1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 static void ipsq_clean_all(ill_t *ill); 153 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 162 static void ipif_delete_cache_ire(ire_t *, char *); 163 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 164 static void ipif_free(ipif_t *ipif); 165 static void ipif_free_tail(ipif_t *ipif); 166 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 167 static void ipif_multicast_down(ipif_t *ipif); 168 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 169 static void ipif_set_default(ipif_t *ipif); 170 static int ipif_set_values(queue_t *q, mblk_t *mp, 171 char *interf_name, uint_t *ppa); 172 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 173 queue_t *q); 174 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 175 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 176 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 177 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 178 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 179 180 static int ill_alloc_ppa(ill_if_t *, ill_t *); 181 static int ill_arp_off(ill_t *ill); 182 static int ill_arp_on(ill_t *ill); 183 static void ill_delete_interface_type(ill_if_t *); 184 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 185 static void ill_dl_down(ill_t *ill); 186 static void ill_down(ill_t *ill); 187 static void ill_downi(ire_t *ire, char *ill_arg); 188 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 189 static void ill_down_tail(ill_t *ill); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_MIPRUNNING, "MIP" }, 480 { IPIF_NOFAILOVER, "NOFAILOVER" }, 481 { PHYI_FAILED, "FAILED" }, 482 { PHYI_STANDBY, "STANDBY" }, 483 { PHYI_INACTIVE, "INACTIVE" }, 484 { PHYI_OFFLINE, "OFFLINE" }, 485 }; 486 487 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 488 489 static ip_m_t ip_m_tbl[] = { 490 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 491 ip_ether_v6intfid }, 492 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid }, 494 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_nodef_v6intfid }, 496 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 501 ip_ib_v6intfid }, 502 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 503 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid } 505 }; 506 507 static ill_t ill_null; /* Empty ILL for init. */ 508 char ipif_loopback_name[] = "lo0"; 509 static char *ipv4_forward_suffix = ":ip_forwarding"; 510 static char *ipv6_forward_suffix = ":ip6_forwarding"; 511 static sin6_t sin6_null; /* Zero address for quick clears */ 512 static sin_t sin_null; /* Zero address for quick clears */ 513 514 /* When set search for unused ipif_seqid */ 515 static ipif_t ipif_zero; 516 517 /* 518 * ppa arena is created after these many 519 * interfaces have been plumbed. 520 */ 521 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 522 523 /* 524 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 525 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 526 * set through platform specific code (Niagara/Ontario). 527 */ 528 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 529 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 530 531 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 532 533 static uint_t 534 ipif_rand(ip_stack_t *ipst) 535 { 536 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 537 12345; 538 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 539 } 540 541 /* 542 * Allocate per-interface mibs. 543 * Returns true if ok. False otherwise. 544 * ipsq may not yet be allocated (loopback case ). 545 */ 546 static boolean_t 547 ill_allocate_mibs(ill_t *ill) 548 { 549 /* Already allocated? */ 550 if (ill->ill_ip_mib != NULL) { 551 if (ill->ill_isv6) 552 ASSERT(ill->ill_icmp6_mib != NULL); 553 return (B_TRUE); 554 } 555 556 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 557 KM_NOSLEEP); 558 if (ill->ill_ip_mib == NULL) { 559 return (B_FALSE); 560 } 561 562 /* Setup static information */ 563 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 564 sizeof (mib2_ipIfStatsEntry_t)); 565 if (ill->ill_isv6) { 566 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 567 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 568 sizeof (mib2_ipv6AddrEntry_t)); 569 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 570 sizeof (mib2_ipv6RouteEntry_t)); 571 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 572 sizeof (mib2_ipv6NetToMediaEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 574 sizeof (ipv6_member_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 576 sizeof (ipv6_grpsrc_t)); 577 } else { 578 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 579 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 580 sizeof (mib2_ipAddrEntry_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 582 sizeof (mib2_ipRouteEntry_t)); 583 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 584 sizeof (mib2_ipNetToMediaEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 586 sizeof (ip_member_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 588 sizeof (ip_grpsrc_t)); 589 590 /* 591 * For a v4 ill, we are done at this point, because per ill 592 * icmp mibs are only used for v6. 593 */ 594 return (B_TRUE); 595 } 596 597 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_icmp6_mib == NULL) { 600 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 601 ill->ill_ip_mib = NULL; 602 return (B_FALSE); 603 } 604 /* static icmp info */ 605 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 606 sizeof (mib2_ipv6IfIcmpEntry_t); 607 /* 608 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 609 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 610 * -> ill_phyint_reinit 611 */ 612 return (B_TRUE); 613 } 614 615 /* 616 * Common code for preparation of ARP commands. Two points to remember: 617 * 1) The ill_name is tacked on at the end of the allocated space so 618 * the templates name_offset field must contain the total space 619 * to allocate less the name length. 620 * 621 * 2) The templates name_length field should contain the *template* 622 * length. We use it as a parameter to bcopy() and then write 623 * the real ill_name_length into the name_length field of the copy. 624 * (Always called as writer.) 625 */ 626 mblk_t * 627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 628 { 629 arc_t *arc = (arc_t *)template; 630 char *cp; 631 int len; 632 mblk_t *mp; 633 uint_t name_length = ill->ill_name_length; 634 uint_t template_len = arc->arc_name_length; 635 636 len = arc->arc_name_offset + name_length; 637 mp = allocb(len, BPRI_HI); 638 if (mp == NULL) 639 return (NULL); 640 cp = (char *)mp->b_rptr; 641 mp->b_wptr = (uchar_t *)&cp[len]; 642 if (template_len) 643 bcopy(template, cp, template_len); 644 if (len > template_len) 645 bzero(&cp[template_len], len - template_len); 646 mp->b_datap->db_type = M_PROTO; 647 648 arc = (arc_t *)cp; 649 arc->arc_name_length = name_length; 650 cp = (char *)arc + arc->arc_name_offset; 651 bcopy(ill->ill_name, cp, name_length); 652 653 if (addr) { 654 area_t *area = (area_t *)mp->b_rptr; 655 656 cp = (char *)area + area->area_proto_addr_offset; 657 bcopy(addr, cp, area->area_proto_addr_length); 658 if (area->area_cmd == AR_ENTRY_ADD) { 659 cp = (char *)area; 660 len = area->area_proto_addr_length; 661 if (area->area_proto_mask_offset) 662 cp += area->area_proto_mask_offset; 663 else 664 cp += area->area_proto_addr_offset + len; 665 while (len-- > 0) 666 *cp++ = (char)~0; 667 } 668 } 669 return (mp); 670 } 671 672 mblk_t * 673 ipif_area_alloc(ipif_t *ipif) 674 { 675 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 676 (char *)&ipif->ipif_lcl_addr)); 677 } 678 679 mblk_t * 680 ipif_ared_alloc(ipif_t *ipif) 681 { 682 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 683 (char *)&ipif->ipif_lcl_addr)); 684 } 685 686 mblk_t * 687 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 688 { 689 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 690 (char *)&addr)); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * Send all deferred messages without waiting for their ACKs. 789 */ 790 void 791 ill_send_all_deferred_mp(ill_t *ill) 792 { 793 mblk_t *mp, *next; 794 795 /* 796 * Clear ill_dlpi_pending so that the message is not queued in 797 * ill_dlpi_send(). 798 */ 799 ill->ill_dlpi_pending = DL_PRIM_INVAL; 800 801 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 802 next = mp->b_next; 803 mp->b_next = NULL; 804 ill_dlpi_send(ill, mp); 805 } 806 ill->ill_dlpi_deferred = NULL; 807 } 808 809 /* 810 * ill_delete_tail is called from ip_modclose after all references 811 * to the closing ill are gone. The wait is done in ip_modclose 812 */ 813 void 814 ill_delete_tail(ill_t *ill) 815 { 816 mblk_t **mpp; 817 ipif_t *ipif; 818 ip_stack_t *ipst = ill->ill_ipst; 819 820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 821 ipif_non_duplicate(ipif); 822 ipif_down_tail(ipif); 823 } 824 825 ASSERT(ill->ill_ipif_dup_count == 0 && 826 ill->ill_arp_down_mp == NULL && 827 ill->ill_arp_del_mapping_mp == NULL); 828 829 /* 830 * If polling capability is enabled (which signifies direct 831 * upcall into IP and driver has ill saved as a handle), 832 * we need to make sure that unbind has completed before we 833 * let the ill disappear and driver no longer has any reference 834 * to this ill. 835 */ 836 mutex_enter(&ill->ill_lock); 837 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 838 cv_wait(&ill->ill_cv, &ill->ill_lock); 839 mutex_exit(&ill->ill_lock); 840 841 /* 842 * Clean up polling and soft ring capabilities 843 */ 844 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 845 ill_capability_dls_disable(ill); 846 847 /* 848 * Send the detach if there's one to send (i.e., if we're above a 849 * style 2 DLPI driver). 850 */ 851 if (ill->ill_detach_mp != NULL) { 852 ill_dlpi_send(ill, ill->ill_detach_mp); 853 ill->ill_detach_mp = NULL; 854 } 855 856 if (ill->ill_net_type != IRE_LOOPBACK) 857 qprocsoff(ill->ill_rq); 858 859 /* 860 * We do an ipsq_flush once again now. New messages could have 861 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 862 * could also have landed up if an ioctl thread had looked up 863 * the ill before we set the ILL_CONDEMNED flag, but not yet 864 * enqueued the ioctl when we did the ipsq_flush last time. 865 */ 866 ipsq_flush(ill); 867 868 /* 869 * Free capabilities. 870 */ 871 if (ill->ill_ipsec_capab_ah != NULL) { 872 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 873 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 874 ill->ill_ipsec_capab_ah = NULL; 875 } 876 877 if (ill->ill_ipsec_capab_esp != NULL) { 878 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 879 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 880 ill->ill_ipsec_capab_esp = NULL; 881 } 882 883 if (ill->ill_mdt_capab != NULL) { 884 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 885 ill->ill_mdt_capab = NULL; 886 } 887 888 if (ill->ill_hcksum_capab != NULL) { 889 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 890 ill->ill_hcksum_capab = NULL; 891 } 892 893 if (ill->ill_zerocopy_capab != NULL) { 894 kmem_free(ill->ill_zerocopy_capab, 895 sizeof (ill_zerocopy_capab_t)); 896 ill->ill_zerocopy_capab = NULL; 897 } 898 899 if (ill->ill_lso_capab != NULL) { 900 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 901 ill->ill_lso_capab = NULL; 902 } 903 904 if (ill->ill_dls_capab != NULL) { 905 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 906 ill->ill_dls_capab->ill_unbind_conn = NULL; 907 kmem_free(ill->ill_dls_capab, 908 sizeof (ill_dls_capab_t) + 909 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 910 ill->ill_dls_capab = NULL; 911 } 912 913 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 914 915 while (ill->ill_ipif != NULL) 916 ipif_free_tail(ill->ill_ipif); 917 918 ill_down_tail(ill); 919 920 /* 921 * We have removed all references to ilm from conn and the ones joined 922 * within the kernel. 923 * 924 * We don't walk conns, mrts and ires because 925 * 926 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 927 * 2) ill_down ->ill_downi walks all the ires and cleans up 928 * ill references. 929 */ 930 ASSERT(ilm_walk_ill(ill) == 0); 931 /* 932 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 933 * could free the phyint. No more reference to the phyint after this 934 * point. 935 */ 936 (void) ill_glist_delete(ill); 937 938 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 939 if (ill->ill_ndd_name != NULL) 940 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 941 rw_exit(&ipst->ips_ip_g_nd_lock); 942 943 944 if (ill->ill_frag_ptr != NULL) { 945 uint_t count; 946 947 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 948 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 949 } 950 mi_free(ill->ill_frag_ptr); 951 ill->ill_frag_ptr = NULL; 952 ill->ill_frag_hash_tbl = NULL; 953 } 954 955 freemsg(ill->ill_nd_lla_mp); 956 /* Free all retained control messages. */ 957 mpp = &ill->ill_first_mp_to_free; 958 do { 959 while (mpp[0]) { 960 mblk_t *mp; 961 mblk_t *mp1; 962 963 mp = mpp[0]; 964 mpp[0] = mp->b_next; 965 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 966 mp1->b_next = NULL; 967 mp1->b_prev = NULL; 968 } 969 freemsg(mp); 970 } 971 } while (mpp++ != &ill->ill_last_mp_to_free); 972 973 ill_free_mib(ill); 974 /* Drop refcnt here */ 975 netstack_rele(ill->ill_ipst->ips_netstack); 976 ill->ill_ipst = NULL; 977 978 ILL_TRACE_CLEANUP(ill); 979 } 980 981 static void 982 ill_free_mib(ill_t *ill) 983 { 984 ip_stack_t *ipst = ill->ill_ipst; 985 986 /* 987 * MIB statistics must not be lost, so when an interface 988 * goes away the counter values will be added to the global 989 * MIBs. 990 */ 991 if (ill->ill_ip_mib != NULL) { 992 if (ill->ill_isv6) { 993 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 994 ill->ill_ip_mib); 995 } else { 996 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 997 ill->ill_ip_mib); 998 } 999 1000 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1001 ill->ill_ip_mib = NULL; 1002 } 1003 if (ill->ill_icmp6_mib != NULL) { 1004 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1005 ill->ill_icmp6_mib); 1006 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1007 ill->ill_icmp6_mib = NULL; 1008 } 1009 } 1010 1011 /* 1012 * Concatenate together a physical address and a sap. 1013 * 1014 * Sap_lengths are interpreted as follows: 1015 * sap_length == 0 ==> no sap 1016 * sap_length > 0 ==> sap is at the head of the dlpi address 1017 * sap_length < 0 ==> sap is at the tail of the dlpi address 1018 */ 1019 static void 1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1021 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1022 { 1023 uint16_t sap_addr = (uint16_t)sap_src; 1024 1025 if (sap_length == 0) { 1026 if (phys_src == NULL) 1027 bzero(dst, phys_length); 1028 else 1029 bcopy(phys_src, dst, phys_length); 1030 } else if (sap_length < 0) { 1031 if (phys_src == NULL) 1032 bzero(dst, phys_length); 1033 else 1034 bcopy(phys_src, dst, phys_length); 1035 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1036 } else { 1037 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1038 if (phys_src == NULL) 1039 bzero((char *)dst + sap_length, phys_length); 1040 else 1041 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1042 } 1043 } 1044 1045 /* 1046 * Generate a dl_unitdata_req mblk for the device and address given. 1047 * addr_length is the length of the physical portion of the address. 1048 * If addr is NULL include an all zero address of the specified length. 1049 * TRUE? In any case, addr_length is taken to be the entire length of the 1050 * dlpi address, including the absolute value of sap_length. 1051 */ 1052 mblk_t * 1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1054 t_scalar_t sap_length) 1055 { 1056 dl_unitdata_req_t *dlur; 1057 mblk_t *mp; 1058 t_scalar_t abs_sap_length; /* absolute value */ 1059 1060 abs_sap_length = ABS(sap_length); 1061 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1062 DL_UNITDATA_REQ); 1063 if (mp == NULL) 1064 return (NULL); 1065 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1066 /* HACK: accomodate incompatible DLPI drivers */ 1067 if (addr_length == 8) 1068 addr_length = 6; 1069 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1070 dlur->dl_dest_addr_offset = sizeof (*dlur); 1071 dlur->dl_priority.dl_min = 0; 1072 dlur->dl_priority.dl_max = 0; 1073 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1074 (uchar_t *)&dlur[1]); 1075 return (mp); 1076 } 1077 1078 /* 1079 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1080 * Return an error if we already have 1 or more ioctls in progress. 1081 * This is used only for non-exclusive ioctls. Currently this is used 1082 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1083 * and thus need to use ipsq_pending_mp_add. 1084 */ 1085 boolean_t 1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1087 { 1088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1089 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1090 /* 1091 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1092 */ 1093 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1094 (add_mp->b_datap->db_type == M_IOCTL)); 1095 1096 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1097 /* 1098 * Return error if the conn has started closing. The conn 1099 * could have finished cleaning up the pending mp list, 1100 * If so we should not add another mp to the list negating 1101 * the cleanup. 1102 */ 1103 if (connp->conn_state_flags & CONN_CLOSING) 1104 return (B_FALSE); 1105 /* 1106 * Add the pending mp to the head of the list, chained by b_next. 1107 * Note down the conn on which the ioctl request came, in b_prev. 1108 * This will be used to later get the conn, when we get a response 1109 * on the ill queue, from some other module (typically arp) 1110 */ 1111 add_mp->b_next = (void *)ill->ill_pending_mp; 1112 add_mp->b_queue = CONNP_TO_WQ(connp); 1113 ill->ill_pending_mp = add_mp; 1114 if (connp != NULL) 1115 connp->conn_oper_pending_ill = ill; 1116 return (B_TRUE); 1117 } 1118 1119 /* 1120 * Retrieve the ill_pending_mp and return it. We have to walk the list 1121 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1122 */ 1123 mblk_t * 1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1125 { 1126 mblk_t *prev = NULL; 1127 mblk_t *curr = NULL; 1128 uint_t id; 1129 conn_t *connp; 1130 1131 /* 1132 * When the conn closes, conn_ioctl_cleanup needs to clean 1133 * up the pending mp, but it does not know the ioc_id and 1134 * passes in a zero for it. 1135 */ 1136 mutex_enter(&ill->ill_lock); 1137 if (ioc_id != 0) 1138 *connpp = NULL; 1139 1140 /* Search the list for the appropriate ioctl based on ioc_id */ 1141 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1142 prev = curr, curr = curr->b_next) { 1143 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1144 connp = Q_TO_CONN(curr->b_queue); 1145 /* Match based on the ioc_id or based on the conn */ 1146 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1147 break; 1148 } 1149 1150 if (curr != NULL) { 1151 /* Unlink the mblk from the pending mp list */ 1152 if (prev != NULL) { 1153 prev->b_next = curr->b_next; 1154 } else { 1155 ASSERT(ill->ill_pending_mp == curr); 1156 ill->ill_pending_mp = curr->b_next; 1157 } 1158 1159 /* 1160 * conn refcnt must have been bumped up at the start of 1161 * the ioctl. So we can safely access the conn. 1162 */ 1163 ASSERT(CONN_Q(curr->b_queue)); 1164 *connpp = Q_TO_CONN(curr->b_queue); 1165 curr->b_next = NULL; 1166 curr->b_queue = NULL; 1167 } 1168 1169 mutex_exit(&ill->ill_lock); 1170 1171 return (curr); 1172 } 1173 1174 /* 1175 * Add the pending mp to the list. There can be only 1 pending mp 1176 * in the list. Any exclusive ioctl that needs to wait for a response 1177 * from another module or driver needs to use this function to set 1178 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1179 * the other module/driver. This is also used while waiting for the 1180 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1181 */ 1182 boolean_t 1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1184 int waitfor) 1185 { 1186 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1187 1188 ASSERT(IAM_WRITER_IPIF(ipif)); 1189 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1190 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1191 ASSERT(ipsq->ipsq_pending_mp == NULL); 1192 /* 1193 * The caller may be using a different ipif than the one passed into 1194 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1195 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1196 * that `ipsq_current_ipif == ipif'. 1197 */ 1198 ASSERT(ipsq->ipsq_current_ipif != NULL); 1199 1200 /* 1201 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1202 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1203 */ 1204 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1205 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1206 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1207 1208 if (connp != NULL) { 1209 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1210 /* 1211 * Return error if the conn has started closing. The conn 1212 * could have finished cleaning up the pending mp list, 1213 * If so we should not add another mp to the list negating 1214 * the cleanup. 1215 */ 1216 if (connp->conn_state_flags & CONN_CLOSING) 1217 return (B_FALSE); 1218 } 1219 mutex_enter(&ipsq->ipsq_lock); 1220 ipsq->ipsq_pending_ipif = ipif; 1221 /* 1222 * Note down the queue in b_queue. This will be returned by 1223 * ipsq_pending_mp_get. Caller will then use these values to restart 1224 * the processing 1225 */ 1226 add_mp->b_next = NULL; 1227 add_mp->b_queue = q; 1228 ipsq->ipsq_pending_mp = add_mp; 1229 ipsq->ipsq_waitfor = waitfor; 1230 1231 if (connp != NULL) 1232 connp->conn_oper_pending_ill = ipif->ipif_ill; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 return (B_TRUE); 1235 } 1236 1237 /* 1238 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1239 * queued in the list. 1240 */ 1241 mblk_t * 1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1243 { 1244 mblk_t *curr = NULL; 1245 1246 mutex_enter(&ipsq->ipsq_lock); 1247 *connpp = NULL; 1248 if (ipsq->ipsq_pending_mp == NULL) { 1249 mutex_exit(&ipsq->ipsq_lock); 1250 return (NULL); 1251 } 1252 1253 /* There can be only 1 such excl message */ 1254 curr = ipsq->ipsq_pending_mp; 1255 ASSERT(curr != NULL && curr->b_next == NULL); 1256 ipsq->ipsq_pending_ipif = NULL; 1257 ipsq->ipsq_pending_mp = NULL; 1258 ipsq->ipsq_waitfor = 0; 1259 mutex_exit(&ipsq->ipsq_lock); 1260 1261 if (CONN_Q(curr->b_queue)) { 1262 /* 1263 * This mp did a refhold on the conn, at the start of the ioctl. 1264 * So we can safely return a pointer to the conn to the caller. 1265 */ 1266 *connpp = Q_TO_CONN(curr->b_queue); 1267 } else { 1268 *connpp = NULL; 1269 } 1270 curr->b_next = NULL; 1271 curr->b_prev = NULL; 1272 return (curr); 1273 } 1274 1275 /* 1276 * Cleanup the ioctl mp queued in ipsq_pending_mp 1277 * - Called in the ill_delete path 1278 * - Called in the M_ERROR or M_HANGUP path on the ill. 1279 * - Called in the conn close path. 1280 */ 1281 boolean_t 1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1283 { 1284 mblk_t *mp; 1285 ipsq_t *ipsq; 1286 queue_t *q; 1287 ipif_t *ipif; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 ipsq = ill->ill_phyint->phyint_ipsq; 1291 mutex_enter(&ipsq->ipsq_lock); 1292 /* 1293 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1294 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1295 * even if it is meant for another ill, since we have to enqueue 1296 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1297 * If connp is non-null we are called from the conn close path. 1298 */ 1299 mp = ipsq->ipsq_pending_mp; 1300 if (mp == NULL || (connp != NULL && 1301 mp->b_queue != CONNP_TO_WQ(connp))) { 1302 mutex_exit(&ipsq->ipsq_lock); 1303 return (B_FALSE); 1304 } 1305 /* Now remove from the ipsq_pending_mp */ 1306 ipsq->ipsq_pending_mp = NULL; 1307 q = mp->b_queue; 1308 mp->b_next = NULL; 1309 mp->b_prev = NULL; 1310 mp->b_queue = NULL; 1311 1312 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1313 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1314 if (ill->ill_move_in_progress) { 1315 ILL_CLEAR_MOVE(ill); 1316 } else if (ill->ill_up_ipifs) { 1317 ill_group_cleanup(ill); 1318 } 1319 1320 ipif = ipsq->ipsq_pending_ipif; 1321 ipsq->ipsq_pending_ipif = NULL; 1322 ipsq->ipsq_waitfor = 0; 1323 ipsq->ipsq_current_ipif = NULL; 1324 ipsq->ipsq_current_ioctl = 0; 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1328 if (connp == NULL) { 1329 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1330 } else { 1331 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1332 mutex_enter(&ipif->ipif_ill->ill_lock); 1333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1334 mutex_exit(&ipif->ipif_ill->ill_lock); 1335 } 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1339 * be just inet_freemsg. we have to restart it 1340 * otherwise the thread will be stuck. 1341 */ 1342 inet_freemsg(mp); 1343 } 1344 return (B_TRUE); 1345 } 1346 1347 /* 1348 * The ill is closing. Cleanup all the pending mps. Called exclusively 1349 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1350 * knows this ill, and hence nobody can add an mp to this list 1351 */ 1352 static void 1353 ill_pending_mp_cleanup(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 queue_t *q; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 mutex_enter(&ill->ill_lock); 1361 /* 1362 * Every mp on the pending mp list originating from an ioctl 1363 * added 1 to the conn refcnt, at the start of the ioctl. 1364 * So bump it down now. See comments in ip_wput_nondata() 1365 */ 1366 while (ill->ill_pending_mp != NULL) { 1367 mp = ill->ill_pending_mp; 1368 ill->ill_pending_mp = mp->b_next; 1369 mutex_exit(&ill->ill_lock); 1370 1371 q = mp->b_queue; 1372 ASSERT(CONN_Q(q)); 1373 mp->b_next = NULL; 1374 mp->b_prev = NULL; 1375 mp->b_queue = NULL; 1376 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1377 mutex_enter(&ill->ill_lock); 1378 } 1379 ill->ill_pending_ipif = NULL; 1380 1381 mutex_exit(&ill->ill_lock); 1382 } 1383 1384 /* 1385 * Called in the conn close path and ill delete path 1386 */ 1387 static void 1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1389 { 1390 ipsq_t *ipsq; 1391 mblk_t *prev; 1392 mblk_t *curr; 1393 mblk_t *next; 1394 queue_t *q; 1395 mblk_t *tmp_list = NULL; 1396 1397 ASSERT(IAM_WRITER_ILL(ill)); 1398 if (connp != NULL) 1399 q = CONNP_TO_WQ(connp); 1400 else 1401 q = ill->ill_wq; 1402 1403 ipsq = ill->ill_phyint->phyint_ipsq; 1404 /* 1405 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1406 * In the case of ioctl from a conn, there can be only 1 mp 1407 * queued on the ipsq. If an ill is being unplumbed, only messages 1408 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1409 * ioctls meant for this ill form conn's are not flushed. They will 1410 * be processed during ipsq_exit and will not find the ill and will 1411 * return error. 1412 */ 1413 mutex_enter(&ipsq->ipsq_lock); 1414 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1415 curr = next) { 1416 next = curr->b_next; 1417 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1418 /* Unlink the mblk from the pending mp list */ 1419 if (prev != NULL) { 1420 prev->b_next = curr->b_next; 1421 } else { 1422 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1423 ipsq->ipsq_xopq_mphead = curr->b_next; 1424 } 1425 if (ipsq->ipsq_xopq_mptail == curr) 1426 ipsq->ipsq_xopq_mptail = prev; 1427 /* 1428 * Create a temporary list and release the ipsq lock 1429 * New elements are added to the head of the tmp_list 1430 */ 1431 curr->b_next = tmp_list; 1432 tmp_list = curr; 1433 } else { 1434 prev = curr; 1435 } 1436 } 1437 mutex_exit(&ipsq->ipsq_lock); 1438 1439 while (tmp_list != NULL) { 1440 curr = tmp_list; 1441 tmp_list = curr->b_next; 1442 curr->b_next = NULL; 1443 curr->b_prev = NULL; 1444 curr->b_queue = NULL; 1445 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1446 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1447 CONN_CLOSE : NO_COPYOUT, NULL); 1448 } else { 1449 /* 1450 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1451 * this can't be just inet_freemsg. we have to 1452 * restart it otherwise the thread will be stuck. 1453 */ 1454 inet_freemsg(curr); 1455 } 1456 } 1457 } 1458 1459 /* 1460 * This conn has started closing. Cleanup any pending ioctl from this conn. 1461 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1462 */ 1463 void 1464 conn_ioctl_cleanup(conn_t *connp) 1465 { 1466 mblk_t *curr; 1467 ipsq_t *ipsq; 1468 ill_t *ill; 1469 boolean_t refheld; 1470 1471 /* 1472 * Is any exclusive ioctl pending ? If so clean it up. If the 1473 * ioctl has not yet started, the mp is pending in the list headed by 1474 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1475 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1476 * is currently executing now the mp is not queued anywhere but 1477 * conn_oper_pending_ill is null. The conn close will wait 1478 * till the conn_ref drops to zero. 1479 */ 1480 mutex_enter(&connp->conn_lock); 1481 ill = connp->conn_oper_pending_ill; 1482 if (ill == NULL) { 1483 mutex_exit(&connp->conn_lock); 1484 return; 1485 } 1486 1487 curr = ill_pending_mp_get(ill, &connp, 0); 1488 if (curr != NULL) { 1489 mutex_exit(&connp->conn_lock); 1490 CONN_DEC_REF(connp); 1491 inet_freemsg(curr); 1492 return; 1493 } 1494 /* 1495 * We may not be able to refhold the ill if the ill/ipif 1496 * is changing. But we need to make sure that the ill will 1497 * not vanish. So we just bump up the ill_waiter count. 1498 */ 1499 refheld = ill_waiter_inc(ill); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) { 1502 if (ipsq_enter(ill, B_TRUE)) { 1503 ill_waiter_dcr(ill); 1504 /* 1505 * Check whether this ioctl has started and is 1506 * pending now in ipsq_pending_mp. If it is not 1507 * found there then check whether this ioctl has 1508 * not even started and is in the ipsq_xopq list. 1509 */ 1510 if (!ipsq_pending_mp_cleanup(ill, connp)) 1511 ipsq_xopq_mp_cleanup(ill, connp); 1512 ipsq = ill->ill_phyint->phyint_ipsq; 1513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1514 return; 1515 } 1516 } 1517 1518 /* 1519 * The ill is also closing and we could not bump up the 1520 * ill_waiter_count or we could not enter the ipsq. Leave 1521 * the cleanup to ill_delete 1522 */ 1523 mutex_enter(&connp->conn_lock); 1524 while (connp->conn_oper_pending_ill != NULL) 1525 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1526 mutex_exit(&connp->conn_lock); 1527 if (refheld) 1528 ill_waiter_dcr(ill); 1529 } 1530 1531 /* 1532 * ipcl_walk function for cleaning up conn_*_ill fields. 1533 */ 1534 static void 1535 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1536 { 1537 ill_t *ill = (ill_t *)arg; 1538 ire_t *ire; 1539 1540 mutex_enter(&connp->conn_lock); 1541 if (connp->conn_multicast_ill == ill) { 1542 /* Revert to late binding */ 1543 connp->conn_multicast_ill = NULL; 1544 connp->conn_orig_multicast_ifindex = 0; 1545 } 1546 if (connp->conn_incoming_ill == ill) 1547 connp->conn_incoming_ill = NULL; 1548 if (connp->conn_outgoing_ill == ill) 1549 connp->conn_outgoing_ill = NULL; 1550 if (connp->conn_outgoing_pill == ill) 1551 connp->conn_outgoing_pill = NULL; 1552 if (connp->conn_nofailover_ill == ill) 1553 connp->conn_nofailover_ill = NULL; 1554 if (connp->conn_xmit_if_ill == ill) 1555 connp->conn_xmit_if_ill = NULL; 1556 if (connp->conn_ire_cache != NULL) { 1557 ire = connp->conn_ire_cache; 1558 /* 1559 * ip_newroute creates IRE_CACHE with ire_stq coming from 1560 * interface X and ipif coming from interface Y, if interface 1561 * X and Y are part of the same IPMPgroup. Thus whenever 1562 * interface X goes down, remove all references to it by 1563 * checking both on ire_ipif and ire_stq. 1564 */ 1565 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1566 (ire->ire_type == IRE_CACHE && 1567 ire->ire_stq == ill->ill_wq)) { 1568 connp->conn_ire_cache = NULL; 1569 mutex_exit(&connp->conn_lock); 1570 ire_refrele_notr(ire); 1571 return; 1572 } 1573 } 1574 mutex_exit(&connp->conn_lock); 1575 1576 } 1577 1578 /* ARGSUSED */ 1579 void 1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1587 ipif_non_duplicate(ipif); 1588 ipif_down_tail(ipif); 1589 } 1590 ill_down_tail(ill); 1591 freemsg(mp); 1592 ipsq_current_finish(ipsq); 1593 } 1594 1595 /* 1596 * ill_down_start is called when we want to down this ill and bring it up again 1597 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1598 * all interfaces, but don't tear down any plumbing. 1599 */ 1600 boolean_t 1601 ill_down_start(queue_t *q, mblk_t *mp) 1602 { 1603 ill_t *ill = q->q_ptr; 1604 ipif_t *ipif; 1605 1606 ASSERT(IAM_WRITER_ILL(ill)); 1607 1608 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1609 (void) ipif_down(ipif, NULL, NULL); 1610 1611 ill_down(ill); 1612 1613 (void) ipsq_pending_mp_cleanup(ill, NULL); 1614 1615 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1616 1617 /* 1618 * Atomically test and add the pending mp if references are active. 1619 */ 1620 mutex_enter(&ill->ill_lock); 1621 if (!ill_is_quiescent(ill)) { 1622 /* call cannot fail since `conn_t *' argument is NULL */ 1623 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1624 mp, ILL_DOWN); 1625 mutex_exit(&ill->ill_lock); 1626 return (B_FALSE); 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 return (B_TRUE); 1630 } 1631 1632 static void 1633 ill_down(ill_t *ill) 1634 { 1635 ip_stack_t *ipst = ill->ill_ipst; 1636 1637 /* Blow off any IREs dependent on this ILL. */ 1638 ire_walk(ill_downi, (char *)ill, ipst); 1639 1640 mutex_enter(&ipst->ips_ire_mrtun_lock); 1641 if (ipst->ips_ire_mrtun_count != 0) { 1642 mutex_exit(&ipst->ips_ire_mrtun_lock); 1643 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1644 (char *)ill, NULL, ipst); 1645 } else { 1646 mutex_exit(&ipst->ips_ire_mrtun_lock); 1647 } 1648 1649 /* 1650 * If any interface based forwarding table exists 1651 * Blow off the ires there dependent on this ill 1652 */ 1653 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1654 if (ipst->ips_ire_srcif_table_count > 0) { 1655 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1656 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1657 ipst); 1658 } else { 1659 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1660 } 1661 1662 /* Remove any conn_*_ill depending on this ill */ 1663 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1664 1665 if (ill->ill_group != NULL) { 1666 illgrp_delete(ill); 1667 } 1668 } 1669 1670 static void 1671 ill_down_tail(ill_t *ill) 1672 { 1673 int i; 1674 1675 /* Destroy ill_srcif_table if it exists */ 1676 /* Lock not reqd really because nobody should be able to access */ 1677 mutex_enter(&ill->ill_lock); 1678 if (ill->ill_srcif_table != NULL) { 1679 ill->ill_srcif_refcnt = 0; 1680 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1681 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1682 } 1683 kmem_free(ill->ill_srcif_table, 1684 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1685 ill->ill_srcif_table = NULL; 1686 ill->ill_srcif_refcnt = 0; 1687 ill->ill_mrtun_refcnt = 0; 1688 } 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 1692 /* 1693 * ire_walk routine used to delete every IRE that depends on queues 1694 * associated with 'ill'. (Always called as writer.) 1695 */ 1696 static void 1697 ill_downi(ire_t *ire, char *ill_arg) 1698 { 1699 ill_t *ill = (ill_t *)ill_arg; 1700 1701 /* 1702 * ip_newroute creates IRE_CACHE with ire_stq coming from 1703 * interface X and ipif coming from interface Y, if interface 1704 * X and Y are part of the same IPMP group. Thus whenever interface 1705 * X goes down, remove all references to it by checking both 1706 * on ire_ipif and ire_stq. 1707 */ 1708 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1709 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1710 ire_delete(ire); 1711 } 1712 } 1713 1714 /* 1715 * A seperate routine for deleting revtun and srcif based routes 1716 * are needed because the ires only deleted when the interface 1717 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1718 * we want to keep mobile IP specific code separate. 1719 */ 1720 static void 1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1722 { 1723 ill_t *ill = (ill_t *)ill_arg; 1724 1725 ASSERT(ire->ire_in_ill != NULL); 1726 1727 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1728 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1729 ire_delete(ire); 1730 } 1731 } 1732 1733 /* 1734 * Remove ire/nce from the fastpath list. 1735 */ 1736 void 1737 ill_fastpath_nack(ill_t *ill) 1738 { 1739 nce_fastpath_list_dispatch(ill, NULL, NULL); 1740 } 1741 1742 /* Consume an M_IOCACK of the fastpath probe. */ 1743 void 1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1745 { 1746 mblk_t *mp1 = mp; 1747 1748 /* 1749 * If this was the first attempt turn on the fastpath probing. 1750 */ 1751 mutex_enter(&ill->ill_lock); 1752 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1753 ill->ill_dlpi_fastpath_state = IDS_OK; 1754 mutex_exit(&ill->ill_lock); 1755 1756 /* Free the M_IOCACK mblk, hold on to the data */ 1757 mp = mp->b_cont; 1758 freeb(mp1); 1759 if (mp == NULL) 1760 return; 1761 if (mp->b_cont != NULL) { 1762 /* 1763 * Update all IRE's or NCE's that are waiting for 1764 * fastpath update. 1765 */ 1766 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1767 mp1 = mp->b_cont; 1768 freeb(mp); 1769 mp = mp1; 1770 } else { 1771 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1772 } 1773 1774 freeb(mp); 1775 } 1776 1777 /* 1778 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1779 * The data portion of the request is a dl_unitdata_req_t template for 1780 * what we would send downstream in the absence of a fastpath confirmation. 1781 */ 1782 int 1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1784 { 1785 struct iocblk *ioc; 1786 mblk_t *mp; 1787 1788 if (dlur_mp == NULL) 1789 return (EINVAL); 1790 1791 mutex_enter(&ill->ill_lock); 1792 switch (ill->ill_dlpi_fastpath_state) { 1793 case IDS_FAILED: 1794 /* 1795 * Driver NAKed the first fastpath ioctl - assume it doesn't 1796 * support it. 1797 */ 1798 mutex_exit(&ill->ill_lock); 1799 return (ENOTSUP); 1800 case IDS_UNKNOWN: 1801 /* This is the first probe */ 1802 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1803 break; 1804 default: 1805 break; 1806 } 1807 mutex_exit(&ill->ill_lock); 1808 1809 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1810 return (EAGAIN); 1811 1812 mp->b_cont = copyb(dlur_mp); 1813 if (mp->b_cont == NULL) { 1814 freeb(mp); 1815 return (EAGAIN); 1816 } 1817 1818 ioc = (struct iocblk *)mp->b_rptr; 1819 ioc->ioc_count = msgdsize(mp->b_cont); 1820 1821 putnext(ill->ill_wq, mp); 1822 return (0); 1823 } 1824 1825 void 1826 ill_capability_probe(ill_t *ill) 1827 { 1828 /* 1829 * Do so only if negotiation is enabled, capabilities are unknown, 1830 * and a capability negotiation is not already in progress. 1831 */ 1832 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1833 ill->ill_dlpi_capab_state != IDS_RENEG) 1834 return; 1835 1836 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1837 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1838 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1839 } 1840 1841 void 1842 ill_capability_reset(ill_t *ill) 1843 { 1844 mblk_t *sc_mp = NULL; 1845 mblk_t *tmp; 1846 1847 /* 1848 * Note here that we reset the state to UNKNOWN, and later send 1849 * down the DL_CAPABILITY_REQ without first setting the state to 1850 * INPROGRESS. We do this in order to distinguish the 1851 * DL_CAPABILITY_ACK response which may come back in response to 1852 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1853 * also handle the case where the driver doesn't send us back 1854 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1855 * requires the state to be in UNKNOWN anyway. In any case, all 1856 * features are turned off until the state reaches IDS_OK. 1857 */ 1858 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1859 1860 /* 1861 * Disable sub-capabilities and request a list of sub-capability 1862 * messages which will be sent down to the driver. Each handler 1863 * allocates the corresponding dl_capability_sub_t inside an 1864 * mblk, and links it to the existing sc_mp mblk, or return it 1865 * as sc_mp if it's the first sub-capability (the passed in 1866 * sc_mp is NULL). Upon returning from all capability handlers, 1867 * sc_mp will be pulled-up, before passing it downstream. 1868 */ 1869 ill_capability_mdt_reset(ill, &sc_mp); 1870 ill_capability_hcksum_reset(ill, &sc_mp); 1871 ill_capability_zerocopy_reset(ill, &sc_mp); 1872 ill_capability_ipsec_reset(ill, &sc_mp); 1873 ill_capability_dls_reset(ill, &sc_mp); 1874 ill_capability_lso_reset(ill, &sc_mp); 1875 1876 /* Nothing to send down in order to disable the capabilities? */ 1877 if (sc_mp == NULL) 1878 return; 1879 1880 tmp = msgpullup(sc_mp, -1); 1881 freemsg(sc_mp); 1882 if ((sc_mp = tmp) == NULL) { 1883 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1884 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1885 return; 1886 } 1887 1888 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1889 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1890 } 1891 1892 /* 1893 * Request or set new-style hardware capabilities supported by DLS provider. 1894 */ 1895 static void 1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1897 { 1898 mblk_t *mp; 1899 dl_capability_req_t *capb; 1900 size_t size = 0; 1901 uint8_t *ptr; 1902 1903 if (reqp != NULL) 1904 size = MBLKL(reqp); 1905 1906 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1907 if (mp == NULL) { 1908 freemsg(reqp); 1909 return; 1910 } 1911 ptr = mp->b_rptr; 1912 1913 capb = (dl_capability_req_t *)ptr; 1914 ptr += sizeof (dl_capability_req_t); 1915 1916 if (reqp != NULL) { 1917 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1918 capb->dl_sub_length = size; 1919 bcopy(reqp->b_rptr, ptr, size); 1920 ptr += size; 1921 mp->b_cont = reqp->b_cont; 1922 freeb(reqp); 1923 } 1924 ASSERT(ptr == mp->b_wptr); 1925 1926 ill_dlpi_send(ill, mp); 1927 } 1928 1929 static void 1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1931 { 1932 dl_capab_id_t *id_ic; 1933 uint_t sub_dl_cap = outers->dl_cap; 1934 dl_capability_sub_t *inners; 1935 uint8_t *capend; 1936 1937 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1938 1939 /* 1940 * Note: range checks here are not absolutely sufficient to 1941 * make us robust against malformed messages sent by drivers; 1942 * this is in keeping with the rest of IP's dlpi handling. 1943 * (Remember, it's coming from something else in the kernel 1944 * address space) 1945 */ 1946 1947 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1948 if (capend > mp->b_wptr) { 1949 cmn_err(CE_WARN, "ill_capability_id_ack: " 1950 "malformed sub-capability too long for mblk"); 1951 return; 1952 } 1953 1954 id_ic = (dl_capab_id_t *)(outers + 1); 1955 1956 if (outers->dl_length < sizeof (*id_ic) || 1957 (inners = &id_ic->id_subcap, 1958 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1960 "encapsulated capab type %d too long for mblk", 1961 inners->dl_cap); 1962 return; 1963 } 1964 1965 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1966 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1967 "isn't as expected; pass-thru module(s) detected, " 1968 "discarding capability\n", inners->dl_cap)); 1969 return; 1970 } 1971 1972 /* Process the encapsulated sub-capability */ 1973 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1974 } 1975 1976 /* 1977 * Process Multidata Transmit capability negotiation ack received from a 1978 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1979 * DL_CAPABILITY_ACK message. 1980 */ 1981 static void 1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1983 { 1984 mblk_t *nmp = NULL; 1985 dl_capability_req_t *oc; 1986 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1987 ill_mdt_capab_t **ill_mdt_capab; 1988 uint_t sub_dl_cap = isub->dl_cap; 1989 uint8_t *capend; 1990 1991 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1992 1993 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1994 1995 /* 1996 * Note: range checks here are not absolutely sufficient to 1997 * make us robust against malformed messages sent by drivers; 1998 * this is in keeping with the rest of IP's dlpi handling. 1999 * (Remember, it's coming from something else in the kernel 2000 * address space) 2001 */ 2002 2003 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2004 if (capend > mp->b_wptr) { 2005 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2006 "malformed sub-capability too long for mblk"); 2007 return; 2008 } 2009 2010 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2011 2012 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2013 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2014 "unsupported MDT sub-capability (version %d, expected %d)", 2015 mdt_ic->mdt_version, MDT_VERSION_2); 2016 return; 2017 } 2018 2019 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2020 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2021 "capability isn't as expected; pass-thru module(s) " 2022 "detected, discarding capability\n")); 2023 return; 2024 } 2025 2026 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2027 2028 if (*ill_mdt_capab == NULL) { 2029 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2030 KM_NOSLEEP); 2031 2032 if (*ill_mdt_capab == NULL) { 2033 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2034 "could not enable MDT version %d " 2035 "for %s (ENOMEM)\n", MDT_VERSION_2, 2036 ill->ill_name); 2037 return; 2038 } 2039 } 2040 2041 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2042 "MDT version %d (%d bytes leading, %d bytes trailing " 2043 "header spaces, %d max pld bufs, %d span limit)\n", 2044 ill->ill_name, MDT_VERSION_2, 2045 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2046 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2047 2048 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2049 (*ill_mdt_capab)->ill_mdt_on = 1; 2050 /* 2051 * Round the following values to the nearest 32-bit; ULP 2052 * may further adjust them to accomodate for additional 2053 * protocol headers. We pass these values to ULP during 2054 * bind time. 2055 */ 2056 (*ill_mdt_capab)->ill_mdt_hdr_head = 2057 roundup(mdt_ic->mdt_hdr_head, 4); 2058 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2059 roundup(mdt_ic->mdt_hdr_tail, 4); 2060 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2061 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2062 2063 ill->ill_capabilities |= ILL_CAPAB_MDT; 2064 } else { 2065 uint_t size; 2066 uchar_t *rptr; 2067 2068 size = sizeof (dl_capability_req_t) + 2069 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2070 2071 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2072 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2073 "could not enable MDT for %s (ENOMEM)\n", 2074 ill->ill_name); 2075 return; 2076 } 2077 2078 rptr = nmp->b_rptr; 2079 /* initialize dl_capability_req_t */ 2080 oc = (dl_capability_req_t *)nmp->b_rptr; 2081 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2082 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2083 sizeof (dl_capab_mdt_t); 2084 nmp->b_rptr += sizeof (dl_capability_req_t); 2085 2086 /* initialize dl_capability_sub_t */ 2087 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2088 nmp->b_rptr += sizeof (*isub); 2089 2090 /* initialize dl_capab_mdt_t */ 2091 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2092 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2093 2094 nmp->b_rptr = rptr; 2095 2096 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2097 "to enable MDT version %d\n", ill->ill_name, 2098 MDT_VERSION_2)); 2099 2100 /* set ENABLE flag */ 2101 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2102 2103 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2104 ill_dlpi_send(ill, nmp); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2110 { 2111 mblk_t *mp; 2112 dl_capab_mdt_t *mdt_subcap; 2113 dl_capability_sub_t *dl_subcap; 2114 int size; 2115 2116 if (!ILL_MDT_CAPABLE(ill)) 2117 return; 2118 2119 ASSERT(ill->ill_mdt_capab != NULL); 2120 /* 2121 * Clear the capability flag for MDT but retain the ill_mdt_capab 2122 * structure since it's possible that another thread is still 2123 * referring to it. The structure only gets deallocated when 2124 * we destroy the ill. 2125 */ 2126 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2127 2128 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2129 2130 mp = allocb(size, BPRI_HI); 2131 if (mp == NULL) { 2132 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2133 "request to disable MDT\n")); 2134 return; 2135 } 2136 2137 mp->b_wptr = mp->b_rptr + size; 2138 2139 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2140 dl_subcap->dl_cap = DL_CAPAB_MDT; 2141 dl_subcap->dl_length = sizeof (*mdt_subcap); 2142 2143 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2144 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2145 mdt_subcap->mdt_flags = 0; 2146 mdt_subcap->mdt_hdr_head = 0; 2147 mdt_subcap->mdt_hdr_tail = 0; 2148 2149 if (*sc_mp != NULL) 2150 linkb(*sc_mp, mp); 2151 else 2152 *sc_mp = mp; 2153 } 2154 2155 /* 2156 * Send a DL_NOTIFY_REQ to the specified ill to enable 2157 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2158 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2159 * acceleration. 2160 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2161 */ 2162 static boolean_t 2163 ill_enable_promisc_notify(ill_t *ill) 2164 { 2165 mblk_t *mp; 2166 dl_notify_req_t *req; 2167 2168 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2169 2170 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2171 if (mp == NULL) 2172 return (B_FALSE); 2173 2174 req = (dl_notify_req_t *)mp->b_rptr; 2175 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2176 DL_NOTE_PROMISC_OFF_PHYS; 2177 2178 ill_dlpi_send(ill, mp); 2179 2180 return (B_TRUE); 2181 } 2182 2183 2184 /* 2185 * Allocate an IPsec capability request which will be filled by our 2186 * caller to turn on support for one or more algorithms. 2187 */ 2188 static mblk_t * 2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2190 { 2191 mblk_t *nmp; 2192 dl_capability_req_t *ocap; 2193 dl_capab_ipsec_t *ocip; 2194 dl_capab_ipsec_t *icip; 2195 uint8_t *ptr; 2196 icip = (dl_capab_ipsec_t *)(isub + 1); 2197 2198 /* 2199 * The first time around, we send a DL_NOTIFY_REQ to enable 2200 * PROMISC_ON/OFF notification from the provider. We need to 2201 * do this before enabling the algorithms to avoid leakage of 2202 * cleartext packets. 2203 */ 2204 2205 if (!ill_enable_promisc_notify(ill)) 2206 return (NULL); 2207 2208 /* 2209 * Allocate new mblk which will contain a new capability 2210 * request to enable the capabilities. 2211 */ 2212 2213 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2214 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2215 if (nmp == NULL) 2216 return (NULL); 2217 2218 ptr = nmp->b_rptr; 2219 2220 /* initialize dl_capability_req_t */ 2221 ocap = (dl_capability_req_t *)ptr; 2222 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2223 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2224 ptr += sizeof (dl_capability_req_t); 2225 2226 /* initialize dl_capability_sub_t */ 2227 bcopy(isub, ptr, sizeof (*isub)); 2228 ptr += sizeof (*isub); 2229 2230 /* initialize dl_capab_ipsec_t */ 2231 ocip = (dl_capab_ipsec_t *)ptr; 2232 bcopy(icip, ocip, sizeof (*icip)); 2233 2234 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2235 return (nmp); 2236 } 2237 2238 /* 2239 * Process an IPsec capability negotiation ack received from a DLS Provider. 2240 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2241 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2242 */ 2243 static void 2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2245 { 2246 dl_capab_ipsec_t *icip; 2247 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2248 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2249 uint_t cipher, nciphers; 2250 mblk_t *nmp; 2251 uint_t alg_len; 2252 boolean_t need_sadb_dump; 2253 uint_t sub_dl_cap = isub->dl_cap; 2254 ill_ipsec_capab_t **ill_capab; 2255 uint64_t ill_capab_flag; 2256 uint8_t *capend, *ciphend; 2257 boolean_t sadb_resync; 2258 2259 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2260 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2261 2262 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2263 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2264 ill_capab_flag = ILL_CAPAB_AH; 2265 } else { 2266 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2267 ill_capab_flag = ILL_CAPAB_ESP; 2268 } 2269 2270 /* 2271 * If the ill capability structure exists, then this incoming 2272 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2273 * If this is so, then we'd need to resynchronize the SADB 2274 * after re-enabling the offloaded ciphers. 2275 */ 2276 sadb_resync = (*ill_capab != NULL); 2277 2278 /* 2279 * Note: range checks here are not absolutely sufficient to 2280 * make us robust against malformed messages sent by drivers; 2281 * this is in keeping with the rest of IP's dlpi handling. 2282 * (Remember, it's coming from something else in the kernel 2283 * address space) 2284 */ 2285 2286 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2287 if (capend > mp->b_wptr) { 2288 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2289 "malformed sub-capability too long for mblk"); 2290 return; 2291 } 2292 2293 /* 2294 * There are two types of acks we process here: 2295 * 1. acks in reply to a (first form) generic capability req 2296 * (no ENABLE flag set) 2297 * 2. acks in reply to a ENABLE capability req. 2298 * (ENABLE flag set) 2299 * 2300 * We process the subcapability passed as argument as follows: 2301 * 1 do initializations 2302 * 1.1 initialize nmp = NULL 2303 * 1.2 set need_sadb_dump to B_FALSE 2304 * 2 for each cipher in subcapability: 2305 * 2.1 if ENABLE flag is set: 2306 * 2.1.1 update per-ill ipsec capabilities info 2307 * 2.1.2 set need_sadb_dump to B_TRUE 2308 * 2.2 if ENABLE flag is not set: 2309 * 2.2.1 if nmp is NULL: 2310 * 2.2.1.1 allocate and initialize nmp 2311 * 2.2.1.2 init current pos in nmp 2312 * 2.2.2 copy current cipher to current pos in nmp 2313 * 2.2.3 set ENABLE flag in nmp 2314 * 2.2.4 update current pos 2315 * 3 if nmp is not equal to NULL, send enable request 2316 * 3.1 send capability request 2317 * 4 if need_sadb_dump is B_TRUE 2318 * 4.1 enable promiscuous on/off notifications 2319 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2320 * AH or ESP SA's to interface. 2321 */ 2322 2323 nmp = NULL; 2324 oalg = NULL; 2325 need_sadb_dump = B_FALSE; 2326 icip = (dl_capab_ipsec_t *)(isub + 1); 2327 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2328 2329 nciphers = icip->cip_nciphers; 2330 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2331 2332 if (ciphend > capend) { 2333 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2334 "too many ciphers for sub-capability len"); 2335 return; 2336 } 2337 2338 for (cipher = 0; cipher < nciphers; cipher++) { 2339 alg_len = sizeof (dl_capab_ipsec_alg_t); 2340 2341 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2342 /* 2343 * TBD: when we provide a way to disable capabilities 2344 * from above, need to manage the request-pending state 2345 * and fail if we were not expecting this ACK. 2346 */ 2347 IPSECHW_DEBUG(IPSECHW_CAPAB, 2348 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2349 2350 /* 2351 * Update IPsec capabilities for this ill 2352 */ 2353 2354 if (*ill_capab == NULL) { 2355 IPSECHW_DEBUG(IPSECHW_CAPAB, 2356 ("ill_capability_ipsec_ack: " 2357 "allocating ipsec_capab for ill\n")); 2358 *ill_capab = ill_ipsec_capab_alloc(); 2359 2360 if (*ill_capab == NULL) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "could not enable IPsec Hardware " 2364 "acceleration for %s (ENOMEM)\n", 2365 ill->ill_name); 2366 return; 2367 } 2368 } 2369 2370 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2371 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2372 2373 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2374 cmn_err(CE_WARN, 2375 "ill_capability_ipsec_ack: " 2376 "malformed IPsec algorithm id %d", 2377 ialg->alg_prim); 2378 continue; 2379 } 2380 2381 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2382 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2383 ialg->alg_prim); 2384 } else { 2385 ipsec_capab_algparm_t *alp; 2386 2387 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2388 ialg->alg_prim); 2389 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2390 ialg->alg_prim)) { 2391 cmn_err(CE_WARN, 2392 "ill_capability_ipsec_ack: " 2393 "no space for IPsec alg id %d", 2394 ialg->alg_prim); 2395 continue; 2396 } 2397 alp = &((*ill_capab)->encr_algparm[ 2398 ialg->alg_prim]); 2399 alp->minkeylen = ialg->alg_minbits; 2400 alp->maxkeylen = ialg->alg_maxbits; 2401 } 2402 ill->ill_capabilities |= ill_capab_flag; 2403 /* 2404 * indicate that a capability was enabled, which 2405 * will be used below to kick off a SADB dump 2406 * to the ill. 2407 */ 2408 need_sadb_dump = B_TRUE; 2409 } else { 2410 IPSECHW_DEBUG(IPSECHW_CAPAB, 2411 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2412 ialg->alg_prim)); 2413 2414 if (nmp == NULL) { 2415 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2416 if (nmp == NULL) { 2417 /* 2418 * Sending the PROMISC_ON/OFF 2419 * notification request failed. 2420 * We cannot enable the algorithms 2421 * since the Provider will not 2422 * notify IP of promiscous mode 2423 * changes, which could lead 2424 * to leakage of packets. 2425 */ 2426 cmn_err(CE_WARN, 2427 "ill_capability_ipsec_ack: " 2428 "could not enable IPsec Hardware " 2429 "acceleration for %s (ENOMEM)\n", 2430 ill->ill_name); 2431 return; 2432 } 2433 /* ptr to current output alg specifier */ 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* 2438 * Copy current alg specifier, set ENABLE 2439 * flag, and advance to next output alg. 2440 * For now we enable all IPsec capabilities. 2441 */ 2442 ASSERT(oalg != NULL); 2443 bcopy(ialg, oalg, alg_len); 2444 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2445 nmp->b_wptr += alg_len; 2446 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2447 } 2448 2449 /* move to next input algorithm specifier */ 2450 ialg = (dl_capab_ipsec_alg_t *) 2451 ((char *)ialg + alg_len); 2452 } 2453 2454 if (nmp != NULL) 2455 /* 2456 * nmp points to a DL_CAPABILITY_REQ message to enable 2457 * IPsec hardware acceleration. 2458 */ 2459 ill_dlpi_send(ill, nmp); 2460 2461 if (need_sadb_dump) 2462 /* 2463 * An acknowledgement corresponding to a request to 2464 * enable acceleration was received, notify SADB. 2465 */ 2466 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2467 } 2468 2469 /* 2470 * Given an mblk with enough space in it, create sub-capability entries for 2471 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2472 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2473 * in preparation for the reset the DL_CAPABILITY_REQ message. 2474 */ 2475 static void 2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2477 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2478 { 2479 dl_capab_ipsec_t *oipsec; 2480 dl_capab_ipsec_alg_t *oalg; 2481 dl_capability_sub_t *dl_subcap; 2482 int i, k; 2483 2484 ASSERT(nciphers > 0); 2485 ASSERT(ill_cap != NULL); 2486 ASSERT(mp != NULL); 2487 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2488 2489 /* dl_capability_sub_t for "stype" */ 2490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2491 dl_subcap->dl_cap = stype; 2492 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2493 mp->b_wptr += sizeof (dl_capability_sub_t); 2494 2495 /* dl_capab_ipsec_t for "stype" */ 2496 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2497 oipsec->cip_version = 1; 2498 oipsec->cip_nciphers = nciphers; 2499 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2500 2501 /* create entries for "stype" AUTH ciphers */ 2502 for (i = 0; i < ill_cap->algs_size; i++) { 2503 for (k = 0; k < BITSPERBYTE; k++) { 2504 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2505 continue; 2506 2507 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2508 bzero((void *)oalg, sizeof (*oalg)); 2509 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2510 oalg->alg_prim = k + (BITSPERBYTE * i); 2511 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2512 } 2513 } 2514 /* create entries for "stype" ENCR ciphers */ 2515 for (i = 0; i < ill_cap->algs_size; i++) { 2516 for (k = 0; k < BITSPERBYTE; k++) { 2517 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2518 continue; 2519 2520 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2521 bzero((void *)oalg, sizeof (*oalg)); 2522 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2523 oalg->alg_prim = k + (BITSPERBYTE * i); 2524 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Macro to count number of 1s in a byte (8-bit word). The total count is 2531 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2532 * POPC instruction, but our macro is more flexible for an arbitrary length 2533 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2534 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2535 * stays that way, we can reduce the number of iterations required. 2536 */ 2537 #define COUNT_1S(val, sum) { \ 2538 uint8_t x = val & 0xff; \ 2539 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2540 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2541 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2542 } 2543 2544 /* ARGSUSED */ 2545 static void 2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2547 { 2548 mblk_t *mp; 2549 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2550 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2551 uint64_t ill_capabilities = ill->ill_capabilities; 2552 int ah_cnt = 0, esp_cnt = 0; 2553 int ah_len = 0, esp_len = 0; 2554 int i, size = 0; 2555 2556 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2557 return; 2558 2559 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2560 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2561 2562 /* Find out the number of ciphers for AH */ 2563 if (cap_ah != NULL) { 2564 for (i = 0; i < cap_ah->algs_size; i++) { 2565 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2566 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2567 } 2568 if (ah_cnt > 0) { 2569 size += sizeof (dl_capability_sub_t) + 2570 sizeof (dl_capab_ipsec_t); 2571 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2572 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2573 size += ah_len; 2574 } 2575 } 2576 2577 /* Find out the number of ciphers for ESP */ 2578 if (cap_esp != NULL) { 2579 for (i = 0; i < cap_esp->algs_size; i++) { 2580 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2581 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2582 } 2583 if (esp_cnt > 0) { 2584 size += sizeof (dl_capability_sub_t) + 2585 sizeof (dl_capab_ipsec_t); 2586 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2587 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2588 size += esp_len; 2589 } 2590 } 2591 2592 if (size == 0) { 2593 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2594 "there's nothing to reset\n")); 2595 return; 2596 } 2597 2598 mp = allocb(size, BPRI_HI); 2599 if (mp == NULL) { 2600 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2601 "request to disable IPSEC Hardware Acceleration\n")); 2602 return; 2603 } 2604 2605 /* 2606 * Clear the capability flags for IPSec HA but retain the ill 2607 * capability structures since it's possible that another thread 2608 * is still referring to them. The structures only get deallocated 2609 * when we destroy the ill. 2610 * 2611 * Various places check the flags to see if the ill is capable of 2612 * hardware acceleration, and by clearing them we ensure that new 2613 * outbound IPSec packets are sent down encrypted. 2614 */ 2615 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2616 2617 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2618 if (ah_cnt > 0) { 2619 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2620 cap_ah, mp); 2621 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2622 } 2623 2624 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2625 if (esp_cnt > 0) { 2626 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2627 cap_esp, mp); 2628 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2629 } 2630 2631 /* 2632 * At this point we've composed a bunch of sub-capabilities to be 2633 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2634 * by the caller. Upon receiving this reset message, the driver 2635 * must stop inbound decryption (by destroying all inbound SAs) 2636 * and let the corresponding packets come in encrypted. 2637 */ 2638 2639 if (*sc_mp != NULL) 2640 linkb(*sc_mp, mp); 2641 else 2642 *sc_mp = mp; 2643 } 2644 2645 static void 2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2647 boolean_t encapsulated) 2648 { 2649 boolean_t legacy = B_FALSE; 2650 2651 /* 2652 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2653 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2654 * instructed the driver to disable its advertised capabilities, 2655 * so there's no point in accepting any response at this moment. 2656 */ 2657 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2658 return; 2659 2660 /* 2661 * Note that only the following two sub-capabilities may be 2662 * considered as "legacy", since their original definitions 2663 * do not incorporate the dl_mid_t module ID token, and hence 2664 * may require the use of the wrapper sub-capability. 2665 */ 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 legacy = B_TRUE; 2670 break; 2671 } 2672 2673 /* 2674 * For legacy sub-capabilities which don't incorporate a queue_t 2675 * pointer in their structures, discard them if we detect that 2676 * there are intermediate modules in between IP and the driver. 2677 */ 2678 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2679 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2680 "%d discarded; %d module(s) present below IP\n", 2681 subp->dl_cap, ill->ill_lmod_cnt)); 2682 return; 2683 } 2684 2685 switch (subp->dl_cap) { 2686 case DL_CAPAB_IPSEC_AH: 2687 case DL_CAPAB_IPSEC_ESP: 2688 ill_capability_ipsec_ack(ill, mp, subp); 2689 break; 2690 case DL_CAPAB_MDT: 2691 ill_capability_mdt_ack(ill, mp, subp); 2692 break; 2693 case DL_CAPAB_HCKSUM: 2694 ill_capability_hcksum_ack(ill, mp, subp); 2695 break; 2696 case DL_CAPAB_ZEROCOPY: 2697 ill_capability_zerocopy_ack(ill, mp, subp); 2698 break; 2699 case DL_CAPAB_POLL: 2700 if (!SOFT_RINGS_ENABLED()) 2701 ill_capability_dls_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_SOFT_RING: 2704 if (SOFT_RINGS_ENABLED()) 2705 ill_capability_dls_ack(ill, mp, subp); 2706 break; 2707 case DL_CAPAB_LSO: 2708 ill_capability_lso_ack(ill, mp, subp); 2709 break; 2710 default: 2711 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2712 subp->dl_cap)); 2713 } 2714 } 2715 2716 /* 2717 * As part of negotiating polling capability, the driver tells us 2718 * the default (or normal) blanking interval and packet threshold 2719 * (the receive timer fires if blanking interval is reached or 2720 * the packet threshold is reached). 2721 * 2722 * As part of manipulating the polling interval, we always use our 2723 * estimated interval (avg service time * number of packets queued 2724 * on the squeue) but we try to blank for a minimum of 2725 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2726 * packet threshold during this time. When we are not in polling mode 2727 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2728 * rr_min_blank_ratio but up the packet cnt by a ratio of 2729 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2730 * possible although for a shorter interval. 2731 */ 2732 #define RR_MAX_BLANK_RATIO 20 2733 #define RR_MIN_BLANK_RATIO 10 2734 #define RR_MAX_PKT_CNT_RATIO 3 2735 #define RR_MIN_PKT_CNT_RATIO 3 2736 2737 /* 2738 * These can be tuned via /etc/system. 2739 */ 2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2744 2745 static mac_resource_handle_t 2746 ill_ring_add(void *arg, mac_resource_t *mrp) 2747 { 2748 ill_t *ill = (ill_t *)arg; 2749 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2750 ill_rx_ring_t *rx_ring; 2751 int ip_rx_index; 2752 2753 ASSERT(mrp != NULL); 2754 if (mrp->mr_type != MAC_RX_FIFO) { 2755 return (NULL); 2756 } 2757 ASSERT(ill != NULL); 2758 ASSERT(ill->ill_dls_capab != NULL); 2759 2760 mutex_enter(&ill->ill_lock); 2761 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2762 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2763 ASSERT(rx_ring != NULL); 2764 2765 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2766 time_t normal_blank_time = 2767 mrfp->mrf_normal_blank_time; 2768 uint_t normal_pkt_cnt = 2769 mrfp->mrf_normal_pkt_count; 2770 2771 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2772 2773 rx_ring->rr_blank = mrfp->mrf_blank; 2774 rx_ring->rr_handle = mrfp->mrf_arg; 2775 rx_ring->rr_ill = ill; 2776 rx_ring->rr_normal_blank_time = normal_blank_time; 2777 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2778 2779 rx_ring->rr_max_blank_time = 2780 normal_blank_time * rr_max_blank_ratio; 2781 rx_ring->rr_min_blank_time = 2782 normal_blank_time * rr_min_blank_ratio; 2783 rx_ring->rr_max_pkt_cnt = 2784 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2785 rx_ring->rr_min_pkt_cnt = 2786 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2787 2788 rx_ring->rr_ring_state = ILL_RING_INUSE; 2789 mutex_exit(&ill->ill_lock); 2790 2791 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2792 (int), ip_rx_index); 2793 return ((mac_resource_handle_t)rx_ring); 2794 } 2795 } 2796 2797 /* 2798 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2799 * we have devices which can overwhelm this limit, ILL_MAX_RING 2800 * should be made configurable. Meanwhile it cause no panic because 2801 * driver will pass ip_input a NULL handle which will make 2802 * IP allocate the default squeue and Polling mode will not 2803 * be used for this ring. 2804 */ 2805 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2806 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2807 2808 mutex_exit(&ill->ill_lock); 2809 return (NULL); 2810 } 2811 2812 static boolean_t 2813 ill_capability_dls_init(ill_t *ill) 2814 { 2815 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2816 conn_t *connp; 2817 size_t sz; 2818 ip_stack_t *ipst = ill->ill_ipst; 2819 2820 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2821 if (ill_dls == NULL) { 2822 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2823 "soft_ring enabled for ill=%s (%p) but data " 2824 "structs uninitialized\n", ill->ill_name, 2825 (void *)ill); 2826 } 2827 return (B_TRUE); 2828 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2829 if (ill_dls == NULL) { 2830 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2831 "polling enabled for ill=%s (%p) but data " 2832 "structs uninitialized\n", ill->ill_name, 2833 (void *)ill); 2834 } 2835 return (B_TRUE); 2836 } 2837 2838 if (ill_dls != NULL) { 2839 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2840 /* Soft_Ring or polling is being re-enabled */ 2841 2842 connp = ill_dls->ill_unbind_conn; 2843 ASSERT(rx_ring != NULL); 2844 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2845 bzero((void *)rx_ring, 2846 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2847 ill_dls->ill_ring_tbl = rx_ring; 2848 ill_dls->ill_unbind_conn = connp; 2849 return (B_TRUE); 2850 } 2851 2852 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2853 ipst->ips_netstack)) == NULL) 2854 return (B_FALSE); 2855 2856 sz = sizeof (ill_dls_capab_t); 2857 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2858 2859 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2860 if (ill_dls == NULL) { 2861 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2862 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2863 (void *)ill); 2864 CONN_DEC_REF(connp); 2865 return (B_FALSE); 2866 } 2867 2868 /* Allocate space to hold ring table */ 2869 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2870 ill->ill_dls_capab = ill_dls; 2871 ill_dls->ill_unbind_conn = connp; 2872 return (B_TRUE); 2873 } 2874 2875 /* 2876 * ill_capability_dls_disable: disable soft_ring and/or polling 2877 * capability. Since any of the rings might already be in use, need 2878 * to call ipsq_clean_all() which gets behind the squeue to disable 2879 * direct calls if necessary. 2880 */ 2881 static void 2882 ill_capability_dls_disable(ill_t *ill) 2883 { 2884 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2885 2886 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2887 ipsq_clean_all(ill); 2888 ill_dls->ill_tx = NULL; 2889 ill_dls->ill_tx_handle = NULL; 2890 ill_dls->ill_dls_change_status = NULL; 2891 ill_dls->ill_dls_bind = NULL; 2892 ill_dls->ill_dls_unbind = NULL; 2893 } 2894 2895 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2896 } 2897 2898 static void 2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2900 dl_capability_sub_t *isub) 2901 { 2902 uint_t size; 2903 uchar_t *rptr; 2904 dl_capab_dls_t dls, *odls; 2905 ill_dls_capab_t *ill_dls; 2906 mblk_t *nmp = NULL; 2907 dl_capability_req_t *ocap; 2908 uint_t sub_dl_cap = isub->dl_cap; 2909 2910 if (!ill_capability_dls_init(ill)) 2911 return; 2912 ill_dls = ill->ill_dls_capab; 2913 2914 /* Copy locally to get the members aligned */ 2915 bcopy((void *)idls, (void *)&dls, 2916 sizeof (dl_capab_dls_t)); 2917 2918 /* Get the tx function and handle from dld */ 2919 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2920 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2921 2922 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2923 ill_dls->ill_dls_change_status = 2924 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2925 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2926 ill_dls->ill_dls_unbind = 2927 (ip_dls_unbind_t)dls.dls_ring_unbind; 2928 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2929 } 2930 2931 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2932 isub->dl_length; 2933 2934 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2935 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2936 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2937 ill->ill_name, (void *)ill); 2938 return; 2939 } 2940 2941 /* initialize dl_capability_req_t */ 2942 rptr = nmp->b_rptr; 2943 ocap = (dl_capability_req_t *)rptr; 2944 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2945 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2946 rptr += sizeof (dl_capability_req_t); 2947 2948 /* initialize dl_capability_sub_t */ 2949 bcopy(isub, rptr, sizeof (*isub)); 2950 rptr += sizeof (*isub); 2951 2952 odls = (dl_capab_dls_t *)rptr; 2953 rptr += sizeof (dl_capab_dls_t); 2954 2955 /* initialize dl_capab_dls_t to be sent down */ 2956 dls.dls_rx_handle = (uintptr_t)ill; 2957 dls.dls_rx = (uintptr_t)ip_input; 2958 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2959 2960 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2961 dls.dls_ring_cnt = ip_soft_rings_cnt; 2962 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2963 dls.dls_flags = SOFT_RING_ENABLE; 2964 } else { 2965 dls.dls_flags = POLL_ENABLE; 2966 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2967 "to enable polling\n", ill->ill_name)); 2968 } 2969 bcopy((void *)&dls, (void *)odls, 2970 sizeof (dl_capab_dls_t)); 2971 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2972 /* 2973 * nmp points to a DL_CAPABILITY_REQ message to 2974 * enable either soft_ring or polling 2975 */ 2976 ill_dlpi_send(ill, nmp); 2977 } 2978 2979 static void 2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2981 { 2982 mblk_t *mp; 2983 dl_capab_dls_t *idls; 2984 dl_capability_sub_t *dl_subcap; 2985 int size; 2986 2987 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2988 return; 2989 2990 ASSERT(ill->ill_dls_capab != NULL); 2991 2992 size = sizeof (*dl_subcap) + sizeof (*idls); 2993 2994 mp = allocb(size, BPRI_HI); 2995 if (mp == NULL) { 2996 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2997 "request to disable soft_ring\n")); 2998 return; 2999 } 3000 3001 mp->b_wptr = mp->b_rptr + size; 3002 3003 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3004 dl_subcap->dl_length = sizeof (*idls); 3005 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3006 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3007 else 3008 dl_subcap->dl_cap = DL_CAPAB_POLL; 3009 3010 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3011 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3012 idls->dls_flags = SOFT_RING_DISABLE; 3013 else 3014 idls->dls_flags = POLL_DISABLE; 3015 3016 if (*sc_mp != NULL) 3017 linkb(*sc_mp, mp); 3018 else 3019 *sc_mp = mp; 3020 } 3021 3022 /* 3023 * Process a soft_ring/poll capability negotiation ack received 3024 * from a DLS Provider.isub must point to the sub-capability 3025 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3026 */ 3027 static void 3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3029 { 3030 dl_capab_dls_t *idls; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3035 sub_dl_cap == DL_CAPAB_POLL); 3036 3037 if (ill->ill_isv6) 3038 return; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3058 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3059 * capability req. 3060 */ 3061 idls = (dl_capab_dls_t *)(isub + 1); 3062 3063 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3064 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3065 "capability isn't as expected; pass-thru " 3066 "module(s) detected, discarding capability\n")); 3067 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3068 /* 3069 * This is a capability renegotitation case. 3070 * The interface better be unusable at this 3071 * point other wise bad things will happen 3072 * if we disable direct calls on a running 3073 * and up interface. 3074 */ 3075 ill_capability_dls_disable(ill); 3076 } 3077 return; 3078 } 3079 3080 switch (idls->dls_flags) { 3081 default: 3082 /* Disable if unknown flag */ 3083 case SOFT_RING_DISABLE: 3084 case POLL_DISABLE: 3085 ill_capability_dls_disable(ill); 3086 break; 3087 case SOFT_RING_CAPABLE: 3088 case POLL_CAPABLE: 3089 /* 3090 * If the capability was already enabled, its safe 3091 * to disable it first to get rid of stale information 3092 * and then start enabling it again. 3093 */ 3094 ill_capability_dls_disable(ill); 3095 ill_capability_dls_capable(ill, idls, isub); 3096 break; 3097 case SOFT_RING_ENABLE: 3098 case POLL_ENABLE: 3099 mutex_enter(&ill->ill_lock); 3100 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3101 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3102 ASSERT(ill->ill_dls_capab != NULL); 3103 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3104 } 3105 if (sub_dl_cap == DL_CAPAB_POLL && 3106 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3107 ASSERT(ill->ill_dls_capab != NULL); 3108 ill->ill_capabilities |= ILL_CAPAB_POLL; 3109 ip1dbg(("ill_capability_dls_ack: interface %s " 3110 "has enabled polling\n", ill->ill_name)); 3111 } 3112 mutex_exit(&ill->ill_lock); 3113 break; 3114 } 3115 } 3116 3117 /* 3118 * Process a hardware checksum offload capability negotiation ack received 3119 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3120 * of a DL_CAPABILITY_ACK message. 3121 */ 3122 static void 3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3124 { 3125 dl_capability_req_t *ocap; 3126 dl_capab_hcksum_t *ihck, *ohck; 3127 ill_hcksum_capab_t **ill_hcksum; 3128 mblk_t *nmp = NULL; 3129 uint_t sub_dl_cap = isub->dl_cap; 3130 uint8_t *capend; 3131 3132 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3133 3134 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3135 3136 /* 3137 * Note: range checks here are not absolutely sufficient to 3138 * make us robust against malformed messages sent by drivers; 3139 * this is in keeping with the rest of IP's dlpi handling. 3140 * (Remember, it's coming from something else in the kernel 3141 * address space) 3142 */ 3143 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3144 if (capend > mp->b_wptr) { 3145 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3146 "malformed sub-capability too long for mblk"); 3147 return; 3148 } 3149 3150 /* 3151 * There are two types of acks we process here: 3152 * 1. acks in reply to a (first form) generic capability req 3153 * (no ENABLE flag set) 3154 * 2. acks in reply to a ENABLE capability req. 3155 * (ENABLE flag set) 3156 */ 3157 ihck = (dl_capab_hcksum_t *)(isub + 1); 3158 3159 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3160 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3161 "unsupported hardware checksum " 3162 "sub-capability (version %d, expected %d)", 3163 ihck->hcksum_version, HCKSUM_VERSION_1); 3164 return; 3165 } 3166 3167 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3168 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3169 "checksum capability isn't as expected; pass-thru " 3170 "module(s) detected, discarding capability\n")); 3171 return; 3172 } 3173 3174 #define CURR_HCKSUM_CAPAB \ 3175 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3176 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3177 3178 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3179 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3180 /* do ENABLE processing */ 3181 if (*ill_hcksum == NULL) { 3182 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3183 KM_NOSLEEP); 3184 3185 if (*ill_hcksum == NULL) { 3186 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3187 "could not enable hcksum version %d " 3188 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3189 ill->ill_name); 3190 return; 3191 } 3192 } 3193 3194 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3195 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3196 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3197 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3198 "has enabled hardware checksumming\n ", 3199 ill->ill_name)); 3200 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3201 /* 3202 * Enabling hardware checksum offload 3203 * Currently IP supports {TCP,UDP}/IPv4 3204 * partial and full cksum offload and 3205 * IPv4 header checksum offload. 3206 * Allocate new mblk which will 3207 * contain a new capability request 3208 * to enable hardware checksum offload. 3209 */ 3210 uint_t size; 3211 uchar_t *rptr; 3212 3213 size = sizeof (dl_capability_req_t) + 3214 sizeof (dl_capability_sub_t) + isub->dl_length; 3215 3216 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3217 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3218 "could not enable hardware cksum for %s (ENOMEM)\n", 3219 ill->ill_name); 3220 return; 3221 } 3222 3223 rptr = nmp->b_rptr; 3224 /* initialize dl_capability_req_t */ 3225 ocap = (dl_capability_req_t *)nmp->b_rptr; 3226 ocap->dl_sub_offset = 3227 sizeof (dl_capability_req_t); 3228 ocap->dl_sub_length = 3229 sizeof (dl_capability_sub_t) + 3230 isub->dl_length; 3231 nmp->b_rptr += sizeof (dl_capability_req_t); 3232 3233 /* initialize dl_capability_sub_t */ 3234 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3235 nmp->b_rptr += sizeof (*isub); 3236 3237 /* initialize dl_capab_hcksum_t */ 3238 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3239 bcopy(ihck, ohck, sizeof (*ihck)); 3240 3241 nmp->b_rptr = rptr; 3242 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3243 3244 /* Set ENABLE flag */ 3245 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3246 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3247 3248 /* 3249 * nmp points to a DL_CAPABILITY_REQ message to enable 3250 * hardware checksum acceleration. 