1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert, int *errorp); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 static void ill_dlpi_clear_deferred(ill_t *ill); 217 218 /* 219 * if we go over the memory footprint limit more than once in this msec 220 * interval, we'll start pruning aggressively. 221 */ 222 int ip_min_frag_prune_time = 0; 223 224 static ipft_t ip_ioctl_ftbl[] = { 225 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 226 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 227 IPFT_F_NO_REPLY }, 228 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 229 { 0 } 230 }; 231 232 /* Simple ICMP IP Header Template */ 233 static ipha_t icmp_ipha = { 234 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 235 }; 236 237 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 238 239 static ip_m_t ip_m_tbl[] = { 240 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 260 ip_ipv4_v6destintfid }, 261 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 263 ip_ipv6_v6destintfid }, 264 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_nodef_v6intfid }, 267 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 269 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 271 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 273 ip_nodef_v6intfid } 274 }; 275 276 static ill_t ill_null; /* Empty ILL for init. */ 277 char ipif_loopback_name[] = "lo0"; 278 static char *ipv4_forward_suffix = ":ip_forwarding"; 279 static char *ipv6_forward_suffix = ":ip6_forwarding"; 280 static sin6_t sin6_null; /* Zero address for quick clears */ 281 static sin_t sin_null; /* Zero address for quick clears */ 282 283 /* When set search for unused ipif_seqid */ 284 static ipif_t ipif_zero; 285 286 /* 287 * ppa arena is created after these many 288 * interfaces have been plumbed. 289 */ 290 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 291 292 /* 293 * Allocate per-interface mibs. 294 * Returns true if ok. False otherwise. 295 * ipsq may not yet be allocated (loopback case ). 296 */ 297 static boolean_t 298 ill_allocate_mibs(ill_t *ill) 299 { 300 /* Already allocated? */ 301 if (ill->ill_ip_mib != NULL) { 302 if (ill->ill_isv6) 303 ASSERT(ill->ill_icmp6_mib != NULL); 304 return (B_TRUE); 305 } 306 307 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 308 KM_NOSLEEP); 309 if (ill->ill_ip_mib == NULL) { 310 return (B_FALSE); 311 } 312 313 /* Setup static information */ 314 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 315 sizeof (mib2_ipIfStatsEntry_t)); 316 if (ill->ill_isv6) { 317 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 318 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 319 sizeof (mib2_ipv6AddrEntry_t)); 320 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 321 sizeof (mib2_ipv6RouteEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 323 sizeof (mib2_ipv6NetToMediaEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 325 sizeof (ipv6_member_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 327 sizeof (ipv6_grpsrc_t)); 328 } else { 329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 331 sizeof (mib2_ipAddrEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 333 sizeof (mib2_ipRouteEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 335 sizeof (mib2_ipNetToMediaEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 337 sizeof (ip_member_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 339 sizeof (ip_grpsrc_t)); 340 341 /* 342 * For a v4 ill, we are done at this point, because per ill 343 * icmp mibs are only used for v6. 344 */ 345 return (B_TRUE); 346 } 347 348 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 349 KM_NOSLEEP); 350 if (ill->ill_icmp6_mib == NULL) { 351 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 352 ill->ill_ip_mib = NULL; 353 return (B_FALSE); 354 } 355 /* static icmp info */ 356 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 357 sizeof (mib2_ipv6IfIcmpEntry_t); 358 /* 359 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 360 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 361 * -> ill_phyint_reinit 362 */ 363 return (B_TRUE); 364 } 365 366 /* 367 * Completely vaporize a lower level tap and all associated interfaces. 368 * ill_delete is called only out of ip_close when the device control 369 * stream is being closed. 370 */ 371 void 372 ill_delete(ill_t *ill) 373 { 374 ipif_t *ipif; 375 ill_t *prev_ill; 376 ip_stack_t *ipst = ill->ill_ipst; 377 378 /* 379 * ill_delete may be forcibly entering the ipsq. The previous 380 * ioctl may not have completed and may need to be aborted. 381 * ipsq_flush takes care of it. If we don't need to enter the 382 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 383 * ill_delete_tail is sufficient. 384 */ 385 ipsq_flush(ill); 386 387 /* 388 * Nuke all interfaces. ipif_free will take down the interface, 389 * remove it from the list, and free the data structure. 390 * Walk down the ipif list and remove the logical interfaces 391 * first before removing the main ipif. We can't unplumb 392 * zeroth interface first in the case of IPv6 as update_conn_ill 393 * -> ip_ll_multireq de-references ill_ipif for checking 394 * POINTOPOINT. 395 * 396 * If ill_ipif was not properly initialized (i.e low on memory), 397 * then no interfaces to clean up. In this case just clean up the 398 * ill. 399 */ 400 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 401 ipif_free(ipif); 402 403 /* 404 * clean out all the nce_t entries that depend on this 405 * ill for the ill_phys_addr. 406 */ 407 nce_flush(ill, B_TRUE); 408 409 /* Clean up msgs on pending upcalls for mrouted */ 410 reset_mrt_ill(ill); 411 412 update_conn_ill(ill, ipst); 413 414 /* 415 * Remove multicast references added as a result of calls to 416 * ip_join_allmulti(). 417 */ 418 ip_purge_allmulti(ill); 419 420 /* 421 * If the ill being deleted is under IPMP, boot it out of the illgrp. 422 */ 423 if (IS_UNDER_IPMP(ill)) 424 ipmp_ill_leave_illgrp(ill); 425 426 /* 427 * ill_down will arrange to blow off any IRE's dependent on this 428 * ILL, and shut down fragmentation reassembly. 429 */ 430 ill_down(ill); 431 432 /* Let SCTP know, so that it can remove this from its list. */ 433 sctp_update_ill(ill, SCTP_ILL_REMOVE); 434 435 /* 436 * Walk all CONNs that can have a reference on an ire or nce for this 437 * ill (we actually walk all that now have stale references). 438 */ 439 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 440 441 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 442 if (ill->ill_isv6) 443 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 444 445 /* 446 * If an address on this ILL is being used as a source address then 447 * clear out the pointers in other ILLs that point to this ILL. 448 */ 449 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 450 if (ill->ill_usesrc_grp_next != NULL) { 451 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 452 ill_disband_usesrc_group(ill); 453 } else { /* consumer of the usesrc ILL */ 454 prev_ill = ill_prev_usesrc(ill); 455 prev_ill->ill_usesrc_grp_next = 456 ill->ill_usesrc_grp_next; 457 } 458 } 459 rw_exit(&ipst->ips_ill_g_usesrc_lock); 460 } 461 462 static void 463 ipif_non_duplicate(ipif_t *ipif) 464 { 465 ill_t *ill = ipif->ipif_ill; 466 mutex_enter(&ill->ill_lock); 467 if (ipif->ipif_flags & IPIF_DUPLICATE) { 468 ipif->ipif_flags &= ~IPIF_DUPLICATE; 469 ASSERT(ill->ill_ipif_dup_count > 0); 470 ill->ill_ipif_dup_count--; 471 } 472 mutex_exit(&ill->ill_lock); 473 } 474 475 /* 476 * ill_delete_tail is called from ip_modclose after all references 477 * to the closing ill are gone. The wait is done in ip_modclose 478 */ 479 void 480 ill_delete_tail(ill_t *ill) 481 { 482 mblk_t **mpp; 483 ipif_t *ipif; 484 ip_stack_t *ipst = ill->ill_ipst; 485 486 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 487 ipif_non_duplicate(ipif); 488 (void) ipif_down_tail(ipif); 489 } 490 491 ASSERT(ill->ill_ipif_dup_count == 0); 492 493 /* 494 * If polling capability is enabled (which signifies direct 495 * upcall into IP and driver has ill saved as a handle), 496 * we need to make sure that unbind has completed before we 497 * let the ill disappear and driver no longer has any reference 498 * to this ill. 499 */ 500 mutex_enter(&ill->ill_lock); 501 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 502 cv_wait(&ill->ill_cv, &ill->ill_lock); 503 mutex_exit(&ill->ill_lock); 504 ASSERT(!(ill->ill_capabilities & 505 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 506 507 if (ill->ill_net_type != IRE_LOOPBACK) 508 qprocsoff(ill->ill_rq); 509 510 /* 511 * We do an ipsq_flush once again now. New messages could have 512 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 513 * could also have landed up if an ioctl thread had looked up 514 * the ill before we set the ILL_CONDEMNED flag, but not yet 515 * enqueued the ioctl when we did the ipsq_flush last time. 516 */ 517 ipsq_flush(ill); 518 519 /* 520 * Free capabilities. 521 */ 522 if (ill->ill_hcksum_capab != NULL) { 523 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 524 ill->ill_hcksum_capab = NULL; 525 } 526 527 if (ill->ill_zerocopy_capab != NULL) { 528 kmem_free(ill->ill_zerocopy_capab, 529 sizeof (ill_zerocopy_capab_t)); 530 ill->ill_zerocopy_capab = NULL; 531 } 532 533 if (ill->ill_lso_capab != NULL) { 534 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 535 ill->ill_lso_capab = NULL; 536 } 537 538 if (ill->ill_dld_capab != NULL) { 539 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 540 ill->ill_dld_capab = NULL; 541 } 542 543 while (ill->ill_ipif != NULL) 544 ipif_free_tail(ill->ill_ipif); 545 546 /* 547 * We have removed all references to ilm from conn and the ones joined 548 * within the kernel. 549 * 550 * We don't walk conns, mrts and ires because 551 * 552 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 553 * 2) ill_down ->ill_downi walks all the ires and cleans up 554 * ill references. 555 */ 556 557 /* 558 * If this ill is an IPMP meta-interface, blow away the illgrp. This 559 * is safe to do because the illgrp has already been unlinked from the 560 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 561 */ 562 if (IS_IPMP(ill)) { 563 ipmp_illgrp_destroy(ill->ill_grp); 564 ill->ill_grp = NULL; 565 } 566 567 /* 568 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 569 * could free the phyint. No more reference to the phyint after this 570 * point. 571 */ 572 (void) ill_glist_delete(ill); 573 574 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 575 if (ill->ill_ndd_name != NULL) 576 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 577 rw_exit(&ipst->ips_ip_g_nd_lock); 578 579 if (ill->ill_frag_ptr != NULL) { 580 uint_t count; 581 582 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 583 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 584 } 585 mi_free(ill->ill_frag_ptr); 586 ill->ill_frag_ptr = NULL; 587 ill->ill_frag_hash_tbl = NULL; 588 } 589 590 freemsg(ill->ill_nd_lla_mp); 591 /* Free all retained control messages. */ 592 mpp = &ill->ill_first_mp_to_free; 593 do { 594 while (mpp[0]) { 595 mblk_t *mp; 596 mblk_t *mp1; 597 598 mp = mpp[0]; 599 mpp[0] = mp->b_next; 600 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 601 mp1->b_next = NULL; 602 mp1->b_prev = NULL; 603 } 604 freemsg(mp); 605 } 606 } while (mpp++ != &ill->ill_last_mp_to_free); 607 608 ill_free_mib(ill); 609 610 #ifdef DEBUG 611 ill_trace_cleanup(ill); 612 #endif 613 614 /* The default multicast interface might have changed */ 615 ire_increment_multicast_generation(ipst, ill->ill_isv6); 616 617 /* Drop refcnt here */ 618 netstack_rele(ill->ill_ipst->ips_netstack); 619 ill->ill_ipst = NULL; 620 } 621 622 static void 623 ill_free_mib(ill_t *ill) 624 { 625 ip_stack_t *ipst = ill->ill_ipst; 626 627 /* 628 * MIB statistics must not be lost, so when an interface 629 * goes away the counter values will be added to the global 630 * MIBs. 631 */ 632 if (ill->ill_ip_mib != NULL) { 633 if (ill->ill_isv6) { 634 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 635 ill->ill_ip_mib); 636 } else { 637 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 638 ill->ill_ip_mib); 639 } 640 641 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 642 ill->ill_ip_mib = NULL; 643 } 644 if (ill->ill_icmp6_mib != NULL) { 645 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 646 ill->ill_icmp6_mib); 647 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 648 ill->ill_icmp6_mib = NULL; 649 } 650 } 651 652 /* 653 * Concatenate together a physical address and a sap. 654 * 655 * Sap_lengths are interpreted as follows: 656 * sap_length == 0 ==> no sap 657 * sap_length > 0 ==> sap is at the head of the dlpi address 658 * sap_length < 0 ==> sap is at the tail of the dlpi address 659 */ 660 static void 661 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 662 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 663 { 664 uint16_t sap_addr = (uint16_t)sap_src; 665 666 if (sap_length == 0) { 667 if (phys_src == NULL) 668 bzero(dst, phys_length); 669 else 670 bcopy(phys_src, dst, phys_length); 671 } else if (sap_length < 0) { 672 if (phys_src == NULL) 673 bzero(dst, phys_length); 674 else 675 bcopy(phys_src, dst, phys_length); 676 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 677 } else { 678 bcopy(&sap_addr, dst, sizeof (sap_addr)); 679 if (phys_src == NULL) 680 bzero((char *)dst + sap_length, phys_length); 681 else 682 bcopy(phys_src, (char *)dst + sap_length, phys_length); 683 } 684 } 685 686 /* 687 * Generate a dl_unitdata_req mblk for the device and address given. 688 * addr_length is the length of the physical portion of the address. 689 * If addr is NULL include an all zero address of the specified length. 690 * TRUE? In any case, addr_length is taken to be the entire length of the 691 * dlpi address, including the absolute value of sap_length. 692 */ 693 mblk_t * 694 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 695 t_scalar_t sap_length) 696 { 697 dl_unitdata_req_t *dlur; 698 mblk_t *mp; 699 t_scalar_t abs_sap_length; /* absolute value */ 700 701 abs_sap_length = ABS(sap_length); 702 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 703 DL_UNITDATA_REQ); 704 if (mp == NULL) 705 return (NULL); 706 dlur = (dl_unitdata_req_t *)mp->b_rptr; 707 /* HACK: accomodate incompatible DLPI drivers */ 708 if (addr_length == 8) 709 addr_length = 6; 710 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 711 dlur->dl_dest_addr_offset = sizeof (*dlur); 712 dlur->dl_priority.dl_min = 0; 713 dlur->dl_priority.dl_max = 0; 714 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 715 (uchar_t *)&dlur[1]); 716 return (mp); 717 } 718 719 /* 720 * Add the pending mp to the list. There can be only 1 pending mp 721 * in the list. Any exclusive ioctl that needs to wait for a response 722 * from another module or driver needs to use this function to set 723 * the ipx_pending_mp to the ioctl mblk and wait for the response from 724 * the other module/driver. This is also used while waiting for the 725 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 726 */ 727 boolean_t 728 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 729 int waitfor) 730 { 731 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 732 733 ASSERT(IAM_WRITER_IPIF(ipif)); 734 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 735 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 736 ASSERT(ipx->ipx_pending_mp == NULL); 737 /* 738 * The caller may be using a different ipif than the one passed into 739 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 740 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 741 * that `ipx_current_ipif == ipif'. 742 */ 743 ASSERT(ipx->ipx_current_ipif != NULL); 744 745 /* 746 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 747 * driver. 748 */ 749 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 750 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 751 (DB_TYPE(add_mp) == M_PCPROTO)); 752 753 if (connp != NULL) { 754 ASSERT(MUTEX_HELD(&connp->conn_lock)); 755 /* 756 * Return error if the conn has started closing. The conn 757 * could have finished cleaning up the pending mp list, 758 * If so we should not add another mp to the list negating 759 * the cleanup. 760 */ 761 if (connp->conn_state_flags & CONN_CLOSING) 762 return (B_FALSE); 763 } 764 mutex_enter(&ipx->ipx_lock); 765 ipx->ipx_pending_ipif = ipif; 766 /* 767 * Note down the queue in b_queue. This will be returned by 768 * ipsq_pending_mp_get. Caller will then use these values to restart 769 * the processing 770 */ 771 add_mp->b_next = NULL; 772 add_mp->b_queue = q; 773 ipx->ipx_pending_mp = add_mp; 774 ipx->ipx_waitfor = waitfor; 775 mutex_exit(&ipx->ipx_lock); 776 777 if (connp != NULL) 778 connp->conn_oper_pending_ill = ipif->ipif_ill; 779 780 return (B_TRUE); 781 } 782 783 /* 784 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 785 * queued in the list. 786 */ 787 mblk_t * 788 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 789 { 790 mblk_t *curr = NULL; 791 ipxop_t *ipx = ipsq->ipsq_xop; 792 793 *connpp = NULL; 794 mutex_enter(&ipx->ipx_lock); 795 if (ipx->ipx_pending_mp == NULL) { 796 mutex_exit(&ipx->ipx_lock); 797 return (NULL); 798 } 799 800 /* There can be only 1 such excl message */ 801 curr = ipx->ipx_pending_mp; 802 ASSERT(curr->b_next == NULL); 803 ipx->ipx_pending_ipif = NULL; 804 ipx->ipx_pending_mp = NULL; 805 ipx->ipx_waitfor = 0; 806 mutex_exit(&ipx->ipx_lock); 807 808 if (CONN_Q(curr->b_queue)) { 809 /* 810 * This mp did a refhold on the conn, at the start of the ioctl. 811 * So we can safely return a pointer to the conn to the caller. 812 */ 813 *connpp = Q_TO_CONN(curr->b_queue); 814 } else { 815 *connpp = NULL; 816 } 817 curr->b_next = NULL; 818 curr->b_prev = NULL; 819 return (curr); 820 } 821 822 /* 823 * Cleanup the ioctl mp queued in ipx_pending_mp 824 * - Called in the ill_delete path 825 * - Called in the M_ERROR or M_HANGUP path on the ill. 826 * - Called in the conn close path. 827 * 828 * Returns success on finding the pending mblk associated with the ioctl or 829 * exclusive operation in progress, failure otherwise. 830 */ 831 boolean_t 832 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 833 { 834 mblk_t *mp; 835 ipxop_t *ipx; 836 queue_t *q; 837 ipif_t *ipif; 838 int cmd; 839 840 ASSERT(IAM_WRITER_ILL(ill)); 841 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 842 843 mutex_enter(&ipx->ipx_lock); 844 mp = ipx->ipx_pending_mp; 845 if (connp != NULL) { 846 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 847 /* 848 * Nothing to clean since the conn that is closing 849 * does not have a matching pending mblk in 850 * ipx_pending_mp. 851 */ 852 mutex_exit(&ipx->ipx_lock); 853 return (B_FALSE); 854 } 855 } else { 856 /* 857 * A non-zero ill_error signifies we are called in the 858 * M_ERROR or M_HANGUP path and we need to unconditionally 859 * abort any current ioctl and do the corresponding cleanup. 860 * A zero ill_error means we are in the ill_delete path and 861 * we do the cleanup only if there is a pending mp. 862 */ 863 if (mp == NULL && ill->ill_error == 0) { 864 mutex_exit(&ipx->ipx_lock); 865 return (B_FALSE); 866 } 867 } 868 869 /* Now remove from the ipx_pending_mp */ 870 ipx->ipx_pending_mp = NULL; 871 ipif = ipx->ipx_pending_ipif; 872 ipx->ipx_pending_ipif = NULL; 873 ipx->ipx_waitfor = 0; 874 ipx->ipx_current_ipif = NULL; 875 cmd = ipx->ipx_current_ioctl; 876 ipx->ipx_current_ioctl = 0; 877 ipx->ipx_current_done = B_TRUE; 878 mutex_exit(&ipx->ipx_lock); 879 880 if (mp == NULL) 881 return (B_FALSE); 882 883 q = mp->b_queue; 884 mp->b_next = NULL; 885 mp->b_prev = NULL; 886 mp->b_queue = NULL; 887 888 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 889 DTRACE_PROBE4(ipif__ioctl, 890 char *, "ipsq_pending_mp_cleanup", 891 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 892 ipif_t *, ipif); 893 if (connp == NULL) { 894 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 895 } else { 896 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 897 mutex_enter(&ipif->ipif_ill->ill_lock); 898 ipif->ipif_state_flags &= ~IPIF_CHANGING; 899 mutex_exit(&ipif->ipif_ill->ill_lock); 900 } 901 } else { 902 inet_freemsg(mp); 903 } 904 return (B_TRUE); 905 } 906 907 /* 908 * Called in the conn close path and ill delete path 909 */ 910 static void 911 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 912 { 913 ipsq_t *ipsq; 914 mblk_t *prev; 915 mblk_t *curr; 916 mblk_t *next; 917 queue_t *wq, *rq = NULL; 918 mblk_t *tmp_list = NULL; 919 920 ASSERT(IAM_WRITER_ILL(ill)); 921 if (connp != NULL) 922 wq = CONNP_TO_WQ(connp); 923 else 924 wq = ill->ill_wq; 925 926 /* 927 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 928 * against this here. 929 */ 930 if (wq != NULL) 931 rq = RD(wq); 932 933 ipsq = ill->ill_phyint->phyint_ipsq; 934 /* 935 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 936 * In the case of ioctl from a conn, there can be only 1 mp 937 * queued on the ipsq. If an ill is being unplumbed flush all 938 * the messages. 939 */ 940 mutex_enter(&ipsq->ipsq_lock); 941 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 942 curr = next) { 943 next = curr->b_next; 944 if (connp == NULL || 945 (curr->b_queue == wq || curr->b_queue == rq)) { 946 /* Unlink the mblk from the pending mp list */ 947 if (prev != NULL) { 948 prev->b_next = curr->b_next; 949 } else { 950 ASSERT(ipsq->ipsq_xopq_mphead == curr); 951 ipsq->ipsq_xopq_mphead = curr->b_next; 952 } 953 if (ipsq->ipsq_xopq_mptail == curr) 954 ipsq->ipsq_xopq_mptail = prev; 955 /* 956 * Create a temporary list and release the ipsq lock 957 * New elements are added to the head of the tmp_list 958 */ 959 curr->b_next = tmp_list; 960 tmp_list = curr; 961 } else { 962 prev = curr; 963 } 964 } 965 mutex_exit(&ipsq->ipsq_lock); 966 967 while (tmp_list != NULL) { 968 curr = tmp_list; 969 tmp_list = curr->b_next; 970 curr->b_next = NULL; 971 curr->b_prev = NULL; 972 curr->b_queue = NULL; 973 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 974 DTRACE_PROBE4(ipif__ioctl, 975 char *, "ipsq_xopq_mp_cleanup", 976 int, 0, ill_t *, NULL, ipif_t *, NULL); 977 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 978 CONN_CLOSE : NO_COPYOUT, NULL); 979 } else { 980 /* 981 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 982 * this can't be just inet_freemsg. we have to 983 * restart it otherwise the thread will be stuck. 984 */ 985 inet_freemsg(curr); 986 } 987 } 988 } 989 990 /* 991 * This conn has started closing. Cleanup any pending ioctl from this conn. 992 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 993 */ 994 void 995 conn_ioctl_cleanup(conn_t *connp) 996 { 997 ipsq_t *ipsq; 998 ill_t *ill; 999 boolean_t refheld; 1000 1001 /* 1002 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1003 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1004 * started the mp could be present in ipx_pending_mp. Note that if 1005 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1006 * not yet queued anywhere. In this case, the conn close code will wait 1007 * until the conn_ref is dropped. If the stream was a tcp stream, then 1008 * tcp_close will wait first until all ioctls have completed for this 1009 * conn. 1010 */ 1011 mutex_enter(&connp->conn_lock); 1012 ill = connp->conn_oper_pending_ill; 1013 if (ill == NULL) { 1014 mutex_exit(&connp->conn_lock); 1015 return; 1016 } 1017 1018 /* 1019 * We may not be able to refhold the ill if the ill/ipif 1020 * is changing. But we need to make sure that the ill will 1021 * not vanish. So we just bump up the ill_waiter count. 1022 */ 1023 refheld = ill_waiter_inc(ill); 1024 mutex_exit(&connp->conn_lock); 1025 if (refheld) { 1026 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1027 ill_waiter_dcr(ill); 1028 /* 1029 * Check whether this ioctl has started and is 1030 * pending. If it is not found there then check 1031 * whether this ioctl has not even started and is in 1032 * the ipsq_xopq list. 1033 */ 1034 if (!ipsq_pending_mp_cleanup(ill, connp)) 1035 ipsq_xopq_mp_cleanup(ill, connp); 1036 ipsq = ill->ill_phyint->phyint_ipsq; 1037 ipsq_exit(ipsq); 1038 return; 1039 } 1040 } 1041 1042 /* 1043 * The ill is also closing and we could not bump up the 1044 * ill_waiter_count or we could not enter the ipsq. Leave 1045 * the cleanup to ill_delete 1046 */ 1047 mutex_enter(&connp->conn_lock); 1048 while (connp->conn_oper_pending_ill != NULL) 1049 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1050 mutex_exit(&connp->conn_lock); 1051 if (refheld) 1052 ill_waiter_dcr(ill); 1053 } 1054 1055 /* 1056 * ipcl_walk function for cleaning up conn_*_ill fields. 1057 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1058 * conn_bound_if in place. We prefer dropping 1059 * packets instead of sending them out the wrong interface, or accepting 1060 * packets from the wrong ifindex. 1061 */ 1062 static void 1063 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1064 { 1065 ill_t *ill = (ill_t *)arg; 1066 1067 mutex_enter(&connp->conn_lock); 1068 if (connp->conn_dhcpinit_ill == ill) { 1069 connp->conn_dhcpinit_ill = NULL; 1070 ASSERT(ill->ill_dhcpinit != 0); 1071 atomic_dec_32(&ill->ill_dhcpinit); 1072 ill_set_inputfn(ill); 1073 } 1074 mutex_exit(&connp->conn_lock); 1075 } 1076 1077 static int 1078 ill_down_ipifs_tail(ill_t *ill) 1079 { 1080 ipif_t *ipif; 1081 int err; 1082 1083 ASSERT(IAM_WRITER_ILL(ill)); 1084 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1085 ipif_non_duplicate(ipif); 1086 /* 1087 * ipif_down_tail will call arp_ll_down on the last ipif 1088 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1089 */ 1090 if ((err = ipif_down_tail(ipif)) != 0) 1091 return (err); 1092 } 1093 return (0); 1094 } 1095 1096 /* ARGSUSED */ 1097 void 1098 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1099 { 1100 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1101 (void) ill_down_ipifs_tail(q->q_ptr); 1102 freemsg(mp); 1103 ipsq_current_finish(ipsq); 1104 } 1105 1106 /* 1107 * ill_down_start is called when we want to down this ill and bring it up again 1108 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1109 * all interfaces, but don't tear down any plumbing. 1110 */ 1111 boolean_t 1112 ill_down_start(queue_t *q, mblk_t *mp) 1113 { 1114 ill_t *ill = q->q_ptr; 1115 ipif_t *ipif; 1116 1117 ASSERT(IAM_WRITER_ILL(ill)); 1118 mutex_enter(&ill->ill_lock); 1119 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1120 /* no more nce addition allowed */ 1121 mutex_exit(&ill->ill_lock); 1122 1123 /* 1124 * It is possible that some ioctl is already in progress while we 1125 * received the M_ERROR / M_HANGUP in which case, we need to abort 1126 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1127 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1128 * the in progress ioctl from ever completing. 1129 * 1130 * The thread that started the ioctl (if any) must have returned, 1131 * since we are now executing as writer. After the 2 calls below, 1132 * the state of the ipsq and the ill would reflect no trace of any 1133 * pending operation. Subsequently if there is any response to the 1134 * original ioctl from the driver, it would be discarded as an 1135 * unsolicited message from the driver. 1136 */ 1137 (void) ipsq_pending_mp_cleanup(ill, NULL); 1138 ill_dlpi_clear_deferred(ill); 1139 1140 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1141 (void) ipif_down(ipif, NULL, NULL); 1142 1143 ill_down(ill); 1144 1145 /* 1146 * Walk all CONNs that can have a reference on an ire or nce for this 1147 * ill (we actually walk all that now have stale references). 1148 */ 1149 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1150 1151 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1152 if (ill->ill_isv6) 1153 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1154 1155 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1156 1157 /* 1158 * Atomically test and add the pending mp if references are active. 1159 */ 1160 mutex_enter(&ill->ill_lock); 1161 if (!ill_is_quiescent(ill)) { 1162 /* call cannot fail since `conn_t *' argument is NULL */ 1163 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1164 mp, ILL_DOWN); 1165 mutex_exit(&ill->ill_lock); 1166 return (B_FALSE); 1167 } 1168 mutex_exit(&ill->ill_lock); 1169 return (B_TRUE); 1170 } 1171 1172 static void 1173 ill_down(ill_t *ill) 1174 { 1175 mblk_t *mp; 1176 ip_stack_t *ipst = ill->ill_ipst; 1177 1178 /* 1179 * Blow off any IREs dependent on this ILL. 1180 * The caller needs to handle conn_ixa_cleanup 1181 */ 1182 ill_delete_ires(ill); 1183 1184 ire_walk_ill(0, 0, ill_downi, ill, ill); 1185 1186 /* Remove any conn_*_ill depending on this ill */ 1187 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1188 1189 /* 1190 * Free state for additional IREs. 1191 */ 1192 mutex_enter(&ill->ill_saved_ire_lock); 1193 mp = ill->ill_saved_ire_mp; 1194 ill->ill_saved_ire_mp = NULL; 1195 ill->ill_saved_ire_cnt = 0; 1196 mutex_exit(&ill->ill_saved_ire_lock); 1197 freemsg(mp); 1198 } 1199 1200 /* 1201 * ire_walk routine used to delete every IRE that depends on 1202 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1203 * 1204 * Note: since the routes added by the kernel are deleted separately, 1205 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1206 * 1207 * We also remove references on ire_nce_cache entries that refer to the ill. 1208 */ 1209 void 1210 ill_downi(ire_t *ire, char *ill_arg) 1211 { 1212 ill_t *ill = (ill_t *)ill_arg; 1213 nce_t *nce; 1214 1215 mutex_enter(&ire->ire_lock); 1216 nce = ire->ire_nce_cache; 1217 if (nce != NULL && nce->nce_ill == ill) 1218 ire->ire_nce_cache = NULL; 1219 else 1220 nce = NULL; 1221 mutex_exit(&ire->ire_lock); 1222 if (nce != NULL) 1223 nce_refrele(nce); 1224 if (ire->ire_ill == ill) { 1225 /* 1226 * The existing interface binding for ire must be 1227 * deleted before trying to bind the route to another 1228 * interface. However, since we are using the contents of the 1229 * ire after ire_delete, the caller has to ensure that 1230 * CONDEMNED (deleted) ire's are not removed from the list 1231 * when ire_delete() returns. Currently ill_downi() is 1232 * only called as part of ire_walk*() routines, so that 1233 * the irb_refhold() done by ire_walk*() will ensure that 1234 * ire_delete() does not lead to ire_inactive(). 1235 */ 1236 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1237 ire_delete(ire); 1238 if (ire->ire_unbound) 1239 ire_rebind(ire); 1240 } 1241 } 1242 1243 /* Remove IRE_IF_CLONE on this ill */ 1244 void 1245 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1246 { 1247 ill_t *ill = (ill_t *)ill_arg; 1248 1249 ASSERT(ire->ire_type & IRE_IF_CLONE); 1250 if (ire->ire_ill == ill) 1251 ire_delete(ire); 1252 } 1253 1254 /* Consume an M_IOCACK of the fastpath probe. */ 1255 void 1256 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1257 { 1258 mblk_t *mp1 = mp; 1259 1260 /* 1261 * If this was the first attempt turn on the fastpath probing. 1262 */ 1263 mutex_enter(&ill->ill_lock); 1264 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1265 ill->ill_dlpi_fastpath_state = IDS_OK; 1266 mutex_exit(&ill->ill_lock); 1267 1268 /* Free the M_IOCACK mblk, hold on to the data */ 1269 mp = mp->b_cont; 1270 freeb(mp1); 1271 if (mp == NULL) 1272 return; 1273 if (mp->b_cont != NULL) 1274 nce_fastpath_update(ill, mp); 1275 else 1276 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1277 freemsg(mp); 1278 } 1279 1280 /* 1281 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1282 * The data portion of the request is a dl_unitdata_req_t template for 1283 * what we would send downstream in the absence of a fastpath confirmation. 1284 */ 1285 int 1286 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1287 { 1288 struct iocblk *ioc; 1289 mblk_t *mp; 1290 1291 if (dlur_mp == NULL) 1292 return (EINVAL); 1293 1294 mutex_enter(&ill->ill_lock); 1295 switch (ill->ill_dlpi_fastpath_state) { 1296 case IDS_FAILED: 1297 /* 1298 * Driver NAKed the first fastpath ioctl - assume it doesn't 1299 * support it. 1300 */ 1301 mutex_exit(&ill->ill_lock); 1302 return (ENOTSUP); 1303 case IDS_UNKNOWN: 1304 /* This is the first probe */ 1305 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1306 break; 1307 default: 1308 break; 1309 } 1310 mutex_exit(&ill->ill_lock); 1311 1312 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1313 return (EAGAIN); 1314 1315 mp->b_cont = copyb(dlur_mp); 1316 if (mp->b_cont == NULL) { 1317 freeb(mp); 1318 return (EAGAIN); 1319 } 1320 1321 ioc = (struct iocblk *)mp->b_rptr; 1322 ioc->ioc_count = msgdsize(mp->b_cont); 1323 1324 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1325 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1326 putnext(ill->ill_wq, mp); 1327 return (0); 1328 } 1329 1330 void 1331 ill_capability_probe(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 1337 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1338 ill->ill_dlpi_capab_state != IDCS_FAILED) 1339 return; 1340 1341 /* 1342 * We are starting a new cycle of capability negotiation. 1343 * Free up the capab reset messages of any previous incarnation. 1344 * We will do a fresh allocation when we get the response to our probe 1345 */ 1346 if (ill->ill_capab_reset_mp != NULL) { 1347 freemsg(ill->ill_capab_reset_mp); 1348 ill->ill_capab_reset_mp = NULL; 1349 } 1350 1351 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1352 1353 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1354 if (mp == NULL) 1355 return; 1356 1357 ill_capability_send(ill, mp); 1358 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1359 } 1360 1361 void 1362 ill_capability_reset(ill_t *ill, boolean_t reneg) 1363 { 1364 ASSERT(IAM_WRITER_ILL(ill)); 1365 1366 if (ill->ill_dlpi_capab_state != IDCS_OK) 1367 return; 1368 1369 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1370 1371 ill_capability_send(ill, ill->ill_capab_reset_mp); 1372 ill->ill_capab_reset_mp = NULL; 1373 /* 1374 * We turn off all capabilities except those pertaining to 1375 * direct function call capabilities viz. ILL_CAPAB_DLD* 1376 * which will be turned off by the corresponding reset functions. 1377 */ 1378 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1379 } 1380 1381 static void 1382 ill_capability_reset_alloc(ill_t *ill) 1383 { 1384 mblk_t *mp; 1385 size_t size = 0; 1386 int err; 1387 dl_capability_req_t *capb; 1388 1389 ASSERT(IAM_WRITER_ILL(ill)); 1390 ASSERT(ill->ill_capab_reset_mp == NULL); 1391 1392 if (ILL_HCKSUM_CAPABLE(ill)) { 1393 size += sizeof (dl_capability_sub_t) + 1394 sizeof (dl_capab_hcksum_t); 1395 } 1396 1397 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1398 size += sizeof (dl_capability_sub_t) + 1399 sizeof (dl_capab_zerocopy_t); 1400 } 1401 1402 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1403 size += sizeof (dl_capability_sub_t) + 1404 sizeof (dl_capab_dld_t); 1405 } 1406 1407 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1408 STR_NOSIG, &err); 1409 1410 mp->b_datap->db_type = M_PROTO; 1411 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1412 1413 capb = (dl_capability_req_t *)mp->b_rptr; 1414 capb->dl_primitive = DL_CAPABILITY_REQ; 1415 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1416 capb->dl_sub_length = size; 1417 1418 mp->b_wptr += sizeof (dl_capability_req_t); 1419 1420 /* 1421 * Each handler fills in the corresponding dl_capability_sub_t 1422 * inside the mblk, 1423 */ 1424 ill_capability_hcksum_reset_fill(ill, mp); 1425 ill_capability_zerocopy_reset_fill(ill, mp); 1426 ill_capability_dld_reset_fill(ill, mp); 1427 1428 ill->ill_capab_reset_mp = mp; 1429 } 1430 1431 static void 1432 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1433 { 1434 dl_capab_id_t *id_ic; 1435 uint_t sub_dl_cap = outers->dl_cap; 1436 dl_capability_sub_t *inners; 1437 uint8_t *capend; 1438 1439 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1440 1441 /* 1442 * Note: range checks here are not absolutely sufficient to 1443 * make us robust against malformed messages sent by drivers; 1444 * this is in keeping with the rest of IP's dlpi handling. 1445 * (Remember, it's coming from something else in the kernel 1446 * address space) 1447 */ 1448 1449 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1450 if (capend > mp->b_wptr) { 1451 cmn_err(CE_WARN, "ill_capability_id_ack: " 1452 "malformed sub-capability too long for mblk"); 1453 return; 1454 } 1455 1456 id_ic = (dl_capab_id_t *)(outers + 1); 1457 1458 if (outers->dl_length < sizeof (*id_ic) || 1459 (inners = &id_ic->id_subcap, 1460 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1461 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1462 "encapsulated capab type %d too long for mblk", 1463 inners->dl_cap); 1464 return; 1465 } 1466 1467 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1468 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1469 "isn't as expected; pass-thru module(s) detected, " 1470 "discarding capability\n", inners->dl_cap)); 1471 return; 1472 } 1473 1474 /* Process the encapsulated sub-capability */ 1475 ill_capability_dispatch(ill, mp, inners); 1476 } 1477 1478 static void 1479 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1480 { 1481 dl_capability_sub_t *dl_subcap; 1482 1483 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1484 return; 1485 1486 /* 1487 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1488 * initialized below since it is not used by DLD. 1489 */ 1490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1491 dl_subcap->dl_cap = DL_CAPAB_DLD; 1492 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1493 1494 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1495 } 1496 1497 static void 1498 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1499 { 1500 /* 1501 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1502 * is only to get the VRRP capability. 1503 * 1504 * Note that we cannot check ill_ipif_up_count here since 1505 * ill_ipif_up_count is only incremented when the resolver is setup. 1506 * That is done asynchronously, and can race with this function. 1507 */ 1508 if (!ill->ill_dl_up) { 1509 if (subp->dl_cap == DL_CAPAB_VRRP) 1510 ill_capability_vrrp_ack(ill, mp, subp); 1511 return; 1512 } 1513 1514 switch (subp->dl_cap) { 1515 case DL_CAPAB_HCKSUM: 1516 ill_capability_hcksum_ack(ill, mp, subp); 1517 break; 1518 case DL_CAPAB_ZEROCOPY: 1519 ill_capability_zerocopy_ack(ill, mp, subp); 1520 break; 1521 case DL_CAPAB_DLD: 1522 ill_capability_dld_ack(ill, mp, subp); 1523 break; 1524 case DL_CAPAB_VRRP: 1525 break; 1526 default: 1527 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1528 subp->dl_cap)); 1529 } 1530 } 1531 1532 /* 1533 * Process the vrrp capability received from a DLS Provider. isub must point 1534 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1535 */ 1536 static void 1537 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1538 { 1539 dl_capab_vrrp_t *vrrp; 1540 uint_t sub_dl_cap = isub->dl_cap; 1541 uint8_t *capend; 1542 1543 ASSERT(IAM_WRITER_ILL(ill)); 1544 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1545 1546 /* 1547 * Note: range checks here are not absolutely sufficient to 1548 * make us robust against malformed messages sent by drivers; 1549 * this is in keeping with the rest of IP's dlpi handling. 1550 * (Remember, it's coming from something else in the kernel 1551 * address space) 1552 */ 1553 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1554 if (capend > mp->b_wptr) { 1555 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1556 "malformed sub-capability too long for mblk"); 1557 return; 1558 } 1559 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1560 1561 /* 1562 * Compare the IP address family and set ILLF_VRRP for the right ill. 1563 */ 1564 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1565 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1566 ill->ill_flags |= ILLF_VRRP; 1567 } 1568 } 1569 1570 /* 1571 * Process a hardware checksum offload capability negotiation ack received 1572 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1573 * of a DL_CAPABILITY_ACK message. 1574 */ 1575 static void 1576 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1577 { 1578 dl_capability_req_t *ocap; 1579 dl_capab_hcksum_t *ihck, *ohck; 1580 ill_hcksum_capab_t **ill_hcksum; 1581 mblk_t *nmp = NULL; 1582 uint_t sub_dl_cap = isub->dl_cap; 1583 uint8_t *capend; 1584 1585 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1586 1587 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1588 1589 /* 1590 * Note: range checks here are not absolutely sufficient to 1591 * make us robust against malformed messages sent by drivers; 1592 * this is in keeping with the rest of IP's dlpi handling. 1593 * (Remember, it's coming from something else in the kernel 1594 * address space) 1595 */ 1596 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1597 if (capend > mp->b_wptr) { 1598 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1599 "malformed sub-capability too long for mblk"); 1600 return; 1601 } 1602 1603 /* 1604 * There are two types of acks we process here: 1605 * 1. acks in reply to a (first form) generic capability req 1606 * (no ENABLE flag set) 1607 * 2. acks in reply to a ENABLE capability req. 1608 * (ENABLE flag set) 1609 */ 1610 ihck = (dl_capab_hcksum_t *)(isub + 1); 1611 1612 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1613 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1614 "unsupported hardware checksum " 1615 "sub-capability (version %d, expected %d)", 1616 ihck->hcksum_version, HCKSUM_VERSION_1); 1617 return; 1618 } 1619 1620 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1621 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1622 "checksum capability isn't as expected; pass-thru " 1623 "module(s) detected, discarding capability\n")); 1624 return; 1625 } 1626 1627 #define CURR_HCKSUM_CAPAB \ 1628 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1629 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1630 1631 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1632 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1633 /* do ENABLE processing */ 1634 if (*ill_hcksum == NULL) { 1635 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1636 KM_NOSLEEP); 1637 1638 if (*ill_hcksum == NULL) { 1639 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1640 "could not enable hcksum version %d " 1641 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1642 ill->ill_name); 1643 return; 1644 } 1645 } 1646 1647 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1648 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1649 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1650 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1651 "has enabled hardware checksumming\n ", 1652 ill->ill_name)); 1653 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1654 /* 1655 * Enabling hardware checksum offload 1656 * Currently IP supports {TCP,UDP}/IPv4 1657 * partial and full cksum offload and 1658 * IPv4 header checksum offload. 1659 * Allocate new mblk which will 1660 * contain a new capability request 1661 * to enable hardware checksum offload. 1662 */ 1663 uint_t size; 1664 uchar_t *rptr; 1665 1666 size = sizeof (dl_capability_req_t) + 1667 sizeof (dl_capability_sub_t) + isub->dl_length; 1668 1669 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1670 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1671 "could not enable hardware cksum for %s (ENOMEM)\n", 1672 ill->ill_name); 1673 return; 1674 } 1675 1676 rptr = nmp->b_rptr; 1677 /* initialize dl_capability_req_t */ 1678 ocap = (dl_capability_req_t *)nmp->b_rptr; 1679 ocap->dl_sub_offset = 1680 sizeof (dl_capability_req_t); 1681 ocap->dl_sub_length = 1682 sizeof (dl_capability_sub_t) + 1683 isub->dl_length; 1684 nmp->b_rptr += sizeof (dl_capability_req_t); 1685 1686 /* initialize dl_capability_sub_t */ 1687 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1688 nmp->b_rptr += sizeof (*isub); 1689 1690 /* initialize dl_capab_hcksum_t */ 1691 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1692 bcopy(ihck, ohck, sizeof (*ihck)); 1693 1694 nmp->b_rptr = rptr; 1695 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1696 1697 /* Set ENABLE flag */ 1698 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1699 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1700 1701 /* 1702 * nmp points to a DL_CAPABILITY_REQ message to enable 1703 * hardware checksum acceleration. 1704 */ 1705 ill_capability_send(ill, nmp); 1706 } else { 1707 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1708 "advertised %x hardware checksum capability flags\n", 1709 ill->ill_name, ihck->hcksum_txflags)); 1710 } 1711 } 1712 1713 static void 1714 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1715 { 1716 dl_capab_hcksum_t *hck_subcap; 1717 dl_capability_sub_t *dl_subcap; 1718 1719 if (!ILL_HCKSUM_CAPABLE(ill)) 1720 return; 1721 1722 ASSERT(ill->ill_hcksum_capab != NULL); 1723 1724 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1725 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1726 dl_subcap->dl_length = sizeof (*hck_subcap); 1727 1728 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1729 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1730 hck_subcap->hcksum_txflags = 0; 1731 1732 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1733 } 1734 1735 static void 1736 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1737 { 1738 mblk_t *nmp = NULL; 1739 dl_capability_req_t *oc; 1740 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1741 ill_zerocopy_capab_t **ill_zerocopy_capab; 1742 uint_t sub_dl_cap = isub->dl_cap; 1743 uint8_t *capend; 1744 1745 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1746 1747 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1748 1749 /* 1750 * Note: range checks here are not absolutely sufficient to 1751 * make us robust against malformed messages sent by drivers; 1752 * this is in keeping with the rest of IP's dlpi handling. 1753 * (Remember, it's coming from something else in the kernel 1754 * address space) 1755 */ 1756 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1757 if (capend > mp->b_wptr) { 1758 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1759 "malformed sub-capability too long for mblk"); 1760 return; 1761 } 1762 1763 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1764 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1765 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1766 "unsupported ZEROCOPY sub-capability (version %d, " 1767 "expected %d)", zc_ic->zerocopy_version, 1768 ZEROCOPY_VERSION_1); 1769 return; 1770 } 1771 1772 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1773 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1774 "capability isn't as expected; pass-thru module(s) " 1775 "detected, discarding capability\n")); 1776 return; 1777 } 1778 1779 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1780 if (*ill_zerocopy_capab == NULL) { 1781 *ill_zerocopy_capab = 1782 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1783 KM_NOSLEEP); 1784 1785 if (*ill_zerocopy_capab == NULL) { 1786 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1787 "could not enable Zero-copy version %d " 1788 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1789 ill->ill_name); 1790 return; 1791 } 1792 } 1793 1794 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1795 "supports Zero-copy version %d\n", ill->ill_name, 1796 ZEROCOPY_VERSION_1)); 1797 1798 (*ill_zerocopy_capab)->ill_zerocopy_version = 1799 zc_ic->zerocopy_version; 1800 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1801 zc_ic->zerocopy_flags; 1802 1803 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1804 } else { 1805 uint_t size; 1806 uchar_t *rptr; 1807 1808 size = sizeof (dl_capability_req_t) + 1809 sizeof (dl_capability_sub_t) + 1810 sizeof (dl_capab_zerocopy_t); 1811 1812 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1813 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1814 "could not enable zerocopy for %s (ENOMEM)\n", 1815 ill->ill_name); 1816 return; 1817 } 1818 1819 rptr = nmp->b_rptr; 1820 /* initialize dl_capability_req_t */ 1821 oc = (dl_capability_req_t *)rptr; 1822 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1823 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1824 sizeof (dl_capab_zerocopy_t); 1825 rptr += sizeof (dl_capability_req_t); 1826 1827 /* initialize dl_capability_sub_t */ 1828 bcopy(isub, rptr, sizeof (*isub)); 1829 rptr += sizeof (*isub); 1830 1831 /* initialize dl_capab_zerocopy_t */ 1832 zc_oc = (dl_capab_zerocopy_t *)rptr; 1833 *zc_oc = *zc_ic; 1834 1835 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1836 "to enable zero-copy version %d\n", ill->ill_name, 1837 ZEROCOPY_VERSION_1)); 1838 1839 /* set VMSAFE_MEM flag */ 1840 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1841 1842 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1843 ill_capability_send(ill, nmp); 1844 } 1845 } 1846 1847 static void 1848 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1849 { 1850 dl_capab_zerocopy_t *zerocopy_subcap; 1851 dl_capability_sub_t *dl_subcap; 1852 1853 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1854 return; 1855 1856 ASSERT(ill->ill_zerocopy_capab != NULL); 1857 1858 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1859 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1860 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1861 1862 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1863 zerocopy_subcap->zerocopy_version = 1864 ill->ill_zerocopy_capab->ill_zerocopy_version; 1865 zerocopy_subcap->zerocopy_flags = 0; 1866 1867 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1868 } 1869 1870 /* 1871 * DLD capability 1872 * Refer to dld.h for more information regarding the purpose and usage 1873 * of this capability. 1874 */ 1875 static void 1876 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1877 { 1878 dl_capab_dld_t *dld_ic, dld; 1879 uint_t sub_dl_cap = isub->dl_cap; 1880 uint8_t *capend; 1881 ill_dld_capab_t *idc; 1882 1883 ASSERT(IAM_WRITER_ILL(ill)); 1884 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1885 1886 /* 1887 * Note: range checks here are not absolutely sufficient to 1888 * make us robust against malformed messages sent by drivers; 1889 * this is in keeping with the rest of IP's dlpi handling. 1890 * (Remember, it's coming from something else in the kernel 1891 * address space) 1892 */ 1893 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1894 if (capend > mp->b_wptr) { 1895 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1896 "malformed sub-capability too long for mblk"); 1897 return; 1898 } 1899 dld_ic = (dl_capab_dld_t *)(isub + 1); 1900 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1901 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1902 "unsupported DLD sub-capability (version %d, " 1903 "expected %d)", dld_ic->dld_version, 1904 DLD_CURRENT_VERSION); 1905 return; 1906 } 1907 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1908 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1909 "capability isn't as expected; pass-thru module(s) " 1910 "detected, discarding capability\n")); 1911 return; 1912 } 1913 1914 /* 1915 * Copy locally to ensure alignment. 1916 */ 1917 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1918 1919 if ((idc = ill->ill_dld_capab) == NULL) { 1920 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1921 if (idc == NULL) { 1922 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1923 "could not enable DLD version %d " 1924 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1925 ill->ill_name); 1926 return; 1927 } 1928 ill->ill_dld_capab = idc; 1929 } 1930 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1931 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1932 ip1dbg(("ill_capability_dld_ack: interface %s " 1933 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1934 1935 ill_capability_dld_enable(ill); 1936 } 1937 1938 /* 1939 * Typically capability negotiation between IP and the driver happens via 1940 * DLPI message exchange. However GLD also offers a direct function call 1941 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1942 * But arbitrary function calls into IP or GLD are not permitted, since both 1943 * of them are protected by their own perimeter mechanism. The perimeter can 1944 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1945 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1946 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1947 * to enter the mac perimeter and then do the direct function calls into 1948 * GLD to enable squeue polling. The ring related callbacks from the mac into 1949 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1950 * protected by the mac perimeter. 1951 */ 1952 static void 1953 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1954 { 1955 ill_dld_capab_t *idc = ill->ill_dld_capab; 1956 int err; 1957 1958 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1959 DLD_ENABLE); 1960 ASSERT(err == 0); 1961 } 1962 1963 static void 1964 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1965 { 1966 ill_dld_capab_t *idc = ill->ill_dld_capab; 1967 int err; 1968 1969 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1970 DLD_DISABLE); 1971 ASSERT(err == 0); 1972 } 1973 1974 boolean_t 1975 ill_mac_perim_held(ill_t *ill) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 1979 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1980 DLD_QUERY)); 1981 } 1982 1983 static void 1984 ill_capability_direct_enable(ill_t *ill) 1985 { 1986 ill_dld_capab_t *idc = ill->ill_dld_capab; 1987 ill_dld_direct_t *idd = &idc->idc_direct; 1988 dld_capab_direct_t direct; 1989 int rc; 1990 1991 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1992 1993 bzero(&direct, sizeof (direct)); 1994 direct.di_rx_cf = (uintptr_t)ip_input; 1995 direct.di_rx_ch = ill; 1996 1997 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1998 DLD_ENABLE); 1999 if (rc == 0) { 2000 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2001 idd->idd_tx_dh = direct.di_tx_dh; 2002 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2003 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2004 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2005 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2006 ASSERT(idd->idd_tx_cb_df != NULL); 2007 ASSERT(idd->idd_tx_fctl_df != NULL); 2008 ASSERT(idd->idd_tx_df != NULL); 2009 /* 2010 * One time registration of flow enable callback function 2011 */ 2012 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2013 ill_flow_enable, ill); 2014 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2015 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2016 } else { 2017 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2018 "capability, rc = %d\n", rc); 2019 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2020 } 2021 } 2022 2023 static void 2024 ill_capability_poll_enable(ill_t *ill) 2025 { 2026 ill_dld_capab_t *idc = ill->ill_dld_capab; 2027 dld_capab_poll_t poll; 2028 int rc; 2029 2030 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2031 2032 bzero(&poll, sizeof (poll)); 2033 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2034 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2035 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2036 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2037 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2038 poll.poll_ring_ch = ill; 2039 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2040 DLD_ENABLE); 2041 if (rc == 0) { 2042 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2043 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2044 } else { 2045 ip1dbg(("warning: could not enable POLL " 2046 "capability, rc = %d\n", rc)); 2047 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2048 } 2049 } 2050 2051 /* 2052 * Enable the LSO capability. 2053 */ 2054 static void 2055 ill_capability_lso_enable(ill_t *ill) 2056 { 2057 ill_dld_capab_t *idc = ill->ill_dld_capab; 2058 dld_capab_lso_t lso; 2059 int rc; 2060 2061 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2062 2063 if (ill->ill_lso_capab == NULL) { 2064 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2065 KM_NOSLEEP); 2066 if (ill->ill_lso_capab == NULL) { 2067 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2068 "could not enable LSO for %s (ENOMEM)\n", 2069 ill->ill_name); 2070 return; 2071 } 2072 } 2073 2074 bzero(&lso, sizeof (lso)); 2075 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2076 DLD_ENABLE)) == 0) { 2077 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2078 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2079 ill->ill_capabilities |= ILL_CAPAB_LSO; 2080 ip1dbg(("ill_capability_lso_enable: interface %s " 2081 "has enabled LSO\n ", ill->ill_name)); 2082 } else { 2083 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2084 ill->ill_lso_capab = NULL; 2085 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2086 } 2087 } 2088 2089 static void 2090 ill_capability_dld_enable(ill_t *ill) 2091 { 2092 mac_perim_handle_t mph; 2093 2094 ASSERT(IAM_WRITER_ILL(ill)); 2095 2096 if (ill->ill_isv6) 2097 return; 2098 2099 ill_mac_perim_enter(ill, &mph); 2100 if (!ill->ill_isv6) { 2101 ill_capability_direct_enable(ill); 2102 ill_capability_poll_enable(ill); 2103 ill_capability_lso_enable(ill); 2104 } 2105 ill->ill_capabilities |= ILL_CAPAB_DLD; 2106 ill_mac_perim_exit(ill, mph); 2107 } 2108 2109 static void 2110 ill_capability_dld_disable(ill_t *ill) 2111 { 2112 ill_dld_capab_t *idc; 2113 ill_dld_direct_t *idd; 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 2123 idc = ill->ill_dld_capab; 2124 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2125 /* 2126 * For performance we avoid locks in the transmit data path 2127 * and don't maintain a count of the number of threads using 2128 * direct calls. Thus some threads could be using direct 2129 * transmit calls to GLD, even after the capability mechanism 2130 * turns it off. This is still safe since the handles used in 2131 * the direct calls continue to be valid until the unplumb is 2132 * completed. Remove the callback that was added (1-time) at 2133 * capab enable time. 2134 */ 2135 mutex_enter(&ill->ill_lock); 2136 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2137 mutex_exit(&ill->ill_lock); 2138 if (ill->ill_flownotify_mh != NULL) { 2139 idd = &idc->idc_direct; 2140 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2141 ill->ill_flownotify_mh); 2142 ill->ill_flownotify_mh = NULL; 2143 } 2144 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2145 NULL, DLD_DISABLE); 2146 } 2147 2148 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2149 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2150 ip_squeue_clean_all(ill); 2151 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2152 NULL, DLD_DISABLE); 2153 } 2154 2155 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2156 ASSERT(ill->ill_lso_capab != NULL); 2157 /* 2158 * Clear the capability flag for LSO but retain the 2159 * ill_lso_capab structure since it's possible that another 2160 * thread is still referring to it. The structure only gets 2161 * deallocated when we destroy the ill. 2162 */ 2163 2164 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2165 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2166 NULL, DLD_DISABLE); 2167 } 2168 2169 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2170 ill_mac_perim_exit(ill, mph); 2171 } 2172 2173 /* 2174 * Capability Negotiation protocol 2175 * 2176 * We don't wait for DLPI capability operations to finish during interface 2177 * bringup or teardown. Doing so would introduce more asynchrony and the 2178 * interface up/down operations will need multiple return and restarts. 2179 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2180 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2181 * exclusive operation won't start until the DLPI operations of the previous 2182 * exclusive operation complete. 2183 * 2184 * The capability state machine is shown below. 2185 * 2186 * state next state event, action 2187 * 2188 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2189 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2190 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2191 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2192 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2193 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2194 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2195 * ill_capability_probe. 2196 */ 2197 2198 /* 2199 * Dedicated thread started from ip_stack_init that handles capability 2200 * disable. This thread ensures the taskq dispatch does not fail by waiting 2201 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2202 * that direct calls to DLD are done in a cv_waitable context. 2203 */ 2204 void 2205 ill_taskq_dispatch(ip_stack_t *ipst) 2206 { 2207 callb_cpr_t cprinfo; 2208 char name[64]; 2209 mblk_t *mp; 2210 2211 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2212 ipst->ips_netstack->netstack_stackid); 2213 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2214 name); 2215 mutex_enter(&ipst->ips_capab_taskq_lock); 2216 2217 for (;;) { 2218 mp = ipst->ips_capab_taskq_head; 2219 while (mp != NULL) { 2220 ipst->ips_capab_taskq_head = mp->b_next; 2221 if (ipst->ips_capab_taskq_head == NULL) 2222 ipst->ips_capab_taskq_tail = NULL; 2223 mutex_exit(&ipst->ips_capab_taskq_lock); 2224 mp->b_next = NULL; 2225 2226 VERIFY(taskq_dispatch(system_taskq, 2227 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2228 mutex_enter(&ipst->ips_capab_taskq_lock); 2229 mp = ipst->ips_capab_taskq_head; 2230 } 2231 2232 if (ipst->ips_capab_taskq_quit) 2233 break; 2234 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2235 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2236 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2237 } 2238 VERIFY(ipst->ips_capab_taskq_head == NULL); 2239 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2240 CALLB_CPR_EXIT(&cprinfo); 2241 thread_exit(); 2242 } 2243 2244 /* 2245 * Consume a new-style hardware capabilities negotiation ack. 2246 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2247 */ 2248 static void 2249 ill_capability_ack_thr(void *arg) 2250 { 2251 mblk_t *mp = arg; 2252 dl_capability_ack_t *capp; 2253 dl_capability_sub_t *subp, *endp; 2254 ill_t *ill; 2255 boolean_t reneg; 2256 2257 ill = (ill_t *)mp->b_prev; 2258 mp->b_prev = NULL; 2259 2260 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2261 2262 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2263 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2264 /* 2265 * We have received the ack for our DL_CAPAB reset request. 2266 * There isnt' anything in the message that needs processing. 2267 * All message based capabilities have been disabled, now 2268 * do the function call based capability disable. 2269 */ 2270 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2271 ill_capability_dld_disable(ill); 2272 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2273 if (reneg) 2274 ill_capability_probe(ill); 2275 goto done; 2276 } 2277 2278 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2279 ill->ill_dlpi_capab_state = IDCS_OK; 2280 2281 capp = (dl_capability_ack_t *)mp->b_rptr; 2282 2283 if (capp->dl_sub_length == 0) { 2284 /* no new-style capabilities */ 2285 goto done; 2286 } 2287 2288 /* make sure the driver supplied correct dl_sub_length */ 2289 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2290 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2291 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2292 goto done; 2293 } 2294 2295 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2296 /* 2297 * There are sub-capabilities. Process the ones we know about. 2298 * Loop until we don't have room for another sub-cap header.. 2299 */ 2300 for (subp = SC(capp, capp->dl_sub_offset), 2301 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2302 subp <= endp; 2303 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2304 2305 switch (subp->dl_cap) { 2306 case DL_CAPAB_ID_WRAPPER: 2307 ill_capability_id_ack(ill, mp, subp); 2308 break; 2309 default: 2310 ill_capability_dispatch(ill, mp, subp); 2311 break; 2312 } 2313 } 2314 #undef SC 2315 done: 2316 inet_freemsg(mp); 2317 ill_capability_done(ill); 2318 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2319 } 2320 2321 /* 2322 * This needs to be started in a taskq thread to provide a cv_waitable 2323 * context. 2324 */ 2325 void 2326 ill_capability_ack(ill_t *ill, mblk_t *mp) 2327 { 2328 ip_stack_t *ipst = ill->ill_ipst; 2329 2330 mp->b_prev = (mblk_t *)ill; 2331 ASSERT(mp->b_next == NULL); 2332 2333 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2334 TQ_NOSLEEP) != 0) 2335 return; 2336 2337 /* 2338 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2339 * which will do the dispatch using TQ_SLEEP to guarantee success. 2340 */ 2341 mutex_enter(&ipst->ips_capab_taskq_lock); 2342 if (ipst->ips_capab_taskq_head == NULL) { 2343 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2344 ipst->ips_capab_taskq_head = mp; 2345 } else { 2346 ipst->ips_capab_taskq_tail->b_next = mp; 2347 } 2348 ipst->ips_capab_taskq_tail = mp; 2349 2350 cv_signal(&ipst->ips_capab_taskq_cv); 2351 mutex_exit(&ipst->ips_capab_taskq_lock); 2352 } 2353 2354 /* 2355 * This routine is called to scan the fragmentation reassembly table for 2356 * the specified ILL for any packets that are starting to smell. 2357 * dead_interval is the maximum time in seconds that will be tolerated. It 2358 * will either be the value specified in ip_g_frag_timeout, or zero if the 2359 * ILL is shutting down and it is time to blow everything off. 2360 * 2361 * It returns the number of seconds (as a time_t) that the next frag timer 2362 * should be scheduled for, 0 meaning that the timer doesn't need to be 2363 * re-started. Note that the method of calculating next_timeout isn't 2364 * entirely accurate since time will flow between the time we grab 2365 * current_time and the time we schedule the next timeout. This isn't a 2366 * big problem since this is the timer for sending an ICMP reassembly time 2367 * exceeded messages, and it doesn't have to be exactly accurate. 2368 * 2369 * This function is 2370 * sometimes called as writer, although this is not required. 2371 */ 2372 time_t 2373 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2374 { 2375 ipfb_t *ipfb; 2376 ipfb_t *endp; 2377 ipf_t *ipf; 2378 ipf_t *ipfnext; 2379 mblk_t *mp; 2380 time_t current_time = gethrestime_sec(); 2381 time_t next_timeout = 0; 2382 uint32_t hdr_length; 2383 mblk_t *send_icmp_head; 2384 mblk_t *send_icmp_head_v6; 2385 ip_stack_t *ipst = ill->ill_ipst; 2386 ip_recv_attr_t iras; 2387 2388 bzero(&iras, sizeof (iras)); 2389 iras.ira_flags = 0; 2390 iras.ira_ill = iras.ira_rill = ill; 2391 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2392 iras.ira_rifindex = iras.ira_ruifindex; 2393 2394 ipfb = ill->ill_frag_hash_tbl; 2395 if (ipfb == NULL) 2396 return (B_FALSE); 2397 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2398 /* Walk the frag hash table. */ 2399 for (; ipfb < endp; ipfb++) { 2400 send_icmp_head = NULL; 2401 send_icmp_head_v6 = NULL; 2402 mutex_enter(&ipfb->ipfb_lock); 2403 while ((ipf = ipfb->ipfb_ipf) != 0) { 2404 time_t frag_time = current_time - ipf->ipf_timestamp; 2405 time_t frag_timeout; 2406 2407 if (frag_time < dead_interval) { 2408 /* 2409 * There are some outstanding fragments 2410 * that will timeout later. Make note of 2411 * the time so that we can reschedule the 2412 * next timeout appropriately. 2413 */ 2414 frag_timeout = dead_interval - frag_time; 2415 if (next_timeout == 0 || 2416 frag_timeout < next_timeout) { 2417 next_timeout = frag_timeout; 2418 } 2419 break; 2420 } 2421 /* Time's up. Get it out of here. */ 2422 hdr_length = ipf->ipf_nf_hdr_len; 2423 ipfnext = ipf->ipf_hash_next; 2424 if (ipfnext) 2425 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2426 *ipf->ipf_ptphn = ipfnext; 2427 mp = ipf->ipf_mp->b_cont; 2428 for (; mp; mp = mp->b_cont) { 2429 /* Extra points for neatness. */ 2430 IP_REASS_SET_START(mp, 0); 2431 IP_REASS_SET_END(mp, 0); 2432 } 2433 mp = ipf->ipf_mp->b_cont; 2434 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2435 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2436 ipfb->ipfb_count -= ipf->ipf_count; 2437 ASSERT(ipfb->ipfb_frag_pkts > 0); 2438 ipfb->ipfb_frag_pkts--; 2439 /* 2440 * We do not send any icmp message from here because 2441 * we currently are holding the ipfb_lock for this 2442 * hash chain. If we try and send any icmp messages 2443 * from here we may end up via a put back into ip 2444 * trying to get the same lock, causing a recursive 2445 * mutex panic. Instead we build a list and send all 2446 * the icmp messages after we have dropped the lock. 2447 */ 2448 if (ill->ill_isv6) { 2449 if (hdr_length != 0) { 2450 mp->b_next = send_icmp_head_v6; 2451 send_icmp_head_v6 = mp; 2452 } else { 2453 freemsg(mp); 2454 } 2455 } else { 2456 if (hdr_length != 0) { 2457 mp->b_next = send_icmp_head; 2458 send_icmp_head = mp; 2459 } else { 2460 freemsg(mp); 2461 } 2462 } 2463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2464 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2465 freeb(ipf->ipf_mp); 2466 } 2467 mutex_exit(&ipfb->ipfb_lock); 2468 /* 2469 * Now need to send any icmp messages that we delayed from 2470 * above. 2471 */ 2472 while (send_icmp_head_v6 != NULL) { 2473 ip6_t *ip6h; 2474 2475 mp = send_icmp_head_v6; 2476 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2477 mp->b_next = NULL; 2478 ip6h = (ip6_t *)mp->b_rptr; 2479 iras.ira_flags = 0; 2480 /* 2481 * This will result in an incorrect ALL_ZONES zoneid 2482 * for multicast packets, but we 2483 * don't send ICMP errors for those in any case. 2484 */ 2485 iras.ira_zoneid = 2486 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2487 ill, ipst); 2488 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2489 icmp_time_exceeded_v6(mp, 2490 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2491 &iras); 2492 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2493 } 2494 while (send_icmp_head != NULL) { 2495 ipaddr_t dst; 2496 2497 mp = send_icmp_head; 2498 send_icmp_head = send_icmp_head->b_next; 2499 mp->b_next = NULL; 2500 2501 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2502 2503 iras.ira_flags = IRAF_IS_IPV4; 2504 /* 2505 * This will result in an incorrect ALL_ZONES zoneid 2506 * for broadcast and multicast packets, but we 2507 * don't send ICMP errors for those in any case. 2508 */ 2509 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2510 ill, ipst); 2511 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2512 icmp_time_exceeded(mp, 2513 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 } 2517 /* 2518 * A non-dying ILL will use the return value to decide whether to 2519 * restart the frag timer, and for how long. 2520 */ 2521 return (next_timeout); 2522 } 2523 2524 /* 2525 * This routine is called when the approximate count of mblk memory used 2526 * for the specified ILL has exceeded max_count. 