xref: /titanic_52/usr/src/uts/common/inet/ip/ip_ire.c (revision 29493bd8e037cbaea9095b34172305abb589cb6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/ddi.h>
38 #include <sys/cmn_err.h>
39 #include <sys/policy.h>
40 
41 #include <sys/systm.h>
42 #include <sys/kmem.h>
43 #include <sys/param.h>
44 #include <sys/socket.h>
45 #include <net/if.h>
46 #include <net/route.h>
47 #include <netinet/in.h>
48 #include <net/if_dl.h>
49 #include <netinet/ip6.h>
50 #include <netinet/icmp6.h>
51 
52 #include <inet/common.h>
53 #include <inet/mi.h>
54 #include <inet/ip.h>
55 #include <inet/ip6.h>
56 #include <inet/ip_ndp.h>
57 #include <inet/arp.h>
58 #include <inet/ip_if.h>
59 #include <inet/ip_ire.h>
60 #include <inet/ip_ftable.h>
61 #include <inet/ip_rts.h>
62 #include <inet/nd.h>
63 
64 #include <net/pfkeyv2.h>
65 #include <inet/ipsec_info.h>
66 #include <inet/sadb.h>
67 #include <sys/kmem.h>
68 #include <inet/tcp.h>
69 #include <inet/ipclassifier.h>
70 #include <sys/zone.h>
71 #include <sys/cpuvar.h>
72 
73 #include <sys/tsol/label.h>
74 #include <sys/tsol/tnet.h>
75 
76 struct kmem_cache *rt_entry_cache;
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the respective tables (cache or forwarding tables).
86  *
87  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
89  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_ident, ire_refcnt
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_max_frag, ire_frag_flag
117  *
118  *	- ire_lock is used to set/read both of them together.
119  *
120  * ire_tire_mark
121  *
122  *	- Set in ire_create and updated in ire_expire, which is called
123  *	  by only one function namely ip_trash_timer_expire. Thus only
124  *	  one function updates and examines the value.
125  *
126  * ire_marks
127  *	- bucket lock protects this.
128  *
129  * ire_ipsec_overhead/ire_ll_hdr_length
130  *
131  *	- Place holder for returning the information to the upper layers
132  *	  when IRE_DB_REQ comes down.
133  *
134  *
135  * ipv6_ire_default_count is protected by the bucket lock of
136  * ip_forwarding_table_v6[0][0].
137  *
138  * ipv6_ire_default_index is not protected as it  is just a hint
139  * at which default gateway to use. There is nothing
140  * wrong in using the same gateway for two different connections.
141  *
142  * As we always hold the bucket locks in all the places while accessing
143  * the above values, it is natural to use them for protecting them.
144  *
145  * We have a separate cache table and forwarding table for IPv4 and IPv6.
146  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
147  * array of irb_t structures. The IPv6 forwarding table
148  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
149  *  structure. ip_forwarding_table_v6 is allocated dynamically in
150  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
151  * initializing the same bucket. Once a bucket is initialized, it is never
152  * de-alloacted. This assumption enables us to access
153  * ip_forwarding_table_v6[i] without any locks.
154  *
155  * The forwarding table for IPv4 is a radix tree whose leaves
156  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
157  * for IPv4 is dynamically allocated and freed.
158  *
159  * Each irb_t - ire bucket structure has a lock to protect
160  * a bucket and the ires residing in the bucket have a back pointer to
161  * the bucket structure. It also has a reference count for the number
162  * of threads walking the bucket - irb_refcnt which is bumped up
163  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
164  * set to IRE_MARK_CONDEMNED indicating that there are some ires
165  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
166  * last thread to leave the bucket should delete the ires. Usually
167  * this is done by the IRB_REFRELE macro which is used to decrement
168  * the reference count on a bucket. See comments above irb_t structure
169  * definition in ip.h for further details.
170  *
171  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
172  * decrements the reference count, ire_refcnt, atomically on the ire.
173  * ire_refcnt is modified only using this macro. Operations on the IRE
174  * could be described as follows :
175  *
176  * CREATE an ire with reference count initialized to 1.
177  *
178  * ADDITION of an ire holds the bucket lock, checks for duplicates
179  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
180  * bumping up once more i.e the reference count is 2. This is to avoid
181  * an extra lookup in the functions calling ire_add which wants to
182  * work with the ire after adding.
183  *
184  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
185  * macro. It is valid to bump up the referece count of the IRE,
186  * after the lookup has returned an ire. Following are the lookup
187  * functions that return an HELD ire :
188  *
189  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
190  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
191  * ipif_to_ire[_v6].
192  *
193  * DELETION of an ire holds the bucket lock, removes it from the list
194  * and then decrements the reference count for having removed from the list
195  * by using the IRE_REFRELE macro. If some other thread has looked up
196  * the ire, the reference count would have been bumped up and hence
197  * this ire will not be freed once deleted. It will be freed once the
198  * reference count drops to zero.
199  *
200  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
201  * lookups acquire the bucket lock as RW_READER.
202  *
203  * NOTE : The only functions that does the IRE_REFRELE when an ire is
204  *	  passed as an argument are :
205  *
206  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
207  *			   broadcast ires it looks up internally within
208  *			   the function. Currently, for simplicity it does
209  *			   not differentiate the one that is passed in and
210  *			   the ones it looks up internally. It always
211  *			   IRE_REFRELEs.
212  *	  2) ire_send
213  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
214  *			   that take ire as an argument, it has to selectively
215  *			   IRE_REFRELE the ire. To maintain symmetry,
216  *			   ire_send_v6 does the same.
217  *
218  * Otherwise, the general rule is to do the IRE_REFRELE in the function
219  * that is passing the ire as an argument.
220  *
221  * In trying to locate ires the following points are to be noted.
222  *
223  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
224  * to be ignored when walking the ires using ire_next.
225  *
226  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
227  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
228  * applications should not be seeing this ire and hence this ire is ignored
229  * in most cases in the search using ire_next.
230  *
231  * Zones note:
232  *	Walking IREs within a given zone also walks certain ires in other
233  *	zones.  This is done intentionally.  IRE walks with a specified
234  *	zoneid are used only when doing informational reports, and
235  *	zone users want to see things that they can access. See block
236  *	comment in ire_walk_ill_match().
237  */
238 
239 /*
240  * The minimum size of IRE cache table.  It will be recalcuated in
241  * ip_ire_init().
242  * Setable in /etc/system
243  */
244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
246 
247 /*
248  * The size of the forwarding table.  We will make sure that it is a
249  * power of 2 in ip_ire_init().
250  * Setable in /etc/system
251  */
252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
253 
254 struct	kmem_cache	*ire_cache;
255 static ire_t	ire_null;
256 
257 /*
258  * The threshold number of IRE in a bucket when the IREs are
259  * cleaned up.  This threshold is calculated later in ip_open()
260  * based on the speed of CPU and available memory.  This default
261  * value is the maximum.
262  *
263  * We have two kinds of cached IRE, temporary and
264  * non-temporary.  Temporary IREs are marked with
265  * IRE_MARK_TEMPORARY.  They are IREs created for non
266  * TCP traffic and for forwarding purposes.  All others
267  * are non-temporary IREs.  We don't mark IRE created for
268  * TCP as temporary because TCP is stateful and there are
269  * info stored in the IRE which can be shared by other TCP
270  * connections to the same destination.  For connected
271  * endpoint, we also don't want to mark the IRE used as
272  * temporary because the same IRE will be used frequently,
273  * otherwise, the app should not do a connect().  We change
274  * the marking at ip_bind_connected_*() if necessary.
275  *
276  * We want to keep the cache IRE hash bucket length reasonably
277  * short, otherwise IRE lookup functions will take "forever."
278  * We use the "crude" function that the IRE bucket
279  * length should be based on the CPU speed, which is 1 entry
280  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
281  * (n).  This means that with a 750MHz CPU, the max bucket
282  * length can be (750 >> n) entries.
283  *
284  * Note that this threshold is separate for temp and non-temp
285  * IREs.  This means that the actual bucket length can be
286  * twice as that.  And while we try to keep temporary IRE
287  * length at most at the threshold value, we do not attempt to
288  * make the length for non-temporary IREs fixed, for the
289  * reason stated above.  Instead, we start trying to find
290  * "unused" non-temporary IREs when the bucket length reaches
291  * this threshold and clean them up.
292  *
293  * We also want to limit the amount of memory used by
294  * IREs.  So if we are allowed to use ~3% of memory (M)
295  * for those IREs, each bucket should not have more than
296  *
297  * 	M / num of cache bucket / sizeof (ire_t)
298  *
299  * Again the above memory uses are separate for temp and
300  * non-temp cached IREs.
301  *
302  * We may also want the limit to be a function of the number
303  * of interfaces and number of CPUs.  Doing the initialization
304  * in ip_open() means that every time an interface is plumbed,
305  * the max is re-calculated.  Right now, we don't do anything
306  * different.  In future, when we have more experience, we
307  * may want to change this behavior.
308  */
309 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
310 uint32_t ip6_ire_max_bucket_cnt = 10;
311 uint32_t ip_ire_cleanup_cnt = 2;
312 
313 /*
314  * The minimum of the temporary IRE bucket count.  We do not want
315  * the length of each bucket to be too short.  This may hurt
316  * performance of some apps as the temporary IREs are removed too
317  * often.
318  */
319 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
320 uint32_t ip6_ire_min_bucket_cnt = 3;
321 
322 /*
323  * The ratio of memory consumed by IRE used for temporary to available
324  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
325  * value can be changed in /etc/system.  6 is a reasonable number.
326  */
327 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
329 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
330 
331 typedef struct nce_clookup_s {
332 	ipaddr_t ncecl_addr;
333 	boolean_t ncecl_found;
334 } nce_clookup_t;
335 
336 /*
337  * The maximum number of buckets in IRE cache table.  In future, we may
338  * want to make it a dynamic hash table.  For the moment, we fix the
339  * size and allocate the table in ip_ire_init() when IP is first loaded.
340  * We take into account the amount of memory a system has.
341  */
342 #define	IP_MAX_CACHE_TABLE_SIZE	4096
343 
344 /* Setable in /etc/system */
345 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
346 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
347 
348 #define	NUM_ILLS	2	/* To build the ILL list to unlock */
349 
350 /* Zero iulp_t for initialization. */
351 const iulp_t	ire_uinfo_null = { 0 };
352 
353 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
354     ipsq_func_t func, boolean_t);
355 static void	ire_delete_v4(ire_t *ire);
356 static void	ire_report_ctable(ire_t *ire, char *mp);
357 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
358     zoneid_t zoneid, ip_stack_t *);
359 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
360     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
361 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold,
362     ire_t *ref_ire);
363 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
364 #ifdef DEBUG
365 static void	ire_trace_cleanup(const ire_t *);
366 #endif
367 
368 /*
369  * To avoid bloating the code, we call this function instead of
370  * using the macro IRE_REFRELE. Use macro only in performance
371  * critical paths.
372  *
373  * Must not be called while holding any locks. Otherwise if this is
374  * the last reference to be released there is a chance of recursive mutex
375  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
376  * to restart an ioctl. The one exception is when the caller is sure that
377  * this is not the last reference to be released. Eg. if the caller is
378  * sure that the ire has not been deleted and won't be deleted.
379  */
380 void
381 ire_refrele(ire_t *ire)
382 {
383 	IRE_REFRELE(ire);
384 }
385 
386 void
387 ire_refrele_notr(ire_t *ire)
388 {
389 	IRE_REFRELE_NOTR(ire);
390 }
391 
392 /*
393  * kmem_cache_alloc constructor for IRE in kma space.
394  * Note that when ire_mp is set the IRE is stored in that mblk and
395  * not in this cache.
396  */
397 /* ARGSUSED */
398 static int
399 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
400 {
401 	ire_t	*ire = buf;
402 
403 	ire->ire_nce = NULL;
404 
405 	return (0);
406 }
407 
408 /* ARGSUSED1 */
409 static void
410 ip_ire_destructor(void *buf, void *cdrarg)
411 {
412 	ire_t	*ire = buf;
413 
414 	ASSERT(ire->ire_nce == NULL);
415 }
416 
417 /*
418  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
419  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
420  * for an existing CACHED IRE.
421  */
422 /* ARGSUSED */
423 int
424 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
425 {
426 	uchar_t	*addr_ucp;
427 	ipic_t	*ipic;
428 	ire_t	*ire;
429 	ipaddr_t	addr;
430 	in6_addr_t	v6addr;
431 	irb_t	*irb;
432 	zoneid_t	zoneid;
433 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
434 
435 	ASSERT(q->q_next == NULL);
436 	zoneid = Q_TO_CONN(q)->conn_zoneid;
437 
438 	/*
439 	 * Check privilege using the ioctl credential; if it is NULL
440 	 * then this is a kernel message and therefor privileged.
441 	 */
442 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
443 		return (EPERM);
444 
445 	ipic = (ipic_t *)mp->b_rptr;
446 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
447 	    ipic->ipic_addr_length))) {
448 		return (EINVAL);
449 	}
450 	if (!OK_32PTR(addr_ucp))
451 		return (EINVAL);
452 	switch (ipic->ipic_addr_length) {
453 	case IP_ADDR_LEN: {
454 		/* Extract the destination address. */
455 		addr = *(ipaddr_t *)addr_ucp;
456 		/* Find the corresponding IRE. */
457 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
458 		break;
459 	}
460 	case IPV6_ADDR_LEN: {
461 		/* Extract the destination address. */
462 		v6addr = *(in6_addr_t *)addr_ucp;
463 		/* Find the corresponding IRE. */
464 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
465 		break;
466 	}
467 	default:
468 		return (EINVAL);
469 	}
470 
471 	if (ire == NULL)
472 		return (ENOENT);
473 	/*
474 	 * Update the round trip time estimate and/or the max frag size
475 	 * and/or the slow start threshold.
476 	 *
477 	 * We serialize multiple advises using ire_lock.
478 	 */
479 	mutex_enter(&ire->ire_lock);
480 	if (ipic->ipic_rtt) {
481 		/*
482 		 * If there is no old cached values, initialize them
483 		 * conservatively.  Set them to be (1.5 * new value).
484 		 */
485 		if (ire->ire_uinfo.iulp_rtt != 0) {
486 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
487 			    ipic->ipic_rtt) >> 1;
488 		} else {
489 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
490 			    (ipic->ipic_rtt >> 1);
491 		}
492 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
493 			ire->ire_uinfo.iulp_rtt_sd =
494 			    (ire->ire_uinfo.iulp_rtt_sd +
495 			    ipic->ipic_rtt_sd) >> 1;
496 		} else {
497 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
498 			    (ipic->ipic_rtt_sd >> 1);
499 		}
500 	}
501 	if (ipic->ipic_max_frag)
502 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
503 	if (ipic->ipic_ssthresh != 0) {
504 		if (ire->ire_uinfo.iulp_ssthresh != 0)
505 			ire->ire_uinfo.iulp_ssthresh =
506 			    (ipic->ipic_ssthresh +
507 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
508 		else
509 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
510 	}
511 	/*
512 	 * Don't need the ire_lock below this. ire_type does not change
513 	 * after initialization. ire_marks is protected by irb_lock.
514 	 */
515 	mutex_exit(&ire->ire_lock);
516 
517 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
518 		/*
519 		 * Only increment the temporary IRE count if the original
520 		 * IRE is not already marked temporary.
521 		 */
522 		irb = ire->ire_bucket;
523 		rw_enter(&irb->irb_lock, RW_WRITER);
524 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
525 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
526 			irb->irb_tmp_ire_cnt++;
527 		}
528 		ire->ire_marks |= ipic->ipic_ire_marks;
529 		rw_exit(&irb->irb_lock);
530 	}
531 
532 	ire_refrele(ire);
533 	return (0);
534 }
535 
536 /*
537  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
538  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
539  * for a host that is not responding.  This will force an attempt to
540  * establish a new route, if available, and flush out the ARP entry so
541  * it will re-resolve.  Management processes may want to use the
542  * version that generates a reply.
543  *
544  * This function does not support IPv6 since Neighbor Unreachability Detection
545  * means that negative advise like this is useless.
546  */
547 /* ARGSUSED */
548 int
549 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
550 {
551 	uchar_t		*addr_ucp;
552 	ipaddr_t	addr;
553 	ire_t		*ire;
554 	ipid_t		*ipid;
555 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
556 	zoneid_t	zoneid;
557 	ire_t		*gire = NULL;
558 	ill_t		*ill;
559 	mblk_t		*arp_mp;
560 	ip_stack_t	*ipst;
561 
562 	ASSERT(q->q_next == NULL);
563 	zoneid = Q_TO_CONN(q)->conn_zoneid;
564 	ipst = CONNQ_TO_IPST(q);
565 
566 	/*
567 	 * Check privilege using the ioctl credential; if it is NULL
568 	 * then this is a kernel message and therefor privileged.
569 	 */
570 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
571 		return (EPERM);
572 
573 	ipid = (ipid_t *)mp->b_rptr;
574 
575 	/* Only actions on IRE_CACHEs are acceptable at present. */
576 	if (ipid->ipid_ire_type != IRE_CACHE)
577 		return (EINVAL);
578 
579 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
580 	    ipid->ipid_addr_length);
581 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
582 		return (EINVAL);
583 	switch (ipid->ipid_addr_length) {
584 	case IP_ADDR_LEN:
585 		/* addr_ucp points at IP addr */
586 		break;
587 	case sizeof (sin_t): {
588 		sin_t	*sin;
589 		/*
590 		 * got complete (sockaddr) address - increment addr_ucp to point
591 		 * at the ip_addr field.
592 		 */
593 		sin = (sin_t *)addr_ucp;
594 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
595 		break;
596 	}
597 	default:
598 		return (EINVAL);
599 	}
600 	/* Extract the destination address. */
601 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
602 
603 	/* Try to find the CACHED IRE. */
604 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
605 
606 	/* Nail it. */
607 	if (ire) {
608 		/* Allow delete only on CACHE entries */
609 		if (ire->ire_type != IRE_CACHE) {
610 			ire_refrele(ire);
611 			return (EINVAL);
612 		}
613 
614 		/*
615 		 * Verify that the IRE has been around for a while.
616 		 * This is to protect against transport protocols
617 		 * that are too eager in sending delete messages.
618 		 */
619 		if (gethrestime_sec() <
620 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
621 			ire_refrele(ire);
622 			return (EINVAL);
623 		}
624 		/*
625 		 * Now we have a potentially dead cache entry. We need
626 		 * to remove it.
627 		 * If this cache entry is generated from a
628 		 * default route (i.e., ire_cmask == 0),
629 		 * search the default list and mark it dead and some
630 		 * background process will try to activate it.
631 		 */
632 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
633 			/*
634 			 * Make sure that we pick a different
635 			 * IRE_DEFAULT next time.
636 			 */
637 			ire_t *gw_ire;
638 			irb_t *irb = NULL;
639 			uint_t match_flags;
640 
641 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
642 
643 			gire = ire_ftable_lookup(ire->ire_addr,
644 			    ire->ire_cmask, 0, 0,
645 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
646 			    ipst);
647 
648 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
649 			    (void *)gire));
650 
651 			if (gire != NULL) {
652 				irb = gire->ire_bucket;
653 
654 				/*
655 				 * We grab it as writer just to serialize
656 				 * multiple threads trying to bump up
657 				 * irb_rr_origin
658 				 */
659 				rw_enter(&irb->irb_lock, RW_WRITER);
660 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
661 					rw_exit(&irb->irb_lock);
662 					goto done;
663 				}
664 
665 				DTRACE_PROBE1(ip__ire__del__origin,
666 				    (ire_t *), gw_ire);
667 
668 				/* Skip past the potentially bad gateway */
669 				if (ire->ire_gateway_addr ==
670 				    gw_ire->ire_gateway_addr) {
671 					ire_t *next = gw_ire->ire_next;
672 
673 					DTRACE_PROBE2(ip__ire__del,
674 					    (ire_t *), gw_ire, (irb_t *), irb);
675 					IRE_FIND_NEXT_ORIGIN(next);
676 					irb->irb_rr_origin = next;
677 				}
678 				rw_exit(&irb->irb_lock);
679 			}
680 		}
681 done:
682 		if (gire != NULL)
683 			IRE_REFRELE(gire);
684 		/* report the bad route to routing sockets */
685 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
686 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
687 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
688 		routing_sock_info = B_TRUE;
689 
690 		/*
691 		 * TCP is really telling us to start over completely, and it
692 		 * expects that we'll resend the ARP query.  Tell ARP to
693 		 * discard the entry, if this is a local destination.
694 		 */
695 		ill = ire->ire_stq->q_ptr;
696 		if (ire->ire_gateway_addr == 0 &&
697 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
698 			putnext(ill->ill_rq, arp_mp);
699 		}
700 
701 		ire_delete(ire);
702 		ire_refrele(ire);
703 	}
704 	/*
705 	 * Also look for an IRE_HOST type redirect ire and
706 	 * remove it if present.
707 	 */
708 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
709 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
710 
711 	/* Nail it. */
712 	if (ire != NULL) {
713 		if (ire->ire_flags & RTF_DYNAMIC) {
714 			if (!routing_sock_info) {
715 				ip_rts_change(RTM_LOSING, ire->ire_addr,
716 				    ire->ire_gateway_addr, ire->ire_mask,
717 				    ire->ire_src_addr, 0, 0, 0,
718 				    (RTA_DST | RTA_GATEWAY |
719 				    RTA_NETMASK | RTA_IFA),
720 				    ipst);
721 			}
722 			ire_delete(ire);
723 		}
724 		ire_refrele(ire);
725 	}
726 	return (0);
727 }
728 
729 /*
730  * Named Dispatch routine to produce a formatted report on all IREs.
731  * This report is accessed by using the ndd utility to "get" ND variable
732  * "ipv4_ire_status".
733  */
734 /* ARGSUSED */
735 int
736 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
737 {
738 	zoneid_t zoneid;
739 	ip_stack_t	*ipst;
740 
741 	if (CONN_Q(q))
742 		ipst = CONNQ_TO_IPST(q);
743 	else
744 		ipst = ILLQ_TO_IPST(q);
745 
746 	(void) mi_mpprintf(mp,
747 	    "IRE      " MI_COL_HDRPAD_STR
748 	/*   01234567[89ABCDEF] */
749 	    "rfq      " MI_COL_HDRPAD_STR
750 	/*   01234567[89ABCDEF] */
751 	    "stq      " MI_COL_HDRPAD_STR
752 	/*   01234567[89ABCDEF] */
753 	    " zone "
754 	/*   12345 */
755 	    "addr            mask            "
756 	/*   123.123.123.123 123.123.123.123 */
757 	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
758 	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
759 	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
760 	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
761 	    "recvpipe in/out/forward type");
762 	/*   12345678 in/out/forward xxxxxxxxxx */
763 
764 	/*
765 	 * Because of the ndd constraint, at most we can have 64K buffer
766 	 * to put in all IRE info.  So to be more efficient, just
767 	 * allocate a 64K buffer here, assuming we need that large buffer.
768 	 * This should be OK as only root can do ndd /dev/ip.
