1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/tsol/label.h> 73 #include <sys/tsol/tnet.h> 74 75 struct kmem_cache *rt_entry_cache; 76 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table[_v6] is allocated dynamically in 150 * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access ip_forwarding_table[i] 153 * or ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* This is dynamically allocated in ip_ire_init */ 235 irb_t *ip_cache_table; 236 /* This is dynamically allocated in ire_add_mrtun */ 237 irb_t *ip_mrtun_table; 238 239 uint32_t ire_handle = 1; 240 /* 241 * ire_ft_init_lock is used while initializing ip_forwarding_table 242 * dynamically in ire_add. 243 */ 244 kmutex_t ire_ft_init_lock; 245 kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ 246 kmutex_t ire_srcif_table_lock; /* Same as above */ 247 /* 248 * The following counts are used to determine whether a walk is 249 * needed through the reverse tunnel table or through ills 250 */ 251 kmutex_t ire_handle_lock; /* Protects ire_handle */ 252 uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ 253 254 /* 255 * A per-interface routing table is created ( if not present) 256 * when the first entry is added to this special routing table. 257 * This special routing table is accessed through the ill data structure. 258 * The routing table looks like cache table. For example, currently it 259 * is used by mobile-ip foreign agent to forward data that only comes from 260 * the home agent tunnel for a mobile node. Thus if the outgoing interface 261 * is a RESOLVER interface, IP may need to resolve the hardware address for 262 * the outgoing interface. The routing entries in this table are not updated 263 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- 264 * tion is lost as the write queue is passed to ip_wput. 265 * But, before sending the packet out, the hardware information must be updated 266 * in the special forwarding table. ire_srcif_table_count keeps track of total 267 * number of ires that are in interface based tables. Each interface based 268 * table hangs off of the incoming ill and each ill_t also keeps a refcnt 269 * of ires in that table. 270 */ 271 272 uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ 273 274 /* 275 * The minimum size of IRE cache table. It will be recalcuated in 276 * ip_ire_init(). 277 */ 278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 280 281 /* 282 * The size of the forwarding table. We will make sure that it is a 283 * power of 2 in ip_ire_init(). 284 */ 285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 286 287 struct kmem_cache *ire_cache; 288 static ire_t ire_null; 289 290 ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ 291 ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ 292 293 /* 294 * The threshold number of IRE in a bucket when the IREs are 295 * cleaned up. This threshold is calculated later in ip_open() 296 * based on the speed of CPU and available memory. This default 297 * value is the maximum. 298 * 299 * We have two kinds of cached IRE, temporary and 300 * non-temporary. Temporary IREs are marked with 301 * IRE_MARK_TEMPORARY. They are IREs created for non 302 * TCP traffic and for forwarding purposes. All others 303 * are non-temporary IREs. We don't mark IRE created for 304 * TCP as temporary because TCP is stateful and there are 305 * info stored in the IRE which can be shared by other TCP 306 * connections to the same destination. For connected 307 * endpoint, we also don't want to mark the IRE used as 308 * temporary because the same IRE will be used frequently, 309 * otherwise, the app should not do a connect(). We change 310 * the marking at ip_bind_connected_*() if necessary. 311 * 312 * We want to keep the cache IRE hash bucket length reasonably 313 * short, otherwise IRE lookup functions will take "forever." 314 * We use the "crude" function that the IRE bucket 315 * length should be based on the CPU speed, which is 1 entry 316 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 317 * (n). This means that with a 750MHz CPU, the max bucket 318 * length can be (750 >> n) entries. 319 * 320 * Note that this threshold is separate for temp and non-temp 321 * IREs. This means that the actual bucket length can be 322 * twice as that. And while we try to keep temporary IRE 323 * length at most at the threshold value, we do not attempt to 324 * make the length for non-temporary IREs fixed, for the 325 * reason stated above. Instead, we start trying to find 326 * "unused" non-temporary IREs when the bucket length reaches 327 * this threshold and clean them up. 328 * 329 * We also want to limit the amount of memory used by 330 * IREs. So if we are allowed to use ~3% of memory (M) 331 * for those IREs, each bucket should not have more than 332 * 333 * M / num of cache bucket / sizeof (ire_t) 334 * 335 * Again the above memory uses are separate for temp and 336 * non-temp cached IREs. 337 * 338 * We may also want the limit to be a function of the number 339 * of interfaces and number of CPUs. Doing the initialization 340 * in ip_open() means that every time an interface is plumbed, 341 * the max is re-calculated. Right now, we don't do anything 342 * different. In future, when we have more experience, we 343 * may want to change this behavior. 344 */ 345 uint32_t ip_ire_max_bucket_cnt = 10; 346 uint32_t ip6_ire_max_bucket_cnt = 10; 347 348 /* 349 * The minimum of the temporary IRE bucket count. We do not want 350 * the length of each bucket to be too short. This may hurt 351 * performance of some apps as the temporary IREs are removed too 352 * often. 353 */ 354 uint32_t ip_ire_min_bucket_cnt = 3; 355 uint32_t ip6_ire_min_bucket_cnt = 3; 356 357 /* 358 * The ratio of memory consumed by IRE used for temporary to available 359 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 360 * value can be changed in /etc/system. 6 is a reasonable number. 361 */ 362 uint32_t ip_ire_mem_ratio = 6; 363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 364 uint32_t ip_ire_cpu_ratio = 7; 365 366 typedef struct nce_clookup_s { 367 ipaddr_t ncecl_addr; 368 boolean_t ncecl_found; 369 } nce_clookup_t; 370 371 /* 372 * The maximum number of buckets in IRE cache table. In future, we may 373 * want to make it a dynamic hash table. For the moment, we fix the 374 * size and allocate the table in ip_ire_init() when IP is first loaded. 375 * We take into account the amount of memory a system has. 376 */ 377 #define IP_MAX_CACHE_TABLE_SIZE 4096 378 379 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 380 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 381 382 #define NUM_ILLS 3 /* To build the ILL list to unlock */ 383 384 /* Zero iulp_t for initialization. */ 385 const iulp_t ire_uinfo_null = { 0 }; 386 387 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 388 ipsq_func_t func, boolean_t); 389 static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 390 ipsq_func_t func); 391 static ire_t *ire_update_srcif_v4(ire_t *ire); 392 static void ire_delete_v4(ire_t *ire); 393 static void ire_report_ctable(ire_t *ire, char *mp); 394 static void ire_report_mrtun_table(ire_t *ire, char *mp); 395 static void ire_report_srcif_table(ire_t *ire, char *mp); 396 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 397 zoneid_t zoneid); 398 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 399 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 400 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 401 extern void ill_unlock_ills(ill_t **list, int cnt); 402 static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); 403 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 404 extern void th_trace_rrecord(th_trace_t *); 405 #ifdef IRE_DEBUG 406 static void ire_trace_inactive(ire_t *); 407 #endif 408 409 /* 410 * To avoid bloating the code, we call this function instead of 411 * using the macro IRE_REFRELE. Use macro only in performance 412 * critical paths. 413 * 414 * Must not be called while holding any locks. Otherwise if this is 415 * the last reference to be released there is a chance of recursive mutex 416 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 417 * to restart an ioctl. The one exception is when the caller is sure that 418 * this is not the last reference to be released. Eg. if the caller is 419 * sure that the ire has not been deleted and won't be deleted. 420 */ 421 void 422 ire_refrele(ire_t *ire) 423 { 424 IRE_REFRELE(ire); 425 } 426 427 void 428 ire_refrele_notr(ire_t *ire) 429 { 430 IRE_REFRELE_NOTR(ire); 431 } 432 433 /* 434 * kmem_cache_alloc constructor for IRE in kma space. 435 * Note that when ire_mp is set the IRE is stored in that mblk and 436 * not in this cache. 437 */ 438 /* ARGSUSED */ 439 static int 440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 441 { 442 ire_t *ire = buf; 443 444 ire->ire_nce = NULL; 445 446 return (0); 447 } 448 449 /* ARGSUSED1 */ 450 static void 451 ip_ire_destructor(void *buf, void *cdrarg) 452 { 453 ire_t *ire = buf; 454 455 ASSERT(ire->ire_nce == NULL); 456 } 457 458 /* 459 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 460 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 461 * for an existing CACHED IRE. 462 */ 463 /* ARGSUSED */ 464 int 465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 466 { 467 uchar_t *addr_ucp; 468 ipic_t *ipic; 469 ire_t *ire; 470 ipaddr_t addr; 471 in6_addr_t v6addr; 472 irb_t *irb; 473 zoneid_t zoneid; 474 475 ASSERT(q->q_next == NULL); 476 zoneid = Q_TO_CONN(q)->conn_zoneid; 477 478 /* 479 * Check privilege using the ioctl credential; if it is NULL 480 * then this is a kernel message and therefor privileged. 481 */ 482 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 483 return (EPERM); 484 485 ipic = (ipic_t *)mp->b_rptr; 486 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 487 ipic->ipic_addr_length))) { 488 return (EINVAL); 489 } 490 if (!OK_32PTR(addr_ucp)) 491 return (EINVAL); 492 switch (ipic->ipic_addr_length) { 493 case IP_ADDR_LEN: { 494 /* Extract the destination address. */ 495 addr = *(ipaddr_t *)addr_ucp; 496 /* Find the corresponding IRE. */ 497 ire = ire_cache_lookup(addr, zoneid, NULL); 498 break; 499 } 500 case IPV6_ADDR_LEN: { 501 /* Extract the destination address. */ 502 v6addr = *(in6_addr_t *)addr_ucp; 503 /* Find the corresponding IRE. */ 504 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); 505 break; 506 } 507 default: 508 return (EINVAL); 509 } 510 511 if (ire == NULL) 512 return (ENOENT); 513 /* 514 * Update the round trip time estimate and/or the max frag size 515 * and/or the slow start threshold. 516 * 517 * We serialize multiple advises using ire_lock. 518 */ 519 mutex_enter(&ire->ire_lock); 520 if (ipic->ipic_rtt) { 521 /* 522 * If there is no old cached values, initialize them 523 * conservatively. Set them to be (1.5 * new value). 524 */ 525 if (ire->ire_uinfo.iulp_rtt != 0) { 526 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 527 ipic->ipic_rtt) >> 1; 528 } else { 529 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 530 (ipic->ipic_rtt >> 1); 531 } 532 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 533 ire->ire_uinfo.iulp_rtt_sd = 534 (ire->ire_uinfo.iulp_rtt_sd + 535 ipic->ipic_rtt_sd) >> 1; 536 } else { 537 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 538 (ipic->ipic_rtt_sd >> 1); 539 } 540 } 541 if (ipic->ipic_max_frag) 542 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 543 if (ipic->ipic_ssthresh != 0) { 544 if (ire->ire_uinfo.iulp_ssthresh != 0) 545 ire->ire_uinfo.iulp_ssthresh = 546 (ipic->ipic_ssthresh + 547 ire->ire_uinfo.iulp_ssthresh) >> 1; 548 else 549 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 550 } 551 /* 552 * Don't need the ire_lock below this. ire_type does not change 553 * after initialization. ire_marks is protected by irb_lock. 554 */ 555 mutex_exit(&ire->ire_lock); 556 557 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 558 /* 559 * Only increment the temporary IRE count if the original 560 * IRE is not already marked temporary. 561 */ 562 irb = ire->ire_bucket; 563 rw_enter(&irb->irb_lock, RW_WRITER); 564 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 565 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 566 irb->irb_tmp_ire_cnt++; 567 } 568 ire->ire_marks |= ipic->ipic_ire_marks; 569 rw_exit(&irb->irb_lock); 570 } 571 572 ire_refrele(ire); 573 return (0); 574 } 575 576 /* 577 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 578 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 579 * for a host that is not responding. This will force an attempt to 580 * establish a new route, if available, and flush out the ARP entry so 581 * it will re-resolve. Management processes may want to use the 582 * version that generates a reply. 583 * 584 * This function does not support IPv6 since Neighbor Unreachability Detection 585 * means that negative advise like this is useless. 586 */ 587 /* ARGSUSED */ 588 int 589 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 590 { 591 uchar_t *addr_ucp; 592 ipaddr_t addr; 593 ire_t *ire; 594 ipid_t *ipid; 595 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 596 zoneid_t zoneid; 597 ire_t *gire = NULL; 598 ill_t *ill; 599 mblk_t *arp_mp; 600 601 ASSERT(q->q_next == NULL); 602 zoneid = Q_TO_CONN(q)->conn_zoneid; 603 604 /* 605 * Check privilege using the ioctl credential; if it is NULL 606 * then this is a kernel message and therefor privileged. 607 */ 608 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 609 return (EPERM); 610 611 ipid = (ipid_t *)mp->b_rptr; 612 613 /* Only actions on IRE_CACHEs are acceptable at present. */ 614 if (ipid->ipid_ire_type != IRE_CACHE) 615 return (EINVAL); 616 617 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 618 ipid->ipid_addr_length); 619 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 620 return (EINVAL); 621 switch (ipid->ipid_addr_length) { 622 case IP_ADDR_LEN: 623 /* addr_ucp points at IP addr */ 624 break; 625 case sizeof (sin_t): { 626 sin_t *sin; 627 /* 628 * got complete (sockaddr) address - increment addr_ucp to point 629 * at the ip_addr field. 630 */ 631 sin = (sin_t *)addr_ucp; 632 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 633 break; 634 } 635 default: 636 return (EINVAL); 637 } 638 /* Extract the destination address. */ 639 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 640 641 /* Try to find the CACHED IRE. */ 642 ire = ire_cache_lookup(addr, zoneid, NULL); 643 644 /* Nail it. */ 645 if (ire) { 646 /* Allow delete only on CACHE entries */ 647 if (ire->ire_type != IRE_CACHE) { 648 ire_refrele(ire); 649 return (EINVAL); 650 } 651 652 /* 653 * Verify that the IRE has been around for a while. 654 * This is to protect against transport protocols 655 * that are too eager in sending delete messages. 656 */ 657 if (gethrestime_sec() < 658 ire->ire_create_time + ip_ignore_delete_time) { 659 ire_refrele(ire); 660 return (EINVAL); 661 } 662 /* 663 * Now we have a potentially dead cache entry. We need 664 * to remove it. 665 * If this cache entry is generated from a 666 * default route (i.e., ire_cmask == 0), 667 * search the default list and mark it dead and some 668 * background process will try to activate it. 669 */ 670 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 671 /* 672 * Make sure that we pick a different 673 * IRE_DEFAULT next time. 674 */ 675 ire_t *gw_ire; 676 irb_t *irb = NULL; 677 uint_t match_flags; 678 679 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 680 681 gire = ire_ftable_lookup(ire->ire_addr, 682 ire->ire_cmask, 0, 0, 683 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags); 684 685 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 686 (void *)gire)); 687 688 if (gire != NULL) { 689 irb = gire->ire_bucket; 690 691 /* 692 * We grab it as writer just to serialize 693 * multiple threads trying to bump up 694 * irb_rr_origin 695 */ 696 rw_enter(&irb->irb_lock, RW_WRITER); 697 if ((gw_ire = irb->irb_rr_origin) == NULL) { 698 rw_exit(&irb->irb_lock); 699 goto done; 700 } 701 702 DTRACE_PROBE1(ip__ire__del__origin, 703 (ire_t *), gw_ire); 704 705 /* Skip past the potentially bad gateway */ 706 if (ire->ire_gateway_addr == 707 gw_ire->ire_gateway_addr) { 708 ire_t *next = gw_ire->ire_next; 709 710 DTRACE_PROBE2(ip__ire__del, 711 (ire_t *), gw_ire, (irb_t *), irb); 712 IRE_FIND_NEXT_ORIGIN(next); 713 irb->irb_rr_origin = next; 714 } 715 rw_exit(&irb->irb_lock); 716 } 717 } 718 done: 719 if (gire != NULL) 720 IRE_REFRELE(gire); 721 /* report the bad route to routing sockets */ 722 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 723 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 724 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 725 routing_sock_info = B_TRUE; 726 727 /* 728 * TCP is really telling us to start over completely, and it 729 * expects that we'll resend the ARP query. Tell ARP to 730 * discard the entry, if this is a local destination. 731 */ 732 ill = ire->ire_stq->q_ptr; 733 if (ire->ire_gateway_addr == 0 && 734 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 735 putnext(ill->ill_rq, arp_mp); 736 } 737 738 ire_delete(ire); 739 ire_refrele(ire); 740 } 741 /* 742 * Also look for an IRE_HOST type redirect ire and 743 * remove it if present. 744 */ 745 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 746 ALL_ZONES, NULL, MATCH_IRE_TYPE); 747 748 /* Nail it. */ 749 if (ire != NULL) { 750 if (ire->ire_flags & RTF_DYNAMIC) { 751 if (!routing_sock_info) { 752 ip_rts_change(RTM_LOSING, ire->ire_addr, 753 ire->ire_gateway_addr, ire->ire_mask, 754 ire->ire_src_addr, 0, 0, 0, 755 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 756 } 757 ire_delete(ire); 758 } 759 ire_refrele(ire); 760 } 761 return (0); 762 } 763 764 /* 765 * Named Dispatch routine to produce a formatted report on all IREs. 766 * This report is accessed by using the ndd utility to "get" ND variable 767 * "ipv4_ire_status". 768 */ 769 /* ARGSUSED */ 770 int 771 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 772 { 773 zoneid_t zoneid; 774 775 (void) mi_mpprintf(mp, 776 "IRE " MI_COL_HDRPAD_STR 777 /* 01234567[89ABCDEF] */ 778 "rfq " MI_COL_HDRPAD_STR 779 /* 01234567[89ABCDEF] */ 780 "stq " MI_COL_HDRPAD_STR 781 /* 01234567[89ABCDEF] */ 782 " zone " 783 /* 12345 */ 784 "addr mask " 785 /* 123.123.123.123 123.123.123.123 */ 786 "src gateway mxfrg rtt rtt_sd ssthresh ref " 787 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 788 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 789 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 790 "recvpipe in/out/forward type"); 791 /* 12345678 in/out/forward xxxxxxxxxx */ 792 793 /* 794 * Because of the ndd constraint, at most we can have 64K buffer 795 * to put in all IRE info. So to be more efficient, just 796 * allocate a 64K buffer here, assuming we need that large buffer. 797 * This should be OK as only root can do ndd /dev/ip. 798 */ 799 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 800 /* The following may work even if we cannot get a large buf. */ 801 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 802 return (0); 803 } 804 805 zoneid = Q_TO_CONN(q)->conn_zoneid; 806 if (zoneid == GLOBAL_ZONEID) 807 zoneid = ALL_ZONES; 808 809 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); 810 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); 811 812 return (0); 813 } 814 815 816 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 817 static void 818 ire_report_ctable(ire_t *ire, char *mp) 819 { 820 char buf1[16]; 821 char buf2[16]; 822 char buf3[16]; 823 char buf4[16]; 824 uint_t fo_pkt_count; 825 uint_t ib_pkt_count; 826 int ref; 827 uint_t print_len, buf_len; 828 829 if ((ire->ire_type & IRE_CACHETABLE) == 0) 830 return; 831 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 832 if (buf_len <= 0) 833 return; 834 835 /* Number of active references of this ire */ 836 ref = ire->ire_refcnt; 837 /* "inbound" to a non local address is a forward */ 838 ib_pkt_count = ire->ire_ib_pkt_count; 839 fo_pkt_count = 0; 840 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 841 fo_pkt_count = ib_pkt_count; 842 ib_pkt_count = 0; 843 } 844 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 845 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 846 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 847 "%04d %08d %08d %d/%d/%d %s\n", 848 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 849 (int)ire->ire_zoneid, 850 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 851 ip_dot_addr(ire->ire_src_addr, buf3), 852 ip_dot_addr(ire->ire_gateway_addr, buf4), 853 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 854 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 855 ire->ire_uinfo.iulp_rtomax, 856 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 857 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 858 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 859 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 860 ire->ire_uinfo.iulp_sack, 861 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 862 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 863 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 864 if (print_len < buf_len) { 865 ((mblk_t *)mp)->b_wptr += print_len; 866 } else { 867 ((mblk_t *)mp)->b_wptr += buf_len; 868 } 869 } 870 871 /* ARGSUSED */ 872 int 873 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 874 { 875 (void) mi_mpprintf(mp, 876 "IRE " MI_COL_HDRPAD_STR 877 /* 01234567[89ABCDEF] */ 878 "stq " MI_COL_HDRPAD_STR 879 /* 01234567[89ABCDEF] */ 880 "in_ill " MI_COL_HDRPAD_STR 881 /* 01234567[89ABCDEF] */ 882 "in_src_addr " 883 /* 123.123.123.123 */ 884 "max_frag " 885 /* 12345 */ 886 "ref "); 887 /* 123 */ 888 889 ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); 890 return (0); 891 } 892 893 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ 894 895 static void 896 ire_report_mrtun_table(ire_t *ire, char *mp) 897 { 898 char buf1[INET_ADDRSTRLEN]; 899 int ref; 900 901 /* Number of active references of this ire */ 902 ref = ire->ire_refcnt; 903 ASSERT(ire->ire_type == IRE_MIPRTUN); 904 (void) mi_mpprintf((mblk_t *)mp, 905 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 906 "%s %05d %03d", 907 (void *)ire, (void *)ire->ire_stq, 908 (void *)ire->ire_in_ill, 909 ip_dot_addr(ire->ire_in_src_addr, buf1), 910 ire->ire_max_frag, ref); 911 } 912 913 /* 914 * Dispatch routine to format ires in interface based routine 915 */ 916 /* ARGSUSED */ 917 int 918 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 919 { 920 921 /* Report all interface based ires */ 922 923 (void) mi_mpprintf(mp, 924 "IRE " MI_COL_HDRPAD_STR 925 /* 01234567[89ABCDEF] */ 926 "stq " MI_COL_HDRPAD_STR 927 /* 01234567[89ABCDEF] */ 928 "in_ill " MI_COL_HDRPAD_STR 929 /* 01234567[89ABCDEF] */ 930 "addr " 931 /* 123.123.123.123 */ 932 "gateway " 933 /* 123.123.123.123 */ 934 "max_frag " 935 /* 12345 */ 936 "ref " 937 /* 123 */ 938 "type " 939 /* ABCDEFGH */ 940 "in/out/forward"); 941 ire_walk_srcif_table_v4(ire_report_srcif_table, mp); 942 return (0); 943 } 944 945 /* Reports the interface table ires */ 946 static void 947 ire_report_srcif_table(ire_t *ire, char *mp) 948 { 949 char buf1[INET_ADDRSTRLEN]; 950 char buf2[INET_ADDRSTRLEN]; 951 int ref; 952 953 ref = ire->ire_refcnt; 954 (void) mi_mpprintf((mblk_t *)mp, 955 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 956 "%s %s %05d %03d %s %d", 957 (void *)ire, (void *)ire->ire_stq, 958 (void *)ire->ire_in_ill, 959 ip_dot_addr(ire->ire_addr, buf1), 960 ip_dot_addr(ire->ire_gateway_addr, buf2), 961 ire->ire_max_frag, ref, 962 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 963 ire->ire_ib_pkt_count); 964 965 } 966 /* 967 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 968 * down from the Upper Level Protocol to request a copy of the IRE (to check 969 * its type or to extract information like round-trip time estimates or the 970 * MTU.) 971 * The address is assumed to be in the ire_addr field. If no IRE is found 972 * an IRE is returned with ire_type being zero. 973 * Note that the upper lavel protocol has to check for broadcast 974 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 975 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 976 * end of the returned message. 977 * 978 * TCP sends down a message of this type with a connection request packet 979 * chained on. UDP and ICMP send it down to verify that a route exists for 980 * the destination address when they get connected. 981 */ 982 void 983 ip_ire_req(queue_t *q, mblk_t *mp) 984 { 985 ire_t *inire; 986 ire_t *ire; 987 mblk_t *mp1; 988 ire_t *sire = NULL; 989 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 990 991 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 992 !OK_32PTR(mp->b_rptr)) { 993 freemsg(mp); 994 return; 995 } 996 inire = (ire_t *)mp->b_rptr; 997 /* 998 * Got it, now take our best shot at an IRE. 999 */ 1000 if (inire->ire_ipversion == IPV6_VERSION) { 1001 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 1002 NULL, &sire, zoneid, NULL, 1003 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 1004 } else { 1005 ASSERT(inire->ire_ipversion == IPV4_VERSION); 1006 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 1007 NULL, &sire, zoneid, NULL, 1008 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 1009 } 1010 1011 /* 1012 * We prevent returning IRES with source address INADDR_ANY 1013 * as these were temporarily created for sending packets 1014 * from endpoints that have conn_unspec_src set. 1015 */ 1016 if (ire == NULL || 1017 (ire->ire_ipversion == IPV4_VERSION && 1018 ire->ire_src_addr == INADDR_ANY) || 1019 (ire->ire_ipversion == IPV6_VERSION && 1020 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 1021 inire->ire_type = 0; 1022 } else { 1023 bcopy(ire, inire, sizeof (ire_t)); 1024 /* Copy the route metrics from the parent. */ 1025 if (sire != NULL) { 1026 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 1027 sizeof (iulp_t)); 1028 } 1029 1030 /* 1031 * As we don't lookup global policy here, we may not 1032 * pass the right size if per-socket policy is not 1033 * present. For these cases, path mtu discovery will 1034 * do the right thing. 1035 */ 1036 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 1037 1038 /* Pass the latest setting of the ip_path_mtu_discovery */ 1039 inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1040 } 1041 if (ire != NULL) 1042 ire_refrele(ire); 1043 if (sire != NULL) 1044 ire_refrele(sire); 1045 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 1046 mp->b_datap->db_type = IRE_DB_TYPE; 1047 1048 /* Put the IRE_DB_TYPE mblk last in the chain */ 1049 mp1 = mp->b_cont; 1050 if (mp1 != NULL) { 1051 mp->b_cont = NULL; 1052 linkb(mp1, mp); 1053 mp = mp1; 1054 } 1055 qreply(q, mp); 1056 } 1057 1058 /* 1059 * Send a packet using the specified IRE. 1060 * If ire_src_addr_v6 is all zero then discard the IRE after 1061 * the packet has been sent. 1062 */ 1063 static void 1064 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 1065 { 1066 mblk_t *ipsec_mp; 1067 boolean_t is_secure; 1068 uint_t ifindex; 1069 ill_t *ill; 1070 zoneid_t zoneid = ire->ire_zoneid; 1071 1072 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1073 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1074 ipsec_mp = pkt; 1075 is_secure = (pkt->b_datap->db_type == M_CTL); 1076 if (is_secure) { 1077 ipsec_out_t *io; 1078 1079 pkt = pkt->b_cont; 1080 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1081 if (io->ipsec_out_type == IPSEC_OUT) 1082 zoneid = io->ipsec_out_zoneid; 1083 } 1084 1085 /* If the packet originated externally then */ 1086 if (pkt->b_prev) { 1087 ire_refrele(ire); 1088 /* 1089 * Extract the ifindex from b_prev (set in ip_rput_noire). 