3251 */ 3252 ill_dlpi_send(ill, nmp); 3253 } else { 3254 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3255 "advertised %x hardware checksum capability flags\n", 3256 ill->ill_name, ihck->hcksum_txflags)); 3257 } 3258 } 3259 3260 static void 3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3262 { 3263 mblk_t *mp; 3264 dl_capab_hcksum_t *hck_subcap; 3265 dl_capability_sub_t *dl_subcap; 3266 int size; 3267 3268 if (!ILL_HCKSUM_CAPABLE(ill)) 3269 return; 3270 3271 ASSERT(ill->ill_hcksum_capab != NULL); 3272 /* 3273 * Clear the capability flag for hardware checksum offload but 3274 * retain the ill_hcksum_capab structure since it's possible that 3275 * another thread is still referring to it. The structure only 3276 * gets deallocated when we destroy the ill. 3277 */ 3278 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3279 3280 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3281 3282 mp = allocb(size, BPRI_HI); 3283 if (mp == NULL) { 3284 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3285 "request to disable hardware checksum offload\n")); 3286 return; 3287 } 3288 3289 mp->b_wptr = mp->b_rptr + size; 3290 3291 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3292 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3293 dl_subcap->dl_length = sizeof (*hck_subcap); 3294 3295 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3296 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3297 hck_subcap->hcksum_txflags = 0; 3298 3299 if (*sc_mp != NULL) 3300 linkb(*sc_mp, mp); 3301 else 3302 *sc_mp = mp; 3303 } 3304 3305 static void 3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3307 { 3308 mblk_t *nmp = NULL; 3309 dl_capability_req_t *oc; 3310 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3311 ill_zerocopy_capab_t **ill_zerocopy_capab; 3312 uint_t sub_dl_cap = isub->dl_cap; 3313 uint8_t *capend; 3314 3315 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3316 3317 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3318 3319 /* 3320 * Note: range checks here are not absolutely sufficient to 3321 * make us robust against malformed messages sent by drivers; 3322 * this is in keeping with the rest of IP's dlpi handling. 3323 * (Remember, it's coming from something else in the kernel 3324 * address space) 3325 */ 3326 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3327 if (capend > mp->b_wptr) { 3328 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3329 "malformed sub-capability too long for mblk"); 3330 return; 3331 } 3332 3333 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3334 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3335 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3336 "unsupported ZEROCOPY sub-capability (version %d, " 3337 "expected %d)", zc_ic->zerocopy_version, 3338 ZEROCOPY_VERSION_1); 3339 return; 3340 } 3341 3342 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3343 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3344 "capability isn't as expected; pass-thru module(s) " 3345 "detected, discarding capability\n")); 3346 return; 3347 } 3348 3349 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3350 if (*ill_zerocopy_capab == NULL) { 3351 *ill_zerocopy_capab = 3352 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3353 KM_NOSLEEP); 3354 3355 if (*ill_zerocopy_capab == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable Zero-copy version %d " 3358 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3359 ill->ill_name); 3360 return; 3361 } 3362 } 3363 3364 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3365 "supports Zero-copy version %d\n", ill->ill_name, 3366 ZEROCOPY_VERSION_1)); 3367 3368 (*ill_zerocopy_capab)->ill_zerocopy_version = 3369 zc_ic->zerocopy_version; 3370 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3371 zc_ic->zerocopy_flags; 3372 3373 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3374 } else { 3375 uint_t size; 3376 uchar_t *rptr; 3377 3378 size = sizeof (dl_capability_req_t) + 3379 sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 3382 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable zerocopy for %s (ENOMEM)\n", 3385 ill->ill_name); 3386 return; 3387 } 3388 3389 rptr = nmp->b_rptr; 3390 /* initialize dl_capability_req_t */ 3391 oc = (dl_capability_req_t *)rptr; 3392 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3393 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3394 sizeof (dl_capab_zerocopy_t); 3395 rptr += sizeof (dl_capability_req_t); 3396 3397 /* initialize dl_capability_sub_t */ 3398 bcopy(isub, rptr, sizeof (*isub)); 3399 rptr += sizeof (*isub); 3400 3401 /* initialize dl_capab_zerocopy_t */ 3402 zc_oc = (dl_capab_zerocopy_t *)rptr; 3403 *zc_oc = *zc_ic; 3404 3405 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3406 "to enable zero-copy version %d\n", ill->ill_name, 3407 ZEROCOPY_VERSION_1)); 3408 3409 /* set VMSAFE_MEM flag */ 3410 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3411 3412 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3413 ill_dlpi_send(ill, nmp); 3414 } 3415 } 3416 3417 static void 3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3419 { 3420 mblk_t *mp; 3421 dl_capab_zerocopy_t *zerocopy_subcap; 3422 dl_capability_sub_t *dl_subcap; 3423 int size; 3424 3425 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3426 return; 3427 3428 ASSERT(ill->ill_zerocopy_capab != NULL); 3429 /* 3430 * Clear the capability flag for Zero-copy but retain the 3431 * ill_zerocopy_capab structure since it's possible that another 3432 * thread is still referring to it. The structure only gets 3433 * deallocated when we destroy the ill. 3434 */ 3435 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3436 3437 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3438 3439 mp = allocb(size, BPRI_HI); 3440 if (mp == NULL) { 3441 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3442 "request to disable Zero-copy\n")); 3443 return; 3444 } 3445 3446 mp->b_wptr = mp->b_rptr + size; 3447 3448 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3449 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3450 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3451 3452 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3453 zerocopy_subcap->zerocopy_version = 3454 ill->ill_zerocopy_capab->ill_zerocopy_version; 3455 zerocopy_subcap->zerocopy_flags = 0; 3456 3457 if (*sc_mp != NULL) 3458 linkb(*sc_mp, mp); 3459 else 3460 *sc_mp = mp; 3461 } 3462 3463 /* 3464 * Process Large Segment Offload capability negotiation ack received from a 3465 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3466 * DL_CAPABILITY_ACK message. 3467 */ 3468 static void 3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3470 { 3471 mblk_t *nmp = NULL; 3472 dl_capability_req_t *oc; 3473 dl_capab_lso_t *lso_ic, *lso_oc; 3474 ill_lso_capab_t **ill_lso_capab; 3475 uint_t sub_dl_cap = isub->dl_cap; 3476 uint8_t *capend; 3477 3478 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3479 3480 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3481 3482 /* 3483 * Note: range checks here are not absolutely sufficient to 3484 * make us robust against malformed messages sent by drivers; 3485 * this is in keeping with the rest of IP's dlpi handling. 3486 * (Remember, it's coming from something else in the kernel 3487 * address space) 3488 */ 3489 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3490 if (capend > mp->b_wptr) { 3491 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3492 "malformed sub-capability too long for mblk"); 3493 return; 3494 } 3495 3496 lso_ic = (dl_capab_lso_t *)(isub + 1); 3497 3498 if (lso_ic->lso_version != LSO_VERSION_1) { 3499 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3500 "unsupported LSO sub-capability (version %d, expected %d)", 3501 lso_ic->lso_version, LSO_VERSION_1); 3502 return; 3503 } 3504 3505 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3506 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3507 "capability isn't as expected; pass-thru module(s) " 3508 "detected, discarding capability\n")); 3509 return; 3510 } 3511 3512 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3513 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3514 if (*ill_lso_capab == NULL) { 3515 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3516 KM_NOSLEEP); 3517 3518 if (*ill_lso_capab == NULL) { 3519 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3520 "could not enable LSO version %d " 3521 "for %s (ENOMEM)\n", LSO_VERSION_1, 3522 ill->ill_name); 3523 return; 3524 } 3525 } 3526 3527 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3528 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3529 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3530 ill->ill_capabilities |= ILL_CAPAB_LSO; 3531 3532 ip1dbg(("ill_capability_lso_ack: interface %s " 3533 "has enabled LSO\n ", ill->ill_name)); 3534 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3535 uint_t size; 3536 uchar_t *rptr; 3537 3538 size = sizeof (dl_capability_req_t) + 3539 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3540 3541 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3542 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3543 "could not enable LSO for %s (ENOMEM)\n", 3544 ill->ill_name); 3545 return; 3546 } 3547 3548 rptr = nmp->b_rptr; 3549 /* initialize dl_capability_req_t */ 3550 oc = (dl_capability_req_t *)nmp->b_rptr; 3551 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3552 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3553 sizeof (dl_capab_lso_t); 3554 nmp->b_rptr += sizeof (dl_capability_req_t); 3555 3556 /* initialize dl_capability_sub_t */ 3557 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3558 nmp->b_rptr += sizeof (*isub); 3559 3560 /* initialize dl_capab_lso_t */ 3561 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3562 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3563 3564 nmp->b_rptr = rptr; 3565 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3566 3567 /* set ENABLE flag */ 3568 lso_oc->lso_flags |= LSO_TX_ENABLE; 3569 3570 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3571 ill_dlpi_send(ill, nmp); 3572 } else { 3573 ip1dbg(("ill_capability_lso_ack: interface %s has " 3574 "advertised %x LSO capability flags\n", 3575 ill->ill_name, lso_ic->lso_flags)); 3576 } 3577 } 3578 3579 3580 static void 3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3582 { 3583 mblk_t *mp; 3584 dl_capab_lso_t *lso_subcap; 3585 dl_capability_sub_t *dl_subcap; 3586 int size; 3587 3588 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3589 return; 3590 3591 ASSERT(ill->ill_lso_capab != NULL); 3592 /* 3593 * Clear the capability flag for LSO but retain the 3594 * ill_lso_capab structure since it's possible that another 3595 * thread is still referring to it. The structure only gets 3596 * deallocated when we destroy the ill. 3597 */ 3598 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3599 3600 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3601 3602 mp = allocb(size, BPRI_HI); 3603 if (mp == NULL) { 3604 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3605 "request to disable LSO\n")); 3606 return; 3607 } 3608 3609 mp->b_wptr = mp->b_rptr + size; 3610 3611 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3612 dl_subcap->dl_cap = DL_CAPAB_LSO; 3613 dl_subcap->dl_length = sizeof (*lso_subcap); 3614 3615 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3616 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3617 lso_subcap->lso_flags = 0; 3618 3619 if (*sc_mp != NULL) 3620 linkb(*sc_mp, mp); 3621 else 3622 *sc_mp = mp; 3623 } 3624 3625 /* 3626 * Consume a new-style hardware capabilities negotiation ack. 3627 * Called from ip_rput_dlpi_writer(). 3628 */ 3629 void 3630 ill_capability_ack(ill_t *ill, mblk_t *mp) 3631 { 3632 dl_capability_ack_t *capp; 3633 dl_capability_sub_t *subp, *endp; 3634 3635 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3636 ill->ill_dlpi_capab_state = IDS_OK; 3637 3638 capp = (dl_capability_ack_t *)mp->b_rptr; 3639 3640 if (capp->dl_sub_length == 0) 3641 /* no new-style capabilities */ 3642 return; 3643 3644 /* make sure the driver supplied correct dl_sub_length */ 3645 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3646 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3647 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3648 return; 3649 } 3650 3651 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3652 /* 3653 * There are sub-capabilities. Process the ones we know about. 3654 * Loop until we don't have room for another sub-cap header.. 3655 */ 3656 for (subp = SC(capp, capp->dl_sub_offset), 3657 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3658 subp <= endp; 3659 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3660 3661 switch (subp->dl_cap) { 3662 case DL_CAPAB_ID_WRAPPER: 3663 ill_capability_id_ack(ill, mp, subp); 3664 break; 3665 default: 3666 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3667 break; 3668 } 3669 } 3670 #undef SC 3671 } 3672 3673 /* 3674 * This routine is called to scan the fragmentation reassembly table for 3675 * the specified ILL for any packets that are starting to smell. 3676 * dead_interval is the maximum time in seconds that will be tolerated. It 3677 * will either be the value specified in ip_g_frag_timeout, or zero if the 3678 * ILL is shutting down and it is time to blow everything off. 3679 * 3680 * It returns the number of seconds (as a time_t) that the next frag timer 3681 * should be scheduled for, 0 meaning that the timer doesn't need to be 3682 * re-started. Note that the method of calculating next_timeout isn't 3683 * entirely accurate since time will flow between the time we grab 3684 * current_time and the time we schedule the next timeout. This isn't a 3685 * big problem since this is the timer for sending an ICMP reassembly time 3686 * exceeded messages, and it doesn't have to be exactly accurate. 3687 * 3688 * This function is 3689 * sometimes called as writer, although this is not required. 3690 */ 3691 time_t 3692 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3693 { 3694 ipfb_t *ipfb; 3695 ipfb_t *endp; 3696 ipf_t *ipf; 3697 ipf_t *ipfnext; 3698 mblk_t *mp; 3699 time_t current_time = gethrestime_sec(); 3700 time_t next_timeout = 0; 3701 uint32_t hdr_length; 3702 mblk_t *send_icmp_head; 3703 mblk_t *send_icmp_head_v6; 3704 zoneid_t zoneid; 3705 ip_stack_t *ipst = ill->ill_ipst; 3706 3707 ipfb = ill->ill_frag_hash_tbl; 3708 if (ipfb == NULL) 3709 return (B_FALSE); 3710 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3711 /* Walk the frag hash table. */ 3712 for (; ipfb < endp; ipfb++) { 3713 send_icmp_head = NULL; 3714 send_icmp_head_v6 = NULL; 3715 mutex_enter(&ipfb->ipfb_lock); 3716 while ((ipf = ipfb->ipfb_ipf) != 0) { 3717 time_t frag_time = current_time - ipf->ipf_timestamp; 3718 time_t frag_timeout; 3719 3720 if (frag_time < dead_interval) { 3721 /* 3722 * There are some outstanding fragments 3723 * that will timeout later. Make note of 3724 * the time so that we can reschedule the 3725 * next timeout appropriately. 3726 */ 3727 frag_timeout = dead_interval - frag_time; 3728 if (next_timeout == 0 || 3729 frag_timeout < next_timeout) { 3730 next_timeout = frag_timeout; 3731 } 3732 break; 3733 } 3734 /* Time's up. Get it out of here. */ 3735 hdr_length = ipf->ipf_nf_hdr_len; 3736 ipfnext = ipf->ipf_hash_next; 3737 if (ipfnext) 3738 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3739 *ipf->ipf_ptphn = ipfnext; 3740 mp = ipf->ipf_mp->b_cont; 3741 for (; mp; mp = mp->b_cont) { 3742 /* Extra points for neatness. */ 3743 IP_REASS_SET_START(mp, 0); 3744 IP_REASS_SET_END(mp, 0); 3745 } 3746 mp = ipf->ipf_mp->b_cont; 3747 ill->ill_frag_count -= ipf->ipf_count; 3748 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3749 ipfb->ipfb_count -= ipf->ipf_count; 3750 ASSERT(ipfb->ipfb_frag_pkts > 0); 3751 ipfb->ipfb_frag_pkts--; 3752 /* 3753 * We do not send any icmp message from here because 3754 * we currently are holding the ipfb_lock for this 3755 * hash chain. If we try and send any icmp messages 3756 * from here we may end up via a put back into ip 3757 * trying to get the same lock, causing a recursive 3758 * mutex panic. Instead we build a list and send all 3759 * the icmp messages after we have dropped the lock. 3760 */ 3761 if (ill->ill_isv6) { 3762 if (hdr_length != 0) { 3763 mp->b_next = send_icmp_head_v6; 3764 send_icmp_head_v6 = mp; 3765 } else { 3766 freemsg(mp); 3767 } 3768 } else { 3769 if (hdr_length != 0) { 3770 mp->b_next = send_icmp_head; 3771 send_icmp_head = mp; 3772 } else { 3773 freemsg(mp); 3774 } 3775 } 3776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3777 freeb(ipf->ipf_mp); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 /* 3781 * Now need to send any icmp messages that we delayed from 3782 * above. 3783 */ 3784 while (send_icmp_head_v6 != NULL) { 3785 ip6_t *ip6h; 3786 3787 mp = send_icmp_head_v6; 3788 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3789 mp->b_next = NULL; 3790 if (mp->b_datap->db_type == M_CTL) 3791 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3792 else 3793 ip6h = (ip6_t *)mp->b_rptr; 3794 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3795 ill, ipst); 3796 if (zoneid == ALL_ZONES) { 3797 freemsg(mp); 3798 } else { 3799 icmp_time_exceeded_v6(ill->ill_wq, mp, 3800 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3801 B_FALSE, zoneid, ipst); 3802 } 3803 } 3804 while (send_icmp_head != NULL) { 3805 ipaddr_t dst; 3806 3807 mp = send_icmp_head; 3808 send_icmp_head = send_icmp_head->b_next; 3809 mp->b_next = NULL; 3810 3811 if (mp->b_datap->db_type == M_CTL) 3812 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3813 else 3814 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3815 3816 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3817 if (zoneid == ALL_ZONES) { 3818 freemsg(mp); 3819 } else { 3820 icmp_time_exceeded(ill->ill_wq, mp, 3821 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3822 ipst); 3823 } 3824 } 3825 } 3826 /* 3827 * A non-dying ILL will use the return value to decide whether to 3828 * restart the frag timer, and for how long. 3829 */ 3830 return (next_timeout); 3831 } 3832 3833 /* 3834 * This routine is called when the approximate count of mblk memory used 3835 * for the specified ILL has exceeded max_count. 3836 */ 3837 void 3838 ill_frag_prune(ill_t *ill, uint_t max_count) 3839 { 3840 ipfb_t *ipfb; 3841 ipf_t *ipf; 3842 size_t count; 3843 3844 /* 3845 * If we are here within ip_min_frag_prune_time msecs remove 3846 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3847 * ill_frag_free_num_pkts. 3848 */ 3849 mutex_enter(&ill->ill_lock); 3850 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3851 (ip_min_frag_prune_time != 0 ? 3852 ip_min_frag_prune_time : msec_per_tick)) { 3853 3854 ill->ill_frag_free_num_pkts++; 3855 3856 } else { 3857 ill->ill_frag_free_num_pkts = 0; 3858 } 3859 ill->ill_last_frag_clean_time = lbolt; 3860 mutex_exit(&ill->ill_lock); 3861 3862 /* 3863 * free ill_frag_free_num_pkts oldest packets from each bucket. 3864 */ 3865 if (ill->ill_frag_free_num_pkts != 0) { 3866 int ix; 3867 3868 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3869 ipfb = &ill->ill_frag_hash_tbl[ix]; 3870 mutex_enter(&ipfb->ipfb_lock); 3871 if (ipfb->ipfb_ipf != NULL) { 3872 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3873 ill->ill_frag_free_num_pkts); 3874 } 3875 mutex_exit(&ipfb->ipfb_lock); 3876 } 3877 } 3878 /* 3879 * While the reassembly list for this ILL is too big, prune a fragment 3880 * queue by age, oldest first. Note that the per ILL count is 3881 * approximate, while the per frag hash bucket counts are accurate. 3882 */ 3883 while (ill->ill_frag_count > max_count) { 3884 int ix; 3885 ipfb_t *oipfb = NULL; 3886 uint_t oldest = UINT_MAX; 3887 3888 count = 0; 3889 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3890 ipfb = &ill->ill_frag_hash_tbl[ix]; 3891 mutex_enter(&ipfb->ipfb_lock); 3892 ipf = ipfb->ipfb_ipf; 3893 if (ipf != NULL && ipf->ipf_gen < oldest) { 3894 oldest = ipf->ipf_gen; 3895 oipfb = ipfb; 3896 } 3897 count += ipfb->ipfb_count; 3898 mutex_exit(&ipfb->ipfb_lock); 3899 } 3900 /* Refresh the per ILL count */ 3901 ill->ill_frag_count = count; 3902 if (oipfb == NULL) { 3903 ill->ill_frag_count = 0; 3904 break; 3905 } 3906 if (count <= max_count) 3907 return; /* Somebody beat us to it, nothing to do */ 3908 mutex_enter(&oipfb->ipfb_lock); 3909 ipf = oipfb->ipfb_ipf; 3910 if (ipf != NULL) { 3911 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3912 } 3913 mutex_exit(&oipfb->ipfb_lock); 3914 } 3915 } 3916 3917 /* 3918 * free 'free_cnt' fragmented packets starting at ipf. 3919 */ 3920 void 3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3922 { 3923 size_t count; 3924 mblk_t *mp; 3925 mblk_t *tmp; 3926 ipf_t **ipfp = ipf->ipf_ptphn; 3927 3928 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3929 ASSERT(ipfp != NULL); 3930 ASSERT(ipf != NULL); 3931 3932 while (ipf != NULL && free_cnt-- > 0) { 3933 count = ipf->ipf_count; 3934 mp = ipf->ipf_mp; 3935 ipf = ipf->ipf_hash_next; 3936 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3937 IP_REASS_SET_START(tmp, 0); 3938 IP_REASS_SET_END(tmp, 0); 3939 } 3940 ill->ill_frag_count -= count; 3941 ASSERT(ipfb->ipfb_count >= count); 3942 ipfb->ipfb_count -= count; 3943 ASSERT(ipfb->ipfb_frag_pkts > 0); 3944 ipfb->ipfb_frag_pkts--; 3945 freemsg(mp); 3946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3947 } 3948 3949 if (ipf) 3950 ipf->ipf_ptphn = ipfp; 3951 ipfp[0] = ipf; 3952 } 3953 3954 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3955 "obsolete and may be removed in a future release of Solaris. Use " \ 3956 "ifconfig(1M) to manipulate the forwarding status of an interface." 3957 3958 /* 3959 * For obsolete per-interface forwarding configuration; 3960 * called in response to ND_GET. 3961 */ 3962 /* ARGSUSED */ 3963 static int 3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3965 { 3966 ill_t *ill = (ill_t *)cp; 3967 3968 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3969 3970 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3971 return (0); 3972 } 3973 3974 /* 3975 * For obsolete per-interface forwarding configuration; 3976 * called in response to ND_SET. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3981 cred_t *ioc_cr) 3982 { 3983 long value; 3984 int retval; 3985 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3986 3987 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3988 3989 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3990 value < 0 || value > 1) { 3991 return (EINVAL); 3992 } 3993 3994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3995 retval = ill_forward_set(q, mp, (value != 0), cp); 3996 rw_exit(&ipst->ips_ill_g_lock); 3997 return (retval); 3998 } 3999 4000 /* 4001 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4002 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4003 * up RTS_IFINFO routing socket messages for each interface whose flags we 4004 * change. 4005 */ 4006 /* ARGSUSED */ 4007 int 4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4009 { 4010 ill_t *ill = (ill_t *)cp; 4011 ill_group_t *illgrp; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 4015 4016 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4017 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4018 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4019 return (EINVAL); 4020 4021 /* 4022 * If the ill is in an IPMP group, set the forwarding policy on all 4023 * members of the group to the same value. 4024 */ 4025 illgrp = ill->ill_group; 4026 if (illgrp != NULL) { 4027 ill_t *tmp_ill; 4028 4029 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4030 tmp_ill = tmp_ill->ill_group_next) { 4031 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4032 (enable ? "Enabling" : "Disabling"), 4033 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4034 tmp_ill->ill_name)); 4035 mutex_enter(&tmp_ill->ill_lock); 4036 if (enable) 4037 tmp_ill->ill_flags |= ILLF_ROUTER; 4038 else 4039 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4040 mutex_exit(&tmp_ill->ill_lock); 4041 if (tmp_ill->ill_isv6) 4042 ill_set_nce_router_flags(tmp_ill, enable); 4043 /* Notify routing socket listeners of this change. */ 4044 ip_rts_ifmsg(tmp_ill->ill_ipif); 4045 } 4046 } else { 4047 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4048 (enable ? "Enabling" : "Disabling"), 4049 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4050 mutex_enter(&ill->ill_lock); 4051 if (enable) 4052 ill->ill_flags |= ILLF_ROUTER; 4053 else 4054 ill->ill_flags &= ~ILLF_ROUTER; 4055 mutex_exit(&ill->ill_lock); 4056 if (ill->ill_isv6) 4057 ill_set_nce_router_flags(ill, enable); 4058 /* Notify routing socket listeners of this change. */ 4059 ip_rts_ifmsg(ill->ill_ipif); 4060 } 4061 4062 return (0); 4063 } 4064 4065 /* 4066 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4067 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4068 * set or clear. 4069 */ 4070 static void 4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4072 { 4073 ipif_t *ipif; 4074 nce_t *nce; 4075 4076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4077 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4078 if (nce != NULL) { 4079 mutex_enter(&nce->nce_lock); 4080 if (enable) 4081 nce->nce_flags |= NCE_F_ISROUTER; 4082 else 4083 nce->nce_flags &= ~NCE_F_ISROUTER; 4084 mutex_exit(&nce->nce_lock); 4085 NCE_REFRELE(nce); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4092 * for this ill. Make sure the v6/v4 question has been answered about this 4093 * ill. The creation of this ndd variable is only for backwards compatibility. 4094 * The preferred way to control per-interface IP forwarding is through the 4095 * ILLF_ROUTER interface flag. 4096 */ 4097 static int 4098 ill_set_ndd_name(ill_t *ill) 4099 { 4100 char *suffix; 4101 ip_stack_t *ipst = ill->ill_ipst; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 if (ill->ill_isv6) 4106 suffix = ipv6_forward_suffix; 4107 else 4108 suffix = ipv4_forward_suffix; 4109 4110 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4111 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4112 /* 4113 * Copies over the '\0'. 4114 * Note that strlen(suffix) is always bounded. 4115 */ 4116 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4117 strlen(suffix) + 1); 4118 4119 /* 4120 * Use of the nd table requires holding the reader lock. 4121 * Modifying the nd table thru nd_load/nd_unload requires 4122 * the writer lock. 4123 */ 4124 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4125 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4126 nd_ill_forward_set, (caddr_t)ill)) { 4127 /* 4128 * If the nd_load failed, it only meant that it could not 4129 * allocate a new bunch of room for further NDD expansion. 4130 * Because of that, the ill_ndd_name will be set to 0, and 4131 * this interface is at the mercy of the global ip_forwarding 4132 * variable. 4133 */ 4134 rw_exit(&ipst->ips_ip_g_nd_lock); 4135 ill->ill_ndd_name = NULL; 4136 return (ENOMEM); 4137 } 4138 rw_exit(&ipst->ips_ip_g_nd_lock); 4139 return (0); 4140 } 4141 4142 /* 4143 * Intializes the context structure and returns the first ill in the list 4144 * cuurently start_list and end_list can have values: 4145 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4146 * IP_V4_G_HEAD Traverse IPV4 list only. 4147 * IP_V6_G_HEAD Traverse IPV6 list only. 4148 */ 4149 4150 /* 4151 * We don't check for CONDEMNED ills here. Caller must do that if 4152 * necessary under the ill lock. 4153 */ 4154 ill_t * 4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4156 ip_stack_t *ipst) 4157 { 4158 ill_if_t *ifp; 4159 ill_t *ill; 4160 avl_tree_t *avl_tree; 4161 4162 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4163 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4164 4165 /* 4166 * setup the lists to search 4167 */ 4168 if (end_list != MAX_G_HEADS) { 4169 ctx->ctx_current_list = start_list; 4170 ctx->ctx_last_list = end_list; 4171 } else { 4172 ctx->ctx_last_list = MAX_G_HEADS - 1; 4173 ctx->ctx_current_list = 0; 4174 } 4175 4176 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4177 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4178 if (ifp != (ill_if_t *) 4179 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4180 avl_tree = &ifp->illif_avl_by_ppa; 4181 ill = avl_first(avl_tree); 4182 /* 4183 * ill is guaranteed to be non NULL or ifp should have 4184 * not existed. 4185 */ 4186 ASSERT(ill != NULL); 4187 return (ill); 4188 } 4189 ctx->ctx_current_list++; 4190 } 4191 4192 return (NULL); 4193 } 4194 4195 /* 4196 * returns the next ill in the list. ill_first() must have been called 4197 * before calling ill_next() or bad things will happen. 4198 */ 4199 4200 /* 4201 * We don't check for CONDEMNED ills here. Caller must do that if 4202 * necessary under the ill lock. 4203 */ 4204 ill_t * 4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4206 { 4207 ill_if_t *ifp; 4208 ill_t *ill; 4209 ip_stack_t *ipst = lastill->ill_ipst; 4210 4211 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4212 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4213 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4214 AVL_AFTER)) != NULL) { 4215 return (ill); 4216 } 4217 4218 /* goto next ill_ifp in the list. */ 4219 ifp = lastill->ill_ifptr->illif_next; 4220 4221 /* make sure not at end of circular list */ 4222 while (ifp == 4223 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4224 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4225 return (NULL); 4226 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4227 } 4228 4229 return (avl_first(&ifp->illif_avl_by_ppa)); 4230 } 4231 4232 /* 4233 * Check interface name for correct format which is name+ppa. 4234 * name can contain characters and digits, the right most digits 4235 * make up the ppa number. use of octal is not allowed, name must contain 4236 * a ppa, return pointer to the start of ppa. 4237 * In case of error return NULL. 4238 */ 4239 static char * 4240 ill_get_ppa_ptr(char *name) 4241 { 4242 int namelen = mi_strlen(name); 4243 4244 int len = namelen; 4245 4246 name += len; 4247 while (len > 0) { 4248 name--; 4249 if (*name < '0' || *name > '9') 4250 break; 4251 len--; 4252 } 4253 4254 /* empty string, all digits, or no trailing digits */ 4255 if (len == 0 || len == (int)namelen) 4256 return (NULL); 4257 4258 name++; 4259 /* check for attempted use of octal */ 4260 if (*name == '0' && len != (int)namelen - 1) 4261 return (NULL); 4262 return (name); 4263 } 4264 4265 /* 4266 * use avl tree to locate the ill. 4267 */ 4268 static ill_t * 4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4270 ipsq_func_t func, int *error, ip_stack_t *ipst) 4271 { 4272 char *ppa_ptr = NULL; 4273 int len; 4274 uint_t ppa; 4275 ill_t *ill = NULL; 4276 ill_if_t *ifp; 4277 int list; 4278 ipsq_t *ipsq; 4279 4280 if (error != NULL) 4281 *error = 0; 4282 4283 /* 4284 * get ppa ptr 4285 */ 4286 if (isv6) 4287 list = IP_V6_G_HEAD; 4288 else 4289 list = IP_V4_G_HEAD; 4290 4291 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 len = ppa_ptr - name + 1; 4298 4299 ppa = stoi(&ppa_ptr); 4300 4301 ifp = IP_VX_ILL_G_LIST(list, ipst); 4302 4303 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4304 /* 4305 * match is done on len - 1 as the name is not null 4306 * terminated it contains ppa in addition to the interface 4307 * name. 4308 */ 4309 if ((ifp->illif_name_len == len) && 4310 bcmp(ifp->illif_name, name, len - 1) == 0) { 4311 break; 4312 } else { 4313 ifp = ifp->illif_next; 4314 } 4315 } 4316 4317 4318 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4319 /* 4320 * Even the interface type does not exist. 4321 */ 4322 if (error != NULL) 4323 *error = ENXIO; 4324 return (NULL); 4325 } 4326 4327 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4328 if (ill != NULL) { 4329 /* 4330 * The block comment at the start of ipif_down 4331 * explains the use of the macros used below 4332 */ 4333 GRAB_CONN_LOCK(q); 4334 mutex_enter(&ill->ill_lock); 4335 if (ILL_CAN_LOOKUP(ill)) { 4336 ill_refhold_locked(ill); 4337 mutex_exit(&ill->ill_lock); 4338 RELEASE_CONN_LOCK(q); 4339 return (ill); 4340 } else if (ILL_CAN_WAIT(ill, q)) { 4341 ipsq = ill->ill_phyint->phyint_ipsq; 4342 mutex_enter(&ipsq->ipsq_lock); 4343 mutex_exit(&ill->ill_lock); 4344 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4345 mutex_exit(&ipsq->ipsq_lock); 4346 RELEASE_CONN_LOCK(q); 4347 *error = EINPROGRESS; 4348 return (NULL); 4349 } 4350 mutex_exit(&ill->ill_lock); 4351 RELEASE_CONN_LOCK(q); 4352 } 4353 if (error != NULL) 4354 *error = ENXIO; 4355 return (NULL); 4356 } 4357 4358 /* 4359 * comparison function for use with avl. 4360 */ 4361 static int 4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4363 { 4364 uint_t ppa; 4365 uint_t ill_ppa; 4366 4367 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4368 4369 ppa = *((uint_t *)ppa_ptr); 4370 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4371 /* 4372 * We want the ill with the lowest ppa to be on the 4373 * top. 4374 */ 4375 if (ill_ppa < ppa) 4376 return (1); 4377 if (ill_ppa > ppa) 4378 return (-1); 4379 return (0); 4380 } 4381 4382 /* 4383 * remove an interface type from the global list. 4384 */ 4385 static void 4386 ill_delete_interface_type(ill_if_t *interface) 4387 { 4388 ASSERT(interface != NULL); 4389 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4390 4391 avl_destroy(&interface->illif_avl_by_ppa); 4392 if (interface->illif_ppa_arena != NULL) 4393 vmem_destroy(interface->illif_ppa_arena); 4394 4395 remque(interface); 4396 4397 mi_free(interface); 4398 } 4399 4400 /* Defined in ip_netinfo.c */ 4401 extern ddi_taskq_t *eventq_queue_nic; 4402 4403 /* 4404 * remove ill from the global list. 4405 */ 4406 static void 4407 ill_glist_delete(ill_t *ill) 4408 { 4409 char *nicname; 4410 size_t nicnamelen; 4411 hook_nic_event_t *info; 4412 ip_stack_t *ipst; 4413 4414 if (ill == NULL) 4415 return; 4416 ipst = ill->ill_ipst; 4417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4418 4419 if (ill->ill_name != NULL) { 4420 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4421 if (nicname != NULL) { 4422 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4423 nicnamelen = ill->ill_name_length; 4424 } 4425 } else { 4426 nicname = NULL; 4427 nicnamelen = 0; 4428 } 4429 4430 /* 4431 * If the ill was never inserted into the AVL tree 4432 * we skip the if branch. 4433 */ 4434 if (ill->ill_ifptr != NULL) { 4435 /* 4436 * remove from AVL tree and free ppa number 4437 */ 4438 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4439 4440 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4441 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4442 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4443 } 4444 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4445 ill_delete_interface_type(ill->ill_ifptr); 4446 } 4447 4448 /* 4449 * Indicate ill is no longer in the list. 4450 */ 4451 ill->ill_ifptr = NULL; 4452 ill->ill_name_length = 0; 4453 ill->ill_name[0] = '\0'; 4454 ill->ill_ppa = UINT_MAX; 4455 } 4456 4457 /* 4458 * Run the unplumb hook after the NIC has disappeared from being 4459 * visible so that attempts to revalidate its existance will fail. 4460 * 4461 * This needs to be run inside the ill_g_lock perimeter to ensure 4462 * that the ordering of delivered events to listeners matches the 4463 * order of them in the kernel. 4464 */ 4465 if ((info = ill->ill_nic_event_info) != NULL) { 4466 if (info->hne_event != NE_DOWN) { 4467 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4468 "attached for %s\n", info->hne_event, 4469 ill->ill_name)); 4470 if (info->hne_data != NULL) 4471 kmem_free(info->hne_data, info->hne_datalen); 4472 kmem_free(info, sizeof (hook_nic_event_t)); 4473 } else { 4474 if (ddi_taskq_dispatch(eventq_queue_nic, 4475 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4476 == DDI_FAILURE) { 4477 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4478 "failed\n")); 4479 if (info->hne_data != NULL) 4480 kmem_free(info->hne_data, 4481 info->hne_datalen); 4482 kmem_free(info, sizeof (hook_nic_event_t)); 4483 } 4484 } 4485 } 4486 4487 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4488 if (info != NULL) { 4489 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4490 info->hne_lif = 0; 4491 info->hne_event = NE_UNPLUMB; 4492 info->hne_data = nicname; 4493 info->hne_datalen = nicnamelen; 4494 info->hne_family = ill->ill_isv6 ? 4495 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4496 } else { 4497 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4498 "information for %s (ENOMEM)\n", ill->ill_name)); 4499 if (nicname != NULL) 4500 kmem_free(nicname, nicnamelen); 4501 } 4502 4503 ill->ill_nic_event_info = info; 4504 4505 ill_phyint_free(ill); 4506 rw_exit(&ipst->ips_ill_g_lock); 4507 } 4508 4509 /* 4510 * allocate a ppa, if the number of plumbed interfaces of this type are 4511 * less than ill_no_arena do a linear search to find a unused ppa. 4512 * When the number goes beyond ill_no_arena switch to using an arena. 4513 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4514 * is the return value for an error condition, so allocation starts at one 4515 * and is decremented by one. 4516 */ 4517 static int 4518 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4519 { 4520 ill_t *tmp_ill; 4521 uint_t start, end; 4522 int ppa; 4523 4524 if (ifp->illif_ppa_arena == NULL && 4525 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4526 /* 4527 * Create an arena. 4528 */ 4529 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4530 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4531 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4532 /* allocate what has already been assigned */ 4533 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4534 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4535 tmp_ill, AVL_AFTER)) { 4536 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4537 1, /* size */ 4538 1, /* align/quantum */ 4539 0, /* phase */ 4540 0, /* nocross */ 4541 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4542 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4543 VM_NOSLEEP|VM_FIRSTFIT); 4544 if (ppa == 0) { 4545 ip1dbg(("ill_alloc_ppa: ppa allocation" 4546 " failed while switching")); 4547 vmem_destroy(ifp->illif_ppa_arena); 4548 ifp->illif_ppa_arena = NULL; 4549 break; 4550 } 4551 } 4552 } 4553 4554 if (ifp->illif_ppa_arena != NULL) { 4555 if (ill->ill_ppa == UINT_MAX) { 4556 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4557 1, VM_NOSLEEP|VM_FIRSTFIT); 4558 if (ppa == 0) 4559 return (EAGAIN); 4560 ill->ill_ppa = --ppa; 4561 } else { 4562 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4563 1, /* size */ 4564 1, /* align/quantum */ 4565 0, /* phase */ 4566 0, /* nocross */ 4567 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4568 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4569 VM_NOSLEEP|VM_FIRSTFIT); 4570 /* 4571 * Most likely the allocation failed because 4572 * the requested ppa was in use. 4573 */ 4574 if (ppa == 0) 4575 return (EEXIST); 4576 } 4577 return (0); 4578 } 4579 4580 /* 4581 * No arena is in use and not enough (>ill_no_arena) interfaces have 4582 * been plumbed to create one. Do a linear search to get a unused ppa. 4583 */ 4584 if (ill->ill_ppa == UINT_MAX) { 4585 end = UINT_MAX - 1; 4586 start = 0; 4587 } else { 4588 end = start = ill->ill_ppa; 4589 } 4590 4591 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4592 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4593 if (start++ >= end) { 4594 if (ill->ill_ppa == UINT_MAX) 4595 return (EAGAIN); 4596 else 4597 return (EEXIST); 4598 } 4599 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4600 } 4601 ill->ill_ppa = start; 4602 return (0); 4603 } 4604 4605 /* 4606 * Insert ill into the list of configured ill's. Once this function completes, 4607 * the ill is globally visible and is available through lookups. More precisely 4608 * this happens after the caller drops the ill_g_lock. 4609 */ 4610 static int 4611 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4612 { 4613 ill_if_t *ill_interface; 4614 avl_index_t where = 0; 4615 int error; 4616 int name_length; 4617 int index; 4618 boolean_t check_length = B_FALSE; 4619 ip_stack_t *ipst = ill->ill_ipst; 4620 4621 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4622 4623 name_length = mi_strlen(name) + 1; 4624 4625 if (isv6) 4626 index = IP_V6_G_HEAD; 4627 else 4628 index = IP_V4_G_HEAD; 4629 4630 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4631 /* 4632 * Search for interface type based on name 4633 */ 4634 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4635 if ((ill_interface->illif_name_len == name_length) && 4636 (strcmp(ill_interface->illif_name, name) == 0)) { 4637 break; 4638 } 4639 ill_interface = ill_interface->illif_next; 4640 } 4641 4642 /* 4643 * Interface type not found, create one. 4644 */ 4645 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4646 4647 ill_g_head_t ghead; 4648 4649 /* 4650 * allocate ill_if_t structure 4651 */ 4652 4653 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4654 if (ill_interface == NULL) { 4655 return (ENOMEM); 4656 } 4657 4658 4659 4660 (void) strcpy(ill_interface->illif_name, name); 4661 ill_interface->illif_name_len = name_length; 4662 4663 avl_create(&ill_interface->illif_avl_by_ppa, 4664 ill_compare_ppa, sizeof (ill_t), 4665 offsetof(struct ill_s, ill_avl_byppa)); 4666 4667 /* 4668 * link the structure in the back to maintain order 4669 * of configuration for ifconfig output. 4670 */ 4671 ghead = ipst->ips_ill_g_heads[index]; 4672 insque(ill_interface, ghead.ill_g_list_tail); 4673 4674 } 4675 4676 if (ill->ill_ppa == UINT_MAX) 4677 check_length = B_TRUE; 4678 4679 error = ill_alloc_ppa(ill_interface, ill); 4680 if (error != 0) { 4681 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4682 ill_delete_interface_type(ill->ill_ifptr); 4683 return (error); 4684 } 4685 4686 /* 4687 * When the ppa is choosen by the system, check that there is 4688 * enough space to insert ppa. if a specific ppa was passed in this 4689 * check is not required as the interface name passed in will have 4690 * the right ppa in it. 4691 */ 4692 if (check_length) { 4693 /* 4694 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4695 */ 4696 char buf[sizeof (uint_t) * 3]; 4697 4698 /* 4699 * convert ppa to string to calculate the amount of space 4700 * required for it in the name. 4701 */ 4702 numtos(ill->ill_ppa, buf); 4703 4704 /* Do we have enough space to insert ppa ? */ 4705 4706 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4707 /* Free ppa and interface type struct */ 4708 if (ill_interface->illif_ppa_arena != NULL) { 4709 vmem_free(ill_interface->illif_ppa_arena, 4710 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4711 } 4712 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4713 0) { 4714 ill_delete_interface_type(ill->ill_ifptr); 4715 } 4716 4717 return (EINVAL); 4718 } 4719 } 4720 4721 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4722 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4723 4724 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4725 &where); 4726 ill->ill_ifptr = ill_interface; 4727 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4728 4729 ill_phyint_reinit(ill); 4730 return (0); 4731 } 4732 4733 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4734 static boolean_t 4735 ipsq_init(ill_t *ill) 4736 { 4737 ipsq_t *ipsq; 4738 4739 /* Init the ipsq and impicitly enter as writer */ 4740 ill->ill_phyint->phyint_ipsq = 4741 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4742 if (ill->ill_phyint->phyint_ipsq == NULL) 4743 return (B_FALSE); 4744 ipsq = ill->ill_phyint->phyint_ipsq; 4745 ipsq->ipsq_phyint_list = ill->ill_phyint; 4746 ill->ill_phyint->phyint_ipsq_next = NULL; 4747 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4748 ipsq->ipsq_refs = 1; 4749 ipsq->ipsq_writer = curthread; 4750 ipsq->ipsq_reentry_cnt = 1; 4751 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4752 #ifdef ILL_DEBUG 4753 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4754 #endif 4755 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4756 return (B_TRUE); 4757 } 4758 4759 /* 4760 * ill_init is called by ip_open when a device control stream is opened. 4761 * It does a few initializations, and shoots a DL_INFO_REQ message down 4762 * to the driver. The response is later picked up in ip_rput_dlpi and 4763 * used to set up default mechanisms for talking to the driver. (Always 4764 * called as writer.) 4765 * 4766 * If this function returns error, ip_open will call ip_close which in 4767 * turn will call ill_delete to clean up any memory allocated here that 4768 * is not yet freed. 4769 */ 4770 int 4771 ill_init(queue_t *q, ill_t *ill) 4772 { 4773 int count; 4774 dl_info_req_t *dlir; 4775 mblk_t *info_mp; 4776 uchar_t *frag_ptr; 4777 4778 /* 4779 * The ill is initialized to zero by mi_alloc*(). In addition 4780 * some fields already contain valid values, initialized in 4781 * ip_open(), before we reach here. 4782 */ 4783 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4784 4785 ill->ill_rq = q; 4786 ill->ill_wq = WR(q); 4787 4788 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4789 BPRI_HI); 4790 if (info_mp == NULL) 4791 return (ENOMEM); 4792 4793 /* 4794 * Allocate sufficient space to contain our fragment hash table and 4795 * the device name. 4796 */ 4797 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4798 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4799 if (frag_ptr == NULL) { 4800 freemsg(info_mp); 4801 return (ENOMEM); 4802 } 4803 ill->ill_frag_ptr = frag_ptr; 4804 ill->ill_frag_free_num_pkts = 0; 4805 ill->ill_last_frag_clean_time = 0; 4806 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4807 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4808 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4809 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4810 NULL, MUTEX_DEFAULT, NULL); 4811 } 4812 4813 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4814 if (ill->ill_phyint == NULL) { 4815 freemsg(info_mp); 4816 mi_free(frag_ptr); 4817 return (ENOMEM); 4818 } 4819 4820 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4821 /* 4822 * For now pretend this is a v4 ill. We need to set phyint_ill* 4823 * at this point because of the following reason. If we can't 4824 * enter the ipsq at some point and cv_wait, the writer that 4825 * wakes us up tries to locate us using the list of all phyints 4826 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4827 * If we don't set it now, we risk a missed wakeup. 4828 */ 4829 ill->ill_phyint->phyint_illv4 = ill; 4830 ill->ill_ppa = UINT_MAX; 4831 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4832 4833 if (!ipsq_init(ill)) { 4834 freemsg(info_mp); 4835 mi_free(frag_ptr); 4836 mi_free(ill->ill_phyint); 4837 return (ENOMEM); 4838 } 4839 4840 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4841 4842 4843 /* Frag queue limit stuff */ 4844 ill->ill_frag_count = 0; 4845 ill->ill_ipf_gen = 0; 4846 4847 ill->ill_global_timer = INFINITY; 4848 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4849 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4850 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4851 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4852 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4853 4854 /* 4855 * Initialize IPv6 configuration variables. The IP module is always 4856 * opened as an IPv4 module. Instead tracking down the cases where 4857 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4858 * here for convenience, this has no effect until the ill is set to do 4859 * IPv6. 4860 */ 4861 ill->ill_reachable_time = ND_REACHABLE_TIME; 4862 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4863 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4864 ill->ill_max_buf = ND_MAX_Q; 4865 ill->ill_refcnt = 0; 4866 4867 /* Send down the Info Request to the driver. */ 4868 info_mp->b_datap->db_type = M_PCPROTO; 4869 dlir = (dl_info_req_t *)info_mp->b_rptr; 4870 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4871 dlir->dl_primitive = DL_INFO_REQ; 4872 4873 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4874 4875 qprocson(q); 4876 ill_dlpi_send(ill, info_mp); 4877 4878 return (0); 4879 } 4880 4881 /* 4882 * ill_dls_info 4883 * creates datalink socket info from the device. 4884 */ 4885 int 4886 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4887 { 4888 size_t len; 4889 ill_t *ill = ipif->ipif_ill; 4890 4891 sdl->sdl_family = AF_LINK; 4892 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4893 sdl->sdl_type = ill->ill_type; 4894 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4895 len = strlen(sdl->sdl_data); 4896 ASSERT(len < 256); 4897 sdl->sdl_nlen = (uchar_t)len; 4898 sdl->sdl_alen = ill->ill_phys_addr_length; 4899 sdl->sdl_slen = 0; 4900 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4901 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4902 4903 return (sizeof (struct sockaddr_dl)); 4904 } 4905 4906 /* 4907 * ill_xarp_info 4908 * creates xarp info from the device. 4909 */ 4910 static int 4911 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4912 { 4913 sdl->sdl_family = AF_LINK; 4914 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4915 sdl->sdl_type = ill->ill_type; 4916 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4917 sizeof (sdl->sdl_data)); 4918 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4919 sdl->sdl_alen = ill->ill_phys_addr_length; 4920 sdl->sdl_slen = 0; 4921 return (sdl->sdl_nlen); 4922 } 4923 4924 static int 4925 loopback_kstat_update(kstat_t *ksp, int rw) 4926 { 4927 kstat_named_t *kn; 4928 netstackid_t stackid; 4929 netstack_t *ns; 4930 ip_stack_t *ipst; 4931 4932 if (ksp == NULL || ksp->ks_data == NULL) 4933 return (EIO); 4934 4935 if (rw == KSTAT_WRITE) 4936 return (EACCES); 4937 4938 kn = KSTAT_NAMED_PTR(ksp); 4939 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4940 4941 ns = netstack_find_by_stackid(stackid); 4942 if (ns == NULL) 4943 return (-1); 4944 4945 ipst = ns->netstack_ip; 4946 if (ipst == NULL) { 4947 netstack_rele(ns); 4948 return (-1); 4949 } 4950 kn[0].value.ui32 = ipst->ips_loopback_packets; 4951 kn[1].value.ui32 = ipst->ips_loopback_packets; 4952 netstack_rele(ns); 4953 return (0); 4954 } 4955 4956 4957 /* 4958 * Has ifindex been plumbed already. 4959 */ 4960 static boolean_t 4961 phyint_exists(uint_t index, ip_stack_t *ipst) 4962 { 4963 phyint_t *phyi; 4964 4965 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4966 /* 4967 * Indexes are stored in the phyint - a common structure 4968 * to both IPv4 and IPv6. 4969 */ 4970 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4971 (void *) &index, NULL); 4972 return (phyi != NULL); 4973 } 4974 4975 /* 4976 * Assign a unique interface index for the phyint. 4977 */ 4978 static boolean_t 4979 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4980 { 4981 uint_t starting_index; 4982 4983 ASSERT(phyi->phyint_ifindex == 0); 4984 if (!ipst->ips_ill_index_wrap) { 4985 phyi->phyint_ifindex = ipst->ips_ill_index++; 4986 if (ipst->ips_ill_index == 0) { 4987 /* Reached the uint_t limit Next time wrap */ 4988 ipst->ips_ill_index_wrap = B_TRUE; 4989 } 4990 return (B_TRUE); 4991 } 4992 4993 /* 4994 * Start reusing unused indexes. Note that we hold the ill_g_lock 4995 * at this point and don't want to call any function that attempts 4996 * to get the lock again. 4997 */ 4998 starting_index = ipst->ips_ill_index++; 4999 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 5000 if (ipst->ips_ill_index != 0 && 5001 !phyint_exists(ipst->ips_ill_index, ipst)) { 5002 /* found unused index - use it */ 5003 phyi->phyint_ifindex = ipst->ips_ill_index; 5004 return (B_TRUE); 5005 } 5006 } 5007 5008 /* 5009 * all interface indicies are inuse. 5010 */ 5011 return (B_FALSE); 5012 } 5013 5014 /* 5015 * Return a pointer to the ill which matches the supplied name. Note that 5016 * the ill name length includes the null termination character. (May be 5017 * called as writer.) 5018 * If do_alloc and the interface is "lo0" it will be automatically created. 5019 * Cannot bump up reference on condemned ills. So dup detect can't be done 5020 * using this func. 5021 */ 5022 ill_t * 5023 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5024 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5025 ip_stack_t *ipst) 5026 { 5027 ill_t *ill; 5028 ipif_t *ipif; 5029 kstat_named_t *kn; 5030 boolean_t isloopback; 5031 ipsq_t *old_ipsq; 5032 5033 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5034 5035 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5036 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5037 rw_exit(&ipst->ips_ill_g_lock); 5038 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5039 return (ill); 5040 5041 /* 5042 * Couldn't find it. Does this happen to be a lookup for the 5043 * loopback device and are we allowed to allocate it? 5044 */ 5045 if (!isloopback || !do_alloc) 5046 return (NULL); 5047 5048 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5049 5050 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5051 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5052 rw_exit(&ipst->ips_ill_g_lock); 5053 return (ill); 5054 } 5055 5056 /* Create the loopback device on demand */ 5057 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5058 sizeof (ipif_loopback_name), BPRI_MED)); 5059 if (ill == NULL) 5060 goto done; 5061 5062 *ill = ill_null; 5063 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5064 ill->ill_ipst = ipst; 5065 netstack_hold(ipst->ips_netstack); 5066 /* 5067 * For exclusive stacks we set the zoneid to zero 5068 * to make IP operate as if in the global zone. 5069 */ 5070 ill->ill_zoneid = GLOBAL_ZONEID; 5071 5072 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5073 if (ill->ill_phyint == NULL) 5074 goto done; 5075 5076 if (isv6) 5077 ill->ill_phyint->phyint_illv6 = ill; 5078 else 5079 ill->ill_phyint->phyint_illv4 = ill; 5080 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5081 ill->ill_max_frag = IP_LOOPBACK_MTU; 5082 /* Add room for tcp+ip headers */ 5083 if (isv6) { 5084 ill->ill_isv6 = B_TRUE; 5085 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5086 } else { 5087 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5088 } 5089 if (!ill_allocate_mibs(ill)) 5090 goto done; 5091 ill->ill_max_mtu = ill->ill_max_frag; 5092 /* 5093 * ipif_loopback_name can't be pointed at directly because its used 5094 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5095 * from the glist, ill_glist_delete() sets the first character of 5096 * ill_name to '\0'. 5097 */ 5098 ill->ill_name = (char *)ill + sizeof (*ill); 5099 (void) strcpy(ill->ill_name, ipif_loopback_name); 5100 ill->ill_name_length = sizeof (ipif_loopback_name); 5101 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5102 5103 ill->ill_global_timer = INFINITY; 5104 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5105 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5106 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5107 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5108 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5109 5110 /* No resolver here. */ 5111 ill->ill_net_type = IRE_LOOPBACK; 5112 5113 /* Initialize the ipsq */ 5114 if (!ipsq_init(ill)) 5115 goto done; 5116 5117 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5118 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5119 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5120 #ifdef ILL_DEBUG 5121 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5122 #endif 5123 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5124 if (ipif == NULL) 5125 goto done; 5126 5127 ill->ill_flags = ILLF_MULTICAST; 5128 5129 /* Set up default loopback address and mask. */ 5130 if (!isv6) { 5131 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5132 5133 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5134 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5135 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5136 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5137 ipif->ipif_v6subnet); 5138 ill->ill_flags |= ILLF_IPV4; 5139 } else { 5140 ipif->ipif_v6lcl_addr = ipv6_loopback; 5141 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5142 ipif->ipif_v6net_mask = ipv6_all_ones; 5143 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5144 ipif->ipif_v6subnet); 5145 ill->ill_flags |= ILLF_IPV6; 5146 } 5147 5148 /* 5149 * Chain us in at the end of the ill list. hold the ill 5150 * before we make it globally visible. 1 for the lookup. 5151 */ 5152 ill->ill_refcnt = 0; 5153 ill_refhold(ill); 5154 5155 ill->ill_frag_count = 0; 5156 ill->ill_frag_free_num_pkts = 0; 5157 ill->ill_last_frag_clean_time = 0; 5158 5159 old_ipsq = ill->ill_phyint->phyint_ipsq; 5160 5161 if (ill_glist_insert(ill, "lo", isv6) != 0) 5162 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5163 5164 /* Let SCTP know so that it can add this to its list */ 5165 sctp_update_ill(ill, SCTP_ILL_INSERT); 5166 5167 /* Let SCTP know about this IPIF, so that it can add it to its list */ 5168 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 5169 5170 /* 5171 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5172 */ 5173 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5174 /* Loopback ills aren't in any IPMP group */ 5175 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5176 ipsq_delete(old_ipsq); 5177 } 5178 5179 /* 5180 * Delay this till the ipif is allocated as ipif_allocate 5181 * de-references ill_phyint for getting the ifindex. We 5182 * can't do this before ipif_allocate because ill_phyint_reinit 5183 * -> phyint_assign_ifindex expects ipif to be present. 5184 */ 5185 mutex_enter(&ill->ill_phyint->phyint_lock); 5186 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5187 mutex_exit(&ill->ill_phyint->phyint_lock); 5188 5189 if (ipst->ips_loopback_ksp == NULL) { 5190 /* Export loopback interface statistics */ 5191 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5192 ipif_loopback_name, "net", 5193 KSTAT_TYPE_NAMED, 2, 0, 5194 ipst->ips_netstack->netstack_stackid); 5195 if (ipst->ips_loopback_ksp != NULL) { 5196 ipst->ips_loopback_ksp->ks_update = 5197 loopback_kstat_update; 5198 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5199 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5200 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5201 ipst->ips_loopback_ksp->ks_private = 5202 (void *)(uintptr_t)ipst->ips_netstack-> 5203 netstack_stackid; 5204 kstat_install(ipst->ips_loopback_ksp); 5205 } 5206 } 5207 5208 if (error != NULL) 5209 *error = 0; 5210 *did_alloc = B_TRUE; 5211 rw_exit(&ipst->ips_ill_g_lock); 5212 return (ill); 5213 done: 5214 if (ill != NULL) { 5215 if (ill->ill_phyint != NULL) { 5216 ipsq_t *ipsq; 5217 5218 ipsq = ill->ill_phyint->phyint_ipsq; 5219 if (ipsq != NULL) { 5220 ipsq->ipsq_ipst = NULL; 5221 kmem_free(ipsq, sizeof (ipsq_t)); 5222 } 5223 mi_free(ill->ill_phyint); 5224 } 5225 ill_free_mib(ill); 5226 if (ill->ill_ipst != NULL) 5227 netstack_rele(ill->ill_ipst->ips_netstack); 5228 mi_free(ill); 5229 } 5230 rw_exit(&ipst->ips_ill_g_lock); 5231 if (error != NULL) 5232 *error = ENOMEM; 5233 return (NULL); 5234 } 5235 5236 /* 5237 * For IPP calls - use the ip_stack_t for global stack. 5238 */ 5239 ill_t * 5240 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5241 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5242 { 5243 ip_stack_t *ipst; 5244 ill_t *ill; 5245 5246 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5247 if (ipst == NULL) { 5248 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5249 return (NULL); 5250 } 5251 5252 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5253 netstack_rele(ipst->ips_netstack); 5254 return (ill); 5255 } 5256 5257 /* 5258 * Return a pointer to the ill which matches the index and IP version type. 5259 */ 5260 ill_t * 5261 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5262 ipsq_func_t func, int *err, ip_stack_t *ipst) 5263 { 5264 ill_t *ill; 5265 ipsq_t *ipsq; 5266 phyint_t *phyi; 5267 5268 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5269 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5270 5271 if (err != NULL) 5272 *err = 0; 5273 5274 /* 5275 * Indexes are stored in the phyint - a common structure 5276 * to both IPv4 and IPv6. 5277 */ 5278 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5279 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5280 (void *) &index, NULL); 5281 if (phyi != NULL) { 5282 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5283 if (ill != NULL) { 5284 /* 5285 * The block comment at the start of ipif_down 5286 * explains the use of the macros used below 5287 */ 5288 GRAB_CONN_LOCK(q); 5289 mutex_enter(&ill->ill_lock); 5290 if (ILL_CAN_LOOKUP(ill)) { 5291 ill_refhold_locked(ill); 5292 mutex_exit(&ill->ill_lock); 5293 RELEASE_CONN_LOCK(q); 5294 rw_exit(&ipst->ips_ill_g_lock); 5295 return (ill); 5296 } else if (ILL_CAN_WAIT(ill, q)) { 5297 ipsq = ill->ill_phyint->phyint_ipsq; 5298 mutex_enter(&ipsq->ipsq_lock); 5299 rw_exit(&ipst->ips_ill_g_lock); 5300 mutex_exit(&ill->ill_lock); 5301 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5302 mutex_exit(&ipsq->ipsq_lock); 5303 RELEASE_CONN_LOCK(q); 5304 *err = EINPROGRESS; 5305 return (NULL); 5306 } 5307 RELEASE_CONN_LOCK(q); 5308 mutex_exit(&ill->ill_lock); 5309 } 5310 } 5311 rw_exit(&ipst->ips_ill_g_lock); 5312 if (err != NULL) 5313 *err = ENXIO; 5314 return (NULL); 5315 } 5316 5317 /* 5318 * Return the ifindex next in sequence after the passed in ifindex. 5319 * If there is no next ifindex for the given protocol, return 0. 5320 */ 5321 uint_t 5322 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5323 { 5324 phyint_t *phyi; 5325 phyint_t *phyi_initial; 5326 uint_t ifindex; 5327 5328 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5329 5330 if (index == 0) { 5331 phyi = avl_first( 5332 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5333 } else { 5334 phyi = phyi_initial = avl_find( 5335 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5336 (void *) &index, NULL); 5337 } 5338 5339 for (; phyi != NULL; 5340 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5341 phyi, AVL_AFTER)) { 5342 /* 5343 * If we're not returning the first interface in the tree 5344 * and we still haven't moved past the phyint_t that 5345 * corresponds to index, avl_walk needs to be called again 5346 */ 5347 if (!((index != 0) && (phyi == phyi_initial))) { 5348 if (isv6) { 5349 if ((phyi->phyint_illv6) && 5350 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5351 (phyi->phyint_illv6->ill_isv6 == 1)) 5352 break; 5353 } else { 5354 if ((phyi->phyint_illv4) && 5355 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5356 (phyi->phyint_illv4->ill_isv6 == 0)) 5357 break; 5358 } 5359 } 5360 } 5361 5362 rw_exit(&ipst->ips_ill_g_lock); 5363 5364 if (phyi != NULL) 5365 ifindex = phyi->phyint_ifindex; 5366 else 5367 ifindex = 0; 5368 5369 return (ifindex); 5370 } 5371 5372 5373 /* 5374 * Return the ifindex for the named interface. 5375 * If there is no next ifindex for the interface, return 0. 5376 */ 5377 uint_t 5378 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5379 { 5380 phyint_t *phyi; 5381 avl_index_t where = 0; 5382 uint_t ifindex; 5383 5384 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5385 5386 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5387 name, &where)) == NULL) { 5388 rw_exit(&ipst->ips_ill_g_lock); 5389 return (0); 5390 } 5391 5392 ifindex = phyi->phyint_ifindex; 5393 5394 rw_exit(&ipst->ips_ill_g_lock); 5395 5396 return (ifindex); 5397 } 5398 5399 5400 /* 5401 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5402 * that gives a running thread a reference to the ill. This reference must be 5403 * released by the thread when it is done accessing the ill and related 5404 * objects. ill_refcnt can not be used to account for static references 5405 * such as other structures pointing to an ill. Callers must generally 5406 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5407 * or be sure that the ill is not being deleted or changing state before 5408 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5409 * ill won't change any of its critical state such as address, netmask etc. 5410 */ 5411 void 5412 ill_refhold(ill_t *ill) 5413 { 5414 mutex_enter(&ill->ill_lock); 5415 ill->ill_refcnt++; 5416 ILL_TRACE_REF(ill); 5417 mutex_exit(&ill->ill_lock); 5418 } 5419 5420 void 5421 ill_refhold_locked(ill_t *ill) 5422 { 5423 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5424 ill->ill_refcnt++; 5425 ILL_TRACE_REF(ill); 5426 } 5427 5428 int 5429 ill_check_and_refhold(ill_t *ill) 5430 { 5431 mutex_enter(&ill->ill_lock); 5432 if (ILL_CAN_LOOKUP(ill)) { 5433 ill_refhold_locked(ill); 5434 mutex_exit(&ill->ill_lock); 5435 return (0); 5436 } 5437 mutex_exit(&ill->ill_lock); 5438 return (ILL_LOOKUP_FAILED); 5439 } 5440 5441 /* 5442 * Must not be called while holding any locks. Otherwise if this is 5443 * the last reference to be released, there is a chance of recursive mutex 5444 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5445 * to restart an ioctl. 5446 */ 5447 void 5448 ill_refrele(ill_t *ill) 5449 { 5450 mutex_enter(&ill->ill_lock); 5451 ASSERT(ill->ill_refcnt != 0); 5452 ill->ill_refcnt--; 5453 ILL_UNTRACE_REF(ill); 5454 if (ill->ill_refcnt != 0) { 5455 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5456 mutex_exit(&ill->ill_lock); 5457 return; 5458 } 5459 5460 /* Drops the ill_lock */ 5461 ipif_ill_refrele_tail(ill); 5462 } 5463 5464 /* 5465 * Obtain a weak reference count on the ill. This reference ensures the 5466 * ill won't be freed, but the ill may change any of its critical state 5467 * such as netmask, address etc. Returns an error if the ill has started 5468 * closing. 5469 */ 5470 boolean_t 5471 ill_waiter_inc(ill_t *ill) 5472 { 5473 mutex_enter(&ill->ill_lock); 5474 if (ill->ill_state_flags & ILL_CONDEMNED) { 5475 mutex_exit(&ill->ill_lock); 5476 return (B_FALSE); 5477 } 5478 ill->ill_waiters++; 5479 mutex_exit(&ill->ill_lock); 5480 return (B_TRUE); 5481 } 5482 5483 void 5484 ill_waiter_dcr(ill_t *ill) 5485 { 5486 mutex_enter(&ill->ill_lock); 5487 ill->ill_waiters--; 5488 if (ill->ill_waiters == 0) 5489 cv_broadcast(&ill->ill_cv); 5490 mutex_exit(&ill->ill_lock); 5491 } 5492 5493 /* 5494 * Named Dispatch routine to produce a formatted report on all ILLs. 5495 * This report is accessed by using the ndd utility to "get" ND variable 5496 * "ip_ill_status". 5497 */ 5498 /* ARGSUSED */ 5499 int 5500 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5501 { 5502 ill_t *ill; 5503 ill_walk_context_t ctx; 5504 ip_stack_t *ipst; 5505 5506 ipst = CONNQ_TO_IPST(q); 5507 5508 (void) mi_mpprintf(mp, 5509 "ILL " MI_COL_HDRPAD_STR 5510 /* 01234567[89ABCDEF] */ 5511 "rq " MI_COL_HDRPAD_STR 5512 /* 01234567[89ABCDEF] */ 5513 "wq " MI_COL_HDRPAD_STR 5514 /* 01234567[89ABCDEF] */ 5515 "upcnt mxfrg err name"); 5516 /* 12345 12345 123 xxxxxxxx */ 5517 5518 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5519 ill = ILL_START_WALK_ALL(&ctx, ipst); 5520 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5521 (void) mi_mpprintf(mp, 5522 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5523 "%05u %05u %03d %s", 5524 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5525 ill->ill_ipif_up_count, 5526 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5527 } 5528 rw_exit(&ipst->ips_ill_g_lock); 5529 5530 return (0); 5531 } 5532 5533 /* 5534 * Named Dispatch routine to produce a formatted report on all IPIFs. 5535 * This report is accessed by using the ndd utility to "get" ND variable 5536 * "ip_ipif_status". 5537 */ 5538 /* ARGSUSED */ 5539 int 5540 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5541 { 5542 char buf1[INET6_ADDRSTRLEN]; 5543 char buf2[INET6_ADDRSTRLEN]; 5544 char buf3[INET6_ADDRSTRLEN]; 5545 char buf4[INET6_ADDRSTRLEN]; 5546 char buf5[INET6_ADDRSTRLEN]; 5547 char buf6[INET6_ADDRSTRLEN]; 5548 char buf[LIFNAMSIZ]; 5549 ill_t *ill; 5550 ipif_t *ipif; 5551 nv_t *nvp; 5552 uint64_t flags; 5553 zoneid_t zoneid; 5554 ill_walk_context_t ctx; 5555 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5556 5557 (void) mi_mpprintf(mp, 5558 "IPIF metric mtu in/out/forward name zone flags...\n" 5559 "\tlocal address\n" 5560 "\tsrc address\n" 5561 "\tsubnet\n" 5562 "\tmask\n" 5563 "\tbroadcast\n" 5564 "\tp-p-dst"); 5565 5566 ASSERT(q->q_next == NULL); 5567 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5568 5569 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5570 ill = ILL_START_WALK_ALL(&ctx, ipst); 5571 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5572 for (ipif = ill->ill_ipif; ipif != NULL; 5573 ipif = ipif->ipif_next) { 5574 if (zoneid != GLOBAL_ZONEID && 5575 zoneid != ipif->ipif_zoneid && 5576 ipif->ipif_zoneid != ALL_ZONES) 5577 continue; 5578 (void) mi_mpprintf(mp, 5579 MI_COL_PTRFMT_STR 5580 "%04u %05u %u/%u/%u %s %d", 5581 (void *)ipif, 5582 ipif->ipif_metric, ipif->ipif_mtu, 5583 ipif->ipif_ib_pkt_count, 5584 ipif->ipif_ob_pkt_count, 5585 ipif->ipif_fo_pkt_count, 5586 ipif_get_name(ipif, buf, sizeof (buf)), 5587 ipif->ipif_zoneid); 5588 5589 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5590 ipif->ipif_ill->ill_phyint->phyint_flags; 5591 5592 /* Tack on text strings for any flags. */ 5593 nvp = ipif_nv_tbl; 5594 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5595 if (nvp->nv_value & flags) 5596 (void) mi_mpprintf_nr(mp, " %s", 5597 nvp->nv_name); 5598 } 5599 (void) mi_mpprintf(mp, 5600 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5601 inet_ntop(AF_INET6, 5602 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5603 inet_ntop(AF_INET6, 5604 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5605 inet_ntop(AF_INET6, 5606 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5607 inet_ntop(AF_INET6, 5608 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5609 inet_ntop(AF_INET6, 5610 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5611 inet_ntop(AF_INET6, 5612 &ipif->ipif_v6pp_dst_addr, 5613 buf6, sizeof (buf6))); 5614 } 5615 } 5616 rw_exit(&ipst->ips_ill_g_lock); 5617 return (0); 5618 } 5619 5620 /* 5621 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5622 * driver. We construct best guess defaults for lower level information that 5623 * we need. If an interface is brought up without injection of any overriding 5624 * information from outside, we have to be ready to go with these defaults. 5625 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5626 * we primarely want the dl_provider_style. 5627 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5628 * at which point we assume the other part of the information is valid. 5629 */ 5630 void 5631 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5632 { 5633 uchar_t *brdcst_addr; 5634 uint_t brdcst_addr_length, phys_addr_length; 5635 t_scalar_t sap_length; 5636 dl_info_ack_t *dlia; 5637 ip_m_t *ipm; 5638 dl_qos_cl_sel1_t *sel1; 5639 5640 ASSERT(IAM_WRITER_ILL(ill)); 5641 5642 /* 5643 * Till the ill is fully up ILL_CHANGING will be set and 5644 * the ill is not globally visible. So no need for a lock. 5645 */ 5646 dlia = (dl_info_ack_t *)mp->b_rptr; 5647 ill->ill_mactype = dlia->dl_mac_type; 5648 5649 ipm = ip_m_lookup(dlia->dl_mac_type); 5650 if (ipm == NULL) { 5651 ipm = ip_m_lookup(DL_OTHER); 5652 ASSERT(ipm != NULL); 5653 } 5654 ill->ill_media = ipm; 5655 5656 /* 5657 * When the new DLPI stuff is ready we'll pull lengths 5658 * from dlia. 5659 */ 5660 if (dlia->dl_version == DL_VERSION_2) { 5661 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5662 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5663 brdcst_addr_length); 5664 if (brdcst_addr == NULL) { 5665 brdcst_addr_length = 0; 5666 } 5667 sap_length = dlia->dl_sap_length; 5668 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5669 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5670 brdcst_addr_length, sap_length, phys_addr_length)); 5671 } else { 5672 brdcst_addr_length = 6; 5673 brdcst_addr = ip_six_byte_all_ones; 5674 sap_length = -2; 5675 phys_addr_length = brdcst_addr_length; 5676 } 5677 5678 ill->ill_bcast_addr_length = brdcst_addr_length; 5679 ill->ill_phys_addr_length = phys_addr_length; 5680 ill->ill_sap_length = sap_length; 5681 ill->ill_max_frag = dlia->dl_max_sdu; 5682 ill->ill_max_mtu = ill->ill_max_frag; 5683 5684 ill->ill_type = ipm->ip_m_type; 5685 5686 if (!ill->ill_dlpi_style_set) { 5687 if (dlia->dl_provider_style == DL_STYLE2) 5688 ill->ill_needs_attach = 1; 5689 5690 /* 5691 * Allocate the first ipif on this ill. We don't delay it 5692 * further as ioctl handling assumes atleast one ipif to 5693 * be present. 5694 * 5695 * At this point we don't know whether the ill is v4 or v6. 5696 * We will know this whan the SIOCSLIFNAME happens and 5697 * the correct value for ill_isv6 will be assigned in 5698 * ipif_set_values(). We need to hold the ill lock and 5699 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5700 * the wakeup. 5701 */ 5702 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5703 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5704 mutex_enter(&ill->ill_lock); 5705 ASSERT(ill->ill_dlpi_style_set == 0); 5706 ill->ill_dlpi_style_set = 1; 5707 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5708 cv_broadcast(&ill->ill_cv); 5709 mutex_exit(&ill->ill_lock); 5710 freemsg(mp); 5711 return; 5712 } 5713 ASSERT(ill->ill_ipif != NULL); 5714 /* 5715 * We know whether it is IPv4 or IPv6 now, as this is the 5716 * second DL_INFO_ACK we are recieving in response to the 5717 * DL_INFO_REQ sent in ipif_set_values. 5718 */ 5719 if (ill->ill_isv6) 5720 ill->ill_sap = IP6_DL_SAP; 5721 else 5722 ill->ill_sap = IP_DL_SAP; 5723 /* 5724 * Set ipif_mtu which is used to set the IRE's 5725 * ire_max_frag value. The driver could have sent 5726 * a different mtu from what it sent last time. No 5727 * need to call ipif_mtu_change because IREs have 5728 * not yet been created. 5729 */ 5730 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5731 /* 5732 * Clear all the flags that were set based on ill_bcast_addr_length 5733 * and ill_phys_addr_length (in ipif_set_values) as these could have 5734 * changed now and we need to re-evaluate. 5735 */ 5736 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5737 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5738 5739 /* 5740 * Free ill_resolver_mp and ill_bcast_mp as things could have 5741 * changed now. 5742 */ 5743 if (ill->ill_bcast_addr_length == 0) { 5744 if (ill->ill_resolver_mp != NULL) 5745 freemsg(ill->ill_resolver_mp); 5746 if (ill->ill_bcast_mp != NULL) 5747 freemsg(ill->ill_bcast_mp); 5748 if (ill->ill_flags & ILLF_XRESOLV) 5749 ill->ill_net_type = IRE_IF_RESOLVER; 5750 else 5751 ill->ill_net_type = IRE_IF_NORESOLVER; 5752 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5753 ill->ill_phys_addr_length, 5754 ill->ill_sap, 5755 ill->ill_sap_length); 5756 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5757 5758 if (ill->ill_isv6) 5759 /* 5760 * Note: xresolv interfaces will eventually need NOARP 5761 * set here as well, but that will require those 5762 * external resolvers to have some knowledge of 5763 * that flag and act appropriately. Not to be changed 5764 * at present. 5765 */ 5766 ill->ill_flags |= ILLF_NONUD; 5767 else 5768 ill->ill_flags |= ILLF_NOARP; 5769 5770 if (ill->ill_phys_addr_length == 0) { 5771 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5772 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5773 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5774 } else { 5775 /* pt-pt supports multicast. */ 5776 ill->ill_flags |= ILLF_MULTICAST; 5777 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5778 } 5779 } 5780 } else { 5781 ill->ill_net_type = IRE_IF_RESOLVER; 5782 if (ill->ill_bcast_mp != NULL) 5783 freemsg(ill->ill_bcast_mp); 5784 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5785 ill->ill_bcast_addr_length, ill->ill_sap, 5786 ill->ill_sap_length); 5787 /* 5788 * Later detect lack of DLPI driver multicast 5789 * capability by catching DL_ENABMULTI errors in 5790 * ip_rput_dlpi. 5791 */ 5792 ill->ill_flags |= ILLF_MULTICAST; 5793 if (!ill->ill_isv6) 5794 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5795 } 5796 /* By default an interface does not support any CoS marking */ 5797 ill->ill_flags &= ~ILLF_COS_ENABLED; 5798 5799 /* 5800 * If we get QoS information in DL_INFO_ACK, the device supports 5801 * some form of CoS marking, set ILLF_COS_ENABLED. 5802 */ 5803 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5804 dlia->dl_qos_length); 5805 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5806 ill->ill_flags |= ILLF_COS_ENABLED; 5807 } 5808 5809 /* Clear any previous error indication. */ 5810 ill->ill_error = 0; 5811 freemsg(mp); 5812 } 5813 5814 /* 5815 * Perform various checks to verify that an address would make sense as a 5816 * local, remote, or subnet interface address. 5817 */ 5818 static boolean_t 5819 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5820 { 5821 ipaddr_t net_mask; 5822 5823 /* 5824 * Don't allow all zeroes, all ones or experimental address, but allow 5825 * all ones netmask. 5826 */ 5827 if ((net_mask = ip_net_mask(addr)) == 0) 5828 return (B_FALSE); 5829 /* A given netmask overrides the "guess" netmask */ 5830 if (subnet_mask != 0) 5831 net_mask = subnet_mask; 5832 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5833 (addr == (addr | ~net_mask)))) { 5834 return (B_FALSE); 5835 } 5836 if (CLASSD(addr)) 5837 return (B_FALSE); 5838 5839 return (B_TRUE); 5840 } 5841 5842 /* 5843 * ipif_lookup_group 5844 * Returns held ipif 5845 */ 5846 ipif_t * 5847 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5848 { 5849 ire_t *ire; 5850 ipif_t *ipif; 5851 5852 ire = ire_lookup_multi(group, zoneid, ipst); 5853 if (ire == NULL) 5854 return (NULL); 5855 ipif = ire->ire_ipif; 5856 ipif_refhold(ipif); 5857 ire_refrele(ire); 5858 return (ipif); 5859 } 5860 5861 /* 5862 * Look for an ipif with the specified interface address and destination. 5863 * The destination address is used only for matching point-to-point interfaces. 5864 */ 5865 ipif_t * 5866 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5867 ipsq_func_t func, int *error, ip_stack_t *ipst) 5868 { 5869 ipif_t *ipif; 5870 ill_t *ill; 5871 ill_walk_context_t ctx; 5872 ipsq_t *ipsq; 5873 5874 if (error != NULL) 5875 *error = 0; 5876 5877 /* 5878 * First match all the point-to-point interfaces 5879 * before looking at non-point-to-point interfaces. 5880 * This is done to avoid returning non-point-to-point 5881 * ipif instead of unnumbered point-to-point ipif. 5882 */ 5883 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5884 ill = ILL_START_WALK_V4(&ctx, ipst); 5885 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5886 GRAB_CONN_LOCK(q); 5887 mutex_enter(&ill->ill_lock); 5888 for (ipif = ill->ill_ipif; ipif != NULL; 5889 ipif = ipif->ipif_next) { 5890 /* Allow the ipif to be down */ 5891 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5892 (ipif->ipif_lcl_addr == if_addr) && 5893 (ipif->ipif_pp_dst_addr == dst)) { 5894 /* 5895 * The block comment at the start of ipif_down 5896 * explains the use of the macros used below 5897 */ 5898 if (IPIF_CAN_LOOKUP(ipif)) { 5899 ipif_refhold_locked(ipif); 5900 mutex_exit(&ill->ill_lock); 5901 RELEASE_CONN_LOCK(q); 5902 rw_exit(&ipst->ips_ill_g_lock); 5903 return (ipif); 5904 } else if (IPIF_CAN_WAIT(ipif, q)) { 5905 ipsq = ill->ill_phyint->phyint_ipsq; 5906 mutex_enter(&ipsq->ipsq_lock); 5907 mutex_exit(&ill->ill_lock); 5908 rw_exit(&ipst->ips_ill_g_lock); 5909 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5910 ill); 5911 mutex_exit(&ipsq->ipsq_lock); 5912 RELEASE_CONN_LOCK(q); 5913 *error = EINPROGRESS; 5914 return (NULL); 5915 } 5916 } 5917 } 5918 mutex_exit(&ill->ill_lock); 5919 RELEASE_CONN_LOCK(q); 5920 } 5921 rw_exit(&ipst->ips_ill_g_lock); 5922 5923 /* lookup the ipif based on interface address */ 5924 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5925 ipst); 5926 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5927 return (ipif); 5928 } 5929 5930 /* 5931 * Look for an ipif with the specified address. For point-point links 5932 * we look for matches on either the destination address and the local 5933 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5934 * is set. 5935 * Matches on a specific ill if match_ill is set. 5936 */ 5937 ipif_t * 5938 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5939 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5940 { 5941 ipif_t *ipif; 5942 ill_t *ill; 5943 boolean_t ptp = B_FALSE; 5944 ipsq_t *ipsq; 5945 ill_walk_context_t ctx; 5946 5947 if (error != NULL) 5948 *error = 0; 5949 5950 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5951 /* 5952 * Repeat twice, first based on local addresses and 5953 * next time for pointopoint. 5954 */ 5955 repeat: 5956 ill = ILL_START_WALK_V4(&ctx, ipst); 5957 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5958 if (match_ill != NULL && ill != match_ill) { 5959 continue; 5960 } 5961 GRAB_CONN_LOCK(q); 5962 mutex_enter(&ill->ill_lock); 5963 for (ipif = ill->ill_ipif; ipif != NULL; 5964 ipif = ipif->ipif_next) { 5965 if (zoneid != ALL_ZONES && 5966 zoneid != ipif->ipif_zoneid && 5967 ipif->ipif_zoneid != ALL_ZONES) 5968 continue; 5969 /* Allow the ipif to be down */ 5970 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5971 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5972 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5973 (ipif->ipif_pp_dst_addr == addr))) { 5974 /* 5975 * The block comment at the start of ipif_down 5976 * explains the use of the macros used below 5977 */ 5978 if (IPIF_CAN_LOOKUP(ipif)) { 5979 ipif_refhold_locked(ipif); 5980 mutex_exit(&ill->ill_lock); 5981 RELEASE_CONN_LOCK(q); 5982 rw_exit(&ipst->ips_ill_g_lock); 5983 return (ipif); 5984 } else if (IPIF_CAN_WAIT(ipif, q)) { 5985 ipsq = ill->ill_phyint->phyint_ipsq; 5986 mutex_enter(&ipsq->ipsq_lock); 5987 mutex_exit(&ill->ill_lock); 5988 rw_exit(&ipst->ips_ill_g_lock); 5989 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5990 ill); 5991 mutex_exit(&ipsq->ipsq_lock); 5992 RELEASE_CONN_LOCK(q); 5993 *error = EINPROGRESS; 5994 return (NULL); 5995 } 5996 } 5997 } 5998 mutex_exit(&ill->ill_lock); 5999 RELEASE_CONN_LOCK(q); 6000 } 6001 6002 /* If we already did the ptp case, then we are done */ 6003 if (ptp) { 6004 rw_exit(&ipst->ips_ill_g_lock); 6005 if (error != NULL) 6006 *error = ENXIO; 6007 return (NULL); 6008 } 6009 ptp = B_TRUE; 6010 goto repeat; 6011 } 6012 6013 /* 6014 * Look for an ipif with the specified address. For point-point links 6015 * we look for matches on either the destination address and the local 6016 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6017 * is set. 6018 * Matches on a specific ill if match_ill is set. 6019 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6020 */ 6021 zoneid_t 6022 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6023 { 6024 zoneid_t zoneid; 6025 ipif_t *ipif; 6026 ill_t *ill; 6027 boolean_t ptp = B_FALSE; 6028 ill_walk_context_t ctx; 6029 6030 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6031 /* 6032 * Repeat twice, first based on local addresses and 6033 * next time for pointopoint. 6034 */ 6035 repeat: 6036 ill = ILL_START_WALK_V4(&ctx, ipst); 6037 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6038 if (match_ill != NULL && ill != match_ill) { 6039 continue; 6040 } 6041 mutex_enter(&ill->ill_lock); 6042 for (ipif = ill->ill_ipif; ipif != NULL; 6043 ipif = ipif->ipif_next) { 6044 /* Allow the ipif to be down */ 6045 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6046 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6047 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6048 (ipif->ipif_pp_dst_addr == addr)) && 6049 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6050 zoneid = ipif->ipif_zoneid; 6051 mutex_exit(&ill->ill_lock); 6052 rw_exit(&ipst->ips_ill_g_lock); 6053 /* 6054 * If ipif_zoneid was ALL_ZONES then we have 6055 * a trusted extensions shared IP address. 6056 * In that case GLOBAL_ZONEID works to send. 6057 */ 6058 if (zoneid == ALL_ZONES) 6059 zoneid = GLOBAL_ZONEID; 6060 return (zoneid); 6061 } 6062 } 6063 mutex_exit(&ill->ill_lock); 6064 } 6065 6066 /* If we already did the ptp case, then we are done */ 6067 if (ptp) { 6068 rw_exit(&ipst->ips_ill_g_lock); 6069 return (ALL_ZONES); 6070 } 6071 ptp = B_TRUE; 6072 goto repeat; 6073 } 6074 6075 /* 6076 * Look for an ipif that matches the specified remote address i.e. the 6077 * ipif that would receive the specified packet. 