1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains routines that manipulate Internet Routing Entries (IREs). 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/ddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/policy.h> 39 40 #include <sys/systm.h> 41 #include <sys/kmem.h> 42 #include <sys/param.h> 43 #include <sys/socket.h> 44 #include <net/if.h> 45 #include <net/route.h> 46 #include <netinet/in.h> 47 #include <net/if_dl.h> 48 #include <netinet/ip6.h> 49 #include <netinet/icmp6.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/ip_ndp.h> 56 #include <inet/arp.h> 57 #include <inet/ip_if.h> 58 #include <inet/ip_ire.h> 59 #include <inet/ip_ftable.h> 60 #include <inet/ip_rts.h> 61 #include <inet/nd.h> 62 63 #include <inet/tcp.h> 64 #include <inet/ipclassifier.h> 65 #include <sys/zone.h> 66 #include <sys/cpuvar.h> 67 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tnet.h> 70 71 struct kmem_cache *rt_entry_cache; 72 73 typedef struct nce_clookup_s { 74 ipaddr_t ncecl_addr; 75 boolean_t ncecl_found; 76 } nce_clookup_t; 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the forwarding table in which is ire stored. 86 * 87 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, 89 * ire_bucket 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_refcnt, ire_identical_ref 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_generation 117 * - Under ire_lock 118 * 119 * ire_nce_cache 120 * - Under ire_lock 121 * 122 * ire_dep_parent (To next IRE in recursive lookup chain) 123 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 124 * walking. We also hold ire_lock when modifying to allow the data path 125 * to only acquire ire_lock. 126 * 127 * ire_dep_parent_generation (Generation number from ire_dep_parent) 128 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock 129 * and ire_lock held when modifying) 130 * 131 * ire_dep_children (From parent to first child) 132 * ire_dep_sib_next (linked list of siblings) 133 * ire_dep_sib_ptpn (linked list of siblings) 134 * - Under ips_ire_dep_lock. Write held when modifying. Read held when 135 * walking. 136 * 137 * As we always hold the bucket locks in all the places while accessing 138 * the above values, it is natural to use them for protecting them. 139 * 140 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table 141 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t 142 * structures. ip_forwarding_table_v6 is allocated dynamically in 143 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 144 * initializing the same bucket. Once a bucket is initialized, it is never 145 * de-alloacted. This assumption enables us to access 146 * ip_forwarding_table_v6[i] without any locks. 147 * 148 * The forwarding table for IPv4 is a radix tree whose leaves 149 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t 150 * for IPv4 is dynamically allocated and freed. 151 * 152 * Each irb_t - ire bucket structure has a lock to protect 153 * a bucket and the ires residing in the bucket have a back pointer to 154 * the bucket structure. It also has a reference count for the number 155 * of threads walking the bucket - irb_refcnt which is bumped up 156 * using the irb_refhold function. The flags irb_marks can be 157 * set to IRB_MARK_CONDEMNED indicating that there are some ires 158 * in this bucket that are IRE_IS_CONDEMNED and the 159 * last thread to leave the bucket should delete the ires. Usually 160 * this is done by the irb_refrele function which is used to decrement 161 * the reference count on a bucket. See comments above irb_t structure 162 * definition in ip.h for further details. 163 * 164 * The ire_refhold/ire_refrele functions operate on the ire which increments/ 165 * decrements the reference count, ire_refcnt, atomically on the ire. 166 * ire_refcnt is modified only using those functions. Operations on the IRE 167 * could be described as follows : 168 * 169 * CREATE an ire with reference count initialized to 1. 170 * 171 * ADDITION of an ire holds the bucket lock, checks for duplicates 172 * and then adds the ire. ire_add returns the ire after 173 * bumping up once more i.e the reference count is 2. This is to avoid 174 * an extra lookup in the functions calling ire_add which wants to 175 * work with the ire after adding. 176 * 177 * LOOKUP of an ire bumps up the reference count using ire_refhold 178 * function. It is valid to bump up the referece count of the IRE, 179 * after the lookup has returned an ire. Following are the lookup 180 * functions that return an HELD ire : 181 * 182 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] 183 * 184 * DELETION of an ire holds the bucket lock, removes it from the list 185 * and then decrements the reference count for having removed from the list 186 * by using the ire_refrele function. If some other thread has looked up 187 * the ire, the reference count would have been bumped up and hence 188 * this ire will not be freed once deleted. It will be freed once the 189 * reference count drops to zero. 190 * 191 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 192 * lookups acquire the bucket lock as RW_READER. 193 * 194 * The general rule is to do the ire_refrele in the function 195 * that is passing the ire as an argument. 196 * 197 * In trying to locate ires the following points are to be noted. 198 * 199 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is 200 * to be ignored when walking the ires using ire_next. 201 * 202 * Zones note: 203 * Walking IREs within a given zone also walks certain ires in other 204 * zones. This is done intentionally. IRE walks with a specified 205 * zoneid are used only when doing informational reports, and 206 * zone users want to see things that they can access. See block 207 * comment in ire_walk_ill_match(). 208 */ 209 210 /* 211 * The size of the forwarding table. We will make sure that it is a 212 * power of 2 in ip_ire_init(). 213 * Setable in /etc/system 214 */ 215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 216 217 struct kmem_cache *ire_cache; 218 struct kmem_cache *ncec_cache; 219 struct kmem_cache *nce_cache; 220 221 static ire_t ire_null; 222 223 static ire_t *ire_add_v4(ire_t *ire); 224 static void ire_delete_v4(ire_t *ire); 225 static void ire_dep_invalidate_children(ire_t *child); 226 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 227 zoneid_t zoneid, ip_stack_t *); 228 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 229 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 230 #ifdef DEBUG 231 static void ire_trace_cleanup(const ire_t *); 232 #endif 233 234 /* 235 * Following are the functions to increment/decrement the reference 236 * count of the IREs and IRBs (ire bucket). 237 * 238 * 1) We bump up the reference count of an IRE to make sure that 239 * it does not get deleted and freed while we are using it. 240 * Typically all the lookup functions hold the bucket lock, 241 * and look for the IRE. If it finds an IRE, it bumps up the 242 * reference count before dropping the lock. Sometimes we *may* want 243 * to bump up the reference count after we *looked* up i.e without 244 * holding the bucket lock. So, the ire_refhold function does not assert 245 * on the bucket lock being held. Any thread trying to delete from 246 * the hash bucket can still do so but cannot free the IRE if 247 * ire_refcnt is not 0. 248 * 249 * 2) We bump up the reference count on the bucket where the IRE resides 250 * (IRB), when we want to prevent the IREs getting deleted from a given 251 * hash bucket. This makes life easier for ire_walk type functions which 252 * wants to walk the IRE list, call a function, but needs to drop 253 * the bucket lock to prevent recursive rw_enters. While the 254 * lock is dropped, the list could be changed by other threads or 255 * the same thread could end up deleting the ire or the ire pointed by 256 * ire_next. ire_refholding the ire or ire_next is not sufficient as 257 * a delete will still remove the ire from the bucket while we have 258 * dropped the lock and hence the ire_next would be NULL. Thus, we 259 * need a mechanism to prevent deletions from a given bucket. 260 * 261 * To prevent deletions, we bump up the reference count on the 262 * bucket. If the bucket is held, ire_delete just marks both 263 * the ire and irb as CONDEMNED. When the 264 * reference count on the bucket drops to zero, all the CONDEMNED ires 265 * are deleted. We don't have to bump up the reference count on the 266 * bucket if we are walking the bucket and never have to drop the bucket 267 * lock. Note that irb_refhold does not prevent addition of new ires 268 * in the list. It is okay because addition of new ires will not cause 269 * ire_next to point to freed memory. We do irb_refhold only when 270 * all of the 3 conditions are true : 271 * 272 * 1) The code needs to walk the IRE bucket from start to end. 273 * 2) It may have to drop the bucket lock sometimes while doing (1) 274 * 3) It does not want any ires to be deleted meanwhile. 275 */ 276 277 /* 278 * Bump up the reference count on the hash bucket - IRB to 279 * prevent ires from being deleted in this bucket. 280 */ 281 void 282 irb_refhold(irb_t *irb) 283 { 284 rw_enter(&irb->irb_lock, RW_WRITER); 285 irb->irb_refcnt++; 286 ASSERT(irb->irb_refcnt != 0); 287 rw_exit(&irb->irb_lock); 288 } 289 290 void 291 irb_refhold_locked(irb_t *irb) 292 { 293 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 294 irb->irb_refcnt++; 295 ASSERT(irb->irb_refcnt != 0); 296 } 297 298 /* 299 * Note: when IRB_MARK_DYNAMIC is not set the irb_t 300 * is statically allocated, so that when the irb_refcnt goes to 0, 301 * we simply clean up the ire list and continue. 302 */ 303 void 304 irb_refrele(irb_t *irb) 305 { 306 if (irb->irb_marks & IRB_MARK_DYNAMIC) { 307 irb_refrele_ftable(irb); 308 } else { 309 rw_enter(&irb->irb_lock, RW_WRITER); 310 ASSERT(irb->irb_refcnt != 0); 311 if (--irb->irb_refcnt == 0 && 312 (irb->irb_marks & IRB_MARK_CONDEMNED)) { 313 ire_t *ire_list; 314 315 ire_list = ire_unlink(irb); 316 rw_exit(&irb->irb_lock); 317 ASSERT(ire_list != NULL); 318 ire_cleanup(ire_list); 319 } else { 320 rw_exit(&irb->irb_lock); 321 } 322 } 323 } 324 325 326 /* 327 * Bump up the reference count on the IRE. We cannot assert that the 328 * bucket lock is being held as it is legal to bump up the reference 329 * count after the first lookup has returned the IRE without 330 * holding the lock. 331 */ 332 void 333 ire_refhold(ire_t *ire) 334 { 335 atomic_add_32(&(ire)->ire_refcnt, 1); 336 ASSERT((ire)->ire_refcnt != 0); 337 #ifdef DEBUG 338 ire_trace_ref(ire); 339 #endif 340 } 341 342 void 343 ire_refhold_notr(ire_t *ire) 344 { 345 atomic_add_32(&(ire)->ire_refcnt, 1); 346 ASSERT((ire)->ire_refcnt != 0); 347 } 348 349 void 350 ire_refhold_locked(ire_t *ire) 351 { 352 #ifdef DEBUG 353 ire_trace_ref(ire); 354 #endif 355 ire->ire_refcnt++; 356 } 357 358 /* 359 * Release a ref on an IRE. 360 * 361 * Must not be called while holding any locks. Otherwise if this is 362 * the last reference to be released there is a chance of recursive mutex 363 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 364 * to restart an ioctl. The one exception is when the caller is sure that 365 * this is not the last reference to be released. Eg. if the caller is 366 * sure that the ire has not been deleted and won't be deleted. 367 * 368 * In architectures e.g sun4u, where atomic_add_32_nv is just 369 * a cas, we need to maintain the right memory barrier semantics 370 * as that of mutex_exit i.e all the loads and stores should complete 371 * before the cas is executed. membar_exit() does that here. 372 */ 373 void 374 ire_refrele(ire_t *ire) 375 { 376 #ifdef DEBUG 377 ire_untrace_ref(ire); 378 #endif 379 ASSERT((ire)->ire_refcnt != 0); 380 membar_exit(); 381 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 382 ire_inactive(ire); 383 } 384 385 void 386 ire_refrele_notr(ire_t *ire) 387 { 388 ASSERT((ire)->ire_refcnt != 0); 389 membar_exit(); 390 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) 391 ire_inactive(ire); 392 } 393 394 /* 395 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 396 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is 397 * having problems reaching a particular destination. 398 * This will make IP consider alternate routes (e.g., when there are 399 * muliple default routes), and it will also make IP discard any (potentially) 400 * stale redirect. 401 * Management processes may want to use the version that generates a reply. 402 * 403 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 404 * this function shouldn't be necessary for IP to recover from a bad redirect, 405 * a bad default router (when there are multiple default routers), or 406 * a stale ND/ARP entry. But we retain it in any case. 407 * For instance, this is helpful when TCP suspects a failure before NUD does. 408 */ 409 int 410 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 411 { 412 uchar_t *addr_ucp; 413 uint_t ipversion; 414 sin_t *sin; 415 sin6_t *sin6; 416 ipaddr_t v4addr; 417 in6_addr_t v6addr; 418 ire_t *ire; 419 ipid_t *ipid; 420 zoneid_t zoneid; 421 ip_stack_t *ipst; 422 423 ASSERT(q->q_next == NULL); 424 zoneid = IPCL_ZONEID(Q_TO_CONN(q)); 425 ipst = CONNQ_TO_IPST(q); 426 427 /* 428 * Check privilege using the ioctl credential; if it is NULL 429 * then this is a kernel message and therefor privileged. 