2527 */ 2528 void 2529 ill_frag_prune(ill_t *ill, uint_t max_count) 2530 { 2531 ipfb_t *ipfb; 2532 ipf_t *ipf; 2533 size_t count; 2534 clock_t now; 2535 2536 /* 2537 * If we are here within ip_min_frag_prune_time msecs remove 2538 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2539 * ill_frag_free_num_pkts. 2540 */ 2541 mutex_enter(&ill->ill_lock); 2542 now = ddi_get_lbolt(); 2543 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2544 (ip_min_frag_prune_time != 0 ? 2545 ip_min_frag_prune_time : msec_per_tick)) { 2546 2547 ill->ill_frag_free_num_pkts++; 2548 2549 } else { 2550 ill->ill_frag_free_num_pkts = 0; 2551 } 2552 ill->ill_last_frag_clean_time = now; 2553 mutex_exit(&ill->ill_lock); 2554 2555 /* 2556 * free ill_frag_free_num_pkts oldest packets from each bucket. 2557 */ 2558 if (ill->ill_frag_free_num_pkts != 0) { 2559 int ix; 2560 2561 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2562 ipfb = &ill->ill_frag_hash_tbl[ix]; 2563 mutex_enter(&ipfb->ipfb_lock); 2564 if (ipfb->ipfb_ipf != NULL) { 2565 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2566 ill->ill_frag_free_num_pkts); 2567 } 2568 mutex_exit(&ipfb->ipfb_lock); 2569 } 2570 } 2571 /* 2572 * While the reassembly list for this ILL is too big, prune a fragment 2573 * queue by age, oldest first. 2574 */ 2575 while (ill->ill_frag_count > max_count) { 2576 int ix; 2577 ipfb_t *oipfb = NULL; 2578 uint_t oldest = UINT_MAX; 2579 2580 count = 0; 2581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2582 ipfb = &ill->ill_frag_hash_tbl[ix]; 2583 mutex_enter(&ipfb->ipfb_lock); 2584 ipf = ipfb->ipfb_ipf; 2585 if (ipf != NULL && ipf->ipf_gen < oldest) { 2586 oldest = ipf->ipf_gen; 2587 oipfb = ipfb; 2588 } 2589 count += ipfb->ipfb_count; 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 if (oipfb == NULL) 2593 break; 2594 2595 if (count <= max_count) 2596 return; /* Somebody beat us to it, nothing to do */ 2597 mutex_enter(&oipfb->ipfb_lock); 2598 ipf = oipfb->ipfb_ipf; 2599 if (ipf != NULL) { 2600 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2601 } 2602 mutex_exit(&oipfb->ipfb_lock); 2603 } 2604 } 2605 2606 /* 2607 * free 'free_cnt' fragmented packets starting at ipf. 2608 */ 2609 void 2610 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2611 { 2612 size_t count; 2613 mblk_t *mp; 2614 mblk_t *tmp; 2615 ipf_t **ipfp = ipf->ipf_ptphn; 2616 2617 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2618 ASSERT(ipfp != NULL); 2619 ASSERT(ipf != NULL); 2620 2621 while (ipf != NULL && free_cnt-- > 0) { 2622 count = ipf->ipf_count; 2623 mp = ipf->ipf_mp; 2624 ipf = ipf->ipf_hash_next; 2625 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2626 IP_REASS_SET_START(tmp, 0); 2627 IP_REASS_SET_END(tmp, 0); 2628 } 2629 atomic_add_32(&ill->ill_frag_count, -count); 2630 ASSERT(ipfb->ipfb_count >= count); 2631 ipfb->ipfb_count -= count; 2632 ASSERT(ipfb->ipfb_frag_pkts > 0); 2633 ipfb->ipfb_frag_pkts--; 2634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2635 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2636 freemsg(mp); 2637 } 2638 2639 if (ipf) 2640 ipf->ipf_ptphn = ipfp; 2641 ipfp[0] = ipf; 2642 } 2643 2644 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2645 "obsolete and may be removed in a future release of Solaris. Use " \ 2646 "ifconfig(1M) to manipulate the forwarding status of an interface." 2647 2648 /* 2649 * For obsolete per-interface forwarding configuration; 2650 * called in response to ND_GET. 2651 */ 2652 /* ARGSUSED */ 2653 static int 2654 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2655 { 2656 ill_t *ill = (ill_t *)cp; 2657 2658 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2659 2660 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2661 return (0); 2662 } 2663 2664 /* 2665 * For obsolete per-interface forwarding configuration; 2666 * called in response to ND_SET. 2667 */ 2668 /* ARGSUSED */ 2669 static int 2670 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2671 cred_t *ioc_cr) 2672 { 2673 long value; 2674 int retval; 2675 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2676 2677 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2678 2679 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2680 value < 0 || value > 1) { 2681 return (EINVAL); 2682 } 2683 2684 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2685 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2686 rw_exit(&ipst->ips_ill_g_lock); 2687 return (retval); 2688 } 2689 2690 /* 2691 * Helper function for ill_forward_set(). 2692 */ 2693 static void 2694 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2695 { 2696 ip_stack_t *ipst = ill->ill_ipst; 2697 2698 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2699 2700 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2701 (enable ? "Enabling" : "Disabling"), 2702 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2703 mutex_enter(&ill->ill_lock); 2704 if (enable) 2705 ill->ill_flags |= ILLF_ROUTER; 2706 else 2707 ill->ill_flags &= ~ILLF_ROUTER; 2708 mutex_exit(&ill->ill_lock); 2709 if (ill->ill_isv6) 2710 ill_set_nce_router_flags(ill, enable); 2711 /* Notify routing socket listeners of this change. */ 2712 if (ill->ill_ipif != NULL) 2713 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2714 } 2715 2716 /* 2717 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2718 * socket messages for each interface whose flags we change. 2719 */ 2720 int 2721 ill_forward_set(ill_t *ill, boolean_t enable) 2722 { 2723 ipmp_illgrp_t *illg; 2724 ip_stack_t *ipst = ill->ill_ipst; 2725 2726 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2727 2728 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2729 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2730 return (0); 2731 2732 if (IS_LOOPBACK(ill)) 2733 return (EINVAL); 2734 2735 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2736 /* 2737 * Update all of the interfaces in the group. 2738 */ 2739 illg = ill->ill_grp; 2740 ill = list_head(&illg->ig_if); 2741 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2742 ill_forward_set_on_ill(ill, enable); 2743 2744 /* 2745 * Update the IPMP meta-interface. 2746 */ 2747 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2748 return (0); 2749 } 2750 2751 ill_forward_set_on_ill(ill, enable); 2752 return (0); 2753 } 2754 2755 /* 2756 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2757 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2758 * set or clear. 2759 */ 2760 static void 2761 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2762 { 2763 ipif_t *ipif; 2764 ncec_t *ncec; 2765 nce_t *nce; 2766 2767 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2768 /* 2769 * NOTE: we match across the illgrp because nce's for 2770 * addresses on IPMP interfaces have an nce_ill that points to 2771 * the bound underlying ill. 2772 */ 2773 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2774 if (nce != NULL) { 2775 ncec = nce->nce_common; 2776 mutex_enter(&ncec->ncec_lock); 2777 if (enable) 2778 ncec->ncec_flags |= NCE_F_ISROUTER; 2779 else 2780 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2781 mutex_exit(&ncec->ncec_lock); 2782 nce_refrele(nce); 2783 } 2784 } 2785 } 2786 2787 /* 2788 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2789 * for this ill. Make sure the v6/v4 question has been answered about this 2790 * ill. The creation of this ndd variable is only for backwards compatibility. 2791 * The preferred way to control per-interface IP forwarding is through the 2792 * ILLF_ROUTER interface flag. 2793 */ 2794 static int 2795 ill_set_ndd_name(ill_t *ill) 2796 { 2797 char *suffix; 2798 ip_stack_t *ipst = ill->ill_ipst; 2799 2800 ASSERT(IAM_WRITER_ILL(ill)); 2801 2802 if (ill->ill_isv6) 2803 suffix = ipv6_forward_suffix; 2804 else 2805 suffix = ipv4_forward_suffix; 2806 2807 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2808 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2809 /* 2810 * Copies over the '\0'. 2811 * Note that strlen(suffix) is always bounded. 2812 */ 2813 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2814 strlen(suffix) + 1); 2815 2816 /* 2817 * Use of the nd table requires holding the reader lock. 2818 * Modifying the nd table thru nd_load/nd_unload requires 2819 * the writer lock. 2820 */ 2821 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2822 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2823 nd_ill_forward_set, (caddr_t)ill)) { 2824 /* 2825 * If the nd_load failed, it only meant that it could not 2826 * allocate a new bunch of room for further NDD expansion. 2827 * Because of that, the ill_ndd_name will be set to 0, and 2828 * this interface is at the mercy of the global ip_forwarding 2829 * variable. 2830 */ 2831 rw_exit(&ipst->ips_ip_g_nd_lock); 2832 ill->ill_ndd_name = NULL; 2833 return (ENOMEM); 2834 } 2835 rw_exit(&ipst->ips_ip_g_nd_lock); 2836 return (0); 2837 } 2838 2839 /* 2840 * Intializes the context structure and returns the first ill in the list 2841 * cuurently start_list and end_list can have values: 2842 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2843 * IP_V4_G_HEAD Traverse IPV4 list only. 2844 * IP_V6_G_HEAD Traverse IPV6 list only. 2845 */ 2846 2847 /* 2848 * We don't check for CONDEMNED ills here. Caller must do that if 2849 * necessary under the ill lock. 2850 */ 2851 ill_t * 2852 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2853 ip_stack_t *ipst) 2854 { 2855 ill_if_t *ifp; 2856 ill_t *ill; 2857 avl_tree_t *avl_tree; 2858 2859 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2860 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2861 2862 /* 2863 * setup the lists to search 2864 */ 2865 if (end_list != MAX_G_HEADS) { 2866 ctx->ctx_current_list = start_list; 2867 ctx->ctx_last_list = end_list; 2868 } else { 2869 ctx->ctx_last_list = MAX_G_HEADS - 1; 2870 ctx->ctx_current_list = 0; 2871 } 2872 2873 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2874 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2875 if (ifp != (ill_if_t *) 2876 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2877 avl_tree = &ifp->illif_avl_by_ppa; 2878 ill = avl_first(avl_tree); 2879 /* 2880 * ill is guaranteed to be non NULL or ifp should have 2881 * not existed. 2882 */ 2883 ASSERT(ill != NULL); 2884 return (ill); 2885 } 2886 ctx->ctx_current_list++; 2887 } 2888 2889 return (NULL); 2890 } 2891 2892 /* 2893 * returns the next ill in the list. ill_first() must have been called 2894 * before calling ill_next() or bad things will happen. 2895 */ 2896 2897 /* 2898 * We don't check for CONDEMNED ills here. Caller must do that if 2899 * necessary under the ill lock. 2900 */ 2901 ill_t * 2902 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2903 { 2904 ill_if_t *ifp; 2905 ill_t *ill; 2906 ip_stack_t *ipst = lastill->ill_ipst; 2907 2908 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2909 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2910 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2911 AVL_AFTER)) != NULL) { 2912 return (ill); 2913 } 2914 2915 /* goto next ill_ifp in the list. */ 2916 ifp = lastill->ill_ifptr->illif_next; 2917 2918 /* make sure not at end of circular list */ 2919 while (ifp == 2920 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2921 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2922 return (NULL); 2923 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2924 } 2925 2926 return (avl_first(&ifp->illif_avl_by_ppa)); 2927 } 2928 2929 /* 2930 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2931 * The final number (PPA) must not have any leading zeros. Upon success, a 2932 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2933 */ 2934 static char * 2935 ill_get_ppa_ptr(char *name) 2936 { 2937 int namelen = strlen(name); 2938 int end_ndx = namelen - 1; 2939 int ppa_ndx, i; 2940 2941 /* 2942 * Check that the first character is [a-zA-Z], and that the last 2943 * character is [0-9]. 2944 */ 2945 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2946 return (NULL); 2947 2948 /* 2949 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2950 */ 2951 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2952 if (!isdigit(name[ppa_ndx - 1])) 2953 break; 2954 2955 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2956 return (NULL); 2957 2958 /* 2959 * Check that the intermediate characters are [a-z0-9.] 2960 */ 2961 for (i = 1; i < ppa_ndx; i++) { 2962 if (!isalpha(name[i]) && !isdigit(name[i]) && 2963 name[i] != '.' && name[i] != '_') { 2964 return (NULL); 2965 } 2966 } 2967 2968 return (name + ppa_ndx); 2969 } 2970 2971 /* 2972 * use avl tree to locate the ill. 2973 */ 2974 static ill_t * 2975 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2976 { 2977 char *ppa_ptr = NULL; 2978 int len; 2979 uint_t ppa; 2980 ill_t *ill = NULL; 2981 ill_if_t *ifp; 2982 int list; 2983 2984 /* 2985 * get ppa ptr 2986 */ 2987 if (isv6) 2988 list = IP_V6_G_HEAD; 2989 else 2990 list = IP_V4_G_HEAD; 2991 2992 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2993 return (NULL); 2994 } 2995 2996 len = ppa_ptr - name + 1; 2997 2998 ppa = stoi(&ppa_ptr); 2999 3000 ifp = IP_VX_ILL_G_LIST(list, ipst); 3001 3002 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3003 /* 3004 * match is done on len - 1 as the name is not null 3005 * terminated it contains ppa in addition to the interface 3006 * name. 3007 */ 3008 if ((ifp->illif_name_len == len) && 3009 bcmp(ifp->illif_name, name, len - 1) == 0) { 3010 break; 3011 } else { 3012 ifp = ifp->illif_next; 3013 } 3014 } 3015 3016 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3017 /* 3018 * Even the interface type does not exist. 3019 */ 3020 return (NULL); 3021 } 3022 3023 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 3024 if (ill != NULL) { 3025 mutex_enter(&ill->ill_lock); 3026 if (ILL_CAN_LOOKUP(ill)) { 3027 ill_refhold_locked(ill); 3028 mutex_exit(&ill->ill_lock); 3029 return (ill); 3030 } 3031 mutex_exit(&ill->ill_lock); 3032 } 3033 return (NULL); 3034 } 3035 3036 /* 3037 * comparison function for use with avl. 3038 */ 3039 static int 3040 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 3041 { 3042 uint_t ppa; 3043 uint_t ill_ppa; 3044 3045 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 3046 3047 ppa = *((uint_t *)ppa_ptr); 3048 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 3049 /* 3050 * We want the ill with the lowest ppa to be on the 3051 * top. 3052 */ 3053 if (ill_ppa < ppa) 3054 return (1); 3055 if (ill_ppa > ppa) 3056 return (-1); 3057 return (0); 3058 } 3059 3060 /* 3061 * remove an interface type from the global list. 3062 */ 3063 static void 3064 ill_delete_interface_type(ill_if_t *interface) 3065 { 3066 ASSERT(interface != NULL); 3067 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3068 3069 avl_destroy(&interface->illif_avl_by_ppa); 3070 if (interface->illif_ppa_arena != NULL) 3071 vmem_destroy(interface->illif_ppa_arena); 3072 3073 remque(interface); 3074 3075 mi_free(interface); 3076 } 3077 3078 /* 3079 * remove ill from the global list. 3080 */ 3081 static void 3082 ill_glist_delete(ill_t *ill) 3083 { 3084 ip_stack_t *ipst; 3085 phyint_t *phyi; 3086 3087 if (ill == NULL) 3088 return; 3089 ipst = ill->ill_ipst; 3090 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3091 3092 /* 3093 * If the ill was never inserted into the AVL tree 3094 * we skip the if branch. 3095 */ 3096 if (ill->ill_ifptr != NULL) { 3097 /* 3098 * remove from AVL tree and free ppa number 3099 */ 3100 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3101 3102 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3103 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3104 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3105 } 3106 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3107 ill_delete_interface_type(ill->ill_ifptr); 3108 } 3109 3110 /* 3111 * Indicate ill is no longer in the list. 3112 */ 3113 ill->ill_ifptr = NULL; 3114 ill->ill_name_length = 0; 3115 ill->ill_name[0] = '\0'; 3116 ill->ill_ppa = UINT_MAX; 3117 } 3118 3119 /* Generate one last event for this ill. */ 3120 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3121 ill->ill_name_length); 3122 3123 ASSERT(ill->ill_phyint != NULL); 3124 phyi = ill->ill_phyint; 3125 ill->ill_phyint = NULL; 3126 3127 /* 3128 * ill_init allocates a phyint always to store the copy 3129 * of flags relevant to phyint. At that point in time, we could 3130 * not assign the name and hence phyint_illv4/v6 could not be 3131 * initialized. Later in ipif_set_values, we assign the name to 3132 * the ill, at which point in time we assign phyint_illv4/v6. 3133 * Thus we don't rely on phyint_illv6 to be initialized always. 3134 */ 3135 if (ill->ill_flags & ILLF_IPV6) 3136 phyi->phyint_illv6 = NULL; 3137 else 3138 phyi->phyint_illv4 = NULL; 3139 3140 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3141 rw_exit(&ipst->ips_ill_g_lock); 3142 return; 3143 } 3144 3145 /* 3146 * There are no ills left on this phyint; pull it out of the phyint 3147 * avl trees, and free it. 3148 */ 3149 if (phyi->phyint_ifindex > 0) { 3150 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3151 phyi); 3152 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3153 phyi); 3154 } 3155 rw_exit(&ipst->ips_ill_g_lock); 3156 3157 phyint_free(phyi); 3158 } 3159 3160 /* 3161 * allocate a ppa, if the number of plumbed interfaces of this type are 3162 * less than ill_no_arena do a linear search to find a unused ppa. 3163 * When the number goes beyond ill_no_arena switch to using an arena. 3164 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3165 * is the return value for an error condition, so allocation starts at one 3166 * and is decremented by one. 3167 */ 3168 static int 3169 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3170 { 3171 ill_t *tmp_ill; 3172 uint_t start, end; 3173 int ppa; 3174 3175 if (ifp->illif_ppa_arena == NULL && 3176 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3177 /* 3178 * Create an arena. 3179 */ 3180 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3181 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3182 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3183 /* allocate what has already been assigned */ 3184 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3185 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3186 tmp_ill, AVL_AFTER)) { 3187 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3188 1, /* size */ 3189 1, /* align/quantum */ 3190 0, /* phase */ 3191 0, /* nocross */ 3192 /* minaddr */ 3193 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3194 /* maxaddr */ 3195 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3196 VM_NOSLEEP|VM_FIRSTFIT); 3197 if (ppa == 0) { 3198 ip1dbg(("ill_alloc_ppa: ppa allocation" 3199 " failed while switching")); 3200 vmem_destroy(ifp->illif_ppa_arena); 3201 ifp->illif_ppa_arena = NULL; 3202 break; 3203 } 3204 } 3205 } 3206 3207 if (ifp->illif_ppa_arena != NULL) { 3208 if (ill->ill_ppa == UINT_MAX) { 3209 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3210 1, VM_NOSLEEP|VM_FIRSTFIT); 3211 if (ppa == 0) 3212 return (EAGAIN); 3213 ill->ill_ppa = --ppa; 3214 } else { 3215 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3216 1, /* size */ 3217 1, /* align/quantum */ 3218 0, /* phase */ 3219 0, /* nocross */ 3220 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3221 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3222 VM_NOSLEEP|VM_FIRSTFIT); 3223 /* 3224 * Most likely the allocation failed because 3225 * the requested ppa was in use. 3226 */ 3227 if (ppa == 0) 3228 return (EEXIST); 3229 } 3230 return (0); 3231 } 3232 3233 /* 3234 * No arena is in use and not enough (>ill_no_arena) interfaces have 3235 * been plumbed to create one. Do a linear search to get a unused ppa. 3236 */ 3237 if (ill->ill_ppa == UINT_MAX) { 3238 end = UINT_MAX - 1; 3239 start = 0; 3240 } else { 3241 end = start = ill->ill_ppa; 3242 } 3243 3244 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3245 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3246 if (start++ >= end) { 3247 if (ill->ill_ppa == UINT_MAX) 3248 return (EAGAIN); 3249 else 3250 return (EEXIST); 3251 } 3252 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3253 } 3254 ill->ill_ppa = start; 3255 return (0); 3256 } 3257 3258 /* 3259 * Insert ill into the list of configured ill's. Once this function completes, 3260 * the ill is globally visible and is available through lookups. More precisely 3261 * this happens after the caller drops the ill_g_lock. 3262 */ 3263 static int 3264 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3265 { 3266 ill_if_t *ill_interface; 3267 avl_index_t where = 0; 3268 int error; 3269 int name_length; 3270 int index; 3271 boolean_t check_length = B_FALSE; 3272 ip_stack_t *ipst = ill->ill_ipst; 3273 3274 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3275 3276 name_length = mi_strlen(name) + 1; 3277 3278 if (isv6) 3279 index = IP_V6_G_HEAD; 3280 else 3281 index = IP_V4_G_HEAD; 3282 3283 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3284 /* 3285 * Search for interface type based on name 3286 */ 3287 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3288 if ((ill_interface->illif_name_len == name_length) && 3289 (strcmp(ill_interface->illif_name, name) == 0)) { 3290 break; 3291 } 3292 ill_interface = ill_interface->illif_next; 3293 } 3294 3295 /* 3296 * Interface type not found, create one. 3297 */ 3298 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3299 ill_g_head_t ghead; 3300 3301 /* 3302 * allocate ill_if_t structure 3303 */ 3304 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3305 if (ill_interface == NULL) { 3306 return (ENOMEM); 3307 } 3308 3309 (void) strcpy(ill_interface->illif_name, name); 3310 ill_interface->illif_name_len = name_length; 3311 3312 avl_create(&ill_interface->illif_avl_by_ppa, 3313 ill_compare_ppa, sizeof (ill_t), 3314 offsetof(struct ill_s, ill_avl_byppa)); 3315 3316 /* 3317 * link the structure in the back to maintain order 3318 * of configuration for ifconfig output. 3319 */ 3320 ghead = ipst->ips_ill_g_heads[index]; 3321 insque(ill_interface, ghead.ill_g_list_tail); 3322 } 3323 3324 if (ill->ill_ppa == UINT_MAX) 3325 check_length = B_TRUE; 3326 3327 error = ill_alloc_ppa(ill_interface, ill); 3328 if (error != 0) { 3329 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3330 ill_delete_interface_type(ill->ill_ifptr); 3331 return (error); 3332 } 3333 3334 /* 3335 * When the ppa is choosen by the system, check that there is 3336 * enough space to insert ppa. if a specific ppa was passed in this 3337 * check is not required as the interface name passed in will have 3338 * the right ppa in it. 3339 */ 3340 if (check_length) { 3341 /* 3342 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3343 */ 3344 char buf[sizeof (uint_t) * 3]; 3345 3346 /* 3347 * convert ppa to string to calculate the amount of space 3348 * required for it in the name. 3349 */ 3350 numtos(ill->ill_ppa, buf); 3351 3352 /* Do we have enough space to insert ppa ? */ 3353 3354 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3355 /* Free ppa and interface type struct */ 3356 if (ill_interface->illif_ppa_arena != NULL) { 3357 vmem_free(ill_interface->illif_ppa_arena, 3358 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3359 } 3360 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3361 ill_delete_interface_type(ill->ill_ifptr); 3362 3363 return (EINVAL); 3364 } 3365 } 3366 3367 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3368 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3369 3370 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3371 &where); 3372 ill->ill_ifptr = ill_interface; 3373 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3374 3375 ill_phyint_reinit(ill); 3376 return (0); 3377 } 3378 3379 /* Initialize the per phyint ipsq used for serialization */ 3380 static boolean_t 3381 ipsq_init(ill_t *ill, boolean_t enter) 3382 { 3383 ipsq_t *ipsq; 3384 ipxop_t *ipx; 3385 3386 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3387 return (B_FALSE); 3388 3389 ill->ill_phyint->phyint_ipsq = ipsq; 3390 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3391 ipx->ipx_ipsq = ipsq; 3392 ipsq->ipsq_next = ipsq; 3393 ipsq->ipsq_phyint = ill->ill_phyint; 3394 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3395 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3396 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3397 if (enter) { 3398 ipx->ipx_writer = curthread; 3399 ipx->ipx_forced = B_FALSE; 3400 ipx->ipx_reentry_cnt = 1; 3401 #ifdef DEBUG 3402 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3403 #endif 3404 } 3405 return (B_TRUE); 3406 } 3407 3408 /* 3409 * ill_init is called by ip_open when a device control stream is opened. 3410 * It does a few initializations, and shoots a DL_INFO_REQ message down 3411 * to the driver. The response is later picked up in ip_rput_dlpi and 3412 * used to set up default mechanisms for talking to the driver. (Always 3413 * called as writer.) 3414 * 3415 * If this function returns error, ip_open will call ip_close which in 3416 * turn will call ill_delete to clean up any memory allocated here that 3417 * is not yet freed. 3418 */ 3419 int 3420 ill_init(queue_t *q, ill_t *ill) 3421 { 3422 int count; 3423 dl_info_req_t *dlir; 3424 mblk_t *info_mp; 3425 uchar_t *frag_ptr; 3426 3427 /* 3428 * The ill is initialized to zero by mi_alloc*(). In addition 3429 * some fields already contain valid values, initialized in 3430 * ip_open(), before we reach here. 3431 */ 3432 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3433 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3434 ill->ill_saved_ire_cnt = 0; 3435 3436 ill->ill_rq = q; 3437 ill->ill_wq = WR(q); 3438 3439 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3440 BPRI_HI); 3441 if (info_mp == NULL) 3442 return (ENOMEM); 3443 3444 /* 3445 * Allocate sufficient space to contain our fragment hash table and 3446 * the device name. 3447 */ 3448 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3449 2 * LIFNAMSIZ + strlen(ipv6_forward_suffix)); 3450 if (frag_ptr == NULL) { 3451 freemsg(info_mp); 3452 return (ENOMEM); 3453 } 3454 ill->ill_frag_ptr = frag_ptr; 3455 ill->ill_frag_free_num_pkts = 0; 3456 ill->ill_last_frag_clean_time = 0; 3457 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3458 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3459 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3460 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3461 NULL, MUTEX_DEFAULT, NULL); 3462 } 3463 3464 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3465 if (ill->ill_phyint == NULL) { 3466 freemsg(info_mp); 3467 mi_free(frag_ptr); 3468 return (ENOMEM); 3469 } 3470 3471 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3472 /* 3473 * For now pretend this is a v4 ill. We need to set phyint_ill* 3474 * at this point because of the following reason. If we can't 3475 * enter the ipsq at some point and cv_wait, the writer that 3476 * wakes us up tries to locate us using the list of all phyints 3477 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3478 * If we don't set it now, we risk a missed wakeup. 3479 */ 3480 ill->ill_phyint->phyint_illv4 = ill; 3481 ill->ill_ppa = UINT_MAX; 3482 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3483 3484 ill_set_inputfn(ill); 3485 3486 if (!ipsq_init(ill, B_TRUE)) { 3487 freemsg(info_mp); 3488 mi_free(frag_ptr); 3489 mi_free(ill->ill_phyint); 3490 return (ENOMEM); 3491 } 3492 3493 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3494 3495 /* Frag queue limit stuff */ 3496 ill->ill_frag_count = 0; 3497 ill->ill_ipf_gen = 0; 3498 3499 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3500 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3501 ill->ill_global_timer = INFINITY; 3502 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3503 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3504 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3505 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3506 3507 /* 3508 * Initialize IPv6 configuration variables. The IP module is always 3509 * opened as an IPv4 module. Instead tracking down the cases where 3510 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3511 * here for convenience, this has no effect until the ill is set to do 3512 * IPv6. 3513 */ 3514 ill->ill_reachable_time = ND_REACHABLE_TIME; 3515 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3516 ill->ill_max_buf = ND_MAX_Q; 3517 ill->ill_refcnt = 0; 3518 3519 /* Send down the Info Request to the driver. */ 3520 info_mp->b_datap->db_type = M_PCPROTO; 3521 dlir = (dl_info_req_t *)info_mp->b_rptr; 3522 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3523 dlir->dl_primitive = DL_INFO_REQ; 3524 3525 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3526 3527 qprocson(q); 3528 ill_dlpi_send(ill, info_mp); 3529 3530 return (0); 3531 } 3532 3533 /* 3534 * ill_dls_info 3535 * creates datalink socket info from the device. 3536 */ 3537 int 3538 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3539 { 3540 size_t len; 3541 3542 sdl->sdl_family = AF_LINK; 3543 sdl->sdl_index = ill_get_upper_ifindex(ill); 3544 sdl->sdl_type = ill->ill_type; 3545 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3546 len = strlen(sdl->sdl_data); 3547 ASSERT(len < 256); 3548 sdl->sdl_nlen = (uchar_t)len; 3549 sdl->sdl_alen = ill->ill_phys_addr_length; 3550 sdl->sdl_slen = 0; 3551 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3552 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3553 3554 return (sizeof (struct sockaddr_dl)); 3555 } 3556 3557 /* 3558 * ill_xarp_info 3559 * creates xarp info from the device. 3560 */ 3561 static int 3562 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3563 { 3564 sdl->sdl_family = AF_LINK; 3565 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3566 sdl->sdl_type = ill->ill_type; 3567 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3568 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3569 sdl->sdl_alen = ill->ill_phys_addr_length; 3570 sdl->sdl_slen = 0; 3571 return (sdl->sdl_nlen); 3572 } 3573 3574 static int 3575 loopback_kstat_update(kstat_t *ksp, int rw) 3576 { 3577 kstat_named_t *kn; 3578 netstackid_t stackid; 3579 netstack_t *ns; 3580 ip_stack_t *ipst; 3581 3582 if (ksp == NULL || ksp->ks_data == NULL) 3583 return (EIO); 3584 3585 if (rw == KSTAT_WRITE) 3586 return (EACCES); 3587 3588 kn = KSTAT_NAMED_PTR(ksp); 3589 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3590 3591 ns = netstack_find_by_stackid(stackid); 3592 if (ns == NULL) 3593 return (-1); 3594 3595 ipst = ns->netstack_ip; 3596 if (ipst == NULL) { 3597 netstack_rele(ns); 3598 return (-1); 3599 } 3600 kn[0].value.ui32 = ipst->ips_loopback_packets; 3601 kn[1].value.ui32 = ipst->ips_loopback_packets; 3602 netstack_rele(ns); 3603 return (0); 3604 } 3605 3606 /* 3607 * Has ifindex been plumbed already? 3608 */ 3609 static boolean_t 3610 phyint_exists(uint_t index, ip_stack_t *ipst) 3611 { 3612 ASSERT(index != 0); 3613 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3614 3615 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3616 &index, NULL) != NULL); 3617 } 3618 3619 /* Pick a unique ifindex */ 3620 boolean_t 3621 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3622 { 3623 uint_t starting_index; 3624 3625 if (!ipst->ips_ill_index_wrap) { 3626 *indexp = ipst->ips_ill_index++; 3627 if (ipst->ips_ill_index == 0) { 3628 /* Reached the uint_t limit Next time wrap */ 3629 ipst->ips_ill_index_wrap = B_TRUE; 3630 } 3631 return (B_TRUE); 3632 } 3633 3634 /* 3635 * Start reusing unused indexes. Note that we hold the ill_g_lock 3636 * at this point and don't want to call any function that attempts 3637 * to get the lock again. 3638 */ 3639 starting_index = ipst->ips_ill_index++; 3640 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3641 if (ipst->ips_ill_index != 0 && 3642 !phyint_exists(ipst->ips_ill_index, ipst)) { 3643 /* found unused index - use it */ 3644 *indexp = ipst->ips_ill_index; 3645 return (B_TRUE); 3646 } 3647 } 3648 3649 /* 3650 * all interface indicies are inuse. 3651 */ 3652 return (B_FALSE); 3653 } 3654 3655 /* 3656 * Assign a unique interface index for the phyint. 3657 */ 3658 static boolean_t 3659 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3660 { 3661 ASSERT(phyi->phyint_ifindex == 0); 3662 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3663 } 3664 3665 /* 3666 * Initialize the flags on `phyi' as per the provided mactype. 3667 */ 3668 static void 3669 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3670 { 3671 uint64_t flags = 0; 3672 3673 /* 3674 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3675 * we always presume the underlying hardware is working and set 3676 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3677 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3678 * there are no active interfaces in the group so we set PHYI_FAILED. 3679 */ 3680 if (mactype == SUNW_DL_IPMP) 3681 flags |= PHYI_FAILED; 3682 else 3683 flags |= PHYI_RUNNING; 3684 3685 switch (mactype) { 3686 case SUNW_DL_VNI: 3687 flags |= PHYI_VIRTUAL; 3688 break; 3689 case SUNW_DL_IPMP: 3690 flags |= PHYI_IPMP; 3691 break; 3692 case DL_LOOP: 3693 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3694 break; 3695 } 3696 3697 mutex_enter(&phyi->phyint_lock); 3698 phyi->phyint_flags |= flags; 3699 mutex_exit(&phyi->phyint_lock); 3700 } 3701 3702 /* 3703 * Return a pointer to the ill which matches the supplied name. Note that 3704 * the ill name length includes the null termination character. (May be 3705 * called as writer.) 3706 * If do_alloc and the interface is "lo0" it will be automatically created. 3707 * Cannot bump up reference on condemned ills. So dup detect can't be done 3708 * using this func. 3709 */ 3710 ill_t * 3711 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3712 boolean_t *did_alloc, ip_stack_t *ipst) 3713 { 3714 ill_t *ill; 3715 ipif_t *ipif; 3716 ipsq_t *ipsq; 3717 kstat_named_t *kn; 3718 boolean_t isloopback; 3719 in6_addr_t ov6addr; 3720 3721 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3722 3723 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3724 ill = ill_find_by_name(name, isv6, ipst); 3725 rw_exit(&ipst->ips_ill_g_lock); 3726 if (ill != NULL) 3727 return (ill); 3728 3729 /* 3730 * Couldn't find it. Does this happen to be a lookup for the 3731 * loopback device and are we allowed to allocate it? 3732 */ 3733 if (!isloopback || !do_alloc) 3734 return (NULL); 3735 3736 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3737 ill = ill_find_by_name(name, isv6, ipst); 3738 if (ill != NULL) { 3739 rw_exit(&ipst->ips_ill_g_lock); 3740 return (ill); 3741 } 3742 3743 /* Create the loopback device on demand */ 3744 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3745 sizeof (ipif_loopback_name), BPRI_MED)); 3746 if (ill == NULL) 3747 goto done; 3748 3749 *ill = ill_null; 3750 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3751 ill->ill_ipst = ipst; 3752 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3753 netstack_hold(ipst->ips_netstack); 3754 /* 3755 * For exclusive stacks we set the zoneid to zero 3756 * to make IP operate as if in the global zone. 3757 */ 3758 ill->ill_zoneid = GLOBAL_ZONEID; 3759 3760 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3761 if (ill->ill_phyint == NULL) 3762 goto done; 3763 3764 if (isv6) 3765 ill->ill_phyint->phyint_illv6 = ill; 3766 else 3767 ill->ill_phyint->phyint_illv4 = ill; 3768 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3769 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3770 3771 if (isv6) { 3772 ill->ill_isv6 = B_TRUE; 3773 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3774 } else { 3775 ill->ill_max_frag = ip_loopback_mtuplus; 3776 } 3777 if (!ill_allocate_mibs(ill)) 3778 goto done; 3779 ill->ill_current_frag = ill->ill_max_frag; 3780 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3781 /* 3782 * ipif_loopback_name can't be pointed at directly because its used 3783 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3784 * from the glist, ill_glist_delete() sets the first character of 3785 * ill_name to '\0'. 3786 */ 3787 ill->ill_name = (char *)ill + sizeof (*ill); 3788 (void) strcpy(ill->ill_name, ipif_loopback_name); 3789 ill->ill_name_length = sizeof (ipif_loopback_name); 3790 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3791 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3792 3793 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3794 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3795 ill->ill_global_timer = INFINITY; 3796 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3797 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3798 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3799 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3800 3801 /* No resolver here. */ 3802 ill->ill_net_type = IRE_LOOPBACK; 3803 3804 /* Initialize the ipsq */ 3805 if (!ipsq_init(ill, B_FALSE)) 3806 goto done; 3807 3808 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3809 if (ipif == NULL) 3810 goto done; 3811 3812 ill->ill_flags = ILLF_MULTICAST; 3813 3814 ov6addr = ipif->ipif_v6lcl_addr; 3815 /* Set up default loopback address and mask. */ 3816 if (!isv6) { 3817 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3818 3819 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3820 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3821 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3822 ipif->ipif_v6subnet); 3823 ill->ill_flags |= ILLF_IPV4; 3824 } else { 3825 ipif->ipif_v6lcl_addr = ipv6_loopback; 3826 ipif->ipif_v6net_mask = ipv6_all_ones; 3827 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3828 ipif->ipif_v6subnet); 3829 ill->ill_flags |= ILLF_IPV6; 3830 } 3831 3832 /* 3833 * Chain us in at the end of the ill list. hold the ill 3834 * before we make it globally visible. 1 for the lookup. 3835 */ 3836 ill->ill_refcnt = 0; 3837 ill_refhold(ill); 3838 3839 ill->ill_frag_count = 0; 3840 ill->ill_frag_free_num_pkts = 0; 3841 ill->ill_last_frag_clean_time = 0; 3842 3843 ipsq = ill->ill_phyint->phyint_ipsq; 3844 3845 ill_set_inputfn(ill); 3846 3847 if (ill_glist_insert(ill, "lo", isv6) != 0) 3848 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3849 3850 /* Let SCTP know so that it can add this to its list */ 3851 sctp_update_ill(ill, SCTP_ILL_INSERT); 3852 3853 /* 3854 * We have already assigned ipif_v6lcl_addr above, but we need to 3855 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3856 * requires to be after ill_glist_insert() since we need the 3857 * ill_index set. Pass on ipv6_loopback as the old address. 3858 */ 3859 sctp_update_ipif_addr(ipif, ov6addr); 3860 3861 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3862 3863 /* 3864 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3865 * If so, free our original one. 3866 */ 3867 if (ipsq != ill->ill_phyint->phyint_ipsq) 3868 ipsq_delete(ipsq); 3869 3870 if (ipst->ips_loopback_ksp == NULL) { 3871 /* Export loopback interface statistics */ 3872 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3873 ipif_loopback_name, "net", 3874 KSTAT_TYPE_NAMED, 2, 0, 3875 ipst->ips_netstack->netstack_stackid); 3876 if (ipst->ips_loopback_ksp != NULL) { 3877 ipst->ips_loopback_ksp->ks_update = 3878 loopback_kstat_update; 3879 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3880 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3881 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3882 ipst->ips_loopback_ksp->ks_private = 3883 (void *)(uintptr_t)ipst->ips_netstack-> 3884 netstack_stackid; 3885 kstat_install(ipst->ips_loopback_ksp); 3886 } 3887 } 3888 3889 *did_alloc = B_TRUE; 3890 rw_exit(&ipst->ips_ill_g_lock); 3891 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3892 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3893 return (ill); 3894 done: 3895 if (ill != NULL) { 3896 if (ill->ill_phyint != NULL) { 3897 ipsq = ill->ill_phyint->phyint_ipsq; 3898 if (ipsq != NULL) { 3899 ipsq->ipsq_phyint = NULL; 3900 ipsq_delete(ipsq); 3901 } 3902 mi_free(ill->ill_phyint); 3903 } 3904 ill_free_mib(ill); 3905 if (ill->ill_ipst != NULL) 3906 netstack_rele(ill->ill_ipst->ips_netstack); 3907 mi_free(ill); 3908 } 3909 rw_exit(&ipst->ips_ill_g_lock); 3910 return (NULL); 3911 } 3912 3913 /* 3914 * For IPP calls - use the ip_stack_t for global stack. 3915 */ 3916 ill_t * 3917 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3918 { 3919 ip_stack_t *ipst; 3920 ill_t *ill; 3921 3922 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3923 if (ipst == NULL) { 3924 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3925 return (NULL); 3926 } 3927 3928 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3929 netstack_rele(ipst->ips_netstack); 3930 return (ill); 3931 } 3932 3933 /* 3934 * Return a pointer to the ill which matches the index and IP version type. 3935 */ 3936 ill_t * 3937 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3938 { 3939 ill_t *ill; 3940 phyint_t *phyi; 3941 3942 /* 3943 * Indexes are stored in the phyint - a common structure 3944 * to both IPv4 and IPv6. 3945 */ 3946 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3947 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3948 (void *) &index, NULL); 3949 if (phyi != NULL) { 3950 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3951 if (ill != NULL) { 3952 mutex_enter(&ill->ill_lock); 3953 if (!ILL_IS_CONDEMNED(ill)) { 3954 ill_refhold_locked(ill); 3955 mutex_exit(&ill->ill_lock); 3956 rw_exit(&ipst->ips_ill_g_lock); 3957 return (ill); 3958 } 3959 mutex_exit(&ill->ill_lock); 3960 } 3961 } 3962 rw_exit(&ipst->ips_ill_g_lock); 3963 return (NULL); 3964 } 3965 3966 /* 3967 * Verify whether or not an interface index is valid for the specified zoneid 3968 * to transmit packets. 3969 * It can be zero (meaning "reset") or an interface index assigned 3970 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3971 */ 3972 boolean_t 3973 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3974 ip_stack_t *ipst) 3975 { 3976 ill_t *ill; 3977 3978 if (ifindex == 0) 3979 return (B_TRUE); 3980 3981 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3982 if (ill == NULL) 3983 return (B_FALSE); 3984 if (IS_VNI(ill)) { 3985 ill_refrele(ill); 3986 return (B_FALSE); 3987 } 3988 ill_refrele(ill); 3989 return (B_TRUE); 3990 } 3991 3992 /* 3993 * Return the ifindex next in sequence after the passed in ifindex. 3994 * If there is no next ifindex for the given protocol, return 0. 3995 */ 3996 uint_t 3997 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3998 { 3999 phyint_t *phyi; 4000 phyint_t *phyi_initial; 4001 uint_t ifindex; 4002 4003 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4004 4005 if (index == 0) { 4006 phyi = avl_first( 4007 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4008 } else { 4009 phyi = phyi_initial = avl_find( 4010 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4011 (void *) &index, NULL); 4012 } 4013 4014 for (; phyi != NULL; 4015 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4016 phyi, AVL_AFTER)) { 4017 /* 4018 * If we're not returning the first interface in the tree 4019 * and we still haven't moved past the phyint_t that 4020 * corresponds to index, avl_walk needs to be called again 4021 */ 4022 if (!((index != 0) && (phyi == phyi_initial))) { 4023 if (isv6) { 4024 if ((phyi->phyint_illv6) && 4025 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 4026 (phyi->phyint_illv6->ill_isv6 == 1)) 4027 break; 4028 } else { 4029 if ((phyi->phyint_illv4) && 4030 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 4031 (phyi->phyint_illv4->ill_isv6 == 0)) 4032 break; 4033 } 4034 } 4035 } 4036 4037 rw_exit(&ipst->ips_ill_g_lock); 4038 4039 if (phyi != NULL) 4040 ifindex = phyi->phyint_ifindex; 4041 else 4042 ifindex = 0; 4043 4044 return (ifindex); 4045 } 4046 4047 /* 4048 * Return the ifindex for the named interface. 4049 * If there is no next ifindex for the interface, return 0. 4050 */ 4051 uint_t 4052 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 4053 { 4054 phyint_t *phyi; 4055 avl_index_t where = 0; 4056 uint_t ifindex; 4057 4058 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4059 4060 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4061 name, &where)) == NULL) { 4062 rw_exit(&ipst->ips_ill_g_lock); 4063 return (0); 4064 } 4065 4066 ifindex = phyi->phyint_ifindex; 4067 4068 rw_exit(&ipst->ips_ill_g_lock); 4069 4070 return (ifindex); 4071 } 4072 4073 /* 4074 * Return the ifindex to be used by upper layer protocols for instance 4075 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4076 */ 4077 uint_t 4078 ill_get_upper_ifindex(const ill_t *ill) 4079 { 4080 if (IS_UNDER_IPMP(ill)) 4081 return (ipmp_ill_get_ipmp_ifindex(ill)); 4082 else 4083 return (ill->ill_phyint->phyint_ifindex); 4084 } 4085 4086 4087 /* 4088 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4089 * that gives a running thread a reference to the ill. This reference must be 4090 * released by the thread when it is done accessing the ill and related 4091 * objects. ill_refcnt can not be used to account for static references 4092 * such as other structures pointing to an ill. Callers must generally 4093 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4094 * or be sure that the ill is not being deleted or changing state before 4095 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4096 * ill won't change any of its critical state such as address, netmask etc. 4097 */ 4098 void 4099 ill_refhold(ill_t *ill) 4100 { 4101 mutex_enter(&ill->ill_lock); 4102 ill->ill_refcnt++; 4103 ILL_TRACE_REF(ill); 4104 mutex_exit(&ill->ill_lock); 4105 } 4106 4107 void 4108 ill_refhold_locked(ill_t *ill) 4109 { 4110 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4111 ill->ill_refcnt++; 4112 ILL_TRACE_REF(ill); 4113 } 4114 4115 /* Returns true if we managed to get a refhold */ 4116 boolean_t 4117 ill_check_and_refhold(ill_t *ill) 4118 { 4119 mutex_enter(&ill->ill_lock); 4120 if (!ILL_IS_CONDEMNED(ill)) { 4121 ill_refhold_locked(ill); 4122 mutex_exit(&ill->ill_lock); 4123 return (B_TRUE); 4124 } 4125 mutex_exit(&ill->ill_lock); 4126 return (B_FALSE); 4127 } 4128 4129 /* 4130 * Must not be called while holding any locks. Otherwise if this is 4131 * the last reference to be released, there is a chance of recursive mutex 4132 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4133 * to restart an ioctl. 4134 */ 4135 void 4136 ill_refrele(ill_t *ill) 4137 { 4138 mutex_enter(&ill->ill_lock); 4139 ASSERT(ill->ill_refcnt != 0); 4140 ill->ill_refcnt--; 4141 ILL_UNTRACE_REF(ill); 4142 if (ill->ill_refcnt != 0) { 4143 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4144 mutex_exit(&ill->ill_lock); 4145 return; 4146 } 4147 4148 /* Drops the ill_lock */ 4149 ipif_ill_refrele_tail(ill); 4150 } 4151 4152 /* 4153 * Obtain a weak reference count on the ill. This reference ensures the 4154 * ill won't be freed, but the ill may change any of its critical state 4155 * such as netmask, address etc. Returns an error if the ill has started 4156 * closing. 4157 */ 4158 boolean_t 4159 ill_waiter_inc(ill_t *ill) 4160 { 4161 mutex_enter(&ill->ill_lock); 4162 if (ill->ill_state_flags & ILL_CONDEMNED) { 4163 mutex_exit(&ill->ill_lock); 4164 return (B_FALSE); 4165 } 4166 ill->ill_waiters++; 4167 mutex_exit(&ill->ill_lock); 4168 return (B_TRUE); 4169 } 4170 4171 void 4172 ill_waiter_dcr(ill_t *ill) 4173 { 4174 mutex_enter(&ill->ill_lock); 4175 ill->ill_waiters--; 4176 if (ill->ill_waiters == 0) 4177 cv_broadcast(&ill->ill_cv); 4178 mutex_exit(&ill->ill_lock); 4179 } 4180 4181 /* 4182 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4183 * driver. We construct best guess defaults for lower level information that 4184 * we need. If an interface is brought up without injection of any overriding 4185 * information from outside, we have to be ready to go with these defaults. 4186 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4187 * we primarely want the dl_provider_style. 4188 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4189 * at which point we assume the other part of the information is valid. 4190 */ 4191 void 4192 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4193 { 4194 uchar_t *brdcst_addr; 4195 uint_t brdcst_addr_length, phys_addr_length; 4196 t_scalar_t sap_length; 4197 dl_info_ack_t *dlia; 4198 ip_m_t *ipm; 4199 dl_qos_cl_sel1_t *sel1; 4200 int min_mtu; 4201 4202 ASSERT(IAM_WRITER_ILL(ill)); 4203 4204 /* 4205 * Till the ill is fully up the ill is not globally visible. 4206 * So no need for a lock. 4207 */ 4208 dlia = (dl_info_ack_t *)mp->b_rptr; 4209 ill->ill_mactype = dlia->dl_mac_type; 4210 4211 ipm = ip_m_lookup(dlia->dl_mac_type); 4212 if (ipm == NULL) { 4213 ipm = ip_m_lookup(DL_OTHER); 4214 ASSERT(ipm != NULL); 4215 } 4216 ill->ill_media = ipm; 4217 4218 /* 4219 * When the new DLPI stuff is ready we'll pull lengths 4220 * from dlia. 4221 */ 4222 if (dlia->dl_version == DL_VERSION_2) { 4223 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4224 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4225 brdcst_addr_length); 4226 if (brdcst_addr == NULL) { 4227 brdcst_addr_length = 0; 4228 } 4229 sap_length = dlia->dl_sap_length; 4230 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4231 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4232 brdcst_addr_length, sap_length, phys_addr_length)); 4233 } else { 4234 brdcst_addr_length = 6; 4235 brdcst_addr = ip_six_byte_all_ones; 4236 sap_length = -2; 4237 phys_addr_length = brdcst_addr_length; 4238 } 4239 4240 ill->ill_bcast_addr_length = brdcst_addr_length; 4241 ill->ill_phys_addr_length = phys_addr_length; 4242 ill->ill_sap_length = sap_length; 4243 4244 /* 4245 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4246 * but we must ensure a minimum IP MTU is used since other bits of 4247 * IP will fly apart otherwise. 4248 */ 4249 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4250 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4251 ill->ill_current_frag = ill->ill_max_frag; 4252 ill->ill_mtu = ill->ill_max_frag; 4253 4254 ill->ill_type = ipm->ip_m_type; 4255 4256 if (!ill->ill_dlpi_style_set) { 4257 if (dlia->dl_provider_style == DL_STYLE2) 4258 ill->ill_needs_attach = 1; 4259 4260 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4261 4262 /* 4263 * Allocate the first ipif on this ill. We don't delay it 4264 * further as ioctl handling assumes at least one ipif exists. 4265 * 4266 * At this point we don't know whether the ill is v4 or v6. 4267 * We will know this whan the SIOCSLIFNAME happens and 4268 * the correct value for ill_isv6 will be assigned in 4269 * ipif_set_values(). We need to hold the ill lock and 4270 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4271 * the wakeup. 4272 */ 4273 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4274 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4275 mutex_enter(&ill->ill_lock); 4276 ASSERT(ill->ill_dlpi_style_set == 0); 4277 ill->ill_dlpi_style_set = 1; 4278 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4279 cv_broadcast(&ill->ill_cv); 4280 mutex_exit(&ill->ill_lock); 4281 freemsg(mp); 4282 return; 4283 } 4284 ASSERT(ill->ill_ipif != NULL); 4285 /* 4286 * We know whether it is IPv4 or IPv6 now, as this is the 4287 * second DL_INFO_ACK we are recieving in response to the 4288 * DL_INFO_REQ sent in ipif_set_values. 4289 */ 4290 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4291 /* 4292 * Clear all the flags that were set based on ill_bcast_addr_length 4293 * and ill_phys_addr_length (in ipif_set_values) as these could have 4294 * changed now and we need to re-evaluate. 4295 */ 4296 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4297 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4298 4299 /* 4300 * Free ill_bcast_mp as things could have changed now. 4301 * 4302 * NOTE: The IPMP meta-interface is special-cased because it starts 4303 * with no underlying interfaces (and thus an unknown broadcast 4304 * address length), but we enforce that an interface is broadcast- 4305 * capable as part of allowing it to join a group. 4306 */ 4307 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4308 if (ill->ill_bcast_mp != NULL) 4309 freemsg(ill->ill_bcast_mp); 4310 ill->ill_net_type = IRE_IF_NORESOLVER; 4311 4312 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4313 ill->ill_phys_addr_length, 4314 ill->ill_sap, 4315 ill->ill_sap_length); 4316 4317 if (ill->ill_isv6) 4318 /* 4319 * Note: xresolv interfaces will eventually need NOARP 4320 * set here as well, but that will require those 4321 * external resolvers to have some knowledge of 4322 * that flag and act appropriately. Not to be changed 4323 * at present. 4324 */ 4325 ill->ill_flags |= ILLF_NONUD; 4326 else 4327 ill->ill_flags |= ILLF_NOARP; 4328 4329 if (ill->ill_mactype == SUNW_DL_VNI) { 4330 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4331 } else if (ill->ill_phys_addr_length == 0 || 4332 ill->ill_mactype == DL_IPV4 || 4333 ill->ill_mactype == DL_IPV6) { 4334 /* 4335 * The underying link is point-to-point, so mark the 4336 * interface as such. We can do IP multicast over 4337 * such a link since it transmits all network-layer 4338 * packets to the remote side the same way. 4339 */ 4340 ill->ill_flags |= ILLF_MULTICAST; 4341 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4342 } 4343 } else { 4344 ill->ill_net_type = IRE_IF_RESOLVER; 4345 if (ill->ill_bcast_mp != NULL) 4346 freemsg(ill->ill_bcast_mp); 4347 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4348 ill->ill_bcast_addr_length, ill->ill_sap, 4349 ill->ill_sap_length); 4350 /* 4351 * Later detect lack of DLPI driver multicast 4352 * capability by catching DL_ENABMULTI errors in 4353 * ip_rput_dlpi. 4354 */ 4355 ill->ill_flags |= ILLF_MULTICAST; 4356 if (!ill->ill_isv6) 4357 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4358 } 4359 4360 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4361 if (ill->ill_mactype == SUNW_DL_IPMP) 4362 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4363 4364 /* By default an interface does not support any CoS marking */ 4365 ill->ill_flags &= ~ILLF_COS_ENABLED; 4366 4367 /* 4368 * If we get QoS information in DL_INFO_ACK, the device supports 4369 * some form of CoS marking, set ILLF_COS_ENABLED. 4370 */ 4371 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4372 dlia->dl_qos_length); 4373 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4374 ill->ill_flags |= ILLF_COS_ENABLED; 4375 } 4376 4377 /* Clear any previous error indication. */ 4378 ill->ill_error = 0; 4379 freemsg(mp); 4380 } 4381 4382 /* 4383 * Perform various checks to verify that an address would make sense as a 4384 * local, remote, or subnet interface address. 4385 */ 4386 static boolean_t 4387 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4388 { 4389 ipaddr_t net_mask; 4390 4391 /* 4392 * Don't allow all zeroes, or all ones, but allow 4393 * all ones netmask. 4394 */ 4395 if ((net_mask = ip_net_mask(addr)) == 0) 4396 return (B_FALSE); 4397 /* A given netmask overrides the "guess" netmask */ 4398 if (subnet_mask != 0) 4399 net_mask = subnet_mask; 4400 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4401 (addr == (addr | ~net_mask)))) { 4402 return (B_FALSE); 4403 } 4404 4405 /* 4406 * Even if the netmask is all ones, we do not allow address to be 4407 * 255.255.255.255 4408 */ 4409 if (addr == INADDR_BROADCAST) 4410 return (B_FALSE); 4411 4412 if (CLASSD(addr)) 4413 return (B_FALSE); 4414 4415 return (B_TRUE); 4416 } 4417 4418 #define V6_IPIF_LINKLOCAL(p) \ 4419 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4420 4421 /* 4422 * Compare two given ipifs and check if the second one is better than 4423 * the first one using the order of preference (not taking deprecated 4424 * into acount) specified in ipif_lookup_multicast(). 4425 */ 4426 static boolean_t 4427 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4428 { 4429 /* Check the least preferred first. */ 4430 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4431 /* If both ipifs are the same, use the first one. */ 4432 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4433 return (B_FALSE); 4434 else 4435 return (B_TRUE); 4436 } 4437 4438 /* For IPv6, check for link local address. */ 4439 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4440 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4441 V6_IPIF_LINKLOCAL(new_ipif)) { 4442 /* The second one is equal or less preferred. */ 4443 return (B_FALSE); 4444 } else { 4445 return (B_TRUE); 4446 } 4447 } 4448 4449 /* Then check for point to point interface. */ 4450 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4451 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4452 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4453 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4454 return (B_FALSE); 4455 } else { 4456 return (B_TRUE); 4457 } 4458 } 4459 4460 /* old_ipif is a normal interface, so no need to use the new one. */ 4461 return (B_FALSE); 4462 } 4463 4464 /* 4465 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4466 * The ipif must be up, and its ill must multicast-capable, not 4467 * condemned, not an underlying interface in an IPMP group, and 4468 * not a VNI interface. Order of preference: 4469 * 4470 * 1a. normal 4471 * 1b. normal, but deprecated 4472 * 2a. point to point 4473 * 2b. point to point, but deprecated 4474 * 3a. link local 4475 * 3b. link local, but deprecated 4476 * 4. loopback. 4477 */ 4478 static ipif_t * 4479 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4480 { 4481 ill_t *ill; 4482 ill_walk_context_t ctx; 4483 ipif_t *ipif; 4484 ipif_t *saved_ipif = NULL; 4485 ipif_t *dep_ipif = NULL; 4486 4487 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4488 if (isv6) 4489 ill = ILL_START_WALK_V6(&ctx, ipst); 4490 else 4491 ill = ILL_START_WALK_V4(&ctx, ipst); 4492 4493 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4494 mutex_enter(&ill->ill_lock); 4495 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4496 ILL_IS_CONDEMNED(ill) || 4497 !(ill->ill_flags & ILLF_MULTICAST)) { 4498 mutex_exit(&ill->ill_lock); 4499 continue; 4500 } 4501 for (ipif = ill->ill_ipif; ipif != NULL; 4502 ipif = ipif->ipif_next) { 4503 if (zoneid != ipif->ipif_zoneid && 4504 zoneid != ALL_ZONES && 4505 ipif->ipif_zoneid != ALL_ZONES) { 4506 continue; 4507 } 4508 if (!(ipif->ipif_flags & IPIF_UP) || 4509 IPIF_IS_CONDEMNED(ipif)) { 4510 continue; 4511 } 4512 4513 /* 4514 * Found one candidate. If it is deprecated, 4515 * remember it in dep_ipif. If it is not deprecated, 4516 * remember it in saved_ipif. 4517 */ 4518 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4519 if (dep_ipif == NULL) { 4520 dep_ipif = ipif; 4521 } else if (ipif_comp_multi(dep_ipif, ipif, 4522 isv6)) { 4523 /* 4524 * If the previous dep_ipif does not 4525 * belong to the same ill, we've done 4526 * a ipif_refhold() on it. So we need 4527 * to release it. 4528 */ 4529 if (dep_ipif->ipif_ill != ill) 4530 ipif_refrele(dep_ipif); 4531 dep_ipif = ipif; 4532 } 4533 continue; 4534 } 4535 if (saved_ipif == NULL) { 4536 saved_ipif = ipif; 4537 } else { 4538 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4539 if (saved_ipif->ipif_ill != ill) 4540 ipif_refrele(saved_ipif); 4541 saved_ipif = ipif; 4542 } 4543 } 4544 } 4545 /* 4546 * Before going to the next ill, do a ipif_refhold() on the 4547 * saved ones. 4548 */ 4549 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4550 ipif_refhold_locked(saved_ipif); 4551 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4552 ipif_refhold_locked(dep_ipif); 4553 mutex_exit(&ill->ill_lock); 4554 } 4555 rw_exit(&ipst->ips_ill_g_lock); 4556 4557 /* 4558 * If we have only the saved_ipif, return it. But if we have both 4559 * saved_ipif and dep_ipif, check to see which one is better. 4560 */ 4561 if (saved_ipif != NULL) { 4562 if (dep_ipif != NULL) { 4563 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4564 ipif_refrele(saved_ipif); 4565 return (dep_ipif); 4566 } else { 4567 ipif_refrele(dep_ipif); 4568 return (saved_ipif); 4569 } 4570 } 4571 return (saved_ipif); 4572 } else { 4573 return (dep_ipif); 4574 } 4575 } 4576 4577 ill_t * 4578 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4579 { 4580 ipif_t *ipif; 4581 ill_t *ill; 4582 4583 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4584 if (ipif == NULL) 4585 return (NULL); 4586 4587 ill = ipif->ipif_ill; 4588 ill_refhold(ill); 4589 ipif_refrele(ipif); 4590 return (ill); 4591 } 4592 4593 /* 4594 * This function is called when an application does not specify an interface 4595 * to be used for multicast traffic (joining a group/sending data). It 4596 * calls ire_lookup_multi() to look for an interface route for the 4597 * specified multicast group. Doing this allows the administrator to add 4598 * prefix routes for multicast to indicate which interface to be used for 4599 * multicast traffic in the above scenario. The route could be for all 4600 * multicast (224.0/4), for a single multicast group (a /32 route) or 4601 * anything in between. If there is no such multicast route, we just find 4602 * any multicast capable interface and return it. The returned ipif 4603 * is refhold'ed. 4604 * 4605 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4606 * unicast table. This is used by CGTP. 4607 */ 4608 ill_t * 4609 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4610 boolean_t *multirtp, ipaddr_t *setsrcp) 4611 { 4612 ill_t *ill; 4613 4614 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4615 if (ill != NULL) 4616 return (ill); 4617 4618 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4619 } 4620 4621 /* 4622 * Look for an ipif with the specified interface address and destination. 4623 * The destination address is used only for matching point-to-point interfaces. 4624 */ 4625 ipif_t * 4626 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4627 { 4628 ipif_t *ipif; 4629 ill_t *ill; 4630 ill_walk_context_t ctx; 4631 4632 /* 4633 * First match all the point-to-point interfaces 4634 * before looking at non-point-to-point interfaces. 4635 * This is done to avoid returning non-point-to-point 4636 * ipif instead of unnumbered point-to-point ipif. 4637 */ 4638 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4639 ill = ILL_START_WALK_V4(&ctx, ipst); 4640 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4641 mutex_enter(&ill->ill_lock); 4642 for (ipif = ill->ill_ipif; ipif != NULL; 4643 ipif = ipif->ipif_next) { 4644 /* Allow the ipif to be down */ 4645 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4646 (ipif->ipif_lcl_addr == if_addr) && 4647 (ipif->ipif_pp_dst_addr == dst)) { 4648 if (!IPIF_IS_CONDEMNED(ipif)) { 4649 ipif_refhold_locked(ipif); 4650 mutex_exit(&ill->ill_lock); 4651 rw_exit(&ipst->ips_ill_g_lock); 4652 return (ipif); 4653 } 4654 } 4655 } 4656 mutex_exit(&ill->ill_lock); 4657 } 4658 rw_exit(&ipst->ips_ill_g_lock); 4659 4660 /* lookup the ipif based on interface address */ 4661 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4662 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4663 return (ipif); 4664 } 4665 4666 /* 4667 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4668 */ 4669 static ipif_t * 4670 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4671 zoneid_t zoneid, ip_stack_t *ipst) 4672 { 4673 ipif_t *ipif; 4674 ill_t *ill; 4675 boolean_t ptp = B_FALSE; 4676 ill_walk_context_t ctx; 4677 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4678 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4679 4680 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4681 /* 4682 * Repeat twice, first based on local addresses and 4683 * next time for pointopoint. 4684 */ 4685 repeat: 4686 ill = ILL_START_WALK_V4(&ctx, ipst); 4687 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4688 if (match_ill != NULL && ill != match_ill && 4689 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4690 continue; 4691 } 4692 mutex_enter(&ill->ill_lock); 4693 for (ipif = ill->ill_ipif; ipif != NULL; 4694 ipif = ipif->ipif_next) { 4695 if (zoneid != ALL_ZONES && 4696 zoneid != ipif->ipif_zoneid && 4697 ipif->ipif_zoneid != ALL_ZONES) 4698 continue; 4699 4700 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4701 continue; 4702 4703 /* Allow the ipif to be down */ 4704 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4705 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4706 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4707 (ipif->ipif_pp_dst_addr == addr))) { 4708 if (!IPIF_IS_CONDEMNED(ipif)) { 4709 ipif_refhold_locked(ipif); 4710 mutex_exit(&ill->ill_lock); 4711 rw_exit(&ipst->ips_ill_g_lock); 4712 return (ipif); 4713 } 4714 } 4715 } 4716 mutex_exit(&ill->ill_lock); 4717 } 4718 4719 /* If we already did the ptp case, then we are done */ 4720 if (ptp) { 4721 rw_exit(&ipst->ips_ill_g_lock); 4722 return (NULL); 4723 } 4724 ptp = B_TRUE; 4725 goto repeat; 4726 } 4727 4728 /* 4729 * Lookup an ipif with the specified address. For point-to-point links we 4730 * look for matches on either the destination address or the local address, 4731 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4732 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4733 * (or illgrp if `match_ill' is in an IPMP group). 4734 */ 4735 ipif_t * 4736 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4737 ip_stack_t *ipst) 4738 { 4739 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4740 zoneid, ipst)); 4741 } 4742 4743 /* 4744 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4745 * except that we will only return an address if it is not marked as 4746 * IPIF_DUPLICATE 4747 */ 4748 ipif_t * 4749 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4750 ip_stack_t *ipst) 4751 { 4752 return (ipif_lookup_addr_common(addr, match_ill, 4753 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4754 zoneid, ipst)); 4755 } 4756 4757 /* 4758 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4759 * `match_ill' across the IPMP group. This function is only needed in some 4760 * corner-cases; almost everything should use ipif_lookup_addr(). 4761 */ 4762 ipif_t * 4763 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4764 { 4765 ASSERT(match_ill != NULL); 4766 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4767 ipst)); 4768 } 4769 4770 /* 4771 * Look for an ipif with the specified address. For point-point links 4772 * we look for matches on either the destination address and the local 4773 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4774 * is set. 4775 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4776 * ill (or illgrp if `match_ill' is in an IPMP group). 4777 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4778 */ 4779 zoneid_t 4780 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4781 { 4782 zoneid_t zoneid; 4783 ipif_t *ipif; 4784 ill_t *ill; 4785 boolean_t ptp = B_FALSE; 4786 ill_walk_context_t ctx; 4787 4788 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4789 /* 4790 * Repeat twice, first based on local addresses and 4791 * next time for pointopoint. 4792 */ 4793 repeat: 4794 ill = ILL_START_WALK_V4(&ctx, ipst); 4795 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4796 if (match_ill != NULL && ill != match_ill && 4797 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4798 continue; 4799 } 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; 4802 ipif = ipif->ipif_next) { 4803 /* Allow the ipif to be down */ 4804 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4805 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4806 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4807 (ipif->ipif_pp_dst_addr == addr)) && 4808 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4809 zoneid = ipif->ipif_zoneid; 4810 mutex_exit(&ill->ill_lock); 4811 rw_exit(&ipst->ips_ill_g_lock); 4812 /* 4813 * If ipif_zoneid was ALL_ZONES then we have 4814 * a trusted extensions shared IP address. 4815 * In that case GLOBAL_ZONEID works to send. 4816 */ 4817 if (zoneid == ALL_ZONES) 4818 zoneid = GLOBAL_ZONEID; 4819 return (zoneid); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 } 4824 4825 /* If we already did the ptp case, then we are done */ 4826 if (ptp) { 4827 rw_exit(&ipst->ips_ill_g_lock); 4828 return (ALL_ZONES); 4829 } 4830 ptp = B_TRUE; 4831 goto repeat; 4832 } 4833 4834 /* 4835 * Look for an ipif that matches the specified remote address i.e. the 4836 * ipif that would receive the specified packet. 4837 * First look for directly connected interfaces and then do a recursive 4838 * IRE lookup and pick the first ipif corresponding to the source address in the 4839 * ire. 4840 * Returns: held ipif 4841 * 4842 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4843 */ 4844 ipif_t * 4845 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4846 { 4847 ipif_t *ipif; 4848 4849 ASSERT(!ill->ill_isv6); 4850 4851 /* 4852 * Someone could be changing this ipif currently or change it 4853 * after we return this. Thus a few packets could use the old 4854 * old values. However structure updates/creates (ire, ilg, ilm etc) 4855 * will atomically be updated or cleaned up with the new value 4856 * Thus we don't need a lock to check the flags or other attrs below. 