xref: /titanic_52/usr/src/uts/common/inet/ip/ip_ire.c (revision 22872efb9462b28180d11ea401344608e641a5aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/ddi.h>
38 #include <sys/cmn_err.h>
39 #include <sys/policy.h>
40 
41 #include <sys/systm.h>
42 #include <sys/kmem.h>
43 #include <sys/param.h>
44 #include <sys/socket.h>
45 #include <net/if.h>
46 #include <net/route.h>
47 #include <netinet/in.h>
48 #include <net/if_dl.h>
49 #include <netinet/ip6.h>
50 #include <netinet/icmp6.h>
51 
52 #include <inet/common.h>
53 #include <inet/mi.h>
54 #include <inet/ip.h>
55 #include <inet/ip6.h>
56 #include <inet/ip_ndp.h>
57 #include <inet/arp.h>
58 #include <inet/ip_if.h>
59 #include <inet/ip_ire.h>
60 #include <inet/ip_ftable.h>
61 #include <inet/ip_rts.h>
62 #include <inet/nd.h>
63 
64 #include <net/pfkeyv2.h>
65 #include <inet/ipsec_info.h>
66 #include <inet/sadb.h>
67 #include <sys/kmem.h>
68 #include <inet/tcp.h>
69 #include <inet/ipclassifier.h>
70 #include <sys/zone.h>
71 #include <sys/cpuvar.h>
72 
73 #include <sys/tsol/label.h>
74 #include <sys/tsol/tnet.h>
75 
76 struct kmem_cache *rt_entry_cache;
77 
78 /*
79  * Synchronization notes:
80  *
81  * The fields of the ire_t struct are protected in the following way :
82  *
83  * ire_next/ire_ptpn
84  *
85  *	- bucket lock of the respective tables (cache or forwarding tables).
86  *
87  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
88  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
89  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
90  *
91  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
92  *	  we don't need a lock whenever these fields are accessed.
93  *
94  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
95  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
96  *        changes after that. Thus we don't need a lock whenever these
97  *	  fields are accessed.
98  *
99  * ire_gateway_addr_v4[v6]
100  *
101  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
102  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
103  *	  it assumed to be atomic and hence the other parts of the code
104  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
105  *	  and hence any access to it uses ire_lock to get/set the right value.
106  *
107  * ire_ident, ire_refcnt
108  *
109  *	- Updated atomically using atomic_add_32
110  *
111  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
112  *
113  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
114  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
115  *
116  * ire_max_frag, ire_frag_flag
117  *
118  *	- ire_lock is used to set/read both of them together.
119  *
120  * ire_tire_mark
121  *
122  *	- Set in ire_create and updated in ire_expire, which is called
123  *	  by only one function namely ip_trash_timer_expire. Thus only
124  *	  one function updates and examines the value.
125  *
126  * ire_marks
127  *	- bucket lock protects this.
128  *
129  * ire_ipsec_overhead/ire_ll_hdr_length
130  *
131  *	- Place holder for returning the information to the upper layers
132  *	  when IRE_DB_REQ comes down.
133  *
134  *
135  * ipv6_ire_default_count is protected by the bucket lock of
136  * ip_forwarding_table_v6[0][0].
137  *
138  * ipv6_ire_default_index is not protected as it  is just a hint
139  * at which default gateway to use. There is nothing
140  * wrong in using the same gateway for two different connections.
141  *
142  * As we always hold the bucket locks in all the places while accessing
143  * the above values, it is natural to use them for protecting them.
144  *
145  * We have a separate cache table and forwarding table for IPv4 and IPv6.
146  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
147  * array of irb_t structures. The IPv6 forwarding table
148  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
149  *  structure. ip_forwarding_table_v6 is allocated dynamically in
150  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
151  * initializing the same bucket. Once a bucket is initialized, it is never
152  * de-alloacted. This assumption enables us to access
153  * ip_forwarding_table_v6[i] without any locks.
154  *
155  * The forwarding table for IPv4 is a radix tree whose leaves
156  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
157  * for IPv4 is dynamically allocated and freed.
158  *
159  * Each irb_t - ire bucket structure has a lock to protect
160  * a bucket and the ires residing in the bucket have a back pointer to
161  * the bucket structure. It also has a reference count for the number
162  * of threads walking the bucket - irb_refcnt which is bumped up
163  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
164  * set to IRE_MARK_CONDEMNED indicating that there are some ires
165  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
166  * last thread to leave the bucket should delete the ires. Usually
167  * this is done by the IRB_REFRELE macro which is used to decrement
168  * the reference count on a bucket. See comments above irb_t structure
169  * definition in ip.h for further details.
170  *
171  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
172  * decrements the reference count, ire_refcnt, atomically on the ire.
173  * ire_refcnt is modified only using this macro. Operations on the IRE
174  * could be described as follows :
175  *
176  * CREATE an ire with reference count initialized to 1.
177  *
178  * ADDITION of an ire holds the bucket lock, checks for duplicates
179  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
180  * bumping up once more i.e the reference count is 2. This is to avoid
181  * an extra lookup in the functions calling ire_add which wants to
182  * work with the ire after adding.
183  *
184  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
185  * macro. It is valid to bump up the referece count of the IRE,
186  * after the lookup has returned an ire. Following are the lookup
187  * functions that return an HELD ire :
188  *
189  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
190  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
191  * ipif_to_ire[_v6].
192  *
193  * DELETION of an ire holds the bucket lock, removes it from the list
194  * and then decrements the reference count for having removed from the list
195  * by using the IRE_REFRELE macro. If some other thread has looked up
196  * the ire, the reference count would have been bumped up and hence
197  * this ire will not be freed once deleted. It will be freed once the
198  * reference count drops to zero.
199  *
200  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
201  * lookups acquire the bucket lock as RW_READER.
202  *
203  * NOTE : The only functions that does the IRE_REFRELE when an ire is
204  *	  passed as an argument are :
205  *
206  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
207  *			   broadcast ires it looks up internally within
208  *			   the function. Currently, for simplicity it does
209  *			   not differentiate the one that is passed in and
210  *			   the ones it looks up internally. It always
211  *			   IRE_REFRELEs.
212  *	  2) ire_send
213  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
214  *			   that take ire as an argument, it has to selectively
215  *			   IRE_REFRELE the ire. To maintain symmetry,
216  *			   ire_send_v6 does the same.
217  *
218  * Otherwise, the general rule is to do the IRE_REFRELE in the function
219  * that is passing the ire as an argument.
220  *
221  * In trying to locate ires the following points are to be noted.
222  *
223  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
224  * to be ignored when walking the ires using ire_next.
225  *
226  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
227  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
228  * applications should not be seeing this ire and hence this ire is ignored
229  * in most cases in the search using ire_next.
230  *
231  * Zones note:
232  *	Walking IREs within a given zone also walks certain ires in other
233  *	zones.  This is done intentionally.  IRE walks with a specified
234  *	zoneid are used only when doing informational reports, and
235  *	zone users want to see things that they can access. See block
236  *	comment in ire_walk_ill_match().
237  */
238 
239 /*
240  * The minimum size of IRE cache table.  It will be recalcuated in
241  * ip_ire_init().
242  * Setable in /etc/system
243  */
244 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
245 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
246 
247 /*
248  * The size of the forwarding table.  We will make sure that it is a
249  * power of 2 in ip_ire_init().
250  * Setable in /etc/system
251  */
252 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
253 
254 struct	kmem_cache	*ire_cache;
255 static ire_t	ire_null;
256 
257 /*
258  * The threshold number of IRE in a bucket when the IREs are
259  * cleaned up.  This threshold is calculated later in ip_open()
260  * based on the speed of CPU and available memory.  This default
261  * value is the maximum.
262  *
263  * We have two kinds of cached IRE, temporary and
264  * non-temporary.  Temporary IREs are marked with
265  * IRE_MARK_TEMPORARY.  They are IREs created for non
266  * TCP traffic and for forwarding purposes.  All others
267  * are non-temporary IREs.  We don't mark IRE created for
268  * TCP as temporary because TCP is stateful and there are
269  * info stored in the IRE which can be shared by other TCP
270  * connections to the same destination.  For connected
271  * endpoint, we also don't want to mark the IRE used as
272  * temporary because the same IRE will be used frequently,
273  * otherwise, the app should not do a connect().  We change
274  * the marking at ip_bind_connected_*() if necessary.
275  *
276  * We want to keep the cache IRE hash bucket length reasonably
277  * short, otherwise IRE lookup functions will take "forever."
278  * We use the "crude" function that the IRE bucket
279  * length should be based on the CPU speed, which is 1 entry
280  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
281  * (n).  This means that with a 750MHz CPU, the max bucket
282  * length can be (750 >> n) entries.
283  *
284  * Note that this threshold is separate for temp and non-temp
285  * IREs.  This means that the actual bucket length can be
286  * twice as that.  And while we try to keep temporary IRE
287  * length at most at the threshold value, we do not attempt to
288  * make the length for non-temporary IREs fixed, for the
289  * reason stated above.  Instead, we start trying to find
290  * "unused" non-temporary IREs when the bucket length reaches
291  * this threshold and clean them up.
292  *
293  * We also want to limit the amount of memory used by
294  * IREs.  So if we are allowed to use ~3% of memory (M)
295  * for those IREs, each bucket should not have more than
296  *
297  * 	M / num of cache bucket / sizeof (ire_t)
298  *
299  * Again the above memory uses are separate for temp and
300  * non-temp cached IREs.
301  *
302  * We may also want the limit to be a function of the number
303  * of interfaces and number of CPUs.  Doing the initialization
304  * in ip_open() means that every time an interface is plumbed,
305  * the max is re-calculated.  Right now, we don't do anything
306  * different.  In future, when we have more experience, we
307  * may want to change this behavior.
308  */
309 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
310 uint32_t ip6_ire_max_bucket_cnt = 10;
311 uint32_t ip_ire_cleanup_cnt = 2;
312 
313 /*
314  * The minimum of the temporary IRE bucket count.  We do not want
315  * the length of each bucket to be too short.  This may hurt
316  * performance of some apps as the temporary IREs are removed too
317  * often.
318  */
319 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
320 uint32_t ip6_ire_min_bucket_cnt = 3;
321 
322 /*
323  * The ratio of memory consumed by IRE used for temporary to available
324  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
325  * value can be changed in /etc/system.  6 is a reasonable number.
326  */
327 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
328 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
329 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
330 
331 typedef struct nce_clookup_s {
332 	ipaddr_t ncecl_addr;
333 	boolean_t ncecl_found;
334 } nce_clookup_t;
335 
336 /*
337  * The maximum number of buckets in IRE cache table.  In future, we may
338  * want to make it a dynamic hash table.  For the moment, we fix the
339  * size and allocate the table in ip_ire_init() when IP is first loaded.
340  * We take into account the amount of memory a system has.
341  */
342 #define	IP_MAX_CACHE_TABLE_SIZE	4096
343 
344 /* Setable in /etc/system */
345 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
346 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
347 
348 #define	NUM_ILLS	2	/* To build the ILL list to unlock */
349 
350 /* Zero iulp_t for initialization. */
351 const iulp_t	ire_uinfo_null = { 0 };
352 
353 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
354     ipsq_func_t func, boolean_t);
355 static void	ire_delete_v4(ire_t *ire);
356 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
357     zoneid_t zoneid, ip_stack_t *);
358 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
359     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
360 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold,
361     ire_t *ref_ire);
362 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
363 #ifdef DEBUG
364 static void	ire_trace_cleanup(const ire_t *);
365 #endif
366 
367 /*
368  * To avoid bloating the code, we call this function instead of
369  * using the macro IRE_REFRELE. Use macro only in performance
370  * critical paths.
371  *
372  * Must not be called while holding any locks. Otherwise if this is
373  * the last reference to be released there is a chance of recursive mutex
374  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
375  * to restart an ioctl. The one exception is when the caller is sure that
376  * this is not the last reference to be released. Eg. if the caller is
377  * sure that the ire has not been deleted and won't be deleted.
378  */
379 void
380 ire_refrele(ire_t *ire)
381 {
382 	IRE_REFRELE(ire);
383 }
384 
385 void
386 ire_refrele_notr(ire_t *ire)
387 {
388 	IRE_REFRELE_NOTR(ire);
389 }
390 
391 /*
392  * kmem_cache_alloc constructor for IRE in kma space.
393  * Note that when ire_mp is set the IRE is stored in that mblk and
394  * not in this cache.
395  */
396 /* ARGSUSED */
397 static int
398 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
399 {
400 	ire_t	*ire = buf;
401 
402 	ire->ire_nce = NULL;
403 
404 	return (0);
405 }
406 
407 /* ARGSUSED1 */
408 static void
409 ip_ire_destructor(void *buf, void *cdrarg)
410 {
411 	ire_t	*ire = buf;
412 
413 	ASSERT(ire->ire_nce == NULL);
414 }
415 
416 /*
417  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
418  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
419  * for an existing CACHED IRE.
420  */
421 /* ARGSUSED */
422 int
423 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
424 {
425 	uchar_t	*addr_ucp;
426 	ipic_t	*ipic;
427 	ire_t	*ire;
428 	ipaddr_t	addr;
429 	in6_addr_t	v6addr;
430 	irb_t	*irb;
431 	zoneid_t	zoneid;
432 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
433 
434 	ASSERT(q->q_next == NULL);
435 	zoneid = Q_TO_CONN(q)->conn_zoneid;
436 
437 	/*
438 	 * Check privilege using the ioctl credential; if it is NULL
439 	 * then this is a kernel message and therefor privileged.
440 	 */
441 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
442 		return (EPERM);
443 
444 	ipic = (ipic_t *)mp->b_rptr;
445 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
446 	    ipic->ipic_addr_length))) {
447 		return (EINVAL);
448 	}
449 	if (!OK_32PTR(addr_ucp))
450 		return (EINVAL);
451 	switch (ipic->ipic_addr_length) {
452 	case IP_ADDR_LEN: {
453 		/* Extract the destination address. */
454 		addr = *(ipaddr_t *)addr_ucp;
455 		/* Find the corresponding IRE. */
456 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
457 		break;
458 	}
459 	case IPV6_ADDR_LEN: {
460 		/* Extract the destination address. */
461 		v6addr = *(in6_addr_t *)addr_ucp;
462 		/* Find the corresponding IRE. */
463 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
464 		break;
465 	}
466 	default:
467 		return (EINVAL);
468 	}
469 
470 	if (ire == NULL)
471 		return (ENOENT);
472 	/*
473 	 * Update the round trip time estimate and/or the max frag size
474 	 * and/or the slow start threshold.
475 	 *
476 	 * We serialize multiple advises using ire_lock.
477 	 */
478 	mutex_enter(&ire->ire_lock);
479 	if (ipic->ipic_rtt) {
480 		/*
481 		 * If there is no old cached values, initialize them
482 		 * conservatively.  Set them to be (1.5 * new value).
483 		 */
484 		if (ire->ire_uinfo.iulp_rtt != 0) {
485 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
486 			    ipic->ipic_rtt) >> 1;
487 		} else {
488 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
489 			    (ipic->ipic_rtt >> 1);
490 		}
491 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
492 			ire->ire_uinfo.iulp_rtt_sd =
493 			    (ire->ire_uinfo.iulp_rtt_sd +
494 			    ipic->ipic_rtt_sd) >> 1;
495 		} else {
496 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
497 			    (ipic->ipic_rtt_sd >> 1);
498 		}
499 	}
500 	if (ipic->ipic_max_frag)
501 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
502 	if (ipic->ipic_ssthresh != 0) {
503 		if (ire->ire_uinfo.iulp_ssthresh != 0)
504 			ire->ire_uinfo.iulp_ssthresh =
505 			    (ipic->ipic_ssthresh +
506 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
507 		else
508 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
509 	}
510 	/*
511 	 * Don't need the ire_lock below this. ire_type does not change
512 	 * after initialization. ire_marks is protected by irb_lock.
513 	 */
514 	mutex_exit(&ire->ire_lock);
515 
516 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
517 		/*
518 		 * Only increment the temporary IRE count if the original
519 		 * IRE is not already marked temporary.
520 		 */
521 		irb = ire->ire_bucket;
522 		rw_enter(&irb->irb_lock, RW_WRITER);
523 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
524 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
525 			irb->irb_tmp_ire_cnt++;
526 		}
527 		ire->ire_marks |= ipic->ipic_ire_marks;
528 		rw_exit(&irb->irb_lock);
529 	}
530 
531 	ire_refrele(ire);
532 	return (0);
533 }
534 
535 /*
536  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
537  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
538  * for a host that is not responding.  This will force an attempt to
539  * establish a new route, if available, and flush out the ARP entry so
540  * it will re-resolve.  Management processes may want to use the
541  * version that generates a reply.
542  *
543  * This function does not support IPv6 since Neighbor Unreachability Detection
544  * means that negative advise like this is useless.
545  */
546 /* ARGSUSED */
547 int
548 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
549 {
550 	uchar_t		*addr_ucp;
551 	ipaddr_t	addr;
552 	ire_t		*ire;
553 	ipid_t		*ipid;
554 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
555 	zoneid_t	zoneid;
556 	ire_t		*gire = NULL;
557 	ill_t		*ill;
558 	mblk_t		*arp_mp;
559 	ip_stack_t	*ipst;
560 
561 	ASSERT(q->q_next == NULL);
562 	zoneid = Q_TO_CONN(q)->conn_zoneid;
563 	ipst = CONNQ_TO_IPST(q);
564 
565 	/*
566 	 * Check privilege using the ioctl credential; if it is NULL
567 	 * then this is a kernel message and therefor privileged.
568 	 */
569 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
570 		return (EPERM);
571 
572 	ipid = (ipid_t *)mp->b_rptr;
573 
574 	/* Only actions on IRE_CACHEs are acceptable at present. */
575 	if (ipid->ipid_ire_type != IRE_CACHE)
576 		return (EINVAL);
577 
578 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
579 	    ipid->ipid_addr_length);
580 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
581 		return (EINVAL);
582 	switch (ipid->ipid_addr_length) {
583 	case IP_ADDR_LEN:
584 		/* addr_ucp points at IP addr */
585 		break;
586 	case sizeof (sin_t): {
587 		sin_t	*sin;
588 		/*
589 		 * got complete (sockaddr) address - increment addr_ucp to point
590 		 * at the ip_addr field.
591 		 */
592 		sin = (sin_t *)addr_ucp;
593 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
594 		break;
595 	}
596 	default:
597 		return (EINVAL);
598 	}
599 	/* Extract the destination address. */
600 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
601 
602 	/* Try to find the CACHED IRE. */
603 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
604 
605 	/* Nail it. */
606 	if (ire) {
607 		/* Allow delete only on CACHE entries */
608 		if (ire->ire_type != IRE_CACHE) {
609 			ire_refrele(ire);
610 			return (EINVAL);
611 		}
612 
613 		/*
614 		 * Verify that the IRE has been around for a while.
615 		 * This is to protect against transport protocols
616 		 * that are too eager in sending delete messages.
617 		 */
618 		if (gethrestime_sec() <
619 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
620 			ire_refrele(ire);
621 			return (EINVAL);
622 		}
623 		/*
624 		 * Now we have a potentially dead cache entry. We need
625 		 * to remove it.
626 		 * If this cache entry is generated from a
627 		 * default route (i.e., ire_cmask == 0),
628 		 * search the default list and mark it dead and some
629 		 * background process will try to activate it.
630 		 */
631 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
632 			/*
633 			 * Make sure that we pick a different
634 			 * IRE_DEFAULT next time.
635 			 */
636 			ire_t *gw_ire;
637 			irb_t *irb = NULL;
638 			uint_t match_flags;
639 
640 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
641 
642 			gire = ire_ftable_lookup(ire->ire_addr,
643 			    ire->ire_cmask, 0, 0,
644 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
645 			    ipst);
646 
647 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
648 			    (void *)gire));
649 
650 			if (gire != NULL) {
651 				irb = gire->ire_bucket;
652 
653 				/*
654 				 * We grab it as writer just to serialize
655 				 * multiple threads trying to bump up
656 				 * irb_rr_origin
657 				 */
658 				rw_enter(&irb->irb_lock, RW_WRITER);
659 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
660 					rw_exit(&irb->irb_lock);
661 					goto done;
662 				}
663 
664 				DTRACE_PROBE1(ip__ire__del__origin,
665 				    (ire_t *), gw_ire);
666 
667 				/* Skip past the potentially bad gateway */
668 				if (ire->ire_gateway_addr ==
669 				    gw_ire->ire_gateway_addr) {
670 					ire_t *next = gw_ire->ire_next;
671 
672 					DTRACE_PROBE2(ip__ire__del,
673 					    (ire_t *), gw_ire, (irb_t *), irb);
674 					IRE_FIND_NEXT_ORIGIN(next);
675 					irb->irb_rr_origin = next;
676 				}
677 				rw_exit(&irb->irb_lock);
678 			}
679 		}
680 done:
681 		if (gire != NULL)
682 			IRE_REFRELE(gire);
683 		/* report the bad route to routing sockets */
684 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
685 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
686 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
687 		routing_sock_info = B_TRUE;
688 
689 		/*
690 		 * TCP is really telling us to start over completely, and it
691 		 * expects that we'll resend the ARP query.  Tell ARP to
692 		 * discard the entry, if this is a local destination.
693 		 */
694 		ill = ire->ire_stq->q_ptr;
695 		if (ire->ire_gateway_addr == 0 &&
696 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
697 			putnext(ill->ill_rq, arp_mp);
698 		}
699 
700 		ire_delete(ire);
701 		ire_refrele(ire);
702 	}
703 	/*
704 	 * Also look for an IRE_HOST type redirect ire and
705 	 * remove it if present.
706 	 */
707 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
708 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
709 
710 	/* Nail it. */
711 	if (ire != NULL) {
712 		if (ire->ire_flags & RTF_DYNAMIC) {
713 			if (!routing_sock_info) {
714 				ip_rts_change(RTM_LOSING, ire->ire_addr,
715 				    ire->ire_gateway_addr, ire->ire_mask,
716 				    ire->ire_src_addr, 0, 0, 0,
717 				    (RTA_DST | RTA_GATEWAY |
718 				    RTA_NETMASK | RTA_IFA),
719 				    ipst);
720 			}
721 			ire_delete(ire);
722 		}
723 		ire_refrele(ire);
724 	}
725 	return (0);
726 }
727 
728 
729 /*
730  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
731  * down from the Upper Level Protocol to request a copy of the IRE (to check
732  * its type or to extract information like round-trip time estimates or the
733  * MTU.)
734  * The address is assumed to be in the ire_addr field. If no IRE is found
735  * an IRE is returned with ire_type being zero.
736  * Note that the upper lavel protocol has to check for broadcast
737  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
738  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
739  * end of the returned message.
740  *
741  * TCP sends down a message of this type with a connection request packet
742  * chained on. UDP and ICMP send it down to verify that a route exists for
743  * the destination address when they get connected.
744  */
745 void
746 ip_ire_req(queue_t *q, mblk_t *mp)
747 {
748 	ire_t	*inire;
749 	ire_t	*ire;
750 	mblk_t	*mp1;
751 	ire_t	*sire = NULL;
752 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
753 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
754 
755 	ASSERT(q->q_next == NULL);
756 
757 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
758 	    !OK_32PTR(mp->b_rptr)) {
759 		freemsg(mp);
760 		return;
761 	}
762 	inire = (ire_t *)mp->b_rptr;
763 	/*
764 	 * Got it, now take our best shot at an IRE.
