WARN, 5712 "ipsec_init_inbound_sel() returns bizarro 0x%x", 5713 rc); 5714 ASSERT(rc == SELRET_NOMEM); /* Guaranteed panic! */ 5715 return (NULL); 5716 } 5717 5718 if (is_icmp) { 5719 /* 5720 * Swap local/remote because this is an ICMP packet. 5721 */ 5722 tmpaddr = sel.ips_local_addr_v6; 5723 sel.ips_local_addr_v6 = sel.ips_remote_addr_v6; 5724 sel.ips_remote_addr_v6 = tmpaddr; 5725 tmpport = sel.ips_local_port; 5726 sel.ips_local_port = sel.ips_remote_port; 5727 sel.ips_remote_port = tmpport; 5728 } 5729 5730 /* find_policy_head() */ 5731 rw_enter(&polhead->iph_lock, RW_READER); 5732 pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND, 5733 &sel); 5734 rw_exit(&polhead->iph_lock); 5735 if (pol != NULL) { 5736 uint64_t pkt_unique; 5737 5738 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 5739 if (!pol->ipsp_act->ipa_allow_clear) { 5740 /* 5741 * XXX should never get here with 5742 * tunnel reassembled fragments? 5743 */ 5744 ASSERT(mp == data_mp); 5745 ip_drop_packet(data_mp, B_TRUE, NULL, 5746 DROPPER(ipss, ipds_spd_got_clear), 5747 &ipss->ipsec_spd_dropper); 5748 IPPOL_REFRELE(pol); 5749 return (NULL); 5750 } else { 5751 IPPOL_REFRELE(pol); 5752 return (mp); 5753 } 5754 } 5755 pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port, 5756 sel.ips_local_port, 5757 (inner_ipv4 == NULL) ? IPPROTO_IPV6 : 5758 IPPROTO_ENCAP, sel.ips_protocol); 5759 5760 /* 5761 * NOTE: The following releases pol's reference and 5762 * calls ip_drop_packet() for me on NULL returns. 5763 * 5764 * "sel" is still good here, so let's use it! 5765 */ 5766 if (data_mp == mp) { 5767 /* A single packet without attributes */ 5768 data_mp = ipsec_check_ipsecin_policy(data_mp, 5769 pol, inner_ipv4, inner_ipv6, pkt_unique, 5770 ira, ns); 5771 } else { 5772 /* 5773 * We pass in the b_next chain of attr_mp's 5774 * and get back a b_next chain of data_mp's. 5775 */ 5776 data_mp = ipsec_check_ipsecin_policy_reasm(mp, 5777 pol, inner_ipv4, inner_ipv6, pkt_unique, 5778 ns); 5779 } 5780 return (data_mp); 5781 } 5782 5783 /* 5784 * Else fallthru and check the global policy on the outer 5785 * header(s) if this tunnel is an old-style transport-mode 5786 * one. Drop the packet explicitly (no policy entry) for 5787 * a new-style tunnel-mode tunnel. 5788 */ 5789 if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) { 5790 ip_drop_packet_chain(data_mp, B_TRUE, NULL, 5791 DROPPER(ipss, ipds_spd_explicit), 5792 &ipss->ipsec_spd_dropper); 5793 return (NULL); 5794 } 5795 } 5796 5797 /* 5798 * NOTE: If we reach here, we will not have packet chains from 5799 * fragcache_add(), because the only way I get chains is on a 5800 * tunnel-mode tunnel, which either returns with a pass, or gets 5801 * hit by the ip_drop_packet_chain() call right above here. 5802 */ 5803 ASSERT(data_mp->b_next == NULL); 5804 5805 /* If no per-tunnel security, check global policy now. */ 5806 if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) { 5807 if (ira->ira_flags & IRAF_TRUSTED_ICMP) { 5808 /* 5809 * This is an ICMP message that was geenrated locally. 5810 * We should accept it. 5811 */ 5812 return (data_mp); 5813 } 5814 5815 ip_drop_packet(data_mp, B_TRUE, NULL, 5816 DROPPER(ipss, ipds_spd_got_secure), 5817 &ipss->ipsec_spd_dropper); 5818 return (NULL); 5819 } 5820 5821 if (is_icmp) { 5822 /* 5823 * For ICMP packets, "outer_ipvN" is set to the outer header 5824 * that is *INSIDE* the ICMP payload. For global policy 5825 * checking, we need to reverse src/dst on the payload in 5826 * order to construct selectors appropriately. See "ripha" 5827 * constructions in ip.c. To avoid a bug like 6478464 (see 5828 * earlier in this file), we will actually exchange src/dst 5829 * in the packet, and reverse if after the call to 5830 * ipsec_check_global_policy(). 5831 */ 5832 if (outer_ipv4 != NULL) { 5833 tmp4 = outer_ipv4->ipha_src; 5834 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 5835 outer_ipv4->ipha_dst = tmp4; 5836 } else { 5837 ASSERT(outer_ipv6 != NULL); 5838 tmpaddr = outer_ipv6->ip6_src; 5839 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 5840 outer_ipv6->ip6_dst = tmpaddr; 5841 } 5842 } 5843 5844 data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4, 5845 outer_ipv6, ira, ns); 5846 if (data_mp == NULL) 5847 return (NULL); 5848 5849 if (is_icmp) { 5850 /* Set things back to normal. */ 5851 if (outer_ipv4 != NULL) { 5852 tmp4 = outer_ipv4->ipha_src; 5853 outer_ipv4->ipha_src = outer_ipv4->ipha_dst; 5854 outer_ipv4->ipha_dst = tmp4; 5855 } else { 5856 /* No need for ASSERT()s now. */ 5857 tmpaddr = outer_ipv6->ip6_src; 5858 outer_ipv6->ip6_src = outer_ipv6->ip6_dst; 5859 outer_ipv6->ip6_dst = tmpaddr; 5860 } 5861 } 5862 5863 /* 5864 * At this point, we pretend it's a cleartext accepted 5865 * packet. 