430 */ 431 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 432 return (EPERM); 433 434 ipid = (ipid_t *)mp->b_rptr; 435 436 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 437 ipid->ipid_addr_length); 438 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 439 return (EINVAL); 440 switch (ipid->ipid_addr_length) { 441 case sizeof (sin_t): 442 /* 443 * got complete (sockaddr) address - increment addr_ucp to point 444 * at the ip_addr field. 445 */ 446 sin = (sin_t *)addr_ucp; 447 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 448 ipversion = IPV4_VERSION; 449 break; 450 case sizeof (sin6_t): 451 /* 452 * got complete (sockaddr) address - increment addr_ucp to point 453 * at the ip_addr field. 454 */ 455 sin6 = (sin6_t *)addr_ucp; 456 addr_ucp = (uchar_t *)&sin6->sin6_addr; 457 ipversion = IPV6_VERSION; 458 break; 459 default: 460 return (EINVAL); 461 } 462 if (ipversion == IPV4_VERSION) { 463 /* Extract the destination address. */ 464 bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); 465 466 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 467 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 468 } else { 469 /* Extract the destination address. */ 470 bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); 471 472 ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, 473 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 474 } 475 if (ire != NULL) { 476 if (ipversion == IPV4_VERSION) { 477 ip_rts_change(RTM_LOSING, ire->ire_addr, 478 ire->ire_gateway_addr, ire->ire_mask, 479 (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, 480 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 481 ire->ire_ipst); 482 } 483 (void) ire_no_good(ire); 484 ire_refrele(ire); 485 } 486 return (0); 487 } 488 489 /* 490 * Initialize the ire that is specific to IPv4 part and call 491 * ire_init_common to finish it. 492 * Returns zero or errno. 493 */ 494 int 495 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, 496 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, 497 tsol_gc_t *gc, ip_stack_t *ipst) 498 { 499 int error; 500 501 /* 502 * Reject IRE security attribute creation/initialization 503 * if system is not running in Trusted mode. 504 */ 505 if (gc != NULL && !is_system_labeled()) 506 return (EINVAL); 507 508 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 509 510 if (addr != NULL) 511 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 512 if (gateway != NULL) 513 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 514 515 /* Make sure we don't have stray values in some fields */ 516 switch (type) { 517 case IRE_LOOPBACK: 518 bcopy(&ire->ire_addr, &ire->ire_gateway_addr, IP_ADDR_LEN); 519 /* FALLTHRU */ 520 case IRE_HOST: 521 case IRE_BROADCAST: 522 case IRE_LOCAL: 523 case IRE_IF_CLONE: 524 ire->ire_mask = IP_HOST_MASK; 525 ire->ire_masklen = IPV4_ABITS; 526 break; 527 case IRE_PREFIX: 528 case IRE_DEFAULT: 529 case IRE_IF_RESOLVER: 530 case IRE_IF_NORESOLVER: 531 if (mask != NULL) { 532 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 533 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 534 } 535 break; 536 case IRE_MULTICAST: 537 case IRE_NOROUTE: 538 ASSERT(mask == NULL); 539 break; 540 default: 541 ASSERT(0); 542 return (EINVAL); 543 } 544 545 error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, 546 gc, ipst); 547 if (error != NULL) 548 return (error); 549 550 /* Determine which function pointers to use */ 551 ire->ire_postfragfn = ip_xmit; /* Common case */ 552 553 switch (ire->ire_type) { 554 case IRE_LOCAL: 555 ire->ire_sendfn = ire_send_local_v4; 556 ire->ire_recvfn = ire_recv_local_v4; 557 ASSERT(ire->ire_ill != NULL); 558 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) 559 ire->ire_recvfn = ire_recv_noaccept_v6; 560 break; 561 case IRE_LOOPBACK: 562 ire->ire_sendfn = ire_send_local_v4; 563 ire->ire_recvfn = ire_recv_loopback_v4; 564 break; 565 case IRE_BROADCAST: 566 ire->ire_postfragfn = ip_postfrag_loopcheck; 567 ire->ire_sendfn = ire_send_broadcast_v4; 568 ire->ire_recvfn = ire_recv_broadcast_v4; 569 break; 570 case IRE_MULTICAST: 571 ire->ire_postfragfn = ip_postfrag_loopcheck; 572 ire->ire_sendfn = ire_send_multicast_v4; 573 ire->ire_recvfn = ire_recv_multicast_v4; 574 break; 575 default: 576 /* 577 * For IRE_IF_ALL and IRE_OFFLINK we forward received 578 * packets by default. 579 */ 580 ire->ire_sendfn = ire_send_wire_v4; 581 ire->ire_recvfn = ire_recv_forward_v4; 582 break; 583 } 584 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 585 ire->ire_sendfn = ire_send_noroute_v4; 586 ire->ire_recvfn = ire_recv_noroute_v4; 587 } else if (ire->ire_flags & RTF_MULTIRT) { 588 ire->ire_postfragfn = ip_postfrag_multirt_v4; 589 ire->ire_sendfn = ire_send_multirt_v4; 590 /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ 591 if (ire->ire_type != IRE_BROADCAST) 592 ire->ire_recvfn = ire_recv_multirt_v4; 593 } 594 ire->ire_nce_capable = ire_determine_nce_capable(ire); 595 return (0); 596 } 597 598 /* 599 * Determine ire_nce_capable 600 */ 601 boolean_t 602 ire_determine_nce_capable(ire_t *ire) 603 { 604 int max_masklen; 605 606 if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 607 (ire->ire_type & IRE_MULTICAST)) 608 return (B_TRUE); 609 610 if (ire->ire_ipversion == IPV4_VERSION) 611 max_masklen = IPV4_ABITS; 612 else 613 max_masklen = IPV6_ABITS; 614 615 if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) 616 return (B_TRUE); 617 return (B_FALSE); 618 } 619 620 /* 621 * ire_create is called to allocate and initialize a new IRE. 622 * 623 * NOTE : This is called as writer sometimes though not required 624 * by this function. 625 */ 626 ire_t * 627 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, 628 ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, 629 ip_stack_t *ipst) 630 { 631 ire_t *ire; 632 int error; 633 634 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 635 if (ire == NULL) { 636 DTRACE_PROBE(kmem__cache__alloc); 637 return (NULL); 638 } 639 *ire = ire_null; 640 641 error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, 642 gc, ipst); 643 if (error != 0) { 644 DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); 645 kmem_cache_free(ire_cache, ire); 646 return (NULL); 647 } 648 return (ire); 649 } 650 651 /* 652 * Common to IPv4 and IPv6 653 * Returns zero or errno. 654 */ 655 int 656 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, 657 uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) 658 { 659 int error; 660 661 #ifdef DEBUG 662 if (ill != NULL) { 663 if (ill->ill_isv6) 664 ASSERT(ipversion == IPV6_VERSION); 665 else 666 ASSERT(ipversion == IPV4_VERSION); 667 } 668 #endif /* DEBUG */ 669 670 /* 671 * Create/initialize IRE security attribute only in Trusted mode; 672 * if the passed in gc is non-NULL, we expect that the caller 673 * has held a reference to it and will release it when this routine 674 * returns a failure, otherwise we own the reference. We do this 675 * prior to initializing the rest IRE fields. 676 */ 677 if (is_system_labeled()) { 678 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 679 IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { 680 /* release references on behalf of caller */ 681 if (gc != NULL) 682 GC_REFRELE(gc); 683 } else { 684 error = tsol_ire_init_gwattr(ire, ipversion, gc); 685 if (error != 0) 686 return (error); 687 } 688 } 689 690 ire->ire_type = type; 691 ire->ire_flags = RTF_UP | flags; 692 ire->ire_create_time = (uint32_t)gethrestime_sec(); 693 ire->ire_generation = IRE_GENERATION_INITIAL; 694 695 /* 696 * The ill_ire_cnt isn't increased until 697 * the IRE is added to ensure that a walker will find 698 * all IREs that hold a reference on an ill. 699 * 700 * Note that ill_ire_multicast doesn't hold a ref on the ill since 701 * ire_add() is not called for the IRE_MULTICAST. 702 */ 703 ire->ire_ill = ill; 704 ire->ire_zoneid = zoneid; 705 ire->ire_ipversion = ipversion; 706 707 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 708 ire->ire_refcnt = 1; 709 ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ 710 ire->ire_ipst = ipst; /* No netstack_hold */ 711 ire->ire_trace_disable = B_FALSE; 712 713 return (0); 714 } 715 716 /* 717 * This creates an IRE_BROADCAST based on the arguments. 718 * A mirror is ire_lookup_bcast(). 719 * 720 * Any supression of unneeded ones is done in ire_add_v4. 721 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() 722 * takes care of generating a loopback copy of the packet. 723 */ 724 ire_t ** 725 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) 726 { 727 ip_stack_t *ipst = ill->ill_ipst; 728 729 ASSERT(IAM_WRITER_ILL(ill)); 730 731 *irep++ = ire_create( 732 (uchar_t *)&addr, /* dest addr */ 733 (uchar_t *)&ip_g_all_ones, /* mask */ 734 NULL, /* no gateway */ 735 IRE_BROADCAST, 736 ill, 737 zoneid, 738 RTF_KERNEL, 739 NULL, 740 ipst); 741 742 return (irep); 743 } 744 745 /* 746 * This looks up an IRE_BROADCAST based on the arguments. 747 * Mirrors ire_create_bcast(). 748 */ 749 ire_t * 750 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 751 { 752 ire_t *ire; 753 int match_args; 754 755 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | 756 MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; 757 758 if (IS_UNDER_IPMP(ill)) 759 match_args |= MATCH_IRE_TESTHIDDEN; 760 761 ire = ire_ftable_lookup_v4( 762 addr, /* dest addr */ 763 ip_g_all_ones, /* mask */ 764 0, /* no gateway */ 765 IRE_BROADCAST, 766 ill, 767 zoneid, 768 NULL, 769 match_args, 770 0, 771 ill->ill_ipst, 772 NULL); 773 return (ire); 774 } 775 776 /* Arrange to call the specified function for every IRE in the world. */ 777 void 778 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 779 { 780 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 781 } 782 783 void 784 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 785 { 786 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 787 } 788 789 void 790 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 791 { 792 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 793 } 794 795 /* 796 * Walk a particular version. version == 0 means both v4 and v6. 797 */ 798 static void 799 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 800 ip_stack_t *ipst) 801 { 802 if (vers != IPV6_VERSION) { 803 /* 804 * ip_forwarding_table variable doesn't matter for IPv4 since 805 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 806 */ 807 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 808 0, NULL, 809 NULL, zoneid, ipst); 810 } 811 if (vers != IPV4_VERSION) { 812 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 813 ipst->ips_ip6_ftable_hash_size, 814 ipst->ips_ip_forwarding_table_v6, 815 NULL, zoneid, ipst); 816 } 817 } 818 819 /* 820 * Arrange to call the specified function for every IRE that matches the ill. 821 */ 822 void 823 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 824 ill_t *ill) 825 { 826 uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); 827 828 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); 829 } 830 831 /* 832 * Walk a particular ill and version. 833 */ 834 static void 835 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 836 void *arg, uchar_t vers, ill_t *ill) 837 { 838 ip_stack_t *ipst = ill->ill_ipst; 839 840 if (vers == IPV4_VERSION) { 841 ire_walk_ill_tables(match_flags, ire_type, func, arg, 842 IP_MASK_TABLE_SIZE, 843 0, NULL, 844 ill, ALL_ZONES, ipst); 845 } 846 if (vers != IPV4_VERSION) { 847 ire_walk_ill_tables(match_flags, ire_type, func, arg, 848 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 849 ipst->ips_ip_forwarding_table_v6, 850 ill, ALL_ZONES, ipst); 851 } 852 } 853 854 /* 855 * Do the specific matching of IREs to shared-IP zones. 856 * 857 * We have the same logic as in ire_match_args but implemented slightly 858 * differently. 859 */ 860 boolean_t 861 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 862 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 863 { 864 ill_t *dst_ill = ire->ire_ill; 865 866 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 867 868 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 869 ire->ire_zoneid != ALL_ZONES) { 870 /* 871 * We're walking the IREs for a specific zone. The only relevant 872 * IREs are: 873 * - all IREs with a matching ire_zoneid 874 * - IRE_IF_ALL IREs for interfaces with a usable source addr 875 * with a matching zone 876 * - IRE_OFFLINK with a gateway reachable from the zone 877 * Note that ealier we only did the IRE_OFFLINK check for 878 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). 879 */ 880 if (ire->ire_type & IRE_ONLINK) { 881 uint_t ifindex; 882 883 /* 884 * Note there is no IRE_INTERFACE on vniN thus 885 * can't do an IRE lookup for a matching route. 886 */ 887 ifindex = dst_ill->ill_usesrc_ifindex; 888 if (ifindex == 0) 889 return (B_FALSE); 890 891 /* 892 * If there is a usable source address in the 893 * zone, then it's ok to return an 894 * IRE_INTERFACE 895 */ 896 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 897 zoneid, ipst)) { 898 return (B_FALSE); 899 } 900 } 901 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 902 ipif_t *tipif; 903 904 mutex_enter(&dst_ill->ill_lock); 905 for (tipif = dst_ill->ill_ipif; 906 tipif != NULL; tipif = tipif->ipif_next) { 907 if (!IPIF_IS_CONDEMNED(tipif) && 908 (tipif->ipif_flags & IPIF_UP) && 909 (tipif->ipif_zoneid == zoneid || 910 tipif->ipif_zoneid == ALL_ZONES)) 911 break; 912 } 913 mutex_exit(&dst_ill->ill_lock); 914 if (tipif == NULL) { 915 return (B_FALSE); 916 } 917 } 918 } 919 /* 920 * Except for ALL_ZONES, we only match the offlink routes 921 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. 