769 	 */
770 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
771 		/* The following may work even if we cannot get a large buf. */
772 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
773 		return (0);
774 	}
775 
776 	zoneid = Q_TO_CONN(q)->conn_zoneid;
777 	if (zoneid == GLOBAL_ZONEID)
778 		zoneid = ALL_ZONES;
779 
780 	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst);
781 	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst);
782 
783 	return (0);
784 }
785 
786 
787 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */
788 static void
789 ire_report_ctable(ire_t *ire, char *mp)
790 {
791 	char	buf1[16];
792 	char	buf2[16];
793 	char	buf3[16];
794 	char	buf4[16];
795 	uint_t	fo_pkt_count;
796 	uint_t	ib_pkt_count;
797 	int	ref;
798 	uint_t	print_len, buf_len;
799 
800 	if ((ire->ire_type & IRE_CACHETABLE) == 0)
801 		return;
802 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
803 	if (buf_len <= 0)
804 		return;
805 
806 	/* Number of active references of this ire */
807 	ref = ire->ire_refcnt;
808 	/* "inbound" to a non local address is a forward */
809 	ib_pkt_count = ire->ire_ib_pkt_count;
810 	fo_pkt_count = 0;
811 	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
812 		fo_pkt_count = ib_pkt_count;
813 		ib_pkt_count = 0;
814 	}
815 	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
816 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
817 	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
818 	    "%04d %08d %08d %d/%d/%d %s\n",
819 	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
820 	    (int)ire->ire_zoneid,
821 	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
822 	    ip_dot_addr(ire->ire_src_addr, buf3),
823 	    ip_dot_addr(ire->ire_gateway_addr, buf4),
824 	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
825 	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
826 	    ire->ire_uinfo.iulp_rtomax,
827 	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
828 	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
829 	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
830 	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
831 	    ire->ire_uinfo.iulp_sack,
832 	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
833 	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
834 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
835 	if (print_len < buf_len) {
836 		((mblk_t *)mp)->b_wptr += print_len;
837 	} else {
838 		((mblk_t *)mp)->b_wptr += buf_len;
839 	}
840 }
841 
842 /*
843  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
844  * down from the Upper Level Protocol to request a copy of the IRE (to check
845  * its type or to extract information like round-trip time estimates or the
846  * MTU.)
847  * The address is assumed to be in the ire_addr field. If no IRE is found
848  * an IRE is returned with ire_type being zero.
849  * Note that the upper lavel protocol has to check for broadcast
850  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
851  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
852  * end of the returned message.
853  *
854  * TCP sends down a message of this type with a connection request packet
855  * chained on. UDP and ICMP send it down to verify that a route exists for
856  * the destination address when they get connected.
857  */
858 void
859 ip_ire_req(queue_t *q, mblk_t *mp)
860 {
861 	ire_t	*inire;
862 	ire_t	*ire;
863 	mblk_t	*mp1;
864 	ire_t	*sire = NULL;
865 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
866 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
867 
868 	ASSERT(q->q_next == NULL);
869 
870 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
871 	    !OK_32PTR(mp->b_rptr)) {
872 		freemsg(mp);
873 		return;
874 	}
875 	inire = (ire_t *)mp->b_rptr;
876 	/*
877 	 * Got it, now take our best shot at an IRE.
878 	 */
879 	if (inire->ire_ipversion == IPV6_VERSION) {
880 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
881 		    NULL, &sire, zoneid, NULL,
882 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
883 	} else {
884 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
885 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
886 		    NULL, &sire, zoneid, NULL,
887 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
888 	}
889 
890 	/*
891 	 * We prevent returning IRES with source address INADDR_ANY
892 	 * as these were temporarily created for sending packets
893 	 * from endpoints that have conn_unspec_src set.
894 	 */
895 	if (ire == NULL ||
896 	    (ire->ire_ipversion == IPV4_VERSION &&
897 	    ire->ire_src_addr == INADDR_ANY) ||
898 	    (ire->ire_ipversion == IPV6_VERSION &&
899 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
900 		inire->ire_type = 0;
901 	} else {
902 		bcopy(ire, inire, sizeof (ire_t));
903 		/* Copy the route metrics from the parent. */
904 		if (sire != NULL) {
905 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
906 			    sizeof (iulp_t));
907 		}
908 
909 		/*
910 		 * As we don't lookup global policy here, we may not
911 		 * pass the right size if per-socket policy is not
912 		 * present. For these cases, path mtu discovery will
913 		 * do the right thing.
914 		 */
915 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
916 
917 		/* Pass the latest setting of the ip_path_mtu_discovery */
918 		inire->ire_frag_flag |=
919 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
920 	}
921 	if (ire != NULL)
922 		ire_refrele(ire);
923 	if (sire != NULL)
924 		ire_refrele(sire);
925 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
926 	mp->b_datap->db_type = IRE_DB_TYPE;
927 
928 	/* Put the IRE_DB_TYPE mblk last in the chain */
929 	mp1 = mp->b_cont;
930 	if (mp1 != NULL) {
931 		mp->b_cont = NULL;
932 		linkb(mp1, mp);
933 		mp = mp1;
934 	}
935 	qreply(q, mp);
936 }
937 
938 /*
939  * Send a packet using the specified IRE.
940  * If ire_src_addr_v6 is all zero then discard the IRE after
941  * the packet has been sent.
942  */
943 static void
944 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
945 {
946 	mblk_t *ipsec_mp;
947 	boolean_t is_secure;
948 	uint_t ifindex;
949 	ill_t	*ill;
950 	zoneid_t zoneid = ire->ire_zoneid;
951 	ip_stack_t	*ipst = ire->ire_ipst;
952 
953 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
954 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
955 	ipsec_mp = pkt;
956 	is_secure = (pkt->b_datap->db_type == M_CTL);
957 	if (is_secure) {
958 		ipsec_out_t *io;
959 
960 		pkt = pkt->b_cont;
961 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
962 		if (io->ipsec_out_type == IPSEC_OUT)
963 			zoneid = io->ipsec_out_zoneid;
964 	}
965 
966 	/* If the packet originated externally then */
967 	if (pkt->b_prev) {
968 		ire_refrele(ire);
969 		/*
970 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
971 		 * Look up interface to see if it still exists (it could have
972 		 * been unplumbed by the time the reply came back from ARP)
973 		 */
974 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
975 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
976 		    NULL, NULL, NULL, NULL, ipst);
977 		if (ill == NULL) {
978 			pkt->b_prev = NULL;
979 			pkt->b_next = NULL;
980 			freemsg(ipsec_mp);
981 			return;
982 		}
983 		q = ill->ill_rq;
984 		pkt->b_prev = NULL;
985 		/*
986 		 * This packet has not gone through IPSEC processing
987 		 * and hence we should not have any IPSEC message
988 		 * prepended.
989 		 */
990 		ASSERT(ipsec_mp == pkt);
991 		put(q, pkt);
992 		ill_refrele(ill);
993 	} else if (pkt->b_next) {
994 		/* Packets from multicast router */
995 		pkt->b_next = NULL;
996 		/*
997 		 * We never get the IPSEC_OUT while forwarding the
998 		 * packet for multicast router.
999 		 */
1000 		ASSERT(ipsec_mp == pkt);
1001 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1002 		ire_refrele(ire);
1003 	} else {
1004 		/* Locally originated packets */
1005 		boolean_t is_inaddr_any;
1006 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1007 
1008 		/*
1009 		 * We need to do an ire_delete below for which
1010 		 * we need to make sure that the IRE will be
1011 		 * around even after calling ip_wput_ire -
1012 		 * which does ire_refrele. Otherwise somebody
1013 		 * could potentially delete this ire and hence
1014 		 * free this ire and we will be calling ire_delete
1015 		 * on a freed ire below.
1016 		 */
1017 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1018 		if (is_inaddr_any) {
1019 			IRE_REFHOLD(ire);
1020 		}
1021 		/*
1022 		 * If we were resolving a router we can not use the
1023 		 * routers IRE for sending the packet (since it would
1024 		 * violate the uniqness of the IP idents) thus we
1025 		 * make another pass through ip_wput to create the IRE_CACHE
1026 		 * for the destination.
1027 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1028 		 * Thus ip_wput() will never find a ire and result in an
1029 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1030 		 * is set. This also implies that IRE_MARK_NOADD can only be
1031 		 * used to send packets to directly connected hosts.
1032 		 */
1033 		if (ipha->ipha_dst != ire->ire_addr &&
1034 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1035 			ire_refrele(ire);	/* Held in ire_add */
1036 			if (CONN_Q(q)) {
1037 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1038 				    IRE_SEND);
1039 			} else {
1040 				(void) ip_output((void *)(uintptr_t)zoneid,
1041 				    ipsec_mp, q, IRE_SEND);
1042 			}
1043 		} else {
1044 			if (is_secure) {
1045 				ipsec_out_t *oi;
1046 				ipha_t *ipha;
1047 
1048 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1049 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1050 				if (oi->ipsec_out_proc_begin) {
1051 					/*
1052 					 * This is the case where
1053 					 * ip_wput_ipsec_out could not find
1054 					 * the IRE and recreated a new one.
1055 					 * As ip_wput_ipsec_out does ire
1056 					 * lookups, ire_refrele for the extra
1057 					 * bump in ire_add.
1058 					 */
1059 					ire_refrele(ire);
1060 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1061 					    NULL, NULL);
1062 				} else {
1063 					/*
1064 					 * IRE_REFRELE will be done in
1065 					 * ip_wput_ire.
1066 					 */
1067 					ip_wput_ire(q, ipsec_mp, ire, NULL,
1068 					    IRE_SEND, zoneid);
1069 				}
1070 			} else {
1071 				/*
1072 				 * IRE_REFRELE will be done in ip_wput_ire.
1073 				 */
1074 				ip_wput_ire(q, ipsec_mp, ire, NULL,
1075 				    IRE_SEND, zoneid);
1076 			}
1077 		}
1078 		/*
1079 		 * Special code to support sending a single packet with
1080 		 * conn_unspec_src using an IRE which has no source address.
1081 		 * The IRE is deleted here after sending the packet to avoid
1082 		 * having other code trip on it. But before we delete the
1083 		 * ire, somebody could have looked up this ire.
1084 		 * We prevent returning/using this IRE by the upper layers
1085 		 * by making checks to NULL source address in other places
1086 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1087 		 * Though, this does not completely prevent other threads
1088 		 * from using this ire, this should not cause any problems.
1089 		 *
1090 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1091 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1092 		 * above could have potentially freed the ire.
1093 		 */
1094 		if (is_inaddr_any) {
1095 			/*
1096 			 * If this IRE has been deleted by another thread, then
1097 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1098 			 * Thus, ire_delete will do nothing.  This check
1099 			 * guards against calling ire_delete when the IRE was
1100 			 * never inserted in the table, which is handled by
1101 			 * ire_delete as dropping another reference.
1102 			 */
1103 			if (ire->ire_bucket != NULL) {
1104 				ip1dbg(("ire_send: delete IRE\n"));
1105 				ire_delete(ire);
1106 			}
1107 			ire_refrele(ire);	/* Held above */
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  * Send a packet using the specified IRE.
1114  * If ire_src_addr_v6 is all zero then discard the IRE after
1115  * the packet has been sent.
1116  */
1117 static void
1118 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1119 {
1120 	mblk_t *ipsec_mp;
1121 	boolean_t secure;
1122 	uint_t ifindex;
1123 	zoneid_t zoneid = ire->ire_zoneid;
1124 	ip_stack_t	*ipst = ire->ire_ipst;
1125 
1126 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1127 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1128 	if (pkt->b_datap->db_type == M_CTL) {
1129 		ipsec_out_t *io;
1130 
1131 		ipsec_mp = pkt;
1132 		pkt = pkt->b_cont;
1133 		secure = B_TRUE;
1134 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1135 		if (io->ipsec_out_type == IPSEC_OUT)
1136 			zoneid = io->ipsec_out_zoneid;
1137 	} else {
1138 		ipsec_mp = pkt;
1139 		secure = B_FALSE;
1140 	}
1141 
1142 	/* If the packet originated externally then */
1143 	if (pkt->b_prev) {
1144 		ill_t	*ill;
1145 		/*
1146 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1147 		 * Look up interface to see if it still exists (it could have
1148 		 * been unplumbed by the time the reply came back from the
1149 		 * resolver).
1150 		 */
1151 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1152 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1153 		    NULL, NULL, NULL, NULL, ipst);
1154 		if (ill == NULL) {
1155 			pkt->b_prev = NULL;
1156 			pkt->b_next = NULL;
1157 			freemsg(ipsec_mp);
1158 			ire_refrele(ire);	/* Held in ire_add */
1159 			return;
1160 		}
1161 		q = ill->ill_rq;
1162 		pkt->b_prev = NULL;
1163 		/*
1164 		 * This packet has not gone through IPSEC processing
1165 		 * and hence we should not have any IPSEC message
1166 		 * prepended.
1167 		 */
1168 		ASSERT(ipsec_mp == pkt);
1169 		put(q, pkt);
1170 		ill_refrele(ill);
1171 	} else if (pkt->b_next) {
1172 		/* Packets from multicast router */
1173 		pkt->b_next = NULL;
1174 		/*
1175 		 * We never get the IPSEC_OUT while forwarding the
1176 		 * packet for multicast router.
1177 		 */
1178 		ASSERT(ipsec_mp == pkt);
1179 		/*
1180 		 * XXX TODO IPv6.
1181 		 */
1182 		freemsg(pkt);
1183 #ifdef XXX
1184 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1185 #endif
1186 	} else {
1187 		if (secure) {
1188 			ipsec_out_t *oi;
1189 			ip6_t *ip6h;
1190 
1191 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1192 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1193 			if (oi->ipsec_out_proc_begin) {
1194 				/*
1195 				 * This is the case where
1196 				 * ip_wput_ipsec_out could not find
1197 				 * the IRE and recreated a new one.
1198 				 */
1199 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1200 				    NULL, NULL);
1201 			} else {
1202 				if (CONN_Q(q)) {
1203 					(void) ip_output_v6(Q_TO_CONN(q),
1204 					    ipsec_mp, q, IRE_SEND);
1205 				} else {
1206 					(void) ip_output_v6(
1207 					    (void *)(uintptr_t)zoneid,
1208 					    ipsec_mp, q, IRE_SEND);
1209 				}
1210 			}
1211 		} else {
1212 			/*
1213 			 * Send packets through ip_output_v6 so that any
1214 			 * ip6_info header can be processed again.
1215 			 */
1216 			if (CONN_Q(q)) {
1217 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1218 				    IRE_SEND);
1219 			} else {
1220 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1221 				    ipsec_mp, q, IRE_SEND);
1222 			}
1223 		}
1224 		/*
1225 		 * Special code to support sending a single packet with
1226 		 * conn_unspec_src using an IRE which has no source address.
1227 		 * The IRE is deleted here after sending the packet to avoid
1228 		 * having other code trip on it. But before we delete the
1229 		 * ire, somebody could have looked up this ire.
1230 		 * We prevent returning/using this IRE by the upper layers
1231 		 * by making checks to NULL source address in other places
1232 		 * like e.g ip_ire_append_v6, ip_ire_req and
1233 		 * ip_bind_connected_v6. Though, this does not completely
1234 		 * prevent other threads from using this ire, this should
1235 		 * not cause any problems.
1236 		 */
1237 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1238 			ip1dbg(("ire_send_v6: delete IRE\n"));
1239 			ire_delete(ire);
1240 		}
1241 	}
1242 	ire_refrele(ire);	/* Held in ire_add */
1243 }
1244 
1245 /*
1246  * Make sure that IRE bucket does not get too long.
1247  * This can cause lock up because ire_cache_lookup()
1248  * may take "forever" to finish.
1249  *
1250  * We only remove a maximum of cnt IREs each time.  This
1251  * should keep the bucket length approximately constant,
1252  * depending on cnt.  This should be enough to defend
1253  * against DoS attack based on creating temporary IREs
1254  * (for forwarding and non-TCP traffic).
1255  *
1256  * We also pass in the address of the newly created IRE
1257  * as we do not want to remove this straight after adding
1258  * it. New IREs are normally added at the tail of the
1259  * bucket.  This means that we are removing the "oldest"
1260  * temporary IREs added.  Only if there are IREs with
1261  * the same ire_addr, do we not add it at the tail.  Refer
1262  * to ire_add_v*().  It should be OK for our purpose.
1263  *
1264  * For non-temporary cached IREs, we make sure that they
1265  * have not been used for some time (defined below), they
1266  * are non-local destinations, and there is no one using
1267  * them at the moment (refcnt == 1).
1268  *
1269  * The above means that the IRE bucket length may become
1270  * very long, consisting of mostly non-temporary IREs.
1271  * This can happen when the hash function does a bad job
1272  * so that most TCP connections cluster to a specific bucket.
1273  * This "hopefully" should never happen.  It can also
1274  * happen if most TCP connections have very long lives.
1275  * Even with the minimal hash table size of 256, there
1276  * has to be a lot of such connections to make the bucket
1277  * length unreasonably long.  This should probably not
1278  * happen either.  The third can when this can happen is
1279  * when the machine is under attack, such as SYN flooding.
1280  * TCP should already have the proper mechanism to protect
1281  * that.  So we should be safe.
1282  *
1283  * This function is called by ire_add_then_send() after
1284  * a new IRE is added and the packet is sent.
1285  *
1286  * The idle cutoff interval is set to 60s.  It can be
1287  * changed using /etc/system.
1288  */
1289 uint32_t ire_idle_cutoff_interval = 60000;
1290 
1291 static void
1292 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
1293 {
1294 	ire_t *ire;
1295 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1296 	int cnt = ip_ire_cleanup_cnt;
1297 
1298 	/*
1299 	 * Try to remove cnt temporary IREs first.
1300 	 */
1301 	for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
1302 		if (ire == ref_ire)
1303 			continue;
1304 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
1305 			continue;
1306 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1307 			ASSERT(ire->ire_type == IRE_CACHE);
1308 			ire_delete(ire);
1309 			cnt--;
1310 		}
1311 	}
1312 	if (cnt == 0)
1313 		return;
1314 
1315 	/*
1316 	 * If we didn't satisfy our removal target from temporary IREs
1317 	 * we see how many non-temporary IREs are currently in the bucket.
1318 	 * If this quantity is above the threshold then we see if there are any
1319 	 * candidates for removal. We are still limited to removing a maximum
1320 	 * of cnt IREs.
1321 	 */
1322 	if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
1323 		for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
1324 		    ire = ire->ire_next) {
1325 			if (ire == ref_ire)
1326 				continue;
1327 			if (ire->ire_type != IRE_CACHE)
1328 				continue;
1329 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1330 				continue;
1331 			if ((ire->ire_refcnt == 1) &&
1332 			    (lbolt - ire->ire_last_used_time > cut_off)) {
1333 				ire_delete(ire);
1334 				cnt--;
1335 			}
1336 		}
1337 	}
1338 }
1339 
1340 /*
1341  * ire_add_then_send is called when a new IRE has been created in order to
1342  * route an outgoing packet.  Typically, it is called from ip_wput when
1343  * a response comes back down from a resolver.  We add the IRE, and then
1344  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1345  * However, we do not add the newly created IRE in the cache when
1346  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1347  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
1348  * ip_wput_ire() and get deleted.
1349  * Multirouting support: the packet is silently discarded when the new IRE
1350  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1351  * RTF_MULTIRT flag for the same destination address.
1352  * In this case, we just want to register this additional ire without
1353  * sending the packet, as it has already been replicated through
1354  * existing multirt routes in ip_wput().
1355  */
1356 void
1357 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1358 {
1359 	irb_t *irb;
1360 	boolean_t drop = B_FALSE;
1361 	/* LINTED : set but not used in function */
1362 	boolean_t mctl_present;
1363 	mblk_t *first_mp = NULL;
1364 	mblk_t *save_mp = NULL;
1365 	ire_t *dst_ire;
1366 	ipha_t *ipha;
1367 	ip6_t *ip6h;
1368 	ip_stack_t	*ipst = ire->ire_ipst;
1369 	int		ire_limit;
1370 
1371 	if (mp != NULL) {
1372 		/*
1373 		 * We first have to retrieve the destination address carried
1374 		 * by the packet.
1375 		 * We can't rely on ire as it can be related to a gateway.
1376 		 * The destination address will help in determining if
1377 		 * other RTF_MULTIRT ires are already registered.
1378 		 *
1379 		 * We first need to know where we are going : v4 or V6.
1380 		 * the ire version is enough, as there is no risk that
1381 		 * we resolve an IPv6 address with an IPv4 ire
1382 		 * or vice versa.
1383 		 */
1384 		if (ire->ire_ipversion == IPV4_VERSION) {
1385 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1386 			ipha = (ipha_t *)mp->b_rptr;
1387 			save_mp = mp;
1388 			mp = first_mp;
1389 
1390 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1391 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1392 		} else {
1393 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1394 			/*
1395 			 * Get a pointer to the beginning of the IPv6 header.
1396 			 * Ignore leading IPsec control mblks.
1397 			 */
1398 			first_mp = mp;
1399 			if (mp->b_datap->db_type == M_CTL) {
1400 				mp = mp->b_cont;
1401 			}
1402 			ip6h = (ip6_t *)mp->b_rptr;
1403 			save_mp = mp;
1404 			mp = first_mp;
1405 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1406 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1407 		}
1408 		if (dst_ire != NULL) {
1409 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1410 				/*
1411 				 * At least one resolved multirt route
1412 				 * already exists for the destination,
1413 				 * don't sent this packet: either drop it
1414 				 * or complete the pending resolution,
1415 				 * depending on the ire.
1416 				 */
1417 				drop = B_TRUE;
1418 			}
1419 			ip1dbg(("ire_add_then_send: dst_ire %p "
1420 			    "[dst %08x, gw %08x], drop %d\n",
1421 			    (void *)dst_ire,
1422 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1423 			    ntohl(dst_ire->ire_addr) : \
1424 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1425 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1426 			    ntohl(dst_ire->ire_gateway_addr) : \
1427 			    ntohl(V4_PART_OF_V6(
1428 			    dst_ire->ire_gateway_addr_v6)),
1429 			    drop));
1430 			ire_refrele(dst_ire);
1431 		}
1432 	}
1433 
1434 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1435 		/* Regular packets with cache bound ires are here. */
1436 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1437 
1438 		if (ire == NULL) {
1439 			mp->b_prev = NULL;
1440 			mp->b_next = NULL;
1441 			MULTIRT_DEBUG_UNTAG(mp);
1442 			freemsg(mp);
1443 			return;
1444 		}
1445 		if (mp == NULL) {
1446 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1447 			return;
1448 		}
1449 	}
1450 	if (drop) {
1451 		/*
1452 		 * If we're adding an RTF_MULTIRT ire, the resolution
1453 		 * is over: we just drop the packet.
1454 		 */
1455 		if (ire->ire_flags & RTF_MULTIRT) {
1456 			if (save_mp) {
1457 				save_mp->b_prev = NULL;
1458 				save_mp->b_next = NULL;
1459 			}
1460 			MULTIRT_DEBUG_UNTAG(mp);
1461 			freemsg(mp);
1462 		} else {
1463 			/*
1464 			 * Otherwise, we're adding the ire to a gateway
1465 			 * for a multirt route.
1466 			 * Invoke ip_newroute() to complete the resolution
1467 			 * of the route. We will then come back here and
1468 			 * finally drop this packet in the above code.
1469 			 */
1470 			if (ire->ire_ipversion == IPV4_VERSION) {
1471 				/*
1472 				 * TODO: in order for CGTP to work in non-global
1473 				 * zones, ip_newroute() must create the IRE
1474 				 * cache in the zone indicated by
1475 				 * ire->ire_zoneid.
1476 				 */
1477 				ip_newroute(q, mp, ipha->ipha_dst,
1478 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1479 				    ire->ire_zoneid, ipst);
1480 			} else {
1481 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1482 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1483 				    NULL, ire->ire_zoneid, ipst);
1484 			}
1485 		}
1486 
1487 		ire_refrele(ire); /* As done by ire_send(). */
1488 		return;
1489 	}
1490 	/*
1491 	 * Need to remember ire_bucket here as ire_send*() may delete
1492 	 * the ire so we cannot reference it after that.