5866 */ 5867 return (data_mp); 5868 } 5869 5870 /* 5871 * AVL comparison routine for our list of tunnel polheads. 5872 */ 5873 static int 5874 tunnel_compare(const void *arg1, const void *arg2) 5875 { 5876 ipsec_tun_pol_t *left, *right; 5877 int rc; 5878 5879 left = (ipsec_tun_pol_t *)arg1; 5880 right = (ipsec_tun_pol_t *)arg2; 5881 5882 rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ); 5883 return (rc == 0 ? rc : (rc > 0 ? 1 : -1)); 5884 } 5885 5886 /* 5887 * Free a tunnel policy node. 5888 */ 5889 void 5890 itp_free(ipsec_tun_pol_t *node, netstack_t *ns) 5891 { 5892 if (node->itp_policy != NULL) { 5893 IPPH_REFRELE(node->itp_policy, ns); 5894 node->itp_policy = NULL; 5895 } 5896 if (node->itp_inactive != NULL) { 5897 IPPH_REFRELE(node->itp_inactive, ns); 5898 node->itp_inactive = NULL; 5899 } 5900 mutex_destroy(&node->itp_lock); 5901 kmem_free(node, sizeof (*node)); 5902 } 5903 5904 void 5905 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns) 5906 { 5907 ipsec_stack_t *ipss = ns->netstack_ipsec; 5908 5909 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 5910 ipss->ipsec_tunnel_policy_gen++; 5911 ipsec_fragcache_uninit(&node->itp_fragcache, ipss); 5912 avl_remove(&ipss->ipsec_tunnel_policies, node); 5913 rw_exit(&ipss->ipsec_tunnel_policy_lock); 5914 ITP_REFRELE(node, ns); 5915 } 5916 5917 /* 5918 * Public interface to look up a tunnel security policy by name. Used by 5919 * spdsock mostly. Returns "node" with a bumped refcnt. 5920 */ 5921 ipsec_tun_pol_t * 5922 get_tunnel_policy(char *name, netstack_t *ns) 5923 { 5924 ipsec_tun_pol_t *node, lookup; 5925 ipsec_stack_t *ipss = ns->netstack_ipsec; 5926 5927 (void) strncpy(lookup.itp_name, name, LIFNAMSIZ); 5928 5929 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 5930 node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 5931 &lookup, NULL); 5932 if (node != NULL) { 5933 ITP_REFHOLD(node); 5934 } 5935 rw_exit(&ipss->ipsec_tunnel_policy_lock); 5936 5937 return (node); 5938 } 5939 5940 /* 5941 * Public interface to walk all tunnel security polcies. Useful for spdsock 5942 * DUMP operations. iterator() will not consume a reference. 5943 */ 5944 void 5945 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *), 5946 void *arg, netstack_t *ns) 5947 { 5948 ipsec_tun_pol_t *node; 5949 ipsec_stack_t *ipss = ns->netstack_ipsec; 5950 5951 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER); 5952 for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL; 5953 node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) { 5954 iterator(node, arg, ns); 5955 } 5956 rw_exit(&ipss->ipsec_tunnel_policy_lock); 5957 } 5958 5959 /* 5960 * Initialize policy head. This can only fail if there's a memory problem. 5961 */ 5962 static boolean_t 5963 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns) 5964 { 5965 ipsec_stack_t *ipss = ns->netstack_ipsec; 5966 5967 rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL); 5968 iph->iph_refs = 1; 5969 iph->iph_gen = 0; 5970 if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize, 5971 KM_SLEEP, B_FALSE, ns) != 0) { 5972 ipsec_polhead_free_table(iph); 5973 return (B_FALSE); 5974 } 5975 ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize); 5976 return (B_TRUE); 5977 } 5978 5979 /* 5980 * Create a tunnel policy node with "name". Set errno with 5981 * ENOMEM if there's a memory problem, and EEXIST if there's an existing 5982 * node. 5983 */ 5984 ipsec_tun_pol_t * 5985 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns) 5986 { 5987 ipsec_tun_pol_t *newbie, *existing; 5988 avl_index_t where; 5989 ipsec_stack_t *ipss = ns->netstack_ipsec; 5990 5991 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 5992 if (newbie == NULL) { 5993 *errno = ENOMEM; 5994 return (NULL); 5995 } 5996 if (!ipsec_fragcache_init(&newbie->itp_fragcache)) { 5997 kmem_free(newbie, sizeof (*newbie)); 5998 *errno = ENOMEM; 5999 return (NULL); 6000 } 6001 6002 (void) strncpy(newbie->itp_name, name, LIFNAMSIZ); 