765 	 */
766 	if (inire->ire_ipversion == IPV6_VERSION) {
767 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
768 		    NULL, &sire, zoneid, NULL,
769 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
770 	} else {
771 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
772 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
773 		    NULL, &sire, zoneid, NULL,
774 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
775 	}
776 
777 	/*
778 	 * We prevent returning IRES with source address INADDR_ANY
779 	 * as these were temporarily created for sending packets
780 	 * from endpoints that have conn_unspec_src set.
781 	 */
782 	if (ire == NULL ||
783 	    (ire->ire_ipversion == IPV4_VERSION &&
784 	    ire->ire_src_addr == INADDR_ANY) ||
785 	    (ire->ire_ipversion == IPV6_VERSION &&
786 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
787 		inire->ire_type = 0;
788 	} else {
789 		bcopy(ire, inire, sizeof (ire_t));
790 		/* Copy the route metrics from the parent. */
791 		if (sire != NULL) {
792 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
793 			    sizeof (iulp_t));
794 		}
795 
796 		/*
797 		 * As we don't lookup global policy here, we may not
798 		 * pass the right size if per-socket policy is not
799 		 * present. For these cases, path mtu discovery will
800 		 * do the right thing.
801 		 */
802 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
803 
804 		/* Pass the latest setting of the ip_path_mtu_discovery */
805 		inire->ire_frag_flag |=
806 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
807 	}
808 	if (ire != NULL)
809 		ire_refrele(ire);
810 	if (sire != NULL)
811 		ire_refrele(sire);
812 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
813 	mp->b_datap->db_type = IRE_DB_TYPE;
814 
815 	/* Put the IRE_DB_TYPE mblk last in the chain */
816 	mp1 = mp->b_cont;
817 	if (mp1 != NULL) {
818 		mp->b_cont = NULL;
819 		linkb(mp1, mp);
820 		mp = mp1;
821 	}
822 	qreply(q, mp);
823 }
824 
825 /*
826  * Send a packet using the specified IRE.
827  * If ire_src_addr_v6 is all zero then discard the IRE after
828  * the packet has been sent.
829  */
830 static void
831 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
832 {
833 	mblk_t *ipsec_mp;
834 	boolean_t is_secure;
835 	uint_t ifindex;
836 	ill_t	*ill;
837 	zoneid_t zoneid = ire->ire_zoneid;
838 	ip_stack_t	*ipst = ire->ire_ipst;
839 
840 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
841 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
842 	ipsec_mp = pkt;
843 	is_secure = (pkt->b_datap->db_type == M_CTL);
844 	if (is_secure) {
845 		ipsec_out_t *io;
846 
847 		pkt = pkt->b_cont;
848 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
849 		if (io->ipsec_out_type == IPSEC_OUT)
850 			zoneid = io->ipsec_out_zoneid;
851 	}
852 
853 	/* If the packet originated externally then */
854 	if (pkt->b_prev) {
855 		ire_refrele(ire);
856 		/*
857 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
858 		 * Look up interface to see if it still exists (it could have
859 		 * been unplumbed by the time the reply came back from ARP)
860 		 */
861 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
862 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
863 		    NULL, NULL, NULL, NULL, ipst);
864 		if (ill == NULL) {
865 			pkt->b_prev = NULL;
866 			pkt->b_next = NULL;
867 			freemsg(ipsec_mp);
868 			return;
869 		}
870 		q = ill->ill_rq;
871 		pkt->b_prev = NULL;
872 		/*
873 		 * This packet has not gone through IPSEC processing
874 		 * and hence we should not have any IPSEC message
875 		 * prepended.
876 		 */
877 		ASSERT(ipsec_mp == pkt);
878 		put(q, pkt);
879 		ill_refrele(ill);
880 	} else if (pkt->b_next) {
881 		/* Packets from multicast router */
882 		pkt->b_next = NULL;
883 		/*
884 		 * We never get the IPSEC_OUT while forwarding the
885 		 * packet for multicast router.
886 		 */
887 		ASSERT(ipsec_mp == pkt);
888 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
889 		ire_refrele(ire);
890 	} else {
891 		/* Locally originated packets */
892 		boolean_t is_inaddr_any;
893 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
894 
895 		/*
896 		 * We need to do an ire_delete below for which
897 		 * we need to make sure that the IRE will be
898 		 * around even after calling ip_wput_ire -
899 		 * which does ire_refrele. Otherwise somebody
900 		 * could potentially delete this ire and hence
901 		 * free this ire and we will be calling ire_delete
902 		 * on a freed ire below.
903 		 */
904 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
905 		if (is_inaddr_any) {
906 			IRE_REFHOLD(ire);
907 		}
908 		/*
909 		 * If we were resolving a router we can not use the
910 		 * routers IRE for sending the packet (since it would
911 		 * violate the uniqness of the IP idents) thus we
912 		 * make another pass through ip_wput to create the IRE_CACHE
913 		 * for the destination.
914 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
915 		 * Thus ip_wput() will never find a ire and result in an
916 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
917 		 * is set. This also implies that IRE_MARK_NOADD can only be
918 		 * used to send packets to directly connected hosts.
919 		 */
920 		if (ipha->ipha_dst != ire->ire_addr &&
921 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
922 			ire_refrele(ire);	/* Held in ire_add */
923 			if (CONN_Q(q)) {
924 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
925 				    IRE_SEND);
926 			} else {
927 				(void) ip_output((void *)(uintptr_t)zoneid,
928 				    ipsec_mp, q, IRE_SEND);
929 			}
930 		} else {
931 			if (is_secure) {
932 				ipsec_out_t *oi;
933 				ipha_t *ipha;
934 
935 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
936 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
937 				if (oi->ipsec_out_proc_begin) {
938 					/*
939 					 * This is the case where
940 					 * ip_wput_ipsec_out could not find
941 					 * the IRE and recreated a new one.
942 					 * As ip_wput_ipsec_out does ire
943 					 * lookups, ire_refrele for the extra
944 					 * bump in ire_add.
945 					 */
946 					ire_refrele(ire);
947 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
948 					    NULL, NULL);
949 				} else {
950 					/*
951 					 * IRE_REFRELE will be done in
952 					 * ip_wput_ire.
953 					 */
954 					ip_wput_ire(q, ipsec_mp, ire, NULL,
955 					    IRE_SEND, zoneid);
956 				}
957 			} else {
958 				/*
959 				 * IRE_REFRELE will be done in ip_wput_ire.
960 				 */
961 				ip_wput_ire(q, ipsec_mp, ire, NULL,
962 				    IRE_SEND, zoneid);
963 			}
964 		}
965 		/*
966 		 * Special code to support sending a single packet with
967 		 * conn_unspec_src using an IRE which has no source address.
968 		 * The IRE is deleted here after sending the packet to avoid
969 		 * having other code trip on it. But before we delete the
970 		 * ire, somebody could have looked up this ire.
971 		 * We prevent returning/using this IRE by the upper layers
972 		 * by making checks to NULL source address in other places
973 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
974 		 * Though, this does not completely prevent other threads
975 		 * from using this ire, this should not cause any problems.
976 		 *
977 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
978 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
979 		 * above could have potentially freed the ire.
980 		 */
981 		if (is_inaddr_any) {
982 			/*
983 			 * If this IRE has been deleted by another thread, then
984 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
985 			 * Thus, ire_delete will do nothing.  This check
986 			 * guards against calling ire_delete when the IRE was
987 			 * never inserted in the table, which is handled by
988 			 * ire_delete as dropping another reference.
989 			 */
990 			if (ire->ire_bucket != NULL) {
991 				ip1dbg(("ire_send: delete IRE\n"));
992 				ire_delete(ire);
993 			}
994 			ire_refrele(ire);	/* Held above */
995 		}
996 	}
997 }
998 
999 /*
1000  * Send a packet using the specified IRE.
1001  * If ire_src_addr_v6 is all zero then discard the IRE after
1002  * the packet has been sent.
1003  */
1004 static void
1005 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1006 {
1007 	mblk_t *ipsec_mp;
1008 	boolean_t secure;
1009 	uint_t ifindex;
1010 	zoneid_t zoneid = ire->ire_zoneid;
1011 	ip_stack_t	*ipst = ire->ire_ipst;
1012 
1013 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1014 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1015 	if (pkt->b_datap->db_type == M_CTL) {
1016 		ipsec_out_t *io;
1017 
1018 		ipsec_mp = pkt;
1019 		pkt = pkt->b_cont;
1020 		secure = B_TRUE;
1021 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1022 		if (io->ipsec_out_type == IPSEC_OUT)
1023 			zoneid = io->ipsec_out_zoneid;
1024 	} else {
1025 		ipsec_mp = pkt;
1026 		secure = B_FALSE;
1027 	}
1028 
1029 	/* If the packet originated externally then */
1030 	if (pkt->b_prev) {
1031 		ill_t	*ill;
1032 		/*
1033 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1034 		 * Look up interface to see if it still exists (it could have
1035 		 * been unplumbed by the time the reply came back from the
1036 		 * resolver).
1037 		 */
1038 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1039 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1040 		    NULL, NULL, NULL, NULL, ipst);
1041 		if (ill == NULL) {
1042 			pkt->b_prev = NULL;
1043 			pkt->b_next = NULL;
1044 			freemsg(ipsec_mp);
1045 			ire_refrele(ire);	/* Held in ire_add */
1046 			return;
1047 		}
1048 		q = ill->ill_rq;
1049 		pkt->b_prev = NULL;
1050 		/*
1051 		 * This packet has not gone through IPSEC processing
1052 		 * and hence we should not have any IPSEC message
1053 		 * prepended.
1054 		 */
1055 		ASSERT(ipsec_mp == pkt);
1056 		put(q, pkt);
1057 		ill_refrele(ill);
1058 	} else if (pkt->b_next) {
1059 		/* Packets from multicast router */
1060 		pkt->b_next = NULL;
1061 		/*
1062 		 * We never get the IPSEC_OUT while forwarding the
1063 		 * packet for multicast router.
1064 		 */
1065 		ASSERT(ipsec_mp == pkt);
1066 		/*
1067 		 * XXX TODO IPv6.
1068 		 */
1069 		freemsg(pkt);
1070 #ifdef XXX
1071 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1072 #endif
1073 	} else {
1074 		if (secure) {
1075 			ipsec_out_t *oi;
1076 			ip6_t *ip6h;
1077 
1078 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1079 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1080 			if (oi->ipsec_out_proc_begin) {
1081 				/*
1082 				 * This is the case where
1083 				 * ip_wput_ipsec_out could not find
1084 				 * the IRE and recreated a new one.
1085 				 */
1086 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1087 				    NULL, NULL);
1088 			} else {
1089 				if (CONN_Q(q)) {
1090 					(void) ip_output_v6(Q_TO_CONN(q),
1091 					    ipsec_mp, q, IRE_SEND);
1092 				} else {
1093 					(void) ip_output_v6(
1094 					    (void *)(uintptr_t)zoneid,
1095 					    ipsec_mp, q, IRE_SEND);
1096 				}
1097 			}
1098 		} else {
1099 			/*
1100 			 * Send packets through ip_output_v6 so that any
1101 			 * ip6_info header can be processed again.
1102 			 */
1103 			if (CONN_Q(q)) {
1104 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1105 				    IRE_SEND);
1106 			} else {
1107 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1108 				    ipsec_mp, q, IRE_SEND);
1109 			}
1110 		}
1111 		/*
1112 		 * Special code to support sending a single packet with
1113 		 * conn_unspec_src using an IRE which has no source address.
1114 		 * The IRE is deleted here after sending the packet to avoid
1115 		 * having other code trip on it. But before we delete the
1116 		 * ire, somebody could have looked up this ire.
1117 		 * We prevent returning/using this IRE by the upper layers
1118 		 * by making checks to NULL source address in other places
1119 		 * like e.g ip_ire_append_v6, ip_ire_req and
1120 		 * ip_bind_connected_v6. Though, this does not completely
1121 		 * prevent other threads from using this ire, this should
1122 		 * not cause any problems.
1123 		 */
1124 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1125 			ip1dbg(("ire_send_v6: delete IRE\n"));
1126 			ire_delete(ire);
1127 		}
1128 	}
1129 	ire_refrele(ire);	/* Held in ire_add */
1130 }
1131 
1132 /*
1133  * Make sure that IRE bucket does not get too long.
1134  * This can cause lock up because ire_cache_lookup()
1135  * may take "forever" to finish.
1136  *
1137  * We only remove a maximum of cnt IREs each time.  This
1138  * should keep the bucket length approximately constant,
1139  * depending on cnt.  This should be enough to defend
1140  * against DoS attack based on creating temporary IREs
1141  * (for forwarding and non-TCP traffic).
1142  *
1143  * We also pass in the address of the newly created IRE
1144  * as we do not want to remove this straight after adding
1145  * it. New IREs are normally added at the tail of the
1146  * bucket.  This means that we are removing the "oldest"
1147  * temporary IREs added.  Only if there are IREs with
1148  * the same ire_addr, do we not add it at the tail.  Refer
1149  * to ire_add_v*().  It should be OK for our purpose.
1150  *
1151  * For non-temporary cached IREs, we make sure that they
1152  * have not been used for some time (defined below), they
1153  * are non-local destinations, and there is no one using
1154  * them at the moment (refcnt == 1).
1155  *
1156  * The above means that the IRE bucket length may become
1157  * very long, consisting of mostly non-temporary IREs.
1158  * This can happen when the hash function does a bad job
1159  * so that most TCP connections cluster to a specific bucket.
1160  * This "hopefully" should never happen.  It can also
1161  * happen if most TCP connections have very long lives.
1162  * Even with the minimal hash table size of 256, there
1163  * has to be a lot of such connections to make the bucket
1164  * length unreasonably long.  This should probably not
1165  * happen either.  The third can when this can happen is
1166  * when the machine is under attack, such as SYN flooding.
1167  * TCP should already have the proper mechanism to protect
1168  * that.  So we should be safe.
1169  *
1170  * This function is called by ire_add_then_send() after
1171  * a new IRE is added and the packet is sent.
1172  *
1173  * The idle cutoff interval is set to 60s.  It can be
1174  * changed using /etc/system.
1175  */
1176 uint32_t ire_idle_cutoff_interval = 60000;
1177 
1178 static void
1179 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
1180 {
1181 	ire_t *ire;
1182 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1183 	int cnt = ip_ire_cleanup_cnt;
1184 
1185 	/*
1186 	 * Try to remove cnt temporary IREs first.
1187 	 */
1188 	for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
1189 		if (ire == ref_ire)
1190 			continue;
1191 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
1192 			continue;
1193 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1194 			ASSERT(ire->ire_type == IRE_CACHE);
1195 			ire_delete(ire);
1196 			cnt--;
1197 		}
1198 	}
1199 	if (cnt == 0)
1200 		return;
1201 
1202 	/*
1203 	 * If we didn't satisfy our removal target from temporary IREs
1204 	 * we see how many non-temporary IREs are currently in the bucket.
1205 	 * If this quantity is above the threshold then we see if there are any
1206 	 * candidates for removal. We are still limited to removing a maximum
1207 	 * of cnt IREs.
1208 	 */
1209 	if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
1210 		for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
1211 		    ire = ire->ire_next) {
1212 			if (ire == ref_ire)
1213 				continue;
1214 			if (ire->ire_type != IRE_CACHE)
1215 				continue;
1216 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1217 				continue;
1218 			if ((ire->ire_refcnt == 1) &&
1219 			    (lbolt - ire->ire_last_used_time > cut_off)) {
1220 				ire_delete(ire);
1221 				cnt--;
1222 			}
1223 		}
1224 	}
1225 }
1226 
1227 /*
1228  * ire_add_then_send is called when a new IRE has been created in order to
1229  * route an outgoing packet.  Typically, it is called from ip_wput when
1230  * a response comes back down from a resolver.  We add the IRE, and then
1231  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1232  * However, we do not add the newly created IRE in the cache when
1233  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1234  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
1235  * ip_wput_ire() and get deleted.
1236  * Multirouting support: the packet is silently discarded when the new IRE
1237  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1238  * RTF_MULTIRT flag for the same destination address.
1239  * In this case, we just want to register this additional ire without
1240  * sending the packet, as it has already been replicated through
1241  * existing multirt routes in ip_wput().
1242  */
1243 void
1244 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1245 {
1246 	irb_t *irb;
1247 	boolean_t drop = B_FALSE;
1248 	/* LINTED : set but not used in function */
1249 	boolean_t mctl_present;
1250 	mblk_t *first_mp = NULL;
1251 	mblk_t *save_mp = NULL;
1252 	ire_t *dst_ire;
1253 	ipha_t *ipha;
1254 	ip6_t *ip6h;
1255 	ip_stack_t	*ipst = ire->ire_ipst;
1256 	int		ire_limit;
1257 
1258 	if (mp != NULL) {
1259 		/*
1260 		 * We first have to retrieve the destination address carried
1261 		 * by the packet.
1262 		 * We can't rely on ire as it can be related to a gateway.
1263 		 * The destination address will help in determining if
1264 		 * other RTF_MULTIRT ires are already registered.
1265 		 *
1266 		 * We first need to know where we are going : v4 or V6.
1267 		 * the ire version is enough, as there is no risk that
1268 		 * we resolve an IPv6 address with an IPv4 ire
1269 		 * or vice versa.
1270 		 */
1271 		if (ire->ire_ipversion == IPV4_VERSION) {
1272 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1273 			ipha = (ipha_t *)mp->b_rptr;
1274 			save_mp = mp;
1275 			mp = first_mp;
1276 
1277 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1278 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1279 		} else {
1280 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1281 			/*
1282 			 * Get a pointer to the beginning of the IPv6 header.
1283 			 * Ignore leading IPsec control mblks.
1284 			 */
1285 			first_mp = mp;
1286 			if (mp->b_datap->db_type == M_CTL) {
1287 				mp = mp->b_cont;
1288 			}
1289 			ip6h = (ip6_t *)mp->b_rptr;
1290 			save_mp = mp;
1291 			mp = first_mp;
1292 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1293 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1294 		}
1295 		if (dst_ire != NULL) {
1296 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1297 				/*
1298 				 * At least one resolved multirt route
1299 				 * already exists for the destination,
1300 				 * don't sent this packet: either drop it
1301 				 * or complete the pending resolution,
1302 				 * depending on the ire.
1303 				 */
1304 				drop = B_TRUE;
1305 			}
1306 			ip1dbg(("ire_add_then_send: dst_ire %p "
1307 			    "[dst %08x, gw %08x], drop %d\n",
1308 			    (void *)dst_ire,
1309 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1310 			    ntohl(dst_ire->ire_addr) : \
1311 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1312 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1313 			    ntohl(dst_ire->ire_gateway_addr) : \
1314 			    ntohl(V4_PART_OF_V6(
1315 			    dst_ire->ire_gateway_addr_v6)),
1316 			    drop));
1317 			ire_refrele(dst_ire);
1318 		}
1319 	}
1320 
1321 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1322 		/* Regular packets with cache bound ires are here. */
1323 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1324 
1325 		if (ire == NULL) {
1326 			mp->b_prev = NULL;
1327 			mp->b_next = NULL;
1328 			MULTIRT_DEBUG_UNTAG(mp);
1329 			freemsg(mp);
1330 			return;
1331 		}
1332 		if (mp == NULL) {
1333 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1334 			return;
1335 		}
1336 	}
1337 	if (drop) {
1338 		/*
1339 		 * If we're adding an RTF_MULTIRT ire, the resolution
1340 		 * is over: we just drop the packet.
1341 		 */
1342 		if (ire->ire_flags & RTF_MULTIRT) {
1343 			if (save_mp) {
1344 				save_mp->b_prev = NULL;
1345 				save_mp->b_next = NULL;
1346 			}
1347 			MULTIRT_DEBUG_UNTAG(mp);
1348 			freemsg(mp);
1349 		} else {
1350 			/*
1351 			 * Otherwise, we're adding the ire to a gateway
1352 			 * for a multirt route.
1353 			 * Invoke ip_newroute() to complete the resolution
1354 			 * of the route. We will then come back here and
1355 			 * finally drop this packet in the above code.
1356 			 */
1357 			if (ire->ire_ipversion == IPV4_VERSION) {
1358 				/*
1359 				 * TODO: in order for CGTP to work in non-global
1360 				 * zones, ip_newroute() must create the IRE
1361 				 * cache in the zone indicated by
1362 				 * ire->ire_zoneid.
1363 				 */
1364 				ip_newroute(q, mp, ipha->ipha_dst,
1365 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1366 				    ire->ire_zoneid, ipst);
1367 			} else {
1368 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1369 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1370 				    NULL, ire->ire_zoneid, ipst);
1371 			}
1372 		}
1373 
1374 		ire_refrele(ire); /* As done by ire_send(). */
1375 		return;
1376 	}
1377 	/*
1378 	 * Need to remember ire_bucket here as ire_send*() may delete
1379 	 * the ire so we cannot reference it after that.
1380 	 */
1381 	irb = ire->ire_bucket;
1382 	if (ire->ire_ipversion == IPV4_VERSION) {
1383 		ire_send(q, mp, ire);
1384 		ire_limit = ip_ire_max_bucket_cnt;
1385 	} else {
1386 		ire_send_v6(q, mp, ire);
1387 		ire_limit = ip6_ire_max_bucket_cnt;
1388 	}
1389 
1390 	/*
1391 	 * irb is NULL if the IRE was not added to the hash. This happens
1392 	 * when IRE_MARK_NOADD is set and when IREs are returned from
1393 	 * ire_update_srcif_v4().
1394 	 */
1395 	if (irb != NULL) {
1396 		IRB_REFHOLD(irb);
1397 		if (irb->irb_ire_cnt > ire_limit)
1398 			ire_cache_cleanup(irb, ire_limit, ire);
1399 		IRB_REFRELE(irb);
1400 	}
1401 }
1402 
1403 /*
1404  * Initialize the ire that is specific to IPv4 part and call
1405  * ire_init_common to finish it.
1406  */
1407 ire_t *
1408 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1409     uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1410     queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1411     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1412     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1413 {
1414 	ASSERT(type != IRE_CACHE || stq != NULL);
1415 	/*
1416 	 * Reject IRE security attribute creation/initialization
1417 	 * if system is not running in Trusted mode.
1418 	 */
1419 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1420 		return (NULL);
1421 
1422 
1423 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1424 
1425 	if (addr != NULL)
1426 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1427 	if (src_addr != NULL)
1428 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1429 	if (mask != NULL) {
1430 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1431 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1432 	}
1433 	if (gateway != NULL) {
1434 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1435 	}
1436 
1437 	if (type == IRE_CACHE)
1438 		ire->ire_cmask = cmask;
1439 
1440 	/* ire_init_common will free the mblks upon encountering any failure */
1441 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
1442 	    phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
1443 		return (NULL);
1444 
1445 	return (ire);
1446 }
1447 
1448 /*
1449  * Similar to ire_create except that it is called only when
1450  * we want to allocate ire as an mblk e.g. we have an external
1451  * resolver ARP.