1090 * Look up interface to see if it still exists (it could have 1091 * been unplumbed by the time the reply came back from ARP) 1092 */ 1093 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1094 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1095 NULL, NULL, NULL, NULL); 1096 if (ill == NULL) { 1097 pkt->b_prev = NULL; 1098 pkt->b_next = NULL; 1099 freemsg(ipsec_mp); 1100 return; 1101 } 1102 q = ill->ill_rq; 1103 pkt->b_prev = NULL; 1104 /* 1105 * This packet has not gone through IPSEC processing 1106 * and hence we should not have any IPSEC message 1107 * prepended. 1108 */ 1109 ASSERT(ipsec_mp == pkt); 1110 put(q, pkt); 1111 ill_refrele(ill); 1112 } else if (pkt->b_next) { 1113 /* Packets from multicast router */ 1114 pkt->b_next = NULL; 1115 /* 1116 * We never get the IPSEC_OUT while forwarding the 1117 * packet for multicast router. 1118 */ 1119 ASSERT(ipsec_mp == pkt); 1120 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1121 ire_refrele(ire); 1122 } else { 1123 /* Locally originated packets */ 1124 boolean_t is_inaddr_any; 1125 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1126 1127 /* 1128 * We need to do an ire_delete below for which 1129 * we need to make sure that the IRE will be 1130 * around even after calling ip_wput_ire - 1131 * which does ire_refrele. Otherwise somebody 1132 * could potentially delete this ire and hence 1133 * free this ire and we will be calling ire_delete 1134 * on a freed ire below. 1135 */ 1136 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1137 if (is_inaddr_any) { 1138 IRE_REFHOLD(ire); 1139 } 1140 /* 1141 * If we were resolving a router we can not use the 1142 * routers IRE for sending the packet (since it would 1143 * violate the uniqness of the IP idents) thus we 1144 * make another pass through ip_wput to create the IRE_CACHE 1145 * for the destination. 1146 * When IRE_MARK_NOADD is set, ire_add() is not called. 1147 * Thus ip_wput() will never find a ire and result in an 1148 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1149 * is set. This also implies that IRE_MARK_NOADD can only be 1150 * used to send packets to directly connected hosts. 1151 */ 1152 if (ipha->ipha_dst != ire->ire_addr && 1153 !(ire->ire_marks & IRE_MARK_NOADD)) { 1154 ire_refrele(ire); /* Held in ire_add */ 1155 if (CONN_Q(q)) { 1156 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1157 IRE_SEND); 1158 } else { 1159 (void) ip_output((void *)(uintptr_t)zoneid, 1160 ipsec_mp, q, IRE_SEND); 1161 } 1162 } else { 1163 if (is_secure) { 1164 ipsec_out_t *oi; 1165 ipha_t *ipha; 1166 1167 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1168 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1169 if (oi->ipsec_out_proc_begin) { 1170 /* 1171 * This is the case where 1172 * ip_wput_ipsec_out could not find 1173 * the IRE and recreated a new one. 1174 * As ip_wput_ipsec_out does ire 1175 * lookups, ire_refrele for the extra 1176 * bump in ire_add. 1177 */ 1178 ire_refrele(ire); 1179 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1180 NULL, NULL); 1181 } else { 1182 /* 1183 * IRE_REFRELE will be done in 1184 * ip_wput_ire. 1185 */ 1186 ip_wput_ire(q, ipsec_mp, ire, NULL, 1187 IRE_SEND, zoneid); 1188 } 1189 } else { 1190 /* 1191 * IRE_REFRELE will be done in ip_wput_ire. 1192 */ 1193 ip_wput_ire(q, ipsec_mp, ire, NULL, 1194 IRE_SEND, zoneid); 1195 } 1196 } 1197 /* 1198 * Special code to support sending a single packet with 1199 * conn_unspec_src using an IRE which has no source address. 1200 * The IRE is deleted here after sending the packet to avoid 1201 * having other code trip on it. But before we delete the 1202 * ire, somebody could have looked up this ire. 1203 * We prevent returning/using this IRE by the upper layers 1204 * by making checks to NULL source address in other places 1205 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1206 * Though, this does not completely prevent other threads 1207 * from using this ire, this should not cause any problems. 1208 * 1209 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1210 * because for the normal case i.e !is_inaddr_any, ire_refrele 1211 * above could have potentially freed the ire. 1212 */ 1213 if (is_inaddr_any) { 1214 /* 1215 * If this IRE has been deleted by another thread, then 1216 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1217 * Thus, ire_delete will do nothing. This check 1218 * guards against calling ire_delete when the IRE was 1219 * never inserted in the table, which is handled by 1220 * ire_delete as dropping another reference. 1221 */ 1222 if (ire->ire_bucket != NULL) { 1223 ip1dbg(("ire_send: delete IRE\n")); 1224 ire_delete(ire); 1225 } 1226 ire_refrele(ire); /* Held above */ 1227 } 1228 } 1229 } 1230 1231 /* 1232 * Send a packet using the specified IRE. 1233 * If ire_src_addr_v6 is all zero then discard the IRE after 1234 * the packet has been sent. 1235 */ 1236 static void 1237 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1238 { 1239 mblk_t *ipsec_mp; 1240 boolean_t secure; 1241 uint_t ifindex; 1242 zoneid_t zoneid = ire->ire_zoneid; 1243 1244 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1245 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1246 if (pkt->b_datap->db_type == M_CTL) { 1247 ipsec_out_t *io; 1248 1249 ipsec_mp = pkt; 1250 pkt = pkt->b_cont; 1251 secure = B_TRUE; 1252 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1253 if (io->ipsec_out_type == IPSEC_OUT) 1254 zoneid = io->ipsec_out_zoneid; 1255 } else { 1256 ipsec_mp = pkt; 1257 secure = B_FALSE; 1258 } 1259 1260 /* If the packet originated externally then */ 1261 if (pkt->b_prev) { 1262 ill_t *ill; 1263 /* 1264 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1265 * Look up interface to see if it still exists (it could have 1266 * been unplumbed by the time the reply came back from the 1267 * resolver). 1268 */ 1269 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1270 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1271 NULL, NULL, NULL, NULL); 1272 if (ill == NULL) { 1273 pkt->b_prev = NULL; 1274 pkt->b_next = NULL; 1275 freemsg(ipsec_mp); 1276 ire_refrele(ire); /* Held in ire_add */ 1277 return; 1278 } 1279 q = ill->ill_rq; 1280 pkt->b_prev = NULL; 1281 /* 1282 * This packet has not gone through IPSEC processing 1283 * and hence we should not have any IPSEC message 1284 * prepended. 1285 */ 1286 ASSERT(ipsec_mp == pkt); 1287 put(q, pkt); 1288 ill_refrele(ill); 1289 } else if (pkt->b_next) { 1290 /* Packets from multicast router */ 1291 pkt->b_next = NULL; 1292 /* 1293 * We never get the IPSEC_OUT while forwarding the 1294 * packet for multicast router. 1295 */ 1296 ASSERT(ipsec_mp == pkt); 1297 /* 1298 * XXX TODO IPv6. 1299 */ 1300 freemsg(pkt); 1301 #ifdef XXX 1302 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1303 #endif 1304 } else { 1305 if (secure) { 1306 ipsec_out_t *oi; 1307 ip6_t *ip6h; 1308 1309 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1310 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1311 if (oi->ipsec_out_proc_begin) { 1312 /* 1313 * This is the case where 1314 * ip_wput_ipsec_out could not find 1315 * the IRE and recreated a new one. 1316 */ 1317 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1318 NULL, NULL); 1319 } else { 1320 if (CONN_Q(q)) { 1321 (void) ip_output_v6(Q_TO_CONN(q), 1322 ipsec_mp, q, IRE_SEND); 1323 } else { 1324 (void) ip_output_v6( 1325 (void *)(uintptr_t)zoneid, 1326 ipsec_mp, q, IRE_SEND); 1327 } 1328 } 1329 } else { 1330 /* 1331 * Send packets through ip_output_v6 so that any 1332 * ip6_info header can be processed again. 1333 */ 1334 if (CONN_Q(q)) { 1335 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1336 IRE_SEND); 1337 } else { 1338 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1339 ipsec_mp, q, IRE_SEND); 1340 } 1341 } 1342 /* 1343 * Special code to support sending a single packet with 1344 * conn_unspec_src using an IRE which has no source address. 1345 * The IRE is deleted here after sending the packet to avoid 1346 * having other code trip on it. But before we delete the 1347 * ire, somebody could have looked up this ire. 1348 * We prevent returning/using this IRE by the upper layers 1349 * by making checks to NULL source address in other places 1350 * like e.g ip_ire_append_v6, ip_ire_req and 1351 * ip_bind_connected_v6. Though, this does not completely 1352 * prevent other threads from using this ire, this should 1353 * not cause any problems. 1354 */ 1355 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1356 ip1dbg(("ire_send_v6: delete IRE\n")); 1357 ire_delete(ire); 1358 } 1359 } 1360 ire_refrele(ire); /* Held in ire_add */ 1361 } 1362 1363 /* 1364 * Make sure that IRE bucket does not get too long. 1365 * This can cause lock up because ire_cache_lookup() 1366 * may take "forever" to finish. 1367 * 1368 * We just remove cnt IREs each time. This means that 1369 * the bucket length will stay approximately constant, 1370 * depending on cnt. This should be enough to defend 1371 * against DoS attack based on creating temporary IREs 1372 * (for forwarding and non-TCP traffic). 1373 * 1374 * Note that new IRE is normally added at the tail of the 1375 * bucket. This means that we are removing the "oldest" 1376 * temporary IRE added. Only if there are IREs with 1377 * the same ire_addr, do we not add it at the tail. Refer 1378 * to ire_add_v*(). It should be OK for our purpose. 1379 * 1380 * For non-temporary cached IREs, we make sure that they 1381 * have not been used for some time (defined below), they 1382 * are non-local destinations, and there is no one using 1383 * them at the moment (refcnt == 1). 1384 * 1385 * The above means that the IRE bucket length may become 1386 * very long, consisting of mostly non-temporary IREs. 1387 * This can happen when the hash function does a bad job 1388 * so that most TCP connections cluster to a specific bucket. 1389 * This "hopefully" should never happen. It can also 1390 * happen if most TCP connections have very long lives. 1391 * Even with the minimal hash table size of 256, there 1392 * has to be a lot of such connections to make the bucket 1393 * length unreasonably long. This should probably not 1394 * happen either. The third can when this can happen is 1395 * when the machine is under attack, such as SYN flooding. 1396 * TCP should already have the proper mechanism to protect 1397 * that. So we should be safe. 1398 * 1399 * This function is called by ire_add_then_send() after 1400 * a new IRE is added and the packet is sent. 1401 * 1402 * The idle cutoff interval is set to 60s. It can be 1403 * changed using /etc/system. 1404 */ 1405 uint32_t ire_idle_cutoff_interval = 60000; 1406 1407 static void 1408 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1409 { 1410 ire_t *ire; 1411 int tmp_cnt = cnt; 1412 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1413 1414 /* 1415 * irb is NULL if the IRE is not added to the hash. This 1416 * happens when IRE_MARK_NOADD is set in ire_add_then_send() 1417 * and when ires are returned from ire_update_srcif_v4() routine. 1418 */ 1419 if (irb == NULL) 1420 return; 1421 1422 IRB_REFHOLD(irb); 1423 if (irb->irb_tmp_ire_cnt > threshold) { 1424 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1425 ire = ire->ire_next) { 1426 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1427 continue; 1428 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1429 ASSERT(ire->ire_type == IRE_CACHE); 1430 ire_delete(ire); 1431 tmp_cnt--; 1432 } 1433 } 1434 } 1435 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1436 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1437 ire = ire->ire_next) { 1438 if (ire->ire_marks & IRE_MARK_CONDEMNED || 1439 ire->ire_gateway_addr == 0) { 1440 continue; 1441 } 1442 if ((ire->ire_type == IRE_CACHE) && 1443 (lbolt - ire->ire_last_used_time > cut_off) && 1444 (ire->ire_refcnt == 1)) { 1445 ire_delete(ire); 1446 cnt--; 1447 } 1448 } 1449 } 1450 IRB_REFRELE(irb); 1451 } 1452 1453 /* 1454 * ire_add_then_send is called when a new IRE has been created in order to 1455 * route an outgoing packet. Typically, it is called from ip_wput when 1456 * a response comes back down from a resolver. We add the IRE, and then 1457 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1458 * However, we do not add the newly created IRE in the cache when 1459 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1460 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned 1461 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get 1462 * deleted. 1463 * Multirouting support: the packet is silently discarded when the new IRE 1464 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1465 * RTF_MULTIRT flag for the same destination address. 1466 * In this case, we just want to register this additional ire without 1467 * sending the packet, as it has already been replicated through 1468 * existing multirt routes in ip_wput(). 1469 */ 1470 void 1471 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1472 { 1473 irb_t *irb; 1474 boolean_t drop = B_FALSE; 1475 /* LINTED : set but not used in function */ 1476 boolean_t mctl_present; 1477 mblk_t *first_mp = NULL; 1478 mblk_t *save_mp = NULL; 1479 ire_t *dst_ire; 1480 ipha_t *ipha; 1481 ip6_t *ip6h; 1482 1483 if (mp != NULL) { 1484 /* 1485 * We first have to retrieve the destination address carried 1486 * by the packet. 1487 * We can't rely on ire as it can be related to a gateway. 1488 * The destination address will help in determining if 1489 * other RTF_MULTIRT ires are already registered. 1490 * 1491 * We first need to know where we are going : v4 or V6. 1492 * the ire version is enough, as there is no risk that 1493 * we resolve an IPv6 address with an IPv4 ire 1494 * or vice versa. 1495 */ 1496 if (ire->ire_ipversion == IPV4_VERSION) { 1497 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1498 ipha = (ipha_t *)mp->b_rptr; 1499 save_mp = mp; 1500 mp = first_mp; 1501 1502 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1503 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1504 } else { 1505 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1506 /* 1507 * Get a pointer to the beginning of the IPv6 header. 1508 * Ignore leading IPsec control mblks. 1509 */ 1510 first_mp = mp; 1511 if (mp->b_datap->db_type == M_CTL) { 1512 mp = mp->b_cont; 1513 } 1514 ip6h = (ip6_t *)mp->b_rptr; 1515 save_mp = mp; 1516 mp = first_mp; 1517 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1518 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1519 } 1520 if (dst_ire != NULL) { 1521 if (dst_ire->ire_flags & RTF_MULTIRT) { 1522 /* 1523 * At least one resolved multirt route 1524 * already exists for the destination, 1525 * don't sent this packet: either drop it 1526 * or complete the pending resolution, 1527 * depending on the ire. 1528 */ 1529 drop = B_TRUE; 1530 } 1531 ip1dbg(("ire_add_then_send: dst_ire %p " 1532 "[dst %08x, gw %08x], drop %d\n", 1533 (void *)dst_ire, 1534 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1535 ntohl(dst_ire->ire_addr) : \ 1536 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1537 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1538 ntohl(dst_ire->ire_gateway_addr) : \ 1539 ntohl(V4_PART_OF_V6( 1540 dst_ire->ire_gateway_addr_v6)), 1541 drop)); 1542 ire_refrele(dst_ire); 1543 } 1544 } 1545 1546 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1547 /* 1548 * Regular packets with cache bound ires and 1549 * the packets from ARP response for ires which 1550 * belong to the ire_srcif_v4 table, are here. 1551 */ 1552 if (ire->ire_in_ill == NULL) { 1553 /* Add the ire */ 1554 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1555 } else { 1556 /* 1557 * This must be ARP response for ire in interface based 1558 * table. Note that we don't add them in cache table, 1559 * instead we update the existing table with dlureq_mp 1560 * information. The reverse tunnel ires do not come 1561 * here, as reverse tunnel is non-resolver interface. 1562 * XXX- another design alternative was to mark the 1563 * ires in interface based table with a special mark to 1564 * make absolutely sure that we operate in right ires. 1565 * This idea was not implemented as part of code review 1566 * suggestion, as ire_in_ill suffice to distinguish 1567 * between the regular ires and interface based 1568 * ires now and thus we save a bit in the ire_marks. 1569 */ 1570 ire = ire_update_srcif_v4(ire); 1571 } 1572 1573 if (ire == NULL) { 1574 mp->b_prev = NULL; 1575 mp->b_next = NULL; 1576 MULTIRT_DEBUG_UNTAG(mp); 1577 freemsg(mp); 1578 return; 1579 } 1580 if (mp == NULL) { 1581 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1582 return; 1583 } 1584 } 1585 if (drop) { 1586 /* 1587 * If we're adding an RTF_MULTIRT ire, the resolution 1588 * is over: we just drop the packet. 1589 */ 1590 if (ire->ire_flags & RTF_MULTIRT) { 1591 if (save_mp) { 1592 save_mp->b_prev = NULL; 1593 save_mp->b_next = NULL; 1594 } 1595 MULTIRT_DEBUG_UNTAG(mp); 1596 freemsg(mp); 1597 } else { 1598 /* 1599 * Otherwise, we're adding the ire to a gateway 1600 * for a multirt route. 1601 * Invoke ip_newroute() to complete the resolution 1602 * of the route. We will then come back here and 1603 * finally drop this packet in the above code. 1604 */ 1605 if (ire->ire_ipversion == IPV4_VERSION) { 1606 /* 1607 * TODO: in order for CGTP to work in non-global 1608 * zones, ip_newroute() must create the IRE 1609 * cache in the zone indicated by 1610 * ire->ire_zoneid. 1611 */ 1612 ip_newroute(q, mp, ipha->ipha_dst, 0, 1613 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1614 ire->ire_zoneid); 1615 } else { 1616 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1617 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1618 NULL, ire->ire_zoneid); 1619 } 1620 } 1621 1622 ire_refrele(ire); /* As done by ire_send(). */ 1623 return; 1624 } 1625 /* 1626 * Need to remember ire_bucket here as ire_send*() may delete 1627 * the ire so we cannot reference it after that. 1628 */ 1629 irb = ire->ire_bucket; 1630 if (ire->ire_ipversion == IPV6_VERSION) { 1631 ire_send_v6(q, mp, ire); 1632 /* 1633 * Clean up more than 1 IRE so that the clean up does not 1634 * need to be done every time when a new IRE is added and 1635 * the threshold is reached. 1636 */ 1637 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1638 } else { 1639 ire_send(q, mp, ire); 1640 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1641 } 1642 } 1643 1644 /* 1645 * Initialize the ire that is specific to IPv4 part and call 1646 * ire_init_common to finish it. 1647 */ 1648 ire_t * 1649 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1650 uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, 1651 queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, 1652 ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1653 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1654 { 1655 /* 1656 * Reject IRE security attribute creation/initialization 1657 * if system is not running in Trusted mode. 1658 */ 1659 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1660 return (NULL); 1661 1662 if (fp_mp != NULL) { 1663 /* 1664 * We can't dupb() here as multiple threads could be 1665 * calling dupb on the same mp which is incorrect. 1666 * First dupb() should be called only by one thread. 1667 */ 1668 fp_mp = copyb(fp_mp); 1669 if (fp_mp == NULL) 1670 return (NULL); 1671 } 1672 1673 if (dlureq_mp != NULL) { 1674 /* 1675 * We can't dupb() here as multiple threads could be 1676 * calling dupb on the same mp which is incorrect. 1677 * First dupb() should be called only by one thread. 1678 */ 1679 dlureq_mp = copyb(dlureq_mp); 1680 if (dlureq_mp == NULL) { 1681 if (fp_mp != NULL) 1682 freeb(fp_mp); 1683 return (NULL); 1684 } 1685 } 1686 1687 /* 1688 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a 1689 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER 1690 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. 1691 */ 1692 if ((type & IRE_INTERFACE) && 1693 dlureq_mp == NULL) { 1694 ASSERT(fp_mp == NULL); 1695 ip0dbg(("ire_init: no dlureq_mp\n")); 1696 return (NULL); 1697 } 1698 1699 BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); 1700 1701 if (addr != NULL) 1702 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1703 if (src_addr != NULL) 1704 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1705 if (mask != NULL) { 1706 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1707 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1708 } 1709 if (gateway != NULL) { 1710 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1711 } 1712 if (in_src_addr != NULL) { 1713 bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); 1714 } 1715 1716 if (type == IRE_CACHE) 1717 ire->ire_cmask = cmask; 1718 1719 /* ire_init_common will free the mblks upon encountering any failure */ 1720 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 1721 ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, 1722 gc, gcgrp)) 1723 return (NULL); 1724 1725 return (ire); 1726 } 1727 1728 /* 1729 * Similar to ire_create except that it is called only when 1730 * we want to allocate ire as an mblk e.g. we have an external 1731 * resolver ARP. 1732 */ 1733 ire_t * 1734 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1735 uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, 1736 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1737 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1738 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1739 { 1740 ire_t *ire, *buf; 1741 ire_t *ret_ire; 1742 mblk_t *mp; 1743 size_t bufsize; 1744 frtn_t *frtnp; 1745 ill_t *ill; 1746 1747 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1748 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1749 if (buf == NULL) { 1750 ip1dbg(("ire_create_mp: alloc failed\n")); 1751 return (NULL); 1752 } 1753 frtnp = (frtn_t *)(buf + 1); 1754 frtnp->free_arg = (caddr_t)buf; 1755 frtnp->free_func = ire_freemblk; 1756 1757 /* 1758 * Allocate the new IRE. The ire created will hold a ref on 1759 * an nce_t after ire_nce_init, and this ref must either be 1760 * (a) transferred to the ire_cache entry created when ire_add_v4 1761 * is called after successful arp resolution, or, 1762 * (b) released, when arp resolution fails 1763 * Case (b) is handled in ire_freemblk() which will be called 1764 * when mp is freed as a result of failed arp. 1765 */ 1766 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1767 if (mp == NULL) { 1768 ip1dbg(("ire_create_mp: alloc failed\n")); 1769 kmem_free(buf, bufsize); 1770 return (NULL); 1771 } 1772 ire = (ire_t *)mp->b_rptr; 1773 mp->b_wptr = (uchar_t *)&ire[1]; 1774 1775 /* Start clean. */ 1776 *ire = ire_null; 1777 ire->ire_mp = mp; 1778 mp->b_datap->db_type = IRE_DB_TYPE; 1779 ire->ire_marks |= IRE_MARK_UNCACHED; 1780 1781 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1782 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1783 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1784 1785 ill = (ill_t *)(stq->q_ptr); 1786 if (ret_ire == NULL) { 1787 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1788 freeb(ire->ire_mp); 1789 return (NULL); 1790 } 1791 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1792 ASSERT(ret_ire == ire); 1793 /* 1794 * ire_max_frag is normally zero here and is atomically set 1795 * under the irebucket lock in ire_add_v[46] except for the 1796 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1797 * is non-zero here. 1798 */ 1799 ire->ire_max_frag = max_frag; 1800 return (ire); 1801 } 1802 1803 /* 1804 * ire_create is called to allocate and initialize a new IRE. 1805 * 1806 * NOTE : This is called as writer sometimes though not required 1807 * by this function. 1808 */ 1809 ire_t * 1810 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1811 uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, 1812 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1813 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1814 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1815 { 1816 ire_t *ire; 1817 ire_t *ret_ire; 1818 1819 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1820 if (ire == NULL) { 1821 ip1dbg(("ire_create: alloc failed\n")); 1822 return (NULL); 1823 } 1824 *ire = ire_null; 1825 1826 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1827 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1828 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1829 1830 if (ret_ire == NULL) { 1831 kmem_cache_free(ire_cache, ire); 1832 return (NULL); 1833 } 1834 ASSERT(ret_ire == ire); 1835 return (ire); 1836 } 1837 1838 1839 /* 1840 * Common to IPv4 and IPv6 1841 */ 1842 boolean_t 1843 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, 1844 queue_t *rfq, queue_t *stq, ushort_t type, 1845 mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, 1846 uint32_t ihandle, uint32_t flags, uchar_t ipversion, 1847 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1848 { 1849 ire->ire_max_fragp = max_fragp; 1850 ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1851 1852 ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); 1853 #ifdef DEBUG 1854 if (ipif != NULL) { 1855 if (ipif->ipif_isv6) 1856 ASSERT(ipversion == IPV6_VERSION); 1857 else 1858 ASSERT(ipversion == IPV4_VERSION); 1859 } 1860 #endif /* DEBUG */ 1861 1862 /* 1863 * Create/initialize IRE security attribute only in Trusted mode; 1864 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1865 * has held a reference to it and will release it when this routine 1866 * returns a failure, otherwise we own the reference. We do this 1867 * prior to initializing the rest IRE fields. 1868 * 1869 * Don't allocate ire_gw_secattr for the resolver case to prevent 1870 * memory leak (in case of external resolution failure). We'll 1871 * allocate it after a successful external resolution, in ire_add(). 1872 * Note that ire->ire_mp != NULL here means this ire is headed 1873 * to an external resolver. 1874 */ 1875 if (is_system_labeled()) { 1876 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1877 IRE_INTERFACE)) != 0) { 1878 /* release references on behalf of caller */ 1879 if (gc != NULL) 1880 GC_REFRELE(gc); 1881 if (gcgrp != NULL) 1882 GCGRP_REFRELE(gcgrp); 1883 } else if ((ire->ire_mp == NULL) && 1884 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1885 /* free any caller-allocated mblks upon failure */ 1886 if (fp_mp != NULL) 1887 freeb(fp_mp); 1888 if (dlureq_mp != NULL) 1889 freeb(dlureq_mp); 1890 return (B_FALSE); 1891 } 1892 } 1893 1894 ire->ire_stq = stq; 1895 ire->ire_rfq = rfq; 1896 ire->ire_type = type; 1897 ire->ire_flags = RTF_UP | flags; 1898 ire->ire_ident = TICK_TO_MSEC(lbolt); 1899 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1900 1901 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1902 ire->ire_last_used_time = lbolt; 1903 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1904 1905 /* 1906 * If this IRE is an IRE_CACHE, inherit the handles from the 1907 * parent IREs. For others in the forwarding table, assign appropriate 1908 * new ones. 1909 * 1910 * The mutex protecting ire_handle is because ire_create is not always 1911 * called as a writer. 