1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #include <sys/isa_defs.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_types.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <sys/sockio.h> 59 #include <netinet/in.h> 60 #include <netinet/ip6.h> 61 #include <netinet/icmp6.h> 62 #include <netinet/igmp_var.h> 63 #include <sys/strsun.h> 64 #include <sys/policy.h> 65 #include <sys/ethernet.h> 66 67 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 68 #include <inet/mi.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/mib2.h> 72 #include <inet/ip.h> 73 #include <inet/ip6.h> 74 #include <inet/ip6_asp.h> 75 #include <inet/tcp.h> 76 #include <inet/ip_multi.h> 77 #include <inet/ip_ire.h> 78 #include <inet/ip_ftable.h> 79 #include <inet/ip_rts.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/ip_if.h> 82 #include <inet/ip_impl.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 #include <inet/ip_netinfo.h> 86 #include <inet/mib2.h> 87 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/sadb.h> 91 #include <inet/ipsec_impl.h> 92 #include <sys/iphada.h> 93 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 #include <sys/tsol/tndb.h> 104 #include <sys/tsol/tnet.h> 105 106 /* The character which tells where the ill_name ends */ 107 #define IPIF_SEPARATOR_CHAR ':' 108 109 /* IP ioctl function table entry */ 110 typedef struct ipft_s { 111 int ipft_cmd; 112 pfi_t ipft_pfi; 113 int ipft_min_size; 114 int ipft_flags; 115 } ipft_t; 116 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 117 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 118 119 typedef struct ip_sock_ar_s { 120 union { 121 area_t ip_sock_area; 122 ared_t ip_sock_ared; 123 areq_t ip_sock_areq; 124 } ip_sock_ar_u; 125 queue_t *ip_sock_ar_q; 126 } ip_sock_ar_t; 127 128 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 129 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 130 char *value, caddr_t cp, cred_t *ioc_cr); 131 132 static boolean_t ill_is_quiescent(ill_t *); 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 148 int ioccmd, struct linkblk *li, boolean_t doconsist); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 161 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 162 boolean_t isv6); 163 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 164 static void ipif_delete_cache_ire(ire_t *, char *); 165 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 166 static void ipif_free(ipif_t *ipif); 167 static void ipif_free_tail(ipif_t *ipif); 168 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 169 static void ipif_multicast_down(ipif_t *ipif); 170 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 171 static void ipif_set_default(ipif_t *ipif); 172 static int ipif_set_values(queue_t *q, mblk_t *mp, 173 char *interf_name, uint_t *ppa); 174 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 175 queue_t *q); 176 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 177 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 179 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 #ifdef DEBUG 259 static void ill_trace_cleanup(const ill_t *); 260 static void ipif_trace_cleanup(const ipif_t *); 261 #endif 262 263 /* 264 * if we go over the memory footprint limit more than once in this msec 265 * interval, we'll start pruning aggressively. 266 */ 267 int ip_min_frag_prune_time = 0; 268 269 /* 270 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 271 * and the IPsec DOI 272 */ 273 #define MAX_IPSEC_ALGS 256 274 275 #define BITSPERBYTE 8 276 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 277 278 #define IPSEC_ALG_ENABLE(algs, algid) \ 279 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 280 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 281 282 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 typedef uint8_t ipsec_capab_elem_t; 287 288 /* 289 * Per-algorithm parameters. Note that at present, only encryption 290 * algorithms have variable keysize (IKE does not provide a way to negotiate 291 * auth algorithm keysize). 292 * 293 * All sizes here are in bits. 294 */ 295 typedef struct 296 { 297 uint16_t minkeylen; 298 uint16_t maxkeylen; 299 } ipsec_capab_algparm_t; 300 301 /* 302 * Per-ill capabilities. 303 */ 304 struct ill_ipsec_capab_s { 305 ipsec_capab_elem_t *encr_hw_algs; 306 ipsec_capab_elem_t *auth_hw_algs; 307 uint32_t algs_size; /* size of _hw_algs in bytes */ 308 /* algorithm key lengths */ 309 ipsec_capab_algparm_t *encr_algparm; 310 uint32_t encr_algparm_size; 311 uint32_t encr_algparm_end; 312 }; 313 314 /* 315 * The field values are larger than strictly necessary for simple 316 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 317 */ 318 static area_t ip_area_template = { 319 AR_ENTRY_ADD, /* area_cmd */ 320 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 321 /* area_name_offset */ 322 /* area_name_length temporarily holds this structure length */ 323 sizeof (area_t), /* area_name_length */ 324 IP_ARP_PROTO_TYPE, /* area_proto */ 325 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 326 IP_ADDR_LEN, /* area_proto_addr_length */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 328 /* area_proto_mask_offset */ 329 0, /* area_flags */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 331 /* area_hw_addr_offset */ 332 /* Zero length hw_addr_length means 'use your idea of the address' */ 333 0 /* area_hw_addr_length */ 334 }; 335 336 /* 337 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 338 * support 339 */ 340 static area_t ip6_area_template = { 341 AR_ENTRY_ADD, /* area_cmd */ 342 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 343 /* area_name_offset */ 344 /* area_name_length temporarily holds this structure length */ 345 sizeof (area_t), /* area_name_length */ 346 IP_ARP_PROTO_TYPE, /* area_proto */ 347 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 348 IPV6_ADDR_LEN, /* area_proto_addr_length */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 350 /* area_proto_mask_offset */ 351 0, /* area_flags */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 353 /* area_hw_addr_offset */ 354 /* Zero length hw_addr_length means 'use your idea of the address' */ 355 0 /* area_hw_addr_length */ 356 }; 357 358 static ared_t ip_ared_template = { 359 AR_ENTRY_DELETE, 360 sizeof (ared_t) + IP_ADDR_LEN, 361 sizeof (ared_t), 362 IP_ARP_PROTO_TYPE, 363 sizeof (ared_t), 364 IP_ADDR_LEN, 365 0 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN, 375 0 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 if (ill->ill_frag_ptr != NULL) { 916 uint_t count; 917 918 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 919 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 920 } 921 mi_free(ill->ill_frag_ptr); 922 ill->ill_frag_ptr = NULL; 923 ill->ill_frag_hash_tbl = NULL; 924 } 925 926 freemsg(ill->ill_nd_lla_mp); 927 /* Free all retained control messages. */ 928 mpp = &ill->ill_first_mp_to_free; 929 do { 930 while (mpp[0]) { 931 mblk_t *mp; 932 mblk_t *mp1; 933 934 mp = mpp[0]; 935 mpp[0] = mp->b_next; 936 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 937 mp1->b_next = NULL; 938 mp1->b_prev = NULL; 939 } 940 freemsg(mp); 941 } 942 } while (mpp++ != &ill->ill_last_mp_to_free); 943 944 ill_free_mib(ill); 945 946 #ifdef DEBUG 947 ill_trace_cleanup(ill); 948 #endif 949 950 /* Drop refcnt here */ 951 netstack_rele(ill->ill_ipst->ips_netstack); 952 ill->ill_ipst = NULL; 953 } 954 955 static void 956 ill_free_mib(ill_t *ill) 957 { 958 ip_stack_t *ipst = ill->ill_ipst; 959 960 /* 961 * MIB statistics must not be lost, so when an interface 962 * goes away the counter values will be added to the global 963 * MIBs. 964 */ 965 if (ill->ill_ip_mib != NULL) { 966 if (ill->ill_isv6) { 967 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 968 ill->ill_ip_mib); 969 } else { 970 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 971 ill->ill_ip_mib); 972 } 973 974 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 975 ill->ill_ip_mib = NULL; 976 } 977 if (ill->ill_icmp6_mib != NULL) { 978 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 979 ill->ill_icmp6_mib); 980 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 981 ill->ill_icmp6_mib = NULL; 982 } 983 } 984 985 /* 986 * Concatenate together a physical address and a sap. 987 * 988 * Sap_lengths are interpreted as follows: 989 * sap_length == 0 ==> no sap 990 * sap_length > 0 ==> sap is at the head of the dlpi address 991 * sap_length < 0 ==> sap is at the tail of the dlpi address 992 */ 993 static void 994 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 995 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 996 { 997 uint16_t sap_addr = (uint16_t)sap_src; 998 999 if (sap_length == 0) { 1000 if (phys_src == NULL) 1001 bzero(dst, phys_length); 1002 else 1003 bcopy(phys_src, dst, phys_length); 1004 } else if (sap_length < 0) { 1005 if (phys_src == NULL) 1006 bzero(dst, phys_length); 1007 else 1008 bcopy(phys_src, dst, phys_length); 1009 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1010 } else { 1011 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1012 if (phys_src == NULL) 1013 bzero((char *)dst + sap_length, phys_length); 1014 else 1015 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1016 } 1017 } 1018 1019 /* 1020 * Generate a dl_unitdata_req mblk for the device and address given. 1021 * addr_length is the length of the physical portion of the address. 1022 * If addr is NULL include an all zero address of the specified length. 1023 * TRUE? In any case, addr_length is taken to be the entire length of the 1024 * dlpi address, including the absolute value of sap_length. 1025 */ 1026 mblk_t * 1027 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1028 t_scalar_t sap_length) 1029 { 1030 dl_unitdata_req_t *dlur; 1031 mblk_t *mp; 1032 t_scalar_t abs_sap_length; /* absolute value */ 1033 1034 abs_sap_length = ABS(sap_length); 1035 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1036 DL_UNITDATA_REQ); 1037 if (mp == NULL) 1038 return (NULL); 1039 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1040 /* HACK: accomodate incompatible DLPI drivers */ 1041 if (addr_length == 8) 1042 addr_length = 6; 1043 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1044 dlur->dl_dest_addr_offset = sizeof (*dlur); 1045 dlur->dl_priority.dl_min = 0; 1046 dlur->dl_priority.dl_max = 0; 1047 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1048 (uchar_t *)&dlur[1]); 1049 return (mp); 1050 } 1051 1052 /* 1053 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1054 * Return an error if we already have 1 or more ioctls in progress. 1055 * This is used only for non-exclusive ioctls. Currently this is used 1056 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1057 * and thus need to use ipsq_pending_mp_add. 1058 */ 1059 boolean_t 1060 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1061 { 1062 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1063 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1064 /* 1065 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1066 */ 1067 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1068 (add_mp->b_datap->db_type == M_IOCTL)); 1069 1070 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1071 /* 1072 * Return error if the conn has started closing. The conn 1073 * could have finished cleaning up the pending mp list, 1074 * If so we should not add another mp to the list negating 1075 * the cleanup. 1076 */ 1077 if (connp->conn_state_flags & CONN_CLOSING) 1078 return (B_FALSE); 1079 /* 1080 * Add the pending mp to the head of the list, chained by b_next. 1081 * Note down the conn on which the ioctl request came, in b_prev. 1082 * This will be used to later get the conn, when we get a response 1083 * on the ill queue, from some other module (typically arp) 1084 */ 1085 add_mp->b_next = (void *)ill->ill_pending_mp; 1086 add_mp->b_queue = CONNP_TO_WQ(connp); 1087 ill->ill_pending_mp = add_mp; 1088 if (connp != NULL) 1089 connp->conn_oper_pending_ill = ill; 1090 return (B_TRUE); 1091 } 1092 1093 /* 1094 * Retrieve the ill_pending_mp and return it. We have to walk the list 1095 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1096 */ 1097 mblk_t * 1098 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1099 { 1100 mblk_t *prev = NULL; 1101 mblk_t *curr = NULL; 1102 uint_t id; 1103 conn_t *connp; 1104 1105 /* 1106 * When the conn closes, conn_ioctl_cleanup needs to clean 1107 * up the pending mp, but it does not know the ioc_id and 1108 * passes in a zero for it. 1109 */ 1110 mutex_enter(&ill->ill_lock); 1111 if (ioc_id != 0) 1112 *connpp = NULL; 1113 1114 /* Search the list for the appropriate ioctl based on ioc_id */ 1115 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1116 prev = curr, curr = curr->b_next) { 1117 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1118 connp = Q_TO_CONN(curr->b_queue); 1119 /* Match based on the ioc_id or based on the conn */ 1120 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1121 break; 1122 } 1123 1124 if (curr != NULL) { 1125 /* Unlink the mblk from the pending mp list */ 1126 if (prev != NULL) { 1127 prev->b_next = curr->b_next; 1128 } else { 1129 ASSERT(ill->ill_pending_mp == curr); 1130 ill->ill_pending_mp = curr->b_next; 1131 } 1132 1133 /* 1134 * conn refcnt must have been bumped up at the start of 1135 * the ioctl. So we can safely access the conn. 1136 */ 1137 ASSERT(CONN_Q(curr->b_queue)); 1138 *connpp = Q_TO_CONN(curr->b_queue); 1139 curr->b_next = NULL; 1140 curr->b_queue = NULL; 1141 } 1142 1143 mutex_exit(&ill->ill_lock); 1144 1145 return (curr); 1146 } 1147 1148 /* 1149 * Add the pending mp to the list. There can be only 1 pending mp 1150 * in the list. Any exclusive ioctl that needs to wait for a response 1151 * from another module or driver needs to use this function to set 1152 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1153 * the other module/driver. This is also used while waiting for the 1154 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1155 */ 1156 boolean_t 1157 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1158 int waitfor) 1159 { 1160 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1161 1162 ASSERT(IAM_WRITER_IPIF(ipif)); 1163 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1164 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1165 ASSERT(ipsq->ipsq_pending_mp == NULL); 1166 /* 1167 * The caller may be using a different ipif than the one passed into 1168 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1169 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1170 * that `ipsq_current_ipif == ipif'. 1171 */ 1172 ASSERT(ipsq->ipsq_current_ipif != NULL); 1173 1174 /* 1175 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1176 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1177 */ 1178 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1179 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1180 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1181 1182 if (connp != NULL) { 1183 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1184 /* 1185 * Return error if the conn has started closing. The conn 1186 * could have finished cleaning up the pending mp list, 1187 * If so we should not add another mp to the list negating 1188 * the cleanup. 1189 */ 1190 if (connp->conn_state_flags & CONN_CLOSING) 1191 return (B_FALSE); 1192 } 1193 mutex_enter(&ipsq->ipsq_lock); 1194 ipsq->ipsq_pending_ipif = ipif; 1195 /* 1196 * Note down the queue in b_queue. This will be returned by 1197 * ipsq_pending_mp_get. Caller will then use these values to restart 1198 * the processing 1199 */ 1200 add_mp->b_next = NULL; 1201 add_mp->b_queue = q; 1202 ipsq->ipsq_pending_mp = add_mp; 1203 ipsq->ipsq_waitfor = waitfor; 1204 1205 if (connp != NULL) 1206 connp->conn_oper_pending_ill = ipif->ipif_ill; 1207 mutex_exit(&ipsq->ipsq_lock); 1208 return (B_TRUE); 1209 } 1210 1211 /* 1212 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1213 * queued in the list. 1214 */ 1215 mblk_t * 1216 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1217 { 1218 mblk_t *curr = NULL; 1219 1220 mutex_enter(&ipsq->ipsq_lock); 1221 *connpp = NULL; 1222 if (ipsq->ipsq_pending_mp == NULL) { 1223 mutex_exit(&ipsq->ipsq_lock); 1224 return (NULL); 1225 } 1226 1227 /* There can be only 1 such excl message */ 1228 curr = ipsq->ipsq_pending_mp; 1229 ASSERT(curr != NULL && curr->b_next == NULL); 1230 ipsq->ipsq_pending_ipif = NULL; 1231 ipsq->ipsq_pending_mp = NULL; 1232 ipsq->ipsq_waitfor = 0; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 1235 if (CONN_Q(curr->b_queue)) { 1236 /* 1237 * This mp did a refhold on the conn, at the start of the ioctl. 1238 * So we can safely return a pointer to the conn to the caller. 1239 */ 1240 *connpp = Q_TO_CONN(curr->b_queue); 1241 } else { 1242 *connpp = NULL; 1243 } 1244 curr->b_next = NULL; 1245 curr->b_prev = NULL; 1246 return (curr); 1247 } 1248 1249 /* 1250 * Cleanup the ioctl mp queued in ipsq_pending_mp 1251 * - Called in the ill_delete path 1252 * - Called in the M_ERROR or M_HANGUP path on the ill. 1253 * - Called in the conn close path. 1254 */ 1255 boolean_t 1256 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1257 { 1258 mblk_t *mp; 1259 ipsq_t *ipsq; 1260 queue_t *q; 1261 ipif_t *ipif; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 ipsq = ill->ill_phyint->phyint_ipsq; 1265 mutex_enter(&ipsq->ipsq_lock); 1266 /* 1267 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1268 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1269 * even if it is meant for another ill, since we have to enqueue 1270 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1271 * If connp is non-null we are called from the conn close path. 1272 */ 1273 mp = ipsq->ipsq_pending_mp; 1274 if (mp == NULL || (connp != NULL && 1275 mp->b_queue != CONNP_TO_WQ(connp))) { 1276 mutex_exit(&ipsq->ipsq_lock); 1277 return (B_FALSE); 1278 } 1279 /* Now remove from the ipsq_pending_mp */ 1280 ipsq->ipsq_pending_mp = NULL; 1281 q = mp->b_queue; 1282 mp->b_next = NULL; 1283 mp->b_prev = NULL; 1284 mp->b_queue = NULL; 1285 1286 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1287 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1288 if (ill->ill_move_in_progress) { 1289 ILL_CLEAR_MOVE(ill); 1290 } else if (ill->ill_up_ipifs) { 1291 ill_group_cleanup(ill); 1292 } 1293 1294 ipif = ipsq->ipsq_pending_ipif; 1295 ipsq->ipsq_pending_ipif = NULL; 1296 ipsq->ipsq_waitfor = 0; 1297 ipsq->ipsq_current_ipif = NULL; 1298 ipsq->ipsq_current_ioctl = 0; 1299 ipsq->ipsq_current_done = B_TRUE; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 } 1554 1555 /* ARGSUSED */ 1556 void 1557 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1558 { 1559 ill_t *ill = q->q_ptr; 1560 ipif_t *ipif; 1561 1562 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1563 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1564 ipif_non_duplicate(ipif); 1565 ipif_down_tail(ipif); 1566 } 1567 freemsg(mp); 1568 ipsq_current_finish(ipsq); 1569 } 1570 1571 /* 1572 * ill_down_start is called when we want to down this ill and bring it up again 1573 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1574 * all interfaces, but don't tear down any plumbing. 1575 */ 1576 boolean_t 1577 ill_down_start(queue_t *q, mblk_t *mp) 1578 { 1579 ill_t *ill = q->q_ptr; 1580 ipif_t *ipif; 1581 1582 ASSERT(IAM_WRITER_ILL(ill)); 1583 1584 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1585 (void) ipif_down(ipif, NULL, NULL); 1586 1587 ill_down(ill); 1588 1589 (void) ipsq_pending_mp_cleanup(ill, NULL); 1590 1591 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1592 1593 /* 1594 * Atomically test and add the pending mp if references are active. 1595 */ 1596 mutex_enter(&ill->ill_lock); 1597 if (!ill_is_quiescent(ill)) { 1598 /* call cannot fail since `conn_t *' argument is NULL */ 1599 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1600 mp, ILL_DOWN); 1601 mutex_exit(&ill->ill_lock); 1602 return (B_FALSE); 1603 } 1604 mutex_exit(&ill->ill_lock); 1605 return (B_TRUE); 1606 } 1607 1608 static void 1609 ill_down(ill_t *ill) 1610 { 1611 ip_stack_t *ipst = ill->ill_ipst; 1612 1613 /* Blow off any IREs dependent on this ILL. */ 1614 ire_walk(ill_downi, (char *)ill, ipst); 1615 1616 /* Remove any conn_*_ill depending on this ill */ 1617 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1618 1619 if (ill->ill_group != NULL) { 1620 illgrp_delete(ill); 1621 } 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * ip_newroute creates IRE_CACHE with ire_stq coming from 1635 * interface X and ipif coming from interface Y, if interface 1636 * X and Y are part of the same IPMP group. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 /* 1742 * Do so only if capabilities are still unknown. 1743 */ 1744 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1745 return; 1746 1747 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1748 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1749 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1750 } 1751 1752 void 1753 ill_capability_reset(ill_t *ill) 1754 { 1755 mblk_t *sc_mp = NULL; 1756 mblk_t *tmp; 1757 1758 /* 1759 * Note here that we reset the state to UNKNOWN, and later send 1760 * down the DL_CAPABILITY_REQ without first setting the state to 1761 * INPROGRESS. We do this in order to distinguish the 1762 * DL_CAPABILITY_ACK response which may come back in response to 1763 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1764 * also handle the case where the driver doesn't send us back 1765 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1766 * requires the state to be in UNKNOWN anyway. In any case, all 1767 * features are turned off until the state reaches IDS_OK. 1768 */ 1769 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1770 ill->ill_capab_reneg = B_FALSE; 1771 1772 /* 1773 * Disable sub-capabilities and request a list of sub-capability 1774 * messages which will be sent down to the driver. Each handler 1775 * allocates the corresponding dl_capability_sub_t inside an 1776 * mblk, and links it to the existing sc_mp mblk, or return it 1777 * as sc_mp if it's the first sub-capability (the passed in 1778 * sc_mp is NULL). Upon returning from all capability handlers, 1779 * sc_mp will be pulled-up, before passing it downstream. 1780 */ 1781 ill_capability_mdt_reset(ill, &sc_mp); 1782 ill_capability_hcksum_reset(ill, &sc_mp); 1783 ill_capability_zerocopy_reset(ill, &sc_mp); 1784 ill_capability_ipsec_reset(ill, &sc_mp); 1785 ill_capability_dls_reset(ill, &sc_mp); 1786 ill_capability_lso_reset(ill, &sc_mp); 1787 1788 /* Nothing to send down in order to disable the capabilities? */ 1789 if (sc_mp == NULL) 1790 return; 1791 1792 tmp = msgpullup(sc_mp, -1); 1793 freemsg(sc_mp); 1794 if ((sc_mp = tmp) == NULL) { 1795 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1796 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1797 return; 1798 } 1799 1800 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1801 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1802 } 1803 1804 /* 1805 * Request or set new-style hardware capabilities supported by DLS provider. 1806 */ 1807 static void 1808 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1809 { 1810 mblk_t *mp; 1811 dl_capability_req_t *capb; 1812 size_t size = 0; 1813 uint8_t *ptr; 1814 1815 if (reqp != NULL) 1816 size = MBLKL(reqp); 1817 1818 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1819 if (mp == NULL) { 1820 freemsg(reqp); 1821 return; 1822 } 1823 ptr = mp->b_rptr; 1824 1825 capb = (dl_capability_req_t *)ptr; 1826 ptr += sizeof (dl_capability_req_t); 1827 1828 if (reqp != NULL) { 1829 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1830 capb->dl_sub_length = size; 1831 bcopy(reqp->b_rptr, ptr, size); 1832 ptr += size; 1833 mp->b_cont = reqp->b_cont; 1834 freeb(reqp); 1835 } 1836 ASSERT(ptr == mp->b_wptr); 1837 1838 ill_dlpi_send(ill, mp); 1839 } 1840 1841 static void 1842 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1843 { 1844 dl_capab_id_t *id_ic; 1845 uint_t sub_dl_cap = outers->dl_cap; 1846 dl_capability_sub_t *inners; 1847 uint8_t *capend; 1848 1849 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1850 1851 /* 1852 * Note: range checks here are not absolutely sufficient to 1853 * make us robust against malformed messages sent by drivers; 1854 * this is in keeping with the rest of IP's dlpi handling. 1855 * (Remember, it's coming from something else in the kernel 1856 * address space) 1857 */ 1858 1859 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1860 if (capend > mp->b_wptr) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: " 1862 "malformed sub-capability too long for mblk"); 1863 return; 1864 } 1865 1866 id_ic = (dl_capab_id_t *)(outers + 1); 1867 1868 if (outers->dl_length < sizeof (*id_ic) || 1869 (inners = &id_ic->id_subcap, 1870 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1872 "encapsulated capab type %d too long for mblk", 1873 inners->dl_cap); 1874 return; 1875 } 1876 1877 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1878 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1879 "isn't as expected; pass-thru module(s) detected, " 1880 "discarding capability\n", inners->dl_cap)); 1881 return; 1882 } 1883 1884 /* Process the encapsulated sub-capability */ 1885 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1886 } 1887 1888 /* 1889 * Process Multidata Transmit capability negotiation ack received from a 1890 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1891 * DL_CAPABILITY_ACK message. 1892 */ 1893 static void 1894 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 mblk_t *nmp = NULL; 1897 dl_capability_req_t *oc; 1898 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1899 ill_mdt_capab_t **ill_mdt_capab; 1900 uint_t sub_dl_cap = isub->dl_cap; 1901 uint8_t *capend; 1902 1903 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1904 1905 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1906 1907 /* 1908 * Note: range checks here are not absolutely sufficient to 1909 * make us robust against malformed messages sent by drivers; 1910 * this is in keeping with the rest of IP's dlpi handling. 1911 * (Remember, it's coming from something else in the kernel 1912 * address space) 1913 */ 1914 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 1922 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1923 1924 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1925 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1926 "unsupported MDT sub-capability (version %d, expected %d)", 1927 mdt_ic->mdt_version, MDT_VERSION_2); 1928 return; 1929 } 1930 1931 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1932 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1933 "capability isn't as expected; pass-thru module(s) " 1934 "detected, discarding capability\n")); 1935 return; 1936 } 1937 1938 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1939 1940 if (*ill_mdt_capab == NULL) { 1941 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1942 KM_NOSLEEP); 1943 1944 if (*ill_mdt_capab == NULL) { 1945 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1946 "could not enable MDT version %d " 1947 "for %s (ENOMEM)\n", MDT_VERSION_2, 1948 ill->ill_name); 1949 return; 1950 } 1951 } 1952 1953 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1954 "MDT version %d (%d bytes leading, %d bytes trailing " 1955 "header spaces, %d max pld bufs, %d span limit)\n", 1956 ill->ill_name, MDT_VERSION_2, 1957 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1958 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1959 1960 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1961 (*ill_mdt_capab)->ill_mdt_on = 1; 1962 /* 1963 * Round the following values to the nearest 32-bit; ULP 1964 * may further adjust them to accomodate for additional 1965 * protocol headers. We pass these values to ULP during 1966 * bind time. 1967 */ 1968 (*ill_mdt_capab)->ill_mdt_hdr_head = 1969 roundup(mdt_ic->mdt_hdr_head, 4); 1970 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1971 roundup(mdt_ic->mdt_hdr_tail, 4); 1972 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1973 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1974 1975 ill->ill_capabilities |= ILL_CAPAB_MDT; 1976 } else { 1977 uint_t size; 1978 uchar_t *rptr; 1979 1980 size = sizeof (dl_capability_req_t) + 1981 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1982 1983 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT for %s (ENOMEM)\n", 1986 ill->ill_name); 1987 return; 1988 } 1989 1990 rptr = nmp->b_rptr; 1991 /* initialize dl_capability_req_t */ 1992 oc = (dl_capability_req_t *)nmp->b_rptr; 1993 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1994 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1995 sizeof (dl_capab_mdt_t); 1996 nmp->b_rptr += sizeof (dl_capability_req_t); 1997 1998 /* initialize dl_capability_sub_t */ 1999 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2000 nmp->b_rptr += sizeof (*isub); 2001 2002 /* initialize dl_capab_mdt_t */ 2003 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2004 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2005 2006 nmp->b_rptr = rptr; 2007 2008 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2009 "to enable MDT version %d\n", ill->ill_name, 2010 MDT_VERSION_2)); 2011 2012 /* set ENABLE flag */ 2013 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2014 2015 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2016 ill_dlpi_send(ill, nmp); 2017 } 2018 } 2019 2020 static void 2021 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2022 { 2023 mblk_t *mp; 2024 dl_capab_mdt_t *mdt_subcap; 2025 dl_capability_sub_t *dl_subcap; 2026 int size; 2027 2028 if (!ILL_MDT_CAPABLE(ill)) 2029 return; 2030 2031 ASSERT(ill->ill_mdt_capab != NULL); 2032 /* 2033 * Clear the capability flag for MDT but retain the ill_mdt_capab 2034 * structure since it's possible that another thread is still 2035 * referring to it. The structure only gets deallocated when 2036 * we destroy the ill. 2037 */ 2038 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2039 2040 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2041 2042 mp = allocb(size, BPRI_HI); 2043 if (mp == NULL) { 2044 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2045 "request to disable MDT\n")); 2046 return; 2047 } 2048 2049 mp->b_wptr = mp->b_rptr + size; 2050 2051 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2052 dl_subcap->dl_cap = DL_CAPAB_MDT; 2053 dl_subcap->dl_length = sizeof (*mdt_subcap); 2054 2055 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2056 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2057 mdt_subcap->mdt_flags = 0; 2058 mdt_subcap->mdt_hdr_head = 0; 2059 mdt_subcap->mdt_hdr_tail = 0; 2060 2061 if (*sc_mp != NULL) 2062 linkb(*sc_mp, mp); 2063 else 2064 *sc_mp = mp; 2065 } 2066 2067 /* 2068 * Send a DL_NOTIFY_REQ to the specified ill to enable 2069 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2070 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2071 * acceleration. 2072 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2073 */ 2074 static boolean_t 2075 ill_enable_promisc_notify(ill_t *ill) 2076 { 2077 mblk_t *mp; 2078 dl_notify_req_t *req; 2079 2080 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2081 2082 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2083 if (mp == NULL) 2084 return (B_FALSE); 2085 2086 req = (dl_notify_req_t *)mp->b_rptr; 2087 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2088 DL_NOTE_PROMISC_OFF_PHYS; 2089 2090 ill_dlpi_send(ill, mp); 2091 2092 return (B_TRUE); 2093 } 2094 2095 /* 2096 * Allocate an IPsec capability request which will be filled by our 2097 * caller to turn on support for one or more algorithms. 2098 */ 2099 static mblk_t * 2100 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2101 { 2102 mblk_t *nmp; 2103 dl_capability_req_t *ocap; 2104 dl_capab_ipsec_t *ocip; 2105 dl_capab_ipsec_t *icip; 2106 uint8_t *ptr; 2107 icip = (dl_capab_ipsec_t *)(isub + 1); 2108 2109 /* 2110 * The first time around, we send a DL_NOTIFY_REQ to enable 2111 * PROMISC_ON/OFF notification from the provider. We need to 2112 * do this before enabling the algorithms to avoid leakage of 2113 * cleartext packets. 2114 */ 2115 2116 if (!ill_enable_promisc_notify(ill)) 2117 return (NULL); 2118 2119 /* 2120 * Allocate new mblk which will contain a new capability 2121 * request to enable the capabilities. 2122 */ 2123 2124 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2125 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2126 if (nmp == NULL) 2127 return (NULL); 2128 2129 ptr = nmp->b_rptr; 2130 2131 /* initialize dl_capability_req_t */ 2132 ocap = (dl_capability_req_t *)ptr; 2133 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2134 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2135 ptr += sizeof (dl_capability_req_t); 2136 2137 /* initialize dl_capability_sub_t */ 2138 bcopy(isub, ptr, sizeof (*isub)); 2139 ptr += sizeof (*isub); 2140 2141 /* initialize dl_capab_ipsec_t */ 2142 ocip = (dl_capab_ipsec_t *)ptr; 2143 bcopy(icip, ocip, sizeof (*icip)); 2144 2145 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2146 return (nmp); 2147 } 2148 2149 /* 2150 * Process an IPsec capability negotiation ack received from a DLS Provider. 2151 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2152 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2153 */ 2154 static void 2155 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2156 { 2157 dl_capab_ipsec_t *icip; 2158 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2159 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2160 uint_t cipher, nciphers; 2161 mblk_t *nmp; 2162 uint_t alg_len; 2163 boolean_t need_sadb_dump; 2164 uint_t sub_dl_cap = isub->dl_cap; 2165 ill_ipsec_capab_t **ill_capab; 2166 uint64_t ill_capab_flag; 2167 uint8_t *capend, *ciphend; 2168 boolean_t sadb_resync; 2169 2170 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2171 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2172 2173 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2174 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2175 ill_capab_flag = ILL_CAPAB_AH; 2176 } else { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2178 ill_capab_flag = ILL_CAPAB_ESP; 2179 } 2180 2181 /* 2182 * If the ill capability structure exists, then this incoming 2183 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2184 * If this is so, then we'd need to resynchronize the SADB 2185 * after re-enabling the offloaded ciphers. 2186 */ 2187 sadb_resync = (*ill_capab != NULL); 2188 2189 /* 2190 * Note: range checks here are not absolutely sufficient to 2191 * make us robust against malformed messages sent by drivers; 2192 * this is in keeping with the rest of IP's dlpi handling. 2193 * (Remember, it's coming from something else in the kernel 2194 * address space) 2195 */ 2196 2197 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2198 if (capend > mp->b_wptr) { 2199 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2200 "malformed sub-capability too long for mblk"); 2201 return; 2202 } 2203 2204 /* 2205 * There are two types of acks we process here: 2206 * 1. acks in reply to a (first form) generic capability req 2207 * (no ENABLE flag set) 2208 * 2. acks in reply to a ENABLE capability req. 2209 * (ENABLE flag set) 2210 * 2211 * We process the subcapability passed as argument as follows: 2212 * 1 do initializations 2213 * 1.1 initialize nmp = NULL 2214 * 1.2 set need_sadb_dump to B_FALSE 2215 * 2 for each cipher in subcapability: 2216 * 2.1 if ENABLE flag is set: 2217 * 2.1.1 update per-ill ipsec capabilities info 2218 * 2.1.2 set need_sadb_dump to B_TRUE 2219 * 2.2 if ENABLE flag is not set: 2220 * 2.2.1 if nmp is NULL: 2221 * 2.2.1.1 allocate and initialize nmp 2222 * 2.2.1.2 init current pos in nmp 2223 * 2.2.2 copy current cipher to current pos in nmp 2224 * 2.2.3 set ENABLE flag in nmp 2225 * 2.2.4 update current pos 2226 * 3 if nmp is not equal to NULL, send enable request 2227 * 3.1 send capability request 2228 * 4 if need_sadb_dump is B_TRUE 2229 * 4.1 enable promiscuous on/off notifications 2230 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2231 * AH or ESP SA's to interface. 2232 */ 2233 2234 nmp = NULL; 2235 oalg = NULL; 2236 need_sadb_dump = B_FALSE; 2237 icip = (dl_capab_ipsec_t *)(isub + 1); 2238 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2239 2240 nciphers = icip->cip_nciphers; 2241 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2242 2243 if (ciphend > capend) { 2244 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2245 "too many ciphers for sub-capability len"); 2246 return; 2247 } 2248 2249 for (cipher = 0; cipher < nciphers; cipher++) { 2250 alg_len = sizeof (dl_capab_ipsec_alg_t); 2251 2252 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2253 /* 2254 * TBD: when we provide a way to disable capabilities 2255 * from above, need to manage the request-pending state 2256 * and fail if we were not expecting this ACK. 2257 */ 2258 IPSECHW_DEBUG(IPSECHW_CAPAB, 2259 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2260 2261 /* 2262 * Update IPsec capabilities for this ill 2263 */ 2264 2265 if (*ill_capab == NULL) { 2266 IPSECHW_DEBUG(IPSECHW_CAPAB, 2267 ("ill_capability_ipsec_ack: " 2268 "allocating ipsec_capab for ill\n")); 2269 *ill_capab = ill_ipsec_capab_alloc(); 2270 2271 if (*ill_capab == NULL) { 2272 cmn_err(CE_WARN, 2273 "ill_capability_ipsec_ack: " 2274 "could not enable IPsec Hardware " 2275 "acceleration for %s (ENOMEM)\n", 2276 ill->ill_name); 2277 return; 2278 } 2279 } 2280 2281 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2282 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2283 2284 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2285 cmn_err(CE_WARN, 2286 "ill_capability_ipsec_ack: " 2287 "malformed IPsec algorithm id %d", 2288 ialg->alg_prim); 2289 continue; 2290 } 2291 2292 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2293 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2294 ialg->alg_prim); 2295 } else { 2296 ipsec_capab_algparm_t *alp; 2297 2298 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2299 ialg->alg_prim); 2300 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2301 ialg->alg_prim)) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "no space for IPsec alg id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 alp = &((*ill_capab)->encr_algparm[ 2309 ialg->alg_prim]); 2310 alp->minkeylen = ialg->alg_minbits; 2311 alp->maxkeylen = ialg->alg_maxbits; 2312 } 2313 ill->ill_capabilities |= ill_capab_flag; 2314 /* 2315 * indicate that a capability was enabled, which 2316 * will be used below to kick off a SADB dump 2317 * to the ill. 2318 */ 2319 need_sadb_dump = B_TRUE; 2320 } else { 2321 IPSECHW_DEBUG(IPSECHW_CAPAB, 2322 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2323 ialg->alg_prim)); 2324 2325 if (nmp == NULL) { 2326 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2327 if (nmp == NULL) { 2328 /* 2329 * Sending the PROMISC_ON/OFF 2330 * notification request failed. 2331 * We cannot enable the algorithms 2332 * since the Provider will not 2333 * notify IP of promiscous mode 2334 * changes, which could lead 2335 * to leakage of packets. 2336 */ 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "could not enable IPsec Hardware " 2340 "acceleration for %s (ENOMEM)\n", 2341 ill->ill_name); 2342 return; 2343 } 2344 /* ptr to current output alg specifier */ 2345 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2346 } 2347 2348 /* 2349 * Copy current alg specifier, set ENABLE 2350 * flag, and advance to next output alg. 2351 * For now we enable all IPsec capabilities. 2352 */ 2353 ASSERT(oalg != NULL); 2354 bcopy(ialg, oalg, alg_len); 2355 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2356 nmp->b_wptr += alg_len; 2357 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2358 } 2359 2360 /* move to next input algorithm specifier */ 2361 ialg = (dl_capab_ipsec_alg_t *) 2362 ((char *)ialg + alg_len); 2363 } 2364 2365 if (nmp != NULL) 2366 /* 2367 * nmp points to a DL_CAPABILITY_REQ message to enable 2368 * IPsec hardware acceleration. 2369 */ 2370 ill_dlpi_send(ill, nmp); 2371 2372 if (need_sadb_dump) 2373 /* 2374 * An acknowledgement corresponding to a request to 2375 * enable acceleration was received, notify SADB. 2376 */ 2377 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2378 } 2379 2380 /* 2381 * Given an mblk with enough space in it, create sub-capability entries for 2382 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2383 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2384 * in preparation for the reset the DL_CAPABILITY_REQ message. 2385 */ 2386 static void 2387 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2388 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2389 { 2390 dl_capab_ipsec_t *oipsec; 2391 dl_capab_ipsec_alg_t *oalg; 2392 dl_capability_sub_t *dl_subcap; 2393 int i, k; 2394 2395 ASSERT(nciphers > 0); 2396 ASSERT(ill_cap != NULL); 2397 ASSERT(mp != NULL); 2398 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2399 2400 /* dl_capability_sub_t for "stype" */ 2401 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2402 dl_subcap->dl_cap = stype; 2403 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2404 mp->b_wptr += sizeof (dl_capability_sub_t); 2405 2406 /* dl_capab_ipsec_t for "stype" */ 2407 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2408 oipsec->cip_version = 1; 2409 oipsec->cip_nciphers = nciphers; 2410 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2411 2412 /* create entries for "stype" AUTH ciphers */ 2413 for (i = 0; i < ill_cap->algs_size; i++) { 2414 for (k = 0; k < BITSPERBYTE; k++) { 2415 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2416 continue; 2417 2418 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2419 bzero((void *)oalg, sizeof (*oalg)); 2420 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2421 oalg->alg_prim = k + (BITSPERBYTE * i); 2422 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2423 } 2424 } 2425 /* create entries for "stype" ENCR ciphers */ 2426 for (i = 0; i < ill_cap->algs_size; i++) { 2427 for (k = 0; k < BITSPERBYTE; k++) { 2428 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2429 continue; 2430 2431 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2432 bzero((void *)oalg, sizeof (*oalg)); 2433 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2434 oalg->alg_prim = k + (BITSPERBYTE * i); 2435 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Macro to count number of 1s in a byte (8-bit word). The total count is 2442 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2443 * POPC instruction, but our macro is more flexible for an arbitrary length 2444 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2445 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2446 * stays that way, we can reduce the number of iterations required. 2447 */ 2448 #define COUNT_1S(val, sum) { \ 2449 uint8_t x = val & 0xff; \ 2450 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2451 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2452 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2453 } 2454 2455 /* ARGSUSED */ 2456 static void 2457 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2458 { 2459 mblk_t *mp; 2460 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2461 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2462 uint64_t ill_capabilities = ill->ill_capabilities; 2463 int ah_cnt = 0, esp_cnt = 0; 2464 int ah_len = 0, esp_len = 0; 2465 int i, size = 0; 2466 2467 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2468 return; 2469 2470 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2471 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2472 2473 /* Find out the number of ciphers for AH */ 2474 if (cap_ah != NULL) { 2475 for (i = 0; i < cap_ah->algs_size; i++) { 2476 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2477 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2478 } 2479 if (ah_cnt > 0) { 2480 size += sizeof (dl_capability_sub_t) + 2481 sizeof (dl_capab_ipsec_t); 2482 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2483 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2484 size += ah_len; 2485 } 2486 } 2487 2488 /* Find out the number of ciphers for ESP */ 2489 if (cap_esp != NULL) { 2490 for (i = 0; i < cap_esp->algs_size; i++) { 2491 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2492 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2493 } 2494 if (esp_cnt > 0) { 2495 size += sizeof (dl_capability_sub_t) + 2496 sizeof (dl_capab_ipsec_t); 2497 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2498 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2499 size += esp_len; 2500 } 2501 } 2502 2503 if (size == 0) { 2504 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2505 "there's nothing to reset\n")); 2506 return; 2507 } 2508 2509 mp = allocb(size, BPRI_HI); 2510 if (mp == NULL) { 2511 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2512 "request to disable IPSEC Hardware Acceleration\n")); 2513 return; 2514 } 2515 2516 /* 2517 * Clear the capability flags for IPsec HA but retain the ill 2518 * capability structures since it's possible that another thread 2519 * is still referring to them. The structures only get deallocated 2520 * when we destroy the ill. 2521 * 2522 * Various places check the flags to see if the ill is capable of 2523 * hardware acceleration, and by clearing them we ensure that new 2524 * outbound IPsec packets are sent down encrypted. 2525 */ 2526 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2527 2528 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2529 if (ah_cnt > 0) { 2530 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2531 cap_ah, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2536 if (esp_cnt > 0) { 2537 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2538 cap_esp, mp); 2539 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2540 } 2541 2542 /* 2543 * At this point we've composed a bunch of sub-capabilities to be 2544 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2545 * by the caller. Upon receiving this reset message, the driver 2546 * must stop inbound decryption (by destroying all inbound SAs) 2547 * and let the corresponding packets come in encrypted. 2548 */ 2549 2550 if (*sc_mp != NULL) 2551 linkb(*sc_mp, mp); 2552 else 2553 *sc_mp = mp; 2554 } 2555 2556 static void 2557 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2558 boolean_t encapsulated) 2559 { 2560 boolean_t legacy = B_FALSE; 2561 2562 /* 2563 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2564 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2565 * instructed the driver to disable its advertised capabilities, 2566 * so there's no point in accepting any response at this moment. 2567 */ 2568 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2569 return; 2570 2571 /* 2572 * Note that only the following two sub-capabilities may be 2573 * considered as "legacy", since their original definitions 2574 * do not incorporate the dl_mid_t module ID token, and hence 2575 * may require the use of the wrapper sub-capability. 2576 */ 2577 switch (subp->dl_cap) { 2578 case DL_CAPAB_IPSEC_AH: 2579 case DL_CAPAB_IPSEC_ESP: 2580 legacy = B_TRUE; 2581 break; 2582 } 2583 2584 /* 2585 * For legacy sub-capabilities which don't incorporate a queue_t 2586 * pointer in their structures, discard them if we detect that 2587 * there are intermediate modules in between IP and the driver. 2588 */ 2589 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2590 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2591 "%d discarded; %d module(s) present below IP\n", 2592 subp->dl_cap, ill->ill_lmod_cnt)); 2593 return; 2594 } 2595 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 ill_capability_ipsec_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_MDT: 2602 ill_capability_mdt_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_HCKSUM: 2605 ill_capability_hcksum_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_ZEROCOPY: 2608 ill_capability_zerocopy_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_POLL: 2611 if (!SOFT_RINGS_ENABLED()) 2612 ill_capability_dls_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_SOFT_RING: 2615 if (SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_LSO: 2619 ill_capability_lso_ack(ill, mp, subp); 2620 break; 2621 default: 2622 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2623 subp->dl_cap)); 2624 } 2625 } 2626 2627 /* 2628 * As part of negotiating polling capability, the driver tells us 2629 * the default (or normal) blanking interval and packet threshold 2630 * (the receive timer fires if blanking interval is reached or 2631 * the packet threshold is reached). 2632 * 2633 * As part of manipulating the polling interval, we always use our 2634 * estimated interval (avg service time * number of packets queued 2635 * on the squeue) but we try to blank for a minimum of 2636 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2637 * packet threshold during this time. When we are not in polling mode 2638 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2639 * rr_min_blank_ratio but up the packet cnt by a ratio of 2640 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2641 * possible although for a shorter interval. 2642 */ 2643 #define RR_MAX_BLANK_RATIO 20 2644 #define RR_MIN_BLANK_RATIO 10 2645 #define RR_MAX_PKT_CNT_RATIO 3 2646 #define RR_MIN_PKT_CNT_RATIO 3 2647 2648 /* 2649 * These can be tuned via /etc/system. 2650 */ 2651 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2652 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2653 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2654 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2655 2656 static mac_resource_handle_t 2657 ill_ring_add(void *arg, mac_resource_t *mrp) 2658 { 2659 ill_t *ill = (ill_t *)arg; 2660 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2661 ill_rx_ring_t *rx_ring; 2662 int ip_rx_index; 2663 2664 ASSERT(mrp != NULL); 2665 if (mrp->mr_type != MAC_RX_FIFO) { 2666 return (NULL); 2667 } 2668 ASSERT(ill != NULL); 2669 ASSERT(ill->ill_dls_capab != NULL); 2670 2671 mutex_enter(&ill->ill_lock); 2672 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2673 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2674 ASSERT(rx_ring != NULL); 2675 2676 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2677 time_t normal_blank_time = 2678 mrfp->mrf_normal_blank_time; 2679 uint_t normal_pkt_cnt = 2680 mrfp->mrf_normal_pkt_count; 2681 2682 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2683 2684 rx_ring->rr_blank = mrfp->mrf_blank; 2685 rx_ring->rr_handle = mrfp->mrf_arg; 2686 rx_ring->rr_ill = ill; 2687 rx_ring->rr_normal_blank_time = normal_blank_time; 2688 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2689 2690 rx_ring->rr_max_blank_time = 2691 normal_blank_time * rr_max_blank_ratio; 2692 rx_ring->rr_min_blank_time = 2693 normal_blank_time * rr_min_blank_ratio; 2694 rx_ring->rr_max_pkt_cnt = 2695 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2696 rx_ring->rr_min_pkt_cnt = 2697 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2698 2699 rx_ring->rr_ring_state = ILL_RING_INUSE; 2700 mutex_exit(&ill->ill_lock); 2701 2702 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2703 (int), ip_rx_index); 2704 return ((mac_resource_handle_t)rx_ring); 2705 } 2706 } 2707 2708 /* 2709 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2710 * we have devices which can overwhelm this limit, ILL_MAX_RING 2711 * should be made configurable. Meanwhile it cause no panic because 2712 * driver will pass ip_input a NULL handle which will make 2713 * IP allocate the default squeue and Polling mode will not 2714 * be used for this ring. 2715 */ 2716 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2717 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2718 2719 mutex_exit(&ill->ill_lock); 2720 return (NULL); 2721 } 2722 2723 static boolean_t 2724 ill_capability_dls_init(ill_t *ill) 2725 { 2726 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2727 conn_t *connp; 2728 size_t sz; 2729 ip_stack_t *ipst = ill->ill_ipst; 2730 2731 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2732 if (ill_dls == NULL) { 2733 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2734 "soft_ring enabled for ill=%s (%p) but data " 2735 "structs uninitialized\n", ill->ill_name, 2736 (void *)ill); 2737 } 2738 return (B_TRUE); 2739 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2740 if (ill_dls == NULL) { 2741 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2742 "polling enabled for ill=%s (%p) but data " 2743 "structs uninitialized\n", ill->ill_name, 2744 (void *)ill); 2745 } 2746 return (B_TRUE); 2747 } 2748 2749 if (ill_dls != NULL) { 2750 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2751 /* Soft_Ring or polling is being re-enabled */ 2752 2753 connp = ill_dls->ill_unbind_conn; 2754 ASSERT(rx_ring != NULL); 2755 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2756 bzero((void *)rx_ring, 2757 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2758 ill_dls->ill_ring_tbl = rx_ring; 2759 ill_dls->ill_unbind_conn = connp; 2760 return (B_TRUE); 2761 } 2762 2763 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2764 ipst->ips_netstack)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_dls_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_dls == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2773 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2781 ill->ill_dls_capab = ill_dls; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_dls_disable: disable soft_ring and/or polling 2788 * capability. Since any of the rings might already be in use, need 2789 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2790 * direct calls if necessary. 2791 */ 2792 static void 2793 ill_capability_dls_disable(ill_t *ill) 2794 { 2795 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2798 ip_squeue_clean_all(ill); 2799 ill_dls->ill_tx = NULL; 2800 ill_dls->ill_tx_handle = NULL; 2801 ill_dls->ill_dls_change_status = NULL; 2802 ill_dls->ill_dls_bind = NULL; 2803 ill_dls->ill_dls_unbind = NULL; 2804 } 2805 2806 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2807 } 2808 2809 static void 2810 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2811 dl_capability_sub_t *isub) 2812 { 2813 uint_t size; 2814 uchar_t *rptr; 2815 dl_capab_dls_t dls, *odls; 2816 ill_dls_capab_t *ill_dls; 2817 mblk_t *nmp = NULL; 2818 dl_capability_req_t *ocap; 2819 uint_t sub_dl_cap = isub->dl_cap; 2820 2821 if (!ill_capability_dls_init(ill)) 2822 return; 2823 ill_dls = ill->ill_dls_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)idls, (void *)&dls, 2827 sizeof (dl_capab_dls_t)); 2828 2829 /* Get the tx function and handle from dld */ 2830 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2831 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2832 2833 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2834 ill_dls->ill_dls_change_status = 2835 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2836 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2837 ill_dls->ill_dls_unbind = 2838 (ip_dls_unbind_t)dls.dls_ring_unbind; 2839 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2840 } 2841 2842 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2843 isub->dl_length; 2844 2845 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2846 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2847 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2848 ill->ill_name, (void *)ill); 2849 return; 2850 } 2851 2852 /* initialize dl_capability_req_t */ 2853 rptr = nmp->b_rptr; 2854 ocap = (dl_capability_req_t *)rptr; 2855 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2856 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2857 rptr += sizeof (dl_capability_req_t); 2858 2859 /* initialize dl_capability_sub_t */ 2860 bcopy(isub, rptr, sizeof (*isub)); 2861 rptr += sizeof (*isub); 2862 2863 odls = (dl_capab_dls_t *)rptr; 2864 rptr += sizeof (dl_capab_dls_t); 2865 2866 /* initialize dl_capab_dls_t to be sent down */ 2867 dls.dls_rx_handle = (uintptr_t)ill; 2868 dls.dls_rx = (uintptr_t)ip_input; 2869 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2870 2871 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2872 dls.dls_ring_cnt = ip_soft_rings_cnt; 2873 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2874 dls.dls_flags = SOFT_RING_ENABLE; 2875 } else { 2876 dls.dls_flags = POLL_ENABLE; 2877 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2878 "to enable polling\n", ill->ill_name)); 2879 } 2880 bcopy((void *)&dls, (void *)odls, 2881 sizeof (dl_capab_dls_t)); 2882 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2883 /* 2884 * nmp points to a DL_CAPABILITY_REQ message to 2885 * enable either soft_ring or polling 2886 */ 2887 ill_dlpi_send(ill, nmp); 2888 } 2889 2890 static void 2891 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2892 { 2893 mblk_t *mp; 2894 dl_capab_dls_t *idls; 2895 dl_capability_sub_t *dl_subcap; 2896 int size; 2897 2898 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2899 return; 2900 2901 ASSERT(ill->ill_dls_capab != NULL); 2902 2903 size = sizeof (*dl_subcap) + sizeof (*idls); 2904 2905 mp = allocb(size, BPRI_HI); 2906 if (mp == NULL) { 2907 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2908 "request to disable soft_ring\n")); 2909 return; 2910 } 2911 2912 mp->b_wptr = mp->b_rptr + size; 2913 2914 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2915 dl_subcap->dl_length = sizeof (*idls); 2916 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2917 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2918 else 2919 dl_subcap->dl_cap = DL_CAPAB_POLL; 2920 2921 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2922 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2923 idls->dls_flags = SOFT_RING_DISABLE; 2924 else 2925 idls->dls_flags = POLL_DISABLE; 2926 2927 if (*sc_mp != NULL) 2928 linkb(*sc_mp, mp); 2929 else 2930 *sc_mp = mp; 2931 } 2932 2933 /* 2934 * Process a soft_ring/poll capability negotiation ack received 2935 * from a DLS Provider.isub must point to the sub-capability 2936 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2937 */ 2938 static void 2939 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2940 { 2941 dl_capab_dls_t *idls; 2942 uint_t sub_dl_cap = isub->dl_cap; 2943 uint8_t *capend; 2944 2945 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2946 sub_dl_cap == DL_CAPAB_POLL); 2947 2948 if (ill->ill_isv6) 2949 return; 2950 2951 /* 2952 * Note: range checks here are not absolutely sufficient to 2953 * make us robust against malformed messages sent by drivers; 2954 * this is in keeping with the rest of IP's dlpi handling. 2955 * (Remember, it's coming from something else in the kernel 2956 * address space) 2957 */ 2958 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2959 if (capend > mp->b_wptr) { 2960 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2961 "malformed sub-capability too long for mblk"); 2962 return; 2963 } 2964 2965 /* 2966 * There are two types of acks we process here: 2967 * 1. acks in reply to a (first form) generic capability req 2968 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2969 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2970 * capability req. 2971 */ 2972 idls = (dl_capab_dls_t *)(isub + 1); 2973 2974 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2975 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2976 "capability isn't as expected; pass-thru " 2977 "module(s) detected, discarding capability\n")); 2978 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2979 /* 2980 * This is a capability renegotitation case. 2981 * The interface better be unusable at this 2982 * point other wise bad things will happen 2983 * if we disable direct calls on a running 2984 * and up interface. 2985 */ 2986 ill_capability_dls_disable(ill); 2987 } 2988 return; 2989 } 2990 2991 switch (idls->dls_flags) { 2992 default: 2993 /* Disable if unknown flag */ 2994 case SOFT_RING_DISABLE: 2995 case POLL_DISABLE: 2996 ill_capability_dls_disable(ill); 2997 break; 2998 case SOFT_RING_CAPABLE: 2999 case POLL_CAPABLE: 3000 /* 3001 * If the capability was already enabled, its safe 3002 * to disable it first to get rid of stale information 3003 * and then start enabling it again. 3004 */ 3005 ill_capability_dls_disable(ill); 3006 ill_capability_dls_capable(ill, idls, isub); 3007 break; 3008 case SOFT_RING_ENABLE: 3009 case POLL_ENABLE: 3010 mutex_enter(&ill->ill_lock); 3011 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3012 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3013 ASSERT(ill->ill_dls_capab != NULL); 3014 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3015 } 3016 if (sub_dl_cap == DL_CAPAB_POLL && 3017 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3018 ASSERT(ill->ill_dls_capab != NULL); 3019 ill->ill_capabilities |= ILL_CAPAB_POLL; 3020 ip1dbg(("ill_capability_dls_ack: interface %s " 3021 "has enabled polling\n", ill->ill_name)); 3022 } 3023 mutex_exit(&ill->ill_lock); 3024 break; 3025 } 3026 } 3027 3028 /* 3029 * Process a hardware checksum offload capability negotiation ack received 3030 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3031 * of a DL_CAPABILITY_ACK message. 3032 */ 3033 static void 3034 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3035 { 3036 dl_capability_req_t *ocap; 3037 dl_capab_hcksum_t *ihck, *ohck; 3038 ill_hcksum_capab_t **ill_hcksum; 3039 mblk_t *nmp = NULL; 3040 uint_t sub_dl_cap = isub->dl_cap; 3041 uint8_t *capend; 3042 3043 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3044 3045 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3046 3047 /* 3048 * Note: range checks here are not absolutely sufficient to 3049 * make us robust against malformed messages sent by drivers; 3050 * this is in keeping with the rest of IP's dlpi handling. 3051 * (Remember, it's coming from something else in the kernel 3052 * address space) 3053 */ 3054 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3055 if (capend > mp->b_wptr) { 3056 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3057 "malformed sub-capability too long for mblk"); 3058 return; 3059 } 3060 3061 /* 3062 * There are two types of acks we process here: 3063 * 1. acks in reply to a (first form) generic capability req 3064 * (no ENABLE flag set) 3065 * 2. acks in reply to a ENABLE capability req. 3066 * (ENABLE flag set) 3067 */ 3068 ihck = (dl_capab_hcksum_t *)(isub + 1); 3069 3070 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3071 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3072 "unsupported hardware checksum " 3073 "sub-capability (version %d, expected %d)", 3074 ihck->hcksum_version, HCKSUM_VERSION_1); 3075 return; 3076 } 3077 3078 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3079 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3080 "checksum capability isn't as expected; pass-thru " 3081 "module(s) detected, discarding capability\n")); 3082 return; 3083 } 3084 3085 #define CURR_HCKSUM_CAPAB \ 3086 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3087 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3088 3089 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3090 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3091 /* do ENABLE processing */ 3092 if (*ill_hcksum == NULL) { 3093 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3094 KM_NOSLEEP); 3095 3096 if (*ill_hcksum == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hcksum version %d " 3099 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3100 ill->ill_name); 3101 return; 3102 } 3103 } 3104 3105 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3106 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3107 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3108 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3109 "has enabled hardware checksumming\n ", 3110 ill->ill_name)); 3111 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3112 /* 3113 * Enabling hardware checksum offload 3114 * Currently IP supports {TCP,UDP}/IPv4 3115 * partial and full cksum offload and 3116 * IPv4 header checksum offload. 3117 * Allocate new mblk which will 3118 * contain a new capability request 3119 * to enable hardware checksum offload. 3120 */ 3121 uint_t size; 3122 uchar_t *rptr; 3123 3124 size = sizeof (dl_capability_req_t) + 3125 sizeof (dl_capability_sub_t) + isub->dl_length; 3126 3127 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3128 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3129 "could not enable hardware cksum for %s (ENOMEM)\n", 3130 ill->ill_name); 3131 return; 3132 } 3133 3134 rptr = nmp->b_rptr; 3135 /* initialize dl_capability_req_t */ 3136 ocap = (dl_capability_req_t *)nmp->b_rptr; 3137 ocap->dl_sub_offset = 3138 sizeof (dl_capability_req_t); 3139 ocap->dl_sub_length = 3140 sizeof (dl_capability_sub_t) + 3141 isub->dl_length; 3142 nmp->b_rptr += sizeof (dl_capability_req_t); 3143 3144 /* initialize dl_capability_sub_t */ 3145 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3146 nmp->b_rptr += sizeof (*isub); 3147 3148 /* initialize dl_capab_hcksum_t */ 3149 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3150 bcopy(ihck, ohck, sizeof (*ihck)); 3151 3152 nmp->b_rptr = rptr; 3153 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3154 3155 /* Set ENABLE flag */ 3156 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3157 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3158 3159 /* 3160 * nmp points to a DL_CAPABILITY_REQ message to enable 3161 * hardware checksum acceleration. 3162 */ 3163 ill_dlpi_send(ill, nmp); 3164 } else { 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3166 "advertised %x hardware checksum capability flags\n", 3167 ill->ill_name, ihck->hcksum_txflags)); 3168 } 3169 } 3170 3171 static void 3172 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3173 { 3174 mblk_t *mp; 3175 dl_capab_hcksum_t *hck_subcap; 3176 dl_capability_sub_t *dl_subcap; 3177 int size; 3178 3179 if (!ILL_HCKSUM_CAPABLE(ill)) 3180 return; 3181 3182 ASSERT(ill->ill_hcksum_capab != NULL); 3183 /* 3184 * Clear the capability flag for hardware checksum offload but 3185 * retain the ill_hcksum_capab structure since it's possible that 3186 * another thread is still referring to it. The structure only 3187 * gets deallocated when we destroy the ill. 3188 */ 3189 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3190 3191 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3192 3193 mp = allocb(size, BPRI_HI); 3194 if (mp == NULL) { 3195 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3196 "request to disable hardware checksum offload\n")); 3197 return; 3198 } 3199 3200 mp->b_wptr = mp->b_rptr + size; 3201 3202 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3203 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3204 dl_subcap->dl_length = sizeof (*hck_subcap); 3205 3206 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3207 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3208 hck_subcap->hcksum_txflags = 0; 3209 3210 if (*sc_mp != NULL) 3211 linkb(*sc_mp, mp); 3212 else 3213 *sc_mp = mp; 3214 } 3215 3216 static void 3217 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3218 { 3219 mblk_t *nmp = NULL; 3220 dl_capability_req_t *oc; 3221 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3222 ill_zerocopy_capab_t **ill_zerocopy_capab; 3223 uint_t sub_dl_cap = isub->dl_cap; 3224 uint8_t *capend; 3225 3226 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3227 3228 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3229 3230 /* 3231 * Note: range checks here are not absolutely sufficient to 3232 * make us robust against malformed messages sent by drivers; 3233 * this is in keeping with the rest of IP's dlpi handling. 3234 * (Remember, it's coming from something else in the kernel 3235 * address space) 3236 */ 3237 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3238 if (capend > mp->b_wptr) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "malformed sub-capability too long for mblk"); 3241 return; 3242 } 3243 3244 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3245 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3246 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3247 "unsupported ZEROCOPY sub-capability (version %d, " 3248 "expected %d)", zc_ic->zerocopy_version, 3249 ZEROCOPY_VERSION_1); 3250 return; 3251 } 3252 3253 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3254 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3255 "capability isn't as expected; pass-thru module(s) " 3256 "detected, discarding capability\n")); 3257 return; 3258 } 3259 3260 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3261 if (*ill_zerocopy_capab == NULL) { 3262 *ill_zerocopy_capab = 3263 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3264 KM_NOSLEEP); 3265 3266 if (*ill_zerocopy_capab == NULL) { 3267 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3268 "could not enable Zero-copy version %d " 3269 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3270 ill->ill_name); 3271 return; 3272 } 3273 } 3274 3275 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3276 "supports Zero-copy version %d\n", ill->ill_name, 3277 ZEROCOPY_VERSION_1)); 3278 3279 (*ill_zerocopy_capab)->ill_zerocopy_version = 3280 zc_ic->zerocopy_version; 3281 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3282 zc_ic->zerocopy_flags; 3283 3284 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3285 } else { 3286 uint_t size; 3287 uchar_t *rptr; 3288 3289 size = sizeof (dl_capability_req_t) + 3290 sizeof (dl_capability_sub_t) + 3291 sizeof (dl_capab_zerocopy_t); 3292 3293 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3294 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3295 "could not enable zerocopy for %s (ENOMEM)\n", 3296 ill->ill_name); 3297 return; 3298 } 3299 3300 rptr = nmp->b_rptr; 3301 /* initialize dl_capability_req_t */ 3302 oc = (dl_capability_req_t *)rptr; 3303 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3304 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3305 sizeof (dl_capab_zerocopy_t); 3306 rptr += sizeof (dl_capability_req_t); 3307 3308 /* initialize dl_capability_sub_t */ 3309 bcopy(isub, rptr, sizeof (*isub)); 3310 rptr += sizeof (*isub); 3311 3312 /* initialize dl_capab_zerocopy_t */ 3313 zc_oc = (dl_capab_zerocopy_t *)rptr; 3314 *zc_oc = *zc_ic; 3315 3316 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3317 "to enable zero-copy version %d\n", ill->ill_name, 3318 ZEROCOPY_VERSION_1)); 3319 3320 /* set VMSAFE_MEM flag */ 3321 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3322 3323 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3324 ill_dlpi_send(ill, nmp); 3325 } 3326 } 3327 3328 static void 3329 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3330 { 3331 mblk_t *mp; 3332 dl_capab_zerocopy_t *zerocopy_subcap; 3333 dl_capability_sub_t *dl_subcap; 3334 int size; 3335 3336 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3337 return; 3338 3339 ASSERT(ill->ill_zerocopy_capab != NULL); 3340 /* 3341 * Clear the capability flag for Zero-copy but retain the 3342 * ill_zerocopy_capab structure since it's possible that another 3343 * thread is still referring to it. The structure only gets 3344 * deallocated when we destroy the ill. 3345 */ 3346 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3347 3348 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3349 3350 mp = allocb(size, BPRI_HI); 3351 if (mp == NULL) { 3352 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3353 "request to disable Zero-copy\n")); 3354 return; 3355 } 3356 3357 mp->b_wptr = mp->b_rptr + size; 3358 3359 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3360 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3361 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3362 3363 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3364 zerocopy_subcap->zerocopy_version = 3365 ill->ill_zerocopy_capab->ill_zerocopy_version; 3366 zerocopy_subcap->zerocopy_flags = 0; 3367 3368 if (*sc_mp != NULL) 3369 linkb(*sc_mp, mp); 3370 else 3371 *sc_mp = mp; 3372 } 3373 3374 /* 3375 * Process Large Segment Offload capability negotiation ack received from a 3376 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3377 * DL_CAPABILITY_ACK message. 3378 */ 3379 static void 3380 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3381 { 3382 mblk_t *nmp = NULL; 3383 dl_capability_req_t *oc; 3384 dl_capab_lso_t *lso_ic, *lso_oc; 3385 ill_lso_capab_t **ill_lso_capab; 3386 uint_t sub_dl_cap = isub->dl_cap; 3387 uint8_t *capend; 3388 3389 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3390 3391 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3392 3393 /* 3394 * Note: range checks here are not absolutely sufficient to 3395 * make us robust against malformed messages sent by drivers; 3396 * this is in keeping with the rest of IP's dlpi handling. 3397 * (Remember, it's coming from something else in the kernel 3398 * address space) 3399 */ 3400 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3401 if (capend > mp->b_wptr) { 3402 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3403 "malformed sub-capability too long for mblk"); 3404 return; 3405 } 3406 3407 lso_ic = (dl_capab_lso_t *)(isub + 1); 3408 3409 if (lso_ic->lso_version != LSO_VERSION_1) { 3410 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3411 "unsupported LSO sub-capability (version %d, expected %d)", 3412 lso_ic->lso_version, LSO_VERSION_1); 3413 return; 3414 } 3415 3416 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3417 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3418 "capability isn't as expected; pass-thru module(s) " 3419 "detected, discarding capability\n")); 3420 return; 3421 } 3422 3423 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3424 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3425 if (*ill_lso_capab == NULL) { 3426 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3427 KM_NOSLEEP); 3428 3429 if (*ill_lso_capab == NULL) { 3430 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3431 "could not enable LSO version %d " 3432 "for %s (ENOMEM)\n", LSO_VERSION_1, 3433 ill->ill_name); 3434 return; 3435 } 3436 } 3437 3438 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3439 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3440 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3441 ill->ill_capabilities |= ILL_CAPAB_LSO; 3442 3443 ip1dbg(("ill_capability_lso_ack: interface %s " 3444 "has enabled LSO\n ", ill->ill_name)); 3445 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3446 uint_t size; 3447 uchar_t *rptr; 3448 3449 size = sizeof (dl_capability_req_t) + 3450 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3451 3452 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3453 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3454 "could not enable LSO for %s (ENOMEM)\n", 3455 ill->ill_name); 3456 return; 3457 } 3458 3459 rptr = nmp->b_rptr; 3460 /* initialize dl_capability_req_t */ 3461 oc = (dl_capability_req_t *)nmp->b_rptr; 3462 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3463 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3464 sizeof (dl_capab_lso_t); 3465 nmp->b_rptr += sizeof (dl_capability_req_t); 3466 3467 /* initialize dl_capability_sub_t */ 3468 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3469 nmp->b_rptr += sizeof (*isub); 3470 3471 /* initialize dl_capab_lso_t */ 3472 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3473 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3474 3475 nmp->b_rptr = rptr; 3476 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3477 3478 /* set ENABLE flag */ 3479 lso_oc->lso_flags |= LSO_TX_ENABLE; 3480 3481 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3482 ill_dlpi_send(ill, nmp); 3483 } else { 3484 ip1dbg(("ill_capability_lso_ack: interface %s has " 3485 "advertised %x LSO capability flags\n", 3486 ill->ill_name, lso_ic->lso_flags)); 3487 } 3488 } 3489 3490 static void 3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3492 { 3493 mblk_t *mp; 3494 dl_capab_lso_t *lso_subcap; 3495 dl_capability_sub_t *dl_subcap; 3496 int size; 3497 3498 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3499 return; 3500 3501 ASSERT(ill->ill_lso_capab != NULL); 3502 /* 3503 * Clear the capability flag for LSO but retain the 3504 * ill_lso_capab structure since it's possible that another 3505 * thread is still referring to it. The structure only gets 3506 * deallocated when we destroy the ill. 3507 */ 3508 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3509 3510 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3511 3512 mp = allocb(size, BPRI_HI); 3513 if (mp == NULL) { 3514 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3515 "request to disable LSO\n")); 3516 return; 3517 } 3518 3519 mp->b_wptr = mp->b_rptr + size; 3520 3521 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3522 dl_subcap->dl_cap = DL_CAPAB_LSO; 3523 dl_subcap->dl_length = sizeof (*lso_subcap); 3524 3525 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3526 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3527 lso_subcap->lso_flags = 0; 3528 3529 if (*sc_mp != NULL) 3530 linkb(*sc_mp, mp); 3531 else 3532 *sc_mp = mp; 3533 } 3534 3535 /* 3536 * Consume a new-style hardware capabilities negotiation ack. 3537 * Called from ip_rput_dlpi_writer(). 3538 */ 3539 void 3540 ill_capability_ack(ill_t *ill, mblk_t *mp) 3541 { 3542 dl_capability_ack_t *capp; 3543 dl_capability_sub_t *subp, *endp; 3544 3545 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3546 ill->ill_dlpi_capab_state = IDS_OK; 3547 3548 capp = (dl_capability_ack_t *)mp->b_rptr; 3549 3550 if (capp->dl_sub_length == 0) 3551 /* no new-style capabilities */ 3552 return; 3553 3554 /* make sure the driver supplied correct dl_sub_length */ 3555 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3556 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3557 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3558 return; 3559 } 3560 3561 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3562 /* 3563 * There are sub-capabilities. Process the ones we know about. 3564 * Loop until we don't have room for another sub-cap header.. 3565 */ 3566 for (subp = SC(capp, capp->dl_sub_offset), 3567 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3568 subp <= endp; 3569 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3570 3571 switch (subp->dl_cap) { 3572 case DL_CAPAB_ID_WRAPPER: 3573 ill_capability_id_ack(ill, mp, subp); 3574 break; 3575 default: 3576 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3577 break; 3578 } 3579 } 3580 #undef SC 3581 } 3582 3583 /* 3584 * This routine is called to scan the fragmentation reassembly table for 3585 * the specified ILL for any packets that are starting to smell. 3586 * dead_interval is the maximum time in seconds that will be tolerated. It 3587 * will either be the value specified in ip_g_frag_timeout, or zero if the 3588 * ILL is shutting down and it is time to blow everything off. 3589 * 3590 * It returns the number of seconds (as a time_t) that the next frag timer 3591 * should be scheduled for, 0 meaning that the timer doesn't need to be 3592 * re-started. Note that the method of calculating next_timeout isn't 3593 * entirely accurate since time will flow between the time we grab 3594 * current_time and the time we schedule the next timeout. This isn't a 3595 * big problem since this is the timer for sending an ICMP reassembly time 3596 * exceeded messages, and it doesn't have to be exactly accurate. 3597 * 3598 * This function is 3599 * sometimes called as writer, although this is not required. 3600 */ 3601 time_t 3602 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3603 { 3604 ipfb_t *ipfb; 3605 ipfb_t *endp; 3606 ipf_t *ipf; 3607 ipf_t *ipfnext; 3608 mblk_t *mp; 3609 time_t current_time = gethrestime_sec(); 3610 time_t next_timeout = 0; 3611 uint32_t hdr_length; 3612 mblk_t *send_icmp_head; 3613 mblk_t *send_icmp_head_v6; 3614 zoneid_t zoneid; 3615 ip_stack_t *ipst = ill->ill_ipst; 3616 3617 ipfb = ill->ill_frag_hash_tbl; 3618 if (ipfb == NULL) 3619 return (B_FALSE); 3620 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3621 /* Walk the frag hash table. */ 3622 for (; ipfb < endp; ipfb++) { 3623 send_icmp_head = NULL; 3624 send_icmp_head_v6 = NULL; 3625 mutex_enter(&ipfb->ipfb_lock); 3626 while ((ipf = ipfb->ipfb_ipf) != 0) { 3627 time_t frag_time = current_time - ipf->ipf_timestamp; 3628 time_t frag_timeout; 3629 3630 if (frag_time < dead_interval) { 3631 /* 3632 * There are some outstanding fragments 3633 * that will timeout later. Make note of 3634 * the time so that we can reschedule the 3635 * next timeout appropriately. 3636 */ 3637 frag_timeout = dead_interval - frag_time; 3638 if (next_timeout == 0 || 3639 frag_timeout < next_timeout) { 3640 next_timeout = frag_timeout; 3641 } 3642 break; 3643 } 3644 /* Time's up. Get it out of here. */ 3645 hdr_length = ipf->ipf_nf_hdr_len; 3646 ipfnext = ipf->ipf_hash_next; 3647 if (ipfnext) 3648 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3649 *ipf->ipf_ptphn = ipfnext; 3650 mp = ipf->ipf_mp->b_cont; 3651 for (; mp; mp = mp->b_cont) { 3652 /* Extra points for neatness. */ 3653 IP_REASS_SET_START(mp, 0); 3654 IP_REASS_SET_END(mp, 0); 3655 } 3656 mp = ipf->ipf_mp->b_cont; 3657 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3658 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3659 ipfb->ipfb_count -= ipf->ipf_count; 3660 ASSERT(ipfb->ipfb_frag_pkts > 0); 3661 ipfb->ipfb_frag_pkts--; 3662 /* 3663 * We do not send any icmp message from here because 3664 * we currently are holding the ipfb_lock for this 3665 * hash chain. If we try and send any icmp messages 3666 * from here we may end up via a put back into ip 3667 * trying to get the same lock, causing a recursive 3668 * mutex panic. Instead we build a list and send all 3669 * the icmp messages after we have dropped the lock. 3670 */ 3671 if (ill->ill_isv6) { 3672 if (hdr_length != 0) { 3673 mp->b_next = send_icmp_head_v6; 3674 send_icmp_head_v6 = mp; 3675 } else { 3676 freemsg(mp); 3677 } 3678 } else { 3679 if (hdr_length != 0) { 3680 mp->b_next = send_icmp_head; 3681 send_icmp_head = mp; 3682 } else { 3683 freemsg(mp); 3684 } 3685 } 3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3687 freeb(ipf->ipf_mp); 3688 } 3689 mutex_exit(&ipfb->ipfb_lock); 3690 /* 3691 * Now need to send any icmp messages that we delayed from 3692 * above. 3693 */ 3694 while (send_icmp_head_v6 != NULL) { 3695 ip6_t *ip6h; 3696 3697 mp = send_icmp_head_v6; 3698 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3699 mp->b_next = NULL; 3700 if (mp->b_datap->db_type == M_CTL) 3701 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3702 else 3703 ip6h = (ip6_t *)mp->b_rptr; 3704 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3705 ill, ipst); 3706 if (zoneid == ALL_ZONES) { 3707 freemsg(mp); 3708 } else { 3709 icmp_time_exceeded_v6(ill->ill_wq, mp, 3710 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3711 B_FALSE, zoneid, ipst); 3712 } 3713 } 3714 while (send_icmp_head != NULL) { 3715 ipaddr_t dst; 3716 3717 mp = send_icmp_head; 3718 send_icmp_head = send_icmp_head->b_next; 3719 mp->b_next = NULL; 3720 3721 if (mp->b_datap->db_type == M_CTL) 3722 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3723 else 3724 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3725 3726 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3727 if (zoneid == ALL_ZONES) { 3728 freemsg(mp); 3729 } else { 3730 icmp_time_exceeded(ill->ill_wq, mp, 3731 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3732 ipst); 3733 } 3734 } 3735 } 3736 /* 3737 * A non-dying ILL will use the return value to decide whether to 3738 * restart the frag timer, and for how long. 3739 */ 3740 return (next_timeout); 3741 } 3742 3743 /* 3744 * This routine is called when the approximate count of mblk memory used 3745 * for the specified ILL has exceeded max_count. 3746 */ 3747 void 3748 ill_frag_prune(ill_t *ill, uint_t max_count) 3749 { 3750 ipfb_t *ipfb; 3751 ipf_t *ipf; 3752 size_t count; 3753 3754 /* 3755 * If we are here within ip_min_frag_prune_time msecs remove 3756 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3757 * ill_frag_free_num_pkts. 3758 */ 3759 mutex_enter(&ill->ill_lock); 3760 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3761 (ip_min_frag_prune_time != 0 ? 3762 ip_min_frag_prune_time : msec_per_tick)) { 3763 3764 ill->ill_frag_free_num_pkts++; 3765 3766 } else { 3767 ill->ill_frag_free_num_pkts = 0; 3768 } 3769 ill->ill_last_frag_clean_time = lbolt; 3770 mutex_exit(&ill->ill_lock); 3771 3772 /* 3773 * free ill_frag_free_num_pkts oldest packets from each bucket. 3774 */ 3775 if (ill->ill_frag_free_num_pkts != 0) { 3776 int ix; 3777 3778 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3779 ipfb = &ill->ill_frag_hash_tbl[ix]; 3780 mutex_enter(&ipfb->ipfb_lock); 3781 if (ipfb->ipfb_ipf != NULL) { 3782 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3783 ill->ill_frag_free_num_pkts); 3784 } 3785 mutex_exit(&ipfb->ipfb_lock); 3786 } 3787 } 3788 /* 3789 * While the reassembly list for this ILL is too big, prune a fragment 3790 * queue by age, oldest first. 3791 */ 3792 while (ill->ill_frag_count > max_count) { 3793 int ix; 3794 ipfb_t *oipfb = NULL; 3795 uint_t oldest = UINT_MAX; 3796 3797 count = 0; 3798 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3799 ipfb = &ill->ill_frag_hash_tbl[ix]; 3800 mutex_enter(&ipfb->ipfb_lock); 3801 ipf = ipfb->ipfb_ipf; 3802 if (ipf != NULL && ipf->ipf_gen < oldest) { 3803 oldest = ipf->ipf_gen; 3804 oipfb = ipfb; 3805 } 3806 count += ipfb->ipfb_count; 3807 mutex_exit(&ipfb->ipfb_lock); 3808 } 3809 if (oipfb == NULL) 3810 break; 3811 3812 if (count <= max_count) 3813 return; /* Somebody beat us to it, nothing to do */ 3814 mutex_enter(&oipfb->ipfb_lock); 3815 ipf = oipfb->ipfb_ipf; 3816 if (ipf != NULL) { 3817 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3818 } 3819 mutex_exit(&oipfb->ipfb_lock); 3820 } 3821 } 3822 3823 /* 3824 * free 'free_cnt' fragmented packets starting at ipf. 3825 */ 3826 void 3827 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3828 { 3829 size_t count; 3830 mblk_t *mp; 3831 mblk_t *tmp; 3832 ipf_t **ipfp = ipf->ipf_ptphn; 3833 3834 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3835 ASSERT(ipfp != NULL); 3836 ASSERT(ipf != NULL); 3837 3838 while (ipf != NULL && free_cnt-- > 0) { 3839 count = ipf->ipf_count; 3840 mp = ipf->ipf_mp; 3841 ipf = ipf->ipf_hash_next; 3842 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3843 IP_REASS_SET_START(tmp, 0); 3844 IP_REASS_SET_END(tmp, 0); 3845 } 3846 atomic_add_32(&ill->ill_frag_count, -count); 3847 ASSERT(ipfb->ipfb_count >= count); 3848 ipfb->ipfb_count -= count; 3849 ASSERT(ipfb->ipfb_frag_pkts > 0); 3850 ipfb->ipfb_frag_pkts--; 3851 freemsg(mp); 3852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3853 } 3854 3855 if (ipf) 3856 ipf->ipf_ptphn = ipfp; 3857 ipfp[0] = ipf; 3858 } 3859 3860 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3861 "obsolete and may be removed in a future release of Solaris. Use " \ 3862 "ifconfig(1M) to manipulate the forwarding status of an interface." 3863 3864 /* 3865 * For obsolete per-interface forwarding configuration; 3866 * called in response to ND_GET. 3867 */ 3868 /* ARGSUSED */ 3869 static int 3870 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3871 { 3872 ill_t *ill = (ill_t *)cp; 3873 3874 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3875 3876 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3877 return (0); 3878 } 3879 3880 /* 3881 * For obsolete per-interface forwarding configuration; 3882 * called in response to ND_SET. 3883 */ 3884 /* ARGSUSED */ 3885 static int 3886 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3887 cred_t *ioc_cr) 3888 { 3889 long value; 3890 int retval; 3891 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3892 3893 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3894 3895 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3896 value < 0 || value > 1) { 3897 return (EINVAL); 3898 } 3899 3900 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3901 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (retval); 3904 } 3905 3906 /* 3907 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3908 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3909 * up RTS_IFINFO routing socket messages for each interface whose flags we 3910 * change. 3911 */ 3912 int 3913 ill_forward_set(ill_t *ill, boolean_t enable) 3914 { 3915 ill_group_t *illgrp; 3916 ip_stack_t *ipst = ill->ill_ipst; 3917 3918 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3919 3920 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3921 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3922 return (0); 3923 3924 if (IS_LOOPBACK(ill)) 3925 return (EINVAL); 3926 3927 /* 3928 * If the ill is in an IPMP group, set the forwarding policy on all 3929 * members of the group to the same value. 3930 */ 3931 illgrp = ill->ill_group; 3932 if (illgrp != NULL) { 3933 ill_t *tmp_ill; 3934 3935 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3936 tmp_ill = tmp_ill->ill_group_next) { 3937 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3938 (enable ? "Enabling" : "Disabling"), 3939 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3940 tmp_ill->ill_name)); 3941 mutex_enter(&tmp_ill->ill_lock); 3942 if (enable) 3943 tmp_ill->ill_flags |= ILLF_ROUTER; 3944 else 3945 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3946 mutex_exit(&tmp_ill->ill_lock); 3947 if (tmp_ill->ill_isv6) 3948 ill_set_nce_router_flags(tmp_ill, enable); 3949 /* Notify routing socket listeners of this change. */ 3950 ip_rts_ifmsg(tmp_ill->ill_ipif); 3951 } 3952 } else { 3953 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3954 (enable ? "Enabling" : "Disabling"), 3955 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3956 mutex_enter(&ill->ill_lock); 3957 if (enable) 3958 ill->ill_flags |= ILLF_ROUTER; 3959 else 3960 ill->ill_flags &= ~ILLF_ROUTER; 3961 mutex_exit(&ill->ill_lock); 3962 if (ill->ill_isv6) 3963 ill_set_nce_router_flags(ill, enable); 3964 /* Notify routing socket listeners of this change. */ 3965 ip_rts_ifmsg(ill->ill_ipif); 3966 } 3967 3968 return (0); 3969 } 3970 3971 /* 3972 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3973 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3974 * set or clear. 3975 */ 3976 static void 3977 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3978 { 3979 ipif_t *ipif; 3980 nce_t *nce; 3981 3982 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3983 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3984 if (nce != NULL) { 3985 mutex_enter(&nce->nce_lock); 3986 if (enable) 3987 nce->nce_flags |= NCE_F_ISROUTER; 3988 else 3989 nce->nce_flags &= ~NCE_F_ISROUTER; 3990 mutex_exit(&nce->nce_lock); 3991 NCE_REFRELE(nce); 3992 } 3993 } 3994 } 3995 3996 /* 3997 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3998 * for this ill. Make sure the v6/v4 question has been answered about this 3999 * ill. The creation of this ndd variable is only for backwards compatibility. 4000 * The preferred way to control per-interface IP forwarding is through the 4001 * ILLF_ROUTER interface flag. 4002 */ 4003 static int 4004 ill_set_ndd_name(ill_t *ill) 4005 { 4006 char *suffix; 4007 ip_stack_t *ipst = ill->ill_ipst; 4008 4009 ASSERT(IAM_WRITER_ILL(ill)); 4010 4011 if (ill->ill_isv6) 4012 suffix = ipv6_forward_suffix; 4013 else 4014 suffix = ipv4_forward_suffix; 4015 4016 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4017 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4018 /* 4019 * Copies over the '\0'. 4020 * Note that strlen(suffix) is always bounded. 