xref: /titanic_52/usr/src/uts/common/inet/ip/ip_ire.c (revision 949b58c70cf907006b9f724dfad665d44eca5881)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains routines that manipulate Internet Routing Entries (IREs).
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/ddi.h>
37 #include <sys/cmn_err.h>
38 #include <sys/policy.h>
39 
40 #include <sys/systm.h>
41 #include <sys/kmem.h>
42 #include <sys/param.h>
43 #include <sys/socket.h>
44 #include <net/if.h>
45 #include <net/route.h>
46 #include <netinet/in.h>
47 #include <net/if_dl.h>
48 #include <netinet/ip6.h>
49 #include <netinet/icmp6.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 #include <inet/ip.h>
54 #include <inet/ip6.h>
55 #include <inet/ip_ndp.h>
56 #include <inet/arp.h>
57 #include <inet/ip_if.h>
58 #include <inet/ip_ire.h>
59 #include <inet/ip_ftable.h>
60 #include <inet/ip_rts.h>
61 #include <inet/nd.h>
62 
63 #include <inet/tcp.h>
64 #include <inet/ipclassifier.h>
65 #include <sys/zone.h>
66 #include <sys/cpuvar.h>
67 
68 #include <sys/tsol/label.h>
69 #include <sys/tsol/tnet.h>
70 
71 struct kmem_cache *rt_entry_cache;
72 
73 typedef struct nce_clookup_s {
74 	ipaddr_t ncecl_addr;
75 	boolean_t ncecl_found;
76 } nce_clookup_t;
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the forwarding table in which is ire stored.
86  *
87  * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags,
89  * ire_bucket
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_refcnt, ire_identical_ref
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_generation
117  *	- Under ire_lock
118  *
119  * ire_nce_cache
120  *	- Under ire_lock
121  *
122  * ire_dep_parent (To next IRE in recursive lookup chain)
123  *	- Under ips_ire_dep_lock. Write held when modifying. Read held when
124  *	  walking. We also hold ire_lock when modifying to allow the data path
125  *	  to only acquire ire_lock.
126  *
127  * ire_dep_parent_generation (Generation number from ire_dep_parent)
128  *	- Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock
129  *	  and ire_lock held when modifying)
130  *
131  * ire_dep_children (From parent to first child)
132  * ire_dep_sib_next (linked list of siblings)
133  * ire_dep_sib_ptpn (linked list of siblings)
134  *	- Under ips_ire_dep_lock. Write held when modifying. Read held when
135  *	  walking.
136  *
137  * As we always hold the bucket locks in all the places while accessing
138  * the above values, it is natural to use them for protecting them.
139  *
140  * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table
141  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
142  * structures. ip_forwarding_table_v6 is allocated dynamically in
143  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
144  * initializing the same bucket. Once a bucket is initialized, it is never
145  * de-alloacted. This assumption enables us to access
146  * ip_forwarding_table_v6[i] without any locks.
147  *
148  * The forwarding table for IPv4 is a radix tree whose leaves
149  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
150  * for IPv4 is dynamically allocated and freed.
151  *
152  * Each irb_t - ire bucket structure has a lock to protect
153  * a bucket and the ires residing in the bucket have a back pointer to
154  * the bucket structure. It also has a reference count for the number
155  * of threads walking the bucket - irb_refcnt which is bumped up
156  * using the irb_refhold function. The flags irb_marks can be
157  * set to IRB_MARK_CONDEMNED indicating that there are some ires
158  * in this bucket that are IRE_IS_CONDEMNED and the
159  * last thread to leave the bucket should delete the ires. Usually
160  * this is done by the irb_refrele function which is used to decrement
161  * the reference count on a bucket. See comments above irb_t structure
162  * definition in ip.h for further details.
163  *
164  * The ire_refhold/ire_refrele functions operate on the ire which increments/
165  * decrements the reference count, ire_refcnt, atomically on the ire.
166  * ire_refcnt is modified only using those functions. Operations on the IRE
167  * could be described as follows :
168  *
169  * CREATE an ire with reference count initialized to 1.
170  *
171  * ADDITION of an ire holds the bucket lock, checks for duplicates
172  * and then adds the ire. ire_add returns the ire after
173  * bumping up once more i.e the reference count is 2. This is to avoid
174  * an extra lookup in the functions calling ire_add which wants to
175  * work with the ire after adding.
176  *
177  * LOOKUP of an ire bumps up the reference count using ire_refhold
178  * function. It is valid to bump up the referece count of the IRE,
179  * after the lookup has returned an ire. Following are the lookup
180  * functions that return an HELD ire :
181  *
182  * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6]
183  *
184  * DELETION of an ire holds the bucket lock, removes it from the list
185  * and then decrements the reference count for having removed from the list
186  * by using the ire_refrele function. If some other thread has looked up
187  * the ire, the reference count would have been bumped up and hence
188  * this ire will not be freed once deleted. It will be freed once the
189  * reference count drops to zero.
190  *
191  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
192  * lookups acquire the bucket lock as RW_READER.
193  *
194  * The general rule is to do the ire_refrele in the function
195  * that is passing the ire as an argument.
196  *
197  * In trying to locate ires the following points are to be noted.
198  *
199  * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is
200  * to be ignored when walking the ires using ire_next.
201  *
202  * Zones note:
203  *	Walking IREs within a given zone also walks certain ires in other
204  *	zones.  This is done intentionally.  IRE walks with a specified
205  *	zoneid are used only when doing informational reports, and
206  *	zone users want to see things that they can access. See block
207  *	comment in ire_walk_ill_match().
208  */
209 
210 /*
211  * The size of the forwarding table.  We will make sure that it is a
212  * power of 2 in ip_ire_init().
213  * Setable in /etc/system
214  */
215 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
216 
217 struct	kmem_cache	*ire_cache;
218 struct	kmem_cache	*ncec_cache;
219 struct	kmem_cache	*nce_cache;
220 
221 static ire_t	ire_null;
222 
223 static ire_t	*ire_add_v4(ire_t *ire);
224 static void	ire_delete_v4(ire_t *ire);
225 static void	ire_dep_invalidate_children(ire_t *child);
226 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
227     zoneid_t zoneid, ip_stack_t *);
228 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
229     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
230 #ifdef DEBUG
231 static void	ire_trace_cleanup(const ire_t *);
232 #endif
233 static void	ire_dep_incr_generation_locked(ire_t *);
234 
235 /*
236  * Following are the functions to increment/decrement the reference
237  * count of the IREs and IRBs (ire bucket).
238  *
239  * 1) We bump up the reference count of an IRE to make sure that
240  *    it does not get deleted and freed while we are using it.
241  *    Typically all the lookup functions hold the bucket lock,
242  *    and look for the IRE. If it finds an IRE, it bumps up the
243  *    reference count before dropping the lock. Sometimes we *may* want
244  *    to bump up the reference count after we *looked* up i.e without
245  *    holding the bucket lock. So, the ire_refhold function does not assert
246  *    on the bucket lock being held. Any thread trying to delete from
247  *    the hash bucket can still do so but cannot free the IRE if
248  *    ire_refcnt is not 0.
249  *
250  * 2) We bump up the reference count on the bucket where the IRE resides
251  *    (IRB), when we want to prevent the IREs getting deleted from a given
252  *    hash bucket. This makes life easier for ire_walk type functions which
253  *    wants to walk the IRE list, call a function, but needs to drop
254  *    the bucket lock to prevent recursive rw_enters. While the
255  *    lock is dropped, the list could be changed by other threads or
256  *    the same thread could end up deleting the ire or the ire pointed by
257  *    ire_next. ire_refholding the ire or ire_next is not sufficient as
258  *    a delete will still remove the ire from the bucket while we have
259  *    dropped the lock and hence the ire_next would be NULL. Thus, we
260  *    need a mechanism to prevent deletions from a given bucket.
261  *
262  *    To prevent deletions, we bump up the reference count on the
263  *    bucket. If the bucket is held, ire_delete just marks both
264  *    the ire and irb as CONDEMNED. When the
265  *    reference count on the bucket drops to zero, all the CONDEMNED ires
266  *    are deleted. We don't have to bump up the reference count on the
267  *    bucket if we are walking the bucket and never have to drop the bucket
268  *    lock. Note that irb_refhold does not prevent addition of new ires
269  *    in the list. It is okay because addition of new ires will not cause
270  *    ire_next to point to freed memory. We do irb_refhold only when
271  *    all of the 3 conditions are true :
272  *
273  *    1) The code needs to walk the IRE bucket from start to end.
274  *    2) It may have to drop the bucket lock sometimes while doing (1)
275  *    3) It does not want any ires to be deleted meanwhile.
276  */
277 
278 /*
279  * Bump up the reference count on the hash bucket - IRB to
280  * prevent ires from being deleted in this bucket.
281  */
282 void
283 irb_refhold(irb_t *irb)
284 {
285 	rw_enter(&irb->irb_lock, RW_WRITER);
286 	irb->irb_refcnt++;
287 	ASSERT(irb->irb_refcnt != 0);
288 	rw_exit(&irb->irb_lock);
289 }
290 
291 void
292 irb_refhold_locked(irb_t *irb)
293 {
294 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
295 	irb->irb_refcnt++;
296 	ASSERT(irb->irb_refcnt != 0);
297 }
298 
299 /*
300  * Note: when IRB_MARK_DYNAMIC is not set the irb_t
301  * is statically allocated, so that when the irb_refcnt goes to 0,
302  * we simply clean up the ire list and continue.
303  */
304 void
305 irb_refrele(irb_t *irb)
306 {
307 	if (irb->irb_marks & IRB_MARK_DYNAMIC) {
308 		irb_refrele_ftable(irb);
309 	} else {
310 		rw_enter(&irb->irb_lock, RW_WRITER);
311 		ASSERT(irb->irb_refcnt != 0);
312 		if (--irb->irb_refcnt	== 0 &&
313 		    (irb->irb_marks & IRB_MARK_CONDEMNED)) {
314 			ire_t *ire_list;
315 
316 			ire_list = ire_unlink(irb);
317 			rw_exit(&irb->irb_lock);
318 			ASSERT(ire_list != NULL);
319 			ire_cleanup(ire_list);
320 		} else {
321 			rw_exit(&irb->irb_lock);
322 		}
323 	}
324 }
325 
326 
327 /*
328  * Bump up the reference count on the IRE. We cannot assert that the
329  * bucket lock is being held as it is legal to bump up the reference
330  * count after the first lookup has returned the IRE without
331  * holding the lock.
332  */
333 void
334 ire_refhold(ire_t *ire)
335 {
336 	atomic_add_32(&(ire)->ire_refcnt, 1);
337 	ASSERT((ire)->ire_refcnt != 0);
338 #ifdef DEBUG
339 	ire_trace_ref(ire);
340 #endif
341 }
342 
343 void
344 ire_refhold_notr(ire_t *ire)
345 {
346 	atomic_add_32(&(ire)->ire_refcnt, 1);
347 	ASSERT((ire)->ire_refcnt != 0);
348 }
349 
350 void
351 ire_refhold_locked(ire_t *ire)
352 {
353 #ifdef DEBUG
354 	ire_trace_ref(ire);
355 #endif
356 	ire->ire_refcnt++;
357 }
358 
359 /*
360  * Release a ref on an IRE.
361  *
362  * Must not be called while holding any locks. Otherwise if this is
363  * the last reference to be released there is a chance of recursive mutex
364  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
365  * to restart an ioctl. The one exception is when the caller is sure that
366  * this is not the last reference to be released. Eg. if the caller is
367  * sure that the ire has not been deleted and won't be deleted.
368  *
369  * In architectures e.g sun4u, where atomic_add_32_nv is just
370  * a cas, we need to maintain the right memory barrier semantics
371  * as that of mutex_exit i.e all the loads and stores should complete
372  * before the cas is executed. membar_exit() does that here.
373  */
374 void
375 ire_refrele(ire_t *ire)
376 {
377 #ifdef DEBUG
378 	ire_untrace_ref(ire);
379 #endif
380 	ASSERT((ire)->ire_refcnt != 0);
381 	membar_exit();
382 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)
383 		ire_inactive(ire);
384 }
385 
386 void
387 ire_refrele_notr(ire_t *ire)
388 {
389 	ASSERT((ire)->ire_refcnt != 0);
390 	membar_exit();
391 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)
392 		ire_inactive(ire);
393 }
394 
395 /*
396  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
397  * IOCTL[s].  The NO_REPLY form is used by TCP to tell IP that it is
398  * having problems reaching a particular destination.
399  * This will make IP consider alternate routes (e.g., when there are
400  * muliple default routes), and it will also make IP discard any (potentially)
401  * stale redirect.
402  * Management processes may want to use the version that generates a reply.
403  *
404  * With the use of NUD like behavior for IPv4/ARP in addition to IPv6
405  * this function shouldn't be necessary for IP to recover from a bad redirect,
406  * a bad default router (when there are multiple default routers), or
407  * a stale ND/ARP entry. But we retain it in any case.
408  * For instance, this is helpful when TCP suspects a failure before NUD does.
409  */
410 int
411 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
412 {
413 	uchar_t		*addr_ucp;
414 	uint_t		ipversion;
415 	sin_t		*sin;
416 	sin6_t		*sin6;
417 	ipaddr_t	v4addr;
418 	in6_addr_t	v6addr;
419 	ire_t		*ire;
420 	ipid_t		*ipid;
421 	zoneid_t	zoneid;
422 	ip_stack_t	*ipst;
423 
424 	ASSERT(q->q_next == NULL);
425 	zoneid = IPCL_ZONEID(Q_TO_CONN(q));
426 	ipst = CONNQ_TO_IPST(q);
427 
428 	/*
429 	 * Check privilege using the ioctl credential; if it is NULL
430 	 * then this is a kernel message and therefor privileged.
431 	 */
432 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
433 		return (EPERM);
434 
435 	ipid = (ipid_t *)mp->b_rptr;
436 
437 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
438 	    ipid->ipid_addr_length);
439 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
440 		return (EINVAL);
441 	switch (ipid->ipid_addr_length) {
442 	case sizeof (sin_t):
443 		/*
444 		 * got complete (sockaddr) address - increment addr_ucp to point
445 		 * at the ip_addr field.
446 		 */
447 		sin = (sin_t *)addr_ucp;
448 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
449 		ipversion = IPV4_VERSION;
450 		break;
451 	case sizeof (sin6_t):
452 		/*
453 		 * got complete (sockaddr) address - increment addr_ucp to point
454 		 * at the ip_addr field.
455 		 */
456 		sin6 = (sin6_t *)addr_ucp;
457 		addr_ucp = (uchar_t *)&sin6->sin6_addr;
458 		ipversion = IPV6_VERSION;
459 		break;
460 	default:
461 		return (EINVAL);
462 	}
463 	if (ipversion == IPV4_VERSION) {
464 		/* Extract the destination address. */
465 		bcopy(addr_ucp, &v4addr, IP_ADDR_LEN);
466 
467 		ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
468 		    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
469 	} else {
470 		/* Extract the destination address. */
471 		bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN);
472 
473 		ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL,
474 		    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
475 	}
476 	if (ire != NULL) {
477 		if (ipversion == IPV4_VERSION) {
478 			ip_rts_change(RTM_LOSING, ire->ire_addr,
479 			    ire->ire_gateway_addr, ire->ire_mask,
480 			    (Q_TO_CONN(q))->conn_laddr_v4,  0, 0, 0,
481 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
482 			    ire->ire_ipst);
483 		}
484 		(void) ire_no_good(ire);
485 		ire_refrele(ire);
486 	}
487 	return (0);
488 }
489 
490 /*
491  * Initialize the ire that is specific to IPv4 part and call
492  * ire_init_common to finish it.