1912 */ 1913 if (ire->ire_type & IRE_OFFSUBNET) { 1914 mutex_enter(&ire_handle_lock); 1915 ire->ire_phandle = (uint32_t)ire_handle++; 1916 mutex_exit(&ire_handle_lock); 1917 } else if (ire->ire_type & IRE_INTERFACE) { 1918 mutex_enter(&ire_handle_lock); 1919 ire->ire_ihandle = (uint32_t)ire_handle++; 1920 mutex_exit(&ire_handle_lock); 1921 } else if (ire->ire_type == IRE_CACHE) { 1922 ire->ire_phandle = phandle; 1923 ire->ire_ihandle = ihandle; 1924 } 1925 ire->ire_in_ill = in_ill; 1926 ire->ire_ipif = ipif; 1927 if (ipif != NULL) { 1928 ire->ire_ipif_seqid = ipif->ipif_seqid; 1929 ire->ire_zoneid = ipif->ipif_zoneid; 1930 } else { 1931 ire->ire_zoneid = GLOBAL_ZONEID; 1932 } 1933 ire->ire_ipversion = ipversion; 1934 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1935 if (ipversion == IPV4_VERSION) { 1936 if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) { 1937 /* some failure occurred. propagate error back */ 1938 return (B_FALSE); 1939 } 1940 } else { 1941 ASSERT(ipversion == IPV6_VERSION); 1942 /* 1943 * IPv6 initializes the ire_nce in ire_add_v6, 1944 * which expects to find the ire_nce to be null when 1945 * when it is called. 1946 */ 1947 if (dlureq_mp) 1948 freemsg(dlureq_mp); 1949 if (fp_mp) 1950 freemsg(fp_mp); 1951 } 1952 ire->ire_refcnt = 1; 1953 1954 #ifdef IRE_DEBUG 1955 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1956 #endif 1957 1958 return (B_TRUE); 1959 } 1960 1961 /* 1962 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1963 * It is passed a pointer to a slot in an IRE pointer array into which to 1964 * place the pointer to the new IRE, if indeed we create one. If the 1965 * IRE corresponding to the address passed in would be a duplicate of an 1966 * existing one, we don't create the new one. irep is incremented before 1967 * return only if we do create a new IRE. (Always called as writer.) 1968 * 1969 * Note that with the "match_flags" parameter, we can match on either 1970 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1971 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1972 * we only create broadcast ire's on a per physical interface basis. If 1973 * someone is going to be mucking with logical interfaces, it is important 1974 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1975 * logical interface will not cause critical broadcast IRE's to be deleted. 1976 */ 1977 ire_t ** 1978 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1979 int match_flags) 1980 { 1981 ire_t *ire; 1982 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1983 1984 /* 1985 * No broadcast IREs for the LOOPBACK interface 1986 * or others such as point to point and IPIF_NOXMIT. 1987 */ 1988 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1989 (ipif->ipif_flags & IPIF_NOXMIT)) 1990 return (irep); 1991 1992 /* If this would be a duplicate, don't bother. */ 1993 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1994 ipif->ipif_zoneid, NULL, match_flags)) != NULL) { 1995 /* 1996 * We look for non-deprecated (and non-anycast, non-nolocal) 1997 * ipifs as the best choice. ipifs with check_flags matching 1998 * (deprecated, etc) are used only if non-deprecated ipifs 1999 * are not available. if the existing ire's ipif is deprecated 2000 * and the new ipif is non-deprecated, switch to the new ipif 2001 */ 2002 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 2003 (ipif->ipif_flags & check_flags)) { 2004 ire_refrele(ire); 2005 return (irep); 2006 } 2007 /* 2008 * Bcast ires exist in pairs. Both have to be deleted, 2009 * Since we are exclusive we can make the above assertion. 2010 * The 1st has to be refrele'd since it was ctable_lookup'd. 2011 */ 2012 ASSERT(IAM_WRITER_IPIF(ipif)); 2013 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 2014 ire_delete(ire->ire_next); 2015 ire_delete(ire); 2016 ire_refrele(ire); 2017 } 2018 2019 irep = ire_create_bcast(ipif, addr, irep); 2020 2021 return (irep); 2022 } 2023 2024 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 2025 2026 /* 2027 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 2028 * It leaves all the verifying and deleting to those routines. So it always 2029 * creates 2 bcast ires and chains them into the ire array passed in. 2030 */ 2031 ire_t ** 2032 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 2033 { 2034 *irep++ = ire_create( 2035 (uchar_t *)&addr, /* dest addr */ 2036 (uchar_t *)&ip_g_all_ones, /* mask */ 2037 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 2038 NULL, /* no gateway */ 2039 NULL, /* no in_src_addr */ 2040 &ipif->ipif_mtu, /* max frag */ 2041 NULL, /* fast path header */ 2042 ipif->ipif_rq, /* recv-from queue */ 2043 ipif->ipif_wq, /* send-to queue */ 2044 IRE_BROADCAST, 2045 ipif->ipif_bcast_mp, /* xmit header */ 2046 ipif, 2047 NULL, 2048 0, 2049 0, 2050 0, 2051 0, 2052 &ire_uinfo_null, 2053 NULL, 2054 NULL); 2055 2056 *irep++ = ire_create( 2057 (uchar_t *)&addr, /* dest address */ 2058 (uchar_t *)&ip_g_all_ones, /* mask */ 2059 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 2060 NULL, /* no gateway */ 2061 NULL, /* no in_src_addr */ 2062 &ip_loopback_mtu, /* max frag size */ 2063 NULL, /* Fast Path header */ 2064 ipif->ipif_rq, /* recv-from queue */ 2065 NULL, /* no send-to queue */ 2066 IRE_BROADCAST, /* Needed for fanout in wput */ 2067 NULL, 2068 ipif, 2069 NULL, 2070 0, 2071 0, 2072 0, 2073 0, 2074 &ire_uinfo_null, 2075 NULL, 2076 NULL); 2077 2078 return (irep); 2079 } 2080 2081 /* 2082 * ire_walk routine to delete or update any IRE_CACHE that might contain 2083 * stale information. 2084 * The flags state which entries to delete or update. 2085 * Garbage collection is done separately using kmem alloc callbacks to 2086 * ip_trash_ire_reclaim. 2087 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 2088 * since other stale information is cleaned up using NUD. 2089 */ 2090 void 2091 ire_expire(ire_t *ire, char *arg) 2092 { 2093 int flush_flags = (int)(uintptr_t)arg; 2094 ill_t *stq_ill; 2095 2096 if ((flush_flags & FLUSH_REDIRECT_TIME) && 2097 (ire->ire_flags & RTF_DYNAMIC)) { 2098 /* Make sure we delete the corresponding IRE_CACHE */ 2099 ip1dbg(("ire_expire: all redirects\n")); 2100 ip_rts_rtmsg(RTM_DELETE, ire, 0); 2101 ire_delete(ire); 2102 atomic_dec_32(&ip_redirect_cnt); 2103 return; 2104 } 2105 if (ire->ire_type != IRE_CACHE) 2106 return; 2107 2108 if (flush_flags & FLUSH_ARP_TIME) { 2109 /* 2110 * Remove all IRE_CACHE. 2111 * Verify that create time is more than 2112 * ip_ire_arp_interval milliseconds ago. 2113 */ 2114 if (NCE_EXPIRED(ire->ire_nce)) { 2115 ire_delete(ire); 2116 return; 2117 } 2118 } 2119 2120 if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 2121 (ire->ire_ipif != NULL)) { 2122 /* Increase pmtu if it is less than the interface mtu */ 2123 mutex_enter(&ire->ire_lock); 2124 /* 2125 * If the ipif is a vni (whose mtu is 0, since it's virtual) 2126 * get the mtu from the sending interfaces' ipif 2127 */ 2128 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 2129 stq_ill = ire->ire_stq->q_ptr; 2130 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 2131 IP_MAXPACKET); 2132 } else { 2133 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 2134 IP_MAXPACKET); 2135 } 2136 ire->ire_frag_flag |= IPH_DF; 2137 mutex_exit(&ire->ire_lock); 2138 } 2139 } 2140 2141 /* 2142 * Do fast path probing if necessary. 2143 */ 2144 void 2145 ire_fastpath(ire_t *ire) 2146 { 2147 ill_t *ill; 2148 int res; 2149 2150 if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL || 2151 ire->ire_nce->nce_state != ND_REACHABLE || 2152 ire->ire_nce->nce_res_mp == NULL) { 2153 2154 /* 2155 * Already contains fastpath info or 2156 * doesn't have DL_UNITDATA_REQ header or 2157 * or is an incomplete ire in the ire table 2158 * or is a loopback broadcast ire i.e. no stq. 2159 */ 2160 return; 2161 } 2162 ill = ire_to_ill(ire); 2163 if (ill == NULL) 2164 return; 2165 ire_fastpath_list_add(ill, ire); 2166 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2167 /* 2168 * EAGAIN is an indication of a transient error 2169 * i.e. allocation failure etc. leave the ire in the list it will 2170 * be updated when another probe happens for another ire if not 2171 * it will be taken out of the list when the ire is deleted. 2172 */ 2173 if (res != 0 && res != EAGAIN) 2174 ire_fastpath_list_delete(ill, ire); 2175 } 2176 2177 /* 2178 * Update all IRE's that are not in fastpath mode and 2179 * have an dlureq_mp that matches mp. mp->b_cont contains 2180 * the fastpath header. 2181 * 2182 * Returns TRUE if entry should be dequeued, or FALSE otherwise. 2183 */ 2184 boolean_t 2185 ire_fastpath_update(ire_t *ire, void *arg) 2186 { 2187 mblk_t *mp, *fp_mp; 2188 uchar_t *up, *up2; 2189 ptrdiff_t cmplen; 2190 nce_t *arpce; 2191 2192 ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | 2193 IRE_MIPRTUN)) != 0); 2194 2195 /* 2196 * Already contains fastpath info or doesn't have 2197 * DL_UNITDATA_REQ header or is an incomplete ire. 2198 */ 2199 if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL || 2200 ire->ire_nce->nce_fp_mp != NULL || 2201 ire->ire_nce->nce_state != ND_REACHABLE) 2202 return (B_TRUE); 2203 2204 ip2dbg(("ire_fastpath_update: trying\n")); 2205 mp = arg; 2206 up = mp->b_rptr; 2207 cmplen = mp->b_wptr - up; 2208 /* Serialize multiple fast path updates */ 2209 mutex_enter(&ire->ire_nce->nce_lock); 2210 up2 = ire->ire_nce->nce_res_mp->b_rptr; 2211 ASSERT(cmplen >= 0); 2212 if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen || 2213 bcmp(up, up2, cmplen) != 0) { 2214 mutex_exit(&ire->ire_nce->nce_lock); 2215 /* 2216 * Don't take the ire off the fastpath list yet, 2217 * since the response may come later. 2218 */ 2219 return (B_FALSE); 2220 } 2221 arpce = ire->ire_nce; 2222 /* Matched - install mp as the nce_fp_mp */ 2223 ip1dbg(("ire_fastpath_update: match\n")); 2224 fp_mp = dupb(mp->b_cont); 2225 if (fp_mp) { 2226 /* 2227 * We checked nce_fp_mp above. Check it again with the 2228 * lock. Update fp_mp only if it has not been done 2229 * already. 2230 */ 2231 if (arpce->nce_fp_mp == NULL) { 2232 /* 2233 * ire_ll_hdr_length is just an optimization to 2234 * store the length. It is used to return the 2235 * fast path header length to the upper layers. 2236 */ 2237 arpce->nce_fp_mp = fp_mp; 2238 ire->ire_ll_hdr_length = 2239 (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); 2240 } else { 2241 freeb(fp_mp); 2242 } 2243 } 2244 mutex_exit(&ire->ire_nce->nce_lock); 2245 return (B_TRUE); 2246 } 2247 2248 /* 2249 * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the 2250 * driver. 2251 */ 2252 /* ARGSUSED */ 2253 void 2254 ire_fastpath_flush(ire_t *ire, void *arg) 2255 { 2256 ill_t *ill; 2257 int res; 2258 2259 /* No fastpath info? */ 2260 if (ire->ire_nce == NULL || 2261 ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL) 2262 return; 2263 2264 /* 2265 * Just remove the IRE if it is for non-broadcast dest. Then 2266 * we will create another one which will have the correct 2267 * fastpath info. 2268 */ 2269 switch (ire->ire_type) { 2270 case IRE_CACHE: 2271 ire_delete(ire); 2272 break; 2273 case IRE_MIPRTUN: 2274 case IRE_BROADCAST: 2275 /* 2276 * We can't delete the ire since it is difficult to 2277 * recreate these ire's without going through the 2278 * ipif down/up dance. The nce_fp_mp is protected by the 2279 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. 2280 * All access to ire->ire_nce->nce_fp_mp in the case of these 2281 * 2 ire types * is protected by nce_lock. 2282 */ 2283 mutex_enter(&ire->ire_nce->nce_lock); 2284 if (ire->ire_nce->nce_fp_mp != NULL) { 2285 freeb(ire->ire_nce->nce_fp_mp); 2286 ire->ire_nce->nce_fp_mp = NULL; 2287 mutex_exit(&ire->ire_nce->nce_lock); 2288 /* 2289 * No fastpath probe if there is no stq i.e. 2290 * i.e. the case of loopback broadcast ire. 2291 */ 2292 if (ire->ire_stq == NULL) 2293 break; 2294 ill = (ill_t *)((ire->ire_stq)->q_ptr); 2295 ire_fastpath_list_add(ill, ire); 2296 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2297 /* 2298 * EAGAIN is an indication of a transient error 2299 * i.e. allocation failure etc. leave the ire in the 2300 * list it will be updated when another probe happens 2301 * for another ire if not it will be taken out of the 2302 * list when the ire is deleted. 2303 */ 2304 if (res != 0 && res != EAGAIN) 2305 ire_fastpath_list_delete(ill, ire); 2306 } else { 2307 mutex_exit(&ire->ire_nce->nce_lock); 2308 } 2309 break; 2310 default: 2311 /* This should not happen! */ 2312 ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", 2313 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); 2314 break; 2315 } 2316 } 2317 2318 /* 2319 * Drain the list of ire's waiting for fastpath response. 2320 */ 2321 void 2322 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), 2323 void *arg) 2324 { 2325 ire_t *next_ire; 2326 ire_t *current_ire; 2327 ire_t *first_ire; 2328 ire_t *prev_ire = NULL; 2329 2330 ASSERT(ill != NULL); 2331 2332 mutex_enter(&ill->ill_lock); 2333 first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; 2334 while (current_ire != (ire_t *)&ill->ill_fastpath_list) { 2335 next_ire = current_ire->ire_fastpath; 2336 /* 2337 * Take it off the list if we're flushing, or if the callback 2338 * routine tells us to do so. Otherwise, leave the ire in the 2339 * fastpath list to handle any pending response from the lower 2340 * layer. We can't drain the list when the callback routine 2341 * comparison failed, because the response is asynchronous in 2342 * nature, and may not arrive in the same order as the list 2343 * insertion. 2344 */ 2345 if (func == NULL || func(current_ire, arg)) { 2346 current_ire->ire_fastpath = NULL; 2347 if (current_ire == first_ire) 2348 ill->ill_fastpath_list = first_ire = next_ire; 2349 else 2350 prev_ire->ire_fastpath = next_ire; 2351 } else { 2352 /* previous element that is still in the list */ 2353 prev_ire = current_ire; 2354 } 2355 current_ire = next_ire; 2356 } 2357 mutex_exit(&ill->ill_lock); 2358 } 2359 2360 /* 2361 * Add ire to the ire fastpath list. 2362 */ 2363 static void 2364 ire_fastpath_list_add(ill_t *ill, ire_t *ire) 2365 { 2366 ASSERT(ill != NULL); 2367 ASSERT(ire->ire_stq != NULL); 2368 2369 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2370 mutex_enter(&ill->ill_lock); 2371 2372 /* 2373 * if ire has not been deleted and 2374 * is not already in the list add it. 2375 */ 2376 if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && 2377 (ire->ire_fastpath == NULL)) { 2378 ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; 2379 ill->ill_fastpath_list = ire; 2380 } 2381 2382 mutex_exit(&ill->ill_lock); 2383 rw_exit(&ire->ire_bucket->irb_lock); 2384 } 2385 2386 /* 2387 * remove ire from the ire fastpath list. 2388 */ 2389 void 2390 ire_fastpath_list_delete(ill_t *ill, ire_t *ire) 2391 { 2392 ire_t *ire_ptr; 2393 2394 ASSERT(ire->ire_stq != NULL && ill != NULL); 2395 2396 mutex_enter(&ill->ill_lock); 2397 if (ire->ire_fastpath == NULL) 2398 goto done; 2399 2400 ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); 2401 2402 if (ill->ill_fastpath_list == ire) { 2403 ill->ill_fastpath_list = ire->ire_fastpath; 2404 } else { 2405 ire_ptr = ill->ill_fastpath_list; 2406 while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { 2407 if (ire_ptr->ire_fastpath == ire) { 2408 ire_ptr->ire_fastpath = ire->ire_fastpath; 2409 break; 2410 } 2411 ire_ptr = ire_ptr->ire_fastpath; 2412 } 2413 } 2414 ire->ire_fastpath = NULL; 2415 done: 2416 mutex_exit(&ill->ill_lock); 2417 } 2418 2419 /* 2420 * Return any local address. We use this to target ourselves 2421 * when the src address was specified as 'default'. 2422 * Preference for IRE_LOCAL entries. 2423 */ 2424 ire_t * 2425 ire_lookup_local(zoneid_t zoneid) 2426 { 2427 ire_t *ire; 2428 irb_t *irb; 2429 ire_t *maybe = NULL; 2430 int i; 2431 2432 for (i = 0; i < ip_cache_table_size; i++) { 2433 irb = &ip_cache_table[i]; 2434 if (irb->irb_ire == NULL) 2435 continue; 2436 rw_enter(&irb->irb_lock, RW_READER); 2437 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2438 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 2439 (ire->ire_zoneid != zoneid && 2440 ire->ire_zoneid != ALL_ZONES)) 2441 continue; 2442 switch (ire->ire_type) { 2443 case IRE_LOOPBACK: 2444 if (maybe == NULL) { 2445 IRE_REFHOLD(ire); 2446 maybe = ire; 2447 } 2448 break; 2449 case IRE_LOCAL: 2450 if (maybe != NULL) { 2451 ire_refrele(maybe); 2452 } 2453 IRE_REFHOLD(ire); 2454 rw_exit(&irb->irb_lock); 2455 return (ire); 2456 } 2457 } 2458 rw_exit(&irb->irb_lock); 2459 } 2460 return (maybe); 2461 } 2462 2463 /* 2464 * If the specified IRE is associated with a particular ILL, return 2465 * that ILL pointer (May be called as writer.). 2466 * 2467 * NOTE : This is not a generic function that can be used always. 2468 * This function always returns the ill of the outgoing packets 2469 * if this ire is used. 2470 */ 2471 ill_t * 2472 ire_to_ill(const ire_t *ire) 2473 { 2474 ill_t *ill = NULL; 2475 2476 /* 2477 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2478 * the source address from. ire_stq is the one where the 2479 * packets will be sent out on. We return that here. 2480 * 2481 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2482 * copy and they always exist next to each other with loopback 2483 * copy being the first one. If we are called on the non-loopback 2484 * copy, return the one pointed by ire_stq. If it was called on 2485 * a loopback copy, we still return the one pointed by the next 2486 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2487 * copy. We don't want use ire_ipif as it might represent the 2488 * source address (if we borrow source addresses for 2489 * IRE_BROADCASTS in the future). 2490 * However if an interface is currently coming up, the above 2491 * condition may not hold during that period since the ires 2492 * are added one at a time. Thus one of the pair could have been 2493 * added and the other not yet added. 2494 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2495 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2496 * That handles IRE_LOOPBACK. 2497 */ 2498 2499 if (ire->ire_type == IRE_CACHE) { 2500 ill = (ill_t *)ire->ire_stq->q_ptr; 2501 } else if (ire->ire_type == IRE_BROADCAST) { 2502 if (ire->ire_stq != NULL) { 2503 ill = (ill_t *)ire->ire_stq->q_ptr; 2504 } else { 2505 ire_t *ire_next; 2506 2507 ire_next = ire->ire_next; 2508 if (ire_next != NULL && 2509 ire_next->ire_type == IRE_BROADCAST && 2510 ire_next->ire_addr == ire->ire_addr && 2511 ire_next->ire_ipif == ire->ire_ipif) { 2512 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2513 } 2514 } 2515 } else if (ire->ire_rfq != NULL) { 2516 ill = ire->ire_rfq->q_ptr; 2517 } else if (ire->ire_ipif != NULL) { 2518 ill = ire->ire_ipif->ipif_ill; 2519 } 2520 return (ill); 2521 } 2522 2523 /* Arrange to call the specified function for every IRE in the world. */ 2524 void 2525 ire_walk(pfv_t func, void *arg) 2526 { 2527 ire_walk_ipvers(func, arg, 0, ALL_ZONES); 2528 } 2529 2530 void 2531 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) 2532 { 2533 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); 2534 } 2535 2536 void 2537 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) 2538 { 2539 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); 2540 } 2541 2542 /* 2543 * Walk a particular version. version == 0 means both v4 and v6. 2544 */ 2545 static void 2546 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) 2547 { 2548 if (vers != IPV6_VERSION) { 2549 /* 2550 * ip_forwarding_table variable doesn't matter for IPv4 since 2551 * ire_walk_ill_tables directly calls with the ip_ftable global 2552 */ 2553 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2554 0, NULL, 2555 ip_cache_table_size, ip_cache_table, NULL, zoneid); 2556 } 2557 if (vers != IPV4_VERSION) { 2558 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2559 ip6_ftable_hash_size, ip_forwarding_table_v6, 2560 ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); 2561 } 2562 } 2563 2564 /* 2565 * Arrange to call the specified 2566 * function for every IRE that matches the ill. 2567 */ 2568 void 2569 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2570 ill_t *ill) 2571 { 2572 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2573 } 2574 2575 void 2576 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2577 ill_t *ill) 2578 { 2579 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2580 ill); 2581 } 2582 2583 void 2584 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2585 ill_t *ill) 2586 { 2587 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2588 ill); 2589 } 2590 2591 /* 2592 * Walk a particular ill and version. version == 0 means both v4 and v6. 2593 */ 2594 static void 2595 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2596 void *arg, uchar_t vers, ill_t *ill) 2597 { 2598 if (vers != IPV6_VERSION) { 2599 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2600 IP_MASK_TABLE_SIZE, 0, 2601 NULL, ip_cache_table_size, 2602 ip_cache_table, ill, ALL_ZONES); 2603 } 2604 if (vers != IPV4_VERSION) { 2605 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2606 IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, 2607 ip_forwarding_table_v6, ip6_cache_table_size, 2608 ip_cache_table_v6, ill, ALL_ZONES); 2609 } 2610 } 2611 2612 boolean_t 2613 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2614 ill_t *ill, zoneid_t zoneid) 2615 { 2616 ill_t *ire_stq_ill = NULL; 2617 ill_t *ire_ipif_ill = NULL; 2618 ill_group_t *ire_ill_group = NULL; 2619 2620 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2621 /* 2622 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2623 * The fast path update uses this to make sure it does not 2624 * update the fast path header of interface X with the fast 2625 * path updates it recieved on interface Y. It is similar 2626 * in handling DL_NOTE_FASTPATH_FLUSH. 2627 * 2628 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2629 * pointed by ire_stq and ire_ipif. Only in the case of 2630 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2631 * different ills. But we want to keep this function generic 2632 * enough for future use. So, we always try to match on both. 2633 * The only caller of this function ire_walk_ill_tables, will 2634 * call "func" after we return from this function. We expect 2635 * "func" to do the right filtering of ires in this case. 2636 * 2637 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2638 * pointed by ire_stq and ire_ipif should always be the same. 2639 * So, we just match on only one of them. 2640 */ 2641 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2642 if (ire->ire_stq != NULL) 2643 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2644 if (ire->ire_ipif != NULL) 2645 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2646 if (ire_stq_ill != NULL) 2647 ire_ill_group = ire_stq_ill->ill_group; 2648 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2649 ire_ill_group = ire_ipif_ill->ill_group; 2650 } 2651 2652 if (zoneid != ALL_ZONES) { 2653 /* 2654 * We're walking the IREs for a specific zone. The only relevant 2655 * IREs are: 2656 * - all IREs with a matching ire_zoneid 2657 * - all IRE_OFFSUBNETs as they're shared across all zones 2658 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2659 * with a matching zone 2660 * - IRE_DEFAULTs with a gateway reachable from the zone 2661 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2662 * using the same rule; but the above rules are consistent with 2663 * the behavior of ire_ftable_lookup[_v6]() so that all the 2664 * routes that can be matched during lookup are also matched 2665 * here. 2666 */ 2667 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2668 /* 2669 * Note, IRE_INTERFACE can have the stq as NULL. For 2670 * example, if the default multicast route is tied to 2671 * the loopback address. 2672 */ 2673 if ((ire->ire_type & IRE_INTERFACE) && 2674 (ire->ire_stq != NULL)) { 2675 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2676 if (ire->ire_ipversion == IPV4_VERSION) { 2677 if (!ipif_usesrc_avail(ire_stq_ill, 2678 zoneid)) 2679 /* No usable src addr in zone */ 2680 return (B_FALSE); 2681 } else if (ire_stq_ill->ill_usesrc_ifindex 2682 != 0) { 2683 /* 2684 * For IPv6 use ipif_select_source_v6() 2685 * so the right scope selection is done 2686 */ 2687 ipif_t *src_ipif; 2688 src_ipif = 2689 ipif_select_source_v6(ire_stq_ill, 2690 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2691 IPV6_PREFER_SRC_DEFAULT, 2692 zoneid); 2693 if (src_ipif != NULL) { 2694 ipif_refrele(src_ipif); 2695 } else { 2696 return (B_FALSE); 2697 } 2698 } else { 2699 return (B_FALSE); 2700 } 2701 2702 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2703 return (B_FALSE); 2704 } 2705 } 2706 2707 /* 2708 * Match all default routes from the global zone, irrespective 2709 * of reachability. For a non-global zone only match those 2710 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2711 */ 2712 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2713 int ire_match_flags = 0; 2714 in6_addr_t gw_addr_v6; 2715 ire_t *rire; 2716 2717 ire_match_flags |= MATCH_IRE_TYPE; 2718 if (ire->ire_ipif != NULL) { 2719 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2720 } 2721 if (ire->ire_ipversion == IPV4_VERSION) { 2722 rire = ire_route_lookup(ire->ire_gateway_addr, 2723 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2724 zoneid, NULL, ire_match_flags); 2725 } else { 2726 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2727 mutex_enter(&ire->ire_lock); 2728 gw_addr_v6 = ire->ire_gateway_addr_v6; 2729 mutex_exit(&ire->ire_lock); 2730 rire = ire_route_lookup_v6(&gw_addr_v6, 2731 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2732 NULL, zoneid, NULL, ire_match_flags); 2733 } 2734 if (rire == NULL) { 2735 return (B_FALSE); 2736 } 2737 ire_refrele(rire); 2738 } 2739 } 2740 2741 if (((!(match_flags & MATCH_IRE_TYPE)) || 2742 (ire->ire_type & ire_type)) && 2743 ((!(match_flags & MATCH_IRE_WQ)) || 2744 (ire->ire_stq == ill->ill_wq)) && 2745 ((!(match_flags & MATCH_IRE_ILL)) || 2746 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2747 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2748 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2749 (ire_ill_group != NULL && 2750 ire_ill_group == ill->ill_group))) { 2751 return (B_TRUE); 2752 } 2753 return (B_FALSE); 2754 } 2755 2756 int 2757 rtfunc(struct radix_node *rn, void *arg) 2758 { 2759 struct rtfuncarg *rtf = arg; 2760 struct rt_entry *rt; 2761 irb_t *irb; 2762 ire_t *ire; 2763 boolean_t ret; 2764 2765 rt = (struct rt_entry *)rn; 2766 ASSERT(rt != NULL); 2767 irb = &rt->rt_irb; 2768 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2769 if ((rtf->rt_match_flags != 0) || 2770 (rtf->rt_zoneid != ALL_ZONES)) { 2771 ret = ire_walk_ill_match(rtf->rt_match_flags, 2772 rtf->rt_ire_type, ire, 2773 rtf->rt_ill, rtf->rt_zoneid); 2774 } else 2775 ret = B_TRUE; 2776 if (ret) 2777 (*rtf->rt_func)(ire, rtf->rt_arg); 2778 } 2779 return (0); 2780 } 2781 2782 /* 2783 * Walk the ftable and the ctable entries that match the ill. 2784 */ 2785 void 2786 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2787 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2788 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) 2789 { 2790 irb_t *irb_ptr; 2791 irb_t *irb; 2792 ire_t *ire; 2793 int i, j; 2794 boolean_t ret; 2795 struct rtfuncarg rtfarg; 2796 2797 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2798 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2799 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2800 /* 2801 * Optimize by not looking at the forwarding table if there 2802 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2803 * specified in ire_type. 2804 */ 2805 if (!