6078 * First look for directly connected interfaces and then do a recursive 6079 * IRE lookup and pick the first ipif corresponding to the source address in the 6080 * ire. 6081 * Returns: held ipif 6082 */ 6083 ipif_t * 6084 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6085 { 6086 ipif_t *ipif; 6087 ire_t *ire; 6088 ip_stack_t *ipst = ill->ill_ipst; 6089 6090 ASSERT(!ill->ill_isv6); 6091 6092 /* 6093 * Someone could be changing this ipif currently or change it 6094 * after we return this. Thus a few packets could use the old 6095 * old values. However structure updates/creates (ire, ilg, ilm etc) 6096 * will atomically be updated or cleaned up with the new value 6097 * Thus we don't need a lock to check the flags or other attrs below. 6098 */ 6099 mutex_enter(&ill->ill_lock); 6100 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6101 if (!IPIF_CAN_LOOKUP(ipif)) 6102 continue; 6103 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6104 ipif->ipif_zoneid != ALL_ZONES) 6105 continue; 6106 /* Allow the ipif to be down */ 6107 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6108 if ((ipif->ipif_pp_dst_addr == addr) || 6109 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6110 ipif->ipif_lcl_addr == addr)) { 6111 ipif_refhold_locked(ipif); 6112 mutex_exit(&ill->ill_lock); 6113 return (ipif); 6114 } 6115 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6116 ipif_refhold_locked(ipif); 6117 mutex_exit(&ill->ill_lock); 6118 return (ipif); 6119 } 6120 } 6121 mutex_exit(&ill->ill_lock); 6122 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6123 NULL, MATCH_IRE_RECURSIVE, ipst); 6124 if (ire != NULL) { 6125 /* 6126 * The callers of this function wants to know the 6127 * interface on which they have to send the replies 6128 * back. For IRE_CACHES that have ire_stq and ire_ipif 6129 * derived from different ills, we really don't care 6130 * what we return here. 6131 */ 6132 ipif = ire->ire_ipif; 6133 if (ipif != NULL) { 6134 ipif_refhold(ipif); 6135 ire_refrele(ire); 6136 return (ipif); 6137 } 6138 ire_refrele(ire); 6139 } 6140 /* Pick the first interface */ 6141 ipif = ipif_get_next_ipif(NULL, ill); 6142 return (ipif); 6143 } 6144 6145 /* 6146 * This func does not prevent refcnt from increasing. But if 6147 * the caller has taken steps to that effect, then this func 6148 * can be used to determine whether the ill has become quiescent 6149 */ 6150 boolean_t 6151 ill_is_quiescent(ill_t *ill) 6152 { 6153 ipif_t *ipif; 6154 6155 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6156 6157 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6158 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6159 return (B_FALSE); 6160 } 6161 } 6162 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6163 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6164 ill->ill_mrtun_refcnt != 0) { 6165 return (B_FALSE); 6166 } 6167 return (B_TRUE); 6168 } 6169 6170 /* 6171 * This func does not prevent refcnt from increasing. But if 6172 * the caller has taken steps to that effect, then this func 6173 * can be used to determine whether the ipif has become quiescent 6174 */ 6175 static boolean_t 6176 ipif_is_quiescent(ipif_t *ipif) 6177 { 6178 ill_t *ill; 6179 6180 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6181 6182 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6183 return (B_FALSE); 6184 } 6185 6186 ill = ipif->ipif_ill; 6187 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6188 ill->ill_logical_down) { 6189 return (B_TRUE); 6190 } 6191 6192 /* This is the last ipif going down or being deleted on this ill */ 6193 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6194 return (B_FALSE); 6195 } 6196 6197 return (B_TRUE); 6198 } 6199 6200 /* 6201 * This func does not prevent refcnt from increasing. But if 6202 * the caller has taken steps to that effect, then this func 6203 * can be used to determine whether the ipifs marked with IPIF_MOVING 6204 * have become quiescent and can be moved in a failover/failback. 6205 */ 6206 static ipif_t * 6207 ill_quiescent_to_move(ill_t *ill) 6208 { 6209 ipif_t *ipif; 6210 6211 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6212 6213 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6214 if (ipif->ipif_state_flags & IPIF_MOVING) { 6215 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6216 return (ipif); 6217 } 6218 } 6219 } 6220 return (NULL); 6221 } 6222 6223 /* 6224 * The ipif/ill/ire has been refreled. Do the tail processing. 6225 * Determine if the ipif or ill in question has become quiescent and if so 6226 * wakeup close and/or restart any queued pending ioctl that is waiting 6227 * for the ipif_down (or ill_down) 6228 */ 6229 void 6230 ipif_ill_refrele_tail(ill_t *ill) 6231 { 6232 mblk_t *mp; 6233 conn_t *connp; 6234 ipsq_t *ipsq; 6235 ipif_t *ipif; 6236 dl_notify_ind_t *dlindp; 6237 6238 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6239 6240 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6241 ill_is_quiescent(ill)) { 6242 /* ill_close may be waiting */ 6243 cv_broadcast(&ill->ill_cv); 6244 } 6245 6246 /* ipsq can't change because ill_lock is held */ 6247 ipsq = ill->ill_phyint->phyint_ipsq; 6248 if (ipsq->ipsq_waitfor == 0) { 6249 /* Not waiting for anything, just return. */ 6250 mutex_exit(&ill->ill_lock); 6251 return; 6252 } 6253 ASSERT(ipsq->ipsq_pending_mp != NULL && 6254 ipsq->ipsq_pending_ipif != NULL); 6255 /* 6256 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6257 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6258 * be zero for restarting an ioctl that ends up downing the ill. 6259 */ 6260 ipif = ipsq->ipsq_pending_ipif; 6261 if (ipif->ipif_ill != ill) { 6262 /* The ioctl is pending on some other ill. */ 6263 mutex_exit(&ill->ill_lock); 6264 return; 6265 } 6266 6267 switch (ipsq->ipsq_waitfor) { 6268 case IPIF_DOWN: 6269 case IPIF_FREE: 6270 if (!ipif_is_quiescent(ipif)) { 6271 mutex_exit(&ill->ill_lock); 6272 return; 6273 } 6274 break; 6275 6276 case ILL_DOWN: 6277 case ILL_FREE: 6278 /* 6279 * case ILL_FREE arises only for loopback. otherwise ill_delete 6280 * waits synchronously in ip_close, and no message is queued in 6281 * ipsq_pending_mp at all in this case 6282 */ 6283 if (!ill_is_quiescent(ill)) { 6284 mutex_exit(&ill->ill_lock); 6285 return; 6286 } 6287 6288 break; 6289 6290 case ILL_MOVE_OK: 6291 if (ill_quiescent_to_move(ill) != NULL) { 6292 mutex_exit(&ill->ill_lock); 6293 return; 6294 } 6295 6296 break; 6297 default: 6298 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6299 (void *)ipsq, ipsq->ipsq_waitfor); 6300 } 6301 6302 /* 6303 * Incr refcnt for the qwriter_ip call below which 6304 * does a refrele 6305 */ 6306 ill_refhold_locked(ill); 6307 mutex_exit(&ill->ill_lock); 6308 6309 mp = ipsq_pending_mp_get(ipsq, &connp); 6310 ASSERT(mp != NULL); 6311 6312 switch (mp->b_datap->db_type) { 6313 case M_PCPROTO: 6314 case M_PROTO: 6315 /* 6316 * For now, only DL_NOTIFY_IND messages can use this facility. 6317 */ 6318 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6319 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6320 6321 switch (dlindp->dl_notification) { 6322 case DL_NOTE_PHYS_ADDR: 6323 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6324 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6325 return; 6326 default: 6327 ASSERT(0); 6328 } 6329 break; 6330 6331 case M_ERROR: 6332 case M_HANGUP: 6333 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6334 CUR_OP, B_TRUE); 6335 return; 6336 6337 case M_IOCTL: 6338 case M_IOCDATA: 6339 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6340 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6341 return; 6342 6343 default: 6344 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6345 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6346 } 6347 } 6348 6349 #ifdef ILL_DEBUG 6350 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6351 void 6352 th_trace_rrecord(th_trace_t *th_trace) 6353 { 6354 tr_buf_t *tr_buf; 6355 uint_t lastref; 6356 6357 lastref = th_trace->th_trace_lastref; 6358 lastref++; 6359 if (lastref == TR_BUF_MAX) 6360 lastref = 0; 6361 th_trace->th_trace_lastref = lastref; 6362 tr_buf = &th_trace->th_trbuf[lastref]; 6363 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6364 } 6365 6366 th_trace_t * 6367 th_trace_ipif_lookup(ipif_t *ipif) 6368 { 6369 int bucket_id; 6370 th_trace_t *th_trace; 6371 6372 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6373 6374 bucket_id = IP_TR_HASH(curthread); 6375 ASSERT(bucket_id < IP_TR_HASH_MAX); 6376 6377 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6378 th_trace = th_trace->th_next) { 6379 if (th_trace->th_id == curthread) 6380 return (th_trace); 6381 } 6382 return (NULL); 6383 } 6384 6385 void 6386 ipif_trace_ref(ipif_t *ipif) 6387 { 6388 int bucket_id; 6389 th_trace_t *th_trace; 6390 6391 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6392 6393 if (ipif->ipif_trace_disable) 6394 return; 6395 6396 /* 6397 * Attempt to locate the trace buffer for the curthread. 6398 * If it does not exist, then allocate a new trace buffer 6399 * and link it in list of trace bufs for this ipif, at the head 6400 */ 6401 th_trace = th_trace_ipif_lookup(ipif); 6402 if (th_trace == NULL) { 6403 bucket_id = IP_TR_HASH(curthread); 6404 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6405 KM_NOSLEEP); 6406 if (th_trace == NULL) { 6407 ipif->ipif_trace_disable = B_TRUE; 6408 ipif_trace_cleanup(ipif); 6409 return; 6410 } 6411 th_trace->th_id = curthread; 6412 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6413 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6414 if (th_trace->th_next != NULL) 6415 th_trace->th_next->th_prev = &th_trace->th_next; 6416 ipif->ipif_trace[bucket_id] = th_trace; 6417 } 6418 ASSERT(th_trace->th_refcnt >= 0 && 6419 th_trace->th_refcnt < TR_BUF_MAX -1); 6420 th_trace->th_refcnt++; 6421 th_trace_rrecord(th_trace); 6422 } 6423 6424 void 6425 ipif_untrace_ref(ipif_t *ipif) 6426 { 6427 th_trace_t *th_trace; 6428 6429 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6430 6431 if (ipif->ipif_trace_disable) 6432 return; 6433 th_trace = th_trace_ipif_lookup(ipif); 6434 ASSERT(th_trace != NULL); 6435 ASSERT(th_trace->th_refcnt > 0); 6436 6437 th_trace->th_refcnt--; 6438 th_trace_rrecord(th_trace); 6439 } 6440 6441 th_trace_t * 6442 th_trace_ill_lookup(ill_t *ill) 6443 { 6444 th_trace_t *th_trace; 6445 int bucket_id; 6446 6447 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6448 6449 bucket_id = IP_TR_HASH(curthread); 6450 ASSERT(bucket_id < IP_TR_HASH_MAX); 6451 6452 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6453 th_trace = th_trace->th_next) { 6454 if (th_trace->th_id == curthread) 6455 return (th_trace); 6456 } 6457 return (NULL); 6458 } 6459 6460 void 6461 ill_trace_ref(ill_t *ill) 6462 { 6463 int bucket_id; 6464 th_trace_t *th_trace; 6465 6466 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6467 if (ill->ill_trace_disable) 6468 return; 6469 /* 6470 * Attempt to locate the trace buffer for the curthread. 6471 * If it does not exist, then allocate a new trace buffer 6472 * and link it in list of trace bufs for this ill, at the head 6473 */ 6474 th_trace = th_trace_ill_lookup(ill); 6475 if (th_trace == NULL) { 6476 bucket_id = IP_TR_HASH(curthread); 6477 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6478 KM_NOSLEEP); 6479 if (th_trace == NULL) { 6480 ill->ill_trace_disable = B_TRUE; 6481 ill_trace_cleanup(ill); 6482 return; 6483 } 6484 th_trace->th_id = curthread; 6485 th_trace->th_next = ill->ill_trace[bucket_id]; 6486 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6487 if (th_trace->th_next != NULL) 6488 th_trace->th_next->th_prev = &th_trace->th_next; 6489 ill->ill_trace[bucket_id] = th_trace; 6490 } 6491 ASSERT(th_trace->th_refcnt >= 0 && 6492 th_trace->th_refcnt < TR_BUF_MAX - 1); 6493 6494 th_trace->th_refcnt++; 6495 th_trace_rrecord(th_trace); 6496 } 6497 6498 void 6499 ill_untrace_ref(ill_t *ill) 6500 { 6501 th_trace_t *th_trace; 6502 6503 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6504 6505 if (ill->ill_trace_disable) 6506 return; 6507 th_trace = th_trace_ill_lookup(ill); 6508 ASSERT(th_trace != NULL); 6509 ASSERT(th_trace->th_refcnt > 0); 6510 6511 th_trace->th_refcnt--; 6512 th_trace_rrecord(th_trace); 6513 } 6514 6515 /* 6516 * Verify that this thread has no refs to the ipif and free 6517 * the trace buffers 6518 */ 6519 /* ARGSUSED */ 6520 void 6521 ipif_thread_exit(ipif_t *ipif, void *dummy) 6522 { 6523 th_trace_t *th_trace; 6524 6525 mutex_enter(&ipif->ipif_ill->ill_lock); 6526 6527 th_trace = th_trace_ipif_lookup(ipif); 6528 if (th_trace == NULL) { 6529 mutex_exit(&ipif->ipif_ill->ill_lock); 6530 return; 6531 } 6532 ASSERT(th_trace->th_refcnt == 0); 6533 /* unlink th_trace and free it */ 6534 *th_trace->th_prev = th_trace->th_next; 6535 if (th_trace->th_next != NULL) 6536 th_trace->th_next->th_prev = th_trace->th_prev; 6537 th_trace->th_next = NULL; 6538 th_trace->th_prev = NULL; 6539 kmem_free(th_trace, sizeof (th_trace_t)); 6540 6541 mutex_exit(&ipif->ipif_ill->ill_lock); 6542 } 6543 6544 /* 6545 * Verify that this thread has no refs to the ill and free 6546 * the trace buffers 6547 */ 6548 /* ARGSUSED */ 6549 void 6550 ill_thread_exit(ill_t *ill, void *dummy) 6551 { 6552 th_trace_t *th_trace; 6553 6554 mutex_enter(&ill->ill_lock); 6555 6556 th_trace = th_trace_ill_lookup(ill); 6557 if (th_trace == NULL) { 6558 mutex_exit(&ill->ill_lock); 6559 return; 6560 } 6561 ASSERT(th_trace->th_refcnt == 0); 6562 /* unlink th_trace and free it */ 6563 *th_trace->th_prev = th_trace->th_next; 6564 if (th_trace->th_next != NULL) 6565 th_trace->th_next->th_prev = th_trace->th_prev; 6566 th_trace->th_next = NULL; 6567 th_trace->th_prev = NULL; 6568 kmem_free(th_trace, sizeof (th_trace_t)); 6569 6570 mutex_exit(&ill->ill_lock); 6571 } 6572 #endif 6573 6574 #ifdef ILL_DEBUG 6575 void 6576 ip_thread_exit(ip_stack_t *ipst) 6577 { 6578 ill_t *ill; 6579 ipif_t *ipif; 6580 ill_walk_context_t ctx; 6581 6582 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6583 ill = ILL_START_WALK_ALL(&ctx, ipst); 6584 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6585 for (ipif = ill->ill_ipif; ipif != NULL; 6586 ipif = ipif->ipif_next) { 6587 ipif_thread_exit(ipif, NULL); 6588 } 6589 ill_thread_exit(ill, NULL); 6590 } 6591 rw_exit(&ipst->ips_ill_g_lock); 6592 6593 ire_walk(ire_thread_exit, NULL, ipst); 6594 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6595 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6596 } 6597 6598 /* 6599 * Called when ipif is unplumbed or when memory alloc fails 6600 */ 6601 void 6602 ipif_trace_cleanup(ipif_t *ipif) 6603 { 6604 int i; 6605 th_trace_t *th_trace; 6606 th_trace_t *th_trace_next; 6607 6608 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6609 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6610 th_trace = th_trace_next) { 6611 th_trace_next = th_trace->th_next; 6612 kmem_free(th_trace, sizeof (th_trace_t)); 6613 } 6614 ipif->ipif_trace[i] = NULL; 6615 } 6616 } 6617 6618 /* 6619 * Called when ill is unplumbed or when memory alloc fails 6620 */ 6621 void 6622 ill_trace_cleanup(ill_t *ill) 6623 { 6624 int i; 6625 th_trace_t *th_trace; 6626 th_trace_t *th_trace_next; 6627 6628 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6629 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6630 th_trace = th_trace_next) { 6631 th_trace_next = th_trace->th_next; 6632 kmem_free(th_trace, sizeof (th_trace_t)); 6633 } 6634 ill->ill_trace[i] = NULL; 6635 } 6636 } 6637 6638 #else 6639 void ip_thread_exit(void) {} 6640 #endif 6641 6642 void 6643 ipif_refhold_locked(ipif_t *ipif) 6644 { 6645 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6646 ipif->ipif_refcnt++; 6647 IPIF_TRACE_REF(ipif); 6648 } 6649 6650 void 6651 ipif_refhold(ipif_t *ipif) 6652 { 6653 ill_t *ill; 6654 6655 ill = ipif->ipif_ill; 6656 mutex_enter(&ill->ill_lock); 6657 ipif->ipif_refcnt++; 6658 IPIF_TRACE_REF(ipif); 6659 mutex_exit(&ill->ill_lock); 6660 } 6661 6662 /* 6663 * Must not be called while holding any locks. Otherwise if this is 6664 * the last reference to be released there is a chance of recursive mutex 6665 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6666 * to restart an ioctl. 6667 */ 6668 void 6669 ipif_refrele(ipif_t *ipif) 6670 { 6671 ill_t *ill; 6672 6673 ill = ipif->ipif_ill; 6674 6675 mutex_enter(&ill->ill_lock); 6676 ASSERT(ipif->ipif_refcnt != 0); 6677 ipif->ipif_refcnt--; 6678 IPIF_UNTRACE_REF(ipif); 6679 if (ipif->ipif_refcnt != 0) { 6680 mutex_exit(&ill->ill_lock); 6681 return; 6682 } 6683 6684 /* Drops the ill_lock */ 6685 ipif_ill_refrele_tail(ill); 6686 } 6687 6688 ipif_t * 6689 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6690 { 6691 ipif_t *ipif; 6692 6693 mutex_enter(&ill->ill_lock); 6694 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6695 ipif != NULL; ipif = ipif->ipif_next) { 6696 if (!IPIF_CAN_LOOKUP(ipif)) 6697 continue; 6698 ipif_refhold_locked(ipif); 6699 mutex_exit(&ill->ill_lock); 6700 return (ipif); 6701 } 6702 mutex_exit(&ill->ill_lock); 6703 return (NULL); 6704 } 6705 6706 /* 6707 * TODO: make this table extendible at run time 6708 * Return a pointer to the mac type info for 'mac_type' 6709 */ 6710 static ip_m_t * 6711 ip_m_lookup(t_uscalar_t mac_type) 6712 { 6713 ip_m_t *ipm; 6714 6715 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6716 if (ipm->ip_m_mac_type == mac_type) 6717 return (ipm); 6718 return (NULL); 6719 } 6720 6721 /* 6722 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6723 * ipif_arg is passed in to associate it with the correct interface. 6724 * We may need to restart this operation if the ipif cannot be looked up 6725 * due to an exclusive operation that is currently in progress. The restart 6726 * entry point is specified by 'func' 6727 */ 6728 int 6729 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6730 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6731 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6732 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6733 { 6734 ire_t *ire; 6735 ire_t *gw_ire = NULL; 6736 ipif_t *ipif = NULL; 6737 boolean_t ipif_refheld = B_FALSE; 6738 uint_t type; 6739 int match_flags = MATCH_IRE_TYPE; 6740 int error; 6741 tsol_gc_t *gc = NULL; 6742 tsol_gcgrp_t *gcgrp = NULL; 6743 boolean_t gcgrp_xtraref = B_FALSE; 6744 6745 ip1dbg(("ip_rt_add:")); 6746 6747 if (ire_arg != NULL) 6748 *ire_arg = NULL; 6749 6750 /* 6751 * If this is the case of RTF_HOST being set, then we set the netmask 6752 * to all ones (regardless if one was supplied). 6753 */ 6754 if (flags & RTF_HOST) 6755 mask = IP_HOST_MASK; 6756 6757 /* 6758 * Prevent routes with a zero gateway from being created (since 6759 * interfaces can currently be plumbed and brought up no assigned 6760 * address). 6761 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6762 */ 6763 if (gw_addr == 0 && src_ipif == NULL) 6764 return (ENETUNREACH); 6765 /* 6766 * Get the ipif, if any, corresponding to the gw_addr 6767 */ 6768 if (gw_addr != 0) { 6769 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6770 &error, ipst); 6771 if (ipif != NULL) { 6772 if (IS_VNI(ipif->ipif_ill)) { 6773 ipif_refrele(ipif); 6774 return (EINVAL); 6775 } 6776 ipif_refheld = B_TRUE; 6777 } else if (error == EINPROGRESS) { 6778 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6779 return (EINPROGRESS); 6780 } else { 6781 error = 0; 6782 } 6783 } 6784 6785 if (ipif != NULL) { 6786 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6787 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6788 } else { 6789 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6790 } 6791 6792 /* 6793 * GateD will attempt to create routes with a loopback interface 6794 * address as the gateway and with RTF_GATEWAY set. We allow 6795 * these routes to be added, but create them as interface routes 6796 * since the gateway is an interface address. 6797 */ 6798 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6799 flags &= ~RTF_GATEWAY; 6800 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6801 mask == IP_HOST_MASK) { 6802 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6803 ALL_ZONES, NULL, match_flags, ipst); 6804 if (ire != NULL) { 6805 ire_refrele(ire); 6806 if (ipif_refheld) 6807 ipif_refrele(ipif); 6808 return (EEXIST); 6809 } 6810 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6811 "for 0x%x\n", (void *)ipif, 6812 ipif->ipif_ire_type, 6813 ntohl(ipif->ipif_lcl_addr))); 6814 ire = ire_create( 6815 (uchar_t *)&dst_addr, /* dest address */ 6816 (uchar_t *)&mask, /* mask */ 6817 (uchar_t *)&ipif->ipif_src_addr, 6818 NULL, /* no gateway */ 6819 NULL, 6820 &ipif->ipif_mtu, 6821 NULL, 6822 ipif->ipif_rq, /* recv-from queue */ 6823 NULL, /* no send-to queue */ 6824 ipif->ipif_ire_type, /* LOOPBACK */ 6825 NULL, 6826 ipif, 6827 NULL, 6828 0, 6829 0, 6830 0, 6831 (ipif->ipif_flags & IPIF_PRIVATE) ? 6832 RTF_PRIVATE : 0, 6833 &ire_uinfo_null, 6834 NULL, 6835 NULL, 6836 ipst); 6837 6838 if (ire == NULL) { 6839 if (ipif_refheld) 6840 ipif_refrele(ipif); 6841 return (ENOMEM); 6842 } 6843 error = ire_add(&ire, q, mp, func, B_FALSE); 6844 if (error == 0) 6845 goto save_ire; 6846 if (ipif_refheld) 6847 ipif_refrele(ipif); 6848 return (error); 6849 6850 } 6851 } 6852 6853 /* 6854 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6855 * and the gateway address provided is one of the system's interface 6856 * addresses. By using the routing socket interface and supplying an 6857 * RTA_IFP sockaddr with an interface index, an alternate method of 6858 * specifying an interface route to be created is available which uses 6859 * the interface index that specifies the outgoing interface rather than 6860 * the address of an outgoing interface (which may not be able to 6861 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6862 * flag, routes can be specified which not only specify the next-hop to 6863 * be used when routing to a certain prefix, but also which outgoing 6864 * interface should be used. 6865 * 6866 * Previously, interfaces would have unique addresses assigned to them 6867 * and so the address assigned to a particular interface could be used 6868 * to identify a particular interface. One exception to this was the 6869 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6870 * 6871 * With the advent of IPv6 and its link-local addresses, this 6872 * restriction was relaxed and interfaces could share addresses between 6873 * themselves. In fact, typically all of the link-local interfaces on 6874 * an IPv6 node or router will have the same link-local address. In 6875 * order to differentiate between these interfaces, the use of an 6876 * interface index is necessary and this index can be carried inside a 6877 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6878 * of using the interface index, however, is that all of the ipif's that 6879 * are part of an ill have the same index and so the RTA_IFP sockaddr 6880 * cannot be used to differentiate between ipif's (or logical 6881 * interfaces) that belong to the same ill (physical interface). 6882 * 6883 * For example, in the following case involving IPv4 interfaces and 6884 * logical interfaces 6885 * 6886 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6887 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6888 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6889 * 6890 * the ipif's corresponding to each of these interface routes can be 6891 * uniquely identified by the "gateway" (actually interface address). 6892 * 6893 * In this case involving multiple IPv6 default routes to a particular 6894 * link-local gateway, the use of RTA_IFP is necessary to specify which 6895 * default route is of interest: 6896 * 6897 * default fe80::123:4567:89ab:cdef U if0 6898 * default fe80::123:4567:89ab:cdef U if1 6899 */ 6900 6901 /* RTF_GATEWAY not set */ 6902 if (!(flags & RTF_GATEWAY)) { 6903 queue_t *stq; 6904 queue_t *rfq = NULL; 6905 ill_t *in_ill = NULL; 6906 6907 if (sp != NULL) { 6908 ip2dbg(("ip_rt_add: gateway security attributes " 6909 "cannot be set with interface route\n")); 6910 if (ipif_refheld) 6911 ipif_refrele(ipif); 6912 return (EINVAL); 6913 } 6914 6915 /* 6916 * As the interface index specified with the RTA_IFP sockaddr is 6917 * the same for all ipif's off of an ill, the matching logic 6918 * below uses MATCH_IRE_ILL if such an index was specified. 6919 * This means that routes sharing the same prefix when added 6920 * using a RTA_IFP sockaddr must have distinct interface 6921 * indices (namely, they must be on distinct ill's). 6922 * 6923 * On the other hand, since the gateway address will usually be 6924 * different for each ipif on the system, the matching logic 6925 * uses MATCH_IRE_IPIF in the case of a traditional interface 6926 * route. This means that interface routes for the same prefix 6927 * can be created if they belong to distinct ipif's and if a 6928 * RTA_IFP sockaddr is not present. 6929 */ 6930 if (ipif_arg != NULL) { 6931 if (ipif_refheld) { 6932 ipif_refrele(ipif); 6933 ipif_refheld = B_FALSE; 6934 } 6935 ipif = ipif_arg; 6936 match_flags |= MATCH_IRE_ILL; 6937 } else { 6938 /* 6939 * Check the ipif corresponding to the gw_addr 6940 */ 6941 if (ipif == NULL) 6942 return (ENETUNREACH); 6943 match_flags |= MATCH_IRE_IPIF; 6944 } 6945 ASSERT(ipif != NULL); 6946 /* 6947 * If src_ipif is not NULL, we have to create 6948 * an ire with non-null ire_in_ill value 6949 */ 6950 if (src_ipif != NULL) { 6951 in_ill = src_ipif->ipif_ill; 6952 } 6953 6954 /* 6955 * We check for an existing entry at this point. 6956 * 6957 * Since a netmask isn't passed in via the ioctl interface 6958 * (SIOCADDRT), we don't check for a matching netmask in that 6959 * case. 6960 */ 6961 if (!ioctl_msg) 6962 match_flags |= MATCH_IRE_MASK; 6963 if (src_ipif != NULL) { 6964 /* Look up in the special table */ 6965 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6966 ipif, src_ipif->ipif_ill, match_flags); 6967 } else { 6968 ire = ire_ftable_lookup(dst_addr, mask, 0, 6969 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6970 NULL, match_flags, ipst); 6971 } 6972 if (ire != NULL) { 6973 ire_refrele(ire); 6974 if (ipif_refheld) 6975 ipif_refrele(ipif); 6976 return (EEXIST); 6977 } 6978 6979 if (src_ipif != NULL) { 6980 /* 6981 * Create the special ire for the IRE table 6982 * which hangs out of ire_in_ill. This ire 6983 * is in-between IRE_CACHE and IRE_INTERFACE. 6984 * Thus rfq is non-NULL. 6985 */ 6986 rfq = ipif->ipif_rq; 6987 } 6988 /* Create the usual interface ires */ 6989 6990 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6991 ? ipif->ipif_rq : ipif->ipif_wq; 6992 6993 /* 6994 * Create a copy of the IRE_LOOPBACK, 6995 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6996 * the modified address and netmask. 6997 */ 6998 ire = ire_create( 6999 (uchar_t *)&dst_addr, 7000 (uint8_t *)&mask, 7001 (uint8_t *)&ipif->ipif_src_addr, 7002 NULL, 7003 NULL, 7004 &ipif->ipif_mtu, 7005 NULL, 7006 rfq, 7007 stq, 7008 ipif->ipif_net_type, 7009 ipif->ipif_resolver_mp, 7010 ipif, 7011 in_ill, 7012 0, 7013 0, 7014 0, 7015 flags, 7016 &ire_uinfo_null, 7017 NULL, 7018 NULL, 7019 ipst); 7020 if (ire == NULL) { 7021 if (ipif_refheld) 7022 ipif_refrele(ipif); 7023 return (ENOMEM); 7024 } 7025 7026 /* 7027 * Some software (for example, GateD and Sun Cluster) attempts 7028 * to create (what amount to) IRE_PREFIX routes with the 7029 * loopback address as the gateway. This is primarily done to 7030 * set up prefixes with the RTF_REJECT flag set (for example, 7031 * when generating aggregate routes.) 7032 * 7033 * If the IRE type (as defined by ipif->ipif_net_type) is 7034 * IRE_LOOPBACK, then we map the request into a 7035 * IRE_IF_NORESOLVER. 7036 * 7037 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7038 * routine, but rather using ire_create() directly. 7039 * 7040 */ 7041 if (ipif->ipif_net_type == IRE_LOOPBACK) 7042 ire->ire_type = IRE_IF_NORESOLVER; 7043 7044 error = ire_add(&ire, q, mp, func, B_FALSE); 7045 if (error == 0) 7046 goto save_ire; 7047 7048 /* 7049 * In the result of failure, ire_add() will have already 7050 * deleted the ire in question, so there is no need to 7051 * do that here. 7052 */ 7053 if (ipif_refheld) 7054 ipif_refrele(ipif); 7055 return (error); 7056 } 7057 if (ipif_refheld) { 7058 ipif_refrele(ipif); 7059 ipif_refheld = B_FALSE; 7060 } 7061 7062 if (src_ipif != NULL) { 7063 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7064 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7065 return (EINVAL); 7066 } 7067 /* 7068 * Get an interface IRE for the specified gateway. 7069 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7070 * gateway, it is currently unreachable and we fail the request 7071 * accordingly. 7072 */ 7073 ipif = ipif_arg; 7074 if (ipif_arg != NULL) 7075 match_flags |= MATCH_IRE_ILL; 7076 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7077 ALL_ZONES, 0, NULL, match_flags, ipst); 7078 if (gw_ire == NULL) 7079 return (ENETUNREACH); 7080 7081 /* 7082 * We create one of three types of IREs as a result of this request 7083 * based on the netmask. A netmask of all ones (which is automatically 7084 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7085 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7086 * created. Otherwise, an IRE_PREFIX route is created for the 7087 * destination prefix. 7088 */ 7089 if (mask == IP_HOST_MASK) 7090 type = IRE_HOST; 7091 else if (mask == 0) 7092 type = IRE_DEFAULT; 7093 else 7094 type = IRE_PREFIX; 7095 7096 /* check for a duplicate entry */ 7097 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7098 NULL, ALL_ZONES, 0, NULL, 7099 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7100 if (ire != NULL) { 7101 ire_refrele(gw_ire); 7102 ire_refrele(ire); 7103 return (EEXIST); 7104 } 7105 7106 /* Security attribute exists */ 7107 if (sp != NULL) { 7108 tsol_gcgrp_addr_t ga; 7109 7110 /* find or create the gateway credentials group */ 7111 ga.ga_af = AF_INET; 7112 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7113 7114 /* we hold reference to it upon success */ 7115 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7116 if (gcgrp == NULL) { 7117 ire_refrele(gw_ire); 7118 return (ENOMEM); 7119 } 7120 7121 /* 7122 * Create and add the security attribute to the group; a 7123 * reference to the group is made upon allocating a new 7124 * entry successfully. If it finds an already-existing 7125 * entry for the security attribute in the group, it simply 7126 * returns it and no new reference is made to the group. 7127 */ 7128 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7129 if (gc == NULL) { 7130 /* release reference held by gcgrp_lookup */ 7131 GCGRP_REFRELE(gcgrp); 7132 ire_refrele(gw_ire); 7133 return (ENOMEM); 7134 } 7135 } 7136 7137 /* Create the IRE. */ 7138 ire = ire_create( 7139 (uchar_t *)&dst_addr, /* dest address */ 7140 (uchar_t *)&mask, /* mask */ 7141 /* src address assigned by the caller? */ 7142 (uchar_t *)(((src_addr != INADDR_ANY) && 7143 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7144 (uchar_t *)&gw_addr, /* gateway address */ 7145 NULL, /* no in-srcaddress */ 7146 &gw_ire->ire_max_frag, 7147 NULL, /* no Fast Path header */ 7148 NULL, /* no recv-from queue */ 7149 NULL, /* no send-to queue */ 7150 (ushort_t)type, /* IRE type */ 7151 NULL, 7152 ipif_arg, 7153 NULL, 7154 0, 7155 0, 7156 0, 7157 flags, 7158 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7159 gc, /* security attribute */ 7160 NULL, 7161 ipst); 7162 7163 /* 7164 * The ire holds a reference to the 'gc' and the 'gc' holds a 7165 * reference to the 'gcgrp'. We can now release the extra reference 7166 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7167 */ 7168 if (gcgrp_xtraref) 7169 GCGRP_REFRELE(gcgrp); 7170 if (ire == NULL) { 7171 if (gc != NULL) 7172 GC_REFRELE(gc); 7173 ire_refrele(gw_ire); 7174 return (ENOMEM); 7175 } 7176 7177 /* 7178 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7179 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7180 */ 7181 7182 /* Add the new IRE. */ 7183 error = ire_add(&ire, q, mp, func, B_FALSE); 7184 if (error != 0) { 7185 /* 7186 * In the result of failure, ire_add() will have already 7187 * deleted the ire in question, so there is no need to 7188 * do that here. 7189 */ 7190 ire_refrele(gw_ire); 7191 return (error); 7192 } 7193 7194 if (flags & RTF_MULTIRT) { 7195 /* 7196 * Invoke the CGTP (multirouting) filtering module 7197 * to add the dst address in the filtering database. 7198 * Replicated inbound packets coming from that address 7199 * will be filtered to discard the duplicates. 7200 * It is not necessary to call the CGTP filter hook 7201 * when the dst address is a broadcast or multicast, 7202 * because an IP source address cannot be a broadcast 7203 * or a multicast. 7204 */ 7205 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7206 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7207 if (ire_dst != NULL) { 7208 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7209 ire_refrele(ire_dst); 7210 goto save_ire; 7211 } 7212 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7213 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7214 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7215 ire->ire_addr, 7216 ire->ire_gateway_addr, 7217 ire->ire_src_addr, 7218 gw_ire->ire_src_addr); 7219 if (res != 0) { 7220 ire_refrele(gw_ire); 7221 ire_delete(ire); 7222 return (res); 7223 } 7224 } 7225 } 7226 7227 /* 7228 * Now that the prefix IRE entry has been created, delete any 7229 * existing gateway IRE cache entries as well as any IRE caches 7230 * using the gateway, and force them to be created through 7231 * ip_newroute. 7232 */ 7233 if (gc != NULL) { 7234 ASSERT(gcgrp != NULL); 7235 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7236 } 7237 7238 save_ire: 7239 if (gw_ire != NULL) { 7240 ire_refrele(gw_ire); 7241 } 7242 /* 7243 * We do not do save_ire for the routes added with RTA_SRCIFP 7244 * flag. This route is only added and deleted by mipagent. 7245 * So, for simplicity of design, we refrain from saving 7246 * ires that are created with srcif value. This may change 7247 * in future if we find more usage of srcifp feature. 7248 */ 7249 if (ipif != NULL && src_ipif == NULL) { 7250 /* 7251 * Save enough information so that we can recreate the IRE if 7252 * the interface goes down and then up. The metrics associated 7253 * with the route will be saved as well when rts_setmetrics() is 7254 * called after the IRE has been created. In the case where 7255 * memory cannot be allocated, none of this information will be 7256 * saved. 7257 */ 7258 ipif_save_ire(ipif, ire); 7259 } 7260 if (ioctl_msg) 7261 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7262 if (ire_arg != NULL) { 7263 /* 7264 * Store the ire that was successfully added into where ire_arg 7265 * points to so that callers don't have to look it up 7266 * themselves (but they are responsible for ire_refrele()ing 7267 * the ire when they are finished with it). 7268 */ 7269 *ire_arg = ire; 7270 } else { 7271 ire_refrele(ire); /* Held in ire_add */ 7272 } 7273 if (ipif_refheld) 7274 ipif_refrele(ipif); 7275 return (0); 7276 } 7277 7278 /* 7279 * ip_rt_delete is called to delete an IPv4 route. 7280 * ipif_arg is passed in to associate it with the correct interface. 7281 * src_ipif is passed to associate the incoming interface of the packet. 7282 * We may need to restart this operation if the ipif cannot be looked up 7283 * due to an exclusive operation that is currently in progress. The restart 7284 * entry point is specified by 'func' 7285 */ 7286 /* ARGSUSED4 */ 7287 int 7288 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7289 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7290 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7291 ip_stack_t *ipst) 7292 { 7293 ire_t *ire = NULL; 7294 ipif_t *ipif; 7295 boolean_t ipif_refheld = B_FALSE; 7296 uint_t type; 7297 uint_t match_flags = MATCH_IRE_TYPE; 7298 int err = 0; 7299 7300 ip1dbg(("ip_rt_delete:")); 7301 /* 7302 * If this is the case of RTF_HOST being set, then we set the netmask 7303 * to all ones. Otherwise, we use the netmask if one was supplied. 7304 */ 7305 if (flags & RTF_HOST) { 7306 mask = IP_HOST_MASK; 7307 match_flags |= MATCH_IRE_MASK; 7308 } else if (rtm_addrs & RTA_NETMASK) { 7309 match_flags |= MATCH_IRE_MASK; 7310 } 7311 7312 /* 7313 * Note that RTF_GATEWAY is never set on a delete, therefore 7314 * we check if the gateway address is one of our interfaces first, 7315 * and fall back on RTF_GATEWAY routes. 7316 * 7317 * This makes it possible to delete an original 7318 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7319 * 7320 * As the interface index specified with the RTA_IFP sockaddr is the 7321 * same for all ipif's off of an ill, the matching logic below uses 7322 * MATCH_IRE_ILL if such an index was specified. This means a route 7323 * sharing the same prefix and interface index as the the route 7324 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7325 * is specified in the request. 7326 * 7327 * On the other hand, since the gateway address will usually be 7328 * different for each ipif on the system, the matching logic 7329 * uses MATCH_IRE_IPIF in the case of a traditional interface 7330 * route. This means that interface routes for the same prefix can be 7331 * uniquely identified if they belong to distinct ipif's and if a 7332 * RTA_IFP sockaddr is not present. 7333 * 7334 * For more detail on specifying routes by gateway address and by 7335 * interface index, see the comments in ip_rt_add(). 7336 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7337 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7338 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7339 * succeed. 7340 */ 7341 if (src_ipif != NULL) { 7342 if (ipif_arg == NULL && gw_addr != 0) { 7343 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7344 q, mp, func, &err, ipst); 7345 if (ipif_arg != NULL) 7346 ipif_refheld = B_TRUE; 7347 } 7348 if (ipif_arg == NULL) { 7349 err = (err == EINPROGRESS) ? err : ESRCH; 7350 return (err); 7351 } 7352 ipif = ipif_arg; 7353 } else { 7354 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7355 q, mp, func, &err, ipst); 7356 if (ipif != NULL) 7357 ipif_refheld = B_TRUE; 7358 else if (err == EINPROGRESS) 7359 return (err); 7360 else 7361 err = 0; 7362 } 7363 if (ipif != NULL) { 7364 if (ipif_arg != NULL) { 7365 if (ipif_refheld) { 7366 ipif_refrele(ipif); 7367 ipif_refheld = B_FALSE; 7368 } 7369 ipif = ipif_arg; 7370 match_flags |= MATCH_IRE_ILL; 7371 } else { 7372 match_flags |= MATCH_IRE_IPIF; 7373 } 7374 if (src_ipif != NULL) { 7375 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7376 ipif, src_ipif->ipif_ill, match_flags); 7377 } else { 7378 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7379 ire = ire_ctable_lookup(dst_addr, 0, 7380 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7381 match_flags, ipst); 7382 } 7383 if (ire == NULL) { 7384 ire = ire_ftable_lookup(dst_addr, mask, 0, 7385 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7386 NULL, match_flags, ipst); 7387 } 7388 } 7389 } 7390 7391 if (ire == NULL) { 7392 /* 7393 * At this point, the gateway address is not one of our own 7394 * addresses or a matching interface route was not found. We 7395 * set the IRE type to lookup based on whether 7396 * this is a host route, a default route or just a prefix. 7397 * 7398 * If an ipif_arg was passed in, then the lookup is based on an 7399 * interface index so MATCH_IRE_ILL is added to match_flags. 7400 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7401 * set as the route being looked up is not a traditional 7402 * interface route. 7403 * Since we do not add gateway route with srcipif, we don't 7404 * expect to find it either. 7405 */ 7406 if (src_ipif != NULL) { 7407 if (ipif_refheld) 7408 ipif_refrele(ipif); 7409 return (ESRCH); 7410 } else { 7411 match_flags &= ~MATCH_IRE_IPIF; 7412 match_flags |= MATCH_IRE_GW; 7413 if (ipif_arg != NULL) 7414 match_flags |= MATCH_IRE_ILL; 7415 if (mask == IP_HOST_MASK) 7416 type = IRE_HOST; 7417 else if (mask == 0) 7418 type = IRE_DEFAULT; 7419 else 7420 type = IRE_PREFIX; 7421 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7422 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7423 ipst); 7424 } 7425 } 7426 7427 if (ipif_refheld) 7428 ipif_refrele(ipif); 7429 7430 /* ipif is not refheld anymore */ 7431 if (ire == NULL) 7432 return (ESRCH); 7433 7434 if (ire->ire_flags & RTF_MULTIRT) { 7435 /* 7436 * Invoke the CGTP (multirouting) filtering module 7437 * to remove the dst address from the filtering database. 7438 * Packets coming from that address will no longer be 7439 * filtered to remove duplicates. 7440 */ 7441 if (ip_cgtp_filter_ops != NULL && 7442 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7443 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7444 ire->ire_addr, ire->ire_gateway_addr); 7445 } 7446 ip_cgtp_bcast_delete(ire, ipst); 7447 } 7448 7449 ipif = ire->ire_ipif; 7450 /* 7451 * Removing from ipif_saved_ire_mp is not necessary 7452 * when src_ipif being non-NULL. ip_rt_add does not 7453 * save the ires which src_ipif being non-NULL. 7454 */ 7455 if (ipif != NULL && src_ipif == NULL) { 7456 ipif_remove_ire(ipif, ire); 7457 } 7458 if (ioctl_msg) 7459 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7460 ire_delete(ire); 7461 ire_refrele(ire); 7462 return (err); 7463 } 7464 7465 /* 7466 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7467 */ 7468 /* ARGSUSED */ 7469 int 7470 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7471 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7472 { 7473 ipaddr_t dst_addr; 7474 ipaddr_t gw_addr; 7475 ipaddr_t mask; 7476 int error = 0; 7477 mblk_t *mp1; 7478 struct rtentry *rt; 7479 ipif_t *ipif = NULL; 7480 ip_stack_t *ipst; 7481 7482 ASSERT(q->q_next == NULL); 7483 ipst = CONNQ_TO_IPST(q); 7484 7485 ip1dbg(("ip_siocaddrt:")); 7486 /* Existence of mp1 verified in ip_wput_nondata */ 7487 mp1 = mp->b_cont->b_cont; 7488 rt = (struct rtentry *)mp1->b_rptr; 7489 7490 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7491 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7492 7493 /* 7494 * If the RTF_HOST flag is on, this is a request to assign a gateway 7495 * to a particular host address. In this case, we set the netmask to 7496 * all ones for the particular destination address. Otherwise, 7497 * determine the netmask to be used based on dst_addr and the interfaces 7498 * in use. 7499 */ 7500 if (rt->rt_flags & RTF_HOST) { 7501 mask = IP_HOST_MASK; 7502 } else { 7503 /* 7504 * Note that ip_subnet_mask returns a zero mask in the case of 7505 * default (an all-zeroes address). 7506 */ 7507 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7508 } 7509 7510 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7511 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7512 if (ipif != NULL) 7513 ipif_refrele(ipif); 7514 return (error); 7515 } 7516 7517 /* 7518 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7519 */ 7520 /* ARGSUSED */ 7521 int 7522 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7523 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7524 { 7525 ipaddr_t dst_addr; 7526 ipaddr_t gw_addr; 7527 ipaddr_t mask; 7528 int error; 7529 mblk_t *mp1; 7530 struct rtentry *rt; 7531 ipif_t *ipif = NULL; 7532 ip_stack_t *ipst; 7533 7534 ASSERT(q->q_next == NULL); 7535 ipst = CONNQ_TO_IPST(q); 7536 7537 ip1dbg(("ip_siocdelrt:")); 7538 /* Existence of mp1 verified in ip_wput_nondata */ 7539 mp1 = mp->b_cont->b_cont; 7540 rt = (struct rtentry *)mp1->b_rptr; 7541 7542 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7543 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7544 7545 /* 7546 * If the RTF_HOST flag is on, this is a request to delete a gateway 7547 * to a particular host address. In this case, we set the netmask to 7548 * all ones for the particular destination address. Otherwise, 7549 * determine the netmask to be used based on dst_addr and the interfaces 7550 * in use. 7551 */ 7552 if (rt->rt_flags & RTF_HOST) { 7553 mask = IP_HOST_MASK; 7554 } else { 7555 /* 7556 * Note that ip_subnet_mask returns a zero mask in the case of 7557 * default (an all-zeroes address). 7558 */ 7559 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7560 } 7561 7562 error = ip_rt_delete(dst_addr, mask, gw_addr, 7563 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7564 B_TRUE, q, mp, ip_process_ioctl, ipst); 7565 if (ipif != NULL) 7566 ipif_refrele(ipif); 7567 return (error); 7568 } 7569 7570 /* 7571 * Enqueue the mp onto the ipsq, chained by b_next. 7572 * b_prev stores the function to be executed later, and b_queue the queue 7573 * where this mp originated. 7574 */ 7575 void 7576 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7577 ill_t *pending_ill) 7578 { 7579 conn_t *connp = NULL; 7580 7581 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7582 ASSERT(func != NULL); 7583 7584 mp->b_queue = q; 7585 mp->b_prev = (void *)func; 7586 mp->b_next = NULL; 7587 7588 switch (type) { 7589 case CUR_OP: 7590 if (ipsq->ipsq_mptail != NULL) { 7591 ASSERT(ipsq->ipsq_mphead != NULL); 7592 ipsq->ipsq_mptail->b_next = mp; 7593 } else { 7594 ASSERT(ipsq->ipsq_mphead == NULL); 7595 ipsq->ipsq_mphead = mp; 7596 } 7597 ipsq->ipsq_mptail = mp; 7598 break; 7599 7600 case NEW_OP: 7601 if (ipsq->ipsq_xopq_mptail != NULL) { 7602 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7603 ipsq->ipsq_xopq_mptail->b_next = mp; 7604 } else { 7605 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7606 ipsq->ipsq_xopq_mphead = mp; 7607 } 7608 ipsq->ipsq_xopq_mptail = mp; 7609 break; 7610 default: 7611 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7612 } 7613 7614 if (CONN_Q(q) && pending_ill != NULL) { 7615 connp = Q_TO_CONN(q); 7616 7617 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7618 connp->conn_oper_pending_ill = pending_ill; 7619 } 7620 } 7621 7622 /* 7623 * Return the mp at the head of the ipsq. After emptying the ipsq 7624 * look at the next ioctl, if this ioctl is complete. Otherwise 7625 * return, we will resume when we complete the current ioctl. 7626 * The current ioctl will wait till it gets a response from the 7627 * driver below. 7628 */ 7629 static mblk_t * 7630 ipsq_dq(ipsq_t *ipsq) 7631 { 7632 mblk_t *mp; 7633 7634 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7635 7636 mp = ipsq->ipsq_mphead; 7637 if (mp != NULL) { 7638 ipsq->ipsq_mphead = mp->b_next; 7639 if (ipsq->ipsq_mphead == NULL) 7640 ipsq->ipsq_mptail = NULL; 7641 mp->b_next = NULL; 7642 return (mp); 7643 } 7644 if (ipsq->ipsq_current_ipif != NULL) 7645 return (NULL); 7646 mp = ipsq->ipsq_xopq_mphead; 7647 if (mp != NULL) { 7648 ipsq->ipsq_xopq_mphead = mp->b_next; 7649 if (ipsq->ipsq_xopq_mphead == NULL) 7650 ipsq->ipsq_xopq_mptail = NULL; 7651 mp->b_next = NULL; 7652 return (mp); 7653 } 7654 return (NULL); 7655 } 7656 7657 /* 7658 * Enter the ipsq corresponding to ill, by waiting synchronously till 7659 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7660 * will have to drain completely before ipsq_enter returns success. 7661 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7662 * and the ipsq_exit logic will start the next enqueued ioctl after 7663 * completion of the current ioctl. If 'force' is used, we don't wait 7664 * for the enqueued ioctls. This is needed when a conn_close wants to 7665 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7666 * of an ill can also use this option. But we dont' use it currently. 7667 */ 7668 #define ENTER_SQ_WAIT_TICKS 100 7669 boolean_t 7670 ipsq_enter(ill_t *ill, boolean_t force) 7671 { 7672 ipsq_t *ipsq; 7673 boolean_t waited_enough = B_FALSE; 7674 7675 /* 7676 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7677 * Since the <ill-ipsq> assocs could change while we wait for the 7678 * writer, it is easier to wait on a fixed global rather than try to 7679 * cv_wait on a changing ipsq. 7680 */ 7681 mutex_enter(&ill->ill_lock); 7682 for (;;) { 7683 if (ill->ill_state_flags & ILL_CONDEMNED) { 7684 mutex_exit(&ill->ill_lock); 7685 return (B_FALSE); 7686 } 7687 7688 ipsq = ill->ill_phyint->phyint_ipsq; 7689 mutex_enter(&ipsq->ipsq_lock); 7690 if (ipsq->ipsq_writer == NULL && 7691 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7692 break; 7693 } else if (ipsq->ipsq_writer != NULL) { 7694 mutex_exit(&ipsq->ipsq_lock); 7695 cv_wait(&ill->ill_cv, &ill->ill_lock); 7696 } else { 7697 mutex_exit(&ipsq->ipsq_lock); 7698 if (force) { 7699 (void) cv_timedwait(&ill->ill_cv, 7700 &ill->ill_lock, 7701 lbolt + ENTER_SQ_WAIT_TICKS); 7702 waited_enough = B_TRUE; 7703 continue; 7704 } else { 7705 cv_wait(&ill->ill_cv, &ill->ill_lock); 7706 } 7707 } 7708 } 7709 7710 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7711 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7712 ipsq->ipsq_writer = curthread; 7713 ipsq->ipsq_reentry_cnt++; 7714 #ifdef ILL_DEBUG 7715 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7716 #endif 7717 mutex_exit(&ipsq->ipsq_lock); 7718 mutex_exit(&ill->ill_lock); 7719 return (B_TRUE); 7720 } 7721 7722 /* 7723 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7724 * certain critical operations like plumbing (i.e. most set ioctls), 7725 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7726 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7727 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7728 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7729 * threads executing in the ipsq. Responses from the driver pertain to the 7730 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7731 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7732 * 7733 * If a thread does not want to reenter the ipsq when it is already writer, 7734 * it must make sure that the specified reentry point to be called later 7735 * when the ipsq is empty, nor any code path starting from the specified reentry 7736 * point must never ever try to enter the ipsq again. Otherwise it can lead 7737 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7738 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7739 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7740 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7741 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7742 * ioctl if the current ioctl has completed. If the current ioctl is still 7743 * in progress it simply returns. The current ioctl could be waiting for 7744 * a response from another module (arp_ or the driver or could be waiting for 7745 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7746 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7747 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7748 * ipsq_current_ipif is clear which happens only on ioctl completion. 7749 */ 7750 7751 /* 7752 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7753 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7754 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7755 * completion. 7756 */ 7757 ipsq_t * 7758 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7759 ipsq_func_t func, int type, boolean_t reentry_ok) 7760 { 7761 ipsq_t *ipsq; 7762 7763 /* Only 1 of ipif or ill can be specified */ 7764 ASSERT((ipif != NULL) ^ (ill != NULL)); 7765 if (ipif != NULL) 7766 ill = ipif->ipif_ill; 7767 7768 /* 7769 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7770 * ipsq of an ill can't change when ill_lock is held. 7771 */ 7772 GRAB_CONN_LOCK(q); 7773 mutex_enter(&ill->ill_lock); 7774 ipsq = ill->ill_phyint->phyint_ipsq; 7775 mutex_enter(&ipsq->ipsq_lock); 7776 7777 /* 7778 * 1. Enter the ipsq if we are already writer and reentry is ok. 7779 * (Note: If the caller does not specify reentry_ok then neither 7780 * 'func' nor any of its callees must ever attempt to enter the ipsq 7781 * again. Otherwise it can lead to an infinite loop 7782 * 2. Enter the ipsq if there is no current writer and this attempted 7783 * entry is part of the current ioctl or operation 7784 * 3. Enter the ipsq if there is no current writer and this is a new 7785 * ioctl (or operation) and the ioctl (or operation) queue is 7786 * empty and there is no ioctl (or operation) currently in progress 7787 */ 7788 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7789 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7790 ipsq->ipsq_current_ipif == NULL))) || 7791 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7792 /* Success. */ 7793 ipsq->ipsq_reentry_cnt++; 7794 ipsq->ipsq_writer = curthread; 7795 mutex_exit(&ipsq->ipsq_lock); 7796 mutex_exit(&ill->ill_lock); 7797 RELEASE_CONN_LOCK(q); 7798 #ifdef ILL_DEBUG 7799 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7800 #endif 7801 return (ipsq); 7802 } 7803 7804 ipsq_enq(ipsq, q, mp, func, type, ill); 7805 7806 mutex_exit(&ipsq->ipsq_lock); 7807 mutex_exit(&ill->ill_lock); 7808 RELEASE_CONN_LOCK(q); 7809 return (NULL); 7810 } 7811 7812 /* 7813 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7814 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7815 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7816 * completion. 7817 * 7818 * This function does a refrele on the ipif/ill. 7819 */ 7820 void 7821 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7822 ipsq_func_t func, int type, boolean_t reentry_ok) 7823 { 7824 ipsq_t *ipsq; 7825 7826 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7827 /* 7828 * Caller must have done a refhold on the ipif. ipif_refrele 7829 * happens on the passed ipif. We can do this since we are 7830 * already exclusive, or we won't access ipif henceforth, Both 7831 * this func and caller will just return if we ipsq_try_enter 7832 * fails above. This is needed because func needs to 7833 * see the correct refcount. Eg. removeif can work only then. 7834 */ 7835 if (ipif != NULL) 7836 ipif_refrele(ipif); 7837 else 7838 ill_refrele(ill); 7839 if (ipsq != NULL) { 7840 (*func)(ipsq, q, mp, NULL); 7841 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7842 } 7843 } 7844 7845 /* 7846 * If there are more than ILL_GRP_CNT ills in a group, 7847 * we use kmem alloc'd buffers, else use the stack 7848 */ 7849 #define ILL_GRP_CNT 14 7850 /* 7851 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7852 * Called by a thread that is currently exclusive on this ipsq. 7853 */ 7854 void 7855 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7856 { 7857 queue_t *q; 7858 mblk_t *mp; 7859 ipsq_func_t func; 7860 int next; 7861 ill_t **ill_list = NULL; 7862 size_t ill_list_size = 0; 7863 int cnt = 0; 7864 boolean_t need_ipsq_free = B_FALSE; 7865 ip_stack_t *ipst = ipsq->ipsq_ipst; 7866 7867 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7868 mutex_enter(&ipsq->ipsq_lock); 7869 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7870 if (ipsq->ipsq_reentry_cnt != 1) { 7871 ipsq->ipsq_reentry_cnt--; 7872 mutex_exit(&ipsq->ipsq_lock); 7873 return; 7874 } 7875 7876 mp = ipsq_dq(ipsq); 7877 while (mp != NULL) { 7878 again: 7879 mutex_exit(&ipsq->ipsq_lock); 7880 func = (ipsq_func_t)mp->b_prev; 7881 q = (queue_t *)mp->b_queue; 7882 mp->b_prev = NULL; 7883 mp->b_queue = NULL; 7884 7885 /* 7886 * If 'q' is an conn queue, it is valid, since we did a 7887 * a refhold on the connp, at the start of the ioctl. 7888 * If 'q' is an ill queue, it is valid, since close of an 7889 * ill will clean up the 'ipsq'. 7890 */ 7891 (*func)(ipsq, q, mp, NULL); 7892 7893 mutex_enter(&ipsq->ipsq_lock); 7894 mp = ipsq_dq(ipsq); 7895 } 7896 7897 mutex_exit(&ipsq->ipsq_lock); 7898 7899 /* 7900 * Need to grab the locks in the right order. Need to 7901 * atomically check (under ipsq_lock) that there are no 7902 * messages before relinquishing the ipsq. Also need to 7903 * atomically wakeup waiters on ill_cv while holding ill_lock. 7904 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7905 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7906 * to grab ill_g_lock as writer. 7907 */ 7908 rw_enter(&ipst->ips_ill_g_lock, 7909 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7910 7911 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7912 if (ipsq->ipsq_refs != 0) { 7913 /* At most 2 ills v4/v6 per phyint */ 7914 cnt = ipsq->ipsq_refs << 1; 7915 ill_list_size = cnt * sizeof (ill_t *); 7916 /* 7917 * If memory allocation fails, we will do the split 7918 * the next time ipsq_exit is called for whatever reason. 7919 * As long as the ipsq_split flag is set the need to 7920 * split is remembered. 7921 */ 7922 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7923 if (ill_list != NULL) 7924 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7925 } 7926 mutex_enter(&ipsq->ipsq_lock); 7927 mp = ipsq_dq(ipsq); 7928 if (mp != NULL) { 7929 /* oops, some message has landed up, we can't get out */ 7930 if (ill_list != NULL) 7931 ill_unlock_ills(ill_list, cnt); 7932 rw_exit(&ipst->ips_ill_g_lock); 7933 if (ill_list != NULL) 7934 kmem_free(ill_list, ill_list_size); 7935 ill_list = NULL; 7936 ill_list_size = 0; 7937 cnt = 0; 7938 goto again; 7939 } 7940 7941 /* 7942 * Split only if no ioctl is pending and if memory alloc succeeded 7943 * above. 7944 */ 7945 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7946 ill_list != NULL) { 7947 /* 7948 * No new ill can join this ipsq since we are holding the 7949 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7950 * ipsq. ill_split_ipsq may fail due to memory shortage. 7951 * If so we will retry on the next ipsq_exit. 7952 */ 7953 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7954 } 7955 7956 /* 7957 * We are holding the ipsq lock, hence no new messages can 7958 * land up on the ipsq, and there are no messages currently. 7959 * Now safe to get out. Wake up waiters and relinquish ipsq 7960 * atomically while holding ill locks. 7961 */ 7962 ipsq->ipsq_writer = NULL; 7963 ipsq->ipsq_reentry_cnt--; 7964 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7965 #ifdef ILL_DEBUG 7966 ipsq->ipsq_depth = 0; 7967 #endif 7968 mutex_exit(&ipsq->ipsq_lock); 7969 /* 7970 * For IPMP this should wake up all ills in this ipsq. 7971 * We need to hold the ill_lock while waking up waiters to 7972 * avoid missed wakeups. But there is no need to acquire all 7973 * the ill locks and then wakeup. If we have not acquired all 7974 * the locks (due to memory failure above) ill_signal_ipsq_ills 7975 * wakes up ills one at a time after getting the right ill_lock 7976 */ 7977 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7978 if (ill_list != NULL) 7979 ill_unlock_ills(ill_list, cnt); 7980 if (ipsq->ipsq_refs == 0) 7981 need_ipsq_free = B_TRUE; 7982 rw_exit(&ipst->ips_ill_g_lock); 7983 if (ill_list != 0) 7984 kmem_free(ill_list, ill_list_size); 7985 7986 if (need_ipsq_free) { 7987 /* 7988 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7989 * looked up. ipsq can be looked up only thru ill or phyint 7990 * and there are no ills/phyint on this ipsq. 7991 */ 7992 ipsq_delete(ipsq); 7993 } 7994 /* 7995 * Now start any igmp or mld timers that could not be started 7996 * while inside the ipsq. The timers can't be started while inside 7997 * the ipsq, since igmp_start_timers may need to call untimeout() 7998 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7999 * there could be a deadlock since the timeout handlers 8000 * mld_timeout_handler / igmp_timeout_handler also synchronously 8001 * wait in ipsq_enter() trying to get the ipsq. 8002 * 8003 * However there is one exception to the above. If this thread is 8004 * itself the igmp/mld timeout handler thread, then we don't want 8005 * to start any new timer until the current handler is done. The 8006 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8007 * all others pass B_TRUE. 8008 */ 8009 if (start_igmp_timer) { 8010 mutex_enter(&ipst->ips_igmp_timer_lock); 8011 next = ipst->ips_igmp_deferred_next; 8012 ipst->ips_igmp_deferred_next = INFINITY; 8013 mutex_exit(&ipst->ips_igmp_timer_lock); 8014 8015 if (next != INFINITY) 8016 igmp_start_timers(next, ipst); 8017 } 8018 8019 if (start_mld_timer) { 8020 mutex_enter(&ipst->ips_mld_timer_lock); 8021 next = ipst->ips_mld_deferred_next; 8022 ipst->ips_mld_deferred_next = INFINITY; 8023 mutex_exit(&ipst->ips_mld_timer_lock); 8024 8025 if (next != INFINITY) 8026 mld_start_timers(next, ipst); 8027 } 8028 } 8029 8030 /* 8031 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8032 * and `ioccmd'. 8033 */ 8034 void 8035 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8036 { 8037 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8038 8039 mutex_enter(&ipsq->ipsq_lock); 8040 ASSERT(ipsq->ipsq_current_ipif == NULL); 8041 ASSERT(ipsq->ipsq_current_ioctl == 0); 8042 ipsq->ipsq_current_ipif = ipif; 8043 ipsq->ipsq_current_ioctl = ioccmd; 8044 mutex_exit(&ipsq->ipsq_lock); 8045 } 8046 8047 /* 8048 * Finish the current exclusive operation on `ipsq'. Note that other 8049 * operations will not be able to proceed until an ipsq_exit() is done. 8050 */ 8051 void 8052 ipsq_current_finish(ipsq_t *ipsq) 8053 { 8054 ipif_t *ipif = ipsq->ipsq_current_ipif; 8055 hook_nic_event_t *info; 8056 8057 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8058 8059 /* 8060 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8061 * (but we're careful to never set IPIF_CHANGING in that case). 8062 */ 8063 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8064 mutex_enter(&ipif->ipif_ill->ill_lock); 8065 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8066 /* 8067 * Unhook the nic event message from the ill and enqueue it 8068 * into the nic event taskq. 8069 */ 8070 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 8071 if (ddi_taskq_dispatch(eventq_queue_nic, 8072 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 8073 ip2dbg(("ipsq_current_finish: " 8074 "ddi_taskq_dispatch failed\n")); 8075 if (info->hne_data != NULL) 8076 kmem_free(info->hne_data, 8077 info->hne_datalen); 8078 kmem_free(info, sizeof (hook_nic_event_t)); 8079 } 8080 ipif->ipif_ill->ill_nic_event_info = NULL; 8081 } 8082 mutex_exit(&ipif->ipif_ill->ill_lock); 8083 } 8084 8085 mutex_enter(&ipsq->ipsq_lock); 8086 ASSERT(ipsq->ipsq_current_ipif != NULL); 8087 ipsq->ipsq_current_ipif = NULL; 8088 ipsq->ipsq_current_ioctl = 0; 8089 mutex_exit(&ipsq->ipsq_lock); 8090 } 8091 8092 /* 8093 * The ill is closing. Flush all messages on the ipsq that originated 8094 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8095 * for this ill since ipsq_enter could not have entered until then. 8096 * New messages can't be queued since the CONDEMNED flag is set. 8097 */ 8098 static void 8099 ipsq_flush(ill_t *ill) 8100 { 8101 queue_t *q; 8102 mblk_t *prev; 8103 mblk_t *mp; 8104 mblk_t *mp_next; 8105 ipsq_t *ipsq; 8106 8107 ASSERT(IAM_WRITER_ILL(ill)); 8108 ipsq = ill->ill_phyint->phyint_ipsq; 8109 /* 8110 * Flush any messages sent up by the driver. 8111 */ 8112 mutex_enter(&ipsq->ipsq_lock); 8113 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8114 mp_next = mp->b_next; 8115 q = mp->b_queue; 8116 if (q == ill->ill_rq || q == ill->ill_wq) { 8117 /* Remove the mp from the ipsq */ 8118 if (prev == NULL) 8119 ipsq->ipsq_mphead = mp->b_next; 8120 else 8121 prev->b_next = mp->b_next; 8122 if (ipsq->ipsq_mptail == mp) { 8123 ASSERT(mp_next == NULL); 8124 ipsq->ipsq_mptail = prev; 8125 } 8126 inet_freemsg(mp); 8127 } else { 8128 prev = mp; 8129 } 8130 } 8131 mutex_exit(&ipsq->ipsq_lock); 8132 (void) ipsq_pending_mp_cleanup(ill, NULL); 8133 ipsq_xopq_mp_cleanup(ill, NULL); 8134 ill_pending_mp_cleanup(ill); 8135 } 8136 8137 /* 8138 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8139 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8140 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8141 * time (possible with one port going down for aggr and someone tearing down the 8142 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8143 * to indicate when the cleanup has started (1 ref) and when the cleanup 8144 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8145 * putting 2 ref on ill_inuse_ref. 8146 */ 8147 static void 8148 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8149 { 8150 conn_t *connp; 8151 squeue_t *sqp; 8152 mblk_t *mp; 8153 8154 ASSERT(rx_ring != NULL); 8155 8156 /* Just clean one squeue */ 8157 mutex_enter(&ill->ill_lock); 8158 /* 8159 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8160 * ip_squeue_soft_ring_affinty() will not go 8161 * ahead with assigning rings. 8162 */ 8163 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8164 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8165 /* Some operations pending on the ring. Wait */ 8166 cv_wait(&ill->ill_cv, &ill->ill_lock); 8167 8168 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8169 /* 8170 * Someone already trying to clean 8171 * this squeue or its already been cleaned. 8172 */ 8173 mutex_exit(&ill->ill_lock); 8174 return; 8175 } 8176 sqp = rx_ring->rr_sqp; 8177 8178 if (sqp == NULL) { 8179 /* 8180 * The rx_ring never had a squeue assigned to it. 8181 * We are under ill_lock so we can clean it up 8182 * here itself since no one can get to it. 8183 */ 8184 rx_ring->rr_blank = NULL; 8185 rx_ring->rr_handle = NULL; 8186 rx_ring->rr_sqp = NULL; 8187 rx_ring->rr_ring_state = ILL_RING_FREE; 8188 mutex_exit(&ill->ill_lock); 8189 return; 8190 } 8191 8192 /* Set the state that its being cleaned */ 8193 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8194 ASSERT(sqp != NULL); 8195 mutex_exit(&ill->ill_lock); 8196 8197 /* 8198 * Use the preallocated ill_unbind_conn for this purpose 8199 */ 8200 connp = ill->ill_dls_capab->ill_unbind_conn; 8201 8202 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8203 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8204 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8205 connp->conn_tcp->tcp_closemp_used = 1; 8206 else 8207 connp->conn_tcp->tcp_closemp_used++; 8208 mp = &connp->conn_tcp->tcp_closemp; 8209 CONN_INC_REF(connp); 8210 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8211 8212 mutex_enter(&ill->ill_lock); 8213 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8214 cv_wait(&ill->ill_cv, &ill->ill_lock); 8215 8216 mutex_exit(&ill->ill_lock); 8217 } 8218 8219 static void 8220 ipsq_clean_all(ill_t *ill) 8221 { 8222 int idx; 8223 8224 /* 8225 * No need to clean if poll_capab isn't set for this ill 8226 */ 8227 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8228 return; 8229 8230 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8231 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8232 ipsq_clean_ring(ill, ipr); 8233 } 8234 8235 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8236 } 8237 8238 /* ARGSUSED */ 8239 int 8240 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8241 ip_ioctl_cmd_t *ipip, void *ifreq) 8242 { 8243 ill_t *ill; 8244 struct lifreq *lifr = (struct lifreq *)ifreq; 8245 boolean_t isv6; 8246 conn_t *connp; 8247 ip_stack_t *ipst; 8248 8249 connp = Q_TO_CONN(q); 8250 ipst = connp->conn_netstack->netstack_ip; 8251 isv6 = connp->conn_af_isv6; 8252 /* 8253 * Set original index. 8254 * Failover and failback move logical interfaces 8255 * from one physical interface to another. The 8256 * original index indicates the parent of a logical 8257 * interface, in other words, the physical interface 8258 * the logical interface will be moved back to on 8259 * failback. 8260 */ 8261 8262 /* 8263 * Don't allow the original index to be changed 8264 * for non-failover addresses, autoconfigured 8265 * addresses, or IPv6 link local addresses. 8266 */ 8267 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8268 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8269 return (EINVAL); 8270 } 8271 /* 8272 * The new original index must be in use by some 8273 * physical interface. 8274 */ 8275 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8276 NULL, NULL, ipst); 8277 if (ill == NULL) 8278 return (ENXIO); 8279 ill_refrele(ill); 8280 8281 ipif->ipif_orig_ifindex = lifr->lifr_index; 8282 /* 8283 * When this ipif gets failed back, don't 8284 * preserve the original id, as it is no 8285 * longer applicable. 8286 */ 8287 ipif->ipif_orig_ipifid = 0; 8288 /* 8289 * For IPv4, change the original index of any 8290 * multicast addresses associated with the 8291 * ipif to the new value. 8292 */ 8293 if (!isv6) { 8294 ilm_t *ilm; 8295 8296 mutex_enter(&ipif->ipif_ill->ill_lock); 8297 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8298 ilm = ilm->ilm_next) { 8299 if (ilm->ilm_ipif == ipif) { 8300 ilm->ilm_orig_ifindex = lifr->lifr_index; 8301 } 8302 } 8303 mutex_exit(&ipif->ipif_ill->ill_lock); 8304 } 8305 return (0); 8306 } 8307 8308 /* ARGSUSED */ 8309 int 8310 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8311 ip_ioctl_cmd_t *ipip, void *ifreq) 8312 { 8313 struct lifreq *lifr = (struct lifreq *)ifreq; 8314 8315 /* 8316 * Get the original interface index i.e the one 8317 * before FAILOVER if it ever happened. 8318 */ 8319 lifr->lifr_index = ipif->ipif_orig_ifindex; 8320 return (0); 8321 } 8322 8323 /* 8324 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8325 * refhold and return the associated ipif 8326 */ 8327 int 8328 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8329 { 8330 boolean_t exists; 8331 struct iftun_req *ta; 8332 ipif_t *ipif; 8333 ill_t *ill; 8334 boolean_t isv6; 8335 mblk_t *mp1; 8336 int error; 8337 conn_t *connp; 8338 ip_stack_t *ipst; 8339 8340 /* Existence verified in ip_wput_nondata */ 8341 mp1 = mp->b_cont->b_cont; 8342 ta = (struct iftun_req *)mp1->b_rptr; 8343 /* 8344 * Null terminate the string to protect against buffer 8345 * overrun. String was generated by user code and may not 8346 * be trusted. 8347 */ 8348 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8349 8350 connp = Q_TO_CONN(q); 8351 isv6 = connp->conn_af_isv6; 8352 ipst = connp->conn_netstack->netstack_ip; 8353 8354 /* Disallows implicit create */ 8355 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8356 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8357 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8358 if (ipif == NULL) 8359 return (error); 8360 8361 if (ipif->ipif_id != 0) { 8362 /* 8363 * We really don't want to set/get tunnel parameters 8364 * on virtual tunnel interfaces. Only allow the 8365 * base tunnel to do these. 8366 */ 8367 ipif_refrele(ipif); 8368 return (EINVAL); 8369 } 8370 8371 /* 8372 * Send down to tunnel mod for ioctl processing. 8373 * Will finish ioctl in ip_rput_other(). 8374 */ 8375 ill = ipif->ipif_ill; 8376 if (ill->ill_net_type == IRE_LOOPBACK) { 8377 ipif_refrele(ipif); 8378 return (EOPNOTSUPP); 8379 } 8380 8381 if (ill->ill_wq == NULL) { 8382 ipif_refrele(ipif); 8383 return (ENXIO); 8384 } 8385 /* 8386 * Mark the ioctl as coming from an IPv6 interface for 8387 * tun's convenience. 8388 */ 8389 if (ill->ill_isv6) 8390 ta->ifta_flags |= 0x80000000; 8391 *ipifp = ipif; 8392 return (0); 8393 } 8394 8395 /* 8396 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8397 * and return the associated ipif. 8398 * Return value: 8399 * Non zero: An error has occurred. ci may not be filled out. 8400 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8401 * a held ipif in ci.ci_ipif. 8402 */ 8403 int 8404 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8405 cmd_info_t *ci, ipsq_func_t func) 8406 { 8407 sin_t *sin; 8408 sin6_t *sin6; 8409 char *name; 8410 struct ifreq *ifr; 8411 struct lifreq *lifr; 8412 ipif_t *ipif = NULL; 8413 ill_t *ill; 8414 conn_t *connp; 8415 boolean_t isv6; 8416 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8417 boolean_t exists; 8418 int err; 8419 mblk_t *mp1; 8420 zoneid_t zoneid; 8421 ip_stack_t *ipst; 8422 8423 if (q->q_next != NULL) { 8424 ill = (ill_t *)q->q_ptr; 8425 isv6 = ill->ill_isv6; 8426 connp = NULL; 8427 zoneid = ALL_ZONES; 8428 ipst = ill->ill_ipst; 8429 } else { 8430 ill = NULL; 8431 connp = Q_TO_CONN(q); 8432 isv6 = connp->conn_af_isv6; 8433 zoneid = connp->conn_zoneid; 8434 if (zoneid == GLOBAL_ZONEID) { 8435 /* global zone can access ipifs in all zones */ 8436 zoneid = ALL_ZONES; 8437 } 8438 ipst = connp->conn_netstack->netstack_ip; 8439 } 8440 8441 /* Has been checked in ip_wput_nondata */ 8442 mp1 = mp->b_cont->b_cont; 8443 8444 8445 if (cmd_type == IF_CMD) { 8446 /* This a old style SIOC[GS]IF* command */ 8447 ifr = (struct ifreq *)mp1->b_rptr; 8448 /* 8449 * Null terminate the string to protect against buffer 8450 * overrun. String was generated by user code and may not 8451 * be trusted. 8452 */ 8453 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8454 sin = (sin_t *)&ifr->ifr_addr; 8455 name = ifr->ifr_name; 8456 ci->ci_sin = sin; 8457 ci->ci_sin6 = NULL; 8458 ci->ci_lifr = (struct lifreq *)ifr; 8459 } else { 8460 /* This a new style SIOC[GS]LIF* command */ 8461 ASSERT(cmd_type == LIF_CMD); 8462 lifr = (struct lifreq *)mp1->b_rptr; 8463 /* 8464 * Null terminate the string to protect against buffer 8465 * overrun. String was generated by user code and may not 8466 * be trusted. 8467 */ 8468 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8469 name = lifr->lifr_name; 8470 sin = (sin_t *)&lifr->lifr_addr; 8471 sin6 = (sin6_t *)&lifr->lifr_addr; 8472 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8473 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8474 LIFNAMSIZ); 8475 } 8476 ci->ci_sin = sin; 8477 ci->ci_sin6 = sin6; 8478 ci->ci_lifr = lifr; 8479 } 8480 8481 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8482 /* 8483 * The ioctl will be failed if the ioctl comes down 8484 * an conn stream 8485 */ 8486 if (ill == NULL) { 8487 /* 8488 * Not an ill queue, return EINVAL same as the 8489 * old error code. 8490 */ 8491 return (ENXIO); 8492 } 8493 ipif = ill->ill_ipif; 8494 ipif_refhold(ipif); 8495 } else { 8496 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8497 &exists, isv6, zoneid, 8498 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8499 ipst); 8500 if (ipif == NULL) { 8501 if (err == EINPROGRESS) 8502 return (err); 8503 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8504 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8505 /* 8506 * Need to try both v4 and v6 since this 8507 * ioctl can come down either v4 or v6 8508 * socket. The lifreq.lifr_family passed 8509 * down by this ioctl is AF_UNSPEC. 8510 */ 8511 ipif = ipif_lookup_on_name(name, 8512 mi_strlen(name), B_FALSE, &exists, !isv6, 8513 zoneid, (connp == NULL) ? q : 8514 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8515 if (err == EINPROGRESS) 8516 return (err); 8517 } 8518 err = 0; /* Ensure we don't use it below */ 8519 } 8520 } 8521 8522 /* 8523 * Old style [GS]IFCMD does not admit IPv6 ipif 8524 */ 8525 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8526 ipif_refrele(ipif); 8527 return (ENXIO); 8528 } 8529 8530 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8531 name[0] == '\0') { 8532 /* 8533 * Handle a or a SIOC?IF* with a null name 8534 * during plumb (on the ill queue before the I_PLINK). 8535 */ 8536 ipif = ill->ill_ipif; 8537 ipif_refhold(ipif); 8538 } 8539 8540 if (ipif == NULL) 8541 return (ENXIO); 8542 8543 /* 8544 * Allow only GET operations if this ipif has been created 8545 * temporarily due to a MOVE operation. 8546 */ 8547 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8548 ipif_refrele(ipif); 8549 return (EINVAL); 8550 } 8551 8552 ci->ci_ipif = ipif; 8553 return (0); 8554 } 8555 8556 /* 8557 * Return the total number of ipifs. 8558 */ 8559 static uint_t 8560 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8561 { 8562 uint_t numifs = 0; 8563 ill_t *ill; 8564 ill_walk_context_t ctx; 8565 ipif_t *ipif; 8566 8567 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8568 ill = ILL_START_WALK_V4(&ctx, ipst); 8569 8570 while (ill != NULL) { 8571 for (ipif = ill->ill_ipif; ipif != NULL; 8572 ipif = ipif->ipif_next) { 8573 if (ipif->ipif_zoneid == zoneid || 8574 ipif->ipif_zoneid == ALL_ZONES) 8575 numifs++; 8576 } 8577 ill = ill_next(&ctx, ill); 8578 } 8579 rw_exit(&ipst->ips_ill_g_lock); 8580 return (numifs); 8581 } 8582 8583 /* 8584 * Return the total number of ipifs. 8585 */ 8586 static uint_t 8587 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8588 { 8589 uint_t numifs = 0; 8590 ill_t *ill; 8591 ipif_t *ipif; 8592 ill_walk_context_t ctx; 8593 8594 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8595 8596 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8597 if (family == AF_INET) 8598 ill = ILL_START_WALK_V4(&ctx, ipst); 8599 else if (family == AF_INET6) 8600 ill = ILL_START_WALK_V6(&ctx, ipst); 8601 else 8602 ill = ILL_START_WALK_ALL(&ctx, ipst); 8603 8604 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8605 for (ipif = ill->ill_ipif; ipif != NULL; 8606 ipif = ipif->ipif_next) { 8607 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8608 !(lifn_flags & LIFC_NOXMIT)) 8609 continue; 8610 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8611 !(lifn_flags & LIFC_TEMPORARY)) 8612 continue; 8613 if (((ipif->ipif_flags & 8614 (IPIF_NOXMIT|IPIF_NOLOCAL| 8615 IPIF_DEPRECATED)) || 8616 (ill->ill_phyint->phyint_flags & 8617 PHYI_LOOPBACK) || 8618 !(ipif->ipif_flags & IPIF_UP)) && 8619 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8620 continue; 8621 8622 if (zoneid != ipif->ipif_zoneid && 8623 ipif->ipif_zoneid != ALL_ZONES && 8624 (zoneid != GLOBAL_ZONEID || 8625 !(lifn_flags & LIFC_ALLZONES))) 8626 continue; 8627 8628 numifs++; 8629 } 8630 } 8631 rw_exit(&ipst->ips_ill_g_lock); 8632 return (numifs); 8633 } 8634 8635 uint_t 8636 ip_get_lifsrcofnum(ill_t *ill) 8637 { 8638 uint_t numifs = 0; 8639 ill_t *ill_head = ill; 8640 ip_stack_t *ipst = ill->ill_ipst; 8641 8642 /* 8643 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8644 * other thread may be trying to relink the ILLs in this usesrc group 8645 * and adjusting the ill_usesrc_grp_next pointers 8646 */ 8647 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8648 if ((ill->ill_usesrc_ifindex == 0) && 8649 (ill->ill_usesrc_grp_next != NULL)) { 8650 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8651 ill = ill->ill_usesrc_grp_next) 8652 numifs++; 8653 } 8654 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8655 8656 return (numifs); 8657 } 8658 8659 /* Null values are passed in for ipif, sin, and ifreq */ 8660 /* ARGSUSED */ 8661 int 8662 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8663 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8664 { 8665 int *nump; 8666 conn_t *connp = Q_TO_CONN(q); 8667 8668 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8669 8670 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8671 nump = (int *)mp->b_cont->b_cont->b_rptr; 8672 8673 *nump = ip_get_numifs(connp->conn_zoneid, 8674 connp->conn_netstack->netstack_ip); 8675 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8676 return (0); 8677 } 8678 8679 /* Null values are passed in for ipif, sin, and ifreq */ 8680 /* ARGSUSED */ 8681 int 8682 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8683 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8684 { 8685 struct lifnum *lifn; 8686 mblk_t *mp1; 8687 conn_t *connp = Q_TO_CONN(q); 8688 8689 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8690 8691 /* Existence checked in ip_wput_nondata */ 8692 mp1 = mp->b_cont->b_cont; 8693 8694 lifn = (struct lifnum *)mp1->b_rptr; 8695 switch (lifn->lifn_family) { 8696 case AF_UNSPEC: 8697 case AF_INET: 8698 case AF_INET6: 8699 break; 8700 default: 8701 return (EAFNOSUPPORT); 8702 } 8703 8704 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8705 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8706 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8707 return (0); 8708 } 8709 8710 /* ARGSUSED */ 8711 int 8712 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8713 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8714 { 8715 STRUCT_HANDLE(ifconf, ifc); 8716 mblk_t *mp1; 8717 struct iocblk *iocp; 8718 struct ifreq *ifr; 8719 ill_walk_context_t ctx; 8720 ill_t *ill; 8721 ipif_t *ipif; 8722 struct sockaddr_in *sin; 8723 int32_t ifclen; 8724 zoneid_t zoneid; 8725 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8726 8727 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8728 8729 ip1dbg(("ip_sioctl_get_ifconf")); 8730 /* Existence verified in ip_wput_nondata */ 8731 mp1 = mp->b_cont->b_cont; 8732 iocp = (struct iocblk *)mp->b_rptr; 8733 zoneid = Q_TO_CONN(q)->conn_zoneid; 8734 8735 /* 8736 * The original SIOCGIFCONF passed in a struct ifconf which specified 8737 * the user buffer address and length into which the list of struct 8738 * ifreqs was to be copied. Since AT&T Streams does not seem to 8739 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8740 * the SIOCGIFCONF operation was redefined to simply provide 8741 * a large output buffer into which we are supposed to jam the ifreq 8742 * array. The same ioctl command code was used, despite the fact that 8743 * both the applications and the kernel code had to change, thus making 8744 * it impossible to support both interfaces. 8745 * 8746 * For reasons not good enough to try to explain, the following 8747 * algorithm is used for deciding what to do with one of these: 8748 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8749 * form with the output buffer coming down as the continuation message. 8750 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8751 * and we have to copy in the ifconf structure to find out how big the 8752 * output buffer is and where to copy out to. Sure no problem... 8753 * 8754 */ 8755 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8756 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8757 int numifs = 0; 8758 size_t ifc_bufsize; 8759 8760 /* 8761 * Must be (better be!) continuation of a TRANSPARENT 8762 * IOCTL. We just copied in the ifconf structure. 8763 */ 8764 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8765 (struct ifconf *)mp1->b_rptr); 8766 8767 /* 8768 * Allocate a buffer to hold requested information. 8769 * 8770 * If ifc_len is larger than what is needed, we only 8771 * allocate what we will use. 8772 * 8773 * If ifc_len is smaller than what is needed, return 8774 * EINVAL. 8775 * 8776 * XXX: the ill_t structure can hava 2 counters, for 8777 * v4 and v6 (not just ill_ipif_up_count) to store the 8778 * number of interfaces for a device, so we don't need 8779 * to count them here... 8780 */ 8781 numifs = ip_get_numifs(zoneid, ipst); 8782 8783 ifclen = STRUCT_FGET(ifc, ifc_len); 8784 ifc_bufsize = numifs * sizeof (struct ifreq); 8785 if (ifc_bufsize > ifclen) { 8786 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8787 /* old behaviour */ 8788 return (EINVAL); 8789 } else { 8790 ifc_bufsize = ifclen; 8791 } 8792 } 8793 8794 mp1 = mi_copyout_alloc(q, mp, 8795 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8796 if (mp1 == NULL) 8797 return (ENOMEM); 8798 8799 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8800 } 8801 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8802 /* 8803 * the SIOCGIFCONF ioctl only knows about 8804 * IPv4 addresses, so don't try to tell 8805 * it about interfaces with IPv6-only 8806 * addresses. (Last parm 'isv6' is B_FALSE) 8807 */ 8808 8809 ifr = (struct ifreq *)mp1->b_rptr; 8810 8811 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8812 ill = ILL_START_WALK_V4(&ctx, ipst); 8813 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8814 for (ipif = ill->ill_ipif; ipif != NULL; 8815 ipif = ipif->ipif_next) { 8816 if (zoneid != ipif->ipif_zoneid && 8817 ipif->ipif_zoneid != ALL_ZONES) 8818 continue; 8819 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8820 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8821 /* old behaviour */ 8822 rw_exit(&ipst->ips_ill_g_lock); 8823 return (EINVAL); 8824 } else { 8825 goto if_copydone; 8826 } 8827 } 8828 (void) ipif_get_name(ipif, 8829 ifr->ifr_name, 8830 sizeof (ifr->ifr_name)); 8831 sin = (sin_t *)&ifr->ifr_addr; 8832 *sin = sin_null; 8833 sin->sin_family = AF_INET; 8834 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8835 ifr++; 8836 } 8837 } 8838 if_copydone: 8839 rw_exit(&ipst->ips_ill_g_lock); 8840 mp1->b_wptr = (uchar_t *)ifr; 8841 8842 if (STRUCT_BUF(ifc) != NULL) { 8843 STRUCT_FSET(ifc, ifc_len, 8844 (int)((uchar_t *)ifr - mp1->b_rptr)); 8845 } 8846 return (0); 8847 } 8848 8849 /* 8850 * Get the interfaces using the address hosted on the interface passed in, 8851 * as a source adddress 8852 */ 8853 /* ARGSUSED */ 8854 int 8855 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8856 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8857 { 8858 mblk_t *mp1; 8859 ill_t *ill, *ill_head; 8860 ipif_t *ipif, *orig_ipif; 8861 int numlifs = 0; 8862 size_t lifs_bufsize, lifsmaxlen; 8863 struct lifreq *lifr; 8864 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8865 uint_t ifindex; 8866 zoneid_t zoneid; 8867 int err = 0; 8868 boolean_t isv6 = B_FALSE; 8869 struct sockaddr_in *sin; 8870 struct sockaddr_in6 *sin6; 8871 STRUCT_HANDLE(lifsrcof, lifs); 8872 ip_stack_t *ipst; 8873 8874 ipst = CONNQ_TO_IPST(q); 8875 8876 ASSERT(q->q_next == NULL); 8877 8878 zoneid = Q_TO_CONN(q)->conn_zoneid; 8879 8880 /* Existence verified in ip_wput_nondata */ 8881 mp1 = mp->b_cont->b_cont; 8882 8883 /* 8884 * Must be (better be!) continuation of a TRANSPARENT 8885 * IOCTL. We just copied in the lifsrcof structure. 