4857 */ 4858 mutex_enter(&ill->ill_lock); 4859 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4860 if (IPIF_IS_CONDEMNED(ipif)) 4861 continue; 4862 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4863 ipif->ipif_zoneid != ALL_ZONES) 4864 continue; 4865 /* Allow the ipif to be down */ 4866 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4867 if ((ipif->ipif_pp_dst_addr == addr) || 4868 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4869 ipif->ipif_lcl_addr == addr)) { 4870 ipif_refhold_locked(ipif); 4871 mutex_exit(&ill->ill_lock); 4872 return (ipif); 4873 } 4874 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4875 ipif_refhold_locked(ipif); 4876 mutex_exit(&ill->ill_lock); 4877 return (ipif); 4878 } 4879 } 4880 mutex_exit(&ill->ill_lock); 4881 /* 4882 * For a remote destination it isn't possible to nail down a particular 4883 * ipif. 4884 */ 4885 4886 /* Pick the first interface */ 4887 ipif = ipif_get_next_ipif(NULL, ill); 4888 return (ipif); 4889 } 4890 4891 /* 4892 * This func does not prevent refcnt from increasing. But if 4893 * the caller has taken steps to that effect, then this func 4894 * can be used to determine whether the ill has become quiescent 4895 */ 4896 static boolean_t 4897 ill_is_quiescent(ill_t *ill) 4898 { 4899 ipif_t *ipif; 4900 4901 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4902 4903 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4904 if (ipif->ipif_refcnt != 0) 4905 return (B_FALSE); 4906 } 4907 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4908 return (B_FALSE); 4909 } 4910 return (B_TRUE); 4911 } 4912 4913 boolean_t 4914 ill_is_freeable(ill_t *ill) 4915 { 4916 ipif_t *ipif; 4917 4918 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4919 4920 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4921 if (ipif->ipif_refcnt != 0) { 4922 return (B_FALSE); 4923 } 4924 } 4925 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4926 return (B_FALSE); 4927 } 4928 return (B_TRUE); 4929 } 4930 4931 /* 4932 * This func does not prevent refcnt from increasing. But if 4933 * the caller has taken steps to that effect, then this func 4934 * can be used to determine whether the ipif has become quiescent 4935 */ 4936 static boolean_t 4937 ipif_is_quiescent(ipif_t *ipif) 4938 { 4939 ill_t *ill; 4940 4941 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4942 4943 if (ipif->ipif_refcnt != 0) 4944 return (B_FALSE); 4945 4946 ill = ipif->ipif_ill; 4947 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4948 ill->ill_logical_down) { 4949 return (B_TRUE); 4950 } 4951 4952 /* This is the last ipif going down or being deleted on this ill */ 4953 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4954 return (B_FALSE); 4955 } 4956 4957 return (B_TRUE); 4958 } 4959 4960 /* 4961 * return true if the ipif can be destroyed: the ipif has to be quiescent 4962 * with zero references from ire/ilm to it. 4963 */ 4964 static boolean_t 4965 ipif_is_freeable(ipif_t *ipif) 4966 { 4967 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4968 ASSERT(ipif->ipif_id != 0); 4969 return (ipif->ipif_refcnt == 0); 4970 } 4971 4972 /* 4973 * The ipif/ill/ire has been refreled. Do the tail processing. 4974 * Determine if the ipif or ill in question has become quiescent and if so 4975 * wakeup close and/or restart any queued pending ioctl that is waiting 4976 * for the ipif_down (or ill_down) 4977 */ 4978 void 4979 ipif_ill_refrele_tail(ill_t *ill) 4980 { 4981 mblk_t *mp; 4982 conn_t *connp; 4983 ipsq_t *ipsq; 4984 ipxop_t *ipx; 4985 ipif_t *ipif; 4986 dl_notify_ind_t *dlindp; 4987 4988 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4989 4990 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4991 /* ip_modclose() may be waiting */ 4992 cv_broadcast(&ill->ill_cv); 4993 } 4994 4995 ipsq = ill->ill_phyint->phyint_ipsq; 4996 mutex_enter(&ipsq->ipsq_lock); 4997 ipx = ipsq->ipsq_xop; 4998 mutex_enter(&ipx->ipx_lock); 4999 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 5000 goto unlock; 5001 5002 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 5003 5004 ipif = ipx->ipx_pending_ipif; 5005 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 5006 goto unlock; 5007 5008 switch (ipx->ipx_waitfor) { 5009 case IPIF_DOWN: 5010 if (!ipif_is_quiescent(ipif)) 5011 goto unlock; 5012 break; 5013 case IPIF_FREE: 5014 if (!ipif_is_freeable(ipif)) 5015 goto unlock; 5016 break; 5017 case ILL_DOWN: 5018 if (!ill_is_quiescent(ill)) 5019 goto unlock; 5020 break; 5021 case ILL_FREE: 5022 /* 5023 * ILL_FREE is only for loopback; normal ill teardown waits 5024 * synchronously in ip_modclose() without using ipx_waitfor, 5025 * handled by the cv_broadcast() at the top of this function. 5026 */ 5027 if (!ill_is_freeable(ill)) 5028 goto unlock; 5029 break; 5030 default: 5031 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 5032 (void *)ipsq, ipx->ipx_waitfor); 5033 } 5034 5035 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 5036 mutex_exit(&ipx->ipx_lock); 5037 mp = ipsq_pending_mp_get(ipsq, &connp); 5038 mutex_exit(&ipsq->ipsq_lock); 5039 mutex_exit(&ill->ill_lock); 5040 5041 ASSERT(mp != NULL); 5042 /* 5043 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 5044 * we can only get here when the current operation decides it 5045 * it needs to quiesce via ipsq_pending_mp_add(). 5046 */ 5047 switch (mp->b_datap->db_type) { 5048 case M_PCPROTO: 5049 case M_PROTO: 5050 /* 5051 * For now, only DL_NOTIFY_IND messages can use this facility. 5052 */ 5053 dlindp = (dl_notify_ind_t *)mp->b_rptr; 5054 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 5055 5056 switch (dlindp->dl_notification) { 5057 case DL_NOTE_PHYS_ADDR: 5058 qwriter_ip(ill, ill->ill_rq, mp, 5059 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5060 return; 5061 case DL_NOTE_REPLUMB: 5062 qwriter_ip(ill, ill->ill_rq, mp, 5063 ill_replumb_tail, CUR_OP, B_TRUE); 5064 return; 5065 default: 5066 ASSERT(0); 5067 ill_refrele(ill); 5068 } 5069 break; 5070 5071 case M_ERROR: 5072 case M_HANGUP: 5073 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5074 B_TRUE); 5075 return; 5076 5077 case M_IOCTL: 5078 case M_IOCDATA: 5079 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5080 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5081 return; 5082 5083 default: 5084 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5085 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5086 } 5087 return; 5088 unlock: 5089 mutex_exit(&ipsq->ipsq_lock); 5090 mutex_exit(&ipx->ipx_lock); 5091 mutex_exit(&ill->ill_lock); 5092 } 5093 5094 #ifdef DEBUG 5095 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5096 static void 5097 th_trace_rrecord(th_trace_t *th_trace) 5098 { 5099 tr_buf_t *tr_buf; 5100 uint_t lastref; 5101 5102 lastref = th_trace->th_trace_lastref; 5103 lastref++; 5104 if (lastref == TR_BUF_MAX) 5105 lastref = 0; 5106 th_trace->th_trace_lastref = lastref; 5107 tr_buf = &th_trace->th_trbuf[lastref]; 5108 tr_buf->tr_time = ddi_get_lbolt(); 5109 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5110 } 5111 5112 static void 5113 th_trace_free(void *value) 5114 { 5115 th_trace_t *th_trace = value; 5116 5117 ASSERT(th_trace->th_refcnt == 0); 5118 kmem_free(th_trace, sizeof (*th_trace)); 5119 } 5120 5121 /* 5122 * Find or create the per-thread hash table used to track object references. 5123 * The ipst argument is NULL if we shouldn't allocate. 5124 * 5125 * Accesses per-thread data, so there's no need to lock here. 5126 */ 5127 static mod_hash_t * 5128 th_trace_gethash(ip_stack_t *ipst) 5129 { 5130 th_hash_t *thh; 5131 5132 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5133 mod_hash_t *mh; 5134 char name[256]; 5135 size_t objsize, rshift; 5136 int retv; 5137 5138 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5139 return (NULL); 5140 (void) snprintf(name, sizeof (name), "th_trace_%p", 5141 (void *)curthread); 5142 5143 /* 5144 * We use mod_hash_create_extended here rather than the more 5145 * obvious mod_hash_create_ptrhash because the latter has a 5146 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5147 * block. 5148 */ 5149 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5150 MAX(sizeof (ire_t), sizeof (ncec_t))); 5151 rshift = highbit(objsize); 5152 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5153 th_trace_free, mod_hash_byptr, (void *)rshift, 5154 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5155 if (mh == NULL) { 5156 kmem_free(thh, sizeof (*thh)); 5157 return (NULL); 5158 } 5159 thh->thh_hash = mh; 5160 thh->thh_ipst = ipst; 5161 /* 5162 * We trace ills, ipifs, ires, and nces. All of these are 5163 * per-IP-stack, so the lock on the thread list is as well. 5164 */ 5165 rw_enter(&ip_thread_rwlock, RW_WRITER); 5166 list_insert_tail(&ip_thread_list, thh); 5167 rw_exit(&ip_thread_rwlock); 5168 retv = tsd_set(ip_thread_data, thh); 5169 ASSERT(retv == 0); 5170 } 5171 return (thh != NULL ? thh->thh_hash : NULL); 5172 } 5173 5174 boolean_t 5175 th_trace_ref(const void *obj, ip_stack_t *ipst) 5176 { 5177 th_trace_t *th_trace; 5178 mod_hash_t *mh; 5179 mod_hash_val_t val; 5180 5181 if ((mh = th_trace_gethash(ipst)) == NULL) 5182 return (B_FALSE); 5183 5184 /* 5185 * Attempt to locate the trace buffer for this obj and thread. 5186 * If it does not exist, then allocate a new trace buffer and 5187 * insert into the hash. 5188 */ 5189 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5190 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5191 if (th_trace == NULL) 5192 return (B_FALSE); 5193 5194 th_trace->th_id = curthread; 5195 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5196 (mod_hash_val_t)th_trace) != 0) { 5197 kmem_free(th_trace, sizeof (th_trace_t)); 5198 return (B_FALSE); 5199 } 5200 } else { 5201 th_trace = (th_trace_t *)val; 5202 } 5203 5204 ASSERT(th_trace->th_refcnt >= 0 && 5205 th_trace->th_refcnt < TR_BUF_MAX - 1); 5206 5207 th_trace->th_refcnt++; 5208 th_trace_rrecord(th_trace); 5209 return (B_TRUE); 5210 } 5211 5212 /* 5213 * For the purpose of tracing a reference release, we assume that global 5214 * tracing is always on and that the same thread initiated the reference hold 5215 * is releasing. 5216 */ 5217 void 5218 th_trace_unref(const void *obj) 5219 { 5220 int retv; 5221 mod_hash_t *mh; 5222 th_trace_t *th_trace; 5223 mod_hash_val_t val; 5224 5225 mh = th_trace_gethash(NULL); 5226 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5227 ASSERT(retv == 0); 5228 th_trace = (th_trace_t *)val; 5229 5230 ASSERT(th_trace->th_refcnt > 0); 5231 th_trace->th_refcnt--; 5232 th_trace_rrecord(th_trace); 5233 } 5234 5235 /* 5236 * If tracing has been disabled, then we assume that the reference counts are 5237 * now useless, and we clear them out before destroying the entries. 5238 */ 5239 void 5240 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5241 { 5242 th_hash_t *thh; 5243 mod_hash_t *mh; 5244 mod_hash_val_t val; 5245 th_trace_t *th_trace; 5246 int retv; 5247 5248 rw_enter(&ip_thread_rwlock, RW_READER); 5249 for (thh = list_head(&ip_thread_list); thh != NULL; 5250 thh = list_next(&ip_thread_list, thh)) { 5251 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5252 &val) == 0) { 5253 th_trace = (th_trace_t *)val; 5254 if (trace_disable) 5255 th_trace->th_refcnt = 0; 5256 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5257 ASSERT(retv == 0); 5258 } 5259 } 5260 rw_exit(&ip_thread_rwlock); 5261 } 5262 5263 void 5264 ipif_trace_ref(ipif_t *ipif) 5265 { 5266 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5267 5268 if (ipif->ipif_trace_disable) 5269 return; 5270 5271 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5272 ipif->ipif_trace_disable = B_TRUE; 5273 ipif_trace_cleanup(ipif); 5274 } 5275 } 5276 5277 void 5278 ipif_untrace_ref(ipif_t *ipif) 5279 { 5280 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5281 5282 if (!ipif->ipif_trace_disable) 5283 th_trace_unref(ipif); 5284 } 5285 5286 void 5287 ill_trace_ref(ill_t *ill) 5288 { 5289 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5290 5291 if (ill->ill_trace_disable) 5292 return; 5293 5294 if (!th_trace_ref(ill, ill->ill_ipst)) { 5295 ill->ill_trace_disable = B_TRUE; 5296 ill_trace_cleanup(ill); 5297 } 5298 } 5299 5300 void 5301 ill_untrace_ref(ill_t *ill) 5302 { 5303 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5304 5305 if (!ill->ill_trace_disable) 5306 th_trace_unref(ill); 5307 } 5308 5309 /* 5310 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5311 * failure, ipif_trace_disable is set. 5312 */ 5313 static void 5314 ipif_trace_cleanup(const ipif_t *ipif) 5315 { 5316 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5317 } 5318 5319 /* 5320 * Called when ill is unplumbed or when memory alloc fails. Note that on 5321 * failure, ill_trace_disable is set. 5322 */ 5323 static void 5324 ill_trace_cleanup(const ill_t *ill) 5325 { 5326 th_trace_cleanup(ill, ill->ill_trace_disable); 5327 } 5328 #endif /* DEBUG */ 5329 5330 void 5331 ipif_refhold_locked(ipif_t *ipif) 5332 { 5333 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5334 ipif->ipif_refcnt++; 5335 IPIF_TRACE_REF(ipif); 5336 } 5337 5338 void 5339 ipif_refhold(ipif_t *ipif) 5340 { 5341 ill_t *ill; 5342 5343 ill = ipif->ipif_ill; 5344 mutex_enter(&ill->ill_lock); 5345 ipif->ipif_refcnt++; 5346 IPIF_TRACE_REF(ipif); 5347 mutex_exit(&ill->ill_lock); 5348 } 5349 5350 /* 5351 * Must not be called while holding any locks. Otherwise if this is 5352 * the last reference to be released there is a chance of recursive mutex 5353 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5354 * to restart an ioctl. 5355 */ 5356 void 5357 ipif_refrele(ipif_t *ipif) 5358 { 5359 ill_t *ill; 5360 5361 ill = ipif->ipif_ill; 5362 5363 mutex_enter(&ill->ill_lock); 5364 ASSERT(ipif->ipif_refcnt != 0); 5365 ipif->ipif_refcnt--; 5366 IPIF_UNTRACE_REF(ipif); 5367 if (ipif->ipif_refcnt != 0) { 5368 mutex_exit(&ill->ill_lock); 5369 return; 5370 } 5371 5372 /* Drops the ill_lock */ 5373 ipif_ill_refrele_tail(ill); 5374 } 5375 5376 ipif_t * 5377 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5378 { 5379 ipif_t *ipif; 5380 5381 mutex_enter(&ill->ill_lock); 5382 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5383 ipif != NULL; ipif = ipif->ipif_next) { 5384 if (IPIF_IS_CONDEMNED(ipif)) 5385 continue; 5386 ipif_refhold_locked(ipif); 5387 mutex_exit(&ill->ill_lock); 5388 return (ipif); 5389 } 5390 mutex_exit(&ill->ill_lock); 5391 return (NULL); 5392 } 5393 5394 /* 5395 * TODO: make this table extendible at run time 5396 * Return a pointer to the mac type info for 'mac_type' 5397 */ 5398 static ip_m_t * 5399 ip_m_lookup(t_uscalar_t mac_type) 5400 { 5401 ip_m_t *ipm; 5402 5403 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5404 if (ipm->ip_m_mac_type == mac_type) 5405 return (ipm); 5406 return (NULL); 5407 } 5408 5409 /* 5410 * Make a link layer address from the multicast IP address *addr. 5411 * To form the link layer address, invoke the ip_m_v*mapping function 5412 * associated with the link-layer type. 5413 */ 5414 void 5415 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5416 { 5417 ip_m_t *ipm; 5418 5419 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5420 return; 5421 5422 ASSERT(addr != NULL); 5423 5424 ipm = ip_m_lookup(ill->ill_mactype); 5425 if (ipm == NULL || 5426 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5427 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5428 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5429 ill->ill_name, ill->ill_mactype)); 5430 return; 5431 } 5432 if (ill->ill_isv6) 5433 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5434 else 5435 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5436 } 5437 5438 /* 5439 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5440 * ill is passed in to associate it with the correct interface. 5441 * If ire_arg is set, then we return the held IRE in that location. 5442 */ 5443 int 5444 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5445 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5446 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5447 { 5448 ire_t *ire, *nire; 5449 ire_t *gw_ire = NULL; 5450 ipif_t *ipif = NULL; 5451 uint_t type; 5452 int match_flags = MATCH_IRE_TYPE; 5453 tsol_gc_t *gc = NULL; 5454 tsol_gcgrp_t *gcgrp = NULL; 5455 boolean_t gcgrp_xtraref = B_FALSE; 5456 boolean_t cgtp_broadcast; 5457 boolean_t unbound = B_FALSE; 5458 5459 ip1dbg(("ip_rt_add:")); 5460 5461 if (ire_arg != NULL) 5462 *ire_arg = NULL; 5463 5464 /* 5465 * If this is the case of RTF_HOST being set, then we set the netmask 5466 * to all ones (regardless if one was supplied). 5467 */ 5468 if (flags & RTF_HOST) 5469 mask = IP_HOST_MASK; 5470 5471 /* 5472 * Prevent routes with a zero gateway from being created (since 5473 * interfaces can currently be plumbed and brought up no assigned 5474 * address). 5475 */ 5476 if (gw_addr == 0) 5477 return (ENETUNREACH); 5478 /* 5479 * Get the ipif, if any, corresponding to the gw_addr 5480 * If -ifp was specified we restrict ourselves to the ill, otherwise 5481 * we match on the gatway and destination to handle unnumbered pt-pt 5482 * interfaces. 5483 */ 5484 if (ill != NULL) 5485 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5486 else 5487 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5488 if (ipif != NULL) { 5489 if (IS_VNI(ipif->ipif_ill)) { 5490 ipif_refrele(ipif); 5491 return (EINVAL); 5492 } 5493 } 5494 5495 /* 5496 * GateD will attempt to create routes with a loopback interface 5497 * address as the gateway and with RTF_GATEWAY set. We allow 5498 * these routes to be added, but create them as interface routes 5499 * since the gateway is an interface address. 5500 */ 5501 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5502 flags &= ~RTF_GATEWAY; 5503 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5504 mask == IP_HOST_MASK) { 5505 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5506 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5507 NULL); 5508 if (ire != NULL) { 5509 ire_refrele(ire); 5510 ipif_refrele(ipif); 5511 return (EEXIST); 5512 } 5513 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5514 "for 0x%x\n", (void *)ipif, 5515 ipif->ipif_ire_type, 5516 ntohl(ipif->ipif_lcl_addr))); 5517 ire = ire_create( 5518 (uchar_t *)&dst_addr, /* dest address */ 5519 (uchar_t *)&mask, /* mask */ 5520 NULL, /* no gateway */ 5521 ipif->ipif_ire_type, /* LOOPBACK */ 5522 ipif->ipif_ill, 5523 zoneid, 5524 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5525 NULL, 5526 ipst); 5527 5528 if (ire == NULL) { 5529 ipif_refrele(ipif); 5530 return (ENOMEM); 5531 } 5532 /* src address assigned by the caller? */ 5533 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5534 ire->ire_setsrc_addr = src_addr; 5535 5536 nire = ire_add(ire); 5537 if (nire == NULL) { 5538 /* 5539 * In the result of failure, ire_add() will have 5540 * already deleted the ire in question, so there 5541 * is no need to do that here. 5542 */ 5543 ipif_refrele(ipif); 5544 return (ENOMEM); 5545 } 5546 /* 5547 * Check if it was a duplicate entry. This handles 5548 * the case of two racing route adds for the same route 5549 */ 5550 if (nire != ire) { 5551 ASSERT(nire->ire_identical_ref > 1); 5552 ire_delete(nire); 5553 ire_refrele(nire); 5554 ipif_refrele(ipif); 5555 return (EEXIST); 5556 } 5557 ire = nire; 5558 goto save_ire; 5559 } 5560 } 5561 5562 /* 5563 * The routes for multicast with CGTP are quite special in that 5564 * the gateway is the local interface address, yet RTF_GATEWAY 5565 * is set. We turn off RTF_GATEWAY to provide compatibility with 5566 * this undocumented and unusual use of multicast routes. 5567 */ 5568 if ((flags & RTF_MULTIRT) && ipif != NULL) 5569 flags &= ~RTF_GATEWAY; 5570 5571 /* 5572 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5573 * and the gateway address provided is one of the system's interface 5574 * addresses. By using the routing socket interface and supplying an 5575 * RTA_IFP sockaddr with an interface index, an alternate method of 5576 * specifying an interface route to be created is available which uses 5577 * the interface index that specifies the outgoing interface rather than 5578 * the address of an outgoing interface (which may not be able to 5579 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5580 * flag, routes can be specified which not only specify the next-hop to 5581 * be used when routing to a certain prefix, but also which outgoing 5582 * interface should be used. 5583 * 5584 * Previously, interfaces would have unique addresses assigned to them 5585 * and so the address assigned to a particular interface could be used 5586 * to identify a particular interface. One exception to this was the 5587 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5588 * 5589 * With the advent of IPv6 and its link-local addresses, this 5590 * restriction was relaxed and interfaces could share addresses between 5591 * themselves. In fact, typically all of the link-local interfaces on 5592 * an IPv6 node or router will have the same link-local address. In 5593 * order to differentiate between these interfaces, the use of an 5594 * interface index is necessary and this index can be carried inside a 5595 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5596 * of using the interface index, however, is that all of the ipif's that 5597 * are part of an ill have the same index and so the RTA_IFP sockaddr 5598 * cannot be used to differentiate between ipif's (or logical 5599 * interfaces) that belong to the same ill (physical interface). 5600 * 5601 * For example, in the following case involving IPv4 interfaces and 5602 * logical interfaces 5603 * 5604 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5605 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5606 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5607 * 5608 * the ipif's corresponding to each of these interface routes can be 5609 * uniquely identified by the "gateway" (actually interface address). 5610 * 5611 * In this case involving multiple IPv6 default routes to a particular 5612 * link-local gateway, the use of RTA_IFP is necessary to specify which 5613 * default route is of interest: 5614 * 5615 * default fe80::123:4567:89ab:cdef U if0 5616 * default fe80::123:4567:89ab:cdef U if1 5617 */ 5618 5619 /* RTF_GATEWAY not set */ 5620 if (!(flags & RTF_GATEWAY)) { 5621 if (sp != NULL) { 5622 ip2dbg(("ip_rt_add: gateway security attributes " 5623 "cannot be set with interface route\n")); 5624 if (ipif != NULL) 5625 ipif_refrele(ipif); 5626 return (EINVAL); 5627 } 5628 5629 /* 5630 * Whether or not ill (RTA_IFP) is set, we require that 5631 * the gateway is one of our local addresses. 5632 */ 5633 if (ipif == NULL) 5634 return (ENETUNREACH); 5635 5636 /* 5637 * We use MATCH_IRE_ILL here. If the caller specified an 5638 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5639 * we use the ill derived from the gateway address. 5640 * We can always match the gateway address since we record it 5641 * in ire_gateway_addr. 5642 * We don't allow RTA_IFP to specify a different ill than the 5643 * one matching the ipif to make sure we can delete the route. 5644 */ 5645 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5646 if (ill == NULL) { 5647 ill = ipif->ipif_ill; 5648 } else if (ill != ipif->ipif_ill) { 5649 ipif_refrele(ipif); 5650 return (EINVAL); 5651 } 5652 5653 /* 5654 * We check for an existing entry at this point. 5655 * 5656 * Since a netmask isn't passed in via the ioctl interface 5657 * (SIOCADDRT), we don't check for a matching netmask in that 5658 * case. 5659 */ 5660 if (!ioctl_msg) 5661 match_flags |= MATCH_IRE_MASK; 5662 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5663 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5664 NULL); 5665 if (ire != NULL) { 5666 ire_refrele(ire); 5667 ipif_refrele(ipif); 5668 return (EEXIST); 5669 } 5670 5671 /* 5672 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5673 * IRE_IF_RESOLVER with the modified address, netmask, and 5674 * gateway. 5675 */ 5676 ire = ire_create( 5677 (uchar_t *)&dst_addr, 5678 (uint8_t *)&mask, 5679 (uint8_t *)&gw_addr, 5680 ill->ill_net_type, 5681 ill, 5682 zoneid, 5683 flags, 5684 NULL, 5685 ipst); 5686 if (ire == NULL) { 5687 ipif_refrele(ipif); 5688 return (ENOMEM); 5689 } 5690 5691 /* 5692 * Some software (for example, GateD and Sun Cluster) attempts 5693 * to create (what amount to) IRE_PREFIX routes with the 5694 * loopback address as the gateway. This is primarily done to 5695 * set up prefixes with the RTF_REJECT flag set (for example, 5696 * when generating aggregate routes.) 5697 * 5698 * If the IRE type (as defined by ill->ill_net_type) is 5699 * IRE_LOOPBACK, then we map the request into a 5700 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5701 * these interface routes, by definition, can only be that. 5702 * 5703 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5704 * routine, but rather using ire_create() directly. 5705 * 5706 */ 5707 if (ill->ill_net_type == IRE_LOOPBACK) { 5708 ire->ire_type = IRE_IF_NORESOLVER; 5709 ire->ire_flags |= RTF_BLACKHOLE; 5710 } 5711 5712 /* src address assigned by the caller? */ 5713 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5714 ire->ire_setsrc_addr = src_addr; 5715 5716 nire = ire_add(ire); 5717 if (nire == NULL) { 5718 /* 5719 * In the result of failure, ire_add() will have 5720 * already deleted the ire in question, so there 5721 * is no need to do that here. 5722 */ 5723 ipif_refrele(ipif); 5724 return (ENOMEM); 5725 } 5726 /* 5727 * Check if it was a duplicate entry. This handles 5728 * the case of two racing route adds for the same route 5729 */ 5730 if (nire != ire) { 5731 ire_delete(nire); 5732 ire_refrele(nire); 5733 ipif_refrele(ipif); 5734 return (EEXIST); 5735 } 5736 ire = nire; 5737 goto save_ire; 5738 } 5739 5740 /* 5741 * Get an interface IRE for the specified gateway. 5742 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5743 * gateway, it is currently unreachable and we fail the request 5744 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5745 * is an IRE_LOCAL or IRE_LOOPBACK. 5746 * If RTA_IFP was specified we look on that particular ill. 5747 */ 5748 if (ill != NULL) 5749 match_flags |= MATCH_IRE_ILL; 5750 5751 /* Check whether the gateway is reachable. */ 5752 again: 5753 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5754 if (flags & RTF_INDIRECT) 5755 type |= IRE_OFFLINK; 5756 5757 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5758 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5759 if (gw_ire == NULL) { 5760 /* 5761 * With IPMP, we allow host routes to influence in.mpathd's 5762 * target selection. However, if the test addresses are on 5763 * their own network, the above lookup will fail since the 5764 * underlying IRE_INTERFACEs are marked hidden. So allow 5765 * hidden test IREs to be found and try again. 5766 */ 5767 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5768 match_flags |= MATCH_IRE_TESTHIDDEN; 5769 goto again; 5770 } 5771 if (ipif != NULL) 5772 ipif_refrele(ipif); 5773 return (ENETUNREACH); 5774 } 5775 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5776 ire_refrele(gw_ire); 5777 if (ipif != NULL) 5778 ipif_refrele(ipif); 5779 return (ENETUNREACH); 5780 } 5781 5782 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5783 unbound = B_TRUE; 5784 if (ipst->ips_ip_strict_src_multihoming > 0) 5785 ill = gw_ire->ire_ill; 5786 } 5787 5788 /* 5789 * We create one of three types of IREs as a result of this request 5790 * based on the netmask. A netmask of all ones (which is automatically 5791 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5792 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5793 * created. Otherwise, an IRE_PREFIX route is created for the 5794 * destination prefix. 5795 */ 5796 if (mask == IP_HOST_MASK) 5797 type = IRE_HOST; 5798 else if (mask == 0) 5799 type = IRE_DEFAULT; 5800 else 5801 type = IRE_PREFIX; 5802 5803 /* check for a duplicate entry */ 5804 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5805 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5806 0, ipst, NULL); 5807 if (ire != NULL) { 5808 if (ipif != NULL) 5809 ipif_refrele(ipif); 5810 ire_refrele(gw_ire); 5811 ire_refrele(ire); 5812 return (EEXIST); 5813 } 5814 5815 /* Security attribute exists */ 5816 if (sp != NULL) { 5817 tsol_gcgrp_addr_t ga; 5818 5819 /* find or create the gateway credentials group */ 5820 ga.ga_af = AF_INET; 5821 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5822 5823 /* we hold reference to it upon success */ 5824 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5825 if (gcgrp == NULL) { 5826 if (ipif != NULL) 5827 ipif_refrele(ipif); 5828 ire_refrele(gw_ire); 5829 return (ENOMEM); 5830 } 5831 5832 /* 5833 * Create and add the security attribute to the group; a 5834 * reference to the group is made upon allocating a new 5835 * entry successfully. If it finds an already-existing 5836 * entry for the security attribute in the group, it simply 5837 * returns it and no new reference is made to the group. 5838 */ 5839 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5840 if (gc == NULL) { 5841 if (ipif != NULL) 5842 ipif_refrele(ipif); 5843 /* release reference held by gcgrp_lookup */ 5844 GCGRP_REFRELE(gcgrp); 5845 ire_refrele(gw_ire); 5846 return (ENOMEM); 5847 } 5848 } 5849 5850 /* Create the IRE. */ 5851 ire = ire_create( 5852 (uchar_t *)&dst_addr, /* dest address */ 5853 (uchar_t *)&mask, /* mask */ 5854 (uchar_t *)&gw_addr, /* gateway address */ 5855 (ushort_t)type, /* IRE type */ 5856 ill, 5857 zoneid, 5858 flags, 5859 gc, /* security attribute */ 5860 ipst); 5861 5862 /* 5863 * The ire holds a reference to the 'gc' and the 'gc' holds a 5864 * reference to the 'gcgrp'. We can now release the extra reference 5865 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5866 */ 5867 if (gcgrp_xtraref) 5868 GCGRP_REFRELE(gcgrp); 5869 if (ire == NULL) { 5870 if (gc != NULL) 5871 GC_REFRELE(gc); 5872 if (ipif != NULL) 5873 ipif_refrele(ipif); 5874 ire_refrele(gw_ire); 5875 return (ENOMEM); 5876 } 5877 5878 /* Before we add, check if an extra CGTP broadcast is needed */ 5879 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5880 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5881 5882 /* src address assigned by the caller? */ 5883 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5884 ire->ire_setsrc_addr = src_addr; 5885 5886 ire->ire_unbound = unbound; 5887 5888 /* 5889 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5890 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5891 */ 5892 5893 /* Add the new IRE. */ 5894 nire = ire_add(ire); 5895 if (nire == NULL) { 5896 /* 5897 * In the result of failure, ire_add() will have 5898 * already deleted the ire in question, so there 5899 * is no need to do that here. 5900 */ 5901 if (ipif != NULL) 5902 ipif_refrele(ipif); 5903 ire_refrele(gw_ire); 5904 return (ENOMEM); 5905 } 5906 /* 5907 * Check if it was a duplicate entry. This handles 5908 * the case of two racing route adds for the same route 5909 */ 5910 if (nire != ire) { 5911 ire_delete(nire); 5912 ire_refrele(nire); 5913 if (ipif != NULL) 5914 ipif_refrele(ipif); 5915 ire_refrele(gw_ire); 5916 return (EEXIST); 5917 } 5918 ire = nire; 5919 5920 if (flags & RTF_MULTIRT) { 5921 /* 5922 * Invoke the CGTP (multirouting) filtering module 5923 * to add the dst address in the filtering database. 5924 * Replicated inbound packets coming from that address 5925 * will be filtered to discard the duplicates. 5926 * It is not necessary to call the CGTP filter hook 5927 * when the dst address is a broadcast or multicast, 5928 * because an IP source address cannot be a broadcast 5929 * or a multicast. 5930 */ 5931 if (cgtp_broadcast) { 5932 ip_cgtp_bcast_add(ire, ipst); 5933 goto save_ire; 5934 } 5935 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5936 !CLASSD(ire->ire_addr)) { 5937 int res; 5938 ipif_t *src_ipif; 5939 5940 /* Find the source address corresponding to gw_ire */ 5941 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5942 NULL, zoneid, ipst); 5943 if (src_ipif != NULL) { 5944 res = ipst->ips_ip_cgtp_filter_ops-> 5945 cfo_add_dest_v4( 5946 ipst->ips_netstack->netstack_stackid, 5947 ire->ire_addr, 5948 ire->ire_gateway_addr, 5949 ire->ire_setsrc_addr, 5950 src_ipif->ipif_lcl_addr); 5951 ipif_refrele(src_ipif); 5952 } else { 5953 res = EADDRNOTAVAIL; 5954 } 5955 if (res != 0) { 5956 if (ipif != NULL) 5957 ipif_refrele(ipif); 5958 ire_refrele(gw_ire); 5959 ire_delete(ire); 5960 ire_refrele(ire); /* Held in ire_add */ 5961 return (res); 5962 } 5963 } 5964 } 5965 5966 save_ire: 5967 if (gw_ire != NULL) { 5968 ire_refrele(gw_ire); 5969 gw_ire = NULL; 5970 } 5971 if (ill != NULL) { 5972 /* 5973 * Save enough information so that we can recreate the IRE if 5974 * the interface goes down and then up. The metrics associated 5975 * with the route will be saved as well when rts_setmetrics() is 5976 * called after the IRE has been created. In the case where 5977 * memory cannot be allocated, none of this information will be 5978 * saved. 5979 */ 5980 ill_save_ire(ill, ire); 5981 } 5982 if (ioctl_msg) 5983 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5984 if (ire_arg != NULL) { 5985 /* 5986 * Store the ire that was successfully added into where ire_arg 5987 * points to so that callers don't have to look it up 5988 * themselves (but they are responsible for ire_refrele()ing 5989 * the ire when they are finished with it). 5990 */ 5991 *ire_arg = ire; 5992 } else { 5993 ire_refrele(ire); /* Held in ire_add */ 5994 } 5995 if (ipif != NULL) 5996 ipif_refrele(ipif); 5997 return (0); 5998 } 5999 6000 /* 6001 * ip_rt_delete is called to delete an IPv4 route. 6002 * ill is passed in to associate it with the correct interface. 6003 */ 6004 /* ARGSUSED4 */ 6005 int 6006 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6007 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 6008 ip_stack_t *ipst, zoneid_t zoneid) 6009 { 6010 ire_t *ire = NULL; 6011 ipif_t *ipif; 6012 uint_t type; 6013 uint_t match_flags = MATCH_IRE_TYPE; 6014 int err = 0; 6015 6016 ip1dbg(("ip_rt_delete:")); 6017 /* 6018 * If this is the case of RTF_HOST being set, then we set the netmask 6019 * to all ones. Otherwise, we use the netmask if one was supplied. 6020 */ 6021 if (flags & RTF_HOST) { 6022 mask = IP_HOST_MASK; 6023 match_flags |= MATCH_IRE_MASK; 6024 } else if (rtm_addrs & RTA_NETMASK) { 6025 match_flags |= MATCH_IRE_MASK; 6026 } 6027 6028 /* 6029 * Note that RTF_GATEWAY is never set on a delete, therefore 6030 * we check if the gateway address is one of our interfaces first, 6031 * and fall back on RTF_GATEWAY routes. 6032 * 6033 * This makes it possible to delete an original 6034 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6035 * However, we have RTF_KERNEL set on the ones created by ipif_up 6036 * and those can not be deleted here. 6037 * 6038 * We use MATCH_IRE_ILL if we know the interface. If the caller 6039 * specified an interface (from the RTA_IFP sockaddr) we use it, 6040 * otherwise we use the ill derived from the gateway address. 6041 * We can always match the gateway address since we record it 6042 * in ire_gateway_addr. 6043 * 6044 * For more detail on specifying routes by gateway address and by 6045 * interface index, see the comments in ip_rt_add(). 6046 */ 6047 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6048 if (ipif != NULL) { 6049 ill_t *ill_match; 6050 6051 if (ill != NULL) 6052 ill_match = ill; 6053 else 6054 ill_match = ipif->ipif_ill; 6055 6056 match_flags |= MATCH_IRE_ILL; 6057 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6058 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 6059 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 6060 NULL); 6061 } 6062 if (ire == NULL) { 6063 match_flags |= MATCH_IRE_GW; 6064 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6065 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6066 match_flags, 0, ipst, NULL); 6067 } 6068 /* Avoid deleting routes created by kernel from an ipif */ 6069 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6070 ire_refrele(ire); 6071 ire = NULL; 6072 } 6073 6074 /* Restore in case we didn't find a match */ 6075 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6076 } 6077 6078 if (ire == NULL) { 6079 /* 6080 * At this point, the gateway address is not one of our own 6081 * addresses or a matching interface route was not found. We 6082 * set the IRE type to lookup based on whether 6083 * this is a host route, a default route or just a prefix. 6084 * 6085 * If an ill was passed in, then the lookup is based on an 6086 * interface index so MATCH_IRE_ILL is added to match_flags. 6087 */ 6088 match_flags |= MATCH_IRE_GW; 6089 if (ill != NULL) 6090 match_flags |= MATCH_IRE_ILL; 6091 if (mask == IP_HOST_MASK) 6092 type = IRE_HOST; 6093 else if (mask == 0) 6094 type = IRE_DEFAULT; 6095 else 6096 type = IRE_PREFIX; 6097 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6098 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6099 } 6100 6101 if (ipif != NULL) { 6102 ipif_refrele(ipif); 6103 ipif = NULL; 6104 } 6105 6106 if (ire == NULL) 6107 return (ESRCH); 6108 6109 if (ire->ire_flags & RTF_MULTIRT) { 6110 /* 6111 * Invoke the CGTP (multirouting) filtering module 6112 * to remove the dst address from the filtering database. 6113 * Packets coming from that address will no longer be 6114 * filtered to remove duplicates. 6115 */ 6116 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6117 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6118 ipst->ips_netstack->netstack_stackid, 6119 ire->ire_addr, ire->ire_gateway_addr); 6120 } 6121 ip_cgtp_bcast_delete(ire, ipst); 6122 } 6123 6124 ill = ire->ire_ill; 6125 if (ill != NULL) 6126 ill_remove_saved_ire(ill, ire); 6127 if (ioctl_msg) 6128 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6129 ire_delete(ire); 6130 ire_refrele(ire); 6131 return (err); 6132 } 6133 6134 /* 6135 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6136 */ 6137 /* ARGSUSED */ 6138 int 6139 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6140 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6141 { 6142 ipaddr_t dst_addr; 6143 ipaddr_t gw_addr; 6144 ipaddr_t mask; 6145 int error = 0; 6146 mblk_t *mp1; 6147 struct rtentry *rt; 6148 ipif_t *ipif = NULL; 6149 ip_stack_t *ipst; 6150 6151 ASSERT(q->q_next == NULL); 6152 ipst = CONNQ_TO_IPST(q); 6153 6154 ip1dbg(("ip_siocaddrt:")); 6155 /* Existence of mp1 verified in ip_wput_nondata */ 6156 mp1 = mp->b_cont->b_cont; 6157 rt = (struct rtentry *)mp1->b_rptr; 6158 6159 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6160 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6161 6162 /* 6163 * If the RTF_HOST flag is on, this is a request to assign a gateway 6164 * to a particular host address. In this case, we set the netmask to 6165 * all ones for the particular destination address. Otherwise, 6166 * determine the netmask to be used based on dst_addr and the interfaces 6167 * in use. 6168 */ 6169 if (rt->rt_flags & RTF_HOST) { 6170 mask = IP_HOST_MASK; 6171 } else { 6172 /* 6173 * Note that ip_subnet_mask returns a zero mask in the case of 6174 * default (an all-zeroes address). 6175 */ 6176 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6177 } 6178 6179 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6180 B_TRUE, NULL, ipst, ALL_ZONES); 6181 if (ipif != NULL) 6182 ipif_refrele(ipif); 6183 return (error); 6184 } 6185 6186 /* 6187 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6188 */ 6189 /* ARGSUSED */ 6190 int 6191 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6192 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6193 { 6194 ipaddr_t dst_addr; 6195 ipaddr_t gw_addr; 6196 ipaddr_t mask; 6197 int error; 6198 mblk_t *mp1; 6199 struct rtentry *rt; 6200 ipif_t *ipif = NULL; 6201 ip_stack_t *ipst; 6202 6203 ASSERT(q->q_next == NULL); 6204 ipst = CONNQ_TO_IPST(q); 6205 6206 ip1dbg(("ip_siocdelrt:")); 6207 /* Existence of mp1 verified in ip_wput_nondata */ 6208 mp1 = mp->b_cont->b_cont; 6209 rt = (struct rtentry *)mp1->b_rptr; 6210 6211 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6212 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6213 6214 /* 6215 * If the RTF_HOST flag is on, this is a request to delete a gateway 6216 * to a particular host address. In this case, we set the netmask to 6217 * all ones for the particular destination address. Otherwise, 6218 * determine the netmask to be used based on dst_addr and the interfaces 6219 * in use. 6220 */ 6221 if (rt->rt_flags & RTF_HOST) { 6222 mask = IP_HOST_MASK; 6223 } else { 6224 /* 6225 * Note that ip_subnet_mask returns a zero mask in the case of 6226 * default (an all-zeroes address). 6227 */ 6228 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6229 } 6230 6231 error = ip_rt_delete(dst_addr, mask, gw_addr, 6232 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6233 ipst, ALL_ZONES); 6234 if (ipif != NULL) 6235 ipif_refrele(ipif); 6236 return (error); 6237 } 6238 6239 /* 6240 * Enqueue the mp onto the ipsq, chained by b_next. 6241 * b_prev stores the function to be executed later, and b_queue the queue 6242 * where this mp originated. 6243 */ 6244 void 6245 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6246 ill_t *pending_ill) 6247 { 6248 conn_t *connp; 6249 ipxop_t *ipx = ipsq->ipsq_xop; 6250 6251 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6252 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6253 ASSERT(func != NULL); 6254 6255 mp->b_queue = q; 6256 mp->b_prev = (void *)func; 6257 mp->b_next = NULL; 6258 6259 switch (type) { 6260 case CUR_OP: 6261 if (ipx->ipx_mptail != NULL) { 6262 ASSERT(ipx->ipx_mphead != NULL); 6263 ipx->ipx_mptail->b_next = mp; 6264 } else { 6265 ASSERT(ipx->ipx_mphead == NULL); 6266 ipx->ipx_mphead = mp; 6267 } 6268 ipx->ipx_mptail = mp; 6269 break; 6270 6271 case NEW_OP: 6272 if (ipsq->ipsq_xopq_mptail != NULL) { 6273 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6274 ipsq->ipsq_xopq_mptail->b_next = mp; 6275 } else { 6276 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6277 ipsq->ipsq_xopq_mphead = mp; 6278 } 6279 ipsq->ipsq_xopq_mptail = mp; 6280 ipx->ipx_ipsq_queued = B_TRUE; 6281 break; 6282 6283 case SWITCH_OP: 6284 ASSERT(ipsq->ipsq_swxop != NULL); 6285 /* only one switch operation is currently allowed */ 6286 ASSERT(ipsq->ipsq_switch_mp == NULL); 6287 ipsq->ipsq_switch_mp = mp; 6288 ipx->ipx_ipsq_queued = B_TRUE; 6289 break; 6290 default: 6291 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6292 } 6293 6294 if (CONN_Q(q) && pending_ill != NULL) { 6295 connp = Q_TO_CONN(q); 6296 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6297 connp->conn_oper_pending_ill = pending_ill; 6298 } 6299 } 6300 6301 /* 6302 * Dequeue the next message that requested exclusive access to this IPSQ's 6303 * xop. Specifically: 6304 * 6305 * 1. If we're still processing the current operation on `ipsq', then 6306 * dequeue the next message for the operation (from ipx_mphead), or 6307 * return NULL if there are no queued messages for the operation. 6308 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6309 * 6310 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6311 * not set) see if the ipsq has requested an xop switch. If so, switch 6312 * `ipsq' to a different xop. Xop switches only happen when joining or 6313 * leaving IPMP groups and require a careful dance -- see the comments 6314 * in-line below for details. If we're leaving a group xop or if we're 6315 * joining a group xop and become writer on it, then we proceed to (3). 6316 * Otherwise, we return NULL and exit the xop. 6317 * 6318 * 3. For each IPSQ in the xop, return any switch operation stored on 6319 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6320 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6321 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6322 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6323 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6324 * each phyint in the group, including the IPMP meta-interface phyint. 6325 */ 6326 static mblk_t * 6327 ipsq_dq(ipsq_t *ipsq) 6328 { 6329 ill_t *illv4, *illv6; 6330 mblk_t *mp; 6331 ipsq_t *xopipsq; 6332 ipsq_t *leftipsq = NULL; 6333 ipxop_t *ipx; 6334 phyint_t *phyi = ipsq->ipsq_phyint; 6335 ip_stack_t *ipst = ipsq->ipsq_ipst; 6336 boolean_t emptied = B_FALSE; 6337 6338 /* 6339 * Grab all the locks we need in the defined order (ill_g_lock -> 6340 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6341 */ 6342 rw_enter(&ipst->ips_ill_g_lock, 6343 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6344 mutex_enter(&ipsq->ipsq_lock); 6345 ipx = ipsq->ipsq_xop; 6346 mutex_enter(&ipx->ipx_lock); 6347 6348 /* 6349 * Dequeue the next message associated with the current exclusive 6350 * operation, if any. 6351 */ 6352 if ((mp = ipx->ipx_mphead) != NULL) { 6353 ipx->ipx_mphead = mp->b_next; 6354 if (ipx->ipx_mphead == NULL) 6355 ipx->ipx_mptail = NULL; 6356 mp->b_next = (void *)ipsq; 6357 goto out; 6358 } 6359 6360 if (ipx->ipx_current_ipif != NULL) 6361 goto empty; 6362 6363 if (ipsq->ipsq_swxop != NULL) { 6364 /* 6365 * The exclusive operation that is now being completed has 6366 * requested a switch to a different xop. This happens 6367 * when an interface joins or leaves an IPMP group. Joins 6368 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6369 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6370 * (phyint_free()), or interface plumb for an ill type 6371 * not in the IPMP group (ip_rput_dlpi_writer()). 6372 * 6373 * Xop switches are not allowed on the IPMP meta-interface. 6374 */ 6375 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6376 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6377 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6378 6379 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6380 /* 6381 * We're switching back to our own xop, so we have two 6382 * xop's to drain/exit: our own, and the group xop 6383 * that we are leaving. 6384 * 6385 * First, pull ourselves out of the group ipsq list. 6386 * This is safe since we're writer on ill_g_lock. 6387 */ 6388 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6389 6390 xopipsq = ipx->ipx_ipsq; 6391 while (xopipsq->ipsq_next != ipsq) 6392 xopipsq = xopipsq->ipsq_next; 6393 6394 xopipsq->ipsq_next = ipsq->ipsq_next; 6395 ipsq->ipsq_next = ipsq; 6396 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6397 ipsq->ipsq_swxop = NULL; 6398 6399 /* 6400 * Second, prepare to exit the group xop. The actual 6401 * ipsq_exit() is done at the end of this function 6402 * since we cannot hold any locks across ipsq_exit(). 6403 * Note that although we drop the group's ipx_lock, no 6404 * threads can proceed since we're still ipx_writer. 6405 */ 6406 leftipsq = xopipsq; 6407 mutex_exit(&ipx->ipx_lock); 6408 6409 /* 6410 * Third, set ipx to point to our own xop (which was 6411 * inactive and therefore can be entered). 6412 */ 6413 ipx = ipsq->ipsq_xop; 6414 mutex_enter(&ipx->ipx_lock); 6415 ASSERT(ipx->ipx_writer == NULL); 6416 ASSERT(ipx->ipx_current_ipif == NULL); 6417 } else { 6418 /* 6419 * We're switching from our own xop to a group xop. 6420 * The requestor of the switch must ensure that the 6421 * group xop cannot go away (e.g. by ensuring the 6422 * phyint associated with the xop cannot go away). 6423 * 6424 * If we can become writer on our new xop, then we'll 6425 * do the drain. Otherwise, the current writer of our 6426 * new xop will do the drain when it exits. 6427 * 6428 * First, splice ourselves into the group IPSQ list. 6429 * This is safe since we're writer on ill_g_lock. 6430 */ 6431 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6432 6433 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6434 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6435 xopipsq = xopipsq->ipsq_next; 6436 6437 xopipsq->ipsq_next = ipsq; 6438 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6439 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6440 ipsq->ipsq_swxop = NULL; 6441 6442 /* 6443 * Second, exit our own xop, since it's now unused. 6444 * This is safe since we've got the only reference. 6445 */ 6446 ASSERT(ipx->ipx_writer == curthread); 6447 ipx->ipx_writer = NULL; 6448 VERIFY(--ipx->ipx_reentry_cnt == 0); 6449 ipx->ipx_ipsq_queued = B_FALSE; 6450 mutex_exit(&ipx->ipx_lock); 6451 6452 /* 6453 * Third, set ipx to point to our new xop, and check 6454 * if we can become writer on it. If we cannot, then 6455 * the current writer will drain the IPSQ group when 6456 * it exits. Our ipsq_xop is guaranteed to be stable 6457 * because we're still holding ipsq_lock. 6458 */ 6459 ipx = ipsq->ipsq_xop; 6460 mutex_enter(&ipx->ipx_lock); 6461 if (ipx->ipx_writer != NULL || 6462 ipx->ipx_current_ipif != NULL) { 6463 goto out; 6464 } 6465 } 6466 6467 /* 6468 * Fourth, become writer on our new ipx before we continue 6469 * with the drain. Note that we never dropped ipsq_lock 6470 * above, so no other thread could've raced with us to 6471 * become writer first. Also, we're holding ipx_lock, so 6472 * no other thread can examine the ipx right now. 6473 */ 6474 ASSERT(ipx->ipx_current_ipif == NULL); 6475 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6476 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6477 ipx->ipx_writer = curthread; 6478 ipx->ipx_forced = B_FALSE; 6479 #ifdef DEBUG 6480 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6481 #endif 6482 } 6483 6484 xopipsq = ipsq; 6485 do { 6486 /* 6487 * So that other operations operate on a consistent and 6488 * complete phyint, a switch message on an IPSQ must be 6489 * handled prior to any other operations on that IPSQ. 6490 */ 6491 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6492 xopipsq->ipsq_switch_mp = NULL; 6493 ASSERT(mp->b_next == NULL); 6494 mp->b_next = (void *)xopipsq; 6495 goto out; 6496 } 6497 6498 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6499 xopipsq->ipsq_xopq_mphead = mp->b_next; 6500 if (xopipsq->ipsq_xopq_mphead == NULL) 6501 xopipsq->ipsq_xopq_mptail = NULL; 6502 mp->b_next = (void *)xopipsq; 6503 goto out; 6504 } 6505 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6506 empty: 6507 /* 6508 * There are no messages. Further, we are holding ipx_lock, hence no 6509 * new messages can end up on any IPSQ in the xop. 6510 */ 6511 ipx->ipx_writer = NULL; 6512 ipx->ipx_forced = B_FALSE; 6513 VERIFY(--ipx->ipx_reentry_cnt == 0); 6514 ipx->ipx_ipsq_queued = B_FALSE; 6515 emptied = B_TRUE; 6516 #ifdef DEBUG 6517 ipx->ipx_depth = 0; 6518 #endif 6519 out: 6520 mutex_exit(&ipx->ipx_lock); 6521 mutex_exit(&ipsq->ipsq_lock); 6522 6523 /* 6524 * If we completely emptied the xop, then wake up any threads waiting 6525 * to enter any of the IPSQ's associated with it. 6526 */ 6527 if (emptied) { 6528 xopipsq = ipsq; 6529 do { 6530 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6531 continue; 6532 6533 illv4 = phyi->phyint_illv4; 6534 illv6 = phyi->phyint_illv6; 6535 6536 GRAB_ILL_LOCKS(illv4, illv6); 6537 if (illv4 != NULL) 6538 cv_broadcast(&illv4->ill_cv); 6539 if (illv6 != NULL) 6540 cv_broadcast(&illv6->ill_cv); 6541 RELEASE_ILL_LOCKS(illv4, illv6); 6542 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6543 } 6544 rw_exit(&ipst->ips_ill_g_lock); 6545 6546 /* 6547 * Now that all locks are dropped, exit the IPSQ we left. 6548 */ 6549 if (leftipsq != NULL) 6550 ipsq_exit(leftipsq); 6551 6552 return (mp); 6553 } 6554 6555 /* 6556 * Return completion status of previously initiated DLPI operations on 6557 * ills in the purview of an ipsq. 6558 */ 6559 static boolean_t 6560 ipsq_dlpi_done(ipsq_t *ipsq) 6561 { 6562 ipsq_t *ipsq_start; 6563 phyint_t *phyi; 6564 ill_t *ill; 6565 6566 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6567 ipsq_start = ipsq; 6568 6569 do { 6570 /* 6571 * The only current users of this function are ipsq_try_enter 6572 * and ipsq_enter which have made sure that ipsq_writer is 6573 * NULL before we reach here. ill_dlpi_pending is modified 6574 * only by an ipsq writer 6575 */ 6576 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6577 phyi = ipsq->ipsq_phyint; 6578 /* 6579 * phyi could be NULL if a phyint that is part of an 6580 * IPMP group is being unplumbed. A more detailed 6581 * comment is in ipmp_grp_update_kstats() 6582 */ 6583 if (phyi != NULL) { 6584 ill = phyi->phyint_illv4; 6585 if (ill != NULL && 6586 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6587 ill->ill_arl_dlpi_pending)) 6588 return (B_FALSE); 6589 6590 ill = phyi->phyint_illv6; 6591 if (ill != NULL && 6592 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6593 return (B_FALSE); 6594 } 6595 6596 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6597 6598 return (B_TRUE); 6599 } 6600 6601 /* 6602 * Enter the ipsq corresponding to ill, by waiting synchronously till 6603 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6604 * will have to drain completely before ipsq_enter returns success. 6605 * ipx_current_ipif will be set if some exclusive op is in progress, 6606 * and the ipsq_exit logic will start the next enqueued op after 6607 * completion of the current op. If 'force' is used, we don't wait 6608 * for the enqueued ops. This is needed when a conn_close wants to 6609 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6610 * of an ill can also use this option. But we dont' use it currently. 6611 */ 6612 #define ENTER_SQ_WAIT_TICKS 100 6613 boolean_t 6614 ipsq_enter(ill_t *ill, boolean_t force, int type) 6615 { 6616 ipsq_t *ipsq; 6617 ipxop_t *ipx; 6618 boolean_t waited_enough = B_FALSE; 6619 ip_stack_t *ipst = ill->ill_ipst; 6620 6621 /* 6622 * Note that the relationship between ill and ipsq is fixed as long as 6623 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6624 * relationship between the IPSQ and xop cannot change. However, 6625 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6626 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6627 * waking up all ills in the xop when it becomes available. 6628 */ 6629 for (;;) { 6630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6631 mutex_enter(&ill->ill_lock); 6632 if (ill->ill_state_flags & ILL_CONDEMNED) { 6633 mutex_exit(&ill->ill_lock); 6634 rw_exit(&ipst->ips_ill_g_lock); 6635 return (B_FALSE); 6636 } 6637 6638 ipsq = ill->ill_phyint->phyint_ipsq; 6639 mutex_enter(&ipsq->ipsq_lock); 6640 ipx = ipsq->ipsq_xop; 6641 mutex_enter(&ipx->ipx_lock); 6642 6643 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6644 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6645 waited_enough)) 6646 break; 6647 6648 rw_exit(&ipst->ips_ill_g_lock); 6649 6650 if (!force || ipx->ipx_writer != NULL) { 6651 mutex_exit(&ipx->ipx_lock); 6652 mutex_exit(&ipsq->ipsq_lock); 6653 cv_wait(&ill->ill_cv, &ill->ill_lock); 6654 } else { 6655 mutex_exit(&ipx->ipx_lock); 6656 mutex_exit(&ipsq->ipsq_lock); 6657 (void) cv_reltimedwait(&ill->ill_cv, 6658 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6659 waited_enough = B_TRUE; 6660 } 6661 mutex_exit(&ill->ill_lock); 6662 } 6663 6664 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6665 ASSERT(ipx->ipx_reentry_cnt == 0); 6666 ipx->ipx_writer = curthread; 6667 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6668 ipx->ipx_reentry_cnt++; 6669 #ifdef DEBUG 6670 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6671 #endif 6672 mutex_exit(&ipx->ipx_lock); 6673 mutex_exit(&ipsq->ipsq_lock); 6674 mutex_exit(&ill->ill_lock); 6675 rw_exit(&ipst->ips_ill_g_lock); 6676 6677 return (B_TRUE); 6678 } 6679 6680 /* 6681 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6682 * across the call to the core interface ipsq_try_enter() and hence calls this 6683 * function directly. This is explained more fully in ipif_set_values(). 6684 * In order to support the above constraint, ipsq_try_enter is implemented as 6685 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6686 */ 6687 static ipsq_t * 6688 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6689 int type, boolean_t reentry_ok) 6690 { 6691 ipsq_t *ipsq; 6692 ipxop_t *ipx; 6693 ip_stack_t *ipst = ill->ill_ipst; 6694 6695 /* 6696 * lock ordering: 6697 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6698 * 6699 * ipx of an ipsq can't change when ipsq_lock is held. 6700 */ 6701 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6702 GRAB_CONN_LOCK(q); 6703 mutex_enter(&ill->ill_lock); 6704 ipsq = ill->ill_phyint->phyint_ipsq; 6705 mutex_enter(&ipsq->ipsq_lock); 6706 ipx = ipsq->ipsq_xop; 6707 mutex_enter(&ipx->ipx_lock); 6708 6709 /* 6710 * 1. Enter the ipsq if we are already writer and reentry is ok. 6711 * (Note: If the caller does not specify reentry_ok then neither 6712 * 'func' nor any of its callees must ever attempt to enter the ipsq 6713 * again. Otherwise it can lead to an infinite loop 6714 * 2. Enter the ipsq if there is no current writer and this attempted 6715 * entry is part of the current operation 6716 * 3. Enter the ipsq if there is no current writer and this is a new 6717 * operation and the operation queue is empty and there is no 6718 * operation currently in progress and if all previously initiated 6719 * DLPI operations have completed. 6720 */ 6721 if ((ipx->ipx_writer == curthread && reentry_ok) || 6722 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6723 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6724 ipsq_dlpi_done(ipsq))))) { 6725 /* Success. */ 6726 ipx->ipx_reentry_cnt++; 6727 ipx->ipx_writer = curthread; 6728 ipx->ipx_forced = B_FALSE; 6729 mutex_exit(&ipx->ipx_lock); 6730 mutex_exit(&ipsq->ipsq_lock); 6731 mutex_exit(&ill->ill_lock); 6732 RELEASE_CONN_LOCK(q); 6733 #ifdef DEBUG 6734 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6735 #endif 6736 return (ipsq); 6737 } 6738 6739 if (func != NULL) 6740 ipsq_enq(ipsq, q, mp, func, type, ill); 6741 6742 mutex_exit(&ipx->ipx_lock); 6743 mutex_exit(&ipsq->ipsq_lock); 6744 mutex_exit(&ill->ill_lock); 6745 RELEASE_CONN_LOCK(q); 6746 return (NULL); 6747 } 6748 6749 /* 6750 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6751 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6752 * There is one ipsq per phyint. The ipsq 6753 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6754 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6755 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6756 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6757 * up the interface) and are enqueued in ipx_mphead. 6758 * 6759 * If a thread does not want to reenter the ipsq when it is already writer, 6760 * it must make sure that the specified reentry point to be called later 6761 * when the ipsq is empty, nor any code path starting from the specified reentry 6762 * point must never ever try to enter the ipsq again. Otherwise it can lead 6763 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6764 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6765 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6766 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6767 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6768 * ioctl if the current ioctl has completed. If the current ioctl is still 6769 * in progress it simply returns. The current ioctl could be waiting for 6770 * a response from another module (the driver or could be waiting for 6771 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6772 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6773 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6774 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6775 * all associated DLPI operations have completed. 6776 */ 6777 6778 /* 6779 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6780 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6781 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6782 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6783 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6784 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6785 */ 6786 ipsq_t * 6787 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6788 ipsq_func_t func, int type, boolean_t reentry_ok) 6789 { 6790 ip_stack_t *ipst; 6791 ipsq_t *ipsq; 6792 6793 /* Only 1 of ipif or ill can be specified */ 6794 ASSERT((ipif != NULL) ^ (ill != NULL)); 6795 6796 if (ipif != NULL) 6797 ill = ipif->ipif_ill; 6798 ipst = ill->ill_ipst; 6799 6800 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6801 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6802 rw_exit(&ipst->ips_ill_g_lock); 6803 6804 return (ipsq); 6805 } 6806 6807 /* 6808 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6809 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6810 * cannot be entered, the mp is queued for completion. 6811 */ 6812 void 6813 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6814 boolean_t reentry_ok) 6815 { 6816 ipsq_t *ipsq; 6817 6818 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6819 6820 /* 6821 * Drop the caller's refhold on the ill. This is safe since we either 6822 * entered the IPSQ (and thus are exclusive), or failed to enter the 6823 * IPSQ, in which case we return without accessing ill anymore. This 6824 * is needed because func needs to see the correct refcount. 6825 * e.g. removeif can work only then. 6826 */ 6827 ill_refrele(ill); 6828 if (ipsq != NULL) { 6829 (*func)(ipsq, q, mp, NULL); 6830 ipsq_exit(ipsq); 6831 } 6832 } 6833 6834 /* 6835 * Exit the specified IPSQ. If this is the final exit on it then drain it 6836 * prior to exiting. Caller must be writer on the specified IPSQ. 6837 */ 6838 void 6839 ipsq_exit(ipsq_t *ipsq) 6840 { 6841 mblk_t *mp; 6842 ipsq_t *mp_ipsq; 6843 queue_t *q; 6844 phyint_t *phyi; 6845 ipsq_func_t func; 6846 6847 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6848 6849 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6850 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6851 ipsq->ipsq_xop->ipx_reentry_cnt--; 6852 return; 6853 } 6854 6855 for (;;) { 6856 phyi = ipsq->ipsq_phyint; 6857 mp = ipsq_dq(ipsq); 6858 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6859 6860 /* 6861 * If we've changed to a new IPSQ, and the phyint associated 6862 * with the old one has gone away, free the old IPSQ. Note 6863 * that this cannot happen while the IPSQ is in a group. 6864 */ 6865 if (mp_ipsq != ipsq && phyi == NULL) { 6866 ASSERT(ipsq->ipsq_next == ipsq); 6867 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6868 ipsq_delete(ipsq); 6869 } 6870 6871 if (mp == NULL) 6872 break; 6873 6874 q = mp->b_queue; 6875 func = (ipsq_func_t)mp->b_prev; 6876 ipsq = mp_ipsq; 6877 mp->b_next = mp->b_prev = NULL; 6878 mp->b_queue = NULL; 6879 6880 /* 6881 * If 'q' is an conn queue, it is valid, since we did a 6882 * a refhold on the conn at the start of the ioctl. 6883 * If 'q' is an ill queue, it is valid, since close of an 6884 * ill will clean up its IPSQ. 6885 */ 6886 (*func)(ipsq, q, mp, NULL); 6887 } 6888 } 6889 6890 /* 6891 * Used to start any igmp or mld timers that could not be started 6892 * while holding ill_mcast_lock. The timers can't be started while holding 6893 * the lock, since mld/igmp_start_timers may need to call untimeout() 6894 * which can't be done while holding the lock which the timeout handler 6895 * acquires. Otherwise 6896 * there could be a deadlock since the timeout handlers 6897 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6898 * ill_mcast_lock. 6899 */ 6900 void 6901 ill_mcast_timer_start(ip_stack_t *ipst) 6902 { 6903 int next; 6904 6905 mutex_enter(&ipst->ips_igmp_timer_lock); 6906 next = ipst->ips_igmp_deferred_next; 6907 ipst->ips_igmp_deferred_next = INFINITY; 6908 mutex_exit(&ipst->ips_igmp_timer_lock); 6909 6910 if (next != INFINITY) 6911 igmp_start_timers(next, ipst); 6912 6913 mutex_enter(&ipst->ips_mld_timer_lock); 6914 next = ipst->ips_mld_deferred_next; 6915 ipst->ips_mld_deferred_next = INFINITY; 6916 mutex_exit(&ipst->ips_mld_timer_lock); 6917 6918 if (next != INFINITY) 6919 mld_start_timers(next, ipst); 6920 } 6921 6922 /* 6923 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6924 * and `ioccmd'. 6925 */ 6926 void 6927 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6928 { 6929 ill_t *ill = ipif->ipif_ill; 6930 ipxop_t *ipx = ipsq->ipsq_xop; 6931 6932 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6933 ASSERT(ipx->ipx_current_ipif == NULL); 6934 ASSERT(ipx->ipx_current_ioctl == 0); 6935 6936 ipx->ipx_current_done = B_FALSE; 6937 ipx->ipx_current_ioctl = ioccmd; 6938 mutex_enter(&ipx->ipx_lock); 6939 ipx->ipx_current_ipif = ipif; 6940 mutex_exit(&ipx->ipx_lock); 6941 6942 /* 6943 * Set IPIF_CHANGING on one or more ipifs associated with the 6944 * current exclusive operation. IPIF_CHANGING prevents any new 6945 * references to the ipif (so that the references will eventually 6946 * drop to zero) and also prevents any "get" operations (e.g., 6947 * SIOCGLIFFLAGS) from being able to access the ipif until the 6948 * operation has completed and the ipif is again in a stable state. 6949 * 6950 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6951 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6952 * on the ill are marked with IPIF_CHANGING since it's unclear which 6953 * ipifs will be affected. 6954 * 6955 * Note that SIOCLIFREMOVEIF is a special case as it sets 6956 * IPIF_CONDEMNED internally after identifying the right ipif to 6957 * operate on. 6958 */ 6959 switch (ioccmd) { 6960 case SIOCLIFREMOVEIF: 6961 break; 6962 case 0: 6963 mutex_enter(&ill->ill_lock); 6964 ipif = ipif->ipif_ill->ill_ipif; 6965 for (; ipif != NULL; ipif = ipif->ipif_next) 6966 ipif->ipif_state_flags |= IPIF_CHANGING; 6967 mutex_exit(&ill->ill_lock); 6968 break; 6969 default: 6970 mutex_enter(&ill->ill_lock); 6971 ipif->ipif_state_flags |= IPIF_CHANGING; 6972 mutex_exit(&ill->ill_lock); 6973 } 6974 } 6975 6976 /* 6977 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6978 * the next exclusive operation to begin once we ipsq_exit(). However, if 6979 * pending DLPI operations remain, then we will wait for the queue to drain 6980 * before allowing the next exclusive operation to begin. This ensures that 6981 * DLPI operations from one exclusive operation are never improperly processed 6982 * as part of a subsequent exclusive operation. 6983 */ 6984 void 6985 ipsq_current_finish(ipsq_t *ipsq) 6986 { 6987 ipxop_t *ipx = ipsq->ipsq_xop; 6988 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6989 ipif_t *ipif = ipx->ipx_current_ipif; 6990 6991 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6992 6993 /* 6994 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6995 * (but in that case, IPIF_CHANGING will already be clear and no 6996 * pending DLPI messages can remain). 6997 */ 6998 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6999 ill_t *ill = ipif->ipif_ill; 7000 7001 mutex_enter(&ill->ill_lock); 7002 dlpi_pending = ill->ill_dlpi_pending; 7003 if (ipx->ipx_current_ioctl == 0) { 7004 ipif = ill->ill_ipif; 7005 for (; ipif != NULL; ipif = ipif->ipif_next) 7006 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7007 } else { 7008 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7009 } 7010 mutex_exit(&ill->ill_lock); 7011 } 7012 7013 ASSERT(!ipx->ipx_current_done); 7014 ipx->ipx_current_done = B_TRUE; 7015 ipx->ipx_current_ioctl = 0; 7016 if (dlpi_pending == DL_PRIM_INVAL) { 7017 mutex_enter(&ipx->ipx_lock); 7018 ipx->ipx_current_ipif = NULL; 7019 mutex_exit(&ipx->ipx_lock); 7020 } 7021 } 7022 7023 /* 7024 * The ill is closing. Flush all messages on the ipsq that originated 7025 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7026 * for this ill since ipsq_enter could not have entered until then. 7027 * New messages can't be queued since the CONDEMNED flag is set. 7028 */ 7029 static void 7030 ipsq_flush(ill_t *ill) 7031 { 7032 queue_t *q; 7033 mblk_t *prev; 7034 mblk_t *mp; 7035 mblk_t *mp_next; 7036 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7037 7038 ASSERT(IAM_WRITER_ILL(ill)); 7039 7040 /* 7041 * Flush any messages sent up by the driver. 7042 */ 7043 mutex_enter(&ipx->ipx_lock); 7044 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7045 mp_next = mp->b_next; 7046 q = mp->b_queue; 7047 if (q == ill->ill_rq || q == ill->ill_wq) { 7048 /* dequeue mp */ 7049 if (prev == NULL) 7050 ipx->ipx_mphead = mp->b_next; 7051 else 7052 prev->b_next = mp->b_next; 7053 if (ipx->ipx_mptail == mp) { 7054 ASSERT(mp_next == NULL); 7055 ipx->ipx_mptail = prev; 7056 } 7057 inet_freemsg(mp); 7058 } else { 7059 prev = mp; 7060 } 7061 } 7062 mutex_exit(&ipx->ipx_lock); 7063 (void) ipsq_pending_mp_cleanup(ill, NULL); 7064 ipsq_xopq_mp_cleanup(ill, NULL); 7065 } 7066 7067 /* 7068 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7069 * and return the associated ipif. 7070 * Return value: 7071 * Non zero: An error has occurred. ci may not be filled out. 7072 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7073 * a held ipif in ci.ci_ipif. 7074 */ 7075 int 7076 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7077 cmd_info_t *ci) 7078 { 7079 char *name; 7080 struct ifreq *ifr; 7081 struct lifreq *lifr; 7082 ipif_t *ipif = NULL; 7083 ill_t *ill; 7084 conn_t *connp; 7085 boolean_t isv6; 7086 boolean_t exists; 7087 mblk_t *mp1; 7088 zoneid_t zoneid; 7089 ip_stack_t *ipst; 7090 7091 if (q->q_next != NULL) { 7092 ill = (ill_t *)q->q_ptr; 7093 isv6 = ill->ill_isv6; 7094 connp = NULL; 7095 zoneid = ALL_ZONES; 7096 ipst = ill->ill_ipst; 7097 } else { 7098 ill = NULL; 7099 connp = Q_TO_CONN(q); 7100 isv6 = (connp->conn_family == AF_INET6); 7101 zoneid = connp->conn_zoneid; 7102 if (zoneid == GLOBAL_ZONEID) { 7103 /* global zone can access ipifs in all zones */ 7104 zoneid = ALL_ZONES; 7105 } 7106 ipst = connp->conn_netstack->netstack_ip; 7107 } 7108 7109 /* Has been checked in ip_wput_nondata */ 7110 mp1 = mp->b_cont->b_cont; 7111 7112 if (ipip->ipi_cmd_type == IF_CMD) { 7113 /* This a old style SIOC[GS]IF* command */ 7114 ifr = (struct ifreq *)mp1->b_rptr; 7115 /* 7116 * Null terminate the string to protect against buffer 7117 * overrun. String was generated by user code and may not 7118 * be trusted. 7119 */ 7120 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7121 name = ifr->ifr_name; 7122 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7123 ci->ci_sin6 = NULL; 7124 ci->ci_lifr = (struct lifreq *)ifr; 7125 } else { 7126 /* This a new style SIOC[GS]LIF* command */ 7127 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7128 lifr = (struct lifreq *)mp1->b_rptr; 7129 /* 7130 * Null terminate the string to protect against buffer 7131 * overrun. String was generated by user code and may not 7132 * be trusted. 7133 */ 7134 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7135 name = lifr->lifr_name; 7136 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7137 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7138 ci->ci_lifr = lifr; 7139 } 7140 7141 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7142 /* 7143 * The ioctl will be failed if the ioctl comes down 7144 * an conn stream 7145 */ 7146 if (ill == NULL) { 7147 /* 7148 * Not an ill queue, return EINVAL same as the 7149 * old error code. 7150 */ 7151 return (ENXIO); 7152 } 7153 ipif = ill->ill_ipif; 7154 ipif_refhold(ipif); 7155 } else { 7156 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7157 &exists, isv6, zoneid, ipst); 7158 7159 /* 7160 * Ensure that get ioctls don't see any internal state changes 7161 * caused by set ioctls by deferring them if IPIF_CHANGING is 7162 * set. 7163 */ 7164 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7165 !IAM_WRITER_IPIF(ipif)) { 7166 ipsq_t *ipsq; 7167 7168 if (connp != NULL) 7169 mutex_enter(&connp->conn_lock); 7170 mutex_enter(&ipif->ipif_ill->ill_lock); 7171 if (IPIF_IS_CHANGING(ipif) && 7172 !IPIF_IS_CONDEMNED(ipif)) { 7173 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7174 mutex_enter(&ipsq->ipsq_lock); 7175 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7176 mutex_exit(&ipif->ipif_ill->ill_lock); 7177 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7178 NEW_OP, ipif->ipif_ill); 7179 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7180 mutex_exit(&ipsq->ipsq_lock); 7181 if (connp != NULL) 7182 mutex_exit(&connp->conn_lock); 7183 ipif_refrele(ipif); 7184 return (EINPROGRESS); 7185 } 7186 mutex_exit(&ipif->ipif_ill->ill_lock); 7187 if (connp != NULL) 7188 mutex_exit(&connp->conn_lock); 7189 } 7190 } 7191 7192 /* 7193 * Old style [GS]IFCMD does not admit IPv6 ipif 7194 */ 7195 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7196 ipif_refrele(ipif); 7197 return (ENXIO); 7198 } 7199 7200 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7201 name[0] == '\0') { 7202 /* 7203 * Handle a or a SIOC?IF* with a null name 7204 * during plumb (on the ill queue before the I_PLINK). 