493  * Returns zero or errno.
494  */
495 int
496 ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway,
497     ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags,
498     tsol_gc_t *gc, ip_stack_t *ipst)
499 {
500 	int error;
501 
502 	/*
503 	 * Reject IRE security attribute creation/initialization
504 	 * if system is not running in Trusted mode.
505 	 */
506 	if (gc != NULL && !is_system_labeled())
507 		return (EINVAL);
508 
509 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
510 
511 	if (addr != NULL)
512 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
513 	if (gateway != NULL)
514 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
515 
516 	/* Make sure we don't have stray values in some fields */
517 	switch (type) {
518 	case IRE_LOOPBACK:
519 	case IRE_HOST:
520 	case IRE_BROADCAST:
521 	case IRE_LOCAL:
522 	case IRE_IF_CLONE:
523 		ire->ire_mask = IP_HOST_MASK;
524 		ire->ire_masklen = IPV4_ABITS;
525 		break;
526 	case IRE_PREFIX:
527 	case IRE_DEFAULT:
528 	case IRE_IF_RESOLVER:
529 	case IRE_IF_NORESOLVER:
530 		if (mask != NULL) {
531 			bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
532 			ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
533 		}
534 		break;
535 	case IRE_MULTICAST:
536 	case IRE_NOROUTE:
537 		ASSERT(mask == NULL);
538 		break;
539 	default:
540 		ASSERT(0);
541 		return (EINVAL);
542 	}
543 
544 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION,
545 	    gc, ipst);
546 	if (error != NULL)
547 		return (error);
548 
549 	/* Determine which function pointers to use */
550 	ire->ire_postfragfn = ip_xmit;		/* Common case */
551 
552 	switch (ire->ire_type) {
553 	case IRE_LOCAL:
554 		ire->ire_sendfn = ire_send_local_v4;
555 		ire->ire_recvfn = ire_recv_local_v4;
556 		ASSERT(ire->ire_ill != NULL);
557 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
558 			ire->ire_recvfn = ire_recv_noaccept_v6;
559 		break;
560 	case IRE_LOOPBACK:
561 		ire->ire_sendfn = ire_send_local_v4;
562 		ire->ire_recvfn = ire_recv_loopback_v4;
563 		break;
564 	case IRE_BROADCAST:
565 		ire->ire_postfragfn = ip_postfrag_loopcheck;
566 		ire->ire_sendfn = ire_send_broadcast_v4;
567 		ire->ire_recvfn = ire_recv_broadcast_v4;
568 		break;
569 	case IRE_MULTICAST:
570 		ire->ire_postfragfn = ip_postfrag_loopcheck;
571 		ire->ire_sendfn = ire_send_multicast_v4;
572 		ire->ire_recvfn = ire_recv_multicast_v4;
573 		break;
574 	default:
575 		/*
576 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
577 		 * packets by default.
578 		 */
579 		ire->ire_sendfn = ire_send_wire_v4;
580 		ire->ire_recvfn = ire_recv_forward_v4;
581 		break;
582 	}
583 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
584 		ire->ire_sendfn = ire_send_noroute_v4;
585 		ire->ire_recvfn = ire_recv_noroute_v4;
586 	} else if (ire->ire_flags & RTF_MULTIRT) {
587 		ire->ire_postfragfn = ip_postfrag_multirt_v4;
588 		ire->ire_sendfn = ire_send_multirt_v4;
589 		/* Multirt receive of broadcast uses ire_recv_broadcast_v4 */
590 		if (ire->ire_type != IRE_BROADCAST)
591 			ire->ire_recvfn = ire_recv_multirt_v4;
592 	}
593 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
594 	return (0);
595 }
596 
597 /*
598  * Determine ire_nce_capable
599  */
600 boolean_t
601 ire_determine_nce_capable(ire_t *ire)
602 {
603 	int max_masklen;
604 
605 	if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
606 	    (ire->ire_type & IRE_MULTICAST))
607 		return (B_TRUE);
608 
609 	if (ire->ire_ipversion == IPV4_VERSION)
610 		max_masklen = IPV4_ABITS;
611 	else
612 		max_masklen = IPV6_ABITS;
613 
614 	if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen)
615 		return (B_TRUE);
616 	return (B_FALSE);
617 }
618 
619 /*
620  * ire_create is called to allocate and initialize a new IRE.
621  *
622  * NOTE : This is called as writer sometimes though not required
623  * by this function.
624  */
625 ire_t *
626 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway,
627     ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc,
628     ip_stack_t *ipst)
629 {
630 	ire_t	*ire;
631 	int	error;
632 
633 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
634 	if (ire == NULL) {
635 		DTRACE_PROBE(kmem__cache__alloc);
636 		return (NULL);
637 	}
638 	*ire = ire_null;
639 
640 	error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags,
641 	    gc, ipst);
642 	if (error != 0) {
643 		DTRACE_PROBE2(ire__init, ire_t *, ire, int, error);
644 		kmem_cache_free(ire_cache, ire);
645 		return (NULL);
646 	}
647 	return (ire);
648 }
649 
650 /*
651  * Common to IPv4 and IPv6
652  * Returns zero or errno.
653  */
654 int
655 ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid,
656     uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst)
657 {
658 	int error;
659 
660 #ifdef DEBUG
661 	if (ill != NULL) {
662 		if (ill->ill_isv6)
663 			ASSERT(ipversion == IPV6_VERSION);
664 		else
665 			ASSERT(ipversion == IPV4_VERSION);
666 	}
667 #endif /* DEBUG */
668 
669 	/*
670 	 * Create/initialize IRE security attribute only in Trusted mode;
671 	 * if the passed in gc is non-NULL, we expect that the caller
672 	 * has held a reference to it and will release it when this routine
673 	 * returns a failure, otherwise we own the reference.  We do this
674 	 * prior to initializing the rest IRE fields.
675 	 */
676 	if (is_system_labeled()) {
677 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
678 		    IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) {
679 			/* release references on behalf of caller */
680 			if (gc != NULL)
681 				GC_REFRELE(gc);
682 		} else {
683 			error = tsol_ire_init_gwattr(ire, ipversion, gc);
684 			if (error != 0)
685 				return (error);
686 		}
687 	}
688 
689 	ire->ire_type = type;
690 	ire->ire_flags = RTF_UP | flags;
691 	ire->ire_create_time = (uint32_t)gethrestime_sec();
692 	ire->ire_generation = IRE_GENERATION_INITIAL;
693 
694 	/*
695 	 * The ill_ire_cnt isn't increased until
696 	 * the IRE is added to ensure that a walker will find
697 	 * all IREs that hold a reference on an ill.
698 	 *
699 	 * Note that ill_ire_multicast doesn't hold a ref on the ill since
700 	 * ire_add() is not called for the IRE_MULTICAST.
701 	 */
702 	ire->ire_ill = ill;
703 	ire->ire_zoneid = zoneid;
704 	ire->ire_ipversion = ipversion;
705 
706 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
707 	ire->ire_refcnt = 1;
708 	ire->ire_identical_ref = 1;	/* Number of ire_delete's needed */
709 	ire->ire_ipst = ipst;	/* No netstack_hold */
710 	ire->ire_trace_disable = B_FALSE;
711 
712 	return (0);
713 }
714 
715 /*
716  * This creates an IRE_BROADCAST based on the arguments.
717  * A mirror is ire_lookup_bcast().
718  *
719  * Any supression of unneeded ones is done in ire_add_v4.
720  * We add one IRE_BROADCAST per address. ire_send_broadcast_v4()
721  * takes care of generating a loopback copy of the packet.
722  */
723 ire_t **
724 ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep)
725 {
726 	ip_stack_t	*ipst = ill->ill_ipst;
727 
728 	ASSERT(IAM_WRITER_ILL(ill));
729 
730 	*irep++ = ire_create(
731 	    (uchar_t *)&addr,			/* dest addr */
732 	    (uchar_t *)&ip_g_all_ones,		/* mask */
733 	    NULL,				/* no gateway */
734 	    IRE_BROADCAST,
735 	    ill,
736 	    zoneid,
737 	    RTF_KERNEL,
738 	    NULL,
739 	    ipst);
740 
741 	return (irep);
742 }
743 
744 /*
745  * This looks up an IRE_BROADCAST based on the arguments.
746  * Mirrors ire_create_bcast().
747  */
748 ire_t *
749 ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
750 {
751 	ire_t		*ire;
752 	int		match_args;
753 
754 	match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW |
755 	    MATCH_IRE_MASK | MATCH_IRE_ZONEONLY;
756 
757 	if (IS_UNDER_IPMP(ill))
758 		match_args |= MATCH_IRE_TESTHIDDEN;
759 
760 	ire = ire_ftable_lookup_v4(
761 	    addr,				/* dest addr */
762 	    ip_g_all_ones,			/* mask */
763 	    0,					/* no gateway */
764 	    IRE_BROADCAST,
765 	    ill,
766 	    zoneid,
767 	    NULL,
768 	    match_args,
769 	    0,
770 	    ill->ill_ipst,
771 	    NULL);
772 	return (ire);
773 }
774 
775 /* Arrange to call the specified function for every IRE in the world. */
776 void
777 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
778 {
779 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
780 }
781 
782 void
783 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
784 {
785 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
786 }
787 
788 void
789 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
790 {
791 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
792 }
793 
794 /*
795  * Walk a particular version. version == 0 means both v4 and v6.
796  */
797 static void
798 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
799     ip_stack_t *ipst)
800 {
801 	if (vers != IPV6_VERSION) {
802 		/*
803 		 * ip_forwarding_table variable doesn't matter for IPv4 since
804 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
805 		 */
806 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
807 		    0, NULL,
808 		    NULL, zoneid, ipst);
809 	}
810 	if (vers != IPV4_VERSION) {
811 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
812 		    ipst->ips_ip6_ftable_hash_size,
813 		    ipst->ips_ip_forwarding_table_v6,
814 		    NULL, zoneid, ipst);
815 	}
816 }
817 
818 /*
819  * Arrange to call the specified function for every IRE that matches the ill.
820  */
821 void
822 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
823     ill_t *ill)
824 {
825 	uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
826 
827 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
828 }
829 
830 /*
831  * Walk a particular ill and version.
832  */
833 static void
834 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
835     void *arg, uchar_t vers, ill_t *ill)
836 {
837 	ip_stack_t	*ipst = ill->ill_ipst;
838 
839 	if (vers == IPV4_VERSION) {
840 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
841 		    IP_MASK_TABLE_SIZE,
842 		    0, NULL,
843 		    ill, ALL_ZONES, ipst);
844 	}
845 	if (vers != IPV4_VERSION) {
846 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
847 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
848 		    ipst->ips_ip_forwarding_table_v6,
849 		    ill, ALL_ZONES, ipst);
850 	}
851 }
852 
853 /*
854  * Do the specific matching of IREs to shared-IP zones.
855  *
856  * We have the same logic as in ire_match_args but implemented slightly
857  * differently.
858  */
859 boolean_t
860 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
861     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
862 {
863 	ill_t *dst_ill = ire->ire_ill;
864 
865 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
866 
867 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
868 	    ire->ire_zoneid != ALL_ZONES) {
869 		/*
870 		 * We're walking the IREs for a specific zone. The only relevant
871 		 * IREs are:
872 		 * - all IREs with a matching ire_zoneid
873 		 * - IRE_IF_ALL IREs for interfaces with a usable source addr
874 		 *   with a matching zone
875 		 * - IRE_OFFLINK with a gateway reachable from the zone
876 		 * Note that ealier we only did the IRE_OFFLINK check for
877 		 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs).
878 		 */
879 		if (ire->ire_type & IRE_ONLINK) {
880 			uint_t	ifindex;
881 
882 			/*
883 			 * Note there is no IRE_INTERFACE on vniN thus
884 			 * can't do an IRE lookup for a matching route.
885 			 */
886 			ifindex = dst_ill->ill_usesrc_ifindex;
887 			if (ifindex == 0)
888 				return (B_FALSE);
889 
890 			/*
891 			 * If there is a usable source address in the
892 			 * zone, then it's ok to return an
893 			 * IRE_INTERFACE
894 			 */
895 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
896 			    zoneid, ipst)) {
897 				return (B_FALSE);
898 			}
899 		}
900 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
901 			ipif_t	*tipif;
902 
903 			mutex_enter(&dst_ill->ill_lock);
904 			for (tipif = dst_ill->ill_ipif;
905 			    tipif != NULL; tipif = tipif->ipif_next) {
906 				if (!IPIF_IS_CONDEMNED(tipif) &&
907 				    (tipif->ipif_flags & IPIF_UP) &&
908 				    (tipif->ipif_zoneid == zoneid ||
909 				    tipif->ipif_zoneid == ALL_ZONES))
910 					break;
911 			}
912 			mutex_exit(&dst_ill->ill_lock);
913 			if (tipif == NULL) {
914 				return (B_FALSE);
915 			}
916 		}
917 	}
918 	/*
919 	 * Except for ALL_ZONES, we only match the offlink routes
920 	 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid.
921 	 * Since we can have leftover routes after the IP addresses have
922 	 * changed, the global zone will also match offlink routes where the
923 	 * gateway is unreachable from any zone.
924 	 */
925 	if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) {
926 		in6_addr_t gw_addr_v6;
927 		boolean_t reach;
928 
929 		if (ire->ire_ipversion == IPV4_VERSION) {
930 			reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr,
931 			    zoneid, dst_ill, NULL, ipst, B_FALSE);
932 		} else {
933 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
934 			mutex_enter(&ire->ire_lock);
935 			gw_addr_v6 = ire->ire_gateway_addr_v6;
936 			mutex_exit(&ire->ire_lock);
937 
938 			reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid,
939 			    dst_ill, NULL, ipst, B_FALSE);
940 		}
941 		if (!reach) {
942 			if (zoneid != GLOBAL_ZONEID)
943 				return (B_FALSE);
944 
945 			/*
946 			 * Check if ALL_ZONES reachable - if not then let the
947 			 * global zone see it.
948 			 */
949 			if (ire->ire_ipversion == IPV4_VERSION) {
950 				reach = ire_gateway_ok_zone_v4(
951 				    ire->ire_gateway_addr, ALL_ZONES,
952 				    dst_ill, NULL, ipst, B_FALSE);
953 			} else {
954 				reach = ire_gateway_ok_zone_v6(&gw_addr_v6,
955 				    ALL_ZONES, dst_ill, NULL, ipst, B_FALSE);
956 			}
957 			if (reach) {
958 				/*
959 				 * Some other zone could see it, hence hide it
960 				 * in the global zone.
961 				 */
962 				return (B_FALSE);
963 			}
964 		}
965 	}
966 
967 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
968 	    (ire->ire_type & ire_type)) &&
969 	    ((!(match_flags & MATCH_IRE_ILL)) ||
970 	    (dst_ill == ill ||
971 	    dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) {
972 		return (B_TRUE);
973 	}
974 	return (B_FALSE);
975 }
976 
977 int
978 rtfunc(struct radix_node *rn, void *arg)
979 {
980 	struct rtfuncarg *rtf = arg;
981 	struct rt_entry *rt;
982 	irb_t *irb;
983 	ire_t *ire;
984 	boolean_t ret;
985 
986 	rt = (struct rt_entry *)rn;
987 	ASSERT(rt != NULL);
988 	irb = &rt->rt_irb;
989 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
990 		if ((rtf->rt_match_flags != 0) ||
991 		    (rtf->rt_zoneid != ALL_ZONES)) {
992 			ret = ire_walk_ill_match(rtf->rt_match_flags,
993 			    rtf->rt_ire_type, ire,
994 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
995 		} else {
996 			ret = B_TRUE;
997 		}
998 		if (ret)
999 			(*rtf->rt_func)(ire, rtf->rt_arg);
1000 	}
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Walk the ftable entries that match the ill.