8886 */ 8887 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8888 (struct lifsrcof *)mp1->b_rptr); 8889 8890 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8891 return (EINVAL); 8892 8893 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8894 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8895 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8896 ip_process_ioctl, &err, ipst); 8897 if (ipif == NULL) { 8898 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8899 ifindex)); 8900 return (err); 8901 } 8902 8903 8904 /* Allocate a buffer to hold requested information */ 8905 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8906 lifs_bufsize = numlifs * sizeof (struct lifreq); 8907 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8908 /* The actual size needed is always returned in lifs_len */ 8909 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8910 8911 /* If the amount we need is more than what is passed in, abort */ 8912 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8913 ipif_refrele(ipif); 8914 return (0); 8915 } 8916 8917 mp1 = mi_copyout_alloc(q, mp, 8918 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8919 if (mp1 == NULL) { 8920 ipif_refrele(ipif); 8921 return (ENOMEM); 8922 } 8923 8924 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8925 bzero(mp1->b_rptr, lifs_bufsize); 8926 8927 lifr = (struct lifreq *)mp1->b_rptr; 8928 8929 ill = ill_head = ipif->ipif_ill; 8930 orig_ipif = ipif; 8931 8932 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8933 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8934 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8935 8936 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8937 for (; (ill != NULL) && (ill != ill_head); 8938 ill = ill->ill_usesrc_grp_next) { 8939 8940 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8941 break; 8942 8943 ipif = ill->ill_ipif; 8944 (void) ipif_get_name(ipif, 8945 lifr->lifr_name, sizeof (lifr->lifr_name)); 8946 if (ipif->ipif_isv6) { 8947 sin6 = (sin6_t *)&lifr->lifr_addr; 8948 *sin6 = sin6_null; 8949 sin6->sin6_family = AF_INET6; 8950 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8951 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8952 &ipif->ipif_v6net_mask); 8953 } else { 8954 sin = (sin_t *)&lifr->lifr_addr; 8955 *sin = sin_null; 8956 sin->sin_family = AF_INET; 8957 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8958 lifr->lifr_addrlen = ip_mask_to_plen( 8959 ipif->ipif_net_mask); 8960 } 8961 lifr++; 8962 } 8963 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8964 rw_exit(&ipst->ips_ill_g_lock); 8965 ipif_refrele(orig_ipif); 8966 mp1->b_wptr = (uchar_t *)lifr; 8967 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8968 8969 return (0); 8970 } 8971 8972 /* ARGSUSED */ 8973 int 8974 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8975 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8976 { 8977 mblk_t *mp1; 8978 int list; 8979 ill_t *ill; 8980 ipif_t *ipif; 8981 int flags; 8982 int numlifs = 0; 8983 size_t lifc_bufsize; 8984 struct lifreq *lifr; 8985 sa_family_t family; 8986 struct sockaddr_in *sin; 8987 struct sockaddr_in6 *sin6; 8988 ill_walk_context_t ctx; 8989 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8990 int32_t lifclen; 8991 zoneid_t zoneid; 8992 STRUCT_HANDLE(lifconf, lifc); 8993 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8994 8995 ip1dbg(("ip_sioctl_get_lifconf")); 8996 8997 ASSERT(q->q_next == NULL); 8998 8999 zoneid = Q_TO_CONN(q)->conn_zoneid; 9000 9001 /* Existence verified in ip_wput_nondata */ 9002 mp1 = mp->b_cont->b_cont; 9003 9004 /* 9005 * An extended version of SIOCGIFCONF that takes an 9006 * additional address family and flags field. 9007 * AF_UNSPEC retrieve both IPv4 and IPv6. 9008 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9009 * interfaces are omitted. 9010 * Similarly, IPIF_TEMPORARY interfaces are omitted 9011 * unless LIFC_TEMPORARY is specified. 9012 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9013 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9014 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9015 * has priority over LIFC_NOXMIT. 9016 */ 9017 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9018 9019 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9020 return (EINVAL); 9021 9022 /* 9023 * Must be (better be!) continuation of a TRANSPARENT 9024 * IOCTL. We just copied in the lifconf structure. 9025 */ 9026 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9027 9028 family = STRUCT_FGET(lifc, lifc_family); 9029 flags = STRUCT_FGET(lifc, lifc_flags); 9030 9031 switch (family) { 9032 case AF_UNSPEC: 9033 /* 9034 * walk all ILL's. 9035 */ 9036 list = MAX_G_HEADS; 9037 break; 9038 case AF_INET: 9039 /* 9040 * walk only IPV4 ILL's. 9041 */ 9042 list = IP_V4_G_HEAD; 9043 break; 9044 case AF_INET6: 9045 /* 9046 * walk only IPV6 ILL's. 9047 */ 9048 list = IP_V6_G_HEAD; 9049 break; 9050 default: 9051 return (EAFNOSUPPORT); 9052 } 9053 9054 /* 9055 * Allocate a buffer to hold requested information. 9056 * 9057 * If lifc_len is larger than what is needed, we only 9058 * allocate what we will use. 9059 * 9060 * If lifc_len is smaller than what is needed, return 9061 * EINVAL. 9062 */ 9063 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9064 lifc_bufsize = numlifs * sizeof (struct lifreq); 9065 lifclen = STRUCT_FGET(lifc, lifc_len); 9066 if (lifc_bufsize > lifclen) { 9067 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9068 return (EINVAL); 9069 else 9070 lifc_bufsize = lifclen; 9071 } 9072 9073 mp1 = mi_copyout_alloc(q, mp, 9074 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9075 if (mp1 == NULL) 9076 return (ENOMEM); 9077 9078 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9079 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9080 9081 lifr = (struct lifreq *)mp1->b_rptr; 9082 9083 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9084 ill = ill_first(list, list, &ctx, ipst); 9085 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9086 for (ipif = ill->ill_ipif; ipif != NULL; 9087 ipif = ipif->ipif_next) { 9088 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9089 !(flags & LIFC_NOXMIT)) 9090 continue; 9091 9092 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9093 !(flags & LIFC_TEMPORARY)) 9094 continue; 9095 9096 if (((ipif->ipif_flags & 9097 (IPIF_NOXMIT|IPIF_NOLOCAL| 9098 IPIF_DEPRECATED)) || 9099 (ill->ill_phyint->phyint_flags & 9100 PHYI_LOOPBACK) || 9101 !(ipif->ipif_flags & IPIF_UP)) && 9102 (flags & LIFC_EXTERNAL_SOURCE)) 9103 continue; 9104 9105 if (zoneid != ipif->ipif_zoneid && 9106 ipif->ipif_zoneid != ALL_ZONES && 9107 (zoneid != GLOBAL_ZONEID || 9108 !(flags & LIFC_ALLZONES))) 9109 continue; 9110 9111 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9112 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9113 rw_exit(&ipst->ips_ill_g_lock); 9114 return (EINVAL); 9115 } else { 9116 goto lif_copydone; 9117 } 9118 } 9119 9120 (void) ipif_get_name(ipif, 9121 lifr->lifr_name, 9122 sizeof (lifr->lifr_name)); 9123 if (ipif->ipif_isv6) { 9124 sin6 = (sin6_t *)&lifr->lifr_addr; 9125 *sin6 = sin6_null; 9126 sin6->sin6_family = AF_INET6; 9127 sin6->sin6_addr = 9128 ipif->ipif_v6lcl_addr; 9129 lifr->lifr_addrlen = 9130 ip_mask_to_plen_v6( 9131 &ipif->ipif_v6net_mask); 9132 } else { 9133 sin = (sin_t *)&lifr->lifr_addr; 9134 *sin = sin_null; 9135 sin->sin_family = AF_INET; 9136 sin->sin_addr.s_addr = 9137 ipif->ipif_lcl_addr; 9138 lifr->lifr_addrlen = 9139 ip_mask_to_plen( 9140 ipif->ipif_net_mask); 9141 } 9142 lifr++; 9143 } 9144 } 9145 lif_copydone: 9146 rw_exit(&ipst->ips_ill_g_lock); 9147 9148 mp1->b_wptr = (uchar_t *)lifr; 9149 if (STRUCT_BUF(lifc) != NULL) { 9150 STRUCT_FSET(lifc, lifc_len, 9151 (int)((uchar_t *)lifr - mp1->b_rptr)); 9152 } 9153 return (0); 9154 } 9155 9156 /* ARGSUSED */ 9157 int 9158 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9159 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9160 { 9161 ip_stack_t *ipst; 9162 9163 if (q->q_next == NULL) 9164 ipst = CONNQ_TO_IPST(q); 9165 else 9166 ipst = ILLQ_TO_IPST(q); 9167 9168 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9169 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9170 return (0); 9171 } 9172 9173 static void 9174 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9175 { 9176 ip6_asp_t *table; 9177 size_t table_size; 9178 mblk_t *data_mp; 9179 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9180 ip_stack_t *ipst; 9181 9182 if (q->q_next == NULL) 9183 ipst = CONNQ_TO_IPST(q); 9184 else 9185 ipst = ILLQ_TO_IPST(q); 9186 9187 /* These two ioctls are I_STR only */ 9188 if (iocp->ioc_count == TRANSPARENT) { 9189 miocnak(q, mp, 0, EINVAL); 9190 return; 9191 } 9192 9193 data_mp = mp->b_cont; 9194 if (data_mp == NULL) { 9195 /* The user passed us a NULL argument */ 9196 table = NULL; 9197 table_size = iocp->ioc_count; 9198 } else { 9199 /* 9200 * The user provided a table. The stream head 9201 * may have copied in the user data in chunks, 9202 * so make sure everything is pulled up 9203 * properly. 9204 */ 9205 if (MBLKL(data_mp) < iocp->ioc_count) { 9206 mblk_t *new_data_mp; 9207 if ((new_data_mp = msgpullup(data_mp, -1)) == 9208 NULL) { 9209 miocnak(q, mp, 0, ENOMEM); 9210 return; 9211 } 9212 freemsg(data_mp); 9213 data_mp = new_data_mp; 9214 mp->b_cont = data_mp; 9215 } 9216 table = (ip6_asp_t *)data_mp->b_rptr; 9217 table_size = iocp->ioc_count; 9218 } 9219 9220 switch (iocp->ioc_cmd) { 9221 case SIOCGIP6ADDRPOLICY: 9222 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9223 if (iocp->ioc_rval == -1) 9224 iocp->ioc_error = EINVAL; 9225 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9226 else if (table != NULL && 9227 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9228 ip6_asp_t *src = table; 9229 ip6_asp32_t *dst = (void *)table; 9230 int count = table_size / sizeof (ip6_asp_t); 9231 int i; 9232 9233 /* 9234 * We need to do an in-place shrink of the array 9235 * to match the alignment attributes of the 9236 * 32-bit ABI looking at it. 9237 */ 9238 /* LINTED: logical expression always true: op "||" */ 9239 ASSERT(sizeof (*src) > sizeof (*dst)); 9240 for (i = 1; i < count; i++) 9241 bcopy(src + i, dst + i, sizeof (*dst)); 9242 } 9243 #endif 9244 break; 9245 9246 case SIOCSIP6ADDRPOLICY: 9247 ASSERT(mp->b_prev == NULL); 9248 mp->b_prev = (void *)q; 9249 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9250 /* 9251 * We pass in the datamodel here so that the ip6_asp_replace() 9252 * routine can handle converting from 32-bit to native formats 9253 * where necessary. 9254 * 9255 * A better way to handle this might be to convert the inbound 9256 * data structure here, and hang it off a new 'mp'; thus the 9257 * ip6_asp_replace() logic would always be dealing with native 9258 * format data structures.. 9259 * 9260 * (An even simpler way to handle these ioctls is to just 9261 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9262 * and just recompile everything that depends on it.) 9263 */ 9264 #endif 9265 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9266 iocp->ioc_flag & IOC_MODELS); 9267 return; 9268 } 9269 9270 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9271 qreply(q, mp); 9272 } 9273 9274 static void 9275 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9276 { 9277 mblk_t *data_mp; 9278 struct dstinforeq *dir; 9279 uint8_t *end, *cur; 9280 in6_addr_t *daddr, *saddr; 9281 ipaddr_t v4daddr; 9282 ire_t *ire; 9283 char *slabel, *dlabel; 9284 boolean_t isipv4; 9285 int match_ire; 9286 ill_t *dst_ill; 9287 ipif_t *src_ipif, *ire_ipif; 9288 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9289 zoneid_t zoneid; 9290 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9291 9292 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9293 zoneid = Q_TO_CONN(q)->conn_zoneid; 9294 9295 /* 9296 * This ioctl is I_STR only, and must have a 9297 * data mblk following the M_IOCTL mblk. 9298 */ 9299 data_mp = mp->b_cont; 9300 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9301 miocnak(q, mp, 0, EINVAL); 9302 return; 9303 } 9304 9305 if (MBLKL(data_mp) < iocp->ioc_count) { 9306 mblk_t *new_data_mp; 9307 9308 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9309 miocnak(q, mp, 0, ENOMEM); 9310 return; 9311 } 9312 freemsg(data_mp); 9313 data_mp = new_data_mp; 9314 mp->b_cont = data_mp; 9315 } 9316 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9317 9318 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9319 end - cur >= sizeof (struct dstinforeq); 9320 cur += sizeof (struct dstinforeq)) { 9321 dir = (struct dstinforeq *)cur; 9322 daddr = &dir->dir_daddr; 9323 saddr = &dir->dir_saddr; 9324 9325 /* 9326 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9327 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9328 * and ipif_select_source[_v6]() do not. 9329 */ 9330 dir->dir_dscope = ip_addr_scope_v6(daddr); 9331 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9332 9333 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9334 if (isipv4) { 9335 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9336 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9337 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9338 } else { 9339 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9340 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9341 } 9342 if (ire == NULL) { 9343 dir->dir_dreachable = 0; 9344 9345 /* move on to next dst addr */ 9346 continue; 9347 } 9348 dir->dir_dreachable = 1; 9349 9350 ire_ipif = ire->ire_ipif; 9351 if (ire_ipif == NULL) 9352 goto next_dst; 9353 9354 /* 9355 * We expect to get back an interface ire or a 9356 * gateway ire cache entry. For both types, the 9357 * output interface is ire_ipif->ipif_ill. 9358 */ 9359 dst_ill = ire_ipif->ipif_ill; 9360 dir->dir_dmactype = dst_ill->ill_mactype; 9361 9362 if (isipv4) { 9363 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9364 } else { 9365 src_ipif = ipif_select_source_v6(dst_ill, 9366 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9367 zoneid); 9368 } 9369 if (src_ipif == NULL) 9370 goto next_dst; 9371 9372 *saddr = src_ipif->ipif_v6lcl_addr; 9373 dir->dir_sscope = ip_addr_scope_v6(saddr); 9374 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9375 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9376 dir->dir_sdeprecated = 9377 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9378 ipif_refrele(src_ipif); 9379 next_dst: 9380 ire_refrele(ire); 9381 } 9382 miocack(q, mp, iocp->ioc_count, 0); 9383 } 9384 9385 9386 /* 9387 * Check if this is an address assigned to this machine. 9388 * Skips interfaces that are down by using ire checks. 9389 * Translates mapped addresses to v4 addresses and then 9390 * treats them as such, returning true if the v4 address 9391 * associated with this mapped address is configured. 9392 * Note: Applications will have to be careful what they do 9393 * with the response; use of mapped addresses limits 9394 * what can be done with the socket, especially with 9395 * respect to socket options and ioctls - neither IPv4 9396 * options nor IPv6 sticky options/ancillary data options 9397 * may be used. 9398 */ 9399 /* ARGSUSED */ 9400 int 9401 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9402 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9403 { 9404 struct sioc_addrreq *sia; 9405 sin_t *sin; 9406 ire_t *ire; 9407 mblk_t *mp1; 9408 zoneid_t zoneid; 9409 ip_stack_t *ipst; 9410 9411 ip1dbg(("ip_sioctl_tmyaddr")); 9412 9413 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9414 zoneid = Q_TO_CONN(q)->conn_zoneid; 9415 ipst = CONNQ_TO_IPST(q); 9416 9417 /* Existence verified in ip_wput_nondata */ 9418 mp1 = mp->b_cont->b_cont; 9419 sia = (struct sioc_addrreq *)mp1->b_rptr; 9420 sin = (sin_t *)&sia->sa_addr; 9421 switch (sin->sin_family) { 9422 case AF_INET6: { 9423 sin6_t *sin6 = (sin6_t *)sin; 9424 9425 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9426 ipaddr_t v4_addr; 9427 9428 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9429 v4_addr); 9430 ire = ire_ctable_lookup(v4_addr, 0, 9431 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9432 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9433 } else { 9434 in6_addr_t v6addr; 9435 9436 v6addr = sin6->sin6_addr; 9437 ire = ire_ctable_lookup_v6(&v6addr, 0, 9438 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9439 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9440 } 9441 break; 9442 } 9443 case AF_INET: { 9444 ipaddr_t v4addr; 9445 9446 v4addr = sin->sin_addr.s_addr; 9447 ire = ire_ctable_lookup(v4addr, 0, 9448 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9449 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9450 break; 9451 } 9452 default: 9453 return (EAFNOSUPPORT); 9454 } 9455 if (ire != NULL) { 9456 sia->sa_res = 1; 9457 ire_refrele(ire); 9458 } else { 9459 sia->sa_res = 0; 9460 } 9461 return (0); 9462 } 9463 9464 /* 9465 * Check if this is an address assigned on-link i.e. neighbor, 9466 * and makes sure it's reachable from the current zone. 9467 * Returns true for my addresses as well. 9468 * Translates mapped addresses to v4 addresses and then 9469 * treats them as such, returning true if the v4 address 9470 * associated with this mapped address is configured. 9471 * Note: Applications will have to be careful what they do 9472 * with the response; use of mapped addresses limits 9473 * what can be done with the socket, especially with 9474 * respect to socket options and ioctls - neither IPv4 9475 * options nor IPv6 sticky options/ancillary data options 9476 * may be used. 9477 */ 9478 /* ARGSUSED */ 9479 int 9480 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9481 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9482 { 9483 struct sioc_addrreq *sia; 9484 sin_t *sin; 9485 mblk_t *mp1; 9486 ire_t *ire = NULL; 9487 zoneid_t zoneid; 9488 ip_stack_t *ipst; 9489 9490 ip1dbg(("ip_sioctl_tonlink")); 9491 9492 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9493 zoneid = Q_TO_CONN(q)->conn_zoneid; 9494 ipst = CONNQ_TO_IPST(q); 9495 9496 /* Existence verified in ip_wput_nondata */ 9497 mp1 = mp->b_cont->b_cont; 9498 sia = (struct sioc_addrreq *)mp1->b_rptr; 9499 sin = (sin_t *)&sia->sa_addr; 9500 9501 /* 9502 * Match addresses with a zero gateway field to avoid 9503 * routes going through a router. 9504 * Exclude broadcast and multicast addresses. 9505 */ 9506 switch (sin->sin_family) { 9507 case AF_INET6: { 9508 sin6_t *sin6 = (sin6_t *)sin; 9509 9510 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9511 ipaddr_t v4_addr; 9512 9513 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9514 v4_addr); 9515 if (!CLASSD(v4_addr)) { 9516 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9517 NULL, NULL, zoneid, NULL, 9518 MATCH_IRE_GW, ipst); 9519 } 9520 } else { 9521 in6_addr_t v6addr; 9522 in6_addr_t v6gw; 9523 9524 v6addr = sin6->sin6_addr; 9525 v6gw = ipv6_all_zeros; 9526 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9527 ire = ire_route_lookup_v6(&v6addr, 0, 9528 &v6gw, 0, NULL, NULL, zoneid, 9529 NULL, MATCH_IRE_GW, ipst); 9530 } 9531 } 9532 break; 9533 } 9534 case AF_INET: { 9535 ipaddr_t v4addr; 9536 9537 v4addr = sin->sin_addr.s_addr; 9538 if (!CLASSD(v4addr)) { 9539 ire = ire_route_lookup(v4addr, 0, 0, 0, 9540 NULL, NULL, zoneid, NULL, 9541 MATCH_IRE_GW, ipst); 9542 } 9543 break; 9544 } 9545 default: 9546 return (EAFNOSUPPORT); 9547 } 9548 sia->sa_res = 0; 9549 if (ire != NULL) { 9550 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9551 IRE_LOCAL|IRE_LOOPBACK)) { 9552 sia->sa_res = 1; 9553 } 9554 ire_refrele(ire); 9555 } 9556 return (0); 9557 } 9558 9559 /* 9560 * TBD: implement when kernel maintaines a list of site prefixes. 9561 */ 9562 /* ARGSUSED */ 9563 int 9564 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9565 ip_ioctl_cmd_t *ipip, void *ifreq) 9566 { 9567 return (ENXIO); 9568 } 9569 9570 /* ARGSUSED */ 9571 int 9572 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9573 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9574 { 9575 ill_t *ill; 9576 mblk_t *mp1; 9577 conn_t *connp; 9578 boolean_t success; 9579 9580 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9581 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9582 /* ioctl comes down on an conn */ 9583 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9584 connp = Q_TO_CONN(q); 9585 9586 mp->b_datap->db_type = M_IOCTL; 9587 9588 /* 9589 * Send down a copy. (copymsg does not copy b_next/b_prev). 9590 * The original mp contains contaminated b_next values due to 'mi', 9591 * which is needed to do the mi_copy_done. Unfortunately if we 9592 * send down the original mblk itself and if we are popped due to an 9593 * an unplumb before the response comes back from tunnel, 9594 * the streamhead (which does a freemsg) will see this contaminated 9595 * message and the assertion in freemsg about non-null b_next/b_prev 9596 * will panic a DEBUG kernel. 9597 */ 9598 mp1 = copymsg(mp); 9599 if (mp1 == NULL) 9600 return (ENOMEM); 9601 9602 ill = ipif->ipif_ill; 9603 mutex_enter(&connp->conn_lock); 9604 mutex_enter(&ill->ill_lock); 9605 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9606 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9607 mp, 0); 9608 } else { 9609 success = ill_pending_mp_add(ill, connp, mp); 9610 } 9611 mutex_exit(&ill->ill_lock); 9612 mutex_exit(&connp->conn_lock); 9613 9614 if (success) { 9615 ip1dbg(("sending down tunparam request ")); 9616 putnext(ill->ill_wq, mp1); 9617 return (EINPROGRESS); 9618 } else { 9619 /* The conn has started closing */ 9620 freemsg(mp1); 9621 return (EINTR); 9622 } 9623 } 9624 9625 static int 9626 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9627 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9628 { 9629 mblk_t *mp1; 9630 mblk_t *mp2; 9631 mblk_t *pending_mp; 9632 ipaddr_t ipaddr; 9633 area_t *area; 9634 struct iocblk *iocp; 9635 conn_t *connp; 9636 struct arpreq *ar; 9637 struct xarpreq *xar; 9638 boolean_t success; 9639 int flags, alength; 9640 char *lladdr; 9641 ip_stack_t *ipst; 9642 9643 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9644 connp = Q_TO_CONN(q); 9645 ipst = connp->conn_netstack->netstack_ip; 9646 9647 iocp = (struct iocblk *)mp->b_rptr; 9648 /* 9649 * ill has already been set depending on whether 9650 * bsd style or interface style ioctl. 9651 */ 9652 ASSERT(ill != NULL); 9653 9654 /* 9655 * Is this one of the new SIOC*XARP ioctls? 9656 */ 9657 if (x_arp_ioctl) { 9658 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9659 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9660 ar = NULL; 9661 9662 flags = xar->xarp_flags; 9663 lladdr = LLADDR(&xar->xarp_ha); 9664 /* 9665 * Validate against user's link layer address length 9666 * input and name and addr length limits. 9667 */ 9668 alength = ill->ill_phys_addr_length; 9669 if (iocp->ioc_cmd == SIOCSXARP) { 9670 if (alength != xar->xarp_ha.sdl_alen || 9671 (alength + xar->xarp_ha.sdl_nlen > 9672 sizeof (xar->xarp_ha.sdl_data))) 9673 return (EINVAL); 9674 } 9675 } else { 9676 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9677 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9678 xar = NULL; 9679 9680 flags = ar->arp_flags; 9681 lladdr = ar->arp_ha.sa_data; 9682 /* 9683 * Theoretically, the sa_family could tell us what link 9684 * layer type this operation is trying to deal with. By 9685 * common usage AF_UNSPEC means ethernet. We'll assume 9686 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9687 * for now. Our new SIOC*XARP ioctls can be used more 9688 * generally. 9689 * 9690 * If the underlying media happens to have a non 6 byte 9691 * address, arp module will fail set/get, but the del 9692 * operation will succeed. 9693 */ 9694 alength = 6; 9695 if ((iocp->ioc_cmd != SIOCDARP) && 9696 (alength != ill->ill_phys_addr_length)) { 9697 return (EINVAL); 9698 } 9699 } 9700 9701 /* 9702 * We are going to pass up to ARP a packet chain that looks 9703 * like: 9704 * 9705 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9706 * 9707 * Get a copy of the original IOCTL mblk to head the chain, 9708 * to be sent up (in mp1). Also get another copy to store 9709 * in the ill_pending_mp list, for matching the response 9710 * when it comes back from ARP. 9711 */ 9712 mp1 = copyb(mp); 9713 pending_mp = copymsg(mp); 9714 if (mp1 == NULL || pending_mp == NULL) { 9715 if (mp1 != NULL) 9716 freeb(mp1); 9717 if (pending_mp != NULL) 9718 inet_freemsg(pending_mp); 9719 return (ENOMEM); 9720 } 9721 9722 ipaddr = sin->sin_addr.s_addr; 9723 9724 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9725 (caddr_t)&ipaddr); 9726 if (mp2 == NULL) { 9727 freeb(mp1); 9728 inet_freemsg(pending_mp); 9729 return (ENOMEM); 9730 } 9731 /* Put together the chain. */ 9732 mp1->b_cont = mp2; 9733 mp1->b_datap->db_type = M_IOCTL; 9734 mp2->b_cont = mp; 9735 mp2->b_datap->db_type = M_DATA; 9736 9737 iocp = (struct iocblk *)mp1->b_rptr; 9738 9739 /* 9740 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9741 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9742 * cp_private field (or cp_rval on 32-bit systems) in place of the 9743 * ioc_count field; set ioc_count to be correct. 9744 */ 9745 iocp->ioc_count = MBLKL(mp1->b_cont); 9746 9747 /* 9748 * Set the proper command in the ARP message. 9749 * Convert the SIOC{G|S|D}ARP calls into our 9750 * AR_ENTRY_xxx calls. 9751 */ 9752 area = (area_t *)mp2->b_rptr; 9753 switch (iocp->ioc_cmd) { 9754 case SIOCDARP: 9755 case SIOCDXARP: 9756 /* 9757 * We defer deleting the corresponding IRE until 9758 * we return from arp. 9759 */ 9760 area->area_cmd = AR_ENTRY_DELETE; 9761 area->area_proto_mask_offset = 0; 9762 break; 9763 case SIOCGARP: 9764 case SIOCGXARP: 9765 area->area_cmd = AR_ENTRY_SQUERY; 9766 area->area_proto_mask_offset = 0; 9767 break; 9768 case SIOCSARP: 9769 case SIOCSXARP: { 9770 /* 9771 * Delete the corresponding ire to make sure IP will 9772 * pick up any change from arp. 9773 */ 9774 if (!if_arp_ioctl) { 9775 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9776 break; 9777 } else { 9778 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9779 if (ipif != NULL) { 9780 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9781 ipst); 9782 ipif_refrele(ipif); 9783 } 9784 break; 9785 } 9786 } 9787 } 9788 iocp->ioc_cmd = area->area_cmd; 9789 9790 /* 9791 * Before sending 'mp' to ARP, we have to clear the b_next 9792 * and b_prev. Otherwise if STREAMS encounters such a message 9793 * in freemsg(), (because ARP can close any time) it can cause 9794 * a panic. But mi code needs the b_next and b_prev values of 9795 * mp->b_cont, to complete the ioctl. So we store it here 9796 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9797 * when the response comes down from ARP. 9798 */ 9799 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9800 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9801 mp->b_cont->b_next = NULL; 9802 mp->b_cont->b_prev = NULL; 9803 9804 mutex_enter(&connp->conn_lock); 9805 mutex_enter(&ill->ill_lock); 9806 /* conn has not yet started closing, hence this can't fail */ 9807 success = ill_pending_mp_add(ill, connp, pending_mp); 9808 ASSERT(success); 9809 mutex_exit(&ill->ill_lock); 9810 mutex_exit(&connp->conn_lock); 9811 9812 /* 9813 * Fill in the rest of the ARP operation fields. 9814 */ 9815 area->area_hw_addr_length = alength; 9816 bcopy(lladdr, 9817 (char *)area + area->area_hw_addr_offset, 9818 area->area_hw_addr_length); 9819 /* Translate the flags. */ 9820 if (flags & ATF_PERM) 9821 area->area_flags |= ACE_F_PERMANENT; 9822 if (flags & ATF_PUBL) 9823 area->area_flags |= ACE_F_PUBLISH; 9824 if (flags & ATF_AUTHORITY) 9825 area->area_flags |= ACE_F_AUTHORITY; 9826 9827 /* 9828 * Up to ARP it goes. The response will come 9829 * back in ip_wput as an M_IOCACK message, and 9830 * will be handed to ip_sioctl_iocack for 9831 * completion. 9832 */ 9833 putnext(ill->ill_rq, mp1); 9834 return (EINPROGRESS); 9835 } 9836 9837 /* ARGSUSED */ 9838 int 9839 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9840 ip_ioctl_cmd_t *ipip, void *ifreq) 9841 { 9842 struct xarpreq *xar; 9843 boolean_t isv6; 9844 mblk_t *mp1; 9845 int err; 9846 conn_t *connp; 9847 int ifnamelen; 9848 ire_t *ire = NULL; 9849 ill_t *ill = NULL; 9850 struct sockaddr_in *sin; 9851 boolean_t if_arp_ioctl = B_FALSE; 9852 ip_stack_t *ipst; 9853 9854 /* ioctl comes down on an conn */ 9855 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9856 connp = Q_TO_CONN(q); 9857 isv6 = connp->conn_af_isv6; 9858 ipst = connp->conn_netstack->netstack_ip; 9859 9860 /* Existance verified in ip_wput_nondata */ 9861 mp1 = mp->b_cont->b_cont; 9862 9863 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9864 xar = (struct xarpreq *)mp1->b_rptr; 9865 sin = (sin_t *)&xar->xarp_pa; 9866 9867 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9868 (xar->xarp_pa.ss_family != AF_INET)) 9869 return (ENXIO); 9870 9871 ifnamelen = xar->xarp_ha.sdl_nlen; 9872 if (ifnamelen != 0) { 9873 char *cptr, cval; 9874 9875 if (ifnamelen >= LIFNAMSIZ) 9876 return (EINVAL); 9877 9878 /* 9879 * Instead of bcopying a bunch of bytes, 9880 * null-terminate the string in-situ. 9881 */ 9882 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9883 cval = *cptr; 9884 *cptr = '\0'; 9885 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9886 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9887 &err, NULL, ipst); 9888 *cptr = cval; 9889 if (ill == NULL) 9890 return (err); 9891 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9892 ill_refrele(ill); 9893 return (ENXIO); 9894 } 9895 9896 if_arp_ioctl = B_TRUE; 9897 } else { 9898 /* 9899 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9900 * as an extended BSD ioctl. The kernel uses the IP address 9901 * to figure out the network interface. 9902 */ 9903 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9904 ipst); 9905 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9906 ((ill = ire_to_ill(ire)) == NULL) || 9907 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9908 if (ire != NULL) 9909 ire_refrele(ire); 9910 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9911 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9912 NULL, MATCH_IRE_TYPE, ipst); 9913 if ((ire == NULL) || 9914 ((ill = ire_to_ill(ire)) == NULL)) { 9915 if (ire != NULL) 9916 ire_refrele(ire); 9917 return (ENXIO); 9918 } 9919 } 9920 ASSERT(ire != NULL && ill != NULL); 9921 } 9922 9923 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9924 if (if_arp_ioctl) 9925 ill_refrele(ill); 9926 if (ire != NULL) 9927 ire_refrele(ire); 9928 9929 return (err); 9930 } 9931 9932 /* 9933 * ARP IOCTLs. 9934 * How does IP get in the business of fronting ARP configuration/queries? 9935 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9936 * are by tradition passed in through a datagram socket. That lands in IP. 9937 * As it happens, this is just as well since the interface is quite crude in 9938 * that it passes in no information about protocol or hardware types, or 9939 * interface association. After making the protocol assumption, IP is in 9940 * the position to look up the name of the ILL, which ARP will need, and 9941 * format a request that can be handled by ARP. The request is passed up 9942 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9943 * back a response. ARP supports its own set of more general IOCTLs, in 9944 * case anyone is interested. 9945 */ 9946 /* ARGSUSED */ 9947 int 9948 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9949 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9950 { 9951 struct arpreq *ar; 9952 struct sockaddr_in *sin; 9953 ire_t *ire; 9954 boolean_t isv6; 9955 mblk_t *mp1; 9956 int err; 9957 conn_t *connp; 9958 ill_t *ill; 9959 ip_stack_t *ipst; 9960 9961 /* ioctl comes down on an conn */ 9962 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9963 connp = Q_TO_CONN(q); 9964 ipst = CONNQ_TO_IPST(q); 9965 isv6 = connp->conn_af_isv6; 9966 if (isv6) 9967 return (ENXIO); 9968 9969 /* Existance verified in ip_wput_nondata */ 9970 mp1 = mp->b_cont->b_cont; 9971 9972 ar = (struct arpreq *)mp1->b_rptr; 9973 sin = (sin_t *)&ar->arp_pa; 9974 9975 /* 9976 * We need to let ARP know on which interface the IP 9977 * address has an ARP mapping. In the IPMP case, a 9978 * simple forwarding table lookup will return the 9979 * IRE_IF_RESOLVER for the first interface in the group, 9980 * which might not be the interface on which the 9981 * requested IP address was resolved due to the ill 9982 * selection algorithm (see ip_newroute_get_dst_ill()). 9983 * So we do a cache table lookup first: if the IRE cache 9984 * entry for the IP address is still there, it will 9985 * contain the ill pointer for the right interface, so 9986 * we use that. If the cache entry has been flushed, we 9987 * fall back to the forwarding table lookup. This should 9988 * be rare enough since IRE cache entries have a longer 9989 * life expectancy than ARP cache entries. 9990 */ 9991 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 9992 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9993 ((ill = ire_to_ill(ire)) == NULL)) { 9994 if (ire != NULL) 9995 ire_refrele(ire); 9996 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9997 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9998 NULL, MATCH_IRE_TYPE, ipst); 9999 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10000 if (ire != NULL) 10001 ire_refrele(ire); 10002 return (ENXIO); 10003 } 10004 } 10005 ASSERT(ire != NULL && ill != NULL); 10006 10007 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10008 ire_refrele(ire); 10009 return (err); 10010 } 10011 10012 /* 10013 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10014 * atomically set/clear the muxids. Also complete the ioctl by acking or 10015 * naking it. Note that the code is structured such that the link type, 10016 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10017 * its clones use the persistent link, while pppd(1M) and perhaps many 10018 * other daemons may use non-persistent link. When combined with some 10019 * ill_t states, linking and unlinking lower streams may be used as 10020 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10021 */ 10022 /* ARGSUSED */ 10023 void 10024 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10025 { 10026 mblk_t *mp1; 10027 mblk_t *mp2; 10028 struct linkblk *li; 10029 queue_t *ipwq; 10030 char *name; 10031 struct qinit *qinfo; 10032 struct ipmx_s *ipmxp; 10033 ill_t *ill = NULL; 10034 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10035 int err = 0; 10036 boolean_t entered_ipsq = B_FALSE; 10037 boolean_t islink; 10038 queue_t *dwq = NULL; 10039 ip_stack_t *ipst; 10040 10041 if (CONN_Q(q)) 10042 ipst = CONNQ_TO_IPST(q); 10043 else 10044 ipst = ILLQ_TO_IPST(q); 10045 10046 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10047 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10048 10049 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10050 B_TRUE : B_FALSE; 10051 10052 mp1 = mp->b_cont; /* This is the linkblk info */ 10053 li = (struct linkblk *)mp1->b_rptr; 10054 10055 /* 10056 * ARP has added this special mblk, and the utility is asking us 10057 * to perform consistency checks, and also atomically set the 10058 * muxid. Ifconfig is an example. It achieves this by using 10059 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10060 * to /dev/udp[6] stream for use as the mux when plinking the IP 10061 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10062 * and other comments in this routine for more details. 10063 */ 10064 mp2 = mp1->b_cont; /* This is added by ARP */ 10065 10066 /* 10067 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10068 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10069 * get the special mblk above. For backward compatibility, we just 10070 * return success. The utility will use SIOCSLIFMUXID to store 10071 * the muxids. This is not atomic, and can leave the streams 10072 * unplumbable if the utility is interrrupted, before it does the 10073 * SIOCSLIFMUXID. 10074 */ 10075 if (mp2 == NULL) { 10076 /* 10077 * At this point we don't know whether or not this is the 10078 * IP module stream or the ARP device stream. We need to 10079 * walk the lower stream in order to find this out, since 10080 * the capability negotiation is done only on the IP module 10081 * stream. IP module instance is identified by the module 10082 * name IP, non-null q_next, and it's wput not being ip_lwput. 10083 * STREAMS ensures that the lower stream (l_qbot) will not 10084 * vanish until this ioctl completes. So we can safely walk 10085 * the stream or refer to the q_ptr. 10086 */ 10087 ipwq = li->l_qbot; 10088 while (ipwq != NULL) { 10089 qinfo = ipwq->q_qinfo; 10090 name = qinfo->qi_minfo->mi_idname; 10091 if (name != NULL && name[0] != NULL && 10092 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10093 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10094 (ipwq->q_next != NULL)) { 10095 break; 10096 } 10097 ipwq = ipwq->q_next; 10098 } 10099 /* 10100 * This looks like an IP module stream, so trigger 10101 * the capability reset or re-negotiation if necessary. 10102 */ 10103 if (ipwq != NULL) { 10104 ill = ipwq->q_ptr; 10105 ASSERT(ill != NULL); 10106 10107 if (ipsq == NULL) { 10108 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10109 ip_sioctl_plink, NEW_OP, B_TRUE); 10110 if (ipsq == NULL) 10111 return; 10112 entered_ipsq = B_TRUE; 10113 } 10114 ASSERT(IAM_WRITER_ILL(ill)); 10115 /* 10116 * Store the upper read queue of the module 10117 * immediately below IP, and count the total 10118 * number of lower modules. Do this only 10119 * for I_PLINK or I_LINK event. 10120 */ 10121 ill->ill_lmod_rq = NULL; 10122 ill->ill_lmod_cnt = 0; 10123 if (islink && (dwq = ipwq->q_next) != NULL) { 10124 ill->ill_lmod_rq = RD(dwq); 10125 10126 while (dwq != NULL) { 10127 ill->ill_lmod_cnt++; 10128 dwq = dwq->q_next; 10129 } 10130 } 10131 /* 10132 * There's no point in resetting or re-negotiating if 10133 * we are not bound to the driver, so only do this if 10134 * the DLPI state is idle (up); we assume such state 10135 * since ill_ipif_up_count gets incremented in 10136 * ipif_up_done(), which is after we are bound to the 10137 * driver. Note that in the case of logical 10138 * interfaces, IP won't rebind to the driver unless 10139 * the ill_ipif_up_count is 0, meaning that all other 10140 * IP interfaces (including the main ipif) are in the 10141 * down state. Because of this, we use such counter 10142 * as an indicator, instead of relying on the IPIF_UP 10143 * flag, which is per ipif instance. 10144 */ 10145 if (ill->ill_ipif_up_count > 0) { 10146 if (islink) 10147 ill_capability_probe(ill); 10148 else 10149 ill_capability_reset(ill); 10150 } 10151 } 10152 goto done; 10153 } 10154 10155 /* 10156 * This is an I_{P}LINK sent down by ifconfig on 10157 * /dev/arp. ARP has appended this last (3rd) mblk, 10158 * giving more info. STREAMS ensures that the lower 10159 * stream (l_qbot) will not vanish until this ioctl 10160 * completes. So we can safely walk the stream or refer 10161 * to the q_ptr. 10162 */ 10163 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10164 if (ipmxp->ipmx_arpdev_stream) { 10165 /* 10166 * The operation is occuring on the arp-device 10167 * stream. 10168 */ 10169 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10170 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10171 if (ill == NULL) { 10172 if (err == EINPROGRESS) { 10173 return; 10174 } else { 10175 err = EINVAL; 10176 goto done; 10177 } 10178 } 10179 10180 if (ipsq == NULL) { 10181 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10182 NEW_OP, B_TRUE); 10183 if (ipsq == NULL) { 10184 ill_refrele(ill); 10185 return; 10186 } 10187 entered_ipsq = B_TRUE; 10188 } 10189 ASSERT(IAM_WRITER_ILL(ill)); 10190 ill_refrele(ill); 10191 /* 10192 * To ensure consistency between IP and ARP, 10193 * the following LIFO scheme is used in 10194 * plink/punlink. (IP first, ARP last). 10195 * This is because the muxid's are stored 10196 * in the IP stream on the ill. 10197 * 10198 * I_{P}LINK: ifconfig plinks the IP stream before 10199 * plinking the ARP stream. On an arp-dev 10200 * stream, IP checks that it is not yet 10201 * plinked, and it also checks that the 10202 * corresponding IP stream is already plinked. 10203 * 10204 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10205 * before punlinking the IP stream. IP does 10206 * not allow punlink of the IP stream unless 10207 * the arp stream has been punlinked. 10208 * 10209 */ 10210 if ((islink && 10211 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10212 (!islink && 10213 ill->ill_arp_muxid != li->l_index)) { 10214 err = EINVAL; 10215 goto done; 10216 } 10217 if (islink) { 10218 ill->ill_arp_muxid = li->l_index; 10219 } else { 10220 ill->ill_arp_muxid = 0; 10221 } 10222 } else { 10223 /* 10224 * This must be the IP module stream with or 10225 * without arp. Walk the stream and locate the 10226 * IP module. An IP module instance is 10227 * identified by the module name IP, non-null 10228 * q_next, and it's wput not being ip_lwput. 10229 */ 10230 ipwq = li->l_qbot; 10231 while (ipwq != NULL) { 10232 qinfo = ipwq->q_qinfo; 10233 name = qinfo->qi_minfo->mi_idname; 10234 if (name != NULL && name[0] != NULL && 10235 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10236 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10237 (ipwq->q_next != NULL)) { 10238 break; 10239 } 10240 ipwq = ipwq->q_next; 10241 } 10242 if (ipwq != NULL) { 10243 ill = ipwq->q_ptr; 10244 ASSERT(ill != NULL); 10245 10246 if (ipsq == NULL) { 10247 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10248 ip_sioctl_plink, NEW_OP, B_TRUE); 10249 if (ipsq == NULL) 10250 return; 10251 entered_ipsq = B_TRUE; 10252 } 10253 ASSERT(IAM_WRITER_ILL(ill)); 10254 /* 10255 * Return error if the ip_mux_id is 10256 * non-zero and command is I_{P}LINK. 10257 * If command is I_{P}UNLINK, return 10258 * error if the arp-devstr is not 10259 * yet punlinked. 10260 */ 10261 if ((islink && ill->ill_ip_muxid != 0) || 10262 (!islink && ill->ill_arp_muxid != 0)) { 10263 err = EINVAL; 10264 goto done; 10265 } 10266 ill->ill_lmod_rq = NULL; 10267 ill->ill_lmod_cnt = 0; 10268 if (islink) { 10269 /* 10270 * Store the upper read queue of the module 10271 * immediately below IP, and count the total 10272 * number of lower modules. 10273 */ 10274 if ((dwq = ipwq->q_next) != NULL) { 10275 ill->ill_lmod_rq = RD(dwq); 10276 10277 while (dwq != NULL) { 10278 ill->ill_lmod_cnt++; 10279 dwq = dwq->q_next; 10280 } 10281 } 10282 ill->ill_ip_muxid = li->l_index; 10283 } else { 10284 ill->ill_ip_muxid = 0; 10285 } 10286 10287 /* 10288 * See comments above about resetting/re- 10289 * negotiating driver sub-capabilities. 10290 */ 10291 if (ill->ill_ipif_up_count > 0) { 10292 if (islink) 10293 ill_capability_probe(ill); 10294 else 10295 ill_capability_reset(ill); 10296 } 10297 } 10298 } 10299 done: 10300 iocp->ioc_count = 0; 10301 iocp->ioc_error = err; 10302 if (err == 0) 10303 mp->b_datap->db_type = M_IOCACK; 10304 else 10305 mp->b_datap->db_type = M_IOCNAK; 10306 qreply(q, mp); 10307 10308 /* Conn was refheld in ip_sioctl_copyin_setup */ 10309 if (CONN_Q(q)) 10310 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10311 if (entered_ipsq) 10312 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10313 } 10314 10315 /* 10316 * Search the ioctl command in the ioctl tables and return a pointer 10317 * to the ioctl command information. The ioctl command tables are 10318 * static and fully populated at compile time. 10319 */ 10320 ip_ioctl_cmd_t * 10321 ip_sioctl_lookup(int ioc_cmd) 10322 { 10323 int index; 10324 ip_ioctl_cmd_t *ipip; 10325 ip_ioctl_cmd_t *ipip_end; 10326 10327 if (ioc_cmd == IPI_DONTCARE) 10328 return (NULL); 10329 10330 /* 10331 * Do a 2 step search. First search the indexed table 10332 * based on the least significant byte of the ioctl cmd. 10333 * If we don't find a match, then search the misc table 10334 * serially. 10335 */ 10336 index = ioc_cmd & 0xFF; 10337 if (index < ip_ndx_ioctl_count) { 10338 ipip = &ip_ndx_ioctl_table[index]; 10339 if (ipip->ipi_cmd == ioc_cmd) { 10340 /* Found a match in the ndx table */ 10341 return (ipip); 10342 } 10343 } 10344 10345 /* Search the misc table */ 10346 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10347 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10348 if (ipip->ipi_cmd == ioc_cmd) 10349 /* Found a match in the misc table */ 10350 return (ipip); 10351 } 10352 10353 return (NULL); 10354 } 10355 10356 /* 10357 * Wrapper function for resuming deferred ioctl processing 10358 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10359 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10360 */ 10361 /* ARGSUSED */ 10362 void 10363 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10364 void *dummy_arg) 10365 { 10366 ip_sioctl_copyin_setup(q, mp); 10367 } 10368 10369 /* 10370 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10371 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10372 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10373 * We establish here the size of the block to be copied in. mi_copyin 10374 * arranges for this to happen, an processing continues in ip_wput with 10375 * an M_IOCDATA message. 10376 */ 10377 void 10378 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10379 { 10380 int copyin_size; 10381 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10382 ip_ioctl_cmd_t *ipip; 10383 cred_t *cr; 10384 ip_stack_t *ipst; 10385 10386 if (CONN_Q(q)) 10387 ipst = CONNQ_TO_IPST(q); 10388 else 10389 ipst = ILLQ_TO_IPST(q); 10390 10391 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10392 if (ipip == NULL) { 10393 /* 10394 * The ioctl is not one we understand or own. 10395 * Pass it along to be processed down stream, 10396 * if this is a module instance of IP, else nak 10397 * the ioctl. 10398 */ 10399 if (q->q_next == NULL) { 10400 goto nak; 10401 } else { 10402 putnext(q, mp); 10403 return; 10404 } 10405 } 10406 10407 /* 10408 * If this is deferred, then we will do all the checks when we 10409 * come back. 10410 */ 10411 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10412 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10413 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10414 return; 10415 } 10416 10417 /* 10418 * Only allow a very small subset of IP ioctls on this stream if 10419 * IP is a module and not a driver. Allowing ioctls to be processed 10420 * in this case may cause assert failures or data corruption. 10421 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10422 * ioctls allowed on an IP module stream, after which this stream 10423 * normally becomes a multiplexor (at which time the stream head 10424 * will fail all ioctls). 10425 */ 10426 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10427 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10428 /* 10429 * Pass common Streams ioctls which the IP 10430 * module does not own or consume along to 10431 * be processed down stream. 10432 */ 10433 putnext(q, mp); 10434 return; 10435 } else { 10436 goto nak; 10437 } 10438 } 10439 10440 /* Make sure we have ioctl data to process. */ 10441 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10442 goto nak; 10443 10444 /* 10445 * Prefer dblk credential over ioctl credential; some synthesized 10446 * ioctls have kcred set because there's no way to crhold() 10447 * a credential in some contexts. (ioc_cr is not crfree() by 10448 * the framework; the caller of ioctl needs to hold the reference 10449 * for the duration of the call). 10450 */ 10451 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10452 10453 /* Make sure normal users don't send down privileged ioctls */ 10454 if ((ipip->ipi_flags & IPI_PRIV) && 10455 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10456 /* We checked the privilege earlier but log it here */ 10457 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10458 return; 10459 } 10460 10461 /* 10462 * The ioctl command tables can only encode fixed length 10463 * ioctl data. If the length is variable, the table will 10464 * encode the length as zero. Such special cases are handled 10465 * below in the switch. 10466 */ 10467 if (ipip->ipi_copyin_size != 0) { 10468 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10469 return; 10470 } 10471 10472 switch (iocp->ioc_cmd) { 10473 case O_SIOCGIFCONF: 10474 case SIOCGIFCONF: 10475 /* 10476 * This IOCTL is hilarious. See comments in 10477 * ip_sioctl_get_ifconf for the story. 10478 */ 10479 if (iocp->ioc_count == TRANSPARENT) 10480 copyin_size = SIZEOF_STRUCT(ifconf, 10481 iocp->ioc_flag); 10482 else 10483 copyin_size = iocp->ioc_count; 10484 mi_copyin(q, mp, NULL, copyin_size); 10485 return; 10486 10487 case O_SIOCGLIFCONF: 10488 case SIOCGLIFCONF: 10489 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10490 mi_copyin(q, mp, NULL, copyin_size); 10491 return; 10492 10493 case SIOCGLIFSRCOF: 10494 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10495 mi_copyin(q, mp, NULL, copyin_size); 10496 return; 10497 case SIOCGIP6ADDRPOLICY: 10498 ip_sioctl_ip6addrpolicy(q, mp); 10499 ip6_asp_table_refrele(ipst); 10500 return; 10501 10502 case SIOCSIP6ADDRPOLICY: 10503 ip_sioctl_ip6addrpolicy(q, mp); 10504 return; 10505 10506 case SIOCGDSTINFO: 10507 ip_sioctl_dstinfo(q, mp); 10508 ip6_asp_table_refrele(ipst); 10509 return; 10510 10511 case I_PLINK: 10512 case I_PUNLINK: 10513 case I_LINK: 10514 case I_UNLINK: 10515 /* 10516 * We treat non-persistent link similarly as the persistent 10517 * link case, in terms of plumbing/unplumbing, as well as 10518 * dynamic re-plumbing events indicator. See comments 10519 * in ip_sioctl_plink() for more. 10520 * 10521 * Request can be enqueued in the 'ipsq' while waiting 10522 * to become exclusive. So bump up the conn ref. 10523 */ 10524 if (CONN_Q(q)) 10525 CONN_INC_REF(Q_TO_CONN(q)); 10526 ip_sioctl_plink(NULL, q, mp, NULL); 10527 return; 10528 10529 case ND_GET: 10530 case ND_SET: 10531 /* 10532 * Use of the nd table requires holding the reader lock. 10533 * Modifying the nd table thru nd_load/nd_unload requires 10534 * the writer lock. 10535 */ 10536 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10537 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10538 rw_exit(&ipst->ips_ip_g_nd_lock); 10539 10540 if (iocp->ioc_error) 10541 iocp->ioc_count = 0; 10542 mp->b_datap->db_type = M_IOCACK; 10543 qreply(q, mp); 10544 return; 10545 } 10546 rw_exit(&ipst->ips_ip_g_nd_lock); 10547 /* 10548 * We don't understand this subioctl of ND_GET / ND_SET. 10549 * Maybe intended for some driver / module below us 10550 */ 10551 if (q->q_next) { 10552 putnext(q, mp); 10553 } else { 10554 iocp->ioc_error = ENOENT; 10555 mp->b_datap->db_type = M_IOCNAK; 10556 iocp->ioc_count = 0; 10557 qreply(q, mp); 10558 } 10559 return; 10560 10561 case IP_IOCTL: 10562 ip_wput_ioctl(q, mp); 10563 return; 10564 default: 10565 cmn_err(CE_PANIC, "should not happen "); 10566 } 10567 nak: 10568 if (mp->b_cont != NULL) { 10569 freemsg(mp->b_cont); 10570 mp->b_cont = NULL; 10571 } 10572 iocp->ioc_error = EINVAL; 10573 mp->b_datap->db_type = M_IOCNAK; 10574 iocp->ioc_count = 0; 10575 qreply(q, mp); 10576 } 10577 10578 /* ip_wput hands off ARP IOCTL responses to us */ 10579 void 10580 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10581 { 10582 struct arpreq *ar; 10583 struct xarpreq *xar; 10584 area_t *area; 10585 mblk_t *area_mp; 10586 struct iocblk *iocp; 10587 mblk_t *orig_ioc_mp, *tmp; 10588 struct iocblk *orig_iocp; 10589 ill_t *ill; 10590 conn_t *connp = NULL; 10591 uint_t ioc_id; 10592 mblk_t *pending_mp; 10593 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10594 int *flagsp; 10595 char *storage = NULL; 10596 sin_t *sin; 10597 ipaddr_t addr; 10598 int err; 10599 ip_stack_t *ipst; 10600 10601 ill = q->q_ptr; 10602 ASSERT(ill != NULL); 10603 ipst = ill->ill_ipst; 10604 10605 /* 10606 * We should get back from ARP a packet chain that looks like: 10607 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10608 */ 10609 if (!(area_mp = mp->b_cont) || 10610 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10611 !(orig_ioc_mp = area_mp->b_cont) || 10612 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10613 freemsg(mp); 10614 return; 10615 } 10616 10617 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10618 10619 tmp = (orig_ioc_mp->b_cont)->b_cont; 10620 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10621 (orig_iocp->ioc_cmd == SIOCSXARP) || 10622 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10623 x_arp_ioctl = B_TRUE; 10624 xar = (struct xarpreq *)tmp->b_rptr; 10625 sin = (sin_t *)&xar->xarp_pa; 10626 flagsp = &xar->xarp_flags; 10627 storage = xar->xarp_ha.sdl_data; 10628 if (xar->xarp_ha.sdl_nlen != 0) 10629 ifx_arp_ioctl = B_TRUE; 10630 } else { 10631 ar = (struct arpreq *)tmp->b_rptr; 10632 sin = (sin_t *)&ar->arp_pa; 10633 flagsp = &ar->arp_flags; 10634 storage = ar->arp_ha.sa_data; 10635 } 10636 10637 iocp = (struct iocblk *)mp->b_rptr; 10638 10639 /* 10640 * Pick out the originating queue based on the ioc_id. 10641 */ 10642 ioc_id = iocp->ioc_id; 10643 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10644 if (pending_mp == NULL) { 10645 ASSERT(connp == NULL); 10646 inet_freemsg(mp); 10647 return; 10648 } 10649 ASSERT(connp != NULL); 10650 q = CONNP_TO_WQ(connp); 10651 10652 /* Uncouple the internally generated IOCTL from the original one */ 10653 area = (area_t *)area_mp->b_rptr; 10654 area_mp->b_cont = NULL; 10655 10656 /* 10657 * Restore the b_next and b_prev used by mi code. This is needed 10658 * to complete the ioctl using mi* functions. We stored them in 10659 * the pending mp prior to sending the request to ARP. 10660 */ 10661 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10662 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10663 inet_freemsg(pending_mp); 10664 10665 /* 10666 * We're done if there was an error or if this is not an SIOCG{X}ARP 10667 * Catch the case where there is an IRE_CACHE by no entry in the 10668 * arp table. 10669 */ 10670 addr = sin->sin_addr.s_addr; 10671 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10672 ire_t *ire; 10673 dl_unitdata_req_t *dlup; 10674 mblk_t *llmp; 10675 int addr_len; 10676 ill_t *ipsqill = NULL; 10677 10678 if (ifx_arp_ioctl) { 10679 /* 10680 * There's no need to lookup the ill, since 10681 * we've already done that when we started 10682 * processing the ioctl and sent the message 10683 * to ARP on that ill. So use the ill that 10684 * is stored in q->q_ptr. 10685 */ 10686 ipsqill = ill; 10687 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10688 ipsqill->ill_ipif, ALL_ZONES, 10689 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10690 } else { 10691 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10692 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10693 if (ire != NULL) 10694 ipsqill = ire_to_ill(ire); 10695 } 10696 10697 if ((x_arp_ioctl) && (ipsqill != NULL)) 10698 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10699 10700 if (ire != NULL) { 10701 /* 10702 * Since the ire obtained from cachetable is used for 10703 * mac addr copying below, treat an incomplete ire as if 10704 * as if we never found it. 10705 */ 10706 if (ire->ire_nce != NULL && 10707 ire->ire_nce->nce_state != ND_REACHABLE) { 10708 ire_refrele(ire); 10709 ire = NULL; 10710 ipsqill = NULL; 10711 goto errack; 10712 } 10713 *flagsp = ATF_INUSE; 10714 llmp = (ire->ire_nce != NULL ? 10715 ire->ire_nce->nce_res_mp : NULL); 10716 if (llmp != NULL && ipsqill != NULL) { 10717 uchar_t *macaddr; 10718 10719 addr_len = ipsqill->ill_phys_addr_length; 10720 if (x_arp_ioctl && ((addr_len + 10721 ipsqill->ill_name_length) > 10722 sizeof (xar->xarp_ha.sdl_data))) { 10723 ire_refrele(ire); 10724 freemsg(mp); 10725 ip_ioctl_finish(q, orig_ioc_mp, 10726 EINVAL, NO_COPYOUT, NULL); 10727 return; 10728 } 10729 *flagsp |= ATF_COM; 10730 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10731 if (ipsqill->ill_sap_length < 0) 10732 macaddr = llmp->b_rptr + 10733 dlup->dl_dest_addr_offset; 10734 else 10735 macaddr = llmp->b_rptr + 10736 dlup->dl_dest_addr_offset + 10737 ipsqill->ill_sap_length; 10738 /* 10739 * For SIOCGARP, MAC address length 10740 * validation has already been done 10741 * before the ioctl was issued to ARP to 10742 * allow it to progress only on 6 byte 10743 * addressable (ethernet like) media. Thus 10744 * the mac address copying can not overwrite 10745 * the sa_data area below. 10746 */ 10747 bcopy(macaddr, storage, addr_len); 10748 } 10749 /* Ditch the internal IOCTL. */ 10750 freemsg(mp); 10751 ire_refrele(ire); 10752 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10753 return; 10754 } 10755 } 10756 10757 /* 10758 * Delete the coresponding IRE_CACHE if any. 10759 * Reset the error if there was one (in case there was no entry 10760 * in arp.) 10761 */ 10762 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10763 ipif_t *ipintf = NULL; 10764 10765 if (ifx_arp_ioctl) { 10766 /* 10767 * There's no need to lookup the ill, since 10768 * we've already done that when we started 10769 * processing the ioctl and sent the message 10770 * to ARP on that ill. So use the ill that 10771 * is stored in q->q_ptr. 10772 */ 10773 ipintf = ill->ill_ipif; 10774 } 10775 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10776 /* 10777 * The address in "addr" may be an entry for a 10778 * router. If that's true, then any off-net 10779 * IRE_CACHE entries that go through the router 10780 * with address "addr" must be clobbered. Use 10781 * ire_walk to achieve this goal. 10782 */ 10783 if (ifx_arp_ioctl) 10784 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10785 ire_delete_cache_gw, (char *)&addr, ill); 10786 else 10787 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10788 ALL_ZONES, ipst); 10789 iocp->ioc_error = 0; 10790 } 10791 } 10792 errack: 10793 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10794 err = iocp->ioc_error; 10795 freemsg(mp); 10796 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10797 return; 10798 } 10799 10800 /* 10801 * Completion of an SIOCG{X}ARP. Translate the information from 10802 * the area_t into the struct {x}arpreq. 10803 */ 10804 if (x_arp_ioctl) { 10805 storage += ill_xarp_info(&xar->xarp_ha, ill); 10806 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10807 sizeof (xar->xarp_ha.sdl_data)) { 10808 freemsg(mp); 10809 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10810 NULL); 10811 return; 10812 } 10813 } 10814 *flagsp = ATF_INUSE; 10815 if (area->area_flags & ACE_F_PERMANENT) 10816 *flagsp |= ATF_PERM; 10817 if (area->area_flags & ACE_F_PUBLISH) 10818 *flagsp |= ATF_PUBL; 10819 if (area->area_flags & ACE_F_AUTHORITY) 10820 *flagsp |= ATF_AUTHORITY; 10821 if (area->area_hw_addr_length != 0) { 10822 *flagsp |= ATF_COM; 10823 /* 10824 * For SIOCGARP, MAC address length validation has 10825 * already been done before the ioctl was issued to ARP 10826 * to allow it to progress only on 6 byte addressable 10827 * (ethernet like) media. Thus the mac address copying 10828 * can not overwrite the sa_data area below. 10829 */ 10830 bcopy((char *)area + area->area_hw_addr_offset, 10831 storage, area->area_hw_addr_length); 10832 } 10833 10834 /* Ditch the internal IOCTL. */ 10835 freemsg(mp); 10836 /* Complete the original. */ 10837 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10838 } 10839 10840 /* 10841 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10842 * interface) create the next available logical interface for this 10843 * physical interface. 10844 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10845 * ipif with the specified name. 10846 * 10847 * If the address family is not AF_UNSPEC then set the address as well. 10848 * 10849 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10850 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10851 * 10852 * Executed as a writer on the ill or ill group. 10853 * So no lock is needed to traverse the ipif chain, or examine the 10854 * phyint flags. 10855 */ 10856 /* ARGSUSED */ 10857 int 10858 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10859 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10860 { 10861 mblk_t *mp1; 10862 struct lifreq *lifr; 10863 boolean_t isv6; 10864 boolean_t exists; 10865 char *name; 10866 char *endp; 10867 char *cp; 10868 int namelen; 10869 ipif_t *ipif; 10870 long id; 10871 ipsq_t *ipsq; 10872 ill_t *ill; 10873 sin_t *sin; 10874 int err = 0; 10875 boolean_t found_sep = B_FALSE; 10876 conn_t *connp; 10877 zoneid_t zoneid; 10878 int orig_ifindex = 0; 10879 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10880 10881 ASSERT(q->q_next == NULL); 10882 ip1dbg(("ip_sioctl_addif\n")); 10883 /* Existence of mp1 has been checked in ip_wput_nondata */ 10884 mp1 = mp->b_cont->b_cont; 10885 /* 10886 * Null terminate the string to protect against buffer 10887 * overrun. String was generated by user code and may not 10888 * be trusted. 10889 */ 10890 lifr = (struct lifreq *)mp1->b_rptr; 10891 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10892 name = lifr->lifr_name; 10893 ASSERT(CONN_Q(q)); 10894 connp = Q_TO_CONN(q); 10895 isv6 = connp->conn_af_isv6; 10896 zoneid = connp->conn_zoneid; 10897 namelen = mi_strlen(name); 10898 if (namelen == 0) 10899 return (EINVAL); 10900 10901 exists = B_FALSE; 10902 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10903 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10904 /* 10905 * Allow creating lo0 using SIOCLIFADDIF. 10906 * can't be any other writer thread. So can pass null below 10907 * for the last 4 args to ipif_lookup_name. 10908 */ 10909 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10910 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10911 /* Prevent any further action */ 10912 if (ipif == NULL) { 10913 return (ENOBUFS); 10914 } else if (!exists) { 10915 /* We created the ipif now and as writer */ 10916 ipif_refrele(ipif); 10917 return (0); 10918 } else { 10919 ill = ipif->ipif_ill; 10920 ill_refhold(ill); 10921 ipif_refrele(ipif); 10922 } 10923 } else { 10924 /* Look for a colon in the name. */ 10925 endp = &name[namelen]; 10926 for (cp = endp; --cp > name; ) { 10927 if (*cp == IPIF_SEPARATOR_CHAR) { 10928 found_sep = B_TRUE; 10929 /* 10930 * Reject any non-decimal aliases for plumbing 10931 * of logical interfaces. Aliases with leading 10932 * zeroes are also rejected as they introduce 10933 * ambiguity in the naming of the interfaces. 10934 * Comparing with "0" takes care of all such 10935 * cases. 10936 */ 10937 if ((strncmp("0", cp+1, 1)) == 0) 10938 return (EINVAL); 10939 10940 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10941 id <= 0 || *endp != '\0') { 10942 return (EINVAL); 10943 } 10944 *cp = '\0'; 10945 break; 10946 } 10947 } 10948 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10949 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10950 if (found_sep) 10951 *cp = IPIF_SEPARATOR_CHAR; 10952 if (ill == NULL) 10953 return (err); 10954 } 10955 10956 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10957 B_TRUE); 10958 10959 /* 10960 * Release the refhold due to the lookup, now that we are excl 10961 * or we are just returning 10962 */ 10963 ill_refrele(ill); 10964 10965 if (ipsq == NULL) 10966 return (EINPROGRESS); 10967 10968 /* 10969 * If the interface is failed, inactive or offlined, look for a working 10970 * interface in the ill group and create the ipif there. If we can't 10971 * find a good interface, create the ipif anyway so that in.mpathd can 10972 * move it to the first repaired interface. 10973 */ 10974 if ((ill->ill_phyint->phyint_flags & 10975 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10976 ill->ill_phyint->phyint_groupname_len != 0) { 10977 phyint_t *phyi; 10978 char *groupname = ill->ill_phyint->phyint_groupname; 10979 10980 /* 10981 * We're looking for a working interface, but it doesn't matter 10982 * if it's up or down; so instead of following the group lists, 10983 * we look at each physical interface and compare the groupname. 10984 * We're only interested in interfaces with IPv4 (resp. IPv6) 10985 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10986 * Otherwise we create the ipif on the failed interface. 10987 */ 10988 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10989 phyi = avl_first(&ipst->ips_phyint_g_list-> 10990 phyint_list_avl_by_index); 10991 for (; phyi != NULL; 10992 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10993 phyint_list_avl_by_index, 10994 phyi, AVL_AFTER)) { 10995 if (phyi->phyint_groupname_len == 0) 10996 continue; 10997 ASSERT(phyi->phyint_groupname != NULL); 10998 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10999 !(phyi->phyint_flags & 11000 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11001 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11002 (phyi->phyint_illv4 != NULL))) { 11003 break; 11004 } 11005 } 11006 rw_exit(&ipst->ips_ill_g_lock); 11007 11008 if (phyi != NULL) { 11009 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11010 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11011 phyi->phyint_illv4); 11012 } 11013 } 11014 11015 /* 11016 * We are now exclusive on the ipsq, so an ill move will be serialized 11017 * before or after us. 11018 */ 11019 ASSERT(IAM_WRITER_ILL(ill)); 11020 ASSERT(ill->ill_move_in_progress == B_FALSE); 11021 11022 if (found_sep && orig_ifindex == 0) { 11023 /* Now see if there is an IPIF with this unit number. */ 11024 for (ipif = ill->ill_ipif; ipif != NULL; 11025 ipif = ipif->ipif_next) { 11026 if (ipif->ipif_id == id) { 11027 err = EEXIST; 11028 goto done; 11029 } 11030 } 11031 } 11032 11033 /* 11034 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11035 * of lo0. We never come here when we plumb lo0:0. It 11036 * happens in ipif_lookup_on_name. 11037 * The specified unit number is ignored when we create the ipif on a 11038 * different interface. However, we save it in ipif_orig_ipifid below so 11039 * that the ipif fails back to the right position. 11040 */ 11041 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11042 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11043 err = ENOBUFS; 11044 goto done; 11045 } 11046 11047 /* Return created name with ioctl */ 11048 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11049 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11050 ip1dbg(("created %s\n", lifr->lifr_name)); 11051 11052 /* Set address */ 11053 sin = (sin_t *)&lifr->lifr_addr; 11054 if (sin->sin_family != AF_UNSPEC) { 11055 err = ip_sioctl_addr(ipif, sin, q, mp, 11056 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11057 } 11058 11059 /* Set ifindex and unit number for failback */ 11060 if (err == 0 && orig_ifindex != 0) { 11061 ipif->ipif_orig_ifindex = orig_ifindex; 11062 if (found_sep) { 11063 ipif->ipif_orig_ipifid = id; 11064 } 11065 } 11066 11067 done: 11068 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11069 return (err); 11070 } 11071 11072 /* 11073 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11074 * interface) delete it based on the IP address (on this physical interface). 11075 * Otherwise delete it based on the ipif_id. 11076 * Also, special handling to allow a removeif of lo0. 11077 */ 11078 /* ARGSUSED */ 11079 int 11080 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11081 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11082 { 11083 conn_t *connp; 11084 ill_t *ill = ipif->ipif_ill; 11085 boolean_t success; 11086 ip_stack_t *ipst; 11087 11088 ipst = CONNQ_TO_IPST(q); 11089 11090 ASSERT(q->q_next == NULL); 11091 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11092 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11093 ASSERT(IAM_WRITER_IPIF(ipif)); 11094 11095 connp = Q_TO_CONN(q); 11096 /* 11097 * Special case for unplumbing lo0 (the loopback physical interface). 11098 * If unplumbing lo0, the incoming address structure has been 11099 * initialized to all zeros. When unplumbing lo0, all its logical 11100 * interfaces must be removed too. 11101 * 11102 * Note that this interface may be called to remove a specific 11103 * loopback logical interface (eg, lo0:1). But in that case 11104 * ipif->ipif_id != 0 so that the code path for that case is the 11105 * same as any other interface (meaning it skips the code directly 11106 * below). 11107 */ 11108 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11109 if (sin->sin_family == AF_UNSPEC && 11110 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11111 /* 11112 * Mark it condemned. No new ref. will be made to ill. 11113 */ 11114 mutex_enter(&ill->ill_lock); 11115 ill->ill_state_flags |= ILL_CONDEMNED; 11116 for (ipif = ill->ill_ipif; ipif != NULL; 11117 ipif = ipif->ipif_next) { 11118 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11119 } 11120 mutex_exit(&ill->ill_lock); 11121 11122 ipif = ill->ill_ipif; 11123 /* unplumb the loopback interface */ 11124 ill_delete(ill); 11125 mutex_enter(&connp->conn_lock); 11126 mutex_enter(&ill->ill_lock); 11127 ASSERT(ill->ill_group == NULL); 11128 11129 /* Are any references to this ill active */ 11130 if (ill_is_quiescent(ill)) { 11131 mutex_exit(&ill->ill_lock); 11132 mutex_exit(&connp->conn_lock); 11133 ill_delete_tail(ill); 11134 mi_free(ill); 11135 return (0); 11136 } 11137 success = ipsq_pending_mp_add(connp, ipif, 11138 CONNP_TO_WQ(connp), mp, ILL_FREE); 11139 mutex_exit(&connp->conn_lock); 11140 mutex_exit(&ill->ill_lock); 11141 if (success) 11142 return (EINPROGRESS); 11143 else 11144 return (EINTR); 11145 } 11146 } 11147 11148 /* 11149 * We are exclusive on the ipsq, so an ill move will be serialized 11150 * before or after us. 11151 */ 11152 ASSERT(ill->ill_move_in_progress == B_FALSE); 11153 11154 if (ipif->ipif_id == 0) { 11155 /* Find based on address */ 11156 if (ipif->ipif_isv6) { 11157 sin6_t *sin6; 11158 11159 if (sin->sin_family != AF_INET6) 11160 return (EAFNOSUPPORT); 11161 11162 sin6 = (sin6_t *)sin; 11163 /* We are a writer, so we should be able to lookup */ 11164 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11165 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11166 if (ipif == NULL) { 11167 /* 11168 * Maybe the address in on another interface in 11169 * the same IPMP group? We check this below. 11170 */ 11171 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11172 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11173 ipst); 11174 } 11175 } else { 11176 ipaddr_t addr; 11177 11178 if (sin->sin_family != AF_INET) 11179 return (EAFNOSUPPORT); 11180 11181 addr = sin->sin_addr.s_addr; 11182 /* We are a writer, so we should be able to lookup */ 11183 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11184 NULL, NULL, NULL, ipst); 11185 if (ipif == NULL) { 11186 /* 11187 * Maybe the address in on another interface in 11188 * the same IPMP group? We check this below. 11189 */ 11190 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11191 NULL, NULL, NULL, NULL, ipst); 11192 } 11193 } 11194 if (ipif == NULL) { 11195 return (EADDRNOTAVAIL); 11196 } 11197 /* 11198 * When the address to be removed is hosted on a different 11199 * interface, we check if the interface is in the same IPMP 11200 * group as the specified one; if so we proceed with the 11201 * removal. 11202 * ill->ill_group is NULL when the ill is down, so we have to 11203 * compare the group names instead. 11204 */ 11205 if (ipif->ipif_ill != ill && 11206 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11207 ill->ill_phyint->phyint_groupname_len == 0 || 11208 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11209 ill->ill_phyint->phyint_groupname) != 0)) { 11210 ipif_refrele(ipif); 11211 return (EADDRNOTAVAIL); 11212 } 11213 11214 /* This is a writer */ 11215 ipif_refrele(ipif); 11216 } 11217 11218 /* 11219 * Can not delete instance zero since it is tied to the ill. 11220 */ 11221 if (ipif->ipif_id == 0) 11222 return (EBUSY); 11223 11224 mutex_enter(&ill->ill_lock); 11225 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11226 mutex_exit(&ill->ill_lock); 11227 11228 ipif_free(ipif); 11229 11230 mutex_enter(&connp->conn_lock); 11231 mutex_enter(&ill->ill_lock); 11232 11233 /* Are any references to this ipif active */ 11234 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11235 mutex_exit(&ill->ill_lock); 11236 mutex_exit(&connp->conn_lock); 11237 ipif_non_duplicate(ipif); 11238 ipif_down_tail(ipif); 11239 ipif_free_tail(ipif); 11240 return (0); 11241 } 11242 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11243 IPIF_FREE); 11244 mutex_exit(&ill->ill_lock); 11245 mutex_exit(&connp->conn_lock); 11246 if (success) 11247 return (EINPROGRESS); 11248 else 11249 return (EINTR); 11250 } 11251 11252 /* 11253 * Restart the removeif ioctl. The refcnt has gone down to 0. 11254 * The ipif is already condemned. So can't find it thru lookups. 11255 */ 11256 /* ARGSUSED */ 11257 int 11258 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11259 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11260 { 11261 ill_t *ill; 11262 11263 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11264 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11265 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11266 ill = ipif->ipif_ill; 11267 ASSERT(IAM_WRITER_ILL(ill)); 11268 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11269 (ill->ill_state_flags & IPIF_CONDEMNED)); 11270 ill_delete_tail(ill); 11271 mi_free(ill); 11272 return (0); 11273 } 11274 11275 ill = ipif->ipif_ill; 11276 ASSERT(IAM_WRITER_IPIF(ipif)); 11277 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11278 11279 ipif_non_duplicate(ipif); 11280 ipif_down_tail(ipif); 11281 ipif_free_tail(ipif); 11282 11283 ILL_UNMARK_CHANGING(ill); 11284 return (0); 11285 } 11286 11287 /* 11288 * Set the local interface address. 11289 * Allow an address of all zero when the interface is down. 11290 */ 11291 /* ARGSUSED */ 11292 int 11293 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11294 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11295 { 11296 int err = 0; 11297 in6_addr_t v6addr; 11298 boolean_t need_up = B_FALSE; 11299 11300 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11302 11303 ASSERT(IAM_WRITER_IPIF(ipif)); 11304 11305 if (ipif->ipif_isv6) { 11306 sin6_t *sin6; 11307 ill_t *ill; 11308 phyint_t *phyi; 11309 11310 if (sin->sin_family != AF_INET6) 11311 return (EAFNOSUPPORT); 11312 11313 sin6 = (sin6_t *)sin; 11314 v6addr = sin6->sin6_addr; 11315 ill = ipif->ipif_ill; 11316 phyi = ill->ill_phyint; 11317 11318 /* 11319 * Enforce that true multicast interfaces have a link-local 11320 * address for logical unit 0. 11321 */ 11322 if (ipif->ipif_id == 0 && 11323 (ill->ill_flags & ILLF_MULTICAST) && 11324 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11325 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11326 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11327 return (EADDRNOTAVAIL); 11328 } 11329 11330 /* 11331 * up interfaces shouldn't have the unspecified address 11332 * unless they also have the IPIF_NOLOCAL flags set and 11333 * have a subnet assigned. 11334 */ 11335 if ((ipif->ipif_flags & IPIF_UP) && 11336 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11337 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11338 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11339 return (EADDRNOTAVAIL); 11340 } 11341 11342 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11343 return (EADDRNOTAVAIL); 11344 } else { 11345 ipaddr_t addr; 11346 11347 if (sin->sin_family != AF_INET) 11348 return (EAFNOSUPPORT); 11349 11350 addr = sin->sin_addr.s_addr; 11351 11352 /* Allow 0 as the local address. */ 11353 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11354 return (EADDRNOTAVAIL); 11355 11356 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11357 } 11358 11359 11360 /* 11361 * Even if there is no change we redo things just to rerun 11362 * ipif_set_default. 11363 */ 11364 if (ipif->ipif_flags & IPIF_UP) { 11365 /* 11366 * Setting a new local address, make sure 11367 * we have net and subnet bcast ire's for 11368 * the old address if we need them. 11369 */ 11370 if (!ipif->ipif_isv6) 11371 ipif_check_bcast_ires(ipif); 11372 /* 11373 * If the interface is already marked up, 11374 * we call ipif_down which will take care 11375 * of ditching any IREs that have been set 11376 * up based on the old interface address. 11377 */ 11378 err = ipif_logical_down(ipif, q, mp); 11379 if (err == EINPROGRESS) 11380 return (err); 11381 ipif_down_tail(ipif); 11382 need_up = 1; 11383 } 11384 11385 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11386 return (err); 11387 } 11388 11389 int 11390 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11391 boolean_t need_up) 11392 { 11393 in6_addr_t v6addr; 11394 ipaddr_t addr; 11395 sin6_t *sin6; 11396 int sinlen; 11397 int err = 0; 11398 ill_t *ill = ipif->ipif_ill; 11399 boolean_t need_dl_down; 11400 boolean_t need_arp_down; 11401 struct iocblk *iocp; 11402 11403 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11404 11405 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11406 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11407 ASSERT(IAM_WRITER_IPIF(ipif)); 11408 11409 /* Must cancel any pending timer before taking the ill_lock */ 11410 if (ipif->ipif_recovery_id != 0) 11411 (void) untimeout(ipif->ipif_recovery_id); 11412 ipif->ipif_recovery_id = 0; 11413 11414 if (ipif->ipif_isv6) { 11415 sin6 = (sin6_t *)sin; 11416 v6addr = sin6->sin6_addr; 11417 sinlen = sizeof (struct sockaddr_in6); 11418 } else { 11419 addr = sin->sin_addr.s_addr; 11420 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11421 sinlen = sizeof (struct sockaddr_in); 11422 } 11423 mutex_enter(&ill->ill_lock); 11424 ipif->ipif_v6lcl_addr = v6addr; 11425 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11426 ipif->ipif_v6src_addr = ipv6_all_zeros; 11427 } else { 11428 ipif->ipif_v6src_addr = v6addr; 11429 } 11430 ipif->ipif_addr_ready = 0; 11431 11432 /* 11433 * If the interface was previously marked as a duplicate, then since 11434 * we've now got a "new" address, it should no longer be considered a 11435 * duplicate -- even if the "new" address is the same as the old one. 11436 * Note that if all ipifs are down, we may have a pending ARP down 11437 * event to handle. This is because we want to recover from duplicates 11438 * and thus delay tearing down ARP until the duplicates have been 11439 * removed or disabled. 11440 */ 11441 need_dl_down = need_arp_down = B_FALSE; 11442 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11443 need_arp_down = !need_up; 11444 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11445 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11446 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11447 need_dl_down = B_TRUE; 11448 } 11449 } 11450 11451 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11452 !ill->ill_is_6to4tun) { 11453 queue_t *wqp = ill->ill_wq; 11454 11455 /* 11456 * The local address of this interface is a 6to4 address, 11457 * check if this interface is in fact a 6to4 tunnel or just 11458 * an interface configured with a 6to4 address. We are only 11459 * interested in the former. 11460 */ 11461 if (wqp != NULL) { 11462 while ((wqp->q_next != NULL) && 11463 (wqp->q_next->q_qinfo != NULL) && 11464 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11465 11466 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11467 == TUN6TO4_MODID) { 11468 /* set for use in IP */ 11469 ill->ill_is_6to4tun = 1; 11470 break; 11471 } 11472 wqp = wqp->q_next; 11473 } 11474 } 11475 } 11476 11477 ipif_set_default(ipif); 11478 11479 /* 11480 * When publishing an interface address change event, we only notify 11481 * the event listeners of the new address. It is assumed that if they 11482 * actively care about the addresses assigned that they will have 11483 * already discovered the previous address assigned (if there was one.) 11484 * 11485 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11486 */ 11487 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11488 hook_nic_event_t *info; 11489 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11490 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11491 "attached for %s\n", info->hne_event, 11492 ill->ill_name)); 11493 if (info->hne_data != NULL) 11494 kmem_free(info->hne_data, info->hne_datalen); 11495 kmem_free(info, sizeof (hook_nic_event_t)); 11496 } 11497 11498 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11499 if (info != NULL) { 11500 ip_stack_t *ipst = ill->ill_ipst; 11501 11502 info->hne_nic = 11503 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11504 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11505 info->hne_event = NE_ADDRESS_CHANGE; 11506 info->hne_family = ipif->ipif_isv6 ? 11507 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11508 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11509 if (info->hne_data != NULL) { 11510 info->hne_datalen = sinlen; 11511 bcopy(sin, info->hne_data, sinlen); 11512 } else { 11513 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11514 "address information for ADDRESS_CHANGE nic" 11515 " event of %s (ENOMEM)\n", 11516 ipif->ipif_ill->ill_name)); 11517 kmem_free(info, sizeof (hook_nic_event_t)); 11518 } 11519 } else 11520 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11521 "ADDRESS_CHANGE nic event information for %s " 11522 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11523 11524 ipif->ipif_ill->ill_nic_event_info = info; 11525 } 11526 11527 mutex_exit(&ill->ill_lock); 11528 11529 if (need_up) { 11530 /* 11531 * Now bring the interface back up. If this 11532 * is the only IPIF for the ILL, ipif_up 11533 * will have to re-bind to the device, so 11534 * we may get back EINPROGRESS, in which 11535 * case, this IOCTL will get completed in 11536 * ip_rput_dlpi when we see the DL_BIND_ACK. 11537 */ 11538 err = ipif_up(ipif, q, mp); 11539 } else { 11540 /* 11541 * Update the IPIF list in SCTP, ipif_up_done() will do it 11542 * if need_up is true. 11543 */ 11544 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11545 } 11546 11547 if (need_dl_down) 11548 ill_dl_down(ill); 11549 if (need_arp_down) 11550 ipif_arp_down(ipif); 11551 11552 return (err); 11553 } 11554 11555 11556 /* 11557 * Restart entry point to restart the address set operation after the 11558 * refcounts have dropped to zero. 11559 */ 11560 /* ARGSUSED */ 11561 int 11562 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11563 ip_ioctl_cmd_t *ipip, void *ifreq) 11564 { 11565 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11566 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11567 ASSERT(IAM_WRITER_IPIF(ipif)); 11568 ipif_down_tail(ipif); 11569 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11570 } 11571 11572 /* ARGSUSED */ 11573 int 11574 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11575 ip_ioctl_cmd_t *ipip, void *if_req) 11576 { 11577 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11578 struct lifreq *lifr = (struct lifreq *)if_req; 11579 11580 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11581 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11582 /* 11583 * The net mask and address can't change since we have a 11584 * reference to the ipif. So no lock is necessary. 11585 */ 11586 if (ipif->ipif_isv6) { 11587 *sin6 = sin6_null; 11588 sin6->sin6_family = AF_INET6; 11589 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11590 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11591 lifr->lifr_addrlen = 11592 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11593 } else { 11594 *sin = sin_null; 11595 sin->sin_family = AF_INET; 11596 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11597 if (ipip->ipi_cmd_type == LIF_CMD) { 11598 lifr->lifr_addrlen = 11599 ip_mask_to_plen(ipif->ipif_net_mask); 11600 } 11601 } 11602 return (0); 11603 } 11604 11605 /* 11606 * Set the destination address for a pt-pt interface. 