(match_flags & MATCH_IRE_TYPE) || 2806 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2807 /* knobs such that routine is called only for v6 case */ 2808 if (ipftbl == ip_forwarding_table_v6) { 2809 for (i = (ftbl_sz - 1); i >= 0; i--) { 2810 if ((irb_ptr = ipftbl[i]) == NULL) 2811 continue; 2812 for (j = 0; j < htbl_sz; j++) { 2813 irb = &irb_ptr[j]; 2814 if (irb->irb_ire == NULL) 2815 continue; 2816 2817 IRB_REFHOLD(irb); 2818 for (ire = irb->irb_ire; ire != NULL; 2819 ire = ire->ire_next) { 2820 if (match_flags == 0 && 2821 zoneid == ALL_ZONES) { 2822 ret = B_TRUE; 2823 } else { 2824 ret = 2825 ire_walk_ill_match( 2826 match_flags, 2827 ire_type, ire, ill, 2828 zoneid); 2829 } 2830 if (ret) 2831 (*func)(ire, arg); 2832 } 2833 IRB_REFRELE(irb); 2834 } 2835 } 2836 } else { 2837 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2838 rtfarg.rt_func = func; 2839 rtfarg.rt_arg = arg; 2840 if (match_flags != 0) { 2841 rtfarg.rt_match_flags = match_flags; 2842 } 2843 rtfarg.rt_ire_type = ire_type; 2844 rtfarg.rt_ill = ill; 2845 rtfarg.rt_zoneid = zoneid; 2846 (void) ip_ftable->rnh_walktree_mt(ip_ftable, rtfunc, 2847 &rtfarg, irb_refhold_rn, irb_refrele_rn); 2848 } 2849 } 2850 2851 /* 2852 * Optimize by not looking at the cache table if there 2853 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2854 * specified in ire_type. 2855 */ 2856 if (!(match_flags & MATCH_IRE_TYPE) || 2857 ((ire_type & IRE_CACHETABLE) != 0)) { 2858 for (i = 0; i < ctbl_sz; i++) { 2859 irb = &ipctbl[i]; 2860 if (irb->irb_ire == NULL) 2861 continue; 2862 IRB_REFHOLD(irb); 2863 for (ire = irb->irb_ire; ire != NULL; 2864 ire = ire->ire_next) { 2865 if (match_flags == 0 && zoneid == ALL_ZONES) { 2866 ret = B_TRUE; 2867 } else { 2868 ret = ire_walk_ill_match( 2869 match_flags, ire_type, 2870 ire, ill, zoneid); 2871 } 2872 if (ret) 2873 (*func)(ire, arg); 2874 } 2875 IRB_REFRELE(irb); 2876 } 2877 } 2878 } 2879 2880 /* 2881 * This routine walks through the ill chain to find if there is any 2882 * ire linked to the ill's interface based forwarding table 2883 * The arg could be ill or mp. This routine is called when a ill goes 2884 * down/deleted or the 'ipv4_ire_srcif_status' report is printed. 2885 */ 2886 void 2887 ire_walk_srcif_table_v4(pfv_t func, void *arg) 2888 { 2889 irb_t *irb; 2890 ire_t *ire; 2891 ill_t *ill, *next_ill; 2892 int i; 2893 int total_count; 2894 ill_walk_context_t ctx; 2895 2896 /* 2897 * Take care of ire's in other ill's per-interface forwarding 2898 * table. Check if any ire in any of the ill's ill_srcif_table 2899 * is pointing to this ill. 2900 */ 2901 mutex_enter(&ire_srcif_table_lock); 2902 if (ire_srcif_table_count == 0) { 2903 mutex_exit(&ire_srcif_table_lock); 2904 return; 2905 } 2906 mutex_exit(&ire_srcif_table_lock); 2907 2908 #ifdef DEBUG 2909 /* Keep accounting of all interface based table ires */ 2910 total_count = 0; 2911 rw_enter(&ill_g_lock, RW_READER); 2912 ill = ILL_START_WALK_V4(&ctx); 2913 while (ill != NULL) { 2914 mutex_enter(&ill->ill_lock); 2915 total_count += ill->ill_srcif_refcnt; 2916 next_ill = ill_next(&ctx, ill); 2917 mutex_exit(&ill->ill_lock); 2918 ill = next_ill; 2919 } 2920 rw_exit(&ill_g_lock); 2921 2922 /* Hold lock here to make sure ire_srcif_table_count is stable */ 2923 mutex_enter(&ire_srcif_table_lock); 2924 i = ire_srcif_table_count; 2925 mutex_exit(&ire_srcif_table_lock); 2926 ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " 2927 "total ill_srcif_refcnt %d\n", i, total_count)); 2928 #endif 2929 rw_enter(&ill_g_lock, RW_READER); 2930 ill = ILL_START_WALK_V4(&ctx); 2931 while (ill != NULL) { 2932 mutex_enter(&ill->ill_lock); 2933 if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { 2934 next_ill = ill_next(&ctx, ill); 2935 mutex_exit(&ill->ill_lock); 2936 ill = next_ill; 2937 continue; 2938 } 2939 ill_refhold_locked(ill); 2940 mutex_exit(&ill->ill_lock); 2941 rw_exit(&ill_g_lock); 2942 if (ill->ill_srcif_table != NULL) { 2943 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 2944 irb = &(ill->ill_srcif_table[i]); 2945 if (irb->irb_ire == NULL) 2946 continue; 2947 IRB_REFHOLD(irb); 2948 for (ire = irb->irb_ire; ire != NULL; 2949 ire = ire->ire_next) { 2950 (*func)(ire, arg); 2951 } 2952 IRB_REFRELE(irb); 2953 } 2954 } 2955 rw_enter(&ill_g_lock, RW_READER); 2956 next_ill = ill_next(&ctx, ill); 2957 ill_refrele(ill); 2958 ill = next_ill; 2959 } 2960 rw_exit(&ill_g_lock); 2961 } 2962 2963 /* 2964 * This function takes a mask and returns 2965 * number of bits set in the mask. If no 2966 * bit is set it returns 0. 2967 * Assumes a contiguous mask. 2968 */ 2969 int 2970 ip_mask_to_plen(ipaddr_t mask) 2971 { 2972 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2973 } 2974 2975 /* 2976 * Convert length for a mask to the mask. 2977 */ 2978 ipaddr_t 2979 ip_plen_to_mask(uint_t masklen) 2980 { 2981 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2982 } 2983 2984 void 2985 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2986 { 2987 ill_t *ill_list[NUM_ILLS]; 2988 2989 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2990 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2991 ill_list[2] = ire->ire_in_ill; 2992 ill_unlock_ills(ill_list, NUM_ILLS); 2993 rw_exit(&irb_ptr->irb_lock); 2994 rw_exit(&ill_g_usesrc_lock); 2995 } 2996 2997 /* 2998 * ire_add_v[46] atomically make sure that the ipif or ill associated 2999 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 3000 * before adding the ire to the table. This ensures that we don't create 3001 * new IRE_CACHEs with stale values for parameters that are passed to 3002 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 3003 * to the ipif_mtu, and not the value. The actual value is derived from the 3004 * parent ire or ipif under the bucket lock. 3005 */ 3006 int 3007 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 3008 ipsq_func_t func) 3009 { 3010 ill_t *stq_ill; 3011 ill_t *ipif_ill; 3012 ill_t *in_ill; 3013 ill_t *ill_list[NUM_ILLS]; 3014 int cnt = NUM_ILLS; 3015 int error = 0; 3016 ill_t *ill = NULL; 3017 3018 ill_list[0] = stq_ill = ire->ire_stq != 3019 NULL ? ire->ire_stq->q_ptr : NULL; 3020 ill_list[1] = ipif_ill = ire->ire_ipif != 3021 NULL ? ire->ire_ipif->ipif_ill : NULL; 3022 ill_list[2] = in_ill = ire->ire_in_ill; 3023 3024 ASSERT((q != NULL && mp != NULL && func != NULL) || 3025 (q == NULL && mp == NULL && func == NULL)); 3026 rw_enter(&ill_g_usesrc_lock, RW_READER); 3027 GRAB_CONN_LOCK(q); 3028 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 3029 ill_lock_ills(ill_list, cnt); 3030 3031 /* 3032 * While the IRE is in the process of being added, a user may have 3033 * invoked the ifconfig usesrc option on the stq_ill to make it a 3034 * usesrc client ILL. Check for this possibility here, if it is true 3035 * then we fail adding the IRE_CACHE. Another check is to make sure 3036 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 3037 * group. The ill_g_usesrc_lock is released in ire_atomic_end 3038 */ 3039 if ((ire->ire_type & IRE_CACHE) && 3040 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 3041 if (stq_ill->ill_usesrc_ifindex != 0) { 3042 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 3043 if ((ipif_ill->ill_phyint->phyint_ifindex != 3044 stq_ill->ill_usesrc_ifindex) || 3045 (ipif_ill->ill_usesrc_grp_next == NULL) || 3046 (ipif_ill->ill_usesrc_ifindex != 0)) { 3047 error = EINVAL; 3048 goto done; 3049 } 3050 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 3051 error = EINVAL; 3052 goto done; 3053 } 3054 } 3055 3056 /* 3057 * IPMP flag settings happen without taking the exclusive route 3058 * in ip_sioctl_flags. So we need to make an atomic check here 3059 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 3060 * FAILBACK=no case. 3061 */ 3062 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 3063 if (stq_ill->ill_state_flags & ILL_CHANGING) { 3064 ill = stq_ill; 3065 error = EAGAIN; 3066 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3067 (ill_is_probeonly(stq_ill) && 3068 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3069 error = EINVAL; 3070 } 3071 goto done; 3072 } 3073 3074 /* 3075 * We don't check for OFFLINE/FAILED in this case because 3076 * the source address selection logic (ipif_select_source) 3077 * may still select a source address from such an ill. The 3078 * assumption is that these addresses will be moved by in.mpathd 3079 * soon. (i.e. this is a race). However link local addresses 3080 * will not move and hence ipif_select_source_v6 tries to avoid 3081 * FAILED ills. Please see ipif_select_source_v6 for more info 3082 */ 3083 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 3084 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 3085 ill = ipif_ill; 3086 error = EAGAIN; 3087 goto done; 3088 } 3089 3090 if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && 3091 (in_ill->ill_state_flags & ILL_CHANGING)) { 3092 ill = in_ill; 3093 error = EAGAIN; 3094 goto done; 3095 } 3096 3097 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 3098 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 3099 ill = ire->ire_ipif->ipif_ill; 3100 ASSERT(ill != NULL); 3101 error = EAGAIN; 3102 goto done; 3103 } 3104 3105 done: 3106 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 3107 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 3108 mutex_enter(&ipsq->ipsq_lock); 3109 ire_atomic_end(irb_ptr, ire); 3110 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 3111 mutex_exit(&ipsq->ipsq_lock); 3112 error = EINPROGRESS; 3113 } else if (error != 0) { 3114 ire_atomic_end(irb_ptr, ire); 3115 } 3116 3117 RELEASE_CONN_LOCK(q); 3118 return (error); 3119 } 3120 3121 /* 3122 * Add a fully initialized IRE to an appropriate table based on 3123 * ire_type. 3124 * 3125 * allow_unresolved == B_FALSE indicates a legacy code-path call 3126 * that has prohibited the addition of incomplete ire's. If this 3127 * parameter is set, and we find an nce that is in a state other 3128 * than ND_REACHABLE, we fail the add. Note that nce_state could be 3129 * something other than ND_REACHABLE if nce_reinit has just 3130 * kicked in and reset the nce. 3131 */ 3132 int 3133 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 3134 boolean_t allow_unresolved) 3135 { 3136 ire_t *ire1; 3137 ill_t *stq_ill = NULL; 3138 ill_t *ill; 3139 ipif_t *ipif = NULL; 3140 ill_walk_context_t ctx; 3141 ire_t *ire = *irep; 3142 int error; 3143 boolean_t ire_is_mblk = B_FALSE; 3144 tsol_gcgrp_t *gcgrp = NULL; 3145 tsol_gcgrp_addr_t ga; 3146 3147 ASSERT(ire->ire_type != IRE_MIPRTUN); 3148 3149 /* get ready for the day when original ire is not created as mblk */ 3150 if (ire->ire_mp != NULL) { 3151 ire_is_mblk = B_TRUE; 3152 /* Copy the ire to a kmem_alloc'ed area */ 3153 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 3154 if (ire1 == NULL) { 3155 ip1dbg(("ire_add: alloc failed\n")); 3156 ire_delete(ire); 3157 *irep = NULL; 3158 return (ENOMEM); 3159 } 3160 ire->ire_marks &= ~IRE_MARK_UNCACHED; 3161 *ire1 = *ire; 3162 ire1->ire_mp = NULL; 3163 ire1->ire_stq_ifindex = 0; 3164 freeb(ire->ire_mp); 3165 ire = ire1; 3166 } 3167 if (ire->ire_stq != NULL) 3168 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3169 3170 if (ire->ire_type == IRE_CACHE) { 3171 /* 3172 * If this interface is FAILED, or INACTIVE or has hit 3173 * the FAILBACK=no case, we create IRE_CACHES marked 3174 * HIDDEN for some special cases e.g. bind to 3175 * IPIF_NOFAILOVER address etc. So, if this interface 3176 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 3177 * not creating hidden ires, we should not allow that. 3178 * This happens because the state of the interface 3179 * changed while we were waiting in ARP. If this is the 3180 * daemon sending probes, the next probe will create 3181 * HIDDEN ires and we will create an ire then. This 3182 * cannot happen with NDP currently because IRE is 3183 * never queued in NDP. But it can happen in the 3184 * future when we have external resolvers with IPv6. 3185 * If the interface gets marked with OFFLINE while we 3186 * are waiting in ARP, don't add the ire. 3187 */ 3188 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3189 (ill_is_probeonly(stq_ill) && 3190 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3191 /* 3192 * We don't know whether it is a valid ipif or not. 3193 * unless we do the check below. So, set it to NULL. 3194 */ 3195 ire->ire_ipif = NULL; 3196 ire_delete(ire); 3197 *irep = NULL; 3198 return (EINVAL); 3199 } 3200 } 3201 3202 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 3203 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 3204 rw_enter(&ill_g_lock, RW_READER); 3205 ill = ILL_START_WALK_ALL(&ctx); 3206 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 3207 mutex_enter(&ill->ill_lock); 3208 if (ill->ill_state_flags & ILL_CONDEMNED) { 3209 mutex_exit(&ill->ill_lock); 3210 continue; 3211 } 3212 /* 3213 * We need to make sure that the ipif is a valid one 3214 * before adding the IRE_CACHE. This happens only 3215 * with IRE_CACHE when there is an external resolver. 3216 * 3217 * We can unplumb a logical interface while the 3218 * packet is waiting in ARP with the IRE. Then, 3219 * later on when we feed the IRE back, the ipif 3220 * has to be re-checked. This can't happen with 3221 * NDP currently, as we never queue the IRE with 3222 * the packet. We always try to recreate the IRE 3223 * when the resolution is completed. But, we do 3224 * it for IPv6 also here so that in future if 3225 * we have external resolvers, it will work without 3226 * any change. 3227 */ 3228 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 3229 if (ipif != NULL) { 3230 ipif_refhold_locked(ipif); 3231 mutex_exit(&ill->ill_lock); 3232 break; 3233 } 3234 mutex_exit(&ill->ill_lock); 3235 } 3236 rw_exit(&ill_g_lock); 3237 if (ipif == NULL || 3238 (ipif->ipif_isv6 && 3239 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 3240 &ipif->ipif_v6src_addr)) || 3241 (!ipif->ipif_isv6 && 3242 ire->ire_src_addr != ipif->ipif_src_addr) || 3243 ire->ire_zoneid != ipif->ipif_zoneid) { 3244 3245 if (ipif != NULL) 3246 ipif_refrele(ipif); 3247 ire->ire_ipif = NULL; 3248 ire_delete(ire); 3249 *irep = NULL; 3250 return (EINVAL); 3251 } 3252 3253 3254 ASSERT(ill != NULL); 3255 /* 3256 * If this group was dismantled while this packets was 3257 * queued in ARP, don't add it here. 3258 */ 3259 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 3260 /* We don't want ire_inactive bump stats for this */ 3261 ipif_refrele(ipif); 3262 ire->ire_ipif = NULL; 3263 ire_delete(ire); 3264 *irep = NULL; 3265 return (EINVAL); 3266 } 3267 3268 /* 3269 * Since we didn't attach label security attributes to the 3270 * ire for the resolver case, we need to add it now. (only 3271 * for v4 resolver and v6 xresolv case). 3272 */ 3273 if (is_system_labeled() && ire_is_mblk) { 3274 if (ire->ire_ipversion == IPV4_VERSION) { 3275 ga.ga_af = AF_INET; 3276 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 3277 INADDR_ANY ? ire->ire_gateway_addr : 3278 ire->ire_addr, &ga.ga_addr); 3279 } else { 3280 ga.ga_af = AF_INET6; 3281 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 3282 &ire->ire_gateway_addr_v6) ? 3283 ire->ire_addr_v6 : 3284 ire->ire_gateway_addr_v6; 3285 } 3286 gcgrp = gcgrp_lookup(&ga, B_FALSE); 3287 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 3288 NULL, gcgrp); 3289 if (error != 0) { 3290 if (gcgrp != NULL) { 3291 GCGRP_REFRELE(gcgrp); 3292 gcgrp = NULL; 3293 } 3294 ipif_refrele(ipif); 3295 ire->ire_ipif = NULL; 3296 ire_delete(ire); 3297 *irep = NULL; 3298 return (error); 3299 } 3300 } 3301 } 3302 3303 /* 3304 * In case ire was changed 3305 */ 3306 *irep = ire; 3307 if (ire->ire_ipversion == IPV6_VERSION) { 3308 error = ire_add_v6(irep, q, mp, func); 3309 } else { 3310 if (ire->ire_in_ill == NULL) 3311 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 3312 else 3313 error = ire_add_srcif_v4(irep, q, mp, func); 3314 } 3315 if (ipif != NULL) 3316 ipif_refrele(ipif); 3317 return (error); 3318 } 3319 3320 /* 3321 * Add an initialized IRE to an appropriate table based on ire_type. 3322 * 3323 * The forward table contains IRE_PREFIX/IRE_HOST and 3324 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 3325 * 3326 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 3327 * and IRE_CACHE. 3328 * 3329 * NOTE : This function is called as writer though not required 3330 * by this function. 3331 */ 3332 static int 3333 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 3334 boolean_t allow_unresolved) 3335 { 3336 ire_t *ire1; 3337 irb_t *irb_ptr; 3338 ire_t **irep; 3339 int flags; 3340 ire_t *pire = NULL; 3341 ill_t *stq_ill; 3342 ire_t *ire = *ire_p; 3343 int error; 3344 boolean_t need_refrele = B_FALSE; 3345 nce_t *nce; 3346 3347 if (ire->ire_ipif != NULL) 3348 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3349 if (ire->ire_stq != NULL) 3350 ASSERT(!MUTEX_HELD( 3351 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 3352 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3353 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 3354 ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ 3355 3356 /* Find the appropriate list head. */ 3357 switch (ire->ire_type) { 3358 case IRE_HOST: 3359 ire->ire_mask = IP_HOST_MASK; 3360 ire->ire_masklen = IP_ABITS; 3361 if ((ire->ire_flags & RTF_SETSRC) == 0) 3362 ire->ire_src_addr = 0; 3363 break; 3364 case IRE_CACHE: 3365 case IRE_BROADCAST: 3366 case IRE_LOCAL: 3367 case IRE_LOOPBACK: 3368 ire->ire_mask = IP_HOST_MASK; 3369 ire->ire_masklen = IP_ABITS; 3370 break; 3371 case IRE_PREFIX: 3372 if ((ire->ire_flags & RTF_SETSRC) == 0) 3373 ire->ire_src_addr = 0; 3374 break; 3375 case IRE_DEFAULT: 3376 if ((ire->ire_flags & RTF_SETSRC) == 0) 3377 ire->ire_src_addr = 0; 3378 break; 3379 case IRE_IF_RESOLVER: 3380 case IRE_IF_NORESOLVER: 3381 break; 3382 default: 3383 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 3384 (void *)ire, ire->ire_type)); 3385 ire_delete(ire); 3386 *ire_p = NULL; 3387 return (EINVAL); 3388 } 3389 3390 /* Make sure the address is properly masked. */ 3391 ire->ire_addr &= ire->ire_mask; 3392 3393 /* 3394 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 3395 * of the interface route while adding an IRE_CACHE for an on-link 3396 * destination in the IRE_IF_RESOLVER case, since the ire has to 3397 * go to ARP and return. We can't do a REFHOLD on the 3398 * associated interface ire for fear of ARP freeing the message. 3399 * Here we look up the interface ire in the forwarding table and 3400 * make sure that the interface route has not been deleted. 3401 */ 3402 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 3403 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 3404 3405 ASSERT(ire->ire_max_fragp == NULL); 3406 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 3407 /* 3408 * The ihandle that we used in ip_newroute_multi 3409 * comes from the interface route corresponding 3410 * to ire_ipif. Lookup here to see if it exists 3411 * still. 3412 * If the ire has a source address assigned using 3413 * RTF_SETSRC, ire_ipif is the logical interface holding 3414 * this source address, so we can't use it to check for 3415 * the existence of the interface route. Instead we rely 3416 * on the brute force ihandle search in 3417 * ire_ihandle_lookup_onlink() below. 3418 */ 3419 pire = ipif_to_ire(ire->ire_ipif); 3420 if (pire == NULL) { 3421 ire_delete(ire); 3422 *ire_p = NULL; 3423 return (EINVAL); 3424 } else if (pire->ire_ihandle != ire->ire_ihandle) { 3425 ire_refrele(pire); 3426 ire_delete(ire); 3427 *ire_p = NULL; 3428 return (EINVAL); 3429 } 3430 } else { 3431 pire = ire_ihandle_lookup_onlink(ire); 3432 if (pire == NULL) { 3433 ire_delete(ire); 3434 *ire_p = NULL; 3435 return (EINVAL); 3436 } 3437 } 3438 /* Prevent pire from getting deleted */ 3439 IRB_REFHOLD(pire->ire_bucket); 3440 /* Has it been removed already ? */ 3441 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 3442 IRB_REFRELE(pire->ire_bucket); 3443 ire_refrele(pire); 3444 ire_delete(ire); 3445 *ire_p = NULL; 3446 return (EINVAL); 3447 } 3448 } else { 3449 ASSERT(ire->ire_max_fragp != NULL); 3450 } 3451 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 3452 3453 if (ire->ire_ipif != NULL) { 3454 /* 3455 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 3456 * for historic reasons and to maintain symmetry with 3457 * IPv6 code path. Historically this was used by 3458 * multicast code to create multiple IRE_CACHES on 3459 * a single ill with different ipifs. This was used 3460 * so that multicast packets leaving the node had the 3461 * right source address. This is no longer needed as 3462 * ip_wput initializes the address correctly. 3463 */ 3464 flags |= MATCH_IRE_IPIF; 3465 /* 3466 * If we are creating hidden ires, make sure we search on 3467 * this ill (MATCH_IRE_ILL) and a hidden ire, 3468 * while we are searching for duplicates below. Otherwise we 3469 * could potentially find an IRE on some other interface 3470 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 3471 * shouldn't do this as this will lead to an infinite loop 3472 * (if we get to ip_wput again) eventually we need an hidden 3473 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 3474 * done below. 3475 */ 3476 if (ire->ire_type == IRE_CACHE && 3477 (ire->ire_marks & IRE_MARK_HIDDEN)) 3478 flags |= (MATCH_IRE_MARK_HIDDEN); 3479 } 3480 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 3481 irb_ptr = ire_get_bucket(ire); 3482 need_refrele = B_TRUE; 3483 if (irb_ptr == NULL) { 3484 /* 3485 * This assumes that the ire has not added 3486 * a reference to the ipif. 3487 */ 3488 ire->ire_ipif = NULL; 3489 ire_delete(ire); 3490 if (pire != NULL) { 3491 IRB_REFRELE(pire->ire_bucket); 3492 ire_refrele(pire); 3493 } 3494 *ire_p = NULL; 3495 return (EINVAL); 3496 } 3497 } else { 3498 irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, 3499 ip_cache_table_size)]); 3500 } 3501 3502 /* 3503 * Start the atomic add of the ire. Grab the ill locks, 3504 * ill_g_usesrc_lock and the bucket lock. Check for condemned 3505 * 3506 * If ipif or ill is changing ire_atomic_start() may queue the 3507 * request and return EINPROGRESS. 3508 * To avoid lock order problems, get the ndp4.ndp_g_lock. 3509 */ 3510 mutex_enter(&ndp4.ndp_g_lock); 3511 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 3512 if (error != 0) { 3513 mutex_exit(&ndp4.ndp_g_lock); 3514 /* 3515 * We don't know whether it is a valid ipif or not. 3516 * So, set it to NULL. This assumes that the ire has not added 3517 * a reference to the ipif. 3518 */ 3519 ire->ire_ipif = NULL; 3520 ire_delete(ire); 3521 if (pire != NULL) { 3522 IRB_REFRELE(pire->ire_bucket); 3523 ire_refrele(pire); 3524 } 3525 *ire_p = NULL; 3526 if (need_refrele) 3527 IRB_REFRELE(irb_ptr); 3528 return (error); 3529 } 3530 /* 3531 * To avoid creating ires having stale values for the ire_max_frag 3532 * we get the latest value atomically here. For more details 3533 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 3534 * in ip_rput_dlpi_writer 3535 */ 3536 if (ire->ire_max_fragp == NULL) { 3537 if (CLASSD(ire->ire_addr)) 3538 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 3539 else 3540 ire->ire_max_frag = pire->ire_max_frag; 3541 } else { 3542 uint_t max_frag; 3543 3544 max_frag = *ire->ire_max_fragp; 3545 ire->ire_max_fragp = NULL; 3546 ire->ire_max_frag = max_frag; 3547 } 3548 /* 3549 * Atomically check for duplicate and insert in the table. 3550 */ 3551 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 3552 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 3553 continue; 3554 if (ire->ire_ipif != NULL) { 3555 /* 3556 * We do MATCH_IRE_ILL implicitly here for IREs 3557 * with a non-null ire_ipif, including IRE_CACHEs. 3558 * As ire_ipif and ire_stq could point to two 3559 * different ills, we can't pass just ire_ipif to 3560 * ire_match_args and get a match on both ills. 3561 * This is just needed for duplicate checks here and 3562 * so we don't add an extra argument to 3563 * ire_match_args for this. Do it locally. 3564 * 3565 * NOTE : Currently there is no part of the code 3566 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3567 * match for IRE_CACHEs. Thus we don't want to 3568 * extend the arguments to ire_match_args. 3569 */ 3570 if (ire1->ire_stq != ire->ire_stq) 3571 continue; 3572 /* 3573 * Multiroute IRE_CACHEs for a given destination can 3574 * have the same ire_ipif, typically if their source 3575 * address is forced using RTF_SETSRC, and the same 3576 * send-to queue. We differentiate them using the parent 3577 * handle. 3578 */ 3579 if (ire->ire_type == IRE_CACHE && 3580 (ire1->ire_flags & RTF_MULTIRT) && 3581 (ire->ire_flags & RTF_MULTIRT) && 3582 (ire1->ire_phandle != ire->ire_phandle)) 3583 continue; 3584 } 3585 if (ire1->ire_zoneid != ire->ire_zoneid) 3586 continue; 3587 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3588 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3589 ire->ire_zoneid, 0, NULL, flags)) { 3590 /* 3591 * Return the old ire after doing a REFHOLD. 3592 * As most of the callers continue to use the IRE 3593 * after adding, we return a held ire. This will 3594 * avoid a lookup in the caller again. If the callers 3595 * don't want to use it, they need to do a REFRELE. 3596 */ 3597 ip1dbg(("found dup ire existing %p new %p", 3598 (void *)ire1, (void *)ire)); 3599 IRE_REFHOLD(ire1); 3600 ire_atomic_end(irb_ptr, ire); 3601 mutex_exit(&ndp4.ndp_g_lock); 3602 ire_delete(ire); 3603 if (pire != NULL) { 3604 /* 3605 * Assert that it is not removed from the 3606 * list yet. 3607 */ 3608 ASSERT(pire->ire_ptpn != NULL); 3609 IRB_REFRELE(pire->ire_bucket); 3610 ire_refrele(pire); 3611 } 3612 *ire_p = ire1; 3613 if (need_refrele) 3614 IRB_REFRELE(irb_ptr); 3615 return (0); 3616 } 3617 } 3618 if (ire->ire_type & IRE_CACHE) { 3619 ASSERT(ire->ire_stq != NULL); 3620 nce = ndp_lookup_v4(ire_to_ill(ire), 3621 ((ire->ire_gateway_addr != INADDR_ANY) ? 