6003 6004 rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER); 6005 existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies, 6006 newbie, &where); 6007 if (existing != NULL) { 6008 itp_free(newbie, ns); 6009 *errno = EEXIST; 6010 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6011 return (NULL); 6012 } 6013 ipss->ipsec_tunnel_policy_gen++; 6014 *gen = ipss->ipsec_tunnel_policy_gen; 6015 newbie->itp_refcnt = 2; /* One for the caller, one for the tree. */ 6016 newbie->itp_next_policy_index = 1; 6017 avl_insert(&ipss->ipsec_tunnel_policies, newbie, where); 6018 mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL); 6019 newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t), 6020 KM_NOSLEEP); 6021 if (newbie->itp_policy == NULL) 6022 goto nomem; 6023 newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t), 6024 KM_NOSLEEP); 6025 if (newbie->itp_inactive == NULL) { 6026 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6027 goto nomem; 6028 } 6029 6030 if (!tunnel_polhead_init(newbie->itp_policy, ns)) { 6031 kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t)); 6032 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6033 goto nomem; 6034 } else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) { 6035 IPPH_REFRELE(newbie->itp_policy, ns); 6036 kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t)); 6037 goto nomem; 6038 } 6039 rw_exit(&ipss->ipsec_tunnel_policy_lock); 6040 6041 return (newbie); 6042 nomem: 6043 *errno = ENOMEM; 6044 kmem_free(newbie, sizeof (*newbie)); 6045 return (NULL); 6046 } 6047 6048 /* 6049 * Given two addresses, find a tunnel instance's IPsec policy heads. 6050 * Returns NULL on failure. 6051 */ 6052 ipsec_tun_pol_t * 6053 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst) 6054 { 6055 conn_t *connp; 6056 iptun_t *iptun; 6057 ipsec_tun_pol_t *itp = NULL; 6058 6059 /* Classifiers are used to "src" being foreign. */ 6060 if (af == AF_INET) { 6061 connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr, 6062 (ipaddr_t *)laddr, ipst); 6063 } else { 6064 ASSERT(af == AF_INET6); 6065 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr)); 6066 ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr)); 6067 connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr, 6068 (in6_addr_t *)laddr, ipst); 6069 } 6070 6071 if (connp == NULL) 6072 return (NULL); 6073 6074 if (IPCL_IS_IPTUN(connp)) { 6075 iptun = connp->conn_iptun; 6076 if (iptun != NULL) { 6077 itp = iptun->iptun_itp; 6078 if (itp != NULL) { 6079 /* Braces due to the macro's nature... */ 6080 ITP_REFHOLD(itp); 6081 } 6082 } /* Else itp is already NULL. */ 6083 } 6084 6085 CONN_DEC_REF(connp); 6086 return (itp); 6087 } 6088 6089 /* 6090 * Frag cache code, based on SunScreen 3.2 source 6091 * screen/kernel/common/screen_fragcache.c 6092 */ 6093 6094 #define IPSEC_FRAG_TTL_MAX 5 6095 /* 6096 * Note that the following parameters create 256 hash buckets 6097 * with 1024 free entries to be distributed. Things are cleaned 6098 * periodically and are attempted to be cleaned when there is no 6099 * free space, but this system errs on the side of dropping packets 6100 * over creating memory exhaustion. We may decide to make hash 6101 * factor a tunable if this proves to be a bad decision. 6102 */ 6103 #define IPSEC_FRAG_HASH_SLOTS (1<<8) 6104 #define IPSEC_FRAG_HASH_FACTOR 4 6105 #define IPSEC_FRAG_HASH_SIZE (IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR) 6106 6107 #define IPSEC_FRAG_HASH_MASK (IPSEC_FRAG_HASH_SLOTS - 1) 6108 #define IPSEC_FRAG_HASH_FUNC(id) (((id) & IPSEC_FRAG_HASH_MASK) ^ \ 6109 (((id) / \ 6110 (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \ 6111 IPSEC_FRAG_HASH_MASK)) 6112 6113 /* Maximum fragments per packet. 48 bytes payload x 1366 packets > 64KB */ 6114 #define IPSEC_MAX_FRAGS 1366 6115 6116 #define V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6117 IPH_OFFSET) << 3) 6118 #define V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \ 6119 IPH_MF) 6120 6121 /* 6122 * Initialize an ipsec fragcache instance. 6123 * Returns B_FALSE if memory allocation fails. 