11607 */ 11608 /* ARGSUSED */ 11609 int 11610 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11611 ip_ioctl_cmd_t *ipip, void *if_req) 11612 { 11613 int err = 0; 11614 in6_addr_t v6addr; 11615 boolean_t need_up = B_FALSE; 11616 11617 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11618 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11619 ASSERT(IAM_WRITER_IPIF(ipif)); 11620 11621 if (ipif->ipif_isv6) { 11622 sin6_t *sin6; 11623 11624 if (sin->sin_family != AF_INET6) 11625 return (EAFNOSUPPORT); 11626 11627 sin6 = (sin6_t *)sin; 11628 v6addr = sin6->sin6_addr; 11629 11630 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11631 return (EADDRNOTAVAIL); 11632 } else { 11633 ipaddr_t addr; 11634 11635 if (sin->sin_family != AF_INET) 11636 return (EAFNOSUPPORT); 11637 11638 addr = sin->sin_addr.s_addr; 11639 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11640 return (EADDRNOTAVAIL); 11641 11642 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11643 } 11644 11645 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11646 return (0); /* No change */ 11647 11648 if (ipif->ipif_flags & IPIF_UP) { 11649 /* 11650 * If the interface is already marked up, 11651 * we call ipif_down which will take care 11652 * of ditching any IREs that have been set 11653 * up based on the old pp dst address. 11654 */ 11655 err = ipif_logical_down(ipif, q, mp); 11656 if (err == EINPROGRESS) 11657 return (err); 11658 ipif_down_tail(ipif); 11659 need_up = B_TRUE; 11660 } 11661 /* 11662 * could return EINPROGRESS. If so ioctl will complete in 11663 * ip_rput_dlpi_writer 11664 */ 11665 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11666 return (err); 11667 } 11668 11669 static int 11670 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11671 boolean_t need_up) 11672 { 11673 in6_addr_t v6addr; 11674 ill_t *ill = ipif->ipif_ill; 11675 int err = 0; 11676 boolean_t need_dl_down; 11677 boolean_t need_arp_down; 11678 11679 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11680 ipif->ipif_id, (void *)ipif)); 11681 11682 /* Must cancel any pending timer before taking the ill_lock */ 11683 if (ipif->ipif_recovery_id != 0) 11684 (void) untimeout(ipif->ipif_recovery_id); 11685 ipif->ipif_recovery_id = 0; 11686 11687 if (ipif->ipif_isv6) { 11688 sin6_t *sin6; 11689 11690 sin6 = (sin6_t *)sin; 11691 v6addr = sin6->sin6_addr; 11692 } else { 11693 ipaddr_t addr; 11694 11695 addr = sin->sin_addr.s_addr; 11696 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11697 } 11698 mutex_enter(&ill->ill_lock); 11699 /* Set point to point destination address. */ 11700 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11701 /* 11702 * Allow this as a means of creating logical 11703 * pt-pt interfaces on top of e.g. an Ethernet. 11704 * XXX Undocumented HACK for testing. 11705 * pt-pt interfaces are created with NUD disabled. 11706 */ 11707 ipif->ipif_flags |= IPIF_POINTOPOINT; 11708 ipif->ipif_flags &= ~IPIF_BROADCAST; 11709 if (ipif->ipif_isv6) 11710 ill->ill_flags |= ILLF_NONUD; 11711 } 11712 11713 /* 11714 * If the interface was previously marked as a duplicate, then since 11715 * we've now got a "new" address, it should no longer be considered a 11716 * duplicate -- even if the "new" address is the same as the old one. 11717 * Note that if all ipifs are down, we may have a pending ARP down 11718 * event to handle. 11719 */ 11720 need_dl_down = need_arp_down = B_FALSE; 11721 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11722 need_arp_down = !need_up; 11723 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11724 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11725 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11726 need_dl_down = B_TRUE; 11727 } 11728 } 11729 11730 /* Set the new address. */ 11731 ipif->ipif_v6pp_dst_addr = v6addr; 11732 /* Make sure subnet tracks pp_dst */ 11733 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11734 mutex_exit(&ill->ill_lock); 11735 11736 if (need_up) { 11737 /* 11738 * Now bring the interface back up. If this 11739 * is the only IPIF for the ILL, ipif_up 11740 * will have to re-bind to the device, so 11741 * we may get back EINPROGRESS, in which 11742 * case, this IOCTL will get completed in 11743 * ip_rput_dlpi when we see the DL_BIND_ACK. 11744 */ 11745 err = ipif_up(ipif, q, mp); 11746 } 11747 11748 if (need_dl_down) 11749 ill_dl_down(ill); 11750 11751 if (need_arp_down) 11752 ipif_arp_down(ipif); 11753 return (err); 11754 } 11755 11756 /* 11757 * Restart entry point to restart the dstaddress set operation after the 11758 * refcounts have dropped to zero. 11759 */ 11760 /* ARGSUSED */ 11761 int 11762 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11763 ip_ioctl_cmd_t *ipip, void *ifreq) 11764 { 11765 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11766 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11767 ipif_down_tail(ipif); 11768 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11769 } 11770 11771 /* ARGSUSED */ 11772 int 11773 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11774 ip_ioctl_cmd_t *ipip, void *if_req) 11775 { 11776 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11777 11778 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11779 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11780 /* 11781 * Get point to point destination address. The addresses can't 11782 * change since we hold a reference to the ipif. 11783 */ 11784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11785 return (EADDRNOTAVAIL); 11786 11787 if (ipif->ipif_isv6) { 11788 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11789 *sin6 = sin6_null; 11790 sin6->sin6_family = AF_INET6; 11791 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11792 } else { 11793 *sin = sin_null; 11794 sin->sin_family = AF_INET; 11795 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11796 } 11797 return (0); 11798 } 11799 11800 /* 11801 * part of ipmp, make this func return the active/inactive state and 11802 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11803 */ 11804 /* 11805 * This function either sets or clears the IFF_INACTIVE flag. 11806 * 11807 * As long as there are some addresses or multicast memberships on the 11808 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11809 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11810 * will be used for outbound packets. 11811 * 11812 * Caller needs to verify the validity of setting IFF_INACTIVE. 11813 */ 11814 static void 11815 phyint_inactive(phyint_t *phyi) 11816 { 11817 ill_t *ill_v4; 11818 ill_t *ill_v6; 11819 ipif_t *ipif; 11820 ilm_t *ilm; 11821 11822 ill_v4 = phyi->phyint_illv4; 11823 ill_v6 = phyi->phyint_illv6; 11824 11825 /* 11826 * No need for a lock while traversing the list since iam 11827 * a writer 11828 */ 11829 if (ill_v4 != NULL) { 11830 ASSERT(IAM_WRITER_ILL(ill_v4)); 11831 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11832 ipif = ipif->ipif_next) { 11833 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11834 mutex_enter(&phyi->phyint_lock); 11835 phyi->phyint_flags &= ~PHYI_INACTIVE; 11836 mutex_exit(&phyi->phyint_lock); 11837 return; 11838 } 11839 } 11840 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11841 ilm = ilm->ilm_next) { 11842 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11843 mutex_enter(&phyi->phyint_lock); 11844 phyi->phyint_flags &= ~PHYI_INACTIVE; 11845 mutex_exit(&phyi->phyint_lock); 11846 return; 11847 } 11848 } 11849 } 11850 if (ill_v6 != NULL) { 11851 ill_v6 = phyi->phyint_illv6; 11852 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11853 ipif = ipif->ipif_next) { 11854 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11855 mutex_enter(&phyi->phyint_lock); 11856 phyi->phyint_flags &= ~PHYI_INACTIVE; 11857 mutex_exit(&phyi->phyint_lock); 11858 return; 11859 } 11860 } 11861 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11862 ilm = ilm->ilm_next) { 11863 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11864 mutex_enter(&phyi->phyint_lock); 11865 phyi->phyint_flags &= ~PHYI_INACTIVE; 11866 mutex_exit(&phyi->phyint_lock); 11867 return; 11868 } 11869 } 11870 } 11871 mutex_enter(&phyi->phyint_lock); 11872 phyi->phyint_flags |= PHYI_INACTIVE; 11873 mutex_exit(&phyi->phyint_lock); 11874 } 11875 11876 /* 11877 * This function is called only when the phyint flags change. Currently 11878 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11879 * that we can select a good ill. 11880 */ 11881 static void 11882 ip_redo_nomination(phyint_t *phyi) 11883 { 11884 ill_t *ill_v4; 11885 11886 ill_v4 = phyi->phyint_illv4; 11887 11888 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11889 ASSERT(IAM_WRITER_ILL(ill_v4)); 11890 if (ill_v4->ill_group->illgrp_ill_count > 1) 11891 ill_nominate_bcast_rcv(ill_v4->ill_group); 11892 } 11893 } 11894 11895 /* 11896 * Heuristic to check if ill is INACTIVE. 11897 * Checks if ill has an ipif with an usable ip address. 11898 * 11899 * Return values: 11900 * B_TRUE - ill is INACTIVE; has no usable ipif 11901 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11902 */ 11903 static boolean_t 11904 ill_is_inactive(ill_t *ill) 11905 { 11906 ipif_t *ipif; 11907 11908 /* Check whether it is in an IPMP group */ 11909 if (ill->ill_phyint->phyint_groupname == NULL) 11910 return (B_FALSE); 11911 11912 if (ill->ill_ipif_up_count == 0) 11913 return (B_TRUE); 11914 11915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11916 uint64_t flags = ipif->ipif_flags; 11917 11918 /* 11919 * This ipif is usable if it is IPIF_UP and not a 11920 * dedicated test address. A dedicated test address 11921 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11922 * (note in particular that V6 test addresses are 11923 * link-local data addresses and thus are marked 11924 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11925 */ 11926 if ((flags & IPIF_UP) && 11927 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11928 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11929 return (B_FALSE); 11930 } 11931 return (B_TRUE); 11932 } 11933 11934 /* 11935 * Set interface flags. 11936 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11937 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11938 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11939 * 11940 * NOTE : We really don't enforce that ipif_id zero should be used 11941 * for setting any flags other than IFF_LOGINT_FLAGS. This 11942 * is because applications generally does SICGLIFFLAGS and 11943 * ORs in the new flags (that affects the logical) and does a 11944 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11945 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11946 * flags that will be turned on is correct with respect to 11947 * ipif_id 0. For backward compatibility reasons, it is not done. 11948 */ 11949 /* ARGSUSED */ 11950 int 11951 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11952 ip_ioctl_cmd_t *ipip, void *if_req) 11953 { 11954 uint64_t turn_on; 11955 uint64_t turn_off; 11956 int err; 11957 boolean_t need_up = B_FALSE; 11958 phyint_t *phyi; 11959 ill_t *ill; 11960 uint64_t intf_flags; 11961 boolean_t phyint_flags_modified = B_FALSE; 11962 uint64_t flags; 11963 struct ifreq *ifr; 11964 struct lifreq *lifr; 11965 boolean_t set_linklocal = B_FALSE; 11966 boolean_t zero_source = B_FALSE; 11967 ip_stack_t *ipst; 11968 11969 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11970 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11971 11972 ASSERT(IAM_WRITER_IPIF(ipif)); 11973 11974 ill = ipif->ipif_ill; 11975 phyi = ill->ill_phyint; 11976 ipst = ill->ill_ipst; 11977 11978 if (ipip->ipi_cmd_type == IF_CMD) { 11979 ifr = (struct ifreq *)if_req; 11980 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11981 } else { 11982 lifr = (struct lifreq *)if_req; 11983 flags = lifr->lifr_flags; 11984 } 11985 11986 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11987 11988 /* 11989 * Has the flags been set correctly till now ? 11990 */ 11991 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11992 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11993 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11994 /* 11995 * Compare the new flags to the old, and partition 11996 * into those coming on and those going off. 11997 * For the 16 bit command keep the bits above bit 16 unchanged. 11998 */ 11999 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12000 flags |= intf_flags & ~0xFFFF; 12001 12002 /* 12003 * First check which bits will change and then which will 12004 * go on and off 12005 */ 12006 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12007 if (!turn_on) 12008 return (0); /* No change */ 12009 12010 turn_off = intf_flags & turn_on; 12011 turn_on ^= turn_off; 12012 err = 0; 12013 12014 /* 12015 * Don't allow any bits belonging to the logical interface 12016 * to be set or cleared on the replacement ipif that was 12017 * created temporarily during a MOVE. 12018 */ 12019 if (ipif->ipif_replace_zero && 12020 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12021 return (EINVAL); 12022 } 12023 12024 /* 12025 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12026 * IPv6 interfaces. 12027 */ 12028 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12029 return (EINVAL); 12030 12031 /* 12032 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12033 * interfaces. It makes no sense in that context. 12034 */ 12035 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12036 return (EINVAL); 12037 12038 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12039 zero_source = B_TRUE; 12040 12041 /* 12042 * For IPv6 ipif_id 0, don't allow the interface to be up without 12043 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12044 * If the link local address isn't set, and can be set, it will get 12045 * set later on in this function. 12046 */ 12047 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12048 (flags & IFF_UP) && !zero_source && 12049 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12050 if (ipif_cant_setlinklocal(ipif)) 12051 return (EINVAL); 12052 set_linklocal = B_TRUE; 12053 } 12054 12055 /* 12056 * ILL cannot be part of a usesrc group and and IPMP group at the 12057 * same time. No need to grab ill_g_usesrc_lock here, see 12058 * synchronization notes in ip.c 12059 */ 12060 if (turn_on & PHYI_STANDBY && 12061 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12062 return (EINVAL); 12063 } 12064 12065 /* 12066 * If we modify physical interface flags, we'll potentially need to 12067 * send up two routing socket messages for the changes (one for the 12068 * IPv4 ill, and another for the IPv6 ill). Note that here. 12069 */ 12070 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12071 phyint_flags_modified = B_TRUE; 12072 12073 /* 12074 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12075 * we need to flush the IRE_CACHES belonging to this ill. 12076 * We handle this case here without doing the DOWN/UP dance 12077 * like it is done for other flags. If some other flags are 12078 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12079 * below will handle it by bringing it down and then 12080 * bringing it UP. 12081 */ 12082 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12083 ill_t *ill_v4, *ill_v6; 12084 12085 ill_v4 = phyi->phyint_illv4; 12086 ill_v6 = phyi->phyint_illv6; 12087 12088 /* 12089 * First set the INACTIVE flag if needed. Then delete the ires. 12090 * ire_add will atomically prevent creating new IRE_CACHEs 12091 * unless hidden flag is set. 12092 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12093 */ 12094 if ((turn_on & PHYI_FAILED) && 12095 ((intf_flags & PHYI_STANDBY) || 12096 !ipst->ips_ipmp_enable_failback)) { 12097 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12098 phyi->phyint_flags &= ~PHYI_INACTIVE; 12099 } 12100 if ((turn_off & PHYI_FAILED) && 12101 ((intf_flags & PHYI_STANDBY) || 12102 (!ipst->ips_ipmp_enable_failback && 12103 ill_is_inactive(ill)))) { 12104 phyint_inactive(phyi); 12105 } 12106 12107 if (turn_on & PHYI_STANDBY) { 12108 /* 12109 * We implicitly set INACTIVE only when STANDBY is set. 12110 * INACTIVE is also set on non-STANDBY phyint when user 12111 * disables FAILBACK using configuration file. 12112 * Do not allow STANDBY to be set on such INACTIVE 12113 * phyint 12114 */ 12115 if (phyi->phyint_flags & PHYI_INACTIVE) 12116 return (EINVAL); 12117 if (!(phyi->phyint_flags & PHYI_FAILED)) 12118 phyint_inactive(phyi); 12119 } 12120 if (turn_off & PHYI_STANDBY) { 12121 if (ipst->ips_ipmp_enable_failback) { 12122 /* 12123 * Reset PHYI_INACTIVE. 12124 */ 12125 phyi->phyint_flags &= ~PHYI_INACTIVE; 12126 } else if (ill_is_inactive(ill) && 12127 !(phyi->phyint_flags & PHYI_FAILED)) { 12128 /* 12129 * Need to set INACTIVE, when user sets 12130 * STANDBY on a non-STANDBY phyint and 12131 * later resets STANDBY 12132 */ 12133 phyint_inactive(phyi); 12134 } 12135 } 12136 /* 12137 * We should always send up a message so that the 12138 * daemons come to know of it. Note that the zeroth 12139 * interface can be down and the check below for IPIF_UP 12140 * will not make sense as we are actually setting 12141 * a phyint flag here. We assume that the ipif used 12142 * is always the zeroth ipif. (ip_rts_ifmsg does not 12143 * send up any message for non-zero ipifs). 12144 */ 12145 phyint_flags_modified = B_TRUE; 12146 12147 if (ill_v4 != NULL) { 12148 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12149 IRE_CACHE, ill_stq_cache_delete, 12150 (char *)ill_v4, ill_v4); 12151 illgrp_reset_schednext(ill_v4); 12152 } 12153 if (ill_v6 != NULL) { 12154 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12155 IRE_CACHE, ill_stq_cache_delete, 12156 (char *)ill_v6, ill_v6); 12157 illgrp_reset_schednext(ill_v6); 12158 } 12159 } 12160 12161 /* 12162 * If ILLF_ROUTER changes, we need to change the ip forwarding 12163 * status of the interface and, if the interface is part of an IPMP 12164 * group, all other interfaces that are part of the same IPMP 12165 * group. 12166 */ 12167 if ((turn_on | turn_off) & ILLF_ROUTER) { 12168 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12169 (caddr_t)ill); 12170 } 12171 12172 /* 12173 * If the interface is not UP and we are not going to 12174 * bring it UP, record the flags and return. When the 12175 * interface comes UP later, the right actions will be 12176 * taken. 12177 */ 12178 if (!(ipif->ipif_flags & IPIF_UP) && 12179 !(turn_on & IPIF_UP)) { 12180 /* Record new flags in their respective places. */ 12181 mutex_enter(&ill->ill_lock); 12182 mutex_enter(&ill->ill_phyint->phyint_lock); 12183 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12184 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12185 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12186 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12187 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12188 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12189 mutex_exit(&ill->ill_lock); 12190 mutex_exit(&ill->ill_phyint->phyint_lock); 12191 12192 /* 12193 * We do the broadcast and nomination here rather 12194 * than waiting for a FAILOVER/FAILBACK to happen. In 12195 * the case of FAILBACK from INACTIVE standby to the 12196 * interface that has been repaired, PHYI_FAILED has not 12197 * been cleared yet. If there are only two interfaces in 12198 * that group, all we have is a FAILED and INACTIVE 12199 * interface. If we do the nomination soon after a failback, 12200 * the broadcast nomination code would select the 12201 * INACTIVE interface for receiving broadcasts as FAILED is 12202 * not yet cleared. As we don't want STANDBY/INACTIVE to 12203 * receive broadcast packets, we need to redo nomination 12204 * when the FAILED is cleared here. Thus, in general we 12205 * always do the nomination here for FAILED, STANDBY 12206 * and OFFLINE. 12207 */ 12208 if (((turn_on | turn_off) & 12209 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12210 ip_redo_nomination(phyi); 12211 } 12212 if (phyint_flags_modified) { 12213 if (phyi->phyint_illv4 != NULL) { 12214 ip_rts_ifmsg(phyi->phyint_illv4-> 12215 ill_ipif); 12216 } 12217 if (phyi->phyint_illv6 != NULL) { 12218 ip_rts_ifmsg(phyi->phyint_illv6-> 12219 ill_ipif); 12220 } 12221 } 12222 return (0); 12223 } else if (set_linklocal || zero_source) { 12224 mutex_enter(&ill->ill_lock); 12225 if (set_linklocal) 12226 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12227 if (zero_source) 12228 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12229 mutex_exit(&ill->ill_lock); 12230 } 12231 12232 /* 12233 * Disallow IPv6 interfaces coming up that have the unspecified address, 12234 * or point-to-point interfaces with an unspecified destination. We do 12235 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12236 * have a subnet assigned, which is how in.ndpd currently manages its 12237 * onlink prefix list when no addresses are configured with those 12238 * prefixes. 12239 */ 12240 if (ipif->ipif_isv6 && 12241 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12242 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12243 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12244 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12245 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12246 return (EINVAL); 12247 } 12248 12249 /* 12250 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12251 * from being brought up. 12252 */ 12253 if (!ipif->ipif_isv6 && 12254 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12255 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12256 return (EINVAL); 12257 } 12258 12259 /* 12260 * The only flag changes that we currently take specific action on 12261 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12262 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12263 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12264 * the flags and bringing it back up again. 12265 */ 12266 if ((turn_on|turn_off) & 12267 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12268 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12269 /* 12270 * Taking this ipif down, make sure we have 12271 * valid net and subnet bcast ire's for other 12272 * logical interfaces, if we need them. 12273 */ 12274 if (!ipif->ipif_isv6) 12275 ipif_check_bcast_ires(ipif); 12276 12277 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12278 !(turn_off & IPIF_UP)) { 12279 need_up = B_TRUE; 12280 if (ipif->ipif_flags & IPIF_UP) 12281 ill->ill_logical_down = 1; 12282 turn_on &= ~IPIF_UP; 12283 } 12284 err = ipif_down(ipif, q, mp); 12285 ip1dbg(("ipif_down returns %d err ", err)); 12286 if (err == EINPROGRESS) 12287 return (err); 12288 ipif_down_tail(ipif); 12289 } 12290 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12291 } 12292 12293 static int 12294 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12295 boolean_t need_up) 12296 { 12297 ill_t *ill; 12298 phyint_t *phyi; 12299 uint64_t turn_on; 12300 uint64_t turn_off; 12301 uint64_t intf_flags; 12302 boolean_t phyint_flags_modified = B_FALSE; 12303 int err = 0; 12304 boolean_t set_linklocal = B_FALSE; 12305 boolean_t zero_source = B_FALSE; 12306 12307 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12308 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12309 12310 ASSERT(IAM_WRITER_IPIF(ipif)); 12311 12312 ill = ipif->ipif_ill; 12313 phyi = ill->ill_phyint; 12314 12315 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12316 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12317 12318 turn_off = intf_flags & turn_on; 12319 turn_on ^= turn_off; 12320 12321 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12322 phyint_flags_modified = B_TRUE; 12323 12324 /* 12325 * Now we change the flags. Track current value of 12326 * other flags in their respective places. 12327 */ 12328 mutex_enter(&ill->ill_lock); 12329 mutex_enter(&phyi->phyint_lock); 12330 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12331 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12332 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12333 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12334 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12335 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12336 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12337 set_linklocal = B_TRUE; 12338 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12339 } 12340 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12341 zero_source = B_TRUE; 12342 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12343 } 12344 mutex_exit(&ill->ill_lock); 12345 mutex_exit(&phyi->phyint_lock); 12346 12347 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12348 ip_redo_nomination(phyi); 12349 12350 if (set_linklocal) 12351 (void) ipif_setlinklocal(ipif); 12352 12353 if (zero_source) 12354 ipif->ipif_v6src_addr = ipv6_all_zeros; 12355 else 12356 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12357 12358 if (need_up) { 12359 /* 12360 * XXX ipif_up really does not know whether a phyint flags 12361 * was modified or not. So, it sends up information on 12362 * only one routing sockets message. As we don't bring up 12363 * the interface and also set STANDBY/FAILED simultaneously 12364 * it should be okay. 12365 */ 12366 err = ipif_up(ipif, q, mp); 12367 } else { 12368 /* 12369 * Make sure routing socket sees all changes to the flags. 12370 * ipif_up_done* handles this when we use ipif_up. 12371 */ 12372 if (phyint_flags_modified) { 12373 if (phyi->phyint_illv4 != NULL) { 12374 ip_rts_ifmsg(phyi->phyint_illv4-> 12375 ill_ipif); 12376 } 12377 if (phyi->phyint_illv6 != NULL) { 12378 ip_rts_ifmsg(phyi->phyint_illv6-> 12379 ill_ipif); 12380 } 12381 } else { 12382 ip_rts_ifmsg(ipif); 12383 } 12384 } 12385 return (err); 12386 } 12387 12388 /* 12389 * Restart entry point to restart the flags restart operation after the 12390 * refcounts have dropped to zero. 12391 */ 12392 /* ARGSUSED */ 12393 int 12394 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12395 ip_ioctl_cmd_t *ipip, void *if_req) 12396 { 12397 int err; 12398 struct ifreq *ifr = (struct ifreq *)if_req; 12399 struct lifreq *lifr = (struct lifreq *)if_req; 12400 12401 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12402 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12403 12404 ipif_down_tail(ipif); 12405 if (ipip->ipi_cmd_type == IF_CMD) { 12406 /* 12407 * Since ip_sioctl_flags expects an int and ifr_flags 12408 * is a short we need to cast ifr_flags into an int 12409 * to avoid having sign extension cause bits to get 12410 * set that should not be. 12411 */ 12412 err = ip_sioctl_flags_tail(ipif, 12413 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12414 q, mp, B_TRUE); 12415 } else { 12416 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12417 q, mp, B_TRUE); 12418 } 12419 return (err); 12420 } 12421 12422 /* 12423 * Can operate on either a module or a driver queue. 12424 */ 12425 /* ARGSUSED */ 12426 int 12427 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12428 ip_ioctl_cmd_t *ipip, void *if_req) 12429 { 12430 /* 12431 * Has the flags been set correctly till now ? 12432 */ 12433 ill_t *ill = ipif->ipif_ill; 12434 phyint_t *phyi = ill->ill_phyint; 12435 12436 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12437 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12438 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12439 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12440 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12441 12442 /* 12443 * Need a lock since some flags can be set even when there are 12444 * references to the ipif. 12445 */ 12446 mutex_enter(&ill->ill_lock); 12447 if (ipip->ipi_cmd_type == IF_CMD) { 12448 struct ifreq *ifr = (struct ifreq *)if_req; 12449 12450 /* Get interface flags (low 16 only). */ 12451 ifr->ifr_flags = ((ipif->ipif_flags | 12452 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12453 } else { 12454 struct lifreq *lifr = (struct lifreq *)if_req; 12455 12456 /* Get interface flags. */ 12457 lifr->lifr_flags = ipif->ipif_flags | 12458 ill->ill_flags | phyi->phyint_flags; 12459 } 12460 mutex_exit(&ill->ill_lock); 12461 return (0); 12462 } 12463 12464 /* ARGSUSED */ 12465 int 12466 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12467 ip_ioctl_cmd_t *ipip, void *if_req) 12468 { 12469 int mtu; 12470 int ip_min_mtu; 12471 struct ifreq *ifr; 12472 struct lifreq *lifr; 12473 ire_t *ire; 12474 ip_stack_t *ipst; 12475 12476 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12477 ipif->ipif_id, (void *)ipif)); 12478 if (ipip->ipi_cmd_type == IF_CMD) { 12479 ifr = (struct ifreq *)if_req; 12480 mtu = ifr->ifr_metric; 12481 } else { 12482 lifr = (struct lifreq *)if_req; 12483 mtu = lifr->lifr_mtu; 12484 } 12485 12486 if (ipif->ipif_isv6) 12487 ip_min_mtu = IPV6_MIN_MTU; 12488 else 12489 ip_min_mtu = IP_MIN_MTU; 12490 12491 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12492 return (EINVAL); 12493 12494 /* 12495 * Change the MTU size in all relevant ire's. 12496 * Mtu change Vs. new ire creation - protocol below. 12497 * First change ipif_mtu and the ire_max_frag of the 12498 * interface ire. Then do an ire walk and change the 12499 * ire_max_frag of all affected ires. During ire_add 12500 * under the bucket lock, set the ire_max_frag of the 12501 * new ire being created from the ipif/ire from which 12502 * it is being derived. If an mtu change happens after 12503 * the ire is added, the new ire will be cleaned up. 12504 * Conversely if the mtu change happens before the ire 12505 * is added, ire_add will see the new value of the mtu. 12506 */ 12507 ipif->ipif_mtu = mtu; 12508 ipif->ipif_flags |= IPIF_FIXEDMTU; 12509 12510 if (ipif->ipif_isv6) 12511 ire = ipif_to_ire_v6(ipif); 12512 else 12513 ire = ipif_to_ire(ipif); 12514 if (ire != NULL) { 12515 ire->ire_max_frag = ipif->ipif_mtu; 12516 ire_refrele(ire); 12517 } 12518 ipst = ipif->ipif_ill->ill_ipst; 12519 if (ipif->ipif_flags & IPIF_UP) { 12520 if (ipif->ipif_isv6) 12521 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12522 ipst); 12523 else 12524 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12525 ipst); 12526 } 12527 /* Update the MTU in SCTP's list */ 12528 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12529 return (0); 12530 } 12531 12532 /* Get interface MTU. */ 12533 /* ARGSUSED */ 12534 int 12535 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12536 ip_ioctl_cmd_t *ipip, void *if_req) 12537 { 12538 struct ifreq *ifr; 12539 struct lifreq *lifr; 12540 12541 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12542 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12543 if (ipip->ipi_cmd_type == IF_CMD) { 12544 ifr = (struct ifreq *)if_req; 12545 ifr->ifr_metric = ipif->ipif_mtu; 12546 } else { 12547 lifr = (struct lifreq *)if_req; 12548 lifr->lifr_mtu = ipif->ipif_mtu; 12549 } 12550 return (0); 12551 } 12552 12553 /* Set interface broadcast address. */ 12554 /* ARGSUSED2 */ 12555 int 12556 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12557 ip_ioctl_cmd_t *ipip, void *if_req) 12558 { 12559 ipaddr_t addr; 12560 ire_t *ire; 12561 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12562 12563 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12564 ipif->ipif_id)); 12565 12566 ASSERT(IAM_WRITER_IPIF(ipif)); 12567 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12568 return (EADDRNOTAVAIL); 12569 12570 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12571 12572 if (sin->sin_family != AF_INET) 12573 return (EAFNOSUPPORT); 12574 12575 addr = sin->sin_addr.s_addr; 12576 if (ipif->ipif_flags & IPIF_UP) { 12577 /* 12578 * If we are already up, make sure the new 12579 * broadcast address makes sense. If it does, 12580 * there should be an IRE for it already. 12581 * Don't match on ipif, only on the ill 12582 * since we are sharing these now. Don't use 12583 * MATCH_IRE_ILL_GROUP as we are looking for 12584 * the broadcast ire on this ill and each ill 12585 * in the group has its own broadcast ire. 12586 */ 12587 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12588 ipif, ALL_ZONES, NULL, 12589 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12590 if (ire == NULL) { 12591 return (EINVAL); 12592 } else { 12593 ire_refrele(ire); 12594 } 12595 } 12596 /* 12597 * Changing the broadcast addr for this ipif. 12598 * Make sure we have valid net and subnet bcast 12599 * ire's for other logical interfaces, if needed. 12600 */ 12601 if (addr != ipif->ipif_brd_addr) 12602 ipif_check_bcast_ires(ipif); 12603 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12604 return (0); 12605 } 12606 12607 /* Get interface broadcast address. */ 12608 /* ARGSUSED */ 12609 int 12610 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12611 ip_ioctl_cmd_t *ipip, void *if_req) 12612 { 12613 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12614 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12615 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12616 return (EADDRNOTAVAIL); 12617 12618 /* IPIF_BROADCAST not possible with IPv6 */ 12619 ASSERT(!ipif->ipif_isv6); 12620 *sin = sin_null; 12621 sin->sin_family = AF_INET; 12622 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12623 return (0); 12624 } 12625 12626 /* 12627 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12628 */ 12629 /* ARGSUSED */ 12630 int 12631 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12632 ip_ioctl_cmd_t *ipip, void *if_req) 12633 { 12634 int err = 0; 12635 in6_addr_t v6mask; 12636 12637 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12638 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12639 12640 ASSERT(IAM_WRITER_IPIF(ipif)); 12641 12642 if (ipif->ipif_isv6) { 12643 sin6_t *sin6; 12644 12645 if (sin->sin_family != AF_INET6) 12646 return (EAFNOSUPPORT); 12647 12648 sin6 = (sin6_t *)sin; 12649 v6mask = sin6->sin6_addr; 12650 } else { 12651 ipaddr_t mask; 12652 12653 if (sin->sin_family != AF_INET) 12654 return (EAFNOSUPPORT); 12655 12656 mask = sin->sin_addr.s_addr; 12657 V4MASK_TO_V6(mask, v6mask); 12658 } 12659 12660 /* 12661 * No big deal if the interface isn't already up, or the mask 12662 * isn't really changing, or this is pt-pt. 12663 */ 12664 if (!(ipif->ipif_flags & IPIF_UP) || 12665 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12666 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12667 ipif->ipif_v6net_mask = v6mask; 12668 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12669 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12670 ipif->ipif_v6net_mask, 12671 ipif->ipif_v6subnet); 12672 } 12673 return (0); 12674 } 12675 /* 12676 * Make sure we have valid net and subnet broadcast ire's 12677 * for the old netmask, if needed by other logical interfaces. 12678 */ 12679 if (!ipif->ipif_isv6) 12680 ipif_check_bcast_ires(ipif); 12681 12682 err = ipif_logical_down(ipif, q, mp); 12683 if (err == EINPROGRESS) 12684 return (err); 12685 ipif_down_tail(ipif); 12686 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12687 return (err); 12688 } 12689 12690 static int 12691 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12692 { 12693 in6_addr_t v6mask; 12694 int err = 0; 12695 12696 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12697 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12698 12699 if (ipif->ipif_isv6) { 12700 sin6_t *sin6; 12701 12702 sin6 = (sin6_t *)sin; 12703 v6mask = sin6->sin6_addr; 12704 } else { 12705 ipaddr_t mask; 12706 12707 mask = sin->sin_addr.s_addr; 12708 V4MASK_TO_V6(mask, v6mask); 12709 } 12710 12711 ipif->ipif_v6net_mask = v6mask; 12712 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12713 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12714 ipif->ipif_v6subnet); 12715 } 12716 err = ipif_up(ipif, q, mp); 12717 12718 if (err == 0 || err == EINPROGRESS) { 12719 /* 12720 * The interface must be DL_BOUND if this packet has to 12721 * go out on the wire. Since we only go through a logical 12722 * down and are bound with the driver during an internal 12723 * down/up that is satisfied. 12724 */ 12725 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12726 /* Potentially broadcast an address mask reply. */ 12727 ipif_mask_reply(ipif); 12728 } 12729 } 12730 return (err); 12731 } 12732 12733 /* ARGSUSED */ 12734 int 12735 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12736 ip_ioctl_cmd_t *ipip, void *if_req) 12737 { 12738 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12739 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12740 ipif_down_tail(ipif); 12741 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12742 } 12743 12744 /* Get interface net mask. */ 12745 /* ARGSUSED */ 12746 int 12747 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12748 ip_ioctl_cmd_t *ipip, void *if_req) 12749 { 12750 struct lifreq *lifr = (struct lifreq *)if_req; 12751 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12752 12753 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12754 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12755 12756 /* 12757 * net mask can't change since we have a reference to the ipif. 12758 */ 12759 if (ipif->ipif_isv6) { 12760 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12761 *sin6 = sin6_null; 12762 sin6->sin6_family = AF_INET6; 12763 sin6->sin6_addr = ipif->ipif_v6net_mask; 12764 lifr->lifr_addrlen = 12765 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12766 } else { 12767 *sin = sin_null; 12768 sin->sin_family = AF_INET; 12769 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12770 if (ipip->ipi_cmd_type == LIF_CMD) { 12771 lifr->lifr_addrlen = 12772 ip_mask_to_plen(ipif->ipif_net_mask); 12773 } 12774 } 12775 return (0); 12776 } 12777 12778 /* ARGSUSED */ 12779 int 12780 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12781 ip_ioctl_cmd_t *ipip, void *if_req) 12782 { 12783 12784 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12785 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12786 /* 12787 * Set interface metric. We don't use this for 12788 * anything but we keep track of it in case it is 12789 * important to routing applications or such. 12790 */ 12791 if (ipip->ipi_cmd_type == IF_CMD) { 12792 struct ifreq *ifr; 12793 12794 ifr = (struct ifreq *)if_req; 12795 ipif->ipif_metric = ifr->ifr_metric; 12796 } else { 12797 struct lifreq *lifr; 12798 12799 lifr = (struct lifreq *)if_req; 12800 ipif->ipif_metric = lifr->lifr_metric; 12801 } 12802 return (0); 12803 } 12804 12805 12806 /* ARGSUSED */ 12807 int 12808 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12809 ip_ioctl_cmd_t *ipip, void *if_req) 12810 { 12811 12812 /* Get interface metric. */ 12813 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12814 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12815 if (ipip->ipi_cmd_type == IF_CMD) { 12816 struct ifreq *ifr; 12817 12818 ifr = (struct ifreq *)if_req; 12819 ifr->ifr_metric = ipif->ipif_metric; 12820 } else { 12821 struct lifreq *lifr; 12822 12823 lifr = (struct lifreq *)if_req; 12824 lifr->lifr_metric = ipif->ipif_metric; 12825 } 12826 12827 return (0); 12828 } 12829 12830 /* ARGSUSED */ 12831 int 12832 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12833 ip_ioctl_cmd_t *ipip, void *if_req) 12834 { 12835 12836 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12837 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12838 /* 12839 * Set the muxid returned from I_PLINK. 12840 */ 12841 if (ipip->ipi_cmd_type == IF_CMD) { 12842 struct ifreq *ifr = (struct ifreq *)if_req; 12843 12844 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12845 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12846 } else { 12847 struct lifreq *lifr = (struct lifreq *)if_req; 12848 12849 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12850 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12851 } 12852 return (0); 12853 } 12854 12855 /* ARGSUSED */ 12856 int 12857 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12858 ip_ioctl_cmd_t *ipip, void *if_req) 12859 { 12860 12861 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12862 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12863 /* 12864 * Get the muxid saved in ill for I_PUNLINK. 12865 */ 12866 if (ipip->ipi_cmd_type == IF_CMD) { 12867 struct ifreq *ifr = (struct ifreq *)if_req; 12868 12869 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12870 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12871 } else { 12872 struct lifreq *lifr = (struct lifreq *)if_req; 12873 12874 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12875 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12876 } 12877 return (0); 12878 } 12879 12880 /* 12881 * Set the subnet prefix. Does not modify the broadcast address. 12882 */ 12883 /* ARGSUSED */ 12884 int 12885 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12886 ip_ioctl_cmd_t *ipip, void *if_req) 12887 { 12888 int err = 0; 12889 in6_addr_t v6addr; 12890 in6_addr_t v6mask; 12891 boolean_t need_up = B_FALSE; 12892 int addrlen; 12893 12894 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12895 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12896 12897 ASSERT(IAM_WRITER_IPIF(ipif)); 12898 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12899 12900 if (ipif->ipif_isv6) { 12901 sin6_t *sin6; 12902 12903 if (sin->sin_family != AF_INET6) 12904 return (EAFNOSUPPORT); 12905 12906 sin6 = (sin6_t *)sin; 12907 v6addr = sin6->sin6_addr; 12908 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12909 return (EADDRNOTAVAIL); 12910 } else { 12911 ipaddr_t addr; 12912 12913 if (sin->sin_family != AF_INET) 12914 return (EAFNOSUPPORT); 12915 12916 addr = sin->sin_addr.s_addr; 12917 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12918 return (EADDRNOTAVAIL); 12919 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12920 /* Add 96 bits */ 12921 addrlen += IPV6_ABITS - IP_ABITS; 12922 } 12923 12924 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12925 return (EINVAL); 12926 12927 /* Check if bits in the address is set past the mask */ 12928 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12929 return (EINVAL); 12930 12931 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12932 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12933 return (0); /* No change */ 12934 12935 if (ipif->ipif_flags & IPIF_UP) { 12936 /* 12937 * If the interface is already marked up, 12938 * we call ipif_down which will take care 12939 * of ditching any IREs that have been set 12940 * up based on the old interface address. 12941 */ 12942 err = ipif_logical_down(ipif, q, mp); 12943 if (err == EINPROGRESS) 12944 return (err); 12945 ipif_down_tail(ipif); 12946 need_up = B_TRUE; 12947 } 12948 12949 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12950 return (err); 12951 } 12952 12953 static int 12954 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12955 queue_t *q, mblk_t *mp, boolean_t need_up) 12956 { 12957 ill_t *ill = ipif->ipif_ill; 12958 int err = 0; 12959 12960 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12961 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12962 12963 /* Set the new address. */ 12964 mutex_enter(&ill->ill_lock); 12965 ipif->ipif_v6net_mask = v6mask; 12966 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12967 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12968 ipif->ipif_v6subnet); 12969 } 12970 mutex_exit(&ill->ill_lock); 12971 12972 if (need_up) { 12973 /* 12974 * Now bring the interface back up. If this 12975 * is the only IPIF for the ILL, ipif_up 12976 * will have to re-bind to the device, so 12977 * we may get back EINPROGRESS, in which 12978 * case, this IOCTL will get completed in 12979 * ip_rput_dlpi when we see the DL_BIND_ACK. 12980 */ 12981 err = ipif_up(ipif, q, mp); 12982 if (err == EINPROGRESS) 12983 return (err); 12984 } 12985 return (err); 12986 } 12987 12988 /* ARGSUSED */ 12989 int 12990 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12991 ip_ioctl_cmd_t *ipip, void *if_req) 12992 { 12993 int addrlen; 12994 in6_addr_t v6addr; 12995 in6_addr_t v6mask; 12996 struct lifreq *lifr = (struct lifreq *)if_req; 12997 12998 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13000 ipif_down_tail(ipif); 13001 13002 addrlen = lifr->lifr_addrlen; 13003 if (ipif->ipif_isv6) { 13004 sin6_t *sin6; 13005 13006 sin6 = (sin6_t *)sin; 13007 v6addr = sin6->sin6_addr; 13008 } else { 13009 ipaddr_t addr; 13010 13011 addr = sin->sin_addr.s_addr; 13012 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13013 addrlen += IPV6_ABITS - IP_ABITS; 13014 } 13015 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13016 13017 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13018 } 13019 13020 /* ARGSUSED */ 13021 int 13022 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13023 ip_ioctl_cmd_t *ipip, void *if_req) 13024 { 13025 struct lifreq *lifr = (struct lifreq *)if_req; 13026 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13027 13028 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13029 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13030 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13031 13032 if (ipif->ipif_isv6) { 13033 *sin6 = sin6_null; 13034 sin6->sin6_family = AF_INET6; 13035 sin6->sin6_addr = ipif->ipif_v6subnet; 13036 lifr->lifr_addrlen = 13037 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13038 } else { 13039 *sin = sin_null; 13040 sin->sin_family = AF_INET; 13041 sin->sin_addr.s_addr = ipif->ipif_subnet; 13042 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13043 } 13044 return (0); 13045 } 13046 13047 /* 13048 * Set the IPv6 address token. 13049 */ 13050 /* ARGSUSED */ 13051 int 13052 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13053 ip_ioctl_cmd_t *ipi, void *if_req) 13054 { 13055 ill_t *ill = ipif->ipif_ill; 13056 int err; 13057 in6_addr_t v6addr; 13058 in6_addr_t v6mask; 13059 boolean_t need_up = B_FALSE; 13060 int i; 13061 sin6_t *sin6 = (sin6_t *)sin; 13062 struct lifreq *lifr = (struct lifreq *)if_req; 13063 int addrlen; 13064 13065 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13066 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13067 ASSERT(IAM_WRITER_IPIF(ipif)); 13068 13069 addrlen = lifr->lifr_addrlen; 13070 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13071 if (ipif->ipif_id != 0) 13072 return (EINVAL); 13073 13074 if (!ipif->ipif_isv6) 13075 return (EINVAL); 13076 13077 if (addrlen > IPV6_ABITS) 13078 return (EINVAL); 13079 13080 v6addr = sin6->sin6_addr; 13081 13082 /* 13083 * The length of the token is the length from the end. To get 13084 * the proper mask for this, compute the mask of the bits not 13085 * in the token; ie. the prefix, and then xor to get the mask. 13086 */ 13087 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13088 return (EINVAL); 13089 for (i = 0; i < 4; i++) { 13090 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13091 } 13092 13093 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13094 ill->ill_token_length == addrlen) 13095 return (0); /* No change */ 13096 13097 if (ipif->ipif_flags & IPIF_UP) { 13098 err = ipif_logical_down(ipif, q, mp); 13099 if (err == EINPROGRESS) 13100 return (err); 13101 ipif_down_tail(ipif); 13102 need_up = B_TRUE; 13103 } 13104 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13105 return (err); 13106 } 13107 13108 static int 13109 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13110 mblk_t *mp, boolean_t need_up) 13111 { 13112 in6_addr_t v6addr; 13113 in6_addr_t v6mask; 13114 ill_t *ill = ipif->ipif_ill; 13115 int i; 13116 int err = 0; 13117 13118 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13120 v6addr = sin6->sin6_addr; 13121 /* 13122 * The length of the token is the length from the end. To get 13123 * the proper mask for this, compute the mask of the bits not 13124 * in the token; ie. the prefix, and then xor to get the mask. 13125 */ 13126 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13127 for (i = 0; i < 4; i++) 13128 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13129 13130 mutex_enter(&ill->ill_lock); 13131 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13132 ill->ill_token_length = addrlen; 13133 mutex_exit(&ill->ill_lock); 13134 13135 if (need_up) { 13136 /* 13137 * Now bring the interface back up. If this 13138 * is the only IPIF for the ILL, ipif_up 13139 * will have to re-bind to the device, so 13140 * we may get back EINPROGRESS, in which 13141 * case, this IOCTL will get completed in 13142 * ip_rput_dlpi when we see the DL_BIND_ACK. 13143 */ 13144 err = ipif_up(ipif, q, mp); 13145 if (err == EINPROGRESS) 13146 return (err); 13147 } 13148 return (err); 13149 } 13150 13151 /* ARGSUSED */ 13152 int 13153 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13154 ip_ioctl_cmd_t *ipi, void *if_req) 13155 { 13156 ill_t *ill; 13157 sin6_t *sin6 = (sin6_t *)sin; 13158 struct lifreq *lifr = (struct lifreq *)if_req; 13159 13160 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13161 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13162 if (ipif->ipif_id != 0) 13163 return (EINVAL); 13164 13165 ill = ipif->ipif_ill; 13166 if (!ill->ill_isv6) 13167 return (ENXIO); 13168 13169 *sin6 = sin6_null; 13170 sin6->sin6_family = AF_INET6; 13171 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13172 sin6->sin6_addr = ill->ill_token; 13173 lifr->lifr_addrlen = ill->ill_token_length; 13174 return (0); 13175 } 13176 13177 /* 13178 * Set (hardware) link specific information that might override 13179 * what was acquired through the DL_INFO_ACK. 13180 * The logic is as follows. 13181 * 13182 * become exclusive 13183 * set CHANGING flag 13184 * change mtu on affected IREs 13185 * clear CHANGING flag 13186 * 13187 * An ire add that occurs before the CHANGING flag is set will have its mtu 13188 * changed by the ip_sioctl_lnkinfo. 13189 * 13190 * During the time the CHANGING flag is set, no new ires will be added to the 13191 * bucket, and ire add will fail (due the CHANGING flag). 13192 * 13193 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13194 * before it is added to the bucket. 13195 * 13196 * Obviously only 1 thread can set the CHANGING flag and we need to become 13197 * exclusive to set the flag. 13198 */ 13199 /* ARGSUSED */ 13200 int 13201 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13202 ip_ioctl_cmd_t *ipi, void *if_req) 13203 { 13204 ill_t *ill = ipif->ipif_ill; 13205 ipif_t *nipif; 13206 int ip_min_mtu; 13207 boolean_t mtu_walk = B_FALSE; 13208 struct lifreq *lifr = (struct lifreq *)if_req; 13209 lif_ifinfo_req_t *lir; 13210 ire_t *ire; 13211 13212 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13213 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13214 lir = &lifr->lifr_ifinfo; 13215 ASSERT(IAM_WRITER_IPIF(ipif)); 13216 13217 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13218 if (ipif->ipif_id != 0) 13219 return (EINVAL); 13220 13221 /* Set interface MTU. */ 13222 if (ipif->ipif_isv6) 13223 ip_min_mtu = IPV6_MIN_MTU; 13224 else 13225 ip_min_mtu = IP_MIN_MTU; 13226 13227 /* 13228 * Verify values before we set anything. Allow zero to 13229 * mean unspecified. 13230 */ 13231 if (lir->lir_maxmtu != 0 && 13232 (lir->lir_maxmtu > ill->ill_max_frag || 13233 lir->lir_maxmtu < ip_min_mtu)) 13234 return (EINVAL); 13235 if (lir->lir_reachtime != 0 && 13236 lir->lir_reachtime > ND_MAX_REACHTIME) 13237 return (EINVAL); 13238 if (lir->lir_reachretrans != 0 && 13239 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13240 return (EINVAL); 13241 13242 mutex_enter(&ill->ill_lock); 13243 ill->ill_state_flags |= ILL_CHANGING; 13244 for (nipif = ill->ill_ipif; nipif != NULL; 13245 nipif = nipif->ipif_next) { 13246 nipif->ipif_state_flags |= IPIF_CHANGING; 13247 } 13248 13249 mutex_exit(&ill->ill_lock); 13250 13251 if (lir->lir_maxmtu != 0) { 13252 ill->ill_max_mtu = lir->lir_maxmtu; 13253 ill->ill_mtu_userspecified = 1; 13254 mtu_walk = B_TRUE; 13255 } 13256 13257 if (lir->lir_reachtime != 0) 13258 ill->ill_reachable_time = lir->lir_reachtime; 13259 13260 if (lir->lir_reachretrans != 0) 13261 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13262 13263 ill->ill_max_hops = lir->lir_maxhops; 13264 13265 ill->ill_max_buf = ND_MAX_Q; 13266 13267 if (mtu_walk) { 13268 /* 13269 * Set the MTU on all ipifs associated with this ill except 13270 * for those whose MTU was fixed via SIOCSLIFMTU. 13271 */ 13272 for (nipif = ill->ill_ipif; nipif != NULL; 13273 nipif = nipif->ipif_next) { 13274 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13275 continue; 13276 13277 nipif->ipif_mtu = ill->ill_max_mtu; 13278 13279 if (!(nipif->ipif_flags & IPIF_UP)) 13280 continue; 13281 13282 if (nipif->ipif_isv6) 13283 ire = ipif_to_ire_v6(nipif); 13284 else 13285 ire = ipif_to_ire(nipif); 13286 if (ire != NULL) { 13287 ire->ire_max_frag = ipif->ipif_mtu; 13288 ire_refrele(ire); 13289 } 13290 if (ill->ill_isv6) { 13291 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13292 ipif_mtu_change, (char *)nipif, 13293 ill); 13294 } else { 13295 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13296 ipif_mtu_change, (char *)nipif, 13297 ill); 13298 } 13299 } 13300 } 13301 13302 mutex_enter(&ill->ill_lock); 13303 for (nipif = ill->ill_ipif; nipif != NULL; 13304 nipif = nipif->ipif_next) { 13305 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13306 } 13307 ILL_UNMARK_CHANGING(ill); 13308 mutex_exit(&ill->ill_lock); 13309 13310 return (0); 13311 } 13312 13313 /* ARGSUSED */ 13314 int 13315 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13316 ip_ioctl_cmd_t *ipi, void *if_req) 13317 { 13318 struct lif_ifinfo_req *lir; 13319 ill_t *ill = ipif->ipif_ill; 13320 13321 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13322 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13323 if (ipif->ipif_id != 0) 13324 return (EINVAL); 13325 13326 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13327 lir->lir_maxhops = ill->ill_max_hops; 13328 lir->lir_reachtime = ill->ill_reachable_time; 13329 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13330 lir->lir_maxmtu = ill->ill_max_mtu; 13331 13332 return (0); 13333 } 13334 13335 /* 13336 * Return best guess as to the subnet mask for the specified address. 13337 * Based on the subnet masks for all the configured interfaces. 13338 * 13339 * We end up returning a zero mask in the case of default, multicast or 13340 * experimental. 13341 */ 13342 static ipaddr_t 13343 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13344 { 13345 ipaddr_t net_mask; 13346 ill_t *ill; 13347 ipif_t *ipif; 13348 ill_walk_context_t ctx; 13349 ipif_t *fallback_ipif = NULL; 13350 13351 net_mask = ip_net_mask(addr); 13352 if (net_mask == 0) { 13353 *ipifp = NULL; 13354 return (0); 13355 } 13356 13357 /* Let's check to see if this is maybe a local subnet route. */ 13358 /* this function only applies to IPv4 interfaces */ 13359 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13360 ill = ILL_START_WALK_V4(&ctx, ipst); 13361 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13362 mutex_enter(&ill->ill_lock); 13363 for (ipif = ill->ill_ipif; ipif != NULL; 13364 ipif = ipif->ipif_next) { 13365 if (!IPIF_CAN_LOOKUP(ipif)) 13366 continue; 13367 if (!(ipif->ipif_flags & IPIF_UP)) 13368 continue; 13369 if ((ipif->ipif_subnet & net_mask) == 13370 (addr & net_mask)) { 13371 /* 13372 * Don't trust pt-pt interfaces if there are 13373 * other interfaces. 13374 */ 13375 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13376 if (fallback_ipif == NULL) { 13377 ipif_refhold_locked(ipif); 13378 fallback_ipif = ipif; 13379 } 13380 continue; 13381 } 13382 13383 /* 13384 * Fine. Just assume the same net mask as the 13385 * directly attached subnet interface is using. 13386 */ 13387 ipif_refhold_locked(ipif); 13388 mutex_exit(&ill->ill_lock); 13389 rw_exit(&ipst->ips_ill_g_lock); 13390 if (fallback_ipif != NULL) 13391 ipif_refrele(fallback_ipif); 13392 *ipifp = ipif; 13393 return (ipif->ipif_net_mask); 13394 } 13395 } 13396 mutex_exit(&ill->ill_lock); 13397 } 13398 rw_exit(&ipst->ips_ill_g_lock); 13399 13400 *ipifp = fallback_ipif; 13401 return ((fallback_ipif != NULL) ? 13402 fallback_ipif->ipif_net_mask : net_mask); 13403 } 13404 13405 /* 13406 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13407 */ 13408 static void 13409 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13410 { 13411 IOCP iocp; 13412 ipft_t *ipft; 13413 ipllc_t *ipllc; 13414 mblk_t *mp1; 13415 cred_t *cr; 13416 int error = 0; 13417 conn_t *connp; 13418 13419 ip1dbg(("ip_wput_ioctl")); 13420 iocp = (IOCP)mp->b_rptr; 13421 mp1 = mp->b_cont; 13422 if (mp1 == NULL) { 13423 iocp->ioc_error = EINVAL; 13424 mp->b_datap->db_type = M_IOCNAK; 13425 iocp->ioc_count = 0; 13426 qreply(q, mp); 13427 return; 13428 } 13429 13430 /* 13431 * These IOCTLs provide various control capabilities to 13432 * upstream agents such as ULPs and processes. There 13433 * are currently two such IOCTLs implemented. They 13434 * are used by TCP to provide update information for 13435 * existing IREs and to forcibly delete an IRE for a 13436 * host that is not responding, thereby forcing an 13437 * attempt at a new route. 13438 */ 13439 iocp->ioc_error = EINVAL; 13440 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13441 goto done; 13442 13443 ipllc = (ipllc_t *)mp1->b_rptr; 13444 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13445 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13446 break; 13447 } 13448 /* 13449 * prefer credential from mblk over ioctl; 13450 * see ip_sioctl_copyin_setup 13451 */ 13452 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13453 13454 /* 13455 * Refhold the conn in case the request gets queued up in some lookup 13456 */ 13457 ASSERT(CONN_Q(q)); 13458 connp = Q_TO_CONN(q); 13459 CONN_INC_REF(connp); 13460 if (ipft->ipft_pfi && 13461 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13462 pullupmsg(mp1, ipft->ipft_min_size))) { 13463 error = (*ipft->ipft_pfi)(q, 13464 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13465 } 13466 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13467 /* 13468 * CONN_OPER_PENDING_DONE happens in the function called 13469 * through ipft_pfi above. 13470 */ 13471 return; 13472 } 13473 13474 CONN_OPER_PENDING_DONE(connp); 13475 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13476 freemsg(mp); 13477 return; 13478 } 13479 iocp->ioc_error = error; 13480 13481 done: 13482 mp->b_datap->db_type = M_IOCACK; 13483 if (iocp->ioc_error) 13484 iocp->ioc_count = 0; 13485 qreply(q, mp); 13486 } 13487 13488 /* 13489 * Lookup an ipif using the sequence id (ipif_seqid) 13490 */ 13491 ipif_t * 13492 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13493 { 13494 ipif_t *ipif; 13495 13496 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13497 13498 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13499 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13500 return (ipif); 13501 } 13502 return (NULL); 13503 } 13504 13505 /* 13506 * Assign a unique id for the ipif. This is used later when we send 13507 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13508 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13509 * IRE is added, we verify that ipif has not disappeared. 13510 */ 13511 13512 static void 13513 ipif_assign_seqid(ipif_t *ipif) 13514 { 13515 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13516 13517 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13518 } 13519 13520 /* 13521 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13522 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13523 * be inserted into the first space available in the list. The value of 13524 * ipif_id will then be set to the appropriate value for its position. 13525 */ 13526 static int 13527 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13528 { 13529 ill_t *ill; 13530 ipif_t *tipif; 13531 ipif_t **tipifp; 13532 int id; 13533 ip_stack_t *ipst; 13534 13535 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13536 IAM_WRITER_IPIF(ipif)); 13537 13538 ill = ipif->ipif_ill; 13539 ASSERT(ill != NULL); 13540 ipst = ill->ill_ipst; 13541 13542 /* 13543 * In the case of lo0:0 we already hold the ill_g_lock. 13544 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13545 * ipif_insert. Another such caller is ipif_move. 13546 */ 13547 if (acquire_g_lock) 13548 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13549 if (acquire_ill_lock) 13550 mutex_enter(&ill->ill_lock); 13551 id = ipif->ipif_id; 13552 tipifp = &(ill->ill_ipif); 13553 if (id == -1) { /* need to find a real id */ 13554 id = 0; 13555 while ((tipif = *tipifp) != NULL) { 13556 ASSERT(tipif->ipif_id >= id); 13557 if (tipif->ipif_id != id) 13558 break; /* non-consecutive id */ 13559 id++; 13560 tipifp = &(tipif->ipif_next); 13561 } 13562 /* limit number of logical interfaces */ 13563 if (id >= ipst->ips_ip_addrs_per_if) { 13564 if (acquire_ill_lock) 13565 mutex_exit(&ill->ill_lock); 13566 if (acquire_g_lock) 13567 rw_exit(&ipst->ips_ill_g_lock); 13568 return (-1); 13569 } 13570 ipif->ipif_id = id; /* assign new id */ 13571 } else if (id < ipst->ips_ip_addrs_per_if) { 13572 /* we have a real id; insert ipif in the right place */ 13573 while ((tipif = *tipifp) != NULL) { 13574 ASSERT(tipif->ipif_id != id); 13575 if (tipif->ipif_id > id) 13576 break; /* found correct location */ 13577 tipifp = &(tipif->ipif_next); 13578 } 13579 } else { 13580 if (acquire_ill_lock) 13581 mutex_exit(&ill->ill_lock); 13582 if (acquire_g_lock) 13583 rw_exit(&ipst->ips_ill_g_lock); 13584 return (-1); 13585 } 13586 13587 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13588 13589 ipif->ipif_next = tipif; 13590 *tipifp = ipif; 13591 if (acquire_ill_lock) 13592 mutex_exit(&ill->ill_lock); 13593 if (acquire_g_lock) 13594 rw_exit(&ipst->ips_ill_g_lock); 13595 return (0); 13596 } 13597 13598 /* 13599 * Allocate and initialize a new interface control structure. (Always 13600 * called as writer.) 13601 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13602 * is not part of the global linked list of ills. ipif_seqid is unique 13603 * in the system and to preserve the uniqueness, it is assigned only 13604 * when ill becomes part of the global list. At that point ill will 13605 * have a name. If it doesn't get assigned here, it will get assigned 13606 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13607 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13608 * the interface flags or any other information from the DL_INFO_ACK for 13609 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13610 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13611 * second DL_INFO_ACK comes in from the driver. 13612 */ 13613 static ipif_t * 13614 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13615 { 13616 ipif_t *ipif; 13617 phyint_t *phyi; 13618 13619 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13620 ill->ill_name, id, (void *)ill)); 13621 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13622 13623 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13624 return (NULL); 13625 *ipif = ipif_zero; /* start clean */ 13626 13627 ipif->ipif_ill = ill; 13628 ipif->ipif_id = id; /* could be -1 */ 13629 /* 13630 * Inherit the zoneid from the ill; for the shared stack instance 13631 * this is always the global zone 13632 */ 13633 ipif->ipif_zoneid = ill->ill_zoneid; 13634 13635 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13636 13637 ipif->ipif_refcnt = 0; 13638 ipif->ipif_saved_ire_cnt = 0; 13639 13640 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13641 mi_free(ipif); 13642 return (NULL); 13643 } 13644 /* -1 id should have been replaced by real id */ 13645 id = ipif->ipif_id; 13646 ASSERT(id >= 0); 13647 13648 if (ill->ill_name[0] != '\0') { 13649 ipif_assign_seqid(ipif); 13650 if (ill->ill_phyint->phyint_ifindex != 0) 13651 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13652 } 13653 /* 13654 * Keep a copy of original id in ipif_orig_ipifid. Failback 13655 * will attempt to restore the original id. The SIOCSLIFOINDEX 13656 * ioctl sets ipif_orig_ipifid to zero. 13657 */ 13658 ipif->ipif_orig_ipifid = id; 13659 13660 /* 13661 * We grab the ill_lock and phyint_lock to protect the flag changes. 13662 * The ipif is still not up and can't be looked up until the 13663 * ioctl completes and the IPIF_CHANGING flag is cleared. 13664 */ 13665 mutex_enter(&ill->ill_lock); 13666 mutex_enter(&ill->ill_phyint->phyint_lock); 13667 /* 13668 * Set the running flag when logical interface zero is created. 13669 * For subsequent logical interfaces, a DLPI link down 13670 * notification message may have cleared the running flag to 13671 * indicate the link is down, so we shouldn't just blindly set it. 13672 */ 13673 if (id == 0) 13674 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13675 ipif->ipif_ire_type = ire_type; 13676 phyi = ill->ill_phyint; 13677 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13678 13679 if (ipif->ipif_isv6) { 13680 ill->ill_flags |= ILLF_IPV6; 13681 } else { 13682 ipaddr_t inaddr_any = INADDR_ANY; 13683 13684 ill->ill_flags |= ILLF_IPV4; 13685 13686 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13687 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13688 &ipif->ipif_v6lcl_addr); 13689 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13690 &ipif->ipif_v6src_addr); 13691 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13692 &ipif->ipif_v6subnet); 13693 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13694 &ipif->ipif_v6net_mask); 13695 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13696 &ipif->ipif_v6brd_addr); 13697 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13698 &ipif->ipif_v6pp_dst_addr); 13699 } 13700 13701 /* 13702 * Don't set the interface flags etc. now, will do it in 13703 * ip_ll_subnet_defaults. 13704 */ 13705 if (!initialize) { 13706 mutex_exit(&ill->ill_lock); 13707 mutex_exit(&ill->ill_phyint->phyint_lock); 13708 return (ipif); 13709 } 13710 ipif->ipif_mtu = ill->ill_max_mtu; 13711 13712 if (ill->ill_bcast_addr_length != 0) { 13713 /* 13714 * Later detect lack of DLPI driver multicast 13715 * capability by catching DL_ENABMULTI errors in 13716 * ip_rput_dlpi. 13717 */ 13718 ill->ill_flags |= ILLF_MULTICAST; 13719 if (!ipif->ipif_isv6) 13720 ipif->ipif_flags |= IPIF_BROADCAST; 13721 } else { 13722 if (ill->ill_net_type != IRE_LOOPBACK) { 13723 if (ipif->ipif_isv6) 13724 /* 13725 * Note: xresolv interfaces will eventually need 13726 * NOARP set here as well, but that will require 13727 * those external resolvers to have some 13728 * knowledge of that flag and act appropriately. 13729 * Not to be changed at present. 13730 */ 13731 ill->ill_flags |= ILLF_NONUD; 13732 else 13733 ill->ill_flags |= ILLF_NOARP; 13734 } 13735 if (ill->ill_phys_addr_length == 0) { 13736 if (ill->ill_media && 13737 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13738 ipif->ipif_flags |= IPIF_NOXMIT; 13739 phyi->phyint_flags |= PHYI_VIRTUAL; 13740 } else { 13741 /* pt-pt supports multicast. */ 13742 ill->ill_flags |= ILLF_MULTICAST; 13743 if (ill->ill_net_type == IRE_LOOPBACK) { 13744 phyi->phyint_flags |= 13745 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13746 } else { 13747 ipif->ipif_flags |= IPIF_POINTOPOINT; 13748 } 13749 } 13750 } 13751 } 13752 mutex_exit(&ill->ill_lock); 13753 mutex_exit(&ill->ill_phyint->phyint_lock); 13754 return (ipif); 13755 } 13756 13757 /* 13758 * If appropriate, send a message up to the resolver delete the entry 13759 * for the address of this interface which is going out of business. 13760 * (Always called as writer). 13761 * 13762 * NOTE : We need to check for NULL mps as some of the fields are 13763 * initialized only for some interface types. See ipif_resolver_up() 13764 * for details. 13765 */ 13766 void 13767 ipif_arp_down(ipif_t *ipif) 13768 { 13769 mblk_t *mp; 13770 ill_t *ill = ipif->ipif_ill; 13771 13772 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13773 ASSERT(IAM_WRITER_IPIF(ipif)); 13774 13775 /* Delete the mapping for the local address */ 13776 mp = ipif->ipif_arp_del_mp; 13777 if (mp != NULL) { 13778 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13779 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13780 putnext(ill->ill_rq, mp); 13781 ipif->ipif_arp_del_mp = NULL; 13782 } 13783 13784 /* 13785 * If this is the last ipif that is going down and there are no 13786 * duplicate addresses we may yet attempt to re-probe, then we need to 13787 * clean up ARP completely. 13788 */ 13789 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13790 13791 /* Send up AR_INTERFACE_DOWN message */ 13792 mp = ill->ill_arp_down_mp; 13793 if (mp != NULL) { 13794 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13795 *(unsigned *)mp->b_rptr, ill->ill_name, 13796 ipif->ipif_id)); 13797 putnext(ill->ill_rq, mp); 13798 ill->ill_arp_down_mp = NULL; 13799 } 13800 13801 /* Tell ARP to delete the multicast mappings */ 13802 mp = ill->ill_arp_del_mapping_mp; 13803 if (mp != NULL) { 13804 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13805 *(unsigned *)mp->b_rptr, ill->ill_name, 13806 ipif->ipif_id)); 13807 putnext(ill->ill_rq, mp); 13808 ill->ill_arp_del_mapping_mp = NULL; 13809 } 13810 } 13811 } 13812 13813 /* 13814 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13815 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13816 * that it wants the add_mp allocated in this function to be returned 13817 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13818 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13819 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13820 * as it does a ipif_arp_down after calling this function - which will 13821 * remove what we add here. 13822 * 13823 * Returns -1 on failures and 0 on success. 13824 */ 13825 int 13826 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13827 { 13828 mblk_t *del_mp = NULL; 13829 mblk_t *add_mp = NULL; 13830 mblk_t *mp; 13831 ill_t *ill = ipif->ipif_ill; 13832 phyint_t *phyi = ill->ill_phyint; 13833 ipaddr_t addr, mask, extract_mask = 0; 13834 arma_t *arma; 13835 uint8_t *maddr, *bphys_addr; 13836 uint32_t hw_start; 13837 dl_unitdata_req_t *dlur; 13838 13839 ASSERT(IAM_WRITER_IPIF(ipif)); 13840 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13841 return (0); 13842 13843 /* 13844 * Delete the existing mapping from ARP. Normally ipif_down 13845 * -> ipif_arp_down should send this up to ARP. The only 13846 * reason we would find this when we are switching from 13847 * Multicast to Broadcast where we did not do a down. 13848 */ 13849 mp = ill->ill_arp_del_mapping_mp; 13850 if (mp != NULL) { 13851 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13852 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13853 putnext(ill->ill_rq, mp); 13854 ill->ill_arp_del_mapping_mp = NULL; 13855 } 13856 13857 if (arp_add_mapping_mp != NULL) 13858 *arp_add_mapping_mp = NULL; 13859 13860 /* 13861 * Check that the address is not to long for the constant 13862 * length reserved in the template arma_t. 13863 */ 13864 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13865 return (-1); 13866 13867 /* Add mapping mblk */ 13868 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13869 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13870 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13871 (caddr_t)&addr); 13872 if (add_mp == NULL) 13873 return (-1); 13874 arma = (arma_t *)add_mp->b_rptr; 13875 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13876 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13877 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13878 13879 /* 13880 * Determine the broadcast address. 13881 */ 13882 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13883 if (ill->ill_sap_length < 0) 13884 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13885 else 13886 bphys_addr = (uchar_t *)dlur + 13887 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13888 /* 13889 * Check PHYI_MULTI_BCAST and length of physical 13890 * address to determine if we use the mapping or the 13891 * broadcast address. 13892 */ 13893 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13894 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13895 bphys_addr, maddr, &hw_start, &extract_mask)) 13896 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13897 13898 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13899 (ill->ill_flags & ILLF_MULTICAST)) { 13900 /* Make sure this will not match the "exact" entry. */ 13901 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13902 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13903 (caddr_t)&addr); 13904 if (del_mp == NULL) { 13905 freemsg(add_mp); 13906 return (-1); 13907 } 13908 bcopy(&extract_mask, (char *)arma + 13909 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13910 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13911 /* Use link-layer broadcast address for MULTI_BCAST */ 13912 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13913 ip2dbg(("ipif_arp_setup_multicast: adding" 13914 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13915 } else { 13916 arma->arma_hw_mapping_start = hw_start; 13917 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13918 " ARP setup for %s\n", ill->ill_name)); 13919 } 13920 } else { 13921 freemsg(add_mp); 13922 ASSERT(del_mp == NULL); 13923 /* It is neither MULTICAST nor MULTI_BCAST */ 13924 return (0); 13925 } 13926 ASSERT(add_mp != NULL && del_mp != NULL); 13927 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13928 ill->ill_arp_del_mapping_mp = del_mp; 13929 if (arp_add_mapping_mp != NULL) { 13930 /* The caller just wants the mblks allocated */ 13931 *arp_add_mapping_mp = add_mp; 13932 } else { 13933 /* The caller wants us to send it to arp */ 13934 putnext(ill->ill_rq, add_mp); 13935 } 13936 return (0); 13937 } 13938 13939 /* 13940 * Get the resolver set up for a new interface address. 13941 * (Always called as writer.) 13942 * Called both for IPv4 and IPv6 interfaces, 13943 * though it only sets up the resolver for v6 13944 * if it's an xresolv interface (one using an external resolver). 13945 * Honors ILLF_NOARP. 13946 * The enumerated value res_act is used to tune the behavior. 13947 * If set to Res_act_initial, then we set up all the resolver 13948 * structures for a new interface. If set to Res_act_move, then 13949 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13950 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13951 * asynchronous hardware address change notification. If set to 13952 * Res_act_defend, then we tell ARP that it needs to send a single 13953 * gratuitous message in defense of the address. 13954 * Returns error on failure. 13955 */ 13956 int 13957 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13958 { 13959 caddr_t addr; 13960 mblk_t *arp_up_mp = NULL; 13961 mblk_t *arp_down_mp = NULL; 13962 mblk_t *arp_add_mp = NULL; 13963 mblk_t *arp_del_mp = NULL; 13964 mblk_t *arp_add_mapping_mp = NULL; 13965 mblk_t *arp_del_mapping_mp = NULL; 13966 ill_t *ill = ipif->ipif_ill; 13967 uchar_t *area_p = NULL; 13968 uchar_t *ared_p = NULL; 13969 int err = ENOMEM; 13970 boolean_t was_dup; 13971 13972 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13973 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13974 ASSERT(IAM_WRITER_IPIF(ipif)); 13975 13976 was_dup = B_FALSE; 13977 if (res_act == Res_act_initial) { 13978 ipif->ipif_addr_ready = 0; 13979 /* 13980 * We're bringing an interface up here. There's no way that we 13981 * should need to shut down ARP now. 13982 */ 13983 mutex_enter(&ill->ill_lock); 13984 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13985 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13986 ill->ill_ipif_dup_count--; 13987 was_dup = B_TRUE; 13988 } 13989 mutex_exit(&ill->ill_lock); 13990 } 13991 if (ipif->ipif_recovery_id != 0) 13992 (void) untimeout(ipif->ipif_recovery_id); 13993 ipif->ipif_recovery_id = 0; 13994 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13995 ipif->ipif_addr_ready = 1; 13996 return (0); 13997 } 13998 /* NDP will set the ipif_addr_ready flag when it's ready */ 13999 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14000 return (0); 14001 14002 if (ill->ill_isv6) { 14003 /* 14004 * External resolver for IPv6 14005 */ 14006 ASSERT(res_act == Res_act_initial); 14007 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14008 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14009 area_p = (uchar_t *)&ip6_area_template; 14010 ared_p = (uchar_t *)&ip6_ared_template; 14011 } 14012 } else { 14013 /* 14014 * IPv4 arp case. If the ARP stream has already started 14015 * closing, fail this request for ARP bringup. Else 14016 * record the fact that an ARP bringup is pending. 14017 */ 14018 mutex_enter(&ill->ill_lock); 14019 if (ill->ill_arp_closing) { 14020 mutex_exit(&ill->ill_lock); 14021 err = EINVAL; 14022 goto failed; 14023 } else { 14024 if (ill->ill_ipif_up_count == 0 && 14025 ill->ill_ipif_dup_count == 0 && !was_dup) 14026 ill->ill_arp_bringup_pending = 1; 14027 mutex_exit(&ill->ill_lock); 14028 } 14029 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14030 addr = (caddr_t)&ipif->ipif_lcl_addr; 14031 area_p = (uchar_t *)&ip_area_template; 14032 ared_p = (uchar_t *)&ip_ared_template; 14033 } 14034 } 14035 14036 /* 14037 * Add an entry for the local address in ARP only if it 14038 * is not UNNUMBERED and the address is not INADDR_ANY. 14039 */ 14040 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14041 area_t *area; 14042 14043 /* Now ask ARP to publish our address. */ 14044 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14045 if (arp_add_mp == NULL) 14046 goto failed; 14047 area = (area_t *)arp_add_mp->b_rptr; 14048 if (res_act != Res_act_initial) { 14049 /* 14050 * Copy the new hardware address and length into 14051 * arp_add_mp to be sent to ARP. 14052 */ 14053 area->area_hw_addr_length = ill->ill_phys_addr_length; 14054 bcopy(ill->ill_phys_addr, 14055 ((char *)area + area->area_hw_addr_offset), 14056 area->area_hw_addr_length); 14057 } 14058 14059 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14060 ACE_F_MYADDR; 14061 14062 if (res_act == Res_act_defend) { 14063 area->area_flags |= ACE_F_DEFEND; 14064 /* 14065 * If we're just defending our address now, then 14066 * there's no need to set up ARP multicast mappings. 14067 * The publish command is enough. 14068 */ 14069 goto done; 14070 } 14071 14072 if (res_act != Res_act_initial) 14073 goto arp_setup_multicast; 14074 14075 /* 14076 * Allocate an ARP deletion message so we know we can tell ARP 14077 * when the interface goes down. 14078 */ 14079 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14080 if (arp_del_mp == NULL) 14081 goto failed; 14082 14083 } else { 14084 if (res_act != Res_act_initial) 14085 goto done; 14086 } 14087 /* 14088 * Need to bring up ARP or setup multicast mapping only 14089 * when the first interface is coming UP. 14090 */ 14091 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14092 was_dup) { 14093 goto done; 14094 } 14095 14096 /* 14097 * Allocate an ARP down message (to be saved) and an ARP up 14098 * message. 14099 */ 14100 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14101 if (arp_down_mp == NULL) 14102 goto failed; 14103 14104 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14105 if (arp_up_mp == NULL) 14106 goto failed; 14107 14108 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14109 goto done; 14110 14111 arp_setup_multicast: 14112 /* 14113 * Setup the multicast mappings. This function initializes 14114 * ill_arp_del_mapping_mp also. This does not need to be done for 14115 * IPv6. 14116 */ 14117 if (!ill->ill_isv6) { 14118 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14119 if (err != 0) 14120 goto failed; 14121 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14122 ASSERT(arp_add_mapping_mp != NULL); 14123 } 14124 14125 done: 14126 if (arp_del_mp != NULL) { 14127 ASSERT(ipif->ipif_arp_del_mp == NULL); 14128 ipif->ipif_arp_del_mp = arp_del_mp; 14129 } 14130 if (arp_down_mp != NULL) { 14131 ASSERT(ill->ill_arp_down_mp == NULL); 14132 ill->ill_arp_down_mp = arp_down_mp; 14133 } 14134 if (arp_del_mapping_mp != NULL) { 14135 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14136 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14137 } 14138 if (arp_up_mp != NULL) { 14139 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14140 ill->ill_name, ipif->ipif_id)); 14141 putnext(ill->ill_rq, arp_up_mp); 14142 } 14143 if (arp_add_mp != NULL) { 14144 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14145 ill->ill_name, ipif->ipif_id)); 14146 /* 14147 * If it's an extended ARP implementation, then we'll wait to 14148 * hear that DAD has finished before using the interface. 14149 */ 14150 if (!ill->ill_arp_extend) 14151 ipif->ipif_addr_ready = 1; 14152 putnext(ill->ill_rq, arp_add_mp); 14153 } else { 14154 ipif->ipif_addr_ready = 1; 14155 } 14156 if (arp_add_mapping_mp != NULL) { 14157 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14158 ill->ill_name, ipif->ipif_id)); 14159 putnext(ill->ill_rq, arp_add_mapping_mp); 14160 } 14161 if (res_act != Res_act_initial) 14162 return (0); 14163 14164 if (ill->ill_flags & ILLF_NOARP) 14165 err = ill_arp_off(ill); 14166 else 14167 err = ill_arp_on(ill); 14168 if (err != 0) { 14169 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14170 freemsg(ipif->ipif_arp_del_mp); 14171 freemsg(ill->ill_arp_down_mp); 14172 freemsg(ill->ill_arp_del_mapping_mp); 14173 ipif->ipif_arp_del_mp = NULL; 14174 ill->ill_arp_down_mp = NULL; 14175 ill->ill_arp_del_mapping_mp = NULL; 14176 return (err); 14177 } 14178 return ((ill->ill_ipif_up_count != 0 || was_dup || 14179 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14180 14181 failed: 14182 ip1dbg(("ipif_resolver_up: FAILED\n")); 14183 freemsg(arp_add_mp); 14184 freemsg(arp_del_mp); 14185 freemsg(arp_add_mapping_mp); 14186 freemsg(arp_up_mp); 14187 freemsg(arp_down_mp); 14188 ill->ill_arp_bringup_pending = 0; 14189 return (err); 14190 } 14191 14192 /* 14193 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14194 * just gone back up. 14195 */ 14196 static void 14197 ipif_arp_start_dad(ipif_t *ipif) 14198 { 14199 ill_t *ill = ipif->ipif_ill; 14200 mblk_t *arp_add_mp; 14201 area_t *area; 14202 14203 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14204 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14205 ipif->ipif_lcl_addr == INADDR_ANY || 14206 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14207 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14208 /* 14209 * If we can't contact ARP for some reason, that's not really a 14210 * problem. Just send out the routing socket notification that 14211 * DAD completion would have done, and continue. 14212 */ 14213 ipif_mask_reply(ipif); 14214 ip_rts_ifmsg(ipif); 14215 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14216 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14217 ipif->ipif_addr_ready = 1; 14218 return; 14219 } 14220 14221 /* Setting the 'unverified' flag restarts DAD */ 14222 area = (area_t *)arp_add_mp->b_rptr; 14223 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14224 ACE_F_UNVERIFIED; 14225 putnext(ill->ill_rq, arp_add_mp); 14226 } 14227 14228 static void 14229 ipif_ndp_start_dad(ipif_t *ipif) 14230 { 14231 nce_t *nce; 14232 14233 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14234 if (nce == NULL) 14235 return; 14236 14237 if (!ndp_restart_dad(nce)) { 14238 /* 14239 * If we can't restart DAD for some reason, that's not really a 14240 * problem. Just send out the routing socket notification that 14241 * DAD completion would have done, and continue. 14242 */ 14243 ip_rts_ifmsg(ipif); 14244 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14245 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14246 ipif->ipif_addr_ready = 1; 14247 } 14248 NCE_REFRELE(nce); 14249 } 14250 14251 /* 14252 * Restart duplicate address detection on all interfaces on the given ill. 14253 * 14254 * This is called when an interface transitions from down to up 14255 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14256 * 14257 * Note that since the underlying physical link has transitioned, we must cause 14258 * at least one routing socket message to be sent here, either via DAD 14259 * completion or just by default on the first ipif. (If we don't do this, then 14260 * in.mpathd will see long delays when doing link-based failure recovery.) 