xref: /titanic_52/usr/src/uts/common/inet/ip/ip_if.c (revision fec509a05ddbf645268fe2e537314def7d1b67c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/param.h>
52 #include <sys/socket.h>
53 #include <sys/isa_defs.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_types.h>
57 #include <net/if_dl.h>
58 #include <net/route.h>
59 #include <sys/sockio.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/igmp_var.h>
64 #include <sys/strsun.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 
68 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
69 #include <inet/mi.h>
70 #include <inet/nd.h>
71 #include <inet/arp.h>
72 #include <inet/mib2.h>
73 #include <inet/ip.h>
74 #include <inet/ip6.h>
75 #include <inet/ip6_asp.h>
76 #include <inet/tcp.h>
77 #include <inet/ip_multi.h>
78 #include <inet/ip_ire.h>
79 #include <inet/ip_ftable.h>
80 #include <inet/ip_rts.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/ip_if.h>
83 #include <inet/ip_impl.h>
84 #include <inet/tun.h>
85 #include <inet/sctp_ip.h>
86 #include <inet/ip_netinfo.h>
87 #include <inet/mib2.h>
88 
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/sadb.h>
92 #include <inet/ipsec_impl.h>
93 #include <sys/iphada.h>
94 
95 
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac.h>
100 
101 #include <sys/systeminfo.h>
102 #include <sys/bootconf.h>
103 
104 #include <sys/tsol/tndb.h>
105 #include <sys/tsol/tnet.h>
106 
107 /* The character which tells where the ill_name ends */
108 #define	IPIF_SEPARATOR_CHAR	':'
109 
110 /* IP ioctl function table entry */
111 typedef struct ipft_s {
112 	int	ipft_cmd;
113 	pfi_t	ipft_pfi;
114 	int	ipft_min_size;
115 	int	ipft_flags;
116 } ipft_t;
117 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
118 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
119 
120 typedef struct ip_sock_ar_s {
121 	union {
122 		area_t	ip_sock_area;
123 		ared_t	ip_sock_ared;
124 		areq_t	ip_sock_areq;
125 	} ip_sock_ar_u;
126 	queue_t	*ip_sock_ar_q;
127 } ip_sock_ar_t;
128 
129 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
130 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
131 		    char *value, caddr_t cp, cred_t *ioc_cr);
132 
133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
134 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
135 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
136     mblk_t *mp, boolean_t need_up);
137 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
138     mblk_t *mp, boolean_t need_up);
139 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
140     queue_t *q, mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
142     mblk_t *mp, boolean_t need_up);
143 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
144     mblk_t *mp);
145 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
146     queue_t *q, mblk_t *mp, boolean_t need_up);
147 static int	ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp,
148     sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl);
149 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
150 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
151 static void	ipsq_flush(ill_t *ill);
152 
153 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
154     queue_t *q, mblk_t *mp, boolean_t need_up);
155 static void	ipsq_delete(ipsq_t *);
156 
157 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
158 		    boolean_t initialize);
159 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
160 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
161 		    boolean_t isv6);
162 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
163 static void	ipif_delete_cache_ire(ire_t *, char *);
164 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
165 static void	ipif_free(ipif_t *ipif);
166 static void	ipif_free_tail(ipif_t *ipif);
167 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
168 static void	ipif_multicast_down(ipif_t *ipif);
169 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
170 static void	ipif_set_default(ipif_t *ipif);
171 static int	ipif_set_values(queue_t *q, mblk_t *mp,
172     char *interf_name, uint_t *ppa);
173 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
174     queue_t *q);
175 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
176     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
177     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
178 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
179 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
180 
181 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
182 static int	ill_arp_off(ill_t *ill);
183 static int	ill_arp_on(ill_t *ill);
184 static void	ill_delete_interface_type(ill_if_t *);
185 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
186 static void	ill_dl_down(ill_t *ill);
187 static void	ill_down(ill_t *ill);
188 static void	ill_downi(ire_t *ire, char *ill_arg);
189 static void	ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg);
190 static void	ill_down_tail(ill_t *ill);
191 static void	ill_free_mib(ill_t *ill);
192 static void	ill_glist_delete(ill_t *);
193 static boolean_t ill_has_usable_ipif(ill_t *);
194 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
195 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
196 static void	ill_phyint_free(ill_t *ill);
197 static void	ill_phyint_reinit(ill_t *ill);
198 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
199 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
200 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
202 static void	ill_stq_cache_delete(ire_t *, char *);
203 
204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207     in6_addr_t *);
208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     ipaddr_t *);
210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
212     in6_addr_t *);
213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
214     ipaddr_t *);
215 
216 static void	ipif_save_ire(ipif_t *, ire_t *);
217 static void	ipif_remove_ire(ipif_t *, ire_t *);
218 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
219 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
220 
221 /*
222  * Per-ill IPsec capabilities management.
223  */
224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
225 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
226 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
227 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
229 static void ill_capability_proto(ill_t *, int, mblk_t *);
230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
231     boolean_t);
232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
234 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
240     dl_capability_sub_t *);
241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
243 static void ill_capability_lso_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
246 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
247 static void	ill_capability_dls_disable(ill_t *);
248 
249 static void	illgrp_cache_delete(ire_t *, char *);
250 static void	illgrp_delete(ill_t *ill);
251 static void	illgrp_reset_schednext(ill_t *ill);
252 
253 static ill_t	*ill_prev_usesrc(ill_t *);
254 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
255 static void	ill_disband_usesrc_group(ill_t *);
256 
257 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
258 
259 /*
260  * if we go over the memory footprint limit more than once in this msec
261  * interval, we'll start pruning aggressively.
262  */
263 int ip_min_frag_prune_time = 0;
264 
265 /*
266  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
267  * and the IPsec DOI
268  */
269 #define	MAX_IPSEC_ALGS	256
270 
271 #define	BITSPERBYTE	8
272 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
273 
274 #define	IPSEC_ALG_ENABLE(algs, algid) \
275 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
276 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
277 
278 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
279 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
280 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
281 
282 typedef uint8_t ipsec_capab_elem_t;
283 
284 /*
285  * Per-algorithm parameters.  Note that at present, only encryption
286  * algorithms have variable keysize (IKE does not provide a way to negotiate
287  * auth algorithm keysize).
288  *
289  * All sizes here are in bits.
290  */
291 typedef struct
292 {
293 	uint16_t	minkeylen;
294 	uint16_t	maxkeylen;
295 } ipsec_capab_algparm_t;
296 
297 /*
298  * Per-ill capabilities.
299  */
300 struct ill_ipsec_capab_s {
301 	ipsec_capab_elem_t *encr_hw_algs;
302 	ipsec_capab_elem_t *auth_hw_algs;
303 	uint32_t algs_size;	/* size of _hw_algs in bytes */
304 	/* algorithm key lengths */
305 	ipsec_capab_algparm_t *encr_algparm;
306 	uint32_t encr_algparm_size;
307 	uint32_t encr_algparm_end;
308 };
309 
310 /*
311  * The field values are larger than strictly necessary for simple
312  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
313  */
314 static area_t	ip_area_template = {
315 	AR_ENTRY_ADD,			/* area_cmd */
316 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
317 					/* area_name_offset */
318 	/* area_name_length temporarily holds this structure length */
319 	sizeof (area_t),			/* area_name_length */
320 	IP_ARP_PROTO_TYPE,		/* area_proto */
321 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
322 	IP_ADDR_LEN,			/* area_proto_addr_length */
323 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
324 					/* area_proto_mask_offset */
325 	0,				/* area_flags */
326 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
327 					/* area_hw_addr_offset */
328 	/* Zero length hw_addr_length means 'use your idea of the address' */
329 	0				/* area_hw_addr_length */
330 };
331 
332 /*
333  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
334  * support
335  */
336 static area_t	ip6_area_template = {
337 	AR_ENTRY_ADD,			/* area_cmd */
338 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
339 					/* area_name_offset */
340 	/* area_name_length temporarily holds this structure length */
341 	sizeof (area_t),			/* area_name_length */
342 	IP_ARP_PROTO_TYPE,		/* area_proto */
343 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
344 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
345 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
346 					/* area_proto_mask_offset */
347 	0,				/* area_flags */
348 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
349 					/* area_hw_addr_offset */
350 	/* Zero length hw_addr_length means 'use your idea of the address' */
351 	0				/* area_hw_addr_length */
352 };
353 
354 static ared_t	ip_ared_template = {
355 	AR_ENTRY_DELETE,
356 	sizeof (ared_t) + IP_ADDR_LEN,
357 	sizeof (ared_t),
358 	IP_ARP_PROTO_TYPE,
359 	sizeof (ared_t),
360 	IP_ADDR_LEN
361 };
362 
363 static ared_t	ip6_ared_template = {
364 	AR_ENTRY_DELETE,
365 	sizeof (ared_t) + IPV6_ADDR_LEN,
366 	sizeof (ared_t),
367 	IP_ARP_PROTO_TYPE,
368 	sizeof (ared_t),
369 	IPV6_ADDR_LEN
370 };
371 
372 /*
373  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
374  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
375  * areq is used).
376  */
377 static areq_t	ip_areq_template = {
378 	AR_ENTRY_QUERY,			/* cmd */
379 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
380 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
381 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
382 	sizeof (areq_t),			/* target addr offset */
383 	IP_ADDR_LEN,			/* target addr_length */
384 	0,				/* flags */
385 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
386 	IP_ADDR_LEN,			/* sender addr length */
387 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
388 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
389 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
390 	/* anything else filled in by the code */
391 };
392 
393 static arc_t	ip_aru_template = {
394 	AR_INTERFACE_UP,
395 	sizeof (arc_t),		/* Name offset */
396 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
397 };
398 
399 static arc_t	ip_ard_template = {
400 	AR_INTERFACE_DOWN,
401 	sizeof (arc_t),		/* Name offset */
402 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
403 };
404 
405 static arc_t	ip_aron_template = {
406 	AR_INTERFACE_ON,
407 	sizeof (arc_t),		/* Name offset */
408 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
409 };
410 
411 static arc_t	ip_aroff_template = {
412 	AR_INTERFACE_OFF,
413 	sizeof (arc_t),		/* Name offset */
414 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
415 };
416 
417 
418 static arma_t	ip_arma_multi_template = {
419 	AR_MAPPING_ADD,
420 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
421 				/* Name offset */
422 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
423 	IP_ARP_PROTO_TYPE,
424 	sizeof (arma_t),			/* proto_addr_offset */
425 	IP_ADDR_LEN,				/* proto_addr_length */
426 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
427 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
428 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
429 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
430 	IP_MAX_HW_LEN,				/* hw_addr_length */
431 	0,					/* hw_mapping_start */
432 };
433 
434 static ipft_t	ip_ioctl_ftbl[] = {
435 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
436 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
437 		IPFT_F_NO_REPLY },
438 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
439 		IPFT_F_NO_REPLY },
440 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
441 	{ 0 }
442 };
443 
444 /* Simple ICMP IP Header Template */
445 static ipha_t icmp_ipha = {
446 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
447 };
448 
449 /* Flag descriptors for ip_ipif_report */
450 static nv_t	ipif_nv_tbl[] = {
451 	{ IPIF_UP,		"UP" },
452 	{ IPIF_BROADCAST,	"BROADCAST" },
453 	{ ILLF_DEBUG,		"DEBUG" },
454 	{ PHYI_LOOPBACK,	"LOOPBACK" },
455 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
456 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
457 	{ PHYI_RUNNING,		"RUNNING" },
458 	{ ILLF_NOARP,		"NOARP" },
459 	{ PHYI_PROMISC,		"PROMISC" },
460 	{ PHYI_ALLMULTI,	"ALLMULTI" },
461 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
462 	{ ILLF_MULTICAST,	"MULTICAST" },
463 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
464 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
465 	{ IPIF_DHCPRUNNING,	"DHCP" },
466 	{ IPIF_PRIVATE,		"PRIVATE" },
467 	{ IPIF_NOXMIT,		"NOXMIT" },
468 	{ IPIF_NOLOCAL,		"NOLOCAL" },
469 	{ IPIF_DEPRECATED,	"DEPRECATED" },
470 	{ IPIF_PREFERRED,	"PREFERRED" },
471 	{ IPIF_TEMPORARY,	"TEMPORARY" },
472 	{ IPIF_ADDRCONF,	"ADDRCONF" },
473 	{ PHYI_VIRTUAL,		"VIRTUAL" },
474 	{ ILLF_ROUTER,		"ROUTER" },
475 	{ ILLF_NONUD,		"NONUD" },
476 	{ IPIF_ANYCAST,		"ANYCAST" },
477 	{ ILLF_NORTEXCH,	"NORTEXCH" },
478 	{ ILLF_IPV4,		"IPV4" },
479 	{ ILLF_IPV6,		"IPV6" },
480 	{ IPIF_MIPRUNNING,	"MIP" },
481 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
482 	{ PHYI_FAILED,		"FAILED" },
483 	{ PHYI_STANDBY,		"STANDBY" },
484 	{ PHYI_INACTIVE,	"INACTIVE" },
485 	{ PHYI_OFFLINE,		"OFFLINE" },
486 };
487 
488 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
489 
490 static ip_m_t	ip_m_tbl[] = {
491 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
492 	    ip_ether_v6intfid },
493 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
494 	    ip_nodef_v6intfid },
495 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
496 	    ip_nodef_v6intfid },
497 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
498 	    ip_nodef_v6intfid },
499 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
500 	    ip_ether_v6intfid },
501 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
502 	    ip_ib_v6intfid },
503 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
504 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
505 	    ip_nodef_v6intfid }
506 };
507 
508 static ill_t	ill_null;		/* Empty ILL for init. */
509 char	ipif_loopback_name[] = "lo0";
510 static char *ipv4_forward_suffix = ":ip_forwarding";
511 static char *ipv6_forward_suffix = ":ip6_forwarding";
512 static	sin6_t	sin6_null;	/* Zero address for quick clears */
513 static	sin_t	sin_null;	/* Zero address for quick clears */
514 
515 /* When set search for unused ipif_seqid */
516 static ipif_t	ipif_zero;
517 
518 /*
519  * ppa arena is created after these many
520  * interfaces have been plumbed.
521  */
522 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
523 
524 /*
525  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
526  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
527  * set through platform specific code (Niagara/Ontario).
528  */
529 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
530 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
531 
532 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
533 
534 static uint_t
535 ipif_rand(ip_stack_t *ipst)
536 {
537 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
538 	    12345;
539 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
540 }
541 
542 /*
543  * Allocate per-interface mibs.
544  * Returns true if ok. False otherwise.
545  *  ipsq  may not yet be allocated (loopback case ).
546  */
547 static boolean_t
548 ill_allocate_mibs(ill_t *ill)
549 {
550 	/* Already allocated? */
551 	if (ill->ill_ip_mib != NULL) {
552 		if (ill->ill_isv6)
553 			ASSERT(ill->ill_icmp6_mib != NULL);
554 		return (B_TRUE);
555 	}
556 
557 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
558 	    KM_NOSLEEP);
559 	if (ill->ill_ip_mib == NULL) {
560 		return (B_FALSE);
561 	}
562 
563 	/* Setup static information */
564 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
565 	    sizeof (mib2_ipIfStatsEntry_t));
566 	if (ill->ill_isv6) {
567 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
568 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
569 		    sizeof (mib2_ipv6AddrEntry_t));
570 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
571 		    sizeof (mib2_ipv6RouteEntry_t));
572 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
573 		    sizeof (mib2_ipv6NetToMediaEntry_t));
574 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
575 		    sizeof (ipv6_member_t));
576 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
577 		    sizeof (ipv6_grpsrc_t));
578 	} else {
579 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
580 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
581 		    sizeof (mib2_ipAddrEntry_t));
582 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
583 		    sizeof (mib2_ipRouteEntry_t));
584 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
585 		    sizeof (mib2_ipNetToMediaEntry_t));
586 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
587 		    sizeof (ip_member_t));
588 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
589 		    sizeof (ip_grpsrc_t));
590 
591 		/*
592 		 * For a v4 ill, we are done at this point, because per ill
593 		 * icmp mibs are only used for v6.
594 		 */
595 		return (B_TRUE);
596 	}
597 
598 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
599 	    KM_NOSLEEP);
600 	if (ill->ill_icmp6_mib == NULL) {
601 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
602 		ill->ill_ip_mib = NULL;
603 		return (B_FALSE);
604 	}
605 	/* static icmp info */
606 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
607 	    sizeof (mib2_ipv6IfIcmpEntry_t);
608 	/*
609 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
610 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
611 	 * -> ill_phyint_reinit
612 	 */
613 	return (B_TRUE);
614 }
615 
616 /*
617  * Common code for preparation of ARP commands.  Two points to remember:
618  * 	1) The ill_name is tacked on at the end of the allocated space so
619  *	   the templates name_offset field must contain the total space
620  *	   to allocate less the name length.
621  *
622  *	2) The templates name_length field should contain the *template*
623  *	   length.  We use it as a parameter to bcopy() and then write
624  *	   the real ill_name_length into the name_length field of the copy.
625  * (Always called as writer.)
626  */
627 mblk_t *
628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
629 {
630 	arc_t	*arc = (arc_t *)template;
631 	char	*cp;
632 	int	len;
633 	mblk_t	*mp;
634 	uint_t	name_length = ill->ill_name_length;
635 	uint_t	template_len = arc->arc_name_length;
636 
637 	len = arc->arc_name_offset + name_length;
638 	mp = allocb(len, BPRI_HI);
639 	if (mp == NULL)
640 		return (NULL);
641 	cp = (char *)mp->b_rptr;
642 	mp->b_wptr = (uchar_t *)&cp[len];
643 	if (template_len)
644 		bcopy(template, cp, template_len);
645 	if (len > template_len)
646 		bzero(&cp[template_len], len - template_len);
647 	mp->b_datap->db_type = M_PROTO;
648 
649 	arc = (arc_t *)cp;
650 	arc->arc_name_length = name_length;
651 	cp = (char *)arc + arc->arc_name_offset;
652 	bcopy(ill->ill_name, cp, name_length);
653 
654 	if (addr) {
655 		area_t	*area = (area_t *)mp->b_rptr;
656 
657 		cp = (char *)area + area->area_proto_addr_offset;
658 		bcopy(addr, cp, area->area_proto_addr_length);
659 		if (area->area_cmd == AR_ENTRY_ADD) {
660 			cp = (char *)area;
661 			len = area->area_proto_addr_length;
662 			if (area->area_proto_mask_offset)
663 				cp += area->area_proto_mask_offset;
664 			else
665 				cp += area->area_proto_addr_offset + len;
666 			while (len-- > 0)
667 				*cp++ = (char)~0;
668 		}
669 	}
670 	return (mp);
671 }
672 
673 mblk_t *
674 ipif_area_alloc(ipif_t *ipif)
675 {
676 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
677 	    (char *)&ipif->ipif_lcl_addr));
678 }
679 
680 mblk_t *
681 ipif_ared_alloc(ipif_t *ipif)
682 {
683 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
684 	    (char *)&ipif->ipif_lcl_addr));
685 }
686 
687 mblk_t *
688 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
689 {
690 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
691 	    (char *)&addr));
692 }
693 
694 /*
695  * Completely vaporize a lower level tap and all associated interfaces.
696  * ill_delete is called only out of ip_close when the device control
697  * stream is being closed.
698  */
699 void
700 ill_delete(ill_t *ill)
701 {
702 	ipif_t	*ipif;
703 	ill_t	*prev_ill;
704 	ip_stack_t	*ipst = ill->ill_ipst;
705 
706 	/*
707 	 * ill_delete may be forcibly entering the ipsq. The previous
708 	 * ioctl may not have completed and may need to be aborted.
709 	 * ipsq_flush takes care of it. If we don't need to enter the
710 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
711 	 * ill_delete_tail is sufficient.
712 	 */
713 	ipsq_flush(ill);
714 
715 	/*
716 	 * Nuke all interfaces.  ipif_free will take down the interface,
717 	 * remove it from the list, and free the data structure.
718 	 * Walk down the ipif list and remove the logical interfaces
719 	 * first before removing the main ipif. We can't unplumb
720 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
721 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
722 	 * POINTOPOINT.
723 	 *
724 	 * If ill_ipif was not properly initialized (i.e low on memory),
725 	 * then no interfaces to clean up. In this case just clean up the
726 	 * ill.
727 	 */
728 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
729 		ipif_free(ipif);
730 
731 	/*
732 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
733 	 * So nobody can be using this mp now. Free the mp allocated for
734 	 * honoring ILLF_NOARP
735 	 */
736 	freemsg(ill->ill_arp_on_mp);
737 	ill->ill_arp_on_mp = NULL;
738 
739 	/* Clean up msgs on pending upcalls for mrouted */
740 	reset_mrt_ill(ill);
741 
742 	/*
743 	 * ipif_free -> reset_conn_ipif will remove all multicast
744 	 * references for IPv4. For IPv6, we need to do it here as
745 	 * it points only at ills.
746 	 */
747 	reset_conn_ill(ill);
748 
749 	/*
750 	 * ill_down will arrange to blow off any IRE's dependent on this
751 	 * ILL, and shut down fragmentation reassembly.
752 	 */
753 	ill_down(ill);
754 
755 	/* Let SCTP know, so that it can remove this from its list. */
756 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
757 
758 	/*
759 	 * If an address on this ILL is being used as a source address then
760 	 * clear out the pointers in other ILLs that point to this ILL.
761 	 */
762 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
763 	if (ill->ill_usesrc_grp_next != NULL) {
764 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
765 			ill_disband_usesrc_group(ill);
766 		} else {	/* consumer of the usesrc ILL */
767 			prev_ill = ill_prev_usesrc(ill);
768 			prev_ill->ill_usesrc_grp_next =
769 			    ill->ill_usesrc_grp_next;
770 		}
771 	}
772 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
773 }
774 
775 static void
776 ipif_non_duplicate(ipif_t *ipif)
777 {
778 	ill_t *ill = ipif->ipif_ill;
779 	mutex_enter(&ill->ill_lock);
780 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
781 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
782 		ASSERT(ill->ill_ipif_dup_count > 0);
783 		ill->ill_ipif_dup_count--;
784 	}
785 	mutex_exit(&ill->ill_lock);
786 }
787 
788 /*
789  * ill_delete_tail is called from ip_modclose after all references
790  * to the closing ill are gone. The wait is done in ip_modclose
791  */
792 void
793 ill_delete_tail(ill_t *ill)
794 {
795 	mblk_t	**mpp;
796 	ipif_t	*ipif;
797 	ip_stack_t	*ipst = ill->ill_ipst;
798 
799 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
800 		ipif_non_duplicate(ipif);
801 		ipif_down_tail(ipif);
802 	}
803 
804 	ASSERT(ill->ill_ipif_dup_count == 0 &&
805 	    ill->ill_arp_down_mp == NULL &&
806 	    ill->ill_arp_del_mapping_mp == NULL);
807 
808 	/*
809 	 * If polling capability is enabled (which signifies direct
810 	 * upcall into IP and driver has ill saved as a handle),
811 	 * we need to make sure that unbind has completed before we
812 	 * let the ill disappear and driver no longer has any reference
813 	 * to this ill.
814 	 */
815 	mutex_enter(&ill->ill_lock);
816 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
817 		cv_wait(&ill->ill_cv, &ill->ill_lock);
818 	mutex_exit(&ill->ill_lock);
819 
820 	/*
821 	 * Clean up polling and soft ring capabilities
822 	 */
823 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
824 		ill_capability_dls_disable(ill);
825 
826 	if (ill->ill_net_type != IRE_LOOPBACK)
827 		qprocsoff(ill->ill_rq);
828 
829 	/*
830 	 * We do an ipsq_flush once again now. New messages could have
831 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
832 	 * could also have landed up if an ioctl thread had looked up
833 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
834 	 * enqueued the ioctl when we did the ipsq_flush last time.
835 	 */
836 	ipsq_flush(ill);
837 
838 	/*
839 	 * Free capabilities.
840 	 */
841 	if (ill->ill_ipsec_capab_ah != NULL) {
842 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
843 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
844 		ill->ill_ipsec_capab_ah = NULL;
845 	}
846 
847 	if (ill->ill_ipsec_capab_esp != NULL) {
848 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
849 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
850 		ill->ill_ipsec_capab_esp = NULL;
851 	}
852 
853 	if (ill->ill_mdt_capab != NULL) {
854 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
855 		ill->ill_mdt_capab = NULL;
856 	}
857 
858 	if (ill->ill_hcksum_capab != NULL) {
859 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
860 		ill->ill_hcksum_capab = NULL;
861 	}
862 
863 	if (ill->ill_zerocopy_capab != NULL) {
864 		kmem_free(ill->ill_zerocopy_capab,
865 		    sizeof (ill_zerocopy_capab_t));
866 		ill->ill_zerocopy_capab = NULL;
867 	}
868 
869 	if (ill->ill_lso_capab != NULL) {
870 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
871 		ill->ill_lso_capab = NULL;
872 	}
873 
874 	if (ill->ill_dls_capab != NULL) {
875 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
876 		ill->ill_dls_capab->ill_unbind_conn = NULL;
877 		kmem_free(ill->ill_dls_capab,
878 		    sizeof (ill_dls_capab_t) +
879 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
880 		ill->ill_dls_capab = NULL;
881 	}
882 
883 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
884 
885 	while (ill->ill_ipif != NULL)
886 		ipif_free_tail(ill->ill_ipif);
887 
888 	ill_down_tail(ill);
889 
890 	/*
891 	 * We have removed all references to ilm from conn and the ones joined
892 	 * within the kernel.
893 	 *
894 	 * We don't walk conns, mrts and ires because
895 	 *
896 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
897 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
898 	 *    ill references.
899 	 */
900 	ASSERT(ilm_walk_ill(ill) == 0);
901 	/*
902 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
903 	 * could free the phyint. No more reference to the phyint after this
904 	 * point.
905 	 */
906 	(void) ill_glist_delete(ill);
907 
908 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
909 	if (ill->ill_ndd_name != NULL)
910 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
911 	rw_exit(&ipst->ips_ip_g_nd_lock);
912 
913 
914 	if (ill->ill_frag_ptr != NULL) {
915 		uint_t count;
916 
917 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
918 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
919 		}
920 		mi_free(ill->ill_frag_ptr);
921 		ill->ill_frag_ptr = NULL;
922 		ill->ill_frag_hash_tbl = NULL;
923 	}
924 
925 	freemsg(ill->ill_nd_lla_mp);
926 	/* Free all retained control messages. */
927 	mpp = &ill->ill_first_mp_to_free;
928 	do {
929 		while (mpp[0]) {
930 			mblk_t  *mp;
931 			mblk_t  *mp1;
932 
933 			mp = mpp[0];
934 			mpp[0] = mp->b_next;
935 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
936 				mp1->b_next = NULL;
937 				mp1->b_prev = NULL;
938 			}
939 			freemsg(mp);
940 		}
941 	} while (mpp++ != &ill->ill_last_mp_to_free);
942 
943 	ill_free_mib(ill);
944 	/* Drop refcnt here */
945 	netstack_rele(ill->ill_ipst->ips_netstack);
946 	ill->ill_ipst = NULL;
947 
948 	ILL_TRACE_CLEANUP(ill);
949 }
950 
951 static void
952 ill_free_mib(ill_t *ill)
953 {
954 	ip_stack_t *ipst = ill->ill_ipst;
955 
956 	/*
957 	 * MIB statistics must not be lost, so when an interface
958 	 * goes away the counter values will be added to the global
959 	 * MIBs.
960 	 */
961 	if (ill->ill_ip_mib != NULL) {
962 		if (ill->ill_isv6) {
963 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
964 			    ill->ill_ip_mib);
965 		} else {
966 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
967 			    ill->ill_ip_mib);
968 		}
969 
970 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
971 		ill->ill_ip_mib = NULL;
972 	}
973 	if (ill->ill_icmp6_mib != NULL) {
974 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
975 		    ill->ill_icmp6_mib);
976 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
977 		ill->ill_icmp6_mib = NULL;
978 	}
979 }
980 
981 /*
982  * Concatenate together a physical address and a sap.
983  *
984  * Sap_lengths are interpreted as follows:
985  *   sap_length == 0	==>	no sap
986  *   sap_length > 0	==>	sap is at the head of the dlpi address
987  *   sap_length < 0	==>	sap is at the tail of the dlpi address
988  */
989 static void
990 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
991     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
992 {
993 	uint16_t sap_addr = (uint16_t)sap_src;
994 
995 	if (sap_length == 0) {
996 		if (phys_src == NULL)
997 			bzero(dst, phys_length);
998 		else
999 			bcopy(phys_src, dst, phys_length);
1000 	} else if (sap_length < 0) {
1001 		if (phys_src == NULL)
1002 			bzero(dst, phys_length);
1003 		else
1004 			bcopy(phys_src, dst, phys_length);
1005 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1006 	} else {
1007 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1008 		if (phys_src == NULL)
1009 			bzero((char *)dst + sap_length, phys_length);
1010 		else
1011 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1012 	}
1013 }
1014 
1015 /*
1016  * Generate a dl_unitdata_req mblk for the device and address given.
1017  * addr_length is the length of the physical portion of the address.
1018  * If addr is NULL include an all zero address of the specified length.
1019  * TRUE? In any case, addr_length is taken to be the entire length of the
1020  * dlpi address, including the absolute value of sap_length.
1021  */
1022 mblk_t *
1023 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1024 		t_scalar_t sap_length)
1025 {
1026 	dl_unitdata_req_t *dlur;
1027 	mblk_t	*mp;
1028 	t_scalar_t	abs_sap_length;		/* absolute value */
1029 
1030 	abs_sap_length = ABS(sap_length);
1031 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1032 	    DL_UNITDATA_REQ);
1033 	if (mp == NULL)
1034 		return (NULL);
1035 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1036 	/* HACK: accomodate incompatible DLPI drivers */
1037 	if (addr_length == 8)
1038 		addr_length = 6;
1039 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1040 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1041 	dlur->dl_priority.dl_min = 0;
1042 	dlur->dl_priority.dl_max = 0;
1043 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1044 	    (uchar_t *)&dlur[1]);
1045 	return (mp);
1046 }
1047 
1048 /*
1049  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1050  * Return an error if we already have 1 or more ioctls in progress.
1051  * This is used only for non-exclusive ioctls. Currently this is used
1052  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1053  * and thus need to use ipsq_pending_mp_add.
1054  */
1055 boolean_t
1056 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1057 {
1058 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1059 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1060 	/*
1061 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1062 	 */
1063 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1064 	    (add_mp->b_datap->db_type == M_IOCTL));
1065 
1066 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1067 	/*
1068 	 * Return error if the conn has started closing. The conn
1069 	 * could have finished cleaning up the pending mp list,
1070 	 * If so we should not add another mp to the list negating
1071 	 * the cleanup.
1072 	 */
1073 	if (connp->conn_state_flags & CONN_CLOSING)
1074 		return (B_FALSE);
1075 	/*
1076 	 * Add the pending mp to the head of the list, chained by b_next.
1077 	 * Note down the conn on which the ioctl request came, in b_prev.
1078 	 * This will be used to later get the conn, when we get a response
1079 	 * on the ill queue, from some other module (typically arp)
1080 	 */
1081 	add_mp->b_next = (void *)ill->ill_pending_mp;
1082 	add_mp->b_queue = CONNP_TO_WQ(connp);
1083 	ill->ill_pending_mp = add_mp;
1084 	if (connp != NULL)
1085 		connp->conn_oper_pending_ill = ill;
1086 	return (B_TRUE);
1087 }
1088 
1089 /*
1090  * Retrieve the ill_pending_mp and return it. We have to walk the list
1091  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1092  */
1093 mblk_t *
1094 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1095 {
1096 	mblk_t	*prev = NULL;
1097 	mblk_t	*curr = NULL;
1098 	uint_t	id;
1099 	conn_t	*connp;
1100 
1101 	/*
1102 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1103 	 * up the pending mp, but it does not know the ioc_id and
1104 	 * passes in a zero for it.
1105 	 */
1106 	mutex_enter(&ill->ill_lock);
1107 	if (ioc_id != 0)
1108 		*connpp = NULL;
1109 
1110 	/* Search the list for the appropriate ioctl based on ioc_id */
1111 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1112 	    prev = curr, curr = curr->b_next) {
1113 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1114 		connp = Q_TO_CONN(curr->b_queue);
1115 		/* Match based on the ioc_id or based on the conn */
1116 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1117 			break;
1118 	}
1119 
1120 	if (curr != NULL) {
1121 		/* Unlink the mblk from the pending mp list */
1122 		if (prev != NULL) {
1123 			prev->b_next = curr->b_next;
1124 		} else {
1125 			ASSERT(ill->ill_pending_mp == curr);
1126 			ill->ill_pending_mp = curr->b_next;
1127 		}
1128 
1129 		/*
1130 		 * conn refcnt must have been bumped up at the start of
1131 		 * the ioctl. So we can safely access the conn.
1132 		 */
1133 		ASSERT(CONN_Q(curr->b_queue));
1134 		*connpp = Q_TO_CONN(curr->b_queue);
1135 		curr->b_next = NULL;
1136 		curr->b_queue = NULL;
1137 	}
1138 
1139 	mutex_exit(&ill->ill_lock);
1140 
1141 	return (curr);
1142 }
1143 
1144 /*
1145  * Add the pending mp to the list. There can be only 1 pending mp
1146  * in the list. Any exclusive ioctl that needs to wait for a response
1147  * from another module or driver needs to use this function to set
1148  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1149  * the other module/driver. This is also used while waiting for the
1150  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1151  */
1152 boolean_t
1153 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1154     int waitfor)
1155 {
1156 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1157 
1158 	ASSERT(IAM_WRITER_IPIF(ipif));
1159 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1160 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1161 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1162 	/*
1163 	 * The caller may be using a different ipif than the one passed into
1164 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1165 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1166 	 * that `ipsq_current_ipif == ipif'.
1167 	 */
1168 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1169 
1170 	/*
1171 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1172 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1173 	 */
1174 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1175 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1176 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1177 
1178 	if (connp != NULL) {
1179 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1180 		/*
1181 		 * Return error if the conn has started closing. The conn
1182 		 * could have finished cleaning up the pending mp list,
1183 		 * If so we should not add another mp to the list negating
1184 		 * the cleanup.
1185 		 */
1186 		if (connp->conn_state_flags & CONN_CLOSING)
1187 			return (B_FALSE);
1188 	}
1189 	mutex_enter(&ipsq->ipsq_lock);
1190 	ipsq->ipsq_pending_ipif = ipif;
1191 	/*
1192 	 * Note down the queue in b_queue. This will be returned by
1193 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1194 	 * the processing
1195 	 */
1196 	add_mp->b_next = NULL;
1197 	add_mp->b_queue = q;
1198 	ipsq->ipsq_pending_mp = add_mp;
1199 	ipsq->ipsq_waitfor = waitfor;
1200 
1201 	if (connp != NULL)
1202 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1203 	mutex_exit(&ipsq->ipsq_lock);
1204 	return (B_TRUE);
1205 }
1206 
1207 /*
1208  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1209  * queued in the list.
1210  */
1211 mblk_t *
1212 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1213 {
1214 	mblk_t	*curr = NULL;
1215 
1216 	mutex_enter(&ipsq->ipsq_lock);
1217 	*connpp = NULL;
1218 	if (ipsq->ipsq_pending_mp == NULL) {
1219 		mutex_exit(&ipsq->ipsq_lock);
1220 		return (NULL);
1221 	}
1222 
1223 	/* There can be only 1 such excl message */
1224 	curr = ipsq->ipsq_pending_mp;
1225 	ASSERT(curr != NULL && curr->b_next == NULL);
1226 	ipsq->ipsq_pending_ipif = NULL;
1227 	ipsq->ipsq_pending_mp = NULL;
1228 	ipsq->ipsq_waitfor = 0;
1229 	mutex_exit(&ipsq->ipsq_lock);
1230 
1231 	if (CONN_Q(curr->b_queue)) {
1232 		/*
1233 		 * This mp did a refhold on the conn, at the start of the ioctl.
1234 		 * So we can safely return a pointer to the conn to the caller.
1235 		 */
1236 		*connpp = Q_TO_CONN(curr->b_queue);
1237 	} else {
1238 		*connpp = NULL;
1239 	}
1240 	curr->b_next = NULL;
1241 	curr->b_prev = NULL;
1242 	return (curr);
1243 }
1244 
1245 /*
1246  * Cleanup the ioctl mp queued in ipsq_pending_mp
1247  * - Called in the ill_delete path
1248  * - Called in the M_ERROR or M_HANGUP path on the ill.
1249  * - Called in the conn close path.
1250  */
1251 boolean_t
1252 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1253 {
1254 	mblk_t	*mp;
1255 	ipsq_t	*ipsq;
1256 	queue_t	*q;
1257 	ipif_t	*ipif;
1258 
1259 	ASSERT(IAM_WRITER_ILL(ill));
1260 	ipsq = ill->ill_phyint->phyint_ipsq;
1261 	mutex_enter(&ipsq->ipsq_lock);
1262 	/*
1263 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1264 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1265 	 * even if it is meant for another ill, since we have to enqueue
1266 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1267 	 * If connp is non-null we are called from the conn close path.
1268 	 */
1269 	mp = ipsq->ipsq_pending_mp;
1270 	if (mp == NULL || (connp != NULL &&
1271 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1272 		mutex_exit(&ipsq->ipsq_lock);
1273 		return (B_FALSE);
1274 	}
1275 	/* Now remove from the ipsq_pending_mp */
1276 	ipsq->ipsq_pending_mp = NULL;
1277 	q = mp->b_queue;
1278 	mp->b_next = NULL;
1279 	mp->b_prev = NULL;
1280 	mp->b_queue = NULL;
1281 
1282 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1283 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1284 	if (ill->ill_move_in_progress) {
1285 		ILL_CLEAR_MOVE(ill);
1286 	} else if (ill->ill_up_ipifs) {
1287 		ill_group_cleanup(ill);
1288 	}
1289 
1290 	ipif = ipsq->ipsq_pending_ipif;
1291 	ipsq->ipsq_pending_ipif = NULL;
1292 	ipsq->ipsq_waitfor = 0;
1293 	ipsq->ipsq_current_ipif = NULL;
1294 	ipsq->ipsq_current_ioctl = 0;
1295 	mutex_exit(&ipsq->ipsq_lock);
1296 
1297 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1298 		if (connp == NULL) {
1299 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1300 		} else {
1301 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1302 			mutex_enter(&ipif->ipif_ill->ill_lock);
1303 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1304 			mutex_exit(&ipif->ipif_ill->ill_lock);
1305 		}
1306 	} else {
1307 		/*
1308 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1309 		 * be just inet_freemsg. we have to restart it
1310 		 * otherwise the thread will be stuck.
1311 		 */
1312 		inet_freemsg(mp);
1313 	}
1314 	return (B_TRUE);
1315 }
1316 
1317 /*
1318  * The ill is closing. Cleanup all the pending mps. Called exclusively
1319  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1320  * knows this ill, and hence nobody can add an mp to this list
1321  */
1322 static void
1323 ill_pending_mp_cleanup(ill_t *ill)
1324 {
1325 	mblk_t	*mp;
1326 	queue_t	*q;
1327 
1328 	ASSERT(IAM_WRITER_ILL(ill));
1329 
1330 	mutex_enter(&ill->ill_lock);
1331 	/*
1332 	 * Every mp on the pending mp list originating from an ioctl
1333 	 * added 1 to the conn refcnt, at the start of the ioctl.
1334 	 * So bump it down now.  See comments in ip_wput_nondata()
1335 	 */
1336 	while (ill->ill_pending_mp != NULL) {
1337 		mp = ill->ill_pending_mp;
1338 		ill->ill_pending_mp = mp->b_next;
1339 		mutex_exit(&ill->ill_lock);
1340 
1341 		q = mp->b_queue;
1342 		ASSERT(CONN_Q(q));
1343 		mp->b_next = NULL;
1344 		mp->b_prev = NULL;
1345 		mp->b_queue = NULL;
1346 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1347 		mutex_enter(&ill->ill_lock);
1348 	}
1349 	ill->ill_pending_ipif = NULL;
1350 
1351 	mutex_exit(&ill->ill_lock);
1352 }
1353 
1354 /*
1355  * Called in the conn close path and ill delete path
1356  */
1357 static void
1358 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1359 {
1360 	ipsq_t	*ipsq;
1361 	mblk_t	*prev;
1362 	mblk_t	*curr;
1363 	mblk_t	*next;
1364 	queue_t	*q;
1365 	mblk_t	*tmp_list = NULL;
1366 
1367 	ASSERT(IAM_WRITER_ILL(ill));
1368 	if (connp != NULL)
1369 		q = CONNP_TO_WQ(connp);
1370 	else
1371 		q = ill->ill_wq;
1372 
1373 	ipsq = ill->ill_phyint->phyint_ipsq;
1374 	/*
1375 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1376 	 * In the case of ioctl from a conn, there can be only 1 mp
1377 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1378 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1379 	 * ioctls meant for this ill form conn's are not flushed. They will
1380 	 * be processed during ipsq_exit and will not find the ill and will
1381 	 * return error.
1382 	 */
1383 	mutex_enter(&ipsq->ipsq_lock);
1384 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1385 	    curr = next) {
1386 		next = curr->b_next;
1387 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1388 			/* Unlink the mblk from the pending mp list */
1389 			if (prev != NULL) {
1390 				prev->b_next = curr->b_next;
1391 			} else {
1392 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1393 				ipsq->ipsq_xopq_mphead = curr->b_next;
1394 			}
1395 			if (ipsq->ipsq_xopq_mptail == curr)
1396 				ipsq->ipsq_xopq_mptail = prev;
1397 			/*
1398 			 * Create a temporary list and release the ipsq lock
1399 			 * New elements are added to the head of the tmp_list
1400 			 */
1401 			curr->b_next = tmp_list;
1402 			tmp_list = curr;
1403 		} else {
1404 			prev = curr;
1405 		}
1406 	}
1407 	mutex_exit(&ipsq->ipsq_lock);
1408 
1409 	while (tmp_list != NULL) {
1410 		curr = tmp_list;
1411 		tmp_list = curr->b_next;
1412 		curr->b_next = NULL;
1413 		curr->b_prev = NULL;
1414 		curr->b_queue = NULL;
1415 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1416 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1417 			    CONN_CLOSE : NO_COPYOUT, NULL);
1418 		} else {
1419 			/*
1420 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1421 			 * this can't be just inet_freemsg. we have to
1422 			 * restart it otherwise the thread will be stuck.
1423 			 */
1424 			inet_freemsg(curr);
1425 		}
1426 	}
1427 }
1428 
1429 /*
1430  * This conn has started closing. Cleanup any pending ioctl from this conn.
1431  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1432  */
1433 void
1434 conn_ioctl_cleanup(conn_t *connp)
1435 {
1436 	mblk_t *curr;
1437 	ipsq_t	*ipsq;
1438 	ill_t	*ill;
1439 	boolean_t refheld;
1440 
1441 	/*
1442 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1443 	 * ioctl has not yet started, the mp is pending in the list headed by
1444 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1445 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1446 	 * is currently executing now the mp is not queued anywhere but
1447 	 * conn_oper_pending_ill is null. The conn close will wait
1448 	 * till the conn_ref drops to zero.
1449 	 */
1450 	mutex_enter(&connp->conn_lock);
1451 	ill = connp->conn_oper_pending_ill;
1452 	if (ill == NULL) {
1453 		mutex_exit(&connp->conn_lock);
1454 		return;
1455 	}
1456 
1457 	curr = ill_pending_mp_get(ill, &connp, 0);
1458 	if (curr != NULL) {
1459 		mutex_exit(&connp->conn_lock);
1460 		CONN_DEC_REF(connp);
1461 		inet_freemsg(curr);
1462 		return;
1463 	}
1464 	/*
1465 	 * We may not be able to refhold the ill if the ill/ipif
1466 	 * is changing. But we need to make sure that the ill will
1467 	 * not vanish. So we just bump up the ill_waiter count.
1468 	 */
1469 	refheld = ill_waiter_inc(ill);
1470 	mutex_exit(&connp->conn_lock);
1471 	if (refheld) {
1472 		if (ipsq_enter(ill, B_TRUE)) {
1473 			ill_waiter_dcr(ill);
1474 			/*
1475 			 * Check whether this ioctl has started and is
1476 			 * pending now in ipsq_pending_mp. If it is not
1477 			 * found there then check whether this ioctl has
1478 			 * not even started and is in the ipsq_xopq list.
1479 			 */
1480 			if (!ipsq_pending_mp_cleanup(ill, connp))
1481 				ipsq_xopq_mp_cleanup(ill, connp);
1482 			ipsq = ill->ill_phyint->phyint_ipsq;
1483 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1484 			return;
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * The ill is also closing and we could not bump up the
1490 	 * ill_waiter_count or we could not enter the ipsq. Leave
1491 	 * the cleanup to ill_delete
1492 	 */
1493 	mutex_enter(&connp->conn_lock);
1494 	while (connp->conn_oper_pending_ill != NULL)
1495 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1496 	mutex_exit(&connp->conn_lock);
1497 	if (refheld)
1498 		ill_waiter_dcr(ill);
1499 }
1500 
1501 /*
1502  * ipcl_walk function for cleaning up conn_*_ill fields.
1503  */
1504 static void
1505 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1506 {
1507 	ill_t	*ill = (ill_t *)arg;
1508 	ire_t	*ire;
1509 
1510 	mutex_enter(&connp->conn_lock);
1511 	if (connp->conn_multicast_ill == ill) {
1512 		/* Revert to late binding */
1513 		connp->conn_multicast_ill = NULL;
1514 		connp->conn_orig_multicast_ifindex = 0;
1515 	}
1516 	if (connp->conn_incoming_ill == ill)
1517 		connp->conn_incoming_ill = NULL;
1518 	if (connp->conn_outgoing_ill == ill)
1519 		connp->conn_outgoing_ill = NULL;
1520 	if (connp->conn_outgoing_pill == ill)
1521 		connp->conn_outgoing_pill = NULL;
1522 	if (connp->conn_nofailover_ill == ill)
1523 		connp->conn_nofailover_ill = NULL;
1524 	if (connp->conn_xmit_if_ill == ill)
1525 		connp->conn_xmit_if_ill = NULL;
1526 	if (connp->conn_ire_cache != NULL) {
1527 		ire = connp->conn_ire_cache;
1528 		/*
1529 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1530 		 * interface X and ipif coming from interface Y, if interface
1531 		 * X and Y are part of the same IPMPgroup. Thus whenever
1532 		 * interface X goes down, remove all references to it by
1533 		 * checking both on ire_ipif and ire_stq.
1534 		 */
1535 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1536 		    (ire->ire_type == IRE_CACHE &&
1537 		    ire->ire_stq == ill->ill_wq)) {
1538 			connp->conn_ire_cache = NULL;
1539 			mutex_exit(&connp->conn_lock);
1540 			ire_refrele_notr(ire);
1541 			return;
1542 		}
1543 	}
1544 	mutex_exit(&connp->conn_lock);
1545 
1546 }
1547 
1548 /* ARGSUSED */
1549 void
1550 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1551 {
1552 	ill_t	*ill = q->q_ptr;
1553 	ipif_t	*ipif;
1554 
1555 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1556 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1557 		ipif_non_duplicate(ipif);
1558 		ipif_down_tail(ipif);
1559 	}
1560 	ill_down_tail(ill);
1561 	freemsg(mp);
1562 	ipsq_current_finish(ipsq);
1563 }
1564 
1565 /*
1566  * ill_down_start is called when we want to down this ill and bring it up again
1567  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1568  * all interfaces, but don't tear down any plumbing.
1569  */
1570 boolean_t
1571 ill_down_start(queue_t *q, mblk_t *mp)
1572 {
1573 	ill_t	*ill = q->q_ptr;
1574 	ipif_t	*ipif;
1575 
1576 	ASSERT(IAM_WRITER_ILL(ill));
1577 
1578 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1579 		(void) ipif_down(ipif, NULL, NULL);
1580 
1581 	ill_down(ill);
1582 
1583 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1584 
1585 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1586 
1587 	/*
1588 	 * Atomically test and add the pending mp if references are active.
1589 	 */
1590 	mutex_enter(&ill->ill_lock);
1591 	if (!ill_is_quiescent(ill)) {
1592 		/* call cannot fail since `conn_t *' argument is NULL */
1593 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1594 		    mp, ILL_DOWN);
1595 		mutex_exit(&ill->ill_lock);
1596 		return (B_FALSE);
1597 	}
1598 	mutex_exit(&ill->ill_lock);
1599 	return (B_TRUE);
1600 }
1601 
1602 static void
1603 ill_down(ill_t *ill)
1604 {
1605 	ip_stack_t	*ipst = ill->ill_ipst;
1606 
1607 	/* Blow off any IREs dependent on this ILL. */
1608 	ire_walk(ill_downi, (char *)ill, ipst);
1609 
1610 	mutex_enter(&ipst->ips_ire_mrtun_lock);
1611 	if (ipst->ips_ire_mrtun_count != 0) {
1612 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1613 		ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif,
1614 		    (char *)ill, NULL, ipst);
1615 	} else {
1616 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1617 	}
1618 
1619 	/*
1620 	 * If any interface based forwarding table exists
1621 	 * Blow off the ires there dependent on this ill
1622 	 */
1623 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
1624 	if (ipst->ips_ire_srcif_table_count > 0) {
1625 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1626 		ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill,
1627 		    ipst);
1628 	} else {
1629 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1630 	}
1631 
1632 	/* Remove any conn_*_ill depending on this ill */
1633 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1634 
1635 	if (ill->ill_group != NULL) {
1636 		illgrp_delete(ill);
1637 	}
1638 }
1639 
1640 static void
1641 ill_down_tail(ill_t *ill)
1642 {
1643 	int	i;
1644 
1645 	/* Destroy ill_srcif_table if it exists */
1646 	/* Lock not reqd really because nobody should be able to access */
1647 	mutex_enter(&ill->ill_lock);
1648 	if (ill->ill_srcif_table != NULL) {
1649 		ill->ill_srcif_refcnt = 0;
1650 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
1651 			rw_destroy(&ill->ill_srcif_table[i].irb_lock);
1652 		}
1653 		kmem_free(ill->ill_srcif_table,
1654 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t));
1655 		ill->ill_srcif_table = NULL;
1656 		ill->ill_srcif_refcnt = 0;
1657 		ill->ill_mrtun_refcnt = 0;
1658 	}
1659 	mutex_exit(&ill->ill_lock);
1660 }
1661 
1662 /*
1663  * ire_walk routine used to delete every IRE that depends on queues
1664  * associated with 'ill'.  (Always called as writer.)
1665  */
1666 static void
1667 ill_downi(ire_t *ire, char *ill_arg)
1668 {
1669 	ill_t	*ill = (ill_t *)ill_arg;
1670 
1671 	/*
1672 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1673 	 * interface X and ipif coming from interface Y, if interface
1674 	 * X and Y are part of the same IPMP group. Thus whenever interface
1675 	 * X goes down, remove all references to it by checking both
1676 	 * on ire_ipif and ire_stq.
1677 	 */
1678 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1679 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1680 		ire_delete(ire);
1681 	}
1682 }
1683 
1684 /*
1685  * A seperate routine for deleting revtun and srcif based routes
1686  * are needed because the ires only deleted when the interface
1687  * is unplumbed. Also these ires have ire_in_ill non-null as well.
1688  * we want to keep mobile IP specific code separate.
1689  */
1690 static void
1691 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg)
1692 {
1693 	ill_t   *ill = (ill_t *)ill_arg;
1694 
1695 	ASSERT(ire->ire_in_ill != NULL);
1696 
1697 	if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) ||
1698 	    (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) {
1699 		ire_delete(ire);
1700 	}
1701 }
1702 
1703 /*
1704  * Remove ire/nce from the fastpath list.
1705  */
1706 void
1707 ill_fastpath_nack(ill_t *ill)
1708 {
1709 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1710 }
1711 
1712 /* Consume an M_IOCACK of the fastpath probe. */
1713 void
1714 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1715 {
1716 	mblk_t	*mp1 = mp;
1717 
1718 	/*
1719 	 * If this was the first attempt turn on the fastpath probing.
1720 	 */
1721 	mutex_enter(&ill->ill_lock);
1722 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1723 		ill->ill_dlpi_fastpath_state = IDS_OK;
1724 	mutex_exit(&ill->ill_lock);
1725 
1726 	/* Free the M_IOCACK mblk, hold on to the data */
1727 	mp = mp->b_cont;
1728 	freeb(mp1);
1729 	if (mp == NULL)
1730 		return;
1731 	if (mp->b_cont != NULL) {
1732 		/*
1733 		 * Update all IRE's or NCE's that are waiting for
1734 		 * fastpath update.
1735 		 */
1736 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1737 		mp1 = mp->b_cont;
1738 		freeb(mp);
1739 		mp = mp1;
1740 	} else {
1741 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1742 	}
1743 
1744 	freeb(mp);
1745 }
1746 
1747 /*
1748  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1749  * The data portion of the request is a dl_unitdata_req_t template for
1750  * what we would send downstream in the absence of a fastpath confirmation.
1751  */
1752 int
1753 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1754 {
1755 	struct iocblk	*ioc;
1756 	mblk_t	*mp;
1757 
1758 	if (dlur_mp == NULL)
1759 		return (EINVAL);
1760 
1761 	mutex_enter(&ill->ill_lock);
1762 	switch (ill->ill_dlpi_fastpath_state) {
1763 	case IDS_FAILED:
1764 		/*
1765 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1766 		 * support it.
1767 		 */
1768 		mutex_exit(&ill->ill_lock);
1769 		return (ENOTSUP);
1770 	case IDS_UNKNOWN:
1771 		/* This is the first probe */
1772 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1773 		break;
1774 	default:
1775 		break;
1776 	}
1777 	mutex_exit(&ill->ill_lock);
1778 
1779 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1780 		return (EAGAIN);
1781 
1782 	mp->b_cont = copyb(dlur_mp);
1783 	if (mp->b_cont == NULL) {
1784 		freeb(mp);
1785 		return (EAGAIN);
1786 	}
1787 
1788 	ioc = (struct iocblk *)mp->b_rptr;
1789 	ioc->ioc_count = msgdsize(mp->b_cont);
1790 
1791 	putnext(ill->ill_wq, mp);
1792 	return (0);
1793 }
1794 
1795 void
1796 ill_capability_probe(ill_t *ill)
1797 {
1798 	/*
1799 	 * Do so only if negotiation is enabled, capabilities are unknown,
1800 	 * and a capability negotiation is not already in progress.
1801 	 */
1802 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN &&
1803 	    ill->ill_dlpi_capab_state != IDS_RENEG)
1804 		return;
1805 
1806 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1807 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1808 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1809 }
1810 
1811 void
1812 ill_capability_reset(ill_t *ill)
1813 {
1814 	mblk_t *sc_mp = NULL;
1815 	mblk_t *tmp;
1816 
1817 	/*
1818 	 * Note here that we reset the state to UNKNOWN, and later send
1819 	 * down the DL_CAPABILITY_REQ without first setting the state to
1820 	 * INPROGRESS.  We do this in order to distinguish the
1821 	 * DL_CAPABILITY_ACK response which may come back in response to
1822 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1823 	 * also handle the case where the driver doesn't send us back
1824 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1825 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1826 	 * features are turned off until the state reaches IDS_OK.
1827 	 */
1828 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1829 
1830 	/*
1831 	 * Disable sub-capabilities and request a list of sub-capability
1832 	 * messages which will be sent down to the driver.  Each handler
1833 	 * allocates the corresponding dl_capability_sub_t inside an
1834 	 * mblk, and links it to the existing sc_mp mblk, or return it
1835 	 * as sc_mp if it's the first sub-capability (the passed in
1836 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1837 	 * sc_mp will be pulled-up, before passing it downstream.
1838 	 */
1839 	ill_capability_mdt_reset(ill, &sc_mp);
1840 	ill_capability_hcksum_reset(ill, &sc_mp);
1841 	ill_capability_zerocopy_reset(ill, &sc_mp);
1842 	ill_capability_ipsec_reset(ill, &sc_mp);
1843 	ill_capability_dls_reset(ill, &sc_mp);
1844 	ill_capability_lso_reset(ill, &sc_mp);
1845 
1846 	/* Nothing to send down in order to disable the capabilities? */
1847 	if (sc_mp == NULL)
1848 		return;
1849 
1850 	tmp = msgpullup(sc_mp, -1);
1851 	freemsg(sc_mp);
1852 	if ((sc_mp = tmp) == NULL) {
1853 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1854 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1855 		return;
1856 	}
1857 
1858 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1859 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1860 }
1861 
1862 /*
1863  * Request or set new-style hardware capabilities supported by DLS provider.
1864  */
1865 static void
1866 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1867 {
1868 	mblk_t *mp;
1869 	dl_capability_req_t *capb;
1870 	size_t size = 0;
1871 	uint8_t *ptr;
1872 
1873 	if (reqp != NULL)
1874 		size = MBLKL(reqp);
1875 
1876 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1877 	if (mp == NULL) {
1878 		freemsg(reqp);
1879 		return;
1880 	}
1881 	ptr = mp->b_rptr;
1882 
1883 	capb = (dl_capability_req_t *)ptr;
1884 	ptr += sizeof (dl_capability_req_t);
1885 
1886 	if (reqp != NULL) {
1887 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1888 		capb->dl_sub_length = size;
1889 		bcopy(reqp->b_rptr, ptr, size);
1890 		ptr += size;
1891 		mp->b_cont = reqp->b_cont;
1892 		freeb(reqp);
1893 	}
1894 	ASSERT(ptr == mp->b_wptr);
1895 
1896 	ill_dlpi_send(ill, mp);
1897 }
1898 
1899 static void
1900 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1901 {
1902 	dl_capab_id_t *id_ic;
1903 	uint_t sub_dl_cap = outers->dl_cap;
1904 	dl_capability_sub_t *inners;
1905 	uint8_t *capend;
1906 
1907 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1908 
1909 	/*
1910 	 * Note: range checks here are not absolutely sufficient to
1911 	 * make us robust against malformed messages sent by drivers;
1912 	 * this is in keeping with the rest of IP's dlpi handling.
1913 	 * (Remember, it's coming from something else in the kernel
1914 	 * address space)
1915 	 */
1916 
1917 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1918 	if (capend > mp->b_wptr) {
1919 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1920 		    "malformed sub-capability too long for mblk");
1921 		return;
1922 	}
1923 
1924 	id_ic = (dl_capab_id_t *)(outers + 1);
1925 
1926 	if (outers->dl_length < sizeof (*id_ic) ||
1927 	    (inners = &id_ic->id_subcap,
1928 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1929 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1930 		    "encapsulated capab type %d too long for mblk",
1931 		    inners->dl_cap);
1932 		return;
1933 	}
1934 
1935 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1936 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1937 		    "isn't as expected; pass-thru module(s) detected, "
1938 		    "discarding capability\n", inners->dl_cap));
1939 		return;
1940 	}
1941 
1942 	/* Process the encapsulated sub-capability */
1943 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1944 }
1945 
1946 /*
1947  * Process Multidata Transmit capability negotiation ack received from a
1948  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1949  * DL_CAPABILITY_ACK message.
1950  */
1951 static void
1952 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1953 {
1954 	mblk_t *nmp = NULL;
1955 	dl_capability_req_t *oc;
1956 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1957 	ill_mdt_capab_t **ill_mdt_capab;
1958 	uint_t sub_dl_cap = isub->dl_cap;
1959 	uint8_t *capend;
1960 
1961 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1962 
1963 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1964 
1965 	/*
1966 	 * Note: range checks here are not absolutely sufficient to
1967 	 * make us robust against malformed messages sent by drivers;
1968 	 * this is in keeping with the rest of IP's dlpi handling.
1969 	 * (Remember, it's coming from something else in the kernel
1970 	 * address space)
1971 	 */
1972 
1973 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1974 	if (capend > mp->b_wptr) {
1975 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1976 		    "malformed sub-capability too long for mblk");
1977 		return;
1978 	}
1979 
1980 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1981 
1982 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1983 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1984 		    "unsupported MDT sub-capability (version %d, expected %d)",
1985 		    mdt_ic->mdt_version, MDT_VERSION_2);
1986 		return;
1987 	}
1988 
1989 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1990 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1991 		    "capability isn't as expected; pass-thru module(s) "
1992 		    "detected, discarding capability\n"));
1993 		return;
1994 	}
1995 
1996 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1997 
1998 		if (*ill_mdt_capab == NULL) {
1999 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
2000 			    KM_NOSLEEP);
2001 
2002 			if (*ill_mdt_capab == NULL) {
2003 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2004 				    "could not enable MDT version %d "
2005 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
2006 				    ill->ill_name);
2007 				return;
2008 			}
2009 		}
2010 
2011 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
2012 		    "MDT version %d (%d bytes leading, %d bytes trailing "
2013 		    "header spaces, %d max pld bufs, %d span limit)\n",
2014 		    ill->ill_name, MDT_VERSION_2,
2015 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
2016 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
2017 
2018 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
2019 		(*ill_mdt_capab)->ill_mdt_on = 1;
2020 		/*
2021 		 * Round the following values to the nearest 32-bit; ULP
2022 		 * may further adjust them to accomodate for additional
2023 		 * protocol headers.  We pass these values to ULP during
2024 		 * bind time.
2025 		 */
2026 		(*ill_mdt_capab)->ill_mdt_hdr_head =
2027 		    roundup(mdt_ic->mdt_hdr_head, 4);
2028 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
2029 		    roundup(mdt_ic->mdt_hdr_tail, 4);
2030 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
2031 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
2032 
2033 		ill->ill_capabilities |= ILL_CAPAB_MDT;
2034 	} else {
2035 		uint_t size;
2036 		uchar_t *rptr;
2037 
2038 		size = sizeof (dl_capability_req_t) +
2039 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2040 
2041 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2042 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2043 			    "could not enable MDT for %s (ENOMEM)\n",
2044 			    ill->ill_name);
2045 			return;
2046 		}
2047 
2048 		rptr = nmp->b_rptr;
2049 		/* initialize dl_capability_req_t */
2050 		oc = (dl_capability_req_t *)nmp->b_rptr;
2051 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2052 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2053 		    sizeof (dl_capab_mdt_t);
2054 		nmp->b_rptr += sizeof (dl_capability_req_t);
2055 
2056 		/* initialize dl_capability_sub_t */
2057 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2058 		nmp->b_rptr += sizeof (*isub);
2059 
2060 		/* initialize dl_capab_mdt_t */
2061 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2062 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2063 
2064 		nmp->b_rptr = rptr;
2065 
2066 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2067 		    "to enable MDT version %d\n", ill->ill_name,
2068 		    MDT_VERSION_2));
2069 
2070 		/* set ENABLE flag */
2071 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2072 
2073 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2074 		ill_dlpi_send(ill, nmp);
2075 	}
2076 }
2077 
2078 static void
2079 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2080 {
2081 	mblk_t *mp;
2082 	dl_capab_mdt_t *mdt_subcap;
2083 	dl_capability_sub_t *dl_subcap;
2084 	int size;
2085 
2086 	if (!ILL_MDT_CAPABLE(ill))
2087 		return;
2088 
2089 	ASSERT(ill->ill_mdt_capab != NULL);
2090 	/*
2091 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2092 	 * structure since it's possible that another thread is still
2093 	 * referring to it.  The structure only gets deallocated when
2094 	 * we destroy the ill.
2095 	 */
2096 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2097 
2098 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2099 
2100 	mp = allocb(size, BPRI_HI);
2101 	if (mp == NULL) {
2102 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2103 		    "request to disable MDT\n"));
2104 		return;
2105 	}
2106 
2107 	mp->b_wptr = mp->b_rptr + size;
2108 
2109 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2110 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2111 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2112 
2113 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2114 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2115 	mdt_subcap->mdt_flags = 0;
2116 	mdt_subcap->mdt_hdr_head = 0;
2117 	mdt_subcap->mdt_hdr_tail = 0;
2118 
2119 	if (*sc_mp != NULL)
2120 		linkb(*sc_mp, mp);
2121 	else
2122 		*sc_mp = mp;
2123 }
2124 
2125 /*
2126  * Send a DL_NOTIFY_REQ to the specified ill to enable
2127  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2128  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2129  * acceleration.
2130  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2131  */
2132 static boolean_t
2133 ill_enable_promisc_notify(ill_t *ill)
2134 {
2135 	mblk_t *mp;
2136 	dl_notify_req_t *req;
2137 
2138 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2139 
2140 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2141 	if (mp == NULL)
2142 		return (B_FALSE);
2143 
2144 	req = (dl_notify_req_t *)mp->b_rptr;
2145 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2146 	    DL_NOTE_PROMISC_OFF_PHYS;
2147 
2148 	ill_dlpi_send(ill, mp);
2149 
2150 	return (B_TRUE);
2151 }
2152 
2153 
2154 /*
2155  * Allocate an IPsec capability request which will be filled by our
2156  * caller to turn on support for one or more algorithms.
2157  */
2158 static mblk_t *
2159 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2160 {
2161 	mblk_t *nmp;
2162 	dl_capability_req_t	*ocap;
2163 	dl_capab_ipsec_t	*ocip;
2164 	dl_capab_ipsec_t	*icip;
2165 	uint8_t			*ptr;
2166 	icip = (dl_capab_ipsec_t *)(isub + 1);
2167 
2168 	/*
2169 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2170 	 * PROMISC_ON/OFF notification from the provider. We need to
2171 	 * do this before enabling the algorithms to avoid leakage of
2172 	 * cleartext packets.
2173 	 */
2174 
2175 	if (!ill_enable_promisc_notify(ill))
2176 		return (NULL);
2177 
2178 	/*
2179 	 * Allocate new mblk which will contain a new capability
2180 	 * request to enable the capabilities.
2181 	 */
2182 
2183 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2184 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2185 	if (nmp == NULL)
2186 		return (NULL);
2187 
2188 	ptr = nmp->b_rptr;
2189 
2190 	/* initialize dl_capability_req_t */
2191 	ocap = (dl_capability_req_t *)ptr;
2192 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2193 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2194 	ptr += sizeof (dl_capability_req_t);
2195 
2196 	/* initialize dl_capability_sub_t */
2197 	bcopy(isub, ptr, sizeof (*isub));
2198 	ptr += sizeof (*isub);
2199 
2200 	/* initialize dl_capab_ipsec_t */
2201 	ocip = (dl_capab_ipsec_t *)ptr;
2202 	bcopy(icip, ocip, sizeof (*icip));
2203 
2204 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2205 	return (nmp);
2206 }
2207 
2208 /*
2209  * Process an IPsec capability negotiation ack received from a DLS Provider.
2210  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2211  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2212  */
2213 static void
2214 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2215 {
2216 	dl_capab_ipsec_t	*icip;
2217 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2218 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2219 	uint_t cipher, nciphers;
2220 	mblk_t *nmp;
2221 	uint_t alg_len;
2222 	boolean_t need_sadb_dump;
2223 	uint_t sub_dl_cap = isub->dl_cap;
2224 	ill_ipsec_capab_t **ill_capab;
2225 	uint64_t ill_capab_flag;
2226 	uint8_t *capend, *ciphend;
2227 	boolean_t sadb_resync;
2228 
2229 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2230 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2231 
2232 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2233 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2234 		ill_capab_flag = ILL_CAPAB_AH;
2235 	} else {
2236 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2237 		ill_capab_flag = ILL_CAPAB_ESP;
2238 	}
2239 
2240 	/*
2241 	 * If the ill capability structure exists, then this incoming
2242 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2243 	 * If this is so, then we'd need to resynchronize the SADB
2244 	 * after re-enabling the offloaded ciphers.
2245 	 */
2246 	sadb_resync = (*ill_capab != NULL);
2247 
2248 	/*
2249 	 * Note: range checks here are not absolutely sufficient to
2250 	 * make us robust against malformed messages sent by drivers;
2251 	 * this is in keeping with the rest of IP's dlpi handling.
2252 	 * (Remember, it's coming from something else in the kernel
2253 	 * address space)
2254 	 */
2255 
2256 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2257 	if (capend > mp->b_wptr) {
2258 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2259 		    "malformed sub-capability too long for mblk");
2260 		return;
2261 	}
2262 
2263 	/*
2264 	 * There are two types of acks we process here:
2265 	 * 1. acks in reply to a (first form) generic capability req
2266 	 *    (no ENABLE flag set)
2267 	 * 2. acks in reply to a ENABLE capability req.
2268 	 *    (ENABLE flag set)
2269 	 *
2270 	 * We process the subcapability passed as argument as follows:
2271 	 * 1 do initializations
2272 	 *   1.1 initialize nmp = NULL
2273 	 *   1.2 set need_sadb_dump to B_FALSE
2274 	 * 2 for each cipher in subcapability:
2275 	 *   2.1 if ENABLE flag is set:
2276 	 *	2.1.1 update per-ill ipsec capabilities info
2277 	 *	2.1.2 set need_sadb_dump to B_TRUE
2278 	 *   2.2 if ENABLE flag is not set:
2279 	 *	2.2.1 if nmp is NULL:
2280 	 *		2.2.1.1 allocate and initialize nmp
2281 	 *		2.2.1.2 init current pos in nmp
2282 	 *	2.2.2 copy current cipher to current pos in nmp
2283 	 *	2.2.3 set ENABLE flag in nmp
2284 	 *	2.2.4 update current pos
2285 	 * 3 if nmp is not equal to NULL, send enable request
2286 	 *   3.1 send capability request
2287 	 * 4 if need_sadb_dump is B_TRUE
2288 	 *   4.1 enable promiscuous on/off notifications
2289 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2290 	 *	AH or ESP SA's to interface.
2291 	 */
2292 
2293 	nmp = NULL;
2294 	oalg = NULL;
2295 	need_sadb_dump = B_FALSE;
2296 	icip = (dl_capab_ipsec_t *)(isub + 1);
2297 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2298 
2299 	nciphers = icip->cip_nciphers;
2300 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2301 
2302 	if (ciphend > capend) {
2303 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2304 		    "too many ciphers for sub-capability len");
2305 		return;
2306 	}
2307 
2308 	for (cipher = 0; cipher < nciphers; cipher++) {
2309 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2310 
2311 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2312 			/*
2313 			 * TBD: when we provide a way to disable capabilities
2314 			 * from above, need to manage the request-pending state
2315 			 * and fail if we were not expecting this ACK.
2316 			 */
2317 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2318 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2319 
2320 			/*
2321 			 * Update IPsec capabilities for this ill
2322 			 */
2323 
2324 			if (*ill_capab == NULL) {
2325 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2326 				    ("ill_capability_ipsec_ack: "
2327 				    "allocating ipsec_capab for ill\n"));
2328 				*ill_capab = ill_ipsec_capab_alloc();
2329 
2330 				if (*ill_capab == NULL) {
2331 					cmn_err(CE_WARN,
2332 					    "ill_capability_ipsec_ack: "
2333 					    "could not enable IPsec Hardware "
2334 					    "acceleration for %s (ENOMEM)\n",
2335 					    ill->ill_name);
2336 					return;
2337 				}
2338 			}
2339 
2340 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2341 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2342 
2343 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2344 				cmn_err(CE_WARN,
2345 				    "ill_capability_ipsec_ack: "
2346 				    "malformed IPsec algorithm id %d",
2347 				    ialg->alg_prim);
2348 				continue;
2349 			}
2350 
2351 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2352 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2353 				    ialg->alg_prim);
2354 			} else {
2355 				ipsec_capab_algparm_t *alp;
2356 
2357 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2358 				    ialg->alg_prim);
2359 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2360 				    ialg->alg_prim)) {
2361 					cmn_err(CE_WARN,
2362 					    "ill_capability_ipsec_ack: "
2363 					    "no space for IPsec alg id %d",
2364 					    ialg->alg_prim);
2365 					continue;
2366 				}
2367 				alp = &((*ill_capab)->encr_algparm[
2368 				    ialg->alg_prim]);
2369 				alp->minkeylen = ialg->alg_minbits;
2370 				alp->maxkeylen = ialg->alg_maxbits;
2371 			}
2372 			ill->ill_capabilities |= ill_capab_flag;
2373 			/*
2374 			 * indicate that a capability was enabled, which
2375 			 * will be used below to kick off a SADB dump
2376 			 * to the ill.
2377 			 */
2378 			need_sadb_dump = B_TRUE;
2379 		} else {
2380 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2381 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2382 			    ialg->alg_prim));
2383 
2384 			if (nmp == NULL) {
2385 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2386 				if (nmp == NULL) {
2387 					/*
2388 					 * Sending the PROMISC_ON/OFF
2389 					 * notification request failed.
2390 					 * We cannot enable the algorithms
2391 					 * since the Provider will not
2392 					 * notify IP of promiscous mode
2393 					 * changes, which could lead
2394 					 * to leakage of packets.
2395 					 */
2396 					cmn_err(CE_WARN,
2397 					    "ill_capability_ipsec_ack: "
2398 					    "could not enable IPsec Hardware "
2399 					    "acceleration for %s (ENOMEM)\n",
2400 					    ill->ill_name);
2401 					return;
2402 				}
2403 				/* ptr to current output alg specifier */
2404 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2405 			}
2406 
2407 			/*
2408 			 * Copy current alg specifier, set ENABLE
2409 			 * flag, and advance to next output alg.
2410 			 * For now we enable all IPsec capabilities.
2411 			 */
2412 			ASSERT(oalg != NULL);
2413 			bcopy(ialg, oalg, alg_len);
2414 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2415 			nmp->b_wptr += alg_len;
2416 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2417 		}
2418 
2419 		/* move to next input algorithm specifier */
2420 		ialg = (dl_capab_ipsec_alg_t *)
2421 		    ((char *)ialg + alg_len);
2422 	}
2423 
2424 	if (nmp != NULL)
2425 		/*
2426 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2427 		 * IPsec hardware acceleration.
2428 		 */
2429 		ill_dlpi_send(ill, nmp);
2430 
2431 	if (need_sadb_dump)
2432 		/*
2433 		 * An acknowledgement corresponding to a request to
2434 		 * enable acceleration was received, notify SADB.
2435 		 */
2436 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2437 }
2438 
2439 /*
2440  * Given an mblk with enough space in it, create sub-capability entries for
2441  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2442  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2443  * in preparation for the reset the DL_CAPABILITY_REQ message.
2444  */
2445 static void
2446 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2447     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2448 {
2449 	dl_capab_ipsec_t *oipsec;
2450 	dl_capab_ipsec_alg_t *oalg;
2451 	dl_capability_sub_t *dl_subcap;
2452 	int i, k;
2453 
2454 	ASSERT(nciphers > 0);
2455 	ASSERT(ill_cap != NULL);
2456 	ASSERT(mp != NULL);
2457 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2458 
2459 	/* dl_capability_sub_t for "stype" */
2460 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2461 	dl_subcap->dl_cap = stype;
2462 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2463 	mp->b_wptr += sizeof (dl_capability_sub_t);
2464 
2465 	/* dl_capab_ipsec_t for "stype" */
2466 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2467 	oipsec->cip_version = 1;
2468 	oipsec->cip_nciphers = nciphers;
2469 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2470 
2471 	/* create entries for "stype" AUTH ciphers */
2472 	for (i = 0; i < ill_cap->algs_size; i++) {
2473 		for (k = 0; k < BITSPERBYTE; k++) {
2474 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2475 				continue;
2476 
2477 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2478 			bzero((void *)oalg, sizeof (*oalg));
2479 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2480 			oalg->alg_prim = k + (BITSPERBYTE * i);
2481 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2482 		}
2483 	}
2484 	/* create entries for "stype" ENCR ciphers */
2485 	for (i = 0; i < ill_cap->algs_size; i++) {
2486 		for (k = 0; k < BITSPERBYTE; k++) {
2487 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2488 				continue;
2489 
2490 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2491 			bzero((void *)oalg, sizeof (*oalg));
2492 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2493 			oalg->alg_prim = k + (BITSPERBYTE * i);
2494 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2495 		}
2496 	}
2497 }
2498 
2499 /*
2500  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2501  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2502  * POPC instruction, but our macro is more flexible for an arbitrary length
2503  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2504  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2505  * stays that way, we can reduce the number of iterations required.
2506  */
2507 #define	COUNT_1S(val, sum) {					\
2508 	uint8_t x = val & 0xff;					\
2509 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2510 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2511 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2512 }
2513 
2514 /* ARGSUSED */
2515 static void
2516 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2517 {
2518 	mblk_t *mp;
2519 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2520 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2521 	uint64_t ill_capabilities = ill->ill_capabilities;
2522 	int ah_cnt = 0, esp_cnt = 0;
2523 	int ah_len = 0, esp_len = 0;
2524 	int i, size = 0;
2525 
2526 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2527 		return;
2528 
2529 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2530 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2531 
2532 	/* Find out the number of ciphers for AH */
2533 	if (cap_ah != NULL) {
2534 		for (i = 0; i < cap_ah->algs_size; i++) {
2535 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2536 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2537 		}
2538 		if (ah_cnt > 0) {
2539 			size += sizeof (dl_capability_sub_t) +
2540 			    sizeof (dl_capab_ipsec_t);
2541 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2542 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2543 			size += ah_len;
2544 		}
2545 	}
2546 
2547 	/* Find out the number of ciphers for ESP */
2548 	if (cap_esp != NULL) {
2549 		for (i = 0; i < cap_esp->algs_size; i++) {
2550 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2551 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2552 		}
2553 		if (esp_cnt > 0) {
2554 			size += sizeof (dl_capability_sub_t) +
2555 			    sizeof (dl_capab_ipsec_t);
2556 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2557 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2558 			size += esp_len;
2559 		}
2560 	}
2561 
2562 	if (size == 0) {
2563 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2564 		    "there's nothing to reset\n"));
2565 		return;
2566 	}
2567 
2568 	mp = allocb(size, BPRI_HI);
2569 	if (mp == NULL) {
2570 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2571 		    "request to disable IPSEC Hardware Acceleration\n"));
2572 		return;
2573 	}
2574 
2575 	/*
2576 	 * Clear the capability flags for IPSec HA but retain the ill
2577 	 * capability structures since it's possible that another thread
2578 	 * is still referring to them.  The structures only get deallocated
2579 	 * when we destroy the ill.
2580 	 *
2581 	 * Various places check the flags to see if the ill is capable of
2582 	 * hardware acceleration, and by clearing them we ensure that new
2583 	 * outbound IPSec packets are sent down encrypted.
2584 	 */
2585 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2586 
2587 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2588 	if (ah_cnt > 0) {
2589 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2590 		    cap_ah, mp);
2591 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2592 	}
2593 
2594 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2595 	if (esp_cnt > 0) {
2596 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2597 		    cap_esp, mp);
2598 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2599 	}
2600 
2601 	/*
2602 	 * At this point we've composed a bunch of sub-capabilities to be
2603 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2604 	 * by the caller.  Upon receiving this reset message, the driver
2605 	 * must stop inbound decryption (by destroying all inbound SAs)
2606 	 * and let the corresponding packets come in encrypted.
2607 	 */
2608 
2609 	if (*sc_mp != NULL)
2610 		linkb(*sc_mp, mp);
2611 	else
2612 		*sc_mp = mp;
2613 }
2614 
2615 static void
2616 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2617     boolean_t encapsulated)
2618 {
2619 	boolean_t legacy = B_FALSE;
2620 
2621 	/*
2622 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2623 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2624 	 * instructed the driver to disable its advertised capabilities,
2625 	 * so there's no point in accepting any response at this moment.
2626 	 */
2627 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2628 		return;
2629 
2630 	/*
2631 	 * Note that only the following two sub-capabilities may be
2632 	 * considered as "legacy", since their original definitions
2633 	 * do not incorporate the dl_mid_t module ID token, and hence
2634 	 * may require the use of the wrapper sub-capability.
2635 	 */
2636 	switch (subp->dl_cap) {
2637 	case DL_CAPAB_IPSEC_AH:
2638 	case DL_CAPAB_IPSEC_ESP:
2639 		legacy = B_TRUE;
2640 		break;
2641 	}
2642 
2643 	/*
2644 	 * For legacy sub-capabilities which don't incorporate a queue_t
2645 	 * pointer in their structures, discard them if we detect that
2646 	 * there are intermediate modules in between IP and the driver.
2647 	 */
2648 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2649 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2650 		    "%d discarded; %d module(s) present below IP\n",
2651 		    subp->dl_cap, ill->ill_lmod_cnt));
2652 		return;
2653 	}
2654 
2655 	switch (subp->dl_cap) {
2656 	case DL_CAPAB_IPSEC_AH:
2657 	case DL_CAPAB_IPSEC_ESP:
2658 		ill_capability_ipsec_ack(ill, mp, subp);
2659 		break;
2660 	case DL_CAPAB_MDT:
2661 		ill_capability_mdt_ack(ill, mp, subp);
2662 		break;
2663 	case DL_CAPAB_HCKSUM:
2664 		ill_capability_hcksum_ack(ill, mp, subp);
2665 		break;
2666 	case DL_CAPAB_ZEROCOPY:
2667 		ill_capability_zerocopy_ack(ill, mp, subp);
2668 		break;
2669 	case DL_CAPAB_POLL:
2670 		if (!SOFT_RINGS_ENABLED())
2671 			ill_capability_dls_ack(ill, mp, subp);
2672 		break;
2673 	case DL_CAPAB_SOFT_RING:
2674 		if (SOFT_RINGS_ENABLED())
2675 			ill_capability_dls_ack(ill, mp, subp);
2676 		break;
2677 	case DL_CAPAB_LSO:
2678 		ill_capability_lso_ack(ill, mp, subp);
2679 		break;
2680 	default:
2681 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2682 		    subp->dl_cap));
2683 	}
2684 }
2685 
2686 /*
2687  * As part of negotiating polling capability, the driver tells us
2688  * the default (or normal) blanking interval and packet threshold
2689  * (the receive timer fires if blanking interval is reached or
2690  * the packet threshold is reached).
2691  *
2692  * As part of manipulating the polling interval, we always use our
2693  * estimated interval (avg service time * number of packets queued
2694  * on the squeue) but we try to blank for a minimum of
2695  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2696  * packet threshold during this time. When we are not in polling mode
2697  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2698  * rr_min_blank_ratio but up the packet cnt by a ratio of
2699  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2700  * possible although for a shorter interval.
2701  */
2702 #define	RR_MAX_BLANK_RATIO	20
2703 #define	RR_MIN_BLANK_RATIO	10
2704 #define	RR_MAX_PKT_CNT_RATIO	3
2705 #define	RR_MIN_PKT_CNT_RATIO	3
2706 
2707 /*
2708  * These can be tuned via /etc/system.
2709  */
2710 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2711 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2712 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2713 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2714 
2715 static mac_resource_handle_t
2716 ill_ring_add(void *arg, mac_resource_t *mrp)
2717 {
2718 	ill_t			*ill = (ill_t *)arg;
2719 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2720 	ill_rx_ring_t		*rx_ring;
2721 	int			ip_rx_index;
2722 
2723 	ASSERT(mrp != NULL);
2724 	if (mrp->mr_type != MAC_RX_FIFO) {
2725 		return (NULL);
2726 	}
2727 	ASSERT(ill != NULL);
2728 	ASSERT(ill->ill_dls_capab != NULL);
2729 
2730 	mutex_enter(&ill->ill_lock);
2731 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2732 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2733 		ASSERT(rx_ring != NULL);
2734 
2735 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2736 			time_t normal_blank_time =
2737 			    mrfp->mrf_normal_blank_time;
2738 			uint_t normal_pkt_cnt =
2739 			    mrfp->mrf_normal_pkt_count;
2740 
2741 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2742 
2743 	rx_ring->rr_blank = mrfp->mrf_blank;
2744 	rx_ring->rr_handle = mrfp->mrf_arg;
2745 	rx_ring->rr_ill = ill;
2746 	rx_ring->rr_normal_blank_time = normal_blank_time;
2747 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2748 
2749 			rx_ring->rr_max_blank_time =
2750 			    normal_blank_time * rr_max_blank_ratio;
2751 			rx_ring->rr_min_blank_time =
2752 			    normal_blank_time * rr_min_blank_ratio;
2753 			rx_ring->rr_max_pkt_cnt =
2754 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2755 			rx_ring->rr_min_pkt_cnt =
2756 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2757 
2758 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2759 			mutex_exit(&ill->ill_lock);
2760 
2761 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2762 			    (int), ip_rx_index);
2763 			return ((mac_resource_handle_t)rx_ring);
2764 		}
2765 	}
2766 
2767 	/*
2768 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2769 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2770 	 * should be made configurable. Meanwhile it cause no panic because
2771 	 * driver will pass ip_input a NULL handle which will make
2772 	 * IP allocate the default squeue and Polling mode will not
2773 	 * be used for this ring.
2774 	 */
2775 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2776 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2777 
2778 	mutex_exit(&ill->ill_lock);
2779 	return (NULL);
2780 }
2781 
2782 static boolean_t
2783 ill_capability_dls_init(ill_t *ill)
2784 {
2785 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2786 	conn_t 			*connp;
2787 	size_t			sz;
2788 	ip_stack_t *ipst = ill->ill_ipst;
2789 
2790 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2791 		if (ill_dls == NULL) {
2792 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2793 			    "soft_ring enabled for ill=%s (%p) but data "
2794 			    "structs uninitialized\n", ill->ill_name,
2795 			    (void *)ill);
2796 		}
2797 		return (B_TRUE);
2798 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2799 		if (ill_dls == NULL) {
2800 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2801 			    "polling enabled for ill=%s (%p) but data "
2802 			    "structs uninitialized\n", ill->ill_name,
2803 			    (void *)ill);
2804 		}
2805 		return (B_TRUE);
2806 	}
2807 
2808 	if (ill_dls != NULL) {
2809 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2810 		/* Soft_Ring or polling is being re-enabled */
2811 
2812 		connp = ill_dls->ill_unbind_conn;
2813 		ASSERT(rx_ring != NULL);
2814 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2815 		bzero((void *)rx_ring,
2816 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2817 		ill_dls->ill_ring_tbl = rx_ring;
2818 		ill_dls->ill_unbind_conn = connp;
2819 		return (B_TRUE);
2820 	}
2821 
2822 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2823 	    ipst->ips_netstack)) == NULL)
2824 		return (B_FALSE);
2825 
2826 	sz = sizeof (ill_dls_capab_t);
2827 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2828 
2829 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2830 	if (ill_dls == NULL) {
2831 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2832 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2833 		    (void *)ill);
2834 		CONN_DEC_REF(connp);
2835 		return (B_FALSE);
2836 	}
2837 
2838 	/* Allocate space to hold ring table */
2839 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2840 	ill->ill_dls_capab = ill_dls;
2841 	ill_dls->ill_unbind_conn = connp;
2842 	return (B_TRUE);
2843 }
2844 
2845 /*
2846  * ill_capability_dls_disable: disable soft_ring and/or polling
2847  * capability. Since any of the rings might already be in use, need
2848  * to call ip_squeue_clean_all() which gets behind the squeue to disable
2849  * direct calls if necessary.
2850  */
2851 static void
2852 ill_capability_dls_disable(ill_t *ill)
2853 {
2854 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2855 
2856 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2857 		ip_squeue_clean_all(ill);
2858 		ill_dls->ill_tx = NULL;
2859 		ill_dls->ill_tx_handle = NULL;
2860 		ill_dls->ill_dls_change_status = NULL;
2861 		ill_dls->ill_dls_bind = NULL;
2862 		ill_dls->ill_dls_unbind = NULL;
2863 	}
2864 
2865 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2866 }
2867 
2868 static void
2869 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2870     dl_capability_sub_t *isub)
2871 {
2872 	uint_t			size;
2873 	uchar_t			*rptr;
2874 	dl_capab_dls_t	dls, *odls;
2875 	ill_dls_capab_t	*ill_dls;
2876 	mblk_t			*nmp = NULL;
2877 	dl_capability_req_t	*ocap;
2878 	uint_t			sub_dl_cap = isub->dl_cap;
2879 
2880 	if (!ill_capability_dls_init(ill))
2881 		return;
2882 	ill_dls = ill->ill_dls_capab;
2883 
2884 	/* Copy locally to get the members aligned */
2885 	bcopy((void *)idls, (void *)&dls,
2886 	    sizeof (dl_capab_dls_t));
2887 
2888 	/* Get the tx function and handle from dld */
2889 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2890 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2891 
2892 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2893 		ill_dls->ill_dls_change_status =
2894 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2895 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2896 		ill_dls->ill_dls_unbind =
2897 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2898 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2899 	}
2900 
2901 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2902 	    isub->dl_length;
2903 
2904 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2905 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2906 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2907 		    ill->ill_name, (void *)ill);
2908 		return;
2909 	}
2910 
2911 	/* initialize dl_capability_req_t */
2912 	rptr = nmp->b_rptr;
2913 	ocap = (dl_capability_req_t *)rptr;
2914 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2915 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2916 	rptr += sizeof (dl_capability_req_t);
2917 
2918 	/* initialize dl_capability_sub_t */
2919 	bcopy(isub, rptr, sizeof (*isub));
2920 	rptr += sizeof (*isub);
2921 
2922 	odls = (dl_capab_dls_t *)rptr;
2923 	rptr += sizeof (dl_capab_dls_t);
2924 
2925 	/* initialize dl_capab_dls_t to be sent down */
2926 	dls.dls_rx_handle = (uintptr_t)ill;
2927 	dls.dls_rx = (uintptr_t)ip_input;
2928 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2929 
2930 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2931 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2932 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2933 		dls.dls_flags = SOFT_RING_ENABLE;
2934 	} else {
2935 		dls.dls_flags = POLL_ENABLE;
2936 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2937 		    "to enable polling\n", ill->ill_name));
2938 	}
2939 	bcopy((void *)&dls, (void *)odls,
2940 	    sizeof (dl_capab_dls_t));
2941 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2942 	/*
2943 	 * nmp points to a DL_CAPABILITY_REQ message to
2944 	 * enable either soft_ring or polling
2945 	 */
2946 	ill_dlpi_send(ill, nmp);
2947 }
2948 
2949 static void
2950 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2951 {
2952 	mblk_t *mp;
2953 	dl_capab_dls_t *idls;
2954 	dl_capability_sub_t *dl_subcap;
2955 	int size;
2956 
2957 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2958 		return;
2959 
2960 	ASSERT(ill->ill_dls_capab != NULL);
2961 
2962 	size = sizeof (*dl_subcap) + sizeof (*idls);
2963 
2964 	mp = allocb(size, BPRI_HI);
2965 	if (mp == NULL) {
2966 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2967 		    "request to disable soft_ring\n"));
2968 		return;
2969 	}
2970 
2971 	mp->b_wptr = mp->b_rptr + size;
2972 
2973 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2974 	dl_subcap->dl_length = sizeof (*idls);
2975 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2976 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2977 	else
2978 		dl_subcap->dl_cap = DL_CAPAB_POLL;
2979 
2980 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
2981 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2982 		idls->dls_flags = SOFT_RING_DISABLE;
2983 	else
2984 		idls->dls_flags = POLL_DISABLE;
2985 
2986 	if (*sc_mp != NULL)
2987 		linkb(*sc_mp, mp);
2988 	else
2989 		*sc_mp = mp;
2990 }
2991 
2992 /*
2993  * Process a soft_ring/poll capability negotiation ack received
2994  * from a DLS Provider.isub must point to the sub-capability
2995  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
2996  */
2997 static void
2998 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2999 {
3000 	dl_capab_dls_t		*idls;
3001 	uint_t			sub_dl_cap = isub->dl_cap;
3002 	uint8_t			*capend;
3003 
3004 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
3005 	    sub_dl_cap == DL_CAPAB_POLL);
3006 
3007 	if (ill->ill_isv6)
3008 		return;
3009 
3010 	/*
3011 	 * Note: range checks here are not absolutely sufficient to
3012 	 * make us robust against malformed messages sent by drivers;
3013 	 * this is in keeping with the rest of IP's dlpi handling.
3014 	 * (Remember, it's coming from something else in the kernel
3015 	 * address space)
3016 	 */
3017 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3018 	if (capend > mp->b_wptr) {
3019 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
3020 		    "malformed sub-capability too long for mblk");
3021 		return;
3022 	}
3023 
3024 	/*
3025 	 * There are two types of acks we process here:
3026 	 * 1. acks in reply to a (first form) generic capability req
3027 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
3028 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
3029 	 *    capability req.
3030 	 */
3031 	idls = (dl_capab_dls_t *)(isub + 1);
3032 
3033 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
3034 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
3035 		    "capability isn't as expected; pass-thru "
3036 		    "module(s) detected, discarding capability\n"));
3037 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
3038 			/*
3039 			 * This is a capability renegotitation case.
3040 			 * The interface better be unusable at this
3041 			 * point other wise bad things will happen
3042 			 * if we disable direct calls on a running
3043 			 * and up interface.
3044 			 */
3045 			ill_capability_dls_disable(ill);
3046 		}
3047 		return;
3048 	}
3049 
3050 	switch (idls->dls_flags) {
3051 	default:
3052 		/* Disable if unknown flag */
3053 	case SOFT_RING_DISABLE:
3054 	case POLL_DISABLE:
3055 		ill_capability_dls_disable(ill);
3056 		break;
3057 	case SOFT_RING_CAPABLE:
3058 	case POLL_CAPABLE:
3059 		/*
3060 		 * If the capability was already enabled, its safe
3061 		 * to disable it first to get rid of stale information
3062 		 * and then start enabling it again.
3063 		 */
3064 		ill_capability_dls_disable(ill);
3065 		ill_capability_dls_capable(ill, idls, isub);
3066 		break;
3067 	case SOFT_RING_ENABLE:
3068 	case POLL_ENABLE:
3069 		mutex_enter(&ill->ill_lock);
3070 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3071 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3072 			ASSERT(ill->ill_dls_capab != NULL);
3073 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3074 		}
3075 		if (sub_dl_cap == DL_CAPAB_POLL &&
3076 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3077 			ASSERT(ill->ill_dls_capab != NULL);
3078 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3079 			ip1dbg(("ill_capability_dls_ack: interface %s "
3080 			    "has enabled polling\n", ill->ill_name));
3081 		}
3082 		mutex_exit(&ill->ill_lock);
3083 		break;
3084 	}
3085 }
3086 
3087 /*
3088  * Process a hardware checksum offload capability negotiation ack received
3089  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3090  * of a DL_CAPABILITY_ACK message.
3091  */
3092 static void
3093 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3094 {
3095 	dl_capability_req_t	*ocap;
3096 	dl_capab_hcksum_t	*ihck, *ohck;
3097 	ill_hcksum_capab_t	**ill_hcksum;
3098 	mblk_t			*nmp = NULL;
3099 	uint_t			sub_dl_cap = isub->dl_cap;
3100 	uint8_t			*capend;
3101 
3102 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3103 
3104 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3105 
3106 	/*
3107 	 * Note: range checks here are not absolutely sufficient to
3108 	 * make us robust against malformed messages sent by drivers;
3109 	 * this is in keeping with the rest of IP's dlpi handling.
3110 	 * (Remember, it's coming from something else in the kernel
3111 	 * address space)
3112 	 */
3113 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3114 	if (capend > mp->b_wptr) {
3115 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3116 		    "malformed sub-capability too long for mblk");
3117 		return;
3118 	}
3119 
3120 	/*
3121 	 * There are two types of acks we process here:
3122 	 * 1. acks in reply to a (first form) generic capability req
3123 	 *    (no ENABLE flag set)
3124 	 * 2. acks in reply to a ENABLE capability req.
3125 	 *    (ENABLE flag set)
3126 	 */
3127 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3128 
3129 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3130 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3131 		    "unsupported hardware checksum "
3132 		    "sub-capability (version %d, expected %d)",
3133 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3134 		return;
3135 	}
3136 
3137 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3138 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3139 		    "checksum capability isn't as expected; pass-thru "
3140 		    "module(s) detected, discarding capability\n"));
3141 		return;
3142 	}
3143 
3144 #define	CURR_HCKSUM_CAPAB				\
3145 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3146 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3147 
3148 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3149 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3150 		/* do ENABLE processing */
3151 		if (*ill_hcksum == NULL) {
3152 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3153 			    KM_NOSLEEP);
3154 
3155 			if (*ill_hcksum == NULL) {
3156 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3157 				    "could not enable hcksum version %d "
3158 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3159 				    ill->ill_name);
3160 				return;
3161 			}
3162 		}
3163 
3164 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3165 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3166 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3167 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3168 		    "has enabled hardware checksumming\n ",
3169 		    ill->ill_name));
3170 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3171 		/*
3172 		 * Enabling hardware checksum offload
3173 		 * Currently IP supports {TCP,UDP}/IPv4
3174 		 * partial and full cksum offload and
3175 		 * IPv4 header checksum offload.
3176 		 * Allocate new mblk which will
3177 		 * contain a new capability request
3178 		 * to enable hardware checksum offload.
3179 		 */
3180 		uint_t	size;
3181 		uchar_t	*rptr;
3182 
3183 		size = sizeof (dl_capability_req_t) +
3184 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3185 
3186 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3187 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3188 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3189 			    ill->ill_name);
3190 			return;
3191 		}
3192 
3193 		rptr = nmp->b_rptr;
3194 		/* initialize dl_capability_req_t */
3195 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3196 		ocap->dl_sub_offset =
3197 		    sizeof (dl_capability_req_t);
3198 		ocap->dl_sub_length =
3199 		    sizeof (dl_capability_sub_t) +
3200 		    isub->dl_length;
3201 		nmp->b_rptr += sizeof (dl_capability_req_t);
3202 
3203 		/* initialize dl_capability_sub_t */
3204 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3205 		nmp->b_rptr += sizeof (*isub);
3206 
3207 		/* initialize dl_capab_hcksum_t */
3208 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3209 		bcopy(ihck, ohck, sizeof (*ihck));
3210 
3211 		nmp->b_rptr = rptr;
3212 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3213 
3214 		/* Set ENABLE flag */
3215 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3216 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3217 
3218 		/*
3219 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3220 		 * hardware checksum acceleration.
3221 		 */
3222 		ill_dlpi_send(ill, nmp);
3223 	} else {
3224 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3225 		    "advertised %x hardware checksum capability flags\n",
3226 		    ill->ill_name, ihck->hcksum_txflags));
3227 	}
3228 }
3229 
3230 static void
3231 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3232 {
3233 	mblk_t *mp;
3234 	dl_capab_hcksum_t *hck_subcap;
3235 	dl_capability_sub_t *dl_subcap;
3236 	int size;
3237 
3238 	if (!ILL_HCKSUM_CAPABLE(ill))
3239 		return;
3240 
3241 	ASSERT(ill->ill_hcksum_capab != NULL);
3242 	/*
3243 	 * Clear the capability flag for hardware checksum offload but
3244 	 * retain the ill_hcksum_capab structure since it's possible that
3245 	 * another thread is still referring to it.  The structure only
3246 	 * gets deallocated when we destroy the ill.
3247 	 */
3248 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3249 
3250 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3251 
3252 	mp = allocb(size, BPRI_HI);
3253 	if (mp == NULL) {
3254 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3255 		    "request to disable hardware checksum offload\n"));
3256 		return;
3257 	}
3258 
3259 	mp->b_wptr = mp->b_rptr + size;
3260 
3261 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3262 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3263 	dl_subcap->dl_length = sizeof (*hck_subcap);
3264 
3265 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3266 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3267 	hck_subcap->hcksum_txflags = 0;
3268 
3269 	if (*sc_mp != NULL)
3270 		linkb(*sc_mp, mp);
3271 	else
3272 		*sc_mp = mp;
3273 }
3274 
3275 static void
3276 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3277 {
3278 	mblk_t *nmp = NULL;
3279 	dl_capability_req_t *oc;
3280 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3281 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3282 	uint_t sub_dl_cap = isub->dl_cap;
3283 	uint8_t *capend;
3284 
3285 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3286 
3287 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3288 
3289 	/*
3290 	 * Note: range checks here are not absolutely sufficient to
3291 	 * make us robust against malformed messages sent by drivers;
3292 	 * this is in keeping with the rest of IP's dlpi handling.