3622 &ire->ire_gateway_addr : &ire->ire_addr), 3623 B_TRUE); 3624 if (nce != NULL) 3625 mutex_enter(&nce->nce_lock); 3626 /* 3627 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3628 * and the caller has prohibited the addition of incomplete 3629 * ire's, we fail the add. Note that nce_state could be 3630 * something other than ND_REACHABLE if nce_reinit has just 3631 * kicked in and reset the nce. 3632 */ 3633 if ((nce == NULL) || 3634 (nce->nce_flags & NCE_F_CONDEMNED) || 3635 (!allow_unresolved && 3636 ((nce->nce_state & ND_REACHABLE) == 0))) { 3637 if (nce != NULL) 3638 mutex_exit(&nce->nce_lock); 3639 ire_atomic_end(irb_ptr, ire); 3640 mutex_exit(&ndp4.ndp_g_lock); 3641 if (nce != NULL) 3642 NCE_REFRELE(nce); 3643 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3644 ire_delete(ire); 3645 if (pire != NULL) { 3646 IRB_REFRELE(pire->ire_bucket); 3647 ire_refrele(pire); 3648 } 3649 *ire_p = NULL; 3650 if (need_refrele) 3651 IRB_REFRELE(irb_ptr); 3652 return (EINVAL); 3653 } else { 3654 ire->ire_nce = nce; 3655 mutex_exit(&nce->nce_lock); 3656 /* 3657 * We are associating this nce to the ire, so 3658 * change the nce ref taken in ndp_lookup_v4() from 3659 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3660 */ 3661 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3662 } 3663 } 3664 /* 3665 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3666 * grouping identical addresses together on the hash chain. We also 3667 * don't want to send multiple copies out if there are two ills part 3668 * of the same group. Thus we group the ires with same addr and same 3669 * ill group together so that ip_wput_ire can easily skip all the 3670 * ires with same addr and same group after sending the first copy. 3671 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3672 * interested in such groupings only for broadcasts. 3673 * 3674 * NOTE : If the interfaces are brought up first and then grouped, 3675 * illgrp_insert will handle it. We come here when the interfaces 3676 * are already in group and we are bringing them UP. 3677 * 3678 * Find the first entry that matches ire_addr. *irep will be null 3679 * if no match. 3680 */ 3681 irep = (ire_t **)irb_ptr; 3682 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3683 irep = &ire1->ire_next; 3684 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3685 /* 3686 * We found some ire (i.e *irep) with a matching addr. We 3687 * want to group ires with same addr and same ill group 3688 * together. 3689 * 3690 * First get to the entry that matches our address and 3691 * ill group i.e stop as soon as we find the first ire 3692 * matching the ill group and address. If there is only 3693 * an address match, we should walk and look for some 3694 * group match. These are some of the possible scenarios : 3695 * 3696 * 1) There are no groups at all i.e all ire's ill_group 3697 * are NULL. In that case we will essentially group 3698 * all the ires with the same addr together. Same as 3699 * the "else" block of this "if". 3700 * 3701 * 2) There are some groups and this ire's ill_group is 3702 * NULL. In this case, we will first find the group 3703 * that matches the address and a NULL group. Then 3704 * we will insert the ire at the end of that group. 3705 * 3706 * 3) There are some groups and this ires's ill_group is 3707 * non-NULL. In this case we will first find the group 3708 * that matches the address and the ill_group. Then 3709 * we will insert the ire at the end of that group. 3710 */ 3711 /* LINTED : constant in conditional context */ 3712 while (1) { 3713 ire1 = *irep; 3714 if ((ire1->ire_next == NULL) || 3715 (ire1->ire_next->ire_addr != ire->ire_addr) || 3716 (ire1->ire_type != IRE_BROADCAST) || 3717 (ire1->ire_ipif->ipif_ill->ill_group == 3718 ire->ire_ipif->ipif_ill->ill_group)) 3719 break; 3720 irep = &ire1->ire_next; 3721 } 3722 ASSERT(*irep != NULL); 3723 irep = &((*irep)->ire_next); 3724 3725 /* 3726 * Either we have hit the end of the list or the address 3727 * did not match or the group *matched*. If we found 3728 * a match on the group, skip to the end of the group. 3729 */ 3730 while (*irep != NULL) { 3731 ire1 = *irep; 3732 if ((ire1->ire_addr != ire->ire_addr) || 3733 (ire1->ire_type != IRE_BROADCAST) || 3734 (ire1->ire_ipif->ipif_ill->ill_group != 3735 ire->ire_ipif->ipif_ill->ill_group)) 3736 break; 3737 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3738 ire1->ire_ipif == ire->ire_ipif) { 3739 irep = &ire1->ire_next; 3740 break; 3741 } 3742 irep = &ire1->ire_next; 3743 } 3744 } else if (*irep != NULL) { 3745 /* 3746 * Find the last ire which matches ire_addr. 3747 * Needed to do tail insertion among entries with the same 3748 * ire_addr. 3749 */ 3750 while (ire->ire_addr == ire1->ire_addr) { 3751 irep = &ire1->ire_next; 3752 ire1 = *irep; 3753 if (ire1 == NULL) 3754 break; 3755 } 3756 } 3757 3758 /* Insert at *irep */ 3759 ire1 = *irep; 3760 if (ire1 != NULL) 3761 ire1->ire_ptpn = &ire->ire_next; 3762 ire->ire_next = ire1; 3763 /* Link the new one in. */ 3764 ire->ire_ptpn = irep; 3765 3766 /* 3767 * ire_walk routines de-reference ire_next without holding 3768 * a lock. Before we point to the new ire, we want to make 3769 * sure the store that sets the ire_next of the new ire 3770 * reaches global visibility, so that ire_walk routines 3771 * don't see a truncated list of ires i.e if the ire_next 3772 * of the new ire gets set after we do "*irep = ire" due 3773 * to re-ordering, the ire_walk thread will see a NULL 3774 * once it accesses the ire_next of the new ire. 3775 * membar_producer() makes sure that the following store 3776 * happens *after* all of the above stores. 3777 */ 3778 membar_producer(); 3779 *irep = ire; 3780 ire->ire_bucket = irb_ptr; 3781 /* 3782 * We return a bumped up IRE above. Keep it symmetrical 3783 * so that the callers will always have to release. This 3784 * helps the callers of this function because they continue 3785 * to use the IRE after adding and hence they don't have to 3786 * lookup again after we return the IRE. 3787 * 3788 * NOTE : We don't have to use atomics as this is appearing 3789 * in the list for the first time and no one else can bump 3790 * up the reference count on this yet. 3791 */ 3792 IRE_REFHOLD_LOCKED(ire); 3793 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 3794 3795 irb_ptr->irb_ire_cnt++; 3796 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3797 irb_ptr->irb_nire++; 3798 3799 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3800 irb_ptr->irb_tmp_ire_cnt++; 3801 3802 if (ire->ire_ipif != NULL) { 3803 ire->ire_ipif->ipif_ire_cnt++; 3804 if (ire->ire_stq != NULL) { 3805 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3806 stq_ill->ill_ire_cnt++; 3807 } 3808 } else { 3809 ASSERT(ire->ire_stq == NULL); 3810 } 3811 3812 ire_atomic_end(irb_ptr, ire); 3813 mutex_exit(&ndp4.ndp_g_lock); 3814 3815 if (pire != NULL) { 3816 /* Assert that it is not removed from the list yet */ 3817 ASSERT(pire->ire_ptpn != NULL); 3818 IRB_REFRELE(pire->ire_bucket); 3819 ire_refrele(pire); 3820 } 3821 3822 if (ire->ire_type != IRE_CACHE) { 3823 /* 3824 * For ire's with host mask see if there is an entry 3825 * in the cache. If there is one flush the whole cache as 3826 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3827 * If no entry is found than there is no need to flush the 3828 * cache. 3829 */ 3830 if (ire->ire_mask == IP_HOST_MASK) { 3831 ire_t *lire; 3832 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3833 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3834 if (lire != NULL) { 3835 ire_refrele(lire); 3836 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3837 } 3838 } else { 3839 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3840 } 3841 } 3842 /* 3843 * We had to delay the fast path probe until the ire is inserted 3844 * in the list. Otherwise the fast path ack won't find the ire in 3845 * the table. 3846 */ 3847 if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) 3848 ire_fastpath(ire); 3849 if (ire->ire_ipif != NULL) 3850 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3851 *ire_p = ire; 3852 if (need_refrele) { 3853 IRB_REFRELE(irb_ptr); 3854 } 3855 return (0); 3856 } 3857 3858 /* 3859 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3860 * do the final cleanup for this ire. 3861 */ 3862 void 3863 ire_cleanup(ire_t *ire) 3864 { 3865 ire_t *ire_next; 3866 3867 ASSERT(ire != NULL); 3868 3869 while (ire != NULL) { 3870 ire_next = ire->ire_next; 3871 if (ire->ire_ipversion == IPV4_VERSION) { 3872 ire_delete_v4(ire); 3873 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 3874 } else { 3875 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3876 ire_delete_v6(ire); 3877 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 3878 } 3879 /* 3880 * Now it's really out of the list. Before doing the 3881 * REFRELE, set ire_next to NULL as ire_inactive asserts 3882 * so. 3883 */ 3884 ire->ire_next = NULL; 3885 IRE_REFRELE_NOTR(ire); 3886 ire = ire_next; 3887 } 3888 } 3889 3890 /* 3891 * IRB_REFRELE is the only caller of the function. It calls to unlink 3892 * all the CONDEMNED ires from this bucket. 3893 */ 3894 ire_t * 3895 ire_unlink(irb_t *irb) 3896 { 3897 ire_t *ire; 3898 ire_t *ire1; 3899 ire_t **ptpn; 3900 ire_t *ire_list = NULL; 3901 3902 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3903 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3904 (irb->irb_refcnt == 0)); 3905 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3906 ASSERT(irb->irb_ire != NULL); 3907 3908 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3909 ire1 = ire->ire_next; 3910 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3911 ptpn = ire->ire_ptpn; 3912 ire1 = ire->ire_next; 3913 if (ire1) 3914 ire1->ire_ptpn = ptpn; 3915 *ptpn = ire1; 3916 ire->ire_ptpn = NULL; 3917 ire->ire_next = NULL; 3918 if (ire->ire_type == IRE_DEFAULT) { 3919 /* 3920 * IRE is out of the list. We need to adjust 3921 * the accounting before the caller drops 3922 * the lock. 3923 */ 3924 if (ire->ire_ipversion == IPV6_VERSION) { 3925 ASSERT(ipv6_ire_default_count != 0); 3926 ipv6_ire_default_count--; 3927 } 3928 } 3929 /* 3930 * We need to call ire_delete_v4 or ire_delete_v6 3931 * to clean up the cache or the redirects pointing at 3932 * the default gateway. We need to drop the lock 3933 * as ire_flush_cache/ire_delete_host_redircts require 3934 * so. But we can't drop the lock, as ire_unlink needs 3935 * to atomically remove the ires from the list. 3936 * So, create a temporary list of CONDEMNED ires 3937 * for doing ire_delete_v4/ire_delete_v6 operations 3938 * later on. 3939 */ 3940 ire->ire_next = ire_list; 3941 ire_list = ire; 3942 } 3943 } 3944 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3945 return (ire_list); 3946 } 3947 3948 /* 3949 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3950 * ARP message on any of its interface queue, it scans the nce table and 3951 * deletes and calls ndp_delete() for the appropriate nce. This action 3952 * also deletes all the neighbor/ire cache entries for that address. 3953 * This function is called from ip_arp_news in ip.c and also for 3954 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3955 * true if it finds a nce entry which is used by ip_arp_news to determine if 3956 * it needs to do an ire_walk_v4. The return value is also used for the 3957 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3958 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3959 * ip_if->ipif_ill also needs to be matched. 3960 */ 3961 boolean_t 3962 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) 3963 { 3964 ill_t *ill; 3965 nce_t *nce; 3966 3967 ill = (ipif ? ipif->ipif_ill : NULL); 3968 3969 if (ill != NULL) { 3970 /* 3971 * clean up the nce (and any relevant ire's) that matches 3972 * on addr and ill. 3973 */ 3974 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3975 if (nce != NULL) { 3976 ndp_delete(nce); 3977 return (B_TRUE); 3978 } 3979 } else { 3980 /* 3981 * ill is wildcard. clean up all nce's and 3982 * ire's that match on addr 3983 */ 3984 nce_clookup_t cl; 3985 3986 cl.ncecl_addr = addr; 3987 cl.ncecl_found = B_FALSE; 3988 3989 ndp_walk_common(&ndp4, NULL, 3990 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3991 3992 /* 3993 * ncecl_found would be set by ip_nce_clookup_and_delete if 3994 * we found a matching nce. 3995 */ 3996 return (cl.ncecl_found); 3997 } 3998 return (B_FALSE); 3999 4000 } 4001 4002 /* Delete the supplied nce if its nce_addr matches the supplied address */ 4003 static void 4004 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 4005 { 4006 nce_clookup_t *cl = (nce_clookup_t *)arg; 4007 ipaddr_t nce_addr; 4008 4009 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 4010 if (nce_addr == cl->ncecl_addr) { 4011 cl->ncecl_found = B_TRUE; 4012 /* clean up the nce (and any relevant ire's) */ 4013 ndp_delete(nce); 4014 } 4015 } 4016 4017 /* 4018 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 4019 * when there are no ire's left in the bucket. Returns TRUE if the bucket 4020 * is deleted and freed. 4021 */ 4022 boolean_t 4023 irb_inactive(irb_t *irb) 4024 { 4025 struct rt_entry *rt; 4026 struct radix_node *rn; 4027 4028 rt = IRB2RT(irb); 4029 rn = (struct radix_node *)rt; 4030 4031 /* first remove it from the radix tree. */ 4032 RADIX_NODE_HEAD_WLOCK(ip_ftable); 4033 rw_enter(&irb->irb_lock, RW_WRITER); 4034 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 4035 rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 4036 ip_ftable); 4037 DTRACE_PROBE1(irb__free, rt_t *, rt); 4038 ASSERT((void *)rn == (void *)rt); 4039 Free(rt, rt_entry_cache); 4040 /* irb_lock is freed */ 4041 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4042 return (B_TRUE); 4043 } 4044 rw_exit(&irb->irb_lock); 4045 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4046 return (B_FALSE); 4047 } 4048 4049 /* 4050 * Delete the specified IRE. 4051 */ 4052 void 4053 ire_delete(ire_t *ire) 4054 { 4055 ire_t *ire1; 4056 ire_t **ptpn; 4057 irb_t *irb; 4058 4059 if ((irb = ire->ire_bucket) == NULL) { 4060 /* 4061 * It was never inserted in the list. Should call REFRELE 4062 * to free this IRE. 4063 */ 4064 IRE_REFRELE_NOTR(ire); 4065 return; 4066 } 4067 4068 rw_enter(&irb->irb_lock, RW_WRITER); 4069 4070 if (irb->irb_rr_origin == ire) { 4071 irb->irb_rr_origin = NULL; 4072 } 4073 4074 /* 4075 * In case of V4 we might still be waiting for fastpath ack. 4076 */ 4077 if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) { 4078 ill_t *ill; 4079 4080 ill = ire_to_ill(ire); 4081 if (ill != NULL) 4082 ire_fastpath_list_delete(ill, ire); 4083 } 4084 4085 if (ire->ire_ptpn == NULL) { 4086 /* 4087 * Some other thread has removed us from the list. 4088 * It should have done the REFRELE for us. 4089 */ 4090 rw_exit(&irb->irb_lock); 4091 return; 4092 } 4093 4094 if (irb->irb_refcnt != 0) { 4095 /* 4096 * The last thread to leave this bucket will 4097 * delete this ire. 4098 */ 4099 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 4100 irb->irb_ire_cnt--; 4101 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4102 irb->irb_tmp_ire_cnt--; 4103 ire->ire_marks |= IRE_MARK_CONDEMNED; 4104 } 4105 irb->irb_marks |= IRB_MARK_CONDEMNED; 4106 rw_exit(&irb->irb_lock); 4107 return; 4108 } 4109 4110 /* 4111 * Normally to delete an ire, we walk the bucket. While we 4112 * walk the bucket, we normally bump up irb_refcnt and hence 4113 * we return from above where we mark CONDEMNED and the ire 4114 * gets deleted from ire_unlink. This case is where somebody 4115 * knows the ire e.g by doing a lookup, and wants to delete the 4116 * IRE. irb_refcnt would be 0 in this case if nobody is walking 4117 * the bucket. 4118 */ 4119 ptpn = ire->ire_ptpn; 4120 ire1 = ire->ire_next; 4121 if (ire1 != NULL) 4122 ire1->ire_ptpn = ptpn; 4123 ASSERT(ptpn != NULL); 4124 *ptpn = ire1; 4125 ire->ire_ptpn = NULL; 4126 ire->ire_next = NULL; 4127 if (ire->ire_ipversion == IPV6_VERSION) { 4128 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 4129 } else { 4130 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 4131 } 4132 /* 4133 * ip_wput/ip_wput_v6 checks this flag to see whether 4134 * it should still use the cached ire or not. 4135 */ 4136 ire->ire_marks |= IRE_MARK_CONDEMNED; 4137 if (ire->ire_type == IRE_DEFAULT) { 4138 /* 4139 * IRE is out of the list. We need to adjust the 4140 * accounting before we drop the lock. 4141 */ 4142 if (ire->ire_ipversion == IPV6_VERSION) { 4143 ASSERT(ipv6_ire_default_count != 0); 4144 ipv6_ire_default_count--; 4145 } 4146 } 4147 irb->irb_ire_cnt--; 4148 4149 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4150 irb->irb_tmp_ire_cnt--; 4151 rw_exit(&irb->irb_lock); 4152 4153 if (ire->ire_ipversion == IPV6_VERSION) { 4154 ire_delete_v6(ire); 4155 } else { 4156 ire_delete_v4(ire); 4157 } 4158 /* 4159 * We removed it from the list. Decrement the 4160 * reference count. 4161 */ 4162 IRE_REFRELE_NOTR(ire); 4163 } 4164 4165 /* 4166 * Delete the specified IRE. 4167 * All calls should use ire_delete(). 4168 * Sometimes called as writer though not required by this function. 4169 * 4170 * NOTE : This function is called only if the ire was added 4171 * in the list. 4172 */ 4173 static void 4174 ire_delete_v4(ire_t *ire) 4175 { 4176 ASSERT(ire->ire_refcnt >= 1); 4177 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4178 4179 if (ire->ire_type != IRE_CACHE) 4180 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 4181 if (ire->ire_type == IRE_DEFAULT) { 4182 /* 4183 * when a default gateway is going away 4184 * delete all the host redirects pointing at that 4185 * gateway. 4186 */ 4187 ire_delete_host_redirects(ire->ire_gateway_addr); 4188 } 4189 } 4190 4191 /* 4192 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 4193 * to free the ire when the reference count goes to zero. 4194 */ 4195 void 4196 ire_inactive(ire_t *ire) 4197 { 4198 nce_t *nce; 4199 ill_t *ill = NULL; 4200 ill_t *stq_ill = NULL; 4201 ill_t *in_ill = NULL; 4202 ipif_t *ipif; 4203 boolean_t need_wakeup = B_FALSE; 4204 irb_t *irb; 4205 4206 ASSERT(ire->ire_refcnt == 0); 4207 ASSERT(ire->ire_ptpn == NULL); 4208 ASSERT(ire->ire_next == NULL); 4209 4210 if (ire->ire_gw_secattr != NULL) { 4211 ire_gw_secattr_free(ire->ire_gw_secattr); 4212 ire->ire_gw_secattr = NULL; 4213 } 4214 4215 if (ire->ire_mp != NULL) { 4216 ASSERT(ire->ire_fastpath == NULL); 4217 ASSERT(ire->ire_bucket == NULL); 4218 mutex_destroy(&ire->ire_lock); 4219 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4220 if (ire->ire_nce != NULL) 4221 NCE_REFRELE_NOTR(ire->ire_nce); 4222 freeb(ire->ire_mp); 4223 return; 4224 } 4225 4226 if ((nce = ire->ire_nce) != NULL) { 4227 NCE_REFRELE_NOTR(nce); 4228 ire->ire_nce = NULL; 4229 } 4230 4231 if (ire->ire_ipif == NULL) 4232 goto end; 4233 4234 ipif = ire->ire_ipif; 4235 ill = ipif->ipif_ill; 4236 4237 if (ire->ire_bucket == NULL) { 4238 /* The ire was never inserted in the table. */ 4239 goto end; 4240 } 4241 4242 /* 4243 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 4244 * non-null ill_ire_count also goes down by 1. If the in_ill is 4245 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. 4246 * 4247 * The ipif that is associated with an ire is ire->ire_ipif and 4248 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 4249 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 4250 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 4251 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 4252 * different. If this is different from ire->ire_ipif->ipif_ill and 4253 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 4254 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use 4255 * in_ill could be non-null. If it is a reverse tunnel related ire 4256 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire 4257 * ill_srcif_refcnt is non-null. 4258 */ 4259 4260 if (ire->ire_stq != NULL) 4261 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 4262 if (ire->ire_in_ill != NULL) 4263 in_ill = ire->ire_in_ill; 4264 4265 if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { 4266 /* Optimize the most common case */ 4267 mutex_enter(&ill->ill_lock); 4268 ASSERT(ipif->ipif_ire_cnt != 0); 4269 ipif->ipif_ire_cnt--; 4270 if (ipif->ipif_ire_cnt == 0) 4271 need_wakeup = B_TRUE; 4272 if (stq_ill != NULL) { 4273 ASSERT(stq_ill->ill_ire_cnt != 0); 4274 stq_ill->ill_ire_cnt--; 4275 if (stq_ill->ill_ire_cnt == 0) 4276 need_wakeup = B_TRUE; 4277 } 4278 if (need_wakeup) { 4279 /* Drops the ill lock */ 4280 ipif_ill_refrele_tail(ill); 4281 } else { 4282 mutex_exit(&ill->ill_lock); 4283 } 4284 } else { 4285 /* 4286 * We can't grab all the ill locks at the same time. 4287 * It can lead to recursive lock enter in the call to 4288 * ipif_ill_refrele_tail and later. Instead do it 1 at 4289 * a time. 4290 */ 4291 mutex_enter(&ill->ill_lock); 4292 ASSERT(ipif->ipif_ire_cnt != 0); 4293 ipif->ipif_ire_cnt--; 4294 if (ipif->ipif_ire_cnt == 0) { 4295 /* Drops the lock */ 4296 ipif_ill_refrele_tail(ill); 4297 } else { 4298 mutex_exit(&ill->ill_lock); 4299 } 4300 if (stq_ill != NULL) { 4301 mutex_enter(&stq_ill->ill_lock); 4302 ASSERT(stq_ill->ill_ire_cnt != 0); 4303 stq_ill->ill_ire_cnt--; 4304 if (stq_ill->ill_ire_cnt == 0) { 4305 /* Drops the ill lock */ 4306 ipif_ill_refrele_tail(stq_ill); 4307 } else { 4308 mutex_exit(&stq_ill->ill_lock); 4309 } 4310 } 4311 if (in_ill != NULL) { 4312 mutex_enter(&in_ill->ill_lock); 4313 if (ire->ire_type == IRE_MIPRTUN) { 4314 /* 4315 * Mobile IP reverse tunnel ire. 4316 * Decrement table count and the 4317 * ill reference count. This signifies 4318 * mipagent is deleting reverse tunnel 4319 * route for a particular mobile node. 4320 */ 4321 mutex_enter(&ire_mrtun_lock); 4322 ire_mrtun_count--; 4323 mutex_exit(&ire_mrtun_lock); 4324 ASSERT(in_ill->ill_mrtun_refcnt != 0); 4325 in_ill->ill_mrtun_refcnt--; 4326 if (in_ill->ill_mrtun_refcnt == 0) { 4327 /* Drops the ill lock */ 4328 ipif_ill_refrele_tail(in_ill); 4329 } else { 4330 mutex_exit(&in_ill->ill_lock); 4331 } 4332 } else { 4333 mutex_enter(&ire_srcif_table_lock); 4334 ire_srcif_table_count--; 4335 mutex_exit(&ire_srcif_table_lock); 4336 ASSERT(in_ill->ill_srcif_refcnt != 0); 4337 in_ill->ill_srcif_refcnt--; 4338 if (in_ill->ill_srcif_refcnt == 0) { 4339 /* Drops the ill lock */ 4340 ipif_ill_refrele_tail(in_ill); 4341 } else { 4342 mutex_exit(&in_ill->ill_lock); 4343 } 4344 } 4345 } 4346 } 4347 end: 4348 /* This should be true for both V4 and V6 */ 4349 ASSERT(ire->ire_fastpath == NULL); 4350 4351 if ((ire->ire_type & IRE_FORWARDTABLE) && 4352 (ire->ire_ipversion == IPV4_VERSION) && 4353 ((irb = ire->ire_bucket) != NULL)) { 4354 rw_enter(&irb->irb_lock, RW_WRITER); 4355 irb->irb_nire--; 4356 /* 4357 * Instead of examining the conditions for freeing 4358 * the radix node here, we do it by calling 4359 * IRB_REFRELE which is a single point in the code 4360 * that embeds that logic. Bump up the refcnt to 4361 * be able to call IRB_REFRELE 4362 */ 4363 IRB_REFHOLD_LOCKED(irb); 4364 rw_exit(&irb->irb_lock); 4365 IRB_REFRELE(irb); 4366 } 4367 ire->ire_ipif = NULL; 4368 4369 if (ire->ire_in_ill != NULL) { 4370 ire->ire_in_ill = NULL; 4371 } 4372 4373 #ifdef IRE_DEBUG 4374 ire_trace_inactive(ire); 4375 #endif 4376 mutex_destroy(&ire->ire_lock); 4377 if (ire->ire_ipversion == IPV6_VERSION) { 4378 BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); 4379 } else { 4380 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4381 } 4382 ASSERT(ire->ire_mp == NULL); 4383 /* Has been allocated out of the cache */ 4384 kmem_cache_free(ire_cache, ire); 4385 } 4386 4387 /* 4388 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 4389 * entries that have a given gateway address. 4390 */ 4391 void 4392 ire_delete_cache_gw(ire_t *ire, char *cp) 4393 { 4394 ipaddr_t gw_addr; 4395 4396 if (!(ire->ire_type & IRE_CACHE) && 4397 !(ire->ire_flags & RTF_DYNAMIC)) 4398 return; 4399 4400 bcopy(cp, &gw_addr, sizeof (gw_addr)); 4401 if (ire->ire_gateway_addr == gw_addr) { 4402 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 4403 (int)ntohl(ire->ire_addr), ire->ire_type, 4404 (int)ntohl(ire->ire_gateway_addr))); 4405 ire_delete(ire); 4406 } 4407 } 4408 4409 /* 4410 * Remove all IRE_CACHE entries that match the ire specified. 4411 * 4412 * The flag argument indicates if the flush request is due to addition 4413 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 4414 * 4415 * This routine takes only the IREs from the forwarding table and flushes 4416 * the corresponding entries from the cache table. 4417 * 4418 * When flushing due to the deletion of an old route, it 4419 * just checks the cache handles (ire_phandle and ire_ihandle) and 4420 * deletes the ones that match. 4421 * 4422 * When flushing due to the creation of a new route, it checks 4423 * if a cache entry's address matches the one in the IRE and 4424 * that the cache entry's parent has a less specific mask than the 4425 * one in IRE. The destination of such a cache entry could be the 4426 * gateway for other cache entries, so we need to flush those as 4427 * well by looking for gateway addresses matching the IRE's address. 4428 */ 4429 void 4430 ire_flush_cache_v4(ire_t *ire, int flag) 4431 { 4432 int i; 4433 ire_t *cire; 4434 irb_t *irb; 4435 4436 if (ire->ire_type & IRE_CACHE) 4437 return; 4438 4439 /* 4440 * If a default is just created, there is no point 4441 * in going through the cache, as there will not be any 4442 * cached ires. 4443 */ 4444 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 4445 return; 4446 if (flag == IRE_FLUSH_ADD) { 4447 /* 4448 * This selective flush is due to the addition of 4449 * new IRE. 4450 */ 4451 for (i = 0; i < ip_cache_table_size; i++) { 4452 irb = &ip_cache_table[i]; 4453 if ((cire = irb->irb_ire) == NULL) 4454 continue; 4455 IRB_REFHOLD(irb); 4456 for (cire = irb->irb_ire; cire != NULL; 4457 cire = cire->ire_next) { 4458 if (cire->ire_type != IRE_CACHE) 4459 continue; 4460 /* 4461 * If 'cire' belongs to the same subnet 4462 * as the new ire being added, and 'cire' 4463 * is derived from a prefix that is less 4464 * specific than the new ire being added, 4465 * we need to flush 'cire'; for instance, 4466 * when a new interface comes up. 4467 */ 4468 if (((cire->ire_addr & ire->ire_mask) == 4469 (ire->ire_addr & ire->ire_mask)) && 4470 (ip_mask_to_plen(cire->ire_cmask) <= 4471 ire->ire_masklen)) { 4472 ire_delete(cire); 4473 continue; 4474 } 4475 /* 4476 * This is the case when the ire_gateway_addr 4477 * of 'cire' belongs to the same subnet as 4478 * the new ire being added. 4479 * Flushing such ires is sometimes required to 4480 * avoid misrouting: say we have a machine with 4481 * two interfaces (I1 and I2), a default router 4482 * R on the I1 subnet, and a host route to an 4483 * off-link destination D with a gateway G on 4484 * the I2 subnet. 4485 * Under normal operation, we will have an 4486 * on-link cache entry for G and an off-link 4487 * cache entry for D with G as ire_gateway_addr, 4488 * traffic to D will reach its destination 4489 * through gateway G. 4490 * If the administrator does 'ifconfig I2 down', 4491 * the cache entries for D and G will be 4492 * flushed. However, G will now be resolved as 4493 * an off-link destination using R (the default 4494 * router) as gateway. Then D will also be 4495 * resolved as an off-link destination using G 4496 * as gateway - this behavior is due to 4497 * compatibility reasons, see comment in 4498 * ire_ihandle_lookup_offlink(). Traffic to D 4499 * will go to the router R and probably won't 4500 * reach the destination. 4501 * The administrator then does 'ifconfig I2 up'. 