14261 */ 14262 void 14263 ill_restart_dad(ill_t *ill, boolean_t went_up) 14264 { 14265 ipif_t *ipif; 14266 14267 if (ill == NULL) 14268 return; 14269 14270 /* 14271 * If layer two doesn't support duplicate address detection, then just 14272 * send the routing socket message now and be done with it. 14273 */ 14274 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14275 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14276 ip_rts_ifmsg(ill->ill_ipif); 14277 return; 14278 } 14279 14280 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14281 if (went_up) { 14282 if (ipif->ipif_flags & IPIF_UP) { 14283 if (ill->ill_isv6) 14284 ipif_ndp_start_dad(ipif); 14285 else 14286 ipif_arp_start_dad(ipif); 14287 } else if (ill->ill_isv6 && 14288 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14289 /* 14290 * For IPv4, the ARP module itself will 14291 * automatically start the DAD process when it 14292 * sees DL_NOTE_LINK_UP. We respond to the 14293 * AR_CN_READY at the completion of that task. 14294 * For IPv6, we must kick off the bring-up 14295 * process now. 14296 */ 14297 ndp_do_recovery(ipif); 14298 } else { 14299 /* 14300 * Unfortunately, the first ipif is "special" 14301 * and represents the underlying ill in the 14302 * routing socket messages. Thus, when this 14303 * one ipif is down, we must still notify so 14304 * that the user knows the IFF_RUNNING status 14305 * change. (If the first ipif is up, then 14306 * we'll handle eventual routing socket 14307 * notification via DAD completion.) 14308 */ 14309 if (ipif == ill->ill_ipif) 14310 ip_rts_ifmsg(ill->ill_ipif); 14311 } 14312 } else { 14313 /* 14314 * After link down, we'll need to send a new routing 14315 * message when the link comes back, so clear 14316 * ipif_addr_ready. 14317 */ 14318 ipif->ipif_addr_ready = 0; 14319 } 14320 } 14321 14322 /* 14323 * If we've torn down links, then notify the user right away. 14324 */ 14325 if (!went_up) 14326 ip_rts_ifmsg(ill->ill_ipif); 14327 } 14328 14329 /* 14330 * Wakeup all threads waiting to enter the ipsq, and sleeping 14331 * on any of the ills in this ipsq. The ill_lock of the ill 14332 * must be held so that waiters don't miss wakeups 14333 */ 14334 static void 14335 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14336 { 14337 phyint_t *phyint; 14338 14339 phyint = ipsq->ipsq_phyint_list; 14340 while (phyint != NULL) { 14341 if (phyint->phyint_illv4) { 14342 if (!caller_holds_lock) 14343 mutex_enter(&phyint->phyint_illv4->ill_lock); 14344 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14345 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14346 if (!caller_holds_lock) 14347 mutex_exit(&phyint->phyint_illv4->ill_lock); 14348 } 14349 if (phyint->phyint_illv6) { 14350 if (!caller_holds_lock) 14351 mutex_enter(&phyint->phyint_illv6->ill_lock); 14352 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14353 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14354 if (!caller_holds_lock) 14355 mutex_exit(&phyint->phyint_illv6->ill_lock); 14356 } 14357 phyint = phyint->phyint_ipsq_next; 14358 } 14359 } 14360 14361 static ipsq_t * 14362 ipsq_create(char *groupname, ip_stack_t *ipst) 14363 { 14364 ipsq_t *ipsq; 14365 14366 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14367 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14368 if (ipsq == NULL) { 14369 return (NULL); 14370 } 14371 14372 if (groupname != NULL) 14373 (void) strcpy(ipsq->ipsq_name, groupname); 14374 else 14375 ipsq->ipsq_name[0] = '\0'; 14376 14377 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14378 ipsq->ipsq_flags |= IPSQ_GROUP; 14379 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14380 ipst->ips_ipsq_g_head = ipsq; 14381 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14382 return (ipsq); 14383 } 14384 14385 /* 14386 * Return an ipsq correspoding to the groupname. If 'create' is true 14387 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14388 * uniquely with an IPMP group. However during IPMP groupname operations, 14389 * multiple IPMP groups may be associated with a single ipsq. But no 14390 * IPMP group can be associated with more than 1 ipsq at any time. 14391 * For example 14392 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14393 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14394 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14395 * 14396 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14397 * status shown below during the execution of the above command. 14398 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14399 * 14400 * After the completion of the above groupname command we return to the stable 14401 * state shown below. 14402 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14403 * hme4 mpk17-85 ipsq2 mpk17-85 1 14404 * 14405 * Because of the above, we don't search based on the ipsq_name since that 14406 * would miss the correct ipsq during certain windows as shown above. 14407 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14408 * natural state. 14409 */ 14410 static ipsq_t * 14411 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14412 ip_stack_t *ipst) 14413 { 14414 ipsq_t *ipsq; 14415 int group_len; 14416 phyint_t *phyint; 14417 14418 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14419 14420 group_len = strlen(groupname); 14421 ASSERT(group_len != 0); 14422 group_len++; 14423 14424 for (ipsq = ipst->ips_ipsq_g_head; 14425 ipsq != NULL; 14426 ipsq = ipsq->ipsq_next) { 14427 /* 14428 * When an ipsq is being split, and ill_split_ipsq 14429 * calls this function, we exclude it from being considered. 14430 */ 14431 if (ipsq == exclude_ipsq) 14432 continue; 14433 14434 /* 14435 * Compare against the ipsq_name. The groupname change happens 14436 * in 2 phases. The 1st phase merges the from group into 14437 * the to group's ipsq, by calling ill_merge_groups and restarts 14438 * the ioctl. The 2nd phase then locates the ipsq again thru 14439 * ipsq_name. At this point the phyint_groupname has not been 14440 * updated. 14441 */ 14442 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14443 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14444 /* 14445 * Verify that an ipmp groupname is exactly 14446 * part of 1 ipsq and is not found in any other 14447 * ipsq. 14448 */ 14449 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14450 NULL); 14451 return (ipsq); 14452 } 14453 14454 /* 14455 * Comparison against ipsq_name alone is not sufficient. 14456 * In the case when groups are currently being 14457 * merged, the ipsq could hold other IPMP groups temporarily. 14458 * so we walk the phyint list and compare against the 14459 * phyint_groupname as well. 14460 */ 14461 phyint = ipsq->ipsq_phyint_list; 14462 while (phyint != NULL) { 14463 if ((group_len == phyint->phyint_groupname_len) && 14464 (bcmp(phyint->phyint_groupname, groupname, 14465 group_len) == 0)) { 14466 /* 14467 * Verify that an ipmp groupname is exactly 14468 * part of 1 ipsq and is not found in any other 14469 * ipsq. 14470 */ 14471 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14472 ipst) == NULL); 14473 return (ipsq); 14474 } 14475 phyint = phyint->phyint_ipsq_next; 14476 } 14477 } 14478 if (create) 14479 ipsq = ipsq_create(groupname, ipst); 14480 return (ipsq); 14481 } 14482 14483 static void 14484 ipsq_delete(ipsq_t *ipsq) 14485 { 14486 ipsq_t *nipsq; 14487 ipsq_t *pipsq = NULL; 14488 ip_stack_t *ipst = ipsq->ipsq_ipst; 14489 14490 /* 14491 * We don't hold the ipsq lock, but we are sure no new 14492 * messages can land up, since the ipsq_refs is zero. 14493 * i.e. this ipsq is unnamed and no phyint or phyint group 14494 * is associated with this ipsq. (Lookups are based on ill_name 14495 * or phyint_group_name) 14496 */ 14497 ASSERT(ipsq->ipsq_refs == 0); 14498 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14499 ASSERT(ipsq->ipsq_pending_mp == NULL); 14500 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14501 /* 14502 * This is not the ipsq of an IPMP group. 14503 */ 14504 ipsq->ipsq_ipst = NULL; 14505 kmem_free(ipsq, sizeof (ipsq_t)); 14506 return; 14507 } 14508 14509 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14510 14511 /* 14512 * Locate the ipsq before we can remove it from 14513 * the singly linked list of ipsq's. 14514 */ 14515 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14516 nipsq = nipsq->ipsq_next) { 14517 if (nipsq == ipsq) { 14518 break; 14519 } 14520 pipsq = nipsq; 14521 } 14522 14523 ASSERT(nipsq == ipsq); 14524 14525 /* unlink ipsq from the list */ 14526 if (pipsq != NULL) 14527 pipsq->ipsq_next = ipsq->ipsq_next; 14528 else 14529 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14530 ipsq->ipsq_ipst = NULL; 14531 kmem_free(ipsq, sizeof (ipsq_t)); 14532 rw_exit(&ipst->ips_ill_g_lock); 14533 } 14534 14535 static void 14536 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14537 queue_t *q) 14538 { 14539 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14540 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14541 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14542 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14543 ASSERT(current_mp != NULL); 14544 14545 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14546 NEW_OP, NULL); 14547 14548 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14549 new_ipsq->ipsq_xopq_mphead != NULL); 14550 14551 /* 14552 * move from old ipsq to the new ipsq. 14553 */ 14554 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14555 if (old_ipsq->ipsq_xopq_mphead != NULL) 14556 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14557 14558 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14559 } 14560 14561 void 14562 ill_group_cleanup(ill_t *ill) 14563 { 14564 ill_t *ill_v4; 14565 ill_t *ill_v6; 14566 ipif_t *ipif; 14567 14568 ill_v4 = ill->ill_phyint->phyint_illv4; 14569 ill_v6 = ill->ill_phyint->phyint_illv6; 14570 14571 if (ill_v4 != NULL) { 14572 mutex_enter(&ill_v4->ill_lock); 14573 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14574 ipif = ipif->ipif_next) { 14575 IPIF_UNMARK_MOVING(ipif); 14576 } 14577 ill_v4->ill_up_ipifs = B_FALSE; 14578 mutex_exit(&ill_v4->ill_lock); 14579 } 14580 14581 if (ill_v6 != NULL) { 14582 mutex_enter(&ill_v6->ill_lock); 14583 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14584 ipif = ipif->ipif_next) { 14585 IPIF_UNMARK_MOVING(ipif); 14586 } 14587 ill_v6->ill_up_ipifs = B_FALSE; 14588 mutex_exit(&ill_v6->ill_lock); 14589 } 14590 } 14591 /* 14592 * This function is called when an ill has had a change in its group status 14593 * to bring up all the ipifs that were up before the change. 14594 */ 14595 int 14596 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14597 { 14598 ipif_t *ipif; 14599 ill_t *ill_v4; 14600 ill_t *ill_v6; 14601 ill_t *from_ill; 14602 int err = 0; 14603 14604 14605 ASSERT(IAM_WRITER_ILL(ill)); 14606 14607 /* 14608 * Except for ipif_state_flags and ill_state_flags the other 14609 * fields of the ipif/ill that are modified below are protected 14610 * implicitly since we are a writer. We would have tried to down 14611 * even an ipif that was already down, in ill_down_ipifs. So we 14612 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14613 */ 14614 ill_v4 = ill->ill_phyint->phyint_illv4; 14615 ill_v6 = ill->ill_phyint->phyint_illv6; 14616 if (ill_v4 != NULL) { 14617 ill_v4->ill_up_ipifs = B_TRUE; 14618 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14619 ipif = ipif->ipif_next) { 14620 mutex_enter(&ill_v4->ill_lock); 14621 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14622 IPIF_UNMARK_MOVING(ipif); 14623 mutex_exit(&ill_v4->ill_lock); 14624 if (ipif->ipif_was_up) { 14625 if (!(ipif->ipif_flags & IPIF_UP)) 14626 err = ipif_up(ipif, q, mp); 14627 ipif->ipif_was_up = B_FALSE; 14628 if (err != 0) { 14629 /* 14630 * Can there be any other error ? 14631 */ 14632 ASSERT(err == EINPROGRESS); 14633 return (err); 14634 } 14635 } 14636 } 14637 mutex_enter(&ill_v4->ill_lock); 14638 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14639 mutex_exit(&ill_v4->ill_lock); 14640 ill_v4->ill_up_ipifs = B_FALSE; 14641 if (ill_v4->ill_move_in_progress) { 14642 ASSERT(ill_v4->ill_move_peer != NULL); 14643 ill_v4->ill_move_in_progress = B_FALSE; 14644 from_ill = ill_v4->ill_move_peer; 14645 from_ill->ill_move_in_progress = B_FALSE; 14646 from_ill->ill_move_peer = NULL; 14647 mutex_enter(&from_ill->ill_lock); 14648 from_ill->ill_state_flags &= ~ILL_CHANGING; 14649 mutex_exit(&from_ill->ill_lock); 14650 if (ill_v6 == NULL) { 14651 if (from_ill->ill_phyint->phyint_flags & 14652 PHYI_STANDBY) { 14653 phyint_inactive(from_ill->ill_phyint); 14654 } 14655 if (ill_v4->ill_phyint->phyint_flags & 14656 PHYI_STANDBY) { 14657 phyint_inactive(ill_v4->ill_phyint); 14658 } 14659 } 14660 ill_v4->ill_move_peer = NULL; 14661 } 14662 } 14663 14664 if (ill_v6 != NULL) { 14665 ill_v6->ill_up_ipifs = B_TRUE; 14666 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14667 ipif = ipif->ipif_next) { 14668 mutex_enter(&ill_v6->ill_lock); 14669 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14670 IPIF_UNMARK_MOVING(ipif); 14671 mutex_exit(&ill_v6->ill_lock); 14672 if (ipif->ipif_was_up) { 14673 if (!(ipif->ipif_flags & IPIF_UP)) 14674 err = ipif_up(ipif, q, mp); 14675 ipif->ipif_was_up = B_FALSE; 14676 if (err != 0) { 14677 /* 14678 * Can there be any other error ? 14679 */ 14680 ASSERT(err == EINPROGRESS); 14681 return (err); 14682 } 14683 } 14684 } 14685 mutex_enter(&ill_v6->ill_lock); 14686 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14687 mutex_exit(&ill_v6->ill_lock); 14688 ill_v6->ill_up_ipifs = B_FALSE; 14689 if (ill_v6->ill_move_in_progress) { 14690 ASSERT(ill_v6->ill_move_peer != NULL); 14691 ill_v6->ill_move_in_progress = B_FALSE; 14692 from_ill = ill_v6->ill_move_peer; 14693 from_ill->ill_move_in_progress = B_FALSE; 14694 from_ill->ill_move_peer = NULL; 14695 mutex_enter(&from_ill->ill_lock); 14696 from_ill->ill_state_flags &= ~ILL_CHANGING; 14697 mutex_exit(&from_ill->ill_lock); 14698 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14699 phyint_inactive(from_ill->ill_phyint); 14700 } 14701 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14702 phyint_inactive(ill_v6->ill_phyint); 14703 } 14704 ill_v6->ill_move_peer = NULL; 14705 } 14706 } 14707 return (0); 14708 } 14709 14710 /* 14711 * bring down all the approriate ipifs. 14712 */ 14713 /* ARGSUSED */ 14714 static void 14715 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14716 { 14717 ipif_t *ipif; 14718 14719 ASSERT(IAM_WRITER_ILL(ill)); 14720 14721 /* 14722 * Except for ipif_state_flags the other fields of the ipif/ill that 14723 * are modified below are protected implicitly since we are a writer 14724 */ 14725 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14726 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14727 continue; 14728 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14729 /* 14730 * We go through the ipif_down logic even if the ipif 14731 * is already down, since routes can be added based 14732 * on down ipifs. Going through ipif_down once again 14733 * will delete any IREs created based on these routes. 14734 */ 14735 if (ipif->ipif_flags & IPIF_UP) 14736 ipif->ipif_was_up = B_TRUE; 14737 /* 14738 * If called with chk_nofailover true ipif is moving. 14739 */ 14740 mutex_enter(&ill->ill_lock); 14741 if (chk_nofailover) { 14742 ipif->ipif_state_flags |= 14743 IPIF_MOVING | IPIF_CHANGING; 14744 } else { 14745 ipif->ipif_state_flags |= IPIF_CHANGING; 14746 } 14747 mutex_exit(&ill->ill_lock); 14748 /* 14749 * Need to re-create net/subnet bcast ires if 14750 * they are dependent on ipif. 14751 */ 14752 if (!ipif->ipif_isv6) 14753 ipif_check_bcast_ires(ipif); 14754 (void) ipif_logical_down(ipif, NULL, NULL); 14755 ipif_non_duplicate(ipif); 14756 ipif_down_tail(ipif); 14757 /* 14758 * We don't do ipif_multicast_down for IPv4 in 14759 * ipif_down. We need to set this so that 14760 * ipif_multicast_up will join the 14761 * ALLHOSTS_GROUP on to_ill. 14762 */ 14763 ipif->ipif_multicast_up = B_FALSE; 14764 } 14765 } 14766 } 14767 14768 #define IPSQ_INC_REF(ipsq, ipst) { \ 14769 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14770 (ipsq)->ipsq_refs++; \ 14771 } 14772 14773 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14774 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14775 (ipsq)->ipsq_refs--; \ 14776 if ((ipsq)->ipsq_refs == 0) \ 14777 (ipsq)->ipsq_name[0] = '\0'; \ 14778 } 14779 14780 /* 14781 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14782 * new_ipsq. 14783 */ 14784 static void 14785 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14786 { 14787 phyint_t *phyint; 14788 phyint_t *next_phyint; 14789 14790 /* 14791 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14792 * writer and the ill_lock of the ill in question. Also the dest 14793 * ipsq can't vanish while we hold the ill_g_lock as writer. 14794 */ 14795 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14796 14797 phyint = cur_ipsq->ipsq_phyint_list; 14798 cur_ipsq->ipsq_phyint_list = NULL; 14799 while (phyint != NULL) { 14800 next_phyint = phyint->phyint_ipsq_next; 14801 IPSQ_DEC_REF(cur_ipsq, ipst); 14802 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14803 new_ipsq->ipsq_phyint_list = phyint; 14804 IPSQ_INC_REF(new_ipsq, ipst); 14805 phyint->phyint_ipsq = new_ipsq; 14806 phyint = next_phyint; 14807 } 14808 } 14809 14810 #define SPLIT_SUCCESS 0 14811 #define SPLIT_NOT_NEEDED 1 14812 #define SPLIT_FAILED 2 14813 14814 int 14815 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14816 ip_stack_t *ipst) 14817 { 14818 ipsq_t *newipsq = NULL; 14819 14820 /* 14821 * Assertions denote pre-requisites for changing the ipsq of 14822 * a phyint 14823 */ 14824 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14825 /* 14826 * <ill-phyint> assocs can't change while ill_g_lock 14827 * is held as writer. See ill_phyint_reinit() 14828 */ 14829 ASSERT(phyint->phyint_illv4 == NULL || 14830 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14831 ASSERT(phyint->phyint_illv6 == NULL || 14832 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14833 14834 if ((phyint->phyint_groupname_len != 14835 (strlen(cur_ipsq->ipsq_name) + 1) || 14836 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14837 phyint->phyint_groupname_len) != 0)) { 14838 /* 14839 * Once we fail in creating a new ipsq due to memory shortage, 14840 * don't attempt to create new ipsq again, based on another 14841 * phyint, since we want all phyints belonging to an IPMP group 14842 * to be in the same ipsq even in the event of mem alloc fails. 14843 */ 14844 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14845 cur_ipsq, ipst); 14846 if (newipsq == NULL) { 14847 /* Memory allocation failure */ 14848 return (SPLIT_FAILED); 14849 } else { 14850 /* ipsq_refs protected by ill_g_lock (writer) */ 14851 IPSQ_DEC_REF(cur_ipsq, ipst); 14852 phyint->phyint_ipsq = newipsq; 14853 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14854 newipsq->ipsq_phyint_list = phyint; 14855 IPSQ_INC_REF(newipsq, ipst); 14856 return (SPLIT_SUCCESS); 14857 } 14858 } 14859 return (SPLIT_NOT_NEEDED); 14860 } 14861 14862 /* 14863 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14864 * to do this split 14865 */ 14866 static int 14867 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14868 { 14869 ipsq_t *newipsq; 14870 14871 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14872 /* 14873 * <ill-phyint> assocs can't change while ill_g_lock 14874 * is held as writer. See ill_phyint_reinit() 14875 */ 14876 14877 ASSERT(phyint->phyint_illv4 == NULL || 14878 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14879 ASSERT(phyint->phyint_illv6 == NULL || 14880 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14881 14882 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14883 phyint->phyint_illv4: phyint->phyint_illv6)) { 14884 /* 14885 * ipsq_init failed due to no memory 14886 * caller will use the same ipsq 14887 */ 14888 return (SPLIT_FAILED); 14889 } 14890 14891 /* ipsq_ref is protected by ill_g_lock (writer) */ 14892 IPSQ_DEC_REF(cur_ipsq, ipst); 14893 14894 /* 14895 * This is a new ipsq that is unknown to the world. 14896 * So we don't need to hold ipsq_lock, 14897 */ 14898 newipsq = phyint->phyint_ipsq; 14899 newipsq->ipsq_writer = NULL; 14900 newipsq->ipsq_reentry_cnt--; 14901 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14902 #ifdef ILL_DEBUG 14903 newipsq->ipsq_depth = 0; 14904 #endif 14905 14906 return (SPLIT_SUCCESS); 14907 } 14908 14909 /* 14910 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14911 * ipsq's representing their individual groups or themselves. Return 14912 * whether split needs to be retried again later. 14913 */ 14914 static boolean_t 14915 ill_split_ipsq(ipsq_t *cur_ipsq) 14916 { 14917 phyint_t *phyint; 14918 phyint_t *next_phyint; 14919 int error; 14920 boolean_t need_retry = B_FALSE; 14921 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14922 14923 phyint = cur_ipsq->ipsq_phyint_list; 14924 cur_ipsq->ipsq_phyint_list = NULL; 14925 while (phyint != NULL) { 14926 next_phyint = phyint->phyint_ipsq_next; 14927 /* 14928 * 'created' will tell us whether the callee actually 14929 * created an ipsq. Lack of memory may force the callee 14930 * to return without creating an ipsq. 14931 */ 14932 if (phyint->phyint_groupname == NULL) { 14933 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14934 } else { 14935 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14936 need_retry, ipst); 14937 } 14938 14939 switch (error) { 14940 case SPLIT_FAILED: 14941 need_retry = B_TRUE; 14942 /* FALLTHRU */ 14943 case SPLIT_NOT_NEEDED: 14944 /* 14945 * Keep it on the list. 14946 */ 14947 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14948 cur_ipsq->ipsq_phyint_list = phyint; 14949 break; 14950 case SPLIT_SUCCESS: 14951 break; 14952 default: 14953 ASSERT(0); 14954 } 14955 14956 phyint = next_phyint; 14957 } 14958 return (need_retry); 14959 } 14960 14961 /* 14962 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14963 * and return the ills in the list. This list will be 14964 * needed to unlock all the ills later on by the caller. 14965 * The <ill-ipsq> associations could change between the 14966 * lock and unlock. Hence the unlock can't traverse the 14967 * ipsq to get the list of ills. 14968 */ 14969 static int 14970 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14971 { 14972 int cnt = 0; 14973 phyint_t *phyint; 14974 ip_stack_t *ipst = ipsq->ipsq_ipst; 14975 14976 /* 14977 * The caller holds ill_g_lock to ensure that the ill memberships 14978 * of the ipsq don't change 14979 */ 14980 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14981 14982 phyint = ipsq->ipsq_phyint_list; 14983 while (phyint != NULL) { 14984 if (phyint->phyint_illv4 != NULL) { 14985 ASSERT(cnt < list_max); 14986 list[cnt++] = phyint->phyint_illv4; 14987 } 14988 if (phyint->phyint_illv6 != NULL) { 14989 ASSERT(cnt < list_max); 14990 list[cnt++] = phyint->phyint_illv6; 14991 } 14992 phyint = phyint->phyint_ipsq_next; 14993 } 14994 ill_lock_ills(list, cnt); 14995 return (cnt); 14996 } 14997 14998 void 14999 ill_lock_ills(ill_t **list, int cnt) 15000 { 15001 int i; 15002 15003 if (cnt > 1) { 15004 boolean_t try_again; 15005 do { 15006 try_again = B_FALSE; 15007 for (i = 0; i < cnt - 1; i++) { 15008 if (list[i] < list[i + 1]) { 15009 ill_t *tmp; 15010 15011 /* swap the elements */ 15012 tmp = list[i]; 15013 list[i] = list[i + 1]; 15014 list[i + 1] = tmp; 15015 try_again = B_TRUE; 15016 } 15017 } 15018 } while (try_again); 15019 } 15020 15021 for (i = 0; i < cnt; i++) { 15022 if (i == 0) { 15023 if (list[i] != NULL) 15024 mutex_enter(&list[i]->ill_lock); 15025 else 15026 return; 15027 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15028 mutex_enter(&list[i]->ill_lock); 15029 } 15030 } 15031 } 15032 15033 void 15034 ill_unlock_ills(ill_t **list, int cnt) 15035 { 15036 int i; 15037 15038 for (i = 0; i < cnt; i++) { 15039 if ((i == 0) && (list[i] != NULL)) { 15040 mutex_exit(&list[i]->ill_lock); 15041 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15042 mutex_exit(&list[i]->ill_lock); 15043 } 15044 } 15045 } 15046 15047 /* 15048 * Merge all the ills from 1 ipsq group into another ipsq group. 15049 * The source ipsq group is specified by the ipsq associated with 15050 * 'from_ill'. The destination ipsq group is specified by the ipsq 15051 * associated with 'to_ill' or 'groupname' respectively. 15052 * Note that ipsq itself does not have a reference count mechanism 15053 * and functions don't look up an ipsq and pass it around. Instead 15054 * functions pass around an ill or groupname, and the ipsq is looked 15055 * up from the ill or groupname and the required operation performed 15056 * atomically with the lookup on the ipsq. 15057 */ 15058 static int 15059 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15060 queue_t *q) 15061 { 15062 ipsq_t *old_ipsq; 15063 ipsq_t *new_ipsq; 15064 ill_t **ill_list; 15065 int cnt; 15066 size_t ill_list_size; 15067 boolean_t became_writer_on_new_sq = B_FALSE; 15068 ip_stack_t *ipst = from_ill->ill_ipst; 15069 15070 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15071 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15072 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15073 15074 /* 15075 * Need to hold ill_g_lock as writer and also the ill_lock to 15076 * change the <ill-ipsq> assoc of an ill. Need to hold the 15077 * ipsq_lock to prevent new messages from landing on an ipsq. 15078 */ 15079 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15080 15081 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15082 if (groupname != NULL) 15083 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15084 else { 15085 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15086 } 15087 15088 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15089 15090 /* 15091 * both groups are on the same ipsq. 15092 */ 15093 if (old_ipsq == new_ipsq) { 15094 rw_exit(&ipst->ips_ill_g_lock); 15095 return (0); 15096 } 15097 15098 cnt = old_ipsq->ipsq_refs << 1; 15099 ill_list_size = cnt * sizeof (ill_t *); 15100 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15101 if (ill_list == NULL) { 15102 rw_exit(&ipst->ips_ill_g_lock); 15103 return (ENOMEM); 15104 } 15105 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15106 15107 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15108 mutex_enter(&new_ipsq->ipsq_lock); 15109 if ((new_ipsq->ipsq_writer == NULL && 15110 new_ipsq->ipsq_current_ipif == NULL) || 15111 (new_ipsq->ipsq_writer == curthread)) { 15112 new_ipsq->ipsq_writer = curthread; 15113 new_ipsq->ipsq_reentry_cnt++; 15114 became_writer_on_new_sq = B_TRUE; 15115 } 15116 15117 /* 15118 * We are holding ill_g_lock as writer and all the ill locks of 15119 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15120 * message can land up on the old ipsq even though we don't hold the 15121 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15122 */ 15123 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15124 15125 /* 15126 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15127 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15128 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15129 */ 15130 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15131 15132 /* 15133 * Mark the new ipsq as needing a split since it is currently 15134 * being shared by more than 1 IPMP group. The split will 15135 * occur at the end of ipsq_exit 15136 */ 15137 new_ipsq->ipsq_split = B_TRUE; 15138 15139 /* Now release all the locks */ 15140 mutex_exit(&new_ipsq->ipsq_lock); 15141 ill_unlock_ills(ill_list, cnt); 15142 rw_exit(&ipst->ips_ill_g_lock); 15143 15144 kmem_free(ill_list, ill_list_size); 15145 15146 /* 15147 * If we succeeded in becoming writer on the new ipsq, then 15148 * drain the new ipsq and start processing all enqueued messages 15149 * including the current ioctl we are processing which is either 15150 * a set groupname or failover/failback. 15151 */ 15152 if (became_writer_on_new_sq) 15153 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15154 15155 /* 15156 * syncq has been changed and all the messages have been moved. 15157 */ 15158 mutex_enter(&old_ipsq->ipsq_lock); 15159 old_ipsq->ipsq_current_ipif = NULL; 15160 old_ipsq->ipsq_current_ioctl = 0; 15161 mutex_exit(&old_ipsq->ipsq_lock); 15162 return (EINPROGRESS); 15163 } 15164 15165 /* 15166 * Delete and add the loopback copy and non-loopback copy of 15167 * the BROADCAST ire corresponding to ill and addr. Used to 15168 * group broadcast ires together when ill becomes part of 15169 * a group. 15170 * 15171 * This function is also called when ill is leaving the group 15172 * so that the ires belonging to the group gets re-grouped. 15173 */ 15174 static void 15175 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15176 { 15177 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15178 ire_t **ire_ptpn = &ire_head; 15179 ip_stack_t *ipst = ill->ill_ipst; 15180 15181 /* 15182 * The loopback and non-loopback IREs are inserted in the order in which 15183 * they're found, on the basis that they are correctly ordered (loopback 15184 * first). 15185 */ 15186 for (;;) { 15187 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15188 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15189 if (ire == NULL) 15190 break; 15191 15192 /* 15193 * we are passing in KM_SLEEP because it is not easy to 15194 * go back to a sane state in case of memory failure. 15195 */ 15196 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15197 ASSERT(nire != NULL); 15198 bzero(nire, sizeof (ire_t)); 15199 /* 15200 * Don't use ire_max_frag directly since we don't 15201 * hold on to 'ire' until we add the new ire 'nire' and 15202 * we don't want the new ire to have a dangling reference 15203 * to 'ire'. The ire_max_frag of a broadcast ire must 15204 * be in sync with the ipif_mtu of the associate ipif. 15205 * For eg. this happens as a result of SIOCSLIFNAME, 15206 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15207 * the driver. A change in ire_max_frag triggered as 15208 * as a result of path mtu discovery, or due to an 15209 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15210 * route change -mtu command does not apply to broadcast ires. 15211 * 15212 * XXX We need a recovery strategy here if ire_init fails 15213 */ 15214 if (ire_init(nire, 15215 (uchar_t *)&ire->ire_addr, 15216 (uchar_t *)&ire->ire_mask, 15217 (uchar_t *)&ire->ire_src_addr, 15218 (uchar_t *)&ire->ire_gateway_addr, 15219 (uchar_t *)&ire->ire_in_src_addr, 15220 ire->ire_stq == NULL ? &ip_loopback_mtu : 15221 &ire->ire_ipif->ipif_mtu, 15222 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15223 ire->ire_rfq, 15224 ire->ire_stq, 15225 ire->ire_type, 15226 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15227 ire->ire_ipif, 15228 ire->ire_in_ill, 15229 ire->ire_cmask, 15230 ire->ire_phandle, 15231 ire->ire_ihandle, 15232 ire->ire_flags, 15233 &ire->ire_uinfo, 15234 NULL, 15235 NULL, 15236 ipst) == NULL) { 15237 cmn_err(CE_PANIC, "ire_init() failed"); 15238 } 15239 ire_delete(ire); 15240 ire_refrele(ire); 15241 15242 /* 15243 * The newly created IREs are inserted at the tail of the list 15244 * starting with ire_head. As we've just allocated them no one 15245 * knows about them so it's safe. 15246 */ 15247 *ire_ptpn = nire; 15248 ire_ptpn = &nire->ire_next; 15249 } 15250 15251 for (nire = ire_head; nire != NULL; nire = nire_next) { 15252 int error; 15253 ire_t *oire; 15254 /* unlink the IRE from our list before calling ire_add() */ 15255 nire_next = nire->ire_next; 15256 nire->ire_next = NULL; 15257 15258 /* ire_add adds the ire at the right place in the list */ 15259 oire = nire; 15260 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15261 ASSERT(error == 0); 15262 ASSERT(oire == nire); 15263 ire_refrele(nire); /* Held in ire_add */ 15264 } 15265 } 15266 15267 /* 15268 * This function is usually called when an ill is inserted in 15269 * a group and all the ipifs are already UP. As all the ipifs 15270 * are already UP, the broadcast ires have already been created 15271 * and been inserted. But, ire_add_v4 would not have grouped properly. 15272 * We need to re-group for the benefit of ip_wput_ire which 15273 * expects BROADCAST ires to be grouped properly to avoid sending 15274 * more than one copy of the broadcast packet per group. 15275 * 15276 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15277 * because when ipif_up_done ends up calling this, ires have 15278 * already been added before illgrp_insert i.e before ill_group 15279 * has been initialized. 15280 */ 15281 static void 15282 ill_group_bcast_for_xmit(ill_t *ill) 15283 { 15284 ill_group_t *illgrp; 15285 ipif_t *ipif; 15286 ipaddr_t addr; 15287 ipaddr_t net_mask; 15288 ipaddr_t subnet_netmask; 15289 15290 illgrp = ill->ill_group; 15291 15292 /* 15293 * This function is called even when an ill is deleted from 15294 * the group. Hence, illgrp could be null. 15295 */ 15296 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15297 return; 15298 15299 /* 15300 * Delete all the BROADCAST ires matching this ill and add 15301 * them back. This time, ire_add_v4 should take care of 15302 * grouping them with others because ill is part of the 15303 * group. 15304 */ 15305 ill_bcast_delete_and_add(ill, 0); 15306 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15307 15308 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15309 15310 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15311 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15312 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15313 } else { 15314 net_mask = htonl(IN_CLASSA_NET); 15315 } 15316 addr = net_mask & ipif->ipif_subnet; 15317 ill_bcast_delete_and_add(ill, addr); 15318 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15319 15320 subnet_netmask = ipif->ipif_net_mask; 15321 addr = ipif->ipif_subnet; 15322 ill_bcast_delete_and_add(ill, addr); 15323 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15324 } 15325 } 15326 15327 /* 15328 * This function is called from illgrp_delete when ill is being deleted 15329 * from the group. 15330 * 15331 * As ill is not there in the group anymore, any address belonging 15332 * to this ill should be cleared of IRE_MARK_NORECV. 15333 */ 15334 static void 15335 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15336 { 15337 ire_t *ire; 15338 irb_t *irb; 15339 ip_stack_t *ipst = ill->ill_ipst; 15340 15341 ASSERT(ill->ill_group == NULL); 15342 15343 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15344 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15345 15346 if (ire != NULL) { 15347 /* 15348 * IPMP and plumbing operations are serialized on the ipsq, so 15349 * no one will insert or delete a broadcast ire under our feet. 15350 */ 15351 irb = ire->ire_bucket; 15352 rw_enter(&irb->irb_lock, RW_READER); 15353 ire_refrele(ire); 15354 15355 for (; ire != NULL; ire = ire->ire_next) { 15356 if (ire->ire_addr != addr) 15357 break; 15358 if (ire_to_ill(ire) != ill) 15359 continue; 15360 15361 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15362 ire->ire_marks &= ~IRE_MARK_NORECV; 15363 } 15364 rw_exit(&irb->irb_lock); 15365 } 15366 } 15367 15368 /* 15369 * This function must be called only after the broadcast ires 15370 * have been grouped together. For a given address addr, nominate 15371 * only one of the ires whose interface is not FAILED or OFFLINE. 15372 * 15373 * This is also called when an ipif goes down, so that we can nominate 15374 * a different ire with the same address for receiving. 15375 */ 15376 static void 15377 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15378 { 15379 irb_t *irb; 15380 ire_t *ire; 15381 ire_t *ire1; 15382 ire_t *save_ire; 15383 ire_t **irep = NULL; 15384 boolean_t first = B_TRUE; 15385 ire_t *clear_ire = NULL; 15386 ire_t *start_ire = NULL; 15387 ire_t *new_lb_ire; 15388 ire_t *new_nlb_ire; 15389 boolean_t new_lb_ire_used = B_FALSE; 15390 boolean_t new_nlb_ire_used = B_FALSE; 15391 uint64_t match_flags; 15392 uint64_t phyi_flags; 15393 boolean_t fallback = B_FALSE; 15394 15395 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15396 NULL, MATCH_IRE_TYPE, ipst); 15397 /* 15398 * We may not be able to find some ires if a previous 15399 * ire_create failed. This happens when an ipif goes 15400 * down and we are unable to create BROADCAST ires due 15401 * to memory failure. Thus, we have to check for NULL 15402 * below. This should handle the case for LOOPBACK, 15403 * POINTOPOINT and interfaces with some POINTOPOINT 15404 * logicals for which there are no BROADCAST ires. 15405 */ 15406 if (ire == NULL) 15407 return; 15408 /* 15409 * Currently IRE_BROADCASTS are deleted when an ipif 15410 * goes down which runs exclusively. Thus, setting 15411 * IRE_MARK_RCVD should not race with ire_delete marking 15412 * IRE_MARK_CONDEMNED. We grab the lock below just to 15413 * be consistent with other parts of the code that walks 15414 * a given bucket. 15415 */ 15416 save_ire = ire; 15417 irb = ire->ire_bucket; 15418 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15419 if (new_lb_ire == NULL) { 15420 ire_refrele(ire); 15421 return; 15422 } 15423 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15424 if (new_nlb_ire == NULL) { 15425 ire_refrele(ire); 15426 kmem_cache_free(ire_cache, new_lb_ire); 15427 return; 15428 } 15429 IRB_REFHOLD(irb); 15430 rw_enter(&irb->irb_lock, RW_WRITER); 15431 /* 15432 * Get to the first ire matching the address and the 15433 * group. If the address does not match we are done 15434 * as we could not find the IRE. If the address matches 15435 * we should get to the first one matching the group. 15436 */ 15437 while (ire != NULL) { 15438 if (ire->ire_addr != addr || 15439 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15440 break; 15441 } 15442 ire = ire->ire_next; 15443 } 15444 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15445 start_ire = ire; 15446 redo: 15447 while (ire != NULL && ire->ire_addr == addr && 15448 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15449 /* 15450 * The first ire for any address within a group 15451 * should always be the one with IRE_MARK_NORECV cleared 15452 * so that ip_wput_ire can avoid searching for one. 15453 * Note down the insertion point which will be used 15454 * later. 15455 */ 15456 if (first && (irep == NULL)) 15457 irep = ire->ire_ptpn; 15458 /* 15459 * PHYI_FAILED is set when the interface fails. 15460 * This interface might have become good, but the 15461 * daemon has not yet detected. We should still 15462 * not receive on this. PHYI_OFFLINE should never 15463 * be picked as this has been offlined and soon 15464 * be removed. 15465 */ 15466 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15467 if (phyi_flags & PHYI_OFFLINE) { 15468 ire->ire_marks |= IRE_MARK_NORECV; 15469 ire = ire->ire_next; 15470 continue; 15471 } 15472 if (phyi_flags & match_flags) { 15473 ire->ire_marks |= IRE_MARK_NORECV; 15474 ire = ire->ire_next; 15475 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15476 PHYI_INACTIVE) { 15477 fallback = B_TRUE; 15478 } 15479 continue; 15480 } 15481 if (first) { 15482 /* 15483 * We will move this to the front of the list later 15484 * on. 15485 */ 15486 clear_ire = ire; 15487 ire->ire_marks &= ~IRE_MARK_NORECV; 15488 } else { 15489 ire->ire_marks |= IRE_MARK_NORECV; 15490 } 15491 first = B_FALSE; 15492 ire = ire->ire_next; 15493 } 15494 /* 15495 * If we never nominated anybody, try nominating at least 15496 * an INACTIVE, if we found one. Do it only once though. 15497 */ 15498 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15499 fallback) { 15500 match_flags = PHYI_FAILED; 15501 ire = start_ire; 15502 irep = NULL; 15503 goto redo; 15504 } 15505 ire_refrele(save_ire); 15506 15507 /* 15508 * irep non-NULL indicates that we entered the while loop 15509 * above. If clear_ire is at the insertion point, we don't 15510 * have to do anything. clear_ire will be NULL if all the 15511 * interfaces are failed. 15512 * 15513 * We cannot unlink and reinsert the ire at the right place 15514 * in the list since there can be other walkers of this bucket. 15515 * Instead we delete and recreate the ire 15516 */ 15517 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15518 ire_t *clear_ire_stq = NULL; 15519 mblk_t *fp_mp = NULL, *res_mp = NULL; 15520 15521 bzero(new_lb_ire, sizeof (ire_t)); 15522 if (clear_ire->ire_nce != NULL) { 15523 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15524 res_mp = clear_ire->ire_nce->nce_res_mp; 15525 } 15526 /* XXX We need a recovery strategy here. */ 15527 if (ire_init(new_lb_ire, 15528 (uchar_t *)&clear_ire->ire_addr, 15529 (uchar_t *)&clear_ire->ire_mask, 15530 (uchar_t *)&clear_ire->ire_src_addr, 15531 (uchar_t *)&clear_ire->ire_gateway_addr, 15532 (uchar_t *)&clear_ire->ire_in_src_addr, 15533 &clear_ire->ire_max_frag, 15534 fp_mp, 15535 clear_ire->ire_rfq, 15536 clear_ire->ire_stq, 15537 clear_ire->ire_type, 15538 res_mp, 15539 clear_ire->ire_ipif, 15540 clear_ire->ire_in_ill, 15541 clear_ire->ire_cmask, 15542 clear_ire->ire_phandle, 15543 clear_ire->ire_ihandle, 15544 clear_ire->ire_flags, 15545 &clear_ire->ire_uinfo, 15546 NULL, 15547 NULL, 15548 ipst) == NULL) 15549 cmn_err(CE_PANIC, "ire_init() failed"); 15550 if (clear_ire->ire_stq == NULL) { 15551 ire_t *ire_next = clear_ire->ire_next; 15552 if (ire_next != NULL && 15553 ire_next->ire_stq != NULL && 15554 ire_next->ire_addr == clear_ire->ire_addr && 15555 ire_next->ire_ipif->ipif_ill == 15556 clear_ire->ire_ipif->ipif_ill) { 15557 clear_ire_stq = ire_next; 15558 15559 bzero(new_nlb_ire, sizeof (ire_t)); 15560 if (clear_ire_stq->ire_nce != NULL) { 15561 fp_mp = 15562 clear_ire_stq->ire_nce->nce_fp_mp; 15563 res_mp = 15564 clear_ire_stq->ire_nce->nce_res_mp; 15565 } else { 15566 fp_mp = res_mp = NULL; 15567 } 15568 /* XXX We need a recovery strategy here. */ 15569 if (ire_init(new_nlb_ire, 15570 (uchar_t *)&clear_ire_stq->ire_addr, 15571 (uchar_t *)&clear_ire_stq->ire_mask, 15572 (uchar_t *)&clear_ire_stq->ire_src_addr, 15573 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15574 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15575 &clear_ire_stq->ire_max_frag, 15576 fp_mp, 15577 clear_ire_stq->ire_rfq, 15578 clear_ire_stq->ire_stq, 15579 clear_ire_stq->ire_type, 15580 res_mp, 15581 clear_ire_stq->ire_ipif, 15582 clear_ire_stq->ire_in_ill, 15583 clear_ire_stq->ire_cmask, 15584 clear_ire_stq->ire_phandle, 15585 clear_ire_stq->ire_ihandle, 15586 clear_ire_stq->ire_flags, 15587 &clear_ire_stq->ire_uinfo, 15588 NULL, 15589 NULL, 15590 ipst) == NULL) 15591 cmn_err(CE_PANIC, "ire_init() failed"); 15592 } 15593 } 15594 15595 /* 15596 * Delete the ire. We can't call ire_delete() since 15597 * we are holding the bucket lock. We can't release the 15598 * bucket lock since we can't allow irep to change. So just 15599 * mark it CONDEMNED. The IRB_REFRELE will delete the 15600 * ire from the list and do the refrele. 15601 */ 15602 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15603 irb->irb_marks |= IRB_MARK_CONDEMNED; 15604 15605 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15606 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15607 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15608 } 15609 15610 /* 15611 * Also take care of otherfields like ib/ob pkt count 15612 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15613 */ 15614 15615 /* Add the new ire's. Insert at *irep */ 15616 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15617 ire1 = *irep; 15618 if (ire1 != NULL) 15619 ire1->ire_ptpn = &new_lb_ire->ire_next; 15620 new_lb_ire->ire_next = ire1; 15621 /* Link the new one in. */ 15622 new_lb_ire->ire_ptpn = irep; 15623 membar_producer(); 15624 *irep = new_lb_ire; 15625 new_lb_ire_used = B_TRUE; 15626 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15627 new_lb_ire->ire_bucket->irb_ire_cnt++; 15628 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15629 15630 if (clear_ire_stq != NULL) { 15631 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15632 irep = &new_lb_ire->ire_next; 15633 /* Add the new ire. Insert at *irep */ 15634 ire1 = *irep; 15635 if (ire1 != NULL) 15636 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15637 new_nlb_ire->ire_next = ire1; 15638 /* Link the new one in. */ 15639 new_nlb_ire->ire_ptpn = irep; 15640 membar_producer(); 15641 *irep = new_nlb_ire; 15642 new_nlb_ire_used = B_TRUE; 15643 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15644 ire_stats_inserted); 15645 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15646 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15647 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15648 } 15649 } 15650 rw_exit(&irb->irb_lock); 15651 if (!new_lb_ire_used) 15652 kmem_cache_free(ire_cache, new_lb_ire); 15653 if (!new_nlb_ire_used) 15654 kmem_cache_free(ire_cache, new_nlb_ire); 15655 IRB_REFRELE(irb); 15656 } 15657 15658 /* 15659 * Whenever an ipif goes down we have to renominate a different 15660 * broadcast ire to receive. Whenever an ipif comes up, we need 15661 * to make sure that we have only one nominated to receive. 15662 */ 15663 static void 15664 ipif_renominate_bcast(ipif_t *ipif) 15665 { 15666 ill_t *ill = ipif->ipif_ill; 15667 ipaddr_t subnet_addr; 15668 ipaddr_t net_addr; 15669 ipaddr_t net_mask = 0; 15670 ipaddr_t subnet_netmask; 15671 ipaddr_t addr; 15672 ill_group_t *illgrp; 15673 ip_stack_t *ipst = ill->ill_ipst; 15674 15675 illgrp = ill->ill_group; 15676 /* 15677 * If this is the last ipif going down, it might take 15678 * the ill out of the group. In that case ipif_down -> 15679 * illgrp_delete takes care of doing the nomination. 15680 * ipif_down does not call for this case. 15681 */ 15682 ASSERT(illgrp != NULL); 15683 15684 /* There could not have been any ires associated with this */ 15685 if (ipif->ipif_subnet == 0) 15686 return; 15687 15688 ill_mark_bcast(illgrp, 0, ipst); 15689 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15690 15691 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15692 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15693 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15694 } else { 15695 net_mask = htonl(IN_CLASSA_NET); 15696 } 15697 addr = net_mask & ipif->ipif_subnet; 15698 ill_mark_bcast(illgrp, addr, ipst); 15699 15700 net_addr = ~net_mask | addr; 15701 ill_mark_bcast(illgrp, net_addr, ipst); 15702 15703 subnet_netmask = ipif->ipif_net_mask; 15704 addr = ipif->ipif_subnet; 15705 ill_mark_bcast(illgrp, addr, ipst); 15706 15707 subnet_addr = ~subnet_netmask | addr; 15708 ill_mark_bcast(illgrp, subnet_addr, ipst); 15709 } 15710 15711 /* 15712 * Whenever we form or delete ill groups, we need to nominate one set of 15713 * BROADCAST ires for receiving in the group. 15714 * 15715 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15716 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15717 * for ill_ipif_up_count to be non-zero. This is the only case where 15718 * ill_ipif_up_count is zero and we would still find the ires. 15719 * 15720 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15721 * ipif is UP and we just have to do the nomination. 15722 * 15723 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15724 * from the group. So, we have to do the nomination. 15725 * 15726 * Because of (3), there could be just one ill in the group. But we have 15727 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15728 * Thus, this function does not optimize when there is only one ill as 15729 * it is not correct for (3). 15730 */ 15731 static void 15732 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15733 { 15734 ill_t *ill; 15735 ipif_t *ipif; 15736 ipaddr_t subnet_addr; 15737 ipaddr_t prev_subnet_addr = 0; 15738 ipaddr_t net_addr; 15739 ipaddr_t prev_net_addr = 0; 15740 ipaddr_t net_mask = 0; 15741 ipaddr_t subnet_netmask; 15742 ipaddr_t addr; 15743 ip_stack_t *ipst; 15744 15745 /* 15746 * When the last memeber is leaving, there is nothing to 15747 * nominate. 15748 */ 15749 if (illgrp->illgrp_ill_count == 0) { 15750 ASSERT(illgrp->illgrp_ill == NULL); 15751 return; 15752 } 15753 15754 ill = illgrp->illgrp_ill; 15755 ASSERT(!ill->ill_isv6); 15756 ipst = ill->ill_ipst; 15757 /* 15758 * We assume that ires with same address and belonging to the 15759 * same group, has been grouped together. Nominating a *single* 15760 * ill in the group for sending and receiving broadcast is done 15761 * by making sure that the first BROADCAST ire (which will be 15762 * the one returned by ire_ctable_lookup for ip_rput and the 15763 * one that will be used in ip_wput_ire) will be the one that 15764 * will not have IRE_MARK_NORECV set. 15765 * 15766 * 1) ip_rput checks and discards packets received on ires marked 15767 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15768 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15769 * first ire in the group for every broadcast address in the group. 15770 * ip_rput will accept packets only on the first ire i.e only 15771 * one copy of the ill. 15772 * 15773 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15774 * packet for the whole group. It needs to send out on the ill 15775 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15776 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15777 * the copy echoed back on other port where the ire is not marked 15778 * with IRE_MARK_NORECV. 15779 * 15780 * Note that we just need to have the first IRE either loopback or 15781 * non-loopback (either of them may not exist if ire_create failed 15782 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15783 * always hit the first one and hence will always accept one copy. 15784 * 15785 * We have a broadcast ire per ill for all the unique prefixes 15786 * hosted on that ill. As we don't have a way of knowing the 15787 * unique prefixes on a given ill and hence in the whole group, 15788 * we just call ill_mark_bcast on all the prefixes that exist 15789 * in the group. For the common case of one prefix, the code 15790 * below optimizes by remebering the last address used for 15791 * markng. In the case of multiple prefixes, this will still 15792 * optimize depending the order of prefixes. 15793 * 15794 * The only unique address across the whole group is 0.0.0.0 and 15795 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15796 * the first ire in the bucket for receiving and disables the 15797 * others. 15798 */ 15799 ill_mark_bcast(illgrp, 0, ipst); 15800 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15801 for (; ill != NULL; ill = ill->ill_group_next) { 15802 15803 for (ipif = ill->ill_ipif; ipif != NULL; 15804 ipif = ipif->ipif_next) { 15805 15806 if (!(ipif->ipif_flags & IPIF_UP) || 15807 ipif->ipif_subnet == 0) { 15808 continue; 15809 } 15810 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15811 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15812 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15813 } else { 15814 net_mask = htonl(IN_CLASSA_NET); 15815 } 15816 addr = net_mask & ipif->ipif_subnet; 15817 if (prev_net_addr == 0 || prev_net_addr != addr) { 15818 ill_mark_bcast(illgrp, addr, ipst); 15819 net_addr = ~net_mask | addr; 15820 ill_mark_bcast(illgrp, net_addr, ipst); 15821 } 15822 prev_net_addr = addr; 15823 15824 subnet_netmask = ipif->ipif_net_mask; 15825 addr = ipif->ipif_subnet; 15826 if (prev_subnet_addr == 0 || 15827 prev_subnet_addr != addr) { 15828 ill_mark_bcast(illgrp, addr, ipst); 15829 subnet_addr = ~subnet_netmask | addr; 15830 ill_mark_bcast(illgrp, subnet_addr, ipst); 15831 } 15832 prev_subnet_addr = addr; 15833 } 15834 } 15835 } 15836 15837 /* 15838 * This function is called while forming ill groups. 15839 * 15840 * Currently, we handle only allmulti groups. We want to join 15841 * allmulti on only one of the ills in the groups. In future, 15842 * when we have link aggregation, we may have to join normal 15843 * multicast groups on multiple ills as switch does inbound load 15844 * balancing. Following are the functions that calls this 15845 * function : 15846 * 15847 * 1) ill_recover_multicast : Interface is coming back UP. 15848 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15849 * will call ill_recover_multicast to recover all the multicast 15850 * groups. We need to make sure that only one member is joined 15851 * in the ill group. 15852 * 15853 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15854 * Somebody is joining allmulti. We need to make sure that only one 15855 * member is joined in the group. 15856 * 15857 * 3) illgrp_insert : If allmulti has already joined, we need to make 15858 * sure that only one member is joined in the group. 15859 * 15860 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15861 * allmulti who we have nominated. We need to pick someother ill. 15862 * 15863 * 5) illgrp_delete : The ill we nominated is leaving the group, 15864 * we need to pick a new ill to join the group. 15865 * 15866 * For (1), (2), (5) - we just have to check whether there is 15867 * a good ill joined in the group. If we could not find any ills 15868 * joined the group, we should join. 15869 * 15870 * For (4), the one that was nominated to receive, left the group. 15871 * There could be nobody joined in the group when this function is 15872 * called. 15873 * 15874 * For (3) - we need to explicitly check whether there are multiple 15875 * ills joined in the group. 15876 * 15877 * For simplicity, we don't differentiate any of the above cases. We 15878 * just leave the group if it is joined on any of them and join on 15879 * the first good ill. 15880 */ 15881 int 15882 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15883 { 15884 ilm_t *ilm; 15885 ill_t *ill; 15886 ill_t *fallback_inactive_ill = NULL; 15887 ill_t *fallback_failed_ill = NULL; 15888 int ret = 0; 15889 15890 /* 15891 * Leave the allmulti on all the ills and start fresh. 15892 */ 15893 for (ill = illgrp->illgrp_ill; ill != NULL; 15894 ill = ill->ill_group_next) { 15895 if (ill->ill_join_allmulti) 15896 (void) ip_leave_allmulti(ill->ill_ipif); 15897 } 15898 15899 /* 15900 * Choose a good ill. Fallback to inactive or failed if 15901 * none available. We need to fallback to FAILED in the 15902 * case where we have 2 interfaces in a group - where 15903 * one of them is failed and another is a good one and 15904 * the good one (not marked inactive) is leaving the group. 15905 */ 15906 ret = 0; 15907 for (ill = illgrp->illgrp_ill; ill != NULL; 15908 ill = ill->ill_group_next) { 15909 /* Never pick an offline interface */ 15910 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15911 continue; 15912 15913 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15914 fallback_failed_ill = ill; 15915 continue; 15916 } 15917 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15918 fallback_inactive_ill = ill; 15919 continue; 15920 } 15921 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15922 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15923 ret = ip_join_allmulti(ill->ill_ipif); 15924 /* 15925 * ip_join_allmulti can fail because of memory 15926 * failures. So, make sure we join at least 15927 * on one ill. 15928 */ 15929 if (ill->ill_join_allmulti) 15930 return (0); 15931 } 15932 } 15933 } 15934 if (ret != 0) { 15935 /* 15936 * If we tried nominating above and failed to do so, 15937 * return error. We might have tried multiple times. 15938 * But, return the latest error. 15939 */ 15940 return (ret); 15941 } 15942 if ((ill = fallback_inactive_ill) != NULL) { 15943 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15944 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15945 ret = ip_join_allmulti(ill->ill_ipif); 15946 return (ret); 15947 } 15948 } 15949 } else if ((ill = fallback_failed_ill) != NULL) { 15950 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15951 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15952 ret = ip_join_allmulti(ill->ill_ipif); 15953 return (ret); 15954 } 15955 } 15956 } 15957 return (0); 15958 } 15959 15960 /* 15961 * This function is called from illgrp_delete after it is 15962 * deleted from the group to reschedule responsibilities 15963 * to a different ill. 15964 */ 15965 static void 15966 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15967 { 15968 ilm_t *ilm; 15969 ipif_t *ipif; 15970 ipaddr_t subnet_addr; 15971 ipaddr_t net_addr; 15972 ipaddr_t net_mask = 0; 15973 ipaddr_t subnet_netmask; 15974 ipaddr_t addr; 15975 ip_stack_t *ipst = ill->ill_ipst; 15976 15977 ASSERT(ill->ill_group == NULL); 15978 /* 15979 * Broadcast Responsibility: 15980 * 15981 * 1. If this ill has been nominated for receiving broadcast 15982 * packets, we need to find a new one. Before we find a new 15983 * one, we need to re-group the ires that are part of this new 15984 * group (assumed by ill_nominate_bcast_rcv). We do this by 15985 * calling ill_group_bcast_for_xmit(ill) which will do the right 15986 * thing for us. 15987 * 15988 * 2. If this ill was not nominated for receiving broadcast 15989 * packets, we need to clear the IRE_MARK_NORECV flag 15990 * so that we continue to send up broadcast packets. 15991 */ 15992 if (!ill->ill_isv6) { 15993 /* 15994 * Case 1 above : No optimization here. Just redo the 15995 * nomination. 15996 */ 15997 ill_group_bcast_for_xmit(ill); 15998 ill_nominate_bcast_rcv(illgrp); 15999 16000 /* 16001 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16002 */ 16003 ill_clear_bcast_mark(ill, 0); 16004 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16005 16006 for (ipif = ill->ill_ipif; ipif != NULL; 16007 ipif = ipif->ipif_next) { 16008 16009 if (!(ipif->ipif_flags & IPIF_UP) || 16010 ipif->ipif_subnet == 0) { 16011 continue; 16012 } 16013 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16014 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16015 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16016 } else { 16017 net_mask = htonl(IN_CLASSA_NET); 16018 } 16019 addr = net_mask & ipif->ipif_subnet; 16020 ill_clear_bcast_mark(ill, addr); 16021 16022 net_addr = ~net_mask | addr; 16023 ill_clear_bcast_mark(ill, net_addr); 16024 16025 subnet_netmask = ipif->ipif_net_mask; 16026 addr = ipif->ipif_subnet; 16027 ill_clear_bcast_mark(ill, addr); 16028 16029 subnet_addr = ~subnet_netmask | addr; 16030 ill_clear_bcast_mark(ill, subnet_addr); 16031 } 16032 } 16033 16034 /* 16035 * Multicast Responsibility. 16036 * 16037 * If we have joined allmulti on this one, find a new member 16038 * in the group to join allmulti. As this ill is already part 16039 * of allmulti, we don't have to join on this one. 16040 * 16041 * If we have not joined allmulti on this one, there is no 16042 * responsibility to handoff. But we need to take new 16043 * responsibility i.e, join allmulti on this one if we need 16044 * to. 16045 */ 16046 if (ill->ill_join_allmulti) { 16047 (void) ill_nominate_mcast_rcv(illgrp); 16048 } else { 16049 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16050 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16051 (void) ip_join_allmulti(ill->ill_ipif); 16052 break; 16053 } 16054 } 16055 } 16056 16057 /* 16058 * We intentionally do the flushing of IRE_CACHES only matching 16059 * on the ill and not on groups. Note that we are already deleted 16060 * from the group. 16061 * 16062 * This will make sure that all IRE_CACHES whose stq is pointing 16063 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16064 * deleted and IRE_CACHES that are not pointing at this ill will 16065 * be left alone. 16066 */ 16067 if (ill->ill_isv6) { 16068 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16069 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16070 } else { 16071 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16072 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16073 } 16074 16075 /* 16076 * Some conn may have cached one of the IREs deleted above. By removing 16077 * the ire reference, we clean up the extra reference to the ill held in 16078 * ire->ire_stq. 16079 */ 16080 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16081 16082 /* 16083 * Re-do source address selection for all the members in the 16084 * group, if they borrowed source address from one of the ipifs 16085 * in this ill. 16086 */ 16087 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16088 if (ill->ill_isv6) { 16089 ipif_update_other_ipifs_v6(ipif, illgrp); 16090 } else { 16091 ipif_update_other_ipifs(ipif, illgrp); 16092 } 16093 } 16094 } 16095 16096 /* 16097 * Delete the ill from the group. The caller makes sure that it is 16098 * in a group and it okay to delete from the group. So, we always 16099 * delete here. 16100 */ 16101 static void 16102 illgrp_delete(ill_t *ill) 16103 { 16104 ill_group_t *illgrp; 16105 ill_group_t *tmpg; 16106 ill_t *tmp_ill; 16107 ip_stack_t *ipst = ill->ill_ipst; 16108 16109 /* 16110 * Reset illgrp_ill_schednext if it was pointing at us. 16111 * We need to do this before we set ill_group to NULL. 16112 */ 16113 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16114 mutex_enter(&ill->ill_lock); 16115 16116 illgrp_reset_schednext(ill); 16117 16118 illgrp = ill->ill_group; 16119 16120 /* Delete the ill from illgrp. */ 16121 if (illgrp->illgrp_ill == ill) { 16122 illgrp->illgrp_ill = ill->ill_group_next; 16123 } else { 16124 tmp_ill = illgrp->illgrp_ill; 16125 while (tmp_ill->ill_group_next != ill) { 16126 tmp_ill = tmp_ill->ill_group_next; 16127 ASSERT(tmp_ill != NULL); 16128 } 16129 tmp_ill->ill_group_next = ill->ill_group_next; 16130 } 16131 ill->ill_group = NULL; 16132 ill->ill_group_next = NULL; 16133 16134 illgrp->illgrp_ill_count--; 16135 mutex_exit(&ill->ill_lock); 16136 rw_exit(&ipst->ips_ill_g_lock); 16137 16138 /* 16139 * As this ill is leaving the group, we need to hand off 16140 * the responsibilities to the other ills in the group, if 16141 * this ill had some responsibilities. 16142 */ 16143 16144 ill_handoff_responsibility(ill, illgrp); 16145 16146 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16147 16148 if (illgrp->illgrp_ill_count == 0) { 16149 16150 ASSERT(illgrp->illgrp_ill == NULL); 16151 if (ill->ill_isv6) { 16152 if (illgrp == ipst->ips_illgrp_head_v6) { 16153 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16154 } else { 16155 tmpg = ipst->ips_illgrp_head_v6; 16156 while (tmpg->illgrp_next != illgrp) { 16157 tmpg = tmpg->illgrp_next; 16158 ASSERT(tmpg != NULL); 16159 } 16160 tmpg->illgrp_next = illgrp->illgrp_next; 16161 } 16162 } else { 16163 if (illgrp == ipst->ips_illgrp_head_v4) { 16164 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16165 } else { 16166 tmpg = ipst->ips_illgrp_head_v4; 16167 while (tmpg->illgrp_next != illgrp) { 16168 tmpg = tmpg->illgrp_next; 16169 ASSERT(tmpg != NULL); 16170 } 16171 tmpg->illgrp_next = illgrp->illgrp_next; 16172 } 16173 } 16174 mutex_destroy(&illgrp->illgrp_lock); 16175 mi_free(illgrp); 16176 } 16177 rw_exit(&ipst->ips_ill_g_lock); 16178 16179 /* 16180 * Even though the ill is out of the group its not necessary 16181 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16182 * We will split the ipsq when phyint_groupname is set to NULL. 16183 */ 16184 16185 /* 16186 * Send a routing sockets message if we are deleting from 16187 * groups with names. 16188 */ 16189 if (ill->ill_phyint->phyint_groupname_len != 0) 16190 ip_rts_ifmsg(ill->ill_ipif); 16191 } 16192 16193 /* 16194 * Re-do source address selection. This is normally called when 16195 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16196 * ipif comes up. 16197 */ 16198 void 16199 ill_update_source_selection(ill_t *ill) 16200 { 16201 ipif_t *ipif; 16202 16203 ASSERT(IAM_WRITER_ILL(ill)); 16204 16205 if (ill->ill_group != NULL) 16206 ill = ill->ill_group->illgrp_ill; 16207 16208 for (; ill != NULL; ill = ill->ill_group_next) { 16209 for (ipif = ill->ill_ipif; ipif != NULL; 16210 ipif = ipif->ipif_next) { 16211 if (ill->ill_isv6) 16212 ipif_recreate_interface_routes_v6(NULL, ipif); 16213 else 16214 ipif_recreate_interface_routes(NULL, ipif); 16215 } 16216 } 16217 } 16218 16219 /* 16220 * Insert ill in a group headed by illgrp_head. The caller can either 16221 * pass a groupname in which case we search for a group with the 16222 * same name to insert in or pass a group to insert in. This function 16223 * would only search groups with names. 16224 * 16225 * NOTE : The caller should make sure that there is at least one ipif 16226 * UP on this ill so that illgrp_scheduler can pick this ill 16227 * for outbound packets. If ill_ipif_up_count is zero, we have 16228 * already sent a DL_UNBIND to the driver and we don't want to 16229 * send anymore packets. We don't assert for ipif_up_count 16230 * to be greater than zero, because ipif_up_done wants to call 16231 * this function before bumping up the ipif_up_count. See 16232 * ipif_up_done() for details. 16233 */ 16234 int 16235 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16236 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16237 { 16238 ill_group_t *illgrp; 16239 ill_t *prev_ill; 16240 phyint_t *phyi; 16241 ip_stack_t *ipst = ill->ill_ipst; 16242 16243 ASSERT(ill->ill_group == NULL); 16244 16245 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16246 mutex_enter(&ill->ill_lock); 16247 16248 if (groupname != NULL) { 16249 /* 16250 * Look for a group with a matching groupname to insert. 16251 */ 16252 for (illgrp = *illgrp_head; illgrp != NULL; 16253 illgrp = illgrp->illgrp_next) { 16254 16255 ill_t *tmp_ill; 16256 16257 /* 16258 * If we have an ill_group_t in the list which has 16259 * no ill_t assigned then we must be in the process of 16260 * removing this group. We skip this as illgrp_delete() 16261 * will remove it from the list. 16262 */ 16263 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16264 ASSERT(illgrp->illgrp_ill_count == 0); 16265 continue; 16266 } 16267 16268 ASSERT(tmp_ill->ill_phyint != NULL); 16269 phyi = tmp_ill->ill_phyint; 16270 /* 16271 * Look at groups which has names only. 16272 */ 16273 if (phyi->phyint_groupname_len == 0) 16274 continue; 16275 /* 16276 * Names are stored in the phyint common to both 16277 * IPv4 and IPv6. 16278 */ 16279 if (mi_strcmp(phyi->phyint_groupname, 16280 groupname) == 0) { 16281 break; 16282 } 16283 } 16284 } else { 16285 /* 16286 * If the caller passes in a NULL "grp_to_insert", we 16287 * allocate one below and insert this singleton. 16288 */ 16289 illgrp = grp_to_insert; 16290 } 16291 16292 ill->ill_group_next = NULL; 16293 16294 if (illgrp == NULL) { 16295 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16296 if (illgrp == NULL) { 16297 return (ENOMEM); 16298 } 16299 illgrp->illgrp_next = *illgrp_head; 16300 *illgrp_head = illgrp; 16301 illgrp->illgrp_ill = ill; 16302 illgrp->illgrp_ill_count = 1; 16303 ill->ill_group = illgrp; 16304 /* 16305 * Used in illgrp_scheduler to protect multiple threads 16306 * from traversing the list. 16307 */ 16308 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16309 } else { 16310 ASSERT(ill->ill_net_type == 16311 illgrp->illgrp_ill->ill_net_type); 16312 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16313 16314 /* Insert ill at tail of this group */ 16315 prev_ill = illgrp->illgrp_ill; 16316 while (prev_ill->ill_group_next != NULL) 16317 prev_ill = prev_ill->ill_group_next; 16318 prev_ill->ill_group_next = ill; 16319 ill->ill_group = illgrp; 16320 illgrp->illgrp_ill_count++; 16321 /* 16322 * Inherit group properties. Currently only forwarding 16323 * is the property we try to keep the same with all the 16324 * ills. When there are more, we will abstract this into 16325 * a function. 16326 */ 16327 ill->ill_flags &= ~ILLF_ROUTER; 16328 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16329 } 16330 mutex_exit(&ill->ill_lock); 16331 rw_exit(&ipst->ips_ill_g_lock); 16332 16333 /* 16334 * 1) When ipif_up_done() calls this function, ipif_up_count 16335 * may be zero as it has not yet been bumped. But the ires 16336 * have already been added. So, we do the nomination here 16337 * itself. But, when ip_sioctl_groupname calls this, it checks 16338 * for ill_ipif_up_count != 0. Thus we don't check for 16339 * ill_ipif_up_count here while nominating broadcast ires for 16340 * receive. 16341 * 16342 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16343 * to group them properly as ire_add() has already happened 16344 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16345 * case, we need to do it here anyway. 16346 */ 16347 if (!ill->ill_isv6) { 16348 ill_group_bcast_for_xmit(ill); 16349 ill_nominate_bcast_rcv(illgrp); 16350 } 16351 16352 if (!ipif_is_coming_up) { 16353 /* 16354 * When ipif_up_done() calls this function, the multicast 16355 * groups have not been joined yet. So, there is no point in 16356 * nomination. ip_join_allmulti will handle groups when 16357 * ill_recover_multicast is called from ipif_up_done() later. 16358 */ 16359 (void) ill_nominate_mcast_rcv(illgrp); 16360 /* 16361 * ipif_up_done calls ill_update_source_selection 16362 * anyway. Moreover, we don't want to re-create 16363 * interface routes while ipif_up_done() still has reference 16364 * to them. Refer to ipif_up_done() for more details. 16365 */ 16366 ill_update_source_selection(ill); 16367 } 16368 16369 /* 16370 * Send a routing sockets message if we are inserting into 16371 * groups with names. 16372 */ 16373 if (groupname != NULL) 16374 ip_rts_ifmsg(ill->ill_ipif); 16375 return (0); 16376 } 16377 16378 /* 16379 * Return the first phyint matching the groupname. There could 16380 * be more than one when there are ill groups. 16381 * 16382 * Needs work: called only from ip_sioctl_groupname 16383 */ 16384 static phyint_t * 16385 phyint_lookup_group(char *groupname, ip_stack_t *ipst) 16386 { 16387 phyint_t *phyi; 16388 16389 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16390 /* 16391 * Group names are stored in the phyint - a common structure 16392 * to both IPv4 and IPv6. 16393 */ 16394 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16395 for (; phyi != NULL; 16396 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16397 phyi, AVL_AFTER)) { 16398 if (phyi->phyint_groupname_len == 0) 16399 continue; 16400 ASSERT(phyi->phyint_groupname != NULL); 16401 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16402 return (phyi); 16403 } 16404 return (NULL); 16405 } 16406 16407 16408 16409 /* 16410 * MT notes on creation and deletion of IPMP groups 16411 * 16412 * Creation and deletion of IPMP groups introduce the need to merge or 16413 * split the associated serialization objects i.e the ipsq's. Normally all 16414 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16415 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16416 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16417 * is a need to change the <ill-ipsq> association and we have to operate on both 16418 * the source and destination IPMP groups. For eg. attempting to set the 16419 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16420 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16421 * source or destination IPMP group are mapped to a single ipsq for executing 16422 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16423 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16424 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16425 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16426 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16427 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16428 * 16429 * In the above example the ioctl handling code locates the current ipsq of hme0 16430 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16431 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16432 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16433 * the destination ipsq. If the destination ipsq is not busy, it also enters 16434 * the destination ipsq exclusively. Now the actual groupname setting operation 16435 * can proceed. If the destination ipsq is busy, the operation is enqueued 16436 * on the destination (merged) ipsq and will be handled in the unwind from 16437 * ipsq_exit. 16438 * 16439 * To prevent other threads accessing the ill while the group name change is 16440 * in progres, we bring down the ipifs which also removes the ill from the 16441 * group. The group is changed in phyint and when the first ipif on the ill 16442 * is brought up, the ill is inserted into the right IPMP group by 16443 * illgrp_insert. 16444 */ 16445 /* ARGSUSED */ 16446 int 16447 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16448 ip_ioctl_cmd_t *ipip, void *ifreq) 16449 { 16450 int i; 16451 char *tmp; 16452 int namelen; 16453 ill_t *ill = ipif->ipif_ill; 16454 ill_t *ill_v4, *ill_v6; 16455 int err = 0; 16456 phyint_t *phyi; 16457 phyint_t *phyi_tmp; 16458 struct lifreq *lifr; 16459 mblk_t *mp1; 16460 char *groupname; 16461 ipsq_t *ipsq; 16462 ip_stack_t *ipst = ill->ill_ipst; 16463 16464 ASSERT(IAM_WRITER_IPIF(ipif)); 16465 16466 /* Existance verified in ip_wput_nondata */ 16467 mp1 = mp->b_cont->b_cont; 16468 lifr = (struct lifreq *)mp1->b_rptr; 16469 groupname = lifr->lifr_groupname; 16470 16471 if (ipif->ipif_id != 0) 16472 return (EINVAL); 16473 16474 phyi = ill->ill_phyint; 16475 ASSERT(phyi != NULL); 16476 16477 if (phyi->phyint_flags & PHYI_VIRTUAL) 16478 return (EINVAL); 16479 16480 tmp = groupname; 16481 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16482 ; 16483 16484 if (i == LIFNAMSIZ) { 16485 /* no null termination */ 16486 return (EINVAL); 16487 } 16488 16489 /* 16490 * Calculate the namelen exclusive of the null 16491 * termination character. 16492 */ 16493 namelen = tmp - groupname; 16494 16495 ill_v4 = phyi->phyint_illv4; 16496 ill_v6 = phyi->phyint_illv6; 16497 16498 /* 16499 * ILL cannot be part of a usesrc group and and IPMP group at the 16500 * same time. No need to grab the ill_g_usesrc_lock here, see 16501 * synchronization notes in ip.c 16502 */ 16503 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16504 return (EINVAL); 16505 } 16506 16507 /* 16508 * mark the ill as changing. 16509 * this should queue all new requests on the syncq. 16510 */ 16511 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16512 16513 if (ill_v4 != NULL) 16514 ill_v4->ill_state_flags |= ILL_CHANGING; 16515 if (ill_v6 != NULL) 16516 ill_v6->ill_state_flags |= ILL_CHANGING; 16517 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16518 16519 if (namelen == 0) { 16520 /* 16521 * Null string means remove this interface from the 16522 * existing group. 16523 */ 16524 if (phyi->phyint_groupname_len == 0) { 16525 /* 16526 * Never was in a group. 16527 */ 16528 err = 0; 16529 goto done; 16530 } 16531 16532 /* 16533 * IPv4 or IPv6 may be temporarily out of the group when all 16534 * the ipifs are down. Thus, we need to check for ill_group to 16535 * be non-NULL. 16536 */ 16537 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16538 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16539 mutex_enter(&ill_v4->ill_lock); 16540 if (!ill_is_quiescent(ill_v4)) { 16541 /* 16542 * ipsq_pending_mp_add will not fail since 16543 * connp is NULL 16544 */ 16545 (void) ipsq_pending_mp_add(NULL, 16546 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16547 mutex_exit(&ill_v4->ill_lock); 16548 err = EINPROGRESS; 16549 goto done; 16550 } 16551 mutex_exit(&ill_v4->ill_lock); 16552 } 16553 16554 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16555 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16556 mutex_enter(&ill_v6->ill_lock); 16557 if (!ill_is_quiescent(ill_v6)) { 16558 (void) ipsq_pending_mp_add(NULL, 16559 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16560 mutex_exit(&ill_v6->ill_lock); 16561 err = EINPROGRESS; 16562 goto done; 16563 } 16564 mutex_exit(&ill_v6->ill_lock); 16565 } 16566 16567 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16568 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16569 mutex_enter(&phyi->phyint_lock); 16570 ASSERT(phyi->phyint_groupname != NULL); 16571 mi_free(phyi->phyint_groupname); 16572 phyi->phyint_groupname = NULL; 16573 phyi->phyint_groupname_len = 0; 16574 mutex_exit(&phyi->phyint_lock); 16575 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16576 rw_exit(&ipst->ips_ill_g_lock); 16577 err = ill_up_ipifs(ill, q, mp); 16578 16579 /* 16580 * set the split flag so that the ipsq can be split 16581 */ 16582 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16583 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16584 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16585 16586 } else { 16587 if (phyi->phyint_groupname_len != 0) { 16588 ASSERT(phyi->phyint_groupname != NULL); 16589 /* Are we inserting in the same group ? */ 16590 if (mi_strcmp(groupname, 16591 phyi->phyint_groupname) == 0) { 16592 err = 0; 16593 goto done; 16594 } 16595 } 16596 16597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16598 /* 16599 * Merge ipsq for the group's. 16600 * This check is here as multiple groups/ills might be 16601 * sharing the same ipsq. 16602 * If we have to merege than the operation is restarted 16603 * on the new ipsq. 16604 */ 16605 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16606 if (phyi->phyint_ipsq != ipsq) { 16607 rw_exit(&ipst->ips_ill_g_lock); 16608 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16609 goto done; 16610 } 16611 /* 16612 * Running exclusive on new ipsq. 16613 */ 16614 16615 ASSERT(ipsq != NULL); 16616 ASSERT(ipsq->ipsq_writer == curthread); 16617 16618 /* 16619 * Check whether the ill_type and ill_net_type matches before 16620 * we allocate any memory so that the cleanup is easier. 16621 * 16622 * We can't group dissimilar ones as we can't load spread 16623 * packets across the group because of potential link-level 16624 * header differences. 16625 */ 16626 phyi_tmp = phyint_lookup_group(groupname, ipst); 16627 if (phyi_tmp != NULL) { 16628 if ((ill_v4 != NULL && 16629 phyi_tmp->phyint_illv4 != NULL) && 16630 ((ill_v4->ill_net_type != 16631 phyi_tmp->phyint_illv4->ill_net_type) || 16632 (ill_v4->ill_type != 16633 phyi_tmp->phyint_illv4->ill_type))) { 16634 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16635 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16636 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16637 rw_exit(&ipst->ips_ill_g_lock); 16638 return (EINVAL); 16639 } 16640 if ((ill_v6 != NULL && 16641 phyi_tmp->phyint_illv6 != NULL) && 16642 ((ill_v6->ill_net_type != 16643 phyi_tmp->phyint_illv6->ill_net_type) || 16644 (ill_v6->ill_type != 16645 phyi_tmp->phyint_illv6->ill_type))) { 16646 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16647 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16648 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16649 rw_exit(&ipst->ips_ill_g_lock); 16650 return (EINVAL); 16651 } 16652 } 16653 16654 rw_exit(&ipst->ips_ill_g_lock); 16655 16656 /* 16657 * bring down all v4 ipifs. 16658 */ 16659 if (ill_v4 != NULL) { 16660 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16661 } 16662 16663 /* 16664 * bring down all v6 ipifs. 16665 */ 16666 if (ill_v6 != NULL) { 16667 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16668 } 16669 16670 /* 16671 * make sure all ipifs are down and there are no active 16672 * references. Call to ipsq_pending_mp_add will not fail 16673 * since connp is NULL. 16674 */ 16675 if (ill_v4 != NULL) { 16676 mutex_enter(&ill_v4->ill_lock); 16677 if (!ill_is_quiescent(ill_v4)) { 16678 (void) ipsq_pending_mp_add(NULL, 16679 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16680 mutex_exit(&ill_v4->ill_lock); 16681 err = EINPROGRESS; 16682 goto done; 16683 } 16684 mutex_exit(&ill_v4->ill_lock); 16685 } 16686 16687 if (ill_v6 != NULL) { 16688 mutex_enter(&ill_v6->ill_lock); 16689 if (!ill_is_quiescent(ill_v6)) { 16690 (void) ipsq_pending_mp_add(NULL, 16691 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16692 mutex_exit(&ill_v6->ill_lock); 16693 err = EINPROGRESS; 16694 goto done; 16695 } 16696 mutex_exit(&ill_v6->ill_lock); 16697 } 16698 16699 /* 16700 * allocate including space for null terminator 16701 * before we insert. 16702 */ 16703 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16704 if (tmp == NULL) 16705 return (ENOMEM); 16706 16707 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16708 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16709 mutex_enter(&phyi->phyint_lock); 16710 if (phyi->phyint_groupname_len != 0) { 16711 ASSERT(phyi->phyint_groupname != NULL); 16712 mi_free(phyi->phyint_groupname); 16713 } 16714 16715 /* 16716 * setup the new group name. 16717 */ 16718 phyi->phyint_groupname = tmp; 16719 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16720 phyi->phyint_groupname_len = namelen + 1; 16721 mutex_exit(&phyi->phyint_lock); 16722 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16723 rw_exit(&ipst->ips_ill_g_lock); 16724 16725 err = ill_up_ipifs(ill, q, mp); 16726 } 16727 16728 done: 16729 /* 16730 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16731 */ 16732 if (err != EINPROGRESS) { 16733 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16734 if (ill_v4 != NULL) 16735 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16736 if (ill_v6 != NULL) 16737 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16738 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16739 } 16740 return (err); 16741 } 16742 16743 /* ARGSUSED */ 16744 int 16745 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16746 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16747 { 16748 ill_t *ill; 16749 phyint_t *phyi; 16750 struct lifreq *lifr; 16751 mblk_t *mp1; 16752 16753 /* Existence verified in ip_wput_nondata */ 16754 mp1 = mp->b_cont->b_cont; 16755 lifr = (struct lifreq *)mp1->b_rptr; 16756 ill = ipif->ipif_ill; 16757 phyi = ill->ill_phyint; 16758 16759 lifr->lifr_groupname[0] = '\0'; 16760 /* 16761 * ill_group may be null if all the interfaces 16762 * are down. But still, the phyint should always 16763 * hold the name. 16764 */ 16765 if (phyi->phyint_groupname_len != 0) { 16766 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16767 phyi->phyint_groupname_len); 16768 } 16769 16770 return (0); 16771 } 16772 16773 16774 typedef struct conn_move_s { 16775 ill_t *cm_from_ill; 16776 ill_t *cm_to_ill; 16777 int cm_ifindex; 16778 } conn_move_t; 16779 16780 /* 16781 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16782 */ 16783 static void 16784 conn_move(conn_t *connp, caddr_t arg) 16785 { 16786 conn_move_t *connm; 16787 int ifindex; 16788 int i; 16789 ill_t *from_ill; 16790 ill_t *to_ill; 16791 ilg_t *ilg; 16792 ilm_t *ret_ilm; 16793 16794 connm = (conn_move_t *)arg; 16795 ifindex = connm->cm_ifindex; 16796 from_ill = connm->cm_from_ill; 16797 to_ill = connm->cm_to_ill; 16798 16799 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16800 16801 /* All multicast fields protected by conn_lock */ 16802 mutex_enter(&connp->conn_lock); 16803 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16804 if ((connp->conn_outgoing_ill == from_ill) && 16805 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16806 connp->conn_outgoing_ill = to_ill; 16807 connp->conn_incoming_ill = to_ill; 16808 } 16809 16810 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16811 16812 if ((connp->conn_multicast_ill == from_ill) && 16813 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16814 connp->conn_multicast_ill = connm->cm_to_ill; 16815 } 16816 16817 /* Change IP_XMIT_IF associations */ 16818 if ((connp->conn_xmit_if_ill == from_ill) && 16819 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16820 connp->conn_xmit_if_ill = to_ill; 16821 } 16822 /* 16823 * Change the ilg_ill to point to the new one. This assumes 16824 * ilm_move_v6 has moved the ilms to new_ill and the driver 16825 * has been told to receive packets on this interface. 16826 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16827 * But when doing a FAILOVER, it might fail with ENOMEM and so 16828 * some ilms may not have moved. We check to see whether 16829 * the ilms have moved to to_ill. We can't check on from_ill 16830 * as in the process of moving, we could have split an ilm 16831 * in to two - which has the same orig_ifindex and v6group. 