3293 	 * (Remember, it's coming from something else in the kernel
3294 	 * address space)
3295 	 */
3296 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3297 	if (capend > mp->b_wptr) {
3298 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3299 		    "malformed sub-capability too long for mblk");
3300 		return;
3301 	}
3302 
3303 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3304 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3305 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3306 		    "unsupported ZEROCOPY sub-capability (version %d, "
3307 		    "expected %d)", zc_ic->zerocopy_version,
3308 		    ZEROCOPY_VERSION_1);
3309 		return;
3310 	}
3311 
3312 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3313 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3314 		    "capability isn't as expected; pass-thru module(s) "
3315 		    "detected, discarding capability\n"));
3316 		return;
3317 	}
3318 
3319 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3320 		if (*ill_zerocopy_capab == NULL) {
3321 			*ill_zerocopy_capab =
3322 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3323 			    KM_NOSLEEP);
3324 
3325 			if (*ill_zerocopy_capab == NULL) {
3326 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3327 				    "could not enable Zero-copy version %d "
3328 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3329 				    ill->ill_name);
3330 				return;
3331 			}
3332 		}
3333 
3334 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3335 		    "supports Zero-copy version %d\n", ill->ill_name,
3336 		    ZEROCOPY_VERSION_1));
3337 
3338 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3339 		    zc_ic->zerocopy_version;
3340 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3341 		    zc_ic->zerocopy_flags;
3342 
3343 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3344 	} else {
3345 		uint_t size;
3346 		uchar_t *rptr;
3347 
3348 		size = sizeof (dl_capability_req_t) +
3349 		    sizeof (dl_capability_sub_t) +
3350 		    sizeof (dl_capab_zerocopy_t);
3351 
3352 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3353 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3354 			    "could not enable zerocopy for %s (ENOMEM)\n",
3355 			    ill->ill_name);
3356 			return;
3357 		}
3358 
3359 		rptr = nmp->b_rptr;
3360 		/* initialize dl_capability_req_t */
3361 		oc = (dl_capability_req_t *)rptr;
3362 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3363 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3364 		    sizeof (dl_capab_zerocopy_t);
3365 		rptr += sizeof (dl_capability_req_t);
3366 
3367 		/* initialize dl_capability_sub_t */
3368 		bcopy(isub, rptr, sizeof (*isub));
3369 		rptr += sizeof (*isub);
3370 
3371 		/* initialize dl_capab_zerocopy_t */
3372 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3373 		*zc_oc = *zc_ic;
3374 
3375 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3376 		    "to enable zero-copy version %d\n", ill->ill_name,
3377 		    ZEROCOPY_VERSION_1));
3378 
3379 		/* set VMSAFE_MEM flag */
3380 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3381 
3382 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3383 		ill_dlpi_send(ill, nmp);
3384 	}
3385 }
3386 
3387 static void
3388 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3389 {
3390 	mblk_t *mp;
3391 	dl_capab_zerocopy_t *zerocopy_subcap;
3392 	dl_capability_sub_t *dl_subcap;
3393 	int size;
3394 
3395 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3396 		return;
3397 
3398 	ASSERT(ill->ill_zerocopy_capab != NULL);
3399 	/*
3400 	 * Clear the capability flag for Zero-copy but retain the
3401 	 * ill_zerocopy_capab structure since it's possible that another
3402 	 * thread is still referring to it.  The structure only gets
3403 	 * deallocated when we destroy the ill.
3404 	 */
3405 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3406 
3407 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3408 
3409 	mp = allocb(size, BPRI_HI);
3410 	if (mp == NULL) {
3411 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3412 		    "request to disable Zero-copy\n"));
3413 		return;
3414 	}
3415 
3416 	mp->b_wptr = mp->b_rptr + size;
3417 
3418 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3419 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3420 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3421 
3422 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3423 	zerocopy_subcap->zerocopy_version =
3424 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3425 	zerocopy_subcap->zerocopy_flags = 0;
3426 
3427 	if (*sc_mp != NULL)
3428 		linkb(*sc_mp, mp);
3429 	else
3430 		*sc_mp = mp;
3431 }
3432 
3433 /*
3434  * Process Large Segment Offload capability negotiation ack received from a
3435  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3436  * DL_CAPABILITY_ACK message.
3437  */
3438 static void
3439 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3440 {
3441 	mblk_t *nmp = NULL;
3442 	dl_capability_req_t *oc;
3443 	dl_capab_lso_t *lso_ic, *lso_oc;
3444 	ill_lso_capab_t **ill_lso_capab;
3445 	uint_t sub_dl_cap = isub->dl_cap;
3446 	uint8_t *capend;
3447 
3448 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3449 
3450 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3451 
3452 	/*
3453 	 * Note: range checks here are not absolutely sufficient to
3454 	 * make us robust against malformed messages sent by drivers;
3455 	 * this is in keeping with the rest of IP's dlpi handling.
3456 	 * (Remember, it's coming from something else in the kernel
3457 	 * address space)
3458 	 */
3459 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3460 	if (capend > mp->b_wptr) {
3461 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3462 		    "malformed sub-capability too long for mblk");
3463 		return;
3464 	}
3465 
3466 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3467 
3468 	if (lso_ic->lso_version != LSO_VERSION_1) {
3469 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3470 		    "unsupported LSO sub-capability (version %d, expected %d)",
3471 		    lso_ic->lso_version, LSO_VERSION_1);
3472 		return;
3473 	}
3474 
3475 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3476 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3477 		    "capability isn't as expected; pass-thru module(s) "
3478 		    "detected, discarding capability\n"));
3479 		return;
3480 	}
3481 
3482 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3483 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3484 		if (*ill_lso_capab == NULL) {
3485 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3486 			    KM_NOSLEEP);
3487 
3488 			if (*ill_lso_capab == NULL) {
3489 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3490 				    "could not enable LSO version %d "
3491 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3492 				    ill->ill_name);
3493 				return;
3494 			}
3495 		}
3496 
3497 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3498 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3499 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3500 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3501 
3502 		ip1dbg(("ill_capability_lso_ack: interface %s "
3503 		    "has enabled LSO\n ", ill->ill_name));
3504 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3505 		uint_t size;
3506 		uchar_t *rptr;
3507 
3508 		size = sizeof (dl_capability_req_t) +
3509 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3510 
3511 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3512 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3513 			    "could not enable LSO for %s (ENOMEM)\n",
3514 			    ill->ill_name);
3515 			return;
3516 		}
3517 
3518 		rptr = nmp->b_rptr;
3519 		/* initialize dl_capability_req_t */
3520 		oc = (dl_capability_req_t *)nmp->b_rptr;
3521 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3522 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3523 		    sizeof (dl_capab_lso_t);
3524 		nmp->b_rptr += sizeof (dl_capability_req_t);
3525 
3526 		/* initialize dl_capability_sub_t */
3527 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3528 		nmp->b_rptr += sizeof (*isub);
3529 
3530 		/* initialize dl_capab_lso_t */
3531 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3532 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3533 
3534 		nmp->b_rptr = rptr;
3535 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3536 
3537 		/* set ENABLE flag */
3538 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3539 
3540 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3541 		ill_dlpi_send(ill, nmp);
3542 	} else {
3543 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3544 		    "advertised %x LSO capability flags\n",
3545 		    ill->ill_name, lso_ic->lso_flags));
3546 	}
3547 }
3548 
3549 
3550 static void
3551 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3552 {
3553 	mblk_t *mp;
3554 	dl_capab_lso_t *lso_subcap;
3555 	dl_capability_sub_t *dl_subcap;
3556 	int size;
3557 
3558 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3559 		return;
3560 
3561 	ASSERT(ill->ill_lso_capab != NULL);
3562 	/*
3563 	 * Clear the capability flag for LSO but retain the
3564 	 * ill_lso_capab structure since it's possible that another
3565 	 * thread is still referring to it.  The structure only gets
3566 	 * deallocated when we destroy the ill.
3567 	 */
3568 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3569 
3570 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3571 
3572 	mp = allocb(size, BPRI_HI);
3573 	if (mp == NULL) {
3574 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3575 		    "request to disable LSO\n"));
3576 		return;
3577 	}
3578 
3579 	mp->b_wptr = mp->b_rptr + size;
3580 
3581 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3582 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3583 	dl_subcap->dl_length = sizeof (*lso_subcap);
3584 
3585 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3586 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3587 	lso_subcap->lso_flags = 0;
3588 
3589 	if (*sc_mp != NULL)
3590 		linkb(*sc_mp, mp);
3591 	else
3592 		*sc_mp = mp;
3593 }
3594 
3595 /*
3596  * Consume a new-style hardware capabilities negotiation ack.
3597  * Called from ip_rput_dlpi_writer().
3598  */
3599 void
3600 ill_capability_ack(ill_t *ill, mblk_t *mp)
3601 {
3602 	dl_capability_ack_t *capp;
3603 	dl_capability_sub_t *subp, *endp;
3604 
3605 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3606 		ill->ill_dlpi_capab_state = IDS_OK;
3607 
3608 	capp = (dl_capability_ack_t *)mp->b_rptr;
3609 
3610 	if (capp->dl_sub_length == 0)
3611 		/* no new-style capabilities */
3612 		return;
3613 
3614 	/* make sure the driver supplied correct dl_sub_length */
3615 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3616 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3617 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3618 		return;
3619 	}
3620 
3621 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3622 	/*
3623 	 * There are sub-capabilities. Process the ones we know about.
3624 	 * Loop until we don't have room for another sub-cap header..
3625 	 */
3626 	for (subp = SC(capp, capp->dl_sub_offset),
3627 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3628 	    subp <= endp;
3629 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3630 
3631 		switch (subp->dl_cap) {
3632 		case DL_CAPAB_ID_WRAPPER:
3633 			ill_capability_id_ack(ill, mp, subp);
3634 			break;
3635 		default:
3636 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3637 			break;
3638 		}
3639 	}
3640 #undef SC
3641 }
3642 
3643 /*
3644  * This routine is called to scan the fragmentation reassembly table for
3645  * the specified ILL for any packets that are starting to smell.
3646  * dead_interval is the maximum time in seconds that will be tolerated.  It
3647  * will either be the value specified in ip_g_frag_timeout, or zero if the
3648  * ILL is shutting down and it is time to blow everything off.
3649  *
3650  * It returns the number of seconds (as a time_t) that the next frag timer
3651  * should be scheduled for, 0 meaning that the timer doesn't need to be
3652  * re-started.  Note that the method of calculating next_timeout isn't
3653  * entirely accurate since time will flow between the time we grab
3654  * current_time and the time we schedule the next timeout.  This isn't a
3655  * big problem since this is the timer for sending an ICMP reassembly time
3656  * exceeded messages, and it doesn't have to be exactly accurate.
3657  *
3658  * This function is
3659  * sometimes called as writer, although this is not required.
3660  */
3661 time_t
3662 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3663 {
3664 	ipfb_t	*ipfb;
3665 	ipfb_t	*endp;
3666 	ipf_t	*ipf;
3667 	ipf_t	*ipfnext;
3668 	mblk_t	*mp;
3669 	time_t	current_time = gethrestime_sec();
3670 	time_t	next_timeout = 0;
3671 	uint32_t	hdr_length;
3672 	mblk_t	*send_icmp_head;
3673 	mblk_t	*send_icmp_head_v6;
3674 	zoneid_t zoneid;
3675 	ip_stack_t *ipst = ill->ill_ipst;
3676 
3677 	ipfb = ill->ill_frag_hash_tbl;
3678 	if (ipfb == NULL)
3679 		return (B_FALSE);
3680 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3681 	/* Walk the frag hash table. */
3682 	for (; ipfb < endp; ipfb++) {
3683 		send_icmp_head = NULL;
3684 		send_icmp_head_v6 = NULL;
3685 		mutex_enter(&ipfb->ipfb_lock);
3686 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3687 			time_t frag_time = current_time - ipf->ipf_timestamp;
3688 			time_t frag_timeout;
3689 
3690 			if (frag_time < dead_interval) {
3691 				/*
3692 				 * There are some outstanding fragments
3693 				 * that will timeout later.  Make note of
3694 				 * the time so that we can reschedule the
3695 				 * next timeout appropriately.
3696 				 */
3697 				frag_timeout = dead_interval - frag_time;
3698 				if (next_timeout == 0 ||
3699 				    frag_timeout < next_timeout) {
3700 					next_timeout = frag_timeout;
3701 				}
3702 				break;
3703 			}
3704 			/* Time's up.  Get it out of here. */
3705 			hdr_length = ipf->ipf_nf_hdr_len;
3706 			ipfnext = ipf->ipf_hash_next;
3707 			if (ipfnext)
3708 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3709 			*ipf->ipf_ptphn = ipfnext;
3710 			mp = ipf->ipf_mp->b_cont;
3711 			for (; mp; mp = mp->b_cont) {
3712 				/* Extra points for neatness. */
3713 				IP_REASS_SET_START(mp, 0);
3714 				IP_REASS_SET_END(mp, 0);
3715 			}
3716 			mp = ipf->ipf_mp->b_cont;
3717 			ill->ill_frag_count -= ipf->ipf_count;
3718 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3719 			ipfb->ipfb_count -= ipf->ipf_count;
3720 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3721 			ipfb->ipfb_frag_pkts--;
3722 			/*
3723 			 * We do not send any icmp message from here because
3724 			 * we currently are holding the ipfb_lock for this
3725 			 * hash chain. If we try and send any icmp messages
3726 			 * from here we may end up via a put back into ip
3727 			 * trying to get the same lock, causing a recursive
3728 			 * mutex panic. Instead we build a list and send all
3729 			 * the icmp messages after we have dropped the lock.
3730 			 */
3731 			if (ill->ill_isv6) {
3732 				if (hdr_length != 0) {
3733 					mp->b_next = send_icmp_head_v6;
3734 					send_icmp_head_v6 = mp;
3735 				} else {
3736 					freemsg(mp);
3737 				}
3738 			} else {
3739 				if (hdr_length != 0) {
3740 					mp->b_next = send_icmp_head;
3741 					send_icmp_head = mp;
3742 				} else {
3743 					freemsg(mp);
3744 				}
3745 			}
3746 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3747 			freeb(ipf->ipf_mp);
3748 		}
3749 		mutex_exit(&ipfb->ipfb_lock);
3750 		/*
3751 		 * Now need to send any icmp messages that we delayed from
3752 		 * above.
3753 		 */
3754 		while (send_icmp_head_v6 != NULL) {
3755 			ip6_t *ip6h;
3756 
3757 			mp = send_icmp_head_v6;
3758 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3759 			mp->b_next = NULL;
3760 			if (mp->b_datap->db_type == M_CTL)
3761 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3762 			else
3763 				ip6h = (ip6_t *)mp->b_rptr;
3764 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3765 			    ill, ipst);
3766 			if (zoneid == ALL_ZONES) {
3767 				freemsg(mp);
3768 			} else {
3769 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3770 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3771 				    B_FALSE, zoneid, ipst);
3772 			}
3773 		}
3774 		while (send_icmp_head != NULL) {
3775 			ipaddr_t dst;
3776 
3777 			mp = send_icmp_head;
3778 			send_icmp_head = send_icmp_head->b_next;
3779 			mp->b_next = NULL;
3780 
3781 			if (mp->b_datap->db_type == M_CTL)
3782 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3783 			else
3784 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3785 
3786 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3787 			if (zoneid == ALL_ZONES) {
3788 				freemsg(mp);
3789 			} else {
3790 				icmp_time_exceeded(ill->ill_wq, mp,
3791 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3792 				    ipst);
3793 			}
3794 		}
3795 	}
3796 	/*
3797 	 * A non-dying ILL will use the return value to decide whether to
3798 	 * restart the frag timer, and for how long.
3799 	 */
3800 	return (next_timeout);
3801 }
3802 
3803 /*
3804  * This routine is called when the approximate count of mblk memory used
3805  * for the specified ILL has exceeded max_count.
3806  */
3807 void
3808 ill_frag_prune(ill_t *ill, uint_t max_count)
3809 {
3810 	ipfb_t	*ipfb;
3811 	ipf_t	*ipf;
3812 	size_t	count;
3813 
3814 	/*
3815 	 * If we are here within ip_min_frag_prune_time msecs remove
3816 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3817 	 * ill_frag_free_num_pkts.
3818 	 */
3819 	mutex_enter(&ill->ill_lock);
3820 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3821 	    (ip_min_frag_prune_time != 0 ?
3822 	    ip_min_frag_prune_time : msec_per_tick)) {
3823 
3824 		ill->ill_frag_free_num_pkts++;
3825 
3826 	} else {
3827 		ill->ill_frag_free_num_pkts = 0;
3828 	}
3829 	ill->ill_last_frag_clean_time = lbolt;
3830 	mutex_exit(&ill->ill_lock);
3831 
3832 	/*
3833 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3834 	 */
3835 	if (ill->ill_frag_free_num_pkts != 0) {
3836 		int ix;
3837 
3838 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3839 			ipfb = &ill->ill_frag_hash_tbl[ix];
3840 			mutex_enter(&ipfb->ipfb_lock);
3841 			if (ipfb->ipfb_ipf != NULL) {
3842 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3843 				    ill->ill_frag_free_num_pkts);
3844 			}
3845 			mutex_exit(&ipfb->ipfb_lock);
3846 		}
3847 	}
3848 	/*
3849 	 * While the reassembly list for this ILL is too big, prune a fragment
3850 	 * queue by age, oldest first.  Note that the per ILL count is
3851 	 * approximate, while the per frag hash bucket counts are accurate.
3852 	 */
3853 	while (ill->ill_frag_count > max_count) {
3854 		int	ix;
3855 		ipfb_t	*oipfb = NULL;
3856 		uint_t	oldest = UINT_MAX;
3857 
3858 		count = 0;
3859 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3860 			ipfb = &ill->ill_frag_hash_tbl[ix];
3861 			mutex_enter(&ipfb->ipfb_lock);
3862 			ipf = ipfb->ipfb_ipf;
3863 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3864 				oldest = ipf->ipf_gen;
3865 				oipfb = ipfb;
3866 			}
3867 			count += ipfb->ipfb_count;
3868 			mutex_exit(&ipfb->ipfb_lock);
3869 		}
3870 		/* Refresh the per ILL count */
3871 		ill->ill_frag_count = count;
3872 		if (oipfb == NULL) {
3873 			ill->ill_frag_count = 0;
3874 			break;
3875 		}
3876 		if (count <= max_count)
3877 			return;	/* Somebody beat us to it, nothing to do */
3878 		mutex_enter(&oipfb->ipfb_lock);
3879 		ipf = oipfb->ipfb_ipf;
3880 		if (ipf != NULL) {
3881 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3882 		}
3883 		mutex_exit(&oipfb->ipfb_lock);
3884 	}
3885 }
3886 
3887 /*
3888  * free 'free_cnt' fragmented packets starting at ipf.
3889  */
3890 void
3891 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3892 {
3893 	size_t	count;
3894 	mblk_t	*mp;
3895 	mblk_t	*tmp;
3896 	ipf_t **ipfp = ipf->ipf_ptphn;
3897 
3898 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3899 	ASSERT(ipfp != NULL);
3900 	ASSERT(ipf != NULL);
3901 
3902 	while (ipf != NULL && free_cnt-- > 0) {
3903 		count = ipf->ipf_count;
3904 		mp = ipf->ipf_mp;
3905 		ipf = ipf->ipf_hash_next;
3906 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3907 			IP_REASS_SET_START(tmp, 0);
3908 			IP_REASS_SET_END(tmp, 0);
3909 		}
3910 		ill->ill_frag_count -= count;
3911 		ASSERT(ipfb->ipfb_count >= count);
3912 		ipfb->ipfb_count -= count;
3913 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3914 		ipfb->ipfb_frag_pkts--;
3915 		freemsg(mp);
3916 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3917 	}
3918 
3919 	if (ipf)
3920 		ipf->ipf_ptphn = ipfp;
3921 	ipfp[0] = ipf;
3922 }
3923 
3924 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3925 	"obsolete and may be removed in a future release of Solaris.  Use " \
3926 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3927 
3928 /*
3929  * For obsolete per-interface forwarding configuration;
3930  * called in response to ND_GET.
3931  */
3932 /* ARGSUSED */
3933 static int
3934 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3935 {
3936 	ill_t *ill = (ill_t *)cp;
3937 
3938 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3939 
3940 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3941 	return (0);
3942 }
3943 
3944 /*
3945  * For obsolete per-interface forwarding configuration;
3946  * called in response to ND_SET.
3947  */
3948 /* ARGSUSED */
3949 static int
3950 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3951     cred_t *ioc_cr)
3952 {
3953 	long value;
3954 	int retval;
3955 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3956 
3957 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3958 
3959 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3960 	    value < 0 || value > 1) {
3961 		return (EINVAL);
3962 	}
3963 
3964 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3965 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3966 	rw_exit(&ipst->ips_ill_g_lock);
3967 	return (retval);
3968 }
3969 
3970 /*
3971  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
3972  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
3973  * up RTS_IFINFO routing socket messages for each interface whose flags we
3974  * change.
3975  */
3976 int
3977 ill_forward_set(ill_t *ill, boolean_t enable)
3978 {
3979 	ill_group_t *illgrp;
3980 	ip_stack_t	*ipst = ill->ill_ipst;
3981 
3982 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3983 
3984 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3985 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3986 		return (0);
3987 
3988 	if (IS_LOOPBACK(ill))
3989 		return (EINVAL);
3990 
3991 	/*
3992 	 * If the ill is in an IPMP group, set the forwarding policy on all
3993 	 * members of the group to the same value.
3994 	 */
3995 	illgrp = ill->ill_group;
3996 	if (illgrp != NULL) {
3997 		ill_t *tmp_ill;
3998 
3999 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
4000 		    tmp_ill = tmp_ill->ill_group_next) {
4001 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4002 			    (enable ? "Enabling" : "Disabling"),
4003 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
4004 			    tmp_ill->ill_name));
4005 			mutex_enter(&tmp_ill->ill_lock);
4006 			if (enable)
4007 				tmp_ill->ill_flags |= ILLF_ROUTER;
4008 			else
4009 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
4010 			mutex_exit(&tmp_ill->ill_lock);
4011 			if (tmp_ill->ill_isv6)
4012 				ill_set_nce_router_flags(tmp_ill, enable);
4013 			/* Notify routing socket listeners of this change. */
4014 			ip_rts_ifmsg(tmp_ill->ill_ipif);
4015 		}
4016 	} else {
4017 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4018 		    (enable ? "Enabling" : "Disabling"),
4019 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
4020 		mutex_enter(&ill->ill_lock);
4021 		if (enable)
4022 			ill->ill_flags |= ILLF_ROUTER;
4023 		else
4024 			ill->ill_flags &= ~ILLF_ROUTER;
4025 		mutex_exit(&ill->ill_lock);
4026 		if (ill->ill_isv6)
4027 			ill_set_nce_router_flags(ill, enable);
4028 		/* Notify routing socket listeners of this change. */
4029 		ip_rts_ifmsg(ill->ill_ipif);
4030 	}
4031 
4032 	return (0);
4033 }
4034 
4035 /*
4036  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
4037  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
4038  * set or clear.
4039  */
4040 static void
4041 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
4042 {
4043 	ipif_t *ipif;
4044 	nce_t *nce;
4045 
4046 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4047 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
4048 		if (nce != NULL) {
4049 			mutex_enter(&nce->nce_lock);
4050 			if (enable)
4051 				nce->nce_flags |= NCE_F_ISROUTER;
4052 			else
4053 				nce->nce_flags &= ~NCE_F_ISROUTER;
4054 			mutex_exit(&nce->nce_lock);
4055 			NCE_REFRELE(nce);
4056 		}
4057 	}
4058 }
4059 
4060 /*
4061  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4062  * for this ill.  Make sure the v6/v4 question has been answered about this
4063  * ill.  The creation of this ndd variable is only for backwards compatibility.
4064  * The preferred way to control per-interface IP forwarding is through the
4065  * ILLF_ROUTER interface flag.
4066  */
4067 static int
4068 ill_set_ndd_name(ill_t *ill)
4069 {
4070 	char *suffix;
4071 	ip_stack_t	*ipst = ill->ill_ipst;
4072 
4073 	ASSERT(IAM_WRITER_ILL(ill));
4074 
4075 	if (ill->ill_isv6)
4076 		suffix = ipv6_forward_suffix;
4077 	else
4078 		suffix = ipv4_forward_suffix;
4079 
4080 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4081 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4082 	/*
4083 	 * Copies over the '\0'.
4084 	 * Note that strlen(suffix) is always bounded.
4085 	 */
4086 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4087 	    strlen(suffix) + 1);
4088 
4089 	/*
4090 	 * Use of the nd table requires holding the reader lock.
4091 	 * Modifying the nd table thru nd_load/nd_unload requires
4092 	 * the writer lock.
4093 	 */
4094 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4095 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4096 	    nd_ill_forward_set, (caddr_t)ill)) {
4097 		/*
4098 		 * If the nd_load failed, it only meant that it could not
4099 		 * allocate a new bunch of room for further NDD expansion.
4100 		 * Because of that, the ill_ndd_name will be set to 0, and
4101 		 * this interface is at the mercy of the global ip_forwarding
4102 		 * variable.
4103 		 */
4104 		rw_exit(&ipst->ips_ip_g_nd_lock);
4105 		ill->ill_ndd_name = NULL;
4106 		return (ENOMEM);
4107 	}
4108 	rw_exit(&ipst->ips_ip_g_nd_lock);
4109 	return (0);
4110 }
4111 
4112 /*
4113  * Intializes the context structure and returns the first ill in the list
4114  * cuurently start_list and end_list can have values:
4115  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4116  * IP_V4_G_HEAD		Traverse IPV4 list only.
4117  * IP_V6_G_HEAD		Traverse IPV6 list only.
4118  */
4119 
4120 /*
4121  * We don't check for CONDEMNED ills here. Caller must do that if
4122  * necessary under the ill lock.
4123  */
4124 ill_t *
4125 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4126     ip_stack_t *ipst)
4127 {
4128 	ill_if_t *ifp;
4129 	ill_t *ill;
4130 	avl_tree_t *avl_tree;
4131 
4132 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4133 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4134 
4135 	/*
4136 	 * setup the lists to search
4137 	 */
4138 	if (end_list != MAX_G_HEADS) {
4139 		ctx->ctx_current_list = start_list;
4140 		ctx->ctx_last_list = end_list;
4141 	} else {
4142 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4143 		ctx->ctx_current_list = 0;
4144 	}
4145 
4146 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4147 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4148 		if (ifp != (ill_if_t *)
4149 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4150 			avl_tree = &ifp->illif_avl_by_ppa;
4151 			ill = avl_first(avl_tree);
4152 			/*
4153 			 * ill is guaranteed to be non NULL or ifp should have
4154 			 * not existed.
4155 			 */
4156 			ASSERT(ill != NULL);
4157 			return (ill);
4158 		}
4159 		ctx->ctx_current_list++;
4160 	}
4161 
4162 	return (NULL);
4163 }
4164 
4165 /*
4166  * returns the next ill in the list. ill_first() must have been called
4167  * before calling ill_next() or bad things will happen.
4168  */
4169 
4170 /*
4171  * We don't check for CONDEMNED ills here. Caller must do that if
4172  * necessary under the ill lock.
4173  */
4174 ill_t *
4175 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4176 {
4177 	ill_if_t *ifp;
4178 	ill_t *ill;
4179 	ip_stack_t	*ipst = lastill->ill_ipst;
4180 
4181 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4182 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4183 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4184 	    AVL_AFTER)) != NULL) {
4185 		return (ill);
4186 	}
4187 
4188 	/* goto next ill_ifp in the list. */
4189 	ifp = lastill->ill_ifptr->illif_next;
4190 
4191 	/* make sure not at end of circular list */
4192 	while (ifp ==
4193 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4194 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4195 			return (NULL);
4196 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4197 	}
4198 
4199 	return (avl_first(&ifp->illif_avl_by_ppa));
4200 }
4201 
4202 /*
4203  * Check interface name for correct format which is name+ppa.
4204  * name can contain characters and digits, the right most digits
4205  * make up the ppa number. use of octal is not allowed, name must contain
4206  * a ppa, return pointer to the start of ppa.
4207  * In case of error return NULL.
4208  */
4209 static char *
4210 ill_get_ppa_ptr(char *name)
4211 {
4212 	int namelen = mi_strlen(name);
4213 
4214 	int len = namelen;
4215 
4216 	name += len;
4217 	while (len > 0) {
4218 		name--;
4219 		if (*name < '0' || *name > '9')
4220 			break;
4221 		len--;
4222 	}
4223 
4224 	/* empty string, all digits, or no trailing digits */
4225 	if (len == 0 || len == (int)namelen)
4226 		return (NULL);
4227 
4228 	name++;
4229 	/* check for attempted use of octal */
4230 	if (*name == '0' && len != (int)namelen - 1)
4231 		return (NULL);
4232 	return (name);
4233 }
4234 
4235 /*
4236  * use avl tree to locate the ill.
4237  */
4238 static ill_t *
4239 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4240     ipsq_func_t func, int *error, ip_stack_t *ipst)
4241 {
4242 	char *ppa_ptr = NULL;
4243 	int len;
4244 	uint_t ppa;
4245 	ill_t *ill = NULL;
4246 	ill_if_t *ifp;
4247 	int list;
4248 	ipsq_t *ipsq;
4249 
4250 	if (error != NULL)
4251 		*error = 0;
4252 
4253 	/*
4254 	 * get ppa ptr
4255 	 */
4256 	if (isv6)
4257 		list = IP_V6_G_HEAD;
4258 	else
4259 		list = IP_V4_G_HEAD;
4260 
4261 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4262 		if (error != NULL)
4263 			*error = ENXIO;
4264 		return (NULL);
4265 	}
4266 
4267 	len = ppa_ptr - name + 1;
4268 
4269 	ppa = stoi(&ppa_ptr);
4270 
4271 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4272 
4273 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4274 		/*
4275 		 * match is done on len - 1 as the name is not null
4276 		 * terminated it contains ppa in addition to the interface
4277 		 * name.
4278 		 */
4279 		if ((ifp->illif_name_len == len) &&
4280 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4281 			break;
4282 		} else {
4283 			ifp = ifp->illif_next;
4284 		}
4285 	}
4286 
4287 
4288 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4289 		/*
4290 		 * Even the interface type does not exist.
4291 		 */
4292 		if (error != NULL)
4293 			*error = ENXIO;
4294 		return (NULL);
4295 	}
4296 
4297 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4298 	if (ill != NULL) {
4299 		/*
4300 		 * The block comment at the start of ipif_down
4301 		 * explains the use of the macros used below
4302 		 */
4303 		GRAB_CONN_LOCK(q);
4304 		mutex_enter(&ill->ill_lock);
4305 		if (ILL_CAN_LOOKUP(ill)) {
4306 			ill_refhold_locked(ill);
4307 			mutex_exit(&ill->ill_lock);
4308 			RELEASE_CONN_LOCK(q);
4309 			return (ill);
4310 		} else if (ILL_CAN_WAIT(ill, q)) {
4311 			ipsq = ill->ill_phyint->phyint_ipsq;
4312 			mutex_enter(&ipsq->ipsq_lock);
4313 			mutex_exit(&ill->ill_lock);
4314 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4315 			mutex_exit(&ipsq->ipsq_lock);
4316 			RELEASE_CONN_LOCK(q);
4317 			*error = EINPROGRESS;
4318 			return (NULL);
4319 		}
4320 		mutex_exit(&ill->ill_lock);
4321 		RELEASE_CONN_LOCK(q);
4322 	}
4323 	if (error != NULL)
4324 		*error = ENXIO;
4325 	return (NULL);
4326 }
4327 
4328 /*
4329  * comparison function for use with avl.
4330  */
4331 static int
4332 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4333 {
4334 	uint_t ppa;
4335 	uint_t ill_ppa;
4336 
4337 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4338 
4339 	ppa = *((uint_t *)ppa_ptr);
4340 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4341 	/*
4342 	 * We want the ill with the lowest ppa to be on the
4343 	 * top.
4344 	 */
4345 	if (ill_ppa < ppa)
4346 		return (1);
4347 	if (ill_ppa > ppa)
4348 		return (-1);
4349 	return (0);
4350 }
4351 
4352 /*
4353  * remove an interface type from the global list.
4354  */
4355 static void
4356 ill_delete_interface_type(ill_if_t *interface)
4357 {
4358 	ASSERT(interface != NULL);
4359 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4360 
4361 	avl_destroy(&interface->illif_avl_by_ppa);
4362 	if (interface->illif_ppa_arena != NULL)
4363 		vmem_destroy(interface->illif_ppa_arena);
4364 
4365 	remque(interface);
4366 
4367 	mi_free(interface);
4368 }
4369 
4370 /* Defined in ip_netinfo.c */
4371 extern ddi_taskq_t	*eventq_queue_nic;
4372 
4373 /*
4374  * remove ill from the global list.
4375  */
4376 static void
4377 ill_glist_delete(ill_t *ill)
4378 {
4379 	char *nicname;
4380 	size_t nicnamelen;
4381 	hook_nic_event_t *info;
4382 	ip_stack_t	*ipst;
4383 
4384 	if (ill == NULL)
4385 		return;
4386 	ipst = ill->ill_ipst;
4387 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4388 
4389 	if (ill->ill_name != NULL) {
4390 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4391 		if (nicname != NULL) {
4392 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4393 			nicnamelen = ill->ill_name_length;
4394 		}
4395 	} else {
4396 		nicname = NULL;
4397 		nicnamelen = 0;
4398 	}
4399 
4400 	/*
4401 	 * If the ill was never inserted into the AVL tree
4402 	 * we skip the if branch.
4403 	 */
4404 	if (ill->ill_ifptr != NULL) {
4405 		/*
4406 		 * remove from AVL tree and free ppa number
4407 		 */
4408 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4409 
4410 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4411 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4412 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4413 		}
4414 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4415 			ill_delete_interface_type(ill->ill_ifptr);
4416 		}
4417 
4418 		/*
4419 		 * Indicate ill is no longer in the list.
4420 		 */
4421 		ill->ill_ifptr = NULL;
4422 		ill->ill_name_length = 0;
4423 		ill->ill_name[0] = '\0';
4424 		ill->ill_ppa = UINT_MAX;
4425 	}
4426 
4427 	/*
4428 	 * Run the unplumb hook after the NIC has disappeared from being
4429 	 * visible so that attempts to revalidate its existance will fail.
4430 	 *
4431 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4432 	 * that the ordering of delivered events to listeners matches the
4433 	 * order of them in the kernel.
4434 	 */
4435 	if ((info = ill->ill_nic_event_info) != NULL) {
4436 		if (info->hne_event != NE_DOWN) {
4437 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4438 			    "attached for %s\n", info->hne_event,
4439 			    ill->ill_name));
4440 			if (info->hne_data != NULL)
4441 				kmem_free(info->hne_data, info->hne_datalen);
4442 			kmem_free(info, sizeof (hook_nic_event_t));
4443 		} else {
4444 			if (ddi_taskq_dispatch(eventq_queue_nic,
4445 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4446 			    == DDI_FAILURE) {
4447 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4448 				    "failed\n"));
4449 				if (info->hne_data != NULL)
4450 					kmem_free(info->hne_data,
4451 					    info->hne_datalen);
4452 				kmem_free(info, sizeof (hook_nic_event_t));
4453 			}
4454 		}
4455 	}
4456 
4457 	/* Generate NE_UNPLUMB event for ill_name. */
4458 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4459 	if (info != NULL) {
4460 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4461 		info->hne_lif = 0;
4462 		info->hne_event = NE_UNPLUMB;
4463 		info->hne_data = nicname;
4464 		info->hne_datalen = nicnamelen;
4465 		info->hne_family = ill->ill_isv6 ?
4466 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4467 	} else {
4468 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4469 		    "information for %s (ENOMEM)\n", ill->ill_name));
4470 		if (nicname != NULL)
4471 			kmem_free(nicname, nicnamelen);
4472 	}
4473 
4474 	ill->ill_nic_event_info = info;
4475 
4476 	ill_phyint_free(ill);
4477 	rw_exit(&ipst->ips_ill_g_lock);
4478 }
4479 
4480 /*
4481  * allocate a ppa, if the number of plumbed interfaces of this type are
4482  * less than ill_no_arena do a linear search to find a unused ppa.
4483  * When the number goes beyond ill_no_arena switch to using an arena.
4484  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4485  * is the return value for an error condition, so allocation starts at one
4486  * and is decremented by one.
4487  */
4488 static int
4489 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4490 {
4491 	ill_t *tmp_ill;
4492 	uint_t start, end;
4493 	int ppa;
4494 
4495 	if (ifp->illif_ppa_arena == NULL &&
4496 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4497 		/*
4498 		 * Create an arena.
4499 		 */
4500 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4501 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4502 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4503 			/* allocate what has already been assigned */
4504 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4505 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4506 		    tmp_ill, AVL_AFTER)) {
4507 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4508 			    1,		/* size */
4509 			    1,		/* align/quantum */
4510 			    0,		/* phase */
4511 			    0,		/* nocross */
4512 			    /* minaddr */
4513 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4514 			    /* maxaddr */
4515 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4516 			    VM_NOSLEEP|VM_FIRSTFIT);
4517 			if (ppa == 0) {
4518 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4519 				    " failed while switching"));
4520 				vmem_destroy(ifp->illif_ppa_arena);
4521 				ifp->illif_ppa_arena = NULL;
4522 				break;
4523 			}
4524 		}
4525 	}
4526 
4527 	if (ifp->illif_ppa_arena != NULL) {
4528 		if (ill->ill_ppa == UINT_MAX) {
4529 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4530 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4531 			if (ppa == 0)
4532 				return (EAGAIN);
4533 			ill->ill_ppa = --ppa;
4534 		} else {
4535 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4536 			    1, 		/* size */
4537 			    1, 		/* align/quantum */
4538 			    0, 		/* phase */
4539 			    0, 		/* nocross */
4540 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4541 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4542 			    VM_NOSLEEP|VM_FIRSTFIT);
4543 			/*
4544 			 * Most likely the allocation failed because
4545 			 * the requested ppa was in use.
4546 			 */
4547 			if (ppa == 0)
4548 				return (EEXIST);
4549 		}
4550 		return (0);
4551 	}
4552 
4553 	/*
4554 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4555 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4556 	 */
4557 	if (ill->ill_ppa == UINT_MAX) {
4558 		end = UINT_MAX - 1;
4559 		start = 0;
4560 	} else {
4561 		end = start = ill->ill_ppa;
4562 	}
4563 
4564 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4565 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4566 		if (start++ >= end) {
4567 			if (ill->ill_ppa == UINT_MAX)
4568 				return (EAGAIN);
4569 			else
4570 				return (EEXIST);
4571 		}
4572 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4573 	}
4574 	ill->ill_ppa = start;
4575 	return (0);
4576 }
4577 
4578 /*
4579  * Insert ill into the list of configured ill's. Once this function completes,
4580  * the ill is globally visible and is available through lookups. More precisely
4581  * this happens after the caller drops the ill_g_lock.
4582  */
4583 static int
4584 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4585 {
4586 	ill_if_t *ill_interface;
4587 	avl_index_t where = 0;
4588 	int error;
4589 	int name_length;
4590 	int index;
4591 	boolean_t check_length = B_FALSE;
4592 	ip_stack_t	*ipst = ill->ill_ipst;
4593 
4594 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4595 
4596 	name_length = mi_strlen(name) + 1;
4597 
4598 	if (isv6)
4599 		index = IP_V6_G_HEAD;
4600 	else
4601 		index = IP_V4_G_HEAD;
4602 
4603 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4604 	/*
4605 	 * Search for interface type based on name
4606 	 */
4607 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4608 		if ((ill_interface->illif_name_len == name_length) &&
4609 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4610 			break;
4611 		}
4612 		ill_interface = ill_interface->illif_next;
4613 	}
4614 
4615 	/*
4616 	 * Interface type not found, create one.
4617 	 */
4618 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4619 
4620 		ill_g_head_t ghead;
4621 
4622 		/*
4623 		 * allocate ill_if_t structure
4624 		 */
4625 
4626 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4627 		if (ill_interface == NULL) {
4628 			return (ENOMEM);
4629 		}
4630 
4631 
4632 
4633 		(void) strcpy(ill_interface->illif_name, name);
4634 		ill_interface->illif_name_len = name_length;
4635 
4636 		avl_create(&ill_interface->illif_avl_by_ppa,
4637 		    ill_compare_ppa, sizeof (ill_t),
4638 		    offsetof(struct ill_s, ill_avl_byppa));
4639 
4640 		/*
4641 		 * link the structure in the back to maintain order
4642 		 * of configuration for ifconfig output.
4643 		 */
4644 		ghead = ipst->ips_ill_g_heads[index];
4645 		insque(ill_interface, ghead.ill_g_list_tail);
4646 
4647 	}
4648 
4649 	if (ill->ill_ppa == UINT_MAX)
4650 		check_length = B_TRUE;
4651 
4652 	error = ill_alloc_ppa(ill_interface, ill);
4653 	if (error != 0) {
4654 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4655 			ill_delete_interface_type(ill->ill_ifptr);
4656 		return (error);
4657 	}
4658 
4659 	/*
4660 	 * When the ppa is choosen by the system, check that there is
4661 	 * enough space to insert ppa. if a specific ppa was passed in this
4662 	 * check is not required as the interface name passed in will have
4663 	 * the right ppa in it.
4664 	 */
4665 	if (check_length) {
4666 		/*
4667 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4668 		 */
4669 		char buf[sizeof (uint_t) * 3];
4670 
4671 		/*
4672 		 * convert ppa to string to calculate the amount of space
4673 		 * required for it in the name.
4674 		 */
4675 		numtos(ill->ill_ppa, buf);
4676 
4677 		/* Do we have enough space to insert ppa ? */
4678 
4679 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4680 			/* Free ppa and interface type struct */
4681 			if (ill_interface->illif_ppa_arena != NULL) {
4682 				vmem_free(ill_interface->illif_ppa_arena,
4683 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4684 			}
4685 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4686 			    0) {
4687 				ill_delete_interface_type(ill->ill_ifptr);
4688 			}
4689 
4690 			return (EINVAL);
4691 		}
4692 	}
4693 
4694 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4695 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4696 
4697 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4698 	    &where);
4699 	ill->ill_ifptr = ill_interface;
4700 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4701 
4702 	ill_phyint_reinit(ill);
4703 	return (0);
4704 }
4705 
4706 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4707 static boolean_t
4708 ipsq_init(ill_t *ill)
4709 {
4710 	ipsq_t  *ipsq;
4711 
4712 	/* Init the ipsq and impicitly enter as writer */
4713 	ill->ill_phyint->phyint_ipsq =
4714 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4715 	if (ill->ill_phyint->phyint_ipsq == NULL)
4716 		return (B_FALSE);
4717 	ipsq = ill->ill_phyint->phyint_ipsq;
4718 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4719 	ill->ill_phyint->phyint_ipsq_next = NULL;
4720 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4721 	ipsq->ipsq_refs = 1;
4722 	ipsq->ipsq_writer = curthread;
4723 	ipsq->ipsq_reentry_cnt = 1;
4724 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4725 #ifdef ILL_DEBUG
4726 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH);
4727 #endif
4728 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4729 	return (B_TRUE);
4730 }
4731 
4732 /*
4733  * ill_init is called by ip_open when a device control stream is opened.
4734  * It does a few initializations, and shoots a DL_INFO_REQ message down
4735  * to the driver.  The response is later picked up in ip_rput_dlpi and
4736  * used to set up default mechanisms for talking to the driver.  (Always
4737  * called as writer.)
4738  *
4739  * If this function returns error, ip_open will call ip_close which in
4740  * turn will call ill_delete to clean up any memory allocated here that
4741  * is not yet freed.
4742  */
4743 int
4744 ill_init(queue_t *q, ill_t *ill)
4745 {
4746 	int	count;
4747 	dl_info_req_t	*dlir;
4748 	mblk_t	*info_mp;
4749 	uchar_t *frag_ptr;
4750 
4751 	/*
4752 	 * The ill is initialized to zero by mi_alloc*(). In addition
4753 	 * some fields already contain valid values, initialized in
4754 	 * ip_open(), before we reach here.
4755 	 */
4756 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4757 
4758 	ill->ill_rq = q;
4759 	ill->ill_wq = WR(q);
4760 
4761 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4762 	    BPRI_HI);
4763 	if (info_mp == NULL)
4764 		return (ENOMEM);
4765 
4766 	/*
4767 	 * Allocate sufficient space to contain our fragment hash table and
4768 	 * the device name.
4769 	 */
4770 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4771 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4772 	if (frag_ptr == NULL) {
4773 		freemsg(info_mp);
4774 		return (ENOMEM);
4775 	}
4776 	ill->ill_frag_ptr = frag_ptr;
4777 	ill->ill_frag_free_num_pkts = 0;
4778 	ill->ill_last_frag_clean_time = 0;
4779 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4780 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4781 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4782 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4783 		    NULL, MUTEX_DEFAULT, NULL);
4784 	}
4785 
4786 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4787 	if (ill->ill_phyint == NULL) {
4788 		freemsg(info_mp);
4789 		mi_free(frag_ptr);
4790 		return (ENOMEM);
4791 	}
4792 
4793 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4794 	/*
4795 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4796 	 * at this point because of the following reason. If we can't
4797 	 * enter the ipsq at some point and cv_wait, the writer that
4798 	 * wakes us up tries to locate us using the list of all phyints
4799 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4800 	 * If we don't set it now, we risk a missed wakeup.
4801 	 */
4802 	ill->ill_phyint->phyint_illv4 = ill;
4803 	ill->ill_ppa = UINT_MAX;
4804 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4805 
4806 	if (!ipsq_init(ill)) {
4807 		freemsg(info_mp);
4808 		mi_free(frag_ptr);
4809 		mi_free(ill->ill_phyint);
4810 		return (ENOMEM);
4811 	}
4812 
4813 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4814 
4815 
4816 	/* Frag queue limit stuff */
4817 	ill->ill_frag_count = 0;
4818 	ill->ill_ipf_gen = 0;
4819 
4820 	ill->ill_global_timer = INFINITY;
4821 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4822 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4823 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4824 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4825 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4826 
4827 	/*
4828 	 * Initialize IPv6 configuration variables.  The IP module is always
4829 	 * opened as an IPv4 module.  Instead tracking down the cases where
4830 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4831 	 * here for convenience, this has no effect until the ill is set to do
4832 	 * IPv6.
4833 	 */
4834 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4835 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4836 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4837 	ill->ill_max_buf = ND_MAX_Q;
4838 	ill->ill_refcnt = 0;
4839 
4840 	/* Send down the Info Request to the driver. */
4841 	info_mp->b_datap->db_type = M_PCPROTO;
4842 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4843 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4844 	dlir->dl_primitive = DL_INFO_REQ;
4845 
4846 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4847 
4848 	qprocson(q);
4849 	ill_dlpi_send(ill, info_mp);
4850 
4851 	return (0);
4852 }
4853 
4854 /*
4855  * ill_dls_info
4856  * creates datalink socket info from the device.
4857  */
4858 int
4859 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4860 {
4861 	size_t	len;
4862 	ill_t	*ill = ipif->ipif_ill;
4863 
4864 	sdl->sdl_family = AF_LINK;
4865 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4866 	sdl->sdl_type = ill->ill_type;
4867 	(void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4868 	len = strlen(sdl->sdl_data);
4869 	ASSERT(len < 256);
4870 	sdl->sdl_nlen = (uchar_t)len;
4871 	sdl->sdl_alen = ill->ill_phys_addr_length;
4872 	sdl->sdl_slen = 0;
4873 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4874 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4875 
4876 	return (sizeof (struct sockaddr_dl));
4877 }
4878 
4879 /*
4880  * ill_xarp_info
4881  * creates xarp info from the device.
4882  */
4883 static int
4884 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4885 {
4886 	sdl->sdl_family = AF_LINK;
4887 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4888 	sdl->sdl_type = ill->ill_type;
4889 	(void) ipif_get_name(ill->ill_ipif, sdl->sdl_data,
4890 	    sizeof (sdl->sdl_data));
4891 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4892 	sdl->sdl_alen = ill->ill_phys_addr_length;
4893 	sdl->sdl_slen = 0;
4894 	return (sdl->sdl_nlen);
4895 }
4896 
4897 static int
4898 loopback_kstat_update(kstat_t *ksp, int rw)
4899 {
4900 	kstat_named_t *kn;
4901 	netstackid_t	stackid;
4902 	netstack_t	*ns;
4903 	ip_stack_t	*ipst;
4904 
4905 	if (ksp == NULL || ksp->ks_data == NULL)
4906 		return (EIO);
4907 
4908 	if (rw == KSTAT_WRITE)
4909 		return (EACCES);
4910 
4911 	kn = KSTAT_NAMED_PTR(ksp);
4912 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4913 
4914 	ns = netstack_find_by_stackid(stackid);
4915 	if (ns == NULL)
4916 		return (-1);
4917 
4918 	ipst = ns->netstack_ip;
4919 	if (ipst == NULL) {
4920 		netstack_rele(ns);
4921 		return (-1);
4922 	}
4923 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4924 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4925 	netstack_rele(ns);
4926 	return (0);
4927 }
4928 
4929 
4930 /*
4931  * Has ifindex been plumbed already.
4932  * Compares both phyint_ifindex and phyint_group_ifindex.
4933  */
4934 static boolean_t
4935 phyint_exists(uint_t index, ip_stack_t *ipst)
4936 {
4937 	phyint_t *phyi;
4938 
4939 	ASSERT(index != 0);
4940 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4941 	/*
4942 	 * Indexes are stored in the phyint - a common structure
4943 	 * to both IPv4 and IPv6.
4944 	 */
4945 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4946 	for (; phyi != NULL;
4947 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4948 	    phyi, AVL_AFTER)) {
4949 		if (phyi->phyint_ifindex == index ||
4950 		    phyi->phyint_group_ifindex == index)
4951 			return (B_TRUE);
4952 	}
4953 	return (B_FALSE);
4954 }
4955 
4956 /* Pick a unique ifindex */
4957 boolean_t
4958 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4959 {
4960 	uint_t starting_index;
4961 
4962 	if (!ipst->ips_ill_index_wrap) {
4963 		*indexp = ipst->ips_ill_index++;
4964 		if (ipst->ips_ill_index == 0) {
4965 			/* Reached the uint_t limit Next time wrap  */
4966 			ipst->ips_ill_index_wrap = B_TRUE;
4967 		}
4968 		return (B_TRUE);
4969 	}
4970 
4971 	/*
4972 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4973 	 * at this point and don't want to call any function that attempts
4974 	 * to get the lock again.
4975 	 */
4976 	starting_index = ipst->ips_ill_index++;
4977 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4978 		if (ipst->ips_ill_index != 0 &&
4979 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4980 			/* found unused index - use it */
4981 			*indexp = ipst->ips_ill_index;
4982 			return (B_TRUE);
4983 		}
4984 	}
4985 
4986 	/*
4987 	 * all interface indicies are inuse.
4988 	 */
4989 	return (B_FALSE);
4990 }
4991 
4992 /*
4993  * Assign a unique interface index for the phyint.
4994  */
4995 static boolean_t
4996 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4997 {
4998 	ASSERT(phyi->phyint_ifindex == 0);
4999 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
5000 }
5001 
5002 /*
5003  * Return a pointer to the ill which matches the supplied name.  Note that
5004  * the ill name length includes the null termination character.  (May be
5005  * called as writer.)
5006  * If do_alloc and the interface is "lo0" it will be automatically created.
5007  * Cannot bump up reference on condemned ills. So dup detect can't be done
5008  * using this func.
5009  */
5010 ill_t *
5011 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
5012     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
5013     ip_stack_t *ipst)
5014 {
5015 	ill_t	*ill;
5016 	ipif_t	*ipif;
5017 	kstat_named_t	*kn;
5018 	boolean_t isloopback;
5019 	ipsq_t *old_ipsq;
5020 	in6_addr_t ov6addr;
5021 
5022 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
5023 
5024 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5025 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5026 	rw_exit(&ipst->ips_ill_g_lock);
5027 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
5028 		return (ill);
5029 
5030 	/*
5031 	 * Couldn't find it.  Does this happen to be a lookup for the
5032 	 * loopback device and are we allowed to allocate it?
5033 	 */
5034 	if (!isloopback || !do_alloc)
5035 		return (NULL);
5036 
5037 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
5038 
5039 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5040 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
5041 		rw_exit(&ipst->ips_ill_g_lock);
5042 		return (ill);
5043 	}
5044 
5045 	/* Create the loopback device on demand */
5046 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
5047 	    sizeof (ipif_loopback_name), BPRI_MED));
5048 	if (ill == NULL)
5049 		goto done;
5050 
5051 	*ill = ill_null;
5052 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
5053 	ill->ill_ipst = ipst;
5054 	netstack_hold(ipst->ips_netstack);
5055 	/*
5056 	 * For exclusive stacks we set the zoneid to zero
5057 	 * to make IP operate as if in the global zone.
5058 	 */
5059 	ill->ill_zoneid = GLOBAL_ZONEID;
5060 
5061 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5062 	if (ill->ill_phyint == NULL)
5063 		goto done;
5064 
5065 	if (isv6)
5066 		ill->ill_phyint->phyint_illv6 = ill;
5067 	else
5068 		ill->ill_phyint->phyint_illv4 = ill;
5069 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5070 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5071 	/* Add room for tcp+ip headers */
5072 	if (isv6) {
5073 		ill->ill_isv6 = B_TRUE;
5074 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5075 	} else {
5076 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5077 	}
5078 	if (!ill_allocate_mibs(ill))
5079 		goto done;
5080 	ill->ill_max_mtu = ill->ill_max_frag;
5081 	/*
5082 	 * ipif_loopback_name can't be pointed at directly because its used
5083 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5084 	 * from the glist, ill_glist_delete() sets the first character of
5085 	 * ill_name to '\0'.
5086 	 */
5087 	ill->ill_name = (char *)ill + sizeof (*ill);
5088 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5089 	ill->ill_name_length = sizeof (ipif_loopback_name);
5090 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5091 
5092 	ill->ill_global_timer = INFINITY;
5093 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
5094 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5095 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5096 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5097 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5098 
5099 	/* No resolver here. */
5100 	ill->ill_net_type = IRE_LOOPBACK;
5101 
5102 	/* Initialize the ipsq */
5103 	if (!ipsq_init(ill))
5104 		goto done;
5105 
5106 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5107 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5108 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5109 #ifdef ILL_DEBUG
5110 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5111 #endif
5112 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5113 	if (ipif == NULL)
5114 		goto done;
5115 
5116 	ill->ill_flags = ILLF_MULTICAST;
5117 
5118 	ov6addr = ipif->ipif_v6lcl_addr;
5119 	/* Set up default loopback address and mask. */
5120 	if (!isv6) {
5121 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5122 
5123 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5124 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5125 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5126 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5127 		    ipif->ipif_v6subnet);
5128 		ill->ill_flags |= ILLF_IPV4;
5129 	} else {
5130 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5131 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5132 		ipif->ipif_v6net_mask = ipv6_all_ones;
5133 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5134 		    ipif->ipif_v6subnet);
5135 		ill->ill_flags |= ILLF_IPV6;
5136 	}
5137 
5138 	/*
5139 	 * Chain us in at the end of the ill list. hold the ill
5140 	 * before we make it globally visible. 1 for the lookup.
5141 	 */
5142 	ill->ill_refcnt = 0;
5143 	ill_refhold(ill);
5144 
5145 	ill->ill_frag_count = 0;
5146 	ill->ill_frag_free_num_pkts = 0;
5147 	ill->ill_last_frag_clean_time = 0;
5148 
5149 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5150 
5151 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5152 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5153 
5154 	/* Let SCTP know so that it can add this to its list */
5155 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5156 
5157 	/*
5158 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5159 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5160 	 * requires to be after ill_glist_insert() since we need the
5161 	 * ill_index set. Pass on ipv6_loopback as the old address.
5162 	 */
5163 	sctp_update_ipif_addr(ipif, ov6addr);
5164 
5165 	/*
5166 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5167 	 */
5168 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5169 		/* Loopback ills aren't in any IPMP group */
5170 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5171 		ipsq_delete(old_ipsq);
5172 	}
5173 
5174 	/*
5175 	 * Delay this till the ipif is allocated as ipif_allocate
5176 	 * de-references ill_phyint for getting the ifindex. We
5177 	 * can't do this before ipif_allocate because ill_phyint_reinit
5178 	 * -> phyint_assign_ifindex expects ipif to be present.
5179 	 */
5180 	mutex_enter(&ill->ill_phyint->phyint_lock);
5181 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5182 	mutex_exit(&ill->ill_phyint->phyint_lock);
5183 
5184 	if (ipst->ips_loopback_ksp == NULL) {
5185 		/* Export loopback interface statistics */
5186 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5187 		    ipif_loopback_name, "net",
5188 		    KSTAT_TYPE_NAMED, 2, 0,
5189 		    ipst->ips_netstack->netstack_stackid);
5190 		if (ipst->ips_loopback_ksp != NULL) {
5191 			ipst->ips_loopback_ksp->ks_update =
5192 			    loopback_kstat_update;
5193 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5194 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5195 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5196 			ipst->ips_loopback_ksp->ks_private =
5197 			    (void *)(uintptr_t)ipst->ips_netstack->
5198 			    netstack_stackid;
5199 			kstat_install(ipst->ips_loopback_ksp);
5200 		}
5201 	}
5202 
5203 	if (error != NULL)
5204 		*error = 0;
5205 	*did_alloc = B_TRUE;
5206 	rw_exit(&ipst->ips_ill_g_lock);
5207 	return (ill);
5208 done:
5209 	if (ill != NULL) {
5210 		if (ill->ill_phyint != NULL) {
5211 			ipsq_t	*ipsq;
5212 
5213 			ipsq = ill->ill_phyint->phyint_ipsq;
5214 			if (ipsq != NULL) {
5215 				ipsq->ipsq_ipst = NULL;
5216 				kmem_free(ipsq, sizeof (ipsq_t));
5217 			}
5218 			mi_free(ill->ill_phyint);
5219 		}
5220 		ill_free_mib(ill);
5221 		if (ill->ill_ipst != NULL)
5222 			netstack_rele(ill->ill_ipst->ips_netstack);
5223 		mi_free(ill);
5224 	}
5225 	rw_exit(&ipst->ips_ill_g_lock);
5226 	if (error != NULL)
5227 		*error = ENOMEM;
5228 	return (NULL);
5229 }
5230 
5231 /*
5232  * For IPP calls - use the ip_stack_t for global stack.
5233  */
5234 ill_t *
5235 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5236     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5237 {
5238 	ip_stack_t	*ipst;
5239 	ill_t		*ill;
5240 
5241 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5242 	if (ipst == NULL) {
5243 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5244 		return (NULL);
5245 	}
5246 
5247 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5248 	netstack_rele(ipst->ips_netstack);
5249 	return (ill);
5250 }
5251 
5252 /*
5253  * Return a pointer to the ill which matches the index and IP version type.
5254  */
5255 ill_t *
5256 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5257     ipsq_func_t func, int *err, ip_stack_t *ipst)
5258 {
5259 	ill_t	*ill;
5260 	ipsq_t  *ipsq;
5261 	phyint_t *phyi;
5262 
5263 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5264 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5265 
5266 	if (err != NULL)
5267 		*err = 0;
5268 
5269 	/*
5270 	 * Indexes are stored in the phyint - a common structure
5271 	 * to both IPv4 and IPv6.
5272 	 */
5273 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5274 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5275 	    (void *) &index, NULL);
5276 	if (phyi != NULL) {
5277 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5278 		if (ill != NULL) {
5279 			/*
5280 			 * The block comment at the start of ipif_down
5281 			 * explains the use of the macros used below
5282 			 */
5283 			GRAB_CONN_LOCK(q);
5284 			mutex_enter(&ill->ill_lock);
5285 			if (ILL_CAN_LOOKUP(ill)) {
5286 				ill_refhold_locked(ill);
5287 				mutex_exit(&ill->ill_lock);
5288 				RELEASE_CONN_LOCK(q);
5289 				rw_exit(&ipst->ips_ill_g_lock);
5290 				return (ill);
5291 			} else if (ILL_CAN_WAIT(ill, q)) {
5292 				ipsq = ill->ill_phyint->phyint_ipsq;
5293 				mutex_enter(&ipsq->ipsq_lock);
5294 				rw_exit(&ipst->ips_ill_g_lock);
5295 				mutex_exit(&ill->ill_lock);
5296 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5297 				mutex_exit(&ipsq->ipsq_lock);
5298 				RELEASE_CONN_LOCK(q);
5299 				*err = EINPROGRESS;
5300 				return (NULL);
5301 			}
5302 			RELEASE_CONN_LOCK(q);
5303 			mutex_exit(&ill->ill_lock);
5304 		}
5305 	}
5306 	rw_exit(&ipst->ips_ill_g_lock);
5307 	if (err != NULL)
5308 		*err = ENXIO;
5309 	return (NULL);
5310 }
5311 
5312 /*
5313  * Return the ifindex next in sequence after the passed in ifindex.
5314  * If there is no next ifindex for the given protocol, return 0.
5315  */
5316 uint_t
5317 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5318 {
5319 	phyint_t *phyi;
5320 	phyint_t *phyi_initial;
5321 	uint_t   ifindex;
5322 
5323 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5324 
5325 	if (index == 0) {
5326 		phyi = avl_first(
5327 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5328 	} else {
5329 		phyi = phyi_initial = avl_find(
5330 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5331 		    (void *) &index, NULL);
5332 	}
5333 
5334 	for (; phyi != NULL;
5335 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5336 	    phyi, AVL_AFTER)) {
5337 		/*
5338 		 * If we're not returning the first interface in the tree
5339 		 * and we still haven't moved past the phyint_t that
5340 		 * corresponds to index, avl_walk needs to be called again
5341 		 */
5342 		if (!((index != 0) && (phyi == phyi_initial))) {
5343 			if (isv6) {
5344 				if ((phyi->phyint_illv6) &&
5345 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5346 				    (phyi->phyint_illv6->ill_isv6 == 1))
5347 					break;
5348 			} else {
5349 				if ((phyi->phyint_illv4) &&
5350 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5351 				    (phyi->phyint_illv4->ill_isv6 == 0))
5352 					break;
5353 			}
5354 		}
5355 	}
5356 
5357 	rw_exit(&ipst->ips_ill_g_lock);
5358 
5359 	if (phyi != NULL)
5360 		ifindex = phyi->phyint_ifindex;
5361 	else
5362 		ifindex = 0;
5363 
5364 	return (ifindex);
5365 }
5366 
5367 
5368 /*
5369  * Return the ifindex for the named interface.
5370  * If there is no next ifindex for the interface, return 0.
5371  */
5372 uint_t
5373 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5374 {
5375 	phyint_t	*phyi;
5376 	avl_index_t	where = 0;
5377 	uint_t		ifindex;
5378 
5379 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5380 
5381 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5382 	    name, &where)) == NULL) {
5383 		rw_exit(&ipst->ips_ill_g_lock);
5384 		return (0);
5385 	}
5386 
5387 	ifindex = phyi->phyint_ifindex;
5388 
5389 	rw_exit(&ipst->ips_ill_g_lock);
5390 
5391 	return (ifindex);
5392 }
5393 
5394 
5395 /*
5396  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5397  * that gives a running thread a reference to the ill. This reference must be
5398  * released by the thread when it is done accessing the ill and related
5399  * objects. ill_refcnt can not be used to account for static references
5400  * such as other structures pointing to an ill. Callers must generally
5401  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5402  * or be sure that the ill is not being deleted or changing state before
5403  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5404  * ill won't change any of its critical state such as address, netmask etc.
5405  */
5406 void
5407 ill_refhold(ill_t *ill)
5408 {
5409 	mutex_enter(&ill->ill_lock);
5410 	ill->ill_refcnt++;
5411 	ILL_TRACE_REF(ill);
5412 	mutex_exit(&ill->ill_lock);
5413 }
5414 
5415 void
5416 ill_refhold_locked(ill_t *ill)
5417 {
5418 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5419 	ill->ill_refcnt++;
5420 	ILL_TRACE_REF(ill);
5421 }
5422 
5423 int
5424 ill_check_and_refhold(ill_t *ill)
5425 {
5426 	mutex_enter(&ill->ill_lock);
5427 	if (ILL_CAN_LOOKUP(ill)) {
5428 		ill_refhold_locked(ill);
5429 		mutex_exit(&ill->ill_lock);
5430 		return (0);
5431 	}
5432 	mutex_exit(&ill->ill_lock);
5433 	return (ILL_LOOKUP_FAILED);
5434 }
5435 
5436 /*
5437  * Must not be called while holding any locks. Otherwise if this is
5438  * the last reference to be released, there is a chance of recursive mutex
5439  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5440  * to restart an ioctl.
5441  */
5442 void
5443 ill_refrele(ill_t *ill)
5444 {
5445 	mutex_enter(&ill->ill_lock);
5446 	ASSERT(ill->ill_refcnt != 0);
5447 	ill->ill_refcnt--;
5448 	ILL_UNTRACE_REF(ill);
5449 	if (ill->ill_refcnt != 0) {
5450 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5451 		mutex_exit(&ill->ill_lock);
5452 		return;
5453 	}
5454 
5455 	/* Drops the ill_lock */
5456 	ipif_ill_refrele_tail(ill);
5457 }
5458 
5459 /*
5460  * Obtain a weak reference count on the ill. This reference ensures the
5461  * ill won't be freed, but the ill may change any of its critical state
5462  * such as netmask, address etc. Returns an error if the ill has started
5463  * closing.
5464  */
5465 boolean_t
5466 ill_waiter_inc(ill_t *ill)
5467 {
5468 	mutex_enter(&ill->ill_lock);
5469 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5470 		mutex_exit(&ill->ill_lock);
5471 		return (B_FALSE);
5472 	}
5473 	ill->ill_waiters++;
5474 	mutex_exit(&ill->ill_lock);
5475 	return (B_TRUE);
5476 }
5477 
5478 void
5479 ill_waiter_dcr(ill_t *ill)
5480 {
5481 	mutex_enter(&ill->ill_lock);
5482 	ill->ill_waiters--;
5483 	if (ill->ill_waiters == 0)
5484 		cv_broadcast(&ill->ill_cv);
5485 	mutex_exit(&ill->ill_lock);
5486 }
5487 
5488 /*
5489  * Named Dispatch routine to produce a formatted report on all ILLs.
5490  * This report is accessed by using the ndd utility to "get" ND variable
5491  * "ip_ill_status".
5492  */
5493 /* ARGSUSED */
5494 int
5495 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5496 {
5497 	ill_t		*ill;
5498 	ill_walk_context_t ctx;
5499 	ip_stack_t	*ipst;
5500 
5501 	ipst = CONNQ_TO_IPST(q);
5502 
5503 	(void) mi_mpprintf(mp,
5504 	    "ILL      " MI_COL_HDRPAD_STR
5505 	/*   01234567[89ABCDEF] */
5506 	    "rq       " MI_COL_HDRPAD_STR
5507 	/*   01234567[89ABCDEF] */
5508 	    "wq       " MI_COL_HDRPAD_STR
5509 	/*   01234567[89ABCDEF] */
5510 	    "upcnt mxfrg err name");
5511 	/*   12345 12345 123 xxxxxxxx  */
5512 
5513 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5514 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5515 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5516 		(void) mi_mpprintf(mp,
5517 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5518 		    "%05u %05u %03d %s",
5519 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5520 		    ill->ill_ipif_up_count,
5521 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5522 	}
5523 	rw_exit(&ipst->ips_ill_g_lock);
5524 
5525 	return (0);
5526 }
5527 
5528 /*
5529  * Named Dispatch routine to produce a formatted report on all IPIFs.
5530  * This report is accessed by using the ndd utility to "get" ND variable
5531  * "ip_ipif_status".
5532  */
5533 /* ARGSUSED */
5534 int
5535 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5536 {
5537 	char	buf1[INET6_ADDRSTRLEN];
5538 	char	buf2[INET6_ADDRSTRLEN];
5539 	char	buf3[INET6_ADDRSTRLEN];
5540 	char	buf4[INET6_ADDRSTRLEN];
5541 	char	buf5[INET6_ADDRSTRLEN];
5542 	char	buf6[INET6_ADDRSTRLEN];
5543 	char	buf[LIFNAMSIZ];
5544 	ill_t	*ill;
5545 	ipif_t	*ipif;
5546 	nv_t	*nvp;
5547 	uint64_t flags;
5548 	zoneid_t zoneid;
5549 	ill_walk_context_t ctx;
5550 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5551 
5552 	(void) mi_mpprintf(mp,
5553 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5554 	    "\tlocal address\n"
5555 	    "\tsrc address\n"
5556 	    "\tsubnet\n"
5557 	    "\tmask\n"
5558 	    "\tbroadcast\n"
5559 	    "\tp-p-dst");
5560 
5561 	ASSERT(q->q_next == NULL);
5562 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5563 
5564 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5565 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5566 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5567 		for (ipif = ill->ill_ipif; ipif != NULL;
5568 		    ipif = ipif->ipif_next) {
5569 			if (zoneid != GLOBAL_ZONEID &&
5570 			    zoneid != ipif->ipif_zoneid &&
5571 			    ipif->ipif_zoneid != ALL_ZONES)
5572 				continue;
5573 			(void) mi_mpprintf(mp,
5574 			    MI_COL_PTRFMT_STR
5575 			    "%04u %05u %u/%u/%u %s %d",
5576 			    (void *)ipif,
5577 			    ipif->ipif_metric, ipif->ipif_mtu,
5578 			    ipif->ipif_ib_pkt_count,
5579 			    ipif->ipif_ob_pkt_count,
5580 			    ipif->ipif_fo_pkt_count,
5581 			    ipif_get_name(ipif, buf, sizeof (buf)),
5582 			    ipif->ipif_zoneid);
5583 
5584 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5585 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5586 
5587 		/* Tack on text strings for any flags. */
5588 		nvp = ipif_nv_tbl;
5589 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5590 			if (nvp->nv_value & flags)
5591 				(void) mi_mpprintf_nr(mp, " %s",
5592 				    nvp->nv_name);
5593 		}
5594 		(void) mi_mpprintf(mp,
5595 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5596 		    inet_ntop(AF_INET6,
5597 		    &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5598 		    inet_ntop(AF_INET6,
5599 		    &ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5600 		    inet_ntop(AF_INET6,
5601 		    &ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5602 		    inet_ntop(AF_INET6,
5603 		    &ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5604 		    inet_ntop(AF_INET6,
5605 		    &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5606 		    inet_ntop(AF_INET6,
5607 		    &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6)));
5608 		}
5609 	}
5610 	rw_exit(&ipst->ips_ill_g_lock);
5611 	return (0);
5612 }
5613 
5614 /*
5615  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5616  * driver.  We construct best guess defaults for lower level information that
5617  * we need.  If an interface is brought up without injection of any overriding
5618  * information from outside, we have to be ready to go with these defaults.
5619  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5620  * we primarely want the dl_provider_style.
5621  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5622  * at which point we assume the other part of the information is valid.
5623  */
5624 void
5625 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5626 {
5627 	uchar_t		*brdcst_addr;
5628 	uint_t		brdcst_addr_length, phys_addr_length;
5629 	t_scalar_t	sap_length;
5630 	dl_info_ack_t	*dlia;
5631 	ip_m_t		*ipm;
5632 	dl_qos_cl_sel1_t *sel1;
5633 
5634 	ASSERT(IAM_WRITER_ILL(ill));
5635 
5636 	/*
5637 	 * Till the ill is fully up ILL_CHANGING will be set and
5638 	 * the ill is not globally visible. So no need for a lock.
5639 	 */
5640 	dlia = (dl_info_ack_t *)mp->b_rptr;
5641 	ill->ill_mactype = dlia->dl_mac_type;
5642 
5643 	ipm = ip_m_lookup(dlia->dl_mac_type);
5644 	if (ipm == NULL) {
5645 		ipm = ip_m_lookup(DL_OTHER);
5646 		ASSERT(ipm != NULL);
5647 	}
5648 	ill->ill_media = ipm;
5649 
5650 	/*
5651 	 * When the new DLPI stuff is ready we'll pull lengths
5652 	 * from dlia.
5653 	 */
5654 	if (dlia->dl_version == DL_VERSION_2) {
5655 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5656 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5657 		    brdcst_addr_length);
5658 		if (brdcst_addr == NULL) {
5659 			brdcst_addr_length = 0;
5660 		}
5661 		sap_length = dlia->dl_sap_length;
5662 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5663 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5664 		    brdcst_addr_length, sap_length, phys_addr_length));
5665 	} else {
5666 		brdcst_addr_length = 6;
5667 		brdcst_addr = ip_six_byte_all_ones;
5668 		sap_length = -2;
5669 		phys_addr_length = brdcst_addr_length;
5670 	}
5671 
5672 	ill->ill_bcast_addr_length = brdcst_addr_length;
5673 	ill->ill_phys_addr_length = phys_addr_length;
5674 	ill->ill_sap_length = sap_length;
5675 	ill->ill_max_frag = dlia->dl_max_sdu;
5676 	ill->ill_max_mtu = ill->ill_max_frag;
5677 
5678 	ill->ill_type = ipm->ip_m_type;
5679 
5680 	if (!ill->ill_dlpi_style_set) {
5681 		if (dlia->dl_provider_style == DL_STYLE2)
5682 			ill->ill_needs_attach = 1;
5683 
5684 		/*
5685 		 * Allocate the first ipif on this ill. We don't delay it
5686 		 * further as ioctl handling assumes atleast one ipif to
5687 		 * be present.
5688 		 *
5689 		 * At this point we don't know whether the ill is v4 or v6.
5690 		 * We will know this whan the SIOCSLIFNAME happens and
5691 		 * the correct value for ill_isv6 will be assigned in
5692 		 * ipif_set_values(). We need to hold the ill lock and
5693 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5694 		 * the wakeup.
5695 		 */
5696 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5697 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5698 		mutex_enter(&ill->ill_lock);
5699 		ASSERT(ill->ill_dlpi_style_set == 0);
5700 		ill->ill_dlpi_style_set = 1;
5701 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5702 		cv_broadcast(&ill->ill_cv);
5703 		mutex_exit(&ill->ill_lock);
5704 		freemsg(mp);
5705 		return;
5706 	}
5707 	ASSERT(ill->ill_ipif != NULL);
5708 	/*
5709 	 * We know whether it is IPv4 or IPv6 now, as this is the
5710 	 * second DL_INFO_ACK we are recieving in response to the
5711 	 * DL_INFO_REQ sent in ipif_set_values.
5712 	 */
5713 	if (ill->ill_isv6)
5714 		ill->ill_sap = IP6_DL_SAP;
5715 	else
5716 		ill->ill_sap = IP_DL_SAP;
5717 	/*
5718 	 * Set ipif_mtu which is used to set the IRE's
5719 	 * ire_max_frag value. The driver could have sent
5720 	 * a different mtu from what it sent last time. No
5721 	 * need to call ipif_mtu_change because IREs have
5722 	 * not yet been created.
5723 	 */
5724 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5725 	/*
5726 	 * Clear all the flags that were set based on ill_bcast_addr_length
5727 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5728 	 * changed now and we need to re-evaluate.
5729 	 */
5730 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5731 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5732 
5733 	/*
5734 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5735 	 * changed now.
5736 	 */
5737 	if (ill->ill_bcast_addr_length == 0) {
5738 		if (ill->ill_resolver_mp != NULL)
5739 			freemsg(ill->ill_resolver_mp);
5740 		if (ill->ill_bcast_mp != NULL)
5741 			freemsg(ill->ill_bcast_mp);
5742 		if (ill->ill_flags & ILLF_XRESOLV)
5743 			ill->ill_net_type = IRE_IF_RESOLVER;
5744 		else
5745 			ill->ill_net_type = IRE_IF_NORESOLVER;
5746 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5747 		    ill->ill_phys_addr_length,
5748 		    ill->ill_sap,
5749 		    ill->ill_sap_length);
5750 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5751 
5752 		if (ill->ill_isv6)
5753 			/*
5754 			 * Note: xresolv interfaces will eventually need NOARP
5755 			 * set here as well, but that will require those
5756 			 * external resolvers to have some knowledge of
5757 			 * that flag and act appropriately. Not to be changed
5758 			 * at present.
5759 			 */
5760 			ill->ill_flags |= ILLF_NONUD;
5761 		else
5762 			ill->ill_flags |= ILLF_NOARP;
5763 
5764 		if (ill->ill_phys_addr_length == 0) {
5765 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5766 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5767 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5768 			} else {
5769 				/* pt-pt supports multicast. */
5770 				ill->ill_flags |= ILLF_MULTICAST;
5771 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5772 			}
5773 		}
5774 	} else {
5775 		ill->ill_net_type = IRE_IF_RESOLVER;
5776 		if (ill->ill_bcast_mp != NULL)
5777 			freemsg(ill->ill_bcast_mp);
5778 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5779 		    ill->ill_bcast_addr_length, ill->ill_sap,
5780 		    ill->ill_sap_length);
5781 		/*
5782 		 * Later detect lack of DLPI driver multicast
5783 		 * capability by catching DL_ENABMULTI errors in
5784 		 * ip_rput_dlpi.
5785 		 */
5786 		ill->ill_flags |= ILLF_MULTICAST;
5787 		if (!ill->ill_isv6)
5788 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5789 	}
5790 	/* By default an interface does not support any CoS marking */
5791 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5792 
5793 	/*
5794 	 * If we get QoS information in DL_INFO_ACK, the device supports
5795 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5796 	 */
5797 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5798 	    dlia->dl_qos_length);
5799 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5800 		ill->ill_flags |= ILLF_COS_ENABLED;
5801 	}
5802 
5803 	/* Clear any previous error indication. */
5804 	ill->ill_error = 0;
5805 	freemsg(mp);
5806 }
5807 
5808 /*
5809  * Perform various checks to verify that an address would make sense as a
5810  * local, remote, or subnet interface address.
5811  */
5812 static boolean_t
5813 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5814 {
5815 	ipaddr_t	net_mask;
5816 
5817 	/*
5818 	 * Don't allow all zeroes, all ones or experimental address, but allow
5819 	 * all ones netmask.
5820 	 */
5821 	if ((net_mask = ip_net_mask(addr)) == 0)
5822 		return (B_FALSE);
5823 	/* A given netmask overrides the "guess" netmask */
5824 	if (subnet_mask != 0)
5825 		net_mask = subnet_mask;
5826 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5827 	    (addr == (addr | ~net_mask)))) {
5828 		return (B_FALSE);
5829 	}
5830 	if (CLASSD(addr))
5831 		return (B_FALSE);
5832 
5833 	return (B_TRUE);
5834 }
5835 
5836 #define	V6_IPIF_LINKLOCAL(p)	\
5837 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5838 
5839 /*
5840  * Compare two given ipifs and check if the second one is better than
5841  * the first one using the order of preference (not taking deprecated
5842  * into acount) specified in ipif_lookup_multicast().
5843  */
5844 static boolean_t
5845 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5846 {
5847 	/* Check the least preferred first. */
5848 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5849 		/* If both ipifs are the same, use the first one. */
5850 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5851 			return (B_FALSE);
5852 		else
5853 			return (B_TRUE);
5854 	}
5855 
5856 	/* For IPv6, check for link local address. */
5857 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5858 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5859 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5860 			/* The second one is equal or less preferred. */
5861 			return (B_FALSE);
5862 		} else {
5863 			return (B_TRUE);
5864 		}
5865 	}
5866 
5867 	/* Then check for point to point interface. */
5868 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5869 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5870 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5871 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5872 			return (B_FALSE);
5873 		} else {
5874 			return (B_TRUE);
5875 		}
5876 	}
5877 
5878 	/* old_ipif is a normal interface, so no need to use the new one. */
5879 	return (B_FALSE);
5880 }
5881 
5882 /*
5883  * Find any non-virtual, not condemned, and up multicast capable interface
5884  * given an IP instance and zoneid.  Order of preference is:
5885  *
5886  * 1. normal
5887  * 1.1 normal, but deprecated
5888  * 2. point to point
5889  * 2.1 point to point, but deprecated
5890  * 3. link local
5891  * 3.1 link local, but deprecated
5892  * 4. loopback.
5893  */
5894 ipif_t *
5895 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5896 {
5897 	ill_t			*ill;
5898 	ill_walk_context_t	ctx;
5899 	ipif_t			*ipif;
5900 	ipif_t			*saved_ipif = NULL;
5901 	ipif_t			*dep_ipif = NULL;
5902 
5903 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5904 	if (isv6)
5905 		ill = ILL_START_WALK_V6(&ctx, ipst);
5906 	else
5907 		ill = ILL_START_WALK_V4(&ctx, ipst);
5908 
5909 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5910 		mutex_enter(&ill->ill_lock);
5911 		if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) ||
5912 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5913 			mutex_exit(&ill->ill_lock);
5914 			continue;
5915 		}
5916 		for (ipif = ill->ill_ipif; ipif != NULL;
5917 		    ipif = ipif->ipif_next) {
5918 			if (zoneid != ipif->ipif_zoneid &&
5919 			    zoneid != ALL_ZONES &&
5920 			    ipif->ipif_zoneid != ALL_ZONES) {
5921 				continue;
5922 			}
5923 			if (!(ipif->ipif_flags & IPIF_UP) ||
5924 			    !IPIF_CAN_LOOKUP(ipif)) {
5925 				continue;
5926 			}
5927 
5928 			/*
5929 			 * Found one candidate.  If it is deprecated,
5930 			 * remember it in dep_ipif.  If it is not deprecated,
5931 			 * remember it in saved_ipif.
5932 			 */
5933 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5934 				if (dep_ipif == NULL) {
5935 					dep_ipif = ipif;
5936 				} else if (ipif_comp_multi(dep_ipif, ipif,
5937 				    isv6)) {
5938 					/*
5939 					 * If the previous dep_ipif does not
5940 					 * belong to the same ill, we've done
5941 					 * a ipif_refhold() on it.  So we need
5942 					 * to release it.
5943 					 */
5944 					if (dep_ipif->ipif_ill != ill)
5945 						ipif_refrele(dep_ipif);
5946 					dep_ipif = ipif;
5947 				}
5948 				continue;
5949 			}
5950 			if (saved_ipif == NULL) {
5951 				saved_ipif = ipif;
5952 			} else {
5953 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5954 					if (saved_ipif->ipif_ill != ill)
5955 						ipif_refrele(saved_ipif);
5956 					saved_ipif = ipif;
5957 				}
5958 			}
5959 		}
5960 		/*
5961 		 * Before going to the next ill, do a ipif_refhold() on the
5962 		 * saved ones.
5963 		 */
5964 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5965 			ipif_refhold_locked(saved_ipif);
5966 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5967 			ipif_refhold_locked(dep_ipif);
5968 		mutex_exit(&ill->ill_lock);
5969 	}
5970 	rw_exit(&ipst->ips_ill_g_lock);
5971 
5972 	/*
5973 	 * If we have only the saved_ipif, return it.  But if we have both
5974 	 * saved_ipif and dep_ipif, check to see which one is better.
5975 	 */
5976 	if (saved_ipif != NULL) {
5977 		if (dep_ipif != NULL) {
5978 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5979 				ipif_refrele(saved_ipif);
5980 				return (dep_ipif);
5981 			} else {
5982 				ipif_refrele(dep_ipif);
5983 				return (saved_ipif);
5984 			}
5985 		}
5986 		return (saved_ipif);
5987 	} else {
5988 		return (dep_ipif);
5989 	}
5990 }
5991 
5992 /*
5993  * This function is called when an application does not specify an interface
5994  * to be used for multicast traffic (joining a group/sending data).  It
5995  * calls ire_lookup_multi() to look for an interface route for the
5996  * specified multicast group.  Doing this allows the administrator to add
5997  * prefix routes for multicast to indicate which interface to be used for
5998  * multicast traffic in the above scenario.  The route could be for all
5999  * multicast (224.0/4), for a single multicast group (a /32 route) or
6000  * anything in between.  If there is no such multicast route, we just find
6001  * any multicast capable interface and return it.  The returned ipif
6002  * is refhold'ed.
6003  */
6004 ipif_t *
6005 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
6006 {
6007 	ire_t			*ire;
6008 	ipif_t			*ipif;
6009 
6010 	ire = ire_lookup_multi(group, zoneid, ipst);
6011 	if (ire != NULL) {
6012 		ipif = ire->ire_ipif;
6013 		ipif_refhold(ipif);
6014 		ire_refrele(ire);
6015 		return (ipif);
6016 	}
6017 
6018 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
6019 }
6020 
6021 /*
6022  * Look for an ipif with the specified interface address and destination.
6023  * The destination address is used only for matching point-to-point interfaces.
6024  */
6025 ipif_t *
6026 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
6027     ipsq_func_t func, int *error, ip_stack_t *ipst)
6028 {
6029 	ipif_t	*ipif;
6030 	ill_t	*ill;
6031 	ill_walk_context_t ctx;
6032 	ipsq_t	*ipsq;
6033 
6034 	if (error != NULL)
6035 		*error = 0;
6036 
6037 	/*
6038 	 * First match all the point-to-point interfaces
6039 	 * before looking at non-point-to-point interfaces.
6040 	 * This is done to avoid returning non-point-to-point
6041 	 * ipif instead of unnumbered point-to-point ipif.
6042 	 */
6043 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6044 	ill = ILL_START_WALK_V4(&ctx, ipst);
6045 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6046 		GRAB_CONN_LOCK(q);
6047 		mutex_enter(&ill->ill_lock);
6048 		for (ipif = ill->ill_ipif; ipif != NULL;
6049 		    ipif = ipif->ipif_next) {
6050 			/* Allow the ipif to be down */
6051 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
6052 			    (ipif->ipif_lcl_addr == if_addr) &&
6053 			    (ipif->ipif_pp_dst_addr == dst)) {
6054 				/*
6055 				 * The block comment at the start of ipif_down
6056 				 * explains the use of the macros used below
6057 				 */
6058 				if (IPIF_CAN_LOOKUP(ipif)) {
6059 					ipif_refhold_locked(ipif);
6060 					mutex_exit(&ill->ill_lock);
6061 					RELEASE_CONN_LOCK(q);
6062 					rw_exit(&ipst->ips_ill_g_lock);
6063 					return (ipif);
6064 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6065 					ipsq = ill->ill_phyint->phyint_ipsq;
6066 					mutex_enter(&ipsq->ipsq_lock);
6067 					mutex_exit(&ill->ill_lock);
6068 					rw_exit(&ipst->ips_ill_g_lock);
6069 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6070 					    ill);
6071 					mutex_exit(&ipsq->ipsq_lock);
6072 					RELEASE_CONN_LOCK(q);
6073 					*error = EINPROGRESS;
6074 					return (NULL);
6075 				}
6076 			}
6077 		}
6078 		mutex_exit(&ill->ill_lock);
6079 		RELEASE_CONN_LOCK(q);
6080 	}
6081 	rw_exit(&ipst->ips_ill_g_lock);
6082 
6083 	/* lookup the ipif based on interface address */
6084 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
6085 	    ipst);
6086 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
6087 	return (ipif);
6088 }
6089 
6090 /*
6091  * Look for an ipif with the specified address. For point-point links
6092  * we look for matches on either the destination address and the local
6093  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6094  * is set.
6095  * Matches on a specific ill if match_ill is set.
6096  */
6097 ipif_t *
6098 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
6099     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
6100 {
6101 	ipif_t  *ipif;
6102 	ill_t   *ill;
6103 	boolean_t ptp = B_FALSE;
6104 	ipsq_t	*ipsq;
6105 	ill_walk_context_t	ctx;
6106 
6107 	if (error != NULL)
6108 		*error = 0;
6109 
6110 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6111 	/*
6112 	 * Repeat twice, first based on local addresses and
6113 	 * next time for pointopoint.
6114 	 */
6115 repeat:
6116 	ill = ILL_START_WALK_V4(&ctx, ipst);
6117 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6118 		if (match_ill != NULL && ill != match_ill) {
6119 			continue;
6120 		}
6121 		GRAB_CONN_LOCK(q);
6122 		mutex_enter(&ill->ill_lock);
6123 		for (ipif = ill->ill_ipif; ipif != NULL;
6124 		    ipif = ipif->ipif_next) {
6125 			if (zoneid != ALL_ZONES &&
6126 			    zoneid != ipif->ipif_zoneid &&
6127 			    ipif->ipif_zoneid != ALL_ZONES)
6128 				continue;
6129 			/* Allow the ipif to be down */
6130 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6131 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6132 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6133 			    (ipif->ipif_pp_dst_addr == addr))) {
6134 				/*
6135 				 * The block comment at the start of ipif_down
6136 				 * explains the use of the macros used below
6137 				 */
6138 				if (IPIF_CAN_LOOKUP(ipif)) {
6139 					ipif_refhold_locked(ipif);
6140 					mutex_exit(&ill->ill_lock);
6141 					RELEASE_CONN_LOCK(q);
6142 					rw_exit(&ipst->ips_ill_g_lock);
6143 					return (ipif);
6144 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6145 					ipsq = ill->ill_phyint->phyint_ipsq;
6146 					mutex_enter(&ipsq->ipsq_lock);
6147 					mutex_exit(&ill->ill_lock);
6148 					rw_exit(&ipst->ips_ill_g_lock);
6149 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6150 					    ill);
6151 					mutex_exit(&ipsq->ipsq_lock);
6152 					RELEASE_CONN_LOCK(q);
6153 					*error = EINPROGRESS;
6154 					return (NULL);
6155 				}
6156 			}
6157 		}
6158 		mutex_exit(&ill->ill_lock);
6159 		RELEASE_CONN_LOCK(q);
6160 	}
6161 
6162 	/* If we already did the ptp case, then we are done */
6163 	if (ptp) {
6164 		rw_exit(&ipst->ips_ill_g_lock);
6165 		if (error != NULL)
6166 			*error = ENXIO;
6167 		return (NULL);
6168 	}
6169 	ptp = B_TRUE;
6170 	goto repeat;
6171 }
6172 
6173 /*
6174  * Look for an ipif with the specified address. For point-point links
6175  * we look for matches on either the destination address and the local
6176  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6177  * is set.
6178  * Matches on a specific ill if match_ill is set.
6179  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6180  */
6181 zoneid_t
6182 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6183 {
6184 	zoneid_t zoneid;
6185 	ipif_t  *ipif;
6186 	ill_t   *ill;
6187 	boolean_t ptp = B_FALSE;
6188 	ill_walk_context_t	ctx;
6189 
6190 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6191 	/*
6192 	 * Repeat twice, first based on local addresses and
6193 	 * next time for pointopoint.
6194 	 */
6195 repeat:
6196 	ill = ILL_START_WALK_V4(&ctx, ipst);
6197 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6198 		if (match_ill != NULL && ill != match_ill) {
6199 			continue;
6200 		}
6201 		mutex_enter(&ill->ill_lock);
6202 		for (ipif = ill->ill_ipif; ipif != NULL;
6203 		    ipif = ipif->ipif_next) {
6204 			/* Allow the ipif to be down */
6205 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6206 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6207 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6208 			    (ipif->ipif_pp_dst_addr == addr)) &&
6209 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6210 				zoneid = ipif->ipif_zoneid;
6211 				mutex_exit(&ill->ill_lock);
6212 				rw_exit(&ipst->ips_ill_g_lock);
6213 				/*
6214 				 * If ipif_zoneid was ALL_ZONES then we have
6215 				 * a trusted extensions shared IP address.
6216 				 * In that case GLOBAL_ZONEID works to send.
6217 				 */
6218 				if (zoneid == ALL_ZONES)
6219 					zoneid = GLOBAL_ZONEID;
6220 				return (zoneid);
6221 			}
6222 		}
6223 		mutex_exit(&ill->ill_lock);
6224 	}
6225 
6226 	/* If we already did the ptp case, then we are done */
6227 	if (ptp) {
6228 		rw_exit(&ipst->ips_ill_g_lock);
6229 		return (ALL_ZONES);
6230 	}
6231 	ptp = B_TRUE;
6232 	goto repeat;
6233 }
6234 
6235 /*
6236  * Look for an ipif that matches the specified remote address i.e. the
6237  * ipif that would receive the specified packet.
6238  * First look for directly connected interfaces and then do a recursive
6239  * IRE lookup and pick the first ipif corresponding to the source address in the
6240  * ire.
6241  * Returns: held ipif
6242  */
6243 ipif_t *
6244 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6245 {
6246 	ipif_t	*ipif;
6247 	ire_t	*ire;
6248 	ip_stack_t	*ipst = ill->ill_ipst;
6249 
6250 	ASSERT(!ill->ill_isv6);
6251 
6252 	/*
6253 	 * Someone could be changing this ipif currently or change it
6254 	 * after we return this. Thus  a few packets could use the old
6255 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6256 	 * will atomically be updated or cleaned up with the new value
6257 	 * Thus we don't need a lock to check the flags or other attrs below.
6258 	 */
6259 	mutex_enter(&ill->ill_lock);
6260 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6261 		if (!IPIF_CAN_LOOKUP(ipif))
6262 			continue;
6263 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6264 		    ipif->ipif_zoneid != ALL_ZONES)
6265 			continue;
6266 		/* Allow the ipif to be down */
6267 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6268 			if ((ipif->ipif_pp_dst_addr == addr) ||
6269 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6270 			    ipif->ipif_lcl_addr == addr)) {
6271 				ipif_refhold_locked(ipif);
6272 				mutex_exit(&ill->ill_lock);
6273 				return (ipif);
6274 			}
6275 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6276 			ipif_refhold_locked(ipif);
6277 			mutex_exit(&ill->ill_lock);
6278 			return (ipif);
6279 		}
6280 	}
6281 	mutex_exit(&ill->ill_lock);
6282 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6283 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6284 	if (ire != NULL) {
6285 		/*
6286 		 * The callers of this function wants to know the
6287 		 * interface on which they have to send the replies
6288 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6289 		 * derived from different ills, we really don't care
6290 		 * what we return here.
6291 		 */
6292 		ipif = ire->ire_ipif;
6293 		if (ipif != NULL) {
6294 			ipif_refhold(ipif);
6295 			ire_refrele(ire);
6296 			return (ipif);
6297 		}
6298 		ire_refrele(ire);
6299 	}
6300 	/* Pick the first interface */
6301 	ipif = ipif_get_next_ipif(NULL, ill);
6302 	return (ipif);
6303 }
6304 
6305 /*
6306  * This func does not prevent refcnt from increasing. But if
6307  * the caller has taken steps to that effect, then this func
6308  * can be used to determine whether the ill has become quiescent
6309  */
6310 boolean_t
6311 ill_is_quiescent(ill_t *ill)
6312 {
6313 	ipif_t	*ipif;
6314 
6315 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6316 
6317 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6318 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6319 			return (B_FALSE);
6320 		}
6321 	}
6322 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6323 	    ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 ||
6324 	    ill->ill_mrtun_refcnt != 0) {
6325 		return (B_FALSE);
6326 	}
6327 	return (B_TRUE);
6328 }
6329 
6330 /*
6331  * This func does not prevent refcnt from increasing. But if
6332  * the caller has taken steps to that effect, then this func
6333  * can be used to determine whether the ipif has become quiescent
6334  */
6335 static boolean_t
6336 ipif_is_quiescent(ipif_t *ipif)
6337 {
6338 	ill_t *ill;
6339 
6340 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6341 
6342 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6343 		return (B_FALSE);
6344 	}
6345 
6346 	ill = ipif->ipif_ill;
6347 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6348 	    ill->ill_logical_down) {
6349 		return (B_TRUE);
6350 	}
6351 
6352 	/* This is the last ipif going down or being deleted on this ill */
6353 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6354 		return (B_FALSE);
6355 	}
6356 
6357 	return (B_TRUE);
6358 }
6359 
6360 /*
6361  * This func does not prevent refcnt from increasing. But if
6362  * the caller has taken steps to that effect, then this func
6363  * can be used to determine whether the ipifs marked with IPIF_MOVING
6364  * have become quiescent and can be moved in a failover/failback.
6365  */
6366 static ipif_t *
6367 ill_quiescent_to_move(ill_t *ill)
6368 {
6369 	ipif_t  *ipif;
6370 
6371 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6372 
6373 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6374 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6375 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6376 				return (ipif);
6377 			}
6378 		}
6379 	}
6380 	return (NULL);
6381 }
6382 
6383 /*
6384  * The ipif/ill/ire has been refreled. Do the tail processing.
6385  * Determine if the ipif or ill in question has become quiescent and if so
6386  * wakeup close and/or restart any queued pending ioctl that is waiting
6387  * for the ipif_down (or ill_down)
6388  */
6389 void
6390 ipif_ill_refrele_tail(ill_t *ill)
6391 {
6392 	mblk_t	*mp;
6393 	conn_t	*connp;
6394 	ipsq_t	*ipsq;
6395 	ipif_t	*ipif;
6396 	dl_notify_ind_t *dlindp;
6397 
6398 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6399 
6400 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6401 	    ill_is_quiescent(ill)) {
6402 		/* ill_close may be waiting */
6403 		cv_broadcast(&ill->ill_cv);
6404 	}
6405 
6406 	/* ipsq can't change because ill_lock  is held */
6407 	ipsq = ill->ill_phyint->phyint_ipsq;
6408 	if (ipsq->ipsq_waitfor == 0) {
6409 		/* Not waiting for anything, just return. */
6410 		mutex_exit(&ill->ill_lock);
6411 		return;
6412 	}
6413 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6414 	    ipsq->ipsq_pending_ipif != NULL);
6415 	/*
6416 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6417 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6418 	 * be zero for restarting an ioctl that ends up downing the ill.
6419 	 */
6420 	ipif = ipsq->ipsq_pending_ipif;
6421 	if (ipif->ipif_ill != ill) {
6422 		/* The ioctl is pending on some other ill. */
6423 		mutex_exit(&ill->ill_lock);
6424 		return;
6425 	}
6426 
6427 	switch (ipsq->ipsq_waitfor) {
6428 	case IPIF_DOWN:
6429 	case IPIF_FREE:
6430 		if (!ipif_is_quiescent(ipif)) {
6431 			mutex_exit(&ill->ill_lock);
6432 			return;
6433 		}
6434 		break;
6435 
6436 	case ILL_DOWN:
6437 	case ILL_FREE:
6438 		/*
6439 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6440 		 * waits synchronously in ip_close, and no message is queued in
6441 		 * ipsq_pending_mp at all in this case
6442 		 */
6443 		if (!ill_is_quiescent(ill)) {
6444 			mutex_exit(&ill->ill_lock);
6445 			return;
6446 		}
6447 
6448 		break;
6449 
6450 	case ILL_MOVE_OK:
6451 		if (ill_quiescent_to_move(ill) != NULL) {
6452 			mutex_exit(&ill->ill_lock);
6453 			return;
6454 		}
6455 
6456 		break;
6457 	default:
6458 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6459 		    (void *)ipsq, ipsq->ipsq_waitfor);
6460 	}
6461 
6462 	/*
6463 	 * Incr refcnt for the qwriter_ip call below which
6464 	 * does a refrele
6465 	 */
6466 	ill_refhold_locked(ill);
6467 	mutex_exit(&ill->ill_lock);
6468 
6469 	mp = ipsq_pending_mp_get(ipsq, &connp);
6470 	ASSERT(mp != NULL);
6471 
6472 	/*
6473 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6474 	 * we can only get here when the current operation decides it
6475 	 * it needs to quiesce via ipsq_pending_mp_add().
6476 	 */
6477 	switch (mp->b_datap->db_type) {
6478 	case M_PCPROTO:
6479 	case M_PROTO:
6480 		/*
6481 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6482 		 */
6483 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6484 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6485 
6486 		switch (dlindp->dl_notification) {
6487 		case DL_NOTE_PHYS_ADDR:
6488 			qwriter_ip(ill, ill->ill_rq, mp,
6489 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6490 			return;
6491 		default:
6492 			ASSERT(0);
6493 		}
6494 		break;
6495 
6496 	case M_ERROR:
6497 	case M_HANGUP:
6498 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6499 		    B_TRUE);
6500 		return;
6501 
6502 	case M_IOCTL:
6503 	case M_IOCDATA:
6504 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6505 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6506 		return;
6507 
6508 	default:
6509 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6510 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6511 	}
6512 }
6513 
6514 #ifdef ILL_DEBUG
6515 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6516 void
6517 th_trace_rrecord(th_trace_t *th_trace)
6518 {
6519 	tr_buf_t *tr_buf;
6520 	uint_t lastref;
6521 
6522 	lastref = th_trace->th_trace_lastref;
6523 	lastref++;
6524 	if (lastref == TR_BUF_MAX)
6525 		lastref = 0;
6526 	th_trace->th_trace_lastref = lastref;
6527 	tr_buf = &th_trace->th_trbuf[lastref];
6528 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH);
6529 }
6530 
6531 th_trace_t *
6532 th_trace_ipif_lookup(ipif_t *ipif)
6533 {
6534 	int bucket_id;
6535 	th_trace_t *th_trace;
6536 
6537 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6538 
6539 	bucket_id = IP_TR_HASH(curthread);
6540 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6541 
6542 	for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL;
6543 	    th_trace = th_trace->th_next) {
6544 		if (th_trace->th_id == curthread)
6545 			return (th_trace);
6546 	}
6547 	return (NULL);
6548 }
6549 
6550 void
6551 ipif_trace_ref(ipif_t *ipif)
6552 {
6553 	int bucket_id;
6554 	th_trace_t *th_trace;
6555 
6556 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6557 
6558 	if (ipif->ipif_trace_disable)
6559 		return;
6560 
6561 	/*
6562 	 * Attempt to locate the trace buffer for the curthread.