4021 */ 4022 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4023 strlen(suffix) + 1); 4024 4025 /* 4026 * Use of the nd table requires holding the reader lock. 4027 * Modifying the nd table thru nd_load/nd_unload requires 4028 * the writer lock. 4029 */ 4030 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4031 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4032 nd_ill_forward_set, (caddr_t)ill)) { 4033 /* 4034 * If the nd_load failed, it only meant that it could not 4035 * allocate a new bunch of room for further NDD expansion. 4036 * Because of that, the ill_ndd_name will be set to 0, and 4037 * this interface is at the mercy of the global ip_forwarding 4038 * variable. 4039 */ 4040 rw_exit(&ipst->ips_ip_g_nd_lock); 4041 ill->ill_ndd_name = NULL; 4042 return (ENOMEM); 4043 } 4044 rw_exit(&ipst->ips_ip_g_nd_lock); 4045 return (0); 4046 } 4047 4048 /* 4049 * Intializes the context structure and returns the first ill in the list 4050 * cuurently start_list and end_list can have values: 4051 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4052 * IP_V4_G_HEAD Traverse IPV4 list only. 4053 * IP_V6_G_HEAD Traverse IPV6 list only. 4054 */ 4055 4056 /* 4057 * We don't check for CONDEMNED ills here. Caller must do that if 4058 * necessary under the ill lock. 4059 */ 4060 ill_t * 4061 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4062 ip_stack_t *ipst) 4063 { 4064 ill_if_t *ifp; 4065 ill_t *ill; 4066 avl_tree_t *avl_tree; 4067 4068 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4069 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4070 4071 /* 4072 * setup the lists to search 4073 */ 4074 if (end_list != MAX_G_HEADS) { 4075 ctx->ctx_current_list = start_list; 4076 ctx->ctx_last_list = end_list; 4077 } else { 4078 ctx->ctx_last_list = MAX_G_HEADS - 1; 4079 ctx->ctx_current_list = 0; 4080 } 4081 4082 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4083 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4084 if (ifp != (ill_if_t *) 4085 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4086 avl_tree = &ifp->illif_avl_by_ppa; 4087 ill = avl_first(avl_tree); 4088 /* 4089 * ill is guaranteed to be non NULL or ifp should have 4090 * not existed. 4091 */ 4092 ASSERT(ill != NULL); 4093 return (ill); 4094 } 4095 ctx->ctx_current_list++; 4096 } 4097 4098 return (NULL); 4099 } 4100 4101 /* 4102 * returns the next ill in the list. ill_first() must have been called 4103 * before calling ill_next() or bad things will happen. 4104 */ 4105 4106 /* 4107 * We don't check for CONDEMNED ills here. Caller must do that if 4108 * necessary under the ill lock. 4109 */ 4110 ill_t * 4111 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4112 { 4113 ill_if_t *ifp; 4114 ill_t *ill; 4115 ip_stack_t *ipst = lastill->ill_ipst; 4116 4117 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4118 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4119 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4120 AVL_AFTER)) != NULL) { 4121 return (ill); 4122 } 4123 4124 /* goto next ill_ifp in the list. */ 4125 ifp = lastill->ill_ifptr->illif_next; 4126 4127 /* make sure not at end of circular list */ 4128 while (ifp == 4129 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4130 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4131 return (NULL); 4132 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4133 } 4134 4135 return (avl_first(&ifp->illif_avl_by_ppa)); 4136 } 4137 4138 /* 4139 * Check interface name for correct format which is name+ppa. 4140 * name can contain characters and digits, the right most digits 4141 * make up the ppa number. use of octal is not allowed, name must contain 4142 * a ppa, return pointer to the start of ppa. 4143 * In case of error return NULL. 4144 */ 4145 static char * 4146 ill_get_ppa_ptr(char *name) 4147 { 4148 int namelen = mi_strlen(name); 4149 4150 int len = namelen; 4151 4152 name += len; 4153 while (len > 0) { 4154 name--; 4155 if (*name < '0' || *name > '9') 4156 break; 4157 len--; 4158 } 4159 4160 /* empty string, all digits, or no trailing digits */ 4161 if (len == 0 || len == (int)namelen) 4162 return (NULL); 4163 4164 name++; 4165 /* check for attempted use of octal */ 4166 if (*name == '0' && len != (int)namelen - 1) 4167 return (NULL); 4168 return (name); 4169 } 4170 4171 /* 4172 * use avl tree to locate the ill. 4173 */ 4174 static ill_t * 4175 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4176 ipsq_func_t func, int *error, ip_stack_t *ipst) 4177 { 4178 char *ppa_ptr = NULL; 4179 int len; 4180 uint_t ppa; 4181 ill_t *ill = NULL; 4182 ill_if_t *ifp; 4183 int list; 4184 ipsq_t *ipsq; 4185 4186 if (error != NULL) 4187 *error = 0; 4188 4189 /* 4190 * get ppa ptr 4191 */ 4192 if (isv6) 4193 list = IP_V6_G_HEAD; 4194 else 4195 list = IP_V4_G_HEAD; 4196 4197 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4198 if (error != NULL) 4199 *error = ENXIO; 4200 return (NULL); 4201 } 4202 4203 len = ppa_ptr - name + 1; 4204 4205 ppa = stoi(&ppa_ptr); 4206 4207 ifp = IP_VX_ILL_G_LIST(list, ipst); 4208 4209 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4210 /* 4211 * match is done on len - 1 as the name is not null 4212 * terminated it contains ppa in addition to the interface 4213 * name. 4214 */ 4215 if ((ifp->illif_name_len == len) && 4216 bcmp(ifp->illif_name, name, len - 1) == 0) { 4217 break; 4218 } else { 4219 ifp = ifp->illif_next; 4220 } 4221 } 4222 4223 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4224 /* 4225 * Even the interface type does not exist. 4226 */ 4227 if (error != NULL) 4228 *error = ENXIO; 4229 return (NULL); 4230 } 4231 4232 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4233 if (ill != NULL) { 4234 /* 4235 * The block comment at the start of ipif_down 4236 * explains the use of the macros used below 4237 */ 4238 GRAB_CONN_LOCK(q); 4239 mutex_enter(&ill->ill_lock); 4240 if (ILL_CAN_LOOKUP(ill)) { 4241 ill_refhold_locked(ill); 4242 mutex_exit(&ill->ill_lock); 4243 RELEASE_CONN_LOCK(q); 4244 return (ill); 4245 } else if (ILL_CAN_WAIT(ill, q)) { 4246 ipsq = ill->ill_phyint->phyint_ipsq; 4247 mutex_enter(&ipsq->ipsq_lock); 4248 mutex_exit(&ill->ill_lock); 4249 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4250 mutex_exit(&ipsq->ipsq_lock); 4251 RELEASE_CONN_LOCK(q); 4252 if (error != NULL) 4253 *error = EINPROGRESS; 4254 return (NULL); 4255 } 4256 mutex_exit(&ill->ill_lock); 4257 RELEASE_CONN_LOCK(q); 4258 } 4259 if (error != NULL) 4260 *error = ENXIO; 4261 return (NULL); 4262 } 4263 4264 /* 4265 * comparison function for use with avl. 4266 */ 4267 static int 4268 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4269 { 4270 uint_t ppa; 4271 uint_t ill_ppa; 4272 4273 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4274 4275 ppa = *((uint_t *)ppa_ptr); 4276 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4277 /* 4278 * We want the ill with the lowest ppa to be on the 4279 * top. 4280 */ 4281 if (ill_ppa < ppa) 4282 return (1); 4283 if (ill_ppa > ppa) 4284 return (-1); 4285 return (0); 4286 } 4287 4288 /* 4289 * remove an interface type from the global list. 4290 */ 4291 static void 4292 ill_delete_interface_type(ill_if_t *interface) 4293 { 4294 ASSERT(interface != NULL); 4295 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4296 4297 avl_destroy(&interface->illif_avl_by_ppa); 4298 if (interface->illif_ppa_arena != NULL) 4299 vmem_destroy(interface->illif_ppa_arena); 4300 4301 remque(interface); 4302 4303 mi_free(interface); 4304 } 4305 4306 /* 4307 * remove ill from the global list. 4308 */ 4309 static void 4310 ill_glist_delete(ill_t *ill) 4311 { 4312 hook_nic_event_int_t *info; 4313 ip_stack_t *ipst; 4314 4315 if (ill == NULL) 4316 return; 4317 ipst = ill->ill_ipst; 4318 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4319 4320 /* 4321 * If the ill was never inserted into the AVL tree 4322 * we skip the if branch. 4323 */ 4324 if (ill->ill_ifptr != NULL) { 4325 /* 4326 * remove from AVL tree and free ppa number 4327 */ 4328 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4329 4330 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4331 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4332 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4333 } 4334 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4335 ill_delete_interface_type(ill->ill_ifptr); 4336 } 4337 4338 /* 4339 * Indicate ill is no longer in the list. 4340 */ 4341 ill->ill_ifptr = NULL; 4342 ill->ill_name_length = 0; 4343 ill->ill_name[0] = '\0'; 4344 ill->ill_ppa = UINT_MAX; 4345 } 4346 4347 /* 4348 * Run the unplumb hook after the NIC has disappeared from being 4349 * visible so that attempts to revalidate its existance will fail. 4350 * 4351 * This needs to be run inside the ill_g_lock perimeter to ensure 4352 * that the ordering of delivered events to listeners matches the 4353 * order of them in the kernel. 4354 */ 4355 info = ill->ill_nic_event_info; 4356 if (info != NULL && info->hnei_event.hne_event == NE_DOWN) { 4357 mutex_enter(&ill->ill_lock); 4358 ill_nic_info_dispatch(ill); 4359 mutex_exit(&ill->ill_lock); 4360 } 4361 4362 /* Generate NE_UNPLUMB event for ill_name. */ 4363 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4364 ill->ill_name_length); 4365 4366 ill_phyint_free(ill); 4367 rw_exit(&ipst->ips_ill_g_lock); 4368 } 4369 4370 /* 4371 * allocate a ppa, if the number of plumbed interfaces of this type are 4372 * less than ill_no_arena do a linear search to find a unused ppa. 4373 * When the number goes beyond ill_no_arena switch to using an arena. 4374 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4375 * is the return value for an error condition, so allocation starts at one 4376 * and is decremented by one. 4377 */ 4378 static int 4379 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4380 { 4381 ill_t *tmp_ill; 4382 uint_t start, end; 4383 int ppa; 4384 4385 if (ifp->illif_ppa_arena == NULL && 4386 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4387 /* 4388 * Create an arena. 4389 */ 4390 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4391 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4392 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4393 /* allocate what has already been assigned */ 4394 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4395 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4396 tmp_ill, AVL_AFTER)) { 4397 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4398 1, /* size */ 4399 1, /* align/quantum */ 4400 0, /* phase */ 4401 0, /* nocross */ 4402 /* minaddr */ 4403 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4404 /* maxaddr */ 4405 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4406 VM_NOSLEEP|VM_FIRSTFIT); 4407 if (ppa == 0) { 4408 ip1dbg(("ill_alloc_ppa: ppa allocation" 4409 " failed while switching")); 4410 vmem_destroy(ifp->illif_ppa_arena); 4411 ifp->illif_ppa_arena = NULL; 4412 break; 4413 } 4414 } 4415 } 4416 4417 if (ifp->illif_ppa_arena != NULL) { 4418 if (ill->ill_ppa == UINT_MAX) { 4419 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4420 1, VM_NOSLEEP|VM_FIRSTFIT); 4421 if (ppa == 0) 4422 return (EAGAIN); 4423 ill->ill_ppa = --ppa; 4424 } else { 4425 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4426 1, /* size */ 4427 1, /* align/quantum */ 4428 0, /* phase */ 4429 0, /* nocross */ 4430 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4431 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4432 VM_NOSLEEP|VM_FIRSTFIT); 4433 /* 4434 * Most likely the allocation failed because 4435 * the requested ppa was in use. 4436 */ 4437 if (ppa == 0) 4438 return (EEXIST); 4439 } 4440 return (0); 4441 } 4442 4443 /* 4444 * No arena is in use and not enough (>ill_no_arena) interfaces have 4445 * been plumbed to create one. Do a linear search to get a unused ppa. 4446 */ 4447 if (ill->ill_ppa == UINT_MAX) { 4448 end = UINT_MAX - 1; 4449 start = 0; 4450 } else { 4451 end = start = ill->ill_ppa; 4452 } 4453 4454 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4455 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4456 if (start++ >= end) { 4457 if (ill->ill_ppa == UINT_MAX) 4458 return (EAGAIN); 4459 else 4460 return (EEXIST); 4461 } 4462 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4463 } 4464 ill->ill_ppa = start; 4465 return (0); 4466 } 4467 4468 /* 4469 * Insert ill into the list of configured ill's. Once this function completes, 4470 * the ill is globally visible and is available through lookups. More precisely 4471 * this happens after the caller drops the ill_g_lock. 4472 */ 4473 static int 4474 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4475 { 4476 ill_if_t *ill_interface; 4477 avl_index_t where = 0; 4478 int error; 4479 int name_length; 4480 int index; 4481 boolean_t check_length = B_FALSE; 4482 ip_stack_t *ipst = ill->ill_ipst; 4483 4484 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4485 4486 name_length = mi_strlen(name) + 1; 4487 4488 if (isv6) 4489 index = IP_V6_G_HEAD; 4490 else 4491 index = IP_V4_G_HEAD; 4492 4493 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4494 /* 4495 * Search for interface type based on name 4496 */ 4497 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4498 if ((ill_interface->illif_name_len == name_length) && 4499 (strcmp(ill_interface->illif_name, name) == 0)) { 4500 break; 4501 } 4502 ill_interface = ill_interface->illif_next; 4503 } 4504 4505 /* 4506 * Interface type not found, create one. 4507 */ 4508 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4509 4510 ill_g_head_t ghead; 4511 4512 /* 4513 * allocate ill_if_t structure 4514 */ 4515 4516 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4517 if (ill_interface == NULL) { 4518 return (ENOMEM); 4519 } 4520 4521 4522 4523 (void) strcpy(ill_interface->illif_name, name); 4524 ill_interface->illif_name_len = name_length; 4525 4526 avl_create(&ill_interface->illif_avl_by_ppa, 4527 ill_compare_ppa, sizeof (ill_t), 4528 offsetof(struct ill_s, ill_avl_byppa)); 4529 4530 /* 4531 * link the structure in the back to maintain order 4532 * of configuration for ifconfig output. 4533 */ 4534 ghead = ipst->ips_ill_g_heads[index]; 4535 insque(ill_interface, ghead.ill_g_list_tail); 4536 4537 } 4538 4539 if (ill->ill_ppa == UINT_MAX) 4540 check_length = B_TRUE; 4541 4542 error = ill_alloc_ppa(ill_interface, ill); 4543 if (error != 0) { 4544 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4545 ill_delete_interface_type(ill->ill_ifptr); 4546 return (error); 4547 } 4548 4549 /* 4550 * When the ppa is choosen by the system, check that there is 4551 * enough space to insert ppa. if a specific ppa was passed in this 4552 * check is not required as the interface name passed in will have 4553 * the right ppa in it. 4554 */ 4555 if (check_length) { 4556 /* 4557 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4558 */ 4559 char buf[sizeof (uint_t) * 3]; 4560 4561 /* 4562 * convert ppa to string to calculate the amount of space 4563 * required for it in the name. 4564 */ 4565 numtos(ill->ill_ppa, buf); 4566 4567 /* Do we have enough space to insert ppa ? */ 4568 4569 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4570 /* Free ppa and interface type struct */ 4571 if (ill_interface->illif_ppa_arena != NULL) { 4572 vmem_free(ill_interface->illif_ppa_arena, 4573 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4574 } 4575 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4576 ill_delete_interface_type(ill->ill_ifptr); 4577 4578 return (EINVAL); 4579 } 4580 } 4581 4582 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4583 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4584 4585 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4586 &where); 4587 ill->ill_ifptr = ill_interface; 4588 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4589 4590 ill_phyint_reinit(ill); 4591 return (0); 4592 } 4593 4594 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4595 static boolean_t 4596 ipsq_init(ill_t *ill) 4597 { 4598 ipsq_t *ipsq; 4599 4600 /* Init the ipsq and impicitly enter as writer */ 4601 ill->ill_phyint->phyint_ipsq = 4602 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4603 if (ill->ill_phyint->phyint_ipsq == NULL) 4604 return (B_FALSE); 4605 ipsq = ill->ill_phyint->phyint_ipsq; 4606 ipsq->ipsq_phyint_list = ill->ill_phyint; 4607 ill->ill_phyint->phyint_ipsq_next = NULL; 4608 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4609 ipsq->ipsq_refs = 1; 4610 ipsq->ipsq_writer = curthread; 4611 ipsq->ipsq_reentry_cnt = 1; 4612 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4613 #ifdef DEBUG 4614 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4615 IPSQ_STACK_DEPTH); 4616 #endif 4617 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4618 return (B_TRUE); 4619 } 4620 4621 /* 4622 * ill_init is called by ip_open when a device control stream is opened. 4623 * It does a few initializations, and shoots a DL_INFO_REQ message down 4624 * to the driver. The response is later picked up in ip_rput_dlpi and 4625 * used to set up default mechanisms for talking to the driver. (Always 4626 * called as writer.) 4627 * 4628 * If this function returns error, ip_open will call ip_close which in 4629 * turn will call ill_delete to clean up any memory allocated here that 4630 * is not yet freed. 4631 */ 4632 int 4633 ill_init(queue_t *q, ill_t *ill) 4634 { 4635 int count; 4636 dl_info_req_t *dlir; 4637 mblk_t *info_mp; 4638 uchar_t *frag_ptr; 4639 4640 /* 4641 * The ill is initialized to zero by mi_alloc*(). In addition 4642 * some fields already contain valid values, initialized in 4643 * ip_open(), before we reach here. 4644 */ 4645 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4646 4647 ill->ill_rq = q; 4648 ill->ill_wq = WR(q); 4649 4650 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4651 BPRI_HI); 4652 if (info_mp == NULL) 4653 return (ENOMEM); 4654 4655 /* 4656 * Allocate sufficient space to contain our fragment hash table and 4657 * the device name. 4658 */ 4659 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4660 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4661 if (frag_ptr == NULL) { 4662 freemsg(info_mp); 4663 return (ENOMEM); 4664 } 4665 ill->ill_frag_ptr = frag_ptr; 4666 ill->ill_frag_free_num_pkts = 0; 4667 ill->ill_last_frag_clean_time = 0; 4668 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4669 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4670 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4671 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4672 NULL, MUTEX_DEFAULT, NULL); 4673 } 4674 4675 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4676 if (ill->ill_phyint == NULL) { 4677 freemsg(info_mp); 4678 mi_free(frag_ptr); 4679 return (ENOMEM); 4680 } 4681 4682 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4683 /* 4684 * For now pretend this is a v4 ill. We need to set phyint_ill* 4685 * at this point because of the following reason. If we can't 4686 * enter the ipsq at some point and cv_wait, the writer that 4687 * wakes us up tries to locate us using the list of all phyints 4688 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4689 * If we don't set it now, we risk a missed wakeup. 4690 */ 4691 ill->ill_phyint->phyint_illv4 = ill; 4692 ill->ill_ppa = UINT_MAX; 4693 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4694 4695 if (!ipsq_init(ill)) { 4696 freemsg(info_mp); 4697 mi_free(frag_ptr); 4698 mi_free(ill->ill_phyint); 4699 return (ENOMEM); 4700 } 4701 4702 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4703 4704 /* Frag queue limit stuff */ 4705 ill->ill_frag_count = 0; 4706 ill->ill_ipf_gen = 0; 4707 4708 ill->ill_global_timer = INFINITY; 4709 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4710 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4711 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4712 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4713 4714 /* 4715 * Initialize IPv6 configuration variables. The IP module is always 4716 * opened as an IPv4 module. Instead tracking down the cases where 4717 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4718 * here for convenience, this has no effect until the ill is set to do 4719 * IPv6. 4720 */ 4721 ill->ill_reachable_time = ND_REACHABLE_TIME; 4722 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4723 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4724 ill->ill_max_buf = ND_MAX_Q; 4725 ill->ill_refcnt = 0; 4726 4727 /* Send down the Info Request to the driver. */ 4728 info_mp->b_datap->db_type = M_PCPROTO; 4729 dlir = (dl_info_req_t *)info_mp->b_rptr; 4730 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4731 dlir->dl_primitive = DL_INFO_REQ; 4732 4733 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4734 4735 qprocson(q); 4736 ill_dlpi_send(ill, info_mp); 4737 4738 return (0); 4739 } 4740 4741 /* 4742 * ill_dls_info 4743 * creates datalink socket info from the device. 4744 */ 4745 int 4746 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4747 { 4748 size_t len; 4749 ill_t *ill = ipif->ipif_ill; 4750 4751 sdl->sdl_family = AF_LINK; 4752 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4753 sdl->sdl_type = ill->ill_type; 4754 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4755 len = strlen(sdl->sdl_data); 4756 ASSERT(len < 256); 4757 sdl->sdl_nlen = (uchar_t)len; 4758 sdl->sdl_alen = ill->ill_phys_addr_length; 4759 sdl->sdl_slen = 0; 4760 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4761 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4762 4763 return (sizeof (struct sockaddr_dl)); 4764 } 4765 4766 /* 4767 * ill_xarp_info 4768 * creates xarp info from the device. 4769 */ 4770 static int 4771 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4772 { 4773 sdl->sdl_family = AF_LINK; 4774 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4775 sdl->sdl_type = ill->ill_type; 4776 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4777 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4778 sdl->sdl_alen = ill->ill_phys_addr_length; 4779 sdl->sdl_slen = 0; 4780 return (sdl->sdl_nlen); 4781 } 4782 4783 static int 4784 loopback_kstat_update(kstat_t *ksp, int rw) 4785 { 4786 kstat_named_t *kn; 4787 netstackid_t stackid; 4788 netstack_t *ns; 4789 ip_stack_t *ipst; 4790 4791 if (ksp == NULL || ksp->ks_data == NULL) 4792 return (EIO); 4793 4794 if (rw == KSTAT_WRITE) 4795 return (EACCES); 4796 4797 kn = KSTAT_NAMED_PTR(ksp); 4798 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4799 4800 ns = netstack_find_by_stackid(stackid); 4801 if (ns == NULL) 4802 return (-1); 4803 4804 ipst = ns->netstack_ip; 4805 if (ipst == NULL) { 4806 netstack_rele(ns); 4807 return (-1); 4808 } 4809 kn[0].value.ui32 = ipst->ips_loopback_packets; 4810 kn[1].value.ui32 = ipst->ips_loopback_packets; 4811 netstack_rele(ns); 4812 return (0); 4813 } 4814 4815 /* 4816 * Has ifindex been plumbed already. 4817 * Compares both phyint_ifindex and phyint_group_ifindex. 4818 */ 4819 static boolean_t 4820 phyint_exists(uint_t index, ip_stack_t *ipst) 4821 { 4822 phyint_t *phyi; 4823 4824 ASSERT(index != 0); 4825 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4826 /* 4827 * Indexes are stored in the phyint - a common structure 4828 * to both IPv4 and IPv6. 4829 */ 4830 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4831 for (; phyi != NULL; 4832 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4833 phyi, AVL_AFTER)) { 4834 if (phyi->phyint_ifindex == index || 4835 phyi->phyint_group_ifindex == index) 4836 return (B_TRUE); 4837 } 4838 return (B_FALSE); 4839 } 4840 4841 /* Pick a unique ifindex */ 4842 boolean_t 4843 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4844 { 4845 uint_t starting_index; 4846 4847 if (!ipst->ips_ill_index_wrap) { 4848 *indexp = ipst->ips_ill_index++; 4849 if (ipst->ips_ill_index == 0) { 4850 /* Reached the uint_t limit Next time wrap */ 4851 ipst->ips_ill_index_wrap = B_TRUE; 4852 } 4853 return (B_TRUE); 4854 } 4855 4856 /* 4857 * Start reusing unused indexes. Note that we hold the ill_g_lock 4858 * at this point and don't want to call any function that attempts 4859 * to get the lock again. 4860 */ 4861 starting_index = ipst->ips_ill_index++; 4862 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4863 if (ipst->ips_ill_index != 0 && 4864 !phyint_exists(ipst->ips_ill_index, ipst)) { 4865 /* found unused index - use it */ 4866 *indexp = ipst->ips_ill_index; 4867 return (B_TRUE); 4868 } 4869 } 4870 4871 /* 4872 * all interface indicies are inuse. 4873 */ 4874 return (B_FALSE); 4875 } 4876 4877 /* 4878 * Assign a unique interface index for the phyint. 4879 */ 4880 static boolean_t 4881 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4882 { 4883 ASSERT(phyi->phyint_ifindex == 0); 4884 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4885 } 4886 4887 /* 4888 * Return a pointer to the ill which matches the supplied name. Note that 4889 * the ill name length includes the null termination character. (May be 4890 * called as writer.) 4891 * If do_alloc and the interface is "lo0" it will be automatically created. 4892 * Cannot bump up reference on condemned ills. So dup detect can't be done 4893 * using this func. 4894 */ 4895 ill_t * 4896 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4897 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4898 ip_stack_t *ipst) 4899 { 4900 ill_t *ill; 4901 ipif_t *ipif; 4902 kstat_named_t *kn; 4903 boolean_t isloopback; 4904 ipsq_t *old_ipsq; 4905 in6_addr_t ov6addr; 4906 4907 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4908 4909 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4910 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4911 rw_exit(&ipst->ips_ill_g_lock); 4912 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4913 return (ill); 4914 4915 /* 4916 * Couldn't find it. Does this happen to be a lookup for the 4917 * loopback device and are we allowed to allocate it? 4918 */ 4919 if (!isloopback || !do_alloc) 4920 return (NULL); 4921 4922 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4923 4924 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4925 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4926 rw_exit(&ipst->ips_ill_g_lock); 4927 return (ill); 4928 } 4929 4930 /* Create the loopback device on demand */ 4931 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4932 sizeof (ipif_loopback_name), BPRI_MED)); 4933 if (ill == NULL) 4934 goto done; 4935 4936 *ill = ill_null; 4937 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4938 ill->ill_ipst = ipst; 4939 netstack_hold(ipst->ips_netstack); 4940 /* 4941 * For exclusive stacks we set the zoneid to zero 4942 * to make IP operate as if in the global zone. 4943 */ 4944 ill->ill_zoneid = GLOBAL_ZONEID; 4945 4946 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4947 if (ill->ill_phyint == NULL) 4948 goto done; 4949 4950 if (isv6) 4951 ill->ill_phyint->phyint_illv6 = ill; 4952 else 4953 ill->ill_phyint->phyint_illv4 = ill; 4954 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4955 ill->ill_max_frag = IP_LOOPBACK_MTU; 4956 /* Add room for tcp+ip headers */ 4957 if (isv6) { 4958 ill->ill_isv6 = B_TRUE; 4959 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4960 } else { 4961 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4962 } 4963 if (!ill_allocate_mibs(ill)) 4964 goto done; 4965 ill->ill_max_mtu = ill->ill_max_frag; 4966 /* 4967 * ipif_loopback_name can't be pointed at directly because its used 4968 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4969 * from the glist, ill_glist_delete() sets the first character of 4970 * ill_name to '\0'. 4971 */ 4972 ill->ill_name = (char *)ill + sizeof (*ill); 4973 (void) strcpy(ill->ill_name, ipif_loopback_name); 4974 ill->ill_name_length = sizeof (ipif_loopback_name); 4975 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4976 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4977 4978 ill->ill_global_timer = INFINITY; 4979 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4980 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4981 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4982 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4983 4984 /* No resolver here. */ 4985 ill->ill_net_type = IRE_LOOPBACK; 4986 4987 /* Initialize the ipsq */ 4988 if (!ipsq_init(ill)) 4989 goto done; 4990 4991 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4992 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4993 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4994 #ifdef DEBUG 4995 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4996 #endif 4997 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4998 if (ipif == NULL) 4999 goto done; 5000 5001 ill->ill_flags = ILLF_MULTICAST; 5002 5003 ov6addr = ipif->ipif_v6lcl_addr; 5004 /* Set up default loopback address and mask. */ 5005 if (!isv6) { 5006 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5007 5008 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5009 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5010 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5011 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5012 ipif->ipif_v6subnet); 5013 ill->ill_flags |= ILLF_IPV4; 5014 } else { 5015 ipif->ipif_v6lcl_addr = ipv6_loopback; 5016 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5017 ipif->ipif_v6net_mask = ipv6_all_ones; 5018 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5019 ipif->ipif_v6subnet); 5020 ill->ill_flags |= ILLF_IPV6; 5021 } 5022 5023 /* 5024 * Chain us in at the end of the ill list. hold the ill 5025 * before we make it globally visible. 1 for the lookup. 5026 */ 5027 ill->ill_refcnt = 0; 5028 ill_refhold(ill); 5029 5030 ill->ill_frag_count = 0; 5031 ill->ill_frag_free_num_pkts = 0; 5032 ill->ill_last_frag_clean_time = 0; 5033 5034 old_ipsq = ill->ill_phyint->phyint_ipsq; 5035 5036 if (ill_glist_insert(ill, "lo", isv6) != 0) 5037 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5038 5039 /* Let SCTP know so that it can add this to its list */ 5040 sctp_update_ill(ill, SCTP_ILL_INSERT); 5041 5042 /* 5043 * We have already assigned ipif_v6lcl_addr above, but we need to 5044 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5045 * requires to be after ill_glist_insert() since we need the 5046 * ill_index set. Pass on ipv6_loopback as the old address. 5047 */ 5048 sctp_update_ipif_addr(ipif, ov6addr); 5049 5050 /* 5051 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5052 */ 5053 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5054 /* Loopback ills aren't in any IPMP group */ 5055 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5056 ipsq_delete(old_ipsq); 5057 } 5058 5059 /* 5060 * Delay this till the ipif is allocated as ipif_allocate 5061 * de-references ill_phyint for getting the ifindex. We 5062 * can't do this before ipif_allocate because ill_phyint_reinit 5063 * -> phyint_assign_ifindex expects ipif to be present. 5064 */ 5065 mutex_enter(&ill->ill_phyint->phyint_lock); 5066 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5067 mutex_exit(&ill->ill_phyint->phyint_lock); 5068 5069 if (ipst->ips_loopback_ksp == NULL) { 5070 /* Export loopback interface statistics */ 5071 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5072 ipif_loopback_name, "net", 5073 KSTAT_TYPE_NAMED, 2, 0, 5074 ipst->ips_netstack->netstack_stackid); 5075 if (ipst->ips_loopback_ksp != NULL) { 5076 ipst->ips_loopback_ksp->ks_update = 5077 loopback_kstat_update; 5078 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5079 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5080 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5081 ipst->ips_loopback_ksp->ks_private = 5082 (void *)(uintptr_t)ipst->ips_netstack-> 5083 netstack_stackid; 5084 kstat_install(ipst->ips_loopback_ksp); 5085 } 5086 } 5087 5088 if (error != NULL) 5089 *error = 0; 5090 *did_alloc = B_TRUE; 5091 rw_exit(&ipst->ips_ill_g_lock); 5092 return (ill); 5093 done: 5094 if (ill != NULL) { 5095 if (ill->ill_phyint != NULL) { 5096 ipsq_t *ipsq; 5097 5098 ipsq = ill->ill_phyint->phyint_ipsq; 5099 if (ipsq != NULL) { 5100 ipsq->ipsq_ipst = NULL; 5101 kmem_free(ipsq, sizeof (ipsq_t)); 5102 } 5103 mi_free(ill->ill_phyint); 5104 } 5105 ill_free_mib(ill); 5106 if (ill->ill_ipst != NULL) 5107 netstack_rele(ill->ill_ipst->ips_netstack); 5108 mi_free(ill); 5109 } 5110 rw_exit(&ipst->ips_ill_g_lock); 5111 if (error != NULL) 5112 *error = ENOMEM; 5113 return (NULL); 5114 } 5115 5116 /* 5117 * For IPP calls - use the ip_stack_t for global stack. 5118 */ 5119 ill_t * 5120 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5121 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5122 { 5123 ip_stack_t *ipst; 5124 ill_t *ill; 5125 5126 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5127 if (ipst == NULL) { 5128 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5129 return (NULL); 5130 } 5131 5132 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5133 netstack_rele(ipst->ips_netstack); 5134 return (ill); 5135 } 5136 5137 /* 5138 * Return a pointer to the ill which matches the index and IP version type. 5139 */ 5140 ill_t * 5141 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5142 ipsq_func_t func, int *err, ip_stack_t *ipst) 5143 { 5144 ill_t *ill; 5145 ipsq_t *ipsq; 5146 phyint_t *phyi; 5147 5148 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5149 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5150 5151 if (err != NULL) 5152 *err = 0; 5153 5154 /* 5155 * Indexes are stored in the phyint - a common structure 5156 * to both IPv4 and IPv6. 5157 */ 5158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5159 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5160 (void *) &index, NULL); 5161 if (phyi != NULL) { 5162 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5163 if (ill != NULL) { 5164 /* 5165 * The block comment at the start of ipif_down 5166 * explains the use of the macros used below 5167 */ 5168 GRAB_CONN_LOCK(q); 5169 mutex_enter(&ill->ill_lock); 5170 if (ILL_CAN_LOOKUP(ill)) { 5171 ill_refhold_locked(ill); 5172 mutex_exit(&ill->ill_lock); 5173 RELEASE_CONN_LOCK(q); 5174 rw_exit(&ipst->ips_ill_g_lock); 5175 return (ill); 5176 } else if (ILL_CAN_WAIT(ill, q)) { 5177 ipsq = ill->ill_phyint->phyint_ipsq; 5178 mutex_enter(&ipsq->ipsq_lock); 5179 rw_exit(&ipst->ips_ill_g_lock); 5180 mutex_exit(&ill->ill_lock); 5181 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5182 mutex_exit(&ipsq->ipsq_lock); 5183 RELEASE_CONN_LOCK(q); 5184 if (err != NULL) 5185 *err = EINPROGRESS; 5186 return (NULL); 5187 } 5188 RELEASE_CONN_LOCK(q); 5189 mutex_exit(&ill->ill_lock); 5190 } 5191 } 5192 rw_exit(&ipst->ips_ill_g_lock); 5193 if (err != NULL) 5194 *err = ENXIO; 5195 return (NULL); 5196 } 5197 5198 /* 5199 * Return the ifindex next in sequence after the passed in ifindex. 5200 * If there is no next ifindex for the given protocol, return 0. 5201 */ 5202 uint_t 5203 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5204 { 5205 phyint_t *phyi; 5206 phyint_t *phyi_initial; 5207 uint_t ifindex; 5208 5209 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5210 5211 if (index == 0) { 5212 phyi = avl_first( 5213 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5214 } else { 5215 phyi = phyi_initial = avl_find( 5216 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5217 (void *) &index, NULL); 5218 } 5219 5220 for (; phyi != NULL; 5221 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5222 phyi, AVL_AFTER)) { 5223 /* 5224 * If we're not returning the first interface in the tree 5225 * and we still haven't moved past the phyint_t that 5226 * corresponds to index, avl_walk needs to be called again 5227 */ 5228 if (!((index != 0) && (phyi == phyi_initial))) { 5229 if (isv6) { 5230 if ((phyi->phyint_illv6) && 5231 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5232 (phyi->phyint_illv6->ill_isv6 == 1)) 5233 break; 5234 } else { 5235 if ((phyi->phyint_illv4) && 5236 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5237 (phyi->phyint_illv4->ill_isv6 == 0)) 5238 break; 5239 } 5240 } 5241 } 5242 5243 rw_exit(&ipst->ips_ill_g_lock); 5244 5245 if (phyi != NULL) 5246 ifindex = phyi->phyint_ifindex; 5247 else 5248 ifindex = 0; 5249 5250 return (ifindex); 5251 } 5252 5253 /* 5254 * Return the ifindex for the named interface. 5255 * If there is no next ifindex for the interface, return 0. 5256 */ 5257 uint_t 5258 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5259 { 5260 phyint_t *phyi; 5261 avl_index_t where = 0; 5262 uint_t ifindex; 5263 5264 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5265 5266 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5267 name, &where)) == NULL) { 5268 rw_exit(&ipst->ips_ill_g_lock); 5269 return (0); 5270 } 5271 5272 ifindex = phyi->phyint_ifindex; 5273 5274 rw_exit(&ipst->ips_ill_g_lock); 5275 5276 return (ifindex); 5277 } 5278 5279 /* 5280 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5281 * that gives a running thread a reference to the ill. This reference must be 5282 * released by the thread when it is done accessing the ill and related 5283 * objects. ill_refcnt can not be used to account for static references 5284 * such as other structures pointing to an ill. Callers must generally 5285 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5286 * or be sure that the ill is not being deleted or changing state before 5287 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5288 * ill won't change any of its critical state such as address, netmask etc. 5289 */ 5290 void 5291 ill_refhold(ill_t *ill) 5292 { 5293 mutex_enter(&ill->ill_lock); 5294 ill->ill_refcnt++; 5295 ILL_TRACE_REF(ill); 5296 mutex_exit(&ill->ill_lock); 5297 } 5298 5299 void 5300 ill_refhold_locked(ill_t *ill) 5301 { 5302 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5303 ill->ill_refcnt++; 5304 ILL_TRACE_REF(ill); 5305 } 5306 5307 int 5308 ill_check_and_refhold(ill_t *ill) 5309 { 5310 mutex_enter(&ill->ill_lock); 5311 if (ILL_CAN_LOOKUP(ill)) { 5312 ill_refhold_locked(ill); 5313 mutex_exit(&ill->ill_lock); 5314 return (0); 5315 } 5316 mutex_exit(&ill->ill_lock); 5317 return (ILL_LOOKUP_FAILED); 5318 } 5319 5320 /* 5321 * Must not be called while holding any locks. Otherwise if this is 5322 * the last reference to be released, there is a chance of recursive mutex 5323 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5324 * to restart an ioctl. 5325 */ 5326 void 5327 ill_refrele(ill_t *ill) 5328 { 5329 mutex_enter(&ill->ill_lock); 5330 ASSERT(ill->ill_refcnt != 0); 5331 ill->ill_refcnt--; 5332 ILL_UNTRACE_REF(ill); 5333 if (ill->ill_refcnt != 0) { 5334 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5335 mutex_exit(&ill->ill_lock); 5336 return; 5337 } 5338 5339 /* Drops the ill_lock */ 5340 ipif_ill_refrele_tail(ill); 5341 } 5342 5343 /* 5344 * Obtain a weak reference count on the ill. This reference ensures the 5345 * ill won't be freed, but the ill may change any of its critical state 5346 * such as netmask, address etc. Returns an error if the ill has started 5347 * closing. 5348 */ 5349 boolean_t 5350 ill_waiter_inc(ill_t *ill) 5351 { 5352 mutex_enter(&ill->ill_lock); 5353 if (ill->ill_state_flags & ILL_CONDEMNED) { 5354 mutex_exit(&ill->ill_lock); 5355 return (B_FALSE); 5356 } 5357 ill->ill_waiters++; 5358 mutex_exit(&ill->ill_lock); 5359 return (B_TRUE); 5360 } 5361 5362 void 5363 ill_waiter_dcr(ill_t *ill) 5364 { 5365 mutex_enter(&ill->ill_lock); 5366 ill->ill_waiters--; 5367 if (ill->ill_waiters == 0) 5368 cv_broadcast(&ill->ill_cv); 5369 mutex_exit(&ill->ill_lock); 5370 } 5371 5372 /* 5373 * Named Dispatch routine to produce a formatted report on all ILLs. 5374 * This report is accessed by using the ndd utility to "get" ND variable 5375 * "ip_ill_status". 5376 */ 5377 /* ARGSUSED */ 5378 int 5379 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5380 { 5381 ill_t *ill; 5382 ill_walk_context_t ctx; 5383 ip_stack_t *ipst; 5384 5385 ipst = CONNQ_TO_IPST(q); 5386 5387 (void) mi_mpprintf(mp, 5388 "ILL " MI_COL_HDRPAD_STR 5389 /* 01234567[89ABCDEF] */ 5390 "rq " MI_COL_HDRPAD_STR 5391 /* 01234567[89ABCDEF] */ 5392 "wq " MI_COL_HDRPAD_STR 5393 /* 01234567[89ABCDEF] */ 5394 "upcnt mxfrg err name"); 5395 /* 12345 12345 123 xxxxxxxx */ 5396 5397 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5398 ill = ILL_START_WALK_ALL(&ctx, ipst); 5399 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5400 (void) mi_mpprintf(mp, 5401 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5402 "%05u %05u %03d %s", 5403 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5404 ill->ill_ipif_up_count, 5405 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5406 } 5407 rw_exit(&ipst->ips_ill_g_lock); 5408 5409 return (0); 5410 } 5411 5412 /* 5413 * Named Dispatch routine to produce a formatted report on all IPIFs. 5414 * This report is accessed by using the ndd utility to "get" ND variable 5415 * "ip_ipif_status". 5416 */ 5417 /* ARGSUSED */ 5418 int 5419 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5420 { 5421 char buf1[INET6_ADDRSTRLEN]; 5422 char buf2[INET6_ADDRSTRLEN]; 5423 char buf3[INET6_ADDRSTRLEN]; 5424 char buf4[INET6_ADDRSTRLEN]; 5425 char buf5[INET6_ADDRSTRLEN]; 5426 char buf6[INET6_ADDRSTRLEN]; 5427 char buf[LIFNAMSIZ]; 5428 ill_t *ill; 5429 ipif_t *ipif; 5430 nv_t *nvp; 5431 uint64_t flags; 5432 zoneid_t zoneid; 5433 ill_walk_context_t ctx; 5434 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5435 5436 (void) mi_mpprintf(mp, 5437 "IPIF metric mtu in/out/forward name zone flags...\n" 5438 "\tlocal address\n" 5439 "\tsrc address\n" 5440 "\tsubnet\n" 5441 "\tmask\n" 5442 "\tbroadcast\n" 5443 "\tp-p-dst"); 5444 5445 ASSERT(q->q_next == NULL); 5446 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5447 5448 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5449 ill = ILL_START_WALK_ALL(&ctx, ipst); 5450 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5451 for (ipif = ill->ill_ipif; ipif != NULL; 5452 ipif = ipif->ipif_next) { 5453 if (zoneid != GLOBAL_ZONEID && 5454 zoneid != ipif->ipif_zoneid && 5455 ipif->ipif_zoneid != ALL_ZONES) 5456 continue; 5457 5458 ipif_get_name(ipif, buf, sizeof (buf)); 5459 (void) mi_mpprintf(mp, 5460 MI_COL_PTRFMT_STR 5461 "%04u %05u %u/%u/%u %s %d", 5462 (void *)ipif, 5463 ipif->ipif_metric, ipif->ipif_mtu, 5464 ipif->ipif_ib_pkt_count, 5465 ipif->ipif_ob_pkt_count, 5466 ipif->ipif_fo_pkt_count, 5467 buf, 5468 ipif->ipif_zoneid); 5469 5470 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5471 ipif->ipif_ill->ill_phyint->phyint_flags; 5472 5473 /* Tack on text strings for any flags. */ 5474 nvp = ipif_nv_tbl; 5475 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5476 if (nvp->nv_value & flags) 5477 (void) mi_mpprintf_nr(mp, " %s", 5478 nvp->nv_name); 5479 } 5480 (void) mi_mpprintf(mp, 5481 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5482 inet_ntop(AF_INET6, 5483 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5484 inet_ntop(AF_INET6, 5485 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5486 inet_ntop(AF_INET6, 5487 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5488 inet_ntop(AF_INET6, 5489 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5490 inet_ntop(AF_INET6, 5491 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5492 inet_ntop(AF_INET6, 5493 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5494 } 5495 } 5496 rw_exit(&ipst->ips_ill_g_lock); 5497 return (0); 5498 } 5499 5500 /* 5501 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5502 * driver. We construct best guess defaults for lower level information that 5503 * we need. If an interface is brought up without injection of any overriding 5504 * information from outside, we have to be ready to go with these defaults. 5505 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5506 * we primarely want the dl_provider_style. 5507 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5508 * at which point we assume the other part of the information is valid. 5509 */ 5510 void 5511 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5512 { 5513 uchar_t *brdcst_addr; 5514 uint_t brdcst_addr_length, phys_addr_length; 5515 t_scalar_t sap_length; 5516 dl_info_ack_t *dlia; 5517 ip_m_t *ipm; 5518 dl_qos_cl_sel1_t *sel1; 5519 5520 ASSERT(IAM_WRITER_ILL(ill)); 5521 5522 /* 5523 * Till the ill is fully up ILL_CHANGING will be set and 5524 * the ill is not globally visible. So no need for a lock. 5525 */ 5526 dlia = (dl_info_ack_t *)mp->b_rptr; 5527 ill->ill_mactype = dlia->dl_mac_type; 5528 5529 ipm = ip_m_lookup(dlia->dl_mac_type); 5530 if (ipm == NULL) { 5531 ipm = ip_m_lookup(DL_OTHER); 5532 ASSERT(ipm != NULL); 5533 } 5534 ill->ill_media = ipm; 5535 5536 /* 5537 * When the new DLPI stuff is ready we'll pull lengths 5538 * from dlia. 5539 */ 5540 if (dlia->dl_version == DL_VERSION_2) { 5541 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5542 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5543 brdcst_addr_length); 5544 if (brdcst_addr == NULL) { 5545 brdcst_addr_length = 0; 5546 } 5547 sap_length = dlia->dl_sap_length; 5548 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5549 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5550 brdcst_addr_length, sap_length, phys_addr_length)); 5551 } else { 5552 brdcst_addr_length = 6; 5553 brdcst_addr = ip_six_byte_all_ones; 5554 sap_length = -2; 5555 phys_addr_length = brdcst_addr_length; 5556 } 5557 5558 ill->ill_bcast_addr_length = brdcst_addr_length; 5559 ill->ill_phys_addr_length = phys_addr_length; 5560 ill->ill_sap_length = sap_length; 5561 ill->ill_max_frag = dlia->dl_max_sdu; 5562 ill->ill_max_mtu = ill->ill_max_frag; 5563 5564 ill->ill_type = ipm->ip_m_type; 5565 5566 if (!ill->ill_dlpi_style_set) { 5567 if (dlia->dl_provider_style == DL_STYLE2) 5568 ill->ill_needs_attach = 1; 5569 5570 /* 5571 * Allocate the first ipif on this ill. We don't delay it 5572 * further as ioctl handling assumes atleast one ipif to 5573 * be present. 5574 * 5575 * At this point we don't know whether the ill is v4 or v6. 5576 * We will know this whan the SIOCSLIFNAME happens and 5577 * the correct value for ill_isv6 will be assigned in 5578 * ipif_set_values(). We need to hold the ill lock and 5579 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5580 * the wakeup. 5581 */ 5582 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5583 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5584 mutex_enter(&ill->ill_lock); 5585 ASSERT(ill->ill_dlpi_style_set == 0); 5586 ill->ill_dlpi_style_set = 1; 5587 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5588 cv_broadcast(&ill->ill_cv); 5589 mutex_exit(&ill->ill_lock); 5590 freemsg(mp); 5591 return; 5592 } 5593 ASSERT(ill->ill_ipif != NULL); 5594 /* 5595 * We know whether it is IPv4 or IPv6 now, as this is the 5596 * second DL_INFO_ACK we are recieving in response to the 5597 * DL_INFO_REQ sent in ipif_set_values. 5598 */ 5599 if (ill->ill_isv6) 5600 ill->ill_sap = IP6_DL_SAP; 5601 else 5602 ill->ill_sap = IP_DL_SAP; 5603 /* 5604 * Set ipif_mtu which is used to set the IRE's 5605 * ire_max_frag value. The driver could have sent 5606 * a different mtu from what it sent last time. No 5607 * need to call ipif_mtu_change because IREs have 5608 * not yet been created. 5609 */ 5610 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5611 /* 5612 * Clear all the flags that were set based on ill_bcast_addr_length 5613 * and ill_phys_addr_length (in ipif_set_values) as these could have 5614 * changed now and we need to re-evaluate. 5615 */ 5616 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5617 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5618 5619 /* 5620 * Free ill_resolver_mp and ill_bcast_mp as things could have 5621 * changed now. 5622 */ 5623 if (ill->ill_bcast_addr_length == 0) { 5624 if (ill->ill_resolver_mp != NULL) 5625 freemsg(ill->ill_resolver_mp); 5626 if (ill->ill_bcast_mp != NULL) 5627 freemsg(ill->ill_bcast_mp); 5628 if (ill->ill_flags & ILLF_XRESOLV) 5629 ill->ill_net_type = IRE_IF_RESOLVER; 5630 else 5631 ill->ill_net_type = IRE_IF_NORESOLVER; 5632 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5633 ill->ill_phys_addr_length, 5634 ill->ill_sap, 5635 ill->ill_sap_length); 5636 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5637 5638 if (ill->ill_isv6) 5639 /* 5640 * Note: xresolv interfaces will eventually need NOARP 5641 * set here as well, but that will require those 5642 * external resolvers to have some knowledge of 5643 * that flag and act appropriately. Not to be changed 5644 * at present. 5645 */ 5646 ill->ill_flags |= ILLF_NONUD; 5647 else 5648 ill->ill_flags |= ILLF_NOARP; 5649 5650 if (ill->ill_phys_addr_length == 0) { 5651 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5652 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5653 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5654 } else { 5655 /* pt-pt supports multicast. */ 5656 ill->ill_flags |= ILLF_MULTICAST; 5657 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5658 } 5659 } 5660 } else { 5661 ill->ill_net_type = IRE_IF_RESOLVER; 5662 if (ill->ill_bcast_mp != NULL) 5663 freemsg(ill->ill_bcast_mp); 5664 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5665 ill->ill_bcast_addr_length, ill->ill_sap, 5666 ill->ill_sap_length); 5667 /* 5668 * Later detect lack of DLPI driver multicast 5669 * capability by catching DL_ENABMULTI errors in 5670 * ip_rput_dlpi. 5671 */ 5672 ill->ill_flags |= ILLF_MULTICAST; 5673 if (!ill->ill_isv6) 5674 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5675 } 5676 /* By default an interface does not support any CoS marking */ 5677 ill->ill_flags &= ~ILLF_COS_ENABLED; 5678 5679 /* 5680 * If we get QoS information in DL_INFO_ACK, the device supports 5681 * some form of CoS marking, set ILLF_COS_ENABLED. 5682 */ 5683 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5684 dlia->dl_qos_length); 5685 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5686 ill->ill_flags |= ILLF_COS_ENABLED; 5687 } 5688 5689 /* Clear any previous error indication. */ 5690 ill->ill_error = 0; 5691 freemsg(mp); 5692 } 5693 5694 /* 5695 * Perform various checks to verify that an address would make sense as a 5696 * local, remote, or subnet interface address. 5697 */ 5698 static boolean_t 5699 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5700 { 5701 ipaddr_t net_mask; 5702 5703 /* 5704 * Don't allow all zeroes, or all ones, but allow 5705 * all ones netmask. 5706 */ 5707 if ((net_mask = ip_net_mask(addr)) == 0) 5708 return (B_FALSE); 5709 /* A given netmask overrides the "guess" netmask */ 5710 if (subnet_mask != 0) 5711 net_mask = subnet_mask; 5712 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5713 (addr == (addr | ~net_mask)))) { 5714 return (B_FALSE); 5715 } 5716 5717 /* 5718 * Even if the netmask is all ones, we do not allow address to be 5719 * 255.255.255.255 5720 */ 5721 if (addr == INADDR_BROADCAST) 5722 return (B_FALSE); 5723 5724 if (CLASSD(addr)) 5725 return (B_FALSE); 5726 5727 return (B_TRUE); 5728 } 5729 5730 #define V6_IPIF_LINKLOCAL(p) \ 5731 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5732 5733 /* 5734 * Compare two given ipifs and check if the second one is better than 5735 * the first one using the order of preference (not taking deprecated 5736 * into acount) specified in ipif_lookup_multicast(). 5737 */ 5738 static boolean_t 5739 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5740 { 5741 /* Check the least preferred first. */ 5742 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5743 /* If both ipifs are the same, use the first one. */ 5744 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5745 return (B_FALSE); 5746 else 5747 return (B_TRUE); 5748 } 5749 5750 /* For IPv6, check for link local address. */ 5751 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5752 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5753 V6_IPIF_LINKLOCAL(new_ipif)) { 5754 /* The second one is equal or less preferred. */ 5755 return (B_FALSE); 5756 } else { 5757 return (B_TRUE); 5758 } 5759 } 5760 5761 /* Then check for point to point interface. */ 5762 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5763 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5764 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5765 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5766 return (B_FALSE); 5767 } else { 5768 return (B_TRUE); 5769 } 5770 } 5771 5772 /* old_ipif is a normal interface, so no need to use the new one. */ 5773 return (B_FALSE); 5774 } 5775 5776 /* 5777 * Find any non-virtual, not condemned, and up multicast capable interface 5778 * given an IP instance and zoneid. Order of preference is: 5779 * 5780 * 1. normal 5781 * 1.1 normal, but deprecated 5782 * 2. point to point 5783 * 2.1 point to point, but deprecated 5784 * 3. link local 5785 * 3.1 link local, but deprecated 5786 * 4. loopback. 5787 */ 5788 ipif_t * 5789 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5790 { 5791 ill_t *ill; 5792 ill_walk_context_t ctx; 5793 ipif_t *ipif; 5794 ipif_t *saved_ipif = NULL; 5795 ipif_t *dep_ipif = NULL; 5796 5797 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5798 if (isv6) 5799 ill = ILL_START_WALK_V6(&ctx, ipst); 5800 else 5801 ill = ILL_START_WALK_V4(&ctx, ipst); 5802 5803 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5804 mutex_enter(&ill->ill_lock); 5805 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5806 !(ill->ill_flags & ILLF_MULTICAST)) { 5807 mutex_exit(&ill->ill_lock); 5808 continue; 5809 } 5810 for (ipif = ill->ill_ipif; ipif != NULL; 5811 ipif = ipif->ipif_next) { 5812 if (zoneid != ipif->ipif_zoneid && 5813 zoneid != ALL_ZONES && 5814 ipif->ipif_zoneid != ALL_ZONES) { 5815 continue; 5816 } 5817 if (!(ipif->ipif_flags & IPIF_UP) || 5818 !IPIF_CAN_LOOKUP(ipif)) { 5819 continue; 5820 } 5821 5822 /* 5823 * Found one candidate. If it is deprecated, 5824 * remember it in dep_ipif. If it is not deprecated, 5825 * remember it in saved_ipif. 5826 */ 5827 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5828 if (dep_ipif == NULL) { 5829 dep_ipif = ipif; 5830 } else if (ipif_comp_multi(dep_ipif, ipif, 5831 isv6)) { 5832 /* 5833 * If the previous dep_ipif does not 5834 * belong to the same ill, we've done 5835 * a ipif_refhold() on it. So we need 5836 * to release it. 5837 */ 5838 if (dep_ipif->ipif_ill != ill) 5839 ipif_refrele(dep_ipif); 5840 dep_ipif = ipif; 5841 } 5842 continue; 5843 } 5844 if (saved_ipif == NULL) { 5845 saved_ipif = ipif; 5846 } else { 5847 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5848 if (saved_ipif->ipif_ill != ill) 5849 ipif_refrele(saved_ipif); 5850 saved_ipif = ipif; 5851 } 5852 } 5853 } 5854 /* 5855 * Before going to the next ill, do a ipif_refhold() on the 5856 * saved ones. 5857 */ 5858 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5859 ipif_refhold_locked(saved_ipif); 5860 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5861 ipif_refhold_locked(dep_ipif); 5862 mutex_exit(&ill->ill_lock); 5863 } 5864 rw_exit(&ipst->ips_ill_g_lock); 5865 5866 /* 5867 * If we have only the saved_ipif, return it. But if we have both 5868 * saved_ipif and dep_ipif, check to see which one is better. 5869 */ 5870 if (saved_ipif != NULL) { 5871 if (dep_ipif != NULL) { 5872 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5873 ipif_refrele(saved_ipif); 5874 return (dep_ipif); 5875 } else { 5876 ipif_refrele(dep_ipif); 5877 return (saved_ipif); 5878 } 5879 } 5880 return (saved_ipif); 5881 } else { 5882 return (dep_ipif); 5883 } 5884 } 5885 5886 /* 5887 * This function is called when an application does not specify an interface 5888 * to be used for multicast traffic (joining a group/sending data). It 5889 * calls ire_lookup_multi() to look for an interface route for the 5890 * specified multicast group. Doing this allows the administrator to add 5891 * prefix routes for multicast to indicate which interface to be used for 5892 * multicast traffic in the above scenario. The route could be for all 5893 * multicast (224.0/4), for a single multicast group (a /32 route) or 5894 * anything in between. If there is no such multicast route, we just find 5895 * any multicast capable interface and return it. The returned ipif 5896 * is refhold'ed. 5897 */ 5898 ipif_t * 5899 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5900 { 5901 ire_t *ire; 5902 ipif_t *ipif; 5903 5904 ire = ire_lookup_multi(group, zoneid, ipst); 5905 if (ire != NULL) { 5906 ipif = ire->ire_ipif; 5907 ipif_refhold(ipif); 5908 ire_refrele(ire); 5909 return (ipif); 5910 } 5911 5912 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5913 } 5914 5915 /* 5916 * Look for an ipif with the specified interface address and destination. 5917 * The destination address is used only for matching point-to-point interfaces. 5918 */ 5919 ipif_t * 5920 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5921 ipsq_func_t func, int *error, ip_stack_t *ipst) 5922 { 5923 ipif_t *ipif; 5924 ill_t *ill; 5925 ill_walk_context_t ctx; 5926 ipsq_t *ipsq; 5927 5928 if (error != NULL) 5929 *error = 0; 5930 5931 /* 5932 * First match all the point-to-point interfaces 5933 * before looking at non-point-to-point interfaces. 5934 * This is done to avoid returning non-point-to-point 5935 * ipif instead of unnumbered point-to-point ipif. 5936 */ 5937 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5938 ill = ILL_START_WALK_V4(&ctx, ipst); 5939 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5940 GRAB_CONN_LOCK(q); 5941 mutex_enter(&ill->ill_lock); 5942 for (ipif = ill->ill_ipif; ipif != NULL; 5943 ipif = ipif->ipif_next) { 5944 /* Allow the ipif to be down */ 5945 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5946 (ipif->ipif_lcl_addr == if_addr) && 5947 (ipif->ipif_pp_dst_addr == dst)) { 5948 /* 5949 * The block comment at the start of ipif_down 5950 * explains the use of the macros used below 5951 */ 5952 if (IPIF_CAN_LOOKUP(ipif)) { 5953 ipif_refhold_locked(ipif); 5954 mutex_exit(&ill->ill_lock); 5955 RELEASE_CONN_LOCK(q); 5956 rw_exit(&ipst->ips_ill_g_lock); 5957 return (ipif); 5958 } else if (IPIF_CAN_WAIT(ipif, q)) { 5959 ipsq = ill->ill_phyint->phyint_ipsq; 5960 mutex_enter(&ipsq->ipsq_lock); 5961 mutex_exit(&ill->ill_lock); 5962 rw_exit(&ipst->ips_ill_g_lock); 5963 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5964 ill); 5965 mutex_exit(&ipsq->ipsq_lock); 5966 RELEASE_CONN_LOCK(q); 5967 if (error != NULL) 5968 *error = EINPROGRESS; 5969 return (NULL); 5970 } 5971 } 5972 } 5973 mutex_exit(&ill->ill_lock); 5974 RELEASE_CONN_LOCK(q); 5975 } 5976 rw_exit(&ipst->ips_ill_g_lock); 5977 5978 /* lookup the ipif based on interface address */ 5979 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5980 ipst); 5981 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5982 return (ipif); 5983 } 5984 5985 /* 5986 * Look for an ipif with the specified address. For point-point links 5987 * we look for matches on either the destination address and the local 5988 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5989 * is set. 5990 * Matches on a specific ill if match_ill is set. 5991 */ 5992 ipif_t * 5993 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5994 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5995 { 5996 ipif_t *ipif; 5997 ill_t *ill; 5998 boolean_t ptp = B_FALSE; 5999 ipsq_t *ipsq; 6000 ill_walk_context_t ctx; 6001 6002 if (error != NULL) 6003 *error = 0; 6004 6005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6006 /* 6007 * Repeat twice, first based on local addresses and 6008 * next time for pointopoint. 6009 */ 6010 repeat: 6011 ill = ILL_START_WALK_V4(&ctx, ipst); 6012 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6013 if (match_ill != NULL && ill != match_ill) { 6014 continue; 6015 } 6016 GRAB_CONN_LOCK(q); 6017 mutex_enter(&ill->ill_lock); 6018 for (ipif = ill->ill_ipif; ipif != NULL; 6019 ipif = ipif->ipif_next) { 6020 if (zoneid != ALL_ZONES && 6021 zoneid != ipif->ipif_zoneid && 6022 ipif->ipif_zoneid != ALL_ZONES) 6023 continue; 6024 /* Allow the ipif to be down */ 6025 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6026 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6027 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6028 (ipif->ipif_pp_dst_addr == addr))) { 6029 /* 6030 * The block comment at the start of ipif_down 6031 * explains the use of the macros used below 6032 */ 6033 if (IPIF_CAN_LOOKUP(ipif)) { 6034 ipif_refhold_locked(ipif); 6035 mutex_exit(&ill->ill_lock); 6036 RELEASE_CONN_LOCK(q); 6037 rw_exit(&ipst->ips_ill_g_lock); 6038 return (ipif); 6039 } else if (IPIF_CAN_WAIT(ipif, q)) { 6040 ipsq = ill->ill_phyint->phyint_ipsq; 6041 mutex_enter(&ipsq->ipsq_lock); 6042 mutex_exit(&ill->ill_lock); 6043 rw_exit(&ipst->ips_ill_g_lock); 6044 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6045 ill); 6046 mutex_exit(&ipsq->ipsq_lock); 6047 RELEASE_CONN_LOCK(q); 6048 if (error != NULL) 6049 *error = EINPROGRESS; 6050 return (NULL); 6051 } 6052 } 6053 } 6054 mutex_exit(&ill->ill_lock); 6055 RELEASE_CONN_LOCK(q); 6056 } 6057 6058 /* If we already did the ptp case, then we are done */ 6059 if (ptp) { 6060 rw_exit(&ipst->ips_ill_g_lock); 6061 if (error != NULL) 6062 *error = ENXIO; 6063 return (NULL); 6064 } 6065 ptp = B_TRUE; 6066 goto repeat; 6067 } 6068 6069 /* 6070 * Look for an ipif with the specified address. For point-point links 6071 * we look for matches on either the destination address and the local 6072 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6073 * is set. 6074 * Matches on a specific ill if match_ill is set. 6075 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6076 */ 6077 zoneid_t 6078 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6079 { 6080 zoneid_t zoneid; 6081 ipif_t *ipif; 6082 ill_t *ill; 6083 boolean_t ptp = B_FALSE; 6084 ill_walk_context_t ctx; 6085 6086 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6087 /* 6088 * Repeat twice, first based on local addresses and 6089 * next time for pointopoint. 6090 */ 6091 repeat: 6092 ill = ILL_START_WALK_V4(&ctx, ipst); 6093 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6094 if (match_ill != NULL && ill != match_ill) { 6095 continue; 6096 } 6097 mutex_enter(&ill->ill_lock); 6098 for (ipif = ill->ill_ipif; ipif != NULL; 6099 ipif = ipif->ipif_next) { 6100 /* Allow the ipif to be down */ 6101 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6102 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6103 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6104 (ipif->ipif_pp_dst_addr == addr)) && 6105 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6106 zoneid = ipif->ipif_zoneid; 6107 mutex_exit(&ill->ill_lock); 6108 rw_exit(&ipst->ips_ill_g_lock); 6109 /* 6110 * If ipif_zoneid was ALL_ZONES then we have 6111 * a trusted extensions shared IP address. 6112 * In that case GLOBAL_ZONEID works to send. 6113 */ 6114 if (zoneid == ALL_ZONES) 6115 zoneid = GLOBAL_ZONEID; 6116 return (zoneid); 6117 } 6118 } 6119 mutex_exit(&ill->ill_lock); 6120 } 6121 6122 /* If we already did the ptp case, then we are done */ 6123 if (ptp) { 6124 rw_exit(&ipst->ips_ill_g_lock); 6125 return (ALL_ZONES); 6126 } 6127 ptp = B_TRUE; 6128 goto repeat; 6129 } 6130 6131 /* 6132 * Look for an ipif that matches the specified remote address i.e. the 6133 * ipif that would receive the specified packet. 6134 * First look for directly connected interfaces and then do a recursive 6135 * IRE lookup and pick the first ipif corresponding to the source address in the 6136 * ire. 6137 * Returns: held ipif 6138 */ 6139 ipif_t * 6140 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6141 { 6142 ipif_t *ipif; 6143 ire_t *ire; 6144 ip_stack_t *ipst = ill->ill_ipst; 6145 6146 ASSERT(!ill->ill_isv6); 6147 6148 /* 6149 * Someone could be changing this ipif currently or change it 6150 * after we return this. Thus a few packets could use the old 6151 * old values. However structure updates/creates (ire, ilg, ilm etc) 6152 * will atomically be updated or cleaned up with the new value 6153 * Thus we don't need a lock to check the flags or other attrs below. 6154 */ 6155 mutex_enter(&ill->ill_lock); 6156 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6157 if (!IPIF_CAN_LOOKUP(ipif)) 6158 continue; 6159 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6160 ipif->ipif_zoneid != ALL_ZONES) 6161 continue; 6162 /* Allow the ipif to be down */ 6163 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6164 if ((ipif->ipif_pp_dst_addr == addr) || 6165 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6166 ipif->ipif_lcl_addr == addr)) { 6167 ipif_refhold_locked(ipif); 6168 mutex_exit(&ill->ill_lock); 6169 return (ipif); 6170 } 6171 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6172 ipif_refhold_locked(ipif); 6173 mutex_exit(&ill->ill_lock); 6174 return (ipif); 6175 } 6176 } 6177 mutex_exit(&ill->ill_lock); 6178 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6179 NULL, MATCH_IRE_RECURSIVE, ipst); 6180 if (ire != NULL) { 6181 /* 6182 * The callers of this function wants to know the 6183 * interface on which they have to send the replies 6184 * back. For IRE_CACHES that have ire_stq and ire_ipif 6185 * derived from different ills, we really don't care 6186 * what we return here. 6187 */ 6188 ipif = ire->ire_ipif; 6189 if (ipif != NULL) { 6190 ipif_refhold(ipif); 6191 ire_refrele(ire); 6192 return (ipif); 6193 } 6194 ire_refrele(ire); 6195 } 6196 /* Pick the first interface */ 6197 ipif = ipif_get_next_ipif(NULL, ill); 6198 return (ipif); 6199 } 6200 6201 /* 6202 * This func does not prevent refcnt from increasing. But if 6203 * the caller has taken steps to that effect, then this func 6204 * can be used to determine whether the ill has become quiescent 6205 */ 6206 static boolean_t 6207 ill_is_quiescent(ill_t *ill) 6208 { 6209 ipif_t *ipif; 6210 6211 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6212 6213 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6214 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6215 return (B_FALSE); 6216 } 6217 } 6218 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6219 return (B_FALSE); 6220 } 6221 return (B_TRUE); 6222 } 6223 6224 boolean_t 6225 ill_is_freeable(ill_t *ill) 6226 { 6227 ipif_t *ipif; 6228 6229 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6230 6231 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6232 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6233 return (B_FALSE); 6234 } 6235 } 6236 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6237 return (B_FALSE); 6238 } 6239 return (B_TRUE); 6240 } 6241 6242 /* 6243 * This func does not prevent refcnt from increasing. But if 6244 * the caller has taken steps to that effect, then this func 6245 * can be used to determine whether the ipif has become quiescent 6246 */ 6247 static boolean_t 6248 ipif_is_quiescent(ipif_t *ipif) 6249 { 6250 ill_t *ill; 6251 6252 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6253 6254 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6255 return (B_FALSE); 6256 } 6257 6258 ill = ipif->ipif_ill; 6259 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6260 ill->ill_logical_down) { 6261 return (B_TRUE); 6262 } 6263 6264 /* This is the last ipif going down or being deleted on this ill */ 6265 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6266 return (B_FALSE); 6267 } 6268 6269 return (B_TRUE); 6270 } 6271 6272 /* 6273 * return true if the ipif can be destroyed: the ipif has to be quiescent 6274 * with zero references from ire/nce/ilm to it. 6275 */ 6276 static boolean_t 6277 ipif_is_freeable(ipif_t *ipif) 6278 { 6279 6280 ill_t *ill; 6281 6282 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6283 6284 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6285 return (B_FALSE); 6286 } 6287 6288 ill = ipif->ipif_ill; 6289 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6290 ill->ill_logical_down) { 6291 return (B_TRUE); 6292 } 6293 6294 /* This is the last ipif going down or being deleted on this ill */ 6295 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6296 return (B_FALSE); 6297 } 6298 6299 return (B_TRUE); 6300 } 6301 6302 /* 6303 * This func does not prevent refcnt from increasing. But if 6304 * the caller has taken steps to that effect, then this func 6305 * can be used to determine whether the ipifs marked with IPIF_MOVING 6306 * have become quiescent and can be moved in a failover/failback. 6307 */ 6308 static ipif_t * 6309 ill_quiescent_to_move(ill_t *ill) 6310 { 6311 ipif_t *ipif; 6312 6313 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6314 6315 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6316 if (ipif->ipif_state_flags & IPIF_MOVING) { 6317 if (ipif->ipif_refcnt != 0 || 6318 !IPIF_DOWN_OK(ipif)) { 6319 return (ipif); 6320 } 6321 } 6322 } 6323 return (NULL); 6324 } 6325 6326 /* 6327 * The ipif/ill/ire has been refreled. Do the tail processing. 6328 * Determine if the ipif or ill in question has become quiescent and if so 6329 * wakeup close and/or restart any queued pending ioctl that is waiting 6330 * for the ipif_down (or ill_down) 6331 */ 6332 void 6333 ipif_ill_refrele_tail(ill_t *ill) 6334 { 6335 mblk_t *mp; 6336 conn_t *connp; 6337 ipsq_t *ipsq; 6338 ipif_t *ipif; 6339 dl_notify_ind_t *dlindp; 6340 6341 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6342 6343 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6344 ill_is_freeable(ill)) { 6345 /* ill_close may be waiting */ 6346 cv_broadcast(&ill->ill_cv); 6347 } 6348 6349 /* ipsq can't change because ill_lock is held */ 6350 ipsq = ill->ill_phyint->phyint_ipsq; 6351 if (ipsq->ipsq_waitfor == 0) { 6352 /* Not waiting for anything, just return. */ 6353 mutex_exit(&ill->ill_lock); 6354 return; 6355 } 6356 ASSERT(ipsq->ipsq_pending_mp != NULL && 6357 ipsq->ipsq_pending_ipif != NULL); 6358 /* 6359 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6360 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6361 * be zero for restarting an ioctl that ends up downing the ill. 6362 */ 6363 ipif = ipsq->ipsq_pending_ipif; 6364 if (ipif->ipif_ill != ill) { 6365 /* The ioctl is pending on some other ill. */ 6366 mutex_exit(&ill->ill_lock); 6367 return; 6368 } 6369 6370 switch (ipsq->ipsq_waitfor) { 6371 case IPIF_DOWN: 6372 if (!ipif_is_quiescent(ipif)) { 6373 mutex_exit(&ill->ill_lock); 6374 return; 6375 } 6376 break; 6377 case IPIF_FREE: 6378 if (!ipif_is_freeable(ipif)) { 6379 mutex_exit(&ill->ill_lock); 6380 return; 6381 } 6382 break; 6383 6384 case ILL_DOWN: 6385 if (!ill_is_quiescent(ill)) { 6386 mutex_exit(&ill->ill_lock); 6387 return; 6388 } 6389 break; 6390 case ILL_FREE: 6391 /* 6392 * case ILL_FREE arises only for loopback. otherwise ill_delete 6393 * waits synchronously in ip_close, and no message is queued in 6394 * ipsq_pending_mp at all in this case 6395 */ 6396 if (!ill_is_freeable(ill)) { 6397 mutex_exit(&ill->ill_lock); 6398 return; 6399 } 6400 break; 6401 6402 case ILL_MOVE_OK: 6403 if (ill_quiescent_to_move(ill) != NULL) { 6404 mutex_exit(&ill->ill_lock); 6405 return; 6406 } 6407 break; 6408 default: 6409 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6410 (void *)ipsq, ipsq->ipsq_waitfor); 6411 } 6412 6413 /* 6414 * Incr refcnt for the qwriter_ip call below which 6415 * does a refrele 6416 */ 6417 ill_refhold_locked(ill); 6418 mp = ipsq_pending_mp_get(ipsq, &connp); 6419 mutex_exit(&ill->ill_lock); 6420 6421 ASSERT(mp != NULL); 6422 /* 6423 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6424 * we can only get here when the current operation decides it 6425 * it needs to quiesce via ipsq_pending_mp_add(). 6426 */ 6427 switch (mp->b_datap->db_type) { 6428 case M_PCPROTO: 6429 case M_PROTO: 6430 /* 6431 * For now, only DL_NOTIFY_IND messages can use this facility. 6432 */ 6433 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6434 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6435 6436 switch (dlindp->dl_notification) { 6437 case DL_NOTE_PHYS_ADDR: 6438 qwriter_ip(ill, ill->ill_rq, mp, 6439 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6440 return; 6441 default: 6442 ASSERT(0); 6443 } 6444 break; 6445 6446 case M_ERROR: 6447 case M_HANGUP: 6448 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6449 B_TRUE); 6450 return; 6451 6452 case M_IOCTL: 6453 case M_IOCDATA: 6454 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6455 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6456 return; 6457 6458 default: 6459 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6460 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6461 } 6462 } 6463 6464 #ifdef DEBUG 6465 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6466 static void 6467 th_trace_rrecord(th_trace_t *th_trace) 6468 { 6469 tr_buf_t *tr_buf; 6470 uint_t lastref; 6471 6472 lastref = th_trace->th_trace_lastref; 6473 lastref++; 6474 if (lastref == TR_BUF_MAX) 6475 lastref = 0; 6476 th_trace->th_trace_lastref = lastref; 6477 tr_buf = &th_trace->th_trbuf[lastref]; 6478 tr_buf->tr_time = lbolt; 6479 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6480 } 6481 6482 static void 6483 th_trace_free(void *value) 6484 { 6485 th_trace_t *th_trace = value; 6486 6487 ASSERT(th_trace->th_refcnt == 0); 6488 kmem_free(th_trace, sizeof (*th_trace)); 6489 } 6490 6491 /* 6492 * Find or create the per-thread hash table used to track object references. 6493 * The ipst argument is NULL if we shouldn't allocate. 6494 * 6495 * Accesses per-thread data, so there's no need to lock here. 6496 */ 6497 static mod_hash_t * 6498 th_trace_gethash(ip_stack_t *ipst) 6499 { 6500 th_hash_t *thh; 6501 6502 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6503 mod_hash_t *mh; 6504 char name[256]; 6505 size_t objsize, rshift; 6506 int retv; 6507 6508 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6509 return (NULL); 6510 (void) snprintf(name, sizeof (name), "th_trace_%p", 6511 (void *)curthread); 6512 6513 /* 6514 * We use mod_hash_create_extended here rather than the more 6515 * obvious mod_hash_create_ptrhash because the latter has a 6516 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6517 * block. 6518 */ 6519 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6520 MAX(sizeof (ire_t), sizeof (nce_t))); 6521 rshift = highbit(objsize); 6522 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6523 th_trace_free, mod_hash_byptr, (void *)rshift, 6524 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6525 if (mh == NULL) { 6526 kmem_free(thh, sizeof (*thh)); 6527 return (NULL); 6528 } 6529 thh->thh_hash = mh; 6530 thh->thh_ipst = ipst; 6531 /* 6532 * We trace ills, ipifs, ires, and nces. All of these are 6533 * per-IP-stack, so the lock on the thread list is as well. 6534 */ 6535 rw_enter(&ip_thread_rwlock, RW_WRITER); 6536 list_insert_tail(&ip_thread_list, thh); 6537 rw_exit(&ip_thread_rwlock); 6538 retv = tsd_set(ip_thread_data, thh); 6539 ASSERT(retv == 0); 6540 } 6541 return (thh != NULL ? thh->thh_hash : NULL); 6542 } 6543 6544 boolean_t 6545 th_trace_ref(const void *obj, ip_stack_t *ipst) 6546 { 6547 th_trace_t *th_trace; 6548 mod_hash_t *mh; 6549 mod_hash_val_t val; 6550 6551 if ((mh = th_trace_gethash(ipst)) == NULL) 6552 return (B_FALSE); 6553 6554 /* 6555 * Attempt to locate the trace buffer for this obj and thread. 6556 * If it does not exist, then allocate a new trace buffer and 6557 * insert into the hash. 6558 */ 6559 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6560 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6561 if (th_trace == NULL) 6562 return (B_FALSE); 6563 6564 th_trace->th_id = curthread; 6565 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6566 (mod_hash_val_t)th_trace) != 0) { 6567 kmem_free(th_trace, sizeof (th_trace_t)); 6568 return (B_FALSE); 6569 } 6570 } else { 6571 th_trace = (th_trace_t *)val; 6572 } 6573 6574 ASSERT(th_trace->th_refcnt >= 0 && 6575 th_trace->th_refcnt < TR_BUF_MAX - 1); 6576 6577 th_trace->th_refcnt++; 6578 th_trace_rrecord(th_trace); 6579 return (B_TRUE); 6580 } 6581 6582 /* 6583 * For the purpose of tracing a reference release, we assume that global 6584 * tracing is always on and that the same thread initiated the reference hold 6585 * is releasing. 6586 */ 6587 void 6588 th_trace_unref(const void *obj) 6589 { 6590 int retv; 6591 mod_hash_t *mh; 6592 th_trace_t *th_trace; 6593 mod_hash_val_t val; 6594 6595 mh = th_trace_gethash(NULL); 6596 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6597 ASSERT(retv == 0); 6598 th_trace = (th_trace_t *)val; 6599 6600 ASSERT(th_trace->th_refcnt > 0); 6601 th_trace->th_refcnt--; 6602 th_trace_rrecord(th_trace); 6603 } 6604 6605 /* 6606 * If tracing has been disabled, then we assume that the reference counts are 6607 * now useless, and we clear them out before destroying the entries. 6608 */ 6609 void 6610 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6611 { 6612 th_hash_t *thh; 6613 mod_hash_t *mh; 6614 mod_hash_val_t val; 6615 th_trace_t *th_trace; 6616 int retv; 6617 6618 rw_enter(&ip_thread_rwlock, RW_READER); 6619 for (thh = list_head(&ip_thread_list); thh != NULL; 6620 thh = list_next(&ip_thread_list, thh)) { 6621 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6622 &val) == 0) { 6623 th_trace = (th_trace_t *)val; 6624 if (trace_disable) 6625 th_trace->th_refcnt = 0; 6626 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6627 ASSERT(retv == 0); 6628 } 6629 } 6630 rw_exit(&ip_thread_rwlock); 6631 } 6632 6633 void 6634 ipif_trace_ref(ipif_t *ipif) 6635 { 6636 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6637 6638 if (ipif->ipif_trace_disable) 6639 return; 6640 6641 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6642 ipif->ipif_trace_disable = B_TRUE; 6643 ipif_trace_cleanup(ipif); 6644 } 6645 } 6646 6647 void 6648 ipif_untrace_ref(ipif_t *ipif) 6649 { 6650 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6651 6652 if (!ipif->ipif_trace_disable) 6653 th_trace_unref(ipif); 6654 } 6655 6656 void 6657 ill_trace_ref(ill_t *ill) 6658 { 6659 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6660 6661 if (ill->ill_trace_disable) 6662 return; 6663 6664 if (!th_trace_ref(ill, ill->ill_ipst)) { 6665 ill->ill_trace_disable = B_TRUE; 6666 ill_trace_cleanup(ill); 6667 } 6668 } 6669 6670 void 6671 ill_untrace_ref(ill_t *ill) 6672 { 6673 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6674 6675 if (!ill->ill_trace_disable) 6676 th_trace_unref(ill); 6677 } 6678 6679 /* 6680 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6681 * failure, ipif_trace_disable is set. 6682 */ 6683 static void 6684 ipif_trace_cleanup(const ipif_t *ipif) 6685 { 6686 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6687 } 6688 6689 /* 6690 * Called when ill is unplumbed or when memory alloc fails. Note that on 6691 * failure, ill_trace_disable is set. 6692 */ 6693 static void 6694 ill_trace_cleanup(const ill_t *ill) 6695 { 6696 th_trace_cleanup(ill, ill->ill_trace_disable); 6697 } 6698 #endif /* DEBUG */ 6699 6700 void 6701 ipif_refhold_locked(ipif_t *ipif) 6702 { 6703 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6704 ipif->ipif_refcnt++; 6705 IPIF_TRACE_REF(ipif); 6706 } 6707 6708 void 6709 ipif_refhold(ipif_t *ipif) 6710 { 6711 ill_t *ill; 6712 6713 ill = ipif->ipif_ill; 6714 mutex_enter(&ill->ill_lock); 6715 ipif->ipif_refcnt++; 6716 IPIF_TRACE_REF(ipif); 6717 mutex_exit(&ill->ill_lock); 6718 } 6719 6720 /* 6721 * Must not be called while holding any locks. Otherwise if this is 6722 * the last reference to be released there is a chance of recursive mutex 6723 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6724 * to restart an ioctl. 6725 */ 6726 void 6727 ipif_refrele(ipif_t *ipif) 6728 { 6729 ill_t *ill; 6730 6731 ill = ipif->ipif_ill; 6732 6733 mutex_enter(&ill->ill_lock); 6734 ASSERT(ipif->ipif_refcnt != 0); 6735 ipif->ipif_refcnt--; 6736 IPIF_UNTRACE_REF(ipif); 6737 if (ipif->ipif_refcnt != 0) { 6738 mutex_exit(&ill->ill_lock); 6739 return; 6740 } 6741 6742 /* Drops the ill_lock */ 6743 ipif_ill_refrele_tail(ill); 6744 } 6745 6746 ipif_t * 6747 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6748 { 6749 ipif_t *ipif; 6750 6751 mutex_enter(&ill->ill_lock); 6752 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6753 ipif != NULL; ipif = ipif->ipif_next) { 6754 if (!IPIF_CAN_LOOKUP(ipif)) 6755 continue; 6756 ipif_refhold_locked(ipif); 6757 mutex_exit(&ill->ill_lock); 6758 return (ipif); 6759 } 6760 mutex_exit(&ill->ill_lock); 6761 return (NULL); 6762 } 6763 6764 /* 6765 * TODO: make this table extendible at run time 6766 * Return a pointer to the mac type info for 'mac_type' 6767 */ 6768 static ip_m_t * 6769 ip_m_lookup(t_uscalar_t mac_type) 6770 { 6771 ip_m_t *ipm; 6772 6773 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6774 if (ipm->ip_m_mac_type == mac_type) 6775 return (ipm); 6776 return (NULL); 6777 } 6778 6779 /* 6780 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6781 * ipif_arg is passed in to associate it with the correct interface. 6782 * We may need to restart this operation if the ipif cannot be looked up 6783 * due to an exclusive operation that is currently in progress. The restart 6784 * entry point is specified by 'func' 6785 */ 6786 int 6787 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6788 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6789 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6790 struct rtsa_s *sp, ip_stack_t *ipst) 6791 { 6792 ire_t *ire; 6793 ire_t *gw_ire = NULL; 6794 ipif_t *ipif = NULL; 6795 boolean_t ipif_refheld = B_FALSE; 6796 uint_t type; 6797 int match_flags = MATCH_IRE_TYPE; 6798 int error; 6799 tsol_gc_t *gc = NULL; 6800 tsol_gcgrp_t *gcgrp = NULL; 6801 boolean_t gcgrp_xtraref = B_FALSE; 6802 6803 ip1dbg(("ip_rt_add:")); 6804 6805 if (ire_arg != NULL) 6806 *ire_arg = NULL; 6807 6808 /* 6809 * If this is the case of RTF_HOST being set, then we set the netmask 6810 * to all ones (regardless if one was supplied). 6811 */ 6812 if (flags & RTF_HOST) 6813 mask = IP_HOST_MASK; 6814 6815 /* 6816 * Prevent routes with a zero gateway from being created (since 6817 * interfaces can currently be plumbed and brought up no assigned 6818 * address). 6819 */ 6820 if (gw_addr == 0) 6821 return (ENETUNREACH); 6822 /* 6823 * Get the ipif, if any, corresponding to the gw_addr 6824 */ 6825 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6826 ipst); 6827 if (ipif != NULL) { 6828 if (IS_VNI(ipif->ipif_ill)) { 6829 ipif_refrele(ipif); 6830 return (EINVAL); 6831 } 6832 ipif_refheld = B_TRUE; 6833 } else if (error == EINPROGRESS) { 6834 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6835 return (EINPROGRESS); 6836 } else { 6837 error = 0; 6838 } 6839 6840 if (ipif != NULL) { 6841 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6842 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6843 } else { 6844 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6845 } 6846 6847 /* 6848 * GateD will attempt to create routes with a loopback interface 6849 * address as the gateway and with RTF_GATEWAY set. We allow 6850 * these routes to be added, but create them as interface routes 6851 * since the gateway is an interface address. 6852 */ 6853 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6854 flags &= ~RTF_GATEWAY; 6855 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6856 mask == IP_HOST_MASK) { 6857 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6858 ALL_ZONES, NULL, match_flags, ipst); 6859 if (ire != NULL) { 6860 ire_refrele(ire); 6861 if (ipif_refheld) 6862 ipif_refrele(ipif); 6863 return (EEXIST); 6864 } 6865 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6866 "for 0x%x\n", (void *)ipif, 6867 ipif->ipif_ire_type, 6868 ntohl(ipif->ipif_lcl_addr))); 6869 ire = ire_create( 6870 (uchar_t *)&dst_addr, /* dest address */ 6871 (uchar_t *)&mask, /* mask */ 6872 (uchar_t *)&ipif->ipif_src_addr, 6873 NULL, /* no gateway */ 6874 &ipif->ipif_mtu, 6875 NULL, 6876 ipif->ipif_rq, /* recv-from queue */ 6877 NULL, /* no send-to queue */ 6878 ipif->ipif_ire_type, /* LOOPBACK */ 6879 ipif, 6880 0, 6881 0, 6882 0, 6883 (ipif->ipif_flags & IPIF_PRIVATE) ? 6884 RTF_PRIVATE : 0, 6885 &ire_uinfo_null, 6886 NULL, 6887 NULL, 6888 ipst); 6889 6890 if (ire == NULL) { 6891 if (ipif_refheld) 6892 ipif_refrele(ipif); 6893 return (ENOMEM); 6894 } 6895 error = ire_add(&ire, q, mp, func, B_FALSE); 6896 if (error == 0) 6897 goto save_ire; 6898 if (ipif_refheld) 6899 ipif_refrele(ipif); 6900 return (error); 6901 6902 } 6903 } 6904 6905 /* 6906 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6907 * and the gateway address provided is one of the system's interface 6908 * addresses. By using the routing socket interface and supplying an 6909 * RTA_IFP sockaddr with an interface index, an alternate method of 6910 * specifying an interface route to be created is available which uses 6911 * the interface index that specifies the outgoing interface rather than 6912 * the address of an outgoing interface (which may not be able to 6913 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6914 * flag, routes can be specified which not only specify the next-hop to 6915 * be used when routing to a certain prefix, but also which outgoing 6916 * interface should be used. 6917 * 6918 * Previously, interfaces would have unique addresses assigned to them 6919 * and so the address assigned to a particular interface could be used 6920 * to identify a particular interface. One exception to this was the 6921 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6922 * 6923 * With the advent of IPv6 and its link-local addresses, this 6924 * restriction was relaxed and interfaces could share addresses between 6925 * themselves. In fact, typically all of the link-local interfaces on 6926 * an IPv6 node or router will have the same link-local address. In 6927 * order to differentiate between these interfaces, the use of an 6928 * interface index is necessary and this index can be carried inside a 6929 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6930 * of using the interface index, however, is that all of the ipif's that 6931 * are part of an ill have the same index and so the RTA_IFP sockaddr 6932 * cannot be used to differentiate between ipif's (or logical 6933 * interfaces) that belong to the same ill (physical interface). 6934 * 6935 * For example, in the following case involving IPv4 interfaces and 6936 * logical interfaces 6937 * 6938 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6939 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6940 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6941 * 6942 * the ipif's corresponding to each of these interface routes can be 6943 * uniquely identified by the "gateway" (actually interface address). 6944 * 6945 * In this case involving multiple IPv6 default routes to a particular 6946 * link-local gateway, the use of RTA_IFP is necessary to specify which 6947 * default route is of interest: 6948 * 6949 * default fe80::123:4567:89ab:cdef U if0 6950 * default fe80::123:4567:89ab:cdef U if1 6951 */ 6952 6953 /* RTF_GATEWAY not set */ 6954 if (!(flags & RTF_GATEWAY)) { 6955 queue_t *stq; 6956 6957 if (sp != NULL) { 6958 ip2dbg(("ip_rt_add: gateway security attributes " 6959 "cannot be set with interface route\n")); 6960 if (ipif_refheld) 6961 ipif_refrele(ipif); 6962 return (EINVAL); 6963 } 6964 6965 /* 6966 * As the interface index specified with the RTA_IFP sockaddr is 6967 * the same for all ipif's off of an ill, the matching logic 6968 * below uses MATCH_IRE_ILL if such an index was specified. 6969 * This means that routes sharing the same prefix when added 6970 * using a RTA_IFP sockaddr must have distinct interface 6971 * indices (namely, they must be on distinct ill's). 6972 * 6973 * On the other hand, since the gateway address will usually be 6974 * different for each ipif on the system, the matching logic 6975 * uses MATCH_IRE_IPIF in the case of a traditional interface 6976 * route. This means that interface routes for the same prefix 6977 * can be created if they belong to distinct ipif's and if a 6978 * RTA_IFP sockaddr is not present. 6979 */ 6980 if (ipif_arg != NULL) { 6981 if (ipif_refheld) { 6982 ipif_refrele(ipif); 6983 ipif_refheld = B_FALSE; 6984 } 6985 ipif = ipif_arg; 6986 match_flags |= MATCH_IRE_ILL; 6987 } else { 6988 /* 6989 * Check the ipif corresponding to the gw_addr 6990 */ 6991 if (ipif == NULL) 6992 return (ENETUNREACH); 6993 match_flags |= MATCH_IRE_IPIF; 6994 } 6995 ASSERT(ipif != NULL); 6996 6997 /* 6998 * We check for an existing entry at this point. 6999 * 7000 * Since a netmask isn't passed in via the ioctl interface 7001 * (SIOCADDRT), we don't check for a matching netmask in that 7002 * case. 7003 */ 7004 if (!ioctl_msg) 7005 match_flags |= MATCH_IRE_MASK; 7006 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7007 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7008 if (ire != NULL) { 7009 ire_refrele(ire); 7010 if (ipif_refheld) 7011 ipif_refrele(ipif); 7012 return (EEXIST); 7013 } 7014 7015 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7016 ? ipif->ipif_rq : ipif->ipif_wq; 7017 7018 /* 7019 * Create a copy of the IRE_LOOPBACK, 7020 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7021 * the modified address and netmask. 7022 */ 7023 ire = ire_create( 7024 (uchar_t *)&dst_addr, 7025 (uint8_t *)&mask, 7026 (uint8_t *)&ipif->ipif_src_addr, 7027 NULL, 7028 &ipif->ipif_mtu, 7029 NULL, 7030 NULL, 7031 stq, 7032 ipif->ipif_net_type, 7033 ipif, 7034 0, 7035 0, 7036 0, 7037 flags, 7038 &ire_uinfo_null, 7039 NULL, 7040 NULL, 7041 ipst); 7042 if (ire == NULL) { 7043 if (ipif_refheld) 7044 ipif_refrele(ipif); 7045 return (ENOMEM); 7046 } 7047 7048 /* 7049 * Some software (for example, GateD and Sun Cluster) attempts 7050 * to create (what amount to) IRE_PREFIX routes with the 7051 * loopback address as the gateway. This is primarily done to 7052 * set up prefixes with the RTF_REJECT flag set (for example, 7053 * when generating aggregate routes.) 7054 * 7055 * If the IRE type (as defined by ipif->ipif_net_type) is 7056 * IRE_LOOPBACK, then we map the request into a 7057 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7058 * these interface routes, by definition, can only be that. 7059 * 7060 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7061 * routine, but rather using ire_create() directly. 7062 * 7063 */ 7064 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7065 ire->ire_type = IRE_IF_NORESOLVER; 7066 ire->ire_flags |= RTF_BLACKHOLE; 7067 } 7068 7069 error = ire_add(&ire, q, mp, func, B_FALSE); 7070 if (error == 0) 7071 goto save_ire; 7072 7073 /* 7074 * In the result of failure, ire_add() will have already 7075 * deleted the ire in question, so there is no need to 7076 * do that here. 7077 */ 7078 if (ipif_refheld) 7079 ipif_refrele(ipif); 7080 return (error); 7081 } 7082 if (ipif_refheld) { 7083 ipif_refrele(ipif); 7084 ipif_refheld = B_FALSE; 7085 } 7086 7087 /* 7088 * Get an interface IRE for the specified gateway. 7089 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7090 * gateway, it is currently unreachable and we fail the request 7091 * accordingly. 7092 */ 7093 ipif = ipif_arg; 7094 if (ipif_arg != NULL) 7095 match_flags |= MATCH_IRE_ILL; 7096 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7097 ALL_ZONES, 0, NULL, match_flags, ipst); 7098 if (gw_ire == NULL) 7099 return (ENETUNREACH); 7100 7101 /* 7102 * We create one of three types of IREs as a result of this request 7103 * based on the netmask. A netmask of all ones (which is automatically 7104 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7105 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7106 * created. Otherwise, an IRE_PREFIX route is created for the 7107 * destination prefix. 7108 */ 7109 if (mask == IP_HOST_MASK) 7110 type = IRE_HOST; 7111 else if (mask == 0) 7112 type = IRE_DEFAULT; 7113 else 7114 type = IRE_PREFIX; 7115 7116 /* check for a duplicate entry */ 7117 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7118 NULL, ALL_ZONES, 0, NULL, 7119 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7120 if (ire != NULL) { 7121 ire_refrele(gw_ire); 7122 ire_refrele(ire); 7123 return (EEXIST); 7124 } 7125 7126 /* Security attribute exists */ 7127 if (sp != NULL) { 7128 tsol_gcgrp_addr_t ga; 7129 7130 /* find or create the gateway credentials group */ 7131 ga.ga_af = AF_INET; 7132 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7133 7134 /* we hold reference to it upon success */ 7135 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7136 if (gcgrp == NULL) { 7137 ire_refrele(gw_ire); 7138 return (ENOMEM); 7139 } 7140 7141 /* 7142 * Create and add the security attribute to the group; a 7143 * reference to the group is made upon allocating a new 7144 * entry successfully. If it finds an already-existing 7145 * entry for the security attribute in the group, it simply 7146 * returns it and no new reference is made to the group. 