4502 * Since G is on the I2 subnet, this routine 4503 * will flush its cache entry. It must also 4504 * flush the cache entry for D, otherwise 4505 * traffic will stay misrouted until the IRE 4506 * times out. 4507 */ 4508 if ((cire->ire_gateway_addr & ire->ire_mask) == 4509 (ire->ire_addr & ire->ire_mask)) { 4510 ire_delete(cire); 4511 continue; 4512 } 4513 } 4514 IRB_REFRELE(irb); 4515 } 4516 } else { 4517 /* 4518 * delete the cache entries based on 4519 * handle in the IRE as this IRE is 4520 * being deleted/changed. 4521 */ 4522 for (i = 0; i < ip_cache_table_size; i++) { 4523 irb = &ip_cache_table[i]; 4524 if ((cire = irb->irb_ire) == NULL) 4525 continue; 4526 IRB_REFHOLD(irb); 4527 for (cire = irb->irb_ire; cire != NULL; 4528 cire = cire->ire_next) { 4529 if (cire->ire_type != IRE_CACHE) 4530 continue; 4531 if ((cire->ire_phandle == 0 || 4532 cire->ire_phandle != ire->ire_phandle) && 4533 (cire->ire_ihandle == 0 || 4534 cire->ire_ihandle != ire->ire_ihandle)) 4535 continue; 4536 ire_delete(cire); 4537 } 4538 IRB_REFRELE(irb); 4539 } 4540 } 4541 } 4542 4543 /* 4544 * Matches the arguments passed with the values in the ire. 4545 * 4546 * Note: for match types that match using "ipif" passed in, ipif 4547 * must be checked for non-NULL before calling this routine. 4548 */ 4549 boolean_t 4550 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4551 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 4552 const ts_label_t *tsl, int match_flags) 4553 { 4554 ill_t *ire_ill = NULL, *dst_ill; 4555 ill_t *ipif_ill = NULL; 4556 ill_group_t *ire_ill_group = NULL; 4557 ill_group_t *ipif_ill_group = NULL; 4558 4559 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4560 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 4561 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 4562 (ipif != NULL && !ipif->ipif_isv6)); 4563 ASSERT(!(match_flags & MATCH_IRE_WQ)); 4564 4565 /* 4566 * HIDDEN cache entries have to be looked up specifically with 4567 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 4568 * when the interface is FAILED or INACTIVE. In that case, 4569 * any IRE_CACHES that exists should be marked with 4570 * IRE_MARK_HIDDEN. So, we don't really need to match below 4571 * for IRE_MARK_HIDDEN. But we do so for consistency. 4572 */ 4573 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4574 (ire->ire_marks & IRE_MARK_HIDDEN)) 4575 return (B_FALSE); 4576 4577 /* 4578 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4579 * is used. In that case the routing table is bypassed and the 4580 * packets are sent directly to the specified nexthop. The 4581 * IRE_CACHE entry representing this route should be marked 4582 * with IRE_MARK_PRIVATE_ADDR. 4583 */ 4584 4585 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4586 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4587 return (B_FALSE); 4588 4589 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4590 ire->ire_zoneid != ALL_ZONES) { 4591 /* 4592 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4593 * valid and does not match that of ire_zoneid, a failure to 4594 * match is reported at this point. Otherwise, since some IREs 4595 * that are available in the global zone can be used in local 4596 * zones, additional checks need to be performed: 4597 * 4598 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4599 * entries should never be matched in this situation. 4600 * 4601 * IRE entries that have an interface associated with them 4602 * should in general not match unless they are an IRE_LOCAL 4603 * or in the case when MATCH_IRE_DEFAULT has been set in 4604 * the caller. In the case of the former, checking of the 4605 * other fields supplied should take place. 4606 * 4607 * In the case where MATCH_IRE_DEFAULT has been set, 4608 * all of the ipif's associated with the IRE's ill are 4609 * checked to see if there is a matching zoneid. If any 4610 * one ipif has a matching zoneid, this IRE is a 4611 * potential candidate so checking of the other fields 4612 * takes place. 4613 * 4614 * In the case where the IRE_INTERFACE has a usable source 4615 * address (indicated by ill_usesrc_ifindex) in the 4616 * correct zone then it's permitted to return this IRE 4617 */ 4618 if (match_flags & MATCH_IRE_ZONEONLY) 4619 return (B_FALSE); 4620 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4621 return (B_FALSE); 4622 /* 4623 * Note, IRE_INTERFACE can have the stq as NULL. For 4624 * example, if the default multicast route is tied to 4625 * the loopback address. 4626 */ 4627 if ((ire->ire_type & IRE_INTERFACE) && 4628 (ire->ire_stq != NULL)) { 4629 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4630 /* 4631 * If there is a usable source address in the 4632 * zone, then it's ok to return an 4633 * IRE_INTERFACE 4634 */ 4635 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4636 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4637 (void *)dst_ill, 4638 (ire->ire_addr == (addr & mask)))); 4639 } else { 4640 ip3dbg(("ire_match_args: src_ipif NULL" 4641 " dst_ill %p\n", (void *)dst_ill)); 4642 return (B_FALSE); 4643 } 4644 } 4645 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4646 !(ire->ire_type & IRE_INTERFACE)) { 4647 ipif_t *tipif; 4648 4649 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4650 return (B_FALSE); 4651 } 4652 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4653 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4654 tipif != NULL; tipif = tipif->ipif_next) { 4655 if (IPIF_CAN_LOOKUP(tipif) && 4656 (tipif->ipif_flags & IPIF_UP) && 4657 (tipif->ipif_zoneid == zoneid || 4658 tipif->ipif_zoneid == ALL_ZONES)) 4659 break; 4660 } 4661 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4662 if (tipif == NULL) { 4663 return (B_FALSE); 4664 } 4665 } 4666 } 4667 4668 /* 4669 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4670 * somebody wants to send out on a particular interface which 4671 * is given by ire_stq and hence use ire_stq to derive the ill 4672 * value. ire_ipif for IRE_CACHES is just the means of getting 4673 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4674 * ire_to_ill does the right thing for this. 4675 */ 4676 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4677 ire_ill = ire_to_ill(ire); 4678 if (ire_ill != NULL) 4679 ire_ill_group = ire_ill->ill_group; 4680 ipif_ill = ipif->ipif_ill; 4681 ipif_ill_group = ipif_ill->ill_group; 4682 } 4683 4684 if ((ire->ire_addr == (addr & mask)) && 4685 ((!(match_flags & MATCH_IRE_GW)) || 4686 (ire->ire_gateway_addr == gateway)) && 4687 ((!(match_flags & MATCH_IRE_TYPE)) || 4688 (ire->ire_type & type)) && 4689 ((!(match_flags & MATCH_IRE_SRC)) || 4690 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4691 ((!(match_flags & MATCH_IRE_IPIF)) || 4692 (ire->ire_ipif == ipif)) && 4693 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4694 (ire->ire_type != IRE_CACHE || 4695 ire->ire_marks & IRE_MARK_HIDDEN)) && 4696 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4697 (ire->ire_type != IRE_CACHE || 4698 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4699 ((!(match_flags & MATCH_IRE_ILL)) || 4700 (ire_ill == ipif_ill)) && 4701 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4702 (ire->ire_ihandle == ihandle)) && 4703 ((!(match_flags & MATCH_IRE_MASK)) || 4704 (ire->ire_mask == mask)) && 4705 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4706 (ire_ill == ipif_ill) || 4707 (ire_ill_group != NULL && 4708 ire_ill_group == ipif_ill_group)) && 4709 ((!(match_flags & MATCH_IRE_SECATTR)) || 4710 (!is_system_labeled()) || 4711 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4712 /* We found the matched IRE */ 4713 return (B_TRUE); 4714 } 4715 return (B_FALSE); 4716 } 4717 4718 4719 /* 4720 * Lookup for a route in all the tables 4721 */ 4722 ire_t * 4723 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4724 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4725 const ts_label_t *tsl, int flags) 4726 { 4727 ire_t *ire = NULL; 4728 4729 /* 4730 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4731 * MATCH_IRE_ILL is set. 4732 */ 4733 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4734 (ipif == NULL)) 4735 return (NULL); 4736 4737 /* 4738 * might be asking for a cache lookup, 4739 * This is not best way to lookup cache, 4740 * user should call ire_cache_lookup directly. 4741 * 4742 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4743 * in the forwarding table, if the applicable type flags were set. 4744 */ 4745 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4746 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4747 tsl, flags); 4748 if (ire != NULL) 4749 return (ire); 4750 } 4751 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4752 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4753 zoneid, 0, tsl, flags); 4754 } 4755 return (ire); 4756 } 4757 4758 4759 /* 4760 * Delete the IRE cache for the gateway and all IRE caches whose 4761 * ire_gateway_addr points to this gateway, and allow them to 4762 * be created on demand by ip_newroute. 4763 */ 4764 void 4765 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid) 4766 { 4767 irb_t *irb; 4768 ire_t *ire; 4769 4770 irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4771 IRB_REFHOLD(irb); 4772 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4773 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4774 continue; 4775 4776 ASSERT(ire->ire_mask == IP_HOST_MASK); 4777 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4778 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4779 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4780 ire_delete(ire); 4781 } 4782 } 4783 IRB_REFRELE(irb); 4784 4785 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid); 4786 } 4787 4788 /* 4789 * Looks up cache table for a route. 4790 * specific lookup can be indicated by 4791 * passing the MATCH_* flags and the 4792 * necessary parameters. 4793 */ 4794 ire_t * 4795 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4796 zoneid_t zoneid, const ts_label_t *tsl, int flags) 4797 { 4798 irb_t *irb_ptr; 4799 ire_t *ire; 4800 4801 /* 4802 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4803 * MATCH_IRE_ILL is set. 4804 */ 4805 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4806 (ipif == NULL)) 4807 return (NULL); 4808 4809 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4810 rw_enter(&irb_ptr->irb_lock, RW_READER); 4811 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4812 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4813 continue; 4814 ASSERT(ire->ire_mask == IP_HOST_MASK); 4815 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4816 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4817 ipif, zoneid, 0, tsl, flags)) { 4818 IRE_REFHOLD(ire); 4819 rw_exit(&irb_ptr->irb_lock); 4820 return (ire); 4821 } 4822 } 4823 rw_exit(&irb_ptr->irb_lock); 4824 return (NULL); 4825 } 4826 4827 /* 4828 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4829 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4830 * the same ill group. 4831 */ 4832 boolean_t 4833 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4834 { 4835 ill_t *recv_ill, *xmit_ill; 4836 ill_group_t *recv_group, *xmit_group; 4837 4838 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4839 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4840 4841 recv_ill = ire_to_ill(ire_local); 4842 xmit_ill = ire_to_ill(xmit_ire); 4843 4844 ASSERT(recv_ill != NULL); 4845 ASSERT(xmit_ill != NULL); 4846 4847 if (recv_ill == xmit_ill) 4848 return (B_TRUE); 4849 4850 recv_group = recv_ill->ill_group; 4851 xmit_group = xmit_ill->ill_group; 4852 4853 if (recv_group != NULL && recv_group == xmit_group) 4854 return (B_TRUE); 4855 4856 return (B_FALSE); 4857 } 4858 4859 /* 4860 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4861 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4862 * then we don't allow this IRE_LOCAL to be used. 4863 */ 4864 boolean_t 4865 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4866 const ts_label_t *tsl) 4867 { 4868 ire_t *alt_ire; 4869 boolean_t rval; 4870 4871 if (ire_local->ire_ipversion == IPV4_VERSION) { 4872 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4873 NULL, zoneid, 0, tsl, 4874 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4875 MATCH_IRE_RJ_BHOLE); 4876 } else { 4877 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4878 0, NULL, NULL, zoneid, 0, tsl, 4879 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4880 MATCH_IRE_RJ_BHOLE); 4881 } 4882 4883 if (alt_ire == NULL) 4884 return (B_FALSE); 4885 4886 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4887 ire_refrele(alt_ire); 4888 return (B_FALSE); 4889 } 4890 rval = ire_local_same_ill_group(ire_local, alt_ire); 4891 4892 ire_refrele(alt_ire); 4893 return (rval); 4894 } 4895 4896 /* 4897 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4898 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4899 * to the hidden ones. 4900 * 4901 * In general the zoneid has to match (where ALL_ZONES match all of them). 4902 * But for IRE_LOCAL we also need to handle the case where L2 should 4903 * conceptually loop back the packet. This is necessary since neither 4904 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4905 * own MAC address. This loopback is needed when the normal 4906 * routes (ignoring IREs with different zoneids) would send out the packet on 4907 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4908 * associated. 4909 * 4910 * Earlier versions of this code always matched an IRE_LOCAL independently of 4911 * the zoneid. We preserve that earlier behavior when 4912 * ip_restrict_interzone_loopback is turned off. 4913 */ 4914 ire_t * 4915 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl) 4916 { 4917 irb_t *irb_ptr; 4918 ire_t *ire; 4919 4920 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4921 rw_enter(&irb_ptr->irb_lock, RW_READER); 4922 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4923 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4924 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4925 continue; 4926 } 4927 if (ire->ire_addr == addr) { 4928 /* 4929 * Finally, check if the security policy has any 4930 * restriction on using this route for the specified 4931 * message. 4932 */ 4933 if (tsl != NULL && 4934 ire->ire_gw_secattr != NULL && 4935 tsol_ire_match_gwattr(ire, tsl) != 0) { 4936 continue; 4937 } 4938 4939 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4940 ire->ire_zoneid == ALL_ZONES) { 4941 IRE_REFHOLD(ire); 4942 rw_exit(&irb_ptr->irb_lock); 4943 return (ire); 4944 } 4945 4946 if (ire->ire_type == IRE_LOCAL) { 4947 if (ip_restrict_interzone_loopback && 4948 !ire_local_ok_across_zones(ire, zoneid, 4949 &addr, tsl)) 4950 continue; 4951 4952 IRE_REFHOLD(ire); 4953 rw_exit(&irb_ptr->irb_lock); 4954 return (ire); 4955 } 4956 } 4957 } 4958 rw_exit(&irb_ptr->irb_lock); 4959 return (NULL); 4960 } 4961 4962 /* 4963 * Locate the interface ire that is tied to the cache ire 'cire' via 4964 * cire->ire_ihandle. 4965 * 4966 * We are trying to create the cache ire for an offlink destn based 4967 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4968 * as found by ip_newroute(). We are called from ip_newroute() in 4969 * the IRE_CACHE case. 4970 */ 4971 ire_t * 4972 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4973 { 4974 ire_t *ire; 4975 int match_flags; 4976 ipaddr_t gw_addr; 4977 ipif_t *gw_ipif; 4978 4979 ASSERT(cire != NULL && pire != NULL); 4980 4981 /* 4982 * We don't need to specify the zoneid to ire_ftable_lookup() below 4983 * because the ihandle refers to an ipif which can be in only one zone. 4984 */ 4985 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4986 /* 4987 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4988 * for on-link hosts. We should never be here for onlink. 4989 * Thus, use MATCH_IRE_ILL_GROUP. 4990 */ 4991 if (pire->ire_ipif != NULL) 4992 match_flags |= MATCH_IRE_ILL_GROUP; 4993 /* 4994 * We know that the mask of the interface ire equals cire->ire_cmask. 4995 * (When ip_newroute() created 'cire' for the gateway it set its 4996 * cmask from the interface ire's mask) 4997 */ 4998 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4999 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 5000 NULL, match_flags); 5001 if (ire != NULL) 5002 return (ire); 5003 /* 5004 * If we didn't find an interface ire above, we can't declare failure. 5005 * For backwards compatibility, we need to support prefix routes 5006 * pointing to next hop gateways that are not on-link. 5007 * 5008 * Assume we are trying to ping some offlink destn, and we have the 5009 * routing table below. 5010 * 5011 * Eg. default - gw1 <--- pire (line 1) 5012 * gw1 - gw2 (line 2) 5013 * gw2 - hme0 (line 3) 5014 * 5015 * If we already have a cache ire for gw1 in 'cire', the 5016 * ire_ftable_lookup above would have failed, since there is no 5017 * interface ire to reach gw1. We will fallthru below. 5018 * 5019 * Here we duplicate the steps that ire_ftable_lookup() did in 5020 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 5021 * The differences are the following 5022 * i. We want the interface ire only, so we call ire_ftable_lookup() 5023 * instead of ire_route_lookup() 5024 * ii. We look for only prefix routes in the 1st call below. 5025 * ii. We want to match on the ihandle in the 2nd call below. 5026 */ 5027 match_flags = MATCH_IRE_TYPE; 5028 if (pire->ire_ipif != NULL) 5029 match_flags |= MATCH_IRE_ILL_GROUP; 5030 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 5031 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 5032 if (ire == NULL) 5033 return (NULL); 5034 /* 5035 * At this point 'ire' corresponds to the entry shown in line 2. 5036 * gw_addr is 'gw2' in the example above. 5037 */ 5038 gw_addr = ire->ire_gateway_addr; 5039 gw_ipif = ire->ire_ipif; 5040 ire_refrele(ire); 5041 5042 match_flags |= MATCH_IRE_IHANDLE; 5043 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 5044 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); 5045 return (ire); 5046 } 5047 5048 /* 5049 * ire_mrtun_lookup() is called by ip_rput() when packet is to be 5050 * tunneled through reverse tunnel. This is only supported for 5051 * IPv4 packets 5052 */ 5053 5054 ire_t * 5055 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) 5056 { 5057 irb_t *irb_ptr; 5058 ire_t *ire; 5059 5060 ASSERT(ill != NULL); 5061 ASSERT(!(ill->ill_isv6)); 5062 5063 if (ip_mrtun_table == NULL) 5064 return (NULL); 5065 irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; 5066 rw_enter(&irb_ptr->irb_lock, RW_READER); 5067 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5068 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5069 continue; 5070 if ((ire->ire_in_src_addr == srcaddr) && 5071 ire->ire_in_ill == ill) { 5072 IRE_REFHOLD(ire); 5073 rw_exit(&irb_ptr->irb_lock); 5074 return (ire); 5075 } 5076 } 5077 rw_exit(&irb_ptr->irb_lock); 5078 return (NULL); 5079 } 5080 5081 /* 5082 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 5083 * ire associated with the specified ipif. 5084 * 5085 * This might occasionally be called when IPIF_UP is not set since 5086 * the IP_MULTICAST_IF as well as creating interface routes 5087 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 5088 * 5089 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 5090 * the ipif, this routine might return NULL. 5091 */ 5092 ire_t * 5093 ipif_to_ire(const ipif_t *ipif) 5094 { 5095 ire_t *ire; 5096 5097 ASSERT(!ipif->ipif_isv6); 5098 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5099 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 5100 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 5101 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5102 /* In this case we need to lookup destination address. */ 5103 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 5104 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 5105 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); 5106 } else { 5107 ire = ire_ftable_lookup(ipif->ipif_subnet, 5108 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 5109 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 5110 MATCH_IRE_MASK)); 5111 } 5112 return (ire); 5113 } 5114 5115 /* 5116 * ire_walk function. 5117 * Count the number of IRE_CACHE entries in different categories. 5118 */ 5119 void 5120 ire_cache_count(ire_t *ire, char *arg) 5121 { 5122 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 5123 5124 if (ire->ire_type != IRE_CACHE) 5125 return; 5126 5127 icc->icc_total++; 5128 5129 if (ire->ire_ipversion == IPV6_VERSION) { 5130 mutex_enter(&ire->ire_lock); 5131 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5132 mutex_exit(&ire->ire_lock); 5133 icc->icc_onlink++; 5134 return; 5135 } 5136 mutex_exit(&ire->ire_lock); 5137 } else { 5138 if (ire->ire_gateway_addr == 0) { 5139 icc->icc_onlink++; 5140 return; 5141 } 5142 } 5143 5144 ASSERT(ire->ire_ipif != NULL); 5145 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 5146 icc->icc_pmtu++; 5147 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5148 ire->ire_ib_pkt_count) 5149 icc->icc_offlink++; 5150 else 5151 icc->icc_unused++; 5152 } 5153 5154 /* 5155 * ire_walk function called by ip_trash_ire_reclaim(). 5156 * Free a fraction of the IRE_CACHE cache entries. The fractions are 5157 * different for different categories of IRE_CACHE entries. 5158 * A fraction of zero means to not free any in that category. 5159 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 5160 * is N then every Nth hash bucket chain will be freed. 5161 */ 5162 void 5163 ire_cache_reclaim(ire_t *ire, char *arg) 5164 { 5165 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 5166 uint_t rand; 5167 5168 if (ire->ire_type != IRE_CACHE) 5169 return; 5170 5171 if (ire->ire_ipversion == IPV6_VERSION) { 5172 rand = (uint_t)lbolt + 5173 IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); 5174 mutex_enter(&ire->ire_lock); 5175 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5176 mutex_exit(&ire->ire_lock); 5177 if (icr->icr_onlink != 0 && 5178 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5179 ire_delete(ire); 5180 return; 5181 } 5182 goto done; 5183 } 5184 mutex_exit(&ire->ire_lock); 5185 } else { 5186 rand = (uint_t)lbolt + 5187 IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); 5188 if (ire->ire_gateway_addr == 0) { 5189 if (icr->icr_onlink != 0 && 5190 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5191 ire_delete(ire); 5192 return; 5193 } 5194 goto done; 5195 } 5196 } 5197 /* Not onlink IRE */ 5198 ASSERT(ire->ire_ipif != NULL); 5199 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 5200 /* Use ptmu fraction */ 5201 if (icr->icr_pmtu != 0 && 5202 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 5203 ire_delete(ire); 5204 return; 5205 } 5206 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5207 ire->ire_ib_pkt_count) { 5208 /* Use offlink fraction */ 5209 if (icr->icr_offlink != 0 && 5210 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 5211 ire_delete(ire); 5212 return; 5213 } 5214 } else { 5215 /* Use unused fraction */ 5216 if (icr->icr_unused != 0 && 5217 (rand/icr->icr_unused)*icr->icr_unused == rand) { 5218 ire_delete(ire); 5219 return; 5220 } 5221 } 5222 done: 5223 /* 5224 * Update tire_mark so that those that haven't been used since this 5225 * reclaim will be considered unused next time we reclaim. 5226 */ 5227 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 5228 } 5229 5230 static void 5231 power2_roundup(uint32_t *value) 5232 { 5233 int i; 5234 5235 for (i = 1; i < 31; i++) { 5236 if (*value <= (1 << i)) 5237 break; 5238 } 5239 *value = (1 << i); 5240 } 5241 5242 void 5243 ip_ire_init() 5244 { 5245 int i; 5246 5247 mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 5248 mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 5249 mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); 5250 mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); 5251 mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5252 5253 rn_init(); 5254 (void) rn_inithead((void **)&ip_ftable, 32); 5255 rt_entry_cache = kmem_cache_create("rt_entry", 5256 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 5257 5258 /* Calculate the IPv4 cache table size. */ 5259 ip_cache_table_size = MAX(ip_cache_table_size, 5260 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5261 ip_ire_max_bucket_cnt)); 5262 if (ip_cache_table_size > ip_max_cache_table_size) 5263 ip_cache_table_size = ip_max_cache_table_size; 5264 /* 5265 * Make sure that the table size is always a power of 2. The 5266 * hash macro IRE_ADDR_HASH() depends on that. 5267 */ 5268 power2_roundup(&ip_cache_table_size); 5269 5270 ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * 5271 sizeof (irb_t), KM_SLEEP); 5272 5273 for (i = 0; i < ip_cache_table_size; i++) { 5274 rw_init(&ip_cache_table[i].irb_lock, NULL, 5275 RW_DEFAULT, NULL); 5276 } 5277 5278 /* Calculate the IPv6 cache table size. */ 5279 ip6_cache_table_size = MAX(ip6_cache_table_size, 5280 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5281 ip6_ire_max_bucket_cnt)); 5282 if (ip6_cache_table_size > ip6_max_cache_table_size) 5283 ip6_cache_table_size = ip6_max_cache_table_size; 5284 /* 5285 * Make sure that the table size is always a power of 2. The 5286 * hash macro IRE_ADDR_HASH_V6() depends on that. 5287 */ 5288 power2_roundup(&ip6_cache_table_size); 5289 5290 ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * 5291 sizeof (irb_t), KM_SLEEP); 5292 5293 for (i = 0; i < ip6_cache_table_size; i++) { 5294 rw_init(&ip_cache_table_v6[i].irb_lock, NULL, 5295 RW_DEFAULT, NULL); 5296 } 5297 /* 5298 * Create ire caches, ire_reclaim() 5299 * will give IRE_CACHE back to system when needed. 5300 * This needs to be done here before anything else, since 5301 * ire_add() expects the cache to be created. 5302 */ 5303 ire_cache = kmem_cache_create("ire_cache", 5304 sizeof (ire_t), 0, ip_ire_constructor, 5305 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 5306 5307 /* 5308 * Initialize ip_mrtun_table to NULL now, it will be 5309 * populated by ip_rt_add if reverse tunnel is created 5310 */ 5311 ip_mrtun_table = NULL; 5312 5313 /* 5314 * Make sure that the forwarding table size is a power of 2. 5315 * The IRE*_ADDR_HASH() macroes depend on that. 5316 */ 5317 power2_roundup(&ip6_ftable_hash_size); 5318 } 5319 5320 void 5321 ip_ire_fini() 5322 { 5323 int i; 5324 5325 mutex_destroy(&ire_ft_init_lock); 5326 mutex_destroy(&ire_handle_lock); 5327 mutex_destroy(&ndp4.ndp_g_lock); 5328 5329 rn_fini(); 5330 RADIX_NODE_HEAD_DESTROY(ip_ftable); 5331 kmem_cache_destroy(rt_entry_cache); 5332 5333 for (i = 0; i < ip_cache_table_size; i++) { 5334 rw_destroy(&ip_cache_table[i].irb_lock); 5335 } 5336 kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); 5337 5338 for (i = 0; i < ip6_cache_table_size; i++) { 5339 rw_destroy(&ip_cache_table_v6[i].irb_lock); 5340 } 5341 kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); 5342 5343 if (ip_mrtun_table != NULL) { 5344 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5345 rw_destroy(&ip_mrtun_table[i].irb_lock); 5346 } 5347 kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); 5348 } 5349 kmem_cache_destroy(ire_cache); 5350 } 5351 5352 int 5353 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5354 { 5355 ire_t *ire1; 5356 irb_t *irb_ptr; 5357 ire_t **irep; 5358 ire_t *ire; 5359 int i; 5360 uint_t max_frag; 5361 ill_t *stq_ill; 5362 int error; 5363 5364 ire = *ire_p; 5365 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5366 /* Is ip_mrtun_table empty ? */ 5367 5368 if (ip_mrtun_table == NULL) { 5369 /* create the mrtun table */ 5370 mutex_enter(&ire_mrtun_lock); 5371 if (ip_mrtun_table == NULL) { 5372 ip_mrtun_table = 5373 (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * 5374 sizeof (irb_t), KM_NOSLEEP); 5375 5376 if (ip_mrtun_table == NULL) { 5377 ip2dbg(("ire_add_mrtun: allocation failure\n")); 5378 mutex_exit(&ire_mrtun_lock); 5379 ire_refrele(ire); 5380 *ire_p = NULL; 5381 return (ENOMEM); 5382 } 5383 5384 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5385 rw_init(&ip_mrtun_table[i].irb_lock, NULL, 5386 RW_DEFAULT, NULL); 5387 } 5388 ip2dbg(("ire_add_mrtun: mrtun table is created\n")); 5389 } 5390 /* some other thread got it and created the table */ 5391 mutex_exit(&ire_mrtun_lock); 5392 } 5393 5394 /* 5395 * Check for duplicate in the bucket and insert in the table 5396 */ 5397 irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, 5398 IP_MRTUN_TABLE_SIZE)]); 5399 5400 /* 5401 * Start the atomic add of the ire. Grab the ill locks, 5402 * ill_g_usesrc_lock and the bucket lock. 5403 * 5404 * If ipif or ill is changing ire_atomic_start() may queue the 5405 * request and return EINPROGRESS. 