6563 	 * If it does not exist, then allocate a new trace buffer
6564 	 * and link it in list of trace bufs for this ipif, at the head
6565 	 */
6566 	th_trace = th_trace_ipif_lookup(ipif);
6567 	if (th_trace == NULL) {
6568 		bucket_id = IP_TR_HASH(curthread);
6569 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6570 		    KM_NOSLEEP);
6571 		if (th_trace == NULL) {
6572 			ipif->ipif_trace_disable = B_TRUE;
6573 			ipif_trace_cleanup(ipif);
6574 			return;
6575 		}
6576 		th_trace->th_id = curthread;
6577 		th_trace->th_next = ipif->ipif_trace[bucket_id];
6578 		th_trace->th_prev = &ipif->ipif_trace[bucket_id];
6579 		if (th_trace->th_next != NULL)
6580 			th_trace->th_next->th_prev = &th_trace->th_next;
6581 		ipif->ipif_trace[bucket_id] = th_trace;
6582 	}
6583 	ASSERT(th_trace->th_refcnt >= 0 &&
6584 	    th_trace->th_refcnt < TR_BUF_MAX -1);
6585 	th_trace->th_refcnt++;
6586 	th_trace_rrecord(th_trace);
6587 }
6588 
6589 void
6590 ipif_untrace_ref(ipif_t *ipif)
6591 {
6592 	th_trace_t *th_trace;
6593 
6594 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6595 
6596 	if (ipif->ipif_trace_disable)
6597 		return;
6598 	th_trace = th_trace_ipif_lookup(ipif);
6599 	ASSERT(th_trace != NULL);
6600 	ASSERT(th_trace->th_refcnt > 0);
6601 
6602 	th_trace->th_refcnt--;
6603 	th_trace_rrecord(th_trace);
6604 }
6605 
6606 th_trace_t *
6607 th_trace_ill_lookup(ill_t *ill)
6608 {
6609 	th_trace_t *th_trace;
6610 	int bucket_id;
6611 
6612 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6613 
6614 	bucket_id = IP_TR_HASH(curthread);
6615 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6616 
6617 	for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL;
6618 	    th_trace = th_trace->th_next) {
6619 		if (th_trace->th_id == curthread)
6620 			return (th_trace);
6621 	}
6622 	return (NULL);
6623 }
6624 
6625 void
6626 ill_trace_ref(ill_t *ill)
6627 {
6628 	int bucket_id;
6629 	th_trace_t *th_trace;
6630 
6631 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6632 	if (ill->ill_trace_disable)
6633 		return;
6634 	/*
6635 	 * Attempt to locate the trace buffer for the curthread.
6636 	 * If it does not exist, then allocate a new trace buffer
6637 	 * and link it in list of trace bufs for this ill, at the head
6638 	 */
6639 	th_trace = th_trace_ill_lookup(ill);
6640 	if (th_trace == NULL) {
6641 		bucket_id = IP_TR_HASH(curthread);
6642 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6643 		    KM_NOSLEEP);
6644 		if (th_trace == NULL) {
6645 			ill->ill_trace_disable = B_TRUE;
6646 			ill_trace_cleanup(ill);
6647 			return;
6648 		}
6649 		th_trace->th_id = curthread;
6650 		th_trace->th_next = ill->ill_trace[bucket_id];
6651 		th_trace->th_prev = &ill->ill_trace[bucket_id];
6652 		if (th_trace->th_next != NULL)
6653 			th_trace->th_next->th_prev = &th_trace->th_next;
6654 		ill->ill_trace[bucket_id] = th_trace;
6655 	}
6656 	ASSERT(th_trace->th_refcnt >= 0 &&
6657 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6658 
6659 	th_trace->th_refcnt++;
6660 	th_trace_rrecord(th_trace);
6661 }
6662 
6663 void
6664 ill_untrace_ref(ill_t *ill)
6665 {
6666 	th_trace_t *th_trace;
6667 
6668 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6669 
6670 	if (ill->ill_trace_disable)
6671 		return;
6672 	th_trace = th_trace_ill_lookup(ill);
6673 	ASSERT(th_trace != NULL);
6674 	ASSERT(th_trace->th_refcnt > 0);
6675 
6676 	th_trace->th_refcnt--;
6677 	th_trace_rrecord(th_trace);
6678 }
6679 
6680 /*
6681  * Verify that this thread has no refs to the ipif and free
6682  * the trace buffers
6683  */
6684 /* ARGSUSED */
6685 void
6686 ipif_thread_exit(ipif_t *ipif, void *dummy)
6687 {
6688 	th_trace_t *th_trace;
6689 
6690 	mutex_enter(&ipif->ipif_ill->ill_lock);
6691 
6692 	th_trace = th_trace_ipif_lookup(ipif);
6693 	if (th_trace == NULL) {
6694 		mutex_exit(&ipif->ipif_ill->ill_lock);
6695 		return;
6696 	}
6697 	ASSERT(th_trace->th_refcnt == 0);
6698 	/* unlink th_trace and free it */
6699 	*th_trace->th_prev = th_trace->th_next;
6700 	if (th_trace->th_next != NULL)
6701 		th_trace->th_next->th_prev = th_trace->th_prev;
6702 	th_trace->th_next = NULL;
6703 	th_trace->th_prev = NULL;
6704 	kmem_free(th_trace, sizeof (th_trace_t));
6705 
6706 	mutex_exit(&ipif->ipif_ill->ill_lock);
6707 }
6708 
6709 /*
6710  * Verify that this thread has no refs to the ill and free
6711  * the trace buffers
6712  */
6713 /* ARGSUSED */
6714 void
6715 ill_thread_exit(ill_t *ill, void *dummy)
6716 {
6717 	th_trace_t *th_trace;
6718 
6719 	mutex_enter(&ill->ill_lock);
6720 
6721 	th_trace = th_trace_ill_lookup(ill);
6722 	if (th_trace == NULL) {
6723 		mutex_exit(&ill->ill_lock);
6724 		return;
6725 	}
6726 	ASSERT(th_trace->th_refcnt == 0);
6727 	/* unlink th_trace and free it */
6728 	*th_trace->th_prev = th_trace->th_next;
6729 	if (th_trace->th_next != NULL)
6730 		th_trace->th_next->th_prev = th_trace->th_prev;
6731 	th_trace->th_next = NULL;
6732 	th_trace->th_prev = NULL;
6733 	kmem_free(th_trace, sizeof (th_trace_t));
6734 
6735 	mutex_exit(&ill->ill_lock);
6736 }
6737 #endif
6738 
6739 #ifdef ILL_DEBUG
6740 void
6741 ip_thread_exit_stack(ip_stack_t *ipst)
6742 {
6743 	ill_t	*ill;
6744 	ipif_t	*ipif;
6745 	ill_walk_context_t	ctx;
6746 
6747 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6748 	ill = ILL_START_WALK_ALL(&ctx, ipst);
6749 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6750 		for (ipif = ill->ill_ipif; ipif != NULL;
6751 		    ipif = ipif->ipif_next) {
6752 			ipif_thread_exit(ipif, NULL);
6753 		}
6754 		ill_thread_exit(ill, NULL);
6755 	}
6756 	rw_exit(&ipst->ips_ill_g_lock);
6757 
6758 	ire_walk(ire_thread_exit, NULL, ipst);
6759 	ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE);
6760 	ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE);
6761 }
6762 
6763 /*
6764  * This is a function which is called from thread_exit
6765  * that can be used to debug reference count issues in IP. See comment in
6766  * <inet/ip.h> on how it is used.
6767  */
6768 void
6769 ip_thread_exit(void)
6770 {
6771 	netstack_t *ns;
6772 
6773 	ns = netstack_get_current();
6774 	if (ns != NULL) {
6775 		ip_thread_exit_stack(ns->netstack_ip);
6776 		netstack_rele(ns);
6777 	}
6778 }
6779 
6780 /*
6781  * Called when ipif is unplumbed or when memory alloc fails
6782  */
6783 void
6784 ipif_trace_cleanup(ipif_t *ipif)
6785 {
6786 	int	i;
6787 	th_trace_t	*th_trace;
6788 	th_trace_t	*th_trace_next;
6789 
6790 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6791 		for (th_trace = ipif->ipif_trace[i]; th_trace != NULL;
6792 		    th_trace = th_trace_next) {
6793 			th_trace_next = th_trace->th_next;
6794 			kmem_free(th_trace, sizeof (th_trace_t));
6795 		}
6796 		ipif->ipif_trace[i] = NULL;
6797 	}
6798 }
6799 
6800 /*
6801  * Called when ill is unplumbed or when memory alloc fails
6802  */
6803 void
6804 ill_trace_cleanup(ill_t *ill)
6805 {
6806 	int	i;
6807 	th_trace_t	*th_trace;
6808 	th_trace_t	*th_trace_next;
6809 
6810 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6811 		for (th_trace = ill->ill_trace[i]; th_trace != NULL;
6812 		    th_trace = th_trace_next) {
6813 			th_trace_next = th_trace->th_next;
6814 			kmem_free(th_trace, sizeof (th_trace_t));
6815 		}
6816 		ill->ill_trace[i] = NULL;
6817 	}
6818 }
6819 
6820 #else
6821 void ip_thread_exit(void) {}
6822 #endif
6823 
6824 void
6825 ipif_refhold_locked(ipif_t *ipif)
6826 {
6827 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6828 	ipif->ipif_refcnt++;
6829 	IPIF_TRACE_REF(ipif);
6830 }
6831 
6832 void
6833 ipif_refhold(ipif_t *ipif)
6834 {
6835 	ill_t	*ill;
6836 
6837 	ill = ipif->ipif_ill;
6838 	mutex_enter(&ill->ill_lock);
6839 	ipif->ipif_refcnt++;
6840 	IPIF_TRACE_REF(ipif);
6841 	mutex_exit(&ill->ill_lock);
6842 }
6843 
6844 /*
6845  * Must not be called while holding any locks. Otherwise if this is
6846  * the last reference to be released there is a chance of recursive mutex
6847  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6848  * to restart an ioctl.
6849  */
6850 void
6851 ipif_refrele(ipif_t *ipif)
6852 {
6853 	ill_t	*ill;
6854 
6855 	ill = ipif->ipif_ill;
6856 
6857 	mutex_enter(&ill->ill_lock);
6858 	ASSERT(ipif->ipif_refcnt != 0);
6859 	ipif->ipif_refcnt--;
6860 	IPIF_UNTRACE_REF(ipif);
6861 	if (ipif->ipif_refcnt != 0) {
6862 		mutex_exit(&ill->ill_lock);
6863 		return;
6864 	}
6865 
6866 	/* Drops the ill_lock */
6867 	ipif_ill_refrele_tail(ill);
6868 }
6869 
6870 ipif_t *
6871 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6872 {
6873 	ipif_t	*ipif;
6874 
6875 	mutex_enter(&ill->ill_lock);
6876 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6877 	    ipif != NULL; ipif = ipif->ipif_next) {
6878 		if (!IPIF_CAN_LOOKUP(ipif))
6879 			continue;
6880 		ipif_refhold_locked(ipif);
6881 		mutex_exit(&ill->ill_lock);
6882 		return (ipif);
6883 	}
6884 	mutex_exit(&ill->ill_lock);
6885 	return (NULL);
6886 }
6887 
6888 /*
6889  * TODO: make this table extendible at run time
6890  * Return a pointer to the mac type info for 'mac_type'
6891  */
6892 static ip_m_t *
6893 ip_m_lookup(t_uscalar_t mac_type)
6894 {
6895 	ip_m_t	*ipm;
6896 
6897 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6898 		if (ipm->ip_m_mac_type == mac_type)
6899 			return (ipm);
6900 	return (NULL);
6901 }
6902 
6903 /*
6904  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6905  * ipif_arg is passed in to associate it with the correct interface.
6906  * We may need to restart this operation if the ipif cannot be looked up
6907  * due to an exclusive operation that is currently in progress. The restart
6908  * entry point is specified by 'func'
6909  */
6910 int
6911 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6912     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
6913     ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp,
6914     ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst)
6915 {
6916 	ire_t	*ire;
6917 	ire_t	*gw_ire = NULL;
6918 	ipif_t	*ipif = NULL;
6919 	boolean_t ipif_refheld = B_FALSE;
6920 	uint_t	type;
6921 	int	match_flags = MATCH_IRE_TYPE;
6922 	int	error;
6923 	tsol_gc_t *gc = NULL;
6924 	tsol_gcgrp_t *gcgrp = NULL;
6925 	boolean_t gcgrp_xtraref = B_FALSE;
6926 
6927 	ip1dbg(("ip_rt_add:"));
6928 
6929 	if (ire_arg != NULL)
6930 		*ire_arg = NULL;
6931 
6932 	/*
6933 	 * If this is the case of RTF_HOST being set, then we set the netmask
6934 	 * to all ones (regardless if one was supplied).
6935 	 */
6936 	if (flags & RTF_HOST)
6937 		mask = IP_HOST_MASK;
6938 
6939 	/*
6940 	 * Prevent routes with a zero gateway from being created (since
6941 	 * interfaces can currently be plumbed and brought up no assigned
6942 	 * address).
6943 	 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0.
6944 	 */
6945 	if (gw_addr == 0 && src_ipif == NULL)
6946 		return (ENETUNREACH);
6947 	/*
6948 	 * Get the ipif, if any, corresponding to the gw_addr
6949 	 */
6950 	if (gw_addr != 0) {
6951 		ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func,
6952 		    &error, ipst);
6953 		if (ipif != NULL) {
6954 			if (IS_VNI(ipif->ipif_ill)) {
6955 				ipif_refrele(ipif);
6956 				return (EINVAL);
6957 			}
6958 			ipif_refheld = B_TRUE;
6959 		} else if (error == EINPROGRESS) {
6960 			ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6961 			return (EINPROGRESS);
6962 		} else {
6963 			error = 0;
6964 		}
6965 	}
6966 
6967 	if (ipif != NULL) {
6968 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6969 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6970 	} else {
6971 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6972 	}
6973 
6974 	/*
6975 	 * GateD will attempt to create routes with a loopback interface
6976 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6977 	 * these routes to be added, but create them as interface routes
6978 	 * since the gateway is an interface address.
6979 	 */
6980 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6981 		flags &= ~RTF_GATEWAY;
6982 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6983 		    mask == IP_HOST_MASK) {
6984 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6985 			    ALL_ZONES, NULL, match_flags, ipst);
6986 			if (ire != NULL) {
6987 				ire_refrele(ire);
6988 				if (ipif_refheld)
6989 					ipif_refrele(ipif);
6990 				return (EEXIST);
6991 			}
6992 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6993 			    "for 0x%x\n", (void *)ipif,
6994 			    ipif->ipif_ire_type,
6995 			    ntohl(ipif->ipif_lcl_addr)));
6996 			ire = ire_create(
6997 			    (uchar_t *)&dst_addr,	/* dest address */
6998 			    (uchar_t *)&mask,		/* mask */
6999 			    (uchar_t *)&ipif->ipif_src_addr,
7000 			    NULL,			/* no gateway */
7001 			    NULL,
7002 			    &ipif->ipif_mtu,
7003 			    NULL,
7004 			    ipif->ipif_rq,		/* recv-from queue */
7005 			    NULL,			/* no send-to queue */
7006 			    ipif->ipif_ire_type,	/* LOOPBACK */
7007 			    NULL,
7008 			    ipif,
7009 			    NULL,
7010 			    0,
7011 			    0,
7012 			    0,
7013 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
7014 			    RTF_PRIVATE : 0,
7015 			    &ire_uinfo_null,
7016 			    NULL,
7017 			    NULL,
7018 			    ipst);
7019 
7020 			if (ire == NULL) {
7021 				if (ipif_refheld)
7022 					ipif_refrele(ipif);
7023 				return (ENOMEM);
7024 			}
7025 			error = ire_add(&ire, q, mp, func, B_FALSE);
7026 			if (error == 0)
7027 				goto save_ire;
7028 			if (ipif_refheld)
7029 				ipif_refrele(ipif);
7030 			return (error);
7031 
7032 		}
7033 	}
7034 
7035 	/*
7036 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
7037 	 * and the gateway address provided is one of the system's interface
7038 	 * addresses.  By using the routing socket interface and supplying an
7039 	 * RTA_IFP sockaddr with an interface index, an alternate method of
7040 	 * specifying an interface route to be created is available which uses
7041 	 * the interface index that specifies the outgoing interface rather than
7042 	 * the address of an outgoing interface (which may not be able to
7043 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
7044 	 * flag, routes can be specified which not only specify the next-hop to
7045 	 * be used when routing to a certain prefix, but also which outgoing
7046 	 * interface should be used.
7047 	 *
7048 	 * Previously, interfaces would have unique addresses assigned to them
7049 	 * and so the address assigned to a particular interface could be used
7050 	 * to identify a particular interface.  One exception to this was the
7051 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
7052 	 *
7053 	 * With the advent of IPv6 and its link-local addresses, this
7054 	 * restriction was relaxed and interfaces could share addresses between
7055 	 * themselves.  In fact, typically all of the link-local interfaces on
7056 	 * an IPv6 node or router will have the same link-local address.  In
7057 	 * order to differentiate between these interfaces, the use of an
7058 	 * interface index is necessary and this index can be carried inside a
7059 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
7060 	 * of using the interface index, however, is that all of the ipif's that
7061 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
7062 	 * cannot be used to differentiate between ipif's (or logical
7063 	 * interfaces) that belong to the same ill (physical interface).
7064 	 *
7065 	 * For example, in the following case involving IPv4 interfaces and
7066 	 * logical interfaces
7067 	 *
7068 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
7069 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
7070 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
7071 	 *
7072 	 * the ipif's corresponding to each of these interface routes can be
7073 	 * uniquely identified by the "gateway" (actually interface address).
7074 	 *
7075 	 * In this case involving multiple IPv6 default routes to a particular
7076 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
7077 	 * default route is of interest:
7078 	 *
7079 	 *	default		fe80::123:4567:89ab:cdef	U	if0
7080 	 *	default		fe80::123:4567:89ab:cdef	U	if1
7081 	 */
7082 
7083 	/* RTF_GATEWAY not set */
7084 	if (!(flags & RTF_GATEWAY)) {
7085 		queue_t	*stq;
7086 		queue_t	*rfq = NULL;
7087 		ill_t	*in_ill = NULL;
7088 
7089 		if (sp != NULL) {
7090 			ip2dbg(("ip_rt_add: gateway security attributes "
7091 			    "cannot be set with interface route\n"));
7092 			if (ipif_refheld)
7093 				ipif_refrele(ipif);
7094 			return (EINVAL);
7095 		}
7096 
7097 		/*
7098 		 * As the interface index specified with the RTA_IFP sockaddr is
7099 		 * the same for all ipif's off of an ill, the matching logic
7100 		 * below uses MATCH_IRE_ILL if such an index was specified.
7101 		 * This means that routes sharing the same prefix when added
7102 		 * using a RTA_IFP sockaddr must have distinct interface
7103 		 * indices (namely, they must be on distinct ill's).
7104 		 *
7105 		 * On the other hand, since the gateway address will usually be
7106 		 * different for each ipif on the system, the matching logic
7107 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
7108 		 * route.  This means that interface routes for the same prefix
7109 		 * can be created if they belong to distinct ipif's and if a
7110 		 * RTA_IFP sockaddr is not present.
7111 		 */
7112 		if (ipif_arg != NULL) {
7113 			if (ipif_refheld)  {
7114 				ipif_refrele(ipif);
7115 				ipif_refheld = B_FALSE;
7116 			}
7117 			ipif = ipif_arg;
7118 			match_flags |= MATCH_IRE_ILL;
7119 		} else {
7120 			/*
7121 			 * Check the ipif corresponding to the gw_addr
7122 			 */
7123 			if (ipif == NULL)
7124 				return (ENETUNREACH);
7125 			match_flags |= MATCH_IRE_IPIF;
7126 		}
7127 		ASSERT(ipif != NULL);
7128 		/*
7129 		 * If src_ipif is not NULL, we have to create
7130 		 * an ire with non-null ire_in_ill value
7131 		 */
7132 		if (src_ipif != NULL) {
7133 			in_ill = src_ipif->ipif_ill;
7134 		}
7135 
7136 		/*
7137 		 * We check for an existing entry at this point.
7138 		 *
7139 		 * Since a netmask isn't passed in via the ioctl interface
7140 		 * (SIOCADDRT), we don't check for a matching netmask in that
7141 		 * case.
7142 		 */
7143 		if (!ioctl_msg)
7144 			match_flags |= MATCH_IRE_MASK;
7145 		if (src_ipif != NULL) {
7146 			/* Look up in the special table */
7147 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7148 			    ipif, src_ipif->ipif_ill, match_flags);
7149 		} else {
7150 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7151 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7152 			    NULL, match_flags, ipst);
7153 		}
7154 		if (ire != NULL) {
7155 			ire_refrele(ire);
7156 			if (ipif_refheld)
7157 				ipif_refrele(ipif);
7158 			return (EEXIST);
7159 		}
7160 
7161 		if (src_ipif != NULL) {
7162 			/*
7163 			 * Create the special ire for the IRE table
7164 			 * which hangs out of ire_in_ill. This ire
7165 			 * is in-between IRE_CACHE and IRE_INTERFACE.
7166 			 * Thus rfq is non-NULL.
7167 			 */
7168 			rfq = ipif->ipif_rq;
7169 		}
7170 		/* Create the usual interface ires */
7171 
7172 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7173 		    ? ipif->ipif_rq : ipif->ipif_wq;
7174 
7175 		/*
7176 		 * Create a copy of the IRE_LOOPBACK,
7177 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7178 		 * the modified address and netmask.
7179 		 */
7180 		ire = ire_create(
7181 		    (uchar_t *)&dst_addr,
7182 		    (uint8_t *)&mask,
7183 		    (uint8_t *)&ipif->ipif_src_addr,
7184 		    NULL,
7185 		    NULL,
7186 		    &ipif->ipif_mtu,
7187 		    NULL,
7188 		    rfq,
7189 		    stq,
7190 		    ipif->ipif_net_type,
7191 		    ipif->ipif_resolver_mp,
7192 		    ipif,
7193 		    in_ill,
7194 		    0,
7195 		    0,
7196 		    0,
7197 		    flags,
7198 		    &ire_uinfo_null,
7199 		    NULL,
7200 		    NULL,
7201 		    ipst);
7202 		if (ire == NULL) {
7203 			if (ipif_refheld)
7204 				ipif_refrele(ipif);
7205 			return (ENOMEM);
7206 		}
7207 
7208 		/*
7209 		 * Some software (for example, GateD and Sun Cluster) attempts
7210 		 * to create (what amount to) IRE_PREFIX routes with the
7211 		 * loopback address as the gateway.  This is primarily done to
7212 		 * set up prefixes with the RTF_REJECT flag set (for example,
7213 		 * when generating aggregate routes.)
7214 		 *
7215 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7216 		 * IRE_LOOPBACK, then we map the request into a
7217 		 * IRE_IF_NORESOLVER.
7218 		 *
7219 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7220 		 * routine, but rather using ire_create() directly.
7221 		 *
7222 		 */
7223 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7224 			ire->ire_type = IRE_IF_NORESOLVER;
7225 
7226 		error = ire_add(&ire, q, mp, func, B_FALSE);
7227 		if (error == 0)
7228 			goto save_ire;
7229 
7230 		/*
7231 		 * In the result of failure, ire_add() will have already
7232 		 * deleted the ire in question, so there is no need to
7233 		 * do that here.
7234 		 */
7235 		if (ipif_refheld)
7236 			ipif_refrele(ipif);
7237 		return (error);
7238 	}
7239 	if (ipif_refheld) {
7240 		ipif_refrele(ipif);
7241 		ipif_refheld = B_FALSE;
7242 	}
7243 
7244 	if (src_ipif != NULL) {
7245 		/* RTA_SRCIFP is not supported on RTF_GATEWAY */
7246 		ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n"));
7247 		return (EINVAL);
7248 	}
7249 	/*
7250 	 * Get an interface IRE for the specified gateway.
7251 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7252 	 * gateway, it is currently unreachable and we fail the request
7253 	 * accordingly.
7254 	 */
7255 	ipif = ipif_arg;
7256 	if (ipif_arg != NULL)
7257 		match_flags |= MATCH_IRE_ILL;
7258 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7259 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7260 	if (gw_ire == NULL)
7261 		return (ENETUNREACH);
7262 
7263 	/*
7264 	 * We create one of three types of IREs as a result of this request
7265 	 * based on the netmask.  A netmask of all ones (which is automatically
7266 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7267 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7268 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7269 	 * destination prefix.
7270 	 */
7271 	if (mask == IP_HOST_MASK)
7272 		type = IRE_HOST;
7273 	else if (mask == 0)
7274 		type = IRE_DEFAULT;
7275 	else
7276 		type = IRE_PREFIX;
7277 
7278 	/* check for a duplicate entry */
7279 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7280 	    NULL, ALL_ZONES, 0, NULL,
7281 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7282 	if (ire != NULL) {
7283 		ire_refrele(gw_ire);
7284 		ire_refrele(ire);
7285 		return (EEXIST);
7286 	}
7287 
7288 	/* Security attribute exists */
7289 	if (sp != NULL) {
7290 		tsol_gcgrp_addr_t ga;
7291 
7292 		/* find or create the gateway credentials group */
7293 		ga.ga_af = AF_INET;
7294 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7295 
7296 		/* we hold reference to it upon success */
7297 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7298 		if (gcgrp == NULL) {
7299 			ire_refrele(gw_ire);
7300 			return (ENOMEM);
7301 		}
7302 
7303 		/*
7304 		 * Create and add the security attribute to the group; a
7305 		 * reference to the group is made upon allocating a new
7306 		 * entry successfully.  If it finds an already-existing
7307 		 * entry for the security attribute in the group, it simply
7308 		 * returns it and no new reference is made to the group.
7309 		 */
7310 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7311 		if (gc == NULL) {
7312 			/* release reference held by gcgrp_lookup */
7313 			GCGRP_REFRELE(gcgrp);
7314 			ire_refrele(gw_ire);
7315 			return (ENOMEM);
7316 		}
7317 	}
7318 
7319 	/* Create the IRE. */
7320 	ire = ire_create(
7321 	    (uchar_t *)&dst_addr,		/* dest address */
7322 	    (uchar_t *)&mask,			/* mask */
7323 	    /* src address assigned by the caller? */
7324 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7325 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
7326 	    (uchar_t *)&gw_addr,		/* gateway address */
7327 	    NULL,				/* no in-srcaddress */
7328 	    &gw_ire->ire_max_frag,
7329 	    NULL,				/* no Fast Path header */
7330 	    NULL,				/* no recv-from queue */
7331 	    NULL,				/* no send-to queue */
7332 	    (ushort_t)type,			/* IRE type */
7333 	    NULL,
7334 	    ipif_arg,
7335 	    NULL,
7336 	    0,
7337 	    0,
7338 	    0,
7339 	    flags,
7340 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7341 	    gc,					/* security attribute */
7342 	    NULL,
7343 	    ipst);
7344 
7345 	/*
7346 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7347 	 * reference to the 'gcgrp'. We can now release the extra reference
7348 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7349 	 */
7350 	if (gcgrp_xtraref)
7351 		GCGRP_REFRELE(gcgrp);
7352 	if (ire == NULL) {
7353 		if (gc != NULL)
7354 			GC_REFRELE(gc);
7355 		ire_refrele(gw_ire);
7356 		return (ENOMEM);
7357 	}
7358 
7359 	/*
7360 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7361 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7362 	 */
7363 
7364 	/* Add the new IRE. */
7365 	error = ire_add(&ire, q, mp, func, B_FALSE);
7366 	if (error != 0) {
7367 		/*
7368 		 * In the result of failure, ire_add() will have already
7369 		 * deleted the ire in question, so there is no need to
7370 		 * do that here.
7371 		 */
7372 		ire_refrele(gw_ire);
7373 		return (error);
7374 	}
7375 
7376 	if (flags & RTF_MULTIRT) {
7377 		/*
7378 		 * Invoke the CGTP (multirouting) filtering module
7379 		 * to add the dst address in the filtering database.
7380 		 * Replicated inbound packets coming from that address
7381 		 * will be filtered to discard the duplicates.
7382 		 * It is not necessary to call the CGTP filter hook
7383 		 * when the dst address is a broadcast or multicast,
7384 		 * because an IP source address cannot be a broadcast
7385 		 * or a multicast.
7386 		 */
7387 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7388 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7389 		if (ire_dst != NULL) {
7390 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7391 			ire_refrele(ire_dst);
7392 			goto save_ire;
7393 		}
7394 		if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) &&
7395 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7396 			int res = ip_cgtp_filter_ops->cfo_add_dest_v4(
7397 			    ire->ire_addr,
7398 			    ire->ire_gateway_addr,
7399 			    ire->ire_src_addr,
7400 			    gw_ire->ire_src_addr);
7401 			if (res != 0) {
7402 				ire_refrele(gw_ire);
7403 				ire_delete(ire);
7404 				return (res);
7405 			}
7406 		}
7407 	}
7408 
7409 	/*
7410 	 * Now that the prefix IRE entry has been created, delete any
7411 	 * existing gateway IRE cache entries as well as any IRE caches
7412 	 * using the gateway, and force them to be created through
7413 	 * ip_newroute.
7414 	 */
7415 	if (gc != NULL) {
7416 		ASSERT(gcgrp != NULL);
7417 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7418 	}
7419 
7420 save_ire:
7421 	if (gw_ire != NULL) {
7422 		ire_refrele(gw_ire);
7423 	}
7424 	/*
7425 	 * We do not do save_ire for the routes added with RTA_SRCIFP
7426 	 * flag. This route is only added and deleted by mipagent.
7427 	 * So, for simplicity of design, we refrain from saving
7428 	 * ires that are created with srcif value. This may change
7429 	 * in future if we find more usage of srcifp feature.
7430 	 */
7431 	if (ipif != NULL && src_ipif == NULL) {
7432 		/*
7433 		 * Save enough information so that we can recreate the IRE if
7434 		 * the interface goes down and then up.  The metrics associated
7435 		 * with the route will be saved as well when rts_setmetrics() is
7436 		 * called after the IRE has been created.  In the case where
7437 		 * memory cannot be allocated, none of this information will be
7438 		 * saved.
7439 		 */
7440 		ipif_save_ire(ipif, ire);
7441 	}
7442 	if (ioctl_msg)
7443 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7444 	if (ire_arg != NULL) {
7445 		/*
7446 		 * Store the ire that was successfully added into where ire_arg
7447 		 * points to so that callers don't have to look it up
7448 		 * themselves (but they are responsible for ire_refrele()ing
7449 		 * the ire when they are finished with it).
7450 		 */
7451 		*ire_arg = ire;
7452 	} else {
7453 		ire_refrele(ire);		/* Held in ire_add */
7454 	}
7455 	if (ipif_refheld)
7456 		ipif_refrele(ipif);
7457 	return (0);
7458 }
7459 
7460 /*
7461  * ip_rt_delete is called to delete an IPv4 route.
7462  * ipif_arg is passed in to associate it with the correct interface.
7463  * src_ipif is passed to associate the incoming interface of the packet.
7464  * We may need to restart this operation if the ipif cannot be looked up
7465  * due to an exclusive operation that is currently in progress. The restart
7466  * entry point is specified by 'func'
7467  */
7468 /* ARGSUSED4 */
7469 int
7470 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7471     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
7472     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
7473     ip_stack_t *ipst)
7474 {
7475 	ire_t	*ire = NULL;
7476 	ipif_t	*ipif;
7477 	boolean_t ipif_refheld = B_FALSE;
7478 	uint_t	type;
7479 	uint_t	match_flags = MATCH_IRE_TYPE;
7480 	int	err = 0;
7481 
7482 	ip1dbg(("ip_rt_delete:"));
7483 	/*
7484 	 * If this is the case of RTF_HOST being set, then we set the netmask
7485 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7486 	 */
7487 	if (flags & RTF_HOST) {
7488 		mask = IP_HOST_MASK;
7489 		match_flags |= MATCH_IRE_MASK;
7490 	} else if (rtm_addrs & RTA_NETMASK) {
7491 		match_flags |= MATCH_IRE_MASK;
7492 	}
7493 
7494 	/*
7495 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7496 	 * we check if the gateway address is one of our interfaces first,
7497 	 * and fall back on RTF_GATEWAY routes.
7498 	 *
7499 	 * This makes it possible to delete an original
7500 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7501 	 *
7502 	 * As the interface index specified with the RTA_IFP sockaddr is the
7503 	 * same for all ipif's off of an ill, the matching logic below uses
7504 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7505 	 * sharing the same prefix and interface index as the the route
7506 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7507 	 * is specified in the request.
7508 	 *
7509 	 * On the other hand, since the gateway address will usually be
7510 	 * different for each ipif on the system, the matching logic
7511 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7512 	 * route.  This means that interface routes for the same prefix can be
7513 	 * uniquely identified if they belong to distinct ipif's and if a
7514 	 * RTA_IFP sockaddr is not present.
7515 	 *
7516 	 * For more detail on specifying routes by gateway address and by
7517 	 * interface index, see the comments in ip_rt_add().
7518 	 * gw_addr could be zero in some cases when both RTA_SRCIFP and
7519 	 * RTA_IFP are specified. If RTA_SRCIFP is specified and  both
7520 	 * RTA_IFP and gateway_addr are NULL/zero, then delete will not
7521 	 * succeed.
7522 	 */
7523 	if (src_ipif != NULL) {
7524 		if (ipif_arg == NULL && gw_addr != 0) {
7525 			ipif_arg = ipif_lookup_interface(gw_addr, dst_addr,
7526 			    q, mp, func, &err, ipst);
7527 			if (ipif_arg != NULL)
7528 				ipif_refheld = B_TRUE;
7529 		}
7530 		if (ipif_arg == NULL) {
7531 			err = (err == EINPROGRESS) ? err : ESRCH;
7532 			return (err);
7533 		}
7534 		ipif = ipif_arg;
7535 	} else {
7536 		ipif = ipif_lookup_interface(gw_addr, dst_addr,
7537 		    q, mp, func, &err, ipst);
7538 		if (ipif != NULL)
7539 			ipif_refheld = B_TRUE;
7540 		else if (err == EINPROGRESS)
7541 			return (err);
7542 		else
7543 			err = 0;
7544 	}
7545 	if (ipif != NULL) {
7546 		if (ipif_arg != NULL) {
7547 			if (ipif_refheld) {
7548 				ipif_refrele(ipif);
7549 				ipif_refheld = B_FALSE;
7550 			}
7551 			ipif = ipif_arg;
7552 			match_flags |= MATCH_IRE_ILL;
7553 		} else {
7554 			match_flags |= MATCH_IRE_IPIF;
7555 		}
7556 		if (src_ipif != NULL) {
7557 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7558 			    ipif, src_ipif->ipif_ill, match_flags);
7559 		} else {
7560 			if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7561 				ire = ire_ctable_lookup(dst_addr, 0,
7562 				    IRE_LOOPBACK, ipif, ALL_ZONES, NULL,
7563 				    match_flags, ipst);
7564 			}
7565 			if (ire == NULL) {
7566 				ire = ire_ftable_lookup(dst_addr, mask, 0,
7567 				    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7568 				    NULL, match_flags, ipst);
7569 			}
7570 		}
7571 	}
7572 
7573 	if (ire == NULL) {
7574 		/*
7575 		 * At this point, the gateway address is not one of our own
7576 		 * addresses or a matching interface route was not found.  We
7577 		 * set the IRE type to lookup based on whether
7578 		 * this is a host route, a default route or just a prefix.
7579 		 *
7580 		 * If an ipif_arg was passed in, then the lookup is based on an
7581 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7582 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7583 		 * set as the route being looked up is not a traditional
7584 		 * interface route.
7585 		 * Since we do not add gateway route with srcipif, we don't
7586 		 * expect to find it either.
7587 		 */
7588 		if (src_ipif != NULL) {
7589 			if (ipif_refheld)
7590 				ipif_refrele(ipif);
7591 			return (ESRCH);
7592 		} else {
7593 			match_flags &= ~MATCH_IRE_IPIF;
7594 			match_flags |= MATCH_IRE_GW;
7595 			if (ipif_arg != NULL)
7596 				match_flags |= MATCH_IRE_ILL;
7597 			if (mask == IP_HOST_MASK)
7598 				type = IRE_HOST;
7599 			else if (mask == 0)
7600 				type = IRE_DEFAULT;
7601 			else
7602 				type = IRE_PREFIX;
7603 			ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type,
7604 			    ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags,
7605 			    ipst);
7606 		}
7607 	}
7608 
7609 	if (ipif_refheld)
7610 		ipif_refrele(ipif);
7611 
7612 	/* ipif is not refheld anymore */
7613 	if (ire == NULL)
7614 		return (ESRCH);
7615 
7616 	if (ire->ire_flags & RTF_MULTIRT) {
7617 		/*
7618 		 * Invoke the CGTP (multirouting) filtering module
7619 		 * to remove the dst address from the filtering database.
7620 		 * Packets coming from that address will no longer be
7621 		 * filtered to remove duplicates.
7622 		 */
7623 		if (ip_cgtp_filter_ops != NULL &&
7624 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7625 			err = ip_cgtp_filter_ops->cfo_del_dest_v4(
7626 			    ire->ire_addr, ire->ire_gateway_addr);
7627 		}
7628 		ip_cgtp_bcast_delete(ire, ipst);
7629 	}
7630 
7631 	ipif = ire->ire_ipif;
7632 	/*
7633 	 * Removing from ipif_saved_ire_mp is not necessary
7634 	 * when src_ipif being non-NULL. ip_rt_add does not
7635 	 * save the ires which src_ipif being non-NULL.
7636 	 */
7637 	if (ipif != NULL && src_ipif == NULL) {
7638 		ipif_remove_ire(ipif, ire);
7639 	}
7640 	if (ioctl_msg)
7641 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7642 	ire_delete(ire);
7643 	ire_refrele(ire);
7644 	return (err);
7645 }
7646 
7647 /*
7648  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7649  */
7650 /* ARGSUSED */
7651 int
7652 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7653     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7654 {
7655 	ipaddr_t dst_addr;
7656 	ipaddr_t gw_addr;
7657 	ipaddr_t mask;
7658 	int error = 0;
7659 	mblk_t *mp1;
7660 	struct rtentry *rt;
7661 	ipif_t *ipif = NULL;
7662 	ip_stack_t	*ipst;
7663 
7664 	ASSERT(q->q_next == NULL);
7665 	ipst = CONNQ_TO_IPST(q);
7666 
7667 	ip1dbg(("ip_siocaddrt:"));
7668 	/* Existence of mp1 verified in ip_wput_nondata */
7669 	mp1 = mp->b_cont->b_cont;
7670 	rt = (struct rtentry *)mp1->b_rptr;
7671 
7672 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7673 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7674 
7675 	/*
7676 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7677 	 * to a particular host address.  In this case, we set the netmask to
7678 	 * all ones for the particular destination address.  Otherwise,
7679 	 * determine the netmask to be used based on dst_addr and the interfaces
7680 	 * in use.
7681 	 */
7682 	if (rt->rt_flags & RTF_HOST) {
7683 		mask = IP_HOST_MASK;
7684 	} else {
7685 		/*
7686 		 * Note that ip_subnet_mask returns a zero mask in the case of
7687 		 * default (an all-zeroes address).
7688 		 */
7689 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7690 	}
7691 
7692 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7693 	    NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7694 	if (ipif != NULL)
7695 		ipif_refrele(ipif);
7696 	return (error);
7697 }
7698 
7699 /*
7700  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7701  */
7702 /* ARGSUSED */
7703 int
7704 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7705     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7706 {
7707 	ipaddr_t dst_addr;
7708 	ipaddr_t gw_addr;
7709 	ipaddr_t mask;
7710 	int error;
7711 	mblk_t *mp1;
7712 	struct rtentry *rt;
7713 	ipif_t *ipif = NULL;
7714 	ip_stack_t	*ipst;
7715 
7716 	ASSERT(q->q_next == NULL);
7717 	ipst = CONNQ_TO_IPST(q);
7718 
7719 	ip1dbg(("ip_siocdelrt:"));
7720 	/* Existence of mp1 verified in ip_wput_nondata */
7721 	mp1 = mp->b_cont->b_cont;
7722 	rt = (struct rtentry *)mp1->b_rptr;
7723 
7724 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7725 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7726 
7727 	/*
7728 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7729 	 * to a particular host address.  In this case, we set the netmask to
7730 	 * all ones for the particular destination address.  Otherwise,
7731 	 * determine the netmask to be used based on dst_addr and the interfaces
7732 	 * in use.
7733 	 */
7734 	if (rt->rt_flags & RTF_HOST) {
7735 		mask = IP_HOST_MASK;
7736 	} else {
7737 		/*
7738 		 * Note that ip_subnet_mask returns a zero mask in the case of
7739 		 * default (an all-zeroes address).
7740 		 */
7741 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7742 	}
7743 
7744 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7745 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL,
7746 	    B_TRUE, q, mp, ip_process_ioctl, ipst);
7747 	if (ipif != NULL)
7748 		ipif_refrele(ipif);
7749 	return (error);
7750 }
7751 
7752 /*
7753  * Enqueue the mp onto the ipsq, chained by b_next.
7754  * b_prev stores the function to be executed later, and b_queue the queue
7755  * where this mp originated.
7756  */
7757 void
7758 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7759     ill_t *pending_ill)
7760 {
7761 	conn_t	*connp = NULL;
7762 
7763 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7764 	ASSERT(func != NULL);
7765 
7766 	mp->b_queue = q;
7767 	mp->b_prev = (void *)func;
7768 	mp->b_next = NULL;
7769 
7770 	switch (type) {
7771 	case CUR_OP:
7772 		if (ipsq->ipsq_mptail != NULL) {
7773 			ASSERT(ipsq->ipsq_mphead != NULL);
7774 			ipsq->ipsq_mptail->b_next = mp;
7775 		} else {
7776 			ASSERT(ipsq->ipsq_mphead == NULL);
7777 			ipsq->ipsq_mphead = mp;
7778 		}
7779 		ipsq->ipsq_mptail = mp;
7780 		break;
7781 
7782 	case NEW_OP:
7783 		if (ipsq->ipsq_xopq_mptail != NULL) {
7784 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7785 			ipsq->ipsq_xopq_mptail->b_next = mp;
7786 		} else {
7787 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7788 			ipsq->ipsq_xopq_mphead = mp;
7789 		}
7790 		ipsq->ipsq_xopq_mptail = mp;
7791 		break;
7792 	default:
7793 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7794 	}
7795 
7796 	if (CONN_Q(q) && pending_ill != NULL) {
7797 		connp = Q_TO_CONN(q);
7798 
7799 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7800 		connp->conn_oper_pending_ill = pending_ill;
7801 	}
7802 }
7803 
7804 /*
7805  * Return the mp at the head of the ipsq. After emptying the ipsq
7806  * look at the next ioctl, if this ioctl is complete. Otherwise
7807  * return, we will resume when we complete the current ioctl.
7808  * The current ioctl will wait till it gets a response from the
7809  * driver below.
7810  */
7811 static mblk_t *
7812 ipsq_dq(ipsq_t *ipsq)
7813 {
7814 	mblk_t	*mp;
7815 
7816 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7817 
7818 	mp = ipsq->ipsq_mphead;
7819 	if (mp != NULL) {
7820 		ipsq->ipsq_mphead = mp->b_next;
7821 		if (ipsq->ipsq_mphead == NULL)
7822 			ipsq->ipsq_mptail = NULL;
7823 		mp->b_next = NULL;
7824 		return (mp);
7825 	}
7826 	if (ipsq->ipsq_current_ipif != NULL)
7827 		return (NULL);
7828 	mp = ipsq->ipsq_xopq_mphead;
7829 	if (mp != NULL) {
7830 		ipsq->ipsq_xopq_mphead = mp->b_next;
7831 		if (ipsq->ipsq_xopq_mphead == NULL)
7832 			ipsq->ipsq_xopq_mptail = NULL;
7833 		mp->b_next = NULL;
7834 		return (mp);
7835 	}
7836 	return (NULL);
7837 }
7838 
7839 /*
7840  * Enter the ipsq corresponding to ill, by waiting synchronously till
7841  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7842  * will have to drain completely before ipsq_enter returns success.
7843  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7844  * and the ipsq_exit logic will start the next enqueued ioctl after
7845  * completion of the current ioctl. If 'force' is used, we don't wait
7846  * for the enqueued ioctls. This is needed when a conn_close wants to
7847  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7848  * of an ill can also use this option. But we dont' use it currently.
7849  */
7850 #define	ENTER_SQ_WAIT_TICKS 100
7851 boolean_t
7852 ipsq_enter(ill_t *ill, boolean_t force)
7853 {
7854 	ipsq_t	*ipsq;
7855 	boolean_t waited_enough = B_FALSE;
7856 
7857 	/*
7858 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7859 	 * Since the <ill-ipsq> assocs could change while we wait for the
7860 	 * writer, it is easier to wait on a fixed global rather than try to
7861 	 * cv_wait on a changing ipsq.
7862 	 */
7863 	mutex_enter(&ill->ill_lock);
7864 	for (;;) {
7865 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7866 			mutex_exit(&ill->ill_lock);
7867 			return (B_FALSE);
7868 		}
7869 
7870 		ipsq = ill->ill_phyint->phyint_ipsq;
7871 		mutex_enter(&ipsq->ipsq_lock);
7872 		if (ipsq->ipsq_writer == NULL &&
7873 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7874 			break;
7875 		} else if (ipsq->ipsq_writer != NULL) {
7876 			mutex_exit(&ipsq->ipsq_lock);
7877 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7878 		} else {
7879 			mutex_exit(&ipsq->ipsq_lock);
7880 			if (force) {
7881 				(void) cv_timedwait(&ill->ill_cv,
7882 				    &ill->ill_lock,
7883 				    lbolt + ENTER_SQ_WAIT_TICKS);
7884 				waited_enough = B_TRUE;
7885 				continue;
7886 			} else {
7887 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7888 			}
7889 		}
7890 	}
7891 
7892 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7893 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7894 	ipsq->ipsq_writer = curthread;
7895 	ipsq->ipsq_reentry_cnt++;
7896 #ifdef ILL_DEBUG
7897 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7898 #endif
7899 	mutex_exit(&ipsq->ipsq_lock);
7900 	mutex_exit(&ill->ill_lock);
7901 	return (B_TRUE);
7902 }
7903 
7904 /*
7905  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7906  * certain critical operations like plumbing (i.e. most set ioctls),
7907  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7908  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7909  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7910  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7911  * threads executing in the ipsq. Responses from the driver pertain to the
7912  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7913  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7914  *
7915  * If a thread does not want to reenter the ipsq when it is already writer,
7916  * it must make sure that the specified reentry point to be called later
7917  * when the ipsq is empty, nor any code path starting from the specified reentry
7918  * point must never ever try to enter the ipsq again. Otherwise it can lead
7919  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7920  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7921  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7922  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7923  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7924  * ioctl if the current ioctl has completed. If the current ioctl is still
7925  * in progress it simply returns. The current ioctl could be waiting for
7926  * a response from another module (arp_ or the driver or could be waiting for
7927  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7928  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7929  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7930  * ipsq_current_ipif is clear which happens only on ioctl completion.
7931  */
7932 
7933 /*
7934  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7935  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7936  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7937  * completion.
7938  */
7939 ipsq_t *
7940 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7941     ipsq_func_t func, int type, boolean_t reentry_ok)
7942 {
7943 	ipsq_t	*ipsq;
7944 
7945 	/* Only 1 of ipif or ill can be specified */
7946 	ASSERT((ipif != NULL) ^ (ill != NULL));
7947 	if (ipif != NULL)
7948 		ill = ipif->ipif_ill;
7949 
7950 	/*
7951 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7952 	 * ipsq of an ill can't change when ill_lock is held.
7953 	 */
7954 	GRAB_CONN_LOCK(q);
7955 	mutex_enter(&ill->ill_lock);
7956 	ipsq = ill->ill_phyint->phyint_ipsq;
7957 	mutex_enter(&ipsq->ipsq_lock);
7958 
7959 	/*
7960 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7961 	 *    (Note: If the caller does not specify reentry_ok then neither
7962 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7963 	 *    again. Otherwise it can lead to an infinite loop
7964 	 * 2. Enter the ipsq if there is no current writer and this attempted
7965 	 *    entry is part of the current ioctl or operation
7966 	 * 3. Enter the ipsq if there is no current writer and this is a new
7967 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7968 	 *    empty and there is no ioctl (or operation) currently in progress
7969 	 */
7970 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7971 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7972 	    ipsq->ipsq_current_ipif == NULL))) ||
7973 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7974 		/* Success. */
7975 		ipsq->ipsq_reentry_cnt++;
7976 		ipsq->ipsq_writer = curthread;
7977 		mutex_exit(&ipsq->ipsq_lock);
7978 		mutex_exit(&ill->ill_lock);
7979 		RELEASE_CONN_LOCK(q);
7980 #ifdef ILL_DEBUG
7981 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7982 #endif
7983 		return (ipsq);
7984 	}
7985 
7986 	ipsq_enq(ipsq, q, mp, func, type, ill);
7987 
7988 	mutex_exit(&ipsq->ipsq_lock);
7989 	mutex_exit(&ill->ill_lock);
7990 	RELEASE_CONN_LOCK(q);
7991 	return (NULL);
7992 }
7993 
7994 /*
7995  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7996  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7997  * cannot be entered, the mp is queued for completion.
7998  */
7999 void
8000 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
8001     boolean_t reentry_ok)
8002 {
8003 	ipsq_t	*ipsq;
8004 
8005 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
8006 
8007 	/*
8008 	 * Drop the caller's refhold on the ill.  This is safe since we either
8009 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
8010 	 * IPSQ, in which case we return without accessing ill anymore.  This
8011 	 * is needed because func needs to see the correct refcount.
8012 	 * e.g. removeif can work only then.
8013 	 */
8014 	ill_refrele(ill);
8015 	if (ipsq != NULL) {
8016 		(*func)(ipsq, q, mp, NULL);
8017 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
8018 	}
8019 }
8020 
8021 /*
8022  * If there are more than ILL_GRP_CNT ills in a group,
8023  * we use kmem alloc'd buffers, else use the stack
8024  */
8025 #define	ILL_GRP_CNT	14
8026 /*
8027  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
8028  * Called by a thread that is currently exclusive on this ipsq.
8029  */
8030 void
8031 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
8032 {
8033 	queue_t	*q;
8034 	mblk_t	*mp;
8035 	ipsq_func_t	func;
8036 	int	next;
8037 	ill_t	**ill_list = NULL;
8038 	size_t	ill_list_size = 0;
8039 	int	cnt = 0;
8040 	boolean_t need_ipsq_free = B_FALSE;
8041 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
8042 
8043 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8044 	mutex_enter(&ipsq->ipsq_lock);
8045 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
8046 	if (ipsq->ipsq_reentry_cnt != 1) {
8047 		ipsq->ipsq_reentry_cnt--;
8048 		mutex_exit(&ipsq->ipsq_lock);
8049 		return;
8050 	}
8051 
8052 	mp = ipsq_dq(ipsq);
8053 	while (mp != NULL) {
8054 again:
8055 		mutex_exit(&ipsq->ipsq_lock);
8056 		func = (ipsq_func_t)mp->b_prev;
8057 		q = (queue_t *)mp->b_queue;
8058 		mp->b_prev = NULL;
8059 		mp->b_queue = NULL;
8060 
8061 		/*
8062 		 * If 'q' is an conn queue, it is valid, since we did a
8063 		 * a refhold on the connp, at the start of the ioctl.
8064 		 * If 'q' is an ill queue, it is valid, since close of an
8065 		 * ill will clean up the 'ipsq'.
8066 		 */
8067 		(*func)(ipsq, q, mp, NULL);
8068 
8069 		mutex_enter(&ipsq->ipsq_lock);
8070 		mp = ipsq_dq(ipsq);
8071 	}
8072 
8073 	mutex_exit(&ipsq->ipsq_lock);
8074 
8075 	/*
8076 	 * Need to grab the locks in the right order. Need to
8077 	 * atomically check (under ipsq_lock) that there are no
8078 	 * messages before relinquishing the ipsq. Also need to
8079 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
8080 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
8081 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
8082 	 * to grab ill_g_lock as writer.
8083 	 */
8084 	rw_enter(&ipst->ips_ill_g_lock,
8085 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
8086 
8087 	/* ipsq_refs can't change while ill_g_lock is held as reader */
8088 	if (ipsq->ipsq_refs != 0) {
8089 		/* At most 2 ills v4/v6 per phyint */
8090 		cnt = ipsq->ipsq_refs << 1;
8091 		ill_list_size = cnt * sizeof (ill_t *);
8092 		/*
8093 		 * If memory allocation fails, we will do the split
8094 		 * the next time ipsq_exit is called for whatever reason.
8095 		 * As long as the ipsq_split flag is set the need to
8096 		 * split is remembered.
8097 		 */
8098 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
8099 		if (ill_list != NULL)
8100 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
8101 	}
8102 	mutex_enter(&ipsq->ipsq_lock);
8103 	mp = ipsq_dq(ipsq);
8104 	if (mp != NULL) {
8105 		/* oops, some message has landed up, we can't get out */
8106 		if (ill_list != NULL)
8107 			ill_unlock_ills(ill_list, cnt);
8108 		rw_exit(&ipst->ips_ill_g_lock);
8109 		if (ill_list != NULL)
8110 			kmem_free(ill_list, ill_list_size);
8111 		ill_list = NULL;
8112 		ill_list_size = 0;
8113 		cnt = 0;
8114 		goto again;
8115 	}
8116 
8117 	/*
8118 	 * Split only if no ioctl is pending and if memory alloc succeeded
8119 	 * above.
8120 	 */
8121 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
8122 	    ill_list != NULL) {
8123 		/*
8124 		 * No new ill can join this ipsq since we are holding the
8125 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
8126 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
8127 		 * If so we will retry on the next ipsq_exit.
8128 		 */
8129 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
8130 	}
8131 
8132 	/*
8133 	 * We are holding the ipsq lock, hence no new messages can
8134 	 * land up on the ipsq, and there are no messages currently.
8135 	 * Now safe to get out. Wake up waiters and relinquish ipsq
8136 	 * atomically while holding ill locks.
8137 	 */
8138 	ipsq->ipsq_writer = NULL;
8139 	ipsq->ipsq_reentry_cnt--;
8140 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
8141 #ifdef ILL_DEBUG
8142 	ipsq->ipsq_depth = 0;
8143 #endif
8144 	mutex_exit(&ipsq->ipsq_lock);
8145 	/*
8146 	 * For IPMP this should wake up all ills in this ipsq.
8147 	 * We need to hold the ill_lock while waking up waiters to
8148 	 * avoid missed wakeups. But there is no need to acquire all
8149 	 * the ill locks and then wakeup. If we have not acquired all
8150 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
8151 	 * wakes up ills one at a time after getting the right ill_lock
8152 	 */
8153 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
8154 	if (ill_list != NULL)
8155 		ill_unlock_ills(ill_list, cnt);
8156 	if (ipsq->ipsq_refs == 0)
8157 		need_ipsq_free = B_TRUE;
8158 	rw_exit(&ipst->ips_ill_g_lock);
8159 	if (ill_list != 0)
8160 		kmem_free(ill_list, ill_list_size);
8161 
8162 	if (need_ipsq_free) {
8163 		/*
8164 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
8165 		 * looked up. ipsq can be looked up only thru ill or phyint
8166 		 * and there are no ills/phyint on this ipsq.
8167 		 */
8168 		ipsq_delete(ipsq);
8169 	}
8170 	/*
8171 	 * Now start any igmp or mld timers that could not be started
8172 	 * while inside the ipsq. The timers can't be started while inside
8173 	 * the ipsq, since igmp_start_timers may need to call untimeout()
8174 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
8175 	 * there could be a deadlock since the timeout handlers
8176 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
8177 	 * wait in ipsq_enter() trying to get the ipsq.
8178 	 *
8179 	 * However there is one exception to the above. If this thread is
8180 	 * itself the igmp/mld timeout handler thread, then we don't want
8181 	 * to start any new timer until the current handler is done. The
8182 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
8183 	 * all others pass B_TRUE.
8184 	 */
8185 	if (start_igmp_timer) {
8186 		mutex_enter(&ipst->ips_igmp_timer_lock);
8187 		next = ipst->ips_igmp_deferred_next;
8188 		ipst->ips_igmp_deferred_next = INFINITY;
8189 		mutex_exit(&ipst->ips_igmp_timer_lock);
8190 
8191 		if (next != INFINITY)
8192 			igmp_start_timers(next, ipst);
8193 	}
8194 
8195 	if (start_mld_timer) {
8196 		mutex_enter(&ipst->ips_mld_timer_lock);
8197 		next = ipst->ips_mld_deferred_next;
8198 		ipst->ips_mld_deferred_next = INFINITY;
8199 		mutex_exit(&ipst->ips_mld_timer_lock);
8200 
8201 		if (next != INFINITY)
8202 			mld_start_timers(next, ipst);
8203 	}
8204 }
8205 
8206 /*
8207  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
8208  * and `ioccmd'.
8209  */
8210 void
8211 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
8212 {
8213 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8214 
8215 	mutex_enter(&ipsq->ipsq_lock);
8216 	ASSERT(ipsq->ipsq_current_ipif == NULL);
8217 	ASSERT(ipsq->ipsq_current_ioctl == 0);
8218 	ipsq->ipsq_current_ipif = ipif;
8219 	ipsq->ipsq_current_ioctl = ioccmd;
8220 	mutex_exit(&ipsq->ipsq_lock);
8221 }
8222 
8223 /*
8224  * Finish the current exclusive operation on `ipsq'.  Note that other
8225  * operations will not be able to proceed until an ipsq_exit() is done.
8226  */
8227 void
8228 ipsq_current_finish(ipsq_t *ipsq)
8229 {
8230 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8231 
8232 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8233 
8234 	/*
8235 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8236 	 * (but we're careful to never set IPIF_CHANGING in that case).
8237 	 */
8238 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8239 		mutex_enter(&ipif->ipif_ill->ill_lock);
8240 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8241 
8242 		/* Send any queued event */
8243 		ill_nic_info_dispatch(ipif->ipif_ill);
8244 		mutex_exit(&ipif->ipif_ill->ill_lock);
8245 	}
8246 
8247 	mutex_enter(&ipsq->ipsq_lock);
8248 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8249 	ipsq->ipsq_current_ipif = NULL;
8250 	ipsq->ipsq_current_ioctl = 0;
8251 	mutex_exit(&ipsq->ipsq_lock);
8252 }
8253 
8254 /*
8255  * The ill is closing. Flush all messages on the ipsq that originated
8256  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8257  * for this ill since ipsq_enter could not have entered until then.
8258  * New messages can't be queued since the CONDEMNED flag is set.
8259  */
8260 static void
8261 ipsq_flush(ill_t *ill)
8262 {
8263 	queue_t	*q;
8264 	mblk_t	*prev;
8265 	mblk_t	*mp;
8266 	mblk_t	*mp_next;
8267 	ipsq_t	*ipsq;
8268 
8269 	ASSERT(IAM_WRITER_ILL(ill));
8270 	ipsq = ill->ill_phyint->phyint_ipsq;
8271 	/*
8272 	 * Flush any messages sent up by the driver.
8273 	 */
8274 	mutex_enter(&ipsq->ipsq_lock);
8275 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8276 		mp_next = mp->b_next;
8277 		q = mp->b_queue;
8278 		if (q == ill->ill_rq || q == ill->ill_wq) {
8279 			/* Remove the mp from the ipsq */
8280 			if (prev == NULL)
8281 				ipsq->ipsq_mphead = mp->b_next;
8282 			else
8283 				prev->b_next = mp->b_next;
8284 			if (ipsq->ipsq_mptail == mp) {
8285 				ASSERT(mp_next == NULL);
8286 				ipsq->ipsq_mptail = prev;
8287 			}
8288 			inet_freemsg(mp);
8289 		} else {
8290 			prev = mp;
8291 		}
8292 	}
8293 	mutex_exit(&ipsq->ipsq_lock);
8294 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8295 	ipsq_xopq_mp_cleanup(ill, NULL);
8296 	ill_pending_mp_cleanup(ill);
8297 }
8298 
8299 /* ARGSUSED */
8300 int
8301 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8302     ip_ioctl_cmd_t *ipip, void *ifreq)
8303 {
8304 	ill_t	*ill;
8305 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8306 	boolean_t isv6;
8307 	conn_t	*connp;
8308 	ip_stack_t	*ipst;
8309 
8310 	connp = Q_TO_CONN(q);
8311 	ipst = connp->conn_netstack->netstack_ip;
8312 	isv6 = connp->conn_af_isv6;
8313 	/*
8314 	 * Set original index.
8315 	 * Failover and failback move logical interfaces
8316 	 * from one physical interface to another.  The
8317 	 * original index indicates the parent of a logical
8318 	 * interface, in other words, the physical interface
8319 	 * the logical interface will be moved back to on
8320 	 * failback.
8321 	 */
8322 
8323 	/*
8324 	 * Don't allow the original index to be changed
8325 	 * for non-failover addresses, autoconfigured
8326 	 * addresses, or IPv6 link local addresses.
8327 	 */
8328 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8329 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8330 		return (EINVAL);
8331 	}
8332 	/*
8333 	 * The new original index must be in use by some
8334 	 * physical interface.
8335 	 */
8336 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8337 	    NULL, NULL, ipst);
8338 	if (ill == NULL)
8339 		return (ENXIO);
8340 	ill_refrele(ill);
8341 
8342 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8343 	/*
8344 	 * When this ipif gets failed back, don't
8345 	 * preserve the original id, as it is no
8346 	 * longer applicable.
8347 	 */
8348 	ipif->ipif_orig_ipifid = 0;
8349 	/*
8350 	 * For IPv4, change the original index of any
8351 	 * multicast addresses associated with the
8352 	 * ipif to the new value.
8353 	 */
8354 	if (!isv6) {
8355 		ilm_t *ilm;
8356 
8357 		mutex_enter(&ipif->ipif_ill->ill_lock);
8358 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8359 		    ilm = ilm->ilm_next) {
8360 			if (ilm->ilm_ipif == ipif) {
8361 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8362 			}
8363 		}
8364 		mutex_exit(&ipif->ipif_ill->ill_lock);
8365 	}
8366 	return (0);
8367 }
8368 
8369 /* ARGSUSED */
8370 int
8371 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8372     ip_ioctl_cmd_t *ipip, void *ifreq)
8373 {
8374 	struct lifreq *lifr = (struct lifreq *)ifreq;
8375 
8376 	/*
8377 	 * Get the original interface index i.e the one
8378 	 * before FAILOVER if it ever happened.
8379 	 */
8380 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8381 	return (0);
8382 }
8383 
8384 /*
8385  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8386  * refhold and return the associated ipif
8387  */
8388 int
8389 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func)
8390 {
8391 	boolean_t exists;
8392 	struct iftun_req *ta;
8393 	ipif_t	*ipif;
8394 	ill_t	*ill;
8395 	boolean_t isv6;
8396 	mblk_t	*mp1;
8397 	int	error;
8398 	conn_t	*connp;
8399 	ip_stack_t	*ipst;
8400 
8401 	/* Existence verified in ip_wput_nondata */
8402 	mp1 = mp->b_cont->b_cont;
8403 	ta = (struct iftun_req *)mp1->b_rptr;
8404 	/*
8405 	 * Null terminate the string to protect against buffer
8406 	 * overrun. String was generated by user code and may not
8407 	 * be trusted.
8408 	 */
8409 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8410 
8411 	connp = Q_TO_CONN(q);
8412 	isv6 = connp->conn_af_isv6;
8413 	ipst = connp->conn_netstack->netstack_ip;
8414 
8415 	/* Disallows implicit create */
8416 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8417 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8418 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8419 	if (ipif == NULL)
8420 		return (error);
8421 
8422 	if (ipif->ipif_id != 0) {
8423 		/*
8424 		 * We really don't want to set/get tunnel parameters
8425 		 * on virtual tunnel interfaces.  Only allow the
8426 		 * base tunnel to do these.
8427 		 */
8428 		ipif_refrele(ipif);
8429 		return (EINVAL);
8430 	}
8431 
8432 	/*
8433 	 * Send down to tunnel mod for ioctl processing.
8434 	 * Will finish ioctl in ip_rput_other().
8435 	 */
8436 	ill = ipif->ipif_ill;
8437 	if (ill->ill_net_type == IRE_LOOPBACK) {
8438 		ipif_refrele(ipif);
8439 		return (EOPNOTSUPP);
8440 	}
8441 
8442 	if (ill->ill_wq == NULL) {
8443 		ipif_refrele(ipif);
8444 		return (ENXIO);
8445 	}
8446 	/*
8447 	 * Mark the ioctl as coming from an IPv6 interface for
8448 	 * tun's convenience.
8449 	 */
8450 	if (ill->ill_isv6)
8451 		ta->ifta_flags |= 0x80000000;
8452 	*ipifp = ipif;
8453 	return (0);
8454 }
8455 
8456 /*
8457  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8458  * and return the associated ipif.
8459  * Return value:
8460  *	Non zero: An error has occurred. ci may not be filled out.
8461  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8462  *	a held ipif in ci.ci_ipif.
8463  */
8464 int
8465 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags,
8466     cmd_info_t *ci, ipsq_func_t func)
8467 {
8468 	sin_t		*sin;
8469 	sin6_t		*sin6;
8470 	char		*name;
8471 	struct ifreq    *ifr;
8472 	struct lifreq    *lifr;
8473 	ipif_t		*ipif = NULL;
8474 	ill_t		*ill;
8475 	conn_t		*connp;
8476 	boolean_t	isv6;
8477 	struct iocblk   *iocp = (struct iocblk *)mp->b_rptr;
8478 	boolean_t	exists;
8479 	int		err;
8480 	mblk_t		*mp1;
8481 	zoneid_t	zoneid;
8482 	ip_stack_t	*ipst;
8483 
8484 	if (q->q_next != NULL) {
8485 		ill = (ill_t *)q->q_ptr;
8486 		isv6 = ill->ill_isv6;
8487 		connp = NULL;
8488 		zoneid = ALL_ZONES;
8489 		ipst = ill->ill_ipst;
8490 	} else {
8491 		ill = NULL;
8492 		connp = Q_TO_CONN(q);
8493 		isv6 = connp->conn_af_isv6;
8494 		zoneid = connp->conn_zoneid;
8495 		if (zoneid == GLOBAL_ZONEID) {
8496 			/* global zone can access ipifs in all zones */
8497 			zoneid = ALL_ZONES;
8498 		}
8499 		ipst = connp->conn_netstack->netstack_ip;
8500 	}
8501 
8502 	/* Has been checked in ip_wput_nondata */
8503 	mp1 = mp->b_cont->b_cont;
8504 
8505 
8506 	if (cmd_type == IF_CMD) {
8507 		/* This a old style SIOC[GS]IF* command */
8508 		ifr = (struct ifreq *)mp1->b_rptr;
8509 		/*
8510 		 * Null terminate the string to protect against buffer
8511 		 * overrun. String was generated by user code and may not
8512 		 * be trusted.
8513 		 */
8514 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8515 		sin = (sin_t *)&ifr->ifr_addr;
8516 		name = ifr->ifr_name;
8517 		ci->ci_sin = sin;
8518 		ci->ci_sin6 = NULL;
8519 		ci->ci_lifr = (struct lifreq *)ifr;
8520 	} else {
8521 		/* This a new style SIOC[GS]LIF* command */
8522 		ASSERT(cmd_type == LIF_CMD);
8523 		lifr = (struct lifreq *)mp1->b_rptr;
8524 		/*
8525 		 * Null terminate the string to protect against buffer
8526 		 * overrun. String was generated by user code and may not
8527 		 * be trusted.
8528 		 */
8529 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8530 		name = lifr->lifr_name;
8531 		sin = (sin_t *)&lifr->lifr_addr;
8532 		sin6 = (sin6_t *)&lifr->lifr_addr;
8533 		if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) {
8534 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8535 			    LIFNAMSIZ);
8536 		}
8537 		ci->ci_sin = sin;
8538 		ci->ci_sin6 = sin6;
8539 		ci->ci_lifr = lifr;
8540 	}
8541 
8542 	if (iocp->ioc_cmd == SIOCSLIFNAME) {
8543 		/*
8544 		 * The ioctl will be failed if the ioctl comes down
8545 		 * an conn stream
8546 		 */
8547 		if (ill == NULL) {
8548 			/*
8549 			 * Not an ill queue, return EINVAL same as the
8550 			 * old error code.
8551 			 */
8552 			return (ENXIO);
8553 		}
8554 		ipif = ill->ill_ipif;
8555 		ipif_refhold(ipif);
8556 	} else {
8557 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8558 		    &exists, isv6, zoneid,
8559 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8560 		    ipst);
8561 		if (ipif == NULL) {
8562 			if (err == EINPROGRESS)
8563 				return (err);
8564 			if (iocp->ioc_cmd == SIOCLIFFAILOVER ||
8565 			    iocp->ioc_cmd == SIOCLIFFAILBACK) {
8566 				/*
8567 				 * Need to try both v4 and v6 since this
8568 				 * ioctl can come down either v4 or v6
8569 				 * socket. The lifreq.lifr_family passed
8570 				 * down by this ioctl is AF_UNSPEC.
8571 				 */
8572 				ipif = ipif_lookup_on_name(name,
8573 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8574 				    zoneid, (connp == NULL) ? q :
8575 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8576 				if (err == EINPROGRESS)
8577 					return (err);
8578 			}
8579 			err = 0;	/* Ensure we don't use it below */
8580 		}
8581 	}
8582 
8583 	/*
8584 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8585 	 */
8586 	if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) {
8587 		ipif_refrele(ipif);
8588 		return (ENXIO);
8589 	}
8590 
8591 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8592 	    name[0] == '\0') {
8593 		/*
8594 		 * Handle a or a SIOC?IF* with a null name
8595 		 * during plumb (on the ill queue before the I_PLINK).
8596 		 */
8597 		ipif = ill->ill_ipif;
8598 		ipif_refhold(ipif);
8599 	}
8600 
8601 	if (ipif == NULL)
8602 		return (ENXIO);
8603 
8604 	/*
8605 	 * Allow only GET operations if this ipif has been created
8606 	 * temporarily due to a MOVE operation.
8607 	 */
8608 	if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) {
8609 		ipif_refrele(ipif);
8610 		return (EINVAL);
8611 	}
8612 
8613 	ci->ci_ipif = ipif;
8614 	return (0);
8615 }
8616 
8617 /*
8618  * Return the total number of ipifs.
8619  */
8620 static uint_t
8621 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8622 {
8623 	uint_t numifs = 0;
8624 	ill_t	*ill;
8625 	ill_walk_context_t	ctx;
8626 	ipif_t	*ipif;
8627 
8628 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8629 	ill = ILL_START_WALK_V4(&ctx, ipst);
8630 
8631 	while (ill != NULL) {
8632 		for (ipif = ill->ill_ipif; ipif != NULL;
8633 		    ipif = ipif->ipif_next) {
8634 			if (ipif->ipif_zoneid == zoneid ||
8635 			    ipif->ipif_zoneid == ALL_ZONES)
8636 				numifs++;
8637 		}
8638 		ill = ill_next(&ctx, ill);
8639 	}
8640 	rw_exit(&ipst->ips_ill_g_lock);
8641 	return (numifs);
8642 }
8643 
8644 /*
8645  * Return the total number of ipifs.
8646  */
8647 static uint_t
8648 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8649 {
8650 	uint_t numifs = 0;
8651 	ill_t	*ill;
8652 	ipif_t	*ipif;
8653 	ill_walk_context_t	ctx;
8654 
8655 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8656 
8657 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8658 	if (family == AF_INET)
8659 		ill = ILL_START_WALK_V4(&ctx, ipst);
8660 	else if (family == AF_INET6)
8661 		ill = ILL_START_WALK_V6(&ctx, ipst);
8662 	else
8663 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8664 
8665 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8666 		for (ipif = ill->ill_ipif; ipif != NULL;
8667 		    ipif = ipif->ipif_next) {
8668 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8669 			    !(lifn_flags & LIFC_NOXMIT))
8670 				continue;
8671 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8672 			    !(lifn_flags & LIFC_TEMPORARY))
8673 				continue;
8674 			if (((ipif->ipif_flags &
8675 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8676 			    IPIF_DEPRECATED)) ||
8677 			    IS_LOOPBACK(ill) ||
8678 			    !(ipif->ipif_flags & IPIF_UP)) &&
8679 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8680 				continue;
8681 
8682 			if (zoneid != ipif->ipif_zoneid &&
8683 			    ipif->ipif_zoneid != ALL_ZONES &&
8684 			    (zoneid != GLOBAL_ZONEID ||
8685 			    !(lifn_flags & LIFC_ALLZONES)))
8686 				continue;
8687 
8688 			numifs++;
8689 		}
8690 	}
8691 	rw_exit(&ipst->ips_ill_g_lock);
8692 	return (numifs);
8693 }
8694 
8695 uint_t
8696 ip_get_lifsrcofnum(ill_t *ill)
8697 {
8698 	uint_t numifs = 0;
8699 	ill_t	*ill_head = ill;
8700 	ip_stack_t	*ipst = ill->ill_ipst;
8701 
8702 	/*
8703 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8704 	 * other thread may be trying to relink the ILLs in this usesrc group
8705 	 * and adjusting the ill_usesrc_grp_next pointers
8706 	 */
8707 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8708 	if ((ill->ill_usesrc_ifindex == 0) &&
8709 	    (ill->ill_usesrc_grp_next != NULL)) {
8710 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8711 		    ill = ill->ill_usesrc_grp_next)
8712 			numifs++;
8713 	}
8714 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8715 
8716 	return (numifs);
8717 }
8718 
8719 /* Null values are passed in for ipif, sin, and ifreq */
8720 /* ARGSUSED */
8721 int
8722 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8723     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8724 {
8725 	int *nump;
8726 	conn_t *connp = Q_TO_CONN(q);
8727 
8728 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8729 
8730 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8731 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8732 
8733 	*nump = ip_get_numifs(connp->conn_zoneid,
8734 	    connp->conn_netstack->netstack_ip);
8735 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8736 	return (0);
8737 }
8738 
8739 /* Null values are passed in for ipif, sin, and ifreq */
8740 /* ARGSUSED */
8741 int
8742 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8743     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8744 {
8745 	struct lifnum *lifn;
8746 	mblk_t	*mp1;
8747 	conn_t *connp = Q_TO_CONN(q);
8748 
8749 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8750 
8751 	/* Existence checked in ip_wput_nondata */
8752 	mp1 = mp->b_cont->b_cont;
8753 
8754 	lifn = (struct lifnum *)mp1->b_rptr;
8755 	switch (lifn->lifn_family) {
8756 	case AF_UNSPEC:
8757 	case AF_INET:
8758 	case AF_INET6:
8759 		break;
8760 	default:
8761 		return (EAFNOSUPPORT);
8762 	}
8763 
8764 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8765 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8766 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8767 	return (0);
8768 }
8769 
8770 /* ARGSUSED */
8771 int
8772 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8773     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8774 {
8775 	STRUCT_HANDLE(ifconf, ifc);
8776 	mblk_t *mp1;
8777 	struct iocblk *iocp;
8778 	struct ifreq *ifr;
8779 	ill_walk_context_t	ctx;
8780 	ill_t	*ill;
8781 	ipif_t	*ipif;
8782 	struct sockaddr_in *sin;
8783 	int32_t	ifclen;
8784 	zoneid_t zoneid;
8785 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8786 
8787 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8788 
8789 	ip1dbg(("ip_sioctl_get_ifconf"));
8790 	/* Existence verified in ip_wput_nondata */
8791 	mp1 = mp->b_cont->b_cont;
8792 	iocp = (struct iocblk *)mp->b_rptr;
8793 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8794 
8795 	/*
8796 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8797 	 * the user buffer address and length into which the list of struct
8798 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8799 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8800 	 * the SIOCGIFCONF operation was redefined to simply provide
8801 	 * a large output buffer into which we are supposed to jam the ifreq
8802 	 * array.  The same ioctl command code was used, despite the fact that
8803 	 * both the applications and the kernel code had to change, thus making
8804 	 * it impossible to support both interfaces.
8805 	 *
8806 	 * For reasons not good enough to try to explain, the following
8807 	 * algorithm is used for deciding what to do with one of these:
8808 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8809 	 * form with the output buffer coming down as the continuation message.
8810 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8811 	 * and we have to copy in the ifconf structure to find out how big the
8812 	 * output buffer is and where to copy out to.  Sure no problem...
8813 	 *
8814 	 */
8815 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8816 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8817 		int numifs = 0;
8818 		size_t ifc_bufsize;
8819 
8820 		/*
8821 		 * Must be (better be!) continuation of a TRANSPARENT
8822 		 * IOCTL.  We just copied in the ifconf structure.
8823 		 */
8824 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8825 		    (struct ifconf *)mp1->b_rptr);
8826 
8827 		/*
8828 		 * Allocate a buffer to hold requested information.
8829 		 *
8830 		 * If ifc_len is larger than what is needed, we only
8831 		 * allocate what we will use.
8832 		 *
8833 		 * If ifc_len is smaller than what is needed, return
8834 		 * EINVAL.
8835 		 *
8836 		 * XXX: the ill_t structure can hava 2 counters, for
8837 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8838 		 * number of interfaces for a device, so we don't need
8839 		 * to count them here...
8840 		 */
8841 		numifs = ip_get_numifs(zoneid, ipst);
8842 
8843 		ifclen = STRUCT_FGET(ifc, ifc_len);
8844 		ifc_bufsize = numifs * sizeof (struct ifreq);
8845 		if (ifc_bufsize > ifclen) {
8846 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8847 				/* old behaviour */
8848 				return (EINVAL);
8849 			} else {
8850 				ifc_bufsize = ifclen;
8851 			}
8852 		}
8853 
8854 		mp1 = mi_copyout_alloc(q, mp,
8855 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8856 		if (mp1 == NULL)
8857 			return (ENOMEM);
8858 
8859 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8860 	}
8861 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8862 	/*
8863 	 * the SIOCGIFCONF ioctl only knows about
8864 	 * IPv4 addresses, so don't try to tell
8865 	 * it about interfaces with IPv6-only
8866 	 * addresses. (Last parm 'isv6' is B_FALSE)
8867 	 */
8868 
8869 	ifr = (struct ifreq *)mp1->b_rptr;
8870 
8871 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8872 	ill = ILL_START_WALK_V4(&ctx, ipst);
8873 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8874 		for (ipif = ill->ill_ipif; ipif != NULL;
8875 		    ipif = ipif->ipif_next) {
8876 			if (zoneid != ipif->ipif_zoneid &&
8877 			    ipif->ipif_zoneid != ALL_ZONES)
8878 				continue;
8879 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8880 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8881 					/* old behaviour */
8882 					rw_exit(&ipst->ips_ill_g_lock);
8883 					return (EINVAL);
8884 				} else {
8885 					goto if_copydone;
8886 				}
8887 			}
8888 			(void) ipif_get_name(ipif,
8889 			    ifr->ifr_name,
8890 			    sizeof (ifr->ifr_name));
8891 			sin = (sin_t *)&ifr->ifr_addr;
8892 			*sin = sin_null;
8893 			sin->sin_family = AF_INET;
8894 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8895 			ifr++;
8896 		}
8897 	}
8898 if_copydone:
8899 	rw_exit(&ipst->ips_ill_g_lock);
8900 	mp1->b_wptr = (uchar_t *)ifr;
8901 
8902 	if (STRUCT_BUF(ifc) != NULL) {
8903 		STRUCT_FSET(ifc, ifc_len,
8904 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8905 	}
8906 	return (0);
8907 }
8908 
8909 /*
8910  * Get the interfaces using the address hosted on the interface passed in,
8911  * as a source adddress
8912  */
8913 /* ARGSUSED */
8914 int
8915 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8916     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8917 {
8918 	mblk_t *mp1;
8919 	ill_t	*ill, *ill_head;
8920 	ipif_t	*ipif, *orig_ipif;
8921 	int	numlifs = 0;
8922 	size_t	lifs_bufsize, lifsmaxlen;
8923 	struct	lifreq *lifr;
8924 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8925 	uint_t	ifindex;
8926 	zoneid_t zoneid;
8927 	int err = 0;
8928 	boolean_t isv6 = B_FALSE;
8929 	struct	sockaddr_in	*sin;
8930 	struct	sockaddr_in6	*sin6;
8931 	STRUCT_HANDLE(lifsrcof, lifs);
8932 	ip_stack_t		*ipst;
8933 
8934 	ipst = CONNQ_TO_IPST(q);
8935 
8936 	ASSERT(q->q_next == NULL);
8937 
8938 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8939 
8940 	/* Existence verified in ip_wput_nondata */
8941 	mp1 = mp->b_cont->b_cont;
8942 
8943 	/*
8944 	 * Must be (better be!) continuation of a TRANSPARENT
8945 	 * IOCTL.  We just copied in the lifsrcof structure.
8946 	 */
8947 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8948 	    (struct lifsrcof *)mp1->b_rptr);
8949 
8950 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8951 		return (EINVAL);
8952 
8953 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8954 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8955 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8956 	    ip_process_ioctl, &err, ipst);
8957 	if (ipif == NULL) {
8958 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8959 		    ifindex));
8960 		return (err);
8961 	}
8962 
8963 
8964 	/* Allocate a buffer to hold requested information */
8965 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8966 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8967 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8968 	/* The actual size needed is always returned in lifs_len */
8969 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8970 
8971 	/* If the amount we need is more than what is passed in, abort */
8972 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8973 		ipif_refrele(ipif);
8974 		return (0);
8975 	}
8976 
8977 	mp1 = mi_copyout_alloc(q, mp,
8978 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8979 	if (mp1 == NULL) {
8980 		ipif_refrele(ipif);
8981 		return (ENOMEM);
8982 	}
8983 
8984 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8985 	bzero(mp1->b_rptr, lifs_bufsize);
8986 
8987 	lifr = (struct lifreq *)mp1->b_rptr;
8988 
8989 	ill = ill_head = ipif->ipif_ill;
8990 	orig_ipif = ipif;
8991 
8992 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8993 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8994 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8995 
8996 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8997 	for (; (ill != NULL) && (ill != ill_head);
8998 	    ill = ill->ill_usesrc_grp_next) {
8999 
9000 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
9001 			break;
9002 
9003 		ipif = ill->ill_ipif;
9004 		(void) ipif_get_name(ipif,
9005 		    lifr->lifr_name, sizeof (lifr->lifr_name));
9006 		if (ipif->ipif_isv6) {
9007 			sin6 = (sin6_t *)&lifr->lifr_addr;
9008 			*sin6 = sin6_null;
9009 			sin6->sin6_family = AF_INET6;
9010 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9011 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
9012 			    &ipif->ipif_v6net_mask);
9013 		} else {
9014 			sin = (sin_t *)&lifr->lifr_addr;
9015 			*sin = sin_null;
9016 			sin->sin_family = AF_INET;
9017 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9018 			lifr->lifr_addrlen = ip_mask_to_plen(
9019 			    ipif->ipif_net_mask);
9020 		}
9021 		lifr++;
9022 	}
9023 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
9024 	rw_exit(&ipst->ips_ill_g_lock);
9025 	ipif_refrele(orig_ipif);
9026 	mp1->b_wptr = (uchar_t *)lifr;
9027 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
9028 
9029 	return (0);
9030 }
9031 
9032 /* ARGSUSED */
9033 int
9034 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
9035     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9036 {
9037 	mblk_t *mp1;
9038 	int	list;
9039 	ill_t	*ill;
9040 	ipif_t	*ipif;
9041 	int	flags;
9042 	int	numlifs = 0;
9043 	size_t	lifc_bufsize;
9044 	struct	lifreq *lifr;
9045 	sa_family_t	family;
9046 	struct	sockaddr_in	*sin;
9047 	struct	sockaddr_in6	*sin6;
9048 	ill_walk_context_t	ctx;
9049 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9050 	int32_t	lifclen;
9051 	zoneid_t zoneid;
9052 	STRUCT_HANDLE(lifconf, lifc);
9053 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9054 
9055 	ip1dbg(("ip_sioctl_get_lifconf"));
9056 
9057 	ASSERT(q->q_next == NULL);
9058 
9059 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9060 
9061 	/* Existence verified in ip_wput_nondata */
9062 	mp1 = mp->b_cont->b_cont;
9063 
9064 	/*
9065 	 * An extended version of SIOCGIFCONF that takes an
9066 	 * additional address family and flags field.
9067 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
9068 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
9069 	 * interfaces are omitted.
9070 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
9071 	 * unless LIFC_TEMPORARY is specified.
9072 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
9073 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
9074 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
9075 	 * has priority over LIFC_NOXMIT.
9076 	 */
9077 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
9078 
9079 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
9080 		return (EINVAL);
9081 
9082 	/*
9083 	 * Must be (better be!) continuation of a TRANSPARENT
9084 	 * IOCTL.  We just copied in the lifconf structure.
9085 	 */
9086 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
9087 
9088 	family = STRUCT_FGET(lifc, lifc_family);
9089 	flags = STRUCT_FGET(lifc, lifc_flags);
9090 
9091 	switch (family) {
9092 	case AF_UNSPEC:
9093 		/*
9094 		 * walk all ILL's.
9095 		 */
9096 		list = MAX_G_HEADS;
9097 		break;
9098 	case AF_INET:
9099 		/*
9100 		 * walk only IPV4 ILL's.
9101 		 */
9102 		list = IP_V4_G_HEAD;
9103 		break;
9104 	case AF_INET6:
9105 		/*
9106 		 * walk only IPV6 ILL's.
9107 		 */
9108 		list = IP_V6_G_HEAD;
9109 		break;
9110 	default:
9111 		return (EAFNOSUPPORT);
9112 	}
9113 
9114 	/*
9115 	 * Allocate a buffer to hold requested information.
9116 	 *
9117 	 * If lifc_len is larger than what is needed, we only
9118 	 * allocate what we will use.
9119 	 *
9120 	 * If lifc_len is smaller than what is needed, return
9121 	 * EINVAL.
9122 	 */
9123 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
9124 	lifc_bufsize = numlifs * sizeof (struct lifreq);
9125 	lifclen = STRUCT_FGET(lifc, lifc_len);
9126 	if (lifc_bufsize > lifclen) {
9127 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
9128 			return (EINVAL);
9129 		else
9130 			lifc_bufsize = lifclen;
9131 	}
9132 
9133 	mp1 = mi_copyout_alloc(q, mp,
9134 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
9135 	if (mp1 == NULL)
9136 		return (ENOMEM);
9137 
9138 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
9139 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
9140 
9141 	lifr = (struct lifreq *)mp1->b_rptr;
9142 
9143 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9144 	ill = ill_first(list, list, &ctx, ipst);
9145 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9146 		for (ipif = ill->ill_ipif; ipif != NULL;
9147 		    ipif = ipif->ipif_next) {
9148 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
9149 			    !(flags & LIFC_NOXMIT))
9150 				continue;
9151 
9152 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
9153 			    !(flags & LIFC_TEMPORARY))
9154 				continue;
9155 
9156 			if (((ipif->ipif_flags &
9157 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
9158 			    IPIF_DEPRECATED)) ||
9159 			    IS_LOOPBACK(ill) ||
9160 			    !(ipif->ipif_flags & IPIF_UP)) &&
9161 			    (flags & LIFC_EXTERNAL_SOURCE))
9162 				continue;
9163 
9164 			if (zoneid != ipif->ipif_zoneid &&
9165 			    ipif->ipif_zoneid != ALL_ZONES &&
9166 			    (zoneid != GLOBAL_ZONEID ||
9167 			    !(flags & LIFC_ALLZONES)))
9168 				continue;
9169 
9170 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
9171 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
9172 					rw_exit(&ipst->ips_ill_g_lock);
9173 					return (EINVAL);
9174 				} else {
9175 					goto lif_copydone;
9176 				}
9177 			}
9178 
9179 			(void) ipif_get_name(ipif, lifr->lifr_name,
9180 			    sizeof (lifr->lifr_name));
9181 			if (ipif->ipif_isv6) {
9182 				sin6 = (sin6_t *)&lifr->lifr_addr;
9183 				*sin6 = sin6_null;
9184 				sin6->sin6_family = AF_INET6;
9185 				sin6->sin6_addr =
9186 				    ipif->ipif_v6lcl_addr;
9187 				lifr->lifr_addrlen =
9188 				    ip_mask_to_plen_v6(
9189 				    &ipif->ipif_v6net_mask);
9190 			} else {
9191 				sin = (sin_t *)&lifr->lifr_addr;
9192 				*sin = sin_null;
9193 				sin->sin_family = AF_INET;
9194 				sin->sin_addr.s_addr =
9195 				    ipif->ipif_lcl_addr;
9196 				lifr->lifr_addrlen =
9197 				    ip_mask_to_plen(
9198 				    ipif->ipif_net_mask);
9199 			}
9200 			lifr++;
9201 		}
9202 	}
9203 lif_copydone:
9204 	rw_exit(&ipst->ips_ill_g_lock);
9205 
9206 	mp1->b_wptr = (uchar_t *)lifr;
9207 	if (STRUCT_BUF(lifc) != NULL) {
9208 		STRUCT_FSET(lifc, lifc_len,
9209 		    (int)((uchar_t *)lifr - mp1->b_rptr));
9210 	}
9211 	return (0);
9212 }
9213 
9214 /* ARGSUSED */
9215 int
9216 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
9217     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9218 {
9219 	ip_stack_t	*ipst;
9220 
9221 	if (q->q_next == NULL)
9222 		ipst = CONNQ_TO_IPST(q);
9223 	else
9224 		ipst = ILLQ_TO_IPST(q);
9225 
9226 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9227 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9228 	return (0);
9229 }
9230 
9231 static void
9232 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9233 {
9234 	ip6_asp_t *table;
9235 	size_t table_size;
9236 	mblk_t *data_mp;
9237 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9238 	ip_stack_t	*ipst;
9239 
9240 	if (q->q_next == NULL)
9241 		ipst = CONNQ_TO_IPST(q);
9242 	else
9243 		ipst = ILLQ_TO_IPST(q);
9244 
9245 	/* These two ioctls are I_STR only */
9246 	if (iocp->ioc_count == TRANSPARENT) {
9247 		miocnak(q, mp, 0, EINVAL);
9248 		return;
9249 	}
9250 
9251 	data_mp = mp->b_cont;
9252 	if (data_mp == NULL) {
9253 		/* The user passed us a NULL argument */
9254 		table = NULL;
9255 		table_size = iocp->ioc_count;
9256 	} else {
9257 		/*
9258 		 * The user provided a table.  The stream head
9259 		 * may have copied in the user data in chunks,
9260 		 * so make sure everything is pulled up
9261 		 * properly.
9262 		 */
9263 		if (MBLKL(data_mp) < iocp->ioc_count) {
9264 			mblk_t *new_data_mp;
9265 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9266 			    NULL) {
9267 				miocnak(q, mp, 0, ENOMEM);
9268 				return;
9269 			}
9270 			freemsg(data_mp);
9271 			data_mp = new_data_mp;
9272 			mp->b_cont = data_mp;
9273 		}
9274 		table = (ip6_asp_t *)data_mp->b_rptr;
9275 		table_size = iocp->ioc_count;
9276 	}
9277 
9278 	switch (iocp->ioc_cmd) {
9279 	case SIOCGIP6ADDRPOLICY:
9280 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9281 		if (iocp->ioc_rval == -1)
9282 			iocp->ioc_error = EINVAL;
9283 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9284 		else if (table != NULL &&
9285 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9286 			ip6_asp_t *src = table;
9287 			ip6_asp32_t *dst = (void *)table;
9288 			int count = table_size / sizeof (ip6_asp_t);
9289 			int i;
9290 
9291 			/*
9292 			 * We need to do an in-place shrink of the array
9293 			 * to match the alignment attributes of the
9294 			 * 32-bit ABI looking at it.
9295 			 */
9296 			/* LINTED: logical expression always true: op "||" */
9297 			ASSERT(sizeof (*src) > sizeof (*dst));
9298 			for (i = 1; i < count; i++)
9299 				bcopy(src + i, dst + i, sizeof (*dst));
9300 		}
9301 #endif
9302 		break;
9303 
9304 	case SIOCSIP6ADDRPOLICY:
9305 		ASSERT(mp->b_prev == NULL);
9306 		mp->b_prev = (void *)q;
9307 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9308 		/*
9309 		 * We pass in the datamodel here so that the ip6_asp_replace()
9310 		 * routine can handle converting from 32-bit to native formats
9311 		 * where necessary.
9312 		 *
9313 		 * A better way to handle this might be to convert the inbound
9314 		 * data structure here, and hang it off a new 'mp'; thus the
9315 		 * ip6_asp_replace() logic would always be dealing with native
9316 		 * format data structures..
9317 		 *
9318 		 * (An even simpler way to handle these ioctls is to just
9319 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9320 		 * and just recompile everything that depends on it.)
9321 		 */
9322 #endif
9323 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9324 		    iocp->ioc_flag & IOC_MODELS);
9325 		return;
9326 	}
9327 
9328 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9329 	qreply(q, mp);
9330 }
9331 
9332 static void
9333 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9334 {
9335 	mblk_t 		*data_mp;
9336 	struct dstinforeq	*dir;
9337 	uint8_t		*end, *cur;
9338 	in6_addr_t	*daddr, *saddr;
9339 	ipaddr_t	v4daddr;
9340 	ire_t		*ire;
9341 	char		*slabel, *dlabel;
9342 	boolean_t	isipv4;
9343 	int		match_ire;
9344 	ill_t		*dst_ill;
9345 	ipif_t		*src_ipif, *ire_ipif;
9346 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9347 	zoneid_t	zoneid;
9348 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9349 
9350 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9351 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9352 
9353 	/*
9354 	 * This ioctl is I_STR only, and must have a
9355 	 * data mblk following the M_IOCTL mblk.
9356 	 */
9357 	data_mp = mp->b_cont;
9358 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9359 		miocnak(q, mp, 0, EINVAL);
9360 		return;
9361 	}
9362 
9363 	if (MBLKL(data_mp) < iocp->ioc_count) {
9364 		mblk_t *new_data_mp;
9365 
9366 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9367 			miocnak(q, mp, 0, ENOMEM);
9368 			return;
9369 		}
9370 		freemsg(data_mp);
9371 		data_mp = new_data_mp;
9372 		mp->b_cont = data_mp;
9373 	}
9374 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9375 
9376 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9377 	    end - cur >= sizeof (struct dstinforeq);
9378 	    cur += sizeof (struct dstinforeq)) {
9379 		dir = (struct dstinforeq *)cur;
9380 		daddr = &dir->dir_daddr;
9381 		saddr = &dir->dir_saddr;
9382 
9383 		/*
9384 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9385 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9386 		 * and ipif_select_source[_v6]() do not.
9387 		 */
9388 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9389 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9390 
9391 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9392 		if (isipv4) {
9393 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9394 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9395 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9396 		} else {
9397 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9398 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9399 		}
9400 		if (ire == NULL) {
9401 			dir->dir_dreachable = 0;
9402 
9403 			/* move on to next dst addr */
9404 			continue;
9405 		}
9406 		dir->dir_dreachable = 1;
9407 
9408 		ire_ipif = ire->ire_ipif;
9409 		if (ire_ipif == NULL)
9410 			goto next_dst;
9411 
9412 		/*
9413 		 * We expect to get back an interface ire or a
9414 		 * gateway ire cache entry.  For both types, the
9415 		 * output interface is ire_ipif->ipif_ill.
9416 		 */
9417 		dst_ill = ire_ipif->ipif_ill;
9418 		dir->dir_dmactype = dst_ill->ill_mactype;
9419 
9420 		if (isipv4) {
9421 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9422 		} else {
9423 			src_ipif = ipif_select_source_v6(dst_ill,
9424 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9425 			    zoneid);
9426 		}
9427 		if (src_ipif == NULL)
9428 			goto next_dst;
9429 
9430 		*saddr = src_ipif->ipif_v6lcl_addr;
9431 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9432 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9433 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9434 		dir->dir_sdeprecated =
9435 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9436 		ipif_refrele(src_ipif);
9437 next_dst:
9438 		ire_refrele(ire);
9439 	}
9440 	miocack(q, mp, iocp->ioc_count, 0);
9441 }
9442 
9443 
9444 /*
9445  * Check if this is an address assigned to this machine.
9446  * Skips interfaces that are down by using ire checks.
9447  * Translates mapped addresses to v4 addresses and then
9448  * treats them as such, returning true if the v4 address
9449  * associated with this mapped address is configured.
9450  * Note: Applications will have to be careful what they do
9451  * with the response; use of mapped addresses limits
9452  * what can be done with the socket, especially with
9453  * respect to socket options and ioctls - neither IPv4
9454  * options nor IPv6 sticky options/ancillary data options
9455  * may be used.
9456  */
9457 /* ARGSUSED */
9458 int
9459 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9460     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9461 {
9462 	struct sioc_addrreq *sia;
9463 	sin_t *sin;
9464 	ire_t *ire;
9465 	mblk_t *mp1;
9466 	zoneid_t zoneid;
9467 	ip_stack_t	*ipst;
9468 
9469 	ip1dbg(("ip_sioctl_tmyaddr"));
9470 
9471 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9472 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9473 	ipst = CONNQ_TO_IPST(q);
9474 
9475 	/* Existence verified in ip_wput_nondata */
9476 	mp1 = mp->b_cont->b_cont;
9477 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9478 	sin = (sin_t *)&sia->sa_addr;
9479 	switch (sin->sin_family) {
9480 	case AF_INET6: {
9481 		sin6_t *sin6 = (sin6_t *)sin;
9482 
9483 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9484 			ipaddr_t v4_addr;
9485 
9486 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9487 			    v4_addr);
9488 			ire = ire_ctable_lookup(v4_addr, 0,
9489 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9490 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9491 		} else {
9492 			in6_addr_t v6addr;
9493 
9494 			v6addr = sin6->sin6_addr;
9495 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9496 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9497 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9498 		}
9499 		break;
9500 	}
9501 	case AF_INET: {
9502 		ipaddr_t v4addr;
9503 
9504 		v4addr = sin->sin_addr.s_addr;
9505 		ire = ire_ctable_lookup(v4addr, 0,
9506 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9507 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9508 		break;
9509 	}
9510 	default:
9511 		return (EAFNOSUPPORT);
9512 	}
9513 	if (ire != NULL) {
9514 		sia->sa_res = 1;
9515 		ire_refrele(ire);
9516 	} else {
9517 		sia->sa_res = 0;
9518 	}
9519 	return (0);
9520 }
9521 
9522 /*
9523  * Check if this is an address assigned on-link i.e. neighbor,
9524  * and makes sure it's reachable from the current zone.
9525  * Returns true for my addresses as well.
9526  * Translates mapped addresses to v4 addresses and then
9527  * treats them as such, returning true if the v4 address
9528  * associated with this mapped address is configured.
9529  * Note: Applications will have to be careful what they do
9530  * with the response; use of mapped addresses limits
9531  * what can be done with the socket, especially with
9532  * respect to socket options and ioctls - neither IPv4
9533  * options nor IPv6 sticky options/ancillary data options
9534  * may be used.
9535  */
9536 /* ARGSUSED */
9537 int
9538 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9539     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9540 {
9541 	struct sioc_addrreq *sia;
9542 	sin_t *sin;
9543 	mblk_t	*mp1;
9544 	ire_t *ire = NULL;
9545 	zoneid_t zoneid;
9546 	ip_stack_t	*ipst;
9547 
9548 	ip1dbg(("ip_sioctl_tonlink"));
9549 
9550 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9551 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9552 	ipst = CONNQ_TO_IPST(q);
9553 
9554 	/* Existence verified in ip_wput_nondata */
9555 	mp1 = mp->b_cont->b_cont;
9556 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9557 	sin = (sin_t *)&sia->sa_addr;
9558 
9559 	/*
9560 	 * Match addresses with a zero gateway field to avoid
9561 	 * routes going through a router.
9562 	 * Exclude broadcast and multicast addresses.
9563 	 */
9564 	switch (sin->sin_family) {
9565 	case AF_INET6: {
9566 		sin6_t *sin6 = (sin6_t *)sin;
9567 
9568 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9569 			ipaddr_t v4_addr;
9570 
9571 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9572 			    v4_addr);
9573 			if (!CLASSD(v4_addr)) {
9574 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9575 				    NULL, NULL, zoneid, NULL,
9576 				    MATCH_IRE_GW, ipst);
9577 			}
9578 		} else {
9579 			in6_addr_t v6addr;
9580 			in6_addr_t v6gw;
9581 
9582 			v6addr = sin6->sin6_addr;
9583 			v6gw = ipv6_all_zeros;
9584 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9585 				ire = ire_route_lookup_v6(&v6addr, 0,
9586 				    &v6gw, 0, NULL, NULL, zoneid,
9587 				    NULL, MATCH_IRE_GW, ipst);
9588 			}
9589 		}
9590 		break;
9591 	}
9592 	case AF_INET: {
9593 		ipaddr_t v4addr;
9594 
9595 		v4addr = sin->sin_addr.s_addr;
9596 		if (!CLASSD(v4addr)) {
9597 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9598 			    NULL, NULL, zoneid, NULL,
9599 			    MATCH_IRE_GW, ipst);
9600 		}
9601 		break;
9602 	}
9603 	default:
9604 		return (EAFNOSUPPORT);
9605 	}
9606 	sia->sa_res = 0;
9607 	if (ire != NULL) {
9608 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9609 		    IRE_LOCAL|IRE_LOOPBACK)) {
9610 			sia->sa_res = 1;
9611 		}
9612 		ire_refrele(ire);
9613 	}
9614 	return (0);
9615 }
9616 
9617 /*
9618  * TBD: implement when kernel maintaines a list of site prefixes.