7147 */ 7148 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7149 if (gc == NULL) { 7150 /* release reference held by gcgrp_lookup */ 7151 GCGRP_REFRELE(gcgrp); 7152 ire_refrele(gw_ire); 7153 return (ENOMEM); 7154 } 7155 } 7156 7157 /* Create the IRE. */ 7158 ire = ire_create( 7159 (uchar_t *)&dst_addr, /* dest address */ 7160 (uchar_t *)&mask, /* mask */ 7161 /* src address assigned by the caller? */ 7162 (uchar_t *)(((src_addr != INADDR_ANY) && 7163 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7164 (uchar_t *)&gw_addr, /* gateway address */ 7165 &gw_ire->ire_max_frag, 7166 NULL, /* no src nce */ 7167 NULL, /* no recv-from queue */ 7168 NULL, /* no send-to queue */ 7169 (ushort_t)type, /* IRE type */ 7170 ipif_arg, 7171 0, 7172 0, 7173 0, 7174 flags, 7175 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7176 gc, /* security attribute */ 7177 NULL, 7178 ipst); 7179 7180 /* 7181 * The ire holds a reference to the 'gc' and the 'gc' holds a 7182 * reference to the 'gcgrp'. We can now release the extra reference 7183 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7184 */ 7185 if (gcgrp_xtraref) 7186 GCGRP_REFRELE(gcgrp); 7187 if (ire == NULL) { 7188 if (gc != NULL) 7189 GC_REFRELE(gc); 7190 ire_refrele(gw_ire); 7191 return (ENOMEM); 7192 } 7193 7194 /* 7195 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7196 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7197 */ 7198 7199 /* Add the new IRE. */ 7200 error = ire_add(&ire, q, mp, func, B_FALSE); 7201 if (error != 0) { 7202 /* 7203 * In the result of failure, ire_add() will have already 7204 * deleted the ire in question, so there is no need to 7205 * do that here. 7206 */ 7207 ire_refrele(gw_ire); 7208 return (error); 7209 } 7210 7211 if (flags & RTF_MULTIRT) { 7212 /* 7213 * Invoke the CGTP (multirouting) filtering module 7214 * to add the dst address in the filtering database. 7215 * Replicated inbound packets coming from that address 7216 * will be filtered to discard the duplicates. 7217 * It is not necessary to call the CGTP filter hook 7218 * when the dst address is a broadcast or multicast, 7219 * because an IP source address cannot be a broadcast 7220 * or a multicast. 7221 */ 7222 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7223 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7224 if (ire_dst != NULL) { 7225 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7226 ire_refrele(ire_dst); 7227 goto save_ire; 7228 } 7229 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7230 !CLASSD(ire->ire_addr)) { 7231 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7232 ipst->ips_netstack->netstack_stackid, 7233 ire->ire_addr, 7234 ire->ire_gateway_addr, 7235 ire->ire_src_addr, 7236 gw_ire->ire_src_addr); 7237 if (res != 0) { 7238 ire_refrele(gw_ire); 7239 ire_delete(ire); 7240 return (res); 7241 } 7242 } 7243 } 7244 7245 /* 7246 * Now that the prefix IRE entry has been created, delete any 7247 * existing gateway IRE cache entries as well as any IRE caches 7248 * using the gateway, and force them to be created through 7249 * ip_newroute. 7250 */ 7251 if (gc != NULL) { 7252 ASSERT(gcgrp != NULL); 7253 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7254 } 7255 7256 save_ire: 7257 if (gw_ire != NULL) { 7258 ire_refrele(gw_ire); 7259 } 7260 if (ipif != NULL) { 7261 /* 7262 * Save enough information so that we can recreate the IRE if 7263 * the interface goes down and then up. The metrics associated 7264 * with the route will be saved as well when rts_setmetrics() is 7265 * called after the IRE has been created. In the case where 7266 * memory cannot be allocated, none of this information will be 7267 * saved. 7268 */ 7269 ipif_save_ire(ipif, ire); 7270 } 7271 if (ioctl_msg) 7272 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7273 if (ire_arg != NULL) { 7274 /* 7275 * Store the ire that was successfully added into where ire_arg 7276 * points to so that callers don't have to look it up 7277 * themselves (but they are responsible for ire_refrele()ing 7278 * the ire when they are finished with it). 7279 */ 7280 *ire_arg = ire; 7281 } else { 7282 ire_refrele(ire); /* Held in ire_add */ 7283 } 7284 if (ipif_refheld) 7285 ipif_refrele(ipif); 7286 return (0); 7287 } 7288 7289 /* 7290 * ip_rt_delete is called to delete an IPv4 route. 7291 * ipif_arg is passed in to associate it with the correct interface. 7292 * We may need to restart this operation if the ipif cannot be looked up 7293 * due to an exclusive operation that is currently in progress. The restart 7294 * entry point is specified by 'func' 7295 */ 7296 /* ARGSUSED4 */ 7297 int 7298 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7299 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7300 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7301 { 7302 ire_t *ire = NULL; 7303 ipif_t *ipif; 7304 boolean_t ipif_refheld = B_FALSE; 7305 uint_t type; 7306 uint_t match_flags = MATCH_IRE_TYPE; 7307 int err = 0; 7308 7309 ip1dbg(("ip_rt_delete:")); 7310 /* 7311 * If this is the case of RTF_HOST being set, then we set the netmask 7312 * to all ones. Otherwise, we use the netmask if one was supplied. 7313 */ 7314 if (flags & RTF_HOST) { 7315 mask = IP_HOST_MASK; 7316 match_flags |= MATCH_IRE_MASK; 7317 } else if (rtm_addrs & RTA_NETMASK) { 7318 match_flags |= MATCH_IRE_MASK; 7319 } 7320 7321 /* 7322 * Note that RTF_GATEWAY is never set on a delete, therefore 7323 * we check if the gateway address is one of our interfaces first, 7324 * and fall back on RTF_GATEWAY routes. 7325 * 7326 * This makes it possible to delete an original 7327 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7328 * 7329 * As the interface index specified with the RTA_IFP sockaddr is the 7330 * same for all ipif's off of an ill, the matching logic below uses 7331 * MATCH_IRE_ILL if such an index was specified. This means a route 7332 * sharing the same prefix and interface index as the the route 7333 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7334 * is specified in the request. 7335 * 7336 * On the other hand, since the gateway address will usually be 7337 * different for each ipif on the system, the matching logic 7338 * uses MATCH_IRE_IPIF in the case of a traditional interface 7339 * route. This means that interface routes for the same prefix can be 7340 * uniquely identified if they belong to distinct ipif's and if a 7341 * RTA_IFP sockaddr is not present. 7342 * 7343 * For more detail on specifying routes by gateway address and by 7344 * interface index, see the comments in ip_rt_add(). 7345 */ 7346 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7347 ipst); 7348 if (ipif != NULL) 7349 ipif_refheld = B_TRUE; 7350 else if (err == EINPROGRESS) 7351 return (err); 7352 else 7353 err = 0; 7354 if (ipif != NULL) { 7355 if (ipif_arg != NULL) { 7356 if (ipif_refheld) { 7357 ipif_refrele(ipif); 7358 ipif_refheld = B_FALSE; 7359 } 7360 ipif = ipif_arg; 7361 match_flags |= MATCH_IRE_ILL; 7362 } else { 7363 match_flags |= MATCH_IRE_IPIF; 7364 } 7365 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7366 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7367 ALL_ZONES, NULL, match_flags, ipst); 7368 } 7369 if (ire == NULL) { 7370 ire = ire_ftable_lookup(dst_addr, mask, 0, 7371 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7372 match_flags, ipst); 7373 } 7374 } 7375 7376 if (ire == NULL) { 7377 /* 7378 * At this point, the gateway address is not one of our own 7379 * addresses or a matching interface route was not found. We 7380 * set the IRE type to lookup based on whether 7381 * this is a host route, a default route or just a prefix. 7382 * 7383 * If an ipif_arg was passed in, then the lookup is based on an 7384 * interface index so MATCH_IRE_ILL is added to match_flags. 7385 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7386 * set as the route being looked up is not a traditional 7387 * interface route. 7388 */ 7389 match_flags &= ~MATCH_IRE_IPIF; 7390 match_flags |= MATCH_IRE_GW; 7391 if (ipif_arg != NULL) 7392 match_flags |= MATCH_IRE_ILL; 7393 if (mask == IP_HOST_MASK) 7394 type = IRE_HOST; 7395 else if (mask == 0) 7396 type = IRE_DEFAULT; 7397 else 7398 type = IRE_PREFIX; 7399 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7400 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7401 } 7402 7403 if (ipif_refheld) 7404 ipif_refrele(ipif); 7405 7406 /* ipif is not refheld anymore */ 7407 if (ire == NULL) 7408 return (ESRCH); 7409 7410 if (ire->ire_flags & RTF_MULTIRT) { 7411 /* 7412 * Invoke the CGTP (multirouting) filtering module 7413 * to remove the dst address from the filtering database. 7414 * Packets coming from that address will no longer be 7415 * filtered to remove duplicates. 7416 */ 7417 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7418 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7419 ipst->ips_netstack->netstack_stackid, 7420 ire->ire_addr, ire->ire_gateway_addr); 7421 } 7422 ip_cgtp_bcast_delete(ire, ipst); 7423 } 7424 7425 ipif = ire->ire_ipif; 7426 if (ipif != NULL) 7427 ipif_remove_ire(ipif, ire); 7428 if (ioctl_msg) 7429 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7430 ire_delete(ire); 7431 ire_refrele(ire); 7432 return (err); 7433 } 7434 7435 /* 7436 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7437 */ 7438 /* ARGSUSED */ 7439 int 7440 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7441 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7442 { 7443 ipaddr_t dst_addr; 7444 ipaddr_t gw_addr; 7445 ipaddr_t mask; 7446 int error = 0; 7447 mblk_t *mp1; 7448 struct rtentry *rt; 7449 ipif_t *ipif = NULL; 7450 ip_stack_t *ipst; 7451 7452 ASSERT(q->q_next == NULL); 7453 ipst = CONNQ_TO_IPST(q); 7454 7455 ip1dbg(("ip_siocaddrt:")); 7456 /* Existence of mp1 verified in ip_wput_nondata */ 7457 mp1 = mp->b_cont->b_cont; 7458 rt = (struct rtentry *)mp1->b_rptr; 7459 7460 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7461 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7462 7463 /* 7464 * If the RTF_HOST flag is on, this is a request to assign a gateway 7465 * to a particular host address. In this case, we set the netmask to 7466 * all ones for the particular destination address. Otherwise, 7467 * determine the netmask to be used based on dst_addr and the interfaces 7468 * in use. 7469 */ 7470 if (rt->rt_flags & RTF_HOST) { 7471 mask = IP_HOST_MASK; 7472 } else { 7473 /* 7474 * Note that ip_subnet_mask returns a zero mask in the case of 7475 * default (an all-zeroes address). 7476 */ 7477 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7478 } 7479 7480 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7481 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7482 if (ipif != NULL) 7483 ipif_refrele(ipif); 7484 return (error); 7485 } 7486 7487 /* 7488 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7489 */ 7490 /* ARGSUSED */ 7491 int 7492 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7493 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7494 { 7495 ipaddr_t dst_addr; 7496 ipaddr_t gw_addr; 7497 ipaddr_t mask; 7498 int error; 7499 mblk_t *mp1; 7500 struct rtentry *rt; 7501 ipif_t *ipif = NULL; 7502 ip_stack_t *ipst; 7503 7504 ASSERT(q->q_next == NULL); 7505 ipst = CONNQ_TO_IPST(q); 7506 7507 ip1dbg(("ip_siocdelrt:")); 7508 /* Existence of mp1 verified in ip_wput_nondata */ 7509 mp1 = mp->b_cont->b_cont; 7510 rt = (struct rtentry *)mp1->b_rptr; 7511 7512 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7513 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7514 7515 /* 7516 * If the RTF_HOST flag is on, this is a request to delete a gateway 7517 * to a particular host address. In this case, we set the netmask to 7518 * all ones for the particular destination address. Otherwise, 7519 * determine the netmask to be used based on dst_addr and the interfaces 7520 * in use. 7521 */ 7522 if (rt->rt_flags & RTF_HOST) { 7523 mask = IP_HOST_MASK; 7524 } else { 7525 /* 7526 * Note that ip_subnet_mask returns a zero mask in the case of 7527 * default (an all-zeroes address). 7528 */ 7529 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7530 } 7531 7532 error = ip_rt_delete(dst_addr, mask, gw_addr, 7533 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7534 mp, ip_process_ioctl, ipst); 7535 if (ipif != NULL) 7536 ipif_refrele(ipif); 7537 return (error); 7538 } 7539 7540 /* 7541 * Enqueue the mp onto the ipsq, chained by b_next. 7542 * b_prev stores the function to be executed later, and b_queue the queue 7543 * where this mp originated. 7544 */ 7545 void 7546 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7547 ill_t *pending_ill) 7548 { 7549 conn_t *connp = NULL; 7550 7551 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7552 ASSERT(func != NULL); 7553 7554 mp->b_queue = q; 7555 mp->b_prev = (void *)func; 7556 mp->b_next = NULL; 7557 7558 switch (type) { 7559 case CUR_OP: 7560 if (ipsq->ipsq_mptail != NULL) { 7561 ASSERT(ipsq->ipsq_mphead != NULL); 7562 ipsq->ipsq_mptail->b_next = mp; 7563 } else { 7564 ASSERT(ipsq->ipsq_mphead == NULL); 7565 ipsq->ipsq_mphead = mp; 7566 } 7567 ipsq->ipsq_mptail = mp; 7568 break; 7569 7570 case NEW_OP: 7571 if (ipsq->ipsq_xopq_mptail != NULL) { 7572 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7573 ipsq->ipsq_xopq_mptail->b_next = mp; 7574 } else { 7575 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7576 ipsq->ipsq_xopq_mphead = mp; 7577 } 7578 ipsq->ipsq_xopq_mptail = mp; 7579 break; 7580 default: 7581 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7582 } 7583 7584 if (CONN_Q(q) && pending_ill != NULL) { 7585 connp = Q_TO_CONN(q); 7586 7587 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7588 connp->conn_oper_pending_ill = pending_ill; 7589 } 7590 } 7591 7592 /* 7593 * Return the mp at the head of the ipsq. After emptying the ipsq 7594 * look at the next ioctl, if this ioctl is complete. Otherwise 7595 * return, we will resume when we complete the current ioctl. 7596 * The current ioctl will wait till it gets a response from the 7597 * driver below. 7598 */ 7599 static mblk_t * 7600 ipsq_dq(ipsq_t *ipsq) 7601 { 7602 mblk_t *mp; 7603 7604 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7605 7606 mp = ipsq->ipsq_mphead; 7607 if (mp != NULL) { 7608 ipsq->ipsq_mphead = mp->b_next; 7609 if (ipsq->ipsq_mphead == NULL) 7610 ipsq->ipsq_mptail = NULL; 7611 mp->b_next = NULL; 7612 return (mp); 7613 } 7614 if (ipsq->ipsq_current_ipif != NULL) 7615 return (NULL); 7616 mp = ipsq->ipsq_xopq_mphead; 7617 if (mp != NULL) { 7618 ipsq->ipsq_xopq_mphead = mp->b_next; 7619 if (ipsq->ipsq_xopq_mphead == NULL) 7620 ipsq->ipsq_xopq_mptail = NULL; 7621 mp->b_next = NULL; 7622 return (mp); 7623 } 7624 return (NULL); 7625 } 7626 7627 /* 7628 * Enter the ipsq corresponding to ill, by waiting synchronously till 7629 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7630 * will have to drain completely before ipsq_enter returns success. 7631 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7632 * and the ipsq_exit logic will start the next enqueued ioctl after 7633 * completion of the current ioctl. If 'force' is used, we don't wait 7634 * for the enqueued ioctls. This is needed when a conn_close wants to 7635 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7636 * of an ill can also use this option. But we dont' use it currently. 7637 */ 7638 #define ENTER_SQ_WAIT_TICKS 100 7639 boolean_t 7640 ipsq_enter(ill_t *ill, boolean_t force) 7641 { 7642 ipsq_t *ipsq; 7643 boolean_t waited_enough = B_FALSE; 7644 7645 /* 7646 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7647 * Since the <ill-ipsq> assocs could change while we wait for the 7648 * writer, it is easier to wait on a fixed global rather than try to 7649 * cv_wait on a changing ipsq. 7650 */ 7651 mutex_enter(&ill->ill_lock); 7652 for (;;) { 7653 if (ill->ill_state_flags & ILL_CONDEMNED) { 7654 mutex_exit(&ill->ill_lock); 7655 return (B_FALSE); 7656 } 7657 7658 ipsq = ill->ill_phyint->phyint_ipsq; 7659 mutex_enter(&ipsq->ipsq_lock); 7660 if (ipsq->ipsq_writer == NULL && 7661 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7662 break; 7663 } else if (ipsq->ipsq_writer != NULL) { 7664 mutex_exit(&ipsq->ipsq_lock); 7665 cv_wait(&ill->ill_cv, &ill->ill_lock); 7666 } else { 7667 mutex_exit(&ipsq->ipsq_lock); 7668 if (force) { 7669 (void) cv_timedwait(&ill->ill_cv, 7670 &ill->ill_lock, 7671 lbolt + ENTER_SQ_WAIT_TICKS); 7672 waited_enough = B_TRUE; 7673 continue; 7674 } else { 7675 cv_wait(&ill->ill_cv, &ill->ill_lock); 7676 } 7677 } 7678 } 7679 7680 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7681 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7682 ipsq->ipsq_writer = curthread; 7683 ipsq->ipsq_reentry_cnt++; 7684 #ifdef DEBUG 7685 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7686 #endif 7687 mutex_exit(&ipsq->ipsq_lock); 7688 mutex_exit(&ill->ill_lock); 7689 return (B_TRUE); 7690 } 7691 7692 /* 7693 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7694 * certain critical operations like plumbing (i.e. most set ioctls), 7695 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7696 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7697 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7698 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7699 * threads executing in the ipsq. Responses from the driver pertain to the 7700 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7701 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7702 * 7703 * If a thread does not want to reenter the ipsq when it is already writer, 7704 * it must make sure that the specified reentry point to be called later 7705 * when the ipsq is empty, nor any code path starting from the specified reentry 7706 * point must never ever try to enter the ipsq again. Otherwise it can lead 7707 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7708 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7709 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7710 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7711 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7712 * ioctl if the current ioctl has completed. If the current ioctl is still 7713 * in progress it simply returns. The current ioctl could be waiting for 7714 * a response from another module (arp_ or the driver or could be waiting for 7715 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7716 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7717 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7718 * ipsq_current_ipif is clear which happens only on ioctl completion. 7719 */ 7720 7721 /* 7722 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7723 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7724 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7725 * completion. 7726 */ 7727 ipsq_t * 7728 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7729 ipsq_func_t func, int type, boolean_t reentry_ok) 7730 { 7731 ipsq_t *ipsq; 7732 7733 /* Only 1 of ipif or ill can be specified */ 7734 ASSERT((ipif != NULL) ^ (ill != NULL)); 7735 if (ipif != NULL) 7736 ill = ipif->ipif_ill; 7737 7738 /* 7739 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7740 * ipsq of an ill can't change when ill_lock is held. 7741 */ 7742 GRAB_CONN_LOCK(q); 7743 mutex_enter(&ill->ill_lock); 7744 ipsq = ill->ill_phyint->phyint_ipsq; 7745 mutex_enter(&ipsq->ipsq_lock); 7746 7747 /* 7748 * 1. Enter the ipsq if we are already writer and reentry is ok. 7749 * (Note: If the caller does not specify reentry_ok then neither 7750 * 'func' nor any of its callees must ever attempt to enter the ipsq 7751 * again. Otherwise it can lead to an infinite loop 7752 * 2. Enter the ipsq if there is no current writer and this attempted 7753 * entry is part of the current ioctl or operation 7754 * 3. Enter the ipsq if there is no current writer and this is a new 7755 * ioctl (or operation) and the ioctl (or operation) queue is 7756 * empty and there is no ioctl (or operation) currently in progress 7757 */ 7758 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7759 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7760 ipsq->ipsq_current_ipif == NULL))) || 7761 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7762 /* Success. */ 7763 ipsq->ipsq_reentry_cnt++; 7764 ipsq->ipsq_writer = curthread; 7765 mutex_exit(&ipsq->ipsq_lock); 7766 mutex_exit(&ill->ill_lock); 7767 RELEASE_CONN_LOCK(q); 7768 #ifdef DEBUG 7769 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7770 IPSQ_STACK_DEPTH); 7771 #endif 7772 return (ipsq); 7773 } 7774 7775 ipsq_enq(ipsq, q, mp, func, type, ill); 7776 7777 mutex_exit(&ipsq->ipsq_lock); 7778 mutex_exit(&ill->ill_lock); 7779 RELEASE_CONN_LOCK(q); 7780 return (NULL); 7781 } 7782 7783 /* 7784 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7785 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7786 * cannot be entered, the mp is queued for completion. 7787 */ 7788 void 7789 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7790 boolean_t reentry_ok) 7791 { 7792 ipsq_t *ipsq; 7793 7794 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7795 7796 /* 7797 * Drop the caller's refhold on the ill. This is safe since we either 7798 * entered the IPSQ (and thus are exclusive), or failed to enter the 7799 * IPSQ, in which case we return without accessing ill anymore. This 7800 * is needed because func needs to see the correct refcount. 7801 * e.g. removeif can work only then. 7802 */ 7803 ill_refrele(ill); 7804 if (ipsq != NULL) { 7805 (*func)(ipsq, q, mp, NULL); 7806 ipsq_exit(ipsq); 7807 } 7808 } 7809 7810 /* 7811 * If there are more than ILL_GRP_CNT ills in a group, 7812 * we use kmem alloc'd buffers, else use the stack 7813 */ 7814 #define ILL_GRP_CNT 14 7815 /* 7816 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7817 * Called by a thread that is currently exclusive on this ipsq. 7818 */ 7819 void 7820 ipsq_exit(ipsq_t *ipsq) 7821 { 7822 queue_t *q; 7823 mblk_t *mp; 7824 ipsq_func_t func; 7825 int next; 7826 ill_t **ill_list = NULL; 7827 size_t ill_list_size = 0; 7828 int cnt = 0; 7829 boolean_t need_ipsq_free = B_FALSE; 7830 ip_stack_t *ipst = ipsq->ipsq_ipst; 7831 7832 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7833 mutex_enter(&ipsq->ipsq_lock); 7834 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7835 if (ipsq->ipsq_reentry_cnt != 1) { 7836 ipsq->ipsq_reentry_cnt--; 7837 mutex_exit(&ipsq->ipsq_lock); 7838 return; 7839 } 7840 7841 mp = ipsq_dq(ipsq); 7842 while (mp != NULL) { 7843 again: 7844 mutex_exit(&ipsq->ipsq_lock); 7845 func = (ipsq_func_t)mp->b_prev; 7846 q = (queue_t *)mp->b_queue; 7847 mp->b_prev = NULL; 7848 mp->b_queue = NULL; 7849 7850 /* 7851 * If 'q' is an conn queue, it is valid, since we did a 7852 * a refhold on the connp, at the start of the ioctl. 7853 * If 'q' is an ill queue, it is valid, since close of an 7854 * ill will clean up the 'ipsq'. 7855 */ 7856 (*func)(ipsq, q, mp, NULL); 7857 7858 mutex_enter(&ipsq->ipsq_lock); 7859 mp = ipsq_dq(ipsq); 7860 } 7861 7862 mutex_exit(&ipsq->ipsq_lock); 7863 7864 /* 7865 * Need to grab the locks in the right order. Need to 7866 * atomically check (under ipsq_lock) that there are no 7867 * messages before relinquishing the ipsq. Also need to 7868 * atomically wakeup waiters on ill_cv while holding ill_lock. 7869 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7870 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7871 * to grab ill_g_lock as writer. 7872 */ 7873 rw_enter(&ipst->ips_ill_g_lock, 7874 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7875 7876 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7877 if (ipsq->ipsq_refs != 0) { 7878 /* At most 2 ills v4/v6 per phyint */ 7879 cnt = ipsq->ipsq_refs << 1; 7880 ill_list_size = cnt * sizeof (ill_t *); 7881 /* 7882 * If memory allocation fails, we will do the split 7883 * the next time ipsq_exit is called for whatever reason. 7884 * As long as the ipsq_split flag is set the need to 7885 * split is remembered. 7886 */ 7887 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7888 if (ill_list != NULL) 7889 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7890 } 7891 mutex_enter(&ipsq->ipsq_lock); 7892 mp = ipsq_dq(ipsq); 7893 if (mp != NULL) { 7894 /* oops, some message has landed up, we can't get out */ 7895 if (ill_list != NULL) 7896 ill_unlock_ills(ill_list, cnt); 7897 rw_exit(&ipst->ips_ill_g_lock); 7898 if (ill_list != NULL) 7899 kmem_free(ill_list, ill_list_size); 7900 ill_list = NULL; 7901 ill_list_size = 0; 7902 cnt = 0; 7903 goto again; 7904 } 7905 7906 /* 7907 * Split only if no ioctl is pending and if memory alloc succeeded 7908 * above. 7909 */ 7910 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7911 ill_list != NULL) { 7912 /* 7913 * No new ill can join this ipsq since we are holding the 7914 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7915 * ipsq. ill_split_ipsq may fail due to memory shortage. 7916 * If so we will retry on the next ipsq_exit. 7917 */ 7918 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7919 } 7920 7921 /* 7922 * We are holding the ipsq lock, hence no new messages can 7923 * land up on the ipsq, and there are no messages currently. 7924 * Now safe to get out. Wake up waiters and relinquish ipsq 7925 * atomically while holding ill locks. 7926 */ 7927 ipsq->ipsq_writer = NULL; 7928 ipsq->ipsq_reentry_cnt--; 7929 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7930 #ifdef DEBUG 7931 ipsq->ipsq_depth = 0; 7932 #endif 7933 mutex_exit(&ipsq->ipsq_lock); 7934 /* 7935 * For IPMP this should wake up all ills in this ipsq. 7936 * We need to hold the ill_lock while waking up waiters to 7937 * avoid missed wakeups. But there is no need to acquire all 7938 * the ill locks and then wakeup. If we have not acquired all 7939 * the locks (due to memory failure above) ill_signal_ipsq_ills 7940 * wakes up ills one at a time after getting the right ill_lock 7941 */ 7942 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7943 if (ill_list != NULL) 7944 ill_unlock_ills(ill_list, cnt); 7945 if (ipsq->ipsq_refs == 0) 7946 need_ipsq_free = B_TRUE; 7947 rw_exit(&ipst->ips_ill_g_lock); 7948 if (ill_list != 0) 7949 kmem_free(ill_list, ill_list_size); 7950 7951 if (need_ipsq_free) { 7952 /* 7953 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7954 * looked up. ipsq can be looked up only thru ill or phyint 7955 * and there are no ills/phyint on this ipsq. 7956 */ 7957 ipsq_delete(ipsq); 7958 } 7959 7960 /* 7961 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7962 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7963 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7964 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7965 * (executing the timeout, waiting to get inside the IPSQ). 7966 * 7967 * However, there is one exception to the above: if this thread *is* 7968 * the IGMP/MLD timeout handler thread, then we must not start its 7969 * timer until the current handler is done. 7970 */ 7971 mutex_enter(&ipst->ips_igmp_timer_lock); 7972 if (curthread != ipst->ips_igmp_timer_thread) { 7973 next = ipst->ips_igmp_deferred_next; 7974 ipst->ips_igmp_deferred_next = INFINITY; 7975 mutex_exit(&ipst->ips_igmp_timer_lock); 7976 7977 if (next != INFINITY) 7978 igmp_start_timers(next, ipst); 7979 } else { 7980 mutex_exit(&ipst->ips_igmp_timer_lock); 7981 } 7982 7983 mutex_enter(&ipst->ips_mld_timer_lock); 7984 if (curthread != ipst->ips_mld_timer_thread) { 7985 next = ipst->ips_mld_deferred_next; 7986 ipst->ips_mld_deferred_next = INFINITY; 7987 mutex_exit(&ipst->ips_mld_timer_lock); 7988 7989 if (next != INFINITY) 7990 mld_start_timers(next, ipst); 7991 } else { 7992 mutex_exit(&ipst->ips_mld_timer_lock); 7993 } 7994 } 7995 7996 /* 7997 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7998 * and `ioccmd'. 7999 */ 8000 void 8001 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8002 { 8003 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8004 8005 mutex_enter(&ipsq->ipsq_lock); 8006 ASSERT(ipsq->ipsq_current_ipif == NULL); 8007 ASSERT(ipsq->ipsq_current_ioctl == 0); 8008 ipsq->ipsq_current_done = B_FALSE; 8009 ipsq->ipsq_current_ipif = ipif; 8010 ipsq->ipsq_current_ioctl = ioccmd; 8011 mutex_exit(&ipsq->ipsq_lock); 8012 } 8013 8014 /* 8015 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8016 * the next exclusive operation to begin once we ipsq_exit(). However, if 8017 * pending DLPI operations remain, then we will wait for the queue to drain 8018 * before allowing the next exclusive operation to begin. This ensures that 8019 * DLPI operations from one exclusive operation are never improperly processed 8020 * as part of a subsequent exclusive operation. 8021 */ 8022 void 8023 ipsq_current_finish(ipsq_t *ipsq) 8024 { 8025 ipif_t *ipif = ipsq->ipsq_current_ipif; 8026 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8027 8028 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8029 8030 /* 8031 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8032 * (but in that case, IPIF_CHANGING will already be clear and no 8033 * pending DLPI messages can remain). 8034 */ 8035 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8036 ill_t *ill = ipif->ipif_ill; 8037 8038 mutex_enter(&ill->ill_lock); 8039 dlpi_pending = ill->ill_dlpi_pending; 8040 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8041 /* Send any queued event */ 8042 ill_nic_info_dispatch(ill); 8043 mutex_exit(&ill->ill_lock); 8044 } 8045 8046 mutex_enter(&ipsq->ipsq_lock); 8047 ipsq->ipsq_current_ioctl = 0; 8048 ipsq->ipsq_current_done = B_TRUE; 8049 if (dlpi_pending == DL_PRIM_INVAL) 8050 ipsq->ipsq_current_ipif = NULL; 8051 mutex_exit(&ipsq->ipsq_lock); 8052 } 8053 8054 /* 8055 * The ill is closing. Flush all messages on the ipsq that originated 8056 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8057 * for this ill since ipsq_enter could not have entered until then. 8058 * New messages can't be queued since the CONDEMNED flag is set. 8059 */ 8060 static void 8061 ipsq_flush(ill_t *ill) 8062 { 8063 queue_t *q; 8064 mblk_t *prev; 8065 mblk_t *mp; 8066 mblk_t *mp_next; 8067 ipsq_t *ipsq; 8068 8069 ASSERT(IAM_WRITER_ILL(ill)); 8070 ipsq = ill->ill_phyint->phyint_ipsq; 8071 /* 8072 * Flush any messages sent up by the driver. 8073 */ 8074 mutex_enter(&ipsq->ipsq_lock); 8075 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8076 mp_next = mp->b_next; 8077 q = mp->b_queue; 8078 if (q == ill->ill_rq || q == ill->ill_wq) { 8079 /* Remove the mp from the ipsq */ 8080 if (prev == NULL) 8081 ipsq->ipsq_mphead = mp->b_next; 8082 else 8083 prev->b_next = mp->b_next; 8084 if (ipsq->ipsq_mptail == mp) { 8085 ASSERT(mp_next == NULL); 8086 ipsq->ipsq_mptail = prev; 8087 } 8088 inet_freemsg(mp); 8089 } else { 8090 prev = mp; 8091 } 8092 } 8093 mutex_exit(&ipsq->ipsq_lock); 8094 (void) ipsq_pending_mp_cleanup(ill, NULL); 8095 ipsq_xopq_mp_cleanup(ill, NULL); 8096 ill_pending_mp_cleanup(ill); 8097 } 8098 8099 /* ARGSUSED */ 8100 int 8101 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8102 ip_ioctl_cmd_t *ipip, void *ifreq) 8103 { 8104 ill_t *ill; 8105 struct lifreq *lifr = (struct lifreq *)ifreq; 8106 boolean_t isv6; 8107 conn_t *connp; 8108 ip_stack_t *ipst; 8109 8110 connp = Q_TO_CONN(q); 8111 ipst = connp->conn_netstack->netstack_ip; 8112 isv6 = connp->conn_af_isv6; 8113 /* 8114 * Set original index. 8115 * Failover and failback move logical interfaces 8116 * from one physical interface to another. The 8117 * original index indicates the parent of a logical 8118 * interface, in other words, the physical interface 8119 * the logical interface will be moved back to on 8120 * failback. 8121 */ 8122 8123 /* 8124 * Don't allow the original index to be changed 8125 * for non-failover addresses, autoconfigured 8126 * addresses, or IPv6 link local addresses. 8127 */ 8128 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8129 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8130 return (EINVAL); 8131 } 8132 /* 8133 * The new original index must be in use by some 8134 * physical interface. 8135 */ 8136 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8137 NULL, NULL, ipst); 8138 if (ill == NULL) 8139 return (ENXIO); 8140 ill_refrele(ill); 8141 8142 ipif->ipif_orig_ifindex = lifr->lifr_index; 8143 /* 8144 * When this ipif gets failed back, don't 8145 * preserve the original id, as it is no 8146 * longer applicable. 8147 */ 8148 ipif->ipif_orig_ipifid = 0; 8149 /* 8150 * For IPv4, change the original index of any 8151 * multicast addresses associated with the 8152 * ipif to the new value. 8153 */ 8154 if (!isv6) { 8155 ilm_t *ilm; 8156 8157 mutex_enter(&ipif->ipif_ill->ill_lock); 8158 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8159 ilm = ilm->ilm_next) { 8160 if (ilm->ilm_ipif == ipif) { 8161 ilm->ilm_orig_ifindex = lifr->lifr_index; 8162 } 8163 } 8164 mutex_exit(&ipif->ipif_ill->ill_lock); 8165 } 8166 return (0); 8167 } 8168 8169 /* ARGSUSED */ 8170 int 8171 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8172 ip_ioctl_cmd_t *ipip, void *ifreq) 8173 { 8174 struct lifreq *lifr = (struct lifreq *)ifreq; 8175 8176 /* 8177 * Get the original interface index i.e the one 8178 * before FAILOVER if it ever happened. 8179 */ 8180 lifr->lifr_index = ipif->ipif_orig_ifindex; 8181 return (0); 8182 } 8183 8184 /* 8185 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8186 * refhold and return the associated ipif 8187 */ 8188 /* ARGSUSED */ 8189 int 8190 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8191 cmd_info_t *ci, ipsq_func_t func) 8192 { 8193 boolean_t exists; 8194 struct iftun_req *ta; 8195 ipif_t *ipif; 8196 ill_t *ill; 8197 boolean_t isv6; 8198 mblk_t *mp1; 8199 int error; 8200 conn_t *connp; 8201 ip_stack_t *ipst; 8202 8203 /* Existence verified in ip_wput_nondata */ 8204 mp1 = mp->b_cont->b_cont; 8205 ta = (struct iftun_req *)mp1->b_rptr; 8206 /* 8207 * Null terminate the string to protect against buffer 8208 * overrun. String was generated by user code and may not 8209 * be trusted. 8210 */ 8211 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8212 8213 connp = Q_TO_CONN(q); 8214 isv6 = connp->conn_af_isv6; 8215 ipst = connp->conn_netstack->netstack_ip; 8216 8217 /* Disallows implicit create */ 8218 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8219 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8220 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8221 if (ipif == NULL) 8222 return (error); 8223 8224 if (ipif->ipif_id != 0) { 8225 /* 8226 * We really don't want to set/get tunnel parameters 8227 * on virtual tunnel interfaces. Only allow the 8228 * base tunnel to do these. 8229 */ 8230 ipif_refrele(ipif); 8231 return (EINVAL); 8232 } 8233 8234 /* 8235 * Send down to tunnel mod for ioctl processing. 8236 * Will finish ioctl in ip_rput_other(). 8237 */ 8238 ill = ipif->ipif_ill; 8239 if (ill->ill_net_type == IRE_LOOPBACK) { 8240 ipif_refrele(ipif); 8241 return (EOPNOTSUPP); 8242 } 8243 8244 if (ill->ill_wq == NULL) { 8245 ipif_refrele(ipif); 8246 return (ENXIO); 8247 } 8248 /* 8249 * Mark the ioctl as coming from an IPv6 interface for 8250 * tun's convenience. 8251 */ 8252 if (ill->ill_isv6) 8253 ta->ifta_flags |= 0x80000000; 8254 ci->ci_ipif = ipif; 8255 return (0); 8256 } 8257 8258 /* 8259 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8260 * and return the associated ipif. 8261 * Return value: 8262 * Non zero: An error has occurred. ci may not be filled out. 8263 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8264 * a held ipif in ci.ci_ipif. 8265 */ 8266 int 8267 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8268 cmd_info_t *ci, ipsq_func_t func) 8269 { 8270 sin_t *sin; 8271 sin6_t *sin6; 8272 char *name; 8273 struct ifreq *ifr; 8274 struct lifreq *lifr; 8275 ipif_t *ipif = NULL; 8276 ill_t *ill; 8277 conn_t *connp; 8278 boolean_t isv6; 8279 boolean_t exists; 8280 int err; 8281 mblk_t *mp1; 8282 zoneid_t zoneid; 8283 ip_stack_t *ipst; 8284 8285 if (q->q_next != NULL) { 8286 ill = (ill_t *)q->q_ptr; 8287 isv6 = ill->ill_isv6; 8288 connp = NULL; 8289 zoneid = ALL_ZONES; 8290 ipst = ill->ill_ipst; 8291 } else { 8292 ill = NULL; 8293 connp = Q_TO_CONN(q); 8294 isv6 = connp->conn_af_isv6; 8295 zoneid = connp->conn_zoneid; 8296 if (zoneid == GLOBAL_ZONEID) { 8297 /* global zone can access ipifs in all zones */ 8298 zoneid = ALL_ZONES; 8299 } 8300 ipst = connp->conn_netstack->netstack_ip; 8301 } 8302 8303 /* Has been checked in ip_wput_nondata */ 8304 mp1 = mp->b_cont->b_cont; 8305 8306 if (ipip->ipi_cmd_type == IF_CMD) { 8307 /* This a old style SIOC[GS]IF* command */ 8308 ifr = (struct ifreq *)mp1->b_rptr; 8309 /* 8310 * Null terminate the string to protect against buffer 8311 * overrun. String was generated by user code and may not 8312 * be trusted. 8313 */ 8314 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8315 sin = (sin_t *)&ifr->ifr_addr; 8316 name = ifr->ifr_name; 8317 ci->ci_sin = sin; 8318 ci->ci_sin6 = NULL; 8319 ci->ci_lifr = (struct lifreq *)ifr; 8320 } else { 8321 /* This a new style SIOC[GS]LIF* command */ 8322 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8323 lifr = (struct lifreq *)mp1->b_rptr; 8324 /* 8325 * Null terminate the string to protect against buffer 8326 * overrun. String was generated by user code and may not 8327 * be trusted. 8328 */ 8329 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8330 name = lifr->lifr_name; 8331 sin = (sin_t *)&lifr->lifr_addr; 8332 sin6 = (sin6_t *)&lifr->lifr_addr; 8333 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8334 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8335 LIFNAMSIZ); 8336 } 8337 ci->ci_sin = sin; 8338 ci->ci_sin6 = sin6; 8339 ci->ci_lifr = lifr; 8340 } 8341 8342 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8343 /* 8344 * The ioctl will be failed if the ioctl comes down 8345 * an conn stream 8346 */ 8347 if (ill == NULL) { 8348 /* 8349 * Not an ill queue, return EINVAL same as the 8350 * old error code. 8351 */ 8352 return (ENXIO); 8353 } 8354 ipif = ill->ill_ipif; 8355 ipif_refhold(ipif); 8356 } else { 8357 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8358 &exists, isv6, zoneid, 8359 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8360 ipst); 8361 if (ipif == NULL) { 8362 if (err == EINPROGRESS) 8363 return (err); 8364 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8365 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8366 /* 8367 * Need to try both v4 and v6 since this 8368 * ioctl can come down either v4 or v6 8369 * socket. The lifreq.lifr_family passed 8370 * down by this ioctl is AF_UNSPEC. 8371 */ 8372 ipif = ipif_lookup_on_name(name, 8373 mi_strlen(name), B_FALSE, &exists, !isv6, 8374 zoneid, (connp == NULL) ? q : 8375 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8376 if (err == EINPROGRESS) 8377 return (err); 8378 } 8379 err = 0; /* Ensure we don't use it below */ 8380 } 8381 } 8382 8383 /* 8384 * Old style [GS]IFCMD does not admit IPv6 ipif 8385 */ 8386 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8387 ipif_refrele(ipif); 8388 return (ENXIO); 8389 } 8390 8391 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8392 name[0] == '\0') { 8393 /* 8394 * Handle a or a SIOC?IF* with a null name 8395 * during plumb (on the ill queue before the I_PLINK). 8396 */ 8397 ipif = ill->ill_ipif; 8398 ipif_refhold(ipif); 8399 } 8400 8401 if (ipif == NULL) 8402 return (ENXIO); 8403 8404 /* 8405 * Allow only GET operations if this ipif has been created 8406 * temporarily due to a MOVE operation. 8407 */ 8408 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8409 ipif_refrele(ipif); 8410 return (EINVAL); 8411 } 8412 8413 ci->ci_ipif = ipif; 8414 return (0); 8415 } 8416 8417 /* 8418 * Return the total number of ipifs. 8419 */ 8420 static uint_t 8421 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8422 { 8423 uint_t numifs = 0; 8424 ill_t *ill; 8425 ill_walk_context_t ctx; 8426 ipif_t *ipif; 8427 8428 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8429 ill = ILL_START_WALK_V4(&ctx, ipst); 8430 8431 while (ill != NULL) { 8432 for (ipif = ill->ill_ipif; ipif != NULL; 8433 ipif = ipif->ipif_next) { 8434 if (ipif->ipif_zoneid == zoneid || 8435 ipif->ipif_zoneid == ALL_ZONES) 8436 numifs++; 8437 } 8438 ill = ill_next(&ctx, ill); 8439 } 8440 rw_exit(&ipst->ips_ill_g_lock); 8441 return (numifs); 8442 } 8443 8444 /* 8445 * Return the total number of ipifs. 8446 */ 8447 static uint_t 8448 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8449 { 8450 uint_t numifs = 0; 8451 ill_t *ill; 8452 ipif_t *ipif; 8453 ill_walk_context_t ctx; 8454 8455 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8456 8457 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8458 if (family == AF_INET) 8459 ill = ILL_START_WALK_V4(&ctx, ipst); 8460 else if (family == AF_INET6) 8461 ill = ILL_START_WALK_V6(&ctx, ipst); 8462 else 8463 ill = ILL_START_WALK_ALL(&ctx, ipst); 8464 8465 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8466 for (ipif = ill->ill_ipif; ipif != NULL; 8467 ipif = ipif->ipif_next) { 8468 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8469 !(lifn_flags & LIFC_NOXMIT)) 8470 continue; 8471 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8472 !(lifn_flags & LIFC_TEMPORARY)) 8473 continue; 8474 if (((ipif->ipif_flags & 8475 (IPIF_NOXMIT|IPIF_NOLOCAL| 8476 IPIF_DEPRECATED)) || 8477 IS_LOOPBACK(ill) || 8478 !(ipif->ipif_flags & IPIF_UP)) && 8479 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8480 continue; 8481 8482 if (zoneid != ipif->ipif_zoneid && 8483 ipif->ipif_zoneid != ALL_ZONES && 8484 (zoneid != GLOBAL_ZONEID || 8485 !(lifn_flags & LIFC_ALLZONES))) 8486 continue; 8487 8488 numifs++; 8489 } 8490 } 8491 rw_exit(&ipst->ips_ill_g_lock); 8492 return (numifs); 8493 } 8494 8495 uint_t 8496 ip_get_lifsrcofnum(ill_t *ill) 8497 { 8498 uint_t numifs = 0; 8499 ill_t *ill_head = ill; 8500 ip_stack_t *ipst = ill->ill_ipst; 8501 8502 /* 8503 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8504 * other thread may be trying to relink the ILLs in this usesrc group 8505 * and adjusting the ill_usesrc_grp_next pointers 8506 */ 8507 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8508 if ((ill->ill_usesrc_ifindex == 0) && 8509 (ill->ill_usesrc_grp_next != NULL)) { 8510 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8511 ill = ill->ill_usesrc_grp_next) 8512 numifs++; 8513 } 8514 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8515 8516 return (numifs); 8517 } 8518 8519 /* Null values are passed in for ipif, sin, and ifreq */ 8520 /* ARGSUSED */ 8521 int 8522 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8523 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8524 { 8525 int *nump; 8526 conn_t *connp = Q_TO_CONN(q); 8527 8528 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8529 8530 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8531 nump = (int *)mp->b_cont->b_cont->b_rptr; 8532 8533 *nump = ip_get_numifs(connp->conn_zoneid, 8534 connp->conn_netstack->netstack_ip); 8535 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8536 return (0); 8537 } 8538 8539 /* Null values are passed in for ipif, sin, and ifreq */ 8540 /* ARGSUSED */ 8541 int 8542 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8543 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8544 { 8545 struct lifnum *lifn; 8546 mblk_t *mp1; 8547 conn_t *connp = Q_TO_CONN(q); 8548 8549 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8550 8551 /* Existence checked in ip_wput_nondata */ 8552 mp1 = mp->b_cont->b_cont; 8553 8554 lifn = (struct lifnum *)mp1->b_rptr; 8555 switch (lifn->lifn_family) { 8556 case AF_UNSPEC: 8557 case AF_INET: 8558 case AF_INET6: 8559 break; 8560 default: 8561 return (EAFNOSUPPORT); 8562 } 8563 8564 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8565 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8566 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8567 return (0); 8568 } 8569 8570 /* ARGSUSED */ 8571 int 8572 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8573 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8574 { 8575 STRUCT_HANDLE(ifconf, ifc); 8576 mblk_t *mp1; 8577 struct iocblk *iocp; 8578 struct ifreq *ifr; 8579 ill_walk_context_t ctx; 8580 ill_t *ill; 8581 ipif_t *ipif; 8582 struct sockaddr_in *sin; 8583 int32_t ifclen; 8584 zoneid_t zoneid; 8585 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8586 8587 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8588 8589 ip1dbg(("ip_sioctl_get_ifconf")); 8590 /* Existence verified in ip_wput_nondata */ 8591 mp1 = mp->b_cont->b_cont; 8592 iocp = (struct iocblk *)mp->b_rptr; 8593 zoneid = Q_TO_CONN(q)->conn_zoneid; 8594 8595 /* 8596 * The original SIOCGIFCONF passed in a struct ifconf which specified 8597 * the user buffer address and length into which the list of struct 8598 * ifreqs was to be copied. Since AT&T Streams does not seem to 8599 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8600 * the SIOCGIFCONF operation was redefined to simply provide 8601 * a large output buffer into which we are supposed to jam the ifreq 8602 * array. The same ioctl command code was used, despite the fact that 8603 * both the applications and the kernel code had to change, thus making 8604 * it impossible to support both interfaces. 8605 * 8606 * For reasons not good enough to try to explain, the following 8607 * algorithm is used for deciding what to do with one of these: 8608 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8609 * form with the output buffer coming down as the continuation message. 8610 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8611 * and we have to copy in the ifconf structure to find out how big the 8612 * output buffer is and where to copy out to. Sure no problem... 8613 * 8614 */ 8615 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8616 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8617 int numifs = 0; 8618 size_t ifc_bufsize; 8619 8620 /* 8621 * Must be (better be!) continuation of a TRANSPARENT 8622 * IOCTL. We just copied in the ifconf structure. 8623 */ 8624 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8625 (struct ifconf *)mp1->b_rptr); 8626 8627 /* 8628 * Allocate a buffer to hold requested information. 8629 * 8630 * If ifc_len is larger than what is needed, we only 8631 * allocate what we will use. 8632 * 8633 * If ifc_len is smaller than what is needed, return 8634 * EINVAL. 8635 * 8636 * XXX: the ill_t structure can hava 2 counters, for 8637 * v4 and v6 (not just ill_ipif_up_count) to store the 8638 * number of interfaces for a device, so we don't need 8639 * to count them here... 8640 */ 8641 numifs = ip_get_numifs(zoneid, ipst); 8642 8643 ifclen = STRUCT_FGET(ifc, ifc_len); 8644 ifc_bufsize = numifs * sizeof (struct ifreq); 8645 if (ifc_bufsize > ifclen) { 8646 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8647 /* old behaviour */ 8648 return (EINVAL); 8649 } else { 8650 ifc_bufsize = ifclen; 8651 } 8652 } 8653 8654 mp1 = mi_copyout_alloc(q, mp, 8655 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8656 if (mp1 == NULL) 8657 return (ENOMEM); 8658 8659 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8660 } 8661 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8662 /* 8663 * the SIOCGIFCONF ioctl only knows about 8664 * IPv4 addresses, so don't try to tell 8665 * it about interfaces with IPv6-only 8666 * addresses. (Last parm 'isv6' is B_FALSE) 8667 */ 8668 8669 ifr = (struct ifreq *)mp1->b_rptr; 8670 8671 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8672 ill = ILL_START_WALK_V4(&ctx, ipst); 8673 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8674 for (ipif = ill->ill_ipif; ipif != NULL; 8675 ipif = ipif->ipif_next) { 8676 if (zoneid != ipif->ipif_zoneid && 8677 ipif->ipif_zoneid != ALL_ZONES) 8678 continue; 8679 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8680 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8681 /* old behaviour */ 8682 rw_exit(&ipst->ips_ill_g_lock); 8683 return (EINVAL); 8684 } else { 8685 goto if_copydone; 8686 } 8687 } 8688 ipif_get_name(ipif, ifr->ifr_name, 8689 sizeof (ifr->ifr_name)); 8690 sin = (sin_t *)&ifr->ifr_addr; 8691 *sin = sin_null; 8692 sin->sin_family = AF_INET; 8693 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8694 ifr++; 8695 } 8696 } 8697 if_copydone: 8698 rw_exit(&ipst->ips_ill_g_lock); 8699 mp1->b_wptr = (uchar_t *)ifr; 8700 8701 if (STRUCT_BUF(ifc) != NULL) { 8702 STRUCT_FSET(ifc, ifc_len, 8703 (int)((uchar_t *)ifr - mp1->b_rptr)); 8704 } 8705 return (0); 8706 } 8707 8708 /* 8709 * Get the interfaces using the address hosted on the interface passed in, 8710 * as a source adddress 8711 */ 8712 /* ARGSUSED */ 8713 int 8714 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8715 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8716 { 8717 mblk_t *mp1; 8718 ill_t *ill, *ill_head; 8719 ipif_t *ipif, *orig_ipif; 8720 int numlifs = 0; 8721 size_t lifs_bufsize, lifsmaxlen; 8722 struct lifreq *lifr; 8723 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8724 uint_t ifindex; 8725 zoneid_t zoneid; 8726 int err = 0; 8727 boolean_t isv6 = B_FALSE; 8728 struct sockaddr_in *sin; 8729 struct sockaddr_in6 *sin6; 8730 STRUCT_HANDLE(lifsrcof, lifs); 8731 ip_stack_t *ipst; 8732 8733 ipst = CONNQ_TO_IPST(q); 8734 8735 ASSERT(q->q_next == NULL); 8736 8737 zoneid = Q_TO_CONN(q)->conn_zoneid; 8738 8739 /* Existence verified in ip_wput_nondata */ 8740 mp1 = mp->b_cont->b_cont; 8741 8742 /* 8743 * Must be (better be!) continuation of a TRANSPARENT 8744 * IOCTL. We just copied in the lifsrcof structure. 8745 */ 8746 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8747 (struct lifsrcof *)mp1->b_rptr); 8748 8749 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8750 return (EINVAL); 8751 8752 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8753 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8754 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8755 ip_process_ioctl, &err, ipst); 8756 if (ipif == NULL) { 8757 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8758 ifindex)); 8759 return (err); 8760 } 8761 8762 /* Allocate a buffer to hold requested information */ 8763 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8764 lifs_bufsize = numlifs * sizeof (struct lifreq); 8765 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8766 /* The actual size needed is always returned in lifs_len */ 8767 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8768 8769 /* If the amount we need is more than what is passed in, abort */ 8770 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8771 ipif_refrele(ipif); 8772 return (0); 8773 } 8774 8775 mp1 = mi_copyout_alloc(q, mp, 8776 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8777 if (mp1 == NULL) { 8778 ipif_refrele(ipif); 8779 return (ENOMEM); 8780 } 8781 8782 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8783 bzero(mp1->b_rptr, lifs_bufsize); 8784 8785 lifr = (struct lifreq *)mp1->b_rptr; 8786 8787 ill = ill_head = ipif->ipif_ill; 8788 orig_ipif = ipif; 8789 8790 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8791 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8792 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8793 8794 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8795 for (; (ill != NULL) && (ill != ill_head); 8796 ill = ill->ill_usesrc_grp_next) { 8797 8798 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8799 break; 8800 8801 ipif = ill->ill_ipif; 8802 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8803 if (ipif->ipif_isv6) { 8804 sin6 = (sin6_t *)&lifr->lifr_addr; 8805 *sin6 = sin6_null; 8806 sin6->sin6_family = AF_INET6; 8807 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8808 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8809 &ipif->ipif_v6net_mask); 8810 } else { 8811 sin = (sin_t *)&lifr->lifr_addr; 8812 *sin = sin_null; 8813 sin->sin_family = AF_INET; 8814 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8815 lifr->lifr_addrlen = ip_mask_to_plen( 8816 ipif->ipif_net_mask); 8817 } 8818 lifr++; 8819 } 8820 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8821 rw_exit(&ipst->ips_ill_g_lock); 8822 ipif_refrele(orig_ipif); 8823 mp1->b_wptr = (uchar_t *)lifr; 8824 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8825 8826 return (0); 8827 } 8828 8829 /* ARGSUSED */ 8830 int 8831 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8832 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8833 { 8834 mblk_t *mp1; 8835 int list; 8836 ill_t *ill; 8837 ipif_t *ipif; 8838 int flags; 8839 int numlifs = 0; 8840 size_t lifc_bufsize; 8841 struct lifreq *lifr; 8842 sa_family_t family; 8843 struct sockaddr_in *sin; 8844 struct sockaddr_in6 *sin6; 8845 ill_walk_context_t ctx; 8846 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8847 int32_t lifclen; 8848 zoneid_t zoneid; 8849 STRUCT_HANDLE(lifconf, lifc); 8850 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8851 8852 ip1dbg(("ip_sioctl_get_lifconf")); 8853 8854 ASSERT(q->q_next == NULL); 8855 8856 zoneid = Q_TO_CONN(q)->conn_zoneid; 8857 8858 /* Existence verified in ip_wput_nondata */ 8859 mp1 = mp->b_cont->b_cont; 8860 8861 /* 8862 * An extended version of SIOCGIFCONF that takes an 8863 * additional address family and flags field. 8864 * AF_UNSPEC retrieve both IPv4 and IPv6. 8865 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8866 * interfaces are omitted. 8867 * Similarly, IPIF_TEMPORARY interfaces are omitted 8868 * unless LIFC_TEMPORARY is specified. 8869 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8870 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8871 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8872 * has priority over LIFC_NOXMIT. 8873 */ 8874 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8875 8876 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8877 return (EINVAL); 8878 8879 /* 8880 * Must be (better be!) continuation of a TRANSPARENT 8881 * IOCTL. We just copied in the lifconf structure. 8882 */ 8883 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8884 8885 family = STRUCT_FGET(lifc, lifc_family); 8886 flags = STRUCT_FGET(lifc, lifc_flags); 8887 8888 switch (family) { 8889 case AF_UNSPEC: 8890 /* 8891 * walk all ILL's. 8892 */ 8893 list = MAX_G_HEADS; 8894 break; 8895 case AF_INET: 8896 /* 8897 * walk only IPV4 ILL's. 8898 */ 8899 list = IP_V4_G_HEAD; 8900 break; 8901 case AF_INET6: 8902 /* 8903 * walk only IPV6 ILL's. 8904 */ 8905 list = IP_V6_G_HEAD; 8906 break; 8907 default: 8908 return (EAFNOSUPPORT); 8909 } 8910 8911 /* 8912 * Allocate a buffer to hold requested information. 8913 * 8914 * If lifc_len is larger than what is needed, we only 8915 * allocate what we will use. 8916 * 8917 * If lifc_len is smaller than what is needed, return 8918 * EINVAL. 8919 */ 8920 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8921 lifc_bufsize = numlifs * sizeof (struct lifreq); 8922 lifclen = STRUCT_FGET(lifc, lifc_len); 8923 if (lifc_bufsize > lifclen) { 8924 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8925 return (EINVAL); 8926 else 8927 lifc_bufsize = lifclen; 8928 } 8929 8930 mp1 = mi_copyout_alloc(q, mp, 8931 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8932 if (mp1 == NULL) 8933 return (ENOMEM); 8934 8935 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8936 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8937 8938 lifr = (struct lifreq *)mp1->b_rptr; 8939 8940 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8941 ill = ill_first(list, list, &ctx, ipst); 8942 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8943 for (ipif = ill->ill_ipif; ipif != NULL; 8944 ipif = ipif->ipif_next) { 8945 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8946 !(flags & LIFC_NOXMIT)) 8947 continue; 8948 8949 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8950 !(flags & LIFC_TEMPORARY)) 8951 continue; 8952 8953 if (((ipif->ipif_flags & 8954 (IPIF_NOXMIT|IPIF_NOLOCAL| 8955 IPIF_DEPRECATED)) || 8956 IS_LOOPBACK(ill) || 8957 !(ipif->ipif_flags & IPIF_UP)) && 8958 (flags & LIFC_EXTERNAL_SOURCE)) 8959 continue; 8960 8961 if (zoneid != ipif->ipif_zoneid && 8962 ipif->ipif_zoneid != ALL_ZONES && 8963 (zoneid != GLOBAL_ZONEID || 8964 !(flags & LIFC_ALLZONES))) 8965 continue; 8966 8967 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8968 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8969 rw_exit(&ipst->ips_ill_g_lock); 8970 return (EINVAL); 8971 } else { 8972 goto lif_copydone; 8973 } 8974 } 8975 8976 ipif_get_name(ipif, lifr->lifr_name, 8977 sizeof (lifr->lifr_name)); 8978 if (ipif->ipif_isv6) { 8979 sin6 = (sin6_t *)&lifr->lifr_addr; 8980 *sin6 = sin6_null; 8981 sin6->sin6_family = AF_INET6; 8982 sin6->sin6_addr = 8983 ipif->ipif_v6lcl_addr; 8984 lifr->lifr_addrlen = 8985 ip_mask_to_plen_v6( 8986 &ipif->ipif_v6net_mask); 8987 } else { 8988 sin = (sin_t *)&lifr->lifr_addr; 8989 *sin = sin_null; 8990 sin->sin_family = AF_INET; 8991 sin->sin_addr.s_addr = 8992 ipif->ipif_lcl_addr; 8993 lifr->lifr_addrlen = 8994 ip_mask_to_plen( 8995 ipif->ipif_net_mask); 8996 } 8997 lifr++; 8998 } 8999 } 9000 lif_copydone: 9001 rw_exit(&ipst->ips_ill_g_lock); 9002 9003 mp1->b_wptr = (uchar_t *)lifr; 9004 if (STRUCT_BUF(lifc) != NULL) { 9005 STRUCT_FSET(lifc, lifc_len, 9006 (int)((uchar_t *)lifr - mp1->b_rptr)); 9007 } 9008 return (0); 9009 } 9010 9011 /* ARGSUSED */ 9012 int 9013 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9014 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9015 { 9016 ip_stack_t *ipst; 9017 9018 if (q->q_next == NULL) 9019 ipst = CONNQ_TO_IPST(q); 9020 else 9021 ipst = ILLQ_TO_IPST(q); 9022 9023 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9024 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9025 return (0); 9026 } 9027 9028 static void 9029 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9030 { 9031 ip6_asp_t *table; 9032 size_t table_size; 9033 mblk_t *data_mp; 9034 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9035 ip_stack_t *ipst; 9036 9037 if (q->q_next == NULL) 9038 ipst = CONNQ_TO_IPST(q); 9039 else 9040 ipst = ILLQ_TO_IPST(q); 9041 9042 /* These two ioctls are I_STR only */ 9043 if (iocp->ioc_count == TRANSPARENT) { 9044 miocnak(q, mp, 0, EINVAL); 9045 return; 9046 } 9047 9048 data_mp = mp->b_cont; 9049 if (data_mp == NULL) { 9050 /* The user passed us a NULL argument */ 9051 table = NULL; 9052 table_size = iocp->ioc_count; 9053 } else { 9054 /* 9055 * The user provided a table. The stream head 9056 * may have copied in the user data in chunks, 9057 * so make sure everything is pulled up 9058 * properly. 9059 */ 9060 if (MBLKL(data_mp) < iocp->ioc_count) { 9061 mblk_t *new_data_mp; 9062 if ((new_data_mp = msgpullup(data_mp, -1)) == 9063 NULL) { 9064 miocnak(q, mp, 0, ENOMEM); 9065 return; 9066 } 9067 freemsg(data_mp); 9068 data_mp = new_data_mp; 9069 mp->b_cont = data_mp; 9070 } 9071 table = (ip6_asp_t *)data_mp->b_rptr; 9072 table_size = iocp->ioc_count; 9073 } 9074 9075 switch (iocp->ioc_cmd) { 9076 case SIOCGIP6ADDRPOLICY: 9077 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9078 if (iocp->ioc_rval == -1) 9079 iocp->ioc_error = EINVAL; 9080 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9081 else if (table != NULL && 9082 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9083 ip6_asp_t *src = table; 9084 ip6_asp32_t *dst = (void *)table; 9085 int count = table_size / sizeof (ip6_asp_t); 9086 int i; 9087 9088 /* 9089 * We need to do an in-place shrink of the array 9090 * to match the alignment attributes of the 9091 * 32-bit ABI looking at it. 9092 */ 9093 /* LINTED: logical expression always true: op "||" */ 9094 ASSERT(sizeof (*src) > sizeof (*dst)); 9095 for (i = 1; i < count; i++) 9096 bcopy(src + i, dst + i, sizeof (*dst)); 9097 } 9098 #endif 9099 break; 9100 9101 case SIOCSIP6ADDRPOLICY: 9102 ASSERT(mp->b_prev == NULL); 9103 mp->b_prev = (void *)q; 9104 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9105 /* 9106 * We pass in the datamodel here so that the ip6_asp_replace() 9107 * routine can handle converting from 32-bit to native formats 9108 * where necessary. 9109 * 9110 * A better way to handle this might be to convert the inbound 9111 * data structure here, and hang it off a new 'mp'; thus the 9112 * ip6_asp_replace() logic would always be dealing with native 9113 * format data structures.. 9114 * 9115 * (An even simpler way to handle these ioctls is to just 9116 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9117 * and just recompile everything that depends on it.) 9118 */ 9119 #endif 9120 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9121 iocp->ioc_flag & IOC_MODELS); 9122 return; 9123 } 9124 9125 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9126 qreply(q, mp); 9127 } 9128 9129 static void 9130 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9131 { 9132 mblk_t *data_mp; 9133 struct dstinforeq *dir; 9134 uint8_t *end, *cur; 9135 in6_addr_t *daddr, *saddr; 9136 ipaddr_t v4daddr; 9137 ire_t *ire; 9138 char *slabel, *dlabel; 9139 boolean_t isipv4; 9140 int match_ire; 9141 ill_t *dst_ill; 9142 ipif_t *src_ipif, *ire_ipif; 9143 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9144 zoneid_t zoneid; 9145 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9146 9147 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9148 zoneid = Q_TO_CONN(q)->conn_zoneid; 9149 9150 /* 9151 * This ioctl is I_STR only, and must have a 9152 * data mblk following the M_IOCTL mblk. 9153 */ 9154 data_mp = mp->b_cont; 9155 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9156 miocnak(q, mp, 0, EINVAL); 9157 return; 9158 } 9159 9160 if (MBLKL(data_mp) < iocp->ioc_count) { 9161 mblk_t *new_data_mp; 9162 9163 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9164 miocnak(q, mp, 0, ENOMEM); 9165 return; 9166 } 9167 freemsg(data_mp); 9168 data_mp = new_data_mp; 9169 mp->b_cont = data_mp; 9170 } 9171 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9172 9173 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9174 end - cur >= sizeof (struct dstinforeq); 9175 cur += sizeof (struct dstinforeq)) { 9176 dir = (struct dstinforeq *)cur; 9177 daddr = &dir->dir_daddr; 9178 saddr = &dir->dir_saddr; 9179 9180 /* 9181 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9182 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9183 * and ipif_select_source[_v6]() do not. 9184 */ 9185 dir->dir_dscope = ip_addr_scope_v6(daddr); 9186 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9187 9188 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9189 if (isipv4) { 9190 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9191 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9192 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9193 } else { 9194 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9195 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9196 } 9197 if (ire == NULL) { 9198 dir->dir_dreachable = 0; 9199 9200 /* move on to next dst addr */ 9201 continue; 9202 } 9203 dir->dir_dreachable = 1; 9204 9205 ire_ipif = ire->ire_ipif; 9206 if (ire_ipif == NULL) 9207 goto next_dst; 9208 9209 /* 9210 * We expect to get back an interface ire or a 9211 * gateway ire cache entry. For both types, the 9212 * output interface is ire_ipif->ipif_ill. 9213 */ 9214 dst_ill = ire_ipif->ipif_ill; 9215 dir->dir_dmactype = dst_ill->ill_mactype; 9216 9217 if (isipv4) { 9218 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9219 } else { 9220 src_ipif = ipif_select_source_v6(dst_ill, 9221 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9222 zoneid); 9223 } 9224 if (src_ipif == NULL) 9225 goto next_dst; 9226 9227 *saddr = src_ipif->ipif_v6lcl_addr; 9228 dir->dir_sscope = ip_addr_scope_v6(saddr); 9229 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9230 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9231 dir->dir_sdeprecated = 9232 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9233 ipif_refrele(src_ipif); 9234 next_dst: 9235 ire_refrele(ire); 9236 } 9237 miocack(q, mp, iocp->ioc_count, 0); 9238 } 9239 9240 /* 9241 * Check if this is an address assigned to this machine. 9242 * Skips interfaces that are down by using ire checks. 9243 * Translates mapped addresses to v4 addresses and then 9244 * treats them as such, returning true if the v4 address 9245 * associated with this mapped address is configured. 9246 * Note: Applications will have to be careful what they do 9247 * with the response; use of mapped addresses limits 9248 * what can be done with the socket, especially with 9249 * respect to socket options and ioctls - neither IPv4 9250 * options nor IPv6 sticky options/ancillary data options 9251 * may be used. 9252 */ 9253 /* ARGSUSED */ 9254 int 9255 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9256 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9257 { 9258 struct sioc_addrreq *sia; 9259 sin_t *sin; 9260 ire_t *ire; 9261 mblk_t *mp1; 9262 zoneid_t zoneid; 9263 ip_stack_t *ipst; 9264 9265 ip1dbg(("ip_sioctl_tmyaddr")); 9266 9267 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9268 zoneid = Q_TO_CONN(q)->conn_zoneid; 9269 ipst = CONNQ_TO_IPST(q); 9270 9271 /* Existence verified in ip_wput_nondata */ 9272 mp1 = mp->b_cont->b_cont; 9273 sia = (struct sioc_addrreq *)mp1->b_rptr; 9274 sin = (sin_t *)&sia->sa_addr; 9275 switch (sin->sin_family) { 9276 case AF_INET6: { 9277 sin6_t *sin6 = (sin6_t *)sin; 9278 9279 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9280 ipaddr_t v4_addr; 9281 9282 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9283 v4_addr); 9284 ire = ire_ctable_lookup(v4_addr, 0, 9285 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9286 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9287 } else { 9288 in6_addr_t v6addr; 9289 9290 v6addr = sin6->sin6_addr; 9291 ire = ire_ctable_lookup_v6(&v6addr, 0, 9292 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9293 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9294 } 9295 break; 9296 } 9297 case AF_INET: { 9298 ipaddr_t v4addr; 9299 9300 v4addr = sin->sin_addr.s_addr; 9301 ire = ire_ctable_lookup(v4addr, 0, 9302 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9303 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9304 break; 9305 } 9306 default: 9307 return (EAFNOSUPPORT); 9308 } 9309 if (ire != NULL) { 9310 sia->sa_res = 1; 9311 ire_refrele(ire); 9312 } else { 9313 sia->sa_res = 0; 9314 } 9315 return (0); 9316 } 9317 9318 /* 9319 * Check if this is an address assigned on-link i.e. neighbor, 9320 * and makes sure it's reachable from the current zone. 9321 * Returns true for my addresses as well. 9322 * Translates mapped addresses to v4 addresses and then 9323 * treats them as such, returning true if the v4 address 9324 * associated with this mapped address is configured. 9325 * Note: Applications will have to be careful what they do 9326 * with the response; use of mapped addresses limits 9327 * what can be done with the socket, especially with 9328 * respect to socket options and ioctls - neither IPv4 9329 * options nor IPv6 sticky options/ancillary data options 9330 * may be used. 9331 */ 9332 /* ARGSUSED */ 9333 int 9334 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9335 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9336 { 9337 struct sioc_addrreq *sia; 9338 sin_t *sin; 9339 mblk_t *mp1; 9340 ire_t *ire = NULL; 9341 zoneid_t zoneid; 9342 ip_stack_t *ipst; 9343 9344 ip1dbg(("ip_sioctl_tonlink")); 9345 9346 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9347 zoneid = Q_TO_CONN(q)->conn_zoneid; 9348 ipst = CONNQ_TO_IPST(q); 9349 9350 /* Existence verified in ip_wput_nondata */ 9351 mp1 = mp->b_cont->b_cont; 9352 sia = (struct sioc_addrreq *)mp1->b_rptr; 9353 sin = (sin_t *)&sia->sa_addr; 9354 9355 /* 9356 * Match addresses with a zero gateway field to avoid 9357 * routes going through a router. 9358 * Exclude broadcast and multicast addresses. 9359 */ 9360 switch (sin->sin_family) { 9361 case AF_INET6: { 9362 sin6_t *sin6 = (sin6_t *)sin; 9363 9364 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9365 ipaddr_t v4_addr; 9366 9367 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9368 v4_addr); 9369 if (!CLASSD(v4_addr)) { 9370 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9371 NULL, NULL, zoneid, NULL, 9372 MATCH_IRE_GW, ipst); 9373 } 9374 } else { 9375 in6_addr_t v6addr; 9376 in6_addr_t v6gw; 9377 9378 v6addr = sin6->sin6_addr; 9379 v6gw = ipv6_all_zeros; 9380 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9381 ire = ire_route_lookup_v6(&v6addr, 0, 9382 &v6gw, 0, NULL, NULL, zoneid, 9383 NULL, MATCH_IRE_GW, ipst); 9384 } 9385 } 9386 break; 9387 } 9388 case AF_INET: { 9389 ipaddr_t v4addr; 9390 9391 v4addr = sin->sin_addr.s_addr; 9392 if (!CLASSD(v4addr)) { 9393 ire = ire_route_lookup(v4addr, 0, 0, 0, 9394 NULL, NULL, zoneid, NULL, 9395 MATCH_IRE_GW, ipst); 9396 } 9397 break; 9398 } 9399 default: 9400 return (EAFNOSUPPORT); 9401 } 9402 sia->sa_res = 0; 9403 if (ire != NULL) { 9404 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9405 IRE_LOCAL|IRE_LOOPBACK)) { 9406 sia->sa_res = 1; 9407 } 9408 ire_refrele(ire); 9409 } 9410 return (0); 9411 } 9412 9413 /* 9414 * TBD: implement when kernel maintaines a list of site prefixes. 9415 */ 9416 /* ARGSUSED */ 9417 int 9418 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9419 ip_ioctl_cmd_t *ipip, void *ifreq) 9420 { 9421 return (ENXIO); 9422 } 9423 9424 /* ARGSUSED */ 9425 int 9426 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9427 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9428 { 9429 ill_t *ill; 9430 mblk_t *mp1; 9431 conn_t *connp; 9432 boolean_t success; 9433 9434 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9435 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9436 /* ioctl comes down on an conn */ 9437 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9438 connp = Q_TO_CONN(q); 9439 9440 mp->b_datap->db_type = M_IOCTL; 9441 9442 /* 9443 * Send down a copy. (copymsg does not copy b_next/b_prev). 9444 * The original mp contains contaminated b_next values due to 'mi', 9445 * which is needed to do the mi_copy_done. Unfortunately if we 9446 * send down the original mblk itself and if we are popped due to an 9447 * an unplumb before the response comes back from tunnel, 9448 * the streamhead (which does a freemsg) will see this contaminated 9449 * message and the assertion in freemsg about non-null b_next/b_prev 9450 * will panic a DEBUG kernel. 9451 */ 9452 mp1 = copymsg(mp); 9453 if (mp1 == NULL) 9454 return (ENOMEM); 9455 9456 ill = ipif->ipif_ill; 9457 mutex_enter(&connp->conn_lock); 9458 mutex_enter(&ill->ill_lock); 9459 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9460 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9461 mp, 0); 9462 } else { 9463 success = ill_pending_mp_add(ill, connp, mp); 9464 } 9465 mutex_exit(&ill->ill_lock); 9466 mutex_exit(&connp->conn_lock); 9467 9468 if (success) { 9469 ip1dbg(("sending down tunparam request ")); 9470 putnext(ill->ill_wq, mp1); 9471 return (EINPROGRESS); 9472 } else { 9473 /* The conn has started closing */ 9474 freemsg(mp1); 9475 return (EINTR); 9476 } 9477 } 9478 9479 /* 9480 * ARP IOCTLs. 9481 * How does IP get in the business of fronting ARP configuration/queries? 9482 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9483 * are by tradition passed in through a datagram socket. That lands in IP. 9484 * As it happens, this is just as well since the interface is quite crude in 9485 * that it passes in no information about protocol or hardware types, or 9486 * interface association. After making the protocol assumption, IP is in 9487 * the position to look up the name of the ILL, which ARP will need, and 9488 * format a request that can be handled by ARP. The request is passed up 9489 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9490 * back a response. ARP supports its own set of more general IOCTLs, in 9491 * case anyone is interested. 9492 */ 9493 /* ARGSUSED */ 9494 int 9495 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9496 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9497 { 9498 mblk_t *mp1; 9499 mblk_t *mp2; 9500 mblk_t *pending_mp; 9501 ipaddr_t ipaddr; 9502 area_t *area; 9503 struct iocblk *iocp; 9504 conn_t *connp; 9505 struct arpreq *ar; 9506 struct xarpreq *xar; 9507 int flags, alength; 9508 char *lladdr; 9509 ip_stack_t *ipst; 9510 ill_t *ill = ipif->ipif_ill; 9511 boolean_t if_arp_ioctl = B_FALSE; 9512 9513 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9514 connp = Q_TO_CONN(q); 9515 ipst = connp->conn_netstack->netstack_ip; 9516 9517 if (ipip->ipi_cmd_type == XARP_CMD) { 9518 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9519 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9520 ar = NULL; 9521 9522 flags = xar->xarp_flags; 9523 lladdr = LLADDR(&xar->xarp_ha); 9524 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9525 /* 9526 * Validate against user's link layer address length 9527 * input and name and addr length limits. 9528 */ 9529 alength = ill->ill_phys_addr_length; 9530 if (ipip->ipi_cmd == SIOCSXARP) { 9531 if (alength != xar->xarp_ha.sdl_alen || 9532 (alength + xar->xarp_ha.sdl_nlen > 9533 sizeof (xar->xarp_ha.sdl_data))) 9534 return (EINVAL); 9535 } 9536 } else { 9537 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9538 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9539 xar = NULL; 9540 9541 flags = ar->arp_flags; 9542 lladdr = ar->arp_ha.sa_data; 9543 /* 9544 * Theoretically, the sa_family could tell us what link 9545 * layer type this operation is trying to deal with. By 9546 * common usage AF_UNSPEC means ethernet. We'll assume 9547 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9548 * for now. Our new SIOC*XARP ioctls can be used more 9549 * generally. 9550 * 9551 * If the underlying media happens to have a non 6 byte 9552 * address, arp module will fail set/get, but the del 9553 * operation will succeed. 9554 */ 9555 alength = 6; 9556 if ((ipip->ipi_cmd != SIOCDARP) && 9557 (alength != ill->ill_phys_addr_length)) { 9558 return (EINVAL); 9559 } 9560 } 9561 9562 /* 9563 * We are going to pass up to ARP a packet chain that looks 9564 * like: 9565 * 9566 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9567 * 9568 * Get a copy of the original IOCTL mblk to head the chain, 9569 * to be sent up (in mp1). Also get another copy to store 9570 * in the ill_pending_mp list, for matching the response 9571 * when it comes back from ARP. 9572 */ 9573 mp1 = copyb(mp); 9574 pending_mp = copymsg(mp); 9575 if (mp1 == NULL || pending_mp == NULL) { 9576 if (mp1 != NULL) 9577 freeb(mp1); 9578 if (pending_mp != NULL) 9579 inet_freemsg(pending_mp); 9580 return (ENOMEM); 9581 } 9582 9583 ipaddr = sin->sin_addr.s_addr; 9584 9585 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9586 (caddr_t)&ipaddr); 9587 if (mp2 == NULL) { 9588 freeb(mp1); 9589 inet_freemsg(pending_mp); 9590 return (ENOMEM); 9591 } 9592 /* Put together the chain. */ 9593 mp1->b_cont = mp2; 9594 mp1->b_datap->db_type = M_IOCTL; 9595 mp2->b_cont = mp; 9596 mp2->b_datap->db_type = M_DATA; 9597 9598 iocp = (struct iocblk *)mp1->b_rptr; 9599 9600 /* 9601 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9602 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9603 * cp_private field (or cp_rval on 32-bit systems) in place of the 9604 * ioc_count field; set ioc_count to be correct. 9605 */ 9606 iocp->ioc_count = MBLKL(mp1->b_cont); 9607 9608 /* 9609 * Set the proper command in the ARP message. 9610 * Convert the SIOC{G|S|D}ARP calls into our 9611 * AR_ENTRY_xxx calls. 9612 */ 9613 area = (area_t *)mp2->b_rptr; 9614 switch (iocp->ioc_cmd) { 9615 case SIOCDARP: 9616 case SIOCDXARP: 9617 /* 9618 * We defer deleting the corresponding IRE until 9619 * we return from arp. 9620 */ 9621 area->area_cmd = AR_ENTRY_DELETE; 9622 area->area_proto_mask_offset = 0; 9623 break; 9624 case SIOCGARP: 9625 case SIOCGXARP: 9626 area->area_cmd = AR_ENTRY_SQUERY; 9627 area->area_proto_mask_offset = 0; 9628 break; 9629 case SIOCSARP: 9630 case SIOCSXARP: 9631 /* 9632 * Delete the corresponding ire to make sure IP will 9633 * pick up any change from arp. 9634 */ 9635 if (!if_arp_ioctl) { 9636 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9637 } else { 9638 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9639 if (ipif != NULL) { 9640 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9641 ipst); 9642 ipif_refrele(ipif); 9643 } 9644 } 9645 break; 9646 } 9647 iocp->ioc_cmd = area->area_cmd; 9648 9649 /* 9650 * Fill in the rest of the ARP operation fields. 9651 */ 9652 area->area_hw_addr_length = alength; 9653 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9654 9655 /* Translate the flags. */ 9656 if (flags & ATF_PERM) 9657 area->area_flags |= ACE_F_PERMANENT; 9658 if (flags & ATF_PUBL) 9659 area->area_flags |= ACE_F_PUBLISH; 9660 if (flags & ATF_AUTHORITY) 9661 area->area_flags |= ACE_F_AUTHORITY; 9662 9663 /* 9664 * Before sending 'mp' to ARP, we have to clear the b_next 9665 * and b_prev. Otherwise if STREAMS encounters such a message 9666 * in freemsg(), (because ARP can close any time) it can cause 9667 * a panic. But mi code needs the b_next and b_prev values of 9668 * mp->b_cont, to complete the ioctl. So we store it here 9669 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9670 * when the response comes down from ARP. 9671 */ 9672 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9673 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9674 mp->b_cont->b_next = NULL; 9675 mp->b_cont->b_prev = NULL; 9676 9677 mutex_enter(&connp->conn_lock); 9678 mutex_enter(&ill->ill_lock); 9679 /* conn has not yet started closing, hence this can't fail */ 9680 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9681 mutex_exit(&ill->ill_lock); 9682 mutex_exit(&connp->conn_lock); 9683 9684 /* 9685 * Up to ARP it goes. The response will come back in ip_wput() as an 9686 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9687 */ 9688 putnext(ill->ill_rq, mp1); 9689 return (EINPROGRESS); 9690 } 9691 9692 /* 9693 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9694 * the associated sin and refhold and return the associated ipif via `ci'. 9695 */ 9696 int 9697 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9698 cmd_info_t *ci, ipsq_func_t func) 9699 { 9700 mblk_t *mp1; 9701 int err; 9702 sin_t *sin; 9703 conn_t *connp; 9704 ipif_t *ipif; 9705 ire_t *ire = NULL; 9706 ill_t *ill = NULL; 9707 boolean_t exists; 9708 ip_stack_t *ipst; 9709 struct arpreq *ar; 9710 struct xarpreq *xar; 9711 struct sockaddr_dl *sdl; 9712 9713 /* ioctl comes down on a conn */ 9714 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9715 connp = Q_TO_CONN(q); 9716 if (connp->conn_af_isv6) 9717 return (ENXIO); 9718 9719 ipst = connp->conn_netstack->netstack_ip; 9720 9721 /* Verified in ip_wput_nondata */ 9722 mp1 = mp->b_cont->b_cont; 9723 9724 if (ipip->ipi_cmd_type == XARP_CMD) { 9725 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9726 xar = (struct xarpreq *)mp1->b_rptr; 9727 sin = (sin_t *)&xar->xarp_pa; 9728 sdl = &xar->xarp_ha; 9729 9730 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9731 return (ENXIO); 9732 if (sdl->sdl_nlen >= LIFNAMSIZ) 9733 return (EINVAL); 9734 } else { 9735 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9736 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9737 ar = (struct arpreq *)mp1->b_rptr; 9738 sin = (sin_t *)&ar->arp_pa; 9739 } 9740 9741 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9742 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9743 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9744 mp, func, &err, ipst); 9745 if (ipif == NULL) 9746 return (err); 9747 if (ipif->ipif_id != 0 || 9748 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9749 ipif_refrele(ipif); 9750 return (ENXIO); 9751 } 9752 } else { 9753 /* 9754 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9755 * 0: use the IP address to figure out the ill. In the IPMP 9756 * case, a simple forwarding table lookup will return the 9757 * IRE_IF_RESOLVER for the first interface in the group, which 9758 * might not be the interface on which the requested IP 9759 * address was resolved due to the ill selection algorithm 9760 * (see ip_newroute_get_dst_ill()). So we do a cache table 9761 * lookup first: if the IRE cache entry for the IP address is 9762 * still there, it will contain the ill pointer for the right 9763 * interface, so we use that. If the cache entry has been 9764 * flushed, we fall back to the forwarding table lookup. This 9765 * should be rare enough since IRE cache entries have a longer 9766 * life expectancy than ARP cache entries. 9767 */ 9768 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9769 ipst); 9770 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9771 ((ill = ire_to_ill(ire)) == NULL) || 9772 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9773 if (ire != NULL) 9774 ire_refrele(ire); 9775 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9776 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9777 NULL, MATCH_IRE_TYPE, ipst); 9778 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9779 9780 if (ire != NULL) 9781 ire_refrele(ire); 9782 return (ENXIO); 9783 } 9784 } 9785 ASSERT(ire != NULL && ill != NULL); 9786 ipif = ill->ill_ipif; 9787 ipif_refhold(ipif); 9788 ire_refrele(ire); 9789 } 9790 ci->ci_sin = sin; 9791 ci->ci_ipif = ipif; 9792 return (0); 9793 } 9794 9795 /* 9796 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9797 * atomically set/clear the muxids. Also complete the ioctl by acking or 9798 * naking it. Note that the code is structured such that the link type, 9799 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9800 * its clones use the persistent link, while pppd(1M) and perhaps many 9801 * other daemons may use non-persistent link. When combined with some 9802 * ill_t states, linking and unlinking lower streams may be used as 9803 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9804 */ 9805 /* ARGSUSED */ 9806 void 9807 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9808 { 9809 mblk_t *mp1, *mp2; 9810 struct linkblk *li; 9811 struct ipmx_s *ipmxp; 9812 ill_t *ill; 9813 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9814 int err = 0; 9815 boolean_t entered_ipsq = B_FALSE; 9816 boolean_t islink; 9817 ip_stack_t *ipst; 9818 9819 if (CONN_Q(q)) 9820 ipst = CONNQ_TO_IPST(q); 9821 else 9822 ipst = ILLQ_TO_IPST(q); 9823 9824 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9825 ioccmd == I_LINK || ioccmd == I_UNLINK); 9826 9827 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9828 9829 mp1 = mp->b_cont; /* This is the linkblk info */ 9830 li = (struct linkblk *)mp1->b_rptr; 9831 9832 /* 9833 * ARP has added this special mblk, and the utility is asking us 9834 * to perform consistency checks, and also atomically set the 9835 * muxid. Ifconfig is an example. It achieves this by using 9836 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9837 * to /dev/udp[6] stream for use as the mux when plinking the IP 9838 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9839 * and other comments in this routine for more details. 9840 */ 9841 mp2 = mp1->b_cont; /* This is added by ARP */ 9842 9843 /* 9844 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9845 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9846 * get the special mblk above. For backward compatibility, we 9847 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9848 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9849 * not atomic, and can leave the streams unplumbable if the utility 9850 * is interrupted before it does the SIOCSLIFMUXID. 9851 */ 9852 if (mp2 == NULL) { 9853 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9854 if (err == EINPROGRESS) 9855 return; 9856 goto done; 9857 } 9858 9859 /* 9860 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9861 * ARP has appended this last mblk to tell us whether the lower stream 9862 * is an arp-dev stream or an IP module stream. 9863 */ 9864 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9865 if (ipmxp->ipmx_arpdev_stream) { 9866 /* 9867 * The lower stream is the arp-dev stream. 9868 */ 9869 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9870 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9871 if (ill == NULL) { 9872 if (err == EINPROGRESS) 9873 return; 9874 err = EINVAL; 9875 goto done; 9876 } 9877 9878 if (ipsq == NULL) { 9879 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9880 NEW_OP, B_TRUE); 9881 if (ipsq == NULL) { 9882 ill_refrele(ill); 9883 return; 9884 } 9885 entered_ipsq = B_TRUE; 9886 } 9887 ASSERT(IAM_WRITER_ILL(ill)); 9888 ill_refrele(ill); 9889 9890 /* 9891 * To ensure consistency between IP and ARP, the following 9892 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9893 * This is because the muxid's are stored in the IP stream on 9894 * the ill. 9895 * 9896 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9897 * the ARP stream. On an arp-dev stream, IP checks that it is 9898 * not yet plinked, and it also checks that the corresponding 9899 * IP stream is already plinked. 9900 * 9901 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9902 * punlinking the IP stream. IP does not allow punlink of the 9903 * IP stream unless the arp stream has been punlinked. 9904 */ 9905 if ((islink && 9906 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9907 (!islink && ill->ill_arp_muxid != li->l_index)) { 9908 err = EINVAL; 9909 goto done; 9910 } 9911 ill->ill_arp_muxid = islink ? li->l_index : 0; 9912 } else { 9913 /* 9914 * The lower stream is probably an IP module stream. Do 9915 * consistency checking. 9916 */ 9917 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9918 if (err == EINPROGRESS) 9919 return; 9920 } 9921 done: 9922 if (err == 0) 9923 miocack(q, mp, 0, 0); 9924 else 9925 miocnak(q, mp, 0, err); 9926 9927 /* Conn was refheld in ip_sioctl_copyin_setup */ 9928 if (CONN_Q(q)) 9929 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9930 if (entered_ipsq) 9931 ipsq_exit(ipsq); 9932 } 9933 9934 /* 9935 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9936 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9937 * module stream). If `doconsist' is set, then do the extended consistency 9938 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9939 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9940 * an error code on failure. 9941 */ 9942 static int 9943 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9944 struct linkblk *li, boolean_t doconsist) 9945 { 9946 ill_t *ill; 9947 queue_t *ipwq, *dwq; 9948 const char *name; 9949 struct qinit *qinfo; 9950 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9951 boolean_t entered_ipsq = B_FALSE; 9952 9953 /* 9954 * Walk the lower stream to verify it's the IP module stream. 9955 * The IP module is identified by its name, wput function, 9956 * and non-NULL q_next. STREAMS ensures that the lower stream 9957 * (li->l_qbot) will not vanish until this ioctl completes. 9958 */ 9959 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9960 qinfo = ipwq->q_qinfo; 9961 name = qinfo->qi_minfo->mi_idname; 9962 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9963 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9964 break; 9965 } 9966 } 9967 9968 /* 9969 * If this isn't an IP module stream, bail. 9970 */ 9971 if (ipwq == NULL) 9972 return (0); 9973 9974 ill = ipwq->q_ptr; 9975 ASSERT(ill != NULL); 9976 9977 if (ipsq == NULL) { 9978 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9979 NEW_OP, B_TRUE); 9980 if (ipsq == NULL) 9981 return (EINPROGRESS); 9982 entered_ipsq = B_TRUE; 9983 } 9984 ASSERT(IAM_WRITER_ILL(ill)); 9985 9986 if (doconsist) { 9987 /* 9988 * Consistency checking requires that I_{P}LINK occurs 9989 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9990 * occurs prior to clearing ill_arp_muxid. 9991 */ 9992 if ((islink && ill->ill_ip_muxid != 0) || 9993 (!islink && ill->ill_arp_muxid != 0)) { 9994 if (entered_ipsq) 9995 ipsq_exit(ipsq); 9996 return (EINVAL); 9997 } 9998 } 9999 10000 /* 10001 * As part of I_{P}LINKing, stash the number of downstream modules and 10002 * the read queue of the module immediately below IP in the ill. 10003 * These are used during the capability negotiation below. 10004 */ 10005 ill->ill_lmod_rq = NULL; 10006 ill->ill_lmod_cnt = 0; 10007 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10008 ill->ill_lmod_rq = RD(dwq); 10009 for (; dwq != NULL; dwq = dwq->q_next) 10010 ill->ill_lmod_cnt++; 10011 } 10012 10013 if (doconsist) 10014 ill->ill_ip_muxid = islink ? li->l_index : 0; 10015 10016 /* 10017 * If there's at least one up ipif on this ill, then we're bound to 10018 * the underlying driver via DLPI. In that case, renegotiate 10019 * capabilities to account for any possible change in modules 10020 * interposed between IP and the driver. 10021 */ 10022 if (ill->ill_ipif_up_count > 0) { 10023 if (islink) 10024 ill_capability_probe(ill); 10025 else 10026 ill_capability_reset(ill); 10027 } 10028 10029 if (entered_ipsq) 10030 ipsq_exit(ipsq); 10031 10032 return (0); 10033 } 10034 10035 /* 10036 * Search the ioctl command in the ioctl tables and return a pointer 10037 * to the ioctl command information. The ioctl command tables are 10038 * static and fully populated at compile time. 10039 */ 10040 ip_ioctl_cmd_t * 10041 ip_sioctl_lookup(int ioc_cmd) 10042 { 10043 int index; 10044 ip_ioctl_cmd_t *ipip; 10045 ip_ioctl_cmd_t *ipip_end; 10046 10047 if (ioc_cmd == IPI_DONTCARE) 10048 return (NULL); 10049 10050 /* 10051 * Do a 2 step search. First search the indexed table 10052 * based on the least significant byte of the ioctl cmd. 10053 * If we don't find a match, then search the misc table 10054 * serially. 10055 */ 10056 index = ioc_cmd & 0xFF; 10057 if (index < ip_ndx_ioctl_count) { 10058 ipip = &ip_ndx_ioctl_table[index]; 10059 if (ipip->ipi_cmd == ioc_cmd) { 10060 /* Found a match in the ndx table */ 10061 return (ipip); 10062 } 10063 } 10064 10065 /* Search the misc table */ 10066 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10067 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10068 if (ipip->ipi_cmd == ioc_cmd) 10069 /* Found a match in the misc table */ 10070 return (ipip); 10071 } 10072 10073 return (NULL); 10074 } 10075 10076 /* 10077 * Wrapper function for resuming deferred ioctl processing 10078 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10079 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10080 */ 10081 /* ARGSUSED */ 10082 void 10083 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10084 void *dummy_arg) 10085 { 10086 ip_sioctl_copyin_setup(q, mp); 10087 } 10088 10089 /* 10090 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10091 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10092 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10093 * We establish here the size of the block to be copied in. mi_copyin 10094 * arranges for this to happen, an processing continues in ip_wput with 10095 * an M_IOCDATA message. 10096 */ 10097 void 10098 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10099 { 10100 int copyin_size; 10101 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10102 ip_ioctl_cmd_t *ipip; 10103 cred_t *cr; 10104 ip_stack_t *ipst; 10105 10106 if (CONN_Q(q)) 10107 ipst = CONNQ_TO_IPST(q); 10108 else 10109 ipst = ILLQ_TO_IPST(q); 10110 10111 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10112 if (ipip == NULL) { 10113 /* 10114 * The ioctl is not one we understand or own. 10115 * Pass it along to be processed down stream, 10116 * if this is a module instance of IP, else nak 10117 * the ioctl. 10118 */ 10119 if (q->q_next == NULL) { 10120 goto nak; 10121 } else { 10122 putnext(q, mp); 10123 return; 10124 } 10125 } 10126 10127 /* 10128 * If this is deferred, then we will do all the checks when we 10129 * come back. 10130 */ 10131 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10132 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10133 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10134 return; 10135 } 10136 10137 /* 10138 * Only allow a very small subset of IP ioctls on this stream if 10139 * IP is a module and not a driver. Allowing ioctls to be processed 10140 * in this case may cause assert failures or data corruption. 