1006  */
1007 void
1008 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
1009     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
1010     ill_t *ill, zoneid_t zoneid,
1011     ip_stack_t *ipst)
1012 {
1013 	irb_t	*irb_ptr;
1014 	irb_t	*irb;
1015 	ire_t	*ire;
1016 	int i, j;
1017 	boolean_t ret;
1018 	struct rtfuncarg rtfarg;
1019 
1020 	ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
1021 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
1022 
1023 	/* knobs such that routine is called only for v6 case */
1024 	if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
1025 		for (i = (ftbl_sz - 1);  i >= 0; i--) {
1026 			if ((irb_ptr = ipftbl[i]) == NULL)
1027 				continue;
1028 			for (j = 0; j < htbl_sz; j++) {
1029 				irb = &irb_ptr[j];
1030 				if (irb->irb_ire == NULL)
1031 					continue;
1032 
1033 				irb_refhold(irb);
1034 				for (ire = irb->irb_ire; ire != NULL;
1035 				    ire = ire->ire_next) {
1036 					if (match_flags == 0 &&
1037 					    zoneid == ALL_ZONES) {
1038 						ret = B_TRUE;
1039 					} else {
1040 						ret =
1041 						    ire_walk_ill_match(
1042 						    match_flags,
1043 						    ire_type, ire, ill,
1044 						    zoneid, ipst);
1045 					}
1046 					if (ret)
1047 						(*func)(ire, arg);
1048 				}
1049 				irb_refrele(irb);
1050 			}
1051 		}
1052 	} else {
1053 		bzero(&rtfarg, sizeof (rtfarg));
1054 		rtfarg.rt_func = func;
1055 		rtfarg.rt_arg = arg;
1056 		if (match_flags != 0) {
1057 			rtfarg.rt_match_flags = match_flags;
1058 		}
1059 		rtfarg.rt_ire_type = ire_type;
1060 		rtfarg.rt_ill = ill;
1061 		rtfarg.rt_zoneid = zoneid;
1062 		rtfarg.rt_ipst = ipst;	/* No netstack_hold */
1063 		(void) ipst->ips_ip_ftable->rnh_walktree_mt(
1064 		    ipst->ips_ip_ftable,
1065 		    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
1066 	}
1067 }
1068 
1069 /*
1070  * This function takes a mask and returns
1071  * number of bits set in the mask. If no
1072  * bit is set it returns 0.
1073  * Assumes a contiguous mask.
1074  */
1075 int
1076 ip_mask_to_plen(ipaddr_t mask)
1077 {
1078 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
1079 }
1080 
1081 /*
1082  * Convert length for a mask to the mask.
1083  */
1084 ipaddr_t
1085 ip_plen_to_mask(uint_t masklen)
1086 {
1087 	if (masklen == 0)
1088 		return (0);
1089 
1090 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
1091 }
1092 
1093 void
1094 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
1095 {
1096 	ill_t		*ill;
1097 
1098 	ill = ire->ire_ill;
1099 	if (ill != NULL)
1100 		mutex_exit(&ill->ill_lock);
1101 	rw_exit(&irb_ptr->irb_lock);
1102 }
1103 
1104 /*
1105  * ire_add_v[46] atomically make sure that the ill associated
1106  * with the new ire is not going away i.e., we check ILL_CONDEMNED.
1107  */
1108 int
1109 ire_atomic_start(irb_t *irb_ptr, ire_t *ire)
1110 {
1111 	ill_t		*ill;
1112 
1113 	ill = ire->ire_ill;
1114 
1115 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
1116 	if (ill != NULL) {
1117 		mutex_enter(&ill->ill_lock);
1118 
1119 		/*
1120 		 * Don't allow IRE's to be created on dying ills.
1121 		 */
1122 		if (ill->ill_state_flags & ILL_CONDEMNED) {
1123 			ire_atomic_end(irb_ptr, ire);
1124 			return (ENXIO);
1125 		}
1126 
1127 		if (IS_UNDER_IPMP(ill)) {
1128 			int	error = 0;
1129 			mutex_enter(&ill->ill_phyint->phyint_lock);
1130 			if (!ipmp_ill_is_active(ill) &&
1131 			    IRE_HIDDEN_TYPE(ire->ire_type) &&
1132 			    !ire->ire_testhidden) {
1133 				error = EINVAL;
1134 			}
1135 			mutex_exit(&ill->ill_phyint->phyint_lock);
1136 			if (error != 0) {
1137 				ire_atomic_end(irb_ptr, ire);
1138 				return (error);
1139 			}
1140 		}
1141 
1142 	}
1143 	return (0);
1144 }
1145 
1146 /*
1147  * Add a fully initialized IRE to the forwarding table.
1148  * This returns NULL on failure, or a held IRE on success.
1149  * Normally the returned IRE is the same as the argument. But a different
1150  * IRE will be returned if the added IRE is deemed identical to an existing
1151  * one. In that case ire_identical_ref will be increased.
1152  * The caller always needs to do an ire_refrele() on the returned IRE.
1153  */
1154 ire_t *
1155 ire_add(ire_t *ire)
1156 {
1157 	if (IRE_HIDDEN_TYPE(ire->ire_type) &&
1158 	    ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) {
1159 		/*
1160 		 * IREs hosted on interfaces that are under IPMP
1161 		 * should be hidden so that applications don't
1162 		 * accidentally end up sending packets with test
1163 		 * addresses as their source addresses, or
1164 		 * sending out interfaces that are e.g. IFF_INACTIVE.
1165 		 * Hide them here.
1166 		 */
1167 		ire->ire_testhidden = B_TRUE;
1168 	}
1169 
1170 	if (ire->ire_ipversion == IPV6_VERSION)
1171 		return (ire_add_v6(ire));
1172 	else
1173 		return (ire_add_v4(ire));
1174 }
1175 
1176 /*
1177  * Add a fully initialized IPv4 IRE to the forwarding table.
1178  * This returns NULL on failure, or a held IRE on success.
1179  * Normally the returned IRE is the same as the argument. But a different
1180  * IRE will be returned if the added IRE is deemed identical to an existing
1181  * one. In that case ire_identical_ref will be increased.
1182  * The caller always needs to do an ire_refrele() on the returned IRE.
1183  */
1184 static ire_t *
1185 ire_add_v4(ire_t *ire)
1186 {
1187 	ire_t	*ire1;
1188 	irb_t	*irb_ptr;
1189 	ire_t	**irep;
1190 	int	match_flags;
1191 	int	error;
1192 	ip_stack_t	*ipst = ire->ire_ipst;
1193 
1194 	if (ire->ire_ill != NULL)
1195 		ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1196 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1197 
1198 	/* Make sure the address is properly masked. */
1199 	ire->ire_addr &= ire->ire_mask;
1200 
1201 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
1202 
1203 	if (ire->ire_ill != NULL) {
1204 		match_flags |= MATCH_IRE_ILL;
1205 	}
1206 	irb_ptr = ire_get_bucket(ire);
1207 	if (irb_ptr == NULL) {
1208 		printf("no bucket for %p\n", (void *)ire);
1209 		ire_delete(ire);
1210 		return (NULL);
1211 	}
1212 
1213 	/*
1214 	 * Start the atomic add of the ire. Grab the ill lock,
1215 	 * the bucket lock. Check for condemned.
1216 	 */
1217 	error = ire_atomic_start(irb_ptr, ire);
1218 	if (error != 0) {
1219 		printf("no ire_atomic_start for %p\n", (void *)ire);
1220 		ire_delete(ire);
1221 		irb_refrele(irb_ptr);
1222 		return (NULL);
1223 	}
1224 	/*
1225 	 * If we are creating a hidden IRE, make sure we search for
1226 	 * hidden IREs when searching for duplicates below.
1227 	 * Otherwise, we might find an IRE on some other interface
1228 	 * that's not marked hidden.
1229 	 */
1230 	if (ire->ire_testhidden)
1231 		match_flags |= MATCH_IRE_TESTHIDDEN;
1232 
1233 	/*
1234 	 * Atomically check for duplicate and insert in the table.
1235 	 */
1236 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
1237 		if (IRE_IS_CONDEMNED(ire1))
1238 			continue;
1239 		/*
1240 		 * Here we need an exact match on zoneid, i.e.,
1241 		 * ire_match_args doesn't fit.
1242 		 */
1243 		if (ire1->ire_zoneid != ire->ire_zoneid)
1244 			continue;
1245 
1246 		if (ire1->ire_type != ire->ire_type)
1247 			continue;
1248 
1249 		/*
1250 		 * Note: We do not allow multiple routes that differ only
1251 		 * in the gateway security attributes; such routes are
1252 		 * considered duplicates.
1253 		 * To change that we explicitly have to treat them as
1254 		 * different here.
1255 		 */
1256 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
1257 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ill,
1258 		    ire->ire_zoneid, NULL, match_flags)) {
1259 			/*
1260 			 * Return the old ire after doing a REFHOLD.
1261 			 * As most of the callers continue to use the IRE
1262 			 * after adding, we return a held ire. This will
1263 			 * avoid a lookup in the caller again. If the callers
1264 			 * don't want to use it, they need to do a REFRELE.
1265 			 */
1266 			atomic_add_32(&ire1->ire_identical_ref, 1);
1267 			DTRACE_PROBE2(ire__add__exist, ire_t *, ire1,
1268 			    ire_t *, ire);
1269 			ire_refhold(ire1);
1270 			ire_atomic_end(irb_ptr, ire);
1271 			ire_delete(ire);
1272 			irb_refrele(irb_ptr);
1273 			return (ire1);
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * Normally we do head insertion since most things do not care about
1279 	 * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add
1280 	 * assumes we at least do head insertion so that its IRE_BROADCAST
1281 	 * arrive ahead of existing IRE_HOST for the same address.
1282 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
1283 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
1284 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
1285 	 * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket,
1286 	 * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT
1287 	 * set.
1288 	 */
1289 	irep = (ire_t **)irb_ptr;
1290 	if ((ire->ire_type & IRE_IF_CLONE) ||
1291 	    ((ire->ire_type & IRE_BROADCAST) &&
1292 	    !(ire->ire_flags & RTF_MULTIRT))) {
1293 		while ((ire1 = *irep) != NULL)
1294 			irep = &ire1->ire_next;
1295 	}
1296 	/* Insert at *irep */
1297 	ire1 = *irep;
1298 	if (ire1 != NULL)
1299 		ire1->ire_ptpn = &ire->ire_next;
1300 	ire->ire_next = ire1;
1301 	/* Link the new one in. */
1302 	ire->ire_ptpn = irep;
1303 
1304 	/*
1305 	 * ire_walk routines de-reference ire_next without holding
1306 	 * a lock. Before we point to the new ire, we want to make
1307 	 * sure the store that sets the ire_next of the new ire
1308 	 * reaches global visibility, so that ire_walk routines
1309 	 * don't see a truncated list of ires i.e if the ire_next
1310 	 * of the new ire gets set after we do "*irep = ire" due
1311 	 * to re-ordering, the ire_walk thread will see a NULL
1312 	 * once it accesses the ire_next of the new ire.
1313 	 * membar_producer() makes sure that the following store
1314 	 * happens *after* all of the above stores.
1315 	 */
1316 	membar_producer();
1317 	*irep = ire;
1318 	ire->ire_bucket = irb_ptr;
1319 	/*
1320 	 * We return a bumped up IRE above. Keep it symmetrical
1321 	 * so that the callers will always have to release. This
1322 	 * helps the callers of this function because they continue
1323 	 * to use the IRE after adding and hence they don't have to
1324 	 * lookup again after we return the IRE.
1325 	 *
1326 	 * NOTE : We don't have to use atomics as this is appearing
1327 	 * in the list for the first time and no one else can bump
1328 	 * up the reference count on this yet.
1329 	 */
1330 	ire_refhold_locked(ire);
1331 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
1332 
1333 	irb_ptr->irb_ire_cnt++;
1334 	if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC)
1335 		irb_ptr->irb_nire++;
1336 
1337 	if (ire->ire_ill != NULL) {
1338 		ire->ire_ill->ill_ire_cnt++;
1339 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
1340 	}
1341 
1342 	ire_atomic_end(irb_ptr, ire);
1343 
1344 	/* Make any caching of the IREs be notified or updated */
1345 	ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
1346 
1347 	if (ire->ire_ill != NULL)
1348 		ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock));
1349 	irb_refrele(irb_ptr);
1350 	return (ire);
1351 }
1352 
1353 /*
1354  * irb_refrele is the only caller of the function. ire_unlink calls to
1355  * do the final cleanup for this ire.
1356  */
1357 void
1358 ire_cleanup(ire_t *ire)
1359 {
1360 	ire_t *ire_next;
1361 	ip_stack_t *ipst = ire->ire_ipst;
1362 
1363 	ASSERT(ire != NULL);
1364 
1365 	while (ire != NULL) {
1366 		ire_next = ire->ire_next;
1367 		if (ire->ire_ipversion == IPV4_VERSION) {
1368 			ire_delete_v4(ire);
1369 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
1370 			    ire_stats_deleted);
1371 		} else {
1372 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1373 			ire_delete_v6(ire);
1374 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
1375 			    ire_stats_deleted);
1376 		}
1377 		/*
1378 		 * Now it's really out of the list. Before doing the
1379 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
1380 		 * so.
1381 		 */
1382 		ire->ire_next = NULL;
1383 		ire_refrele_notr(ire);
1384 		ire = ire_next;
1385 	}
1386 }
1387 
1388 /*
1389  * irb_refrele is the only caller of the function. It calls to unlink
1390  * all the CONDEMNED ires from this bucket.
1391  */
1392 ire_t *
1393 ire_unlink(irb_t *irb)
1394 {
1395 	ire_t *ire;
1396 	ire_t *ire1;
1397 	ire_t **ptpn;
1398 	ire_t *ire_list = NULL;
1399 
1400 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
1401 	ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) ||
1402 	    (irb->irb_refcnt == 0));
1403 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
1404 	ASSERT(irb->irb_ire != NULL);
1405 
1406 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
1407 		ire1 = ire->ire_next;
1408 		if (IRE_IS_CONDEMNED(ire)) {
1409 			ptpn = ire->ire_ptpn;
1410 			ire1 = ire->ire_next;
1411 			if (ire1)
1412 				ire1->ire_ptpn = ptpn;
1413 			*ptpn = ire1;
1414 			ire->ire_ptpn = NULL;
1415 			ire->ire_next = NULL;
1416 
1417 			/*
1418 			 * We need to call ire_delete_v4 or ire_delete_v6 to
1419 			 * clean up dependents and the redirects pointing at
1420 			 * the default gateway. We need to drop the lock
1421 			 * as ire_flush_cache/ire_delete_host_redircts require
1422 			 * so. But we can't drop the lock, as ire_unlink needs
1423 			 * to atomically remove the ires from the list.
1424 			 * So, create a temporary list of CONDEMNED ires
1425 			 * for doing ire_delete_v4/ire_delete_v6 operations
1426 			 * later on.
1427 			 */
1428 			ire->ire_next = ire_list;
1429 			ire_list = ire;
1430 		}
1431 	}
1432 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
1433 	return (ire_list);
1434 }
1435 
1436 /*
1437  * Clean up the radix node for this ire. Must be called by irb_refrele
1438  * when there are no ire's left in the bucket. Returns TRUE if the bucket
1439  * is deleted and freed.