9619  */
9620 /* ARGSUSED */
9621 int
9622 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9623     ip_ioctl_cmd_t *ipip, void *ifreq)
9624 {
9625 	return (ENXIO);
9626 }
9627 
9628 /* ARGSUSED */
9629 int
9630 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9631     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9632 {
9633 	ill_t  		*ill;
9634 	mblk_t		*mp1;
9635 	conn_t		*connp;
9636 	boolean_t	success;
9637 
9638 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9639 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9640 	/* ioctl comes down on an conn */
9641 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9642 	connp = Q_TO_CONN(q);
9643 
9644 	mp->b_datap->db_type = M_IOCTL;
9645 
9646 	/*
9647 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9648 	 * The original mp contains contaminated b_next values due to 'mi',
9649 	 * which is needed to do the mi_copy_done. Unfortunately if we
9650 	 * send down the original mblk itself and if we are popped due to an
9651 	 * an unplumb before the response comes back from tunnel,
9652 	 * the streamhead (which does a freemsg) will see this contaminated
9653 	 * message and the assertion in freemsg about non-null b_next/b_prev
9654 	 * will panic a DEBUG kernel.
9655 	 */
9656 	mp1 = copymsg(mp);
9657 	if (mp1 == NULL)
9658 		return (ENOMEM);
9659 
9660 	ill = ipif->ipif_ill;
9661 	mutex_enter(&connp->conn_lock);
9662 	mutex_enter(&ill->ill_lock);
9663 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9664 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9665 		    mp, 0);
9666 	} else {
9667 		success = ill_pending_mp_add(ill, connp, mp);
9668 	}
9669 	mutex_exit(&ill->ill_lock);
9670 	mutex_exit(&connp->conn_lock);
9671 
9672 	if (success) {
9673 		ip1dbg(("sending down tunparam request "));
9674 		putnext(ill->ill_wq, mp1);
9675 		return (EINPROGRESS);
9676 	} else {
9677 		/* The conn has started closing */
9678 		freemsg(mp1);
9679 		return (EINTR);
9680 	}
9681 }
9682 
9683 static int
9684 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin,
9685     boolean_t x_arp_ioctl, boolean_t if_arp_ioctl)
9686 {
9687 	mblk_t *mp1;
9688 	mblk_t *mp2;
9689 	mblk_t *pending_mp;
9690 	ipaddr_t ipaddr;
9691 	area_t *area;
9692 	struct iocblk *iocp;
9693 	conn_t *connp;
9694 	struct arpreq *ar;
9695 	struct xarpreq *xar;
9696 	boolean_t success;
9697 	int flags, alength;
9698 	char *lladdr;
9699 	ip_stack_t	*ipst;
9700 
9701 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9702 	connp = Q_TO_CONN(q);
9703 	ipst = connp->conn_netstack->netstack_ip;
9704 
9705 	iocp = (struct iocblk *)mp->b_rptr;
9706 	/*
9707 	 * ill has already been set depending on whether
9708 	 * bsd style or interface style ioctl.
9709 	 */
9710 	ASSERT(ill != NULL);
9711 
9712 	/*
9713 	 * Is this one of the new SIOC*XARP ioctls?
9714 	 */
9715 	if (x_arp_ioctl) {
9716 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9717 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9718 		ar = NULL;
9719 
9720 		flags = xar->xarp_flags;
9721 		lladdr = LLADDR(&xar->xarp_ha);
9722 		/*
9723 		 * Validate against user's link layer address length
9724 		 * input and name and addr length limits.
9725 		 */
9726 		alength = ill->ill_phys_addr_length;
9727 		if (iocp->ioc_cmd == SIOCSXARP) {
9728 			if (alength != xar->xarp_ha.sdl_alen ||
9729 			    (alength + xar->xarp_ha.sdl_nlen >
9730 			    sizeof (xar->xarp_ha.sdl_data)))
9731 				return (EINVAL);
9732 		}
9733 	} else {
9734 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9735 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9736 		xar = NULL;
9737 
9738 		flags = ar->arp_flags;
9739 		lladdr = ar->arp_ha.sa_data;
9740 		/*
9741 		 * Theoretically, the sa_family could tell us what link
9742 		 * layer type this operation is trying to deal with. By
9743 		 * common usage AF_UNSPEC means ethernet. We'll assume
9744 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9745 		 * for now. Our new SIOC*XARP ioctls can be used more
9746 		 * generally.
9747 		 *
9748 		 * If the underlying media happens to have a non 6 byte
9749 		 * address, arp module will fail set/get, but the del
9750 		 * operation will succeed.
9751 		 */
9752 		alength = 6;
9753 		if ((iocp->ioc_cmd != SIOCDARP) &&
9754 		    (alength != ill->ill_phys_addr_length)) {
9755 			return (EINVAL);
9756 		}
9757 	}
9758 
9759 	/*
9760 	 * We are going to pass up to ARP a packet chain that looks
9761 	 * like:
9762 	 *
9763 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9764 	 *
9765 	 * Get a copy of the original IOCTL mblk to head the chain,
9766 	 * to be sent up (in mp1). Also get another copy to store
9767 	 * in the ill_pending_mp list, for matching the response
9768 	 * when it comes back from ARP.
9769 	 */
9770 	mp1 = copyb(mp);
9771 	pending_mp = copymsg(mp);
9772 	if (mp1 == NULL || pending_mp == NULL) {
9773 		if (mp1 != NULL)
9774 			freeb(mp1);
9775 		if (pending_mp != NULL)
9776 			inet_freemsg(pending_mp);
9777 		return (ENOMEM);
9778 	}
9779 
9780 	ipaddr = sin->sin_addr.s_addr;
9781 
9782 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9783 	    (caddr_t)&ipaddr);
9784 	if (mp2 == NULL) {
9785 		freeb(mp1);
9786 		inet_freemsg(pending_mp);
9787 		return (ENOMEM);
9788 	}
9789 	/* Put together the chain. */
9790 	mp1->b_cont = mp2;
9791 	mp1->b_datap->db_type = M_IOCTL;
9792 	mp2->b_cont = mp;
9793 	mp2->b_datap->db_type = M_DATA;
9794 
9795 	iocp = (struct iocblk *)mp1->b_rptr;
9796 
9797 	/*
9798 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9799 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9800 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9801 	 * ioc_count field; set ioc_count to be correct.
9802 	 */
9803 	iocp->ioc_count = MBLKL(mp1->b_cont);
9804 
9805 	/*
9806 	 * Set the proper command in the ARP message.
9807 	 * Convert the SIOC{G|S|D}ARP calls into our
9808 	 * AR_ENTRY_xxx calls.
9809 	 */
9810 	area = (area_t *)mp2->b_rptr;
9811 	switch (iocp->ioc_cmd) {
9812 	case SIOCDARP:
9813 	case SIOCDXARP:
9814 		/*
9815 		 * We defer deleting the corresponding IRE until
9816 		 * we return from arp.
9817 		 */
9818 		area->area_cmd = AR_ENTRY_DELETE;
9819 		area->area_proto_mask_offset = 0;
9820 		break;
9821 	case SIOCGARP:
9822 	case SIOCGXARP:
9823 		area->area_cmd = AR_ENTRY_SQUERY;
9824 		area->area_proto_mask_offset = 0;
9825 		break;
9826 	case SIOCSARP:
9827 	case SIOCSXARP: {
9828 		/*
9829 		 * Delete the corresponding ire to make sure IP will
9830 		 * pick up any change from arp.
9831 		 */
9832 		if (!if_arp_ioctl) {
9833 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9834 			break;
9835 		} else {
9836 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9837 			if (ipif != NULL) {
9838 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9839 				    ipst);
9840 				ipif_refrele(ipif);
9841 			}
9842 			break;
9843 		}
9844 	}
9845 	}
9846 	iocp->ioc_cmd = area->area_cmd;
9847 
9848 	/*
9849 	 * Before sending 'mp' to ARP, we have to clear the b_next
9850 	 * and b_prev. Otherwise if STREAMS encounters such a message
9851 	 * in freemsg(), (because ARP can close any time) it can cause
9852 	 * a panic. But mi code needs the b_next and b_prev values of
9853 	 * mp->b_cont, to complete the ioctl. So we store it here
9854 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9855 	 * when the response comes down from ARP.
9856 	 */
9857 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9858 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9859 	mp->b_cont->b_next = NULL;
9860 	mp->b_cont->b_prev = NULL;
9861 
9862 	mutex_enter(&connp->conn_lock);
9863 	mutex_enter(&ill->ill_lock);
9864 	/* conn has not yet started closing, hence this can't fail */
9865 	success = ill_pending_mp_add(ill, connp, pending_mp);
9866 	ASSERT(success);
9867 	mutex_exit(&ill->ill_lock);
9868 	mutex_exit(&connp->conn_lock);
9869 
9870 	/*
9871 	 * Fill in the rest of the ARP operation fields.
9872 	 */
9873 	area->area_hw_addr_length = alength;
9874 	bcopy(lladdr,
9875 	    (char *)area + area->area_hw_addr_offset,
9876 	    area->area_hw_addr_length);
9877 	/* Translate the flags. */
9878 	if (flags & ATF_PERM)
9879 		area->area_flags |= ACE_F_PERMANENT;
9880 	if (flags & ATF_PUBL)
9881 		area->area_flags |= ACE_F_PUBLISH;
9882 	if (flags & ATF_AUTHORITY)
9883 		area->area_flags |= ACE_F_AUTHORITY;
9884 
9885 	/*
9886 	 * Up to ARP it goes.  The response will come
9887 	 * back in ip_wput as an M_IOCACK message, and
9888 	 * will be handed to ip_sioctl_iocack for
9889 	 * completion.
9890 	 */
9891 	putnext(ill->ill_rq, mp1);
9892 	return (EINPROGRESS);
9893 }
9894 
9895 /* ARGSUSED */
9896 int
9897 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9898     ip_ioctl_cmd_t *ipip, void *ifreq)
9899 {
9900 	struct xarpreq *xar;
9901 	boolean_t isv6;
9902 	mblk_t	*mp1;
9903 	int	err;
9904 	conn_t	*connp;
9905 	int ifnamelen;
9906 	ire_t	*ire = NULL;
9907 	ill_t	*ill = NULL;
9908 	struct sockaddr_in *sin;
9909 	boolean_t if_arp_ioctl = B_FALSE;
9910 	ip_stack_t	*ipst;
9911 
9912 	/* ioctl comes down on an conn */
9913 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9914 	connp = Q_TO_CONN(q);
9915 	isv6 = connp->conn_af_isv6;
9916 	ipst = connp->conn_netstack->netstack_ip;
9917 
9918 	/* Existance verified in ip_wput_nondata */
9919 	mp1 = mp->b_cont->b_cont;
9920 
9921 	ASSERT(MBLKL(mp1) >= sizeof (*xar));
9922 	xar = (struct xarpreq *)mp1->b_rptr;
9923 	sin = (sin_t *)&xar->xarp_pa;
9924 
9925 	if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) ||
9926 	    (xar->xarp_pa.ss_family != AF_INET))
9927 		return (ENXIO);
9928 
9929 	ifnamelen = xar->xarp_ha.sdl_nlen;
9930 	if (ifnamelen != 0) {
9931 		char	*cptr, cval;
9932 
9933 		if (ifnamelen >= LIFNAMSIZ)
9934 			return (EINVAL);
9935 
9936 		/*
9937 		 * Instead of bcopying a bunch of bytes,
9938 		 * null-terminate the string in-situ.
9939 		 */
9940 		cptr = xar->xarp_ha.sdl_data + ifnamelen;
9941 		cval = *cptr;
9942 		*cptr = '\0';
9943 		ill = ill_lookup_on_name(xar->xarp_ha.sdl_data,
9944 		    B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl,
9945 		    &err, NULL, ipst);
9946 		*cptr = cval;
9947 		if (ill == NULL)
9948 			return (err);
9949 		if (ill->ill_net_type != IRE_IF_RESOLVER) {
9950 			ill_refrele(ill);
9951 			return (ENXIO);
9952 		}
9953 
9954 		if_arp_ioctl = B_TRUE;
9955 	} else {
9956 		/*
9957 		 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves
9958 		 * as an extended BSD ioctl. The kernel uses the IP address
9959 		 * to figure out the network interface.
9960 		 */
9961 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9962 		    ipst);
9963 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9964 		    ((ill = ire_to_ill(ire)) == NULL) ||
9965 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9966 			if (ire != NULL)
9967 				ire_refrele(ire);
9968 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9969 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9970 			    NULL, MATCH_IRE_TYPE, ipst);
9971 			if ((ire == NULL) ||
9972 			    ((ill = ire_to_ill(ire)) == NULL)) {
9973 				if (ire != NULL)
9974 					ire_refrele(ire);
9975 				return (ENXIO);
9976 			}
9977 		}
9978 		ASSERT(ire != NULL && ill != NULL);
9979 	}
9980 
9981 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl);
9982 	if (if_arp_ioctl)
9983 		ill_refrele(ill);
9984 	if (ire != NULL)
9985 		ire_refrele(ire);
9986 
9987 	return (err);
9988 }
9989 
9990 /*
9991  * ARP IOCTLs.
9992  * How does IP get in the business of fronting ARP configuration/queries?
9993  * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9994  * are by tradition passed in through a datagram socket.  That lands in IP.
9995  * As it happens, this is just as well since the interface is quite crude in
9996  * that it passes in no information about protocol or hardware types, or
9997  * interface association.  After making the protocol assumption, IP is in
9998  * the position to look up the name of the ILL, which ARP will need, and
9999  * format a request that can be handled by ARP.	 The request is passed up
10000  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
10001  * back a response.  ARP supports its own set of more general IOCTLs, in
10002  * case anyone is interested.
10003  */
10004 /* ARGSUSED */
10005 int
10006 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10007     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
10008 {
10009 	struct arpreq *ar;
10010 	struct sockaddr_in *sin;
10011 	ire_t	*ire;
10012 	boolean_t isv6;
10013 	mblk_t	*mp1;
10014 	int	err;
10015 	conn_t	*connp;
10016 	ill_t	*ill;
10017 	ip_stack_t	*ipst;
10018 
10019 	/* ioctl comes down on an conn */
10020 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
10021 	connp = Q_TO_CONN(q);
10022 	ipst = CONNQ_TO_IPST(q);
10023 	isv6 = connp->conn_af_isv6;
10024 	if (isv6)
10025 		return (ENXIO);
10026 
10027 	/* Existance verified in ip_wput_nondata */
10028 	mp1 = mp->b_cont->b_cont;
10029 
10030 	ar = (struct arpreq *)mp1->b_rptr;
10031 	sin = (sin_t *)&ar->arp_pa;
10032 
10033 	/*
10034 	 * We need to let ARP know on which interface the IP
10035 	 * address has an ARP mapping. In the IPMP case, a
10036 	 * simple forwarding table lookup will return the
10037 	 * IRE_IF_RESOLVER for the first interface in the group,
10038 	 * which might not be the interface on which the
10039 	 * requested IP address was resolved due to the ill
10040 	 * selection algorithm (see ip_newroute_get_dst_ill()).
10041 	 * So we do a cache table lookup first: if the IRE cache
10042 	 * entry for the IP address is still there, it will
10043 	 * contain the ill pointer for the right interface, so
10044 	 * we use that. If the cache entry has been flushed, we
10045 	 * fall back to the forwarding table lookup. This should
10046 	 * be rare enough since IRE cache entries have a longer
10047 	 * life expectancy than ARP cache entries.
10048 	 */
10049 	ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst);
10050 	if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
10051 	    ((ill = ire_to_ill(ire)) == NULL)) {
10052 		if (ire != NULL)
10053 			ire_refrele(ire);
10054 		ire = ire_ftable_lookup(sin->sin_addr.s_addr,
10055 		    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
10056 		    NULL, MATCH_IRE_TYPE, ipst);
10057 		if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) {
10058 			if (ire != NULL)
10059 				ire_refrele(ire);
10060 			return (ENXIO);
10061 		}
10062 	}
10063 	ASSERT(ire != NULL && ill != NULL);
10064 
10065 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE);
10066 	ire_refrele(ire);
10067 	return (err);
10068 }
10069 
10070 /*
10071  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
10072  * atomically set/clear the muxids. Also complete the ioctl by acking or
10073  * naking it.  Note that the code is structured such that the link type,
10074  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
10075  * its clones use the persistent link, while pppd(1M) and perhaps many
10076  * other daemons may use non-persistent link.  When combined with some
10077  * ill_t states, linking and unlinking lower streams may be used as
10078  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
10079  */
10080 /* ARGSUSED */
10081 void
10082 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10083 {
10084 	mblk_t *mp1;
10085 	mblk_t *mp2;
10086 	struct linkblk *li;
10087 	queue_t	*ipwq;
10088 	char	*name;
10089 	struct qinit *qinfo;
10090 	struct ipmx_s *ipmxp;
10091 	ill_t	*ill = NULL;
10092 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10093 	int	err = 0;
10094 	boolean_t	entered_ipsq = B_FALSE;
10095 	boolean_t islink;
10096 	queue_t *dwq = NULL;
10097 	ip_stack_t	*ipst;
10098 
10099 	if (CONN_Q(q))
10100 		ipst = CONNQ_TO_IPST(q);
10101 	else
10102 		ipst = ILLQ_TO_IPST(q);
10103 
10104 	ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK ||
10105 	    iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK);
10106 
10107 	islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ?
10108 	    B_TRUE : B_FALSE;
10109 
10110 	mp1 = mp->b_cont;	/* This is the linkblk info */
10111 	li = (struct linkblk *)mp1->b_rptr;
10112 
10113 	/*
10114 	 * ARP has added this special mblk, and the utility is asking us
10115 	 * to perform consistency checks, and also atomically set the
10116 	 * muxid. Ifconfig is an example.  It achieves this by using
10117 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
10118 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
10119 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
10120 	 * and other comments in this routine for more details.
10121 	 */
10122 	mp2 = mp1->b_cont;	/* This is added by ARP */
10123 
10124 	/*
10125 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
10126 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
10127 	 * get the special mblk above.  For backward compatibility, we just
10128 	 * return success.  The utility will use SIOCSLIFMUXID to store
10129 	 * the muxids.  This is not atomic, and can leave the streams
10130 	 * unplumbable if the utility is interrrupted, before it does the
10131 	 * SIOCSLIFMUXID.
10132 	 */
10133 	if (mp2 == NULL) {
10134 		/*
10135 		 * At this point we don't know whether or not this is the
10136 		 * IP module stream or the ARP device stream.  We need to
10137 		 * walk the lower stream in order to find this out, since
10138 		 * the capability negotiation is done only on the IP module
10139 		 * stream.  IP module instance is identified by the module
10140 		 * name IP, non-null q_next, and it's wput not being ip_lwput.
10141 		 * STREAMS ensures that the lower stream (l_qbot) will not
10142 		 * vanish until this ioctl completes. So we can safely walk
10143 		 * the stream or refer to the q_ptr.
10144 		 */
10145 		ipwq = li->l_qbot;
10146 		while (ipwq != NULL) {
10147 			qinfo = ipwq->q_qinfo;
10148 			name = qinfo->qi_minfo->mi_idname;
10149 			if (name != NULL && name[0] != NULL &&
10150 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10151 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10152 			    (ipwq->q_next != NULL)) {
10153 				break;
10154 			}
10155 			ipwq = ipwq->q_next;
10156 		}
10157 		/*
10158 		 * This looks like an IP module stream, so trigger
10159 		 * the capability reset or re-negotiation if necessary.
10160 		 */
10161 		if (ipwq != NULL) {
10162 			ill = ipwq->q_ptr;
10163 			ASSERT(ill != NULL);
10164 
10165 			if (ipsq == NULL) {
10166 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10167 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10168 				if (ipsq == NULL)
10169 					return;
10170 				entered_ipsq = B_TRUE;
10171 			}
10172 			ASSERT(IAM_WRITER_ILL(ill));
10173 			/*
10174 			 * Store the upper read queue of the module
10175 			 * immediately below IP, and count the total
10176 			 * number of lower modules.  Do this only
10177 			 * for I_PLINK or I_LINK event.
10178 			 */
10179 			ill->ill_lmod_rq = NULL;
10180 			ill->ill_lmod_cnt = 0;
10181 			if (islink && (dwq = ipwq->q_next) != NULL) {
10182 				ill->ill_lmod_rq = RD(dwq);
10183 
10184 				while (dwq != NULL) {
10185 					ill->ill_lmod_cnt++;
10186 					dwq = dwq->q_next;
10187 				}
10188 			}
10189 			/*
10190 			 * There's no point in resetting or re-negotiating if
10191 			 * we are not bound to the driver, so only do this if
10192 			 * the DLPI state is idle (up); we assume such state
10193 			 * since ill_ipif_up_count gets incremented in
10194 			 * ipif_up_done(), which is after we are bound to the
10195 			 * driver.  Note that in the case of logical
10196 			 * interfaces, IP won't rebind to the driver unless
10197 			 * the ill_ipif_up_count is 0, meaning that all other
10198 			 * IP interfaces (including the main ipif) are in the
10199 			 * down state.  Because of this, we use such counter
10200 			 * as an indicator, instead of relying on the IPIF_UP
10201 			 * flag, which is per ipif instance.
10202 			 */
10203 			if (ill->ill_ipif_up_count > 0) {
10204 				if (islink)
10205 					ill_capability_probe(ill);
10206 				else
10207 					ill_capability_reset(ill);
10208 			}
10209 		}
10210 		goto done;
10211 	}
10212 
10213 	/*
10214 	 * This is an I_{P}LINK sent down by ifconfig on
10215 	 * /dev/arp. ARP has appended this last (3rd) mblk,
10216 	 * giving more info. STREAMS ensures that the lower
10217 	 * stream (l_qbot) will not vanish until this ioctl
10218 	 * completes. So we can safely walk the stream or refer
10219 	 * to the q_ptr.
10220 	 */
10221 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
10222 	if (ipmxp->ipmx_arpdev_stream) {
10223 		/*
10224 		 * The operation is occuring on the arp-device
10225 		 * stream.
10226 		 */
10227 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
10228 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
10229 		if (ill == NULL) {
10230 			if (err == EINPROGRESS) {
10231 				return;
10232 			} else {
10233 				err = EINVAL;
10234 				goto done;
10235 			}
10236 		}
10237 
10238 		if (ipsq == NULL) {
10239 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
10240 			    NEW_OP, B_TRUE);
10241 			if (ipsq == NULL) {
10242 				ill_refrele(ill);
10243 				return;
10244 			}
10245 			entered_ipsq = B_TRUE;
10246 		}
10247 		ASSERT(IAM_WRITER_ILL(ill));
10248 		ill_refrele(ill);
10249 		/*
10250 		 * To ensure consistency between IP and ARP,
10251 		 * the following LIFO scheme is used in
10252 		 * plink/punlink. (IP first, ARP last).
10253 		 * This is because the muxid's are stored
10254 		 * in the IP stream on the ill.
10255 		 *
10256 		 * I_{P}LINK: ifconfig plinks the IP stream before
10257 		 * plinking the ARP stream. On an arp-dev
10258 		 * stream, IP checks that it is not yet
10259 		 * plinked, and it also checks that the
10260 		 * corresponding IP stream is already plinked.
10261 		 *
10262 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream
10263 		 * before punlinking the IP stream. IP does
10264 		 * not allow punlink of the IP stream unless
10265 		 * the arp stream has been punlinked.
10266 		 *
10267 		 */
10268 		if ((islink &&
10269 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
10270 		    (!islink &&
10271 		    ill->ill_arp_muxid != li->l_index)) {
10272 			err = EINVAL;
10273 			goto done;
10274 		}
10275 		if (islink) {
10276 			ill->ill_arp_muxid = li->l_index;
10277 		} else {
10278 			ill->ill_arp_muxid = 0;
10279 		}
10280 	} else {
10281 		/*
10282 		 * This must be the IP module stream with or
10283 		 * without arp. Walk the stream and locate the
10284 		 * IP module. An IP module instance is
10285 		 * identified by the module name IP, non-null
10286 		 * q_next, and it's wput not being ip_lwput.
10287 		 */
10288 		ipwq = li->l_qbot;
10289 		while (ipwq != NULL) {
10290 			qinfo = ipwq->q_qinfo;
10291 			name = qinfo->qi_minfo->mi_idname;
10292 			if (name != NULL && name[0] != NULL &&
10293 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10294 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10295 			    (ipwq->q_next != NULL)) {
10296 				break;
10297 			}
10298 			ipwq = ipwq->q_next;
10299 		}
10300 		if (ipwq != NULL) {
10301 			ill = ipwq->q_ptr;
10302 			ASSERT(ill != NULL);
10303 
10304 			if (ipsq == NULL) {
10305 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10306 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10307 				if (ipsq == NULL)
10308 					return;
10309 				entered_ipsq = B_TRUE;
10310 			}
10311 			ASSERT(IAM_WRITER_ILL(ill));
10312 			/*
10313 			 * Return error if the ip_mux_id is
10314 			 * non-zero and command is I_{P}LINK.
10315 			 * If command is I_{P}UNLINK, return
10316 			 * error if the arp-devstr is not
10317 			 * yet punlinked.
10318 			 */
10319 			if ((islink && ill->ill_ip_muxid != 0) ||
10320 			    (!islink && ill->ill_arp_muxid != 0)) {
10321 				err = EINVAL;
10322 				goto done;
10323 			}
10324 			ill->ill_lmod_rq = NULL;
10325 			ill->ill_lmod_cnt = 0;
10326 			if (islink) {
10327 				/*
10328 				 * Store the upper read queue of the module
10329 				 * immediately below IP, and count the total
10330 				 * number of lower modules.
10331 				 */
10332 				if ((dwq = ipwq->q_next) != NULL) {
10333 					ill->ill_lmod_rq = RD(dwq);
10334 
10335 					while (dwq != NULL) {
10336 						ill->ill_lmod_cnt++;
10337 						dwq = dwq->q_next;
10338 					}
10339 				}
10340 				ill->ill_ip_muxid = li->l_index;
10341 			} else {
10342 				ill->ill_ip_muxid = 0;
10343 			}
10344 
10345 			/*
10346 			 * See comments above about resetting/re-
10347 			 * negotiating driver sub-capabilities.
10348 			 */
10349 			if (ill->ill_ipif_up_count > 0) {
10350 				if (islink)
10351 					ill_capability_probe(ill);
10352 				else
10353 					ill_capability_reset(ill);
10354 			}
10355 		}
10356 	}
10357 done:
10358 	iocp->ioc_count = 0;
10359 	iocp->ioc_error = err;
10360 	if (err == 0)
10361 		mp->b_datap->db_type = M_IOCACK;
10362 	else
10363 		mp->b_datap->db_type = M_IOCNAK;
10364 	qreply(q, mp);
10365 
10366 	/* Conn was refheld in ip_sioctl_copyin_setup */
10367 	if (CONN_Q(q))
10368 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
10369 	if (entered_ipsq)
10370 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10371 }
10372 
10373 /*
10374  * Search the ioctl command in the ioctl tables and return a pointer
10375  * to the ioctl command information. The ioctl command tables are
10376  * static and fully populated at compile time.
10377  */
10378 ip_ioctl_cmd_t *
10379 ip_sioctl_lookup(int ioc_cmd)
10380 {
10381 	int index;
10382 	ip_ioctl_cmd_t *ipip;
10383 	ip_ioctl_cmd_t *ipip_end;
10384 
10385 	if (ioc_cmd == IPI_DONTCARE)
10386 		return (NULL);
10387 
10388 	/*
10389 	 * Do a 2 step search. First search the indexed table
10390 	 * based on the least significant byte of the ioctl cmd.
10391 	 * If we don't find a match, then search the misc table
10392 	 * serially.
10393 	 */
10394 	index = ioc_cmd & 0xFF;
10395 	if (index < ip_ndx_ioctl_count) {
10396 		ipip = &ip_ndx_ioctl_table[index];
10397 		if (ipip->ipi_cmd == ioc_cmd) {
10398 			/* Found a match in the ndx table */
10399 			return (ipip);
10400 		}
10401 	}
10402 
10403 	/* Search the misc table */
10404 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10405 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10406 		if (ipip->ipi_cmd == ioc_cmd)
10407 			/* Found a match in the misc table */
10408 			return (ipip);
10409 	}
10410 
10411 	return (NULL);
10412 }
10413 
10414 /*
10415  * Wrapper function for resuming deferred ioctl processing
10416  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10417  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10418  */
10419 /* ARGSUSED */
10420 void
10421 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10422     void *dummy_arg)
10423 {
10424 	ip_sioctl_copyin_setup(q, mp);
10425 }
10426 
10427 /*
10428  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10429  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10430  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10431  * We establish here the size of the block to be copied in.  mi_copyin
10432  * arranges for this to happen, an processing continues in ip_wput with
10433  * an M_IOCDATA message.
10434  */
10435 void
10436 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10437 {
10438 	int	copyin_size;
10439 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10440 	ip_ioctl_cmd_t *ipip;
10441 	cred_t *cr;
10442 	ip_stack_t	*ipst;
10443 
10444 	if (CONN_Q(q))
10445 		ipst = CONNQ_TO_IPST(q);
10446 	else
10447 		ipst = ILLQ_TO_IPST(q);
10448 
10449 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10450 	if (ipip == NULL) {
10451 		/*
10452 		 * The ioctl is not one we understand or own.
10453 		 * Pass it along to be processed down stream,
10454 		 * if this is a module instance of IP, else nak
10455 		 * the ioctl.
10456 		 */
10457 		if (q->q_next == NULL) {
10458 			goto nak;
10459 		} else {
10460 			putnext(q, mp);
10461 			return;
10462 		}
10463 	}
10464 
10465 	/*
10466 	 * If this is deferred, then we will do all the checks when we
10467 	 * come back.
10468 	 */
10469 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10470 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10471 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10472 		return;
10473 	}
10474 
10475 	/*
10476 	 * Only allow a very small subset of IP ioctls on this stream if
10477 	 * IP is a module and not a driver. Allowing ioctls to be processed
10478 	 * in this case may cause assert failures or data corruption.
10479 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10480 	 * ioctls allowed on an IP module stream, after which this stream
10481 	 * normally becomes a multiplexor (at which time the stream head
10482 	 * will fail all ioctls).
10483 	 */
10484 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10485 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10486 			/*
10487 			 * Pass common Streams ioctls which the IP
10488 			 * module does not own or consume along to
10489 			 * be processed down stream.
10490 			 */
10491 			putnext(q, mp);
10492 			return;
10493 		} else {
10494 			goto nak;
10495 		}
10496 	}
10497 
10498 	/* Make sure we have ioctl data to process. */
10499 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10500 		goto nak;
10501 
10502 	/*
10503 	 * Prefer dblk credential over ioctl credential; some synthesized
10504 	 * ioctls have kcred set because there's no way to crhold()
10505 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10506 	 * the framework; the caller of ioctl needs to hold the reference
10507 	 * for the duration of the call).
10508 	 */
10509 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10510 
10511 	/* Make sure normal users don't send down privileged ioctls */
10512 	if ((ipip->ipi_flags & IPI_PRIV) &&
10513 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10514 		/* We checked the privilege earlier but log it here */
10515 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10516 		return;
10517 	}
10518 
10519 	/*
10520 	 * The ioctl command tables can only encode fixed length
10521 	 * ioctl data. If the length is variable, the table will
10522 	 * encode the length as zero. Such special cases are handled
10523 	 * below in the switch.
10524 	 */
10525 	if (ipip->ipi_copyin_size != 0) {
10526 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10527 		return;
10528 	}
10529 
10530 	switch (iocp->ioc_cmd) {
10531 	case O_SIOCGIFCONF:
10532 	case SIOCGIFCONF:
10533 		/*
10534 		 * This IOCTL is hilarious.  See comments in
10535 		 * ip_sioctl_get_ifconf for the story.
10536 		 */
10537 		if (iocp->ioc_count == TRANSPARENT)
10538 			copyin_size = SIZEOF_STRUCT(ifconf,
10539 			    iocp->ioc_flag);
10540 		else
10541 			copyin_size = iocp->ioc_count;
10542 		mi_copyin(q, mp, NULL, copyin_size);
10543 		return;
10544 
10545 	case O_SIOCGLIFCONF:
10546 	case SIOCGLIFCONF:
10547 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10548 		mi_copyin(q, mp, NULL, copyin_size);
10549 		return;
10550 
10551 	case SIOCGLIFSRCOF:
10552 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10553 		mi_copyin(q, mp, NULL, copyin_size);
10554 		return;
10555 	case SIOCGIP6ADDRPOLICY:
10556 		ip_sioctl_ip6addrpolicy(q, mp);
10557 		ip6_asp_table_refrele(ipst);
10558 		return;
10559 
10560 	case SIOCSIP6ADDRPOLICY:
10561 		ip_sioctl_ip6addrpolicy(q, mp);
10562 		return;
10563 
10564 	case SIOCGDSTINFO:
10565 		ip_sioctl_dstinfo(q, mp);
10566 		ip6_asp_table_refrele(ipst);
10567 		return;
10568 
10569 	case I_PLINK:
10570 	case I_PUNLINK:
10571 	case I_LINK:
10572 	case I_UNLINK:
10573 		/*
10574 		 * We treat non-persistent link similarly as the persistent
10575 		 * link case, in terms of plumbing/unplumbing, as well as
10576 		 * dynamic re-plumbing events indicator.  See comments
10577 		 * in ip_sioctl_plink() for more.
10578 		 *
10579 		 * Request can be enqueued in the 'ipsq' while waiting
10580 		 * to become exclusive. So bump up the conn ref.
10581 		 */
10582 		if (CONN_Q(q))
10583 			CONN_INC_REF(Q_TO_CONN(q));
10584 		ip_sioctl_plink(NULL, q, mp, NULL);
10585 		return;
10586 
10587 	case ND_GET:
10588 	case ND_SET:
10589 		/*
10590 		 * Use of the nd table requires holding the reader lock.
10591 		 * Modifying the nd table thru nd_load/nd_unload requires
10592 		 * the writer lock.
10593 		 */
10594 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10595 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10596 			rw_exit(&ipst->ips_ip_g_nd_lock);
10597 
10598 			if (iocp->ioc_error)
10599 				iocp->ioc_count = 0;
10600 			mp->b_datap->db_type = M_IOCACK;
10601 			qreply(q, mp);
10602 			return;
10603 		}
10604 		rw_exit(&ipst->ips_ip_g_nd_lock);
10605 		/*
10606 		 * We don't understand this subioctl of ND_GET / ND_SET.
10607 		 * Maybe intended for some driver / module below us
10608 		 */
10609 		if (q->q_next) {
10610 			putnext(q, mp);
10611 		} else {
10612 			iocp->ioc_error = ENOENT;
10613 			mp->b_datap->db_type = M_IOCNAK;
10614 			iocp->ioc_count = 0;
10615 			qreply(q, mp);
10616 		}
10617 		return;
10618 
10619 	case IP_IOCTL:
10620 		ip_wput_ioctl(q, mp);
10621 		return;
10622 	default:
10623 		cmn_err(CE_PANIC, "should not happen ");
10624 	}
10625 nak:
10626 	if (mp->b_cont != NULL) {
10627 		freemsg(mp->b_cont);
10628 		mp->b_cont = NULL;
10629 	}
10630 	iocp->ioc_error = EINVAL;
10631 	mp->b_datap->db_type = M_IOCNAK;
10632 	iocp->ioc_count = 0;
10633 	qreply(q, mp);
10634 }
10635 
10636 /* ip_wput hands off ARP IOCTL responses to us */
10637 void
10638 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10639 {
10640 	struct arpreq *ar;
10641 	struct xarpreq *xar;
10642 	area_t	*area;
10643 	mblk_t	*area_mp;
10644 	struct iocblk *iocp;
10645 	mblk_t	*orig_ioc_mp, *tmp;
10646 	struct iocblk	*orig_iocp;
10647 	ill_t *ill;
10648 	conn_t *connp = NULL;
10649 	uint_t ioc_id;
10650 	mblk_t *pending_mp;
10651 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10652 	int *flagsp;
10653 	char *storage = NULL;
10654 	sin_t *sin;
10655 	ipaddr_t addr;
10656 	int err;
10657 	ip_stack_t *ipst;
10658 
10659 	ill = q->q_ptr;
10660 	ASSERT(ill != NULL);
10661 	ipst = ill->ill_ipst;
10662 
10663 	/*
10664 	 * We should get back from ARP a packet chain that looks like:
10665 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10666 	 */
10667 	if (!(area_mp = mp->b_cont) ||
10668 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10669 	    !(orig_ioc_mp = area_mp->b_cont) ||
10670 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10671 		freemsg(mp);
10672 		return;
10673 	}
10674 
10675 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10676 
10677 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10678 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10679 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10680 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10681 		x_arp_ioctl = B_TRUE;
10682 		xar = (struct xarpreq *)tmp->b_rptr;
10683 		sin = (sin_t *)&xar->xarp_pa;
10684 		flagsp = &xar->xarp_flags;
10685 		storage = xar->xarp_ha.sdl_data;
10686 		if (xar->xarp_ha.sdl_nlen != 0)
10687 			ifx_arp_ioctl = B_TRUE;
10688 	} else {
10689 		ar = (struct arpreq *)tmp->b_rptr;
10690 		sin = (sin_t *)&ar->arp_pa;
10691 		flagsp = &ar->arp_flags;
10692 		storage = ar->arp_ha.sa_data;
10693 	}
10694 
10695 	iocp = (struct iocblk *)mp->b_rptr;
10696 
10697 	/*
10698 	 * Pick out the originating queue based on the ioc_id.
10699 	 */
10700 	ioc_id = iocp->ioc_id;
10701 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10702 	if (pending_mp == NULL) {
10703 		ASSERT(connp == NULL);
10704 		inet_freemsg(mp);
10705 		return;
10706 	}
10707 	ASSERT(connp != NULL);
10708 	q = CONNP_TO_WQ(connp);
10709 
10710 	/* Uncouple the internally generated IOCTL from the original one */
10711 	area = (area_t *)area_mp->b_rptr;
10712 	area_mp->b_cont = NULL;
10713 
10714 	/*
10715 	 * Restore the b_next and b_prev used by mi code. This is needed
10716 	 * to complete the ioctl using mi* functions. We stored them in
10717 	 * the pending mp prior to sending the request to ARP.
10718 	 */
10719 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10720 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10721 	inet_freemsg(pending_mp);
10722 
10723 	/*
10724 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10725 	 * Catch the case where there is an IRE_CACHE by no entry in the
10726 	 * arp table.
10727 	 */
10728 	addr = sin->sin_addr.s_addr;
10729 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10730 		ire_t			*ire;
10731 		dl_unitdata_req_t	*dlup;
10732 		mblk_t			*llmp;
10733 		int			addr_len;
10734 		ill_t			*ipsqill = NULL;
10735 
10736 		if (ifx_arp_ioctl) {
10737 			/*
10738 			 * There's no need to lookup the ill, since
10739 			 * we've already done that when we started
10740 			 * processing the ioctl and sent the message
10741 			 * to ARP on that ill.  So use the ill that
10742 			 * is stored in q->q_ptr.
10743 			 */
10744 			ipsqill = ill;
10745 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10746 			    ipsqill->ill_ipif, ALL_ZONES,
10747 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10748 		} else {
10749 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10750 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10751 			if (ire != NULL)
10752 				ipsqill = ire_to_ill(ire);
10753 		}
10754 
10755 		if ((x_arp_ioctl) && (ipsqill != NULL))
10756 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10757 
10758 		if (ire != NULL) {
10759 			/*
10760 			 * Since the ire obtained from cachetable is used for
10761 			 * mac addr copying below, treat an incomplete ire as if
10762 			 * as if we never found it.
10763 			 */
10764 			if (ire->ire_nce != NULL &&
10765 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10766 				ire_refrele(ire);
10767 				ire = NULL;
10768 				ipsqill = NULL;
10769 				goto errack;
10770 			}
10771 			*flagsp = ATF_INUSE;
10772 			llmp = (ire->ire_nce != NULL ?
10773 			    ire->ire_nce->nce_res_mp : NULL);
10774 			if (llmp != NULL && ipsqill != NULL) {
10775 				uchar_t *macaddr;
10776 
10777 				addr_len = ipsqill->ill_phys_addr_length;
10778 				if (x_arp_ioctl && ((addr_len +
10779 				    ipsqill->ill_name_length) >
10780 				    sizeof (xar->xarp_ha.sdl_data))) {
10781 					ire_refrele(ire);
10782 					freemsg(mp);
10783 					ip_ioctl_finish(q, orig_ioc_mp,
10784 					    EINVAL, NO_COPYOUT, NULL);
10785 					return;
10786 				}
10787 				*flagsp |= ATF_COM;
10788 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10789 				if (ipsqill->ill_sap_length < 0)
10790 					macaddr = llmp->b_rptr +
10791 					    dlup->dl_dest_addr_offset;
10792 				else
10793 					macaddr = llmp->b_rptr +
10794 					    dlup->dl_dest_addr_offset +
10795 					    ipsqill->ill_sap_length;
10796 				/*
10797 				 * For SIOCGARP, MAC address length
10798 				 * validation has already been done
10799 				 * before the ioctl was issued to ARP to
10800 				 * allow it to progress only on 6 byte
10801 				 * addressable (ethernet like) media. Thus
10802 				 * the mac address copying can not overwrite
10803 				 * the sa_data area below.
10804 				 */
10805 				bcopy(macaddr, storage, addr_len);
10806 			}
10807 			/* Ditch the internal IOCTL. */
10808 			freemsg(mp);
10809 			ire_refrele(ire);
10810 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10811 			return;
10812 		}
10813 	}
10814 
10815 	/*
10816 	 * Delete the coresponding IRE_CACHE if any.
10817 	 * Reset the error if there was one (in case there was no entry
10818 	 * in arp.)
10819 	 */
10820 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10821 		ipif_t *ipintf = NULL;
10822 
10823 		if (ifx_arp_ioctl) {
10824 			/*
10825 			 * There's no need to lookup the ill, since
10826 			 * we've already done that when we started
10827 			 * processing the ioctl and sent the message
10828 			 * to ARP on that ill.  So use the ill that
10829 			 * is stored in q->q_ptr.
10830 			 */
10831 			ipintf = ill->ill_ipif;
10832 		}
10833 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10834 			/*
10835 			 * The address in "addr" may be an entry for a
10836 			 * router. If that's true, then any off-net
10837 			 * IRE_CACHE entries that go through the router
10838 			 * with address "addr" must be clobbered. Use
10839 			 * ire_walk to achieve this goal.
10840 			 */
10841 			if (ifx_arp_ioctl)
10842 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10843 				    ire_delete_cache_gw, (char *)&addr, ill);
10844 			else
10845 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10846 				    ALL_ZONES, ipst);
10847 			iocp->ioc_error = 0;
10848 		}
10849 	}
10850 errack:
10851 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10852 		err = iocp->ioc_error;
10853 		freemsg(mp);
10854 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10855 		return;
10856 	}
10857 
10858 	/*
10859 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10860 	 * the area_t into the struct {x}arpreq.
10861 	 */
10862 	if (x_arp_ioctl) {
10863 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10864 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10865 		    sizeof (xar->xarp_ha.sdl_data)) {
10866 			freemsg(mp);
10867 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10868 			    NULL);
10869 			return;
10870 		}
10871 	}
10872 	*flagsp = ATF_INUSE;
10873 	if (area->area_flags & ACE_F_PERMANENT)
10874 		*flagsp |= ATF_PERM;
10875 	if (area->area_flags & ACE_F_PUBLISH)
10876 		*flagsp |= ATF_PUBL;
10877 	if (area->area_flags & ACE_F_AUTHORITY)
10878 		*flagsp |= ATF_AUTHORITY;
10879 	if (area->area_hw_addr_length != 0) {
10880 		*flagsp |= ATF_COM;
10881 		/*
10882 		 * For SIOCGARP, MAC address length validation has
10883 		 * already been done before the ioctl was issued to ARP
10884 		 * to allow it to progress only on 6 byte addressable
10885 		 * (ethernet like) media. Thus the mac address copying
10886 		 * can not overwrite the sa_data area below.
10887 		 */
10888 		bcopy((char *)area + area->area_hw_addr_offset,
10889 		    storage, area->area_hw_addr_length);
10890 	}
10891 
10892 	/* Ditch the internal IOCTL. */
10893 	freemsg(mp);
10894 	/* Complete the original. */
10895 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10896 }
10897 
10898 /*
10899  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10900  * interface) create the next available logical interface for this
10901  * physical interface.
10902  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10903  * ipif with the specified name.
10904  *
10905  * If the address family is not AF_UNSPEC then set the address as well.
10906  *
10907  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10908  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10909  *
10910  * Executed as a writer on the ill or ill group.
10911  * So no lock is needed to traverse the ipif chain, or examine the
10912  * phyint flags.
10913  */
10914 /* ARGSUSED */
10915 int
10916 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10917     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10918 {
10919 	mblk_t	*mp1;
10920 	struct lifreq *lifr;
10921 	boolean_t	isv6;
10922 	boolean_t	exists;
10923 	char 	*name;
10924 	char	*endp;
10925 	char	*cp;
10926 	int	namelen;
10927 	ipif_t	*ipif;
10928 	long	id;
10929 	ipsq_t	*ipsq;
10930 	ill_t	*ill;
10931 	sin_t	*sin;
10932 	int	err = 0;
10933 	boolean_t found_sep = B_FALSE;
10934 	conn_t	*connp;
10935 	zoneid_t zoneid;
10936 	int	orig_ifindex = 0;
10937 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10938 
10939 	ASSERT(q->q_next == NULL);
10940 	ip1dbg(("ip_sioctl_addif\n"));
10941 	/* Existence of mp1 has been checked in ip_wput_nondata */
10942 	mp1 = mp->b_cont->b_cont;
10943 	/*
10944 	 * Null terminate the string to protect against buffer
10945 	 * overrun. String was generated by user code and may not
10946 	 * be trusted.
10947 	 */
10948 	lifr = (struct lifreq *)mp1->b_rptr;
10949 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10950 	name = lifr->lifr_name;
10951 	ASSERT(CONN_Q(q));
10952 	connp = Q_TO_CONN(q);
10953 	isv6 = connp->conn_af_isv6;
10954 	zoneid = connp->conn_zoneid;
10955 	namelen = mi_strlen(name);
10956 	if (namelen == 0)
10957 		return (EINVAL);
10958 
10959 	exists = B_FALSE;
10960 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10961 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10962 		/*
10963 		 * Allow creating lo0 using SIOCLIFADDIF.
10964 		 * can't be any other writer thread. So can pass null below
10965 		 * for the last 4 args to ipif_lookup_name.
10966 		 */
10967 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10968 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10969 		/* Prevent any further action */
10970 		if (ipif == NULL) {
10971 			return (ENOBUFS);
10972 		} else if (!exists) {
10973 			/* We created the ipif now and as writer */
10974 			ipif_refrele(ipif);
10975 			return (0);
10976 		} else {
10977 			ill = ipif->ipif_ill;
10978 			ill_refhold(ill);
10979 			ipif_refrele(ipif);
10980 		}
10981 	} else {
10982 		/* Look for a colon in the name. */
10983 		endp = &name[namelen];
10984 		for (cp = endp; --cp > name; ) {
10985 			if (*cp == IPIF_SEPARATOR_CHAR) {
10986 				found_sep = B_TRUE;
10987 				/*
10988 				 * Reject any non-decimal aliases for plumbing
10989 				 * of logical interfaces. Aliases with leading
10990 				 * zeroes are also rejected as they introduce
10991 				 * ambiguity in the naming of the interfaces.
10992 				 * Comparing with "0" takes care of all such
10993 				 * cases.
10994 				 */
10995 				if ((strncmp("0", cp+1, 1)) == 0)
10996 					return (EINVAL);
10997 
10998 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10999 				    id <= 0 || *endp != '\0') {
11000 					return (EINVAL);
11001 				}
11002 				*cp = '\0';
11003 				break;
11004 			}
11005 		}
11006 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
11007 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
11008 		if (found_sep)
11009 			*cp = IPIF_SEPARATOR_CHAR;
11010 		if (ill == NULL)
11011 			return (err);
11012 	}
11013 
11014 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
11015 	    B_TRUE);
11016 
11017 	/*
11018 	 * Release the refhold due to the lookup, now that we are excl
11019 	 * or we are just returning
11020 	 */
11021 	ill_refrele(ill);
11022 
11023 	if (ipsq == NULL)
11024 		return (EINPROGRESS);
11025 
11026 	/*
11027 	 * If the interface is failed, inactive or offlined, look for a working
11028 	 * interface in the ill group and create the ipif there. If we can't
11029 	 * find a good interface, create the ipif anyway so that in.mpathd can
11030 	 * move it to the first repaired interface.
11031 	 */
11032 	if ((ill->ill_phyint->phyint_flags &
11033 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
11034 	    ill->ill_phyint->phyint_groupname_len != 0) {
11035 		phyint_t *phyi;
11036 		char *groupname = ill->ill_phyint->phyint_groupname;
11037 
11038 		/*
11039 		 * We're looking for a working interface, but it doesn't matter
11040 		 * if it's up or down; so instead of following the group lists,
11041 		 * we look at each physical interface and compare the groupname.
11042 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
11043 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
11044 		 * Otherwise we create the ipif on the failed interface.
11045 		 */
11046 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11047 		phyi = avl_first(&ipst->ips_phyint_g_list->
11048 		    phyint_list_avl_by_index);
11049 		for (; phyi != NULL;
11050 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
11051 		    phyint_list_avl_by_index,
11052 		    phyi, AVL_AFTER)) {
11053 			if (phyi->phyint_groupname_len == 0)
11054 				continue;
11055 			ASSERT(phyi->phyint_groupname != NULL);
11056 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
11057 			    !(phyi->phyint_flags &
11058 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
11059 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
11060 			    (phyi->phyint_illv4 != NULL))) {
11061 				break;
11062 			}
11063 		}
11064 		rw_exit(&ipst->ips_ill_g_lock);
11065 
11066 		if (phyi != NULL) {
11067 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
11068 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
11069 			    phyi->phyint_illv4);
11070 		}
11071 	}
11072 
11073 	/*
11074 	 * We are now exclusive on the ipsq, so an ill move will be serialized
11075 	 * before or after us.
11076 	 */
11077 	ASSERT(IAM_WRITER_ILL(ill));
11078 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11079 
11080 	if (found_sep && orig_ifindex == 0) {
11081 		/* Now see if there is an IPIF with this unit number. */
11082 		for (ipif = ill->ill_ipif; ipif != NULL;
11083 		    ipif = ipif->ipif_next) {
11084 			if (ipif->ipif_id == id) {
11085 				err = EEXIST;
11086 				goto done;
11087 			}
11088 		}
11089 	}
11090 
11091 	/*
11092 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
11093 	 * of lo0. We never come here when we plumb lo0:0. It
11094 	 * happens in ipif_lookup_on_name.
11095 	 * The specified unit number is ignored when we create the ipif on a
11096 	 * different interface. However, we save it in ipif_orig_ipifid below so
11097 	 * that the ipif fails back to the right position.
11098 	 */
11099 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
11100 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
11101 		err = ENOBUFS;
11102 		goto done;
11103 	}
11104 
11105 	/* Return created name with ioctl */
11106 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
11107 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
11108 	ip1dbg(("created %s\n", lifr->lifr_name));
11109 
11110 	/* Set address */
11111 	sin = (sin_t *)&lifr->lifr_addr;
11112 	if (sin->sin_family != AF_UNSPEC) {
11113 		err = ip_sioctl_addr(ipif, sin, q, mp,
11114 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
11115 	}
11116 
11117 	/* Set ifindex and unit number for failback */
11118 	if (err == 0 && orig_ifindex != 0) {
11119 		ipif->ipif_orig_ifindex = orig_ifindex;
11120 		if (found_sep) {
11121 			ipif->ipif_orig_ipifid = id;
11122 		}
11123 	}
11124 
11125 done:
11126 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
11127 	return (err);
11128 }
11129 
11130 /*
11131  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
11132  * interface) delete it based on the IP address (on this physical interface).
11133  * Otherwise delete it based on the ipif_id.
11134  * Also, special handling to allow a removeif of lo0.
11135  */
11136 /* ARGSUSED */
11137 int
11138 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11139     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11140 {
11141 	conn_t		*connp;
11142 	ill_t		*ill = ipif->ipif_ill;
11143 	boolean_t	 success;
11144 	ip_stack_t	*ipst;
11145 
11146 	ipst = CONNQ_TO_IPST(q);
11147 
11148 	ASSERT(q->q_next == NULL);
11149 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
11150 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11151 	ASSERT(IAM_WRITER_IPIF(ipif));
11152 
11153 	connp = Q_TO_CONN(q);
11154 	/*
11155 	 * Special case for unplumbing lo0 (the loopback physical interface).
11156 	 * If unplumbing lo0, the incoming address structure has been
11157 	 * initialized to all zeros. When unplumbing lo0, all its logical
11158 	 * interfaces must be removed too.
11159 	 *
11160 	 * Note that this interface may be called to remove a specific
11161 	 * loopback logical interface (eg, lo0:1). But in that case
11162 	 * ipif->ipif_id != 0 so that the code path for that case is the
11163 	 * same as any other interface (meaning it skips the code directly
11164 	 * below).
11165 	 */
11166 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11167 		if (sin->sin_family == AF_UNSPEC &&
11168 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
11169 			/*
11170 			 * Mark it condemned. No new ref. will be made to ill.
11171 			 */
11172 			mutex_enter(&ill->ill_lock);
11173 			ill->ill_state_flags |= ILL_CONDEMNED;
11174 			for (ipif = ill->ill_ipif; ipif != NULL;
11175 			    ipif = ipif->ipif_next) {
11176 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
11177 			}
11178 			mutex_exit(&ill->ill_lock);
11179 
11180 			ipif = ill->ill_ipif;
11181 			/* unplumb the loopback interface */
11182 			ill_delete(ill);
11183 			mutex_enter(&connp->conn_lock);
11184 			mutex_enter(&ill->ill_lock);
11185 			ASSERT(ill->ill_group == NULL);
11186 
11187 			/* Are any references to this ill active */
11188 			if (ill_is_quiescent(ill)) {
11189 				mutex_exit(&ill->ill_lock);
11190 				mutex_exit(&connp->conn_lock);
11191 				ill_delete_tail(ill);
11192 				mi_free(ill);
11193 				return (0);
11194 			}
11195 			success = ipsq_pending_mp_add(connp, ipif,
11196 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
11197 			mutex_exit(&connp->conn_lock);
11198 			mutex_exit(&ill->ill_lock);
11199 			if (success)
11200 				return (EINPROGRESS);
11201 			else
11202 				return (EINTR);
11203 		}
11204 	}
11205 
11206 	/*
11207 	 * We are exclusive on the ipsq, so an ill move will be serialized
11208 	 * before or after us.
11209 	 */
11210 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11211 
11212 	if (ipif->ipif_id == 0) {
11213 		/* Find based on address */
11214 		if (ipif->ipif_isv6) {
11215 			sin6_t *sin6;
11216 
11217 			if (sin->sin_family != AF_INET6)
11218 				return (EAFNOSUPPORT);
11219 
11220 			sin6 = (sin6_t *)sin;
11221 			/* We are a writer, so we should be able to lookup */
11222 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11223 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
11224 			if (ipif == NULL) {
11225 				/*
11226 				 * Maybe the address in on another interface in
11227 				 * the same IPMP group? We check this below.
11228 				 */
11229 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11230 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
11231 				    ipst);
11232 			}
11233 		} else {
11234 			ipaddr_t addr;
11235 
11236 			if (sin->sin_family != AF_INET)
11237 				return (EAFNOSUPPORT);
11238 
11239 			addr = sin->sin_addr.s_addr;
11240 			/* We are a writer, so we should be able to lookup */
11241 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
11242 			    NULL, NULL, NULL, ipst);
11243 			if (ipif == NULL) {
11244 				/*
11245 				 * Maybe the address in on another interface in
11246 				 * the same IPMP group? We check this below.
11247 				 */
11248 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
11249 				    NULL, NULL, NULL, NULL, ipst);
11250 			}
11251 		}
11252 		if (ipif == NULL) {
11253 			return (EADDRNOTAVAIL);
11254 		}
11255 		/*
11256 		 * When the address to be removed is hosted on a different
11257 		 * interface, we check if the interface is in the same IPMP
11258 		 * group as the specified one; if so we proceed with the
11259 		 * removal.
11260 		 * ill->ill_group is NULL when the ill is down, so we have to
11261 		 * compare the group names instead.
11262 		 */
11263 		if (ipif->ipif_ill != ill &&
11264 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
11265 		    ill->ill_phyint->phyint_groupname_len == 0 ||
11266 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
11267 		    ill->ill_phyint->phyint_groupname) != 0)) {
11268 			ipif_refrele(ipif);
11269 			return (EADDRNOTAVAIL);
11270 		}
11271 
11272 		/* This is a writer */
11273 		ipif_refrele(ipif);
11274 	}
11275 
11276 	/*
11277 	 * Can not delete instance zero since it is tied to the ill.
11278 	 */
11279 	if (ipif->ipif_id == 0)
11280 		return (EBUSY);
11281 
11282 	mutex_enter(&ill->ill_lock);
11283 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
11284 	mutex_exit(&ill->ill_lock);
11285 
11286 	ipif_free(ipif);
11287 
11288 	mutex_enter(&connp->conn_lock);
11289 	mutex_enter(&ill->ill_lock);
11290 
11291 	/* Are any references to this ipif active */
11292 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
11293 		mutex_exit(&ill->ill_lock);
11294 		mutex_exit(&connp->conn_lock);
11295 		ipif_non_duplicate(ipif);
11296 		ipif_down_tail(ipif);
11297 		ipif_free_tail(ipif);
11298 		return (0);
11299 	}
11300 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
11301 	    IPIF_FREE);
11302 	mutex_exit(&ill->ill_lock);
11303 	mutex_exit(&connp->conn_lock);
11304 	if (success)
11305 		return (EINPROGRESS);
11306 	else
11307 		return (EINTR);
11308 }
11309 
11310 /*
11311  * Restart the removeif ioctl. The refcnt has gone down to 0.
11312  * The ipif is already condemned. So can't find it thru lookups.
11313  */
11314 /* ARGSUSED */
11315 int
11316 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
11317     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11318 {
11319 	ill_t *ill;
11320 
11321 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
11322 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11323 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11324 		ill = ipif->ipif_ill;
11325 		ASSERT(IAM_WRITER_ILL(ill));
11326 		ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) &&
11327 		    (ill->ill_state_flags & IPIF_CONDEMNED));
11328 		ill_delete_tail(ill);
11329 		mi_free(ill);
11330 		return (0);
11331 	}
11332 
11333 	ill = ipif->ipif_ill;
11334 	ASSERT(IAM_WRITER_IPIF(ipif));
11335 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
11336 
11337 	ipif_non_duplicate(ipif);
11338 	ipif_down_tail(ipif);
11339 	ipif_free_tail(ipif);
11340 
11341 	ILL_UNMARK_CHANGING(ill);
11342 	return (0);
11343 }
11344 
11345 /*
11346  * Set the local interface address.
11347  * Allow an address of all zero when the interface is down.
11348  */
11349 /* ARGSUSED */
11350 int
11351 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11352     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
11353 {
11354 	int err = 0;
11355 	in6_addr_t v6addr;
11356 	boolean_t need_up = B_FALSE;
11357 
11358 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
11359 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11360 
11361 	ASSERT(IAM_WRITER_IPIF(ipif));
11362 
11363 	if (ipif->ipif_isv6) {
11364 		sin6_t *sin6;
11365 		ill_t *ill;
11366 		phyint_t *phyi;
11367 
11368 		if (sin->sin_family != AF_INET6)
11369 			return (EAFNOSUPPORT);
11370 
11371 		sin6 = (sin6_t *)sin;
11372 		v6addr = sin6->sin6_addr;
11373 		ill = ipif->ipif_ill;
11374 		phyi = ill->ill_phyint;
11375 
11376 		/*
11377 		 * Enforce that true multicast interfaces have a link-local
11378 		 * address for logical unit 0.
11379 		 */
11380 		if (ipif->ipif_id == 0 &&
11381 		    (ill->ill_flags & ILLF_MULTICAST) &&
11382 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11383 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11384 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11385 			return (EADDRNOTAVAIL);
11386 		}
11387 
11388 		/*
11389 		 * up interfaces shouldn't have the unspecified address
11390 		 * unless they also have the IPIF_NOLOCAL flags set and
11391 		 * have a subnet assigned.
11392 		 */
11393 		if ((ipif->ipif_flags & IPIF_UP) &&
11394 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11395 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11396 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11397 			return (EADDRNOTAVAIL);
11398 		}
11399 
11400 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11401 			return (EADDRNOTAVAIL);
11402 	} else {
11403 		ipaddr_t addr;
11404 
11405 		if (sin->sin_family != AF_INET)
11406 			return (EAFNOSUPPORT);
11407 
11408 		addr = sin->sin_addr.s_addr;
11409 
11410 		/* Allow 0 as the local address. */
11411 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11412 			return (EADDRNOTAVAIL);
11413 
11414 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11415 	}
11416 
11417 
11418 	/*
11419 	 * Even if there is no change we redo things just to rerun
11420 	 * ipif_set_default.
11421 	 */
11422 	if (ipif->ipif_flags & IPIF_UP) {
11423 		/*
11424 		 * Setting a new local address, make sure
11425 		 * we have net and subnet bcast ire's for
11426 		 * the old address if we need them.
11427 		 */
11428 		if (!ipif->ipif_isv6)
11429 			ipif_check_bcast_ires(ipif);
11430 		/*
11431 		 * If the interface is already marked up,
11432 		 * we call ipif_down which will take care
11433 		 * of ditching any IREs that have been set
11434 		 * up based on the old interface address.
11435 		 */
11436 		err = ipif_logical_down(ipif, q, mp);
11437 		if (err == EINPROGRESS)
11438 			return (err);
11439 		ipif_down_tail(ipif);
11440 		need_up = 1;
11441 	}
11442 
11443 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11444 	return (err);
11445 }
11446 
11447 int
11448 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11449     boolean_t need_up)
11450 {
11451 	in6_addr_t v6addr;
11452 	in6_addr_t ov6addr;
11453 	ipaddr_t addr;
11454 	sin6_t	*sin6;
11455 	int	sinlen;
11456 	int	err = 0;
11457 	ill_t	*ill = ipif->ipif_ill;
11458 	boolean_t need_dl_down;
11459 	boolean_t need_arp_down;
11460 	struct iocblk *iocp;
11461 
11462 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11463 
11464 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11465 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11466 	ASSERT(IAM_WRITER_IPIF(ipif));
11467 
11468 	/* Must cancel any pending timer before taking the ill_lock */
11469 	if (ipif->ipif_recovery_id != 0)
11470 		(void) untimeout(ipif->ipif_recovery_id);
11471 	ipif->ipif_recovery_id = 0;
11472 
11473 	if (ipif->ipif_isv6) {
11474 		sin6 = (sin6_t *)sin;
11475 		v6addr = sin6->sin6_addr;
11476 		sinlen = sizeof (struct sockaddr_in6);
11477 	} else {
11478 		addr = sin->sin_addr.s_addr;
11479 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11480 		sinlen = sizeof (struct sockaddr_in);
11481 	}
11482 	mutex_enter(&ill->ill_lock);
11483 	ov6addr = ipif->ipif_v6lcl_addr;
11484 	ipif->ipif_v6lcl_addr = v6addr;
11485 	sctp_update_ipif_addr(ipif, ov6addr);
11486 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11487 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11488 	} else {
11489 		ipif->ipif_v6src_addr = v6addr;
11490 	}
11491 	ipif->ipif_addr_ready = 0;
11492 
11493 	/*
11494 	 * If the interface was previously marked as a duplicate, then since
11495 	 * we've now got a "new" address, it should no longer be considered a
11496 	 * duplicate -- even if the "new" address is the same as the old one.
11497 	 * Note that if all ipifs are down, we may have a pending ARP down
11498 	 * event to handle.  This is because we want to recover from duplicates
11499 	 * and thus delay tearing down ARP until the duplicates have been
11500 	 * removed or disabled.
11501 	 */
11502 	need_dl_down = need_arp_down = B_FALSE;
11503 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11504 		need_arp_down = !need_up;
11505 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11506 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11507 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11508 			need_dl_down = B_TRUE;
11509 		}
11510 	}
11511 
11512 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11513 	    !ill->ill_is_6to4tun) {
11514 		queue_t *wqp = ill->ill_wq;
11515 
11516 		/*
11517 		 * The local address of this interface is a 6to4 address,
11518 		 * check if this interface is in fact a 6to4 tunnel or just
11519 		 * an interface configured with a 6to4 address.  We are only
11520 		 * interested in the former.
11521 		 */
11522 		if (wqp != NULL) {
11523 			while ((wqp->q_next != NULL) &&
11524 			    (wqp->q_next->q_qinfo != NULL) &&
11525 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11526 
11527 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11528 				    == TUN6TO4_MODID) {
11529 					/* set for use in IP */
11530 					ill->ill_is_6to4tun = 1;
11531 					break;
11532 				}
11533 				wqp = wqp->q_next;
11534 			}
11535 		}
11536 	}
11537 
11538 	ipif_set_default(ipif);
11539 
11540 	/*
11541 	 * When publishing an interface address change event, we only notify
11542 	 * the event listeners of the new address.  It is assumed that if they
11543 	 * actively care about the addresses assigned that they will have
11544 	 * already discovered the previous address assigned (if there was one.)
11545 	 *
11546 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11547 	 */
11548 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11549 		hook_nic_event_t *info;
11550 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11551 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11552 			    "attached for %s\n", info->hne_event,
11553 			    ill->ill_name));
11554 			if (info->hne_data != NULL)
11555 				kmem_free(info->hne_data, info->hne_datalen);
11556 			kmem_free(info, sizeof (hook_nic_event_t));
11557 		}
11558 
11559 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11560 		if (info != NULL) {
11561 			ip_stack_t	*ipst = ill->ill_ipst;
11562 
11563 			info->hne_nic =
11564 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11565 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11566 			info->hne_event = NE_ADDRESS_CHANGE;
11567 			info->hne_family = ipif->ipif_isv6 ?
11568 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11569 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11570 			if (info->hne_data != NULL) {
11571 				info->hne_datalen = sinlen;
11572 				bcopy(sin, info->hne_data, sinlen);
11573 			} else {
11574 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11575 				    "address information for ADDRESS_CHANGE nic"
11576 				    " event of %s (ENOMEM)\n",
11577 				    ipif->ipif_ill->ill_name));
11578 				kmem_free(info, sizeof (hook_nic_event_t));
11579 			}
11580 		} else
11581 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11582 			    "ADDRESS_CHANGE nic event information for %s "
11583 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11584 
11585 		ipif->ipif_ill->ill_nic_event_info = info;
11586 	}
11587 
11588 	mutex_exit(&ill->ill_lock);
11589 
11590 	if (need_up) {
11591 		/*
11592 		 * Now bring the interface back up.  If this
11593 		 * is the only IPIF for the ILL, ipif_up
11594 		 * will have to re-bind to the device, so
11595 		 * we may get back EINPROGRESS, in which
11596 		 * case, this IOCTL will get completed in
11597 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11598 		 */
11599 		err = ipif_up(ipif, q, mp);
11600 	}
11601 
11602 	if (need_dl_down)
11603 		ill_dl_down(ill);
11604 	if (need_arp_down)
11605 		ipif_arp_down(ipif);
11606 
11607 	return (err);
11608 }
11609 
11610 
11611 /*
11612  * Restart entry point to restart the address set operation after the
11613  * refcounts have dropped to zero.
11614  */
11615 /* ARGSUSED */
11616 int
11617 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11618     ip_ioctl_cmd_t *ipip, void *ifreq)
11619 {
11620 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11621 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11622 	ASSERT(IAM_WRITER_IPIF(ipif));
11623 	ipif_down_tail(ipif);
11624 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11625 }
11626 
11627 /* ARGSUSED */
11628 int
11629 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11630     ip_ioctl_cmd_t *ipip, void *if_req)
11631 {
11632 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11633 	struct lifreq *lifr = (struct lifreq *)if_req;
11634 
11635 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11636 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11637 	/*
11638 	 * The net mask and address can't change since we have a
11639 	 * reference to the ipif. So no lock is necessary.
11640 	 */
11641 	if (ipif->ipif_isv6) {
11642 		*sin6 = sin6_null;
11643 		sin6->sin6_family = AF_INET6;
11644 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11645 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11646 		lifr->lifr_addrlen =
11647 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11648 	} else {
11649 		*sin = sin_null;
11650 		sin->sin_family = AF_INET;
11651 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11652 		if (ipip->ipi_cmd_type == LIF_CMD) {
11653 			lifr->lifr_addrlen =
11654 			    ip_mask_to_plen(ipif->ipif_net_mask);
11655 		}
11656 	}
11657 	return (0);
11658 }
11659 
11660 /*
11661  * Set the destination address for a pt-pt interface.
11662  */
11663 /* ARGSUSED */
11664 int
11665 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11666     ip_ioctl_cmd_t *ipip, void *if_req)
11667 {
11668 	int err = 0;
11669 	in6_addr_t v6addr;
11670 	boolean_t need_up = B_FALSE;
11671 
11672 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11673 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11674 	ASSERT(IAM_WRITER_IPIF(ipif));
11675 
11676 	if (ipif->ipif_isv6) {
11677 		sin6_t *sin6;
11678 
11679 		if (sin->sin_family != AF_INET6)
11680 			return (EAFNOSUPPORT);
11681 
11682 		sin6 = (sin6_t *)sin;
11683 		v6addr = sin6->sin6_addr;
11684 
11685 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11686 			return (EADDRNOTAVAIL);
11687 	} else {
11688 		ipaddr_t addr;
11689 
11690 		if (sin->sin_family != AF_INET)
11691 			return (EAFNOSUPPORT);
11692 
11693 		addr = sin->sin_addr.s_addr;
11694 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11695 			return (EADDRNOTAVAIL);
11696 
11697 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11698 	}
11699 
11700 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11701 		return (0);	/* No change */
11702 
11703 	if (ipif->ipif_flags & IPIF_UP) {
11704 		/*
11705 		 * If the interface is already marked up,
11706 		 * we call ipif_down which will take care
11707 		 * of ditching any IREs that have been set
11708 		 * up based on the old pp dst address.
11709 		 */
11710 		err = ipif_logical_down(ipif, q, mp);
11711 		if (err == EINPROGRESS)
11712 			return (err);
11713 		ipif_down_tail(ipif);
11714 		need_up = B_TRUE;
11715 	}
11716 	/*
11717 	 * could return EINPROGRESS. If so ioctl will complete in
11718 	 * ip_rput_dlpi_writer
11719 	 */
11720 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11721 	return (err);
11722 }
11723 
11724 static int
11725 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11726     boolean_t need_up)
11727 {
11728 	in6_addr_t v6addr;
11729 	ill_t	*ill = ipif->ipif_ill;
11730 	int	err = 0;
11731 	boolean_t need_dl_down;
11732 	boolean_t need_arp_down;
11733 
11734 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11735 	    ipif->ipif_id, (void *)ipif));
11736 
11737 	/* Must cancel any pending timer before taking the ill_lock */
11738 	if (ipif->ipif_recovery_id != 0)
11739 		(void) untimeout(ipif->ipif_recovery_id);
11740 	ipif->ipif_recovery_id = 0;
11741 
11742 	if (ipif->ipif_isv6) {
11743 		sin6_t *sin6;
11744 
11745 		sin6 = (sin6_t *)sin;
11746 		v6addr = sin6->sin6_addr;
11747 	} else {
11748 		ipaddr_t addr;
11749 
11750 		addr = sin->sin_addr.s_addr;
11751 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11752 	}
11753 	mutex_enter(&ill->ill_lock);
11754 	/* Set point to point destination address. */
11755 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11756 		/*
11757 		 * Allow this as a means of creating logical
11758 		 * pt-pt interfaces on top of e.g. an Ethernet.
11759 		 * XXX Undocumented HACK for testing.
11760 		 * pt-pt interfaces are created with NUD disabled.
11761 		 */
11762 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11763 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11764 		if (ipif->ipif_isv6)
11765 			ill->ill_flags |= ILLF_NONUD;
11766 	}
11767 
11768 	/*
11769 	 * If the interface was previously marked as a duplicate, then since
11770 	 * we've now got a "new" address, it should no longer be considered a
11771 	 * duplicate -- even if the "new" address is the same as the old one.
11772 	 * Note that if all ipifs are down, we may have a pending ARP down
11773 	 * event to handle.
11774 	 */
11775 	need_dl_down = need_arp_down = B_FALSE;
11776 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11777 		need_arp_down = !need_up;
11778 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11779 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11780 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11781 			need_dl_down = B_TRUE;
11782 		}
11783 	}
11784 
11785 	/* Set the new address. */
11786 	ipif->ipif_v6pp_dst_addr = v6addr;
11787 	/* Make sure subnet tracks pp_dst */
11788 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11789 	mutex_exit(&ill->ill_lock);
11790 
11791 	if (need_up) {
11792 		/*
11793 		 * Now bring the interface back up.  If this
11794 		 * is the only IPIF for the ILL, ipif_up
11795 		 * will have to re-bind to the device, so
11796 		 * we may get back EINPROGRESS, in which
11797 		 * case, this IOCTL will get completed in
11798 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11799 		 */
11800 		err = ipif_up(ipif, q, mp);
11801 	}
11802 
11803 	if (need_dl_down)
11804 		ill_dl_down(ill);
11805 
11806 	if (need_arp_down)
11807 		ipif_arp_down(ipif);
11808 	return (err);
11809 }
11810 
11811 /*
11812  * Restart entry point to restart the dstaddress set operation after the
11813  * refcounts have dropped to zero.
11814  */
11815 /* ARGSUSED */
11816 int
11817 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11818     ip_ioctl_cmd_t *ipip, void *ifreq)
11819 {
11820 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11821 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11822 	ipif_down_tail(ipif);
11823 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11824 }
11825 
11826 /* ARGSUSED */
11827 int
11828 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11829     ip_ioctl_cmd_t *ipip, void *if_req)
11830 {
11831 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11832 
11833 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11834 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11835 	/*
11836 	 * Get point to point destination address. The addresses can't
11837 	 * change since we hold a reference to the ipif.
11838 	 */
11839 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11840 		return (EADDRNOTAVAIL);
11841 
11842 	if (ipif->ipif_isv6) {
11843 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11844 		*sin6 = sin6_null;
11845 		sin6->sin6_family = AF_INET6;
11846 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11847 	} else {
11848 		*sin = sin_null;
11849 		sin->sin_family = AF_INET;
11850 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11851 	}
11852 	return (0);
11853 }
11854 
11855 /*
11856  * part of ipmp, make this func return the active/inactive state and
11857  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11858  */
11859 /*
11860  * This function either sets or clears the IFF_INACTIVE flag.
11861  *
11862  * As long as there are some addresses or multicast memberships on the
11863  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11864  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11865  * will be used for outbound packets.
11866  *
11867  * Caller needs to verify the validity of setting IFF_INACTIVE.
11868  */
11869 static void
11870 phyint_inactive(phyint_t *phyi)
11871 {
11872 	ill_t *ill_v4;
11873 	ill_t *ill_v6;
11874 	ipif_t *ipif;
11875 	ilm_t *ilm;
11876 
11877 	ill_v4 = phyi->phyint_illv4;
11878 	ill_v6 = phyi->phyint_illv6;
11879 
11880 	/*
11881 	 * No need for a lock while traversing the list since iam
11882 	 * a writer
11883 	 */
11884 	if (ill_v4 != NULL) {
11885 		ASSERT(IAM_WRITER_ILL(ill_v4));
11886 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11887 		    ipif = ipif->ipif_next) {
11888 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11889 				mutex_enter(&phyi->phyint_lock);
11890 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11891 				mutex_exit(&phyi->phyint_lock);
11892 				return;
11893 			}
11894 		}
11895 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11896 		    ilm = ilm->ilm_next) {
11897 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11898 				mutex_enter(&phyi->phyint_lock);
11899 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11900 				mutex_exit(&phyi->phyint_lock);
11901 				return;
11902 			}
11903 		}
11904 	}
11905 	if (ill_v6 != NULL) {
11906 		ill_v6 = phyi->phyint_illv6;
11907 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11908 		    ipif = ipif->ipif_next) {
11909 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11910 				mutex_enter(&phyi->phyint_lock);
11911 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11912 				mutex_exit(&phyi->phyint_lock);
11913 				return;
11914 			}
11915 		}
11916 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11917 		    ilm = ilm->ilm_next) {
11918 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11919 				mutex_enter(&phyi->phyint_lock);
11920 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11921 				mutex_exit(&phyi->phyint_lock);
11922 				return;
11923 			}
11924 		}
11925 	}
11926 	mutex_enter(&phyi->phyint_lock);
11927 	phyi->phyint_flags |= PHYI_INACTIVE;
11928 	mutex_exit(&phyi->phyint_lock);
11929 }
11930 
11931 /*
11932  * This function is called only when the phyint flags change. Currently
11933  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11934  * that we can select a good ill.
11935  */
11936 static void
11937 ip_redo_nomination(phyint_t *phyi)
11938 {
11939 	ill_t *ill_v4;
11940 
11941 	ill_v4 = phyi->phyint_illv4;
11942 
11943 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11944 		ASSERT(IAM_WRITER_ILL(ill_v4));
11945 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11946 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11947 	}
11948 }
11949 
11950 /*
11951  * Heuristic to check if ill is INACTIVE.
11952  * Checks if ill has an ipif with an usable ip address.
11953  *
11954  * Return values:
11955  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11956  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11957  */
11958 static boolean_t
11959 ill_is_inactive(ill_t *ill)
11960 {
11961 	ipif_t *ipif;
11962 
11963 	/* Check whether it is in an IPMP group */
11964 	if (ill->ill_phyint->phyint_groupname == NULL)
11965 		return (B_FALSE);
11966 
11967 	if (ill->ill_ipif_up_count == 0)
11968 		return (B_TRUE);
11969 
11970 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11971 		uint64_t flags = ipif->ipif_flags;
11972 
11973 		/*
11974 		 * This ipif is usable if it is IPIF_UP and not a
11975 		 * dedicated test address.  A dedicated test address
11976 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11977 		 * (note in particular that V6 test addresses are
11978 		 * link-local data addresses and thus are marked
11979 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11980 		 */
11981 		if ((flags & IPIF_UP) &&
11982 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11983 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11984 			return (B_FALSE);
11985 	}
11986 	return (B_TRUE);
11987 }
11988 
11989 /*
11990  * Set interface flags.
11991  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11992  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11993  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11994  *
11995  * NOTE : We really don't enforce that ipif_id zero should be used
11996  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11997  *	  is because applications generally does SICGLIFFLAGS and
11998  *	  ORs in the new flags (that affects the logical) and does a
11999  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
12000  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
12001  *	  flags that will be turned on is correct with respect to
12002  *	  ipif_id 0. For backward compatibility reasons, it is not done.
12003  */
12004 /* ARGSUSED */
12005 int
12006 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12007     ip_ioctl_cmd_t *ipip, void *if_req)
12008 {
12009 	uint64_t turn_on;
12010 	uint64_t turn_off;
12011 	int	err;
12012 	boolean_t need_up = B_FALSE;
12013 	phyint_t *phyi;
12014 	ill_t *ill;
12015 	uint64_t intf_flags;
12016 	boolean_t phyint_flags_modified = B_FALSE;
12017 	uint64_t flags;
12018 	struct ifreq *ifr;
12019 	struct lifreq *lifr;
12020 	boolean_t set_linklocal = B_FALSE;
12021 	boolean_t zero_source = B_FALSE;
12022 	ip_stack_t *ipst;
12023 
12024 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
12025 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12026 
12027 	ASSERT(IAM_WRITER_IPIF(ipif));
12028 
12029 	ill = ipif->ipif_ill;
12030 	phyi = ill->ill_phyint;
12031 	ipst = ill->ill_ipst;
12032 
12033 	if (ipip->ipi_cmd_type == IF_CMD) {
12034 		ifr = (struct ifreq *)if_req;
12035 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
12036 	} else {
12037 		lifr = (struct lifreq *)if_req;
12038 		flags = lifr->lifr_flags;
12039 	}
12040 
12041 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12042 
12043 	/*
12044 	 * Has the flags been set correctly till now ?
12045 	 */
12046 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12047 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12048 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12049 	/*
12050 	 * Compare the new flags to the old, and partition
12051 	 * into those coming on and those going off.
12052 	 * For the 16 bit command keep the bits above bit 16 unchanged.
12053 	 */
12054 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
12055 		flags |= intf_flags & ~0xFFFF;
12056 
12057 	/*
12058 	 * First check which bits will change and then which will
12059 	 * go on and off
12060 	 */
12061 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
12062 	if (!turn_on)
12063 		return (0);	/* No change */
12064 
12065 	turn_off = intf_flags & turn_on;
12066 	turn_on ^= turn_off;
12067 	err = 0;
12068 
12069 	/*
12070 	 * Don't allow any bits belonging to the logical interface
12071 	 * to be set or cleared on the replacement ipif that was
12072 	 * created temporarily during a MOVE.
12073 	 */
12074 	if (ipif->ipif_replace_zero &&
12075 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
12076 		return (EINVAL);
12077 	}
12078 
12079 	/*
12080 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
12081 	 * IPv6 interfaces.
12082 	 */
12083 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
12084 		return (EINVAL);
12085 
12086 	/*
12087 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
12088 	 */
12089 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
12090 		return (EINVAL);
12091 
12092 	/*
12093 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
12094 	 * interfaces.  It makes no sense in that context.
12095 	 */
12096 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
12097 		return (EINVAL);
12098 
12099 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
12100 		zero_source = B_TRUE;
12101 
12102 	/*
12103 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
12104 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
12105 	 * If the link local address isn't set, and can be set, it will get
12106 	 * set later on in this function.
12107 	 */
12108 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
12109 	    (flags & IFF_UP) && !zero_source &&
12110 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
12111 		if (ipif_cant_setlinklocal(ipif))
12112 			return (EINVAL);
12113 		set_linklocal = B_TRUE;
12114 	}
12115 
12116 	/*
12117 	 * ILL cannot be part of a usesrc group and and IPMP group at the
12118 	 * same time. No need to grab ill_g_usesrc_lock here, see
12119 	 * synchronization notes in ip.c
12120 	 */
12121 	if (turn_on & PHYI_STANDBY &&
12122 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
12123 		return (EINVAL);
12124 	}
12125 
12126 	/*
12127 	 * If we modify physical interface flags, we'll potentially need to
12128 	 * send up two routing socket messages for the changes (one for the
12129 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
12130 	 */
12131 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
12132 		phyint_flags_modified = B_TRUE;
12133 
12134 	/*
12135 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
12136 	 * we need to flush the IRE_CACHES belonging to this ill.
12137 	 * We handle this case here without doing the DOWN/UP dance
12138 	 * like it is done for other flags. If some other flags are
12139 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
12140 	 * below will handle it by bringing it down and then
12141 	 * bringing it UP.
12142 	 */
12143 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
12144 		ill_t *ill_v4, *ill_v6;
12145 
12146 		ill_v4 = phyi->phyint_illv4;
12147 		ill_v6 = phyi->phyint_illv6;
12148 
12149 		/*
12150 		 * First set the INACTIVE flag if needed. Then delete the ires.
12151 		 * ire_add will atomically prevent creating new IRE_CACHEs
12152 		 * unless hidden flag is set.
12153 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
12154 		 */
12155 		if ((turn_on & PHYI_FAILED) &&
12156 		    ((intf_flags & PHYI_STANDBY) ||
12157 		    !ipst->ips_ipmp_enable_failback)) {
12158 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
12159 			phyi->phyint_flags &= ~PHYI_INACTIVE;
12160 		}
12161 		if ((turn_off & PHYI_FAILED) &&
12162 		    ((intf_flags & PHYI_STANDBY) ||
12163 		    (!ipst->ips_ipmp_enable_failback &&
12164 		    ill_is_inactive(ill)))) {
12165 			phyint_inactive(phyi);
12166 		}
12167 
12168 		if (turn_on & PHYI_STANDBY) {
12169 			/*
12170 			 * We implicitly set INACTIVE only when STANDBY is set.
12171 			 * INACTIVE is also set on non-STANDBY phyint when user
12172 			 * disables FAILBACK using configuration file.
12173 			 * Do not allow STANDBY to be set on such INACTIVE
12174 			 * phyint
12175 			 */
12176 			if (phyi->phyint_flags & PHYI_INACTIVE)
12177 				return (EINVAL);
12178 			if (!(phyi->phyint_flags & PHYI_FAILED))
12179 				phyint_inactive(phyi);
12180 		}
12181 		if (turn_off & PHYI_STANDBY) {
12182 			if (ipst->ips_ipmp_enable_failback) {
12183 				/*
12184 				 * Reset PHYI_INACTIVE.
12185 				 */
12186 				phyi->phyint_flags &= ~PHYI_INACTIVE;
12187 			} else if (ill_is_inactive(ill) &&
12188 			    !(phyi->phyint_flags & PHYI_FAILED)) {
12189 				/*
12190 				 * Need to set INACTIVE, when user sets
12191 				 * STANDBY on a non-STANDBY phyint and
12192 				 * later resets STANDBY
12193 				 */
12194 				phyint_inactive(phyi);
12195 			}
12196 		}
12197 		/*
12198 		 * We should always send up a message so that the
12199 		 * daemons come to know of it. Note that the zeroth
12200 		 * interface can be down and the check below for IPIF_UP
12201 		 * will not make sense as we are actually setting
12202 		 * a phyint flag here. We assume that the ipif used
12203 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
12204 		 * send up any message for non-zero ipifs).
12205 		 */
12206 		phyint_flags_modified = B_TRUE;
12207 
12208 		if (ill_v4 != NULL) {
12209 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12210 			    IRE_CACHE, ill_stq_cache_delete,
12211 			    (char *)ill_v4, ill_v4);
12212 			illgrp_reset_schednext(ill_v4);
12213 		}
12214 		if (ill_v6 != NULL) {
12215 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12216 			    IRE_CACHE, ill_stq_cache_delete,
12217 			    (char *)ill_v6, ill_v6);
12218 			illgrp_reset_schednext(ill_v6);
12219 		}
12220 	}
12221 
12222 	/*
12223 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
12224 	 * status of the interface and, if the interface is part of an IPMP
12225 	 * group, all other interfaces that are part of the same IPMP
12226 	 * group.
12227 	 */
12228 	if ((turn_on | turn_off) & ILLF_ROUTER)
12229 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
12230 
12231 	/*
12232 	 * If the interface is not UP and we are not going to
12233 	 * bring it UP, record the flags and return. When the
12234 	 * interface comes UP later, the right actions will be
12235 	 * taken.
12236 	 */
12237 	if (!(ipif->ipif_flags & IPIF_UP) &&
12238 	    !(turn_on & IPIF_UP)) {
12239 		/* Record new flags in their respective places. */
12240 		mutex_enter(&ill->ill_lock);
12241 		mutex_enter(&ill->ill_phyint->phyint_lock);
12242 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12243 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12244 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12245 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12246 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12247 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12248 		mutex_exit(&ill->ill_lock);
12249 		mutex_exit(&ill->ill_phyint->phyint_lock);
12250 
12251 		/*
12252 		 * We do the broadcast and nomination here rather
12253 		 * than waiting for a FAILOVER/FAILBACK to happen. In
12254 		 * the case of FAILBACK from INACTIVE standby to the
12255 		 * interface that has been repaired, PHYI_FAILED has not
12256 		 * been cleared yet. If there are only two interfaces in
12257 		 * that group, all we have is a FAILED and INACTIVE
12258 		 * interface. If we do the nomination soon after a failback,
12259 		 * the broadcast nomination code would select the
12260 		 * INACTIVE interface for receiving broadcasts as FAILED is
12261 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
12262 		 * receive broadcast packets, we need to redo nomination
12263 		 * when the FAILED is cleared here. Thus, in general we
12264 		 * always do the nomination here for FAILED, STANDBY
12265 		 * and OFFLINE.
12266 		 */
12267 		if (((turn_on | turn_off) &
12268 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
12269 			ip_redo_nomination(phyi);
12270 		}
12271 		if (phyint_flags_modified) {
12272 			if (phyi->phyint_illv4 != NULL) {
12273 				ip_rts_ifmsg(phyi->phyint_illv4->
12274 				    ill_ipif);
12275 			}
12276 			if (phyi->phyint_illv6 != NULL) {
12277 				ip_rts_ifmsg(phyi->phyint_illv6->
12278 				    ill_ipif);
12279 			}
12280 		}
12281 		return (0);
12282 	} else if (set_linklocal || zero_source) {
12283 		mutex_enter(&ill->ill_lock);
12284 		if (set_linklocal)
12285 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
12286 		if (zero_source)
12287 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
12288 		mutex_exit(&ill->ill_lock);
12289 	}
12290 
12291 	/*
12292 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
12293 	 * or point-to-point interfaces with an unspecified destination. We do
12294 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
12295 	 * have a subnet assigned, which is how in.ndpd currently manages its
12296 	 * onlink prefix list when no addresses are configured with those
12297 	 * prefixes.
12298 	 */
12299 	if (ipif->ipif_isv6 &&
12300 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
12301 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
12302 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
12303 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12304 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
12305 		return (EINVAL);
12306 	}
12307 
12308 	/*
12309 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
12310 	 * from being brought up.
12311 	 */
12312 	if (!ipif->ipif_isv6 &&
12313 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12314 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
12315 		return (EINVAL);
12316 	}
12317 
12318 	/*
12319 	 * The only flag changes that we currently take specific action on
12320 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
12321 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
12322 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
12323 	 * the flags and bringing it back up again.
12324 	 */
12325 	if ((turn_on|turn_off) &
12326 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
12327 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
12328 		/*
12329 		 * Taking this ipif down, make sure we have
12330 		 * valid net and subnet bcast ire's for other
12331 		 * logical interfaces, if we need them.
12332 		 */
12333 		if (!ipif->ipif_isv6)
12334 			ipif_check_bcast_ires(ipif);
12335 
12336 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
12337 		    !(turn_off & IPIF_UP)) {
12338 			need_up = B_TRUE;
12339 			if (ipif->ipif_flags & IPIF_UP)
12340 				ill->ill_logical_down = 1;
12341 			turn_on &= ~IPIF_UP;
12342 		}
12343 		err = ipif_down(ipif, q, mp);
12344 		ip1dbg(("ipif_down returns %d err ", err));
12345 		if (err == EINPROGRESS)
12346 			return (err);
12347 		ipif_down_tail(ipif);
12348 	}
12349 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
12350 }
12351 
12352 static int
12353 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
12354     boolean_t need_up)
12355 {
12356 	ill_t	*ill;
12357 	phyint_t *phyi;
12358 	uint64_t turn_on;
12359 	uint64_t turn_off;
12360 	uint64_t intf_flags;
12361 	boolean_t phyint_flags_modified = B_FALSE;
12362 	int	err = 0;
12363 	boolean_t set_linklocal = B_FALSE;
12364 	boolean_t zero_source = B_FALSE;
12365 
12366 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12367 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
12368 
12369 	ASSERT(IAM_WRITER_IPIF(ipif));
12370 
12371 	ill = ipif->ipif_ill;
12372 	phyi = ill->ill_phyint;
12373 
12374 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12375 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12376 
12377 	turn_off = intf_flags & turn_on;
12378 	turn_on ^= turn_off;
12379 
12380 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12381 		phyint_flags_modified = B_TRUE;
12382 
12383 	/*
12384 	 * Now we change the flags. Track current value of
12385 	 * other flags in their respective places.
12386 	 */
12387 	mutex_enter(&ill->ill_lock);
12388 	mutex_enter(&phyi->phyint_lock);
12389 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12390 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12391 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12392 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12393 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12394 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12395 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12396 		set_linklocal = B_TRUE;
12397 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12398 	}
12399 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12400 		zero_source = B_TRUE;
12401 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12402 	}
12403 	mutex_exit(&ill->ill_lock);
12404 	mutex_exit(&phyi->phyint_lock);
12405 
12406 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12407 		ip_redo_nomination(phyi);
12408 
12409 	if (set_linklocal)
12410 		(void) ipif_setlinklocal(ipif);
12411 
12412 	if (zero_source)
12413 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12414 	else
12415 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12416 
12417 	if (need_up) {
12418 		/*
12419 		 * XXX ipif_up really does not know whether a phyint flags
12420 		 * was modified or not. So, it sends up information on
12421 		 * only one routing sockets message. As we don't bring up
12422 		 * the interface and also set STANDBY/FAILED simultaneously
12423 		 * it should be okay.
12424 		 */
12425 		err = ipif_up(ipif, q, mp);
12426 	} else {
12427 		/*
12428 		 * Make sure routing socket sees all changes to the flags.
12429 		 * ipif_up_done* handles this when we use ipif_up.
12430 		 */
12431 		if (phyint_flags_modified) {
12432 			if (phyi->phyint_illv4 != NULL) {
12433 				ip_rts_ifmsg(phyi->phyint_illv4->
12434 				    ill_ipif);
12435 			}
12436 			if (phyi->phyint_illv6 != NULL) {
12437 				ip_rts_ifmsg(phyi->phyint_illv6->
12438 				    ill_ipif);
12439 			}
12440 		} else {
12441 			ip_rts_ifmsg(ipif);
12442 		}
12443 		/*
12444 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12445 		 * this in need_up case.
12446 		 */
12447 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12448 	}
12449 	return (err);
12450 }
12451 
12452 /*
12453  * Restart entry point to restart the flags restart operation after the
12454  * refcounts have dropped to zero.
12455  */
12456 /* ARGSUSED */
12457 int
12458 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12459     ip_ioctl_cmd_t *ipip, void *if_req)
12460 {
12461 	int	err;
12462 	struct ifreq *ifr = (struct ifreq *)if_req;
12463 	struct lifreq *lifr = (struct lifreq *)if_req;
12464 
12465 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12466 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12467 
12468 	ipif_down_tail(ipif);
12469 	if (ipip->ipi_cmd_type == IF_CMD) {
12470 		/*
12471 		 * Since ip_sioctl_flags expects an int and ifr_flags
12472 		 * is a short we need to cast ifr_flags into an int
12473 		 * to avoid having sign extension cause bits to get
12474 		 * set that should not be.
12475 		 */
12476 		err = ip_sioctl_flags_tail(ipif,
12477 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12478 		    q, mp, B_TRUE);
12479 	} else {
12480 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12481 		    q, mp, B_TRUE);
12482 	}
12483 	return (err);
12484 }
12485 
12486 /*
12487  * Can operate on either a module or a driver queue.
12488  */
12489 /* ARGSUSED */
12490 int
12491 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12492     ip_ioctl_cmd_t *ipip, void *if_req)
12493 {
12494 	/*
12495 	 * Has the flags been set correctly till now ?
12496 	 */
12497 	ill_t *ill = ipif->ipif_ill;
12498 	phyint_t *phyi = ill->ill_phyint;
12499 
12500 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12501 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12502 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12503 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12504 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12505 
12506 	/*
12507 	 * Need a lock since some flags can be set even when there are
12508 	 * references to the ipif.
12509 	 */
12510 	mutex_enter(&ill->ill_lock);
12511 	if (ipip->ipi_cmd_type == IF_CMD) {
12512 		struct ifreq *ifr = (struct ifreq *)if_req;
12513 
12514 		/* Get interface flags (low 16 only). */
12515 		ifr->ifr_flags = ((ipif->ipif_flags |
12516 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12517 	} else {
12518 		struct lifreq *lifr = (struct lifreq *)if_req;
12519 
12520 		/* Get interface flags. */
12521 		lifr->lifr_flags = ipif->ipif_flags |
12522 		    ill->ill_flags | phyi->phyint_flags;
12523 	}
12524 	mutex_exit(&ill->ill_lock);
12525 	return (0);
12526 }
12527 
12528 /* ARGSUSED */
12529 int
12530 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12531     ip_ioctl_cmd_t *ipip, void *if_req)
12532 {
12533 	int mtu;
12534 	int ip_min_mtu;
12535 	struct ifreq	*ifr;
12536 	struct lifreq *lifr;
12537 	ire_t	*ire;
12538 	ip_stack_t *ipst;
12539 
12540 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12541 	    ipif->ipif_id, (void *)ipif));
12542 	if (ipip->ipi_cmd_type == IF_CMD) {
12543 		ifr = (struct ifreq *)if_req;
12544 		mtu = ifr->ifr_metric;
12545 	} else {
12546 		lifr = (struct lifreq *)if_req;
12547 		mtu = lifr->lifr_mtu;
12548 	}
12549 
12550 	if (ipif->ipif_isv6)
12551 		ip_min_mtu = IPV6_MIN_MTU;
12552 	else
12553 		ip_min_mtu = IP_MIN_MTU;
12554 
12555 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12556 		return (EINVAL);
12557 
12558 	/*
12559 	 * Change the MTU size in all relevant ire's.
12560 	 * Mtu change Vs. new ire creation - protocol below.
12561 	 * First change ipif_mtu and the ire_max_frag of the
12562 	 * interface ire. Then do an ire walk and change the
12563 	 * ire_max_frag of all affected ires. During ire_add
12564 	 * under the bucket lock, set the ire_max_frag of the
12565 	 * new ire being created from the ipif/ire from which
12566 	 * it is being derived. If an mtu change happens after
12567 	 * the ire is added, the new ire will be cleaned up.
12568 	 * Conversely if the mtu change happens before the ire
12569 	 * is added, ire_add will see the new value of the mtu.
12570 	 */
12571 	ipif->ipif_mtu = mtu;
12572 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12573 
12574 	if (ipif->ipif_isv6)
12575 		ire = ipif_to_ire_v6(ipif);
12576 	else
12577 		ire = ipif_to_ire(ipif);
12578 	if (ire != NULL) {
12579 		ire->ire_max_frag = ipif->ipif_mtu;
12580 		ire_refrele(ire);
12581 	}
12582 	ipst = ipif->ipif_ill->ill_ipst;
12583 	if (ipif->ipif_flags & IPIF_UP) {
12584 		if (ipif->ipif_isv6)
12585 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12586 			    ipst);
12587 		else
12588 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12589 			    ipst);
12590 	}
12591 	/* Update the MTU in SCTP's list */
12592 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12593 	return (0);
12594 }
12595 
12596 /* Get interface MTU. */
12597 /* ARGSUSED */
12598 int
12599 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12600 	ip_ioctl_cmd_t *ipip, void *if_req)
12601 {
12602 	struct ifreq	*ifr;
12603 	struct lifreq	*lifr;
12604 
12605 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12606 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12607 	if (ipip->ipi_cmd_type == IF_CMD) {
12608 		ifr = (struct ifreq *)if_req;
12609 		ifr->ifr_metric = ipif->ipif_mtu;
12610 	} else {
12611 		lifr = (struct lifreq *)if_req;
12612 		lifr->lifr_mtu = ipif->ipif_mtu;
12613 	}
12614 	return (0);
12615 }
12616 
12617 /* Set interface broadcast address. */
12618 /* ARGSUSED2 */
12619 int
12620 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12621 	ip_ioctl_cmd_t *ipip, void *if_req)
12622 {
12623 	ipaddr_t addr;
12624 	ire_t	*ire;
12625 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12626 
12627 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12628 	    ipif->ipif_id));
12629 
12630 	ASSERT(IAM_WRITER_IPIF(ipif));
12631 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12632 		return (EADDRNOTAVAIL);
12633 
12634 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12635 
12636 	if (sin->sin_family != AF_INET)
12637 		return (EAFNOSUPPORT);
12638 
12639 	addr = sin->sin_addr.s_addr;
12640 	if (ipif->ipif_flags & IPIF_UP) {
12641 		/*
12642 		 * If we are already up, make sure the new
12643 		 * broadcast address makes sense.  If it does,
12644 		 * there should be an IRE for it already.
12645 		 * Don't match on ipif, only on the ill
12646 		 * since we are sharing these now. Don't use
12647 		 * MATCH_IRE_ILL_GROUP as we are looking for
12648 		 * the broadcast ire on this ill and each ill
12649 		 * in the group has its own broadcast ire.
12650 		 */
12651 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12652 		    ipif, ALL_ZONES, NULL,
12653 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12654 		if (ire == NULL) {
12655 			return (EINVAL);
12656 		} else {
12657 			ire_refrele(ire);
12658 		}
12659 	}
12660 	/*
12661 	 * Changing the broadcast addr for this ipif.
12662 	 * Make sure we have valid net and subnet bcast
12663 	 * ire's for other logical interfaces, if needed.
12664 	 */
12665 	if (addr != ipif->ipif_brd_addr)
12666 		ipif_check_bcast_ires(ipif);
12667 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12668 	return (0);
12669 }
12670 
12671 /* Get interface broadcast address. */
12672 /* ARGSUSED */
12673 int
12674 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12675     ip_ioctl_cmd_t *ipip, void *if_req)
12676 {
12677 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12678 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12679 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12680 		return (EADDRNOTAVAIL);
12681 
12682 	/* IPIF_BROADCAST not possible with IPv6 */
12683 	ASSERT(!ipif->ipif_isv6);
12684 	*sin = sin_null;
12685 	sin->sin_family = AF_INET;
12686 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12687 	return (0);
12688 }
12689 
12690 /*
12691  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12692  */
12693 /* ARGSUSED */
12694 int
12695 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12696     ip_ioctl_cmd_t *ipip, void *if_req)
12697 {
12698 	int err = 0;
12699 	in6_addr_t v6mask;
12700 
12701 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12702 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12703 
12704 	ASSERT(IAM_WRITER_IPIF(ipif));
12705 
12706 	if (ipif->ipif_isv6) {
12707 		sin6_t *sin6;
12708 
12709 		if (sin->sin_family != AF_INET6)
12710 			return (EAFNOSUPPORT);
12711 
12712 		sin6 = (sin6_t *)sin;
12713 		v6mask = sin6->sin6_addr;
12714 	} else {
12715 		ipaddr_t mask;
12716 
12717 		if (sin->sin_family != AF_INET)
12718 			return (EAFNOSUPPORT);
12719 
12720 		mask = sin->sin_addr.s_addr;
12721 		V4MASK_TO_V6(mask, v6mask);
12722 	}
12723 
12724 	/*
12725 	 * No big deal if the interface isn't already up, or the mask
12726 	 * isn't really changing, or this is pt-pt.