922 * Since we can have leftover routes after the IP addresses have 923 * changed, the global zone will also match offlink routes where the 924 * gateway is unreachable from any zone. 925 */ 926 if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { 927 in6_addr_t gw_addr_v6; 928 boolean_t reach; 929 930 if (ire->ire_ipversion == IPV4_VERSION) { 931 reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, 932 zoneid, dst_ill, NULL, ipst, B_FALSE); 933 } else { 934 ASSERT(ire->ire_ipversion == IPV6_VERSION); 935 mutex_enter(&ire->ire_lock); 936 gw_addr_v6 = ire->ire_gateway_addr_v6; 937 mutex_exit(&ire->ire_lock); 938 939 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, 940 dst_ill, NULL, ipst, B_FALSE); 941 } 942 if (!reach) { 943 if (zoneid != GLOBAL_ZONEID) 944 return (B_FALSE); 945 946 /* 947 * Check if ALL_ZONES reachable - if not then let the 948 * global zone see it. 949 */ 950 if (ire->ire_ipversion == IPV4_VERSION) { 951 reach = ire_gateway_ok_zone_v4( 952 ire->ire_gateway_addr, ALL_ZONES, 953 dst_ill, NULL, ipst, B_FALSE); 954 } else { 955 reach = ire_gateway_ok_zone_v6(&gw_addr_v6, 956 ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); 957 } 958 if (reach) { 959 /* 960 * Some other zone could see it, hence hide it 961 * in the global zone. 962 */ 963 return (B_FALSE); 964 } 965 } 966 } 967 968 if (((!(match_flags & MATCH_IRE_TYPE)) || 969 (ire->ire_type & ire_type)) && 970 ((!(match_flags & MATCH_IRE_ILL)) || 971 (dst_ill == ill || 972 dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { 973 return (B_TRUE); 974 } 975 return (B_FALSE); 976 } 977 978 int 979 rtfunc(struct radix_node *rn, void *arg) 980 { 981 struct rtfuncarg *rtf = arg; 982 struct rt_entry *rt; 983 irb_t *irb; 984 ire_t *ire; 985 boolean_t ret; 986 987 rt = (struct rt_entry *)rn; 988 ASSERT(rt != NULL); 989 irb = &rt->rt_irb; 990 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 991 if ((rtf->rt_match_flags != 0) || 992 (rtf->rt_zoneid != ALL_ZONES)) { 993 ret = ire_walk_ill_match(rtf->rt_match_flags, 994 rtf->rt_ire_type, ire, 995 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 996 } else { 997 ret = B_TRUE; 998 } 999 if (ret) 1000 (*rtf->rt_func)(ire, rtf->rt_arg); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Walk the ftable entries that match the ill. 1007 */ 1008 void 1009 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 1010 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 1011 ill_t *ill, zoneid_t zoneid, 1012 ip_stack_t *ipst) 1013 { 1014 irb_t *irb_ptr; 1015 irb_t *irb; 1016 ire_t *ire; 1017 int i, j; 1018 boolean_t ret; 1019 struct rtfuncarg rtfarg; 1020 1021 ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); 1022 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 1023 1024 /* knobs such that routine is called only for v6 case */ 1025 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 1026 for (i = (ftbl_sz - 1); i >= 0; i--) { 1027 if ((irb_ptr = ipftbl[i]) == NULL) 1028 continue; 1029 for (j = 0; j < htbl_sz; j++) { 1030 irb = &irb_ptr[j]; 1031 if (irb->irb_ire == NULL) 1032 continue; 1033 1034 irb_refhold(irb); 1035 for (ire = irb->irb_ire; ire != NULL; 1036 ire = ire->ire_next) { 1037 if (match_flags == 0 && 1038 zoneid == ALL_ZONES) { 1039 ret = B_TRUE; 1040 } else { 1041 ret = 1042 ire_walk_ill_match( 1043 match_flags, 1044 ire_type, ire, ill, 1045 zoneid, ipst); 1046 } 1047 if (ret) 1048 (*func)(ire, arg); 1049 } 1050 irb_refrele(irb); 1051 } 1052 } 1053 } else { 1054 bzero(&rtfarg, sizeof (rtfarg)); 1055 rtfarg.rt_func = func; 1056 rtfarg.rt_arg = arg; 1057 if (match_flags != 0) { 1058 rtfarg.rt_match_flags = match_flags; 1059 } 1060 rtfarg.rt_ire_type = ire_type; 1061 rtfarg.rt_ill = ill; 1062 rtfarg.rt_zoneid = zoneid; 1063 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 1064 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 1065 ipst->ips_ip_ftable, 1066 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 1067 } 1068 } 1069 1070 /* 1071 * This function takes a mask and returns 1072 * number of bits set in the mask. If no 1073 * bit is set it returns 0. 1074 * Assumes a contiguous mask. 1075 */ 1076 int 1077 ip_mask_to_plen(ipaddr_t mask) 1078 { 1079 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 1080 } 1081 1082 /* 1083 * Convert length for a mask to the mask. 1084 */ 1085 ipaddr_t 1086 ip_plen_to_mask(uint_t masklen) 1087 { 1088 if (masklen == 0) 1089 return (0); 1090 1091 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 1092 } 1093 1094 void 1095 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 1096 { 1097 ill_t *ill; 1098 1099 ill = ire->ire_ill; 1100 if (ill != NULL) 1101 mutex_exit(&ill->ill_lock); 1102 rw_exit(&irb_ptr->irb_lock); 1103 } 1104 1105 /* 1106 * ire_add_v[46] atomically make sure that the ill associated 1107 * with the new ire is not going away i.e., we check ILL_CONDEMNED. 1108 */ 1109 int 1110 ire_atomic_start(irb_t *irb_ptr, ire_t *ire) 1111 { 1112 ill_t *ill; 1113 1114 ill = ire->ire_ill; 1115 1116 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1117 if (ill != NULL) { 1118 mutex_enter(&ill->ill_lock); 1119 1120 /* 1121 * Don't allow IRE's to be created on dying ills. 1122 */ 1123 if (ill->ill_state_flags & ILL_CONDEMNED) { 1124 ire_atomic_end(irb_ptr, ire); 1125 return (ENXIO); 1126 } 1127 1128 if (IS_UNDER_IPMP(ill)) { 1129 int error = 0; 1130 mutex_enter(&ill->ill_phyint->phyint_lock); 1131 if (!ipmp_ill_is_active(ill) && 1132 IRE_HIDDEN_TYPE(ire->ire_type) && 1133 !ire->ire_testhidden) { 1134 error = EINVAL; 1135 } 1136 mutex_exit(&ill->ill_phyint->phyint_lock); 1137 if (error != 0) { 1138 ire_atomic_end(irb_ptr, ire); 1139 return (error); 1140 } 1141 } 1142 1143 } 1144 return (0); 1145 } 1146 1147 /* 1148 * Add a fully initialized IRE to the forwarding table. 1149 * This returns NULL on failure, or a held IRE on success. 1150 * Normally the returned IRE is the same as the argument. But a different 1151 * IRE will be returned if the added IRE is deemed identical to an existing 1152 * one. In that case ire_identical_ref will be increased. 1153 * The caller always needs to do an ire_refrele() on the returned IRE. 1154 */ 1155 ire_t * 1156 ire_add(ire_t *ire) 1157 { 1158 if (IRE_HIDDEN_TYPE(ire->ire_type) && 1159 ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { 1160 /* 1161 * IREs hosted on interfaces that are under IPMP 1162 * should be hidden so that applications don't 1163 * accidentally end up sending packets with test 1164 * addresses as their source addresses, or 1165 * sending out interfaces that are e.g. IFF_INACTIVE. 1166 * Hide them here. 1167 */ 1168 ire->ire_testhidden = B_TRUE; 1169 } 1170 1171 if (ire->ire_ipversion == IPV6_VERSION) 1172 return (ire_add_v6(ire)); 1173 else 1174 return (ire_add_v4(ire)); 1175 } 1176 1177 /* 1178 * Add a fully initialized IPv4 IRE to the forwarding table. 1179 * This returns NULL on failure, or a held IRE on success. 1180 * Normally the returned IRE is the same as the argument. But a different 1181 * IRE will be returned if the added IRE is deemed identical to an existing 1182 * one. In that case ire_identical_ref will be increased. 1183 * The caller always needs to do an ire_refrele() on the returned IRE. 1184 */ 1185 static ire_t * 1186 ire_add_v4(ire_t *ire) 1187 { 1188 ire_t *ire1; 1189 irb_t *irb_ptr; 1190 ire_t **irep; 1191 int match_flags; 1192 int error; 1193 ip_stack_t *ipst = ire->ire_ipst; 1194 1195 if (ire->ire_ill != NULL) 1196 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1197 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1198 1199 /* Make sure the address is properly masked. */ 1200 ire->ire_addr &= ire->ire_mask; 1201 1202 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 1203 1204 if (ire->ire_ill != NULL) { 1205 match_flags |= MATCH_IRE_ILL; 1206 } 1207 irb_ptr = ire_get_bucket(ire); 1208 if (irb_ptr == NULL) { 1209 printf("no bucket for %p\n", (void *)ire); 1210 ire_delete(ire); 1211 return (NULL); 1212 } 1213 1214 /* 1215 * Start the atomic add of the ire. Grab the ill lock, 1216 * the bucket lock. Check for condemned. 1217 */ 1218 error = ire_atomic_start(irb_ptr, ire); 1219 if (error != 0) { 1220 printf("no ire_atomic_start for %p\n", (void *)ire); 1221 ire_delete(ire); 1222 irb_refrele(irb_ptr); 1223 return (NULL); 1224 } 1225 /* 1226 * If we are creating a hidden IRE, make sure we search for 1227 * hidden IREs when searching for duplicates below. 1228 * Otherwise, we might find an IRE on some other interface 1229 * that's not marked hidden. 1230 */ 1231 if (ire->ire_testhidden) 1232 match_flags |= MATCH_IRE_TESTHIDDEN; 1233 1234 /* 1235 * Atomically check for duplicate and insert in the table. 1236 */ 1237 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 1238 if (IRE_IS_CONDEMNED(ire1)) 1239 continue; 1240 /* 1241 * Here we need an exact match on zoneid, i.e., 1242 * ire_match_args doesn't fit. 1243 */ 1244 if (ire1->ire_zoneid != ire->ire_zoneid) 1245 continue; 1246 1247 if (ire1->ire_type != ire->ire_type) 1248 continue; 1249 1250 /* 1251 * Note: We do not allow multiple routes that differ only 1252 * in the gateway security attributes; such routes are 1253 * considered duplicates. 1254 * To change that we explicitly have to treat them as 1255 * different here. 1256 */ 1257 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 1258 ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, 1259 ire->ire_zoneid, NULL, match_flags)) { 1260 /* 1261 * Return the old ire after doing a REFHOLD. 1262 * As most of the callers continue to use the IRE 1263 * after adding, we return a held ire. This will 1264 * avoid a lookup in the caller again. If the callers 1265 * don't want to use it, they need to do a REFRELE. 1266 */ 1267 atomic_add_32(&ire1->ire_identical_ref, 1); 1268 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, 1269 ire_t *, ire); 1270 ire_refhold(ire1); 1271 ire_atomic_end(irb_ptr, ire); 1272 ire_delete(ire); 1273 irb_refrele(irb_ptr); 1274 return (ire1); 1275 } 1276 } 1277 1278 /* 1279 * Normally we do head insertion since most things do not care about 1280 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add 1281 * assumes we at least do head insertion so that its IRE_BROADCAST 1282 * arrive ahead of existing IRE_HOST for the same address. 1283 * However, due to shared-IP zones (and restrict_interzone_loopback) 1284 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same 1285 * address. For that reason we do tail insertion for IRE_IF_CLONE. 1286 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, 1287 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT 1288 * set. 1289 */ 1290 irep = (ire_t **)irb_ptr; 1291 if ((ire->ire_type & IRE_IF_CLONE) || 1292 ((ire->ire_type & IRE_BROADCAST) && 1293 !(ire->ire_flags & RTF_MULTIRT))) { 1294 while ((ire1 = *irep) != NULL) 1295 irep = &ire1->ire_next; 1296 } 1297 /* Insert at *irep */ 1298 ire1 = *irep; 1299 if (ire1 != NULL) 1300 ire1->ire_ptpn = &ire->ire_next; 1301 ire->ire_next = ire1; 1302 /* Link the new one in. */ 1303 ire->ire_ptpn = irep; 1304 1305 /* 1306 * ire_walk routines de-reference ire_next without holding 1307 * a lock. Before we point to the new ire, we want to make 1308 * sure the store that sets the ire_next of the new ire 1309 * reaches global visibility, so that ire_walk routines 1310 * don't see a truncated list of ires i.e if the ire_next 1311 * of the new ire gets set after we do "*irep = ire" due 1312 * to re-ordering, the ire_walk thread will see a NULL 1313 * once it accesses the ire_next of the new ire. 1314 * membar_producer() makes sure that the following store 1315 * happens *after* all of the above stores. 1316 */ 1317 membar_producer(); 1318 *irep = ire; 1319 ire->ire_bucket = irb_ptr; 1320 /* 1321 * We return a bumped up IRE above. Keep it symmetrical 1322 * so that the callers will always have to release. This 1323 * helps the callers of this function because they continue 1324 * to use the IRE after adding and hence they don't have to 1325 * lookup again after we return the IRE. 1326 * 1327 * NOTE : We don't have to use atomics as this is appearing 1328 * in the list for the first time and no one else can bump 1329 * up the reference count on this yet. 1330 */ 1331 ire_refhold_locked(ire); 1332 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 1333 1334 irb_ptr->irb_ire_cnt++; 1335 if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) 1336 irb_ptr->irb_nire++; 1337 1338 if (ire->ire_ill != NULL) { 1339 ire->ire_ill->ill_ire_cnt++; 1340 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ 1341 } 1342 1343 ire_atomic_end(irb_ptr, ire); 1344 1345 /* Make any caching of the IREs be notified or updated */ 1346 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 1347 1348 if (ire->ire_ill != NULL) 1349 ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); 1350 irb_refrele(irb_ptr); 1351 return (ire); 1352 } 1353 1354 /* 1355 * irb_refrele is the only caller of the function. ire_unlink calls to 1356 * do the final cleanup for this ire. 1357 */ 1358 void 1359 ire_cleanup(ire_t *ire) 1360 { 1361 ire_t *ire_next; 1362 ip_stack_t *ipst = ire->ire_ipst; 1363 1364 ASSERT(ire != NULL); 1365 1366 while (ire != NULL) { 1367 ire_next = ire->ire_next; 1368 if (ire->ire_ipversion == IPV4_VERSION) { 1369 ire_delete_v4(ire); 1370 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 1371 ire_stats_deleted); 1372 } else { 1373 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1374 ire_delete_v6(ire); 1375 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 1376 ire_stats_deleted); 1377 } 1378 /* 1379 * Now it's really out of the list. Before doing the 1380 * REFRELE, set ire_next to NULL as ire_inactive asserts 1381 * so. 1382 */ 1383 ire->ire_next = NULL; 1384 ire_refrele_notr(ire); 1385 ire = ire_next; 1386 } 1387 } 1388 1389 /* 1390 * irb_refrele is the only caller of the function. It calls to unlink 1391 * all the CONDEMNED ires from this bucket. 