1440  */
1441 boolean_t
1442 irb_inactive(irb_t *irb)
1443 {
1444 	struct rt_entry *rt;
1445 	struct radix_node *rn;
1446 	ip_stack_t *ipst = irb->irb_ipst;
1447 
1448 	ASSERT(irb->irb_ipst != NULL);
1449 
1450 	rt = IRB2RT(irb);
1451 	rn = (struct radix_node *)rt;
1452 
1453 	/* first remove it from the radix tree. */
1454 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1455 	rw_enter(&irb->irb_lock, RW_WRITER);
1456 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
1457 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
1458 		    ipst->ips_ip_ftable);
1459 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
1460 		ASSERT((void *)rn == (void *)rt);
1461 		Free(rt, rt_entry_cache);
1462 		/* irb_lock is freed */
1463 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1464 		return (B_TRUE);
1465 	}
1466 	rw_exit(&irb->irb_lock);
1467 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1468 	return (B_FALSE);
1469 }
1470 
1471 /*
1472  * Delete the specified IRE.
1473  * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was
1474  * not incremented i.e., that the insertion in the bucket and the increment
1475  * of that counter is done atomically.
1476  */
1477 void
1478 ire_delete(ire_t *ire)
1479 {
1480 	ire_t	*ire1;
1481 	ire_t	**ptpn;
1482 	irb_t	*irb;
1483 	ip_stack_t	*ipst = ire->ire_ipst;
1484 
1485 	if ((irb = ire->ire_bucket) == NULL) {
1486 		/*
1487 		 * It was never inserted in the list. Should call REFRELE
1488 		 * to free this IRE.
1489 		 */
1490 		ire_make_condemned(ire);
1491 		ire_refrele_notr(ire);
1492 		return;
1493 	}
1494 
1495 	/*
1496 	 * Move the use counts from an IRE_IF_CLONE to its parent
1497 	 * IRE_INTERFACE.
1498 	 * We need to do this before acquiring irb_lock.
1499 	 */
1500 	if (ire->ire_type & IRE_IF_CLONE) {
1501 		ire_t *parent;
1502 
1503 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1504 		if ((parent = ire->ire_dep_parent) != NULL) {
1505 			parent->ire_ob_pkt_count += ire->ire_ob_pkt_count;
1506 			parent->ire_ib_pkt_count += ire->ire_ib_pkt_count;
1507 			ire->ire_ob_pkt_count = 0;
1508 			ire->ire_ib_pkt_count = 0;
1509 		}
1510 		rw_exit(&ipst->ips_ire_dep_lock);
1511 	}
1512 
1513 	rw_enter(&irb->irb_lock, RW_WRITER);
1514 	if (ire->ire_ptpn == NULL) {
1515 		/*
1516 		 * Some other thread has removed us from the list.
1517 		 * It should have done the REFRELE for us.
1518 		 */
1519 		rw_exit(&irb->irb_lock);
1520 		return;
1521 	}
1522 
1523 	if (!IRE_IS_CONDEMNED(ire)) {
1524 		/* Is this an IRE representing multiple duplicate entries? */
1525 		ASSERT(ire->ire_identical_ref >= 1);
1526 		if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) {
1527 			/* Removed one of the identical parties */
1528 			rw_exit(&irb->irb_lock);
1529 			return;
1530 		}
1531 
1532 		irb->irb_ire_cnt--;
1533 		ire_make_condemned(ire);
1534 	}
1535 
1536 	if (irb->irb_refcnt != 0) {
1537 		/*
1538 		 * The last thread to leave this bucket will
1539 		 * delete this ire.
1540 		 */
1541 		irb->irb_marks |= IRB_MARK_CONDEMNED;
1542 		rw_exit(&irb->irb_lock);
1543 		return;
1544 	}
1545 
1546 	/*
1547 	 * Normally to delete an ire, we walk the bucket. While we
1548 	 * walk the bucket, we normally bump up irb_refcnt and hence
1549 	 * we return from above where we mark CONDEMNED and the ire
1550 	 * gets deleted from ire_unlink. This case is where somebody
1551 	 * knows the ire e.g by doing a lookup, and wants to delete the
1552 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
1553 	 * the bucket.
1554 	 */
1555 	ptpn = ire->ire_ptpn;
1556 	ire1 = ire->ire_next;
1557 	if (ire1 != NULL)
1558 		ire1->ire_ptpn = ptpn;
1559 	ASSERT(ptpn != NULL);
1560 	*ptpn = ire1;
1561 	ire->ire_ptpn = NULL;
1562 	ire->ire_next = NULL;
1563 	if (ire->ire_ipversion == IPV6_VERSION) {
1564 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
1565 	} else {
1566 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
1567 	}
1568 	rw_exit(&irb->irb_lock);
1569 
1570 	/* Cleanup dependents and related stuff */
1571 	if (ire->ire_ipversion == IPV6_VERSION) {
1572 		ire_delete_v6(ire);
1573 	} else {
1574 		ire_delete_v4(ire);
1575 	}
1576 	/*
1577 	 * We removed it from the list. Decrement the
1578 	 * reference count.
1579 	 */
1580 	ire_refrele_notr(ire);
1581 }
1582 
1583 /*
1584  * Delete the specified IRE.
1585  * All calls should use ire_delete().
1586  * Sometimes called as writer though not required by this function.
1587  *
1588  * NOTE : This function is called only if the ire was added
1589  * in the list.
1590  */
1591 static void
1592 ire_delete_v4(ire_t *ire)
1593 {
1594 	ip_stack_t	*ipst = ire->ire_ipst;
1595 
1596 	ASSERT(ire->ire_refcnt >= 1);
1597 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1598 
1599 	ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
1600 	if (ire->ire_type == IRE_DEFAULT) {
1601 		/*
1602 		 * when a default gateway is going away
1603 		 * delete all the host redirects pointing at that
1604 		 * gateway.
1605 		 */
1606 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
1607 	}
1608 
1609 	/*
1610 	 * If we are deleting an IRE_INTERFACE then we make sure we also
1611 	 * delete any IRE_IF_CLONE that has been created from it.
1612 	 * Those are always in ire_dep_children.
1613 	 */
1614 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL)
1615 		ire_dep_delete_if_clone(ire);
1616 
1617 	/* Remove from parent dependencies and child */
1618 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
1619 	if (ire->ire_dep_parent != NULL)
1620 		ire_dep_remove(ire);
1621 
1622 	while (ire->ire_dep_children != NULL)
1623 		ire_dep_remove(ire->ire_dep_children);
1624 	rw_exit(&ipst->ips_ire_dep_lock);
1625 }
1626 
1627 /*
1628  * ire_refrele is the only caller of the function. It calls
1629  * to free the ire when the reference count goes to zero.
1630  */
1631 void
1632 ire_inactive(ire_t *ire)
1633 {
1634 	ill_t	*ill;
1635 	irb_t 	*irb;
1636 	ip_stack_t	*ipst = ire->ire_ipst;
1637 
1638 	ASSERT(ire->ire_refcnt == 0);
1639 	ASSERT(ire->ire_ptpn == NULL);
1640 	ASSERT(ire->ire_next == NULL);
1641 
1642 	/* Count how many condemned ires for kmem_cache callback */
1643 	ASSERT(IRE_IS_CONDEMNED(ire));
1644 	atomic_add_32(&ipst->ips_num_ire_condemned, -1);
1645 
1646 	if (ire->ire_gw_secattr != NULL) {
1647 		ire_gw_secattr_free(ire->ire_gw_secattr);
1648 		ire->ire_gw_secattr = NULL;
1649 	}
1650 
1651 	/*
1652 	 * ire_nce_cache is cleared in ire_delete, and we make sure we don't
1653 	 * set it once the ire is marked condemned.
1654 	 */
1655 	ASSERT(ire->ire_nce_cache == NULL);
1656 
1657 	/*
1658 	 * Since any parent would have a refhold on us they would already
1659 	 * have been removed.
1660 	 */
1661 	ASSERT(ire->ire_dep_parent == NULL);
1662 	ASSERT(ire->ire_dep_sib_next == NULL);
1663 	ASSERT(ire->ire_dep_sib_ptpn == NULL);
1664 
1665 	/*
1666 	 * Since any children would have a refhold on us they should have
1667 	 * already been removed.
1668 	 */
1669 	ASSERT(ire->ire_dep_children == NULL);
1670 
1671 	/*
1672 	 * ill_ire_ref is increased when the IRE is inserted in the
1673 	 * bucket - not when the IRE is created.
1674 	 */
1675 	irb = ire->ire_bucket;
1676 	ill = ire->ire_ill;
1677 	if (irb != NULL && ill != NULL) {
1678 		mutex_enter(&ill->ill_lock);
1679 		ASSERT(ill->ill_ire_cnt != 0);
1680 		DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill,
1681 		    (char *), "ire", (void *), ire);
1682 		ill->ill_ire_cnt--;
1683 		if (ILL_DOWN_OK(ill)) {
1684 			/* Drops the ill lock */
1685 			ipif_ill_refrele_tail(ill);
1686 		} else {
1687 			mutex_exit(&ill->ill_lock);
1688 		}
1689 	}
1690 	ire->ire_ill = NULL;
1691 
1692 	/* This should be true for both V4 and V6 */
1693 	if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) {
1694 		rw_enter(&irb->irb_lock, RW_WRITER);
1695 		irb->irb_nire--;
1696 		/*
1697 		 * Instead of examining the conditions for freeing
1698 		 * the radix node here, we do it by calling
1699 		 * irb_refrele which is a single point in the code
1700 		 * that embeds that logic. Bump up the refcnt to
1701 		 * be able to call irb_refrele
1702 		 */
1703 		irb_refhold_locked(irb);
1704 		rw_exit(&irb->irb_lock);
1705 		irb_refrele(irb);
1706 	}
1707 
1708 #ifdef DEBUG
1709 	ire_trace_cleanup(ire);
1710 #endif
1711 	mutex_destroy(&ire->ire_lock);
1712 	if (ire->ire_ipversion == IPV6_VERSION) {
1713 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
1714 	} else {
1715 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
1716 	}
1717 	kmem_cache_free(ire_cache, ire);
1718 }
1719 
1720 /*
1721  * ire_update_generation is the callback function provided by
1722  * ire_get_bucket() to update the generation number of any
1723  * matching shorter route when a new route is added.
1724  *
1725  * This fucntion always returns a failure return (B_FALSE)
1726  * to force the caller (rn_matchaddr_args)
1727  * to back-track up the tree looking for shorter matches.
1728  */
1729 /* ARGSUSED */
1730 static boolean_t
1731 ire_update_generation(struct radix_node *rn, void *arg)
1732 {
1733 	struct rt_entry *rt = (struct rt_entry *)rn;
1734 
1735 	/* We need to handle all in the same bucket */
1736 	irb_increment_generation(&rt->rt_irb);
1737 	return (B_FALSE);
1738 }
1739 
1740 /*
1741  * Take care of all the generation numbers in the bucket.
1742  */
1743 void
1744 irb_increment_generation(irb_t *irb)
1745 {
1746 	ire_t *ire;
1747 	ip_stack_t *ipst;
1748 
1749 	if (irb == NULL || irb->irb_ire_cnt == 0)
1750 		return;
1751 
1752 	ipst = irb->irb_ipst;
1753 	/*
1754 	 * we cannot do an irb_refhold/irb_refrele here as the caller
1755 	 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele
1756 	 * may result in an attempt to free the irb_t, which also needs
1757 	 * the RADIX_NODE_HEAD lock. However, since we want to traverse the
1758 	 * irb_ire list without fear of having a condemned ire removed from
1759 	 * the list, we acquire the irb_lock as WRITER. Moreover, since
1760 	 * the ire_generation increments are done under the ire_dep_lock,
1761 	 * acquire the locks in the prescribed lock order first.
1762 	 */
1763 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
1764 	rw_enter(&irb->irb_lock, RW_WRITER);
1765 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1766 		if (!IRE_IS_CONDEMNED(ire))
1767 			ire_increment_generation(ire);	/* Ourselves */
1768 		ire_dep_incr_generation_locked(ire);	/* Dependants */
1769 	}
1770 	rw_exit(&irb->irb_lock);
1771 	rw_exit(&ipst->ips_ire_dep_lock);
1772 }
1773 
1774 /*
1775  * When an IRE is added or deleted this routine is called to make sure
1776  * any caching of IRE information is notified or updated.
1777  *
1778  * The flag argument indicates if the flush request is due to addition
1779  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
1780  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
1781  */
1782 void
1783 ire_flush_cache_v4(ire_t *ire, int flag)
1784 {
1785 	irb_t *irb = ire->ire_bucket;
1786 	struct rt_entry *rt = IRB2RT(irb);
1787 	ip_stack_t *ipst = ire->ire_ipst;
1788 
1789 	/*
1790 	 * IRE_IF_CLONE ire's don't provide any new information
1791 	 * than the parent from which they are cloned, so don't
1792 	 * perturb the generation numbers.
1793 	 */
1794 	if (ire->ire_type & IRE_IF_CLONE)
1795 		return;
1796 
1797 	/*
1798 	 * Ensure that an ire_add during a lookup serializes the updates of the
1799 	 * generation numbers under the radix head lock so that the lookup gets
1800 	 * either the old ire and old generation number, or a new ire and new
1801 	 * generation number.
1802 	 */
1803 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1804 
1805 	/*
1806 	 * If a route was just added, we need to notify everybody that
1807 	 * has cached an IRE_NOROUTE since there might now be a better
1808 	 * route for them.
1809 	 */
1810 	if (flag == IRE_FLUSH_ADD) {
1811 		ire_increment_generation(ipst->ips_ire_reject_v4);
1812 		ire_increment_generation(ipst->ips_ire_blackhole_v4);
1813 	}
1814 
1815 	/* Adding a default can't otherwise provide a better route */
1816 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
1817 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1818 		return;
1819 	}
1820 
1821 	switch (flag) {
1822 	case IRE_FLUSH_DELETE:
1823 	case IRE_FLUSH_GWCHANGE:
1824 		/*
1825 		 * Update ire_generation for all ire_dep_children chains
1826 		 * starting with this IRE
1827 		 */
1828 		ire_dep_incr_generation(ire);
1829 		break;
1830 	case IRE_FLUSH_ADD:
1831 		/*
1832 		 * Update the generation numbers of all shorter matching routes.
1833 		 * ire_update_generation takes care of the dependants by
1834 		 * using ire_dep_incr_generation.
1835 		 */
1836 		(void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst,
1837 		    ipst->ips_ip_ftable, ire_update_generation, NULL);
1838 		break;
1839 	}
1840 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1841 }
1842 
1843 /*
1844  * Matches the arguments passed with the values in the ire.
1845  *
1846  * Note: for match types that match using "ill" passed in, ill
1847  * must be checked for non-NULL before calling this routine.
1848  */
1849 boolean_t
1850 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
1851     int type, const ill_t *ill, zoneid_t zoneid,
1852     const ts_label_t *tsl, int match_flags)
1853 {
1854 	ill_t *ire_ill = NULL, *dst_ill;
1855 	ip_stack_t *ipst = ire->ire_ipst;
1856 
1857 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1858 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
1859 	ASSERT((!(match_flags & MATCH_IRE_ILL)) ||
1860 	    (ill != NULL && !ill->ill_isv6));
1861 
1862 	/*
1863 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is
1864 	 * in fact hidden, to ensure the caller gets the right one.