12727 	 */
12728 	if (!(ipif->ipif_flags & IPIF_UP) ||
12729 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12730 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12731 		ipif->ipif_v6net_mask = v6mask;
12732 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12733 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12734 			    ipif->ipif_v6net_mask,
12735 			    ipif->ipif_v6subnet);
12736 		}
12737 		return (0);
12738 	}
12739 	/*
12740 	 * Make sure we have valid net and subnet broadcast ire's
12741 	 * for the old netmask, if needed by other logical interfaces.
12742 	 */
12743 	if (!ipif->ipif_isv6)
12744 		ipif_check_bcast_ires(ipif);
12745 
12746 	err = ipif_logical_down(ipif, q, mp);
12747 	if (err == EINPROGRESS)
12748 		return (err);
12749 	ipif_down_tail(ipif);
12750 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12751 	return (err);
12752 }
12753 
12754 static int
12755 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12756 {
12757 	in6_addr_t v6mask;
12758 	int err = 0;
12759 
12760 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12761 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12762 
12763 	if (ipif->ipif_isv6) {
12764 		sin6_t *sin6;
12765 
12766 		sin6 = (sin6_t *)sin;
12767 		v6mask = sin6->sin6_addr;
12768 	} else {
12769 		ipaddr_t mask;
12770 
12771 		mask = sin->sin_addr.s_addr;
12772 		V4MASK_TO_V6(mask, v6mask);
12773 	}
12774 
12775 	ipif->ipif_v6net_mask = v6mask;
12776 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12777 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12778 		    ipif->ipif_v6subnet);
12779 	}
12780 	err = ipif_up(ipif, q, mp);
12781 
12782 	if (err == 0 || err == EINPROGRESS) {
12783 		/*
12784 		 * The interface must be DL_BOUND if this packet has to
12785 		 * go out on the wire. Since we only go through a logical
12786 		 * down and are bound with the driver during an internal
12787 		 * down/up that is satisfied.
12788 		 */
12789 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12790 			/* Potentially broadcast an address mask reply. */
12791 			ipif_mask_reply(ipif);
12792 		}
12793 	}
12794 	return (err);
12795 }
12796 
12797 /* ARGSUSED */
12798 int
12799 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12800     ip_ioctl_cmd_t *ipip, void *if_req)
12801 {
12802 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12803 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12804 	ipif_down_tail(ipif);
12805 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12806 }
12807 
12808 /* Get interface net mask. */
12809 /* ARGSUSED */
12810 int
12811 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12812     ip_ioctl_cmd_t *ipip, void *if_req)
12813 {
12814 	struct lifreq *lifr = (struct lifreq *)if_req;
12815 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12816 
12817 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12818 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12819 
12820 	/*
12821 	 * net mask can't change since we have a reference to the ipif.
12822 	 */
12823 	if (ipif->ipif_isv6) {
12824 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12825 		*sin6 = sin6_null;
12826 		sin6->sin6_family = AF_INET6;
12827 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12828 		lifr->lifr_addrlen =
12829 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12830 	} else {
12831 		*sin = sin_null;
12832 		sin->sin_family = AF_INET;
12833 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12834 		if (ipip->ipi_cmd_type == LIF_CMD) {
12835 			lifr->lifr_addrlen =
12836 			    ip_mask_to_plen(ipif->ipif_net_mask);
12837 		}
12838 	}
12839 	return (0);
12840 }
12841 
12842 /* ARGSUSED */
12843 int
12844 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12845     ip_ioctl_cmd_t *ipip, void *if_req)
12846 {
12847 
12848 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12849 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12850 	/*
12851 	 * Set interface metric.  We don't use this for
12852 	 * anything but we keep track of it in case it is
12853 	 * important to routing applications or such.
12854 	 */
12855 	if (ipip->ipi_cmd_type == IF_CMD) {
12856 		struct ifreq    *ifr;
12857 
12858 		ifr = (struct ifreq *)if_req;
12859 		ipif->ipif_metric = ifr->ifr_metric;
12860 	} else {
12861 		struct lifreq   *lifr;
12862 
12863 		lifr = (struct lifreq *)if_req;
12864 		ipif->ipif_metric = lifr->lifr_metric;
12865 	}
12866 	return (0);
12867 }
12868 
12869 
12870 /* ARGSUSED */
12871 int
12872 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12873     ip_ioctl_cmd_t *ipip, void *if_req)
12874 {
12875 
12876 	/* Get interface metric. */
12877 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12878 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12879 	if (ipip->ipi_cmd_type == IF_CMD) {
12880 		struct ifreq    *ifr;
12881 
12882 		ifr = (struct ifreq *)if_req;
12883 		ifr->ifr_metric = ipif->ipif_metric;
12884 	} else {
12885 		struct lifreq   *lifr;
12886 
12887 		lifr = (struct lifreq *)if_req;
12888 		lifr->lifr_metric = ipif->ipif_metric;
12889 	}
12890 
12891 	return (0);
12892 }
12893 
12894 /* ARGSUSED */
12895 int
12896 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12897     ip_ioctl_cmd_t *ipip, void *if_req)
12898 {
12899 
12900 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12901 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12902 	/*
12903 	 * Set the muxid returned from I_PLINK.
12904 	 */
12905 	if (ipip->ipi_cmd_type == IF_CMD) {
12906 		struct ifreq *ifr = (struct ifreq *)if_req;
12907 
12908 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12909 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12910 	} else {
12911 		struct lifreq *lifr = (struct lifreq *)if_req;
12912 
12913 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12914 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12915 	}
12916 	return (0);
12917 }
12918 
12919 /* ARGSUSED */
12920 int
12921 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12922     ip_ioctl_cmd_t *ipip, void *if_req)
12923 {
12924 
12925 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12926 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12927 	/*
12928 	 * Get the muxid saved in ill for I_PUNLINK.
12929 	 */
12930 	if (ipip->ipi_cmd_type == IF_CMD) {
12931 		struct ifreq *ifr = (struct ifreq *)if_req;
12932 
12933 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12934 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12935 	} else {
12936 		struct lifreq *lifr = (struct lifreq *)if_req;
12937 
12938 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12939 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12940 	}
12941 	return (0);
12942 }
12943 
12944 /*
12945  * Set the subnet prefix. Does not modify the broadcast address.
12946  */
12947 /* ARGSUSED */
12948 int
12949 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12950     ip_ioctl_cmd_t *ipip, void *if_req)
12951 {
12952 	int err = 0;
12953 	in6_addr_t v6addr;
12954 	in6_addr_t v6mask;
12955 	boolean_t need_up = B_FALSE;
12956 	int addrlen;
12957 
12958 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12959 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12960 
12961 	ASSERT(IAM_WRITER_IPIF(ipif));
12962 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12963 
12964 	if (ipif->ipif_isv6) {
12965 		sin6_t *sin6;
12966 
12967 		if (sin->sin_family != AF_INET6)
12968 			return (EAFNOSUPPORT);
12969 
12970 		sin6 = (sin6_t *)sin;
12971 		v6addr = sin6->sin6_addr;
12972 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12973 			return (EADDRNOTAVAIL);
12974 	} else {
12975 		ipaddr_t addr;
12976 
12977 		if (sin->sin_family != AF_INET)
12978 			return (EAFNOSUPPORT);
12979 
12980 		addr = sin->sin_addr.s_addr;
12981 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12982 			return (EADDRNOTAVAIL);
12983 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12984 		/* Add 96 bits */
12985 		addrlen += IPV6_ABITS - IP_ABITS;
12986 	}
12987 
12988 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12989 		return (EINVAL);
12990 
12991 	/* Check if bits in the address is set past the mask */
12992 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12993 		return (EINVAL);
12994 
12995 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12996 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12997 		return (0);	/* No change */
12998 
12999 	if (ipif->ipif_flags & IPIF_UP) {
13000 		/*
13001 		 * If the interface is already marked up,
13002 		 * we call ipif_down which will take care
13003 		 * of ditching any IREs that have been set
13004 		 * up based on the old interface address.
13005 		 */
13006 		err = ipif_logical_down(ipif, q, mp);
13007 		if (err == EINPROGRESS)
13008 			return (err);
13009 		ipif_down_tail(ipif);
13010 		need_up = B_TRUE;
13011 	}
13012 
13013 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
13014 	return (err);
13015 }
13016 
13017 static int
13018 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
13019     queue_t *q, mblk_t *mp, boolean_t need_up)
13020 {
13021 	ill_t	*ill = ipif->ipif_ill;
13022 	int	err = 0;
13023 
13024 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
13025 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13026 
13027 	/* Set the new address. */
13028 	mutex_enter(&ill->ill_lock);
13029 	ipif->ipif_v6net_mask = v6mask;
13030 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
13031 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
13032 		    ipif->ipif_v6subnet);
13033 	}
13034 	mutex_exit(&ill->ill_lock);
13035 
13036 	if (need_up) {
13037 		/*
13038 		 * Now bring the interface back up.  If this
13039 		 * is the only IPIF for the ILL, ipif_up
13040 		 * will have to re-bind to the device, so
13041 		 * we may get back EINPROGRESS, in which
13042 		 * case, this IOCTL will get completed in
13043 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13044 		 */
13045 		err = ipif_up(ipif, q, mp);
13046 		if (err == EINPROGRESS)
13047 			return (err);
13048 	}
13049 	return (err);
13050 }
13051 
13052 /* ARGSUSED */
13053 int
13054 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13055     ip_ioctl_cmd_t *ipip, void *if_req)
13056 {
13057 	int	addrlen;
13058 	in6_addr_t v6addr;
13059 	in6_addr_t v6mask;
13060 	struct lifreq *lifr = (struct lifreq *)if_req;
13061 
13062 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
13063 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13064 	ipif_down_tail(ipif);
13065 
13066 	addrlen = lifr->lifr_addrlen;
13067 	if (ipif->ipif_isv6) {
13068 		sin6_t *sin6;
13069 
13070 		sin6 = (sin6_t *)sin;
13071 		v6addr = sin6->sin6_addr;
13072 	} else {
13073 		ipaddr_t addr;
13074 
13075 		addr = sin->sin_addr.s_addr;
13076 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
13077 		addrlen += IPV6_ABITS - IP_ABITS;
13078 	}
13079 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
13080 
13081 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
13082 }
13083 
13084 /* ARGSUSED */
13085 int
13086 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13087     ip_ioctl_cmd_t *ipip, void *if_req)
13088 {
13089 	struct lifreq *lifr = (struct lifreq *)if_req;
13090 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
13091 
13092 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
13093 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13094 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
13095 
13096 	if (ipif->ipif_isv6) {
13097 		*sin6 = sin6_null;
13098 		sin6->sin6_family = AF_INET6;
13099 		sin6->sin6_addr = ipif->ipif_v6subnet;
13100 		lifr->lifr_addrlen =
13101 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
13102 	} else {
13103 		*sin = sin_null;
13104 		sin->sin_family = AF_INET;
13105 		sin->sin_addr.s_addr = ipif->ipif_subnet;
13106 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
13107 	}
13108 	return (0);
13109 }
13110 
13111 /*
13112  * Set the IPv6 address token.
13113  */
13114 /* ARGSUSED */
13115 int
13116 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13117     ip_ioctl_cmd_t *ipi, void *if_req)
13118 {
13119 	ill_t *ill = ipif->ipif_ill;
13120 	int err;
13121 	in6_addr_t v6addr;
13122 	in6_addr_t v6mask;
13123 	boolean_t need_up = B_FALSE;
13124 	int i;
13125 	sin6_t *sin6 = (sin6_t *)sin;
13126 	struct lifreq *lifr = (struct lifreq *)if_req;
13127 	int addrlen;
13128 
13129 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
13130 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13131 	ASSERT(IAM_WRITER_IPIF(ipif));
13132 
13133 	addrlen = lifr->lifr_addrlen;
13134 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13135 	if (ipif->ipif_id != 0)
13136 		return (EINVAL);
13137 
13138 	if (!ipif->ipif_isv6)
13139 		return (EINVAL);
13140 
13141 	if (addrlen > IPV6_ABITS)
13142 		return (EINVAL);
13143 
13144 	v6addr = sin6->sin6_addr;
13145 
13146 	/*
13147 	 * The length of the token is the length from the end.  To get
13148 	 * the proper mask for this, compute the mask of the bits not
13149 	 * in the token; ie. the prefix, and then xor to get the mask.
13150 	 */
13151 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
13152 		return (EINVAL);
13153 	for (i = 0; i < 4; i++) {
13154 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13155 	}
13156 
13157 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
13158 	    ill->ill_token_length == addrlen)
13159 		return (0);	/* No change */
13160 
13161 	if (ipif->ipif_flags & IPIF_UP) {
13162 		err = ipif_logical_down(ipif, q, mp);
13163 		if (err == EINPROGRESS)
13164 			return (err);
13165 		ipif_down_tail(ipif);
13166 		need_up = B_TRUE;
13167 	}
13168 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
13169 	return (err);
13170 }
13171 
13172 static int
13173 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
13174     mblk_t *mp, boolean_t need_up)
13175 {
13176 	in6_addr_t v6addr;
13177 	in6_addr_t v6mask;
13178 	ill_t	*ill = ipif->ipif_ill;
13179 	int	i;
13180 	int	err = 0;
13181 
13182 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
13183 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13184 	v6addr = sin6->sin6_addr;
13185 	/*
13186 	 * The length of the token is the length from the end.  To get
13187 	 * the proper mask for this, compute the mask of the bits not
13188 	 * in the token; ie. the prefix, and then xor to get the mask.
13189 	 */
13190 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
13191 	for (i = 0; i < 4; i++)
13192 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13193 
13194 	mutex_enter(&ill->ill_lock);
13195 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
13196 	ill->ill_token_length = addrlen;
13197 	mutex_exit(&ill->ill_lock);
13198 
13199 	if (need_up) {
13200 		/*
13201 		 * Now bring the interface back up.  If this
13202 		 * is the only IPIF for the ILL, ipif_up
13203 		 * will have to re-bind to the device, so
13204 		 * we may get back EINPROGRESS, in which
13205 		 * case, this IOCTL will get completed in
13206 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13207 		 */
13208 		err = ipif_up(ipif, q, mp);
13209 		if (err == EINPROGRESS)
13210 			return (err);
13211 	}
13212 	return (err);
13213 }
13214 
13215 /* ARGSUSED */
13216 int
13217 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13218     ip_ioctl_cmd_t *ipi, void *if_req)
13219 {
13220 	ill_t *ill;
13221 	sin6_t *sin6 = (sin6_t *)sin;
13222 	struct lifreq *lifr = (struct lifreq *)if_req;
13223 
13224 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
13225 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13226 	if (ipif->ipif_id != 0)
13227 		return (EINVAL);
13228 
13229 	ill = ipif->ipif_ill;
13230 	if (!ill->ill_isv6)
13231 		return (ENXIO);
13232 
13233 	*sin6 = sin6_null;
13234 	sin6->sin6_family = AF_INET6;
13235 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
13236 	sin6->sin6_addr = ill->ill_token;
13237 	lifr->lifr_addrlen = ill->ill_token_length;
13238 	return (0);
13239 }
13240 
13241 /*
13242  * Set (hardware) link specific information that might override
13243  * what was acquired through the DL_INFO_ACK.
13244  * The logic is as follows.
13245  *
13246  * become exclusive
13247  * set CHANGING flag
13248  * change mtu on affected IREs
13249  * clear CHANGING flag
13250  *
13251  * An ire add that occurs before the CHANGING flag is set will have its mtu
13252  * changed by the ip_sioctl_lnkinfo.
13253  *
13254  * During the time the CHANGING flag is set, no new ires will be added to the
13255  * bucket, and ire add will fail (due the CHANGING flag).
13256  *
13257  * An ire add that occurs after the CHANGING flag is set will have the right mtu
13258  * before it is added to the bucket.
13259  *
13260  * Obviously only 1 thread can set the CHANGING flag and we need to become
13261  * exclusive to set the flag.
13262  */
13263 /* ARGSUSED */
13264 int
13265 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13266     ip_ioctl_cmd_t *ipi, void *if_req)
13267 {
13268 	ill_t		*ill = ipif->ipif_ill;
13269 	ipif_t		*nipif;
13270 	int		ip_min_mtu;
13271 	boolean_t	mtu_walk = B_FALSE;
13272 	struct lifreq	*lifr = (struct lifreq *)if_req;
13273 	lif_ifinfo_req_t *lir;
13274 	ire_t		*ire;
13275 
13276 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
13277 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13278 	lir = &lifr->lifr_ifinfo;
13279 	ASSERT(IAM_WRITER_IPIF(ipif));
13280 
13281 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13282 	if (ipif->ipif_id != 0)
13283 		return (EINVAL);
13284 
13285 	/* Set interface MTU. */
13286 	if (ipif->ipif_isv6)
13287 		ip_min_mtu = IPV6_MIN_MTU;
13288 	else
13289 		ip_min_mtu = IP_MIN_MTU;
13290 
13291 	/*
13292 	 * Verify values before we set anything. Allow zero to
13293 	 * mean unspecified.
13294 	 */
13295 	if (lir->lir_maxmtu != 0 &&
13296 	    (lir->lir_maxmtu > ill->ill_max_frag ||
13297 	    lir->lir_maxmtu < ip_min_mtu))
13298 		return (EINVAL);
13299 	if (lir->lir_reachtime != 0 &&
13300 	    lir->lir_reachtime > ND_MAX_REACHTIME)
13301 		return (EINVAL);
13302 	if (lir->lir_reachretrans != 0 &&
13303 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
13304 		return (EINVAL);
13305 
13306 	mutex_enter(&ill->ill_lock);
13307 	ill->ill_state_flags |= ILL_CHANGING;
13308 	for (nipif = ill->ill_ipif; nipif != NULL;
13309 	    nipif = nipif->ipif_next) {
13310 		nipif->ipif_state_flags |= IPIF_CHANGING;
13311 	}
13312 
13313 	mutex_exit(&ill->ill_lock);
13314 
13315 	if (lir->lir_maxmtu != 0) {
13316 		ill->ill_max_mtu = lir->lir_maxmtu;
13317 		ill->ill_mtu_userspecified = 1;
13318 		mtu_walk = B_TRUE;
13319 	}
13320 
13321 	if (lir->lir_reachtime != 0)
13322 		ill->ill_reachable_time = lir->lir_reachtime;
13323 
13324 	if (lir->lir_reachretrans != 0)
13325 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
13326 
13327 	ill->ill_max_hops = lir->lir_maxhops;
13328 
13329 	ill->ill_max_buf = ND_MAX_Q;
13330 
13331 	if (mtu_walk) {
13332 		/*
13333 		 * Set the MTU on all ipifs associated with this ill except
13334 		 * for those whose MTU was fixed via SIOCSLIFMTU.
13335 		 */
13336 		for (nipif = ill->ill_ipif; nipif != NULL;
13337 		    nipif = nipif->ipif_next) {
13338 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
13339 				continue;
13340 
13341 			nipif->ipif_mtu = ill->ill_max_mtu;
13342 
13343 			if (!(nipif->ipif_flags & IPIF_UP))
13344 				continue;
13345 
13346 			if (nipif->ipif_isv6)
13347 				ire = ipif_to_ire_v6(nipif);
13348 			else
13349 				ire = ipif_to_ire(nipif);
13350 			if (ire != NULL) {
13351 				ire->ire_max_frag = ipif->ipif_mtu;
13352 				ire_refrele(ire);
13353 			}
13354 			if (ill->ill_isv6) {
13355 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
13356 				    ipif_mtu_change, (char *)nipif,
13357 				    ill);
13358 			} else {
13359 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
13360 				    ipif_mtu_change, (char *)nipif,
13361 				    ill);
13362 			}
13363 		}
13364 	}
13365 
13366 	mutex_enter(&ill->ill_lock);
13367 	for (nipif = ill->ill_ipif; nipif != NULL;
13368 	    nipif = nipif->ipif_next) {
13369 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13370 	}
13371 	ILL_UNMARK_CHANGING(ill);
13372 	mutex_exit(&ill->ill_lock);
13373 
13374 	return (0);
13375 }
13376 
13377 /* ARGSUSED */
13378 int
13379 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13380     ip_ioctl_cmd_t *ipi, void *if_req)
13381 {
13382 	struct lif_ifinfo_req *lir;
13383 	ill_t *ill = ipif->ipif_ill;
13384 
13385 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13386 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13387 	if (ipif->ipif_id != 0)
13388 		return (EINVAL);
13389 
13390 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13391 	lir->lir_maxhops = ill->ill_max_hops;
13392 	lir->lir_reachtime = ill->ill_reachable_time;
13393 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13394 	lir->lir_maxmtu = ill->ill_max_mtu;
13395 
13396 	return (0);
13397 }
13398 
13399 /*
13400  * Return best guess as to the subnet mask for the specified address.
13401  * Based on the subnet masks for all the configured interfaces.
13402  *
13403  * We end up returning a zero mask in the case of default, multicast or
13404  * experimental.
13405  */
13406 static ipaddr_t
13407 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13408 {
13409 	ipaddr_t net_mask;
13410 	ill_t	*ill;
13411 	ipif_t	*ipif;
13412 	ill_walk_context_t ctx;
13413 	ipif_t	*fallback_ipif = NULL;
13414 
13415 	net_mask = ip_net_mask(addr);
13416 	if (net_mask == 0) {
13417 		*ipifp = NULL;
13418 		return (0);
13419 	}
13420 
13421 	/* Let's check to see if this is maybe a local subnet route. */
13422 	/* this function only applies to IPv4 interfaces */
13423 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13424 	ill = ILL_START_WALK_V4(&ctx, ipst);
13425 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13426 		mutex_enter(&ill->ill_lock);
13427 		for (ipif = ill->ill_ipif; ipif != NULL;
13428 		    ipif = ipif->ipif_next) {
13429 			if (!IPIF_CAN_LOOKUP(ipif))
13430 				continue;
13431 			if (!(ipif->ipif_flags & IPIF_UP))
13432 				continue;
13433 			if ((ipif->ipif_subnet & net_mask) ==
13434 			    (addr & net_mask)) {
13435 				/*
13436 				 * Don't trust pt-pt interfaces if there are
13437 				 * other interfaces.
13438 				 */
13439 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13440 					if (fallback_ipif == NULL) {
13441 						ipif_refhold_locked(ipif);
13442 						fallback_ipif = ipif;
13443 					}
13444 					continue;
13445 				}
13446 
13447 				/*
13448 				 * Fine. Just assume the same net mask as the
13449 				 * directly attached subnet interface is using.
13450 				 */
13451 				ipif_refhold_locked(ipif);
13452 				mutex_exit(&ill->ill_lock);
13453 				rw_exit(&ipst->ips_ill_g_lock);
13454 				if (fallback_ipif != NULL)
13455 					ipif_refrele(fallback_ipif);
13456 				*ipifp = ipif;
13457 				return (ipif->ipif_net_mask);
13458 			}
13459 		}
13460 		mutex_exit(&ill->ill_lock);
13461 	}
13462 	rw_exit(&ipst->ips_ill_g_lock);
13463 
13464 	*ipifp = fallback_ipif;
13465 	return ((fallback_ipif != NULL) ?
13466 	    fallback_ipif->ipif_net_mask : net_mask);
13467 }
13468 
13469 /*
13470  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13471  */
13472 static void
13473 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13474 {
13475 	IOCP	iocp;
13476 	ipft_t	*ipft;
13477 	ipllc_t	*ipllc;
13478 	mblk_t	*mp1;
13479 	cred_t	*cr;
13480 	int	error = 0;
13481 	conn_t	*connp;
13482 
13483 	ip1dbg(("ip_wput_ioctl"));
13484 	iocp = (IOCP)mp->b_rptr;
13485 	mp1 = mp->b_cont;
13486 	if (mp1 == NULL) {
13487 		iocp->ioc_error = EINVAL;
13488 		mp->b_datap->db_type = M_IOCNAK;
13489 		iocp->ioc_count = 0;
13490 		qreply(q, mp);
13491 		return;
13492 	}
13493 
13494 	/*
13495 	 * These IOCTLs provide various control capabilities to
13496 	 * upstream agents such as ULPs and processes.	There
13497 	 * are currently two such IOCTLs implemented.  They
13498 	 * are used by TCP to provide update information for
13499 	 * existing IREs and to forcibly delete an IRE for a
13500 	 * host that is not responding, thereby forcing an
13501 	 * attempt at a new route.
13502 	 */
13503 	iocp->ioc_error = EINVAL;
13504 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13505 		goto done;
13506 
13507 	ipllc = (ipllc_t *)mp1->b_rptr;
13508 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13509 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13510 			break;
13511 	}
13512 	/*
13513 	 * prefer credential from mblk over ioctl;
13514 	 * see ip_sioctl_copyin_setup
13515 	 */
13516 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13517 
13518 	/*
13519 	 * Refhold the conn in case the request gets queued up in some lookup
13520 	 */
13521 	ASSERT(CONN_Q(q));
13522 	connp = Q_TO_CONN(q);
13523 	CONN_INC_REF(connp);
13524 	if (ipft->ipft_pfi &&
13525 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13526 	    pullupmsg(mp1, ipft->ipft_min_size))) {
13527 		error = (*ipft->ipft_pfi)(q,
13528 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13529 	}
13530 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13531 		/*
13532 		 * CONN_OPER_PENDING_DONE happens in the function called
13533 		 * through ipft_pfi above.
13534 		 */
13535 		return;
13536 	}
13537 
13538 	CONN_OPER_PENDING_DONE(connp);
13539 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13540 		freemsg(mp);
13541 		return;
13542 	}
13543 	iocp->ioc_error = error;
13544 
13545 done:
13546 	mp->b_datap->db_type = M_IOCACK;
13547 	if (iocp->ioc_error)
13548 		iocp->ioc_count = 0;
13549 	qreply(q, mp);
13550 }
13551 
13552 /*
13553  * Lookup an ipif using the sequence id (ipif_seqid)
13554  */
13555 ipif_t *
13556 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13557 {
13558 	ipif_t *ipif;
13559 
13560 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13561 
13562 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13563 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13564 			return (ipif);
13565 	}
13566 	return (NULL);
13567 }
13568 
13569 /*
13570  * Assign a unique id for the ipif. This is used later when we send
13571  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13572  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13573  * IRE is added, we verify that ipif has not disappeared.
13574  */
13575 
13576 static void
13577 ipif_assign_seqid(ipif_t *ipif)
13578 {
13579 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13580 
13581 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13582 }
13583 
13584 /*
13585  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13586  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13587  * be inserted into the first space available in the list. The value of
13588  * ipif_id will then be set to the appropriate value for its position.
13589  */
13590 static int
13591 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13592 {
13593 	ill_t *ill;
13594 	ipif_t *tipif;
13595 	ipif_t **tipifp;
13596 	int id;
13597 	ip_stack_t	*ipst;
13598 
13599 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13600 	    IAM_WRITER_IPIF(ipif));
13601 
13602 	ill = ipif->ipif_ill;
13603 	ASSERT(ill != NULL);
13604 	ipst = ill->ill_ipst;
13605 
13606 	/*
13607 	 * In the case of lo0:0 we already hold the ill_g_lock.
13608 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13609 	 * ipif_insert. Another such caller is ipif_move.
13610 	 */
13611 	if (acquire_g_lock)
13612 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13613 	if (acquire_ill_lock)
13614 		mutex_enter(&ill->ill_lock);
13615 	id = ipif->ipif_id;
13616 	tipifp = &(ill->ill_ipif);
13617 	if (id == -1) {	/* need to find a real id */
13618 		id = 0;
13619 		while ((tipif = *tipifp) != NULL) {
13620 			ASSERT(tipif->ipif_id >= id);
13621 			if (tipif->ipif_id != id)
13622 				break; /* non-consecutive id */
13623 			id++;
13624 			tipifp = &(tipif->ipif_next);
13625 		}
13626 		/* limit number of logical interfaces */
13627 		if (id >= ipst->ips_ip_addrs_per_if) {
13628 			if (acquire_ill_lock)
13629 				mutex_exit(&ill->ill_lock);
13630 			if (acquire_g_lock)
13631 				rw_exit(&ipst->ips_ill_g_lock);
13632 			return (-1);
13633 		}
13634 		ipif->ipif_id = id; /* assign new id */
13635 	} else if (id < ipst->ips_ip_addrs_per_if) {
13636 		/* we have a real id; insert ipif in the right place */
13637 		while ((tipif = *tipifp) != NULL) {
13638 			ASSERT(tipif->ipif_id != id);
13639 			if (tipif->ipif_id > id)
13640 				break; /* found correct location */
13641 			tipifp = &(tipif->ipif_next);
13642 		}
13643 	} else {
13644 		if (acquire_ill_lock)
13645 			mutex_exit(&ill->ill_lock);
13646 		if (acquire_g_lock)
13647 			rw_exit(&ipst->ips_ill_g_lock);
13648 		return (-1);
13649 	}
13650 
13651 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13652 
13653 	ipif->ipif_next = tipif;
13654 	*tipifp = ipif;
13655 	if (acquire_ill_lock)
13656 		mutex_exit(&ill->ill_lock);
13657 	if (acquire_g_lock)
13658 		rw_exit(&ipst->ips_ill_g_lock);
13659 	return (0);
13660 }
13661 
13662 static void
13663 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock)
13664 {
13665 	ipif_t	**ipifp;
13666 	ill_t	*ill = ipif->ipif_ill;
13667 
13668 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13669 	if (acquire_ill_lock)
13670 		mutex_enter(&ill->ill_lock);
13671 	else
13672 		ASSERT(MUTEX_HELD(&ill->ill_lock));
13673 
13674 	ipifp = &ill->ill_ipif;
13675 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13676 		if (*ipifp == ipif) {
13677 			*ipifp = ipif->ipif_next;
13678 			break;
13679 		}
13680 	}
13681 
13682 	if (acquire_ill_lock)
13683 		mutex_exit(&ill->ill_lock);
13684 }
13685 
13686 /*
13687  * Allocate and initialize a new interface control structure.  (Always
13688  * called as writer.)
13689  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13690  * is not part of the global linked list of ills. ipif_seqid is unique
13691  * in the system and to preserve the uniqueness, it is assigned only
13692  * when ill becomes part of the global list. At that point ill will
13693  * have a name. If it doesn't get assigned here, it will get assigned
13694  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13695  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13696  * the interface flags or any other information from the DL_INFO_ACK for
13697  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13698  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13699  * second DL_INFO_ACK comes in from the driver.
13700  */
13701 static ipif_t *
13702 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13703 {
13704 	ipif_t	*ipif;
13705 	phyint_t *phyi;
13706 
13707 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13708 	    ill->ill_name, id, (void *)ill));
13709 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13710 
13711 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13712 		return (NULL);
13713 	*ipif = ipif_zero;	/* start clean */
13714 
13715 	ipif->ipif_ill = ill;
13716 	ipif->ipif_id = id;	/* could be -1 */
13717 	/*
13718 	 * Inherit the zoneid from the ill; for the shared stack instance
13719 	 * this is always the global zone
13720 	 */
13721 	ipif->ipif_zoneid = ill->ill_zoneid;
13722 
13723 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13724 
13725 	ipif->ipif_refcnt = 0;
13726 	ipif->ipif_saved_ire_cnt = 0;
13727 
13728 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13729 		mi_free(ipif);
13730 		return (NULL);
13731 	}
13732 	/* -1 id should have been replaced by real id */
13733 	id = ipif->ipif_id;
13734 	ASSERT(id >= 0);
13735 
13736 	if (ill->ill_name[0] != '\0')
13737 		ipif_assign_seqid(ipif);
13738 
13739 	/*
13740 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13741 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13742 	 * ioctl sets ipif_orig_ipifid to zero.
13743 	 */
13744 	ipif->ipif_orig_ipifid = id;
13745 
13746 	/*
13747 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13748 	 * The ipif is still not up and can't be looked up until the
13749 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13750 	 */
13751 	mutex_enter(&ill->ill_lock);
13752 	mutex_enter(&ill->ill_phyint->phyint_lock);
13753 	/*
13754 	 * Set the running flag when logical interface zero is created.
13755 	 * For subsequent logical interfaces, a DLPI link down
13756 	 * notification message may have cleared the running flag to
13757 	 * indicate the link is down, so we shouldn't just blindly set it.
13758 	 */
13759 	if (id == 0)
13760 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13761 	ipif->ipif_ire_type = ire_type;
13762 	phyi = ill->ill_phyint;
13763 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13764 
13765 	if (ipif->ipif_isv6) {
13766 		ill->ill_flags |= ILLF_IPV6;
13767 	} else {
13768 		ipaddr_t inaddr_any = INADDR_ANY;
13769 
13770 		ill->ill_flags |= ILLF_IPV4;
13771 
13772 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13773 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13774 		    &ipif->ipif_v6lcl_addr);
13775 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13776 		    &ipif->ipif_v6src_addr);
13777 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13778 		    &ipif->ipif_v6subnet);
13779 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13780 		    &ipif->ipif_v6net_mask);
13781 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13782 		    &ipif->ipif_v6brd_addr);
13783 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13784 		    &ipif->ipif_v6pp_dst_addr);
13785 	}
13786 
13787 	/*
13788 	 * Don't set the interface flags etc. now, will do it in
13789 	 * ip_ll_subnet_defaults.
13790 	 */
13791 	if (!initialize) {
13792 		mutex_exit(&ill->ill_lock);
13793 		mutex_exit(&ill->ill_phyint->phyint_lock);
13794 		return (ipif);
13795 	}
13796 	ipif->ipif_mtu = ill->ill_max_mtu;
13797 
13798 	if (ill->ill_bcast_addr_length != 0) {
13799 		/*
13800 		 * Later detect lack of DLPI driver multicast
13801 		 * capability by catching DL_ENABMULTI errors in
13802 		 * ip_rput_dlpi.
13803 		 */
13804 		ill->ill_flags |= ILLF_MULTICAST;
13805 		if (!ipif->ipif_isv6)
13806 			ipif->ipif_flags |= IPIF_BROADCAST;
13807 	} else {
13808 		if (ill->ill_net_type != IRE_LOOPBACK) {
13809 			if (ipif->ipif_isv6)
13810 				/*
13811 				 * Note: xresolv interfaces will eventually need
13812 				 * NOARP set here as well, but that will require
13813 				 * those external resolvers to have some
13814 				 * knowledge of that flag and act appropriately.
13815 				 * Not to be changed at present.
13816 				 */
13817 				ill->ill_flags |= ILLF_NONUD;
13818 			else
13819 				ill->ill_flags |= ILLF_NOARP;
13820 		}
13821 		if (ill->ill_phys_addr_length == 0) {
13822 			if (ill->ill_media &&
13823 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13824 				ipif->ipif_flags |= IPIF_NOXMIT;
13825 				phyi->phyint_flags |= PHYI_VIRTUAL;
13826 			} else {
13827 				/* pt-pt supports multicast. */
13828 				ill->ill_flags |= ILLF_MULTICAST;
13829 				if (ill->ill_net_type == IRE_LOOPBACK) {
13830 					phyi->phyint_flags |=
13831 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13832 				} else {
13833 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13834 				}
13835 			}
13836 		}
13837 	}
13838 	mutex_exit(&ill->ill_lock);
13839 	mutex_exit(&ill->ill_phyint->phyint_lock);
13840 	return (ipif);
13841 }
13842 
13843 /*
13844  * If appropriate, send a message up to the resolver delete the entry
13845  * for the address of this interface which is going out of business.
13846  * (Always called as writer).
13847  *
13848  * NOTE : We need to check for NULL mps as some of the fields are
13849  *	  initialized only for some interface types. See ipif_resolver_up()
13850  *	  for details.
13851  */
13852 void
13853 ipif_arp_down(ipif_t *ipif)
13854 {
13855 	mblk_t	*mp;
13856 	ill_t	*ill = ipif->ipif_ill;
13857 
13858 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13859 	ASSERT(IAM_WRITER_IPIF(ipif));
13860 
13861 	/* Delete the mapping for the local address */
13862 	mp = ipif->ipif_arp_del_mp;
13863 	if (mp != NULL) {
13864 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13865 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13866 		putnext(ill->ill_rq, mp);
13867 		ipif->ipif_arp_del_mp = NULL;
13868 	}
13869 
13870 	/*
13871 	 * If this is the last ipif that is going down and there are no
13872 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13873 	 * clean up ARP completely.
13874 	 */
13875 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13876 
13877 		/* Send up AR_INTERFACE_DOWN message */
13878 		mp = ill->ill_arp_down_mp;
13879 		if (mp != NULL) {
13880 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13881 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13882 			    ipif->ipif_id));
13883 			putnext(ill->ill_rq, mp);
13884 			ill->ill_arp_down_mp = NULL;
13885 		}
13886 
13887 		/* Tell ARP to delete the multicast mappings */
13888 		mp = ill->ill_arp_del_mapping_mp;
13889 		if (mp != NULL) {
13890 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13891 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13892 			    ipif->ipif_id));
13893 			putnext(ill->ill_rq, mp);
13894 			ill->ill_arp_del_mapping_mp = NULL;
13895 		}
13896 	}
13897 }
13898 
13899 /*
13900  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13901  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13902  * that it wants the add_mp allocated in this function to be returned
13903  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13904  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13905  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13906  * as it does a ipif_arp_down after calling this function - which will
13907  * remove what we add here.
13908  *
13909  * Returns -1 on failures and 0 on success.
13910  */
13911 int
13912 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13913 {
13914 	mblk_t	*del_mp = NULL;
13915 	mblk_t *add_mp = NULL;
13916 	mblk_t *mp;
13917 	ill_t	*ill = ipif->ipif_ill;
13918 	phyint_t *phyi = ill->ill_phyint;
13919 	ipaddr_t addr, mask, extract_mask = 0;
13920 	arma_t	*arma;
13921 	uint8_t *maddr, *bphys_addr;
13922 	uint32_t hw_start;
13923 	dl_unitdata_req_t *dlur;
13924 
13925 	ASSERT(IAM_WRITER_IPIF(ipif));
13926 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13927 		return (0);
13928 
13929 	/*
13930 	 * Delete the existing mapping from ARP. Normally ipif_down
13931 	 * -> ipif_arp_down should send this up to ARP. The only
13932 	 * reason we would find this when we are switching from
13933 	 * Multicast to Broadcast where we did not do a down.
13934 	 */
13935 	mp = ill->ill_arp_del_mapping_mp;
13936 	if (mp != NULL) {
13937 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13938 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13939 		putnext(ill->ill_rq, mp);
13940 		ill->ill_arp_del_mapping_mp = NULL;
13941 	}
13942 
13943 	if (arp_add_mapping_mp != NULL)
13944 		*arp_add_mapping_mp = NULL;
13945 
13946 	/*
13947 	 * Check that the address is not to long for the constant
13948 	 * length reserved in the template arma_t.
13949 	 */
13950 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13951 		return (-1);
13952 
13953 	/* Add mapping mblk */
13954 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13955 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13956 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13957 	    (caddr_t)&addr);
13958 	if (add_mp == NULL)
13959 		return (-1);
13960 	arma = (arma_t *)add_mp->b_rptr;
13961 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13962 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13963 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13964 
13965 	/*
13966 	 * Determine the broadcast address.
13967 	 */
13968 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13969 	if (ill->ill_sap_length < 0)
13970 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13971 	else
13972 		bphys_addr = (uchar_t *)dlur +
13973 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13974 	/*
13975 	 * Check PHYI_MULTI_BCAST and length of physical
13976 	 * address to determine if we use the mapping or the
13977 	 * broadcast address.
13978 	 */
13979 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13980 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13981 		    bphys_addr, maddr, &hw_start, &extract_mask))
13982 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13983 
13984 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13985 	    (ill->ill_flags & ILLF_MULTICAST)) {
13986 		/* Make sure this will not match the "exact" entry. */
13987 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13988 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13989 		    (caddr_t)&addr);
13990 		if (del_mp == NULL) {
13991 			freemsg(add_mp);
13992 			return (-1);
13993 		}
13994 		bcopy(&extract_mask, (char *)arma +
13995 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13996 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13997 			/* Use link-layer broadcast address for MULTI_BCAST */
13998 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13999 			ip2dbg(("ipif_arp_setup_multicast: adding"
14000 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
14001 		} else {
14002 			arma->arma_hw_mapping_start = hw_start;
14003 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
14004 			    " ARP setup for %s\n", ill->ill_name));
14005 		}
14006 	} else {
14007 		freemsg(add_mp);
14008 		ASSERT(del_mp == NULL);
14009 		/* It is neither MULTICAST nor MULTI_BCAST */
14010 		return (0);
14011 	}
14012 	ASSERT(add_mp != NULL && del_mp != NULL);
14013 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
14014 	ill->ill_arp_del_mapping_mp = del_mp;
14015 	if (arp_add_mapping_mp != NULL) {
14016 		/* The caller just wants the mblks allocated */
14017 		*arp_add_mapping_mp = add_mp;
14018 	} else {
14019 		/* The caller wants us to send it to arp */
14020 		putnext(ill->ill_rq, add_mp);
14021 	}
14022 	return (0);
14023 }
14024 
14025 /*
14026  * Get the resolver set up for a new interface address.
14027  * (Always called as writer.)
14028  * Called both for IPv4 and IPv6 interfaces,
14029  * though it only sets up the resolver for v6
14030  * if it's an xresolv interface (one using an external resolver).
14031  * Honors ILLF_NOARP.
14032  * The enumerated value res_act is used to tune the behavior.
14033  * If set to Res_act_initial, then we set up all the resolver
14034  * structures for a new interface.  If set to Res_act_move, then
14035  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
14036  * interfaces; this is called by ip_rput_dlpi_writer() to handle
14037  * asynchronous hardware address change notification.  If set to
14038  * Res_act_defend, then we tell ARP that it needs to send a single
14039  * gratuitous message in defense of the address.
14040  * Returns error on failure.
14041  */
14042 int
14043 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
14044 {
14045 	caddr_t	addr;
14046 	mblk_t	*arp_up_mp = NULL;
14047 	mblk_t	*arp_down_mp = NULL;
14048 	mblk_t	*arp_add_mp = NULL;
14049 	mblk_t	*arp_del_mp = NULL;
14050 	mblk_t	*arp_add_mapping_mp = NULL;
14051 	mblk_t	*arp_del_mapping_mp = NULL;
14052 	ill_t	*ill = ipif->ipif_ill;
14053 	uchar_t	*area_p = NULL;
14054 	uchar_t	*ared_p = NULL;
14055 	int	err = ENOMEM;
14056 	boolean_t was_dup;
14057 
14058 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
14059 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
14060 	ASSERT(IAM_WRITER_IPIF(ipif));
14061 
14062 	was_dup = B_FALSE;
14063 	if (res_act == Res_act_initial) {
14064 		ipif->ipif_addr_ready = 0;
14065 		/*
14066 		 * We're bringing an interface up here.  There's no way that we
14067 		 * should need to shut down ARP now.
14068 		 */
14069 		mutex_enter(&ill->ill_lock);
14070 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
14071 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
14072 			ill->ill_ipif_dup_count--;
14073 			was_dup = B_TRUE;
14074 		}
14075 		mutex_exit(&ill->ill_lock);
14076 	}
14077 	if (ipif->ipif_recovery_id != 0)
14078 		(void) untimeout(ipif->ipif_recovery_id);
14079 	ipif->ipif_recovery_id = 0;
14080 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
14081 		ipif->ipif_addr_ready = 1;
14082 		return (0);
14083 	}
14084 	/* NDP will set the ipif_addr_ready flag when it's ready */
14085 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
14086 		return (0);
14087 
14088 	if (ill->ill_isv6) {
14089 		/*
14090 		 * External resolver for IPv6
14091 		 */
14092 		ASSERT(res_act == Res_act_initial);
14093 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
14094 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
14095 			area_p = (uchar_t *)&ip6_area_template;
14096 			ared_p = (uchar_t *)&ip6_ared_template;
14097 		}
14098 	} else {
14099 		/*
14100 		 * IPv4 arp case. If the ARP stream has already started
14101 		 * closing, fail this request for ARP bringup. Else
14102 		 * record the fact that an ARP bringup is pending.
14103 		 */
14104 		mutex_enter(&ill->ill_lock);
14105 		if (ill->ill_arp_closing) {
14106 			mutex_exit(&ill->ill_lock);
14107 			err = EINVAL;
14108 			goto failed;
14109 		} else {
14110 			if (ill->ill_ipif_up_count == 0 &&
14111 			    ill->ill_ipif_dup_count == 0 && !was_dup)
14112 				ill->ill_arp_bringup_pending = 1;
14113 			mutex_exit(&ill->ill_lock);
14114 		}
14115 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
14116 			addr = (caddr_t)&ipif->ipif_lcl_addr;
14117 			area_p = (uchar_t *)&ip_area_template;
14118 			ared_p = (uchar_t *)&ip_ared_template;
14119 		}
14120 	}
14121 
14122 	/*
14123 	 * Add an entry for the local address in ARP only if it
14124 	 * is not UNNUMBERED and the address is not INADDR_ANY.
14125 	 */
14126 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
14127 		area_t *area;
14128 
14129 		/* Now ask ARP to publish our address. */
14130 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
14131 		if (arp_add_mp == NULL)
14132 			goto failed;
14133 		area = (area_t *)arp_add_mp->b_rptr;
14134 		if (res_act != Res_act_initial) {
14135 			/*
14136 			 * Copy the new hardware address and length into
14137 			 * arp_add_mp to be sent to ARP.
14138 			 */
14139 			area->area_hw_addr_length = ill->ill_phys_addr_length;
14140 			bcopy(ill->ill_phys_addr,
14141 			    ((char *)area + area->area_hw_addr_offset),
14142 			    area->area_hw_addr_length);
14143 		}
14144 
14145 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
14146 		    ACE_F_MYADDR;
14147 
14148 		if (res_act == Res_act_defend) {
14149 			area->area_flags |= ACE_F_DEFEND;
14150 			/*
14151 			 * If we're just defending our address now, then
14152 			 * there's no need to set up ARP multicast mappings.
14153 			 * The publish command is enough.
14154 			 */
14155 			goto done;
14156 		}
14157 
14158 		if (res_act != Res_act_initial)
14159 			goto arp_setup_multicast;
14160 
14161 		/*
14162 		 * Allocate an ARP deletion message so we know we can tell ARP
14163 		 * when the interface goes down.
14164 		 */
14165 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
14166 		if (arp_del_mp == NULL)
14167 			goto failed;
14168 
14169 	} else {
14170 		if (res_act != Res_act_initial)
14171 			goto done;
14172 	}
14173 	/*
14174 	 * Need to bring up ARP or setup multicast mapping only
14175 	 * when the first interface is coming UP.
14176 	 */
14177 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
14178 	    was_dup) {
14179 		goto done;
14180 	}
14181 
14182 	/*
14183 	 * Allocate an ARP down message (to be saved) and an ARP up
14184 	 * message.
14185 	 */
14186 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
14187 	if (arp_down_mp == NULL)
14188 		goto failed;
14189 
14190 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
14191 	if (arp_up_mp == NULL)
14192 		goto failed;
14193 
14194 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
14195 		goto done;
14196 
14197 arp_setup_multicast:
14198 	/*
14199 	 * Setup the multicast mappings. This function initializes
14200 	 * ill_arp_del_mapping_mp also. This does not need to be done for
14201 	 * IPv6.
14202 	 */
14203 	if (!ill->ill_isv6) {
14204 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
14205 		if (err != 0)
14206 			goto failed;
14207 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
14208 		ASSERT(arp_add_mapping_mp != NULL);
14209 	}
14210 
14211 done:
14212 	if (arp_del_mp != NULL) {
14213 		ASSERT(ipif->ipif_arp_del_mp == NULL);
14214 		ipif->ipif_arp_del_mp = arp_del_mp;
14215 	}
14216 	if (arp_down_mp != NULL) {
14217 		ASSERT(ill->ill_arp_down_mp == NULL);
14218 		ill->ill_arp_down_mp = arp_down_mp;
14219 	}
14220 	if (arp_del_mapping_mp != NULL) {
14221 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
14222 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
14223 	}
14224 	if (arp_up_mp != NULL) {
14225 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
14226 		    ill->ill_name, ipif->ipif_id));
14227 		putnext(ill->ill_rq, arp_up_mp);
14228 	}
14229 	if (arp_add_mp != NULL) {
14230 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
14231 		    ill->ill_name, ipif->ipif_id));
14232 		/*
14233 		 * If it's an extended ARP implementation, then we'll wait to
14234 		 * hear that DAD has finished before using the interface.
14235 		 */
14236 		if (!ill->ill_arp_extend)
14237 			ipif->ipif_addr_ready = 1;
14238 		putnext(ill->ill_rq, arp_add_mp);
14239 	} else {
14240 		ipif->ipif_addr_ready = 1;
14241 	}
14242 	if (arp_add_mapping_mp != NULL) {
14243 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
14244 		    ill->ill_name, ipif->ipif_id));
14245 		putnext(ill->ill_rq, arp_add_mapping_mp);
14246 	}
14247 	if (res_act != Res_act_initial)
14248 		return (0);
14249 
14250 	if (ill->ill_flags & ILLF_NOARP)
14251 		err = ill_arp_off(ill);
14252 	else
14253 		err = ill_arp_on(ill);
14254 	if (err != 0) {
14255 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
14256 		freemsg(ipif->ipif_arp_del_mp);
14257 		freemsg(ill->ill_arp_down_mp);
14258 		freemsg(ill->ill_arp_del_mapping_mp);
14259 		ipif->ipif_arp_del_mp = NULL;
14260 		ill->ill_arp_down_mp = NULL;
14261 		ill->ill_arp_del_mapping_mp = NULL;
14262 		return (err);
14263 	}
14264 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
14265 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
14266 
14267 failed:
14268 	ip1dbg(("ipif_resolver_up: FAILED\n"));
14269 	freemsg(arp_add_mp);
14270 	freemsg(arp_del_mp);
14271 	freemsg(arp_add_mapping_mp);
14272 	freemsg(arp_up_mp);
14273 	freemsg(arp_down_mp);
14274 	ill->ill_arp_bringup_pending = 0;
14275 	return (err);
14276 }
14277 
14278 /*
14279  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
14280  * just gone back up.
14281  */
14282 static void
14283 ipif_arp_start_dad(ipif_t *ipif)
14284 {
14285 	ill_t *ill = ipif->ipif_ill;
14286 	mblk_t *arp_add_mp;
14287 	area_t *area;
14288 
14289 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
14290 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14291 	    ipif->ipif_lcl_addr == INADDR_ANY ||
14292 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
14293 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
14294 		/*
14295 		 * If we can't contact ARP for some reason, that's not really a
14296 		 * problem.  Just send out the routing socket notification that
14297 		 * DAD completion would have done, and continue.
14298 		 */
14299 		ipif_mask_reply(ipif);
14300 		ip_rts_ifmsg(ipif);
14301 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14302 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14303 		ipif->ipif_addr_ready = 1;
14304 		return;
14305 	}
14306 
14307 	/* Setting the 'unverified' flag restarts DAD */
14308 	area = (area_t *)arp_add_mp->b_rptr;
14309 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
14310 	    ACE_F_UNVERIFIED;
14311 	putnext(ill->ill_rq, arp_add_mp);
14312 }
14313 
14314 static void
14315 ipif_ndp_start_dad(ipif_t *ipif)
14316 {
14317 	nce_t *nce;
14318 
14319 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
14320 	if (nce == NULL)
14321 		return;
14322 
14323 	if (!ndp_restart_dad(nce)) {
14324 		/*
14325 		 * If we can't restart DAD for some reason, that's not really a
14326 		 * problem.  Just send out the routing socket notification that
14327 		 * DAD completion would have done, and continue.
14328 		 */
14329 		ip_rts_ifmsg(ipif);
14330 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14331 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14332 		ipif->ipif_addr_ready = 1;
14333 	}
14334 	NCE_REFRELE(nce);
14335 }
14336 
14337 /*
14338  * Restart duplicate address detection on all interfaces on the given ill.
14339  *
14340  * This is called when an interface transitions from down to up
14341  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
14342  *
14343  * Note that since the underlying physical link has transitioned, we must cause
14344  * at least one routing socket message to be sent here, either via DAD
14345  * completion or just by default on the first ipif.  (If we don't do this, then
14346  * in.mpathd will see long delays when doing link-based failure recovery.)
14347  */
14348 void
14349 ill_restart_dad(ill_t *ill, boolean_t went_up)
14350 {
14351 	ipif_t *ipif;
14352 
14353 	if (ill == NULL)
14354 		return;
14355 
14356 	/*
14357 	 * If layer two doesn't support duplicate address detection, then just
14358 	 * send the routing socket message now and be done with it.
14359 	 */
14360 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14361 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14362 		ip_rts_ifmsg(ill->ill_ipif);
14363 		return;
14364 	}
14365 
14366 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14367 		if (went_up) {
14368 			if (ipif->ipif_flags & IPIF_UP) {
14369 				if (ill->ill_isv6)
14370 					ipif_ndp_start_dad(ipif);
14371 				else
14372 					ipif_arp_start_dad(ipif);
14373 			} else if (ill->ill_isv6 &&
14374 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14375 				/*
14376 				 * For IPv4, the ARP module itself will
14377 				 * automatically start the DAD process when it
14378 				 * sees DL_NOTE_LINK_UP.  We respond to the
14379 				 * AR_CN_READY at the completion of that task.
14380 				 * For IPv6, we must kick off the bring-up
14381 				 * process now.
14382 				 */
14383 				ndp_do_recovery(ipif);
14384 			} else {
14385 				/*
14386 				 * Unfortunately, the first ipif is "special"
14387 				 * and represents the underlying ill in the
14388 				 * routing socket messages.  Thus, when this
14389 				 * one ipif is down, we must still notify so
14390 				 * that the user knows the IFF_RUNNING status
14391 				 * change.  (If the first ipif is up, then
14392 				 * we'll handle eventual routing socket
14393 				 * notification via DAD completion.)
14394 				 */
14395 				if (ipif == ill->ill_ipif)
14396 					ip_rts_ifmsg(ill->ill_ipif);
14397 			}
14398 		} else {
14399 			/*
14400 			 * After link down, we'll need to send a new routing
14401 			 * message when the link comes back, so clear
14402 			 * ipif_addr_ready.
14403 			 */
14404 			ipif->ipif_addr_ready = 0;
14405 		}
14406 	}
14407 
14408 	/*
14409 	 * If we've torn down links, then notify the user right away.
14410 	 */
14411 	if (!went_up)
14412 		ip_rts_ifmsg(ill->ill_ipif);
14413 }
14414 
14415 /*
14416  * Wakeup all threads waiting to enter the ipsq, and sleeping
14417  * on any of the ills in this ipsq. The ill_lock of the ill
14418  * must be held so that waiters don't miss wakeups
14419  */
14420 static void
14421 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14422 {
14423 	phyint_t *phyint;
14424 
14425 	phyint = ipsq->ipsq_phyint_list;
14426 	while (phyint != NULL) {
14427 		if (phyint->phyint_illv4) {
14428 			if (!caller_holds_lock)
14429 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14430 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14431 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14432 			if (!caller_holds_lock)
14433 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14434 		}
14435 		if (phyint->phyint_illv6) {
14436 			if (!caller_holds_lock)
14437 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14438 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14439 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14440 			if (!caller_holds_lock)
14441 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14442 		}
14443 		phyint = phyint->phyint_ipsq_next;
14444 	}
14445 }
14446 
14447 static ipsq_t *
14448 ipsq_create(char *groupname, ip_stack_t *ipst)
14449 {
14450 	ipsq_t	*ipsq;
14451 
14452 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14453 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14454 	if (ipsq == NULL) {
14455 		return (NULL);
14456 	}
14457 
14458 	if (groupname != NULL)
14459 		(void) strcpy(ipsq->ipsq_name, groupname);
14460 	else
14461 		ipsq->ipsq_name[0] = '\0';
14462 
14463 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14464 	ipsq->ipsq_flags |= IPSQ_GROUP;
14465 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14466 	ipst->ips_ipsq_g_head = ipsq;
14467 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14468 	return (ipsq);
14469 }
14470 
14471 /*
14472  * Return an ipsq correspoding to the groupname. If 'create' is true
14473  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14474  * uniquely with an IPMP group. However during IPMP groupname operations,
14475  * multiple IPMP groups may be associated with a single ipsq. But no
14476  * IPMP group can be associated with more than 1 ipsq at any time.
14477  * For example
14478  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14479  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14480  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14481  *
14482  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14483  * status shown below during the execution of the above command.
14484  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14485  *
14486  * After the completion of the above groupname command we return to the stable
14487  * state shown below.
14488  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14489  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14490  *
14491  * Because of the above, we don't search based on the ipsq_name since that
14492  * would miss the correct ipsq during certain windows as shown above.
14493  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14494  * natural state.
14495  */
14496 static ipsq_t *
14497 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14498     ip_stack_t *ipst)
14499 {
14500 	ipsq_t	*ipsq;
14501 	int	group_len;
14502 	phyint_t *phyint;
14503 
14504 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14505 
14506 	group_len = strlen(groupname);
14507 	ASSERT(group_len != 0);
14508 	group_len++;
14509 
14510 	for (ipsq = ipst->ips_ipsq_g_head;
14511 	    ipsq != NULL;
14512 	    ipsq = ipsq->ipsq_next) {
14513 		/*
14514 		 * When an ipsq is being split, and ill_split_ipsq
14515 		 * calls this function, we exclude it from being considered.
14516 		 */
14517 		if (ipsq == exclude_ipsq)
14518 			continue;
14519 
14520 		/*
14521 		 * Compare against the ipsq_name. The groupname change happens
14522 		 * in 2 phases. The 1st phase merges the from group into
14523 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14524 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14525 		 * ipsq_name. At this point the phyint_groupname has not been
14526 		 * updated.
14527 		 */
14528 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14529 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14530 			/*
14531 			 * Verify that an ipmp groupname is exactly
14532 			 * part of 1 ipsq and is not found in any other
14533 			 * ipsq.
14534 			 */
14535 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14536 			    NULL);
14537 			return (ipsq);
14538 		}
14539 
14540 		/*
14541 		 * Comparison against ipsq_name alone is not sufficient.
14542 		 * In the case when groups are currently being
14543 		 * merged, the ipsq could hold other IPMP groups temporarily.
14544 		 * so we walk the phyint list and compare against the
14545 		 * phyint_groupname as well.
14546 		 */
14547 		phyint = ipsq->ipsq_phyint_list;
14548 		while (phyint != NULL) {
14549 			if ((group_len == phyint->phyint_groupname_len) &&
14550 			    (bcmp(phyint->phyint_groupname, groupname,
14551 			    group_len) == 0)) {
14552 				/*
14553 				 * Verify that an ipmp groupname is exactly
14554 				 * part of 1 ipsq and is not found in any other
14555 				 * ipsq.
14556 				 */
14557 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14558 				    ipst) == NULL);
14559 				return (ipsq);
14560 			}
14561 			phyint = phyint->phyint_ipsq_next;
14562 		}
14563 	}
14564 	if (create)
14565 		ipsq = ipsq_create(groupname, ipst);
14566 	return (ipsq);
14567 }
14568 
14569 static void
14570 ipsq_delete(ipsq_t *ipsq)
14571 {
14572 	ipsq_t *nipsq;
14573 	ipsq_t *pipsq = NULL;
14574 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14575 
14576 	/*
14577 	 * We don't hold the ipsq lock, but we are sure no new
14578 	 * messages can land up, since the ipsq_refs is zero.
14579 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14580 	 * is associated with this ipsq. (Lookups are based on ill_name
14581 	 * or phyint_groupname)
14582 	 */
14583 	ASSERT(ipsq->ipsq_refs == 0);
14584 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14585 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14586 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14587 		/*
14588 		 * This is not the ipsq of an IPMP group.
14589 		 */
14590 		ipsq->ipsq_ipst = NULL;
14591 		kmem_free(ipsq, sizeof (ipsq_t));
14592 		return;
14593 	}
14594 
14595 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14596 
14597 	/*
14598 	 * Locate the ipsq  before we can remove it from
14599 	 * the singly linked list of ipsq's.
14600 	 */
14601 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14602 	    nipsq = nipsq->ipsq_next) {
14603 		if (nipsq == ipsq) {
14604 			break;
14605 		}
14606 		pipsq = nipsq;
14607 	}
14608 
14609 	ASSERT(nipsq == ipsq);
14610 
14611 	/* unlink ipsq from the list */
14612 	if (pipsq != NULL)
14613 		pipsq->ipsq_next = ipsq->ipsq_next;
14614 	else
14615 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14616 	ipsq->ipsq_ipst = NULL;
14617 	kmem_free(ipsq, sizeof (ipsq_t));
14618 	rw_exit(&ipst->ips_ill_g_lock);
14619 }
14620 
14621 static void
14622 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14623     queue_t *q)
14624 {
14625 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14626 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14627 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14628 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14629 	ASSERT(current_mp != NULL);
14630 
14631 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14632 	    NEW_OP, NULL);
14633 
14634 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14635 	    new_ipsq->ipsq_xopq_mphead != NULL);
14636 
14637 	/*
14638 	 * move from old ipsq to the new ipsq.
14639 	 */
14640 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14641 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14642 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14643 
14644 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14645 }
14646 
14647 void
14648 ill_group_cleanup(ill_t *ill)
14649 {
14650 	ill_t *ill_v4;
14651 	ill_t *ill_v6;
14652 	ipif_t *ipif;
14653 
14654 	ill_v4 = ill->ill_phyint->phyint_illv4;
14655 	ill_v6 = ill->ill_phyint->phyint_illv6;
14656 
14657 	if (ill_v4 != NULL) {
14658 		mutex_enter(&ill_v4->ill_lock);
14659 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14660 		    ipif = ipif->ipif_next) {
14661 			IPIF_UNMARK_MOVING(ipif);
14662 		}
14663 		ill_v4->ill_up_ipifs = B_FALSE;
14664 		mutex_exit(&ill_v4->ill_lock);
14665 	}
14666 
14667 	if (ill_v6 != NULL) {
14668 		mutex_enter(&ill_v6->ill_lock);
14669 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14670 		    ipif = ipif->ipif_next) {
14671 			IPIF_UNMARK_MOVING(ipif);
14672 		}
14673 		ill_v6->ill_up_ipifs = B_FALSE;
14674 		mutex_exit(&ill_v6->ill_lock);
14675 	}
14676 }
14677 /*
14678  * This function is called when an ill has had a change in its group status
14679  * to bring up all the ipifs that were up before the change.
14680  */
14681 int
14682 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14683 {
14684 	ipif_t *ipif;
14685 	ill_t *ill_v4;
14686 	ill_t *ill_v6;
14687 	ill_t *from_ill;
14688 	int err = 0;
14689 
14690 
14691 	ASSERT(IAM_WRITER_ILL(ill));
14692 
14693 	/*
14694 	 * Except for ipif_state_flags and ill_state_flags the other
14695 	 * fields of the ipif/ill that are modified below are protected
14696 	 * implicitly since we are a writer. We would have tried to down
14697 	 * even an ipif that was already down, in ill_down_ipifs. So we
14698 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14699 	 */
14700 	ill_v4 = ill->ill_phyint->phyint_illv4;
14701 	ill_v6 = ill->ill_phyint->phyint_illv6;
14702 	if (ill_v4 != NULL) {
14703 		ill_v4->ill_up_ipifs = B_TRUE;
14704 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14705 		    ipif = ipif->ipif_next) {
14706 			mutex_enter(&ill_v4->ill_lock);
14707 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14708 			IPIF_UNMARK_MOVING(ipif);
14709 			mutex_exit(&ill_v4->ill_lock);
14710 			if (ipif->ipif_was_up) {
14711 				if (!(ipif->ipif_flags & IPIF_UP))
14712 					err = ipif_up(ipif, q, mp);
14713 				ipif->ipif_was_up = B_FALSE;
14714 				if (err != 0) {
14715 					/*
14716 					 * Can there be any other error ?
14717 					 */
14718 					ASSERT(err == EINPROGRESS);
14719 					return (err);
14720 				}
14721 			}
14722 		}
14723 		mutex_enter(&ill_v4->ill_lock);
14724 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14725 		mutex_exit(&ill_v4->ill_lock);
14726 		ill_v4->ill_up_ipifs = B_FALSE;
14727 		if (ill_v4->ill_move_in_progress) {
14728 			ASSERT(ill_v4->ill_move_peer != NULL);
14729 			ill_v4->ill_move_in_progress = B_FALSE;
14730 			from_ill = ill_v4->ill_move_peer;
14731 			from_ill->ill_move_in_progress = B_FALSE;
14732 			from_ill->ill_move_peer = NULL;
14733 			mutex_enter(&from_ill->ill_lock);
14734 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14735 			mutex_exit(&from_ill->ill_lock);
14736 			if (ill_v6 == NULL) {
14737 				if (from_ill->ill_phyint->phyint_flags &
14738 				    PHYI_STANDBY) {
14739 					phyint_inactive(from_ill->ill_phyint);
14740 				}
14741 				if (ill_v4->ill_phyint->phyint_flags &
14742 				    PHYI_STANDBY) {
14743 					phyint_inactive(ill_v4->ill_phyint);
14744 				}
14745 			}
14746 			ill_v4->ill_move_peer = NULL;
14747 		}
14748 	}
14749 
14750 	if (ill_v6 != NULL) {
14751 		ill_v6->ill_up_ipifs = B_TRUE;
14752 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14753 		    ipif = ipif->ipif_next) {
14754 			mutex_enter(&ill_v6->ill_lock);
14755 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14756 			IPIF_UNMARK_MOVING(ipif);
14757 			mutex_exit(&ill_v6->ill_lock);
14758 			if (ipif->ipif_was_up) {
14759 				if (!(ipif->ipif_flags & IPIF_UP))
14760 					err = ipif_up(ipif, q, mp);
14761 				ipif->ipif_was_up = B_FALSE;
14762 				if (err != 0) {
14763 					/*
14764 					 * Can there be any other error ?
14765 					 */
14766 					ASSERT(err == EINPROGRESS);
14767 					return (err);
14768 				}
14769 			}
14770 		}
14771 		mutex_enter(&ill_v6->ill_lock);
14772 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14773 		mutex_exit(&ill_v6->ill_lock);
14774 		ill_v6->ill_up_ipifs = B_FALSE;
14775 		if (ill_v6->ill_move_in_progress) {
14776 			ASSERT(ill_v6->ill_move_peer != NULL);
14777 			ill_v6->ill_move_in_progress = B_FALSE;
14778 			from_ill = ill_v6->ill_move_peer;
14779 			from_ill->ill_move_in_progress = B_FALSE;
14780 			from_ill->ill_move_peer = NULL;
14781 			mutex_enter(&from_ill->ill_lock);
14782 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14783 			mutex_exit(&from_ill->ill_lock);
14784 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14785 				phyint_inactive(from_ill->ill_phyint);
14786 			}
14787 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14788 				phyint_inactive(ill_v6->ill_phyint);
14789 			}
14790 			ill_v6->ill_move_peer = NULL;
14791 		}
14792 	}
14793 	return (0);
14794 }
14795 
14796 /*
14797  * bring down all the approriate ipifs.
14798  */
14799 /* ARGSUSED */
14800 static void
14801 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14802 {
14803 	ipif_t *ipif;
14804 
14805 	ASSERT(IAM_WRITER_ILL(ill));
14806 
14807 	/*
14808 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14809 	 * are modified below are protected implicitly since we are a writer
14810 	 */
14811 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14812 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14813 			continue;
14814 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14815 			/*
14816 			 * We go through the ipif_down logic even if the ipif
14817 			 * is already down, since routes can be added based
14818 			 * on down ipifs. Going through ipif_down once again
14819 			 * will delete any IREs created based on these routes.
14820 			 */
14821 			if (ipif->ipif_flags & IPIF_UP)
14822 				ipif->ipif_was_up = B_TRUE;
14823 			/*
14824 			 * If called with chk_nofailover true ipif is moving.
14825 			 */
14826 			mutex_enter(&ill->ill_lock);
14827 			if (chk_nofailover) {
14828 				ipif->ipif_state_flags |=
14829 				    IPIF_MOVING | IPIF_CHANGING;
14830 			} else {
14831 				ipif->ipif_state_flags |= IPIF_CHANGING;
14832 			}
14833 			mutex_exit(&ill->ill_lock);
14834 			/*
14835 			 * Need to re-create net/subnet bcast ires if
14836 			 * they are dependent on ipif.
14837 			 */
14838 			if (!ipif->ipif_isv6)
14839 				ipif_check_bcast_ires(ipif);
14840 			(void) ipif_logical_down(ipif, NULL, NULL);
14841 			ipif_non_duplicate(ipif);
14842 			ipif_down_tail(ipif);
14843 			/*
14844 			 * We don't do ipif_multicast_down for IPv4 in
14845 			 * ipif_down. We need to set this so that
14846 			 * ipif_multicast_up will join the
14847 			 * ALLHOSTS_GROUP on to_ill.
14848 			 */
14849 			ipif->ipif_multicast_up = B_FALSE;
14850 		}
14851 	}
14852 }
14853 
14854 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14855 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14856 	(ipsq)->ipsq_refs++;				\
14857 }
14858 
14859 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14860 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14861 	(ipsq)->ipsq_refs--;				\
14862 	if ((ipsq)->ipsq_refs == 0)				\
14863 		(ipsq)->ipsq_name[0] = '\0'; 		\
14864 }
14865 
14866 /*
14867  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14868  * new_ipsq.
14869  */
14870 static void
14871 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14872 {
14873 	phyint_t *phyint;
14874 	phyint_t *next_phyint;
14875 
14876 	/*
14877 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14878 	 * writer and the ill_lock of the ill in question. Also the dest
14879 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14880 	 */
14881 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14882 
14883 	phyint = cur_ipsq->ipsq_phyint_list;
14884 	cur_ipsq->ipsq_phyint_list = NULL;
14885 	while (phyint != NULL) {
14886 		next_phyint = phyint->phyint_ipsq_next;
14887 		IPSQ_DEC_REF(cur_ipsq, ipst);
14888 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14889 		new_ipsq->ipsq_phyint_list = phyint;
14890 		IPSQ_INC_REF(new_ipsq, ipst);
14891 		phyint->phyint_ipsq = new_ipsq;
14892 		phyint = next_phyint;
14893 	}
14894 }
14895 
14896 #define	SPLIT_SUCCESS		0
14897 #define	SPLIT_NOT_NEEDED	1
14898 #define	SPLIT_FAILED		2
14899 
14900 int
14901 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14902     ip_stack_t *ipst)
14903 {
14904 	ipsq_t *newipsq = NULL;
14905 
14906 	/*
14907 	 * Assertions denote pre-requisites for changing the ipsq of
14908 	 * a phyint
14909 	 */
14910 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14911 	/*
14912 	 * <ill-phyint> assocs can't change while ill_g_lock
14913 	 * is held as writer. See ill_phyint_reinit()
14914 	 */
14915 	ASSERT(phyint->phyint_illv4 == NULL ||
14916 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14917 	ASSERT(phyint->phyint_illv6 == NULL ||
14918 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14919 
14920 	if ((phyint->phyint_groupname_len !=
14921 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14922 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14923 	    phyint->phyint_groupname_len) != 0)) {
14924 		/*
14925 		 * Once we fail in creating a new ipsq due to memory shortage,
14926 		 * don't attempt to create new ipsq again, based on another
14927 		 * phyint, since we want all phyints belonging to an IPMP group
14928 		 * to be in the same ipsq even in the event of mem alloc fails.
14929 		 */
14930 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14931 		    cur_ipsq, ipst);
14932 		if (newipsq == NULL) {
14933 			/* Memory allocation failure */
14934 			return (SPLIT_FAILED);
14935 		} else {
14936 			/* ipsq_refs protected by ill_g_lock (writer) */
14937 			IPSQ_DEC_REF(cur_ipsq, ipst);
14938 			phyint->phyint_ipsq = newipsq;
14939 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14940 			newipsq->ipsq_phyint_list = phyint;
14941 			IPSQ_INC_REF(newipsq, ipst);
14942 			return (SPLIT_SUCCESS);
14943 		}
14944 	}
14945 	return (SPLIT_NOT_NEEDED);
14946 }
14947 
14948 /*
14949  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14950  * to do this split
14951  */
14952 static int
14953 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14954 {
14955 	ipsq_t *newipsq;
14956 
14957 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14958 	/*
14959 	 * <ill-phyint> assocs can't change while ill_g_lock
14960 	 * is held as writer. See ill_phyint_reinit()
14961 	 */
14962 
14963 	ASSERT(phyint->phyint_illv4 == NULL ||
14964 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14965 	ASSERT(phyint->phyint_illv6 == NULL ||
14966 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14967 
14968 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14969 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14970 		/*
14971 		 * ipsq_init failed due to no memory
14972 		 * caller will use the same ipsq
14973 		 */
14974 		return (SPLIT_FAILED);
14975 	}
14976 
14977 	/* ipsq_ref is protected by ill_g_lock (writer) */
14978 	IPSQ_DEC_REF(cur_ipsq, ipst);
14979 
14980 	/*
14981 	 * This is a new ipsq that is unknown to the world.
14982 	 * So we don't need to hold ipsq_lock,
14983 	 */
14984 	newipsq = phyint->phyint_ipsq;
14985 	newipsq->ipsq_writer = NULL;
14986 	newipsq->ipsq_reentry_cnt--;
14987 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14988 #ifdef ILL_DEBUG
14989 	newipsq->ipsq_depth = 0;
14990 #endif
14991 
14992 	return (SPLIT_SUCCESS);
14993 }
14994 
14995 /*
14996  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14997  * ipsq's representing their individual groups or themselves. Return
14998  * whether split needs to be retried again later.
14999  */
15000 static boolean_t
15001 ill_split_ipsq(ipsq_t *cur_ipsq)
15002 {
15003 	phyint_t *phyint;
15004 	phyint_t *next_phyint;
15005 	int	error;
15006 	boolean_t need_retry = B_FALSE;
15007 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
15008 
15009 	phyint = cur_ipsq->ipsq_phyint_list;
15010 	cur_ipsq->ipsq_phyint_list = NULL;
15011 	while (phyint != NULL) {
15012 		next_phyint = phyint->phyint_ipsq_next;
15013 		/*
15014 		 * 'created' will tell us whether the callee actually
15015 		 * created an ipsq. Lack of memory may force the callee
15016 		 * to return without creating an ipsq.
15017 		 */
15018 		if (phyint->phyint_groupname == NULL) {
15019 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
15020 		} else {
15021 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
15022 			    need_retry, ipst);
15023 		}
15024 
15025 		switch (error) {
15026 		case SPLIT_FAILED:
15027 			need_retry = B_TRUE;
15028 			/* FALLTHRU */
15029 		case SPLIT_NOT_NEEDED:
15030 			/*
15031 			 * Keep it on the list.
15032 			 */
15033 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
15034 			cur_ipsq->ipsq_phyint_list = phyint;
15035 			break;
15036 		case SPLIT_SUCCESS:
15037 			break;
15038 		default:
15039 			ASSERT(0);
15040 		}
15041 
15042 		phyint = next_phyint;
15043 	}
15044 	return (need_retry);
15045 }
15046 
15047 /*
15048  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
15049  * and return the ills in the list. This list will be
15050  * needed to unlock all the ills later on by the caller.
15051  * The <ill-ipsq> associations could change between the
15052  * lock and unlock. Hence the unlock can't traverse the
15053  * ipsq to get the list of ills.
15054  */
15055 static int
15056 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
15057 {
15058 	int	cnt = 0;
15059 	phyint_t	*phyint;
15060 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
15061 
15062 	/*
15063 	 * The caller holds ill_g_lock to ensure that the ill memberships
15064 	 * of the ipsq don't change
15065 	 */
15066 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
15067 
15068 	phyint = ipsq->ipsq_phyint_list;
15069 	while (phyint != NULL) {
15070 		if (phyint->phyint_illv4 != NULL) {
15071 			ASSERT(cnt < list_max);
15072 			list[cnt++] = phyint->phyint_illv4;
15073 		}
15074 		if (phyint->phyint_illv6 != NULL) {
15075 			ASSERT(cnt < list_max);
15076 			list[cnt++] = phyint->phyint_illv6;
15077 		}
15078 		phyint = phyint->phyint_ipsq_next;
15079 	}
15080 	ill_lock_ills(list, cnt);
15081 	return (cnt);
15082 }
15083 
15084 void
15085 ill_lock_ills(ill_t **list, int cnt)
15086 {
15087 	int	i;
15088 
15089 	if (cnt > 1) {
15090 		boolean_t try_again;
15091 		do {
15092 			try_again = B_FALSE;
15093 			for (i = 0; i < cnt - 1; i++) {
15094 				if (list[i] < list[i + 1]) {
15095 					ill_t	*tmp;
15096 
15097 					/* swap the elements */
15098 					tmp = list[i];
15099 					list[i] = list[i + 1];
15100 					list[i + 1] = tmp;
15101 					try_again = B_TRUE;
15102 				}
15103 			}
15104 		} while (try_again);
15105 	}
15106 
15107 	for (i = 0; i < cnt; i++) {
15108 		if (i == 0) {
15109 			if (list[i] != NULL)
15110 				mutex_enter(&list[i]->ill_lock);
15111 			else
15112 				return;
15113 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15114 			mutex_enter(&list[i]->ill_lock);
15115 		}
15116 	}
15117 }
15118 
15119 void
15120 ill_unlock_ills(ill_t **list, int cnt)
15121 {
15122 	int	i;
15123 
15124 	for (i = 0; i < cnt; i++) {
15125 		if ((i == 0) && (list[i] != NULL)) {
15126 			mutex_exit(&list[i]->ill_lock);
15127 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15128 			mutex_exit(&list[i]->ill_lock);
15129 		}
15130 	}
15131 }
15132 
15133 /*
15134  * Merge all the ills from 1 ipsq group into another ipsq group.
15135  * The source ipsq group is specified by the ipsq associated with
15136  * 'from_ill'. The destination ipsq group is specified by the ipsq
15137  * associated with 'to_ill' or 'groupname' respectively.
15138  * Note that ipsq itself does not have a reference count mechanism
15139  * and functions don't look up an ipsq and pass it around. Instead
15140  * functions pass around an ill or groupname, and the ipsq is looked
15141  * up from the ill or groupname and the required operation performed
15142  * atomically with the lookup on the ipsq.
15143  */
15144 static int
15145 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
15146     queue_t *q)
15147 {
15148 	ipsq_t *old_ipsq;
15149 	ipsq_t *new_ipsq;
15150 	ill_t	**ill_list;
15151 	int	cnt;
15152 	size_t	ill_list_size;
15153 	boolean_t became_writer_on_new_sq = B_FALSE;
15154 	ip_stack_t	*ipst = from_ill->ill_ipst;
15155 
15156 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
15157 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
15158 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
15159 
15160 	/*
15161 	 * Need to hold ill_g_lock as writer and also the ill_lock to
15162 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
15163 	 * ipsq_lock to prevent new messages from landing on an ipsq.
15164 	 */
15165 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15166 
15167 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
15168 	if (groupname != NULL)
15169 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
15170 	else {
15171 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
15172 	}
15173 
15174 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
15175 
15176 	/*
15177 	 * both groups are on the same ipsq.
15178 	 */
15179 	if (old_ipsq == new_ipsq) {
15180 		rw_exit(&ipst->ips_ill_g_lock);
15181 		return (0);
15182 	}
15183 
15184 	cnt = old_ipsq->ipsq_refs << 1;
15185 	ill_list_size = cnt * sizeof (ill_t *);
15186 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
15187 	if (ill_list == NULL) {
15188 		rw_exit(&ipst->ips_ill_g_lock);
15189 		return (ENOMEM);
15190 	}
15191 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
15192 
15193 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
15194 	mutex_enter(&new_ipsq->ipsq_lock);
15195 	if ((new_ipsq->ipsq_writer == NULL &&
15196 	    new_ipsq->ipsq_current_ipif == NULL) ||
15197 	    (new_ipsq->ipsq_writer == curthread)) {
15198 		new_ipsq->ipsq_writer = curthread;
15199 		new_ipsq->ipsq_reentry_cnt++;
15200 		became_writer_on_new_sq = B_TRUE;
15201 	}
15202 
15203 	/*
15204 	 * We are holding ill_g_lock as writer and all the ill locks of
15205 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
15206 	 * message can land up on the old ipsq even though we don't hold the
15207 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
15208 	 */
15209 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
15210 
15211 	/*
15212 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
15213 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
15214 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
15215 	 */
15216 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
15217 
15218 	/*
15219 	 * Mark the new ipsq as needing a split since it is currently
15220 	 * being shared by more than 1 IPMP group. The split will
15221 	 * occur at the end of ipsq_exit
15222 	 */
15223 	new_ipsq->ipsq_split = B_TRUE;
15224 
15225 	/* Now release all the locks */
15226 	mutex_exit(&new_ipsq->ipsq_lock);
15227 	ill_unlock_ills(ill_list, cnt);
15228 	rw_exit(&ipst->ips_ill_g_lock);
15229 
15230 	kmem_free(ill_list, ill_list_size);
15231 
15232 	/*
15233 	 * If we succeeded in becoming writer on the new ipsq, then
15234 	 * drain the new ipsq and start processing  all enqueued messages
15235 	 * including the current ioctl we are processing which is either
15236 	 * a set groupname or failover/failback.
15237 	 */
15238 	if (became_writer_on_new_sq)
15239 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
15240 
15241 	/*
15242 	 * syncq has been changed and all the messages have been moved.
15243 	 */
15244 	mutex_enter(&old_ipsq->ipsq_lock);
15245 	old_ipsq->ipsq_current_ipif = NULL;
15246 	old_ipsq->ipsq_current_ioctl = 0;
15247 	mutex_exit(&old_ipsq->ipsq_lock);
15248 	return (EINPROGRESS);
15249 }
15250 
15251 /*
15252  * Delete and add the loopback copy and non-loopback copy of
15253  * the BROADCAST ire corresponding to ill and addr. Used to
15254  * group broadcast ires together when ill becomes part of
15255  * a group.
15256  *
15257  * This function is also called when ill is leaving the group
15258  * so that the ires belonging to the group gets re-grouped.
15259  */
15260 static void
15261 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
15262 {
15263 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
15264 	ire_t **ire_ptpn = &ire_head;
15265 	ip_stack_t	*ipst = ill->ill_ipst;
15266 
15267 	/*
15268 	 * The loopback and non-loopback IREs are inserted in the order in which
15269 	 * they're found, on the basis that they are correctly ordered (loopback
15270 	 * first).
15271 	 */
15272 	for (;;) {
15273 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15274 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15275 		if (ire == NULL)
15276 			break;
15277 
15278 		/*
15279 		 * we are passing in KM_SLEEP because it is not easy to
15280 		 * go back to a sane state in case of memory failure.
15281 		 */
15282 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
15283 		ASSERT(nire != NULL);
15284 		bzero(nire, sizeof (ire_t));
15285 		/*
15286 		 * Don't use ire_max_frag directly since we don't
15287 		 * hold on to 'ire' until we add the new ire 'nire' and
15288 		 * we don't want the new ire to have a dangling reference
15289 		 * to 'ire'. The ire_max_frag of a broadcast ire must
15290 		 * be in sync with the ipif_mtu of the associate ipif.
15291 		 * For eg. this happens as a result of SIOCSLIFNAME,
15292 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
15293 		 * the driver. A change in ire_max_frag triggered as
15294 		 * as a result of path mtu discovery, or due to an
15295 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
15296 		 * route change -mtu command does not apply to broadcast ires.
15297 		 *
15298 		 * XXX We need a recovery strategy here if ire_init fails
15299 		 */
15300 		if (ire_init(nire,
15301 		    (uchar_t *)&ire->ire_addr,
15302 		    (uchar_t *)&ire->ire_mask,
15303 		    (uchar_t *)&ire->ire_src_addr,
15304 		    (uchar_t *)&ire->ire_gateway_addr,
15305 		    (uchar_t *)&ire->ire_in_src_addr,
15306 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
15307 		    &ire->ire_ipif->ipif_mtu,
15308 		    (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL),
15309 		    ire->ire_rfq,
15310 		    ire->ire_stq,
15311 		    ire->ire_type,
15312 		    (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL),
15313 		    ire->ire_ipif,
15314 		    ire->ire_in_ill,
15315 		    ire->ire_cmask,
15316 		    ire->ire_phandle,
15317 		    ire->ire_ihandle,
15318 		    ire->ire_flags,
15319 		    &ire->ire_uinfo,
15320 		    NULL,
15321 		    NULL,
15322 		    ipst) == NULL) {
15323 			cmn_err(CE_PANIC, "ire_init() failed");
15324 		}
15325 		ire_delete(ire);
15326 		ire_refrele(ire);
15327 
15328 		/*
15329 		 * The newly created IREs are inserted at the tail of the list
15330 		 * starting with ire_head. As we've just allocated them no one
15331 		 * knows about them so it's safe.
15332 		 */
15333 		*ire_ptpn = nire;
15334 		ire_ptpn = &nire->ire_next;
15335 	}
15336 
15337 	for (nire = ire_head; nire != NULL; nire = nire_next) {
15338 		int error;
15339 		ire_t *oire;
15340 		/* unlink the IRE from our list before calling ire_add() */
15341 		nire_next = nire->ire_next;
15342 		nire->ire_next = NULL;
15343 
15344 		/* ire_add adds the ire at the right place in the list */
15345 		oire = nire;
15346 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
15347 		ASSERT(error == 0);
15348 		ASSERT(oire == nire);
15349 		ire_refrele(nire);	/* Held in ire_add */
15350 	}
15351 }
15352 
15353 /*
15354  * This function is usually called when an ill is inserted in
15355  * a group and all the ipifs are already UP. As all the ipifs
15356  * are already UP, the broadcast ires have already been created
15357  * and been inserted. But, ire_add_v4 would not have grouped properly.
15358  * We need to re-group for the benefit of ip_wput_ire which
15359  * expects BROADCAST ires to be grouped properly to avoid sending
15360  * more than one copy of the broadcast packet per group.
15361  *
15362  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
15363  *	  because when ipif_up_done ends up calling this, ires have
15364  *        already been added before illgrp_insert i.e before ill_group
15365  *	  has been initialized.
15366  */
15367 static void
15368 ill_group_bcast_for_xmit(ill_t *ill)
15369 {
15370 	ill_group_t *illgrp;
15371 	ipif_t *ipif;
15372 	ipaddr_t addr;
15373 	ipaddr_t net_mask;
15374 	ipaddr_t subnet_netmask;
15375 
15376 	illgrp = ill->ill_group;
15377 
15378 	/*
15379 	 * This function is called even when an ill is deleted from
15380 	 * the group. Hence, illgrp could be null.
15381 	 */
15382 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15383 		return;
15384 
15385 	/*
15386 	 * Delete all the BROADCAST ires matching this ill and add
15387 	 * them back. This time, ire_add_v4 should take care of
15388 	 * grouping them with others because ill is part of the
15389 	 * group.
15390 	 */
15391 	ill_bcast_delete_and_add(ill, 0);
15392 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15393 
15394 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15395 
15396 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15397 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15398 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15399 		} else {
15400 			net_mask = htonl(IN_CLASSA_NET);
15401 		}
15402 		addr = net_mask & ipif->ipif_subnet;
15403 		ill_bcast_delete_and_add(ill, addr);
15404 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15405 
15406 		subnet_netmask = ipif->ipif_net_mask;
15407 		addr = ipif->ipif_subnet;
15408 		ill_bcast_delete_and_add(ill, addr);
15409 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15410 	}
15411 }
15412 
15413 /*
15414  * This function is called from illgrp_delete when ill is being deleted
15415  * from the group.
15416  *
15417  * As ill is not there in the group anymore, any address belonging
15418  * to this ill should be cleared of IRE_MARK_NORECV.
15419  */
15420 static void
15421 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15422 {
15423 	ire_t *ire;
15424 	irb_t *irb;
15425 	ip_stack_t	*ipst = ill->ill_ipst;
15426 
15427 	ASSERT(ill->ill_group == NULL);
15428 
15429 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15430 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15431 
15432 	if (ire != NULL) {
15433 		/*
15434 		 * IPMP and plumbing operations are serialized on the ipsq, so
15435 		 * no one will insert or delete a broadcast ire under our feet.
15436 		 */
15437 		irb = ire->ire_bucket;
15438 		rw_enter(&irb->irb_lock, RW_READER);
15439 		ire_refrele(ire);
15440 
15441 		for (; ire != NULL; ire = ire->ire_next) {
15442 			if (ire->ire_addr != addr)
15443 				break;
15444 			if (ire_to_ill(ire) != ill)
15445 				continue;
15446 
15447 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15448 			ire->ire_marks &= ~IRE_MARK_NORECV;
15449 		}
15450 		rw_exit(&irb->irb_lock);
15451 	}
15452 }
15453 
15454 /*
15455  * This function must be called only after the broadcast ires
15456  * have been grouped together. For a given address addr, nominate
15457  * only one of the ires whose interface is not FAILED or OFFLINE.
15458  *
15459  * This is also called when an ipif goes down, so that we can nominate
15460  * a different ire with the same address for receiving.
15461  */
15462 static void
15463 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15464 {
15465 	irb_t *irb;
15466 	ire_t *ire;
15467 	ire_t *ire1;
15468 	ire_t *save_ire;
15469 	ire_t **irep = NULL;
15470 	boolean_t first = B_TRUE;
15471 	ire_t *clear_ire = NULL;
15472 	ire_t *start_ire = NULL;
15473 	ire_t	*new_lb_ire;
15474 	ire_t	*new_nlb_ire;
15475 	boolean_t new_lb_ire_used = B_FALSE;
15476 	boolean_t new_nlb_ire_used = B_FALSE;
15477 	uint64_t match_flags;
15478 	uint64_t phyi_flags;
15479 	boolean_t fallback = B_FALSE;
15480 	uint_t	max_frag;
15481 
15482 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15483 	    NULL, MATCH_IRE_TYPE, ipst);
15484 	/*
15485 	 * We may not be able to find some ires if a previous
15486 	 * ire_create failed. This happens when an ipif goes
15487 	 * down and we are unable to create BROADCAST ires due
15488 	 * to memory failure. Thus, we have to check for NULL
15489 	 * below. This should handle the case for LOOPBACK,
15490 	 * POINTOPOINT and interfaces with some POINTOPOINT
15491 	 * logicals for which there are no BROADCAST ires.
15492 	 */
15493 	if (ire == NULL)
15494 		return;
15495 	/*
15496 	 * Currently IRE_BROADCASTS are deleted when an ipif
15497 	 * goes down which runs exclusively. Thus, setting
15498 	 * IRE_MARK_RCVD should not race with ire_delete marking
15499 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15500 	 * be consistent with other parts of the code that walks
15501 	 * a given bucket.
15502 	 */
15503 	save_ire = ire;
15504 	irb = ire->ire_bucket;
15505 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15506 	if (new_lb_ire == NULL) {
15507 		ire_refrele(ire);
15508 		return;
15509 	}
15510 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15511 	if (new_nlb_ire == NULL) {
15512 		ire_refrele(ire);
15513 		kmem_cache_free(ire_cache, new_lb_ire);
15514 		return;
15515 	}
15516 	IRB_REFHOLD(irb);
15517 	rw_enter(&irb->irb_lock, RW_WRITER);
15518 	/*
15519 	 * Get to the first ire matching the address and the
15520 	 * group. If the address does not match we are done
15521 	 * as we could not find the IRE. If the address matches
15522 	 * we should get to the first one matching the group.
15523 	 */
15524 	while (ire != NULL) {
15525 		if (ire->ire_addr != addr ||
15526 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15527 			break;
15528 		}
15529 		ire = ire->ire_next;
15530 	}
15531 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15532 	start_ire = ire;
15533 redo:
15534 	while (ire != NULL && ire->ire_addr == addr &&
15535 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15536 		/*
15537 		 * The first ire for any address within a group
15538 		 * should always be the one with IRE_MARK_NORECV cleared
15539 		 * so that ip_wput_ire can avoid searching for one.
15540 		 * Note down the insertion point which will be used
15541 		 * later.
15542 		 */
15543 		if (first && (irep == NULL))
15544 			irep = ire->ire_ptpn;
15545 		/*
15546 		 * PHYI_FAILED is set when the interface fails.
15547 		 * This interface might have become good, but the
15548 		 * daemon has not yet detected. We should still
15549 		 * not receive on this. PHYI_OFFLINE should never
15550 		 * be picked as this has been offlined and soon
15551 		 * be removed.
15552 		 */
15553 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15554 		if (phyi_flags & PHYI_OFFLINE) {
15555 			ire->ire_marks |= IRE_MARK_NORECV;
15556 			ire = ire->ire_next;
15557 			continue;
15558 		}
15559 		if (phyi_flags & match_flags) {
15560 			ire->ire_marks |= IRE_MARK_NORECV;
15561 			ire = ire->ire_next;
15562 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15563 			    PHYI_INACTIVE) {
15564 				fallback = B_TRUE;
15565 			}
15566 			continue;
15567 		}
15568 		if (first) {
15569 			/*
15570 			 * We will move this to the front of the list later
15571 			 * on.
15572 			 */
15573 			clear_ire = ire;
15574 			ire->ire_marks &= ~IRE_MARK_NORECV;
15575 		} else {
15576 			ire->ire_marks |= IRE_MARK_NORECV;
15577 		}
15578 		first = B_FALSE;
15579 		ire = ire->ire_next;
15580 	}
15581 	/*
15582 	 * If we never nominated anybody, try nominating at least
15583 	 * an INACTIVE, if we found one. Do it only once though.
15584 	 */
15585 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15586 	    fallback) {
15587 		match_flags = PHYI_FAILED;
15588 		ire = start_ire;
15589 		irep = NULL;
15590 		goto redo;
15591 	}
15592 	ire_refrele(save_ire);
15593 
15594 	/*
15595 	 * irep non-NULL indicates that we entered the while loop
15596 	 * above. If clear_ire is at the insertion point, we don't
15597 	 * have to do anything. clear_ire will be NULL if all the
15598 	 * interfaces are failed.
15599 	 *
15600 	 * We cannot unlink and reinsert the ire at the right place
15601 	 * in the list since there can be other walkers of this bucket.
15602 	 * Instead we delete and recreate the ire
15603 	 */
15604 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15605 		ire_t *clear_ire_stq = NULL;
15606 		mblk_t *fp_mp = NULL, *res_mp = NULL;
15607 
15608 		bzero(new_lb_ire, sizeof (ire_t));
15609 		if (clear_ire->ire_nce != NULL) {
15610 			fp_mp = clear_ire->ire_nce->nce_fp_mp;
15611 			res_mp = clear_ire->ire_nce->nce_res_mp;
15612 		}
15613 		/* XXX We need a recovery strategy here. */
15614 		if (ire_init(new_lb_ire,
15615 		    (uchar_t *)&clear_ire->ire_addr,
15616 		    (uchar_t *)&clear_ire->ire_mask,
15617 		    (uchar_t *)&clear_ire->ire_src_addr,
15618 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15619 		    (uchar_t *)&clear_ire->ire_in_src_addr,
15620 		    &clear_ire->ire_max_frag,
15621 		    fp_mp,
15622 		    clear_ire->ire_rfq,
15623 		    clear_ire->ire_stq,
15624 		    clear_ire->ire_type,
15625 		    res_mp,
15626 		    clear_ire->ire_ipif,
15627 		    clear_ire->ire_in_ill,
15628 		    clear_ire->ire_cmask,
15629 		    clear_ire->ire_phandle,
15630 		    clear_ire->ire_ihandle,
15631 		    clear_ire->ire_flags,
15632 		    &clear_ire->ire_uinfo,
15633 		    NULL,
15634 		    NULL,
15635 		    ipst) == NULL)
15636 			cmn_err(CE_PANIC, "ire_init() failed");
15637 		if (clear_ire->ire_stq == NULL) {
15638 			ire_t *ire_next = clear_ire->ire_next;
15639 			if (ire_next != NULL &&
15640 			    ire_next->ire_stq != NULL &&
15641 			    ire_next->ire_addr == clear_ire->ire_addr &&
15642 			    ire_next->ire_ipif->ipif_ill ==
15643 			    clear_ire->ire_ipif->ipif_ill) {
15644 				clear_ire_stq = ire_next;
15645 
15646 				bzero(new_nlb_ire, sizeof (ire_t));
15647 				if (clear_ire_stq->ire_nce != NULL) {
15648 					fp_mp =
15649 					    clear_ire_stq->ire_nce->nce_fp_mp;
15650 					res_mp =
15651 					    clear_ire_stq->ire_nce->nce_res_mp;
15652 				} else {
15653 					fp_mp = res_mp = NULL;
15654 				}
15655 				/* XXX We need a recovery strategy here. */
15656 				if (ire_init(new_nlb_ire,
15657 				    (uchar_t *)&clear_ire_stq->ire_addr,
15658 				    (uchar_t *)&clear_ire_stq->ire_mask,
15659 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15660 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15661 				    (uchar_t *)&clear_ire_stq->ire_in_src_addr,
15662 				    &clear_ire_stq->ire_max_frag,
15663 				    fp_mp,
15664 				    clear_ire_stq->ire_rfq,
15665 				    clear_ire_stq->ire_stq,
15666 				    clear_ire_stq->ire_type,
15667 				    res_mp,
15668 				    clear_ire_stq->ire_ipif,
15669 				    clear_ire_stq->ire_in_ill,
15670 				    clear_ire_stq->ire_cmask,
15671 				    clear_ire_stq->ire_phandle,
15672 				    clear_ire_stq->ire_ihandle,
15673 				    clear_ire_stq->ire_flags,
15674 				    &clear_ire_stq->ire_uinfo,
15675 				    NULL,
15676 				    NULL,
15677 				    ipst) == NULL)
15678 					cmn_err(CE_PANIC, "ire_init() failed");
15679 			}
15680 		}
15681 
15682 		/*
15683 		 * Delete the ire. We can't call ire_delete() since
15684 		 * we are holding the bucket lock. We can't release the
15685 		 * bucket lock since we can't allow irep to change. So just
15686 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15687 		 * ire from the list and do the refrele.
15688 		 */
15689 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15690 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15691 
15692 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15693 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15694 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15695 		}
15696 
15697 		/*
15698 		 * Also take care of otherfields like ib/ob pkt count
15699 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15700 		 */
15701 
15702 		/* Set the max_frag before adding the ire */
15703 		max_frag = *new_lb_ire->ire_max_fragp;
15704 		new_lb_ire->ire_max_fragp = NULL;
15705 		new_lb_ire->ire_max_frag = max_frag;
15706 
15707 		/* Add the new ire's. Insert at *irep */
15708 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15709 		ire1 = *irep;
15710 		if (ire1 != NULL)
15711 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15712 		new_lb_ire->ire_next = ire1;
15713 		/* Link the new one in. */
15714 		new_lb_ire->ire_ptpn = irep;
15715 		membar_producer();
15716 		*irep = new_lb_ire;
15717 		new_lb_ire_used = B_TRUE;
15718 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15719 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15720 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15721 
15722 		if (clear_ire_stq != NULL) {
15723 			/* Set the max_frag before adding the ire */
15724 			max_frag = *new_nlb_ire->ire_max_fragp;
15725 			new_nlb_ire->ire_max_fragp = NULL;
15726 			new_nlb_ire->ire_max_frag = max_frag;
15727 
15728 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15729 			irep = &new_lb_ire->ire_next;
15730 			/* Add the new ire. Insert at *irep */
15731 			ire1 = *irep;
15732 			if (ire1 != NULL)
15733 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15734 			new_nlb_ire->ire_next = ire1;
15735 			/* Link the new one in. */
15736 			new_nlb_ire->ire_ptpn = irep;
15737 			membar_producer();
15738 			*irep = new_nlb_ire;
15739 			new_nlb_ire_used = B_TRUE;
15740 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15741 			    ire_stats_inserted);
15742 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15743 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15744 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15745 		}
15746 	}
15747 	rw_exit(&irb->irb_lock);
15748 	if (!new_lb_ire_used)
15749 		kmem_cache_free(ire_cache, new_lb_ire);
15750 	if (!new_nlb_ire_used)
15751 		kmem_cache_free(ire_cache, new_nlb_ire);
15752 	IRB_REFRELE(irb);
15753 }
15754 
15755 /*
15756  * Whenever an ipif goes down we have to renominate a different
15757  * broadcast ire to receive. Whenever an ipif comes up, we need
15758  * to make sure that we have only one nominated to receive.
15759  */
15760 static void
15761 ipif_renominate_bcast(ipif_t *ipif)
15762 {
15763 	ill_t *ill = ipif->ipif_ill;
15764 	ipaddr_t subnet_addr;
15765 	ipaddr_t net_addr;
15766 	ipaddr_t net_mask = 0;
15767 	ipaddr_t subnet_netmask;
15768 	ipaddr_t addr;
15769 	ill_group_t *illgrp;
15770 	ip_stack_t	*ipst = ill->ill_ipst;
15771 
15772 	illgrp = ill->ill_group;
15773 	/*
15774 	 * If this is the last ipif going down, it might take
15775 	 * the ill out of the group. In that case ipif_down ->
15776 	 * illgrp_delete takes care of doing the nomination.