1493 	 */
1494 	irb = ire->ire_bucket;
1495 	if (ire->ire_ipversion == IPV4_VERSION) {
1496 		ire_send(q, mp, ire);
1497 		ire_limit = ip_ire_max_bucket_cnt;
1498 	} else {
1499 		ire_send_v6(q, mp, ire);
1500 		ire_limit = ip6_ire_max_bucket_cnt;
1501 	}
1502 
1503 	/*
1504 	 * irb is NULL if the IRE was not added to the hash. This happens
1505 	 * when IRE_MARK_NOADD is set and when IREs are returned from
1506 	 * ire_update_srcif_v4().
1507 	 */
1508 	if (irb != NULL) {
1509 		IRB_REFHOLD(irb);
1510 		if (irb->irb_ire_cnt > ire_limit)
1511 			ire_cache_cleanup(irb, ire_limit, ire);
1512 		IRB_REFRELE(irb);
1513 	}
1514 }
1515 
1516 /*
1517  * Initialize the ire that is specific to IPv4 part and call
1518  * ire_init_common to finish it.
1519  */
1520 ire_t *
1521 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1522     uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1523     queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1524     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1525     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1526 {
1527 	ASSERT(type != IRE_CACHE || stq != NULL);
1528 	/*
1529 	 * Reject IRE security attribute creation/initialization
1530 	 * if system is not running in Trusted mode.
1531 	 */
1532 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1533 		return (NULL);
1534 
1535 
1536 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1537 
1538 	if (addr != NULL)
1539 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1540 	if (src_addr != NULL)
1541 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1542 	if (mask != NULL) {
1543 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1544 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1545 	}
1546 	if (gateway != NULL) {
1547 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1548 	}
1549 
1550 	if (type == IRE_CACHE)
1551 		ire->ire_cmask = cmask;
1552 
1553 	/* ire_init_common will free the mblks upon encountering any failure */
1554 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
1555 	    phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
1556 		return (NULL);
1557 
1558 	return (ire);
1559 }
1560 
1561 /*
1562  * Similar to ire_create except that it is called only when
1563  * we want to allocate ire as an mblk e.g. we have an external
1564  * resolver ARP.
1565  */
1566 ire_t *
1567 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1568     uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
1569     ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1570     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1571     ip_stack_t *ipst)
1572 {
1573 	ire_t	*ire, *buf;
1574 	ire_t	*ret_ire;
1575 	mblk_t	*mp;
1576 	size_t	bufsize;
1577 	frtn_t	*frtnp;
1578 	ill_t	*ill;
1579 
1580 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1581 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1582 	if (buf == NULL) {
1583 		ip1dbg(("ire_create_mp: alloc failed\n"));
1584 		return (NULL);
1585 	}
1586 	frtnp = (frtn_t *)(buf + 1);
1587 	frtnp->free_arg = (caddr_t)buf;
1588 	frtnp->free_func = ire_freemblk;
1589 
1590 	/*
1591 	 * Allocate the new IRE. The ire created will hold a ref on
1592 	 * an nce_t after ire_nce_init, and this ref must either be
1593 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1594 	 *	is called after successful arp resolution, or,
1595 	 * (b)  released, when arp resolution fails
1596 	 * Case (b) is handled in ire_freemblk() which will be called
1597 	 * when mp is freed as a result of failed arp.
1598 	 */
1599 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1600 	if (mp == NULL) {
1601 		ip1dbg(("ire_create_mp: alloc failed\n"));
1602 		kmem_free(buf, bufsize);
1603 		return (NULL);
1604 	}
1605 	ire = (ire_t *)mp->b_rptr;
1606 	mp->b_wptr = (uchar_t *)&ire[1];
1607 
1608 	/* Start clean. */
1609 	*ire = ire_null;
1610 	ire->ire_mp = mp;
1611 	mp->b_datap->db_type = IRE_DB_TYPE;
1612 	ire->ire_marks |= IRE_MARK_UNCACHED;
1613 
1614 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
1615 	    rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
1616 	    gcgrp, ipst);
1617 
1618 	ill = (ill_t *)(stq->q_ptr);
1619 	if (ret_ire == NULL) {
1620 		/* ire_freemblk needs these set */
1621 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1622 		ire->ire_ipst = ipst;
1623 		freeb(ire->ire_mp);
1624 		return (NULL);
1625 	}
1626 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1627 	ASSERT(ret_ire == ire);
1628 	/*
1629 	 * ire_max_frag is normally zero here and is atomically set
1630 	 * under the irebucket lock in ire_add_v[46] except for the
1631 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1632 	 * is non-zero here.
1633 	 */
1634 	ire->ire_max_frag = max_frag;
1635 	return (ire);
1636 }
1637 
1638 /*
1639  * ire_create is called to allocate and initialize a new IRE.
1640  *
1641  * NOTE : This is called as writer sometimes though not required
1642  * by this function.
1643  */
1644 ire_t *
1645 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1646     uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
1647     ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1648     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1649     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1650 {
1651 	ire_t	*ire;
1652 	ire_t	*ret_ire;
1653 
1654 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1655 	if (ire == NULL) {
1656 		ip1dbg(("ire_create: alloc failed\n"));
1657 		return (NULL);
1658 	}
1659 	*ire = ire_null;
1660 
1661 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
1662 	    src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
1663 	    ulp_info, gc, gcgrp, ipst);
1664 
1665 	if (ret_ire == NULL) {
1666 		kmem_cache_free(ire_cache, ire);
1667 		return (NULL);
1668 	}
1669 	ASSERT(ret_ire == ire);
1670 	return (ire);
1671 }
1672 
1673 
1674 /*
1675  * Common to IPv4 and IPv6
1676  */
1677 boolean_t
1678 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1679     queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
1680     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1681     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1682 {
1683 	ire->ire_max_fragp = max_fragp;
1684 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1685 
1686 #ifdef DEBUG
1687 	if (ipif != NULL) {
1688 		if (ipif->ipif_isv6)
1689 			ASSERT(ipversion == IPV6_VERSION);
1690 		else
1691 			ASSERT(ipversion == IPV4_VERSION);
1692 	}
1693 #endif /* DEBUG */
1694 
1695 	/*
1696 	 * Create/initialize IRE security attribute only in Trusted mode;
1697 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1698 	 * has held a reference to it and will release it when this routine
1699 	 * returns a failure, otherwise we own the reference.  We do this
1700 	 * prior to initializing the rest IRE fields.
1701 	 *
1702 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1703 	 * memory leak (in case of external resolution failure). We'll
1704 	 * allocate it after a successful external resolution, in ire_add().
1705 	 * Note that ire->ire_mp != NULL here means this ire is headed
1706 	 * to an external resolver.
1707 	 */
1708 	if (is_system_labeled()) {
1709 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1710 		    IRE_INTERFACE)) != 0) {
1711 			/* release references on behalf of caller */
1712 			if (gc != NULL)
1713 				GC_REFRELE(gc);
1714 			if (gcgrp != NULL)
1715 				GCGRP_REFRELE(gcgrp);
1716 		} else if ((ire->ire_mp == NULL) &&
1717 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1718 			return (B_FALSE);
1719 		}
1720 	}
1721 
1722 	ire->ire_stq = stq;
1723 	ire->ire_rfq = rfq;
1724 	ire->ire_type = type;
1725 	ire->ire_flags = RTF_UP | flags;
1726 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1727 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1728 
1729 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1730 	ire->ire_last_used_time = lbolt;
1731 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1732 
1733 	/*
1734 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1735 	 * parent IREs. For others in the forwarding table, assign appropriate
1736 	 * new ones.
1737 	 *
1738 	 * The mutex protecting ire_handle is because ire_create is not always
1739 	 * called as a writer.
1740 	 */
1741 	if (ire->ire_type & IRE_OFFSUBNET) {
1742 		mutex_enter(&ipst->ips_ire_handle_lock);
1743 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1744 		mutex_exit(&ipst->ips_ire_handle_lock);
1745 	} else if (ire->ire_type & IRE_INTERFACE) {
1746 		mutex_enter(&ipst->ips_ire_handle_lock);
1747 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1748 		mutex_exit(&ipst->ips_ire_handle_lock);
1749 	} else if (ire->ire_type == IRE_CACHE) {
1750 		ire->ire_phandle = phandle;
1751 		ire->ire_ihandle = ihandle;
1752 	}
1753 	ire->ire_ipif = ipif;
1754 	if (ipif != NULL) {
1755 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1756 		ire->ire_zoneid = ipif->ipif_zoneid;
1757 	} else {
1758 		ire->ire_zoneid = GLOBAL_ZONEID;
1759 	}
1760 	ire->ire_ipversion = ipversion;
1761 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1762 	if (ipversion == IPV4_VERSION) {
1763 		/*
1764 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1765 		 * to find the ire_nce to be null when it is called.
1766 		 */
1767 		if (ire_nce_init(ire, src_nce) != 0) {
1768 			/* some failure occurred. propagate error back */
1769 			return (B_FALSE);
1770 		}
1771 	}
1772 	ire->ire_refcnt = 1;
1773 	ire->ire_ipst = ipst;	/* No netstack_hold */
1774 	ire->ire_trace_disable = B_FALSE;
1775 
1776 	return (B_TRUE);
1777 }
1778 
1779 /*
1780  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1781  * It is passed a pointer to a slot in an IRE pointer array into which to
1782  * place the pointer to the new IRE, if indeed we create one.  If the
1783  * IRE corresponding to the address passed in would be a duplicate of an
1784  * existing one, we don't create the new one.  irep is incremented before
1785  * return only if we do create a new IRE.  (Always called as writer.)
1786  *
1787  * Note that with the "match_flags" parameter, we can match on either
1788  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1789  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1790  * we only create broadcast ire's on a per physical interface basis. If
1791  * someone is going to be mucking with logical interfaces, it is important
1792  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1793  * logical interface will not cause critical broadcast IRE's to be deleted.
1794  */
1795 ire_t **
1796 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1797     int match_flags)
1798 {
1799 	ire_t *ire;
1800 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1801 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1802 
1803 	/*
1804 	 * No broadcast IREs for the LOOPBACK interface
1805 	 * or others such as point to point and IPIF_NOXMIT.
1806 	 */
1807 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1808 	    (ipif->ipif_flags & IPIF_NOXMIT))
1809 		return (irep);
1810 
1811 	/* If this would be a duplicate, don't bother. */
1812 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1813 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1814 		/*
1815 		 * We look for non-deprecated (and non-anycast, non-nolocal)
1816 		 * ipifs as the best choice. ipifs with check_flags matching
1817 		 * (deprecated, etc) are used only if non-deprecated ipifs
1818 		 * are not available. if the existing ire's ipif is deprecated
1819 		 * and the new ipif is non-deprecated, switch to the new ipif
1820 		 */
1821 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
1822 		    (ipif->ipif_flags & check_flags)) {
1823 			ire_refrele(ire);
1824 			return (irep);
1825 		}
1826 		/*
1827 		 * Bcast ires exist in pairs. Both have to be deleted,
1828 		 * Since we are exclusive we can make the above assertion.
1829 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1830 		 */
1831 		ASSERT(IAM_WRITER_IPIF(ipif));
1832 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1833 		ire_delete(ire->ire_next);
1834 		ire_delete(ire);
1835 		ire_refrele(ire);
1836 	}
1837 
1838 	irep = ire_create_bcast(ipif, addr, irep);
1839 
1840 	return (irep);
1841 }
1842 
1843 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
1844 
1845 /*
1846  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
1847  * It leaves all the verifying and deleting to those routines. So it always
1848  * creates 2 bcast ires and chains them into the ire array passed in.
1849  */
1850 ire_t **
1851 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
1852 {
1853 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1854 
1855 	*irep++ = ire_create(
1856 	    (uchar_t *)&addr,			/* dest addr */
1857 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1858 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
1859 	    NULL,				/* no gateway */
1860 	    &ipif->ipif_mtu,			/* max frag */
1861 	    NULL,				/* no src nce */
1862 	    ipif->ipif_rq,			/* recv-from queue */
1863 	    ipif->ipif_wq,			/* send-to queue */
1864 	    IRE_BROADCAST,
1865 	    ipif,
1866 	    0,
1867 	    0,
1868 	    0,
1869 	    0,
1870 	    &ire_uinfo_null,
1871 	    NULL,
1872 	    NULL,
1873 	    ipst);
1874 
1875 	*irep++ = ire_create(
1876 	    (uchar_t *)&addr,			/* dest address */
1877 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1878 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
1879 	    NULL,				/* no gateway */
1880 	    &ip_loopback_mtu,			/* max frag size */
1881 	    NULL,				/* no src_nce */
1882 	    ipif->ipif_rq,			/* recv-from queue */
1883 	    NULL,				/* no send-to queue */
1884 	    IRE_BROADCAST,			/* Needed for fanout in wput */
1885 	    ipif,
1886 	    0,
1887 	    0,
1888 	    0,
1889 	    0,
1890 	    &ire_uinfo_null,
1891 	    NULL,
1892 	    NULL,
1893 	    ipst);
1894 
1895 	return (irep);
1896 }
1897 
1898 /*
1899  * ire_walk routine to delete or update any IRE_CACHE that might contain
1900  * stale information.
1901  * The flags state which entries to delete or update.
1902  * Garbage collection is done separately using kmem alloc callbacks to
1903  * ip_trash_ire_reclaim.
1904  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
1905  * since other stale information is cleaned up using NUD.
1906  */
1907 void
1908 ire_expire(ire_t *ire, char *arg)
1909 {
1910 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
1911 	ill_t			*stq_ill;
1912 	int			flush_flags = ieap->iea_flush_flag;
1913 	ip_stack_t		*ipst = ieap->iea_ipst;
1914 
1915 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
1916 	    (ire->ire_flags & RTF_DYNAMIC)) {
1917 		/* Make sure we delete the corresponding IRE_CACHE */
1918 		ip1dbg(("ire_expire: all redirects\n"));
1919 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
1920 		ire_delete(ire);
1921 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
1922 		return;
1923 	}
1924 	if (ire->ire_type != IRE_CACHE)
1925 		return;
1926 
1927 	if (flush_flags & FLUSH_ARP_TIME) {
1928 		/*
1929 		 * Remove all IRE_CACHE.
1930 		 * Verify that create time is more than
1931 		 * ip_ire_arp_interval milliseconds ago.
1932 		 */
1933 		if (NCE_EXPIRED(ire->ire_nce, ipst)) {
1934 			ire_delete(ire);
1935 			return;
1936 		}
1937 	}
1938 
1939 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
1940 	    (ire->ire_ipif != NULL)) {
1941 		/* Increase pmtu if it is less than the interface mtu */
1942 		mutex_enter(&ire->ire_lock);
1943 		/*
1944 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
1945 		 * get the mtu from the sending interfaces' ipif
1946 		 */
1947 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
1948 			stq_ill = ire->ire_stq->q_ptr;
1949 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
1950 			    IP_MAXPACKET);
1951 		} else {
1952 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
1953 			    IP_MAXPACKET);
1954 		}
1955 		ire->ire_frag_flag |= IPH_DF;
1956 		mutex_exit(&ire->ire_lock);
1957 	}
1958 }
1959 
1960 /*
1961  * Return any local address.  We use this to target ourselves
1962  * when the src address was specified as 'default'.
1963  * Preference for IRE_LOCAL entries.
1964  */
1965 ire_t *
1966 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
1967 {
1968 	ire_t	*ire;
1969 	irb_t	*irb;
1970 	ire_t	*maybe = NULL;
1971 	int i;
1972 
1973 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
1974 		irb = &ipst->ips_ip_cache_table[i];
1975 		if (irb->irb_ire == NULL)
1976 			continue;
1977 		rw_enter(&irb->irb_lock, RW_READER);
1978 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1979 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
1980 			    (ire->ire_zoneid != zoneid &&
1981 			    ire->ire_zoneid != ALL_ZONES))
1982 				continue;
1983 			switch (ire->ire_type) {
1984 			case IRE_LOOPBACK:
1985 				if (maybe == NULL) {
1986 					IRE_REFHOLD(ire);
1987 					maybe = ire;
1988 				}
1989 				break;
1990 			case IRE_LOCAL:
1991 				if (maybe != NULL) {
1992 					ire_refrele(maybe);
1993 				}
1994 				IRE_REFHOLD(ire);
1995 				rw_exit(&irb->irb_lock);
1996 				return (ire);
1997 			}
1998 		}
1999 		rw_exit(&irb->irb_lock);
2000 	}
2001 	return (maybe);
2002 }
2003 
2004 /*
2005  * If the specified IRE is associated with a particular ILL, return
2006  * that ILL pointer (May be called as writer.).
2007  *
2008  * NOTE : This is not a generic function that can be used always.
2009  * This function always returns the ill of the outgoing packets
2010  * if this ire is used.
2011  */
2012 ill_t *
2013 ire_to_ill(const ire_t *ire)
2014 {
2015 	ill_t *ill = NULL;
2016 
2017 	/*
2018 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2019 	 *    the source address from. ire_stq is the one where the
2020 	 *    packets will be sent out on. We return that here.
2021 	 *
2022 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2023 	 *    copy and they always exist next to each other with loopback
2024 	 *    copy being the first one. If we are called on the non-loopback
2025 	 *    copy, return the one pointed by ire_stq. If it was called on
2026 	 *    a loopback copy, we still return the one pointed by the next
2027 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2028 	 *    copy. We don't want use ire_ipif as it might represent the
2029 	 *    source address (if we borrow source addresses for
2030 	 *    IRE_BROADCASTS in the future).
2031 	 *    However if an interface is currently coming up, the above
2032 	 *    condition may not hold during that period since the ires
2033 	 *    are added one at a time. Thus one of the pair could have been
2034 	 *    added and the other not yet added.
2035 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
2036 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
2037 	 *    That handles IRE_LOOPBACK.
2038 	 */
2039 
2040 	if (ire->ire_type == IRE_CACHE) {
2041 		ill = (ill_t *)ire->ire_stq->q_ptr;
2042 	} else if (ire->ire_type == IRE_BROADCAST) {
2043 		if (ire->ire_stq != NULL) {
2044 			ill = (ill_t *)ire->ire_stq->q_ptr;
2045 		} else {
2046 			ire_t  *ire_next;
2047 
2048 			ire_next = ire->ire_next;
2049 			if (ire_next != NULL &&
2050 			    ire_next->ire_type == IRE_BROADCAST &&
2051 			    ire_next->ire_addr == ire->ire_addr &&
2052 			    ire_next->ire_ipif == ire->ire_ipif) {
2053 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2054 			}
2055 		}
2056 	} else if (ire->ire_rfq != NULL) {
2057 		ill = ire->ire_rfq->q_ptr;
2058 	} else if (ire->ire_ipif != NULL) {
2059 		ill = ire->ire_ipif->ipif_ill;
2060 	}
2061 	return (ill);
2062 }
2063 
2064 /* Arrange to call the specified function for every IRE in the world. */
2065 void
2066 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2067 {
2068 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
2069 }
2070 
2071 void
2072 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2073 {
2074 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
2075 }
2076 
2077 void
2078 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2079 {
2080 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
2081 }
2082 
2083 /*
2084  * Walk a particular version. version == 0 means both v4 and v6.
2085  */
2086 static void
2087 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
2088     ip_stack_t *ipst)
2089 {
2090 	if (vers != IPV6_VERSION) {
2091 		/*
2092 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2093 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2094 		 */
2095 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2096 		    0, NULL,
2097 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2098 		    NULL, zoneid, ipst);
2099 	}
2100 	if (vers != IPV4_VERSION) {
2101 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2102 		    ipst->ips_ip6_ftable_hash_size,
2103 		    ipst->ips_ip_forwarding_table_v6,
2104 		    ipst->ips_ip6_cache_table_size,
2105 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2106 	}
2107 }
2108 
2109 /*
2110  * Arrange to call the specified
2111  * function for every IRE that matches the ill.
2112  */
2113 void
2114 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2115     ill_t *ill)
2116 {
2117 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2118 }
2119 
2120 void
2121 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2122     ill_t *ill)
2123 {
2124 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2125 	    ill);
2126 }
2127 
2128 void
2129 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2130     ill_t *ill)
2131 {
2132 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2133 	    ill);
2134 }
2135 
2136 /*
2137  * Walk a particular ill and version. version == 0 means both v4 and v6.
2138  */
2139 static void
2140 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2141     void *arg, uchar_t vers, ill_t *ill)
2142 {
2143 	ip_stack_t	*ipst = ill->ill_ipst;
2144 
2145 	if (vers != IPV6_VERSION) {
2146 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2147 		    IP_MASK_TABLE_SIZE, 0,
2148 		    NULL, ipst->ips_ip_cache_table_size,
2149 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2150 	}
2151 	if (vers != IPV4_VERSION) {
2152 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2153 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2154 		    ipst->ips_ip_forwarding_table_v6,
2155 		    ipst->ips_ip6_cache_table_size,
2156 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2157 	}
2158 }
2159 
2160 boolean_t
2161 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2162     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2163 {
2164 	ill_t *ire_stq_ill = NULL;
2165 	ill_t *ire_ipif_ill = NULL;
2166 	ill_group_t *ire_ill_group = NULL;
2167 
2168 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2169 	/*
2170 	 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2171 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2172 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2173 	 *    different ills. But we want to keep this function generic
2174 	 *    enough for future use. So, we always try to match on both.
2175 	 *    The only caller of this function ire_walk_ill_tables, will
2176 	 *    call "func" after we return from this function. We expect
2177 	 *    "func" to do the right filtering of ires in this case.
2178 	 *
2179 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2180 	 * pointed by ire_stq and ire_ipif should always be the same.
2181 	 * So, we just match on only one of them.
2182 	 */
2183 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2184 		if (ire->ire_stq != NULL)
2185 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2186 		if (ire->ire_ipif != NULL)
2187 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2188 		if (ire_stq_ill != NULL)
2189 			ire_ill_group = ire_stq_ill->ill_group;
2190 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2191 			ire_ill_group = ire_ipif_ill->ill_group;
2192 	}
2193 
2194 	if (zoneid != ALL_ZONES) {
2195 		/*
2196 		 * We're walking the IREs for a specific zone. The only relevant
2197 		 * IREs are:
2198 		 * - all IREs with a matching ire_zoneid
2199 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2200 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2201 		 *   with a matching zone
2202 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2203 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2204 		 * using the same rule; but the above rules are consistent with
2205 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2206 		 * routes that can be matched during lookup are also matched
2207 		 * here.
2208 		 */
2209 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2210 			/*
2211 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2212 			 * example, if the default multicast route is tied to
2213 			 * the loopback address.