1452  */
1453 ire_t *
1454 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1455     uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
1456     ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1457     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1458     ip_stack_t *ipst)
1459 {
1460 	ire_t	*ire, *buf;
1461 	ire_t	*ret_ire;
1462 	mblk_t	*mp;
1463 	size_t	bufsize;
1464 	frtn_t	*frtnp;
1465 	ill_t	*ill;
1466 
1467 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1468 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1469 	if (buf == NULL) {
1470 		ip1dbg(("ire_create_mp: alloc failed\n"));
1471 		return (NULL);
1472 	}
1473 	frtnp = (frtn_t *)(buf + 1);
1474 	frtnp->free_arg = (caddr_t)buf;
1475 	frtnp->free_func = ire_freemblk;
1476 
1477 	/*
1478 	 * Allocate the new IRE. The ire created will hold a ref on
1479 	 * an nce_t after ire_nce_init, and this ref must either be
1480 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1481 	 *	is called after successful arp resolution, or,
1482 	 * (b)  released, when arp resolution fails
1483 	 * Case (b) is handled in ire_freemblk() which will be called
1484 	 * when mp is freed as a result of failed arp.
1485 	 */
1486 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1487 	if (mp == NULL) {
1488 		ip1dbg(("ire_create_mp: alloc failed\n"));
1489 		kmem_free(buf, bufsize);
1490 		return (NULL);
1491 	}
1492 	ire = (ire_t *)mp->b_rptr;
1493 	mp->b_wptr = (uchar_t *)&ire[1];
1494 
1495 	/* Start clean. */
1496 	*ire = ire_null;
1497 	ire->ire_mp = mp;
1498 	mp->b_datap->db_type = IRE_DB_TYPE;
1499 	ire->ire_marks |= IRE_MARK_UNCACHED;
1500 
1501 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
1502 	    rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
1503 	    gcgrp, ipst);
1504 
1505 	ill = (ill_t *)(stq->q_ptr);
1506 	if (ret_ire == NULL) {
1507 		/* ire_freemblk needs these set */
1508 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1509 		ire->ire_ipst = ipst;
1510 		freeb(ire->ire_mp);
1511 		return (NULL);
1512 	}
1513 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1514 	ASSERT(ret_ire == ire);
1515 	/*
1516 	 * ire_max_frag is normally zero here and is atomically set
1517 	 * under the irebucket lock in ire_add_v[46] except for the
1518 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1519 	 * is non-zero here.
1520 	 */
1521 	ire->ire_max_frag = max_frag;
1522 	return (ire);
1523 }
1524 
1525 /*
1526  * ire_create is called to allocate and initialize a new IRE.
1527  *
1528  * NOTE : This is called as writer sometimes though not required
1529  * by this function.
1530  */
1531 ire_t *
1532 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1533     uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
1534     ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1535     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1536     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1537 {
1538 	ire_t	*ire;
1539 	ire_t	*ret_ire;
1540 
1541 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1542 	if (ire == NULL) {
1543 		ip1dbg(("ire_create: alloc failed\n"));
1544 		return (NULL);
1545 	}
1546 	*ire = ire_null;
1547 
1548 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
1549 	    src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
1550 	    ulp_info, gc, gcgrp, ipst);
1551 
1552 	if (ret_ire == NULL) {
1553 		kmem_cache_free(ire_cache, ire);
1554 		return (NULL);
1555 	}
1556 	ASSERT(ret_ire == ire);
1557 	return (ire);
1558 }
1559 
1560 
1561 /*
1562  * Common to IPv4 and IPv6
1563  */
1564 boolean_t
1565 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1566     queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
1567     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1568     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1569 {
1570 	ire->ire_max_fragp = max_fragp;
1571 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1572 
1573 #ifdef DEBUG
1574 	if (ipif != NULL) {
1575 		if (ipif->ipif_isv6)
1576 			ASSERT(ipversion == IPV6_VERSION);
1577 		else
1578 			ASSERT(ipversion == IPV4_VERSION);
1579 	}
1580 #endif /* DEBUG */
1581 
1582 	/*
1583 	 * Create/initialize IRE security attribute only in Trusted mode;
1584 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1585 	 * has held a reference to it and will release it when this routine
1586 	 * returns a failure, otherwise we own the reference.  We do this
1587 	 * prior to initializing the rest IRE fields.
1588 	 *
1589 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1590 	 * memory leak (in case of external resolution failure). We'll
1591 	 * allocate it after a successful external resolution, in ire_add().
1592 	 * Note that ire->ire_mp != NULL here means this ire is headed
1593 	 * to an external resolver.
1594 	 */
1595 	if (is_system_labeled()) {
1596 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1597 		    IRE_INTERFACE)) != 0) {
1598 			/* release references on behalf of caller */
1599 			if (gc != NULL)
1600 				GC_REFRELE(gc);
1601 			if (gcgrp != NULL)
1602 				GCGRP_REFRELE(gcgrp);
1603 		} else if ((ire->ire_mp == NULL) &&
1604 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1605 			return (B_FALSE);
1606 		}
1607 	}
1608 
1609 	ire->ire_stq = stq;
1610 	ire->ire_rfq = rfq;
1611 	ire->ire_type = type;
1612 	ire->ire_flags = RTF_UP | flags;
1613 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1614 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1615 
1616 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1617 	ire->ire_last_used_time = lbolt;
1618 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1619 
1620 	/*
1621 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1622 	 * parent IREs. For others in the forwarding table, assign appropriate
1623 	 * new ones.
1624 	 *
1625 	 * The mutex protecting ire_handle is because ire_create is not always
1626 	 * called as a writer.
1627 	 */
1628 	if (ire->ire_type & IRE_OFFSUBNET) {
1629 		mutex_enter(&ipst->ips_ire_handle_lock);
1630 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1631 		mutex_exit(&ipst->ips_ire_handle_lock);
1632 	} else if (ire->ire_type & IRE_INTERFACE) {
1633 		mutex_enter(&ipst->ips_ire_handle_lock);
1634 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1635 		mutex_exit(&ipst->ips_ire_handle_lock);
1636 	} else if (ire->ire_type == IRE_CACHE) {
1637 		ire->ire_phandle = phandle;
1638 		ire->ire_ihandle = ihandle;
1639 	}
1640 	ire->ire_ipif = ipif;
1641 	if (ipif != NULL) {
1642 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1643 		ire->ire_zoneid = ipif->ipif_zoneid;
1644 	} else {
1645 		ire->ire_zoneid = GLOBAL_ZONEID;
1646 	}
1647 	ire->ire_ipversion = ipversion;
1648 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1649 	if (ipversion == IPV4_VERSION) {
1650 		/*
1651 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1652 		 * to find the ire_nce to be null when it is called.
1653 		 */
1654 		if (ire_nce_init(ire, src_nce) != 0) {
1655 			/* some failure occurred. propagate error back */
1656 			return (B_FALSE);
1657 		}
1658 	}
1659 	ire->ire_refcnt = 1;
1660 	ire->ire_ipst = ipst;	/* No netstack_hold */
1661 	ire->ire_trace_disable = B_FALSE;
1662 
1663 	return (B_TRUE);
1664 }
1665 
1666 /*
1667  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1668  * It is passed a pointer to a slot in an IRE pointer array into which to
1669  * place the pointer to the new IRE, if indeed we create one.  If the
1670  * IRE corresponding to the address passed in would be a duplicate of an
1671  * existing one, we don't create the new one.  irep is incremented before
1672  * return only if we do create a new IRE.  (Always called as writer.)
1673  *
1674  * Note that with the "match_flags" parameter, we can match on either
1675  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1676  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1677  * we only create broadcast ire's on a per physical interface basis. If
1678  * someone is going to be mucking with logical interfaces, it is important
1679  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1680  * logical interface will not cause critical broadcast IRE's to be deleted.
1681  */
1682 ire_t **
1683 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1684     int match_flags)
1685 {
1686 	ire_t *ire;
1687 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1688 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1689 
1690 	/*
1691 	 * No broadcast IREs for the LOOPBACK interface
1692 	 * or others such as point to point and IPIF_NOXMIT.
1693 	 */
1694 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1695 	    (ipif->ipif_flags & IPIF_NOXMIT))
1696 		return (irep);
1697 
1698 	/* If this would be a duplicate, don't bother. */
1699 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1700 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1701 		/*
1702 		 * We look for non-deprecated (and non-anycast, non-nolocal)
1703 		 * ipifs as the best choice. ipifs with check_flags matching
1704 		 * (deprecated, etc) are used only if non-deprecated ipifs
1705 		 * are not available. if the existing ire's ipif is deprecated
1706 		 * and the new ipif is non-deprecated, switch to the new ipif
1707 		 */
1708 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
1709 		    (ipif->ipif_flags & check_flags)) {
1710 			ire_refrele(ire);
1711 			return (irep);
1712 		}
1713 		/*
1714 		 * Bcast ires exist in pairs. Both have to be deleted,
1715 		 * Since we are exclusive we can make the above assertion.
1716 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1717 		 */
1718 		ASSERT(IAM_WRITER_IPIF(ipif));
1719 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1720 		ire_delete(ire->ire_next);
1721 		ire_delete(ire);
1722 		ire_refrele(ire);
1723 	}
1724 
1725 	irep = ire_create_bcast(ipif, addr, irep);
1726 
1727 	return (irep);
1728 }
1729 
1730 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
1731 
1732 /*
1733  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
1734  * It leaves all the verifying and deleting to those routines. So it always
1735  * creates 2 bcast ires and chains them into the ire array passed in.
1736  */
1737 ire_t **
1738 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
1739 {
1740 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1741 
1742 	*irep++ = ire_create(
1743 	    (uchar_t *)&addr,			/* dest addr */
1744 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1745 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
1746 	    NULL,				/* no gateway */
1747 	    &ipif->ipif_mtu,			/* max frag */
1748 	    NULL,				/* no src nce */
1749 	    ipif->ipif_rq,			/* recv-from queue */
1750 	    ipif->ipif_wq,			/* send-to queue */
1751 	    IRE_BROADCAST,
1752 	    ipif,
1753 	    0,
1754 	    0,
1755 	    0,
1756 	    0,
1757 	    &ire_uinfo_null,
1758 	    NULL,
1759 	    NULL,
1760 	    ipst);
1761 
1762 	*irep++ = ire_create(
1763 	    (uchar_t *)&addr,			/* dest address */
1764 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1765 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
1766 	    NULL,				/* no gateway */
1767 	    &ip_loopback_mtu,			/* max frag size */
1768 	    NULL,				/* no src_nce */
1769 	    ipif->ipif_rq,			/* recv-from queue */
1770 	    NULL,				/* no send-to queue */
1771 	    IRE_BROADCAST,			/* Needed for fanout in wput */
1772 	    ipif,
1773 	    0,
1774 	    0,
1775 	    0,
1776 	    0,
1777 	    &ire_uinfo_null,
1778 	    NULL,
1779 	    NULL,
1780 	    ipst);
1781 
1782 	return (irep);
1783 }
1784 
1785 /*
1786  * ire_walk routine to delete or update any IRE_CACHE that might contain
1787  * stale information.
1788  * The flags state which entries to delete or update.
1789  * Garbage collection is done separately using kmem alloc callbacks to
1790  * ip_trash_ire_reclaim.
1791  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
1792  * since other stale information is cleaned up using NUD.
1793  */
1794 void
1795 ire_expire(ire_t *ire, char *arg)
1796 {
1797 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
1798 	ill_t			*stq_ill;
1799 	int			flush_flags = ieap->iea_flush_flag;
1800 	ip_stack_t		*ipst = ieap->iea_ipst;
1801 
1802 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
1803 	    (ire->ire_flags & RTF_DYNAMIC)) {
1804 		/* Make sure we delete the corresponding IRE_CACHE */
1805 		ip1dbg(("ire_expire: all redirects\n"));
1806 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
1807 		ire_delete(ire);
1808 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
1809 		return;
1810 	}
1811 	if (ire->ire_type != IRE_CACHE)
1812 		return;
1813 
1814 	if (flush_flags & FLUSH_ARP_TIME) {
1815 		/*
1816 		 * Remove all IRE_CACHE except IPv4 multicast ires. These
1817 		 * ires will be deleted by ip_trash_ire_reclaim_stack()
1818 		 * when system runs low in memory.
1819 		 * Verify that create time is more than ip_ire_arp_interval
1820 		 * milliseconds ago.
1821 		 */
1822 
1823 		if (!(ire->ire_ipversion == IPV4_VERSION &&
1824 		    CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) {
1825 			ire_delete(ire);
1826 			return;
1827 		}
1828 	}
1829 
1830 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
1831 	    (ire->ire_ipif != NULL)) {
1832 		/* Increase pmtu if it is less than the interface mtu */
1833 		mutex_enter(&ire->ire_lock);
1834 		/*
1835 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
1836 		 * get the mtu from the sending interfaces' ipif
1837 		 */
1838 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
1839 			stq_ill = ire->ire_stq->q_ptr;
1840 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
1841 			    IP_MAXPACKET);
1842 		} else {
1843 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
1844 			    IP_MAXPACKET);
1845 		}
1846 		ire->ire_frag_flag |= IPH_DF;
1847 		mutex_exit(&ire->ire_lock);
1848 	}
1849 }
1850 
1851 /*
1852  * Return any local address.  We use this to target ourselves
1853  * when the src address was specified as 'default'.
1854  * Preference for IRE_LOCAL entries.
1855  */
1856 ire_t *
1857 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
1858 {
1859 	ire_t	*ire;
1860 	irb_t	*irb;
1861 	ire_t	*maybe = NULL;
1862 	int i;
1863 
1864 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
1865 		irb = &ipst->ips_ip_cache_table[i];
1866 		if (irb->irb_ire == NULL)
1867 			continue;
1868 		rw_enter(&irb->irb_lock, RW_READER);
1869 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1870 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
1871 			    (ire->ire_zoneid != zoneid &&
1872 			    ire->ire_zoneid != ALL_ZONES))
1873 				continue;
1874 			switch (ire->ire_type) {
1875 			case IRE_LOOPBACK:
1876 				if (maybe == NULL) {
1877 					IRE_REFHOLD(ire);
1878 					maybe = ire;
1879 				}
1880 				break;
1881 			case IRE_LOCAL:
1882 				if (maybe != NULL) {
1883 					ire_refrele(maybe);
1884 				}
1885 				IRE_REFHOLD(ire);
1886 				rw_exit(&irb->irb_lock);
1887 				return (ire);
1888 			}
1889 		}
1890 		rw_exit(&irb->irb_lock);
1891 	}
1892 	return (maybe);
1893 }
1894 
1895 /*
1896  * If the specified IRE is associated with a particular ILL, return
1897  * that ILL pointer (May be called as writer.).
1898  *
1899  * NOTE : This is not a generic function that can be used always.
1900  * This function always returns the ill of the outgoing packets
1901  * if this ire is used.
1902  */
1903 ill_t *
1904 ire_to_ill(const ire_t *ire)
1905 {
1906 	ill_t *ill = NULL;
1907 
1908 	/*
1909 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
1910 	 *    the source address from. ire_stq is the one where the
1911 	 *    packets will be sent out on. We return that here.
1912 	 *
1913 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
1914 	 *    copy and they always exist next to each other with loopback
1915 	 *    copy being the first one. If we are called on the non-loopback
1916 	 *    copy, return the one pointed by ire_stq. If it was called on
1917 	 *    a loopback copy, we still return the one pointed by the next
1918 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
1919 	 *    copy. We don't want use ire_ipif as it might represent the
1920 	 *    source address (if we borrow source addresses for
1921 	 *    IRE_BROADCASTS in the future).
1922 	 *    However if an interface is currently coming up, the above
1923 	 *    condition may not hold during that period since the ires
1924 	 *    are added one at a time. Thus one of the pair could have been
1925 	 *    added and the other not yet added.
1926 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
1927 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
1928 	 *    That handles IRE_LOOPBACK.
1929 	 */
1930 
1931 	if (ire->ire_type == IRE_CACHE) {
1932 		ill = (ill_t *)ire->ire_stq->q_ptr;
1933 	} else if (ire->ire_type == IRE_BROADCAST) {
1934 		if (ire->ire_stq != NULL) {
1935 			ill = (ill_t *)ire->ire_stq->q_ptr;
1936 		} else {
1937 			ire_t  *ire_next;
1938 
1939 			ire_next = ire->ire_next;
1940 			if (ire_next != NULL &&
1941 			    ire_next->ire_type == IRE_BROADCAST &&
1942 			    ire_next->ire_addr == ire->ire_addr &&
1943 			    ire_next->ire_ipif == ire->ire_ipif) {
1944 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
1945 			}
1946 		}
1947 	} else if (ire->ire_rfq != NULL) {
1948 		ill = ire->ire_rfq->q_ptr;
1949 	} else if (ire->ire_ipif != NULL) {
1950 		ill = ire->ire_ipif->ipif_ill;
1951 	}
1952 	return (ill);
1953 }
1954 
1955 /* Arrange to call the specified function for every IRE in the world. */
1956 void
1957 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
1958 {
1959 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
1960 }
1961 
1962 void
1963 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1964 {
1965 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
1966 }
1967 
1968 void
1969 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1970 {
1971 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
1972 }
1973 
1974 /*
1975  * Walk a particular version. version == 0 means both v4 and v6.
1976  */
1977 static void
1978 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
1979     ip_stack_t *ipst)
1980 {
1981 	if (vers != IPV6_VERSION) {
1982 		/*
1983 		 * ip_forwarding_table variable doesn't matter for IPv4 since
1984 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
1985 		 */
1986 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
1987 		    0, NULL,
1988 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
1989 		    NULL, zoneid, ipst);
1990 	}
1991 	if (vers != IPV4_VERSION) {
1992 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
1993 		    ipst->ips_ip6_ftable_hash_size,
1994 		    ipst->ips_ip_forwarding_table_v6,
1995 		    ipst->ips_ip6_cache_table_size,
1996 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
1997 	}
1998 }
1999 
2000 /*
2001  * Arrange to call the specified
2002  * function for every IRE that matches the ill.
2003  */
2004 void
2005 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2006     ill_t *ill)
2007 {
2008 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2009 }
2010 
2011 void
2012 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2013     ill_t *ill)
2014 {
2015 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2016 	    ill);
2017 }
2018 
2019 void
2020 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2021     ill_t *ill)
2022 {
2023 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2024 	    ill);
2025 }
2026 
2027 /*
2028  * Walk a particular ill and version. version == 0 means both v4 and v6.
2029  */
2030 static void
2031 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2032     void *arg, uchar_t vers, ill_t *ill)
2033 {
2034 	ip_stack_t	*ipst = ill->ill_ipst;
2035 
2036 	if (vers != IPV6_VERSION) {
2037 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2038 		    IP_MASK_TABLE_SIZE, 0,
2039 		    NULL, ipst->ips_ip_cache_table_size,
2040 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2041 	}
2042 	if (vers != IPV4_VERSION) {
2043 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2044 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2045 		    ipst->ips_ip_forwarding_table_v6,
2046 		    ipst->ips_ip6_cache_table_size,
2047 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2048 	}
2049 }
2050 
2051 boolean_t
2052 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2053     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2054 {
2055 	ill_t *ire_stq_ill = NULL;
2056 	ill_t *ire_ipif_ill = NULL;
2057 	ill_group_t *ire_ill_group = NULL;
2058 
2059 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2060 	/*
2061 	 * MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2062 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2063 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2064 	 *    different ills. But we want to keep this function generic
2065 	 *    enough for future use. So, we always try to match on both.
2066 	 *    The only caller of this function ire_walk_ill_tables, will
2067 	 *    call "func" after we return from this function. We expect
2068 	 *    "func" to do the right filtering of ires in this case.
2069 	 *
2070 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2071 	 * pointed by ire_stq and ire_ipif should always be the same.
2072 	 * So, we just match on only one of them.
2073 	 */
2074 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2075 		if (ire->ire_stq != NULL)
2076 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2077 		if (ire->ire_ipif != NULL)
2078 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2079 		if (ire_stq_ill != NULL)
2080 			ire_ill_group = ire_stq_ill->ill_group;
2081 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2082 			ire_ill_group = ire_ipif_ill->ill_group;
2083 	}
2084 
2085 	if (zoneid != ALL_ZONES) {
2086 		/*
2087 		 * We're walking the IREs for a specific zone. The only relevant
2088 		 * IREs are:
2089 		 * - all IREs with a matching ire_zoneid
2090 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2091 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2092 		 *   with a matching zone
2093 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2094 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2095 		 * using the same rule; but the above rules are consistent with
2096 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2097 		 * routes that can be matched during lookup are also matched
2098 		 * here.
2099 		 */
2100 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2101 			/*
2102 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2103 			 * example, if the default multicast route is tied to
2104 			 * the loopback address.
2105 			 */
2106 			if ((ire->ire_type & IRE_INTERFACE) &&
2107 			    (ire->ire_stq != NULL)) {
2108 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2109 				if (ire->ire_ipversion == IPV4_VERSION) {
2110 					if (!ipif_usesrc_avail(ire_stq_ill,
2111 					    zoneid))
2112 						/* No usable src addr in zone */
2113 						return (B_FALSE);
2114 				} else if (ire_stq_ill->ill_usesrc_ifindex
2115 				    != 0) {
2116 					/*
2117 					 * For IPv6 use ipif_select_source_v6()
2118 					 * so the right scope selection is done
2119 					 */
2120 					ipif_t *src_ipif;
2121 					src_ipif =
2122 					    ipif_select_source_v6(ire_stq_ill,
2123 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2124 					    IPV6_PREFER_SRC_DEFAULT,
2125 					    zoneid);
2126 					if (src_ipif != NULL) {
2127 						ipif_refrele(src_ipif);
2128 					} else {
2129 						return (B_FALSE);
2130 					}
2131 				} else {
2132 					return (B_FALSE);
2133 				}
2134 
2135 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2136 				return (B_FALSE);
2137 			}
2138 		}
2139 
2140 		/*
2141 		 * Match all default routes from the global zone, irrespective
2142 		 * of reachability. For a non-global zone only match those
2143 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2144 		 */
2145 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2146 			int ire_match_flags = 0;
2147 			in6_addr_t gw_addr_v6;
2148 			ire_t *rire;
2149 
2150 			ire_match_flags |= MATCH_IRE_TYPE;
2151 			if (ire->ire_ipif != NULL) {
2152 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2153 			}
2154 			if (ire->ire_ipversion == IPV4_VERSION) {
2155 				rire = ire_route_lookup(ire->ire_gateway_addr,
2156 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2157 				    zoneid, NULL, ire_match_flags, ipst);
2158 			} else {
2159 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2160 				mutex_enter(&ire->ire_lock);
2161 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2162 				mutex_exit(&ire->ire_lock);
2163 				rire = ire_route_lookup_v6(&gw_addr_v6,
2164 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2165 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2166 			}
2167 			if (rire == NULL) {
2168 				return (B_FALSE);
2169 			}
2170 			ire_refrele(rire);
2171 		}
2172 	}
2173 
2174 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2175 	    (ire->ire_type & ire_type)) &&
2176 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2177 	    (ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2178 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2179 	    (ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2180 	    (ire_ill_group != NULL &&
2181 	    ire_ill_group == ill->ill_group))) {
2182 		return (B_TRUE);
2183 	}
2184 	return (B_FALSE);
2185 }
2186 
2187 int
2188 rtfunc(struct radix_node *rn, void *arg)
2189 {
2190 	struct rtfuncarg *rtf = arg;
2191 	struct rt_entry *rt;
2192 	irb_t *irb;
2193 	ire_t *ire;
2194 	boolean_t ret;
2195 
2196 	rt = (struct rt_entry *)rn;
2197 	ASSERT(rt != NULL);
2198 	irb = &rt->rt_irb;
2199 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2200 		if ((rtf->rt_match_flags != 0) ||
2201 		    (rtf->rt_zoneid != ALL_ZONES)) {
2202 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2203 			    rtf->rt_ire_type, ire,
2204 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2205 		} else
2206 			ret = B_TRUE;
2207 		if (ret)
2208 			(*rtf->rt_func)(ire, rtf->rt_arg);
2209 	}
2210 	return (0);
2211 }
2212 
2213 /*
2214  * Walk the ftable and the ctable entries that match the ill.