15777 	 * ipif_down does not call for this case.
15778 	 */
15779 	ASSERT(illgrp != NULL);
15780 
15781 	/* There could not have been any ires associated with this */
15782 	if (ipif->ipif_subnet == 0)
15783 		return;
15784 
15785 	ill_mark_bcast(illgrp, 0, ipst);
15786 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15787 
15788 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15789 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15790 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15791 	} else {
15792 		net_mask = htonl(IN_CLASSA_NET);
15793 	}
15794 	addr = net_mask & ipif->ipif_subnet;
15795 	ill_mark_bcast(illgrp, addr, ipst);
15796 
15797 	net_addr = ~net_mask | addr;
15798 	ill_mark_bcast(illgrp, net_addr, ipst);
15799 
15800 	subnet_netmask = ipif->ipif_net_mask;
15801 	addr = ipif->ipif_subnet;
15802 	ill_mark_bcast(illgrp, addr, ipst);
15803 
15804 	subnet_addr = ~subnet_netmask | addr;
15805 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15806 }
15807 
15808 /*
15809  * Whenever we form or delete ill groups, we need to nominate one set of
15810  * BROADCAST ires for receiving in the group.
15811  *
15812  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15813  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15814  *    for ill_ipif_up_count to be non-zero. This is the only case where
15815  *    ill_ipif_up_count is zero and we would still find the ires.
15816  *
15817  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15818  *    ipif is UP and we just have to do the nomination.
15819  *
15820  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15821  *    from the group. So, we have to do the nomination.
15822  *
15823  * Because of (3), there could be just one ill in the group. But we have
15824  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15825  * Thus, this function does not optimize when there is only one ill as
15826  * it is not correct for (3).
15827  */
15828 static void
15829 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15830 {
15831 	ill_t *ill;
15832 	ipif_t *ipif;
15833 	ipaddr_t subnet_addr;
15834 	ipaddr_t prev_subnet_addr = 0;
15835 	ipaddr_t net_addr;
15836 	ipaddr_t prev_net_addr = 0;
15837 	ipaddr_t net_mask = 0;
15838 	ipaddr_t subnet_netmask;
15839 	ipaddr_t addr;
15840 	ip_stack_t	*ipst;
15841 
15842 	/*
15843 	 * When the last memeber is leaving, there is nothing to
15844 	 * nominate.
15845 	 */
15846 	if (illgrp->illgrp_ill_count == 0) {
15847 		ASSERT(illgrp->illgrp_ill == NULL);
15848 		return;
15849 	}
15850 
15851 	ill = illgrp->illgrp_ill;
15852 	ASSERT(!ill->ill_isv6);
15853 	ipst = ill->ill_ipst;
15854 	/*
15855 	 * We assume that ires with same address and belonging to the
15856 	 * same group, has been grouped together. Nominating a *single*
15857 	 * ill in the group for sending and receiving broadcast is done
15858 	 * by making sure that the first BROADCAST ire (which will be
15859 	 * the one returned by ire_ctable_lookup for ip_rput and the
15860 	 * one that will be used in ip_wput_ire) will be the one that
15861 	 * will not have IRE_MARK_NORECV set.
15862 	 *
15863 	 * 1) ip_rput checks and discards packets received on ires marked
15864 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15865 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15866 	 *    first ire in the group for every broadcast address in the group.
15867 	 *    ip_rput will accept packets only on the first ire i.e only
15868 	 *    one copy of the ill.
15869 	 *
15870 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15871 	 *    packet for the whole group. It needs to send out on the ill
15872 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15873 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15874 	 *    the copy echoed back on other port where the ire is not marked
15875 	 *    with IRE_MARK_NORECV.
15876 	 *
15877 	 * Note that we just need to have the first IRE either loopback or
15878 	 * non-loopback (either of them may not exist if ire_create failed
15879 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15880 	 * always hit the first one and hence will always accept one copy.
15881 	 *
15882 	 * We have a broadcast ire per ill for all the unique prefixes
15883 	 * hosted on that ill. As we don't have a way of knowing the
15884 	 * unique prefixes on a given ill and hence in the whole group,
15885 	 * we just call ill_mark_bcast on all the prefixes that exist
15886 	 * in the group. For the common case of one prefix, the code
15887 	 * below optimizes by remebering the last address used for
15888 	 * markng. In the case of multiple prefixes, this will still
15889 	 * optimize depending the order of prefixes.
15890 	 *
15891 	 * The only unique address across the whole group is 0.0.0.0 and
15892 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15893 	 * the first ire in the bucket for receiving and disables the
15894 	 * others.
15895 	 */
15896 	ill_mark_bcast(illgrp, 0, ipst);
15897 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15898 	for (; ill != NULL; ill = ill->ill_group_next) {
15899 
15900 		for (ipif = ill->ill_ipif; ipif != NULL;
15901 		    ipif = ipif->ipif_next) {
15902 
15903 			if (!(ipif->ipif_flags & IPIF_UP) ||
15904 			    ipif->ipif_subnet == 0) {
15905 				continue;
15906 			}
15907 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15908 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15909 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15910 			} else {
15911 				net_mask = htonl(IN_CLASSA_NET);
15912 			}
15913 			addr = net_mask & ipif->ipif_subnet;
15914 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15915 				ill_mark_bcast(illgrp, addr, ipst);
15916 				net_addr = ~net_mask | addr;
15917 				ill_mark_bcast(illgrp, net_addr, ipst);
15918 			}
15919 			prev_net_addr = addr;
15920 
15921 			subnet_netmask = ipif->ipif_net_mask;
15922 			addr = ipif->ipif_subnet;
15923 			if (prev_subnet_addr == 0 ||
15924 			    prev_subnet_addr != addr) {
15925 				ill_mark_bcast(illgrp, addr, ipst);
15926 				subnet_addr = ~subnet_netmask | addr;
15927 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15928 			}
15929 			prev_subnet_addr = addr;
15930 		}
15931 	}
15932 }
15933 
15934 /*
15935  * This function is called while forming ill groups.
15936  *
15937  * Currently, we handle only allmulti groups. We want to join
15938  * allmulti on only one of the ills in the groups. In future,
15939  * when we have link aggregation, we may have to join normal
15940  * multicast groups on multiple ills as switch does inbound load
15941  * balancing. Following are the functions that calls this
15942  * function :
15943  *
15944  * 1) ill_recover_multicast : Interface is coming back UP.
15945  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15946  *    will call ill_recover_multicast to recover all the multicast
15947  *    groups. We need to make sure that only one member is joined
15948  *    in the ill group.
15949  *
15950  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15951  *    Somebody is joining allmulti. We need to make sure that only one
15952  *    member is joined in the group.
15953  *
15954  * 3) illgrp_insert : If allmulti has already joined, we need to make
15955  *    sure that only one member is joined in the group.
15956  *
15957  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15958  *    allmulti who we have nominated. We need to pick someother ill.
15959  *
15960  * 5) illgrp_delete : The ill we nominated is leaving the group,
15961  *    we need to pick a new ill to join the group.
15962  *
15963  * For (1), (2), (5) - we just have to check whether there is
15964  * a good ill joined in the group. If we could not find any ills
15965  * joined the group, we should join.
15966  *
15967  * For (4), the one that was nominated to receive, left the group.
15968  * There could be nobody joined in the group when this function is
15969  * called.
15970  *
15971  * For (3) - we need to explicitly check whether there are multiple
15972  * ills joined in the group.
15973  *
15974  * For simplicity, we don't differentiate any of the above cases. We
15975  * just leave the group if it is joined on any of them and join on
15976  * the first good ill.
15977  */
15978 int
15979 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15980 {
15981 	ilm_t *ilm;
15982 	ill_t *ill;
15983 	ill_t *fallback_inactive_ill = NULL;
15984 	ill_t *fallback_failed_ill = NULL;
15985 	int ret = 0;
15986 
15987 	/*
15988 	 * Leave the allmulti on all the ills and start fresh.
15989 	 */
15990 	for (ill = illgrp->illgrp_ill; ill != NULL;
15991 	    ill = ill->ill_group_next) {
15992 		if (ill->ill_join_allmulti)
15993 			(void) ip_leave_allmulti(ill->ill_ipif);
15994 	}
15995 
15996 	/*
15997 	 * Choose a good ill. Fallback to inactive or failed if
15998 	 * none available. We need to fallback to FAILED in the
15999 	 * case where we have 2 interfaces in a group - where
16000 	 * one of them is failed and another is a good one and
16001 	 * the good one (not marked inactive) is leaving the group.
16002 	 */
16003 	ret = 0;
16004 	for (ill = illgrp->illgrp_ill; ill != NULL;
16005 	    ill = ill->ill_group_next) {
16006 		/* Never pick an offline interface */
16007 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
16008 			continue;
16009 
16010 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
16011 			fallback_failed_ill = ill;
16012 			continue;
16013 		}
16014 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
16015 			fallback_inactive_ill = ill;
16016 			continue;
16017 		}
16018 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16019 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16020 				ret = ip_join_allmulti(ill->ill_ipif);
16021 				/*
16022 				 * ip_join_allmulti can fail because of memory
16023 				 * failures. So, make sure we join at least
16024 				 * on one ill.
16025 				 */
16026 				if (ill->ill_join_allmulti)
16027 					return (0);
16028 			}
16029 		}
16030 	}
16031 	if (ret != 0) {
16032 		/*
16033 		 * If we tried nominating above and failed to do so,
16034 		 * return error. We might have tried multiple times.
16035 		 * But, return the latest error.
16036 		 */
16037 		return (ret);
16038 	}
16039 	if ((ill = fallback_inactive_ill) != NULL) {
16040 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16041 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16042 				ret = ip_join_allmulti(ill->ill_ipif);
16043 				return (ret);
16044 			}
16045 		}
16046 	} else if ((ill = fallback_failed_ill) != NULL) {
16047 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16048 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16049 				ret = ip_join_allmulti(ill->ill_ipif);
16050 				return (ret);
16051 			}
16052 		}
16053 	}
16054 	return (0);
16055 }
16056 
16057 /*
16058  * This function is called from illgrp_delete after it is
16059  * deleted from the group to reschedule responsibilities
16060  * to a different ill.
16061  */
16062 static void
16063 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
16064 {
16065 	ilm_t	*ilm;
16066 	ipif_t	*ipif;
16067 	ipaddr_t subnet_addr;
16068 	ipaddr_t net_addr;
16069 	ipaddr_t net_mask = 0;
16070 	ipaddr_t subnet_netmask;
16071 	ipaddr_t addr;
16072 	ip_stack_t *ipst = ill->ill_ipst;
16073 
16074 	ASSERT(ill->ill_group == NULL);
16075 	/*
16076 	 * Broadcast Responsibility:
16077 	 *
16078 	 * 1. If this ill has been nominated for receiving broadcast
16079 	 * packets, we need to find a new one. Before we find a new
16080 	 * one, we need to re-group the ires that are part of this new
16081 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
16082 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
16083 	 * thing for us.
16084 	 *
16085 	 * 2. If this ill was not nominated for receiving broadcast
16086 	 * packets, we need to clear the IRE_MARK_NORECV flag
16087 	 * so that we continue to send up broadcast packets.
16088 	 */
16089 	if (!ill->ill_isv6) {
16090 		/*
16091 		 * Case 1 above : No optimization here. Just redo the
16092 		 * nomination.
16093 		 */
16094 		ill_group_bcast_for_xmit(ill);
16095 		ill_nominate_bcast_rcv(illgrp);
16096 
16097 		/*
16098 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
16099 		 */
16100 		ill_clear_bcast_mark(ill, 0);
16101 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
16102 
16103 		for (ipif = ill->ill_ipif; ipif != NULL;
16104 		    ipif = ipif->ipif_next) {
16105 
16106 			if (!(ipif->ipif_flags & IPIF_UP) ||
16107 			    ipif->ipif_subnet == 0) {
16108 				continue;
16109 			}
16110 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16111 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16112 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16113 			} else {
16114 				net_mask = htonl(IN_CLASSA_NET);
16115 			}
16116 			addr = net_mask & ipif->ipif_subnet;
16117 			ill_clear_bcast_mark(ill, addr);
16118 
16119 			net_addr = ~net_mask | addr;
16120 			ill_clear_bcast_mark(ill, net_addr);
16121 
16122 			subnet_netmask = ipif->ipif_net_mask;
16123 			addr = ipif->ipif_subnet;
16124 			ill_clear_bcast_mark(ill, addr);
16125 
16126 			subnet_addr = ~subnet_netmask | addr;
16127 			ill_clear_bcast_mark(ill, subnet_addr);
16128 		}
16129 	}
16130 
16131 	/*
16132 	 * Multicast Responsibility.
16133 	 *
16134 	 * If we have joined allmulti on this one, find a new member
16135 	 * in the group to join allmulti. As this ill is already part
16136 	 * of allmulti, we don't have to join on this one.
16137 	 *
16138 	 * If we have not joined allmulti on this one, there is no
16139 	 * responsibility to handoff. But we need to take new
16140 	 * responsibility i.e, join allmulti on this one if we need
16141 	 * to.
16142 	 */
16143 	if (ill->ill_join_allmulti) {
16144 		(void) ill_nominate_mcast_rcv(illgrp);
16145 	} else {
16146 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16147 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16148 				(void) ip_join_allmulti(ill->ill_ipif);
16149 				break;
16150 			}
16151 		}
16152 	}
16153 
16154 	/*
16155 	 * We intentionally do the flushing of IRE_CACHES only matching
16156 	 * on the ill and not on groups. Note that we are already deleted
16157 	 * from the group.
16158 	 *
16159 	 * This will make sure that all IRE_CACHES whose stq is pointing
16160 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
16161 	 * deleted and IRE_CACHES that are not pointing at this ill will
16162 	 * be left alone.
16163 	 */
16164 	if (ill->ill_isv6) {
16165 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16166 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16167 	} else {
16168 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16169 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16170 	}
16171 
16172 	/*
16173 	 * Some conn may have cached one of the IREs deleted above. By removing
16174 	 * the ire reference, we clean up the extra reference to the ill held in
16175 	 * ire->ire_stq.
16176 	 */
16177 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
16178 
16179 	/*
16180 	 * Re-do source address selection for all the members in the
16181 	 * group, if they borrowed source address from one of the ipifs
16182 	 * in this ill.
16183 	 */
16184 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16185 		if (ill->ill_isv6) {
16186 			ipif_update_other_ipifs_v6(ipif, illgrp);
16187 		} else {
16188 			ipif_update_other_ipifs(ipif, illgrp);
16189 		}
16190 	}
16191 }
16192 
16193 /*
16194  * Delete the ill from the group. The caller makes sure that it is
16195  * in a group and it okay to delete from the group. So, we always
16196  * delete here.
16197  */
16198 static void
16199 illgrp_delete(ill_t *ill)
16200 {
16201 	ill_group_t *illgrp;
16202 	ill_group_t *tmpg;
16203 	ill_t *tmp_ill;
16204 	ip_stack_t	*ipst = ill->ill_ipst;
16205 
16206 	/*
16207 	 * Reset illgrp_ill_schednext if it was pointing at us.
16208 	 * We need to do this before we set ill_group to NULL.
16209 	 */
16210 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16211 	mutex_enter(&ill->ill_lock);
16212 
16213 	illgrp_reset_schednext(ill);
16214 
16215 	illgrp = ill->ill_group;
16216 
16217 	/* Delete the ill from illgrp. */
16218 	if (illgrp->illgrp_ill == ill) {
16219 		illgrp->illgrp_ill = ill->ill_group_next;
16220 	} else {
16221 		tmp_ill = illgrp->illgrp_ill;
16222 		while (tmp_ill->ill_group_next != ill) {
16223 			tmp_ill = tmp_ill->ill_group_next;
16224 			ASSERT(tmp_ill != NULL);
16225 		}
16226 		tmp_ill->ill_group_next = ill->ill_group_next;
16227 	}
16228 	ill->ill_group = NULL;
16229 	ill->ill_group_next = NULL;
16230 
16231 	illgrp->illgrp_ill_count--;
16232 	mutex_exit(&ill->ill_lock);
16233 	rw_exit(&ipst->ips_ill_g_lock);
16234 
16235 	/*
16236 	 * As this ill is leaving the group, we need to hand off
16237 	 * the responsibilities to the other ills in the group, if
16238 	 * this ill had some responsibilities.
16239 	 */
16240 
16241 	ill_handoff_responsibility(ill, illgrp);
16242 
16243 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16244 
16245 	if (illgrp->illgrp_ill_count == 0) {
16246 
16247 		ASSERT(illgrp->illgrp_ill == NULL);
16248 		if (ill->ill_isv6) {
16249 			if (illgrp == ipst->ips_illgrp_head_v6) {
16250 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
16251 			} else {
16252 				tmpg = ipst->ips_illgrp_head_v6;
16253 				while (tmpg->illgrp_next != illgrp) {
16254 					tmpg = tmpg->illgrp_next;
16255 					ASSERT(tmpg != NULL);
16256 				}
16257 				tmpg->illgrp_next = illgrp->illgrp_next;
16258 			}
16259 		} else {
16260 			if (illgrp == ipst->ips_illgrp_head_v4) {
16261 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
16262 			} else {
16263 				tmpg = ipst->ips_illgrp_head_v4;
16264 				while (tmpg->illgrp_next != illgrp) {
16265 					tmpg = tmpg->illgrp_next;
16266 					ASSERT(tmpg != NULL);
16267 				}
16268 				tmpg->illgrp_next = illgrp->illgrp_next;
16269 			}
16270 		}
16271 		mutex_destroy(&illgrp->illgrp_lock);
16272 		mi_free(illgrp);
16273 	}
16274 	rw_exit(&ipst->ips_ill_g_lock);
16275 
16276 	/*
16277 	 * Even though the ill is out of the group its not necessary
16278 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
16279 	 * We will split the ipsq when phyint_groupname is set to NULL.
16280 	 */
16281 
16282 	/*
16283 	 * Send a routing sockets message if we are deleting from
16284 	 * groups with names.
16285 	 */
16286 	if (ill->ill_phyint->phyint_groupname_len != 0)
16287 		ip_rts_ifmsg(ill->ill_ipif);
16288 }
16289 
16290 /*
16291  * Re-do source address selection. This is normally called when
16292  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
16293  * ipif comes up.
16294  */
16295 void
16296 ill_update_source_selection(ill_t *ill)
16297 {
16298 	ipif_t *ipif;
16299 
16300 	ASSERT(IAM_WRITER_ILL(ill));
16301 
16302 	if (ill->ill_group != NULL)
16303 		ill = ill->ill_group->illgrp_ill;
16304 
16305 	for (; ill != NULL; ill = ill->ill_group_next) {
16306 		for (ipif = ill->ill_ipif; ipif != NULL;
16307 		    ipif = ipif->ipif_next) {
16308 			if (ill->ill_isv6)
16309 				ipif_recreate_interface_routes_v6(NULL, ipif);
16310 			else
16311 				ipif_recreate_interface_routes(NULL, ipif);
16312 		}
16313 	}
16314 }
16315 
16316 /*
16317  * Insert ill in a group headed by illgrp_head. The caller can either
16318  * pass a groupname in which case we search for a group with the
16319  * same name to insert in or pass a group to insert in. This function
16320  * would only search groups with names.
16321  *
16322  * NOTE : The caller should make sure that there is at least one ipif
16323  *	  UP on this ill so that illgrp_scheduler can pick this ill
16324  *	  for outbound packets. If ill_ipif_up_count is zero, we have
16325  *	  already sent a DL_UNBIND to the driver and we don't want to
16326  *	  send anymore packets. We don't assert for ipif_up_count
16327  *	  to be greater than zero, because ipif_up_done wants to call
16328  *	  this function before bumping up the ipif_up_count. See
16329  *	  ipif_up_done() for details.
16330  */
16331 int
16332 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
16333     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
16334 {
16335 	ill_group_t *illgrp;
16336 	ill_t *prev_ill;
16337 	phyint_t *phyi;
16338 	ip_stack_t	*ipst = ill->ill_ipst;
16339 
16340 	ASSERT(ill->ill_group == NULL);
16341 
16342 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16343 	mutex_enter(&ill->ill_lock);
16344 
16345 	if (groupname != NULL) {
16346 		/*
16347 		 * Look for a group with a matching groupname to insert.
16348 		 */
16349 		for (illgrp = *illgrp_head; illgrp != NULL;
16350 		    illgrp = illgrp->illgrp_next) {
16351 
16352 			ill_t *tmp_ill;
16353 
16354 			/*
16355 			 * If we have an ill_group_t in the list which has
16356 			 * no ill_t assigned then we must be in the process of
16357 			 * removing this group. We skip this as illgrp_delete()
16358 			 * will remove it from the list.
16359 			 */
16360 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
16361 				ASSERT(illgrp->illgrp_ill_count == 0);
16362 				continue;
16363 			}
16364 
16365 			ASSERT(tmp_ill->ill_phyint != NULL);
16366 			phyi = tmp_ill->ill_phyint;
16367 			/*
16368 			 * Look at groups which has names only.
16369 			 */
16370 			if (phyi->phyint_groupname_len == 0)
16371 				continue;
16372 			/*
16373 			 * Names are stored in the phyint common to both
16374 			 * IPv4 and IPv6.
16375 			 */
16376 			if (mi_strcmp(phyi->phyint_groupname,
16377 			    groupname) == 0) {
16378 				break;
16379 			}
16380 		}
16381 	} else {
16382 		/*
16383 		 * If the caller passes in a NULL "grp_to_insert", we
16384 		 * allocate one below and insert this singleton.
16385 		 */
16386 		illgrp = grp_to_insert;
16387 	}
16388 
16389 	ill->ill_group_next = NULL;
16390 
16391 	if (illgrp == NULL) {
16392 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16393 		if (illgrp == NULL) {
16394 			return (ENOMEM);
16395 		}
16396 		illgrp->illgrp_next = *illgrp_head;
16397 		*illgrp_head = illgrp;
16398 		illgrp->illgrp_ill = ill;
16399 		illgrp->illgrp_ill_count = 1;
16400 		ill->ill_group = illgrp;
16401 		/*
16402 		 * Used in illgrp_scheduler to protect multiple threads
16403 		 * from traversing the list.
16404 		 */
16405 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16406 	} else {
16407 		ASSERT(ill->ill_net_type ==
16408 		    illgrp->illgrp_ill->ill_net_type);
16409 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16410 
16411 		/* Insert ill at tail of this group */
16412 		prev_ill = illgrp->illgrp_ill;
16413 		while (prev_ill->ill_group_next != NULL)
16414 			prev_ill = prev_ill->ill_group_next;
16415 		prev_ill->ill_group_next = ill;
16416 		ill->ill_group = illgrp;
16417 		illgrp->illgrp_ill_count++;
16418 		/*
16419 		 * Inherit group properties. Currently only forwarding
16420 		 * is the property we try to keep the same with all the
16421 		 * ills. When there are more, we will abstract this into
16422 		 * a function.
16423 		 */
16424 		ill->ill_flags &= ~ILLF_ROUTER;
16425 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16426 	}
16427 	mutex_exit(&ill->ill_lock);
16428 	rw_exit(&ipst->ips_ill_g_lock);
16429 
16430 	/*
16431 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16432 	 *    may be zero as it has not yet been bumped. But the ires
16433 	 *    have already been added. So, we do the nomination here
16434 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16435 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16436 	 *    ill_ipif_up_count here while nominating broadcast ires for
16437 	 *    receive.
16438 	 *
16439 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16440 	 *    to group them properly as ire_add() has already happened
16441 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16442 	 *    case, we need to do it here anyway.
16443 	 */
16444 	if (!ill->ill_isv6) {
16445 		ill_group_bcast_for_xmit(ill);
16446 		ill_nominate_bcast_rcv(illgrp);
16447 	}
16448 
16449 	if (!ipif_is_coming_up) {
16450 		/*
16451 		 * When ipif_up_done() calls this function, the multicast
16452 		 * groups have not been joined yet. So, there is no point in
16453 		 * nomination. ip_join_allmulti will handle groups when
16454 		 * ill_recover_multicast is called from ipif_up_done() later.
16455 		 */
16456 		(void) ill_nominate_mcast_rcv(illgrp);
16457 		/*
16458 		 * ipif_up_done calls ill_update_source_selection
16459 		 * anyway. Moreover, we don't want to re-create
16460 		 * interface routes while ipif_up_done() still has reference
16461 		 * to them. Refer to ipif_up_done() for more details.
16462 		 */
16463 		ill_update_source_selection(ill);
16464 	}
16465 
16466 	/*
16467 	 * Send a routing sockets message if we are inserting into
16468 	 * groups with names.
16469 	 */
16470 	if (groupname != NULL)
16471 		ip_rts_ifmsg(ill->ill_ipif);
16472 	return (0);
16473 }
16474 
16475 /*
16476  * Return the first phyint matching the groupname. There could
16477  * be more than one when there are ill groups.
16478  *
16479  * If 'usable' is set, then we exclude ones that are marked with any of
16480  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16481  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16482  * emulation of ipmp.
16483  */
16484 phyint_t *
16485 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16486 {
16487 	phyint_t *phyi;
16488 
16489 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16490 	/*
16491 	 * Group names are stored in the phyint - a common structure
16492 	 * to both IPv4 and IPv6.
16493 	 */
16494 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16495 	for (; phyi != NULL;
16496 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16497 	    phyi, AVL_AFTER)) {
16498 		if (phyi->phyint_groupname_len == 0)
16499 			continue;
16500 		/*
16501 		 * Skip the ones that should not be used since the callers
16502 		 * sometime use this for sending packets.
16503 		 */
16504 		if (usable && (phyi->phyint_flags &
16505 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)))
16506 			continue;
16507 
16508 		ASSERT(phyi->phyint_groupname != NULL);
16509 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16510 			return (phyi);
16511 	}
16512 	return (NULL);
16513 }
16514 
16515 
16516 /*
16517  * Return the first usable phyint matching the group index. By 'usable'
16518  * we exclude ones that are marked ununsable with any of
16519  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16520  *
16521  * Used only for the ipmp/netinfo emulation of ipmp.
16522  */
16523 phyint_t *
16524 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16525 {
16526 	phyint_t *phyi;
16527 
16528 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16529 
16530 	if (!ipst->ips_ipmp_hook_emulation)
16531 		return (NULL);
16532 
16533 	/*
16534 	 * Group indicies are stored in the phyint - a common structure
16535 	 * to both IPv4 and IPv6.
16536 	 */
16537 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16538 	for (; phyi != NULL;
16539 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16540 	    phyi, AVL_AFTER)) {
16541 		/* Ignore the ones that do not have a group */
16542 		if (phyi->phyint_groupname_len == 0)
16543 			continue;
16544 
16545 		ASSERT(phyi->phyint_group_ifindex != 0);
16546 		/*
16547 		 * Skip the ones that should not be used since the callers
16548 		 * sometime use this for sending packets.
16549 		 */
16550 		if (phyi->phyint_flags &
16551 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))
16552 			continue;
16553 		if (phyi->phyint_group_ifindex == group_ifindex)
16554 			return (phyi);
16555 	}
16556 	return (NULL);
16557 }
16558 
16559 
16560 /*
16561  * MT notes on creation and deletion of IPMP groups
16562  *
16563  * Creation and deletion of IPMP groups introduce the need to merge or
16564  * split the associated serialization objects i.e the ipsq's. Normally all
16565  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16566  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16567  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16568  * is a need to change the <ill-ipsq> association and we have to operate on both
16569  * the source and destination IPMP groups. For eg. attempting to set the
16570  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16571  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16572  * source or destination IPMP group are mapped to a single ipsq for executing
16573  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16574  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16575  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16576  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16577  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16578  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16579  *
16580  * In the above example the ioctl handling code locates the current ipsq of hme0
16581  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16582  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16583  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16584  * the destination ipsq. If the destination ipsq is not busy, it also enters
16585  * the destination ipsq exclusively. Now the actual groupname setting operation
16586  * can proceed. If the destination ipsq is busy, the operation is enqueued
16587  * on the destination (merged) ipsq and will be handled in the unwind from
16588  * ipsq_exit.
16589  *
16590  * To prevent other threads accessing the ill while the group name change is
16591  * in progres, we bring down the ipifs which also removes the ill from the
16592  * group. The group is changed in phyint and when the first ipif on the ill
16593  * is brought up, the ill is inserted into the right IPMP group by
16594  * illgrp_insert.
16595  */
16596 /* ARGSUSED */
16597 int
16598 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16599     ip_ioctl_cmd_t *ipip, void *ifreq)
16600 {
16601 	int i;
16602 	char *tmp;
16603 	int namelen;
16604 	ill_t *ill = ipif->ipif_ill;
16605 	ill_t *ill_v4, *ill_v6;
16606 	int err = 0;
16607 	phyint_t *phyi;
16608 	phyint_t *phyi_tmp;
16609 	struct lifreq *lifr;
16610 	mblk_t	*mp1;
16611 	char *groupname;
16612 	ipsq_t *ipsq;
16613 	ip_stack_t	*ipst = ill->ill_ipst;
16614 
16615 	ASSERT(IAM_WRITER_IPIF(ipif));
16616 
16617 	/* Existance verified in ip_wput_nondata */
16618 	mp1 = mp->b_cont->b_cont;
16619 	lifr = (struct lifreq *)mp1->b_rptr;
16620 	groupname = lifr->lifr_groupname;
16621 
16622 	if (ipif->ipif_id != 0)
16623 		return (EINVAL);
16624 
16625 	phyi = ill->ill_phyint;
16626 	ASSERT(phyi != NULL);
16627 
16628 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16629 		return (EINVAL);
16630 
16631 	tmp = groupname;
16632 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16633 		;
16634 
16635 	if (i == LIFNAMSIZ) {
16636 		/* no null termination */
16637 		return (EINVAL);
16638 	}
16639 
16640 	/*
16641 	 * Calculate the namelen exclusive of the null
16642 	 * termination character.
16643 	 */
16644 	namelen = tmp - groupname;
16645 
16646 	ill_v4 = phyi->phyint_illv4;
16647 	ill_v6 = phyi->phyint_illv6;
16648 
16649 	/*
16650 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16651 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16652 	 * synchronization notes in ip.c
16653 	 */
16654 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16655 		return (EINVAL);
16656 	}
16657 
16658 	/*
16659 	 * mark the ill as changing.
16660 	 * this should queue all new requests on the syncq.
16661 	 */
16662 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16663 
16664 	if (ill_v4 != NULL)
16665 		ill_v4->ill_state_flags |= ILL_CHANGING;
16666 	if (ill_v6 != NULL)
16667 		ill_v6->ill_state_flags |= ILL_CHANGING;
16668 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16669 
16670 	if (namelen == 0) {
16671 		/*
16672 		 * Null string means remove this interface from the
16673 		 * existing group.
16674 		 */
16675 		if (phyi->phyint_groupname_len == 0) {
16676 			/*
16677 			 * Never was in a group.
16678 			 */
16679 			err = 0;
16680 			goto done;
16681 		}
16682 
16683 		/*
16684 		 * IPv4 or IPv6 may be temporarily out of the group when all
16685 		 * the ipifs are down. Thus, we need to check for ill_group to
16686 		 * be non-NULL.
16687 		 */
16688 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16689 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16690 			mutex_enter(&ill_v4->ill_lock);
16691 			if (!ill_is_quiescent(ill_v4)) {
16692 				/*
16693 				 * ipsq_pending_mp_add will not fail since
16694 				 * connp is NULL
16695 				 */
16696 				(void) ipsq_pending_mp_add(NULL,
16697 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16698 				mutex_exit(&ill_v4->ill_lock);
16699 				err = EINPROGRESS;
16700 				goto done;
16701 			}
16702 			mutex_exit(&ill_v4->ill_lock);
16703 		}
16704 
16705 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16706 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16707 			mutex_enter(&ill_v6->ill_lock);
16708 			if (!ill_is_quiescent(ill_v6)) {
16709 				(void) ipsq_pending_mp_add(NULL,
16710 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16711 				mutex_exit(&ill_v6->ill_lock);
16712 				err = EINPROGRESS;
16713 				goto done;
16714 			}
16715 			mutex_exit(&ill_v6->ill_lock);
16716 		}
16717 
16718 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16719 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16720 		mutex_enter(&phyi->phyint_lock);
16721 		ASSERT(phyi->phyint_groupname != NULL);
16722 		mi_free(phyi->phyint_groupname);
16723 		phyi->phyint_groupname = NULL;
16724 		phyi->phyint_groupname_len = 0;
16725 
16726 		/* Restore the ifindex used to be the per interface one */
16727 		phyi->phyint_group_ifindex = 0;
16728 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16729 		mutex_exit(&phyi->phyint_lock);
16730 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16731 		rw_exit(&ipst->ips_ill_g_lock);
16732 		err = ill_up_ipifs(ill, q, mp);
16733 
16734 		/*
16735 		 * set the split flag so that the ipsq can be split
16736 		 */
16737 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16738 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16739 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16740 
16741 	} else {
16742 		if (phyi->phyint_groupname_len != 0) {
16743 			ASSERT(phyi->phyint_groupname != NULL);
16744 			/* Are we inserting in the same group ? */
16745 			if (mi_strcmp(groupname,
16746 			    phyi->phyint_groupname) == 0) {
16747 				err = 0;
16748 				goto done;
16749 			}
16750 		}
16751 
16752 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16753 		/*
16754 		 * Merge ipsq for the group's.
16755 		 * This check is here as multiple groups/ills might be
16756 		 * sharing the same ipsq.
16757 		 * If we have to merege than the operation is restarted
16758 		 * on the new ipsq.
16759 		 */
16760 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16761 		if (phyi->phyint_ipsq != ipsq) {
16762 			rw_exit(&ipst->ips_ill_g_lock);
16763 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16764 			goto done;
16765 		}
16766 		/*
16767 		 * Running exclusive on new ipsq.
16768 		 */
16769 
16770 		ASSERT(ipsq != NULL);
16771 		ASSERT(ipsq->ipsq_writer == curthread);
16772 
16773 		/*
16774 		 * Check whether the ill_type and ill_net_type matches before
16775 		 * we allocate any memory so that the cleanup is easier.
16776 		 *
16777 		 * We can't group dissimilar ones as we can't load spread
16778 		 * packets across the group because of potential link-level
16779 		 * header differences.
16780 		 */
16781 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16782 		if (phyi_tmp != NULL) {
16783 			if ((ill_v4 != NULL &&
16784 			    phyi_tmp->phyint_illv4 != NULL) &&
16785 			    ((ill_v4->ill_net_type !=
16786 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16787 			    (ill_v4->ill_type !=
16788 			    phyi_tmp->phyint_illv4->ill_type))) {
16789 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16790 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16791 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16792 				rw_exit(&ipst->ips_ill_g_lock);
16793 				return (EINVAL);
16794 			}
16795 			if ((ill_v6 != NULL &&
16796 			    phyi_tmp->phyint_illv6 != NULL) &&
16797 			    ((ill_v6->ill_net_type !=
16798 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16799 			    (ill_v6->ill_type !=
16800 			    phyi_tmp->phyint_illv6->ill_type))) {
16801 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16802 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16803 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16804 				rw_exit(&ipst->ips_ill_g_lock);
16805 				return (EINVAL);
16806 			}
16807 		}
16808 
16809 		rw_exit(&ipst->ips_ill_g_lock);
16810 
16811 		/*
16812 		 * bring down all v4 ipifs.
16813 		 */
16814 		if (ill_v4 != NULL) {
16815 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16816 		}
16817 
16818 		/*
16819 		 * bring down all v6 ipifs.
16820 		 */
16821 		if (ill_v6 != NULL) {
16822 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16823 		}
16824 
16825 		/*
16826 		 * make sure all ipifs are down and there are no active
16827 		 * references. Call to ipsq_pending_mp_add will not fail
16828 		 * since connp is NULL.
16829 		 */
16830 		if (ill_v4 != NULL) {
16831 			mutex_enter(&ill_v4->ill_lock);
16832 			if (!ill_is_quiescent(ill_v4)) {
16833 				(void) ipsq_pending_mp_add(NULL,
16834 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16835 				mutex_exit(&ill_v4->ill_lock);
16836 				err = EINPROGRESS;
16837 				goto done;
16838 			}
16839 			mutex_exit(&ill_v4->ill_lock);
16840 		}
16841 
16842 		if (ill_v6 != NULL) {
16843 			mutex_enter(&ill_v6->ill_lock);
16844 			if (!ill_is_quiescent(ill_v6)) {
16845 				(void) ipsq_pending_mp_add(NULL,
16846 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16847 				mutex_exit(&ill_v6->ill_lock);
16848 				err = EINPROGRESS;
16849 				goto done;
16850 			}
16851 			mutex_exit(&ill_v6->ill_lock);
16852 		}
16853 
16854 		/*
16855 		 * allocate including space for null terminator
16856 		 * before we insert.
16857 		 */
16858 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16859 		if (tmp == NULL)
16860 			return (ENOMEM);
16861 
16862 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16863 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16864 		mutex_enter(&phyi->phyint_lock);
16865 		if (phyi->phyint_groupname_len != 0) {
16866 			ASSERT(phyi->phyint_groupname != NULL);
16867 			mi_free(phyi->phyint_groupname);
16868 		}
16869 
16870 		/*
16871 		 * setup the new group name.
16872 		 */
16873 		phyi->phyint_groupname = tmp;
16874 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16875 		phyi->phyint_groupname_len = namelen + 1;
16876 
16877 		if (ipst->ips_ipmp_hook_emulation) {
16878 			/*
16879 			 * If the group already exists we use the existing
16880 			 * group_ifindex, otherwise we pick a new index here.
16881 			 */
16882 			if (phyi_tmp != NULL) {
16883 				phyi->phyint_group_ifindex =
16884 				    phyi_tmp->phyint_group_ifindex;
16885 			} else {
16886 				/* XXX We need a recovery strategy here. */
16887 				if (!ip_assign_ifindex(
16888 				    &phyi->phyint_group_ifindex, ipst))
16889 					cmn_err(CE_PANIC,
16890 					    "ip_assign_ifindex() failed");
16891 			}
16892 		}
16893 		/*
16894 		 * Select whether the netinfo and hook use the per-interface
16895 		 * or per-group ifindex.
16896 		 */
16897 		if (ipst->ips_ipmp_hook_emulation)
16898 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16899 		else
16900 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16901 
16902 		if (ipst->ips_ipmp_hook_emulation &&
16903 		    phyi_tmp != NULL) {
16904 			/* First phyint in group - group PLUMB event */
16905 			ill_nic_info_plumb(ill, B_TRUE);
16906 		}
16907 		mutex_exit(&phyi->phyint_lock);
16908 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16909 		rw_exit(&ipst->ips_ill_g_lock);
16910 
16911 		err = ill_up_ipifs(ill, q, mp);
16912 	}
16913 
16914 done:
16915 	/*
16916 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16917 	 */
16918 	if (err != EINPROGRESS) {
16919 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16920 		if (ill_v4 != NULL)
16921 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16922 		if (ill_v6 != NULL)
16923 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16924 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16925 	}
16926 	return (err);
16927 }
16928 
16929 /* ARGSUSED */
16930 int
16931 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16932     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16933 {
16934 	ill_t *ill;
16935 	phyint_t *phyi;
16936 	struct lifreq *lifr;
16937 	mblk_t	*mp1;
16938 
16939 	/* Existence verified in ip_wput_nondata */
16940 	mp1 = mp->b_cont->b_cont;
16941 	lifr = (struct lifreq *)mp1->b_rptr;
16942 	ill = ipif->ipif_ill;
16943 	phyi = ill->ill_phyint;
16944 
16945 	lifr->lifr_groupname[0] = '\0';
16946 	/*
16947 	 * ill_group may be null if all the interfaces
16948 	 * are down. But still, the phyint should always
16949 	 * hold the name.
16950 	 */
16951 	if (phyi->phyint_groupname_len != 0) {
16952 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16953 		    phyi->phyint_groupname_len);
16954 	}
16955 
16956 	return (0);
16957 }
16958 
16959 
16960 typedef struct conn_move_s {
16961 	ill_t	*cm_from_ill;
16962 	ill_t	*cm_to_ill;
16963 	int	cm_ifindex;
16964 } conn_move_t;
16965 
16966 /*
16967  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16968  */
16969 static void
16970 conn_move(conn_t *connp, caddr_t arg)
16971 {
16972 	conn_move_t *connm;
16973 	int ifindex;
16974 	int i;
16975 	ill_t *from_ill;
16976 	ill_t *to_ill;
16977 	ilg_t *ilg;
16978 	ilm_t *ret_ilm;
16979 
16980 	connm = (conn_move_t *)arg;
16981 	ifindex = connm->cm_ifindex;
16982 	from_ill = connm->cm_from_ill;
16983 	to_ill = connm->cm_to_ill;
16984 
16985 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16986 
16987 	/* All multicast fields protected by conn_lock */
16988 	mutex_enter(&connp->conn_lock);
16989 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16990 	if ((connp->conn_outgoing_ill == from_ill) &&
16991 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16992 		connp->conn_outgoing_ill = to_ill;
16993 		connp->conn_incoming_ill = to_ill;
16994 	}
16995 
16996 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16997 
16998 	if ((connp->conn_multicast_ill == from_ill) &&
16999 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
17000 		connp->conn_multicast_ill = connm->cm_to_ill;
17001 	}
17002 
17003 	/* Change IP_XMIT_IF associations */
17004 	if ((connp->conn_xmit_if_ill == from_ill) &&
17005 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
17006 		connp->conn_xmit_if_ill = to_ill;
17007 	}
17008 	/*
17009 	 * Change the ilg_ill to point to the new one. This assumes
17010 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
17011 	 * has been told to receive packets on this interface.
17012 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
17013 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
17014 	 * some ilms may not have moved. We check to see whether
17015 	 * the ilms have moved to to_ill. We can't check on from_ill
17016 	 * as in the process of moving, we could have split an ilm
17017 	 * in to two - which has the same orig_ifindex and v6group.
17018 	 *
17019 	 * For IPv4, ilg_ipif moves implicitly. The code below really
17020 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
17021 	 */
17022 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
17023 		ilg = &connp->conn_ilg[i];
17024 		if ((ilg->ilg_ill == from_ill) &&
17025 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
17026 			/* ifindex != 0 indicates failback */
17027 			if (ifindex != 0) {
17028 				connp->conn_ilg[i].ilg_ill = to_ill;
17029 				continue;
17030 			}
17031 
17032 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
17033 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
17034 			    connp->conn_zoneid);
17035 
17036 			if (ret_ilm != NULL)
17037 				connp->conn_ilg[i].ilg_ill = to_ill;
17038 		}
17039 	}
17040 	mutex_exit(&connp->conn_lock);
17041 }
17042 
17043 static void
17044 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
17045 {
17046 	conn_move_t connm;
17047 	ip_stack_t	*ipst = from_ill->ill_ipst;
17048 
17049 	connm.cm_from_ill = from_ill;
17050 	connm.cm_to_ill = to_ill;
17051 	connm.cm_ifindex = ifindex;
17052 
17053 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
17054 }
17055 
17056 /*
17057  * ilm has been moved from from_ill to to_ill.
17058  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
17059  * appropriately.
17060  *
17061  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
17062  *	  the code there de-references ipif_ill to get the ill to
17063  *	  send multicast requests. It does not work as ipif is on its
17064  *	  move and already moved when this function is called.
17065  *	  Thus, we need to use from_ill and to_ill send down multicast
17066  *	  requests.
17067  */
17068 static void
17069 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
17070 {
17071 	ipif_t *ipif;
17072 	ilm_t *ilm;
17073 
17074 	/*
17075 	 * See whether we need to send down DL_ENABMULTI_REQ on
17076 	 * to_ill as ilm has just been added.
17077 	 */
17078 	ASSERT(IAM_WRITER_ILL(to_ill));
17079 	ASSERT(IAM_WRITER_ILL(from_ill));
17080 
17081 	ILM_WALKER_HOLD(to_ill);
17082 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
17083 
17084 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
17085 			continue;
17086 		/*
17087 		 * no locks held, ill/ipif cannot dissappear as long
17088 		 * as we are writer.
17089 		 */
17090 		ipif = to_ill->ill_ipif;
17091 		/*
17092 		 * No need to hold any lock as we are the writer and this
17093 		 * can only be changed by a writer.
17094 		 */
17095 		ilm->ilm_is_new = B_FALSE;
17096 
17097 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
17098 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17099 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
17100 			    "resolver\n"));
17101 			continue;		/* Must be IRE_IF_NORESOLVER */
17102 		}
17103 
17104 
17105 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17106 			ip1dbg(("ilm_send_multicast_reqs: "
17107 			    "to_ill MULTI_BCAST\n"));
17108 			goto from;
17109 		}
17110 
17111 		if (to_ill->ill_isv6)
17112 			mld_joingroup(ilm);
17113 		else
17114 			igmp_joingroup(ilm);
17115 
17116 		if (to_ill->ill_ipif_up_count == 0) {
17117 			/*
17118 			 * Nobody there. All multicast addresses will be
17119 			 * re-joined when we get the DL_BIND_ACK bringing the
17120 			 * interface up.
17121 			 */
17122 			ilm->ilm_notify_driver = B_FALSE;
17123 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
17124 			goto from;
17125 		}
17126 
17127 		/*
17128 		 * For allmulti address, we want to join on only one interface.
17129 		 * Checking for ilm_numentries_v6 is not correct as you may
17130 		 * find an ilm with zero address on to_ill, but we may not
17131 		 * have nominated to_ill for receiving. Thus, if we have
17132 		 * nominated from_ill (ill_join_allmulti is set), nominate
17133 		 * only if to_ill is not already nominated (to_ill normally
17134 		 * should not have been nominated if "from_ill" has already
17135 		 * been nominated. As we don't prevent failovers from happening
17136 		 * across groups, we don't assert).
17137 		 */
17138 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17139 			/*
17140 			 * There is no need to hold ill locks as we are
17141 			 * writer on both ills and when ill_join_allmulti
17142 			 * is changed the thread is always a writer.
17143 			 */
17144 			if (from_ill->ill_join_allmulti &&
17145 			    !to_ill->ill_join_allmulti) {
17146 				(void) ip_join_allmulti(to_ill->ill_ipif);
17147 			}
17148 		} else if (ilm->ilm_notify_driver) {
17149 
17150 			/*
17151 			 * This is a newly moved ilm so we need to tell the
17152 			 * driver about the new group. There can be more than
17153 			 * one ilm's for the same group in the list each with a
17154 			 * different orig_ifindex. We have to inform the driver
17155 			 * once. In ilm_move_v[4,6] we only set the flag
17156 			 * ilm_notify_driver for the first ilm.
17157 			 */
17158 
17159 			(void) ip_ll_send_enabmulti_req(to_ill,
17160 			    &ilm->ilm_v6addr);
17161 		}
17162 
17163 		ilm->ilm_notify_driver = B_FALSE;
17164 
17165 		/*
17166 		 * See whether we need to send down DL_DISABMULTI_REQ on
17167 		 * from_ill as ilm has just been removed.
17168 		 */
17169 from:
17170 		ipif = from_ill->ill_ipif;
17171 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
17172 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17173 			ip1dbg(("ilm_send_multicast_reqs: "
17174 			    "from_ill not resolver\n"));
17175 			continue;		/* Must be IRE_IF_NORESOLVER */
17176 		}
17177 
17178 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17179 			ip1dbg(("ilm_send_multicast_reqs: "
17180 			    "from_ill MULTI_BCAST\n"));
17181 			continue;
17182 		}
17183 
17184 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17185 			if (from_ill->ill_join_allmulti)
17186 				(void) ip_leave_allmulti(from_ill->ill_ipif);
17187 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
17188 			(void) ip_ll_send_disabmulti_req(from_ill,
17189 			    &ilm->ilm_v6addr);
17190 		}
17191 	}
17192 	ILM_WALKER_RELE(to_ill);
17193 }
17194 
17195 /*
17196  * This function is called when all multicast memberships needs
17197  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
17198  * called only once unlike the IPv4 counterpart where it is called after
17199  * every logical interface is moved. The reason is due to multicast
17200  * memberships are joined using an interface address in IPv4 while in
17201  * IPv6, interface index is used.
17202  */
17203 static void
17204 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
17205 {
17206 	ilm_t	*ilm;
17207 	ilm_t	*ilm_next;
17208 	ilm_t	*new_ilm;
17209 	ilm_t	**ilmp;
17210 	int	count;
17211 	char buf[INET6_ADDRSTRLEN];
17212 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
17213 	ip_stack_t	*ipst = from_ill->ill_ipst;
17214 
17215 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17216 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17217 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17218 
17219 	if (ifindex == 0) {
17220 		/*
17221 		 * Form the solicited node mcast address which is used later.
17222 		 */
17223 		ipif_t *ipif;
17224 
17225 		ipif = from_ill->ill_ipif;
17226 		ASSERT(ipif->ipif_id == 0);
17227 
17228 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
17229 	}
17230 
17231 	ilmp = &from_ill->ill_ilm;
17232 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17233 		ilm_next = ilm->ilm_next;
17234 
17235 		if (ilm->ilm_flags & ILM_DELETED) {
17236 			ilmp = &ilm->ilm_next;
17237 			continue;
17238 		}
17239 
17240 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
17241 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
17242 		ASSERT(ilm->ilm_orig_ifindex != 0);
17243 		if (ilm->ilm_orig_ifindex == ifindex) {
17244 			/*
17245 			 * We are failing back multicast memberships.
17246 			 * If the same ilm exists in to_ill, it means somebody
17247 			 * has joined the same group there e.g. ff02::1
17248 			 * is joined within the kernel when the interfaces
17249 			 * came UP.
17250 			 */
17251 			ASSERT(ilm->ilm_ipif == NULL);
17252 			if (new_ilm != NULL) {
17253 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17254 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17255 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17256 					new_ilm->ilm_is_new = B_TRUE;
17257 				}
17258 			} else {
17259 				/*
17260 				 * check if we can just move the ilm
17261 				 */
17262 				if (from_ill->ill_ilm_walker_cnt != 0) {
17263 					/*
17264 					 * We have walkers we cannot move
17265 					 * the ilm, so allocate a new ilm,
17266 					 * this (old) ilm will be marked
17267 					 * ILM_DELETED at the end of the loop
17268 					 * and will be freed when the
17269 					 * last walker exits.
17270 					 */
17271 					new_ilm = (ilm_t *)mi_zalloc
17272 					    (sizeof (ilm_t));
17273 					if (new_ilm == NULL) {
17274 						ip0dbg(("ilm_move_v6: "
17275 						    "FAILBACK of IPv6"
17276 						    " multicast address %s : "
17277 						    "from %s to"
17278 						    " %s failed : ENOMEM \n",
17279 						    inet_ntop(AF_INET6,
17280 						    &ilm->ilm_v6addr, buf,
17281 						    sizeof (buf)),
17282 						    from_ill->ill_name,
17283 						    to_ill->ill_name));
17284 
17285 							ilmp = &ilm->ilm_next;
17286 							continue;
17287 					}
17288 					*new_ilm = *ilm;
17289 					/*
17290 					 * we don't want new_ilm linked to
17291 					 * ilm's filter list.
17292 					 */
17293 					new_ilm->ilm_filter = NULL;
17294 				} else {
17295 					/*
17296 					 * No walkers we can move the ilm.
17297 					 * lets take it out of the list.
17298 					 */
17299 					*ilmp = ilm->ilm_next;
17300 					ilm->ilm_next = NULL;
17301 					new_ilm = ilm;
17302 				}
17303 
17304 				/*
17305 				 * if this is the first ilm for the group
17306 				 * set ilm_notify_driver so that we notify the
17307 				 * driver in ilm_send_multicast_reqs.
17308 				 */
17309 				if (ilm_lookup_ill_v6(to_ill,
17310 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17311 					new_ilm->ilm_notify_driver = B_TRUE;
17312 
17313 				new_ilm->ilm_ill = to_ill;
17314 				/* Add to the to_ill's list */
17315 				new_ilm->ilm_next = to_ill->ill_ilm;
17316 				to_ill->ill_ilm = new_ilm;
17317 				/*
17318 				 * set the flag so that mld_joingroup is
17319 				 * called in ilm_send_multicast_reqs().
17320 				 */
17321 				new_ilm->ilm_is_new = B_TRUE;
17322 			}
17323 			goto bottom;
17324 		} else if (ifindex != 0) {
17325 			/*
17326 			 * If this is FAILBACK (ifindex != 0) and the ifindex
17327 			 * has not matched above, look at the next ilm.
17328 			 */
17329 			ilmp = &ilm->ilm_next;
17330 			continue;
17331 		}
17332 		/*
17333 		 * If we are here, it means ifindex is 0. Failover
17334 		 * everything.
17335 		 *
17336 		 * We need to handle solicited node mcast address
17337 		 * and all_nodes mcast address differently as they
17338 		 * are joined witin the kenrel (ipif_multicast_up)
17339 		 * and potentially from the userland. We are called
17340 		 * after the ipifs of from_ill has been moved.
17341 		 * If we still find ilms on ill with solicited node
17342 		 * mcast address or all_nodes mcast address, it must
17343 		 * belong to the UP interface that has not moved e.g.
17344 		 * ipif_id 0 with the link local prefix does not move.
17345 		 * We join this on the new ill accounting for all the
17346 		 * userland memberships so that applications don't
17347 		 * see any failure.
17348 		 *
17349 		 * We need to make sure that we account only for the
17350 		 * solicited node and all node multicast addresses
17351 		 * that was brought UP on these. In the case of
17352 		 * a failover from A to B, we might have ilms belonging
17353 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
17354 		 * for the membership from the userland. If we are failing
17355 		 * over from B to C now, we will find the ones belonging
17356 		 * to A on B. These don't account for the ill_ipif_up_count.
17357 		 * They just move from B to C. The check below on
17358 		 * ilm_orig_ifindex ensures that.
17359 		 */
17360 		if ((ilm->ilm_orig_ifindex ==
17361 		    from_ill->ill_phyint->phyint_ifindex) &&
17362 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
17363 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
17364 		    &ilm->ilm_v6addr))) {
17365 			ASSERT(ilm->ilm_refcnt > 0);
17366 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
17367 			/*
17368 			 * For indentation reasons, we are not using a
17369 			 * "else" here.
17370 			 */
17371 			if (count == 0) {
17372 				ilmp = &ilm->ilm_next;
17373 				continue;
17374 			}
17375 			ilm->ilm_refcnt -= count;
17376 			if (new_ilm != NULL) {
17377 				/*
17378 				 * Can find one with the same
17379 				 * ilm_orig_ifindex, if we are failing
17380 				 * over to a STANDBY. This happens
17381 				 * when somebody wants to join a group
17382 				 * on a STANDBY interface and we
17383 				 * internally join on a different one.
17384 				 * If we had joined on from_ill then, a
17385 				 * failover now will find a new ilm
17386 				 * with this index.
17387 				 */
17388 				ip1dbg(("ilm_move_v6: FAILOVER, found"
17389 				    " new ilm on %s, group address %s\n",
17390 				    to_ill->ill_name,
17391 				    inet_ntop(AF_INET6,
17392 				    &ilm->ilm_v6addr, buf,
17393 				    sizeof (buf))));
17394 				new_ilm->ilm_refcnt += count;
17395 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17396 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17397 					new_ilm->ilm_is_new = B_TRUE;
17398 				}
17399 			} else {
17400 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17401 				if (new_ilm == NULL) {
17402 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17403 					    " multicast address %s : from %s to"
17404 					    " %s failed : ENOMEM \n",
17405 					    inet_ntop(AF_INET6,
17406 					    &ilm->ilm_v6addr, buf,
17407 					    sizeof (buf)), from_ill->ill_name,
17408 					    to_ill->ill_name));
17409 					ilmp = &ilm->ilm_next;
17410 					continue;
17411 				}
17412 				*new_ilm = *ilm;
17413 				new_ilm->ilm_filter = NULL;
17414 				new_ilm->ilm_refcnt = count;
17415 				new_ilm->ilm_timer = INFINITY;
17416 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17417 				new_ilm->ilm_is_new = B_TRUE;
17418 				/*
17419 				 * If the to_ill has not joined this
17420 				 * group we need to tell the driver in
17421 				 * ill_send_multicast_reqs.
17422 				 */
17423 				if (ilm_lookup_ill_v6(to_ill,
17424 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17425 					new_ilm->ilm_notify_driver = B_TRUE;
17426 
17427 				new_ilm->ilm_ill = to_ill;
17428 				/* Add to the to_ill's list */
17429 				new_ilm->ilm_next = to_ill->ill_ilm;
17430 				to_ill->ill_ilm = new_ilm;
17431 				ASSERT(new_ilm->ilm_ipif == NULL);
17432 			}
17433 			if (ilm->ilm_refcnt == 0) {
17434 				goto bottom;
17435 			} else {
17436 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17437 				CLEAR_SLIST(new_ilm->ilm_filter);
17438 				ilmp = &ilm->ilm_next;
17439 			}
17440 			continue;
17441 		} else {
17442 			/*
17443 			 * ifindex = 0 means, move everything pointing at
17444 			 * from_ill. We are doing this becuase ill has
17445 			 * either FAILED or became INACTIVE.
17446 			 *
17447 			 * As we would like to move things later back to
17448 			 * from_ill, we want to retain the identity of this
17449 			 * ilm. Thus, we don't blindly increment the reference
17450 			 * count on the ilms matching the address alone. We
17451 			 * need to match on the ilm_orig_index also. new_ilm
17452 			 * was obtained by matching ilm_orig_index also.
17453 			 */
17454 			if (new_ilm != NULL) {
17455 				/*
17456 				 * This is possible only if a previous restore
17457 				 * was incomplete i.e restore to
17458 				 * ilm_orig_ifindex left some ilms because
17459 				 * of some failures. Thus when we are failing
17460 				 * again, we might find our old friends there.
17461 				 */
17462 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17463 				    " on %s, group address %s\n",
17464 				    to_ill->ill_name,
17465 				    inet_ntop(AF_INET6,
17466 				    &ilm->ilm_v6addr, buf,
17467 				    sizeof (buf))));
17468 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17469 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17470 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17471 					new_ilm->ilm_is_new = B_TRUE;
17472 				}
17473 			} else {
17474 				if (from_ill->ill_ilm_walker_cnt != 0) {
17475 					new_ilm = (ilm_t *)
17476 					    mi_zalloc(sizeof (ilm_t));
17477 					if (new_ilm == NULL) {
17478 						ip0dbg(("ilm_move_v6: "
17479 						    "FAILOVER of IPv6"
17480 						    " multicast address %s : "
17481 						    "from %s to"
17482 						    " %s failed : ENOMEM \n",
17483 						    inet_ntop(AF_INET6,
17484 						    &ilm->ilm_v6addr, buf,
17485 						    sizeof (buf)),
17486 						    from_ill->ill_name,
17487 						    to_ill->ill_name));
17488 
17489 							ilmp = &ilm->ilm_next;
17490 							continue;
17491 					}
17492 					*new_ilm = *ilm;
17493 					new_ilm->ilm_filter = NULL;
17494 				} else {
17495 					*ilmp = ilm->ilm_next;
17496 					new_ilm = ilm;
17497 				}
17498 				/*
17499 				 * If the to_ill has not joined this
17500 				 * group we need to tell the driver in
17501 				 * ill_send_multicast_reqs.
17502 				 */
17503 				if (ilm_lookup_ill_v6(to_ill,
17504 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17505 					new_ilm->ilm_notify_driver = B_TRUE;
17506 
17507 				/* Add to the to_ill's list */
17508 				new_ilm->ilm_next = to_ill->ill_ilm;
17509 				to_ill->ill_ilm = new_ilm;
17510 				ASSERT(ilm->ilm_ipif == NULL);
17511 				new_ilm->ilm_ill = to_ill;
17512 				new_ilm->ilm_is_new = B_TRUE;
17513 			}
17514 
17515 		}
17516 
17517 bottom:
17518 		/*
17519 		 * Revert multicast filter state to (EXCLUDE, NULL).
17520 		 * new_ilm->ilm_is_new should already be set if needed.
17521 		 */
17522 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17523 		CLEAR_SLIST(new_ilm->ilm_filter);
17524 		/*
17525 		 * We allocated/got a new ilm, free the old one.
17526 		 */
17527 		if (new_ilm != ilm) {
17528 			if (from_ill->ill_ilm_walker_cnt == 0) {
17529 				*ilmp = ilm->ilm_next;
17530 				ilm->ilm_next = NULL;
17531 				FREE_SLIST(ilm->ilm_filter);
17532 				FREE_SLIST(ilm->ilm_pendsrcs);
17533 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17534 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17535 				mi_free((char *)ilm);
17536 			} else {
17537 				ilm->ilm_flags |= ILM_DELETED;
17538 				from_ill->ill_ilm_cleanup_reqd = 1;
17539 				ilmp = &ilm->ilm_next;
17540 			}
17541 		}
17542 	}
17543 }
17544 
17545 /*
17546  * Move all the multicast memberships to to_ill. Called when
17547  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17548  * different from IPv6 counterpart as multicast memberships are associated
17549  * with ills in IPv6. This function is called after every ipif is moved
17550  * unlike IPv6, where it is moved only once.
17551  */
17552 static void
17553 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17554 {
17555 	ilm_t	*ilm;
17556 	ilm_t	*ilm_next;
17557 	ilm_t	*new_ilm;
17558 	ilm_t	**ilmp;
17559 	ip_stack_t	*ipst = from_ill->ill_ipst;
17560 
17561 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17562 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17563 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17564 
17565 	ilmp = &from_ill->ill_ilm;
17566 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17567 		ilm_next = ilm->ilm_next;
17568 
17569 		if (ilm->ilm_flags & ILM_DELETED) {
17570 			ilmp = &ilm->ilm_next;
17571 			continue;
17572 		}
17573 
17574 		ASSERT(ilm->ilm_ipif != NULL);
17575 
17576 		if (ilm->ilm_ipif != ipif) {
17577 			ilmp = &ilm->ilm_next;
17578 			continue;
17579 		}
17580 
17581 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17582 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17583 			/*
17584 			 * We joined this in ipif_multicast_up
17585 			 * and we never did an ipif_multicast_down
17586 			 * for IPv4. If nobody else from the userland
17587 			 * has reference, we free the ilm, and later
17588 			 * when this ipif comes up on the new ill,
17589 			 * we will join this again.
17590 			 */
17591 			if (--ilm->ilm_refcnt == 0)
17592 				goto delete_ilm;
17593 
17594 			new_ilm = ilm_lookup_ipif(ipif,
17595 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17596 			if (new_ilm != NULL) {
17597 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17598 				/*
17599 				 * We still need to deal with the from_ill.
17600 				 */
17601 				new_ilm->ilm_is_new = B_TRUE;
17602 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17603 				CLEAR_SLIST(new_ilm->ilm_filter);
17604 				goto delete_ilm;
17605 			}
17606 			/*
17607 			 * If we could not find one e.g. ipif is
17608 			 * still down on to_ill, we add this ilm
17609 			 * on ill_new to preserve the reference
17610 			 * count.
17611 			 */
17612 		}
17613 		/*
17614 		 * When ipifs move, ilms always move with it
17615 		 * to the NEW ill. Thus we should never be
17616 		 * able to find ilm till we really move it here.
17617 		 */
17618 		ASSERT(ilm_lookup_ipif(ipif,
17619 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17620 
17621 		if (from_ill->ill_ilm_walker_cnt != 0) {
17622 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17623 			if (new_ilm == NULL) {
17624 				char buf[INET6_ADDRSTRLEN];
17625 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17626 				    " multicast address %s : "
17627 				    "from %s to"
17628 				    " %s failed : ENOMEM \n",
17629 				    inet_ntop(AF_INET,
17630 				    &ilm->ilm_v6addr, buf,
17631 				    sizeof (buf)),
17632 				    from_ill->ill_name,
17633 				    to_ill->ill_name));
17634 
17635 				ilmp = &ilm->ilm_next;
17636 				continue;
17637 			}
17638 			*new_ilm = *ilm;
17639 			/* We don't want new_ilm linked to ilm's filter list */
17640 			new_ilm->ilm_filter = NULL;
17641 		} else {
17642 			/* Remove from the list */
17643 			*ilmp = ilm->ilm_next;
17644 			new_ilm = ilm;
17645 		}
17646 
17647 		/*
17648 		 * If we have never joined this group on the to_ill
17649 		 * make sure we tell the driver.
17650 		 */
17651 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17652 		    ALL_ZONES) == NULL)
17653 			new_ilm->ilm_notify_driver = B_TRUE;
17654 
17655 		/* Add to the to_ill's list */
17656 		new_ilm->ilm_next = to_ill->ill_ilm;
17657 		to_ill->ill_ilm = new_ilm;
17658 		new_ilm->ilm_is_new = B_TRUE;
17659 
17660 		/*
17661 		 * Revert multicast filter state to (EXCLUDE, NULL)
17662 		 */
17663 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17664 		CLEAR_SLIST(new_ilm->ilm_filter);
17665 
17666 		/*
17667 		 * Delete only if we have allocated a new ilm.
17668 		 */
17669 		if (new_ilm != ilm) {
17670 delete_ilm:
17671 			if (from_ill->ill_ilm_walker_cnt == 0) {
17672 				/* Remove from the list */
17673 				*ilmp = ilm->ilm_next;
17674 				ilm->ilm_next = NULL;
17675 				FREE_SLIST(ilm->ilm_filter);
17676 				FREE_SLIST(ilm->ilm_pendsrcs);
17677 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17678 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17679 				mi_free((char *)ilm);
17680 			} else {
17681 				ilm->ilm_flags |= ILM_DELETED;
17682 				from_ill->ill_ilm_cleanup_reqd = 1;
17683 				ilmp = &ilm->ilm_next;
17684 			}
17685 		}
17686 	}
17687 }
17688 
17689 static uint_t
17690 ipif_get_id(ill_t *ill, uint_t id)
17691 {
17692 	uint_t	unit;
17693 	ipif_t	*tipif;
17694 	boolean_t found = B_FALSE;
17695 	ip_stack_t	*ipst = ill->ill_ipst;
17696 
17697 	/*
17698 	 * During failback, we want to go back to the same id
17699 	 * instead of the smallest id so that the original
17700 	 * configuration is maintained. id is non-zero in that
17701 	 * case.
17702 	 */
17703 	if (id != 0) {
17704 		/*
17705 		 * While failing back, if we still have an ipif with
17706 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17707 		 * as soon as we return from this function. It was
17708 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17709 		 * we can choose the smallest id. Thus we return zero
17710 		 * in that case ignoring the hint.
17711 		 */
17712 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17713 			return (0);
17714 		for (tipif = ill->ill_ipif; tipif != NULL;
17715 		    tipif = tipif->ipif_next) {
17716 			if (tipif->ipif_id == id) {
17717 				found = B_TRUE;
17718 				break;
17719 			}
17720 		}
17721 		/*
17722 		 * If somebody already plumbed another logical
17723 		 * with the same id, we won't be able to find it.
17724 		 */
17725 		if (!found)
17726 			return (id);
17727 	}
17728 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17729 		found = B_FALSE;
17730 		for (tipif = ill->ill_ipif; tipif != NULL;
17731 		    tipif = tipif->ipif_next) {
17732 			if (tipif->ipif_id == unit) {
17733 				found = B_TRUE;
17734 				break;
17735 			}
17736 		}
17737 		if (!found)
17738 			break;
17739 	}
17740 	return (unit);
17741 }
17742 
17743 /* ARGSUSED */
17744 static int
17745 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17746     ipif_t **rep_ipif_ptr)
17747 {
17748 	ill_t	*from_ill;
17749 	ipif_t	*rep_ipif;
17750 	uint_t	unit;
17751 	int err = 0;
17752 	ipif_t	*to_ipif;
17753 	struct iocblk	*iocp;
17754 	boolean_t failback_cmd;
17755 	boolean_t remove_ipif;
17756 	int	rc;
17757 	ip_stack_t	*ipst;
17758 
17759 	ASSERT(IAM_WRITER_ILL(to_ill));
17760 	ASSERT(IAM_WRITER_IPIF(ipif));
17761 
17762 	iocp = (struct iocblk *)mp->b_rptr;
17763 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17764 	remove_ipif = B_FALSE;
17765 
17766 	from_ill = ipif->ipif_ill;
17767 	ipst = from_ill->ill_ipst;
17768 
17769 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17770 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17771 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17772 
17773 	/*
17774 	 * Don't move LINK LOCAL addresses as they are tied to
17775 	 * physical interface.
17776 	 */
17777 	if (from_ill->ill_isv6 &&
17778 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17779 		ipif->ipif_was_up = B_FALSE;
17780 		IPIF_UNMARK_MOVING(ipif);
17781 		return (0);
17782 	}
17783 
17784 	/*
17785 	 * We set the ipif_id to maximum so that the search for
17786 	 * ipif_id will pick the lowest number i.e 0 in the
17787 	 * following 2 cases :
17788 	 *
17789 	 * 1) We have a replacement ipif at the head of to_ill.
17790 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17791 	 *    on to_ill and hence the MOVE might fail. We want to
17792 	 *    remove it only if we could move the ipif. Thus, by
17793 	 *    setting it to the MAX value, we make the search in
17794 	 *    ipif_get_id return the zeroth id.
17795 	 *
17796 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17797 	 *    we might just have a zero address plumbed on the ipif
17798 	 *    with zero id in the case of IPv4. We remove that while
17799 	 *    doing the failback. We want to remove it only if we
17800 	 *    could move the ipif. Thus, by setting it to the MAX
17801 	 *    value, we make the search in ipif_get_id return the
17802 	 *    zeroth id.
17803 	 *
17804 	 * Both (1) and (2) are done only when when we are moving
17805 	 * an ipif (either due to failover/failback) which originally
17806 	 * belonged to this interface i.e the ipif_orig_ifindex is
17807 	 * the same as to_ill's ifindex. This is needed so that
17808 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17809 	 * from B -> A (B is being removed from the group) and
17810 	 * FAILBACK from A -> B restores the original configuration.
17811 	 * Without the check for orig_ifindex, the second FAILOVER
17812 	 * could make the ipif belonging to B replace the A's zeroth
17813 	 * ipif and the subsequent failback re-creating the replacement
17814 	 * ipif again.
17815 	 *
17816 	 * NOTE : We created the replacement ipif when we did a
17817 	 * FAILOVER (See below). We could check for FAILBACK and
17818 	 * then look for replacement ipif to be removed. But we don't
17819 	 * want to do that because we wan't to allow the possibility
17820 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17821 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17822 	 * from B -> A.
17823 	 */
17824 	to_ipif = to_ill->ill_ipif;
17825 	if ((to_ill->ill_phyint->phyint_ifindex ==
17826 	    ipif->ipif_orig_ifindex) &&
17827 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17828 		ASSERT(to_ipif->ipif_id == 0);
17829 		remove_ipif = B_TRUE;
17830 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17831 	}
17832 	/*
17833 	 * Find the lowest logical unit number on the to_ill.
17834 	 * If we are failing back, try to get the original id
17835 	 * rather than the lowest one so that the original
17836 	 * configuration is maintained.
17837 	 *
17838 	 * XXX need a better scheme for this.
17839 	 */
17840 	if (failback_cmd) {
17841 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17842 	} else {
17843 		unit = ipif_get_id(to_ill, 0);
17844 	}
17845 
17846 	/* Reset back to zero in case we fail below */
17847 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17848 		to_ipif->ipif_id = 0;
17849 
17850 	if (unit == ipst->ips_ip_addrs_per_if) {
17851 		ipif->ipif_was_up = B_FALSE;
17852 		IPIF_UNMARK_MOVING(ipif);
17853 		return (EINVAL);
17854 	}
17855 
17856 	/*
17857 	 * ipif is ready to move from "from_ill" to "to_ill".
17858 	 *
17859 	 * 1) If we are moving ipif with id zero, create a
17860 	 *    replacement ipif for this ipif on from_ill. If this fails
17861 	 *    fail the MOVE operation.
17862 	 *
17863 	 * 2) Remove the replacement ipif on to_ill if any.
17864 	 *    We could remove the replacement ipif when we are moving
17865 	 *    the ipif with id zero. But what if somebody already
17866 	 *    unplumbed it ? Thus we always remove it if it is present.
17867 	 *    We want to do it only if we are sure we are going to
17868 	 *    move the ipif to to_ill which is why there are no
17869 	 *    returns due to error till ipif is linked to to_ill.
17870 	 *    Note that the first ipif that we failback will always
17871 	 *    be zero if it is present.
17872 	 */
17873 	if (ipif->ipif_id == 0) {
17874 		ipaddr_t inaddr_any = INADDR_ANY;
17875 
17876 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17877 		if (rep_ipif == NULL) {
17878 			ipif->ipif_was_up = B_FALSE;
17879 			IPIF_UNMARK_MOVING(ipif);
17880 			return (ENOMEM);
17881 		}
17882 		*rep_ipif = ipif_zero;
17883 		/*
17884 		 * Before we put the ipif on the list, store the addresses
17885 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17886 		 * assumes so. This logic is not any different from what
17887 		 * ipif_allocate does.
17888 		 */
17889 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17890 		    &rep_ipif->ipif_v6lcl_addr);
17891 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17892 		    &rep_ipif->ipif_v6src_addr);
17893 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17894 		    &rep_ipif->ipif_v6subnet);
17895 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17896 		    &rep_ipif->ipif_v6net_mask);
17897 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17898 		    &rep_ipif->ipif_v6brd_addr);
17899 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17900 		    &rep_ipif->ipif_v6pp_dst_addr);
17901 		/*
17902 		 * We mark IPIF_NOFAILOVER so that this can never
17903 		 * move.
17904 		 */
17905 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17906 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17907 		rep_ipif->ipif_replace_zero = B_TRUE;
17908 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17909 		    MUTEX_DEFAULT, NULL);
17910 		rep_ipif->ipif_id = 0;
17911 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17912 		rep_ipif->ipif_ill = from_ill;
17913 		rep_ipif->ipif_orig_ifindex =
17914 		    from_ill->ill_phyint->phyint_ifindex;
17915 		/* Insert at head */
17916 		rep_ipif->ipif_next = from_ill->ill_ipif;
17917 		from_ill->ill_ipif = rep_ipif;
17918 		/*
17919 		 * We don't really care to let apps know about
17920 		 * this interface.
17921 		 */
17922 	}
17923 
17924 	if (remove_ipif) {
17925 		/*
17926 		 * We set to a max value above for this case to get
17927 		 * id zero. ASSERT that we did get one.
17928 		 */
17929 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17930 		rep_ipif = to_ipif;
17931 		to_ill->ill_ipif = rep_ipif->ipif_next;
17932 		rep_ipif->ipif_next = NULL;
17933 		/*
17934 		 * If some apps scanned and find this interface,
17935 		 * it is time to let them know, so that they can
17936 		 * delete it.
17937 		 */
17938 
17939 		*rep_ipif_ptr = rep_ipif;
17940 	}
17941 
17942 	/* Get it out of the ILL interface list. */
17943 	ipif_remove(ipif, B_FALSE);
17944 
17945 	/* Assign the new ill */
17946 	ipif->ipif_ill = to_ill;
17947 	ipif->ipif_id = unit;
17948 	/* id has already been checked */
17949 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17950 	ASSERT(rc == 0);
17951 	/* Let SCTP update its list */
17952 	sctp_move_ipif(ipif, from_ill, to_ill);
17953 	/*
17954 	 * Handle the failover and failback of ipif_t between
17955 	 * ill_t that have differing maximum mtu values.
17956 	 */
17957 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17958 		if (ipif->ipif_saved_mtu == 0) {
17959 			/*
17960 			 * As this ipif_t is moving to an ill_t
17961 			 * that has a lower ill_max_mtu, its
17962 			 * ipif_mtu needs to be saved so it can
17963 			 * be restored during failback or during
17964 			 * failover to an ill_t which has a
17965 			 * higher ill_max_mtu.
17966 			 */
17967 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17968 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17969 		} else {
17970 			/*
17971 			 * The ipif_t is, once again, moving to
17972 			 * an ill_t that has a lower maximum mtu
17973 			 * value.
17974 			 */
17975 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17976 		}
17977 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17978 	    ipif->ipif_saved_mtu != 0) {
17979 		/*
17980 		 * The mtu of this ipif_t had to be reduced
17981 		 * during an earlier failover; this is an
17982 		 * opportunity for it to be increased (either as
17983 		 * part of another failover or a failback).
17984 		 */
17985 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17986 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17987 			ipif->ipif_saved_mtu = 0;
17988 		} else {
17989 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17990 		}
17991 	}
17992 
17993 	/*
17994 	 * We preserve all the other fields of the ipif including
17995 	 * ipif_saved_ire_mp. The routes that are saved here will
17996 	 * be recreated on the new interface and back on the old
17997 	 * interface when we move back.
17998 	 */
17999 	ASSERT(ipif->ipif_arp_del_mp == NULL);
18000 
18001 	return (err);
18002 }
18003 
18004 static int
18005 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
18006     int ifindex, ipif_t **rep_ipif_ptr)
18007 {
18008 	ipif_t *mipif;
18009 	ipif_t *ipif_next;
18010 	int err;
18011 
18012 	/*
18013 	 * We don't really try to MOVE back things if some of the
18014 	 * operations fail. The daemon will take care of moving again
18015 	 * later on.
18016 	 */
18017 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
18018 		ipif_next = mipif->ipif_next;
18019 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
18020 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
18021 
18022 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
18023 
18024 			/*
18025 			 * When the MOVE fails, it is the job of the
18026 			 * application to take care of this properly
18027 			 * i.e try again if it is ENOMEM.
18028 			 */
18029 			if (mipif->ipif_ill != from_ill) {
18030 				/*
18031 				 * ipif has moved.
18032 				 *
18033 				 * Move the multicast memberships associated
18034 				 * with this ipif to the new ill. For IPv6, we
18035 				 * do it once after all the ipifs are moved
18036 				 * (in ill_move) as they are not associated
18037 				 * with ipifs.
18038 				 *
18039 				 * We need to move the ilms as the ipif has
18040 				 * already been moved to a new ill even
18041 				 * in the case of errors. Neither
18042 				 * ilm_free(ipif) will find the ilm
18043 				 * when somebody unplumbs this ipif nor
18044 				 * ilm_delete(ilm) will be able to find the
18045 				 * ilm, if we don't move now.
18046 				 */
18047 				if (!from_ill->ill_isv6)
18048 					ilm_move_v4(from_ill, to_ill, mipif);
18049 			}
18050 
18051 			if (err != 0)
18052 				return (err);
18053 		}
18054 	}
18055 	return (0);
18056 }
18057 
18058 static int
18059 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
18060 {
18061 	int ifindex;
18062 	int err;
18063 	struct iocblk	*iocp;
18064 	ipif_t	*ipif;
18065 	ipif_t *rep_ipif_ptr = NULL;
18066 	ipif_t	*from_ipif = NULL;
18067 	boolean_t check_rep_if = B_FALSE;
18068 	ip_stack_t	*ipst = from_ill->ill_ipst;
18069 
18070 	iocp = (struct iocblk *)mp->b_rptr;
18071 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
18072 		/*
18073 		 * Move everything pointing at from_ill to to_ill.
18074 		 * We acheive this by passing in 0 as ifindex.
18075 		 */
18076 		ifindex = 0;
18077 	} else {
18078 		/*
18079 		 * Move everything pointing at from_ill whose original
18080 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
18081 		 * We acheive this by passing in ifindex rather than 0.
18082 		 * Multicast vifs, ilgs move implicitly because ipifs move.
18083 		 */
18084 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
18085 		ifindex = to_ill->ill_phyint->phyint_ifindex;
18086 	}
18087 
18088 	/*
18089 	 * Determine if there is at least one ipif that would move from
18090 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
18091 	 * ipif (if it exists) on the to_ill would be consumed as a result of
18092 	 * the move, in which case we need to quiesce the replacement ipif also.
18093 	 */
18094 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
18095 	    from_ipif = from_ipif->ipif_next) {
18096 		if (((ifindex == 0) ||
18097 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
18098 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
18099 			check_rep_if = B_TRUE;
18100 			break;
18101 		}
18102 	}
18103 
18104 
18105 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
18106 
18107 	GRAB_ILL_LOCKS(from_ill, to_ill);
18108 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
18109 		(void) ipsq_pending_mp_add(NULL, ipif, q,
18110 		    mp, ILL_MOVE_OK);
18111 		RELEASE_ILL_LOCKS(from_ill, to_ill);
18112 		return (EINPROGRESS);
18113 	}
18114 
18115 	/* Check if the replacement ipif is quiescent to delete */
18116 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
18117 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
18118 		to_ill->ill_ipif->ipif_state_flags |=
18119 		    IPIF_MOVING | IPIF_CHANGING;
18120 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
18121 			(void) ipsq_pending_mp_add(NULL, ipif, q,
18122 			    mp, ILL_MOVE_OK);
18123 			RELEASE_ILL_LOCKS(from_ill, to_ill);
18124 			return (EINPROGRESS);
18125 		}
18126 	}
18127 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18128 
18129 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
18130 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18131 	GRAB_ILL_LOCKS(from_ill, to_ill);
18132 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
18133 
18134 	/* ilm_move is done inside ipif_move for IPv4 */
18135 	if (err == 0 && from_ill->ill_isv6)
18136 		ilm_move_v6(from_ill, to_ill, ifindex);
18137 
18138 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18139 	rw_exit(&ipst->ips_ill_g_lock);
18140 
18141 	/*
18142 	 * send rts messages and multicast messages.
18143 	 */
18144 	if (rep_ipif_ptr != NULL) {
18145 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
18146 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
18147 			rep_ipif_ptr->ipif_recovery_id = 0;
18148 		}
18149 		ip_rts_ifmsg(rep_ipif_ptr);
18150 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
18151 		IPIF_TRACE_CLEANUP(rep_ipif_ptr);
18152 		mi_free(rep_ipif_ptr);
18153 	}
18154 
18155 	conn_move_ill(from_ill, to_ill, ifindex);
18156 
18157 	return (err);
18158 }
18159 
18160 /*
18161  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
18162  * Also checks for the validity of the arguments.
18163  * Note: We are already exclusive inside the from group.
18164  * It is upto the caller to release refcnt on the to_ill's.
18165  */
18166 static int
18167 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
18168     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
18169 {
18170 	int dst_index;
18171 	ipif_t *ipif_v4, *ipif_v6;
18172 	struct lifreq *lifr;
18173 	mblk_t *mp1;
18174 	boolean_t exists;
18175 	sin_t	*sin;
18176 	int	err = 0;
18177 	ip_stack_t	*ipst;
18178 
18179 	if (CONN_Q(q))
18180 		ipst = CONNQ_TO_IPST(q);
18181 	else
18182 		ipst = ILLQ_TO_IPST(q);
18183 
18184 
18185 	if ((mp1 = mp->b_cont) == NULL)
18186 		return (EPROTO);
18187 
18188 	if ((mp1 = mp1->b_cont) == NULL)
18189 		return (EPROTO);
18190 
18191 	lifr = (struct lifreq *)mp1->b_rptr;
18192 	sin = (sin_t *)&lifr->lifr_addr;
18193 
18194 	/*
18195 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
18196 	 * specific operations.
18197 	 */
18198 	if (sin->sin_family != AF_UNSPEC)
18199 		return (EINVAL);
18200 
18201 	/*
18202 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
18203 	 * NULLs for the last 4 args and we know the lookup won't fail
18204 	 * with EINPROGRESS.
18205 	 */
18206 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
18207 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
18208 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18209 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
18210 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
18211 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18212 
18213 	if (ipif_v4 == NULL && ipif_v6 == NULL)
18214 		return (ENXIO);
18215 
18216 	if (ipif_v4 != NULL) {
18217 		ASSERT(ipif_v4->ipif_refcnt != 0);
18218 		if (ipif_v4->ipif_id != 0) {
18219 			err = EINVAL;
18220 			goto done;
18221 		}
18222 
18223 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
18224 		*ill_from_v4 = ipif_v4->ipif_ill;
18225 	}
18226 
18227 	if (ipif_v6 != NULL) {
18228 		ASSERT(ipif_v6->ipif_refcnt != 0);
18229 		if (ipif_v6->ipif_id != 0) {
18230 			err = EINVAL;
18231 			goto done;
18232 		}
18233 
18234 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
18235 		*ill_from_v6 = ipif_v6->ipif_ill;
18236 	}
18237 
18238 	err = 0;
18239 	dst_index = lifr->lifr_movetoindex;
18240 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
18241 	    q, mp, ip_process_ioctl, &err, ipst);
18242 	if (err != 0) {
18243 		/*
18244 		 * There could be only v6.
18245 		 */
18246 		if (err != ENXIO)
18247 			goto done;
18248 		err = 0;
18249 	}
18250 
18251 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
18252 	    q, mp, ip_process_ioctl, &err, ipst);
18253 	if (err != 0) {
18254 		if (err != ENXIO)
18255 			goto done;
18256 		if (*ill_to_v4 == NULL) {
18257 			err = ENXIO;
18258 			goto done;
18259 		}
18260 		err = 0;
18261 	}
18262 
18263 	/*
18264 	 * If we have something to MOVE i.e "from" not NULL,
18265 	 * "to" should be non-NULL.
18266 	 */
18267 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
18268 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
18269 		err = EINVAL;
18270 	}
18271 
18272 done:
18273 	if (ipif_v4 != NULL)
18274 		ipif_refrele(ipif_v4);
18275 	if (ipif_v6 != NULL)
18276 		ipif_refrele(ipif_v6);
18277 	return (err);
18278 }
18279 
18280 /*
18281  * FAILOVER and FAILBACK are modelled as MOVE operations.
18282  *
18283  * We don't check whether the MOVE is within the same group or
18284  * not, because this ioctl can be used as a generic mechanism
18285  * to failover from interface A to B, though things will function
18286  * only if they are really part of the same group. Moreover,
18287  * all ipifs may be down and hence temporarily out of the group.
18288  *
18289  * ipif's that need to be moved are first brought down; V4 ipifs are brought
18290  * down first and then V6.  For each we wait for the ipif's to become quiescent.
18291  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
18292  * have been deleted and there are no active references. Once quiescent the
18293  * ipif's are moved and brought up on the new ill.
18294  *
18295  * Normally the source ill and destination ill belong to the same IPMP group
18296  * and hence the same ipsq_t. In the event they don't belong to the same
18297  * same group the two ipsq's are first merged into one ipsq - that of the
18298  * to_ill. The multicast memberships on the source and destination ill cannot
18299  * change during the move operation since multicast joins/leaves also have to
18300  * execute on the same ipsq and are hence serialized.
18301  */
18302 /* ARGSUSED */
18303 int
18304 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18305     ip_ioctl_cmd_t *ipip, void *ifreq)
18306 {
18307 	ill_t *ill_to_v4 = NULL;
18308 	ill_t *ill_to_v6 = NULL;
18309 	ill_t *ill_from_v4 = NULL;
18310 	ill_t *ill_from_v6 = NULL;
18311 	int err = 0;
18312 
18313 	/*
18314 	 * setup from and to ill's, we can get EINPROGRESS only for
18315 	 * to_ill's.
18316 	 */
18317 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
18318 	    &ill_to_v4, &ill_to_v6);
18319 
18320 	if (err != 0) {
18321 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
18322 		goto done;
18323 	}
18324 
18325 	/*
18326 	 * nothing to do.
18327 	 */
18328 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
18329 		goto done;
18330 	}
18331 
18332 	/*
18333 	 * nothing to do.
18334 	 */
18335 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
18336 		goto done;
18337 	}
18338 
18339 	/*
18340 	 * Mark the ill as changing.
18341 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
18342 	 * in ill_up_ipifs in case of error they are cleared below.
18343 	 */
18344 
18345 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18346 	if (ill_from_v4 != NULL)
18347 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
18348 	if (ill_from_v6 != NULL)
18349 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
18350 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18351 
18352 	/*
18353 	 * Make sure that both src and dst are
18354 	 * in the same syncq group. If not make it happen.
18355 	 * We are not holding any locks because we are the writer
18356 	 * on the from_ipsq and we will hold locks in ill_merge_groups
18357 	 * to protect to_ipsq against changing.
18358 	 */
18359 	if (ill_from_v4 != NULL) {
18360 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
18361 		    ill_to_v4->ill_phyint->phyint_ipsq) {
18362 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
18363 			    NULL, mp, q);
18364 			goto err_ret;
18365 
18366 		}
18367 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
18368 	} else {
18369 
18370 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
18371 		    ill_to_v6->ill_phyint->phyint_ipsq) {
18372 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
18373 			    NULL, mp, q);
18374 			goto err_ret;
18375 
18376 		}
18377 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
18378 	}
18379 
18380 	/*
18381 	 * Now that the ipsq's have been merged and we are the writer
18382 	 * lets mark to_ill as changing as well.
18383 	 */
18384 
18385 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18386 	if (ill_to_v4 != NULL)
18387 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
18388 	if (ill_to_v6 != NULL)
18389 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
18390 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18391 
18392 	/*
18393 	 * Its ok for us to proceed with the move even if
18394 	 * ill_pending_mp is non null on one of the from ill's as the reply
18395 	 * should not be looking at the ipif, it should only care about the
18396 	 * ill itself.
18397 	 */
18398 
18399 	/*
18400 	 * lets move ipv4 first.
18401 	 */
18402 	if (ill_from_v4 != NULL) {
18403 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18404 		ill_from_v4->ill_move_in_progress = B_TRUE;
18405 		ill_to_v4->ill_move_in_progress = B_TRUE;
18406 		ill_to_v4->ill_move_peer = ill_from_v4;
18407 		ill_from_v4->ill_move_peer = ill_to_v4;
18408 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18409 	}
18410 
18411 	/*
18412 	 * Now lets move ipv6.
18413 	 */
18414 	if (err == 0 && ill_from_v6 != NULL) {
18415 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18416 		ill_from_v6->ill_move_in_progress = B_TRUE;
18417 		ill_to_v6->ill_move_in_progress = B_TRUE;
18418 		ill_to_v6->ill_move_peer = ill_from_v6;
18419 		ill_from_v6->ill_move_peer = ill_to_v6;
18420 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18421 	}
18422 
18423 err_ret:
18424 	/*
18425 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18426 	 * moved to become quiescent.
18427 	 */
18428 	if (err == EINPROGRESS) {
18429 		goto done;
18430 	}
18431 
18432 	/*
18433 	 * if err is set ill_up_ipifs will not be called
18434 	 * lets clear the flags.
18435 	 */
18436 
18437 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18438 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18439 	/*
18440 	 * Some of the clearing may be redundant. But it is simple
18441 	 * not making any extra checks.
18442 	 */
18443 	if (ill_from_v6 != NULL) {
18444 		ill_from_v6->ill_move_in_progress = B_FALSE;
18445 		ill_from_v6->ill_move_peer = NULL;
18446 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18447 	}
18448 	if (ill_from_v4 != NULL) {
18449 		ill_from_v4->ill_move_in_progress = B_FALSE;
18450 		ill_from_v4->ill_move_peer = NULL;
18451 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18452 	}
18453 	if (ill_to_v6 != NULL) {
18454 		ill_to_v6->ill_move_in_progress = B_FALSE;
18455 		ill_to_v6->ill_move_peer = NULL;
18456 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18457 	}
18458 	if (ill_to_v4 != NULL) {
18459 		ill_to_v4->ill_move_in_progress = B_FALSE;
18460 		ill_to_v4->ill_move_peer = NULL;
18461 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18462 	}
18463 
18464 	/*
18465 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18466 	 * Do this always to maintain proper state i.e even in case of errors.
18467 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18468 	 * we need not call on both v4 and v6 interfaces.
18469 	 */
18470 	if (ill_from_v4 != NULL) {
18471 		if ((ill_from_v4->ill_phyint->phyint_flags &
18472 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18473 			phyint_inactive(ill_from_v4->ill_phyint);
18474 		}
18475 	} else if (ill_from_v6 != NULL) {
18476 		if ((ill_from_v6->ill_phyint->phyint_flags &
18477 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18478 			phyint_inactive(ill_from_v6->ill_phyint);
18479 		}
18480 	}
18481 
18482 	if (ill_to_v4 != NULL) {
18483 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18484 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18485 		}
18486 	} else if (ill_to_v6 != NULL) {
18487 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18488 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18489 		}
18490 	}
18491 
18492 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18493 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18494 
18495 no_err:
18496 	/*
18497 	 * lets bring the interfaces up on the to_ill.
18498 	 */
18499 	if (err == 0) {
18500 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18501 		    q, mp);
18502 	}
18503 
18504 	if (err == 0) {
18505 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18506 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18507 
18508 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18509 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18510 	}
18511 done:
18512 
18513 	if (ill_to_v4 != NULL) {
18514 		ill_refrele(ill_to_v4);
18515 	}
18516 	if (ill_to_v6 != NULL) {
18517 		ill_refrele(ill_to_v6);
18518 	}
18519 
18520 	return (err);
18521 }
18522 
18523 static void
18524 ill_dl_down(ill_t *ill)
18525 {
18526 	/*
18527 	 * The ill is down; unbind but stay attached since we're still
18528 	 * associated with a PPA. If we have negotiated DLPI capabilites
18529 	 * with the data link service provider (IDS_OK) then reset them.
18530 	 * The interval between unbinding and rebinding is potentially
18531 	 * unbounded hence we cannot assume things will be the same.
18532 	 * The DLPI capabilities will be probed again when the data link
18533 	 * is brought up.
18534 	 */
18535 	mblk_t	*mp = ill->ill_unbind_mp;
18536 	hook_nic_event_t *info;
18537 
18538 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18539 
18540 	ill->ill_unbind_mp = NULL;
18541 	if (mp != NULL) {
18542 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18543 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18544 		    ill->ill_name));
18545 		mutex_enter(&ill->ill_lock);
18546 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18547 		mutex_exit(&ill->ill_lock);
18548 		if (ill->ill_dlpi_capab_state == IDS_OK)
18549 			ill_capability_reset(ill);
18550 		ill_dlpi_send(ill, mp);
18551 	}
18552 
18553 	/*
18554 	 * Toss all of our multicast memberships.  We could keep them, but
18555 	 * then we'd have to do bookkeeping of any joins and leaves performed
18556 	 * by the application while the the interface is down (we can't just
18557 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18558 	 * on a downed interface).
18559 	 */
18560 	ill_leave_multicast(ill);
18561 
18562 	mutex_enter(&ill->ill_lock);
18563 
18564 	ill->ill_dl_up = 0;
18565 
18566 	if ((info = ill->ill_nic_event_info) != NULL) {
18567 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18568 		    info->hne_event, ill->ill_name));
18569 		if (info->hne_data != NULL)
18570 			kmem_free(info->hne_data, info->hne_datalen);
18571 		kmem_free(info, sizeof (hook_nic_event_t));
18572 	}
18573 
18574 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18575 	if (info != NULL) {
18576 		ip_stack_t	*ipst = ill->ill_ipst;
18577 
18578 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18579 		info->hne_lif = 0;
18580 		info->hne_event = NE_DOWN;
18581 		info->hne_data = NULL;
18582 		info->hne_datalen = 0;
18583 		info->hne_family = ill->ill_isv6 ?
18584 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18585 	} else
18586 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18587 		    "information for %s (ENOMEM)\n", ill->ill_name));
18588 
18589 	ill->ill_nic_event_info = info;
18590 
18591 	mutex_exit(&ill->ill_lock);
18592 }
18593 
18594 static void
18595 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18596 {
18597 	union DL_primitives *dlp;
18598 	t_uscalar_t prim;
18599 
18600 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18601 
18602 	dlp = (union DL_primitives *)mp->b_rptr;
18603 	prim = dlp->dl_primitive;
18604 
18605 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18606 	    dlpi_prim_str(prim), prim, ill->ill_name));
18607 
18608 	switch (prim) {
18609 	case DL_PHYS_ADDR_REQ:
18610 	{
18611 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18612 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18613 		break;
18614 	}
18615 	case DL_BIND_REQ:
18616 		mutex_enter(&ill->ill_lock);
18617 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18618 		mutex_exit(&ill->ill_lock);
18619 		break;
18620 	}
18621 
18622 	/*
18623 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18624 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18625 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18626 	 */
18627 	mutex_enter(&ill->ill_lock);
18628 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18629 	    (prim == DL_UNBIND_REQ)) {
18630 		ill->ill_dlpi_pending = prim;
18631 	}
18632 	mutex_exit(&ill->ill_lock);
18633 
18634 	putnext(ill->ill_wq, mp);
18635 }
18636 
18637 /*
18638  * Helper function for ill_dlpi_send().
18639  */
18640 /* ARGSUSED */
18641 static void
18642 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
18643 {
18644 	ill_dlpi_send((ill_t *)q->q_ptr, mp);
18645 }
18646 
18647 /*
18648  * Send a DLPI control message to the driver but make sure there
18649  * is only one outstanding message. Uses ill_dlpi_pending to tell
18650  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18651  * when an ACK or a NAK is received to process the next queued message.
18652  */
18653 void
18654 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18655 {
18656 	mblk_t **mpp;
18657 
18658 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18659 
18660 	/*
18661 	 * To ensure that any DLPI requests for current exclusive operation
18662 	 * are always completely sent before any DLPI messages for other
18663 	 * operations, require writer access before enqueuing.
18664 	 */
18665 	if (!IAM_WRITER_ILL(ill)) {
18666 		ill_refhold(ill);
18667 		/* qwriter_ip() does the ill_refrele() */
18668 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
18669 		    NEW_OP, B_TRUE);
18670 		return;
18671 	}
18672 
18673 	mutex_enter(&ill->ill_lock);
18674 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18675 		/* Must queue message. Tail insertion */
18676 		mpp = &ill->ill_dlpi_deferred;
18677 		while (*mpp != NULL)
18678 			mpp = &((*mpp)->b_next);
18679 
18680 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18681 		    ill->ill_name));
18682 
18683 		*mpp = mp;
18684 		mutex_exit(&ill->ill_lock);
18685 		return;
18686 	}
18687 	mutex_exit(&ill->ill_lock);
18688 	ill_dlpi_dispatch(ill, mp);
18689 }
18690 
18691 /*
18692  * Send all deferred DLPI messages without waiting for their ACKs.
18693  */
18694 void
18695 ill_dlpi_send_deferred(ill_t *ill)
18696 {
18697 	mblk_t *mp, *nextmp;
18698 
18699 	/*
18700 	 * Clear ill_dlpi_pending so that the message is not queued in
18701 	 * ill_dlpi_send().
18702 	 */
18703 	mutex_enter(&ill->ill_lock);
18704 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
18705 	mp = ill->ill_dlpi_deferred;
18706 	ill->ill_dlpi_deferred = NULL;
18707 	mutex_exit(&ill->ill_lock);
18708 
18709 	for (; mp != NULL; mp = nextmp) {
18710 		nextmp = mp->b_next;
18711 		mp->b_next = NULL;
18712 		ill_dlpi_send(ill, mp);
18713 	}
18714 }
18715 
18716 /*
18717  * Check if the DLPI primitive `prim' is pending; print a warning if not.
18718  */
18719 boolean_t
18720 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
18721 {
18722 	t_uscalar_t prim_pending;
18723 
18724 	mutex_enter(&ill->ill_lock);
18725 	prim_pending = ill->ill_dlpi_pending;
18726 	mutex_exit(&ill->ill_lock);
18727 
18728 	/*
18729 	 * During teardown, ill_dlpi_send_deferred() will send requests
18730 	 * without waiting; don't bother printing any warnings in that case.
18731 	 */
18732 	if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) {
18733 		if (prim_pending == DL_PRIM_INVAL) {
18734 			(void) mi_strlog(ill->ill_rq, 1,
18735 			    SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received "
18736 			    "unsolicited ack for %s on %s\n",
18737 			    dlpi_prim_str(prim), ill->ill_name);
18738 		} else {
18739 			(void) mi_strlog(ill->ill_rq, 1,
18740 			    SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received "
18741 			    "unexpected ack for %s on %s (expecting %s)\n",
18742 			    dlpi_prim_str(prim), ill->ill_name,
18743 			    dlpi_prim_str(prim_pending));
18744 		}
18745 	}
18746 	return (prim_pending == prim);
18747 }
18748 
18749 /*
18750  * Called when an DLPI control message has been acked or nacked to
18751  * send down the next queued message (if any).
18752  */
18753 void
18754 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18755 {
18756 	mblk_t *mp;
18757 
18758 	ASSERT(IAM_WRITER_ILL(ill));
18759 	mutex_enter(&ill->ill_lock);
18760 
18761 	ASSERT(prim != DL_PRIM_INVAL);
18762 	ASSERT(ill->ill_dlpi_pending == prim);
18763 
18764 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18765 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18766 
18767 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18768 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18769 		cv_signal(&ill->ill_cv);
18770 		mutex_exit(&ill->ill_lock);
18771 		return;
18772 	}
18773 
18774 	ill->ill_dlpi_deferred = mp->b_next;
18775 	mp->b_next = NULL;
18776 	mutex_exit(&ill->ill_lock);
18777 
18778 	ill_dlpi_dispatch(ill, mp);
18779 }
18780 
18781 void
18782 conn_delete_ire(conn_t *connp, caddr_t arg)
18783 {
18784 	ipif_t	*ipif = (ipif_t *)arg;
18785 	ire_t	*ire;
18786 
18787 	/*
18788 	 * Look at the cached ires on conns which has pointers to ipifs.