5406 */ 5407 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5408 if (error != 0) { 5409 /* 5410 * We don't know whether it is a valid ipif or not. 5411 * So, set it to NULL. This assumes that the ire has not added 5412 * a reference to the ipif. 5413 */ 5414 ire->ire_ipif = NULL; 5415 ire_delete(ire); 5416 ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); 5417 *ire_p = NULL; 5418 return (error); 5419 } 5420 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5421 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5422 continue; 5423 /* has anyone inserted the route in the meanwhile ? */ 5424 if (ire1->ire_in_ill == ire->ire_in_ill && 5425 ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5426 ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); 5427 IRE_REFHOLD(ire1); 5428 ire_atomic_end(irb_ptr, ire); 5429 ire_delete(ire); 5430 /* Return the old ire */ 5431 *ire_p = ire1; 5432 return (0); 5433 } 5434 } 5435 5436 /* Atomically set the ire_max_frag */ 5437 max_frag = *ire->ire_max_fragp; 5438 ire->ire_max_fragp = NULL; 5439 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5440 ASSERT(ire->ire_type != IRE_CACHE); 5441 irep = (ire_t **)irb_ptr; 5442 if (*irep != NULL) { 5443 /* Find the last ire which matches ire_in_src_addr */ 5444 ire1 = *irep; 5445 while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5446 irep = &ire1->ire_next; 5447 ire1 = *irep; 5448 if (ire1 == NULL) 5449 break; 5450 } 5451 } 5452 ire1 = *irep; 5453 if (ire1 != NULL) 5454 ire1->ire_ptpn = &ire->ire_next; 5455 ire->ire_next = ire1; 5456 /* Link the new one in. */ 5457 ire->ire_ptpn = irep; 5458 membar_producer(); 5459 *irep = ire; 5460 ire->ire_bucket = irb_ptr; 5461 IRE_REFHOLD_LOCKED(ire); 5462 5463 ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); 5464 5465 /* 5466 * Protect ire_mrtun_count and ill_mrtun_refcnt from 5467 * another thread trying to add ire in the table 5468 */ 5469 mutex_enter(&ire_mrtun_lock); 5470 ire_mrtun_count++; 5471 mutex_exit(&ire_mrtun_lock); 5472 /* 5473 * ill_mrtun_refcnt is protected by the ill_lock held via 5474 * ire_atomic_start 5475 */ 5476 ire->ire_in_ill->ill_mrtun_refcnt++; 5477 5478 if (ire->ire_ipif != NULL) { 5479 ire->ire_ipif->ipif_ire_cnt++; 5480 if (ire->ire_stq != NULL) { 5481 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5482 stq_ill->ill_ire_cnt++; 5483 } 5484 } else { 5485 ASSERT(ire->ire_stq == NULL); 5486 } 5487 5488 ire_atomic_end(irb_ptr, ire); 5489 ire_fastpath(ire); 5490 *ire_p = ire; 5491 return (0); 5492 } 5493 5494 5495 /* Walks down the mrtun table */ 5496 5497 void 5498 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 5499 ill_t *ill) 5500 { 5501 irb_t *irb; 5502 ire_t *ire; 5503 int i; 5504 int ret; 5505 5506 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 5507 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 5508 ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); 5509 5510 mutex_enter(&ire_mrtun_lock); 5511 if (ire_mrtun_count == 0) { 5512 mutex_exit(&ire_mrtun_lock); 5513 return; 5514 } 5515 mutex_exit(&ire_mrtun_lock); 5516 5517 ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); 5518 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5519 5520 irb = &(ip_mrtun_table[i]); 5521 if (irb->irb_ire == NULL) 5522 continue; 5523 IRB_REFHOLD(irb); 5524 for (ire = irb->irb_ire; ire != NULL; 5525 ire = ire->ire_next) { 5526 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5527 if (match_flags != 0) { 5528 ret = ire_walk_ill_match( 5529 match_flags, ire_type, 5530 ire, ill, ALL_ZONES); 5531 } 5532 if (match_flags == 0 || ret) 5533 (*func)(ire, arg); 5534 } 5535 IRB_REFRELE(irb); 5536 } 5537 } 5538 5539 /* 5540 * Source interface based lookup routine (IPV4 only). 5541 * This routine is called only when RTA_SRCIFP bitflag is set 5542 * by routing socket while adding/deleting the route and it is 5543 * also called from ip_rput() when packets arrive from an interface 5544 * for which ill_srcif_ref_cnt is positive. This function is useful 5545 * when a packet coming from one interface must be forwarded to another 5546 * designated interface to reach the correct node. This function is also 5547 * called from ip_newroute when the link-layer address of an ire is resolved. 5548 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type 5549 * ires--thus the ire_type parameter is needed. 5550 */ 5551 5552 ire_t * 5553 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, 5554 ill_t *in_ill, int flags) 5555 { 5556 irb_t *irb_ptr; 5557 ire_t *ire; 5558 irb_t *ire_srcif_table; 5559 5560 ASSERT(in_ill != NULL && !in_ill->ill_isv6); 5561 ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || 5562 (ipif != NULL && !ipif->ipif_isv6)); 5563 5564 /* 5565 * No need to lock the ill since it is refheld by the caller of this 5566 * function 5567 */ 5568 if (in_ill->ill_srcif_table == NULL) { 5569 return (NULL); 5570 } 5571 5572 if (!(flags & MATCH_IRE_TYPE)) { 5573 flags |= MATCH_IRE_TYPE; 5574 ire_type = IRE_INTERFACE; 5575 } 5576 ire_srcif_table = in_ill->ill_srcif_table; 5577 irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, 5578 IP_SRCIF_TABLE_SIZE)]; 5579 rw_enter(&irb_ptr->irb_lock, RW_READER); 5580 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5581 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5582 continue; 5583 if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, 5584 ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) { 5585 IRE_REFHOLD(ire); 5586 rw_exit(&irb_ptr->irb_lock); 5587 return (ire); 5588 } 5589 } 5590 /* Not Found */ 5591 rw_exit(&irb_ptr->irb_lock); 5592 return (NULL); 5593 } 5594 5595 5596 /* 5597 * Adds the ire into the special routing table which is hanging off of 5598 * the src_ipif->ipif_ill. It also increments the refcnt in the ill. 5599 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER 5600 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL 5601 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's 5602 * link-layer address at the time of addition. 5603 * Upon resolving the address from ARP, dlureq_mp field is updated with 5604 * proper information in ire_update_srcif_v4. 5605 */ 5606 static int 5607 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5608 { 5609 ire_t *ire1; 5610 irb_t *ire_srcifp_table = NULL; 5611 irb_t *irb_ptr = NULL; 5612 ire_t **irep; 5613 ire_t *ire; 5614 int flags; 5615 int i; 5616 ill_t *stq_ill; 5617 uint_t max_frag; 5618 int error = 0; 5619 5620 ire = *ire_p; 5621 ASSERT(ire->ire_in_ill != NULL); 5622 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5623 ASSERT(ire->ire_type == IRE_IF_NORESOLVER || 5624 ire->ire_type == IRE_IF_RESOLVER); 5625 5626 ire->ire_mask = IP_HOST_MASK; 5627 /* 5628 * Update ire_nce->nce_res_mp with NULL value upon creation; 5629 * first free the default res_mp created by ire_nce_init. 5630 */ 5631 freeb(ire->ire_nce->nce_res_mp); 5632 if (ire->ire_type == IRE_IF_RESOLVER) { 5633 /* 5634 * assign NULL now, it will be updated 5635 * with correct value upon returning from 5636 * ARP 5637 */ 5638 ire->ire_nce->nce_res_mp = NULL; 5639 } else { 5640 ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL, 5641 ire->ire_ipif->ipif_ill->ill_phys_addr_length, 5642 ire->ire_ipif->ipif_ill->ill_sap, 5643 ire->ire_ipif->ipif_ill->ill_sap_length); 5644 } 5645 /* Make sure the address is properly masked. */ 5646 ire->ire_addr &= ire->ire_mask; 5647 5648 ASSERT(ire->ire_max_fragp != NULL); 5649 max_frag = *ire->ire_max_fragp; 5650 ire->ire_max_fragp = NULL; 5651 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5652 5653 mutex_enter(&ire->ire_in_ill->ill_lock); 5654 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5655 /* create the incoming interface based table */ 5656 ire->ire_in_ill->ill_srcif_table = 5657 (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * 5658 sizeof (irb_t), KM_NOSLEEP); 5659 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5660 ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); 5661 mutex_exit(&ire->ire_in_ill->ill_lock); 5662 ire_delete(ire); 5663 *ire_p = NULL; 5664 return (ENOMEM); 5665 } 5666 ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; 5667 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 5668 rw_init(&ire_srcifp_table[i].irb_lock, NULL, 5669 RW_DEFAULT, NULL); 5670 } 5671 ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", 5672 (void *)ire->ire_in_ill)); 5673 } 5674 /* Check for duplicate and insert */ 5675 ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); 5676 irb_ptr = 5677 &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, 5678 IP_SRCIF_TABLE_SIZE)]); 5679 mutex_exit(&ire->ire_in_ill->ill_lock); 5680 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 5681 flags |= MATCH_IRE_IPIF; 5682 5683 /* 5684 * Start the atomic add of the ire. Grab the ill locks, 5685 * ill_g_usesrc_lock and the bucket lock. 5686 * 5687 * If ipif or ill is changing ire_atomic_start() may queue the 5688 * request and return EINPROGRESS. 5689 */ 5690 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5691 if (error != 0) { 5692 /* 5693 * We don't know whether it is a valid ipif or not. 5694 * So, set it to NULL. This assumes that the ire has not added 5695 * a reference to the ipif. 5696 */ 5697 ire->ire_ipif = NULL; 5698 ire_delete(ire); 5699 ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); 5700 *ire_p = NULL; 5701 return (error); 5702 } 5703 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5704 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5705 continue; 5706 if (ire1->ire_zoneid != ire->ire_zoneid) 5707 continue; 5708 /* Has anyone inserted route in the meanwhile ? */ 5709 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, 5710 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 5711 flags)) { 5712 ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); 5713 IRE_REFHOLD(ire1); 5714 ire_atomic_end(irb_ptr, ire); 5715 ire_delete(ire); 5716 /* Return old ire as in ire_add_v4 */ 5717 *ire_p = ire1; 5718 return (0); 5719 } 5720 } 5721 irep = (ire_t **)irb_ptr; 5722 if (*irep != NULL) { 5723 /* Find the last ire which matches ire_addr */ 5724 ire1 = *irep; 5725 while (ire1->ire_addr == ire->ire_addr) { 5726 irep = &ire1->ire_next; 5727 ire1 = *irep; 5728 if (ire1 == NULL) 5729 break; 5730 } 5731 } 5732 ire1 = *irep; 5733 if (ire1 != NULL) 5734 ire1->ire_ptpn = &ire->ire_next; 5735 ire->ire_next = ire1; 5736 /* Link the new one in. */ 5737 ire->ire_ptpn = irep; 5738 membar_producer(); 5739 *irep = ire; 5740 ire->ire_bucket = irb_ptr; 5741 IRE_REFHOLD_LOCKED(ire); 5742 5743 /* 5744 * Protect ire_in_ill->ill_srcif_refcnt and table reference count. 5745 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock 5746 * so ill_srcif_refcnt is already protected. 5747 */ 5748 ire->ire_in_ill->ill_srcif_refcnt++; 5749 mutex_enter(&ire_srcif_table_lock); 5750 ire_srcif_table_count++; 5751 mutex_exit(&ire_srcif_table_lock); 5752 irb_ptr->irb_ire_cnt++; 5753 if (ire->ire_ipif != NULL) { 5754 ire->ire_ipif->ipif_ire_cnt++; 5755 if (ire->ire_stq != NULL) { 5756 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5757 stq_ill->ill_ire_cnt++; 5758 } 5759 } else { 5760 ASSERT(ire->ire_stq == NULL); 5761 } 5762 5763 ire_atomic_end(irb_ptr, ire); 5764 *ire_p = ire; 5765 return (0); 5766 } 5767 5768 5769 /* 5770 * This function is called by ire_add_then_send when ARP request comes 5771 * back to ip_wput->ire_add_then_send for resolved ire in the interface 5772 * based routing table. At this point, it only needs to update the resolver 5773 * information for the ire. The passed ire is returned to the caller as it 5774 * is the ire which is created as mblk. 5775 */ 5776 5777 static ire_t * 5778 ire_update_srcif_v4(ire_t *ire) 5779 { 5780 ire_t *ire1; 5781 irb_t *irb; 5782 int error; 5783 5784 ASSERT(ire->ire_type != IRE_MIPRTUN && 5785 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); 5786 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5787 5788 /* 5789 * This ire is from ARP. Update 5790 * ire_nce->nce_res_mp info 5791 */ 5792 ire1 = ire_srcif_table_lookup(ire->ire_addr, 5793 IRE_IF_RESOLVER, ire->ire_ipif, 5794 ire->ire_in_ill, 5795 MATCH_IRE_ILL | MATCH_IRE_TYPE); 5796 if (ire1 == NULL) { 5797 /* Mobile node registration expired ? */ 5798 ire_delete(ire); 5799 return (NULL); 5800 } 5801 irb = ire1->ire_bucket; 5802 ASSERT(irb != NULL); 5803 /* 5804 * Start the atomic add of the ire. Grab the ill locks, 5805 * ill_g_usesrc_lock and the bucket lock. 5806 */ 5807 error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); 5808 if (error != 0) { 5809 /* 5810 * We don't know whether it is a valid ipif or not. 5811 * So, set it to NULL. This assumes that the ire has not added 5812 * a reference to the ipif. 5813 */ 5814 ire->ire_ipif = NULL; 5815 ire_delete(ire); 5816 ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); 5817 return (NULL); 5818 } 5819 ASSERT(ire->ire_max_fragp == NULL); 5820 ire->ire_max_frag = ire1->ire_max_frag; 5821 /* 5822 * Update resolver information and 5823 * send-to queue. 5824 */ 5825 ASSERT(ire->ire_nce->nce_res_mp != NULL); 5826 ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp); 5827 if (ire1->ire_nce->nce_res_mp == NULL) { 5828 ip0dbg(("ire_update_srcif: copyb failed\n")); 5829 ire_refrele(ire1); 5830 ire_refrele(ire); 5831 ire_atomic_end(irb, ire1); 5832 return (NULL); 5833 } 5834 ire1->ire_stq = ire->ire_stq; 5835 5836 ASSERT(ire->ire_nce->nce_fp_mp == NULL); 5837 5838 ire_atomic_end(irb, ire1); 5839 ire_refrele(ire1); 5840 /* Return the passed ire */ 5841 return (ire); /* Update done */ 5842 } 5843 5844 5845 /* 5846 * Check if another multirt route resolution is needed. 5847 * B_TRUE is returned is there remain a resolvable route, 5848 * or if no route for that dst is resolved yet. 5849 * B_FALSE is returned if all routes for that dst are resolved 5850 * or if the remaining unresolved routes are actually not 5851 * resolvable. 5852 * This only works in the global zone. 5853 */ 5854 boolean_t 5855 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl) 5856 { 5857 ire_t *first_fire; 5858 ire_t *first_cire; 5859 ire_t *fire; 5860 ire_t *cire; 5861 irb_t *firb; 5862 irb_t *cirb; 5863 int unres_cnt = 0; 5864 boolean_t resolvable = B_FALSE; 5865 5866 /* Retrieve the first IRE_HOST that matches the destination */ 5867 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 5868 NULL, ALL_ZONES, 0, tsl, 5869 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 5870 5871 /* No route at all */ 5872 if (first_fire == NULL) { 5873 return (B_TRUE); 5874 } 5875 5876 firb = first_fire->ire_bucket; 5877 ASSERT(firb != NULL); 5878 5879 /* Retrieve the first IRE_CACHE ire for that destination. */ 5880 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5881 5882 /* No resolved route. */ 5883 if (first_cire == NULL) { 5884 ire_refrele(first_fire); 5885 return (B_TRUE); 5886 } 5887 5888 /* 5889 * At least one route is resolved. Here we look through the forward 5890 * and cache tables, to compare the number of declared routes 5891 * with the number of resolved routes. The search for a resolvable 5892 * route is performed only if at least one route remains 5893 * unresolved. 5894 */ 5895 cirb = first_cire->ire_bucket; 5896 ASSERT(cirb != NULL); 5897 5898 /* Count the number of routes to that dest that are declared. */ 5899 IRB_REFHOLD(firb); 5900 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5901 if (!(fire->ire_flags & RTF_MULTIRT)) 5902 continue; 5903 if (fire->ire_addr != dst) 5904 continue; 5905 unres_cnt++; 5906 } 5907 IRB_REFRELE(firb); 5908 5909 /* Then subtract the number of routes to that dst that are resolved */ 5910 IRB_REFHOLD(cirb); 5911 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 5912 if (!(cire->ire_flags & RTF_MULTIRT)) 5913 continue; 5914 if (cire->ire_addr != dst) 5915 continue; 5916 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 5917 continue; 5918 unres_cnt--; 5919 } 5920 IRB_REFRELE(cirb); 5921 5922 /* At least one route is unresolved; search for a resolvable route. */ 5923 if (unres_cnt > 0) 5924 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 5925 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl); 5926 5927 if (first_fire != NULL) 5928 ire_refrele(first_fire); 5929 5930 if (first_cire != NULL) 5931 ire_refrele(first_cire); 5932 5933 return (resolvable); 5934 } 5935 5936 5937 /* 5938 * Explore a forward_table bucket, starting from fire_arg. 5939 * fire_arg MUST be an IRE_HOST entry. 5940 * 5941 * Return B_TRUE and update *ire_arg and *fire_arg 5942 * if at least one resolvable route is found. *ire_arg 5943 * is the IRE entry for *fire_arg's gateway. 5944 * 5945 * Return B_FALSE otherwise (all routes are resolved or 5946 * the remaining unresolved routes are all unresolvable). 5947 * 5948 * The IRE selection relies on a priority mechanism 5949 * driven by the flags passed in by the caller. 5950 * The caller, such as ip_newroute_ipif(), can get the most 5951 * relevant ire at each stage of a multiple route resolution. 5952 * 5953 * The rules are: 5954 * 5955 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 5956 * ires are preferred for the gateway. This gives the highest 5957 * priority to routes that can be resolved without using 5958 * a resolver. 5959 * 5960 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 5961 * is specified but no IRE_CACHETABLE ire entry for the gateway 5962 * is found, the following rules apply. 5963 * 5964 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 5965 * ires for the gateway, that have not been tried since 5966 * a configurable amount of time, are preferred. 5967 * This applies when a resolver must be invoked for 5968 * a missing route, but we don't want to use the resolver 5969 * upon each packet emission. If no such resolver is found, 5970 * B_FALSE is returned. 5971 * The MULTIRT_USESTAMP flag can be combined with 5972 * MULTIRT_CACHEGW. 5973 * 5974 * - if MULTIRT_USESTAMP is not specified in flags, the first 5975 * unresolved but resolvable route is selected. 5976 * 5977 * - Otherwise, there is no resolvalble route, and 5978 * B_FALSE is returned. 5979 * 5980 * At last, MULTIRT_SETSTAMP can be specified in flags to 5981 * request the timestamp of unresolvable routes to 5982 * be refreshed. This prevents the useless exploration 5983 * of those routes for a while, when MULTIRT_USESTAMP is used. 5984 * 5985 * This only works in the global zone. 5986 */ 5987 boolean_t 5988 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 5989 const ts_label_t *tsl) 5990 { 5991 clock_t delta; 5992 ire_t *best_fire = NULL; 5993 ire_t *best_cire = NULL; 5994 ire_t *first_fire; 5995 ire_t *first_cire; 5996 ire_t *fire; 5997 ire_t *cire; 5998 irb_t *firb = NULL; 5999 irb_t *cirb = NULL; 6000 ire_t *gw_ire; 6001 boolean_t already_resolved; 6002 boolean_t res; 6003 ipaddr_t dst; 6004 ipaddr_t gw; 6005 6006 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 6007 (void *)*ire_arg, (void *)*fire_arg, flags)); 6008 6009 ASSERT(ire_arg != NULL); 6010 ASSERT(fire_arg != NULL); 6011 6012 /* Not an IRE_HOST ire; give up. */ 6013 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 6014 return (B_FALSE); 6015 } 6016 6017 /* This is the first IRE_HOST ire for that destination. */ 6018 first_fire = *fire_arg; 6019 firb = first_fire->ire_bucket; 6020 ASSERT(firb != NULL); 6021 6022 dst = first_fire->ire_addr; 6023 6024 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 6025 6026 /* 6027 * Retrieve the first IRE_CACHE ire for that destination; 6028 * if we don't find one, no route for that dest is 6029 * resolved yet. 6030 */ 6031 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 6032 if (first_cire != NULL) { 6033 cirb = first_cire->ire_bucket; 6034 } 6035 6036 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 6037 6038 /* 6039 * Search for a resolvable route, giving the top priority 6040 * to routes that can be resolved without any call to the resolver. 6041 */ 6042 IRB_REFHOLD(firb); 6043 6044 if (!CLASSD(dst)) { 6045 /* 6046 * For all multiroute IRE_HOST ires for that destination, 6047 * check if the route via the IRE_HOST's gateway is 6048 * resolved yet. 6049 */ 6050 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 6051 6052 if (!(fire->ire_flags & RTF_MULTIRT)) 6053 continue; 6054 if (fire->ire_addr != dst) 6055 continue; 6056 6057 if (fire->ire_gw_secattr != NULL && 6058 tsol_ire_match_gwattr(fire, tsl) != 0) { 6059 continue; 6060 } 6061 6062 gw = fire->ire_gateway_addr; 6063 6064 ip2dbg(("ire_multirt_lookup: fire %p, " 6065 "ire_addr %08x, ire_gateway_addr %08x\n", 6066 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 6067 6068 already_resolved = B_FALSE; 6069 6070 if (first_cire != NULL) { 6071 ASSERT(cirb != NULL); 6072 6073 IRB_REFHOLD(cirb); 6074 /* 6075 * For all IRE_CACHE ires for that 6076 * destination. 6077 */ 6078 for (cire = first_cire; 6079 cire != NULL; 6080 cire = cire->ire_next) { 6081 6082 if (!(cire->ire_flags & RTF_MULTIRT)) 6083 continue; 6084 if (cire->ire_addr != dst) 6085 continue; 6086 if (cire->ire_marks & 6087 (IRE_MARK_CONDEMNED | 6088 IRE_MARK_HIDDEN)) 6089 continue; 6090 6091 if (cire->ire_gw_secattr != NULL && 6092 tsol_ire_match_gwattr(cire, 6093 tsl) != 0) { 6094 continue; 6095 } 6096 6097 /* 6098 * Check if the IRE_CACHE's gateway 6099 * matches the IRE_HOST's gateway. 6100 */ 6101 if (cire->ire_gateway_addr == gw) { 6102 already_resolved = B_TRUE; 6103 break; 6104 } 6105 } 6106 IRB_REFRELE(cirb); 6107 } 6108 6109 /* 6110 * This route is already resolved; 6111 * proceed with next one. 6112 */ 6113 if (already_resolved) { 6114 ip2dbg(("ire_multirt_lookup: found cire %p, " 6115 "already resolved\n", (void *)cire)); 6116 continue; 6117 } 6118 6119 /* 6120 * The route is unresolved; is it actually 6121 * resolvable, i.e. is there a cache or a resolver 6122 * for the gateway? 6123 */ 6124 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 6125 ALL_ZONES, tsl, 6126 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); 6127 6128 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 6129 (void *)gw_ire)); 6130 6131 /* 6132 * If gw_ire is typed IRE_CACHETABLE, 6133 * this route can be resolved without any call to the 6134 * resolver. If the MULTIRT_CACHEGW flag is set, 6135 * give the top priority to this ire and exit the 6136 * loop. 6137 * This is typically the case when an ARP reply 6138 * is processed through ip_wput_nondata(). 6139 */ 6140 if ((flags & MULTIRT_CACHEGW) && 6141 (gw_ire != NULL) && 6142 (gw_ire->ire_type & IRE_CACHETABLE)) { 6143 ASSERT(gw_ire->ire_nce == NULL || 6144 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6145 /* 6146 * Release the resolver associated to the 6147 * previous candidate best ire, if any. 6148 */ 6149 if (best_cire != NULL) { 6150 ire_refrele(best_cire); 6151 ASSERT(best_fire != NULL); 6152 } 6153 6154 best_fire = fire; 6155 best_cire = gw_ire; 6156 6157 ip2dbg(("ire_multirt_lookup: found top prio " 6158 "best_fire %p, best_cire %p\n", 6159 (void *)best_fire, (void *)best_cire)); 6160 break; 6161 } 6162 6163 /* 6164 * Compute the time elapsed since our preceding 6165 * attempt to resolve that route. 6166 * If the MULTIRT_USESTAMP flag is set, we take that 6167 * route into account only if this time interval 6168 * exceeds ip_multirt_resolution_interval; 6169 * this prevents us from attempting to resolve a 6170 * broken route upon each sending of a packet. 6171 */ 6172 delta = lbolt - fire->ire_last_used_time; 6173 delta = TICK_TO_MSEC(delta); 6174 6175 res = (boolean_t) 6176 ((delta > ip_multirt_resolution_interval) || 6177 (!(flags & MULTIRT_USESTAMP))); 6178 6179 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 6180 "res %d\n", 6181 (void *)fire, delta, res)); 6182 6183 if (res) { 6184 /* 6185 * We are here if MULTIRT_USESTAMP flag is set 6186 * and the resolver for fire's gateway 6187 * has not been tried since 6188 * ip_multirt_resolution_interval, or if 6189 * MULTIRT_USESTAMP is not set but gw_ire did 6190 * not fill the conditions for MULTIRT_CACHEGW, 6191 * or if neither MULTIRT_USESTAMP nor 6192 * MULTIRT_CACHEGW are set. 6193 */ 6194 if (gw_ire != NULL) { 6195 if (best_fire == NULL) { 6196 ASSERT(best_cire == NULL); 6197 6198 best_fire = fire; 6199 best_cire = gw_ire; 6200 6201 ip2dbg(("ire_multirt_lookup:" 6202 "found candidate " 6203 "best_fire %p, " 6204 "best_cire %p\n", 6205 (void *)best_fire, 6206 (void *)best_cire)); 6207 6208 /* 6209 * If MULTIRT_CACHEGW is not 6210 * set, we ignore the top 6211 * priority ires that can 6212 * be resolved without any 6213 * call to the resolver; 6214 * In that case, there is 6215 * actually no need 6216 * to continue the loop. 6217 */ 6218 if (!(flags & 6219 MULTIRT_CACHEGW)) { 6220 break; 6221 } 6222 continue; 6223 } 6224 } else { 6225 /* 6226 * No resolver for the gateway: the 6227 * route is not resolvable. 6228 * If the MULTIRT_SETSTAMP flag is 6229 * set, we stamp the IRE_HOST ire, 6230 * so we will not select it again 6231 * during this resolution interval. 6232 */ 6233 if (flags & MULTIRT_SETSTAMP) 6234 fire->ire_last_used_time = 6235 lbolt; 6236 } 6237 } 6238 6239 if (gw_ire != NULL) 6240 ire_refrele(gw_ire); 6241 } 6242 } else { /* CLASSD(dst) */ 6243 6244 for (fire = first_fire; 6245 fire != NULL; 6246 fire = fire->ire_next) { 6247 6248 if (!(fire->ire_flags & RTF_MULTIRT)) 6249 continue; 6250 if (fire->ire_addr != dst) 6251 continue; 6252 6253 if (fire->ire_gw_secattr != NULL && 6254 tsol_ire_match_gwattr(fire, tsl) != 0) { 6255 continue; 6256 } 6257 6258 already_resolved = B_FALSE; 6259 6260 gw = fire->ire_gateway_addr; 6261 6262 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 6263 NULL, NULL, ALL_ZONES, 0, tsl, 6264 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 6265 MATCH_IRE_SECATTR); 6266 6267 /* No resolver for the gateway; we skip this ire. */ 6268 if (gw_ire == NULL) { 6269 continue; 6270 } 6271 ASSERT(gw_ire->ire_nce == NULL || 6272 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6273 6274 if (first_cire != NULL) { 6275 6276 IRB_REFHOLD(cirb); 6277 /* 6278 * For all IRE_CACHE ires for that 6279 * destination. 