1392 */ 1393 ire_t * 1394 ire_unlink(irb_t *irb) 1395 { 1396 ire_t *ire; 1397 ire_t *ire1; 1398 ire_t **ptpn; 1399 ire_t *ire_list = NULL; 1400 1401 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 1402 ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || 1403 (irb->irb_refcnt == 0)); 1404 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 1405 ASSERT(irb->irb_ire != NULL); 1406 1407 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 1408 ire1 = ire->ire_next; 1409 if (IRE_IS_CONDEMNED(ire)) { 1410 ptpn = ire->ire_ptpn; 1411 ire1 = ire->ire_next; 1412 if (ire1) 1413 ire1->ire_ptpn = ptpn; 1414 *ptpn = ire1; 1415 ire->ire_ptpn = NULL; 1416 ire->ire_next = NULL; 1417 1418 /* 1419 * We need to call ire_delete_v4 or ire_delete_v6 to 1420 * clean up dependents and the redirects pointing at 1421 * the default gateway. We need to drop the lock 1422 * as ire_flush_cache/ire_delete_host_redircts require 1423 * so. But we can't drop the lock, as ire_unlink needs 1424 * to atomically remove the ires from the list. 1425 * So, create a temporary list of CONDEMNED ires 1426 * for doing ire_delete_v4/ire_delete_v6 operations 1427 * later on. 1428 */ 1429 ire->ire_next = ire_list; 1430 ire_list = ire; 1431 } 1432 } 1433 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 1434 return (ire_list); 1435 } 1436 1437 /* 1438 * Clean up the radix node for this ire. Must be called by irb_refrele 1439 * when there are no ire's left in the bucket. Returns TRUE if the bucket 1440 * is deleted and freed. 1441 */ 1442 boolean_t 1443 irb_inactive(irb_t *irb) 1444 { 1445 struct rt_entry *rt; 1446 struct radix_node *rn; 1447 ip_stack_t *ipst = irb->irb_ipst; 1448 1449 ASSERT(irb->irb_ipst != NULL); 1450 1451 rt = IRB2RT(irb); 1452 rn = (struct radix_node *)rt; 1453 1454 /* first remove it from the radix tree. */ 1455 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1456 rw_enter(&irb->irb_lock, RW_WRITER); 1457 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 1458 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 1459 ipst->ips_ip_ftable); 1460 DTRACE_PROBE1(irb__free, rt_t *, rt); 1461 ASSERT((void *)rn == (void *)rt); 1462 Free(rt, rt_entry_cache); 1463 /* irb_lock is freed */ 1464 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1465 return (B_TRUE); 1466 } 1467 rw_exit(&irb->irb_lock); 1468 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1469 return (B_FALSE); 1470 } 1471 1472 /* 1473 * Delete the specified IRE. 1474 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was 1475 * not incremented i.e., that the insertion in the bucket and the increment 1476 * of that counter is done atomically. 1477 */ 1478 void 1479 ire_delete(ire_t *ire) 1480 { 1481 ire_t *ire1; 1482 ire_t **ptpn; 1483 irb_t *irb; 1484 nce_t *nce; 1485 ip_stack_t *ipst = ire->ire_ipst; 1486 1487 /* We can clear ire_nce_cache under ire_lock even if the IRE is used */ 1488 mutex_enter(&ire->ire_lock); 1489 nce = ire->ire_nce_cache; 1490 ire->ire_nce_cache = NULL; 1491 mutex_exit(&ire->ire_lock); 1492 if (nce != NULL) 1493 nce_refrele(nce); 1494 1495 if ((irb = ire->ire_bucket) == NULL) { 1496 /* 1497 * It was never inserted in the list. Should call REFRELE 1498 * to free this IRE. 1499 */ 1500 ire_refrele_notr(ire); 1501 return; 1502 } 1503 1504 /* 1505 * Move the use counts from an IRE_IF_CLONE to its parent 1506 * IRE_INTERFACE. 1507 * We need to do this before acquiring irb_lock. 1508 */ 1509 if (ire->ire_type & IRE_IF_CLONE) { 1510 ire_t *parent; 1511 1512 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 1513 if ((parent = ire->ire_dep_parent) != NULL) { 1514 parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; 1515 parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; 1516 ire->ire_ob_pkt_count = 0; 1517 ire->ire_ib_pkt_count = 0; 1518 } 1519 rw_exit(&ipst->ips_ire_dep_lock); 1520 } 1521 1522 rw_enter(&irb->irb_lock, RW_WRITER); 1523 if (ire->ire_ptpn == NULL) { 1524 /* 1525 * Some other thread has removed us from the list. 1526 * It should have done the REFRELE for us. 1527 */ 1528 rw_exit(&irb->irb_lock); 1529 return; 1530 } 1531 1532 if (!IRE_IS_CONDEMNED(ire)) { 1533 /* Is this an IRE representing multiple duplicate entries? */ 1534 ASSERT(ire->ire_identical_ref >= 1); 1535 if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { 1536 /* Removed one of the identical parties */ 1537 rw_exit(&irb->irb_lock); 1538 return; 1539 } 1540 1541 irb->irb_ire_cnt--; 1542 ire_make_condemned(ire); 1543 } 1544 1545 if (irb->irb_refcnt != 0) { 1546 /* 1547 * The last thread to leave this bucket will 1548 * delete this ire. 1549 */ 1550 irb->irb_marks |= IRB_MARK_CONDEMNED; 1551 rw_exit(&irb->irb_lock); 1552 return; 1553 } 1554 1555 /* 1556 * Normally to delete an ire, we walk the bucket. While we 1557 * walk the bucket, we normally bump up irb_refcnt and hence 1558 * we return from above where we mark CONDEMNED and the ire 1559 * gets deleted from ire_unlink. This case is where somebody 1560 * knows the ire e.g by doing a lookup, and wants to delete the 1561 * IRE. irb_refcnt would be 0 in this case if nobody is walking 1562 * the bucket. 1563 */ 1564 ptpn = ire->ire_ptpn; 1565 ire1 = ire->ire_next; 1566 if (ire1 != NULL) 1567 ire1->ire_ptpn = ptpn; 1568 ASSERT(ptpn != NULL); 1569 *ptpn = ire1; 1570 ire->ire_ptpn = NULL; 1571 ire->ire_next = NULL; 1572 if (ire->ire_ipversion == IPV6_VERSION) { 1573 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 1574 } else { 1575 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 1576 } 1577 rw_exit(&irb->irb_lock); 1578 1579 /* Cleanup dependents and related stuff */ 1580 if (ire->ire_ipversion == IPV6_VERSION) { 1581 ire_delete_v6(ire); 1582 } else { 1583 ire_delete_v4(ire); 1584 } 1585 /* 1586 * We removed it from the list. Decrement the 1587 * reference count. 1588 */ 1589 ire_refrele_notr(ire); 1590 } 1591 1592 /* 1593 * Delete the specified IRE. 1594 * All calls should use ire_delete(). 1595 * Sometimes called as writer though not required by this function. 1596 * 1597 * NOTE : This function is called only if the ire was added 1598 * in the list. 1599 */ 1600 static void 1601 ire_delete_v4(ire_t *ire) 1602 { 1603 ip_stack_t *ipst = ire->ire_ipst; 1604 1605 ASSERT(ire->ire_refcnt >= 1); 1606 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1607 1608 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 1609 if (ire->ire_type == IRE_DEFAULT) { 1610 /* 1611 * when a default gateway is going away 1612 * delete all the host redirects pointing at that 1613 * gateway. 1614 */ 1615 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 1616 } 1617 1618 /* 1619 * If we are deleting an IRE_INTERFACE then we make sure we also 1620 * delete any IRE_IF_CLONE that has been created from it. 1621 * Those are always in ire_dep_children. 1622 */ 1623 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) 1624 ire_dep_delete_if_clone(ire); 1625 1626 /* Remove from parent dependencies and child */ 1627 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 1628 if (ire->ire_dep_parent != NULL) 1629 ire_dep_remove(ire); 1630 1631 while (ire->ire_dep_children != NULL) 1632 ire_dep_remove(ire->ire_dep_children); 1633 rw_exit(&ipst->ips_ire_dep_lock); 1634 } 1635 1636 /* 1637 * ire_refrele is the only caller of the function. It calls 1638 * to free the ire when the reference count goes to zero. 1639 */ 1640 void 1641 ire_inactive(ire_t *ire) 1642 { 1643 ill_t *ill; 1644 irb_t *irb; 1645 ip_stack_t *ipst = ire->ire_ipst; 1646 1647 ASSERT(ire->ire_refcnt == 0); 1648 ASSERT(ire->ire_ptpn == NULL); 1649 ASSERT(ire->ire_next == NULL); 1650 1651 /* Count how many condemned ires for kmem_cache callback */ 1652 if (IRE_IS_CONDEMNED(ire)) 1653 atomic_add_32(&ipst->ips_num_ire_condemned, -1); 1654 1655 if (ire->ire_gw_secattr != NULL) { 1656 ire_gw_secattr_free(ire->ire_gw_secattr); 1657 ire->ire_gw_secattr = NULL; 1658 } 1659 1660 /* 1661 * ire_nce_cache is cleared in ire_delete, and we make sure we don't 1662 * set it once the ire is marked condemned. 1663 */ 1664 ASSERT(ire->ire_nce_cache == NULL); 1665 1666 /* 1667 * Since any parent would have a refhold on us they would already 1668 * have been removed. 1669 */ 1670 ASSERT(ire->ire_dep_parent == NULL); 1671 ASSERT(ire->ire_dep_sib_next == NULL); 1672 ASSERT(ire->ire_dep_sib_ptpn == NULL); 1673 1674 /* 1675 * Since any children would have a refhold on us they should have 1676 * already been removed. 1677 */ 1678 ASSERT(ire->ire_dep_children == NULL); 1679 1680 /* 1681 * ill_ire_ref is increased when the IRE is inserted in the 1682 * bucket - not when the IRE is created. 1683 */ 1684 irb = ire->ire_bucket; 1685 ill = ire->ire_ill; 1686 if (irb != NULL && ill != NULL) { 1687 mutex_enter(&ill->ill_lock); 1688 ASSERT(ill->ill_ire_cnt != 0); 1689 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, 1690 (char *), "ire", (void *), ire); 1691 ill->ill_ire_cnt--; 1692 if (ILL_DOWN_OK(ill)) { 1693 /* Drops the ill lock */ 1694 ipif_ill_refrele_tail(ill); 1695 } else { 1696 mutex_exit(&ill->ill_lock); 1697 } 1698 } 1699 ire->ire_ill = NULL; 1700 1701 /* This should be true for both V4 and V6 */ 1702 if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { 1703 rw_enter(&irb->irb_lock, RW_WRITER); 1704 irb->irb_nire--; 1705 /* 1706 * Instead of examining the conditions for freeing 1707 * the radix node here, we do it by calling 1708 * irb_refrele which is a single point in the code 1709 * that embeds that logic. Bump up the refcnt to 1710 * be able to call irb_refrele 1711 */ 1712 irb_refhold_locked(irb); 1713 rw_exit(&irb->irb_lock); 1714 irb_refrele(irb); 1715 } 1716 1717 #ifdef DEBUG 1718 ire_trace_cleanup(ire); 1719 #endif 1720 mutex_destroy(&ire->ire_lock); 1721 if (ire->ire_ipversion == IPV6_VERSION) { 1722 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 1723 } else { 1724 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 1725 } 1726 kmem_cache_free(ire_cache, ire); 1727 } 1728 1729 /* 1730 * ire_update_generation is the callback function provided by 1731 * ire_get_bucket() to update the generation number of any 1732 * matching shorter route when a new route is added. 1733 * 1734 * This fucntion always returns a failure return (B_FALSE) 1735 * to force the caller (rn_matchaddr_args) 1736 * to back-track up the tree looking for shorter matches. 1737 */ 1738 /* ARGSUSED */ 1739 static boolean_t 1740 ire_update_generation(struct radix_node *rn, void *arg) 1741 { 1742 struct rt_entry *rt = (struct rt_entry *)rn; 1743 1744 /* We need to handle all in the same bucket */ 1745 irb_increment_generation(&rt->rt_irb); 1746 return (B_FALSE); 1747 } 1748 1749 /* 1750 * Take care of all the generation numbers in the bucket. 1751 */ 1752 void 1753 irb_increment_generation(irb_t *irb) 1754 { 1755 ire_t *ire; 1756 1757 if (irb == NULL || irb->irb_ire_cnt == 0) 1758 return; 1759 1760 irb_refhold(irb); 1761 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1762 if (!IRE_IS_CONDEMNED(ire)) 1763 ire_increment_generation(ire); /* Ourselves */ 1764 ire_dep_incr_generation(ire); /* Dependants */ 1765 } 1766 irb_refrele(irb); 1767 } 1768 1769 /* 1770 * When an IRE is added or deleted this routine is called to make sure 1771 * any caching of IRE information is notified or updated. 1772 * 1773 * The flag argument indicates if the flush request is due to addition 1774 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), 1775 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). 1776 */ 1777 void 1778 ire_flush_cache_v4(ire_t *ire, int flag) 1779 { 1780 irb_t *irb = ire->ire_bucket; 1781 struct rt_entry *rt = IRB2RT(irb); 1782 ip_stack_t *ipst = ire->ire_ipst; 1783 1784 /* 1785 * IRE_IF_CLONE ire's don't provide any new information 1786 * than the parent from which they are cloned, so don't 1787 * perturb the generation numbers. 1788 */ 1789 if (ire->ire_type & IRE_IF_CLONE) 1790 return; 1791 1792 /* 1793 * Ensure that an ire_add during a lookup serializes the updates of the 1794 * generation numbers under the radix head lock so that the lookup gets 1795 * either the old ire and old generation number, or a new ire and new 1796 * generation number. 