2214 			 */
2215 			if ((ire->ire_type & IRE_INTERFACE) &&
2216 			    (ire->ire_stq != NULL)) {
2217 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2218 				if (ire->ire_ipversion == IPV4_VERSION) {
2219 					if (!ipif_usesrc_avail(ire_stq_ill,
2220 					    zoneid))
2221 						/* No usable src addr in zone */
2222 						return (B_FALSE);
2223 				} else if (ire_stq_ill->ill_usesrc_ifindex
2224 				    != 0) {
2225 					/*
2226 					 * For IPv6 use ipif_select_source_v6()
2227 					 * so the right scope selection is done
2228 					 */
2229 					ipif_t *src_ipif;
2230 					src_ipif =
2231 					    ipif_select_source_v6(ire_stq_ill,
2232 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2233 					    IPV6_PREFER_SRC_DEFAULT,
2234 					    zoneid);
2235 					if (src_ipif != NULL) {
2236 						ipif_refrele(src_ipif);
2237 					} else {
2238 						return (B_FALSE);
2239 					}
2240 				} else {
2241 					return (B_FALSE);
2242 				}
2243 
2244 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2245 				return (B_FALSE);
2246 			}
2247 		}
2248 
2249 		/*
2250 		 * Match all default routes from the global zone, irrespective
2251 		 * of reachability. For a non-global zone only match those
2252 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2253 		 */
2254 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2255 			int ire_match_flags = 0;
2256 			in6_addr_t gw_addr_v6;
2257 			ire_t *rire;
2258 
2259 			ire_match_flags |= MATCH_IRE_TYPE;
2260 			if (ire->ire_ipif != NULL) {
2261 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2262 			}
2263 			if (ire->ire_ipversion == IPV4_VERSION) {
2264 				rire = ire_route_lookup(ire->ire_gateway_addr,
2265 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2266 				    zoneid, NULL, ire_match_flags, ipst);
2267 			} else {
2268 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2269 				mutex_enter(&ire->ire_lock);
2270 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2271 				mutex_exit(&ire->ire_lock);
2272 				rire = ire_route_lookup_v6(&gw_addr_v6,
2273 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2274 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2275 			}
2276 			if (rire == NULL) {
2277 				return (B_FALSE);
2278 			}
2279 			ire_refrele(rire);
2280 		}
2281 	}
2282 
2283 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2284 	    (ire->ire_type & ire_type)) &&
2285 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2286 	    (ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2287 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2288 	    (ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2289 	    (ire_ill_group != NULL &&
2290 	    ire_ill_group == ill->ill_group))) {
2291 		return (B_TRUE);
2292 	}
2293 	return (B_FALSE);
2294 }
2295 
2296 int
2297 rtfunc(struct radix_node *rn, void *arg)
2298 {
2299 	struct rtfuncarg *rtf = arg;
2300 	struct rt_entry *rt;
2301 	irb_t *irb;
2302 	ire_t *ire;
2303 	boolean_t ret;
2304 
2305 	rt = (struct rt_entry *)rn;
2306 	ASSERT(rt != NULL);
2307 	irb = &rt->rt_irb;
2308 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2309 		if ((rtf->rt_match_flags != 0) ||
2310 		    (rtf->rt_zoneid != ALL_ZONES)) {
2311 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2312 			    rtf->rt_ire_type, ire,
2313 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2314 		} else
2315 			ret = B_TRUE;
2316 		if (ret)
2317 			(*rtf->rt_func)(ire, rtf->rt_arg);
2318 	}
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Walk the ftable and the ctable entries that match the ill.
2324  */
2325 void
2326 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2327     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2328     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2329     ip_stack_t *ipst)
2330 {
2331 	irb_t	*irb_ptr;
2332 	irb_t	*irb;
2333 	ire_t	*ire;
2334 	int i, j;
2335 	boolean_t ret;
2336 	struct rtfuncarg rtfarg;
2337 
2338 	ASSERT((!(match_flags & (MATCH_IRE_ILL |
2339 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2340 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2341 	/*
2342 	 * Optimize by not looking at the forwarding table if there
2343 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2344 	 * specified in ire_type.
2345 	 */
2346 	if (!(match_flags & MATCH_IRE_TYPE) ||
2347 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2348 		/* knobs such that routine is called only for v6 case */
2349 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2350 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2351 				if ((irb_ptr = ipftbl[i]) == NULL)
2352 					continue;
2353 				for (j = 0; j < htbl_sz; j++) {
2354 					irb = &irb_ptr[j];
2355 					if (irb->irb_ire == NULL)
2356 						continue;
2357 
2358 					IRB_REFHOLD(irb);
2359 					for (ire = irb->irb_ire; ire != NULL;
2360 					    ire = ire->ire_next) {
2361 						if (match_flags == 0 &&
2362 						    zoneid == ALL_ZONES) {
2363 							ret = B_TRUE;
2364 						} else {
2365 							ret =
2366 							    ire_walk_ill_match(
2367 							    match_flags,
2368 							    ire_type, ire, ill,
2369 							    zoneid, ipst);
2370 						}
2371 						if (ret)
2372 							(*func)(ire, arg);
2373 					}
2374 					IRB_REFRELE(irb);
2375 				}
2376 			}
2377 		} else {
2378 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2379 			rtfarg.rt_func = func;
2380 			rtfarg.rt_arg = arg;
2381 			if (match_flags != 0) {
2382 				rtfarg.rt_match_flags = match_flags;
2383 			}
2384 			rtfarg.rt_ire_type = ire_type;
2385 			rtfarg.rt_ill = ill;
2386 			rtfarg.rt_zoneid = zoneid;
2387 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2388 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2389 			    ipst->ips_ip_ftable,
2390 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * Optimize by not looking at the cache table if there
2396 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2397 	 * specified in ire_type.
2398 	 */
2399 	if (!(match_flags & MATCH_IRE_TYPE) ||
2400 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2401 		for (i = 0; i < ctbl_sz;  i++) {
2402 			irb = &ipctbl[i];
2403 			if (irb->irb_ire == NULL)
2404 				continue;
2405 			IRB_REFHOLD(irb);
2406 			for (ire = irb->irb_ire; ire != NULL;
2407 			    ire = ire->ire_next) {
2408 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2409 					ret = B_TRUE;
2410 				} else {
2411 					ret = ire_walk_ill_match(
2412 					    match_flags, ire_type,
2413 					    ire, ill, zoneid, ipst);
2414 				}
2415 				if (ret)
2416 					(*func)(ire, arg);
2417 			}
2418 			IRB_REFRELE(irb);
2419 		}
2420 	}
2421 }
2422 
2423 /*
2424  * This function takes a mask and returns
2425  * number of bits set in the mask. If no
2426  * bit is set it returns 0.
2427  * Assumes a contiguous mask.
2428  */
2429 int
2430 ip_mask_to_plen(ipaddr_t mask)
2431 {
2432 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2433 }
2434 
2435 /*
2436  * Convert length for a mask to the mask.
2437  */
2438 ipaddr_t
2439 ip_plen_to_mask(uint_t masklen)
2440 {
2441 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2442 }
2443 
2444 void
2445 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2446 {
2447 	ill_t	*ill_list[NUM_ILLS];
2448 	ip_stack_t	*ipst = ire->ire_ipst;
2449 
2450 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2451 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2452 	ill_unlock_ills(ill_list, NUM_ILLS);
2453 	rw_exit(&irb_ptr->irb_lock);
2454 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2455 }
2456 
2457 /*
2458  * ire_add_v[46] atomically make sure that the ipif or ill associated
2459  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2460  * before adding the ire to the table. This ensures that we don't create
2461  * new IRE_CACHEs with stale values for parameters that are passed to
2462  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2463  * to the ipif_mtu, and not the value. The actual value is derived from the
2464  * parent ire or ipif under the bucket lock.
2465  */
2466 int
2467 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2468     ipsq_func_t func)
2469 {
2470 	ill_t	*stq_ill;
2471 	ill_t	*ipif_ill;
2472 	ill_t	*ill_list[NUM_ILLS];
2473 	int	cnt = NUM_ILLS;
2474 	int	error = 0;
2475 	ill_t	*ill = NULL;
2476 	ip_stack_t	*ipst = ire->ire_ipst;
2477 
2478 	ill_list[0] = stq_ill = ire->ire_stq !=
2479 	    NULL ? ire->ire_stq->q_ptr : NULL;
2480 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2481 	    NULL ? ire->ire_ipif->ipif_ill : NULL;
2482 
2483 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2484 	    (q == NULL && mp == NULL && func == NULL));
2485 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2486 	GRAB_CONN_LOCK(q);
2487 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2488 	ill_lock_ills(ill_list, cnt);
2489 
2490 	/*
2491 	 * While the IRE is in the process of being added, a user may have
2492 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2493 	 * usesrc client ILL. Check for this possibility here, if it is true
2494 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2495 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2496 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2497 	 */
2498 	if ((ire->ire_type & IRE_CACHE) &&
2499 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2500 		if (stq_ill->ill_usesrc_ifindex != 0) {
2501 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2502 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2503 			    stq_ill->ill_usesrc_ifindex) ||
2504 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2505 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2506 				error = EINVAL;
2507 				goto done;
2508 			}
2509 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2510 			error = EINVAL;
2511 			goto done;
2512 		}
2513 	}
2514 
2515 	/*
2516 	 * IPMP flag settings happen without taking the exclusive route
2517 	 * in ip_sioctl_flags. So we need to make an atomic check here
2518 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2519 	 * FAILBACK=no case.
2520 	 */
2521 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2522 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2523 			ill = stq_ill;
2524 			error = EAGAIN;
2525 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2526 		    (ill_is_probeonly(stq_ill) &&
2527 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2528 			error = EINVAL;
2529 		}
2530 		goto done;
2531 	}
2532 
2533 	/*
2534 	 * We don't check for OFFLINE/FAILED in this case because
2535 	 * the source address selection logic (ipif_select_source)
2536 	 * may still select a source address from such an ill. The
2537 	 * assumption is that these addresses will be moved by in.mpathd
2538 	 * soon. (i.e. this is a race). However link local addresses
2539 	 * will not move and hence ipif_select_source_v6 tries to avoid
2540 	 * FAILED ills. Please see ipif_select_source_v6 for more info
2541 	 */
2542 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2543 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2544 		ill = ipif_ill;
2545 		error = EAGAIN;
2546 		goto done;
2547 	}
2548 
2549 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2550 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2551 		ill = ire->ire_ipif->ipif_ill;
2552 		ASSERT(ill != NULL);
2553 		error = EAGAIN;
2554 		goto done;
2555 	}
2556 
2557 done:
2558 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2559 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2560 		mutex_enter(&ipsq->ipsq_lock);
2561 		ire_atomic_end(irb_ptr, ire);
2562 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2563 		mutex_exit(&ipsq->ipsq_lock);
2564 		error = EINPROGRESS;
2565 	} else if (error != 0) {
2566 		ire_atomic_end(irb_ptr, ire);
2567 	}
2568 
2569 	RELEASE_CONN_LOCK(q);
2570 	return (error);
2571 }
2572 
2573 /*
2574  * Add a fully initialized IRE to an appropriate table based on
2575  * ire_type.
2576  *
2577  * allow_unresolved == B_FALSE indicates a legacy code-path call
2578  * that has prohibited the addition of incomplete ire's. If this
2579  * parameter is set, and we find an nce that is in a state other
2580  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2581  * something other than ND_REACHABLE if the nce had just expired and
2582  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2583  */
2584 int
2585 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2586     boolean_t allow_unresolved)
2587 {
2588 	ire_t	*ire1;
2589 	ill_t	*stq_ill = NULL;
2590 	ill_t	*ill;
2591 	ipif_t	*ipif = NULL;
2592 	ill_walk_context_t ctx;
2593 	ire_t	*ire = *irep;
2594 	int	error;
2595 	boolean_t ire_is_mblk = B_FALSE;
2596 	tsol_gcgrp_t *gcgrp = NULL;
2597 	tsol_gcgrp_addr_t ga;
2598 	ip_stack_t	*ipst = ire->ire_ipst;
2599 
2600 	/* get ready for the day when original ire is not created as mblk */
2601 	if (ire->ire_mp != NULL) {
2602 		ire_is_mblk = B_TRUE;
2603 		/* Copy the ire to a kmem_alloc'ed area */
2604 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2605 		if (ire1 == NULL) {
2606 			ip1dbg(("ire_add: alloc failed\n"));
2607 			ire_delete(ire);
2608 			*irep = NULL;
2609 			return (ENOMEM);
2610 		}
2611 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2612 		*ire1 = *ire;
2613 		ire1->ire_mp = NULL;
2614 		ire1->ire_stq_ifindex = 0;
2615 		freeb(ire->ire_mp);
2616 		ire = ire1;
2617 	}
2618 	if (ire->ire_stq != NULL)
2619 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2620 
2621 	if (ire->ire_type == IRE_CACHE) {
2622 		/*
2623 		 * If this interface is FAILED, or INACTIVE or has hit
2624 		 * the FAILBACK=no case, we create IRE_CACHES marked
2625 		 * HIDDEN for some special cases e.g. bind to
2626 		 * IPIF_NOFAILOVER address etc. So, if this interface
2627 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2628 		 * not creating hidden ires, we should not allow that.
2629 		 * This happens because the state of the interface
2630 		 * changed while we were waiting in ARP. If this is the
2631 		 * daemon sending probes, the next probe will create
2632 		 * HIDDEN ires and we will create an ire then. This
2633 		 * cannot happen with NDP currently because IRE is
2634 		 * never queued in NDP. But it can happen in the
2635 		 * future when we have external resolvers with IPv6.
2636 		 * If the interface gets marked with OFFLINE while we
2637 		 * are waiting in ARP, don't add the ire.
2638 		 */
2639 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2640 		    (ill_is_probeonly(stq_ill) &&
2641 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2642 			/*
2643 			 * We don't know whether it is a valid ipif or not.
2644 			 * unless we do the check below. So, set it to NULL.
2645 			 */
2646 			ire->ire_ipif = NULL;
2647 			ire_delete(ire);
2648 			*irep = NULL;
2649 			return (EINVAL);
2650 		}
2651 	}
2652 
2653 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2654 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2655 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2656 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2657 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2658 			mutex_enter(&ill->ill_lock);
2659 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2660 				mutex_exit(&ill->ill_lock);
2661 				continue;
2662 			}
2663 			/*
2664 			 * We need to make sure that the ipif is a valid one
2665 			 * before adding the IRE_CACHE. This happens only
2666 			 * with IRE_CACHE when there is an external resolver.
2667 			 *
2668 			 * We can unplumb a logical interface while the
2669 			 * packet is waiting in ARP with the IRE. Then,
2670 			 * later on when we feed the IRE back, the ipif
2671 			 * has to be re-checked. This can't happen with
2672 			 * NDP currently, as we never queue the IRE with
2673 			 * the packet. We always try to recreate the IRE
2674 			 * when the resolution is completed. But, we do
2675 			 * it for IPv6 also here so that in future if
2676 			 * we have external resolvers, it will work without
2677 			 * any change.
2678 			 */
2679 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2680 			if (ipif != NULL) {
2681 				ipif_refhold_locked(ipif);
2682 				mutex_exit(&ill->ill_lock);
2683 				break;
2684 			}
2685 			mutex_exit(&ill->ill_lock);
2686 		}
2687 		rw_exit(&ipst->ips_ill_g_lock);
2688 		if (ipif == NULL ||
2689 		    (ipif->ipif_isv6 &&
2690 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2691 		    &ipif->ipif_v6src_addr)) ||
2692 		    (!ipif->ipif_isv6 &&
2693 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2694 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2695 
2696 			if (ipif != NULL)
2697 				ipif_refrele(ipif);
2698 			ire->ire_ipif = NULL;
2699 			ire_delete(ire);
2700 			*irep = NULL;
2701 			return (EINVAL);
2702 		}
2703 
2704 
2705 		ASSERT(ill != NULL);
2706 		/*
2707 		 * If this group was dismantled while this packets was
2708 		 * queued in ARP, don't add it here.
2709 		 */
2710 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
2711 			/* We don't want ire_inactive bump stats for this */
2712 			ipif_refrele(ipif);
2713 			ire->ire_ipif = NULL;
2714 			ire_delete(ire);
2715 			*irep = NULL;
2716 			return (EINVAL);
2717 		}
2718 
2719 		/*
2720 		 * Since we didn't attach label security attributes to the
2721 		 * ire for the resolver case, we need to add it now. (only
2722 		 * for v4 resolver and v6 xresolv case).
2723 		 */
2724 		if (is_system_labeled() && ire_is_mblk) {
2725 			if (ire->ire_ipversion == IPV4_VERSION) {
2726 				ga.ga_af = AF_INET;
2727 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2728 				    INADDR_ANY ? ire->ire_gateway_addr :
2729 				    ire->ire_addr, &ga.ga_addr);
2730 			} else {
2731 				ga.ga_af = AF_INET6;
2732 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2733 				    &ire->ire_gateway_addr_v6) ?
2734 				    ire->ire_addr_v6 :
2735 				    ire->ire_gateway_addr_v6;
2736 			}
2737 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
2738 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
2739 			    NULL, gcgrp);
2740 			if (error != 0) {
2741 				if (gcgrp != NULL) {
2742 					GCGRP_REFRELE(gcgrp);
2743 					gcgrp = NULL;
2744 				}
2745 				ipif_refrele(ipif);
2746 				ire->ire_ipif = NULL;
2747 				ire_delete(ire);
2748 				*irep = NULL;
2749 				return (error);
2750 			}
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * In case ire was changed
2756 	 */
2757 	*irep = ire;
2758 	if (ire->ire_ipversion == IPV6_VERSION)
2759 		error = ire_add_v6(irep, q, mp, func);
2760 	else
2761 		error = ire_add_v4(irep, q, mp, func, allow_unresolved);
2762 	if (ipif != NULL)
2763 		ipif_refrele(ipif);
2764 	return (error);
2765 }
2766 
2767 /*
2768  * Add an initialized IRE to an appropriate table based on ire_type.
2769  *
2770  * The forward table contains IRE_PREFIX/IRE_HOST and
2771  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
2772  *
2773  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
2774  * and IRE_CACHE.
2775  *
2776  * NOTE : This function is called as writer though not required
2777  * by this function.
2778  */
2779 static int
2780 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
2781     boolean_t allow_unresolved)
2782 {
2783 	ire_t	*ire1;
2784 	irb_t	*irb_ptr;
2785 	ire_t	**irep;
2786 	int	flags;
2787 	ire_t	*pire = NULL;
2788 	ill_t	*stq_ill;
2789 	ire_t	*ire = *ire_p;
2790 	int	error;
2791 	boolean_t need_refrele = B_FALSE;
2792 	nce_t	*nce;
2793 	ip_stack_t	*ipst = ire->ire_ipst;
2794 
2795 	if (ire->ire_ipif != NULL)
2796 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
2797 	if (ire->ire_stq != NULL)
2798 		ASSERT(!MUTEX_HELD(
2799 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
2800 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
2801 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
2802 
2803 	/* Find the appropriate list head. */
2804 	switch (ire->ire_type) {
2805 	case IRE_HOST:
2806 		ire->ire_mask = IP_HOST_MASK;
2807 		ire->ire_masklen = IP_ABITS;
2808 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2809 			ire->ire_src_addr = 0;
2810 		break;
2811 	case IRE_CACHE:
2812 	case IRE_BROADCAST:
2813 	case IRE_LOCAL:
2814 	case IRE_LOOPBACK:
2815 		ire->ire_mask = IP_HOST_MASK;
2816 		ire->ire_masklen = IP_ABITS;
2817 		break;
2818 	case IRE_PREFIX:
2819 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2820 			ire->ire_src_addr = 0;
2821 		break;
2822 	case IRE_DEFAULT:
2823 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2824 			ire->ire_src_addr = 0;
2825 		break;
2826 	case IRE_IF_RESOLVER:
2827 	case IRE_IF_NORESOLVER:
2828 		break;
2829 	default:
2830 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
2831 		    (void *)ire, ire->ire_type));
2832 		ire_delete(ire);
2833 		*ire_p = NULL;
2834 		return (EINVAL);
2835 	}
2836 
2837 	/* Make sure the address is properly masked. */
2838 	ire->ire_addr &= ire->ire_mask;
2839 
2840 	/*
2841 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
2842 	 * of the interface route while adding an IRE_CACHE for an on-link
2843 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
2844 	 * go to ARP and return. We can't do a REFHOLD on the
2845 	 * associated interface ire for fear of ARP freeing the message.
2846 	 * Here we look up the interface ire in the forwarding table and
2847 	 * make sure that the interface route has not been deleted.
2848 	 */
2849 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
2850 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
2851 
2852 		ASSERT(ire->ire_max_fragp == NULL);
2853 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
2854 			/*
2855 			 * The ihandle that we used in ip_newroute_multi
2856 			 * comes from the interface route corresponding
2857 			 * to ire_ipif. Lookup here to see if it exists
2858 			 * still.
2859 			 * If the ire has a source address assigned using
2860 			 * RTF_SETSRC, ire_ipif is the logical interface holding
2861 			 * this source address, so we can't use it to check for
2862 			 * the existence of the interface route. Instead we rely
2863 			 * on the brute force ihandle search in
2864 			 * ire_ihandle_lookup_onlink() below.
2865 			 */
2866 			pire = ipif_to_ire(ire->ire_ipif);
2867 			if (pire == NULL) {
2868 				ire_delete(ire);
2869 				*ire_p = NULL;
2870 				return (EINVAL);
2871 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
2872 				ire_refrele(pire);
2873 				ire_delete(ire);
2874 				*ire_p = NULL;
2875 				return (EINVAL);
2876 			}
2877 		} else {
2878 			pire = ire_ihandle_lookup_onlink(ire);
2879 			if (pire == NULL) {
2880 				ire_delete(ire);
2881 				*ire_p = NULL;
2882 				return (EINVAL);
2883 			}
2884 		}
2885 		/* Prevent pire from getting deleted */
2886 		IRB_REFHOLD(pire->ire_bucket);
2887 		/* Has it been removed already ? */
2888 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
2889 			IRB_REFRELE(pire->ire_bucket);
2890 			ire_refrele(pire);
2891 			ire_delete(ire);
2892 			*ire_p = NULL;
2893 			return (EINVAL);
2894 		}
2895 	} else {
2896 		ASSERT(ire->ire_max_fragp != NULL);
2897 	}
2898 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
2899 
2900 	if (ire->ire_ipif != NULL) {
2901 		/*
2902 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
2903 		 * for historic reasons and to maintain symmetry with
2904 		 * IPv6 code path. Historically this was used by
2905 		 * multicast code to create multiple IRE_CACHES on
2906 		 * a single ill with different ipifs. This was used
2907 		 * so that multicast packets leaving the node had the
2908 		 * right source address. This is no longer needed as
2909 		 * ip_wput initializes the address correctly.
2910 		 */
2911 		flags |= MATCH_IRE_IPIF;
2912 		/*
2913 		 * If we are creating hidden ires, make sure we search on
2914 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
2915 		 * while we are searching for duplicates below. Otherwise we
2916 		 * could potentially find an IRE on some other interface
2917 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
2918 		 * shouldn't do this as this will lead to an infinite loop
2919 		 * (if we get to ip_wput again) eventually we need an hidden
2920 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
2921 		 * done below.
2922 		 */
2923 		if (ire->ire_type == IRE_CACHE &&
2924 		    (ire->ire_marks & IRE_MARK_HIDDEN))
2925 			flags |= (MATCH_IRE_MARK_HIDDEN);
2926 	}
2927 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
2928 		irb_ptr = ire_get_bucket(ire);
2929 		need_refrele = B_TRUE;
2930 		if (irb_ptr == NULL) {
2931 			/*
2932 			 * This assumes that the ire has not added
2933 			 * a reference to the ipif.
2934 			 */
2935 			ire->ire_ipif = NULL;
2936 			ire_delete(ire);
2937 			if (pire != NULL) {
2938 				IRB_REFRELE(pire->ire_bucket);
2939 				ire_refrele(pire);
2940 			}
2941 			*ire_p = NULL;
2942 			return (EINVAL);
2943 		}
2944 	} else {
2945 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
2946 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
2947 	}
2948 
2949 	/*
2950 	 * Start the atomic add of the ire. Grab the ill locks,
2951 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
2952 	 *
2953 	 * If ipif or ill is changing ire_atomic_start() may queue the
2954 	 * request and return EINPROGRESS.
2955 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
2956 	 */
2957 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
2958 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
2959 	if (error != 0) {
2960 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2961 		/*
2962 		 * We don't know whether it is a valid ipif or not.
2963 		 * So, set it to NULL. This assumes that the ire has not added
2964 		 * a reference to the ipif.