6124 */ 6125 boolean_t 6126 ipsec_fragcache_init(ipsec_fragcache_t *frag) 6127 { 6128 ipsec_fragcache_entry_t *ftemp; 6129 int i; 6130 6131 mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL); 6132 frag->itpf_ptr = (ipsec_fragcache_entry_t **) 6133 kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) * 6134 IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP); 6135 if (frag->itpf_ptr == NULL) 6136 return (B_FALSE); 6137 6138 ftemp = (ipsec_fragcache_entry_t *) 6139 kmem_zalloc(sizeof (ipsec_fragcache_entry_t) * 6140 IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP); 6141 if (ftemp == NULL) { 6142 kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) * 6143 IPSEC_FRAG_HASH_SLOTS); 6144 return (B_FALSE); 6145 } 6146 6147 frag->itpf_freelist = NULL; 6148 6149 for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) { 6150 ftemp->itpfe_next = frag->itpf_freelist; 6151 frag->itpf_freelist = ftemp; 6152 ftemp++; 6153 } 6154 6155 frag->itpf_expire_hint = 0; 6156 6157 return (B_TRUE); 6158 } 6159 6160 void 6161 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6162 { 6163 ipsec_fragcache_entry_t *fep; 6164 int i; 6165 6166 mutex_enter(&frag->itpf_lock); 6167 if (frag->itpf_ptr) { 6168 /* Delete any existing fragcache entry chains */ 6169 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6170 fep = (frag->itpf_ptr)[i]; 6171 while (fep != NULL) { 6172 /* Returned fep is next in chain or NULL */ 6173 fep = fragcache_delentry(i, fep, frag, ipss); 6174 } 6175 } 6176 /* 6177 * Chase the pointers back to the beginning 6178 * of the memory allocation and then 6179 * get rid of the allocated freelist 6180 */ 6181 while (frag->itpf_freelist->itpfe_next != NULL) 6182 frag->itpf_freelist = frag->itpf_freelist->itpfe_next; 6183 /* 6184 * XXX - If we ever dynamically grow the freelist 6185 * then we'll have to free entries individually 6186 * or determine how many entries or chunks we have 6187 * grown since the initial allocation. 6188 */ 6189 kmem_free(frag->itpf_freelist, 6190 sizeof (ipsec_fragcache_entry_t) * 6191 IPSEC_FRAG_HASH_SIZE); 6192 /* Free the fragcache structure */ 6193 kmem_free(frag->itpf_ptr, 6194 sizeof (ipsec_fragcache_entry_t *) * 6195 IPSEC_FRAG_HASH_SLOTS); 6196 } 6197 mutex_exit(&frag->itpf_lock); 6198 mutex_destroy(&frag->itpf_lock); 6199 } 6200 6201 /* 6202 * Add a fragment to the fragment cache. Consumes mp if NULL is returned. 6203 * Returns mp if a whole fragment has been assembled, NULL otherwise 6204 * The returned mp could be a b_next chain of fragments. 6205 * 6206 * The iramp argument is set on inbound; NULL if outbound. 6207 */ 6208 mblk_t * 6209 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp, 6210 int outer_hdr_len, ipsec_stack_t *ipss) 6211 { 6212 boolean_t is_v4; 6213 time_t itpf_time; 6214 ipha_t *iph; 6215 ipha_t *oiph; 6216 ip6_t *ip6h = NULL; 6217 uint8_t v6_proto; 6218 uint8_t *v6_proto_p; 6219 uint16_t ip6_hdr_length; 6220 ip_pkt_t ipp; 6221 ip6_frag_t *fraghdr; 6222 ipsec_fragcache_entry_t *fep; 6223 int i; 6224 mblk_t *nmp, *prevmp; 6225 int firstbyte, lastbyte; 6226 int offset; 6227 int last; 6228 boolean_t inbound = (iramp != NULL); 6229 6230 /* 6231 * You're on the slow path, so insure that every packet in the 6232 * cache is a single-mblk one. 6233 */ 6234 if (mp->b_cont != NULL) { 6235 nmp = msgpullup(mp, -1); 6236 if (nmp == NULL) { 6237 ip_drop_packet(mp, inbound, NULL, 6238 DROPPER(ipss, ipds_spd_nomem), 6239 &ipss->ipsec_spd_dropper); 6240 if (inbound) 6241 (void) ip_recv_attr_free_mblk(iramp); 6242 return (NULL); 6243 } 6244 freemsg(mp); 6245 mp = nmp; 6246 } 6247 6248 mutex_enter(&frag->itpf_lock); 6249 6250 oiph = (ipha_t *)mp->b_rptr; 6251 iph = (ipha_t *)(mp->b_rptr + outer_hdr_len); 6252 6253 if (IPH_HDR_VERSION(iph) == IPV4_VERSION) { 6254 is_v4 = B_TRUE; 6255 } else { 6256 ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION); 6257 ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len); 6258 6259 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length, 6260 &v6_proto_p)) { 6261 /* 6262 * Find upper layer protocol. 6263 * If it fails we have a malformed packet 6264 */ 6265 mutex_exit(&frag->itpf_lock); 6266 ip_drop_packet(mp, inbound, NULL, 6267 DROPPER(ipss, ipds_spd_malformed_packet), 6268 &ipss->ipsec_spd_dropper); 6269 if (inbound) 6270 (void) ip_recv_attr_free_mblk(iramp); 6271 return (NULL); 6272 } else { 6273 v6_proto = *v6_proto_p; 6274 } 6275 6276 6277 bzero(&ipp, sizeof (ipp)); 6278 (void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL); 6279 if (!