10141 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10142 * ioctls allowed on an IP module stream, after which this stream 10143 * normally becomes a multiplexor (at which time the stream head 10144 * will fail all ioctls). 10145 */ 10146 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10147 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10148 /* 10149 * Pass common Streams ioctls which the IP 10150 * module does not own or consume along to 10151 * be processed down stream. 10152 */ 10153 putnext(q, mp); 10154 return; 10155 } else { 10156 goto nak; 10157 } 10158 } 10159 10160 /* Make sure we have ioctl data to process. */ 10161 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10162 goto nak; 10163 10164 /* 10165 * Prefer dblk credential over ioctl credential; some synthesized 10166 * ioctls have kcred set because there's no way to crhold() 10167 * a credential in some contexts. (ioc_cr is not crfree() by 10168 * the framework; the caller of ioctl needs to hold the reference 10169 * for the duration of the call). 10170 */ 10171 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10172 10173 /* Make sure normal users don't send down privileged ioctls */ 10174 if ((ipip->ipi_flags & IPI_PRIV) && 10175 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10176 /* We checked the privilege earlier but log it here */ 10177 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10178 return; 10179 } 10180 10181 /* 10182 * The ioctl command tables can only encode fixed length 10183 * ioctl data. If the length is variable, the table will 10184 * encode the length as zero. Such special cases are handled 10185 * below in the switch. 10186 */ 10187 if (ipip->ipi_copyin_size != 0) { 10188 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10189 return; 10190 } 10191 10192 switch (iocp->ioc_cmd) { 10193 case O_SIOCGIFCONF: 10194 case SIOCGIFCONF: 10195 /* 10196 * This IOCTL is hilarious. See comments in 10197 * ip_sioctl_get_ifconf for the story. 10198 */ 10199 if (iocp->ioc_count == TRANSPARENT) 10200 copyin_size = SIZEOF_STRUCT(ifconf, 10201 iocp->ioc_flag); 10202 else 10203 copyin_size = iocp->ioc_count; 10204 mi_copyin(q, mp, NULL, copyin_size); 10205 return; 10206 10207 case O_SIOCGLIFCONF: 10208 case SIOCGLIFCONF: 10209 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10210 mi_copyin(q, mp, NULL, copyin_size); 10211 return; 10212 10213 case SIOCGLIFSRCOF: 10214 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10215 mi_copyin(q, mp, NULL, copyin_size); 10216 return; 10217 case SIOCGIP6ADDRPOLICY: 10218 ip_sioctl_ip6addrpolicy(q, mp); 10219 ip6_asp_table_refrele(ipst); 10220 return; 10221 10222 case SIOCSIP6ADDRPOLICY: 10223 ip_sioctl_ip6addrpolicy(q, mp); 10224 return; 10225 10226 case SIOCGDSTINFO: 10227 ip_sioctl_dstinfo(q, mp); 10228 ip6_asp_table_refrele(ipst); 10229 return; 10230 10231 case I_PLINK: 10232 case I_PUNLINK: 10233 case I_LINK: 10234 case I_UNLINK: 10235 /* 10236 * We treat non-persistent link similarly as the persistent 10237 * link case, in terms of plumbing/unplumbing, as well as 10238 * dynamic re-plumbing events indicator. See comments 10239 * in ip_sioctl_plink() for more. 10240 * 10241 * Request can be enqueued in the 'ipsq' while waiting 10242 * to become exclusive. So bump up the conn ref. 10243 */ 10244 if (CONN_Q(q)) 10245 CONN_INC_REF(Q_TO_CONN(q)); 10246 ip_sioctl_plink(NULL, q, mp, NULL); 10247 return; 10248 10249 case ND_GET: 10250 case ND_SET: 10251 /* 10252 * Use of the nd table requires holding the reader lock. 10253 * Modifying the nd table thru nd_load/nd_unload requires 10254 * the writer lock. 10255 */ 10256 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10257 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10258 rw_exit(&ipst->ips_ip_g_nd_lock); 10259 10260 if (iocp->ioc_error) 10261 iocp->ioc_count = 0; 10262 mp->b_datap->db_type = M_IOCACK; 10263 qreply(q, mp); 10264 return; 10265 } 10266 rw_exit(&ipst->ips_ip_g_nd_lock); 10267 /* 10268 * We don't understand this subioctl of ND_GET / ND_SET. 10269 * Maybe intended for some driver / module below us 10270 */ 10271 if (q->q_next) { 10272 putnext(q, mp); 10273 } else { 10274 iocp->ioc_error = ENOENT; 10275 mp->b_datap->db_type = M_IOCNAK; 10276 iocp->ioc_count = 0; 10277 qreply(q, mp); 10278 } 10279 return; 10280 10281 case IP_IOCTL: 10282 ip_wput_ioctl(q, mp); 10283 return; 10284 default: 10285 cmn_err(CE_PANIC, "should not happen "); 10286 } 10287 nak: 10288 if (mp->b_cont != NULL) { 10289 freemsg(mp->b_cont); 10290 mp->b_cont = NULL; 10291 } 10292 iocp->ioc_error = EINVAL; 10293 mp->b_datap->db_type = M_IOCNAK; 10294 iocp->ioc_count = 0; 10295 qreply(q, mp); 10296 } 10297 10298 /* ip_wput hands off ARP IOCTL responses to us */ 10299 void 10300 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10301 { 10302 struct arpreq *ar; 10303 struct xarpreq *xar; 10304 area_t *area; 10305 mblk_t *area_mp; 10306 struct iocblk *iocp; 10307 mblk_t *orig_ioc_mp, *tmp; 10308 struct iocblk *orig_iocp; 10309 ill_t *ill; 10310 conn_t *connp = NULL; 10311 uint_t ioc_id; 10312 mblk_t *pending_mp; 10313 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10314 int *flagsp; 10315 char *storage = NULL; 10316 sin_t *sin; 10317 ipaddr_t addr; 10318 int err; 10319 ip_stack_t *ipst; 10320 10321 ill = q->q_ptr; 10322 ASSERT(ill != NULL); 10323 ipst = ill->ill_ipst; 10324 10325 /* 10326 * We should get back from ARP a packet chain that looks like: 10327 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10328 */ 10329 if (!(area_mp = mp->b_cont) || 10330 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10331 !(orig_ioc_mp = area_mp->b_cont) || 10332 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10333 freemsg(mp); 10334 return; 10335 } 10336 10337 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10338 10339 tmp = (orig_ioc_mp->b_cont)->b_cont; 10340 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10341 (orig_iocp->ioc_cmd == SIOCSXARP) || 10342 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10343 x_arp_ioctl = B_TRUE; 10344 xar = (struct xarpreq *)tmp->b_rptr; 10345 sin = (sin_t *)&xar->xarp_pa; 10346 flagsp = &xar->xarp_flags; 10347 storage = xar->xarp_ha.sdl_data; 10348 if (xar->xarp_ha.sdl_nlen != 0) 10349 ifx_arp_ioctl = B_TRUE; 10350 } else { 10351 ar = (struct arpreq *)tmp->b_rptr; 10352 sin = (sin_t *)&ar->arp_pa; 10353 flagsp = &ar->arp_flags; 10354 storage = ar->arp_ha.sa_data; 10355 } 10356 10357 iocp = (struct iocblk *)mp->b_rptr; 10358 10359 /* 10360 * Pick out the originating queue based on the ioc_id. 10361 */ 10362 ioc_id = iocp->ioc_id; 10363 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10364 if (pending_mp == NULL) { 10365 ASSERT(connp == NULL); 10366 inet_freemsg(mp); 10367 return; 10368 } 10369 ASSERT(connp != NULL); 10370 q = CONNP_TO_WQ(connp); 10371 10372 /* Uncouple the internally generated IOCTL from the original one */ 10373 area = (area_t *)area_mp->b_rptr; 10374 area_mp->b_cont = NULL; 10375 10376 /* 10377 * Restore the b_next and b_prev used by mi code. This is needed 10378 * to complete the ioctl using mi* functions. We stored them in 10379 * the pending mp prior to sending the request to ARP. 10380 */ 10381 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10382 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10383 inet_freemsg(pending_mp); 10384 10385 /* 10386 * We're done if there was an error or if this is not an SIOCG{X}ARP 10387 * Catch the case where there is an IRE_CACHE by no entry in the 10388 * arp table. 10389 */ 10390 addr = sin->sin_addr.s_addr; 10391 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10392 ire_t *ire; 10393 dl_unitdata_req_t *dlup; 10394 mblk_t *llmp; 10395 int addr_len; 10396 ill_t *ipsqill = NULL; 10397 10398 if (ifx_arp_ioctl) { 10399 /* 10400 * There's no need to lookup the ill, since 10401 * we've already done that when we started 10402 * processing the ioctl and sent the message 10403 * to ARP on that ill. So use the ill that 10404 * is stored in q->q_ptr. 10405 */ 10406 ipsqill = ill; 10407 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10408 ipsqill->ill_ipif, ALL_ZONES, 10409 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10410 } else { 10411 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10412 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10413 if (ire != NULL) 10414 ipsqill = ire_to_ill(ire); 10415 } 10416 10417 if ((x_arp_ioctl) && (ipsqill != NULL)) 10418 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10419 10420 if (ire != NULL) { 10421 /* 10422 * Since the ire obtained from cachetable is used for 10423 * mac addr copying below, treat an incomplete ire as if 10424 * as if we never found it. 10425 */ 10426 if (ire->ire_nce != NULL && 10427 ire->ire_nce->nce_state != ND_REACHABLE) { 10428 ire_refrele(ire); 10429 ire = NULL; 10430 ipsqill = NULL; 10431 goto errack; 10432 } 10433 *flagsp = ATF_INUSE; 10434 llmp = (ire->ire_nce != NULL ? 10435 ire->ire_nce->nce_res_mp : NULL); 10436 if (llmp != NULL && ipsqill != NULL) { 10437 uchar_t *macaddr; 10438 10439 addr_len = ipsqill->ill_phys_addr_length; 10440 if (x_arp_ioctl && ((addr_len + 10441 ipsqill->ill_name_length) > 10442 sizeof (xar->xarp_ha.sdl_data))) { 10443 ire_refrele(ire); 10444 freemsg(mp); 10445 ip_ioctl_finish(q, orig_ioc_mp, 10446 EINVAL, NO_COPYOUT, NULL); 10447 return; 10448 } 10449 *flagsp |= ATF_COM; 10450 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10451 if (ipsqill->ill_sap_length < 0) 10452 macaddr = llmp->b_rptr + 10453 dlup->dl_dest_addr_offset; 10454 else 10455 macaddr = llmp->b_rptr + 10456 dlup->dl_dest_addr_offset + 10457 ipsqill->ill_sap_length; 10458 /* 10459 * For SIOCGARP, MAC address length 10460 * validation has already been done 10461 * before the ioctl was issued to ARP to 10462 * allow it to progress only on 6 byte 10463 * addressable (ethernet like) media. Thus 10464 * the mac address copying can not overwrite 10465 * the sa_data area below. 10466 */ 10467 bcopy(macaddr, storage, addr_len); 10468 } 10469 /* Ditch the internal IOCTL. */ 10470 freemsg(mp); 10471 ire_refrele(ire); 10472 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10473 return; 10474 } 10475 } 10476 10477 /* 10478 * Delete the coresponding IRE_CACHE if any. 10479 * Reset the error if there was one (in case there was no entry 10480 * in arp.) 10481 */ 10482 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10483 ipif_t *ipintf = NULL; 10484 10485 if (ifx_arp_ioctl) { 10486 /* 10487 * There's no need to lookup the ill, since 10488 * we've already done that when we started 10489 * processing the ioctl and sent the message 10490 * to ARP on that ill. So use the ill that 10491 * is stored in q->q_ptr. 10492 */ 10493 ipintf = ill->ill_ipif; 10494 } 10495 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10496 /* 10497 * The address in "addr" may be an entry for a 10498 * router. If that's true, then any off-net 10499 * IRE_CACHE entries that go through the router 10500 * with address "addr" must be clobbered. Use 10501 * ire_walk to achieve this goal. 10502 */ 10503 if (ifx_arp_ioctl) 10504 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10505 ire_delete_cache_gw, (char *)&addr, ill); 10506 else 10507 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10508 ALL_ZONES, ipst); 10509 iocp->ioc_error = 0; 10510 } 10511 } 10512 errack: 10513 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10514 err = iocp->ioc_error; 10515 freemsg(mp); 10516 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10517 return; 10518 } 10519 10520 /* 10521 * Completion of an SIOCG{X}ARP. Translate the information from 10522 * the area_t into the struct {x}arpreq. 10523 */ 10524 if (x_arp_ioctl) { 10525 storage += ill_xarp_info(&xar->xarp_ha, ill); 10526 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10527 sizeof (xar->xarp_ha.sdl_data)) { 10528 freemsg(mp); 10529 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10530 NULL); 10531 return; 10532 } 10533 } 10534 *flagsp = ATF_INUSE; 10535 if (area->area_flags & ACE_F_PERMANENT) 10536 *flagsp |= ATF_PERM; 10537 if (area->area_flags & ACE_F_PUBLISH) 10538 *flagsp |= ATF_PUBL; 10539 if (area->area_flags & ACE_F_AUTHORITY) 10540 *flagsp |= ATF_AUTHORITY; 10541 if (area->area_hw_addr_length != 0) { 10542 *flagsp |= ATF_COM; 10543 /* 10544 * For SIOCGARP, MAC address length validation has 10545 * already been done before the ioctl was issued to ARP 10546 * to allow it to progress only on 6 byte addressable 10547 * (ethernet like) media. Thus the mac address copying 10548 * can not overwrite the sa_data area below. 10549 */ 10550 bcopy((char *)area + area->area_hw_addr_offset, 10551 storage, area->area_hw_addr_length); 10552 } 10553 10554 /* Ditch the internal IOCTL. */ 10555 freemsg(mp); 10556 /* Complete the original. */ 10557 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10558 } 10559 10560 /* 10561 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10562 * interface) create the next available logical interface for this 10563 * physical interface. 10564 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10565 * ipif with the specified name. 10566 * 10567 * If the address family is not AF_UNSPEC then set the address as well. 10568 * 10569 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10570 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10571 * 10572 * Executed as a writer on the ill or ill group. 10573 * So no lock is needed to traverse the ipif chain, or examine the 10574 * phyint flags. 10575 */ 10576 /* ARGSUSED */ 10577 int 10578 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10579 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10580 { 10581 mblk_t *mp1; 10582 struct lifreq *lifr; 10583 boolean_t isv6; 10584 boolean_t exists; 10585 char *name; 10586 char *endp; 10587 char *cp; 10588 int namelen; 10589 ipif_t *ipif; 10590 long id; 10591 ipsq_t *ipsq; 10592 ill_t *ill; 10593 sin_t *sin; 10594 int err = 0; 10595 boolean_t found_sep = B_FALSE; 10596 conn_t *connp; 10597 zoneid_t zoneid; 10598 int orig_ifindex = 0; 10599 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10600 10601 ASSERT(q->q_next == NULL); 10602 ip1dbg(("ip_sioctl_addif\n")); 10603 /* Existence of mp1 has been checked in ip_wput_nondata */ 10604 mp1 = mp->b_cont->b_cont; 10605 /* 10606 * Null terminate the string to protect against buffer 10607 * overrun. String was generated by user code and may not 10608 * be trusted. 10609 */ 10610 lifr = (struct lifreq *)mp1->b_rptr; 10611 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10612 name = lifr->lifr_name; 10613 ASSERT(CONN_Q(q)); 10614 connp = Q_TO_CONN(q); 10615 isv6 = connp->conn_af_isv6; 10616 zoneid = connp->conn_zoneid; 10617 namelen = mi_strlen(name); 10618 if (namelen == 0) 10619 return (EINVAL); 10620 10621 exists = B_FALSE; 10622 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10623 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10624 /* 10625 * Allow creating lo0 using SIOCLIFADDIF. 10626 * can't be any other writer thread. So can pass null below 10627 * for the last 4 args to ipif_lookup_name. 10628 */ 10629 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10630 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10631 /* Prevent any further action */ 10632 if (ipif == NULL) { 10633 return (ENOBUFS); 10634 } else if (!exists) { 10635 /* We created the ipif now and as writer */ 10636 ipif_refrele(ipif); 10637 return (0); 10638 } else { 10639 ill = ipif->ipif_ill; 10640 ill_refhold(ill); 10641 ipif_refrele(ipif); 10642 } 10643 } else { 10644 /* Look for a colon in the name. */ 10645 endp = &name[namelen]; 10646 for (cp = endp; --cp > name; ) { 10647 if (*cp == IPIF_SEPARATOR_CHAR) { 10648 found_sep = B_TRUE; 10649 /* 10650 * Reject any non-decimal aliases for plumbing 10651 * of logical interfaces. Aliases with leading 10652 * zeroes are also rejected as they introduce 10653 * ambiguity in the naming of the interfaces. 10654 * Comparing with "0" takes care of all such 10655 * cases. 10656 */ 10657 if ((strncmp("0", cp+1, 1)) == 0) 10658 return (EINVAL); 10659 10660 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10661 id <= 0 || *endp != '\0') { 10662 return (EINVAL); 10663 } 10664 *cp = '\0'; 10665 break; 10666 } 10667 } 10668 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10669 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10670 if (found_sep) 10671 *cp = IPIF_SEPARATOR_CHAR; 10672 if (ill == NULL) 10673 return (err); 10674 } 10675 10676 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10677 B_TRUE); 10678 10679 /* 10680 * Release the refhold due to the lookup, now that we are excl 10681 * or we are just returning 10682 */ 10683 ill_refrele(ill); 10684 10685 if (ipsq == NULL) 10686 return (EINPROGRESS); 10687 10688 /* 10689 * If the interface is failed, inactive or offlined, look for a working 10690 * interface in the ill group and create the ipif there. If we can't 10691 * find a good interface, create the ipif anyway so that in.mpathd can 10692 * move it to the first repaired interface. 10693 */ 10694 if ((ill->ill_phyint->phyint_flags & 10695 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10696 ill->ill_phyint->phyint_groupname_len != 0) { 10697 phyint_t *phyi; 10698 char *groupname = ill->ill_phyint->phyint_groupname; 10699 10700 /* 10701 * We're looking for a working interface, but it doesn't matter 10702 * if it's up or down; so instead of following the group lists, 10703 * we look at each physical interface and compare the groupname. 10704 * We're only interested in interfaces with IPv4 (resp. IPv6) 10705 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10706 * Otherwise we create the ipif on the failed interface. 10707 */ 10708 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10709 phyi = avl_first(&ipst->ips_phyint_g_list-> 10710 phyint_list_avl_by_index); 10711 for (; phyi != NULL; 10712 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10713 phyint_list_avl_by_index, 10714 phyi, AVL_AFTER)) { 10715 if (phyi->phyint_groupname_len == 0) 10716 continue; 10717 ASSERT(phyi->phyint_groupname != NULL); 10718 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10719 !(phyi->phyint_flags & 10720 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10721 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10722 (phyi->phyint_illv4 != NULL))) { 10723 break; 10724 } 10725 } 10726 rw_exit(&ipst->ips_ill_g_lock); 10727 10728 if (phyi != NULL) { 10729 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10730 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10731 phyi->phyint_illv4); 10732 } 10733 } 10734 10735 /* 10736 * We are now exclusive on the ipsq, so an ill move will be serialized 10737 * before or after us. 10738 */ 10739 ASSERT(IAM_WRITER_ILL(ill)); 10740 ASSERT(ill->ill_move_in_progress == B_FALSE); 10741 10742 if (found_sep && orig_ifindex == 0) { 10743 /* Now see if there is an IPIF with this unit number. */ 10744 for (ipif = ill->ill_ipif; ipif != NULL; 10745 ipif = ipif->ipif_next) { 10746 if (ipif->ipif_id == id) { 10747 err = EEXIST; 10748 goto done; 10749 } 10750 } 10751 } 10752 10753 /* 10754 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10755 * of lo0. We never come here when we plumb lo0:0. It 10756 * happens in ipif_lookup_on_name. 10757 * The specified unit number is ignored when we create the ipif on a 10758 * different interface. However, we save it in ipif_orig_ipifid below so 10759 * that the ipif fails back to the right position. 10760 */ 10761 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10762 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10763 err = ENOBUFS; 10764 goto done; 10765 } 10766 10767 /* Return created name with ioctl */ 10768 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10769 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10770 ip1dbg(("created %s\n", lifr->lifr_name)); 10771 10772 /* Set address */ 10773 sin = (sin_t *)&lifr->lifr_addr; 10774 if (sin->sin_family != AF_UNSPEC) { 10775 err = ip_sioctl_addr(ipif, sin, q, mp, 10776 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10777 } 10778 10779 /* Set ifindex and unit number for failback */ 10780 if (err == 0 && orig_ifindex != 0) { 10781 ipif->ipif_orig_ifindex = orig_ifindex; 10782 if (found_sep) { 10783 ipif->ipif_orig_ipifid = id; 10784 } 10785 } 10786 10787 done: 10788 ipsq_exit(ipsq); 10789 return (err); 10790 } 10791 10792 /* 10793 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10794 * interface) delete it based on the IP address (on this physical interface). 10795 * Otherwise delete it based on the ipif_id. 10796 * Also, special handling to allow a removeif of lo0. 10797 */ 10798 /* ARGSUSED */ 10799 int 10800 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10801 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10802 { 10803 conn_t *connp; 10804 ill_t *ill = ipif->ipif_ill; 10805 boolean_t success; 10806 ip_stack_t *ipst; 10807 10808 ipst = CONNQ_TO_IPST(q); 10809 10810 ASSERT(q->q_next == NULL); 10811 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10812 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10813 ASSERT(IAM_WRITER_IPIF(ipif)); 10814 10815 connp = Q_TO_CONN(q); 10816 /* 10817 * Special case for unplumbing lo0 (the loopback physical interface). 10818 * If unplumbing lo0, the incoming address structure has been 10819 * initialized to all zeros. When unplumbing lo0, all its logical 10820 * interfaces must be removed too. 10821 * 10822 * Note that this interface may be called to remove a specific 10823 * loopback logical interface (eg, lo0:1). But in that case 10824 * ipif->ipif_id != 0 so that the code path for that case is the 10825 * same as any other interface (meaning it skips the code directly 10826 * below). 10827 */ 10828 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10829 if (sin->sin_family == AF_UNSPEC && 10830 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10831 /* 10832 * Mark it condemned. No new ref. will be made to ill. 10833 */ 10834 mutex_enter(&ill->ill_lock); 10835 ill->ill_state_flags |= ILL_CONDEMNED; 10836 for (ipif = ill->ill_ipif; ipif != NULL; 10837 ipif = ipif->ipif_next) { 10838 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10839 } 10840 mutex_exit(&ill->ill_lock); 10841 10842 ipif = ill->ill_ipif; 10843 /* unplumb the loopback interface */ 10844 ill_delete(ill); 10845 mutex_enter(&connp->conn_lock); 10846 mutex_enter(&ill->ill_lock); 10847 ASSERT(ill->ill_group == NULL); 10848 10849 /* Are any references to this ill active */ 10850 if (ill_is_freeable(ill)) { 10851 mutex_exit(&ill->ill_lock); 10852 mutex_exit(&connp->conn_lock); 10853 ill_delete_tail(ill); 10854 mutex_enter(&ill->ill_lock); 10855 ill_nic_info_dispatch(ill); 10856 mutex_exit(&ill->ill_lock); 10857 mi_free(ill); 10858 return (0); 10859 } 10860 success = ipsq_pending_mp_add(connp, ipif, 10861 CONNP_TO_WQ(connp), mp, ILL_FREE); 10862 mutex_exit(&connp->conn_lock); 10863 mutex_exit(&ill->ill_lock); 10864 if (success) 10865 return (EINPROGRESS); 10866 else 10867 return (EINTR); 10868 } 10869 } 10870 10871 /* 10872 * We are exclusive on the ipsq, so an ill move will be serialized 10873 * before or after us. 10874 */ 10875 ASSERT(ill->ill_move_in_progress == B_FALSE); 10876 10877 if (ipif->ipif_id == 0) { 10878 10879 ipsq_t *ipsq; 10880 10881 /* Find based on address */ 10882 if (ipif->ipif_isv6) { 10883 sin6_t *sin6; 10884 10885 if (sin->sin_family != AF_INET6) 10886 return (EAFNOSUPPORT); 10887 10888 sin6 = (sin6_t *)sin; 10889 /* We are a writer, so we should be able to lookup */ 10890 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10891 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10892 if (ipif == NULL) { 10893 /* 10894 * Maybe the address in on another interface in 10895 * the same IPMP group? We check this below. 10896 */ 10897 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10898 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10899 ipst); 10900 } 10901 } else { 10902 ipaddr_t addr; 10903 10904 if (sin->sin_family != AF_INET) 10905 return (EAFNOSUPPORT); 10906 10907 addr = sin->sin_addr.s_addr; 10908 /* We are a writer, so we should be able to lookup */ 10909 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10910 NULL, NULL, NULL, ipst); 10911 if (ipif == NULL) { 10912 /* 10913 * Maybe the address in on another interface in 10914 * the same IPMP group? We check this below. 10915 */ 10916 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10917 NULL, NULL, NULL, NULL, ipst); 10918 } 10919 } 10920 if (ipif == NULL) { 10921 return (EADDRNOTAVAIL); 10922 } 10923 10924 /* 10925 * It is possible for a user to send an SIOCLIFREMOVEIF with 10926 * lifr_name of the physical interface but with an ip address 10927 * lifr_addr of a logical interface plumbed over it. 10928 * So update ipsq_current_ipif once ipif points to the 10929 * correct interface after doing ipif_lookup_addr(). 10930 */ 10931 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10932 ASSERT(ipsq != NULL); 10933 10934 mutex_enter(&ipsq->ipsq_lock); 10935 ipsq->ipsq_current_ipif = ipif; 10936 mutex_exit(&ipsq->ipsq_lock); 10937 10938 /* 10939 * When the address to be removed is hosted on a different 10940 * interface, we check if the interface is in the same IPMP 10941 * group as the specified one; if so we proceed with the 10942 * removal. 10943 * ill->ill_group is NULL when the ill is down, so we have to 10944 * compare the group names instead. 10945 */ 10946 if (ipif->ipif_ill != ill && 10947 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10948 ill->ill_phyint->phyint_groupname_len == 0 || 10949 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10950 ill->ill_phyint->phyint_groupname) != 0)) { 10951 ipif_refrele(ipif); 10952 return (EADDRNOTAVAIL); 10953 } 10954 10955 /* This is a writer */ 10956 ipif_refrele(ipif); 10957 } 10958 10959 /* 10960 * Can not delete instance zero since it is tied to the ill. 10961 */ 10962 if (ipif->ipif_id == 0) 10963 return (EBUSY); 10964 10965 mutex_enter(&ill->ill_lock); 10966 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10967 mutex_exit(&ill->ill_lock); 10968 10969 ipif_free(ipif); 10970 10971 mutex_enter(&connp->conn_lock); 10972 mutex_enter(&ill->ill_lock); 10973 10974 10975 /* Are any references to this ipif active */ 10976 if (ipif_is_freeable(ipif)) { 10977 mutex_exit(&ill->ill_lock); 10978 mutex_exit(&connp->conn_lock); 10979 ipif_non_duplicate(ipif); 10980 ipif_down_tail(ipif); 10981 ipif_free_tail(ipif); /* frees ipif */ 10982 return (0); 10983 } 10984 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10985 IPIF_FREE); 10986 mutex_exit(&ill->ill_lock); 10987 mutex_exit(&connp->conn_lock); 10988 if (success) 10989 return (EINPROGRESS); 10990 else 10991 return (EINTR); 10992 } 10993 10994 /* 10995 * Restart the removeif ioctl. The refcnt has gone down to 0. 10996 * The ipif is already condemned. So can't find it thru lookups. 10997 */ 10998 /* ARGSUSED */ 10999 int 11000 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11001 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11002 { 11003 ill_t *ill = ipif->ipif_ill; 11004 11005 ASSERT(IAM_WRITER_IPIF(ipif)); 11006 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11007 11008 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11009 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11010 11011 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11012 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11013 ill_delete_tail(ill); 11014 mutex_enter(&ill->ill_lock); 11015 ill_nic_info_dispatch(ill); 11016 mutex_exit(&ill->ill_lock); 11017 mi_free(ill); 11018 return (0); 11019 } 11020 11021 ipif_non_duplicate(ipif); 11022 ipif_down_tail(ipif); 11023 ipif_free_tail(ipif); 11024 11025 ILL_UNMARK_CHANGING(ill); 11026 return (0); 11027 } 11028 11029 /* 11030 * Set the local interface address. 11031 * Allow an address of all zero when the interface is down. 11032 */ 11033 /* ARGSUSED */ 11034 int 11035 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11036 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11037 { 11038 int err = 0; 11039 in6_addr_t v6addr; 11040 boolean_t need_up = B_FALSE; 11041 11042 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11044 11045 ASSERT(IAM_WRITER_IPIF(ipif)); 11046 11047 if (ipif->ipif_isv6) { 11048 sin6_t *sin6; 11049 ill_t *ill; 11050 phyint_t *phyi; 11051 11052 if (sin->sin_family != AF_INET6) 11053 return (EAFNOSUPPORT); 11054 11055 sin6 = (sin6_t *)sin; 11056 v6addr = sin6->sin6_addr; 11057 ill = ipif->ipif_ill; 11058 phyi = ill->ill_phyint; 11059 11060 /* 11061 * Enforce that true multicast interfaces have a link-local 11062 * address for logical unit 0. 11063 */ 11064 if (ipif->ipif_id == 0 && 11065 (ill->ill_flags & ILLF_MULTICAST) && 11066 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11067 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11068 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11069 return (EADDRNOTAVAIL); 11070 } 11071 11072 /* 11073 * up interfaces shouldn't have the unspecified address 11074 * unless they also have the IPIF_NOLOCAL flags set and 11075 * have a subnet assigned. 11076 */ 11077 if ((ipif->ipif_flags & IPIF_UP) && 11078 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11079 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11080 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11081 return (EADDRNOTAVAIL); 11082 } 11083 11084 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11085 return (EADDRNOTAVAIL); 11086 } else { 11087 ipaddr_t addr; 11088 11089 if (sin->sin_family != AF_INET) 11090 return (EAFNOSUPPORT); 11091 11092 addr = sin->sin_addr.s_addr; 11093 11094 /* Allow 0 as the local address. */ 11095 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11096 return (EADDRNOTAVAIL); 11097 11098 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11099 } 11100 11101 /* 11102 * Even if there is no change we redo things just to rerun 11103 * ipif_set_default. 11104 */ 11105 if (ipif->ipif_flags & IPIF_UP) { 11106 /* 11107 * Setting a new local address, make sure 11108 * we have net and subnet bcast ire's for 11109 * the old address if we need them. 11110 */ 11111 if (!ipif->ipif_isv6) 11112 ipif_check_bcast_ires(ipif); 11113 /* 11114 * If the interface is already marked up, 11115 * we call ipif_down which will take care 11116 * of ditching any IREs that have been set 11117 * up based on the old interface address. 11118 */ 11119 err = ipif_logical_down(ipif, q, mp); 11120 if (err == EINPROGRESS) 11121 return (err); 11122 ipif_down_tail(ipif); 11123 need_up = 1; 11124 } 11125 11126 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11127 return (err); 11128 } 11129 11130 int 11131 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11132 boolean_t need_up) 11133 { 11134 in6_addr_t v6addr; 11135 in6_addr_t ov6addr; 11136 ipaddr_t addr; 11137 sin6_t *sin6; 11138 int sinlen; 11139 int err = 0; 11140 ill_t *ill = ipif->ipif_ill; 11141 boolean_t need_dl_down; 11142 boolean_t need_arp_down; 11143 struct iocblk *iocp; 11144 11145 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11146 11147 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11148 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11149 ASSERT(IAM_WRITER_IPIF(ipif)); 11150 11151 /* Must cancel any pending timer before taking the ill_lock */ 11152 if (ipif->ipif_recovery_id != 0) 11153 (void) untimeout(ipif->ipif_recovery_id); 11154 ipif->ipif_recovery_id = 0; 11155 11156 if (ipif->ipif_isv6) { 11157 sin6 = (sin6_t *)sin; 11158 v6addr = sin6->sin6_addr; 11159 sinlen = sizeof (struct sockaddr_in6); 11160 } else { 11161 addr = sin->sin_addr.s_addr; 11162 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11163 sinlen = sizeof (struct sockaddr_in); 11164 } 11165 mutex_enter(&ill->ill_lock); 11166 ov6addr = ipif->ipif_v6lcl_addr; 11167 ipif->ipif_v6lcl_addr = v6addr; 11168 sctp_update_ipif_addr(ipif, ov6addr); 11169 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11170 ipif->ipif_v6src_addr = ipv6_all_zeros; 11171 } else { 11172 ipif->ipif_v6src_addr = v6addr; 11173 } 11174 ipif->ipif_addr_ready = 0; 11175 11176 /* 11177 * If the interface was previously marked as a duplicate, then since 11178 * we've now got a "new" address, it should no longer be considered a 11179 * duplicate -- even if the "new" address is the same as the old one. 11180 * Note that if all ipifs are down, we may have a pending ARP down 11181 * event to handle. This is because we want to recover from duplicates 11182 * and thus delay tearing down ARP until the duplicates have been 11183 * removed or disabled. 11184 */ 11185 need_dl_down = need_arp_down = B_FALSE; 11186 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11187 need_arp_down = !need_up; 11188 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11189 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11190 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11191 need_dl_down = B_TRUE; 11192 } 11193 } 11194 11195 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11196 !ill->ill_is_6to4tun) { 11197 queue_t *wqp = ill->ill_wq; 11198 11199 /* 11200 * The local address of this interface is a 6to4 address, 11201 * check if this interface is in fact a 6to4 tunnel or just 11202 * an interface configured with a 6to4 address. We are only 11203 * interested in the former. 11204 */ 11205 if (wqp != NULL) { 11206 while ((wqp->q_next != NULL) && 11207 (wqp->q_next->q_qinfo != NULL) && 11208 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11209 11210 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11211 == TUN6TO4_MODID) { 11212 /* set for use in IP */ 11213 ill->ill_is_6to4tun = 1; 11214 break; 11215 } 11216 wqp = wqp->q_next; 11217 } 11218 } 11219 } 11220 11221 ipif_set_default(ipif); 11222 11223 /* 11224 * When publishing an interface address change event, we only notify 11225 * the event listeners of the new address. It is assumed that if they 11226 * actively care about the addresses assigned that they will have 11227 * already discovered the previous address assigned (if there was one.) 11228 * 11229 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11230 */ 11231 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11232 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11233 NE_ADDRESS_CHANGE, sin, sinlen); 11234 } 11235 11236 mutex_exit(&ill->ill_lock); 11237 11238 if (need_up) { 11239 /* 11240 * Now bring the interface back up. If this 11241 * is the only IPIF for the ILL, ipif_up 11242 * will have to re-bind to the device, so 11243 * we may get back EINPROGRESS, in which 11244 * case, this IOCTL will get completed in 11245 * ip_rput_dlpi when we see the DL_BIND_ACK. 11246 */ 11247 err = ipif_up(ipif, q, mp); 11248 } 11249 11250 if (need_dl_down) 11251 ill_dl_down(ill); 11252 if (need_arp_down) 11253 ipif_arp_down(ipif); 11254 11255 return (err); 11256 } 11257 11258 11259 /* 11260 * Restart entry point to restart the address set operation after the 11261 * refcounts have dropped to zero. 11262 */ 11263 /* ARGSUSED */ 11264 int 11265 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11266 ip_ioctl_cmd_t *ipip, void *ifreq) 11267 { 11268 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11269 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11270 ASSERT(IAM_WRITER_IPIF(ipif)); 11271 ipif_down_tail(ipif); 11272 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11273 } 11274 11275 /* ARGSUSED */ 11276 int 11277 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11278 ip_ioctl_cmd_t *ipip, void *if_req) 11279 { 11280 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11281 struct lifreq *lifr = (struct lifreq *)if_req; 11282 11283 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11284 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11285 /* 11286 * The net mask and address can't change since we have a 11287 * reference to the ipif. So no lock is necessary. 11288 */ 11289 if (ipif->ipif_isv6) { 11290 *sin6 = sin6_null; 11291 sin6->sin6_family = AF_INET6; 11292 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11293 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11294 lifr->lifr_addrlen = 11295 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11296 } else { 11297 *sin = sin_null; 11298 sin->sin_family = AF_INET; 11299 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11300 if (ipip->ipi_cmd_type == LIF_CMD) { 11301 lifr->lifr_addrlen = 11302 ip_mask_to_plen(ipif->ipif_net_mask); 11303 } 11304 } 11305 return (0); 11306 } 11307 11308 /* 11309 * Set the destination address for a pt-pt interface. 11310 */ 11311 /* ARGSUSED */ 11312 int 11313 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11314 ip_ioctl_cmd_t *ipip, void *if_req) 11315 { 11316 int err = 0; 11317 in6_addr_t v6addr; 11318 boolean_t need_up = B_FALSE; 11319 11320 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11321 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11322 ASSERT(IAM_WRITER_IPIF(ipif)); 11323 11324 if (ipif->ipif_isv6) { 11325 sin6_t *sin6; 11326 11327 if (sin->sin_family != AF_INET6) 11328 return (EAFNOSUPPORT); 11329 11330 sin6 = (sin6_t *)sin; 11331 v6addr = sin6->sin6_addr; 11332 11333 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11334 return (EADDRNOTAVAIL); 11335 } else { 11336 ipaddr_t addr; 11337 11338 if (sin->sin_family != AF_INET) 11339 return (EAFNOSUPPORT); 11340 11341 addr = sin->sin_addr.s_addr; 11342 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11343 return (EADDRNOTAVAIL); 11344 11345 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11346 } 11347 11348 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11349 return (0); /* No change */ 11350 11351 if (ipif->ipif_flags & IPIF_UP) { 11352 /* 11353 * If the interface is already marked up, 11354 * we call ipif_down which will take care 11355 * of ditching any IREs that have been set 11356 * up based on the old pp dst address. 11357 */ 11358 err = ipif_logical_down(ipif, q, mp); 11359 if (err == EINPROGRESS) 11360 return (err); 11361 ipif_down_tail(ipif); 11362 need_up = B_TRUE; 11363 } 11364 /* 11365 * could return EINPROGRESS. If so ioctl will complete in 11366 * ip_rput_dlpi_writer 11367 */ 11368 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11369 return (err); 11370 } 11371 11372 static int 11373 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11374 boolean_t need_up) 11375 { 11376 in6_addr_t v6addr; 11377 ill_t *ill = ipif->ipif_ill; 11378 int err = 0; 11379 boolean_t need_dl_down; 11380 boolean_t need_arp_down; 11381 11382 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11383 ipif->ipif_id, (void *)ipif)); 11384 11385 /* Must cancel any pending timer before taking the ill_lock */ 11386 if (ipif->ipif_recovery_id != 0) 11387 (void) untimeout(ipif->ipif_recovery_id); 11388 ipif->ipif_recovery_id = 0; 11389 11390 if (ipif->ipif_isv6) { 11391 sin6_t *sin6; 11392 11393 sin6 = (sin6_t *)sin; 11394 v6addr = sin6->sin6_addr; 11395 } else { 11396 ipaddr_t addr; 11397 11398 addr = sin->sin_addr.s_addr; 11399 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11400 } 11401 mutex_enter(&ill->ill_lock); 11402 /* Set point to point destination address. */ 11403 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11404 /* 11405 * Allow this as a means of creating logical 11406 * pt-pt interfaces on top of e.g. an Ethernet. 11407 * XXX Undocumented HACK for testing. 11408 * pt-pt interfaces are created with NUD disabled. 11409 */ 11410 ipif->ipif_flags |= IPIF_POINTOPOINT; 11411 ipif->ipif_flags &= ~IPIF_BROADCAST; 11412 if (ipif->ipif_isv6) 11413 ill->ill_flags |= ILLF_NONUD; 11414 } 11415 11416 /* 11417 * If the interface was previously marked as a duplicate, then since 11418 * we've now got a "new" address, it should no longer be considered a 11419 * duplicate -- even if the "new" address is the same as the old one. 11420 * Note that if all ipifs are down, we may have a pending ARP down 11421 * event to handle. 11422 */ 11423 need_dl_down = need_arp_down = B_FALSE; 11424 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11425 need_arp_down = !need_up; 11426 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11427 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11428 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11429 need_dl_down = B_TRUE; 11430 } 11431 } 11432 11433 /* Set the new address. */ 11434 ipif->ipif_v6pp_dst_addr = v6addr; 11435 /* Make sure subnet tracks pp_dst */ 11436 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11437 mutex_exit(&ill->ill_lock); 11438 11439 if (need_up) { 11440 /* 11441 * Now bring the interface back up. If this 11442 * is the only IPIF for the ILL, ipif_up 11443 * will have to re-bind to the device, so 11444 * we may get back EINPROGRESS, in which 11445 * case, this IOCTL will get completed in 11446 * ip_rput_dlpi when we see the DL_BIND_ACK. 11447 */ 11448 err = ipif_up(ipif, q, mp); 11449 } 11450 11451 if (need_dl_down) 11452 ill_dl_down(ill); 11453 11454 if (need_arp_down) 11455 ipif_arp_down(ipif); 11456 return (err); 11457 } 11458 11459 /* 11460 * Restart entry point to restart the dstaddress set operation after the 11461 * refcounts have dropped to zero. 11462 */ 11463 /* ARGSUSED */ 11464 int 11465 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11466 ip_ioctl_cmd_t *ipip, void *ifreq) 11467 { 11468 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11469 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11470 ipif_down_tail(ipif); 11471 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11472 } 11473 11474 /* ARGSUSED */ 11475 int 11476 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11477 ip_ioctl_cmd_t *ipip, void *if_req) 11478 { 11479 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11480 11481 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11483 /* 11484 * Get point to point destination address. The addresses can't 11485 * change since we hold a reference to the ipif. 11486 */ 11487 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11488 return (EADDRNOTAVAIL); 11489 11490 if (ipif->ipif_isv6) { 11491 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11492 *sin6 = sin6_null; 11493 sin6->sin6_family = AF_INET6; 11494 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11495 } else { 11496 *sin = sin_null; 11497 sin->sin_family = AF_INET; 11498 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11499 } 11500 return (0); 11501 } 11502 11503 /* 11504 * part of ipmp, make this func return the active/inactive state and 11505 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11506 */ 11507 /* 11508 * This function either sets or clears the IFF_INACTIVE flag. 11509 * 11510 * As long as there are some addresses or multicast memberships on the 11511 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11512 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11513 * will be used for outbound packets. 11514 * 11515 * Caller needs to verify the validity of setting IFF_INACTIVE. 11516 */ 11517 static void 11518 phyint_inactive(phyint_t *phyi) 11519 { 11520 ill_t *ill_v4; 11521 ill_t *ill_v6; 11522 ipif_t *ipif; 11523 ilm_t *ilm; 11524 11525 ill_v4 = phyi->phyint_illv4; 11526 ill_v6 = phyi->phyint_illv6; 11527 11528 /* 11529 * No need for a lock while traversing the list since iam 11530 * a writer 11531 */ 11532 if (ill_v4 != NULL) { 11533 ASSERT(IAM_WRITER_ILL(ill_v4)); 11534 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11535 ipif = ipif->ipif_next) { 11536 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11537 mutex_enter(&phyi->phyint_lock); 11538 phyi->phyint_flags &= ~PHYI_INACTIVE; 11539 mutex_exit(&phyi->phyint_lock); 11540 return; 11541 } 11542 } 11543 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11544 ilm = ilm->ilm_next) { 11545 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11546 mutex_enter(&phyi->phyint_lock); 11547 phyi->phyint_flags &= ~PHYI_INACTIVE; 11548 mutex_exit(&phyi->phyint_lock); 11549 return; 11550 } 11551 } 11552 } 11553 if (ill_v6 != NULL) { 11554 ill_v6 = phyi->phyint_illv6; 11555 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11556 ipif = ipif->ipif_next) { 11557 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11558 mutex_enter(&phyi->phyint_lock); 11559 phyi->phyint_flags &= ~PHYI_INACTIVE; 11560 mutex_exit(&phyi->phyint_lock); 11561 return; 11562 } 11563 } 11564 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11565 ilm = ilm->ilm_next) { 11566 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11567 mutex_enter(&phyi->phyint_lock); 11568 phyi->phyint_flags &= ~PHYI_INACTIVE; 11569 mutex_exit(&phyi->phyint_lock); 11570 return; 11571 } 11572 } 11573 } 11574 mutex_enter(&phyi->phyint_lock); 11575 phyi->phyint_flags |= PHYI_INACTIVE; 11576 mutex_exit(&phyi->phyint_lock); 11577 } 11578 11579 /* 11580 * This function is called only when the phyint flags change. Currently 11581 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11582 * that we can select a good ill. 11583 */ 11584 static void 11585 ip_redo_nomination(phyint_t *phyi) 11586 { 11587 ill_t *ill_v4; 11588 11589 ill_v4 = phyi->phyint_illv4; 11590 11591 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11592 ASSERT(IAM_WRITER_ILL(ill_v4)); 11593 if (ill_v4->ill_group->illgrp_ill_count > 1) 11594 ill_nominate_bcast_rcv(ill_v4->ill_group); 11595 } 11596 } 11597 11598 /* 11599 * Heuristic to check if ill is INACTIVE. 11600 * Checks if ill has an ipif with an usable ip address. 11601 * 11602 * Return values: 11603 * B_TRUE - ill is INACTIVE; has no usable ipif 11604 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11605 */ 11606 static boolean_t 11607 ill_is_inactive(ill_t *ill) 11608 { 11609 ipif_t *ipif; 11610 11611 /* Check whether it is in an IPMP group */ 11612 if (ill->ill_phyint->phyint_groupname == NULL) 11613 return (B_FALSE); 11614 11615 if (ill->ill_ipif_up_count == 0) 11616 return (B_TRUE); 11617 11618 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11619 uint64_t flags = ipif->ipif_flags; 11620 11621 /* 11622 * This ipif is usable if it is IPIF_UP and not a 11623 * dedicated test address. A dedicated test address 11624 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11625 * (note in particular that V6 test addresses are 11626 * link-local data addresses and thus are marked 11627 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11628 */ 11629 if ((flags & IPIF_UP) && 11630 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11631 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11632 return (B_FALSE); 11633 } 11634 return (B_TRUE); 11635 } 11636 11637 /* 11638 * Set interface flags. 11639 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11640 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11641 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11642 * 11643 * NOTE : We really don't enforce that ipif_id zero should be used 11644 * for setting any flags other than IFF_LOGINT_FLAGS. This 11645 * is because applications generally does SICGLIFFLAGS and 11646 * ORs in the new flags (that affects the logical) and does a 11647 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11648 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11649 * flags that will be turned on is correct with respect to 11650 * ipif_id 0. For backward compatibility reasons, it is not done. 11651 */ 11652 /* ARGSUSED */ 11653 int 11654 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11655 ip_ioctl_cmd_t *ipip, void *if_req) 11656 { 11657 uint64_t turn_on; 11658 uint64_t turn_off; 11659 int err; 11660 phyint_t *phyi; 11661 ill_t *ill; 11662 uint64_t intf_flags; 11663 boolean_t phyint_flags_modified = B_FALSE; 11664 uint64_t flags; 11665 struct ifreq *ifr; 11666 struct lifreq *lifr; 11667 boolean_t set_linklocal = B_FALSE; 11668 boolean_t zero_source = B_FALSE; 11669 ip_stack_t *ipst; 11670 11671 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11672 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11673 11674 ASSERT(IAM_WRITER_IPIF(ipif)); 11675 11676 ill = ipif->ipif_ill; 11677 phyi = ill->ill_phyint; 11678 ipst = ill->ill_ipst; 11679 11680 if (ipip->ipi_cmd_type == IF_CMD) { 11681 ifr = (struct ifreq *)if_req; 11682 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11683 } else { 11684 lifr = (struct lifreq *)if_req; 11685 flags = lifr->lifr_flags; 11686 } 11687 11688 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11689 11690 /* 11691 * Have the flags been set correctly until now? 11692 */ 11693 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11694 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11695 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11696 /* 11697 * Compare the new flags to the old, and partition 11698 * into those coming on and those going off. 11699 * For the 16 bit command keep the bits above bit 16 unchanged. 11700 */ 11701 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11702 flags |= intf_flags & ~0xFFFF; 11703 11704 /* 11705 * First check which bits will change and then which will 11706 * go on and off 11707 */ 11708 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11709 if (!turn_on) 11710 return (0); /* No change */ 11711 11712 turn_off = intf_flags & turn_on; 11713 turn_on ^= turn_off; 11714 err = 0; 11715 11716 /* 11717 * Don't allow any bits belonging to the logical interface 11718 * to be set or cleared on the replacement ipif that was 11719 * created temporarily during a MOVE. 11720 */ 11721 if (ipif->ipif_replace_zero && 11722 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11723 return (EINVAL); 11724 } 11725 11726 /* 11727 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11728 * IPv6 interfaces. 11729 */ 11730 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11731 return (EINVAL); 11732 11733 /* 11734 * cannot turn off IFF_NOXMIT on VNI interfaces. 11735 */ 11736 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11737 return (EINVAL); 11738 11739 /* 11740 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11741 * interfaces. It makes no sense in that context. 11742 */ 11743 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11744 return (EINVAL); 11745 11746 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11747 zero_source = B_TRUE; 11748 11749 /* 11750 * For IPv6 ipif_id 0, don't allow the interface to be up without 11751 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11752 * If the link local address isn't set, and can be set, it will get 11753 * set later on in this function. 11754 */ 11755 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11756 (flags & IFF_UP) && !zero_source && 11757 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11758 if (ipif_cant_setlinklocal(ipif)) 11759 return (EINVAL); 11760 set_linklocal = B_TRUE; 11761 } 11762 11763 /* 11764 * ILL cannot be part of a usesrc group and and IPMP group at the 11765 * same time. No need to grab ill_g_usesrc_lock here, see 11766 * synchronization notes in ip.c 11767 */ 11768 if (turn_on & PHYI_STANDBY && 11769 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11770 return (EINVAL); 11771 } 11772 11773 /* 11774 * If we modify physical interface flags, we'll potentially need to 11775 * send up two routing socket messages for the changes (one for the 11776 * IPv4 ill, and another for the IPv6 ill). Note that here. 11777 */ 11778 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11779 phyint_flags_modified = B_TRUE; 11780 11781 /* 11782 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11783 * we need to flush the IRE_CACHES belonging to this ill. 11784 * We handle this case here without doing the DOWN/UP dance 11785 * like it is done for other flags. If some other flags are 11786 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11787 * below will handle it by bringing it down and then 11788 * bringing it UP. 11789 */ 11790 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11791 ill_t *ill_v4, *ill_v6; 11792 11793 ill_v4 = phyi->phyint_illv4; 11794 ill_v6 = phyi->phyint_illv6; 11795 11796 /* 11797 * First set the INACTIVE flag if needed. Then delete the ires. 11798 * ire_add will atomically prevent creating new IRE_CACHEs 11799 * unless hidden flag is set. 11800 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11801 */ 11802 if ((turn_on & PHYI_FAILED) && 11803 ((intf_flags & PHYI_STANDBY) || 11804 !ipst->ips_ipmp_enable_failback)) { 11805 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11806 phyi->phyint_flags &= ~PHYI_INACTIVE; 11807 } 11808 if ((turn_off & PHYI_FAILED) && 11809 ((intf_flags & PHYI_STANDBY) || 11810 (!ipst->ips_ipmp_enable_failback && 11811 ill_is_inactive(ill)))) { 11812 phyint_inactive(phyi); 11813 } 11814 11815 if (turn_on & PHYI_STANDBY) { 11816 /* 11817 * We implicitly set INACTIVE only when STANDBY is set. 11818 * INACTIVE is also set on non-STANDBY phyint when user 11819 * disables FAILBACK using configuration file. 11820 * Do not allow STANDBY to be set on such INACTIVE 11821 * phyint 11822 */ 11823 if (phyi->phyint_flags & PHYI_INACTIVE) 11824 return (EINVAL); 11825 if (!(phyi->phyint_flags & PHYI_FAILED)) 11826 phyint_inactive(phyi); 11827 } 11828 if (turn_off & PHYI_STANDBY) { 11829 if (ipst->ips_ipmp_enable_failback) { 11830 /* 11831 * Reset PHYI_INACTIVE. 11832 */ 11833 phyi->phyint_flags &= ~PHYI_INACTIVE; 11834 } else if (ill_is_inactive(ill) && 11835 !(phyi->phyint_flags & PHYI_FAILED)) { 11836 /* 11837 * Need to set INACTIVE, when user sets 11838 * STANDBY on a non-STANDBY phyint and 11839 * later resets STANDBY 11840 */ 11841 phyint_inactive(phyi); 11842 } 11843 } 11844 /* 11845 * We should always send up a message so that the 11846 * daemons come to know of it. Note that the zeroth 11847 * interface can be down and the check below for IPIF_UP 11848 * will not make sense as we are actually setting 11849 * a phyint flag here. We assume that the ipif used 11850 * is always the zeroth ipif. (ip_rts_ifmsg does not 11851 * send up any message for non-zero ipifs). 11852 */ 11853 phyint_flags_modified = B_TRUE; 11854 11855 if (ill_v4 != NULL) { 11856 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11857 IRE_CACHE, ill_stq_cache_delete, 11858 (char *)ill_v4, ill_v4); 11859 illgrp_reset_schednext(ill_v4); 11860 } 11861 if (ill_v6 != NULL) { 11862 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11863 IRE_CACHE, ill_stq_cache_delete, 11864 (char *)ill_v6, ill_v6); 11865 illgrp_reset_schednext(ill_v6); 11866 } 11867 } 11868 11869 /* 11870 * If ILLF_ROUTER changes, we need to change the ip forwarding 11871 * status of the interface and, if the interface is part of an IPMP 11872 * group, all other interfaces that are part of the same IPMP 11873 * group. 11874 */ 11875 if ((turn_on | turn_off) & ILLF_ROUTER) 11876 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11877 11878 /* 11879 * If the interface is not UP and we are not going to 11880 * bring it UP, record the flags and return. When the 11881 * interface comes UP later, the right actions will be 11882 * taken. 11883 */ 11884 if (!(ipif->ipif_flags & IPIF_UP) && 11885 !(turn_on & IPIF_UP)) { 11886 /* Record new flags in their respective places. */ 11887 mutex_enter(&ill->ill_lock); 11888 mutex_enter(&ill->ill_phyint->phyint_lock); 11889 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11890 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11891 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11892 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11893 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11894 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11895 mutex_exit(&ill->ill_lock); 11896 mutex_exit(&ill->ill_phyint->phyint_lock); 11897 11898 /* 11899 * We do the broadcast and nomination here rather 11900 * than waiting for a FAILOVER/FAILBACK to happen. In 11901 * the case of FAILBACK from INACTIVE standby to the 11902 * interface that has been repaired, PHYI_FAILED has not 11903 * been cleared yet. If there are only two interfaces in 11904 * that group, all we have is a FAILED and INACTIVE 11905 * interface. If we do the nomination soon after a failback, 11906 * the broadcast nomination code would select the 11907 * INACTIVE interface for receiving broadcasts as FAILED is 11908 * not yet cleared. As we don't want STANDBY/INACTIVE to 11909 * receive broadcast packets, we need to redo nomination 11910 * when the FAILED is cleared here. Thus, in general we 11911 * always do the nomination here for FAILED, STANDBY 11912 * and OFFLINE. 11913 */ 11914 if (((turn_on | turn_off) & 11915 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11916 ip_redo_nomination(phyi); 11917 } 11918 if (phyint_flags_modified) { 11919 if (phyi->phyint_illv4 != NULL) { 11920 ip_rts_ifmsg(phyi->phyint_illv4-> 11921 ill_ipif); 11922 } 11923 if (phyi->phyint_illv6 != NULL) { 11924 ip_rts_ifmsg(phyi->phyint_illv6-> 11925 ill_ipif); 11926 } 11927 } 11928 return (0); 11929 } else if (set_linklocal || zero_source) { 11930 mutex_enter(&ill->ill_lock); 11931 if (set_linklocal) 11932 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11933 if (zero_source) 11934 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11935 mutex_exit(&ill->ill_lock); 11936 } 11937 11938 /* 11939 * Disallow IPv6 interfaces coming up that have the unspecified address, 11940 * or point-to-point interfaces with an unspecified destination. We do 11941 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11942 * have a subnet assigned, which is how in.ndpd currently manages its 11943 * onlink prefix list when no addresses are configured with those 11944 * prefixes. 11945 */ 11946 if (ipif->ipif_isv6 && 11947 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11948 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11949 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11950 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11951 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11952 return (EINVAL); 11953 } 11954 11955 /* 11956 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11957 * from being brought up. 11958 */ 11959 if (!ipif->ipif_isv6 && 11960 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11961 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11962 return (EINVAL); 11963 } 11964 11965 /* 11966 * The only flag changes that we currently take specific action on 11967 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11968 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11969 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11970 * the flags and bringing it back up again. 11971 */ 11972 if ((turn_on|turn_off) & 11973 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11974 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11975 /* 11976 * Taking this ipif down, make sure we have 11977 * valid net and subnet bcast ire's for other 11978 * logical interfaces, if we need them. 11979 */ 11980 if (!ipif->ipif_isv6) 11981 ipif_check_bcast_ires(ipif); 11982 11983 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11984 !(turn_off & IPIF_UP)) { 11985 if (ipif->ipif_flags & IPIF_UP) 11986 ill->ill_logical_down = 1; 11987 turn_on &= ~IPIF_UP; 11988 } 11989 err = ipif_down(ipif, q, mp); 11990 ip1dbg(("ipif_down returns %d err ", err)); 11991 if (err == EINPROGRESS) 11992 return (err); 11993 ipif_down_tail(ipif); 11994 } 11995 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11996 } 11997 11998 static int 11999 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 12000 { 12001 ill_t *ill; 12002 phyint_t *phyi; 12003 uint64_t turn_on; 12004 uint64_t turn_off; 12005 uint64_t intf_flags; 12006 boolean_t phyint_flags_modified = B_FALSE; 12007 int err = 0; 12008 boolean_t set_linklocal = B_FALSE; 12009 boolean_t zero_source = B_FALSE; 12010 12011 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12012 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12013 12014 ASSERT(IAM_WRITER_IPIF(ipif)); 12015 12016 ill = ipif->ipif_ill; 12017 phyi = ill->ill_phyint; 12018 12019 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12020 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12021 12022 turn_off = intf_flags & turn_on; 12023 turn_on ^= turn_off; 12024 12025 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12026 phyint_flags_modified = B_TRUE; 12027 12028 /* 12029 * Now we change the flags. Track current value of 12030 * other flags in their respective places. 12031 */ 12032 mutex_enter(&ill->ill_lock); 12033 mutex_enter(&phyi->phyint_lock); 12034 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12035 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12036 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12037 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12038 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12039 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12040 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12041 set_linklocal = B_TRUE; 12042 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12043 } 12044 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12045 zero_source = B_TRUE; 12046 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12047 } 12048 mutex_exit(&ill->ill_lock); 12049 mutex_exit(&phyi->phyint_lock); 12050 12051 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12052 ip_redo_nomination(phyi); 12053 12054 if (set_linklocal) 12055 (void) ipif_setlinklocal(ipif); 12056 12057 if (zero_source) 12058 ipif->ipif_v6src_addr = ipv6_all_zeros; 12059 else 12060 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12061 12062 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 12063 /* 12064 * XXX ipif_up really does not know whether a phyint flags 12065 * was modified or not. So, it sends up information on 12066 * only one routing sockets message. As we don't bring up 12067 * the interface and also set STANDBY/FAILED simultaneously 12068 * it should be okay. 12069 */ 12070 err = ipif_up(ipif, q, mp); 12071 } else { 12072 /* 12073 * Make sure routing socket sees all changes to the flags. 12074 * ipif_up_done* handles this when we use ipif_up. 12075 */ 12076 if (phyint_flags_modified) { 12077 if (phyi->phyint_illv4 != NULL) { 12078 ip_rts_ifmsg(phyi->phyint_illv4-> 12079 ill_ipif); 12080 } 12081 if (phyi->phyint_illv6 != NULL) { 12082 ip_rts_ifmsg(phyi->phyint_illv6-> 12083 ill_ipif); 12084 } 12085 } else { 12086 ip_rts_ifmsg(ipif); 12087 } 12088 /* 12089 * Update the flags in SCTP's IPIF list, ipif_up() will do 12090 * this in need_up case. 12091 */ 12092 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12093 } 12094 return (err); 12095 } 12096 12097 /* 12098 * Restart the flags operation now that the refcounts have dropped to zero. 12099 */ 12100 /* ARGSUSED */ 12101 int 12102 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12103 ip_ioctl_cmd_t *ipip, void *if_req) 12104 { 12105 uint64_t flags; 12106 struct ifreq *ifr = if_req; 12107 struct lifreq *lifr = if_req; 12108 12109 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12110 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12111 12112 ipif_down_tail(ipif); 12113 if (ipip->ipi_cmd_type == IF_CMD) { 12114 /* cast to uint16_t prevents unwanted sign extension */ 12115 flags = (uint16_t)ifr->ifr_flags; 12116 } else { 12117 flags = lifr->lifr_flags; 12118 } 12119 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 12120 } 12121 12122 /* 12123 * Can operate on either a module or a driver queue. 12124 */ 12125 /* ARGSUSED */ 12126 int 12127 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12128 ip_ioctl_cmd_t *ipip, void *if_req) 12129 { 12130 /* 12131 * Has the flags been set correctly till now ? 12132 */ 12133 ill_t *ill = ipif->ipif_ill; 12134 phyint_t *phyi = ill->ill_phyint; 12135 12136 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12137 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12138 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12139 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12140 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12141 12142 /* 12143 * Need a lock since some flags can be set even when there are 12144 * references to the ipif. 12145 */ 12146 mutex_enter(&ill->ill_lock); 12147 if (ipip->ipi_cmd_type == IF_CMD) { 12148 struct ifreq *ifr = (struct ifreq *)if_req; 12149 12150 /* Get interface flags (low 16 only). */ 12151 ifr->ifr_flags = ((ipif->ipif_flags | 12152 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12153 } else { 12154 struct lifreq *lifr = (struct lifreq *)if_req; 12155 12156 /* Get interface flags. */ 12157 lifr->lifr_flags = ipif->ipif_flags | 12158 ill->ill_flags | phyi->phyint_flags; 12159 } 12160 mutex_exit(&ill->ill_lock); 12161 return (0); 12162 } 12163 12164 /* ARGSUSED */ 12165 int 12166 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12167 ip_ioctl_cmd_t *ipip, void *if_req) 12168 { 12169 int mtu; 12170 int ip_min_mtu; 12171 struct ifreq *ifr; 12172 struct lifreq *lifr; 12173 ire_t *ire; 12174 ip_stack_t *ipst; 12175 12176 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12177 ipif->ipif_id, (void *)ipif)); 12178 if (ipip->ipi_cmd_type == IF_CMD) { 12179 ifr = (struct ifreq *)if_req; 12180 mtu = ifr->ifr_metric; 12181 } else { 12182 lifr = (struct lifreq *)if_req; 12183 mtu = lifr->lifr_mtu; 12184 } 12185 12186 if (ipif->ipif_isv6) 12187 ip_min_mtu = IPV6_MIN_MTU; 12188 else 12189 ip_min_mtu = IP_MIN_MTU; 12190 12191 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12192 return (EINVAL); 12193 12194 /* 12195 * Change the MTU size in all relevant ire's. 12196 * Mtu change Vs. new ire creation - protocol below. 12197 * First change ipif_mtu and the ire_max_frag of the 12198 * interface ire. Then do an ire walk and change the 12199 * ire_max_frag of all affected ires. During ire_add 12200 * under the bucket lock, set the ire_max_frag of the 12201 * new ire being created from the ipif/ire from which 12202 * it is being derived. If an mtu change happens after 12203 * the ire is added, the new ire will be cleaned up. 12204 * Conversely if the mtu change happens before the ire 12205 * is added, ire_add will see the new value of the mtu. 12206 */ 12207 ipif->ipif_mtu = mtu; 12208 ipif->ipif_flags |= IPIF_FIXEDMTU; 12209 12210 if (ipif->ipif_isv6) 12211 ire = ipif_to_ire_v6(ipif); 12212 else 12213 ire = ipif_to_ire(ipif); 12214 if (ire != NULL) { 12215 ire->ire_max_frag = ipif->ipif_mtu; 12216 ire_refrele(ire); 12217 } 12218 ipst = ipif->ipif_ill->ill_ipst; 12219 if (ipif->ipif_flags & IPIF_UP) { 12220 if (ipif->ipif_isv6) 12221 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12222 ipst); 12223 else 12224 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12225 ipst); 12226 } 12227 /* Update the MTU in SCTP's list */ 12228 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12229 return (0); 12230 } 12231 12232 /* Get interface MTU. */ 12233 /* ARGSUSED */ 12234 int 12235 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12236 ip_ioctl_cmd_t *ipip, void *if_req) 12237 { 12238 struct ifreq *ifr; 12239 struct lifreq *lifr; 12240 12241 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12242 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12243 if (ipip->ipi_cmd_type == IF_CMD) { 12244 ifr = (struct ifreq *)if_req; 12245 ifr->ifr_metric = ipif->ipif_mtu; 12246 } else { 12247 lifr = (struct lifreq *)if_req; 12248 lifr->lifr_mtu = ipif->ipif_mtu; 12249 } 12250 return (0); 12251 } 12252 12253 /* Set interface broadcast address. */ 12254 /* ARGSUSED2 */ 12255 int 12256 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12257 ip_ioctl_cmd_t *ipip, void *if_req) 12258 { 12259 ipaddr_t addr; 12260 ire_t *ire; 12261 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12262 12263 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12264 ipif->ipif_id)); 12265 12266 ASSERT(IAM_WRITER_IPIF(ipif)); 12267 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12268 return (EADDRNOTAVAIL); 12269 12270 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12271 12272 if (sin->sin_family != AF_INET) 12273 return (EAFNOSUPPORT); 12274 12275 addr = sin->sin_addr.s_addr; 12276 if (ipif->ipif_flags & IPIF_UP) { 12277 /* 12278 * If we are already up, make sure the new 12279 * broadcast address makes sense. If it does, 12280 * there should be an IRE for it already. 12281 * Don't match on ipif, only on the ill 12282 * since we are sharing these now. Don't use 12283 * MATCH_IRE_ILL_GROUP as we are looking for 12284 * the broadcast ire on this ill and each ill 12285 * in the group has its own broadcast ire. 12286 */ 12287 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12288 ipif, ALL_ZONES, NULL, 12289 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12290 if (ire == NULL) { 12291 return (EINVAL); 12292 } else { 12293 ire_refrele(ire); 12294 } 12295 } 12296 /* 12297 * Changing the broadcast addr for this ipif. 12298 * Make sure we have valid net and subnet bcast 12299 * ire's for other logical interfaces, if needed. 12300 */ 12301 if (addr != ipif->ipif_brd_addr) 12302 ipif_check_bcast_ires(ipif); 12303 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12304 return (0); 12305 } 12306 12307 /* Get interface broadcast address. */ 12308 /* ARGSUSED */ 12309 int 12310 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12311 ip_ioctl_cmd_t *ipip, void *if_req) 12312 { 12313 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12314 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12315 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12316 return (EADDRNOTAVAIL); 12317 12318 /* IPIF_BROADCAST not possible with IPv6 */ 12319 ASSERT(!ipif->ipif_isv6); 12320 *sin = sin_null; 12321 sin->sin_family = AF_INET; 12322 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12323 return (0); 12324 } 12325 12326 /* 12327 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12328 */ 12329 /* ARGSUSED */ 12330 int 12331 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12332 ip_ioctl_cmd_t *ipip, void *if_req) 12333 { 12334 int err = 0; 12335 in6_addr_t v6mask; 12336 12337 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12338 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12339 12340 ASSERT(IAM_WRITER_IPIF(ipif)); 12341 12342 if (ipif->ipif_isv6) { 12343 sin6_t *sin6; 12344 12345 if (sin->sin_family != AF_INET6) 12346 return (EAFNOSUPPORT); 12347 12348 sin6 = (sin6_t *)sin; 12349 v6mask = sin6->sin6_addr; 12350 } else { 12351 ipaddr_t mask; 12352 12353 if (sin->sin_family != AF_INET) 12354 return (EAFNOSUPPORT); 12355 12356 mask = sin->sin_addr.s_addr; 12357 V4MASK_TO_V6(mask, v6mask); 12358 } 12359 12360 /* 12361 * No big deal if the interface isn't already up, or the mask 12362 * isn't really changing, or this is pt-pt. 12363 */ 12364 if (!(ipif->ipif_flags & IPIF_UP) || 12365 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12366 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12367 ipif->ipif_v6net_mask = v6mask; 12368 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12369 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12370 ipif->ipif_v6net_mask, 12371 ipif->ipif_v6subnet); 12372 } 12373 return (0); 12374 } 12375 /* 12376 * Make sure we have valid net and subnet broadcast ire's 12377 * for the old netmask, if needed by other logical interfaces. 12378 */ 12379 if (!ipif->ipif_isv6) 12380 ipif_check_bcast_ires(ipif); 12381 12382 err = ipif_logical_down(ipif, q, mp); 12383 if (err == EINPROGRESS) 12384 return (err); 12385 ipif_down_tail(ipif); 12386 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12387 return (err); 12388 } 12389 12390 static int 12391 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12392 { 12393 in6_addr_t v6mask; 12394 int err = 0; 12395 12396 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12397 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12398 12399 if (ipif->ipif_isv6) { 12400 sin6_t *sin6; 12401 12402 sin6 = (sin6_t *)sin; 12403 v6mask = sin6->sin6_addr; 12404 } else { 12405 ipaddr_t mask; 12406 12407 mask = sin->sin_addr.s_addr; 12408 V4MASK_TO_V6(mask, v6mask); 12409 } 12410 12411 ipif->ipif_v6net_mask = v6mask; 12412 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12413 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12414 ipif->ipif_v6subnet); 12415 } 12416 err = ipif_up(ipif, q, mp); 12417 12418 if (err == 0 || err == EINPROGRESS) { 12419 /* 12420 * The interface must be DL_BOUND if this packet has to 12421 * go out on the wire. Since we only go through a logical 12422 * down and are bound with the driver during an internal 12423 * down/up that is satisfied. 12424 */ 12425 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12426 /* Potentially broadcast an address mask reply. */ 12427 ipif_mask_reply(ipif); 12428 } 12429 } 12430 return (err); 12431 } 12432 12433 /* ARGSUSED */ 12434 int 12435 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12436 ip_ioctl_cmd_t *ipip, void *if_req) 12437 { 12438 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12440 ipif_down_tail(ipif); 12441 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12442 } 12443 12444 /* Get interface net mask. */ 12445 /* ARGSUSED */ 12446 int 12447 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12448 ip_ioctl_cmd_t *ipip, void *if_req) 12449 { 12450 struct lifreq *lifr = (struct lifreq *)if_req; 12451 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12452 12453 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12454 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12455 12456 /* 12457 * net mask can't change since we have a reference to the ipif. 12458 */ 12459 if (ipif->ipif_isv6) { 12460 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12461 *sin6 = sin6_null; 12462 sin6->sin6_family = AF_INET6; 12463 sin6->sin6_addr = ipif->ipif_v6net_mask; 12464 lifr->lifr_addrlen = 12465 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12466 } else { 12467 *sin = sin_null; 12468 sin->sin_family = AF_INET; 12469 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12470 if (ipip->ipi_cmd_type == LIF_CMD) { 12471 lifr->lifr_addrlen = 12472 ip_mask_to_plen(ipif->ipif_net_mask); 12473 } 12474 } 12475 return (0); 12476 } 12477 12478 /* ARGSUSED */ 12479 int 12480 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12481 ip_ioctl_cmd_t *ipip, void *if_req) 12482 { 12483 12484 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12485 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12486 /* 12487 * Set interface metric. We don't use this for 12488 * anything but we keep track of it in case it is 12489 * important to routing applications or such. 12490 */ 12491 if (ipip->ipi_cmd_type == IF_CMD) { 12492 struct ifreq *ifr; 12493 12494 ifr = (struct ifreq *)if_req; 12495 ipif->ipif_metric = ifr->ifr_metric; 12496 } else { 12497 struct lifreq *lifr; 12498 12499 lifr = (struct lifreq *)if_req; 12500 ipif->ipif_metric = lifr->lifr_metric; 12501 } 12502 return (0); 12503 } 12504 12505 /* ARGSUSED */ 12506 int 12507 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12508 ip_ioctl_cmd_t *ipip, void *if_req) 12509 { 12510 /* Get interface metric. */ 12511 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12512 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12513 if (ipip->ipi_cmd_type == IF_CMD) { 12514 struct ifreq *ifr; 12515 12516 ifr = (struct ifreq *)if_req; 12517 ifr->ifr_metric = ipif->ipif_metric; 12518 } else { 12519 struct lifreq *lifr; 12520 12521 lifr = (struct lifreq *)if_req; 12522 lifr->lifr_metric = ipif->ipif_metric; 12523 } 12524 12525 return (0); 12526 } 12527 12528 /* ARGSUSED */ 12529 int 12530 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12531 ip_ioctl_cmd_t *ipip, void *if_req) 12532 { 12533 12534 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12535 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12536 /* 12537 * Set the muxid returned from I_PLINK. 12538 */ 12539 if (ipip->ipi_cmd_type == IF_CMD) { 12540 struct ifreq *ifr = (struct ifreq *)if_req; 12541 12542 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12543 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12544 } else { 12545 struct lifreq *lifr = (struct lifreq *)if_req; 12546 12547 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12548 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12549 } 12550 return (0); 12551 } 12552 12553 /* ARGSUSED */ 12554 int 12555 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12556 ip_ioctl_cmd_t *ipip, void *if_req) 12557 { 12558 12559 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12560 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12561 /* 12562 * Get the muxid saved in ill for I_PUNLINK. 12563 */ 12564 if (ipip->ipi_cmd_type == IF_CMD) { 12565 struct ifreq *ifr = (struct ifreq *)if_req; 12566 12567 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12568 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12569 } else { 12570 struct lifreq *lifr = (struct lifreq *)if_req; 12571 12572 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12573 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12574 } 12575 return (0); 12576 } 12577 12578 /* 12579 * Set the subnet prefix. Does not modify the broadcast address. 12580 */ 12581 /* ARGSUSED */ 12582 int 12583 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12584 ip_ioctl_cmd_t *ipip, void *if_req) 12585 { 12586 int err = 0; 12587 in6_addr_t v6addr; 12588 in6_addr_t v6mask; 12589 boolean_t need_up = B_FALSE; 12590 int addrlen; 12591 12592 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12593 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12594 12595 ASSERT(IAM_WRITER_IPIF(ipif)); 12596 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12597 12598 if (ipif->ipif_isv6) { 12599 sin6_t *sin6; 12600 12601 if (sin->sin_family != AF_INET6) 12602 return (EAFNOSUPPORT); 12603 12604 sin6 = (sin6_t *)sin; 12605 v6addr = sin6->sin6_addr; 12606 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12607 return (EADDRNOTAVAIL); 12608 } else { 12609 ipaddr_t addr; 12610 12611 if (sin->sin_family != AF_INET) 12612 return (EAFNOSUPPORT); 12613 12614 addr = sin->sin_addr.s_addr; 12615 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12616 return (EADDRNOTAVAIL); 12617 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12618 /* Add 96 bits */ 12619 addrlen += IPV6_ABITS - IP_ABITS; 12620 } 12621 12622 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12623 return (EINVAL); 12624 12625 /* Check if bits in the address is set past the mask */ 12626 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12627 return (EINVAL); 12628 12629 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12630 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12631 return (0); /* No change */ 12632 12633 if (ipif->ipif_flags & IPIF_UP) { 12634 /* 12635 * If the interface is already marked up, 12636 * we call ipif_down which will take care 12637 * of ditching any IREs that have been set 12638 * up based on the old interface address. 12639 */ 12640 err = ipif_logical_down(ipif, q, mp); 12641 if (err == EINPROGRESS) 12642 return (err); 12643 ipif_down_tail(ipif); 12644 need_up = B_TRUE; 12645 } 12646 12647 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12648 return (err); 12649 } 12650 12651 static int 12652 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12653 queue_t *q, mblk_t *mp, boolean_t need_up) 12654 { 12655 ill_t *ill = ipif->ipif_ill; 12656 int err = 0; 12657 12658 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12659 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12660 12661 /* Set the new address. */ 12662 mutex_enter(&ill->ill_lock); 12663 ipif->ipif_v6net_mask = v6mask; 12664 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12665 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12666 ipif->ipif_v6subnet); 12667 } 12668 mutex_exit(&ill->ill_lock); 12669 12670 if (need_up) { 12671 /* 12672 * Now bring the interface back up. If this 12673 * is the only IPIF for the ILL, ipif_up 12674 * will have to re-bind to the device, so 12675 * we may get back EINPROGRESS, in which 12676 * case, this IOCTL will get completed in 12677 * ip_rput_dlpi when we see the DL_BIND_ACK. 12678 */ 12679 err = ipif_up(ipif, q, mp); 12680 if (err == EINPROGRESS) 12681 return (err); 12682 } 12683 return (err); 12684 } 12685 12686 /* ARGSUSED */ 12687 int 12688 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12689 ip_ioctl_cmd_t *ipip, void *if_req) 12690 { 12691 int addrlen; 12692 in6_addr_t v6addr; 12693 in6_addr_t v6mask; 12694 struct lifreq *lifr = (struct lifreq *)if_req; 12695 12696 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12697 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12698 ipif_down_tail(ipif); 12699 12700 addrlen = lifr->lifr_addrlen; 12701 if (ipif->ipif_isv6) { 12702 sin6_t *sin6; 12703 12704 sin6 = (sin6_t *)sin; 12705 v6addr = sin6->sin6_addr; 12706 } else { 12707 ipaddr_t addr; 12708 12709 addr = sin->sin_addr.s_addr; 12710 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12711 addrlen += IPV6_ABITS - IP_ABITS; 12712 } 12713 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12714 12715 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12716 } 12717 12718 /* ARGSUSED */ 12719 int 12720 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12721 ip_ioctl_cmd_t *ipip, void *if_req) 12722 { 12723 struct lifreq *lifr = (struct lifreq *)if_req; 12724 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12725 12726 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12727 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12728 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12729 12730 if (ipif->ipif_isv6) { 12731 *sin6 = sin6_null; 12732 sin6->sin6_family = AF_INET6; 12733 sin6->sin6_addr = ipif->ipif_v6subnet; 12734 lifr->lifr_addrlen = 12735 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12736 } else { 12737 *sin = sin_null; 12738 sin->sin_family = AF_INET; 12739 sin->sin_addr.s_addr = ipif->ipif_subnet; 12740 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12741 } 12742 return (0); 12743 } 12744 12745 /* 12746 * Set the IPv6 address token. 12747 */ 12748 /* ARGSUSED */ 12749 int 12750 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12751 ip_ioctl_cmd_t *ipi, void *if_req) 12752 { 12753 ill_t *ill = ipif->ipif_ill; 12754 int err; 12755 in6_addr_t v6addr; 12756 in6_addr_t v6mask; 12757 boolean_t need_up = B_FALSE; 12758 int i; 12759 sin6_t *sin6 = (sin6_t *)sin; 12760 struct lifreq *lifr = (struct lifreq *)if_req; 12761 int addrlen; 12762 12763 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12765 ASSERT(IAM_WRITER_IPIF(ipif)); 12766 12767 addrlen = lifr->lifr_addrlen; 12768 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12769 if (ipif->ipif_id != 0) 12770 return (EINVAL); 12771 12772 if (!ipif->ipif_isv6) 12773 return (EINVAL); 12774 12775 if (addrlen > IPV6_ABITS) 12776 return (EINVAL); 12777 12778 v6addr = sin6->sin6_addr; 12779 12780 /* 12781 * The length of the token is the length from the end. To get 12782 * the proper mask for this, compute the mask of the bits not 12783 * in the token; ie. the prefix, and then xor to get the mask. 12784 */ 12785 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12786 return (EINVAL); 12787 for (i = 0; i < 4; i++) { 12788 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12789 } 12790 12791 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12792 ill->ill_token_length == addrlen) 12793 return (0); /* No change */ 12794 12795 if (ipif->ipif_flags & IPIF_UP) { 12796 err = ipif_logical_down(ipif, q, mp); 12797 if (err == EINPROGRESS) 12798 return (err); 12799 ipif_down_tail(ipif); 12800 need_up = B_TRUE; 12801 } 12802 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12803 return (err); 12804 } 12805 12806 static int 12807 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12808 mblk_t *mp, boolean_t need_up) 12809 { 12810 in6_addr_t v6addr; 12811 in6_addr_t v6mask; 12812 ill_t *ill = ipif->ipif_ill; 12813 int i; 12814 int err = 0; 12815 12816 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12817 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12818 v6addr = sin6->sin6_addr; 12819 /* 12820 * The length of the token is the length from the end. To get 12821 * the proper mask for this, compute the mask of the bits not 12822 * in the token; ie. the prefix, and then xor to get the mask. 12823 */ 12824 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12825 for (i = 0; i < 4; i++) 12826 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12827 12828 mutex_enter(&ill->ill_lock); 12829 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12830 ill->ill_token_length = addrlen; 12831 mutex_exit(&ill->ill_lock); 12832 12833 if (need_up) { 12834 /* 12835 * Now bring the interface back up. If this 12836 * is the only IPIF for the ILL, ipif_up 12837 * will have to re-bind to the device, so 12838 * we may get back EINPROGRESS, in which 12839 * case, this IOCTL will get completed in 12840 * ip_rput_dlpi when we see the DL_BIND_ACK. 12841 */ 12842 err = ipif_up(ipif, q, mp); 12843 if (err == EINPROGRESS) 12844 return (err); 12845 } 12846 return (err); 12847 } 12848 12849 /* ARGSUSED */ 12850 int 12851 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12852 ip_ioctl_cmd_t *ipi, void *if_req) 12853 { 12854 ill_t *ill; 12855 sin6_t *sin6 = (sin6_t *)sin; 12856 struct lifreq *lifr = (struct lifreq *)if_req; 12857 12858 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12859 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12860 if (ipif->ipif_id != 0) 12861 return (EINVAL); 12862 12863 ill = ipif->ipif_ill; 12864 if (!ill->ill_isv6) 12865 return (ENXIO); 12866 12867 *sin6 = sin6_null; 12868 sin6->sin6_family = AF_INET6; 12869 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12870 sin6->sin6_addr = ill->ill_token; 12871 lifr->lifr_addrlen = ill->ill_token_length; 12872 return (0); 12873 } 12874 12875 /* 12876 * Set (hardware) link specific information that might override 12877 * what was acquired through the DL_INFO_ACK. 12878 * The logic is as follows. 12879 * 12880 * become exclusive 12881 * set CHANGING flag 12882 * change mtu on affected IREs 12883 * clear CHANGING flag 12884 * 12885 * An ire add that occurs before the CHANGING flag is set will have its mtu 12886 * changed by the ip_sioctl_lnkinfo. 12887 * 12888 * During the time the CHANGING flag is set, no new ires will be added to the 12889 * bucket, and ire add will fail (due the CHANGING flag). 12890 * 12891 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12892 * before it is added to the bucket. 12893 * 12894 * Obviously only 1 thread can set the CHANGING flag and we need to become 12895 * exclusive to set the flag. 12896 */ 12897 /* ARGSUSED */ 12898 int 12899 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12900 ip_ioctl_cmd_t *ipi, void *if_req) 12901 { 12902 ill_t *ill = ipif->ipif_ill; 12903 ipif_t *nipif; 12904 int ip_min_mtu; 12905 boolean_t mtu_walk = B_FALSE; 12906 struct lifreq *lifr = (struct lifreq *)if_req; 12907 lif_ifinfo_req_t *lir; 12908 ire_t *ire; 12909 12910 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12912 lir = &lifr->lifr_ifinfo; 12913 ASSERT(IAM_WRITER_IPIF(ipif)); 12914 12915 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12916 if (ipif->ipif_id != 0) 12917 return (EINVAL); 12918 12919 /* Set interface MTU. */ 12920 if (ipif->ipif_isv6) 12921 ip_min_mtu = IPV6_MIN_MTU; 12922 else 12923 ip_min_mtu = IP_MIN_MTU; 12924 12925 /* 12926 * Verify values before we set anything. Allow zero to 12927 * mean unspecified. 12928 */ 12929 if (lir->lir_maxmtu != 0 && 12930 (lir->lir_maxmtu > ill->ill_max_frag || 12931 lir->lir_maxmtu < ip_min_mtu)) 12932 return (EINVAL); 12933 if (lir->lir_reachtime != 0 && 12934 lir->lir_reachtime > ND_MAX_REACHTIME) 12935 return (EINVAL); 12936 if (lir->lir_reachretrans != 0 && 12937 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12938 return (EINVAL); 12939 12940 mutex_enter(&ill->ill_lock); 12941 ill->ill_state_flags |= ILL_CHANGING; 12942 for (nipif = ill->ill_ipif; nipif != NULL; 12943 nipif = nipif->ipif_next) { 12944 nipif->ipif_state_flags |= IPIF_CHANGING; 12945 } 12946 12947 mutex_exit(&ill->ill_lock); 12948 12949 if (lir->lir_maxmtu != 0) { 12950 ill->ill_max_mtu = lir->lir_maxmtu; 12951 ill->ill_mtu_userspecified = 1; 12952 mtu_walk = B_TRUE; 12953 } 12954 12955 if (lir->lir_reachtime != 0) 12956 ill->ill_reachable_time = lir->lir_reachtime; 12957 12958 if (lir->lir_reachretrans != 0) 12959 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12960 12961 ill->ill_max_hops = lir->lir_maxhops; 12962 12963 ill->ill_max_buf = ND_MAX_Q; 12964 12965 if (mtu_walk) { 12966 /* 12967 * Set the MTU on all ipifs associated with this ill except 12968 * for those whose MTU was fixed via SIOCSLIFMTU. 12969 */ 12970 for (nipif = ill->ill_ipif; nipif != NULL; 12971 nipif = nipif->ipif_next) { 12972 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12973 continue; 12974 12975 nipif->ipif_mtu = ill->ill_max_mtu; 12976 12977 if (!(nipif->ipif_flags & IPIF_UP)) 12978 continue; 12979 12980 if (nipif->ipif_isv6) 12981 ire = ipif_to_ire_v6(nipif); 12982 else 12983 ire = ipif_to_ire(nipif); 12984 if (ire != NULL) { 12985 ire->ire_max_frag = ipif->ipif_mtu; 12986 ire_refrele(ire); 12987 } 12988 12989 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12990 nipif, ill); 12991 } 12992 } 12993 12994 mutex_enter(&ill->ill_lock); 12995 for (nipif = ill->ill_ipif; nipif != NULL; 12996 nipif = nipif->ipif_next) { 12997 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12998 } 12999 ILL_UNMARK_CHANGING(ill); 13000 mutex_exit(&ill->ill_lock); 13001 13002 return (0); 13003 } 13004 13005 /* ARGSUSED */ 13006 int 13007 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13008 ip_ioctl_cmd_t *ipi, void *if_req) 13009 { 13010 struct lif_ifinfo_req *lir; 13011 ill_t *ill = ipif->ipif_ill; 13012 13013 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13014 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13015 if (ipif->ipif_id != 0) 13016 return (EINVAL); 13017 13018 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13019 lir->lir_maxhops = ill->ill_max_hops; 13020 lir->lir_reachtime = ill->ill_reachable_time; 13021 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13022 lir->lir_maxmtu = ill->ill_max_mtu; 13023 13024 return (0); 13025 } 13026 13027 /* 13028 * Return best guess as to the subnet mask for the specified address. 13029 * Based on the subnet masks for all the configured interfaces. 13030 * 13031 * We end up returning a zero mask in the case of default, multicast or 13032 * experimental. 13033 */ 13034 static ipaddr_t 13035 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13036 { 13037 ipaddr_t net_mask; 13038 ill_t *ill; 13039 ipif_t *ipif; 13040 ill_walk_context_t ctx; 13041 ipif_t *fallback_ipif = NULL; 13042 13043 net_mask = ip_net_mask(addr); 13044 if (net_mask == 0) { 13045 *ipifp = NULL; 13046 return (0); 13047 } 13048 13049 /* Let's check to see if this is maybe a local subnet route. */ 13050 /* this function only applies to IPv4 interfaces */ 13051 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13052 ill = ILL_START_WALK_V4(&ctx, ipst); 13053 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13054 mutex_enter(&ill->ill_lock); 13055 for (ipif = ill->ill_ipif; ipif != NULL; 13056 ipif = ipif->ipif_next) { 13057 if (!IPIF_CAN_LOOKUP(ipif)) 13058 continue; 13059 if (!(ipif->ipif_flags & IPIF_UP)) 13060 continue; 13061 if ((ipif->ipif_subnet & net_mask) == 13062 (addr & net_mask)) { 13063 /* 13064 * Don't trust pt-pt interfaces if there are 13065 * other interfaces. 13066 */ 13067 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13068 if (fallback_ipif == NULL) { 13069 ipif_refhold_locked(ipif); 13070 fallback_ipif = ipif; 13071 } 13072 continue; 13073 } 13074 13075 /* 13076 * Fine. Just assume the same net mask as the 13077 * directly attached subnet interface is using. 13078 */ 13079 ipif_refhold_locked(ipif); 13080 mutex_exit(&ill->ill_lock); 13081 rw_exit(&ipst->ips_ill_g_lock); 13082 if (fallback_ipif != NULL) 13083 ipif_refrele(fallback_ipif); 13084 *ipifp = ipif; 13085 return (ipif->ipif_net_mask); 13086 } 13087 } 13088 mutex_exit(&ill->ill_lock); 13089 } 13090 rw_exit(&ipst->ips_ill_g_lock); 13091 13092 *ipifp = fallback_ipif; 13093 return ((fallback_ipif != NULL) ? 