1865 	 */
1866 	if (ire->ire_testhidden) {
1867 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
1868 			return (B_FALSE);
1869 	}
1870 
1871 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
1872 	    ire->ire_zoneid != ALL_ZONES) {
1873 		/*
1874 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
1875 		 * does not match that of ire_zoneid, a failure to
1876 		 * match is reported at this point. Otherwise, since some IREs
1877 		 * that are available in the global zone can be used in local
1878 		 * zones, additional checks need to be performed:
1879 		 *
1880 		 * IRE_LOOPBACK
1881 		 *	entries should never be matched in this situation.
1882 		 *	Each zone has its own IRE_LOOPBACK.
1883 		 *
1884 		 * IRE_LOCAL
1885 		 *	We allow them for any zoneid. ire_route_recursive
1886 		 *	does additional checks when
1887 		 *	ip_restrict_interzone_loopback is set.
1888 		 *
1889 		 * If ill_usesrc_ifindex is set
1890 		 *	Then we check if the zone has a valid source address
1891 		 *	on the usesrc ill.
1892 		 *
1893 		 * If ire_ill is set, then check that the zone has an ipif
1894 		 *	on that ill.
1895 		 *
1896 		 * Outside of this function (in ire_round_robin) we check
1897 		 * that any IRE_OFFLINK has a gateway that reachable from the
1898 		 * zone when we have multiple choices (ECMP).
1899 		 */
1900 		if (match_flags & MATCH_IRE_ZONEONLY)
1901 			return (B_FALSE);
1902 		if (ire->ire_type & IRE_LOOPBACK)
1903 			return (B_FALSE);
1904 
1905 		if (ire->ire_type & IRE_LOCAL)
1906 			goto matchit;
1907 
1908 		/*
1909 		 * The normal case of IRE_ONLINK has a matching zoneid.
1910 		 * Here we handle the case when shared-IP zones have been
1911 		 * configured with IP addresses on vniN. In that case it
1912 		 * is ok for traffic from a zone to use IRE_ONLINK routes
1913 		 * if the ill has a usesrc pointing at vniN
1914 		 */
1915 		dst_ill = ire->ire_ill;
1916 		if (ire->ire_type & IRE_ONLINK) {
1917 			uint_t	ifindex;
1918 
1919 			/*
1920 			 * Note there is no IRE_INTERFACE on vniN thus
1921 			 * can't do an IRE lookup for a matching route.
1922 			 */
1923 			ifindex = dst_ill->ill_usesrc_ifindex;
1924 			if (ifindex == 0)
1925 				return (B_FALSE);
1926 
1927 			/*
1928 			 * If there is a usable source address in the
1929 			 * zone, then it's ok to return this IRE_INTERFACE
1930 			 */
1931 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
1932 			    zoneid, ipst)) {
1933 				ip3dbg(("ire_match_args: no usrsrc for zone"
1934 				    " dst_ill %p\n", (void *)dst_ill));
1935 				return (B_FALSE);
1936 			}
1937 		}
1938 		/*
1939 		 * For exampe, with
1940 		 * route add 11.0.0.0 gw1 -ifp bge0
1941 		 * route add 11.0.0.0 gw2 -ifp bge1
1942 		 * this code would differentiate based on
1943 		 * where the sending zone has addresses.
1944 		 * Only if the zone has an address on bge0 can it use the first
1945 		 * route. It isn't clear if this behavior is documented
1946 		 * anywhere.
1947 		 */
1948 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
1949 			ipif_t	*tipif;
1950 
1951 			mutex_enter(&dst_ill->ill_lock);
1952 			for (tipif = dst_ill->ill_ipif;
1953 			    tipif != NULL; tipif = tipif->ipif_next) {
1954 				if (!IPIF_IS_CONDEMNED(tipif) &&
1955 				    (tipif->ipif_flags & IPIF_UP) &&
1956 				    (tipif->ipif_zoneid == zoneid ||
1957 				    tipif->ipif_zoneid == ALL_ZONES))
1958 					break;
1959 			}
1960 			mutex_exit(&dst_ill->ill_lock);
1961 			if (tipif == NULL) {
1962 				return (B_FALSE);
1963 			}
1964 		}
1965 	}
1966 
1967 matchit:
1968 	if (match_flags & MATCH_IRE_ILL) {
1969 		ire_ill = ire->ire_ill;
1970 
1971 		/*
1972 		 * If asked to match an ill, we *must* match
1973 		 * on the ire_ill for ipmp test addresses, or
1974 		 * any of the ill in the group for data addresses.
1975 		 * If we don't, we may as well fail.
1976 		 * However, we need an exception for IRE_LOCALs to ensure
1977 		 * we loopback packets even sent to test addresses on different
1978 		 * interfaces in the group.
1979 		 */
1980 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
1981 		    !(ire->ire_type & IRE_LOCAL)) {
1982 			if (ire->ire_ill != ill)
1983 				return (B_FALSE);
1984 		} else  {
1985 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
1986 			/*
1987 			 * We know that ill is not NULL, but ire_ill could be
1988 			 * NULL
1989 			 */
1990 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
1991 				return (B_FALSE);
1992 		}
1993 	}
1994 
1995 	if ((ire->ire_addr == (addr & mask)) &&
1996 	    ((!(match_flags & MATCH_IRE_GW)) ||
1997 	    (ire->ire_gateway_addr == gateway)) &&
1998 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
1999 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
2000 	    ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) &&
2001 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
2002 	    (!is_system_labeled()) ||
2003 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
2004 		/* We found the matched IRE */
2005 		return (B_TRUE);
2006 	}
2007 	return (B_FALSE);
2008 }
2009 
2010 /*
2011  * Check if the IRE_LOCAL uses the same ill as another route would use.
2012  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
2013  * then we don't allow this IRE_LOCAL to be used.
2014  * We always return an IRE; will be RTF_REJECT if no route available.
2015  */
2016 ire_t *
2017 ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl,
2018     const ill_t *ill, uint_t *generationp)
2019 {
2020 	ip_stack_t	*ipst = ire->ire_ipst;
2021 	ire_t		*alt_ire;
2022 	uint_t		ire_type;
2023 	uint_t		generation;
2024 	uint_t		match_flags;
2025 
2026 	ASSERT(ire->ire_type & IRE_LOCAL);
2027 	ASSERT(ire->ire_ill != NULL);
2028 
2029 	/*
2030 	 * Need to match on everything but local.
2031 	 * This might result in the creation of a IRE_IF_CLONE for the
2032 	 * same address as the IRE_LOCAL when restrict_interzone_loopback is
2033 	 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted
2034 	 * to make sure the IRE_LOCAL is always found first.
2035 	 */
2036 	ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK);
2037 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
2038 	if (ill != NULL)
2039 		match_flags |= MATCH_IRE_ILL;
2040 
2041 	if (ire->ire_ipversion == IPV4_VERSION) {
2042 		alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type,
2043 		    ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2044 		    NULL, &generation);
2045 	} else {
2046 		alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type,
2047 		    ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL,
2048 		    NULL, &generation);
2049 	}
2050 	ASSERT(alt_ire != NULL);
2051 
2052 	if (alt_ire->ire_ill == ire->ire_ill) {
2053 		/* Going out the same ILL - ok to send to IRE_LOCAL */
2054 		ire_refrele(alt_ire);
2055 	} else {
2056 		/* Different ill - ignore IRE_LOCAL */
2057 		ire_refrele(ire);
2058 		ire = alt_ire;
2059 		if (generationp != NULL)
2060 			*generationp = generation;
2061 	}
2062 	return (ire);
2063 }
2064 
2065 boolean_t
2066 ire_find_zoneid(struct radix_node *rn, void *arg)
2067 {
2068 	struct rt_entry *rt = (struct rt_entry *)rn;
2069 	irb_t *irb;
2070 	ire_t *ire;
2071 	ire_ftable_args_t *margs = arg;
2072 
2073 	ASSERT(rt != NULL);
2074 
2075 	irb = &rt->rt_irb;
2076 
2077 	if (irb->irb_ire_cnt == 0)
2078 		return (B_FALSE);
2079 
2080 	rw_enter(&irb->irb_lock, RW_READER);
2081 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2082 		if (IRE_IS_CONDEMNED(ire))
2083 			continue;
2084 
2085 		if (!(ire->ire_type & IRE_INTERFACE))
2086 			continue;
2087 
2088 		if (ire->ire_zoneid != ALL_ZONES &&
2089 		    ire->ire_zoneid != margs->ift_zoneid)
2090 			continue;
2091 
2092 		if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill)
2093 			continue;
2094 
2095 		if (is_system_labeled() &&
2096 		    tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0)
2097 			continue;
2098 
2099 		rw_exit(&irb->irb_lock);
2100 		return (B_TRUE);
2101 	}
2102 	rw_exit(&irb->irb_lock);
2103 	return (B_FALSE);
2104 }
2105 
2106 /*
2107  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
2108  * gateway address. If ill is non-NULL we also match on it.
2109  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
2110  */
2111 boolean_t
2112 ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill,
2113     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
2114 {
2115 	struct rt_sockaddr rdst;
2116 	struct rt_entry *rt;
2117 	ire_ftable_args_t margs;
2118 
2119 	ASSERT(ill == NULL || !ill->ill_isv6);
2120 	if (lock_held)
2121 		ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock));
2122 	else
2123 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
2124 
2125 	bzero(&rdst, sizeof (rdst));
2126 	rdst.rt_sin_len = sizeof (rdst);
2127 	rdst.rt_sin_family = AF_INET;
2128 	rdst.rt_sin_addr.s_addr = gateway;
2129 
2130 	/*
2131 	 * We only use margs for ill, zoneid, and tsl matching in
2132 	 * ire_find_zoneid
2133 	 */
2134 	bzero(&margs, sizeof (margs));
2135 	margs.ift_ill = ill;
2136 	margs.ift_zoneid = zoneid;
2137 	margs.ift_tsl = tsl;
2138 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
2139 	    ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs);
2140 
2141 	if (!lock_held)
2142 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
2143 
2144 	return (rt != NULL);
2145 }
2146 
2147 /*
2148  * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs.
2149  * The fraction argument tells us what fraction of the IREs to delete.
2150  * Common for IPv4 and IPv6.
2151  * Used when memory backpressure.
2152  */
2153 static void
2154 ire_delete_reclaim(ire_t *ire, char *arg)
2155 {
2156 	ip_stack_t	*ipst = ire->ire_ipst;
2157 	uint_t		fraction = *(uint_t *)arg;
2158 	uint_t		rand;
2159 
2160 	if ((ire->ire_flags & RTF_DYNAMIC) ||
2161 	    (ire->ire_type & IRE_IF_CLONE)) {
2162 
2163 		/* Pick a random number */
2164 		rand = (uint_t)ddi_get_lbolt() +
2165 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256);
2166 
2167 		/* Use truncation */
2168 		if ((rand/fraction)*fraction == rand) {
2169 			IP_STAT(ipst, ip_ire_reclaim_deleted);
2170 			ire_delete(ire);
2171 		}
2172 	}
2173 
2174 }
2175 
2176 /*
2177  * kmem_cache callback to free up memory.
2178  *
2179  * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically
2180  * (RTF_DYNAMIC and IRE_IF_CLONE).
2181  */
2182 static void
2183 ip_ire_reclaim_stack(ip_stack_t *ipst)
2184 {
2185 	uint_t	fraction = ipst->ips_ip_ire_reclaim_fraction;
2186 
2187 	IP_STAT(ipst, ip_ire_reclaim_calls);
2188 
2189 	ire_walk(ire_delete_reclaim, &fraction, ipst);
2190 
2191 	/*
2192 	 * Walk all CONNs that can have a reference on an ire, nce or dce.
2193 	 * Get them to update any stale references to drop any refholds they
2194 	 * have.
2195 	 */
2196 	ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst);
2197 }
2198 
2199 /*
2200  * Called by the memory allocator subsystem directly, when the system
2201  * is running low on memory.
2202  */
2203 /* ARGSUSED */
2204 void
2205 ip_ire_reclaim(void *args)
2206 {
2207 	netstack_handle_t nh;
2208 	netstack_t *ns;
2209 
2210 	netstack_next_init(&nh);
2211 	while ((ns = netstack_next(&nh)) != NULL) {
2212 		ip_ire_reclaim_stack(ns->netstack_ip);
2213 		netstack_rele(ns);
2214 	}
2215 	netstack_next_fini(&nh);
2216 }
2217 
2218 static void
2219 power2_roundup(uint32_t *value)
2220 {
2221 	int i;
2222 
2223 	for (i = 1; i < 31; i++) {
2224 		if (*value <= (1 << i))
2225 			break;
2226 	}
2227 	*value = (1 << i);
2228 }
2229 
2230 /* Global init for all zones */
2231 void
2232 ip_ire_g_init()
2233 {
2234 	/*
2235 	 * Create kmem_caches.  ip_ire_reclaim() and ip_nce_reclaim()
2236 	 * will give disposable IREs back to system when needed.
2237 	 * This needs to be done here before anything else, since
2238 	 * ire_add() expects the cache to be created.
2239 	 */
2240 	ire_cache = kmem_cache_create("ire_cache",
2241 	    sizeof (ire_t), 0, NULL, NULL,
2242 	    ip_ire_reclaim, NULL, NULL, 0);
2243 
2244 	ncec_cache = kmem_cache_create("ncec_cache",
2245 	    sizeof (ncec_t), 0, NULL, NULL,
2246 	    ip_nce_reclaim, NULL, NULL, 0);
2247 	nce_cache = kmem_cache_create("nce_cache",
2248 	    sizeof (nce_t), 0, NULL, NULL,
2249 	    NULL, NULL, NULL, 0);
2250 
2251 	rt_entry_cache = kmem_cache_create("rt_entry",
2252 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
2253 
2254 	/*
2255 	 * Have radix code setup kmem caches etc.
2256 	 */
2257 	rn_init();
2258 }
2259 
2260 void
2261 ip_ire_init(ip_stack_t *ipst)
2262 {
2263 	ire_t	*ire;
2264 	int	error;
2265 
2266 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
2267 
2268 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
2269 
2270 	/*
2271 	 * Make sure that the forwarding table size is a power of 2.
2272 	 * The IRE*_ADDR_HASH() macroes depend on that.
2273 	 */
2274 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
2275 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
2276 
2277 	/*
2278 	 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6.
2279 	 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has
2280 	 * RTF_BLACKHOLE set. We use the latter for transient errors such
2281 	 * as memory allocation failures and tripping on IRE_IS_CONDEMNED
2282 	 * entries.