2215  */
2216 void
2217 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2218     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2219     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2220     ip_stack_t *ipst)
2221 {
2222 	irb_t	*irb_ptr;
2223 	irb_t	*irb;
2224 	ire_t	*ire;
2225 	int i, j;
2226 	boolean_t ret;
2227 	struct rtfuncarg rtfarg;
2228 
2229 	ASSERT((!(match_flags & (MATCH_IRE_ILL |
2230 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2231 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2232 	/*
2233 	 * Optimize by not looking at the forwarding table if there
2234 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2235 	 * specified in ire_type.
2236 	 */
2237 	if (!(match_flags & MATCH_IRE_TYPE) ||
2238 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2239 		/* knobs such that routine is called only for v6 case */
2240 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2241 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2242 				if ((irb_ptr = ipftbl[i]) == NULL)
2243 					continue;
2244 				for (j = 0; j < htbl_sz; j++) {
2245 					irb = &irb_ptr[j];
2246 					if (irb->irb_ire == NULL)
2247 						continue;
2248 
2249 					IRB_REFHOLD(irb);
2250 					for (ire = irb->irb_ire; ire != NULL;
2251 					    ire = ire->ire_next) {
2252 						if (match_flags == 0 &&
2253 						    zoneid == ALL_ZONES) {
2254 							ret = B_TRUE;
2255 						} else {
2256 							ret =
2257 							    ire_walk_ill_match(
2258 							    match_flags,
2259 							    ire_type, ire, ill,
2260 							    zoneid, ipst);
2261 						}
2262 						if (ret)
2263 							(*func)(ire, arg);
2264 					}
2265 					IRB_REFRELE(irb);
2266 				}
2267 			}
2268 		} else {
2269 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2270 			rtfarg.rt_func = func;
2271 			rtfarg.rt_arg = arg;
2272 			if (match_flags != 0) {
2273 				rtfarg.rt_match_flags = match_flags;
2274 			}
2275 			rtfarg.rt_ire_type = ire_type;
2276 			rtfarg.rt_ill = ill;
2277 			rtfarg.rt_zoneid = zoneid;
2278 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2279 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2280 			    ipst->ips_ip_ftable,
2281 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * Optimize by not looking at the cache table if there
2287 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2288 	 * specified in ire_type.
2289 	 */
2290 	if (!(match_flags & MATCH_IRE_TYPE) ||
2291 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2292 		for (i = 0; i < ctbl_sz;  i++) {
2293 			irb = &ipctbl[i];
2294 			if (irb->irb_ire == NULL)
2295 				continue;
2296 			IRB_REFHOLD(irb);
2297 			for (ire = irb->irb_ire; ire != NULL;
2298 			    ire = ire->ire_next) {
2299 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2300 					ret = B_TRUE;
2301 				} else {
2302 					ret = ire_walk_ill_match(
2303 					    match_flags, ire_type,
2304 					    ire, ill, zoneid, ipst);
2305 				}
2306 				if (ret)
2307 					(*func)(ire, arg);
2308 			}
2309 			IRB_REFRELE(irb);
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  * This function takes a mask and returns
2316  * number of bits set in the mask. If no
2317  * bit is set it returns 0.
2318  * Assumes a contiguous mask.
2319  */
2320 int
2321 ip_mask_to_plen(ipaddr_t mask)
2322 {
2323 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2324 }
2325 
2326 /*
2327  * Convert length for a mask to the mask.
2328  */
2329 ipaddr_t
2330 ip_plen_to_mask(uint_t masklen)
2331 {
2332 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2333 }
2334 
2335 void
2336 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2337 {
2338 	ill_t	*ill_list[NUM_ILLS];
2339 	ip_stack_t	*ipst = ire->ire_ipst;
2340 
2341 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2342 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2343 	ill_unlock_ills(ill_list, NUM_ILLS);
2344 	rw_exit(&irb_ptr->irb_lock);
2345 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2346 }
2347 
2348 /*
2349  * ire_add_v[46] atomically make sure that the ipif or ill associated
2350  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2351  * before adding the ire to the table. This ensures that we don't create
2352  * new IRE_CACHEs with stale values for parameters that are passed to
2353  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2354  * to the ipif_mtu, and not the value. The actual value is derived from the
2355  * parent ire or ipif under the bucket lock.
2356  */
2357 int
2358 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2359     ipsq_func_t func)
2360 {
2361 	ill_t	*stq_ill;
2362 	ill_t	*ipif_ill;
2363 	ill_t	*ill_list[NUM_ILLS];
2364 	int	cnt = NUM_ILLS;
2365 	int	error = 0;
2366 	ill_t	*ill = NULL;
2367 	ip_stack_t	*ipst = ire->ire_ipst;
2368 
2369 	ill_list[0] = stq_ill = ire->ire_stq !=
2370 	    NULL ? ire->ire_stq->q_ptr : NULL;
2371 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2372 	    NULL ? ire->ire_ipif->ipif_ill : NULL;
2373 
2374 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2375 	    (q == NULL && mp == NULL && func == NULL));
2376 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2377 	GRAB_CONN_LOCK(q);
2378 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2379 	ill_lock_ills(ill_list, cnt);
2380 
2381 	/*
2382 	 * While the IRE is in the process of being added, a user may have
2383 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2384 	 * usesrc client ILL. Check for this possibility here, if it is true
2385 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2386 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2387 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2388 	 */
2389 	if ((ire->ire_type & IRE_CACHE) &&
2390 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2391 		if (stq_ill->ill_usesrc_ifindex != 0) {
2392 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2393 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2394 			    stq_ill->ill_usesrc_ifindex) ||
2395 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2396 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2397 				error = EINVAL;
2398 				goto done;
2399 			}
2400 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2401 			error = EINVAL;
2402 			goto done;
2403 		}
2404 	}
2405 
2406 	/*
2407 	 * IPMP flag settings happen without taking the exclusive route
2408 	 * in ip_sioctl_flags. So we need to make an atomic check here
2409 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2410 	 * FAILBACK=no case.
2411 	 */
2412 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2413 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2414 			ill = stq_ill;
2415 			error = EAGAIN;
2416 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2417 		    (ill_is_probeonly(stq_ill) &&
2418 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2419 			error = EINVAL;
2420 		}
2421 		goto done;
2422 	}
2423 
2424 	/*
2425 	 * We don't check for OFFLINE/FAILED in this case because
2426 	 * the source address selection logic (ipif_select_source)
2427 	 * may still select a source address from such an ill. The
2428 	 * assumption is that these addresses will be moved by in.mpathd
2429 	 * soon. (i.e. this is a race). However link local addresses
2430 	 * will not move and hence ipif_select_source_v6 tries to avoid
2431 	 * FAILED ills. Please see ipif_select_source_v6 for more info
2432 	 */
2433 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2434 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2435 		ill = ipif_ill;
2436 		error = EAGAIN;
2437 		goto done;
2438 	}
2439 
2440 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2441 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2442 		ill = ire->ire_ipif->ipif_ill;
2443 		ASSERT(ill != NULL);
2444 		error = EAGAIN;
2445 		goto done;
2446 	}
2447 
2448 done:
2449 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2450 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2451 		mutex_enter(&ipsq->ipsq_lock);
2452 		ire_atomic_end(irb_ptr, ire);
2453 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2454 		mutex_exit(&ipsq->ipsq_lock);
2455 		error = EINPROGRESS;
2456 	} else if (error != 0) {
2457 		ire_atomic_end(irb_ptr, ire);
2458 	}
2459 
2460 	RELEASE_CONN_LOCK(q);
2461 	return (error);
2462 }
2463 
2464 /*
2465  * Add a fully initialized IRE to an appropriate table based on
2466  * ire_type.
2467  *
2468  * allow_unresolved == B_FALSE indicates a legacy code-path call
2469  * that has prohibited the addition of incomplete ire's. If this
2470  * parameter is set, and we find an nce that is in a state other
2471  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2472  * something other than ND_REACHABLE if the nce had just expired and
2473  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2474  */
2475 int
2476 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2477     boolean_t allow_unresolved)
2478 {
2479 	ire_t	*ire1;
2480 	ill_t	*stq_ill = NULL;
2481 	ill_t	*ill;
2482 	ipif_t	*ipif = NULL;
2483 	ill_walk_context_t ctx;
2484 	ire_t	*ire = *irep;
2485 	int	error;
2486 	boolean_t ire_is_mblk = B_FALSE;
2487 	tsol_gcgrp_t *gcgrp = NULL;
2488 	tsol_gcgrp_addr_t ga;
2489 	ip_stack_t	*ipst = ire->ire_ipst;
2490 
2491 	/* get ready for the day when original ire is not created as mblk */
2492 	if (ire->ire_mp != NULL) {
2493 		ire_is_mblk = B_TRUE;
2494 		/* Copy the ire to a kmem_alloc'ed area */
2495 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2496 		if (ire1 == NULL) {
2497 			ip1dbg(("ire_add: alloc failed\n"));
2498 			ire_delete(ire);
2499 			*irep = NULL;
2500 			return (ENOMEM);
2501 		}
2502 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2503 		*ire1 = *ire;
2504 		ire1->ire_mp = NULL;
2505 		ire1->ire_stq_ifindex = 0;
2506 		freeb(ire->ire_mp);
2507 		ire = ire1;
2508 	}
2509 	if (ire->ire_stq != NULL)
2510 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2511 
2512 	if (ire->ire_type == IRE_CACHE) {
2513 		/*
2514 		 * If this interface is FAILED, or INACTIVE or has hit
2515 		 * the FAILBACK=no case, we create IRE_CACHES marked
2516 		 * HIDDEN for some special cases e.g. bind to
2517 		 * IPIF_NOFAILOVER address etc. So, if this interface
2518 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2519 		 * not creating hidden ires, we should not allow that.
2520 		 * This happens because the state of the interface
2521 		 * changed while we were waiting in ARP. If this is the
2522 		 * daemon sending probes, the next probe will create
2523 		 * HIDDEN ires and we will create an ire then. This
2524 		 * cannot happen with NDP currently because IRE is
2525 		 * never queued in NDP. But it can happen in the
2526 		 * future when we have external resolvers with IPv6.
2527 		 * If the interface gets marked with OFFLINE while we
2528 		 * are waiting in ARP, don't add the ire.
2529 		 */
2530 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2531 		    (ill_is_probeonly(stq_ill) &&
2532 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2533 			/*
2534 			 * We don't know whether it is a valid ipif or not.
2535 			 * unless we do the check below. So, set it to NULL.
2536 			 */
2537 			ire->ire_ipif = NULL;
2538 			ire_delete(ire);
2539 			*irep = NULL;
2540 			return (EINVAL);
2541 		}
2542 	}
2543 
2544 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2545 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2546 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2547 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2548 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2549 			mutex_enter(&ill->ill_lock);
2550 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2551 				mutex_exit(&ill->ill_lock);
2552 				continue;
2553 			}
2554 			/*
2555 			 * We need to make sure that the ipif is a valid one
2556 			 * before adding the IRE_CACHE. This happens only
2557 			 * with IRE_CACHE when there is an external resolver.
2558 			 *
2559 			 * We can unplumb a logical interface while the
2560 			 * packet is waiting in ARP with the IRE. Then,
2561 			 * later on when we feed the IRE back, the ipif
2562 			 * has to be re-checked. This can't happen with
2563 			 * NDP currently, as we never queue the IRE with
2564 			 * the packet. We always try to recreate the IRE
2565 			 * when the resolution is completed. But, we do
2566 			 * it for IPv6 also here so that in future if
2567 			 * we have external resolvers, it will work without
2568 			 * any change.
2569 			 */
2570 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2571 			if (ipif != NULL) {
2572 				ipif_refhold_locked(ipif);
2573 				mutex_exit(&ill->ill_lock);
2574 				break;
2575 			}
2576 			mutex_exit(&ill->ill_lock);
2577 		}
2578 		rw_exit(&ipst->ips_ill_g_lock);
2579 		if (ipif == NULL ||
2580 		    (ipif->ipif_isv6 &&
2581 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2582 		    &ipif->ipif_v6src_addr)) ||
2583 		    (!ipif->ipif_isv6 &&
2584 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2585 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2586 
2587 			if (ipif != NULL)
2588 				ipif_refrele(ipif);
2589 			ire->ire_ipif = NULL;
2590 			ire_delete(ire);
2591 			*irep = NULL;
2592 			return (EINVAL);
2593 		}
2594 
2595 
2596 		ASSERT(ill != NULL);
2597 		/*
2598 		 * If this group was dismantled while this packets was
2599 		 * queued in ARP, don't add it here.
2600 		 */
2601 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
2602 			/* We don't want ire_inactive bump stats for this */
2603 			ipif_refrele(ipif);
2604 			ire->ire_ipif = NULL;
2605 			ire_delete(ire);
2606 			*irep = NULL;
2607 			return (EINVAL);
2608 		}
2609 
2610 		/*
2611 		 * Since we didn't attach label security attributes to the
2612 		 * ire for the resolver case, we need to add it now. (only
2613 		 * for v4 resolver and v6 xresolv case).
2614 		 */
2615 		if (is_system_labeled() && ire_is_mblk) {
2616 			if (ire->ire_ipversion == IPV4_VERSION) {
2617 				ga.ga_af = AF_INET;
2618 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2619 				    INADDR_ANY ? ire->ire_gateway_addr :
2620 				    ire->ire_addr, &ga.ga_addr);
2621 			} else {
2622 				ga.ga_af = AF_INET6;
2623 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2624 				    &ire->ire_gateway_addr_v6) ?
2625 				    ire->ire_addr_v6 :
2626 				    ire->ire_gateway_addr_v6;
2627 			}
2628 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
2629 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
2630 			    NULL, gcgrp);
2631 			if (error != 0) {
2632 				if (gcgrp != NULL) {
2633 					GCGRP_REFRELE(gcgrp);
2634 					gcgrp = NULL;
2635 				}
2636 				ipif_refrele(ipif);
2637 				ire->ire_ipif = NULL;
2638 				ire_delete(ire);
2639 				*irep = NULL;
2640 				return (error);
2641 			}
2642 		}
2643 	}
2644 
2645 	/*
2646 	 * In case ire was changed
2647 	 */
2648 	*irep = ire;
2649 	if (ire->ire_ipversion == IPV6_VERSION)
2650 		error = ire_add_v6(irep, q, mp, func);
2651 	else
2652 		error = ire_add_v4(irep, q, mp, func, allow_unresolved);
2653 	if (ipif != NULL)
2654 		ipif_refrele(ipif);
2655 	return (error);
2656 }
2657 
2658 /*
2659  * Add an initialized IRE to an appropriate table based on ire_type.
2660  *
2661  * The forward table contains IRE_PREFIX/IRE_HOST and
2662  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
2663  *
2664  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
2665  * and IRE_CACHE.
2666  *
2667  * NOTE : This function is called as writer though not required
2668  * by this function.
2669  */
2670 static int
2671 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
2672     boolean_t allow_unresolved)
2673 {
2674 	ire_t	*ire1;
2675 	irb_t	*irb_ptr;
2676 	ire_t	**irep;
2677 	int	flags;
2678 	ire_t	*pire = NULL;
2679 	ill_t	*stq_ill;
2680 	ire_t	*ire = *ire_p;
2681 	int	error;
2682 	boolean_t need_refrele = B_FALSE;
2683 	nce_t	*nce;
2684 	ip_stack_t	*ipst = ire->ire_ipst;
2685 
2686 	if (ire->ire_ipif != NULL)
2687 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
2688 	if (ire->ire_stq != NULL)
2689 		ASSERT(!MUTEX_HELD(
2690 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
2691 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
2692 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
2693 
2694 	/* Find the appropriate list head. */
2695 	switch (ire->ire_type) {
2696 	case IRE_HOST:
2697 		ire->ire_mask = IP_HOST_MASK;
2698 		ire->ire_masklen = IP_ABITS;
2699 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2700 			ire->ire_src_addr = 0;
2701 		break;
2702 	case IRE_CACHE:
2703 	case IRE_BROADCAST:
2704 	case IRE_LOCAL:
2705 	case IRE_LOOPBACK:
2706 		ire->ire_mask = IP_HOST_MASK;
2707 		ire->ire_masklen = IP_ABITS;
2708 		break;
2709 	case IRE_PREFIX:
2710 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2711 			ire->ire_src_addr = 0;
2712 		break;
2713 	case IRE_DEFAULT:
2714 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2715 			ire->ire_src_addr = 0;
2716 		break;
2717 	case IRE_IF_RESOLVER:
2718 	case IRE_IF_NORESOLVER:
2719 		break;
2720 	default:
2721 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
2722 		    (void *)ire, ire->ire_type));
2723 		ire_delete(ire);
2724 		*ire_p = NULL;
2725 		return (EINVAL);
2726 	}
2727 
2728 	/* Make sure the address is properly masked. */
2729 	ire->ire_addr &= ire->ire_mask;
2730 
2731 	/*
2732 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
2733 	 * of the interface route while adding an IRE_CACHE for an on-link
2734 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
2735 	 * go to ARP and return. We can't do a REFHOLD on the
2736 	 * associated interface ire for fear of ARP freeing the message.
2737 	 * Here we look up the interface ire in the forwarding table and
2738 	 * make sure that the interface route has not been deleted.
2739 	 */
2740 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
2741 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
2742 
2743 		ASSERT(ire->ire_max_fragp == NULL);
2744 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
2745 			/*
2746 			 * The ihandle that we used in ip_newroute_multi
2747 			 * comes from the interface route corresponding
2748 			 * to ire_ipif. Lookup here to see if it exists
2749 			 * still.
2750 			 * If the ire has a source address assigned using
2751 			 * RTF_SETSRC, ire_ipif is the logical interface holding
2752 			 * this source address, so we can't use it to check for
2753 			 * the existence of the interface route. Instead we rely
2754 			 * on the brute force ihandle search in
2755 			 * ire_ihandle_lookup_onlink() below.
2756 			 */
2757 			pire = ipif_to_ire(ire->ire_ipif);
2758 			if (pire == NULL) {
2759 				ire_delete(ire);
2760 				*ire_p = NULL;
2761 				return (EINVAL);
2762 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
2763 				ire_refrele(pire);
2764 				ire_delete(ire);
2765 				*ire_p = NULL;
2766 				return (EINVAL);
2767 			}
2768 		} else {
2769 			pire = ire_ihandle_lookup_onlink(ire);
2770 			if (pire == NULL) {
2771 				ire_delete(ire);
2772 				*ire_p = NULL;
2773 				return (EINVAL);
2774 			}
2775 		}
2776 		/* Prevent pire from getting deleted */
2777 		IRB_REFHOLD(pire->ire_bucket);
2778 		/* Has it been removed already ? */
2779 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
2780 			IRB_REFRELE(pire->ire_bucket);
2781 			ire_refrele(pire);
2782 			ire_delete(ire);
2783 			*ire_p = NULL;
2784 			return (EINVAL);
2785 		}
2786 	} else {
2787 		ASSERT(ire->ire_max_fragp != NULL);
2788 	}
2789 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
2790 
2791 	if (ire->ire_ipif != NULL) {
2792 		/*
2793 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
2794 		 * for historic reasons and to maintain symmetry with
2795 		 * IPv6 code path. Historically this was used by
2796 		 * multicast code to create multiple IRE_CACHES on
2797 		 * a single ill with different ipifs. This was used
2798 		 * so that multicast packets leaving the node had the
2799 		 * right source address. This is no longer needed as
2800 		 * ip_wput initializes the address correctly.
2801 		 */
2802 		flags |= MATCH_IRE_IPIF;
2803 		/*
2804 		 * If we are creating hidden ires, make sure we search on
2805 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
2806 		 * while we are searching for duplicates below. Otherwise we
2807 		 * could potentially find an IRE on some other interface
2808 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
2809 		 * shouldn't do this as this will lead to an infinite loop
2810 		 * (if we get to ip_wput again) eventually we need an hidden
2811 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
2812 		 * done below.
2813 		 */
2814 		if (ire->ire_type == IRE_CACHE &&
2815 		    (ire->ire_marks & IRE_MARK_HIDDEN))
2816 			flags |= (MATCH_IRE_MARK_HIDDEN);
2817 	}
2818 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
2819 		irb_ptr = ire_get_bucket(ire);
2820 		need_refrele = B_TRUE;
2821 		if (irb_ptr == NULL) {
2822 			/*
2823 			 * This assumes that the ire has not added
2824 			 * a reference to the ipif.
2825 			 */
2826 			ire->ire_ipif = NULL;
2827 			ire_delete(ire);
2828 			if (pire != NULL) {
2829 				IRB_REFRELE(pire->ire_bucket);
2830 				ire_refrele(pire);
2831 			}
2832 			*ire_p = NULL;
2833 			return (EINVAL);
2834 		}
2835 	} else {
2836 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
2837 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
2838 	}
2839 
2840 	/*
2841 	 * Start the atomic add of the ire. Grab the ill locks,
2842 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
2843 	 *
2844 	 * If ipif or ill is changing ire_atomic_start() may queue the
2845 	 * request and return EINPROGRESS.
2846 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
2847 	 */
2848 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
2849 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
2850 	if (error != 0) {
2851 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2852 		/*
2853 		 * We don't know whether it is a valid ipif or not.
2854 		 * So, set it to NULL. This assumes that the ire has not added
2855 		 * a reference to the ipif.
2856 		 */
2857 		ire->ire_ipif = NULL;
2858 		ire_delete(ire);
2859 		if (pire != NULL) {
2860 			IRB_REFRELE(pire->ire_bucket);
2861 			ire_refrele(pire);
2862 		}
2863 		*ire_p = NULL;
2864 		if (need_refrele)
2865 			IRB_REFRELE(irb_ptr);
2866 		return (error);
2867 	}
2868 	/*
2869 	 * To avoid creating ires having stale values for the ire_max_frag
2870 	 * we get the latest value atomically here. For more details
2871 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
2872 	 * in ip_rput_dlpi_writer
2873 	 */
2874 	if (ire->ire_max_fragp == NULL) {
2875 		if (CLASSD(ire->ire_addr))
2876 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
2877 		else
2878 			ire->ire_max_frag = pire->ire_max_frag;
2879 	} else {
2880 		uint_t	max_frag;
2881 
2882 		max_frag = *ire->ire_max_fragp;
2883 		ire->ire_max_fragp = NULL;
2884 		ire->ire_max_frag = max_frag;
2885 	}
2886 	/*
2887 	 * Atomically check for duplicate and insert in the table.
2888 	 */
2889 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2890 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
2891 			continue;
2892 		if (ire->ire_ipif != NULL) {
2893 			/*
2894 			 * We do MATCH_IRE_ILL implicitly here for IREs
2895 			 * with a non-null ire_ipif, including IRE_CACHEs.
2896 			 * As ire_ipif and ire_stq could point to two
2897 			 * different ills, we can't pass just ire_ipif to
2898 			 * ire_match_args and get a match on both ills.
2899 			 * This is just needed for duplicate checks here and
2900 			 * so we don't add an extra argument to
2901 			 * ire_match_args for this. Do it locally.
2902 			 *
2903 			 * NOTE : Currently there is no part of the code
2904 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
2905 			 * match for IRE_CACHEs. Thus we don't want to
2906 			 * extend the arguments to ire_match_args.