13094 fallback_ipif->ipif_net_mask : net_mask); 13095 } 13096 13097 /* 13098 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13099 */ 13100 static void 13101 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13102 { 13103 IOCP iocp; 13104 ipft_t *ipft; 13105 ipllc_t *ipllc; 13106 mblk_t *mp1; 13107 cred_t *cr; 13108 int error = 0; 13109 conn_t *connp; 13110 13111 ip1dbg(("ip_wput_ioctl")); 13112 iocp = (IOCP)mp->b_rptr; 13113 mp1 = mp->b_cont; 13114 if (mp1 == NULL) { 13115 iocp->ioc_error = EINVAL; 13116 mp->b_datap->db_type = M_IOCNAK; 13117 iocp->ioc_count = 0; 13118 qreply(q, mp); 13119 return; 13120 } 13121 13122 /* 13123 * These IOCTLs provide various control capabilities to 13124 * upstream agents such as ULPs and processes. There 13125 * are currently two such IOCTLs implemented. They 13126 * are used by TCP to provide update information for 13127 * existing IREs and to forcibly delete an IRE for a 13128 * host that is not responding, thereby forcing an 13129 * attempt at a new route. 13130 */ 13131 iocp->ioc_error = EINVAL; 13132 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13133 goto done; 13134 13135 ipllc = (ipllc_t *)mp1->b_rptr; 13136 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13137 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13138 break; 13139 } 13140 /* 13141 * prefer credential from mblk over ioctl; 13142 * see ip_sioctl_copyin_setup 13143 */ 13144 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13145 13146 /* 13147 * Refhold the conn in case the request gets queued up in some lookup 13148 */ 13149 ASSERT(CONN_Q(q)); 13150 connp = Q_TO_CONN(q); 13151 CONN_INC_REF(connp); 13152 if (ipft->ipft_pfi && 13153 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13154 pullupmsg(mp1, ipft->ipft_min_size))) { 13155 error = (*ipft->ipft_pfi)(q, 13156 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13157 } 13158 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13159 /* 13160 * CONN_OPER_PENDING_DONE happens in the function called 13161 * through ipft_pfi above. 13162 */ 13163 return; 13164 } 13165 13166 CONN_OPER_PENDING_DONE(connp); 13167 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13168 freemsg(mp); 13169 return; 13170 } 13171 iocp->ioc_error = error; 13172 13173 done: 13174 mp->b_datap->db_type = M_IOCACK; 13175 if (iocp->ioc_error) 13176 iocp->ioc_count = 0; 13177 qreply(q, mp); 13178 } 13179 13180 /* 13181 * Lookup an ipif using the sequence id (ipif_seqid) 13182 */ 13183 ipif_t * 13184 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13185 { 13186 ipif_t *ipif; 13187 13188 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13189 13190 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13191 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13192 return (ipif); 13193 } 13194 return (NULL); 13195 } 13196 13197 /* 13198 * Assign a unique id for the ipif. This is used later when we send 13199 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13200 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13201 * IRE is added, we verify that ipif has not disappeared. 13202 */ 13203 13204 static void 13205 ipif_assign_seqid(ipif_t *ipif) 13206 { 13207 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13208 13209 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13210 } 13211 13212 /* 13213 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13214 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13215 * be inserted into the first space available in the list. The value of 13216 * ipif_id will then be set to the appropriate value for its position. 13217 */ 13218 static int 13219 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13220 { 13221 ill_t *ill; 13222 ipif_t *tipif; 13223 ipif_t **tipifp; 13224 int id; 13225 ip_stack_t *ipst; 13226 13227 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13228 IAM_WRITER_IPIF(ipif)); 13229 13230 ill = ipif->ipif_ill; 13231 ASSERT(ill != NULL); 13232 ipst = ill->ill_ipst; 13233 13234 /* 13235 * In the case of lo0:0 we already hold the ill_g_lock. 13236 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13237 * ipif_insert. Another such caller is ipif_move. 13238 */ 13239 if (acquire_g_lock) 13240 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13241 if (acquire_ill_lock) 13242 mutex_enter(&ill->ill_lock); 13243 id = ipif->ipif_id; 13244 tipifp = &(ill->ill_ipif); 13245 if (id == -1) { /* need to find a real id */ 13246 id = 0; 13247 while ((tipif = *tipifp) != NULL) { 13248 ASSERT(tipif->ipif_id >= id); 13249 if (tipif->ipif_id != id) 13250 break; /* non-consecutive id */ 13251 id++; 13252 tipifp = &(tipif->ipif_next); 13253 } 13254 /* limit number of logical interfaces */ 13255 if (id >= ipst->ips_ip_addrs_per_if) { 13256 if (acquire_ill_lock) 13257 mutex_exit(&ill->ill_lock); 13258 if (acquire_g_lock) 13259 rw_exit(&ipst->ips_ill_g_lock); 13260 return (-1); 13261 } 13262 ipif->ipif_id = id; /* assign new id */ 13263 } else if (id < ipst->ips_ip_addrs_per_if) { 13264 /* we have a real id; insert ipif in the right place */ 13265 while ((tipif = *tipifp) != NULL) { 13266 ASSERT(tipif->ipif_id != id); 13267 if (tipif->ipif_id > id) 13268 break; /* found correct location */ 13269 tipifp = &(tipif->ipif_next); 13270 } 13271 } else { 13272 if (acquire_ill_lock) 13273 mutex_exit(&ill->ill_lock); 13274 if (acquire_g_lock) 13275 rw_exit(&ipst->ips_ill_g_lock); 13276 return (-1); 13277 } 13278 13279 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13280 13281 ipif->ipif_next = tipif; 13282 *tipifp = ipif; 13283 if (acquire_ill_lock) 13284 mutex_exit(&ill->ill_lock); 13285 if (acquire_g_lock) 13286 rw_exit(&ipst->ips_ill_g_lock); 13287 return (0); 13288 } 13289 13290 static void 13291 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13292 { 13293 ipif_t **ipifp; 13294 ill_t *ill = ipif->ipif_ill; 13295 13296 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13297 if (acquire_ill_lock) 13298 mutex_enter(&ill->ill_lock); 13299 else 13300 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13301 13302 ipifp = &ill->ill_ipif; 13303 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13304 if (*ipifp == ipif) { 13305 *ipifp = ipif->ipif_next; 13306 break; 13307 } 13308 } 13309 13310 if (acquire_ill_lock) 13311 mutex_exit(&ill->ill_lock); 13312 } 13313 13314 /* 13315 * Allocate and initialize a new interface control structure. (Always 13316 * called as writer.) 13317 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13318 * is not part of the global linked list of ills. ipif_seqid is unique 13319 * in the system and to preserve the uniqueness, it is assigned only 13320 * when ill becomes part of the global list. At that point ill will 13321 * have a name. If it doesn't get assigned here, it will get assigned 13322 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13323 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13324 * the interface flags or any other information from the DL_INFO_ACK for 13325 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13326 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13327 * second DL_INFO_ACK comes in from the driver. 13328 */ 13329 static ipif_t * 13330 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13331 { 13332 ipif_t *ipif; 13333 phyint_t *phyi; 13334 13335 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13336 ill->ill_name, id, (void *)ill)); 13337 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13338 13339 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13340 return (NULL); 13341 *ipif = ipif_zero; /* start clean */ 13342 13343 ipif->ipif_ill = ill; 13344 ipif->ipif_id = id; /* could be -1 */ 13345 /* 13346 * Inherit the zoneid from the ill; for the shared stack instance 13347 * this is always the global zone 13348 */ 13349 ipif->ipif_zoneid = ill->ill_zoneid; 13350 13351 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13352 13353 ipif->ipif_refcnt = 0; 13354 ipif->ipif_saved_ire_cnt = 0; 13355 13356 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13357 mi_free(ipif); 13358 return (NULL); 13359 } 13360 /* -1 id should have been replaced by real id */ 13361 id = ipif->ipif_id; 13362 ASSERT(id >= 0); 13363 13364 if (ill->ill_name[0] != '\0') 13365 ipif_assign_seqid(ipif); 13366 13367 /* 13368 * Keep a copy of original id in ipif_orig_ipifid. Failback 13369 * will attempt to restore the original id. The SIOCSLIFOINDEX 13370 * ioctl sets ipif_orig_ipifid to zero. 13371 */ 13372 ipif->ipif_orig_ipifid = id; 13373 13374 /* 13375 * We grab the ill_lock and phyint_lock to protect the flag changes. 13376 * The ipif is still not up and can't be looked up until the 13377 * ioctl completes and the IPIF_CHANGING flag is cleared. 13378 */ 13379 mutex_enter(&ill->ill_lock); 13380 mutex_enter(&ill->ill_phyint->phyint_lock); 13381 /* 13382 * Set the running flag when logical interface zero is created. 13383 * For subsequent logical interfaces, a DLPI link down 13384 * notification message may have cleared the running flag to 13385 * indicate the link is down, so we shouldn't just blindly set it. 13386 */ 13387 if (id == 0) 13388 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13389 ipif->ipif_ire_type = ire_type; 13390 phyi = ill->ill_phyint; 13391 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13392 13393 if (ipif->ipif_isv6) { 13394 ill->ill_flags |= ILLF_IPV6; 13395 } else { 13396 ipaddr_t inaddr_any = INADDR_ANY; 13397 13398 ill->ill_flags |= ILLF_IPV4; 13399 13400 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13401 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13402 &ipif->ipif_v6lcl_addr); 13403 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13404 &ipif->ipif_v6src_addr); 13405 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13406 &ipif->ipif_v6subnet); 13407 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13408 &ipif->ipif_v6net_mask); 13409 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13410 &ipif->ipif_v6brd_addr); 13411 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13412 &ipif->ipif_v6pp_dst_addr); 13413 } 13414 13415 /* 13416 * Don't set the interface flags etc. now, will do it in 13417 * ip_ll_subnet_defaults. 13418 */ 13419 if (!initialize) { 13420 mutex_exit(&ill->ill_lock); 13421 mutex_exit(&ill->ill_phyint->phyint_lock); 13422 return (ipif); 13423 } 13424 ipif->ipif_mtu = ill->ill_max_mtu; 13425 13426 if (ill->ill_bcast_addr_length != 0) { 13427 /* 13428 * Later detect lack of DLPI driver multicast 13429 * capability by catching DL_ENABMULTI errors in 13430 * ip_rput_dlpi. 13431 */ 13432 ill->ill_flags |= ILLF_MULTICAST; 13433 if (!ipif->ipif_isv6) 13434 ipif->ipif_flags |= IPIF_BROADCAST; 13435 } else { 13436 if (ill->ill_net_type != IRE_LOOPBACK) { 13437 if (ipif->ipif_isv6) 13438 /* 13439 * Note: xresolv interfaces will eventually need 13440 * NOARP set here as well, but that will require 13441 * those external resolvers to have some 13442 * knowledge of that flag and act appropriately. 13443 * Not to be changed at present. 13444 */ 13445 ill->ill_flags |= ILLF_NONUD; 13446 else 13447 ill->ill_flags |= ILLF_NOARP; 13448 } 13449 if (ill->ill_phys_addr_length == 0) { 13450 if (ill->ill_media && 13451 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13452 ipif->ipif_flags |= IPIF_NOXMIT; 13453 phyi->phyint_flags |= PHYI_VIRTUAL; 13454 } else { 13455 /* pt-pt supports multicast. */ 13456 ill->ill_flags |= ILLF_MULTICAST; 13457 if (ill->ill_net_type == IRE_LOOPBACK) { 13458 phyi->phyint_flags |= 13459 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13460 } else { 13461 ipif->ipif_flags |= IPIF_POINTOPOINT; 13462 } 13463 } 13464 } 13465 } 13466 mutex_exit(&ill->ill_lock); 13467 mutex_exit(&ill->ill_phyint->phyint_lock); 13468 return (ipif); 13469 } 13470 13471 /* 13472 * If appropriate, send a message up to the resolver delete the entry 13473 * for the address of this interface which is going out of business. 13474 * (Always called as writer). 13475 * 13476 * NOTE : We need to check for NULL mps as some of the fields are 13477 * initialized only for some interface types. See ipif_resolver_up() 13478 * for details. 13479 */ 13480 void 13481 ipif_arp_down(ipif_t *ipif) 13482 { 13483 mblk_t *mp; 13484 ill_t *ill = ipif->ipif_ill; 13485 13486 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13487 ASSERT(IAM_WRITER_IPIF(ipif)); 13488 13489 /* Delete the mapping for the local address */ 13490 mp = ipif->ipif_arp_del_mp; 13491 if (mp != NULL) { 13492 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13493 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13494 putnext(ill->ill_rq, mp); 13495 ipif->ipif_arp_del_mp = NULL; 13496 } 13497 13498 /* 13499 * If this is the last ipif that is going down and there are no 13500 * duplicate addresses we may yet attempt to re-probe, then we need to 13501 * clean up ARP completely. 13502 */ 13503 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13504 13505 /* Send up AR_INTERFACE_DOWN message */ 13506 mp = ill->ill_arp_down_mp; 13507 if (mp != NULL) { 13508 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13509 *(unsigned *)mp->b_rptr, ill->ill_name, 13510 ipif->ipif_id)); 13511 putnext(ill->ill_rq, mp); 13512 ill->ill_arp_down_mp = NULL; 13513 } 13514 13515 /* Tell ARP to delete the multicast mappings */ 13516 mp = ill->ill_arp_del_mapping_mp; 13517 if (mp != NULL) { 13518 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13519 *(unsigned *)mp->b_rptr, ill->ill_name, 13520 ipif->ipif_id)); 13521 putnext(ill->ill_rq, mp); 13522 ill->ill_arp_del_mapping_mp = NULL; 13523 } 13524 } 13525 } 13526 13527 /* 13528 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13529 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13530 * that it wants the add_mp allocated in this function to be returned 13531 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13532 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13533 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13534 * as it does a ipif_arp_down after calling this function - which will 13535 * remove what we add here. 13536 * 13537 * Returns -1 on failures and 0 on success. 13538 */ 13539 int 13540 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13541 { 13542 mblk_t *del_mp = NULL; 13543 mblk_t *add_mp = NULL; 13544 mblk_t *mp; 13545 ill_t *ill = ipif->ipif_ill; 13546 phyint_t *phyi = ill->ill_phyint; 13547 ipaddr_t addr, mask, extract_mask = 0; 13548 arma_t *arma; 13549 uint8_t *maddr, *bphys_addr; 13550 uint32_t hw_start; 13551 dl_unitdata_req_t *dlur; 13552 13553 ASSERT(IAM_WRITER_IPIF(ipif)); 13554 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13555 return (0); 13556 13557 /* 13558 * Delete the existing mapping from ARP. Normally ipif_down 13559 * -> ipif_arp_down should send this up to ARP. The only 13560 * reason we would find this when we are switching from 13561 * Multicast to Broadcast where we did not do a down. 13562 */ 13563 mp = ill->ill_arp_del_mapping_mp; 13564 if (mp != NULL) { 13565 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13566 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13567 putnext(ill->ill_rq, mp); 13568 ill->ill_arp_del_mapping_mp = NULL; 13569 } 13570 13571 if (arp_add_mapping_mp != NULL) 13572 *arp_add_mapping_mp = NULL; 13573 13574 /* 13575 * Check that the address is not to long for the constant 13576 * length reserved in the template arma_t. 13577 */ 13578 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13579 return (-1); 13580 13581 /* Add mapping mblk */ 13582 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13583 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13584 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13585 (caddr_t)&addr); 13586 if (add_mp == NULL) 13587 return (-1); 13588 arma = (arma_t *)add_mp->b_rptr; 13589 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13590 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13591 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13592 13593 /* 13594 * Determine the broadcast address. 13595 */ 13596 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13597 if (ill->ill_sap_length < 0) 13598 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13599 else 13600 bphys_addr = (uchar_t *)dlur + 13601 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13602 /* 13603 * Check PHYI_MULTI_BCAST and length of physical 13604 * address to determine if we use the mapping or the 13605 * broadcast address. 13606 */ 13607 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13608 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13609 bphys_addr, maddr, &hw_start, &extract_mask)) 13610 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13611 13612 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13613 (ill->ill_flags & ILLF_MULTICAST)) { 13614 /* Make sure this will not match the "exact" entry. */ 13615 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13616 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13617 (caddr_t)&addr); 13618 if (del_mp == NULL) { 13619 freemsg(add_mp); 13620 return (-1); 13621 } 13622 bcopy(&extract_mask, (char *)arma + 13623 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13624 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13625 /* Use link-layer broadcast address for MULTI_BCAST */ 13626 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13627 ip2dbg(("ipif_arp_setup_multicast: adding" 13628 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13629 } else { 13630 arma->arma_hw_mapping_start = hw_start; 13631 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13632 " ARP setup for %s\n", ill->ill_name)); 13633 } 13634 } else { 13635 freemsg(add_mp); 13636 ASSERT(del_mp == NULL); 13637 /* It is neither MULTICAST nor MULTI_BCAST */ 13638 return (0); 13639 } 13640 ASSERT(add_mp != NULL && del_mp != NULL); 13641 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13642 ill->ill_arp_del_mapping_mp = del_mp; 13643 if (arp_add_mapping_mp != NULL) { 13644 /* The caller just wants the mblks allocated */ 13645 *arp_add_mapping_mp = add_mp; 13646 } else { 13647 /* The caller wants us to send it to arp */ 13648 putnext(ill->ill_rq, add_mp); 13649 } 13650 return (0); 13651 } 13652 13653 /* 13654 * Get the resolver set up for a new interface address. 13655 * (Always called as writer.) 13656 * Called both for IPv4 and IPv6 interfaces, 13657 * though it only sets up the resolver for v6 13658 * if it's an xresolv interface (one using an external resolver). 13659 * Honors ILLF_NOARP. 13660 * The enumerated value res_act is used to tune the behavior. 13661 * If set to Res_act_initial, then we set up all the resolver 13662 * structures for a new interface. If set to Res_act_move, then 13663 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13664 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13665 * asynchronous hardware address change notification. If set to 13666 * Res_act_defend, then we tell ARP that it needs to send a single 13667 * gratuitous message in defense of the address. 13668 * Returns error on failure. 13669 */ 13670 int 13671 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13672 { 13673 caddr_t addr; 13674 mblk_t *arp_up_mp = NULL; 13675 mblk_t *arp_down_mp = NULL; 13676 mblk_t *arp_add_mp = NULL; 13677 mblk_t *arp_del_mp = NULL; 13678 mblk_t *arp_add_mapping_mp = NULL; 13679 mblk_t *arp_del_mapping_mp = NULL; 13680 ill_t *ill = ipif->ipif_ill; 13681 uchar_t *area_p = NULL; 13682 uchar_t *ared_p = NULL; 13683 int err = ENOMEM; 13684 boolean_t was_dup; 13685 13686 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13687 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13688 ASSERT(IAM_WRITER_IPIF(ipif)); 13689 13690 was_dup = B_FALSE; 13691 if (res_act == Res_act_initial) { 13692 ipif->ipif_addr_ready = 0; 13693 /* 13694 * We're bringing an interface up here. There's no way that we 13695 * should need to shut down ARP now. 13696 */ 13697 mutex_enter(&ill->ill_lock); 13698 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13699 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13700 ill->ill_ipif_dup_count--; 13701 was_dup = B_TRUE; 13702 } 13703 mutex_exit(&ill->ill_lock); 13704 } 13705 if (ipif->ipif_recovery_id != 0) 13706 (void) untimeout(ipif->ipif_recovery_id); 13707 ipif->ipif_recovery_id = 0; 13708 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13709 ipif->ipif_addr_ready = 1; 13710 return (0); 13711 } 13712 /* NDP will set the ipif_addr_ready flag when it's ready */ 13713 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13714 return (0); 13715 13716 if (ill->ill_isv6) { 13717 /* 13718 * External resolver for IPv6 13719 */ 13720 ASSERT(res_act == Res_act_initial); 13721 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13722 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13723 area_p = (uchar_t *)&ip6_area_template; 13724 ared_p = (uchar_t *)&ip6_ared_template; 13725 } 13726 } else { 13727 /* 13728 * IPv4 arp case. If the ARP stream has already started 13729 * closing, fail this request for ARP bringup. Else 13730 * record the fact that an ARP bringup is pending. 13731 */ 13732 mutex_enter(&ill->ill_lock); 13733 if (ill->ill_arp_closing) { 13734 mutex_exit(&ill->ill_lock); 13735 err = EINVAL; 13736 goto failed; 13737 } else { 13738 if (ill->ill_ipif_up_count == 0 && 13739 ill->ill_ipif_dup_count == 0 && !was_dup) 13740 ill->ill_arp_bringup_pending = 1; 13741 mutex_exit(&ill->ill_lock); 13742 } 13743 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13744 addr = (caddr_t)&ipif->ipif_lcl_addr; 13745 area_p = (uchar_t *)&ip_area_template; 13746 ared_p = (uchar_t *)&ip_ared_template; 13747 } 13748 } 13749 13750 /* 13751 * Add an entry for the local address in ARP only if it 13752 * is not UNNUMBERED and the address is not INADDR_ANY. 13753 */ 13754 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13755 area_t *area; 13756 13757 /* Now ask ARP to publish our address. */ 13758 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13759 if (arp_add_mp == NULL) 13760 goto failed; 13761 area = (area_t *)arp_add_mp->b_rptr; 13762 if (res_act != Res_act_initial) { 13763 /* 13764 * Copy the new hardware address and length into 13765 * arp_add_mp to be sent to ARP. 13766 */ 13767 area->area_hw_addr_length = ill->ill_phys_addr_length; 13768 bcopy(ill->ill_phys_addr, 13769 ((char *)area + area->area_hw_addr_offset), 13770 area->area_hw_addr_length); 13771 } 13772 13773 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13774 ACE_F_MYADDR; 13775 13776 if (res_act == Res_act_defend) { 13777 area->area_flags |= ACE_F_DEFEND; 13778 /* 13779 * If we're just defending our address now, then 13780 * there's no need to set up ARP multicast mappings. 13781 * The publish command is enough. 13782 */ 13783 goto done; 13784 } 13785 13786 if (res_act != Res_act_initial) 13787 goto arp_setup_multicast; 13788 13789 /* 13790 * Allocate an ARP deletion message so we know we can tell ARP 13791 * when the interface goes down. 13792 */ 13793 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13794 if (arp_del_mp == NULL) 13795 goto failed; 13796 13797 } else { 13798 if (res_act != Res_act_initial) 13799 goto done; 13800 } 13801 /* 13802 * Need to bring up ARP or setup multicast mapping only 13803 * when the first interface is coming UP. 13804 */ 13805 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13806 was_dup) { 13807 goto done; 13808 } 13809 13810 /* 13811 * Allocate an ARP down message (to be saved) and an ARP up 13812 * message. 13813 */ 13814 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13815 if (arp_down_mp == NULL) 13816 goto failed; 13817 13818 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13819 if (arp_up_mp == NULL) 13820 goto failed; 13821 13822 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13823 goto done; 13824 13825 arp_setup_multicast: 13826 /* 13827 * Setup the multicast mappings. This function initializes 13828 * ill_arp_del_mapping_mp also. This does not need to be done for 13829 * IPv6. 13830 */ 13831 if (!ill->ill_isv6) { 13832 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13833 if (err != 0) 13834 goto failed; 13835 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13836 ASSERT(arp_add_mapping_mp != NULL); 13837 } 13838 13839 done: 13840 if (arp_del_mp != NULL) { 13841 ASSERT(ipif->ipif_arp_del_mp == NULL); 13842 ipif->ipif_arp_del_mp = arp_del_mp; 13843 } 13844 if (arp_down_mp != NULL) { 13845 ASSERT(ill->ill_arp_down_mp == NULL); 13846 ill->ill_arp_down_mp = arp_down_mp; 13847 } 13848 if (arp_del_mapping_mp != NULL) { 13849 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13850 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13851 } 13852 if (arp_up_mp != NULL) { 13853 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13854 ill->ill_name, ipif->ipif_id)); 13855 putnext(ill->ill_rq, arp_up_mp); 13856 } 13857 if (arp_add_mp != NULL) { 13858 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13859 ill->ill_name, ipif->ipif_id)); 13860 /* 13861 * If it's an extended ARP implementation, then we'll wait to 13862 * hear that DAD has finished before using the interface. 13863 */ 13864 if (!ill->ill_arp_extend) 13865 ipif->ipif_addr_ready = 1; 13866 putnext(ill->ill_rq, arp_add_mp); 13867 } else { 13868 ipif->ipif_addr_ready = 1; 13869 } 13870 if (arp_add_mapping_mp != NULL) { 13871 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13872 ill->ill_name, ipif->ipif_id)); 13873 putnext(ill->ill_rq, arp_add_mapping_mp); 13874 } 13875 if (res_act != Res_act_initial) 13876 return (0); 13877 13878 if (ill->ill_flags & ILLF_NOARP) 13879 err = ill_arp_off(ill); 13880 else 13881 err = ill_arp_on(ill); 13882 if (err != 0) { 13883 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13884 freemsg(ipif->ipif_arp_del_mp); 13885 freemsg(ill->ill_arp_down_mp); 13886 freemsg(ill->ill_arp_del_mapping_mp); 13887 ipif->ipif_arp_del_mp = NULL; 13888 ill->ill_arp_down_mp = NULL; 13889 ill->ill_arp_del_mapping_mp = NULL; 13890 return (err); 13891 } 13892 return ((ill->ill_ipif_up_count != 0 || was_dup || 13893 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13894 13895 failed: 13896 ip1dbg(("ipif_resolver_up: FAILED\n")); 13897 freemsg(arp_add_mp); 13898 freemsg(arp_del_mp); 13899 freemsg(arp_add_mapping_mp); 13900 freemsg(arp_up_mp); 13901 freemsg(arp_down_mp); 13902 ill->ill_arp_bringup_pending = 0; 13903 return (err); 13904 } 13905 13906 /* 13907 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13908 * just gone back up. 13909 */ 13910 static void 13911 ipif_arp_start_dad(ipif_t *ipif) 13912 { 13913 ill_t *ill = ipif->ipif_ill; 13914 mblk_t *arp_add_mp; 13915 area_t *area; 13916 13917 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13918 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13919 ipif->ipif_lcl_addr == INADDR_ANY || 13920 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13921 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13922 /* 13923 * If we can't contact ARP for some reason, that's not really a 13924 * problem. Just send out the routing socket notification that 13925 * DAD completion would have done, and continue. 13926 */ 13927 ipif_mask_reply(ipif); 13928 ip_rts_ifmsg(ipif); 13929 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13930 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13931 ipif->ipif_addr_ready = 1; 13932 return; 13933 } 13934 13935 /* Setting the 'unverified' flag restarts DAD */ 13936 area = (area_t *)arp_add_mp->b_rptr; 13937 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13938 ACE_F_UNVERIFIED; 13939 putnext(ill->ill_rq, arp_add_mp); 13940 } 13941 13942 static void 13943 ipif_ndp_start_dad(ipif_t *ipif) 13944 { 13945 nce_t *nce; 13946 13947 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13948 if (nce == NULL) 13949 return; 13950 13951 if (!ndp_restart_dad(nce)) { 13952 /* 13953 * If we can't restart DAD for some reason, that's not really a 13954 * problem. Just send out the routing socket notification that 13955 * DAD completion would have done, and continue. 13956 */ 13957 ip_rts_ifmsg(ipif); 13958 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13959 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13960 ipif->ipif_addr_ready = 1; 13961 } 13962 NCE_REFRELE(nce); 13963 } 13964 13965 /* 13966 * Restart duplicate address detection on all interfaces on the given ill. 13967 * 13968 * This is called when an interface transitions from down to up 13969 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13970 * 13971 * Note that since the underlying physical link has transitioned, we must cause 13972 * at least one routing socket message to be sent here, either via DAD 13973 * completion or just by default on the first ipif. (If we don't do this, then 13974 * in.mpathd will see long delays when doing link-based failure recovery.) 13975 */ 13976 void 13977 ill_restart_dad(ill_t *ill, boolean_t went_up) 13978 { 13979 ipif_t *ipif; 13980 13981 if (ill == NULL) 13982 return; 13983 13984 /* 13985 * If layer two doesn't support duplicate address detection, then just 13986 * send the routing socket message now and be done with it. 13987 */ 13988 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13989 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13990 ip_rts_ifmsg(ill->ill_ipif); 13991 return; 13992 } 13993 13994 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13995 if (went_up) { 13996 if (ipif->ipif_flags & IPIF_UP) { 13997 if (ill->ill_isv6) 13998 ipif_ndp_start_dad(ipif); 13999 else 14000 ipif_arp_start_dad(ipif); 14001 } else if (ill->ill_isv6 && 14002 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14003 /* 14004 * For IPv4, the ARP module itself will 14005 * automatically start the DAD process when it 14006 * sees DL_NOTE_LINK_UP. We respond to the 14007 * AR_CN_READY at the completion of that task. 14008 * For IPv6, we must kick off the bring-up 14009 * process now. 14010 */ 14011 ndp_do_recovery(ipif); 14012 } else { 14013 /* 14014 * Unfortunately, the first ipif is "special" 14015 * and represents the underlying ill in the 14016 * routing socket messages. Thus, when this 14017 * one ipif is down, we must still notify so 14018 * that the user knows the IFF_RUNNING status 14019 * change. (If the first ipif is up, then 14020 * we'll handle eventual routing socket 14021 * notification via DAD completion.) 14022 */ 14023 if (ipif == ill->ill_ipif) 14024 ip_rts_ifmsg(ill->ill_ipif); 14025 } 14026 } else { 14027 /* 14028 * After link down, we'll need to send a new routing 14029 * message when the link comes back, so clear 14030 * ipif_addr_ready. 14031 */ 14032 ipif->ipif_addr_ready = 0; 14033 } 14034 } 14035 14036 /* 14037 * If we've torn down links, then notify the user right away. 14038 */ 14039 if (!went_up) 14040 ip_rts_ifmsg(ill->ill_ipif); 14041 } 14042 14043 /* 14044 * Wakeup all threads waiting to enter the ipsq, and sleeping 14045 * on any of the ills in this ipsq. The ill_lock of the ill 14046 * must be held so that waiters don't miss wakeups 14047 */ 14048 static void 14049 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14050 { 14051 phyint_t *phyint; 14052 14053 phyint = ipsq->ipsq_phyint_list; 14054 while (phyint != NULL) { 14055 if (phyint->phyint_illv4) { 14056 if (!caller_holds_lock) 14057 mutex_enter(&phyint->phyint_illv4->ill_lock); 14058 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14059 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14060 if (!caller_holds_lock) 14061 mutex_exit(&phyint->phyint_illv4->ill_lock); 14062 } 14063 if (phyint->phyint_illv6) { 14064 if (!caller_holds_lock) 14065 mutex_enter(&phyint->phyint_illv6->ill_lock); 14066 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14067 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14068 if (!caller_holds_lock) 14069 mutex_exit(&phyint->phyint_illv6->ill_lock); 14070 } 14071 phyint = phyint->phyint_ipsq_next; 14072 } 14073 } 14074 14075 static ipsq_t * 14076 ipsq_create(char *groupname, ip_stack_t *ipst) 14077 { 14078 ipsq_t *ipsq; 14079 14080 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14081 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14082 if (ipsq == NULL) { 14083 return (NULL); 14084 } 14085 14086 if (groupname != NULL) 14087 (void) strcpy(ipsq->ipsq_name, groupname); 14088 else 14089 ipsq->ipsq_name[0] = '\0'; 14090 14091 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14092 ipsq->ipsq_flags |= IPSQ_GROUP; 14093 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14094 ipst->ips_ipsq_g_head = ipsq; 14095 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14096 return (ipsq); 14097 } 14098 14099 /* 14100 * Return an ipsq correspoding to the groupname. If 'create' is true 14101 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14102 * uniquely with an IPMP group. However during IPMP groupname operations, 14103 * multiple IPMP groups may be associated with a single ipsq. But no 14104 * IPMP group can be associated with more than 1 ipsq at any time. 14105 * For example 14106 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14107 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14108 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14109 * 14110 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14111 * status shown below during the execution of the above command. 14112 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14113 * 14114 * After the completion of the above groupname command we return to the stable 14115 * state shown below. 14116 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14117 * hme4 mpk17-85 ipsq2 mpk17-85 1 14118 * 14119 * Because of the above, we don't search based on the ipsq_name since that 14120 * would miss the correct ipsq during certain windows as shown above. 14121 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14122 * natural state. 14123 */ 14124 static ipsq_t * 14125 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14126 ip_stack_t *ipst) 14127 { 14128 ipsq_t *ipsq; 14129 int group_len; 14130 phyint_t *phyint; 14131 14132 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14133 14134 group_len = strlen(groupname); 14135 ASSERT(group_len != 0); 14136 group_len++; 14137 14138 for (ipsq = ipst->ips_ipsq_g_head; 14139 ipsq != NULL; 14140 ipsq = ipsq->ipsq_next) { 14141 /* 14142 * When an ipsq is being split, and ill_split_ipsq 14143 * calls this function, we exclude it from being considered. 14144 */ 14145 if (ipsq == exclude_ipsq) 14146 continue; 14147 14148 /* 14149 * Compare against the ipsq_name. The groupname change happens 14150 * in 2 phases. The 1st phase merges the from group into 14151 * the to group's ipsq, by calling ill_merge_groups and restarts 14152 * the ioctl. The 2nd phase then locates the ipsq again thru 14153 * ipsq_name. At this point the phyint_groupname has not been 14154 * updated. 14155 */ 14156 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14157 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14158 /* 14159 * Verify that an ipmp groupname is exactly 14160 * part of 1 ipsq and is not found in any other 14161 * ipsq. 14162 */ 14163 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14164 NULL); 14165 return (ipsq); 14166 } 14167 14168 /* 14169 * Comparison against ipsq_name alone is not sufficient. 14170 * In the case when groups are currently being 14171 * merged, the ipsq could hold other IPMP groups temporarily. 14172 * so we walk the phyint list and compare against the 14173 * phyint_groupname as well. 14174 */ 14175 phyint = ipsq->ipsq_phyint_list; 14176 while (phyint != NULL) { 14177 if ((group_len == phyint->phyint_groupname_len) && 14178 (bcmp(phyint->phyint_groupname, groupname, 14179 group_len) == 0)) { 14180 /* 14181 * Verify that an ipmp groupname is exactly 14182 * part of 1 ipsq and is not found in any other 14183 * ipsq. 14184 */ 14185 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14186 ipst) == NULL); 14187 return (ipsq); 14188 } 14189 phyint = phyint->phyint_ipsq_next; 14190 } 14191 } 14192 if (create) 14193 ipsq = ipsq_create(groupname, ipst); 14194 return (ipsq); 14195 } 14196 14197 static void 14198 ipsq_delete(ipsq_t *ipsq) 14199 { 14200 ipsq_t *nipsq; 14201 ipsq_t *pipsq = NULL; 14202 ip_stack_t *ipst = ipsq->ipsq_ipst; 14203 14204 /* 14205 * We don't hold the ipsq lock, but we are sure no new 14206 * messages can land up, since the ipsq_refs is zero. 14207 * i.e. this ipsq is unnamed and no phyint or phyint group 14208 * is associated with this ipsq. (Lookups are based on ill_name 14209 * or phyint_groupname) 14210 */ 14211 ASSERT(ipsq->ipsq_refs == 0); 14212 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14213 ASSERT(ipsq->ipsq_pending_mp == NULL); 14214 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14215 /* 14216 * This is not the ipsq of an IPMP group. 14217 */ 14218 ipsq->ipsq_ipst = NULL; 14219 kmem_free(ipsq, sizeof (ipsq_t)); 14220 return; 14221 } 14222 14223 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14224 14225 /* 14226 * Locate the ipsq before we can remove it from 14227 * the singly linked list of ipsq's. 14228 */ 14229 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14230 nipsq = nipsq->ipsq_next) { 14231 if (nipsq == ipsq) { 14232 break; 14233 } 14234 pipsq = nipsq; 14235 } 14236 14237 ASSERT(nipsq == ipsq); 14238 14239 /* unlink ipsq from the list */ 14240 if (pipsq != NULL) 14241 pipsq->ipsq_next = ipsq->ipsq_next; 14242 else 14243 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14244 ipsq->ipsq_ipst = NULL; 14245 kmem_free(ipsq, sizeof (ipsq_t)); 14246 rw_exit(&ipst->ips_ill_g_lock); 14247 } 14248 14249 static void 14250 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14251 queue_t *q) 14252 { 14253 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14254 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14255 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14256 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14257 ASSERT(current_mp != NULL); 14258 14259 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14260 NEW_OP, NULL); 14261 14262 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14263 new_ipsq->ipsq_xopq_mphead != NULL); 14264 14265 /* 14266 * move from old ipsq to the new ipsq. 14267 */ 14268 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14269 if (old_ipsq->ipsq_xopq_mphead != NULL) 14270 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14271 14272 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14273 } 14274 14275 void 14276 ill_group_cleanup(ill_t *ill) 14277 { 14278 ill_t *ill_v4; 14279 ill_t *ill_v6; 14280 ipif_t *ipif; 14281 14282 ill_v4 = ill->ill_phyint->phyint_illv4; 14283 ill_v6 = ill->ill_phyint->phyint_illv6; 14284 14285 if (ill_v4 != NULL) { 14286 mutex_enter(&ill_v4->ill_lock); 14287 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14288 ipif = ipif->ipif_next) { 14289 IPIF_UNMARK_MOVING(ipif); 14290 } 14291 ill_v4->ill_up_ipifs = B_FALSE; 14292 mutex_exit(&ill_v4->ill_lock); 14293 } 14294 14295 if (ill_v6 != NULL) { 14296 mutex_enter(&ill_v6->ill_lock); 14297 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14298 ipif = ipif->ipif_next) { 14299 IPIF_UNMARK_MOVING(ipif); 14300 } 14301 ill_v6->ill_up_ipifs = B_FALSE; 14302 mutex_exit(&ill_v6->ill_lock); 14303 } 14304 } 14305 /* 14306 * This function is called when an ill has had a change in its group status 14307 * to bring up all the ipifs that were up before the change. 14308 */ 14309 int 14310 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14311 { 14312 ipif_t *ipif; 14313 ill_t *ill_v4; 14314 ill_t *ill_v6; 14315 ill_t *from_ill; 14316 int err = 0; 14317 14318 ASSERT(IAM_WRITER_ILL(ill)); 14319 14320 /* 14321 * Except for ipif_state_flags and ill_state_flags the other 14322 * fields of the ipif/ill that are modified below are protected 14323 * implicitly since we are a writer. We would have tried to down 14324 * even an ipif that was already down, in ill_down_ipifs. So we 14325 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14326 */ 14327 ill_v4 = ill->ill_phyint->phyint_illv4; 14328 ill_v6 = ill->ill_phyint->phyint_illv6; 14329 if (ill_v4 != NULL) { 14330 ill_v4->ill_up_ipifs = B_TRUE; 14331 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14332 ipif = ipif->ipif_next) { 14333 mutex_enter(&ill_v4->ill_lock); 14334 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14335 IPIF_UNMARK_MOVING(ipif); 14336 mutex_exit(&ill_v4->ill_lock); 14337 if (ipif->ipif_was_up) { 14338 if (!(ipif->ipif_flags & IPIF_UP)) 14339 err = ipif_up(ipif, q, mp); 14340 ipif->ipif_was_up = B_FALSE; 14341 if (err != 0) { 14342 /* 14343 * Can there be any other error ? 14344 */ 14345 ASSERT(err == EINPROGRESS); 14346 return (err); 14347 } 14348 } 14349 } 14350 mutex_enter(&ill_v4->ill_lock); 14351 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14352 mutex_exit(&ill_v4->ill_lock); 14353 ill_v4->ill_up_ipifs = B_FALSE; 14354 if (ill_v4->ill_move_in_progress) { 14355 ASSERT(ill_v4->ill_move_peer != NULL); 14356 ill_v4->ill_move_in_progress = B_FALSE; 14357 from_ill = ill_v4->ill_move_peer; 14358 from_ill->ill_move_in_progress = B_FALSE; 14359 from_ill->ill_move_peer = NULL; 14360 mutex_enter(&from_ill->ill_lock); 14361 from_ill->ill_state_flags &= ~ILL_CHANGING; 14362 mutex_exit(&from_ill->ill_lock); 14363 if (ill_v6 == NULL) { 14364 if (from_ill->ill_phyint->phyint_flags & 14365 PHYI_STANDBY) { 14366 phyint_inactive(from_ill->ill_phyint); 14367 } 14368 if (ill_v4->ill_phyint->phyint_flags & 14369 PHYI_STANDBY) { 14370 phyint_inactive(ill_v4->ill_phyint); 14371 } 14372 } 14373 ill_v4->ill_move_peer = NULL; 14374 } 14375 } 14376 14377 if (ill_v6 != NULL) { 14378 ill_v6->ill_up_ipifs = B_TRUE; 14379 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14380 ipif = ipif->ipif_next) { 14381 mutex_enter(&ill_v6->ill_lock); 14382 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14383 IPIF_UNMARK_MOVING(ipif); 14384 mutex_exit(&ill_v6->ill_lock); 14385 if (ipif->ipif_was_up) { 14386 if (!(ipif->ipif_flags & IPIF_UP)) 14387 err = ipif_up(ipif, q, mp); 14388 ipif->ipif_was_up = B_FALSE; 14389 if (err != 0) { 14390 /* 14391 * Can there be any other error ? 14392 */ 14393 ASSERT(err == EINPROGRESS); 14394 return (err); 14395 } 14396 } 14397 } 14398 mutex_enter(&ill_v6->ill_lock); 14399 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14400 mutex_exit(&ill_v6->ill_lock); 14401 ill_v6->ill_up_ipifs = B_FALSE; 14402 if (ill_v6->ill_move_in_progress) { 14403 ASSERT(ill_v6->ill_move_peer != NULL); 14404 ill_v6->ill_move_in_progress = B_FALSE; 14405 from_ill = ill_v6->ill_move_peer; 14406 from_ill->ill_move_in_progress = B_FALSE; 14407 from_ill->ill_move_peer = NULL; 14408 mutex_enter(&from_ill->ill_lock); 14409 from_ill->ill_state_flags &= ~ILL_CHANGING; 14410 mutex_exit(&from_ill->ill_lock); 14411 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14412 phyint_inactive(from_ill->ill_phyint); 14413 } 14414 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14415 phyint_inactive(ill_v6->ill_phyint); 14416 } 14417 ill_v6->ill_move_peer = NULL; 14418 } 14419 } 14420 return (0); 14421 } 14422 14423 /* 14424 * bring down all the approriate ipifs. 14425 */ 14426 /* ARGSUSED */ 14427 static void 14428 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14429 { 14430 ipif_t *ipif; 14431 14432 ASSERT(IAM_WRITER_ILL(ill)); 14433 14434 /* 14435 * Except for ipif_state_flags the other fields of the ipif/ill that 14436 * are modified below are protected implicitly since we are a writer 14437 */ 14438 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14439 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14440 continue; 14441 /* 14442 * Don't bring down the LINK LOCAL addresses as they are tied 14443 * to physical interface and they don't move. Treat them as 14444 * IPIF_NOFAILOVER. 14445 */ 14446 if (chk_nofailover && ill->ill_isv6 && 14447 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) 14448 continue; 14449 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14450 /* 14451 * We go through the ipif_down logic even if the ipif 14452 * is already down, since routes can be added based 14453 * on down ipifs. Going through ipif_down once again 14454 * will delete any IREs created based on these routes. 14455 */ 14456 if (ipif->ipif_flags & IPIF_UP) 14457 ipif->ipif_was_up = B_TRUE; 14458 /* 14459 * If called with chk_nofailover true ipif is moving. 14460 */ 14461 mutex_enter(&ill->ill_lock); 14462 if (chk_nofailover) { 14463 ipif->ipif_state_flags |= 14464 IPIF_MOVING | IPIF_CHANGING; 14465 } else { 14466 ipif->ipif_state_flags |= IPIF_CHANGING; 14467 } 14468 mutex_exit(&ill->ill_lock); 14469 /* 14470 * Need to re-create net/subnet bcast ires if 14471 * they are dependent on ipif. 14472 */ 14473 if (!ipif->ipif_isv6) 14474 ipif_check_bcast_ires(ipif); 14475 (void) ipif_logical_down(ipif, NULL, NULL); 14476 ipif_non_duplicate(ipif); 14477 ipif_down_tail(ipif); 14478 } 14479 } 14480 } 14481 14482 #define IPSQ_INC_REF(ipsq, ipst) { \ 14483 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14484 (ipsq)->ipsq_refs++; \ 14485 } 14486 14487 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14488 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14489 (ipsq)->ipsq_refs--; \ 14490 if ((ipsq)->ipsq_refs == 0) \ 14491 (ipsq)->ipsq_name[0] = '\0'; \ 14492 } 14493 14494 /* 14495 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14496 * new_ipsq. 14497 */ 14498 static void 14499 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14500 { 14501 phyint_t *phyint; 14502 phyint_t *next_phyint; 14503 14504 /* 14505 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14506 * writer and the ill_lock of the ill in question. Also the dest 14507 * ipsq can't vanish while we hold the ill_g_lock as writer. 14508 */ 14509 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14510 14511 phyint = cur_ipsq->ipsq_phyint_list; 14512 cur_ipsq->ipsq_phyint_list = NULL; 14513 while (phyint != NULL) { 14514 next_phyint = phyint->phyint_ipsq_next; 14515 IPSQ_DEC_REF(cur_ipsq, ipst); 14516 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14517 new_ipsq->ipsq_phyint_list = phyint; 14518 IPSQ_INC_REF(new_ipsq, ipst); 14519 phyint->phyint_ipsq = new_ipsq; 14520 phyint = next_phyint; 14521 } 14522 } 14523 14524 #define SPLIT_SUCCESS 0 14525 #define SPLIT_NOT_NEEDED 1 14526 #define SPLIT_FAILED 2 14527 14528 int 14529 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14530 ip_stack_t *ipst) 14531 { 14532 ipsq_t *newipsq = NULL; 14533 14534 /* 14535 * Assertions denote pre-requisites for changing the ipsq of 14536 * a phyint 14537 */ 14538 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14539 /* 14540 * <ill-phyint> assocs can't change while ill_g_lock 14541 * is held as writer. See ill_phyint_reinit() 14542 */ 14543 ASSERT(phyint->phyint_illv4 == NULL || 14544 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14545 ASSERT(phyint->phyint_illv6 == NULL || 14546 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14547 14548 if ((phyint->phyint_groupname_len != 14549 (strlen(cur_ipsq->ipsq_name) + 1) || 14550 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14551 phyint->phyint_groupname_len) != 0)) { 14552 /* 14553 * Once we fail in creating a new ipsq due to memory shortage, 14554 * don't attempt to create new ipsq again, based on another 14555 * phyint, since we want all phyints belonging to an IPMP group 14556 * to be in the same ipsq even in the event of mem alloc fails. 14557 */ 14558 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14559 cur_ipsq, ipst); 14560 if (newipsq == NULL) { 14561 /* Memory allocation failure */ 14562 return (SPLIT_FAILED); 14563 } else { 14564 /* ipsq_refs protected by ill_g_lock (writer) */ 14565 IPSQ_DEC_REF(cur_ipsq, ipst); 14566 phyint->phyint_ipsq = newipsq; 14567 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14568 newipsq->ipsq_phyint_list = phyint; 14569 IPSQ_INC_REF(newipsq, ipst); 14570 return (SPLIT_SUCCESS); 14571 } 14572 } 14573 return (SPLIT_NOT_NEEDED); 14574 } 14575 14576 /* 14577 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14578 * to do this split 14579 */ 14580 static int 14581 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14582 { 14583 ipsq_t *newipsq; 14584 14585 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14586 /* 14587 * <ill-phyint> assocs can't change while ill_g_lock 14588 * is held as writer. See ill_phyint_reinit() 14589 */ 14590 14591 ASSERT(phyint->phyint_illv4 == NULL || 14592 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14593 ASSERT(phyint->phyint_illv6 == NULL || 14594 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14595 14596 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14597 phyint->phyint_illv4: phyint->phyint_illv6)) { 14598 /* 14599 * ipsq_init failed due to no memory 14600 * caller will use the same ipsq 14601 */ 14602 return (SPLIT_FAILED); 14603 } 14604 14605 /* ipsq_ref is protected by ill_g_lock (writer) */ 14606 IPSQ_DEC_REF(cur_ipsq, ipst); 14607 14608 /* 14609 * This is a new ipsq that is unknown to the world. 14610 * So we don't need to hold ipsq_lock, 14611 */ 14612 newipsq = phyint->phyint_ipsq; 14613 newipsq->ipsq_writer = NULL; 14614 newipsq->ipsq_reentry_cnt--; 14615 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14616 #ifdef DEBUG 14617 newipsq->ipsq_depth = 0; 14618 #endif 14619 14620 return (SPLIT_SUCCESS); 14621 } 14622 14623 /* 14624 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14625 * ipsq's representing their individual groups or themselves. Return 14626 * whether split needs to be retried again later. 14627 */ 14628 static boolean_t 14629 ill_split_ipsq(ipsq_t *cur_ipsq) 14630 { 14631 phyint_t *phyint; 14632 phyint_t *next_phyint; 14633 int error; 14634 boolean_t need_retry = B_FALSE; 14635 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14636 14637 phyint = cur_ipsq->ipsq_phyint_list; 14638 cur_ipsq->ipsq_phyint_list = NULL; 14639 while (phyint != NULL) { 14640 next_phyint = phyint->phyint_ipsq_next; 14641 /* 14642 * 'created' will tell us whether the callee actually 14643 * created an ipsq. Lack of memory may force the callee 14644 * to return without creating an ipsq. 14645 */ 14646 if (phyint->phyint_groupname == NULL) { 14647 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14648 } else { 14649 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14650 need_retry, ipst); 14651 } 14652 14653 switch (error) { 14654 case SPLIT_FAILED: 14655 need_retry = B_TRUE; 14656 /* FALLTHRU */ 14657 case SPLIT_NOT_NEEDED: 14658 /* 14659 * Keep it on the list. 14660 */ 14661 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14662 cur_ipsq->ipsq_phyint_list = phyint; 14663 break; 14664 case SPLIT_SUCCESS: 14665 break; 14666 default: 14667 ASSERT(0); 14668 } 14669 14670 phyint = next_phyint; 14671 } 14672 return (need_retry); 14673 } 14674 14675 /* 14676 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14677 * and return the ills in the list. This list will be 14678 * needed to unlock all the ills later on by the caller. 14679 * The <ill-ipsq> associations could change between the 14680 * lock and unlock. Hence the unlock can't traverse the 14681 * ipsq to get the list of ills. 14682 */ 14683 static int 14684 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14685 { 14686 int cnt = 0; 14687 phyint_t *phyint; 14688 ip_stack_t *ipst = ipsq->ipsq_ipst; 14689 14690 /* 14691 * The caller holds ill_g_lock to ensure that the ill memberships 14692 * of the ipsq don't change 14693 */ 14694 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14695 14696 phyint = ipsq->ipsq_phyint_list; 14697 while (phyint != NULL) { 14698 if (phyint->phyint_illv4 != NULL) { 14699 ASSERT(cnt < list_max); 14700 list[cnt++] = phyint->phyint_illv4; 14701 } 14702 if (phyint->phyint_illv6 != NULL) { 14703 ASSERT(cnt < list_max); 14704 list[cnt++] = phyint->phyint_illv6; 14705 } 14706 phyint = phyint->phyint_ipsq_next; 14707 } 14708 ill_lock_ills(list, cnt); 14709 return (cnt); 14710 } 14711 14712 void 14713 ill_lock_ills(ill_t **list, int cnt) 14714 { 14715 int i; 14716 14717 if (cnt > 1) { 14718 boolean_t try_again; 14719 do { 14720 try_again = B_FALSE; 14721 for (i = 0; i < cnt - 1; i++) { 14722 if (list[i] < list[i + 1]) { 14723 ill_t *tmp; 14724 14725 /* swap the elements */ 14726 tmp = list[i]; 14727 list[i] = list[i + 1]; 14728 list[i + 1] = tmp; 14729 try_again = B_TRUE; 14730 } 14731 } 14732 } while (try_again); 14733 } 14734 14735 for (i = 0; i < cnt; i++) { 14736 if (i == 0) { 14737 if (list[i] != NULL) 14738 mutex_enter(&list[i]->ill_lock); 14739 else 14740 return; 14741 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14742 mutex_enter(&list[i]->ill_lock); 14743 } 14744 } 14745 } 14746 14747 void 14748 ill_unlock_ills(ill_t **list, int cnt) 14749 { 14750 int i; 14751 14752 for (i = 0; i < cnt; i++) { 14753 if ((i == 0) && (list[i] != NULL)) { 14754 mutex_exit(&list[i]->ill_lock); 14755 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14756 mutex_exit(&list[i]->ill_lock); 14757 } 14758 } 14759 } 14760 14761 /* 14762 * Merge all the ills from 1 ipsq group into another ipsq group. 14763 * The source ipsq group is specified by the ipsq associated with 14764 * 'from_ill'. The destination ipsq group is specified by the ipsq 14765 * associated with 'to_ill' or 'groupname' respectively. 14766 * Note that ipsq itself does not have a reference count mechanism 14767 * and functions don't look up an ipsq and pass it around. Instead 14768 * functions pass around an ill or groupname, and the ipsq is looked 14769 * up from the ill or groupname and the required operation performed 14770 * atomically with the lookup on the ipsq. 14771 */ 14772 static int 14773 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14774 queue_t *q) 14775 { 14776 ipsq_t *old_ipsq; 14777 ipsq_t *new_ipsq; 14778 ill_t **ill_list; 14779 int cnt; 14780 size_t ill_list_size; 14781 boolean_t became_writer_on_new_sq = B_FALSE; 14782 ip_stack_t *ipst = from_ill->ill_ipst; 14783 14784 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14785 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14786 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14787 14788 /* 14789 * Need to hold ill_g_lock as writer and also the ill_lock to 14790 * change the <ill-ipsq> assoc of an ill. Need to hold the 14791 * ipsq_lock to prevent new messages from landing on an ipsq. 14792 */ 14793 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14794 14795 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14796 if (groupname != NULL) 14797 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14798 else { 14799 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14800 } 14801 14802 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14803 14804 /* 14805 * both groups are on the same ipsq. 14806 */ 14807 if (old_ipsq == new_ipsq) { 14808 rw_exit(&ipst->ips_ill_g_lock); 14809 return (0); 14810 } 14811 14812 cnt = old_ipsq->ipsq_refs << 1; 14813 ill_list_size = cnt * sizeof (ill_t *); 14814 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14815 if (ill_list == NULL) { 14816 rw_exit(&ipst->ips_ill_g_lock); 14817 return (ENOMEM); 14818 } 14819 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14820 14821 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14822 mutex_enter(&new_ipsq->ipsq_lock); 14823 if ((new_ipsq->ipsq_writer == NULL && 14824 new_ipsq->ipsq_current_ipif == NULL) || 14825 (new_ipsq->ipsq_writer == curthread)) { 14826 new_ipsq->ipsq_writer = curthread; 14827 new_ipsq->ipsq_reentry_cnt++; 14828 became_writer_on_new_sq = B_TRUE; 14829 } 14830 14831 /* 14832 * We are holding ill_g_lock as writer and all the ill locks of 14833 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14834 * message can land up on the old ipsq even though we don't hold the 14835 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14836 */ 14837 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14838 14839 /* 14840 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14841 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14842 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14843 */ 14844 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14845 14846 /* 14847 * Mark the new ipsq as needing a split since it is currently 14848 * being shared by more than 1 IPMP group. The split will 14849 * occur at the end of ipsq_exit 14850 */ 14851 new_ipsq->ipsq_split = B_TRUE; 14852 14853 /* Now release all the locks */ 14854 mutex_exit(&new_ipsq->ipsq_lock); 14855 ill_unlock_ills(ill_list, cnt); 14856 rw_exit(&ipst->ips_ill_g_lock); 14857 14858 kmem_free(ill_list, ill_list_size); 14859 14860 /* 14861 * If we succeeded in becoming writer on the new ipsq, then 14862 * drain the new ipsq and start processing all enqueued messages 14863 * including the current ioctl we are processing which is either 14864 * a set groupname or failover/failback. 14865 */ 14866 if (became_writer_on_new_sq) 14867 ipsq_exit(new_ipsq); 14868 14869 /* 14870 * syncq has been changed and all the messages have been moved. 14871 */ 14872 mutex_enter(&old_ipsq->ipsq_lock); 14873 old_ipsq->ipsq_current_ipif = NULL; 14874 old_ipsq->ipsq_current_ioctl = 0; 14875 old_ipsq->ipsq_current_done = B_TRUE; 14876 mutex_exit(&old_ipsq->ipsq_lock); 14877 return (EINPROGRESS); 14878 } 14879 14880 /* 14881 * Delete and add the loopback copy and non-loopback copy of 14882 * the BROADCAST ire corresponding to ill and addr. Used to 14883 * group broadcast ires together when ill becomes part of 14884 * a group. 14885 * 14886 * This function is also called when ill is leaving the group 14887 * so that the ires belonging to the group gets re-grouped. 14888 */ 14889 static void 14890 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14891 { 14892 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14893 ire_t **ire_ptpn = &ire_head; 14894 ip_stack_t *ipst = ill->ill_ipst; 14895 14896 /* 14897 * The loopback and non-loopback IREs are inserted in the order in which 14898 * they're found, on the basis that they are correctly ordered (loopback 14899 * first). 14900 */ 14901 for (;;) { 14902 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14903 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14904 if (ire == NULL) 14905 break; 14906 14907 /* 14908 * we are passing in KM_SLEEP because it is not easy to 14909 * go back to a sane state in case of memory failure. 14910 */ 14911 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14912 ASSERT(nire != NULL); 14913 bzero(nire, sizeof (ire_t)); 14914 /* 14915 * Don't use ire_max_frag directly since we don't 14916 * hold on to 'ire' until we add the new ire 'nire' and 14917 * we don't want the new ire to have a dangling reference 14918 * to 'ire'. The ire_max_frag of a broadcast ire must 14919 * be in sync with the ipif_mtu of the associate ipif. 14920 * For eg. this happens as a result of SIOCSLIFNAME, 14921 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14922 * the driver. A change in ire_max_frag triggered as 14923 * as a result of path mtu discovery, or due to an 14924 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14925 * route change -mtu command does not apply to broadcast ires. 14926 * 14927 * XXX We need a recovery strategy here if ire_init fails 14928 */ 14929 if (ire_init(nire, 14930 (uchar_t *)&ire->ire_addr, 14931 (uchar_t *)&ire->ire_mask, 14932 (uchar_t *)&ire->ire_src_addr, 14933 (uchar_t *)&ire->ire_gateway_addr, 14934 ire->ire_stq == NULL ? &ip_loopback_mtu : 14935 &ire->ire_ipif->ipif_mtu, 14936 ire->ire_nce, 14937 ire->ire_rfq, 14938 ire->ire_stq, 14939 ire->ire_type, 14940 ire->ire_ipif, 14941 ire->ire_cmask, 14942 ire->ire_phandle, 14943 ire->ire_ihandle, 14944 ire->ire_flags, 14945 &ire->ire_uinfo, 14946 NULL, 14947 NULL, 14948 ipst) == NULL) { 14949 cmn_err(CE_PANIC, "ire_init() failed"); 14950 } 14951 ire_delete(ire); 14952 ire_refrele(ire); 14953 14954 /* 14955 * The newly created IREs are inserted at the tail of the list 14956 * starting with ire_head. As we've just allocated them no one 14957 * knows about them so it's safe. 14958 */ 14959 *ire_ptpn = nire; 14960 ire_ptpn = &nire->ire_next; 14961 } 14962 14963 for (nire = ire_head; nire != NULL; nire = nire_next) { 14964 int error; 14965 ire_t *oire; 14966 /* unlink the IRE from our list before calling ire_add() */ 14967 nire_next = nire->ire_next; 14968 nire->ire_next = NULL; 14969 14970 /* ire_add adds the ire at the right place in the list */ 14971 oire = nire; 14972 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14973 ASSERT(error == 0); 14974 ASSERT(oire == nire); 14975 ire_refrele(nire); /* Held in ire_add */ 14976 } 14977 } 14978 14979 /* 14980 * This function is usually called when an ill is inserted in 14981 * a group and all the ipifs are already UP. As all the ipifs 14982 * are already UP, the broadcast ires have already been created 14983 * and been inserted. But, ire_add_v4 would not have grouped properly. 14984 * We need to re-group for the benefit of ip_wput_ire which 14985 * expects BROADCAST ires to be grouped properly to avoid sending 14986 * more than one copy of the broadcast packet per group. 14987 * 14988 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14989 * because when ipif_up_done ends up calling this, ires have 14990 * already been added before illgrp_insert i.e before ill_group 14991 * has been initialized. 14992 */ 14993 static void 14994 ill_group_bcast_for_xmit(ill_t *ill) 14995 { 14996 ill_group_t *illgrp; 14997 ipif_t *ipif; 14998 ipaddr_t addr; 14999 ipaddr_t net_mask; 15000 ipaddr_t subnet_netmask; 15001 15002 illgrp = ill->ill_group; 15003 15004 /* 15005 * This function is called even when an ill is deleted from 15006 * the group. Hence, illgrp could be null. 15007 */ 15008 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15009 return; 15010 15011 /* 15012 * Delete all the BROADCAST ires matching this ill and add 15013 * them back. This time, ire_add_v4 should take care of 15014 * grouping them with others because ill is part of the 15015 * group. 15016 */ 15017 ill_bcast_delete_and_add(ill, 0); 15018 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15019 15020 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15021 15022 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15023 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15024 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15025 } else { 15026 net_mask = htonl(IN_CLASSA_NET); 15027 } 15028 addr = net_mask & ipif->ipif_subnet; 15029 ill_bcast_delete_and_add(ill, addr); 15030 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15031 15032 subnet_netmask = ipif->ipif_net_mask; 15033 addr = ipif->ipif_subnet; 15034 ill_bcast_delete_and_add(ill, addr); 15035 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15036 } 15037 } 15038 15039 /* 15040 * This function is called from illgrp_delete when ill is being deleted 15041 * from the group. 15042 * 15043 * As ill is not there in the group anymore, any address belonging 15044 * to this ill should be cleared of IRE_MARK_NORECV. 15045 */ 15046 static void 15047 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15048 { 15049 ire_t *ire; 15050 irb_t *irb; 15051 ip_stack_t *ipst = ill->ill_ipst; 15052 15053 ASSERT(ill->ill_group == NULL); 15054 15055 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15056 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15057 15058 if (ire != NULL) { 15059 /* 15060 * IPMP and plumbing operations are serialized on the ipsq, so 15061 * no one will insert or delete a broadcast ire under our feet. 15062 */ 15063 irb = ire->ire_bucket; 15064 rw_enter(&irb->irb_lock, RW_READER); 15065 ire_refrele(ire); 15066 15067 for (; ire != NULL; ire = ire->ire_next) { 15068 if (ire->ire_addr != addr) 15069 break; 15070 if (ire_to_ill(ire) != ill) 15071 continue; 15072 15073 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15074 ire->ire_marks &= ~IRE_MARK_NORECV; 15075 } 15076 rw_exit(&irb->irb_lock); 15077 } 15078 } 15079 15080 /* 15081 * This function must be called only after the broadcast ires 15082 * have been grouped together. For a given address addr, nominate 15083 * only one of the ires whose interface is not FAILED or OFFLINE. 15084 * 15085 * This is also called when an ipif goes down, so that we can nominate 15086 * a different ire with the same address for receiving. 15087 */ 15088 static void 15089 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15090 { 15091 irb_t *irb; 15092 ire_t *ire; 15093 ire_t *ire1; 15094 ire_t *save_ire; 15095 ire_t **irep = NULL; 15096 boolean_t first = B_TRUE; 15097 ire_t *clear_ire = NULL; 15098 ire_t *start_ire = NULL; 15099 ire_t *new_lb_ire; 15100 ire_t *new_nlb_ire; 15101 boolean_t new_lb_ire_used = B_FALSE; 15102 boolean_t new_nlb_ire_used = B_FALSE; 15103 uint64_t match_flags; 15104 uint64_t phyi_flags; 15105 boolean_t fallback = B_FALSE; 15106 uint_t max_frag; 15107 15108 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15109 NULL, MATCH_IRE_TYPE, ipst); 15110 /* 15111 * We may not be able to find some ires if a previous 15112 * ire_create failed. This happens when an ipif goes 15113 * down and we are unable to create BROADCAST ires due 15114 * to memory failure. Thus, we have to check for NULL 15115 * below. This should handle the case for LOOPBACK, 15116 * POINTOPOINT and interfaces with some POINTOPOINT 15117 * logicals for which there are no BROADCAST ires. 15118 */ 15119 if (ire == NULL) 15120 return; 15121 /* 15122 * Currently IRE_BROADCASTS are deleted when an ipif 15123 * goes down which runs exclusively. Thus, setting 15124 * IRE_MARK_RCVD should not race with ire_delete marking 15125 * IRE_MARK_CONDEMNED. We grab the lock below just to 15126 * be consistent with other parts of the code that walks 15127 * a given bucket. 15128 */ 15129 save_ire = ire; 15130 irb = ire->ire_bucket; 15131 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15132 if (new_lb_ire == NULL) { 15133 ire_refrele(ire); 15134 return; 15135 } 15136 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15137 if (new_nlb_ire == NULL) { 15138 ire_refrele(ire); 15139 kmem_cache_free(ire_cache, new_lb_ire); 15140 return; 15141 } 15142 IRB_REFHOLD(irb); 15143 rw_enter(&irb->irb_lock, RW_WRITER); 15144 /* 15145 * Get to the first ire matching the address and the 15146 * group. If the address does not match we are done 15147 * as we could not find the IRE. If the address matches 15148 * we should get to the first one matching the group. 15149 */ 15150 while (ire != NULL) { 15151 if (ire->ire_addr != addr || 15152 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15153 break; 15154 } 15155 ire = ire->ire_next; 15156 } 15157 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15158 start_ire = ire; 15159 redo: 15160 while (ire != NULL && ire->ire_addr == addr && 15161 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15162 /* 15163 * The first ire for any address within a group 15164 * should always be the one with IRE_MARK_NORECV cleared 15165 * so that ip_wput_ire can avoid searching for one. 15166 * Note down the insertion point which will be used 15167 * later. 15168 */ 15169 if (first && (irep == NULL)) 15170 irep = ire->ire_ptpn; 15171 /* 15172 * PHYI_FAILED is set when the interface fails. 15173 * This interface might have become good, but the 15174 * daemon has not yet detected. We should still 15175 * not receive on this. PHYI_OFFLINE should never 15176 * be picked as this has been offlined and soon 15177 * be removed. 15178 */ 15179 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15180 if (phyi_flags & PHYI_OFFLINE) { 15181 ire->ire_marks |= IRE_MARK_NORECV; 15182 ire = ire->ire_next; 15183 continue; 15184 } 15185 if (phyi_flags & match_flags) { 15186 ire->ire_marks |= IRE_MARK_NORECV; 15187 ire = ire->ire_next; 15188 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15189 PHYI_INACTIVE) { 15190 fallback = B_TRUE; 15191 } 15192 continue; 15193 } 15194 if (first) { 15195 /* 15196 * We will move this to the front of the list later 15197 * on. 15198 */ 15199 clear_ire = ire; 15200 ire->ire_marks &= ~IRE_MARK_NORECV; 15201 } else { 15202 ire->ire_marks |= IRE_MARK_NORECV; 15203 } 15204 first = B_FALSE; 15205 ire = ire->ire_next; 15206 } 15207 /* 15208 * If we never nominated anybody, try nominating at least 15209 * an INACTIVE, if we found one. Do it only once though. 15210 */ 15211 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15212 fallback) { 15213 match_flags = PHYI_FAILED; 15214 ire = start_ire; 15215 irep = NULL; 15216 goto redo; 15217 } 15218 ire_refrele(save_ire); 15219 15220 /* 15221 * irep non-NULL indicates that we entered the while loop 15222 * above. If clear_ire is at the insertion point, we don't 15223 * have to do anything. clear_ire will be NULL if all the 15224 * interfaces are failed. 15225 * 15226 * We cannot unlink and reinsert the ire at the right place 15227 * in the list since there can be other walkers of this bucket. 15228 * Instead we delete and recreate the ire 15229 */ 15230 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15231 ire_t *clear_ire_stq = NULL; 15232 15233 bzero(new_lb_ire, sizeof (ire_t)); 15234 /* XXX We need a recovery strategy here. */ 15235 if (ire_init(new_lb_ire, 15236 (uchar_t *)&clear_ire->ire_addr, 15237 (uchar_t *)&clear_ire->ire_mask, 15238 (uchar_t *)&clear_ire->ire_src_addr, 15239 (uchar_t *)&clear_ire->ire_gateway_addr, 15240 &clear_ire->ire_max_frag, 15241 NULL, /* let ire_nce_init derive the resolver info */ 15242 clear_ire->ire_rfq, 15243 clear_ire->ire_stq, 15244 clear_ire->ire_type, 15245 clear_ire->ire_ipif, 15246 clear_ire->ire_cmask, 15247 clear_ire->ire_phandle, 15248 clear_ire->ire_ihandle, 15249 clear_ire->ire_flags, 15250 &clear_ire->ire_uinfo, 15251 NULL, 15252 NULL, 15253 ipst) == NULL) 15254 cmn_err(CE_PANIC, "ire_init() failed"); 15255 if (clear_ire->ire_stq == NULL) { 15256 ire_t *ire_next = clear_ire->ire_next; 15257 if (ire_next != NULL && 15258 ire_next->ire_stq != NULL && 15259 ire_next->ire_addr == clear_ire->ire_addr && 15260 ire_next->ire_ipif->ipif_ill == 15261 clear_ire->ire_ipif->ipif_ill) { 15262 clear_ire_stq = ire_next; 15263 15264 bzero(new_nlb_ire, sizeof (ire_t)); 15265 /* XXX We need a recovery strategy here. */ 15266 if (ire_init(new_nlb_ire, 15267 (uchar_t *)&clear_ire_stq->ire_addr, 15268 (uchar_t *)&clear_ire_stq->ire_mask, 15269 (uchar_t *)&clear_ire_stq->ire_src_addr, 15270 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15271 &clear_ire_stq->ire_max_frag, 15272 NULL, 15273 clear_ire_stq->ire_rfq, 15274 clear_ire_stq->ire_stq, 15275 clear_ire_stq->ire_type, 15276 clear_ire_stq->ire_ipif, 15277 clear_ire_stq->ire_cmask, 15278 clear_ire_stq->ire_phandle, 15279 clear_ire_stq->ire_ihandle, 15280 clear_ire_stq->ire_flags, 15281 &clear_ire_stq->ire_uinfo, 15282 NULL, 15283 NULL, 15284 ipst) == NULL) 15285 cmn_err(CE_PANIC, "ire_init() failed"); 15286 } 15287 } 15288 15289 /* 15290 * Delete the ire. We can't call ire_delete() since 15291 * we are holding the bucket lock. We can't release the 15292 * bucket lock since we can't allow irep to change. So just 15293 * mark it CONDEMNED. The IRB_REFRELE will delete the 15294 * ire from the list and do the refrele. 15295 */ 15296 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15297 irb->irb_marks |= IRB_MARK_CONDEMNED; 15298 15299 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15300 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15301 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15302 } 15303 15304 /* 15305 * Also take care of otherfields like ib/ob pkt count 15306 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15307 */ 15308 15309 /* Set the max_frag before adding the ire */ 15310 max_frag = *new_lb_ire->ire_max_fragp; 15311 new_lb_ire->ire_max_fragp = NULL; 15312 new_lb_ire->ire_max_frag = max_frag; 15313 15314 /* Add the new ire's. Insert at *irep */ 15315 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15316 ire1 = *irep; 15317 if (ire1 != NULL) 15318 ire1->ire_ptpn = &new_lb_ire->ire_next; 15319 new_lb_ire->ire_next = ire1; 15320 /* Link the new one in. */ 15321 new_lb_ire->ire_ptpn = irep; 15322 membar_producer(); 15323 *irep = new_lb_ire; 15324 new_lb_ire_used = B_TRUE; 15325 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15326 new_lb_ire->ire_bucket->irb_ire_cnt++; 15327 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15328 (char *), "ire", (void *), new_lb_ire); 15329 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15330 15331 if (clear_ire_stq != NULL) { 15332 /* Set the max_frag before adding the ire */ 15333 max_frag = *new_nlb_ire->ire_max_fragp; 15334 new_nlb_ire->ire_max_fragp = NULL; 15335 new_nlb_ire->ire_max_frag = max_frag; 15336 15337 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15338 irep = &new_lb_ire->ire_next; 15339 /* Add the new ire. Insert at *irep */ 15340 ire1 = *irep; 15341 if (ire1 != NULL) 15342 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15343 new_nlb_ire->ire_next = ire1; 15344 /* Link the new one in. */ 15345 new_nlb_ire->ire_ptpn = irep; 15346 membar_producer(); 15347 *irep = new_nlb_ire; 15348 new_nlb_ire_used = B_TRUE; 15349 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15350 ire_stats_inserted); 15351 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15352 DTRACE_PROBE3(ipif__incr__cnt, 15353 (ipif_t *), new_nlb_ire->ire_ipif, 15354 (char *), "ire", (void *), new_nlb_ire); 15355 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15356 DTRACE_PROBE3(ill__incr__cnt, 15357 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15358 (char *), "ire", (void *), new_nlb_ire); 15359 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15360 } 15361 } 15362 rw_exit(&irb->irb_lock); 15363 if (!new_lb_ire_used) 15364 kmem_cache_free(ire_cache, new_lb_ire); 15365 if (!new_nlb_ire_used) 15366 kmem_cache_free(ire_cache, new_nlb_ire); 15367 IRB_REFRELE(irb); 15368 } 15369 15370 /* 15371 * Whenever an ipif goes down we have to renominate a different 15372 * broadcast ire to receive. Whenever an ipif comes up, we need 15373 * to make sure that we have only one nominated to receive. 15374 */ 15375 static void 15376 ipif_renominate_bcast(ipif_t *ipif) 15377 { 15378 ill_t *ill = ipif->ipif_ill; 15379 ipaddr_t subnet_addr; 15380 ipaddr_t net_addr; 15381 ipaddr_t net_mask = 0; 15382 ipaddr_t subnet_netmask; 15383 ipaddr_t addr; 15384 ill_group_t *illgrp; 15385 ip_stack_t *ipst = ill->ill_ipst; 15386 15387 illgrp = ill->ill_group; 15388 /* 15389 * If this is the last ipif going down, it might take 15390 * the ill out of the group. In that case ipif_down -> 15391 * illgrp_delete takes care of doing the nomination. 15392 * ipif_down does not call for this case. 15393 */ 15394 ASSERT(illgrp != NULL); 15395 15396 /* There could not have been any ires associated with this */ 15397 if (ipif->ipif_subnet == 0) 15398 return; 15399 15400 ill_mark_bcast(illgrp, 0, ipst); 15401 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15402 15403 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15404 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15405 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15406 } else { 15407 net_mask = htonl(IN_CLASSA_NET); 15408 } 15409 addr = net_mask & ipif->ipif_subnet; 15410 ill_mark_bcast(illgrp, addr, ipst); 15411 15412 net_addr = ~net_mask | addr; 15413 ill_mark_bcast(illgrp, net_addr, ipst); 15414 15415 subnet_netmask = ipif->ipif_net_mask; 15416 addr = ipif->ipif_subnet; 15417 ill_mark_bcast(illgrp, addr, ipst); 15418 15419 subnet_addr = ~subnet_netmask | addr; 15420 ill_mark_bcast(illgrp, subnet_addr, ipst); 15421 } 15422 15423 /* 15424 * Whenever we form or delete ill groups, we need to nominate one set of 15425 * BROADCAST ires for receiving in the group. 15426 * 15427 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15428 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15429 * for ill_ipif_up_count to be non-zero. This is the only case where 15430 * ill_ipif_up_count is zero and we would still find the ires. 15431 * 15432 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15433 * ipif is UP and we just have to do the nomination. 15434 * 15435 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15436 * from the group. So, we have to do the nomination. 15437 * 15438 * Because of (3), there could be just one ill in the group. But we have 15439 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15440 * Thus, this function does not optimize when there is only one ill as 15441 * it is not correct for (3). 15442 */ 15443 static void 15444 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15445 { 15446 ill_t *ill; 15447 ipif_t *ipif; 15448 ipaddr_t subnet_addr; 15449 ipaddr_t prev_subnet_addr = 0; 15450 ipaddr_t net_addr; 15451 ipaddr_t prev_net_addr = 0; 15452 ipaddr_t net_mask = 0; 15453 ipaddr_t subnet_netmask; 15454 ipaddr_t addr; 15455 ip_stack_t *ipst; 15456 15457 /* 15458 * When the last memeber is leaving, there is nothing to 15459 * nominate. 15460 */ 15461 if (illgrp->illgrp_ill_count == 0) { 15462 ASSERT(illgrp->illgrp_ill == NULL); 15463 return; 15464 } 15465 15466 ill = illgrp->illgrp_ill; 15467 ASSERT(!ill->ill_isv6); 15468 ipst = ill->ill_ipst; 15469 /* 15470 * We assume that ires with same address and belonging to the 15471 * same group, has been grouped together. Nominating a *single* 15472 * ill in the group for sending and receiving broadcast is done 15473 * by making sure that the first BROADCAST ire (which will be 15474 * the one returned by ire_ctable_lookup for ip_rput and the 15475 * one that will be used in ip_wput_ire) will be the one that 15476 * will not have IRE_MARK_NORECV set. 15477 * 15478 * 1) ip_rput checks and discards packets received on ires marked 15479 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15480 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15481 * first ire in the group for every broadcast address in the group. 15482 * ip_rput will accept packets only on the first ire i.e only 15483 * one copy of the ill. 15484 * 15485 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15486 * packet for the whole group. It needs to send out on the ill 15487 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15488 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15489 * the copy echoed back on other port where the ire is not marked 15490 * with IRE_MARK_NORECV. 15491 * 15492 * Note that we just need to have the first IRE either loopback or 15493 * non-loopback (either of them may not exist if ire_create failed 15494 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15495 * always hit the first one and hence will always accept one copy. 15496 * 15497 * We have a broadcast ire per ill for all the unique prefixes 15498 * hosted on that ill. As we don't have a way of knowing the 15499 * unique prefixes on a given ill and hence in the whole group, 15500 * we just call ill_mark_bcast on all the prefixes that exist 15501 * in the group. For the common case of one prefix, the code 15502 * below optimizes by remebering the last address used for 15503 * markng. In the case of multiple prefixes, this will still 15504 * optimize depending the order of prefixes. 15505 * 15506 * The only unique address across the whole group is 0.0.0.0 and 15507 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15508 * the first ire in the bucket for receiving and disables the 15509 * others. 15510 */ 15511 ill_mark_bcast(illgrp, 0, ipst); 15512 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15513 for (; ill != NULL; ill = ill->ill_group_next) { 15514 15515 for (ipif = ill->ill_ipif; ipif != NULL; 15516 ipif = ipif->ipif_next) { 15517 15518 if (!(ipif->ipif_flags & IPIF_UP) || 15519 ipif->ipif_subnet == 0) { 15520 continue; 15521 } 15522 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15523 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15524 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15525 } else { 15526 net_mask = htonl(IN_CLASSA_NET); 15527 } 15528 addr = net_mask & ipif->ipif_subnet; 15529 if (prev_net_addr == 0 || prev_net_addr != addr) { 15530 ill_mark_bcast(illgrp, addr, ipst); 15531 net_addr = ~net_mask | addr; 15532 ill_mark_bcast(illgrp, net_addr, ipst); 15533 } 15534 prev_net_addr = addr; 15535 15536 subnet_netmask = ipif->ipif_net_mask; 15537 addr = ipif->ipif_subnet; 15538 if (prev_subnet_addr == 0 || 15539 prev_subnet_addr != addr) { 15540 ill_mark_bcast(illgrp, addr, ipst); 15541 subnet_addr = ~subnet_netmask | addr; 15542 ill_mark_bcast(illgrp, subnet_addr, ipst); 15543 } 15544 prev_subnet_addr = addr; 15545 } 15546 } 15547 } 15548 15549 /* 15550 * This function is called while forming ill groups. 15551 * 15552 * Currently, we handle only allmulti groups. We want to join 15553 * allmulti on only one of the ills in the groups. In future, 15554 * when we have link aggregation, we may have to join normal 15555 * multicast groups on multiple ills as switch does inbound load 15556 * balancing. Following are the functions that calls this 15557 * function : 15558 * 15559 * 1) ill_recover_multicast : Interface is coming back UP. 15560 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15561 * will call ill_recover_multicast to recover all the multicast 15562 * groups. We need to make sure that only one member is joined 15563 * in the ill group. 15564 * 15565 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15566 * Somebody is joining allmulti. We need to make sure that only one 15567 * member is joined in the group. 15568 * 15569 * 3) illgrp_insert : If allmulti has already joined, we need to make 15570 * sure that only one member is joined in the group. 15571 * 15572 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15573 * allmulti who we have nominated. We need to pick someother ill. 15574 * 15575 * 5) illgrp_delete : The ill we nominated is leaving the group, 15576 * we need to pick a new ill to join the group. 15577 * 15578 * For (1), (2), (5) - we just have to check whether there is 15579 * a good ill joined in the group. If we could not find any ills 15580 * joined the group, we should join. 15581 * 15582 * For (4), the one that was nominated to receive, left the group. 15583 * There could be nobody joined in the group when this function is 15584 * called. 15585 * 15586 * For (3) - we need to explicitly check whether there are multiple 15587 * ills joined in the group. 15588 * 15589 * For simplicity, we don't differentiate any of the above cases. We 15590 * just leave the group if it is joined on any of them and join on 15591 * the first good ill. 15592 */ 15593 int 15594 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15595 { 15596 ilm_t *ilm; 15597 ill_t *ill; 15598 ill_t *fallback_inactive_ill = NULL; 15599 ill_t *fallback_failed_ill = NULL; 15600 int ret = 0; 15601 15602 /* 15603 * Leave the allmulti on all the ills and start fresh. 15604 */ 15605 for (ill = illgrp->illgrp_ill; ill != NULL; 15606 ill = ill->ill_group_next) { 15607 if (ill->ill_join_allmulti) 15608 (void) ip_leave_allmulti(ill->ill_ipif); 15609 } 15610 15611 /* 15612 * Choose a good ill. Fallback to inactive or failed if 15613 * none available. We need to fallback to FAILED in the 15614 * case where we have 2 interfaces in a group - where 15615 * one of them is failed and another is a good one and 15616 * the good one (not marked inactive) is leaving the group. 15617 */ 15618 ret = 0; 15619 for (ill = illgrp->illgrp_ill; ill != NULL; 15620 ill = ill->ill_group_next) { 15621 /* Never pick an offline interface */ 15622 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15623 continue; 15624 15625 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15626 fallback_failed_ill = ill; 15627 continue; 15628 } 15629 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15630 fallback_inactive_ill = ill; 15631 continue; 15632 } 15633 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15634 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15635 ret = ip_join_allmulti(ill->ill_ipif); 15636 /* 15637 * ip_join_allmulti can fail because of memory 15638 * failures. So, make sure we join at least 15639 * on one ill. 15640 */ 15641 if (ill->ill_join_allmulti) 15642 return (0); 15643 } 15644 } 15645 } 15646 if (ret != 0) { 15647 /* 15648 * If we tried nominating above and failed to do so, 15649 * return error. We might have tried multiple times. 15650 * But, return the latest error. 15651 */ 15652 return (ret); 15653 } 15654 if ((ill = fallback_inactive_ill) != NULL) { 15655 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15656 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15657 ret = ip_join_allmulti(ill->ill_ipif); 15658 return (ret); 15659 } 15660 } 15661 } else if ((ill = fallback_failed_ill) != NULL) { 15662 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15663 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15664 ret = ip_join_allmulti(ill->ill_ipif); 15665 return (ret); 15666 } 15667 } 15668 } 15669 return (0); 15670 } 15671 15672 /* 15673 * This function is called from illgrp_delete after it is 15674 * deleted from the group to reschedule responsibilities 15675 * to a different ill. 15676 */ 15677 static void 15678 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15679 { 15680 ilm_t *ilm; 15681 ipif_t *ipif; 15682 ipaddr_t subnet_addr; 15683 ipaddr_t net_addr; 15684 ipaddr_t net_mask = 0; 15685 ipaddr_t subnet_netmask; 15686 ipaddr_t addr; 15687 ip_stack_t *ipst = ill->ill_ipst; 15688 15689 ASSERT(ill->ill_group == NULL); 15690 /* 15691 * Broadcast Responsibility: 15692 * 15693 * 1. If this ill has been nominated for receiving broadcast 15694 * packets, we need to find a new one. Before we find a new 15695 * one, we need to re-group the ires that are part of this new 15696 * group (assumed by ill_nominate_bcast_rcv). We do this by 15697 * calling ill_group_bcast_for_xmit(ill) which will do the right 15698 * thing for us. 15699 * 15700 * 2. If this ill was not nominated for receiving broadcast 15701 * packets, we need to clear the IRE_MARK_NORECV flag 15702 * so that we continue to send up broadcast packets. 15703 */ 15704 if (!ill->ill_isv6) { 15705 /* 15706 * Case 1 above : No optimization here. Just redo the 15707 * nomination. 15708 */ 15709 ill_group_bcast_for_xmit(ill); 15710 ill_nominate_bcast_rcv(illgrp); 15711 15712 /* 15713 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15714 */ 15715 ill_clear_bcast_mark(ill, 0); 15716 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15717 15718 for (ipif = ill->ill_ipif; ipif != NULL; 15719 ipif = ipif->ipif_next) { 15720 15721 if (!(ipif->ipif_flags & IPIF_UP) || 15722 ipif->ipif_subnet == 0) { 15723 continue; 15724 } 15725 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15726 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15727 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15728 } else { 15729 net_mask = htonl(IN_CLASSA_NET); 15730 } 15731 addr = net_mask & ipif->ipif_subnet; 15732 ill_clear_bcast_mark(ill, addr); 15733 15734 net_addr = ~net_mask | addr; 15735 ill_clear_bcast_mark(ill, net_addr); 15736 15737 subnet_netmask = ipif->ipif_net_mask; 15738 addr = ipif->ipif_subnet; 15739 ill_clear_bcast_mark(ill, addr); 15740 15741 subnet_addr = ~subnet_netmask | addr; 15742 ill_clear_bcast_mark(ill, subnet_addr); 15743 } 15744 } 15745 15746 /* 15747 * Multicast Responsibility. 15748 * 15749 * If we have joined allmulti on this one, find a new member 15750 * in the group to join allmulti. As this ill is already part 15751 * of allmulti, we don't have to join on this one. 15752 * 15753 * If we have not joined allmulti on this one, there is no 15754 * responsibility to handoff. But we need to take new 15755 * responsibility i.e, join allmulti on this one if we need 15756 * to. 15757 */ 15758 if (ill->ill_join_allmulti) { 15759 (void) ill_nominate_mcast_rcv(illgrp); 15760 } else { 15761 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15762 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15763 (void) ip_join_allmulti(ill->ill_ipif); 15764 break; 15765 } 15766 } 15767 } 15768 15769 /* 15770 * We intentionally do the flushing of IRE_CACHES only matching 15771 * on the ill and not on groups. Note that we are already deleted 15772 * from the group. 15773 * 15774 * This will make sure that all IRE_CACHES whose stq is pointing 15775 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15776 * deleted and IRE_CACHES that are not pointing at this ill will 15777 * be left alone. 15778 */ 15779 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15780 illgrp_cache_delete, ill, ill); 15781 15782 /* 15783 * Some conn may have cached one of the IREs deleted above. By removing 15784 * the ire reference, we clean up the extra reference to the ill held in 15785 * ire->ire_stq. 15786 */ 15787 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15788 15789 /* 15790 * Re-do source address selection for all the members in the 15791 * group, if they borrowed source address from one of the ipifs 15792 * in this ill. 15793 */ 15794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15795 if (ill->ill_isv6) { 15796 ipif_update_other_ipifs_v6(ipif, illgrp); 15797 } else { 15798 ipif_update_other_ipifs(ipif, illgrp); 15799 } 15800 } 15801 } 15802 15803 /* 15804 * Delete the ill from the group. The caller makes sure that it is 15805 * in a group and it okay to delete from the group. So, we always 15806 * delete here. 15807 */ 15808 static void 15809 illgrp_delete(ill_t *ill) 15810 { 15811 ill_group_t *illgrp; 15812 ill_group_t *tmpg; 15813 ill_t *tmp_ill; 15814 ip_stack_t *ipst = ill->ill_ipst; 15815 15816 /* 15817 * Reset illgrp_ill_schednext if it was pointing at us. 15818 * We need to do this before we set ill_group to NULL. 15819 */ 15820 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15821 mutex_enter(&ill->ill_lock); 15822 15823 illgrp_reset_schednext(ill); 15824 15825 illgrp = ill->ill_group; 15826 15827 /* Delete the ill from illgrp. */ 15828 if (illgrp->illgrp_ill == ill) { 15829 illgrp->illgrp_ill = ill->ill_group_next; 15830 } else { 15831 tmp_ill = illgrp->illgrp_ill; 15832 while (tmp_ill->ill_group_next != ill) { 15833 tmp_ill = tmp_ill->ill_group_next; 15834 ASSERT(tmp_ill != NULL); 15835 } 15836 tmp_ill->ill_group_next = ill->ill_group_next; 15837 } 15838 ill->ill_group = NULL; 15839 ill->ill_group_next = NULL; 15840 15841 illgrp->illgrp_ill_count--; 15842 mutex_exit(&ill->ill_lock); 15843 rw_exit(&ipst->ips_ill_g_lock); 15844 15845 /* 15846 * As this ill is leaving the group, we need to hand off 15847 * the responsibilities to the other ills in the group, if 15848 * this ill had some responsibilities. 15849 */ 15850 15851 ill_handoff_responsibility(ill, illgrp); 15852 15853 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15854 15855 if (illgrp->illgrp_ill_count == 0) { 15856 15857 ASSERT(illgrp->illgrp_ill == NULL); 15858 if (ill->ill_isv6) { 15859 if (illgrp == ipst->ips_illgrp_head_v6) { 15860 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15861 } else { 15862 tmpg = ipst->ips_illgrp_head_v6; 15863 while (tmpg->illgrp_next != illgrp) { 15864 tmpg = tmpg->illgrp_next; 15865 ASSERT(tmpg != NULL); 15866 } 15867 tmpg->illgrp_next = illgrp->illgrp_next; 15868 } 15869 } else { 15870 if (illgrp == ipst->ips_illgrp_head_v4) { 15871 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15872 } else { 15873 tmpg = ipst->ips_illgrp_head_v4; 15874 while (tmpg->illgrp_next != illgrp) { 15875 tmpg = tmpg->illgrp_next; 15876 ASSERT(tmpg != NULL); 15877 } 15878 tmpg->illgrp_next = illgrp->illgrp_next; 15879 } 15880 } 15881 mutex_destroy(&illgrp->illgrp_lock); 15882 mi_free(illgrp); 15883 } 15884 rw_exit(&ipst->ips_ill_g_lock); 15885 15886 /* 15887 * Even though the ill is out of the group its not necessary 15888 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15889 * We will split the ipsq when phyint_groupname is set to NULL. 15890 */ 15891 15892 /* 15893 * Send a routing sockets message if we are deleting from 15894 * groups with names. 