(ipp.ipp_fields & IPPF_FRAGHDR)) { 6280 /* 6281 * We think this is a fragment, but didn't find 6282 * a fragment header. Something is wrong. 6283 */ 6284 mutex_exit(&frag->itpf_lock); 6285 ip_drop_packet(mp, inbound, NULL, 6286 DROPPER(ipss, ipds_spd_malformed_frag), 6287 &ipss->ipsec_spd_dropper); 6288 if (inbound) 6289 (void) ip_recv_attr_free_mblk(iramp); 6290 return (NULL); 6291 } 6292 fraghdr = ipp.ipp_fraghdr; 6293 is_v4 = B_FALSE; 6294 } 6295 6296 /* Anything to cleanup? */ 6297 6298 /* 6299 * This cleanup call could be put in a timer loop 6300 * but it may actually be just as reasonable a decision to 6301 * leave it here. The disadvantage is this only gets called when 6302 * frags are added. The advantage is that it is not 6303 * susceptible to race conditions like a time-based cleanup 6304 * may be. 6305 */ 6306 itpf_time = gethrestime_sec(); 6307 if (itpf_time >= frag->itpf_expire_hint) 6308 ipsec_fragcache_clean(frag, ipss); 6309 6310 /* Lookup to see if there is an existing entry */ 6311 6312 if (is_v4) 6313 i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident); 6314 else 6315 i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident); 6316 6317 for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) { 6318 if (is_v4) { 6319 ASSERT(iph != NULL); 6320 if ((fep->itpfe_id == iph->ipha_ident) && 6321 (fep->itpfe_src == iph->ipha_src) && 6322 (fep->itpfe_dst == iph->ipha_dst) && 6323 (fep->itpfe_proto == iph->ipha_protocol)) 6324 break; 6325 } else { 6326 ASSERT(fraghdr != NULL); 6327 ASSERT(fep != NULL); 6328 if ((fep->itpfe_id == fraghdr->ip6f_ident) && 6329 IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6, 6330 &ip6h->ip6_src) && 6331 IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6, 6332 &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto)) 6333 break; 6334 } 6335 } 6336 6337 if (is_v4) { 6338 firstbyte = V4_FRAG_OFFSET(iph); 6339 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6340 IPH_HDR_LENGTH(iph); 6341 last = (V4_MORE_FRAGS(iph) == 0); 6342 #ifdef FRAGCACHE_DEBUG 6343 cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, " 6344 "last = %d, id = %d\n", firstbyte, lastbyte, last, 6345 iph->ipha_ident); 6346 #endif 6347 } else { 6348 firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 6349 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6350 sizeof (ip6_t) - ip6_hdr_length; 6351 last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0; 6352 #ifdef FRAGCACHE_DEBUG 6353 cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, " 6354 "last = %d, id = %d, fraghdr = %p, mp = %p\n", 6355 firstbyte, lastbyte, last, fraghdr->ip6f_ident, 6356 fraghdr, mp); 6357 #endif 6358 } 6359 6360 /* check for bogus fragments and delete the entry */ 6361 if (firstbyte > 0 && firstbyte <= 8) { 6362 if (fep != NULL) 6363 (void) fragcache_delentry(i, fep, frag, ipss); 6364 mutex_exit(&frag->itpf_lock); 6365 ip_drop_packet(mp, inbound, NULL, 6366 DROPPER(ipss, ipds_spd_malformed_frag), 6367 &ipss->ipsec_spd_dropper); 6368 if (inbound) 6369 (void) ip_recv_attr_free_mblk(iramp); 6370 return (NULL); 6371 } 6372 6373 /* Not found, allocate a new entry */ 6374 if (fep == NULL) { 6375 if (frag->itpf_freelist == NULL) { 6376 /* see if there is some space */ 6377 ipsec_fragcache_clean(frag, ipss); 6378 if (frag->itpf_freelist == NULL) { 6379 mutex_exit(&frag->itpf_lock); 6380 ip_drop_packet(mp, inbound, NULL, 6381 DROPPER(ipss, ipds_spd_nomem), 6382 &ipss->ipsec_spd_dropper); 6383 if (inbound) 6384 (void) ip_recv_attr_free_mblk(iramp); 6385 return (NULL); 6386 } 6387 } 6388 6389 fep = frag->itpf_freelist; 6390 frag->itpf_freelist = fep->itpfe_next; 6391 6392 if (is_v4) { 6393 bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src, 6394 sizeof (struct in_addr)); 6395 bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst, 6396 sizeof (struct in_addr)); 6397 fep->itpfe_id = iph->ipha_ident; 6398 fep->itpfe_proto = iph->ipha_protocol; 6399 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6400 } else { 6401 bcopy((in6_addr_t *)&ip6h->ip6_src, 6402 (in6_addr_t *)&fep->itpfe_src6, 6403 sizeof (struct in6_addr)); 6404 bcopy((in6_addr_t *)&ip6h->ip6_dst, 6405 (in6_addr_t *)&fep->itpfe_dst6, 6406 sizeof (struct in6_addr)); 6407 fep->itpfe_id = fraghdr->ip6f_ident; 6408 fep->itpfe_proto = v6_proto; 6409 i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id); 6410 } 6411 itpf_time = gethrestime_sec(); 6412 fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1; 6413 fep->itpfe_last = 0; 6414 fep->itpfe_fraglist = NULL; 6415 fep->itpfe_depth = 0; 6416 fep->itpfe_next = (frag->itpf_ptr)[i]; 6417 (frag->itpf_ptr)[i] = fep; 6418 6419 if (frag->itpf_expire_hint > fep->itpfe_exp) 6420 frag->itpf_expire_hint = fep->itpfe_exp; 6421 6422 } 6423 6424 /* Insert it in the frag list */ 6425 /* List is in order by starting offset of fragments */ 6426 6427 prevmp = NULL; 6428 for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) { 6429 ipha_t *niph; 6430 ipha_t *oniph; 6431 ip6_t *nip6h; 6432 ip_pkt_t nipp; 6433 ip6_frag_t *nfraghdr; 6434 uint16_t nip6_hdr_length; 6435 uint8_t *nv6_proto_p; 6436 int nfirstbyte, nlastbyte; 6437 char *data, *ndata; 6438 mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp); 6439 int hdr_len; 6440 6441 oniph = (ipha_t *)mp->b_rptr; 6442 nip6h = NULL; 6443 niph = NULL; 6444 6445 /* 6446 * Determine outer header type and length and set 6447 * pointers appropriately 6448 */ 6449 6450 if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) { 6451 hdr_len = ((outer_hdr_len != 0) ? 6452 IPH_HDR_LENGTH(oiph) : 0); 6453 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6454 } else { 6455 ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION); 6456 ASSERT(ndata_mp->b_cont == NULL); 6457 nip6h = (ip6_t *)ndata_mp->b_rptr; 6458 (void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6459 &nip6_hdr_length, &v6_proto_p); 6460 hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0); 6461 } 6462 6463 /* 6464 * Determine inner header type and length and set 6465 * pointers appropriately 6466 */ 6467 6468 if (is_v4) { 6469 if (niph == NULL) { 6470 /* Was v6 outer */ 6471 niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len); 6472 } 6473 nfirstbyte = V4_FRAG_OFFSET(niph); 6474 nlastbyte = nfirstbyte + ntohs(niph->ipha_length) - 6475 IPH_HDR_LENGTH(niph); 6476 } else { 6477 ASSERT(ndata_mp->b_cont == NULL); 6478 nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len); 6479 if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h, 6480 &nip6_hdr_length, &nv6_proto_p)) { 6481 mutex_exit(&frag->itpf_lock); 6482 ip_drop_packet_chain(nmp, inbound, NULL, 6483 DROPPER(ipss, ipds_spd_malformed_frag), 6484 &ipss->ipsec_spd_dropper); 6485 ipsec_freemsg_chain(ndata_mp); 6486 if (inbound) 6487 (void) ip_recv_attr_free_mblk(iramp); 6488 return (NULL); 6489 } 6490 bzero(&nipp, sizeof (nipp)); 6491 (void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp, 6492 NULL); 6493 nfraghdr = nipp.ipp_fraghdr; 6494 nfirstbyte = ntohs(nfraghdr->ip6f_offlg & 6495 IP6F_OFF_MASK); 6496 nlastbyte = nfirstbyte + ntohs(nip6h->ip6_plen) + 6497 sizeof (ip6_t) - nip6_hdr_length; 6498 } 6499 6500 /* Check for overlapping fragments */ 6501 if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) { 6502 /* 6503 * Overlap Check: 6504 * ~~~~--------- # Check if the newly 6505 * ~ ndata_mp| # received fragment 6506 * ~~~~--------- # overlaps with the 6507 * ---------~~~~~~ # current fragment. 6508 * | mp ~ 6509 * ---------~~~~~~ 6510 */ 6511 if (is_v4) { 6512 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6513 firstbyte - nfirstbyte; 6514 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6515 } else { 6516 data = (char *)ip6h + 6517 nip6_hdr_length + firstbyte - 6518 nfirstbyte; 6519 ndata = (char *)nip6h + nip6_hdr_length; 6520 } 6521 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) - 6522 firstbyte)) { 6523 /* Overlapping data does not match */ 6524 (void) fragcache_delentry(i, fep, frag, ipss); 6525 mutex_exit(&frag->itpf_lock); 6526 ip_drop_packet(mp, inbound, NULL, 6527 DROPPER(ipss, ipds_spd_overlap_frag), 6528 &ipss->ipsec_spd_dropper); 6529 if (inbound) 6530 (void) ip_recv_attr_free_mblk(iramp); 6531 return (NULL); 6532 } 6533 /* Part of defense for jolt2.c fragmentation attack */ 6534 if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) { 6535 /* 6536 * Check for identical or subset fragments: 6537 * ---------- ~~~~--------~~~~~ 6538 * | nmp | or ~ nmp ~ 6539 * ---------- ~~~~--------~~~~~ 6540 * ---------- ------ 6541 * | mp | | mp | 6542 * ---------- ------ 6543 */ 6544 mutex_exit(&frag->itpf_lock); 6545 ip_drop_packet(mp, inbound, NULL, 6546 DROPPER(ipss, ipds_spd_evil_frag), 6547 &ipss->ipsec_spd_dropper); 6548 if (inbound) 6549 (void) ip_recv_attr_free_mblk(iramp); 6550 return (NULL); 6551 } 6552 6553 } 6554 6555 /* Correct location for this fragment? */ 6556 if (firstbyte <= nfirstbyte) { 6557 /* 6558 * Check if the tail end of the new fragment overlaps 6559 * with the head of the current fragment. 