7205 */ 7206 ipif = ill->ill_ipif; 7207 ipif_refhold(ipif); 7208 } 7209 7210 if (ipif == NULL) 7211 return (ENXIO); 7212 7213 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7214 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7215 7216 ci->ci_ipif = ipif; 7217 return (0); 7218 } 7219 7220 /* 7221 * Return the total number of ipifs. 7222 */ 7223 static uint_t 7224 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7225 { 7226 uint_t numifs = 0; 7227 ill_t *ill; 7228 ill_walk_context_t ctx; 7229 ipif_t *ipif; 7230 7231 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7232 ill = ILL_START_WALK_V4(&ctx, ipst); 7233 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7234 if (IS_UNDER_IPMP(ill)) 7235 continue; 7236 for (ipif = ill->ill_ipif; ipif != NULL; 7237 ipif = ipif->ipif_next) { 7238 if (ipif->ipif_zoneid == zoneid || 7239 ipif->ipif_zoneid == ALL_ZONES) 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 /* 7248 * Return the total number of ipifs. 7249 */ 7250 static uint_t 7251 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7252 { 7253 uint_t numifs = 0; 7254 ill_t *ill; 7255 ipif_t *ipif; 7256 ill_walk_context_t ctx; 7257 7258 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7259 7260 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7261 if (family == AF_INET) 7262 ill = ILL_START_WALK_V4(&ctx, ipst); 7263 else if (family == AF_INET6) 7264 ill = ILL_START_WALK_V6(&ctx, ipst); 7265 else 7266 ill = ILL_START_WALK_ALL(&ctx, ipst); 7267 7268 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7269 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7270 continue; 7271 7272 for (ipif = ill->ill_ipif; ipif != NULL; 7273 ipif = ipif->ipif_next) { 7274 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7275 !(lifn_flags & LIFC_NOXMIT)) 7276 continue; 7277 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7278 !(lifn_flags & LIFC_TEMPORARY)) 7279 continue; 7280 if (((ipif->ipif_flags & 7281 (IPIF_NOXMIT|IPIF_NOLOCAL| 7282 IPIF_DEPRECATED)) || 7283 IS_LOOPBACK(ill) || 7284 !(ipif->ipif_flags & IPIF_UP)) && 7285 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7286 continue; 7287 7288 if (zoneid != ipif->ipif_zoneid && 7289 ipif->ipif_zoneid != ALL_ZONES && 7290 (zoneid != GLOBAL_ZONEID || 7291 !(lifn_flags & LIFC_ALLZONES))) 7292 continue; 7293 7294 numifs++; 7295 } 7296 } 7297 rw_exit(&ipst->ips_ill_g_lock); 7298 return (numifs); 7299 } 7300 7301 uint_t 7302 ip_get_lifsrcofnum(ill_t *ill) 7303 { 7304 uint_t numifs = 0; 7305 ill_t *ill_head = ill; 7306 ip_stack_t *ipst = ill->ill_ipst; 7307 7308 /* 7309 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7310 * other thread may be trying to relink the ILLs in this usesrc group 7311 * and adjusting the ill_usesrc_grp_next pointers 7312 */ 7313 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7314 if ((ill->ill_usesrc_ifindex == 0) && 7315 (ill->ill_usesrc_grp_next != NULL)) { 7316 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7317 ill = ill->ill_usesrc_grp_next) 7318 numifs++; 7319 } 7320 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7321 7322 return (numifs); 7323 } 7324 7325 /* Null values are passed in for ipif, sin, and ifreq */ 7326 /* ARGSUSED */ 7327 int 7328 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7329 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7330 { 7331 int *nump; 7332 conn_t *connp = Q_TO_CONN(q); 7333 7334 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7335 7336 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7337 nump = (int *)mp->b_cont->b_cont->b_rptr; 7338 7339 *nump = ip_get_numifs(connp->conn_zoneid, 7340 connp->conn_netstack->netstack_ip); 7341 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7342 return (0); 7343 } 7344 7345 /* Null values are passed in for ipif, sin, and ifreq */ 7346 /* ARGSUSED */ 7347 int 7348 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7349 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7350 { 7351 struct lifnum *lifn; 7352 mblk_t *mp1; 7353 conn_t *connp = Q_TO_CONN(q); 7354 7355 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7356 7357 /* Existence checked in ip_wput_nondata */ 7358 mp1 = mp->b_cont->b_cont; 7359 7360 lifn = (struct lifnum *)mp1->b_rptr; 7361 switch (lifn->lifn_family) { 7362 case AF_UNSPEC: 7363 case AF_INET: 7364 case AF_INET6: 7365 break; 7366 default: 7367 return (EAFNOSUPPORT); 7368 } 7369 7370 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7371 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7372 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7373 return (0); 7374 } 7375 7376 /* ARGSUSED */ 7377 int 7378 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7379 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7380 { 7381 STRUCT_HANDLE(ifconf, ifc); 7382 mblk_t *mp1; 7383 struct iocblk *iocp; 7384 struct ifreq *ifr; 7385 ill_walk_context_t ctx; 7386 ill_t *ill; 7387 ipif_t *ipif; 7388 struct sockaddr_in *sin; 7389 int32_t ifclen; 7390 zoneid_t zoneid; 7391 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7392 7393 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7394 7395 ip1dbg(("ip_sioctl_get_ifconf")); 7396 /* Existence verified in ip_wput_nondata */ 7397 mp1 = mp->b_cont->b_cont; 7398 iocp = (struct iocblk *)mp->b_rptr; 7399 zoneid = Q_TO_CONN(q)->conn_zoneid; 7400 7401 /* 7402 * The original SIOCGIFCONF passed in a struct ifconf which specified 7403 * the user buffer address and length into which the list of struct 7404 * ifreqs was to be copied. Since AT&T Streams does not seem to 7405 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7406 * the SIOCGIFCONF operation was redefined to simply provide 7407 * a large output buffer into which we are supposed to jam the ifreq 7408 * array. The same ioctl command code was used, despite the fact that 7409 * both the applications and the kernel code had to change, thus making 7410 * it impossible to support both interfaces. 7411 * 7412 * For reasons not good enough to try to explain, the following 7413 * algorithm is used for deciding what to do with one of these: 7414 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7415 * form with the output buffer coming down as the continuation message. 7416 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7417 * and we have to copy in the ifconf structure to find out how big the 7418 * output buffer is and where to copy out to. Sure no problem... 7419 * 7420 */ 7421 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7422 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7423 int numifs = 0; 7424 size_t ifc_bufsize; 7425 7426 /* 7427 * Must be (better be!) continuation of a TRANSPARENT 7428 * IOCTL. We just copied in the ifconf structure. 7429 */ 7430 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7431 (struct ifconf *)mp1->b_rptr); 7432 7433 /* 7434 * Allocate a buffer to hold requested information. 7435 * 7436 * If ifc_len is larger than what is needed, we only 7437 * allocate what we will use. 7438 * 7439 * If ifc_len is smaller than what is needed, return 7440 * EINVAL. 7441 * 7442 * XXX: the ill_t structure can hava 2 counters, for 7443 * v4 and v6 (not just ill_ipif_up_count) to store the 7444 * number of interfaces for a device, so we don't need 7445 * to count them here... 7446 */ 7447 numifs = ip_get_numifs(zoneid, ipst); 7448 7449 ifclen = STRUCT_FGET(ifc, ifc_len); 7450 ifc_bufsize = numifs * sizeof (struct ifreq); 7451 if (ifc_bufsize > ifclen) { 7452 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7453 /* old behaviour */ 7454 return (EINVAL); 7455 } else { 7456 ifc_bufsize = ifclen; 7457 } 7458 } 7459 7460 mp1 = mi_copyout_alloc(q, mp, 7461 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7462 if (mp1 == NULL) 7463 return (ENOMEM); 7464 7465 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7466 } 7467 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7468 /* 7469 * the SIOCGIFCONF ioctl only knows about 7470 * IPv4 addresses, so don't try to tell 7471 * it about interfaces with IPv6-only 7472 * addresses. (Last parm 'isv6' is B_FALSE) 7473 */ 7474 7475 ifr = (struct ifreq *)mp1->b_rptr; 7476 7477 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7478 ill = ILL_START_WALK_V4(&ctx, ipst); 7479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7480 if (IS_UNDER_IPMP(ill)) 7481 continue; 7482 for (ipif = ill->ill_ipif; ipif != NULL; 7483 ipif = ipif->ipif_next) { 7484 if (zoneid != ipif->ipif_zoneid && 7485 ipif->ipif_zoneid != ALL_ZONES) 7486 continue; 7487 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7488 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7489 /* old behaviour */ 7490 rw_exit(&ipst->ips_ill_g_lock); 7491 return (EINVAL); 7492 } else { 7493 goto if_copydone; 7494 } 7495 } 7496 ipif_get_name(ipif, ifr->ifr_name, 7497 sizeof (ifr->ifr_name)); 7498 sin = (sin_t *)&ifr->ifr_addr; 7499 *sin = sin_null; 7500 sin->sin_family = AF_INET; 7501 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7502 ifr++; 7503 } 7504 } 7505 if_copydone: 7506 rw_exit(&ipst->ips_ill_g_lock); 7507 mp1->b_wptr = (uchar_t *)ifr; 7508 7509 if (STRUCT_BUF(ifc) != NULL) { 7510 STRUCT_FSET(ifc, ifc_len, 7511 (int)((uchar_t *)ifr - mp1->b_rptr)); 7512 } 7513 return (0); 7514 } 7515 7516 /* 7517 * Get the interfaces using the address hosted on the interface passed in, 7518 * as a source adddress 7519 */ 7520 /* ARGSUSED */ 7521 int 7522 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7523 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7524 { 7525 mblk_t *mp1; 7526 ill_t *ill, *ill_head; 7527 ipif_t *ipif, *orig_ipif; 7528 int numlifs = 0; 7529 size_t lifs_bufsize, lifsmaxlen; 7530 struct lifreq *lifr; 7531 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7532 uint_t ifindex; 7533 zoneid_t zoneid; 7534 boolean_t isv6 = B_FALSE; 7535 struct sockaddr_in *sin; 7536 struct sockaddr_in6 *sin6; 7537 STRUCT_HANDLE(lifsrcof, lifs); 7538 ip_stack_t *ipst; 7539 7540 ipst = CONNQ_TO_IPST(q); 7541 7542 ASSERT(q->q_next == NULL); 7543 7544 zoneid = Q_TO_CONN(q)->conn_zoneid; 7545 7546 /* Existence verified in ip_wput_nondata */ 7547 mp1 = mp->b_cont->b_cont; 7548 7549 /* 7550 * Must be (better be!) continuation of a TRANSPARENT 7551 * IOCTL. We just copied in the lifsrcof structure. 7552 */ 7553 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7554 (struct lifsrcof *)mp1->b_rptr); 7555 7556 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7557 return (EINVAL); 7558 7559 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7560 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7561 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7562 if (ipif == NULL) { 7563 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7564 ifindex)); 7565 return (ENXIO); 7566 } 7567 7568 /* Allocate a buffer to hold requested information */ 7569 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7570 lifs_bufsize = numlifs * sizeof (struct lifreq); 7571 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7572 /* The actual size needed is always returned in lifs_len */ 7573 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7574 7575 /* If the amount we need is more than what is passed in, abort */ 7576 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7577 ipif_refrele(ipif); 7578 return (0); 7579 } 7580 7581 mp1 = mi_copyout_alloc(q, mp, 7582 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7583 if (mp1 == NULL) { 7584 ipif_refrele(ipif); 7585 return (ENOMEM); 7586 } 7587 7588 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7589 bzero(mp1->b_rptr, lifs_bufsize); 7590 7591 lifr = (struct lifreq *)mp1->b_rptr; 7592 7593 ill = ill_head = ipif->ipif_ill; 7594 orig_ipif = ipif; 7595 7596 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7597 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7599 7600 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7601 for (; (ill != NULL) && (ill != ill_head); 7602 ill = ill->ill_usesrc_grp_next) { 7603 7604 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7605 break; 7606 7607 ipif = ill->ill_ipif; 7608 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7609 if (ipif->ipif_isv6) { 7610 sin6 = (sin6_t *)&lifr->lifr_addr; 7611 *sin6 = sin6_null; 7612 sin6->sin6_family = AF_INET6; 7613 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7614 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7615 &ipif->ipif_v6net_mask); 7616 } else { 7617 sin = (sin_t *)&lifr->lifr_addr; 7618 *sin = sin_null; 7619 sin->sin_family = AF_INET; 7620 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7621 lifr->lifr_addrlen = ip_mask_to_plen( 7622 ipif->ipif_net_mask); 7623 } 7624 lifr++; 7625 } 7626 rw_exit(&ipst->ips_ill_g_lock); 7627 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7628 ipif_refrele(orig_ipif); 7629 mp1->b_wptr = (uchar_t *)lifr; 7630 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7631 7632 return (0); 7633 } 7634 7635 /* ARGSUSED */ 7636 int 7637 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7638 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7639 { 7640 mblk_t *mp1; 7641 int list; 7642 ill_t *ill; 7643 ipif_t *ipif; 7644 int flags; 7645 int numlifs = 0; 7646 size_t lifc_bufsize; 7647 struct lifreq *lifr; 7648 sa_family_t family; 7649 struct sockaddr_in *sin; 7650 struct sockaddr_in6 *sin6; 7651 ill_walk_context_t ctx; 7652 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7653 int32_t lifclen; 7654 zoneid_t zoneid; 7655 STRUCT_HANDLE(lifconf, lifc); 7656 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7657 7658 ip1dbg(("ip_sioctl_get_lifconf")); 7659 7660 ASSERT(q->q_next == NULL); 7661 7662 zoneid = Q_TO_CONN(q)->conn_zoneid; 7663 7664 /* Existence verified in ip_wput_nondata */ 7665 mp1 = mp->b_cont->b_cont; 7666 7667 /* 7668 * An extended version of SIOCGIFCONF that takes an 7669 * additional address family and flags field. 7670 * AF_UNSPEC retrieve both IPv4 and IPv6. 7671 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7672 * interfaces are omitted. 7673 * Similarly, IPIF_TEMPORARY interfaces are omitted 7674 * unless LIFC_TEMPORARY is specified. 7675 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7676 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7677 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7678 * has priority over LIFC_NOXMIT. 7679 */ 7680 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7681 7682 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7683 return (EINVAL); 7684 7685 /* 7686 * Must be (better be!) continuation of a TRANSPARENT 7687 * IOCTL. We just copied in the lifconf structure. 7688 */ 7689 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7690 7691 family = STRUCT_FGET(lifc, lifc_family); 7692 flags = STRUCT_FGET(lifc, lifc_flags); 7693 7694 switch (family) { 7695 case AF_UNSPEC: 7696 /* 7697 * walk all ILL's. 7698 */ 7699 list = MAX_G_HEADS; 7700 break; 7701 case AF_INET: 7702 /* 7703 * walk only IPV4 ILL's. 7704 */ 7705 list = IP_V4_G_HEAD; 7706 break; 7707 case AF_INET6: 7708 /* 7709 * walk only IPV6 ILL's. 7710 */ 7711 list = IP_V6_G_HEAD; 7712 break; 7713 default: 7714 return (EAFNOSUPPORT); 7715 } 7716 7717 /* 7718 * Allocate a buffer to hold requested information. 7719 * 7720 * If lifc_len is larger than what is needed, we only 7721 * allocate what we will use. 7722 * 7723 * If lifc_len is smaller than what is needed, return 7724 * EINVAL. 7725 */ 7726 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7727 lifc_bufsize = numlifs * sizeof (struct lifreq); 7728 lifclen = STRUCT_FGET(lifc, lifc_len); 7729 if (lifc_bufsize > lifclen) { 7730 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7731 return (EINVAL); 7732 else 7733 lifc_bufsize = lifclen; 7734 } 7735 7736 mp1 = mi_copyout_alloc(q, mp, 7737 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7738 if (mp1 == NULL) 7739 return (ENOMEM); 7740 7741 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7742 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7743 7744 lifr = (struct lifreq *)mp1->b_rptr; 7745 7746 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7747 ill = ill_first(list, list, &ctx, ipst); 7748 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7749 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7750 continue; 7751 7752 for (ipif = ill->ill_ipif; ipif != NULL; 7753 ipif = ipif->ipif_next) { 7754 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7755 !(flags & LIFC_NOXMIT)) 7756 continue; 7757 7758 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7759 !(flags & LIFC_TEMPORARY)) 7760 continue; 7761 7762 if (((ipif->ipif_flags & 7763 (IPIF_NOXMIT|IPIF_NOLOCAL| 7764 IPIF_DEPRECATED)) || 7765 IS_LOOPBACK(ill) || 7766 !(ipif->ipif_flags & IPIF_UP)) && 7767 (flags & LIFC_EXTERNAL_SOURCE)) 7768 continue; 7769 7770 if (zoneid != ipif->ipif_zoneid && 7771 ipif->ipif_zoneid != ALL_ZONES && 7772 (zoneid != GLOBAL_ZONEID || 7773 !(flags & LIFC_ALLZONES))) 7774 continue; 7775 7776 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7777 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7778 rw_exit(&ipst->ips_ill_g_lock); 7779 return (EINVAL); 7780 } else { 7781 goto lif_copydone; 7782 } 7783 } 7784 7785 ipif_get_name(ipif, lifr->lifr_name, 7786 sizeof (lifr->lifr_name)); 7787 lifr->lifr_type = ill->ill_type; 7788 if (ipif->ipif_isv6) { 7789 sin6 = (sin6_t *)&lifr->lifr_addr; 7790 *sin6 = sin6_null; 7791 sin6->sin6_family = AF_INET6; 7792 sin6->sin6_addr = 7793 ipif->ipif_v6lcl_addr; 7794 lifr->lifr_addrlen = 7795 ip_mask_to_plen_v6( 7796 &ipif->ipif_v6net_mask); 7797 } else { 7798 sin = (sin_t *)&lifr->lifr_addr; 7799 *sin = sin_null; 7800 sin->sin_family = AF_INET; 7801 sin->sin_addr.s_addr = 7802 ipif->ipif_lcl_addr; 7803 lifr->lifr_addrlen = 7804 ip_mask_to_plen( 7805 ipif->ipif_net_mask); 7806 } 7807 lifr++; 7808 } 7809 } 7810 lif_copydone: 7811 rw_exit(&ipst->ips_ill_g_lock); 7812 7813 mp1->b_wptr = (uchar_t *)lifr; 7814 if (STRUCT_BUF(lifc) != NULL) { 7815 STRUCT_FSET(lifc, lifc_len, 7816 (int)((uchar_t *)lifr - mp1->b_rptr)); 7817 } 7818 return (0); 7819 } 7820 7821 static void 7822 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7823 { 7824 ip6_asp_t *table; 7825 size_t table_size; 7826 mblk_t *data_mp; 7827 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7828 ip_stack_t *ipst; 7829 7830 if (q->q_next == NULL) 7831 ipst = CONNQ_TO_IPST(q); 7832 else 7833 ipst = ILLQ_TO_IPST(q); 7834 7835 /* These two ioctls are I_STR only */ 7836 if (iocp->ioc_count == TRANSPARENT) { 7837 miocnak(q, mp, 0, EINVAL); 7838 return; 7839 } 7840 7841 data_mp = mp->b_cont; 7842 if (data_mp == NULL) { 7843 /* The user passed us a NULL argument */ 7844 table = NULL; 7845 table_size = iocp->ioc_count; 7846 } else { 7847 /* 7848 * The user provided a table. The stream head 7849 * may have copied in the user data in chunks, 7850 * so make sure everything is pulled up 7851 * properly. 7852 */ 7853 if (MBLKL(data_mp) < iocp->ioc_count) { 7854 mblk_t *new_data_mp; 7855 if ((new_data_mp = msgpullup(data_mp, -1)) == 7856 NULL) { 7857 miocnak(q, mp, 0, ENOMEM); 7858 return; 7859 } 7860 freemsg(data_mp); 7861 data_mp = new_data_mp; 7862 mp->b_cont = data_mp; 7863 } 7864 table = (ip6_asp_t *)data_mp->b_rptr; 7865 table_size = iocp->ioc_count; 7866 } 7867 7868 switch (iocp->ioc_cmd) { 7869 case SIOCGIP6ADDRPOLICY: 7870 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7871 if (iocp->ioc_rval == -1) 7872 iocp->ioc_error = EINVAL; 7873 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7874 else if (table != NULL && 7875 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7876 ip6_asp_t *src = table; 7877 ip6_asp32_t *dst = (void *)table; 7878 int count = table_size / sizeof (ip6_asp_t); 7879 int i; 7880 7881 /* 7882 * We need to do an in-place shrink of the array 7883 * to match the alignment attributes of the 7884 * 32-bit ABI looking at it. 7885 */ 7886 /* LINTED: logical expression always true: op "||" */ 7887 ASSERT(sizeof (*src) > sizeof (*dst)); 7888 for (i = 1; i < count; i++) 7889 bcopy(src + i, dst + i, sizeof (*dst)); 7890 } 7891 #endif 7892 break; 7893 7894 case SIOCSIP6ADDRPOLICY: 7895 ASSERT(mp->b_prev == NULL); 7896 mp->b_prev = (void *)q; 7897 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7898 /* 7899 * We pass in the datamodel here so that the ip6_asp_replace() 7900 * routine can handle converting from 32-bit to native formats 7901 * where necessary. 7902 * 7903 * A better way to handle this might be to convert the inbound 7904 * data structure here, and hang it off a new 'mp'; thus the 7905 * ip6_asp_replace() logic would always be dealing with native 7906 * format data structures.. 7907 * 7908 * (An even simpler way to handle these ioctls is to just 7909 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7910 * and just recompile everything that depends on it.) 7911 */ 7912 #endif 7913 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7914 iocp->ioc_flag & IOC_MODELS); 7915 return; 7916 } 7917 7918 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7919 qreply(q, mp); 7920 } 7921 7922 static void 7923 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7924 { 7925 mblk_t *data_mp; 7926 struct dstinforeq *dir; 7927 uint8_t *end, *cur; 7928 in6_addr_t *daddr, *saddr; 7929 ipaddr_t v4daddr; 7930 ire_t *ire; 7931 ipaddr_t v4setsrc; 7932 in6_addr_t v6setsrc; 7933 char *slabel, *dlabel; 7934 boolean_t isipv4; 7935 int match_ire; 7936 ill_t *dst_ill; 7937 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7938 conn_t *connp = Q_TO_CONN(q); 7939 zoneid_t zoneid = IPCL_ZONEID(connp); 7940 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7941 uint64_t ipif_flags; 7942 7943 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7944 7945 /* 7946 * This ioctl is I_STR only, and must have a 7947 * data mblk following the M_IOCTL mblk. 7948 */ 7949 data_mp = mp->b_cont; 7950 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7951 miocnak(q, mp, 0, EINVAL); 7952 return; 7953 } 7954 7955 if (MBLKL(data_mp) < iocp->ioc_count) { 7956 mblk_t *new_data_mp; 7957 7958 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7959 miocnak(q, mp, 0, ENOMEM); 7960 return; 7961 } 7962 freemsg(data_mp); 7963 data_mp = new_data_mp; 7964 mp->b_cont = data_mp; 7965 } 7966 match_ire = MATCH_IRE_DSTONLY; 7967 7968 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7969 end - cur >= sizeof (struct dstinforeq); 7970 cur += sizeof (struct dstinforeq)) { 7971 dir = (struct dstinforeq *)cur; 7972 daddr = &dir->dir_daddr; 7973 saddr = &dir->dir_saddr; 7974 7975 /* 7976 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7977 * v4 mapped addresses; ire_ftable_lookup_v6() 7978 * and ip_select_source_v6() do not. 7979 */ 7980 dir->dir_dscope = ip_addr_scope_v6(daddr); 7981 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7982 7983 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7984 if (isipv4) { 7985 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7986 v4setsrc = INADDR_ANY; 7987 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7988 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7989 NULL, NULL); 7990 } else { 7991 v6setsrc = ipv6_all_zeros; 7992 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7993 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7994 NULL, NULL); 7995 } 7996 ASSERT(ire != NULL); 7997 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7998 ire_refrele(ire); 7999 dir->dir_dreachable = 0; 8000 8001 /* move on to next dst addr */ 8002 continue; 8003 } 8004 dir->dir_dreachable = 1; 8005 8006 dst_ill = ire_nexthop_ill(ire); 8007 if (dst_ill == NULL) { 8008 ire_refrele(ire); 8009 continue; 8010 } 8011 8012 /* With ipmp we most likely look at the ipmp ill here */ 8013 dir->dir_dmactype = dst_ill->ill_mactype; 8014 8015 if (isipv4) { 8016 ipaddr_t v4saddr; 8017 8018 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 8019 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 8020 &v4saddr, NULL, &ipif_flags) != 0) { 8021 v4saddr = INADDR_ANY; 8022 ipif_flags = 0; 8023 } 8024 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 8025 } else { 8026 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 8027 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8028 saddr, NULL, &ipif_flags) != 0) { 8029 *saddr = ipv6_all_zeros; 8030 ipif_flags = 0; 8031 } 8032 } 8033 8034 dir->dir_sscope = ip_addr_scope_v6(saddr); 8035 slabel = ip6_asp_lookup(saddr, NULL, ipst); 8036 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8037 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8038 ire_refrele(ire); 8039 ill_refrele(dst_ill); 8040 } 8041 miocack(q, mp, iocp->ioc_count, 0); 8042 } 8043 8044 /* 8045 * Check if this is an address assigned to this machine. 8046 * Skips interfaces that are down by using ire checks. 8047 * Translates mapped addresses to v4 addresses and then 8048 * treats them as such, returning true if the v4 address 8049 * associated with this mapped address is configured. 8050 * Note: Applications will have to be careful what they do 8051 * with the response; use of mapped addresses limits 8052 * what can be done with the socket, especially with 8053 * respect to socket options and ioctls - neither IPv4 8054 * options nor IPv6 sticky options/ancillary data options 8055 * may be used. 8056 */ 8057 /* ARGSUSED */ 8058 int 8059 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8060 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8061 { 8062 struct sioc_addrreq *sia; 8063 sin_t *sin; 8064 ire_t *ire; 8065 mblk_t *mp1; 8066 zoneid_t zoneid; 8067 ip_stack_t *ipst; 8068 8069 ip1dbg(("ip_sioctl_tmyaddr")); 8070 8071 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8072 zoneid = Q_TO_CONN(q)->conn_zoneid; 8073 ipst = CONNQ_TO_IPST(q); 8074 8075 /* Existence verified in ip_wput_nondata */ 8076 mp1 = mp->b_cont->b_cont; 8077 sia = (struct sioc_addrreq *)mp1->b_rptr; 8078 sin = (sin_t *)&sia->sa_addr; 8079 switch (sin->sin_family) { 8080 case AF_INET6: { 8081 sin6_t *sin6 = (sin6_t *)sin; 8082 8083 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8084 ipaddr_t v4_addr; 8085 8086 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8087 v4_addr); 8088 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8089 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8090 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8091 } else { 8092 in6_addr_t v6addr; 8093 8094 v6addr = sin6->sin6_addr; 8095 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8096 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8097 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8098 } 8099 break; 8100 } 8101 case AF_INET: { 8102 ipaddr_t v4addr; 8103 8104 v4addr = sin->sin_addr.s_addr; 8105 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8106 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8107 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8108 break; 8109 } 8110 default: 8111 return (EAFNOSUPPORT); 8112 } 8113 if (ire != NULL) { 8114 sia->sa_res = 1; 8115 ire_refrele(ire); 8116 } else { 8117 sia->sa_res = 0; 8118 } 8119 return (0); 8120 } 8121 8122 /* 8123 * Check if this is an address assigned on-link i.e. neighbor, 8124 * and makes sure it's reachable from the current zone. 8125 * Returns true for my addresses as well. 8126 * Translates mapped addresses to v4 addresses and then 8127 * treats them as such, returning true if the v4 address 8128 * associated with this mapped address is configured. 8129 * Note: Applications will have to be careful what they do 8130 * with the response; use of mapped addresses limits 8131 * what can be done with the socket, especially with 8132 * respect to socket options and ioctls - neither IPv4 8133 * options nor IPv6 sticky options/ancillary data options 8134 * may be used. 8135 */ 8136 /* ARGSUSED */ 8137 int 8138 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8139 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8140 { 8141 struct sioc_addrreq *sia; 8142 sin_t *sin; 8143 mblk_t *mp1; 8144 ire_t *ire = NULL; 8145 zoneid_t zoneid; 8146 ip_stack_t *ipst; 8147 8148 ip1dbg(("ip_sioctl_tonlink")); 8149 8150 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8151 zoneid = Q_TO_CONN(q)->conn_zoneid; 8152 ipst = CONNQ_TO_IPST(q); 8153 8154 /* Existence verified in ip_wput_nondata */ 8155 mp1 = mp->b_cont->b_cont; 8156 sia = (struct sioc_addrreq *)mp1->b_rptr; 8157 sin = (sin_t *)&sia->sa_addr; 8158 8159 /* 8160 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8161 * to make sure we only look at on-link unicast address. 8162 */ 8163 switch (sin->sin_family) { 8164 case AF_INET6: { 8165 sin6_t *sin6 = (sin6_t *)sin; 8166 8167 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8168 ipaddr_t v4_addr; 8169 8170 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8171 v4_addr); 8172 if (!CLASSD(v4_addr)) { 8173 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8174 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8175 0, ipst, NULL); 8176 } 8177 } else { 8178 in6_addr_t v6addr; 8179 8180 v6addr = sin6->sin6_addr; 8181 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8182 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8183 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8184 ipst, NULL); 8185 } 8186 } 8187 break; 8188 } 8189 case AF_INET: { 8190 ipaddr_t v4addr; 8191 8192 v4addr = sin->sin_addr.s_addr; 8193 if (!CLASSD(v4addr)) { 8194 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8195 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8196 } 8197 break; 8198 } 8199 default: 8200 return (EAFNOSUPPORT); 8201 } 8202 sia->sa_res = 0; 8203 if (ire != NULL) { 8204 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8205 8206 if ((ire->ire_type & IRE_ONLINK) && 8207 !(ire->ire_type & IRE_BROADCAST)) 8208 sia->sa_res = 1; 8209 ire_refrele(ire); 8210 } 8211 return (0); 8212 } 8213 8214 /* 8215 * TBD: implement when kernel maintaines a list of site prefixes. 8216 */ 8217 /* ARGSUSED */ 8218 int 8219 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8220 ip_ioctl_cmd_t *ipip, void *ifreq) 8221 { 8222 return (ENXIO); 8223 } 8224 8225 /* ARP IOCTLs. */ 8226 /* ARGSUSED */ 8227 int 8228 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8229 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8230 { 8231 int err; 8232 ipaddr_t ipaddr; 8233 struct iocblk *iocp; 8234 conn_t *connp; 8235 struct arpreq *ar; 8236 struct xarpreq *xar; 8237 int arp_flags, flags, alength; 8238 uchar_t *lladdr; 8239 ip_stack_t *ipst; 8240 ill_t *ill = ipif->ipif_ill; 8241 ill_t *proxy_ill = NULL; 8242 ipmp_arpent_t *entp = NULL; 8243 boolean_t proxyarp = B_FALSE; 8244 boolean_t if_arp_ioctl = B_FALSE; 8245 ncec_t *ncec = NULL; 8246 nce_t *nce; 8247 8248 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8249 connp = Q_TO_CONN(q); 8250 ipst = connp->conn_netstack->netstack_ip; 8251 iocp = (struct iocblk *)mp->b_rptr; 8252 8253 if (ipip->ipi_cmd_type == XARP_CMD) { 8254 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8255 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8256 ar = NULL; 8257 8258 arp_flags = xar->xarp_flags; 8259 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8260 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8261 /* 8262 * Validate against user's link layer address length 8263 * input and name and addr length limits. 8264 */ 8265 alength = ill->ill_phys_addr_length; 8266 if (ipip->ipi_cmd == SIOCSXARP) { 8267 if (alength != xar->xarp_ha.sdl_alen || 8268 (alength + xar->xarp_ha.sdl_nlen > 8269 sizeof (xar->xarp_ha.sdl_data))) 8270 return (EINVAL); 8271 } 8272 } else { 8273 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8274 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8275 xar = NULL; 8276 8277 arp_flags = ar->arp_flags; 8278 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8279 /* 8280 * Theoretically, the sa_family could tell us what link 8281 * layer type this operation is trying to deal with. By 8282 * common usage AF_UNSPEC means ethernet. We'll assume 8283 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8284 * for now. Our new SIOC*XARP ioctls can be used more 8285 * generally. 8286 * 8287 * If the underlying media happens to have a non 6 byte 8288 * address, arp module will fail set/get, but the del 8289 * operation will succeed. 8290 */ 8291 alength = 6; 8292 if ((ipip->ipi_cmd != SIOCDARP) && 8293 (alength != ill->ill_phys_addr_length)) { 8294 return (EINVAL); 8295 } 8296 } 8297 8298 /* Translate ATF* flags to NCE* flags */ 8299 flags = 0; 8300 if (arp_flags & ATF_AUTHORITY) 8301 flags |= NCE_F_AUTHORITY; 8302 if (arp_flags & ATF_PERM) 8303 flags |= NCE_F_NONUD; /* not subject to aging */ 8304 if (arp_flags & ATF_PUBL) 8305 flags |= NCE_F_PUBLISH; 8306 8307 /* 8308 * IPMP ARP special handling: 8309 * 8310 * 1. Since ARP mappings must appear consistent across the group, 8311 * prohibit changing ARP mappings on the underlying interfaces. 8312 * 8313 * 2. Since ARP mappings for IPMP data addresses are maintained by 8314 * IP itself, prohibit changing them. 8315 * 8316 * 3. For proxy ARP, use a functioning hardware address in the group, 8317 * provided one exists. If one doesn't, just add the entry as-is; 8318 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8319 */ 8320 if (IS_UNDER_IPMP(ill)) { 8321 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8322 return (EPERM); 8323 } 8324 if (IS_IPMP(ill)) { 8325 ipmp_illgrp_t *illg = ill->ill_grp; 8326 8327 switch (ipip->ipi_cmd) { 8328 case SIOCSARP: 8329 case SIOCSXARP: 8330 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8331 if (proxy_ill != NULL) { 8332 proxyarp = B_TRUE; 8333 if (!ipmp_ill_is_active(proxy_ill)) 8334 proxy_ill = ipmp_illgrp_next_ill(illg); 8335 if (proxy_ill != NULL) 8336 lladdr = proxy_ill->ill_phys_addr; 8337 } 8338 /* FALLTHRU */ 8339 } 8340 } 8341 8342 ipaddr = sin->sin_addr.s_addr; 8343 /* 8344 * don't match across illgrp per case (1) and (2). 8345 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8346 */ 8347 nce = nce_lookup_v4(ill, &ipaddr); 8348 if (nce != NULL) 8349 ncec = nce->nce_common; 8350 8351 switch (iocp->ioc_cmd) { 8352 case SIOCDARP: 8353 case SIOCDXARP: { 8354 /* 8355 * Delete the NCE if any. 8356 */ 8357 if (ncec == NULL) { 8358 iocp->ioc_error = ENXIO; 8359 break; 8360 } 8361 /* Don't allow changes to arp mappings of local addresses. */ 8362 if (NCE_MYADDR(ncec)) { 8363 nce_refrele(nce); 8364 return (ENOTSUP); 8365 } 8366 iocp->ioc_error = 0; 8367 8368 /* 8369 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8370 * This will delete all the nce entries on the under_ills. 8371 */ 8372 ncec_delete(ncec); 8373 /* 8374 * Once the NCE has been deleted, then the ire_dep* consistency 8375 * mechanism will find any IRE which depended on the now 8376 * condemned NCE (as part of sending packets). 8377 * That mechanism handles redirects by deleting redirects 8378 * that refer to UNREACHABLE nces. 8379 */ 8380 break; 8381 } 8382 case SIOCGARP: 8383 case SIOCGXARP: 8384 if (ncec != NULL) { 8385 lladdr = ncec->ncec_lladdr; 8386 flags = ncec->ncec_flags; 8387 iocp->ioc_error = 0; 8388 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8389 } else { 8390 iocp->ioc_error = ENXIO; 8391 } 8392 break; 8393 case SIOCSARP: 8394 case SIOCSXARP: 8395 /* Don't allow changes to arp mappings of local addresses. */ 8396 if (ncec != NULL && NCE_MYADDR(ncec)) { 8397 nce_refrele(nce); 8398 return (ENOTSUP); 8399 } 8400 8401 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8402 flags |= NCE_F_STATIC; 8403 if (!if_arp_ioctl) { 8404 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8405 lladdr, alength, flags); 8406 } else { 8407 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8408 if (ipif != NULL) { 8409 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8410 lladdr, alength, flags); 8411 ipif_refrele(ipif); 8412 } 8413 } 8414 if (nce != NULL) { 8415 nce_refrele(nce); 8416 nce = NULL; 8417 } 8418 /* 8419 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8420 * by nce_add_common() 8421 */ 8422 err = nce_lookup_then_add_v4(ill, lladdr, 8423 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8424 &nce); 8425 if (err == EEXIST) { 8426 ncec = nce->nce_common; 8427 mutex_enter(&ncec->ncec_lock); 8428 ncec->ncec_state = ND_REACHABLE; 8429 ncec->ncec_flags = flags; 8430 nce_update(ncec, ND_UNCHANGED, lladdr); 8431 mutex_exit(&ncec->ncec_lock); 8432 err = 0; 8433 } 8434 if (nce != NULL) { 8435 nce_refrele(nce); 8436 nce = NULL; 8437 } 8438 if (IS_IPMP(ill) && err == 0) { 8439 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8440 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8441 flags); 8442 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8443 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8444 break; 8445 } 8446 } 8447 iocp->ioc_error = err; 8448 } 8449 8450 if (nce != NULL) { 8451 nce_refrele(nce); 8452 } 8453 8454 /* 8455 * If we created an IPMP ARP entry, mark that we've notified ARP. 8456 */ 8457 if (entp != NULL) 8458 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8459 8460 return (iocp->ioc_error); 8461 } 8462 8463 /* 8464 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8465 * the associated sin and refhold and return the associated ipif via `ci'. 8466 */ 8467 int 8468 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8469 cmd_info_t *ci) 8470 { 8471 mblk_t *mp1; 8472 sin_t *sin; 8473 conn_t *connp; 8474 ipif_t *ipif; 8475 ire_t *ire = NULL; 8476 ill_t *ill = NULL; 8477 boolean_t exists; 8478 ip_stack_t *ipst; 8479 struct arpreq *ar; 8480 struct xarpreq *xar; 8481 struct sockaddr_dl *sdl; 8482 8483 /* ioctl comes down on a conn */ 8484 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8485 connp = Q_TO_CONN(q); 8486 if (connp->conn_family == AF_INET6) 8487 return (ENXIO); 8488 8489 ipst = connp->conn_netstack->netstack_ip; 8490 8491 /* Verified in ip_wput_nondata */ 8492 mp1 = mp->b_cont->b_cont; 8493 8494 if (ipip->ipi_cmd_type == XARP_CMD) { 8495 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8496 xar = (struct xarpreq *)mp1->b_rptr; 8497 sin = (sin_t *)&xar->xarp_pa; 8498 sdl = &xar->xarp_ha; 8499 8500 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8501 return (ENXIO); 8502 if (sdl->sdl_nlen >= LIFNAMSIZ) 8503 return (EINVAL); 8504 } else { 8505 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8506 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8507 ar = (struct arpreq *)mp1->b_rptr; 8508 sin = (sin_t *)&ar->arp_pa; 8509 } 8510 8511 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8512 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8513 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8514 if (ipif == NULL) 8515 return (ENXIO); 8516 if (ipif->ipif_id != 0) { 8517 ipif_refrele(ipif); 8518 return (ENXIO); 8519 } 8520 } else { 8521 /* 8522 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8523 * of 0: use the IP address to find the ipif. If the IP 8524 * address is an IPMP test address, ire_ftable_lookup() will 8525 * find the wrong ill, so we first do an ipif_lookup_addr(). 8526 */ 8527 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8528 ipst); 8529 if (ipif == NULL) { 8530 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8531 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8532 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8533 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8534 if (ire != NULL) 8535 ire_refrele(ire); 8536 return (ENXIO); 8537 } 8538 ASSERT(ire != NULL && ill != NULL); 8539 ipif = ill->ill_ipif; 8540 ipif_refhold(ipif); 8541 ire_refrele(ire); 8542 } 8543 } 8544 8545 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8546 ipif_refrele(ipif); 8547 return (ENXIO); 8548 } 8549 8550 ci->ci_sin = sin; 8551 ci->ci_ipif = ipif; 8552 return (0); 8553 } 8554 8555 /* 8556 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8557 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8558 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8559 * up and thus an ill can join that illgrp. 8560 * 8561 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8562 * open()/close() primarily because close() is not allowed to fail or block 8563 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8564 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8565 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8566 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8567 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8568 * state if I_UNLINK didn't occur. 8569 * 8570 * Note that for each plumb/unplumb operation, we may end up here more than 8571 * once because of the way ifconfig works. However, it's OK to link the same 8572 * illgrp more than once, or unlink an illgrp that's already unlinked. 8573 */ 8574 static int 8575 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8576 { 8577 int err; 8578 ip_stack_t *ipst = ill->ill_ipst; 8579 8580 ASSERT(IS_IPMP(ill)); 8581 ASSERT(IAM_WRITER_ILL(ill)); 8582 8583 switch (ioccmd) { 8584 case I_LINK: 8585 return (ENOTSUP); 8586 8587 case I_PLINK: 8588 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8589 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8590 rw_exit(&ipst->ips_ipmp_lock); 8591 break; 8592 8593 case I_PUNLINK: 8594 /* 8595 * Require all UP ipifs be brought down prior to unlinking the 8596 * illgrp so any associated IREs (and other state) is torched. 8597 */ 8598 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8599 return (EBUSY); 8600 8601 /* 8602 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8603 * with an SIOCSLIFGROUPNAME request from an ill trying to 8604 * join this group. Specifically: ills trying to join grab 8605 * ipmp_lock and bump a "pending join" counter checked by 8606 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8607 * joins can occur (since we have ipmp_lock). Once we drop 8608 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8609 * find the illgrp (since we unlinked it) and will return 8610 * EAFNOSUPPORT. This will then take them back through the 8611 * IPMP meta-interface plumbing logic in ifconfig, and thus 8612 * back through I_PLINK above. 8613 */ 8614 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8615 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8616 rw_exit(&ipst->ips_ipmp_lock); 8617 return (err); 8618 default: 8619 break; 8620 } 8621 return (0); 8622 } 8623 8624 /* 8625 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8626 * atomically set/clear the muxids. Also complete the ioctl by acking or 8627 * naking it. Note that the code is structured such that the link type, 8628 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8629 * its clones use the persistent link, while pppd(1M) and perhaps many 8630 * other daemons may use non-persistent link. When combined with some 8631 * ill_t states, linking and unlinking lower streams may be used as 8632 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8633 */ 8634 /* ARGSUSED */ 8635 void 8636 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8637 { 8638 mblk_t *mp1; 8639 struct linkblk *li; 8640 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8641 int err = 0; 8642 8643 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8644 ioccmd == I_LINK || ioccmd == I_UNLINK); 8645 8646 mp1 = mp->b_cont; /* This is the linkblk info */ 8647 li = (struct linkblk *)mp1->b_rptr; 8648 8649 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8650 if (err == EINPROGRESS) 8651 return; 8652 done: 8653 if (err == 0) 8654 miocack(q, mp, 0, 0); 8655 else 8656 miocnak(q, mp, 0, err); 8657 8658 /* Conn was refheld in ip_sioctl_copyin_setup */ 8659 if (CONN_Q(q)) 8660 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8661 } 8662 8663 /* 8664 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8665 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8666 * module stream). If `doconsist' is set, then do the extended consistency 8667 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8668 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8669 * an error code on failure. 8670 */ 8671 static int 8672 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8673 struct linkblk *li) 8674 { 8675 int err = 0; 8676 ill_t *ill; 8677 queue_t *ipwq, *dwq; 8678 const char *name; 8679 struct qinit *qinfo; 8680 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8681 boolean_t entered_ipsq = B_FALSE; 8682 boolean_t is_ip = B_FALSE; 8683 arl_t *arl; 8684 8685 /* 8686 * Walk the lower stream to verify it's the IP module stream. 8687 * The IP module is identified by its name, wput function, 8688 * and non-NULL q_next. STREAMS ensures that the lower stream 8689 * (li->l_qbot) will not vanish until this ioctl completes. 8690 */ 8691 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8692 qinfo = ipwq->q_qinfo; 8693 name = qinfo->qi_minfo->mi_idname; 8694 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8695 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8696 is_ip = B_TRUE; 8697 break; 8698 } 8699 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8700 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8701 break; 8702 } 8703 } 8704 8705 /* 8706 * If this isn't an IP module stream, bail. 8707 */ 8708 if (ipwq == NULL) 8709 return (0); 8710 8711 if (!is_ip) { 8712 arl = (arl_t *)ipwq->q_ptr; 8713 ill = arl_to_ill(arl); 8714 if (ill == NULL) 8715 return (0); 8716 } else { 8717 ill = ipwq->q_ptr; 8718 } 8719 ASSERT(ill != NULL); 8720 8721 if (ipsq == NULL) { 8722 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8723 NEW_OP, B_FALSE); 8724 if (ipsq == NULL) { 8725 if (!is_ip) 8726 ill_refrele(ill); 8727 return (EINPROGRESS); 8728 } 8729 entered_ipsq = B_TRUE; 8730 } 8731 ASSERT(IAM_WRITER_ILL(ill)); 8732 mutex_enter(&ill->ill_lock); 8733 if (!is_ip) { 8734 if (islink && ill->ill_muxid == 0) { 8735 /* 8736 * Plumbing has to be done with IP plumbed first, arp 8737 * second, but here we have arp being plumbed first. 8738 */ 8739 mutex_exit(&ill->ill_lock); 8740 ipsq_exit(ipsq); 8741 ill_refrele(ill); 8742 return (EINVAL); 8743 } 8744 } 8745 mutex_exit(&ill->ill_lock); 8746 if (!is_ip) { 8747 arl->arl_muxid = islink ? li->l_index : 0; 8748 ill_refrele(ill); 8749 goto done; 8750 } 8751 8752 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8753 goto done; 8754 8755 /* 8756 * As part of I_{P}LINKing, stash the number of downstream modules and 8757 * the read queue of the module immediately below IP in the ill. 8758 * These are used during the capability negotiation below. 8759 */ 8760 ill->ill_lmod_rq = NULL; 8761 ill->ill_lmod_cnt = 0; 8762 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8763 ill->ill_lmod_rq = RD(dwq); 8764 for (; dwq != NULL; dwq = dwq->q_next) 8765 ill->ill_lmod_cnt++; 8766 } 8767 8768 ill->ill_muxid = islink ? li->l_index : 0; 8769 8770 /* 8771 * Mark the ipsq busy until the capability operations initiated below 8772 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8773 * returns, but the capability operation may complete asynchronously 8774 * much later. 8775 */ 8776 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8777 /* 8778 * If there's at least one up ipif on this ill, then we're bound to 8779 * the underlying driver via DLPI. In that case, renegotiate 8780 * capabilities to account for any possible change in modules 8781 * interposed between IP and the driver. 8782 */ 8783 if (ill->ill_ipif_up_count > 0) { 8784 if (islink) 8785 ill_capability_probe(ill); 8786 else 8787 ill_capability_reset(ill, B_FALSE); 8788 } 8789 ipsq_current_finish(ipsq); 8790 done: 8791 if (entered_ipsq) 8792 ipsq_exit(ipsq); 8793 8794 return (err); 8795 } 8796 8797 /* 8798 * Search the ioctl command in the ioctl tables and return a pointer 8799 * to the ioctl command information. The ioctl command tables are 8800 * static and fully populated at compile time. 8801 */ 8802 ip_ioctl_cmd_t * 8803 ip_sioctl_lookup(int ioc_cmd) 8804 { 8805 int index; 8806 ip_ioctl_cmd_t *ipip; 8807 ip_ioctl_cmd_t *ipip_end; 8808 8809 if (ioc_cmd == IPI_DONTCARE) 8810 return (NULL); 8811 8812 /* 8813 * Do a 2 step search. First search the indexed table 8814 * based on the least significant byte of the ioctl cmd. 8815 * If we don't find a match, then search the misc table 8816 * serially. 8817 */ 8818 index = ioc_cmd & 0xFF; 8819 if (index < ip_ndx_ioctl_count) { 8820 ipip = &ip_ndx_ioctl_table[index]; 8821 if (ipip->ipi_cmd == ioc_cmd) { 8822 /* Found a match in the ndx table */ 8823 return (ipip); 8824 } 8825 } 8826 8827 /* Search the misc table */ 8828 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8829 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8830 if (ipip->ipi_cmd == ioc_cmd) 8831 /* Found a match in the misc table */ 8832 return (ipip); 8833 } 8834 8835 return (NULL); 8836 } 8837 8838 /* 8839 * Wrapper function for resuming deferred ioctl processing 8840 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8841 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8842 */ 8843 /* ARGSUSED */ 8844 void 8845 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8846 void *dummy_arg) 8847 { 8848 ip_sioctl_copyin_setup(q, mp); 8849 } 8850 8851 /* 8852 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8853 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8854 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8855 * We establish here the size of the block to be copied in. mi_copyin 8856 * arranges for this to happen, an processing continues in ip_wput_nondata with 8857 * an M_IOCDATA message. 8858 */ 8859 void 8860 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8861 { 8862 int copyin_size; 8863 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8864 ip_ioctl_cmd_t *ipip; 8865 cred_t *cr; 8866 ip_stack_t *ipst; 8867 8868 if (CONN_Q(q)) 8869 ipst = CONNQ_TO_IPST(q); 8870 else 8871 ipst = ILLQ_TO_IPST(q); 8872 8873 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8874 if (ipip == NULL) { 8875 /* 8876 * The ioctl is not one we understand or own. 8877 * Pass it along to be processed down stream, 8878 * if this is a module instance of IP, else nak 8879 * the ioctl. 8880 */ 8881 if (q->q_next == NULL) { 8882 goto nak; 8883 } else { 8884 putnext(q, mp); 8885 return; 8886 } 8887 } 8888 8889 /* 8890 * If this is deferred, then we will do all the checks when we 8891 * come back. 8892 */ 8893 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8894 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8895 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8896 return; 8897 } 8898 8899 /* 8900 * Only allow a very small subset of IP ioctls on this stream if 8901 * IP is a module and not a driver. Allowing ioctls to be processed 8902 * in this case may cause assert failures or data corruption. 8903 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8904 * ioctls allowed on an IP module stream, after which this stream 8905 * normally becomes a multiplexor (at which time the stream head 8906 * will fail all ioctls). 8907 */ 8908 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8909 goto nak; 8910 } 8911 8912 /* Make sure we have ioctl data to process. */ 8913 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8914 goto nak; 8915 8916 /* 8917 * Prefer dblk credential over ioctl credential; some synthesized 8918 * ioctls have kcred set because there's no way to crhold() 8919 * a credential in some contexts. (ioc_cr is not crfree() by 8920 * the framework; the caller of ioctl needs to hold the reference 8921 * for the duration of the call). 8922 */ 8923 cr = msg_getcred(mp, NULL); 8924 if (cr == NULL) 8925 cr = iocp->ioc_cr; 8926 8927 /* Make sure normal users don't send down privileged ioctls */ 8928 if ((ipip->ipi_flags & IPI_PRIV) && 8929 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8930 /* We checked the privilege earlier but log it here */ 8931 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8932 return; 8933 } 8934 8935 /* 8936 * The ioctl command tables can only encode fixed length 8937 * ioctl data. If the length is variable, the table will 8938 * encode the length as zero. Such special cases are handled 8939 * below in the switch. 8940 */ 8941 if (ipip->ipi_copyin_size != 0) { 8942 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8943 return; 8944 } 8945 8946 switch (iocp->ioc_cmd) { 8947 case O_SIOCGIFCONF: 8948 case SIOCGIFCONF: 8949 /* 8950 * This IOCTL is hilarious. See comments in 8951 * ip_sioctl_get_ifconf for the story. 8952 */ 8953 if (iocp->ioc_count == TRANSPARENT) 8954 copyin_size = SIZEOF_STRUCT(ifconf, 8955 iocp->ioc_flag); 8956 else 8957 copyin_size = iocp->ioc_count; 8958 mi_copyin(q, mp, NULL, copyin_size); 8959 return; 8960 8961 case O_SIOCGLIFCONF: 8962 case SIOCGLIFCONF: 8963 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8964 mi_copyin(q, mp, NULL, copyin_size); 8965 return; 8966 8967 case SIOCGLIFSRCOF: 8968 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8969 mi_copyin(q, mp, NULL, copyin_size); 8970 return; 8971 case SIOCGIP6ADDRPOLICY: 8972 ip_sioctl_ip6addrpolicy(q, mp); 8973 ip6_asp_table_refrele(ipst); 8974 return; 8975 8976 case SIOCSIP6ADDRPOLICY: 8977 ip_sioctl_ip6addrpolicy(q, mp); 8978 return; 8979 8980 case SIOCGDSTINFO: 8981 ip_sioctl_dstinfo(q, mp); 8982 ip6_asp_table_refrele(ipst); 8983 return; 8984 8985 case I_PLINK: 8986 case I_PUNLINK: 8987 case I_LINK: 8988 case I_UNLINK: 8989 /* 8990 * We treat non-persistent link similarly as the persistent 8991 * link case, in terms of plumbing/unplumbing, as well as 8992 * dynamic re-plumbing events indicator. See comments 8993 * in ip_sioctl_plink() for more. 8994 * 8995 * Request can be enqueued in the 'ipsq' while waiting 8996 * to become exclusive. So bump up the conn ref. 8997 */ 8998 if (CONN_Q(q)) 8999 CONN_INC_REF(Q_TO_CONN(q)); 9000 ip_sioctl_plink(NULL, q, mp, NULL); 9001 return; 9002 9003 case ND_GET: 9004 case ND_SET: 9005 /* 9006 * Use of the nd table requires holding the reader lock. 9007 * Modifying the nd table thru nd_load/nd_unload requires 9008 * the writer lock. 9009 */ 9010 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 9011 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 9012 rw_exit(&ipst->ips_ip_g_nd_lock); 9013 9014 if (iocp->ioc_error) 9015 iocp->ioc_count = 0; 9016 mp->b_datap->db_type = M_IOCACK; 9017 qreply(q, mp); 9018 return; 9019 } 9020 rw_exit(&ipst->ips_ip_g_nd_lock); 9021 /* 9022 * We don't understand this subioctl of ND_GET / ND_SET. 9023 * Maybe intended for some driver / module below us 9024 */ 9025 if (q->q_next) { 9026 putnext(q, mp); 9027 } else { 9028 iocp->ioc_error = ENOENT; 9029 mp->b_datap->db_type = M_IOCNAK; 9030 iocp->ioc_count = 0; 9031 qreply(q, mp); 9032 } 9033 return; 9034 9035 case IP_IOCTL: 9036 ip_wput_ioctl(q, mp); 9037 return; 9038 9039 case SIOCILB: 9040 /* The ioctl length varies depending on the ILB command. */ 9041 copyin_size = iocp->ioc_count; 9042 if (copyin_size < sizeof (ilb_cmd_t)) 9043 goto nak; 9044 mi_copyin(q, mp, NULL, copyin_size); 9045 return; 9046 9047 default: 9048 cmn_err(CE_PANIC, "should not happen "); 9049 } 9050 nak: 9051 if (mp->b_cont != NULL) { 9052 freemsg(mp->b_cont); 9053 mp->b_cont = NULL; 9054 } 9055 iocp->ioc_error = EINVAL; 9056 mp->b_datap->db_type = M_IOCNAK; 9057 iocp->ioc_count = 0; 9058 qreply(q, mp); 9059 } 9060 9061 static void 9062 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9063 { 9064 struct arpreq *ar; 9065 struct xarpreq *xar; 9066 mblk_t *tmp; 9067 struct iocblk *iocp; 9068 int x_arp_ioctl = B_FALSE; 9069 int *flagsp; 9070 char *storage = NULL; 9071 9072 ASSERT(ill != NULL); 9073 9074 iocp = (struct iocblk *)mp->b_rptr; 9075 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9076 9077 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9078 if ((iocp->ioc_cmd == SIOCGXARP) || 9079 (iocp->ioc_cmd == SIOCSXARP)) { 9080 x_arp_ioctl = B_TRUE; 9081 xar = (struct xarpreq *)tmp->b_rptr; 9082 flagsp = &xar->xarp_flags; 9083 storage = xar->xarp_ha.sdl_data; 9084 } else { 9085 ar = (struct arpreq *)tmp->b_rptr; 9086 flagsp = &ar->arp_flags; 9087 storage = ar->arp_ha.sa_data; 9088 } 9089 9090 /* 9091 * We're done if this is not an SIOCG{X}ARP 9092 */ 9093 if (x_arp_ioctl) { 9094 storage += ill_xarp_info(&xar->xarp_ha, ill); 9095 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9096 sizeof (xar->xarp_ha.sdl_data)) { 9097 iocp->ioc_error = EINVAL; 9098 return; 9099 } 9100 } 9101 *flagsp = ATF_INUSE; 9102 /* 9103 * If /sbin/arp told us we are the authority using the "permanent" 9104 * flag, or if this is one of my addresses print "permanent" 9105 * in the /sbin/arp output. 9106 */ 9107 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9108 *flagsp |= ATF_AUTHORITY; 9109 if (flags & NCE_F_NONUD) 9110 *flagsp |= ATF_PERM; /* not subject to aging */ 9111 if (flags & NCE_F_PUBLISH) 9112 *flagsp |= ATF_PUBL; 9113 if (hwaddr != NULL) { 9114 *flagsp |= ATF_COM; 9115 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9116 } 9117 } 9118 9119 /* 9120 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9121 * interface) create the next available logical interface for this 9122 * physical interface. 9123 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9124 * ipif with the specified name. 9125 * 9126 * If the address family is not AF_UNSPEC then set the address as well. 9127 * 9128 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9129 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9130 * 9131 * Executed as a writer on the ill. 9132 * So no lock is needed to traverse the ipif chain, or examine the 9133 * phyint flags. 9134 */ 9135 /* ARGSUSED */ 9136 int 9137 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9138 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9139 { 9140 mblk_t *mp1; 9141 struct lifreq *lifr; 9142 boolean_t isv6; 9143 boolean_t exists; 9144 char *name; 9145 char *endp; 9146 char *cp; 9147 int namelen; 9148 ipif_t *ipif; 9149 long id; 9150 ipsq_t *ipsq; 9151 ill_t *ill; 9152 sin_t *sin; 9153 int err = 0; 9154 boolean_t found_sep = B_FALSE; 9155 conn_t *connp; 9156 zoneid_t zoneid; 9157 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9158 9159 ASSERT(q->q_next == NULL); 9160 ip1dbg(("ip_sioctl_addif\n")); 9161 /* Existence of mp1 has been checked in ip_wput_nondata */ 9162 mp1 = mp->b_cont->b_cont; 9163 /* 9164 * Null terminate the string to protect against buffer 9165 * overrun. String was generated by user code and may not 9166 * be trusted. 9167 */ 9168 lifr = (struct lifreq *)mp1->b_rptr; 9169 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9170 name = lifr->lifr_name; 9171 ASSERT(CONN_Q(q)); 9172 connp = Q_TO_CONN(q); 9173 isv6 = (connp->conn_family == AF_INET6); 9174 zoneid = connp->conn_zoneid; 9175 namelen = mi_strlen(name); 9176 if (namelen == 0) 9177 return (EINVAL); 9178 9179 exists = B_FALSE; 9180 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9181 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9182 /* 9183 * Allow creating lo0 using SIOCLIFADDIF. 9184 * can't be any other writer thread. So can pass null below 9185 * for the last 4 args to ipif_lookup_name. 9186 */ 9187 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9188 &exists, isv6, zoneid, ipst); 9189 /* Prevent any further action */ 9190 if (ipif == NULL) { 9191 return (ENOBUFS); 9192 } else if (!exists) { 9193 /* We created the ipif now and as writer */ 9194 ipif_refrele(ipif); 9195 return (0); 9196 } else { 9197 ill = ipif->ipif_ill; 9198 ill_refhold(ill); 9199 ipif_refrele(ipif); 9200 } 9201 } else { 9202 /* Look for a colon in the name. */ 9203 endp = &name[namelen]; 9204 for (cp = endp; --cp > name; ) { 9205 if (*cp == IPIF_SEPARATOR_CHAR) { 9206 found_sep = B_TRUE; 9207 /* 9208 * Reject any non-decimal aliases for plumbing 9209 * of logical interfaces. Aliases with leading 9210 * zeroes are also rejected as they introduce 9211 * ambiguity in the naming of the interfaces. 9212 * Comparing with "0" takes care of all such 9213 * cases. 9214 */ 9215 if ((strncmp("0", cp+1, 1)) == 0) 9216 return (EINVAL); 9217 9218 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9219 id <= 0 || *endp != '\0') { 9220 return (EINVAL); 9221 } 9222 *cp = '\0'; 9223 break; 9224 } 9225 } 9226 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9227 if (found_sep) 9228 *cp = IPIF_SEPARATOR_CHAR; 9229 if (ill == NULL) 9230 return (ENXIO); 9231 } 9232 9233 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9234 B_TRUE); 9235 9236 /* 9237 * Release the refhold due to the lookup, now that we are excl 9238 * or we are just returning 9239 */ 9240 ill_refrele(ill); 9241 9242 if (ipsq == NULL) 9243 return (EINPROGRESS); 9244 9245 /* We are now exclusive on the IPSQ */ 9246 ASSERT(IAM_WRITER_ILL(ill)); 9247 9248 if (found_sep) { 9249 /* Now see if there is an IPIF with this unit number. */ 9250 for (ipif = ill->ill_ipif; ipif != NULL; 9251 ipif = ipif->ipif_next) { 9252 if (ipif->ipif_id == id) { 9253 err = EEXIST; 9254 goto done; 9255 } 9256 } 9257 } 9258 9259 /* 9260 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9261 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9262 * instead. 9263 */ 9264 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9265 B_TRUE, B_TRUE, &err)) == NULL) { 9266 goto done; 9267 } 9268 9269 /* Return created name with ioctl */ 9270 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9271 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9272 ip1dbg(("created %s\n", lifr->lifr_name)); 9273 9274 /* Set address */ 9275 sin = (sin_t *)&lifr->lifr_addr; 9276 if (sin->sin_family != AF_UNSPEC) { 9277 err = ip_sioctl_addr(ipif, sin, q, mp, 9278 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9279 } 9280 9281 done: 9282 ipsq_exit(ipsq); 9283 return (err); 9284 } 9285 9286 /* 9287 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9288 * interface) delete it based on the IP address (on this physical interface). 9289 * Otherwise delete it based on the ipif_id. 9290 * Also, special handling to allow a removeif of lo0. 9291 */ 9292 /* ARGSUSED */ 9293 int 9294 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9295 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9296 { 9297 conn_t *connp; 9298 ill_t *ill = ipif->ipif_ill; 9299 boolean_t success; 9300 ip_stack_t *ipst; 9301 9302 ipst = CONNQ_TO_IPST(q); 9303 9304 ASSERT(q->q_next == NULL); 9305 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9306 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9307 ASSERT(IAM_WRITER_IPIF(ipif)); 9308 9309 connp = Q_TO_CONN(q); 9310 /* 9311 * Special case for unplumbing lo0 (the loopback physical interface). 9312 * If unplumbing lo0, the incoming address structure has been 9313 * initialized to all zeros. When unplumbing lo0, all its logical 9314 * interfaces must be removed too. 9315 * 9316 * Note that this interface may be called to remove a specific 9317 * loopback logical interface (eg, lo0:1). But in that case 9318 * ipif->ipif_id != 0 so that the code path for that case is the 9319 * same as any other interface (meaning it skips the code directly 9320 * below). 9321 */ 9322 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9323 if (sin->sin_family == AF_UNSPEC && 9324 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9325 /* 9326 * Mark it condemned. No new ref. will be made to ill. 9327 */ 9328 mutex_enter(&ill->ill_lock); 9329 ill->ill_state_flags |= ILL_CONDEMNED; 9330 for (ipif = ill->ill_ipif; ipif != NULL; 9331 ipif = ipif->ipif_next) { 9332 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9333 } 9334 mutex_exit(&ill->ill_lock); 9335 9336 ipif = ill->ill_ipif; 9337 /* unplumb the loopback interface */ 9338 ill_delete(ill); 9339 mutex_enter(&connp->conn_lock); 9340 mutex_enter(&ill->ill_lock); 9341 9342 /* Are any references to this ill active */ 9343 if (ill_is_freeable(ill)) { 9344 mutex_exit(&ill->ill_lock); 9345 mutex_exit(&connp->conn_lock); 9346 ill_delete_tail(ill); 9347 mi_free(ill); 9348 return (0); 9349 } 9350 success = ipsq_pending_mp_add(connp, ipif, 9351 CONNP_TO_WQ(connp), mp, ILL_FREE); 9352 mutex_exit(&connp->conn_lock); 9353 mutex_exit(&ill->ill_lock); 9354 if (success) 9355 return (EINPROGRESS); 9356 else 9357 return (EINTR); 9358 } 9359 } 9360 9361 if (ipif->ipif_id == 0) { 9362 ipsq_t *ipsq; 9363 9364 /* Find based on address */ 9365 if (ipif->ipif_isv6) { 9366 sin6_t *sin6; 9367 9368 if (sin->sin_family != AF_INET6) 9369 return (EAFNOSUPPORT); 9370 9371 sin6 = (sin6_t *)sin; 9372 /* We are a writer, so we should be able to lookup */ 9373 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9374 ipst); 9375 } else { 9376 if (sin->sin_family != AF_INET) 9377 return (EAFNOSUPPORT); 9378 9379 /* We are a writer, so we should be able to lookup */ 9380 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9381 ipst); 9382 } 9383 if (ipif == NULL) { 9384 return (EADDRNOTAVAIL); 9385 } 9386 9387 /* 9388 * It is possible for a user to send an SIOCLIFREMOVEIF with 9389 * lifr_name of the physical interface but with an ip address 9390 * lifr_addr of a logical interface plumbed over it. 9391 * So update ipx_current_ipif now that ipif points to the 9392 * correct one. 9393 */ 9394 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9395 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9396 9397 /* This is a writer */ 9398 ipif_refrele(ipif); 9399 } 9400 9401 /* 9402 * Can not delete instance zero since it is tied to the ill. 9403 */ 9404 if (ipif->ipif_id == 0) 9405 return (EBUSY); 9406 9407 mutex_enter(&ill->ill_lock); 9408 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9409 mutex_exit(&ill->ill_lock); 9410 9411 ipif_free(ipif); 9412 9413 mutex_enter(&connp->conn_lock); 9414 mutex_enter(&ill->ill_lock); 9415 9416 /* Are any references to this ipif active */ 9417 if (ipif_is_freeable(ipif)) { 9418 mutex_exit(&ill->ill_lock); 9419 mutex_exit(&connp->conn_lock); 9420 ipif_non_duplicate(ipif); 9421 (void) ipif_down_tail(ipif); 9422 ipif_free_tail(ipif); /* frees ipif */ 9423 return (0); 9424 } 9425 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9426 IPIF_FREE); 9427 mutex_exit(&ill->ill_lock); 9428 mutex_exit(&connp->conn_lock); 9429 if (success) 9430 return (EINPROGRESS); 9431 else 9432 return (EINTR); 9433 } 9434 9435 /* 9436 * Restart the removeif ioctl. The refcnt has gone down to 0. 9437 * The ipif is already condemned. So can't find it thru lookups. 9438 */ 9439 /* ARGSUSED */ 9440 int 9441 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9442 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9443 { 9444 ill_t *ill = ipif->ipif_ill; 9445 9446 ASSERT(IAM_WRITER_IPIF(ipif)); 9447 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9448 9449 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9450 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9451 9452 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9453 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9454 ill_delete_tail(ill); 9455 mi_free(ill); 9456 return (0); 9457 } 9458 9459 ipif_non_duplicate(ipif); 9460 (void) ipif_down_tail(ipif); 9461 ipif_free_tail(ipif); 9462 9463 return (0); 9464 } 9465 9466 /* 9467 * Set the local interface address. 9468 * Allow an address of all zero when the interface is down. 9469 */ 9470 /* ARGSUSED */ 9471 int 9472 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9473 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9474 { 9475 int err = 0; 9476 in6_addr_t v6addr; 9477 boolean_t need_up = B_FALSE; 9478 9479 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9481 9482 ASSERT(IAM_WRITER_IPIF(ipif)); 9483 9484 if (ipif->ipif_isv6) { 9485 sin6_t *sin6; 9486 ill_t *ill; 9487 phyint_t *phyi; 9488 9489 if (sin->sin_family != AF_INET6) 9490 return (EAFNOSUPPORT); 9491 9492 sin6 = (sin6_t *)sin; 9493 v6addr = sin6->sin6_addr; 9494 ill = ipif->ipif_ill; 9495 phyi = ill->ill_phyint; 9496 9497 /* 9498 * Enforce that true multicast interfaces have a link-local 9499 * address for logical unit 0. 9500 */ 9501 if (ipif->ipif_id == 0 && 9502 (ill->ill_flags & ILLF_MULTICAST) && 9503 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9504 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9505 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9506 return (EADDRNOTAVAIL); 9507 } 9508 9509 /* 9510 * up interfaces shouldn't have the unspecified address 9511 * unless they also have the IPIF_NOLOCAL flags set and 9512 * have a subnet assigned. 9513 */ 9514 if ((ipif->ipif_flags & IPIF_UP) && 9515 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9516 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9517 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9518 return (EADDRNOTAVAIL); 9519 } 9520 9521 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9522 return (EADDRNOTAVAIL); 9523 } else { 9524 ipaddr_t addr; 9525 9526 if (sin->sin_family != AF_INET) 9527 return (EAFNOSUPPORT); 9528 9529 addr = sin->sin_addr.s_addr; 9530 9531 /* Allow 0 as the local address. */ 9532 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9533 return (EADDRNOTAVAIL); 9534 9535 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9536 } 9537 9538 /* 9539 * Even if there is no change we redo things just to rerun 9540 * ipif_set_default. 9541 */ 9542 if (ipif->ipif_flags & IPIF_UP) { 9543 /* 9544 * Setting a new local address, make sure 9545 * we have net and subnet bcast ire's for 9546 * the old address if we need them. 9547 */ 9548 /* 9549 * If the interface is already marked up, 9550 * we call ipif_down which will take care 9551 * of ditching any IREs that have been set 9552 * up based on the old interface address. 