1797 */ 1798 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1799 1800 /* 1801 * If a route was just added, we need to notify everybody that 1802 * has cached an IRE_NOROUTE since there might now be a better 1803 * route for them. 1804 */ 1805 if (flag == IRE_FLUSH_ADD) { 1806 ire_increment_generation(ipst->ips_ire_reject_v4); 1807 ire_increment_generation(ipst->ips_ire_blackhole_v4); 1808 } 1809 1810 /* Adding a default can't otherwise provide a better route */ 1811 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { 1812 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1813 return; 1814 } 1815 1816 switch (flag) { 1817 case IRE_FLUSH_DELETE: 1818 case IRE_FLUSH_GWCHANGE: 1819 /* 1820 * Update ire_generation for all ire_dep_children chains 1821 * starting with this IRE 1822 */ 1823 ire_dep_incr_generation(ire); 1824 break; 1825 case IRE_FLUSH_ADD: 1826 /* 1827 * Update the generation numbers of all shorter matching routes. 1828 * ire_update_generation takes care of the dependants by 1829 * using ire_dep_incr_generation. 1830 */ 1831 (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, 1832 ipst->ips_ip_ftable, ire_update_generation, NULL); 1833 break; 1834 } 1835 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1836 } 1837 1838 /* 1839 * Matches the arguments passed with the values in the ire. 1840 * 1841 * Note: for match types that match using "ill" passed in, ill 1842 * must be checked for non-NULL before calling this routine. 1843 */ 1844 boolean_t 1845 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 1846 int type, const ill_t *ill, zoneid_t zoneid, 1847 const ts_label_t *tsl, int match_flags) 1848 { 1849 ill_t *ire_ill = NULL, *dst_ill; 1850 ip_stack_t *ipst = ire->ire_ipst; 1851 1852 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1853 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 1854 ASSERT((!(match_flags & MATCH_IRE_ILL)) || 1855 (ill != NULL && !ill->ill_isv6)); 1856 1857 /* 1858 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is 1859 * in fact hidden, to ensure the caller gets the right one. 1860 */ 1861 if (ire->ire_testhidden) { 1862 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) 1863 return (B_FALSE); 1864 } 1865 1866 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 1867 ire->ire_zoneid != ALL_ZONES) { 1868 /* 1869 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid 1870 * does not match that of ire_zoneid, a failure to 1871 * match is reported at this point. Otherwise, since some IREs 1872 * that are available in the global zone can be used in local 1873 * zones, additional checks need to be performed: 1874 * 1875 * IRE_LOOPBACK 1876 * entries should never be matched in this situation. 1877 * Each zone has its own IRE_LOOPBACK. 1878 * 1879 * IRE_LOCAL 1880 * We allow them for any zoneid. ire_route_recursive 1881 * does additional checks when 1882 * ip_restrict_interzone_loopback is set. 1883 * 1884 * If ill_usesrc_ifindex is set 1885 * Then we check if the zone has a valid source address 1886 * on the usesrc ill. 1887 * 1888 * If ire_ill is set, then check that the zone has an ipif 1889 * on that ill. 1890 * 1891 * Outside of this function (in ire_round_robin) we check 1892 * that any IRE_OFFLINK has a gateway that reachable from the 1893 * zone when we have multiple choices (ECMP). 1894 */ 1895 if (match_flags & MATCH_IRE_ZONEONLY) 1896 return (B_FALSE); 1897 if (ire->ire_type & IRE_LOOPBACK) 1898 return (B_FALSE); 1899 1900 if (ire->ire_type & IRE_LOCAL) 1901 goto matchit; 1902 1903 /* 1904 * The normal case of IRE_ONLINK has a matching zoneid. 1905 * Here we handle the case when shared-IP zones have been 1906 * configured with IP addresses on vniN. In that case it 1907 * is ok for traffic from a zone to use IRE_ONLINK routes 1908 * if the ill has a usesrc pointing at vniN 1909 */ 1910 dst_ill = ire->ire_ill; 1911 if (ire->ire_type & IRE_ONLINK) { 1912 uint_t ifindex; 1913 1914 /* 1915 * Note there is no IRE_INTERFACE on vniN thus 1916 * can't do an IRE lookup for a matching route. 1917 */ 1918 ifindex = dst_ill->ill_usesrc_ifindex; 1919 if (ifindex == 0) 1920 return (B_FALSE); 1921 1922 /* 1923 * If there is a usable source address in the 1924 * zone, then it's ok to return this IRE_INTERFACE 1925 */ 1926 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, 1927 zoneid, ipst)) { 1928 ip3dbg(("ire_match_args: no usrsrc for zone" 1929 " dst_ill %p\n", (void *)dst_ill)); 1930 return (B_FALSE); 1931 } 1932 } 1933 /* 1934 * For exampe, with 1935 * route add 11.0.0.0 gw1 -ifp bge0 1936 * route add 11.0.0.0 gw2 -ifp bge1 1937 * this code would differentiate based on 1938 * where the sending zone has addresses. 1939 * Only if the zone has an address on bge0 can it use the first 1940 * route. It isn't clear if this behavior is documented 1941 * anywhere. 1942 */ 1943 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { 1944 ipif_t *tipif; 1945 1946 mutex_enter(&dst_ill->ill_lock); 1947 for (tipif = dst_ill->ill_ipif; 1948 tipif != NULL; tipif = tipif->ipif_next) { 1949 if (!IPIF_IS_CONDEMNED(tipif) && 1950 (tipif->ipif_flags & IPIF_UP) && 1951 (tipif->ipif_zoneid == zoneid || 1952 tipif->ipif_zoneid == ALL_ZONES)) 1953 break; 1954 } 1955 mutex_exit(&dst_ill->ill_lock); 1956 if (tipif == NULL) { 1957 return (B_FALSE); 1958 } 1959 } 1960 } 1961 1962 matchit: 1963 if (match_flags & MATCH_IRE_ILL) { 1964 ire_ill = ire->ire_ill; 1965 1966 /* 1967 * If asked to match an ill, we *must* match 1968 * on the ire_ill for ipmp test addresses, or 1969 * any of the ill in the group for data addresses. 1970 * If we don't, we may as well fail. 1971 * However, we need an exception for IRE_LOCALs to ensure 1972 * we loopback packets even sent to test addresses on different 1973 * interfaces in the group. 1974 */ 1975 if ((match_flags & MATCH_IRE_TESTHIDDEN) && 1976 !(ire->ire_type & IRE_LOCAL)) { 1977 if (ire->ire_ill != ill) 1978 return (B_FALSE); 1979 } else { 1980 match_flags &= ~MATCH_IRE_TESTHIDDEN; 1981 /* 1982 * We know that ill is not NULL, but ire_ill could be 1983 * NULL 1984 */ 1985 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) 1986 return (B_FALSE); 1987 } 1988 } 1989 1990 if ((ire->ire_addr == (addr & mask)) && 1991 ((!(match_flags & MATCH_IRE_GW)) || 1992 (ire->ire_gateway_addr == gateway)) && 1993 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && 1994 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && 1995 ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && 1996 ((!(match_flags & MATCH_IRE_SECATTR)) || 1997 (!is_system_labeled()) || 1998 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 1999 /* We found the matched IRE */ 2000 return (B_TRUE); 2001 } 2002 return (B_FALSE); 2003 } 2004 2005 /* 2006 * Check if the IRE_LOCAL uses the same ill as another route would use. 2007 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 2008 * then we don't allow this IRE_LOCAL to be used. 2009 * We always return an IRE; will be RTF_REJECT if no route available. 2010 */ 2011 ire_t * 2012 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, 2013 const ill_t *ill, uint_t *generationp) 2014 { 2015 ip_stack_t *ipst = ire->ire_ipst; 2016 ire_t *alt_ire; 2017 uint_t ire_type; 2018 uint_t generation; 2019 uint_t match_flags; 2020 2021 ASSERT(ire->ire_type & IRE_LOCAL); 2022 ASSERT(ire->ire_ill != NULL); 2023 2024 /* 2025 * Need to match on everything but local. 2026 * This might result in the creation of a IRE_IF_CLONE for the 2027 * same address as the IRE_LOCAL when restrict_interzone_loopback is 2028 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted 2029 * to make sure the IRE_LOCAL is always found first. 2030 */ 2031 ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); 2032 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 2033 if (ill != NULL) 2034 match_flags |= MATCH_IRE_ILL; 2035 2036 if (ire->ire_ipversion == IPV4_VERSION) { 2037 alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, 2038 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2039 NULL, &generation); 2040 } else { 2041 alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, 2042 ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, 2043 NULL, &generation); 2044 } 2045 ASSERT(alt_ire != NULL); 2046 2047 if (alt_ire->ire_ill == ire->ire_ill) { 2048 /* Going out the same ILL - ok to send to IRE_LOCAL */ 2049 ire_refrele(alt_ire); 2050 } else { 2051 /* Different ill - ignore IRE_LOCAL */ 2052 ire_refrele(ire); 2053 ire = alt_ire; 2054 if (generationp != NULL) 2055 *generationp = generation; 2056 } 2057 return (ire); 2058 } 2059 2060 boolean_t 2061 ire_find_zoneid(struct radix_node *rn, void *arg) 2062 { 2063 struct rt_entry *rt = (struct rt_entry *)rn; 2064 irb_t *irb; 2065 ire_t *ire; 2066 ire_ftable_args_t *margs = arg; 2067 2068 ASSERT(rt != NULL); 2069 2070 irb = &rt->rt_irb; 2071 2072 if (irb->irb_ire_cnt == 0) 2073 return (B_FALSE); 2074 2075 rw_enter(&irb->irb_lock, RW_READER); 2076 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2077 if (IRE_IS_CONDEMNED(ire)) 2078 continue; 2079 2080 if (!(ire->ire_type & IRE_INTERFACE)) 2081 continue; 2082 2083 if (ire->ire_zoneid != ALL_ZONES && 2084 ire->ire_zoneid != margs->ift_zoneid) 2085 continue; 2086 2087 if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) 2088 continue; 2089 2090 if (is_system_labeled() && 2091 tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) 2092 continue; 2093 2094 rw_exit(&irb->irb_lock); 2095 return (B_TRUE); 2096 } 2097 rw_exit(&irb->irb_lock); 2098 return (B_FALSE); 2099 } 2100 2101 /* 2102 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified 2103 * gateway address. If ill is non-NULL we also match on it. 2104 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. 2105 */ 2106 boolean_t 2107 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, 2108 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) 2109 { 2110 struct rt_sockaddr rdst; 2111 struct rt_entry *rt; 2112 ire_ftable_args_t margs; 2113 2114 ASSERT(ill == NULL || !ill->ill_isv6); 2115 if (lock_held) 2116 ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); 2117 else 2118 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 2119 2120 bzero(&rdst, sizeof (rdst)); 2121 rdst.rt_sin_len = sizeof (rdst); 2122 rdst.rt_sin_family = AF_INET; 2123 rdst.rt_sin_addr.s_addr = gateway; 2124 2125 /* 2126 * We only use margs for ill, zoneid, and tsl matching in 2127 * ire_find_zoneid 2128 */ 2129 bzero(&margs, sizeof (margs)); 2130 margs.ift_ill = ill; 2131 margs.ift_zoneid = zoneid; 2132 margs.ift_tsl = tsl; 2133 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 2134 ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); 2135 2136 if (!lock_held) 2137 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 2138 2139 return (rt != NULL); 2140 } 2141 2142 /* 2143 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. 2144 * The fraction argument tells us what fraction of the IREs to delete. 2145 * Common for IPv4 and IPv6. 2146 * Used when memory backpressure. 2147 */ 2148 static void 2149 ire_delete_reclaim(ire_t *ire, char *arg) 2150 { 2151 ip_stack_t *ipst = ire->ire_ipst; 2152 uint_t fraction = *(uint_t *)arg; 2153 uint_t rand; 2154 2155 if ((ire->ire_flags & RTF_DYNAMIC) || 2156 (ire->ire_type & IRE_IF_CLONE)) { 2157 2158 /* Pick a random number */ 2159 rand = (uint_t)ddi_get_lbolt() + 2160 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); 2161 2162 /* Use truncation */ 2163 if ((rand/fraction)*fraction == rand) { 2164 IP_STAT(ipst, ip_ire_reclaim_deleted); 2165 ire_delete(ire); 2166 } 2167 } 2168 2169 } 2170 2171 /* 2172 * kmem_cache callback to free up memory. 2173 * 2174 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically 2175 * (RTF_DYNAMIC and IRE_IF_CLONE). 2176 */ 2177 static void 2178 ip_ire_reclaim_stack(ip_stack_t *ipst) 2179 { 2180 uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; 2181 2182 IP_STAT(ipst, ip_ire_reclaim_calls); 2183 2184 ire_walk(ire_delete_reclaim, &fraction, ipst); 2185 2186 /* 2187 * Walk all CONNs that can have a reference on an ire, nce or dce. 2188 * Get them to update any stale references to drop any refholds they 2189 * have. 2190 */ 2191 ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); 2192 } 2193 2194 /* 2195 * Called by the memory allocator subsystem directly, when the system 2196 * is running low on memory. 2197 */ 2198 /* ARGSUSED */ 2199 void 2200 ip_ire_reclaim(void *args) 2201 { 2202 netstack_handle_t nh; 2203 netstack_t *ns; 2204 2205 netstack_next_init(&nh); 2206 while ((ns = netstack_next(&nh)) != NULL) { 2207 ip_ire_reclaim_stack(ns->netstack_ip); 2208 netstack_rele(ns); 2209 } 2210 netstack_next_fini(&nh); 2211 } 2212 2213 static void 2214 power2_roundup(uint32_t *value) 2215 { 2216 int i; 2217 2218 for (i = 1; i < 31; i++) { 2219 if (*value <= (1 << i)) 2220 break; 2221 } 2222 *value = (1 << i); 2223 } 2224 2225 /* Global init for all zones */ 2226 void 2227 ip_ire_g_init() 2228 { 2229 /* 2230 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() 2231 * will give disposable IREs back to system when needed. 2232 * This needs to be done here before anything else, since 2233 * ire_add() expects the cache to be created. 2234 */ 2235 ire_cache = kmem_cache_create("ire_cache", 2236 sizeof (ire_t), 0, NULL, NULL, 2237 ip_ire_reclaim, NULL, NULL, 0); 2238 2239 ncec_cache = kmem_cache_create("ncec_cache", 2240 sizeof (ncec_t), 0, NULL, NULL, 2241 ip_nce_reclaim, NULL, NULL, 0); 2242 nce_cache = kmem_cache_create("nce_cache", 2243 sizeof (nce_t), 0, NULL, NULL, 2244 NULL, NULL, NULL, 0); 2245 2246 rt_entry_cache = kmem_cache_create("rt_entry", 2247 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 2248 2249 /* 2250 * Have radix code setup kmem caches etc. 2251 */ 2252 rn_init(); 2253 } 2254 2255 void 2256 ip_ire_init(ip_stack_t *ipst) 2257 { 2258 ire_t *ire; 2259 int error; 2260 2261 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 2262 2263 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 2264 2265 /* 2266 * Make sure that the forwarding table size is a power of 2. 