15895 */ 15896 if (ill->ill_phyint->phyint_groupname_len != 0) 15897 ip_rts_ifmsg(ill->ill_ipif); 15898 } 15899 15900 /* 15901 * Re-do source address selection. This is normally called when 15902 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15903 * ipif comes up. 15904 */ 15905 void 15906 ill_update_source_selection(ill_t *ill) 15907 { 15908 ipif_t *ipif; 15909 15910 ASSERT(IAM_WRITER_ILL(ill)); 15911 15912 if (ill->ill_group != NULL) 15913 ill = ill->ill_group->illgrp_ill; 15914 15915 for (; ill != NULL; ill = ill->ill_group_next) { 15916 for (ipif = ill->ill_ipif; ipif != NULL; 15917 ipif = ipif->ipif_next) { 15918 if (ill->ill_isv6) 15919 ipif_recreate_interface_routes_v6(NULL, ipif); 15920 else 15921 ipif_recreate_interface_routes(NULL, ipif); 15922 } 15923 } 15924 } 15925 15926 /* 15927 * Insert ill in a group headed by illgrp_head. The caller can either 15928 * pass a groupname in which case we search for a group with the 15929 * same name to insert in or pass a group to insert in. This function 15930 * would only search groups with names. 15931 * 15932 * NOTE : The caller should make sure that there is at least one ipif 15933 * UP on this ill so that illgrp_scheduler can pick this ill 15934 * for outbound packets. If ill_ipif_up_count is zero, we have 15935 * already sent a DL_UNBIND to the driver and we don't want to 15936 * send anymore packets. We don't assert for ipif_up_count 15937 * to be greater than zero, because ipif_up_done wants to call 15938 * this function before bumping up the ipif_up_count. See 15939 * ipif_up_done() for details. 15940 */ 15941 int 15942 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15943 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15944 { 15945 ill_group_t *illgrp; 15946 ill_t *prev_ill; 15947 phyint_t *phyi; 15948 ip_stack_t *ipst = ill->ill_ipst; 15949 15950 ASSERT(ill->ill_group == NULL); 15951 15952 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15953 mutex_enter(&ill->ill_lock); 15954 15955 if (groupname != NULL) { 15956 /* 15957 * Look for a group with a matching groupname to insert. 15958 */ 15959 for (illgrp = *illgrp_head; illgrp != NULL; 15960 illgrp = illgrp->illgrp_next) { 15961 15962 ill_t *tmp_ill; 15963 15964 /* 15965 * If we have an ill_group_t in the list which has 15966 * no ill_t assigned then we must be in the process of 15967 * removing this group. We skip this as illgrp_delete() 15968 * will remove it from the list. 15969 */ 15970 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15971 ASSERT(illgrp->illgrp_ill_count == 0); 15972 continue; 15973 } 15974 15975 ASSERT(tmp_ill->ill_phyint != NULL); 15976 phyi = tmp_ill->ill_phyint; 15977 /* 15978 * Look at groups which has names only. 15979 */ 15980 if (phyi->phyint_groupname_len == 0) 15981 continue; 15982 /* 15983 * Names are stored in the phyint common to both 15984 * IPv4 and IPv6. 15985 */ 15986 if (mi_strcmp(phyi->phyint_groupname, 15987 groupname) == 0) { 15988 break; 15989 } 15990 } 15991 } else { 15992 /* 15993 * If the caller passes in a NULL "grp_to_insert", we 15994 * allocate one below and insert this singleton. 15995 */ 15996 illgrp = grp_to_insert; 15997 } 15998 15999 ill->ill_group_next = NULL; 16000 16001 if (illgrp == NULL) { 16002 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16003 if (illgrp == NULL) { 16004 return (ENOMEM); 16005 } 16006 illgrp->illgrp_next = *illgrp_head; 16007 *illgrp_head = illgrp; 16008 illgrp->illgrp_ill = ill; 16009 illgrp->illgrp_ill_count = 1; 16010 ill->ill_group = illgrp; 16011 /* 16012 * Used in illgrp_scheduler to protect multiple threads 16013 * from traversing the list. 16014 */ 16015 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16016 } else { 16017 ASSERT(ill->ill_net_type == 16018 illgrp->illgrp_ill->ill_net_type); 16019 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16020 16021 /* Insert ill at tail of this group */ 16022 prev_ill = illgrp->illgrp_ill; 16023 while (prev_ill->ill_group_next != NULL) 16024 prev_ill = prev_ill->ill_group_next; 16025 prev_ill->ill_group_next = ill; 16026 ill->ill_group = illgrp; 16027 illgrp->illgrp_ill_count++; 16028 /* 16029 * Inherit group properties. Currently only forwarding 16030 * is the property we try to keep the same with all the 16031 * ills. When there are more, we will abstract this into 16032 * a function. 16033 */ 16034 ill->ill_flags &= ~ILLF_ROUTER; 16035 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16036 } 16037 mutex_exit(&ill->ill_lock); 16038 rw_exit(&ipst->ips_ill_g_lock); 16039 16040 /* 16041 * 1) When ipif_up_done() calls this function, ipif_up_count 16042 * may be zero as it has not yet been bumped. But the ires 16043 * have already been added. So, we do the nomination here 16044 * itself. But, when ip_sioctl_groupname calls this, it checks 16045 * for ill_ipif_up_count != 0. Thus we don't check for 16046 * ill_ipif_up_count here while nominating broadcast ires for 16047 * receive. 16048 * 16049 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16050 * to group them properly as ire_add() has already happened 16051 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16052 * case, we need to do it here anyway. 16053 */ 16054 if (!ill->ill_isv6) { 16055 ill_group_bcast_for_xmit(ill); 16056 ill_nominate_bcast_rcv(illgrp); 16057 } 16058 16059 if (!ipif_is_coming_up) { 16060 /* 16061 * When ipif_up_done() calls this function, the multicast 16062 * groups have not been joined yet. So, there is no point in 16063 * nomination. ip_join_allmulti will handle groups when 16064 * ill_recover_multicast is called from ipif_up_done() later. 16065 */ 16066 (void) ill_nominate_mcast_rcv(illgrp); 16067 /* 16068 * ipif_up_done calls ill_update_source_selection 16069 * anyway. Moreover, we don't want to re-create 16070 * interface routes while ipif_up_done() still has reference 16071 * to them. Refer to ipif_up_done() for more details. 16072 */ 16073 ill_update_source_selection(ill); 16074 } 16075 16076 /* 16077 * Send a routing sockets message if we are inserting into 16078 * groups with names. 16079 */ 16080 if (groupname != NULL) 16081 ip_rts_ifmsg(ill->ill_ipif); 16082 return (0); 16083 } 16084 16085 /* 16086 * Return the first phyint matching the groupname. There could 16087 * be more than one when there are ill groups. 16088 * 16089 * If 'usable' is set, then we exclude ones that are marked with any of 16090 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16091 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16092 * emulation of ipmp. 16093 */ 16094 phyint_t * 16095 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16096 { 16097 phyint_t *phyi; 16098 16099 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16100 /* 16101 * Group names are stored in the phyint - a common structure 16102 * to both IPv4 and IPv6. 16103 */ 16104 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16105 for (; phyi != NULL; 16106 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16107 phyi, AVL_AFTER)) { 16108 if (phyi->phyint_groupname_len == 0) 16109 continue; 16110 /* 16111 * Skip the ones that should not be used since the callers 16112 * sometime use this for sending packets. 16113 */ 16114 if (usable && (phyi->phyint_flags & 16115 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16116 continue; 16117 16118 ASSERT(phyi->phyint_groupname != NULL); 16119 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16120 return (phyi); 16121 } 16122 return (NULL); 16123 } 16124 16125 16126 /* 16127 * Return the first usable phyint matching the group index. By 'usable' 16128 * we exclude ones that are marked ununsable with any of 16129 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16130 * 16131 * Used only for the ipmp/netinfo emulation of ipmp. 16132 */ 16133 phyint_t * 16134 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16135 { 16136 phyint_t *phyi; 16137 16138 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16139 16140 if (!ipst->ips_ipmp_hook_emulation) 16141 return (NULL); 16142 16143 /* 16144 * Group indicies are stored in the phyint - a common structure 16145 * to both IPv4 and IPv6. 16146 */ 16147 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16148 for (; phyi != NULL; 16149 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16150 phyi, AVL_AFTER)) { 16151 /* Ignore the ones that do not have a group */ 16152 if (phyi->phyint_groupname_len == 0) 16153 continue; 16154 16155 ASSERT(phyi->phyint_group_ifindex != 0); 16156 /* 16157 * Skip the ones that should not be used since the callers 16158 * sometime use this for sending packets. 16159 */ 16160 if (phyi->phyint_flags & 16161 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16162 continue; 16163 if (phyi->phyint_group_ifindex == group_ifindex) 16164 return (phyi); 16165 } 16166 return (NULL); 16167 } 16168 16169 /* 16170 * MT notes on creation and deletion of IPMP groups 16171 * 16172 * Creation and deletion of IPMP groups introduce the need to merge or 16173 * split the associated serialization objects i.e the ipsq's. Normally all 16174 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16175 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16176 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16177 * is a need to change the <ill-ipsq> association and we have to operate on both 16178 * the source and destination IPMP groups. For eg. attempting to set the 16179 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16180 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16181 * source or destination IPMP group are mapped to a single ipsq for executing 16182 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16183 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16184 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16185 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16186 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16187 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16188 * 16189 * In the above example the ioctl handling code locates the current ipsq of hme0 16190 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16191 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16192 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16193 * the destination ipsq. If the destination ipsq is not busy, it also enters 16194 * the destination ipsq exclusively. Now the actual groupname setting operation 16195 * can proceed. If the destination ipsq is busy, the operation is enqueued 16196 * on the destination (merged) ipsq and will be handled in the unwind from 16197 * ipsq_exit. 16198 * 16199 * To prevent other threads accessing the ill while the group name change is 16200 * in progres, we bring down the ipifs which also removes the ill from the 16201 * group. The group is changed in phyint and when the first ipif on the ill 16202 * is brought up, the ill is inserted into the right IPMP group by 16203 * illgrp_insert. 16204 */ 16205 /* ARGSUSED */ 16206 int 16207 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16208 ip_ioctl_cmd_t *ipip, void *ifreq) 16209 { 16210 int i; 16211 char *tmp; 16212 int namelen; 16213 ill_t *ill = ipif->ipif_ill; 16214 ill_t *ill_v4, *ill_v6; 16215 int err = 0; 16216 phyint_t *phyi; 16217 phyint_t *phyi_tmp; 16218 struct lifreq *lifr; 16219 mblk_t *mp1; 16220 char *groupname; 16221 ipsq_t *ipsq; 16222 ip_stack_t *ipst = ill->ill_ipst; 16223 16224 ASSERT(IAM_WRITER_IPIF(ipif)); 16225 16226 /* Existance verified in ip_wput_nondata */ 16227 mp1 = mp->b_cont->b_cont; 16228 lifr = (struct lifreq *)mp1->b_rptr; 16229 groupname = lifr->lifr_groupname; 16230 16231 if (ipif->ipif_id != 0) 16232 return (EINVAL); 16233 16234 phyi = ill->ill_phyint; 16235 ASSERT(phyi != NULL); 16236 16237 if (phyi->phyint_flags & PHYI_VIRTUAL) 16238 return (EINVAL); 16239 16240 tmp = groupname; 16241 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16242 ; 16243 16244 if (i == LIFNAMSIZ) { 16245 /* no null termination */ 16246 return (EINVAL); 16247 } 16248 16249 /* 16250 * Calculate the namelen exclusive of the null 16251 * termination character. 16252 */ 16253 namelen = tmp - groupname; 16254 16255 ill_v4 = phyi->phyint_illv4; 16256 ill_v6 = phyi->phyint_illv6; 16257 16258 /* 16259 * ILL cannot be part of a usesrc group and and IPMP group at the 16260 * same time. No need to grab the ill_g_usesrc_lock here, see 16261 * synchronization notes in ip.c 16262 */ 16263 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16264 return (EINVAL); 16265 } 16266 16267 /* 16268 * mark the ill as changing. 16269 * this should queue all new requests on the syncq. 16270 */ 16271 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16272 16273 if (ill_v4 != NULL) 16274 ill_v4->ill_state_flags |= ILL_CHANGING; 16275 if (ill_v6 != NULL) 16276 ill_v6->ill_state_flags |= ILL_CHANGING; 16277 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16278 16279 if (namelen == 0) { 16280 /* 16281 * Null string means remove this interface from the 16282 * existing group. 16283 */ 16284 if (phyi->phyint_groupname_len == 0) { 16285 /* 16286 * Never was in a group. 16287 */ 16288 err = 0; 16289 goto done; 16290 } 16291 16292 /* 16293 * IPv4 or IPv6 may be temporarily out of the group when all 16294 * the ipifs are down. Thus, we need to check for ill_group to 16295 * be non-NULL. 16296 */ 16297 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16298 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16299 mutex_enter(&ill_v4->ill_lock); 16300 if (!ill_is_quiescent(ill_v4)) { 16301 /* 16302 * ipsq_pending_mp_add will not fail since 16303 * connp is NULL 16304 */ 16305 (void) ipsq_pending_mp_add(NULL, 16306 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16307 mutex_exit(&ill_v4->ill_lock); 16308 err = EINPROGRESS; 16309 goto done; 16310 } 16311 mutex_exit(&ill_v4->ill_lock); 16312 } 16313 16314 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16315 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16316 mutex_enter(&ill_v6->ill_lock); 16317 if (!ill_is_quiescent(ill_v6)) { 16318 (void) ipsq_pending_mp_add(NULL, 16319 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16320 mutex_exit(&ill_v6->ill_lock); 16321 err = EINPROGRESS; 16322 goto done; 16323 } 16324 mutex_exit(&ill_v6->ill_lock); 16325 } 16326 16327 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16328 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16329 mutex_enter(&phyi->phyint_lock); 16330 ASSERT(phyi->phyint_groupname != NULL); 16331 mi_free(phyi->phyint_groupname); 16332 phyi->phyint_groupname = NULL; 16333 phyi->phyint_groupname_len = 0; 16334 16335 /* Restore the ifindex used to be the per interface one */ 16336 phyi->phyint_group_ifindex = 0; 16337 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16338 mutex_exit(&phyi->phyint_lock); 16339 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16340 rw_exit(&ipst->ips_ill_g_lock); 16341 err = ill_up_ipifs(ill, q, mp); 16342 16343 /* 16344 * set the split flag so that the ipsq can be split 16345 */ 16346 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16347 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16348 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16349 16350 } else { 16351 if (phyi->phyint_groupname_len != 0) { 16352 ASSERT(phyi->phyint_groupname != NULL); 16353 /* Are we inserting in the same group ? */ 16354 if (mi_strcmp(groupname, 16355 phyi->phyint_groupname) == 0) { 16356 err = 0; 16357 goto done; 16358 } 16359 } 16360 16361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16362 /* 16363 * Merge ipsq for the group's. 16364 * This check is here as multiple groups/ills might be 16365 * sharing the same ipsq. 16366 * If we have to merege than the operation is restarted 16367 * on the new ipsq. 16368 */ 16369 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16370 if (phyi->phyint_ipsq != ipsq) { 16371 rw_exit(&ipst->ips_ill_g_lock); 16372 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16373 goto done; 16374 } 16375 /* 16376 * Running exclusive on new ipsq. 16377 */ 16378 16379 ASSERT(ipsq != NULL); 16380 ASSERT(ipsq->ipsq_writer == curthread); 16381 16382 /* 16383 * Check whether the ill_type and ill_net_type matches before 16384 * we allocate any memory so that the cleanup is easier. 16385 * 16386 * We can't group dissimilar ones as we can't load spread 16387 * packets across the group because of potential link-level 16388 * header differences. 16389 */ 16390 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16391 if (phyi_tmp != NULL) { 16392 if ((ill_v4 != NULL && 16393 phyi_tmp->phyint_illv4 != NULL) && 16394 ((ill_v4->ill_net_type != 16395 phyi_tmp->phyint_illv4->ill_net_type) || 16396 (ill_v4->ill_type != 16397 phyi_tmp->phyint_illv4->ill_type))) { 16398 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16399 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16400 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16401 rw_exit(&ipst->ips_ill_g_lock); 16402 return (EINVAL); 16403 } 16404 if ((ill_v6 != NULL && 16405 phyi_tmp->phyint_illv6 != NULL) && 16406 ((ill_v6->ill_net_type != 16407 phyi_tmp->phyint_illv6->ill_net_type) || 16408 (ill_v6->ill_type != 16409 phyi_tmp->phyint_illv6->ill_type))) { 16410 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16411 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16412 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16413 rw_exit(&ipst->ips_ill_g_lock); 16414 return (EINVAL); 16415 } 16416 } 16417 16418 rw_exit(&ipst->ips_ill_g_lock); 16419 16420 /* 16421 * bring down all v4 ipifs. 16422 */ 16423 if (ill_v4 != NULL) { 16424 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16425 } 16426 16427 /* 16428 * bring down all v6 ipifs. 16429 */ 16430 if (ill_v6 != NULL) { 16431 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16432 } 16433 16434 /* 16435 * make sure all ipifs are down and there are no active 16436 * references. Call to ipsq_pending_mp_add will not fail 16437 * since connp is NULL. 16438 */ 16439 if (ill_v4 != NULL) { 16440 mutex_enter(&ill_v4->ill_lock); 16441 if (!ill_is_quiescent(ill_v4)) { 16442 (void) ipsq_pending_mp_add(NULL, 16443 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16444 mutex_exit(&ill_v4->ill_lock); 16445 err = EINPROGRESS; 16446 goto done; 16447 } 16448 mutex_exit(&ill_v4->ill_lock); 16449 } 16450 16451 if (ill_v6 != NULL) { 16452 mutex_enter(&ill_v6->ill_lock); 16453 if (!ill_is_quiescent(ill_v6)) { 16454 (void) ipsq_pending_mp_add(NULL, 16455 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16456 mutex_exit(&ill_v6->ill_lock); 16457 err = EINPROGRESS; 16458 goto done; 16459 } 16460 mutex_exit(&ill_v6->ill_lock); 16461 } 16462 16463 /* 16464 * allocate including space for null terminator 16465 * before we insert. 16466 */ 16467 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16468 if (tmp == NULL) 16469 return (ENOMEM); 16470 16471 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16472 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16473 mutex_enter(&phyi->phyint_lock); 16474 if (phyi->phyint_groupname_len != 0) { 16475 ASSERT(phyi->phyint_groupname != NULL); 16476 mi_free(phyi->phyint_groupname); 16477 } 16478 16479 /* 16480 * setup the new group name. 16481 */ 16482 phyi->phyint_groupname = tmp; 16483 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16484 phyi->phyint_groupname_len = namelen + 1; 16485 16486 if (ipst->ips_ipmp_hook_emulation) { 16487 /* 16488 * If the group already exists we use the existing 16489 * group_ifindex, otherwise we pick a new index here. 16490 */ 16491 if (phyi_tmp != NULL) { 16492 phyi->phyint_group_ifindex = 16493 phyi_tmp->phyint_group_ifindex; 16494 } else { 16495 /* XXX We need a recovery strategy here. */ 16496 if (!ip_assign_ifindex( 16497 &phyi->phyint_group_ifindex, ipst)) 16498 cmn_err(CE_PANIC, 16499 "ip_assign_ifindex() failed"); 16500 } 16501 } 16502 /* 16503 * Select whether the netinfo and hook use the per-interface 16504 * or per-group ifindex. 16505 */ 16506 if (ipst->ips_ipmp_hook_emulation) 16507 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16508 else 16509 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16510 16511 if (ipst->ips_ipmp_hook_emulation && 16512 phyi_tmp != NULL) { 16513 /* First phyint in group - group PLUMB event */ 16514 ill_nic_info_plumb(ill, B_TRUE); 16515 } 16516 mutex_exit(&phyi->phyint_lock); 16517 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16518 rw_exit(&ipst->ips_ill_g_lock); 16519 16520 err = ill_up_ipifs(ill, q, mp); 16521 } 16522 16523 done: 16524 /* 16525 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16526 */ 16527 if (err != EINPROGRESS) { 16528 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16529 if (ill_v4 != NULL) 16530 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16531 if (ill_v6 != NULL) 16532 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16533 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16534 } 16535 return (err); 16536 } 16537 16538 /* ARGSUSED */ 16539 int 16540 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16541 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16542 { 16543 ill_t *ill; 16544 phyint_t *phyi; 16545 struct lifreq *lifr; 16546 mblk_t *mp1; 16547 16548 /* Existence verified in ip_wput_nondata */ 16549 mp1 = mp->b_cont->b_cont; 16550 lifr = (struct lifreq *)mp1->b_rptr; 16551 ill = ipif->ipif_ill; 16552 phyi = ill->ill_phyint; 16553 16554 lifr->lifr_groupname[0] = '\0'; 16555 /* 16556 * ill_group may be null if all the interfaces 16557 * are down. But still, the phyint should always 16558 * hold the name. 16559 */ 16560 if (phyi->phyint_groupname_len != 0) { 16561 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16562 phyi->phyint_groupname_len); 16563 } 16564 16565 return (0); 16566 } 16567 16568 16569 typedef struct conn_move_s { 16570 ill_t *cm_from_ill; 16571 ill_t *cm_to_ill; 16572 int cm_ifindex; 16573 } conn_move_t; 16574 16575 /* 16576 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16577 */ 16578 static void 16579 conn_move(conn_t *connp, caddr_t arg) 16580 { 16581 conn_move_t *connm; 16582 int ifindex; 16583 int i; 16584 ill_t *from_ill; 16585 ill_t *to_ill; 16586 ilg_t *ilg; 16587 ilm_t *ret_ilm; 16588 16589 connm = (conn_move_t *)arg; 16590 ifindex = connm->cm_ifindex; 16591 from_ill = connm->cm_from_ill; 16592 to_ill = connm->cm_to_ill; 16593 16594 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16595 16596 /* All multicast fields protected by conn_lock */ 16597 mutex_enter(&connp->conn_lock); 16598 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16599 if ((connp->conn_outgoing_ill == from_ill) && 16600 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16601 connp->conn_outgoing_ill = to_ill; 16602 connp->conn_incoming_ill = to_ill; 16603 } 16604 16605 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16606 16607 if ((connp->conn_multicast_ill == from_ill) && 16608 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16609 connp->conn_multicast_ill = connm->cm_to_ill; 16610 } 16611 16612 /* 16613 * Change the ilg_ill to point to the new one. This assumes 16614 * ilm_move_v6 has moved the ilms to new_ill and the driver 16615 * has been told to receive packets on this interface. 16616 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16617 * But when doing a FAILOVER, it might fail with ENOMEM and so 16618 * some ilms may not have moved. We check to see whether 16619 * the ilms have moved to to_ill. We can't check on from_ill 16620 * as in the process of moving, we could have split an ilm 16621 * in to two - which has the same orig_ifindex and v6group. 16622 * 16623 * For IPv4, ilg_ipif moves implicitly. The code below really 16624 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16625 */ 16626 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16627 ilg = &connp->conn_ilg[i]; 16628 if ((ilg->ilg_ill == from_ill) && 16629 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16630 /* ifindex != 0 indicates failback */ 16631 if (ifindex != 0) { 16632 connp->conn_ilg[i].ilg_ill = to_ill; 16633 continue; 16634 } 16635 16636 mutex_enter(&to_ill->ill_lock); 16637 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16638 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16639 connp->conn_zoneid); 16640 mutex_exit(&to_ill->ill_lock); 16641 16642 if (ret_ilm != NULL) 16643 connp->conn_ilg[i].ilg_ill = to_ill; 16644 } 16645 } 16646 mutex_exit(&connp->conn_lock); 16647 } 16648 16649 static void 16650 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16651 { 16652 conn_move_t connm; 16653 ip_stack_t *ipst = from_ill->ill_ipst; 16654 16655 connm.cm_from_ill = from_ill; 16656 connm.cm_to_ill = to_ill; 16657 connm.cm_ifindex = ifindex; 16658 16659 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16660 } 16661 16662 /* 16663 * ilm has been moved from from_ill to to_ill. 16664 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16665 * appropriately. 16666 * 16667 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16668 * the code there de-references ipif_ill to get the ill to 16669 * send multicast requests. It does not work as ipif is on its 16670 * move and already moved when this function is called. 16671 * Thus, we need to use from_ill and to_ill send down multicast 16672 * requests. 16673 */ 16674 static void 16675 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16676 { 16677 ipif_t *ipif; 16678 ilm_t *ilm; 16679 16680 /* 16681 * See whether we need to send down DL_ENABMULTI_REQ on 16682 * to_ill as ilm has just been added. 16683 */ 16684 ASSERT(IAM_WRITER_ILL(to_ill)); 16685 ASSERT(IAM_WRITER_ILL(from_ill)); 16686 16687 ILM_WALKER_HOLD(to_ill); 16688 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16689 16690 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16691 continue; 16692 /* 16693 * no locks held, ill/ipif cannot dissappear as long 16694 * as we are writer. 16695 */ 16696 ipif = to_ill->ill_ipif; 16697 /* 16698 * No need to hold any lock as we are the writer and this 16699 * can only be changed by a writer. 16700 */ 16701 ilm->ilm_is_new = B_FALSE; 16702 16703 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16704 ipif->ipif_flags & IPIF_POINTOPOINT) { 16705 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16706 "resolver\n")); 16707 continue; /* Must be IRE_IF_NORESOLVER */ 16708 } 16709 16710 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16711 ip1dbg(("ilm_send_multicast_reqs: " 16712 "to_ill MULTI_BCAST\n")); 16713 goto from; 16714 } 16715 16716 if (to_ill->ill_isv6) 16717 mld_joingroup(ilm); 16718 else 16719 igmp_joingroup(ilm); 16720 16721 if (to_ill->ill_ipif_up_count == 0) { 16722 /* 16723 * Nobody there. All multicast addresses will be 16724 * re-joined when we get the DL_BIND_ACK bringing the 16725 * interface up. 16726 */ 16727 ilm->ilm_notify_driver = B_FALSE; 16728 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16729 goto from; 16730 } 16731 16732 /* 16733 * For allmulti address, we want to join on only one interface. 16734 * Checking for ilm_numentries_v6 is not correct as you may 16735 * find an ilm with zero address on to_ill, but we may not 16736 * have nominated to_ill for receiving. Thus, if we have 16737 * nominated from_ill (ill_join_allmulti is set), nominate 16738 * only if to_ill is not already nominated (to_ill normally 16739 * should not have been nominated if "from_ill" has already 16740 * been nominated. As we don't prevent failovers from happening 16741 * across groups, we don't assert). 16742 */ 16743 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16744 /* 16745 * There is no need to hold ill locks as we are 16746 * writer on both ills and when ill_join_allmulti 16747 * is changed the thread is always a writer. 16748 */ 16749 if (from_ill->ill_join_allmulti && 16750 !to_ill->ill_join_allmulti) { 16751 (void) ip_join_allmulti(to_ill->ill_ipif); 16752 } 16753 } else if (ilm->ilm_notify_driver) { 16754 16755 /* 16756 * This is a newly moved ilm so we need to tell the 16757 * driver about the new group. There can be more than 16758 * one ilm's for the same group in the list each with a 16759 * different orig_ifindex. We have to inform the driver 16760 * once. In ilm_move_v[4,6] we only set the flag 16761 * ilm_notify_driver for the first ilm. 16762 */ 16763 16764 (void) ip_ll_send_enabmulti_req(to_ill, 16765 &ilm->ilm_v6addr); 16766 } 16767 16768 ilm->ilm_notify_driver = B_FALSE; 16769 16770 /* 16771 * See whether we need to send down DL_DISABMULTI_REQ on 16772 * from_ill as ilm has just been removed. 16773 */ 16774 from: 16775 ipif = from_ill->ill_ipif; 16776 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16777 ipif->ipif_flags & IPIF_POINTOPOINT) { 16778 ip1dbg(("ilm_send_multicast_reqs: " 16779 "from_ill not resolver\n")); 16780 continue; /* Must be IRE_IF_NORESOLVER */ 16781 } 16782 16783 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16784 ip1dbg(("ilm_send_multicast_reqs: " 16785 "from_ill MULTI_BCAST\n")); 16786 continue; 16787 } 16788 16789 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16790 if (from_ill->ill_join_allmulti) 16791 (void) ip_leave_allmulti(from_ill->ill_ipif); 16792 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16793 (void) ip_ll_send_disabmulti_req(from_ill, 16794 &ilm->ilm_v6addr); 16795 } 16796 } 16797 ILM_WALKER_RELE(to_ill); 16798 } 16799 16800 /* 16801 * This function is called when all multicast memberships needs 16802 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16803 * called only once unlike the IPv4 counterpart where it is called after 16804 * every logical interface is moved. The reason is due to multicast 16805 * memberships are joined using an interface address in IPv4 while in 16806 * IPv6, interface index is used. 16807 */ 16808 static void 16809 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16810 { 16811 ilm_t *ilm; 16812 ilm_t *ilm_next; 16813 ilm_t *new_ilm; 16814 ilm_t **ilmp; 16815 int count; 16816 char buf[INET6_ADDRSTRLEN]; 16817 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16818 ip_stack_t *ipst = from_ill->ill_ipst; 16819 16820 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16821 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16822 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16823 16824 if (ifindex == 0) { 16825 /* 16826 * Form the solicited node mcast address which is used later. 16827 */ 16828 ipif_t *ipif; 16829 16830 ipif = from_ill->ill_ipif; 16831 ASSERT(ipif->ipif_id == 0); 16832 16833 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16834 } 16835 16836 ilmp = &from_ill->ill_ilm; 16837 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16838 ilm_next = ilm->ilm_next; 16839 16840 if (ilm->ilm_flags & ILM_DELETED) { 16841 ilmp = &ilm->ilm_next; 16842 continue; 16843 } 16844 16845 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16846 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16847 ASSERT(ilm->ilm_orig_ifindex != 0); 16848 if (ilm->ilm_orig_ifindex == ifindex) { 16849 /* 16850 * We are failing back multicast memberships. 16851 * If the same ilm exists in to_ill, it means somebody 16852 * has joined the same group there e.g. ff02::1 16853 * is joined within the kernel when the interfaces 16854 * came UP. 16855 */ 16856 ASSERT(ilm->ilm_ipif == NULL); 16857 if (new_ilm != NULL) { 16858 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16859 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16860 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16861 new_ilm->ilm_is_new = B_TRUE; 16862 } 16863 } else { 16864 /* 16865 * check if we can just move the ilm 16866 */ 16867 if (from_ill->ill_ilm_walker_cnt != 0) { 16868 /* 16869 * We have walkers we cannot move 16870 * the ilm, so allocate a new ilm, 16871 * this (old) ilm will be marked 16872 * ILM_DELETED at the end of the loop 16873 * and will be freed when the 16874 * last walker exits. 16875 */ 16876 new_ilm = (ilm_t *)mi_zalloc 16877 (sizeof (ilm_t)); 16878 if (new_ilm == NULL) { 16879 ip0dbg(("ilm_move_v6: " 16880 "FAILBACK of IPv6" 16881 " multicast address %s : " 16882 "from %s to" 16883 " %s failed : ENOMEM \n", 16884 inet_ntop(AF_INET6, 16885 &ilm->ilm_v6addr, buf, 16886 sizeof (buf)), 16887 from_ill->ill_name, 16888 to_ill->ill_name)); 16889 16890 ilmp = &ilm->ilm_next; 16891 continue; 16892 } 16893 *new_ilm = *ilm; 16894 /* 16895 * we don't want new_ilm linked to 16896 * ilm's filter list. 16897 */ 16898 new_ilm->ilm_filter = NULL; 16899 } else { 16900 /* 16901 * No walkers we can move the ilm. 16902 * lets take it out of the list. 16903 */ 16904 *ilmp = ilm->ilm_next; 16905 ilm->ilm_next = NULL; 16906 DTRACE_PROBE3(ill__decr__cnt, 16907 (ill_t *), from_ill, 16908 (char *), "ilm", (void *), ilm); 16909 ASSERT(from_ill->ill_ilm_cnt > 0); 16910 from_ill->ill_ilm_cnt--; 16911 16912 new_ilm = ilm; 16913 } 16914 16915 /* 16916 * if this is the first ilm for the group 16917 * set ilm_notify_driver so that we notify the 16918 * driver in ilm_send_multicast_reqs. 16919 */ 16920 if (ilm_lookup_ill_v6(to_ill, 16921 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16922 new_ilm->ilm_notify_driver = B_TRUE; 16923 16924 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16925 (char *), "ilm", (void *), new_ilm); 16926 new_ilm->ilm_ill = to_ill; 16927 to_ill->ill_ilm_cnt++; 16928 16929 /* Add to the to_ill's list */ 16930 new_ilm->ilm_next = to_ill->ill_ilm; 16931 to_ill->ill_ilm = new_ilm; 16932 /* 16933 * set the flag so that mld_joingroup is 16934 * called in ilm_send_multicast_reqs(). 16935 */ 16936 new_ilm->ilm_is_new = B_TRUE; 16937 } 16938 goto bottom; 16939 } else if (ifindex != 0) { 16940 /* 16941 * If this is FAILBACK (ifindex != 0) and the ifindex 16942 * has not matched above, look at the next ilm. 16943 */ 16944 ilmp = &ilm->ilm_next; 16945 continue; 16946 } 16947 /* 16948 * If we are here, it means ifindex is 0. Failover 16949 * everything. 16950 * 16951 * We need to handle solicited node mcast address 16952 * and all_nodes mcast address differently as they 16953 * are joined witin the kenrel (ipif_multicast_up) 16954 * and potentially from the userland. We are called 16955 * after the ipifs of from_ill has been moved. 16956 * If we still find ilms on ill with solicited node 16957 * mcast address or all_nodes mcast address, it must 16958 * belong to the UP interface that has not moved e.g. 16959 * ipif_id 0 with the link local prefix does not move. 16960 * We join this on the new ill accounting for all the 16961 * userland memberships so that applications don't 16962 * see any failure. 16963 * 16964 * We need to make sure that we account only for the 16965 * solicited node and all node multicast addresses 16966 * that was brought UP on these. In the case of 16967 * a failover from A to B, we might have ilms belonging 16968 * to A (ilm_orig_ifindex pointing at A) on B accounting 16969 * for the membership from the userland. If we are failing 16970 * over from B to C now, we will find the ones belonging 16971 * to A on B. These don't account for the ill_ipif_up_count. 16972 * They just move from B to C. The check below on 16973 * ilm_orig_ifindex ensures that. 16974 */ 16975 if ((ilm->ilm_orig_ifindex == 16976 from_ill->ill_phyint->phyint_ifindex) && 16977 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16978 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16979 &ilm->ilm_v6addr))) { 16980 ASSERT(ilm->ilm_refcnt > 0); 16981 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16982 /* 16983 * For indentation reasons, we are not using a 16984 * "else" here. 16985 */ 16986 if (count == 0) { 16987 ilmp = &ilm->ilm_next; 16988 continue; 16989 } 16990 ilm->ilm_refcnt -= count; 16991 if (new_ilm != NULL) { 16992 /* 16993 * Can find one with the same 16994 * ilm_orig_ifindex, if we are failing 16995 * over to a STANDBY. This happens 16996 * when somebody wants to join a group 16997 * on a STANDBY interface and we 16998 * internally join on a different one. 16999 * If we had joined on from_ill then, a 17000 * failover now will find a new ilm 17001 * with this index. 17002 */ 17003 ip1dbg(("ilm_move_v6: FAILOVER, found" 17004 " new ilm on %s, group address %s\n", 17005 to_ill->ill_name, 17006 inet_ntop(AF_INET6, 17007 &ilm->ilm_v6addr, buf, 17008 sizeof (buf)))); 17009 new_ilm->ilm_refcnt += count; 17010 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17011 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17012 new_ilm->ilm_is_new = B_TRUE; 17013 } 17014 } else { 17015 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17016 if (new_ilm == NULL) { 17017 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17018 " multicast address %s : from %s to" 17019 " %s failed : ENOMEM \n", 17020 inet_ntop(AF_INET6, 17021 &ilm->ilm_v6addr, buf, 17022 sizeof (buf)), from_ill->ill_name, 17023 to_ill->ill_name)); 17024 ilmp = &ilm->ilm_next; 17025 continue; 17026 } 17027 *new_ilm = *ilm; 17028 new_ilm->ilm_filter = NULL; 17029 new_ilm->ilm_refcnt = count; 17030 new_ilm->ilm_timer = INFINITY; 17031 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17032 new_ilm->ilm_is_new = B_TRUE; 17033 /* 17034 * If the to_ill has not joined this 17035 * group we need to tell the driver in 17036 * ill_send_multicast_reqs. 17037 */ 17038 if (ilm_lookup_ill_v6(to_ill, 17039 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17040 new_ilm->ilm_notify_driver = B_TRUE; 17041 17042 new_ilm->ilm_ill = to_ill; 17043 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17044 (char *), "ilm", (void *), new_ilm); 17045 to_ill->ill_ilm_cnt++; 17046 17047 /* Add to the to_ill's list */ 17048 new_ilm->ilm_next = to_ill->ill_ilm; 17049 to_ill->ill_ilm = new_ilm; 17050 ASSERT(new_ilm->ilm_ipif == NULL); 17051 } 17052 if (ilm->ilm_refcnt == 0) { 17053 goto bottom; 17054 } else { 17055 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17056 CLEAR_SLIST(new_ilm->ilm_filter); 17057 ilmp = &ilm->ilm_next; 17058 } 17059 continue; 17060 } else { 17061 /* 17062 * ifindex = 0 means, move everything pointing at 17063 * from_ill. We are doing this becuase ill has 17064 * either FAILED or became INACTIVE. 17065 * 17066 * As we would like to move things later back to 17067 * from_ill, we want to retain the identity of this 17068 * ilm. Thus, we don't blindly increment the reference 17069 * count on the ilms matching the address alone. We 17070 * need to match on the ilm_orig_index also. new_ilm 17071 * was obtained by matching ilm_orig_index also. 17072 */ 17073 if (new_ilm != NULL) { 17074 /* 17075 * This is possible only if a previous restore 17076 * was incomplete i.e restore to 17077 * ilm_orig_ifindex left some ilms because 17078 * of some failures. Thus when we are failing 17079 * again, we might find our old friends there. 17080 */ 17081 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17082 " on %s, group address %s\n", 17083 to_ill->ill_name, 17084 inet_ntop(AF_INET6, 17085 &ilm->ilm_v6addr, buf, 17086 sizeof (buf)))); 17087 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17088 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17089 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17090 new_ilm->ilm_is_new = B_TRUE; 17091 } 17092 } else { 17093 if (from_ill->ill_ilm_walker_cnt != 0) { 17094 new_ilm = (ilm_t *) 17095 mi_zalloc(sizeof (ilm_t)); 17096 if (new_ilm == NULL) { 17097 ip0dbg(("ilm_move_v6: " 17098 "FAILOVER of IPv6" 17099 " multicast address %s : " 17100 "from %s to" 17101 " %s failed : ENOMEM \n", 17102 inet_ntop(AF_INET6, 17103 &ilm->ilm_v6addr, buf, 17104 sizeof (buf)), 17105 from_ill->ill_name, 17106 to_ill->ill_name)); 17107 17108 ilmp = &ilm->ilm_next; 17109 continue; 17110 } 17111 *new_ilm = *ilm; 17112 new_ilm->ilm_filter = NULL; 17113 } else { 17114 *ilmp = ilm->ilm_next; 17115 DTRACE_PROBE3(ill__decr__cnt, 17116 (ill_t *), from_ill, 17117 (char *), "ilm", (void *), ilm); 17118 ASSERT(from_ill->ill_ilm_cnt > 0); 17119 from_ill->ill_ilm_cnt--; 17120 17121 new_ilm = ilm; 17122 } 17123 /* 17124 * If the to_ill has not joined this 17125 * group we need to tell the driver in 17126 * ill_send_multicast_reqs. 17127 */ 17128 if (ilm_lookup_ill_v6(to_ill, 17129 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17130 new_ilm->ilm_notify_driver = B_TRUE; 17131 17132 /* Add to the to_ill's list */ 17133 new_ilm->ilm_next = to_ill->ill_ilm; 17134 to_ill->ill_ilm = new_ilm; 17135 ASSERT(ilm->ilm_ipif == NULL); 17136 new_ilm->ilm_ill = to_ill; 17137 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17138 (char *), "ilm", (void *), new_ilm); 17139 to_ill->ill_ilm_cnt++; 17140 new_ilm->ilm_is_new = B_TRUE; 17141 } 17142 17143 } 17144 17145 bottom: 17146 /* 17147 * Revert multicast filter state to (EXCLUDE, NULL). 17148 * new_ilm->ilm_is_new should already be set if needed. 17149 */ 17150 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17151 CLEAR_SLIST(new_ilm->ilm_filter); 17152 /* 17153 * We allocated/got a new ilm, free the old one. 17154 */ 17155 if (new_ilm != ilm) { 17156 if (from_ill->ill_ilm_walker_cnt == 0) { 17157 *ilmp = ilm->ilm_next; 17158 17159 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17160 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17161 from_ill, (char *), "ilm", (void *), ilm); 17162 ASSERT(from_ill->ill_ilm_cnt > 0); 17163 from_ill->ill_ilm_cnt--; 17164 17165 ilm_inactive(ilm); /* frees this ilm */ 17166 17167 } else { 17168 ilm->ilm_flags |= ILM_DELETED; 17169 from_ill->ill_ilm_cleanup_reqd = 1; 17170 ilmp = &ilm->ilm_next; 17171 } 17172 } 17173 } 17174 } 17175 17176 /* 17177 * Move all the multicast memberships to to_ill. Called when 17178 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17179 * different from IPv6 counterpart as multicast memberships are associated 17180 * with ills in IPv6. This function is called after every ipif is moved 17181 * unlike IPv6, where it is moved only once. 17182 */ 17183 static void 17184 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17185 { 17186 ilm_t *ilm; 17187 ilm_t *ilm_next; 17188 ilm_t *new_ilm; 17189 ilm_t **ilmp; 17190 ip_stack_t *ipst = from_ill->ill_ipst; 17191 17192 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17193 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17194 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17195 17196 ilmp = &from_ill->ill_ilm; 17197 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17198 ilm_next = ilm->ilm_next; 17199 17200 if (ilm->ilm_flags & ILM_DELETED) { 17201 ilmp = &ilm->ilm_next; 17202 continue; 17203 } 17204 17205 ASSERT(ilm->ilm_ipif != NULL); 17206 17207 if (ilm->ilm_ipif != ipif) { 17208 ilmp = &ilm->ilm_next; 17209 continue; 17210 } 17211 17212 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17213 htonl(INADDR_ALLHOSTS_GROUP)) { 17214 new_ilm = ilm_lookup_ipif(ipif, 17215 V4_PART_OF_V6(ilm->ilm_v6addr)); 17216 if (new_ilm != NULL) { 17217 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17218 /* 17219 * We still need to deal with the from_ill. 17220 */ 17221 new_ilm->ilm_is_new = B_TRUE; 17222 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17223 CLEAR_SLIST(new_ilm->ilm_filter); 17224 ASSERT(ilm->ilm_ipif == ipif); 17225 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17226 if (from_ill->ill_ilm_walker_cnt == 0) { 17227 DTRACE_PROBE3(ill__decr__cnt, 17228 (ill_t *), from_ill, 17229 (char *), "ilm", (void *), ilm); 17230 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17231 } 17232 goto delete_ilm; 17233 } 17234 /* 17235 * If we could not find one e.g. ipif is 17236 * still down on to_ill, we add this ilm 17237 * on ill_new to preserve the reference 17238 * count. 17239 */ 17240 } 17241 /* 17242 * When ipifs move, ilms always move with it 17243 * to the NEW ill. Thus we should never be 17244 * able to find ilm till we really move it here. 17245 */ 17246 ASSERT(ilm_lookup_ipif(ipif, 17247 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17248 17249 if (from_ill->ill_ilm_walker_cnt != 0) { 17250 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17251 if (new_ilm == NULL) { 17252 char buf[INET6_ADDRSTRLEN]; 17253 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17254 " multicast address %s : " 17255 "from %s to" 17256 " %s failed : ENOMEM \n", 17257 inet_ntop(AF_INET, 17258 &ilm->ilm_v6addr, buf, 17259 sizeof (buf)), 17260 from_ill->ill_name, 17261 to_ill->ill_name)); 17262 17263 ilmp = &ilm->ilm_next; 17264 continue; 17265 } 17266 *new_ilm = *ilm; 17267 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17268 (char *), "ilm", (void *), ilm); 17269 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17270 /* We don't want new_ilm linked to ilm's filter list */ 17271 new_ilm->ilm_filter = NULL; 17272 } else { 17273 /* Remove from the list */ 17274 *ilmp = ilm->ilm_next; 17275 new_ilm = ilm; 17276 } 17277 17278 /* 17279 * If we have never joined this group on the to_ill 17280 * make sure we tell the driver. 17281 */ 17282 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17283 ALL_ZONES) == NULL) 17284 new_ilm->ilm_notify_driver = B_TRUE; 17285 17286 /* Add to the to_ill's list */ 17287 new_ilm->ilm_next = to_ill->ill_ilm; 17288 to_ill->ill_ilm = new_ilm; 17289 new_ilm->ilm_is_new = B_TRUE; 17290 17291 /* 17292 * Revert multicast filter state to (EXCLUDE, NULL) 17293 */ 17294 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17295 CLEAR_SLIST(new_ilm->ilm_filter); 17296 17297 /* 17298 * Delete only if we have allocated a new ilm. 17299 */ 17300 if (new_ilm != ilm) { 17301 delete_ilm: 17302 if (from_ill->ill_ilm_walker_cnt == 0) { 17303 /* Remove from the list */ 17304 *ilmp = ilm->ilm_next; 17305 ilm->ilm_next = NULL; 17306 DTRACE_PROBE3(ipif__decr__cnt, 17307 (ipif_t *), ilm->ilm_ipif, 17308 (char *), "ilm", (void *), ilm); 17309 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17310 ilm->ilm_ipif->ipif_ilm_cnt--; 17311 ilm_inactive(ilm); 17312 } else { 17313 ilm->ilm_flags |= ILM_DELETED; 17314 from_ill->ill_ilm_cleanup_reqd = 1; 17315 ilmp = &ilm->ilm_next; 17316 } 17317 } 17318 } 17319 } 17320 17321 static uint_t 17322 ipif_get_id(ill_t *ill, uint_t id) 17323 { 17324 uint_t unit; 17325 ipif_t *tipif; 17326 boolean_t found = B_FALSE; 17327 ip_stack_t *ipst = ill->ill_ipst; 17328 17329 /* 17330 * During failback, we want to go back to the same id 17331 * instead of the smallest id so that the original 17332 * configuration is maintained. id is non-zero in that 17333 * case. 17334 */ 17335 if (id != 0) { 17336 /* 17337 * While failing back, if we still have an ipif with 17338 * MAX_ADDRS_PER_IF, it means this will be replaced 17339 * as soon as we return from this function. It was 17340 * to set to MAX_ADDRS_PER_IF by the caller so that 17341 * we can choose the smallest id. Thus we return zero 17342 * in that case ignoring the hint. 17343 */ 17344 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17345 return (0); 17346 for (tipif = ill->ill_ipif; tipif != NULL; 17347 tipif = tipif->ipif_next) { 17348 if (tipif->ipif_id == id) { 17349 found = B_TRUE; 17350 break; 17351 } 17352 } 17353 /* 17354 * If somebody already plumbed another logical 17355 * with the same id, we won't be able to find it. 17356 */ 17357 if (!found) 17358 return (id); 17359 } 17360 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17361 found = B_FALSE; 17362 for (tipif = ill->ill_ipif; tipif != NULL; 17363 tipif = tipif->ipif_next) { 17364 if (tipif->ipif_id == unit) { 17365 found = B_TRUE; 17366 break; 17367 } 17368 } 17369 if (!found) 17370 break; 17371 } 17372 return (unit); 17373 } 17374 17375 /* ARGSUSED */ 17376 static int 17377 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17378 ipif_t **rep_ipif_ptr) 17379 { 17380 ill_t *from_ill; 17381 ipif_t *rep_ipif; 17382 uint_t unit; 17383 int err = 0; 17384 ipif_t *to_ipif; 17385 struct iocblk *iocp; 17386 boolean_t failback_cmd; 17387 boolean_t remove_ipif; 17388 int rc; 17389 ip_stack_t *ipst; 17390 17391 ASSERT(IAM_WRITER_ILL(to_ill)); 17392 ASSERT(IAM_WRITER_IPIF(ipif)); 17393 17394 iocp = (struct iocblk *)mp->b_rptr; 17395 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17396 remove_ipif = B_FALSE; 17397 17398 from_ill = ipif->ipif_ill; 17399 ipst = from_ill->ill_ipst; 17400 17401 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17402 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17403 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17404 17405 /* 17406 * Don't move LINK LOCAL addresses as they are tied to 17407 * physical interface. 17408 */ 17409 if (from_ill->ill_isv6 && 17410 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17411 ipif->ipif_was_up = B_FALSE; 17412 IPIF_UNMARK_MOVING(ipif); 17413 return (0); 17414 } 17415 17416 /* 17417 * We set the ipif_id to maximum so that the search for 17418 * ipif_id will pick the lowest number i.e 0 in the 17419 * following 2 cases : 17420 * 17421 * 1) We have a replacement ipif at the head of to_ill. 17422 * We can't remove it yet as we can exceed ip_addrs_per_if 17423 * on to_ill and hence the MOVE might fail. We want to 17424 * remove it only if we could move the ipif. Thus, by 17425 * setting it to the MAX value, we make the search in 17426 * ipif_get_id return the zeroth id. 17427 * 17428 * 2) When DR pulls out the NIC and re-plumbs the interface, 17429 * we might just have a zero address plumbed on the ipif 17430 * with zero id in the case of IPv4. We remove that while 17431 * doing the failback. We want to remove it only if we 17432 * could move the ipif. Thus, by setting it to the MAX 17433 * value, we make the search in ipif_get_id return the 17434 * zeroth id. 17435 * 17436 * Both (1) and (2) are done only when when we are moving 17437 * an ipif (either due to failover/failback) which originally 17438 * belonged to this interface i.e the ipif_orig_ifindex is 17439 * the same as to_ill's ifindex. This is needed so that 17440 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17441 * from B -> A (B is being removed from the group) and 17442 * FAILBACK from A -> B restores the original configuration. 17443 * Without the check for orig_ifindex, the second FAILOVER 17444 * could make the ipif belonging to B replace the A's zeroth 17445 * ipif and the subsequent failback re-creating the replacement 17446 * ipif again. 17447 * 17448 * NOTE : We created the replacement ipif when we did a 17449 * FAILOVER (See below). We could check for FAILBACK and 17450 * then look for replacement ipif to be removed. But we don't 17451 * want to do that because we wan't to allow the possibility 17452 * of a FAILOVER from A -> B (which creates the replacement ipif), 17453 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17454 * from B -> A. 17455 */ 17456 to_ipif = to_ill->ill_ipif; 17457 if ((to_ill->ill_phyint->phyint_ifindex == 17458 ipif->ipif_orig_ifindex) && 17459 to_ipif->ipif_replace_zero) { 17460 ASSERT(to_ipif->ipif_id == 0); 17461 remove_ipif = B_TRUE; 17462 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17463 } 17464 /* 17465 * Find the lowest logical unit number on the to_ill. 17466 * If we are failing back, try to get the original id 17467 * rather than the lowest one so that the original 17468 * configuration is maintained. 17469 * 17470 * XXX need a better scheme for this. 17471 */ 17472 if (failback_cmd) { 17473 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17474 } else { 17475 unit = ipif_get_id(to_ill, 0); 17476 } 17477 17478 /* Reset back to zero in case we fail below */ 17479 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17480 to_ipif->ipif_id = 0; 17481 17482 if (unit == ipst->ips_ip_addrs_per_if) { 17483 ipif->ipif_was_up = B_FALSE; 17484 IPIF_UNMARK_MOVING(ipif); 17485 return (EINVAL); 17486 } 17487 17488 /* 17489 * ipif is ready to move from "from_ill" to "to_ill". 17490 * 17491 * 1) If we are moving ipif with id zero, create a 17492 * replacement ipif for this ipif on from_ill. If this fails 17493 * fail the MOVE operation. 17494 * 17495 * 2) Remove the replacement ipif on to_ill if any. 17496 * We could remove the replacement ipif when we are moving 17497 * the ipif with id zero. But what if somebody already 17498 * unplumbed it ? Thus we always remove it if it is present. 17499 * We want to do it only if we are sure we are going to 17500 * move the ipif to to_ill which is why there are no 17501 * returns due to error till ipif is linked to to_ill. 17502 * Note that the first ipif that we failback will always 17503 * be zero if it is present. 17504 */ 17505 if (ipif->ipif_id == 0) { 17506 ipaddr_t inaddr_any = INADDR_ANY; 17507 17508 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17509 if (rep_ipif == NULL) { 17510 ipif->ipif_was_up = B_FALSE; 17511 IPIF_UNMARK_MOVING(ipif); 17512 return (ENOMEM); 17513 } 17514 *rep_ipif = ipif_zero; 17515 /* 17516 * Before we put the ipif on the list, store the addresses 17517 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17518 * assumes so. This logic is not any different from what 17519 * ipif_allocate does. 17520 */ 17521 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17522 &rep_ipif->ipif_v6lcl_addr); 17523 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17524 &rep_ipif->ipif_v6src_addr); 17525 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17526 &rep_ipif->ipif_v6subnet); 17527 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17528 &rep_ipif->ipif_v6net_mask); 17529 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17530 &rep_ipif->ipif_v6brd_addr); 17531 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17532 &rep_ipif->ipif_v6pp_dst_addr); 17533 /* 17534 * We mark IPIF_NOFAILOVER so that this can never 17535 * move. 17536 */ 17537 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17538 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17539 rep_ipif->ipif_replace_zero = B_TRUE; 17540 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17541 MUTEX_DEFAULT, NULL); 17542 rep_ipif->ipif_id = 0; 17543 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17544 rep_ipif->ipif_ill = from_ill; 17545 rep_ipif->ipif_orig_ifindex = 17546 from_ill->ill_phyint->phyint_ifindex; 17547 /* Insert at head */ 17548 rep_ipif->ipif_next = from_ill->ill_ipif; 17549 from_ill->ill_ipif = rep_ipif; 17550 /* 17551 * We don't really care to let apps know about 17552 * this interface. 17553 */ 17554 } 17555 17556 if (remove_ipif) { 17557 /* 17558 * We set to a max value above for this case to get 17559 * id zero. ASSERT that we did get one. 17560 */ 17561 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17562 rep_ipif = to_ipif; 17563 to_ill->ill_ipif = rep_ipif->ipif_next; 17564 rep_ipif->ipif_next = NULL; 17565 /* 17566 * If some apps scanned and find this interface, 17567 * it is time to let them know, so that they can 17568 * delete it. 17569 */ 17570 17571 *rep_ipif_ptr = rep_ipif; 17572 } 17573 17574 /* Get it out of the ILL interface list. */ 17575 ipif_remove(ipif, B_FALSE); 17576 17577 /* Assign the new ill */ 17578 ipif->ipif_ill = to_ill; 17579 ipif->ipif_id = unit; 17580 /* id has already been checked */ 17581 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17582 ASSERT(rc == 0); 17583 /* Let SCTP update its list */ 17584 sctp_move_ipif(ipif, from_ill, to_ill); 17585 /* 17586 * Handle the failover and failback of ipif_t between 17587 * ill_t that have differing maximum mtu values. 17588 */ 17589 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17590 if (ipif->ipif_saved_mtu == 0) { 17591 /* 17592 * As this ipif_t is moving to an ill_t 17593 * that has a lower ill_max_mtu, its 17594 * ipif_mtu needs to be saved so it can 17595 * be restored during failback or during 17596 * failover to an ill_t which has a 17597 * higher ill_max_mtu. 17598 */ 17599 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17600 ipif->ipif_mtu = to_ill->ill_max_mtu; 17601 } else { 17602 /* 17603 * The ipif_t is, once again, moving to 17604 * an ill_t that has a lower maximum mtu 17605 * value. 17606 */ 17607 ipif->ipif_mtu = to_ill->ill_max_mtu; 17608 } 17609 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17610 ipif->ipif_saved_mtu != 0) { 17611 /* 17612 * The mtu of this ipif_t had to be reduced 17613 * during an earlier failover; this is an 17614 * opportunity for it to be increased (either as 17615 * part of another failover or a failback). 17616 */ 17617 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17618 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17619 ipif->ipif_saved_mtu = 0; 17620 } else { 17621 ipif->ipif_mtu = to_ill->ill_max_mtu; 17622 } 17623 } 17624 17625 /* 17626 * We preserve all the other fields of the ipif including 17627 * ipif_saved_ire_mp. The routes that are saved here will 17628 * be recreated on the new interface and back on the old 17629 * interface when we move back. 17630 */ 17631 ASSERT(ipif->ipif_arp_del_mp == NULL); 17632 17633 return (err); 17634 } 17635 17636 static int 17637 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17638 int ifindex, ipif_t **rep_ipif_ptr) 17639 { 17640 ipif_t *mipif; 17641 ipif_t *ipif_next; 17642 int err; 17643 17644 /* 17645 * We don't really try to MOVE back things if some of the 17646 * operations fail. The daemon will take care of moving again 17647 * later on. 17648 */ 17649 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17650 ipif_next = mipif->ipif_next; 17651 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17652 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17653 17654 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17655 17656 /* 17657 * When the MOVE fails, it is the job of the 17658 * application to take care of this properly 17659 * i.e try again if it is ENOMEM. 17660 */ 17661 if (mipif->ipif_ill != from_ill) { 17662 /* 17663 * ipif has moved. 17664 * 17665 * Move the multicast memberships associated 17666 * with this ipif to the new ill. For IPv6, we 17667 * do it once after all the ipifs are moved 17668 * (in ill_move) as they are not associated 17669 * with ipifs. 17670 * 17671 * We need to move the ilms as the ipif has 17672 * already been moved to a new ill even 17673 * in the case of errors. Neither 17674 * ilm_free(ipif) will find the ilm 17675 * when somebody unplumbs this ipif nor 17676 * ilm_delete(ilm) will be able to find the 17677 * ilm, if we don't move now. 17678 */ 17679 if (!from_ill->ill_isv6) 17680 ilm_move_v4(from_ill, to_ill, mipif); 17681 } 17682 17683 if (err != 0) 17684 return (err); 17685 } 17686 } 17687 return (0); 17688 } 17689 17690 static int 17691 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17692 { 17693 int ifindex; 17694 int err; 17695 struct iocblk *iocp; 17696 ipif_t *ipif; 17697 ipif_t *rep_ipif_ptr = NULL; 17698 ipif_t *from_ipif = NULL; 17699 boolean_t check_rep_if = B_FALSE; 17700 ip_stack_t *ipst = from_ill->ill_ipst; 17701 17702 iocp = (struct iocblk *)mp->b_rptr; 17703 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17704 /* 17705 * Move everything pointing at from_ill to to_ill. 17706 * We acheive this by passing in 0 as ifindex. 17707 */ 17708 ifindex = 0; 17709 } else { 17710 /* 17711 * Move everything pointing at from_ill whose original 17712 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17713 * We acheive this by passing in ifindex rather than 0. 17714 * Multicast vifs, ilgs move implicitly because ipifs move. 17715 */ 17716 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17717 ifindex = to_ill->ill_phyint->phyint_ifindex; 17718 } 17719 17720 /* 17721 * Determine if there is at least one ipif that would move from 17722 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17723 * ipif (if it exists) on the to_ill would be consumed as a result of 17724 * the move, in which case we need to quiesce the replacement ipif also. 17725 */ 17726 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17727 from_ipif = from_ipif->ipif_next) { 17728 if (((ifindex == 0) || 17729 (ifindex == from_ipif->ipif_orig_ifindex)) && 17730 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17731 check_rep_if = B_TRUE; 17732 break; 17733 } 17734 } 17735 17736 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17737 17738 GRAB_ILL_LOCKS(from_ill, to_ill); 17739 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17740 (void) ipsq_pending_mp_add(NULL, ipif, q, 17741 mp, ILL_MOVE_OK); 17742 RELEASE_ILL_LOCKS(from_ill, to_ill); 17743 return (EINPROGRESS); 17744 } 17745 17746 /* Check if the replacement ipif is quiescent to delete */ 17747 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17748 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17749 to_ill->ill_ipif->ipif_state_flags |= 17750 IPIF_MOVING | IPIF_CHANGING; 17751 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17752 (void) ipsq_pending_mp_add(NULL, ipif, q, 17753 mp, ILL_MOVE_OK); 17754 RELEASE_ILL_LOCKS(from_ill, to_ill); 17755 return (EINPROGRESS); 17756 } 17757 } 17758 RELEASE_ILL_LOCKS(from_ill, to_ill); 17759 17760 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17761 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17762 GRAB_ILL_LOCKS(from_ill, to_ill); 17763 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17764 17765 /* ilm_move is done inside ipif_move for IPv4 */ 17766 if (err == 0 && from_ill->ill_isv6) 17767 ilm_move_v6(from_ill, to_ill, ifindex); 17768 17769 RELEASE_ILL_LOCKS(from_ill, to_ill); 17770 rw_exit(&ipst->ips_ill_g_lock); 17771 17772 /* 17773 * send rts messages and multicast messages. 17774 */ 17775 if (rep_ipif_ptr != NULL) { 17776 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17777 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17778 rep_ipif_ptr->ipif_recovery_id = 0; 17779 } 17780 ip_rts_ifmsg(rep_ipif_ptr); 17781 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17782 #ifdef DEBUG 17783 ipif_trace_cleanup(rep_ipif_ptr); 17784 #endif 17785 mi_free(rep_ipif_ptr); 17786 } 17787 17788 conn_move_ill(from_ill, to_ill, ifindex); 17789 17790 return (err); 17791 } 17792 17793 /* 17794 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17795 * Also checks for the validity of the arguments. 17796 * Note: We are already exclusive inside the from group. 17797 * It is upto the caller to release refcnt on the to_ill's. 17798 */ 17799 static int 17800 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17801 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17802 { 17803 int dst_index; 17804 ipif_t *ipif_v4, *ipif_v6; 17805 struct lifreq *lifr; 17806 mblk_t *mp1; 17807 boolean_t exists; 17808 sin_t *sin; 17809 int err = 0; 17810 ip_stack_t *ipst; 17811 17812 if (CONN_Q(q)) 17813 ipst = CONNQ_TO_IPST(q); 17814 else 17815 ipst = ILLQ_TO_IPST(q); 17816 17817 if ((mp1 = mp->b_cont) == NULL) 17818 return (EPROTO); 17819 17820 if ((mp1 = mp1->b_cont) == NULL) 17821 return (EPROTO); 17822 17823 lifr = (struct lifreq *)mp1->b_rptr; 17824 sin = (sin_t *)&lifr->lifr_addr; 17825 17826 /* 17827 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17828 * specific operations. 17829 */ 17830 if (sin->sin_family != AF_UNSPEC) 17831 return (EINVAL); 17832 17833 /* 17834 * Get ipif with id 0. We are writer on the from ill. So we can pass 17835 * NULLs for the last 4 args and we know the lookup won't fail 17836 * with EINPROGRESS. 17837 */ 17838 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17839 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17840 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17841 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17842 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17843 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17844 17845 if (ipif_v4 == NULL && ipif_v6 == NULL) 17846 return (ENXIO); 17847 17848 if (ipif_v4 != NULL) { 17849 ASSERT(ipif_v4->ipif_refcnt != 0); 17850 if (ipif_v4->ipif_id != 0) { 17851 err = EINVAL; 17852 goto done; 17853 } 17854 17855 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17856 *ill_from_v4 = ipif_v4->ipif_ill; 17857 } 17858 17859 if (ipif_v6 != NULL) { 17860 ASSERT(ipif_v6->ipif_refcnt != 0); 17861 if (ipif_v6->ipif_id != 0) { 17862 err = EINVAL; 17863 goto done; 17864 } 17865 17866 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17867 *ill_from_v6 = ipif_v6->ipif_ill; 17868 } 17869 17870 err = 0; 17871 dst_index = lifr->lifr_movetoindex; 17872 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17873 q, mp, ip_process_ioctl, &err, ipst); 17874 if (err != 0) { 17875 /* 17876 * A move may be in progress, EINPROGRESS looking up the "to" 17877 * ill means changes already done to the "from" ipsq need to 17878 * be undone to avoid potential deadlocks. 17879 * 17880 * ENXIO will usually be because there is only v6 on the ill, 17881 * that's not treated as an error unless an ENXIO is also 17882 * seen when looking up the v6 "to" ill. 17883 * 17884 * If EINPROGRESS, the mp has been enqueued and can not be 17885 * used to look up the v6 "to" ill, but a preemptive clean 17886 * up of changes to the v6 "from" ipsq is done. 17887 */ 17888 if (err == EINPROGRESS) { 17889 if (*ill_from_v4 != NULL) { 17890 ill_t *from_ill; 17891 ipsq_t *from_ipsq; 17892 17893 from_ill = ipif_v4->ipif_ill; 17894 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17895 17896 mutex_enter(&from_ipsq->ipsq_lock); 17897 from_ipsq->ipsq_current_ipif = NULL; 17898 mutex_exit(&from_ipsq->ipsq_lock); 17899 } 17900 if (*ill_from_v6 != NULL) { 17901 ill_t *from_ill; 17902 ipsq_t *from_ipsq; 17903 17904 from_ill = ipif_v6->ipif_ill; 17905 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17906 17907 mutex_enter(&from_ipsq->ipsq_lock); 17908 from_ipsq->ipsq_current_ipif = NULL; 17909 mutex_exit(&from_ipsq->ipsq_lock); 17910 } 17911 goto done; 17912 } 17913 ASSERT(err == ENXIO); 17914 err = 0; 17915 } 17916 17917 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17918 q, mp, ip_process_ioctl, &err, ipst); 17919 if (err != 0) { 17920 /* 17921 * A move may be in progress, EINPROGRESS looking up the "to" 17922 * ill means changes already done to the "from" ipsq need to 17923 * be undone to avoid potential deadlocks. 17924 */ 17925 if (err == EINPROGRESS) { 17926 if (*ill_from_v6 != NULL) { 17927 ill_t *from_ill; 17928 ipsq_t *from_ipsq; 17929 17930 from_ill = ipif_v6->ipif_ill; 17931 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17932 17933 mutex_enter(&from_ipsq->ipsq_lock); 17934 from_ipsq->ipsq_current_ipif = NULL; 17935 mutex_exit(&from_ipsq->ipsq_lock); 17936 } 17937 goto done; 17938 } 17939 ASSERT(err == ENXIO); 17940 17941 /* Both v4 and v6 lookup failed */ 17942 if (*ill_to_v4 == NULL) { 17943 err = ENXIO; 17944 goto done; 17945 } 17946 err = 0; 17947 } 17948 17949 /* 17950 * If we have something to MOVE i.e "from" not NULL, 17951 * "to" should be non-NULL. 17952 */ 17953 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17954 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17955 err = EINVAL; 17956 } 17957 17958 done: 17959 if (ipif_v4 != NULL) 17960 ipif_refrele(ipif_v4); 17961 if (ipif_v6 != NULL) 17962 ipif_refrele(ipif_v6); 17963 return (err); 17964 } 17965 17966 /* 17967 * FAILOVER and FAILBACK are modelled as MOVE operations. 17968 * 17969 * We don't check whether the MOVE is within the same group or 17970 * not, because this ioctl can be used as a generic mechanism 17971 * to failover from interface A to B, though things will function 17972 * only if they are really part of the same group. Moreover, 17973 * all ipifs may be down and hence temporarily out of the group. 17974 * 17975 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17976 * down first and then V6. For each we wait for the ipif's to become quiescent. 17977 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17978 * have been deleted and there are no active references. Once quiescent the 17979 * ipif's are moved and brought up on the new ill. 17980 * 17981 * Normally the source ill and destination ill belong to the same IPMP group 17982 * and hence the same ipsq_t. In the event they don't belong to the same 17983 * same group the two ipsq's are first merged into one ipsq - that of the 17984 * to_ill. The multicast memberships on the source and destination ill cannot 17985 * change during the move operation since multicast joins/leaves also have to 17986 * execute on the same ipsq and are hence serialized. 17987 */ 17988 /* ARGSUSED */ 17989 int 17990 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17991 ip_ioctl_cmd_t *ipip, void *ifreq) 17992 { 17993 ill_t *ill_to_v4 = NULL; 17994 ill_t *ill_to_v6 = NULL; 17995 ill_t *ill_from_v4 = NULL; 17996 ill_t *ill_from_v6 = NULL; 17997 int err = 0; 17998 17999 /* 18000 * setup from and to ill's, we can get EINPROGRESS only for 18001 * to_ill's. 18002 */ 18003 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18004 &ill_to_v4, &ill_to_v6); 18005 18006 if (err != 0) { 18007 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18008 goto done; 18009 } 18010 18011 /* 18012 * nothing to do. 18013 */ 18014 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18015 goto done; 18016 } 18017 18018 /* 18019 * nothing to do. 18020 */ 18021 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18022 goto done; 18023 } 18024 18025 /* 18026 * Mark the ill as changing. 18027 * ILL_CHANGING flag is cleared when the ipif's are brought up 18028 * in ill_up_ipifs in case of error they are cleared below. 18029 */ 18030 18031 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18032 if (ill_from_v4 != NULL) 18033 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18034 if (ill_from_v6 != NULL) 18035 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18036 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18037 18038 /* 18039 * Make sure that both src and dst are 18040 * in the same syncq group. If not make it happen. 18041 * We are not holding any locks because we are the writer 18042 * on the from_ipsq and we will hold locks in ill_merge_groups 18043 * to protect to_ipsq against changing. 18044 */ 18045 if (ill_from_v4 != NULL) { 18046 if (ill_from_v4->ill_phyint->phyint_ipsq != 18047 ill_to_v4->ill_phyint->phyint_ipsq) { 18048 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18049 NULL, mp, q); 18050 goto err_ret; 18051 18052 } 18053 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18054 } else { 18055 18056 if (ill_from_v6->ill_phyint->phyint_ipsq != 18057 ill_to_v6->ill_phyint->phyint_ipsq) { 18058 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18059 NULL, mp, q); 18060 goto err_ret; 18061 18062 } 18063 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18064 } 18065 18066 /* 18067 * Now that the ipsq's have been merged and we are the writer 18068 * lets mark to_ill as changing as well. 18069 */ 18070 18071 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18072 if (ill_to_v4 != NULL) 18073 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18074 if (ill_to_v6 != NULL) 18075 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18076 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18077 18078 /* 18079 * Its ok for us to proceed with the move even if 18080 * ill_pending_mp is non null on one of the from ill's as the reply 18081 * should not be looking at the ipif, it should only care about the 18082 * ill itself. 18083 */ 18084 18085 /* 18086 * lets move ipv4 first. 18087 */ 18088 if (ill_from_v4 != NULL) { 18089 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18090 ill_from_v4->ill_move_in_progress = B_TRUE; 18091 ill_to_v4->ill_move_in_progress = B_TRUE; 18092 ill_to_v4->ill_move_peer = ill_from_v4; 18093 ill_from_v4->ill_move_peer = ill_to_v4; 18094 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18095 } 18096 18097 /* 18098 * Now lets move ipv6. 18099 */ 18100 if (err == 0 && ill_from_v6 != NULL) { 18101 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18102 ill_from_v6->ill_move_in_progress = B_TRUE; 18103 ill_to_v6->ill_move_in_progress = B_TRUE; 18104 ill_to_v6->ill_move_peer = ill_from_v6; 18105 ill_from_v6->ill_move_peer = ill_to_v6; 18106 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18107 } 18108 18109 err_ret: 18110 /* 18111 * EINPROGRESS means we are waiting for the ipif's that need to be 18112 * moved to become quiescent. 18113 */ 18114 if (err == EINPROGRESS) { 18115 goto done; 18116 } 18117 18118 /* 18119 * if err is set ill_up_ipifs will not be called 18120 * lets clear the flags. 18121 */ 18122 18123 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18124 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18125 /* 18126 * Some of the clearing may be redundant. But it is simple 18127 * not making any extra checks. 18128 */ 18129 if (ill_from_v6 != NULL) { 18130 ill_from_v6->ill_move_in_progress = B_FALSE; 18131 ill_from_v6->ill_move_peer = NULL; 18132 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18133 } 18134 if (ill_from_v4 != NULL) { 18135 ill_from_v4->ill_move_in_progress = B_FALSE; 18136 ill_from_v4->ill_move_peer = NULL; 18137 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18138 } 18139 if (ill_to_v6 != NULL) { 18140 ill_to_v6->ill_move_in_progress = B_FALSE; 18141 ill_to_v6->ill_move_peer = NULL; 18142 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18143 } 18144 if (ill_to_v4 != NULL) { 18145 ill_to_v4->ill_move_in_progress = B_FALSE; 18146 ill_to_v4->ill_move_peer = NULL; 18147 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18148 } 18149 18150 /* 18151 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18152 * Do this always to maintain proper state i.e even in case of errors. 18153 * As phyint_inactive looks at both v4 and v6 interfaces, 18154 * we need not call on both v4 and v6 interfaces. 18155 */ 18156 if (ill_from_v4 != NULL) { 18157 if ((ill_from_v4->ill_phyint->phyint_flags & 18158 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18159 phyint_inactive(ill_from_v4->ill_phyint); 18160 } 18161 } else if (ill_from_v6 != NULL) { 18162 if ((ill_from_v6->ill_phyint->phyint_flags & 18163 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18164 phyint_inactive(ill_from_v6->ill_phyint); 18165 } 18166 } 18167 18168 if (ill_to_v4 != NULL) { 18169 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18170 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18171 } 18172 } else if (ill_to_v6 != NULL) { 18173 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18174 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18175 } 18176 } 18177 18178 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18179 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18180 18181 no_err: 18182 /* 18183 * lets bring the interfaces up on the to_ill. 18184 */ 18185 if (err == 0) { 18186 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18187 q, mp); 18188 } 18189 18190 if (err == 0) { 18191 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18192 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18193 18194 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18195 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18196 } 18197 done: 18198 18199 if (ill_to_v4 != NULL) { 18200 ill_refrele(ill_to_v4); 18201 } 18202 if (ill_to_v6 != NULL) { 18203 ill_refrele(ill_to_v6); 18204 } 18205 18206 return (err); 18207 } 18208 18209 static void 18210 ill_dl_down(ill_t *ill) 18211 { 18212 /* 18213 * The ill is down; unbind but stay attached since we're still 18214 * associated with a PPA. If we have negotiated DLPI capabilites 18215 * with the data link service provider (IDS_OK) then reset them. 18216 * The interval between unbinding and rebinding is potentially 18217 * unbounded hence we cannot assume things will be the same. 18218 * The DLPI capabilities will be probed again when the data link 18219 * is brought up. 18220 */ 18221 mblk_t *mp = ill->ill_unbind_mp; 18222 18223 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18224 18225 ill->ill_unbind_mp = NULL; 18226 if (mp != NULL) { 18227 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18228 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18229 ill->ill_name)); 18230 mutex_enter(&ill->ill_lock); 18231 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18232 mutex_exit(&ill->ill_lock); 18233 /* 18234 * Reset the capabilities if the negotiation is done or is 18235 * still in progress. Note that ill_capability_reset() will 18236 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18237 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18238 * 18239 * Further, reset ill_capab_reneg to be B_FALSE so that the 18240 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18241 * the capabilities renegotiation from happening. 18242 */ 18243 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18244 ill_capability_reset(ill); 18245 ill->ill_capab_reneg = B_FALSE; 18246 18247 ill_dlpi_send(ill, mp); 18248 } 18249 18250 /* 18251 * Toss all of our multicast memberships. We could keep them, but 18252 * then we'd have to do bookkeeping of any joins and leaves performed 18253 * by the application while the the interface is down (we can't just 18254 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18255 * on a downed interface). 18256 */ 18257 ill_leave_multicast(ill); 18258 18259 mutex_enter(&ill->ill_lock); 18260 ill->ill_dl_up = 0; 18261 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18262 mutex_exit(&ill->ill_lock); 18263 } 18264 18265 static void 18266 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18267 { 18268 union DL_primitives *dlp; 18269 t_uscalar_t prim; 18270 18271 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18272 18273 dlp = (union DL_primitives *)mp->b_rptr; 18274 prim = dlp->dl_primitive; 18275 18276 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18277 dl_primstr(prim), prim, ill->ill_name)); 18278 18279 switch (prim) { 18280 case DL_PHYS_ADDR_REQ: 18281 { 18282 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18283 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18284 break; 18285 } 18286 case DL_BIND_REQ: 18287 mutex_enter(&ill->ill_lock); 18288 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18289 mutex_exit(&ill->ill_lock); 18290 break; 18291 } 18292 18293 /* 18294 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18295 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18296 * we only wait for the ACK of the DL_UNBIND_REQ. 18297 */ 18298 mutex_enter(&ill->ill_lock); 18299 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18300 (prim == DL_UNBIND_REQ)) { 18301 ill->ill_dlpi_pending = prim; 18302 } 18303 mutex_exit(&ill->ill_lock); 18304 18305 putnext(ill->ill_wq, mp); 18306 } 18307 18308 /* 18309 * Helper function for ill_dlpi_send(). 18310 */ 18311 /* ARGSUSED */ 18312 static void 18313 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18314 { 18315 ill_dlpi_send(q->q_ptr, mp); 18316 } 18317 18318 /* 18319 * Send a DLPI control message to the driver but make sure there 18320 * is only one outstanding message. Uses ill_dlpi_pending to tell 18321 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18322 * when an ACK or a NAK is received to process the next queued message. 18323 */ 18324 void 18325 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18326 { 18327 mblk_t **mpp; 18328 18329 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18330 18331 /* 18332 * To ensure that any DLPI requests for current exclusive operation 18333 * are always completely sent before any DLPI messages for other 18334 * operations, require writer access before enqueuing. 18335 */ 18336 if (!IAM_WRITER_ILL(ill)) { 18337 ill_refhold(ill); 18338 /* qwriter_ip() does the ill_refrele() */ 18339 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18340 NEW_OP, B_TRUE); 18341 return; 18342 } 18343 18344 mutex_enter(&ill->ill_lock); 18345 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18346 /* Must queue message. Tail insertion */ 18347 mpp = &ill->ill_dlpi_deferred; 18348 while (*mpp != NULL) 18349 mpp = &((*mpp)->b_next); 18350 18351 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18352 ill->ill_name)); 18353 18354 *mpp = mp; 18355 mutex_exit(&ill->ill_lock); 18356 return; 18357 } 18358 mutex_exit(&ill->ill_lock); 18359 ill_dlpi_dispatch(ill, mp); 18360 } 18361 18362 /* 18363 * Send all deferred DLPI messages without waiting for their ACKs. 18364 */ 18365 void 18366 ill_dlpi_send_deferred(ill_t *ill) 18367 { 18368 mblk_t *mp, *nextmp; 18369 18370 /* 18371 * Clear ill_dlpi_pending so that the message is not queued in 18372 * ill_dlpi_send(). 18373 */ 18374 mutex_enter(&ill->ill_lock); 18375 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18376 mp = ill->ill_dlpi_deferred; 18377 ill->ill_dlpi_deferred = NULL; 18378 mutex_exit(&ill->ill_lock); 18379 18380 for (; mp != NULL; mp = nextmp) { 18381 nextmp = mp->b_next; 18382 mp->b_next = NULL; 18383 ill_dlpi_send(ill, mp); 18384 } 18385 } 18386 18387 /* 18388 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18389 */ 18390 boolean_t 18391 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18392 { 18393 t_uscalar_t pending; 18394 18395 mutex_enter(&ill->ill_lock); 18396 if (ill->ill_dlpi_pending == prim) { 18397 mutex_exit(&ill->ill_lock); 18398 return (B_TRUE); 18399 } 18400 18401 /* 18402 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18403 * without waiting, so don't print any warnings in that case. 18404 */ 18405 if (ill->ill_state_flags & ILL_CONDEMNED) { 18406 mutex_exit(&ill->ill_lock); 18407 return (B_FALSE); 18408 } 18409 pending = ill->ill_dlpi_pending; 18410 mutex_exit(&ill->ill_lock); 18411 18412 if (pending == DL_PRIM_INVAL) { 18413 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18414 "received unsolicited ack for %s on %s\n", 18415 dl_primstr(prim), ill->ill_name); 18416 } else { 18417 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18418 "received unexpected ack for %s on %s (expecting %s)\n", 18419 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18420 } 18421 return (B_FALSE); 18422 } 18423 18424 /* 18425 * Complete the current DLPI operation associated with `prim' on `ill' and 18426 * start the next queued DLPI operation (if any). If there are no queued DLPI 18427 * operations and the ill's current exclusive IPSQ operation has finished 18428 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18429 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18430 * the comments above ipsq_current_finish() for details. 18431 */ 18432 void 18433 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18434 { 18435 mblk_t *mp; 18436 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18437 18438 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18439 mutex_enter(&ill->ill_lock); 18440 18441 ASSERT(prim != DL_PRIM_INVAL); 18442 ASSERT(ill->ill_dlpi_pending == prim); 18443 18444 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18445 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18446 18447 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18448 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18449 18450 mutex_enter(&ipsq->ipsq_lock); 18451 if (ipsq->ipsq_current_done) 18452 ipsq->ipsq_current_ipif = NULL; 18453 mutex_exit(&ipsq->ipsq_lock); 18454 18455 cv_signal(&ill->ill_cv); 18456 mutex_exit(&ill->ill_lock); 18457 return; 18458 } 18459 18460 ill->ill_dlpi_deferred = mp->b_next; 18461 mp->b_next = NULL; 18462 mutex_exit(&ill->ill_lock); 18463 18464 ill_dlpi_dispatch(ill, mp); 18465 } 18466 18467 void 18468 conn_delete_ire(conn_t *connp, caddr_t arg) 18469 { 18470 ipif_t *ipif = (ipif_t *)arg; 18471 ire_t *ire; 18472 18473 /* 18474 * Look at the cached ires on conns which has pointers to ipifs. 18475 * We just call ire_refrele which clears up the reference 18476 * to ire. Called when a conn closes. Also called from ipif_free 18477 * to cleanup indirect references to the stale ipif via the cached ire. 18478 */ 18479 mutex_enter(&connp->conn_lock); 18480 ire = connp->conn_ire_cache; 18481 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18482 connp->conn_ire_cache = NULL; 18483 mutex_exit(&connp->conn_lock); 18484 IRE_REFRELE_NOTR(ire); 18485 return; 18486 } 18487 mutex_exit(&connp->conn_lock); 18488 18489 } 18490 18491 /* 18492 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18493 * of IREs. Those IREs may have been previously cached in the conn structure. 18494 * This ipcl_walk() walker function releases all references to such IREs based 18495 * on the condemned flag. 18496 */ 18497 /* ARGSUSED */ 18498 void 18499 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18500 { 18501 ire_t *ire; 18502 18503 mutex_enter(&connp->conn_lock); 18504 ire = connp->conn_ire_cache; 18505 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18506 connp->conn_ire_cache = NULL; 18507 mutex_exit(&connp->conn_lock); 18508 IRE_REFRELE_NOTR(ire); 18509 return; 18510 } 18511 mutex_exit(&connp->conn_lock); 18512 } 18513 18514 /* 18515 * Take down a specific interface, but don't lose any information about it. 18516 * Also delete interface from its interface group (ifgrp). 18517 * (Always called as writer.) 18518 * This function goes through the down sequence even if the interface is 18519 * already down. There are 2 reasons. 18520 * a. Currently we permit interface routes that depend on down interfaces 18521 * to be added. This behaviour itself is questionable. However it appears 18522 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18523 * time. We go thru the cleanup in order to remove these routes. 18524 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18525 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18526 * down, but we need to cleanup i.e. do ill_dl_down and 18527 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18528 * 18529 * IP-MT notes: 18530 * 18531 * Model of reference to interfaces. 18532 * 18533 * The following members in ipif_t track references to the ipif. 18534 * int ipif_refcnt; Active reference count 18535 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18536 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18537 * 18538 * The following members in ill_t track references to the ill. 18539 * int ill_refcnt; active refcnt 18540 * uint_t ill_ire_cnt; Number of ires referencing ill 18541 * uint_t ill_nce_cnt; Number of nces referencing ill 18542 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18543 * 18544 * Reference to an ipif or ill can be obtained in any of the following ways. 18545 * 18546 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18547 * Pointers to ipif / ill from other data structures viz ire and conn. 18548 * Implicit reference to the ipif / ill by holding a reference to the ire. 18549 * 18550 * The ipif/ill lookup functions return a reference held ipif / ill. 18551 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18552 * This is a purely dynamic reference count associated with threads holding 18553 * references to the ipif / ill. Pointers from other structures do not 18554 * count towards this reference count. 18555 * 18556 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18557 * associated with the ipif/ill. This is incremented whenever a new 18558 * ire is created referencing the ipif/ill. This is done atomically inside 18559 * ire_add_v[46] where the ire is actually added to the ire hash table. 18560 * The count is decremented in ire_inactive where the ire is destroyed. 18561 * 18562 * nce's reference ill's thru nce_ill and the count of nce's associated with 18563 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18564 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18565 * table. Similarly it is decremented in ndp_inactive() where the nce 18566 * is destroyed. 18567 * 18568 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18569 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18570 * in ilm_walker_cleanup() or ilm_delete(). 18571 * 18572 * Flow of ioctls involving interface down/up 18573 * 18574 * The following is the sequence of an attempt to set some critical flags on an 18575 * up interface. 18576 * ip_sioctl_flags 18577 * ipif_down 18578 * wait for ipif to be quiescent 18579 * ipif_down_tail 18580 * ip_sioctl_flags_tail 18581 * 18582 * All set ioctls that involve down/up sequence would have a skeleton similar 18583 * to the above. All the *tail functions are called after the refcounts have 18584 * dropped to the appropriate values. 18585 * 18586 * The mechanism to quiesce an ipif is as follows. 18587 * 18588 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18589 * on the ipif. Callers either pass a flag requesting wait or the lookup 18590 * functions will return NULL. 18591 * 18592 * Delete all ires referencing this ipif 18593 * 18594 * Any thread attempting to do an ipif_refhold on an ipif that has been 18595 * obtained thru a cached pointer will first make sure that 18596 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18597 * increment the refcount. 18598 * 18599 * The above guarantees that the ipif refcount will eventually come down to 18600 * zero and the ipif will quiesce, once all threads that currently hold a 18601 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18602 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18603 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18604 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18605 * in ip.h 18606 * 18607 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18608 * 18609 * Threads trying to lookup an ipif or ill can pass a flag requesting 18610 * wait and restart if the ipif / ill cannot be looked up currently. 18611 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18612 * failure if the ipif is currently undergoing an exclusive operation, and 18613 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18614 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18615 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18616 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18617 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18618 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18619 * until we release the ipsq_lock, even though the the ill/ipif state flags 18620 * can change after we drop the ill_lock. 18621 * 18622 * An attempt to send out a packet using an ipif that is currently 18623 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18624 * operation and restart it later when the exclusive condition on the ipif ends. 18625 * This is an example of not passing the wait flag to the lookup functions. For 18626 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18627 * out a multicast packet on that ipif will fail while the ipif is 18628 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18629 * currently IPIF_CHANGING will also fail. 18630 */ 18631 int 18632 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18633 { 18634 ill_t *ill = ipif->ipif_ill; 18635 phyint_t *phyi; 18636 conn_t *connp; 18637 boolean_t success; 18638 boolean_t ipif_was_up = B_FALSE; 18639 ip_stack_t *ipst = ill->ill_ipst; 18640 18641 ASSERT(IAM_WRITER_IPIF(ipif)); 18642 18643 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18644 18645 if (ipif->ipif_flags & IPIF_UP) { 18646 mutex_enter(&ill->ill_lock); 18647 ipif->ipif_flags &= ~IPIF_UP; 18648 ASSERT(ill->ill_ipif_up_count > 0); 18649 --ill->ill_ipif_up_count; 18650 mutex_exit(&ill->ill_lock); 18651 ipif_was_up = B_TRUE; 18652 /* Update status in SCTP's list */ 18653 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18654 } 18655 18656 /* 18657 * Blow away memberships we established in ipif_multicast_up(). 18658 */ 18659 ipif_multicast_down(ipif); 18660 18661 /* 18662 * Remove from the mapping for __sin6_src_id. We insert only 18663 * when the address is not INADDR_ANY. As IPv4 addresses are 18664 * stored as mapped addresses, we need to check for mapped 18665 * INADDR_ANY also. 18666 */ 18667 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18668 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18669 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18670 int err; 18671 18672 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18673 ipif->ipif_zoneid, ipst); 18674 if (err != 0) { 18675 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18676 } 18677 } 18678 18679 /* 18680 * Before we delete the ill from the group (if any), we need 18681 * to make sure that we delete all the routes dependent on 18682 * this and also any ipifs dependent on this ipif for 18683 * source address. We need to do before we delete from 18684 * the group because 18685 * 18686 * 1) ipif_down_delete_ire de-references ill->ill_group. 