9553 */ 9554 err = ipif_logical_down(ipif, q, mp); 9555 if (err == EINPROGRESS) 9556 return (err); 9557 (void) ipif_down_tail(ipif); 9558 need_up = 1; 9559 } 9560 9561 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9562 return (err); 9563 } 9564 9565 int 9566 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9567 boolean_t need_up) 9568 { 9569 in6_addr_t v6addr; 9570 in6_addr_t ov6addr; 9571 ipaddr_t addr; 9572 sin6_t *sin6; 9573 int sinlen; 9574 int err = 0; 9575 ill_t *ill = ipif->ipif_ill; 9576 boolean_t need_dl_down; 9577 boolean_t need_arp_down; 9578 struct iocblk *iocp; 9579 9580 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9581 9582 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9583 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9584 ASSERT(IAM_WRITER_IPIF(ipif)); 9585 9586 /* Must cancel any pending timer before taking the ill_lock */ 9587 if (ipif->ipif_recovery_id != 0) 9588 (void) untimeout(ipif->ipif_recovery_id); 9589 ipif->ipif_recovery_id = 0; 9590 9591 if (ipif->ipif_isv6) { 9592 sin6 = (sin6_t *)sin; 9593 v6addr = sin6->sin6_addr; 9594 sinlen = sizeof (struct sockaddr_in6); 9595 } else { 9596 addr = sin->sin_addr.s_addr; 9597 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9598 sinlen = sizeof (struct sockaddr_in); 9599 } 9600 mutex_enter(&ill->ill_lock); 9601 ov6addr = ipif->ipif_v6lcl_addr; 9602 ipif->ipif_v6lcl_addr = v6addr; 9603 sctp_update_ipif_addr(ipif, ov6addr); 9604 ipif->ipif_addr_ready = 0; 9605 9606 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9607 9608 /* 9609 * If the interface was previously marked as a duplicate, then since 9610 * we've now got a "new" address, it should no longer be considered a 9611 * duplicate -- even if the "new" address is the same as the old one. 9612 * Note that if all ipifs are down, we may have a pending ARP down 9613 * event to handle. This is because we want to recover from duplicates 9614 * and thus delay tearing down ARP until the duplicates have been 9615 * removed or disabled. 9616 */ 9617 need_dl_down = need_arp_down = B_FALSE; 9618 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9619 need_arp_down = !need_up; 9620 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9621 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9622 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9623 need_dl_down = B_TRUE; 9624 } 9625 } 9626 9627 ipif_set_default(ipif); 9628 9629 /* 9630 * If we've just manually set the IPv6 link-local address (0th ipif), 9631 * tag the ill so that future updates to the interface ID don't result 9632 * in this address getting automatically reconfigured from under the 9633 * administrator. 9634 */ 9635 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9636 ill->ill_manual_linklocal = 1; 9637 9638 /* 9639 * When publishing an interface address change event, we only notify 9640 * the event listeners of the new address. It is assumed that if they 9641 * actively care about the addresses assigned that they will have 9642 * already discovered the previous address assigned (if there was one.) 9643 * 9644 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9645 */ 9646 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9647 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9648 NE_ADDRESS_CHANGE, sin, sinlen); 9649 } 9650 9651 mutex_exit(&ill->ill_lock); 9652 9653 if (need_up) { 9654 /* 9655 * Now bring the interface back up. If this 9656 * is the only IPIF for the ILL, ipif_up 9657 * will have to re-bind to the device, so 9658 * we may get back EINPROGRESS, in which 9659 * case, this IOCTL will get completed in 9660 * ip_rput_dlpi when we see the DL_BIND_ACK. 9661 */ 9662 err = ipif_up(ipif, q, mp); 9663 } else { 9664 /* Perhaps ilgs should use this ill */ 9665 update_conn_ill(NULL, ill->ill_ipst); 9666 } 9667 9668 if (need_dl_down) 9669 ill_dl_down(ill); 9670 9671 if (need_arp_down && !ill->ill_isv6) 9672 (void) ipif_arp_down(ipif); 9673 9674 /* 9675 * The default multicast interface might have changed (for 9676 * instance if the IPv6 scope of the address changed) 9677 */ 9678 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9679 9680 return (err); 9681 } 9682 9683 /* 9684 * Restart entry point to restart the address set operation after the 9685 * refcounts have dropped to zero. 9686 */ 9687 /* ARGSUSED */ 9688 int 9689 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9690 ip_ioctl_cmd_t *ipip, void *ifreq) 9691 { 9692 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9693 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9694 ASSERT(IAM_WRITER_IPIF(ipif)); 9695 (void) ipif_down_tail(ipif); 9696 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9697 } 9698 9699 /* ARGSUSED */ 9700 int 9701 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9702 ip_ioctl_cmd_t *ipip, void *if_req) 9703 { 9704 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9705 struct lifreq *lifr = (struct lifreq *)if_req; 9706 9707 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9708 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9709 /* 9710 * The net mask and address can't change since we have a 9711 * reference to the ipif. So no lock is necessary. 9712 */ 9713 if (ipif->ipif_isv6) { 9714 *sin6 = sin6_null; 9715 sin6->sin6_family = AF_INET6; 9716 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9717 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9718 lifr->lifr_addrlen = 9719 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9720 } else { 9721 *sin = sin_null; 9722 sin->sin_family = AF_INET; 9723 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9724 if (ipip->ipi_cmd_type == LIF_CMD) { 9725 lifr->lifr_addrlen = 9726 ip_mask_to_plen(ipif->ipif_net_mask); 9727 } 9728 } 9729 return (0); 9730 } 9731 9732 /* 9733 * Set the destination address for a pt-pt interface. 9734 */ 9735 /* ARGSUSED */ 9736 int 9737 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9738 ip_ioctl_cmd_t *ipip, void *if_req) 9739 { 9740 int err = 0; 9741 in6_addr_t v6addr; 9742 boolean_t need_up = B_FALSE; 9743 9744 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9745 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9746 ASSERT(IAM_WRITER_IPIF(ipif)); 9747 9748 if (ipif->ipif_isv6) { 9749 sin6_t *sin6; 9750 9751 if (sin->sin_family != AF_INET6) 9752 return (EAFNOSUPPORT); 9753 9754 sin6 = (sin6_t *)sin; 9755 v6addr = sin6->sin6_addr; 9756 9757 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9758 return (EADDRNOTAVAIL); 9759 } else { 9760 ipaddr_t addr; 9761 9762 if (sin->sin_family != AF_INET) 9763 return (EAFNOSUPPORT); 9764 9765 addr = sin->sin_addr.s_addr; 9766 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9767 return (EADDRNOTAVAIL); 9768 9769 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9770 } 9771 9772 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9773 return (0); /* No change */ 9774 9775 if (ipif->ipif_flags & IPIF_UP) { 9776 /* 9777 * If the interface is already marked up, 9778 * we call ipif_down which will take care 9779 * of ditching any IREs that have been set 9780 * up based on the old pp dst address. 9781 */ 9782 err = ipif_logical_down(ipif, q, mp); 9783 if (err == EINPROGRESS) 9784 return (err); 9785 (void) ipif_down_tail(ipif); 9786 need_up = B_TRUE; 9787 } 9788 /* 9789 * could return EINPROGRESS. If so ioctl will complete in 9790 * ip_rput_dlpi_writer 9791 */ 9792 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9793 return (err); 9794 } 9795 9796 static int 9797 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9798 boolean_t need_up) 9799 { 9800 in6_addr_t v6addr; 9801 ill_t *ill = ipif->ipif_ill; 9802 int err = 0; 9803 boolean_t need_dl_down; 9804 boolean_t need_arp_down; 9805 9806 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9807 ipif->ipif_id, (void *)ipif)); 9808 9809 /* Must cancel any pending timer before taking the ill_lock */ 9810 if (ipif->ipif_recovery_id != 0) 9811 (void) untimeout(ipif->ipif_recovery_id); 9812 ipif->ipif_recovery_id = 0; 9813 9814 if (ipif->ipif_isv6) { 9815 sin6_t *sin6; 9816 9817 sin6 = (sin6_t *)sin; 9818 v6addr = sin6->sin6_addr; 9819 } else { 9820 ipaddr_t addr; 9821 9822 addr = sin->sin_addr.s_addr; 9823 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9824 } 9825 mutex_enter(&ill->ill_lock); 9826 /* Set point to point destination address. */ 9827 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9828 /* 9829 * Allow this as a means of creating logical 9830 * pt-pt interfaces on top of e.g. an Ethernet. 9831 * XXX Undocumented HACK for testing. 9832 * pt-pt interfaces are created with NUD disabled. 9833 */ 9834 ipif->ipif_flags |= IPIF_POINTOPOINT; 9835 ipif->ipif_flags &= ~IPIF_BROADCAST; 9836 if (ipif->ipif_isv6) 9837 ill->ill_flags |= ILLF_NONUD; 9838 } 9839 9840 /* 9841 * If the interface was previously marked as a duplicate, then since 9842 * we've now got a "new" address, it should no longer be considered a 9843 * duplicate -- even if the "new" address is the same as the old one. 9844 * Note that if all ipifs are down, we may have a pending ARP down 9845 * event to handle. 9846 */ 9847 need_dl_down = need_arp_down = B_FALSE; 9848 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9849 need_arp_down = !need_up; 9850 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9851 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9852 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9853 need_dl_down = B_TRUE; 9854 } 9855 } 9856 9857 /* 9858 * If we've just manually set the IPv6 destination link-local address 9859 * (0th ipif), tag the ill so that future updates to the destination 9860 * interface ID (as can happen with interfaces over IP tunnels) don't 9861 * result in this address getting automatically reconfigured from 9862 * under the administrator. 9863 */ 9864 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9865 ill->ill_manual_dst_linklocal = 1; 9866 9867 /* Set the new address. */ 9868 ipif->ipif_v6pp_dst_addr = v6addr; 9869 /* Make sure subnet tracks pp_dst */ 9870 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9871 mutex_exit(&ill->ill_lock); 9872 9873 if (need_up) { 9874 /* 9875 * Now bring the interface back up. If this 9876 * is the only IPIF for the ILL, ipif_up 9877 * will have to re-bind to the device, so 9878 * we may get back EINPROGRESS, in which 9879 * case, this IOCTL will get completed in 9880 * ip_rput_dlpi when we see the DL_BIND_ACK. 9881 */ 9882 err = ipif_up(ipif, q, mp); 9883 } 9884 9885 if (need_dl_down) 9886 ill_dl_down(ill); 9887 if (need_arp_down && !ipif->ipif_isv6) 9888 (void) ipif_arp_down(ipif); 9889 9890 return (err); 9891 } 9892 9893 /* 9894 * Restart entry point to restart the dstaddress set operation after the 9895 * refcounts have dropped to zero. 9896 */ 9897 /* ARGSUSED */ 9898 int 9899 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9900 ip_ioctl_cmd_t *ipip, void *ifreq) 9901 { 9902 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9903 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9904 (void) ipif_down_tail(ipif); 9905 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9906 } 9907 9908 /* ARGSUSED */ 9909 int 9910 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9911 ip_ioctl_cmd_t *ipip, void *if_req) 9912 { 9913 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9914 9915 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9917 /* 9918 * Get point to point destination address. The addresses can't 9919 * change since we hold a reference to the ipif. 9920 */ 9921 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9922 return (EADDRNOTAVAIL); 9923 9924 if (ipif->ipif_isv6) { 9925 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9926 *sin6 = sin6_null; 9927 sin6->sin6_family = AF_INET6; 9928 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9929 } else { 9930 *sin = sin_null; 9931 sin->sin_family = AF_INET; 9932 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9933 } 9934 return (0); 9935 } 9936 9937 /* 9938 * Check which flags will change by the given flags being set 9939 * silently ignore flags which userland is not allowed to control. 9940 * (Because these flags may change between SIOCGLIFFLAGS and 9941 * SIOCSLIFFLAGS, and that's outside of userland's control, 9942 * we need to silently ignore them rather than fail.) 9943 */ 9944 static void 9945 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9946 uint64_t *offp) 9947 { 9948 ill_t *ill = ipif->ipif_ill; 9949 phyint_t *phyi = ill->ill_phyint; 9950 uint64_t cantchange_flags, intf_flags; 9951 uint64_t turn_on, turn_off; 9952 9953 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9954 cantchange_flags = IFF_CANTCHANGE; 9955 if (IS_IPMP(ill)) 9956 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9957 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9958 turn_off = intf_flags & turn_on; 9959 turn_on ^= turn_off; 9960 *onp = turn_on; 9961 *offp = turn_off; 9962 } 9963 9964 /* 9965 * Set interface flags. Many flags require special handling (e.g., 9966 * bringing the interface down); see below for details. 9967 * 9968 * NOTE : We really don't enforce that ipif_id zero should be used 9969 * for setting any flags other than IFF_LOGINT_FLAGS. This 9970 * is because applications generally does SICGLIFFLAGS and 9971 * ORs in the new flags (that affects the logical) and does a 9972 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9973 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9974 * flags that will be turned on is correct with respect to 9975 * ipif_id 0. For backward compatibility reasons, it is not done. 9976 */ 9977 /* ARGSUSED */ 9978 int 9979 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9980 ip_ioctl_cmd_t *ipip, void *if_req) 9981 { 9982 uint64_t turn_on; 9983 uint64_t turn_off; 9984 int err = 0; 9985 phyint_t *phyi; 9986 ill_t *ill; 9987 conn_t *connp; 9988 uint64_t intf_flags; 9989 boolean_t phyint_flags_modified = B_FALSE; 9990 uint64_t flags; 9991 struct ifreq *ifr; 9992 struct lifreq *lifr; 9993 boolean_t set_linklocal = B_FALSE; 9994 9995 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9996 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9997 9998 ASSERT(IAM_WRITER_IPIF(ipif)); 9999 10000 ill = ipif->ipif_ill; 10001 phyi = ill->ill_phyint; 10002 10003 if (ipip->ipi_cmd_type == IF_CMD) { 10004 ifr = (struct ifreq *)if_req; 10005 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10006 } else { 10007 lifr = (struct lifreq *)if_req; 10008 flags = lifr->lifr_flags; 10009 } 10010 10011 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10012 10013 /* 10014 * Have the flags been set correctly until now? 10015 */ 10016 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10017 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10018 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10019 /* 10020 * Compare the new flags to the old, and partition 10021 * into those coming on and those going off. 10022 * For the 16 bit command keep the bits above bit 16 unchanged. 10023 */ 10024 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10025 flags |= intf_flags & ~0xFFFF; 10026 10027 /* 10028 * Explicitly fail attempts to change flags that are always invalid on 10029 * an IPMP meta-interface. 10030 */ 10031 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10032 return (EINVAL); 10033 10034 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10035 if ((turn_on|turn_off) == 0) 10036 return (0); /* No change */ 10037 10038 /* 10039 * All test addresses must be IFF_DEPRECATED (to ensure source address 10040 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10041 * allow it to be turned off. 10042 */ 10043 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10044 (turn_on|intf_flags) & IFF_NOFAILOVER) 10045 return (EINVAL); 10046 10047 if ((connp = Q_TO_CONN(q)) == NULL) 10048 return (EINVAL); 10049 10050 /* 10051 * Only vrrp control socket is allowed to change IFF_UP and 10052 * IFF_NOACCEPT flags when IFF_VRRP is set. 10053 */ 10054 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10055 if (!connp->conn_isvrrp) 10056 return (EINVAL); 10057 } 10058 10059 /* 10060 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10061 * VRRP control socket. 10062 */ 10063 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10064 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10065 return (EINVAL); 10066 } 10067 10068 if (turn_on & IFF_NOFAILOVER) { 10069 turn_on |= IFF_DEPRECATED; 10070 flags |= IFF_DEPRECATED; 10071 } 10072 10073 /* 10074 * On underlying interfaces, only allow applications to manage test 10075 * addresses -- otherwise, they may get confused when the address 10076 * moves as part of being brought up. Likewise, prevent an 10077 * application-managed test address from being converted to a data 10078 * address. To prevent migration of administratively up addresses in 10079 * the kernel, we don't allow them to be converted either. 10080 */ 10081 if (IS_UNDER_IPMP(ill)) { 10082 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10083 10084 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10085 return (EINVAL); 10086 10087 if ((turn_off & IFF_NOFAILOVER) && 10088 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10089 return (EINVAL); 10090 } 10091 10092 /* 10093 * Only allow IFF_TEMPORARY flag to be set on 10094 * IPv6 interfaces. 10095 */ 10096 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10097 return (EINVAL); 10098 10099 /* 10100 * cannot turn off IFF_NOXMIT on VNI interfaces. 10101 */ 10102 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10103 return (EINVAL); 10104 10105 /* 10106 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10107 * interfaces. It makes no sense in that context. 10108 */ 10109 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10110 return (EINVAL); 10111 10112 /* 10113 * For IPv6 ipif_id 0, don't allow the interface to be up without 10114 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10115 * If the link local address isn't set, and can be set, it will get 10116 * set later on in this function. 10117 */ 10118 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10119 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10120 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10121 if (ipif_cant_setlinklocal(ipif)) 10122 return (EINVAL); 10123 set_linklocal = B_TRUE; 10124 } 10125 10126 /* 10127 * If we modify physical interface flags, we'll potentially need to 10128 * send up two routing socket messages for the changes (one for the 10129 * IPv4 ill, and another for the IPv6 ill). Note that here. 10130 */ 10131 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10132 phyint_flags_modified = B_TRUE; 10133 10134 /* 10135 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10136 * (otherwise, we'd immediately use them, defeating standby). Also, 10137 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10138 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10139 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10140 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10141 * will not be honored. 10142 */ 10143 if (turn_on & PHYI_STANDBY) { 10144 /* 10145 * No need to grab ill_g_usesrc_lock here; see the 10146 * synchronization notes in ip.c. 10147 */ 10148 if (ill->ill_usesrc_grp_next != NULL || 10149 intf_flags & PHYI_INACTIVE) 10150 return (EINVAL); 10151 if (!(flags & PHYI_FAILED)) { 10152 flags |= PHYI_INACTIVE; 10153 turn_on |= PHYI_INACTIVE; 10154 } 10155 } 10156 10157 if (turn_off & PHYI_STANDBY) { 10158 flags &= ~PHYI_INACTIVE; 10159 turn_off |= PHYI_INACTIVE; 10160 } 10161 10162 /* 10163 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10164 * would end up on. 10165 */ 10166 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10167 (PHYI_FAILED | PHYI_INACTIVE)) 10168 return (EINVAL); 10169 10170 /* 10171 * If ILLF_ROUTER changes, we need to change the ip forwarding 10172 * status of the interface. 10173 */ 10174 if ((turn_on | turn_off) & ILLF_ROUTER) 10175 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10176 10177 /* 10178 * If the interface is not UP and we are not going to 10179 * bring it UP, record the flags and return. When the 10180 * interface comes UP later, the right actions will be 10181 * taken. 10182 */ 10183 if (!(ipif->ipif_flags & IPIF_UP) && 10184 !(turn_on & IPIF_UP)) { 10185 /* Record new flags in their respective places. */ 10186 mutex_enter(&ill->ill_lock); 10187 mutex_enter(&ill->ill_phyint->phyint_lock); 10188 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10189 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10190 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10191 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10192 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10193 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10194 mutex_exit(&ill->ill_lock); 10195 mutex_exit(&ill->ill_phyint->phyint_lock); 10196 10197 /* 10198 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10199 * same to the kernel: if any of them has been set by 10200 * userland, the interface cannot be used for data traffic. 10201 */ 10202 if ((turn_on|turn_off) & 10203 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10204 ASSERT(!IS_IPMP(ill)); 10205 /* 10206 * It's possible the ill is part of an "anonymous" 10207 * IPMP group rather than a real group. In that case, 10208 * there are no other interfaces in the group and thus 10209 * no need to call ipmp_phyint_refresh_active(). 10210 */ 10211 if (IS_UNDER_IPMP(ill)) 10212 ipmp_phyint_refresh_active(phyi); 10213 } 10214 10215 if (phyint_flags_modified) { 10216 if (phyi->phyint_illv4 != NULL) { 10217 ip_rts_ifmsg(phyi->phyint_illv4-> 10218 ill_ipif, RTSQ_DEFAULT); 10219 } 10220 if (phyi->phyint_illv6 != NULL) { 10221 ip_rts_ifmsg(phyi->phyint_illv6-> 10222 ill_ipif, RTSQ_DEFAULT); 10223 } 10224 } 10225 /* The default multicast interface might have changed */ 10226 ire_increment_multicast_generation(ill->ill_ipst, 10227 ill->ill_isv6); 10228 10229 return (0); 10230 } else if (set_linklocal) { 10231 mutex_enter(&ill->ill_lock); 10232 if (set_linklocal) 10233 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10234 mutex_exit(&ill->ill_lock); 10235 } 10236 10237 /* 10238 * Disallow IPv6 interfaces coming up that have the unspecified address, 10239 * or point-to-point interfaces with an unspecified destination. We do 10240 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10241 * have a subnet assigned, which is how in.ndpd currently manages its 10242 * onlink prefix list when no addresses are configured with those 10243 * prefixes. 10244 */ 10245 if (ipif->ipif_isv6 && 10246 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10247 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10248 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10249 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10250 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10251 return (EINVAL); 10252 } 10253 10254 /* 10255 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10256 * from being brought up. 10257 */ 10258 if (!ipif->ipif_isv6 && 10259 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10260 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10261 return (EINVAL); 10262 } 10263 10264 /* 10265 * If we are going to change one or more of the flags that are 10266 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10267 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10268 * IPIF_NOFAILOVER, we will take special action. This is 10269 * done by bring the ipif down, changing the flags and bringing 10270 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10271 * back up will trigger the address to be moved. 10272 * 10273 * If we are going to change IFF_NOACCEPT, we need to bring 10274 * all the ipifs down then bring them up again. The act of 10275 * bringing all the ipifs back up will trigger the local 10276 * ires being recreated with "no_accept" set/cleared. 10277 * 10278 * Note that ILLF_NOACCEPT is always set separately from the 10279 * other flags. 10280 */ 10281 if ((turn_on|turn_off) & 10282 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10283 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10284 IPIF_NOFAILOVER)) { 10285 /* 10286 * ipif_down() will ire_delete bcast ire's for the subnet, 10287 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10288 * entries shared between multiple ipifs on the same subnet. 10289 */ 10290 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10291 !(turn_off & IPIF_UP)) { 10292 if (ipif->ipif_flags & IPIF_UP) 10293 ill->ill_logical_down = 1; 10294 turn_on &= ~IPIF_UP; 10295 } 10296 err = ipif_down(ipif, q, mp); 10297 ip1dbg(("ipif_down returns %d err ", err)); 10298 if (err == EINPROGRESS) 10299 return (err); 10300 (void) ipif_down_tail(ipif); 10301 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10302 /* 10303 * If we can quiesce the ill, then continue. If not, then 10304 * ip_sioctl_flags_tail() will be called from 10305 * ipif_ill_refrele_tail(). 10306 */ 10307 ill_down_ipifs(ill, B_TRUE); 10308 10309 mutex_enter(&connp->conn_lock); 10310 mutex_enter(&ill->ill_lock); 10311 if (!ill_is_quiescent(ill)) { 10312 boolean_t success; 10313 10314 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10315 q, mp, ILL_DOWN); 10316 mutex_exit(&ill->ill_lock); 10317 mutex_exit(&connp->conn_lock); 10318 return (success ? EINPROGRESS : EINTR); 10319 } 10320 mutex_exit(&ill->ill_lock); 10321 mutex_exit(&connp->conn_lock); 10322 } 10323 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10324 } 10325 10326 static int 10327 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10328 { 10329 ill_t *ill; 10330 phyint_t *phyi; 10331 uint64_t turn_on, turn_off; 10332 boolean_t phyint_flags_modified = B_FALSE; 10333 int err = 0; 10334 boolean_t set_linklocal = B_FALSE; 10335 10336 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10337 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10338 10339 ASSERT(IAM_WRITER_IPIF(ipif)); 10340 10341 ill = ipif->ipif_ill; 10342 phyi = ill->ill_phyint; 10343 10344 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10345 10346 /* 10347 * IFF_UP is handled separately. 10348 */ 10349 turn_on &= ~IFF_UP; 10350 turn_off &= ~IFF_UP; 10351 10352 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10353 phyint_flags_modified = B_TRUE; 10354 10355 /* 10356 * Now we change the flags. Track current value of 10357 * other flags in their respective places. 10358 */ 10359 mutex_enter(&ill->ill_lock); 10360 mutex_enter(&phyi->phyint_lock); 10361 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10362 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10363 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10364 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10365 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10366 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10367 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10368 set_linklocal = B_TRUE; 10369 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10370 } 10371 10372 mutex_exit(&ill->ill_lock); 10373 mutex_exit(&phyi->phyint_lock); 10374 10375 if (set_linklocal) 10376 (void) ipif_setlinklocal(ipif); 10377 10378 /* 10379 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10380 * the kernel: if any of them has been set by userland, the interface 10381 * cannot be used for data traffic. 10382 */ 10383 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10384 ASSERT(!IS_IPMP(ill)); 10385 /* 10386 * It's possible the ill is part of an "anonymous" IPMP group 10387 * rather than a real group. In that case, there are no other 10388 * interfaces in the group and thus no need for us to call 10389 * ipmp_phyint_refresh_active(). 10390 */ 10391 if (IS_UNDER_IPMP(ill)) 10392 ipmp_phyint_refresh_active(phyi); 10393 } 10394 10395 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10396 /* 10397 * If the ILLF_NOACCEPT flag is changed, bring up all the 10398 * ipifs that were brought down. 10399 * 10400 * The routing sockets messages are sent as the result 10401 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10402 * as well. 10403 */ 10404 err = ill_up_ipifs(ill, q, mp); 10405 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10406 /* 10407 * XXX ipif_up really does not know whether a phyint flags 10408 * was modified or not. So, it sends up information on 10409 * only one routing sockets message. As we don't bring up 10410 * the interface and also set PHYI_ flags simultaneously 10411 * it should be okay. 10412 */ 10413 err = ipif_up(ipif, q, mp); 10414 } else { 10415 /* 10416 * Make sure routing socket sees all changes to the flags. 10417 * ipif_up_done* handles this when we use ipif_up. 10418 */ 10419 if (phyint_flags_modified) { 10420 if (phyi->phyint_illv4 != NULL) { 10421 ip_rts_ifmsg(phyi->phyint_illv4-> 10422 ill_ipif, RTSQ_DEFAULT); 10423 } 10424 if (phyi->phyint_illv6 != NULL) { 10425 ip_rts_ifmsg(phyi->phyint_illv6-> 10426 ill_ipif, RTSQ_DEFAULT); 10427 } 10428 } else { 10429 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10430 } 10431 /* 10432 * Update the flags in SCTP's IPIF list, ipif_up() will do 10433 * this in need_up case. 10434 */ 10435 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10436 } 10437 10438 /* The default multicast interface might have changed */ 10439 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10440 return (err); 10441 } 10442 10443 /* 10444 * Restart the flags operation now that the refcounts have dropped to zero. 10445 */ 10446 /* ARGSUSED */ 10447 int 10448 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10449 ip_ioctl_cmd_t *ipip, void *if_req) 10450 { 10451 uint64_t flags; 10452 struct ifreq *ifr = if_req; 10453 struct lifreq *lifr = if_req; 10454 uint64_t turn_on, turn_off; 10455 10456 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10458 10459 if (ipip->ipi_cmd_type == IF_CMD) { 10460 /* cast to uint16_t prevents unwanted sign extension */ 10461 flags = (uint16_t)ifr->ifr_flags; 10462 } else { 10463 flags = lifr->lifr_flags; 10464 } 10465 10466 /* 10467 * If this function call is a result of the ILLF_NOACCEPT flag 10468 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10469 */ 10470 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10471 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10472 (void) ipif_down_tail(ipif); 10473 10474 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10475 } 10476 10477 /* 10478 * Can operate on either a module or a driver queue. 10479 */ 10480 /* ARGSUSED */ 10481 int 10482 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10483 ip_ioctl_cmd_t *ipip, void *if_req) 10484 { 10485 /* 10486 * Has the flags been set correctly till now ? 10487 */ 10488 ill_t *ill = ipif->ipif_ill; 10489 phyint_t *phyi = ill->ill_phyint; 10490 10491 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10492 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10493 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10494 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10495 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10496 10497 /* 10498 * Need a lock since some flags can be set even when there are 10499 * references to the ipif. 10500 */ 10501 mutex_enter(&ill->ill_lock); 10502 if (ipip->ipi_cmd_type == IF_CMD) { 10503 struct ifreq *ifr = (struct ifreq *)if_req; 10504 10505 /* Get interface flags (low 16 only). */ 10506 ifr->ifr_flags = ((ipif->ipif_flags | 10507 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10508 } else { 10509 struct lifreq *lifr = (struct lifreq *)if_req; 10510 10511 /* Get interface flags. */ 10512 lifr->lifr_flags = ipif->ipif_flags | 10513 ill->ill_flags | phyi->phyint_flags; 10514 } 10515 mutex_exit(&ill->ill_lock); 10516 return (0); 10517 } 10518 10519 /* 10520 * We allow the MTU to be set on an ILL, but not have it be different 10521 * for different IPIFs since we don't actually send packets on IPIFs. 10522 */ 10523 /* ARGSUSED */ 10524 int 10525 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10526 ip_ioctl_cmd_t *ipip, void *if_req) 10527 { 10528 int mtu; 10529 int ip_min_mtu; 10530 struct ifreq *ifr; 10531 struct lifreq *lifr; 10532 ill_t *ill; 10533 10534 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10535 ipif->ipif_id, (void *)ipif)); 10536 if (ipip->ipi_cmd_type == IF_CMD) { 10537 ifr = (struct ifreq *)if_req; 10538 mtu = ifr->ifr_metric; 10539 } else { 10540 lifr = (struct lifreq *)if_req; 10541 mtu = lifr->lifr_mtu; 10542 } 10543 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10544 if (ipif->ipif_id != 0) 10545 return (EINVAL); 10546 10547 ill = ipif->ipif_ill; 10548 if (ipif->ipif_isv6) 10549 ip_min_mtu = IPV6_MIN_MTU; 10550 else 10551 ip_min_mtu = IP_MIN_MTU; 10552 10553 mutex_enter(&ill->ill_lock); 10554 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10555 mutex_exit(&ill->ill_lock); 10556 return (EINVAL); 10557 } 10558 /* 10559 * The dce and fragmentation code can handle changes to ill_mtu 10560 * concurrent with sending/fragmenting packets. 10561 */ 10562 ill->ill_mtu = mtu; 10563 ill->ill_flags |= ILLF_FIXEDMTU; 10564 mutex_exit(&ill->ill_lock); 10565 10566 /* 10567 * Make sure all dce_generation checks find out 10568 * that ill_mtu has changed. 10569 */ 10570 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10571 10572 /* Update the MTU in SCTP's list */ 10573 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10574 return (0); 10575 } 10576 10577 /* Get interface MTU. */ 10578 /* ARGSUSED */ 10579 int 10580 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10581 ip_ioctl_cmd_t *ipip, void *if_req) 10582 { 10583 struct ifreq *ifr; 10584 struct lifreq *lifr; 10585 10586 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10587 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10588 10589 /* 10590 * We allow a get on any logical interface even though the set 10591 * can only be done on logical unit 0. 10592 */ 10593 if (ipip->ipi_cmd_type == IF_CMD) { 10594 ifr = (struct ifreq *)if_req; 10595 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10596 } else { 10597 lifr = (struct lifreq *)if_req; 10598 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10599 } 10600 return (0); 10601 } 10602 10603 /* Set interface broadcast address. */ 10604 /* ARGSUSED2 */ 10605 int 10606 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10607 ip_ioctl_cmd_t *ipip, void *if_req) 10608 { 10609 ipaddr_t addr; 10610 ire_t *ire; 10611 ill_t *ill = ipif->ipif_ill; 10612 ip_stack_t *ipst = ill->ill_ipst; 10613 10614 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10615 ipif->ipif_id)); 10616 10617 ASSERT(IAM_WRITER_IPIF(ipif)); 10618 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10619 return (EADDRNOTAVAIL); 10620 10621 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10622 10623 if (sin->sin_family != AF_INET) 10624 return (EAFNOSUPPORT); 10625 10626 addr = sin->sin_addr.s_addr; 10627 if (ipif->ipif_flags & IPIF_UP) { 10628 /* 10629 * If we are already up, make sure the new 10630 * broadcast address makes sense. If it does, 10631 * there should be an IRE for it already. 10632 */ 10633 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10634 ill, ipif->ipif_zoneid, NULL, 10635 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10636 if (ire == NULL) { 10637 return (EINVAL); 10638 } else { 10639 ire_refrele(ire); 10640 } 10641 } 10642 /* 10643 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10644 * needs to already exist we never need to change the set of 10645 * IRE_BROADCASTs when we are UP. 10646 */ 10647 if (addr != ipif->ipif_brd_addr) 10648 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10649 10650 return (0); 10651 } 10652 10653 /* Get interface broadcast address. */ 10654 /* ARGSUSED */ 10655 int 10656 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10657 ip_ioctl_cmd_t *ipip, void *if_req) 10658 { 10659 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10661 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10662 return (EADDRNOTAVAIL); 10663 10664 /* IPIF_BROADCAST not possible with IPv6 */ 10665 ASSERT(!ipif->ipif_isv6); 10666 *sin = sin_null; 10667 sin->sin_family = AF_INET; 10668 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10669 return (0); 10670 } 10671 10672 /* 10673 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10674 */ 10675 /* ARGSUSED */ 10676 int 10677 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10678 ip_ioctl_cmd_t *ipip, void *if_req) 10679 { 10680 int err = 0; 10681 in6_addr_t v6mask; 10682 10683 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10684 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10685 10686 ASSERT(IAM_WRITER_IPIF(ipif)); 10687 10688 if (ipif->ipif_isv6) { 10689 sin6_t *sin6; 10690 10691 if (sin->sin_family != AF_INET6) 10692 return (EAFNOSUPPORT); 10693 10694 sin6 = (sin6_t *)sin; 10695 v6mask = sin6->sin6_addr; 10696 } else { 10697 ipaddr_t mask; 10698 10699 if (sin->sin_family != AF_INET) 10700 return (EAFNOSUPPORT); 10701 10702 mask = sin->sin_addr.s_addr; 10703 V4MASK_TO_V6(mask, v6mask); 10704 } 10705 10706 /* 10707 * No big deal if the interface isn't already up, or the mask 10708 * isn't really changing, or this is pt-pt. 10709 */ 10710 if (!(ipif->ipif_flags & IPIF_UP) || 10711 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10712 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10713 ipif->ipif_v6net_mask = v6mask; 10714 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10715 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10716 ipif->ipif_v6net_mask, 10717 ipif->ipif_v6subnet); 10718 } 10719 return (0); 10720 } 10721 /* 10722 * Make sure we have valid net and subnet broadcast ire's 10723 * for the old netmask, if needed by other logical interfaces. 10724 */ 10725 err = ipif_logical_down(ipif, q, mp); 10726 if (err == EINPROGRESS) 10727 return (err); 10728 (void) ipif_down_tail(ipif); 10729 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10730 return (err); 10731 } 10732 10733 static int 10734 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10735 { 10736 in6_addr_t v6mask; 10737 int err = 0; 10738 10739 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10740 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10741 10742 if (ipif->ipif_isv6) { 10743 sin6_t *sin6; 10744 10745 sin6 = (sin6_t *)sin; 10746 v6mask = sin6->sin6_addr; 10747 } else { 10748 ipaddr_t mask; 10749 10750 mask = sin->sin_addr.s_addr; 10751 V4MASK_TO_V6(mask, v6mask); 10752 } 10753 10754 ipif->ipif_v6net_mask = v6mask; 10755 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10756 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10757 ipif->ipif_v6subnet); 10758 } 10759 err = ipif_up(ipif, q, mp); 10760 10761 if (err == 0 || err == EINPROGRESS) { 10762 /* 10763 * The interface must be DL_BOUND if this packet has to 10764 * go out on the wire. Since we only go through a logical 10765 * down and are bound with the driver during an internal 10766 * down/up that is satisfied. 10767 */ 10768 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10769 /* Potentially broadcast an address mask reply. */ 10770 ipif_mask_reply(ipif); 10771 } 10772 } 10773 return (err); 10774 } 10775 10776 /* ARGSUSED */ 10777 int 10778 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10779 ip_ioctl_cmd_t *ipip, void *if_req) 10780 { 10781 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10782 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10783 (void) ipif_down_tail(ipif); 10784 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10785 } 10786 10787 /* Get interface net mask. */ 10788 /* ARGSUSED */ 10789 int 10790 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10791 ip_ioctl_cmd_t *ipip, void *if_req) 10792 { 10793 struct lifreq *lifr = (struct lifreq *)if_req; 10794 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10795 10796 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10797 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10798 10799 /* 10800 * net mask can't change since we have a reference to the ipif. 10801 */ 10802 if (ipif->ipif_isv6) { 10803 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10804 *sin6 = sin6_null; 10805 sin6->sin6_family = AF_INET6; 10806 sin6->sin6_addr = ipif->ipif_v6net_mask; 10807 lifr->lifr_addrlen = 10808 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10809 } else { 10810 *sin = sin_null; 10811 sin->sin_family = AF_INET; 10812 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10813 if (ipip->ipi_cmd_type == LIF_CMD) { 10814 lifr->lifr_addrlen = 10815 ip_mask_to_plen(ipif->ipif_net_mask); 10816 } 10817 } 10818 return (0); 10819 } 10820 10821 /* ARGSUSED */ 10822 int 10823 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10824 ip_ioctl_cmd_t *ipip, void *if_req) 10825 { 10826 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10827 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10828 10829 /* 10830 * Since no applications should ever be setting metrics on underlying 10831 * interfaces, we explicitly fail to smoke 'em out. 10832 */ 10833 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10834 return (EINVAL); 10835 10836 /* 10837 * Set interface metric. We don't use this for 10838 * anything but we keep track of it in case it is 10839 * important to routing applications or such. 10840 */ 10841 if (ipip->ipi_cmd_type == IF_CMD) { 10842 struct ifreq *ifr; 10843 10844 ifr = (struct ifreq *)if_req; 10845 ipif->ipif_metric = ifr->ifr_metric; 10846 } else { 10847 struct lifreq *lifr; 10848 10849 lifr = (struct lifreq *)if_req; 10850 ipif->ipif_metric = lifr->lifr_metric; 10851 } 10852 return (0); 10853 } 10854 10855 /* ARGSUSED */ 10856 int 10857 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10858 ip_ioctl_cmd_t *ipip, void *if_req) 10859 { 10860 /* Get interface metric. */ 10861 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10862 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10863 10864 if (ipip->ipi_cmd_type == IF_CMD) { 10865 struct ifreq *ifr; 10866 10867 ifr = (struct ifreq *)if_req; 10868 ifr->ifr_metric = ipif->ipif_metric; 10869 } else { 10870 struct lifreq *lifr; 10871 10872 lifr = (struct lifreq *)if_req; 10873 lifr->lifr_metric = ipif->ipif_metric; 10874 } 10875 10876 return (0); 10877 } 10878 10879 /* ARGSUSED */ 10880 int 10881 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10882 ip_ioctl_cmd_t *ipip, void *if_req) 10883 { 10884 int arp_muxid; 10885 10886 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10887 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10888 /* 10889 * Set the muxid returned from I_PLINK. 10890 */ 10891 if (ipip->ipi_cmd_type == IF_CMD) { 10892 struct ifreq *ifr = (struct ifreq *)if_req; 10893 10894 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10895 arp_muxid = ifr->ifr_arp_muxid; 10896 } else { 10897 struct lifreq *lifr = (struct lifreq *)if_req; 10898 10899 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10900 arp_muxid = lifr->lifr_arp_muxid; 10901 } 10902 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10903 return (0); 10904 } 10905 10906 /* ARGSUSED */ 10907 int 10908 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10909 ip_ioctl_cmd_t *ipip, void *if_req) 10910 { 10911 int arp_muxid = 0; 10912 10913 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10914 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10915 /* 10916 * Get the muxid saved in ill for I_PUNLINK. 10917 */ 10918 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10919 if (ipip->ipi_cmd_type == IF_CMD) { 10920 struct ifreq *ifr = (struct ifreq *)if_req; 10921 10922 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10923 ifr->ifr_arp_muxid = arp_muxid; 10924 } else { 10925 struct lifreq *lifr = (struct lifreq *)if_req; 10926 10927 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10928 lifr->lifr_arp_muxid = arp_muxid; 10929 } 10930 return (0); 10931 } 10932 10933 /* 10934 * Set the subnet prefix. Does not modify the broadcast address. 10935 */ 10936 /* ARGSUSED */ 10937 int 10938 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10939 ip_ioctl_cmd_t *ipip, void *if_req) 10940 { 10941 int err = 0; 10942 in6_addr_t v6addr; 10943 in6_addr_t v6mask; 10944 boolean_t need_up = B_FALSE; 10945 int addrlen; 10946 10947 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10948 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10949 10950 ASSERT(IAM_WRITER_IPIF(ipif)); 10951 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10952 10953 if (ipif->ipif_isv6) { 10954 sin6_t *sin6; 10955 10956 if (sin->sin_family != AF_INET6) 10957 return (EAFNOSUPPORT); 10958 10959 sin6 = (sin6_t *)sin; 10960 v6addr = sin6->sin6_addr; 10961 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10962 return (EADDRNOTAVAIL); 10963 } else { 10964 ipaddr_t addr; 10965 10966 if (sin->sin_family != AF_INET) 10967 return (EAFNOSUPPORT); 10968 10969 addr = sin->sin_addr.s_addr; 10970 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10971 return (EADDRNOTAVAIL); 10972 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10973 /* Add 96 bits */ 10974 addrlen += IPV6_ABITS - IP_ABITS; 10975 } 10976 10977 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10978 return (EINVAL); 10979 10980 /* Check if bits in the address is set past the mask */ 10981 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10982 return (EINVAL); 10983 10984 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10985 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10986 return (0); /* No change */ 10987 10988 if (ipif->ipif_flags & IPIF_UP) { 10989 /* 10990 * If the interface is already marked up, 10991 * we call ipif_down which will take care 10992 * of ditching any IREs that have been set 10993 * up based on the old interface address. 10994 */ 10995 err = ipif_logical_down(ipif, q, mp); 10996 if (err == EINPROGRESS) 10997 return (err); 10998 (void) ipif_down_tail(ipif); 10999 need_up = B_TRUE; 11000 } 11001 11002 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11003 return (err); 11004 } 11005 11006 static int 11007 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11008 queue_t *q, mblk_t *mp, boolean_t need_up) 11009 { 11010 ill_t *ill = ipif->ipif_ill; 11011 int err = 0; 11012 11013 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11014 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11015 11016 /* Set the new address. */ 11017 mutex_enter(&ill->ill_lock); 11018 ipif->ipif_v6net_mask = v6mask; 11019 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11020 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11021 ipif->ipif_v6subnet); 11022 } 11023 mutex_exit(&ill->ill_lock); 11024 11025 if (need_up) { 11026 /* 11027 * Now bring the interface back up. If this 11028 * is the only IPIF for the ILL, ipif_up 11029 * will have to re-bind to the device, so 11030 * we may get back EINPROGRESS, in which 11031 * case, this IOCTL will get completed in 11032 * ip_rput_dlpi when we see the DL_BIND_ACK. 11033 */ 11034 err = ipif_up(ipif, q, mp); 11035 if (err == EINPROGRESS) 11036 return (err); 11037 } 11038 return (err); 11039 } 11040 11041 /* ARGSUSED */ 11042 int 11043 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11044 ip_ioctl_cmd_t *ipip, void *if_req) 11045 { 11046 int addrlen; 11047 in6_addr_t v6addr; 11048 in6_addr_t v6mask; 11049 struct lifreq *lifr = (struct lifreq *)if_req; 11050 11051 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11053 (void) ipif_down_tail(ipif); 11054 11055 addrlen = lifr->lifr_addrlen; 11056 if (ipif->ipif_isv6) { 11057 sin6_t *sin6; 11058 11059 sin6 = (sin6_t *)sin; 11060 v6addr = sin6->sin6_addr; 11061 } else { 11062 ipaddr_t addr; 11063 11064 addr = sin->sin_addr.s_addr; 11065 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11066 addrlen += IPV6_ABITS - IP_ABITS; 11067 } 11068 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11069 11070 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11071 } 11072 11073 /* ARGSUSED */ 11074 int 11075 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11076 ip_ioctl_cmd_t *ipip, void *if_req) 11077 { 11078 struct lifreq *lifr = (struct lifreq *)if_req; 11079 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11080 11081 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11083 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11084 11085 if (ipif->ipif_isv6) { 11086 *sin6 = sin6_null; 11087 sin6->sin6_family = AF_INET6; 11088 sin6->sin6_addr = ipif->ipif_v6subnet; 11089 lifr->lifr_addrlen = 11090 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11091 } else { 11092 *sin = sin_null; 11093 sin->sin_family = AF_INET; 11094 sin->sin_addr.s_addr = ipif->ipif_subnet; 11095 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11096 } 11097 return (0); 11098 } 11099 11100 /* 11101 * Set the IPv6 address token. 11102 */ 11103 /* ARGSUSED */ 11104 int 11105 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11106 ip_ioctl_cmd_t *ipi, void *if_req) 11107 { 11108 ill_t *ill = ipif->ipif_ill; 11109 int err; 11110 in6_addr_t v6addr; 11111 in6_addr_t v6mask; 11112 boolean_t need_up = B_FALSE; 11113 int i; 11114 sin6_t *sin6 = (sin6_t *)sin; 11115 struct lifreq *lifr = (struct lifreq *)if_req; 11116 int addrlen; 11117 11118 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11120 ASSERT(IAM_WRITER_IPIF(ipif)); 11121 11122 addrlen = lifr->lifr_addrlen; 11123 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11124 if (ipif->ipif_id != 0) 11125 return (EINVAL); 11126 11127 if (!ipif->ipif_isv6) 11128 return (EINVAL); 11129 11130 if (addrlen > IPV6_ABITS) 11131 return (EINVAL); 11132 11133 v6addr = sin6->sin6_addr; 11134 11135 /* 11136 * The length of the token is the length from the end. To get 11137 * the proper mask for this, compute the mask of the bits not 11138 * in the token; ie. the prefix, and then xor to get the mask. 11139 */ 11140 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11141 return (EINVAL); 11142 for (i = 0; i < 4; i++) { 11143 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11144 } 11145 11146 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11147 ill->ill_token_length == addrlen) 11148 return (0); /* No change */ 11149 11150 if (ipif->ipif_flags & IPIF_UP) { 11151 err = ipif_logical_down(ipif, q, mp); 11152 if (err == EINPROGRESS) 11153 return (err); 11154 (void) ipif_down_tail(ipif); 11155 need_up = B_TRUE; 11156 } 11157 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11158 return (err); 11159 } 11160 11161 static int 11162 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11163 mblk_t *mp, boolean_t need_up) 11164 { 11165 in6_addr_t v6addr; 11166 in6_addr_t v6mask; 11167 ill_t *ill = ipif->ipif_ill; 11168 int i; 11169 int err = 0; 11170 11171 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11173 v6addr = sin6->sin6_addr; 11174 /* 11175 * The length of the token is the length from the end. To get 11176 * the proper mask for this, compute the mask of the bits not 11177 * in the token; ie. the prefix, and then xor to get the mask. 11178 */ 11179 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11180 for (i = 0; i < 4; i++) 11181 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11182 11183 mutex_enter(&ill->ill_lock); 11184 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11185 ill->ill_token_length = addrlen; 11186 ill->ill_manual_token = 1; 11187 11188 /* Reconfigure the link-local address based on this new token */ 11189 ipif_setlinklocal(ill->ill_ipif); 11190 11191 mutex_exit(&ill->ill_lock); 11192 11193 if (need_up) { 11194 /* 11195 * Now bring the interface back up. If this 11196 * is the only IPIF for the ILL, ipif_up 11197 * will have to re-bind to the device, so 11198 * we may get back EINPROGRESS, in which 11199 * case, this IOCTL will get completed in 11200 * ip_rput_dlpi when we see the DL_BIND_ACK. 11201 */ 11202 err = ipif_up(ipif, q, mp); 11203 if (err == EINPROGRESS) 11204 return (err); 11205 } 11206 return (err); 11207 } 11208 11209 /* ARGSUSED */ 11210 int 11211 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11212 ip_ioctl_cmd_t *ipi, void *if_req) 11213 { 11214 ill_t *ill; 11215 sin6_t *sin6 = (sin6_t *)sin; 11216 struct lifreq *lifr = (struct lifreq *)if_req; 11217 11218 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11219 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11220 if (ipif->ipif_id != 0) 11221 return (EINVAL); 11222 11223 ill = ipif->ipif_ill; 11224 if (!ill->ill_isv6) 11225 return (ENXIO); 11226 11227 *sin6 = sin6_null; 11228 sin6->sin6_family = AF_INET6; 11229 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11230 sin6->sin6_addr = ill->ill_token; 11231 lifr->lifr_addrlen = ill->ill_token_length; 11232 return (0); 11233 } 11234 11235 /* 11236 * Set (hardware) link specific information that might override 11237 * what was acquired through the DL_INFO_ACK. 11238 */ 11239 /* ARGSUSED */ 11240 int 11241 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11242 ip_ioctl_cmd_t *ipi, void *if_req) 11243 { 11244 ill_t *ill = ipif->ipif_ill; 11245 int ip_min_mtu; 11246 struct lifreq *lifr = (struct lifreq *)if_req; 11247 lif_ifinfo_req_t *lir; 11248 11249 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11250 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11251 lir = &lifr->lifr_ifinfo; 11252 ASSERT(IAM_WRITER_IPIF(ipif)); 11253 11254 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11255 if (ipif->ipif_id != 0) 11256 return (EINVAL); 11257 11258 /* Set interface MTU. */ 11259 if (ipif->ipif_isv6) 11260 ip_min_mtu = IPV6_MIN_MTU; 11261 else 11262 ip_min_mtu = IP_MIN_MTU; 11263 11264 /* 11265 * Verify values before we set anything. Allow zero to 11266 * mean unspecified. 11267 * 11268 * XXX We should be able to set the user-defined lir_mtu to some value 11269 * that is greater than ill_current_frag but less than ill_max_frag- the 11270 * ill_max_frag value tells us the max MTU that can be handled by the 11271 * datalink, whereas the ill_current_frag is dynamically computed for 11272 * some link-types like tunnels, based on the tunnel PMTU. However, 11273 * since there is currently no way of distinguishing between 11274 * administratively fixed link mtu values (e.g., those set via 11275 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11276 * for tunnels) we conservatively choose the ill_current_frag as the 11277 * upper-bound. 11278 */ 11279 if (lir->lir_maxmtu != 0 && 11280 (lir->lir_maxmtu > ill->ill_current_frag || 11281 lir->lir_maxmtu < ip_min_mtu)) 11282 return (EINVAL); 11283 if (lir->lir_reachtime != 0 && 11284 lir->lir_reachtime > ND_MAX_REACHTIME) 11285 return (EINVAL); 11286 if (lir->lir_reachretrans != 0 && 11287 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11288 return (EINVAL); 11289 11290 mutex_enter(&ill->ill_lock); 11291 /* 11292 * The dce and fragmentation code can handle changes to ill_mtu 11293 * concurrent with sending/fragmenting packets. 11294 */ 11295 if (lir->lir_maxmtu != 0) 11296 ill->ill_user_mtu = lir->lir_maxmtu; 11297 11298 if (lir->lir_reachtime != 0) 11299 ill->ill_reachable_time = lir->lir_reachtime; 11300 11301 if (lir->lir_reachretrans != 0) 11302 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11303 11304 ill->ill_max_hops = lir->lir_maxhops; 11305 ill->ill_max_buf = ND_MAX_Q; 11306 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11307 /* 11308 * ill_mtu is the actual interface MTU, obtained as the min 11309 * of user-configured mtu and the value announced by the 11310 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11311 * we have already made the choice of requiring 11312 * ill_user_mtu < ill_current_frag by the time we get here, 11313 * the ill_mtu effectively gets assigned to the ill_user_mtu 11314 * here. 11315 */ 11316 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11317 } 11318 mutex_exit(&ill->ill_lock); 11319 11320 /* 11321 * Make sure all dce_generation checks find out 11322 * that ill_mtu has changed. 11323 */ 11324 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11325 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11326 11327 /* 11328 * Refresh IPMP meta-interface MTU if necessary. 11329 */ 11330 if (IS_UNDER_IPMP(ill)) 11331 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11332 11333 return (0); 11334 } 11335 11336 /* ARGSUSED */ 11337 int 11338 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11339 ip_ioctl_cmd_t *ipi, void *if_req) 11340 { 11341 struct lif_ifinfo_req *lir; 11342 ill_t *ill = ipif->ipif_ill; 11343 11344 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11345 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11346 if (ipif->ipif_id != 0) 11347 return (EINVAL); 11348 11349 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11350 lir->lir_maxhops = ill->ill_max_hops; 11351 lir->lir_reachtime = ill->ill_reachable_time; 11352 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11353 lir->lir_maxmtu = ill->ill_mtu; 11354 11355 return (0); 11356 } 11357 11358 /* 11359 * Return best guess as to the subnet mask for the specified address. 11360 * Based on the subnet masks for all the configured interfaces. 11361 * 11362 * We end up returning a zero mask in the case of default, multicast or 11363 * experimental. 11364 */ 11365 static ipaddr_t 11366 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11367 { 11368 ipaddr_t net_mask; 11369 ill_t *ill; 11370 ipif_t *ipif; 11371 ill_walk_context_t ctx; 11372 ipif_t *fallback_ipif = NULL; 11373 11374 net_mask = ip_net_mask(addr); 11375 if (net_mask == 0) { 11376 *ipifp = NULL; 11377 return (0); 11378 } 11379 11380 /* Let's check to see if this is maybe a local subnet route. */ 11381 /* this function only applies to IPv4 interfaces */ 11382 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11383 ill = ILL_START_WALK_V4(&ctx, ipst); 11384 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11385 mutex_enter(&ill->ill_lock); 11386 for (ipif = ill->ill_ipif; ipif != NULL; 11387 ipif = ipif->ipif_next) { 11388 if (IPIF_IS_CONDEMNED(ipif)) 11389 continue; 11390 if (!(ipif->ipif_flags & IPIF_UP)) 11391 continue; 11392 if ((ipif->ipif_subnet & net_mask) == 11393 (addr & net_mask)) { 11394 /* 11395 * Don't trust pt-pt interfaces if there are 11396 * other interfaces. 11397 */ 11398 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11399 if (fallback_ipif == NULL) { 11400 ipif_refhold_locked(ipif); 11401 fallback_ipif = ipif; 11402 } 11403 continue; 11404 } 11405 11406 /* 11407 * Fine. Just assume the same net mask as the 11408 * directly attached subnet interface is using. 11409 */ 11410 ipif_refhold_locked(ipif); 11411 mutex_exit(&ill->ill_lock); 11412 rw_exit(&ipst->ips_ill_g_lock); 11413 if (fallback_ipif != NULL) 11414 ipif_refrele(fallback_ipif); 11415 *ipifp = ipif; 11416 return (ipif->ipif_net_mask); 11417 } 11418 } 11419 mutex_exit(&ill->ill_lock); 11420 } 11421 rw_exit(&ipst->ips_ill_g_lock); 11422 11423 *ipifp = fallback_ipif; 11424 return ((fallback_ipif != NULL) ? 11425 fallback_ipif->ipif_net_mask : net_mask); 11426 } 11427 11428 /* 11429 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11430 */ 11431 static void 11432 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11433 { 11434 IOCP iocp; 11435 ipft_t *ipft; 11436 ipllc_t *ipllc; 11437 mblk_t *mp1; 11438 cred_t *cr; 11439 int error = 0; 11440 conn_t *connp; 11441 11442 ip1dbg(("ip_wput_ioctl")); 11443 iocp = (IOCP)mp->b_rptr; 11444 mp1 = mp->b_cont; 11445 if (mp1 == NULL) { 11446 iocp->ioc_error = EINVAL; 11447 mp->b_datap->db_type = M_IOCNAK; 11448 iocp->ioc_count = 0; 11449 qreply(q, mp); 11450 return; 11451 } 11452 11453 /* 11454 * These IOCTLs provide various control capabilities to 11455 * upstream agents such as ULPs and processes. There 11456 * are currently two such IOCTLs implemented. They 11457 * are used by TCP to provide update information for 11458 * existing IREs and to forcibly delete an IRE for a 11459 * host that is not responding, thereby forcing an 11460 * attempt at a new route. 11461 */ 11462 iocp->ioc_error = EINVAL; 11463 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11464 goto done; 11465 11466 ipllc = (ipllc_t *)mp1->b_rptr; 11467 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11468 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11469 break; 11470 } 11471 /* 11472 * prefer credential from mblk over ioctl; 11473 * see ip_sioctl_copyin_setup 11474 */ 11475 cr = msg_getcred(mp, NULL); 11476 if (cr == NULL) 11477 cr = iocp->ioc_cr; 11478 11479 /* 11480 * Refhold the conn in case the request gets queued up in some lookup 11481 */ 11482 ASSERT(CONN_Q(q)); 11483 connp = Q_TO_CONN(q); 11484 CONN_INC_REF(connp); 11485 if (ipft->ipft_pfi && 11486 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11487 pullupmsg(mp1, ipft->ipft_min_size))) { 11488 error = (*ipft->ipft_pfi)(q, 11489 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11490 } 11491 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11492 /* 11493 * CONN_OPER_PENDING_DONE happens in the function called 11494 * through ipft_pfi above. 11495 */ 11496 return; 11497 } 11498 11499 CONN_OPER_PENDING_DONE(connp); 11500 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11501 freemsg(mp); 11502 return; 11503 } 11504 iocp->ioc_error = error; 11505 11506 done: 11507 mp->b_datap->db_type = M_IOCACK; 11508 if (iocp->ioc_error) 11509 iocp->ioc_count = 0; 11510 qreply(q, mp); 11511 } 11512 11513 /* 11514 * Assign a unique id for the ipif. This is used by sctp_addr.c 11515 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11516 */ 11517 static void 11518 ipif_assign_seqid(ipif_t *ipif) 11519 { 11520 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11521 11522 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11523 } 11524 11525 /* 11526 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11527 * administratively down (i.e., no DAD), of the same type, and locked. Note 11528 * that the clone is complete -- including the seqid -- and the expectation is 11529 * that the caller will either free or overwrite `sipif' before it's unlocked. 11530 */ 11531 static void 11532 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11533 { 11534 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11535 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11536 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11537 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11538 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11539 11540 dipif->ipif_flags = sipif->ipif_flags; 11541 dipif->ipif_metric = sipif->ipif_metric; 11542 dipif->ipif_zoneid = sipif->ipif_zoneid; 11543 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11544 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11545 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11546 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11547 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11548 11549 /* 11550 * As per the comment atop the function, we assume that these sipif 11551 * fields will be changed before sipif is unlocked. 11552 */ 11553 dipif->ipif_seqid = sipif->ipif_seqid; 11554 dipif->ipif_state_flags = sipif->ipif_state_flags; 11555 } 11556 11557 /* 11558 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11559 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11560 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11561 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11562 * down (i.e., no DAD), of the same type, and unlocked. 11563 */ 11564 static void 11565 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11566 { 11567 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11568 ipxop_t *ipx = ipsq->ipsq_xop; 11569 11570 ASSERT(sipif != dipif); 11571 ASSERT(sipif != virgipif); 11572 11573 /* 11574 * Grab all of the locks that protect the ipif in a defined order. 11575 */ 11576 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11577 11578 ipif_clone(sipif, dipif); 11579 if (virgipif != NULL) { 11580 ipif_clone(virgipif, sipif); 11581 mi_free(virgipif); 11582 } 11583 11584 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11585 11586 /* 11587 * Transfer ownership of the current xop, if necessary. 11588 */ 11589 if (ipx->ipx_current_ipif == sipif) { 11590 ASSERT(ipx->ipx_pending_ipif == NULL); 11591 mutex_enter(&ipx->ipx_lock); 11592 ipx->ipx_current_ipif = dipif; 11593 mutex_exit(&ipx->ipx_lock); 11594 } 11595 11596 if (virgipif == NULL) 11597 mi_free(sipif); 11598 } 11599 11600 /* 11601 * checks if: 11602 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11603 * - logical interface is within the allowed range 11604 */ 11605 static int 11606 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11607 { 11608 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11609 return (ENAMETOOLONG); 11610 11611 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11612 return (ERANGE); 11613 return (0); 11614 } 11615 11616 /* 11617 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11618 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11619 * be inserted into the first space available in the list. The value of 11620 * ipif_id will then be set to the appropriate value for its position. 11621 */ 11622 static int 11623 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11624 { 11625 ill_t *ill; 11626 ipif_t *tipif; 11627 ipif_t **tipifp; 11628 int id, err; 11629 ip_stack_t *ipst; 11630 11631 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11632 IAM_WRITER_IPIF(ipif)); 11633 11634 ill = ipif->ipif_ill; 11635 ASSERT(ill != NULL); 11636 ipst = ill->ill_ipst; 11637 11638 /* 11639 * In the case of lo0:0 we already hold the ill_g_lock. 11640 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11641 * ipif_insert. 11642 */ 11643 if (acquire_g_lock) 11644 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11645 mutex_enter(&ill->ill_lock); 11646 id = ipif->ipif_id; 11647 tipifp = &(ill->ill_ipif); 11648 if (id == -1) { /* need to find a real id */ 11649 id = 0; 11650 while ((tipif = *tipifp) != NULL) { 11651 ASSERT(tipif->ipif_id >= id); 11652 if (tipif->ipif_id != id) 11653 break; /* non-consecutive id */ 11654 id++; 11655 tipifp = &(tipif->ipif_next); 11656 } 11657 if ((err = is_lifname_valid(ill, id)) != 0) { 11658 mutex_exit(&ill->ill_lock); 11659 if (acquire_g_lock) 11660 rw_exit(&ipst->ips_ill_g_lock); 11661 return (err); 11662 } 11663 ipif->ipif_id = id; /* assign new id */ 11664 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11665 /* we have a real id; insert ipif in the right place */ 11666 while ((tipif = *tipifp) != NULL) { 11667 ASSERT(tipif->ipif_id != id); 11668 if (tipif->ipif_id > id) 11669 break; /* found correct location */ 11670 tipifp = &(tipif->ipif_next); 11671 } 11672 } else { 11673 mutex_exit(&ill->ill_lock); 11674 if (acquire_g_lock) 11675 rw_exit(&ipst->ips_ill_g_lock); 11676 return (err); 11677 } 11678 11679 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11680 11681 ipif->ipif_next = tipif; 11682 *tipifp = ipif; 11683 mutex_exit(&ill->ill_lock); 11684 if (acquire_g_lock) 11685 rw_exit(&ipst->ips_ill_g_lock); 11686 11687 return (0); 11688 } 11689 11690 static void 11691 ipif_remove(ipif_t *ipif) 11692 { 11693 ipif_t **ipifp; 11694 ill_t *ill = ipif->ipif_ill; 11695 11696 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11697 11698 mutex_enter(&ill->ill_lock); 11699 ipifp = &ill->ill_ipif; 11700 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11701 if (*ipifp == ipif) { 11702 *ipifp = ipif->ipif_next; 11703 break; 11704 } 11705 } 11706 mutex_exit(&ill->ill_lock); 11707 } 11708 11709 /* 11710 * Allocate and initialize a new interface control structure. (Always 11711 * called as writer.) 11712 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11713 * is not part of the global linked list of ills. ipif_seqid is unique 11714 * in the system and to preserve the uniqueness, it is assigned only 11715 * when ill becomes part of the global list. At that point ill will 11716 * have a name. If it doesn't get assigned here, it will get assigned 11717 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11718 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11719 * the interface flags or any other information from the DL_INFO_ACK for 11720 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11721 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11722 * second DL_INFO_ACK comes in from the driver. 11723 */ 11724 static ipif_t * 11725 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11726 boolean_t insert, int *errorp) 11727 { 11728 int err; 11729 ipif_t *ipif; 11730 ip_stack_t *ipst = ill->ill_ipst; 11731 11732 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11733 ill->ill_name, id, (void *)ill)); 11734 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11735 11736 if (errorp != NULL) 11737 *errorp = 0; 11738 11739 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11740 if (errorp != NULL) 11741 *errorp = ENOMEM; 11742 return (NULL); 11743 } 11744 *ipif = ipif_zero; /* start clean */ 11745 11746 ipif->ipif_ill = ill; 11747 ipif->ipif_id = id; /* could be -1 */ 11748 /* 11749 * Inherit the zoneid from the ill; for the shared stack instance 11750 * this is always the global zone 11751 */ 11752 ipif->ipif_zoneid = ill->ill_zoneid; 11753 11754 ipif->ipif_refcnt = 0; 11755 11756 if (insert) { 11757 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11758 mi_free(ipif); 11759 if (errorp != NULL) 11760 *errorp = err; 11761 return (NULL); 11762 } 11763 /* -1 id should have been replaced by real id */ 11764 id = ipif->ipif_id; 11765 ASSERT(id >= 0); 11766 } 11767 11768 if (ill->ill_name[0] != '\0') 11769 ipif_assign_seqid(ipif); 11770 11771 /* 11772 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11773 * (which must not exist yet because the zeroth ipif is created once 11774 * per ill). However, do not not link it to the ipmp_grp_t until 11775 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11776 */ 11777 if (id == 0 && IS_IPMP(ill)) { 11778 if (ipmp_illgrp_create(ill) == NULL) { 11779 if (insert) { 11780 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11781 ipif_remove(ipif); 11782 rw_exit(&ipst->ips_ill_g_lock); 11783 } 11784 mi_free(ipif); 11785 if (errorp != NULL) 11786 *errorp = ENOMEM; 11787 return (NULL); 11788 } 11789 } 11790 11791 /* 11792 * We grab ill_lock to protect the flag changes. The ipif is still 11793 * not up and can't be looked up until the ioctl completes and the 11794 * IPIF_CHANGING flag is cleared. 11795 */ 11796 mutex_enter(&ill->ill_lock); 11797 11798 ipif->ipif_ire_type = ire_type; 11799 11800 if (ipif->ipif_isv6) { 11801 ill->ill_flags |= ILLF_IPV6; 11802 } else { 11803 ipaddr_t inaddr_any = INADDR_ANY; 11804 11805 ill->ill_flags |= ILLF_IPV4; 11806 11807 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11808 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11809 &ipif->ipif_v6lcl_addr); 11810 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11811 &ipif->ipif_v6subnet); 11812 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11813 &ipif->ipif_v6net_mask); 11814 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11815 &ipif->ipif_v6brd_addr); 11816 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11817 &ipif->ipif_v6pp_dst_addr); 11818 } 11819 11820 /* 11821 * Don't set the interface flags etc. now, will do it in 11822 * ip_ll_subnet_defaults. 