2907 			 */
2908 			if (ire1->ire_stq != ire->ire_stq)
2909 				continue;
2910 			/*
2911 			 * Multiroute IRE_CACHEs for a given destination can
2912 			 * have the same ire_ipif, typically if their source
2913 			 * address is forced using RTF_SETSRC, and the same
2914 			 * send-to queue. We differentiate them using the parent
2915 			 * handle.
2916 			 */
2917 			if (ire->ire_type == IRE_CACHE &&
2918 			    (ire1->ire_flags & RTF_MULTIRT) &&
2919 			    (ire->ire_flags & RTF_MULTIRT) &&
2920 			    (ire1->ire_phandle != ire->ire_phandle))
2921 				continue;
2922 		}
2923 		if (ire1->ire_zoneid != ire->ire_zoneid)
2924 			continue;
2925 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
2926 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
2927 		    ire->ire_zoneid, 0, NULL, flags)) {
2928 			/*
2929 			 * Return the old ire after doing a REFHOLD.
2930 			 * As most of the callers continue to use the IRE
2931 			 * after adding, we return a held ire. This will
2932 			 * avoid a lookup in the caller again. If the callers
2933 			 * don't want to use it, they need to do a REFRELE.
2934 			 */
2935 			ip1dbg(("found dup ire existing %p new %p",
2936 			    (void *)ire1, (void *)ire));
2937 			IRE_REFHOLD(ire1);
2938 			ire_atomic_end(irb_ptr, ire);
2939 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2940 			ire_delete(ire);
2941 			if (pire != NULL) {
2942 				/*
2943 				 * Assert that it is not removed from the
2944 				 * list yet.
2945 				 */
2946 				ASSERT(pire->ire_ptpn != NULL);
2947 				IRB_REFRELE(pire->ire_bucket);
2948 				ire_refrele(pire);
2949 			}
2950 			*ire_p = ire1;
2951 			if (need_refrele)
2952 				IRB_REFRELE(irb_ptr);
2953 			return (0);
2954 		}
2955 	}
2956 	if (ire->ire_type & IRE_CACHE) {
2957 		ASSERT(ire->ire_stq != NULL);
2958 		nce = ndp_lookup_v4(ire_to_ill(ire),
2959 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
2960 		    &ire->ire_gateway_addr : &ire->ire_addr),
2961 		    B_TRUE);
2962 		if (nce != NULL)
2963 			mutex_enter(&nce->nce_lock);
2964 		/*
2965 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
2966 		 * and the caller has prohibited the addition of incomplete
2967 		 * ire's, we fail the add. Note that nce_state could be
2968 		 * something other than ND_REACHABLE if the nce had
2969 		 * just expired and the ire_create preceding the
2970 		 * ire_add added a new ND_INITIAL nce.
2971 		 */
2972 		if ((nce == NULL) ||
2973 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
2974 		    (!allow_unresolved &&
2975 		    (nce->nce_state != ND_REACHABLE))) {
2976 			if (nce != NULL) {
2977 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
2978 				mutex_exit(&nce->nce_lock);
2979 			}
2980 			ire_atomic_end(irb_ptr, ire);
2981 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2982 			if (nce != NULL)
2983 				NCE_REFRELE(nce);
2984 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
2985 			ire_delete(ire);
2986 			if (pire != NULL) {
2987 				IRB_REFRELE(pire->ire_bucket);
2988 				ire_refrele(pire);
2989 			}
2990 			*ire_p = NULL;
2991 			if (need_refrele)
2992 				IRB_REFRELE(irb_ptr);
2993 			return (EINVAL);
2994 		} else {
2995 			ire->ire_nce = nce;
2996 			mutex_exit(&nce->nce_lock);
2997 			/*
2998 			 * We are associating this nce to the ire, so
2999 			 * change the nce ref taken in ndp_lookup_v4() from
3000 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3001 			 */
3002 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3003 		}
3004 	}
3005 	/*
3006 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3007 	 * grouping identical addresses together on the hash chain. We also
3008 	 * don't want to send multiple copies out if there are two ills part
3009 	 * of the same group. Thus we group the ires with same addr and same
3010 	 * ill group together so that ip_wput_ire can easily skip all the
3011 	 * ires with same addr and same group after sending the first copy.
3012 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3013 	 * interested in such groupings only for broadcasts.
3014 	 *
3015 	 * NOTE : If the interfaces are brought up first and then grouped,
3016 	 * illgrp_insert will handle it. We come here when the interfaces
3017 	 * are already in group and we are bringing them UP.
3018 	 *
3019 	 * Find the first entry that matches ire_addr. *irep will be null
3020 	 * if no match.
3021 	 *
3022 	 * Note: the loopback and non-loopback broadcast entries for an
3023 	 * interface MUST be added before any MULTIRT entries.
3024 	 */
3025 	irep = (ire_t **)irb_ptr;
3026 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3027 		irep = &ire1->ire_next;
3028 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3029 		/*
3030 		 * We found some ire (i.e *irep) with a matching addr. We
3031 		 * want to group ires with same addr and same ill group
3032 		 * together.
3033 		 *
3034 		 * First get to the entry that matches our address and
3035 		 * ill group i.e stop as soon as we find the first ire
3036 		 * matching the ill group and address. If there is only
3037 		 * an address match, we should walk and look for some
3038 		 * group match. These are some of the possible scenarios :
3039 		 *
3040 		 * 1) There are no groups at all i.e all ire's ill_group
3041 		 *    are NULL. In that case we will essentially group
3042 		 *    all the ires with the same addr together. Same as
3043 		 *    the "else" block of this "if".
3044 		 *
3045 		 * 2) There are some groups and this ire's ill_group is
3046 		 *    NULL. In this case, we will first find the group
3047 		 *    that matches the address and a NULL group. Then
3048 		 *    we will insert the ire at the end of that group.
3049 		 *
3050 		 * 3) There are some groups and this ires's ill_group is
3051 		 *    non-NULL. In this case we will first find the group
3052 		 *    that matches the address and the ill_group. Then
3053 		 *    we will insert the ire at the end of that group.
3054 		 */
3055 		for (;;) {
3056 			ire1 = *irep;
3057 			if ((ire1->ire_next == NULL) ||
3058 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3059 			    (ire1->ire_type != IRE_BROADCAST) ||
3060 			    (ire1->ire_flags & RTF_MULTIRT) ||
3061 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3062 			    ire->ire_ipif->ipif_ill->ill_group))
3063 				break;
3064 			irep = &ire1->ire_next;
3065 		}
3066 		ASSERT(*irep != NULL);
3067 		/*
3068 		 * The ire will be added before *irep, so
3069 		 * if irep is a MULTIRT ire, just break to
3070 		 * ire insertion code.
3071 		 */
3072 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3073 			goto insert_ire;
3074 
3075 		irep = &((*irep)->ire_next);
3076 
3077 		/*
3078 		 * Either we have hit the end of the list or the address
3079 		 * did not match or the group *matched*. If we found
3080 		 * a match on the group, skip to the end of the group.
3081 		 */
3082 		while (*irep != NULL) {
3083 			ire1 = *irep;
3084 			if ((ire1->ire_addr != ire->ire_addr) ||
3085 			    (ire1->ire_type != IRE_BROADCAST) ||
3086 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3087 			    ire->ire_ipif->ipif_ill->ill_group))
3088 				break;
3089 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3090 			    ire1->ire_ipif == ire->ire_ipif) {
3091 				irep = &ire1->ire_next;
3092 				break;
3093 			}
3094 			irep = &ire1->ire_next;
3095 		}
3096 	} else if (*irep != NULL) {
3097 		/*
3098 		 * Find the last ire which matches ire_addr.
3099 		 * Needed to do tail insertion among entries with the same
3100 		 * ire_addr.
3101 		 */
3102 		while (ire->ire_addr == ire1->ire_addr) {
3103 			irep = &ire1->ire_next;
3104 			ire1 = *irep;
3105 			if (ire1 == NULL)
3106 				break;
3107 		}
3108 	}
3109 
3110 insert_ire:
3111 	/* Insert at *irep */
3112 	ire1 = *irep;
3113 	if (ire1 != NULL)
3114 		ire1->ire_ptpn = &ire->ire_next;
3115 	ire->ire_next = ire1;
3116 	/* Link the new one in. */
3117 	ire->ire_ptpn = irep;
3118 
3119 	/*
3120 	 * ire_walk routines de-reference ire_next without holding
3121 	 * a lock. Before we point to the new ire, we want to make
3122 	 * sure the store that sets the ire_next of the new ire
3123 	 * reaches global visibility, so that ire_walk routines
3124 	 * don't see a truncated list of ires i.e if the ire_next
3125 	 * of the new ire gets set after we do "*irep = ire" due
3126 	 * to re-ordering, the ire_walk thread will see a NULL
3127 	 * once it accesses the ire_next of the new ire.
3128 	 * membar_producer() makes sure that the following store
3129 	 * happens *after* all of the above stores.
3130 	 */
3131 	membar_producer();
3132 	*irep = ire;
3133 	ire->ire_bucket = irb_ptr;
3134 	/*
3135 	 * We return a bumped up IRE above. Keep it symmetrical
3136 	 * so that the callers will always have to release. This
3137 	 * helps the callers of this function because they continue
3138 	 * to use the IRE after adding and hence they don't have to
3139 	 * lookup again after we return the IRE.
3140 	 *
3141 	 * NOTE : We don't have to use atomics as this is appearing
3142 	 * in the list for the first time and no one else can bump
3143 	 * up the reference count on this yet.
3144 	 */
3145 	IRE_REFHOLD_LOCKED(ire);
3146 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3147 
3148 	irb_ptr->irb_ire_cnt++;
3149 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3150 		irb_ptr->irb_nire++;
3151 
3152 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3153 		irb_ptr->irb_tmp_ire_cnt++;
3154 
3155 	if (ire->ire_ipif != NULL) {
3156 		DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif,
3157 		    (char *), "ire", (void *), ire);
3158 		ire->ire_ipif->ipif_ire_cnt++;
3159 		if (ire->ire_stq != NULL) {
3160 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3161 			DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill,
3162 			    (char *), "ire", (void *), ire);
3163 			stq_ill->ill_ire_cnt++;
3164 		}
3165 	} else {
3166 		ASSERT(ire->ire_stq == NULL);
3167 	}
3168 
3169 	ire_atomic_end(irb_ptr, ire);
3170 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3171 
3172 	if (pire != NULL) {
3173 		/* Assert that it is not removed from the list yet */
3174 		ASSERT(pire->ire_ptpn != NULL);
3175 		IRB_REFRELE(pire->ire_bucket);
3176 		ire_refrele(pire);
3177 	}
3178 
3179 	if (ire->ire_type != IRE_CACHE) {
3180 		/*
3181 		 * For ire's with host mask see if there is an entry
3182 		 * in the cache. If there is one flush the whole cache as
3183 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3184 		 * If no entry is found than there is no need to flush the
3185 		 * cache.
3186 		 */
3187 		if (ire->ire_mask == IP_HOST_MASK) {
3188 			ire_t *lire;
3189 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3190 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3191 			if (lire != NULL) {
3192 				ire_refrele(lire);
3193 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3194 			}
3195 		} else {
3196 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3197 		}
3198 	}
3199 	/*
3200 	 * We had to delay the fast path probe until the ire is inserted
3201 	 * in the list. Otherwise the fast path ack won't find the ire in
3202 	 * the table.
3203 	 */
3204 	if (ire->ire_type == IRE_CACHE ||
3205 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3206 		ASSERT(ire->ire_nce != NULL);
3207 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3208 			nce_fastpath(ire->ire_nce);
3209 	}
3210 	if (ire->ire_ipif != NULL)
3211 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3212 	*ire_p = ire;
3213 	if (need_refrele) {
3214 		IRB_REFRELE(irb_ptr);
3215 	}
3216 	return (0);
3217 }
3218 
3219 /*
3220  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3221  * do the final cleanup for this ire.
3222  */
3223 void
3224 ire_cleanup(ire_t *ire)
3225 {
3226 	ire_t *ire_next;
3227 	ip_stack_t *ipst = ire->ire_ipst;
3228 
3229 	ASSERT(ire != NULL);
3230 
3231 	while (ire != NULL) {
3232 		ire_next = ire->ire_next;
3233 		if (ire->ire_ipversion == IPV4_VERSION) {
3234 			ire_delete_v4(ire);
3235 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3236 			    ire_stats_deleted);
3237 		} else {
3238 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3239 			ire_delete_v6(ire);
3240 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3241 			    ire_stats_deleted);
3242 		}
3243 		/*
3244 		 * Now it's really out of the list. Before doing the
3245 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3246 		 * so.
3247 		 */
3248 		ire->ire_next = NULL;
3249 		IRE_REFRELE_NOTR(ire);
3250 		ire = ire_next;
3251 	}
3252 }
3253 
3254 /*
3255  * IRB_REFRELE is the only caller of the function. It calls to unlink
3256  * all the CONDEMNED ires from this bucket.
3257  */
3258 ire_t *
3259 ire_unlink(irb_t *irb)
3260 {
3261 	ire_t *ire;
3262 	ire_t *ire1;
3263 	ire_t **ptpn;
3264 	ire_t *ire_list = NULL;
3265 
3266 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3267 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3268 	    (irb->irb_refcnt == 0));
3269 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3270 	ASSERT(irb->irb_ire != NULL);
3271 
3272 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3273 		ip_stack_t	*ipst = ire->ire_ipst;
3274 
3275 		ire1 = ire->ire_next;
3276 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3277 			ptpn = ire->ire_ptpn;
3278 			ire1 = ire->ire_next;
3279 			if (ire1)
3280 				ire1->ire_ptpn = ptpn;
3281 			*ptpn = ire1;
3282 			ire->ire_ptpn = NULL;
3283 			ire->ire_next = NULL;
3284 			if (ire->ire_type == IRE_DEFAULT) {
3285 				/*
3286 				 * IRE is out of the list. We need to adjust
3287 				 * the accounting before the caller drops
3288 				 * the lock.
3289 				 */
3290 				if (ire->ire_ipversion == IPV6_VERSION) {
3291 					ASSERT(ipst->
3292 					    ips_ipv6_ire_default_count !=
3293 					    0);
3294 					ipst->ips_ipv6_ire_default_count--;
3295 				}
3296 			}
3297 			/*
3298 			 * We need to call ire_delete_v4 or ire_delete_v6
3299 			 * to clean up the cache or the redirects pointing at
3300 			 * the default gateway. We need to drop the lock
3301 			 * as ire_flush_cache/ire_delete_host_redircts require
3302 			 * so. But we can't drop the lock, as ire_unlink needs
3303 			 * to atomically remove the ires from the list.
3304 			 * So, create a temporary list of CONDEMNED ires
3305 			 * for doing ire_delete_v4/ire_delete_v6 operations
3306 			 * later on.
3307 			 */
3308 			ire->ire_next = ire_list;
3309 			ire_list = ire;
3310 		}
3311 	}
3312 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3313 	return (ire_list);
3314 }
3315 
3316 /*
3317  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3318  * ARP message on any of its interface queue, it scans the nce table and
3319  * deletes and calls ndp_delete() for the appropriate nce. This action
3320  * also deletes all the neighbor/ire cache entries for that address.
3321  * This function is called from ip_arp_news in ip.c and also for
3322  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3323  * true if it finds a nce entry which is used by ip_arp_news to determine if
3324  * it needs to do an ire_walk_v4. The return value is also  used for the
3325  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3326  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3327  * ip_if->ipif_ill also needs to be matched.
3328  */
3329 boolean_t
3330 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3331 {
3332 	ill_t	*ill;
3333 	nce_t	*nce;
3334 
3335 	ill = (ipif ? ipif->ipif_ill : NULL);
3336 
3337 	if (ill != NULL) {
3338 		/*
3339 		 * clean up the nce (and any relevant ire's) that matches
3340 		 * on addr and ill.
3341 		 */
3342 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3343 		if (nce != NULL) {
3344 			ndp_delete(nce);
3345 			return (B_TRUE);
3346 		}
3347 	} else {
3348 		/*
3349 		 * ill is wildcard. clean up all nce's and
3350 		 * ire's that match on addr
3351 		 */
3352 		nce_clookup_t cl;
3353 
3354 		cl.ncecl_addr = addr;
3355 		cl.ncecl_found = B_FALSE;
3356 
3357 		ndp_walk_common(ipst->ips_ndp4, NULL,
3358 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3359 
3360 		/*
3361 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3362 		 *  we found a matching nce.
3363 		 */
3364 		return (cl.ncecl_found);
3365 	}
3366 	return (B_FALSE);
3367 
3368 }
3369 
3370 /* Delete the supplied nce if its nce_addr matches the supplied address */
3371 static void
3372 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3373 {
3374 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3375 	ipaddr_t nce_addr;
3376 
3377 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3378 	if (nce_addr == cl->ncecl_addr) {
3379 		cl->ncecl_found = B_TRUE;
3380 		/* clean up the nce (and any relevant ire's) */
3381 		ndp_delete(nce);
3382 	}
3383 }
3384 
3385 /*
3386  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3387  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3388  * is deleted and freed.
3389  */
3390 boolean_t
3391 irb_inactive(irb_t *irb)
3392 {
3393 	struct rt_entry *rt;
3394 	struct radix_node *rn;
3395 	ip_stack_t *ipst = irb->irb_ipst;
3396 
3397 	ASSERT(irb->irb_ipst != NULL);
3398 
3399 	rt = IRB2RT(irb);
3400 	rn = (struct radix_node *)rt;
3401 
3402 	/* first remove it from the radix tree. */
3403 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3404 	rw_enter(&irb->irb_lock, RW_WRITER);
3405 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3406 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3407 		    ipst->ips_ip_ftable);
3408 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3409 		ASSERT((void *)rn == (void *)rt);
3410 		Free(rt, rt_entry_cache);
3411 		/* irb_lock is freed */
3412 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3413 		return (B_TRUE);
3414 	}
3415 	rw_exit(&irb->irb_lock);
3416 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3417 	return (B_FALSE);
3418 }
3419 
3420 /*
3421  * Delete the specified IRE.
3422  */
3423 void
3424 ire_delete(ire_t *ire)
3425 {
3426 	ire_t	*ire1;
3427 	ire_t	**ptpn;
3428 	irb_t *irb;
3429 	ip_stack_t	*ipst = ire->ire_ipst;
3430 
3431 	if ((irb = ire->ire_bucket) == NULL) {
3432 		/*
3433 		 * It was never inserted in the list. Should call REFRELE
3434 		 * to free this IRE.
3435 		 */
3436 		IRE_REFRELE_NOTR(ire);
3437 		return;
3438 	}
3439 
3440 	rw_enter(&irb->irb_lock, RW_WRITER);
3441 
3442 	if (irb->irb_rr_origin == ire) {
3443 		irb->irb_rr_origin = NULL;
3444 	}
3445 
3446 	/*
3447 	 * In case of V4 we might still be waiting for fastpath ack.
3448 	 */
3449 	if (ire->ire_ipversion == IPV4_VERSION &&
3450 	    (ire->ire_type == IRE_CACHE ||
3451 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3452 		ASSERT(ire->ire_nce != NULL);
3453 		nce_fastpath_list_delete(ire->ire_nce);
3454 	}
3455 
3456 	if (ire->ire_ptpn == NULL) {
3457 		/*
3458 		 * Some other thread has removed us from the list.
3459 		 * It should have done the REFRELE for us.
3460 		 */
3461 		rw_exit(&irb->irb_lock);
3462 		return;
3463 	}
3464 
3465 	if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3466 		irb->irb_ire_cnt--;
3467 		ire->ire_marks |= IRE_MARK_CONDEMNED;
3468 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
3469 			irb->irb_tmp_ire_cnt--;
3470 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
3471 		}
3472 	}
3473 
3474 	if (irb->irb_refcnt != 0) {
3475 		/*
3476 		 * The last thread to leave this bucket will
3477 		 * delete this ire.
3478 		 */
3479 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3480 		rw_exit(&irb->irb_lock);
3481 		return;
3482 	}
3483 
3484 	/*
3485 	 * Normally to delete an ire, we walk the bucket. While we
3486 	 * walk the bucket, we normally bump up irb_refcnt and hence
3487 	 * we return from above where we mark CONDEMNED and the ire
3488 	 * gets deleted from ire_unlink. This case is where somebody
3489 	 * knows the ire e.g by doing a lookup, and wants to delete the
3490 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3491 	 * the bucket.
3492 	 */
3493 	ptpn = ire->ire_ptpn;
3494 	ire1 = ire->ire_next;
3495 	if (ire1 != NULL)
3496 		ire1->ire_ptpn = ptpn;
3497 	ASSERT(ptpn != NULL);
3498 	*ptpn = ire1;
3499 	ire->ire_ptpn = NULL;
3500 	ire->ire_next = NULL;
3501 	if (ire->ire_ipversion == IPV6_VERSION) {
3502 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3503 	} else {
3504 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3505 	}
3506 	/*
3507 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3508 	 * it should still use the cached ire or not.
3509 	 */
3510 	if (ire->ire_type == IRE_DEFAULT) {
3511 		/*
3512 		 * IRE is out of the list. We need to adjust the
3513 		 * accounting before we drop the lock.
3514 		 */
3515 		if (ire->ire_ipversion == IPV6_VERSION) {
3516 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3517 			ipst->ips_ipv6_ire_default_count--;
3518 		}
3519 	}
3520 	rw_exit(&irb->irb_lock);
3521 
3522 	if (ire->ire_ipversion == IPV6_VERSION) {
3523 		ire_delete_v6(ire);
3524 	} else {
3525 		ire_delete_v4(ire);
3526 	}
3527 	/*
3528 	 * We removed it from the list. Decrement the
3529 	 * reference count.
3530 	 */
3531 	IRE_REFRELE_NOTR(ire);
3532 }
3533 
3534 /*
3535  * Delete the specified IRE.
3536  * All calls should use ire_delete().
3537  * Sometimes called as writer though not required by this function.
3538  *
3539  * NOTE : This function is called only if the ire was added
3540  * in the list.
3541  */
3542 static void
3543 ire_delete_v4(ire_t *ire)
3544 {
3545 	ip_stack_t	*ipst = ire->ire_ipst;
3546 
3547 	ASSERT(ire->ire_refcnt >= 1);
3548 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3549 
3550 	if (ire->ire_type != IRE_CACHE)
3551 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3552 	if (ire->ire_type == IRE_DEFAULT) {
3553 		/*
3554 		 * when a default gateway is going away
3555 		 * delete all the host redirects pointing at that
3556 		 * gateway.
3557 		 */
3558 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3559 	}
3560 }
3561 
3562 /*
3563  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3564  * to free the ire when the reference count goes to zero.