16832 * 16833 * For IPv4, ilg_ipif moves implicitly. The code below really 16834 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16835 */ 16836 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16837 ilg = &connp->conn_ilg[i]; 16838 if ((ilg->ilg_ill == from_ill) && 16839 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16840 /* ifindex != 0 indicates failback */ 16841 if (ifindex != 0) { 16842 connp->conn_ilg[i].ilg_ill = to_ill; 16843 continue; 16844 } 16845 16846 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16847 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16848 connp->conn_zoneid); 16849 16850 if (ret_ilm != NULL) 16851 connp->conn_ilg[i].ilg_ill = to_ill; 16852 } 16853 } 16854 mutex_exit(&connp->conn_lock); 16855 } 16856 16857 static void 16858 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16859 { 16860 conn_move_t connm; 16861 ip_stack_t *ipst = from_ill->ill_ipst; 16862 16863 connm.cm_from_ill = from_ill; 16864 connm.cm_to_ill = to_ill; 16865 connm.cm_ifindex = ifindex; 16866 16867 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16868 } 16869 16870 /* 16871 * ilm has been moved from from_ill to to_ill. 16872 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16873 * appropriately. 16874 * 16875 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16876 * the code there de-references ipif_ill to get the ill to 16877 * send multicast requests. It does not work as ipif is on its 16878 * move and already moved when this function is called. 16879 * Thus, we need to use from_ill and to_ill send down multicast 16880 * requests. 16881 */ 16882 static void 16883 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16884 { 16885 ipif_t *ipif; 16886 ilm_t *ilm; 16887 16888 /* 16889 * See whether we need to send down DL_ENABMULTI_REQ on 16890 * to_ill as ilm has just been added. 16891 */ 16892 ASSERT(IAM_WRITER_ILL(to_ill)); 16893 ASSERT(IAM_WRITER_ILL(from_ill)); 16894 16895 ILM_WALKER_HOLD(to_ill); 16896 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16897 16898 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16899 continue; 16900 /* 16901 * no locks held, ill/ipif cannot dissappear as long 16902 * as we are writer. 16903 */ 16904 ipif = to_ill->ill_ipif; 16905 /* 16906 * No need to hold any lock as we are the writer and this 16907 * can only be changed by a writer. 16908 */ 16909 ilm->ilm_is_new = B_FALSE; 16910 16911 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16912 ipif->ipif_flags & IPIF_POINTOPOINT) { 16913 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16914 "resolver\n")); 16915 continue; /* Must be IRE_IF_NORESOLVER */ 16916 } 16917 16918 16919 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16920 ip1dbg(("ilm_send_multicast_reqs: " 16921 "to_ill MULTI_BCAST\n")); 16922 goto from; 16923 } 16924 16925 if (to_ill->ill_isv6) 16926 mld_joingroup(ilm); 16927 else 16928 igmp_joingroup(ilm); 16929 16930 if (to_ill->ill_ipif_up_count == 0) { 16931 /* 16932 * Nobody there. All multicast addresses will be 16933 * re-joined when we get the DL_BIND_ACK bringing the 16934 * interface up. 16935 */ 16936 ilm->ilm_notify_driver = B_FALSE; 16937 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16938 goto from; 16939 } 16940 16941 /* 16942 * For allmulti address, we want to join on only one interface. 16943 * Checking for ilm_numentries_v6 is not correct as you may 16944 * find an ilm with zero address on to_ill, but we may not 16945 * have nominated to_ill for receiving. Thus, if we have 16946 * nominated from_ill (ill_join_allmulti is set), nominate 16947 * only if to_ill is not already nominated (to_ill normally 16948 * should not have been nominated if "from_ill" has already 16949 * been nominated. As we don't prevent failovers from happening 16950 * across groups, we don't assert). 16951 */ 16952 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16953 /* 16954 * There is no need to hold ill locks as we are 16955 * writer on both ills and when ill_join_allmulti 16956 * is changed the thread is always a writer. 16957 */ 16958 if (from_ill->ill_join_allmulti && 16959 !to_ill->ill_join_allmulti) { 16960 (void) ip_join_allmulti(to_ill->ill_ipif); 16961 } 16962 } else if (ilm->ilm_notify_driver) { 16963 16964 /* 16965 * This is a newly moved ilm so we need to tell the 16966 * driver about the new group. There can be more than 16967 * one ilm's for the same group in the list each with a 16968 * different orig_ifindex. We have to inform the driver 16969 * once. In ilm_move_v[4,6] we only set the flag 16970 * ilm_notify_driver for the first ilm. 16971 */ 16972 16973 (void) ip_ll_send_enabmulti_req(to_ill, 16974 &ilm->ilm_v6addr); 16975 } 16976 16977 ilm->ilm_notify_driver = B_FALSE; 16978 16979 /* 16980 * See whether we need to send down DL_DISABMULTI_REQ on 16981 * from_ill as ilm has just been removed. 16982 */ 16983 from: 16984 ipif = from_ill->ill_ipif; 16985 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16986 ipif->ipif_flags & IPIF_POINTOPOINT) { 16987 ip1dbg(("ilm_send_multicast_reqs: " 16988 "from_ill not resolver\n")); 16989 continue; /* Must be IRE_IF_NORESOLVER */ 16990 } 16991 16992 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16993 ip1dbg(("ilm_send_multicast_reqs: " 16994 "from_ill MULTI_BCAST\n")); 16995 continue; 16996 } 16997 16998 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16999 if (from_ill->ill_join_allmulti) 17000 (void) ip_leave_allmulti(from_ill->ill_ipif); 17001 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17002 (void) ip_ll_send_disabmulti_req(from_ill, 17003 &ilm->ilm_v6addr); 17004 } 17005 } 17006 ILM_WALKER_RELE(to_ill); 17007 } 17008 17009 /* 17010 * This function is called when all multicast memberships needs 17011 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17012 * called only once unlike the IPv4 counterpart where it is called after 17013 * every logical interface is moved. The reason is due to multicast 17014 * memberships are joined using an interface address in IPv4 while in 17015 * IPv6, interface index is used. 17016 */ 17017 static void 17018 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17019 { 17020 ilm_t *ilm; 17021 ilm_t *ilm_next; 17022 ilm_t *new_ilm; 17023 ilm_t **ilmp; 17024 int count; 17025 char buf[INET6_ADDRSTRLEN]; 17026 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17027 ip_stack_t *ipst = from_ill->ill_ipst; 17028 17029 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17030 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17031 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17032 17033 if (ifindex == 0) { 17034 /* 17035 * Form the solicited node mcast address which is used later. 17036 */ 17037 ipif_t *ipif; 17038 17039 ipif = from_ill->ill_ipif; 17040 ASSERT(ipif->ipif_id == 0); 17041 17042 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17043 } 17044 17045 ilmp = &from_ill->ill_ilm; 17046 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17047 ilm_next = ilm->ilm_next; 17048 17049 if (ilm->ilm_flags & ILM_DELETED) { 17050 ilmp = &ilm->ilm_next; 17051 continue; 17052 } 17053 17054 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17055 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17056 ASSERT(ilm->ilm_orig_ifindex != 0); 17057 if (ilm->ilm_orig_ifindex == ifindex) { 17058 /* 17059 * We are failing back multicast memberships. 17060 * If the same ilm exists in to_ill, it means somebody 17061 * has joined the same group there e.g. ff02::1 17062 * is joined within the kernel when the interfaces 17063 * came UP. 17064 */ 17065 ASSERT(ilm->ilm_ipif == NULL); 17066 if (new_ilm != NULL) { 17067 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17068 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17069 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17070 new_ilm->ilm_is_new = B_TRUE; 17071 } 17072 } else { 17073 /* 17074 * check if we can just move the ilm 17075 */ 17076 if (from_ill->ill_ilm_walker_cnt != 0) { 17077 /* 17078 * We have walkers we cannot move 17079 * the ilm, so allocate a new ilm, 17080 * this (old) ilm will be marked 17081 * ILM_DELETED at the end of the loop 17082 * and will be freed when the 17083 * last walker exits. 17084 */ 17085 new_ilm = (ilm_t *)mi_zalloc 17086 (sizeof (ilm_t)); 17087 if (new_ilm == NULL) { 17088 ip0dbg(("ilm_move_v6: " 17089 "FAILBACK of IPv6" 17090 " multicast address %s : " 17091 "from %s to" 17092 " %s failed : ENOMEM \n", 17093 inet_ntop(AF_INET6, 17094 &ilm->ilm_v6addr, buf, 17095 sizeof (buf)), 17096 from_ill->ill_name, 17097 to_ill->ill_name)); 17098 17099 ilmp = &ilm->ilm_next; 17100 continue; 17101 } 17102 *new_ilm = *ilm; 17103 /* 17104 * we don't want new_ilm linked to 17105 * ilm's filter list. 17106 */ 17107 new_ilm->ilm_filter = NULL; 17108 } else { 17109 /* 17110 * No walkers we can move the ilm. 17111 * lets take it out of the list. 17112 */ 17113 *ilmp = ilm->ilm_next; 17114 ilm->ilm_next = NULL; 17115 new_ilm = ilm; 17116 } 17117 17118 /* 17119 * if this is the first ilm for the group 17120 * set ilm_notify_driver so that we notify the 17121 * driver in ilm_send_multicast_reqs. 17122 */ 17123 if (ilm_lookup_ill_v6(to_ill, 17124 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17125 new_ilm->ilm_notify_driver = B_TRUE; 17126 17127 new_ilm->ilm_ill = to_ill; 17128 /* Add to the to_ill's list */ 17129 new_ilm->ilm_next = to_ill->ill_ilm; 17130 to_ill->ill_ilm = new_ilm; 17131 /* 17132 * set the flag so that mld_joingroup is 17133 * called in ilm_send_multicast_reqs(). 17134 */ 17135 new_ilm->ilm_is_new = B_TRUE; 17136 } 17137 goto bottom; 17138 } else if (ifindex != 0) { 17139 /* 17140 * If this is FAILBACK (ifindex != 0) and the ifindex 17141 * has not matched above, look at the next ilm. 17142 */ 17143 ilmp = &ilm->ilm_next; 17144 continue; 17145 } 17146 /* 17147 * If we are here, it means ifindex is 0. Failover 17148 * everything. 17149 * 17150 * We need to handle solicited node mcast address 17151 * and all_nodes mcast address differently as they 17152 * are joined witin the kenrel (ipif_multicast_up) 17153 * and potentially from the userland. We are called 17154 * after the ipifs of from_ill has been moved. 17155 * If we still find ilms on ill with solicited node 17156 * mcast address or all_nodes mcast address, it must 17157 * belong to the UP interface that has not moved e.g. 17158 * ipif_id 0 with the link local prefix does not move. 17159 * We join this on the new ill accounting for all the 17160 * userland memberships so that applications don't 17161 * see any failure. 17162 * 17163 * We need to make sure that we account only for the 17164 * solicited node and all node multicast addresses 17165 * that was brought UP on these. In the case of 17166 * a failover from A to B, we might have ilms belonging 17167 * to A (ilm_orig_ifindex pointing at A) on B accounting 17168 * for the membership from the userland. If we are failing 17169 * over from B to C now, we will find the ones belonging 17170 * to A on B. These don't account for the ill_ipif_up_count. 17171 * They just move from B to C. The check below on 17172 * ilm_orig_ifindex ensures that. 17173 */ 17174 if ((ilm->ilm_orig_ifindex == 17175 from_ill->ill_phyint->phyint_ifindex) && 17176 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17177 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17178 &ilm->ilm_v6addr))) { 17179 ASSERT(ilm->ilm_refcnt > 0); 17180 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17181 /* 17182 * For indentation reasons, we are not using a 17183 * "else" here. 17184 */ 17185 if (count == 0) { 17186 ilmp = &ilm->ilm_next; 17187 continue; 17188 } 17189 ilm->ilm_refcnt -= count; 17190 if (new_ilm != NULL) { 17191 /* 17192 * Can find one with the same 17193 * ilm_orig_ifindex, if we are failing 17194 * over to a STANDBY. This happens 17195 * when somebody wants to join a group 17196 * on a STANDBY interface and we 17197 * internally join on a different one. 17198 * If we had joined on from_ill then, a 17199 * failover now will find a new ilm 17200 * with this index. 17201 */ 17202 ip1dbg(("ilm_move_v6: FAILOVER, found" 17203 " new ilm on %s, group address %s\n", 17204 to_ill->ill_name, 17205 inet_ntop(AF_INET6, 17206 &ilm->ilm_v6addr, buf, 17207 sizeof (buf)))); 17208 new_ilm->ilm_refcnt += count; 17209 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17210 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17211 new_ilm->ilm_is_new = B_TRUE; 17212 } 17213 } else { 17214 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17215 if (new_ilm == NULL) { 17216 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17217 " multicast address %s : from %s to" 17218 " %s failed : ENOMEM \n", 17219 inet_ntop(AF_INET6, 17220 &ilm->ilm_v6addr, buf, 17221 sizeof (buf)), from_ill->ill_name, 17222 to_ill->ill_name)); 17223 ilmp = &ilm->ilm_next; 17224 continue; 17225 } 17226 *new_ilm = *ilm; 17227 new_ilm->ilm_filter = NULL; 17228 new_ilm->ilm_refcnt = count; 17229 new_ilm->ilm_timer = INFINITY; 17230 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17231 new_ilm->ilm_is_new = B_TRUE; 17232 /* 17233 * If the to_ill has not joined this 17234 * group we need to tell the driver in 17235 * ill_send_multicast_reqs. 17236 */ 17237 if (ilm_lookup_ill_v6(to_ill, 17238 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17239 new_ilm->ilm_notify_driver = B_TRUE; 17240 17241 new_ilm->ilm_ill = to_ill; 17242 /* Add to the to_ill's list */ 17243 new_ilm->ilm_next = to_ill->ill_ilm; 17244 to_ill->ill_ilm = new_ilm; 17245 ASSERT(new_ilm->ilm_ipif == NULL); 17246 } 17247 if (ilm->ilm_refcnt == 0) { 17248 goto bottom; 17249 } else { 17250 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17251 CLEAR_SLIST(new_ilm->ilm_filter); 17252 ilmp = &ilm->ilm_next; 17253 } 17254 continue; 17255 } else { 17256 /* 17257 * ifindex = 0 means, move everything pointing at 17258 * from_ill. We are doing this becuase ill has 17259 * either FAILED or became INACTIVE. 17260 * 17261 * As we would like to move things later back to 17262 * from_ill, we want to retain the identity of this 17263 * ilm. Thus, we don't blindly increment the reference 17264 * count on the ilms matching the address alone. We 17265 * need to match on the ilm_orig_index also. new_ilm 17266 * was obtained by matching ilm_orig_index also. 17267 */ 17268 if (new_ilm != NULL) { 17269 /* 17270 * This is possible only if a previous restore 17271 * was incomplete i.e restore to 17272 * ilm_orig_ifindex left some ilms because 17273 * of some failures. Thus when we are failing 17274 * again, we might find our old friends there. 17275 */ 17276 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17277 " on %s, group address %s\n", 17278 to_ill->ill_name, 17279 inet_ntop(AF_INET6, 17280 &ilm->ilm_v6addr, buf, 17281 sizeof (buf)))); 17282 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17283 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17284 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17285 new_ilm->ilm_is_new = B_TRUE; 17286 } 17287 } else { 17288 if (from_ill->ill_ilm_walker_cnt != 0) { 17289 new_ilm = (ilm_t *) 17290 mi_zalloc(sizeof (ilm_t)); 17291 if (new_ilm == NULL) { 17292 ip0dbg(("ilm_move_v6: " 17293 "FAILOVER of IPv6" 17294 " multicast address %s : " 17295 "from %s to" 17296 " %s failed : ENOMEM \n", 17297 inet_ntop(AF_INET6, 17298 &ilm->ilm_v6addr, buf, 17299 sizeof (buf)), 17300 from_ill->ill_name, 17301 to_ill->ill_name)); 17302 17303 ilmp = &ilm->ilm_next; 17304 continue; 17305 } 17306 *new_ilm = *ilm; 17307 new_ilm->ilm_filter = NULL; 17308 } else { 17309 *ilmp = ilm->ilm_next; 17310 new_ilm = ilm; 17311 } 17312 /* 17313 * If the to_ill has not joined this 17314 * group we need to tell the driver in 17315 * ill_send_multicast_reqs. 17316 */ 17317 if (ilm_lookup_ill_v6(to_ill, 17318 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17319 new_ilm->ilm_notify_driver = B_TRUE; 17320 17321 /* Add to the to_ill's list */ 17322 new_ilm->ilm_next = to_ill->ill_ilm; 17323 to_ill->ill_ilm = new_ilm; 17324 ASSERT(ilm->ilm_ipif == NULL); 17325 new_ilm->ilm_ill = to_ill; 17326 new_ilm->ilm_is_new = B_TRUE; 17327 } 17328 17329 } 17330 17331 bottom: 17332 /* 17333 * Revert multicast filter state to (EXCLUDE, NULL). 17334 * new_ilm->ilm_is_new should already be set if needed. 17335 */ 17336 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17337 CLEAR_SLIST(new_ilm->ilm_filter); 17338 /* 17339 * We allocated/got a new ilm, free the old one. 17340 */ 17341 if (new_ilm != ilm) { 17342 if (from_ill->ill_ilm_walker_cnt == 0) { 17343 *ilmp = ilm->ilm_next; 17344 ilm->ilm_next = NULL; 17345 FREE_SLIST(ilm->ilm_filter); 17346 FREE_SLIST(ilm->ilm_pendsrcs); 17347 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17348 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17349 mi_free((char *)ilm); 17350 } else { 17351 ilm->ilm_flags |= ILM_DELETED; 17352 from_ill->ill_ilm_cleanup_reqd = 1; 17353 ilmp = &ilm->ilm_next; 17354 } 17355 } 17356 } 17357 } 17358 17359 /* 17360 * Move all the multicast memberships to to_ill. Called when 17361 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17362 * different from IPv6 counterpart as multicast memberships are associated 17363 * with ills in IPv6. This function is called after every ipif is moved 17364 * unlike IPv6, where it is moved only once. 17365 */ 17366 static void 17367 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17368 { 17369 ilm_t *ilm; 17370 ilm_t *ilm_next; 17371 ilm_t *new_ilm; 17372 ilm_t **ilmp; 17373 ip_stack_t *ipst = from_ill->ill_ipst; 17374 17375 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17376 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17377 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17378 17379 ilmp = &from_ill->ill_ilm; 17380 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17381 ilm_next = ilm->ilm_next; 17382 17383 if (ilm->ilm_flags & ILM_DELETED) { 17384 ilmp = &ilm->ilm_next; 17385 continue; 17386 } 17387 17388 ASSERT(ilm->ilm_ipif != NULL); 17389 17390 if (ilm->ilm_ipif != ipif) { 17391 ilmp = &ilm->ilm_next; 17392 continue; 17393 } 17394 17395 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17396 htonl(INADDR_ALLHOSTS_GROUP)) { 17397 /* 17398 * We joined this in ipif_multicast_up 17399 * and we never did an ipif_multicast_down 17400 * for IPv4. If nobody else from the userland 17401 * has reference, we free the ilm, and later 17402 * when this ipif comes up on the new ill, 17403 * we will join this again. 17404 */ 17405 if (--ilm->ilm_refcnt == 0) 17406 goto delete_ilm; 17407 17408 new_ilm = ilm_lookup_ipif(ipif, 17409 V4_PART_OF_V6(ilm->ilm_v6addr)); 17410 if (new_ilm != NULL) { 17411 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17412 /* 17413 * We still need to deal with the from_ill. 17414 */ 17415 new_ilm->ilm_is_new = B_TRUE; 17416 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17417 CLEAR_SLIST(new_ilm->ilm_filter); 17418 goto delete_ilm; 17419 } 17420 /* 17421 * If we could not find one e.g. ipif is 17422 * still down on to_ill, we add this ilm 17423 * on ill_new to preserve the reference 17424 * count. 17425 */ 17426 } 17427 /* 17428 * When ipifs move, ilms always move with it 17429 * to the NEW ill. Thus we should never be 17430 * able to find ilm till we really move it here. 17431 */ 17432 ASSERT(ilm_lookup_ipif(ipif, 17433 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17434 17435 if (from_ill->ill_ilm_walker_cnt != 0) { 17436 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17437 if (new_ilm == NULL) { 17438 char buf[INET6_ADDRSTRLEN]; 17439 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17440 " multicast address %s : " 17441 "from %s to" 17442 " %s failed : ENOMEM \n", 17443 inet_ntop(AF_INET, 17444 &ilm->ilm_v6addr, buf, 17445 sizeof (buf)), 17446 from_ill->ill_name, 17447 to_ill->ill_name)); 17448 17449 ilmp = &ilm->ilm_next; 17450 continue; 17451 } 17452 *new_ilm = *ilm; 17453 /* We don't want new_ilm linked to ilm's filter list */ 17454 new_ilm->ilm_filter = NULL; 17455 } else { 17456 /* Remove from the list */ 17457 *ilmp = ilm->ilm_next; 17458 new_ilm = ilm; 17459 } 17460 17461 /* 17462 * If we have never joined this group on the to_ill 17463 * make sure we tell the driver. 17464 */ 17465 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17466 ALL_ZONES) == NULL) 17467 new_ilm->ilm_notify_driver = B_TRUE; 17468 17469 /* Add to the to_ill's list */ 17470 new_ilm->ilm_next = to_ill->ill_ilm; 17471 to_ill->ill_ilm = new_ilm; 17472 new_ilm->ilm_is_new = B_TRUE; 17473 17474 /* 17475 * Revert multicast filter state to (EXCLUDE, NULL) 17476 */ 17477 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17478 CLEAR_SLIST(new_ilm->ilm_filter); 17479 17480 /* 17481 * Delete only if we have allocated a new ilm. 17482 */ 17483 if (new_ilm != ilm) { 17484 delete_ilm: 17485 if (from_ill->ill_ilm_walker_cnt == 0) { 17486 /* Remove from the list */ 17487 *ilmp = ilm->ilm_next; 17488 ilm->ilm_next = NULL; 17489 FREE_SLIST(ilm->ilm_filter); 17490 FREE_SLIST(ilm->ilm_pendsrcs); 17491 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17492 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17493 mi_free((char *)ilm); 17494 } else { 17495 ilm->ilm_flags |= ILM_DELETED; 17496 from_ill->ill_ilm_cleanup_reqd = 1; 17497 ilmp = &ilm->ilm_next; 17498 } 17499 } 17500 } 17501 } 17502 17503 static uint_t 17504 ipif_get_id(ill_t *ill, uint_t id) 17505 { 17506 uint_t unit; 17507 ipif_t *tipif; 17508 boolean_t found = B_FALSE; 17509 ip_stack_t *ipst = ill->ill_ipst; 17510 17511 /* 17512 * During failback, we want to go back to the same id 17513 * instead of the smallest id so that the original 17514 * configuration is maintained. id is non-zero in that 17515 * case. 17516 */ 17517 if (id != 0) { 17518 /* 17519 * While failing back, if we still have an ipif with 17520 * MAX_ADDRS_PER_IF, it means this will be replaced 17521 * as soon as we return from this function. It was 17522 * to set to MAX_ADDRS_PER_IF by the caller so that 17523 * we can choose the smallest id. Thus we return zero 17524 * in that case ignoring the hint. 17525 */ 17526 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17527 return (0); 17528 for (tipif = ill->ill_ipif; tipif != NULL; 17529 tipif = tipif->ipif_next) { 17530 if (tipif->ipif_id == id) { 17531 found = B_TRUE; 17532 break; 17533 } 17534 } 17535 /* 17536 * If somebody already plumbed another logical 17537 * with the same id, we won't be able to find it. 17538 */ 17539 if (!found) 17540 return (id); 17541 } 17542 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17543 found = B_FALSE; 17544 for (tipif = ill->ill_ipif; tipif != NULL; 17545 tipif = tipif->ipif_next) { 17546 if (tipif->ipif_id == unit) { 17547 found = B_TRUE; 17548 break; 17549 } 17550 } 17551 if (!found) 17552 break; 17553 } 17554 return (unit); 17555 } 17556 17557 /* ARGSUSED */ 17558 static int 17559 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17560 ipif_t **rep_ipif_ptr) 17561 { 17562 ill_t *from_ill; 17563 ipif_t *rep_ipif; 17564 ipif_t **ipifp; 17565 uint_t unit; 17566 int err = 0; 17567 ipif_t *to_ipif; 17568 struct iocblk *iocp; 17569 boolean_t failback_cmd; 17570 boolean_t remove_ipif; 17571 int rc; 17572 ip_stack_t *ipst; 17573 17574 ASSERT(IAM_WRITER_ILL(to_ill)); 17575 ASSERT(IAM_WRITER_IPIF(ipif)); 17576 17577 iocp = (struct iocblk *)mp->b_rptr; 17578 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17579 remove_ipif = B_FALSE; 17580 17581 from_ill = ipif->ipif_ill; 17582 ipst = from_ill->ill_ipst; 17583 17584 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17585 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17586 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17587 17588 /* 17589 * Don't move LINK LOCAL addresses as they are tied to 17590 * physical interface. 17591 */ 17592 if (from_ill->ill_isv6 && 17593 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17594 ipif->ipif_was_up = B_FALSE; 17595 IPIF_UNMARK_MOVING(ipif); 17596 return (0); 17597 } 17598 17599 /* 17600 * We set the ipif_id to maximum so that the search for 17601 * ipif_id will pick the lowest number i.e 0 in the 17602 * following 2 cases : 17603 * 17604 * 1) We have a replacement ipif at the head of to_ill. 17605 * We can't remove it yet as we can exceed ip_addrs_per_if 17606 * on to_ill and hence the MOVE might fail. We want to 17607 * remove it only if we could move the ipif. Thus, by 17608 * setting it to the MAX value, we make the search in 17609 * ipif_get_id return the zeroth id. 17610 * 17611 * 2) When DR pulls out the NIC and re-plumbs the interface, 17612 * we might just have a zero address plumbed on the ipif 17613 * with zero id in the case of IPv4. We remove that while 17614 * doing the failback. We want to remove it only if we 17615 * could move the ipif. Thus, by setting it to the MAX 17616 * value, we make the search in ipif_get_id return the 17617 * zeroth id. 17618 * 17619 * Both (1) and (2) are done only when when we are moving 17620 * an ipif (either due to failover/failback) which originally 17621 * belonged to this interface i.e the ipif_orig_ifindex is 17622 * the same as to_ill's ifindex. This is needed so that 17623 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17624 * from B -> A (B is being removed from the group) and 17625 * FAILBACK from A -> B restores the original configuration. 17626 * Without the check for orig_ifindex, the second FAILOVER 17627 * could make the ipif belonging to B replace the A's zeroth 17628 * ipif and the subsequent failback re-creating the replacement 17629 * ipif again. 17630 * 17631 * NOTE : We created the replacement ipif when we did a 17632 * FAILOVER (See below). We could check for FAILBACK and 17633 * then look for replacement ipif to be removed. But we don't 17634 * want to do that because we wan't to allow the possibility 17635 * of a FAILOVER from A -> B (which creates the replacement ipif), 17636 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17637 * from B -> A. 17638 */ 17639 to_ipif = to_ill->ill_ipif; 17640 if ((to_ill->ill_phyint->phyint_ifindex == 17641 ipif->ipif_orig_ifindex) && 17642 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17643 ASSERT(to_ipif->ipif_id == 0); 17644 remove_ipif = B_TRUE; 17645 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17646 } 17647 /* 17648 * Find the lowest logical unit number on the to_ill. 17649 * If we are failing back, try to get the original id 17650 * rather than the lowest one so that the original 17651 * configuration is maintained. 17652 * 17653 * XXX need a better scheme for this. 17654 */ 17655 if (failback_cmd) { 17656 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17657 } else { 17658 unit = ipif_get_id(to_ill, 0); 17659 } 17660 17661 /* Reset back to zero in case we fail below */ 17662 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17663 to_ipif->ipif_id = 0; 17664 17665 if (unit == ipst->ips_ip_addrs_per_if) { 17666 ipif->ipif_was_up = B_FALSE; 17667 IPIF_UNMARK_MOVING(ipif); 17668 return (EINVAL); 17669 } 17670 17671 /* 17672 * ipif is ready to move from "from_ill" to "to_ill". 17673 * 17674 * 1) If we are moving ipif with id zero, create a 17675 * replacement ipif for this ipif on from_ill. If this fails 17676 * fail the MOVE operation. 17677 * 17678 * 2) Remove the replacement ipif on to_ill if any. 17679 * We could remove the replacement ipif when we are moving 17680 * the ipif with id zero. But what if somebody already 17681 * unplumbed it ? Thus we always remove it if it is present. 17682 * We want to do it only if we are sure we are going to 17683 * move the ipif to to_ill which is why there are no 17684 * returns due to error till ipif is linked to to_ill. 17685 * Note that the first ipif that we failback will always 17686 * be zero if it is present. 17687 */ 17688 if (ipif->ipif_id == 0) { 17689 ipaddr_t inaddr_any = INADDR_ANY; 17690 17691 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17692 if (rep_ipif == NULL) { 17693 ipif->ipif_was_up = B_FALSE; 17694 IPIF_UNMARK_MOVING(ipif); 17695 return (ENOMEM); 17696 } 17697 *rep_ipif = ipif_zero; 17698 /* 17699 * Before we put the ipif on the list, store the addresses 17700 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17701 * assumes so. This logic is not any different from what 17702 * ipif_allocate does. 17703 */ 17704 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17705 &rep_ipif->ipif_v6lcl_addr); 17706 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17707 &rep_ipif->ipif_v6src_addr); 17708 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17709 &rep_ipif->ipif_v6subnet); 17710 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17711 &rep_ipif->ipif_v6net_mask); 17712 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17713 &rep_ipif->ipif_v6brd_addr); 17714 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17715 &rep_ipif->ipif_v6pp_dst_addr); 17716 /* 17717 * We mark IPIF_NOFAILOVER so that this can never 17718 * move. 17719 */ 17720 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17721 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17722 rep_ipif->ipif_replace_zero = B_TRUE; 17723 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17724 MUTEX_DEFAULT, NULL); 17725 rep_ipif->ipif_id = 0; 17726 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17727 rep_ipif->ipif_ill = from_ill; 17728 rep_ipif->ipif_orig_ifindex = 17729 from_ill->ill_phyint->phyint_ifindex; 17730 /* Insert at head */ 17731 rep_ipif->ipif_next = from_ill->ill_ipif; 17732 from_ill->ill_ipif = rep_ipif; 17733 /* 17734 * We don't really care to let apps know about 17735 * this interface. 17736 */ 17737 } 17738 17739 if (remove_ipif) { 17740 /* 17741 * We set to a max value above for this case to get 17742 * id zero. ASSERT that we did get one. 17743 */ 17744 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17745 rep_ipif = to_ipif; 17746 to_ill->ill_ipif = rep_ipif->ipif_next; 17747 rep_ipif->ipif_next = NULL; 17748 /* 17749 * If some apps scanned and find this interface, 17750 * it is time to let them know, so that they can 17751 * delete it. 17752 */ 17753 17754 *rep_ipif_ptr = rep_ipif; 17755 } 17756 17757 /* Get it out of the ILL interface list. */ 17758 ipifp = &ipif->ipif_ill->ill_ipif; 17759 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17760 if (*ipifp == ipif) { 17761 *ipifp = ipif->ipif_next; 17762 break; 17763 } 17764 } 17765 17766 /* Assign the new ill */ 17767 ipif->ipif_ill = to_ill; 17768 ipif->ipif_id = unit; 17769 /* id has already been checked */ 17770 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17771 ASSERT(rc == 0); 17772 /* Let SCTP update its list */ 17773 sctp_move_ipif(ipif, from_ill, to_ill); 17774 /* 17775 * Handle the failover and failback of ipif_t between 17776 * ill_t that have differing maximum mtu values. 17777 */ 17778 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17779 if (ipif->ipif_saved_mtu == 0) { 17780 /* 17781 * As this ipif_t is moving to an ill_t 17782 * that has a lower ill_max_mtu, its 17783 * ipif_mtu needs to be saved so it can 17784 * be restored during failback or during 17785 * failover to an ill_t which has a 17786 * higher ill_max_mtu. 17787 */ 17788 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17789 ipif->ipif_mtu = to_ill->ill_max_mtu; 17790 } else { 17791 /* 17792 * The ipif_t is, once again, moving to 17793 * an ill_t that has a lower maximum mtu 17794 * value. 17795 */ 17796 ipif->ipif_mtu = to_ill->ill_max_mtu; 17797 } 17798 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17799 ipif->ipif_saved_mtu != 0) { 17800 /* 17801 * The mtu of this ipif_t had to be reduced 17802 * during an earlier failover; this is an 17803 * opportunity for it to be increased (either as 17804 * part of another failover or a failback). 17805 */ 17806 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17807 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17808 ipif->ipif_saved_mtu = 0; 17809 } else { 17810 ipif->ipif_mtu = to_ill->ill_max_mtu; 17811 } 17812 } 17813 17814 /* 17815 * We preserve all the other fields of the ipif including 17816 * ipif_saved_ire_mp. The routes that are saved here will 17817 * be recreated on the new interface and back on the old 17818 * interface when we move back. 17819 */ 17820 ASSERT(ipif->ipif_arp_del_mp == NULL); 17821 17822 return (err); 17823 } 17824 17825 static int 17826 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17827 int ifindex, ipif_t **rep_ipif_ptr) 17828 { 17829 ipif_t *mipif; 17830 ipif_t *ipif_next; 17831 int err; 17832 17833 /* 17834 * We don't really try to MOVE back things if some of the 17835 * operations fail. The daemon will take care of moving again 17836 * later on. 17837 */ 17838 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17839 ipif_next = mipif->ipif_next; 17840 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17841 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17842 17843 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17844 17845 /* 17846 * When the MOVE fails, it is the job of the 17847 * application to take care of this properly 17848 * i.e try again if it is ENOMEM. 17849 */ 17850 if (mipif->ipif_ill != from_ill) { 17851 /* 17852 * ipif has moved. 17853 * 17854 * Move the multicast memberships associated 17855 * with this ipif to the new ill. For IPv6, we 17856 * do it once after all the ipifs are moved 17857 * (in ill_move) as they are not associated 17858 * with ipifs. 17859 * 17860 * We need to move the ilms as the ipif has 17861 * already been moved to a new ill even 17862 * in the case of errors. Neither 17863 * ilm_free(ipif) will find the ilm 17864 * when somebody unplumbs this ipif nor 17865 * ilm_delete(ilm) will be able to find the 17866 * ilm, if we don't move now. 17867 */ 17868 if (!from_ill->ill_isv6) 17869 ilm_move_v4(from_ill, to_ill, mipif); 17870 } 17871 17872 if (err != 0) 17873 return (err); 17874 } 17875 } 17876 return (0); 17877 } 17878 17879 static int 17880 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17881 { 17882 int ifindex; 17883 int err; 17884 struct iocblk *iocp; 17885 ipif_t *ipif; 17886 ipif_t *rep_ipif_ptr = NULL; 17887 ipif_t *from_ipif = NULL; 17888 boolean_t check_rep_if = B_FALSE; 17889 ip_stack_t *ipst = from_ill->ill_ipst; 17890 17891 iocp = (struct iocblk *)mp->b_rptr; 17892 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17893 /* 17894 * Move everything pointing at from_ill to to_ill. 17895 * We acheive this by passing in 0 as ifindex. 17896 */ 17897 ifindex = 0; 17898 } else { 17899 /* 17900 * Move everything pointing at from_ill whose original 17901 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17902 * We acheive this by passing in ifindex rather than 0. 17903 * Multicast vifs, ilgs move implicitly because ipifs move. 17904 */ 17905 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17906 ifindex = to_ill->ill_phyint->phyint_ifindex; 17907 } 17908 17909 /* 17910 * Determine if there is at least one ipif that would move from 17911 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17912 * ipif (if it exists) on the to_ill would be consumed as a result of 17913 * the move, in which case we need to quiesce the replacement ipif also. 17914 */ 17915 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17916 from_ipif = from_ipif->ipif_next) { 17917 if (((ifindex == 0) || 17918 (ifindex == from_ipif->ipif_orig_ifindex)) && 17919 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17920 check_rep_if = B_TRUE; 17921 break; 17922 } 17923 } 17924 17925 17926 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17927 17928 GRAB_ILL_LOCKS(from_ill, to_ill); 17929 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17930 (void) ipsq_pending_mp_add(NULL, ipif, q, 17931 mp, ILL_MOVE_OK); 17932 RELEASE_ILL_LOCKS(from_ill, to_ill); 17933 return (EINPROGRESS); 17934 } 17935 17936 /* Check if the replacement ipif is quiescent to delete */ 17937 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17938 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17939 to_ill->ill_ipif->ipif_state_flags |= 17940 IPIF_MOVING | IPIF_CHANGING; 17941 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17942 (void) ipsq_pending_mp_add(NULL, ipif, q, 17943 mp, ILL_MOVE_OK); 17944 RELEASE_ILL_LOCKS(from_ill, to_ill); 17945 return (EINPROGRESS); 17946 } 17947 } 17948 RELEASE_ILL_LOCKS(from_ill, to_ill); 17949 17950 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17951 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17952 GRAB_ILL_LOCKS(from_ill, to_ill); 17953 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17954 17955 /* ilm_move is done inside ipif_move for IPv4 */ 17956 if (err == 0 && from_ill->ill_isv6) 17957 ilm_move_v6(from_ill, to_ill, ifindex); 17958 17959 RELEASE_ILL_LOCKS(from_ill, to_ill); 17960 rw_exit(&ipst->ips_ill_g_lock); 17961 17962 /* 17963 * send rts messages and multicast messages. 17964 */ 17965 if (rep_ipif_ptr != NULL) { 17966 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17967 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17968 rep_ipif_ptr->ipif_recovery_id = 0; 17969 } 17970 ip_rts_ifmsg(rep_ipif_ptr); 17971 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17972 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17973 mi_free(rep_ipif_ptr); 17974 } 17975 17976 conn_move_ill(from_ill, to_ill, ifindex); 17977 17978 return (err); 17979 } 17980 17981 /* 17982 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17983 * Also checks for the validity of the arguments. 17984 * Note: We are already exclusive inside the from group. 17985 * It is upto the caller to release refcnt on the to_ill's. 17986 */ 17987 static int 17988 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17989 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17990 { 17991 int dst_index; 17992 ipif_t *ipif_v4, *ipif_v6; 17993 struct lifreq *lifr; 17994 mblk_t *mp1; 17995 boolean_t exists; 17996 sin_t *sin; 17997 int err = 0; 17998 ip_stack_t *ipst; 17999 18000 if (CONN_Q(q)) 18001 ipst = CONNQ_TO_IPST(q); 18002 else 18003 ipst = ILLQ_TO_IPST(q); 18004 18005 18006 if ((mp1 = mp->b_cont) == NULL) 18007 return (EPROTO); 18008 18009 if ((mp1 = mp1->b_cont) == NULL) 18010 return (EPROTO); 18011 18012 lifr = (struct lifreq *)mp1->b_rptr; 18013 sin = (sin_t *)&lifr->lifr_addr; 18014 18015 /* 18016 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18017 * specific operations. 18018 */ 18019 if (sin->sin_family != AF_UNSPEC) 18020 return (EINVAL); 18021 18022 /* 18023 * Get ipif with id 0. We are writer on the from ill. So we can pass 18024 * NULLs for the last 4 args and we know the lookup won't fail 18025 * with EINPROGRESS. 18026 */ 18027 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18028 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18029 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18030 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18031 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18032 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18033 18034 if (ipif_v4 == NULL && ipif_v6 == NULL) 18035 return (ENXIO); 18036 18037 if (ipif_v4 != NULL) { 18038 ASSERT(ipif_v4->ipif_refcnt != 0); 18039 if (ipif_v4->ipif_id != 0) { 18040 err = EINVAL; 18041 goto done; 18042 } 18043 18044 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18045 *ill_from_v4 = ipif_v4->ipif_ill; 18046 } 18047 18048 if (ipif_v6 != NULL) { 18049 ASSERT(ipif_v6->ipif_refcnt != 0); 18050 if (ipif_v6->ipif_id != 0) { 18051 err = EINVAL; 18052 goto done; 18053 } 18054 18055 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18056 *ill_from_v6 = ipif_v6->ipif_ill; 18057 } 18058 18059 err = 0; 18060 dst_index = lifr->lifr_movetoindex; 18061 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18062 q, mp, ip_process_ioctl, &err, ipst); 18063 if (err != 0) { 18064 /* 18065 * There could be only v6. 18066 */ 18067 if (err != ENXIO) 18068 goto done; 18069 err = 0; 18070 } 18071 18072 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18073 q, mp, ip_process_ioctl, &err, ipst); 18074 if (err != 0) { 18075 if (err != ENXIO) 18076 goto done; 18077 if (*ill_to_v4 == NULL) { 18078 err = ENXIO; 18079 goto done; 18080 } 18081 err = 0; 18082 } 18083 18084 /* 18085 * If we have something to MOVE i.e "from" not NULL, 18086 * "to" should be non-NULL. 18087 */ 18088 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18089 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18090 err = EINVAL; 18091 } 18092 18093 done: 18094 if (ipif_v4 != NULL) 18095 ipif_refrele(ipif_v4); 18096 if (ipif_v6 != NULL) 18097 ipif_refrele(ipif_v6); 18098 return (err); 18099 } 18100 18101 /* 18102 * FAILOVER and FAILBACK are modelled as MOVE operations. 18103 * 18104 * We don't check whether the MOVE is within the same group or 18105 * not, because this ioctl can be used as a generic mechanism 18106 * to failover from interface A to B, though things will function 18107 * only if they are really part of the same group. Moreover, 18108 * all ipifs may be down and hence temporarily out of the group. 18109 * 18110 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18111 * down first and then V6. For each we wait for the ipif's to become quiescent. 18112 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18113 * have been deleted and there are no active references. Once quiescent the 18114 * ipif's are moved and brought up on the new ill. 18115 * 18116 * Normally the source ill and destination ill belong to the same IPMP group 18117 * and hence the same ipsq_t. In the event they don't belong to the same 18118 * same group the two ipsq's are first merged into one ipsq - that of the 18119 * to_ill. The multicast memberships on the source and destination ill cannot 18120 * change during the move operation since multicast joins/leaves also have to 18121 * execute on the same ipsq and are hence serialized. 18122 */ 18123 /* ARGSUSED */ 18124 int 18125 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18126 ip_ioctl_cmd_t *ipip, void *ifreq) 18127 { 18128 ill_t *ill_to_v4 = NULL; 18129 ill_t *ill_to_v6 = NULL; 18130 ill_t *ill_from_v4 = NULL; 18131 ill_t *ill_from_v6 = NULL; 18132 int err = 0; 18133 18134 /* 18135 * setup from and to ill's, we can get EINPROGRESS only for 18136 * to_ill's. 18137 */ 18138 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18139 &ill_to_v4, &ill_to_v6); 18140 18141 if (err != 0) { 18142 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18143 goto done; 18144 } 18145 18146 /* 18147 * nothing to do. 18148 */ 18149 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18150 goto done; 18151 } 18152 18153 /* 18154 * nothing to do. 18155 */ 18156 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18157 goto done; 18158 } 18159 18160 /* 18161 * Mark the ill as changing. 18162 * ILL_CHANGING flag is cleared when the ipif's are brought up 18163 * in ill_up_ipifs in case of error they are cleared below. 18164 */ 18165 18166 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18167 if (ill_from_v4 != NULL) 18168 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18169 if (ill_from_v6 != NULL) 18170 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18171 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18172 18173 /* 18174 * Make sure that both src and dst are 18175 * in the same syncq group. If not make it happen. 18176 * We are not holding any locks because we are the writer 18177 * on the from_ipsq and we will hold locks in ill_merge_groups 18178 * to protect to_ipsq against changing. 18179 */ 18180 if (ill_from_v4 != NULL) { 18181 if (ill_from_v4->ill_phyint->phyint_ipsq != 18182 ill_to_v4->ill_phyint->phyint_ipsq) { 18183 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18184 NULL, mp, q); 18185 goto err_ret; 18186 18187 } 18188 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18189 } else { 18190 18191 if (ill_from_v6->ill_phyint->phyint_ipsq != 18192 ill_to_v6->ill_phyint->phyint_ipsq) { 18193 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18194 NULL, mp, q); 18195 goto err_ret; 18196 18197 } 18198 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18199 } 18200 18201 /* 18202 * Now that the ipsq's have been merged and we are the writer 18203 * lets mark to_ill as changing as well. 18204 */ 18205 18206 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18207 if (ill_to_v4 != NULL) 18208 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18209 if (ill_to_v6 != NULL) 18210 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18211 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18212 18213 /* 18214 * Its ok for us to proceed with the move even if 18215 * ill_pending_mp is non null on one of the from ill's as the reply 18216 * should not be looking at the ipif, it should only care about the 18217 * ill itself. 18218 */ 18219 18220 /* 18221 * lets move ipv4 first. 18222 */ 18223 if (ill_from_v4 != NULL) { 18224 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18225 ill_from_v4->ill_move_in_progress = B_TRUE; 18226 ill_to_v4->ill_move_in_progress = B_TRUE; 18227 ill_to_v4->ill_move_peer = ill_from_v4; 18228 ill_from_v4->ill_move_peer = ill_to_v4; 18229 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18230 } 18231 18232 /* 18233 * Now lets move ipv6. 18234 */ 18235 if (err == 0 && ill_from_v6 != NULL) { 18236 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18237 ill_from_v6->ill_move_in_progress = B_TRUE; 18238 ill_to_v6->ill_move_in_progress = B_TRUE; 18239 ill_to_v6->ill_move_peer = ill_from_v6; 18240 ill_from_v6->ill_move_peer = ill_to_v6; 18241 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18242 } 18243 18244 err_ret: 18245 /* 18246 * EINPROGRESS means we are waiting for the ipif's that need to be 18247 * moved to become quiescent. 18248 */ 18249 if (err == EINPROGRESS) { 18250 goto done; 18251 } 18252 18253 /* 18254 * if err is set ill_up_ipifs will not be called 18255 * lets clear the flags. 18256 */ 18257 18258 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18259 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18260 /* 18261 * Some of the clearing may be redundant. But it is simple 18262 * not making any extra checks. 18263 */ 18264 if (ill_from_v6 != NULL) { 18265 ill_from_v6->ill_move_in_progress = B_FALSE; 18266 ill_from_v6->ill_move_peer = NULL; 18267 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18268 } 18269 if (ill_from_v4 != NULL) { 18270 ill_from_v4->ill_move_in_progress = B_FALSE; 18271 ill_from_v4->ill_move_peer = NULL; 18272 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18273 } 18274 if (ill_to_v6 != NULL) { 18275 ill_to_v6->ill_move_in_progress = B_FALSE; 18276 ill_to_v6->ill_move_peer = NULL; 18277 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18278 } 18279 if (ill_to_v4 != NULL) { 18280 ill_to_v4->ill_move_in_progress = B_FALSE; 18281 ill_to_v4->ill_move_peer = NULL; 18282 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18283 } 18284 18285 /* 18286 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18287 * Do this always to maintain proper state i.e even in case of errors. 18288 * As phyint_inactive looks at both v4 and v6 interfaces, 18289 * we need not call on both v4 and v6 interfaces. 18290 */ 18291 if (ill_from_v4 != NULL) { 18292 if ((ill_from_v4->ill_phyint->phyint_flags & 18293 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18294 phyint_inactive(ill_from_v4->ill_phyint); 18295 } 18296 } else if (ill_from_v6 != NULL) { 18297 if ((ill_from_v6->ill_phyint->phyint_flags & 18298 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18299 phyint_inactive(ill_from_v6->ill_phyint); 18300 } 18301 } 18302 18303 if (ill_to_v4 != NULL) { 18304 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18305 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18306 } 18307 } else if (ill_to_v6 != NULL) { 18308 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18309 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18310 } 18311 } 18312 18313 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18314 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18315 18316 no_err: 18317 /* 18318 * lets bring the interfaces up on the to_ill. 18319 */ 18320 if (err == 0) { 18321 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18322 q, mp); 18323 } 18324 18325 if (err == 0) { 18326 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18327 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18328 18329 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18330 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18331 } 18332 done: 18333 18334 if (ill_to_v4 != NULL) { 18335 ill_refrele(ill_to_v4); 18336 } 18337 if (ill_to_v6 != NULL) { 18338 ill_refrele(ill_to_v6); 18339 } 18340 18341 return (err); 18342 } 18343 18344 static void 18345 ill_dl_down(ill_t *ill) 18346 { 18347 /* 18348 * The ill is down; unbind but stay attached since we're still 18349 * associated with a PPA. If we have negotiated DLPI capabilites 18350 * with the data link service provider (IDS_OK) then reset them. 18351 * The interval between unbinding and rebinding is potentially 18352 * unbounded hence we cannot assume things will be the same. 18353 * The DLPI capabilities will be probed again when the data link 18354 * is brought up. 18355 */ 18356 mblk_t *mp = ill->ill_unbind_mp; 18357 hook_nic_event_t *info; 18358 18359 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18360 18361 ill->ill_unbind_mp = NULL; 18362 if (mp != NULL) { 18363 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18364 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18365 ill->ill_name)); 18366 mutex_enter(&ill->ill_lock); 18367 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18368 mutex_exit(&ill->ill_lock); 18369 if (ill->ill_dlpi_capab_state == IDS_OK) 18370 ill_capability_reset(ill); 18371 ill_dlpi_send(ill, mp); 18372 } 18373 18374 /* 18375 * Toss all of our multicast memberships. We could keep them, but 18376 * then we'd have to do bookkeeping of any joins and leaves performed 18377 * by the application while the the interface is down (we can't just 18378 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18379 * on a downed interface). 18380 */ 18381 ill_leave_multicast(ill); 18382 18383 mutex_enter(&ill->ill_lock); 18384 18385 ill->ill_dl_up = 0; 18386 18387 if ((info = ill->ill_nic_event_info) != NULL) { 18388 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18389 info->hne_event, ill->ill_name)); 18390 if (info->hne_data != NULL) 18391 kmem_free(info->hne_data, info->hne_datalen); 18392 kmem_free(info, sizeof (hook_nic_event_t)); 18393 } 18394 18395 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18396 if (info != NULL) { 18397 ip_stack_t *ipst = ill->ill_ipst; 18398 18399 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18400 info->hne_lif = 0; 18401 info->hne_event = NE_DOWN; 18402 info->hne_data = NULL; 18403 info->hne_datalen = 0; 18404 info->hne_family = ill->ill_isv6 ? 18405 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18406 } else 18407 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18408 "information for %s (ENOMEM)\n", ill->ill_name)); 18409 18410 ill->ill_nic_event_info = info; 18411 18412 mutex_exit(&ill->ill_lock); 18413 } 18414 18415 void 18416 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18417 { 18418 union DL_primitives *dlp; 18419 t_uscalar_t prim; 18420 18421 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18422 18423 dlp = (union DL_primitives *)mp->b_rptr; 18424 prim = dlp->dl_primitive; 18425 18426 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18427 dlpi_prim_str(prim), prim, ill->ill_name)); 18428 18429 switch (prim) { 18430 case DL_PHYS_ADDR_REQ: 18431 { 18432 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18433 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18434 break; 18435 } 18436 case DL_BIND_REQ: 18437 mutex_enter(&ill->ill_lock); 18438 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18439 mutex_exit(&ill->ill_lock); 18440 break; 18441 } 18442 18443 /* 18444 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18445 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18446 * we only wait for the ACK of the DL_UNBIND_REQ. 18447 */ 18448 mutex_enter(&ill->ill_lock); 18449 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18450 (prim == DL_UNBIND_REQ)) { 18451 ill->ill_dlpi_pending = prim; 18452 } 18453 mutex_exit(&ill->ill_lock); 18454 18455 /* 18456 * Some drivers send M_FLUSH up to IP as part of unbind 18457 * request. When this M_FLUSH is sent back to the driver, 18458 * this can go after we send the detach request if the 18459 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18460 * to the M_FLUSH in ip_rput and locally generate another 18461 * M_FLUSH for the correctness. This will get freed in 18462 * ip_wput_nondata. 18463 */ 18464 if (prim == DL_UNBIND_REQ) 18465 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18466 18467 putnext(ill->ill_wq, mp); 18468 } 18469 18470 /* 18471 * Send a DLPI control message to the driver but make sure there 18472 * is only one outstanding message. Uses ill_dlpi_pending to tell 18473 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18474 * when an ACK or a NAK is received to process the next queued message. 18475 * 18476 * We don't protect ill_dlpi_pending with any lock. This is okay as 18477 * every place where its accessed, ip is exclusive while accessing 18478 * ill_dlpi_pending except when this function is called from ill_init() 18479 */ 18480 void 18481 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18482 { 18483 mblk_t **mpp; 18484 18485 ASSERT(IAM_WRITER_ILL(ill)); 18486 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18487 18488 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18489 /* Must queue message. Tail insertion */ 18490 mpp = &ill->ill_dlpi_deferred; 18491 while (*mpp != NULL) 18492 mpp = &((*mpp)->b_next); 18493 18494 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18495 ill->ill_name)); 18496 18497 *mpp = mp; 18498 return; 18499 } 18500 18501 ill_dlpi_dispatch(ill, mp); 18502 } 18503 18504 /* 18505 * Called when an DLPI control message has been acked or nacked to 18506 * send down the next queued message (if any). 18507 */ 18508 void 18509 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18510 { 18511 mblk_t *mp; 18512 18513 ASSERT(IAM_WRITER_ILL(ill)); 18514 18515 ASSERT(prim != DL_PRIM_INVAL); 18516 if (ill->ill_dlpi_pending != prim) { 18517 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18518 (void) mi_strlog(ill->ill_rq, 1, 18519 SL_CONSOLE|SL_ERROR|SL_TRACE, 18520 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18521 dlpi_prim_str(prim), ill->ill_name); 18522 } else { 18523 (void) mi_strlog(ill->ill_rq, 1, 18524 SL_CONSOLE|SL_ERROR|SL_TRACE, 18525 "ill_dlpi_done: unexpected ack for %s from %s " 18526 "(expecting ack for %s)\n", 18527 dlpi_prim_str(prim), ill->ill_name, 18528 dlpi_prim_str(ill->ill_dlpi_pending)); 18529 } 18530 return; 18531 } 18532 18533 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18534 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18535 18536 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18537 mutex_enter(&ill->ill_lock); 18538 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18539 cv_signal(&ill->ill_cv); 18540 mutex_exit(&ill->ill_lock); 18541 return; 18542 } 18543 18544 ill->ill_dlpi_deferred = mp->b_next; 18545 mp->b_next = NULL; 18546 18547 ill_dlpi_dispatch(ill, mp); 18548 } 18549 18550 void 18551 conn_delete_ire(conn_t *connp, caddr_t arg) 18552 { 18553 ipif_t *ipif = (ipif_t *)arg; 18554 ire_t *ire; 18555 18556 /* 18557 * Look at the cached ires on conns which has pointers to ipifs. 18558 * We just call ire_refrele which clears up the reference 18559 * to ire. Called when a conn closes. Also called from ipif_free 18560 * to cleanup indirect references to the stale ipif via the cached ire. 18561 */ 18562 mutex_enter(&connp->conn_lock); 18563 ire = connp->conn_ire_cache; 18564 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18565 connp->conn_ire_cache = NULL; 18566 mutex_exit(&connp->conn_lock); 18567 IRE_REFRELE_NOTR(ire); 18568 return; 18569 } 18570 mutex_exit(&connp->conn_lock); 18571 18572 } 18573 18574 /* 18575 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18576 * of IREs. Those IREs may have been previously cached in the conn structure. 18577 * This ipcl_walk() walker function releases all references to such IREs based 18578 * on the condemned flag. 18579 */ 18580 /* ARGSUSED */ 18581 void 18582 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18583 { 18584 ire_t *ire; 18585 18586 mutex_enter(&connp->conn_lock); 18587 ire = connp->conn_ire_cache; 18588 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18589 connp->conn_ire_cache = NULL; 18590 mutex_exit(&connp->conn_lock); 18591 IRE_REFRELE_NOTR(ire); 18592 return; 18593 } 18594 mutex_exit(&connp->conn_lock); 18595 } 18596 18597 /* 18598 * Take down a specific interface, but don't lose any information about it. 18599 * Also delete interface from its interface group (ifgrp). 18600 * (Always called as writer.) 18601 * This function goes through the down sequence even if the interface is 18602 * already down. There are 2 reasons. 18603 * a. Currently we permit interface routes that depend on down interfaces 18604 * to be added. This behaviour itself is questionable. However it appears 18605 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18606 * time. We go thru the cleanup in order to remove these routes. 18607 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18608 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18609 * down, but we need to cleanup i.e. do ill_dl_down and 18610 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18611 * 18612 * IP-MT notes: 18613 * 18614 * Model of reference to interfaces. 18615 * 18616 * The following members in ipif_t track references to the ipif. 18617 * int ipif_refcnt; Active reference count 18618 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18619 * The following members in ill_t track references to the ill. 18620 * int ill_refcnt; active refcnt 18621 * uint_t ill_ire_cnt; Number of ires referencing ill 18622 * uint_t ill_nce_cnt; Number of nces referencing ill 18623 * 18624 * Reference to an ipif or ill can be obtained in any of the following ways. 18625 * 18626 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18627 * Pointers to ipif / ill from other data structures viz ire and conn. 18628 * Implicit reference to the ipif / ill by holding a reference to the ire. 18629 * 18630 * The ipif/ill lookup functions return a reference held ipif / ill. 18631 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18632 * This is a purely dynamic reference count associated with threads holding 18633 * references to the ipif / ill. Pointers from other structures do not 18634 * count towards this reference count. 18635 * 18636 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18637 * ipif/ill. This is incremented whenever a new ire is created referencing the 18638 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18639 * actually added to the ire hash table. The count is decremented in 18640 * ire_inactive where the ire is destroyed. 18641 * 18642 * nce's reference ill's thru nce_ill and the count of nce's associated with 18643 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18644 * ndp_add() where the nce is actually added to the table. Similarly it is 18645 * decremented in ndp_inactive where the nce is destroyed. 18646 * 18647 * Flow of ioctls involving interface down/up 18648 * 18649 * The following is the sequence of an attempt to set some critical flags on an 18650 * up interface. 18651 * ip_sioctl_flags 18652 * ipif_down 18653 * wait for ipif to be quiescent 18654 * ipif_down_tail 18655 * ip_sioctl_flags_tail 18656 * 18657 * All set ioctls that involve down/up sequence would have a skeleton similar 18658 * to the above. All the *tail functions are called after the refcounts have 18659 * dropped to the appropriate values. 18660 * 18661 * The mechanism to quiesce an ipif is as follows. 18662 * 18663 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18664 * on the ipif. Callers either pass a flag requesting wait or the lookup 18665 * functions will return NULL. 18666 * 18667 * Delete all ires referencing this ipif 18668 * 18669 * Any thread attempting to do an ipif_refhold on an ipif that has been 18670 * obtained thru a cached pointer will first make sure that 18671 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18672 * increment the refcount. 18673 * 18674 * The above guarantees that the ipif refcount will eventually come down to 18675 * zero and the ipif will quiesce, once all threads that currently hold a 18676 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18677 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18678 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18679 * drop to zero. 18680 * 18681 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18682 * 18683 * Threads trying to lookup an ipif or ill can pass a flag requesting 18684 * wait and restart if the ipif / ill cannot be looked up currently. 18685 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18686 * failure if the ipif is currently undergoing an exclusive operation, and 18687 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18688 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18689 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18690 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18691 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18692 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18693 * until we release the ipsq_lock, even though the the ill/ipif state flags 18694 * can change after we drop the ill_lock. 18695 * 18696 * An attempt to send out a packet using an ipif that is currently 18697 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18698 * operation and restart it later when the exclusive condition on the ipif ends. 18699 * This is an example of not passing the wait flag to the lookup functions. For 18700 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18701 * out a multicast packet on that ipif will fail while the ipif is 18702 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18703 * currently IPIF_CHANGING will also fail. 18704 */ 18705 int 18706 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18707 { 18708 ill_t *ill = ipif->ipif_ill; 18709 phyint_t *phyi; 18710 conn_t *connp; 18711 boolean_t success; 18712 boolean_t ipif_was_up = B_FALSE; 18713 ip_stack_t *ipst = ill->ill_ipst; 18714 18715 ASSERT(IAM_WRITER_IPIF(ipif)); 18716 18717 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18718 18719 if (ipif->ipif_flags & IPIF_UP) { 18720 mutex_enter(&ill->ill_lock); 18721 ipif->ipif_flags &= ~IPIF_UP; 18722 ASSERT(ill->ill_ipif_up_count > 0); 18723 --ill->ill_ipif_up_count; 18724 mutex_exit(&ill->ill_lock); 18725 ipif_was_up = B_TRUE; 18726 /* Update status in SCTP's list */ 18727 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18728 } 18729 18730 /* 18731 * Blow away v6 memberships we established in ipif_multicast_up(); the 18732 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18733 * know not to rejoin when the interface is brought back up). 18734 */ 18735 if (ipif->ipif_isv6) 18736 ipif_multicast_down(ipif); 18737 /* 18738 * Remove from the mapping for __sin6_src_id. We insert only 18739 * when the address is not INADDR_ANY. As IPv4 addresses are 18740 * stored as mapped addresses, we need to check for mapped 18741 * INADDR_ANY also. 18742 */ 18743 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18744 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18745 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18746 int err; 18747 18748 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18749 ipif->ipif_zoneid, ipst); 18750 if (err != 0) { 18751 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18752 } 18753 } 18754 18755 /* 18756 * Before we delete the ill from the group (if any), we need 18757 * to make sure that we delete all the routes dependent on 18758 * this and also any ipifs dependent on this ipif for 18759 * source address. We need to do before we delete from 18760 * the group because 18761 * 18762 * 1) ipif_down_delete_ire de-references ill->ill_group. 18763 * 18764 * 2) ipif_update_other_ipifs needs to walk the whole group 18765 * for re-doing source address selection. Note that 18766 * ipif_select_source[_v6] called from 18767 * ipif_update_other_ipifs[_v6] will not pick this ipif 18768 * because we have already marked down here i.e cleared 18769 * IPIF_UP. 18770 */ 18771 if (ipif->ipif_isv6) { 18772 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18773 ipst); 18774 } else { 18775 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18776 ipst); 18777 } 18778 18779 /* 18780 * Need to add these also to be saved and restored when the 18781 * ipif is brought down and up 18782 */ 18783 mutex_enter(&ipst->ips_ire_mrtun_lock); 18784 if (ipst->ips_ire_mrtun_count != 0) { 18785 mutex_exit(&ipst->ips_ire_mrtun_lock); 18786 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18787 (char *)ipif, NULL, ipst); 18788 } else { 18789 mutex_exit(&ipst->ips_ire_mrtun_lock); 18790 } 18791 18792 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18793 if (ipst->ips_ire_srcif_table_count > 0) { 18794 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18795 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18796 ipst); 18797 } else { 18798 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18799 } 18800 18801 /* 18802 * Cleaning up the conn_ire_cache or conns must be done only after the 18803 * ires have been deleted above. Otherwise a thread could end up 18804 * caching an ire in a conn after we have finished the cleanup of the 18805 * conn. The caching is done after making sure that the ire is not yet 18806 * condemned. Also documented in the block comment above ip_output 18807 */ 18808 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18809 /* Also, delete the ires cached in SCTP */ 18810 sctp_ire_cache_flush(ipif); 18811 18812 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18813 nattymod_clean_ipif(ipif); 18814 18815 /* 18816 * Update any other ipifs which have used "our" local address as 18817 * a source address. This entails removing and recreating IRE_INTERFACE 18818 * entries for such ipifs. 18819 */ 18820 if (ipif->ipif_isv6) 18821 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18822 else 18823 ipif_update_other_ipifs(ipif, ill->ill_group); 18824 18825 if (ipif_was_up) { 18826 /* 18827 * Check whether it is last ipif to leave this group. 18828 * If this is the last ipif to leave, we should remove 18829 * this ill from the group as ipif_select_source will not 18830 * be able to find any useful ipifs if this ill is selected 18831 * for load balancing. 18832 * 18833 * For nameless groups, we should call ifgrp_delete if this 18834 * belongs to some group. As this ipif is going down, we may 18835 * need to reconstruct groups. 18836 */ 18837 phyi = ill->ill_phyint; 18838 /* 18839 * If the phyint_groupname_len is 0, it may or may not 18840 * be in the nameless group. If the phyint_groupname_len is 18841 * not 0, then this ill should be part of some group. 18842 * As we always insert this ill in the group if 18843 * phyint_groupname_len is not zero when the first ipif 18844 * comes up (in ipif_up_done), it should be in a group 18845 * when the namelen is not 0. 18846 * 18847 * NOTE : When we delete the ill from the group,it will 18848 * blow away all the IRE_CACHES pointing either at this ipif or 18849 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18850 * should be pointing at this ill. 18851 */ 18852 ASSERT(phyi->phyint_groupname_len == 0 || 18853 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18854 18855 if (phyi->phyint_groupname_len != 0) { 18856 if (ill->ill_ipif_up_count == 0) 18857 illgrp_delete(ill); 18858 } 18859 18860 /* 18861 * If we have deleted some of the broadcast ires associated 18862 * with this ipif, we need to re-nominate somebody else if 18863 * the ires that we deleted were the nominated ones. 18864 */ 18865 if (ill->ill_group != NULL && !ill->ill_isv6) 18866 ipif_renominate_bcast(ipif); 18867 } 18868 18869 /* 18870 * neighbor-discovery or arp entries for this interface. 18871 */ 18872 ipif_ndp_down(ipif); 18873 18874 /* 18875 * If mp is NULL the caller will wait for the appropriate refcnt. 18876 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18877 * and ill_delete -> ipif_free -> ipif_down 18878 */ 18879 if (mp == NULL) { 18880 ASSERT(q == NULL); 18881 return (0); 18882 } 18883 18884 if (CONN_Q(q)) { 18885 connp = Q_TO_CONN(q); 18886 mutex_enter(&connp->conn_lock); 18887 } else { 18888 connp = NULL; 18889 } 18890 mutex_enter(&ill->ill_lock); 18891 /* 18892 * Are there any ire's pointing to this ipif that are still active ? 18893 * If this is the last ipif going down, are there any ire's pointing 18894 * to this ill that are still active ? 18895 */ 18896 if (ipif_is_quiescent(ipif)) { 18897 mutex_exit(&ill->ill_lock); 18898 if (connp != NULL) 18899 mutex_exit(&connp->conn_lock); 18900 return (0); 18901 } 18902 18903 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18904 ill->ill_name, (void *)ill)); 18905 /* 18906 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18907 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18908 * which in turn is called by the last refrele on the ipif/ill/ire. 18909 */ 18910 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18911 if (!success) { 18912 /* The conn is closing. So just return */ 18913 ASSERT(connp != NULL); 18914 mutex_exit(&ill->ill_lock); 18915 mutex_exit(&connp->conn_lock); 18916 return (EINTR); 18917 } 18918 18919 mutex_exit(&ill->ill_lock); 18920 if (connp != NULL) 18921 mutex_exit(&connp->conn_lock); 18922 return (EINPROGRESS); 18923 } 18924 18925 void 18926 ipif_down_tail(ipif_t *ipif) 18927 { 18928 ill_t *ill = ipif->ipif_ill; 18929 18930 /* 18931 * Skip any loopback interface (null wq). 18932 * If this is the last logical interface on the ill 18933 * have ill_dl_down tell the driver we are gone (unbind) 18934 * Note that lun 0 can ipif_down even though 18935 * there are other logical units that are up. 18936 * This occurs e.g. when we change a "significant" IFF_ flag. 18937 */ 18938 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18939 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18940 ill->ill_dl_up) { 18941 ill_dl_down(ill); 18942 } 18943 ill->ill_logical_down = 0; 18944 18945 /* 18946 * Have to be after removing the routes in ipif_down_delete_ire. 18947 */ 18948 if (ipif->ipif_isv6) { 18949 if (ill->ill_flags & ILLF_XRESOLV) 18950 ipif_arp_down(ipif); 18951 } else { 18952 ipif_arp_down(ipif); 18953 } 18954 18955 ip_rts_ifmsg(ipif); 18956 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18957 } 18958 18959 /* 18960 * Bring interface logically down without bringing the physical interface 18961 * down e.g. when the netmask is changed. This avoids long lasting link 18962 * negotiations between an ethernet interface and a certain switches. 18963 */ 18964 static int 18965 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18966 { 18967 /* 18968 * The ill_logical_down flag is a transient flag. It is set here 18969 * and is cleared once the down has completed in ipif_down_tail. 18970 * This flag does not indicate whether the ill stream is in the 18971 * DL_BOUND state with the driver. Instead this flag is used by 18972 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18973 * the driver. The state of the ill stream i.e. whether it is 18974 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18975 */ 18976 ipif->ipif_ill->ill_logical_down = 1; 18977 return (ipif_down(ipif, q, mp)); 18978 } 18979 18980 /* 18981 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18982 * If the usesrc client ILL is already part of a usesrc group or not, 18983 * in either case a ire_stq with the matching usesrc client ILL will 18984 * locate the IRE's that need to be deleted. We want IREs to be created 18985 * with the new source address. 18986 */ 18987 static void 18988 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18989 { 18990 ill_t *ucill = (ill_t *)ill_arg; 18991 18992 ASSERT(IAM_WRITER_ILL(ucill)); 18993 18994 if (ire->ire_stq == NULL) 18995 return; 18996 18997 if ((ire->ire_type == IRE_CACHE) && 18998 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18999 ire_delete(ire); 19000 } 19001 19002 /* 19003 * ire_walk routine to delete every IRE dependent on the interface 19004 * address that is going down. (Always called as writer.) 19005 * Works for both v4 and v6. 19006 * In addition for checking for ire_ipif matches it also checks for 19007 * IRE_CACHE entries which have the same source address as the 19008 * disappearing ipif since ipif_select_source might have picked 19009 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19010 * care of any IRE_INTERFACE with the disappearing source address. 19011 */ 19012 static void 19013 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19014 { 19015 ipif_t *ipif = (ipif_t *)ipif_arg; 19016 ill_t *ire_ill; 19017 ill_t *ipif_ill; 19018 19019 ASSERT(IAM_WRITER_IPIF(ipif)); 19020 if (ire->ire_ipif == NULL) 19021 return; 19022 19023 /* 19024 * For IPv4, we derive source addresses for an IRE from ipif's 19025 * belonging to the same IPMP group as the IRE's outgoing 19026 * interface. If an IRE's outgoing interface isn't in the 19027 * same IPMP group as a particular ipif, then that ipif 19028 * couldn't have been used as a source address for this IRE. 19029 * 19030 * For IPv6, source addresses are only restricted to the IPMP group 19031 * if the IRE is for a link-local address or a multicast address. 19032 * Otherwise, source addresses for an IRE can be chosen from 19033 * interfaces other than the the outgoing interface for that IRE. 19034 * 19035 * For source address selection details, see ipif_select_source() 19036 * and ipif_select_source_v6(). 19037 */ 19038 if (ire->ire_ipversion == IPV4_VERSION || 19039 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19040 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19041 ire_ill = ire->ire_ipif->ipif_ill; 19042 ipif_ill = ipif->ipif_ill; 19043 19044 if (ire_ill->ill_group != ipif_ill->ill_group) { 19045 return; 19046 } 19047 } 19048 19049 19050 if (ire->ire_ipif != ipif) { 19051 /* 19052 * Look for a matching source address. 19053 */ 19054 if (ire->ire_type != IRE_CACHE) 19055 return; 19056 if (ipif->ipif_flags & IPIF_NOLOCAL) 19057 return; 19058 19059 if (ire->ire_ipversion == IPV4_VERSION) { 19060 if (ire->ire_src_addr != ipif->ipif_src_addr) 19061 return; 19062 } else { 19063 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19064 &ipif->ipif_v6lcl_addr)) 19065 return; 19066 } 19067 ire_delete(ire); 19068 return; 19069 } 19070 /* 19071 * ire_delete() will do an ire_flush_cache which will delete 19072 * all ire_ipif matches 19073 */ 19074 ire_delete(ire); 19075 } 19076 19077 /* 19078 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19079 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19080 * 2) when an interface is brought up or down (on that ill). 19081 * This ensures that the IRE_CACHE entries don't retain stale source 19082 * address selection results. 19083 */ 19084 void 19085 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19086 { 19087 ill_t *ill = (ill_t *)ill_arg; 19088 ill_t *ipif_ill; 19089 19090 ASSERT(IAM_WRITER_ILL(ill)); 19091 /* 19092 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19093 * Hence this should be IRE_CACHE. 19094 */ 19095 ASSERT(ire->ire_type == IRE_CACHE); 19096 19097 /* 19098 * We are called for IRE_CACHES whose ire_ipif matches ill. 19099 * We are only interested in IRE_CACHES that has borrowed 19100 * the source address from ill_arg e.g. ipif_up_done[_v6] 19101 * for which we need to look at ire_ipif->ipif_ill match 19102 * with ill. 19103 */ 19104 ASSERT(ire->ire_ipif != NULL); 19105 ipif_ill = ire->ire_ipif->ipif_ill; 19106 if (ipif_ill == ill || (ill->ill_group != NULL && 19107 ipif_ill->ill_group == ill->ill_group)) { 19108 ire_delete(ire); 19109 } 19110 } 19111 19112 /* 19113 * Delete all the ire whose stq references ill_arg. 19114 */ 19115 static void 19116 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19117 { 19118 ill_t *ill = (ill_t *)ill_arg; 19119 ill_t *ire_ill; 19120 19121 ASSERT(IAM_WRITER_ILL(ill)); 19122 /* 19123 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19124 * Hence this should be IRE_CACHE. 19125 */ 19126 ASSERT(ire->ire_type == IRE_CACHE); 19127 19128 /* 19129 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19130 * matches ill. We are only interested in IRE_CACHES that 19131 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19132 * filtering here. 19133 */ 19134 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19135 19136 if (ire_ill == ill) 19137 ire_delete(ire); 19138 } 19139 19140 /* 19141 * This is called when an ill leaves the group. We want to delete 19142 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19143 * pointing at ill. 19144 */ 19145 static void 19146 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19147 { 19148 ill_t *ill = (ill_t *)ill_arg; 19149 19150 ASSERT(IAM_WRITER_ILL(ill)); 19151 ASSERT(ill->ill_group == NULL); 19152 /* 19153 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19154 * Hence this should be IRE_CACHE. 19155 */ 19156 ASSERT(ire->ire_type == IRE_CACHE); 19157 /* 19158 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19159 * matches ill. We are interested in both. 19160 */ 19161 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19162 (ire->ire_ipif->ipif_ill == ill)); 19163 19164 ire_delete(ire); 19165 } 19166 19167 /* 19168 * Initiate deallocate of an IPIF. Always called as writer. Called by 19169 * ill_delete or ip_sioctl_removeif. 19170 */ 19171 static void 19172 ipif_free(ipif_t *ipif) 19173 { 19174 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19175 19176 ASSERT(IAM_WRITER_IPIF(ipif)); 19177 19178 if (ipif->ipif_recovery_id != 0) 19179 (void) untimeout(ipif->ipif_recovery_id); 19180 ipif->ipif_recovery_id = 0; 19181 19182 /* Remove conn references */ 19183 reset_conn_ipif(ipif); 19184 19185 /* 19186 * Make sure we have valid net and subnet broadcast ire's for the 19187 * other ipif's which share them with this ipif. 19188 */ 19189 if (!ipif->ipif_isv6) 19190 ipif_check_bcast_ires(ipif); 19191 19192 /* 19193 * Take down the interface. We can be called either from ill_delete 19194 * or from ip_sioctl_removeif. 19195 */ 19196 (void) ipif_down(ipif, NULL, NULL); 19197 19198 /* 19199 * Now that the interface is down, there's no chance it can still 19200 * become a duplicate. Cancel any timer that may have been set while 19201 * tearing down. 19202 */ 19203 if (ipif->ipif_recovery_id != 0) 19204 (void) untimeout(ipif->ipif_recovery_id); 19205 ipif->ipif_recovery_id = 0; 19206 19207 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19208 /* Remove pointers to this ill in the multicast routing tables */ 19209 reset_mrt_vif_ipif(ipif); 19210 rw_exit(&ipst->ips_ill_g_lock); 19211 } 19212 19213 /* 19214 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19215 * also ill_move(). 19216 */ 19217 static void 19218 ipif_free_tail(ipif_t *ipif) 19219 { 19220 mblk_t *mp; 19221 ipif_t **ipifp; 19222 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19223 19224 /* 19225 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19226 */ 19227 mutex_enter(&ipif->ipif_saved_ire_lock); 19228 mp = ipif->ipif_saved_ire_mp; 19229 ipif->ipif_saved_ire_mp = NULL; 19230 mutex_exit(&ipif->ipif_saved_ire_lock); 19231 freemsg(mp); 19232 19233 /* 19234 * Need to hold both ill_g_lock and ill_lock while 19235 * inserting or removing an ipif from the linked list 19236 * of ipifs hanging off the ill. 19237 */ 19238 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19239 /* 19240 * Remove all multicast memberships on the interface now. 19241 * This removes IPv4 multicast memberships joined within 19242 * the kernel as ipif_down does not do ipif_multicast_down 19243 * for IPv4. IPv6 is not handled here as the multicast memberships 19244 * are based on ill and not on ipif. 19245 */ 19246 ilm_free(ipif); 19247 19248 /* 19249 * Since we held the ill_g_lock while doing the ilm_free above, 19250 * we can assert the ilms were really deleted and not just marked 19251 * ILM_DELETED. 19252 */ 19253 ASSERT(ilm_walk_ipif(ipif) == 0); 19254 19255 19256 IPIF_TRACE_CLEANUP(ipif); 19257 19258 /* Ask SCTP to take it out of it list */ 19259 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19260 19261 mutex_enter(&ipif->ipif_ill->ill_lock); 19262 /* Get it out of the ILL interface list. */ 19263 ipifp = &ipif->ipif_ill->ill_ipif; 19264 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19265 if (*ipifp == ipif) { 19266 *ipifp = ipif->ipif_next; 19267 break; 19268 } 19269 } 19270 19271 mutex_exit(&ipif->ipif_ill->ill_lock); 19272 rw_exit(&ipst->ips_ill_g_lock); 19273 19274 mutex_destroy(&ipif->ipif_saved_ire_lock); 19275 19276 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19277 ASSERT(ipif->ipif_recovery_id == 0); 19278 19279 /* Free the memory. */ 19280 mi_free((char *)ipif); 19281 } 19282 19283 /* 19284 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19285 * "ill_name" otherwise. 19286 */ 19287 char * 19288 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19289 { 19290 char lbuf[32]; 19291 char *name; 19292 size_t name_len; 19293 19294 buf[0] = '\0'; 19295 if (!ipif) 19296 return (buf); 19297 name = ipif->ipif_ill->ill_name; 19298 name_len = ipif->ipif_ill->ill_name_length; 19299 if (ipif->ipif_id != 0) { 19300 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19301 ipif->ipif_id); 19302 name = lbuf; 19303 name_len = mi_strlen(name) + 1; 19304 } 19305 len -= 1; 19306 buf[len] = '\0'; 19307 len = MIN(len, name_len); 19308 bcopy(name, buf, len); 19309 return (buf); 19310 } 19311 19312 /* 19313 * Find an IPIF based on the name passed in. Names can be of the 19314 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19315 * The <phys> string can have forms like <dev><#> (e.g., le0), 19316 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19317 * When there is no colon, the implied unit id is zero. <phys> must 19318 * correspond to the name of an ILL. (May be called as writer.) 19319 */ 19320 static ipif_t * 19321 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19322 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19323 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19324 { 19325 char *cp; 19326 char *endp; 19327 long id; 19328 ill_t *ill; 19329 ipif_t *ipif; 19330 uint_t ire_type; 19331 boolean_t did_alloc = B_FALSE; 19332 ipsq_t *ipsq; 19333 19334 if (error != NULL) 19335 *error = 0; 19336 19337 /* 19338 * If the caller wants to us to create the ipif, make sure we have a 19339 * valid zoneid 19340 */ 19341 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19342 19343 if (namelen == 0) { 19344 if (error != NULL) 19345 *error = ENXIO; 19346 return (NULL); 19347 } 19348 19349 *exists = B_FALSE; 19350 /* Look for a colon in the name. */ 19351 endp = &name[namelen]; 19352 for (cp = endp; --cp > name; ) { 19353 if (*cp == IPIF_SEPARATOR_CHAR) 19354 break; 19355 } 19356 19357 if (*cp == IPIF_SEPARATOR_CHAR) { 19358 /* 19359 * Reject any non-decimal aliases for logical 19360 * interfaces. Aliases with leading zeroes 19361 * are also rejected as they introduce ambiguity 19362 * in the naming of the interfaces. 19363 * In order to confirm with existing semantics, 19364 * and to not break any programs/script relying 19365 * on that behaviour, if<0>:0 is considered to be 19366 * a valid interface. 