2965 		 */
2966 		ire->ire_ipif = NULL;
2967 		ire_delete(ire);
2968 		if (pire != NULL) {
2969 			IRB_REFRELE(pire->ire_bucket);
2970 			ire_refrele(pire);
2971 		}
2972 		*ire_p = NULL;
2973 		if (need_refrele)
2974 			IRB_REFRELE(irb_ptr);
2975 		return (error);
2976 	}
2977 	/*
2978 	 * To avoid creating ires having stale values for the ire_max_frag
2979 	 * we get the latest value atomically here. For more details
2980 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
2981 	 * in ip_rput_dlpi_writer
2982 	 */
2983 	if (ire->ire_max_fragp == NULL) {
2984 		if (CLASSD(ire->ire_addr))
2985 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
2986 		else
2987 			ire->ire_max_frag = pire->ire_max_frag;
2988 	} else {
2989 		uint_t	max_frag;
2990 
2991 		max_frag = *ire->ire_max_fragp;
2992 		ire->ire_max_fragp = NULL;
2993 		ire->ire_max_frag = max_frag;
2994 	}
2995 	/*
2996 	 * Atomically check for duplicate and insert in the table.
2997 	 */
2998 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2999 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
3000 			continue;
3001 		if (ire->ire_ipif != NULL) {
3002 			/*
3003 			 * We do MATCH_IRE_ILL implicitly here for IREs
3004 			 * with a non-null ire_ipif, including IRE_CACHEs.
3005 			 * As ire_ipif and ire_stq could point to two
3006 			 * different ills, we can't pass just ire_ipif to
3007 			 * ire_match_args and get a match on both ills.
3008 			 * This is just needed for duplicate checks here and
3009 			 * so we don't add an extra argument to
3010 			 * ire_match_args for this. Do it locally.
3011 			 *
3012 			 * NOTE : Currently there is no part of the code
3013 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3014 			 * match for IRE_CACHEs. Thus we don't want to
3015 			 * extend the arguments to ire_match_args.
3016 			 */
3017 			if (ire1->ire_stq != ire->ire_stq)
3018 				continue;
3019 			/*
3020 			 * Multiroute IRE_CACHEs for a given destination can
3021 			 * have the same ire_ipif, typically if their source
3022 			 * address is forced using RTF_SETSRC, and the same
3023 			 * send-to queue. We differentiate them using the parent
3024 			 * handle.
3025 			 */
3026 			if (ire->ire_type == IRE_CACHE &&
3027 			    (ire1->ire_flags & RTF_MULTIRT) &&
3028 			    (ire->ire_flags & RTF_MULTIRT) &&
3029 			    (ire1->ire_phandle != ire->ire_phandle))
3030 				continue;
3031 		}
3032 		if (ire1->ire_zoneid != ire->ire_zoneid)
3033 			continue;
3034 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3035 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3036 		    ire->ire_zoneid, 0, NULL, flags)) {
3037 			/*
3038 			 * Return the old ire after doing a REFHOLD.
3039 			 * As most of the callers continue to use the IRE
3040 			 * after adding, we return a held ire. This will
3041 			 * avoid a lookup in the caller again. If the callers
3042 			 * don't want to use it, they need to do a REFRELE.
3043 			 */
3044 			ip1dbg(("found dup ire existing %p new %p",
3045 			    (void *)ire1, (void *)ire));
3046 			IRE_REFHOLD(ire1);
3047 			ire_atomic_end(irb_ptr, ire);
3048 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3049 			ire_delete(ire);
3050 			if (pire != NULL) {
3051 				/*
3052 				 * Assert that it is not removed from the
3053 				 * list yet.
3054 				 */
3055 				ASSERT(pire->ire_ptpn != NULL);
3056 				IRB_REFRELE(pire->ire_bucket);
3057 				ire_refrele(pire);
3058 			}
3059 			*ire_p = ire1;
3060 			if (need_refrele)
3061 				IRB_REFRELE(irb_ptr);
3062 			return (0);
3063 		}
3064 	}
3065 	if (ire->ire_type & IRE_CACHE) {
3066 		ASSERT(ire->ire_stq != NULL);
3067 		nce = ndp_lookup_v4(ire_to_ill(ire),
3068 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3069 		    &ire->ire_gateway_addr : &ire->ire_addr),
3070 		    B_TRUE);
3071 		if (nce != NULL)
3072 			mutex_enter(&nce->nce_lock);
3073 		/*
3074 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3075 		 * and the caller has prohibited the addition of incomplete
3076 		 * ire's, we fail the add. Note that nce_state could be
3077 		 * something other than ND_REACHABLE if the nce had
3078 		 * just expired and the ire_create preceding the
3079 		 * ire_add added a new ND_INITIAL nce.
3080 		 */
3081 		if ((nce == NULL) ||
3082 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3083 		    (!allow_unresolved &&
3084 		    (nce->nce_state != ND_REACHABLE))) {
3085 			if (nce != NULL) {
3086 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
3087 				mutex_exit(&nce->nce_lock);
3088 			}
3089 			ire_atomic_end(irb_ptr, ire);
3090 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3091 			if (nce != NULL)
3092 				NCE_REFRELE(nce);
3093 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3094 			ire_delete(ire);
3095 			if (pire != NULL) {
3096 				IRB_REFRELE(pire->ire_bucket);
3097 				ire_refrele(pire);
3098 			}
3099 			*ire_p = NULL;
3100 			if (need_refrele)
3101 				IRB_REFRELE(irb_ptr);
3102 			return (EINVAL);
3103 		} else {
3104 			ire->ire_nce = nce;
3105 			mutex_exit(&nce->nce_lock);
3106 			/*
3107 			 * We are associating this nce to the ire, so
3108 			 * change the nce ref taken in ndp_lookup_v4() from
3109 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3110 			 */
3111 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3112 		}
3113 	}
3114 	/*
3115 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3116 	 * grouping identical addresses together on the hash chain. We also
3117 	 * don't want to send multiple copies out if there are two ills part
3118 	 * of the same group. Thus we group the ires with same addr and same
3119 	 * ill group together so that ip_wput_ire can easily skip all the
3120 	 * ires with same addr and same group after sending the first copy.
3121 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3122 	 * interested in such groupings only for broadcasts.
3123 	 *
3124 	 * NOTE : If the interfaces are brought up first and then grouped,
3125 	 * illgrp_insert will handle it. We come here when the interfaces
3126 	 * are already in group and we are bringing them UP.
3127 	 *
3128 	 * Find the first entry that matches ire_addr. *irep will be null
3129 	 * if no match.
3130 	 *
3131 	 * Note: the loopback and non-loopback broadcast entries for an
3132 	 * interface MUST be added before any MULTIRT entries.
3133 	 */
3134 	irep = (ire_t **)irb_ptr;
3135 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3136 		irep = &ire1->ire_next;
3137 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3138 		/*
3139 		 * We found some ire (i.e *irep) with a matching addr. We
3140 		 * want to group ires with same addr and same ill group
3141 		 * together.
3142 		 *
3143 		 * First get to the entry that matches our address and
3144 		 * ill group i.e stop as soon as we find the first ire
3145 		 * matching the ill group and address. If there is only
3146 		 * an address match, we should walk and look for some
3147 		 * group match. These are some of the possible scenarios :
3148 		 *
3149 		 * 1) There are no groups at all i.e all ire's ill_group
3150 		 *    are NULL. In that case we will essentially group
3151 		 *    all the ires with the same addr together. Same as
3152 		 *    the "else" block of this "if".
3153 		 *
3154 		 * 2) There are some groups and this ire's ill_group is
3155 		 *    NULL. In this case, we will first find the group
3156 		 *    that matches the address and a NULL group. Then
3157 		 *    we will insert the ire at the end of that group.
3158 		 *
3159 		 * 3) There are some groups and this ires's ill_group is
3160 		 *    non-NULL. In this case we will first find the group
3161 		 *    that matches the address and the ill_group. Then
3162 		 *    we will insert the ire at the end of that group.
3163 		 */
3164 		for (;;) {
3165 			ire1 = *irep;
3166 			if ((ire1->ire_next == NULL) ||
3167 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3168 			    (ire1->ire_type != IRE_BROADCAST) ||
3169 			    (ire1->ire_flags & RTF_MULTIRT) ||
3170 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3171 			    ire->ire_ipif->ipif_ill->ill_group))
3172 				break;
3173 			irep = &ire1->ire_next;
3174 		}
3175 		ASSERT(*irep != NULL);
3176 		/*
3177 		 * The ire will be added before *irep, so
3178 		 * if irep is a MULTIRT ire, just break to
3179 		 * ire insertion code.
3180 		 */
3181 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3182 			goto insert_ire;
3183 
3184 		irep = &((*irep)->ire_next);
3185 
3186 		/*
3187 		 * Either we have hit the end of the list or the address
3188 		 * did not match or the group *matched*. If we found
3189 		 * a match on the group, skip to the end of the group.
3190 		 */
3191 		while (*irep != NULL) {
3192 			ire1 = *irep;
3193 			if ((ire1->ire_addr != ire->ire_addr) ||
3194 			    (ire1->ire_type != IRE_BROADCAST) ||
3195 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3196 			    ire->ire_ipif->ipif_ill->ill_group))
3197 				break;
3198 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3199 			    ire1->ire_ipif == ire->ire_ipif) {
3200 				irep = &ire1->ire_next;
3201 				break;
3202 			}
3203 			irep = &ire1->ire_next;
3204 		}
3205 	} else if (*irep != NULL) {
3206 		/*
3207 		 * Find the last ire which matches ire_addr.
3208 		 * Needed to do tail insertion among entries with the same
3209 		 * ire_addr.
3210 		 */
3211 		while (ire->ire_addr == ire1->ire_addr) {
3212 			irep = &ire1->ire_next;
3213 			ire1 = *irep;
3214 			if (ire1 == NULL)
3215 				break;
3216 		}
3217 	}
3218 
3219 insert_ire:
3220 	/* Insert at *irep */
3221 	ire1 = *irep;
3222 	if (ire1 != NULL)
3223 		ire1->ire_ptpn = &ire->ire_next;
3224 	ire->ire_next = ire1;
3225 	/* Link the new one in. */
3226 	ire->ire_ptpn = irep;
3227 
3228 	/*
3229 	 * ire_walk routines de-reference ire_next without holding
3230 	 * a lock. Before we point to the new ire, we want to make
3231 	 * sure the store that sets the ire_next of the new ire
3232 	 * reaches global visibility, so that ire_walk routines
3233 	 * don't see a truncated list of ires i.e if the ire_next
3234 	 * of the new ire gets set after we do "*irep = ire" due
3235 	 * to re-ordering, the ire_walk thread will see a NULL
3236 	 * once it accesses the ire_next of the new ire.
3237 	 * membar_producer() makes sure that the following store
3238 	 * happens *after* all of the above stores.
3239 	 */
3240 	membar_producer();
3241 	*irep = ire;
3242 	ire->ire_bucket = irb_ptr;
3243 	/*
3244 	 * We return a bumped up IRE above. Keep it symmetrical
3245 	 * so that the callers will always have to release. This
3246 	 * helps the callers of this function because they continue
3247 	 * to use the IRE after adding and hence they don't have to
3248 	 * lookup again after we return the IRE.
3249 	 *
3250 	 * NOTE : We don't have to use atomics as this is appearing
3251 	 * in the list for the first time and no one else can bump
3252 	 * up the reference count on this yet.
3253 	 */
3254 	IRE_REFHOLD_LOCKED(ire);
3255 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3256 
3257 	irb_ptr->irb_ire_cnt++;
3258 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3259 		irb_ptr->irb_nire++;
3260 
3261 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3262 		irb_ptr->irb_tmp_ire_cnt++;
3263 
3264 	if (ire->ire_ipif != NULL) {
3265 		ire->ire_ipif->ipif_ire_cnt++;
3266 		if (ire->ire_stq != NULL) {
3267 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3268 			stq_ill->ill_ire_cnt++;
3269 		}
3270 	} else {
3271 		ASSERT(ire->ire_stq == NULL);
3272 	}
3273 
3274 	ire_atomic_end(irb_ptr, ire);
3275 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3276 
3277 	if (pire != NULL) {
3278 		/* Assert that it is not removed from the list yet */
3279 		ASSERT(pire->ire_ptpn != NULL);
3280 		IRB_REFRELE(pire->ire_bucket);
3281 		ire_refrele(pire);
3282 	}
3283 
3284 	if (ire->ire_type != IRE_CACHE) {
3285 		/*
3286 		 * For ire's with host mask see if there is an entry
3287 		 * in the cache. If there is one flush the whole cache as
3288 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3289 		 * If no entry is found than there is no need to flush the
3290 		 * cache.
3291 		 */
3292 		if (ire->ire_mask == IP_HOST_MASK) {
3293 			ire_t *lire;
3294 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3295 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3296 			if (lire != NULL) {
3297 				ire_refrele(lire);
3298 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3299 			}
3300 		} else {
3301 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3302 		}
3303 	}
3304 	/*
3305 	 * We had to delay the fast path probe until the ire is inserted
3306 	 * in the list. Otherwise the fast path ack won't find the ire in
3307 	 * the table.
3308 	 */
3309 	if (ire->ire_type == IRE_CACHE ||
3310 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3311 		ASSERT(ire->ire_nce != NULL);
3312 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3313 			nce_fastpath(ire->ire_nce);
3314 	}
3315 	if (ire->ire_ipif != NULL)
3316 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3317 	*ire_p = ire;
3318 	if (need_refrele) {
3319 		IRB_REFRELE(irb_ptr);
3320 	}
3321 	return (0);
3322 }
3323 
3324 /*
3325  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3326  * do the final cleanup for this ire.
3327  */
3328 void
3329 ire_cleanup(ire_t *ire)
3330 {
3331 	ire_t *ire_next;
3332 	ip_stack_t *ipst = ire->ire_ipst;
3333 
3334 	ASSERT(ire != NULL);
3335 
3336 	while (ire != NULL) {
3337 		ire_next = ire->ire_next;
3338 		if (ire->ire_ipversion == IPV4_VERSION) {
3339 			ire_delete_v4(ire);
3340 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3341 			    ire_stats_deleted);
3342 		} else {
3343 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3344 			ire_delete_v6(ire);
3345 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3346 			    ire_stats_deleted);
3347 		}
3348 		/*
3349 		 * Now it's really out of the list. Before doing the
3350 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3351 		 * so.
3352 		 */
3353 		ire->ire_next = NULL;
3354 		IRE_REFRELE_NOTR(ire);
3355 		ire = ire_next;
3356 	}
3357 }
3358 
3359 /*
3360  * IRB_REFRELE is the only caller of the function. It calls to unlink
3361  * all the CONDEMNED ires from this bucket.
3362  */
3363 ire_t *
3364 ire_unlink(irb_t *irb)
3365 {
3366 	ire_t *ire;
3367 	ire_t *ire1;
3368 	ire_t **ptpn;
3369 	ire_t *ire_list = NULL;
3370 
3371 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3372 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3373 	    (irb->irb_refcnt == 0));
3374 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3375 	ASSERT(irb->irb_ire != NULL);
3376 
3377 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3378 		ip_stack_t	*ipst = ire->ire_ipst;
3379 
3380 		ire1 = ire->ire_next;
3381 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3382 			ptpn = ire->ire_ptpn;
3383 			ire1 = ire->ire_next;
3384 			if (ire1)
3385 				ire1->ire_ptpn = ptpn;
3386 			*ptpn = ire1;
3387 			ire->ire_ptpn = NULL;
3388 			ire->ire_next = NULL;
3389 			if (ire->ire_type == IRE_DEFAULT) {
3390 				/*
3391 				 * IRE is out of the list. We need to adjust
3392 				 * the accounting before the caller drops
3393 				 * the lock.
3394 				 */
3395 				if (ire->ire_ipversion == IPV6_VERSION) {
3396 					ASSERT(ipst->
3397 					    ips_ipv6_ire_default_count !=
3398 					    0);
3399 					ipst->ips_ipv6_ire_default_count--;
3400 				}
3401 			}
3402 			/*
3403 			 * We need to call ire_delete_v4 or ire_delete_v6
3404 			 * to clean up the cache or the redirects pointing at
3405 			 * the default gateway. We need to drop the lock
3406 			 * as ire_flush_cache/ire_delete_host_redircts require
3407 			 * so. But we can't drop the lock, as ire_unlink needs
3408 			 * to atomically remove the ires from the list.
3409 			 * So, create a temporary list of CONDEMNED ires
3410 			 * for doing ire_delete_v4/ire_delete_v6 operations
3411 			 * later on.
3412 			 */
3413 			ire->ire_next = ire_list;
3414 			ire_list = ire;
3415 		}
3416 	}
3417 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3418 	return (ire_list);
3419 }
3420 
3421 /*
3422  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3423  * ARP message on any of its interface queue, it scans the nce table and
3424  * deletes and calls ndp_delete() for the appropriate nce. This action
3425  * also deletes all the neighbor/ire cache entries for that address.
3426  * This function is called from ip_arp_news in ip.c and also for
3427  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3428  * true if it finds a nce entry which is used by ip_arp_news to determine if
3429  * it needs to do an ire_walk_v4. The return value is also  used for the
3430  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3431  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3432  * ip_if->ipif_ill also needs to be matched.
3433  */
3434 boolean_t
3435 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3436 {
3437 	ill_t	*ill;
3438 	nce_t	*nce;
3439 
3440 	ill = (ipif ? ipif->ipif_ill : NULL);
3441 
3442 	if (ill != NULL) {
3443 		/*
3444 		 * clean up the nce (and any relevant ire's) that matches
3445 		 * on addr and ill.
3446 		 */
3447 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3448 		if (nce != NULL) {
3449 			ndp_delete(nce);
3450 			return (B_TRUE);
3451 		}
3452 	} else {
3453 		/*
3454 		 * ill is wildcard. clean up all nce's and
3455 		 * ire's that match on addr
3456 		 */
3457 		nce_clookup_t cl;
3458 
3459 		cl.ncecl_addr = addr;
3460 		cl.ncecl_found = B_FALSE;
3461 
3462 		ndp_walk_common(ipst->ips_ndp4, NULL,
3463 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3464 
3465 		/*
3466 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3467 		 *  we found a matching nce.
3468 		 */
3469 		return (cl.ncecl_found);
3470 	}
3471 	return (B_FALSE);
3472 
3473 }
3474 
3475 /* Delete the supplied nce if its nce_addr matches the supplied address */
3476 static void
3477 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3478 {
3479 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3480 	ipaddr_t nce_addr;
3481 
3482 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3483 	if (nce_addr == cl->ncecl_addr) {
3484 		cl->ncecl_found = B_TRUE;
3485 		/* clean up the nce (and any relevant ire's) */
3486 		ndp_delete(nce);
3487 	}
3488 }
3489 
3490 /*
3491  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3492  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3493  * is deleted and freed.
3494  */
3495 boolean_t
3496 irb_inactive(irb_t *irb)
3497 {
3498 	struct rt_entry *rt;
3499 	struct radix_node *rn;
3500 	ip_stack_t *ipst = irb->irb_ipst;
3501 
3502 	ASSERT(irb->irb_ipst != NULL);
3503 
3504 	rt = IRB2RT(irb);
3505 	rn = (struct radix_node *)rt;
3506 
3507 	/* first remove it from the radix tree. */
3508 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3509 	rw_enter(&irb->irb_lock, RW_WRITER);
3510 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3511 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3512 		    ipst->ips_ip_ftable);
3513 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3514 		ASSERT((void *)rn == (void *)rt);
3515 		Free(rt, rt_entry_cache);
3516 		/* irb_lock is freed */
3517 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3518 		return (B_TRUE);
3519 	}
3520 	rw_exit(&irb->irb_lock);
3521 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3522 	return (B_FALSE);
3523 }
3524 
3525 /*
3526  * Delete the specified IRE.
3527  */
3528 void
3529 ire_delete(ire_t *ire)
3530 {
3531 	ire_t	*ire1;
3532 	ire_t	**ptpn;
3533 	irb_t *irb;
3534 	ip_stack_t	*ipst = ire->ire_ipst;
3535 
3536 	if ((irb = ire->ire_bucket) == NULL) {
3537 		/*
3538 		 * It was never inserted in the list. Should call REFRELE
3539 		 * to free this IRE.
3540 		 */
3541 		IRE_REFRELE_NOTR(ire);
3542 		return;
3543 	}
3544 
3545 	rw_enter(&irb->irb_lock, RW_WRITER);
3546 
3547 	if (irb->irb_rr_origin == ire) {
3548 		irb->irb_rr_origin = NULL;
3549 	}
3550 
3551 	/*
3552 	 * In case of V4 we might still be waiting for fastpath ack.
3553 	 */
3554 	if (ire->ire_ipversion == IPV4_VERSION &&
3555 	    (ire->ire_type == IRE_CACHE ||
3556 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3557 		ASSERT(ire->ire_nce != NULL);
3558 		nce_fastpath_list_delete(ire->ire_nce);
3559 	}
3560 
3561 	if (ire->ire_ptpn == NULL) {
3562 		/*
3563 		 * Some other thread has removed us from the list.
3564 		 * It should have done the REFRELE for us.
3565 		 */
3566 		rw_exit(&irb->irb_lock);
3567 		return;
3568 	}
3569 
3570 	if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3571 		irb->irb_ire_cnt--;
3572 		ire->ire_marks |= IRE_MARK_CONDEMNED;
3573 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
3574 			irb->irb_tmp_ire_cnt--;
3575 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
3576 		}
3577 	}
3578 
3579 	if (irb->irb_refcnt != 0) {
3580 		/*
3581 		 * The last thread to leave this bucket will
3582 		 * delete this ire.
3583 		 */
3584 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3585 		rw_exit(&irb->irb_lock);
3586 		return;
3587 	}
3588 
3589 	/*
3590 	 * Normally to delete an ire, we walk the bucket. While we
3591 	 * walk the bucket, we normally bump up irb_refcnt and hence
3592 	 * we return from above where we mark CONDEMNED and the ire
3593 	 * gets deleted from ire_unlink. This case is where somebody
3594 	 * knows the ire e.g by doing a lookup, and wants to delete the
3595 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3596 	 * the bucket.
3597 	 */
3598 	ptpn = ire->ire_ptpn;
3599 	ire1 = ire->ire_next;
3600 	if (ire1 != NULL)
3601 		ire1->ire_ptpn = ptpn;
3602 	ASSERT(ptpn != NULL);
3603 	*ptpn = ire1;
3604 	ire->ire_ptpn = NULL;
3605 	ire->ire_next = NULL;
3606 	if (ire->ire_ipversion == IPV6_VERSION) {
3607 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3608 	} else {
3609 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3610 	}
3611 	/*
3612 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3613 	 * it should still use the cached ire or not.
3614 	 */
3615 	if (ire->ire_type == IRE_DEFAULT) {
3616 		/*
3617 		 * IRE is out of the list. We need to adjust the
3618 		 * accounting before we drop the lock.
3619 		 */
3620 		if (ire->ire_ipversion == IPV6_VERSION) {
3621 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3622 			ipst->ips_ipv6_ire_default_count--;
3623 		}
3624 	}
3625 	rw_exit(&irb->irb_lock);
3626 
3627 	if (ire->ire_ipversion == IPV6_VERSION) {
3628 		ire_delete_v6(ire);
3629 	} else {
3630 		ire_delete_v4(ire);
3631 	}
3632 	/*
3633 	 * We removed it from the list. Decrement the
3634 	 * reference count.
3635 	 */
3636 	IRE_REFRELE_NOTR(ire);
3637 }
3638 
3639 /*
3640  * Delete the specified IRE.
3641  * All calls should use ire_delete().
3642  * Sometimes called as writer though not required by this function.
3643  *
3644  * NOTE : This function is called only if the ire was added
3645  * in the list.
3646  */
3647 static void
3648 ire_delete_v4(ire_t *ire)
3649 {
3650 	ip_stack_t	*ipst = ire->ire_ipst;
3651 
3652 	ASSERT(ire->ire_refcnt >= 1);
3653 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3654 
3655 	if (ire->ire_type != IRE_CACHE)
3656 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3657 	if (ire->ire_type == IRE_DEFAULT) {
3658 		/*
3659 		 * when a default gateway is going away
3660 		 * delete all the host redirects pointing at that
3661 		 * gateway.