3565  */
3566 void
3567 ire_inactive(ire_t *ire)
3568 {
3569 	nce_t	*nce;
3570 	ill_t	*ill = NULL;
3571 	ill_t	*stq_ill = NULL;
3572 	ipif_t	*ipif;
3573 	boolean_t	need_wakeup = B_FALSE;
3574 	irb_t 	*irb;
3575 	ip_stack_t	*ipst = ire->ire_ipst;
3576 
3577 	ASSERT(ire->ire_refcnt == 0);
3578 	ASSERT(ire->ire_ptpn == NULL);
3579 	ASSERT(ire->ire_next == NULL);
3580 
3581 	if (ire->ire_gw_secattr != NULL) {
3582 		ire_gw_secattr_free(ire->ire_gw_secattr);
3583 		ire->ire_gw_secattr = NULL;
3584 	}
3585 
3586 	if (ire->ire_mp != NULL) {
3587 		ASSERT(ire->ire_bucket == NULL);
3588 		mutex_destroy(&ire->ire_lock);
3589 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3590 		if (ire->ire_nce != NULL)
3591 			NCE_REFRELE_NOTR(ire->ire_nce);
3592 		freeb(ire->ire_mp);
3593 		return;
3594 	}
3595 
3596 	if ((nce = ire->ire_nce) != NULL) {
3597 		NCE_REFRELE_NOTR(nce);
3598 		ire->ire_nce = NULL;
3599 	}
3600 
3601 	if (ire->ire_ipif == NULL)
3602 		goto end;
3603 
3604 	ipif = ire->ire_ipif;
3605 	ill = ipif->ipif_ill;
3606 
3607 	if (ire->ire_bucket == NULL) {
3608 		/* The ire was never inserted in the table. */
3609 		goto end;
3610 	}
3611 
3612 	/*
3613 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3614 	 * non-null ill_ire_count also goes down by 1.
3615 	 *
3616 	 * The ipif that is associated with an ire is ire->ire_ipif and
3617 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3618 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3619 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
3620 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
3621 	 * different. If this is different from ire->ire_ipif->ipif_ill and
3622 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
3623 	 * ipif_ill_refrele_tail on the stq_ill.
3624 	 */
3625 
3626 	if (ire->ire_stq != NULL)
3627 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3628 
3629 	if (stq_ill == NULL || stq_ill == ill) {
3630 		/* Optimize the most common case */
3631 		mutex_enter(&ill->ill_lock);
3632 		ASSERT(ipif->ipif_ire_cnt != 0);
3633 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3634 		    (char *), "ire", (void *), ire);
3635 		ipif->ipif_ire_cnt--;
3636 		if (IPIF_DOWN_OK(ipif))
3637 			need_wakeup = B_TRUE;
3638 		if (stq_ill != NULL) {
3639 			ASSERT(stq_ill->ill_ire_cnt != 0);
3640 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3641 			    (char *), "ire", (void *), ire);
3642 			stq_ill->ill_ire_cnt--;
3643 			if (ILL_DOWN_OK(stq_ill))
3644 				need_wakeup = B_TRUE;
3645 		}
3646 		if (need_wakeup) {
3647 			/* Drops the ill lock */
3648 			ipif_ill_refrele_tail(ill);
3649 		} else {
3650 			mutex_exit(&ill->ill_lock);
3651 		}
3652 	} else {
3653 		/*
3654 		 * We can't grab all the ill locks at the same time.
3655 		 * It can lead to recursive lock enter in the call to
3656 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
3657 		 * a time.
3658 		 */
3659 		mutex_enter(&ill->ill_lock);
3660 		ASSERT(ipif->ipif_ire_cnt != 0);
3661 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3662 		    (char *), "ire", (void *), ire);
3663 		ipif->ipif_ire_cnt--;
3664 		if (IPIF_DOWN_OK(ipif)) {
3665 			/* Drops the lock */
3666 			ipif_ill_refrele_tail(ill);
3667 		} else {
3668 			mutex_exit(&ill->ill_lock);
3669 		}
3670 		if (stq_ill != NULL) {
3671 			mutex_enter(&stq_ill->ill_lock);
3672 			ASSERT(stq_ill->ill_ire_cnt != 0);
3673 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3674 			    (char *), "ire", (void *), ire);
3675 			stq_ill->ill_ire_cnt--;
3676 			if (ILL_DOWN_OK(stq_ill)) {
3677 				/* Drops the ill lock */
3678 				ipif_ill_refrele_tail(stq_ill);
3679 			} else {
3680 				mutex_exit(&stq_ill->ill_lock);
3681 			}
3682 		}
3683 	}
3684 end:
3685 	/* This should be true for both V4 and V6 */
3686 
3687 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
3688 	    (ire->ire_ipversion == IPV4_VERSION) &&
3689 	    ((irb = ire->ire_bucket) != NULL)) {
3690 		rw_enter(&irb->irb_lock, RW_WRITER);
3691 		irb->irb_nire--;
3692 		/*
3693 		 * Instead of examining the conditions for freeing
3694 		 * the radix node here, we do it by calling
3695 		 * IRB_REFRELE which is a single point in the code
3696 		 * that embeds that logic. Bump up the refcnt to
3697 		 * be able to call IRB_REFRELE
3698 		 */
3699 		IRB_REFHOLD_LOCKED(irb);
3700 		rw_exit(&irb->irb_lock);
3701 		IRB_REFRELE(irb);
3702 	}
3703 	ire->ire_ipif = NULL;
3704 
3705 #ifdef DEBUG
3706 	ire_trace_cleanup(ire);
3707 #endif
3708 	mutex_destroy(&ire->ire_lock);
3709 	if (ire->ire_ipversion == IPV6_VERSION) {
3710 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
3711 	} else {
3712 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3713 	}
3714 	ASSERT(ire->ire_mp == NULL);
3715 	/* Has been allocated out of the cache */
3716 	kmem_cache_free(ire_cache, ire);
3717 }
3718 
3719 /*
3720  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
3721  * entries that have a given gateway address.
3722  */
3723 void
3724 ire_delete_cache_gw(ire_t *ire, char *cp)
3725 {
3726 	ipaddr_t	gw_addr;
3727 
3728 	if (!(ire->ire_type & IRE_CACHE) &&
3729 	    !(ire->ire_flags & RTF_DYNAMIC))
3730 		return;
3731 
3732 	bcopy(cp, &gw_addr, sizeof (gw_addr));
3733 	if (ire->ire_gateway_addr == gw_addr) {
3734 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
3735 		    (int)ntohl(ire->ire_addr), ire->ire_type,
3736 		    (int)ntohl(ire->ire_gateway_addr)));
3737 		ire_delete(ire);
3738 	}
3739 }
3740 
3741 /*
3742  * Remove all IRE_CACHE entries that match the ire specified.
3743  *
3744  * The flag argument indicates if the flush request is due to addition
3745  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
3746  *
3747  * This routine takes only the IREs from the forwarding table and flushes
3748  * the corresponding entries from the cache table.
3749  *
3750  * When flushing due to the deletion of an old route, it
3751  * just checks the cache handles (ire_phandle and ire_ihandle) and
3752  * deletes the ones that match.
3753  *
3754  * When flushing due to the creation of a new route, it checks
3755  * if a cache entry's address matches the one in the IRE and
3756  * that the cache entry's parent has a less specific mask than the
3757  * one in IRE. The destination of such a cache entry could be the
3758  * gateway for other cache entries, so we need to flush those as
3759  * well by looking for gateway addresses matching the IRE's address.
3760  */
3761 void
3762 ire_flush_cache_v4(ire_t *ire, int flag)
3763 {
3764 	int i;
3765 	ire_t *cire;
3766 	irb_t *irb;
3767 	ip_stack_t	*ipst = ire->ire_ipst;
3768 
3769 	if (ire->ire_type & IRE_CACHE)
3770 		return;
3771 
3772 	/*
3773 	 * If a default is just created, there is no point
3774 	 * in going through the cache, as there will not be any
3775 	 * cached ires.
3776 	 */
3777 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
3778 		return;
3779 	if (flag == IRE_FLUSH_ADD) {
3780 		/*
3781 		 * This selective flush is due to the addition of
3782 		 * new IRE.
3783 		 */
3784 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3785 			irb = &ipst->ips_ip_cache_table[i];
3786 			if ((cire = irb->irb_ire) == NULL)
3787 				continue;
3788 			IRB_REFHOLD(irb);
3789 			for (cire = irb->irb_ire; cire != NULL;
3790 			    cire = cire->ire_next) {
3791 				if (cire->ire_type != IRE_CACHE)
3792 					continue;
3793 				/*
3794 				 * If 'cire' belongs to the same subnet
3795 				 * as the new ire being added, and 'cire'
3796 				 * is derived from a prefix that is less
3797 				 * specific than the new ire being added,
3798 				 * we need to flush 'cire'; for instance,
3799 				 * when a new interface comes up.
3800 				 */
3801 				if (((cire->ire_addr & ire->ire_mask) ==
3802 				    (ire->ire_addr & ire->ire_mask)) &&
3803 				    (ip_mask_to_plen(cire->ire_cmask) <=
3804 				    ire->ire_masklen)) {
3805 					ire_delete(cire);
3806 					continue;
3807 				}
3808 				/*
3809 				 * This is the case when the ire_gateway_addr
3810 				 * of 'cire' belongs to the same subnet as
3811 				 * the new ire being added.
3812 				 * Flushing such ires is sometimes required to
3813 				 * avoid misrouting: say we have a machine with
3814 				 * two interfaces (I1 and I2), a default router
3815 				 * R on the I1 subnet, and a host route to an
3816 				 * off-link destination D with a gateway G on
3817 				 * the I2 subnet.
3818 				 * Under normal operation, we will have an
3819 				 * on-link cache entry for G and an off-link
3820 				 * cache entry for D with G as ire_gateway_addr,
3821 				 * traffic to D will reach its destination
3822 				 * through gateway G.
3823 				 * If the administrator does 'ifconfig I2 down',
3824 				 * the cache entries for D and G will be
3825 				 * flushed. However, G will now be resolved as
3826 				 * an off-link destination using R (the default
3827 				 * router) as gateway. Then D will also be
3828 				 * resolved as an off-link destination using G
3829 				 * as gateway - this behavior is due to
3830 				 * compatibility reasons, see comment in
3831 				 * ire_ihandle_lookup_offlink(). Traffic to D
3832 				 * will go to the router R and probably won't
3833 				 * reach the destination.
3834 				 * The administrator then does 'ifconfig I2 up'.
3835 				 * Since G is on the I2 subnet, this routine
3836 				 * will flush its cache entry. It must also
3837 				 * flush the cache entry for D, otherwise
3838 				 * traffic will stay misrouted until the IRE
3839 				 * times out.
3840 				 */
3841 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
3842 				    (ire->ire_addr & ire->ire_mask)) {
3843 					ire_delete(cire);
3844 					continue;
3845 				}
3846 			}
3847 			IRB_REFRELE(irb);
3848 		}
3849 	} else {
3850 		/*
3851 		 * delete the cache entries based on
3852 		 * handle in the IRE as this IRE is
3853 		 * being deleted/changed.
3854 		 */
3855 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3856 			irb = &ipst->ips_ip_cache_table[i];
3857 			if ((cire = irb->irb_ire) == NULL)
3858 				continue;
3859 			IRB_REFHOLD(irb);
3860 			for (cire = irb->irb_ire; cire != NULL;
3861 			    cire = cire->ire_next) {
3862 				if (cire->ire_type != IRE_CACHE)
3863 					continue;
3864 				if ((cire->ire_phandle == 0 ||
3865 				    cire->ire_phandle != ire->ire_phandle) &&
3866 				    (cire->ire_ihandle == 0 ||
3867 				    cire->ire_ihandle != ire->ire_ihandle))
3868 					continue;
3869 				ire_delete(cire);
3870 			}
3871 			IRB_REFRELE(irb);
3872 		}
3873 	}
3874 }
3875 
3876 /*
3877  * Matches the arguments passed with the values in the ire.
3878  *
3879  * Note: for match types that match using "ipif" passed in, ipif
3880  * must be checked for non-NULL before calling this routine.
3881  */
3882 boolean_t
3883 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3884     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
3885     const ts_label_t *tsl, int match_flags)
3886 {
3887 	ill_t *ire_ill = NULL, *dst_ill;
3888 	ill_t *ipif_ill = NULL;
3889 	ill_group_t *ire_ill_group = NULL;
3890 	ill_group_t *ipif_ill_group = NULL;
3891 
3892 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3893 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
3894 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
3895 	    (ipif != NULL && !ipif->ipif_isv6));
3896 
3897 	/*
3898 	 * HIDDEN cache entries have to be looked up specifically with
3899 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
3900 	 * when the interface is FAILED or INACTIVE. In that case,
3901 	 * any IRE_CACHES that exists should be marked with
3902 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
3903 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
3904 	 */
3905 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
3906 	    (ire->ire_marks & IRE_MARK_HIDDEN))
3907 		return (B_FALSE);
3908 
3909 	/*
3910 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
3911 	 * is used. In that case the routing table is bypassed and the
3912 	 * packets are sent directly to the specified nexthop. The
3913 	 * IRE_CACHE entry representing this route should be marked
3914 	 * with IRE_MARK_PRIVATE_ADDR.
3915 	 */
3916 
3917 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
3918 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
3919 		return (B_FALSE);
3920 
3921 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
3922 	    ire->ire_zoneid != ALL_ZONES) {
3923 		/*
3924 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
3925 		 * valid and does not match that of ire_zoneid, a failure to
3926 		 * match is reported at this point. Otherwise, since some IREs
3927 		 * that are available in the global zone can be used in local
3928 		 * zones, additional checks need to be performed:
3929 		 *
3930 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
3931 		 *	entries should never be matched in this situation.
3932 		 *
3933 		 *	IRE entries that have an interface associated with them
3934 		 *	should in general not match unless they are an IRE_LOCAL
3935 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
3936 		 *	the caller.  In the case of the former, checking of the
3937 		 *	other fields supplied should take place.
3938 		 *
3939 		 *	In the case where MATCH_IRE_DEFAULT has been set,
3940 		 *	all of the ipif's associated with the IRE's ill are
3941 		 *	checked to see if there is a matching zoneid.  If any
3942 		 *	one ipif has a matching zoneid, this IRE is a
3943 		 *	potential candidate so checking of the other fields
3944 		 *	takes place.
3945 		 *
3946 		 *	In the case where the IRE_INTERFACE has a usable source
3947 		 *	address (indicated by ill_usesrc_ifindex) in the
3948 		 *	correct zone then it's permitted to return this IRE
3949 		 */
3950 		if (match_flags & MATCH_IRE_ZONEONLY)
3951 			return (B_FALSE);
3952 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
3953 			return (B_FALSE);
3954 		/*
3955 		 * Note, IRE_INTERFACE can have the stq as NULL. For
3956 		 * example, if the default multicast route is tied to
3957 		 * the loopback address.
3958 		 */
3959 		if ((ire->ire_type & IRE_INTERFACE) &&
3960 		    (ire->ire_stq != NULL)) {
3961 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
3962 			/*
3963 			 * If there is a usable source address in the
3964 			 * zone, then it's ok to return an
3965 			 * IRE_INTERFACE
3966 			 */
3967 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
3968 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
3969 				    (void *)dst_ill,
3970 				    (ire->ire_addr == (addr & mask))));
3971 			} else {
3972 				ip3dbg(("ire_match_args: src_ipif NULL"
3973 				    " dst_ill %p\n", (void *)dst_ill));
3974 				return (B_FALSE);
3975 			}
3976 		}
3977 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
3978 		    !(ire->ire_type & IRE_INTERFACE)) {
3979 			ipif_t	*tipif;
3980 
3981 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
3982 				return (B_FALSE);
3983 			}
3984 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
3985 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
3986 			    tipif != NULL; tipif = tipif->ipif_next) {
3987 				if (IPIF_CAN_LOOKUP(tipif) &&
3988 				    (tipif->ipif_flags & IPIF_UP) &&
3989 				    (tipif->ipif_zoneid == zoneid ||
3990 				    tipif->ipif_zoneid == ALL_ZONES))
3991 					break;
3992 			}
3993 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
3994 			if (tipif == NULL) {
3995 				return (B_FALSE);
3996 			}
3997 		}
3998 	}
3999 
4000 	/*
4001 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4002 	 * somebody wants to send out on a particular interface which
4003 	 * is given by ire_stq and hence use ire_stq to derive the ill
4004 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4005 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4006 	 * ire_to_ill does the right thing for this.
4007 	 */
4008 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4009 		ire_ill = ire_to_ill(ire);
4010 		if (ire_ill != NULL)
4011 			ire_ill_group = ire_ill->ill_group;
4012 		ipif_ill = ipif->ipif_ill;
4013 		ipif_ill_group = ipif_ill->ill_group;
4014 	}
4015 
4016 	if ((ire->ire_addr == (addr & mask)) &&
4017 	    ((!(match_flags & MATCH_IRE_GW)) ||
4018 	    (ire->ire_gateway_addr == gateway)) &&
4019 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4020 	    (ire->ire_type & type)) &&
4021 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4022 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
4023 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4024 	    (ire->ire_ipif == ipif)) &&
4025 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4026 	    (ire->ire_type != IRE_CACHE ||
4027 	    ire->ire_marks & IRE_MARK_HIDDEN)) &&
4028 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4029 	    (ire->ire_type != IRE_CACHE ||
4030 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4031 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4032 	    (ire_ill == ipif_ill)) &&
4033 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4034 	    (ire->ire_ihandle == ihandle)) &&
4035 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4036 	    (ire->ire_mask == mask)) &&
4037 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4038 	    (ire_ill == ipif_ill) ||
4039 	    (ire_ill_group != NULL &&
4040 	    ire_ill_group == ipif_ill_group)) &&
4041 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4042 	    (!is_system_labeled()) ||
4043 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
4044 		/* We found the matched IRE */
4045 		return (B_TRUE);
4046 	}
4047 	return (B_FALSE);
4048 }
4049 
4050 
4051 /*
4052  * Lookup for a route in all the tables
4053  */
4054 ire_t *
4055 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4056     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4057     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4058 {
4059 	ire_t *ire = NULL;
4060 
4061 	/*
4062 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4063 	 * MATCH_IRE_ILL is set.
4064 	 */
4065 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4066 	    (ipif == NULL))
4067 		return (NULL);
4068 
4069 	/*
4070 	 * might be asking for a cache lookup,
4071 	 * This is not best way to lookup cache,
4072 	 * user should call ire_cache_lookup directly.
4073 	 *
4074 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4075 	 * in the forwarding table, if the applicable type flags were set.
4076 	 */
4077 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4078 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4079 		    tsl, flags, ipst);
4080 		if (ire != NULL)
4081 			return (ire);
4082 	}
4083 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4084 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4085 		    zoneid, 0, tsl, flags, ipst);
4086 	}
4087 	return (ire);
4088 }
4089 
4090 
4091 /*
4092  * Delete the IRE cache for the gateway and all IRE caches whose
4093  * ire_gateway_addr points to this gateway, and allow them to
4094  * be created on demand by ip_newroute.
4095  */
4096 void
4097 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4098 {
4099 	irb_t *irb;
4100 	ire_t *ire;
4101 
4102 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4103 	    ipst->ips_ip_cache_table_size)];
4104 	IRB_REFHOLD(irb);
4105 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4106 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4107 			continue;
4108 
4109 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4110 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4111 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4112 			ire_delete(ire);
4113 		}
4114 	}
4115 	IRB_REFRELE(irb);
4116 
4117 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4118 }
4119 
4120 /*
4121  * Looks up cache table for a route.
4122  * specific lookup can be indicated by
4123  * passing the MATCH_* flags and the
4124  * necessary parameters.
4125  */
4126 ire_t *
4127 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4128     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4129 {
4130 	irb_t *irb_ptr;
4131 	ire_t *ire;
4132 
4133 	/*
4134 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4135 	 * MATCH_IRE_ILL is set.
4136 	 */
4137 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4138 	    (ipif == NULL))
4139 		return (NULL);
4140 
4141 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4142 	    ipst->ips_ip_cache_table_size)];
4143 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4144 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4145 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4146 			continue;
4147 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4148 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4149 		    ipif, zoneid, 0, tsl, flags)) {
4150 			IRE_REFHOLD(ire);
4151 			rw_exit(&irb_ptr->irb_lock);
4152 			return (ire);
4153 		}
4154 	}
4155 	rw_exit(&irb_ptr->irb_lock);
4156 	return (NULL);
4157 }
4158 
4159 /*
4160  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4161  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4162  * the same ill group.
4163  */
4164 boolean_t
4165 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4166 {
4167 	ill_t		*recv_ill, *xmit_ill;
4168 	ill_group_t	*recv_group, *xmit_group;
4169 
4170 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4171 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4172 
4173 	recv_ill = ire_to_ill(ire_local);
4174 	xmit_ill = ire_to_ill(xmit_ire);
4175 
4176 	ASSERT(recv_ill != NULL);
4177 	ASSERT(xmit_ill != NULL);
4178 
4179 	if (recv_ill == xmit_ill)
4180 		return (B_TRUE);
4181 
4182 	recv_group = recv_ill->ill_group;
4183 	xmit_group = xmit_ill->ill_group;
4184 
4185 	if (recv_group != NULL && recv_group == xmit_group)
4186 		return (B_TRUE);
4187 
4188 	return (B_FALSE);
4189 }
4190 
4191 /*
4192  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4193  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4194  * then we don't allow this IRE_LOCAL to be used.
4195  */
4196 boolean_t
4197 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4198     const ts_label_t *tsl, ip_stack_t *ipst)
4199 {
4200 	ire_t		*alt_ire;
4201 	boolean_t	rval;
4202 
4203 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4204 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4205 		    NULL, zoneid, 0, tsl,
4206 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4207 		    MATCH_IRE_RJ_BHOLE, ipst);
4208 	} else {
4209 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4210 		    0, NULL, NULL, zoneid, 0, tsl,
4211 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4212 		    MATCH_IRE_RJ_BHOLE, ipst);
4213 	}
4214 
4215 	if (alt_ire == NULL)
4216 		return (B_FALSE);
4217 
4218 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4219 		ire_refrele(alt_ire);
4220 		return (B_FALSE);
4221 	}
4222 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4223 
4224 	ire_refrele(alt_ire);
4225 	return (rval);
4226 }
4227 
4228 /*
4229  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4230  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4231  * to the hidden ones.
4232  *
4233  * In general the zoneid has to match (where ALL_ZONES match all of them).
4234  * But for IRE_LOCAL we also need to handle the case where L2 should
4235  * conceptually loop back the packet. This is necessary since neither
4236  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4237  * own MAC address. This loopback is needed when the normal
4238  * routes (ignoring IREs with different zoneids) would send out the packet on
4239  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4240  * associated.
4241  *
4242  * Earlier versions of this code always matched an IRE_LOCAL independently of
4243  * the zoneid. We preserve that earlier behavior when
4244  * ip_restrict_interzone_loopback is turned off.
4245  */
4246 ire_t *
4247 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4248     ip_stack_t *ipst)
4249 {
4250 	irb_t *irb_ptr;
4251 	ire_t *ire;
4252 
4253 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4254 	    ipst->ips_ip_cache_table_size)];
4255 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4256 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4257 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4258 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4259 			continue;
4260 		}
4261 		if (ire->ire_addr == addr) {
4262 			/*
4263 			 * Finally, check if the security policy has any
4264 			 * restriction on using this route for the specified
4265 			 * message.
4266 			 */
4267 			if (tsl != NULL &&
4268 			    ire->ire_gw_secattr != NULL &&
4269 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4270 				continue;
4271 			}
4272 
4273 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4274 			    ire->ire_zoneid == ALL_ZONES) {
4275 				IRE_REFHOLD(ire);
4276 				rw_exit(&irb_ptr->irb_lock);
4277 				return (ire);
4278 			}
4279 
4280 			if (ire->ire_type == IRE_LOCAL) {
4281 				if (ipst->ips_ip_restrict_interzone_loopback &&
4282 				    !ire_local_ok_across_zones(ire, zoneid,
4283 				    &addr, tsl, ipst))
4284 					continue;
4285 
4286 				IRE_REFHOLD(ire);
4287 				rw_exit(&irb_ptr->irb_lock);
4288 				return (ire);
4289 			}
4290 		}
4291 	}
4292 	rw_exit(&irb_ptr->irb_lock);
4293 	return (NULL);
4294 }
4295 
4296 /*
4297  * Locate the interface ire that is tied to the cache ire 'cire' via
4298  * cire->ire_ihandle.