2283 	 */
2284 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2285 	*ire = ire_null;
2286 	error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2287 	    RTF_REJECT|RTF_UP, NULL, ipst);
2288 	ASSERT(error == 0);
2289 	ipst->ips_ire_reject_v4 = ire;
2290 
2291 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2292 	*ire = ire_null;
2293 	error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2294 	    RTF_REJECT|RTF_UP, NULL, ipst);
2295 	ASSERT(error == 0);
2296 	ipst->ips_ire_reject_v6 = ire;
2297 
2298 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2299 	*ire = ire_null;
2300 	error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2301 	    RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2302 	ASSERT(error == 0);
2303 	ipst->ips_ire_blackhole_v4 = ire;
2304 
2305 	ire = kmem_cache_alloc(ire_cache, KM_SLEEP);
2306 	*ire = ire_null;
2307 	error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES,
2308 	    RTF_BLACKHOLE|RTF_UP, NULL, ipst);
2309 	ASSERT(error == 0);
2310 	ipst->ips_ire_blackhole_v6 = ire;
2311 
2312 	rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL);
2313 	rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL);
2314 }
2315 
2316 void
2317 ip_ire_g_fini(void)
2318 {
2319 	kmem_cache_destroy(ire_cache);
2320 	kmem_cache_destroy(ncec_cache);
2321 	kmem_cache_destroy(nce_cache);
2322 	kmem_cache_destroy(rt_entry_cache);
2323 
2324 	rn_fini();
2325 }
2326 
2327 void
2328 ip_ire_fini(ip_stack_t *ipst)
2329 {
2330 	int i;
2331 
2332 	rw_destroy(&ipst->ips_ire_dep_lock);
2333 	rw_destroy(&ipst->ips_ip6_ire_head_lock);
2334 
2335 	ire_make_condemned(ipst->ips_ire_reject_v6);
2336 	ire_refrele_notr(ipst->ips_ire_reject_v6);
2337 	ipst->ips_ire_reject_v6 = NULL;
2338 
2339 	ire_make_condemned(ipst->ips_ire_reject_v4);
2340 	ire_refrele_notr(ipst->ips_ire_reject_v4);
2341 	ipst->ips_ire_reject_v4 = NULL;
2342 
2343 	ire_make_condemned(ipst->ips_ire_blackhole_v6);
2344 	ire_refrele_notr(ipst->ips_ire_blackhole_v6);
2345 	ipst->ips_ire_blackhole_v6 = NULL;
2346 
2347 	ire_make_condemned(ipst->ips_ire_blackhole_v4);
2348 	ire_refrele_notr(ipst->ips_ire_blackhole_v4);
2349 	ipst->ips_ire_blackhole_v4 = NULL;
2350 
2351 	/*
2352 	 * Delete all IREs - assumes that the ill/ipifs have
2353 	 * been removed so what remains are just the ftable to handle.
2354 	 */
2355 	ire_walk(ire_delete, NULL, ipst);
2356 
2357 	rn_freehead(ipst->ips_ip_ftable);
2358 	ipst->ips_ip_ftable = NULL;
2359 
2360 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
2361 
2362 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
2363 		irb_t *ptr;
2364 		int j;
2365 
2366 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
2367 			continue;
2368 
2369 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
2370 			ASSERT(ptr[j].irb_ire == NULL);
2371 			rw_destroy(&ptr[j].irb_lock);
2372 		}
2373 		mi_free(ptr);
2374 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
2375 	}
2376 }
2377 
2378 #ifdef DEBUG
2379 void
2380 ire_trace_ref(ire_t *ire)
2381 {
2382 	mutex_enter(&ire->ire_lock);
2383 	if (ire->ire_trace_disable) {
2384 		mutex_exit(&ire->ire_lock);
2385 		return;
2386 	}
2387 
2388 	if (th_trace_ref(ire, ire->ire_ipst)) {
2389 		mutex_exit(&ire->ire_lock);
2390 	} else {
2391 		ire->ire_trace_disable = B_TRUE;
2392 		mutex_exit(&ire->ire_lock);
2393 		ire_trace_cleanup(ire);
2394 	}
2395 }
2396 
2397 void
2398 ire_untrace_ref(ire_t *ire)
2399 {
2400 	mutex_enter(&ire->ire_lock);
2401 	if (!ire->ire_trace_disable)
2402 		th_trace_unref(ire);
2403 	mutex_exit(&ire->ire_lock);
2404 }
2405 
2406 static void
2407 ire_trace_cleanup(const ire_t *ire)
2408 {
2409 	th_trace_cleanup(ire, ire->ire_trace_disable);
2410 }
2411 #endif /* DEBUG */
2412 
2413 /*
2414  * Find, or create if needed, the nce_t pointer to the neighbor cache
2415  * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t
2416  * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or
2417  * on the next available under-ill (selected by the IPMP rotor) in the
2418  * unicast IPMP case.
2419  *
2420  * If a neighbor-cache entry has to be created (i.e., one does not already
2421  * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache
2422  * entry are initialized in nce_add_v4(). The broadcast, multicast, and
2423  * link-layer type determine the contents of {ncec_state, ncec_lladdr} of
2424  * the ncec_t created. The ncec_lladdr is non-null for all link types with
2425  * non-zero ill_phys_addr_length, though the contents may be zero in cases
2426  * where the link-layer type is not known at the time of creation
2427  * (e.g., IRE_IFRESOLVER links)
2428  *
2429  * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr
2430  * has the physical broadcast address of the outgoing interface.
2431  * For unicast ire entries,
2432  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
2433  *     ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state.
2434  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
2435  *     layer resolution is necessary, so that the ncec_t will be in the
2436  *     ND_REACHABLE state
2437  *
2438  * The link layer information needed for broadcast addresses, and for
2439  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
2440  * never needs re-verification for the lifetime of the ncec_t. These are
2441  * therefore marked NCE_F_NONUD.
2442  *
2443  * The nce returned will be created such that the nce_ill == ill that
2444  * is passed in. Note that the nce itself may not have ncec_ill == ill
2445  * where IPMP links are involved.
2446  */
2447 static nce_t *
2448 ire_nce_init(ill_t *ill, const void *addr, int ire_type)
2449 {
2450 	int		err;
2451 	nce_t		*nce = NULL;
2452 	uint16_t	ncec_flags;
2453 	uchar_t		*hwaddr;
2454 	boolean_t	need_refrele = B_FALSE;
2455 	ill_t		*in_ill = ill;
2456 	boolean_t	is_unicast;
2457 	uint_t		hwaddr_len;
2458 
2459 	is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0);
2460 	if (IS_IPMP(ill) ||
2461 	    ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) {
2462 		if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL)
2463 			return (NULL);
2464 		need_refrele = B_TRUE;
2465 	}
2466 	ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0;
2467 
2468 	switch (ire_type) {
2469 	case IRE_BROADCAST:
2470 		ASSERT(!ill->ill_isv6);
2471 		ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD);
2472 		break;
2473 	case IRE_MULTICAST:
2474 		ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD);
2475 		break;
2476 	}
2477 
2478 	if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) {
2479 		hwaddr = ill->ill_dest_addr;
2480 	} else {
2481 		hwaddr = NULL;
2482 	}
2483 	hwaddr_len = ill->ill_phys_addr_length;
2484 
2485 retry:
2486 	/* nce_state will be computed by nce_add_common() */
2487 	if (!ill->ill_isv6) {
2488 		err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr,
2489 		    ncec_flags, ND_UNCHANGED, &nce);
2490 	} else {
2491 		err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr,
2492 		    ncec_flags, ND_UNCHANGED, &nce);
2493 	}
2494 
2495 	switch (err) {
2496 	case 0:
2497 		break;
2498 	case EEXIST:
2499 		/*
2500 		 * When subnets change or partially overlap what was once
2501 		 * a broadcast address could now be a unicast, or vice versa.
2502 		 */
2503 		if (((ncec_flags ^ nce->nce_common->ncec_flags) &
2504 		    NCE_F_BCAST) != 0) {
2505 			ASSERT(!ill->ill_isv6);
2506 			ncec_delete(nce->nce_common);
2507 			nce_refrele(nce);
2508 			goto retry;
2509 		}
2510 		break;
2511 	default:
2512 		DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err);
2513 		if (need_refrele)
2514 			ill_refrele(ill);
2515 		return (NULL);
2516 	}
2517 	/*
2518 	 * If the ill was an under-ill of an IPMP group, we need to verify
2519 	 * that it is still active so that we select an active interface in
2520 	 * the group. However, since ipmp_ill_is_active ASSERTs for
2521 	 * IS_UNDER_IPMP(), we first need to verify that the ill is an
2522 	 * under-ill, and since this is being done in the data path, the
2523 	 * only way to ascertain this is by holding the ill_g_lock.
2524 	 */
2525 	rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER);
2526 	mutex_enter(&ill->ill_lock);
2527 	mutex_enter(&ill->ill_phyint->phyint_lock);
2528 	if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
2529 		/*
2530 		 * need_refrele implies that the under ill was selected by
2531 		 * ipmp_ill_get_xmit_ill() because either the in_ill was an
2532 		 * ipmp_ill, or we are sending a non-unicast packet on
2533 		 * an under_ill. However, when we get here, the ill selected by
2534 		 * ipmp_ill_get_xmit_ill  was pulled out of the active set
2535 		 * (for unicast)  or cast_ill nomination (for
2536 		 * !unicast) after it was  picked as the outgoing ill.
2537 		 * We have to pick an active interface and/or cast_ill in the
2538 		 * group.
2539 		 */
2540 		mutex_exit(&ill->ill_phyint->phyint_lock);
2541 		nce_delete(nce);
2542 		mutex_exit(&ill->ill_lock);
2543 		rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2544 		nce_refrele(nce);
2545 		ill_refrele(ill);
2546 		if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL)
2547 			return (NULL);
2548 		goto retry;
2549 	} else {
2550 		mutex_exit(&ill->ill_phyint->phyint_lock);
2551 		mutex_exit(&ill->ill_lock);
2552 		rw_exit(&ill->ill_ipst->ips_ill_g_lock);
2553 	}
2554 done:
2555 	ASSERT(nce->nce_ill == ill);
2556 	if (need_refrele)
2557 		ill_refrele(ill);
2558 	return (nce);
2559 }
2560 
2561 nce_t *
2562 arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type)
2563 {
2564 	return (ire_nce_init(ill, &addr4, ire_type));
2565 }
2566 
2567 nce_t *
2568 ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type)
2569 {
2570 	ASSERT((ire_type & IRE_BROADCAST) == 0);
2571 	return (ire_nce_init(ill, addr6, ire_type));
2572 }
2573 
2574 /*
2575  * The caller should hold irb_lock as a writer if the ire is in a bucket.
2576  * This routine will clear ire_nce_cache, and we make sure that we can never
2577  * set ire_nce_cache after the ire is marked condemned.
2578  */
2579 void
2580 ire_make_condemned(ire_t *ire)
2581 {
2582 	ip_stack_t	*ipst = ire->ire_ipst;
2583 	nce_t		*nce;
2584 
2585 	mutex_enter(&ire->ire_lock);
2586 	ASSERT(ire->ire_bucket == NULL ||
2587 	    RW_WRITE_HELD(&ire->ire_bucket->irb_lock));
2588 	ASSERT(!IRE_IS_CONDEMNED(ire));
2589 	ire->ire_generation = IRE_GENERATION_CONDEMNED;
2590 	/* Count how many condemned ires for kmem_cache callback */
2591 	atomic_add_32(&ipst->ips_num_ire_condemned, 1);
2592 	nce = ire->ire_nce_cache;
2593 	ire->ire_nce_cache = NULL;
2594 	mutex_exit(&ire->ire_lock);
2595 	if (nce != NULL)
2596 		nce_refrele(nce);
2597 }
2598 
2599 /*
2600  * Increment the generation avoiding the special condemned value
2601  */
2602 void
2603 ire_increment_generation(ire_t *ire)
2604 {
2605 	uint_t generation;
2606 
2607 	mutex_enter(&ire->ire_lock);
2608 	/*
2609 	 * Even though the caller has a hold it can't prevent a concurrent
2610 	 * ire_delete marking the IRE condemned
2611 	 */
2612 	if (!IRE_IS_CONDEMNED(ire)) {
2613 		generation = ire->ire_generation + 1;
2614 		if (generation == IRE_GENERATION_CONDEMNED)
2615 			generation = IRE_GENERATION_INITIAL;
2616 		ASSERT(generation != IRE_GENERATION_VERIFY);
2617 		ire->ire_generation = generation;
2618 	}
2619 	mutex_exit(&ire->ire_lock);
2620 }
2621 
2622 /*
2623  * Increment ire_generation on all the IRE_MULTICASTs
2624  * Used when the default multicast interface (as determined by
2625  * ill_lookup_multicast) might have changed.
2626  *
2627  * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and
2628  * ill unplumb.
2629  */
2630 void
2631 ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6)
2632 {
2633 	ill_t	*ill;
2634 	ill_walk_context_t ctx;
2635 
2636 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2637 	if (isv6)
2638 		ill = ILL_START_WALK_V6(&ctx, ipst);
2639 	else
2640 		ill = ILL_START_WALK_V4(&ctx, ipst);
2641 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2642 		if (ILL_IS_CONDEMNED(ill))
2643 			continue;
2644 		if (ill->ill_ire_multicast != NULL)
2645 			ire_increment_generation(ill->ill_ire_multicast);
2646 	}
2647 	rw_exit(&ipst->ips_ill_g_lock);
2648 }
2649 
2650 /*
2651  * Return a held IRE_NOROUTE with RTF_REJECT set
2652  */
2653 ire_t *
2654 ire_reject(ip_stack_t *ipst, boolean_t isv6)
2655 {
2656 	ire_t *ire;
2657 
2658 	if (isv6)
2659 		ire = ipst->ips_ire_reject_v6;
2660 	else
2661 		ire = ipst->ips_ire_reject_v4;
2662 
2663 	ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2664 	ire_refhold(ire);
2665 	return (ire);
2666 }
2667 
2668 /*
2669  * Return a held IRE_NOROUTE with RTF_BLACKHOLE set
2670  */
2671 ire_t *
2672 ire_blackhole(ip_stack_t *ipst, boolean_t isv6)
2673 {
2674 	ire_t *ire;
2675 
2676 	if (isv6)
2677 		ire = ipst->ips_ire_blackhole_v6;
2678 	else
2679 		ire = ipst->ips_ire_blackhole_v4;
2680 
2681 	ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED);
2682 	ire_refhold(ire);
2683 	return (ire);
2684 }
2685 
2686 /*
2687  * Return a held IRE_MULTICAST.
2688  */
2689 ire_t *
2690 ire_multicast(ill_t *ill)
2691 {
2692 	ire_t *ire = ill->ill_ire_multicast;
2693 
2694 	ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED);
2695 	if (ire == NULL)
2696 		ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6);
2697 	else
2698 		ire_refhold(ire);
2699 	return (ire);
2700 }
2701 
2702 /*
2703  * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK
2704  * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6).
2705  * This can return an RTF_REJECT|RTF_BLACKHOLE.
2706  * The returned IRE is held.
2707  * The assumption is that ip_select_route() has been called and returned the
2708  * IRE (thus ip_select_route would have set up the ire_dep* information.)
2709  * If some IRE is deleteted then ire_dep_remove() will have been called and
2710  * we might not find a nexthop IRE, in which case we return NULL.
2711  */
2712 ire_t *
2713 ire_nexthop(ire_t *ire)
2714 {
2715 	ip_stack_t	*ipst = ire->ire_ipst;
2716 
2717 	/* Acquire lock to walk ire_dep_parent */
2718 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
2719 	while (ire != NULL) {
2720 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
2721 			goto done;
2722 		}
2723 		/*
2724 		 * If we find an IRE_ONLINK we are done. This includes
2725 		 * the case of IRE_MULTICAST.
2726 		 * Note that in order to send packets we need a host-specific
2727 		 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this
2728 		 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE
2729 		 * was not host specific.
2730 		 * However, ip_rts_request doesn't want to send packets
2731 		 * hence doesn't want to allocate an IRE_IF_CLONE. Yet
2732 		 * it needs an IRE_IF_ALL to get to the ill. Thus
2733 		 * we return IRE_IF_ALL that are not host specific here.
2734 		 */
2735 		if (ire->ire_type & IRE_ONLINK)
2736 			goto done;
2737 		ire = ire->ire_dep_parent;
2738 	}
2739 	rw_exit(&ipst->ips_ire_dep_lock);
2740 	return (NULL);
2741 
2742 done:
2743 	ire_refhold(ire);
2744 	rw_exit(&ipst->ips_ire_dep_lock);
2745 	return (ire);
2746 }
2747 
2748 /*
2749  * Find the ill used to send packets. This will be NULL in case
2750  * of a reject or blackhole.