11823 */ 11824 if (!initialize) 11825 goto out; 11826 11827 /* 11828 * NOTE: The IPMP meta-interface is special-cased because it starts 11829 * with no underlying interfaces (and thus an unknown broadcast 11830 * address length), but all interfaces that can be placed into an IPMP 11831 * group are required to be broadcast-capable. 11832 */ 11833 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11834 /* 11835 * Later detect lack of DLPI driver multicast capability by 11836 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11837 */ 11838 ill->ill_flags |= ILLF_MULTICAST; 11839 if (!ipif->ipif_isv6) 11840 ipif->ipif_flags |= IPIF_BROADCAST; 11841 } else { 11842 if (ill->ill_net_type != IRE_LOOPBACK) { 11843 if (ipif->ipif_isv6) 11844 /* 11845 * Note: xresolv interfaces will eventually need 11846 * NOARP set here as well, but that will require 11847 * those external resolvers to have some 11848 * knowledge of that flag and act appropriately. 11849 * Not to be changed at present. 11850 */ 11851 ill->ill_flags |= ILLF_NONUD; 11852 else 11853 ill->ill_flags |= ILLF_NOARP; 11854 } 11855 if (ill->ill_phys_addr_length == 0) { 11856 if (IS_VNI(ill)) { 11857 ipif->ipif_flags |= IPIF_NOXMIT; 11858 } else { 11859 /* pt-pt supports multicast. */ 11860 ill->ill_flags |= ILLF_MULTICAST; 11861 if (ill->ill_net_type != IRE_LOOPBACK) 11862 ipif->ipif_flags |= IPIF_POINTOPOINT; 11863 } 11864 } 11865 } 11866 out: 11867 mutex_exit(&ill->ill_lock); 11868 return (ipif); 11869 } 11870 11871 /* 11872 * Remove the neighbor cache entries associated with this logical 11873 * interface. 11874 */ 11875 int 11876 ipif_arp_down(ipif_t *ipif) 11877 { 11878 ill_t *ill = ipif->ipif_ill; 11879 int err = 0; 11880 11881 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11882 ASSERT(IAM_WRITER_IPIF(ipif)); 11883 11884 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11885 ill_t *, ill, ipif_t *, ipif); 11886 ipif_nce_down(ipif); 11887 11888 /* 11889 * If this is the last ipif that is going down and there are no 11890 * duplicate addresses we may yet attempt to re-probe, then we need to 11891 * clean up ARP completely. 11892 */ 11893 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11894 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11895 /* 11896 * If this was the last ipif on an IPMP interface, purge any 11897 * static ARP entries associated with it. 11898 */ 11899 if (IS_IPMP(ill)) 11900 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11901 11902 /* UNBIND, DETACH */ 11903 err = arp_ll_down(ill); 11904 } 11905 11906 return (err); 11907 } 11908 11909 /* 11910 * Get the resolver set up for a new IP address. (Always called as writer.) 11911 * Called both for IPv4 and IPv6 interfaces, though it only does some 11912 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11913 * 11914 * The enumerated value res_act tunes the behavior: 11915 * * Res_act_initial: set up all the resolver structures for a new 11916 * IP address. 11917 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11918 * ARP message in defense of the address. 11919 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11920 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11921 * 11922 * Returns zero on success, or an errno upon failure. 11923 */ 11924 int 11925 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11926 { 11927 ill_t *ill = ipif->ipif_ill; 11928 int err; 11929 boolean_t was_dup; 11930 11931 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11932 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11933 ASSERT(IAM_WRITER_IPIF(ipif)); 11934 11935 was_dup = B_FALSE; 11936 if (res_act == Res_act_initial) { 11937 ipif->ipif_addr_ready = 0; 11938 /* 11939 * We're bringing an interface up here. There's no way that we 11940 * should need to shut down ARP now. 11941 */ 11942 mutex_enter(&ill->ill_lock); 11943 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11944 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11945 ill->ill_ipif_dup_count--; 11946 was_dup = B_TRUE; 11947 } 11948 mutex_exit(&ill->ill_lock); 11949 } 11950 if (ipif->ipif_recovery_id != 0) 11951 (void) untimeout(ipif->ipif_recovery_id); 11952 ipif->ipif_recovery_id = 0; 11953 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11954 ipif->ipif_addr_ready = 1; 11955 return (0); 11956 } 11957 /* NDP will set the ipif_addr_ready flag when it's ready */ 11958 if (ill->ill_isv6) 11959 return (0); 11960 11961 err = ipif_arp_up(ipif, res_act, was_dup); 11962 return (err); 11963 } 11964 11965 /* 11966 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11967 * when a link has just gone back up. 11968 */ 11969 static void 11970 ipif_nce_start_dad(ipif_t *ipif) 11971 { 11972 ncec_t *ncec; 11973 ill_t *ill = ipif->ipif_ill; 11974 boolean_t isv6 = ill->ill_isv6; 11975 11976 if (isv6) { 11977 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11978 &ipif->ipif_v6lcl_addr); 11979 } else { 11980 ipaddr_t v4addr; 11981 11982 if (ill->ill_net_type != IRE_IF_RESOLVER || 11983 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11984 ipif->ipif_lcl_addr == INADDR_ANY) { 11985 /* 11986 * If we can't contact ARP for some reason, 11987 * that's not really a problem. Just send 11988 * out the routing socket notification that 11989 * DAD completion would have done, and continue. 11990 */ 11991 ipif_mask_reply(ipif); 11992 ipif_up_notify(ipif); 11993 ipif->ipif_addr_ready = 1; 11994 return; 11995 } 11996 11997 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11998 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11999 } 12000 12001 if (ncec == NULL) { 12002 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12003 (void *)ipif)); 12004 return; 12005 } 12006 if (!nce_restart_dad(ncec)) { 12007 /* 12008 * If we can't restart DAD for some reason, that's not really a 12009 * problem. Just send out the routing socket notification that 12010 * DAD completion would have done, and continue. 12011 */ 12012 ipif_up_notify(ipif); 12013 ipif->ipif_addr_ready = 1; 12014 } 12015 ncec_refrele(ncec); 12016 } 12017 12018 /* 12019 * Restart duplicate address detection on all interfaces on the given ill. 12020 * 12021 * This is called when an interface transitions from down to up 12022 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12023 * 12024 * Note that since the underlying physical link has transitioned, we must cause 12025 * at least one routing socket message to be sent here, either via DAD 12026 * completion or just by default on the first ipif. (If we don't do this, then 12027 * in.mpathd will see long delays when doing link-based failure recovery.) 12028 */ 12029 void 12030 ill_restart_dad(ill_t *ill, boolean_t went_up) 12031 { 12032 ipif_t *ipif; 12033 12034 if (ill == NULL) 12035 return; 12036 12037 /* 12038 * If layer two doesn't support duplicate address detection, then just 12039 * send the routing socket message now and be done with it. 12040 */ 12041 if (!ill->ill_isv6 && arp_no_defense) { 12042 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12043 return; 12044 } 12045 12046 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12047 if (went_up) { 12048 12049 if (ipif->ipif_flags & IPIF_UP) { 12050 ipif_nce_start_dad(ipif); 12051 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12052 /* 12053 * kick off the bring-up process now. 12054 */ 12055 ipif_do_recovery(ipif); 12056 } else { 12057 /* 12058 * Unfortunately, the first ipif is "special" 12059 * and represents the underlying ill in the 12060 * routing socket messages. Thus, when this 12061 * one ipif is down, we must still notify so 12062 * that the user knows the IFF_RUNNING status 12063 * change. (If the first ipif is up, then 12064 * we'll handle eventual routing socket 12065 * notification via DAD completion.) 12066 */ 12067 if (ipif == ill->ill_ipif) { 12068 ip_rts_ifmsg(ill->ill_ipif, 12069 RTSQ_DEFAULT); 12070 } 12071 } 12072 } else { 12073 /* 12074 * After link down, we'll need to send a new routing 12075 * message when the link comes back, so clear 12076 * ipif_addr_ready. 12077 */ 12078 ipif->ipif_addr_ready = 0; 12079 } 12080 } 12081 12082 /* 12083 * If we've torn down links, then notify the user right away. 12084 */ 12085 if (!went_up) 12086 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12087 } 12088 12089 static void 12090 ipsq_delete(ipsq_t *ipsq) 12091 { 12092 ipxop_t *ipx = ipsq->ipsq_xop; 12093 12094 ipsq->ipsq_ipst = NULL; 12095 ASSERT(ipsq->ipsq_phyint == NULL); 12096 ASSERT(ipsq->ipsq_xop != NULL); 12097 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12098 ASSERT(ipx->ipx_pending_mp == NULL); 12099 kmem_free(ipsq, sizeof (ipsq_t)); 12100 } 12101 12102 static int 12103 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12104 { 12105 int err = 0; 12106 ipif_t *ipif; 12107 12108 if (ill == NULL) 12109 return (0); 12110 12111 ASSERT(IAM_WRITER_ILL(ill)); 12112 ill->ill_up_ipifs = B_TRUE; 12113 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12114 if (ipif->ipif_was_up) { 12115 if (!(ipif->ipif_flags & IPIF_UP)) 12116 err = ipif_up(ipif, q, mp); 12117 ipif->ipif_was_up = B_FALSE; 12118 if (err != 0) { 12119 ASSERT(err == EINPROGRESS); 12120 return (err); 12121 } 12122 } 12123 } 12124 ill->ill_up_ipifs = B_FALSE; 12125 return (0); 12126 } 12127 12128 /* 12129 * This function is called to bring up all the ipifs that were up before 12130 * bringing the ill down via ill_down_ipifs(). 12131 */ 12132 int 12133 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12134 { 12135 int err; 12136 12137 ASSERT(IAM_WRITER_ILL(ill)); 12138 12139 if (ill->ill_replumbing) { 12140 ill->ill_replumbing = 0; 12141 /* 12142 * Send down REPLUMB_DONE notification followed by the 12143 * BIND_REQ on the arp stream. 12144 */ 12145 if (!ill->ill_isv6) 12146 arp_send_replumb_conf(ill); 12147 } 12148 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12149 if (err != 0) 12150 return (err); 12151 12152 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12153 } 12154 12155 /* 12156 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12157 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12158 */ 12159 static void 12160 ill_down_ipifs(ill_t *ill, boolean_t logical) 12161 { 12162 ipif_t *ipif; 12163 12164 ASSERT(IAM_WRITER_ILL(ill)); 12165 12166 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12167 /* 12168 * We go through the ipif_down logic even if the ipif 12169 * is already down, since routes can be added based 12170 * on down ipifs. Going through ipif_down once again 12171 * will delete any IREs created based on these routes. 12172 */ 12173 if (ipif->ipif_flags & IPIF_UP) 12174 ipif->ipif_was_up = B_TRUE; 12175 12176 if (logical) { 12177 (void) ipif_logical_down(ipif, NULL, NULL); 12178 ipif_non_duplicate(ipif); 12179 (void) ipif_down_tail(ipif); 12180 } else { 12181 (void) ipif_down(ipif, NULL, NULL); 12182 } 12183 } 12184 } 12185 12186 /* 12187 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12188 * a look again at valid source addresses. 12189 * This should be called each time after the set of source addresses has been 12190 * changed. 12191 */ 12192 void 12193 ip_update_source_selection(ip_stack_t *ipst) 12194 { 12195 /* We skip past SRC_GENERATION_VERIFY */ 12196 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12197 SRC_GENERATION_VERIFY) 12198 atomic_add_32(&ipst->ips_src_generation, 1); 12199 } 12200 12201 /* 12202 * Finish the group join started in ip_sioctl_groupname(). 12203 */ 12204 /* ARGSUSED */ 12205 static void 12206 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12207 { 12208 ill_t *ill = q->q_ptr; 12209 phyint_t *phyi = ill->ill_phyint; 12210 ipmp_grp_t *grp = phyi->phyint_grp; 12211 ip_stack_t *ipst = ill->ill_ipst; 12212 12213 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12214 ASSERT(!IS_IPMP(ill) && grp != NULL); 12215 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12216 12217 if (phyi->phyint_illv4 != NULL) { 12218 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12219 VERIFY(grp->gr_pendv4-- > 0); 12220 rw_exit(&ipst->ips_ipmp_lock); 12221 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12222 } 12223 if (phyi->phyint_illv6 != NULL) { 12224 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12225 VERIFY(grp->gr_pendv6-- > 0); 12226 rw_exit(&ipst->ips_ipmp_lock); 12227 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12228 } 12229 freemsg(mp); 12230 } 12231 12232 /* 12233 * Process an SIOCSLIFGROUPNAME request. 12234 */ 12235 /* ARGSUSED */ 12236 int 12237 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12238 ip_ioctl_cmd_t *ipip, void *ifreq) 12239 { 12240 struct lifreq *lifr = ifreq; 12241 ill_t *ill = ipif->ipif_ill; 12242 ip_stack_t *ipst = ill->ill_ipst; 12243 phyint_t *phyi = ill->ill_phyint; 12244 ipmp_grp_t *grp = phyi->phyint_grp; 12245 mblk_t *ipsq_mp; 12246 int err = 0; 12247 12248 /* 12249 * Note that phyint_grp can only change here, where we're exclusive. 12250 */ 12251 ASSERT(IAM_WRITER_ILL(ill)); 12252 12253 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12254 (phyi->phyint_flags & PHYI_VIRTUAL)) 12255 return (EINVAL); 12256 12257 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12258 12259 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12260 12261 /* 12262 * If the name hasn't changed, there's nothing to do. 12263 */ 12264 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12265 goto unlock; 12266 12267 /* 12268 * Handle requests to rename an IPMP meta-interface. 12269 * 12270 * Note that creation of the IPMP meta-interface is handled in 12271 * userland through the standard plumbing sequence. As part of the 12272 * plumbing the IPMP meta-interface, its initial groupname is set to 12273 * the name of the interface (see ipif_set_values_tail()). 12274 */ 12275 if (IS_IPMP(ill)) { 12276 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12277 goto unlock; 12278 } 12279 12280 /* 12281 * Handle requests to add or remove an IP interface from a group. 12282 */ 12283 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12284 /* 12285 * Moves are handled by first removing the interface from 12286 * its existing group, and then adding it to another group. 12287 * So, fail if it's already in a group. 12288 */ 12289 if (IS_UNDER_IPMP(ill)) { 12290 err = EALREADY; 12291 goto unlock; 12292 } 12293 12294 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12295 if (grp == NULL) { 12296 err = ENOENT; 12297 goto unlock; 12298 } 12299 12300 /* 12301 * Check if the phyint and its ills are suitable for 12302 * inclusion into the group. 12303 */ 12304 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12305 goto unlock; 12306 12307 /* 12308 * Checks pass; join the group, and enqueue the remaining 12309 * illgrp joins for when we've become part of the group xop 12310 * and are exclusive across its IPSQs. Since qwriter_ip() 12311 * requires an mblk_t to scribble on, and since `mp' will be 12312 * freed as part of completing the ioctl, allocate another. 12313 */ 12314 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12315 err = ENOMEM; 12316 goto unlock; 12317 } 12318 12319 /* 12320 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12321 * IPMP meta-interface ills needed by `phyi' cannot go away 12322 * before ip_join_illgrps() is called back. See the comments 12323 * in ip_sioctl_plink_ipmp() for more. 12324 */ 12325 if (phyi->phyint_illv4 != NULL) 12326 grp->gr_pendv4++; 12327 if (phyi->phyint_illv6 != NULL) 12328 grp->gr_pendv6++; 12329 12330 rw_exit(&ipst->ips_ipmp_lock); 12331 12332 ipmp_phyint_join_grp(phyi, grp); 12333 ill_refhold(ill); 12334 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12335 SWITCH_OP, B_FALSE); 12336 return (0); 12337 } else { 12338 /* 12339 * Request to remove the interface from a group. If the 12340 * interface is not in a group, this trivially succeeds. 12341 */ 12342 rw_exit(&ipst->ips_ipmp_lock); 12343 if (IS_UNDER_IPMP(ill)) 12344 ipmp_phyint_leave_grp(phyi); 12345 return (0); 12346 } 12347 unlock: 12348 rw_exit(&ipst->ips_ipmp_lock); 12349 return (err); 12350 } 12351 12352 /* 12353 * Process an SIOCGLIFBINDING request. 12354 */ 12355 /* ARGSUSED */ 12356 int 12357 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12358 ip_ioctl_cmd_t *ipip, void *ifreq) 12359 { 12360 ill_t *ill; 12361 struct lifreq *lifr = ifreq; 12362 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12363 12364 if (!IS_IPMP(ipif->ipif_ill)) 12365 return (EINVAL); 12366 12367 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12368 if ((ill = ipif->ipif_bound_ill) == NULL) 12369 lifr->lifr_binding[0] = '\0'; 12370 else 12371 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12372 rw_exit(&ipst->ips_ipmp_lock); 12373 return (0); 12374 } 12375 12376 /* 12377 * Process an SIOCGLIFGROUPNAME request. 12378 */ 12379 /* ARGSUSED */ 12380 int 12381 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12382 ip_ioctl_cmd_t *ipip, void *ifreq) 12383 { 12384 ipmp_grp_t *grp; 12385 struct lifreq *lifr = ifreq; 12386 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12387 12388 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12389 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12390 lifr->lifr_groupname[0] = '\0'; 12391 else 12392 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12393 rw_exit(&ipst->ips_ipmp_lock); 12394 return (0); 12395 } 12396 12397 /* 12398 * Process an SIOCGLIFGROUPINFO request. 12399 */ 12400 /* ARGSUSED */ 12401 int 12402 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12403 ip_ioctl_cmd_t *ipip, void *dummy) 12404 { 12405 ipmp_grp_t *grp; 12406 lifgroupinfo_t *lifgr; 12407 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12408 12409 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12410 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12411 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12412 12413 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12414 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12415 rw_exit(&ipst->ips_ipmp_lock); 12416 return (ENOENT); 12417 } 12418 ipmp_grp_info(grp, lifgr); 12419 rw_exit(&ipst->ips_ipmp_lock); 12420 return (0); 12421 } 12422 12423 static void 12424 ill_dl_down(ill_t *ill) 12425 { 12426 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12427 12428 /* 12429 * The ill is down; unbind but stay attached since we're still 12430 * associated with a PPA. If we have negotiated DLPI capabilites 12431 * with the data link service provider (IDS_OK) then reset them. 12432 * The interval between unbinding and rebinding is potentially 12433 * unbounded hence we cannot assume things will be the same. 12434 * The DLPI capabilities will be probed again when the data link 12435 * is brought up. 12436 */ 12437 mblk_t *mp = ill->ill_unbind_mp; 12438 12439 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12440 12441 if (!ill->ill_replumbing) { 12442 /* Free all ilms for this ill */ 12443 update_conn_ill(ill, ill->ill_ipst); 12444 } else { 12445 ill_leave_multicast(ill); 12446 } 12447 12448 ill->ill_unbind_mp = NULL; 12449 if (mp != NULL) { 12450 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12451 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12452 ill->ill_name)); 12453 mutex_enter(&ill->ill_lock); 12454 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12455 mutex_exit(&ill->ill_lock); 12456 /* 12457 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12458 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12459 * ill_capability_dld_disable disable rightaway. If this is not 12460 * an unplumb operation then the disable happens on receipt of 12461 * the capab ack via ip_rput_dlpi_writer -> 12462 * ill_capability_ack_thr. In both cases the order of 12463 * the operations seen by DLD is capability disable followed 12464 * by DL_UNBIND. Also the DLD capability disable needs a 12465 * cv_wait'able context. 12466 */ 12467 if (ill->ill_state_flags & ILL_CONDEMNED) 12468 ill_capability_dld_disable(ill); 12469 ill_capability_reset(ill, B_FALSE); 12470 ill_dlpi_send(ill, mp); 12471 } 12472 mutex_enter(&ill->ill_lock); 12473 ill->ill_dl_up = 0; 12474 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12475 mutex_exit(&ill->ill_lock); 12476 } 12477 12478 void 12479 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12480 { 12481 union DL_primitives *dlp; 12482 t_uscalar_t prim; 12483 boolean_t waitack = B_FALSE; 12484 12485 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12486 12487 dlp = (union DL_primitives *)mp->b_rptr; 12488 prim = dlp->dl_primitive; 12489 12490 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12491 dl_primstr(prim), prim, ill->ill_name)); 12492 12493 switch (prim) { 12494 case DL_PHYS_ADDR_REQ: 12495 { 12496 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12497 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12498 break; 12499 } 12500 case DL_BIND_REQ: 12501 mutex_enter(&ill->ill_lock); 12502 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12503 mutex_exit(&ill->ill_lock); 12504 break; 12505 } 12506 12507 /* 12508 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12509 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12510 * we only wait for the ACK of the DL_UNBIND_REQ. 12511 */ 12512 mutex_enter(&ill->ill_lock); 12513 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12514 (prim == DL_UNBIND_REQ)) { 12515 ill->ill_dlpi_pending = prim; 12516 waitack = B_TRUE; 12517 } 12518 12519 mutex_exit(&ill->ill_lock); 12520 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12521 char *, dl_primstr(prim), ill_t *, ill); 12522 putnext(ill->ill_wq, mp); 12523 12524 /* 12525 * There is no ack for DL_NOTIFY_CONF messages 12526 */ 12527 if (waitack && prim == DL_NOTIFY_CONF) 12528 ill_dlpi_done(ill, prim); 12529 } 12530 12531 /* 12532 * Helper function for ill_dlpi_send(). 12533 */ 12534 /* ARGSUSED */ 12535 static void 12536 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12537 { 12538 ill_dlpi_send(q->q_ptr, mp); 12539 } 12540 12541 /* 12542 * Send a DLPI control message to the driver but make sure there 12543 * is only one outstanding message. Uses ill_dlpi_pending to tell 12544 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12545 * when an ACK or a NAK is received to process the next queued message. 12546 */ 12547 void 12548 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12549 { 12550 mblk_t **mpp; 12551 12552 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12553 12554 /* 12555 * To ensure that any DLPI requests for current exclusive operation 12556 * are always completely sent before any DLPI messages for other 12557 * operations, require writer access before enqueuing. 12558 */ 12559 if (!IAM_WRITER_ILL(ill)) { 12560 ill_refhold(ill); 12561 /* qwriter_ip() does the ill_refrele() */ 12562 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12563 NEW_OP, B_TRUE); 12564 return; 12565 } 12566 12567 mutex_enter(&ill->ill_lock); 12568 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12569 /* Must queue message. Tail insertion */ 12570 mpp = &ill->ill_dlpi_deferred; 12571 while (*mpp != NULL) 12572 mpp = &((*mpp)->b_next); 12573 12574 ip1dbg(("ill_dlpi_send: deferring request for %s " 12575 "while %s pending\n", ill->ill_name, 12576 dl_primstr(ill->ill_dlpi_pending))); 12577 12578 *mpp = mp; 12579 mutex_exit(&ill->ill_lock); 12580 return; 12581 } 12582 mutex_exit(&ill->ill_lock); 12583 ill_dlpi_dispatch(ill, mp); 12584 } 12585 12586 void 12587 ill_capability_send(ill_t *ill, mblk_t *mp) 12588 { 12589 ill->ill_capab_pending_cnt++; 12590 ill_dlpi_send(ill, mp); 12591 } 12592 12593 void 12594 ill_capability_done(ill_t *ill) 12595 { 12596 ASSERT(ill->ill_capab_pending_cnt != 0); 12597 12598 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12599 12600 ill->ill_capab_pending_cnt--; 12601 if (ill->ill_capab_pending_cnt == 0 && 12602 ill->ill_dlpi_capab_state == IDCS_OK) 12603 ill_capability_reset_alloc(ill); 12604 } 12605 12606 /* 12607 * Send all deferred DLPI messages without waiting for their ACKs. 12608 */ 12609 void 12610 ill_dlpi_send_deferred(ill_t *ill) 12611 { 12612 mblk_t *mp, *nextmp; 12613 12614 /* 12615 * Clear ill_dlpi_pending so that the message is not queued in 12616 * ill_dlpi_send(). 12617 */ 12618 mutex_enter(&ill->ill_lock); 12619 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12620 mp = ill->ill_dlpi_deferred; 12621 ill->ill_dlpi_deferred = NULL; 12622 mutex_exit(&ill->ill_lock); 12623 12624 for (; mp != NULL; mp = nextmp) { 12625 nextmp = mp->b_next; 12626 mp->b_next = NULL; 12627 ill_dlpi_send(ill, mp); 12628 } 12629 } 12630 12631 /* 12632 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12633 * or M_HANGUP 12634 */ 12635 static void 12636 ill_dlpi_clear_deferred(ill_t *ill) 12637 { 12638 mblk_t *mp, *nextmp; 12639 12640 mutex_enter(&ill->ill_lock); 12641 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12642 mp = ill->ill_dlpi_deferred; 12643 ill->ill_dlpi_deferred = NULL; 12644 mutex_exit(&ill->ill_lock); 12645 12646 for (; mp != NULL; mp = nextmp) { 12647 nextmp = mp->b_next; 12648 inet_freemsg(mp); 12649 } 12650 } 12651 12652 /* 12653 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12654 */ 12655 boolean_t 12656 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12657 { 12658 t_uscalar_t pending; 12659 12660 mutex_enter(&ill->ill_lock); 12661 if (ill->ill_dlpi_pending == prim) { 12662 mutex_exit(&ill->ill_lock); 12663 return (B_TRUE); 12664 } 12665 12666 /* 12667 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12668 * without waiting, so don't print any warnings in that case. 12669 */ 12670 if (ill->ill_state_flags & ILL_CONDEMNED) { 12671 mutex_exit(&ill->ill_lock); 12672 return (B_FALSE); 12673 } 12674 pending = ill->ill_dlpi_pending; 12675 mutex_exit(&ill->ill_lock); 12676 12677 if (pending == DL_PRIM_INVAL) { 12678 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12679 "received unsolicited ack for %s on %s\n", 12680 dl_primstr(prim), ill->ill_name); 12681 } else { 12682 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12683 "received unexpected ack for %s on %s (expecting %s)\n", 12684 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12685 } 12686 return (B_FALSE); 12687 } 12688 12689 /* 12690 * Complete the current DLPI operation associated with `prim' on `ill' and 12691 * start the next queued DLPI operation (if any). If there are no queued DLPI 12692 * operations and the ill's current exclusive IPSQ operation has finished 12693 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12694 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12695 * the comments above ipsq_current_finish() for details. 12696 */ 12697 void 12698 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12699 { 12700 mblk_t *mp; 12701 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12702 ipxop_t *ipx = ipsq->ipsq_xop; 12703 12704 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12705 mutex_enter(&ill->ill_lock); 12706 12707 ASSERT(prim != DL_PRIM_INVAL); 12708 ASSERT(ill->ill_dlpi_pending == prim); 12709 12710 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12711 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12712 12713 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12714 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12715 if (ipx->ipx_current_done) { 12716 mutex_enter(&ipx->ipx_lock); 12717 ipx->ipx_current_ipif = NULL; 12718 mutex_exit(&ipx->ipx_lock); 12719 } 12720 cv_signal(&ill->ill_cv); 12721 mutex_exit(&ill->ill_lock); 12722 return; 12723 } 12724 12725 ill->ill_dlpi_deferred = mp->b_next; 12726 mp->b_next = NULL; 12727 mutex_exit(&ill->ill_lock); 12728 12729 ill_dlpi_dispatch(ill, mp); 12730 } 12731 12732 /* 12733 * Queue a (multicast) DLPI control message to be sent to the driver by 12734 * later calling ill_dlpi_send_queued. 12735 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12736 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12737 * for the same group to race. 12738 * We send DLPI control messages in order using ill_lock. 12739 * For IPMP we should be called on the cast_ill. 12740 */ 12741 void 12742 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12743 { 12744 mblk_t **mpp; 12745 12746 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12747 12748 mutex_enter(&ill->ill_lock); 12749 /* Must queue message. Tail insertion */ 12750 mpp = &ill->ill_dlpi_deferred; 12751 while (*mpp != NULL) 12752 mpp = &((*mpp)->b_next); 12753 12754 *mpp = mp; 12755 mutex_exit(&ill->ill_lock); 12756 } 12757 12758 /* 12759 * Send the messages that were queued. Make sure there is only 12760 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12761 * when an ACK or a NAK is received to process the next queued message. 12762 * For IPMP we are called on the upper ill, but when send what is queued 12763 * on the cast_ill. 12764 */ 12765 void 12766 ill_dlpi_send_queued(ill_t *ill) 12767 { 12768 mblk_t *mp; 12769 union DL_primitives *dlp; 12770 t_uscalar_t prim; 12771 ill_t *release_ill = NULL; 12772 12773 if (IS_IPMP(ill)) { 12774 /* On the upper IPMP ill. */ 12775 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12776 if (release_ill == NULL) { 12777 /* Avoid ever sending anything down to the ipmpstub */ 12778 return; 12779 } 12780 ill = release_ill; 12781 } 12782 mutex_enter(&ill->ill_lock); 12783 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12784 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12785 /* Can't send. Somebody else will send it */ 12786 mutex_exit(&ill->ill_lock); 12787 goto done; 12788 } 12789 ill->ill_dlpi_deferred = mp->b_next; 12790 mp->b_next = NULL; 12791 if (!ill->ill_dl_up) { 12792 /* 12793 * Nobody there. All multicast addresses will be 12794 * re-joined when we get the DL_BIND_ACK bringing the 12795 * interface up. 12796 */ 12797 freemsg(mp); 12798 continue; 12799 } 12800 dlp = (union DL_primitives *)mp->b_rptr; 12801 prim = dlp->dl_primitive; 12802 12803 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12804 (prim == DL_UNBIND_REQ)) { 12805 ill->ill_dlpi_pending = prim; 12806 } 12807 mutex_exit(&ill->ill_lock); 12808 12809 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12810 char *, dl_primstr(prim), ill_t *, ill); 12811 putnext(ill->ill_wq, mp); 12812 mutex_enter(&ill->ill_lock); 12813 } 12814 mutex_exit(&ill->ill_lock); 12815 done: 12816 if (release_ill != NULL) 12817 ill_refrele(release_ill); 12818 } 12819 12820 /* 12821 * Queue an IP (IGMP/MLD) message to be sent by IP from 12822 * ill_mcast_send_queued 12823 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12824 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12825 * group to race. 12826 * We send them in order using ill_lock. 12827 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12828 */ 12829 void 12830 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12831 { 12832 mblk_t **mpp; 12833 ill_t *release_ill = NULL; 12834 12835 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12836 12837 if (IS_IPMP(ill)) { 12838 /* On the upper IPMP ill. */ 12839 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12840 if (release_ill == NULL) { 12841 /* Discard instead of queuing for the ipmp interface */ 12842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12843 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12844 mp, ill); 12845 freemsg(mp); 12846 return; 12847 } 12848 ill = release_ill; 12849 } 12850 12851 mutex_enter(&ill->ill_lock); 12852 /* Must queue message. Tail insertion */ 12853 mpp = &ill->ill_mcast_deferred; 12854 while (*mpp != NULL) 12855 mpp = &((*mpp)->b_next); 12856 12857 *mpp = mp; 12858 mutex_exit(&ill->ill_lock); 12859 if (release_ill != NULL) 12860 ill_refrele(release_ill); 12861 } 12862 12863 /* 12864 * Send the IP packets that were queued by ill_mcast_queue. 12865 * These are IGMP/MLD packets. 12866 * 12867 * For IPMP we are called on the upper ill, but when send what is queued 12868 * on the cast_ill. 12869 * 12870 * Request loopback of the report if we are acting as a multicast 12871 * router, so that the process-level routing demon can hear it. 12872 * This will run multiple times for the same group if there are members 12873 * on the same group for multiple ipif's on the same ill. The 12874 * igmp_input/mld_input code will suppress this due to the loopback thus we 12875 * always loopback membership report. 12876 * 12877 * We also need to make sure that this does not get load balanced 12878 * by IPMP. We do this by passing an ill to ip_output_simple. 12879 */ 12880 void 12881 ill_mcast_send_queued(ill_t *ill) 12882 { 12883 mblk_t *mp; 12884 ip_xmit_attr_t ixas; 12885 ill_t *release_ill = NULL; 12886 12887 if (IS_IPMP(ill)) { 12888 /* On the upper IPMP ill. */ 12889 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12890 if (release_ill == NULL) { 12891 /* 12892 * We should have no messages on the ipmp interface 12893 * but no point in trying to send them. 12894 */ 12895 return; 12896 } 12897 ill = release_ill; 12898 } 12899 bzero(&ixas, sizeof (ixas)); 12900 ixas.ixa_zoneid = ALL_ZONES; 12901 ixas.ixa_cred = kcred; 12902 ixas.ixa_cpid = NOPID; 12903 ixas.ixa_tsl = NULL; 12904 /* 12905 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12906 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12907 * That is necessary to handle IGMP/MLD snooping switches. 12908 */ 12909 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12910 ixas.ixa_ipst = ill->ill_ipst; 12911 12912 mutex_enter(&ill->ill_lock); 12913 while ((mp = ill->ill_mcast_deferred) != NULL) { 12914 ill->ill_mcast_deferred = mp->b_next; 12915 mp->b_next = NULL; 12916 if (!ill->ill_dl_up) { 12917 /* 12918 * Nobody there. Just drop the ip packets. 12919 * IGMP/MLD will resend later, if this is a replumb. 12920 */ 12921 freemsg(mp); 12922 continue; 12923 } 12924 mutex_enter(&ill->ill_phyint->phyint_lock); 12925 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12926 /* 12927 * When the ill is getting deactivated, we only want to 12928 * send the DLPI messages, so drop IGMP/MLD packets. 12929 * DLPI messages are handled by ill_dlpi_send_queued() 12930 */ 12931 mutex_exit(&ill->ill_phyint->phyint_lock); 12932 freemsg(mp); 12933 continue; 12934 } 12935 mutex_exit(&ill->ill_phyint->phyint_lock); 12936 mutex_exit(&ill->ill_lock); 12937 12938 /* Check whether we are sending IPv4 or IPv6. */ 12939 if (ill->ill_isv6) { 12940 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12941 12942 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12943 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12944 } else { 12945 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12946 12947 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12948 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12949 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12950 } 12951 12952 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12953 (void) ip_output_simple(mp, &ixas); 12954 ixa_cleanup(&ixas); 12955 12956 mutex_enter(&ill->ill_lock); 12957 } 12958 mutex_exit(&ill->ill_lock); 12959 12960 done: 12961 if (release_ill != NULL) 12962 ill_refrele(release_ill); 12963 } 12964 12965 /* 12966 * Take down a specific interface, but don't lose any information about it. 12967 * (Always called as writer.) 12968 * This function goes through the down sequence even if the interface is 12969 * already down. There are 2 reasons. 12970 * a. Currently we permit interface routes that depend on down interfaces 12971 * to be added. This behaviour itself is questionable. However it appears 12972 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12973 * time. We go thru the cleanup in order to remove these routes. 12974 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12975 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12976 * down, but we need to cleanup i.e. do ill_dl_down and 12977 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12978 * 12979 * IP-MT notes: 12980 * 12981 * Model of reference to interfaces. 12982 * 12983 * The following members in ipif_t track references to the ipif. 12984 * int ipif_refcnt; Active reference count 12985 * 12986 * The following members in ill_t track references to the ill. 12987 * int ill_refcnt; active refcnt 12988 * uint_t ill_ire_cnt; Number of ires referencing ill 12989 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12990 * uint_t ill_nce_cnt; Number of nces referencing ill 12991 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12992 * 12993 * Reference to an ipif or ill can be obtained in any of the following ways. 12994 * 12995 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12996 * Pointers to ipif / ill from other data structures viz ire and conn. 12997 * Implicit reference to the ipif / ill by holding a reference to the ire. 12998 * 12999 * The ipif/ill lookup functions return a reference held ipif / ill. 13000 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13001 * This is a purely dynamic reference count associated with threads holding 13002 * references to the ipif / ill. Pointers from other structures do not 13003 * count towards this reference count. 13004 * 13005 * ill_ire_cnt is the number of ire's associated with the 13006 * ill. This is incremented whenever a new ire is created referencing the 13007 * ill. This is done atomically inside ire_add_v[46] where the ire is 13008 * actually added to the ire hash table. The count is decremented in 13009 * ire_inactive where the ire is destroyed. 13010 * 13011 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13012 * This is incremented atomically in 13013 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13014 * table. Similarly it is decremented in ncec_inactive() where the ncec 13015 * is destroyed. 13016 * 13017 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13018 * incremented atomically in nce_add() where the nce is actually added to the 13019 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13020 * is destroyed. 13021 * 13022 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13023 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13024 * 13025 * Flow of ioctls involving interface down/up 13026 * 13027 * The following is the sequence of an attempt to set some critical flags on an 13028 * up interface. 13029 * ip_sioctl_flags 13030 * ipif_down 13031 * wait for ipif to be quiescent 13032 * ipif_down_tail 13033 * ip_sioctl_flags_tail 13034 * 13035 * All set ioctls that involve down/up sequence would have a skeleton similar 13036 * to the above. All the *tail functions are called after the refcounts have 13037 * dropped to the appropriate values. 13038 * 13039 * SIOC ioctls during the IPIF_CHANGING interval. 13040 * 13041 * Threads handling SIOC set ioctls serialize on the squeue, but this 13042 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13043 * steps of internal changes to the state, some of which are visible in 13044 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13045 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13046 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13047 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13048 * the current exclusive operation completes. The IPIF_CHANGING check 13049 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13050 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13051 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13052 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13053 * until we release the ipsq_lock, even though the ill/ipif state flags 13054 * can change after we drop the ill_lock. 13055 */ 13056 int 13057 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13058 { 13059 ill_t *ill = ipif->ipif_ill; 13060 conn_t *connp; 13061 boolean_t success; 13062 boolean_t ipif_was_up = B_FALSE; 13063 ip_stack_t *ipst = ill->ill_ipst; 13064 13065 ASSERT(IAM_WRITER_IPIF(ipif)); 13066 13067 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13068 13069 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13070 ill_t *, ill, ipif_t *, ipif); 13071 13072 if (ipif->ipif_flags & IPIF_UP) { 13073 mutex_enter(&ill->ill_lock); 13074 ipif->ipif_flags &= ~IPIF_UP; 13075 ASSERT(ill->ill_ipif_up_count > 0); 13076 --ill->ill_ipif_up_count; 13077 mutex_exit(&ill->ill_lock); 13078 ipif_was_up = B_TRUE; 13079 /* Update status in SCTP's list */ 13080 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13081 ill_nic_event_dispatch(ipif->ipif_ill, 13082 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13083 } 13084 13085 /* 13086 * Blow away memberships we established in ipif_multicast_up(). 13087 */ 13088 ipif_multicast_down(ipif); 13089 13090 /* 13091 * Remove from the mapping for __sin6_src_id. We insert only 13092 * when the address is not INADDR_ANY. As IPv4 addresses are 13093 * stored as mapped addresses, we need to check for mapped 13094 * INADDR_ANY also. 13095 */ 13096 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13097 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13098 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13099 int err; 13100 13101 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13102 ipif->ipif_zoneid, ipst); 13103 if (err != 0) { 13104 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13105 } 13106 } 13107 13108 if (ipif_was_up) { 13109 /* only delete if we'd added ire's before */ 13110 if (ipif->ipif_isv6) 13111 ipif_delete_ires_v6(ipif); 13112 else 13113 ipif_delete_ires_v4(ipif); 13114 } 13115 13116 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13117 /* 13118 * Since the interface is now down, it may have just become 13119 * inactive. Note that this needs to be done even for a 13120 * lll_logical_down(), or ARP entries will not get correctly 13121 * restored when the interface comes back up. 13122 */ 13123 if (IS_UNDER_IPMP(ill)) 13124 ipmp_ill_refresh_active(ill); 13125 } 13126 13127 /* 13128 * neighbor-discovery or arp entries for this interface. The ipif 13129 * has to be quiesced, so we walk all the nce's and delete those 13130 * that point at the ipif->ipif_ill. At the same time, we also 13131 * update IPMP so that ipifs for data addresses are unbound. We dont 13132 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13133 * that for ipif_down_tail() 13134 */ 13135 ipif_nce_down(ipif); 13136 13137 /* 13138 * If this is the last ipif on the ill, we also need to remove 13139 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13140 * never succeed. 13141 */ 13142 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13143 ire_walk_ill(0, 0, ill_downi, ill, ill); 13144 13145 /* 13146 * Walk all CONNs that can have a reference on an ire for this 13147 * ipif (we actually walk all that now have stale references). 13148 */ 13149 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13150 13151 /* 13152 * If mp is NULL the caller will wait for the appropriate refcnt. 13153 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13154 * and ill_delete -> ipif_free -> ipif_down 13155 */ 13156 if (mp == NULL) { 13157 ASSERT(q == NULL); 13158 return (0); 13159 } 13160 13161 if (CONN_Q(q)) { 13162 connp = Q_TO_CONN(q); 13163 mutex_enter(&connp->conn_lock); 13164 } else { 13165 connp = NULL; 13166 } 13167 mutex_enter(&ill->ill_lock); 13168 /* 13169 * Are there any ire's pointing to this ipif that are still active ? 13170 * If this is the last ipif going down, are there any ire's pointing 13171 * to this ill that are still active ? 13172 */ 13173 if (ipif_is_quiescent(ipif)) { 13174 mutex_exit(&ill->ill_lock); 13175 if (connp != NULL) 13176 mutex_exit(&connp->conn_lock); 13177 return (0); 13178 } 13179 13180 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13181 ill->ill_name, (void *)ill)); 13182 /* 13183 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13184 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13185 * which in turn is called by the last refrele on the ipif/ill/ire. 13186 */ 13187 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13188 if (!success) { 13189 /* The conn is closing. So just return */ 13190 ASSERT(connp != NULL); 13191 mutex_exit(&ill->ill_lock); 13192 mutex_exit(&connp->conn_lock); 13193 return (EINTR); 13194 } 13195 13196 mutex_exit(&ill->ill_lock); 13197 if (connp != NULL) 13198 mutex_exit(&connp->conn_lock); 13199 return (EINPROGRESS); 13200 } 13201 13202 int 13203 ipif_down_tail(ipif_t *ipif) 13204 { 13205 ill_t *ill = ipif->ipif_ill; 13206 int err = 0; 13207 13208 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13209 ill_t *, ill, ipif_t *, ipif); 13210 13211 /* 13212 * Skip any loopback interface (null wq). 13213 * If this is the last logical interface on the ill 13214 * have ill_dl_down tell the driver we are gone (unbind) 13215 * Note that lun 0 can ipif_down even though 13216 * there are other logical units that are up. 13217 * This occurs e.g. when we change a "significant" IFF_ flag. 13218 */ 13219 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13220 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13221 ill->ill_dl_up) { 13222 ill_dl_down(ill); 13223 } 13224 if (!ipif->ipif_isv6) 13225 err = ipif_arp_down(ipif); 13226 13227 ill->ill_logical_down = 0; 13228 13229 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13230 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13231 return (err); 13232 } 13233 13234 /* 13235 * Bring interface logically down without bringing the physical interface 13236 * down e.g. when the netmask is changed. This avoids long lasting link 13237 * negotiations between an ethernet interface and a certain switches. 13238 */ 13239 static int 13240 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13241 { 13242 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13243 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13244 13245 /* 13246 * The ill_logical_down flag is a transient flag. It is set here 13247 * and is cleared once the down has completed in ipif_down_tail. 13248 * This flag does not indicate whether the ill stream is in the 13249 * DL_BOUND state with the driver. Instead this flag is used by 13250 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13251 * the driver. The state of the ill stream i.e. whether it is 13252 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13253 */ 13254 ipif->ipif_ill->ill_logical_down = 1; 13255 return (ipif_down(ipif, q, mp)); 13256 } 13257 13258 /* 13259 * Initiate deallocate of an IPIF. Always called as writer. Called by 13260 * ill_delete or ip_sioctl_removeif. 13261 */ 13262 static void 13263 ipif_free(ipif_t *ipif) 13264 { 13265 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13266 13267 ASSERT(IAM_WRITER_IPIF(ipif)); 13268 13269 if (ipif->ipif_recovery_id != 0) 13270 (void) untimeout(ipif->ipif_recovery_id); 13271 ipif->ipif_recovery_id = 0; 13272 13273 /* 13274 * Take down the interface. We can be called either from ill_delete 13275 * or from ip_sioctl_removeif. 13276 */ 13277 (void) ipif_down(ipif, NULL, NULL); 13278 13279 /* 13280 * Now that the interface is down, there's no chance it can still 13281 * become a duplicate. Cancel any timer that may have been set while 13282 * tearing down. 13283 */ 13284 if (ipif->ipif_recovery_id != 0) 13285 (void) untimeout(ipif->ipif_recovery_id); 13286 ipif->ipif_recovery_id = 0; 13287 13288 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13289 /* Remove pointers to this ill in the multicast routing tables */ 13290 reset_mrt_vif_ipif(ipif); 13291 /* If necessary, clear the cached source ipif rotor. */ 13292 if (ipif->ipif_ill->ill_src_ipif == ipif) 13293 ipif->ipif_ill->ill_src_ipif = NULL; 13294 rw_exit(&ipst->ips_ill_g_lock); 13295 } 13296 13297 static void 13298 ipif_free_tail(ipif_t *ipif) 13299 { 13300 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13301 13302 /* 13303 * Need to hold both ill_g_lock and ill_lock while 13304 * inserting or removing an ipif from the linked list 13305 * of ipifs hanging off the ill. 13306 */ 13307 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13308 13309 #ifdef DEBUG 13310 ipif_trace_cleanup(ipif); 13311 #endif 13312 13313 /* Ask SCTP to take it out of it list */ 13314 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13315 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13316 13317 /* Get it out of the ILL interface list. */ 13318 ipif_remove(ipif); 13319 rw_exit(&ipst->ips_ill_g_lock); 13320 13321 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13322 ASSERT(ipif->ipif_recovery_id == 0); 13323 ASSERT(ipif->ipif_ire_local == NULL); 13324 ASSERT(ipif->ipif_ire_if == NULL); 13325 13326 /* Free the memory. */ 13327 mi_free(ipif); 13328 } 13329 13330 /* 13331 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13332 * is zero. 13333 */ 13334 void 13335 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13336 { 13337 char lbuf[LIFNAMSIZ]; 13338 char *name; 13339 size_t name_len; 13340 13341 buf[0] = '\0'; 13342 name = ipif->ipif_ill->ill_name; 13343 name_len = ipif->ipif_ill->ill_name_length; 13344 if (ipif->ipif_id != 0) { 13345 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13346 ipif->ipif_id); 13347 name = lbuf; 13348 name_len = mi_strlen(name) + 1; 13349 } 13350 len -= 1; 13351 buf[len] = '\0'; 13352 len = MIN(len, name_len); 13353 bcopy(name, buf, len); 13354 } 13355 13356 /* 13357 * Sets `buf' to an ill name. 13358 */ 13359 void 13360 ill_get_name(const ill_t *ill, char *buf, int len) 13361 { 13362 char *name; 13363 size_t name_len; 13364 13365 name = ill->ill_name; 13366 name_len = ill->ill_name_length; 13367 len -= 1; 13368 buf[len] = '\0'; 13369 len = MIN(len, name_len); 13370 bcopy(name, buf, len); 13371 } 13372 13373 /* 13374 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13375 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13376 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13377 * (May be called as writer.) 13378 */ 13379 static ipif_t * 13380 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13381 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13382 { 13383 char *cp; 13384 char *endp; 13385 long id; 13386 ill_t *ill; 13387 ipif_t *ipif; 13388 uint_t ire_type; 13389 boolean_t did_alloc = B_FALSE; 13390 13391 /* 13392 * If the caller wants to us to create the ipif, make sure we have a 13393 * valid zoneid 13394 */ 13395 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13396 13397 if (namelen == 0) { 13398 return (NULL); 13399 } 13400 13401 *exists = B_FALSE; 13402 /* Look for a colon in the name. */ 13403 endp = &name[namelen]; 13404 for (cp = endp; --cp > name; ) { 13405 if (*cp == IPIF_SEPARATOR_CHAR) 13406 break; 13407 } 13408 13409 if (*cp == IPIF_SEPARATOR_CHAR) { 13410 /* 13411 * Reject any non-decimal aliases for logical 13412 * interfaces. Aliases with leading zeroes 13413 * are also rejected as they introduce ambiguity 13414 * in the naming of the interfaces. 13415 * In order to confirm with existing semantics, 13416 * and to not break any programs/script relying 13417 * on that behaviour, if<0>:0 is considered to be 13418 * a valid interface. 13419 * 13420 * If alias has two or more digits and the first 13421 * is zero, fail. 13422 */ 13423 if (&cp[2] < endp && cp[1] == '0') { 13424 return (NULL); 13425 } 13426 } 13427 13428 if (cp <= name) { 13429 cp = endp; 13430 } else { 13431 *cp = '\0'; 13432 } 13433 13434 /* 13435 * Look up the ILL, based on the portion of the name 13436 * before the slash. ill_lookup_on_name returns a held ill. 13437 * Temporary to check whether ill exists already. If so 13438 * ill_lookup_on_name will clear it. 13439 */ 13440 ill = ill_lookup_on_name(name, do_alloc, isv6, 13441 &did_alloc, ipst); 13442 if (cp != endp) 13443 *cp = IPIF_SEPARATOR_CHAR; 13444 if (ill == NULL) 13445 return (NULL); 13446 13447 /* Establish the unit number in the name. */ 13448 id = 0; 13449 if (cp < endp && *endp == '\0') { 13450 /* If there was a colon, the unit number follows. */ 13451 cp++; 13452 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13453 ill_refrele(ill); 13454 return (NULL); 13455 } 13456 } 13457 13458 mutex_enter(&ill->ill_lock); 13459 /* Now see if there is an IPIF with this unit number. */ 13460 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13461 if (ipif->ipif_id == id) { 13462 if (zoneid != ALL_ZONES && 13463 zoneid != ipif->ipif_zoneid && 13464 ipif->ipif_zoneid != ALL_ZONES) { 13465 mutex_exit(&ill->ill_lock); 13466 ill_refrele(ill); 13467 return (NULL); 13468 } 13469 if (IPIF_CAN_LOOKUP(ipif)) { 13470 ipif_refhold_locked(ipif); 13471 mutex_exit(&ill->ill_lock); 13472 if (!did_alloc) 13473 *exists = B_TRUE; 13474 /* 13475 * Drop locks before calling ill_refrele 13476 * since it can potentially call into 13477 * ipif_ill_refrele_tail which can end up 13478 * in trying to acquire any lock. 13479 */ 13480 ill_refrele(ill); 13481 return (ipif); 13482 } 13483 } 13484 } 13485 13486 if (!do_alloc) { 13487 mutex_exit(&ill->ill_lock); 13488 ill_refrele(ill); 13489 return (NULL); 13490 } 13491 13492 /* 13493 * If none found, atomically allocate and return a new one. 13494 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13495 * to support "receive only" use of lo0:1 etc. as is still done 13496 * below as an initial guess. 13497 * However, this is now likely to be overriden later in ipif_up_done() 13498 * when we know for sure what address has been configured on the 13499 * interface, since we might have more than one loopback interface 13500 * with a loopback address, e.g. in the case of zones, and all the 13501 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13502 */ 13503 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13504 ire_type = IRE_LOOPBACK; 13505 else 13506 ire_type = IRE_LOCAL; 13507 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13508 if (ipif != NULL) 13509 ipif_refhold_locked(ipif); 13510 mutex_exit(&ill->ill_lock); 13511 ill_refrele(ill); 13512 return (ipif); 13513 } 13514 13515 /* 13516 * This routine is called whenever a new address comes up on an ipif. If 13517 * we are configured to respond to address mask requests, then we are supposed 13518 * to broadcast an address mask reply at this time. This routine is also 13519 * called if we are already up, but a netmask change is made. This is legal 13520 * but might not make the system manager very popular. (May be called 13521 * as writer.) 13522 */ 13523 void 13524 ipif_mask_reply(ipif_t *ipif) 13525 { 13526 icmph_t *icmph; 13527 ipha_t *ipha; 13528 mblk_t *mp; 13529 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13530 ip_xmit_attr_t ixas; 13531 13532 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13533 13534 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13535 return; 13536 13537 /* ICMP mask reply is IPv4 only */ 13538 ASSERT(!ipif->ipif_isv6); 13539 /* ICMP mask reply is not for a loopback interface */ 13540 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13541 13542 if (ipif->ipif_lcl_addr == INADDR_ANY) 13543 return; 13544 13545 mp = allocb(REPLY_LEN, BPRI_HI); 13546 if (mp == NULL) 13547 return; 13548 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13549 13550 ipha = (ipha_t *)mp->b_rptr; 13551 bzero(ipha, REPLY_LEN); 13552 *ipha = icmp_ipha; 13553 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13554 ipha->ipha_src = ipif->ipif_lcl_addr; 13555 ipha->ipha_dst = ipif->ipif_brd_addr; 13556 ipha->ipha_length = htons(REPLY_LEN); 13557 ipha->ipha_ident = 0; 13558 13559 icmph = (icmph_t *)&ipha[1]; 13560 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13561 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13562 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13563 13564 bzero(&ixas, sizeof (ixas)); 13565 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13566 ixas.ixa_flags |= IXAF_SET_SOURCE; 13567 ixas.ixa_zoneid = ALL_ZONES; 13568 ixas.ixa_ifindex = 0; 13569 ixas.ixa_ipst = ipst; 13570 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13571 (void) ip_output_simple(mp, &ixas); 13572 ixa_cleanup(&ixas); 13573 #undef REPLY_LEN 13574 } 13575 13576 /* 13577 * Join the ipif specific multicast groups. 13578 * Must be called after a mapping has been set up in the resolver. (Always 13579 * called as writer.) 13580 */ 13581 void 13582 ipif_multicast_up(ipif_t *ipif) 13583 { 13584 int err; 13585 ill_t *ill; 13586 ilm_t *ilm; 13587 13588 ASSERT(IAM_WRITER_IPIF(ipif)); 13589 13590 ill = ipif->ipif_ill; 13591 13592 ip1dbg(("ipif_multicast_up\n")); 13593 if (!(ill->ill_flags & ILLF_MULTICAST) || 13594 ipif->ipif_allhosts_ilm != NULL) 13595 return; 13596 13597 if (ipif->ipif_isv6) { 13598 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13599 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13600 13601 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13602 13603 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13604 return; 13605 13606 ip1dbg(("ipif_multicast_up - addmulti\n")); 13607 13608 /* 13609 * Join the all hosts multicast address. We skip this for 13610 * underlying IPMP interfaces since they should be invisible. 13611 */ 13612 if (!IS_UNDER_IPMP(ill)) { 13613 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13614 &err); 13615 if (ilm == NULL) { 13616 ASSERT(err != 0); 13617 ip0dbg(("ipif_multicast_up: " 13618 "all_hosts_mcast failed %d\n", err)); 13619 return; 13620 } 13621 ipif->ipif_allhosts_ilm = ilm; 13622 } 13623 13624 /* 13625 * Enable multicast for the solicited node multicast address. 13626 * If IPMP we need to put the membership on the upper ill. 13627 */ 13628 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13629 ill_t *mcast_ill = NULL; 13630 boolean_t need_refrele; 13631 13632 if (IS_UNDER_IPMP(ill) && 13633 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13634 need_refrele = B_TRUE; 13635 } else { 13636 mcast_ill = ill; 13637 need_refrele = B_FALSE; 13638 } 13639 13640 ilm = ip_addmulti(&v6solmc, mcast_ill, 13641 ipif->ipif_zoneid, &err); 13642 if (need_refrele) 13643 ill_refrele(mcast_ill); 13644 13645 if (ilm == NULL) { 13646 ASSERT(err != 0); 13647 ip0dbg(("ipif_multicast_up: solicited MC" 13648 " failed %d\n", err)); 13649 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13650 ipif->ipif_allhosts_ilm = NULL; 13651 (void) ip_delmulti(ilm); 13652 } 13653 return; 13654 } 13655 ipif->ipif_solmulti_ilm = ilm; 13656 } 13657 } else { 13658 in6_addr_t v6group; 13659 13660 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13661 return; 13662 13663 /* Join the all hosts multicast address */ 13664 ip1dbg(("ipif_multicast_up - addmulti\n")); 13665 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13666 13667 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13668 if (ilm == NULL) { 13669 ASSERT(err != 0); 13670 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13671 return; 13672 } 13673 ipif->ipif_allhosts_ilm = ilm; 13674 } 13675 } 13676 13677 /* 13678 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13679 * (ilms from explicit memberships are handled in conn_update_ill.) 13680 */ 13681 void 13682 ipif_multicast_down(ipif_t *ipif) 13683 { 13684 ASSERT(IAM_WRITER_IPIF(ipif)); 13685 13686 ip1dbg(("ipif_multicast_down\n")); 13687 13688 if (ipif->ipif_allhosts_ilm != NULL) { 13689 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13690 ipif->ipif_allhosts_ilm = NULL; 13691 } 13692 if (ipif->ipif_solmulti_ilm != NULL) { 13693 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13694 ipif->ipif_solmulti_ilm = NULL; 13695 } 13696 } 13697 13698 /* 13699 * Used when an interface comes up to recreate any extra routes on this 13700 * interface. 13701 */ 13702 int 13703 ill_recover_saved_ire(ill_t *ill) 13704 { 13705 mblk_t *mp; 13706 ip_stack_t *ipst = ill->ill_ipst; 13707 13708 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13709 13710 mutex_enter(&ill->ill_saved_ire_lock); 13711 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13712 ire_t *ire, *nire; 13713 ifrt_t *ifrt; 13714 13715 ifrt = (ifrt_t *)mp->b_rptr; 13716 /* 13717 * Create a copy of the IRE with the saved address and netmask. 13718 */ 13719 if (ill->ill_isv6) { 13720 ire = ire_create_v6( 13721 &ifrt->ifrt_v6addr, 13722 &ifrt->ifrt_v6mask, 13723 &ifrt->ifrt_v6gateway_addr, 13724 ifrt->ifrt_type, 13725 ill, 13726 ifrt->ifrt_zoneid, 13727 ifrt->ifrt_flags, 13728 NULL, 13729 ipst); 13730 } else { 13731 ire = ire_create( 13732 (uint8_t *)&ifrt->ifrt_addr, 13733 (uint8_t *)&ifrt->ifrt_mask, 13734 (uint8_t *)&ifrt->ifrt_gateway_addr, 13735 ifrt->ifrt_type, 13736 ill, 13737 ifrt->ifrt_zoneid, 13738 ifrt->ifrt_flags, 13739 NULL, 13740 ipst); 13741 } 13742 if (ire == NULL) { 13743 mutex_exit(&ill->ill_saved_ire_lock); 13744 return (ENOMEM); 13745 } 13746 13747 if (ifrt->ifrt_flags & RTF_SETSRC) { 13748 if (ill->ill_isv6) { 13749 ire->ire_setsrc_addr_v6 = 13750 ifrt->ifrt_v6setsrc_addr; 13751 } else { 13752 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13753 } 13754 } 13755 13756 /* 13757 * Some software (for example, GateD and Sun Cluster) attempts 13758 * to create (what amount to) IRE_PREFIX routes with the 13759 * loopback address as the gateway. This is primarily done to 13760 * set up prefixes with the RTF_REJECT flag set (for example, 13761 * when generating aggregate routes.) 13762 * 13763 * If the IRE type (as defined by ill->ill_net_type) is 13764 * IRE_LOOPBACK, then we map the request into a 13765 * IRE_IF_NORESOLVER. 13766 */ 13767 if (ill->ill_net_type == IRE_LOOPBACK) 13768 ire->ire_type = IRE_IF_NORESOLVER; 13769 13770 /* 13771 * ire held by ire_add, will be refreled' towards the 13772 * the end of ipif_up_done 13773 */ 13774 nire = ire_add(ire); 13775 /* 13776 * Check if it was a duplicate entry. This handles 13777 * the case of two racing route adds for the same route 13778 */ 13779 if (nire == NULL) { 13780 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13781 } else if (nire != ire) { 13782 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13783 (void *)nire)); 13784 ire_delete(nire); 13785 } else { 13786 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13787 (void *)nire)); 13788 } 13789 if (nire != NULL) 13790 ire_refrele(nire); 13791 } 13792 mutex_exit(&ill->ill_saved_ire_lock); 13793 return (0); 13794 } 13795 13796 /* 13797 * Used to set the netmask and broadcast address to default values when the 13798 * interface is brought up. (Always called as writer.) 13799 */ 13800 static void 13801 ipif_set_default(ipif_t *ipif) 13802 { 13803 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13804 13805 if (!ipif->ipif_isv6) { 13806 /* 13807 * Interface holds an IPv4 address. Default 13808 * mask is the natural netmask. 13809 */ 13810 if (!ipif->ipif_net_mask) { 13811 ipaddr_t v4mask; 13812 13813 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13814 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13815 } 13816 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13817 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13818 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13819 } else { 13820 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13821 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13822 } 13823 /* 13824 * NOTE: SunOS 4.X does this even if the broadcast address 13825 * has been already set thus we do the same here. 13826 */ 13827 if (ipif->ipif_flags & IPIF_BROADCAST) { 13828 ipaddr_t v4addr; 13829 13830 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13831 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13832 } 13833 } else { 13834 /* 13835 * Interface holds an IPv6-only address. Default 13836 * mask is all-ones. 13837 */ 13838 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13839 ipif->ipif_v6net_mask = ipv6_all_ones; 13840 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13841 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13842 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13843 } else { 13844 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13845 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13846 } 13847 } 13848 } 13849 13850 /* 13851 * Return 0 if this address can be used as local address without causing 13852 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13853 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13854 * Note that the same IPv6 link-local address is allowed as long as the ills 13855 * are not on the same link. 13856 */ 13857 int 13858 ip_addr_availability_check(ipif_t *new_ipif) 13859 { 13860 in6_addr_t our_v6addr; 13861 ill_t *ill; 13862 ipif_t *ipif; 13863 ill_walk_context_t ctx; 13864 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13865 13866 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13867 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13868 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13869 13870 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13871 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13872 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13873 return (0); 13874 13875 our_v6addr = new_ipif->ipif_v6lcl_addr; 13876 13877 if (new_ipif->ipif_isv6) 13878 ill = ILL_START_WALK_V6(&ctx, ipst); 13879 else 13880 ill = ILL_START_WALK_V4(&ctx, ipst); 13881 13882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13883 for (ipif = ill->ill_ipif; ipif != NULL; 13884 ipif = ipif->ipif_next) { 13885 if ((ipif == new_ipif) || 13886 !(ipif->ipif_flags & IPIF_UP) || 13887 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13888 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13889 &our_v6addr)) 13890 continue; 13891 13892 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13893 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13894 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13895 ipif->ipif_flags |= IPIF_UNNUMBERED; 13896 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13897 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13898 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13899 continue; 13900 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13901 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13902 continue; 13903 else if (new_ipif->ipif_ill == ill) 13904 return (EADDRINUSE); 13905 else 13906 return (EADDRNOTAVAIL); 13907 } 13908 } 13909 13910 return (0); 13911 } 13912 13913 /* 13914 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13915 * IREs for the ipif. 13916 * When the routine returns EINPROGRESS then mp has been consumed and 13917 * the ioctl will be acked from ip_rput_dlpi. 13918 */ 13919 int 13920 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13921 { 13922 ill_t *ill = ipif->ipif_ill; 13923 boolean_t isv6 = ipif->ipif_isv6; 13924 int err = 0; 13925 boolean_t success; 13926 uint_t ipif_orig_id; 13927 ip_stack_t *ipst = ill->ill_ipst; 13928 13929 ASSERT(IAM_WRITER_IPIF(ipif)); 13930 13931 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13932 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13933 ill_t *, ill, ipif_t *, ipif); 13934 13935 /* Shouldn't get here if it is already up. */ 13936 if (ipif->ipif_flags & IPIF_UP) 13937 return (EALREADY); 13938 13939 /* 13940 * If this is a request to bring up a data address on an interface 13941 * under IPMP, then move the address to its IPMP meta-interface and 13942 * try to bring it up. One complication is that the zeroth ipif for 13943 * an ill is special, in that every ill always has one, and that code 13944 * throughout IP deferences ill->ill_ipif without holding any locks. 13945 */ 13946 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13947 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13948 ipif_t *stubipif = NULL, *moveipif = NULL; 13949 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13950 13951 /* 13952 * The ipif being brought up should be quiesced. If it's not, 13953 * something has gone amiss and we need to bail out. (If it's 13954 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13955 */ 13956 mutex_enter(&ill->ill_lock); 13957 if (!ipif_is_quiescent(ipif)) { 13958 mutex_exit(&ill->ill_lock); 13959 return (EINVAL); 13960 } 13961 mutex_exit(&ill->ill_lock); 13962 13963 /* 13964 * If we're going to need to allocate ipifs, do it prior 13965 * to starting the move (and grabbing locks). 13966 */ 13967 if (ipif->ipif_id == 0) { 13968 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13969 B_FALSE, &err)) == NULL) { 13970 return (err); 13971 } 13972 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13973 B_FALSE, &err)) == NULL) { 13974 mi_free(moveipif); 13975 return (err); 13976 } 13977 } 13978 13979 /* 13980 * Grab or transfer the ipif to move. During the move, keep 13981 * ill_g_lock held to prevent any ill walker threads from 13982 * seeing things in an inconsistent state. 13983 */ 13984 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13985 if (ipif->ipif_id != 0) { 13986 ipif_remove(ipif); 13987 } else { 13988 ipif_transfer(ipif, moveipif, stubipif); 13989 ipif = moveipif; 13990 } 13991 13992 /* 13993 * Place the ipif on the IPMP ill. If the zeroth ipif on 13994 * the IPMP ill is a stub (0.0.0.0 down address) then we 13995 * replace that one. Otherwise, pick the next available slot. 13996 */ 13997 ipif->ipif_ill = ipmp_ill; 13998 ipif_orig_id = ipif->ipif_id; 13999 14000 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14001 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14002 ipif = ipmp_ill->ill_ipif; 14003 } else { 14004 ipif->ipif_id = -1; 14005 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14006 /* 14007 * No more available ipif_id's -- put it back 14008 * on the original ill and fail the operation. 14009 * Since we're writer on the ill, we can be 14010 * sure our old slot is still available. 14011 */ 14012 ipif->ipif_id = ipif_orig_id; 14013 ipif->ipif_ill = ill; 14014 if (ipif_orig_id == 0) { 14015 ipif_transfer(ipif, ill->ill_ipif, 14016 NULL); 14017 } else { 14018 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14019 } 14020 rw_exit(&ipst->ips_ill_g_lock); 14021 return (err); 14022 } 14023 } 14024 rw_exit(&ipst->ips_ill_g_lock); 14025 14026 /* 14027 * Tell SCTP that the ipif has moved. Note that even if we 14028 * had to allocate a new ipif, the original sequence id was 14029 * preserved and therefore SCTP won't know. 14030 */ 14031 sctp_move_ipif(ipif, ill, ipmp_ill); 14032 14033 /* 14034 * If the ipif being brought up was on slot zero, then we 14035 * first need to bring up the placeholder we stuck there. In 14036 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14037 * call to ipif_up() itself, if we successfully bring up the 14038 * placeholder, we'll check ill_move_ipif and bring it up too. 14039 */ 14040 if (ipif_orig_id == 0) { 14041 ASSERT(ill->ill_move_ipif == NULL); 14042 ill->ill_move_ipif = ipif; 14043 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14044 ASSERT(ill->ill_move_ipif == NULL); 14045 if (err != EINPROGRESS) 14046 ill->ill_move_ipif = NULL; 14047 return (err); 14048 } 14049 14050 /* 14051 * Bring it up on the IPMP ill. 14052 */ 14053 return (ipif_up(ipif, q, mp)); 14054 } 14055 14056 /* Skip arp/ndp for any loopback interface. */ 14057 if (ill->ill_wq != NULL) { 14058 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14059 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14060 14061 if (!ill->ill_dl_up) { 14062 /* 14063 * ill_dl_up is not yet set. i.e. we are yet to 14064 * DL_BIND with the driver and this is the first 14065 * logical interface on the ill to become "up". 