4299  *
4300  * We are trying to create the cache ire for an offlink destn based
4301  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4302  * as found by ip_newroute(). We are called from ip_newroute() in
4303  * the IRE_CACHE case.
4304  */
4305 ire_t *
4306 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4307 {
4308 	ire_t	*ire;
4309 	int	match_flags;
4310 	ipaddr_t gw_addr;
4311 	ipif_t	*gw_ipif;
4312 	ip_stack_t	*ipst = cire->ire_ipst;
4313 
4314 	ASSERT(cire != NULL && pire != NULL);
4315 
4316 	/*
4317 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4318 	 * because the ihandle refers to an ipif which can be in only one zone.
4319 	 */
4320 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4321 	/*
4322 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4323 	 * for on-link hosts. We should never be here for onlink.
4324 	 * Thus, use MATCH_IRE_ILL_GROUP.
4325 	 */
4326 	if (pire->ire_ipif != NULL)
4327 		match_flags |= MATCH_IRE_ILL_GROUP;
4328 	/*
4329 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4330 	 * (When ip_newroute() created 'cire' for the gateway it set its
4331 	 * cmask from the interface ire's mask)
4332 	 */
4333 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4334 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4335 	    NULL, match_flags, ipst);
4336 	if (ire != NULL)
4337 		return (ire);
4338 	/*
4339 	 * If we didn't find an interface ire above, we can't declare failure.
4340 	 * For backwards compatibility, we need to support prefix routes
4341 	 * pointing to next hop gateways that are not on-link.
4342 	 *
4343 	 * Assume we are trying to ping some offlink destn, and we have the
4344 	 * routing table below.
4345 	 *
4346 	 * Eg.	default	- gw1		<--- pire	(line 1)
4347 	 *	gw1	- gw2				(line 2)
4348 	 *	gw2	- hme0				(line 3)
4349 	 *
4350 	 * If we already have a cache ire for gw1 in 'cire', the
4351 	 * ire_ftable_lookup above would have failed, since there is no
4352 	 * interface ire to reach gw1. We will fallthru below.
4353 	 *
4354 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4355 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4356 	 * The differences are the following
4357 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4358 	 *	instead of ire_route_lookup()
4359 	 * ii.  We look for only prefix routes in the 1st call below.
4360 	 * ii.  We want to match on the ihandle in the 2nd call below.
4361 	 */
4362 	match_flags =  MATCH_IRE_TYPE;
4363 	if (pire->ire_ipif != NULL)
4364 		match_flags |= MATCH_IRE_ILL_GROUP;
4365 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4366 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4367 	if (ire == NULL)
4368 		return (NULL);
4369 	/*
4370 	 * At this point 'ire' corresponds to the entry shown in line 2.
4371 	 * gw_addr is 'gw2' in the example above.
4372 	 */
4373 	gw_addr = ire->ire_gateway_addr;
4374 	gw_ipif = ire->ire_ipif;
4375 	ire_refrele(ire);
4376 
4377 	match_flags |= MATCH_IRE_IHANDLE;
4378 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4379 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4380 	    ipst);
4381 	return (ire);
4382 }
4383 
4384 /*
4385  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4386  * ire associated with the specified ipif.
4387  *
4388  * This might occasionally be called when IPIF_UP is not set since
4389  * the IP_MULTICAST_IF as well as creating interface routes
4390  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4391  *
4392  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4393  * the ipif, this routine might return NULL.
4394  */
4395 ire_t *
4396 ipif_to_ire(const ipif_t *ipif)
4397 {
4398 	ire_t	*ire;
4399 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4400 
4401 	ASSERT(!ipif->ipif_isv6);
4402 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4403 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4404 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4405 		    ipst);
4406 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4407 		/* In this case we need to lookup destination address. */
4408 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4409 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4410 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4411 	} else {
4412 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4413 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4414 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4415 		    MATCH_IRE_MASK), ipst);
4416 	}
4417 	return (ire);
4418 }
4419 
4420 /*
4421  * ire_walk function.
4422  * Count the number of IRE_CACHE entries in different categories.
4423  */
4424 void
4425 ire_cache_count(ire_t *ire, char *arg)
4426 {
4427 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4428 
4429 	if (ire->ire_type != IRE_CACHE)
4430 		return;
4431 
4432 	icc->icc_total++;
4433 
4434 	if (ire->ire_ipversion == IPV6_VERSION) {
4435 		mutex_enter(&ire->ire_lock);
4436 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4437 			mutex_exit(&ire->ire_lock);
4438 			icc->icc_onlink++;
4439 			return;
4440 		}
4441 		mutex_exit(&ire->ire_lock);
4442 	} else {
4443 		if (ire->ire_gateway_addr == 0) {
4444 			icc->icc_onlink++;
4445 			return;
4446 		}
4447 	}
4448 
4449 	ASSERT(ire->ire_ipif != NULL);
4450 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4451 		icc->icc_pmtu++;
4452 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4453 	    ire->ire_ib_pkt_count)
4454 		icc->icc_offlink++;
4455 	else
4456 		icc->icc_unused++;
4457 }
4458 
4459 /*
4460  * ire_walk function called by ip_trash_ire_reclaim().
4461  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4462  * different for different categories of IRE_CACHE entries.
4463  * A fraction of zero means to not free any in that category.
4464  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4465  * is N then every Nth hash bucket chain will be freed.
4466  */
4467 void
4468 ire_cache_reclaim(ire_t *ire, char *arg)
4469 {
4470 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4471 	uint_t rand;
4472 	ip_stack_t	*ipst = icr->icr_ipst;
4473 
4474 	if (ire->ire_type != IRE_CACHE)
4475 		return;
4476 
4477 	if (ire->ire_ipversion == IPV6_VERSION) {
4478 		rand = (uint_t)lbolt +
4479 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4480 		    ipst->ips_ip6_cache_table_size);
4481 		mutex_enter(&ire->ire_lock);
4482 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4483 			mutex_exit(&ire->ire_lock);
4484 			if (icr->icr_onlink != 0 &&
4485 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4486 				ire_delete(ire);
4487 				return;
4488 			}
4489 			goto done;
4490 		}
4491 		mutex_exit(&ire->ire_lock);
4492 	} else {
4493 		rand = (uint_t)lbolt +
4494 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4495 		if (ire->ire_gateway_addr == 0) {
4496 			if (icr->icr_onlink != 0 &&
4497 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4498 				ire_delete(ire);
4499 				return;
4500 			}
4501 			goto done;
4502 		}
4503 	}
4504 	/* Not onlink IRE */
4505 	ASSERT(ire->ire_ipif != NULL);
4506 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4507 		/* Use ptmu fraction */
4508 		if (icr->icr_pmtu != 0 &&
4509 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4510 			ire_delete(ire);
4511 			return;
4512 		}
4513 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4514 	    ire->ire_ib_pkt_count) {
4515 		/* Use offlink fraction */
4516 		if (icr->icr_offlink != 0 &&
4517 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4518 			ire_delete(ire);
4519 			return;
4520 		}
4521 	} else {
4522 		/* Use unused fraction */
4523 		if (icr->icr_unused != 0 &&
4524 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4525 			ire_delete(ire);
4526 			return;
4527 		}
4528 	}
4529 done:
4530 	/*
4531 	 * Update tire_mark so that those that haven't been used since this
4532 	 * reclaim will be considered unused next time we reclaim.
4533 	 */
4534 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4535 }
4536 
4537 static void
4538 power2_roundup(uint32_t *value)
4539 {
4540 	int i;
4541 
4542 	for (i = 1; i < 31; i++) {
4543 		if (*value <= (1 << i))
4544 			break;
4545 	}
4546 	*value = (1 << i);
4547 }
4548 
4549 /* Global init for all zones */
4550 void
4551 ip_ire_g_init()
4552 {
4553 	/*
4554 	 * Create ire caches, ire_reclaim()
4555 	 * will give IRE_CACHE back to system when needed.
4556 	 * This needs to be done here before anything else, since
4557 	 * ire_add() expects the cache to be created.
4558 	 */
4559 	ire_cache = kmem_cache_create("ire_cache",
4560 	    sizeof (ire_t), 0, ip_ire_constructor,
4561 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
4562 
4563 	rt_entry_cache = kmem_cache_create("rt_entry",
4564 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
4565 
4566 	/*
4567 	 * Have radix code setup kmem caches etc.
4568 	 */
4569 	rn_init();
4570 }
4571 
4572 void
4573 ip_ire_init(ip_stack_t *ipst)
4574 {
4575 	int i;
4576 	uint32_t mem_cnt;
4577 	uint32_t cpu_cnt;
4578 	uint32_t min_cnt;
4579 	pgcnt_t mem_avail;
4580 
4581 	/*
4582 	 * ip_ire_max_bucket_cnt is sized below based on the memory
4583 	 * size and the cpu speed of the machine. This is upper
4584 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
4585 	 * and is lower bounded by the compile time value of
4586 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
4587 	 * ip6_ire_max_bucket_cnt.
4588 	 *
4589 	 * We calculate this for each IP Instances in order to use
4590 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
4591 	 * in effect when the zone is booted.
4592 	 */
4593 	mem_avail = kmem_avail();
4594 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4595 	    ip_cache_table_size / sizeof (ire_t);
4596 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
4597 
4598 	min_cnt = MIN(cpu_cnt, mem_cnt);
4599 	if (min_cnt < ip_ire_min_bucket_cnt)
4600 		min_cnt = ip_ire_min_bucket_cnt;
4601 	if (ip_ire_max_bucket_cnt > min_cnt) {
4602 		ip_ire_max_bucket_cnt = min_cnt;
4603 	}
4604 
4605 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4606 	    ip6_cache_table_size / sizeof (ire_t);
4607 	min_cnt = MIN(cpu_cnt, mem_cnt);
4608 	if (min_cnt < ip6_ire_min_bucket_cnt)
4609 		min_cnt = ip6_ire_min_bucket_cnt;
4610 	if (ip6_ire_max_bucket_cnt > min_cnt) {
4611 		ip6_ire_max_bucket_cnt = min_cnt;
4612 	}
4613 
4614 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
4615 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
4616 
4617 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
4618 
4619 
4620 	/* Calculate the IPv4 cache table size. */
4621 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
4622 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4623 	    ip_ire_max_bucket_cnt));
4624 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
4625 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
4626 	/*
4627 	 * Make sure that the table size is always a power of 2.  The
4628 	 * hash macro IRE_ADDR_HASH() depends on that.
4629 	 */
4630 	power2_roundup(&ipst->ips_ip_cache_table_size);
4631 
4632 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
4633 	    sizeof (irb_t), KM_SLEEP);
4634 
4635 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4636 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
4637 		    RW_DEFAULT, NULL);
4638 	}
4639 
4640 	/* Calculate the IPv6 cache table size. */
4641 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
4642 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4643 	    ip6_ire_max_bucket_cnt));
4644 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
4645 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
4646 	/*
4647 	 * Make sure that the table size is always a power of 2.  The
4648 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
4649 	 */
4650 	power2_roundup(&ipst->ips_ip6_cache_table_size);
4651 
4652 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
4653 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
4654 
4655 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4656 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
4657 		    RW_DEFAULT, NULL);
4658 	}
4659 
4660 	/*
4661 	 * Make sure that the forwarding table size is a power of 2.
4662 	 * The IRE*_ADDR_HASH() macroes depend on that.
4663 	 */
4664 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
4665 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
4666 
4667 	ipst->ips_ire_handle = 1;
4668 }
4669 
4670 void
4671 ip_ire_g_fini(void)
4672 {
4673 	kmem_cache_destroy(ire_cache);
4674 	kmem_cache_destroy(rt_entry_cache);
4675 
4676 	rn_fini();
4677 }
4678 
4679 void
4680 ip_ire_fini(ip_stack_t *ipst)
4681 {
4682 	int i;
4683 
4684 	/*
4685 	 * Delete all IREs - assumes that the ill/ipifs have
4686 	 * been removed so what remains are just the ftable and IRE_CACHE.
4687 	 */
4688 	ire_walk(ire_delete, NULL, ipst);
4689 
4690 	rn_freehead(ipst->ips_ip_ftable);
4691 	ipst->ips_ip_ftable = NULL;
4692 
4693 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
4694 	mutex_destroy(&ipst->ips_ire_handle_lock);
4695 
4696 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4697 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
4698 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
4699 	}
4700 	kmem_free(ipst->ips_ip_cache_table,
4701 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
4702 	ipst->ips_ip_cache_table = NULL;
4703 
4704 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4705 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
4706 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
4707 	}
4708 	kmem_free(ipst->ips_ip_cache_table_v6,
4709 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
4710 	ipst->ips_ip_cache_table_v6 = NULL;
4711 
4712 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
4713 		irb_t *ptr;
4714 		int j;
4715 
4716 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
4717 			continue;
4718 
4719 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
4720 			ASSERT(ptr[j].irb_ire == NULL);
4721 			rw_destroy(&ptr[j].irb_lock);
4722 		}
4723 		mi_free(ptr);
4724 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
4725 	}
4726 }
4727 
4728 /*
4729  * Check if another multirt route resolution is needed.
4730  * B_TRUE is returned is there remain a resolvable route,
4731  * or if no route for that dst is resolved yet.
4732  * B_FALSE is returned if all routes for that dst are resolved
4733  * or if the remaining unresolved routes are actually not
4734  * resolvable.
4735  * This only works in the global zone.
4736  */
4737 boolean_t
4738 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
4739 {
4740 	ire_t	*first_fire;
4741 	ire_t	*first_cire;
4742 	ire_t	*fire;
4743 	ire_t	*cire;
4744 	irb_t	*firb;
4745 	irb_t	*cirb;
4746 	int	unres_cnt = 0;
4747 	boolean_t resolvable = B_FALSE;
4748 
4749 	/* Retrieve the first IRE_HOST that matches the destination */
4750 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
4751 	    NULL, ALL_ZONES, 0, tsl,
4752 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
4753 
4754 	/* No route at all */
4755 	if (first_fire == NULL) {
4756 		return (B_TRUE);
4757 	}
4758 
4759 	firb = first_fire->ire_bucket;
4760 	ASSERT(firb != NULL);
4761 
4762 	/* Retrieve the first IRE_CACHE ire for that destination. */
4763 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4764 
4765 	/* No resolved route. */
4766 	if (first_cire == NULL) {
4767 		ire_refrele(first_fire);
4768 		return (B_TRUE);
4769 	}
4770 
4771 	/*
4772 	 * At least one route is resolved. Here we look through the forward
4773 	 * and cache tables, to compare the number of declared routes
4774 	 * with the number of resolved routes. The search for a resolvable
4775 	 * route is performed only if at least one route remains
4776 	 * unresolved.
4777 	 */
4778 	cirb = first_cire->ire_bucket;
4779 	ASSERT(cirb != NULL);
4780 
4781 	/* Count the number of routes to that dest that are declared. */
4782 	IRB_REFHOLD(firb);
4783 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4784 		if (!(fire->ire_flags & RTF_MULTIRT))
4785 			continue;
4786 		if (fire->ire_addr != dst)
4787 			continue;
4788 		unres_cnt++;
4789 	}
4790 	IRB_REFRELE(firb);
4791 
4792 	/* Then subtract the number of routes to that dst that are resolved */
4793 	IRB_REFHOLD(cirb);
4794 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
4795 		if (!(cire->ire_flags & RTF_MULTIRT))
4796 			continue;
4797 		if (cire->ire_addr != dst)
4798 			continue;
4799 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
4800 			continue;
4801 		unres_cnt--;
4802 	}
4803 	IRB_REFRELE(cirb);
4804 
4805 	/* At least one route is unresolved; search for a resolvable route. */
4806 	if (unres_cnt > 0)
4807 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
4808 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
4809 
4810 	if (first_fire != NULL)
4811 		ire_refrele(first_fire);
4812 
4813 	if (first_cire != NULL)
4814 		ire_refrele(first_cire);
4815 
4816 	return (resolvable);
4817 }
4818 
4819 
4820 /*
4821  * Explore a forward_table bucket, starting from fire_arg.
4822  * fire_arg MUST be an IRE_HOST entry.
4823  *
4824  * Return B_TRUE and update *ire_arg and *fire_arg
4825  * if at least one resolvable route is found. *ire_arg
4826  * is the IRE entry for *fire_arg's gateway.
4827  *
4828  * Return B_FALSE otherwise (all routes are resolved or
4829  * the remaining unresolved routes are all unresolvable).
4830  *
4831  * The IRE selection relies on a priority mechanism
4832  * driven by the flags passed in by the caller.
4833  * The caller, such as ip_newroute_ipif(), can get the most
4834  * relevant ire at each stage of a multiple route resolution.
4835  *
4836  * The rules are:
4837  *
4838  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
4839  *   ires are preferred for the gateway. This gives the highest
4840  *   priority to routes that can be resolved without using
4841  *   a resolver.
4842  *
4843  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
4844  *   is specified but no IRE_CACHETABLE ire entry for the gateway
4845  *   is found, the following rules apply.
4846  *
4847  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
4848  *   ires for the gateway, that have not been tried since
4849  *   a configurable amount of time, are preferred.
4850  *   This applies when a resolver must be invoked for
4851  *   a missing route, but we don't want to use the resolver
4852  *   upon each packet emission. If no such resolver is found,
4853  *   B_FALSE is returned.
4854  *   The MULTIRT_USESTAMP flag can be combined with
4855  *   MULTIRT_CACHEGW.
4856  *
4857  * - if MULTIRT_USESTAMP is not specified in flags, the first
4858  *   unresolved but resolvable route is selected.
4859  *
4860  * - Otherwise, there is no resolvalble route, and
4861  *   B_FALSE is returned.
4862  *
4863  * At last, MULTIRT_SETSTAMP can be specified in flags to
4864  * request the timestamp of unresolvable routes to
4865  * be refreshed. This prevents the useless exploration
4866  * of those routes for a while, when MULTIRT_USESTAMP is used.
4867  *
4868  * This only works in the global zone.
4869  */
4870 boolean_t
4871 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
4872     const ts_label_t *tsl, ip_stack_t *ipst)
4873 {
4874 	clock_t	delta;
4875 	ire_t	*best_fire = NULL;
4876 	ire_t	*best_cire = NULL;
4877 	ire_t	*first_fire;
4878 	ire_t	*first_cire;
4879 	ire_t	*fire;
4880 	ire_t	*cire;
4881 	irb_t	*firb = NULL;
4882 	irb_t	*cirb = NULL;
4883 	ire_t	*gw_ire;
4884 	boolean_t	already_resolved;
4885 	boolean_t	res;
4886 	ipaddr_t	dst;
4887 	ipaddr_t	gw;
4888 
4889 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
4890 	    (void *)*ire_arg, (void *)*fire_arg, flags));
4891 
4892 	ASSERT(ire_arg != NULL);
4893 	ASSERT(fire_arg != NULL);
4894 
4895 	/* Not an IRE_HOST ire; give up. */
4896 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
4897 		return (B_FALSE);
4898 	}
4899 
4900 	/* This is the first IRE_HOST ire for that destination. */
4901 	first_fire = *fire_arg;
4902 	firb = first_fire->ire_bucket;
4903 	ASSERT(firb != NULL);
4904 
4905 	dst = first_fire->ire_addr;
4906 
4907 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
4908 
4909 	/*
4910 	 * Retrieve the first IRE_CACHE ire for that destination;
4911 	 * if we don't find one, no route for that dest is
4912 	 * resolved yet.
4913 	 */
4914 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4915 	if (first_cire != NULL) {
4916 		cirb = first_cire->ire_bucket;
4917 	}
4918 
4919 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
4920 
4921 	/*
4922 	 * Search for a resolvable route, giving the top priority
4923 	 * to routes that can be resolved without any call to the resolver.
4924 	 */
4925 	IRB_REFHOLD(firb);
4926 
4927 	if (!CLASSD(dst)) {
4928 		/*
4929 		 * For all multiroute IRE_HOST ires for that destination,
4930 		 * check if the route via the IRE_HOST's gateway is
4931 		 * resolved yet.
4932 		 */
4933 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4934 
4935 			if (!(fire->ire_flags & RTF_MULTIRT))
4936 				continue;
4937 			if (fire->ire_addr != dst)
4938 				continue;
4939 
4940 			if (fire->ire_gw_secattr != NULL &&
4941 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
4942 				continue;
4943 			}
4944 
4945 			gw = fire->ire_gateway_addr;
4946 
4947 			ip2dbg(("ire_multirt_lookup: fire %p, "
4948 			    "ire_addr %08x, ire_gateway_addr %08x\n",
4949 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
4950 
4951 			already_resolved = B_FALSE;
4952 
4953 			if (first_cire != NULL) {
4954 				ASSERT(cirb != NULL);
4955 
4956 				IRB_REFHOLD(cirb);
4957 				/*
4958 				 * For all IRE_CACHE ires for that
4959 				 * destination.
4960 				 */
4961 				for (cire = first_cire;
4962 				    cire != NULL;
4963 				    cire = cire->ire_next) {
4964 
4965 					if (!(cire->ire_flags & RTF_MULTIRT))
4966 						continue;
4967 					if (cire->ire_addr != dst)
4968 						continue;
4969 					if (cire->ire_marks &
4970 					    (IRE_MARK_CONDEMNED |
4971 					    IRE_MARK_HIDDEN))
4972 						continue;
4973 
4974 					if (cire->ire_gw_secattr != NULL &&
4975 					    tsol_ire_match_gwattr(cire,
4976 					    tsl) != 0) {
4977 						continue;
4978 					}
4979 
4980 					/*
4981 					 * Check if the IRE_CACHE's gateway
4982 					 * matches the IRE_HOST's gateway.
4983 					 */
4984 					if (cire->ire_gateway_addr == gw) {
4985 						already_resolved = B_TRUE;
4986 						break;
4987 					}
4988 				}
4989 				IRB_REFRELE(cirb);
4990 			}
4991 
4992 			/*
4993 			 * This route is already resolved;
4994 			 * proceed with next one.
4995 			 */
4996 			if (already_resolved) {
4997 				ip2dbg(("ire_multirt_lookup: found cire %p, "
4998 				    "already resolved\n", (void *)cire));
4999 				continue;
5000 			}
5001 
5002 			/*
5003 			 * The route is unresolved; is it actually
5004 			 * resolvable, i.e. is there a cache or a resolver
5005 			 * for the gateway?
5006 			 */
5007 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
5008 			    ALL_ZONES, tsl,
5009 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
5010 
5011 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
5012 			    (void *)gw_ire));
5013 
5014 			/*
5015 			 * If gw_ire is typed IRE_CACHETABLE,
5016 			 * this route can be resolved without any call to the
5017 			 * resolver. If the MULTIRT_CACHEGW flag is set,
5018 			 * give the top priority to this ire and exit the
5019 			 * loop.
5020 			 * This is typically the case when an ARP reply
5021 			 * is processed through ip_wput_nondata().
5022 			 */
5023 			if ((flags & MULTIRT_CACHEGW) &&
5024 			    (gw_ire != NULL) &&
5025 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
5026 				ASSERT(gw_ire->ire_nce == NULL ||
5027 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5028 				/*
5029 				 * Release the resolver associated to the
5030 				 * previous candidate best ire, if any.