3662 		 */
3663 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3664 	}
3665 }
3666 
3667 /*
3668  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3669  * to free the ire when the reference count goes to zero.
3670  */
3671 void
3672 ire_inactive(ire_t *ire)
3673 {
3674 	nce_t	*nce;
3675 	ill_t	*ill = NULL;
3676 	ill_t	*stq_ill = NULL;
3677 	ipif_t	*ipif;
3678 	boolean_t	need_wakeup = B_FALSE;
3679 	irb_t 	*irb;
3680 	ip_stack_t	*ipst = ire->ire_ipst;
3681 
3682 	ASSERT(ire->ire_refcnt == 0);
3683 	ASSERT(ire->ire_ptpn == NULL);
3684 	ASSERT(ire->ire_next == NULL);
3685 
3686 	if (ire->ire_gw_secattr != NULL) {
3687 		ire_gw_secattr_free(ire->ire_gw_secattr);
3688 		ire->ire_gw_secattr = NULL;
3689 	}
3690 
3691 	if (ire->ire_mp != NULL) {
3692 		ASSERT(ire->ire_bucket == NULL);
3693 		mutex_destroy(&ire->ire_lock);
3694 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3695 		if (ire->ire_nce != NULL)
3696 			NCE_REFRELE_NOTR(ire->ire_nce);
3697 		freeb(ire->ire_mp);
3698 		return;
3699 	}
3700 
3701 	if ((nce = ire->ire_nce) != NULL) {
3702 		NCE_REFRELE_NOTR(nce);
3703 		ire->ire_nce = NULL;
3704 	}
3705 
3706 	if (ire->ire_ipif == NULL)
3707 		goto end;
3708 
3709 	ipif = ire->ire_ipif;
3710 	ill = ipif->ipif_ill;
3711 
3712 	if (ire->ire_bucket == NULL) {
3713 		/* The ire was never inserted in the table. */
3714 		goto end;
3715 	}
3716 
3717 	/*
3718 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3719 	 * non-null ill_ire_count also goes down by 1.
3720 	 *
3721 	 * The ipif that is associated with an ire is ire->ire_ipif and
3722 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3723 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3724 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
3725 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
3726 	 * different. If this is different from ire->ire_ipif->ipif_ill and
3727 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
3728 	 * ipif_ill_refrele_tail on the stq_ill.
3729 	 */
3730 
3731 	if (ire->ire_stq != NULL)
3732 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3733 
3734 	if (stq_ill == NULL || stq_ill == ill) {
3735 		/* Optimize the most common case */
3736 		mutex_enter(&ill->ill_lock);
3737 		ASSERT(ipif->ipif_ire_cnt != 0);
3738 		ipif->ipif_ire_cnt--;
3739 		if (ipif->ipif_ire_cnt == 0)
3740 			need_wakeup = B_TRUE;
3741 		if (stq_ill != NULL) {
3742 			ASSERT(stq_ill->ill_ire_cnt != 0);
3743 			stq_ill->ill_ire_cnt--;
3744 			if (stq_ill->ill_ire_cnt == 0)
3745 				need_wakeup = B_TRUE;
3746 		}
3747 		if (need_wakeup) {
3748 			/* Drops the ill lock */
3749 			ipif_ill_refrele_tail(ill);
3750 		} else {
3751 			mutex_exit(&ill->ill_lock);
3752 		}
3753 	} else {
3754 		/*
3755 		 * We can't grab all the ill locks at the same time.
3756 		 * It can lead to recursive lock enter in the call to
3757 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
3758 		 * a time.
3759 		 */
3760 		mutex_enter(&ill->ill_lock);
3761 		ASSERT(ipif->ipif_ire_cnt != 0);
3762 		ipif->ipif_ire_cnt--;
3763 		if (ipif->ipif_ire_cnt == 0) {
3764 			/* Drops the lock */
3765 			ipif_ill_refrele_tail(ill);
3766 		} else {
3767 			mutex_exit(&ill->ill_lock);
3768 		}
3769 		if (stq_ill != NULL) {
3770 			mutex_enter(&stq_ill->ill_lock);
3771 			ASSERT(stq_ill->ill_ire_cnt != 0);
3772 			stq_ill->ill_ire_cnt--;
3773 			if (stq_ill->ill_ire_cnt == 0)  {
3774 				/* Drops the ill lock */
3775 				ipif_ill_refrele_tail(stq_ill);
3776 			} else {
3777 				mutex_exit(&stq_ill->ill_lock);
3778 			}
3779 		}
3780 	}
3781 end:
3782 	/* This should be true for both V4 and V6 */
3783 
3784 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
3785 	    (ire->ire_ipversion == IPV4_VERSION) &&
3786 	    ((irb = ire->ire_bucket) != NULL)) {
3787 		rw_enter(&irb->irb_lock, RW_WRITER);
3788 		irb->irb_nire--;
3789 		/*
3790 		 * Instead of examining the conditions for freeing
3791 		 * the radix node here, we do it by calling
3792 		 * IRB_REFRELE which is a single point in the code
3793 		 * that embeds that logic. Bump up the refcnt to
3794 		 * be able to call IRB_REFRELE
3795 		 */
3796 		IRB_REFHOLD_LOCKED(irb);
3797 		rw_exit(&irb->irb_lock);
3798 		IRB_REFRELE(irb);
3799 	}
3800 	ire->ire_ipif = NULL;
3801 
3802 #ifdef DEBUG
3803 	ire_trace_cleanup(ire);
3804 #endif
3805 	mutex_destroy(&ire->ire_lock);
3806 	if (ire->ire_ipversion == IPV6_VERSION) {
3807 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
3808 	} else {
3809 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3810 	}
3811 	ASSERT(ire->ire_mp == NULL);
3812 	/* Has been allocated out of the cache */
3813 	kmem_cache_free(ire_cache, ire);
3814 }
3815 
3816 /*
3817  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
3818  * entries that have a given gateway address.
3819  */
3820 void
3821 ire_delete_cache_gw(ire_t *ire, char *cp)
3822 {
3823 	ipaddr_t	gw_addr;
3824 
3825 	if (!(ire->ire_type & IRE_CACHE) &&
3826 	    !(ire->ire_flags & RTF_DYNAMIC))
3827 		return;
3828 
3829 	bcopy(cp, &gw_addr, sizeof (gw_addr));
3830 	if (ire->ire_gateway_addr == gw_addr) {
3831 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
3832 		    (int)ntohl(ire->ire_addr), ire->ire_type,
3833 		    (int)ntohl(ire->ire_gateway_addr)));
3834 		ire_delete(ire);
3835 	}
3836 }
3837 
3838 /*
3839  * Remove all IRE_CACHE entries that match the ire specified.
3840  *
3841  * The flag argument indicates if the flush request is due to addition
3842  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
3843  *
3844  * This routine takes only the IREs from the forwarding table and flushes
3845  * the corresponding entries from the cache table.
3846  *
3847  * When flushing due to the deletion of an old route, it
3848  * just checks the cache handles (ire_phandle and ire_ihandle) and
3849  * deletes the ones that match.
3850  *
3851  * When flushing due to the creation of a new route, it checks
3852  * if a cache entry's address matches the one in the IRE and
3853  * that the cache entry's parent has a less specific mask than the
3854  * one in IRE. The destination of such a cache entry could be the
3855  * gateway for other cache entries, so we need to flush those as
3856  * well by looking for gateway addresses matching the IRE's address.
3857  */
3858 void
3859 ire_flush_cache_v4(ire_t *ire, int flag)
3860 {
3861 	int i;
3862 	ire_t *cire;
3863 	irb_t *irb;
3864 	ip_stack_t	*ipst = ire->ire_ipst;
3865 
3866 	if (ire->ire_type & IRE_CACHE)
3867 		return;
3868 
3869 	/*
3870 	 * If a default is just created, there is no point
3871 	 * in going through the cache, as there will not be any
3872 	 * cached ires.
3873 	 */
3874 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
3875 		return;
3876 	if (flag == IRE_FLUSH_ADD) {
3877 		/*
3878 		 * This selective flush is due to the addition of
3879 		 * new IRE.
3880 		 */
3881 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3882 			irb = &ipst->ips_ip_cache_table[i];
3883 			if ((cire = irb->irb_ire) == NULL)
3884 				continue;
3885 			IRB_REFHOLD(irb);
3886 			for (cire = irb->irb_ire; cire != NULL;
3887 			    cire = cire->ire_next) {
3888 				if (cire->ire_type != IRE_CACHE)
3889 					continue;
3890 				/*
3891 				 * If 'cire' belongs to the same subnet
3892 				 * as the new ire being added, and 'cire'
3893 				 * is derived from a prefix that is less
3894 				 * specific than the new ire being added,
3895 				 * we need to flush 'cire'; for instance,
3896 				 * when a new interface comes up.
3897 				 */
3898 				if (((cire->ire_addr & ire->ire_mask) ==
3899 				    (ire->ire_addr & ire->ire_mask)) &&
3900 				    (ip_mask_to_plen(cire->ire_cmask) <=
3901 				    ire->ire_masklen)) {
3902 					ire_delete(cire);
3903 					continue;
3904 				}
3905 				/*
3906 				 * This is the case when the ire_gateway_addr
3907 				 * of 'cire' belongs to the same subnet as
3908 				 * the new ire being added.
3909 				 * Flushing such ires is sometimes required to
3910 				 * avoid misrouting: say we have a machine with
3911 				 * two interfaces (I1 and I2), a default router
3912 				 * R on the I1 subnet, and a host route to an
3913 				 * off-link destination D with a gateway G on
3914 				 * the I2 subnet.
3915 				 * Under normal operation, we will have an
3916 				 * on-link cache entry for G and an off-link
3917 				 * cache entry for D with G as ire_gateway_addr,
3918 				 * traffic to D will reach its destination
3919 				 * through gateway G.
3920 				 * If the administrator does 'ifconfig I2 down',
3921 				 * the cache entries for D and G will be
3922 				 * flushed. However, G will now be resolved as
3923 				 * an off-link destination using R (the default
3924 				 * router) as gateway. Then D will also be
3925 				 * resolved as an off-link destination using G
3926 				 * as gateway - this behavior is due to
3927 				 * compatibility reasons, see comment in
3928 				 * ire_ihandle_lookup_offlink(). Traffic to D
3929 				 * will go to the router R and probably won't
3930 				 * reach the destination.
3931 				 * The administrator then does 'ifconfig I2 up'.
3932 				 * Since G is on the I2 subnet, this routine
3933 				 * will flush its cache entry. It must also
3934 				 * flush the cache entry for D, otherwise
3935 				 * traffic will stay misrouted until the IRE
3936 				 * times out.
3937 				 */
3938 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
3939 				    (ire->ire_addr & ire->ire_mask)) {
3940 					ire_delete(cire);
3941 					continue;
3942 				}
3943 			}
3944 			IRB_REFRELE(irb);
3945 		}
3946 	} else {
3947 		/*
3948 		 * delete the cache entries based on
3949 		 * handle in the IRE as this IRE is
3950 		 * being deleted/changed.
3951 		 */
3952 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3953 			irb = &ipst->ips_ip_cache_table[i];
3954 			if ((cire = irb->irb_ire) == NULL)
3955 				continue;
3956 			IRB_REFHOLD(irb);
3957 			for (cire = irb->irb_ire; cire != NULL;
3958 			    cire = cire->ire_next) {
3959 				if (cire->ire_type != IRE_CACHE)
3960 					continue;
3961 				if ((cire->ire_phandle == 0 ||
3962 				    cire->ire_phandle != ire->ire_phandle) &&
3963 				    (cire->ire_ihandle == 0 ||
3964 				    cire->ire_ihandle != ire->ire_ihandle))
3965 					continue;
3966 				ire_delete(cire);
3967 			}
3968 			IRB_REFRELE(irb);
3969 		}
3970 	}
3971 }
3972 
3973 /*
3974  * Matches the arguments passed with the values in the ire.
3975  *
3976  * Note: for match types that match using "ipif" passed in, ipif
3977  * must be checked for non-NULL before calling this routine.
3978  */
3979 boolean_t
3980 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3981     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
3982     const ts_label_t *tsl, int match_flags)
3983 {
3984 	ill_t *ire_ill = NULL, *dst_ill;
3985 	ill_t *ipif_ill = NULL;
3986 	ill_group_t *ire_ill_group = NULL;
3987 	ill_group_t *ipif_ill_group = NULL;
3988 
3989 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3990 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
3991 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
3992 	    (ipif != NULL && !ipif->ipif_isv6));
3993 
3994 	/*
3995 	 * HIDDEN cache entries have to be looked up specifically with
3996 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
3997 	 * when the interface is FAILED or INACTIVE. In that case,
3998 	 * any IRE_CACHES that exists should be marked with
3999 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
4000 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4001 	 */
4002 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4003 	    (ire->ire_marks & IRE_MARK_HIDDEN))
4004 		return (B_FALSE);
4005 
4006 	/*
4007 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4008 	 * is used. In that case the routing table is bypassed and the
4009 	 * packets are sent directly to the specified nexthop. The
4010 	 * IRE_CACHE entry representing this route should be marked
4011 	 * with IRE_MARK_PRIVATE_ADDR.
4012 	 */
4013 
4014 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4015 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4016 		return (B_FALSE);
4017 
4018 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4019 	    ire->ire_zoneid != ALL_ZONES) {
4020 		/*
4021 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4022 		 * valid and does not match that of ire_zoneid, a failure to
4023 		 * match is reported at this point. Otherwise, since some IREs
4024 		 * that are available in the global zone can be used in local
4025 		 * zones, additional checks need to be performed:
4026 		 *
4027 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4028 		 *	entries should never be matched in this situation.
4029 		 *
4030 		 *	IRE entries that have an interface associated with them
4031 		 *	should in general not match unless they are an IRE_LOCAL
4032 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4033 		 *	the caller.  In the case of the former, checking of the
4034 		 *	other fields supplied should take place.
4035 		 *
4036 		 *	In the case where MATCH_IRE_DEFAULT has been set,
4037 		 *	all of the ipif's associated with the IRE's ill are
4038 		 *	checked to see if there is a matching zoneid.  If any
4039 		 *	one ipif has a matching zoneid, this IRE is a
4040 		 *	potential candidate so checking of the other fields
4041 		 *	takes place.
4042 		 *
4043 		 *	In the case where the IRE_INTERFACE has a usable source
4044 		 *	address (indicated by ill_usesrc_ifindex) in the
4045 		 *	correct zone then it's permitted to return this IRE
4046 		 */
4047 		if (match_flags & MATCH_IRE_ZONEONLY)
4048 			return (B_FALSE);
4049 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4050 			return (B_FALSE);
4051 		/*
4052 		 * Note, IRE_INTERFACE can have the stq as NULL. For
4053 		 * example, if the default multicast route is tied to
4054 		 * the loopback address.
4055 		 */
4056 		if ((ire->ire_type & IRE_INTERFACE) &&
4057 		    (ire->ire_stq != NULL)) {
4058 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4059 			/*
4060 			 * If there is a usable source address in the
4061 			 * zone, then it's ok to return an
4062 			 * IRE_INTERFACE
4063 			 */
4064 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4065 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4066 				    (void *)dst_ill,
4067 				    (ire->ire_addr == (addr & mask))));
4068 			} else {
4069 				ip3dbg(("ire_match_args: src_ipif NULL"
4070 				    " dst_ill %p\n", (void *)dst_ill));
4071 				return (B_FALSE);
4072 			}
4073 		}
4074 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4075 		    !(ire->ire_type & IRE_INTERFACE)) {
4076 			ipif_t	*tipif;
4077 
4078 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4079 				return (B_FALSE);
4080 			}
4081 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4082 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4083 			    tipif != NULL; tipif = tipif->ipif_next) {
4084 				if (IPIF_CAN_LOOKUP(tipif) &&
4085 				    (tipif->ipif_flags & IPIF_UP) &&
4086 				    (tipif->ipif_zoneid == zoneid ||
4087 				    tipif->ipif_zoneid == ALL_ZONES))
4088 					break;
4089 			}
4090 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4091 			if (tipif == NULL) {
4092 				return (B_FALSE);
4093 			}
4094 		}
4095 	}
4096 
4097 	/*
4098 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4099 	 * somebody wants to send out on a particular interface which
4100 	 * is given by ire_stq and hence use ire_stq to derive the ill
4101 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4102 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4103 	 * ire_to_ill does the right thing for this.
4104 	 */
4105 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4106 		ire_ill = ire_to_ill(ire);
4107 		if (ire_ill != NULL)
4108 			ire_ill_group = ire_ill->ill_group;
4109 		ipif_ill = ipif->ipif_ill;
4110 		ipif_ill_group = ipif_ill->ill_group;
4111 	}
4112 
4113 	if ((ire->ire_addr == (addr & mask)) &&
4114 	    ((!(match_flags & MATCH_IRE_GW)) ||
4115 	    (ire->ire_gateway_addr == gateway)) &&
4116 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4117 	    (ire->ire_type & type)) &&
4118 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4119 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
4120 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4121 	    (ire->ire_ipif == ipif)) &&
4122 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4123 	    (ire->ire_type != IRE_CACHE ||
4124 	    ire->ire_marks & IRE_MARK_HIDDEN)) &&
4125 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4126 	    (ire->ire_type != IRE_CACHE ||
4127 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4128 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4129 	    (ire_ill == ipif_ill)) &&
4130 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4131 	    (ire->ire_ihandle == ihandle)) &&
4132 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4133 	    (ire->ire_mask == mask)) &&
4134 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4135 	    (ire_ill == ipif_ill) ||
4136 	    (ire_ill_group != NULL &&
4137 	    ire_ill_group == ipif_ill_group)) &&
4138 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4139 	    (!is_system_labeled()) ||
4140 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
4141 		/* We found the matched IRE */
4142 		return (B_TRUE);
4143 	}
4144 	return (B_FALSE);
4145 }
4146 
4147 
4148 /*
4149  * Lookup for a route in all the tables
4150  */
4151 ire_t *
4152 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4153     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4154     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4155 {
4156 	ire_t *ire = NULL;
4157 
4158 	/*
4159 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4160 	 * MATCH_IRE_ILL is set.
4161 	 */
4162 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4163 	    (ipif == NULL))
4164 		return (NULL);
4165 
4166 	/*
4167 	 * might be asking for a cache lookup,
4168 	 * This is not best way to lookup cache,
4169 	 * user should call ire_cache_lookup directly.
4170 	 *
4171 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4172 	 * in the forwarding table, if the applicable type flags were set.
4173 	 */
4174 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4175 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4176 		    tsl, flags, ipst);
4177 		if (ire != NULL)
4178 			return (ire);
4179 	}
4180 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4181 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4182 		    zoneid, 0, tsl, flags, ipst);
4183 	}
4184 	return (ire);
4185 }
4186 
4187 
4188 /*
4189  * Delete the IRE cache for the gateway and all IRE caches whose
4190  * ire_gateway_addr points to this gateway, and allow them to
4191  * be created on demand by ip_newroute.
4192  */
4193 void
4194 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4195 {
4196 	irb_t *irb;
4197 	ire_t *ire;
4198 
4199 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4200 	    ipst->ips_ip_cache_table_size)];
4201 	IRB_REFHOLD(irb);
4202 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4203 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4204 			continue;
4205 
4206 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4207 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4208 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4209 			ire_delete(ire);
4210 		}
4211 	}
4212 	IRB_REFRELE(irb);
4213 
4214 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4215 }
4216 
4217 /*
4218  * Looks up cache table for a route.
4219  * specific lookup can be indicated by
4220  * passing the MATCH_* flags and the
4221  * necessary parameters.
4222  */
4223 ire_t *
4224 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4225     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4226 {
4227 	irb_t *irb_ptr;
4228 	ire_t *ire;
4229 
4230 	/*
4231 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4232 	 * MATCH_IRE_ILL is set.
4233 	 */
4234 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4235 	    (ipif == NULL))
4236 		return (NULL);
4237 
4238 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4239 	    ipst->ips_ip_cache_table_size)];
4240 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4241 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4242 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4243 			continue;
4244 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4245 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4246 		    ipif, zoneid, 0, tsl, flags)) {
4247 			IRE_REFHOLD(ire);
4248 			rw_exit(&irb_ptr->irb_lock);
4249 			return (ire);
4250 		}
4251 	}
4252 	rw_exit(&irb_ptr->irb_lock);
4253 	return (NULL);
4254 }
4255 
4256 /*
4257  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4258  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4259  * the same ill group.
4260  */
4261 boolean_t
4262 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4263 {
4264 	ill_t		*recv_ill, *xmit_ill;
4265 	ill_group_t	*recv_group, *xmit_group;
4266 
4267 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4268 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4269 
4270 	recv_ill = ire_to_ill(ire_local);
4271 	xmit_ill = ire_to_ill(xmit_ire);
4272 
4273 	ASSERT(recv_ill != NULL);
4274 	ASSERT(xmit_ill != NULL);
4275 
4276 	if (recv_ill == xmit_ill)
4277 		return (B_TRUE);
4278 
4279 	recv_group = recv_ill->ill_group;
4280 	xmit_group = xmit_ill->ill_group;
4281 
4282 	if (recv_group != NULL && recv_group == xmit_group)
4283 		return (B_TRUE);
4284 
4285 	return (B_FALSE);
4286 }
4287 
4288 /*
4289  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4290  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4291  * then we don't allow this IRE_LOCAL to be used.
4292  */
4293 boolean_t
4294 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4295     const ts_label_t *tsl, ip_stack_t *ipst)
4296 {
4297 	ire_t		*alt_ire;
4298 	boolean_t	rval;
4299 
4300 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4301 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4302 		    NULL, zoneid, 0, tsl,
4303 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4304 		    MATCH_IRE_RJ_BHOLE, ipst);
4305 	} else {
4306 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4307 		    0, NULL, NULL, zoneid, 0, tsl,
4308 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4309 		    MATCH_IRE_RJ_BHOLE, ipst);
4310 	}
4311 
4312 	if (alt_ire == NULL)
4313 		return (B_FALSE);
4314 
4315 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4316 		ire_refrele(alt_ire);
4317 		return (B_FALSE);
4318 	}
4319 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4320 
4321 	ire_refrele(alt_ire);
4322 	return (rval);
4323 }
4324 
4325 /*
4326  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4327  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4328  * to the hidden ones.
4329  *
4330  * In general the zoneid has to match (where ALL_ZONES match all of them).
4331  * But for IRE_LOCAL we also need to handle the case where L2 should
4332  * conceptually loop back the packet. This is necessary since neither
4333  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4334  * own MAC address. This loopback is needed when the normal
4335  * routes (ignoring IREs with different zoneids) would send out the packet on
4336  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4337  * associated.
4338  *
4339  * Earlier versions of this code always matched an IRE_LOCAL independently of
4340  * the zoneid. We preserve that earlier behavior when
4341  * ip_restrict_interzone_loopback is turned off.
4342  */
4343 ire_t *
4344 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4345     ip_stack_t *ipst)
4346 {
4347 	irb_t *irb_ptr;
4348 	ire_t *ire;
4349 
4350 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4351 	    ipst->ips_ip_cache_table_size)];
4352 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4353 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4354 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4355 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4356 			continue;
4357 		}
4358 		if (ire->ire_addr == addr) {
4359 			/*
4360 			 * Finally, check if the security policy has any
4361 			 * restriction on using this route for the specified
4362 			 * message.