14066 * Tell the driver to get going (via DL_BIND_REQ). 14067 * Note that changing "significant" IFF_ flags 14068 * address/netmask etc cause a down/up dance, but 14069 * does not cause an unbind (DL_UNBIND) with the driver 14070 */ 14071 return (ill_dl_up(ill, ipif, mp, q)); 14072 } 14073 14074 /* 14075 * ipif_resolver_up may end up needeing to bind/attach 14076 * the ARP stream, which in turn necessitates a 14077 * DLPI message exchange with the driver. ioctls are 14078 * serialized and so we cannot send more than one 14079 * interface up message at a time. If ipif_resolver_up 14080 * does need to wait for the DLPI handshake for the ARP stream, 14081 * we get EINPROGRESS and we will complete in arp_bringup_done. 14082 */ 14083 14084 ASSERT(connp != NULL || !CONN_Q(q)); 14085 if (connp != NULL) 14086 mutex_enter(&connp->conn_lock); 14087 mutex_enter(&ill->ill_lock); 14088 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14089 mutex_exit(&ill->ill_lock); 14090 if (connp != NULL) 14091 mutex_exit(&connp->conn_lock); 14092 if (!success) 14093 return (EINTR); 14094 14095 /* 14096 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14097 * complete when ipif_ndp_up returns. 14098 */ 14099 err = ipif_resolver_up(ipif, Res_act_initial); 14100 if (err == EINPROGRESS) { 14101 /* We will complete it in arp_bringup_done() */ 14102 return (err); 14103 } 14104 14105 if (isv6 && err == 0) 14106 err = ipif_ndp_up(ipif, B_TRUE); 14107 14108 ASSERT(err != EINPROGRESS); 14109 mp = ipsq_pending_mp_get(ipsq, &connp); 14110 ASSERT(mp != NULL); 14111 if (err != 0) 14112 return (err); 14113 } else { 14114 /* 14115 * Interfaces without underlying hardware don't do duplicate 14116 * address detection. 14117 */ 14118 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14119 ipif->ipif_addr_ready = 1; 14120 err = ill_add_ires(ill); 14121 /* allocation failure? */ 14122 if (err != 0) 14123 return (err); 14124 } 14125 14126 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14127 if (err == 0 && ill->ill_move_ipif != NULL) { 14128 ipif = ill->ill_move_ipif; 14129 ill->ill_move_ipif = NULL; 14130 return (ipif_up(ipif, q, mp)); 14131 } 14132 return (err); 14133 } 14134 14135 /* 14136 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14137 * The identical set of IREs need to be removed in ill_delete_ires(). 14138 */ 14139 int 14140 ill_add_ires(ill_t *ill) 14141 { 14142 ire_t *ire; 14143 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14144 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14145 14146 if (ill->ill_ire_multicast != NULL) 14147 return (0); 14148 14149 /* 14150 * provide some dummy ire_addr for creating the ire. 14151 */ 14152 if (ill->ill_isv6) { 14153 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14154 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14155 } else { 14156 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14157 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14158 } 14159 if (ire == NULL) 14160 return (ENOMEM); 14161 14162 ill->ill_ire_multicast = ire; 14163 return (0); 14164 } 14165 14166 void 14167 ill_delete_ires(ill_t *ill) 14168 { 14169 if (ill->ill_ire_multicast != NULL) { 14170 /* 14171 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14172 * which was taken without any th_tracing enabled. 14173 * We also mark it as condemned (note that it was never added) 14174 * so that caching conn's can move off of it. 14175 */ 14176 ire_make_condemned(ill->ill_ire_multicast); 14177 ire_refrele_notr(ill->ill_ire_multicast); 14178 ill->ill_ire_multicast = NULL; 14179 } 14180 } 14181 14182 /* 14183 * Perform a bind for the physical device. 14184 * When the routine returns EINPROGRESS then mp has been consumed and 14185 * the ioctl will be acked from ip_rput_dlpi. 14186 * Allocate an unbind message and save it until ipif_down. 14187 */ 14188 static int 14189 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14190 { 14191 mblk_t *bind_mp = NULL; 14192 mblk_t *unbind_mp = NULL; 14193 conn_t *connp; 14194 boolean_t success; 14195 int err; 14196 14197 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14198 14199 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14200 ASSERT(IAM_WRITER_ILL(ill)); 14201 ASSERT(mp != NULL); 14202 14203 /* 14204 * Make sure we have an IRE_MULTICAST in case we immediately 14205 * start receiving packets. 14206 */ 14207 err = ill_add_ires(ill); 14208 if (err != 0) 14209 goto bad; 14210 14211 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14212 DL_BIND_REQ); 14213 if (bind_mp == NULL) 14214 goto bad; 14215 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14216 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14217 14218 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14219 if (unbind_mp == NULL) 14220 goto bad; 14221 14222 /* 14223 * Record state needed to complete this operation when the 14224 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14225 */ 14226 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14227 ASSERT(connp != NULL || !CONN_Q(q)); 14228 GRAB_CONN_LOCK(q); 14229 mutex_enter(&ipif->ipif_ill->ill_lock); 14230 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14231 mutex_exit(&ipif->ipif_ill->ill_lock); 14232 RELEASE_CONN_LOCK(q); 14233 if (!success) 14234 goto bad; 14235 14236 /* 14237 * Save the unbind message for ill_dl_down(); it will be consumed when 14238 * the interface goes down. 14239 */ 14240 ASSERT(ill->ill_unbind_mp == NULL); 14241 ill->ill_unbind_mp = unbind_mp; 14242 14243 ill_dlpi_send(ill, bind_mp); 14244 /* Send down link-layer capabilities probe if not already done. */ 14245 ill_capability_probe(ill); 14246 14247 /* 14248 * Sysid used to rely on the fact that netboots set domainname 14249 * and the like. Now that miniroot boots aren't strictly netboots 14250 * and miniroot network configuration is driven from userland 14251 * these things still need to be set. This situation can be detected 14252 * by comparing the interface being configured here to the one 14253 * dhcifname was set to reference by the boot loader. Once sysid is 14254 * converted to use dhcp_ipc_getinfo() this call can go away. 14255 */ 14256 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14257 (strcmp(ill->ill_name, dhcifname) == 0) && 14258 (strlen(srpc_domain) == 0)) { 14259 if (dhcpinit() != 0) 14260 cmn_err(CE_WARN, "no cached dhcp response"); 14261 } 14262 14263 /* 14264 * This operation will complete in ip_rput_dlpi with either 14265 * a DL_BIND_ACK or DL_ERROR_ACK. 14266 */ 14267 return (EINPROGRESS); 14268 bad: 14269 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14270 14271 freemsg(bind_mp); 14272 freemsg(unbind_mp); 14273 return (ENOMEM); 14274 } 14275 14276 /* Add room for tcp+ip headers */ 14277 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14278 14279 /* 14280 * DLPI and ARP is up. 14281 * Create all the IREs associated with an interface. Bring up multicast. 14282 * Set the interface flag and finish other initialization 14283 * that potentially had to be deferred to after DL_BIND_ACK. 14284 */ 14285 int 14286 ipif_up_done(ipif_t *ipif) 14287 { 14288 ill_t *ill = ipif->ipif_ill; 14289 int err = 0; 14290 boolean_t loopback = B_FALSE; 14291 boolean_t update_src_selection = B_TRUE; 14292 ipif_t *tmp_ipif; 14293 14294 ip1dbg(("ipif_up_done(%s:%u)\n", 14295 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14296 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14297 ill_t *, ill, ipif_t *, ipif); 14298 14299 /* Check if this is a loopback interface */ 14300 if (ipif->ipif_ill->ill_wq == NULL) 14301 loopback = B_TRUE; 14302 14303 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14304 14305 /* 14306 * If all other interfaces for this ill are down or DEPRECATED, 14307 * or otherwise unsuitable for source address selection, 14308 * reset the src generation numbers to make sure source 14309 * address selection gets to take this new ipif into account. 14310 * No need to hold ill_lock while traversing the ipif list since 14311 * we are writer 14312 */ 14313 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14314 tmp_ipif = tmp_ipif->ipif_next) { 14315 if (((tmp_ipif->ipif_flags & 14316 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14317 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14318 (tmp_ipif == ipif)) 14319 continue; 14320 /* first useable pre-existing interface */ 14321 update_src_selection = B_FALSE; 14322 break; 14323 } 14324 if (update_src_selection) 14325 ip_update_source_selection(ill->ill_ipst); 14326 14327 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14328 nce_t *loop_nce = NULL; 14329 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14330 14331 /* 14332 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14333 * ipif_lookup_on_name(), but in the case of zones we can have 14334 * several loopback addresses on lo0. So all the interfaces with 14335 * loopback addresses need to be marked IRE_LOOPBACK. 14336 */ 14337 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14338 htonl(INADDR_LOOPBACK)) 14339 ipif->ipif_ire_type = IRE_LOOPBACK; 14340 else 14341 ipif->ipif_ire_type = IRE_LOCAL; 14342 if (ill->ill_net_type != IRE_LOOPBACK) 14343 flags |= NCE_F_PUBLISH; 14344 14345 /* add unicast nce for the local addr */ 14346 err = nce_lookup_then_add_v4(ill, NULL, 14347 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14348 ND_REACHABLE, &loop_nce); 14349 /* A shared-IP zone sees EEXIST for lo0:N */ 14350 if (err == 0 || err == EEXIST) { 14351 ipif->ipif_added_nce = 1; 14352 loop_nce->nce_ipif_cnt++; 14353 nce_refrele(loop_nce); 14354 err = 0; 14355 } else { 14356 ASSERT(loop_nce == NULL); 14357 return (err); 14358 } 14359 } 14360 14361 /* Create all the IREs associated with this interface */ 14362 err = ipif_add_ires_v4(ipif, loopback); 14363 if (err != 0) { 14364 /* 14365 * see comments about return value from 14366 * ip_addr_availability_check() in ipif_add_ires_v4(). 14367 */ 14368 if (err != EADDRINUSE) { 14369 (void) ipif_arp_down(ipif); 14370 } else { 14371 /* 14372 * Make IPMP aware of the deleted ipif so that 14373 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14374 * can be completed. Note that we do not want to 14375 * destroy the nce that was created on the ipmp_ill 14376 * for the active copy of the duplicate address in 14377 * use. 14378 */ 14379 if (IS_IPMP(ill)) 14380 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14381 err = EADDRNOTAVAIL; 14382 } 14383 return (err); 14384 } 14385 14386 if (ill->ill_ipif_up_count == 1 && !loopback) { 14387 /* Recover any additional IREs entries for this ill */ 14388 (void) ill_recover_saved_ire(ill); 14389 } 14390 14391 if (ill->ill_need_recover_multicast) { 14392 /* 14393 * Need to recover all multicast memberships in the driver. 14394 * This had to be deferred until we had attached. The same 14395 * code exists in ipif_up_done_v6() to recover IPv6 14396 * memberships. 14397 * 14398 * Note that it would be preferable to unconditionally do the 14399 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14400 * that since ill_join_allmulti() depends on ill_dl_up being 14401 * set, and it is not set until we receive a DL_BIND_ACK after 14402 * having called ill_dl_up(). 14403 */ 14404 ill_recover_multicast(ill); 14405 } 14406 14407 if (ill->ill_ipif_up_count == 1) { 14408 /* 14409 * Since the interface is now up, it may now be active. 14410 */ 14411 if (IS_UNDER_IPMP(ill)) 14412 ipmp_ill_refresh_active(ill); 14413 14414 /* 14415 * If this is an IPMP interface, we may now be able to 14416 * establish ARP entries. 14417 */ 14418 if (IS_IPMP(ill)) 14419 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14420 } 14421 14422 /* Join the allhosts multicast address */ 14423 ipif_multicast_up(ipif); 14424 14425 if (!loopback && !update_src_selection && 14426 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14427 ip_update_source_selection(ill->ill_ipst); 14428 14429 if (!loopback && ipif->ipif_addr_ready) { 14430 /* Broadcast an address mask reply. */ 14431 ipif_mask_reply(ipif); 14432 } 14433 /* Perhaps ilgs should use this ill */ 14434 update_conn_ill(NULL, ill->ill_ipst); 14435 14436 /* 14437 * This had to be deferred until we had bound. Tell routing sockets and 14438 * others that this interface is up if it looks like the address has 14439 * been validated. Otherwise, if it isn't ready yet, wait for 14440 * duplicate address detection to do its thing. 14441 */ 14442 if (ipif->ipif_addr_ready) 14443 ipif_up_notify(ipif); 14444 return (0); 14445 } 14446 14447 /* 14448 * Add the IREs associated with the ipif. 14449 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14450 */ 14451 static int 14452 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14453 { 14454 ill_t *ill = ipif->ipif_ill; 14455 ip_stack_t *ipst = ill->ill_ipst; 14456 ire_t *ire_array[20]; 14457 ire_t **irep = ire_array; 14458 ire_t **irep1; 14459 ipaddr_t net_mask = 0; 14460 ipaddr_t subnet_mask, route_mask; 14461 int err; 14462 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14463 ire_t *ire_if = NULL; 14464 uchar_t *gw; 14465 14466 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14467 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14468 /* 14469 * If we're on a labeled system then make sure that zone- 14470 * private addresses have proper remote host database entries. 14471 */ 14472 if (is_system_labeled() && 14473 ipif->ipif_ire_type != IRE_LOOPBACK && 14474 !tsol_check_interface_address(ipif)) 14475 return (EINVAL); 14476 14477 /* Register the source address for __sin6_src_id */ 14478 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14479 ipif->ipif_zoneid, ipst); 14480 if (err != 0) { 14481 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14482 return (err); 14483 } 14484 14485 if (loopback) 14486 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14487 else 14488 gw = NULL; 14489 14490 /* If the interface address is set, create the local IRE. */ 14491 ire_local = ire_create( 14492 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14493 (uchar_t *)&ip_g_all_ones, /* mask */ 14494 gw, /* gateway */ 14495 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14496 ipif->ipif_ill, 14497 ipif->ipif_zoneid, 14498 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14499 RTF_PRIVATE : 0) | RTF_KERNEL, 14500 NULL, 14501 ipst); 14502 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14503 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14504 ipif->ipif_ire_type, 14505 ntohl(ipif->ipif_lcl_addr))); 14506 if (ire_local == NULL) { 14507 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14508 err = ENOMEM; 14509 goto bad; 14510 } 14511 } else { 14512 ip1dbg(( 14513 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14514 ipif->ipif_ire_type, 14515 ntohl(ipif->ipif_lcl_addr), 14516 (uint_t)ipif->ipif_flags)); 14517 } 14518 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14519 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14520 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14521 } else { 14522 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14523 } 14524 14525 subnet_mask = ipif->ipif_net_mask; 14526 14527 /* 14528 * If mask was not specified, use natural netmask of 14529 * interface address. Also, store this mask back into the 14530 * ipif struct. 14531 */ 14532 if (subnet_mask == 0) { 14533 subnet_mask = net_mask; 14534 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14535 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14536 ipif->ipif_v6subnet); 14537 } 14538 14539 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14540 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14541 ipif->ipif_subnet != INADDR_ANY) { 14542 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14543 14544 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14545 route_mask = IP_HOST_MASK; 14546 } else { 14547 route_mask = subnet_mask; 14548 } 14549 14550 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14551 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14552 (void *)ipif, (void *)ill, ill->ill_net_type, 14553 ntohl(ipif->ipif_subnet))); 14554 ire_if = ire_create( 14555 (uchar_t *)&ipif->ipif_subnet, 14556 (uchar_t *)&route_mask, 14557 (uchar_t *)&ipif->ipif_lcl_addr, 14558 ill->ill_net_type, 14559 ill, 14560 ipif->ipif_zoneid, 14561 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14562 RTF_PRIVATE: 0) | RTF_KERNEL, 14563 NULL, 14564 ipst); 14565 if (ire_if == NULL) { 14566 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14567 err = ENOMEM; 14568 goto bad; 14569 } 14570 } 14571 14572 /* 14573 * Create any necessary broadcast IREs. 14574 */ 14575 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14576 !(ipif->ipif_flags & IPIF_NOXMIT)) 14577 irep = ipif_create_bcast_ires(ipif, irep); 14578 14579 /* If an earlier ire_create failed, get out now */ 14580 for (irep1 = irep; irep1 > ire_array; ) { 14581 irep1--; 14582 if (*irep1 == NULL) { 14583 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14584 err = ENOMEM; 14585 goto bad; 14586 } 14587 } 14588 14589 /* 14590 * Need to atomically check for IP address availability under 14591 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14592 * ills or new ipifs can be added while we are checking availability. 14593 */ 14594 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14595 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14596 /* Mark it up, and increment counters. */ 14597 ipif->ipif_flags |= IPIF_UP; 14598 ill->ill_ipif_up_count++; 14599 err = ip_addr_availability_check(ipif); 14600 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14601 rw_exit(&ipst->ips_ill_g_lock); 14602 14603 if (err != 0) { 14604 /* 14605 * Our address may already be up on the same ill. In this case, 14606 * the ARP entry for our ipif replaced the one for the other 14607 * ipif. So we don't want to delete it (otherwise the other ipif 14608 * would be unable to send packets). 14609 * ip_addr_availability_check() identifies this case for us and 14610 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14611 * which is the expected error code. 14612 */ 14613 ill->ill_ipif_up_count--; 14614 ipif->ipif_flags &= ~IPIF_UP; 14615 goto bad; 14616 } 14617 14618 /* 14619 * Add in all newly created IREs. ire_create_bcast() has 14620 * already checked for duplicates of the IRE_BROADCAST type. 14621 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14622 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14623 * a /32 route. 14624 */ 14625 if (ire_if != NULL) { 14626 ire_if = ire_add(ire_if); 14627 if (ire_if == NULL) { 14628 err = ENOMEM; 14629 goto bad2; 14630 } 14631 #ifdef DEBUG 14632 ire_refhold_notr(ire_if); 14633 ire_refrele(ire_if); 14634 #endif 14635 } 14636 if (ire_local != NULL) { 14637 ire_local = ire_add(ire_local); 14638 if (ire_local == NULL) { 14639 err = ENOMEM; 14640 goto bad2; 14641 } 14642 #ifdef DEBUG 14643 ire_refhold_notr(ire_local); 14644 ire_refrele(ire_local); 14645 #endif 14646 } 14647 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14648 if (ire_local != NULL) 14649 ipif->ipif_ire_local = ire_local; 14650 if (ire_if != NULL) 14651 ipif->ipif_ire_if = ire_if; 14652 rw_exit(&ipst->ips_ill_g_lock); 14653 ire_local = NULL; 14654 ire_if = NULL; 14655 14656 /* 14657 * We first add all of them, and if that succeeds we refrele the 14658 * bunch. That enables us to delete all of them should any of the 14659 * ire_adds fail. 14660 */ 14661 for (irep1 = irep; irep1 > ire_array; ) { 14662 irep1--; 14663 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14664 *irep1 = ire_add(*irep1); 14665 if (*irep1 == NULL) { 14666 err = ENOMEM; 14667 goto bad2; 14668 } 14669 } 14670 14671 for (irep1 = irep; irep1 > ire_array; ) { 14672 irep1--; 14673 /* refheld by ire_add. */ 14674 if (*irep1 != NULL) { 14675 ire_refrele(*irep1); 14676 *irep1 = NULL; 14677 } 14678 } 14679 14680 if (!loopback) { 14681 /* 14682 * If the broadcast address has been set, make sure it makes 14683 * sense based on the interface address. 14684 * Only match on ill since we are sharing broadcast addresses. 14685 */ 14686 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14687 (ipif->ipif_flags & IPIF_BROADCAST)) { 14688 ire_t *ire; 14689 14690 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14691 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14692 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14693 14694 if (ire == NULL) { 14695 /* 14696 * If there isn't a matching broadcast IRE, 14697 * revert to the default for this netmask. 14698 */ 14699 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14700 mutex_enter(&ipif->ipif_ill->ill_lock); 14701 ipif_set_default(ipif); 14702 mutex_exit(&ipif->ipif_ill->ill_lock); 14703 } else { 14704 ire_refrele(ire); 14705 } 14706 } 14707 14708 } 14709 return (0); 14710 14711 bad2: 14712 ill->ill_ipif_up_count--; 14713 ipif->ipif_flags &= ~IPIF_UP; 14714 14715 bad: 14716 ip1dbg(("ipif_add_ires: FAILED \n")); 14717 if (ire_local != NULL) 14718 ire_delete(ire_local); 14719 if (ire_if != NULL) 14720 ire_delete(ire_if); 14721 14722 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14723 ire_local = ipif->ipif_ire_local; 14724 ipif->ipif_ire_local = NULL; 14725 ire_if = ipif->ipif_ire_if; 14726 ipif->ipif_ire_if = NULL; 14727 rw_exit(&ipst->ips_ill_g_lock); 14728 if (ire_local != NULL) { 14729 ire_delete(ire_local); 14730 ire_refrele_notr(ire_local); 14731 } 14732 if (ire_if != NULL) { 14733 ire_delete(ire_if); 14734 ire_refrele_notr(ire_if); 14735 } 14736 14737 while (irep > ire_array) { 14738 irep--; 14739 if (*irep != NULL) { 14740 ire_delete(*irep); 14741 } 14742 } 14743 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14744 14745 return (err); 14746 } 14747 14748 /* Remove all the IREs created by ipif_add_ires_v4 */ 14749 void 14750 ipif_delete_ires_v4(ipif_t *ipif) 14751 { 14752 ill_t *ill = ipif->ipif_ill; 14753 ip_stack_t *ipst = ill->ill_ipst; 14754 ire_t *ire; 14755 14756 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14757 ire = ipif->ipif_ire_local; 14758 ipif->ipif_ire_local = NULL; 14759 rw_exit(&ipst->ips_ill_g_lock); 14760 if (ire != NULL) { 14761 /* 14762 * Move count to ipif so we don't loose the count due to 14763 * a down/up dance. 14764 */ 14765 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14766 14767 ire_delete(ire); 14768 ire_refrele_notr(ire); 14769 } 14770 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14771 ire = ipif->ipif_ire_if; 14772 ipif->ipif_ire_if = NULL; 14773 rw_exit(&ipst->ips_ill_g_lock); 14774 if (ire != NULL) { 14775 ire_delete(ire); 14776 ire_refrele_notr(ire); 14777 } 14778 14779 /* 14780 * Delete the broadcast IREs. 14781 */ 14782 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14783 !(ipif->ipif_flags & IPIF_NOXMIT)) 14784 ipif_delete_bcast_ires(ipif); 14785 } 14786 14787 /* 14788 * Checks for availbility of a usable source address (if there is one) when the 14789 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14790 * this selection is done regardless of the destination. 14791 */ 14792 boolean_t 14793 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14794 ip_stack_t *ipst) 14795 { 14796 ipif_t *ipif = NULL; 14797 ill_t *uill; 14798 14799 ASSERT(ifindex != 0); 14800 14801 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14802 if (uill == NULL) 14803 return (B_FALSE); 14804 14805 mutex_enter(&uill->ill_lock); 14806 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14807 if (IPIF_IS_CONDEMNED(ipif)) 14808 continue; 14809 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14810 continue; 14811 if (!(ipif->ipif_flags & IPIF_UP)) 14812 continue; 14813 if (ipif->ipif_zoneid != zoneid) 14814 continue; 14815 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14816 ipif->ipif_lcl_addr == INADDR_ANY) 14817 continue; 14818 mutex_exit(&uill->ill_lock); 14819 ill_refrele(uill); 14820 return (B_TRUE); 14821 } 14822 mutex_exit(&uill->ill_lock); 14823 ill_refrele(uill); 14824 return (B_FALSE); 14825 } 14826 14827 /* 14828 * Find an ipif with a good local address on the ill+zoneid. 14829 */ 14830 ipif_t * 14831 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14832 { 14833 ipif_t *ipif; 14834 14835 mutex_enter(&ill->ill_lock); 14836 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14837 if (IPIF_IS_CONDEMNED(ipif)) 14838 continue; 14839 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14840 continue; 14841 if (!(ipif->ipif_flags & IPIF_UP)) 14842 continue; 14843 if (ipif->ipif_zoneid != zoneid && 14844 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14845 continue; 14846 if (ill->ill_isv6 ? 14847 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14848 ipif->ipif_lcl_addr == INADDR_ANY) 14849 continue; 14850 ipif_refhold_locked(ipif); 14851 mutex_exit(&ill->ill_lock); 14852 return (ipif); 14853 } 14854 mutex_exit(&ill->ill_lock); 14855 return (NULL); 14856 } 14857 14858 /* 14859 * IP source address type, sorted from worst to best. For a given type, 14860 * always prefer IP addresses on the same subnet. All-zones addresses are 14861 * suboptimal because they pose problems with unlabeled destinations. 14862 */ 14863 typedef enum { 14864 IPIF_NONE, 14865 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14866 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14867 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14868 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14869 IPIF_DIFFNET, /* normal and different subnet */ 14870 IPIF_SAMENET, /* normal and same subnet */ 14871 IPIF_LOCALADDR /* local loopback */ 14872 } ipif_type_t; 14873 14874 /* 14875 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14876 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14877 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14878 * the first one, unless IPMP is used in which case we round-robin among them; 14879 * see below for more. 14880 * 14881 * Returns NULL if there is no suitable source address for the ill. 14882 * This only occurs when there is no valid source address for the ill. 14883 */ 14884 ipif_t * 14885 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14886 boolean_t allow_usesrc, boolean_t *notreadyp) 14887 { 14888 ill_t *usill = NULL; 14889 ill_t *ipmp_ill = NULL; 14890 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14891 ipif_type_t type, best_type; 14892 tsol_tpc_t *src_rhtp, *dst_rhtp; 14893 ip_stack_t *ipst = ill->ill_ipst; 14894 boolean_t samenet; 14895 14896 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14897 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14898 B_FALSE, ipst); 14899 if (usill != NULL) 14900 ill = usill; /* Select source from usesrc ILL */ 14901 else 14902 return (NULL); 14903 } 14904 14905 /* 14906 * Test addresses should never be used for source address selection, 14907 * so if we were passed one, switch to the IPMP meta-interface. 14908 */ 14909 if (IS_UNDER_IPMP(ill)) { 14910 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14911 ill = ipmp_ill; /* Select source from IPMP ill */ 14912 else 14913 return (NULL); 14914 } 14915 14916 /* 14917 * If we're dealing with an unlabeled destination on a labeled system, 14918 * make sure that we ignore source addresses that are incompatible with 14919 * the destination's default label. That destination's default label 14920 * must dominate the minimum label on the source address. 14921 */ 14922 dst_rhtp = NULL; 14923 if (is_system_labeled()) { 14924 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14925 if (dst_rhtp == NULL) 14926 return (NULL); 14927 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14928 TPC_RELE(dst_rhtp); 14929 dst_rhtp = NULL; 14930 } 14931 } 14932 14933 /* 14934 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14935 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14936 * After selecting the right ipif, under ill_lock make sure ipif is 14937 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14938 * we retry. Inside the loop we still need to check for CONDEMNED, 14939 * but not under a lock. 14940 */ 14941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14942 retry: 14943 /* 14944 * For source address selection, we treat the ipif list as circular 14945 * and continue until we get back to where we started. This allows 14946 * IPMP to vary source address selection (which improves inbound load 14947 * spreading) by caching its last ending point and starting from 14948 * there. NOTE: we don't have to worry about ill_src_ipif changing 14949 * ills since that can't happen on the IPMP ill. 14950 */ 14951 start_ipif = ill->ill_ipif; 14952 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14953 start_ipif = ill->ill_src_ipif; 14954 14955 ipif = start_ipif; 14956 best_ipif = NULL; 14957 best_type = IPIF_NONE; 14958 do { 14959 if ((next_ipif = ipif->ipif_next) == NULL) 14960 next_ipif = ill->ill_ipif; 14961 14962 if (IPIF_IS_CONDEMNED(ipif)) 14963 continue; 14964 /* Always skip NOLOCAL and ANYCAST interfaces */ 14965 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14966 continue; 14967 /* Always skip NOACCEPT interfaces */ 14968 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14969 continue; 14970 if (!(ipif->ipif_flags & IPIF_UP)) 14971 continue; 14972 14973 if (!ipif->ipif_addr_ready) { 14974 if (notreadyp != NULL) 14975 *notreadyp = B_TRUE; 14976 continue; 14977 } 14978 14979 if (zoneid != ALL_ZONES && 14980 ipif->ipif_zoneid != zoneid && 14981 ipif->ipif_zoneid != ALL_ZONES) 14982 continue; 14983 14984 /* 14985 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14986 * are not valid as source addresses. 14987 */ 14988 if (ipif->ipif_lcl_addr == INADDR_ANY) 14989 continue; 14990 14991 /* 14992 * Check compatibility of local address for destination's 14993 * default label if we're on a labeled system. Incompatible 14994 * addresses can't be used at all. 14995 */ 14996 if (dst_rhtp != NULL) { 14997 boolean_t incompat; 14998 14999 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15000 IPV4_VERSION, B_FALSE); 15001 if (src_rhtp == NULL) 15002 continue; 15003 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15004 src_rhtp->tpc_tp.tp_doi != 15005 dst_rhtp->tpc_tp.tp_doi || 15006 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15007 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15008 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15009 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15010 TPC_RELE(src_rhtp); 15011 if (incompat) 15012 continue; 15013 } 15014 15015 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15016 15017 if (ipif->ipif_lcl_addr == dst) { 15018 type = IPIF_LOCALADDR; 15019 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15020 type = samenet ? IPIF_SAMENET_DEPRECATED : 15021 IPIF_DIFFNET_DEPRECATED; 15022 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15023 type = samenet ? IPIF_SAMENET_ALLZONES : 15024 IPIF_DIFFNET_ALLZONES; 15025 } else { 15026 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15027 } 15028 15029 if (type > best_type) { 15030 best_type = type; 15031 best_ipif = ipif; 15032 if (best_type == IPIF_LOCALADDR) 15033 break; /* can't get better */ 15034 } 15035 } while ((ipif = next_ipif) != start_ipif); 15036 15037 if ((ipif = best_ipif) != NULL) { 15038 mutex_enter(&ipif->ipif_ill->ill_lock); 15039 if (IPIF_IS_CONDEMNED(ipif)) { 15040 mutex_exit(&ipif->ipif_ill->ill_lock); 15041 goto retry; 15042 } 15043 ipif_refhold_locked(ipif); 15044 15045 /* 15046 * For IPMP, update the source ipif rotor to the next ipif, 15047 * provided we can look it up. (We must not use it if it's 15048 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15049 * ipif_free() checked ill_src_ipif.) 15050 */ 15051 if (IS_IPMP(ill) && ipif != NULL) { 15052 next_ipif = ipif->ipif_next; 15053 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15054 ill->ill_src_ipif = next_ipif; 15055 else 15056 ill->ill_src_ipif = NULL; 15057 } 15058 mutex_exit(&ipif->ipif_ill->ill_lock); 15059 } 15060 15061 rw_exit(&ipst->ips_ill_g_lock); 15062 if (usill != NULL) 15063 ill_refrele(usill); 15064 if (ipmp_ill != NULL) 15065 ill_refrele(ipmp_ill); 15066 if (dst_rhtp != NULL) 15067 TPC_RELE(dst_rhtp); 15068 15069 #ifdef DEBUG 15070 if (ipif == NULL) { 15071 char buf1[INET6_ADDRSTRLEN]; 15072 15073 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15074 ill->ill_name, 15075 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15076 } else { 15077 char buf1[INET6_ADDRSTRLEN]; 15078 char buf2[INET6_ADDRSTRLEN]; 15079 15080 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15081 ipif->ipif_ill->ill_name, 15082 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15083 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15084 buf2, sizeof (buf2)))); 15085 } 15086 #endif /* DEBUG */ 15087 return (ipif); 15088 } 15089 15090 /* 15091 * Pick a source address based on the destination ill and an optional setsrc 15092 * address. 15093 * The result is stored in srcp. If generation is set, then put the source 15094 * generation number there before we look for the source address (to avoid 15095 * missing changes in the set of source addresses. 15096 * If flagsp is set, then us it to pass back ipif_flags. 15097 * 15098 * If the caller wants to cache the returned source address and detect when 15099 * that might be stale, the caller should pass in a generation argument, 15100 * which the caller can later compare against ips_src_generation 15101 * 15102 * The precedence order for selecting an IPv4 source address is: 15103 * - RTF_SETSRC on the offlink ire always wins. 15104 * - If usrsrc is set, swap the ill to be the usesrc one. 15105 * - If IPMP is used on the ill, select a random address from the most 15106 * preferred ones below: 15107 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15108 * 2. Not deprecated, not ALL_ZONES 15109 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15110 * 4. Not deprecated, ALL_ZONES 15111 * 5. If onlink destination, same subnet and deprecated 15112 * 6. Deprecated. 15113 * 15114 * We have lower preference for ALL_ZONES IP addresses, 15115 * as they pose problems with unlabeled destinations. 15116 * 15117 * Note that when multiple IP addresses match e.g., #1 we pick 15118 * the first one if IPMP is not in use. With IPMP we randomize. 15119 */ 15120 int 15121 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15122 ipaddr_t multicast_ifaddr, 15123 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15124 uint32_t *generation, uint64_t *flagsp) 15125 { 15126 ipif_t *ipif; 15127 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15128 15129 if (flagsp != NULL) 15130 *flagsp = 0; 15131 15132 /* 15133 * Need to grab the generation number before we check to 15134 * avoid a race with a change to the set of local addresses. 15135 * No lock needed since the thread which updates the set of local 15136 * addresses use ipif/ill locks and exit those (hence a store memory 15137 * barrier) before doing the atomic increase of ips_src_generation. 15138 */ 15139 if (generation != NULL) { 15140 *generation = ipst->ips_src_generation; 15141 } 15142 15143 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15144 *srcp = multicast_ifaddr; 15145 return (0); 15146 } 15147 15148 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15149 if (setsrc != INADDR_ANY) { 15150 *srcp = setsrc; 15151 return (0); 15152 } 15153 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15154 if (ipif == NULL) { 15155 if (notready) 15156 return (ENETDOWN); 15157 else 15158 return (EADDRNOTAVAIL); 15159 } 15160 *srcp = ipif->ipif_lcl_addr; 15161 if (flagsp != NULL) 15162 *flagsp = ipif->ipif_flags; 15163 ipif_refrele(ipif); 15164 return (0); 15165 } 15166 15167 /* ARGSUSED */ 15168 int 15169 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15170 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15171 { 15172 /* 15173 * ill_phyint_reinit merged the v4 and v6 into a single 15174 * ipsq. We might not have been able to complete the 15175 * operation in ipif_set_values, if we could not become 15176 * exclusive. If so restart it here. 15177 */ 15178 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15179 } 15180 15181 /* 15182 * Can operate on either a module or a driver queue. 15183 * Returns an error if not a module queue. 15184 */ 15185 /* ARGSUSED */ 15186 int 15187 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15188 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15189 { 15190 queue_t *q1 = q; 15191 char *cp; 15192 char interf_name[LIFNAMSIZ]; 15193 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15194 15195 if (q->q_next == NULL) { 15196 ip1dbg(( 15197 "if_unitsel: IF_UNITSEL: no q_next\n")); 15198 return (EINVAL); 15199 } 15200 15201 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15202 return (EALREADY); 15203 15204 do { 15205 q1 = q1->q_next; 15206 } while (q1->q_next); 15207 cp = q1->q_qinfo->qi_minfo->mi_idname; 15208 (void) sprintf(interf_name, "%s%d", cp, ppa); 15209 15210 /* 15211 * Here we are not going to delay the ioack until after 15212 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15213 * original ioctl message before sending the requests. 15214 */ 15215 return (ipif_set_values(q, mp, interf_name, &ppa)); 15216 } 15217 15218 /* ARGSUSED */ 15219 int 15220 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15221 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15222 { 15223 return (ENXIO); 15224 } 15225 15226 /* 15227 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15228 * `irep'. Returns a pointer to the next free `irep' entry 15229 * A mirror exists in ipif_delete_bcast_ires(). 15230 * 15231 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15232 * done in ire_add. 15233 */ 15234 static ire_t ** 15235 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15236 { 15237 ipaddr_t addr; 15238 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15239 ipaddr_t subnetmask = ipif->ipif_net_mask; 15240 ill_t *ill = ipif->ipif_ill; 15241 zoneid_t zoneid = ipif->ipif_zoneid; 15242 15243 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15244 15245 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15246 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15247 15248 if (ipif->ipif_lcl_addr == INADDR_ANY || 15249 (ipif->ipif_flags & IPIF_NOLOCAL)) 15250 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15251 15252 irep = ire_create_bcast(ill, 0, zoneid, irep); 15253 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15254 15255 /* 15256 * For backward compatibility, we create net broadcast IREs based on 15257 * the old "IP address class system", since some old machines only 15258 * respond to these class derived net broadcast. However, we must not 15259 * create these net broadcast IREs if the subnetmask is shorter than 15260 * the IP address class based derived netmask. Otherwise, we may 15261 * create a net broadcast address which is the same as an IP address 15262 * on the subnet -- and then TCP will refuse to talk to that address. 15263 */ 15264 if (netmask < subnetmask) { 15265 addr = netmask & ipif->ipif_subnet; 15266 irep = ire_create_bcast(ill, addr, zoneid, irep); 15267 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15268 } 15269 15270 /* 15271 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15272 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15273 * created. Creating these broadcast IREs will only create confusion 15274 * as `addr' will be the same as the IP address. 15275 */ 15276 if (subnetmask != 0xFFFFFFFF) { 15277 addr = ipif->ipif_subnet; 15278 irep = ire_create_bcast(ill, addr, zoneid, irep); 15279 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15280 } 15281 15282 return (irep); 15283 } 15284 15285 /* 15286 * Mirror of ipif_create_bcast_ires() 15287 */ 15288 static void 15289 ipif_delete_bcast_ires(ipif_t *ipif) 15290 { 15291 ipaddr_t addr; 15292 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15293 ipaddr_t subnetmask = ipif->ipif_net_mask; 15294 ill_t *ill = ipif->ipif_ill; 15295 zoneid_t zoneid = ipif->ipif_zoneid; 15296 ire_t *ire; 15297 15298 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15299 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15300 15301 if (ipif->ipif_lcl_addr == INADDR_ANY || 15302 (ipif->ipif_flags & IPIF_NOLOCAL)) 15303 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15304 15305 ire = ire_lookup_bcast(ill, 0, zoneid); 15306 ASSERT(ire != NULL); 15307 ire_delete(ire); ire_refrele(ire); 15308 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15309 ASSERT(ire != NULL); 15310 ire_delete(ire); ire_refrele(ire); 15311 15312 /* 15313 * For backward compatibility, we create net broadcast IREs based on 15314 * the old "IP address class system", since some old machines only 15315 * respond to these class derived net broadcast. However, we must not 15316 * create these net broadcast IREs if the subnetmask is shorter than 15317 * the IP address class based derived netmask. Otherwise, we may 15318 * create a net broadcast address which is the same as an IP address 15319 * on the subnet -- and then TCP will refuse to talk to that address. 15320 */ 15321 if (netmask < subnetmask) { 15322 addr = netmask & ipif->ipif_subnet; 15323 ire = ire_lookup_bcast(ill, addr, zoneid); 15324 ASSERT(ire != NULL); 15325 ire_delete(ire); ire_refrele(ire); 15326 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15327 ASSERT(ire != NULL); 15328 ire_delete(ire); ire_refrele(ire); 15329 } 15330 15331 /* 15332 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15333 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15334 * created. Creating these broadcast IREs will only create confusion 15335 * as `addr' will be the same as the IP address. 15336 */ 15337 if (subnetmask != 0xFFFFFFFF) { 15338 addr = ipif->ipif_subnet; 15339 ire = ire_lookup_bcast(ill, addr, zoneid); 15340 ASSERT(ire != NULL); 15341 ire_delete(ire); ire_refrele(ire); 15342 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15343 ASSERT(ire != NULL); 15344 ire_delete(ire); ire_refrele(ire); 15345 } 15346 } 15347 15348 /* 15349 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15350 * from lifr_flags and the name from lifr_name. 15351 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15352 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15353 * Returns EINPROGRESS when mp has been consumed by queueing it on 15354 * ipx_pending_mp and the ioctl will complete in ip_rput. 15355 * 15356 * Can operate on either a module or a driver queue. 15357 * Returns an error if not a module queue. 15358 */ 15359 /* ARGSUSED */ 15360 int 15361 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15362 ip_ioctl_cmd_t *ipip, void *if_req) 15363 { 15364 ill_t *ill = q->q_ptr; 15365 phyint_t *phyi; 15366 ip_stack_t *ipst; 15367 struct lifreq *lifr = if_req; 15368 uint64_t new_flags; 15369 15370 ASSERT(ipif != NULL); 15371 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15372 15373 if (q->q_next == NULL) { 15374 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15375 return (EINVAL); 15376 } 15377 15378 /* 15379 * If we are not writer on 'q' then this interface exists already 15380 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15381 * so return EALREADY. 15382 */ 15383 if (ill != ipif->ipif_ill) 15384 return (EALREADY); 15385 15386 if (ill->ill_name[0] != '\0') 15387 return (EALREADY); 15388 15389 /* 15390 * If there's another ill already with the requested name, ensure 15391 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15392 * fuse together two unrelated ills, which will cause chaos. 15393 */ 15394 ipst = ill->ill_ipst; 15395 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15396 lifr->lifr_name, NULL); 15397 if (phyi != NULL) { 15398 ill_t *ill_mate = phyi->phyint_illv4; 15399 15400 if (ill_mate == NULL) 15401 ill_mate = phyi->phyint_illv6; 15402 ASSERT(ill_mate != NULL); 15403 15404 if (ill_mate->ill_media->ip_m_mac_type != 15405 ill->ill_media->ip_m_mac_type) { 15406 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15407 "use the same ill name on differing media\n")); 15408 return (EINVAL); 15409 } 15410 } 15411 15412 /* 15413 * We start off as IFF_IPV4 in ipif_allocate and become 15414 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15415 * The only flags that we read from user space are IFF_IPV4, 15416 * IFF_IPV6, and IFF_BROADCAST. 15417 * 15418 * This ill has not been inserted into the global list. 15419 * So we are still single threaded and don't need any lock 15420 * 15421 * Saniy check the flags. 15422 */ 15423 15424 if ((lifr->lifr_flags & IFF_BROADCAST) && 15425 ((lifr->lifr_flags & IFF_IPV6) || 15426 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15427 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15428 "or IPv6 i.e., no broadcast \n")); 15429 return (EINVAL); 15430 } 15431 15432 new_flags = 15433 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15434 15435 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15436 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15437 "IFF_IPV4 or IFF_IPV6\n")); 15438 return (EINVAL); 15439 } 15440 15441 /* 15442 * We always start off as IPv4, so only need to check for IPv6. 15443 */ 15444 if ((new_flags & IFF_IPV6) != 0) { 15445 ill->ill_flags |= ILLF_IPV6; 15446 ill->ill_flags &= ~ILLF_IPV4; 15447 } 15448 15449 if ((new_flags & IFF_BROADCAST) != 0) 15450 ipif->ipif_flags |= IPIF_BROADCAST; 15451 else 15452 ipif->ipif_flags &= ~IPIF_BROADCAST; 15453 15454 /* We started off as V4. */ 15455 if (ill->ill_flags & ILLF_IPV6) { 15456 ill->ill_phyint->phyint_illv6 = ill; 15457 ill->ill_phyint->phyint_illv4 = NULL; 15458 } 15459 15460 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15461 } 15462 15463 /* ARGSUSED */ 15464 int 15465 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15466 ip_ioctl_cmd_t *ipip, void *if_req) 15467 { 15468 /* 15469 * ill_phyint_reinit merged the v4 and v6 into a single 15470 * ipsq. We might not have been able to complete the 15471 * slifname in ipif_set_values, if we could not become 15472 * exclusive. If so restart it here 15473 */ 15474 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15475 } 15476 15477 /* 15478 * Return a pointer to the ipif which matches the index, IP version type and 15479 * zoneid. 15480 */ 15481 ipif_t * 15482 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15483 ip_stack_t *ipst) 15484 { 15485 ill_t *ill; 15486 ipif_t *ipif = NULL; 15487 15488 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15489 if (ill != NULL) { 15490 mutex_enter(&ill->ill_lock); 15491 for (ipif = ill->ill_ipif; ipif != NULL; 15492 ipif = ipif->ipif_next) { 15493 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15494 zoneid == ipif->ipif_zoneid || 15495 ipif->ipif_zoneid == ALL_ZONES)) { 15496 ipif_refhold_locked(ipif); 15497 break; 15498 } 15499 } 15500 mutex_exit(&ill->ill_lock); 15501 ill_refrele(ill); 15502 } 15503 return (ipif); 15504 } 15505 15506 /* 15507 * Change an existing physical interface's index. If the new index 15508 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15509 * Finally, we update other systems which may have a dependence on the 15510 * index value. 15511 */ 15512 /* ARGSUSED */ 15513 int 15514 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15515 ip_ioctl_cmd_t *ipip, void *ifreq) 15516 { 15517 ill_t *ill; 15518 phyint_t *phyi; 15519 struct ifreq *ifr = (struct ifreq *)ifreq; 15520 struct lifreq *lifr = (struct lifreq *)ifreq; 15521 uint_t old_index, index; 15522 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15523 avl_index_t where; 15524 15525 if (ipip->ipi_cmd_type == IF_CMD) 15526 index = ifr->ifr_index; 15527 else 15528 index = lifr->lifr_index; 15529 15530 /* 15531 * Only allow on physical interface. Also, index zero is illegal. 15532 */ 15533 ill = ipif->ipif_ill; 15534 phyi = ill->ill_phyint; 15535 if (ipif->ipif_id != 0 || index == 0) { 15536 return (EINVAL); 15537 } 15538 15539 /* If the index is not changing, no work to do */ 15540 if (phyi->phyint_ifindex == index) 15541 return (0); 15542 15543 /* 15544 * Use phyint_exists() to determine if the new interface index 15545 * is already in use. If the index is unused then we need to 15546 * change the phyint's position in the phyint_list_avl_by_index 15547 * tree. If we do not do this, subsequent lookups (using the new 15548 * index value) will not find the phyint. 15549 */ 15550 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15551 if (phyint_exists(index, ipst)) { 15552 rw_exit(&ipst->ips_ill_g_lock); 15553 return (EEXIST); 15554 } 15555 15556 /* 15557 * The new index is unused. Set it in the phyint. However we must not 15558 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15559 * changes. The event must be bound to old ifindex value. 15560 */ 15561 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15562 &index, sizeof (index)); 15563 15564 old_index = phyi->phyint_ifindex; 15565 phyi->phyint_ifindex = index; 15566 15567 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15568 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15569 &index, &where); 15570 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15571 phyi, where); 15572 rw_exit(&ipst->ips_ill_g_lock); 15573 15574 /* Update SCTP's ILL list */ 15575 sctp_ill_reindex(ill, old_index); 15576 15577 /* Send the routing sockets message */ 15578 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15579 if (ILL_OTHER(ill)) 15580 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15581 15582 /* Perhaps ilgs should use this ill */ 15583 update_conn_ill(NULL, ill->ill_ipst); 15584 return (0); 15585 } 15586 15587 /* ARGSUSED */ 15588 int 15589 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15590 ip_ioctl_cmd_t *ipip, void *ifreq) 15591 { 15592 struct ifreq *ifr = (struct ifreq *)ifreq; 15593 struct lifreq *lifr = (struct lifreq *)ifreq; 15594 15595 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15596 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15597 /* Get the interface index */ 15598 if (ipip->ipi_cmd_type == IF_CMD) { 15599 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15600 } else { 15601 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15602 } 15603 return (0); 15604 } 15605 15606 /* ARGSUSED */ 15607 int 15608 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15609 ip_ioctl_cmd_t *ipip, void *ifreq) 15610 { 15611 struct lifreq *lifr = (struct lifreq *)ifreq; 15612 15613 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15614 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15615 /* Get the interface zone */ 15616 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15617 lifr->lifr_zoneid = ipif->ipif_zoneid; 15618 return (0); 15619 } 15620 15621 /* 15622 * Set the zoneid of an interface. 15623 */ 15624 /* ARGSUSED */ 15625 int 15626 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15627 ip_ioctl_cmd_t *ipip, void *ifreq) 15628 { 15629 struct lifreq *lifr = (struct lifreq *)ifreq; 15630 int err = 0; 15631 boolean_t need_up = B_FALSE; 15632 zone_t *zptr; 15633 zone_status_t status; 15634 zoneid_t zoneid; 15635 15636 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15637 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15638 if (!is_system_labeled()) 15639 return (ENOTSUP); 15640 zoneid = GLOBAL_ZONEID; 15641 } 15642 15643 /* cannot assign instance zero to a non-global zone */ 15644 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15645 return (ENOTSUP); 15646 15647 /* 15648 * Cannot assign to a zone that doesn't exist or is shutting down. In 15649 * the event of a race with the zone shutdown processing, since IP 15650 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15651 * interface will be cleaned up even if the zone is shut down 15652 * immediately after the status check. If the interface can't be brought 15653 * down right away, and the zone is shut down before the restart 15654 * function is called, we resolve the possible races by rechecking the 15655 * zone status in the restart function. 15656 */ 15657 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15658 return (EINVAL); 15659 status = zone_status_get(zptr); 15660 zone_rele(zptr); 15661 15662 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15663 return (EINVAL); 15664 15665 if (ipif->ipif_flags & IPIF_UP) { 15666 /* 15667 * If the interface is already marked up, 15668 * we call ipif_down which will take care 15669 * of ditching any IREs that have been set 15670 * up based on the old interface address. 15671 */ 15672 err = ipif_logical_down(ipif, q, mp); 15673 if (err == EINPROGRESS) 15674 return (err); 15675 (void) ipif_down_tail(ipif); 15676 need_up = B_TRUE; 15677 } 15678 15679 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15680 return (err); 15681 } 15682 15683 static int 15684 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15685 queue_t *q, mblk_t *mp, boolean_t need_up) 15686 { 15687 int err = 0; 15688 ip_stack_t *ipst; 15689 15690 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15691 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15692 15693 if (CONN_Q(q)) 15694 ipst = CONNQ_TO_IPST(q); 15695 else 15696 ipst = ILLQ_TO_IPST(q); 15697 15698 /* 15699 * For exclusive stacks we don't allow a different zoneid than 15700 * global. 15701 */ 15702 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15703 zoneid != GLOBAL_ZONEID) 15704 return (EINVAL); 15705 15706 /* Set the new zone id. */ 15707 ipif->ipif_zoneid = zoneid; 15708 15709 /* Update sctp list */ 15710 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15711 15712 /* The default multicast interface might have changed */ 15713 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15714 15715 if (need_up) { 15716 /* 15717 * Now bring the interface back up. If this 15718 * is the only IPIF for the ILL, ipif_up 15719 * will have to re-bind to the device, so 15720 * we may get back EINPROGRESS, in which 15721 * case, this IOCTL will get completed in 15722 * ip_rput_dlpi when we see the DL_BIND_ACK. 15723 */ 15724 err = ipif_up(ipif, q, mp); 15725 } 15726 return (err); 15727 } 15728 15729 /* ARGSUSED */ 15730 int 15731 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15732 ip_ioctl_cmd_t *ipip, void *if_req) 15733 { 15734 struct lifreq *lifr = (struct lifreq *)if_req; 15735 zoneid_t zoneid; 15736 zone_t *zptr; 15737 zone_status_t status; 15738 15739 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15740 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15741 zoneid = GLOBAL_ZONEID; 15742 15743 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15744 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15745 15746 /* 15747 * We recheck the zone status to resolve the following race condition: 15748 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15749 * 2) hme0:1 is up and can't be brought down right away; 15750 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15751 * 3) zone "myzone" is halted; the zone status switches to 15752 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15753 * the interfaces to remove - hme0:1 is not returned because it's not 15754 * yet in "myzone", so it won't be removed; 15755 * 4) the restart function for SIOCSLIFZONE is called; without the 15756 * status check here, we would have hme0:1 in "myzone" after it's been 15757 * destroyed. 15758 * Note that if the status check fails, we need to bring the interface 15759 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15760 * ipif_up_done[_v6](). 15761 */ 15762 status = ZONE_IS_UNINITIALIZED; 15763 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15764 status = zone_status_get(zptr); 15765 zone_rele(zptr); 15766 } 15767 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15768 if (ipif->ipif_isv6) { 15769 (void) ipif_up_done_v6(ipif); 15770 } else { 15771 (void) ipif_up_done(ipif); 15772 } 15773 return (EINVAL); 15774 } 15775 15776 (void) ipif_down_tail(ipif); 15777 15778 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15779 B_TRUE)); 15780 } 15781 15782 /* 15783 * Return the number of addresses on `ill' with one or more of the values 15784 * in `set' set and all of the values in `clear' clear. 15785 */ 15786 static uint_t 15787 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15788 { 15789 ipif_t *ipif; 15790 uint_t cnt = 0; 15791 15792 ASSERT(IAM_WRITER_ILL(ill)); 15793 15794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15795 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15796 cnt++; 15797 15798 return (cnt); 15799 } 15800 15801 /* 15802 * Return the number of migratable addresses on `ill' that are under 15803 * application control. 15804 */ 15805 uint_t 15806 ill_appaddr_cnt(const ill_t *ill) 15807 { 15808 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15809 IPIF_NOFAILOVER)); 15810 } 15811 15812 /* 15813 * Return the number of point-to-point addresses on `ill'. 15814 */ 15815 uint_t 15816 ill_ptpaddr_cnt(const ill_t *ill) 15817 { 15818 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15819 } 15820 15821 /* ARGSUSED */ 15822 int 15823 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15824 ip_ioctl_cmd_t *ipip, void *ifreq) 15825 { 15826 struct lifreq *lifr = ifreq; 15827 15828 ASSERT(q->q_next == NULL); 15829 ASSERT(CONN_Q(q)); 15830 15831 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15832 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15833 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15834 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15835 15836 return (0); 15837 } 15838 15839 /* Find the previous ILL in this usesrc group */ 15840 static ill_t * 15841 ill_prev_usesrc(ill_t *uill) 15842 { 15843 ill_t *ill; 15844 15845 for (ill = uill->ill_usesrc_grp_next; 15846 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15847 ill = ill->ill_usesrc_grp_next) 15848 /* do nothing */; 15849 return (ill); 15850 } 15851 15852 /* 15853 * Release all members of the usesrc group. This routine is called 15854 * from ill_delete when the interface being unplumbed is the 15855 * group head. 15856 * 15857 * This silently clears the usesrc that ifconfig setup. 15858 * An alternative would be to keep that ifindex, and drop packets on the floor 15859 * since no source address can be selected. 15860 * Even if we keep the current semantics, don't need a lock and a linked list. 15861 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15862 * the one that is being removed. Issue is how we return the usesrc users 15863 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15864 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15865 * ill walk, but the walker would need to insert in the ioctl response. 15866 */ 15867 static void 15868 ill_disband_usesrc_group(ill_t *uill) 15869 { 15870 ill_t *next_ill, *tmp_ill; 15871 ip_stack_t *ipst = uill->ill_ipst; 15872 15873 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15874 next_ill = uill->ill_usesrc_grp_next; 15875 15876 do { 15877 ASSERT(next_ill != NULL); 15878 tmp_ill = next_ill->ill_usesrc_grp_next; 15879 ASSERT(tmp_ill != NULL); 15880 next_ill->ill_usesrc_grp_next = NULL; 15881 next_ill->ill_usesrc_ifindex = 0; 15882 next_ill = tmp_ill; 15883 } while (next_ill->ill_usesrc_ifindex != 0); 15884 uill->ill_usesrc_grp_next = NULL; 15885 } 15886 15887 /* 15888 * Remove the client usesrc ILL from the list and relink to a new list 15889 */ 15890 int 15891 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15892 { 15893 ill_t *ill, *tmp_ill; 15894 ip_stack_t *ipst = ucill->ill_ipst; 15895 15896 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15897 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15898 15899 /* 15900 * Check if the usesrc client ILL passed in is not already 15901 * in use as a usesrc ILL i.e one whose source address is 15902 * in use OR a usesrc ILL is not already in use as a usesrc 15903 * client ILL 15904 */ 15905 if ((ucill->ill_usesrc_ifindex == 0) || 15906 (uill->ill_usesrc_ifindex != 0)) { 15907 return (-1); 15908 } 15909 15910 ill = ill_prev_usesrc(ucill); 15911 ASSERT(ill->ill_usesrc_grp_next != NULL); 15912 15913 /* Remove from the current list */ 15914 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15915 /* Only two elements in the list */ 15916 ASSERT(ill->ill_usesrc_ifindex == 0); 15917 ill->ill_usesrc_grp_next = NULL; 15918 } else { 15919 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15920 } 15921 15922 if (ifindex == 0) { 15923 ucill->ill_usesrc_ifindex = 0; 15924 ucill->ill_usesrc_grp_next = NULL; 15925 return (0); 15926 } 15927 15928 ucill->ill_usesrc_ifindex = ifindex; 15929 tmp_ill = uill->ill_usesrc_grp_next; 15930 uill->ill_usesrc_grp_next = ucill; 15931 ucill->ill_usesrc_grp_next = 15932 (tmp_ill != NULL) ? tmp_ill : uill; 15933 return (0); 15934 } 15935 15936 /* 15937 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15938 * ip.c for locking details. 15939 */ 15940 /* ARGSUSED */ 15941 int 15942 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15943 ip_ioctl_cmd_t *ipip, void *ifreq) 15944 { 15945 struct lifreq *lifr = (struct lifreq *)ifreq; 15946 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15947 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15948 int err = 0, ret; 15949 uint_t ifindex; 15950 ipsq_t *ipsq = NULL; 15951 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15952 15953 ASSERT(IAM_WRITER_IPIF(ipif)); 15954 ASSERT(q->q_next == NULL); 15955 ASSERT(CONN_Q(q)); 15956 15957 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15958 15959 ifindex = lifr->lifr_index; 15960 if (ifindex == 0) { 15961 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15962 /* non usesrc group interface, nothing to reset */ 15963 return (0); 15964 } 15965 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15966 /* valid reset request */ 15967 reset_flg = B_TRUE; 15968 } 15969 15970 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15971 if (usesrc_ill == NULL) { 15972 return (ENXIO); 15973 } 15974 15975 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15976 NEW_OP, B_TRUE); 15977 if (ipsq == NULL) { 15978 err = EINPROGRESS; 15979 /* Operation enqueued on the ipsq of the usesrc ILL */ 15980 goto done; 15981 } 15982 15983 /* USESRC isn't currently supported with IPMP */ 15984 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15985 err = ENOTSUP; 15986 goto done; 15987 } 15988 15989 /* 15990 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15991 * used by IPMP underlying interfaces, but someone might think it's 15992 * more general and try to use it independently with VNI.) 15993 */ 15994 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15995 err = ENOTSUP; 15996 goto done; 15997 } 15998 15999 /* 16000 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16001 * already a client then return EINVAL 16002 */ 16003 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16004 err = EINVAL; 16005 goto done; 16006 } 16007 16008 /* 16009 * If the ill_usesrc_ifindex field is already set to what it needs to 16010 * be then this is a duplicate operation. 16011 */ 16012 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16013 err = 0; 16014 goto done; 16015 } 16016 16017 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16018 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16019 usesrc_ill->ill_isv6)); 16020 16021 /* 16022 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16023 * and the ill_usesrc_ifindex fields 16024 */ 16025 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16026 16027 if (reset_flg) { 16028 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16029 if (ret != 0) { 16030 err = EINVAL; 16031 } 16032 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16033 goto done; 16034 } 16035 16036 /* 16037 * Four possibilities to consider: 16038 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16039 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16040 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16041 * 4. Both are part of their respective usesrc groups 16042 */ 16043 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16044 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16045 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16046 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16047 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16048 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16049 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16050 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16051 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16052 /* Insert at head of list */ 16053 usesrc_cli_ill->ill_usesrc_grp_next = 16054 usesrc_ill->ill_usesrc_grp_next; 16055 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16056 } else { 16057 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16058 ifindex); 16059 if (ret != 0) 16060 err = EINVAL; 16061 } 16062 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16063 16064 done: 16065 if (ipsq != NULL) 16066 ipsq_exit(ipsq); 16067 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16068 ill_refrele(usesrc_ill); 16069 16070 /* Let conn_ixa caching know that source address selection changed */ 16071 ip_update_source_selection(ipst); 16072 16073 return (err); 16074 } 16075 16076 /* 16077 * comparison function used by avl. 16078 */ 16079 static int 16080 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16081 { 16082 16083 uint_t index; 16084 16085 ASSERT(phyip != NULL && index_ptr != NULL); 16086 16087 index = *((uint_t *)index_ptr); 16088 /* 16089 * let the phyint with the lowest index be on top. 16090 */ 16091 if (((phyint_t *)phyip)->phyint_ifindex < index) 16092 return (1); 16093 if (((phyint_t *)phyip)->phyint_ifindex > index) 16094 return (-1); 16095 return (0); 16096 } 16097 16098 /* 16099 * comparison function used by avl. 16100 */ 16101 static int 16102 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16103 { 16104 ill_t *ill; 16105 int res = 0; 16106 16107 ASSERT(phyip != NULL && name_ptr != NULL); 16108 16109 if (((phyint_t *)phyip)->phyint_illv4) 16110 ill = ((phyint_t *)phyip)->phyint_illv4; 16111 else 16112 ill = ((phyint_t *)phyip)->phyint_illv6; 16113 ASSERT(ill != NULL); 16114 16115 res = strcmp(ill->ill_name, (char *)name_ptr); 16116 if (res > 0) 16117 return (1); 16118 else if (res < 0) 16119 return (-1); 16120 return (0); 16121 } 16122 16123 /* 16124 * This function is called on the unplumb path via ill_glist_delete() when 16125 * there are no ills left on the phyint and thus the phyint can be freed. 16126 */ 16127 static void 16128 phyint_free(phyint_t *phyi) 16129 { 16130 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16131 16132 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16133 16134 /* 16135 * If this phyint was an IPMP meta-interface, blow away the group. 16136 * This is safe to do because all of the illgrps have already been 16137 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16138 * If we're cleaning up as a result of failed initialization, 16139 * phyint_grp may be NULL. 16140 */ 16141 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16142 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16143 ipmp_grp_destroy(phyi->phyint_grp); 16144 phyi->phyint_grp = NULL; 16145 rw_exit(&ipst->ips_ipmp_lock); 16146 } 16147 16148 /* 16149 * If this interface was under IPMP, take it out of the group. 16150 */ 16151 if (phyi->phyint_grp != NULL) 16152 ipmp_phyint_leave_grp(phyi); 16153 16154 /* 16155 * Delete the phyint and disassociate its ipsq. The ipsq itself 16156 * will be freed in ipsq_exit(). 16157 */ 16158 phyi->phyint_ipsq->ipsq_phyint = NULL; 16159 phyi->phyint_name[0] = '\0'; 16160 16161 mi_free(phyi); 16162 } 16163 16164 /* 16165 * Attach the ill to the phyint structure which can be shared by both 16166 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16167 * function is called from ipif_set_values and ill_lookup_on_name (for 16168 * loopback) where we know the name of the ill. We lookup the ill and if 16169 * there is one present already with the name use that phyint. Otherwise 16170 * reuse the one allocated by ill_init. 16171 */ 16172 static void 16173 ill_phyint_reinit(ill_t *ill) 16174 { 16175 boolean_t isv6 = ill->ill_isv6; 16176 phyint_t *phyi_old; 16177 phyint_t *phyi; 16178 avl_index_t where = 0; 16179 ill_t *ill_other = NULL; 16180 ip_stack_t *ipst = ill->ill_ipst; 16181 16182 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16183 16184 phyi_old = ill->ill_phyint; 16185 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16186 phyi_old->phyint_illv6 == NULL)); 16187 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16188 phyi_old->phyint_illv4 == NULL)); 16189 ASSERT(phyi_old->phyint_ifindex == 0); 16190 16191 /* 16192 * Now that our ill has a name, set it in the phyint. 16193 */ 16194 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16195 16196 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16197 ill->ill_name, &where); 16198 16199 /* 16200 * 1. We grabbed the ill_g_lock before inserting this ill into 16201 * the global list of ills. So no other thread could have located 16202 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16203 * 2. Now locate the other protocol instance of this ill. 16204 * 3. Now grab both ill locks in the right order, and the phyint lock of 16205 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16206 * of neither ill can change. 16207 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16208 * other ill. 16209 * 5. Release all locks. 16210 */ 16211 16212 /* 16213 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16214 * we are initializing IPv4. 16215 */ 16216 if (phyi != NULL) { 16217 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16218 ASSERT(ill_other->ill_phyint != NULL); 16219 ASSERT((isv6 && !ill_other->ill_isv6) || 16220 (!isv6 && ill_other->ill_isv6)); 16221 GRAB_ILL_LOCKS(ill, ill_other); 16222 /* 16223 * We are potentially throwing away phyint_flags which 16224 * could be different from the one that we obtain from 16225 * ill_other->ill_phyint. But it is okay as we are assuming 16226 * that the state maintained within IP is correct. 16227 */ 16228 mutex_enter(&phyi->phyint_lock); 16229 if (isv6) { 16230 ASSERT(phyi->phyint_illv6 == NULL); 16231 phyi->phyint_illv6 = ill; 16232 } else { 16233 ASSERT(phyi->phyint_illv4 == NULL); 16234 phyi->phyint_illv4 = ill; 16235 } 16236 16237 /* 16238 * Delete the old phyint and make its ipsq eligible 16239 * to be freed in ipsq_exit(). 