2267 * The IRE*_ADDR_HASH() macroes depend on that. 2268 */ 2269 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 2270 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 2271 2272 /* 2273 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. 2274 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has 2275 * RTF_BLACKHOLE set. We use the latter for transient errors such 2276 * as memory allocation failures and tripping on IRE_IS_CONDEMNED 2277 * entries. 2278 */ 2279 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2280 *ire = ire_null; 2281 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2282 RTF_REJECT|RTF_UP, NULL, ipst); 2283 ASSERT(error == 0); 2284 ipst->ips_ire_reject_v4 = ire; 2285 2286 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2287 *ire = ire_null; 2288 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2289 RTF_REJECT|RTF_UP, NULL, ipst); 2290 ASSERT(error == 0); 2291 ipst->ips_ire_reject_v6 = ire; 2292 2293 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2294 *ire = ire_null; 2295 error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2296 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2297 ASSERT(error == 0); 2298 ipst->ips_ire_blackhole_v4 = ire; 2299 2300 ire = kmem_cache_alloc(ire_cache, KM_SLEEP); 2301 *ire = ire_null; 2302 error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, 2303 RTF_BLACKHOLE|RTF_UP, NULL, ipst); 2304 ASSERT(error == 0); 2305 ipst->ips_ire_blackhole_v6 = ire; 2306 2307 rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); 2308 rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); 2309 } 2310 2311 void 2312 ip_ire_g_fini(void) 2313 { 2314 kmem_cache_destroy(ire_cache); 2315 kmem_cache_destroy(ncec_cache); 2316 kmem_cache_destroy(nce_cache); 2317 kmem_cache_destroy(rt_entry_cache); 2318 2319 rn_fini(); 2320 } 2321 2322 void 2323 ip_ire_fini(ip_stack_t *ipst) 2324 { 2325 int i; 2326 2327 rw_destroy(&ipst->ips_ire_dep_lock); 2328 rw_destroy(&ipst->ips_ip6_ire_head_lock); 2329 2330 ire_refrele_notr(ipst->ips_ire_reject_v6); 2331 ipst->ips_ire_reject_v6 = NULL; 2332 ire_refrele_notr(ipst->ips_ire_reject_v4); 2333 ipst->ips_ire_reject_v4 = NULL; 2334 ire_refrele_notr(ipst->ips_ire_blackhole_v6); 2335 ipst->ips_ire_blackhole_v6 = NULL; 2336 ire_refrele_notr(ipst->ips_ire_blackhole_v4); 2337 ipst->ips_ire_blackhole_v4 = NULL; 2338 2339 /* 2340 * Delete all IREs - assumes that the ill/ipifs have 2341 * been removed so what remains are just the ftable to handle. 2342 */ 2343 ire_walk(ire_delete, NULL, ipst); 2344 2345 rn_freehead(ipst->ips_ip_ftable); 2346 ipst->ips_ip_ftable = NULL; 2347 2348 mutex_destroy(&ipst->ips_ire_ft_init_lock); 2349 2350 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 2351 irb_t *ptr; 2352 int j; 2353 2354 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 2355 continue; 2356 2357 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 2358 ASSERT(ptr[j].irb_ire == NULL); 2359 rw_destroy(&ptr[j].irb_lock); 2360 } 2361 mi_free(ptr); 2362 ipst->ips_ip_forwarding_table_v6[i] = NULL; 2363 } 2364 } 2365 2366 #ifdef DEBUG 2367 void 2368 ire_trace_ref(ire_t *ire) 2369 { 2370 mutex_enter(&ire->ire_lock); 2371 if (ire->ire_trace_disable) { 2372 mutex_exit(&ire->ire_lock); 2373 return; 2374 } 2375 2376 if (th_trace_ref(ire, ire->ire_ipst)) { 2377 mutex_exit(&ire->ire_lock); 2378 } else { 2379 ire->ire_trace_disable = B_TRUE; 2380 mutex_exit(&ire->ire_lock); 2381 ire_trace_cleanup(ire); 2382 } 2383 } 2384 2385 void 2386 ire_untrace_ref(ire_t *ire) 2387 { 2388 mutex_enter(&ire->ire_lock); 2389 if (!ire->ire_trace_disable) 2390 th_trace_unref(ire); 2391 mutex_exit(&ire->ire_lock); 2392 } 2393 2394 static void 2395 ire_trace_cleanup(const ire_t *ire) 2396 { 2397 th_trace_cleanup(ire, ire->ire_trace_disable); 2398 } 2399 #endif /* DEBUG */ 2400 2401 /* 2402 * Find, or create if needed, the nce_t pointer to the neighbor cache 2403 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t 2404 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or 2405 * on the next available under-ill (selected by the IPMP rotor) in the 2406 * unicast IPMP case. 2407 * 2408 * If a neighbor-cache entry has to be created (i.e., one does not already 2409 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache 2410 * entry are initialized in nce_add_v4(). The broadcast, multicast, and 2411 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of 2412 * the ncec_t created. The ncec_lladdr is non-null for all link types with 2413 * non-zero ill_phys_addr_length, though the contents may be zero in cases 2414 * where the link-layer type is not known at the time of creation 2415 * (e.g., IRE_IFRESOLVER links) 2416 * 2417 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr 2418 * has the physical broadcast address of the outgoing interface. 2419 * For unicast ire entries, 2420 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 2421 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. 2422 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 2423 * layer resolution is necessary, so that the ncec_t will be in the 2424 * ND_REACHABLE state 2425 * 2426 * The link layer information needed for broadcast addresses, and for 2427 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 2428 * never needs re-verification for the lifetime of the ncec_t. These are 2429 * therefore marked NCE_F_NONUD. 2430 * 2431 * The nce returned will be created such that the nce_ill == ill that 2432 * is passed in. Note that the nce itself may not have ncec_ill == ill 2433 * where IPMP links are involved. 2434 */ 2435 static nce_t * 2436 ire_nce_init(ill_t *ill, const void *addr, int ire_type) 2437 { 2438 int err; 2439 nce_t *nce = NULL; 2440 uint16_t ncec_flags; 2441 uchar_t *hwaddr; 2442 boolean_t need_refrele = B_FALSE; 2443 ill_t *in_ill = ill; 2444 boolean_t is_unicast; 2445 uint_t hwaddr_len; 2446 2447 is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); 2448 if (IS_IPMP(ill) || 2449 ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { 2450 if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) 2451 return (NULL); 2452 need_refrele = B_TRUE; 2453 } 2454 ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; 2455 2456 switch (ire_type) { 2457 case IRE_BROADCAST: 2458 ASSERT(!ill->ill_isv6); 2459 ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); 2460 break; 2461 case IRE_MULTICAST: 2462 ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); 2463 break; 2464 } 2465 2466 if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { 2467 hwaddr = ill->ill_dest_addr; 2468 } else { 2469 hwaddr = NULL; 2470 } 2471 hwaddr_len = ill->ill_phys_addr_length; 2472 2473 retry: 2474 /* nce_state will be computed by nce_add_common() */ 2475 if (!ill->ill_isv6) { 2476 err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, 2477 ncec_flags, ND_UNCHANGED, &nce); 2478 } else { 2479 err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, 2480 ncec_flags, ND_UNCHANGED, &nce); 2481 } 2482 2483 switch (err) { 2484 case 0: 2485 break; 2486 case EEXIST: 2487 /* 2488 * When subnets change or partially overlap what was once 2489 * a broadcast address could now be a unicast, or vice versa. 2490 */ 2491 if (((ncec_flags ^ nce->nce_common->ncec_flags) & 2492 NCE_F_BCAST) != 0) { 2493 ASSERT(!ill->ill_isv6); 2494 ncec_delete(nce->nce_common); 2495 nce_refrele(nce); 2496 goto retry; 2497 } 2498 break; 2499 default: 2500 DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); 2501 if (need_refrele) 2502 ill_refrele(ill); 2503 return (NULL); 2504 } 2505 /* 2506 * If the ill was an under-ill of an IPMP group, we need to verify 2507 * that it is still active so that we select an active interface in 2508 * the group. However, since ipmp_ill_is_active ASSERTs for 2509 * IS_UNDER_IPMP(), we first need to verify that the ill is an 2510 * under-ill, and since this is being done in the data path, the 2511 * only way to ascertain this is by holding the ill_g_lock. 2512 */ 2513 rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); 2514 mutex_enter(&ill->ill_lock); 2515 mutex_enter(&ill->ill_phyint->phyint_lock); 2516 if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 2517 /* 2518 * need_refrele implies that the under ill was selected by 2519 * ipmp_ill_get_xmit_ill() because either the in_ill was an 2520 * ipmp_ill, or we are sending a non-unicast packet on 2521 * an under_ill. However, when we get here, the ill selected by 2522 * ipmp_ill_get_xmit_ill was pulled out of the active set 2523 * (for unicast) or cast_ill nomination (for 2524 * !unicast) after it was picked as the outgoing ill. 2525 * We have to pick an active interface and/or cast_ill in the 2526 * group. 2527 */ 2528 mutex_exit(&ill->ill_phyint->phyint_lock); 2529 nce_delete(nce); 2530 mutex_exit(&ill->ill_lock); 2531 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2532 nce_refrele(nce); 2533 ill_refrele(ill); 2534 if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) 2535 return (NULL); 2536 goto retry; 2537 } else { 2538 mutex_exit(&ill->ill_phyint->phyint_lock); 2539 mutex_exit(&ill->ill_lock); 2540 rw_exit(&ill->ill_ipst->ips_ill_g_lock); 2541 } 2542 done: 2543 ASSERT(nce->nce_ill == ill); 2544 if (need_refrele) 2545 ill_refrele(ill); 2546 return (nce); 2547 } 2548 2549 nce_t * 2550 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) 2551 { 2552 return (ire_nce_init(ill, &addr4, ire_type)); 2553 } 2554 2555 nce_t * 2556 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) 2557 { 2558 ASSERT((ire_type & IRE_BROADCAST) == 0); 2559 return (ire_nce_init(ill, addr6, ire_type)); 2560 } 2561 2562 /* 2563 * The caller should hold irb_lock as a writer if the ire is in a bucket. 2564 */ 2565 void 2566 ire_make_condemned(ire_t *ire) 2567 { 2568 ip_stack_t *ipst = ire->ire_ipst; 2569 2570 mutex_enter(&ire->ire_lock); 2571 ASSERT(ire->ire_bucket == NULL || 2572 RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); 2573 ASSERT(!IRE_IS_CONDEMNED(ire)); 2574 ire->ire_generation = IRE_GENERATION_CONDEMNED; 2575 /* Count how many condemned ires for kmem_cache callback */ 2576 atomic_add_32(&ipst->ips_num_ire_condemned, 1); 2577 mutex_exit(&ire->ire_lock); 2578 } 2579 2580 /* 2581 * Increment the generation avoiding the special condemned value 2582 */ 2583 void 2584 ire_increment_generation(ire_t *ire) 2585 { 2586 uint_t generation; 2587 2588 mutex_enter(&ire->ire_lock); 2589 /* 2590 * Even though the caller has a hold it can't prevent a concurrent 2591 * ire_delete marking the IRE condemned 2592 */ 2593 if (!IRE_IS_CONDEMNED(ire)) { 2594 generation = ire->ire_generation + 1; 2595 if (generation == IRE_GENERATION_CONDEMNED) 2596 generation = IRE_GENERATION_INITIAL; 2597 ASSERT(generation != IRE_GENERATION_VERIFY); 2598 ire->ire_generation = generation; 2599 } 2600 mutex_exit(&ire->ire_lock); 2601 } 2602 2603 /* 2604 * Increment ire_generation on all the IRE_MULTICASTs 2605 * Used when the default multicast interface (as determined by 2606 * ill_lookup_multicast) might have changed. 2607 * 2608 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and 2609 * ill unplumb. 2610 */ 2611 void 2612 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) 2613 { 2614 ill_t *ill; 2615 ill_walk_context_t ctx; 2616 2617 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2618 if (isv6) 2619 ill = ILL_START_WALK_V6(&ctx, ipst); 2620 else 2621 ill = ILL_START_WALK_V4(&ctx, ipst); 2622 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2623 if (ILL_IS_CONDEMNED(ill)) 2624 continue; 2625 if (ill->ill_ire_multicast != NULL) 2626 ire_increment_generation(ill->ill_ire_multicast); 2627 } 2628 rw_exit(&ipst->ips_ill_g_lock); 2629 } 2630 2631 /* 2632 * Return a held IRE_NOROUTE with RTF_REJECT set 2633 */ 2634 ire_t * 2635 ire_reject(ip_stack_t *ipst, boolean_t isv6) 2636 { 2637 ire_t *ire; 2638 2639 if (isv6) 2640 ire = ipst->ips_ire_reject_v6; 2641 else 2642 ire = ipst->ips_ire_reject_v4; 2643 2644 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2645 ire_refhold(ire); 2646 return (ire); 2647 } 2648 2649 /* 2650 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set 2651 */ 2652 ire_t * 2653 ire_blackhole(ip_stack_t *ipst, boolean_t isv6) 2654 { 2655 ire_t *ire; 2656 2657 if (isv6) 2658 ire = ipst->ips_ire_blackhole_v6; 2659 else 2660 ire = ipst->ips_ire_blackhole_v4; 2661 2662 ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); 2663 ire_refhold(ire); 2664 return (ire); 2665 } 2666 2667 /* 2668 * Return a held IRE_MULTICAST. 2669 */ 2670 ire_t * 2671 ire_multicast(ill_t *ill) 2672 { 2673 ire_t *ire = ill->ill_ire_multicast; 2674 2675 ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); 2676 if (ire == NULL) 2677 ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); 2678 else 2679 ire_refhold(ire); 2680 return (ire); 2681 } 2682 2683 /* 2684 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK 2685 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). 