4363 			 */
4364 			if (tsl != NULL &&
4365 			    ire->ire_gw_secattr != NULL &&
4366 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4367 				continue;
4368 			}
4369 
4370 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4371 			    ire->ire_zoneid == ALL_ZONES) {
4372 				IRE_REFHOLD(ire);
4373 				rw_exit(&irb_ptr->irb_lock);
4374 				return (ire);
4375 			}
4376 
4377 			if (ire->ire_type == IRE_LOCAL) {
4378 				if (ipst->ips_ip_restrict_interzone_loopback &&
4379 				    !ire_local_ok_across_zones(ire, zoneid,
4380 				    &addr, tsl, ipst))
4381 					continue;
4382 
4383 				IRE_REFHOLD(ire);
4384 				rw_exit(&irb_ptr->irb_lock);
4385 				return (ire);
4386 			}
4387 		}
4388 	}
4389 	rw_exit(&irb_ptr->irb_lock);
4390 	return (NULL);
4391 }
4392 
4393 /*
4394  * Locate the interface ire that is tied to the cache ire 'cire' via
4395  * cire->ire_ihandle.
4396  *
4397  * We are trying to create the cache ire for an offlink destn based
4398  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4399  * as found by ip_newroute(). We are called from ip_newroute() in
4400  * the IRE_CACHE case.
4401  */
4402 ire_t *
4403 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4404 {
4405 	ire_t	*ire;
4406 	int	match_flags;
4407 	ipaddr_t gw_addr;
4408 	ipif_t	*gw_ipif;
4409 	ip_stack_t	*ipst = cire->ire_ipst;
4410 
4411 	ASSERT(cire != NULL && pire != NULL);
4412 
4413 	/*
4414 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4415 	 * because the ihandle refers to an ipif which can be in only one zone.
4416 	 */
4417 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4418 	/*
4419 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4420 	 * for on-link hosts. We should never be here for onlink.
4421 	 * Thus, use MATCH_IRE_ILL_GROUP.
4422 	 */
4423 	if (pire->ire_ipif != NULL)
4424 		match_flags |= MATCH_IRE_ILL_GROUP;
4425 	/*
4426 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4427 	 * (When ip_newroute() created 'cire' for the gateway it set its
4428 	 * cmask from the interface ire's mask)
4429 	 */
4430 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4431 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4432 	    NULL, match_flags, ipst);
4433 	if (ire != NULL)
4434 		return (ire);
4435 	/*
4436 	 * If we didn't find an interface ire above, we can't declare failure.
4437 	 * For backwards compatibility, we need to support prefix routes
4438 	 * pointing to next hop gateways that are not on-link.
4439 	 *
4440 	 * Assume we are trying to ping some offlink destn, and we have the
4441 	 * routing table below.
4442 	 *
4443 	 * Eg.	default	- gw1		<--- pire	(line 1)
4444 	 *	gw1	- gw2				(line 2)
4445 	 *	gw2	- hme0				(line 3)
4446 	 *
4447 	 * If we already have a cache ire for gw1 in 'cire', the
4448 	 * ire_ftable_lookup above would have failed, since there is no
4449 	 * interface ire to reach gw1. We will fallthru below.
4450 	 *
4451 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4452 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4453 	 * The differences are the following
4454 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4455 	 *	instead of ire_route_lookup()
4456 	 * ii.  We look for only prefix routes in the 1st call below.
4457 	 * ii.  We want to match on the ihandle in the 2nd call below.
4458 	 */
4459 	match_flags =  MATCH_IRE_TYPE;
4460 	if (pire->ire_ipif != NULL)
4461 		match_flags |= MATCH_IRE_ILL_GROUP;
4462 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4463 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4464 	if (ire == NULL)
4465 		return (NULL);
4466 	/*
4467 	 * At this point 'ire' corresponds to the entry shown in line 2.
4468 	 * gw_addr is 'gw2' in the example above.
4469 	 */
4470 	gw_addr = ire->ire_gateway_addr;
4471 	gw_ipif = ire->ire_ipif;
4472 	ire_refrele(ire);
4473 
4474 	match_flags |= MATCH_IRE_IHANDLE;
4475 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4476 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4477 	    ipst);
4478 	return (ire);
4479 }
4480 
4481 /*
4482  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4483  * ire associated with the specified ipif.
4484  *
4485  * This might occasionally be called when IPIF_UP is not set since
4486  * the IP_MULTICAST_IF as well as creating interface routes
4487  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4488  *
4489  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4490  * the ipif, this routine might return NULL.
4491  */
4492 ire_t *
4493 ipif_to_ire(const ipif_t *ipif)
4494 {
4495 	ire_t	*ire;
4496 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4497 
4498 	ASSERT(!ipif->ipif_isv6);
4499 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4500 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4501 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4502 		    ipst);
4503 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4504 		/* In this case we need to lookup destination address. */
4505 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4506 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4507 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4508 	} else {
4509 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4510 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4511 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4512 		    MATCH_IRE_MASK), ipst);
4513 	}
4514 	return (ire);
4515 }
4516 
4517 /*
4518  * ire_walk function.
4519  * Count the number of IRE_CACHE entries in different categories.
4520  */
4521 void
4522 ire_cache_count(ire_t *ire, char *arg)
4523 {
4524 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4525 
4526 	if (ire->ire_type != IRE_CACHE)
4527 		return;
4528 
4529 	icc->icc_total++;
4530 
4531 	if (ire->ire_ipversion == IPV6_VERSION) {
4532 		mutex_enter(&ire->ire_lock);
4533 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4534 			mutex_exit(&ire->ire_lock);
4535 			icc->icc_onlink++;
4536 			return;
4537 		}
4538 		mutex_exit(&ire->ire_lock);
4539 	} else {
4540 		if (ire->ire_gateway_addr == 0) {
4541 			icc->icc_onlink++;
4542 			return;
4543 		}
4544 	}
4545 
4546 	ASSERT(ire->ire_ipif != NULL);
4547 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4548 		icc->icc_pmtu++;
4549 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4550 	    ire->ire_ib_pkt_count)
4551 		icc->icc_offlink++;
4552 	else
4553 		icc->icc_unused++;
4554 }
4555 
4556 /*
4557  * ire_walk function called by ip_trash_ire_reclaim().
4558  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4559  * different for different categories of IRE_CACHE entries.
4560  * A fraction of zero means to not free any in that category.
4561  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4562  * is N then every Nth hash bucket chain will be freed.
4563  */
4564 void
4565 ire_cache_reclaim(ire_t *ire, char *arg)
4566 {
4567 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4568 	uint_t rand;
4569 	ip_stack_t	*ipst = icr->icr_ipst;
4570 
4571 	if (ire->ire_type != IRE_CACHE)
4572 		return;
4573 
4574 	if (ire->ire_ipversion == IPV6_VERSION) {
4575 		rand = (uint_t)lbolt +
4576 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4577 		    ipst->ips_ip6_cache_table_size);
4578 		mutex_enter(&ire->ire_lock);
4579 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4580 			mutex_exit(&ire->ire_lock);
4581 			if (icr->icr_onlink != 0 &&
4582 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4583 				ire_delete(ire);
4584 				return;
4585 			}
4586 			goto done;
4587 		}
4588 		mutex_exit(&ire->ire_lock);
4589 	} else {
4590 		rand = (uint_t)lbolt +
4591 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4592 		if (ire->ire_gateway_addr == 0) {
4593 			if (icr->icr_onlink != 0 &&
4594 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4595 				ire_delete(ire);
4596 				return;
4597 			}
4598 			goto done;
4599 		}
4600 	}
4601 	/* Not onlink IRE */
4602 	ASSERT(ire->ire_ipif != NULL);
4603 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4604 		/* Use ptmu fraction */
4605 		if (icr->icr_pmtu != 0 &&
4606 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4607 			ire_delete(ire);
4608 			return;
4609 		}
4610 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4611 	    ire->ire_ib_pkt_count) {
4612 		/* Use offlink fraction */
4613 		if (icr->icr_offlink != 0 &&
4614 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4615 			ire_delete(ire);
4616 			return;
4617 		}
4618 	} else {
4619 		/* Use unused fraction */
4620 		if (icr->icr_unused != 0 &&
4621 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4622 			ire_delete(ire);
4623 			return;
4624 		}
4625 	}
4626 done:
4627 	/*
4628 	 * Update tire_mark so that those that haven't been used since this
4629 	 * reclaim will be considered unused next time we reclaim.
4630 	 */
4631 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4632 }
4633 
4634 static void
4635 power2_roundup(uint32_t *value)
4636 {
4637 	int i;
4638 
4639 	for (i = 1; i < 31; i++) {
4640 		if (*value <= (1 << i))
4641 			break;
4642 	}
4643 	*value = (1 << i);
4644 }
4645 
4646 /* Global init for all zones */
4647 void
4648 ip_ire_g_init()
4649 {
4650 	/*
4651 	 * Create ire caches, ire_reclaim()
4652 	 * will give IRE_CACHE back to system when needed.
4653 	 * This needs to be done here before anything else, since
4654 	 * ire_add() expects the cache to be created.
4655 	 */
4656 	ire_cache = kmem_cache_create("ire_cache",
4657 	    sizeof (ire_t), 0, ip_ire_constructor,
4658 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
4659 
4660 	rt_entry_cache = kmem_cache_create("rt_entry",
4661 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
4662 
4663 	/*
4664 	 * Have radix code setup kmem caches etc.
4665 	 */
4666 	rn_init();
4667 }
4668 
4669 void
4670 ip_ire_init(ip_stack_t *ipst)
4671 {
4672 	int i;
4673 	uint32_t mem_cnt;
4674 	uint32_t cpu_cnt;
4675 	uint32_t min_cnt;
4676 	pgcnt_t mem_avail;
4677 
4678 	/*
4679 	 * ip_ire_max_bucket_cnt is sized below based on the memory
4680 	 * size and the cpu speed of the machine. This is upper
4681 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
4682 	 * and is lower bounded by the compile time value of
4683 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
4684 	 * ip6_ire_max_bucket_cnt.
4685 	 *
4686 	 * We calculate this for each IP Instances in order to use
4687 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
4688 	 * in effect when the zone is booted.
4689 	 */
4690 	mem_avail = kmem_avail();
4691 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4692 	    ip_cache_table_size / sizeof (ire_t);
4693 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
4694 
4695 	min_cnt = MIN(cpu_cnt, mem_cnt);
4696 	if (min_cnt < ip_ire_min_bucket_cnt)
4697 		min_cnt = ip_ire_min_bucket_cnt;
4698 	if (ip_ire_max_bucket_cnt > min_cnt) {
4699 		ip_ire_max_bucket_cnt = min_cnt;
4700 	}
4701 
4702 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4703 	    ip6_cache_table_size / sizeof (ire_t);
4704 	min_cnt = MIN(cpu_cnt, mem_cnt);
4705 	if (min_cnt < ip6_ire_min_bucket_cnt)
4706 		min_cnt = ip6_ire_min_bucket_cnt;
4707 	if (ip6_ire_max_bucket_cnt > min_cnt) {
4708 		ip6_ire_max_bucket_cnt = min_cnt;
4709 	}
4710 
4711 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
4712 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
4713 
4714 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
4715 
4716 
4717 	/* Calculate the IPv4 cache table size. */
4718 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
4719 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4720 	    ip_ire_max_bucket_cnt));
4721 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
4722 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
4723 	/*
4724 	 * Make sure that the table size is always a power of 2.  The
4725 	 * hash macro IRE_ADDR_HASH() depends on that.
4726 	 */
4727 	power2_roundup(&ipst->ips_ip_cache_table_size);
4728 
4729 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
4730 	    sizeof (irb_t), KM_SLEEP);
4731 
4732 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4733 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
4734 		    RW_DEFAULT, NULL);
4735 	}
4736 
4737 	/* Calculate the IPv6 cache table size. */
4738 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
4739 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4740 	    ip6_ire_max_bucket_cnt));
4741 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
4742 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
4743 	/*
4744 	 * Make sure that the table size is always a power of 2.  The
4745 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
4746 	 */
4747 	power2_roundup(&ipst->ips_ip6_cache_table_size);
4748 
4749 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
4750 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
4751 
4752 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4753 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
4754 		    RW_DEFAULT, NULL);
4755 	}
4756 
4757 	/*
4758 	 * Make sure that the forwarding table size is a power of 2.
4759 	 * The IRE*_ADDR_HASH() macroes depend on that.
4760 	 */
4761 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
4762 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
4763 
4764 	ipst->ips_ire_handle = 1;
4765 }
4766 
4767 void
4768 ip_ire_g_fini(void)
4769 {
4770 	kmem_cache_destroy(ire_cache);
4771 	kmem_cache_destroy(rt_entry_cache);
4772 
4773 	rn_fini();
4774 }
4775 
4776 void
4777 ip_ire_fini(ip_stack_t *ipst)
4778 {
4779 	int i;
4780 
4781 	/*
4782 	 * Delete all IREs - assumes that the ill/ipifs have
4783 	 * been removed so what remains are just the ftable and IRE_CACHE.
4784 	 */
4785 	ire_walk(ire_delete, NULL, ipst);
4786 
4787 	rn_freehead(ipst->ips_ip_ftable);
4788 	ipst->ips_ip_ftable = NULL;
4789 
4790 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
4791 	mutex_destroy(&ipst->ips_ire_handle_lock);
4792 
4793 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4794 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
4795 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
4796 	}
4797 	kmem_free(ipst->ips_ip_cache_table,
4798 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
4799 	ipst->ips_ip_cache_table = NULL;
4800 
4801 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4802 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
4803 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
4804 	}
4805 	kmem_free(ipst->ips_ip_cache_table_v6,
4806 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
4807 	ipst->ips_ip_cache_table_v6 = NULL;
4808 
4809 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
4810 		irb_t *ptr;
4811 		int j;
4812 
4813 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
4814 			continue;
4815 
4816 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
4817 			ASSERT(ptr[j].irb_ire == NULL);
4818 			rw_destroy(&ptr[j].irb_lock);
4819 		}
4820 		mi_free(ptr);
4821 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
4822 	}
4823 }
4824 
4825 /*
4826  * Check if another multirt route resolution is needed.
4827  * B_TRUE is returned is there remain a resolvable route,
4828  * or if no route for that dst is resolved yet.
4829  * B_FALSE is returned if all routes for that dst are resolved
4830  * or if the remaining unresolved routes are actually not
4831  * resolvable.
4832  * This only works in the global zone.
4833  */
4834 boolean_t
4835 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
4836 {
4837 	ire_t	*first_fire;
4838 	ire_t	*first_cire;
4839 	ire_t	*fire;
4840 	ire_t	*cire;
4841 	irb_t	*firb;
4842 	irb_t	*cirb;
4843 	int	unres_cnt = 0;
4844 	boolean_t resolvable = B_FALSE;
4845 
4846 	/* Retrieve the first IRE_HOST that matches the destination */
4847 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
4848 	    NULL, ALL_ZONES, 0, tsl,
4849 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
4850 
4851 	/* No route at all */
4852 	if (first_fire == NULL) {
4853 		return (B_TRUE);
4854 	}
4855 
4856 	firb = first_fire->ire_bucket;
4857 	ASSERT(firb != NULL);
4858 
4859 	/* Retrieve the first IRE_CACHE ire for that destination. */
4860 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4861 
4862 	/* No resolved route. */
4863 	if (first_cire == NULL) {
4864 		ire_refrele(first_fire);
4865 		return (B_TRUE);
4866 	}
4867 
4868 	/*
4869 	 * At least one route is resolved. Here we look through the forward
4870 	 * and cache tables, to compare the number of declared routes
4871 	 * with the number of resolved routes. The search for a resolvable
4872 	 * route is performed only if at least one route remains
4873 	 * unresolved.
4874 	 */
4875 	cirb = first_cire->ire_bucket;
4876 	ASSERT(cirb != NULL);
4877 
4878 	/* Count the number of routes to that dest that are declared. */
4879 	IRB_REFHOLD(firb);
4880 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4881 		if (!(fire->ire_flags & RTF_MULTIRT))
4882 			continue;
4883 		if (fire->ire_addr != dst)
4884 			continue;
4885 		unres_cnt++;
4886 	}
4887 	IRB_REFRELE(firb);
4888 
4889 	/* Then subtract the number of routes to that dst that are resolved */
4890 	IRB_REFHOLD(cirb);
4891 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
4892 		if (!(cire->ire_flags & RTF_MULTIRT))
4893 			continue;
4894 		if (cire->ire_addr != dst)
4895 			continue;
4896 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
4897 			continue;
4898 		unres_cnt--;
4899 	}
4900 	IRB_REFRELE(cirb);
4901 
4902 	/* At least one route is unresolved; search for a resolvable route. */
4903 	if (unres_cnt > 0)
4904 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
4905 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
4906 
4907 	if (first_fire != NULL)
4908 		ire_refrele(first_fire);
4909 
4910 	if (first_cire != NULL)
4911 		ire_refrele(first_cire);
4912 
4913 	return (resolvable);
4914 }
4915 
4916 
4917 /*
4918  * Explore a forward_table bucket, starting from fire_arg.
4919  * fire_arg MUST be an IRE_HOST entry.
4920  *
4921  * Return B_TRUE and update *ire_arg and *fire_arg
4922  * if at least one resolvable route is found. *ire_arg
4923  * is the IRE entry for *fire_arg's gateway.
4924  *
4925  * Return B_FALSE otherwise (all routes are resolved or
4926  * the remaining unresolved routes are all unresolvable).
4927  *
4928  * The IRE selection relies on a priority mechanism
4929  * driven by the flags passed in by the caller.
4930  * The caller, such as ip_newroute_ipif(), can get the most
4931  * relevant ire at each stage of a multiple route resolution.
4932  *
4933  * The rules are:
4934  *
4935  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
4936  *   ires are preferred for the gateway. This gives the highest
4937  *   priority to routes that can be resolved without using
4938  *   a resolver.
4939  *
4940  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
4941  *   is specified but no IRE_CACHETABLE ire entry for the gateway
4942  *   is found, the following rules apply.
4943  *
4944  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
4945  *   ires for the gateway, that have not been tried since
4946  *   a configurable amount of time, are preferred.
4947  *   This applies when a resolver must be invoked for
4948  *   a missing route, but we don't want to use the resolver
4949  *   upon each packet emission. If no such resolver is found,
4950  *   B_FALSE is returned.
4951  *   The MULTIRT_USESTAMP flag can be combined with
4952  *   MULTIRT_CACHEGW.
4953  *
4954  * - if MULTIRT_USESTAMP is not specified in flags, the first
4955  *   unresolved but resolvable route is selected.
4956  *
4957  * - Otherwise, there is no resolvalble route, and
4958  *   B_FALSE is returned.
4959  *
4960  * At last, MULTIRT_SETSTAMP can be specified in flags to
4961  * request the timestamp of unresolvable routes to
4962  * be refreshed. This prevents the useless exploration
4963  * of those routes for a while, when MULTIRT_USESTAMP is used.
4964  *
4965  * This only works in the global zone.
4966  */
4967 boolean_t
4968 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
4969     const ts_label_t *tsl, ip_stack_t *ipst)
4970 {
4971 	clock_t	delta;
4972 	ire_t	*best_fire = NULL;
4973 	ire_t	*best_cire = NULL;
4974 	ire_t	*first_fire;
4975 	ire_t	*first_cire;
4976 	ire_t	*fire;
4977 	ire_t	*cire;
4978 	irb_t	*firb = NULL;
4979 	irb_t	*cirb = NULL;
4980 	ire_t	*gw_ire;
4981 	boolean_t	already_resolved;
4982 	boolean_t	res;
4983 	ipaddr_t	dst;
4984 	ipaddr_t	gw;
4985 
4986 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
4987 	    (void *)*ire_arg, (void *)*fire_arg, flags));
4988 
4989 	ASSERT(ire_arg != NULL);
4990 	ASSERT(fire_arg != NULL);
4991 
4992 	/* Not an IRE_HOST ire; give up. */
4993 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
4994 		return (B_FALSE);
4995 	}
4996 
4997 	/* This is the first IRE_HOST ire for that destination. */
4998 	first_fire = *fire_arg;
4999 	firb = first_fire->ire_bucket;
5000 	ASSERT(firb != NULL);
5001 
5002 	dst = first_fire->ire_addr;
5003 
5004 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
5005 
5006 	/*
5007 	 * Retrieve the first IRE_CACHE ire for that destination;
5008 	 * if we don't find one, no route for that dest is
5009 	 * resolved yet.
5010 	 */
5011 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5012 	if (first_cire != NULL) {
5013 		cirb = first_cire->ire_bucket;
5014 	}
5015 
5016 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
5017 
5018 	/*
5019 	 * Search for a resolvable route, giving the top priority
5020 	 * to routes that can be resolved without any call to the resolver.
5021 	 */
5022 	IRB_REFHOLD(firb);
5023 
5024 	if (!CLASSD(dst)) {
5025 		/*
5026 		 * For all multiroute IRE_HOST ires for that destination,
5027 		 * check if the route via the IRE_HOST's gateway is
5028 		 * resolved yet.
5029 		 */
5030 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5031 
5032 			if (!(fire->ire_flags & RTF_MULTIRT))
5033 				continue;
5034 			if (fire->ire_addr != dst)
5035 				continue;
5036 
5037 			if (fire->ire_gw_secattr != NULL &&
5038 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5039 				continue;
5040 			}
5041 
5042 			gw = fire->ire_gateway_addr;
5043 
5044 			ip2dbg(("ire_multirt_lookup: fire %p, "
5045 			    "ire_addr %08x, ire_gateway_addr %08x\n",
5046 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
5047 
5048 			already_resolved = B_FALSE;
5049 
5050 			if (first_cire != NULL) {
5051 				ASSERT(cirb != NULL);
5052 
5053 				IRB_REFHOLD(cirb);
5054 				/*
5055 				 * For all IRE_CACHE ires for that
5056 				 * destination.
5057 				 */
5058 				for (cire = first_cire;
5059 				    cire != NULL;
5060 				    cire = cire->ire_next) {
5061 
5062 					if (!(cire->ire_flags & RTF_MULTIRT))
5063 						continue;
5064 					if (cire->ire_addr != dst)
5065 						continue;
5066 					if (cire->ire_marks &
5067 					    (IRE_MARK_CONDEMNED |
5068 					    IRE_MARK_HIDDEN))
5069 						continue;
5070 
5071 					if (cire->ire_gw_secattr != NULL &&
5072 					    tsol_ire_match_gwattr(cire,
5073 					    tsl) != 0) {
5074 						continue;
5075 					}
5076 
5077 					/*
5078 					 * Check if the IRE_CACHE's gateway
5079 					 * matches the IRE_HOST's gateway.
5080 					 */
5081 					if (cire->ire_gateway_addr == gw) {
5082 						already_resolved = B_TRUE;
5083 						break;
5084 					}
5085 				}
5086 				IRB_REFRELE(cirb);
5087 			}
5088 
5089 			/*
5090 			 * This route is already resolved;
5091 			 * proceed with next one.
5092 			 */
5093 			if (already_resolved) {
5094 				ip2dbg(("ire_multirt_lookup: found cire %p, "
5095 				    "already resolved\n", (void *)cire));
5096 				continue;
5097 			}
5098 
5099 			/*
5100 			 * The route is unresolved; is it actually
5101 			 * resolvable, i.e. is there a cache or a resolver
5102 			 * for the gateway?
5103 			 */
5104 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
5105 			    ALL_ZONES, tsl,
5106 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
5107 
5108 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
5109 			    (void *)gw_ire));
5110 
5111 			/*
5112 			 * If gw_ire is typed IRE_CACHETABLE,
5113 			 * this route can be resolved without any call to the
5114 			 * resolver. If the MULTIRT_CACHEGW flag is set,
5115 			 * give the top priority to this ire and exit the
5116 			 * loop.
5117 			 * This is typically the case when an ARP reply
5118 			 * is processed through ip_wput_nondata().
5119 			 */
5120 			if ((flags & MULTIRT_CACHEGW) &&
5121 			    (gw_ire != NULL) &&
5122 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
5123 				ASSERT(gw_ire->ire_nce == NULL ||
5124 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5125 				/*
5126 				 * Release the resolver associated to the
5127 				 * previous candidate best ire, if any.