16240 */ 16241 phyi_old->phyint_illv4 = NULL; 16242 phyi_old->phyint_illv6 = NULL; 16243 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16244 phyi_old->phyint_name[0] = '\0'; 16245 mi_free(phyi_old); 16246 } else { 16247 mutex_enter(&ill->ill_lock); 16248 /* 16249 * We don't need to acquire any lock, since 16250 * the ill is not yet visible globally and we 16251 * have not yet released the ill_g_lock. 16252 */ 16253 phyi = phyi_old; 16254 mutex_enter(&phyi->phyint_lock); 16255 /* XXX We need a recovery strategy here. */ 16256 if (!phyint_assign_ifindex(phyi, ipst)) 16257 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16258 16259 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16260 (void *)phyi, where); 16261 16262 (void) avl_find(&ipst->ips_phyint_g_list-> 16263 phyint_list_avl_by_index, 16264 &phyi->phyint_ifindex, &where); 16265 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16266 (void *)phyi, where); 16267 } 16268 16269 /* 16270 * Reassigning ill_phyint automatically reassigns the ipsq also. 16271 * pending mp is not affected because that is per ill basis. 16272 */ 16273 ill->ill_phyint = phyi; 16274 16275 /* 16276 * Now that the phyint's ifindex has been assigned, complete the 16277 * remaining 16278 */ 16279 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16280 if (ill->ill_isv6) { 16281 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16282 ill->ill_phyint->phyint_ifindex; 16283 ill->ill_mcast_type = ipst->ips_mld_max_version; 16284 } else { 16285 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16286 } 16287 16288 /* 16289 * Generate an event within the hooks framework to indicate that 16290 * a new interface has just been added to IP. For this event to 16291 * be generated, the network interface must, at least, have an 16292 * ifindex assigned to it. (We don't generate the event for 16293 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16294 * 16295 * This needs to be run inside the ill_g_lock perimeter to ensure 16296 * that the ordering of delivered events to listeners matches the 16297 * order of them in the kernel. 16298 */ 16299 if (!IS_LOOPBACK(ill)) { 16300 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16301 ill->ill_name_length); 16302 } 16303 RELEASE_ILL_LOCKS(ill, ill_other); 16304 mutex_exit(&phyi->phyint_lock); 16305 } 16306 16307 /* 16308 * Notify any downstream modules of the name of this interface. 16309 * An M_IOCTL is used even though we don't expect a successful reply. 16310 * Any reply message from the driver (presumably an M_IOCNAK) will 16311 * eventually get discarded somewhere upstream. The message format is 16312 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16313 * to IP. 16314 */ 16315 static void 16316 ip_ifname_notify(ill_t *ill, queue_t *q) 16317 { 16318 mblk_t *mp1, *mp2; 16319 struct iocblk *iocp; 16320 struct lifreq *lifr; 16321 16322 mp1 = mkiocb(SIOCSLIFNAME); 16323 if (mp1 == NULL) 16324 return; 16325 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16326 if (mp2 == NULL) { 16327 freeb(mp1); 16328 return; 16329 } 16330 16331 mp1->b_cont = mp2; 16332 iocp = (struct iocblk *)mp1->b_rptr; 16333 iocp->ioc_count = sizeof (struct lifreq); 16334 16335 lifr = (struct lifreq *)mp2->b_rptr; 16336 mp2->b_wptr += sizeof (struct lifreq); 16337 bzero(lifr, sizeof (struct lifreq)); 16338 16339 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16340 lifr->lifr_ppa = ill->ill_ppa; 16341 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16342 16343 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16344 char *, "SIOCSLIFNAME", ill_t *, ill); 16345 putnext(q, mp1); 16346 } 16347 16348 static int 16349 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16350 { 16351 int err; 16352 ip_stack_t *ipst = ill->ill_ipst; 16353 phyint_t *phyi = ill->ill_phyint; 16354 16355 /* Set the obsolete NDD per-interface forwarding name. */ 16356 err = ill_set_ndd_name(ill); 16357 if (err != 0) { 16358 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16359 err); 16360 } 16361 16362 /* 16363 * Now that ill_name is set, the configuration for the IPMP 16364 * meta-interface can be performed. 16365 */ 16366 if (IS_IPMP(ill)) { 16367 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16368 /* 16369 * If phyi->phyint_grp is NULL, then this is the first IPMP 16370 * meta-interface and we need to create the IPMP group. 16371 */ 16372 if (phyi->phyint_grp == NULL) { 16373 /* 16374 * If someone has renamed another IPMP group to have 16375 * the same name as our interface, bail. 16376 */ 16377 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16378 rw_exit(&ipst->ips_ipmp_lock); 16379 return (EEXIST); 16380 } 16381 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16382 if (phyi->phyint_grp == NULL) { 16383 rw_exit(&ipst->ips_ipmp_lock); 16384 return (ENOMEM); 16385 } 16386 } 16387 rw_exit(&ipst->ips_ipmp_lock); 16388 } 16389 16390 /* Tell downstream modules where they are. */ 16391 ip_ifname_notify(ill, q); 16392 16393 /* 16394 * ill_dl_phys returns EINPROGRESS in the usual case. 16395 * Error cases are ENOMEM ... 16396 */ 16397 err = ill_dl_phys(ill, ipif, mp, q); 16398 16399 if (ill->ill_isv6) { 16400 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16401 if (ipst->ips_mld_slowtimeout_id == 0) { 16402 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16403 (void *)ipst, 16404 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16405 } 16406 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16407 } else { 16408 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16409 if (ipst->ips_igmp_slowtimeout_id == 0) { 16410 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16411 (void *)ipst, 16412 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16413 } 16414 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16415 } 16416 16417 return (err); 16418 } 16419 16420 /* 16421 * Common routine for ppa and ifname setting. Should be called exclusive. 16422 * 16423 * Returns EINPROGRESS when mp has been consumed by queueing it on 16424 * ipx_pending_mp and the ioctl will complete in ip_rput. 16425 * 16426 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16427 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16428 * For SLIFNAME, we pass these values back to the userland. 16429 */ 16430 static int 16431 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16432 { 16433 ill_t *ill; 16434 ipif_t *ipif; 16435 ipsq_t *ipsq; 16436 char *ppa_ptr; 16437 char *old_ptr; 16438 char old_char; 16439 int error; 16440 ip_stack_t *ipst; 16441 16442 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16443 ASSERT(q->q_next != NULL); 16444 ASSERT(interf_name != NULL); 16445 16446 ill = (ill_t *)q->q_ptr; 16447 ipst = ill->ill_ipst; 16448 16449 ASSERT(ill->ill_ipst != NULL); 16450 ASSERT(ill->ill_name[0] == '\0'); 16451 ASSERT(IAM_WRITER_ILL(ill)); 16452 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16453 ASSERT(ill->ill_ppa == UINT_MAX); 16454 16455 ill->ill_defend_start = ill->ill_defend_count = 0; 16456 /* The ppa is sent down by ifconfig or is chosen */ 16457 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16458 return (EINVAL); 16459 } 16460 16461 /* 16462 * make sure ppa passed in is same as ppa in the name. 16463 * This check is not made when ppa == UINT_MAX in that case ppa 16464 * in the name could be anything. System will choose a ppa and 16465 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16466 */ 16467 if (*new_ppa_ptr != UINT_MAX) { 16468 /* stoi changes the pointer */ 16469 old_ptr = ppa_ptr; 16470 /* 16471 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16472 * (they don't have an externally visible ppa). We assign one 16473 * here so that we can manage the interface. Note that in 16474 * the past this value was always 0 for DLPI 1 drivers. 16475 */ 16476 if (*new_ppa_ptr == 0) 16477 *new_ppa_ptr = stoi(&old_ptr); 16478 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16479 return (EINVAL); 16480 } 16481 /* 16482 * terminate string before ppa 16483 * save char at that location. 16484 */ 16485 old_char = ppa_ptr[0]; 16486 ppa_ptr[0] = '\0'; 16487 16488 ill->ill_ppa = *new_ppa_ptr; 16489 /* 16490 * Finish as much work now as possible before calling ill_glist_insert 16491 * which makes the ill globally visible and also merges it with the 16492 * other protocol instance of this phyint. The remaining work is 16493 * done after entering the ipsq which may happen sometime later. 16494 * ill_set_ndd_name occurs after the ill has been made globally visible. 16495 */ 16496 ipif = ill->ill_ipif; 16497 16498 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16499 ipif_assign_seqid(ipif); 16500 16501 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16502 ill->ill_flags |= ILLF_IPV4; 16503 16504 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16505 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16506 16507 if (ill->ill_flags & ILLF_IPV6) { 16508 16509 ill->ill_isv6 = B_TRUE; 16510 ill_set_inputfn(ill); 16511 if (ill->ill_rq != NULL) { 16512 ill->ill_rq->q_qinfo = &iprinitv6; 16513 } 16514 16515 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16516 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16517 ipif->ipif_v6subnet = ipv6_all_zeros; 16518 ipif->ipif_v6net_mask = ipv6_all_zeros; 16519 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16520 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16521 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16522 /* 16523 * point-to-point or Non-mulicast capable 16524 * interfaces won't do NUD unless explicitly 16525 * configured to do so. 16526 */ 16527 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16528 !(ill->ill_flags & ILLF_MULTICAST)) { 16529 ill->ill_flags |= ILLF_NONUD; 16530 } 16531 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16532 if (ill->ill_flags & ILLF_NOARP) { 16533 /* 16534 * Note: xresolv interfaces will eventually need 16535 * NOARP set here as well, but that will require 16536 * those external resolvers to have some 16537 * knowledge of that flag and act appropriately. 16538 * Not to be changed at present. 16539 */ 16540 ill->ill_flags &= ~ILLF_NOARP; 16541 } 16542 /* 16543 * Set the ILLF_ROUTER flag according to the global 16544 * IPv6 forwarding policy. 16545 */ 16546 if (ipst->ips_ipv6_forward != 0) 16547 ill->ill_flags |= ILLF_ROUTER; 16548 } else if (ill->ill_flags & ILLF_IPV4) { 16549 ill->ill_isv6 = B_FALSE; 16550 ill_set_inputfn(ill); 16551 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16552 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16553 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16554 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16555 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16556 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16557 /* 16558 * Set the ILLF_ROUTER flag according to the global 16559 * IPv4 forwarding policy. 16560 */ 16561 if (ipst->ips_ip_g_forward != 0) 16562 ill->ill_flags |= ILLF_ROUTER; 16563 } 16564 16565 ASSERT(ill->ill_phyint != NULL); 16566 16567 /* 16568 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16569 * be completed in ill_glist_insert -> ill_phyint_reinit 16570 */ 16571 if (!ill_allocate_mibs(ill)) 16572 return (ENOMEM); 16573 16574 /* 16575 * Pick a default sap until we get the DL_INFO_ACK back from 16576 * the driver. 16577 */ 16578 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16579 ill->ill_media->ip_m_ipv4sap; 16580 16581 ill->ill_ifname_pending = 1; 16582 ill->ill_ifname_pending_err = 0; 16583 16584 /* 16585 * When the first ipif comes up in ipif_up_done(), multicast groups 16586 * that were joined while this ill was not bound to the DLPI link need 16587 * to be recovered by ill_recover_multicast(). 16588 */ 16589 ill->ill_need_recover_multicast = 1; 16590 16591 ill_refhold(ill); 16592 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16593 if ((error = ill_glist_insert(ill, interf_name, 16594 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16595 ill->ill_ppa = UINT_MAX; 16596 ill->ill_name[0] = '\0'; 16597 /* 16598 * undo null termination done above. 16599 */ 16600 ppa_ptr[0] = old_char; 16601 rw_exit(&ipst->ips_ill_g_lock); 16602 ill_refrele(ill); 16603 return (error); 16604 } 16605 16606 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16607 16608 /* 16609 * When we return the buffer pointed to by interf_name should contain 16610 * the same name as in ill_name. 16611 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16612 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16613 * so copy full name and update the ppa ptr. 16614 * When ppa passed in != UINT_MAX all values are correct just undo 16615 * null termination, this saves a bcopy. 16616 */ 16617 if (*new_ppa_ptr == UINT_MAX) { 16618 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16619 *new_ppa_ptr = ill->ill_ppa; 16620 } else { 16621 /* 16622 * undo null termination done above. 16623 */ 16624 ppa_ptr[0] = old_char; 16625 } 16626 16627 /* Let SCTP know about this ILL */ 16628 sctp_update_ill(ill, SCTP_ILL_INSERT); 16629 16630 /* 16631 * ill_glist_insert has made the ill visible globally, and 16632 * ill_phyint_reinit could have changed the ipsq. At this point, 16633 * we need to hold the ips_ill_g_lock across the call to enter the 16634 * ipsq to enforce atomicity and prevent reordering. In the event 16635 * the ipsq has changed, and if the new ipsq is currently busy, 16636 * we need to make sure that this half-completed ioctl is ahead of 16637 * any subsequent ioctl. We achieve this by not dropping the 16638 * ips_ill_g_lock which prevents any ill lookup itself thereby 16639 * ensuring that new ioctls can't start. 16640 */ 16641 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16642 B_TRUE); 16643 16644 rw_exit(&ipst->ips_ill_g_lock); 16645 ill_refrele(ill); 16646 if (ipsq == NULL) 16647 return (EINPROGRESS); 16648 16649 /* 16650 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16651 */ 16652 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16653 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16654 else 16655 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16656 16657 error = ipif_set_values_tail(ill, ipif, mp, q); 16658 ipsq_exit(ipsq); 16659 if (error != 0 && error != EINPROGRESS) { 16660 /* 16661 * restore previous values 16662 */ 16663 ill->ill_isv6 = B_FALSE; 16664 ill_set_inputfn(ill); 16665 } 16666 return (error); 16667 } 16668 16669 void 16670 ipif_init(ip_stack_t *ipst) 16671 { 16672 int i; 16673 16674 for (i = 0; i < MAX_G_HEADS; i++) { 16675 ipst->ips_ill_g_heads[i].ill_g_list_head = 16676 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16677 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16678 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16679 } 16680 16681 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16682 ill_phyint_compare_index, 16683 sizeof (phyint_t), 16684 offsetof(struct phyint, phyint_avl_by_index)); 16685 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16686 ill_phyint_compare_name, 16687 sizeof (phyint_t), 16688 offsetof(struct phyint, phyint_avl_by_name)); 16689 } 16690 16691 /* 16692 * Save enough information so that we can recreate the IRE if 16693 * the interface goes down and then up. 16694 */ 16695 void 16696 ill_save_ire(ill_t *ill, ire_t *ire) 16697 { 16698 mblk_t *save_mp; 16699 16700 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16701 if (save_mp != NULL) { 16702 ifrt_t *ifrt; 16703 16704 save_mp->b_wptr += sizeof (ifrt_t); 16705 ifrt = (ifrt_t *)save_mp->b_rptr; 16706 bzero(ifrt, sizeof (ifrt_t)); 16707 ifrt->ifrt_type = ire->ire_type; 16708 if (ire->ire_ipversion == IPV4_VERSION) { 16709 ASSERT(!ill->ill_isv6); 16710 ifrt->ifrt_addr = ire->ire_addr; 16711 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16712 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16713 ifrt->ifrt_mask = ire->ire_mask; 16714 } else { 16715 ASSERT(ill->ill_isv6); 16716 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16717 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16718 mutex_enter(&ire->ire_lock); 16719 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16720 mutex_exit(&ire->ire_lock); 16721 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16722 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16723 } 16724 ifrt->ifrt_flags = ire->ire_flags; 16725 ifrt->ifrt_zoneid = ire->ire_zoneid; 16726 mutex_enter(&ill->ill_saved_ire_lock); 16727 save_mp->b_cont = ill->ill_saved_ire_mp; 16728 ill->ill_saved_ire_mp = save_mp; 16729 ill->ill_saved_ire_cnt++; 16730 mutex_exit(&ill->ill_saved_ire_lock); 16731 } 16732 } 16733 16734 /* 16735 * Remove one entry from ill_saved_ire_mp. 16736 */ 16737 void 16738 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16739 { 16740 mblk_t **mpp; 16741 mblk_t *mp; 16742 ifrt_t *ifrt; 16743 16744 /* Remove from ill_saved_ire_mp list if it is there */ 16745 mutex_enter(&ill->ill_saved_ire_lock); 16746 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16747 mpp = &(*mpp)->b_cont) { 16748 in6_addr_t gw_addr_v6; 16749 16750 /* 16751 * On a given ill, the tuple of address, gateway, mask, 16752 * ire_type, and zoneid is unique for each saved IRE. 16753 */ 16754 mp = *mpp; 16755 ifrt = (ifrt_t *)mp->b_rptr; 16756 /* ire_gateway_addr_v6 can change - need lock */ 16757 mutex_enter(&ire->ire_lock); 16758 gw_addr_v6 = ire->ire_gateway_addr_v6; 16759 mutex_exit(&ire->ire_lock); 16760 16761 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16762 ifrt->ifrt_type != ire->ire_type) 16763 continue; 16764 16765 if (ill->ill_isv6 ? 16766 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16767 &ire->ire_addr_v6) && 16768 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16769 &gw_addr_v6) && 16770 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16771 &ire->ire_mask_v6)) : 16772 (ifrt->ifrt_addr == ire->ire_addr && 16773 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16774 ifrt->ifrt_mask == ire->ire_mask)) { 16775 *mpp = mp->b_cont; 16776 ill->ill_saved_ire_cnt--; 16777 freeb(mp); 16778 break; 16779 } 16780 } 16781 mutex_exit(&ill->ill_saved_ire_lock); 16782 } 16783 16784 /* 16785 * IP multirouting broadcast routes handling 16786 * Append CGTP broadcast IREs to regular ones created 16787 * at ifconfig time. 16788 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16789 * the destination and the gateway are broadcast addresses. 16790 * The caller has verified that the destination is an IRE_BROADCAST and that 16791 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16792 * we create a MULTIRT IRE_BROADCAST. 16793 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16794 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16795 */ 16796 static void 16797 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16798 { 16799 ire_t *ire_prim; 16800 16801 ASSERT(ire != NULL); 16802 16803 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16804 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16805 NULL); 16806 if (ire_prim != NULL) { 16807 /* 16808 * We are in the special case of broadcasts for 16809 * CGTP. We add an IRE_BROADCAST that holds 16810 * the RTF_MULTIRT flag, the destination 16811 * address and the low level 16812 * info of ire_prim. In other words, CGTP 16813 * broadcast is added to the redundant ipif. 16814 */ 16815 ill_t *ill_prim; 16816 ire_t *bcast_ire; 16817 16818 ill_prim = ire_prim->ire_ill; 16819 16820 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16821 (void *)ire_prim, (void *)ill_prim)); 16822 16823 bcast_ire = ire_create( 16824 (uchar_t *)&ire->ire_addr, 16825 (uchar_t *)&ip_g_all_ones, 16826 (uchar_t *)&ire->ire_gateway_addr, 16827 IRE_BROADCAST, 16828 ill_prim, 16829 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16830 ire->ire_flags | RTF_KERNEL, 16831 NULL, 16832 ipst); 16833 16834 /* 16835 * Here we assume that ire_add does head insertion so that 16836 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16837 */ 16838 if (bcast_ire != NULL) { 16839 if (ire->ire_flags & RTF_SETSRC) { 16840 bcast_ire->ire_setsrc_addr = 16841 ire->ire_setsrc_addr; 16842 } 16843 bcast_ire = ire_add(bcast_ire); 16844 if (bcast_ire != NULL) { 16845 ip2dbg(("ip_cgtp_filter_bcast_add: " 16846 "added bcast_ire %p\n", 16847 (void *)bcast_ire)); 16848 16849 ill_save_ire(ill_prim, bcast_ire); 16850 ire_refrele(bcast_ire); 16851 } 16852 } 16853 ire_refrele(ire_prim); 16854 } 16855 } 16856 16857 /* 16858 * IP multirouting broadcast routes handling 16859 * Remove the broadcast ire. 16860 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16861 * the destination and the gateway are broadcast addresses. 16862 * The caller has only verified that RTF_MULTIRT was set. We check 16863 * that the destination is broadcast and that the gateway is a broadcast 16864 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16865 */ 16866 static void 16867 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16868 { 16869 ASSERT(ire != NULL); 16870 16871 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16872 ire_t *ire_prim; 16873 16874 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16875 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16876 ipst, NULL); 16877 if (ire_prim != NULL) { 16878 ill_t *ill_prim; 16879 ire_t *bcast_ire; 16880 16881 ill_prim = ire_prim->ire_ill; 16882 16883 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16884 "ire_prim %p, ill_prim %p\n", 16885 (void *)ire_prim, (void *)ill_prim)); 16886 16887 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16888 ire->ire_gateway_addr, IRE_BROADCAST, 16889 ill_prim, ALL_ZONES, NULL, 16890 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16891 MATCH_IRE_MASK, 0, ipst, NULL); 16892 16893 if (bcast_ire != NULL) { 16894 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16895 "looked up bcast_ire %p\n", 16896 (void *)bcast_ire)); 16897 ill_remove_saved_ire(bcast_ire->ire_ill, 16898 bcast_ire); 16899 ire_delete(bcast_ire); 16900 ire_refrele(bcast_ire); 16901 } 16902 ire_refrele(ire_prim); 16903 } 16904 } 16905 } 16906 16907 /* 16908 * Derive an interface id from the link layer address. 16909 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16910 */ 16911 static void 16912 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16913 { 16914 char *addr; 16915 16916 /* 16917 * Note that some IPv6 interfaces get plumbed over links that claim to 16918 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16919 * PPP links). The ETHERADDRL check here ensures that we only set the 16920 * interface ID on IPv6 interfaces above links that actually have real 16921 * Ethernet addresses. 16922 */ 16923 if (ill->ill_phys_addr_length == ETHERADDRL) { 16924 /* Form EUI-64 like address */ 16925 addr = (char *)&v6addr->s6_addr32[2]; 16926 bcopy(ill->ill_phys_addr, addr, 3); 16927 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16928 addr[3] = (char)0xff; 16929 addr[4] = (char)0xfe; 16930 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16931 } 16932 } 16933 16934 /* ARGSUSED */ 16935 static void 16936 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16937 { 16938 } 16939 16940 typedef struct ipmp_ifcookie { 16941 uint32_t ic_hostid; 16942 char ic_ifname[LIFNAMSIZ]; 16943 char ic_zonename[ZONENAME_MAX]; 16944 } ipmp_ifcookie_t; 16945 16946 /* 16947 * Construct a pseudo-random interface ID for the IPMP interface that's both 16948 * predictable and (almost) guaranteed to be unique. 16949 */ 16950 static void 16951 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16952 { 16953 zone_t *zp; 16954 uint8_t *addr; 16955 uchar_t hash[16]; 16956 ulong_t hostid; 16957 MD5_CTX ctx; 16958 ipmp_ifcookie_t ic = { 0 }; 16959 16960 ASSERT(IS_IPMP(ill)); 16961 16962 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16963 ic.ic_hostid = htonl((uint32_t)hostid); 16964 16965 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16966 16967 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16968 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16969 zone_rele(zp); 16970 } 16971 16972 MD5Init(&ctx); 16973 MD5Update(&ctx, &ic, sizeof (ic)); 16974 MD5Final(hash, &ctx); 16975 16976 /* 16977 * Map the hash to an interface ID per the basic approach in RFC3041. 16978 */ 16979 addr = &v6addr->s6_addr8[8]; 16980 bcopy(hash + 8, addr, sizeof (uint64_t)); 16981 addr[0] &= ~0x2; /* set local bit */ 16982 } 16983 16984 /* 16985 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16986 */ 16987 static void 16988 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16989 { 16990 phyint_t *phyi = ill->ill_phyint; 16991 16992 /* 16993 * Check PHYI_MULTI_BCAST and length of physical 16994 * address to determine if we use the mapping or the 16995 * broadcast address. 16996 */ 16997 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16998 ill->ill_phys_addr_length != ETHERADDRL) { 16999 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17000 return; 17001 } 17002 m_physaddr[0] = 0x33; 17003 m_physaddr[1] = 0x33; 17004 m_physaddr[2] = m_ip6addr[12]; 17005 m_physaddr[3] = m_ip6addr[13]; 17006 m_physaddr[4] = m_ip6addr[14]; 17007 m_physaddr[5] = m_ip6addr[15]; 17008 } 17009 17010 /* 17011 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17012 */ 17013 static void 17014 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17015 { 17016 phyint_t *phyi = ill->ill_phyint; 17017 17018 /* 17019 * Check PHYI_MULTI_BCAST and length of physical 17020 * address to determine if we use the mapping or the 17021 * broadcast address. 17022 */ 17023 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17024 ill->ill_phys_addr_length != ETHERADDRL) { 17025 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17026 return; 17027 } 17028 m_physaddr[0] = 0x01; 17029 m_physaddr[1] = 0x00; 17030 m_physaddr[2] = 0x5e; 17031 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17032 m_physaddr[4] = m_ipaddr[2]; 17033 m_physaddr[5] = m_ipaddr[3]; 17034 } 17035 17036 /* ARGSUSED */ 17037 static void 17038 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17039 { 17040 /* 17041 * for the MULTI_BCAST case and other cases when we want to 17042 * use the link-layer broadcast address for multicast. 17043 */ 17044 uint8_t *bphys_addr; 17045 dl_unitdata_req_t *dlur; 17046 17047 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17048 if (ill->ill_sap_length < 0) { 17049 bphys_addr = (uchar_t *)dlur + 17050 dlur->dl_dest_addr_offset; 17051 } else { 17052 bphys_addr = (uchar_t *)dlur + 17053 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17054 } 17055 17056 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17057 } 17058 17059 /* 17060 * Derive IPoIB interface id from the link layer address. 17061 */ 17062 static void 17063 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17064 { 17065 char *addr; 17066 17067 ASSERT(ill->ill_phys_addr_length == 20); 17068 addr = (char *)&v6addr->s6_addr32[2]; 17069 bcopy(ill->ill_phys_addr + 12, addr, 8); 17070 /* 17071 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17072 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17073 * rules. In these cases, the IBA considers these GUIDs to be in 17074 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17075 * required; vendors are required not to assign global EUI-64's 17076 * that differ only in u/l bit values, thus guaranteeing uniqueness 17077 * of the interface identifier. Whether the GUID is in modified 17078 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17079 * bit set to 1. 17080 */ 17081 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17082 } 17083 17084 /* 17085 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17086 * Note on mapping from multicast IP addresses to IPoIB multicast link 17087 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17088 * The format of an IPoIB multicast address is: 17089 * 17090 * 4 byte QPN Scope Sign. Pkey 17091 * +--------------------------------------------+ 17092 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17093 * +--------------------------------------------+ 17094 * 17095 * The Scope and Pkey components are properties of the IBA port and 17096 * network interface. They can be ascertained from the broadcast address. 17097 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17098 */ 17099 static void 17100 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17101 { 17102 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17103 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17104 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17105 uint8_t *bphys_addr; 17106 dl_unitdata_req_t *dlur; 17107 17108 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17109 17110 /* 17111 * RFC 4391: IPv4 MGID is 28-bit long. 17112 */ 17113 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17114 m_physaddr[17] = m_ipaddr[1]; 17115 m_physaddr[18] = m_ipaddr[2]; 17116 m_physaddr[19] = m_ipaddr[3]; 17117 17118 17119 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17120 if (ill->ill_sap_length < 0) { 17121 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17122 } else { 17123 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17124 ill->ill_sap_length; 17125 } 17126 /* 17127 * Now fill in the IBA scope/Pkey values from the broadcast address. 17128 */ 17129 m_physaddr[5] = bphys_addr[5]; 17130 m_physaddr[8] = bphys_addr[8]; 17131 m_physaddr[9] = bphys_addr[9]; 17132 } 17133 17134 static void 17135 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17136 { 17137 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17138 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17139 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17140 uint8_t *bphys_addr; 17141 dl_unitdata_req_t *dlur; 17142 17143 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17144 17145 /* 17146 * RFC 4391: IPv4 MGID is 80-bit long. 17147 */ 17148 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17149 17150 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17151 if (ill->ill_sap_length < 0) { 17152 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17153 } else { 17154 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17155 ill->ill_sap_length; 17156 } 17157 /* 17158 * Now fill in the IBA scope/Pkey values from the broadcast address. 17159 */ 17160 m_physaddr[5] = bphys_addr[5]; 17161 m_physaddr[8] = bphys_addr[8]; 17162 m_physaddr[9] = bphys_addr[9]; 17163 } 17164 17165 /* 17166 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17167 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17168 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17169 * of RFC4213. 17170 */ 17171 static void 17172 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17173 { 17174 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17175 v6addr->s6_addr32[2] = 0; 17176 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17177 } 17178 17179 /* 17180 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17181 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17182 * id. 17183 */ 17184 static void 17185 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17186 { 17187 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17188 17189 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17190 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17191 } 17192 17193 static void 17194 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17195 { 17196 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17197 } 17198 17199 static void 17200 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17201 { 17202 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17203 } 17204 17205 static void 17206 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17207 { 17208 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17209 } 17210 17211 static void 17212 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17213 { 17214 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17215 } 17216 17217 /* 17218 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17219 * Returns an held ill, or NULL. 17220 */ 17221 ill_t * 17222 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17223 ip_stack_t *ipst) 17224 { 17225 ill_t *ill; 17226 ipif_t *ipif; 17227 17228 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17229 if (ill == NULL) 17230 return (NULL); 17231 17232 mutex_enter(&ill->ill_lock); 17233 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17234 if (IPIF_IS_CONDEMNED(ipif)) 17235 continue; 17236 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17237 ipif->ipif_zoneid != ALL_ZONES) 17238 continue; 17239 17240 mutex_exit(&ill->ill_lock); 17241 return (ill); 17242 } 17243 mutex_exit(&ill->ill_lock); 17244 ill_refrele(ill); 17245 return (NULL); 17246 } 17247 17248 /* 17249 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17250 * If a pointer to an ipif_t is returned then the caller will need to do 17251 * an ill_refrele(). 17252 */ 17253 ipif_t * 17254 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17255 ip_stack_t *ipst) 17256 { 17257 ipif_t *ipif; 17258 ill_t *ill; 17259 17260 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17261 if (ill == NULL) 17262 return (NULL); 17263 17264 mutex_enter(&ill->ill_lock); 17265 if (ill->ill_state_flags & ILL_CONDEMNED) { 17266 mutex_exit(&ill->ill_lock); 17267 ill_refrele(ill); 17268 return (NULL); 17269 } 17270 17271 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17272 if (!IPIF_CAN_LOOKUP(ipif)) 17273 continue; 17274 if (lifidx == ipif->ipif_id) { 17275 ipif_refhold_locked(ipif); 17276 break; 17277 } 17278 } 17279 17280 mutex_exit(&ill->ill_lock); 17281 ill_refrele(ill); 17282 return (ipif); 17283 } 17284 17285 /* 17286 * Set ill_inputfn based on the current know state. 17287 * This needs to be called when any of the factors taken into 17288 * account changes. 17289 */ 17290 void 17291 ill_set_inputfn(ill_t *ill) 17292 { 17293 ip_stack_t *ipst = ill->ill_ipst; 17294 17295 if (ill->ill_isv6) { 17296 if (is_system_labeled()) 17297 ill->ill_inputfn = ill_input_full_v6; 17298 else 17299 ill->ill_inputfn = ill_input_short_v6; 17300 } else { 17301 if (is_system_labeled()) 17302 ill->ill_inputfn = ill_input_full_v4; 17303 else if (ill->ill_dhcpinit != 0) 17304 ill->ill_inputfn = ill_input_full_v4; 17305 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17306 != NULL) 17307 ill->ill_inputfn = ill_input_full_v4; 17308 else if (ipst->ips_ip_cgtp_filter && 17309 ipst->ips_ip_cgtp_filter_ops != NULL) 17310 ill->ill_inputfn = ill_input_full_v4; 17311 else 17312 ill->ill_inputfn = ill_input_short_v4; 17313 } 17314 } 17315 17316 /* 17317 * Re-evaluate ill_inputfn for all the IPv4 ills. 17318 * Used when RSVP and CGTP comes and goes. 17319 */ 17320 void 17321 ill_set_inputfn_all(ip_stack_t *ipst) 17322 { 17323 ill_walk_context_t ctx; 17324 ill_t *ill; 17325 17326 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17327 ill = ILL_START_WALK_V4(&ctx, ipst); 17328 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17329 ill_set_inputfn(ill); 17330 17331 rw_exit(&ipst->ips_ill_g_lock); 17332 } 17333 17334 /* 17335 * Set the physical address information for `ill' to the contents of the 17336 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17337 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17338 * EINPROGRESS will be returned. 17339 */ 17340 int 17341 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17342 { 17343 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17344 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17345 17346 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17347 17348 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17349 dlindp->dl_data != DL_CURR_DEST_ADDR && 17350 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17351 /* Changing DL_IPV6_TOKEN is not yet supported */ 17352 return (0); 17353 } 17354 17355 /* 17356 * We need to store up to two copies of `mp' in `ill'. Due to the 17357 * design of ipsq_pending_mp_add(), we can't pass them as separate 17358 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17359 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17360 */ 17361 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17362 freemsg(mp); 17363 return (ENOMEM); 17364 } 17365 17366 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17367 mutex_enter(&ill->ill_lock); 17368 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17369 /* no more nce addition allowed */ 17370 mutex_exit(&ill->ill_lock); 17371 17372 /* 17373 * If we can quiesce the ill, then set the address. If not, then 17374 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17375 */ 17376 ill_down_ipifs(ill, B_TRUE); 17377 mutex_enter(&ill->ill_lock); 17378 if (!ill_is_quiescent(ill)) { 17379 /* call cannot fail since `conn_t *' argument is NULL */ 17380 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17381 mp, ILL_DOWN); 17382 mutex_exit(&ill->ill_lock); 17383 return (EINPROGRESS); 17384 } 17385 mutex_exit(&ill->ill_lock); 17386 17387 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17388 return (0); 17389 } 17390 17391 /* 17392 * Once the ill associated with `q' has quiesced, set its physical address 17393 * information to the values in `addrmp'. Note that two copies of `addrmp' 17394 * are passed (linked by b_cont), since we sometimes need to save two distinct 17395 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17396 * failure (we'll free the other copy if it's not needed). Since the ill_t 17397 * is quiesced, we know any stale nce's with the old address information have 17398 * already been removed, so we don't need to call nce_flush(). 17399 */ 17400 /* ARGSUSED */ 17401 static void 17402 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17403 { 17404 ill_t *ill = q->q_ptr; 17405 mblk_t *addrmp2 = unlinkb(addrmp); 17406 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17407 uint_t addrlen, addroff; 17408 int status; 17409 17410 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17411 17412 addroff = dlindp->dl_addr_offset; 17413 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17414 17415 switch (dlindp->dl_data) { 17416 case DL_IPV6_LINK_LAYER_ADDR: 17417 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17418 freemsg(addrmp2); 17419 break; 17420 17421 case DL_CURR_DEST_ADDR: 17422 freemsg(ill->ill_dest_addr_mp); 17423 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17424 ill->ill_dest_addr_mp = addrmp; 17425 if (ill->ill_isv6) { 17426 ill_setdesttoken(ill); 17427 ipif_setdestlinklocal(ill->ill_ipif); 17428 } 17429 freemsg(addrmp2); 17430 break; 17431 17432 case DL_CURR_PHYS_ADDR: 17433 freemsg(ill->ill_phys_addr_mp); 17434 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17435 ill->ill_phys_addr_mp = addrmp; 17436 ill->ill_phys_addr_length = addrlen; 17437 if (ill->ill_isv6) 17438 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17439 else 17440 freemsg(addrmp2); 17441 if (ill->ill_isv6) { 17442 ill_setdefaulttoken(ill); 17443 ipif_setlinklocal(ill->ill_ipif); 17444 } 17445 break; 17446 default: 17447 ASSERT(0); 17448 } 17449 17450 /* 17451 * If there are ipifs to bring up, ill_up_ipifs() will return 17452 * EINPROGRESS, and ipsq_current_finish() will be called by 17453 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17454 * brought up. 17455 */ 17456 status = ill_up_ipifs(ill, q, addrmp); 17457 mutex_enter(&ill->ill_lock); 17458 if (ill->ill_dl_up) 17459 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17460 mutex_exit(&ill->ill_lock); 17461 if (status != EINPROGRESS) 17462 ipsq_current_finish(ipsq); 17463 } 17464 17465 /* 17466 * Helper routine for setting the ill_nd_lla fields. 17467 */ 17468 void 17469 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17470 { 17471 freemsg(ill->ill_nd_lla_mp); 17472 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17473 ill->ill_nd_lla_mp = ndmp; 17474 ill->ill_nd_lla_len = addrlen; 17475 } 17476 17477 /* 17478 * Replumb the ill. 17479 */ 17480 int 17481 ill_replumb(ill_t *ill, mblk_t *mp) 17482 { 17483 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17484 17485 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17486 17487 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17488 17489 mutex_enter(&ill->ill_lock); 17490 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17491 /* no more nce addition allowed */ 17492 mutex_exit(&ill->ill_lock); 17493 17494 /* 17495 * If we can quiesce the ill, then continue. If not, then 17496 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17497 */ 17498 ill_down_ipifs(ill, B_FALSE); 17499 17500 mutex_enter(&ill->ill_lock); 17501 if (!ill_is_quiescent(ill)) { 17502 /* call cannot fail since `conn_t *' argument is NULL */ 17503 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17504 mp, ILL_DOWN); 17505 mutex_exit(&ill->ill_lock); 17506 return (EINPROGRESS); 17507 } 17508 mutex_exit(&ill->ill_lock); 17509 17510 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17511 return (0); 17512 } 17513 17514 /* ARGSUSED */ 17515 static void 17516 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17517 { 17518 ill_t *ill = q->q_ptr; 17519 int err; 17520 conn_t *connp = NULL; 17521 17522 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17523 freemsg(ill->ill_replumb_mp); 17524 ill->ill_replumb_mp = copyb(mp); 17525 17526 if (ill->ill_replumb_mp == NULL) { 17527 /* out of memory */ 17528 ipsq_current_finish(ipsq); 17529 return; 17530 } 17531 17532 mutex_enter(&ill->ill_lock); 17533 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17534 ill->ill_rq, ill->ill_replumb_mp, 0); 17535 mutex_exit(&ill->ill_lock); 17536 17537 if (!ill->ill_up_ipifs) { 17538 /* already closing */ 17539 ipsq_current_finish(ipsq); 17540 return; 17541 } 17542 ill->ill_replumbing = 1; 17543 err = ill_down_ipifs_tail(ill); 17544 17545 /* 17546 * Successfully quiesced and brought down the interface, now we send 17547 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17548 * DL_NOTE_REPLUMB message. 17549 */ 17550 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17551 DL_NOTIFY_CONF); 17552 ASSERT(mp != NULL); 17553 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17554 DL_NOTE_REPLUMB_DONE; 17555 ill_dlpi_send(ill, mp); 17556 17557 /* 17558 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17559 * streams have to be unbound. When all the DLPI exchanges are done, 17560 * ipsq_current_finish() will be called by arp_bringup_done(). The 17561 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17562 * arp_bringup_done(). 17563 */ 17564 ASSERT(ill->ill_replumb_mp != NULL); 17565 if (err == EINPROGRESS) 17566 return; 17567 else 17568 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17569 ASSERT(connp == NULL); 17570 if (err == 0 && ill->ill_replumb_mp != NULL && 17571 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17572 return; 17573 } 17574 ipsq_current_finish(ipsq); 17575 } 17576 17577 /* 17578 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17579 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17580 * as per the ioctl. On failure, an errno is returned. 17581 */ 17582 static int 17583 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17584 { 17585 int rval; 17586 struct strioctl iocb; 17587 17588 iocb.ic_cmd = cmd; 17589 iocb.ic_timout = 15; 17590 iocb.ic_len = bufsize; 17591 iocb.ic_dp = buf; 17592 17593 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17594 } 17595 17596 /* 17597 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17598 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17599 */ 17600 static int 17601 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17602 uint_t *bufsizep, cred_t *cr) 17603 { 17604 int err; 17605 struct lifnum lifn; 17606 17607 bzero(&lifn, sizeof (lifn)); 17608 lifn.lifn_family = af; 17609 lifn.lifn_flags = LIFC_UNDER_IPMP; 17610 17611 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17612 return (err); 17613 17614 /* 17615 * Pad the interface count to account for additional interfaces that 17616 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17617 */ 17618 lifn.lifn_count += 4; 17619 bzero(lifcp, sizeof (*lifcp)); 17620 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17621 lifcp->lifc_family = af; 17622 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17623 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17624 17625 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17626 if (err != 0) { 17627 kmem_free(lifcp->lifc_buf, *bufsizep); 17628 return (err); 17629 } 17630 17631 return (0); 17632 } 17633 17634 /* 17635 * Helper for ip_interface_cleanup() that removes the loopback interface. 17636 */ 17637 static void 17638 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17639 { 17640 int err; 17641 struct lifreq lifr; 17642 17643 bzero(&lifr, sizeof (lifr)); 17644 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17645 17646 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17647 if (err != 0) { 17648 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17649 "error %d\n", isv6 ? "v6" : "v4", err)); 17650 } 17651 } 17652 17653 /* 17654 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17655 * groups and that IPMP data addresses are down. These conditions must be met 17656 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17657 */ 17658 static void 17659 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17660 { 17661 int af = isv6 ? AF_INET6 : AF_INET; 17662 int i, nifs; 17663 int err; 17664 uint_t bufsize; 17665 uint_t lifrsize = sizeof (struct lifreq); 17666 struct lifconf lifc; 17667 struct lifreq *lifrp; 17668 17669 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17670 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17671 "(error %d); any IPMP interfaces cannot be shutdown", err); 17672 return; 17673 } 17674 17675 nifs = lifc.lifc_len / lifrsize; 17676 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17677 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17678 if (err != 0) { 17679 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17680 "flags: error %d", lifrp->lifr_name, err); 17681 continue; 17682 } 17683 17684 if (lifrp->lifr_flags & IFF_IPMP) { 17685 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17686 continue; 17687 17688 lifrp->lifr_flags &= ~IFF_UP; 17689 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17690 if (err != 0) { 17691 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17692 "bring down (error %d); IPMP interface may " 17693 "not be shutdown", lifrp->lifr_name, err); 17694 } 17695 17696 /* 17697 * Check if IFF_DUPLICATE is still set -- and if so, 17698 * reset the address to clear it. 17699 */ 17700 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17701 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17702 continue; 17703 17704 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17705 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17706 lifrp, lifrsize, cr)) != 0) { 17707 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17708 "reset DAD (error %d); IPMP interface may " 17709 "not be shutdown", lifrp->lifr_name, err); 17710 } 17711 continue; 17712 } 17713 17714 lifrp->lifr_groupname[0] = '\0'; 17715 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17716 if (err != 0) { 17717 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17718 "IPMP group (error %d); associated IPMP interface " 17719 "may not be shutdown", lifrp->lifr_name, err); 17720 continue; 17721 } 17722 } 17723 17724 kmem_free(lifc.lifc_buf, bufsize); 17725 } 17726 17727 #define UDPDEV "/devices/pseudo/udp@0:udp" 17728 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17729 17730 /* 17731 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17732 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17733 * when the user-level processes in the zone are killed and the latter are 17734 * cleaned up by str_stack_shutdown(). 17735 */ 17736 void 17737 ip_interface_cleanup(ip_stack_t *ipst) 17738 { 17739 ldi_handle_t lh; 17740 ldi_ident_t li; 17741 cred_t *cr; 17742 int err; 17743 int i; 17744 char *devs[] = { UDP6DEV, UDPDEV }; 17745 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17746 17747 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17748 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17749 " error %d", err); 17750 return; 17751 } 17752 17753 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17754 ASSERT(cr != NULL); 17755 17756 /* 17757 * NOTE: loop executes exactly twice and is hardcoded to know that the 17758 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17759 * the loop.) 17760 */ 17761 for (i = 0; i < 2; i++) { 17762 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17763 if (err != 0) { 17764 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17765 " error %d", devs[i], err); 17766 continue; 17767 } 17768 17769 ip_loopback_removeif(lh, i == 0, cr); 17770 ip_ipmp_cleanup(lh, i == 0, cr); 17771 17772 (void) ldi_close(lh, FREAD|FWRITE, cr); 17773 } 17774 17775 ldi_ident_release(li); 17776 crfree(cr); 17777 } 17778 17779 /* 17780 * This needs to be in-sync with nic_event_t definition 17781 */ 17782 static const char * 17783 ill_hook_event2str(nic_event_t event) 17784 { 17785 switch (event) { 17786 case NE_PLUMB: 17787 return ("PLUMB"); 17788 case NE_UNPLUMB: 17789 return ("UNPLUMB"); 17790 case NE_UP: 17791 return ("UP"); 17792 case NE_DOWN: 17793 return ("DOWN"); 17794 case NE_ADDRESS_CHANGE: 17795 return ("ADDRESS_CHANGE"); 17796 case NE_LIF_UP: 17797 return ("LIF_UP"); 17798 case NE_LIF_DOWN: 17799 return ("LIF_DOWN"); 17800 case NE_IFINDEX_CHANGE: 17801 return ("IFINDEX_CHANGE"); 17802 default: 17803 return ("UNKNOWN"); 17804 } 17805 } 17806 17807 void 17808 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17809 nic_event_data_t data, size_t datalen) 17810 { 17811 ip_stack_t *ipst = ill->ill_ipst; 17812 hook_nic_event_int_t *info; 17813 const char *str = NULL; 17814 17815 /* create a new nic event info */ 17816 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17817 goto fail; 17818 17819 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17820 info->hnei_event.hne_lif = lif; 17821 info->hnei_event.hne_event = event; 17822 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17823 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17824 info->hnei_event.hne_data = NULL; 17825 info->hnei_event.hne_datalen = 0; 17826 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17827 17828 if (data != NULL && datalen != 0) { 17829 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17830 if (info->hnei_event.hne_data == NULL) 17831 goto fail; 17832 bcopy(data, info->hnei_event.hne_data, datalen); 17833 info->hnei_event.hne_datalen = datalen; 17834 } 17835 17836 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17837 DDI_NOSLEEP) == DDI_SUCCESS) 17838 return; 17839 17840 fail: 17841 if (info != NULL) { 17842 if (info->hnei_event.hne_data != NULL) { 17843 kmem_free(info->hnei_event.hne_data, 17844 info->hnei_event.hne_datalen); 17845 } 17846 kmem_free(info, sizeof (hook_nic_event_t)); 17847 } 17848 str = ill_hook_event2str(event); 17849 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17850 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17851 } 17852 17853 static int 17854 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17855 { 17856 int err = 0; 17857 const in_addr_t *addr = NULL; 17858 nce_t *nce = NULL; 17859 ill_t *ill = ipif->ipif_ill; 17860 ill_t *bound_ill; 17861 boolean_t added_ipif = B_FALSE; 17862 uint16_t state; 17863 uint16_t flags; 17864 17865 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17866 ill_t *, ill, ipif_t *, ipif); 17867 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17868 addr = &ipif->ipif_lcl_addr; 17869 } 17870 17871 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17872 if (res_act != Res_act_initial) 17873 return (EINVAL); 17874 } 17875 17876 if (addr != NULL) { 17877 ipmp_illgrp_t *illg = ill->ill_grp; 17878 17879 /* add unicast nce for the local addr */ 17880 17881 if (IS_IPMP(ill)) { 17882 /* 17883 * If we're here via ipif_up(), then the ipif 17884 * won't be bound yet -- add it to the group, 17885 * which will bind it if possible. (We would 17886 * add it in ipif_up(), but deleting on failure 17887 * there is gruesome.) If we're here via 17888 * ipmp_ill_bind_ipif(), then the ipif has 17889 * already been added to the group and we 17890 * just need to use the binding. 17891 */ 17892 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17893 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17894 if (bound_ill == NULL) { 17895 /* 17896 * We couldn't bind the ipif to an ill 17897 * yet, so we have nothing to publish. 17898 * Mark the address as ready and return. 17899 */ 17900 ipif->ipif_addr_ready = 1; 17901 return (0); 17902 } 17903 added_ipif = B_TRUE; 17904 } 17905 } else { 17906 bound_ill = ill; 17907 } 17908 17909 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17910 NCE_F_NONUD); 17911 /* 17912 * If this is an initial bring-up (or the ipif was never 17913 * completely brought up), do DAD. Otherwise, we're here 17914 * because IPMP has rebound an address to this ill: send 17915 * unsolicited advertisements (ARP announcements) to 17916 * inform others. 17917 */ 17918 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17919 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17920 } else { 17921 state = ND_REACHABLE; 17922 flags |= NCE_F_UNSOL_ADV; 17923 } 17924 17925 retry: 17926 err = nce_lookup_then_add_v4(ill, 17927 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17928 addr, flags, state, &nce); 17929 17930 /* 17931 * note that we may encounter EEXIST if we are moving 17932 * the nce as a result of a rebind operation. 17933 */ 17934 switch (err) { 17935 case 0: 17936 ipif->ipif_added_nce = 1; 17937 nce->nce_ipif_cnt++; 17938 break; 17939 case EEXIST: 17940 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17941 ill->ill_name)); 17942 if (!NCE_MYADDR(nce->nce_common)) { 17943 /* 17944 * A leftover nce from before this address 17945 * existed 17946 */ 17947 ncec_delete(nce->nce_common); 17948 nce_refrele(nce); 17949 nce = NULL; 17950 goto retry; 17951 } 17952 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17953 nce_refrele(nce); 17954 nce = NULL; 17955 ip1dbg(("ipif_arp_up: NCE already exists " 17956 "for %s:%u\n", ill->ill_name, 17957 ipif->ipif_id)); 17958 goto arp_up_done; 17959 } 17960 /* 17961 * Duplicate local addresses are permissible for 17962 * IPIF_POINTOPOINT interfaces which will get marked 17963 * IPIF_UNNUMBERED later in 17964 * ip_addr_availability_check(). 17965 * 17966 * The nce_ipif_cnt field tracks the number of 17967 * ipifs that have nce_addr as their local address. 17968 */ 17969 ipif->ipif_addr_ready = 1; 17970 ipif->ipif_added_nce = 1; 17971 nce->nce_ipif_cnt++; 17972 err = 0; 17973 break; 17974 default: 17975 ASSERT(nce == NULL); 17976 goto arp_up_done; 17977 } 17978 if (arp_no_defense) { 17979 if ((ipif->ipif_flags & IPIF_UP) && 17980 !ipif->ipif_addr_ready) 17981 ipif_up_notify(ipif); 17982 ipif->ipif_addr_ready = 1; 17983 } 17984 } else { 17985 /* zero address. nothing to publish */ 17986 ipif->ipif_addr_ready = 1; 17987 } 17988 if (nce != NULL) 17989 nce_refrele(nce); 17990 arp_up_done: 17991 if (added_ipif && err != 0) 17992 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17993 return (err); 17994 } 17995 17996 int 17997 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17998 { 17999 int err = 0; 18000 ill_t *ill = ipif->ipif_ill; 18001 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18002 18003 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18004 ill_t *, ill, ipif_t *, ipif); 18005 18006 /* 18007 * need to bring up ARP or setup mcast mapping only 18008 * when the first interface is coming UP. 18009 */ 18010 first_interface = (ill->ill_ipif_up_count == 0 && 18011 ill->ill_ipif_dup_count == 0 && !was_dup); 18012 18013 if (res_act == Res_act_initial && first_interface) { 18014 /* 18015 * Send ATTACH + BIND 18016 */ 18017 err = arp_ll_up(ill); 18018 if (err != EINPROGRESS && err != 0) 18019 return (err); 18020 18021 /* 18022 * Add NCE for local address. Start DAD. 18023 * we'll wait to hear that DAD has finished 18024 * before using the interface. 18025 */ 18026 if (err == EINPROGRESS) 18027 wait_for_dlpi = B_TRUE; 18028 } 18029 18030 if (!wait_for_dlpi) 18031 (void) ipif_arp_up_done_tail(ipif, res_act); 18032 18033 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18034 } 18035 18036 /* 18037 * Finish processing of "arp_up" after all the DLPI message 18038 * exchanges have completed between arp and the driver. 18039 */ 18040 void 18041 arp_bringup_done(ill_t *ill, int err) 18042 { 18043 mblk_t *mp1; 18044 ipif_t *ipif; 18045 conn_t *connp = NULL; 18046 ipsq_t *ipsq; 18047 queue_t *q; 18048 18049 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18050 18051 ASSERT(IAM_WRITER_ILL(ill)); 18052 18053 ipsq = ill->ill_phyint->phyint_ipsq; 18054 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18055 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18056 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18057 if (mp1 == NULL) /* bringup was aborted by the user */ 18058 return; 18059 18060 /* 18061 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18062 * must have an associated conn_t. Otherwise, we're bringing this 18063 * interface back up as part of handling an asynchronous event (e.g., 18064 * physical address change). 18065 */ 18066 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18067 ASSERT(connp != NULL); 18068 q = CONNP_TO_WQ(connp); 18069 } else { 18070 ASSERT(connp == NULL); 18071 q = ill->ill_rq; 18072 } 18073 if (err == 0) { 18074 if (ipif->ipif_isv6) { 18075 if ((err = ipif_up_done_v6(ipif)) != 0) 18076 ip0dbg(("arp_bringup_done: init failed\n")); 18077 } else { 18078 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18079 if (err != 0 || 18080 (err = ipif_up_done(ipif)) != 0) { 18081 ip0dbg(("arp_bringup_done: " 18082 "init failed err %x\n", err)); 18083 (void) ipif_arp_down(ipif); 18084 } 18085 18086 } 18087 } else { 18088 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18089 } 18090 18091 if ((err == 0) && (ill->ill_up_ipifs)) { 18092 err = ill_up_ipifs(ill, q, mp1); 18093 if (err == EINPROGRESS) 18094 return; 18095 } 18096 18097 /* 18098 * If we have a moved ipif to bring up, and everything has succeeded 18099 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18100 * down -- the admin can try to bring it up by hand if need be. 18101 */ 18102 if (ill->ill_move_ipif != NULL) { 18103 ipif = ill->ill_move_ipif; 18104 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18105 ipif->ipif_ill->ill_name)); 18106 ill->ill_move_ipif = NULL; 18107 if (err == 0) { 18108 err = ipif_up(ipif, q, mp1); 18109 if (err == EINPROGRESS) 18110 return; 18111 } 18112 } 18113 18114 /* 18115 * The operation must complete without EINPROGRESS since 18116 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18117 * Otherwise, the operation will be stuck forever in the ipsq. 18118 */ 18119 ASSERT(err != EINPROGRESS); 18120 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18121 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18122 int, ipsq->ipsq_xop->ipx_current_ioctl, 18123 ill_t *, ill, ipif_t *, ipif); 18124 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18125 } else { 18126 ipsq_current_finish(ipsq); 18127 } 18128 } 18129 18130 /* 18131 * Finish processing of arp replumb after all the DLPI message 18132 * exchanges have completed between arp and the driver. 18133 */ 18134 void 18135 arp_replumb_done(ill_t *ill, int err) 18136 { 18137 mblk_t *mp1; 18138 ipif_t *ipif; 18139 conn_t *connp = NULL; 18140 ipsq_t *ipsq; 18141 queue_t *q; 18142 18143 ASSERT(IAM_WRITER_ILL(ill)); 18144 18145 ipsq = ill->ill_phyint->phyint_ipsq; 18146 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18147 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18148 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18149 if (mp1 == NULL) { 18150 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18151 ipsq->ipsq_xop->ipx_current_ioctl)); 18152 /* bringup was aborted by the user */ 18153 return; 18154 } 18155 /* 18156 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18157 * must have an associated conn_t. Otherwise, we're bringing this 18158 * interface back up as part of handling an asynchronous event (e.g., 18159 * physical address change). 18160 */ 18161 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18162 ASSERT(connp != NULL); 18163 q = CONNP_TO_WQ(connp); 18164 } else { 18165 ASSERT(connp == NULL); 18166 q = ill->ill_rq; 18167 } 18168 if ((err == 0) && (ill->ill_up_ipifs)) { 18169 err = ill_up_ipifs(ill, q, mp1); 18170 if (err == EINPROGRESS) 18171 return; 18172 } 18173 /* 18174 * The operation must complete without EINPROGRESS since 18175 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18176 * Otherwise, the operation will be stuck forever in the ipsq. 18177 */ 18178 ASSERT(err != EINPROGRESS); 18179 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18180 DTRACE_PROBE4(ipif__ioctl, char *, 18181 "arp_replumb_done finish", 18182 int, ipsq->ipsq_xop->ipx_current_ioctl, 18183 ill_t *, ill, ipif_t *, ipif); 18184 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18185 } else { 18186 ipsq_current_finish(ipsq); 18187 } 18188 } 18189 18190 void 18191 ipif_up_notify(ipif_t *ipif) 18192 { 18193 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18194 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18195 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18196 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18197 NE_LIF_UP, NULL, 0); 18198 } 18199 18200 /* 18201 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18202 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18203 * TPI end points with STREAMS modules pushed above. This is assured by not 18204 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18205 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18206 * while unwinding from the ispq and that could be a thread from the bottom. 18207 */ 18208 /* ARGSUSED */ 18209 int 18210 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18211 ip_ioctl_cmd_t *ipip, void *arg) 18212 { 18213 mblk_t *cmd_mp = mp->b_cont->b_cont; 18214 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18215 int ret = 0; 18216 int i; 18217 size_t size; 18218 ip_stack_t *ipst; 18219 zoneid_t zoneid; 18220 ilb_stack_t *ilbs; 18221 18222 ipst = CONNQ_TO_IPST(q); 18223 ilbs = ipst->ips_netstack->netstack_ilb; 18224 zoneid = Q_TO_CONN(q)->conn_zoneid; 18225 18226 switch (command) { 18227 case ILB_CREATE_RULE: { 18228 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18229 18230 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18231 ret = EINVAL; 18232 break; 18233 } 18234 18235 ret = ilb_rule_add(ilbs, zoneid, cmd); 18236 break; 18237 } 18238 case ILB_DESTROY_RULE: 18239 case ILB_ENABLE_RULE: 18240 case ILB_DISABLE_RULE: { 18241 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18242 18243 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18244 ret = EINVAL; 18245 break; 18246 } 18247 18248 if (cmd->flags & ILB_RULE_ALLRULES) { 18249 if (command == ILB_DESTROY_RULE) { 18250 ilb_rule_del_all(ilbs, zoneid); 18251 break; 18252 } else if (command == ILB_ENABLE_RULE) { 18253 ilb_rule_enable_all(ilbs, zoneid); 18254 break; 18255 } else if (command == ILB_DISABLE_RULE) { 18256 ilb_rule_disable_all(ilbs, zoneid); 18257 break; 18258 } 18259 } else { 18260 if (command == ILB_DESTROY_RULE) { 18261 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18262 } else if (command == ILB_ENABLE_RULE) { 18263 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18264 NULL); 18265 } else if (command == ILB_DISABLE_RULE) { 18266 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18267 NULL); 18268 } 18269 } 18270 break; 18271 } 18272 case ILB_NUM_RULES: { 18273 ilb_num_rules_cmd_t *cmd; 18274 18275 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18276 ret = EINVAL; 18277 break; 18278 } 18279 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18280 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18281 break; 18282 } 18283 case ILB_RULE_NAMES: { 18284 ilb_rule_names_cmd_t *cmd; 18285 18286 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18287 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18288 cmd->num_names == 0) { 18289 ret = EINVAL; 18290 break; 18291 } 18292 size = cmd->num_names * ILB_RULE_NAMESZ; 18293 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18294 size != cmd_mp->b_wptr) { 18295 ret = EINVAL; 18296 break; 18297 } 18298 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18299 break; 18300 } 18301 case ILB_NUM_SERVERS: { 18302 ilb_num_servers_cmd_t *cmd; 18303 18304 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18305 ret = EINVAL; 18306 break; 18307 } 18308 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18309 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18310 &(cmd->num)); 18311 break; 18312 } 18313 case ILB_LIST_RULE: { 18314 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18315 18316 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18317 ret = EINVAL; 18318 break; 18319 } 18320 ret = ilb_rule_list(ilbs, zoneid, cmd); 18321 break; 18322 } 18323 case ILB_LIST_SERVERS: { 18324 ilb_servers_info_cmd_t *cmd; 18325 18326 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18327 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18328 cmd->num_servers == 0) { 18329 ret = EINVAL; 18330 break; 18331 } 18332 size = cmd->num_servers * sizeof (ilb_server_info_t); 18333 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18334 size != cmd_mp->b_wptr) { 18335 ret = EINVAL; 18336 break; 18337 } 18338 18339 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18340 &cmd->num_servers); 18341 break; 18342 } 18343 case ILB_ADD_SERVERS: { 18344 ilb_servers_info_cmd_t *cmd; 18345 ilb_rule_t *rule; 18346 18347 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18348 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18349 ret = EINVAL; 18350 break; 18351 } 18352 size = cmd->num_servers * sizeof (ilb_server_info_t); 18353 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18354 size != cmd_mp->b_wptr) { 18355 ret = EINVAL; 18356 break; 18357 } 18358 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18359 if (rule == NULL) { 18360 ASSERT(ret != 0); 18361 break; 18362 } 18363 for (i = 0; i < cmd->num_servers; i++) { 18364 ilb_server_info_t *s; 18365 18366 s = &cmd->servers[i]; 18367 s->err = ilb_server_add(ilbs, rule, s); 18368 } 18369 ILB_RULE_REFRELE(rule); 18370 break; 18371 } 18372 case ILB_DEL_SERVERS: 18373 case ILB_ENABLE_SERVERS: 18374 case ILB_DISABLE_SERVERS: { 18375 ilb_servers_cmd_t *cmd; 18376 ilb_rule_t *rule; 18377 int (*f)(); 18378 18379 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18380 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18381 ret = EINVAL; 18382 break; 18383 } 18384 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18385 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18386 size != cmd_mp->b_wptr) { 18387 ret = EINVAL; 18388 break; 18389 } 18390 18391 if (command == ILB_DEL_SERVERS) 18392 f = ilb_server_del; 18393 else if (command == ILB_ENABLE_SERVERS) 18394 f = ilb_server_enable; 18395 else if (command == ILB_DISABLE_SERVERS) 18396 f = ilb_server_disable; 18397 18398 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18399 if (rule == NULL) { 18400 ASSERT(ret != 0); 18401 break; 18402 } 18403 18404 for (i = 0; i < cmd->num_servers; i++) { 18405 ilb_server_arg_t *s; 18406 18407 s = &cmd->servers[i]; 18408 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18409 } 18410 ILB_RULE_REFRELE(rule); 18411 break; 18412 } 18413 case ILB_LIST_NAT_TABLE: { 18414 ilb_list_nat_cmd_t *cmd; 18415 18416 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18417 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18418 ret = EINVAL; 18419 break; 18420 } 18421 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18422 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18423 size != cmd_mp->b_wptr) { 18424 ret = EINVAL; 18425 break; 18426 } 18427 18428 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18429 &cmd->flags); 18430 break; 18431 } 18432 case ILB_LIST_STICKY_TABLE: { 18433 ilb_list_sticky_cmd_t *cmd; 18434 18435 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18436 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18437 ret = EINVAL; 18438 break; 18439 } 18440 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18441 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18442 size != cmd_mp->b_wptr) { 18443 ret = EINVAL; 18444 break; 18445 } 18446 18447 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18448 &cmd->num_sticky, &cmd->flags); 18449 break; 18450 } 18451 default: 18452 ret = EINVAL; 18453 break; 18454 } 18455 done: 18456 return (ret); 18457 } 18458 18459 /* Remove all cache entries for this logical interface */ 18460 void 18461 ipif_nce_down(ipif_t *ipif) 18462 { 18463 ill_t *ill = ipif->ipif_ill; 18464 nce_t *nce; 18465 18466 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18467 ill_t *, ill, ipif_t *, ipif); 18468 if (ipif->ipif_added_nce) { 18469 if (ipif->ipif_isv6) 18470 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18471 else 18472 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18473 if (nce != NULL) { 18474 if (--nce->nce_ipif_cnt == 0) 18475 ncec_delete(nce->nce_common); 18476 ipif->ipif_added_nce = 0; 18477 nce_refrele(nce); 18478 } else { 18479 /* 18480 * nce may already be NULL because it was already 18481 * flushed, e.g., due to a call to nce_flush 18482 */ 18483 ipif->ipif_added_nce = 0; 18484 } 18485 } 18486 /* 18487 * Make IPMP aware of the deleted data address. 18488 */ 18489 if (IS_IPMP(ill)) 18490 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18491 18492 /* 18493 * Remove all other nces dependent on this ill when the last ipif 18494 * is going away. 18495 */ 18496 if (ill->ill_ipif_up_count == 0) { 18497 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18498 (uchar_t *)ill, ill->ill_ipst); 18499 if (IS_UNDER_IPMP(ill)) 18500 nce_flush(ill, B_TRUE); 18501 } 18502 } 18503 18504 /* 18505 * find the first interface that uses usill for its source address. 18506 */ 18507 ill_t * 18508 ill_lookup_usesrc(ill_t *usill) 18509 { 18510 ip_stack_t *ipst = usill->ill_ipst; 18511 ill_t *ill; 18512 18513 ASSERT(usill != NULL); 18514 18515 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18516 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18517 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18518 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18519 ill = ill->ill_usesrc_grp_next) { 18520 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18521 !ILL_IS_CONDEMNED(ill)) { 18522 ill_refhold(ill); 18523 break; 18524 } 18525 } 18526 rw_exit(&ipst->ips_ill_g_lock); 18527 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18528 return (ill); 18529 } 18530