18687 * 18688 * 2) ipif_update_other_ipifs needs to walk the whole group 18689 * for re-doing source address selection. Note that 18690 * ipif_select_source[_v6] called from 18691 * ipif_update_other_ipifs[_v6] will not pick this ipif 18692 * because we have already marked down here i.e cleared 18693 * IPIF_UP. 18694 */ 18695 if (ipif->ipif_isv6) { 18696 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18697 ipst); 18698 } else { 18699 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18700 ipst); 18701 } 18702 18703 /* 18704 * Cleaning up the conn_ire_cache or conns must be done only after the 18705 * ires have been deleted above. Otherwise a thread could end up 18706 * caching an ire in a conn after we have finished the cleanup of the 18707 * conn. The caching is done after making sure that the ire is not yet 18708 * condemned. Also documented in the block comment above ip_output 18709 */ 18710 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18711 /* Also, delete the ires cached in SCTP */ 18712 sctp_ire_cache_flush(ipif); 18713 18714 /* 18715 * Update any other ipifs which have used "our" local address as 18716 * a source address. This entails removing and recreating IRE_INTERFACE 18717 * entries for such ipifs. 18718 */ 18719 if (ipif->ipif_isv6) 18720 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18721 else 18722 ipif_update_other_ipifs(ipif, ill->ill_group); 18723 18724 if (ipif_was_up) { 18725 /* 18726 * Check whether it is last ipif to leave this group. 18727 * If this is the last ipif to leave, we should remove 18728 * this ill from the group as ipif_select_source will not 18729 * be able to find any useful ipifs if this ill is selected 18730 * for load balancing. 18731 * 18732 * For nameless groups, we should call ifgrp_delete if this 18733 * belongs to some group. As this ipif is going down, we may 18734 * need to reconstruct groups. 18735 */ 18736 phyi = ill->ill_phyint; 18737 /* 18738 * If the phyint_groupname_len is 0, it may or may not 18739 * be in the nameless group. If the phyint_groupname_len is 18740 * not 0, then this ill should be part of some group. 18741 * As we always insert this ill in the group if 18742 * phyint_groupname_len is not zero when the first ipif 18743 * comes up (in ipif_up_done), it should be in a group 18744 * when the namelen is not 0. 18745 * 18746 * NOTE : When we delete the ill from the group,it will 18747 * blow away all the IRE_CACHES pointing either at this ipif or 18748 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18749 * should be pointing at this ill. 18750 */ 18751 ASSERT(phyi->phyint_groupname_len == 0 || 18752 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18753 18754 if (phyi->phyint_groupname_len != 0) { 18755 if (ill->ill_ipif_up_count == 0) 18756 illgrp_delete(ill); 18757 } 18758 18759 /* 18760 * If we have deleted some of the broadcast ires associated 18761 * with this ipif, we need to re-nominate somebody else if 18762 * the ires that we deleted were the nominated ones. 18763 */ 18764 if (ill->ill_group != NULL && !ill->ill_isv6) 18765 ipif_renominate_bcast(ipif); 18766 } 18767 18768 /* 18769 * neighbor-discovery or arp entries for this interface. 18770 */ 18771 ipif_ndp_down(ipif); 18772 18773 /* 18774 * If mp is NULL the caller will wait for the appropriate refcnt. 18775 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18776 * and ill_delete -> ipif_free -> ipif_down 18777 */ 18778 if (mp == NULL) { 18779 ASSERT(q == NULL); 18780 return (0); 18781 } 18782 18783 if (CONN_Q(q)) { 18784 connp = Q_TO_CONN(q); 18785 mutex_enter(&connp->conn_lock); 18786 } else { 18787 connp = NULL; 18788 } 18789 mutex_enter(&ill->ill_lock); 18790 /* 18791 * Are there any ire's pointing to this ipif that are still active ? 18792 * If this is the last ipif going down, are there any ire's pointing 18793 * to this ill that are still active ? 18794 */ 18795 if (ipif_is_quiescent(ipif)) { 18796 mutex_exit(&ill->ill_lock); 18797 if (connp != NULL) 18798 mutex_exit(&connp->conn_lock); 18799 return (0); 18800 } 18801 18802 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18803 ill->ill_name, (void *)ill)); 18804 /* 18805 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18806 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18807 * which in turn is called by the last refrele on the ipif/ill/ire. 18808 */ 18809 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18810 if (!success) { 18811 /* The conn is closing. So just return */ 18812 ASSERT(connp != NULL); 18813 mutex_exit(&ill->ill_lock); 18814 mutex_exit(&connp->conn_lock); 18815 return (EINTR); 18816 } 18817 18818 mutex_exit(&ill->ill_lock); 18819 if (connp != NULL) 18820 mutex_exit(&connp->conn_lock); 18821 return (EINPROGRESS); 18822 } 18823 18824 void 18825 ipif_down_tail(ipif_t *ipif) 18826 { 18827 ill_t *ill = ipif->ipif_ill; 18828 18829 /* 18830 * Skip any loopback interface (null wq). 18831 * If this is the last logical interface on the ill 18832 * have ill_dl_down tell the driver we are gone (unbind) 18833 * Note that lun 0 can ipif_down even though 18834 * there are other logical units that are up. 18835 * This occurs e.g. when we change a "significant" IFF_ flag. 18836 */ 18837 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18838 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18839 ill->ill_dl_up) { 18840 ill_dl_down(ill); 18841 } 18842 ill->ill_logical_down = 0; 18843 18844 /* 18845 * Have to be after removing the routes in ipif_down_delete_ire. 18846 */ 18847 if (ipif->ipif_isv6) { 18848 if (ill->ill_flags & ILLF_XRESOLV) 18849 ipif_arp_down(ipif); 18850 } else { 18851 ipif_arp_down(ipif); 18852 } 18853 18854 ip_rts_ifmsg(ipif); 18855 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18856 } 18857 18858 /* 18859 * Bring interface logically down without bringing the physical interface 18860 * down e.g. when the netmask is changed. This avoids long lasting link 18861 * negotiations between an ethernet interface and a certain switches. 18862 */ 18863 static int 18864 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18865 { 18866 /* 18867 * The ill_logical_down flag is a transient flag. It is set here 18868 * and is cleared once the down has completed in ipif_down_tail. 18869 * This flag does not indicate whether the ill stream is in the 18870 * DL_BOUND state with the driver. Instead this flag is used by 18871 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18872 * the driver. The state of the ill stream i.e. whether it is 18873 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18874 */ 18875 ipif->ipif_ill->ill_logical_down = 1; 18876 return (ipif_down(ipif, q, mp)); 18877 } 18878 18879 /* 18880 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18881 * If the usesrc client ILL is already part of a usesrc group or not, 18882 * in either case a ire_stq with the matching usesrc client ILL will 18883 * locate the IRE's that need to be deleted. We want IREs to be created 18884 * with the new source address. 18885 */ 18886 static void 18887 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18888 { 18889 ill_t *ucill = (ill_t *)ill_arg; 18890 18891 ASSERT(IAM_WRITER_ILL(ucill)); 18892 18893 if (ire->ire_stq == NULL) 18894 return; 18895 18896 if ((ire->ire_type == IRE_CACHE) && 18897 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18898 ire_delete(ire); 18899 } 18900 18901 /* 18902 * ire_walk routine to delete every IRE dependent on the interface 18903 * address that is going down. (Always called as writer.) 18904 * Works for both v4 and v6. 18905 * In addition for checking for ire_ipif matches it also checks for 18906 * IRE_CACHE entries which have the same source address as the 18907 * disappearing ipif since ipif_select_source might have picked 18908 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18909 * care of any IRE_INTERFACE with the disappearing source address. 18910 */ 18911 static void 18912 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18913 { 18914 ipif_t *ipif = (ipif_t *)ipif_arg; 18915 ill_t *ire_ill; 18916 ill_t *ipif_ill; 18917 18918 ASSERT(IAM_WRITER_IPIF(ipif)); 18919 if (ire->ire_ipif == NULL) 18920 return; 18921 18922 /* 18923 * For IPv4, we derive source addresses for an IRE from ipif's 18924 * belonging to the same IPMP group as the IRE's outgoing 18925 * interface. If an IRE's outgoing interface isn't in the 18926 * same IPMP group as a particular ipif, then that ipif 18927 * couldn't have been used as a source address for this IRE. 18928 * 18929 * For IPv6, source addresses are only restricted to the IPMP group 18930 * if the IRE is for a link-local address or a multicast address. 18931 * Otherwise, source addresses for an IRE can be chosen from 18932 * interfaces other than the the outgoing interface for that IRE. 18933 * 18934 * For source address selection details, see ipif_select_source() 18935 * and ipif_select_source_v6(). 18936 */ 18937 if (ire->ire_ipversion == IPV4_VERSION || 18938 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18939 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18940 ire_ill = ire->ire_ipif->ipif_ill; 18941 ipif_ill = ipif->ipif_ill; 18942 18943 if (ire_ill->ill_group != ipif_ill->ill_group) { 18944 return; 18945 } 18946 } 18947 18948 if (ire->ire_ipif != ipif) { 18949 /* 18950 * Look for a matching source address. 18951 */ 18952 if (ire->ire_type != IRE_CACHE) 18953 return; 18954 if (ipif->ipif_flags & IPIF_NOLOCAL) 18955 return; 18956 18957 if (ire->ire_ipversion == IPV4_VERSION) { 18958 if (ire->ire_src_addr != ipif->ipif_src_addr) 18959 return; 18960 } else { 18961 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18962 &ipif->ipif_v6lcl_addr)) 18963 return; 18964 } 18965 ire_delete(ire); 18966 return; 18967 } 18968 /* 18969 * ire_delete() will do an ire_flush_cache which will delete 18970 * all ire_ipif matches 18971 */ 18972 ire_delete(ire); 18973 } 18974 18975 /* 18976 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18977 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18978 * 2) when an interface is brought up or down (on that ill). 18979 * This ensures that the IRE_CACHE entries don't retain stale source 18980 * address selection results. 18981 */ 18982 void 18983 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18984 { 18985 ill_t *ill = (ill_t *)ill_arg; 18986 ill_t *ipif_ill; 18987 18988 ASSERT(IAM_WRITER_ILL(ill)); 18989 /* 18990 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18991 * Hence this should be IRE_CACHE. 18992 */ 18993 ASSERT(ire->ire_type == IRE_CACHE); 18994 18995 /* 18996 * We are called for IRE_CACHES whose ire_ipif matches ill. 18997 * We are only interested in IRE_CACHES that has borrowed 18998 * the source address from ill_arg e.g. ipif_up_done[_v6] 18999 * for which we need to look at ire_ipif->ipif_ill match 19000 * with ill. 19001 */ 19002 ASSERT(ire->ire_ipif != NULL); 19003 ipif_ill = ire->ire_ipif->ipif_ill; 19004 if (ipif_ill == ill || (ill->ill_group != NULL && 19005 ipif_ill->ill_group == ill->ill_group)) { 19006 ire_delete(ire); 19007 } 19008 } 19009 19010 /* 19011 * Delete all the ire whose stq references ill_arg. 19012 */ 19013 static void 19014 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19015 { 19016 ill_t *ill = (ill_t *)ill_arg; 19017 ill_t *ire_ill; 19018 19019 ASSERT(IAM_WRITER_ILL(ill)); 19020 /* 19021 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19022 * Hence this should be IRE_CACHE. 19023 */ 19024 ASSERT(ire->ire_type == IRE_CACHE); 19025 19026 /* 19027 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19028 * matches ill. We are only interested in IRE_CACHES that 19029 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19030 * filtering here. 19031 */ 19032 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19033 19034 if (ire_ill == ill) 19035 ire_delete(ire); 19036 } 19037 19038 /* 19039 * This is called when an ill leaves the group. We want to delete 19040 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19041 * pointing at ill. 19042 */ 19043 static void 19044 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19045 { 19046 ill_t *ill = (ill_t *)ill_arg; 19047 19048 ASSERT(IAM_WRITER_ILL(ill)); 19049 ASSERT(ill->ill_group == NULL); 19050 /* 19051 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19052 * Hence this should be IRE_CACHE. 19053 */ 19054 ASSERT(ire->ire_type == IRE_CACHE); 19055 /* 19056 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19057 * matches ill. We are interested in both. 19058 */ 19059 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19060 (ire->ire_ipif->ipif_ill == ill)); 19061 19062 ire_delete(ire); 19063 } 19064 19065 /* 19066 * Initiate deallocate of an IPIF. Always called as writer. Called by 19067 * ill_delete or ip_sioctl_removeif. 19068 */ 19069 static void 19070 ipif_free(ipif_t *ipif) 19071 { 19072 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19073 19074 ASSERT(IAM_WRITER_IPIF(ipif)); 19075 19076 if (ipif->ipif_recovery_id != 0) 19077 (void) untimeout(ipif->ipif_recovery_id); 19078 ipif->ipif_recovery_id = 0; 19079 19080 /* Remove conn references */ 19081 reset_conn_ipif(ipif); 19082 19083 /* 19084 * Make sure we have valid net and subnet broadcast ire's for the 19085 * other ipif's which share them with this ipif. 19086 */ 19087 if (!ipif->ipif_isv6) 19088 ipif_check_bcast_ires(ipif); 19089 19090 /* 19091 * Take down the interface. We can be called either from ill_delete 19092 * or from ip_sioctl_removeif. 19093 */ 19094 (void) ipif_down(ipif, NULL, NULL); 19095 19096 /* 19097 * Now that the interface is down, there's no chance it can still 19098 * become a duplicate. Cancel any timer that may have been set while 19099 * tearing down. 19100 */ 19101 if (ipif->ipif_recovery_id != 0) 19102 (void) untimeout(ipif->ipif_recovery_id); 19103 ipif->ipif_recovery_id = 0; 19104 19105 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19106 /* Remove pointers to this ill in the multicast routing tables */ 19107 reset_mrt_vif_ipif(ipif); 19108 rw_exit(&ipst->ips_ill_g_lock); 19109 } 19110 19111 /* 19112 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19113 * also ill_move(). 19114 */ 19115 static void 19116 ipif_free_tail(ipif_t *ipif) 19117 { 19118 mblk_t *mp; 19119 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19120 19121 /* 19122 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19123 */ 19124 mutex_enter(&ipif->ipif_saved_ire_lock); 19125 mp = ipif->ipif_saved_ire_mp; 19126 ipif->ipif_saved_ire_mp = NULL; 19127 mutex_exit(&ipif->ipif_saved_ire_lock); 19128 freemsg(mp); 19129 19130 /* 19131 * Need to hold both ill_g_lock and ill_lock while 19132 * inserting or removing an ipif from the linked list 19133 * of ipifs hanging off the ill. 19134 */ 19135 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19136 19137 ASSERT(ilm_walk_ipif(ipif) == 0); 19138 19139 #ifdef DEBUG 19140 ipif_trace_cleanup(ipif); 19141 #endif 19142 19143 /* Ask SCTP to take it out of it list */ 19144 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19145 19146 /* Get it out of the ILL interface list. */ 19147 ipif_remove(ipif, B_TRUE); 19148 rw_exit(&ipst->ips_ill_g_lock); 19149 19150 mutex_destroy(&ipif->ipif_saved_ire_lock); 19151 19152 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19153 ASSERT(ipif->ipif_recovery_id == 0); 19154 19155 /* Free the memory. */ 19156 mi_free(ipif); 19157 } 19158 19159 /* 19160 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19161 * is zero. 19162 */ 19163 void 19164 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19165 { 19166 char lbuf[LIFNAMSIZ]; 19167 char *name; 19168 size_t name_len; 19169 19170 buf[0] = '\0'; 19171 name = ipif->ipif_ill->ill_name; 19172 name_len = ipif->ipif_ill->ill_name_length; 19173 if (ipif->ipif_id != 0) { 19174 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19175 ipif->ipif_id); 19176 name = lbuf; 19177 name_len = mi_strlen(name) + 1; 19178 } 19179 len -= 1; 19180 buf[len] = '\0'; 19181 len = MIN(len, name_len); 19182 bcopy(name, buf, len); 19183 } 19184 19185 /* 19186 * Find an IPIF based on the name passed in. Names can be of the 19187 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19188 * The <phys> string can have forms like <dev><#> (e.g., le0), 19189 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19190 * When there is no colon, the implied unit id is zero. <phys> must 19191 * correspond to the name of an ILL. (May be called as writer.) 19192 */ 19193 static ipif_t * 19194 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19195 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19196 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19197 { 19198 char *cp; 19199 char *endp; 19200 long id; 19201 ill_t *ill; 19202 ipif_t *ipif; 19203 uint_t ire_type; 19204 boolean_t did_alloc = B_FALSE; 19205 ipsq_t *ipsq; 19206 19207 if (error != NULL) 19208 *error = 0; 19209 19210 /* 19211 * If the caller wants to us to create the ipif, make sure we have a 19212 * valid zoneid 19213 */ 19214 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19215 19216 if (namelen == 0) { 19217 if (error != NULL) 19218 *error = ENXIO; 19219 return (NULL); 19220 } 19221 19222 *exists = B_FALSE; 19223 /* Look for a colon in the name. */ 19224 endp = &name[namelen]; 19225 for (cp = endp; --cp > name; ) { 19226 if (*cp == IPIF_SEPARATOR_CHAR) 19227 break; 19228 } 19229 19230 if (*cp == IPIF_SEPARATOR_CHAR) { 19231 /* 19232 * Reject any non-decimal aliases for logical 19233 * interfaces. Aliases with leading zeroes 19234 * are also rejected as they introduce ambiguity 19235 * in the naming of the interfaces. 19236 * In order to confirm with existing semantics, 19237 * and to not break any programs/script relying 19238 * on that behaviour, if<0>:0 is considered to be 19239 * a valid interface. 19240 * 19241 * If alias has two or more digits and the first 19242 * is zero, fail. 19243 */ 19244 if (&cp[2] < endp && cp[1] == '0') { 19245 if (error != NULL) 19246 *error = EINVAL; 19247 return (NULL); 19248 } 19249 } 19250 19251 if (cp <= name) { 19252 cp = endp; 19253 } else { 19254 *cp = '\0'; 19255 } 19256 19257 /* 19258 * Look up the ILL, based on the portion of the name 19259 * before the slash. ill_lookup_on_name returns a held ill. 19260 * Temporary to check whether ill exists already. If so 19261 * ill_lookup_on_name will clear it. 19262 */ 19263 ill = ill_lookup_on_name(name, do_alloc, isv6, 19264 q, mp, func, error, &did_alloc, ipst); 19265 if (cp != endp) 19266 *cp = IPIF_SEPARATOR_CHAR; 19267 if (ill == NULL) 19268 return (NULL); 19269 19270 /* Establish the unit number in the name. */ 19271 id = 0; 19272 if (cp < endp && *endp == '\0') { 19273 /* If there was a colon, the unit number follows. */ 19274 cp++; 19275 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19276 ill_refrele(ill); 19277 if (error != NULL) 19278 *error = ENXIO; 19279 return (NULL); 19280 } 19281 } 19282 19283 GRAB_CONN_LOCK(q); 19284 mutex_enter(&ill->ill_lock); 19285 /* Now see if there is an IPIF with this unit number. */ 19286 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19287 if (ipif->ipif_id == id) { 19288 if (zoneid != ALL_ZONES && 19289 zoneid != ipif->ipif_zoneid && 19290 ipif->ipif_zoneid != ALL_ZONES) { 19291 mutex_exit(&ill->ill_lock); 19292 RELEASE_CONN_LOCK(q); 19293 ill_refrele(ill); 19294 if (error != NULL) 19295 *error = ENXIO; 19296 return (NULL); 19297 } 19298 /* 19299 * The block comment at the start of ipif_down 19300 * explains the use of the macros used below 19301 */ 19302 if (IPIF_CAN_LOOKUP(ipif)) { 19303 ipif_refhold_locked(ipif); 19304 mutex_exit(&ill->ill_lock); 19305 if (!did_alloc) 19306 *exists = B_TRUE; 19307 /* 19308 * Drop locks before calling ill_refrele 19309 * since it can potentially call into 19310 * ipif_ill_refrele_tail which can end up 19311 * in trying to acquire any lock. 19312 */ 19313 RELEASE_CONN_LOCK(q); 19314 ill_refrele(ill); 19315 return (ipif); 19316 } else if (IPIF_CAN_WAIT(ipif, q)) { 19317 ipsq = ill->ill_phyint->phyint_ipsq; 19318 mutex_enter(&ipsq->ipsq_lock); 19319 mutex_exit(&ill->ill_lock); 19320 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19321 mutex_exit(&ipsq->ipsq_lock); 19322 RELEASE_CONN_LOCK(q); 19323 ill_refrele(ill); 19324 if (error != NULL) 19325 *error = EINPROGRESS; 19326 return (NULL); 19327 } 19328 } 19329 } 19330 RELEASE_CONN_LOCK(q); 19331 19332 if (!do_alloc) { 19333 mutex_exit(&ill->ill_lock); 19334 ill_refrele(ill); 19335 if (error != NULL) 19336 *error = ENXIO; 19337 return (NULL); 19338 } 19339 19340 /* 19341 * If none found, atomically allocate and return a new one. 19342 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19343 * to support "receive only" use of lo0:1 etc. as is still done 19344 * below as an initial guess. 19345 * However, this is now likely to be overriden later in ipif_up_done() 19346 * when we know for sure what address has been configured on the 19347 * interface, since we might have more than one loopback interface 19348 * with a loopback address, e.g. in the case of zones, and all the 19349 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19350 */ 19351 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19352 ire_type = IRE_LOOPBACK; 19353 else 19354 ire_type = IRE_LOCAL; 19355 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19356 if (ipif != NULL) 19357 ipif_refhold_locked(ipif); 19358 else if (error != NULL) 19359 *error = ENOMEM; 19360 mutex_exit(&ill->ill_lock); 19361 ill_refrele(ill); 19362 return (ipif); 19363 } 19364 19365 /* 19366 * This routine is called whenever a new address comes up on an ipif. If 19367 * we are configured to respond to address mask requests, then we are supposed 19368 * to broadcast an address mask reply at this time. This routine is also 19369 * called if we are already up, but a netmask change is made. This is legal 19370 * but might not make the system manager very popular. (May be called 19371 * as writer.) 19372 */ 19373 void 19374 ipif_mask_reply(ipif_t *ipif) 19375 { 19376 icmph_t *icmph; 19377 ipha_t *ipha; 19378 mblk_t *mp; 19379 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19380 19381 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19382 19383 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19384 return; 19385 19386 /* ICMP mask reply is IPv4 only */ 19387 ASSERT(!ipif->ipif_isv6); 19388 /* ICMP mask reply is not for a loopback interface */ 19389 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19390 19391 mp = allocb(REPLY_LEN, BPRI_HI); 19392 if (mp == NULL) 19393 return; 19394 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19395 19396 ipha = (ipha_t *)mp->b_rptr; 19397 bzero(ipha, REPLY_LEN); 19398 *ipha = icmp_ipha; 19399 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19400 ipha->ipha_src = ipif->ipif_src_addr; 19401 ipha->ipha_dst = ipif->ipif_brd_addr; 19402 ipha->ipha_length = htons(REPLY_LEN); 19403 ipha->ipha_ident = 0; 19404 19405 icmph = (icmph_t *)&ipha[1]; 19406 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19407 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19408 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19409 19410 put(ipif->ipif_wq, mp); 19411 19412 #undef REPLY_LEN 19413 } 19414 19415 /* 19416 * When the mtu in the ipif changes, we call this routine through ire_walk 19417 * to update all the relevant IREs. 19418 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19419 */ 19420 static void 19421 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19422 { 19423 ipif_t *ipif = (ipif_t *)ipif_arg; 19424 19425 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19426 return; 19427 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19428 } 19429 19430 /* 19431 * When the mtu in the ill changes, we call this routine through ire_walk 19432 * to update all the relevant IREs. 19433 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19434 */ 19435 void 19436 ill_mtu_change(ire_t *ire, char *ill_arg) 19437 { 19438 ill_t *ill = (ill_t *)ill_arg; 19439 19440 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19441 return; 19442 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19443 } 19444 19445 /* 19446 * Join the ipif specific multicast groups. 19447 * Must be called after a mapping has been set up in the resolver. (Always 19448 * called as writer.) 19449 */ 19450 void 19451 ipif_multicast_up(ipif_t *ipif) 19452 { 19453 int err, index; 19454 ill_t *ill; 19455 19456 ASSERT(IAM_WRITER_IPIF(ipif)); 19457 19458 ill = ipif->ipif_ill; 19459 index = ill->ill_phyint->phyint_ifindex; 19460 19461 ip1dbg(("ipif_multicast_up\n")); 19462 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19463 return; 19464 19465 if (ipif->ipif_isv6) { 19466 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19467 return; 19468 19469 /* Join the all hosts multicast address */ 19470 ip1dbg(("ipif_multicast_up - addmulti\n")); 19471 /* 19472 * Passing B_TRUE means we have to join the multicast 19473 * membership on this interface even though this is 19474 * FAILED. If we join on a different one in the group, 19475 * we will not be able to delete the membership later 19476 * as we currently don't track where we join when we 19477 * join within the kernel unlike applications where 19478 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19479 * for more on this. 19480 */ 19481 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19482 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19483 if (err != 0) { 19484 ip0dbg(("ipif_multicast_up: " 19485 "all_hosts_mcast failed %d\n", 19486 err)); 19487 return; 19488 } 19489 /* 19490 * Enable multicast for the solicited node multicast address 19491 */ 19492 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19493 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19494 19495 ipv6_multi.s6_addr32[3] |= 19496 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19497 19498 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19499 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19500 NULL); 19501 if (err != 0) { 19502 ip0dbg(("ipif_multicast_up: solicited MC" 19503 " failed %d\n", err)); 19504 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19505 ill, ill->ill_phyint->phyint_ifindex, 19506 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19507 return; 19508 } 19509 } 19510 } else { 19511 if (ipif->ipif_lcl_addr == INADDR_ANY) 19512 return; 19513 19514 /* Join the all hosts multicast address */ 19515 ip1dbg(("ipif_multicast_up - addmulti\n")); 19516 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19517 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19518 if (err) { 19519 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19520 return; 19521 } 19522 } 19523 ipif->ipif_multicast_up = 1; 19524 } 19525 19526 /* 19527 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19528 * (Explicit memberships are blown away in ill_leave_multicast() when the 19529 * ill is brought down.) 19530 */ 19531 static void 19532 ipif_multicast_down(ipif_t *ipif) 19533 { 19534 int err; 19535 19536 ASSERT(IAM_WRITER_IPIF(ipif)); 19537 19538 ip1dbg(("ipif_multicast_down\n")); 19539 if (!ipif->ipif_multicast_up) 19540 return; 19541 19542 ip1dbg(("ipif_multicast_down - delmulti\n")); 19543 19544 if (!ipif->ipif_isv6) { 19545 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19546 B_TRUE); 19547 if (err != 0) 19548 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19549 19550 ipif->ipif_multicast_up = 0; 19551 return; 19552 } 19553 19554 /* 19555 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19556 * we should look for ilms on this ill rather than the ones that have 19557 * been failed over here. They are here temporarily. As 19558 * ipif_multicast_up has joined on this ill, we should delete only 19559 * from this ill. 19560 */ 19561 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19562 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19563 B_TRUE, B_TRUE); 19564 if (err != 0) { 19565 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19566 err)); 19567 } 19568 /* 19569 * Disable multicast for the solicited node multicast address 19570 */ 19571 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19572 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19573 19574 ipv6_multi.s6_addr32[3] |= 19575 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19576 19577 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19578 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19579 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19580 19581 if (err != 0) { 19582 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19583 err)); 19584 } 19585 } 19586 19587 ipif->ipif_multicast_up = 0; 19588 } 19589 19590 /* 19591 * Used when an interface comes up to recreate any extra routes on this 19592 * interface. 19593 */ 19594 static ire_t ** 19595 ipif_recover_ire(ipif_t *ipif) 19596 { 19597 mblk_t *mp; 19598 ire_t **ipif_saved_irep; 19599 ire_t **irep; 19600 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19601 19602 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19603 ipif->ipif_id)); 19604 19605 mutex_enter(&ipif->ipif_saved_ire_lock); 19606 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19607 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19608 if (ipif_saved_irep == NULL) { 19609 mutex_exit(&ipif->ipif_saved_ire_lock); 19610 return (NULL); 19611 } 19612 19613 irep = ipif_saved_irep; 19614 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19615 ire_t *ire; 19616 queue_t *rfq; 19617 queue_t *stq; 19618 ifrt_t *ifrt; 19619 uchar_t *src_addr; 19620 uchar_t *gateway_addr; 19621 ushort_t type; 19622 19623 /* 19624 * When the ire was initially created and then added in 19625 * ip_rt_add(), it was created either using ipif->ipif_net_type 19626 * in the case of a traditional interface route, or as one of 19627 * the IRE_OFFSUBNET types (with the exception of 19628 * IRE_HOST types ire which is created by icmp_redirect() and 19629 * which we don't need to save or recover). In the case where 19630 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19631 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19632 * to satisfy software like GateD and Sun Cluster which creates 19633 * routes using the the loopback interface's address as a 19634 * gateway. 19635 * 19636 * As ifrt->ifrt_type reflects the already updated ire_type, 19637 * ire_create() will be called in the same way here as 19638 * in ip_rt_add(), namely using ipif->ipif_net_type when 19639 * the route looks like a traditional interface route (where 19640 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19641 * the saved ifrt->ifrt_type. This means that in the case where 19642 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19643 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19644 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19645 */ 19646 ifrt = (ifrt_t *)mp->b_rptr; 19647 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19648 if (ifrt->ifrt_type & IRE_INTERFACE) { 19649 rfq = NULL; 19650 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19651 ? ipif->ipif_rq : ipif->ipif_wq; 19652 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19653 ? (uint8_t *)&ifrt->ifrt_src_addr 19654 : (uint8_t *)&ipif->ipif_src_addr; 19655 gateway_addr = NULL; 19656 type = ipif->ipif_net_type; 19657 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19658 /* Recover multiroute broadcast IRE. */ 19659 rfq = ipif->ipif_rq; 19660 stq = ipif->ipif_wq; 19661 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19662 ? (uint8_t *)&ifrt->ifrt_src_addr 19663 : (uint8_t *)&ipif->ipif_src_addr; 19664 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19665 type = ifrt->ifrt_type; 19666 } else { 19667 rfq = NULL; 19668 stq = NULL; 19669 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19670 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19671 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19672 type = ifrt->ifrt_type; 19673 } 19674 19675 /* 19676 * Create a copy of the IRE with the saved address and netmask. 19677 */ 19678 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19679 "0x%x/0x%x\n", 19680 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19681 ntohl(ifrt->ifrt_addr), 19682 ntohl(ifrt->ifrt_mask))); 19683 ire = ire_create( 19684 (uint8_t *)&ifrt->ifrt_addr, 19685 (uint8_t *)&ifrt->ifrt_mask, 19686 src_addr, 19687 gateway_addr, 19688 &ifrt->ifrt_max_frag, 19689 NULL, 19690 rfq, 19691 stq, 19692 type, 19693 ipif, 19694 0, 19695 0, 19696 0, 19697 ifrt->ifrt_flags, 19698 &ifrt->ifrt_iulp_info, 19699 NULL, 19700 NULL, 19701 ipst); 19702 19703 if (ire == NULL) { 19704 mutex_exit(&ipif->ipif_saved_ire_lock); 19705 kmem_free(ipif_saved_irep, 19706 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19707 return (NULL); 19708 } 19709 19710 /* 19711 * Some software (for example, GateD and Sun Cluster) attempts 19712 * to create (what amount to) IRE_PREFIX routes with the 19713 * loopback address as the gateway. This is primarily done to 19714 * set up prefixes with the RTF_REJECT flag set (for example, 19715 * when generating aggregate routes.) 19716 * 19717 * If the IRE type (as defined by ipif->ipif_net_type) is 19718 * IRE_LOOPBACK, then we map the request into a 19719 * IRE_IF_NORESOLVER. 19720 */ 19721 if (ipif->ipif_net_type == IRE_LOOPBACK) 19722 ire->ire_type = IRE_IF_NORESOLVER; 19723 /* 19724 * ire held by ire_add, will be refreled' towards the 19725 * the end of ipif_up_done 19726 */ 19727 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19728 *irep = ire; 19729 irep++; 19730 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19731 } 19732 mutex_exit(&ipif->ipif_saved_ire_lock); 19733 return (ipif_saved_irep); 19734 } 19735 19736 /* 19737 * Used to set the netmask and broadcast address to default values when the 19738 * interface is brought up. (Always called as writer.) 19739 */ 19740 static void 19741 ipif_set_default(ipif_t *ipif) 19742 { 19743 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19744 19745 if (!ipif->ipif_isv6) { 19746 /* 19747 * Interface holds an IPv4 address. Default 19748 * mask is the natural netmask. 19749 */ 19750 if (!ipif->ipif_net_mask) { 19751 ipaddr_t v4mask; 19752 19753 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19754 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19755 } 19756 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19757 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19758 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19759 } else { 19760 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19761 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19762 } 19763 /* 19764 * NOTE: SunOS 4.X does this even if the broadcast address 19765 * has been already set thus we do the same here. 19766 */ 19767 if (ipif->ipif_flags & IPIF_BROADCAST) { 19768 ipaddr_t v4addr; 19769 19770 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19771 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19772 } 19773 } else { 19774 /* 19775 * Interface holds an IPv6-only address. Default 19776 * mask is all-ones. 19777 */ 19778 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19779 ipif->ipif_v6net_mask = ipv6_all_ones; 19780 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19781 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19782 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19783 } else { 19784 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19785 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19786 } 19787 } 19788 } 19789 19790 /* 19791 * Return 0 if this address can be used as local address without causing 19792 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19793 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19794 * Special checks are needed to allow the same IPv6 link-local address 19795 * on different ills. 19796 * TODO: allowing the same site-local address on different ill's. 19797 */ 19798 int 19799 ip_addr_availability_check(ipif_t *new_ipif) 19800 { 19801 in6_addr_t our_v6addr; 19802 ill_t *ill; 19803 ipif_t *ipif; 19804 ill_walk_context_t ctx; 19805 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19806 19807 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19808 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19809 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19810 19811 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19812 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19813 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19814 return (0); 19815 19816 our_v6addr = new_ipif->ipif_v6lcl_addr; 19817 19818 if (new_ipif->ipif_isv6) 19819 ill = ILL_START_WALK_V6(&ctx, ipst); 19820 else 19821 ill = ILL_START_WALK_V4(&ctx, ipst); 19822 19823 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19824 for (ipif = ill->ill_ipif; ipif != NULL; 19825 ipif = ipif->ipif_next) { 19826 if ((ipif == new_ipif) || 19827 !(ipif->ipif_flags & IPIF_UP) || 19828 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19829 continue; 19830 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19831 &our_v6addr)) { 19832 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19833 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19834 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19835 ipif->ipif_flags |= IPIF_UNNUMBERED; 19836 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19837 new_ipif->ipif_ill != ill) 19838 continue; 19839 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19840 new_ipif->ipif_ill != ill) 19841 continue; 19842 else if (new_ipif->ipif_zoneid != 19843 ipif->ipif_zoneid && 19844 ipif->ipif_zoneid != ALL_ZONES && 19845 IS_LOOPBACK(ill)) 19846 continue; 19847 else if (new_ipif->ipif_ill == ill) 19848 return (EADDRINUSE); 19849 else 19850 return (EADDRNOTAVAIL); 19851 } 19852 } 19853 } 19854 19855 return (0); 19856 } 19857 19858 /* 19859 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19860 * IREs for the ipif. 19861 * When the routine returns EINPROGRESS then mp has been consumed and 19862 * the ioctl will be acked from ip_rput_dlpi. 19863 */ 19864 static int 19865 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19866 { 19867 ill_t *ill = ipif->ipif_ill; 19868 boolean_t isv6 = ipif->ipif_isv6; 19869 int err = 0; 19870 boolean_t success; 19871 19872 ASSERT(IAM_WRITER_IPIF(ipif)); 19873 19874 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19875 19876 /* Shouldn't get here if it is already up. */ 19877 if (ipif->ipif_flags & IPIF_UP) 19878 return (EALREADY); 19879 19880 /* Skip arp/ndp for any loopback interface. */ 19881 if (ill->ill_wq != NULL) { 19882 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19883 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19884 19885 if (!ill->ill_dl_up) { 19886 /* 19887 * ill_dl_up is not yet set. i.e. we are yet to 19888 * DL_BIND with the driver and this is the first 19889 * logical interface on the ill to become "up". 19890 * Tell the driver to get going (via DL_BIND_REQ). 19891 * Note that changing "significant" IFF_ flags 19892 * address/netmask etc cause a down/up dance, but 19893 * does not cause an unbind (DL_UNBIND) with the driver 19894 */ 19895 return (ill_dl_up(ill, ipif, mp, q)); 19896 } 19897 19898 /* 19899 * ipif_resolver_up may end up sending an 19900 * AR_INTERFACE_UP message to ARP, which would, in 19901 * turn send a DLPI message to the driver. ioctls are 19902 * serialized and so we cannot send more than one 19903 * interface up message at a time. If ipif_resolver_up 19904 * does send an interface up message to ARP, we get 19905 * EINPROGRESS and we will complete in ip_arp_done. 19906 */ 19907 19908 ASSERT(connp != NULL || !CONN_Q(q)); 19909 ASSERT(ipsq->ipsq_pending_mp == NULL); 19910 if (connp != NULL) 19911 mutex_enter(&connp->conn_lock); 19912 mutex_enter(&ill->ill_lock); 19913 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19914 mutex_exit(&ill->ill_lock); 19915 if (connp != NULL) 19916 mutex_exit(&connp->conn_lock); 19917 if (!success) 19918 return (EINTR); 19919 19920 /* 19921 * Crank up IPv6 neighbor discovery 19922 * Unlike ARP, this should complete when 19923 * ipif_ndp_up returns. However, for 19924 * ILLF_XRESOLV interfaces we also send a 19925 * AR_INTERFACE_UP to the external resolver. 19926 * That ioctl will complete in ip_rput. 19927 */ 19928 if (isv6) { 19929 err = ipif_ndp_up(ipif); 19930 if (err != 0) { 19931 if (err != EINPROGRESS) 19932 mp = ipsq_pending_mp_get(ipsq, &connp); 19933 return (err); 19934 } 19935 } 19936 /* Now, ARP */ 19937 err = ipif_resolver_up(ipif, Res_act_initial); 19938 if (err == EINPROGRESS) { 19939 /* We will complete it in ip_arp_done */ 19940 return (err); 19941 } 19942 mp = ipsq_pending_mp_get(ipsq, &connp); 19943 ASSERT(mp != NULL); 19944 if (err != 0) 19945 return (err); 19946 } else { 19947 /* 19948 * Interfaces without underlying hardware don't do duplicate 19949 * address detection. 19950 */ 19951 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19952 ipif->ipif_addr_ready = 1; 19953 } 19954 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19955 } 19956 19957 /* 19958 * Perform a bind for the physical device. 19959 * When the routine returns EINPROGRESS then mp has been consumed and 19960 * the ioctl will be acked from ip_rput_dlpi. 19961 * Allocate an unbind message and save it until ipif_down. 19962 */ 19963 static int 19964 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19965 { 19966 areq_t *areq; 19967 mblk_t *areq_mp = NULL; 19968 mblk_t *bind_mp = NULL; 19969 mblk_t *unbind_mp = NULL; 19970 conn_t *connp; 19971 boolean_t success; 19972 uint16_t sap_addr; 19973 19974 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19975 ASSERT(IAM_WRITER_ILL(ill)); 19976 ASSERT(mp != NULL); 19977 19978 /* Create a resolver cookie for ARP */ 19979 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19980 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19981 if (areq_mp == NULL) 19982 return (ENOMEM); 19983 19984 freemsg(ill->ill_resolver_mp); 19985 ill->ill_resolver_mp = areq_mp; 19986 areq = (areq_t *)areq_mp->b_rptr; 19987 sap_addr = ill->ill_sap; 19988 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19989 } 19990 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19991 DL_BIND_REQ); 19992 if (bind_mp == NULL) 19993 goto bad; 19994 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19995 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19996 19997 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19998 if (unbind_mp == NULL) 19999 goto bad; 20000 20001 /* 20002 * Record state needed to complete this operation when the 20003 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20004 */ 20005 ASSERT(WR(q)->q_next == NULL); 20006 connp = Q_TO_CONN(q); 20007 20008 mutex_enter(&connp->conn_lock); 20009 mutex_enter(&ipif->ipif_ill->ill_lock); 20010 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20011 mutex_exit(&ipif->ipif_ill->ill_lock); 20012 mutex_exit(&connp->conn_lock); 20013 if (!success) 20014 goto bad; 20015 20016 /* 20017 * Save the unbind message for ill_dl_down(); it will be consumed when 20018 * the interface goes down. 20019 */ 20020 ASSERT(ill->ill_unbind_mp == NULL); 20021 ill->ill_unbind_mp = unbind_mp; 20022 20023 ill_dlpi_send(ill, bind_mp); 20024 /* Send down link-layer capabilities probe if not already done. */ 20025 ill_capability_probe(ill); 20026 20027 /* 20028 * Sysid used to rely on the fact that netboots set domainname 20029 * and the like. Now that miniroot boots aren't strictly netboots 20030 * and miniroot network configuration is driven from userland 20031 * these things still need to be set. This situation can be detected 20032 * by comparing the interface being configured here to the one 20033 * dhcifname was set to reference by the boot loader. Once sysid is 20034 * converted to use dhcp_ipc_getinfo() this call can go away. 20035 */ 20036 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20037 (strcmp(ill->ill_name, dhcifname) == 0) && 20038 (strlen(srpc_domain) == 0)) { 20039 if (dhcpinit() != 0) 20040 cmn_err(CE_WARN, "no cached dhcp response"); 20041 } 20042 20043 /* 20044 * This operation will complete in ip_rput_dlpi with either 20045 * a DL_BIND_ACK or DL_ERROR_ACK. 20046 */ 20047 return (EINPROGRESS); 20048 bad: 20049 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20050 /* 20051 * We don't have to check for possible removal from illgrp 20052 * as we have not yet inserted in illgrp. For groups 20053 * without names, this ipif is still not UP and hence 20054 * this could not have possibly had any influence in forming 20055 * groups. 20056 */ 20057 20058 freemsg(bind_mp); 20059 freemsg(unbind_mp); 20060 return (ENOMEM); 20061 } 20062 20063 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20064 20065 /* 20066 * DLPI and ARP is up. 20067 * Create all the IREs associated with an interface bring up multicast. 20068 * Set the interface flag and finish other initialization 20069 * that potentially had to be differed to after DL_BIND_ACK. 20070 */ 20071 int 20072 ipif_up_done(ipif_t *ipif) 20073 { 20074 ire_t *ire_array[20]; 20075 ire_t **irep = ire_array; 20076 ire_t **irep1; 20077 ipaddr_t net_mask = 0; 20078 ipaddr_t subnet_mask, route_mask; 20079 ill_t *ill = ipif->ipif_ill; 20080 queue_t *stq; 20081 ipif_t *src_ipif; 20082 ipif_t *tmp_ipif; 20083 boolean_t flush_ire_cache = B_TRUE; 20084 int err = 0; 20085 phyint_t *phyi; 20086 ire_t **ipif_saved_irep = NULL; 20087 int ipif_saved_ire_cnt; 20088 int cnt; 20089 boolean_t src_ipif_held = B_FALSE; 20090 boolean_t ire_added = B_FALSE; 20091 boolean_t loopback = B_FALSE; 20092 ip_stack_t *ipst = ill->ill_ipst; 20093 20094 ip1dbg(("ipif_up_done(%s:%u)\n", 20095 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20096 /* Check if this is a loopback interface */ 20097 if (ipif->ipif_ill->ill_wq == NULL) 20098 loopback = B_TRUE; 20099 20100 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20101 /* 20102 * If all other interfaces for this ill are down or DEPRECATED, 20103 * or otherwise unsuitable for source address selection, remove 20104 * any IRE_CACHE entries for this ill to make sure source 20105 * address selection gets to take this new ipif into account. 20106 * No need to hold ill_lock while traversing the ipif list since 20107 * we are writer 20108 */ 20109 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20110 tmp_ipif = tmp_ipif->ipif_next) { 20111 if (((tmp_ipif->ipif_flags & 20112 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20113 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20114 (tmp_ipif == ipif)) 20115 continue; 20116 /* first useable pre-existing interface */ 20117 flush_ire_cache = B_FALSE; 20118 break; 20119 } 20120 if (flush_ire_cache) 20121 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20122 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20123 20124 /* 20125 * Figure out which way the send-to queue should go. Only 20126 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20127 * should show up here. 20128 */ 20129 switch (ill->ill_net_type) { 20130 case IRE_IF_RESOLVER: 20131 stq = ill->ill_rq; 20132 break; 20133 case IRE_IF_NORESOLVER: 20134 case IRE_LOOPBACK: 20135 stq = ill->ill_wq; 20136 break; 20137 default: 20138 return (EINVAL); 20139 } 20140 20141 if (IS_LOOPBACK(ill)) { 20142 /* 20143 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20144 * ipif_lookup_on_name(), but in the case of zones we can have 20145 * several loopback addresses on lo0. So all the interfaces with 20146 * loopback addresses need to be marked IRE_LOOPBACK. 20147 */ 20148 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20149 htonl(INADDR_LOOPBACK)) 20150 ipif->ipif_ire_type = IRE_LOOPBACK; 20151 else 20152 ipif->ipif_ire_type = IRE_LOCAL; 20153 } 20154 20155 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20156 /* 20157 * Can't use our source address. Select a different 20158 * source address for the IRE_INTERFACE and IRE_LOCAL 20159 */ 20160 src_ipif = ipif_select_source(ipif->ipif_ill, 20161 ipif->ipif_subnet, ipif->ipif_zoneid); 20162 if (src_ipif == NULL) 20163 src_ipif = ipif; /* Last resort */ 20164 else 20165 src_ipif_held = B_TRUE; 20166 } else { 20167 src_ipif = ipif; 20168 } 20169 20170 /* Create all the IREs associated with this interface */ 20171 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20172 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20173 20174 /* 20175 * If we're on a labeled system then make sure that zone- 20176 * private addresses have proper remote host database entries. 20177 */ 20178 if (is_system_labeled() && 20179 ipif->ipif_ire_type != IRE_LOOPBACK && 20180 !tsol_check_interface_address(ipif)) 20181 return (EINVAL); 20182 20183 /* Register the source address for __sin6_src_id */ 20184 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20185 ipif->ipif_zoneid, ipst); 20186 if (err != 0) { 20187 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20188 return (err); 20189 } 20190 20191 /* If the interface address is set, create the local IRE. */ 20192 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20193 (void *)ipif, 20194 ipif->ipif_ire_type, 20195 ntohl(ipif->ipif_lcl_addr))); 20196 *irep++ = ire_create( 20197 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20198 (uchar_t *)&ip_g_all_ones, /* mask */ 20199 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20200 NULL, /* no gateway */ 20201 &ip_loopback_mtuplus, /* max frag size */ 20202 NULL, 20203 ipif->ipif_rq, /* recv-from queue */ 20204 NULL, /* no send-to queue */ 20205 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20206 ipif, 20207 0, 20208 0, 20209 0, 20210 (ipif->ipif_flags & IPIF_PRIVATE) ? 20211 RTF_PRIVATE : 0, 20212 &ire_uinfo_null, 20213 NULL, 20214 NULL, 20215 ipst); 20216 } else { 20217 ip1dbg(( 20218 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20219 ipif->ipif_ire_type, 20220 ntohl(ipif->ipif_lcl_addr), 20221 (uint_t)ipif->ipif_flags)); 20222 } 20223 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20224 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20225 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20226 } else { 20227 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20228 } 20229 20230 subnet_mask = ipif->ipif_net_mask; 20231 20232 /* 20233 * If mask was not specified, use natural netmask of 20234 * interface address. Also, store this mask back into the 20235 * ipif struct. 20236 */ 20237 if (subnet_mask == 0) { 20238 subnet_mask = net_mask; 20239 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20240 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20241 ipif->ipif_v6subnet); 20242 } 20243 20244 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20245 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20246 ipif->ipif_subnet != INADDR_ANY) { 20247 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20248 20249 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20250 route_mask = IP_HOST_MASK; 20251 } else { 20252 route_mask = subnet_mask; 20253 } 20254 20255 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20256 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20257 (void *)ipif, (void *)ill, 20258 ill->ill_net_type, 20259 ntohl(ipif->ipif_subnet))); 20260 *irep++ = ire_create( 20261 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20262 (uchar_t *)&route_mask, /* mask */ 20263 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20264 NULL, /* no gateway */ 20265 &ipif->ipif_mtu, /* max frag */ 20266 NULL, 20267 NULL, /* no recv queue */ 20268 stq, /* send-to queue */ 20269 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20270 ipif, 20271 0, 20272 0, 20273 0, 20274 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20275 &ire_uinfo_null, 20276 NULL, 20277 NULL, 20278 ipst); 20279 } 20280 20281 /* 20282 * Create any necessary broadcast IREs. 20283 */ 20284 if (ipif->ipif_flags & IPIF_BROADCAST) 20285 irep = ipif_create_bcast_ires(ipif, irep); 20286 20287 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20288 20289 /* If an earlier ire_create failed, get out now */ 20290 for (irep1 = irep; irep1 > ire_array; ) { 20291 irep1--; 20292 if (*irep1 == NULL) { 20293 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20294 err = ENOMEM; 20295 goto bad; 20296 } 20297 } 20298 20299 /* 20300 * Need to atomically check for ip_addr_availablity_check 20301 * under ip_addr_avail_lock, and if it fails got bad, and remove 20302 * from group also.The ill_g_lock is grabbed as reader 20303 * just to make sure no new ills or new ipifs are being added 20304 * to the system while we are checking the uniqueness of addresses. 20305 */ 20306 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20307 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20308 /* Mark it up, and increment counters. */ 20309 ipif->ipif_flags |= IPIF_UP; 20310 ill->ill_ipif_up_count++; 20311 err = ip_addr_availability_check(ipif); 20312 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20313 rw_exit(&ipst->ips_ill_g_lock); 20314 20315 if (err != 0) { 20316 /* 20317 * Our address may already be up on the same ill. In this case, 20318 * the ARP entry for our ipif replaced the one for the other 20319 * ipif. So we don't want to delete it (otherwise the other ipif 20320 * would be unable to send packets). 20321 * ip_addr_availability_check() identifies this case for us and 20322 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20323 * which is the expected error code. 20324 */ 20325 if (err == EADDRINUSE) { 20326 freemsg(ipif->ipif_arp_del_mp); 20327 ipif->ipif_arp_del_mp = NULL; 20328 err = EADDRNOTAVAIL; 20329 } 20330 ill->ill_ipif_up_count--; 20331 ipif->ipif_flags &= ~IPIF_UP; 20332 goto bad; 20333 } 20334 20335 /* 20336 * Add in all newly created IREs. ire_create_bcast() has 20337 * already checked for duplicates of the IRE_BROADCAST type. 20338 * We want to add before we call ifgrp_insert which wants 20339 * to know whether IRE_IF_RESOLVER exists or not. 20340 * 20341 * NOTE : We refrele the ire though we may branch to "bad" 20342 * later on where we do ire_delete. This is okay 20343 * because nobody can delete it as we are running 20344 * exclusively. 20345 */ 20346 for (irep1 = irep; irep1 > ire_array; ) { 20347 irep1--; 20348 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20349 /* 20350 * refheld by ire_add. refele towards the end of the func 20351 */ 20352 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20353 } 20354 ire_added = B_TRUE; 20355 /* 20356 * Form groups if possible. 20357 * 20358 * If we are supposed to be in a ill_group with a name, insert it 20359 * now as we know that at least one ipif is UP. Otherwise form 20360 * nameless groups. 20361 * 20362 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20363 * this ipif into the appropriate interface group, or create a 20364 * new one. If this is already in a nameless group, we try to form 20365 * a bigger group looking at other ills potentially sharing this 20366 * ipif's prefix. 20367 */ 20368 phyi = ill->ill_phyint; 20369 if (phyi->phyint_groupname_len != 0) { 20370 ASSERT(phyi->phyint_groupname != NULL); 20371 if (ill->ill_ipif_up_count == 1) { 20372 ASSERT(ill->ill_group == NULL); 20373 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20374 phyi->phyint_groupname, NULL, B_TRUE); 20375 if (err != 0) { 20376 ip1dbg(("ipif_up_done: illgrp allocation " 20377 "failed, error %d\n", err)); 20378 goto bad; 20379 } 20380 } 20381 ASSERT(ill->ill_group != NULL); 20382 } 20383 20384 /* 20385 * When this is part of group, we need to make sure that 20386 * any broadcast ires created because of this ipif coming 20387 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20388 * so that we don't receive duplicate broadcast packets. 20389 */ 20390 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20391 ipif_renominate_bcast(ipif); 20392 20393 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20394 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20395 ipif_saved_irep = ipif_recover_ire(ipif); 20396 20397 if (!loopback) { 20398 /* 20399 * If the broadcast address has been set, make sure it makes 20400 * sense based on the interface address. 20401 * Only match on ill since we are sharing broadcast addresses. 20402 */ 20403 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20404 (ipif->ipif_flags & IPIF_BROADCAST)) { 20405 ire_t *ire; 20406 20407 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20408 IRE_BROADCAST, ipif, ALL_ZONES, 20409 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20410 20411 if (ire == NULL) { 20412 /* 20413 * If there isn't a matching broadcast IRE, 20414 * revert to the default for this netmask. 20415 */ 20416 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20417 mutex_enter(&ipif->ipif_ill->ill_lock); 20418 ipif_set_default(ipif); 20419 mutex_exit(&ipif->ipif_ill->ill_lock); 20420 } else { 20421 ire_refrele(ire); 20422 } 20423 } 20424 20425 } 20426 20427 /* This is the first interface on this ill */ 20428 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20429 /* 20430 * Need to recover all multicast memberships in the driver. 20431 * This had to be deferred until we had attached. 20432 */ 20433 ill_recover_multicast(ill); 20434 } 20435 /* Join the allhosts multicast address */ 20436 ipif_multicast_up(ipif); 20437 20438 if (!loopback) { 20439 /* 20440 * See whether anybody else would benefit from the 20441 * new ipif that we added. We call this always rather 20442 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20443 * ipif is for the benefit of illgrp_insert (done above) 20444 * which does not do source address selection as it does 20445 * not want to re-create interface routes that we are 20446 * having reference to it here. 20447 */ 20448 ill_update_source_selection(ill); 20449 } 20450 20451 for (irep1 = irep; irep1 > ire_array; ) { 20452 irep1--; 20453 if (*irep1 != NULL) { 20454 /* was held in ire_add */ 20455 ire_refrele(*irep1); 20456 } 20457 } 20458 20459 cnt = ipif_saved_ire_cnt; 20460 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20461 if (*irep1 != NULL) { 20462 /* was held in ire_add */ 20463 ire_refrele(*irep1); 20464 } 20465 } 20466 20467 if (!loopback && ipif->ipif_addr_ready) { 20468 /* Broadcast an address mask reply. */ 20469 ipif_mask_reply(ipif); 20470 } 20471 if (ipif_saved_irep != NULL) { 20472 kmem_free(ipif_saved_irep, 20473 ipif_saved_ire_cnt * sizeof (ire_t *)); 20474 } 20475 if (src_ipif_held) 20476 ipif_refrele(src_ipif); 20477 20478 /* 20479 * This had to be deferred until we had bound. Tell routing sockets and 20480 * others that this interface is up if it looks like the address has 20481 * been validated. Otherwise, if it isn't ready yet, wait for 20482 * duplicate address detection to do its thing. 20483 */ 20484 if (ipif->ipif_addr_ready) { 20485 ip_rts_ifmsg(ipif); 20486 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20487 /* Let SCTP update the status for this ipif */ 20488 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20489 } 20490 return (0); 20491 20492 bad: 20493 ip1dbg(("ipif_up_done: FAILED \n")); 20494 /* 20495 * We don't have to bother removing from ill groups because 20496 * 20497 * 1) For groups with names, we insert only when the first ipif 20498 * comes up. In that case if it fails, it will not be in any 20499 * group. So, we need not try to remove for that case. 20500 * 20501 * 2) For groups without names, either we tried to insert ipif_ill 20502 * in a group as singleton or found some other group to become 20503 * a bigger group. For the former, if it fails we don't have 20504 * anything to do as ipif_ill is not in the group and for the 20505 * latter, there are no failures in illgrp_insert/illgrp_delete 20506 * (ENOMEM can't occur for this. Check ifgrp_insert). 20507 */ 20508 while (irep > ire_array) { 20509 irep--; 20510 if (*irep != NULL) { 20511 ire_delete(*irep); 20512 if (ire_added) 20513 ire_refrele(*irep); 20514 } 20515 } 20516 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20517 20518 if (ipif_saved_irep != NULL) { 20519 kmem_free(ipif_saved_irep, 20520 ipif_saved_ire_cnt * sizeof (ire_t *)); 20521 } 20522 if (src_ipif_held) 20523 ipif_refrele(src_ipif); 20524 20525 ipif_arp_down(ipif); 20526 return (err); 20527 } 20528 20529 /* 20530 * Turn off the ARP with the ILLF_NOARP flag. 20531 */ 20532 static int 20533 ill_arp_off(ill_t *ill) 20534 { 20535 mblk_t *arp_off_mp = NULL; 20536 mblk_t *arp_on_mp = NULL; 20537 20538 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20539 20540 ASSERT(IAM_WRITER_ILL(ill)); 20541 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20542 20543 /* 20544 * If the on message is still around we've already done 20545 * an arp_off without doing an arp_on thus there is no 20546 * work needed. 20547 */ 20548 if (ill->ill_arp_on_mp != NULL) 20549 return (0); 20550 20551 /* 20552 * Allocate an ARP on message (to be saved) and an ARP off message 20553 */ 20554 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20555 if (!arp_off_mp) 20556 return (ENOMEM); 20557 20558 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20559 if (!arp_on_mp) 20560 goto failed; 20561 20562 ASSERT(ill->ill_arp_on_mp == NULL); 20563 ill->ill_arp_on_mp = arp_on_mp; 20564 20565 /* Send an AR_INTERFACE_OFF request */ 20566 putnext(ill->ill_rq, arp_off_mp); 20567 return (0); 20568 failed: 20569 20570 if (arp_off_mp) 20571 freemsg(arp_off_mp); 20572 return (ENOMEM); 20573 } 20574 20575 /* 20576 * Turn on ARP by turning off the ILLF_NOARP flag. 20577 */ 20578 static int 20579 ill_arp_on(ill_t *ill) 20580 { 20581 mblk_t *mp; 20582 20583 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20584 20585 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20586 20587 ASSERT(IAM_WRITER_ILL(ill)); 20588 /* 20589 * Send an AR_INTERFACE_ON request if we have already done 20590 * an arp_off (which allocated the message). 20591 */ 20592 if (ill->ill_arp_on_mp != NULL) { 20593 mp = ill->ill_arp_on_mp; 20594 ill->ill_arp_on_mp = NULL; 20595 putnext(ill->ill_rq, mp); 20596 } 20597 return (0); 20598 } 20599 20600 /* 20601 * Called after either deleting ill from the group or when setting 20602 * FAILED or STANDBY on the interface. 20603 */ 20604 static void 20605 illgrp_reset_schednext(ill_t *ill) 20606 { 20607 ill_group_t *illgrp; 20608 ill_t *save_ill; 20609 20610 ASSERT(IAM_WRITER_ILL(ill)); 20611 /* 20612 * When called from illgrp_delete, ill_group will be non-NULL. 20613 * But when called from ip_sioctl_flags, it could be NULL if 20614 * somebody is setting FAILED/INACTIVE on some interface which 20615 * is not part of a group. 20616 */ 20617 illgrp = ill->ill_group; 20618 if (illgrp == NULL) 20619 return; 20620 if (illgrp->illgrp_ill_schednext != ill) 20621 return; 20622 20623 illgrp->illgrp_ill_schednext = NULL; 20624 save_ill = ill; 20625 /* 20626 * Choose a good ill to be the next one for 20627 * outbound traffic. As the flags FAILED/STANDBY is 20628 * not yet marked when called from ip_sioctl_flags, 20629 * we check for ill separately. 20630 */ 20631 for (ill = illgrp->illgrp_ill; ill != NULL; 20632 ill = ill->ill_group_next) { 20633 if ((ill != save_ill) && 20634 !(ill->ill_phyint->phyint_flags & 20635 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20636 illgrp->illgrp_ill_schednext = ill; 20637 return; 20638 } 20639 } 20640 } 20641 20642 /* 20643 * Given an ill, find the next ill in the group to be scheduled. 20644 * (This should be called by ip_newroute() before ire_create().) 20645 * The passed in ill may be pulled out of the group, after we have picked 20646 * up a different outgoing ill from the same group. However ire add will 20647 * atomically check this. 20648 */ 20649 ill_t * 20650 illgrp_scheduler(ill_t *ill) 20651 { 20652 ill_t *retill; 20653 ill_group_t *illgrp; 20654 int illcnt; 20655 int i; 20656 uint64_t flags; 20657 ip_stack_t *ipst = ill->ill_ipst; 20658 20659 /* 20660 * We don't use a lock to check for the ill_group. If this ill 20661 * is currently being inserted we may end up just returning this 20662 * ill itself. That is ok. 20663 */ 20664 if (ill->ill_group == NULL) { 20665 ill_refhold(ill); 20666 return (ill); 20667 } 20668 20669 /* 20670 * Grab the ill_g_lock as reader to make sure we are dealing with 20671 * a set of stable ills. No ill can be added or deleted or change 20672 * group while we hold the reader lock. 20673 */ 20674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20675 if ((illgrp = ill->ill_group) == NULL) { 20676 rw_exit(&ipst->ips_ill_g_lock); 20677 ill_refhold(ill); 20678 return (ill); 20679 } 20680 20681 illcnt = illgrp->illgrp_ill_count; 20682 mutex_enter(&illgrp->illgrp_lock); 20683 retill = illgrp->illgrp_ill_schednext; 20684 20685 if (retill == NULL) 20686 retill = illgrp->illgrp_ill; 20687 20688 /* 20689 * We do a circular search beginning at illgrp_ill_schednext 20690 * or illgrp_ill. We don't check the flags against the ill lock 20691 * since it can change anytime. The ire creation will be atomic 20692 * and will fail if the ill is FAILED or OFFLINE. 20693 */ 20694 for (i = 0; i < illcnt; i++) { 20695 flags = retill->ill_phyint->phyint_flags; 20696 20697 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20698 ILL_CAN_LOOKUP(retill)) { 20699 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20700 ill_refhold(retill); 20701 break; 20702 } 20703 retill = retill->ill_group_next; 20704 if (retill == NULL) 20705 retill = illgrp->illgrp_ill; 20706 } 20707 mutex_exit(&illgrp->illgrp_lock); 20708 rw_exit(&ipst->ips_ill_g_lock); 20709 20710 return (i == illcnt ? NULL : retill); 20711 } 20712 20713 /* 20714 * Checks for availbility of a usable source address (if there is one) when the 20715 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20716 * this selection is done regardless of the destination. 20717 */ 20718 boolean_t 20719 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20720 { 20721 uint_t ifindex; 20722 ipif_t *ipif = NULL; 20723 ill_t *uill; 20724 boolean_t isv6; 20725 ip_stack_t *ipst = ill->ill_ipst; 20726 20727 ASSERT(ill != NULL); 20728 20729 isv6 = ill->ill_isv6; 20730 ifindex = ill->ill_usesrc_ifindex; 20731 if (ifindex != 0) { 20732 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20733 NULL, ipst); 20734 if (uill == NULL) 20735 return (NULL); 20736 mutex_enter(&uill->ill_lock); 20737 for (ipif = uill->ill_ipif; ipif != NULL; 20738 ipif = ipif->ipif_next) { 20739 if (!IPIF_CAN_LOOKUP(ipif)) 20740 continue; 20741 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20742 continue; 20743 if (!(ipif->ipif_flags & IPIF_UP)) 20744 continue; 20745 if (ipif->ipif_zoneid != zoneid) 20746 continue; 20747 if ((isv6 && 20748 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20749 (ipif->ipif_lcl_addr == INADDR_ANY)) 20750 continue; 20751 mutex_exit(&uill->ill_lock); 20752 ill_refrele(uill); 20753 return (B_TRUE); 20754 } 20755 mutex_exit(&uill->ill_lock); 20756 ill_refrele(uill); 20757 } 20758 return (B_FALSE); 20759 } 20760 20761 /* 20762 * Determine the best source address given a destination address and an ill. 20763 * Prefers non-deprecated over deprecated but will return a deprecated 20764 * address if there is no other choice. If there is a usable source address 20765 * on the interface pointed to by ill_usesrc_ifindex then that is given 20766 * first preference. 20767 * 20768 * Returns NULL if there is no suitable source address for the ill. 20769 * This only occurs when there is no valid source address for the ill. 20770 */ 20771 ipif_t * 20772 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20773 { 20774 ipif_t *ipif; 20775 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20776 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20777 int index = 0; 20778 boolean_t wrapped = B_FALSE; 20779 boolean_t same_subnet_only = B_FALSE; 20780 boolean_t ipif_same_found, ipif_other_found; 20781 boolean_t specific_found; 20782 ill_t *till, *usill = NULL; 20783 tsol_tpc_t *src_rhtp, *dst_rhtp; 20784 ip_stack_t *ipst = ill->ill_ipst; 20785 20786 if (ill->ill_usesrc_ifindex != 0) { 20787 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20788 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20789 if (usill != NULL) 20790 ill = usill; /* Select source from usesrc ILL */ 20791 else 20792 return (NULL); 20793 } 20794 20795 /* 20796 * If we're dealing with an unlabeled destination on a labeled system, 20797 * make sure that we ignore source addresses that are incompatible with 20798 * the destination's default label. That destination's default label 20799 * must dominate the minimum label on the source address. 20800 */ 20801 dst_rhtp = NULL; 20802 if (is_system_labeled()) { 20803 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20804 if (dst_rhtp == NULL) 20805 return (NULL); 20806 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20807 TPC_RELE(dst_rhtp); 20808 dst_rhtp = NULL; 20809 } 20810 } 20811 20812 /* 20813 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20814 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20815 * After selecting the right ipif, under ill_lock make sure ipif is 20816 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20817 * we retry. Inside the loop we still need to check for CONDEMNED, 20818 * but not under a lock. 20819 */ 20820 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20821 20822 retry: 20823 till = ill; 20824 ipif_arr[0] = NULL; 20825 20826 if (till->ill_group != NULL) 20827 till = till->ill_group->illgrp_ill; 20828 20829 /* 20830 * Choose one good source address from each ill across the group. 20831 * If possible choose a source address in the same subnet as 20832 * the destination address. 20833 * 20834 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20835 * This is okay because of the following. 20836 * 20837 * If PHYI_FAILED is set and we still have non-deprecated 20838 * addresses, it means the addresses have not yet been 20839 * failed over to a different interface. We potentially 20840 * select them to create IRE_CACHES, which will be later 20841 * flushed when the addresses move over. 20842 * 20843 * If PHYI_INACTIVE is set and we still have non-deprecated 20844 * addresses, it means either the user has configured them 20845 * or PHYI_INACTIVE has not been cleared after the addresses 20846 * been moved over. For the former, in.mpathd does a failover 20847 * when the interface becomes INACTIVE and hence we should 20848 * not find them. Once INACTIVE is set, we don't allow them 20849 * to create logical interfaces anymore. For the latter, a 20850 * flush will happen when INACTIVE is cleared which will 20851 * flush the IRE_CACHES. 20852 * 20853 * If PHYI_OFFLINE is set, all the addresses will be failed 20854 * over soon. We potentially select them to create IRE_CACHEs, 20855 * which will be later flushed when the addresses move over. 20856 * 20857 * NOTE : As ipif_select_source is called to borrow source address 20858 * for an ipif that is part of a group, source address selection 20859 * will be re-done whenever the group changes i.e either an 20860 * insertion/deletion in the group. 20861 * 20862 * Fill ipif_arr[] with source addresses, using these rules: 20863 * 20864 * 1. At most one source address from a given ill ends up 20865 * in ipif_arr[] -- that is, at most one of the ipif's 20866 * associated with a given ill ends up in ipif_arr[]. 20867 * 20868 * 2. If there is at least one non-deprecated ipif in the 20869 * IPMP group with a source address on the same subnet as 20870 * our destination, then fill ipif_arr[] only with 20871 * source addresses on the same subnet as our destination. 20872 * Note that because of (1), only the first 20873 * non-deprecated ipif found with a source address 20874 * matching the destination ends up in ipif_arr[]. 20875 * 20876 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20877 * addresses not in the same subnet as our destination. 20878 * Again, because of (1), only the first off-subnet source 20879 * address will be chosen. 20880 * 20881 * 4. If there are no non-deprecated ipifs, then just use 20882 * the source address associated with the last deprecated 20883 * one we find that happens to be on the same subnet, 20884 * otherwise the first one not in the same subnet. 20885 */ 20886 specific_found = B_FALSE; 20887 for (; till != NULL; till = till->ill_group_next) { 20888 ipif_same_found = B_FALSE; 20889 ipif_other_found = B_FALSE; 20890 for (ipif = till->ill_ipif; ipif != NULL; 20891 ipif = ipif->ipif_next) { 20892 if (!IPIF_CAN_LOOKUP(ipif)) 20893 continue; 20894 /* Always skip NOLOCAL and ANYCAST interfaces */ 20895 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20896 continue; 20897 if (!(ipif->ipif_flags & IPIF_UP) || 20898 !ipif->ipif_addr_ready) 20899 continue; 20900 if (ipif->ipif_zoneid != zoneid && 20901 ipif->ipif_zoneid != ALL_ZONES) 20902 continue; 20903 /* 20904 * Interfaces with 0.0.0.0 address are allowed to be UP, 20905 * but are not valid as source addresses. 20906 */ 20907 if (ipif->ipif_lcl_addr == INADDR_ANY) 20908 continue; 20909 20910 /* 20911 * Check compatibility of local address for 20912 * destination's default label if we're on a labeled 20913 * system. Incompatible addresses can't be used at 20914 * all. 20915 */ 20916 if (dst_rhtp != NULL) { 20917 boolean_t incompat; 20918 20919 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20920 IPV4_VERSION, B_FALSE); 20921 if (src_rhtp == NULL) 20922 continue; 20923 incompat = 20924 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20925 src_rhtp->tpc_tp.tp_doi != 20926 dst_rhtp->tpc_tp.tp_doi || 20927 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20928 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20929 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20930 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20931 TPC_RELE(src_rhtp); 20932 if (incompat) 20933 continue; 20934 } 20935 20936 /* 20937 * We prefer not to use all all-zones addresses, if we 20938 * can avoid it, as they pose problems with unlabeled 20939 * destinations. 20940 */ 20941 if (ipif->ipif_zoneid != ALL_ZONES) { 20942 if (!specific_found && 20943 (!same_subnet_only || 20944 (ipif->ipif_net_mask & dst) == 20945 ipif->ipif_subnet)) { 20946 index = 0; 20947 specific_found = B_TRUE; 20948 ipif_other_found = B_FALSE; 20949 } 20950 } else { 20951 if (specific_found) 20952 continue; 20953 } 20954 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20955 if (ipif_dep == NULL || 20956 (ipif->ipif_net_mask & dst) == 20957 ipif->ipif_subnet) 20958 ipif_dep = ipif; 20959 continue; 20960 } 20961 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20962 /* found a source address in the same subnet */ 20963 if (!same_subnet_only) { 20964 same_subnet_only = B_TRUE; 20965 index = 0; 20966 } 20967 ipif_same_found = B_TRUE; 20968 } else { 20969 if (same_subnet_only || ipif_other_found) 20970 continue; 20971 ipif_other_found = B_TRUE; 20972 } 20973 ipif_arr[index++] = ipif; 20974 if (index == MAX_IPIF_SELECT_SOURCE) { 20975 wrapped = B_TRUE; 20976 index = 0; 20977 } 20978 if (ipif_same_found) 20979 break; 20980 } 20981 } 20982 20983 if (ipif_arr[0] == NULL) { 20984 ipif = ipif_dep; 20985 } else { 20986 if (wrapped) 20987 index = MAX_IPIF_SELECT_SOURCE; 20988 ipif = ipif_arr[ipif_rand(ipst) % index]; 20989 ASSERT(ipif != NULL); 20990 } 20991 20992 if (ipif != NULL) { 20993 mutex_enter(&ipif->ipif_ill->ill_lock); 20994 if (!IPIF_CAN_LOOKUP(ipif)) { 20995 mutex_exit(&ipif->ipif_ill->ill_lock); 20996 goto retry; 20997 } 20998 ipif_refhold_locked(ipif); 20999 mutex_exit(&ipif->ipif_ill->ill_lock); 21000 } 21001 21002 rw_exit(&ipst->ips_ill_g_lock); 21003 if (usill != NULL) 21004 ill_refrele(usill); 21005 if (dst_rhtp != NULL) 21006 TPC_RELE(dst_rhtp); 21007 21008 #ifdef DEBUG 21009 if (ipif == NULL) { 21010 char buf1[INET6_ADDRSTRLEN]; 21011 21012 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21013 ill->ill_name, 21014 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21015 } else { 21016 char buf1[INET6_ADDRSTRLEN]; 21017 char buf2[INET6_ADDRSTRLEN]; 21018 21019 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21020 ipif->ipif_ill->ill_name, 21021 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21022 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21023 buf2, sizeof (buf2)))); 21024 } 21025 #endif /* DEBUG */ 21026 return (ipif); 21027 } 21028 21029 21030 /* 21031 * If old_ipif is not NULL, see if ipif was derived from old 21032 * ipif and if so, recreate the interface route by re-doing 21033 * source address selection. This happens when ipif_down -> 21034 * ipif_update_other_ipifs calls us. 21035 * 21036 * If old_ipif is NULL, just redo the source address selection 21037 * if needed. This happens when illgrp_insert or ipif_up_done 21038 * calls us. 21039 */ 21040 static void 21041 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21042 { 21043 ire_t *ire; 21044 ire_t *ipif_ire; 21045 queue_t *stq; 21046 ipif_t *nipif; 21047 ill_t *ill; 21048 boolean_t need_rele = B_FALSE; 21049 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21050 21051 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21052 ASSERT(IAM_WRITER_IPIF(ipif)); 21053 21054 ill = ipif->ipif_ill; 21055 if (!(ipif->ipif_flags & 21056 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21057 /* 21058 * Can't possibly have borrowed the source 21059 * from old_ipif. 21060 */ 21061 return; 21062 } 21063 21064 /* 21065 * Is there any work to be done? No work if the address 21066 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21067 * ipif_select_source() does not borrow addresses from 21068 * NOLOCAL and ANYCAST interfaces). 21069 */ 21070 if ((old_ipif != NULL) && 21071 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21072 (old_ipif->ipif_ill->ill_wq == NULL) || 21073 (old_ipif->ipif_flags & 21074 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21075 return; 21076 } 21077 21078 /* 21079 * Perform the same checks as when creating the 21080 * IRE_INTERFACE in ipif_up_done. 21081 */ 21082 if (!(ipif->ipif_flags & IPIF_UP)) 21083 return; 21084 21085 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21086 (ipif->ipif_subnet == INADDR_ANY)) 21087 return; 21088 21089 ipif_ire = ipif_to_ire(ipif); 21090 if (ipif_ire == NULL) 21091 return; 21092 21093 /* 21094 * We know that ipif uses some other source for its 21095 * IRE_INTERFACE. Is it using the source of this 21096 * old_ipif? 21097 */ 21098 if (old_ipif != NULL && 21099 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21100 ire_refrele(ipif_ire); 21101 return; 21102 } 21103 if (ip_debug > 2) { 21104 /* ip1dbg */ 21105 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21106 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21107 } 21108 21109 stq = ipif_ire->ire_stq; 21110 21111 /* 21112 * Can't use our source address. Select a different 21113 * source address for the IRE_INTERFACE. 21114 */ 21115 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21116 if (nipif == NULL) { 21117 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21118 nipif = ipif; 21119 } else { 21120 need_rele = B_TRUE; 21121 } 21122 21123 ire = ire_create( 21124 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21125 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21126 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21127 NULL, /* no gateway */ 21128 &ipif->ipif_mtu, /* max frag */ 21129 NULL, /* no src nce */ 21130 NULL, /* no recv from queue */ 21131 stq, /* send-to queue */ 21132 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21133 ipif, 21134 0, 21135 0, 21136 0, 21137 0, 21138 &ire_uinfo_null, 21139 NULL, 21140 NULL, 21141 ipst); 21142 21143 if (ire != NULL) { 21144 ire_t *ret_ire; 21145 int error; 21146 21147 /* 21148 * We don't need ipif_ire anymore. We need to delete 21149 * before we add so that ire_add does not detect 21150 * duplicates. 21151 */ 21152 ire_delete(ipif_ire); 21153 ret_ire = ire; 21154 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21155 ASSERT(error == 0); 21156 ASSERT(ire == ret_ire); 21157 /* Held in ire_add */ 21158 ire_refrele(ret_ire); 21159 } 21160 /* 21161 * Either we are falling through from above or could not 21162 * allocate a replacement. 21163 */ 21164 ire_refrele(ipif_ire); 21165 if (need_rele) 21166 ipif_refrele(nipif); 21167 } 21168 21169 /* 21170 * This old_ipif is going away. 21171 * 21172 * Determine if any other ipif's is using our address as 21173 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21174 * IPIF_DEPRECATED). 21175 * Find the IRE_INTERFACE for such ipifs and recreate them 21176 * to use an different source address following the rules in 21177 * ipif_up_done. 21178 * 21179 * This function takes an illgrp as an argument so that illgrp_delete 21180 * can call this to update source address even after deleting the 21181 * old_ipif->ipif_ill from the ill group. 21182 */ 21183 static void 21184 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21185 { 21186 ipif_t *ipif; 21187 ill_t *ill; 21188 char buf[INET6_ADDRSTRLEN]; 21189 21190 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21191 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21192 21193 ill = old_ipif->ipif_ill; 21194 21195 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21196 ill->ill_name, 21197 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21198 buf, sizeof (buf)))); 21199 /* 21200 * If this part of a group, look at all ills as ipif_select_source 21201 * borrows source address across all the ills in the group. 21202 */ 21203 if (illgrp != NULL) 21204 ill = illgrp->illgrp_ill; 21205 21206 for (; ill != NULL; ill = ill->ill_group_next) { 21207 for (ipif = ill->ill_ipif; ipif != NULL; 21208 ipif = ipif->ipif_next) { 21209 21210 if (ipif == old_ipif) 21211 continue; 21212 21213 ipif_recreate_interface_routes(old_ipif, ipif); 21214 } 21215 } 21216 } 21217 21218 /* ARGSUSED */ 21219 int 21220 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21221 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21222 { 21223 /* 21224 * ill_phyint_reinit merged the v4 and v6 into a single 21225 * ipsq. Could also have become part of a ipmp group in the 21226 * process, and we might not have been able to complete the 21227 * operation in ipif_set_values, if we could not become 21228 * exclusive. If so restart it here. 21229 */ 21230 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21231 } 21232 21233 /* 21234 * Can operate on either a module or a driver queue. 21235 * Returns an error if not a module queue. 21236 */ 21237 /* ARGSUSED */ 21238 int 21239 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21240 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21241 { 21242 queue_t *q1 = q; 21243 char *cp; 21244 char interf_name[LIFNAMSIZ]; 21245 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21246 21247 if (q->q_next == NULL) { 21248 ip1dbg(( 21249 "if_unitsel: IF_UNITSEL: no q_next\n")); 21250 return (EINVAL); 21251 } 21252 21253 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21254 return (EALREADY); 21255 21256 do { 21257 q1 = q1->q_next; 21258 } while (q1->q_next); 21259 cp = q1->q_qinfo->qi_minfo->mi_idname; 21260 (void) sprintf(interf_name, "%s%d", cp, ppa); 21261 21262 /* 21263 * Here we are not going to delay the ioack until after 21264 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21265 * original ioctl message before sending the requests. 21266 */ 21267 return (ipif_set_values(q, mp, interf_name, &ppa)); 21268 } 21269 21270 /* ARGSUSED */ 21271 int 21272 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21273 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21274 { 21275 return (ENXIO); 21276 } 21277 21278 /* 21279 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21280 * `irep'. Returns a pointer to the next free `irep' entry (just like 21281 * ire_check_and_create_bcast()). 21282 */ 21283 static ire_t ** 21284 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21285 { 21286 ipaddr_t addr; 21287 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21288 ipaddr_t subnetmask = ipif->ipif_net_mask; 21289 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21290 21291 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21292 21293 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21294 21295 if (ipif->ipif_lcl_addr == INADDR_ANY || 21296 (ipif->ipif_flags & IPIF_NOLOCAL)) 21297 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21298 21299 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21300 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21301 21302 /* 21303 * For backward compatibility, we create net broadcast IREs based on 21304 * the old "IP address class system", since some old machines only 21305 * respond to these class derived net broadcast. However, we must not 21306 * create these net broadcast IREs if the subnetmask is shorter than 21307 * the IP address class based derived netmask. Otherwise, we may 21308 * create a net broadcast address which is the same as an IP address 21309 * on the subnet -- and then TCP will refuse to talk to that address. 21310 */ 21311 if (netmask < subnetmask) { 21312 addr = netmask & ipif->ipif_subnet; 21313 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21314 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21315 flags); 21316 } 21317 21318 /* 21319 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21320 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21321 * created. Creating these broadcast IREs will only create confusion 21322 * as `addr' will be the same as the IP address. 21323 */ 21324 if (subnetmask != 0xFFFFFFFF) { 21325 addr = ipif->ipif_subnet; 21326 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21327 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21328 irep, flags); 21329 } 21330 21331 return (irep); 21332 } 21333 21334 /* 21335 * Broadcast IRE info structure used in the functions below. Since we 21336 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21337 */ 21338 typedef struct bcast_ireinfo { 21339 uchar_t bi_type; /* BCAST_* value from below */ 21340 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21341 bi_needrep:1, /* do we need to replace it? */ 21342 bi_haverep:1, /* have we replaced it? */ 21343 bi_pad:5; 21344 ipaddr_t bi_addr; /* IRE address */ 21345 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21346 } bcast_ireinfo_t; 21347 21348 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21349 21350 /* 21351 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21352 * return B_TRUE if it should immediately be used to recreate the IRE. 21353 */ 21354 static boolean_t 21355 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21356 { 21357 ipaddr_t addr; 21358 21359 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21360 21361 switch (bireinfop->bi_type) { 21362 case BCAST_NET: 21363 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21364 if (addr != bireinfop->bi_addr) 21365 return (B_FALSE); 21366 break; 21367 case BCAST_SUBNET: 21368 if (ipif->ipif_subnet != bireinfop->bi_addr) 21369 return (B_FALSE); 21370 break; 21371 } 21372 21373 bireinfop->bi_needrep = 1; 21374 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21375 if (bireinfop->bi_backup == NULL) 21376 bireinfop->bi_backup = ipif; 21377 return (B_FALSE); 21378 } 21379 return (B_TRUE); 21380 } 21381 21382 /* 21383 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21384 * them ala ire_check_and_create_bcast(). 21385 */ 21386 static ire_t ** 21387 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21388 { 21389 ipaddr_t mask, addr; 21390 21391 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21392 21393 addr = bireinfop->bi_addr; 21394 irep = ire_create_bcast(ipif, addr, irep); 21395 21396 switch (bireinfop->bi_type) { 21397 case BCAST_NET: 21398 mask = ip_net_mask(ipif->ipif_subnet); 21399 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21400 break; 21401 case BCAST_SUBNET: 21402 mask = ipif->ipif_net_mask; 21403 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21404 break; 21405 } 21406 21407 bireinfop->bi_haverep = 1; 21408 return (irep); 21409 } 21410 21411 /* 21412 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21413 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21414 * that are going away are still needed. If so, have ipif_create_bcast() 21415 * recreate them (except for the deprecated case, as explained below). 21416 */ 21417 static ire_t ** 21418 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21419 ire_t **irep) 21420 { 21421 int i; 21422 ipif_t *ipif; 21423 21424 ASSERT(!ill->ill_isv6); 21425 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21426 /* 21427 * Skip this ipif if it's (a) the one being taken down, (b) 21428 * not in the same zone, or (c) has no valid local address. 21429 */ 21430 if (ipif == test_ipif || 21431 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21432 ipif->ipif_subnet == 0 || 21433 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21434 (IPIF_UP|IPIF_BROADCAST)) 21435 continue; 21436 21437 /* 21438 * For each dying IRE that hasn't yet been replaced, see if 21439 * `ipif' needs it and whether the IRE should be recreated on 21440 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21441 * will return B_FALSE even if `ipif' needs the IRE on the 21442 * hopes that we'll later find a needy non-deprecated ipif. 21443 * However, the ipif is recorded in bi_backup for possible 21444 * subsequent use by ipif_check_bcast_ires(). 21445 */ 21446 for (i = 0; i < BCAST_COUNT; i++) { 21447 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21448 continue; 21449 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21450 continue; 21451 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21452 } 21453 21454 /* 21455 * If we've replaced all of the broadcast IREs that are going 21456 * to be taken down, we know we're done. 21457 */ 21458 for (i = 0; i < BCAST_COUNT; i++) { 21459 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21460 break; 21461 } 21462 if (i == BCAST_COUNT) 21463 break; 21464 } 21465 return (irep); 21466 } 21467 21468 /* 21469 * Check if `test_ipif' (which is going away) is associated with any existing 21470 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21471 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21472 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21473 * 21474 * This is necessary because broadcast IREs are shared. In particular, a 21475 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21476 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21477 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21478 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21479 * same zone, they will share the same set of broadcast IREs. 21480 * 21481 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21482 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21483 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21484 */ 21485 static void 21486 ipif_check_bcast_ires(ipif_t *test_ipif) 21487 { 21488 ill_t *ill = test_ipif->ipif_ill; 21489 ire_t *ire, *ire_array[12]; /* see note above */ 21490 ire_t **irep1, **irep = &ire_array[0]; 21491 uint_t i, willdie; 21492 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21493 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21494 21495 ASSERT(!test_ipif->ipif_isv6); 21496 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21497 21498 /* 21499 * No broadcast IREs for the LOOPBACK interface 21500 * or others such as point to point and IPIF_NOXMIT. 21501 */ 21502 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21503 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21504 return; 21505 21506 bzero(bireinfo, sizeof (bireinfo)); 21507 bireinfo[0].bi_type = BCAST_ALLZEROES; 21508 bireinfo[0].bi_addr = 0; 21509 21510 bireinfo[1].bi_type = BCAST_ALLONES; 21511 bireinfo[1].bi_addr = INADDR_BROADCAST; 21512 21513 bireinfo[2].bi_type = BCAST_NET; 21514 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21515 21516 if (test_ipif->ipif_net_mask != 0) 21517 mask = test_ipif->ipif_net_mask; 21518 bireinfo[3].bi_type = BCAST_SUBNET; 21519 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21520 21521 /* 21522 * Figure out what (if any) broadcast IREs will die as a result of 21523 * `test_ipif' going away. If none will die, we're done. 21524 */ 21525 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21526 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21527 test_ipif, ALL_ZONES, NULL, 21528 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21529 if (ire != NULL) { 21530 willdie++; 21531 bireinfo[i].bi_willdie = 1; 21532 ire_refrele(ire); 21533 } 21534 } 21535 21536 if (willdie == 0) 21537 return; 21538 21539 /* 21540 * Walk through all the ipifs that will be affected by the dying IREs, 21541 * and recreate the IREs as necessary. 