5128 				 */
5129 				if (best_cire != NULL) {
5130 					ire_refrele(best_cire);
5131 					ASSERT(best_fire != NULL);
5132 				}
5133 
5134 				best_fire = fire;
5135 				best_cire = gw_ire;
5136 
5137 				ip2dbg(("ire_multirt_lookup: found top prio "
5138 				    "best_fire %p, best_cire %p\n",
5139 				    (void *)best_fire, (void *)best_cire));
5140 				break;
5141 			}
5142 
5143 			/*
5144 			 * Compute the time elapsed since our preceding
5145 			 * attempt to  resolve that route.
5146 			 * If the MULTIRT_USESTAMP flag is set, we take that
5147 			 * route into account only if this time interval
5148 			 * exceeds ip_multirt_resolution_interval;
5149 			 * this prevents us from attempting to resolve a
5150 			 * broken route upon each sending of a packet.
5151 			 */
5152 			delta = lbolt - fire->ire_last_used_time;
5153 			delta = TICK_TO_MSEC(delta);
5154 
5155 			res = (boolean_t)((delta >
5156 			    ipst->ips_ip_multirt_resolution_interval) ||
5157 			    (!(flags & MULTIRT_USESTAMP)));
5158 
5159 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
5160 			    "res %d\n",
5161 			    (void *)fire, delta, res));
5162 
5163 			if (res) {
5164 				/*
5165 				 * We are here if MULTIRT_USESTAMP flag is set
5166 				 * and the resolver for fire's gateway
5167 				 * has not been tried since
5168 				 * ip_multirt_resolution_interval, or if
5169 				 * MULTIRT_USESTAMP is not set but gw_ire did
5170 				 * not fill the conditions for MULTIRT_CACHEGW,
5171 				 * or if neither MULTIRT_USESTAMP nor
5172 				 * MULTIRT_CACHEGW are set.
5173 				 */
5174 				if (gw_ire != NULL) {
5175 					if (best_fire == NULL) {
5176 						ASSERT(best_cire == NULL);
5177 
5178 						best_fire = fire;
5179 						best_cire = gw_ire;
5180 
5181 						ip2dbg(("ire_multirt_lookup:"
5182 						    "found candidate "
5183 						    "best_fire %p, "
5184 						    "best_cire %p\n",
5185 						    (void *)best_fire,
5186 						    (void *)best_cire));
5187 
5188 						/*
5189 						 * If MULTIRT_CACHEGW is not
5190 						 * set, we ignore the top
5191 						 * priority ires that can
5192 						 * be resolved without any
5193 						 * call to the resolver;
5194 						 * In that case, there is
5195 						 * actually no need
5196 						 * to continue the loop.
5197 						 */
5198 						if (!(flags &
5199 						    MULTIRT_CACHEGW)) {
5200 							break;
5201 						}
5202 						continue;
5203 					}
5204 				} else {
5205 					/*
5206 					 * No resolver for the gateway: the
5207 					 * route is not resolvable.
5208 					 * If the MULTIRT_SETSTAMP flag is
5209 					 * set, we stamp the IRE_HOST ire,
5210 					 * so we will not select it again
5211 					 * during this resolution interval.
5212 					 */
5213 					if (flags & MULTIRT_SETSTAMP)
5214 						fire->ire_last_used_time =
5215 						    lbolt;
5216 				}
5217 			}
5218 
5219 			if (gw_ire != NULL)
5220 				ire_refrele(gw_ire);
5221 		}
5222 	} else { /* CLASSD(dst) */
5223 
5224 		for (fire = first_fire;
5225 		    fire != NULL;
5226 		    fire = fire->ire_next) {
5227 
5228 			if (!(fire->ire_flags & RTF_MULTIRT))
5229 				continue;
5230 			if (fire->ire_addr != dst)
5231 				continue;
5232 
5233 			if (fire->ire_gw_secattr != NULL &&
5234 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5235 				continue;
5236 			}
5237 
5238 			already_resolved = B_FALSE;
5239 
5240 			gw = fire->ire_gateway_addr;
5241 
5242 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
5243 			    NULL, NULL, ALL_ZONES, 0, tsl,
5244 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
5245 			    MATCH_IRE_SECATTR, ipst);
5246 
5247 			/* No resolver for the gateway; we skip this ire. */
5248 			if (gw_ire == NULL) {
5249 				continue;
5250 			}
5251 			ASSERT(gw_ire->ire_nce == NULL ||
5252 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5253 
5254 			if (first_cire != NULL) {
5255 
5256 				IRB_REFHOLD(cirb);
5257 				/*
5258 				 * For all IRE_CACHE ires for that
5259 				 * destination.
5260 				 */
5261 				for (cire = first_cire;
5262 				    cire != NULL;
5263 				    cire = cire->ire_next) {
5264 
5265 					if (!(cire->ire_flags & RTF_MULTIRT))
5266 						continue;
5267 					if (cire->ire_addr != dst)
5268 						continue;
5269 					if (cire->ire_marks &
5270 					    (IRE_MARK_CONDEMNED |
5271 					    IRE_MARK_HIDDEN))
5272 						continue;
5273 
5274 					if (cire->ire_gw_secattr != NULL &&
5275 					    tsol_ire_match_gwattr(cire,
5276 					    tsl) != 0) {
5277 						continue;
5278 					}
5279 
5280 					/*
5281 					 * Cache entries are linked to the
5282 					 * parent routes using the parent handle
5283 					 * (ire_phandle). If no cache entry has
5284 					 * the same handle as fire, fire is
5285 					 * still unresolved.
5286 					 */
5287 					ASSERT(cire->ire_phandle != 0);
5288 					if (cire->ire_phandle ==
5289 					    fire->ire_phandle) {
5290 						already_resolved = B_TRUE;
5291 						break;
5292 					}
5293 				}
5294 				IRB_REFRELE(cirb);
5295 			}
5296 
5297 			/*
5298 			 * This route is already resolved; proceed with
5299 			 * next one.
5300 			 */
5301 			if (already_resolved) {
5302 				ire_refrele(gw_ire);
5303 				continue;
5304 			}
5305 
5306 			/*
5307 			 * Compute the time elapsed since our preceding
5308 			 * attempt to resolve that route.
5309 			 * If the MULTIRT_USESTAMP flag is set, we take
5310 			 * that route into account only if this time
5311 			 * interval exceeds ip_multirt_resolution_interval;
5312 			 * this prevents us from attempting to resolve a
5313 			 * broken route upon each sending of a packet.
5314 			 */
5315 			delta = lbolt - fire->ire_last_used_time;
5316 			delta = TICK_TO_MSEC(delta);
5317 
5318 			res = (boolean_t)((delta >
5319 			    ipst->ips_ip_multirt_resolution_interval) ||
5320 			    (!(flags & MULTIRT_USESTAMP)));
5321 
5322 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
5323 			    "flags %04x, res %d\n",
5324 			    (void *)fire, delta, flags, res));
5325 
5326 			if (res) {
5327 				if (best_cire != NULL) {
5328 					/*
5329 					 * Release the resolver associated
5330 					 * to the preceding candidate best
5331 					 * ire, if any.
5332 					 */
5333 					ire_refrele(best_cire);
5334 					ASSERT(best_fire != NULL);
5335 				}
5336 				best_fire = fire;
5337 				best_cire = gw_ire;
5338 				continue;
5339 			}
5340 
5341 			ire_refrele(gw_ire);
5342 		}
5343 	}
5344 
5345 	if (best_fire != NULL) {
5346 		IRE_REFHOLD(best_fire);
5347 	}
5348 	IRB_REFRELE(firb);
5349 
5350 	/* Release the first IRE_CACHE we initially looked up, if any. */
5351 	if (first_cire != NULL)
5352 		ire_refrele(first_cire);
5353 
5354 	/* Found a resolvable route. */
5355 	if (best_fire != NULL) {
5356 		ASSERT(best_cire != NULL);
5357 
5358 		if (*fire_arg != NULL)
5359 			ire_refrele(*fire_arg);
5360 		if (*ire_arg != NULL)
5361 			ire_refrele(*ire_arg);
5362 
5363 		/*
5364 		 * Update the passed-in arguments with the
5365 		 * resolvable multirt route we found.
5366 		 */
5367 		*fire_arg = best_fire;
5368 		*ire_arg = best_cire;
5369 
5370 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
5371 		    "*fire_arg %p, *ire_arg %p\n",
5372 		    (void *)best_fire, (void *)best_cire));
5373 
5374 		return (B_TRUE);
5375 	}
5376 
5377 	ASSERT(best_cire == NULL);
5378 
5379 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
5380 	    "*ire_arg %p\n",
5381 	    (void *)*fire_arg, (void *)*ire_arg));
5382 
5383 	/* No resolvable route. */
5384 	return (B_FALSE);
5385 }
5386 
5387 /*
5388  * IRE iterator for inbound and loopback broadcast processing.
5389  * Given an IRE_BROADCAST ire, walk the ires with the same destination
5390  * address, but skip over the passed-in ire. Returns the next ire without
5391  * a hold - assumes that the caller holds a reference on the IRE bucket.
5392  */
5393 ire_t *
5394 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
5395 {
5396 	ill_t *ill;
5397 
5398 	if (curr == NULL) {
5399 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
5400 		    curr = curr->ire_next) {
5401 			if (curr->ire_addr == ire->ire_addr)
5402 				break;
5403 		}
5404 	} else {
5405 		curr = curr->ire_next;
5406 	}
5407 	ill = ire_to_ill(ire);
5408 	for (; curr != NULL; curr = curr->ire_next) {
5409 		if (curr->ire_addr != ire->ire_addr) {
5410 			/*
5411 			 * All the IREs to a given destination are contiguous;
5412 			 * break out once the address doesn't match.
5413 			 */
5414 			break;
5415 		}
5416 		if (curr == ire) {
5417 			/* skip over the passed-in ire */
5418 			continue;
5419 		}
5420 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
5421 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
5422 			/*
5423 			 * If the passed-in ire is loopback, skip over
5424 			 * non-loopback ires and vice versa.
5425 			 */
5426 			continue;
5427 		}
5428 		if (ire_to_ill(curr) != ill) {
5429 			/* skip over IREs going through a different interface */
5430 			continue;
5431 		}
5432 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
5433 			/* skip over deleted IREs */
5434 			continue;
5435 		}
5436 		return (curr);
5437 	}
5438 	return (NULL);
5439 }
5440 
5441 #ifdef DEBUG
5442 void
5443 ire_trace_ref(ire_t *ire)
5444 {
5445 	mutex_enter(&ire->ire_lock);
5446 	if (ire->ire_trace_disable) {
5447 		mutex_exit(&ire->ire_lock);
5448 		return;
5449 	}
5450 
5451 	if (th_trace_ref(ire, ire->ire_ipst)) {
5452 		mutex_exit(&ire->ire_lock);
5453 	} else {
5454 		ire->ire_trace_disable = B_TRUE;
5455 		mutex_exit(&ire->ire_lock);
5456 		ire_trace_cleanup(ire);
5457 	}
5458 }
5459 
5460 void
5461 ire_untrace_ref(ire_t *ire)
5462 {
5463 	mutex_enter(&ire->ire_lock);
5464 	if (!ire->ire_trace_disable)
5465 		th_trace_unref(ire);
5466 	mutex_exit(&ire->ire_lock);
5467 }
5468 
5469 static void
5470 ire_trace_cleanup(const ire_t *ire)
5471 {
5472 	th_trace_cleanup(ire, ire->ire_trace_disable);
5473 }
5474 #endif /* DEBUG */
5475 
5476 /*
5477  * Generate a message chain with an arp request to resolve the in_ire.
5478  * It is assumed that in_ire itself is currently in the ire cache table,
5479  * so we create a fake_ire filled with enough information about ire_addr etc.
5480  * to retrieve in_ire when the DL_UNITDATA response from the resolver
5481  * comes back. The fake_ire itself is created by calling esballoc with
5482  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
5483  * invoked when the mblk containing fake_ire is freed.
5484  */
5485 void
5486 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
5487 {
5488 	areq_t		*areq;
5489 	ipaddr_t	*addrp;
5490 	mblk_t 		*ire_mp, *areq_mp;
5491 	ire_t 		*ire, *buf;
5492 	size_t		bufsize;
5493 	frtn_t		*frtnp;
5494 	ill_t		*ill;
5495 	ip_stack_t	*ipst = dst_ill->ill_ipst;
5496 
5497 	/*
5498 	 * Construct message chain for the resolver
5499 	 * of the form:
5500 	 *	ARP_REQ_MBLK-->IRE_MBLK
5501 	 *
5502 	 * NOTE : If the response does not
5503 	 * come back, ARP frees the packet. For this reason,
5504 	 * we can't REFHOLD the bucket of save_ire to prevent
5505 	 * deletions. We may not be able to REFRELE the bucket
5506 	 * if the response never comes back. Thus, before
5507 	 * adding the ire, ire_add_v4 will make sure that the
5508 	 * interface route does not get deleted. This is the
5509 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
5510 	 * where we can always prevent deletions because of
5511 	 * the synchronous nature of adding IRES i.e
5512 	 * ire_add_then_send is called after creating the IRE.
5513 	 */
5514 
5515 	/*
5516 	 * We use esballoc to allocate the second part(the ire_t size mblk)
5517 	 * of the message chain depicted above. THis mblk will be freed
5518 	 * by arp when there is a  timeout, and otherwise passed to IP
5519 	 * and IP will * free it after processing the ARP response.
5520 	 */
5521 
5522 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
5523 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
5524 	if (buf == NULL) {
5525 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
5526 		return;
5527 	}
5528 	frtnp = (frtn_t *)(buf + 1);
5529 	frtnp->free_arg = (caddr_t)buf;
5530 	frtnp->free_func = ire_freemblk;
5531 
5532 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
5533 
5534 	if (ire_mp == NULL) {
5535 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
5536 		kmem_free(buf, bufsize);
5537 		return;
5538 	}
5539 	ASSERT(in_ire->ire_nce != NULL);
5540 	areq_mp = copyb(dst_ill->ill_resolver_mp);
5541 	if (areq_mp == NULL) {
5542 		kmem_free(buf, bufsize);
5543 		return;
5544 	}
5545 
5546 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
5547 	ire = (ire_t *)buf;
5548 	/*
5549 	 * keep enough info in the fake ire so that we can pull up
5550 	 * the incomplete ire (in_ire) after result comes back from
5551 	 * arp and make it complete.
5552 	 */
5553 	*ire = ire_null;
5554 	ire->ire_u = in_ire->ire_u;
5555 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
5556 	ire->ire_ipif = in_ire->ire_ipif;
5557 	ire->ire_stq = in_ire->ire_stq;
5558 	ill = ire_to_ill(ire);
5559 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
5560 	ire->ire_zoneid = in_ire->ire_zoneid;
5561 	ire->ire_ipst = ipst;
5562 
5563 	/*
5564 	 * ire_freemblk will be called when ire_mp is freed, both for
5565 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
5566 	 * when the arp resolution failed.
5567 	 */
5568 	ire->ire_marks |= IRE_MARK_UNCACHED;
5569 	ire->ire_mp = ire_mp;
5570 	ire_mp->b_wptr = (uchar_t *)&ire[1];
5571 	ire_mp->b_cont = NULL;
5572 	linkb(areq_mp, ire_mp);
5573 
5574 	/*
5575 	 * Fill in the source and dest addrs for the resolver.
5576 	 * NOTE: this depends on memory layouts imposed by
5577 	 * ill_init().
5578 	 */
5579 	areq = (areq_t *)areq_mp->b_rptr;
5580 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
5581 	*addrp = ire->ire_src_addr;
5582 
5583 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
5584 	if (ire->ire_gateway_addr != INADDR_ANY) {
5585 		*addrp = ire->ire_gateway_addr;
5586 	} else {
5587 		*addrp = ire->ire_addr;
5588 	}
5589 
5590 	/* Up to the resolver. */
5591 	if (canputnext(dst_ill->ill_rq)) {
5592 		putnext(dst_ill->ill_rq, areq_mp);
5593 	} else {
5594 		freemsg(areq_mp);
5595 	}
5596 }
5597 
5598 /*
5599  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
5600  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
5601  *
5602  * This function can be called by ARP via free routine for ire_mp or
5603  * by IPv4(both host and forwarding path) via ire_delete
5604  * in case ARP resolution fails.
5605  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
5606  * (for IP to talk to ARP, it still has to send AR* messages).
5607  *
5608  * Note that the ARP/IP merge should replace the functioanlity by providing
5609  * direct function calls to clean up unresolved entries in ire/nce lists.
5610  */
5611 void
5612 ire_freemblk(ire_t *ire_mp)
5613 {
5614 	nce_t		*nce = NULL;
5615 	ill_t		*ill;
5616 	ip_stack_t	*ipst;
5617 
5618 	ASSERT(ire_mp != NULL);
5619 
5620 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
5621 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
5622 		    (void *)ire_mp));
5623 		goto cleanup;
5624 	}
5625 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
5626 		goto cleanup; /* everything succeeded. just free and return */
5627 	}
5628 
5629 	/*
5630 	 * the arp information corresponding to this ire_mp was not
5631 	 * transferred to  a ire_cache entry. Need
5632 	 * to clean up incomplete ire's and nce, if necessary.
5633 	 */
5634 	ASSERT(ire_mp->ire_stq != NULL);
5635 	ASSERT(ire_mp->ire_stq_ifindex != 0);
5636 	ASSERT(ire_mp->ire_ipst != NULL);
5637 
5638 	ipst = ire_mp->ire_ipst;
5639 
5640 	/*
5641 	 * Get any nce's corresponding to this ire_mp. We first have to
5642 	 * make sure that the ill is still around.
5643 	 */
5644 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
5645 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
5646 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
5647 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
5648 		/*
5649 		 * ill went away. no nce to clean up.
5650 		 * Note that the ill_state_flags could be set to
5651 		 * ILL_CONDEMNED after this point, but if we know
5652 		 * that it is CONDEMNED now, we just bail out quickly.
5653 		 */
5654 		if (ill != NULL)
5655 			ill_refrele(ill);
5656 		goto cleanup;
5657 	}
5658 	nce = ndp_lookup_v4(ill,
5659 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
5660 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
5661 	    B_FALSE);
5662 	ill_refrele(ill);
5663 
5664 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
5665 		/*
5666 		 * some incomplete nce was found.
5667 		 */
5668 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
5669 		    nce_t *, nce, ire_t *, ire_mp);
5670 		/*
5671 		 * Send the icmp_unreachable messages for the queued mblks in
5672 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
5673 		 * for this ire
5674 		 */
5675 		arp_resolv_failed(nce);
5676 		/*
5677 		 * Delete the nce and clean up all ire's pointing at this nce
5678 		 * in the cachetable
5679 		 */
5680 		ndp_delete(nce);
5681 	}
5682 	if (nce != NULL)
5683 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
5684 
5685 cleanup:
5686 	/*
5687 	 * Get rid of the ire buffer
5688 	 * We call kmem_free here(instead of ire_delete()), since
5689 	 * this is the freeb's callback.
5690 	 */
5691 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
5692 }
5693 
5694 /*
5695  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
5696  * non-loopback IRE_BROADCAST ire's.
5697  *
5698  * If a neighbor-cache entry has to be created (i.e., one does not already
5699  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
5700  * entry are initialized in ndp_add_v4(). These values are picked from
5701  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
5702  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
5703  * determine the {nce_state, nce_res_mp} of the nce_t created. All
5704  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
5705  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
5706  * entries,
5707  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
5708  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
5709  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
5710  *     layer resolution is necessary, so that the nce_t will be in the
5711  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
5712  *     ill_resolver_mp of the outgoing interface.
5713  *
5714  * The link layer information needed for broadcast addresses, and for
5715  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
5716  * never needs re-verification for the lifetime of the nce_t. These are
5717  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
5718  * NCE_EXPIRED.
5719  *
5720  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
5721  * in the case of indirect routes, and for the dst itself (ire_addr) in the
5722  * case of direct routes, with the nce_res_mp containing a template
5723  * DL_UNITDATA request.
5724  *
5725  * The actual association of the ire_nce to the nce created here is
5726  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
5727  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
5728  * the ire_nce assignment is done in ire_add_then_send.
5729  */
5730 int
5731 ire_nce_init(ire_t *ire, nce_t *src_nce)
5732 {
5733 	in_addr_t	addr4;
5734 	int		err;
5735 	nce_t		*nce = NULL;
5736 	ill_t		*ire_ill;
5737 	uint16_t	nce_flags = 0;
5738 	ip_stack_t	*ipst;
5739 
5740 	if (ire->ire_stq == NULL)
5741 		return (0); /* no need to create nce for local/loopback */
5742 
5743 	switch (ire->ire_type) {
5744 	case IRE_CACHE:
5745 		if (ire->ire_gateway_addr != INADDR_ANY)
5746 			addr4 = ire->ire_gateway_addr; /* 'G' route */
5747 		else
5748 			addr4 = ire->ire_addr; /* direct route */
5749 		break;
5750 	case IRE_BROADCAST:
5751 		addr4 = ire->ire_addr;
5752 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
5753 		break;
5754 	default:
5755 		return (0);
5756 	}
5757 
5758 	/*
5759 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
5760 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
5761 	 * for the outgoing interface, which we get from the ire_stq.
5762 	 */
5763 	ire_ill = ire_to_ill(ire);
5764 	ipst = ire_ill->ill_ipst;
5765 
5766 	/*
5767 	 * IRE_IF_NORESOLVER entries never need re-verification and
5768 	 * do not expire, so we mark them as NCE_F_PERMANENT.
5769 	 */
5770 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
5771 		nce_flags |= NCE_F_PERMANENT;
5772 
5773 retry_nce:
5774 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
5775 	    &nce, src_nce);
5776 
5777 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
5778 		/*
5779 		 * We looked up an expired nce.
5780 		 * Go back and try to create one again.
5781 		 */
5782 		ndp_delete(nce);
5783 		NCE_REFRELE(nce);
5784 		nce = NULL;
5785 		goto retry_nce;
5786 	}
5787 
5788 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
5789 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
5790 
5791 	switch (err) {
5792 	case 0:
5793 	case EEXIST:
5794 		/*
5795 		 * return a pointer to a newly created or existing nce_t;
5796 		 * note that the ire-nce mapping is many-one, i.e.,
5797 		 * multiple ire's could point to the same nce_t.
5798 		 */
5799 		break;
5800 	default:
5801 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
5802 		return (EINVAL);
5803 	}
5804 	if (ire->ire_type == IRE_BROADCAST) {
5805 		/*
5806 		 * Two bcast ires are created for each interface;
5807 		 * 1. loopback copy (which does not  have an
5808 		 *    ire_stq, and therefore has no ire_nce), and,
5809 		 * 2. the non-loopback copy, which has the nce_res_mp
5810 		 *    initialized to a copy of the ill_bcast_mp, and
5811 		 *    is marked as ND_REACHABLE at this point.
5812 		 *    This nce does not undergo any further state changes,
5813 		 *    and exists as long as the interface is plumbed.
5814 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
5815 		 * because some functions like ill_mark_bcast() inline the
5816 		 * ire_add functionality.
5817 		 */
5818 		ire->ire_nce = nce;
5819 		/*
5820 		 * We are associating this nce to the ire,
5821 		 * so change the nce ref taken in
5822 		 * ndp_lookup_then_add_v4() from
5823 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
5824 		 */
5825 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
5826 	} else {
5827 		/*
5828 		 * We are not using this nce_t just yet so release
5829 		 * the ref taken in ndp_lookup_then_add_v4()
5830 		 */
5831 		NCE_REFRELE(nce);
5832 	}
5833 	return (0);
5834 }
5835