18789 	 * We just call ire_refrele which clears up the reference
18790 	 * to ire. Called when a conn closes. Also called from ipif_free
18791 	 * to cleanup indirect references to the stale ipif via the cached ire.
18792 	 */
18793 	mutex_enter(&connp->conn_lock);
18794 	ire = connp->conn_ire_cache;
18795 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18796 		connp->conn_ire_cache = NULL;
18797 		mutex_exit(&connp->conn_lock);
18798 		IRE_REFRELE_NOTR(ire);
18799 		return;
18800 	}
18801 	mutex_exit(&connp->conn_lock);
18802 
18803 }
18804 
18805 /*
18806  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18807  * of IREs. Those IREs may have been previously cached in the conn structure.
18808  * This ipcl_walk() walker function releases all references to such IREs based
18809  * on the condemned flag.
18810  */
18811 /* ARGSUSED */
18812 void
18813 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18814 {
18815 	ire_t	*ire;
18816 
18817 	mutex_enter(&connp->conn_lock);
18818 	ire = connp->conn_ire_cache;
18819 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18820 		connp->conn_ire_cache = NULL;
18821 		mutex_exit(&connp->conn_lock);
18822 		IRE_REFRELE_NOTR(ire);
18823 		return;
18824 	}
18825 	mutex_exit(&connp->conn_lock);
18826 }
18827 
18828 /*
18829  * Take down a specific interface, but don't lose any information about it.
18830  * Also delete interface from its interface group (ifgrp).
18831  * (Always called as writer.)
18832  * This function goes through the down sequence even if the interface is
18833  * already down. There are 2 reasons.
18834  * a. Currently we permit interface routes that depend on down interfaces
18835  *    to be added. This behaviour itself is questionable. However it appears
18836  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18837  *    time. We go thru the cleanup in order to remove these routes.
18838  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18839  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18840  *    down, but we need to cleanup i.e. do ill_dl_down and
18841  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18842  *
18843  * IP-MT notes:
18844  *
18845  * Model of reference to interfaces.
18846  *
18847  * The following members in ipif_t track references to the ipif.
18848  *	int     ipif_refcnt;    Active reference count
18849  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18850  * The following members in ill_t track references to the ill.
18851  *	int             ill_refcnt;     active refcnt
18852  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18853  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18854  *
18855  * Reference to an ipif or ill can be obtained in any of the following ways.
18856  *
18857  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18858  * Pointers to ipif / ill from other data structures viz ire and conn.
18859  * Implicit reference to the ipif / ill by holding a reference to the ire.
18860  *
18861  * The ipif/ill lookup functions return a reference held ipif / ill.
18862  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18863  * This is a purely dynamic reference count associated with threads holding
18864  * references to the ipif / ill. Pointers from other structures do not
18865  * count towards this reference count.
18866  *
18867  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18868  * ipif/ill. This is incremented whenever a new ire is created referencing the
18869  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18870  * actually added to the ire hash table. The count is decremented in
18871  * ire_inactive where the ire is destroyed.
18872  *
18873  * nce's reference ill's thru nce_ill and the count of nce's associated with
18874  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18875  * ndp_add() where the nce is actually added to the table. Similarly it is
18876  * decremented in ndp_inactive where the nce is destroyed.
18877  *
18878  * Flow of ioctls involving interface down/up
18879  *
18880  * The following is the sequence of an attempt to set some critical flags on an
18881  * up interface.
18882  * ip_sioctl_flags
18883  * ipif_down
18884  * wait for ipif to be quiescent
18885  * ipif_down_tail
18886  * ip_sioctl_flags_tail
18887  *
18888  * All set ioctls that involve down/up sequence would have a skeleton similar
18889  * to the above. All the *tail functions are called after the refcounts have
18890  * dropped to the appropriate values.
18891  *
18892  * The mechanism to quiesce an ipif is as follows.
18893  *
18894  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18895  * on the ipif. Callers either pass a flag requesting wait or the lookup
18896  *  functions will return NULL.
18897  *
18898  * Delete all ires referencing this ipif
18899  *
18900  * Any thread attempting to do an ipif_refhold on an ipif that has been
18901  * obtained thru a cached pointer will first make sure that
18902  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18903  * increment the refcount.
18904  *
18905  * The above guarantees that the ipif refcount will eventually come down to
18906  * zero and the ipif will quiesce, once all threads that currently hold a
18907  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18908  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18909  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18910  * drop to zero.
18911  *
18912  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18913  *
18914  * Threads trying to lookup an ipif or ill can pass a flag requesting
18915  * wait and restart if the ipif / ill cannot be looked up currently.
18916  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18917  * failure if the ipif is currently undergoing an exclusive operation, and
18918  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18919  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18920  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18921  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18922  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18923  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18924  * until we release the ipsq_lock, even though the the ill/ipif state flags
18925  * can change after we drop the ill_lock.
18926  *
18927  * An attempt to send out a packet using an ipif that is currently
18928  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18929  * operation and restart it later when the exclusive condition on the ipif ends.
18930  * This is an example of not passing the wait flag to the lookup functions. For
18931  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18932  * out a multicast packet on that ipif will fail while the ipif is
18933  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18934  * currently IPIF_CHANGING will also fail.
18935  */
18936 int
18937 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18938 {
18939 	ill_t		*ill = ipif->ipif_ill;
18940 	phyint_t	*phyi;
18941 	conn_t		*connp;
18942 	boolean_t	success;
18943 	boolean_t	ipif_was_up = B_FALSE;
18944 	ip_stack_t	*ipst = ill->ill_ipst;
18945 
18946 	ASSERT(IAM_WRITER_IPIF(ipif));
18947 
18948 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18949 
18950 	if (ipif->ipif_flags & IPIF_UP) {
18951 		mutex_enter(&ill->ill_lock);
18952 		ipif->ipif_flags &= ~IPIF_UP;
18953 		ASSERT(ill->ill_ipif_up_count > 0);
18954 		--ill->ill_ipif_up_count;
18955 		mutex_exit(&ill->ill_lock);
18956 		ipif_was_up = B_TRUE;
18957 		/* Update status in SCTP's list */
18958 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18959 	}
18960 
18961 	/*
18962 	 * Blow away v6 memberships we established in ipif_multicast_up(); the
18963 	 * v4 ones are left alone (as is the ipif_multicast_up flag, so we
18964 	 * know not to rejoin when the interface is brought back up).
18965 	 */
18966 	if (ipif->ipif_isv6)
18967 		ipif_multicast_down(ipif);
18968 	/*
18969 	 * Remove from the mapping for __sin6_src_id. We insert only
18970 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18971 	 * stored as mapped addresses, we need to check for mapped
18972 	 * INADDR_ANY also.
18973 	 */
18974 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18975 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18976 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18977 		int err;
18978 
18979 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18980 		    ipif->ipif_zoneid, ipst);
18981 		if (err != 0) {
18982 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18983 		}
18984 	}
18985 
18986 	/*
18987 	 * Before we delete the ill from the group (if any), we need
18988 	 * to make sure that we delete all the routes dependent on
18989 	 * this and also any ipifs dependent on this ipif for
18990 	 * source address. We need to do before we delete from
18991 	 * the group because
18992 	 *
18993 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18994 	 *
18995 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18996 	 *    for re-doing source address selection. Note that
18997 	 *    ipif_select_source[_v6] called from
18998 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18999 	 *    because we have already marked down here i.e cleared
19000 	 *    IPIF_UP.
19001 	 */
19002 	if (ipif->ipif_isv6) {
19003 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
19004 		    ipst);
19005 	} else {
19006 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
19007 		    ipst);
19008 	}
19009 
19010 	/*
19011 	 * Need to add these also to be saved and restored when the
19012 	 * ipif is brought down and up
19013 	 */
19014 	mutex_enter(&ipst->ips_ire_mrtun_lock);
19015 	if (ipst->ips_ire_mrtun_count != 0) {
19016 		mutex_exit(&ipst->ips_ire_mrtun_lock);
19017 		ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire,
19018 		    (char *)ipif, NULL, ipst);
19019 	} else {
19020 		mutex_exit(&ipst->ips_ire_mrtun_lock);
19021 	}
19022 
19023 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
19024 	if (ipst->ips_ire_srcif_table_count > 0) {
19025 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
19026 		ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif,
19027 		    ipst);
19028 	} else {
19029 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
19030 	}
19031 
19032 	/*
19033 	 * Cleaning up the conn_ire_cache or conns must be done only after the
19034 	 * ires have been deleted above. Otherwise a thread could end up
19035 	 * caching an ire in a conn after we have finished the cleanup of the
19036 	 * conn. The caching is done after making sure that the ire is not yet
19037 	 * condemned. Also documented in the block comment above ip_output
19038 	 */
19039 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
19040 	/* Also, delete the ires cached in SCTP */
19041 	sctp_ire_cache_flush(ipif);
19042 
19043 	/* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */
19044 	nattymod_clean_ipif(ipif);
19045 
19046 	/*
19047 	 * Update any other ipifs which have used "our" local address as
19048 	 * a source address. This entails removing and recreating IRE_INTERFACE
19049 	 * entries for such ipifs.
19050 	 */
19051 	if (ipif->ipif_isv6)
19052 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
19053 	else
19054 		ipif_update_other_ipifs(ipif, ill->ill_group);
19055 
19056 	if (ipif_was_up) {
19057 		/*
19058 		 * Check whether it is last ipif to leave this group.
19059 		 * If this is the last ipif to leave, we should remove
19060 		 * this ill from the group as ipif_select_source will not
19061 		 * be able to find any useful ipifs if this ill is selected
19062 		 * for load balancing.
19063 		 *
19064 		 * For nameless groups, we should call ifgrp_delete if this
19065 		 * belongs to some group. As this ipif is going down, we may
19066 		 * need to reconstruct groups.
19067 		 */
19068 		phyi = ill->ill_phyint;
19069 		/*
19070 		 * If the phyint_groupname_len is 0, it may or may not
19071 		 * be in the nameless group. If the phyint_groupname_len is
19072 		 * not 0, then this ill should be part of some group.
19073 		 * As we always insert this ill in the group if
19074 		 * phyint_groupname_len is not zero when the first ipif
19075 		 * comes up (in ipif_up_done), it should be in a group
19076 		 * when the namelen is not 0.
19077 		 *
19078 		 * NOTE : When we delete the ill from the group,it will
19079 		 * blow away all the IRE_CACHES pointing either at this ipif or
19080 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
19081 		 * should be pointing at this ill.
19082 		 */
19083 		ASSERT(phyi->phyint_groupname_len == 0 ||
19084 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
19085 
19086 		if (phyi->phyint_groupname_len != 0) {
19087 			if (ill->ill_ipif_up_count == 0)
19088 				illgrp_delete(ill);
19089 		}
19090 
19091 		/*
19092 		 * If we have deleted some of the broadcast ires associated
19093 		 * with this ipif, we need to re-nominate somebody else if
19094 		 * the ires that we deleted were the nominated ones.
19095 		 */
19096 		if (ill->ill_group != NULL && !ill->ill_isv6)
19097 			ipif_renominate_bcast(ipif);
19098 	}
19099 
19100 	/*
19101 	 * neighbor-discovery or arp entries for this interface.
19102 	 */
19103 	ipif_ndp_down(ipif);
19104 
19105 	/*
19106 	 * If mp is NULL the caller will wait for the appropriate refcnt.
19107 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
19108 	 * and ill_delete -> ipif_free -> ipif_down
19109 	 */
19110 	if (mp == NULL) {
19111 		ASSERT(q == NULL);
19112 		return (0);
19113 	}
19114 
19115 	if (CONN_Q(q)) {
19116 		connp = Q_TO_CONN(q);
19117 		mutex_enter(&connp->conn_lock);
19118 	} else {
19119 		connp = NULL;
19120 	}
19121 	mutex_enter(&ill->ill_lock);
19122 	/*
19123 	 * Are there any ire's pointing to this ipif that are still active ?
19124 	 * If this is the last ipif going down, are there any ire's pointing
19125 	 * to this ill that are still active ?
19126 	 */
19127 	if (ipif_is_quiescent(ipif)) {
19128 		mutex_exit(&ill->ill_lock);
19129 		if (connp != NULL)
19130 			mutex_exit(&connp->conn_lock);
19131 		return (0);
19132 	}
19133 
19134 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
19135 	    ill->ill_name, (void *)ill));
19136 	/*
19137 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
19138 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
19139 	 * which in turn is called by the last refrele on the ipif/ill/ire.
19140 	 */
19141 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
19142 	if (!success) {
19143 		/* The conn is closing. So just return */
19144 		ASSERT(connp != NULL);
19145 		mutex_exit(&ill->ill_lock);
19146 		mutex_exit(&connp->conn_lock);
19147 		return (EINTR);
19148 	}
19149 
19150 	mutex_exit(&ill->ill_lock);
19151 	if (connp != NULL)
19152 		mutex_exit(&connp->conn_lock);
19153 	return (EINPROGRESS);
19154 }
19155 
19156 void
19157 ipif_down_tail(ipif_t *ipif)
19158 {
19159 	ill_t	*ill = ipif->ipif_ill;
19160 
19161 	/*
19162 	 * Skip any loopback interface (null wq).
19163 	 * If this is the last logical interface on the ill
19164 	 * have ill_dl_down tell the driver we are gone (unbind)
19165 	 * Note that lun 0 can ipif_down even though
19166 	 * there are other logical units that are up.
19167 	 * This occurs e.g. when we change a "significant" IFF_ flag.
19168 	 */
19169 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
19170 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
19171 	    ill->ill_dl_up) {
19172 		ill_dl_down(ill);
19173 	}
19174 	ill->ill_logical_down = 0;
19175 
19176 	/*
19177 	 * Have to be after removing the routes in ipif_down_delete_ire.
19178 	 */
19179 	if (ipif->ipif_isv6) {
19180 		if (ill->ill_flags & ILLF_XRESOLV)
19181 			ipif_arp_down(ipif);
19182 	} else {
19183 		ipif_arp_down(ipif);
19184 	}
19185 
19186 	ip_rts_ifmsg(ipif);
19187 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
19188 }
19189 
19190 /*
19191  * Bring interface logically down without bringing the physical interface
19192  * down e.g. when the netmask is changed. This avoids long lasting link
19193  * negotiations between an ethernet interface and a certain switches.
19194  */
19195 static int
19196 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
19197 {
19198 	/*
19199 	 * The ill_logical_down flag is a transient flag. It is set here
19200 	 * and is cleared once the down has completed in ipif_down_tail.
19201 	 * This flag does not indicate whether the ill stream is in the
19202 	 * DL_BOUND state with the driver. Instead this flag is used by
19203 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
19204 	 * the driver. The state of the ill stream i.e. whether it is
19205 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
19206 	 */
19207 	ipif->ipif_ill->ill_logical_down = 1;
19208 	return (ipif_down(ipif, q, mp));
19209 }
19210 
19211 /*
19212  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
19213  * If the usesrc client ILL is already part of a usesrc group or not,
19214  * in either case a ire_stq with the matching usesrc client ILL will
19215  * locate the IRE's that need to be deleted. We want IREs to be created
19216  * with the new source address.
19217  */
19218 static void
19219 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
19220 {
19221 	ill_t	*ucill = (ill_t *)ill_arg;
19222 
19223 	ASSERT(IAM_WRITER_ILL(ucill));
19224 
19225 	if (ire->ire_stq == NULL)
19226 		return;
19227 
19228 	if ((ire->ire_type == IRE_CACHE) &&
19229 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
19230 		ire_delete(ire);
19231 }
19232 
19233 /*
19234  * ire_walk routine to delete every IRE dependent on the interface
19235  * address that is going down.	(Always called as writer.)
19236  * Works for both v4 and v6.
19237  * In addition for checking for ire_ipif matches it also checks for
19238  * IRE_CACHE entries which have the same source address as the
19239  * disappearing ipif since ipif_select_source might have picked
19240  * that source. Note that ipif_down/ipif_update_other_ipifs takes
19241  * care of any IRE_INTERFACE with the disappearing source address.
19242  */
19243 static void
19244 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
19245 {
19246 	ipif_t	*ipif = (ipif_t *)ipif_arg;
19247 	ill_t *ire_ill;
19248 	ill_t *ipif_ill;
19249 
19250 	ASSERT(IAM_WRITER_IPIF(ipif));
19251 	if (ire->ire_ipif == NULL)
19252 		return;
19253 
19254 	/*
19255 	 * For IPv4, we derive source addresses for an IRE from ipif's
19256 	 * belonging to the same IPMP group as the IRE's outgoing
19257 	 * interface.  If an IRE's outgoing interface isn't in the
19258 	 * same IPMP group as a particular ipif, then that ipif
19259 	 * couldn't have been used as a source address for this IRE.
19260 	 *
19261 	 * For IPv6, source addresses are only restricted to the IPMP group
19262 	 * if the IRE is for a link-local address or a multicast address.
19263 	 * Otherwise, source addresses for an IRE can be chosen from
19264 	 * interfaces other than the the outgoing interface for that IRE.
19265 	 *
19266 	 * For source address selection details, see ipif_select_source()
19267 	 * and ipif_select_source_v6().
19268 	 */
19269 	if (ire->ire_ipversion == IPV4_VERSION ||
19270 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
19271 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
19272 		ire_ill = ire->ire_ipif->ipif_ill;
19273 		ipif_ill = ipif->ipif_ill;
19274 
19275 		if (ire_ill->ill_group != ipif_ill->ill_group) {
19276 			return;
19277 		}
19278 	}
19279 
19280 
19281 	if (ire->ire_ipif != ipif) {
19282 		/*
19283 		 * Look for a matching source address.
19284 		 */
19285 		if (ire->ire_type != IRE_CACHE)
19286 			return;
19287 		if (ipif->ipif_flags & IPIF_NOLOCAL)
19288 			return;
19289 
19290 		if (ire->ire_ipversion == IPV4_VERSION) {
19291 			if (ire->ire_src_addr != ipif->ipif_src_addr)
19292 				return;
19293 		} else {
19294 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
19295 			    &ipif->ipif_v6lcl_addr))
19296 				return;
19297 		}
19298 		ire_delete(ire);
19299 		return;
19300 	}
19301 	/*
19302 	 * ire_delete() will do an ire_flush_cache which will delete
19303 	 * all ire_ipif matches
19304 	 */
19305 	ire_delete(ire);
19306 }
19307 
19308 /*
19309  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
19310  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
19311  * 2) when an interface is brought up or down (on that ill).
19312  * This ensures that the IRE_CACHE entries don't retain stale source
19313  * address selection results.
19314  */
19315 void
19316 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
19317 {
19318 	ill_t	*ill = (ill_t *)ill_arg;
19319 	ill_t	*ipif_ill;
19320 
19321 	ASSERT(IAM_WRITER_ILL(ill));
19322 	/*
19323 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19324 	 * Hence this should be IRE_CACHE.
19325 	 */
19326 	ASSERT(ire->ire_type == IRE_CACHE);
19327 
19328 	/*
19329 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
19330 	 * We are only interested in IRE_CACHES that has borrowed
19331 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
19332 	 * for which we need to look at ire_ipif->ipif_ill match
19333 	 * with ill.
19334 	 */
19335 	ASSERT(ire->ire_ipif != NULL);
19336 	ipif_ill = ire->ire_ipif->ipif_ill;
19337 	if (ipif_ill == ill || (ill->ill_group != NULL &&
19338 	    ipif_ill->ill_group == ill->ill_group)) {
19339 		ire_delete(ire);
19340 	}
19341 }
19342 
19343 /*
19344  * Delete all the ire whose stq references ill_arg.
19345  */
19346 static void
19347 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
19348 {
19349 	ill_t	*ill = (ill_t *)ill_arg;
19350 	ill_t	*ire_ill;
19351 
19352 	ASSERT(IAM_WRITER_ILL(ill));
19353 	/*
19354 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19355 	 * Hence this should be IRE_CACHE.
19356 	 */
19357 	ASSERT(ire->ire_type == IRE_CACHE);
19358 
19359 	/*
19360 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19361 	 * matches ill. We are only interested in IRE_CACHES that
19362 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
19363 	 * filtering here.
19364 	 */
19365 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
19366 
19367 	if (ire_ill == ill)
19368 		ire_delete(ire);
19369 }
19370 
19371 /*
19372  * This is called when an ill leaves the group. We want to delete
19373  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
19374  * pointing at ill.
19375  */
19376 static void
19377 illgrp_cache_delete(ire_t *ire, char *ill_arg)
19378 {
19379 	ill_t	*ill = (ill_t *)ill_arg;
19380 
19381 	ASSERT(IAM_WRITER_ILL(ill));
19382 	ASSERT(ill->ill_group == NULL);
19383 	/*
19384 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19385 	 * Hence this should be IRE_CACHE.
19386 	 */
19387 	ASSERT(ire->ire_type == IRE_CACHE);
19388 	/*
19389 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19390 	 * matches ill. We are interested in both.
19391 	 */
19392 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
19393 	    (ire->ire_ipif->ipif_ill == ill));
19394 
19395 	ire_delete(ire);
19396 }
19397 
19398 /*
19399  * Initiate deallocate of an IPIF. Always called as writer. Called by
19400  * ill_delete or ip_sioctl_removeif.
19401  */
19402 static void
19403 ipif_free(ipif_t *ipif)
19404 {
19405 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19406 
19407 	ASSERT(IAM_WRITER_IPIF(ipif));
19408 
19409 	if (ipif->ipif_recovery_id != 0)
19410 		(void) untimeout(ipif->ipif_recovery_id);
19411 	ipif->ipif_recovery_id = 0;
19412 
19413 	/* Remove conn references */
19414 	reset_conn_ipif(ipif);
19415 
19416 	/*
19417 	 * Make sure we have valid net and subnet broadcast ire's for the
19418 	 * other ipif's which share them with this ipif.
19419 	 */
19420 	if (!ipif->ipif_isv6)
19421 		ipif_check_bcast_ires(ipif);
19422 
19423 	/*
19424 	 * Take down the interface. We can be called either from ill_delete
19425 	 * or from ip_sioctl_removeif.
19426 	 */
19427 	(void) ipif_down(ipif, NULL, NULL);
19428 
19429 	/*
19430 	 * Now that the interface is down, there's no chance it can still
19431 	 * become a duplicate.  Cancel any timer that may have been set while
19432 	 * tearing down.
19433 	 */
19434 	if (ipif->ipif_recovery_id != 0)
19435 		(void) untimeout(ipif->ipif_recovery_id);
19436 	ipif->ipif_recovery_id = 0;
19437 
19438 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19439 	/* Remove pointers to this ill in the multicast routing tables */
19440 	reset_mrt_vif_ipif(ipif);
19441 	rw_exit(&ipst->ips_ill_g_lock);
19442 }
19443 
19444 /*
19445  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19446  * also ill_move().
19447  */
19448 static void
19449 ipif_free_tail(ipif_t *ipif)
19450 {
19451 	mblk_t	*mp;
19452 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19453 
19454 	/*
19455 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19456 	 */
19457 	mutex_enter(&ipif->ipif_saved_ire_lock);
19458 	mp = ipif->ipif_saved_ire_mp;
19459 	ipif->ipif_saved_ire_mp = NULL;
19460 	mutex_exit(&ipif->ipif_saved_ire_lock);
19461 	freemsg(mp);
19462 
19463 	/*
19464 	 * Need to hold both ill_g_lock and ill_lock while
19465 	 * inserting or removing an ipif from the linked list
19466 	 * of ipifs hanging off the ill.
19467 	 */
19468 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19469 	/*
19470 	 * Remove all multicast memberships on the interface now.
19471 	 * This removes IPv4 multicast memberships joined within
19472 	 * the kernel as ipif_down does not do ipif_multicast_down
19473 	 * for IPv4. IPv6 is not handled here as the multicast memberships
19474 	 * are based on ill and not on ipif.
19475 	 */
19476 	ilm_free(ipif);
19477 
19478 	/*
19479 	 * Since we held the ill_g_lock while doing the ilm_free above,
19480 	 * we can assert the ilms were really deleted and not just marked
19481 	 * ILM_DELETED.
19482 	 */
19483 	ASSERT(ilm_walk_ipif(ipif) == 0);
19484 
19485 	IPIF_TRACE_CLEANUP(ipif);
19486 
19487 	/* Ask SCTP to take it out of it list */
19488 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19489 
19490 	/* Get it out of the ILL interface list. */
19491 	ipif_remove(ipif, B_TRUE);
19492 	rw_exit(&ipst->ips_ill_g_lock);
19493 
19494 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19495 
19496 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19497 	ASSERT(ipif->ipif_recovery_id == 0);
19498 
19499 	/* Free the memory. */
19500 	mi_free(ipif);
19501 }
19502 
19503 /*
19504  * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero,
19505  * "ill_name" otherwise.
19506  */
19507 char *
19508 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19509 {
19510 	char	lbuf[32];
19511 	char	*name;
19512 	size_t	name_len;
19513 
19514 	buf[0] = '\0';
19515 	if (!ipif)
19516 		return (buf);
19517 	name = ipif->ipif_ill->ill_name;
19518 	name_len = ipif->ipif_ill->ill_name_length;
19519 	if (ipif->ipif_id != 0) {
19520 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19521 		    ipif->ipif_id);
19522 		name = lbuf;
19523 		name_len = mi_strlen(name) + 1;
19524 	}
19525 	len -= 1;
19526 	buf[len] = '\0';
19527 	len = MIN(len, name_len);
19528 	bcopy(name, buf, len);
19529 	return (buf);
19530 }
19531 
19532 /*
19533  * Find an IPIF based on the name passed in.  Names can be of the
19534  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19535  * The <phys> string can have forms like <dev><#> (e.g., le0),
19536  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19537  * When there is no colon, the implied unit id is zero. <phys> must
19538  * correspond to the name of an ILL.  (May be called as writer.)
19539  */
19540 static ipif_t *
19541 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19542     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19543     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19544 {
19545 	char	*cp;
19546 	char	*endp;
19547 	long	id;
19548 	ill_t	*ill;
19549 	ipif_t	*ipif;
19550 	uint_t	ire_type;
19551 	boolean_t did_alloc = B_FALSE;
19552 	ipsq_t	*ipsq;
19553 
19554 	if (error != NULL)
19555 		*error = 0;
19556 
19557 	/*
19558 	 * If the caller wants to us to create the ipif, make sure we have a
19559 	 * valid zoneid
19560 	 */
19561 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19562 
19563 	if (namelen == 0) {
19564 		if (error != NULL)
19565 			*error = ENXIO;
19566 		return (NULL);
19567 	}
19568 
19569 	*exists = B_FALSE;
19570 	/* Look for a colon in the name. */
19571 	endp = &name[namelen];
19572 	for (cp = endp; --cp > name; ) {
19573 		if (*cp == IPIF_SEPARATOR_CHAR)
19574 			break;
19575 	}
19576 
19577 	if (*cp == IPIF_SEPARATOR_CHAR) {
19578 		/*
19579 		 * Reject any non-decimal aliases for logical
19580 		 * interfaces. Aliases with leading zeroes
19581 		 * are also rejected as they introduce ambiguity
19582 		 * in the naming of the interfaces.
19583 		 * In order to confirm with existing semantics,
19584 		 * and to not break any programs/script relying
19585 		 * on that behaviour, if<0>:0 is considered to be
19586 		 * a valid interface.
19587 		 *
19588 		 * If alias has two or more digits and the first
19589 		 * is zero, fail.
19590 		 */
19591 		if (&cp[2] < endp && cp[1] == '0')
19592 			return (NULL);
19593 	}
19594 
19595 	if (cp <= name) {
19596 		cp = endp;
19597 	} else {
19598 		*cp = '\0';
19599 	}
19600 
19601 	/*
19602 	 * Look up the ILL, based on the portion of the name
19603 	 * before the slash. ill_lookup_on_name returns a held ill.
19604 	 * Temporary to check whether ill exists already. If so
19605 	 * ill_lookup_on_name will clear it.
19606 	 */
19607 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19608 	    q, mp, func, error, &did_alloc, ipst);
19609 	if (cp != endp)
19610 		*cp = IPIF_SEPARATOR_CHAR;
19611 	if (ill == NULL)
19612 		return (NULL);
19613 
19614 	/* Establish the unit number in the name. */
19615 	id = 0;
19616 	if (cp < endp && *endp == '\0') {
19617 		/* If there was a colon, the unit number follows. */
19618 		cp++;
19619 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19620 			ill_refrele(ill);
19621 			if (error != NULL)
19622 				*error = ENXIO;
19623 			return (NULL);
19624 		}
19625 	}
19626 
19627 	GRAB_CONN_LOCK(q);
19628 	mutex_enter(&ill->ill_lock);
19629 	/* Now see if there is an IPIF with this unit number. */
19630 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19631 		if (ipif->ipif_id == id) {
19632 			if (zoneid != ALL_ZONES &&
19633 			    zoneid != ipif->ipif_zoneid &&
19634 			    ipif->ipif_zoneid != ALL_ZONES) {
19635 				mutex_exit(&ill->ill_lock);
19636 				RELEASE_CONN_LOCK(q);
19637 				ill_refrele(ill);
19638 				if (error != NULL)
19639 					*error = ENXIO;
19640 				return (NULL);
19641 			}
19642 			/*
19643 			 * The block comment at the start of ipif_down
19644 			 * explains the use of the macros used below
19645 			 */
19646 			if (IPIF_CAN_LOOKUP(ipif)) {
19647 				ipif_refhold_locked(ipif);
19648 				mutex_exit(&ill->ill_lock);
19649 				if (!did_alloc)
19650 					*exists = B_TRUE;
19651 				/*
19652 				 * Drop locks before calling ill_refrele
19653 				 * since it can potentially call into
19654 				 * ipif_ill_refrele_tail which can end up
19655 				 * in trying to acquire any lock.
19656 				 */
19657 				RELEASE_CONN_LOCK(q);
19658 				ill_refrele(ill);
19659 				return (ipif);
19660 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19661 				ipsq = ill->ill_phyint->phyint_ipsq;
19662 				mutex_enter(&ipsq->ipsq_lock);
19663 				mutex_exit(&ill->ill_lock);
19664 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19665 				mutex_exit(&ipsq->ipsq_lock);
19666 				RELEASE_CONN_LOCK(q);
19667 				ill_refrele(ill);
19668 				*error = EINPROGRESS;
19669 				return (NULL);
19670 			}
19671 		}
19672 	}
19673 	RELEASE_CONN_LOCK(q);
19674 
19675 	if (!do_alloc) {
19676 		mutex_exit(&ill->ill_lock);
19677 		ill_refrele(ill);
19678 		if (error != NULL)
19679 			*error = ENXIO;
19680 		return (NULL);
19681 	}
19682 
19683 	/*
19684 	 * If none found, atomically allocate and return a new one.
19685 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19686 	 * to support "receive only" use of lo0:1 etc. as is still done
19687 	 * below as an initial guess.
19688 	 * However, this is now likely to be overriden later in ipif_up_done()
19689 	 * when we know for sure what address has been configured on the
19690 	 * interface, since we might have more than one loopback interface
19691 	 * with a loopback address, e.g. in the case of zones, and all the
19692 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19693 	 */
19694 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19695 		ire_type = IRE_LOOPBACK;
19696 	else
19697 		ire_type = IRE_LOCAL;
19698 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19699 	if (ipif != NULL)
19700 		ipif_refhold_locked(ipif);
19701 	else if (error != NULL)
19702 		*error = ENOMEM;
19703 	mutex_exit(&ill->ill_lock);
19704 	ill_refrele(ill);
19705 	return (ipif);
19706 }
19707 
19708 /*
19709  * This routine is called whenever a new address comes up on an ipif.  If
19710  * we are configured to respond to address mask requests, then we are supposed
19711  * to broadcast an address mask reply at this time.  This routine is also
19712  * called if we are already up, but a netmask change is made.  This is legal
19713  * but might not make the system manager very popular.	(May be called
19714  * as writer.)
19715  */
19716 void
19717 ipif_mask_reply(ipif_t *ipif)
19718 {
19719 	icmph_t	*icmph;
19720 	ipha_t	*ipha;
19721 	mblk_t	*mp;
19722 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19723 
19724 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19725 
19726 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19727 		return;
19728 
19729 	/* ICMP mask reply is IPv4 only */
19730 	ASSERT(!ipif->ipif_isv6);
19731 	/* ICMP mask reply is not for a loopback interface */
19732 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19733 
19734 	mp = allocb(REPLY_LEN, BPRI_HI);
19735 	if (mp == NULL)
19736 		return;
19737 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19738 
19739 	ipha = (ipha_t *)mp->b_rptr;
19740 	bzero(ipha, REPLY_LEN);
19741 	*ipha = icmp_ipha;
19742 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19743 	ipha->ipha_src = ipif->ipif_src_addr;
19744 	ipha->ipha_dst = ipif->ipif_brd_addr;
19745 	ipha->ipha_length = htons(REPLY_LEN);
19746 	ipha->ipha_ident = 0;
19747 
19748 	icmph = (icmph_t *)&ipha[1];
19749 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19750 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19751 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19752 
19753 	put(ipif->ipif_wq, mp);
19754 
19755 #undef	REPLY_LEN
19756 }
19757 
19758 /*
19759  * When the mtu in the ipif changes, we call this routine through ire_walk
19760  * to update all the relevant IREs.
19761  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19762  */
19763 static void
19764 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19765 {
19766 	ipif_t *ipif = (ipif_t *)ipif_arg;
19767 
19768 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19769 		return;
19770 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19771 }
19772 
19773 /*
19774  * When the mtu in the ill changes, we call this routine through ire_walk
19775  * to update all the relevant IREs.
19776  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19777  */
19778 void
19779 ill_mtu_change(ire_t *ire, char *ill_arg)
19780 {
19781 	ill_t	*ill = (ill_t *)ill_arg;
19782 
19783 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19784 		return;
19785 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19786 }
19787 
19788 /*
19789  * Join the ipif specific multicast groups.
19790  * Must be called after a mapping has been set up in the resolver.  (Always
19791  * called as writer.)
19792  */
19793 void
19794 ipif_multicast_up(ipif_t *ipif)
19795 {
19796 	int err, index;
19797 	ill_t *ill;
19798 
19799 	ASSERT(IAM_WRITER_IPIF(ipif));
19800 
19801 	ill = ipif->ipif_ill;
19802 	index = ill->ill_phyint->phyint_ifindex;
19803 
19804 	ip1dbg(("ipif_multicast_up\n"));
19805 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19806 		return;
19807 
19808 	if (ipif->ipif_isv6) {
19809 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19810 			return;
19811 
19812 		/* Join the all hosts multicast address */
19813 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19814 		/*
19815 		 * Passing B_TRUE means we have to join the multicast
19816 		 * membership on this interface even though this is
19817 		 * FAILED. If we join on a different one in the group,
19818 		 * we will not be able to delete the membership later
19819 		 * as we currently don't track where we join when we
19820 		 * join within the kernel unlike applications where
19821 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19822 		 * for more on this.
19823 		 */
19824 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19825 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19826 		if (err != 0) {
19827 			ip0dbg(("ipif_multicast_up: "
19828 			    "all_hosts_mcast failed %d\n",
19829 			    err));
19830 			return;
19831 		}
19832 		/*
19833 		 * Enable multicast for the solicited node multicast address
19834 		 */
19835 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19836 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19837 
19838 			ipv6_multi.s6_addr32[3] |=
19839 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19840 
19841 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19842 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19843 			    NULL);
19844 			if (err != 0) {
19845 				ip0dbg(("ipif_multicast_up: solicited MC"
19846 				    " failed %d\n", err));
19847 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19848 				    ill, ill->ill_phyint->phyint_ifindex,
19849 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19850 				return;
19851 			}
19852 		}
19853 	} else {
19854 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19855 			return;
19856 
19857 		/* Join the all hosts multicast address */
19858 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19859 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19860 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19861 		if (err) {
19862 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19863 			return;
19864 		}
19865 	}
19866 	ipif->ipif_multicast_up = 1;
19867 }
19868 
19869 /*
19870  * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up();
19871  * any explicit memberships are blown away in ill_leave_multicast() when the
19872  * ill is brought down.
19873  */
19874 static void
19875 ipif_multicast_down(ipif_t *ipif)
19876 {
19877 	int err;
19878 
19879 	ASSERT(IAM_WRITER_IPIF(ipif));
19880 
19881 	ip1dbg(("ipif_multicast_down\n"));
19882 	if (!ipif->ipif_multicast_up)
19883 		return;
19884 
19885 	ASSERT(ipif->ipif_isv6);
19886 
19887 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19888 
19889 	/*
19890 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19891 	 * we should look for ilms on this ill rather than the ones that have
19892 	 * been failed over here.  They are here temporarily. As
19893 	 * ipif_multicast_up has joined on this ill, we should delete only
19894 	 * from this ill.
19895 	 */
19896 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19897 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19898 	    B_TRUE, B_TRUE);
19899 	if (err != 0) {
19900 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19901 		    err));
19902 	}
19903 	/*
19904 	 * Disable multicast for the solicited node multicast address
19905 	 */
19906 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19907 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19908 
19909 		ipv6_multi.s6_addr32[3] |=
19910 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19911 
19912 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19913 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19914 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19915 
19916 		if (err != 0) {
19917 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19918 			    err));
19919 		}
19920 	}
19921 
19922 	ipif->ipif_multicast_up = 0;
19923 }
19924 
19925 /*
19926  * Used when an interface comes up to recreate any extra routes on this
19927  * interface.
19928  */
19929 static ire_t **
19930 ipif_recover_ire(ipif_t *ipif)
19931 {
19932 	mblk_t	*mp;
19933 	ire_t	**ipif_saved_irep;
19934 	ire_t	**irep;
19935 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19936 
19937 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19938 	    ipif->ipif_id));
19939 
19940 	mutex_enter(&ipif->ipif_saved_ire_lock);
19941 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19942 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19943 	if (ipif_saved_irep == NULL) {
19944 		mutex_exit(&ipif->ipif_saved_ire_lock);
19945 		return (NULL);
19946 	}
19947 
19948 	irep = ipif_saved_irep;
19949 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19950 		ire_t		*ire;
19951 		queue_t		*rfq;
19952 		queue_t		*stq;
19953 		ifrt_t		*ifrt;
19954 		uchar_t		*src_addr;
19955 		uchar_t		*gateway_addr;
19956 		mblk_t		*resolver_mp;
19957 		ushort_t	type;
19958 
19959 		/*
19960 		 * When the ire was initially created and then added in
19961 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19962 		 * in the case of a traditional interface route, or as one of
19963 		 * the IRE_OFFSUBNET types (with the exception of
19964 		 * IRE_HOST types ire which is created by icmp_redirect() and
19965 		 * which we don't need to save or recover).  In the case where
19966 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19967 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19968 		 * to satisfy software like GateD and Sun Cluster which creates
19969 		 * routes using the the loopback interface's address as a
19970 		 * gateway.
19971 		 *
19972 		 * As ifrt->ifrt_type reflects the already updated ire_type and
19973 		 * since ire_create() expects that IRE_IF_NORESOLVER will have
19974 		 * a valid nce_res_mp field (which doesn't make sense for a
19975 		 * IRE_LOOPBACK), ire_create() will be called in the same way
19976 		 * here as in ip_rt_add(), namely using ipif->ipif_net_type when
19977 		 * the route looks like a traditional interface route (where
19978 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19979 		 * the saved ifrt->ifrt_type.  This means that in the case where
19980 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19981 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19982 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19983 		 */
19984 		ifrt = (ifrt_t *)mp->b_rptr;
19985 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19986 			rfq = NULL;
19987 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19988 			    ? ipif->ipif_rq : ipif->ipif_wq;
19989 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19990 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19991 			    : (uint8_t *)&ipif->ipif_src_addr;
19992 			gateway_addr = NULL;
19993 			resolver_mp = ipif->ipif_resolver_mp;
19994 			type = ipif->ipif_net_type;
19995 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19996 			/* Recover multiroute broadcast IRE. */
19997 			rfq = ipif->ipif_rq;
19998 			stq = ipif->ipif_wq;
19999 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
20000 			    ? (uint8_t *)&ifrt->ifrt_src_addr
20001 			    : (uint8_t *)&ipif->ipif_src_addr;
20002 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
20003 			resolver_mp = ipif->ipif_bcast_mp;
20004 			type = ifrt->ifrt_type;
20005 		} else {
20006 			rfq = NULL;
20007 			stq = NULL;
20008 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
20009 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
20010 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
20011 			resolver_mp = NULL;
20012 			type = ifrt->ifrt_type;
20013 		}
20014 
20015 		/*
20016 		 * Create a copy of the IRE with the saved address and netmask.
20017 		 */
20018 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
20019 		    "0x%x/0x%x\n",
20020 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
20021 		    ntohl(ifrt->ifrt_addr),
20022 		    ntohl(ifrt->ifrt_mask)));
20023 		ire = ire_create(
20024 		    (uint8_t *)&ifrt->ifrt_addr,
20025 		    (uint8_t *)&ifrt->ifrt_mask,
20026 		    src_addr,
20027 		    gateway_addr,
20028 		    NULL,
20029 		    &ifrt->ifrt_max_frag,
20030 		    NULL,
20031 		    rfq,
20032 		    stq,
20033 		    type,
20034 		    resolver_mp,
20035 		    ipif,
20036 		    NULL,
20037 		    0,
20038 		    0,
20039 		    0,
20040 		    ifrt->ifrt_flags,
20041 		    &ifrt->ifrt_iulp_info,
20042 		    NULL,
20043 		    NULL,
20044 		    ipst);
20045 
20046 		if (ire == NULL) {
20047 			mutex_exit(&ipif->ipif_saved_ire_lock);
20048 			kmem_free(ipif_saved_irep,
20049 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
20050 			return (NULL);
20051 		}
20052 
20053 		/*
20054 		 * Some software (for example, GateD and Sun Cluster) attempts
20055 		 * to create (what amount to) IRE_PREFIX routes with the
20056 		 * loopback address as the gateway.  This is primarily done to
20057 		 * set up prefixes with the RTF_REJECT flag set (for example,
20058 		 * when generating aggregate routes.)
20059 		 *
20060 		 * If the IRE type (as defined by ipif->ipif_net_type) is
20061 		 * IRE_LOOPBACK, then we map the request into a
20062 		 * IRE_IF_NORESOLVER.
20063 		 */
20064 		if (ipif->ipif_net_type == IRE_LOOPBACK)
20065 			ire->ire_type = IRE_IF_NORESOLVER;
20066 		/*
20067 		 * ire held by ire_add, will be refreled' towards the
20068 		 * the end of ipif_up_done
20069 		 */
20070 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
20071 		*irep = ire;
20072 		irep++;
20073 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
20074 	}
20075 	mutex_exit(&ipif->ipif_saved_ire_lock);
20076 	return (ipif_saved_irep);
20077 }
20078 
20079 /*
20080  * Used to set the netmask and broadcast address to default values when the
20081  * interface is brought up.  (Always called as writer.)
20082  */
20083 static void
20084 ipif_set_default(ipif_t *ipif)
20085 {
20086 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20087 
20088 	if (!ipif->ipif_isv6) {
20089 		/*
20090 		 * Interface holds an IPv4 address. Default
20091 		 * mask is the natural netmask.
20092 		 */
20093 		if (!ipif->ipif_net_mask) {
20094 			ipaddr_t	v4mask;
20095 
20096 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
20097 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
20098 		}
20099 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20100 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20101 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
20102 		} else {
20103 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
20104 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
20105 		}
20106 		/*
20107 		 * NOTE: SunOS 4.X does this even if the broadcast address
20108 		 * has been already set thus we do the same here.
20109 		 */
20110 		if (ipif->ipif_flags & IPIF_BROADCAST) {
20111 			ipaddr_t	v4addr;
20112 
20113 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
20114 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
20115 		}
20116 	} else {
20117 		/*
20118 		 * Interface holds an IPv6-only address.  Default
20119 		 * mask is all-ones.
20120 		 */
20121 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
20122 			ipif->ipif_v6net_mask = ipv6_all_ones;
20123 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20124 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20125 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
20126 		} else {
20127 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
20128 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
20129 		}
20130 	}
20131 }
20132 
20133 /*
20134  * Return 0 if this address can be used as local address without causing
20135  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
20136  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
20137  * Special checks are needed to allow the same IPv6 link-local address
20138  * on different ills.
20139  * TODO: allowing the same site-local address on different ill's.
20140  */
20141 int
20142 ip_addr_availability_check(ipif_t *new_ipif)
20143 {
20144 	in6_addr_t our_v6addr;
20145 	ill_t *ill;
20146 	ipif_t *ipif;
20147 	ill_walk_context_t ctx;
20148 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
20149 
20150 	ASSERT(IAM_WRITER_IPIF(new_ipif));
20151 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
20152 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
20153 
20154 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
20155 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
20156 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
20157 		return (0);
20158 
20159 	our_v6addr = new_ipif->ipif_v6lcl_addr;
20160 
20161 	if (new_ipif->ipif_isv6)
20162 		ill = ILL_START_WALK_V6(&ctx, ipst);
20163 	else
20164 		ill = ILL_START_WALK_V4(&ctx, ipst);
20165 
20166 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
20167 		for (ipif = ill->ill_ipif; ipif != NULL;
20168 		    ipif = ipif->ipif_next) {
20169 			if ((ipif == new_ipif) ||
20170 			    !(ipif->ipif_flags & IPIF_UP) ||
20171 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
20172 				continue;
20173 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
20174 			    &our_v6addr)) {
20175 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
20176 					new_ipif->ipif_flags |= IPIF_UNNUMBERED;
20177 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
20178 					ipif->ipif_flags |= IPIF_UNNUMBERED;
20179 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
20180 				    new_ipif->ipif_ill != ill)
20181 					continue;
20182 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
20183 				    new_ipif->ipif_ill != ill)
20184 					continue;
20185 				else if (new_ipif->ipif_zoneid !=
20186 				    ipif->ipif_zoneid &&
20187 				    ipif->ipif_zoneid != ALL_ZONES &&
20188 				    IS_LOOPBACK(ill))
20189 					continue;
20190 				else if (new_ipif->ipif_ill == ill)
20191 					return (EADDRINUSE);
20192 				else
20193 					return (EADDRNOTAVAIL);
20194 			}
20195 		}
20196 	}
20197 
20198 	return (0);
20199 }
20200 
20201 /*
20202  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
20203  * IREs for the ipif.
20204  * When the routine returns EINPROGRESS then mp has been consumed and
20205  * the ioctl will be acked from ip_rput_dlpi.
20206  */
20207 static int
20208 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
20209 {
20210 	ill_t	*ill = ipif->ipif_ill;
20211 	boolean_t isv6 = ipif->ipif_isv6;
20212 	int	err = 0;
20213 	boolean_t success;
20214 
20215 	ASSERT(IAM_WRITER_IPIF(ipif));
20216 
20217 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
20218 
20219 	/* Shouldn't get here if it is already up. */
20220 	if (ipif->ipif_flags & IPIF_UP)
20221 		return (EALREADY);
20222 
20223 	/* Skip arp/ndp for any loopback interface. */
20224 	if (ill->ill_wq != NULL) {
20225 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
20226 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
20227 
20228 		if (!ill->ill_dl_up) {
20229 			/*
20230 			 * ill_dl_up is not yet set. i.e. we are yet to
20231 			 * DL_BIND with the driver and this is the first
20232 			 * logical interface on the ill to become "up".
20233 			 * Tell the driver to get going (via DL_BIND_REQ).
20234 			 * Note that changing "significant" IFF_ flags
20235 			 * address/netmask etc cause a down/up dance, but
20236 			 * does not cause an unbind (DL_UNBIND) with the driver
20237 			 */
20238 			return (ill_dl_up(ill, ipif, mp, q));
20239 		}
20240 
20241 		/*
20242 		 * ipif_resolver_up may end up sending an
20243 		 * AR_INTERFACE_UP message to ARP, which would, in
20244 		 * turn send a DLPI message to the driver. ioctls are
20245 		 * serialized and so we cannot send more than one
20246 		 * interface up message at a time. If ipif_resolver_up
20247 		 * does send an interface up message to ARP, we get
20248 		 * EINPROGRESS and we will complete in ip_arp_done.
20249 		 */
20250 
20251 		ASSERT(connp != NULL || !CONN_Q(q));
20252 		ASSERT(ipsq->ipsq_pending_mp == NULL);
20253 		if (connp != NULL)
20254 			mutex_enter(&connp->conn_lock);
20255 		mutex_enter(&ill->ill_lock);
20256 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20257 		mutex_exit(&ill->ill_lock);
20258 		if (connp != NULL)
20259 			mutex_exit(&connp->conn_lock);
20260 		if (!success)
20261 			return (EINTR);
20262 
20263 		/*
20264 		 * Crank up IPv6 neighbor discovery
20265 		 * Unlike ARP, this should complete when
20266 		 * ipif_ndp_up returns. However, for
20267 		 * ILLF_XRESOLV interfaces we also send a
20268 		 * AR_INTERFACE_UP to the external resolver.
20269 		 * That ioctl will complete in ip_rput.
20270 		 */
20271 		if (isv6) {
20272 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr);
20273 			if (err != 0) {
20274 				if (err != EINPROGRESS)
20275 					mp = ipsq_pending_mp_get(ipsq, &connp);
20276 				return (err);
20277 			}
20278 		}
20279 		/* Now, ARP */
20280 		err = ipif_resolver_up(ipif, Res_act_initial);
20281 		if (err == EINPROGRESS) {
20282 			/* We will complete it in ip_arp_done */
20283 			return (err);
20284 		}
20285 		mp = ipsq_pending_mp_get(ipsq, &connp);
20286 		ASSERT(mp != NULL);
20287 		if (err != 0)
20288 			return (err);
20289 	} else {
20290 		/*
20291 		 * Interfaces without underlying hardware don't do duplicate
20292 		 * address detection.
20293 		 */
20294 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
20295 		ipif->ipif_addr_ready = 1;
20296 	}
20297 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
20298 }
20299 
20300 /*
20301  * Perform a bind for the physical device.
20302  * When the routine returns EINPROGRESS then mp has been consumed and
20303  * the ioctl will be acked from ip_rput_dlpi.
20304  * Allocate an unbind message and save it until ipif_down.
20305  */
20306 static int
20307 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
20308 {
20309 	areq_t	*areq;
20310 	mblk_t	*areq_mp = NULL;
20311 	mblk_t	*bind_mp = NULL;
20312 	mblk_t	*unbind_mp = NULL;
20313 	conn_t	*connp;
20314 	boolean_t success;
20315 	uint16_t sap_addr;
20316 
20317 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
20318 	ASSERT(IAM_WRITER_ILL(ill));
20319 	ASSERT(mp != NULL);
20320 
20321 	/* Create a resolver cookie for ARP */
20322 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
20323 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
20324 		if (areq_mp == NULL)
20325 			return (ENOMEM);
20326 
20327 		freemsg(ill->ill_resolver_mp);
20328 		ill->ill_resolver_mp = areq_mp;
20329 		areq = (areq_t *)areq_mp->b_rptr;
20330 		sap_addr = ill->ill_sap;
20331 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
20332 	}
20333 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
20334 	    DL_BIND_REQ);
20335 	if (bind_mp == NULL)
20336 		goto bad;
20337 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
20338 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
20339 
20340 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
20341 	if (unbind_mp == NULL)
20342 		goto bad;
20343 
20344 	/*
20345 	 * Record state needed to complete this operation when the
20346 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
20347 	 */
20348 	ASSERT(WR(q)->q_next == NULL);
20349 	connp = Q_TO_CONN(q);
20350 
20351 	mutex_enter(&connp->conn_lock);
20352 	mutex_enter(&ipif->ipif_ill->ill_lock);
20353 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20354 	mutex_exit(&ipif->ipif_ill->ill_lock);
20355 	mutex_exit(&connp->conn_lock);
20356 	if (!success)
20357 		goto bad;
20358 
20359 	/*
20360 	 * Save the unbind message for ill_dl_down(); it will be consumed when
20361 	 * the interface goes down.
20362 	 */
20363 	ASSERT(ill->ill_unbind_mp == NULL);
20364 	ill->ill_unbind_mp = unbind_mp;
20365 
20366 	ill_dlpi_send(ill, bind_mp);
20367 	/* Send down link-layer capabilities probe if not already done. */
20368 	ill_capability_probe(ill);
20369 
20370 	/*
20371 	 * Sysid used to rely on the fact that netboots set domainname
20372 	 * and the like. Now that miniroot boots aren't strictly netboots
20373 	 * and miniroot network configuration is driven from userland
20374 	 * these things still need to be set. This situation can be detected
20375 	 * by comparing the interface being configured here to the one
20376 	 * dhcack was set to reference by the boot loader. Once sysid is
20377 	 * converted to use dhcp_ipc_getinfo() this call can go away.
20378 	 */
20379 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
20380 	    (strcmp(ill->ill_name, dhcack) == 0) &&
20381 	    (strlen(srpc_domain) == 0)) {
20382 		if (dhcpinit() != 0)
20383 			cmn_err(CE_WARN, "no cached dhcp response");
20384 	}
20385 
20386 	/*
20387 	 * This operation will complete in ip_rput_dlpi with either
20388 	 * a DL_BIND_ACK or DL_ERROR_ACK.
20389 	 */
20390 	return (EINPROGRESS);
20391 bad:
20392 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
20393 	/*
20394 	 * We don't have to check for possible removal from illgrp
20395 	 * as we have not yet inserted in illgrp. For groups
20396 	 * without names, this ipif is still not UP and hence
20397 	 * this could not have possibly had any influence in forming
20398 	 * groups.
20399 	 */
20400 
20401 	freemsg(bind_mp);
20402 	freemsg(unbind_mp);
20403 	return (ENOMEM);
20404 }
20405 
20406 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20407 
20408 /*
20409  * DLPI and ARP is up.
20410  * Create all the IREs associated with an interface bring up multicast.
20411  * Set the interface flag and finish other initialization
20412  * that potentially had to be differed to after DL_BIND_ACK.
20413  */
20414 int
20415 ipif_up_done(ipif_t *ipif)
20416 {
20417 	ire_t	*ire_array[20];
20418 	ire_t	**irep = ire_array;
20419 	ire_t	**irep1;
20420 	ipaddr_t net_mask = 0;
20421 	ipaddr_t subnet_mask, route_mask;
20422 	ill_t	*ill = ipif->ipif_ill;
20423 	queue_t	*stq;
20424 	ipif_t	 *src_ipif;
20425 	ipif_t   *tmp_ipif;
20426 	boolean_t	flush_ire_cache = B_TRUE;
20427 	int	err = 0;
20428 	phyint_t *phyi;
20429 	ire_t	**ipif_saved_irep = NULL;
20430 	int ipif_saved_ire_cnt;
20431 	int	cnt;
20432 	boolean_t	src_ipif_held = B_FALSE;
20433 	boolean_t	ire_added = B_FALSE;
20434 	boolean_t	loopback = B_FALSE;
20435 	ip_stack_t	*ipst = ill->ill_ipst;
20436 
20437 	ip1dbg(("ipif_up_done(%s:%u)\n",
20438 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
20439 	/* Check if this is a loopback interface */
20440 	if (ipif->ipif_ill->ill_wq == NULL)
20441 		loopback = B_TRUE;
20442 
20443 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20444 	/*
20445 	 * If all other interfaces for this ill are down or DEPRECATED,
20446 	 * or otherwise unsuitable for source address selection, remove
20447 	 * any IRE_CACHE entries for this ill to make sure source
20448 	 * address selection gets to take this new ipif into account.
20449 	 * No need to hold ill_lock while traversing the ipif list since
20450 	 * we are writer
20451 	 */
20452 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20453 	    tmp_ipif = tmp_ipif->ipif_next) {
20454 		if (((tmp_ipif->ipif_flags &
20455 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20456 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20457 		    (tmp_ipif == ipif))
20458 			continue;
20459 		/* first useable pre-existing interface */
20460 		flush_ire_cache = B_FALSE;
20461 		break;
20462 	}
20463 	if (flush_ire_cache)
20464 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20465 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20466 
20467 	/*
20468 	 * Figure out which way the send-to queue should go.  Only
20469 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20470 	 * should show up here.
20471 	 */
20472 	switch (ill->ill_net_type) {
20473 	case IRE_IF_RESOLVER:
20474 		stq = ill->ill_rq;
20475 		break;
20476 	case IRE_IF_NORESOLVER:
20477 	case IRE_LOOPBACK:
20478 		stq = ill->ill_wq;
20479 		break;
20480 	default:
20481 		return (EINVAL);
20482 	}
20483 
20484 	if (IS_LOOPBACK(ill)) {
20485 		/*
20486 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20487 		 * ipif_lookup_on_name(), but in the case of zones we can have
20488 		 * several loopback addresses on lo0. So all the interfaces with
20489 		 * loopback addresses need to be marked IRE_LOOPBACK.
20490 		 */
20491 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20492 		    htonl(INADDR_LOOPBACK))
20493 			ipif->ipif_ire_type = IRE_LOOPBACK;
20494 		else
20495 			ipif->ipif_ire_type = IRE_LOCAL;
20496 	}
20497 
20498 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20499 		/*
20500 		 * Can't use our source address. Select a different
20501 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20502 		 */
20503 		src_ipif = ipif_select_source(ipif->ipif_ill,
20504 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20505 		if (src_ipif == NULL)
20506 			src_ipif = ipif;	/* Last resort */
20507 		else
20508 			src_ipif_held = B_TRUE;
20509 	} else {
20510 		src_ipif = ipif;
20511 	}
20512 
20513 	/* Create all the IREs associated with this interface */
20514 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20515 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20516 
20517 		/*
20518 		 * If we're on a labeled system then make sure that zone-
20519 		 * private addresses have proper remote host database entries.
20520 		 */
20521 		if (is_system_labeled() &&
20522 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20523 		    !tsol_check_interface_address(ipif))
20524 			return (EINVAL);
20525 
20526 		/* Register the source address for __sin6_src_id */
20527 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20528 		    ipif->ipif_zoneid, ipst);
20529 		if (err != 0) {
20530 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20531 			return (err);
20532 		}
20533 
20534 		/* If the interface address is set, create the local IRE. */
20535 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20536 		    (void *)ipif,
20537 		    ipif->ipif_ire_type,
20538 		    ntohl(ipif->ipif_lcl_addr)));
20539 		*irep++ = ire_create(
20540 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20541 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20542 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20543 		    NULL,				/* no gateway */
20544 		    NULL,
20545 		    &ip_loopback_mtuplus,		/* max frag size */
20546 		    NULL,
20547 		    ipif->ipif_rq,			/* recv-from queue */
20548 		    NULL,				/* no send-to queue */
20549 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20550 		    NULL,
20551 		    ipif,
20552 		    NULL,
20553 		    0,
20554 		    0,
20555 		    0,
20556 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20557 		    RTF_PRIVATE : 0,
20558 		    &ire_uinfo_null,
20559 		    NULL,
20560 		    NULL,
20561 		    ipst);
20562 	} else {
20563 		ip1dbg((
20564 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20565 		    ipif->ipif_ire_type,
20566 		    ntohl(ipif->ipif_lcl_addr),
20567 		    (uint_t)ipif->ipif_flags));
20568 	}
20569 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20570 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20571 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20572 	} else {
20573 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20574 	}
20575 
20576 	subnet_mask = ipif->ipif_net_mask;
20577 
20578 	/*
20579 	 * If mask was not specified, use natural netmask of
20580 	 * interface address. Also, store this mask back into the
20581 	 * ipif struct.
20582 	 */
20583 	if (subnet_mask == 0) {
20584 		subnet_mask = net_mask;
20585 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20586 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20587 		    ipif->ipif_v6subnet);
20588 	}
20589 
20590 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20591 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20592 	    ipif->ipif_subnet != INADDR_ANY) {
20593 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20594 
20595 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20596 			route_mask = IP_HOST_MASK;
20597 		} else {
20598 			route_mask = subnet_mask;
20599 		}
20600 
20601 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20602 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20603 		    (void *)ipif, (void *)ill,
20604 		    ill->ill_net_type,
20605 		    ntohl(ipif->ipif_subnet)));
20606 		*irep++ = ire_create(
20607 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20608 		    (uchar_t *)&route_mask,		/* mask */
20609 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20610 		    NULL,				/* no gateway */
20611 		    NULL,
20612 		    &ipif->ipif_mtu,			/* max frag */
20613 		    NULL,
20614 		    NULL,				/* no recv queue */
20615 		    stq,				/* send-to queue */
20616 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20617 		    ill->ill_resolver_mp,		/* xmit header */
20618 		    ipif,
20619 		    NULL,
20620 		    0,
20621 		    0,
20622 		    0,
20623 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20624 		    &ire_uinfo_null,
20625 		    NULL,
20626 		    NULL,
20627 		    ipst);
20628 	}
20629 
20630 	/*
20631 	 * If the interface address is set, create the broadcast IREs.
20632 	 *
20633 	 * ire_create_bcast checks if the proposed new IRE matches
20634 	 * any existing IRE's with the same physical interface (ILL).
20635 	 * This should get rid of duplicates.
20636 	 * ire_create_bcast also check IPIF_NOXMIT and does not create
20637 	 * any broadcast ires.
20638 	 */
20639 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20640 	    (ipif->ipif_flags & IPIF_BROADCAST)) {
20641 		ipaddr_t addr;
20642 
20643 		ip1dbg(("ipif_up_done: creating broadcast IRE\n"));
20644 		irep = ire_check_and_create_bcast(ipif, 0, irep,
20645 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20646 		irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep,
20647 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20648 
20649 		/*
20650 		 * For backward compatibility, we need to create net
20651 		 * broadcast ire's based on the old "IP address class
20652 		 * system."  The reason is that some old machines only
20653 		 * respond to these class derived net broadcast.
20654 		 *
20655 		 * But we should not create these net broadcast ire's if
20656 		 * the subnet_mask is shorter than the IP address class based
20657 		 * derived netmask.  Otherwise, we may create a net
20658 		 * broadcast address which is the same as an IP address
20659 		 * on the subnet.  Then TCP will refuse to talk to that
20660 		 * address.
20661 		 *
20662 		 * Nor do we need IRE_BROADCAST ire's for the interface
20663 		 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that
20664 		 * interface is already created.  Creating these broadcast
20665 		 * ire's will only create confusion as the "addr" is going
20666 		 * to be same as that of the IP address of the interface.
20667 		 */
20668 		if (net_mask < subnet_mask) {
20669 			addr = net_mask & ipif->ipif_subnet;
20670 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20671 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20672 			irep = ire_check_and_create_bcast(ipif,
20673 			    ~net_mask | addr, irep,
20674 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20675 		}
20676 
20677 		if (subnet_mask != 0xFFFFFFFF) {
20678 			addr = ipif->ipif_subnet;
20679 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20680 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20681 			irep = ire_check_and_create_bcast(ipif,
20682 			    ~subnet_mask|addr, irep,
20683 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20684 		}
20685 	}
20686 
20687 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20688 
20689 	/* If an earlier ire_create failed, get out now */
20690 	for (irep1 = irep; irep1 > ire_array; ) {
20691 		irep1--;
20692 		if (*irep1 == NULL) {
20693 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20694 			err = ENOMEM;
20695 			goto bad;
20696 		}
20697 	}
20698 
20699 	/*
20700 	 * Need to atomically check for ip_addr_availablity_check
20701 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20702 	 * from group also.The ill_g_lock is grabbed as reader
20703 	 * just to make sure no new ills or new ipifs are being added
20704 	 * to the system while we are checking the uniqueness of addresses.
20705 	 */
20706 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20707 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20708 	/* Mark it up, and increment counters. */
20709 	ipif->ipif_flags |= IPIF_UP;
20710 	ill->ill_ipif_up_count++;
20711 	err = ip_addr_availability_check(ipif);
20712 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20713 	rw_exit(&ipst->ips_ill_g_lock);
20714 
20715 	if (err != 0) {
20716 		/*
20717 		 * Our address may already be up on the same ill. In this case,
20718 		 * the ARP entry for our ipif replaced the one for the other
20719 		 * ipif. So we don't want to delete it (otherwise the other ipif
20720 		 * would be unable to send packets).
20721 		 * ip_addr_availability_check() identifies this case for us and
20722 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20723 		 * which is the expected error code.
20724 		 */
20725 		if (err == EADDRINUSE) {
20726 			freemsg(ipif->ipif_arp_del_mp);
20727 			ipif->ipif_arp_del_mp = NULL;
20728 			err = EADDRNOTAVAIL;
20729 		}
20730 		ill->ill_ipif_up_count--;
20731 		ipif->ipif_flags &= ~IPIF_UP;
20732 		goto bad;
20733 	}
20734 
20735 	/*
20736 	 * Add in all newly created IREs.  ire_create_bcast() has
20737 	 * already checked for duplicates of the IRE_BROADCAST type.
20738 	 * We want to add before we call ifgrp_insert which wants
20739 	 * to know whether IRE_IF_RESOLVER exists or not.
20740 	 *
20741 	 * NOTE : We refrele the ire though we may branch to "bad"
20742 	 *	  later on where we do ire_delete. This is okay
20743 	 *	  because nobody can delete it as we are running
20744 	 *	  exclusively.
20745 	 */
20746 	for (irep1 = irep; irep1 > ire_array; ) {
20747 		irep1--;
20748 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20749 		/*
20750 		 * refheld by ire_add. refele towards the end of the func
20751 		 */
20752 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20753 	}
20754 	ire_added = B_TRUE;
20755 	/*
20756 	 * Form groups if possible.
20757 	 *
20758 	 * If we are supposed to be in a ill_group with a name, insert it
20759 	 * now as we know that at least one ipif is UP. Otherwise form
20760 	 * nameless groups.
20761 	 *
20762 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20763 	 * this ipif into the appropriate interface group, or create a
20764 	 * new one. If this is already in a nameless group, we try to form
20765 	 * a bigger group looking at other ills potentially sharing this
20766 	 * ipif's prefix.
20767 	 */
20768 	phyi = ill->ill_phyint;
20769 	if (phyi->phyint_groupname_len != 0) {
20770 		ASSERT(phyi->phyint_groupname != NULL);
20771 		if (ill->ill_ipif_up_count == 1) {
20772 			ASSERT(ill->ill_group == NULL);
20773 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20774 			    phyi->phyint_groupname, NULL, B_TRUE);
20775 			if (err != 0) {
20776 				ip1dbg(("ipif_up_done: illgrp allocation "
20777 				    "failed, error %d\n", err));
20778 				goto bad;
20779 			}
20780 		}
20781 		ASSERT(ill->ill_group != NULL);
20782 	}
20783 
20784 	/*
20785 	 * When this is part of group, we need to make sure that
20786 	 * any broadcast ires created because of this ipif coming
20787 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20788 	 * so that we don't receive duplicate broadcast packets.
20789 	 */
20790 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20791 		ipif_renominate_bcast(ipif);
20792 
20793 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20794 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20795 	ipif_saved_irep = ipif_recover_ire(ipif);
20796 
20797 	if (!loopback) {
20798 		/*
20799 		 * If the broadcast address has been set, make sure it makes
20800 		 * sense based on the interface address.
20801 		 * Only match on ill since we are sharing broadcast addresses.
20802 		 */
20803 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20804 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20805 			ire_t	*ire;
20806 
20807 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20808 			    IRE_BROADCAST, ipif, ALL_ZONES,
20809 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20810 
20811 			if (ire == NULL) {
20812 				/*
20813 				 * If there isn't a matching broadcast IRE,
20814 				 * revert to the default for this netmask.
20815 				 */
20816 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20817 				mutex_enter(&ipif->ipif_ill->ill_lock);
20818 				ipif_set_default(ipif);
20819 				mutex_exit(&ipif->ipif_ill->ill_lock);
20820 			} else {
20821 				ire_refrele(ire);
20822 			}
20823 		}
20824 
20825 	}
20826 
20827 	/* This is the first interface on this ill */
20828 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20829 		/*
20830 		 * Need to recover all multicast memberships in the driver.
20831 		 * This had to be deferred until we had attached.
20832 		 */
20833 		ill_recover_multicast(ill);
20834 	}
20835 	/* Join the allhosts multicast address */
20836 	ipif_multicast_up(ipif);
20837 
20838 	if (!loopback) {
20839 		/*
20840 		 * See whether anybody else would benefit from the
20841 		 * new ipif that we added. We call this always rather
20842 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20843 		 * ipif is for the benefit of illgrp_insert (done above)
20844 		 * which does not do source address selection as it does
20845 		 * not want to re-create interface routes that we are
20846 		 * having reference to it here.
20847 		 */
20848 		ill_update_source_selection(ill);
20849 	}
20850 
20851 	for (irep1 = irep; irep1 > ire_array; ) {
20852 		irep1--;
20853 		if (*irep1 != NULL) {
20854 			/* was held in ire_add */
20855 			ire_refrele(*irep1);
20856 		}
20857 	}
20858 
20859 	cnt = ipif_saved_ire_cnt;
20860 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20861 		if (*irep1 != NULL) {
20862 			/* was held in ire_add */
20863 			ire_refrele(*irep1);
20864 		}
20865 	}
20866 
20867 	if (!loopback && ipif->ipif_addr_ready) {
20868 		/* Broadcast an address mask reply. */
20869 		ipif_mask_reply(ipif);
20870 	}
20871 	if (ipif_saved_irep != NULL) {
20872 		kmem_free(ipif_saved_irep,
20873 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20874 	}
20875 	if (src_ipif_held)
20876 		ipif_refrele(src_ipif);
20877 
20878 	/*
20879 	 * This had to be deferred until we had bound.  Tell routing sockets and
20880 	 * others that this interface is up if it looks like the address has
20881 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20882 	 * duplicate address detection to do its thing.
20883 	 */
20884 	if (ipif->ipif_addr_ready) {
20885 		ip_rts_ifmsg(ipif);
20886 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20887 		/* Let SCTP update the status for this ipif */
20888 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20889 	}
20890 	return (0);
20891 
20892 bad:
20893 	ip1dbg(("ipif_up_done: FAILED \n"));
20894 	/*
20895 	 * We don't have to bother removing from ill groups because
20896 	 *
20897 	 * 1) For groups with names, we insert only when the first ipif
20898 	 *    comes up. In that case if it fails, it will not be in any
20899 	 *    group. So, we need not try to remove for that case.
20900 	 *
20901 	 * 2) For groups without names, either we tried to insert ipif_ill
20902 	 *    in a group as singleton or found some other group to become
20903 	 *    a bigger group. For the former, if it fails we don't have
20904 	 *    anything to do as ipif_ill is not in the group and for the
20905 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20906 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20907 	 */
20908 	while (irep > ire_array) {
20909 		irep--;
20910 		if (*irep != NULL) {
20911 			ire_delete(*irep);
20912 			if (ire_added)
20913 				ire_refrele(*irep);
20914 		}
20915 	}
20916 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20917 
20918 	if (ipif_saved_irep != NULL) {
20919 		kmem_free(ipif_saved_irep,
20920 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20921 	}
20922 	if (src_ipif_held)
20923 		ipif_refrele(src_ipif);
20924 
20925 	ipif_arp_down(ipif);
20926 	return (err);
20927 }
20928 
20929 /*
20930  * Turn off the ARP with the ILLF_NOARP flag.
20931  */
20932 static int
20933 ill_arp_off(ill_t *ill)
20934 {
20935 	mblk_t	*arp_off_mp = NULL;
20936 	mblk_t	*arp_on_mp = NULL;
20937 
20938 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20939 
20940 	ASSERT(IAM_WRITER_ILL(ill));
20941 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20942 
20943 	/*
20944 	 * If the on message is still around we've already done
20945 	 * an arp_off without doing an arp_on thus there is no
20946 	 * work needed.
20947 	 */
20948 	if (ill->ill_arp_on_mp != NULL)
20949 		return (0);
20950 
20951 	/*
20952 	 * Allocate an ARP on message (to be saved) and an ARP off message
20953 	 */
20954 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20955 	if (!arp_off_mp)
20956 		return (ENOMEM);
20957 
20958 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20959 	if (!arp_on_mp)
20960 		goto failed;
20961 
20962 	ASSERT(ill->ill_arp_on_mp == NULL);
20963 	ill->ill_arp_on_mp = arp_on_mp;
20964 
20965 	/* Send an AR_INTERFACE_OFF request */
20966 	putnext(ill->ill_rq, arp_off_mp);
20967 	return (0);
20968 failed:
20969 
20970 	if (arp_off_mp)
20971 		freemsg(arp_off_mp);
20972 	return (ENOMEM);
20973 }
20974 
20975 /*
20976  * Turn on ARP by turning off the ILLF_NOARP flag.
20977  */
20978 static int
20979 ill_arp_on(ill_t *ill)
20980 {
20981 	mblk_t	*mp;
20982 
20983 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20984 
20985 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20986 
20987 	ASSERT(IAM_WRITER_ILL(ill));
20988 	/*
20989 	 * Send an AR_INTERFACE_ON request if we have already done
20990 	 * an arp_off (which allocated the message).
20991 	 */
20992 	if (ill->ill_arp_on_mp != NULL) {
20993 		mp = ill->ill_arp_on_mp;
20994 		ill->ill_arp_on_mp = NULL;
20995 		putnext(ill->ill_rq, mp);
20996 	}
20997 	return (0);
20998 }
20999 
21000 /*
21001  * Called after either deleting ill from the group or when setting
21002  * FAILED or STANDBY on the interface.
21003  */
21004 static void
21005 illgrp_reset_schednext(ill_t *ill)
21006 {
21007 	ill_group_t *illgrp;
21008 	ill_t *save_ill;
21009 
21010 	ASSERT(IAM_WRITER_ILL(ill));
21011 	/*
21012 	 * When called from illgrp_delete, ill_group will be non-NULL.
21013 	 * But when called from ip_sioctl_flags, it could be NULL if
21014 	 * somebody is setting FAILED/INACTIVE on some interface which
21015 	 * is not part of a group.
21016 	 */
21017 	illgrp = ill->ill_group;
21018 	if (illgrp == NULL)
21019 		return;
21020 	if (illgrp->illgrp_ill_schednext != ill)
21021 		return;
21022 
21023 	illgrp->illgrp_ill_schednext = NULL;
21024 	save_ill = ill;
21025 	/*
21026 	 * Choose a good ill to be the next one for
21027 	 * outbound traffic. As the flags FAILED/STANDBY is
21028 	 * not yet marked when called from ip_sioctl_flags,
21029 	 * we check for ill separately.
21030 	 */
21031 	for (ill = illgrp->illgrp_ill; ill != NULL;
21032 	    ill = ill->ill_group_next) {
21033 		if ((ill != save_ill) &&
21034 		    !(ill->ill_phyint->phyint_flags &
21035 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
21036 			illgrp->illgrp_ill_schednext = ill;
21037 			return;
21038 		}
21039 	}
21040 }
21041 
21042 /*
21043  * Given an ill, find the next ill in the group to be scheduled.
21044  * (This should be called by ip_newroute() before ire_create().)
21045  * The passed in ill may be pulled out of the group, after we have picked
21046  * up a different outgoing ill from the same group. However ire add will
21047  * atomically check this.
21048  */
21049 ill_t *
21050 illgrp_scheduler(ill_t *ill)
21051 {
21052 	ill_t *retill;
21053 	ill_group_t *illgrp;
21054 	int illcnt;
21055 	int i;
21056 	uint64_t flags;
21057 	ip_stack_t	*ipst = ill->ill_ipst;
21058 
21059 	/*
21060 	 * We don't use a lock to check for the ill_group. If this ill
21061 	 * is currently being inserted we may end up just returning this
21062 	 * ill itself. That is ok.
21063 	 */
21064 	if (ill->ill_group == NULL) {
21065 		ill_refhold(ill);
21066 		return (ill);
21067 	}
21068 
21069 	/*
21070 	 * Grab the ill_g_lock as reader to make sure we are dealing with
21071 	 * a set of stable ills. No ill can be added or deleted or change
21072 	 * group while we hold the reader lock.
21073 	 */
21074 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21075 	if ((illgrp = ill->ill_group) == NULL) {
21076 		rw_exit(&ipst->ips_ill_g_lock);
21077 		ill_refhold(ill);
21078 		return (ill);
21079 	}
21080 
21081 	illcnt = illgrp->illgrp_ill_count;
21082 	mutex_enter(&illgrp->illgrp_lock);
21083 	retill = illgrp->illgrp_ill_schednext;
21084 
21085 	if (retill == NULL)
21086 		retill = illgrp->illgrp_ill;
21087 
21088 	/*
21089 	 * We do a circular search beginning at illgrp_ill_schednext
21090 	 * or illgrp_ill. We don't check the flags against the ill lock
21091 	 * since it can change anytime. The ire creation will be atomic
21092 	 * and will fail if the ill is FAILED or OFFLINE.
21093 	 */
21094 	for (i = 0; i < illcnt; i++) {
21095 		flags = retill->ill_phyint->phyint_flags;
21096 
21097 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
21098 		    ILL_CAN_LOOKUP(retill)) {
21099 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
21100 			ill_refhold(retill);
21101 			break;
21102 		}
21103 		retill = retill->ill_group_next;
21104 		if (retill == NULL)
21105 			retill = illgrp->illgrp_ill;
21106 	}
21107 	mutex_exit(&illgrp->illgrp_lock);
21108 	rw_exit(&ipst->ips_ill_g_lock);
21109 
21110 	return (i == illcnt ? NULL : retill);
21111 }
21112 
21113 /*
21114  * Checks for availbility of a usable source address (if there is one) when the
21115  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
21116  * this selection is done regardless of the destination.
21117  */
21118 boolean_t
21119 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
21120 {
21121 	uint_t	ifindex;
21122 	ipif_t	*ipif = NULL;
21123 	ill_t	*uill;
21124 	boolean_t isv6;
21125 	ip_stack_t	*ipst = ill->ill_ipst;
21126 
21127 	ASSERT(ill != NULL);
21128 
21129 	isv6 = ill->ill_isv6;
21130 	ifindex = ill->ill_usesrc_ifindex;
21131 	if (ifindex != 0) {
21132 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
21133 		    NULL, ipst);
21134 		if (uill == NULL)
21135 			return (NULL);
21136 		mutex_enter(&uill->ill_lock);
21137 		for (ipif = uill->ill_ipif; ipif != NULL;
21138 		    ipif = ipif->ipif_next) {
21139 			if (!IPIF_CAN_LOOKUP(ipif))
21140 				continue;
21141 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21142 				continue;
21143 			if (!(ipif->ipif_flags & IPIF_UP))
21144 				continue;
21145 			if (ipif->ipif_zoneid != zoneid)
21146 				continue;
21147 			if ((isv6 &&
21148 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
21149 			    (ipif->ipif_lcl_addr == INADDR_ANY))
21150 				continue;
21151 			mutex_exit(&uill->ill_lock);
21152 			ill_refrele(uill);
21153 			return (B_TRUE);
21154 		}
21155 		mutex_exit(&uill->ill_lock);
21156 		ill_refrele(uill);
21157 	}
21158 	return (B_FALSE);
21159 }
21160 
21161 /*
21162  * Determine the best source address given a destination address and an ill.
21163  * Prefers non-deprecated over deprecated but will return a deprecated
21164  * address if there is no other choice. If there is a usable source address
21165  * on the interface pointed to by ill_usesrc_ifindex then that is given
21166  * first preference.
21167  *
21168  * Returns NULL if there is no suitable source address for the ill.
21169  * This only occurs when there is no valid source address for the ill.
21170  */
21171 ipif_t *
21172 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
21173 {
21174 	ipif_t *ipif;
21175 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
21176 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
21177 	int index = 0;
21178 	boolean_t wrapped = B_FALSE;
21179 	boolean_t same_subnet_only = B_FALSE;
21180 	boolean_t ipif_same_found, ipif_other_found;
21181 	boolean_t specific_found;
21182 	ill_t	*till, *usill = NULL;
21183 	tsol_tpc_t *src_rhtp, *dst_rhtp;
21184 	ip_stack_t	*ipst = ill->ill_ipst;
21185 
21186 	if (ill->ill_usesrc_ifindex != 0) {
21187 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
21188 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
21189 		if (usill != NULL)
21190 			ill = usill;	/* Select source from usesrc ILL */
21191 		else
21192 			return (NULL);
21193 	}
21194 
21195 	/*
21196 	 * If we're dealing with an unlabeled destination on a labeled system,
21197 	 * make sure that we ignore source addresses that are incompatible with
21198 	 * the destination's default label.  That destination's default label
21199 	 * must dominate the minimum label on the source address.
21200 	 */
21201 	dst_rhtp = NULL;
21202 	if (is_system_labeled()) {
21203 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
21204 		if (dst_rhtp == NULL)
21205 			return (NULL);
21206 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
21207 			TPC_RELE(dst_rhtp);
21208 			dst_rhtp = NULL;
21209 		}
21210 	}
21211 
21212 	/*
21213 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
21214 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
21215 	 * After selecting the right ipif, under ill_lock make sure ipif is
21216 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
21217 	 * we retry. Inside the loop we still need to check for CONDEMNED,
21218 	 * but not under a lock.
21219 	 */
21220 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21221 
21222 retry:
21223 	till = ill;
21224 	ipif_arr[0] = NULL;
21225 
21226 	if (till->ill_group != NULL)
21227 		till = till->ill_group->illgrp_ill;
21228 
21229 	/*
21230 	 * Choose one good source address from each ill across the group.
21231 	 * If possible choose a source address in the same subnet as
21232 	 * the destination address.
21233 	 *
21234 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
21235 	 * This is okay because of the following.
21236 	 *
21237 	 *    If PHYI_FAILED is set and we still have non-deprecated
21238 	 *    addresses, it means the addresses have not yet been
21239 	 *    failed over to a different interface. We potentially
21240 	 *    select them to create IRE_CACHES, which will be later
21241 	 *    flushed when the addresses move over.
21242 	 *
21243 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
21244 	 *    addresses, it means either the user has configured them
21245 	 *    or PHYI_INACTIVE has not been cleared after the addresses
21246 	 *    been moved over. For the former, in.mpathd does a failover
21247 	 *    when the interface becomes INACTIVE and hence we should
21248 	 *    not find them. Once INACTIVE is set, we don't allow them
21249 	 *    to create logical interfaces anymore. For the latter, a
21250 	 *    flush will happen when INACTIVE is cleared which will
21251 	 *    flush the IRE_CACHES.
21252 	 *
21253 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
21254 	 *    over soon. We potentially select them to create IRE_CACHEs,
21255 	 *    which will be later flushed when the addresses move over.
21256 	 *
21257 	 * NOTE : As ipif_select_source is called to borrow source address
21258 	 * for an ipif that is part of a group, source address selection
21259 	 * will be re-done whenever the group changes i.e either an
21260 	 * insertion/deletion in the group.
21261 	 *
21262 	 * Fill ipif_arr[] with source addresses, using these rules:
21263 	 *
21264 	 *	1. At most one source address from a given ill ends up
21265 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
21266 	 *	   associated with a given ill ends up in ipif_arr[].
21267 	 *
21268 	 *	2. If there is at least one non-deprecated ipif in the
21269 	 *	   IPMP group with a source address on the same subnet as
21270 	 *	   our destination, then fill ipif_arr[] only with
21271 	 *	   source addresses on the same subnet as our destination.
21272 	 *	   Note that because of (1), only the first
21273 	 *	   non-deprecated ipif found with a source address
21274 	 *	   matching the destination ends up in ipif_arr[].
21275 	 *
21276 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
21277 	 *	   addresses not in the same subnet as our destination.
21278 	 *	   Again, because of (1), only the first off-subnet source
21279 	 *	   address will be chosen.
21280 	 *
21281 	 *	4. If there are no non-deprecated ipifs, then just use
21282 	 *	   the source address associated with the last deprecated
21283 	 *	   one we find that happens to be on the same subnet,
21284 	 *	   otherwise the first one not in the same subnet.
21285 	 */
21286 	specific_found = B_FALSE;
21287 	for (; till != NULL; till = till->ill_group_next) {
21288 		ipif_same_found = B_FALSE;
21289 		ipif_other_found = B_FALSE;
21290 		for (ipif = till->ill_ipif; ipif != NULL;
21291 		    ipif = ipif->ipif_next) {
21292 			if (!IPIF_CAN_LOOKUP(ipif))
21293 				continue;
21294 			/* Always skip NOLOCAL and ANYCAST interfaces */
21295 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21296 				continue;
21297 			if (!(ipif->ipif_flags & IPIF_UP) ||
21298 			    !ipif->ipif_addr_ready)
21299 				continue;
21300 			if (ipif->ipif_zoneid != zoneid &&
21301 			    ipif->ipif_zoneid != ALL_ZONES)
21302 				continue;
21303 			/*
21304 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
21305 			 * but are not valid as source addresses.
21306 			 */
21307 			if (ipif->ipif_lcl_addr == INADDR_ANY)
21308 				continue;
21309 
21310 			/*
21311 			 * Check compatibility of local address for
21312 			 * destination's default label if we're on a labeled
21313 			 * system.  Incompatible addresses can't be used at
21314 			 * all.
21315 			 */
21316 			if (dst_rhtp != NULL) {
21317 				boolean_t incompat;
21318 
21319 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
21320 				    IPV4_VERSION, B_FALSE);
21321 				if (src_rhtp == NULL)
21322 					continue;
21323 				incompat =
21324 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
21325 				    src_rhtp->tpc_tp.tp_doi !=
21326 				    dst_rhtp->tpc_tp.tp_doi ||
21327 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
21328 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
21329 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
21330 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
21331 				TPC_RELE(src_rhtp);
21332 				if (incompat)
21333 					continue;
21334 			}
21335 
21336 			/*
21337 			 * We prefer not to use all all-zones addresses, if we
21338 			 * can avoid it, as they pose problems with unlabeled
21339 			 * destinations.
21340 			 */
21341 			if (ipif->ipif_zoneid != ALL_ZONES) {
21342 				if (!specific_found &&
21343 				    (!same_subnet_only ||
21344 				    (ipif->ipif_net_mask & dst) ==
21345 				    ipif->ipif_subnet)) {
21346 					index = 0;
21347 					specific_found = B_TRUE;
21348 					ipif_other_found = B_FALSE;
21349 				}
21350 			} else {
21351 				if (specific_found)
21352 					continue;
21353 			}
21354 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
21355 				if (ipif_dep == NULL ||
21356 				    (ipif->ipif_net_mask & dst) ==
21357 				    ipif->ipif_subnet)
21358 					ipif_dep = ipif;
21359 				continue;
21360 			}
21361 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
21362 				/* found a source address in the same subnet */
21363 				if (!same_subnet_only) {
21364 					same_subnet_only = B_TRUE;
21365 					index = 0;
21366 				}
21367 				ipif_same_found = B_TRUE;
21368 			} else {
21369 				if (same_subnet_only || ipif_other_found)
21370 					continue;
21371 				ipif_other_found = B_TRUE;
21372 			}
21373 			ipif_arr[index++] = ipif;
21374 			if (index == MAX_IPIF_SELECT_SOURCE) {
21375 				wrapped = B_TRUE;
21376 				index = 0;
21377 			}
21378 			if (ipif_same_found)
21379 				break;
21380 		}
21381 	}
21382 
21383 	if (ipif_arr[0] == NULL) {
21384 		ipif = ipif_dep;
21385 	} else {
21386 		if (wrapped)
21387 			index = MAX_IPIF_SELECT_SOURCE;
21388 		ipif = ipif_arr[ipif_rand(ipst) % index];
21389 		ASSERT(ipif != NULL);
21390 	}
21391 
21392 	if (ipif != NULL) {
21393 		mutex_enter(&ipif->ipif_ill->ill_lock);
21394 		if (!IPIF_CAN_LOOKUP(ipif)) {
21395 			mutex_exit(&ipif->ipif_ill->ill_lock);
21396 			goto retry;
21397 		}
21398 		ipif_refhold_locked(ipif);
21399 		mutex_exit(&ipif->ipif_ill->ill_lock);
21400 	}
21401 
21402 	rw_exit(&ipst->ips_ill_g_lock);
21403 	if (usill != NULL)
21404 		ill_refrele(usill);
21405 	if (dst_rhtp != NULL)
21406 		TPC_RELE(dst_rhtp);
21407 
21408 #ifdef DEBUG
21409 	if (ipif == NULL) {
21410 		char buf1[INET6_ADDRSTRLEN];
21411 
21412 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
21413 		    ill->ill_name,
21414 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
21415 	} else {
21416 		char buf1[INET6_ADDRSTRLEN];
21417 		char buf2[INET6_ADDRSTRLEN];
21418 
21419 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
21420 		    ipif->ipif_ill->ill_name,
21421 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
21422 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
21423 		    buf2, sizeof (buf2))));
21424 	}
21425 #endif /* DEBUG */
21426 	return (ipif);
21427 }
21428 
21429 
21430 /*
21431  * If old_ipif is not NULL, see if ipif was derived from old
21432  * ipif and if so, recreate the interface route by re-doing
21433  * source address selection. This happens when ipif_down ->
21434  * ipif_update_other_ipifs calls us.
21435  *
21436  * If old_ipif is NULL, just redo the source address selection
21437  * if needed. This happens when illgrp_insert or ipif_up_done
21438  * calls us.
21439  */
21440 static void
21441 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
21442 {
21443 	ire_t *ire;
21444 	ire_t *ipif_ire;
21445 	queue_t *stq;
21446 	ipif_t *nipif;
21447 	ill_t *ill;
21448 	boolean_t need_rele = B_FALSE;
21449 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21450 
21451 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
21452 	ASSERT(IAM_WRITER_IPIF(ipif));
21453 
21454 	ill = ipif->ipif_ill;
21455 	if (!(ipif->ipif_flags &
21456 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
21457 		/*
21458 		 * Can't possibly have borrowed the source
21459 		 * from old_ipif.
21460 		 */
21461 		return;
21462 	}
21463 
21464 	/*
21465 	 * Is there any work to be done? No work if the address
21466 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21467 	 * ipif_select_source() does not borrow addresses from
21468 	 * NOLOCAL and ANYCAST interfaces).
21469 	 */
21470 	if ((old_ipif != NULL) &&
21471 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21472 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21473 	    (old_ipif->ipif_flags &
21474 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21475 		return;
21476 	}
21477 
21478 	/*
21479 	 * Perform the same checks as when creating the
21480 	 * IRE_INTERFACE in ipif_up_done.
21481 	 */
21482 	if (!(ipif->ipif_flags & IPIF_UP))
21483 		return;
21484 
21485 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21486 	    (ipif->ipif_subnet == INADDR_ANY))
21487 		return;
21488 
21489 	ipif_ire = ipif_to_ire(ipif);
21490 	if (ipif_ire == NULL)
21491 		return;
21492 
21493 	/*
21494 	 * We know that ipif uses some other source for its
21495 	 * IRE_INTERFACE. Is it using the source of this
21496 	 * old_ipif?
21497 	 */
21498 	if (old_ipif != NULL &&
21499 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21500 		ire_refrele(ipif_ire);
21501 		return;
21502 	}
21503 	if (ip_debug > 2) {
21504 		/* ip1dbg */
21505 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21506 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21507 	}
21508 
21509 	stq = ipif_ire->ire_stq;
21510 
21511 	/*
21512 	 * Can't use our source address. Select a different
21513 	 * source address for the IRE_INTERFACE.
21514 	 */
21515 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21516 	if (nipif == NULL) {
21517 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21518 		nipif = ipif;
21519 	} else {
21520 		need_rele = B_TRUE;
21521 	}
21522 
21523 	ire = ire_create(
21524 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21525 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21526 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21527 	    NULL,				/* no gateway */
21528 	    NULL,
21529 	    &ipif->ipif_mtu,			/* max frag */
21530 	    NULL,				/* fast path header */
21531 	    NULL,				/* no recv from queue */
21532 	    stq,				/* send-to queue */
21533 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21534 	    ill->ill_resolver_mp,		/* xmit header */
21535 	    ipif,
21536 	    NULL,
21537 	    0,
21538 	    0,
21539 	    0,
21540 	    0,
21541 	    &ire_uinfo_null,
21542 	    NULL,
21543 	    NULL,
21544 	    ipst);
21545 
21546 	if (ire != NULL) {
21547 		ire_t *ret_ire;
21548 		int error;
21549 
21550 		/*
21551 		 * We don't need ipif_ire anymore. We need to delete
21552 		 * before we add so that ire_add does not detect
21553 		 * duplicates.
21554 		 */
21555 		ire_delete(ipif_ire);
21556 		ret_ire = ire;
21557 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21558 		ASSERT(error == 0);
21559 		ASSERT(ire == ret_ire);
21560 		/* Held in ire_add */
21561 		ire_refrele(ret_ire);
21562 	}
21563 	/*
21564 	 * Either we are falling through from above or could not
21565 	 * allocate a replacement.
21566 	 */
21567 	ire_refrele(ipif_ire);
21568 	if (need_rele)
21569 		ipif_refrele(nipif);
21570 }
21571 
21572 /*
21573  * This old_ipif is going away.
21574  *
21575  * Determine if any other ipif's is using our address as
21576  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21577  * IPIF_DEPRECATED).
21578  * Find the IRE_INTERFACE for such ipifs and recreate them
21579  * to use an different source address following the rules in
21580  * ipif_up_done.
21581  *
21582  * This function takes an illgrp as an argument so that illgrp_delete
21583  * can call this to update source address even after deleting the
21584  * old_ipif->ipif_ill from the ill group.
21585  */
21586 static void
21587 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21588 {
21589 	ipif_t *ipif;
21590 	ill_t *ill;
21591 	char	buf[INET6_ADDRSTRLEN];
21592 
21593 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21594 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21595 
21596 	ill = old_ipif->ipif_ill;
21597 
21598 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21599 	    ill->ill_name,
21600 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21601 	    buf, sizeof (buf))));
21602 	/*
21603 	 * If this part of a group, look at all ills as ipif_select_source
21604 	 * borrows source address across all the ills in the group.
21605 	 */
21606 	if (illgrp != NULL)
21607 		ill = illgrp->illgrp_ill;
21608 
21609 	for (; ill != NULL; ill = ill->ill_group_next) {
21610 		for (ipif = ill->ill_ipif; ipif != NULL;
21611 		    ipif = ipif->ipif_next) {
21612 
21613 			if (ipif == old_ipif)
21614 				continue;
21615 
21616 			ipif_recreate_interface_routes(old_ipif, ipif);
21617 		}
21618 	}
21619 }
21620 
21621 /* ARGSUSED */
21622 int
21623 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21624 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21625 {
21626 	/*
21627 	 * ill_phyint_reinit merged the v4 and v6 into a single
21628 	 * ipsq. Could also have become part of a ipmp group in the
21629 	 * process, and we might not have been able to complete the
21630 	 * operation in ipif_set_values, if we could not become
21631 	 * exclusive.  If so restart it here.
21632 	 */
21633 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21634 }
21635 
21636 
21637 /*
21638  * Can operate on either a module or a driver queue.
21639  * Returns an error if not a module queue.
21640  */
21641 /* ARGSUSED */
21642 int
21643 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21644     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21645 {
21646 	queue_t		*q1 = q;
21647 	char 		*cp;
21648 	char		interf_name[LIFNAMSIZ];
21649 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21650 
21651 	if (q->q_next == NULL) {
21652 		ip1dbg((
21653 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21654 		return (EINVAL);
21655 	}
21656 
21657 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21658 		return (EALREADY);
21659 
21660 	do {
21661 		q1 = q1->q_next;
21662 	} while (q1->q_next);
21663 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21664 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21665 
21666 	/*
21667 	 * Here we are not going to delay the ioack until after
21668 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21669 	 * original ioctl message before sending the requests.
21670 	 */
21671 	return (ipif_set_values(q, mp, interf_name, &ppa));
21672 }
21673 
21674 /* ARGSUSED */
21675 int
21676 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21677     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21678 {
21679 	return (ENXIO);
21680 }
21681 
21682 /*
21683  * Net and subnet broadcast ire's are now specific to the particular
21684  * physical interface (ill) and not to any one locigal interface (ipif).
21685  * However, if a particular logical interface is being taken down, it's
21686  * associated ire's will be taken down as well.  Hence, when we go to
21687  * take down or change the local address, broadcast address or netmask
21688  * of a specific logical interface, we must check to make sure that we
21689  * have valid net and subnet broadcast ire's for the other logical
21690  * interfaces which may have been shared with the logical interface
21691  * being brought down or changed.
21692  *
21693  * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it
21694  * is tied to the first interface coming UP. If that ipif is going down,
21695  * we need to recreate them on the next valid ipif.
21696  *
21697  * Note: assume that the ipif passed in is still up so that it's IRE
21698  * entries are still valid.
21699  */
21700 static void
21701 ipif_check_bcast_ires(ipif_t *test_ipif)
21702 {
21703 	ipif_t	*ipif;
21704 	ire_t	*test_subnet_ire, *test_net_ire;
21705 	ire_t	*test_allzero_ire, *test_allone_ire;
21706 	ire_t	*ire_array[12];
21707 	ire_t	**irep = &ire_array[0];
21708 	ire_t	**irep1;
21709 	ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask;
21710 	ipaddr_t test_net_addr, test_subnet_addr;
21711 	ipaddr_t test_net_mask, test_subnet_mask;
21712 	boolean_t need_net_bcast_ire = B_FALSE;
21713 	boolean_t need_subnet_bcast_ire = B_FALSE;
21714 	boolean_t allzero_bcast_ire_created = B_FALSE;
21715 	boolean_t allone_bcast_ire_created = B_FALSE;
21716 	boolean_t net_bcast_ire_created = B_FALSE;
21717 	boolean_t subnet_bcast_ire_created = B_FALSE;
21718 
21719 	ipif_t  *backup_ipif_net = (ipif_t *)NULL;
21720 	ipif_t  *backup_ipif_subnet = (ipif_t *)NULL;
21721 	ipif_t  *backup_ipif_allzeros = (ipif_t *)NULL;
21722 	ipif_t  *backup_ipif_allones = (ipif_t *)NULL;
21723 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
21724 	ip_stack_t	*ipst = test_ipif->ipif_ill->ill_ipst;
21725 
21726 	ASSERT(!test_ipif->ipif_isv6);
21727 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21728 
21729 	/*
21730 	 * No broadcast IREs for the LOOPBACK interface
21731 	 * or others such as point to point and IPIF_NOXMIT.
21732 	 */
21733 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21734 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21735 		return;
21736 
21737 	test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST,
21738 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21739 	    ipst);
21740 
21741 	test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST,
21742 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21743 	    ipst);
21744 
21745 	test_net_mask = ip_net_mask(test_ipif->ipif_subnet);
21746 	test_subnet_mask = test_ipif->ipif_net_mask;
21747 
21748 	/*
21749 	 * If no net mask set, assume the default based on net class.
21750 	 */
21751 	if (test_subnet_mask == 0)
21752 		test_subnet_mask = test_net_mask;
21753 
21754 	/*
21755 	 * Check if there is a network broadcast ire associated with this ipif
21756 	 */
21757 	test_net_addr = test_net_mask  & test_ipif->ipif_subnet;
21758 	test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST,
21759 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21760 	    ipst);
21761 
21762 	/*
21763 	 * Check if there is a subnet broadcast IRE associated with this ipif
21764 	 */
21765 	test_subnet_addr = test_subnet_mask  & test_ipif->ipif_subnet;
21766 	test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST,
21767 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21768 	    ipst);
21769 
21770 	/*
21771 	 * No broadcast ire's associated with this ipif.
21772 	 */
21773 	if ((test_subnet_ire == NULL) && (test_net_ire == NULL) &&
21774 	    (test_allzero_ire == NULL) && (test_allone_ire == NULL)) {
21775 		return;
21776 	}
21777 
21778 	/*
21779 	 * We have established which bcast ires have to be replaced.
21780 	 * Next we try to locate ipifs that match there ires.
21781 	 * The rules are simple: If we find an ipif that matches on the subnet
21782 	 * address it will also match on the net address, the allzeros and
21783 	 * allones address. Any ipif that matches only on the net address will
21784 	 * also match the allzeros and allones addresses.
21785 	 * The other criterion is the ipif_flags. We look for non-deprecated
21786 	 * (and non-anycast and non-nolocal) ipifs as the best choice.
21787 	 * ipifs with check_flags matching (deprecated, etc) are used only
21788 	 * if good ipifs are not available. While looping, we save existing
21789 	 * deprecated ipifs as backup_ipif.
21790 	 * We loop through all the ipifs for this ill looking for ipifs
21791 	 * whose broadcast addr match the ipif passed in, but do not have
21792 	 * their own broadcast ires. For creating 0.0.0.0 and
21793 	 * 255.255.255.255 we just need an ipif on this ill to create.
21794 	 */
21795 	for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL;
21796 	    ipif = ipif->ipif_next) {
21797 
21798 		ASSERT(!ipif->ipif_isv6);
21799 		/*
21800 		 * Already checked the ipif passed in.
21801 		 */
21802 		if (ipif == test_ipif) {
21803 			continue;
21804 		}
21805 
21806 		/*
21807 		 * We only need to recreate broadcast ires if another ipif in
21808 		 * the same zone uses them. The new ires must be created in the
21809 		 * same zone.
21810 		 */
21811 		if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) {
21812 			continue;
21813 		}
21814 
21815 		/*
21816 		 * Only interested in logical interfaces with valid local
21817 		 * addresses or with the ability to broadcast.