6560 * --------~~~~~~~ 6561 * | nmp ~ 6562 * --------~~~~~~~ 6563 * ~~~~~-------- 6564 * ~ mp | 6565 * ~~~~~-------- 6566 */ 6567 if (lastbyte > nfirstbyte) { 6568 /* Fragments overlap */ 6569 data = (char *)iph + IPH_HDR_LENGTH(iph) + 6570 firstbyte - nfirstbyte; 6571 ndata = (char *)niph + IPH_HDR_LENGTH(niph); 6572 if (is_v4) { 6573 data = (char *)iph + 6574 IPH_HDR_LENGTH(iph) + firstbyte - 6575 nfirstbyte; 6576 ndata = (char *)niph + 6577 IPH_HDR_LENGTH(niph); 6578 } else { 6579 data = (char *)ip6h + 6580 nip6_hdr_length + firstbyte - 6581 nfirstbyte; 6582 ndata = (char *)nip6h + nip6_hdr_length; 6583 } 6584 if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) 6585 - nfirstbyte)) { 6586 /* Overlap mismatch */ 6587 (void) fragcache_delentry(i, fep, frag, 6588 ipss); 6589 mutex_exit(&frag->itpf_lock); 6590 ip_drop_packet(mp, inbound, NULL, 6591 DROPPER(ipss, 6592 ipds_spd_overlap_frag), 6593 &ipss->ipsec_spd_dropper); 6594 if (inbound) { 6595 (void) ip_recv_attr_free_mblk( 6596 iramp); 6597 } 6598 return (NULL); 6599 } 6600 } 6601 6602 /* 6603 * Fragment does not illegally overlap and can now 6604 * be inserted into the chain 6605 */ 6606 break; 6607 } 6608 6609 prevmp = nmp; 6610 } 6611 /* Prepend the attributes before we link it in */ 6612 if (iramp != NULL) { 6613 ASSERT(iramp->b_cont == NULL); 6614 iramp->b_cont = mp; 6615 mp = iramp; 6616 iramp = NULL; 6617 } 6618 mp->b_next = nmp; 6619 6620 if (prevmp == NULL) { 6621 fep->itpfe_fraglist = mp; 6622 } else { 6623 prevmp->b_next = mp; 6624 } 6625 if (last) 6626 fep->itpfe_last = 1; 6627 6628 /* Part of defense for jolt2.c fragmentation attack */ 6629 if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) { 6630 (void) fragcache_delentry(i, fep, frag, ipss); 6631 mutex_exit(&frag->itpf_lock); 6632 if (inbound) 6633 mp = ip_recv_attr_free_mblk(mp); 6634 6635 ip_drop_packet(mp, inbound, NULL, 6636 DROPPER(ipss, ipds_spd_max_frags), 6637 &ipss->ipsec_spd_dropper); 6638 return (NULL); 6639 } 6640 6641 /* Check for complete packet */ 6642 6643 if (!fep->itpfe_last) { 6644 mutex_exit(&frag->itpf_lock); 6645 #ifdef FRAGCACHE_DEBUG 6646 cmn_err(CE_WARN, "Fragment cached, not last.\n"); 6647 #endif 6648 return (NULL); 6649 } 6650 6651 #ifdef FRAGCACHE_DEBUG 6652 cmn_err(CE_WARN, "Last fragment cached.\n"); 6653 cmn_err(CE_WARN, "mp = %p\n", mp); 6654 #endif 6655 6656 offset = 0; 6657 for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) { 6658 mblk_t *data_mp = (inbound ? mp->b_cont : mp); 6659 int hdr_len; 6660 6661 oiph = (ipha_t *)data_mp->b_rptr; 6662 ip6h = NULL; 6663 iph = NULL; 6664 6665 if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) { 6666 hdr_len = ((outer_hdr_len != 0) ? 6667 IPH_HDR_LENGTH(oiph) : 0); 6668 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6669 } else { 6670 ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION); 6671 ASSERT(data_mp->b_cont == NULL); 6672 ip6h = (ip6_t *)data_mp->b_rptr; 6673 (void) ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6674 &ip6_hdr_length, &v6_proto_p); 6675 hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0); 6676 } 6677 6678 /* Calculate current fragment start/end */ 6679 if (is_v4) { 6680 if (iph == NULL) { 6681 /* Was v6 outer */ 6682 iph = (ipha_t *)(data_mp->b_rptr + hdr_len); 6683 } 6684 firstbyte = V4_FRAG_OFFSET(iph); 6685 lastbyte = firstbyte + ntohs(iph->ipha_length) - 6686 IPH_HDR_LENGTH(iph); 6687 } else { 6688 ASSERT(data_mp->b_cont == NULL); 6689 ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len); 6690 if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h, 6691 &ip6_hdr_length, &v6_proto_p)) { 6692 mutex_exit(&frag->itpf_lock); 6693 ip_drop_packet_chain(mp, inbound, NULL, 6694 DROPPER(ipss, ipds_spd_malformed_frag), 6695 &ipss->ipsec_spd_dropper); 6696 return (NULL); 6697 } 6698 v6_proto = *v6_proto_p; 6699 bzero(&ipp, sizeof (ipp)); 6700 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, 6701 NULL); 6702 fraghdr = ipp.ipp_fraghdr; 6703 firstbyte = ntohs(fraghdr->ip6f_offlg & 6704 IP6F_OFF_MASK); 6705 lastbyte = firstbyte + ntohs(ip6h->ip6_plen) + 6706 sizeof (ip6_t) - ip6_hdr_length; 6707 } 6708 6709 /* 6710 * If this fragment is greater than current offset, 6711 * we have a missing fragment so return NULL 6712 */ 6713 if (firstbyte > offset) { 6714 mutex_exit(&frag->itpf_lock); 6715 #ifdef FRAGCACHE_DEBUG 6716 /* 6717 * Note, this can happen when the last frag 6718 * gets sent through because it is smaller 6719 * than the MTU. It is not necessarily an 6720 * error condition. 