2686 * This can return an RTF_REJECT|RTF_BLACKHOLE. 2687 * The returned IRE is held. 2688 * The assumption is that ip_select_route() has been called and returned the 2689 * IRE (thus ip_select_route would have set up the ire_dep* information.) 2690 * If some IRE is deleteted then ire_dep_remove() will have been called and 2691 * we might not find a nexthop IRE, in which case we return NULL. 2692 */ 2693 ire_t * 2694 ire_nexthop(ire_t *ire) 2695 { 2696 ip_stack_t *ipst = ire->ire_ipst; 2697 2698 /* Acquire lock to walk ire_dep_parent */ 2699 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 2700 while (ire != NULL) { 2701 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 2702 goto done; 2703 } 2704 /* 2705 * If we find an IRE_ONLINK we are done. This includes 2706 * the case of IRE_MULTICAST. 2707 * Note that in order to send packets we need a host-specific 2708 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this 2709 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE 2710 * was not host specific. 2711 * However, ip_rts_request doesn't want to send packets 2712 * hence doesn't want to allocate an IRE_IF_CLONE. Yet 2713 * it needs an IRE_IF_ALL to get to the ill. Thus 2714 * we return IRE_IF_ALL that are not host specific here. 2715 */ 2716 if (ire->ire_type & IRE_ONLINK) 2717 goto done; 2718 ire = ire->ire_dep_parent; 2719 } 2720 rw_exit(&ipst->ips_ire_dep_lock); 2721 return (NULL); 2722 2723 done: 2724 ire_refhold(ire); 2725 rw_exit(&ipst->ips_ire_dep_lock); 2726 return (ire); 2727 } 2728 2729 /* 2730 * Find the ill used to send packets. This will be NULL in case 2731 * of a reject or blackhole. 2732 * The returned ill is held; caller needs to do ill_refrele when done. 2733 */ 2734 ill_t * 2735 ire_nexthop_ill(ire_t *ire) 2736 { 2737 ill_t *ill; 2738 2739 ire = ire_nexthop(ire); 2740 if (ire == NULL) 2741 return (NULL); 2742 2743 /* ire_ill can not change for an existing ire */ 2744 ill = ire->ire_ill; 2745 if (ill != NULL) 2746 ill_refhold(ill); 2747 ire_refrele(ire); 2748 return (ill); 2749 } 2750 2751 #ifdef DEBUG 2752 static boolean_t 2753 parent_has_child(ire_t *parent, ire_t *child) 2754 { 2755 ire_t *ire; 2756 ire_t *prev; 2757 2758 ire = parent->ire_dep_children; 2759 prev = NULL; 2760 while (ire != NULL) { 2761 if (prev == NULL) { 2762 ASSERT(ire->ire_dep_sib_ptpn == 2763 &(parent->ire_dep_children)); 2764 } else { 2765 ASSERT(ire->ire_dep_sib_ptpn == 2766 &(prev->ire_dep_sib_next)); 2767 } 2768 if (ire == child) 2769 return (B_TRUE); 2770 prev = ire; 2771 ire = ire->ire_dep_sib_next; 2772 } 2773 return (B_FALSE); 2774 } 2775 2776 static void 2777 ire_dep_verify(ire_t *ire) 2778 { 2779 ire_t *parent = ire->ire_dep_parent; 2780 ire_t *child = ire->ire_dep_children; 2781 2782 ASSERT(ire->ire_ipversion == IPV4_VERSION || 2783 ire->ire_ipversion == IPV6_VERSION); 2784 if (parent != NULL) { 2785 ASSERT(parent->ire_ipversion == IPV4_VERSION || 2786 parent->ire_ipversion == IPV6_VERSION); 2787 ASSERT(parent->ire_refcnt >= 1); 2788 ASSERT(parent_has_child(parent, ire)); 2789 } 2790 if (child != NULL) { 2791 ASSERT(child->ire_ipversion == IPV4_VERSION || 2792 child->ire_ipversion == IPV6_VERSION); 2793 ASSERT(child->ire_dep_parent == ire); 2794 ASSERT(child->ire_dep_sib_ptpn != NULL); 2795 ASSERT(parent_has_child(ire, child)); 2796 } 2797 } 2798 #endif /* DEBUG */ 2799 2800 /* 2801 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. 2802 */ 2803 void 2804 ire_dep_remove(ire_t *ire) 2805 { 2806 ip_stack_t *ipst = ire->ire_ipst; 2807 ire_t *parent = ire->ire_dep_parent; 2808 ire_t *next; 2809 nce_t *nce; 2810 2811 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2812 ASSERT(ire->ire_dep_parent != NULL); 2813 ASSERT(ire->ire_dep_sib_ptpn != NULL); 2814 2815 #ifdef DEBUG 2816 ire_dep_verify(ire); 2817 ire_dep_verify(parent); 2818 #endif 2819 2820 next = ire->ire_dep_sib_next; 2821 if (next != NULL) 2822 next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; 2823 2824 ASSERT(*(ire->ire_dep_sib_ptpn) == ire); 2825 *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; 2826 2827 ire->ire_dep_sib_ptpn = NULL; 2828 ire->ire_dep_sib_next = NULL; 2829 2830 mutex_enter(&ire->ire_lock); 2831 parent = ire->ire_dep_parent; 2832 ire->ire_dep_parent = NULL; 2833 mutex_exit(&ire->ire_lock); 2834 2835 /* 2836 * Make sure all our children, grandchildren, etc set 2837 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since 2838 * we can no longer guarantee than the children have a current 2839 * ire_nce_cache and ire_nexthop_ill(). 2840 */ 2841 if (ire->ire_dep_children != NULL) 2842 ire_dep_invalidate_children(ire->ire_dep_children); 2843 2844 /* 2845 * Since the parent is gone we make sure we clear ire_nce_cache. 2846 * We can clear it under ire_lock even if the IRE is used 2847 */ 2848 mutex_enter(&ire->ire_lock); 2849 nce = ire->ire_nce_cache; 2850 ire->ire_nce_cache = NULL; 2851 mutex_exit(&ire->ire_lock); 2852 if (nce != NULL) 2853 nce_refrele(nce); 2854 2855 #ifdef DEBUG 2856 ire_dep_verify(ire); 2857 ire_dep_verify(parent); 2858 #endif 2859 2860 ire_refrele_notr(parent); 2861 ire_refrele_notr(ire); 2862 } 2863 2864 /* 2865 * Insert the child in the linkage of the parent 2866 */ 2867 static void 2868 ire_dep_parent_insert(ire_t *child, ire_t *parent) 2869 { 2870 ip_stack_t *ipst = child->ire_ipst; 2871 ire_t *next; 2872 2873 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 2874 ASSERT(child->ire_dep_parent == NULL); 2875 2876 #ifdef DEBUG 2877 ire_dep_verify(child); 2878 ire_dep_verify(parent); 2879 #endif 2880 /* No parents => no siblings */ 2881 ASSERT(child->ire_dep_sib_ptpn == NULL); 2882 ASSERT(child->ire_dep_sib_next == NULL); 2883 2884 ire_refhold_notr(parent); 2885 ire_refhold_notr(child); 2886 2887 /* Head insertion */ 2888 next = parent->ire_dep_children; 2889 if (next != NULL) { 2890 ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); 2891 child->ire_dep_sib_next = next; 2892 next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); 2893 } 2894 parent->ire_dep_children = child; 2895 child->ire_dep_sib_ptpn = &(parent->ire_dep_children); 2896 2897 mutex_enter(&child->ire_lock); 2898 child->ire_dep_parent = parent; 2899 mutex_exit(&child->ire_lock); 2900 2901 #ifdef DEBUG 2902 ire_dep_verify(child); 2903 ire_dep_verify(parent); 2904 #endif 2905 } 2906 2907 2908 /* 2909 * Given count worth of ires and generations, build ire_dep_* relationships 2910 * from ires[0] to ires[count-1]. Record generations[i+1] in 2911 * ire_dep_parent_generation for ires[i]. 2912 * We graft onto an existing parent chain by making sure that we don't 2913 * touch ire_dep_parent for ires[count-1]. 2914 * 2915 * We check for any condemned ire_generation count and return B_FALSE in 2916 * that case so that the caller can tear it apart. 2917 * 2918 * Note that generations[0] is not used. Caller handles that. 2919 */ 2920 boolean_t 2921 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) 2922 { 2923 ire_t *ire = ires[0]; 2924 ip_stack_t *ipst; 2925 uint_t i; 2926 2927 ASSERT(count > 0); 2928 if (count == 1) { 2929 /* No work to do */ 2930 return (B_TRUE); 2931 } 2932 ipst = ire->ire_ipst; 2933 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2934 /* 2935 * Do not remove the linkage for any existing parent chain i.e., 2936 * ires[count-1] is left alone. 2937 */ 2938 for (i = 0; i < count-1; i++) { 2939 /* Remove existing parent if we need to change it */ 2940 if (ires[i]->ire_dep_parent != NULL && 2941 ires[i]->ire_dep_parent != ires[i+1]) 2942 ire_dep_remove(ires[i]); 2943 } 2944 2945 for (i = 0; i < count - 1; i++) { 2946 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2947 ires[i]->ire_ipversion == IPV6_VERSION); 2948 /* Does it need to change? */ 2949 if (ires[i]->ire_dep_parent != ires[i+1]) 2950 ire_dep_parent_insert(ires[i], ires[i+1]); 2951 2952 mutex_enter(&ires[i+1]->ire_lock); 2953 if (IRE_IS_CONDEMNED(ires[i+1])) { 2954 mutex_exit(&ires[i+1]->ire_lock); 2955 rw_exit(&ipst->ips_ire_dep_lock); 2956 return (B_FALSE); 2957 } 2958 mutex_exit(&ires[i+1]->ire_lock); 2959 2960 mutex_enter(&ires[i]->ire_lock); 2961 ires[i]->ire_dep_parent_generation = generations[i+1]; 2962 mutex_exit(&ires[i]->ire_lock); 2963 } 2964 rw_exit(&ipst->ips_ire_dep_lock); 2965 return (B_TRUE); 2966 } 2967 2968 /* 2969 * Given count worth of ires, unbuild ire_dep_* relationships 2970 * from ires[0] to ires[count-1]. 2971 */ 2972 void 2973 ire_dep_unbuild(ire_t *ires[], uint_t count) 2974 { 2975 ip_stack_t *ipst; 2976 uint_t i; 2977 2978 if (count == 0) { 2979 /* No work to do */ 2980 return; 2981 } 2982 ipst = ires[0]->ire_ipst; 2983 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); 2984 for (i = 0; i < count; i++) { 2985 ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || 2986 ires[i]->ire_ipversion == IPV6_VERSION); 2987 if (ires[i]->ire_dep_parent != NULL) 2988 ire_dep_remove(ires[i]); 2989 mutex_enter(&ires[i]->ire_lock); 2990 ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 2991 mutex_exit(&ires[i]->ire_lock); 2992 } 2993 rw_exit(&ipst->ips_ire_dep_lock); 2994 } 2995 2996 /* 2997 * Both the forwarding and the outbound code paths can trip on 2998 * a condemned NCE, in which case we call this function. 2999 * We have two different behaviors: if the NCE was UNREACHABLE 3000 * it is an indication that something failed. In that case 3001 * we see if we should look for a different IRE (for example, 3002 * delete any matching redirect IRE, or try a different 3003 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully 3004 * different IRE will be picked next time we send/forward. 3005 * 3006 * If we are called by the output path then fail_if_better is set 3007 * and we return NULL if there could be a better IRE. This is because the 3008 * output path retries the IRE lookup. (The input/forward path can not retry.) 3009 * 3010 * If the NCE was not unreachable then we pick/allocate a 3011 * new (most likely ND_INITIAL) NCE and proceed with it. 3012 * 3013 * ipha/ip6h are needed for multicast packets; ipha needs to be 3014 * set for IPv4 and ip6h needs to be set for IPv6 packets. 3015 */ 3016 nce_t * 3017 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, 3018 boolean_t fail_if_better) 3019 { 3020 if (nce->nce_common->ncec_state == ND_UNREACHABLE) { 3021 if (ire_no_good(ire) && fail_if_better) { 3022 /* 3023 * Did some changes, or ECMP likely to exist. 3024 * Make ip_output look for a different IRE 3025 */ 3026 return (NULL); 3027 } 3028 } 3029 if (ire_revalidate_nce(ire) == ENETUNREACH) { 3030 /* The ire_dep_parent chain went bad, or no memory? */ 3031 (void) ire_no_good(ire); 3032 return (NULL); 3033 } 3034 if (ire->ire_ipversion == IPV4_VERSION) { 3035 ASSERT(ipha != NULL); 3036 nce = ire_to_nce(ire, ipha->ipha_dst, NULL); 3037 } else { 3038 ASSERT(ip6h != NULL); 3039 nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); 3040 } 3041 3042 if (nce == NULL) 3043 return (NULL); 3044 if (nce->nce_is_condemned) { 3045 nce_refrele(nce); 3046 return (NULL); 3047 } 3048 return (nce); 3049 } 3050 3051 /* 3052 * The caller has found that the ire is bad, either due to a reference to an NCE 3053 * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. 3054 * We update things so a subsequent attempt to send to the destination 3055 * is likely to find different IRE, or that a new NCE would be created. 3056 * 3057 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would 3058 * find a different route (either due to having deleted a redirect, or there 3059 * being ECMP routes.) 3060 * 3061 * If we have a redirect (RTF_DYNAMIC) we delete it. 3062 * Otherwise we increment ire_badcnt and increment the generation number so 3063 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken 3064 * into account in the route selection when we have multiple choices (multiple 3065 * default routes or ECMP in general). 3066 * Any time ip_select_route find an ire with a condemned ire_nce_cache 3067 * (e.g., if no equal cost route to the bad one) ip_select_route will make 3068 * sure the NCE is revalidated to avoid getting stuck on a 3069 * NCE_F_CONDMNED ncec that caused ire_no_good to be called. 3070 */ 3071 boolean_t 3072 ire_no_good(ire_t *ire) 3073 { 3074 ip_stack_t *ipst = ire->ire_ipst; 3075 ire_t *ire2; 3076 nce_t *nce; 3077 3078 if (ire->ire_flags & RTF_DYNAMIC) { 3079 ire_delete(ire); 3080 return (B_TRUE); 3081 } 3082 if (ire->ire_flags & RTF_INDIRECT) { 3083 /* Check if next IRE is a redirect */ 3084 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3085 if (ire->ire_dep_parent != NULL && 3086 (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { 3087 ire2 = ire->ire_dep_parent; 3088 ire_refhold(ire2); 3089 } else { 3090 ire2 = NULL; 3091 } 3092 rw_exit(&ipst->ips_ire_dep_lock); 3093 if (ire2 != NULL) { 3094 ire_delete(ire2); 3095 ire_refrele(ire2); 3096 return (B_TRUE); 3097 } 3098 } 3099 /* 3100 * No redirect involved. Increment badcnt so that if we have ECMP 3101 * routes we are likely to pick a different one for the next packet. 3102 * 3103 * If the NCE is unreachable and condemned we should drop the reference 3104 * to it so that a new NCE can be created. 3105 * 3106 * Finally we increment the generation number so that any ixa_ire 3107 * cache will be revalidated. 