6280 */ 6281 for (cire = first_cire; 6282 cire != NULL; 6283 cire = cire->ire_next) { 6284 6285 if (!(cire->ire_flags & RTF_MULTIRT)) 6286 continue; 6287 if (cire->ire_addr != dst) 6288 continue; 6289 if (cire->ire_marks & 6290 (IRE_MARK_CONDEMNED | 6291 IRE_MARK_HIDDEN)) 6292 continue; 6293 6294 if (cire->ire_gw_secattr != NULL && 6295 tsol_ire_match_gwattr(cire, 6296 tsl) != 0) { 6297 continue; 6298 } 6299 6300 /* 6301 * Cache entries are linked to the 6302 * parent routes using the parent handle 6303 * (ire_phandle). If no cache entry has 6304 * the same handle as fire, fire is 6305 * still unresolved. 6306 */ 6307 ASSERT(cire->ire_phandle != 0); 6308 if (cire->ire_phandle == 6309 fire->ire_phandle) { 6310 already_resolved = B_TRUE; 6311 break; 6312 } 6313 } 6314 IRB_REFRELE(cirb); 6315 } 6316 6317 /* 6318 * This route is already resolved; proceed with 6319 * next one. 6320 */ 6321 if (already_resolved) { 6322 ire_refrele(gw_ire); 6323 continue; 6324 } 6325 6326 /* 6327 * Compute the time elapsed since our preceding 6328 * attempt to resolve that route. 6329 * If the MULTIRT_USESTAMP flag is set, we take 6330 * that route into account only if this time 6331 * interval exceeds ip_multirt_resolution_interval; 6332 * this prevents us from attempting to resolve a 6333 * broken route upon each sending of a packet. 6334 */ 6335 delta = lbolt - fire->ire_last_used_time; 6336 delta = TICK_TO_MSEC(delta); 6337 6338 res = (boolean_t) 6339 ((delta > ip_multirt_resolution_interval) || 6340 (!(flags & MULTIRT_USESTAMP))); 6341 6342 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 6343 "flags %04x, res %d\n", 6344 (void *)fire, delta, flags, res)); 6345 6346 if (res) { 6347 if (best_cire != NULL) { 6348 /* 6349 * Release the resolver associated 6350 * to the preceding candidate best 6351 * ire, if any. 6352 */ 6353 ire_refrele(best_cire); 6354 ASSERT(best_fire != NULL); 6355 } 6356 best_fire = fire; 6357 best_cire = gw_ire; 6358 continue; 6359 } 6360 6361 ire_refrele(gw_ire); 6362 } 6363 } 6364 6365 if (best_fire != NULL) { 6366 IRE_REFHOLD(best_fire); 6367 } 6368 IRB_REFRELE(firb); 6369 6370 /* Release the first IRE_CACHE we initially looked up, if any. */ 6371 if (first_cire != NULL) 6372 ire_refrele(first_cire); 6373 6374 /* Found a resolvable route. */ 6375 if (best_fire != NULL) { 6376 ASSERT(best_cire != NULL); 6377 6378 if (*fire_arg != NULL) 6379 ire_refrele(*fire_arg); 6380 if (*ire_arg != NULL) 6381 ire_refrele(*ire_arg); 6382 6383 /* 6384 * Update the passed-in arguments with the 6385 * resolvable multirt route we found. 6386 */ 6387 *fire_arg = best_fire; 6388 *ire_arg = best_cire; 6389 6390 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 6391 "*fire_arg %p, *ire_arg %p\n", 6392 (void *)best_fire, (void *)best_cire)); 6393 6394 return (B_TRUE); 6395 } 6396 6397 ASSERT(best_cire == NULL); 6398 6399 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 6400 "*ire_arg %p\n", 6401 (void *)*fire_arg, (void *)*ire_arg)); 6402 6403 /* No resolvable route. */ 6404 return (B_FALSE); 6405 } 6406 6407 /* 6408 * The purpose of the next two functions is to provide some external access to 6409 * routing/l2 lookup functionality while hiding the implementation of routing 6410 * and interface data structures (IRE/ILL). Thus, interfaces are passed/ 6411 * returned by name instead of by ILL reference. These functions are used by 6412 * IP Filter. 6413 * Return a link layer header suitable for an IP packet being sent to the 6414 * dst_addr IP address. The interface associated with the route is put into 6415 * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the 6416 * packet's ultimate destination address, not a router address. 6417 * 6418 * This function is used when the caller wants to know the outbound interface 6419 * and MAC header for a packet given only the address. 6420 */ 6421 mblk_t * 6422 ip_nexthop_route(const struct sockaddr *target, char *ifname) 6423 { 6424 struct nce_s *nce; 6425 ire_t *dir; 6426 ill_t *ill; 6427 mblk_t *mp, *tmp_mp; 6428 6429 /* parameter sanity */ 6430 if (ifname == NULL || target == NULL) 6431 return (NULL); 6432 6433 /* Find the route entry, if it exists. */ 6434 switch (target->sa_family) { 6435 case AF_INET: 6436 dir = ire_route_lookup( 6437 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6438 0xffffffff, 6439 0, 0, NULL, NULL, ALL_ZONES, NULL, 6440 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6441 break; 6442 case AF_INET6: 6443 dir = ire_route_lookup_v6( 6444 &((struct sockaddr_in6 *)target)->sin6_addr, 6445 NULL, 6446 0, 0, NULL, NULL, ALL_ZONES, NULL, 6447 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6448 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6449 ire_refrele(dir); 6450 dir = NULL; 6451 } 6452 break; 6453 default: 6454 dir = NULL; 6455 break; 6456 } 6457 6458 if (dir == NULL) { 6459 return (NULL); 6460 } 6461 6462 /* Map the IRE to an ILL so we can fill in ifname. */ 6463 ill = ire_to_ill(dir); 6464 if (ill == NULL) { 6465 ire_refrele(dir); 6466 return (NULL); 6467 } 6468 (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); 6469 6470 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6471 mp = copyb(ill->ill_resolver_mp); 6472 ire_refrele(dir); 6473 return (mp); 6474 } 6475 6476 /* Return a copy of the header to the caller. */ 6477 switch (target->sa_family) { 6478 case AF_INET : 6479 if (dir->ire_nce != NULL && 6480 dir->ire_nce->nce_state == ND_REACHABLE) { 6481 if (dir->ire_nce->nce_fp_mp != NULL) 6482 tmp_mp = dir->ire_nce->nce_fp_mp; 6483 else 6484 tmp_mp = dir->ire_nce->nce_fp_mp; 6485 if ((mp = dupb(tmp_mp)) == NULL) 6486 mp = copyb(tmp_mp); 6487 } else { 6488 mp = copyb(ill->ill_resolver_mp); 6489 } 6490 break; 6491 case AF_INET6 : 6492 nce = dir->ire_nce; 6493 if (nce->nce_fp_mp != NULL) { 6494 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6495 mp = copyb(nce->nce_fp_mp); 6496 } else if (nce->nce_res_mp != NULL) { 6497 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6498 mp = copyb(nce->nce_res_mp); 6499 } else { 6500 mp = NULL; 6501 } 6502 break; 6503 } 6504 6505 ire_refrele(dir); 6506 return (mp); 6507 } 6508 6509 6510 /* 6511 * Return a link layer header suitable for an IP packet being sent to the 6512 * dst_addr IP address on the specified output interface. The dst_addr 6513 * may be the packet's ultimate destination or a predetermined next hop 6514 * router's address. 6515 * ifname must be nul-terminated. 6516 * 6517 * This function is used when the caller knows the outbound interface (usually 6518 * because it was specified by policy) and only needs the MAC header for a 6519 * packet. 6520 */ 6521 mblk_t * 6522 ip_nexthop(const struct sockaddr *target, const char *ifname) 6523 { 6524 struct nce_s *nce; 6525 ill_walk_context_t ctx; 6526 t_uscalar_t sap; 6527 ire_t *dir; 6528 ill_t *ill; 6529 mblk_t *mp; 6530 6531 /* parameter sanity */ 6532 if (ifname == NULL || target == NULL) 6533 return (NULL); 6534 6535 switch (target->sa_family) { 6536 case AF_INET : 6537 sap = IP_DL_SAP; 6538 break; 6539 case AF_INET6 : 6540 sap = IP6_DL_SAP; 6541 break; 6542 default: 6543 return (NULL); 6544 } 6545 6546 /* Lock ill_g_lock before walking through the list */ 6547 rw_enter(&ill_g_lock, RW_READER); 6548 /* 6549 * Can we find the interface name among those currently configured? 6550 */ 6551 for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; 6552 ill = ill_next(&ctx, ill)) { 6553 if ((strcmp(ifname, ill->ill_name) == 0) && 6554 (ill->ill_sap == sap)) 6555 break; 6556 } 6557 if (ill == NULL || ill->ill_ipif == NULL) { 6558 rw_exit(&ill_g_lock); 6559 return (NULL); 6560 } 6561 6562 mutex_enter(&ill->ill_lock); 6563 if (!ILL_CAN_LOOKUP(ill)) { 6564 mutex_exit(&ill->ill_lock); 6565 rw_exit(&ill_g_lock); 6566 return (NULL); 6567 } 6568 ill_refhold_locked(ill); 6569 mutex_exit(&ill->ill_lock); 6570 rw_exit(&ill_g_lock); 6571 6572 /* Find the resolver entry, if it exists. */ 6573 switch (target->sa_family) { 6574 case AF_INET: 6575 dir = ire_route_lookup( 6576 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6577 0xffffffff, 6578 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6579 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6580 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6581 if ((dir != NULL) && dir->ire_nce != NULL && 6582 dir->ire_nce->nce_state != ND_REACHABLE) { 6583 ire_refrele(dir); 6584 dir = NULL; 6585 } 6586 break; 6587 case AF_INET6: 6588 dir = ire_route_lookup_v6( 6589 &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 6590 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6591 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6592 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6593 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6594 ire_refrele(dir); 6595 dir = NULL; 6596 } 6597 break; 6598 default: 6599 dir = NULL; 6600 break; 6601 } 6602 6603 if (dir == NULL) { 6604 return (NULL); 6605 } 6606 6607 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6608 mp = copyb(ill->ill_resolver_mp); 6609 ill_refrele(ill); 6610 ire_refrele(dir); 6611 return (mp); 6612 } 6613 6614 /* Return a copy of the header to the caller. */ 6615 switch (target->sa_family) { 6616 case AF_INET : 6617 if (dir->ire_nce->nce_fp_mp != NULL) { 6618 if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL) 6619 mp = copyb(dir->ire_nce->nce_fp_mp); 6620 } else if (dir->ire_nce->nce_res_mp != NULL) { 6621 if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL) 6622 mp = copyb(dir->ire_nce->nce_res_mp); 6623 } else { 6624 mp = copyb(ill->ill_resolver_mp); 6625 } 6626 break; 6627 case AF_INET6 : 6628 nce = dir->ire_nce; 6629 if (nce->nce_fp_mp != NULL) { 6630 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6631 mp = copyb(nce->nce_fp_mp); 6632 } else if (nce->nce_res_mp != NULL) { 6633 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6634 mp = copyb(nce->nce_res_mp); 6635 } else { 6636 mp = NULL; 6637 } 6638 break; 6639 } 6640 6641 ire_refrele(dir); 6642 ill_refrele(ill); 6643 return (mp); 6644 } 6645 6646 /* 6647 * IRE iterator for inbound and loopback broadcast processing. 6648 * Given an IRE_BROADCAST ire, walk the ires with the same destination 6649 * address, but skip over the passed-in ire. Returns the next ire without 6650 * a hold - assumes that the caller holds a reference on the IRE bucket. 6651 */ 6652 ire_t * 6653 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 6654 { 6655 ill_t *ill; 6656 6657 if (curr == NULL) { 6658 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 6659 curr = curr->ire_next) { 6660 if (curr->ire_addr == ire->ire_addr) 6661 break; 6662 } 6663 } else { 6664 curr = curr->ire_next; 6665 } 6666 ill = ire_to_ill(ire); 6667 for (; curr != NULL; curr = curr->ire_next) { 6668 if (curr->ire_addr != ire->ire_addr) { 6669 /* 6670 * All the IREs to a given destination are contiguous; 6671 * break out once the address doesn't match. 6672 */ 6673 break; 6674 } 6675 if (curr == ire) { 6676 /* skip over the passed-in ire */ 6677 continue; 6678 } 6679 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 6680 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 6681 /* 6682 * If the passed-in ire is loopback, skip over 6683 * non-loopback ires and vice versa. 6684 */ 6685 continue; 6686 } 6687 if (ire_to_ill(curr) != ill) { 6688 /* skip over IREs going through a different interface */ 6689 continue; 6690 } 6691 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 6692 /* skip over deleted IREs */ 6693 continue; 6694 } 6695 return (curr); 6696 } 6697 return (NULL); 6698 } 6699 6700 #ifdef IRE_DEBUG 6701 th_trace_t * 6702 th_trace_ire_lookup(ire_t *ire) 6703 { 6704 int bucket_id; 6705 th_trace_t *th_trace; 6706 6707 ASSERT(MUTEX_HELD(&ire->ire_lock)); 6708 6709 bucket_id = IP_TR_HASH(curthread); 6710 ASSERT(bucket_id < IP_TR_HASH_MAX); 6711 6712 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 6713 th_trace = th_trace->th_next) { 6714 if (th_trace->th_id == curthread) 6715 return (th_trace); 6716 } 6717 return (NULL); 6718 } 6719 6720 void 6721 ire_trace_ref(ire_t *ire) 6722 { 6723 int bucket_id; 6724 th_trace_t *th_trace; 6725 6726 /* 6727 * Attempt to locate the trace buffer for the curthread. 6728 * If it does not exist, then allocate a new trace buffer 6729 * and link it in list of trace bufs for this ipif, at the head 6730 */ 6731 mutex_enter(&ire->ire_lock); 6732 if (ire->ire_trace_disable == B_TRUE) { 6733 mutex_exit(&ire->ire_lock); 6734 return; 6735 } 6736 th_trace = th_trace_ire_lookup(ire); 6737 if (th_trace == NULL) { 6738 bucket_id = IP_TR_HASH(curthread); 6739 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6740 KM_NOSLEEP); 6741 if (th_trace == NULL) { 6742 ire->ire_trace_disable = B_TRUE; 6743 mutex_exit(&ire->ire_lock); 6744 ire_trace_inactive(ire); 6745 return; 6746 } 6747 6748 th_trace->th_id = curthread; 6749 th_trace->th_next = ire->ire_trace[bucket_id]; 6750 th_trace->th_prev = &ire->ire_trace[bucket_id]; 6751 if (th_trace->th_next != NULL) 6752 th_trace->th_next->th_prev = &th_trace->th_next; 6753 ire->ire_trace[bucket_id] = th_trace; 6754 } 6755 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 6756 th_trace->th_refcnt++; 6757 th_trace_rrecord(th_trace); 6758 mutex_exit(&ire->ire_lock); 6759 } 6760 6761 void 6762 ire_trace_free(th_trace_t *th_trace) 6763 { 6764 /* unlink th_trace and free it */ 6765 *th_trace->th_prev = th_trace->th_next; 6766 if (th_trace->th_next != NULL) 6767 th_trace->th_next->th_prev = th_trace->th_prev; 6768 th_trace->th_next = NULL; 6769 th_trace->th_prev = NULL; 6770 kmem_free(th_trace, sizeof (th_trace_t)); 6771 } 6772 6773 void 6774 ire_untrace_ref(ire_t *ire) 6775 { 6776 th_trace_t *th_trace; 6777 6778 mutex_enter(&ire->ire_lock); 6779 6780 if (ire->ire_trace_disable == B_TRUE) { 6781 mutex_exit(&ire->ire_lock); 6782 return; 6783 } 6784 6785 th_trace = th_trace_ire_lookup(ire); 6786 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 6787 th_trace_rrecord(th_trace); 6788 th_trace->th_refcnt--; 6789 6790 if (th_trace->th_refcnt == 0) 6791 ire_trace_free(th_trace); 6792 6793 mutex_exit(&ire->ire_lock); 6794 } 6795 6796 static void 6797 ire_trace_inactive(ire_t *ire) 6798 { 6799 th_trace_t *th_trace; 6800 int i; 6801 6802 mutex_enter(&ire->ire_lock); 6803 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6804 while (ire->ire_trace[i] != NULL) { 6805 th_trace = ire->ire_trace[i]; 6806 6807 /* unlink th_trace and free it */ 6808 ire->ire_trace[i] = th_trace->th_next; 6809 if (th_trace->th_next != NULL) 6810 th_trace->th_next->th_prev = 6811 &ire->ire_trace[i]; 6812 6813 th_trace->th_next = NULL; 6814 th_trace->th_prev = NULL; 6815 kmem_free(th_trace, sizeof (th_trace_t)); 6816 } 6817 } 6818 6819 mutex_exit(&ire->ire_lock); 6820 } 6821 6822 /* ARGSUSED */ 6823 void 6824 ire_thread_exit(ire_t *ire, caddr_t arg) 6825 { 6826 th_trace_t *th_trace; 6827 6828 mutex_enter(&ire->ire_lock); 6829 th_trace = th_trace_ire_lookup(ire); 6830 if (th_trace == NULL) { 6831 mutex_exit(&ire->ire_lock); 6832 return; 6833 } 6834 ASSERT(th_trace->th_refcnt == 0); 6835 6836 ire_trace_free(th_trace); 6837 mutex_exit(&ire->ire_lock); 6838 } 6839 6840 #endif 6841 6842 /* 6843 * Generate a message chain with an arp request to resolve the in_ire. 6844 * It is assumed that in_ire itself is currently in the ire cache table, 6845 * so we create a fake_ire filled with enough information about ire_addr etc. 6846 * to retrieve in_ire when the DL_UNITDATA response from the resolver 6847 * comes back. The fake_ire itself is created by calling esballoc with 6848 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 6849 * invoked when the mblk containing fake_ire is freed. 6850 */ 6851 void 6852 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 6853 { 6854 areq_t *areq; 6855 ipaddr_t *addrp; 6856 mblk_t *ire_mp, *dlureq_mp; 6857 ire_t *ire, *buf; 6858 size_t bufsize; 6859 frtn_t *frtnp; 6860 ill_t *ill; 6861 6862 /* 6863 * Construct message chain for the resolver 6864 * of the form: 6865 * ARP_REQ_MBLK-->IRE_MBLK 6866 * 6867 * NOTE : If the response does not 6868 * come back, ARP frees the packet. For this reason, 6869 * we can't REFHOLD the bucket of save_ire to prevent 6870 * deletions. We may not be able to REFRELE the bucket 6871 * if the response never comes back. Thus, before 6872 * adding the ire, ire_add_v4 will make sure that the 6873 * interface route does not get deleted. This is the 6874 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 6875 * where we can always prevent deletions because of 6876 * the synchronous nature of adding IRES i.e 6877 * ire_add_then_send is called after creating the IRE. 6878 */ 6879 6880 /* 6881 * We use esballoc to allocate the second part(the ire_t size mblk) 6882 * of the message chain depicted above. THis mblk will be freed 6883 * by arp when there is a timeout, and otherwise passed to IP 6884 * and IP will * free it after processing the ARP response. 6885 */ 6886 6887 bufsize = sizeof (ire_t) + sizeof (frtn_t); 6888 buf = kmem_alloc(bufsize, KM_NOSLEEP); 6889 if (buf == NULL) { 6890 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 6891 return; 6892 } 6893 frtnp = (frtn_t *)(buf + 1); 6894 frtnp->free_arg = (caddr_t)buf; 6895 frtnp->free_func = ire_freemblk; 6896 6897 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 6898 6899 if (ire_mp == NULL) { 6900 ip1dbg(("ire_arpresolve: esballoc failed\n")); 6901 kmem_free(buf, bufsize); 6902 return; 6903 } 6904 ASSERT(in_ire->ire_nce != NULL); 6905 dlureq_mp = copyb(dst_ill->ill_resolver_mp); 6906 if (dlureq_mp == NULL) { 6907 kmem_free(buf, bufsize); 6908 return; 6909 } 6910 6911 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 6912 ire = (ire_t *)buf; 6913 /* 6914 * keep enough info in the fake ire so that we can pull up 6915 * the incomplete ire (in_ire) after result comes back from 6916 * arp and make it complete. 6917 */ 6918 *ire = ire_null; 6919 ire->ire_u = in_ire->ire_u; 6920 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 6921 ire->ire_ipif = in_ire->ire_ipif; 6922 ire->ire_stq = in_ire->ire_stq; 6923 ill = ire_to_ill(ire); 6924 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 6925 ire->ire_zoneid = in_ire->ire_zoneid; 6926 /* 6927 * ire_freemblk will be called when ire_mp is freed, both for 6928 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 6929 * when the arp resolution failed. 6930 */ 6931 ire->ire_marks |= IRE_MARK_UNCACHED; 6932 ire->ire_mp = ire_mp; 6933 ire_mp->b_wptr = (uchar_t *)&ire[1]; 6934 ire_mp->b_cont = NULL; 6935 ASSERT(dlureq_mp != NULL); 6936 linkb(dlureq_mp, ire_mp); 6937 6938 /* 6939 * Fill in the source and dest addrs for the resolver. 6940 * NOTE: this depends on memory layouts imposed by 6941 * ill_init(). 6942 */ 6943 areq = (areq_t *)dlureq_mp->b_rptr; 6944 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 6945 *addrp = ire->ire_src_addr; 6946 6947 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 6948 if (ire->ire_gateway_addr != INADDR_ANY) { 6949 *addrp = ire->ire_gateway_addr; 6950 } else { 6951 *addrp = ire->ire_addr; 6952 } 6953 6954 /* Up to the resolver. */ 6955 if (canputnext(dst_ill->ill_rq)) { 6956 putnext(dst_ill->ill_rq, dlureq_mp); 6957 } else { 6958 /* Prepare for cleanup */ 6959 freemsg(dlureq_mp); 6960 } 6961 } 6962 6963 /* 6964 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 6965 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 6966 * 6967 * This function can be called by ARP via free routine for ire_mp or 6968 * by IPv4(both host and forwarding path) via ire_delete 6969 * in case ARP resolution fails. 6970 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 6971 * (for IP to talk to ARP, it still has to send AR* messages). 6972 * 6973 * Note that the ARP/IP merge should replace the functioanlity by providing 6974 * direct function calls to clean up unresolved entries in ire/nce lists. 6975 */ 6976 void 6977 ire_freemblk(ire_t *ire_mp) 6978 { 6979 nce_t *nce = NULL; 6980 ill_t *ill; 6981 6982 ASSERT(ire_mp != NULL); 6983 6984 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 6985 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 6986 (void *)ire_mp)); 6987 goto cleanup; 6988 } 6989 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 6990 goto cleanup; /* everything succeeded. just free and return */ 6991 } 6992 6993 /* 6994 * the arp information corresponding to this ire_mp was not 6995 * transferred to a ire_cache entry. Need 6996 * to clean up incomplete ire's and nce, if necessary. 6997 */ 6998 ASSERT(ire_mp->ire_stq != NULL); 6999 ASSERT(ire_mp->ire_stq_ifindex != 0); 7000 /* 7001 * Get any nce's corresponding to this ire_mp. We first have to 7002 * make sure that the ill is still around. 7003 */ 7004 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE, 7005 NULL, NULL, NULL, NULL); 7006 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 7007 (ill->ill_state_flags & ILL_CONDEMNED)) { 7008 /* 7009 * ill went away. no nce to clean up. 7010 * Note that the ill_state_flags could be set to 7011 * ILL_CONDEMNED after this point, but if we know 7012 * that it is CONDEMNED now, we just bail out quickly. 7013 */ 7014 if (ill != NULL) 7015 ill_refrele(ill); 7016 goto cleanup; 7017 } 7018 nce = ndp_lookup_v4(ill, 7019 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 7020 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 7021 B_FALSE); 7022 ill_refrele(ill); 7023 7024 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 7025 /* 7026 * some incomplete nce was found. 7027 */ 7028 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 7029 nce_t *, nce, ire_t *, ire_mp); 7030 /* 7031 * Send the icmp_unreachable messages for the queued mblks in 7032 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 7033 * for this ire 7034 */ 7035 arp_resolv_failed(nce); 7036 /* 7037 * Delete the nce and clean up all ire's pointing at this nce 7038 * in the cachetable 7039 */ 7040 ndp_delete(nce); 7041 } 7042 if (nce != NULL) 7043 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 7044 7045 cleanup: 7046 /* 7047 * Get rid of the ire buffer 7048 * We call kmem_free here(instead of ire_delete()), since 7049 * this is the freeb's callback. 7050 */ 7051 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 7052 } 7053 7054 7055 /* 7056 * create the neighbor cache entry nce_t for IRE_CACHE and 7057 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST 7058 * (non-loopback) entries have the nce_res_mp set to the 7059 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's 7060 * contain the information for the nexthop (ire_gateway_addr) in the 7061 * case of indirect routes, and for the dst itself (ire_addr) in the 7062 * case of direct routes, with the nce_res_mp containing a template 7063 * DL_UNITDATA request. 7064 * 7065 * This function always consumes res_mp and fp_mp. 7066 * 7067 * The actual association of the ire_nce to the nce created here is 7068 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 7069 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 7070 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip 7071 * where the assignment is done in ire_add_mrtun(). 7072 */ 7073 int 7074 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp) 7075 { 7076 in_addr_t addr4, mask4; 7077 int err; 7078 nce_t *arpce = NULL; 7079 ill_t *ire_ill; 7080 uint16_t nce_state, nce_flags; 7081 7082 if (ire->ire_stq == NULL) { 7083 if (res_mp) 7084 freemsg(res_mp); 7085 if (fp_mp) 7086 freemsg(fp_mp); 7087 return (0); /* no need to create nce for local/loopback */ 7088 } 7089 7090 mask4 = IP_HOST_MASK; 7091 switch (ire->ire_type) { 7092 case IRE_CACHE: 7093 if (ire->ire_gateway_addr != INADDR_ANY) 7094 addr4 = ire->ire_gateway_addr; /* 'G' route */ 7095 else 7096 addr4 = ire->ire_addr; /* direct route */ 7097 break; 7098 case IRE_BROADCAST: 7099 addr4 = ire->ire_addr; 7100 break; 7101 default: 7102 if (res_mp) 7103 freemsg(res_mp); 7104 if (fp_mp) 7105 freemsg(fp_mp); 7106 return (0); 7107 } 7108 7109 /* 7110 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 7111 * rules in ire_forward_src_ipif. We want the dlureq_mp 7112 * for the outgoing interface, which we get from the ire_stq. 7113 */ 7114 ire_ill = ire_to_ill(ire); 7115 7116 /* 7117 * if we are creating an nce for the first time, and this is 7118 * a NORESOLVER interface, atomically create the nce in the 7119 * REACHABLE state; else create it in the ND_INITIAL state. 7120 */ 7121 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) { 7122 nce_state = ND_REACHABLE; 7123 nce_flags = NCE_F_PERMANENT; 7124 } else { 7125 if (fp_mp != NULL) 7126 nce_state = ND_REACHABLE; 7127 else 7128 nce_state = ND_INITIAL; 7129 nce_flags = 0; 7130 } 7131 7132 err = ndp_lookup_then_add(ire_ill, NULL, 7133 &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce, 7134 fp_mp, res_mp); 7135 7136 ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; " 7137 "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4, 7138 (ulong_t)mask4, ire->ire_type, (void *)arpce, err)); 7139 7140 switch (err) { 7141 case 0: 7142 break; 7143 case EEXIST: 7144 /* 7145 * return a pointer to an existing nce_t; 7146 * note that the ire-nce mapping is many-one, i.e., 7147 * multiple ire's could point to the same nce_t; 7148 */ 7149 if (fp_mp != NULL) { 7150 freemsg(fp_mp); 7151 } 7152 if (res_mp != NULL) { 7153 freemsg(res_mp); 7154 } 7155 break; 7156 default: 7157 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 7158 if (res_mp) 7159 freemsg(res_mp); 7160 if (fp_mp) 7161 freemsg(fp_mp); 7162 return (EINVAL); 7163 } 7164 #if DEBUG 7165 /* 7166 * if an nce_fp_mp was passed in, we should be picking up an 7167 * existing nce_t in the ND_REACHABLE state. 7168 */ 7169 mutex_enter(&arpce->nce_lock); 7170 ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE); 7171 mutex_exit(&arpce->nce_lock); 7172 #endif 7173 if (ire->ire_type == IRE_BROADCAST) { 7174 /* 7175 * Two bcast ires are created for each interface; 7176 * 1. loopback copy (which does not have an 7177 * ire_stq, and therefore has no ire_nce), and, 7178 * 2. the non-loopback copy, which has the nce_res_mp 7179 * initialized to a copy of the ill_bcast_mp, and 7180 * is marked as ND_REACHABLE at this point. 7181 * This nce does not undergo any further state changes, 7182 * and exists as long as the interface is plumbed. 7183 * Note: we do the ire_nce assignment here for IRE_BROADCAST 7184 * because some functions like ill_mark_bcast() inline the 7185 * ire_add functionality; 7186 */ 7187 mutex_enter(&arpce->nce_lock); 7188 arpce->nce_state = ND_REACHABLE; 7189 arpce->nce_flags |= NCE_F_PERMANENT; 7190 arpce->nce_last = TICK_TO_MSEC(lbolt64); 7191 ire->ire_nce = arpce; 7192 mutex_exit(&arpce->nce_lock); 7193 /* 7194 * We are associating this nce to the ire, 7195 * so change the nce ref taken in 7196 * ndp_lookup_then_add_v4() from 7197 * NCE_REFHOLD to NCE_REFHOLD_NOTR 7198 */ 7199 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 7200 } else { 7201 if (NCE_EXPIRED(arpce)) 7202 arpce = nce_reinit(arpce); 7203 if (arpce != NULL) { 7204 /* 7205 * We are not using this nce_t just yet so release 7206 * the ref taken in ndp_lookup_then_add_v4() 7207 */ 7208 NCE_REFRELE(arpce); 7209 } else { 7210 ip0dbg(("can't reinit arpce for ill 0x%p;\n", 7211 (void *)ire_ill)); 7212 } 7213 } 7214 return (0); 7215 } 7216