21818 		 */
21819 		if ((ipif->ipif_subnet == 0) ||
21820 		    !(ipif->ipif_flags & IPIF_BROADCAST) ||
21821 		    (ipif->ipif_flags & IPIF_NOXMIT) ||
21822 		    !(ipif->ipif_flags & IPIF_UP)) {
21823 			continue;
21824 		}
21825 		/*
21826 		 * Check if there is a net broadcast ire for this
21827 		 * net address.  If it turns out that the ipif we are
21828 		 * about to take down owns this ire, we must make a
21829 		 * new one because it is potentially going away.
21830 		 */
21831 		if (test_net_ire && (!net_bcast_ire_created)) {
21832 			net_mask = ip_net_mask(ipif->ipif_subnet);
21833 			net_addr = net_mask & ipif->ipif_subnet;
21834 			if (net_addr == test_net_addr) {
21835 				need_net_bcast_ire = B_TRUE;
21836 				/*
21837 				 * Use DEPRECATED ipif only if no good
21838 				 * ires are available. subnet_addr is
21839 				 * a better match than net_addr.
21840 				 */
21841 				if ((ipif->ipif_flags & check_flags) &&
21842 				    (backup_ipif_net == NULL)) {
21843 					backup_ipif_net = ipif;
21844 				}
21845 			}
21846 		}
21847 		/*
21848 		 * Check if there is a subnet broadcast ire for this
21849 		 * net address.  If it turns out that the ipif we are
21850 		 * about to take down owns this ire, we must make a
21851 		 * new one because it is potentially going away.
21852 		 */
21853 		if (test_subnet_ire && (!subnet_bcast_ire_created)) {
21854 			subnet_mask = ipif->ipif_net_mask;
21855 			subnet_addr = ipif->ipif_subnet;
21856 			if (subnet_addr == test_subnet_addr) {
21857 				need_subnet_bcast_ire = B_TRUE;
21858 				if ((ipif->ipif_flags & check_flags) &&
21859 				    (backup_ipif_subnet == NULL)) {
21860 					backup_ipif_subnet = ipif;
21861 				}
21862 			}
21863 		}
21864 
21865 
21866 		/* Short circuit here if this ipif is deprecated */
21867 		if (ipif->ipif_flags & check_flags) {
21868 			if ((test_allzero_ire != NULL) &&
21869 			    (!allzero_bcast_ire_created) &&
21870 			    (backup_ipif_allzeros == NULL)) {
21871 				backup_ipif_allzeros = ipif;
21872 			}
21873 			if ((test_allone_ire != NULL) &&
21874 			    (!allone_bcast_ire_created) &&
21875 			    (backup_ipif_allones == NULL)) {
21876 				backup_ipif_allones = ipif;
21877 			}
21878 			continue;
21879 		}
21880 
21881 		/*
21882 		 * Found an ipif which has the same broadcast ire as the
21883 		 * ipif passed in and the ipif passed in "owns" the ire.
21884 		 * Create new broadcast ire's for this broadcast addr.
21885 		 */
21886 		if (need_net_bcast_ire && !net_bcast_ire_created) {
21887 			irep = ire_create_bcast(ipif, net_addr, irep);
21888 			irep = ire_create_bcast(ipif,
21889 			    ~net_mask | net_addr, irep);
21890 			net_bcast_ire_created = B_TRUE;
21891 		}
21892 		if (need_subnet_bcast_ire && !subnet_bcast_ire_created) {
21893 			irep = ire_create_bcast(ipif, subnet_addr, irep);
21894 			irep = ire_create_bcast(ipif,
21895 			    ~subnet_mask | subnet_addr, irep);
21896 			subnet_bcast_ire_created = B_TRUE;
21897 		}
21898 		if (test_allzero_ire != NULL && !allzero_bcast_ire_created) {
21899 			irep = ire_create_bcast(ipif, 0, irep);
21900 			allzero_bcast_ire_created = B_TRUE;
21901 		}
21902 		if (test_allone_ire != NULL && !allone_bcast_ire_created) {
21903 			irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep);
21904 			allone_bcast_ire_created = B_TRUE;
21905 		}
21906 		/*
21907 		 * Once we have created all the appropriate ires, we
21908 		 * just break out of this loop to add what we have created.
21909 		 * This has been indented similar to ire_match_args for
21910 		 * readability.
21911 		 */
21912 		if (((test_net_ire == NULL) ||
21913 		    (net_bcast_ire_created)) &&
21914 		    ((test_subnet_ire == NULL) ||
21915 		    (subnet_bcast_ire_created)) &&
21916 		    ((test_allzero_ire == NULL) ||
21917 		    (allzero_bcast_ire_created)) &&
21918 		    ((test_allone_ire == NULL) ||
21919 		    (allone_bcast_ire_created))) {
21920 			break;
21921 		}
21922 	}
21923 
21924 	/*
21925 	 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs
21926 	 * exist. 6 pairs of bcast ires are needed.
21927 	 * Note - the old ires are deleted in ipif_down.
21928 	 */
21929 	if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) {
21930 		ipif = backup_ipif_net;
21931 		irep = ire_create_bcast(ipif, net_addr, irep);
21932 		irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep);
21933 		net_bcast_ire_created = B_TRUE;
21934 	}
21935 	if (need_subnet_bcast_ire && !subnet_bcast_ire_created &&
21936 	    backup_ipif_subnet) {
21937 		ipif = backup_ipif_subnet;
21938 		irep = ire_create_bcast(ipif, subnet_addr, irep);
21939 		irep = ire_create_bcast(ipif,
21940 		    ~subnet_mask | subnet_addr, irep);
21941 		subnet_bcast_ire_created = B_TRUE;
21942 	}
21943 	if (test_allzero_ire != NULL && !allzero_bcast_ire_created &&
21944 	    backup_ipif_allzeros) {
21945 		irep = ire_create_bcast(backup_ipif_allzeros, 0, irep);
21946 		allzero_bcast_ire_created = B_TRUE;
21947 	}
21948 	if (test_allone_ire != NULL && !allone_bcast_ire_created &&
21949 	    backup_ipif_allones) {
21950 		irep = ire_create_bcast(backup_ipif_allones,
21951 		    INADDR_BROADCAST, irep);
21952 		allone_bcast_ire_created = B_TRUE;
21953 	}
21954 
21955 	/*
21956 	 * If we can't create all of them, don't add any of them.
21957 	 * Code in ip_wput_ire and ire_to_ill assumes that we
21958 	 * always have a non-loopback copy and loopback copy
21959 	 * for a given address.
21960 	 */
21961 	for (irep1 = irep; irep1 > ire_array; ) {
21962 		irep1--;
21963 		if (*irep1 == NULL) {
21964 			ip0dbg(("ipif_check_bcast_ires: can't create "
21965 			    "IRE_BROADCAST, memory allocation failure\n"));
21966 			while (irep > ire_array) {
21967 				irep--;
21968 				if (*irep != NULL)
21969 					ire_delete(*irep);
21970 			}
21971 			goto bad;
21972 		}
21973 	}
21974 	for (irep1 = irep; irep1 > ire_array; ) {
21975 		int error;
21976 
21977 		irep1--;
21978 		error = ire_add(irep1, NULL, NULL, NULL, B_FALSE);
21979 		if (error == 0) {
21980 			ire_refrele(*irep1);		/* Held in ire_add */
21981 		}
21982 	}
21983 bad:
21984 	if (test_allzero_ire != NULL)
21985 		ire_refrele(test_allzero_ire);
21986 	if (test_allone_ire != NULL)
21987 		ire_refrele(test_allone_ire);
21988 	if (test_net_ire != NULL)
21989 		ire_refrele(test_net_ire);
21990 	if (test_subnet_ire != NULL)
21991 		ire_refrele(test_subnet_ire);
21992 }
21993 
21994 /*
21995  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21996  * from lifr_flags and the name from lifr_name.
21997  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21998  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21999  * Returns EINPROGRESS when mp has been consumed by queueing it on
22000  * ill_pending_mp and the ioctl will complete in ip_rput.
22001  *
22002  * Can operate on either a module or a driver queue.
22003  * Returns an error if not a module queue.
22004  */
22005 /* ARGSUSED */
22006 int
22007 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22008     ip_ioctl_cmd_t *ipip, void *if_req)
22009 {
22010 	int	err;
22011 	ill_t	*ill;
22012 	struct lifreq *lifr = (struct lifreq *)if_req;
22013 
22014 	ASSERT(ipif != NULL);
22015 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
22016 
22017 	if (q->q_next == NULL) {
22018 		ip1dbg((
22019 		    "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
22020 		return (EINVAL);
22021 	}
22022 
22023 	ill = (ill_t *)q->q_ptr;
22024 	/*
22025 	 * If we are not writer on 'q' then this interface exists already
22026 	 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif.
22027 	 * So return EALREADY
22028 	 */
22029 	if (ill != ipif->ipif_ill)
22030 		return (EALREADY);
22031 
22032 	if (ill->ill_name[0] != '\0')
22033 		return (EALREADY);
22034 
22035 	/*
22036 	 * Set all the flags. Allows all kinds of override. Provide some
22037 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
22038 	 * unless there is either multicast/broadcast support in the driver
22039 	 * or it is a pt-pt link.
22040 	 */
22041 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
22042 		/* Meaningless to IP thus don't allow them to be set. */
22043 		ip1dbg(("ip_setname: EINVAL 1\n"));
22044 		return (EINVAL);
22045 	}
22046 	/*
22047 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
22048 	 * ill_bcast_addr_length info.
22049 	 */
22050 	if (!ill->ill_needs_attach &&
22051 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
22052 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
22053 	    ill->ill_bcast_addr_length == 0)) {
22054 		/* Link not broadcast/pt-pt capable i.e. no multicast */
22055 		ip1dbg(("ip_setname: EINVAL 2\n"));
22056 		return (EINVAL);
22057 	}
22058 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
22059 	    ((lifr->lifr_flags & IFF_IPV6) ||
22060 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
22061 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
22062 		ip1dbg(("ip_setname: EINVAL 3\n"));
22063 		return (EINVAL);
22064 	}
22065 	if (lifr->lifr_flags & IFF_UP) {
22066 		/* Can only be set with SIOCSLIFFLAGS */
22067 		ip1dbg(("ip_setname: EINVAL 4\n"));
22068 		return (EINVAL);
22069 	}
22070 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
22071 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
22072 		ip1dbg(("ip_setname: EINVAL 5\n"));
22073 		return (EINVAL);
22074 	}
22075 	/*
22076 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
22077 	 */
22078 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
22079 	    !(lifr->lifr_flags & IFF_IPV6) &&
22080 	    !(ipif->ipif_isv6)) {
22081 		ip1dbg(("ip_setname: EINVAL 6\n"));
22082 		return (EINVAL);
22083 	}
22084 
22085 	/*
22086 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
22087 	 * we have all the flags here. So, we assign rather than we OR.
22088 	 * We can't OR the flags here because we don't want to set
22089 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
22090 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
22091 	 * on lifr_flags value here.
22092 	 */
22093 	/*
22094 	 * This ill has not been inserted into the global list.
22095 	 * So we are still single threaded and don't need any lock
22096 	 */
22097 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
22098 	    ~IFF_DUPLICATE;
22099 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
22100 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
22101 
22102 	/* We started off as V4. */
22103 	if (ill->ill_flags & ILLF_IPV6) {
22104 		ill->ill_phyint->phyint_illv6 = ill;
22105 		ill->ill_phyint->phyint_illv4 = NULL;
22106 	}
22107 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
22108 	return (err);
22109 }
22110 
22111 /* ARGSUSED */
22112 int
22113 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22114     ip_ioctl_cmd_t *ipip, void *if_req)
22115 {
22116 	/*
22117 	 * ill_phyint_reinit merged the v4 and v6 into a single
22118 	 * ipsq. Could also have become part of a ipmp group in the
22119 	 * process, and we might not have been able to complete the
22120 	 * slifname in ipif_set_values, if we could not become
22121 	 * exclusive.  If so restart it here
22122 	 */
22123 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
22124 }
22125 
22126 /*
22127  * Return a pointer to the ipif which matches the index, IP version type and
22128  * zoneid.
22129  */
22130 ipif_t *
22131 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
22132     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
22133 {
22134 	ill_t	*ill;
22135 	ipsq_t  *ipsq;
22136 	phyint_t *phyi;
22137 	ipif_t	*ipif;
22138 
22139 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
22140 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
22141 
22142 	if (err != NULL)
22143 		*err = 0;
22144 
22145 	/*
22146 	 * Indexes are stored in the phyint - a common structure
22147 	 * to both IPv4 and IPv6.
22148 	 */
22149 
22150 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22151 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22152 	    (void *) &index, NULL);
22153 	if (phyi != NULL) {
22154 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
22155 		if (ill == NULL) {
22156 			rw_exit(&ipst->ips_ill_g_lock);
22157 			if (err != NULL)
22158 				*err = ENXIO;
22159 			return (NULL);
22160 		}
22161 		GRAB_CONN_LOCK(q);
22162 		mutex_enter(&ill->ill_lock);
22163 		if (ILL_CAN_LOOKUP(ill)) {
22164 			for (ipif = ill->ill_ipif; ipif != NULL;
22165 			    ipif = ipif->ipif_next) {
22166 				if (IPIF_CAN_LOOKUP(ipif) &&
22167 				    (zoneid == ALL_ZONES ||
22168 				    zoneid == ipif->ipif_zoneid ||
22169 				    ipif->ipif_zoneid == ALL_ZONES)) {
22170 					ipif_refhold_locked(ipif);
22171 					mutex_exit(&ill->ill_lock);
22172 					RELEASE_CONN_LOCK(q);
22173 					rw_exit(&ipst->ips_ill_g_lock);
22174 					return (ipif);
22175 				}
22176 			}
22177 		} else if (ILL_CAN_WAIT(ill, q)) {
22178 			ipsq = ill->ill_phyint->phyint_ipsq;
22179 			mutex_enter(&ipsq->ipsq_lock);
22180 			rw_exit(&ipst->ips_ill_g_lock);
22181 			mutex_exit(&ill->ill_lock);
22182 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
22183 			mutex_exit(&ipsq->ipsq_lock);
22184 			RELEASE_CONN_LOCK(q);
22185 			*err = EINPROGRESS;
22186 			return (NULL);
22187 		}
22188 		mutex_exit(&ill->ill_lock);
22189 		RELEASE_CONN_LOCK(q);
22190 	}
22191 	rw_exit(&ipst->ips_ill_g_lock);
22192 	if (err != NULL)
22193 		*err = ENXIO;
22194 	return (NULL);
22195 }
22196 
22197 typedef struct conn_change_s {
22198 	uint_t cc_old_ifindex;
22199 	uint_t cc_new_ifindex;
22200 } conn_change_t;
22201 
22202 /*
22203  * ipcl_walk function for changing interface index.
22204  */
22205 static void
22206 conn_change_ifindex(conn_t *connp, caddr_t arg)
22207 {
22208 	conn_change_t *connc;
22209 	uint_t old_ifindex;
22210 	uint_t new_ifindex;
22211 	int i;
22212 	ilg_t *ilg;
22213 
22214 	connc = (conn_change_t *)arg;
22215 	old_ifindex = connc->cc_old_ifindex;
22216 	new_ifindex = connc->cc_new_ifindex;
22217 
22218 	if (connp->conn_orig_bound_ifindex == old_ifindex)
22219 		connp->conn_orig_bound_ifindex = new_ifindex;
22220 
22221 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
22222 		connp->conn_orig_multicast_ifindex = new_ifindex;
22223 
22224 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
22225 		connp->conn_orig_xmit_ifindex = new_ifindex;
22226 
22227 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
22228 		ilg = &connp->conn_ilg[i];
22229 		if (ilg->ilg_orig_ifindex == old_ifindex)
22230 			ilg->ilg_orig_ifindex = new_ifindex;
22231 	}
22232 }
22233 
22234 /*
22235  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
22236  * to new_index if it matches the old_index.
22237  *
22238  * Failovers typically happen within a group of ills. But somebody
22239  * can remove an ill from the group after a failover happened. If
22240  * we are setting the ifindex after this, we potentially need to
22241  * look at all the ills rather than just the ones in the group.
22242  * We cut down the work by looking at matching ill_net_types
22243  * and ill_types as we could not possibly grouped them together.
22244  */
22245 static void
22246 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
22247 {
22248 	ill_t *ill;
22249 	ipif_t *ipif;
22250 	uint_t old_ifindex;
22251 	uint_t new_ifindex;
22252 	ilm_t *ilm;
22253 	ill_walk_context_t ctx;
22254 	ip_stack_t	*ipst = ill_orig->ill_ipst;
22255 
22256 	old_ifindex = connc->cc_old_ifindex;
22257 	new_ifindex = connc->cc_new_ifindex;
22258 
22259 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22260 	ill = ILL_START_WALK_ALL(&ctx, ipst);
22261 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
22262 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
22263 		    (ill_orig->ill_type != ill->ill_type)) {
22264 			continue;
22265 		}
22266 		for (ipif = ill->ill_ipif; ipif != NULL;
22267 		    ipif = ipif->ipif_next) {
22268 			if (ipif->ipif_orig_ifindex == old_ifindex)
22269 				ipif->ipif_orig_ifindex = new_ifindex;
22270 		}
22271 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
22272 			if (ilm->ilm_orig_ifindex == old_ifindex)
22273 				ilm->ilm_orig_ifindex = new_ifindex;
22274 		}
22275 	}
22276 	rw_exit(&ipst->ips_ill_g_lock);
22277 }
22278 
22279 /*
22280  * We first need to ensure that the new index is unique, and
22281  * then carry the change across both v4 and v6 ill representation
22282  * of the physical interface.
22283  */
22284 /* ARGSUSED */
22285 int
22286 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22287     ip_ioctl_cmd_t *ipip, void *ifreq)
22288 {
22289 	ill_t		*ill;
22290 	ill_t		*ill_other;
22291 	phyint_t	*phyi;
22292 	int		old_index;
22293 	conn_change_t	connc;
22294 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22295 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22296 	uint_t	index;
22297 	ill_t	*ill_v4;
22298 	ill_t	*ill_v6;
22299 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22300 
22301 	if (ipip->ipi_cmd_type == IF_CMD)
22302 		index = ifr->ifr_index;
22303 	else
22304 		index = lifr->lifr_index;
22305 
22306 	/*
22307 	 * Only allow on physical interface. Also, index zero is illegal.
22308 	 *
22309 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
22310 	 *
22311 	 * 1) If PHYI_FAILED is set, a failover could have happened which
22312 	 *    implies a possible failback might have to happen. As failback
22313 	 *    depends on the old index, we should fail setting the index.
22314 	 *
22315 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
22316 	 *    any addresses or multicast memberships are failed over to
22317 	 *    a non-STANDBY interface. As failback depends on the old
22318 	 *    index, we should fail setting the index for this case also.
22319 	 *
22320 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
22321 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
22322 	 */
22323 	ill = ipif->ipif_ill;
22324 	phyi = ill->ill_phyint;
22325 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
22326 	    ipif->ipif_id != 0 || index == 0) {
22327 		return (EINVAL);
22328 	}
22329 	old_index = phyi->phyint_ifindex;
22330 
22331 	/* If the index is not changing, no work to do */
22332 	if (old_index == index)
22333 		return (0);
22334 
22335 	/*
22336 	 * Use ill_lookup_on_ifindex to determine if the
22337 	 * new index is unused and if so allow the change.
22338 	 */
22339 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
22340 	    ipst);
22341 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
22342 	    ipst);
22343 	if (ill_v6 != NULL || ill_v4 != NULL) {
22344 		if (ill_v4 != NULL)
22345 			ill_refrele(ill_v4);
22346 		if (ill_v6 != NULL)
22347 			ill_refrele(ill_v6);
22348 		return (EBUSY);
22349 	}
22350 
22351 	/*
22352 	 * The new index is unused. Set it in the phyint.
22353 	 * Locate the other ill so that we can send a routing
22354 	 * sockets message.
22355 	 */
22356 	if (ill->ill_isv6) {
22357 		ill_other = phyi->phyint_illv4;
22358 	} else {
22359 		ill_other = phyi->phyint_illv6;
22360 	}
22361 
22362 	phyi->phyint_ifindex = index;
22363 
22364 	/* Update SCTP's ILL list */
22365 	sctp_ill_reindex(ill, old_index);
22366 
22367 	connc.cc_old_ifindex = old_index;
22368 	connc.cc_new_ifindex = index;
22369 	ip_change_ifindex(ill, &connc);
22370 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
22371 
22372 	/* Send the routing sockets message */
22373 	ip_rts_ifmsg(ipif);
22374 	if (ill_other != NULL)
22375 		ip_rts_ifmsg(ill_other->ill_ipif);
22376 
22377 	return (0);
22378 }
22379 
22380 /* ARGSUSED */
22381 int
22382 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22383     ip_ioctl_cmd_t *ipip, void *ifreq)
22384 {
22385 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22386 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22387 
22388 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
22389 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22390 	/* Get the interface index */
22391 	if (ipip->ipi_cmd_type == IF_CMD) {
22392 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22393 	} else {
22394 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22395 	}
22396 	return (0);
22397 }
22398 
22399 /* ARGSUSED */
22400 int
22401 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22402     ip_ioctl_cmd_t *ipip, void *ifreq)
22403 {
22404 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22405 
22406 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
22407 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22408 	/* Get the interface zone */
22409 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22410 	lifr->lifr_zoneid = ipif->ipif_zoneid;
22411 	return (0);
22412 }
22413 
22414 /*
22415  * Set the zoneid of an interface.
22416  */
22417 /* ARGSUSED */
22418 int
22419 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22420     ip_ioctl_cmd_t *ipip, void *ifreq)
22421 {
22422 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22423 	int err = 0;
22424 	boolean_t need_up = B_FALSE;
22425 	zone_t *zptr;
22426 	zone_status_t status;
22427 	zoneid_t zoneid;
22428 
22429 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22430 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
22431 		if (!is_system_labeled())
22432 			return (ENOTSUP);
22433 		zoneid = GLOBAL_ZONEID;
22434 	}
22435 
22436 	/* cannot assign instance zero to a non-global zone */
22437 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
22438 		return (ENOTSUP);
22439 
22440 	/*
22441 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
22442 	 * the event of a race with the zone shutdown processing, since IP
22443 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
22444 	 * interface will be cleaned up even if the zone is shut down
22445 	 * immediately after the status check. If the interface can't be brought
22446 	 * down right away, and the zone is shut down before the restart
22447 	 * function is called, we resolve the possible races by rechecking the
22448 	 * zone status in the restart function.
22449 	 */
22450 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
22451 		return (EINVAL);
22452 	status = zone_status_get(zptr);
22453 	zone_rele(zptr);
22454 
22455 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
22456 		return (EINVAL);
22457 
22458 	if (ipif->ipif_flags & IPIF_UP) {
22459 		/*
22460 		 * If the interface is already marked up,
22461 		 * we call ipif_down which will take care
22462 		 * of ditching any IREs that have been set
22463 		 * up based on the old interface address.
22464 		 */
22465 		err = ipif_logical_down(ipif, q, mp);
22466 		if (err == EINPROGRESS)
22467 			return (err);
22468 		ipif_down_tail(ipif);
22469 		need_up = B_TRUE;
22470 	}
22471 
22472 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
22473 	return (err);
22474 }
22475 
22476 static int
22477 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
22478     queue_t *q, mblk_t *mp, boolean_t need_up)
22479 {
22480 	int	err = 0;
22481 	ip_stack_t	*ipst;
22482 
22483 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22484 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22485 
22486 	if (CONN_Q(q))
22487 		ipst = CONNQ_TO_IPST(q);
22488 	else
22489 		ipst = ILLQ_TO_IPST(q);
22490 
22491 	/*
22492 	 * For exclusive stacks we don't allow a different zoneid than
22493 	 * global.
22494 	 */
22495 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
22496 	    zoneid != GLOBAL_ZONEID)
22497 		return (EINVAL);
22498 
22499 	/* Set the new zone id. */
22500 	ipif->ipif_zoneid = zoneid;
22501 
22502 	/* Update sctp list */
22503 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22504 
22505 	if (need_up) {
22506 		/*
22507 		 * Now bring the interface back up.  If this
22508 		 * is the only IPIF for the ILL, ipif_up
22509 		 * will have to re-bind to the device, so
22510 		 * we may get back EINPROGRESS, in which
22511 		 * case, this IOCTL will get completed in
22512 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22513 		 */
22514 		err = ipif_up(ipif, q, mp);
22515 	}
22516 	return (err);
22517 }
22518 
22519 /* ARGSUSED */
22520 int
22521 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22522     ip_ioctl_cmd_t *ipip, void *if_req)
22523 {
22524 	struct lifreq *lifr = (struct lifreq *)if_req;
22525 	zoneid_t zoneid;
22526 	zone_t *zptr;
22527 	zone_status_t status;
22528 
22529 	ASSERT(ipif->ipif_id != 0);
22530 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22531 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22532 		zoneid = GLOBAL_ZONEID;
22533 
22534 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22535 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22536 
22537 	/*
22538 	 * We recheck the zone status to resolve the following race condition:
22539 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22540 	 * 2) hme0:1 is up and can't be brought down right away;
22541 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22542 	 * 3) zone "myzone" is halted; the zone status switches to
22543 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22544 	 * the interfaces to remove - hme0:1 is not returned because it's not
22545 	 * yet in "myzone", so it won't be removed;
22546 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22547 	 * status check here, we would have hme0:1 in "myzone" after it's been
22548 	 * destroyed.
22549 	 * Note that if the status check fails, we need to bring the interface
22550 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22551 	 * ipif_up_done[_v6]().
22552 	 */
22553 	status = ZONE_IS_UNINITIALIZED;
22554 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22555 		status = zone_status_get(zptr);
22556 		zone_rele(zptr);
22557 	}
22558 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22559 		if (ipif->ipif_isv6) {
22560 			(void) ipif_up_done_v6(ipif);
22561 		} else {
22562 			(void) ipif_up_done(ipif);
22563 		}
22564 		return (EINVAL);
22565 	}
22566 
22567 	ipif_down_tail(ipif);
22568 
22569 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22570 	    B_TRUE));
22571 }
22572 
22573 /* ARGSUSED */
22574 int
22575 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22576 	ip_ioctl_cmd_t *ipip, void *ifreq)
22577 {
22578 	struct lifreq	*lifr = ifreq;
22579 
22580 	ASSERT(q->q_next == NULL);
22581 	ASSERT(CONN_Q(q));
22582 
22583 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22584 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22585 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22586 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22587 
22588 	return (0);
22589 }
22590 
22591 
22592 /* Find the previous ILL in this usesrc group */
22593 static ill_t *
22594 ill_prev_usesrc(ill_t *uill)
22595 {
22596 	ill_t *ill;
22597 
22598 	for (ill = uill->ill_usesrc_grp_next;
22599 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22600 	    ill = ill->ill_usesrc_grp_next)
22601 		/* do nothing */;
22602 	return (ill);
22603 }
22604 
22605 /*
22606  * Release all members of the usesrc group. This routine is called
22607  * from ill_delete when the interface being unplumbed is the
22608  * group head.
22609  */
22610 static void
22611 ill_disband_usesrc_group(ill_t *uill)
22612 {
22613 	ill_t *next_ill, *tmp_ill;
22614 	ip_stack_t	*ipst = uill->ill_ipst;
22615 
22616 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22617 	next_ill = uill->ill_usesrc_grp_next;
22618 
22619 	do {
22620 		ASSERT(next_ill != NULL);
22621 		tmp_ill = next_ill->ill_usesrc_grp_next;
22622 		ASSERT(tmp_ill != NULL);
22623 		next_ill->ill_usesrc_grp_next = NULL;
22624 		next_ill->ill_usesrc_ifindex = 0;
22625 		next_ill = tmp_ill;
22626 	} while (next_ill->ill_usesrc_ifindex != 0);
22627 	uill->ill_usesrc_grp_next = NULL;
22628 }
22629 
22630 /*
22631  * Remove the client usesrc ILL from the list and relink to a new list
22632  */
22633 int
22634 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22635 {
22636 	ill_t *ill, *tmp_ill;
22637 	ip_stack_t	*ipst = ucill->ill_ipst;
22638 
22639 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22640 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22641 
22642 	/*
22643 	 * Check if the usesrc client ILL passed in is not already
22644 	 * in use as a usesrc ILL i.e one whose source address is
22645 	 * in use OR a usesrc ILL is not already in use as a usesrc
22646 	 * client ILL
22647 	 */
22648 	if ((ucill->ill_usesrc_ifindex == 0) ||
22649 	    (uill->ill_usesrc_ifindex != 0)) {
22650 		return (-1);
22651 	}
22652 
22653 	ill = ill_prev_usesrc(ucill);
22654 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22655 
22656 	/* Remove from the current list */
22657 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22658 		/* Only two elements in the list */
22659 		ASSERT(ill->ill_usesrc_ifindex == 0);
22660 		ill->ill_usesrc_grp_next = NULL;
22661 	} else {
22662 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22663 	}
22664 
22665 	if (ifindex == 0) {
22666 		ucill->ill_usesrc_ifindex = 0;
22667 		ucill->ill_usesrc_grp_next = NULL;
22668 		return (0);
22669 	}
22670 
22671 	ucill->ill_usesrc_ifindex = ifindex;
22672 	tmp_ill = uill->ill_usesrc_grp_next;
22673 	uill->ill_usesrc_grp_next = ucill;
22674 	ucill->ill_usesrc_grp_next =
22675 	    (tmp_ill != NULL) ? tmp_ill : uill;
22676 	return (0);
22677 }
22678 
22679 /*
22680  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22681  * ip.c for locking details.
22682  */
22683 /* ARGSUSED */
22684 int
22685 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22686     ip_ioctl_cmd_t *ipip, void *ifreq)
22687 {
22688 	struct lifreq *lifr = (struct lifreq *)ifreq;
22689 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22690 	    ill_flag_changed = B_FALSE;
22691 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22692 	int err = 0, ret;
22693 	uint_t ifindex;
22694 	phyint_t *us_phyint, *us_cli_phyint;
22695 	ipsq_t *ipsq = NULL;
22696 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22697 
22698 	ASSERT(IAM_WRITER_IPIF(ipif));
22699 	ASSERT(q->q_next == NULL);
22700 	ASSERT(CONN_Q(q));
22701 
22702 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22703 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22704 
22705 	ASSERT(us_cli_phyint != NULL);
22706 
22707 	/*
22708 	 * If the client ILL is being used for IPMP, abort.
22709 	 * Note, this can be done before ipsq_try_enter since we are already
22710 	 * exclusive on this ILL
22711 	 */
22712 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22713 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22714 		return (EINVAL);
22715 	}
22716 
22717 	ifindex = lifr->lifr_index;
22718 	if (ifindex == 0) {
22719 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22720 			/* non usesrc group interface, nothing to reset */
22721 			return (0);
22722 		}
22723 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22724 		/* valid reset request */
22725 		reset_flg = B_TRUE;
22726 	}
22727 
22728 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22729 	    ip_process_ioctl, &err, ipst);
22730 
22731 	if (usesrc_ill == NULL) {
22732 		return (err);
22733 	}
22734 
22735 	/*
22736 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22737 	 * group nor can either of the interfaces be used for standy. So
22738 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22739 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22740 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22741 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22742 	 * the usesrc_cli_ill
22743 	 */
22744 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22745 	    NEW_OP, B_TRUE);
22746 	if (ipsq == NULL) {
22747 		err = EINPROGRESS;
22748 		/* Operation enqueued on the ipsq of the usesrc ILL */
22749 		goto done;
22750 	}
22751 
22752 	/* Check if the usesrc_ill is used for IPMP */
22753 	us_phyint = usesrc_ill->ill_phyint;
22754 	if ((us_phyint->phyint_groupname != NULL) ||
22755 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22756 		err = EINVAL;
22757 		goto done;
22758 	}
22759 
22760 	/*
22761 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22762 	 * already a client then return EINVAL
22763 	 */
22764 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22765 		err = EINVAL;
22766 		goto done;
22767 	}
22768 
22769 	/*
22770 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22771 	 * be then this is a duplicate operation.
22772 	 */
22773 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22774 		err = 0;
22775 		goto done;
22776 	}
22777 
22778 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22779 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22780 	    usesrc_ill->ill_isv6));
22781 
22782 	/*
22783 	 * The next step ensures that no new ires will be created referencing
22784 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22785 	 * we go through an ire walk deleting all ire caches that reference
22786 	 * the client ill. New ires referencing the client ill that are added
22787 	 * to the ire table before the ILL_CHANGING flag is set, will be
22788 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22789 	 * the client ill while the ILL_CHANGING flag is set will be failed
22790 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22791 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22792 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22793 	 * belong to the same usesrc group.
22794 	 */
22795 	mutex_enter(&usesrc_cli_ill->ill_lock);
22796 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22797 	mutex_exit(&usesrc_cli_ill->ill_lock);
22798 	ill_flag_changed = B_TRUE;
22799 
22800 	if (ipif->ipif_isv6)
22801 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22802 		    ALL_ZONES, ipst);
22803 	else
22804 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22805 		    ALL_ZONES, ipst);
22806 
22807 	/*
22808 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22809 	 * and the ill_usesrc_ifindex fields
22810 	 */
22811 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22812 
22813 	if (reset_flg) {
22814 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22815 		if (ret != 0) {
22816 			err = EINVAL;
22817 		}
22818 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22819 		goto done;
22820 	}
22821 
22822 	/*
22823 	 * Four possibilities to consider:
22824 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22825 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22826 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22827 	 * 4. Both are part of their respective usesrc groups
22828 	 */
22829 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22830 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22831 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22832 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22833 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22834 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22835 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22836 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22837 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22838 		/* Insert at head of list */
22839 		usesrc_cli_ill->ill_usesrc_grp_next =
22840 		    usesrc_ill->ill_usesrc_grp_next;
22841 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22842 	} else {
22843 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22844 		    ifindex);
22845 		if (ret != 0)
22846 			err = EINVAL;
22847 	}
22848 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22849 
22850 done:
22851 	if (ill_flag_changed) {
22852 		mutex_enter(&usesrc_cli_ill->ill_lock);
22853 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22854 		mutex_exit(&usesrc_cli_ill->ill_lock);
22855 	}
22856 	if (ipsq != NULL)
22857 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22858 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22859 	ill_refrele(usesrc_ill);
22860 	return (err);
22861 }
22862 
22863 /*
22864  * comparison function used by avl.
22865  */
22866 static int
22867 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22868 {
22869 
22870 	uint_t index;
22871 
22872 	ASSERT(phyip != NULL && index_ptr != NULL);
22873 
22874 	index = *((uint_t *)index_ptr);
22875 	/*
22876 	 * let the phyint with the lowest index be on top.
22877 	 */
22878 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22879 		return (1);
22880 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22881 		return (-1);
22882 	return (0);
22883 }
22884 
22885 /*
22886  * comparison function used by avl.
22887  */
22888 static int
22889 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22890 {
22891 	ill_t *ill;
22892 	int res = 0;
22893 
22894 	ASSERT(phyip != NULL && name_ptr != NULL);
22895 
22896 	if (((phyint_t *)phyip)->phyint_illv4)
22897 		ill = ((phyint_t *)phyip)->phyint_illv4;
22898 	else
22899 		ill = ((phyint_t *)phyip)->phyint_illv6;
22900 	ASSERT(ill != NULL);
22901 
22902 	res = strcmp(ill->ill_name, (char *)name_ptr);
22903 	if (res > 0)
22904 		return (1);
22905 	else if (res < 0)
22906 		return (-1);
22907 	return (0);
22908 }
22909 /*
22910  * This function is called from ill_delete when the ill is being
22911  * unplumbed. We remove the reference from the phyint and we also
22912  * free the phyint when there are no more references to it.
22913  */
22914 static void
22915 ill_phyint_free(ill_t *ill)
22916 {
22917 	phyint_t *phyi;
22918 	phyint_t *next_phyint;
22919 	ipsq_t *cur_ipsq;
22920 	ip_stack_t	*ipst = ill->ill_ipst;
22921 
22922 	ASSERT(ill->ill_phyint != NULL);
22923 
22924 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22925 	phyi = ill->ill_phyint;
22926 	ill->ill_phyint = NULL;
22927 	/*
22928 	 * ill_init allocates a phyint always to store the copy
22929 	 * of flags relevant to phyint. At that point in time, we could
22930 	 * not assign the name and hence phyint_illv4/v6 could not be
22931 	 * initialized. Later in ipif_set_values, we assign the name to
22932 	 * the ill, at which point in time we assign phyint_illv4/v6.
22933 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22934 	 */
22935 	if (ill->ill_flags & ILLF_IPV6) {
22936 		phyi->phyint_illv6 = NULL;
22937 	} else {
22938 		phyi->phyint_illv4 = NULL;
22939 	}
22940 	/*
22941 	 * ipif_down removes it from the group when the last ipif goes
22942 	 * down.
22943 	 */
22944 	ASSERT(ill->ill_group == NULL);
22945 
22946 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22947 		return;
22948 
22949 	/*
22950 	 * Make sure this phyint was put in the list.
22951 	 */
22952 	if (phyi->phyint_ifindex > 0) {
22953 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22954 		    phyi);
22955 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22956 		    phyi);
22957 	}
22958 	/*
22959 	 * remove phyint from the ipsq list.
22960 	 */
22961 	cur_ipsq = phyi->phyint_ipsq;
22962 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22963 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22964 	} else {
22965 		next_phyint = cur_ipsq->ipsq_phyint_list;
22966 		while (next_phyint != NULL) {
22967 			if (next_phyint->phyint_ipsq_next == phyi) {
22968 				next_phyint->phyint_ipsq_next =
22969 				    phyi->phyint_ipsq_next;
22970 				break;
22971 			}
22972 			next_phyint = next_phyint->phyint_ipsq_next;
22973 		}
22974 		ASSERT(next_phyint != NULL);
22975 	}
22976 	IPSQ_DEC_REF(cur_ipsq, ipst);
22977 
22978 	if (phyi->phyint_groupname_len != 0) {
22979 		ASSERT(phyi->phyint_groupname != NULL);
22980 		mi_free(phyi->phyint_groupname);
22981 	}
22982 	mi_free(phyi);
22983 }
22984 
22985 /*
22986  * Attach the ill to the phyint structure which can be shared by both
22987  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22988  * function is called from ipif_set_values and ill_lookup_on_name (for
22989  * loopback) where we know the name of the ill. We lookup the ill and if
22990  * there is one present already with the name use that phyint. Otherwise
22991  * reuse the one allocated by ill_init.
22992  */
22993 static void
22994 ill_phyint_reinit(ill_t *ill)
22995 {
22996 	boolean_t isv6 = ill->ill_isv6;
22997 	phyint_t *phyi_old;
22998 	phyint_t *phyi;
22999 	avl_index_t where = 0;
23000 	ill_t	*ill_other = NULL;
23001 	ipsq_t	*ipsq;
23002 	ip_stack_t	*ipst = ill->ill_ipst;
23003 
23004 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
23005 
23006 	phyi_old = ill->ill_phyint;
23007 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
23008 	    phyi_old->phyint_illv6 == NULL));
23009 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
23010 	    phyi_old->phyint_illv4 == NULL));
23011 	ASSERT(phyi_old->phyint_ifindex == 0);
23012 
23013 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23014 	    ill->ill_name, &where);
23015 
23016 	/*
23017 	 * 1. We grabbed the ill_g_lock before inserting this ill into
23018 	 *    the global list of ills. So no other thread could have located
23019 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
23020 	 * 2. Now locate the other protocol instance of this ill.
23021 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
23022 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
23023 	 *    of neither ill can change.
23024 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
23025 	 *    other ill.
23026 	 * 5. Release all locks.
23027 	 */
23028 
23029 	/*
23030 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
23031 	 * we are initializing IPv4.
23032 	 */
23033 	if (phyi != NULL) {
23034 		ill_other = (isv6) ? phyi->phyint_illv4 :
23035 		    phyi->phyint_illv6;
23036 		ASSERT(ill_other->ill_phyint != NULL);
23037 		ASSERT((isv6 && !ill_other->ill_isv6) ||
23038 		    (!isv6 && ill_other->ill_isv6));
23039 		GRAB_ILL_LOCKS(ill, ill_other);
23040 		/*
23041 		 * We are potentially throwing away phyint_flags which
23042 		 * could be different from the one that we obtain from
23043 		 * ill_other->ill_phyint. But it is okay as we are assuming
23044 		 * that the state maintained within IP is correct.
23045 		 */
23046 		mutex_enter(&phyi->phyint_lock);
23047 		if (isv6) {
23048 			ASSERT(phyi->phyint_illv6 == NULL);
23049 			phyi->phyint_illv6 = ill;
23050 		} else {
23051 			ASSERT(phyi->phyint_illv4 == NULL);
23052 			phyi->phyint_illv4 = ill;
23053 		}
23054 		/*
23055 		 * This is a new ill, currently undergoing SLIFNAME
23056 		 * So we could not have joined an IPMP group until now.
23057 		 */
23058 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
23059 		    phyi_old->phyint_groupname == NULL);
23060 
23061 		/*
23062 		 * This phyi_old is going away. Decref ipsq_refs and
23063 		 * assert it is zero. The ipsq itself will be freed in
23064 		 * ipsq_exit
23065 		 */
23066 		ipsq = phyi_old->phyint_ipsq;
23067 		IPSQ_DEC_REF(ipsq, ipst);
23068 		ASSERT(ipsq->ipsq_refs == 0);
23069 		/* Get the singleton phyint out of the ipsq list */
23070 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
23071 		ipsq->ipsq_phyint_list = NULL;
23072 		phyi_old->phyint_illv4 = NULL;
23073 		phyi_old->phyint_illv6 = NULL;
23074 		mi_free(phyi_old);
23075 	} else {
23076 		mutex_enter(&ill->ill_lock);
23077 		/*
23078 		 * We don't need to acquire any lock, since
23079 		 * the ill is not yet visible globally  and we
23080 		 * have not yet released the ill_g_lock.
23081 		 */
23082 		phyi = phyi_old;
23083 		mutex_enter(&phyi->phyint_lock);
23084 		/* XXX We need a recovery strategy here. */
23085 		if (!phyint_assign_ifindex(phyi, ipst))
23086 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
23087 
23088 		/* No IPMP group yet, thus the hook uses the ifindex */
23089 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
23090 
23091 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23092 		    (void *)phyi, where);
23093 
23094 		(void) avl_find(&ipst->ips_phyint_g_list->
23095 		    phyint_list_avl_by_index,
23096 		    &phyi->phyint_ifindex, &where);
23097 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23098 		    (void *)phyi, where);
23099 	}
23100 
23101 	/*
23102 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
23103 	 * pending mp is not affected because that is per ill basis.
23104 	 */
23105 	ill->ill_phyint = phyi;
23106 
23107 	/*
23108 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
23109 	 * We do this here as when the first ipif was allocated,
23110 	 * ipif_allocate does not know the right interface index.
23111 	 */
23112 
23113 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
23114 	/*
23115 	 * Now that the phyint's ifindex has been assigned, complete the
23116 	 * remaining
23117 	 */
23118 
23119 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
23120 	if (ill->ill_isv6) {
23121 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
23122 		    ill->ill_phyint->phyint_ifindex;
23123 	}
23124 
23125 	/*
23126 	 * Generate an event within the hooks framework to indicate that
23127 	 * a new interface has just been added to IP.  For this event to
23128 	 * be generated, the network interface must, at least, have an
23129 	 * ifindex assigned to it.
23130 	 *
23131 	 * This needs to be run inside the ill_g_lock perimeter to ensure
23132 	 * that the ordering of delivered events to listeners matches the
23133 	 * order of them in the kernel.
23134 	 *
23135 	 * This function could be called from ill_lookup_on_name. In that case
23136 	 * the interface is loopback "lo", which will not generate a NIC event.
23137 	 */
23138 	if (ill->ill_name_length <= 2 ||
23139 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
23140 		/*
23141 		 * Generate nic plumb event for ill_name even if
23142 		 * ipmp_hook_emulation is set. That avoids generating events
23143 		 * for the ill_names should ipmp_hook_emulation be turned on
23144 		 * later.
23145 		 */
23146 		ill_nic_info_plumb(ill, B_FALSE);
23147 	}
23148 	RELEASE_ILL_LOCKS(ill, ill_other);
23149 	mutex_exit(&phyi->phyint_lock);
23150 }
23151 
23152 /*
23153  * Allocate a NE_PLUMB nic info event and store in the ill.
23154  * If 'group' is set we do it for the group name, otherwise the ill name.
23155  * It will be sent when we leave the ipsq.
23156  */
23157 void
23158 ill_nic_info_plumb(ill_t *ill, boolean_t group)
23159 {
23160 	phyint_t	*phyi = ill->ill_phyint;
23161 	ip_stack_t	*ipst = ill->ill_ipst;
23162 	hook_nic_event_t *info;
23163 	char		*name;
23164 	int		namelen;
23165 
23166 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23167 
23168 	if ((info = ill->ill_nic_event_info) != NULL) {
23169 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
23170 		    "attached for %s\n", info->hne_event,
23171 		    ill->ill_name));
23172 		if (info->hne_data != NULL)
23173 			kmem_free(info->hne_data, info->hne_datalen);
23174 		kmem_free(info, sizeof (hook_nic_event_t));
23175 		ill->ill_nic_event_info = NULL;
23176 	}
23177 
23178 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
23179 	if (info == NULL) {
23180 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
23181 		    "event information for %s (ENOMEM)\n",
23182 		    ill->ill_name));
23183 		return;
23184 	}
23185 
23186 	if (group) {
23187 		ASSERT(phyi->phyint_groupname_len != 0);
23188 		namelen = phyi->phyint_groupname_len;
23189 		name = phyi->phyint_groupname;
23190 	} else {
23191 		namelen = ill->ill_name_length;
23192 		name = ill->ill_name;
23193 	}
23194 
23195 	info->hne_nic = phyi->phyint_hook_ifindex;
23196 	info->hne_lif = 0;
23197 	info->hne_event = NE_PLUMB;
23198 	info->hne_family = ill->ill_isv6 ?
23199 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
23200 
23201 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
23202 	if (info->hne_data != NULL) {
23203 		info->hne_datalen = namelen;
23204 		bcopy(name, info->hne_data, info->hne_datalen);
23205 	} else {
23206 		ip2dbg(("ill_nic_info_plumb: could not attach "
23207 		    "name information for PLUMB nic event "
23208 		    "of %s (ENOMEM)\n", name));
23209 		kmem_free(info, sizeof (hook_nic_event_t));
23210 		info = NULL;
23211 	}
23212 	ill->ill_nic_event_info = info;
23213 }
23214 
23215 /*
23216  * Unhook the nic event message from the ill and enqueue it
23217  * into the nic event taskq.
23218  */
23219 void
23220 ill_nic_info_dispatch(ill_t *ill)
23221 {
23222 	hook_nic_event_t *info;
23223 
23224 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23225 
23226 	if ((info = ill->ill_nic_event_info) != NULL) {
23227 		if (ddi_taskq_dispatch(eventq_queue_nic,
23228 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
23229 			ip2dbg(("ill_nic_info_dispatch: "
23230 			    "ddi_taskq_dispatch failed\n"));
23231 			if (info->hne_data != NULL)
23232 				kmem_free(info->hne_data, info->hne_datalen);
23233 			kmem_free(info, sizeof (hook_nic_event_t));
23234 		}
23235 		ill->ill_nic_event_info = NULL;
23236 	}
23237 }
23238 
23239 /*
23240  * Notify any downstream modules of the name of this interface.
23241  * An M_IOCTL is used even though we don't expect a successful reply.
23242  * Any reply message from the driver (presumably an M_IOCNAK) will
23243  * eventually get discarded somewhere upstream.  The message format is
23244  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
23245  * to IP.
23246  */
23247 static void
23248 ip_ifname_notify(ill_t *ill, queue_t *q)
23249 {
23250 	mblk_t *mp1, *mp2;
23251 	struct iocblk *iocp;
23252 	struct lifreq *lifr;
23253 
23254 	mp1 = mkiocb(SIOCSLIFNAME);
23255 	if (mp1 == NULL)
23256 		return;
23257 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
23258 	if (mp2 == NULL) {
23259 		freeb(mp1);
23260 		return;
23261 	}
23262 
23263 	mp1->b_cont = mp2;
23264 	iocp = (struct iocblk *)mp1->b_rptr;
23265 	iocp->ioc_count = sizeof (struct lifreq);
23266 
23267 	lifr = (struct lifreq *)mp2->b_rptr;
23268 	mp2->b_wptr += sizeof (struct lifreq);
23269 	bzero(lifr, sizeof (struct lifreq));
23270 
23271 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
23272 	lifr->lifr_ppa = ill->ill_ppa;
23273 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
23274 
23275 	putnext(q, mp1);
23276 }
23277 
23278 static int
23279 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
23280 {
23281 	int err;
23282 	ip_stack_t	*ipst = ill->ill_ipst;
23283 
23284 	/* Set the obsolete NDD per-interface forwarding name. */
23285 	err = ill_set_ndd_name(ill);
23286 	if (err != 0) {
23287 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
23288 		    err);
23289 	}
23290 
23291 	/* Tell downstream modules where they are. */
23292 	ip_ifname_notify(ill, q);
23293 
23294 	/*
23295 	 * ill_dl_phys returns EINPROGRESS in the usual case.
23296 	 * Error cases are ENOMEM ...
23297 	 */
23298 	err = ill_dl_phys(ill, ipif, mp, q);
23299 
23300 	/*
23301 	 * If there is no IRE expiration timer running, get one started.
23302 	 * igmp and mld timers will be triggered by the first multicast
23303 	 */
23304 	if (ipst->ips_ip_ire_expire_id == 0) {
23305 		/*
23306 		 * acquire the lock and check again.
23307 		 */
23308 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
23309 		if (ipst->ips_ip_ire_expire_id == 0) {
23310 			ipst->ips_ip_ire_expire_id = timeout(
23311 			    ip_trash_timer_expire, ipst,
23312 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
23313 		}
23314 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
23315 	}
23316 
23317 	if (ill->ill_isv6) {
23318 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
23319 		if (ipst->ips_mld_slowtimeout_id == 0) {
23320 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
23321 			    (void *)ipst,
23322 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23323 		}
23324 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
23325 	} else {
23326 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
23327 		if (ipst->ips_igmp_slowtimeout_id == 0) {
23328 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
23329 			    (void *)ipst,
23330 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23331 		}
23332 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
23333 	}
23334 
23335 	return (err);
23336 }
23337 
23338 /*
23339  * Common routine for ppa and ifname setting. Should be called exclusive.
23340  *
23341  * Returns EINPROGRESS when mp has been consumed by queueing it on
23342  * ill_pending_mp and the ioctl will complete in ip_rput.
23343  *
23344  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
23345  * the new name and new ppa in lifr_name and lifr_ppa respectively.
23346  * For SLIFNAME, we pass these values back to the userland.
23347  */
23348 static int
23349 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
23350 {
23351 	ill_t	*ill;
23352 	ipif_t	*ipif;
23353 	ipsq_t	*ipsq;
23354 	char	*ppa_ptr;
23355 	char	*old_ptr;
23356 	char	old_char;
23357 	int	error;
23358 	ip_stack_t	*ipst;
23359 
23360 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
23361 	ASSERT(q->q_next != NULL);
23362 	ASSERT(interf_name != NULL);
23363 
23364 	ill = (ill_t *)q->q_ptr;
23365 	ipst = ill->ill_ipst;
23366 
23367 	ASSERT(ill->ill_ipst != NULL);
23368 	ASSERT(ill->ill_name[0] == '\0');
23369 	ASSERT(IAM_WRITER_ILL(ill));
23370 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
23371 	ASSERT(ill->ill_ppa == UINT_MAX);
23372 
23373 	/* The ppa is sent down by ifconfig or is chosen */
23374 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
23375 		return (EINVAL);
23376 	}
23377 
23378 	/*
23379 	 * make sure ppa passed in is same as ppa in the name.
23380 	 * This check is not made when ppa == UINT_MAX in that case ppa
23381 	 * in the name could be anything. System will choose a ppa and
23382 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
23383 	 */
23384 	if (*new_ppa_ptr != UINT_MAX) {
23385 		/* stoi changes the pointer */
23386 		old_ptr = ppa_ptr;
23387 		/*
23388 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
23389 		 * (they don't have an externally visible ppa).  We assign one
23390 		 * here so that we can manage the interface.  Note that in
23391 		 * the past this value was always 0 for DLPI 1 drivers.
23392 		 */
23393 		if (*new_ppa_ptr == 0)
23394 			*new_ppa_ptr = stoi(&old_ptr);
23395 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
23396 			return (EINVAL);
23397 	}
23398 	/*
23399 	 * terminate string before ppa
23400 	 * save char at that location.
23401 	 */
23402 	old_char = ppa_ptr[0];
23403 	ppa_ptr[0] = '\0';
23404 
23405 	ill->ill_ppa = *new_ppa_ptr;
23406 	/*
23407 	 * Finish as much work now as possible before calling ill_glist_insert
23408 	 * which makes the ill globally visible and also merges it with the
23409 	 * other protocol instance of this phyint. The remaining work is
23410 	 * done after entering the ipsq which may happen sometime later.
23411 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
23412 	 */
23413 	ipif = ill->ill_ipif;
23414 
23415 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
23416 	ipif_assign_seqid(ipif);
23417 
23418 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
23419 		ill->ill_flags |= ILLF_IPV4;
23420 
23421 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
23422 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
23423 
23424 	if (ill->ill_flags & ILLF_IPV6) {
23425 
23426 		ill->ill_isv6 = B_TRUE;
23427 		if (ill->ill_rq != NULL) {
23428 			ill->ill_rq->q_qinfo = &rinit_ipv6;
23429 			ill->ill_wq->q_qinfo = &winit_ipv6;
23430 		}
23431 
23432 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
23433 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
23434 		ipif->ipif_v6src_addr = ipv6_all_zeros;
23435 		ipif->ipif_v6subnet = ipv6_all_zeros;
23436 		ipif->ipif_v6net_mask = ipv6_all_zeros;
23437 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
23438 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
23439 		/*
23440 		 * point-to-point or Non-mulicast capable
23441 		 * interfaces won't do NUD unless explicitly
23442 		 * configured to do so.
23443 		 */
23444 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
23445 		    !(ill->ill_flags & ILLF_MULTICAST)) {
23446 			ill->ill_flags |= ILLF_NONUD;
23447 		}
23448 		/* Make sure IPv4 specific flag is not set on IPv6 if */
23449 		if (ill->ill_flags & ILLF_NOARP) {
23450 			/*
23451 			 * Note: xresolv interfaces will eventually need
23452 			 * NOARP set here as well, but that will require
23453 			 * those external resolvers to have some
23454 			 * knowledge of that flag and act appropriately.
23455 			 * Not to be changed at present.
23456 			 */
23457 			ill->ill_flags &= ~ILLF_NOARP;
23458 		}
23459 		/*
23460 		 * Set the ILLF_ROUTER flag according to the global
23461 		 * IPv6 forwarding policy.
23462 		 */
23463 		if (ipst->ips_ipv6_forward != 0)
23464 			ill->ill_flags |= ILLF_ROUTER;
23465 	} else if (ill->ill_flags & ILLF_IPV4) {
23466 		ill->ill_isv6 = B_FALSE;
23467 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
23468 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
23469 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
23470 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
23471 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
23472 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
23473 		/*
23474 		 * Set the ILLF_ROUTER flag according to the global
23475 		 * IPv4 forwarding policy.
23476 		 */
23477 		if (ipst->ips_ip_g_forward != 0)
23478 			ill->ill_flags |= ILLF_ROUTER;
23479 	}
23480 
23481 	ASSERT(ill->ill_phyint != NULL);
23482 
23483 	/*
23484 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
23485 	 * be completed in ill_glist_insert -> ill_phyint_reinit
23486 	 */
23487 	if (!ill_allocate_mibs(ill))
23488 		return (ENOMEM);
23489 
23490 	/*
23491 	 * Pick a default sap until we get the DL_INFO_ACK back from
23492 	 * the driver.
23493 	 */
23494 	if (ill->ill_sap == 0) {
23495 		if (ill->ill_isv6)
23496 			ill->ill_sap  = IP6_DL_SAP;
23497 		else
23498 			ill->ill_sap  = IP_DL_SAP;
23499 	}
23500 
23501 	ill->ill_ifname_pending = 1;
23502 	ill->ill_ifname_pending_err = 0;
23503 
23504 	ill_refhold(ill);
23505 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23506 	if ((error = ill_glist_insert(ill, interf_name,
23507 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23508 		ill->ill_ppa = UINT_MAX;
23509 		ill->ill_name[0] = '\0';
23510 		/*
23511 		 * undo null termination done above.
23512 		 */
23513 		ppa_ptr[0] = old_char;
23514 		rw_exit(&ipst->ips_ill_g_lock);
23515 		ill_refrele(ill);
23516 		return (error);
23517 	}
23518 
23519 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23520 
23521 	/*
23522 	 * When we return the buffer pointed to by interf_name should contain
23523 	 * the same name as in ill_name.
23524 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23525 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23526 	 * so copy full name and update the ppa ptr.
23527 	 * When ppa passed in != UINT_MAX all values are correct just undo
23528 	 * null termination, this saves a bcopy.
23529 	 */
23530 	if (*new_ppa_ptr == UINT_MAX) {
23531 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23532 		*new_ppa_ptr = ill->ill_ppa;
23533 	} else {
23534 		/*
23535 		 * undo null termination done above.
23536 		 */
23537 		ppa_ptr[0] = old_char;
23538 	}
23539 
23540 	/* Let SCTP know about this ILL */
23541 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23542 
23543 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23544 	    B_TRUE);
23545 
23546 	rw_exit(&ipst->ips_ill_g_lock);
23547 	ill_refrele(ill);
23548 	if (ipsq == NULL)
23549 		return (EINPROGRESS);
23550 
23551 	/*
23552 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23553 	 */
23554 	if (ipsq->ipsq_current_ipif == NULL)
23555 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23556 	else
23557 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23558 
23559 	error = ipif_set_values_tail(ill, ipif, mp, q);
23560 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23561 	if (error != 0 && error != EINPROGRESS) {
23562 		/*
23563 		 * restore previous values
23564 		 */
23565 		ill->ill_isv6 = B_FALSE;
23566 	}
23567 	return (error);
23568 }
23569 
23570 
23571 void
23572 ipif_init(ip_stack_t *ipst)
23573 {
23574 	hrtime_t hrt;
23575 	int i;
23576 
23577 	/*
23578 	 * Can't call drv_getparm here as it is too early in the boot.
23579 	 * As we use ipif_src_random just for picking a different
23580 	 * source address everytime, this need not be really random.
23581 	 */
23582 	hrt = gethrtime();
23583 	ipst->ips_ipif_src_random =
23584 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23585 
23586 	for (i = 0; i < MAX_G_HEADS; i++) {
23587 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23588 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23589 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23590 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23591 	}
23592 
23593 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23594 	    ill_phyint_compare_index,
23595 	    sizeof (phyint_t),
23596 	    offsetof(struct phyint, phyint_avl_by_index));
23597 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23598 	    ill_phyint_compare_name,
23599 	    sizeof (phyint_t),
23600 	    offsetof(struct phyint, phyint_avl_by_name));
23601 }
23602 
23603 /*
23604  * This is called by ip_rt_add when src_addr value is other than zero.
23605  * src_addr signifies the source address of the incoming packet. For
23606  * reverse tunnel route we need to create a source addr based routing
23607  * table. This routine creates ip_mrtun_table if it's empty and then
23608  * it adds the route entry hashed by source address. It verifies that
23609  * the outgoing interface is always a non-resolver interface (tunnel).
23610  */
23611 int
23612 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg,
23613     ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func,
23614     ip_stack_t *ipst)
23615 {
23616 	ire_t   *ire;
23617 	ire_t	*save_ire;
23618 	ipif_t  *ipif;
23619 	ill_t   *in_ill = NULL;
23620 	ill_t	*out_ill;
23621 	queue_t	*stq;
23622 	mblk_t	*dlureq_mp;
23623 	int	error;
23624 
23625 	if (ire_arg != NULL)
23626 		*ire_arg = NULL;
23627 	ASSERT(in_src_addr != INADDR_ANY);
23628 
23629 	ipif = ipif_arg;
23630 	if (ipif != NULL) {
23631 		out_ill = ipif->ipif_ill;
23632 	} else {
23633 		ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n"));
23634 		return (EINVAL);
23635 	}
23636 
23637 	if (src_ipif == NULL) {
23638 		ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n"));
23639 		return (EINVAL);
23640 	}
23641 	in_ill = src_ipif->ipif_ill;
23642 
23643 	/*
23644 	 * Check for duplicates. We don't need to
23645 	 * match out_ill, because the uniqueness of
23646 	 * a route is only dependent on src_addr and
23647 	 * in_ill.
23648 	 */
23649 	ire = ire_mrtun_lookup(in_src_addr, in_ill);
23650 	if (ire != NULL) {
23651 		ire_refrele(ire);
23652 		return (EEXIST);
23653 	}
23654 	if (ipif->ipif_net_type != IRE_IF_NORESOLVER) {
23655 		ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n",
23656 		    ipif->ipif_net_type));
23657 		return (EINVAL);
23658 	}
23659 
23660 	stq = ipif->ipif_wq;
23661 	ASSERT(stq != NULL);
23662 
23663 	/*
23664 	 * The outgoing interface must be non-resolver
23665 	 * interface.
23666 	 */
23667 	dlureq_mp = ill_dlur_gen(NULL,
23668 	    out_ill->ill_phys_addr_length, out_ill->ill_sap,
23669 	    out_ill->ill_sap_length);
23670 
23671 	if (dlureq_mp == NULL) {
23672 		ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
23673 		return (ENOMEM);
23674 	}
23675 
23676 	/* Create the IRE. */
23677 
23678 	ire = ire_create(
23679 	    NULL,				/* Zero dst addr */
23680 	    NULL,				/* Zero mask */
23681 	    NULL,				/* Zero gateway addr */
23682 	    NULL,				/* Zero ipif_src addr */
23683 	    (uint8_t *)&in_src_addr,		/* in_src-addr */
23684 	    &ipif->ipif_mtu,
23685 	    NULL,
23686 	    NULL,				/* rfq */
23687 	    stq,
23688 	    IRE_MIPRTUN,
23689 	    dlureq_mp,
23690 	    ipif,
23691 	    in_ill,
23692 	    0,
23693 	    0,
23694 	    0,
23695 	    flags,
23696 	    &ire_uinfo_null,
23697 	    NULL,
23698 	    NULL,
23699 	    ipst);
23700 
23701 	if (ire == NULL) {
23702 		freeb(dlureq_mp);
23703 		return (ENOMEM);
23704 	}
23705 	ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n",
23706 	    ire->ire_type));
23707 	save_ire = ire;
23708 	ASSERT(save_ire != NULL);
23709 	error = ire_add_mrtun(&ire, q, mp, func);
23710 	/*
23711 	 * If ire_add_mrtun() failed, the ire passed in was freed
23712 	 * so there is no need to do so here.
23713 	 */
23714 	if (error != 0) {
23715 		return (error);
23716 	}
23717 
23718 	/* Duplicate check */
23719 	if (ire != save_ire) {
23720 		/* route already exists by now */
23721 		ire_refrele(ire);
23722 		return (EEXIST);
23723 	}
23724 
23725 	if (ire_arg != NULL) {
23726 		/*
23727 		 * Store the ire that was just added. the caller
23728 		 * ip_rts_request responsible for doing ire_refrele()
23729 		 * on it.
23730 		 */
23731 		*ire_arg = ire;
23732 	} else {
23733 		ire_refrele(ire);	/* held in ire_add_mrtun */
23734 	}
23735 
23736 	return (0);
23737 }
23738 
23739 /*
23740  * It is called by ip_rt_delete() only when mipagent requests to delete
23741  * a reverse tunnel route that was added by ip_mrtun_rt_add() before.
23742  */
23743 
23744 int
23745 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif)
23746 {
23747 	ire_t   *ire = NULL;
23748 
23749 	if (in_src_addr == INADDR_ANY)
23750 		return (EINVAL);
23751 	if (src_ipif == NULL)
23752 		return (EINVAL);
23753 
23754 	/* search if this route exists in the ip_mrtun_table */
23755 	ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill);
23756 	if (ire == NULL) {
23757 		ip2dbg(("ip_mrtun_rt_delete: ire not found\n"));
23758 		return (ESRCH);
23759 	}
23760 	ire_delete(ire);
23761 	ire_refrele(ire);
23762 	return (0);
23763 }
23764 
23765 /*
23766  * Lookup the ipif corresponding to the onlink destination address. For
23767  * point-to-point interfaces, it matches with remote endpoint destination
23768  * address. For point-to-multipoint interfaces it only tries to match the
23769  * destination with the interface's subnet address. The longest, most specific
23770  * match is found to take care of such rare network configurations like -
23771  * le0: 129.146.1.1/16
23772  * le1: 129.146.2.2/24
23773  * It is used only by SO_DONTROUTE at the moment.
23774  */
23775 ipif_t *
23776 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23777 {
23778 	ipif_t	*ipif, *best_ipif;
23779 	ill_t	*ill;
23780 	ill_walk_context_t ctx;
23781 
23782 	ASSERT(zoneid != ALL_ZONES);
23783 	best_ipif = NULL;
23784 
23785 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23786 	ill = ILL_START_WALK_V4(&ctx, ipst);
23787 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23788 		mutex_enter(&ill->ill_lock);
23789 		for (ipif = ill->ill_ipif; ipif != NULL;
23790 		    ipif = ipif->ipif_next) {
23791 			if (!IPIF_CAN_LOOKUP(ipif))
23792 				continue;
23793 			if (ipif->ipif_zoneid != zoneid &&
23794 			    ipif->ipif_zoneid != ALL_ZONES)
23795 				continue;
23796 			/*
23797 			 * Point-to-point case. Look for exact match with
23798 			 * destination address.
23799 			 */
23800 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23801 				if (ipif->ipif_pp_dst_addr == addr) {
23802 					ipif_refhold_locked(ipif);
23803 					mutex_exit(&ill->ill_lock);
23804 					rw_exit(&ipst->ips_ill_g_lock);
23805 					if (best_ipif != NULL)
23806 						ipif_refrele(best_ipif);
23807 					return (ipif);
23808 				}
23809 			} else if (ipif->ipif_subnet == (addr &
23810 			    ipif->ipif_net_mask)) {
23811 				/*
23812 				 * Point-to-multipoint case. Looping through to
23813 				 * find the most specific match. If there are
23814 				 * multiple best match ipif's then prefer ipif's
23815 				 * that are UP. If there is only one best match
23816 				 * ipif and it is DOWN we must still return it.
23817 				 */
23818 				if ((best_ipif == NULL) ||
23819 				    (ipif->ipif_net_mask >
23820 				    best_ipif->ipif_net_mask) ||
23821 				    ((ipif->ipif_net_mask ==
23822 				    best_ipif->ipif_net_mask) &&
23823 				    ((ipif->ipif_flags & IPIF_UP) &&
23824 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23825 					ipif_refhold_locked(ipif);
23826 					mutex_exit(&ill->ill_lock);
23827 					rw_exit(&ipst->ips_ill_g_lock);
23828 					if (best_ipif != NULL)
23829 						ipif_refrele(best_ipif);
23830 					best_ipif = ipif;
23831 					rw_enter(&ipst->ips_ill_g_lock,
23832 					    RW_READER);
23833 					mutex_enter(&ill->ill_lock);
23834 				}
23835 			}
23836 		}
23837 		mutex_exit(&ill->ill_lock);
23838 	}
23839 	rw_exit(&ipst->ips_ill_g_lock);
23840 	return (best_ipif);
23841 }
23842 
23843 
23844 /*
23845  * Save enough information so that we can recreate the IRE if
23846  * the interface goes down and then up.
23847  */
23848 static void
23849 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23850 {
23851 	mblk_t	*save_mp;
23852 
23853 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23854 	if (save_mp != NULL) {
23855 		ifrt_t	*ifrt;
23856 
23857 		save_mp->b_wptr += sizeof (ifrt_t);
23858 		ifrt = (ifrt_t *)save_mp->b_rptr;
23859 		bzero(ifrt, sizeof (ifrt_t));
23860 		ifrt->ifrt_type = ire->ire_type;
23861 		ifrt->ifrt_addr = ire->ire_addr;
23862 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23863 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23864 		ifrt->ifrt_mask = ire->ire_mask;
23865 		ifrt->ifrt_flags = ire->ire_flags;
23866 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23867 		mutex_enter(&ipif->ipif_saved_ire_lock);
23868 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23869 		ipif->ipif_saved_ire_mp = save_mp;
23870 		ipif->ipif_saved_ire_cnt++;
23871 		mutex_exit(&ipif->ipif_saved_ire_lock);
23872 	}
23873 }
23874 
23875 
23876 static void
23877 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23878 {
23879 	mblk_t	**mpp;
23880 	mblk_t	*mp;
23881 	ifrt_t	*ifrt;
23882 
23883 	/* Remove from ipif_saved_ire_mp list if it is there */
23884 	mutex_enter(&ipif->ipif_saved_ire_lock);
23885 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23886 	    mpp = &(*mpp)->b_cont) {
23887 		/*
23888 		 * On a given ipif, the triple of address, gateway and
23889 		 * mask is unique for each saved IRE (in the case of
23890 		 * ordinary interface routes, the gateway address is
23891 		 * all-zeroes).
23892 		 */
23893 		mp = *mpp;
23894 		ifrt = (ifrt_t *)mp->b_rptr;
23895 		if (ifrt->ifrt_addr == ire->ire_addr &&
23896 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23897 		    ifrt->ifrt_mask == ire->ire_mask) {
23898 			*mpp = mp->b_cont;
23899 			ipif->ipif_saved_ire_cnt--;
23900 			freeb(mp);
23901 			break;
23902 		}
23903 	}
23904 	mutex_exit(&ipif->ipif_saved_ire_lock);
23905 }
23906 
23907 
23908 /*
23909  * IP multirouting broadcast routes handling
23910  * Append CGTP broadcast IREs to regular ones created
23911  * at ifconfig time.
23912  */
23913 static void
23914 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23915 {
23916 	ire_t *ire_prim;
23917 
23918 	ASSERT(ire != NULL);
23919 	ASSERT(ire_dst != NULL);
23920 
23921 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23922 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23923 	if (ire_prim != NULL) {
23924 		/*
23925 		 * We are in the special case of broadcasts for
23926 		 * CGTP. We add an IRE_BROADCAST that holds
23927 		 * the RTF_MULTIRT flag, the destination
23928 		 * address of ire_dst and the low level
23929 		 * info of ire_prim. In other words, CGTP
23930 		 * broadcast is added to the redundant ipif.
23931 		 */
23932 		ipif_t *ipif_prim;
23933 		ire_t  *bcast_ire;
23934 
23935 		ipif_prim = ire_prim->ire_ipif;
23936 
23937 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23938 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23939 		    (void *)ire_dst, (void *)ire_prim,
23940 		    (void *)ipif_prim));
23941 
23942 		bcast_ire = ire_create(
23943 		    (uchar_t *)&ire->ire_addr,
23944 		    (uchar_t *)&ip_g_all_ones,
23945 		    (uchar_t *)&ire_dst->ire_src_addr,
23946 		    (uchar_t *)&ire->ire_gateway_addr,
23947 		    NULL,
23948 		    &ipif_prim->ipif_mtu,
23949 		    NULL,
23950 		    ipif_prim->ipif_rq,
23951 		    ipif_prim->ipif_wq,
23952 		    IRE_BROADCAST,
23953 		    ipif_prim->ipif_bcast_mp,
23954 		    ipif_prim,
23955 		    NULL,
23956 		    0,
23957 		    0,
23958 		    0,
23959 		    ire->ire_flags,
23960 		    &ire_uinfo_null,
23961 		    NULL,
23962 		    NULL,
23963 		    ipst);
23964 
23965 		if (bcast_ire != NULL) {
23966 
23967 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23968 			    B_FALSE) == 0) {
23969 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23970 				    "added bcast_ire %p\n",
23971 				    (void *)bcast_ire));
23972 
23973 				ipif_save_ire(bcast_ire->ire_ipif,
23974 				    bcast_ire);
23975 				ire_refrele(bcast_ire);
23976 			}
23977 		}
23978 		ire_refrele(ire_prim);
23979 	}
23980 }
23981 
23982 
23983 /*
23984  * IP multirouting broadcast routes handling
23985  * Remove the broadcast ire
23986  */
23987 static void
23988 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23989 {
23990 	ire_t *ire_dst;
23991 
23992 	ASSERT(ire != NULL);
23993 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23994 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23995 	if (ire_dst != NULL) {
23996 		ire_t *ire_prim;
23997 
23998 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23999 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
24000 		if (ire_prim != NULL) {
24001 			ipif_t *ipif_prim;
24002 			ire_t  *bcast_ire;
24003 
24004 			ipif_prim = ire_prim->ire_ipif;
24005 
24006 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
24007 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
24008 			    (void *)ire_dst, (void *)ire_prim,
24009 			    (void *)ipif_prim));
24010 
24011 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
24012 			    ire->ire_gateway_addr,
24013 			    IRE_BROADCAST,
24014 			    ipif_prim, ALL_ZONES,
24015 			    NULL,
24016 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
24017 			    MATCH_IRE_MASK, ipst);
24018 
24019 			if (bcast_ire != NULL) {
24020 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
24021 				    "looked up bcast_ire %p\n",
24022 				    (void *)bcast_ire));
24023 				ipif_remove_ire(bcast_ire->ire_ipif,
24024 				    bcast_ire);
24025 				ire_delete(bcast_ire);
24026 			}
24027 			ire_refrele(ire_prim);
24028 		}
24029 		ire_refrele(ire_dst);
24030 	}
24031 }
24032 
24033 /*
24034  * IPsec hardware acceleration capabilities related functions.
24035  */
24036 
24037 /*
24038  * Free a per-ill IPsec capabilities structure.
24039  */
24040 static void
24041 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
24042 {
24043 	if (capab->auth_hw_algs != NULL)
24044 		kmem_free(capab->auth_hw_algs, capab->algs_size);
24045 	if (capab->encr_hw_algs != NULL)
24046 		kmem_free(capab->encr_hw_algs, capab->algs_size);
24047 	if (capab->encr_algparm != NULL)
24048 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
24049 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
24050 }
24051 
24052 /*
24053  * Allocate a new per-ill IPsec capabilities structure. This structure
24054  * is specific to an IPsec protocol (AH or ESP). It is implemented as
24055  * an array which specifies, for each algorithm, whether this algorithm
24056  * is supported by the ill or not.
24057  */
24058 static ill_ipsec_capab_t *
24059 ill_ipsec_capab_alloc(void)
24060 {
24061 	ill_ipsec_capab_t *capab;
24062 	uint_t nelems;
24063 
24064 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
24065 	if (capab == NULL)
24066 		return (NULL);
24067 
24068 	/* we need one bit per algorithm */
24069 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
24070 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
24071 
24072 	/* allocate memory to store algorithm flags */
24073 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
24074 	if (capab->encr_hw_algs == NULL)
24075 		goto nomem;
24076 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
24077 	if (capab->auth_hw_algs == NULL)
24078 		goto nomem;
24079 	/*
24080 	 * Leave encr_algparm NULL for now since we won't need it half
24081 	 * the time
24082 	 */
24083 	return (capab);
24084 
24085 nomem:
24086 	ill_ipsec_capab_free(capab);
24087 	return (NULL);
24088 }
24089 
24090 /*
24091  * Resize capability array.  Since we're exclusive, this is OK.
24092  */
24093 static boolean_t
24094 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
24095 {
24096 	ipsec_capab_algparm_t *nalp, *oalp;
24097 	uint32_t olen, nlen;
24098 
24099 	oalp = capab->encr_algparm;
24100 	olen = capab->encr_algparm_size;
24101 
24102 	if (oalp != NULL) {
24103 		if (algid < capab->encr_algparm_end)
24104 			return (B_TRUE);
24105 	}
24106 
24107 	nlen = (algid + 1) * sizeof (*nalp);
24108 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
24109 	if (nalp == NULL)
24110 		return (B_FALSE);
24111 
24112 	if (oalp != NULL) {
24113 		bcopy(oalp, nalp, olen);
24114 		kmem_free(oalp, olen);
24115 	}
24116 	capab->encr_algparm = nalp;
24117 	capab->encr_algparm_size = nlen;
24118 	capab->encr_algparm_end = algid + 1;
24119 
24120 	return (B_TRUE);
24121 }
24122 
24123 /*
24124  * Compare the capabilities of the specified ill with the protocol
24125  * and algorithms specified by the SA passed as argument.
24126  * If they match, returns B_TRUE, B_FALSE if they do not match.
24127  *
24128  * The ill can be passed as a pointer to it, or by specifying its index
24129  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
24130  *
24131  * Called by ipsec_out_is_accelerated() do decide whether an outbound
24132  * packet is eligible for hardware acceleration, and by
24133  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
24134  * to a particular ill.
24135  */
24136 boolean_t
24137 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
24138     ipsa_t *sa, netstack_t *ns)
24139 {
24140 	boolean_t sa_isv6;
24141 	uint_t algid;
24142 	struct ill_ipsec_capab_s *cpp;
24143 	boolean_t need_refrele = B_FALSE;
24144 	ip_stack_t	*ipst = ns->netstack_ip;
24145 
24146 	if (ill == NULL) {
24147 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
24148 		    NULL, NULL, NULL, ipst);
24149 		if (ill == NULL) {
24150 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
24151 			return (B_FALSE);
24152 		}
24153 		need_refrele = B_TRUE;
24154 	}
24155 
24156 	/*
24157 	 * Use the address length specified by the SA to determine
24158 	 * if it corresponds to a IPv6 address, and fail the matching
24159 	 * if the isv6 flag passed as argument does not match.
24160 	 * Note: this check is used for SADB capability checking before
24161 	 * sending SA information to an ill.
24162 	 */
24163 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
24164 	if (sa_isv6 != ill_isv6)
24165 		/* protocol mismatch */
24166 		goto done;
24167 
24168 	/*
24169 	 * Check if the ill supports the protocol, algorithm(s) and
24170 	 * key size(s) specified by the SA, and get the pointers to
24171 	 * the algorithms supported by the ill.
24172 	 */
24173 	switch (sa->ipsa_type) {
24174 
24175 	case SADB_SATYPE_ESP:
24176 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
24177 			/* ill does not support ESP acceleration */
24178 			goto done;
24179 		cpp = ill->ill_ipsec_capab_esp;
24180 		algid = sa->ipsa_auth_alg;
24181 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
24182 			goto done;
24183 		algid = sa->ipsa_encr_alg;
24184 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
24185 			goto done;
24186 		if (algid < cpp->encr_algparm_end) {
24187 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
24188 			if (sa->ipsa_encrkeybits < alp->minkeylen)
24189 				goto done;
24190 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
24191 				goto done;
24192 		}
24193 		break;
24194 
24195 	case SADB_SATYPE_AH:
24196 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
24197 			/* ill does not support AH acceleration */
24198 			goto done;
24199 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
24200 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
24201 			goto done;
24202 		break;
24203 	}
24204 
24205 	if (need_refrele)
24206 		ill_refrele(ill);
24207 	return (B_TRUE);
24208 done:
24209 	if (need_refrele)
24210 		ill_refrele(ill);
24211 	return (B_FALSE);
24212 }
24213 
24214 
24215 /*
24216  * Add a new ill to the list of IPsec capable ills.
24217  * Called from ill_capability_ipsec_ack() when an ACK was received
24218  * indicating that IPsec hardware processing was enabled for an ill.
24219  *
24220  * ill must point to the ill for which acceleration was enabled.
24221  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
24222  */
24223 static void
24224 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
24225 {
24226 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
24227 	uint_t sa_type;
24228 	uint_t ipproto;
24229 	ip_stack_t	*ipst = ill->ill_ipst;
24230 
24231 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
24232 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
24233 
24234 	switch (dl_cap) {
24235 	case DL_CAPAB_IPSEC_AH:
24236 		sa_type = SADB_SATYPE_AH;
24237 		ills = &ipst->ips_ipsec_capab_ills_ah;
24238 		ipproto = IPPROTO_AH;
24239 		break;
24240 	case DL_CAPAB_IPSEC_ESP:
24241 		sa_type = SADB_SATYPE_ESP;
24242 		ills = &ipst->ips_ipsec_capab_ills_esp;
24243 		ipproto = IPPROTO_ESP;
24244 		break;
24245 	}
24246 
24247 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24248 
24249 	/*
24250 	 * Add ill index to list of hardware accelerators. If
24251 	 * already in list, do nothing.
24252 	 */
24253 	for (cur_ill = *ills; cur_ill != NULL &&
24254 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
24255 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
24256 		;
24257 
24258 	if (cur_ill == NULL) {
24259 		/* if this is a new entry for this ill */
24260 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
24261 		if (new_ill == NULL) {
24262 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24263 			return;
24264 		}
24265 
24266 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
24267 		new_ill->ill_isv6 = ill->ill_isv6;
24268 		new_ill->next = *ills;
24269 		*ills = new_ill;
24270 	} else if (!sadb_resync) {
24271 		/* not resync'ing SADB and an entry exists for this ill */
24272 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24273 		return;
24274 	}
24275 
24276 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24277 
24278 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
24279 		/*
24280 		 * IPsec module for protocol loaded, initiate dump
24281 		 * of the SADB to this ill.
24282 		 */
24283 		sadb_ill_download(ill, sa_type);
24284 }
24285 
24286 /*
24287  * Remove an ill from the list of IPsec capable ills.
24288  */
24289 static void
24290 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
24291 {
24292 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
24293 	ip_stack_t	*ipst = ill->ill_ipst;
24294 
24295 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
24296 	    dl_cap == DL_CAPAB_IPSEC_ESP);
24297 
24298 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
24299 	    &ipst->ips_ipsec_capab_ills_esp;
24300 
24301 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24302 
24303 	prev_ill = NULL;
24304 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
24305 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
24306 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
24307 		;
24308 	if (cur_ill == NULL) {
24309 		/* entry not found */
24310 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24311 		return;
24312 	}
24313 	if (prev_ill == NULL) {
24314 		/* entry at front of list */
24315 		*ills = NULL;
24316 	} else {
24317 		prev_ill->next = cur_ill->next;
24318 	}
24319 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
24320 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24321 }
24322 
24323 /*
24324  * Called by SADB to send a DL_CONTROL_REQ message to every ill
24325  * supporting the specified IPsec protocol acceleration.
24326  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
24327  * We free the mblk and, if sa is non-null, release the held referece.
24328  */
24329 void
24330 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
24331     netstack_t *ns)
24332 {
24333 	ipsec_capab_ill_t *ici, *cur_ici;
24334 	ill_t *ill;
24335 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
24336 	ip_stack_t	*ipst = ns->netstack_ip;
24337 
24338 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
24339 	    ipst->ips_ipsec_capab_ills_esp;
24340 
24341 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
24342 
24343 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
24344 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
24345 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
24346 
24347 		/*
24348 		 * Handle the case where the ill goes away while the SADB is
24349 		 * attempting to send messages.  If it's going away, it's
24350 		 * nuking its shadow SADB, so we don't care..
24351 		 */
24352 
24353 		if (ill == NULL)
24354 			continue;
24355 
24356 		if (sa != NULL) {
24357 			/*
24358 			 * Make sure capabilities match before
24359 			 * sending SA to ill.
24360 			 */
24361 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
24362 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
24363 				ill_refrele(ill);
24364 				continue;
24365 			}
24366 
24367 			mutex_enter(&sa->ipsa_lock);
24368 			sa->ipsa_flags |= IPSA_F_HW;
24369 			mutex_exit(&sa->ipsa_lock);
24370 		}
24371 
24372 		/*
24373 		 * Copy template message, and add it to the front
24374 		 * of the mblk ship list. We want to avoid holding
24375 		 * the ipsec_capab_ills_lock while sending the
24376 		 * message to the ills.
24377 		 *
24378 		 * The b_next and b_prev are temporarily used
24379 		 * to build a list of mblks to be sent down, and to
24380 		 * save the ill to which they must be sent.
24381 		 */
24382 		nmp = copymsg(mp);
24383 		if (nmp == NULL) {
24384 			ill_refrele(ill);
24385 			continue;
24386 		}
24387 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
24388 		nmp->b_next = mp_ship_list;
24389 		mp_ship_list = nmp;
24390 		nmp->b_prev = (mblk_t *)ill;
24391 	}
24392 
24393 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24394 
24395 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
24396 		/* restore the mblk to a sane state */
24397 		next_mp = nmp->b_next;
24398 		nmp->b_next = NULL;
24399 		ill = (ill_t *)nmp->b_prev;
24400 		nmp->b_prev = NULL;
24401 
24402 		ill_dlpi_send(ill, nmp);
24403 		ill_refrele(ill);
24404 	}
24405 
24406 	if (sa != NULL)
24407 		IPSA_REFRELE(sa);
24408 	freemsg(mp);
24409 }
24410 
24411 /*
24412  * Derive an interface id from the link layer address.
24413  * Knows about IEEE 802 and IEEE EUI-64 mappings.
24414  */
24415 static boolean_t
24416 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24417 {
24418 	char		*addr;
24419 
24420 	if (phys_length != ETHERADDRL)
24421 		return (B_FALSE);
24422 
24423 	/* Form EUI-64 like address */
24424 	addr = (char *)&v6addr->s6_addr32[2];
24425 	bcopy((char *)phys_addr, addr, 3);
24426 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
24427 	addr[3] = (char)0xff;
24428 	addr[4] = (char)0xfe;
24429 	bcopy((char *)phys_addr + 3, addr + 5, 3);
24430 	return (B_TRUE);
24431 }
24432 
24433 /* ARGSUSED */
24434 static boolean_t
24435 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24436 {
24437 	return (B_FALSE);
24438 }
24439 
24440 /* ARGSUSED */
24441 static boolean_t
24442 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24443     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24444 {
24445 	/*
24446 	 * Multicast address mappings used over Ethernet/802.X.
24447 	 * This address is used as a base for mappings.
24448 	 */
24449 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
24450 	    0x00, 0x00, 0x00};
24451 
24452 	/*
24453 	 * Extract low order 32 bits from IPv6 multicast address.
24454 	 * Or that into the link layer address, starting from the
24455 	 * second byte.
24456 	 */
24457 	*hw_start = 2;
24458 	v6_extract_mask->s6_addr32[0] = 0;
24459 	v6_extract_mask->s6_addr32[1] = 0;
24460 	v6_extract_mask->s6_addr32[2] = 0;
24461 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24462 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
24463 	return (B_TRUE);
24464 }
24465 
24466 /*
24467  * Indicate by return value whether multicast is supported. If not,
24468  * this code should not touch/change any parameters.
24469  */
24470 /* ARGSUSED */
24471 static boolean_t
24472 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24473     uint32_t *hw_start, ipaddr_t *extract_mask)
24474 {
24475 	/*
24476 	 * Multicast address mappings used over Ethernet/802.X.
24477 	 * This address is used as a base for mappings.
24478 	 */
24479 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
24480 	    0x00, 0x00, 0x00 };
24481 
24482 	if (phys_length != ETHERADDRL)
24483 		return (B_FALSE);
24484 
24485 	*extract_mask = htonl(0x007fffff);
24486 	*hw_start = 2;
24487 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
24488 	return (B_TRUE);
24489 }
24490 
24491 /*
24492  * Derive IPoIB interface id from the link layer address.
24493  */
24494 static boolean_t
24495 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24496 {
24497 	char		*addr;
24498 
24499 	if (phys_length != 20)
24500 		return (B_FALSE);
24501 	addr = (char *)&v6addr->s6_addr32[2];
24502 	bcopy(phys_addr + 12, addr, 8);
24503 	/*
24504 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
24505 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
24506 	 * rules. In these cases, the IBA considers these GUIDs to be in
24507 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
24508 	 * required; vendors are required not to assign global EUI-64's
24509 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
24510 	 * of the interface identifier. Whether the GUID is in modified
24511 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
24512 	 * bit set to 1.
24513 	 */
24514 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
24515 	return (B_TRUE);
24516 }
24517 
24518 /*
24519  * Note on mapping from multicast IP addresses to IPoIB multicast link
24520  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
24521  * The format of an IPoIB multicast address is:
24522  *
24523  *  4 byte QPN      Scope Sign.  Pkey
24524  * +--------------------------------------------+
24525  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
24526  * +--------------------------------------------+
24527  *
24528  * The Scope and Pkey components are properties of the IBA port and
24529  * network interface. They can be ascertained from the broadcast address.
24530  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
24531  */
24532 
24533 static boolean_t
24534 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24535     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24536 {
24537 	/*
24538 	 * Base IPoIB IPv6 multicast address used for mappings.
24539 	 * Does not contain the IBA scope/Pkey values.
24540 	 */
24541 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24542 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
24543 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24544 
24545 	/*
24546 	 * Extract low order 80 bits from IPv6 multicast address.
24547 	 * Or that into the link layer address, starting from the
24548 	 * sixth byte.
24549 	 */
24550 	*hw_start = 6;
24551 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
24552 
24553 	/*
24554 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24555 	 */
24556 	*(maddr + 5) = *(bphys_addr + 5);
24557 	*(maddr + 8) = *(bphys_addr + 8);
24558 	*(maddr + 9) = *(bphys_addr + 9);
24559 
24560 	v6_extract_mask->s6_addr32[0] = 0;
24561 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
24562 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
24563 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24564 	return (B_TRUE);
24565 }
24566 
24567 static boolean_t
24568 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24569     uint32_t *hw_start, ipaddr_t *extract_mask)
24570 {
24571 	/*
24572 	 * Base IPoIB IPv4 multicast address used for mappings.
24573 	 * Does not contain the IBA scope/Pkey values.
24574 	 */
24575 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24576 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
24577 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24578 
24579 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
24580 		return (B_FALSE);
24581 
24582 	/*
24583 	 * Extract low order 28 bits from IPv4 multicast address.
24584 	 * Or that into the link layer address, starting from the
24585 	 * sixteenth byte.
24586 	 */
24587 	*extract_mask = htonl(0x0fffffff);
24588 	*hw_start = 16;
24589 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
24590 
24591 	/*
24592 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24593 	 */
24594 	*(maddr + 5) = *(bphys_addr + 5);
24595 	*(maddr + 8) = *(bphys_addr + 8);
24596 	*(maddr + 9) = *(bphys_addr + 9);
24597 	return (B_TRUE);
24598 }
24599 
24600 /*
24601  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
24602  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
24603  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
24604  * the link-local address is preferred.
24605  */
24606 boolean_t
24607 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24608 {
24609 	ipif_t	*ipif;
24610 	ipif_t	*maybe_ipif = NULL;
24611 
24612 	mutex_enter(&ill->ill_lock);
24613 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24614 		mutex_exit(&ill->ill_lock);
24615 		if (ipifp != NULL)
24616 			*ipifp = NULL;
24617 		return (B_FALSE);
24618 	}
24619 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24620 		if (!IPIF_CAN_LOOKUP(ipif))
24621 			continue;
24622 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
24623 		    ipif->ipif_zoneid != ALL_ZONES)
24624 			continue;
24625 		if ((ipif->ipif_flags & flags) != flags)
24626 			continue;
24627 
24628 		if (ipifp == NULL) {
24629 			mutex_exit(&ill->ill_lock);
24630 			ASSERT(maybe_ipif == NULL);
24631 			return (B_TRUE);
24632 		}
24633 		if (!ill->ill_isv6 ||
24634 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
24635 			ipif_refhold_locked(ipif);
24636 			mutex_exit(&ill->ill_lock);
24637 			*ipifp = ipif;
24638 			return (B_TRUE);
24639 		}
24640 		if (maybe_ipif == NULL)
24641 			maybe_ipif = ipif;
24642 	}
24643 	if (ipifp != NULL) {
24644 		if (maybe_ipif != NULL)
24645 			ipif_refhold_locked(maybe_ipif);
24646 		*ipifp = maybe_ipif;
24647 	}
24648 	mutex_exit(&ill->ill_lock);
24649 	return (maybe_ipif != NULL);
24650 }
24651 
24652 /*
24653  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24654  */
24655 boolean_t
24656 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24657 {
24658 	ill_t *illg;
24659 	ip_stack_t	*ipst = ill->ill_ipst;
24660 
24661 	/*
24662 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24663 	 */
24664 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24665 		return (B_TRUE);
24666 	}
24667 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
24668 	if (ill->ill_group == NULL) {
24669 		/* ill not in a group */
24670 		rw_exit(&ipst->ips_ill_g_lock);
24671 		return (B_FALSE);
24672 	}
24673 
24674 	/*
24675 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24676 	 * group. We need to look for an ipif in the zone on all the ills in the
24677 	 * group.
24678 	 */
24679 	illg = ill->ill_group->illgrp_ill;
24680 	do {
24681 		/*
24682 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24683 		 * that it's not there.
24684 		 */
24685 		if (illg != ill &&
24686 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24687 			break;
24688 		}
24689 	} while ((illg = illg->ill_group_next) != NULL);
24690 	rw_exit(&ipst->ips_ill_g_lock);
24691 	return (illg != NULL);
24692 }
24693 
24694 /*
24695  * Check if this ill is only being used to send ICMP probes for IPMP
24696  */
24697 boolean_t
24698 ill_is_probeonly(ill_t *ill)
24699 {
24700 	/*
24701 	 * Check if the interface is FAILED, or INACTIVE
24702 	 */
24703 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24704 		return (B_TRUE);
24705 
24706 	return (B_FALSE);
24707 }
24708 
24709 /*
24710  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24711  * If a pointer to an ipif_t is returned then the caller will need to do
24712  * an ill_refrele().
24713  *
24714  * If there is no real interface which matches the ifindex, then it looks
24715  * for a group that has a matching index. In the case of a group match the
24716  * lifidx must be zero. We don't need emulate the logical interfaces
24717  * since IP Filter's use of netinfo doesn't use that.
24718  */
24719 ipif_t *
24720 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24721     ip_stack_t *ipst)
24722 {
24723 	ipif_t *ipif;
24724 	ill_t *ill;
24725 
24726 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24727 	    ipst);
24728 
24729 	if (ill == NULL) {
24730 		/* Fallback to group names only if hook_emulation set */
24731 		if (!ipst->ips_ipmp_hook_emulation)
24732 			return (NULL);
24733 
24734 		if (lifidx != 0)
24735 			return (NULL);
24736 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24737 		if (ill == NULL)
24738 			return (NULL);
24739 	}
24740 
24741 	mutex_enter(&ill->ill_lock);
24742 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24743 		mutex_exit(&ill->ill_lock);
24744 		ill_refrele(ill);
24745 		return (NULL);
24746 	}
24747 
24748 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24749 		if (!IPIF_CAN_LOOKUP(ipif))
24750 			continue;
24751 		if (lifidx == ipif->ipif_id) {
24752 			ipif_refhold_locked(ipif);
24753 			break;
24754 		}
24755 	}
24756 
24757 	mutex_exit(&ill->ill_lock);
24758 	ill_refrele(ill);
24759 	return (ipif);
24760 }
24761 
24762 /*
24763  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24764  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24765  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24766  * for details.
24767  */
24768 void
24769 ill_fastpath_flush(ill_t *ill)
24770 {
24771 	ip_stack_t *ipst = ill->ill_ipst;
24772 
24773 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24774 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24775 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24776 }
24777 
24778 /*
24779  * Set the physical address information for `ill' to the contents of the
24780  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24781  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24782  * EINPROGRESS will be returned.
24783  */
24784 int
24785 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24786 {
24787 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24788 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24789 
24790 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24791 
24792 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24793 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24794 		/* Changing DL_IPV6_TOKEN is not yet supported */
24795 		return (0);
24796 	}
24797 
24798 	/*
24799 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24800 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24801 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24802 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24803 	 */
24804 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24805 		freemsg(mp);
24806 		return (ENOMEM);
24807 	}
24808 
24809 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24810 
24811 	/*
24812 	 * If we can quiesce the ill, then set the address.  If not, then
24813 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24814 	 */
24815 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24816 	mutex_enter(&ill->ill_lock);
24817 	if (!ill_is_quiescent(ill)) {
24818 		/* call cannot fail since `conn_t *' argument is NULL */
24819 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24820 		    mp, ILL_DOWN);
24821 		mutex_exit(&ill->ill_lock);
24822 		return (EINPROGRESS);
24823 	}
24824 	mutex_exit(&ill->ill_lock);
24825 
24826 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24827 	return (0);
24828 }
24829 
24830 /*
24831  * Once the ill associated with `q' has quiesced, set its physical address
24832  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24833  * are passed (linked by b_cont), since we sometimes need to save two distinct
24834  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24835  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24836  * is quiesced, we know any stale IREs with the old address information have
24837  * already been removed, so we don't need to call ill_fastpath_flush().
24838  */
24839 /* ARGSUSED */
24840 static void
24841 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24842 {
24843 	ill_t		*ill = q->q_ptr;
24844 	mblk_t		*addrmp2 = unlinkb(addrmp);
24845 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24846 	uint_t		addrlen, addroff;
24847 
24848 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24849 
24850 	addroff	= dlindp->dl_addr_offset;
24851 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24852 
24853 	switch (dlindp->dl_data) {
24854 	case DL_IPV6_LINK_LAYER_ADDR:
24855 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24856 		freemsg(addrmp2);
24857 		break;
24858 
24859 	case DL_CURR_PHYS_ADDR:
24860 		freemsg(ill->ill_phys_addr_mp);
24861 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24862 		ill->ill_phys_addr_mp = addrmp;
24863 		ill->ill_phys_addr_length = addrlen;
24864 
24865 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24866 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24867 		else
24868 			freemsg(addrmp2);
24869 		break;
24870 	default:
24871 		ASSERT(0);
24872 	}
24873 
24874 	/*
24875 	 * If there are ipifs to bring up, ill_up_ipifs() will return
24876 	 * EINPROGRESS, and ipsq_current_finish() will be called by
24877 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
24878 	 * brought up.
24879 	 */
24880 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
24881 		ipsq_current_finish(ipsq);
24882 }
24883 
24884 /*
24885  * Helper routine for setting the ill_nd_lla fields.
24886  */
24887 void
24888 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24889 {
24890 	freemsg(ill->ill_nd_lla_mp);
24891 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24892 	ill->ill_nd_lla_mp = ndmp;
24893 	ill->ill_nd_lla_len = addrlen;
24894 }
24895 
24896 major_t IP_MAJ;
24897 #define	IP	"ip"
24898 
24899 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24900 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24901 
24902 /*
24903  * Issue REMOVEIF ioctls to have the loopback interfaces
24904  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24905  * the former going away when the user-level processes in the zone
24906  * are killed  * and the latter are cleaned up by the stream head
24907  * str_stack_shutdown callback that undoes all I_PLINKs.
24908  */
24909 void
24910 ip_loopback_cleanup(ip_stack_t *ipst)
24911 {
24912 	int error;
24913 	ldi_handle_t	lh = NULL;
24914 	ldi_ident_t	li = NULL;
24915 	int		rval;
24916 	cred_t		*cr;
24917 	struct strioctl iocb;
24918 	struct lifreq	lifreq;
24919 
24920 	IP_MAJ = ddi_name_to_major(IP);
24921 
24922 #ifdef NS_DEBUG
24923 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24924 	    ipst->ips_netstack->netstack_stackid);
24925 #endif
24926 
24927 	bzero(&lifreq, sizeof (lifreq));
24928 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24929 
24930 	error = ldi_ident_from_major(IP_MAJ, &li);
24931 	if (error) {
24932 #ifdef DEBUG
24933 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24934 		    error);
24935 #endif
24936 		return;
24937 	}
24938 
24939 	cr = zone_get_kcred(netstackid_to_zoneid(
24940 	    ipst->ips_netstack->netstack_stackid));
24941 	ASSERT(cr != NULL);
24942 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24943 	if (error) {
24944 #ifdef DEBUG
24945 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24946 		    error);
24947 #endif
24948 		goto out;
24949 	}
24950 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24951 	iocb.ic_timout = 15;
24952 	iocb.ic_len = sizeof (lifreq);
24953 	iocb.ic_dp = (char *)&lifreq;
24954 
24955 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24956 	/* LINTED - statement has no consequent */
24957 	if (error) {
24958 #ifdef NS_DEBUG
24959 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24960 		    "UDP6 error %d\n", error);
24961 #endif
24962 	}
24963 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24964 	lh = NULL;
24965 
24966 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24967 	if (error) {
24968 #ifdef NS_DEBUG
24969 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24970 		    error);
24971 #endif
24972 		goto out;
24973 	}
24974 
24975 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24976 	iocb.ic_timout = 15;
24977 	iocb.ic_len = sizeof (lifreq);
24978 	iocb.ic_dp = (char *)&lifreq;
24979 
24980 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24981 	/* LINTED - statement has no consequent */
24982 	if (error) {
24983 #ifdef NS_DEBUG
24984 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24985 		    "UDP error %d\n", error);
24986 #endif
24987 	}
24988 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24989 	lh = NULL;
24990 
24991 out:
24992 	/* Close layered handles */
24993 	if (lh)
24994 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24995 	if (li)
24996 		ldi_ident_release(li);
24997 
24998 	crfree(cr);
24999 }
25000