6721 */ 6722 cmn_err(CE_WARN, "Frag greater than offset! : " 6723 "missing fragment: firstbyte = %d, offset = %d, " 6724 "mp = %p\n", firstbyte, offset, mp); 6725 #endif 6726 return (NULL); 6727 } 6728 6729 /* 6730 * If we are at the last fragment, we have the complete 6731 * packet, so rechain things and return it to caller 6732 * for processing 6733 */ 6734 6735 if ((is_v4 && !V4_MORE_FRAGS(iph)) || 6736 (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) { 6737 mp = fep->itpfe_fraglist; 6738 fep->itpfe_fraglist = NULL; 6739 (void) fragcache_delentry(i, fep, frag, ipss); 6740 mutex_exit(&frag->itpf_lock); 6741 6742 if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) > 6743 65535)) || (!is_v4 && (firstbyte + 6744 ntohs(ip6h->ip6_plen) > 65535))) { 6745 /* It is an invalid "ping-o-death" packet */ 6746 /* Discard it */ 6747 ip_drop_packet_chain(mp, inbound, NULL, 6748 DROPPER(ipss, ipds_spd_evil_frag), 6749 &ipss->ipsec_spd_dropper); 6750 return (NULL); 6751 } 6752 #ifdef FRAGCACHE_DEBUG 6753 cmn_err(CE_WARN, "Fragcache returning mp = %p, " 6754 "mp->b_next = %p", mp, mp->b_next); 6755 #endif 6756 /* 6757 * For inbound case, mp has attrmp b_next'd chain 6758 * For outbound case, it is just data mp chain 6759 */ 6760 return (mp); 6761 } 6762 6763 /* 6764 * Update new ending offset if this 6765 * fragment extends the packet 6766 */ 6767 if (offset < lastbyte) 6768 offset = lastbyte; 6769 } 6770 6771 mutex_exit(&frag->itpf_lock); 6772 6773 /* Didn't find last fragment, so return NULL */ 6774 return (NULL); 6775 } 6776 6777 static void 6778 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6779 { 6780 ipsec_fragcache_entry_t *fep; 6781 int i; 6782 ipsec_fragcache_entry_t *earlyfep = NULL; 6783 time_t itpf_time; 6784 int earlyexp; 6785 int earlyi = 0; 6786 6787 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 6788 6789 itpf_time = gethrestime_sec(); 6790 earlyexp = itpf_time + 10000; 6791 6792 for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) { 6793 fep = (frag->itpf_ptr)[i]; 6794 while (fep) { 6795 if (fep->itpfe_exp < itpf_time) { 6796 /* found */ 6797 fep = fragcache_delentry(i, fep, frag, ipss); 6798 } else { 6799 if (fep->itpfe_exp < earlyexp) { 6800 earlyfep = fep; 6801 earlyexp = fep->itpfe_exp; 6802 earlyi = i; 6803 } 6804 fep = fep->itpfe_next; 6805 } 6806 } 6807 } 6808 6809 frag->itpf_expire_hint = earlyexp; 6810 6811 /* if (!found) */ 6812 if (frag->itpf_freelist == NULL) 6813 (void) fragcache_delentry(earlyi, earlyfep, frag, ipss); 6814 } 6815 6816 static ipsec_fragcache_entry_t * 6817 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep, 6818 ipsec_fragcache_t *frag, ipsec_stack_t *ipss) 6819 { 6820 ipsec_fragcache_entry_t *targp; 6821 ipsec_fragcache_entry_t *nextp = fep->itpfe_next; 6822 6823 ASSERT(MUTEX_HELD(&frag->itpf_lock)); 6824 6825 /* Free up any fragment list still in cache entry */ 6826 if (fep->itpfe_fraglist != NULL) { 6827 ip_drop_packet_chain(fep->itpfe_fraglist, 6828 ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL, 6829 DROPPER(ipss, ipds_spd_nomem), &ipss->ipsec_spd_dropper); 6830 } 6831 fep->itpfe_fraglist = NULL; 6832 6833 targp = (frag->itpf_ptr)[slot]; 6834 ASSERT(targp != 0); 6835 6836 if (targp == fep) { 6837 /* unlink from head of hash chain */ 6838 (frag->itpf_ptr)[slot] = nextp; 6839 /* link into free list */ 6840 fep->itpfe_next = frag->itpf_freelist; 6841 frag->itpf_freelist = fep; 6842 return (nextp); 6843 } 6844 6845 /* maybe should use double linked list to make update faster */ 6846 /* must be past front of chain */ 6847 while (targp) { 6848 if (targp->itpfe_next == fep) { 6849 /* unlink from hash chain */ 6850 targp->itpfe_next = nextp; 6851 /* link into free list */ 6852 fep->itpfe_next = frag->itpf_freelist; 6853 frag->itpf_freelist = fep; 6854 return (nextp); 6855 } 6856 targp = targp->itpfe_next; 6857 ASSERT(targp != 0); 6858 } 6859 /* NOTREACHED */ 6860 return (NULL); 6861 } 6862