2751  * The returned ill is held; caller needs to do ill_refrele when done.
2752  */
2753 ill_t *
2754 ire_nexthop_ill(ire_t *ire)
2755 {
2756 	ill_t		*ill;
2757 
2758 	ire = ire_nexthop(ire);
2759 	if (ire == NULL)
2760 		return (NULL);
2761 
2762 	/* ire_ill can not change for an existing ire */
2763 	ill = ire->ire_ill;
2764 	if (ill != NULL)
2765 		ill_refhold(ill);
2766 	ire_refrele(ire);
2767 	return (ill);
2768 }
2769 
2770 #ifdef DEBUG
2771 static boolean_t
2772 parent_has_child(ire_t *parent, ire_t *child)
2773 {
2774 	ire_t	*ire;
2775 	ire_t	*prev;
2776 
2777 	ire = parent->ire_dep_children;
2778 	prev = NULL;
2779 	while (ire != NULL) {
2780 		if (prev == NULL) {
2781 			ASSERT(ire->ire_dep_sib_ptpn ==
2782 			    &(parent->ire_dep_children));
2783 		} else {
2784 			ASSERT(ire->ire_dep_sib_ptpn ==
2785 			    &(prev->ire_dep_sib_next));
2786 		}
2787 		if (ire == child)
2788 			return (B_TRUE);
2789 		prev = ire;
2790 		ire = ire->ire_dep_sib_next;
2791 	}
2792 	return (B_FALSE);
2793 }
2794 
2795 static void
2796 ire_dep_verify(ire_t *ire)
2797 {
2798 	ire_t		*parent = ire->ire_dep_parent;
2799 	ire_t		*child = ire->ire_dep_children;
2800 
2801 	ASSERT(ire->ire_ipversion == IPV4_VERSION ||
2802 	    ire->ire_ipversion == IPV6_VERSION);
2803 	if (parent != NULL) {
2804 		ASSERT(parent->ire_ipversion == IPV4_VERSION ||
2805 		    parent->ire_ipversion == IPV6_VERSION);
2806 		ASSERT(parent->ire_refcnt >= 1);
2807 		ASSERT(parent_has_child(parent, ire));
2808 	}
2809 	if (child != NULL) {
2810 		ASSERT(child->ire_ipversion == IPV4_VERSION ||
2811 		    child->ire_ipversion == IPV6_VERSION);
2812 		ASSERT(child->ire_dep_parent == ire);
2813 		ASSERT(child->ire_dep_sib_ptpn != NULL);
2814 		ASSERT(parent_has_child(ire, child));
2815 	}
2816 }
2817 #endif /* DEBUG */
2818 
2819 /*
2820  * Assumes ire_dep_parent is set. Remove this child from its parent's linkage.
2821  */
2822 void
2823 ire_dep_remove(ire_t *ire)
2824 {
2825 	ip_stack_t	*ipst = ire->ire_ipst;
2826 	ire_t		*parent = ire->ire_dep_parent;
2827 	ire_t		*next;
2828 	nce_t		*nce;
2829 
2830 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2831 	ASSERT(ire->ire_dep_parent != NULL);
2832 	ASSERT(ire->ire_dep_sib_ptpn != NULL);
2833 
2834 #ifdef DEBUG
2835 	ire_dep_verify(ire);
2836 	ire_dep_verify(parent);
2837 #endif
2838 
2839 	next = ire->ire_dep_sib_next;
2840 	if (next != NULL)
2841 		next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn;
2842 
2843 	ASSERT(*(ire->ire_dep_sib_ptpn) == ire);
2844 	*(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next;
2845 
2846 	ire->ire_dep_sib_ptpn = NULL;
2847 	ire->ire_dep_sib_next = NULL;
2848 
2849 	mutex_enter(&ire->ire_lock);
2850 	parent = ire->ire_dep_parent;
2851 	ire->ire_dep_parent = NULL;
2852 	mutex_exit(&ire->ire_lock);
2853 
2854 	/*
2855 	 * Make sure all our children, grandchildren, etc set
2856 	 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since
2857 	 * we can no longer guarantee than the children have a current
2858 	 * ire_nce_cache and ire_nexthop_ill().
2859 	 */
2860 	if (ire->ire_dep_children != NULL)
2861 		ire_dep_invalidate_children(ire->ire_dep_children);
2862 
2863 	/*
2864 	 * Since the parent is gone we make sure we clear ire_nce_cache.
2865 	 * We can clear it under ire_lock even if the IRE is used
2866 	 */
2867 	mutex_enter(&ire->ire_lock);
2868 	nce = ire->ire_nce_cache;
2869 	ire->ire_nce_cache = NULL;
2870 	mutex_exit(&ire->ire_lock);
2871 	if (nce != NULL)
2872 		nce_refrele(nce);
2873 
2874 #ifdef DEBUG
2875 	ire_dep_verify(ire);
2876 	ire_dep_verify(parent);
2877 #endif
2878 
2879 	ire_refrele_notr(parent);
2880 	ire_refrele_notr(ire);
2881 }
2882 
2883 /*
2884  * Insert the child in the linkage of the parent
2885  */
2886 static void
2887 ire_dep_parent_insert(ire_t *child, ire_t *parent)
2888 {
2889 	ip_stack_t	*ipst = child->ire_ipst;
2890 	ire_t		*next;
2891 
2892 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
2893 	ASSERT(child->ire_dep_parent == NULL);
2894 
2895 #ifdef DEBUG
2896 	ire_dep_verify(child);
2897 	ire_dep_verify(parent);
2898 #endif
2899 	/* No parents => no siblings */
2900 	ASSERT(child->ire_dep_sib_ptpn == NULL);
2901 	ASSERT(child->ire_dep_sib_next == NULL);
2902 
2903 	ire_refhold_notr(parent);
2904 	ire_refhold_notr(child);
2905 
2906 	/* Head insertion */
2907 	next = parent->ire_dep_children;
2908 	if (next != NULL) {
2909 		ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children));
2910 		child->ire_dep_sib_next = next;
2911 		next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next);
2912 	}
2913 	parent->ire_dep_children = child;
2914 	child->ire_dep_sib_ptpn = &(parent->ire_dep_children);
2915 
2916 	mutex_enter(&child->ire_lock);
2917 	child->ire_dep_parent = parent;
2918 	mutex_exit(&child->ire_lock);
2919 
2920 #ifdef DEBUG
2921 	ire_dep_verify(child);
2922 	ire_dep_verify(parent);
2923 #endif
2924 }
2925 
2926 
2927 /*
2928  * Given count worth of ires and generations, build ire_dep_* relationships
2929  * from ires[0] to ires[count-1]. Record generations[i+1] in
2930  * ire_dep_parent_generation for ires[i].
2931  * We graft onto an existing parent chain by making sure that we don't
2932  * touch ire_dep_parent for ires[count-1].
2933  *
2934  * We check for any condemned ire_generation count and return B_FALSE in
2935  * that case so that the caller can tear it apart.
2936  *
2937  * Note that generations[0] is not used. Caller handles that.
2938  */
2939 boolean_t
2940 ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count)
2941 {
2942 	ire_t		*ire = ires[0];
2943 	ip_stack_t	*ipst;
2944 	uint_t		i;
2945 
2946 	ASSERT(count > 0);
2947 	if (count == 1) {
2948 		/* No work to do */
2949 		return (B_TRUE);
2950 	}
2951 	ipst = ire->ire_ipst;
2952 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
2953 	/*
2954 	 * Do not remove the linkage for any existing parent chain i.e.,
2955 	 * ires[count-1] is left alone.
2956 	 */
2957 	for (i = 0; i < count-1; i++) {
2958 		/* Remove existing parent if we need to change it */
2959 		if (ires[i]->ire_dep_parent != NULL &&
2960 		    ires[i]->ire_dep_parent != ires[i+1])
2961 			ire_dep_remove(ires[i]);
2962 	}
2963 
2964 	for (i = 0; i < count - 1; i++) {
2965 		ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
2966 		    ires[i]->ire_ipversion == IPV6_VERSION);
2967 		/* Does it need to change? */
2968 		if (ires[i]->ire_dep_parent != ires[i+1])
2969 			ire_dep_parent_insert(ires[i], ires[i+1]);
2970 
2971 		mutex_enter(&ires[i+1]->ire_lock);
2972 		if (IRE_IS_CONDEMNED(ires[i+1])) {
2973 			mutex_exit(&ires[i+1]->ire_lock);
2974 			rw_exit(&ipst->ips_ire_dep_lock);
2975 			return (B_FALSE);
2976 		}
2977 		mutex_exit(&ires[i+1]->ire_lock);
2978 
2979 		mutex_enter(&ires[i]->ire_lock);
2980 		ires[i]->ire_dep_parent_generation = generations[i+1];
2981 		mutex_exit(&ires[i]->ire_lock);
2982 	}
2983 	rw_exit(&ipst->ips_ire_dep_lock);
2984 	return (B_TRUE);
2985 }
2986 
2987 /*
2988  * Given count worth of ires, unbuild ire_dep_* relationships
2989  * from ires[0] to ires[count-1].
2990  */
2991 void
2992 ire_dep_unbuild(ire_t *ires[], uint_t count)
2993 {
2994 	ip_stack_t	*ipst;
2995 	uint_t		i;
2996 
2997 	if (count == 0) {
2998 		/* No work to do */
2999 		return;
3000 	}
3001 	ipst = ires[0]->ire_ipst;
3002 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
3003 	for (i = 0; i < count; i++) {
3004 		ASSERT(ires[i]->ire_ipversion == IPV4_VERSION ||
3005 		    ires[i]->ire_ipversion == IPV6_VERSION);
3006 		if (ires[i]->ire_dep_parent != NULL)
3007 			ire_dep_remove(ires[i]);
3008 		mutex_enter(&ires[i]->ire_lock);
3009 		ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3010 		mutex_exit(&ires[i]->ire_lock);
3011 	}
3012 	rw_exit(&ipst->ips_ire_dep_lock);
3013 }
3014 
3015 /*
3016  * Both the forwarding and the outbound code paths can trip on
3017  * a condemned NCE, in which case we call this function.
3018  * We have two different behaviors: if the NCE was UNREACHABLE
3019  * it is an indication that something failed. In that case
3020  * we see if we should look for a different IRE (for example,
3021  * delete any matching redirect IRE, or try a different
3022  * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully
3023  * different IRE will be picked next time we send/forward.
3024  *
3025  * If we are called by the output path then fail_if_better is set
3026  * and we return NULL if there could be a better IRE. This is because the
3027  * output path retries the IRE lookup. (The input/forward path can not retry.)
3028  *
3029  * If the NCE was not unreachable then we pick/allocate a
3030  * new (most likely ND_INITIAL) NCE and proceed with it.
3031  *
3032  * ipha/ip6h are needed for multicast packets; ipha needs to be
3033  * set for IPv4 and ip6h needs to be set for IPv6 packets.
3034  */
3035 nce_t *
3036 ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h,
3037     boolean_t fail_if_better)
3038 {
3039 	if (nce->nce_common->ncec_state == ND_UNREACHABLE) {
3040 		if (ire_no_good(ire) && fail_if_better) {
3041 			/*
3042 			 * Did some changes, or ECMP likely to exist.
3043 			 * Make ip_output look for a different IRE
3044 			 */
3045 			return (NULL);
3046 		}
3047 	}
3048 	if (ire_revalidate_nce(ire) == ENETUNREACH) {
3049 		/* The ire_dep_parent chain went bad, or no memory? */
3050 		(void) ire_no_good(ire);
3051 		return (NULL);
3052 	}
3053 	if (ire->ire_ipversion == IPV4_VERSION) {
3054 		ASSERT(ipha != NULL);
3055 		nce = ire_to_nce(ire, ipha->ipha_dst, NULL);
3056 	} else {
3057 		ASSERT(ip6h != NULL);
3058 		nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst);
3059 	}
3060 
3061 	if (nce == NULL)
3062 		return (NULL);
3063 	if (nce->nce_is_condemned) {
3064 		nce_refrele(nce);
3065 		return (NULL);
3066 	}
3067 	return (nce);
3068 }
3069 
3070 /*
3071  * The caller has found that the ire is bad, either due to a reference to an NCE
3072  * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved.
3073  * We update things so a subsequent attempt to send to the destination
3074  * is likely to find different IRE, or that a new NCE would be created.
3075  *
3076  * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would
3077  * find a different route (either due to having deleted a redirect, or there
3078  * being ECMP routes.)
3079  *
3080  * If we have a redirect (RTF_DYNAMIC) we delete it.
3081  * Otherwise we increment ire_badcnt and increment the generation number so
3082  * that a cached ixa_ire will redo the route selection. ire_badcnt is taken
3083  * into account in the route selection when we have multiple choices (multiple
3084  * default routes or ECMP in general).
3085  * Any time ip_select_route find an ire with a condemned ire_nce_cache
3086  * (e.g., if no equal cost route to the bad one) ip_select_route will make
3087  * sure the NCE is revalidated to avoid getting stuck on a
3088  * NCE_F_CONDMNED ncec that caused ire_no_good to be called.
3089  */
3090 boolean_t
3091 ire_no_good(ire_t *ire)
3092 {
3093 	ip_stack_t	*ipst = ire->ire_ipst;
3094 	ire_t		*ire2;
3095 	nce_t		*nce;
3096 
3097 	if (ire->ire_flags & RTF_DYNAMIC) {
3098 		ire_delete(ire);
3099 		return (B_TRUE);
3100 	}
3101 	if (ire->ire_flags & RTF_INDIRECT) {
3102 		/* Check if next IRE is a redirect */
3103 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3104 		if (ire->ire_dep_parent != NULL &&
3105 		    (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) {
3106 			ire2 = ire->ire_dep_parent;
3107 			ire_refhold(ire2);
3108 		} else {
3109 			ire2 = NULL;
3110 		}
3111 		rw_exit(&ipst->ips_ire_dep_lock);
3112 		if (ire2 != NULL) {
3113 			ire_delete(ire2);
3114 			ire_refrele(ire2);
3115 			return (B_TRUE);
3116 		}
3117 	}
3118 	/*
3119 	 * No redirect involved. Increment badcnt so that if we have ECMP
3120 	 * routes we are likely to pick a different one for the next packet.
3121 	 *
3122 	 * If the NCE is unreachable and condemned we should drop the reference
3123 	 * to it so that a new NCE can be created.
3124 	 *
3125 	 * Finally we increment the generation number so that any ixa_ire
3126 	 * cache will be revalidated.
3127 	 */
3128 	mutex_enter(&ire->ire_lock);
3129 	ire->ire_badcnt++;
3130 	ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64());
3131 	nce = ire->ire_nce_cache;
3132 	if (nce != NULL && nce->nce_is_condemned &&
3133 	    nce->nce_common->ncec_state == ND_UNREACHABLE)
3134 		ire->ire_nce_cache = NULL;
3135 	else
3136 		nce = NULL;
3137 	mutex_exit(&ire->ire_lock);
3138 	if (nce != NULL)
3139 		nce_refrele(nce);
3140 
3141 	ire_increment_generation(ire);
3142 	ire_dep_incr_generation(ire);
3143 
3144 	return (ire->ire_bucket->irb_ire_cnt > 1);
3145 }
3146 
3147 /*
3148  * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation ==
3149  * ire_dep_parent_generation.
3150  * If they all match we just return ire_generation from the topmost IRE.
3151  * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation
3152  * above the mismatch to IRE_GENERATION_VERIFY and also returning
3153  * IRE_GENERATION_VERIFY.