5031 				 */
5032 				if (best_cire != NULL) {
5033 					ire_refrele(best_cire);
5034 					ASSERT(best_fire != NULL);
5035 				}
5036 
5037 				best_fire = fire;
5038 				best_cire = gw_ire;
5039 
5040 				ip2dbg(("ire_multirt_lookup: found top prio "
5041 				    "best_fire %p, best_cire %p\n",
5042 				    (void *)best_fire, (void *)best_cire));
5043 				break;
5044 			}
5045 
5046 			/*
5047 			 * Compute the time elapsed since our preceding
5048 			 * attempt to  resolve that route.
5049 			 * If the MULTIRT_USESTAMP flag is set, we take that
5050 			 * route into account only if this time interval
5051 			 * exceeds ip_multirt_resolution_interval;
5052 			 * this prevents us from attempting to resolve a
5053 			 * broken route upon each sending of a packet.
5054 			 */
5055 			delta = lbolt - fire->ire_last_used_time;
5056 			delta = TICK_TO_MSEC(delta);
5057 
5058 			res = (boolean_t)((delta >
5059 			    ipst->ips_ip_multirt_resolution_interval) ||
5060 			    (!(flags & MULTIRT_USESTAMP)));
5061 
5062 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
5063 			    "res %d\n",
5064 			    (void *)fire, delta, res));
5065 
5066 			if (res) {
5067 				/*
5068 				 * We are here if MULTIRT_USESTAMP flag is set
5069 				 * and the resolver for fire's gateway
5070 				 * has not been tried since
5071 				 * ip_multirt_resolution_interval, or if
5072 				 * MULTIRT_USESTAMP is not set but gw_ire did
5073 				 * not fill the conditions for MULTIRT_CACHEGW,
5074 				 * or if neither MULTIRT_USESTAMP nor
5075 				 * MULTIRT_CACHEGW are set.
5076 				 */
5077 				if (gw_ire != NULL) {
5078 					if (best_fire == NULL) {
5079 						ASSERT(best_cire == NULL);
5080 
5081 						best_fire = fire;
5082 						best_cire = gw_ire;
5083 
5084 						ip2dbg(("ire_multirt_lookup:"
5085 						    "found candidate "
5086 						    "best_fire %p, "
5087 						    "best_cire %p\n",
5088 						    (void *)best_fire,
5089 						    (void *)best_cire));
5090 
5091 						/*
5092 						 * If MULTIRT_CACHEGW is not
5093 						 * set, we ignore the top
5094 						 * priority ires that can
5095 						 * be resolved without any
5096 						 * call to the resolver;
5097 						 * In that case, there is
5098 						 * actually no need
5099 						 * to continue the loop.
5100 						 */
5101 						if (!(flags &
5102 						    MULTIRT_CACHEGW)) {
5103 							break;
5104 						}
5105 						continue;
5106 					}
5107 				} else {
5108 					/*
5109 					 * No resolver for the gateway: the
5110 					 * route is not resolvable.
5111 					 * If the MULTIRT_SETSTAMP flag is
5112 					 * set, we stamp the IRE_HOST ire,
5113 					 * so we will not select it again
5114 					 * during this resolution interval.
5115 					 */
5116 					if (flags & MULTIRT_SETSTAMP)
5117 						fire->ire_last_used_time =
5118 						    lbolt;
5119 				}
5120 			}
5121 
5122 			if (gw_ire != NULL)
5123 				ire_refrele(gw_ire);
5124 		}
5125 	} else { /* CLASSD(dst) */
5126 
5127 		for (fire = first_fire;
5128 		    fire != NULL;
5129 		    fire = fire->ire_next) {
5130 
5131 			if (!(fire->ire_flags & RTF_MULTIRT))
5132 				continue;
5133 			if (fire->ire_addr != dst)
5134 				continue;
5135 
5136 			if (fire->ire_gw_secattr != NULL &&
5137 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5138 				continue;
5139 			}
5140 
5141 			already_resolved = B_FALSE;
5142 
5143 			gw = fire->ire_gateway_addr;
5144 
5145 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
5146 			    NULL, NULL, ALL_ZONES, 0, tsl,
5147 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
5148 			    MATCH_IRE_SECATTR, ipst);
5149 
5150 			/* No resolver for the gateway; we skip this ire. */
5151 			if (gw_ire == NULL) {
5152 				continue;
5153 			}
5154 			ASSERT(gw_ire->ire_nce == NULL ||
5155 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5156 
5157 			if (first_cire != NULL) {
5158 
5159 				IRB_REFHOLD(cirb);
5160 				/*
5161 				 * For all IRE_CACHE ires for that
5162 				 * destination.
5163 				 */
5164 				for (cire = first_cire;
5165 				    cire != NULL;
5166 				    cire = cire->ire_next) {
5167 
5168 					if (!(cire->ire_flags & RTF_MULTIRT))
5169 						continue;
5170 					if (cire->ire_addr != dst)
5171 						continue;
5172 					if (cire->ire_marks &
5173 					    (IRE_MARK_CONDEMNED |
5174 					    IRE_MARK_HIDDEN))
5175 						continue;
5176 
5177 					if (cire->ire_gw_secattr != NULL &&
5178 					    tsol_ire_match_gwattr(cire,
5179 					    tsl) != 0) {
5180 						continue;
5181 					}
5182 
5183 					/*
5184 					 * Cache entries are linked to the
5185 					 * parent routes using the parent handle
5186 					 * (ire_phandle). If no cache entry has
5187 					 * the same handle as fire, fire is
5188 					 * still unresolved.
5189 					 */
5190 					ASSERT(cire->ire_phandle != 0);
5191 					if (cire->ire_phandle ==
5192 					    fire->ire_phandle) {
5193 						already_resolved = B_TRUE;
5194 						break;
5195 					}
5196 				}
5197 				IRB_REFRELE(cirb);
5198 			}
5199 
5200 			/*
5201 			 * This route is already resolved; proceed with
5202 			 * next one.
5203 			 */
5204 			if (already_resolved) {
5205 				ire_refrele(gw_ire);
5206 				continue;
5207 			}
5208 
5209 			/*
5210 			 * Compute the time elapsed since our preceding
5211 			 * attempt to resolve that route.
5212 			 * If the MULTIRT_USESTAMP flag is set, we take
5213 			 * that route into account only if this time
5214 			 * interval exceeds ip_multirt_resolution_interval;
5215 			 * this prevents us from attempting to resolve a
5216 			 * broken route upon each sending of a packet.
5217 			 */
5218 			delta = lbolt - fire->ire_last_used_time;
5219 			delta = TICK_TO_MSEC(delta);
5220 
5221 			res = (boolean_t)((delta >
5222 			    ipst->ips_ip_multirt_resolution_interval) ||
5223 			    (!(flags & MULTIRT_USESTAMP)));
5224 
5225 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
5226 			    "flags %04x, res %d\n",
5227 			    (void *)fire, delta, flags, res));
5228 
5229 			if (res) {
5230 				if (best_cire != NULL) {
5231 					/*
5232 					 * Release the resolver associated
5233 					 * to the preceding candidate best
5234 					 * ire, if any.
5235 					 */
5236 					ire_refrele(best_cire);
5237 					ASSERT(best_fire != NULL);
5238 				}
5239 				best_fire = fire;
5240 				best_cire = gw_ire;
5241 				continue;
5242 			}
5243 
5244 			ire_refrele(gw_ire);
5245 		}
5246 	}
5247 
5248 	if (best_fire != NULL) {
5249 		IRE_REFHOLD(best_fire);
5250 	}
5251 	IRB_REFRELE(firb);
5252 
5253 	/* Release the first IRE_CACHE we initially looked up, if any. */
5254 	if (first_cire != NULL)
5255 		ire_refrele(first_cire);
5256 
5257 	/* Found a resolvable route. */
5258 	if (best_fire != NULL) {
5259 		ASSERT(best_cire != NULL);
5260 
5261 		if (*fire_arg != NULL)
5262 			ire_refrele(*fire_arg);
5263 		if (*ire_arg != NULL)
5264 			ire_refrele(*ire_arg);
5265 
5266 		/*
5267 		 * Update the passed-in arguments with the
5268 		 * resolvable multirt route we found.
5269 		 */
5270 		*fire_arg = best_fire;
5271 		*ire_arg = best_cire;
5272 
5273 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
5274 		    "*fire_arg %p, *ire_arg %p\n",
5275 		    (void *)best_fire, (void *)best_cire));
5276 
5277 		return (B_TRUE);
5278 	}
5279 
5280 	ASSERT(best_cire == NULL);
5281 
5282 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
5283 	    "*ire_arg %p\n",
5284 	    (void *)*fire_arg, (void *)*ire_arg));
5285 
5286 	/* No resolvable route. */
5287 	return (B_FALSE);
5288 }
5289 
5290 /*
5291  * IRE iterator for inbound and loopback broadcast processing.
5292  * Given an IRE_BROADCAST ire, walk the ires with the same destination
5293  * address, but skip over the passed-in ire. Returns the next ire without
5294  * a hold - assumes that the caller holds a reference on the IRE bucket.
5295  */
5296 ire_t *
5297 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
5298 {
5299 	ill_t *ill;
5300 
5301 	if (curr == NULL) {
5302 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
5303 		    curr = curr->ire_next) {
5304 			if (curr->ire_addr == ire->ire_addr)
5305 				break;
5306 		}
5307 	} else {
5308 		curr = curr->ire_next;
5309 	}
5310 	ill = ire_to_ill(ire);
5311 	for (; curr != NULL; curr = curr->ire_next) {
5312 		if (curr->ire_addr != ire->ire_addr) {
5313 			/*
5314 			 * All the IREs to a given destination are contiguous;
5315 			 * break out once the address doesn't match.
5316 			 */
5317 			break;
5318 		}
5319 		if (curr == ire) {
5320 			/* skip over the passed-in ire */
5321 			continue;
5322 		}
5323 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
5324 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
5325 			/*
5326 			 * If the passed-in ire is loopback, skip over
5327 			 * non-loopback ires and vice versa.
5328 			 */
5329 			continue;
5330 		}
5331 		if (ire_to_ill(curr) != ill) {
5332 			/* skip over IREs going through a different interface */
5333 			continue;
5334 		}
5335 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
5336 			/* skip over deleted IREs */
5337 			continue;
5338 		}
5339 		return (curr);
5340 	}
5341 	return (NULL);
5342 }
5343 
5344 #ifdef DEBUG
5345 void
5346 ire_trace_ref(ire_t *ire)
5347 {
5348 	mutex_enter(&ire->ire_lock);
5349 	if (ire->ire_trace_disable) {
5350 		mutex_exit(&ire->ire_lock);
5351 		return;
5352 	}
5353 
5354 	if (th_trace_ref(ire, ire->ire_ipst)) {
5355 		mutex_exit(&ire->ire_lock);
5356 	} else {
5357 		ire->ire_trace_disable = B_TRUE;
5358 		mutex_exit(&ire->ire_lock);
5359 		ire_trace_cleanup(ire);
5360 	}
5361 }
5362 
5363 void
5364 ire_untrace_ref(ire_t *ire)
5365 {
5366 	mutex_enter(&ire->ire_lock);
5367 	if (!ire->ire_trace_disable)
5368 		th_trace_unref(ire);
5369 	mutex_exit(&ire->ire_lock);
5370 }
5371 
5372 static void
5373 ire_trace_cleanup(const ire_t *ire)
5374 {
5375 	th_trace_cleanup(ire, ire->ire_trace_disable);
5376 }
5377 #endif /* DEBUG */
5378 
5379 /*
5380  * Generate a message chain with an arp request to resolve the in_ire.
5381  * It is assumed that in_ire itself is currently in the ire cache table,
5382  * so we create a fake_ire filled with enough information about ire_addr etc.
5383  * to retrieve in_ire when the DL_UNITDATA response from the resolver
5384  * comes back. The fake_ire itself is created by calling esballoc with
5385  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
5386  * invoked when the mblk containing fake_ire is freed.
5387  */
5388 void
5389 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
5390 {
5391 	areq_t		*areq;
5392 	ipaddr_t	*addrp;
5393 	mblk_t 		*ire_mp, *areq_mp;
5394 	ire_t 		*ire, *buf;
5395 	size_t		bufsize;
5396 	frtn_t		*frtnp;
5397 	ill_t		*ill;
5398 	ip_stack_t	*ipst = dst_ill->ill_ipst;
5399 
5400 	/*
5401 	 * Construct message chain for the resolver
5402 	 * of the form:
5403 	 *	ARP_REQ_MBLK-->IRE_MBLK
5404 	 *
5405 	 * NOTE : If the response does not
5406 	 * come back, ARP frees the packet. For this reason,
5407 	 * we can't REFHOLD the bucket of save_ire to prevent
5408 	 * deletions. We may not be able to REFRELE the bucket
5409 	 * if the response never comes back. Thus, before
5410 	 * adding the ire, ire_add_v4 will make sure that the
5411 	 * interface route does not get deleted. This is the
5412 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
5413 	 * where we can always prevent deletions because of
5414 	 * the synchronous nature of adding IRES i.e
5415 	 * ire_add_then_send is called after creating the IRE.
5416 	 */
5417 
5418 	/*
5419 	 * We use esballoc to allocate the second part(the ire_t size mblk)
5420 	 * of the message chain depicted above. THis mblk will be freed
5421 	 * by arp when there is a  timeout, and otherwise passed to IP
5422 	 * and IP will * free it after processing the ARP response.
5423 	 */
5424 
5425 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
5426 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
5427 	if (buf == NULL) {
5428 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
5429 		return;
5430 	}
5431 	frtnp = (frtn_t *)(buf + 1);
5432 	frtnp->free_arg = (caddr_t)buf;
5433 	frtnp->free_func = ire_freemblk;
5434 
5435 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
5436 
5437 	if (ire_mp == NULL) {
5438 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
5439 		kmem_free(buf, bufsize);
5440 		return;
5441 	}
5442 	ASSERT(in_ire->ire_nce != NULL);
5443 	areq_mp = copyb(dst_ill->ill_resolver_mp);
5444 	if (areq_mp == NULL) {
5445 		kmem_free(buf, bufsize);
5446 		return;
5447 	}
5448 
5449 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
5450 	ire = (ire_t *)buf;
5451 	/*
5452 	 * keep enough info in the fake ire so that we can pull up
5453 	 * the incomplete ire (in_ire) after result comes back from
5454 	 * arp and make it complete.
5455 	 */
5456 	*ire = ire_null;
5457 	ire->ire_u = in_ire->ire_u;
5458 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
5459 	ire->ire_ipif = in_ire->ire_ipif;
5460 	ire->ire_stq = in_ire->ire_stq;
5461 	ill = ire_to_ill(ire);
5462 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
5463 	ire->ire_zoneid = in_ire->ire_zoneid;
5464 	ire->ire_ipst = ipst;
5465 
5466 	/*
5467 	 * ire_freemblk will be called when ire_mp is freed, both for
5468 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
5469 	 * when the arp resolution failed.
5470 	 */
5471 	ire->ire_marks |= IRE_MARK_UNCACHED;
5472 	ire->ire_mp = ire_mp;
5473 	ire_mp->b_wptr = (uchar_t *)&ire[1];
5474 	ire_mp->b_cont = NULL;
5475 	linkb(areq_mp, ire_mp);
5476 
5477 	/*
5478 	 * Fill in the source and dest addrs for the resolver.
5479 	 * NOTE: this depends on memory layouts imposed by
5480 	 * ill_init().
5481 	 */
5482 	areq = (areq_t *)areq_mp->b_rptr;
5483 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
5484 	*addrp = ire->ire_src_addr;
5485 
5486 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
5487 	if (ire->ire_gateway_addr != INADDR_ANY) {
5488 		*addrp = ire->ire_gateway_addr;
5489 	} else {
5490 		*addrp = ire->ire_addr;
5491 	}
5492 
5493 	/* Up to the resolver. */
5494 	if (canputnext(dst_ill->ill_rq)) {
5495 		putnext(dst_ill->ill_rq, areq_mp);
5496 	} else {
5497 		freemsg(areq_mp);
5498 	}
5499 }
5500 
5501 /*
5502  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
5503  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
5504  *
5505  * This function can be called by ARP via free routine for ire_mp or
5506  * by IPv4(both host and forwarding path) via ire_delete
5507  * in case ARP resolution fails.
5508  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
5509  * (for IP to talk to ARP, it still has to send AR* messages).
5510  *
5511  * Note that the ARP/IP merge should replace the functioanlity by providing
5512  * direct function calls to clean up unresolved entries in ire/nce lists.
5513  */
5514 void
5515 ire_freemblk(ire_t *ire_mp)
5516 {
5517 	nce_t		*nce = NULL;
5518 	ill_t		*ill;
5519 	ip_stack_t	*ipst;
5520 
5521 	ASSERT(ire_mp != NULL);
5522 
5523 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
5524 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
5525 		    (void *)ire_mp));
5526 		goto cleanup;
5527 	}
5528 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
5529 		goto cleanup; /* everything succeeded. just free and return */
5530 	}
5531 
5532 	/*
5533 	 * the arp information corresponding to this ire_mp was not
5534 	 * transferred to  a ire_cache entry. Need
5535 	 * to clean up incomplete ire's and nce, if necessary.
5536 	 */
5537 	ASSERT(ire_mp->ire_stq != NULL);
5538 	ASSERT(ire_mp->ire_stq_ifindex != 0);
5539 	ASSERT(ire_mp->ire_ipst != NULL);
5540 
5541 	ipst = ire_mp->ire_ipst;
5542 
5543 	/*
5544 	 * Get any nce's corresponding to this ire_mp. We first have to
5545 	 * make sure that the ill is still around.
5546 	 */
5547 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
5548 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
5549 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
5550 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
5551 		/*
5552 		 * ill went away. no nce to clean up.
5553 		 * Note that the ill_state_flags could be set to
5554 		 * ILL_CONDEMNED after this point, but if we know
5555 		 * that it is CONDEMNED now, we just bail out quickly.
5556 		 */
5557 		if (ill != NULL)
5558 			ill_refrele(ill);
5559 		goto cleanup;
5560 	}
5561 	nce = ndp_lookup_v4(ill,
5562 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
5563 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
5564 	    B_FALSE);
5565 	ill_refrele(ill);
5566 
5567 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
5568 		/*
5569 		 * some incomplete nce was found.
5570 		 */
5571 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
5572 		    nce_t *, nce, ire_t *, ire_mp);
5573 		/*
5574 		 * Send the icmp_unreachable messages for the queued mblks in
5575 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
5576 		 * for this ire
5577 		 */
5578 		arp_resolv_failed(nce);
5579 		/*
5580 		 * Delete the nce and clean up all ire's pointing at this nce
5581 		 * in the cachetable
5582 		 */
5583 		ndp_delete(nce);
5584 	}
5585 	if (nce != NULL)
5586 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
5587 
5588 cleanup:
5589 	/*
5590 	 * Get rid of the ire buffer
5591 	 * We call kmem_free here(instead of ire_delete()), since
5592 	 * this is the freeb's callback.
5593 	 */
5594 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
5595 }
5596 
5597 /*
5598  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
5599  * non-loopback IRE_BROADCAST ire's.
5600  *
5601  * If a neighbor-cache entry has to be created (i.e., one does not already
5602  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
5603  * entry are initialized in ndp_add_v4(). These values are picked from
5604  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
5605  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
5606  * determine the {nce_state, nce_res_mp} of the nce_t created. All
5607  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
5608  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
5609  * entries,
5610  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
5611  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
5612  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
5613  *     layer resolution is necessary, so that the nce_t will be in the
5614  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
5615  *     ill_resolver_mp of the outgoing interface.
5616  *
5617  * The link layer information needed for broadcast addresses, and for
5618  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
5619  * never needs re-verification for the lifetime of the nce_t. These are
5620  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
5621  * NCE_EXPIRED.
5622  *
5623  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
5624  * in the case of indirect routes, and for the dst itself (ire_addr) in the
5625  * case of direct routes, with the nce_res_mp containing a template
5626  * DL_UNITDATA request.
5627  *
5628  * The actual association of the ire_nce to the nce created here is
5629  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
5630  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
5631  * the ire_nce assignment is done in ire_add_then_send.
5632  */
5633 int
5634 ire_nce_init(ire_t *ire, nce_t *src_nce)
5635 {
5636 	in_addr_t	addr4;
5637 	int		err;
5638 	nce_t		*nce = NULL;
5639 	ill_t		*ire_ill;
5640 	uint16_t	nce_flags = 0;
5641 	ip_stack_t	*ipst;
5642 
5643 	if (ire->ire_stq == NULL)
5644 		return (0); /* no need to create nce for local/loopback */
5645 
5646 	switch (ire->ire_type) {
5647 	case IRE_CACHE:
5648 		if (ire->ire_gateway_addr != INADDR_ANY)
5649 			addr4 = ire->ire_gateway_addr; /* 'G' route */
5650 		else
5651 			addr4 = ire->ire_addr; /* direct route */
5652 		break;
5653 	case IRE_BROADCAST:
5654 		addr4 = ire->ire_addr;
5655 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
5656 		break;
5657 	default:
5658 		return (0);
5659 	}
5660 
5661 	/*
5662 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
5663 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
5664 	 * for the outgoing interface, which we get from the ire_stq.
5665 	 */
5666 	ire_ill = ire_to_ill(ire);
5667 	ipst = ire_ill->ill_ipst;
5668 
5669 	/*
5670 	 * IRE_IF_NORESOLVER entries never need re-verification and
5671 	 * do not expire, so we mark them as NCE_F_PERMANENT.
5672 	 */
5673 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
5674 		nce_flags |= NCE_F_PERMANENT;
5675 
5676 retry_nce:
5677 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
5678 	    &nce, src_nce);
5679 
5680 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
5681 		/*
5682 		 * We looked up an expired nce.
5683 		 * Go back and try to create one again.
5684 		 */
5685 		ndp_delete(nce);
5686 		NCE_REFRELE(nce);
5687 		nce = NULL;
5688 		goto retry_nce;
5689 	}
5690 
5691 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
5692 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
5693 
5694 	switch (err) {
5695 	case 0:
5696 	case EEXIST:
5697 		/*
5698 		 * return a pointer to a newly created or existing nce_t;
5699 		 * note that the ire-nce mapping is many-one, i.e.,
5700 		 * multiple ire's could point to the same nce_t.
5701 		 */
5702 		break;
5703 	default:
5704 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
5705 		return (EINVAL);
5706 	}
5707 	if (ire->ire_type == IRE_BROADCAST) {
5708 		/*
5709 		 * Two bcast ires are created for each interface;
5710 		 * 1. loopback copy (which does not  have an
5711 		 *    ire_stq, and therefore has no ire_nce), and,
5712 		 * 2. the non-loopback copy, which has the nce_res_mp
5713 		 *    initialized to a copy of the ill_bcast_mp, and
5714 		 *    is marked as ND_REACHABLE at this point.
5715 		 *    This nce does not undergo any further state changes,
5716 		 *    and exists as long as the interface is plumbed.
5717 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
5718 		 * because some functions like ill_mark_bcast() inline the
5719 		 * ire_add functionality.
5720 		 */
5721 		ire->ire_nce = nce;
5722 		/*
5723 		 * We are associating this nce to the ire,
5724 		 * so change the nce ref taken in
5725 		 * ndp_lookup_then_add_v4() from
5726 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
5727 		 */
5728 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
5729 	} else {
5730 		/*
5731 		 * We are not using this nce_t just yet so release
5732 		 * the ref taken in ndp_lookup_then_add_v4()
5733 		 */
5734 		NCE_REFRELE(nce);
5735 	}
5736 	return (0);
5737 }
5738