3108 */ 3109 mutex_enter(&ire->ire_lock); 3110 ire->ire_badcnt++; 3111 ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); 3112 nce = ire->ire_nce_cache; 3113 if (nce != NULL && nce->nce_is_condemned && 3114 nce->nce_common->ncec_state == ND_UNREACHABLE) 3115 ire->ire_nce_cache = NULL; 3116 else 3117 nce = NULL; 3118 mutex_exit(&ire->ire_lock); 3119 if (nce != NULL) 3120 nce_refrele(nce); 3121 3122 ire_increment_generation(ire); 3123 ire_dep_incr_generation(ire); 3124 3125 return (ire->ire_bucket->irb_ire_cnt > 1); 3126 } 3127 3128 /* 3129 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == 3130 * ire_dep_parent_generation. 3131 * If they all match we just return ire_generation from the topmost IRE. 3132 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation 3133 * above the mismatch to IRE_GENERATION_VERIFY and also returning 3134 * IRE_GENERATION_VERIFY. 3135 */ 3136 uint_t 3137 ire_dep_validate_generations(ire_t *ire) 3138 { 3139 ip_stack_t *ipst = ire->ire_ipst; 3140 uint_t generation; 3141 ire_t *ire1; 3142 3143 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3144 generation = ire->ire_generation; /* Assuming things match */ 3145 for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { 3146 ASSERT(ire1->ire_ipversion == IPV4_VERSION || 3147 ire1->ire_ipversion == IPV6_VERSION); 3148 if (ire1->ire_dep_parent == NULL) 3149 break; 3150 if (ire1->ire_dep_parent_generation != 3151 ire1->ire_dep_parent->ire_generation) 3152 goto mismatch; 3153 } 3154 rw_exit(&ipst->ips_ire_dep_lock); 3155 return (generation); 3156 3157 mismatch: 3158 generation = IRE_GENERATION_VERIFY; 3159 /* Fill from top down to the mismatch with _VERIFY */ 3160 while (ire != ire1) { 3161 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3162 ire->ire_ipversion == IPV6_VERSION); 3163 mutex_enter(&ire->ire_lock); 3164 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3165 mutex_exit(&ire->ire_lock); 3166 ire = ire->ire_dep_parent; 3167 } 3168 rw_exit(&ipst->ips_ire_dep_lock); 3169 return (generation); 3170 } 3171 3172 /* 3173 * Used when we need to return an ire with ire_dep_parent, but we 3174 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE 3175 * Using IRE_GENERATION_VERIFY means that next time we'll redo the 3176 * recursive lookup. 3177 */ 3178 void 3179 ire_dep_invalidate_generations(ire_t *ire) 3180 { 3181 ip_stack_t *ipst = ire->ire_ipst; 3182 3183 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3184 while (ire != NULL) { 3185 ASSERT(ire->ire_ipversion == IPV4_VERSION || 3186 ire->ire_ipversion == IPV6_VERSION); 3187 mutex_enter(&ire->ire_lock); 3188 ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3189 mutex_exit(&ire->ire_lock); 3190 ire = ire->ire_dep_parent; 3191 } 3192 rw_exit(&ipst->ips_ire_dep_lock); 3193 } 3194 3195 /* Set _VERIFY ire_dep_parent_generation for all children recursively */ 3196 static void 3197 ire_dep_invalidate_children(ire_t *child) 3198 { 3199 ip_stack_t *ipst = child->ire_ipst; 3200 3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); 3202 /* Depth first */ 3203 if (child->ire_dep_children != NULL) 3204 ire_dep_invalidate_children(child->ire_dep_children); 3205 3206 while (child != NULL) { 3207 mutex_enter(&child->ire_lock); 3208 child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; 3209 mutex_exit(&child->ire_lock); 3210 child = child->ire_dep_sib_next; 3211 } 3212 } 3213 3214 static void 3215 ire_dep_increment_children(ire_t *child) 3216 { 3217 ip_stack_t *ipst = child->ire_ipst; 3218 3219 ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); 3220 /* Depth first */ 3221 if (child->ire_dep_children != NULL) 3222 ire_dep_increment_children(child->ire_dep_children); 3223 3224 while (child != NULL) { 3225 if (!IRE_IS_CONDEMNED(child)) 3226 ire_increment_generation(child); 3227 child = child->ire_dep_sib_next; 3228 } 3229 } 3230 3231 /* 3232 * Walk all the children of this ire recursively and increment their 3233 * generation number. 3234 */ 3235 void 3236 ire_dep_incr_generation(ire_t *parent) 3237 { 3238 ip_stack_t *ipst = parent->ire_ipst; 3239 3240 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3241 if (parent->ire_dep_children != NULL) 3242 ire_dep_increment_children(parent->ire_dep_children); 3243 rw_exit(&ipst->ips_ire_dep_lock); 3244 } 3245 3246 /* 3247 * Get a new ire_nce_cache for this IRE as well as its nexthop. 3248 * Returns zero if it succeeds. Can fail due to lack of memory or when 3249 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those 3250 * cases. 3251 * 3252 * In the in.mpathd case, the ire will have ire_testhidden 3253 * set; so we should create the ncec for the underlying ill. 3254 * 3255 * Note that the error returned by ire_revalidate_nce() is ignored by most 3256 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH 3257 * error to mark potentially bad ire's. For all the other callers, an 3258 * error return could indicate a transient condition like ENOMEM, or could 3259 * be the result of an interface that is going down/unplumbing. In the former 3260 * case (transient error), we would leave the old stale ire/ire_nce_cache 3261 * in place, and possibly use incorrect link-layer information to send packets 3262 * but would eventually recover. In the latter case (ill down/replumb), 3263 * ire_revalidate_nce() might return a condemned nce back, but we would then 3264 * recover in the packet output path. 3265 */ 3266 int 3267 ire_revalidate_nce(ire_t *ire) 3268 { 3269 nce_t *nce, *old_nce; 3270 ire_t *nexthop; 3271 3272 /* 3273 * For multicast we conceptually have an NCE but we don't store it 3274 * in ire_nce_cache; when ire_to_nce is called we allocate the nce. 3275 */ 3276 if (ire->ire_type & IRE_MULTICAST) 3277 return (0); 3278 3279 /* ire_testhidden should only be set on under-interfaces */ 3280 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3281 3282 nexthop = ire_nexthop(ire); 3283 if (nexthop == NULL) { 3284 /* The route is potentially bad */ 3285 (void) ire_no_good(ire); 3286 return (ENETUNREACH); 3287 } 3288 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3289 ASSERT(ire->ire_ill != NULL); 3290 3291 if (ire->ire_ipversion == IPV4_VERSION) 3292 nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); 3293 else 3294 nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); 3295 } else { 3296 ASSERT(nexthop->ire_type & IRE_ONLINK); 3297 if (ire->ire_ipversion == IPV4_VERSION) { 3298 nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, 3299 nexthop->ire_type); 3300 } else { 3301 nce = ndp_nce_init(nexthop->ire_ill, 3302 &nexthop->ire_addr_v6, nexthop->ire_type); 3303 } 3304 } 3305 if (nce == NULL) { 3306 /* 3307 * Leave the old stale one in place to avoid a NULL 3308 * ire_nce_cache. 3309 */ 3310 ire_refrele(nexthop); 3311 return (ENOMEM); 3312 } 3313 3314 if (nexthop != ire) { 3315 /* Update the nexthop ire */ 3316 mutex_enter(&nexthop->ire_lock); 3317 old_nce = nexthop->ire_nce_cache; 3318 if (!IRE_IS_CONDEMNED(nexthop)) { 3319 nce_refhold(nce); 3320 nexthop->ire_nce_cache = nce; 3321 } else { 3322 nexthop->ire_nce_cache = NULL; 3323 } 3324 mutex_exit(&nexthop->ire_lock); 3325 if (old_nce != NULL) 3326 nce_refrele(old_nce); 3327 } 3328 ire_refrele(nexthop); 3329 3330 mutex_enter(&ire->ire_lock); 3331 old_nce = ire->ire_nce_cache; 3332 if (!IRE_IS_CONDEMNED(ire)) { 3333 nce_refhold(nce); 3334 ire->ire_nce_cache = nce; 3335 } else { 3336 ire->ire_nce_cache = NULL; 3337 } 3338 mutex_exit(&ire->ire_lock); 3339 if (old_nce != NULL) 3340 nce_refrele(old_nce); 3341 3342 nce_refrele(nce); 3343 return (0); 3344 } 3345 3346 /* 3347 * Get a held nce for a given ire. 3348 * In the common case this is just from ire_nce_cache. 3349 * For IRE_MULTICAST this needs to do an explicit lookup since we do not 3350 * have an IRE_MULTICAST per address. 3351 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those 3352 * so they can check whether the NCE went unreachable (as opposed to was 3353 * condemned for some other reason). 3354 */ 3355 nce_t * 3356 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) 3357 { 3358 nce_t *nce; 3359 3360 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 3361 return (NULL); 3362 3363 /* ire_testhidden should only be set on under-interfaces */ 3364 ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); 3365 3366 mutex_enter(&ire->ire_lock); 3367 nce = ire->ire_nce_cache; 3368 if (nce != NULL) { 3369 nce_refhold(nce); 3370 mutex_exit(&ire->ire_lock); 3371 return (nce); 3372 } 3373 mutex_exit(&ire->ire_lock); 3374 3375 if (ire->ire_type & IRE_MULTICAST) { 3376 ASSERT(ire->ire_ill != NULL); 3377 3378 if (ire->ire_ipversion == IPV4_VERSION) { 3379 ASSERT(v6nexthop == NULL); 3380 3381 nce = arp_nce_init(ire->ire_ill, v4nexthop, 3382 ire->ire_type); 3383 } else { 3384 ASSERT(v6nexthop != NULL); 3385 ASSERT(v4nexthop == 0); 3386 nce = ndp_nce_init(ire->ire_ill, v6nexthop, 3387 ire->ire_type); 3388 } 3389 return (nce); 3390 } 3391 return (NULL); 3392 } 3393 3394 nce_t * 3395 ire_to_nce_pkt(ire_t *ire, mblk_t *mp) 3396 { 3397 ipha_t *ipha; 3398 ip6_t *ip6h; 3399 3400 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 3401 ipha = (ipha_t *)mp->b_rptr; 3402 return (ire_to_nce(ire, ipha->ipha_dst, NULL)); 3403 } else { 3404 ip6h = (ip6_t *)mp->b_rptr; 3405 return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); 3406 } 3407 } 3408 3409 /* 3410 * Given an IRE_INTERFACE (that matches more than one address) create 3411 * and return an IRE_IF_CLONE for the specific address. 3412 * Return the generation number. 3413 * Returns NULL is no memory for the IRE. 3414 * Handles both IPv4 and IPv6. 3415 */ 3416 ire_t * 3417 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) 3418 { 3419 ire_t *ire; 3420 ire_t *nire; 3421 3422 if (ire_if->ire_ipversion == IPV4_VERSION) { 3423 ipaddr_t v4addr; 3424 ipaddr_t mask = IP_HOST_MASK; 3425 3426 ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); 3427 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 3428 3429 ire = ire_create( 3430 (uchar_t *)&v4addr, /* dest address */ 3431 (uchar_t *)&mask, /* mask */ 3432 (uchar_t *)&ire_if->ire_gateway_addr, 3433 IRE_IF_CLONE, /* IRE type */ 3434 ire_if->ire_ill, 3435 ire_if->ire_zoneid, 3436 ire_if->ire_flags | RTF_HOST, 3437 NULL, /* No security attr for IRE_IF_ALL */ 3438 ire_if->ire_ipst); 3439 } else { 3440 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); 3441 ire = ire_create_v6( 3442 addr, /* dest address */ 3443 &ipv6_all_ones, /* mask */ 3444 &ire_if->ire_gateway_addr_v6, /* gateway addr */ 3445 IRE_IF_CLONE, /* IRE type */ 3446 ire_if->ire_ill, 3447 ire_if->ire_zoneid, 3448 ire_if->ire_flags | RTF_HOST, 3449 NULL, /* No security attr for IRE_IF_ALL */ 3450 ire_if->ire_ipst); 3451 } 3452 if (ire == NULL) 3453 return (NULL); 3454 3455 /* Take the metrics, in particular the mtu, from the IRE_IF */ 3456 ire->ire_metrics = ire_if->ire_metrics; 3457 3458 nire = ire_add(ire); 3459 if (nire == NULL) /* Some failure */ 3460 return (NULL); 3461 3462 if (generationp != NULL) 3463 *generationp = nire->ire_generation; 3464 3465 /* 3466 * Make sure races don't add a duplicate by 3467 * catching the case when an identical was returned. 3468 */ 3469 if (nire != ire) { 3470 ASSERT(nire->ire_identical_ref > 1); 3471 ire_delete(nire); 3472 } 3473 return (nire); 3474 } 3475 3476 /* 3477 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the 3478 * ire_dep_children (just walk the ire_dep_sib_next since they are all 3479 * immediate children.) 3480 * Since we hold a lock while we remove them we need to defer the actual 3481 * calls to ire_delete() until we have dropped the lock. This makes things 3482 * less efficient since we restart at the top after dropping the lock. But 3483 * we only run when an IRE_INTERFACE is deleted which is infrquent. 3484 * 3485 * Note that ire_dep_children can be any mixture of offlink routes and 3486 * IRE_IF_CLONE entries. 3487 */ 3488 void 3489 ire_dep_delete_if_clone(ire_t *parent) 3490 { 3491 ip_stack_t *ipst = parent->ire_ipst; 3492 ire_t *child, *next; 3493 3494 restart: 3495 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 3496 if (parent->ire_dep_children == NULL) { 3497 rw_exit(&ipst->ips_ire_dep_lock); 3498 return; 3499 } 3500 child = parent->ire_dep_children; 3501 while (child != NULL) { 3502 next = child->ire_dep_sib_next; 3503 if ((child->ire_type & IRE_IF_CLONE) && 3504 !IRE_IS_CONDEMNED(child)) { 3505 ire_refhold(child); 3506 rw_exit(&ipst->ips_ire_dep_lock); 3507 ire_delete(child); 3508 ASSERT(IRE_IS_CONDEMNED(child)); 3509 ire_refrele(child); 3510 goto restart; 3511 } 3512 child = next; 3513 } 3514 rw_exit(&ipst->ips_ire_dep_lock); 3515 } 3516 3517 /* 3518 * ire_pref() is used in recursive route-resolution for a destination to 3519 * determine the preference of an ire, where "preference" is determined 3520 * based on the level of indirection to the destination of the ire. 3521 * A higher preference indicates that fewer lookups are needed to complete 3522 * recursive route lookup. Thus 3523 * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE) 3524 */ 3525 int 3526 ire_pref(ire_t *ire) 3527 { 3528 if (ire->ire_flags & RTF_INDIRECT) 3529 return (1); 3530 if (ire->ire_type & IRE_OFFLINK) 3531 return (2); 3532 if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER)) 3533 return (3); 3534 if (ire->ire_type & IRE_IF_CLONE) 3535 return (4); 3536 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) 3537 return (5); 3538 return (-1); /* unknown ire_type */ 3539 } 3540