3154  */
3155 uint_t
3156 ire_dep_validate_generations(ire_t *ire)
3157 {
3158 	ip_stack_t	*ipst = ire->ire_ipst;
3159 	uint_t		generation;
3160 	ire_t		*ire1;
3161 
3162 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3163 	generation = ire->ire_generation;	/* Assuming things match */
3164 	for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) {
3165 		ASSERT(ire1->ire_ipversion == IPV4_VERSION ||
3166 		    ire1->ire_ipversion == IPV6_VERSION);
3167 		if (ire1->ire_dep_parent == NULL)
3168 			break;
3169 		if (ire1->ire_dep_parent_generation !=
3170 		    ire1->ire_dep_parent->ire_generation)
3171 			goto mismatch;
3172 	}
3173 	rw_exit(&ipst->ips_ire_dep_lock);
3174 	return (generation);
3175 
3176 mismatch:
3177 	generation = IRE_GENERATION_VERIFY;
3178 	/* Fill from top down to the mismatch with _VERIFY */
3179 	while (ire != ire1) {
3180 		ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3181 		    ire->ire_ipversion == IPV6_VERSION);
3182 		mutex_enter(&ire->ire_lock);
3183 		ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3184 		mutex_exit(&ire->ire_lock);
3185 		ire = ire->ire_dep_parent;
3186 	}
3187 	rw_exit(&ipst->ips_ire_dep_lock);
3188 	return (generation);
3189 }
3190 
3191 /*
3192  * Used when we need to return an ire with ire_dep_parent, but we
3193  * know the chain is invalid for instance we didn't create an IRE_IF_CLONE
3194  * Using IRE_GENERATION_VERIFY means that next time we'll redo the
3195  * recursive lookup.
3196  */
3197 void
3198 ire_dep_invalidate_generations(ire_t *ire)
3199 {
3200 	ip_stack_t	*ipst = ire->ire_ipst;
3201 
3202 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3203 	while (ire != NULL) {
3204 		ASSERT(ire->ire_ipversion == IPV4_VERSION ||
3205 		    ire->ire_ipversion == IPV6_VERSION);
3206 		mutex_enter(&ire->ire_lock);
3207 		ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3208 		mutex_exit(&ire->ire_lock);
3209 		ire = ire->ire_dep_parent;
3210 	}
3211 	rw_exit(&ipst->ips_ire_dep_lock);
3212 }
3213 
3214 /* Set _VERIFY ire_dep_parent_generation for all children recursively */
3215 static void
3216 ire_dep_invalidate_children(ire_t *child)
3217 {
3218 	ip_stack_t	*ipst = child->ire_ipst;
3219 
3220 	ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock));
3221 	/* Depth first */
3222 	if (child->ire_dep_children != NULL)
3223 		ire_dep_invalidate_children(child->ire_dep_children);
3224 
3225 	while (child != NULL) {
3226 		mutex_enter(&child->ire_lock);
3227 		child->ire_dep_parent_generation = IRE_GENERATION_VERIFY;
3228 		mutex_exit(&child->ire_lock);
3229 		child = child->ire_dep_sib_next;
3230 	}
3231 }
3232 
3233 static void
3234 ire_dep_increment_children(ire_t *child)
3235 {
3236 	ip_stack_t	*ipst = child->ire_ipst;
3237 
3238 	ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock));
3239 	/* Depth first */
3240 	if (child->ire_dep_children != NULL)
3241 		ire_dep_increment_children(child->ire_dep_children);
3242 
3243 	while (child != NULL) {
3244 		if (!IRE_IS_CONDEMNED(child))
3245 			ire_increment_generation(child);
3246 		child = child->ire_dep_sib_next;
3247 	}
3248 }
3249 
3250 /*
3251  * Walk all the children of this ire recursively and increment their
3252  * generation number.
3253  */
3254 static void
3255 ire_dep_incr_generation_locked(ire_t *parent)
3256 {
3257 	ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock));
3258 	if (parent->ire_dep_children != NULL)
3259 		ire_dep_increment_children(parent->ire_dep_children);
3260 }
3261 
3262 void
3263 ire_dep_incr_generation(ire_t *parent)
3264 {
3265 	ip_stack_t	*ipst = parent->ire_ipst;
3266 
3267 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3268 	ire_dep_incr_generation_locked(parent);
3269 	rw_exit(&ipst->ips_ire_dep_lock);
3270 }
3271 
3272 /*
3273  * Get a new ire_nce_cache for this IRE as well as its nexthop.
3274  * Returns zero if it succeeds. Can fail due to lack of memory or when
3275  * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those
3276  * cases.
3277  *
3278  * In the in.mpathd case, the ire will have ire_testhidden
3279  * set; so we should create the ncec for the underlying ill.
3280  *
3281  * Note that the error returned by ire_revalidate_nce() is ignored by most
3282  * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH
3283  * error to mark potentially bad ire's. For all the other callers, an
3284  * error return could indicate a transient condition like ENOMEM, or could
3285  * be the result of an interface that is going down/unplumbing. In the former
3286  * case (transient error), we would leave the old stale ire/ire_nce_cache
3287  * in place, and possibly use incorrect link-layer information to send packets
3288  * but would eventually recover. In the latter case (ill down/replumb),
3289  * ire_revalidate_nce() might return a condemned nce back, but we would then
3290  * recover in the packet output path.
3291  */
3292 int
3293 ire_revalidate_nce(ire_t *ire)
3294 {
3295 	nce_t		*nce, *old_nce;
3296 	ire_t		*nexthop;
3297 
3298 	/*
3299 	 * For multicast we conceptually have an NCE but we don't store it
3300 	 * in ire_nce_cache; when ire_to_nce is called we allocate the nce.
3301 	 */
3302 	if (ire->ire_type & IRE_MULTICAST)
3303 		return (0);
3304 
3305 	/* ire_testhidden should only be set on under-interfaces */
3306 	ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3307 
3308 	nexthop = ire_nexthop(ire);
3309 	if (nexthop == NULL) {
3310 		/* The route is potentially bad */
3311 		(void) ire_no_good(ire);
3312 		return (ENETUNREACH);
3313 	}
3314 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3315 		ASSERT(ire->ire_ill != NULL);
3316 
3317 		if (ire->ire_ipversion == IPV4_VERSION)
3318 			nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr);
3319 		else
3320 			nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6);
3321 	} else {
3322 		ASSERT(nexthop->ire_type & IRE_ONLINK);
3323 		if (ire->ire_ipversion == IPV4_VERSION) {
3324 			nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr,
3325 			    nexthop->ire_type);
3326 		} else {
3327 			nce = ndp_nce_init(nexthop->ire_ill,
3328 			    &nexthop->ire_addr_v6, nexthop->ire_type);
3329 		}
3330 	}
3331 	if (nce == NULL) {
3332 		/*
3333 		 * Leave the old stale one in place to avoid a NULL
3334 		 * ire_nce_cache.
3335 		 */
3336 		ire_refrele(nexthop);
3337 		return (ENOMEM);
3338 	}
3339 
3340 	if (nexthop != ire) {
3341 		/* Update the nexthop ire */
3342 		mutex_enter(&nexthop->ire_lock);
3343 		old_nce = nexthop->ire_nce_cache;
3344 		if (!IRE_IS_CONDEMNED(nexthop)) {
3345 			nce_refhold(nce);
3346 			nexthop->ire_nce_cache = nce;
3347 		} else {
3348 			nexthop->ire_nce_cache = NULL;
3349 		}
3350 		mutex_exit(&nexthop->ire_lock);
3351 		if (old_nce != NULL)
3352 			nce_refrele(old_nce);
3353 	}
3354 	ire_refrele(nexthop);
3355 
3356 	mutex_enter(&ire->ire_lock);
3357 	old_nce = ire->ire_nce_cache;
3358 	if (!IRE_IS_CONDEMNED(ire)) {
3359 		nce_refhold(nce);
3360 		ire->ire_nce_cache = nce;
3361 	} else {
3362 		ire->ire_nce_cache = NULL;
3363 	}
3364 	mutex_exit(&ire->ire_lock);
3365 	if (old_nce != NULL)
3366 		nce_refrele(old_nce);
3367 
3368 	nce_refrele(nce);
3369 	return (0);
3370 }
3371 
3372 /*
3373  * Get a held nce for a given ire.
3374  * In the common case this is just from ire_nce_cache.
3375  * For IRE_MULTICAST this needs to do an explicit lookup since we do not
3376  * have an IRE_MULTICAST per address.
3377  * Note that this explicitly returns CONDEMNED NCEs. The caller needs those
3378  * so they can check whether the NCE went unreachable (as opposed to was
3379  * condemned for some other reason).
3380  */
3381 nce_t *
3382 ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop)
3383 {
3384 	nce_t	*nce;
3385 
3386 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
3387 		return (NULL);
3388 
3389 	/* ire_testhidden should only be set on under-interfaces */
3390 	ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill));
3391 
3392 	mutex_enter(&ire->ire_lock);
3393 	nce = ire->ire_nce_cache;
3394 	if (nce != NULL) {
3395 		nce_refhold(nce);
3396 		mutex_exit(&ire->ire_lock);
3397 		return (nce);
3398 	}
3399 	mutex_exit(&ire->ire_lock);
3400 
3401 	if (ire->ire_type & IRE_MULTICAST) {
3402 		ASSERT(ire->ire_ill != NULL);
3403 
3404 		if (ire->ire_ipversion == IPV4_VERSION) {
3405 			ASSERT(v6nexthop == NULL);
3406 
3407 			nce = arp_nce_init(ire->ire_ill, v4nexthop,
3408 			    ire->ire_type);
3409 		} else {
3410 			ASSERT(v6nexthop != NULL);
3411 			ASSERT(v4nexthop == 0);
3412 			nce = ndp_nce_init(ire->ire_ill, v6nexthop,
3413 			    ire->ire_type);
3414 		}
3415 		return (nce);
3416 	}
3417 	return (NULL);
3418 }
3419 
3420 nce_t *
3421 ire_to_nce_pkt(ire_t *ire, mblk_t *mp)
3422 {
3423 	ipha_t		*ipha;
3424 	ip6_t		*ip6h;
3425 
3426 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
3427 		ipha = (ipha_t *)mp->b_rptr;
3428 		return (ire_to_nce(ire, ipha->ipha_dst, NULL));
3429 	} else {
3430 		ip6h = (ip6_t *)mp->b_rptr;
3431 		return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst));
3432 	}
3433 }
3434 
3435 /*
3436  * Given an IRE_INTERFACE (that matches more than one address) create
3437  * and return an IRE_IF_CLONE for the specific address.
3438  * Return the generation number.
3439  * Returns NULL is no memory for the IRE.
3440  * Handles both IPv4 and IPv6.
3441  */
3442 ire_t *
3443 ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp)
3444 {
3445 	ire_t		*ire;
3446 	ire_t		*nire;
3447 
3448 	if (ire_if->ire_ipversion == IPV4_VERSION) {
3449 		ipaddr_t	v4addr;
3450 		ipaddr_t	mask = IP_HOST_MASK;
3451 
3452 		ASSERT(IN6_IS_ADDR_V4MAPPED(addr));
3453 		IN6_V4MAPPED_TO_IPADDR(addr, v4addr);
3454 
3455 		ire = ire_create(
3456 		    (uchar_t *)&v4addr,			/* dest address */
3457 		    (uchar_t *)&mask,			/* mask */
3458 		    (uchar_t *)&ire_if->ire_gateway_addr,
3459 		    IRE_IF_CLONE,			/* IRE type */
3460 		    ire_if->ire_ill,
3461 		    ire_if->ire_zoneid,
3462 		    ire_if->ire_flags | RTF_HOST,
3463 		    NULL,		/* No security attr for IRE_IF_ALL */
3464 		    ire_if->ire_ipst);
3465 	} else {
3466 		ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
3467 		ire = ire_create_v6(
3468 		    addr,				/* dest address */
3469 		    &ipv6_all_ones,			/* mask */
3470 		    &ire_if->ire_gateway_addr_v6,	/* gateway addr */
3471 		    IRE_IF_CLONE,			/* IRE type */
3472 		    ire_if->ire_ill,
3473 		    ire_if->ire_zoneid,
3474 		    ire_if->ire_flags | RTF_HOST,
3475 		    NULL,		/* No security attr for IRE_IF_ALL */
3476 		    ire_if->ire_ipst);
3477 	}
3478 	if (ire == NULL)
3479 		return (NULL);
3480 
3481 	/* Take the metrics, in particular the mtu, from the IRE_IF */
3482 	ire->ire_metrics = ire_if->ire_metrics;
3483 
3484 	nire = ire_add(ire);
3485 	if (nire == NULL) /* Some failure */
3486 		return (NULL);
3487 
3488 	if (generationp != NULL)
3489 		*generationp = nire->ire_generation;
3490 
3491 	/*
3492 	 * Make sure races don't add a duplicate by
3493 	 * catching the case when an identical was returned.
3494 	 */
3495 	if (nire != ire) {
3496 		ASSERT(nire->ire_identical_ref > 1);
3497 		ire_delete(nire);
3498 	}
3499 	return (nire);
3500 }
3501 
3502 /*
3503  * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the
3504  * ire_dep_children (just walk the ire_dep_sib_next since they are all
3505  * immediate children.)
3506  * Since we hold a lock while we remove them we need to defer the actual
3507  * calls to ire_delete() until we have dropped the lock. This makes things
3508  * less efficient since we restart at the top after dropping the lock. But
3509  * we only run when an IRE_INTERFACE is deleted which is infrquent.
3510  *
3511  * Note that ire_dep_children can be any mixture of offlink routes and
3512  * IRE_IF_CLONE entries.
3513  */
3514 void
3515 ire_dep_delete_if_clone(ire_t *parent)
3516 {
3517 	ip_stack_t	*ipst = parent->ire_ipst;
3518 	ire_t		*child, *next;
3519 
3520 restart:
3521 	rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
3522 	if (parent->ire_dep_children == NULL) {
3523 		rw_exit(&ipst->ips_ire_dep_lock);
3524 		return;
3525 	}
3526 	child = parent->ire_dep_children;
3527 	while (child != NULL) {
3528 		next = child->ire_dep_sib_next;
3529 		if ((child->ire_type & IRE_IF_CLONE) &&
3530 		    !IRE_IS_CONDEMNED(child)) {
3531 			ire_refhold(child);
3532 			rw_exit(&ipst->ips_ire_dep_lock);
3533 			ire_delete(child);
3534 			ASSERT(IRE_IS_CONDEMNED(child));
3535 			ire_refrele(child);
3536 			goto restart;
3537 		}
3538 		child = next;
3539 	}
3540 	rw_exit(&ipst->ips_ire_dep_lock);
3541 }
3542 
3543 /*
3544  * ire_pref() is used in recursive route-resolution for a destination to
3545  * determine the preference of an ire, where "preference" is determined
3546  * based on the level of indirection to the destination of the ire.
3547  * A higher preference indicates that fewer lookups are needed to complete
3548  * recursive route lookup. Thus
3549  * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE)
3550  */
3551 int
3552 ire_pref(ire_t *ire)
3553 {
3554 	if (ire->ire_flags & RTF_INDIRECT)
3555 		return (1);
3556 	if (ire->ire_type & IRE_OFFLINK)
3557 		return (2);
3558 	if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER))
3559 		return (3);
3560 	if (ire->ire_type & IRE_IF_CLONE)
3561 		return (4);
3562 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST))
3563 		return (5);
3564 	return (-1); /* unknown ire_type */
3565 }
3566