21542 */ 21543 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21544 21545 /* 21546 * Scan through the set of broadcast IREs and see if there are any 21547 * that we need to replace that have not yet been replaced. If so, 21548 * replace them using the appropriate backup ipif. 21549 */ 21550 for (i = 0; i < BCAST_COUNT; i++) { 21551 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21552 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21553 &bireinfo[i], irep); 21554 } 21555 21556 /* 21557 * If we can't create all of them, don't add any of them. (Code in 21558 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21559 * non-loopback copy and loopback copy for a given address.) 21560 */ 21561 for (irep1 = irep; irep1 > ire_array; ) { 21562 irep1--; 21563 if (*irep1 == NULL) { 21564 ip0dbg(("ipif_check_bcast_ires: can't create " 21565 "IRE_BROADCAST, memory allocation failure\n")); 21566 while (irep > ire_array) { 21567 irep--; 21568 if (*irep != NULL) 21569 ire_delete(*irep); 21570 } 21571 return; 21572 } 21573 } 21574 21575 for (irep1 = irep; irep1 > ire_array; ) { 21576 irep1--; 21577 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21578 ire_refrele(*irep1); /* Held in ire_add */ 21579 } 21580 } 21581 21582 /* 21583 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21584 * from lifr_flags and the name from lifr_name. 21585 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21586 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21587 * Returns EINPROGRESS when mp has been consumed by queueing it on 21588 * ill_pending_mp and the ioctl will complete in ip_rput. 21589 * 21590 * Can operate on either a module or a driver queue. 21591 * Returns an error if not a module queue. 21592 */ 21593 /* ARGSUSED */ 21594 int 21595 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21596 ip_ioctl_cmd_t *ipip, void *if_req) 21597 { 21598 ill_t *ill = q->q_ptr; 21599 phyint_t *phyi; 21600 ip_stack_t *ipst; 21601 struct lifreq *lifr = if_req; 21602 21603 ASSERT(ipif != NULL); 21604 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21605 21606 if (q->q_next == NULL) { 21607 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21608 return (EINVAL); 21609 } 21610 21611 /* 21612 * If we are not writer on 'q' then this interface exists already 21613 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21614 * so return EALREADY. 21615 */ 21616 if (ill != ipif->ipif_ill) 21617 return (EALREADY); 21618 21619 if (ill->ill_name[0] != '\0') 21620 return (EALREADY); 21621 21622 /* 21623 * Set all the flags. Allows all kinds of override. Provide some 21624 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21625 * unless there is either multicast/broadcast support in the driver 21626 * or it is a pt-pt link. 21627 */ 21628 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21629 /* Meaningless to IP thus don't allow them to be set. */ 21630 ip1dbg(("ip_setname: EINVAL 1\n")); 21631 return (EINVAL); 21632 } 21633 21634 /* 21635 * If there's another ill already with the requested name, ensure 21636 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21637 * fuse together two unrelated ills, which will cause chaos. 21638 */ 21639 ipst = ill->ill_ipst; 21640 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21641 lifr->lifr_name, NULL); 21642 if (phyi != NULL) { 21643 ill_t *ill_mate = phyi->phyint_illv4; 21644 21645 if (ill_mate == NULL) 21646 ill_mate = phyi->phyint_illv6; 21647 ASSERT(ill_mate != NULL); 21648 21649 if (ill_mate->ill_media->ip_m_mac_type != 21650 ill->ill_media->ip_m_mac_type) { 21651 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21652 "use the same ill name on differing media\n")); 21653 return (EINVAL); 21654 } 21655 } 21656 21657 /* 21658 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21659 * ill_bcast_addr_length info. 21660 */ 21661 if (!ill->ill_needs_attach && 21662 ((lifr->lifr_flags & IFF_MULTICAST) && 21663 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21664 ill->ill_bcast_addr_length == 0)) { 21665 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21666 ip1dbg(("ip_setname: EINVAL 2\n")); 21667 return (EINVAL); 21668 } 21669 if ((lifr->lifr_flags & IFF_BROADCAST) && 21670 ((lifr->lifr_flags & IFF_IPV6) || 21671 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21672 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21673 ip1dbg(("ip_setname: EINVAL 3\n")); 21674 return (EINVAL); 21675 } 21676 if (lifr->lifr_flags & IFF_UP) { 21677 /* Can only be set with SIOCSLIFFLAGS */ 21678 ip1dbg(("ip_setname: EINVAL 4\n")); 21679 return (EINVAL); 21680 } 21681 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21682 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21683 ip1dbg(("ip_setname: EINVAL 5\n")); 21684 return (EINVAL); 21685 } 21686 /* 21687 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21688 */ 21689 if ((lifr->lifr_flags & IFF_XRESOLV) && 21690 !(lifr->lifr_flags & IFF_IPV6) && 21691 !(ipif->ipif_isv6)) { 21692 ip1dbg(("ip_setname: EINVAL 6\n")); 21693 return (EINVAL); 21694 } 21695 21696 /* 21697 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21698 * we have all the flags here. So, we assign rather than we OR. 21699 * We can't OR the flags here because we don't want to set 21700 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21701 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21702 * on lifr_flags value here. 21703 */ 21704 /* 21705 * This ill has not been inserted into the global list. 21706 * So we are still single threaded and don't need any lock 21707 */ 21708 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21709 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21710 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21711 21712 /* We started off as V4. */ 21713 if (ill->ill_flags & ILLF_IPV6) { 21714 ill->ill_phyint->phyint_illv6 = ill; 21715 ill->ill_phyint->phyint_illv4 = NULL; 21716 } 21717 21718 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21719 } 21720 21721 /* ARGSUSED */ 21722 int 21723 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21724 ip_ioctl_cmd_t *ipip, void *if_req) 21725 { 21726 /* 21727 * ill_phyint_reinit merged the v4 and v6 into a single 21728 * ipsq. Could also have become part of a ipmp group in the 21729 * process, and we might not have been able to complete the 21730 * slifname in ipif_set_values, if we could not become 21731 * exclusive. If so restart it here 21732 */ 21733 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21734 } 21735 21736 /* 21737 * Return a pointer to the ipif which matches the index, IP version type and 21738 * zoneid. 21739 */ 21740 ipif_t * 21741 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21742 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21743 { 21744 ill_t *ill; 21745 ipif_t *ipif = NULL; 21746 21747 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21748 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21749 21750 if (err != NULL) 21751 *err = 0; 21752 21753 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21754 if (ill != NULL) { 21755 mutex_enter(&ill->ill_lock); 21756 for (ipif = ill->ill_ipif; ipif != NULL; 21757 ipif = ipif->ipif_next) { 21758 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21759 zoneid == ipif->ipif_zoneid || 21760 ipif->ipif_zoneid == ALL_ZONES)) { 21761 ipif_refhold_locked(ipif); 21762 break; 21763 } 21764 } 21765 mutex_exit(&ill->ill_lock); 21766 ill_refrele(ill); 21767 if (ipif == NULL && err != NULL) 21768 *err = ENXIO; 21769 } 21770 return (ipif); 21771 } 21772 21773 typedef struct conn_change_s { 21774 uint_t cc_old_ifindex; 21775 uint_t cc_new_ifindex; 21776 } conn_change_t; 21777 21778 /* 21779 * ipcl_walk function for changing interface index. 21780 */ 21781 static void 21782 conn_change_ifindex(conn_t *connp, caddr_t arg) 21783 { 21784 conn_change_t *connc; 21785 uint_t old_ifindex; 21786 uint_t new_ifindex; 21787 int i; 21788 ilg_t *ilg; 21789 21790 connc = (conn_change_t *)arg; 21791 old_ifindex = connc->cc_old_ifindex; 21792 new_ifindex = connc->cc_new_ifindex; 21793 21794 if (connp->conn_orig_bound_ifindex == old_ifindex) 21795 connp->conn_orig_bound_ifindex = new_ifindex; 21796 21797 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21798 connp->conn_orig_multicast_ifindex = new_ifindex; 21799 21800 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21801 ilg = &connp->conn_ilg[i]; 21802 if (ilg->ilg_orig_ifindex == old_ifindex) 21803 ilg->ilg_orig_ifindex = new_ifindex; 21804 } 21805 } 21806 21807 /* 21808 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21809 * to new_index if it matches the old_index. 21810 * 21811 * Failovers typically happen within a group of ills. But somebody 21812 * can remove an ill from the group after a failover happened. If 21813 * we are setting the ifindex after this, we potentially need to 21814 * look at all the ills rather than just the ones in the group. 21815 * We cut down the work by looking at matching ill_net_types 21816 * and ill_types as we could not possibly grouped them together. 21817 */ 21818 static void 21819 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21820 { 21821 ill_t *ill; 21822 ipif_t *ipif; 21823 uint_t old_ifindex; 21824 uint_t new_ifindex; 21825 ilm_t *ilm; 21826 ill_walk_context_t ctx; 21827 ip_stack_t *ipst = ill_orig->ill_ipst; 21828 21829 old_ifindex = connc->cc_old_ifindex; 21830 new_ifindex = connc->cc_new_ifindex; 21831 21832 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21833 ill = ILL_START_WALK_ALL(&ctx, ipst); 21834 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21835 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21836 (ill_orig->ill_type != ill->ill_type)) { 21837 continue; 21838 } 21839 for (ipif = ill->ill_ipif; ipif != NULL; 21840 ipif = ipif->ipif_next) { 21841 if (ipif->ipif_orig_ifindex == old_ifindex) 21842 ipif->ipif_orig_ifindex = new_ifindex; 21843 } 21844 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21845 if (ilm->ilm_orig_ifindex == old_ifindex) 21846 ilm->ilm_orig_ifindex = new_ifindex; 21847 } 21848 } 21849 rw_exit(&ipst->ips_ill_g_lock); 21850 } 21851 21852 /* 21853 * We first need to ensure that the new index is unique, and 21854 * then carry the change across both v4 and v6 ill representation 21855 * of the physical interface. 21856 */ 21857 /* ARGSUSED */ 21858 int 21859 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21860 ip_ioctl_cmd_t *ipip, void *ifreq) 21861 { 21862 ill_t *ill; 21863 ill_t *ill_other; 21864 phyint_t *phyi; 21865 int old_index; 21866 conn_change_t connc; 21867 struct ifreq *ifr = (struct ifreq *)ifreq; 21868 struct lifreq *lifr = (struct lifreq *)ifreq; 21869 uint_t index; 21870 ill_t *ill_v4; 21871 ill_t *ill_v6; 21872 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21873 21874 if (ipip->ipi_cmd_type == IF_CMD) 21875 index = ifr->ifr_index; 21876 else 21877 index = lifr->lifr_index; 21878 21879 /* 21880 * Only allow on physical interface. Also, index zero is illegal. 21881 * 21882 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21883 * 21884 * 1) If PHYI_FAILED is set, a failover could have happened which 21885 * implies a possible failback might have to happen. As failback 21886 * depends on the old index, we should fail setting the index. 21887 * 21888 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21889 * any addresses or multicast memberships are failed over to 21890 * a non-STANDBY interface. As failback depends on the old 21891 * index, we should fail setting the index for this case also. 21892 * 21893 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21894 * Be consistent with PHYI_FAILED and fail the ioctl. 21895 */ 21896 ill = ipif->ipif_ill; 21897 phyi = ill->ill_phyint; 21898 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21899 ipif->ipif_id != 0 || index == 0) { 21900 return (EINVAL); 21901 } 21902 old_index = phyi->phyint_ifindex; 21903 21904 /* If the index is not changing, no work to do */ 21905 if (old_index == index) 21906 return (0); 21907 21908 /* 21909 * Use ill_lookup_on_ifindex to determine if the 21910 * new index is unused and if so allow the change. 21911 */ 21912 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21913 ipst); 21914 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21915 ipst); 21916 if (ill_v6 != NULL || ill_v4 != NULL) { 21917 if (ill_v4 != NULL) 21918 ill_refrele(ill_v4); 21919 if (ill_v6 != NULL) 21920 ill_refrele(ill_v6); 21921 return (EBUSY); 21922 } 21923 21924 /* 21925 * The new index is unused. Set it in the phyint. 21926 * Locate the other ill so that we can send a routing 21927 * sockets message. 21928 */ 21929 if (ill->ill_isv6) { 21930 ill_other = phyi->phyint_illv4; 21931 } else { 21932 ill_other = phyi->phyint_illv6; 21933 } 21934 21935 phyi->phyint_ifindex = index; 21936 21937 /* Update SCTP's ILL list */ 21938 sctp_ill_reindex(ill, old_index); 21939 21940 connc.cc_old_ifindex = old_index; 21941 connc.cc_new_ifindex = index; 21942 ip_change_ifindex(ill, &connc); 21943 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21944 21945 /* Send the routing sockets message */ 21946 ip_rts_ifmsg(ipif); 21947 if (ill_other != NULL) 21948 ip_rts_ifmsg(ill_other->ill_ipif); 21949 21950 return (0); 21951 } 21952 21953 /* ARGSUSED */ 21954 int 21955 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21956 ip_ioctl_cmd_t *ipip, void *ifreq) 21957 { 21958 struct ifreq *ifr = (struct ifreq *)ifreq; 21959 struct lifreq *lifr = (struct lifreq *)ifreq; 21960 21961 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21962 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21963 /* Get the interface index */ 21964 if (ipip->ipi_cmd_type == IF_CMD) { 21965 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21966 } else { 21967 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21968 } 21969 return (0); 21970 } 21971 21972 /* ARGSUSED */ 21973 int 21974 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21975 ip_ioctl_cmd_t *ipip, void *ifreq) 21976 { 21977 struct lifreq *lifr = (struct lifreq *)ifreq; 21978 21979 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21980 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21981 /* Get the interface zone */ 21982 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21983 lifr->lifr_zoneid = ipif->ipif_zoneid; 21984 return (0); 21985 } 21986 21987 /* 21988 * Set the zoneid of an interface. 21989 */ 21990 /* ARGSUSED */ 21991 int 21992 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21993 ip_ioctl_cmd_t *ipip, void *ifreq) 21994 { 21995 struct lifreq *lifr = (struct lifreq *)ifreq; 21996 int err = 0; 21997 boolean_t need_up = B_FALSE; 21998 zone_t *zptr; 21999 zone_status_t status; 22000 zoneid_t zoneid; 22001 22002 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22003 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22004 if (!is_system_labeled()) 22005 return (ENOTSUP); 22006 zoneid = GLOBAL_ZONEID; 22007 } 22008 22009 /* cannot assign instance zero to a non-global zone */ 22010 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22011 return (ENOTSUP); 22012 22013 /* 22014 * Cannot assign to a zone that doesn't exist or is shutting down. In 22015 * the event of a race with the zone shutdown processing, since IP 22016 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22017 * interface will be cleaned up even if the zone is shut down 22018 * immediately after the status check. If the interface can't be brought 22019 * down right away, and the zone is shut down before the restart 22020 * function is called, we resolve the possible races by rechecking the 22021 * zone status in the restart function. 22022 */ 22023 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22024 return (EINVAL); 22025 status = zone_status_get(zptr); 22026 zone_rele(zptr); 22027 22028 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22029 return (EINVAL); 22030 22031 if (ipif->ipif_flags & IPIF_UP) { 22032 /* 22033 * If the interface is already marked up, 22034 * we call ipif_down which will take care 22035 * of ditching any IREs that have been set 22036 * up based on the old interface address. 22037 */ 22038 err = ipif_logical_down(ipif, q, mp); 22039 if (err == EINPROGRESS) 22040 return (err); 22041 ipif_down_tail(ipif); 22042 need_up = B_TRUE; 22043 } 22044 22045 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22046 return (err); 22047 } 22048 22049 static int 22050 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22051 queue_t *q, mblk_t *mp, boolean_t need_up) 22052 { 22053 int err = 0; 22054 ip_stack_t *ipst; 22055 22056 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22057 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22058 22059 if (CONN_Q(q)) 22060 ipst = CONNQ_TO_IPST(q); 22061 else 22062 ipst = ILLQ_TO_IPST(q); 22063 22064 /* 22065 * For exclusive stacks we don't allow a different zoneid than 22066 * global. 22067 */ 22068 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22069 zoneid != GLOBAL_ZONEID) 22070 return (EINVAL); 22071 22072 /* Set the new zone id. */ 22073 ipif->ipif_zoneid = zoneid; 22074 22075 /* Update sctp list */ 22076 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22077 22078 if (need_up) { 22079 /* 22080 * Now bring the interface back up. If this 22081 * is the only IPIF for the ILL, ipif_up 22082 * will have to re-bind to the device, so 22083 * we may get back EINPROGRESS, in which 22084 * case, this IOCTL will get completed in 22085 * ip_rput_dlpi when we see the DL_BIND_ACK. 22086 */ 22087 err = ipif_up(ipif, q, mp); 22088 } 22089 return (err); 22090 } 22091 22092 /* ARGSUSED */ 22093 int 22094 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22095 ip_ioctl_cmd_t *ipip, void *if_req) 22096 { 22097 struct lifreq *lifr = (struct lifreq *)if_req; 22098 zoneid_t zoneid; 22099 zone_t *zptr; 22100 zone_status_t status; 22101 22102 ASSERT(ipif->ipif_id != 0); 22103 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22104 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22105 zoneid = GLOBAL_ZONEID; 22106 22107 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22108 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22109 22110 /* 22111 * We recheck the zone status to resolve the following race condition: 22112 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22113 * 2) hme0:1 is up and can't be brought down right away; 22114 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22115 * 3) zone "myzone" is halted; the zone status switches to 22116 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22117 * the interfaces to remove - hme0:1 is not returned because it's not 22118 * yet in "myzone", so it won't be removed; 22119 * 4) the restart function for SIOCSLIFZONE is called; without the 22120 * status check here, we would have hme0:1 in "myzone" after it's been 22121 * destroyed. 22122 * Note that if the status check fails, we need to bring the interface 22123 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22124 * ipif_up_done[_v6](). 22125 */ 22126 status = ZONE_IS_UNINITIALIZED; 22127 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22128 status = zone_status_get(zptr); 22129 zone_rele(zptr); 22130 } 22131 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22132 if (ipif->ipif_isv6) { 22133 (void) ipif_up_done_v6(ipif); 22134 } else { 22135 (void) ipif_up_done(ipif); 22136 } 22137 return (EINVAL); 22138 } 22139 22140 ipif_down_tail(ipif); 22141 22142 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22143 B_TRUE)); 22144 } 22145 22146 /* ARGSUSED */ 22147 int 22148 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22149 ip_ioctl_cmd_t *ipip, void *ifreq) 22150 { 22151 struct lifreq *lifr = ifreq; 22152 22153 ASSERT(q->q_next == NULL); 22154 ASSERT(CONN_Q(q)); 22155 22156 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22158 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22159 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22160 22161 return (0); 22162 } 22163 22164 /* Find the previous ILL in this usesrc group */ 22165 static ill_t * 22166 ill_prev_usesrc(ill_t *uill) 22167 { 22168 ill_t *ill; 22169 22170 for (ill = uill->ill_usesrc_grp_next; 22171 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22172 ill = ill->ill_usesrc_grp_next) 22173 /* do nothing */; 22174 return (ill); 22175 } 22176 22177 /* 22178 * Release all members of the usesrc group. This routine is called 22179 * from ill_delete when the interface being unplumbed is the 22180 * group head. 22181 */ 22182 static void 22183 ill_disband_usesrc_group(ill_t *uill) 22184 { 22185 ill_t *next_ill, *tmp_ill; 22186 ip_stack_t *ipst = uill->ill_ipst; 22187 22188 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22189 next_ill = uill->ill_usesrc_grp_next; 22190 22191 do { 22192 ASSERT(next_ill != NULL); 22193 tmp_ill = next_ill->ill_usesrc_grp_next; 22194 ASSERT(tmp_ill != NULL); 22195 next_ill->ill_usesrc_grp_next = NULL; 22196 next_ill->ill_usesrc_ifindex = 0; 22197 next_ill = tmp_ill; 22198 } while (next_ill->ill_usesrc_ifindex != 0); 22199 uill->ill_usesrc_grp_next = NULL; 22200 } 22201 22202 /* 22203 * Remove the client usesrc ILL from the list and relink to a new list 22204 */ 22205 int 22206 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22207 { 22208 ill_t *ill, *tmp_ill; 22209 ip_stack_t *ipst = ucill->ill_ipst; 22210 22211 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22212 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22213 22214 /* 22215 * Check if the usesrc client ILL passed in is not already 22216 * in use as a usesrc ILL i.e one whose source address is 22217 * in use OR a usesrc ILL is not already in use as a usesrc 22218 * client ILL 22219 */ 22220 if ((ucill->ill_usesrc_ifindex == 0) || 22221 (uill->ill_usesrc_ifindex != 0)) { 22222 return (-1); 22223 } 22224 22225 ill = ill_prev_usesrc(ucill); 22226 ASSERT(ill->ill_usesrc_grp_next != NULL); 22227 22228 /* Remove from the current list */ 22229 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22230 /* Only two elements in the list */ 22231 ASSERT(ill->ill_usesrc_ifindex == 0); 22232 ill->ill_usesrc_grp_next = NULL; 22233 } else { 22234 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22235 } 22236 22237 if (ifindex == 0) { 22238 ucill->ill_usesrc_ifindex = 0; 22239 ucill->ill_usesrc_grp_next = NULL; 22240 return (0); 22241 } 22242 22243 ucill->ill_usesrc_ifindex = ifindex; 22244 tmp_ill = uill->ill_usesrc_grp_next; 22245 uill->ill_usesrc_grp_next = ucill; 22246 ucill->ill_usesrc_grp_next = 22247 (tmp_ill != NULL) ? tmp_ill : uill; 22248 return (0); 22249 } 22250 22251 /* 22252 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22253 * ip.c for locking details. 22254 */ 22255 /* ARGSUSED */ 22256 int 22257 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22258 ip_ioctl_cmd_t *ipip, void *ifreq) 22259 { 22260 struct lifreq *lifr = (struct lifreq *)ifreq; 22261 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22262 ill_flag_changed = B_FALSE; 22263 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22264 int err = 0, ret; 22265 uint_t ifindex; 22266 phyint_t *us_phyint, *us_cli_phyint; 22267 ipsq_t *ipsq = NULL; 22268 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22269 22270 ASSERT(IAM_WRITER_IPIF(ipif)); 22271 ASSERT(q->q_next == NULL); 22272 ASSERT(CONN_Q(q)); 22273 22274 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22275 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22276 22277 ASSERT(us_cli_phyint != NULL); 22278 22279 /* 22280 * If the client ILL is being used for IPMP, abort. 22281 * Note, this can be done before ipsq_try_enter since we are already 22282 * exclusive on this ILL 22283 */ 22284 if ((us_cli_phyint->phyint_groupname != NULL) || 22285 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22286 return (EINVAL); 22287 } 22288 22289 ifindex = lifr->lifr_index; 22290 if (ifindex == 0) { 22291 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22292 /* non usesrc group interface, nothing to reset */ 22293 return (0); 22294 } 22295 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22296 /* valid reset request */ 22297 reset_flg = B_TRUE; 22298 } 22299 22300 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22301 ip_process_ioctl, &err, ipst); 22302 22303 if (usesrc_ill == NULL) { 22304 return (err); 22305 } 22306 22307 /* 22308 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22309 * group nor can either of the interfaces be used for standy. So 22310 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22311 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22312 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22313 * We are already exlusive on this ipsq i.e ipsq corresponding to 22314 * the usesrc_cli_ill 22315 */ 22316 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22317 NEW_OP, B_TRUE); 22318 if (ipsq == NULL) { 22319 err = EINPROGRESS; 22320 /* Operation enqueued on the ipsq of the usesrc ILL */ 22321 goto done; 22322 } 22323 22324 /* Check if the usesrc_ill is used for IPMP */ 22325 us_phyint = usesrc_ill->ill_phyint; 22326 if ((us_phyint->phyint_groupname != NULL) || 22327 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22328 err = EINVAL; 22329 goto done; 22330 } 22331 22332 /* 22333 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22334 * already a client then return EINVAL 22335 */ 22336 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22337 err = EINVAL; 22338 goto done; 22339 } 22340 22341 /* 22342 * If the ill_usesrc_ifindex field is already set to what it needs to 22343 * be then this is a duplicate operation. 22344 */ 22345 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22346 err = 0; 22347 goto done; 22348 } 22349 22350 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22351 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22352 usesrc_ill->ill_isv6)); 22353 22354 /* 22355 * The next step ensures that no new ires will be created referencing 22356 * the client ill, until the ILL_CHANGING flag is cleared. Then 22357 * we go through an ire walk deleting all ire caches that reference 22358 * the client ill. New ires referencing the client ill that are added 22359 * to the ire table before the ILL_CHANGING flag is set, will be 22360 * cleaned up by the ire walk below. Attempt to add new ires referencing 22361 * the client ill while the ILL_CHANGING flag is set will be failed 22362 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22363 * checks (under the ill_g_usesrc_lock) that the ire being added 22364 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22365 * belong to the same usesrc group. 22366 */ 22367 mutex_enter(&usesrc_cli_ill->ill_lock); 22368 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22369 mutex_exit(&usesrc_cli_ill->ill_lock); 22370 ill_flag_changed = B_TRUE; 22371 22372 if (ipif->ipif_isv6) 22373 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22374 ALL_ZONES, ipst); 22375 else 22376 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22377 ALL_ZONES, ipst); 22378 22379 /* 22380 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22381 * and the ill_usesrc_ifindex fields 22382 */ 22383 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22384 22385 if (reset_flg) { 22386 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22387 if (ret != 0) { 22388 err = EINVAL; 22389 } 22390 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22391 goto done; 22392 } 22393 22394 /* 22395 * Four possibilities to consider: 22396 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22397 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22398 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22399 * 4. Both are part of their respective usesrc groups 22400 */ 22401 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22402 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22403 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22404 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22405 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22406 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22407 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22408 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22409 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22410 /* Insert at head of list */ 22411 usesrc_cli_ill->ill_usesrc_grp_next = 22412 usesrc_ill->ill_usesrc_grp_next; 22413 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22414 } else { 22415 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22416 ifindex); 22417 if (ret != 0) 22418 err = EINVAL; 22419 } 22420 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22421 22422 done: 22423 if (ill_flag_changed) { 22424 mutex_enter(&usesrc_cli_ill->ill_lock); 22425 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22426 mutex_exit(&usesrc_cli_ill->ill_lock); 22427 } 22428 if (ipsq != NULL) 22429 ipsq_exit(ipsq); 22430 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22431 ill_refrele(usesrc_ill); 22432 return (err); 22433 } 22434 22435 /* 22436 * comparison function used by avl. 22437 */ 22438 static int 22439 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22440 { 22441 22442 uint_t index; 22443 22444 ASSERT(phyip != NULL && index_ptr != NULL); 22445 22446 index = *((uint_t *)index_ptr); 22447 /* 22448 * let the phyint with the lowest index be on top. 22449 */ 22450 if (((phyint_t *)phyip)->phyint_ifindex < index) 22451 return (1); 22452 if (((phyint_t *)phyip)->phyint_ifindex > index) 22453 return (-1); 22454 return (0); 22455 } 22456 22457 /* 22458 * comparison function used by avl. 22459 */ 22460 static int 22461 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22462 { 22463 ill_t *ill; 22464 int res = 0; 22465 22466 ASSERT(phyip != NULL && name_ptr != NULL); 22467 22468 if (((phyint_t *)phyip)->phyint_illv4) 22469 ill = ((phyint_t *)phyip)->phyint_illv4; 22470 else 22471 ill = ((phyint_t *)phyip)->phyint_illv6; 22472 ASSERT(ill != NULL); 22473 22474 res = strcmp(ill->ill_name, (char *)name_ptr); 22475 if (res > 0) 22476 return (1); 22477 else if (res < 0) 22478 return (-1); 22479 return (0); 22480 } 22481 /* 22482 * This function is called from ill_delete when the ill is being 22483 * unplumbed. We remove the reference from the phyint and we also 22484 * free the phyint when there are no more references to it. 22485 */ 22486 static void 22487 ill_phyint_free(ill_t *ill) 22488 { 22489 phyint_t *phyi; 22490 phyint_t *next_phyint; 22491 ipsq_t *cur_ipsq; 22492 ip_stack_t *ipst = ill->ill_ipst; 22493 22494 ASSERT(ill->ill_phyint != NULL); 22495 22496 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22497 phyi = ill->ill_phyint; 22498 ill->ill_phyint = NULL; 22499 /* 22500 * ill_init allocates a phyint always to store the copy 22501 * of flags relevant to phyint. At that point in time, we could 22502 * not assign the name and hence phyint_illv4/v6 could not be 22503 * initialized. Later in ipif_set_values, we assign the name to 22504 * the ill, at which point in time we assign phyint_illv4/v6. 22505 * Thus we don't rely on phyint_illv6 to be initialized always. 22506 */ 22507 if (ill->ill_flags & ILLF_IPV6) { 22508 phyi->phyint_illv6 = NULL; 22509 } else { 22510 phyi->phyint_illv4 = NULL; 22511 } 22512 /* 22513 * ipif_down removes it from the group when the last ipif goes 22514 * down. 22515 */ 22516 ASSERT(ill->ill_group == NULL); 22517 22518 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22519 return; 22520 22521 /* 22522 * Make sure this phyint was put in the list. 22523 */ 22524 if (phyi->phyint_ifindex > 0) { 22525 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22526 phyi); 22527 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22528 phyi); 22529 } 22530 /* 22531 * remove phyint from the ipsq list. 22532 */ 22533 cur_ipsq = phyi->phyint_ipsq; 22534 if (phyi == cur_ipsq->ipsq_phyint_list) { 22535 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22536 } else { 22537 next_phyint = cur_ipsq->ipsq_phyint_list; 22538 while (next_phyint != NULL) { 22539 if (next_phyint->phyint_ipsq_next == phyi) { 22540 next_phyint->phyint_ipsq_next = 22541 phyi->phyint_ipsq_next; 22542 break; 22543 } 22544 next_phyint = next_phyint->phyint_ipsq_next; 22545 } 22546 ASSERT(next_phyint != NULL); 22547 } 22548 IPSQ_DEC_REF(cur_ipsq, ipst); 22549 22550 if (phyi->phyint_groupname_len != 0) { 22551 ASSERT(phyi->phyint_groupname != NULL); 22552 mi_free(phyi->phyint_groupname); 22553 } 22554 mi_free(phyi); 22555 } 22556 22557 /* 22558 * Attach the ill to the phyint structure which can be shared by both 22559 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22560 * function is called from ipif_set_values and ill_lookup_on_name (for 22561 * loopback) where we know the name of the ill. We lookup the ill and if 22562 * there is one present already with the name use that phyint. Otherwise 22563 * reuse the one allocated by ill_init. 22564 */ 22565 static void 22566 ill_phyint_reinit(ill_t *ill) 22567 { 22568 boolean_t isv6 = ill->ill_isv6; 22569 phyint_t *phyi_old; 22570 phyint_t *phyi; 22571 avl_index_t where = 0; 22572 ill_t *ill_other = NULL; 22573 ipsq_t *ipsq; 22574 ip_stack_t *ipst = ill->ill_ipst; 22575 22576 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22577 22578 phyi_old = ill->ill_phyint; 22579 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22580 phyi_old->phyint_illv6 == NULL)); 22581 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22582 phyi_old->phyint_illv4 == NULL)); 22583 ASSERT(phyi_old->phyint_ifindex == 0); 22584 22585 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22586 ill->ill_name, &where); 22587 22588 /* 22589 * 1. We grabbed the ill_g_lock before inserting this ill into 22590 * the global list of ills. So no other thread could have located 22591 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22592 * 2. Now locate the other protocol instance of this ill. 22593 * 3. Now grab both ill locks in the right order, and the phyint lock of 22594 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22595 * of neither ill can change. 22596 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22597 * other ill. 22598 * 5. Release all locks. 22599 */ 22600 22601 /* 22602 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22603 * we are initializing IPv4. 22604 */ 22605 if (phyi != NULL) { 22606 ill_other = (isv6) ? phyi->phyint_illv4 : 22607 phyi->phyint_illv6; 22608 ASSERT(ill_other->ill_phyint != NULL); 22609 ASSERT((isv6 && !ill_other->ill_isv6) || 22610 (!isv6 && ill_other->ill_isv6)); 22611 GRAB_ILL_LOCKS(ill, ill_other); 22612 /* 22613 * We are potentially throwing away phyint_flags which 22614 * could be different from the one that we obtain from 22615 * ill_other->ill_phyint. But it is okay as we are assuming 22616 * that the state maintained within IP is correct. 22617 */ 22618 mutex_enter(&phyi->phyint_lock); 22619 if (isv6) { 22620 ASSERT(phyi->phyint_illv6 == NULL); 22621 phyi->phyint_illv6 = ill; 22622 } else { 22623 ASSERT(phyi->phyint_illv4 == NULL); 22624 phyi->phyint_illv4 = ill; 22625 } 22626 /* 22627 * This is a new ill, currently undergoing SLIFNAME 22628 * So we could not have joined an IPMP group until now. 22629 */ 22630 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22631 phyi_old->phyint_groupname == NULL); 22632 22633 /* 22634 * This phyi_old is going away. Decref ipsq_refs and 22635 * assert it is zero. The ipsq itself will be freed in 22636 * ipsq_exit 22637 */ 22638 ipsq = phyi_old->phyint_ipsq; 22639 IPSQ_DEC_REF(ipsq, ipst); 22640 ASSERT(ipsq->ipsq_refs == 0); 22641 /* Get the singleton phyint out of the ipsq list */ 22642 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22643 ipsq->ipsq_phyint_list = NULL; 22644 phyi_old->phyint_illv4 = NULL; 22645 phyi_old->phyint_illv6 = NULL; 22646 mi_free(phyi_old); 22647 } else { 22648 mutex_enter(&ill->ill_lock); 22649 /* 22650 * We don't need to acquire any lock, since 22651 * the ill is not yet visible globally and we 22652 * have not yet released the ill_g_lock. 22653 */ 22654 phyi = phyi_old; 22655 mutex_enter(&phyi->phyint_lock); 22656 /* XXX We need a recovery strategy here. */ 22657 if (!phyint_assign_ifindex(phyi, ipst)) 22658 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22659 22660 /* No IPMP group yet, thus the hook uses the ifindex */ 22661 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22662 22663 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22664 (void *)phyi, where); 22665 22666 (void) avl_find(&ipst->ips_phyint_g_list-> 22667 phyint_list_avl_by_index, 22668 &phyi->phyint_ifindex, &where); 22669 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22670 (void *)phyi, where); 22671 } 22672 22673 /* 22674 * Reassigning ill_phyint automatically reassigns the ipsq also. 22675 * pending mp is not affected because that is per ill basis. 22676 */ 22677 ill->ill_phyint = phyi; 22678 22679 /* 22680 * Keep the index on ipif_orig_index to be used by FAILOVER. 22681 * We do this here as when the first ipif was allocated, 22682 * ipif_allocate does not know the right interface index. 22683 */ 22684 22685 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22686 /* 22687 * Now that the phyint's ifindex has been assigned, complete the 22688 * remaining 22689 */ 22690 22691 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22692 if (ill->ill_isv6) { 22693 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22694 ill->ill_phyint->phyint_ifindex; 22695 ill->ill_mcast_type = ipst->ips_mld_max_version; 22696 } else { 22697 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22698 } 22699 22700 /* 22701 * Generate an event within the hooks framework to indicate that 22702 * a new interface has just been added to IP. For this event to 22703 * be generated, the network interface must, at least, have an 22704 * ifindex assigned to it. 22705 * 22706 * This needs to be run inside the ill_g_lock perimeter to ensure 22707 * that the ordering of delivered events to listeners matches the 22708 * order of them in the kernel. 22709 * 22710 * This function could be called from ill_lookup_on_name. In that case 22711 * the interface is loopback "lo", which will not generate a NIC event. 22712 */ 22713 if (ill->ill_name_length <= 2 || 22714 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22715 /* 22716 * Generate nic plumb event for ill_name even if 22717 * ipmp_hook_emulation is set. That avoids generating events 22718 * for the ill_names should ipmp_hook_emulation be turned on 22719 * later. 22720 */ 22721 ill_nic_info_plumb(ill, B_FALSE); 22722 } 22723 RELEASE_ILL_LOCKS(ill, ill_other); 22724 mutex_exit(&phyi->phyint_lock); 22725 } 22726 22727 /* 22728 * Allocate a NE_PLUMB nic info event and store in the ill. 22729 * If 'group' is set we do it for the group name, otherwise the ill name. 22730 * It will be sent when we leave the ipsq. 22731 */ 22732 void 22733 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22734 { 22735 phyint_t *phyi = ill->ill_phyint; 22736 char *name; 22737 int namelen; 22738 22739 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22740 22741 if (group) { 22742 ASSERT(phyi->phyint_groupname_len != 0); 22743 namelen = phyi->phyint_groupname_len; 22744 name = phyi->phyint_groupname; 22745 } else { 22746 namelen = ill->ill_name_length; 22747 name = ill->ill_name; 22748 } 22749 22750 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22751 } 22752 22753 /* 22754 * Unhook the nic event message from the ill and enqueue it 22755 * into the nic event taskq. 22756 */ 22757 void 22758 ill_nic_info_dispatch(ill_t *ill) 22759 { 22760 hook_nic_event_int_t *info; 22761 22762 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22763 22764 if ((info = ill->ill_nic_event_info) != NULL) { 22765 if (ddi_taskq_dispatch(eventq_queue_nic, 22766 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22767 ip2dbg(("ill_nic_info_dispatch: " 22768 "ddi_taskq_dispatch failed\n")); 22769 if (info->hnei_event.hne_data != NULL) { 22770 kmem_free(info->hnei_event.hne_data, 22771 info->hnei_event.hne_datalen); 22772 } 22773 kmem_free(info, sizeof (*info)); 22774 } 22775 ill->ill_nic_event_info = NULL; 22776 } 22777 } 22778 22779 /* 22780 * Notify any downstream modules of the name of this interface. 22781 * An M_IOCTL is used even though we don't expect a successful reply. 22782 * Any reply message from the driver (presumably an M_IOCNAK) will 22783 * eventually get discarded somewhere upstream. The message format is 22784 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22785 * to IP. 22786 */ 22787 static void 22788 ip_ifname_notify(ill_t *ill, queue_t *q) 22789 { 22790 mblk_t *mp1, *mp2; 22791 struct iocblk *iocp; 22792 struct lifreq *lifr; 22793 22794 mp1 = mkiocb(SIOCSLIFNAME); 22795 if (mp1 == NULL) 22796 return; 22797 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22798 if (mp2 == NULL) { 22799 freeb(mp1); 22800 return; 22801 } 22802 22803 mp1->b_cont = mp2; 22804 iocp = (struct iocblk *)mp1->b_rptr; 22805 iocp->ioc_count = sizeof (struct lifreq); 22806 22807 lifr = (struct lifreq *)mp2->b_rptr; 22808 mp2->b_wptr += sizeof (struct lifreq); 22809 bzero(lifr, sizeof (struct lifreq)); 22810 22811 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22812 lifr->lifr_ppa = ill->ill_ppa; 22813 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22814 22815 putnext(q, mp1); 22816 } 22817 22818 static int 22819 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22820 { 22821 int err; 22822 ip_stack_t *ipst = ill->ill_ipst; 22823 22824 /* Set the obsolete NDD per-interface forwarding name. */ 22825 err = ill_set_ndd_name(ill); 22826 if (err != 0) { 22827 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22828 err); 22829 } 22830 22831 /* Tell downstream modules where they are. */ 22832 ip_ifname_notify(ill, q); 22833 22834 /* 22835 * ill_dl_phys returns EINPROGRESS in the usual case. 22836 * Error cases are ENOMEM ... 22837 */ 22838 err = ill_dl_phys(ill, ipif, mp, q); 22839 22840 /* 22841 * If there is no IRE expiration timer running, get one started. 22842 * igmp and mld timers will be triggered by the first multicast 22843 */ 22844 if (ipst->ips_ip_ire_expire_id == 0) { 22845 /* 22846 * acquire the lock and check again. 22847 */ 22848 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22849 if (ipst->ips_ip_ire_expire_id == 0) { 22850 ipst->ips_ip_ire_expire_id = timeout( 22851 ip_trash_timer_expire, ipst, 22852 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22853 } 22854 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22855 } 22856 22857 if (ill->ill_isv6) { 22858 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22859 if (ipst->ips_mld_slowtimeout_id == 0) { 22860 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22861 (void *)ipst, 22862 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22863 } 22864 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22865 } else { 22866 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22867 if (ipst->ips_igmp_slowtimeout_id == 0) { 22868 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22869 (void *)ipst, 22870 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22871 } 22872 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22873 } 22874 22875 return (err); 22876 } 22877 22878 /* 22879 * Common routine for ppa and ifname setting. Should be called exclusive. 22880 * 22881 * Returns EINPROGRESS when mp has been consumed by queueing it on 22882 * ill_pending_mp and the ioctl will complete in ip_rput. 22883 * 22884 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22885 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22886 * For SLIFNAME, we pass these values back to the userland. 22887 */ 22888 static int 22889 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22890 { 22891 ill_t *ill; 22892 ipif_t *ipif; 22893 ipsq_t *ipsq; 22894 char *ppa_ptr; 22895 char *old_ptr; 22896 char old_char; 22897 int error; 22898 ip_stack_t *ipst; 22899 22900 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22901 ASSERT(q->q_next != NULL); 22902 ASSERT(interf_name != NULL); 22903 22904 ill = (ill_t *)q->q_ptr; 22905 ipst = ill->ill_ipst; 22906 22907 ASSERT(ill->ill_ipst != NULL); 22908 ASSERT(ill->ill_name[0] == '\0'); 22909 ASSERT(IAM_WRITER_ILL(ill)); 22910 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22911 ASSERT(ill->ill_ppa == UINT_MAX); 22912 22913 /* The ppa is sent down by ifconfig or is chosen */ 22914 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22915 return (EINVAL); 22916 } 22917 22918 /* 22919 * make sure ppa passed in is same as ppa in the name. 22920 * This check is not made when ppa == UINT_MAX in that case ppa 22921 * in the name could be anything. System will choose a ppa and 22922 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22923 */ 22924 if (*new_ppa_ptr != UINT_MAX) { 22925 /* stoi changes the pointer */ 22926 old_ptr = ppa_ptr; 22927 /* 22928 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22929 * (they don't have an externally visible ppa). We assign one 22930 * here so that we can manage the interface. Note that in 22931 * the past this value was always 0 for DLPI 1 drivers. 22932 */ 22933 if (*new_ppa_ptr == 0) 22934 *new_ppa_ptr = stoi(&old_ptr); 22935 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22936 return (EINVAL); 22937 } 22938 /* 22939 * terminate string before ppa 22940 * save char at that location. 22941 */ 22942 old_char = ppa_ptr[0]; 22943 ppa_ptr[0] = '\0'; 22944 22945 ill->ill_ppa = *new_ppa_ptr; 22946 /* 22947 * Finish as much work now as possible before calling ill_glist_insert 22948 * which makes the ill globally visible and also merges it with the 22949 * other protocol instance of this phyint. The remaining work is 22950 * done after entering the ipsq which may happen sometime later. 22951 * ill_set_ndd_name occurs after the ill has been made globally visible. 22952 */ 22953 ipif = ill->ill_ipif; 22954 22955 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22956 ipif_assign_seqid(ipif); 22957 22958 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22959 ill->ill_flags |= ILLF_IPV4; 22960 22961 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22962 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22963 22964 if (ill->ill_flags & ILLF_IPV6) { 22965 22966 ill->ill_isv6 = B_TRUE; 22967 if (ill->ill_rq != NULL) { 22968 ill->ill_rq->q_qinfo = &iprinitv6; 22969 ill->ill_wq->q_qinfo = &ipwinitv6; 22970 } 22971 22972 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22973 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22974 ipif->ipif_v6src_addr = ipv6_all_zeros; 22975 ipif->ipif_v6subnet = ipv6_all_zeros; 22976 ipif->ipif_v6net_mask = ipv6_all_zeros; 22977 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22978 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22979 /* 22980 * point-to-point or Non-mulicast capable 22981 * interfaces won't do NUD unless explicitly 22982 * configured to do so. 22983 */ 22984 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22985 !(ill->ill_flags & ILLF_MULTICAST)) { 22986 ill->ill_flags |= ILLF_NONUD; 22987 } 22988 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22989 if (ill->ill_flags & ILLF_NOARP) { 22990 /* 22991 * Note: xresolv interfaces will eventually need 22992 * NOARP set here as well, but that will require 22993 * those external resolvers to have some 22994 * knowledge of that flag and act appropriately. 22995 * Not to be changed at present. 22996 */ 22997 ill->ill_flags &= ~ILLF_NOARP; 22998 } 22999 /* 23000 * Set the ILLF_ROUTER flag according to the global 23001 * IPv6 forwarding policy. 23002 */ 23003 if (ipst->ips_ipv6_forward != 0) 23004 ill->ill_flags |= ILLF_ROUTER; 23005 } else if (ill->ill_flags & ILLF_IPV4) { 23006 ill->ill_isv6 = B_FALSE; 23007 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23008 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23009 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23010 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23011 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23012 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23013 /* 23014 * Set the ILLF_ROUTER flag according to the global 23015 * IPv4 forwarding policy. 23016 */ 23017 if (ipst->ips_ip_g_forward != 0) 23018 ill->ill_flags |= ILLF_ROUTER; 23019 } 23020 23021 ASSERT(ill->ill_phyint != NULL); 23022 23023 /* 23024 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23025 * be completed in ill_glist_insert -> ill_phyint_reinit 23026 */ 23027 if (!ill_allocate_mibs(ill)) 23028 return (ENOMEM); 23029 23030 /* 23031 * Pick a default sap until we get the DL_INFO_ACK back from 23032 * the driver. 23033 */ 23034 if (ill->ill_sap == 0) { 23035 if (ill->ill_isv6) 23036 ill->ill_sap = IP6_DL_SAP; 23037 else 23038 ill->ill_sap = IP_DL_SAP; 23039 } 23040 23041 ill->ill_ifname_pending = 1; 23042 ill->ill_ifname_pending_err = 0; 23043 23044 ill_refhold(ill); 23045 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23046 if ((error = ill_glist_insert(ill, interf_name, 23047 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23048 ill->ill_ppa = UINT_MAX; 23049 ill->ill_name[0] = '\0'; 23050 /* 23051 * undo null termination done above. 23052 */ 23053 ppa_ptr[0] = old_char; 23054 rw_exit(&ipst->ips_ill_g_lock); 23055 ill_refrele(ill); 23056 return (error); 23057 } 23058 23059 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23060 23061 /* 23062 * When we return the buffer pointed to by interf_name should contain 23063 * the same name as in ill_name. 23064 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23065 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23066 * so copy full name and update the ppa ptr. 23067 * When ppa passed in != UINT_MAX all values are correct just undo 23068 * null termination, this saves a bcopy. 23069 */ 23070 if (*new_ppa_ptr == UINT_MAX) { 23071 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23072 *new_ppa_ptr = ill->ill_ppa; 23073 } else { 23074 /* 23075 * undo null termination done above. 23076 */ 23077 ppa_ptr[0] = old_char; 23078 } 23079 23080 /* Let SCTP know about this ILL */ 23081 sctp_update_ill(ill, SCTP_ILL_INSERT); 23082 23083 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23084 B_TRUE); 23085 23086 rw_exit(&ipst->ips_ill_g_lock); 23087 ill_refrele(ill); 23088 if (ipsq == NULL) 23089 return (EINPROGRESS); 23090 23091 /* 23092 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23093 */ 23094 if (ipsq->ipsq_current_ipif == NULL) 23095 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23096 else 23097 ASSERT(ipsq->ipsq_current_ipif == ipif); 23098 23099 error = ipif_set_values_tail(ill, ipif, mp, q); 23100 ipsq_exit(ipsq); 23101 if (error != 0 && error != EINPROGRESS) { 23102 /* 23103 * restore previous values 23104 */ 23105 ill->ill_isv6 = B_FALSE; 23106 } 23107 return (error); 23108 } 23109 23110 23111 void 23112 ipif_init(ip_stack_t *ipst) 23113 { 23114 hrtime_t hrt; 23115 int i; 23116 23117 /* 23118 * Can't call drv_getparm here as it is too early in the boot. 23119 * As we use ipif_src_random just for picking a different 23120 * source address everytime, this need not be really random. 23121 */ 23122 hrt = gethrtime(); 23123 ipst->ips_ipif_src_random = 23124 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23125 23126 for (i = 0; i < MAX_G_HEADS; i++) { 23127 ipst->ips_ill_g_heads[i].ill_g_list_head = 23128 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23129 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23130 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23131 } 23132 23133 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23134 ill_phyint_compare_index, 23135 sizeof (phyint_t), 23136 offsetof(struct phyint, phyint_avl_by_index)); 23137 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23138 ill_phyint_compare_name, 23139 sizeof (phyint_t), 23140 offsetof(struct phyint, phyint_avl_by_name)); 23141 } 23142 23143 /* 23144 * Lookup the ipif corresponding to the onlink destination address. For 23145 * point-to-point interfaces, it matches with remote endpoint destination 23146 * address. For point-to-multipoint interfaces it only tries to match the 23147 * destination with the interface's subnet address. The longest, most specific 23148 * match is found to take care of such rare network configurations like - 23149 * le0: 129.146.1.1/16 23150 * le1: 129.146.2.2/24 23151 * It is used only by SO_DONTROUTE at the moment. 23152 */ 23153 ipif_t * 23154 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23155 { 23156 ipif_t *ipif, *best_ipif; 23157 ill_t *ill; 23158 ill_walk_context_t ctx; 23159 23160 ASSERT(zoneid != ALL_ZONES); 23161 best_ipif = NULL; 23162 23163 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23164 ill = ILL_START_WALK_V4(&ctx, ipst); 23165 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23166 mutex_enter(&ill->ill_lock); 23167 for (ipif = ill->ill_ipif; ipif != NULL; 23168 ipif = ipif->ipif_next) { 23169 if (!IPIF_CAN_LOOKUP(ipif)) 23170 continue; 23171 if (ipif->ipif_zoneid != zoneid && 23172 ipif->ipif_zoneid != ALL_ZONES) 23173 continue; 23174 /* 23175 * Point-to-point case. Look for exact match with 23176 * destination address. 23177 */ 23178 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23179 if (ipif->ipif_pp_dst_addr == addr) { 23180 ipif_refhold_locked(ipif); 23181 mutex_exit(&ill->ill_lock); 23182 rw_exit(&ipst->ips_ill_g_lock); 23183 if (best_ipif != NULL) 23184 ipif_refrele(best_ipif); 23185 return (ipif); 23186 } 23187 } else if (ipif->ipif_subnet == (addr & 23188 ipif->ipif_net_mask)) { 23189 /* 23190 * Point-to-multipoint case. Looping through to 23191 * find the most specific match. If there are 23192 * multiple best match ipif's then prefer ipif's 23193 * that are UP. If there is only one best match 23194 * ipif and it is DOWN we must still return it. 23195 */ 23196 if ((best_ipif == NULL) || 23197 (ipif->ipif_net_mask > 23198 best_ipif->ipif_net_mask) || 23199 ((ipif->ipif_net_mask == 23200 best_ipif->ipif_net_mask) && 23201 ((ipif->ipif_flags & IPIF_UP) && 23202 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23203 ipif_refhold_locked(ipif); 23204 mutex_exit(&ill->ill_lock); 23205 rw_exit(&ipst->ips_ill_g_lock); 23206 if (best_ipif != NULL) 23207 ipif_refrele(best_ipif); 23208 best_ipif = ipif; 23209 rw_enter(&ipst->ips_ill_g_lock, 23210 RW_READER); 23211 mutex_enter(&ill->ill_lock); 23212 } 23213 } 23214 } 23215 mutex_exit(&ill->ill_lock); 23216 } 23217 rw_exit(&ipst->ips_ill_g_lock); 23218 return (best_ipif); 23219 } 23220 23221 /* 23222 * Save enough information so that we can recreate the IRE if 23223 * the interface goes down and then up. 23224 */ 23225 static void 23226 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23227 { 23228 mblk_t *save_mp; 23229 23230 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23231 if (save_mp != NULL) { 23232 ifrt_t *ifrt; 23233 23234 save_mp->b_wptr += sizeof (ifrt_t); 23235 ifrt = (ifrt_t *)save_mp->b_rptr; 23236 bzero(ifrt, sizeof (ifrt_t)); 23237 ifrt->ifrt_type = ire->ire_type; 23238 ifrt->ifrt_addr = ire->ire_addr; 23239 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23240 ifrt->ifrt_src_addr = ire->ire_src_addr; 23241 ifrt->ifrt_mask = ire->ire_mask; 23242 ifrt->ifrt_flags = ire->ire_flags; 23243 ifrt->ifrt_max_frag = ire->ire_max_frag; 23244 mutex_enter(&ipif->ipif_saved_ire_lock); 23245 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23246 ipif->ipif_saved_ire_mp = save_mp; 23247 ipif->ipif_saved_ire_cnt++; 23248 mutex_exit(&ipif->ipif_saved_ire_lock); 23249 } 23250 } 23251 23252 static void 23253 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23254 { 23255 mblk_t **mpp; 23256 mblk_t *mp; 23257 ifrt_t *ifrt; 23258 23259 /* Remove from ipif_saved_ire_mp list if it is there */ 23260 mutex_enter(&ipif->ipif_saved_ire_lock); 23261 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23262 mpp = &(*mpp)->b_cont) { 23263 /* 23264 * On a given ipif, the triple of address, gateway and 23265 * mask is unique for each saved IRE (in the case of 23266 * ordinary interface routes, the gateway address is 23267 * all-zeroes). 23268 */ 23269 mp = *mpp; 23270 ifrt = (ifrt_t *)mp->b_rptr; 23271 if (ifrt->ifrt_addr == ire->ire_addr && 23272 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23273 ifrt->ifrt_mask == ire->ire_mask) { 23274 *mpp = mp->b_cont; 23275 ipif->ipif_saved_ire_cnt--; 23276 freeb(mp); 23277 break; 23278 } 23279 } 23280 mutex_exit(&ipif->ipif_saved_ire_lock); 23281 } 23282 23283 /* 23284 * IP multirouting broadcast routes handling 23285 * Append CGTP broadcast IREs to regular ones created 23286 * at ifconfig time. 23287 */ 23288 static void 23289 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23290 { 23291 ire_t *ire_prim; 23292 23293 ASSERT(ire != NULL); 23294 ASSERT(ire_dst != NULL); 23295 23296 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23297 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23298 if (ire_prim != NULL) { 23299 /* 23300 * We are in the special case of broadcasts for 23301 * CGTP. We add an IRE_BROADCAST that holds 23302 * the RTF_MULTIRT flag, the destination 23303 * address of ire_dst and the low level 23304 * info of ire_prim. In other words, CGTP 23305 * broadcast is added to the redundant ipif. 23306 */ 23307 ipif_t *ipif_prim; 23308 ire_t *bcast_ire; 23309 23310 ipif_prim = ire_prim->ire_ipif; 23311 23312 ip2dbg(("ip_cgtp_filter_bcast_add: " 23313 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23314 (void *)ire_dst, (void *)ire_prim, 23315 (void *)ipif_prim)); 23316 23317 bcast_ire = ire_create( 23318 (uchar_t *)&ire->ire_addr, 23319 (uchar_t *)&ip_g_all_ones, 23320 (uchar_t *)&ire_dst->ire_src_addr, 23321 (uchar_t *)&ire->ire_gateway_addr, 23322 &ipif_prim->ipif_mtu, 23323 NULL, 23324 ipif_prim->ipif_rq, 23325 ipif_prim->ipif_wq, 23326 IRE_BROADCAST, 23327 ipif_prim, 23328 0, 23329 0, 23330 0, 23331 ire->ire_flags, 23332 &ire_uinfo_null, 23333 NULL, 23334 NULL, 23335 ipst); 23336 23337 if (bcast_ire != NULL) { 23338 23339 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23340 B_FALSE) == 0) { 23341 ip2dbg(("ip_cgtp_filter_bcast_add: " 23342 "added bcast_ire %p\n", 23343 (void *)bcast_ire)); 23344 23345 ipif_save_ire(bcast_ire->ire_ipif, 23346 bcast_ire); 23347 ire_refrele(bcast_ire); 23348 } 23349 } 23350 ire_refrele(ire_prim); 23351 } 23352 } 23353 23354 23355 /* 23356 * IP multirouting broadcast routes handling 23357 * Remove the broadcast ire 23358 */ 23359 static void 23360 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23361 { 23362 ire_t *ire_dst; 23363 23364 ASSERT(ire != NULL); 23365 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23366 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23367 if (ire_dst != NULL) { 23368 ire_t *ire_prim; 23369 23370 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23371 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23372 if (ire_prim != NULL) { 23373 ipif_t *ipif_prim; 23374 ire_t *bcast_ire; 23375 23376 ipif_prim = ire_prim->ire_ipif; 23377 23378 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23379 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23380 (void *)ire_dst, (void *)ire_prim, 23381 (void *)ipif_prim)); 23382 23383 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23384 ire->ire_gateway_addr, 23385 IRE_BROADCAST, 23386 ipif_prim, ALL_ZONES, 23387 NULL, 23388 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23389 MATCH_IRE_MASK, ipst); 23390 23391 if (bcast_ire != NULL) { 23392 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23393 "looked up bcast_ire %p\n", 23394 (void *)bcast_ire)); 23395 ipif_remove_ire(bcast_ire->ire_ipif, 23396 bcast_ire); 23397 ire_delete(bcast_ire); 23398 ire_refrele(bcast_ire); 23399 } 23400 ire_refrele(ire_prim); 23401 } 23402 ire_refrele(ire_dst); 23403 } 23404 } 23405 23406 /* 23407 * IPsec hardware acceleration capabilities related functions. 23408 */ 23409 23410 /* 23411 * Free a per-ill IPsec capabilities structure. 23412 */ 23413 static void 23414 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23415 { 23416 if (capab->auth_hw_algs != NULL) 23417 kmem_free(capab->auth_hw_algs, capab->algs_size); 23418 if (capab->encr_hw_algs != NULL) 23419 kmem_free(capab->encr_hw_algs, capab->algs_size); 23420 if (capab->encr_algparm != NULL) 23421 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23422 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23423 } 23424 23425 /* 23426 * Allocate a new per-ill IPsec capabilities structure. This structure 23427 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23428 * an array which specifies, for each algorithm, whether this algorithm 23429 * is supported by the ill or not. 23430 */ 23431 static ill_ipsec_capab_t * 23432 ill_ipsec_capab_alloc(void) 23433 { 23434 ill_ipsec_capab_t *capab; 23435 uint_t nelems; 23436 23437 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23438 if (capab == NULL) 23439 return (NULL); 23440 23441 /* we need one bit per algorithm */ 23442 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23443 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23444 23445 /* allocate memory to store algorithm flags */ 23446 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23447 if (capab->encr_hw_algs == NULL) 23448 goto nomem; 23449 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23450 if (capab->auth_hw_algs == NULL) 23451 goto nomem; 23452 /* 23453 * Leave encr_algparm NULL for now since we won't need it half 23454 * the time 23455 */ 23456 return (capab); 23457 23458 nomem: 23459 ill_ipsec_capab_free(capab); 23460 return (NULL); 23461 } 23462 23463 /* 23464 * Resize capability array. Since we're exclusive, this is OK. 23465 */ 23466 static boolean_t 23467 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23468 { 23469 ipsec_capab_algparm_t *nalp, *oalp; 23470 uint32_t olen, nlen; 23471 23472 oalp = capab->encr_algparm; 23473 olen = capab->encr_algparm_size; 23474 23475 if (oalp != NULL) { 23476 if (algid < capab->encr_algparm_end) 23477 return (B_TRUE); 23478 } 23479 23480 nlen = (algid + 1) * sizeof (*nalp); 23481 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23482 if (nalp == NULL) 23483 return (B_FALSE); 23484 23485 if (oalp != NULL) { 23486 bcopy(oalp, nalp, olen); 23487 kmem_free(oalp, olen); 23488 } 23489 capab->encr_algparm = nalp; 23490 capab->encr_algparm_size = nlen; 23491 capab->encr_algparm_end = algid + 1; 23492 23493 return (B_TRUE); 23494 } 23495 23496 /* 23497 * Compare the capabilities of the specified ill with the protocol 23498 * and algorithms specified by the SA passed as argument. 23499 * If they match, returns B_TRUE, B_FALSE if they do not match. 23500 * 23501 * The ill can be passed as a pointer to it, or by specifying its index 23502 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23503 * 23504 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23505 * packet is eligible for hardware acceleration, and by 23506 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23507 * to a particular ill. 23508 */ 23509 boolean_t 23510 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23511 ipsa_t *sa, netstack_t *ns) 23512 { 23513 boolean_t sa_isv6; 23514 uint_t algid; 23515 struct ill_ipsec_capab_s *cpp; 23516 boolean_t need_refrele = B_FALSE; 23517 ip_stack_t *ipst = ns->netstack_ip; 23518 23519 if (ill == NULL) { 23520 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23521 NULL, NULL, NULL, ipst); 23522 if (ill == NULL) { 23523 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23524 return (B_FALSE); 23525 } 23526 need_refrele = B_TRUE; 23527 } 23528 23529 /* 23530 * Use the address length specified by the SA to determine 23531 * if it corresponds to a IPv6 address, and fail the matching 23532 * if the isv6 flag passed as argument does not match. 23533 * Note: this check is used for SADB capability checking before 23534 * sending SA information to an ill. 23535 */ 23536 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23537 if (sa_isv6 != ill_isv6) 23538 /* protocol mismatch */ 23539 goto done; 23540 23541 /* 23542 * Check if the ill supports the protocol, algorithm(s) and 23543 * key size(s) specified by the SA, and get the pointers to 23544 * the algorithms supported by the ill. 23545 */ 23546 switch (sa->ipsa_type) { 23547 23548 case SADB_SATYPE_ESP: 23549 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23550 /* ill does not support ESP acceleration */ 23551 goto done; 23552 cpp = ill->ill_ipsec_capab_esp; 23553 algid = sa->ipsa_auth_alg; 23554 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23555 goto done; 23556 algid = sa->ipsa_encr_alg; 23557 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23558 goto done; 23559 if (algid < cpp->encr_algparm_end) { 23560 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23561 if (sa->ipsa_encrkeybits < alp->minkeylen) 23562 goto done; 23563 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23564 goto done; 23565 } 23566 break; 23567 23568 case SADB_SATYPE_AH: 23569 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23570 /* ill does not support AH acceleration */ 23571 goto done; 23572 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23573 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23574 goto done; 23575 break; 23576 } 23577 23578 if (need_refrele) 23579 ill_refrele(ill); 23580 return (B_TRUE); 23581 done: 23582 if (need_refrele) 23583 ill_refrele(ill); 23584 return (B_FALSE); 23585 } 23586 23587 /* 23588 * Add a new ill to the list of IPsec capable ills. 23589 * Called from ill_capability_ipsec_ack() when an ACK was received 23590 * indicating that IPsec hardware processing was enabled for an ill. 23591 * 23592 * ill must point to the ill for which acceleration was enabled. 23593 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23594 */ 23595 static void 23596 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23597 { 23598 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23599 uint_t sa_type; 23600 uint_t ipproto; 23601 ip_stack_t *ipst = ill->ill_ipst; 23602 23603 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23604 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23605 23606 switch (dl_cap) { 23607 case DL_CAPAB_IPSEC_AH: 23608 sa_type = SADB_SATYPE_AH; 23609 ills = &ipst->ips_ipsec_capab_ills_ah; 23610 ipproto = IPPROTO_AH; 23611 break; 23612 case DL_CAPAB_IPSEC_ESP: 23613 sa_type = SADB_SATYPE_ESP; 23614 ills = &ipst->ips_ipsec_capab_ills_esp; 23615 ipproto = IPPROTO_ESP; 23616 break; 23617 } 23618 23619 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23620 23621 /* 23622 * Add ill index to list of hardware accelerators. If 23623 * already in list, do nothing. 23624 */ 23625 for (cur_ill = *ills; cur_ill != NULL && 23626 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23627 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23628 ; 23629 23630 if (cur_ill == NULL) { 23631 /* if this is a new entry for this ill */ 23632 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23633 if (new_ill == NULL) { 23634 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23635 return; 23636 } 23637 23638 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23639 new_ill->ill_isv6 = ill->ill_isv6; 23640 new_ill->next = *ills; 23641 *ills = new_ill; 23642 } else if (!sadb_resync) { 23643 /* not resync'ing SADB and an entry exists for this ill */ 23644 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23645 return; 23646 } 23647 23648 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23649 23650 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23651 /* 23652 * IPsec module for protocol loaded, initiate dump 23653 * of the SADB to this ill. 23654 */ 23655 sadb_ill_download(ill, sa_type); 23656 } 23657 23658 /* 23659 * Remove an ill from the list of IPsec capable ills. 23660 */ 23661 static void 23662 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23663 { 23664 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23665 ip_stack_t *ipst = ill->ill_ipst; 23666 23667 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23668 dl_cap == DL_CAPAB_IPSEC_ESP); 23669 23670 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23671 &ipst->ips_ipsec_capab_ills_esp; 23672 23673 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23674 23675 prev_ill = NULL; 23676 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23677 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23678 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23679 ; 23680 if (cur_ill == NULL) { 23681 /* entry not found */ 23682 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23683 return; 23684 } 23685 if (prev_ill == NULL) { 23686 /* entry at front of list */ 23687 *ills = NULL; 23688 } else { 23689 prev_ill->next = cur_ill->next; 23690 } 23691 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23692 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23693 } 23694 23695 /* 23696 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23697 * supporting the specified IPsec protocol acceleration. 23698 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23699 * We free the mblk and, if sa is non-null, release the held referece. 23700 */ 23701 void 23702 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23703 netstack_t *ns) 23704 { 23705 ipsec_capab_ill_t *ici, *cur_ici; 23706 ill_t *ill; 23707 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23708 ip_stack_t *ipst = ns->netstack_ip; 23709 23710 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23711 ipst->ips_ipsec_capab_ills_esp; 23712 23713 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23714 23715 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23716 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23717 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23718 23719 /* 23720 * Handle the case where the ill goes away while the SADB is 23721 * attempting to send messages. If it's going away, it's 23722 * nuking its shadow SADB, so we don't care.. 23723 */ 23724 23725 if (ill == NULL) 23726 continue; 23727 23728 if (sa != NULL) { 23729 /* 23730 * Make sure capabilities match before 23731 * sending SA to ill. 23732 */ 23733 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23734 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23735 ill_refrele(ill); 23736 continue; 23737 } 23738 23739 mutex_enter(&sa->ipsa_lock); 23740 sa->ipsa_flags |= IPSA_F_HW; 23741 mutex_exit(&sa->ipsa_lock); 23742 } 23743 23744 /* 23745 * Copy template message, and add it to the front 23746 * of the mblk ship list. We want to avoid holding 23747 * the ipsec_capab_ills_lock while sending the 23748 * message to the ills. 23749 * 23750 * The b_next and b_prev are temporarily used 23751 * to build a list of mblks to be sent down, and to 23752 * save the ill to which they must be sent. 23753 */ 23754 nmp = copymsg(mp); 23755 if (nmp == NULL) { 23756 ill_refrele(ill); 23757 continue; 23758 } 23759 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23760 nmp->b_next = mp_ship_list; 23761 mp_ship_list = nmp; 23762 nmp->b_prev = (mblk_t *)ill; 23763 } 23764 23765 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23766 23767 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23768 /* restore the mblk to a sane state */ 23769 next_mp = nmp->b_next; 23770 nmp->b_next = NULL; 23771 ill = (ill_t *)nmp->b_prev; 23772 nmp->b_prev = NULL; 23773 23774 ill_dlpi_send(ill, nmp); 23775 ill_refrele(ill); 23776 } 23777 23778 if (sa != NULL) 23779 IPSA_REFRELE(sa); 23780 freemsg(mp); 23781 } 23782 23783 /* 23784 * Derive an interface id from the link layer address. 23785 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23786 */ 23787 static boolean_t 23788 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23789 { 23790 char *addr; 23791 23792 if (phys_length != ETHERADDRL) 23793 return (B_FALSE); 23794 23795 /* Form EUI-64 like address */ 23796 addr = (char *)&v6addr->s6_addr32[2]; 23797 bcopy((char *)phys_addr, addr, 3); 23798 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23799 addr[3] = (char)0xff; 23800 addr[4] = (char)0xfe; 23801 bcopy((char *)phys_addr + 3, addr + 5, 3); 23802 return (B_TRUE); 23803 } 23804 23805 /* ARGSUSED */ 23806 static boolean_t 23807 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23808 { 23809 return (B_FALSE); 23810 } 23811 23812 /* ARGSUSED */ 23813 static boolean_t 23814 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23815 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23816 { 23817 /* 23818 * Multicast address mappings used over Ethernet/802.X. 23819 * This address is used as a base for mappings. 23820 */ 23821 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23822 0x00, 0x00, 0x00}; 23823 23824 /* 23825 * Extract low order 32 bits from IPv6 multicast address. 23826 * Or that into the link layer address, starting from the 23827 * second byte. 23828 */ 23829 *hw_start = 2; 23830 v6_extract_mask->s6_addr32[0] = 0; 23831 v6_extract_mask->s6_addr32[1] = 0; 23832 v6_extract_mask->s6_addr32[2] = 0; 23833 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23834 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23835 return (B_TRUE); 23836 } 23837 23838 /* 23839 * Indicate by return value whether multicast is supported. If not, 23840 * this code should not touch/change any parameters. 23841 */ 23842 /* ARGSUSED */ 23843 static boolean_t 23844 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23845 uint32_t *hw_start, ipaddr_t *extract_mask) 23846 { 23847 /* 23848 * Multicast address mappings used over Ethernet/802.X. 23849 * This address is used as a base for mappings. 23850 */ 23851 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23852 0x00, 0x00, 0x00 }; 23853 23854 if (phys_length != ETHERADDRL) 23855 return (B_FALSE); 23856 23857 *extract_mask = htonl(0x007fffff); 23858 *hw_start = 2; 23859 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23860 return (B_TRUE); 23861 } 23862 23863 /* 23864 * Derive IPoIB interface id from the link layer address. 23865 */ 23866 static boolean_t 23867 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23868 { 23869 char *addr; 23870 23871 if (phys_length != 20) 23872 return (B_FALSE); 23873 addr = (char *)&v6addr->s6_addr32[2]; 23874 bcopy(phys_addr + 12, addr, 8); 23875 /* 23876 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23877 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23878 * rules. In these cases, the IBA considers these GUIDs to be in 23879 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23880 * required; vendors are required not to assign global EUI-64's 23881 * that differ only in u/l bit values, thus guaranteeing uniqueness 23882 * of the interface identifier. Whether the GUID is in modified 23883 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23884 * bit set to 1. 23885 */ 23886 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23887 return (B_TRUE); 23888 } 23889 23890 /* 23891 * Note on mapping from multicast IP addresses to IPoIB multicast link 23892 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23893 * The format of an IPoIB multicast address is: 23894 * 23895 * 4 byte QPN Scope Sign. Pkey 23896 * +--------------------------------------------+ 23897 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23898 * +--------------------------------------------+ 23899 * 23900 * The Scope and Pkey components are properties of the IBA port and 23901 * network interface. They can be ascertained from the broadcast address. 23902 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23903 */ 23904 23905 static boolean_t 23906 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23907 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23908 { 23909 /* 23910 * Base IPoIB IPv6 multicast address used for mappings. 23911 * Does not contain the IBA scope/Pkey values. 23912 */ 23913 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23914 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23916 23917 /* 23918 * Extract low order 80 bits from IPv6 multicast address. 23919 * Or that into the link layer address, starting from the 23920 * sixth byte. 23921 */ 23922 *hw_start = 6; 23923 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23924 23925 /* 23926 * Now fill in the IBA scope/Pkey values from the broadcast address. 23927 */ 23928 *(maddr + 5) = *(bphys_addr + 5); 23929 *(maddr + 8) = *(bphys_addr + 8); 23930 *(maddr + 9) = *(bphys_addr + 9); 23931 23932 v6_extract_mask->s6_addr32[0] = 0; 23933 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23934 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23935 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23936 return (B_TRUE); 23937 } 23938 23939 static boolean_t 23940 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23941 uint32_t *hw_start, ipaddr_t *extract_mask) 23942 { 23943 /* 23944 * Base IPoIB IPv4 multicast address used for mappings. 23945 * Does not contain the IBA scope/Pkey values. 23946 */ 23947 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23948 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23949 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23950 23951 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23952 return (B_FALSE); 23953 23954 /* 23955 * Extract low order 28 bits from IPv4 multicast address. 23956 * Or that into the link layer address, starting from the 23957 * sixteenth byte. 23958 */ 23959 *extract_mask = htonl(0x0fffffff); 23960 *hw_start = 16; 23961 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23962 23963 /* 23964 * Now fill in the IBA scope/Pkey values from the broadcast address. 23965 */ 23966 *(maddr + 5) = *(bphys_addr + 5); 23967 *(maddr + 8) = *(bphys_addr + 8); 23968 *(maddr + 9) = *(bphys_addr + 9); 23969 return (B_TRUE); 23970 } 23971 23972 /* 23973 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23974 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23975 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23976 * the link-local address is preferred. 23977 */ 23978 boolean_t 23979 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23980 { 23981 ipif_t *ipif; 23982 ipif_t *maybe_ipif = NULL; 23983 23984 mutex_enter(&ill->ill_lock); 23985 if (ill->ill_state_flags & ILL_CONDEMNED) { 23986 mutex_exit(&ill->ill_lock); 23987 if (ipifp != NULL) 23988 *ipifp = NULL; 23989 return (B_FALSE); 23990 } 23991 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23992 if (!IPIF_CAN_LOOKUP(ipif)) 23993 continue; 23994 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23995 ipif->ipif_zoneid != ALL_ZONES) 23996 continue; 23997 if ((ipif->ipif_flags & flags) != flags) 23998 continue; 23999 24000 if (ipifp == NULL) { 24001 mutex_exit(&ill->ill_lock); 24002 ASSERT(maybe_ipif == NULL); 24003 return (B_TRUE); 24004 } 24005 if (!ill->ill_isv6 || 24006 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24007 ipif_refhold_locked(ipif); 24008 mutex_exit(&ill->ill_lock); 24009 *ipifp = ipif; 24010 return (B_TRUE); 24011 } 24012 if (maybe_ipif == NULL) 24013 maybe_ipif = ipif; 24014 } 24015 if (ipifp != NULL) { 24016 if (maybe_ipif != NULL) 24017 ipif_refhold_locked(maybe_ipif); 24018 *ipifp = maybe_ipif; 24019 } 24020 mutex_exit(&ill->ill_lock); 24021 return (maybe_ipif != NULL); 24022 } 24023 24024 /* 24025 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24026 */ 24027 boolean_t 24028 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24029 { 24030 ill_t *illg; 24031 ip_stack_t *ipst = ill->ill_ipst; 24032 24033 /* 24034 * We look at the passed-in ill first without grabbing ill_g_lock. 24035 */ 24036 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24037 return (B_TRUE); 24038 } 24039 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24040 if (ill->ill_group == NULL) { 24041 /* ill not in a group */ 24042 rw_exit(&ipst->ips_ill_g_lock); 24043 return (B_FALSE); 24044 } 24045 24046 /* 24047 * There's no ipif in the zone on ill, however ill is part of an IPMP 24048 * group. We need to look for an ipif in the zone on all the ills in the 24049 * group. 24050 */ 24051 illg = ill->ill_group->illgrp_ill; 24052 do { 24053 /* 24054 * We don't call ipif_lookup_zoneid() on ill as we already know 24055 * that it's not there. 24056 */ 24057 if (illg != ill && 24058 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24059 break; 24060 } 24061 } while ((illg = illg->ill_group_next) != NULL); 24062 rw_exit(&ipst->ips_ill_g_lock); 24063 return (illg != NULL); 24064 } 24065 24066 /* 24067 * Check if this ill is only being used to send ICMP probes for IPMP 24068 */ 24069 boolean_t 24070 ill_is_probeonly(ill_t *ill) 24071 { 24072 /* 24073 * Check if the interface is FAILED, or INACTIVE 24074 */ 24075 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24076 return (B_TRUE); 24077 24078 return (B_FALSE); 24079 } 24080 24081 /* 24082 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24083 * If a pointer to an ipif_t is returned then the caller will need to do 24084 * an ill_refrele(). 24085 * 24086 * If there is no real interface which matches the ifindex, then it looks 24087 * for a group that has a matching index. In the case of a group match the 24088 * lifidx must be zero. We don't need emulate the logical interfaces 24089 * since IP Filter's use of netinfo doesn't use that. 24090 */ 24091 ipif_t * 24092 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24093 ip_stack_t *ipst) 24094 { 24095 ipif_t *ipif; 24096 ill_t *ill; 24097 24098 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24099 ipst); 24100 24101 if (ill == NULL) { 24102 /* Fallback to group names only if hook_emulation set */ 24103 if (!ipst->ips_ipmp_hook_emulation) 24104 return (NULL); 24105 24106 if (lifidx != 0) 24107 return (NULL); 24108 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24109 if (ill == NULL) 24110 return (NULL); 24111 } 24112 24113 mutex_enter(&ill->ill_lock); 24114 if (ill->ill_state_flags & ILL_CONDEMNED) { 24115 mutex_exit(&ill->ill_lock); 24116 ill_refrele(ill); 24117 return (NULL); 24118 } 24119 24120 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24121 if (!IPIF_CAN_LOOKUP(ipif)) 24122 continue; 24123 if (lifidx == ipif->ipif_id) { 24124 ipif_refhold_locked(ipif); 24125 break; 24126 } 24127 } 24128 24129 mutex_exit(&ill->ill_lock); 24130 ill_refrele(ill); 24131 return (ipif); 24132 } 24133 24134 /* 24135 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24136 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24137 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24138 * for details. 24139 */ 24140 void 24141 ill_fastpath_flush(ill_t *ill) 24142 { 24143 ip_stack_t *ipst = ill->ill_ipst; 24144 24145 nce_fastpath_list_dispatch(ill, NULL, NULL); 24146 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24147 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24148 } 24149 24150 /* 24151 * Set the physical address information for `ill' to the contents of the 24152 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24153 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24154 * EINPROGRESS will be returned. 24155 */ 24156 int 24157 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24158 { 24159 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24160 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24161 24162 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24163 24164 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24165 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24166 /* Changing DL_IPV6_TOKEN is not yet supported */ 24167 return (0); 24168 } 24169 24170 /* 24171 * We need to store up to two copies of `mp' in `ill'. Due to the 24172 * design of ipsq_pending_mp_add(), we can't pass them as separate 24173 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24174 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24175 */ 24176 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24177 freemsg(mp); 24178 return (ENOMEM); 24179 } 24180 24181 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24182 24183 /* 24184 * If we can quiesce the ill, then set the address. If not, then 24185 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24186 */ 24187 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24188 mutex_enter(&ill->ill_lock); 24189 if (!ill_is_quiescent(ill)) { 24190 /* call cannot fail since `conn_t *' argument is NULL */ 24191 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24192 mp, ILL_DOWN); 24193 mutex_exit(&ill->ill_lock); 24194 return (EINPROGRESS); 24195 } 24196 mutex_exit(&ill->ill_lock); 24197 24198 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24199 return (0); 24200 } 24201 24202 /* 24203 * Once the ill associated with `q' has quiesced, set its physical address 24204 * information to the values in `addrmp'. Note that two copies of `addrmp' 24205 * are passed (linked by b_cont), since we sometimes need to save two distinct 24206 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24207 * failure (we'll free the other copy if it's not needed). Since the ill_t 24208 * is quiesced, we know any stale IREs with the old address information have 24209 * already been removed, so we don't need to call ill_fastpath_flush(). 24210 */ 24211 /* ARGSUSED */ 24212 static void 24213 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24214 { 24215 ill_t *ill = q->q_ptr; 24216 mblk_t *addrmp2 = unlinkb(addrmp); 24217 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24218 uint_t addrlen, addroff; 24219 24220 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24221 24222 addroff = dlindp->dl_addr_offset; 24223 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24224 24225 switch (dlindp->dl_data) { 24226 case DL_IPV6_LINK_LAYER_ADDR: 24227 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24228 freemsg(addrmp2); 24229 break; 24230 24231 case DL_CURR_PHYS_ADDR: 24232 freemsg(ill->ill_phys_addr_mp); 24233 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24234 ill->ill_phys_addr_mp = addrmp; 24235 ill->ill_phys_addr_length = addrlen; 24236 24237 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24238 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24239 else 24240 freemsg(addrmp2); 24241 break; 24242 default: 24243 ASSERT(0); 24244 } 24245 24246 /* 24247 * If there are ipifs to bring up, ill_up_ipifs() will return 24248 * EINPROGRESS, and ipsq_current_finish() will be called by 24249 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24250 * brought up. 24251 */ 24252 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24253 ipsq_current_finish(ipsq); 24254 } 24255 24256 /* 24257 * Helper routine for setting the ill_nd_lla fields. 24258 */ 24259 void 24260 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24261 { 24262 freemsg(ill->ill_nd_lla_mp); 24263 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24264 ill->ill_nd_lla_mp = ndmp; 24265 ill->ill_nd_lla_len = addrlen; 24266 } 24267 24268 major_t IP_MAJ; 24269 #define IP "ip" 24270 24271 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24272 #define UDPDEV "/devices/pseudo/udp@0:udp" 24273 24274 /* 24275 * Issue REMOVEIF ioctls to have the loopback interfaces 24276 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24277 * the former going away when the user-level processes in the zone 24278 * are killed * and the latter are cleaned up by the stream head 24279 * str_stack_shutdown callback that undoes all I_PLINKs. 24280 */ 24281 void 24282 ip_loopback_cleanup(ip_stack_t *ipst) 24283 { 24284 int error; 24285 ldi_handle_t lh = NULL; 24286 ldi_ident_t li = NULL; 24287 int rval; 24288 cred_t *cr; 24289 struct strioctl iocb; 24290 struct lifreq lifreq; 24291 24292 IP_MAJ = ddi_name_to_major(IP); 24293 24294 #ifdef NS_DEBUG 24295 (void) printf("ip_loopback_cleanup() stackid %d\n", 24296 ipst->ips_netstack->netstack_stackid); 24297 #endif 24298 24299 bzero(&lifreq, sizeof (lifreq)); 24300 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24301 24302 error = ldi_ident_from_major(IP_MAJ, &li); 24303 if (error) { 24304 #ifdef DEBUG 24305 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24306 error); 24307 #endif 24308 return; 24309 } 24310 24311 cr = zone_get_kcred(netstackid_to_zoneid( 24312 ipst->ips_netstack->netstack_stackid)); 24313 ASSERT(cr != NULL); 24314 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24315 if (error) { 24316 #ifdef DEBUG 24317 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24318 error); 24319 #endif 24320 goto out; 24321 } 24322 iocb.ic_cmd = SIOCLIFREMOVEIF; 24323 iocb.ic_timout = 15; 24324 iocb.ic_len = sizeof (lifreq); 24325 iocb.ic_dp = (char *)&lifreq; 24326 24327 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24328 /* LINTED - statement has no consequent */ 24329 if (error) { 24330 #ifdef NS_DEBUG 24331 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24332 "UDP6 error %d\n", error); 24333 #endif 24334 } 24335 (void) ldi_close(lh, FREAD|FWRITE, cr); 24336 lh = NULL; 24337 24338 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24339 if (error) { 24340 #ifdef NS_DEBUG 24341 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24342 error); 24343 #endif 24344 goto out; 24345 } 24346 24347 iocb.ic_cmd = SIOCLIFREMOVEIF; 24348 iocb.ic_timout = 15; 24349 iocb.ic_len = sizeof (lifreq); 24350 iocb.ic_dp = (char *)&lifreq; 24351 24352 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24353 /* LINTED - statement has no consequent */ 24354 if (error) { 24355 #ifdef NS_DEBUG 24356 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24357 "UDP error %d\n", error); 24358 #endif 24359 } 24360 (void) ldi_close(lh, FREAD|FWRITE, cr); 24361 lh = NULL; 24362 24363 out: 24364 /* Close layered handles */ 24365 if (lh) 24366 (void) ldi_close(lh, FREAD|FWRITE, cr); 24367 if (li) 24368 ldi_ident_release(li); 24369 24370 crfree(cr); 24371 } 24372 24373 /* 24374 * This needs to be in-sync with nic_event_t definition 24375 */ 24376 static const char * 24377 ill_hook_event2str(nic_event_t event) 24378 { 24379 switch (event) { 24380 case NE_PLUMB: 24381 return ("PLUMB"); 24382 case NE_UNPLUMB: 24383 return ("UNPLUMB"); 24384 case NE_UP: 24385 return ("UP"); 24386 case NE_DOWN: 24387 return ("DOWN"); 24388 case NE_ADDRESS_CHANGE: 24389 return ("ADDRESS_CHANGE"); 24390 default: 24391 return ("UNKNOWN"); 24392 } 24393 } 24394 24395 static void 24396 ill_hook_event_destroy(ill_t *ill) 24397 { 24398 hook_nic_event_int_t *info; 24399 24400 if ((info = ill->ill_nic_event_info) != NULL) { 24401 if (info->hnei_event.hne_data != NULL) { 24402 kmem_free(info->hnei_event.hne_data, 24403 info->hnei_event.hne_datalen); 24404 } 24405 kmem_free(info, sizeof (*info)); 24406 24407 ill->ill_nic_event_info = NULL; 24408 } 24409 24410 } 24411 24412 boolean_t 24413 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24414 nic_event_data_t data, size_t datalen) 24415 { 24416 ip_stack_t *ipst = ill->ill_ipst; 24417 hook_nic_event_int_t *info; 24418 const char *str = NULL; 24419 24420 /* destroy nic event info if it exists */ 24421 if ((info = ill->ill_nic_event_info) != NULL) { 24422 str = ill_hook_event2str(info->hnei_event.hne_event); 24423 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24424 "attached for %s\n", str, ill->ill_name)); 24425 ill_hook_event_destroy(ill); 24426 } 24427 24428 /* create a new nic event info */ 24429 info = kmem_alloc(sizeof (*info), KM_NOSLEEP); 24430 if (info == NULL) 24431 goto fail; 24432 24433 ill->ill_nic_event_info = info; 24434 24435 if (event == NE_UNPLUMB) 24436 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24437 else 24438 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24439 info->hnei_event.hne_lif = lif; 24440 info->hnei_event.hne_event = event; 24441 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24442 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24443 info->hnei_event.hne_data = NULL; 24444 info->hnei_event.hne_datalen = 0; 24445 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24446 24447 if (data != NULL && datalen != 0) { 24448 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24449 if (info->hnei_event.hne_data != NULL) { 24450 bcopy(data, info->hnei_event.hne_data, datalen); 24451 info->hnei_event.hne_datalen = datalen; 24452 } else { 24453 ill_hook_event_destroy(ill); 24454 goto fail; 24455 } 24456 } 24457 24458 return (B_TRUE); 24459 fail: 24460 str = ill_hook_event2str(event); 24461 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24462 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24463 return (B_FALSE); 24464 } 24465