19367 * 19368 * If alias has two or more digits and the first 19369 * is zero, fail. 19370 */ 19371 if (&cp[2] < endp && cp[1] == '0') 19372 return (NULL); 19373 } 19374 19375 if (cp <= name) { 19376 cp = endp; 19377 } else { 19378 *cp = '\0'; 19379 } 19380 19381 /* 19382 * Look up the ILL, based on the portion of the name 19383 * before the slash. ill_lookup_on_name returns a held ill. 19384 * Temporary to check whether ill exists already. If so 19385 * ill_lookup_on_name will clear it. 19386 */ 19387 ill = ill_lookup_on_name(name, do_alloc, isv6, 19388 q, mp, func, error, &did_alloc, ipst); 19389 if (cp != endp) 19390 *cp = IPIF_SEPARATOR_CHAR; 19391 if (ill == NULL) 19392 return (NULL); 19393 19394 /* Establish the unit number in the name. */ 19395 id = 0; 19396 if (cp < endp && *endp == '\0') { 19397 /* If there was a colon, the unit number follows. */ 19398 cp++; 19399 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19400 ill_refrele(ill); 19401 if (error != NULL) 19402 *error = ENXIO; 19403 return (NULL); 19404 } 19405 } 19406 19407 GRAB_CONN_LOCK(q); 19408 mutex_enter(&ill->ill_lock); 19409 /* Now see if there is an IPIF with this unit number. */ 19410 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19411 if (ipif->ipif_id == id) { 19412 if (zoneid != ALL_ZONES && 19413 zoneid != ipif->ipif_zoneid && 19414 ipif->ipif_zoneid != ALL_ZONES) { 19415 mutex_exit(&ill->ill_lock); 19416 RELEASE_CONN_LOCK(q); 19417 ill_refrele(ill); 19418 if (error != NULL) 19419 *error = ENXIO; 19420 return (NULL); 19421 } 19422 /* 19423 * The block comment at the start of ipif_down 19424 * explains the use of the macros used below 19425 */ 19426 if (IPIF_CAN_LOOKUP(ipif)) { 19427 ipif_refhold_locked(ipif); 19428 mutex_exit(&ill->ill_lock); 19429 if (!did_alloc) 19430 *exists = B_TRUE; 19431 /* 19432 * Drop locks before calling ill_refrele 19433 * since it can potentially call into 19434 * ipif_ill_refrele_tail which can end up 19435 * in trying to acquire any lock. 19436 */ 19437 RELEASE_CONN_LOCK(q); 19438 ill_refrele(ill); 19439 return (ipif); 19440 } else if (IPIF_CAN_WAIT(ipif, q)) { 19441 ipsq = ill->ill_phyint->phyint_ipsq; 19442 mutex_enter(&ipsq->ipsq_lock); 19443 mutex_exit(&ill->ill_lock); 19444 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19445 mutex_exit(&ipsq->ipsq_lock); 19446 RELEASE_CONN_LOCK(q); 19447 ill_refrele(ill); 19448 *error = EINPROGRESS; 19449 return (NULL); 19450 } 19451 } 19452 } 19453 RELEASE_CONN_LOCK(q); 19454 19455 if (!do_alloc) { 19456 mutex_exit(&ill->ill_lock); 19457 ill_refrele(ill); 19458 if (error != NULL) 19459 *error = ENXIO; 19460 return (NULL); 19461 } 19462 19463 /* 19464 * If none found, atomically allocate and return a new one. 19465 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19466 * to support "receive only" use of lo0:1 etc. as is still done 19467 * below as an initial guess. 19468 * However, this is now likely to be overriden later in ipif_up_done() 19469 * when we know for sure what address has been configured on the 19470 * interface, since we might have more than one loopback interface 19471 * with a loopback address, e.g. in the case of zones, and all the 19472 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19473 */ 19474 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19475 ire_type = IRE_LOOPBACK; 19476 else 19477 ire_type = IRE_LOCAL; 19478 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19479 if (ipif != NULL) 19480 ipif_refhold_locked(ipif); 19481 else if (error != NULL) 19482 *error = ENOMEM; 19483 mutex_exit(&ill->ill_lock); 19484 ill_refrele(ill); 19485 return (ipif); 19486 } 19487 19488 /* 19489 * This routine is called whenever a new address comes up on an ipif. If 19490 * we are configured to respond to address mask requests, then we are supposed 19491 * to broadcast an address mask reply at this time. This routine is also 19492 * called if we are already up, but a netmask change is made. This is legal 19493 * but might not make the system manager very popular. (May be called 19494 * as writer.) 19495 */ 19496 void 19497 ipif_mask_reply(ipif_t *ipif) 19498 { 19499 icmph_t *icmph; 19500 ipha_t *ipha; 19501 mblk_t *mp; 19502 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19503 19504 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19505 19506 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19507 return; 19508 19509 /* ICMP mask reply is IPv4 only */ 19510 ASSERT(!ipif->ipif_isv6); 19511 /* ICMP mask reply is not for a loopback interface */ 19512 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19513 19514 mp = allocb(REPLY_LEN, BPRI_HI); 19515 if (mp == NULL) 19516 return; 19517 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19518 19519 ipha = (ipha_t *)mp->b_rptr; 19520 bzero(ipha, REPLY_LEN); 19521 *ipha = icmp_ipha; 19522 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19523 ipha->ipha_src = ipif->ipif_src_addr; 19524 ipha->ipha_dst = ipif->ipif_brd_addr; 19525 ipha->ipha_length = htons(REPLY_LEN); 19526 ipha->ipha_ident = 0; 19527 19528 icmph = (icmph_t *)&ipha[1]; 19529 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19530 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19531 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19532 if (icmph->icmph_checksum == 0) 19533 icmph->icmph_checksum = 0xffff; 19534 19535 put(ipif->ipif_wq, mp); 19536 19537 #undef REPLY_LEN 19538 } 19539 19540 /* 19541 * When the mtu in the ipif changes, we call this routine through ire_walk 19542 * to update all the relevant IREs. 19543 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19544 */ 19545 static void 19546 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19547 { 19548 ipif_t *ipif = (ipif_t *)ipif_arg; 19549 19550 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19551 return; 19552 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19553 } 19554 19555 /* 19556 * When the mtu in the ill changes, we call this routine through ire_walk 19557 * to update all the relevant IREs. 19558 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19559 */ 19560 void 19561 ill_mtu_change(ire_t *ire, char *ill_arg) 19562 { 19563 ill_t *ill = (ill_t *)ill_arg; 19564 19565 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19566 return; 19567 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19568 } 19569 19570 /* 19571 * Join the ipif specific multicast groups. 19572 * Must be called after a mapping has been set up in the resolver. (Always 19573 * called as writer.) 19574 */ 19575 void 19576 ipif_multicast_up(ipif_t *ipif) 19577 { 19578 int err, index; 19579 ill_t *ill; 19580 19581 ASSERT(IAM_WRITER_IPIF(ipif)); 19582 19583 ill = ipif->ipif_ill; 19584 index = ill->ill_phyint->phyint_ifindex; 19585 19586 ip1dbg(("ipif_multicast_up\n")); 19587 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19588 return; 19589 19590 if (ipif->ipif_isv6) { 19591 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19592 return; 19593 19594 /* Join the all hosts multicast address */ 19595 ip1dbg(("ipif_multicast_up - addmulti\n")); 19596 /* 19597 * Passing B_TRUE means we have to join the multicast 19598 * membership on this interface even though this is 19599 * FAILED. If we join on a different one in the group, 19600 * we will not be able to delete the membership later 19601 * as we currently don't track where we join when we 19602 * join within the kernel unlike applications where 19603 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19604 * for more on this. 19605 */ 19606 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19607 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19608 if (err != 0) { 19609 ip0dbg(("ipif_multicast_up: " 19610 "all_hosts_mcast failed %d\n", 19611 err)); 19612 return; 19613 } 19614 /* 19615 * Enable multicast for the solicited node multicast address 19616 */ 19617 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19618 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19619 19620 ipv6_multi.s6_addr32[3] |= 19621 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19622 19623 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19624 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19625 NULL); 19626 if (err != 0) { 19627 ip0dbg(("ipif_multicast_up: solicited MC" 19628 " failed %d\n", err)); 19629 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19630 ill, ill->ill_phyint->phyint_ifindex, 19631 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19632 return; 19633 } 19634 } 19635 } else { 19636 if (ipif->ipif_lcl_addr == INADDR_ANY) 19637 return; 19638 19639 /* Join the all hosts multicast address */ 19640 ip1dbg(("ipif_multicast_up - addmulti\n")); 19641 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19642 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19643 if (err) { 19644 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19645 return; 19646 } 19647 } 19648 ipif->ipif_multicast_up = 1; 19649 } 19650 19651 /* 19652 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19653 * any explicit memberships are blown away in ill_leave_multicast() when the 19654 * ill is brought down. 19655 */ 19656 static void 19657 ipif_multicast_down(ipif_t *ipif) 19658 { 19659 int err; 19660 19661 ASSERT(IAM_WRITER_IPIF(ipif)); 19662 19663 ip1dbg(("ipif_multicast_down\n")); 19664 if (!ipif->ipif_multicast_up) 19665 return; 19666 19667 ASSERT(ipif->ipif_isv6); 19668 19669 ip1dbg(("ipif_multicast_down - delmulti\n")); 19670 19671 /* 19672 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19673 * we should look for ilms on this ill rather than the ones that have 19674 * been failed over here. They are here temporarily. As 19675 * ipif_multicast_up has joined on this ill, we should delete only 19676 * from this ill. 19677 */ 19678 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19679 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19680 B_TRUE, B_TRUE); 19681 if (err != 0) { 19682 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19683 err)); 19684 } 19685 /* 19686 * Disable multicast for the solicited node multicast address 19687 */ 19688 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19689 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19690 19691 ipv6_multi.s6_addr32[3] |= 19692 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19693 19694 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19695 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19696 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19697 19698 if (err != 0) { 19699 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19700 err)); 19701 } 19702 } 19703 19704 ipif->ipif_multicast_up = 0; 19705 } 19706 19707 /* 19708 * Used when an interface comes up to recreate any extra routes on this 19709 * interface. 19710 */ 19711 static ire_t ** 19712 ipif_recover_ire(ipif_t *ipif) 19713 { 19714 mblk_t *mp; 19715 ire_t **ipif_saved_irep; 19716 ire_t **irep; 19717 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19718 19719 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19720 ipif->ipif_id)); 19721 19722 mutex_enter(&ipif->ipif_saved_ire_lock); 19723 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19724 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19725 if (ipif_saved_irep == NULL) { 19726 mutex_exit(&ipif->ipif_saved_ire_lock); 19727 return (NULL); 19728 } 19729 19730 irep = ipif_saved_irep; 19731 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19732 ire_t *ire; 19733 queue_t *rfq; 19734 queue_t *stq; 19735 ifrt_t *ifrt; 19736 uchar_t *src_addr; 19737 uchar_t *gateway_addr; 19738 mblk_t *resolver_mp; 19739 ushort_t type; 19740 19741 /* 19742 * When the ire was initially created and then added in 19743 * ip_rt_add(), it was created either using ipif->ipif_net_type 19744 * in the case of a traditional interface route, or as one of 19745 * the IRE_OFFSUBNET types (with the exception of 19746 * IRE_HOST types ire which is created by icmp_redirect() and 19747 * which we don't need to save or recover). In the case where 19748 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19749 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19750 * to satisfy software like GateD and Sun Cluster which creates 19751 * routes using the the loopback interface's address as a 19752 * gateway. 19753 * 19754 * As ifrt->ifrt_type reflects the already updated ire_type and 19755 * since ire_create() expects that IRE_IF_NORESOLVER will have 19756 * a valid nce_res_mp field (which doesn't make sense for a 19757 * IRE_LOOPBACK), ire_create() will be called in the same way 19758 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19759 * the route looks like a traditional interface route (where 19760 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19761 * the saved ifrt->ifrt_type. This means that in the case where 19762 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19763 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19764 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19765 */ 19766 ifrt = (ifrt_t *)mp->b_rptr; 19767 if (ifrt->ifrt_type & IRE_INTERFACE) { 19768 rfq = NULL; 19769 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19770 ? ipif->ipif_rq : ipif->ipif_wq; 19771 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19772 ? (uint8_t *)&ifrt->ifrt_src_addr 19773 : (uint8_t *)&ipif->ipif_src_addr; 19774 gateway_addr = NULL; 19775 resolver_mp = ipif->ipif_resolver_mp; 19776 type = ipif->ipif_net_type; 19777 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19778 /* Recover multiroute broadcast IRE. */ 19779 rfq = ipif->ipif_rq; 19780 stq = ipif->ipif_wq; 19781 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19782 ? (uint8_t *)&ifrt->ifrt_src_addr 19783 : (uint8_t *)&ipif->ipif_src_addr; 19784 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19785 resolver_mp = ipif->ipif_bcast_mp; 19786 type = ifrt->ifrt_type; 19787 } else { 19788 rfq = NULL; 19789 stq = NULL; 19790 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19791 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19792 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19793 resolver_mp = NULL; 19794 type = ifrt->ifrt_type; 19795 } 19796 19797 /* 19798 * Create a copy of the IRE with the saved address and netmask. 19799 */ 19800 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19801 "0x%x/0x%x\n", 19802 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19803 ntohl(ifrt->ifrt_addr), 19804 ntohl(ifrt->ifrt_mask))); 19805 ire = ire_create( 19806 (uint8_t *)&ifrt->ifrt_addr, 19807 (uint8_t *)&ifrt->ifrt_mask, 19808 src_addr, 19809 gateway_addr, 19810 NULL, 19811 &ifrt->ifrt_max_frag, 19812 NULL, 19813 rfq, 19814 stq, 19815 type, 19816 resolver_mp, 19817 ipif, 19818 NULL, 19819 0, 19820 0, 19821 0, 19822 ifrt->ifrt_flags, 19823 &ifrt->ifrt_iulp_info, 19824 NULL, 19825 NULL, 19826 ipst); 19827 19828 if (ire == NULL) { 19829 mutex_exit(&ipif->ipif_saved_ire_lock); 19830 kmem_free(ipif_saved_irep, 19831 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19832 return (NULL); 19833 } 19834 19835 /* 19836 * Some software (for example, GateD and Sun Cluster) attempts 19837 * to create (what amount to) IRE_PREFIX routes with the 19838 * loopback address as the gateway. This is primarily done to 19839 * set up prefixes with the RTF_REJECT flag set (for example, 19840 * when generating aggregate routes.) 19841 * 19842 * If the IRE type (as defined by ipif->ipif_net_type) is 19843 * IRE_LOOPBACK, then we map the request into a 19844 * IRE_IF_NORESOLVER. 19845 */ 19846 if (ipif->ipif_net_type == IRE_LOOPBACK) 19847 ire->ire_type = IRE_IF_NORESOLVER; 19848 /* 19849 * ire held by ire_add, will be refreled' towards the 19850 * the end of ipif_up_done 19851 */ 19852 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19853 *irep = ire; 19854 irep++; 19855 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19856 } 19857 mutex_exit(&ipif->ipif_saved_ire_lock); 19858 return (ipif_saved_irep); 19859 } 19860 19861 /* 19862 * Used to set the netmask and broadcast address to default values when the 19863 * interface is brought up. (Always called as writer.) 19864 */ 19865 static void 19866 ipif_set_default(ipif_t *ipif) 19867 { 19868 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19869 19870 if (!ipif->ipif_isv6) { 19871 /* 19872 * Interface holds an IPv4 address. Default 19873 * mask is the natural netmask. 19874 */ 19875 if (!ipif->ipif_net_mask) { 19876 ipaddr_t v4mask; 19877 19878 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19879 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19880 } 19881 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19882 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19883 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19884 } else { 19885 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19886 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19887 } 19888 /* 19889 * NOTE: SunOS 4.X does this even if the broadcast address 19890 * has been already set thus we do the same here. 19891 */ 19892 if (ipif->ipif_flags & IPIF_BROADCAST) { 19893 ipaddr_t v4addr; 19894 19895 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19896 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19897 } 19898 } else { 19899 /* 19900 * Interface holds an IPv6-only address. Default 19901 * mask is all-ones. 19902 */ 19903 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19904 ipif->ipif_v6net_mask = ipv6_all_ones; 19905 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19906 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19907 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19908 } else { 19909 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19910 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19911 } 19912 } 19913 } 19914 19915 /* 19916 * Return 0 if this address can be used as local address without causing 19917 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19918 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19919 * Special checks are needed to allow the same IPv6 link-local address 19920 * on different ills. 19921 * TODO: allowing the same site-local address on different ill's. 19922 */ 19923 int 19924 ip_addr_availability_check(ipif_t *new_ipif) 19925 { 19926 in6_addr_t our_v6addr; 19927 ill_t *ill; 19928 ipif_t *ipif; 19929 ill_walk_context_t ctx; 19930 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19931 19932 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19933 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19934 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19935 19936 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19937 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19938 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19939 return (0); 19940 19941 our_v6addr = new_ipif->ipif_v6lcl_addr; 19942 19943 if (new_ipif->ipif_isv6) 19944 ill = ILL_START_WALK_V6(&ctx, ipst); 19945 else 19946 ill = ILL_START_WALK_V4(&ctx, ipst); 19947 19948 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19949 for (ipif = ill->ill_ipif; ipif != NULL; 19950 ipif = ipif->ipif_next) { 19951 if ((ipif == new_ipif) || 19952 !(ipif->ipif_flags & IPIF_UP) || 19953 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19954 continue; 19955 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19956 &our_v6addr)) { 19957 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19958 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19959 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19960 ipif->ipif_flags |= IPIF_UNNUMBERED; 19961 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19962 new_ipif->ipif_ill != ill) 19963 continue; 19964 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19965 new_ipif->ipif_ill != ill) 19966 continue; 19967 else if (new_ipif->ipif_zoneid != 19968 ipif->ipif_zoneid && 19969 ipif->ipif_zoneid != ALL_ZONES && 19970 (ill->ill_phyint->phyint_flags & 19971 PHYI_LOOPBACK)) 19972 continue; 19973 else if (new_ipif->ipif_ill == ill) 19974 return (EADDRINUSE); 19975 else 19976 return (EADDRNOTAVAIL); 19977 } 19978 } 19979 } 19980 19981 return (0); 19982 } 19983 19984 /* 19985 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19986 * IREs for the ipif. 19987 * When the routine returns EINPROGRESS then mp has been consumed and 19988 * the ioctl will be acked from ip_rput_dlpi. 19989 */ 19990 static int 19991 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19992 { 19993 ill_t *ill = ipif->ipif_ill; 19994 boolean_t isv6 = ipif->ipif_isv6; 19995 int err = 0; 19996 boolean_t success; 19997 19998 ASSERT(IAM_WRITER_IPIF(ipif)); 19999 20000 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20001 20002 /* Shouldn't get here if it is already up. */ 20003 if (ipif->ipif_flags & IPIF_UP) 20004 return (EALREADY); 20005 20006 /* Skip arp/ndp for any loopback interface. */ 20007 if (ill->ill_wq != NULL) { 20008 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20009 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20010 20011 if (!ill->ill_dl_up) { 20012 /* 20013 * ill_dl_up is not yet set. i.e. we are yet to 20014 * DL_BIND with the driver and this is the first 20015 * logical interface on the ill to become "up". 20016 * Tell the driver to get going (via DL_BIND_REQ). 20017 * Note that changing "significant" IFF_ flags 20018 * address/netmask etc cause a down/up dance, but 20019 * does not cause an unbind (DL_UNBIND) with the driver 20020 */ 20021 return (ill_dl_up(ill, ipif, mp, q)); 20022 } 20023 20024 /* 20025 * ipif_resolver_up may end up sending an 20026 * AR_INTERFACE_UP message to ARP, which would, in 20027 * turn send a DLPI message to the driver. ioctls are 20028 * serialized and so we cannot send more than one 20029 * interface up message at a time. If ipif_resolver_up 20030 * does send an interface up message to ARP, we get 20031 * EINPROGRESS and we will complete in ip_arp_done. 20032 */ 20033 20034 ASSERT(connp != NULL || !CONN_Q(q)); 20035 ASSERT(ipsq->ipsq_pending_mp == NULL); 20036 if (connp != NULL) 20037 mutex_enter(&connp->conn_lock); 20038 mutex_enter(&ill->ill_lock); 20039 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20040 mutex_exit(&ill->ill_lock); 20041 if (connp != NULL) 20042 mutex_exit(&connp->conn_lock); 20043 if (!success) 20044 return (EINTR); 20045 20046 /* 20047 * Crank up IPv6 neighbor discovery 20048 * Unlike ARP, this should complete when 20049 * ipif_ndp_up returns. However, for 20050 * ILLF_XRESOLV interfaces we also send a 20051 * AR_INTERFACE_UP to the external resolver. 20052 * That ioctl will complete in ip_rput. 20053 */ 20054 if (isv6) { 20055 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20056 if (err != 0) { 20057 if (err != EINPROGRESS) 20058 mp = ipsq_pending_mp_get(ipsq, &connp); 20059 return (err); 20060 } 20061 } 20062 /* Now, ARP */ 20063 err = ipif_resolver_up(ipif, Res_act_initial); 20064 if (err == EINPROGRESS) { 20065 /* We will complete it in ip_arp_done */ 20066 return (err); 20067 } 20068 mp = ipsq_pending_mp_get(ipsq, &connp); 20069 ASSERT(mp != NULL); 20070 if (err != 0) 20071 return (err); 20072 } else { 20073 /* 20074 * Interfaces without underlying hardware don't do duplicate 20075 * address detection. 20076 */ 20077 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20078 ipif->ipif_addr_ready = 1; 20079 } 20080 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20081 } 20082 20083 /* 20084 * Perform a bind for the physical device. 20085 * When the routine returns EINPROGRESS then mp has been consumed and 20086 * the ioctl will be acked from ip_rput_dlpi. 20087 * Allocate an unbind message and save it until ipif_down. 20088 */ 20089 static int 20090 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20091 { 20092 mblk_t *areq_mp = NULL; 20093 mblk_t *bind_mp = NULL; 20094 mblk_t *unbind_mp = NULL; 20095 conn_t *connp; 20096 boolean_t success; 20097 20098 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20099 ASSERT(IAM_WRITER_ILL(ill)); 20100 20101 ASSERT(mp != NULL); 20102 20103 /* Create a resolver cookie for ARP */ 20104 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20105 areq_t *areq; 20106 uint16_t sap_addr; 20107 20108 areq_mp = ill_arp_alloc(ill, 20109 (uchar_t *)&ip_areq_template, 0); 20110 if (areq_mp == NULL) { 20111 return (ENOMEM); 20112 } 20113 freemsg(ill->ill_resolver_mp); 20114 ill->ill_resolver_mp = areq_mp; 20115 areq = (areq_t *)areq_mp->b_rptr; 20116 sap_addr = ill->ill_sap; 20117 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20118 /* 20119 * Wait till we call ill_pending_mp_add to determine 20120 * the success before we free the ill_resolver_mp and 20121 * attach areq_mp in it's place. 20122 */ 20123 } 20124 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20125 DL_BIND_REQ); 20126 if (bind_mp == NULL) 20127 goto bad; 20128 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20129 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20130 20131 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20132 if (unbind_mp == NULL) 20133 goto bad; 20134 20135 /* 20136 * Record state needed to complete this operation when the 20137 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20138 */ 20139 ASSERT(WR(q)->q_next == NULL); 20140 connp = Q_TO_CONN(q); 20141 20142 mutex_enter(&connp->conn_lock); 20143 mutex_enter(&ipif->ipif_ill->ill_lock); 20144 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20145 mutex_exit(&ipif->ipif_ill->ill_lock); 20146 mutex_exit(&connp->conn_lock); 20147 if (!success) 20148 goto bad; 20149 20150 /* 20151 * Save the unbind message for ill_dl_down(); it will be consumed when 20152 * the interface goes down. 20153 */ 20154 ASSERT(ill->ill_unbind_mp == NULL); 20155 ill->ill_unbind_mp = unbind_mp; 20156 20157 ill_dlpi_send(ill, bind_mp); 20158 /* Send down link-layer capabilities probe if not already done. */ 20159 ill_capability_probe(ill); 20160 20161 /* 20162 * Sysid used to rely on the fact that netboots set domainname 20163 * and the like. Now that miniroot boots aren't strictly netboots 20164 * and miniroot network configuration is driven from userland 20165 * these things still need to be set. This situation can be detected 20166 * by comparing the interface being configured here to the one 20167 * dhcack was set to reference by the boot loader. Once sysid is 20168 * converted to use dhcp_ipc_getinfo() this call can go away. 20169 */ 20170 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20171 (strcmp(ill->ill_name, dhcack) == 0) && 20172 (strlen(srpc_domain) == 0)) { 20173 if (dhcpinit() != 0) 20174 cmn_err(CE_WARN, "no cached dhcp response"); 20175 } 20176 20177 /* 20178 * This operation will complete in ip_rput_dlpi with either 20179 * a DL_BIND_ACK or DL_ERROR_ACK. 20180 */ 20181 return (EINPROGRESS); 20182 bad: 20183 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20184 /* 20185 * We don't have to check for possible removal from illgrp 20186 * as we have not yet inserted in illgrp. For groups 20187 * without names, this ipif is still not UP and hence 20188 * this could not have possibly had any influence in forming 20189 * groups. 20190 */ 20191 20192 freemsg(bind_mp); 20193 freemsg(unbind_mp); 20194 return (ENOMEM); 20195 } 20196 20197 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20198 20199 /* 20200 * DLPI and ARP is up. 20201 * Create all the IREs associated with an interface bring up multicast. 20202 * Set the interface flag and finish other initialization 20203 * that potentially had to be differed to after DL_BIND_ACK. 20204 */ 20205 int 20206 ipif_up_done(ipif_t *ipif) 20207 { 20208 ire_t *ire_array[20]; 20209 ire_t **irep = ire_array; 20210 ire_t **irep1; 20211 ipaddr_t net_mask = 0; 20212 ipaddr_t subnet_mask, route_mask; 20213 ill_t *ill = ipif->ipif_ill; 20214 queue_t *stq; 20215 ipif_t *src_ipif; 20216 ipif_t *tmp_ipif; 20217 boolean_t flush_ire_cache = B_TRUE; 20218 int err = 0; 20219 phyint_t *phyi; 20220 ire_t **ipif_saved_irep = NULL; 20221 int ipif_saved_ire_cnt; 20222 int cnt; 20223 boolean_t src_ipif_held = B_FALSE; 20224 boolean_t ire_added = B_FALSE; 20225 boolean_t loopback = B_FALSE; 20226 ip_stack_t *ipst = ill->ill_ipst; 20227 20228 ip1dbg(("ipif_up_done(%s:%u)\n", 20229 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20230 /* Check if this is a loopback interface */ 20231 if (ipif->ipif_ill->ill_wq == NULL) 20232 loopback = B_TRUE; 20233 20234 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20235 /* 20236 * If all other interfaces for this ill are down or DEPRECATED, 20237 * or otherwise unsuitable for source address selection, remove 20238 * any IRE_CACHE entries for this ill to make sure source 20239 * address selection gets to take this new ipif into account. 20240 * No need to hold ill_lock while traversing the ipif list since 20241 * we are writer 20242 */ 20243 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20244 tmp_ipif = tmp_ipif->ipif_next) { 20245 if (((tmp_ipif->ipif_flags & 20246 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20247 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20248 (tmp_ipif == ipif)) 20249 continue; 20250 /* first useable pre-existing interface */ 20251 flush_ire_cache = B_FALSE; 20252 break; 20253 } 20254 if (flush_ire_cache) 20255 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20256 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20257 20258 /* 20259 * Figure out which way the send-to queue should go. Only 20260 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20261 * should show up here. 20262 */ 20263 switch (ill->ill_net_type) { 20264 case IRE_IF_RESOLVER: 20265 stq = ill->ill_rq; 20266 break; 20267 case IRE_IF_NORESOLVER: 20268 case IRE_LOOPBACK: 20269 stq = ill->ill_wq; 20270 break; 20271 default: 20272 return (EINVAL); 20273 } 20274 20275 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20276 /* 20277 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20278 * ipif_lookup_on_name(), but in the case of zones we can have 20279 * several loopback addresses on lo0. So all the interfaces with 20280 * loopback addresses need to be marked IRE_LOOPBACK. 20281 */ 20282 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20283 htonl(INADDR_LOOPBACK)) 20284 ipif->ipif_ire_type = IRE_LOOPBACK; 20285 else 20286 ipif->ipif_ire_type = IRE_LOCAL; 20287 } 20288 20289 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20290 /* 20291 * Can't use our source address. Select a different 20292 * source address for the IRE_INTERFACE and IRE_LOCAL 20293 */ 20294 src_ipif = ipif_select_source(ipif->ipif_ill, 20295 ipif->ipif_subnet, ipif->ipif_zoneid); 20296 if (src_ipif == NULL) 20297 src_ipif = ipif; /* Last resort */ 20298 else 20299 src_ipif_held = B_TRUE; 20300 } else { 20301 src_ipif = ipif; 20302 } 20303 20304 /* Create all the IREs associated with this interface */ 20305 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20306 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20307 20308 /* 20309 * If we're on a labeled system then make sure that zone- 20310 * private addresses have proper remote host database entries. 20311 */ 20312 if (is_system_labeled() && 20313 ipif->ipif_ire_type != IRE_LOOPBACK && 20314 !tsol_check_interface_address(ipif)) 20315 return (EINVAL); 20316 20317 /* Register the source address for __sin6_src_id */ 20318 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20319 ipif->ipif_zoneid, ipst); 20320 if (err != 0) { 20321 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20322 return (err); 20323 } 20324 20325 /* If the interface address is set, create the local IRE. */ 20326 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20327 (void *)ipif, 20328 ipif->ipif_ire_type, 20329 ntohl(ipif->ipif_lcl_addr))); 20330 *irep++ = ire_create( 20331 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20332 (uchar_t *)&ip_g_all_ones, /* mask */ 20333 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20334 NULL, /* no gateway */ 20335 NULL, 20336 &ip_loopback_mtuplus, /* max frag size */ 20337 NULL, 20338 ipif->ipif_rq, /* recv-from queue */ 20339 NULL, /* no send-to queue */ 20340 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20341 NULL, 20342 ipif, 20343 NULL, 20344 0, 20345 0, 20346 0, 20347 (ipif->ipif_flags & IPIF_PRIVATE) ? 20348 RTF_PRIVATE : 0, 20349 &ire_uinfo_null, 20350 NULL, 20351 NULL, 20352 ipst); 20353 } else { 20354 ip1dbg(( 20355 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20356 ipif->ipif_ire_type, 20357 ntohl(ipif->ipif_lcl_addr), 20358 (uint_t)ipif->ipif_flags)); 20359 } 20360 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20361 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20362 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20363 } else { 20364 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20365 } 20366 20367 subnet_mask = ipif->ipif_net_mask; 20368 20369 /* 20370 * If mask was not specified, use natural netmask of 20371 * interface address. Also, store this mask back into the 20372 * ipif struct. 20373 */ 20374 if (subnet_mask == 0) { 20375 subnet_mask = net_mask; 20376 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20377 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20378 ipif->ipif_v6subnet); 20379 } 20380 20381 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20382 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20383 ipif->ipif_subnet != INADDR_ANY) { 20384 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20385 20386 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20387 route_mask = IP_HOST_MASK; 20388 } else { 20389 route_mask = subnet_mask; 20390 } 20391 20392 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20393 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20394 (void *)ipif, (void *)ill, 20395 ill->ill_net_type, 20396 ntohl(ipif->ipif_subnet))); 20397 *irep++ = ire_create( 20398 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20399 (uchar_t *)&route_mask, /* mask */ 20400 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20401 NULL, /* no gateway */ 20402 NULL, 20403 &ipif->ipif_mtu, /* max frag */ 20404 NULL, 20405 NULL, /* no recv queue */ 20406 stq, /* send-to queue */ 20407 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20408 ill->ill_resolver_mp, /* xmit header */ 20409 ipif, 20410 NULL, 20411 0, 20412 0, 20413 0, 20414 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20415 &ire_uinfo_null, 20416 NULL, 20417 NULL, 20418 ipst); 20419 } 20420 20421 /* 20422 * If the interface address is set, create the broadcast IREs. 20423 * 20424 * ire_create_bcast checks if the proposed new IRE matches 20425 * any existing IRE's with the same physical interface (ILL). 20426 * This should get rid of duplicates. 20427 * ire_create_bcast also check IPIF_NOXMIT and does not create 20428 * any broadcast ires. 20429 */ 20430 if ((ipif->ipif_subnet != INADDR_ANY) && 20431 (ipif->ipif_flags & IPIF_BROADCAST)) { 20432 ipaddr_t addr; 20433 20434 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20435 irep = ire_check_and_create_bcast(ipif, 0, irep, 20436 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20437 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20438 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20439 20440 /* 20441 * For backward compatibility, we need to create net 20442 * broadcast ire's based on the old "IP address class 20443 * system." The reason is that some old machines only 20444 * respond to these class derived net broadcast. 20445 * 20446 * But we should not create these net broadcast ire's if 20447 * the subnet_mask is shorter than the IP address class based 20448 * derived netmask. Otherwise, we may create a net 20449 * broadcast address which is the same as an IP address 20450 * on the subnet. Then TCP will refuse to talk to that 20451 * address. 20452 * 20453 * Nor do we need IRE_BROADCAST ire's for the interface 20454 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20455 * interface is already created. Creating these broadcast 20456 * ire's will only create confusion as the "addr" is going 20457 * to be same as that of the IP address of the interface. 20458 */ 20459 if (net_mask < subnet_mask) { 20460 addr = net_mask & ipif->ipif_subnet; 20461 irep = ire_check_and_create_bcast(ipif, addr, irep, 20462 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20463 irep = ire_check_and_create_bcast(ipif, 20464 ~net_mask | addr, irep, 20465 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20466 } 20467 20468 if (subnet_mask != 0xFFFFFFFF) { 20469 addr = ipif->ipif_subnet; 20470 irep = ire_check_and_create_bcast(ipif, addr, irep, 20471 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20472 irep = ire_check_and_create_bcast(ipif, 20473 ~subnet_mask|addr, irep, 20474 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20475 } 20476 } 20477 20478 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20479 20480 /* If an earlier ire_create failed, get out now */ 20481 for (irep1 = irep; irep1 > ire_array; ) { 20482 irep1--; 20483 if (*irep1 == NULL) { 20484 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20485 err = ENOMEM; 20486 goto bad; 20487 } 20488 } 20489 20490 /* 20491 * Need to atomically check for ip_addr_availablity_check 20492 * under ip_addr_avail_lock, and if it fails got bad, and remove 20493 * from group also.The ill_g_lock is grabbed as reader 20494 * just to make sure no new ills or new ipifs are being added 20495 * to the system while we are checking the uniqueness of addresses. 20496 */ 20497 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20498 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20499 /* Mark it up, and increment counters. */ 20500 ipif->ipif_flags |= IPIF_UP; 20501 ill->ill_ipif_up_count++; 20502 err = ip_addr_availability_check(ipif); 20503 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20504 rw_exit(&ipst->ips_ill_g_lock); 20505 20506 if (err != 0) { 20507 /* 20508 * Our address may already be up on the same ill. In this case, 20509 * the ARP entry for our ipif replaced the one for the other 20510 * ipif. So we don't want to delete it (otherwise the other ipif 20511 * would be unable to send packets). 20512 * ip_addr_availability_check() identifies this case for us and 20513 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20514 * which is the expected error code. 20515 */ 20516 if (err == EADDRINUSE) { 20517 freemsg(ipif->ipif_arp_del_mp); 20518 ipif->ipif_arp_del_mp = NULL; 20519 err = EADDRNOTAVAIL; 20520 } 20521 ill->ill_ipif_up_count--; 20522 ipif->ipif_flags &= ~IPIF_UP; 20523 goto bad; 20524 } 20525 20526 /* 20527 * Add in all newly created IREs. ire_create_bcast() has 20528 * already checked for duplicates of the IRE_BROADCAST type. 20529 * We want to add before we call ifgrp_insert which wants 20530 * to know whether IRE_IF_RESOLVER exists or not. 20531 * 20532 * NOTE : We refrele the ire though we may branch to "bad" 20533 * later on where we do ire_delete. This is okay 20534 * because nobody can delete it as we are running 20535 * exclusively. 20536 */ 20537 for (irep1 = irep; irep1 > ire_array; ) { 20538 irep1--; 20539 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20540 /* 20541 * refheld by ire_add. refele towards the end of the func 20542 */ 20543 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20544 } 20545 ire_added = B_TRUE; 20546 /* 20547 * Form groups if possible. 20548 * 20549 * If we are supposed to be in a ill_group with a name, insert it 20550 * now as we know that at least one ipif is UP. Otherwise form 20551 * nameless groups. 20552 * 20553 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20554 * this ipif into the appropriate interface group, or create a 20555 * new one. If this is already in a nameless group, we try to form 20556 * a bigger group looking at other ills potentially sharing this 20557 * ipif's prefix. 20558 */ 20559 phyi = ill->ill_phyint; 20560 if (phyi->phyint_groupname_len != 0) { 20561 ASSERT(phyi->phyint_groupname != NULL); 20562 if (ill->ill_ipif_up_count == 1) { 20563 ASSERT(ill->ill_group == NULL); 20564 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20565 phyi->phyint_groupname, NULL, B_TRUE); 20566 if (err != 0) { 20567 ip1dbg(("ipif_up_done: illgrp allocation " 20568 "failed, error %d\n", err)); 20569 goto bad; 20570 } 20571 } 20572 ASSERT(ill->ill_group != NULL); 20573 } 20574 20575 /* 20576 * When this is part of group, we need to make sure that 20577 * any broadcast ires created because of this ipif coming 20578 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20579 * so that we don't receive duplicate broadcast packets. 20580 */ 20581 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20582 ipif_renominate_bcast(ipif); 20583 20584 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20585 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20586 ipif_saved_irep = ipif_recover_ire(ipif); 20587 20588 if (!loopback) { 20589 /* 20590 * If the broadcast address has been set, make sure it makes 20591 * sense based on the interface address. 20592 * Only match on ill since we are sharing broadcast addresses. 20593 */ 20594 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20595 (ipif->ipif_flags & IPIF_BROADCAST)) { 20596 ire_t *ire; 20597 20598 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20599 IRE_BROADCAST, ipif, ALL_ZONES, 20600 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20601 20602 if (ire == NULL) { 20603 /* 20604 * If there isn't a matching broadcast IRE, 20605 * revert to the default for this netmask. 20606 */ 20607 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20608 mutex_enter(&ipif->ipif_ill->ill_lock); 20609 ipif_set_default(ipif); 20610 mutex_exit(&ipif->ipif_ill->ill_lock); 20611 } else { 20612 ire_refrele(ire); 20613 } 20614 } 20615 20616 } 20617 20618 /* This is the first interface on this ill */ 20619 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20620 /* 20621 * Need to recover all multicast memberships in the driver. 20622 * This had to be deferred until we had attached. 20623 */ 20624 ill_recover_multicast(ill); 20625 } 20626 /* Join the allhosts multicast address */ 20627 ipif_multicast_up(ipif); 20628 20629 if (!loopback) { 20630 /* 20631 * See whether anybody else would benefit from the 20632 * new ipif that we added. We call this always rather 20633 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20634 * ipif is for the benefit of illgrp_insert (done above) 20635 * which does not do source address selection as it does 20636 * not want to re-create interface routes that we are 20637 * having reference to it here. 20638 */ 20639 ill_update_source_selection(ill); 20640 } 20641 20642 for (irep1 = irep; irep1 > ire_array; ) { 20643 irep1--; 20644 if (*irep1 != NULL) { 20645 /* was held in ire_add */ 20646 ire_refrele(*irep1); 20647 } 20648 } 20649 20650 cnt = ipif_saved_ire_cnt; 20651 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20652 if (*irep1 != NULL) { 20653 /* was held in ire_add */ 20654 ire_refrele(*irep1); 20655 } 20656 } 20657 20658 if (!loopback && ipif->ipif_addr_ready) { 20659 /* Broadcast an address mask reply. */ 20660 ipif_mask_reply(ipif); 20661 } 20662 if (ipif_saved_irep != NULL) { 20663 kmem_free(ipif_saved_irep, 20664 ipif_saved_ire_cnt * sizeof (ire_t *)); 20665 } 20666 if (src_ipif_held) 20667 ipif_refrele(src_ipif); 20668 20669 /* 20670 * This had to be deferred until we had bound. Tell routing sockets and 20671 * others that this interface is up if it looks like the address has 20672 * been validated. Otherwise, if it isn't ready yet, wait for 20673 * duplicate address detection to do its thing. 20674 */ 20675 if (ipif->ipif_addr_ready) { 20676 ip_rts_ifmsg(ipif); 20677 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20678 /* Let SCTP update the status for this ipif */ 20679 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20680 } 20681 return (0); 20682 20683 bad: 20684 ip1dbg(("ipif_up_done: FAILED \n")); 20685 /* 20686 * We don't have to bother removing from ill groups because 20687 * 20688 * 1) For groups with names, we insert only when the first ipif 20689 * comes up. In that case if it fails, it will not be in any 20690 * group. So, we need not try to remove for that case. 20691 * 20692 * 2) For groups without names, either we tried to insert ipif_ill 20693 * in a group as singleton or found some other group to become 20694 * a bigger group. For the former, if it fails we don't have 20695 * anything to do as ipif_ill is not in the group and for the 20696 * latter, there are no failures in illgrp_insert/illgrp_delete 20697 * (ENOMEM can't occur for this. Check ifgrp_insert). 20698 */ 20699 while (irep > ire_array) { 20700 irep--; 20701 if (*irep != NULL) { 20702 ire_delete(*irep); 20703 if (ire_added) 20704 ire_refrele(*irep); 20705 } 20706 } 20707 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20708 20709 if (ipif_saved_irep != NULL) { 20710 kmem_free(ipif_saved_irep, 20711 ipif_saved_ire_cnt * sizeof (ire_t *)); 20712 } 20713 if (src_ipif_held) 20714 ipif_refrele(src_ipif); 20715 20716 ipif_arp_down(ipif); 20717 return (err); 20718 } 20719 20720 /* 20721 * Turn off the ARP with the ILLF_NOARP flag. 20722 */ 20723 static int 20724 ill_arp_off(ill_t *ill) 20725 { 20726 mblk_t *arp_off_mp = NULL; 20727 mblk_t *arp_on_mp = NULL; 20728 20729 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20730 20731 ASSERT(IAM_WRITER_ILL(ill)); 20732 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20733 20734 /* 20735 * If the on message is still around we've already done 20736 * an arp_off without doing an arp_on thus there is no 20737 * work needed. 20738 */ 20739 if (ill->ill_arp_on_mp != NULL) 20740 return (0); 20741 20742 /* 20743 * Allocate an ARP on message (to be saved) and an ARP off message 20744 */ 20745 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20746 if (!arp_off_mp) 20747 return (ENOMEM); 20748 20749 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20750 if (!arp_on_mp) 20751 goto failed; 20752 20753 ASSERT(ill->ill_arp_on_mp == NULL); 20754 ill->ill_arp_on_mp = arp_on_mp; 20755 20756 /* Send an AR_INTERFACE_OFF request */ 20757 putnext(ill->ill_rq, arp_off_mp); 20758 return (0); 20759 failed: 20760 20761 if (arp_off_mp) 20762 freemsg(arp_off_mp); 20763 return (ENOMEM); 20764 } 20765 20766 /* 20767 * Turn on ARP by turning off the ILLF_NOARP flag. 20768 */ 20769 static int 20770 ill_arp_on(ill_t *ill) 20771 { 20772 mblk_t *mp; 20773 20774 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20775 20776 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20777 20778 ASSERT(IAM_WRITER_ILL(ill)); 20779 /* 20780 * Send an AR_INTERFACE_ON request if we have already done 20781 * an arp_off (which allocated the message). 20782 */ 20783 if (ill->ill_arp_on_mp != NULL) { 20784 mp = ill->ill_arp_on_mp; 20785 ill->ill_arp_on_mp = NULL; 20786 putnext(ill->ill_rq, mp); 20787 } 20788 return (0); 20789 } 20790 20791 /* 20792 * Called after either deleting ill from the group or when setting 20793 * FAILED or STANDBY on the interface. 20794 */ 20795 static void 20796 illgrp_reset_schednext(ill_t *ill) 20797 { 20798 ill_group_t *illgrp; 20799 ill_t *save_ill; 20800 20801 ASSERT(IAM_WRITER_ILL(ill)); 20802 /* 20803 * When called from illgrp_delete, ill_group will be non-NULL. 20804 * But when called from ip_sioctl_flags, it could be NULL if 20805 * somebody is setting FAILED/INACTIVE on some interface which 20806 * is not part of a group. 20807 */ 20808 illgrp = ill->ill_group; 20809 if (illgrp == NULL) 20810 return; 20811 if (illgrp->illgrp_ill_schednext != ill) 20812 return; 20813 20814 illgrp->illgrp_ill_schednext = NULL; 20815 save_ill = ill; 20816 /* 20817 * Choose a good ill to be the next one for 20818 * outbound traffic. As the flags FAILED/STANDBY is 20819 * not yet marked when called from ip_sioctl_flags, 20820 * we check for ill separately. 20821 */ 20822 for (ill = illgrp->illgrp_ill; ill != NULL; 20823 ill = ill->ill_group_next) { 20824 if ((ill != save_ill) && 20825 !(ill->ill_phyint->phyint_flags & 20826 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20827 illgrp->illgrp_ill_schednext = ill; 20828 return; 20829 } 20830 } 20831 } 20832 20833 /* 20834 * Given an ill, find the next ill in the group to be scheduled. 20835 * (This should be called by ip_newroute() before ire_create().) 20836 * The passed in ill may be pulled out of the group, after we have picked 20837 * up a different outgoing ill from the same group. However ire add will 20838 * atomically check this. 20839 */ 20840 ill_t * 20841 illgrp_scheduler(ill_t *ill) 20842 { 20843 ill_t *retill; 20844 ill_group_t *illgrp; 20845 int illcnt; 20846 int i; 20847 uint64_t flags; 20848 ip_stack_t *ipst = ill->ill_ipst; 20849 20850 /* 20851 * We don't use a lock to check for the ill_group. If this ill 20852 * is currently being inserted we may end up just returning this 20853 * ill itself. That is ok. 20854 */ 20855 if (ill->ill_group == NULL) { 20856 ill_refhold(ill); 20857 return (ill); 20858 } 20859 20860 /* 20861 * Grab the ill_g_lock as reader to make sure we are dealing with 20862 * a set of stable ills. No ill can be added or deleted or change 20863 * group while we hold the reader lock. 20864 */ 20865 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20866 if ((illgrp = ill->ill_group) == NULL) { 20867 rw_exit(&ipst->ips_ill_g_lock); 20868 ill_refhold(ill); 20869 return (ill); 20870 } 20871 20872 illcnt = illgrp->illgrp_ill_count; 20873 mutex_enter(&illgrp->illgrp_lock); 20874 retill = illgrp->illgrp_ill_schednext; 20875 20876 if (retill == NULL) 20877 retill = illgrp->illgrp_ill; 20878 20879 /* 20880 * We do a circular search beginning at illgrp_ill_schednext 20881 * or illgrp_ill. We don't check the flags against the ill lock 20882 * since it can change anytime. The ire creation will be atomic 20883 * and will fail if the ill is FAILED or OFFLINE. 20884 */ 20885 for (i = 0; i < illcnt; i++) { 20886 flags = retill->ill_phyint->phyint_flags; 20887 20888 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20889 ILL_CAN_LOOKUP(retill)) { 20890 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20891 ill_refhold(retill); 20892 break; 20893 } 20894 retill = retill->ill_group_next; 20895 if (retill == NULL) 20896 retill = illgrp->illgrp_ill; 20897 } 20898 mutex_exit(&illgrp->illgrp_lock); 20899 rw_exit(&ipst->ips_ill_g_lock); 20900 20901 return (i == illcnt ? NULL : retill); 20902 } 20903 20904 /* 20905 * Checks for availbility of a usable source address (if there is one) when the 20906 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20907 * this selection is done regardless of the destination. 20908 */ 20909 boolean_t 20910 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20911 { 20912 uint_t ifindex; 20913 ipif_t *ipif = NULL; 20914 ill_t *uill; 20915 boolean_t isv6; 20916 ip_stack_t *ipst = ill->ill_ipst; 20917 20918 ASSERT(ill != NULL); 20919 20920 isv6 = ill->ill_isv6; 20921 ifindex = ill->ill_usesrc_ifindex; 20922 if (ifindex != 0) { 20923 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20924 NULL, ipst); 20925 if (uill == NULL) 20926 return (NULL); 20927 mutex_enter(&uill->ill_lock); 20928 for (ipif = uill->ill_ipif; ipif != NULL; 20929 ipif = ipif->ipif_next) { 20930 if (!IPIF_CAN_LOOKUP(ipif)) 20931 continue; 20932 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20933 continue; 20934 if (!(ipif->ipif_flags & IPIF_UP)) 20935 continue; 20936 if (ipif->ipif_zoneid != zoneid) 20937 continue; 20938 if ((isv6 && 20939 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20940 (ipif->ipif_lcl_addr == INADDR_ANY)) 20941 continue; 20942 mutex_exit(&uill->ill_lock); 20943 ill_refrele(uill); 20944 return (B_TRUE); 20945 } 20946 mutex_exit(&uill->ill_lock); 20947 ill_refrele(uill); 20948 } 20949 return (B_FALSE); 20950 } 20951 20952 /* 20953 * Determine the best source address given a destination address and an ill. 20954 * Prefers non-deprecated over deprecated but will return a deprecated 20955 * address if there is no other choice. If there is a usable source address 20956 * on the interface pointed to by ill_usesrc_ifindex then that is given 20957 * first preference. 20958 * 20959 * Returns NULL if there is no suitable source address for the ill. 20960 * This only occurs when there is no valid source address for the ill. 20961 */ 20962 ipif_t * 20963 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20964 { 20965 ipif_t *ipif; 20966 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20967 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20968 int index = 0; 20969 boolean_t wrapped = B_FALSE; 20970 boolean_t same_subnet_only = B_FALSE; 20971 boolean_t ipif_same_found, ipif_other_found; 20972 boolean_t specific_found; 20973 ill_t *till, *usill = NULL; 20974 tsol_tpc_t *src_rhtp, *dst_rhtp; 20975 ip_stack_t *ipst = ill->ill_ipst; 20976 20977 if (ill->ill_usesrc_ifindex != 0) { 20978 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20979 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20980 if (usill != NULL) 20981 ill = usill; /* Select source from usesrc ILL */ 20982 else 20983 return (NULL); 20984 } 20985 20986 /* 20987 * If we're dealing with an unlabeled destination on a labeled system, 20988 * make sure that we ignore source addresses that are incompatible with 20989 * the destination's default label. That destination's default label 20990 * must dominate the minimum label on the source address. 20991 */ 20992 dst_rhtp = NULL; 20993 if (is_system_labeled()) { 20994 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20995 if (dst_rhtp == NULL) 20996 return (NULL); 20997 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20998 TPC_RELE(dst_rhtp); 20999 dst_rhtp = NULL; 21000 } 21001 } 21002 21003 /* 21004 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21005 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21006 * After selecting the right ipif, under ill_lock make sure ipif is 21007 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21008 * we retry. Inside the loop we still need to check for CONDEMNED, 21009 * but not under a lock. 21010 */ 21011 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21012 21013 retry: 21014 till = ill; 21015 ipif_arr[0] = NULL; 21016 21017 if (till->ill_group != NULL) 21018 till = till->ill_group->illgrp_ill; 21019 21020 /* 21021 * Choose one good source address from each ill across the group. 21022 * If possible choose a source address in the same subnet as 21023 * the destination address. 21024 * 21025 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21026 * This is okay because of the following. 21027 * 21028 * If PHYI_FAILED is set and we still have non-deprecated 21029 * addresses, it means the addresses have not yet been 21030 * failed over to a different interface. We potentially 21031 * select them to create IRE_CACHES, which will be later 21032 * flushed when the addresses move over. 21033 * 21034 * If PHYI_INACTIVE is set and we still have non-deprecated 21035 * addresses, it means either the user has configured them 21036 * or PHYI_INACTIVE has not been cleared after the addresses 21037 * been moved over. For the former, in.mpathd does a failover 21038 * when the interface becomes INACTIVE and hence we should 21039 * not find them. Once INACTIVE is set, we don't allow them 21040 * to create logical interfaces anymore. For the latter, a 21041 * flush will happen when INACTIVE is cleared which will 21042 * flush the IRE_CACHES. 21043 * 21044 * If PHYI_OFFLINE is set, all the addresses will be failed 21045 * over soon. We potentially select them to create IRE_CACHEs, 21046 * which will be later flushed when the addresses move over. 21047 * 21048 * NOTE : As ipif_select_source is called to borrow source address 21049 * for an ipif that is part of a group, source address selection 21050 * will be re-done whenever the group changes i.e either an 21051 * insertion/deletion in the group. 21052 * 21053 * Fill ipif_arr[] with source addresses, using these rules: 21054 * 21055 * 1. At most one source address from a given ill ends up 21056 * in ipif_arr[] -- that is, at most one of the ipif's 21057 * associated with a given ill ends up in ipif_arr[]. 21058 * 21059 * 2. If there is at least one non-deprecated ipif in the 21060 * IPMP group with a source address on the same subnet as 21061 * our destination, then fill ipif_arr[] only with 21062 * source addresses on the same subnet as our destination. 21063 * Note that because of (1), only the first 21064 * non-deprecated ipif found with a source address 21065 * matching the destination ends up in ipif_arr[]. 21066 * 21067 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21068 * addresses not in the same subnet as our destination. 21069 * Again, because of (1), only the first off-subnet source 21070 * address will be chosen. 21071 * 21072 * 4. If there are no non-deprecated ipifs, then just use 21073 * the source address associated with the last deprecated 21074 * one we find that happens to be on the same subnet, 21075 * otherwise the first one not in the same subnet. 21076 */ 21077 specific_found = B_FALSE; 21078 for (; till != NULL; till = till->ill_group_next) { 21079 ipif_same_found = B_FALSE; 21080 ipif_other_found = B_FALSE; 21081 for (ipif = till->ill_ipif; ipif != NULL; 21082 ipif = ipif->ipif_next) { 21083 if (!IPIF_CAN_LOOKUP(ipif)) 21084 continue; 21085 /* Always skip NOLOCAL and ANYCAST interfaces */ 21086 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21087 continue; 21088 if (!(ipif->ipif_flags & IPIF_UP) || 21089 !ipif->ipif_addr_ready) 21090 continue; 21091 if (ipif->ipif_zoneid != zoneid && 21092 ipif->ipif_zoneid != ALL_ZONES) 21093 continue; 21094 /* 21095 * Interfaces with 0.0.0.0 address are allowed to be UP, 21096 * but are not valid as source addresses. 21097 */ 21098 if (ipif->ipif_lcl_addr == INADDR_ANY) 21099 continue; 21100 21101 /* 21102 * Check compatibility of local address for 21103 * destination's default label if we're on a labeled 21104 * system. Incompatible addresses can't be used at 21105 * all. 21106 */ 21107 if (dst_rhtp != NULL) { 21108 boolean_t incompat; 21109 21110 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21111 IPV4_VERSION, B_FALSE); 21112 if (src_rhtp == NULL) 21113 continue; 21114 incompat = 21115 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21116 src_rhtp->tpc_tp.tp_doi != 21117 dst_rhtp->tpc_tp.tp_doi || 21118 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21119 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21120 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21121 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21122 TPC_RELE(src_rhtp); 21123 if (incompat) 21124 continue; 21125 } 21126 21127 /* 21128 * We prefer not to use all all-zones addresses, if we 21129 * can avoid it, as they pose problems with unlabeled 21130 * destinations. 21131 */ 21132 if (ipif->ipif_zoneid != ALL_ZONES) { 21133 if (!specific_found && 21134 (!same_subnet_only || 21135 (ipif->ipif_net_mask & dst) == 21136 ipif->ipif_subnet)) { 21137 index = 0; 21138 specific_found = B_TRUE; 21139 ipif_other_found = B_FALSE; 21140 } 21141 } else { 21142 if (specific_found) 21143 continue; 21144 } 21145 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21146 if (ipif_dep == NULL || 21147 (ipif->ipif_net_mask & dst) == 21148 ipif->ipif_subnet) 21149 ipif_dep = ipif; 21150 continue; 21151 } 21152 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21153 /* found a source address in the same subnet */ 21154 if (!same_subnet_only) { 21155 same_subnet_only = B_TRUE; 21156 index = 0; 21157 } 21158 ipif_same_found = B_TRUE; 21159 } else { 21160 if (same_subnet_only || ipif_other_found) 21161 continue; 21162 ipif_other_found = B_TRUE; 21163 } 21164 ipif_arr[index++] = ipif; 21165 if (index == MAX_IPIF_SELECT_SOURCE) { 21166 wrapped = B_TRUE; 21167 index = 0; 21168 } 21169 if (ipif_same_found) 21170 break; 21171 } 21172 } 21173 21174 if (ipif_arr[0] == NULL) { 21175 ipif = ipif_dep; 21176 } else { 21177 if (wrapped) 21178 index = MAX_IPIF_SELECT_SOURCE; 21179 ipif = ipif_arr[ipif_rand(ipst) % index]; 21180 ASSERT(ipif != NULL); 21181 } 21182 21183 if (ipif != NULL) { 21184 mutex_enter(&ipif->ipif_ill->ill_lock); 21185 if (!IPIF_CAN_LOOKUP(ipif)) { 21186 mutex_exit(&ipif->ipif_ill->ill_lock); 21187 goto retry; 21188 } 21189 ipif_refhold_locked(ipif); 21190 mutex_exit(&ipif->ipif_ill->ill_lock); 21191 } 21192 21193 rw_exit(&ipst->ips_ill_g_lock); 21194 if (usill != NULL) 21195 ill_refrele(usill); 21196 if (dst_rhtp != NULL) 21197 TPC_RELE(dst_rhtp); 21198 21199 #ifdef DEBUG 21200 if (ipif == NULL) { 21201 char buf1[INET6_ADDRSTRLEN]; 21202 21203 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21204 ill->ill_name, 21205 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21206 } else { 21207 char buf1[INET6_ADDRSTRLEN]; 21208 char buf2[INET6_ADDRSTRLEN]; 21209 21210 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21211 ipif->ipif_ill->ill_name, 21212 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21213 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21214 buf2, sizeof (buf2)))); 21215 } 21216 #endif /* DEBUG */ 21217 return (ipif); 21218 } 21219 21220 21221 /* 21222 * If old_ipif is not NULL, see if ipif was derived from old 21223 * ipif and if so, recreate the interface route by re-doing 21224 * source address selection. This happens when ipif_down -> 21225 * ipif_update_other_ipifs calls us. 21226 * 21227 * If old_ipif is NULL, just redo the source address selection 21228 * if needed. This happens when illgrp_insert or ipif_up_done 21229 * calls us. 21230 */ 21231 static void 21232 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21233 { 21234 ire_t *ire; 21235 ire_t *ipif_ire; 21236 queue_t *stq; 21237 ipif_t *nipif; 21238 ill_t *ill; 21239 boolean_t need_rele = B_FALSE; 21240 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21241 21242 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21243 ASSERT(IAM_WRITER_IPIF(ipif)); 21244 21245 ill = ipif->ipif_ill; 21246 if (!(ipif->ipif_flags & 21247 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21248 /* 21249 * Can't possibly have borrowed the source 21250 * from old_ipif. 21251 */ 21252 return; 21253 } 21254 21255 /* 21256 * Is there any work to be done? No work if the address 21257 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21258 * ipif_select_source() does not borrow addresses from 21259 * NOLOCAL and ANYCAST interfaces). 21260 */ 21261 if ((old_ipif != NULL) && 21262 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21263 (old_ipif->ipif_ill->ill_wq == NULL) || 21264 (old_ipif->ipif_flags & 21265 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21266 return; 21267 } 21268 21269 /* 21270 * Perform the same checks as when creating the 21271 * IRE_INTERFACE in ipif_up_done. 21272 */ 21273 if (!(ipif->ipif_flags & IPIF_UP)) 21274 return; 21275 21276 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21277 (ipif->ipif_subnet == INADDR_ANY)) 21278 return; 21279 21280 ipif_ire = ipif_to_ire(ipif); 21281 if (ipif_ire == NULL) 21282 return; 21283 21284 /* 21285 * We know that ipif uses some other source for its 21286 * IRE_INTERFACE. Is it using the source of this 21287 * old_ipif? 21288 */ 21289 if (old_ipif != NULL && 21290 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21291 ire_refrele(ipif_ire); 21292 return; 21293 } 21294 if (ip_debug > 2) { 21295 /* ip1dbg */ 21296 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21297 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21298 } 21299 21300 stq = ipif_ire->ire_stq; 21301 21302 /* 21303 * Can't use our source address. Select a different 21304 * source address for the IRE_INTERFACE. 21305 */ 21306 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21307 if (nipif == NULL) { 21308 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21309 nipif = ipif; 21310 } else { 21311 need_rele = B_TRUE; 21312 } 21313 21314 ire = ire_create( 21315 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21316 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21317 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21318 NULL, /* no gateway */ 21319 NULL, 21320 &ipif->ipif_mtu, /* max frag */ 21321 NULL, /* fast path header */ 21322 NULL, /* no recv from queue */ 21323 stq, /* send-to queue */ 21324 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21325 ill->ill_resolver_mp, /* xmit header */ 21326 ipif, 21327 NULL, 21328 0, 21329 0, 21330 0, 21331 0, 21332 &ire_uinfo_null, 21333 NULL, 21334 NULL, 21335 ipst); 21336 21337 if (ire != NULL) { 21338 ire_t *ret_ire; 21339 int error; 21340 21341 /* 21342 * We don't need ipif_ire anymore. We need to delete 21343 * before we add so that ire_add does not detect 21344 * duplicates. 21345 */ 21346 ire_delete(ipif_ire); 21347 ret_ire = ire; 21348 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21349 ASSERT(error == 0); 21350 ASSERT(ire == ret_ire); 21351 /* Held in ire_add */ 21352 ire_refrele(ret_ire); 21353 } 21354 /* 21355 * Either we are falling through from above or could not 21356 * allocate a replacement. 21357 */ 21358 ire_refrele(ipif_ire); 21359 if (need_rele) 21360 ipif_refrele(nipif); 21361 } 21362 21363 /* 21364 * This old_ipif is going away. 21365 * 21366 * Determine if any other ipif's is using our address as 21367 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21368 * IPIF_DEPRECATED). 21369 * Find the IRE_INTERFACE for such ipifs and recreate them 21370 * to use an different source address following the rules in 21371 * ipif_up_done. 21372 * 21373 * This function takes an illgrp as an argument so that illgrp_delete 21374 * can call this to update source address even after deleting the 21375 * old_ipif->ipif_ill from the ill group. 21376 */ 21377 static void 21378 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21379 { 21380 ipif_t *ipif; 21381 ill_t *ill; 21382 char buf[INET6_ADDRSTRLEN]; 21383 21384 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21385 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21386 21387 ill = old_ipif->ipif_ill; 21388 21389 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21390 ill->ill_name, 21391 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21392 buf, sizeof (buf)))); 21393 /* 21394 * If this part of a group, look at all ills as ipif_select_source 21395 * borrows source address across all the ills in the group. 21396 */ 21397 if (illgrp != NULL) 21398 ill = illgrp->illgrp_ill; 21399 21400 for (; ill != NULL; ill = ill->ill_group_next) { 21401 for (ipif = ill->ill_ipif; ipif != NULL; 21402 ipif = ipif->ipif_next) { 21403 21404 if (ipif == old_ipif) 21405 continue; 21406 21407 ipif_recreate_interface_routes(old_ipif, ipif); 21408 } 21409 } 21410 } 21411 21412 /* ARGSUSED */ 21413 int 21414 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21415 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21416 { 21417 /* 21418 * ill_phyint_reinit merged the v4 and v6 into a single 21419 * ipsq. Could also have become part of a ipmp group in the 21420 * process, and we might not have been able to complete the 21421 * operation in ipif_set_values, if we could not become 21422 * exclusive. If so restart it here. 21423 */ 21424 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21425 } 21426 21427 21428 /* 21429 * Can operate on either a module or a driver queue. 21430 * Returns an error if not a module queue. 21431 */ 21432 /* ARGSUSED */ 21433 int 21434 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21435 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21436 { 21437 queue_t *q1 = q; 21438 char *cp; 21439 char interf_name[LIFNAMSIZ]; 21440 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21441 21442 if (q->q_next == NULL) { 21443 ip1dbg(( 21444 "if_unitsel: IF_UNITSEL: no q_next\n")); 21445 return (EINVAL); 21446 } 21447 21448 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21449 return (EALREADY); 21450 21451 do { 21452 q1 = q1->q_next; 21453 } while (q1->q_next); 21454 cp = q1->q_qinfo->qi_minfo->mi_idname; 21455 (void) sprintf(interf_name, "%s%d", cp, ppa); 21456 21457 /* 21458 * Here we are not going to delay the ioack until after 21459 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21460 * original ioctl message before sending the requests. 21461 */ 21462 return (ipif_set_values(q, mp, interf_name, &ppa)); 21463 } 21464 21465 /* ARGSUSED */ 21466 int 21467 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21468 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21469 { 21470 return (ENXIO); 21471 } 21472 21473 /* 21474 * Net and subnet broadcast ire's are now specific to the particular 21475 * physical interface (ill) and not to any one locigal interface (ipif). 21476 * However, if a particular logical interface is being taken down, it's 21477 * associated ire's will be taken down as well. Hence, when we go to 21478 * take down or change the local address, broadcast address or netmask 21479 * of a specific logical interface, we must check to make sure that we 21480 * have valid net and subnet broadcast ire's for the other logical 21481 * interfaces which may have been shared with the logical interface 21482 * being brought down or changed. 21483 * 21484 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21485 * is tied to the first interface coming UP. If that ipif is going down, 21486 * we need to recreate them on the next valid ipif. 21487 * 21488 * Note: assume that the ipif passed in is still up so that it's IRE 21489 * entries are still valid. 21490 */ 21491 static void 21492 ipif_check_bcast_ires(ipif_t *test_ipif) 21493 { 21494 ipif_t *ipif; 21495 ire_t *test_subnet_ire, *test_net_ire; 21496 ire_t *test_allzero_ire, *test_allone_ire; 21497 ire_t *ire_array[12]; 21498 ire_t **irep = &ire_array[0]; 21499 ire_t **irep1; 21500 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21501 ipaddr_t test_net_addr, test_subnet_addr; 21502 ipaddr_t test_net_mask, test_subnet_mask; 21503 boolean_t need_net_bcast_ire = B_FALSE; 21504 boolean_t need_subnet_bcast_ire = B_FALSE; 21505 boolean_t allzero_bcast_ire_created = B_FALSE; 21506 boolean_t allone_bcast_ire_created = B_FALSE; 21507 boolean_t net_bcast_ire_created = B_FALSE; 21508 boolean_t subnet_bcast_ire_created = B_FALSE; 21509 21510 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21511 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21512 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21513 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21514 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21515 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21516 21517 ASSERT(!test_ipif->ipif_isv6); 21518 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21519 21520 /* 21521 * No broadcast IREs for the LOOPBACK interface 21522 * or others such as point to point and IPIF_NOXMIT. 21523 */ 21524 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21525 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21526 return; 21527 21528 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21529 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21530 ipst); 21531 21532 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21533 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21534 ipst); 21535 21536 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21537 test_subnet_mask = test_ipif->ipif_net_mask; 21538 21539 /* 21540 * If no net mask set, assume the default based on net class. 21541 */ 21542 if (test_subnet_mask == 0) 21543 test_subnet_mask = test_net_mask; 21544 21545 /* 21546 * Check if there is a network broadcast ire associated with this ipif 21547 */ 21548 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21549 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21550 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21551 ipst); 21552 21553 /* 21554 * Check if there is a subnet broadcast IRE associated with this ipif 21555 */ 21556 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21557 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21558 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21559 ipst); 21560 21561 /* 21562 * No broadcast ire's associated with this ipif. 21563 */ 21564 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21565 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21566 return; 21567 } 21568 21569 /* 21570 * We have established which bcast ires have to be replaced. 21571 * Next we try to locate ipifs that match there ires. 21572 * The rules are simple: If we find an ipif that matches on the subnet 21573 * address it will also match on the net address, the allzeros and 21574 * allones address. Any ipif that matches only on the net address will 21575 * also match the allzeros and allones addresses. 21576 * The other criterion is the ipif_flags. We look for non-deprecated 21577 * (and non-anycast and non-nolocal) ipifs as the best choice. 21578 * ipifs with check_flags matching (deprecated, etc) are used only 21579 * if good ipifs are not available. While looping, we save existing 21580 * deprecated ipifs as backup_ipif. 21581 * We loop through all the ipifs for this ill looking for ipifs 21582 * whose broadcast addr match the ipif passed in, but do not have 21583 * their own broadcast ires. For creating 0.0.0.0 and 21584 * 255.255.255.255 we just need an ipif on this ill to create. 21585 */ 21586 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21587 ipif = ipif->ipif_next) { 21588 21589 ASSERT(!ipif->ipif_isv6); 21590 /* 21591 * Already checked the ipif passed in. 21592 */ 21593 if (ipif == test_ipif) { 21594 continue; 21595 } 21596 21597 /* 21598 * We only need to recreate broadcast ires if another ipif in 21599 * the same zone uses them. The new ires must be created in the 21600 * same zone. 21601 */ 21602 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21603 continue; 21604 } 21605 21606 /* 21607 * Only interested in logical interfaces with valid local 21608 * addresses or with the ability to broadcast. 21609 */ 21610 if ((ipif->ipif_subnet == 0) || 21611 !(ipif->ipif_flags & IPIF_BROADCAST) || 21612 (ipif->ipif_flags & IPIF_NOXMIT) || 21613 !(ipif->ipif_flags & IPIF_UP)) { 21614 continue; 21615 } 21616 /* 21617 * Check if there is a net broadcast ire for this 21618 * net address. If it turns out that the ipif we are 21619 * about to take down owns this ire, we must make a 21620 * new one because it is potentially going away. 21621 */ 21622 if (test_net_ire && (!net_bcast_ire_created)) { 21623 net_mask = ip_net_mask(ipif->ipif_subnet); 21624 net_addr = net_mask & ipif->ipif_subnet; 21625 if (net_addr == test_net_addr) { 21626 need_net_bcast_ire = B_TRUE; 21627 /* 21628 * Use DEPRECATED ipif only if no good 21629 * ires are available. subnet_addr is 21630 * a better match than net_addr. 21631 */ 21632 if ((ipif->ipif_flags & check_flags) && 21633 (backup_ipif_net == NULL)) { 21634 backup_ipif_net = ipif; 21635 } 21636 } 21637 } 21638 /* 21639 * Check if there is a subnet broadcast ire for this 21640 * net address. If it turns out that the ipif we are 21641 * about to take down owns this ire, we must make a 21642 * new one because it is potentially going away. 21643 */ 21644 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21645 subnet_mask = ipif->ipif_net_mask; 21646 subnet_addr = ipif->ipif_subnet; 21647 if (subnet_addr == test_subnet_addr) { 21648 need_subnet_bcast_ire = B_TRUE; 21649 if ((ipif->ipif_flags & check_flags) && 21650 (backup_ipif_subnet == NULL)) { 21651 backup_ipif_subnet = ipif; 21652 } 21653 } 21654 } 21655 21656 21657 /* Short circuit here if this ipif is deprecated */ 21658 if (ipif->ipif_flags & check_flags) { 21659 if ((test_allzero_ire != NULL) && 21660 (!allzero_bcast_ire_created) && 21661 (backup_ipif_allzeros == NULL)) { 21662 backup_ipif_allzeros = ipif; 21663 } 21664 if ((test_allone_ire != NULL) && 21665 (!allone_bcast_ire_created) && 21666 (backup_ipif_allones == NULL)) { 21667 backup_ipif_allones = ipif; 21668 } 21669 continue; 21670 } 21671 21672 /* 21673 * Found an ipif which has the same broadcast ire as the 21674 * ipif passed in and the ipif passed in "owns" the ire. 21675 * Create new broadcast ire's for this broadcast addr. 21676 */ 21677 if (need_net_bcast_ire && !net_bcast_ire_created) { 21678 irep = ire_create_bcast(ipif, net_addr, irep); 21679 irep = ire_create_bcast(ipif, 21680 ~net_mask | net_addr, irep); 21681 net_bcast_ire_created = B_TRUE; 21682 } 21683 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21684 irep = ire_create_bcast(ipif, subnet_addr, irep); 21685 irep = ire_create_bcast(ipif, 21686 ~subnet_mask | subnet_addr, irep); 21687 subnet_bcast_ire_created = B_TRUE; 21688 } 21689 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21690 irep = ire_create_bcast(ipif, 0, irep); 21691 allzero_bcast_ire_created = B_TRUE; 21692 } 21693 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21694 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21695 allone_bcast_ire_created = B_TRUE; 21696 } 21697 /* 21698 * Once we have created all the appropriate ires, we 21699 * just break out of this loop to add what we have created. 21700 * This has been indented similar to ire_match_args for 21701 * readability. 21702 */ 21703 if (((test_net_ire == NULL) || 21704 (net_bcast_ire_created)) && 21705 ((test_subnet_ire == NULL) || 21706 (subnet_bcast_ire_created)) && 21707 ((test_allzero_ire == NULL) || 21708 (allzero_bcast_ire_created)) && 21709 ((test_allone_ire == NULL) || 21710 (allone_bcast_ire_created))) { 21711 break; 21712 } 21713 } 21714 21715 /* 21716 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21717 * exist. 6 pairs of bcast ires are needed. 21718 * Note - the old ires are deleted in ipif_down. 21719 */ 21720 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21721 ipif = backup_ipif_net; 21722 irep = ire_create_bcast(ipif, net_addr, irep); 21723 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21724 net_bcast_ire_created = B_TRUE; 21725 } 21726 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21727 backup_ipif_subnet) { 21728 ipif = backup_ipif_subnet; 21729 irep = ire_create_bcast(ipif, subnet_addr, irep); 21730 irep = ire_create_bcast(ipif, 21731 ~subnet_mask | subnet_addr, irep); 21732 subnet_bcast_ire_created = B_TRUE; 21733 } 21734 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21735 backup_ipif_allzeros) { 21736 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21737 allzero_bcast_ire_created = B_TRUE; 21738 } 21739 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21740 backup_ipif_allones) { 21741 irep = ire_create_bcast(backup_ipif_allones, 21742 INADDR_BROADCAST, irep); 21743 allone_bcast_ire_created = B_TRUE; 21744 } 21745 21746 /* 21747 * If we can't create all of them, don't add any of them. 21748 * Code in ip_wput_ire and ire_to_ill assumes that we 21749 * always have a non-loopback copy and loopback copy 21750 * for a given address. 21751 */ 21752 for (irep1 = irep; irep1 > ire_array; ) { 21753 irep1--; 21754 if (*irep1 == NULL) { 21755 ip0dbg(("ipif_check_bcast_ires: can't create " 21756 "IRE_BROADCAST, memory allocation failure\n")); 21757 while (irep > ire_array) { 21758 irep--; 21759 if (*irep != NULL) 21760 ire_delete(*irep); 21761 } 21762 goto bad; 21763 } 21764 } 21765 for (irep1 = irep; irep1 > ire_array; ) { 21766 int error; 21767 21768 irep1--; 21769 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21770 if (error == 0) { 21771 ire_refrele(*irep1); /* Held in ire_add */ 21772 } 21773 } 21774 bad: 21775 if (test_allzero_ire != NULL) 21776 ire_refrele(test_allzero_ire); 21777 if (test_allone_ire != NULL) 21778 ire_refrele(test_allone_ire); 21779 if (test_net_ire != NULL) 21780 ire_refrele(test_net_ire); 21781 if (test_subnet_ire != NULL) 21782 ire_refrele(test_subnet_ire); 21783 } 21784 21785 /* 21786 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21787 * from lifr_flags and the name from lifr_name. 21788 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21789 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21790 * Returns EINPROGRESS when mp has been consumed by queueing it on 21791 * ill_pending_mp and the ioctl will complete in ip_rput. 21792 * 21793 * Can operate on either a module or a driver queue. 21794 * Returns an error if not a module queue. 21795 */ 21796 /* ARGSUSED */ 21797 int 21798 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21799 ip_ioctl_cmd_t *ipip, void *if_req) 21800 { 21801 int err; 21802 ill_t *ill; 21803 struct lifreq *lifr = (struct lifreq *)if_req; 21804 21805 ASSERT(ipif != NULL); 21806 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21807 21808 if (q->q_next == NULL) { 21809 ip1dbg(( 21810 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21811 return (EINVAL); 21812 } 21813 21814 ill = (ill_t *)q->q_ptr; 21815 /* 21816 * If we are not writer on 'q' then this interface exists already 21817 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21818 * So return EALREADY 21819 */ 21820 if (ill != ipif->ipif_ill) 21821 return (EALREADY); 21822 21823 if (ill->ill_name[0] != '\0') 21824 return (EALREADY); 21825 21826 /* 21827 * Set all the flags. Allows all kinds of override. Provide some 21828 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21829 * unless there is either multicast/broadcast support in the driver 21830 * or it is a pt-pt link. 21831 */ 21832 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21833 /* Meaningless to IP thus don't allow them to be set. */ 21834 ip1dbg(("ip_setname: EINVAL 1\n")); 21835 return (EINVAL); 21836 } 21837 /* 21838 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21839 * ill_bcast_addr_length info. 21840 */ 21841 if (!ill->ill_needs_attach && 21842 ((lifr->lifr_flags & IFF_MULTICAST) && 21843 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21844 ill->ill_bcast_addr_length == 0)) { 21845 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21846 ip1dbg(("ip_setname: EINVAL 2\n")); 21847 return (EINVAL); 21848 } 21849 if ((lifr->lifr_flags & IFF_BROADCAST) && 21850 ((lifr->lifr_flags & IFF_IPV6) || 21851 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21852 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21853 ip1dbg(("ip_setname: EINVAL 3\n")); 21854 return (EINVAL); 21855 } 21856 if (lifr->lifr_flags & IFF_UP) { 21857 /* Can only be set with SIOCSLIFFLAGS */ 21858 ip1dbg(("ip_setname: EINVAL 4\n")); 21859 return (EINVAL); 21860 } 21861 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21862 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21863 ip1dbg(("ip_setname: EINVAL 5\n")); 21864 return (EINVAL); 21865 } 21866 /* 21867 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21868 */ 21869 if ((lifr->lifr_flags & IFF_XRESOLV) && 21870 !(lifr->lifr_flags & IFF_IPV6) && 21871 !(ipif->ipif_isv6)) { 21872 ip1dbg(("ip_setname: EINVAL 6\n")); 21873 return (EINVAL); 21874 } 21875 21876 /* 21877 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21878 * we have all the flags here. So, we assign rather than we OR. 21879 * We can't OR the flags here because we don't want to set 21880 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21881 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21882 * on lifr_flags value here. 21883 */ 21884 /* 21885 * This ill has not been inserted into the global list. 21886 * So we are still single threaded and don't need any lock 21887 */ 21888 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21889 ~IFF_DUPLICATE; 21890 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21891 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21892 21893 /* We started off as V4. */ 21894 if (ill->ill_flags & ILLF_IPV6) { 21895 ill->ill_phyint->phyint_illv6 = ill; 21896 ill->ill_phyint->phyint_illv4 = NULL; 21897 } 21898 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21899 return (err); 21900 } 21901 21902 /* ARGSUSED */ 21903 int 21904 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21905 ip_ioctl_cmd_t *ipip, void *if_req) 21906 { 21907 /* 21908 * ill_phyint_reinit merged the v4 and v6 into a single 21909 * ipsq. Could also have become part of a ipmp group in the 21910 * process, and we might not have been able to complete the 21911 * slifname in ipif_set_values, if we could not become 21912 * exclusive. If so restart it here 21913 */ 21914 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21915 } 21916 21917 /* 21918 * Return a pointer to the ipif which matches the index, IP version type and 21919 * zoneid. 21920 */ 21921 ipif_t * 21922 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21923 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21924 { 21925 ill_t *ill; 21926 ipsq_t *ipsq; 21927 phyint_t *phyi; 21928 ipif_t *ipif; 21929 21930 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21931 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21932 21933 if (err != NULL) 21934 *err = 0; 21935 21936 /* 21937 * Indexes are stored in the phyint - a common structure 21938 * to both IPv4 and IPv6. 21939 */ 21940 21941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21942 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21943 (void *) &index, NULL); 21944 if (phyi != NULL) { 21945 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21946 if (ill == NULL) { 21947 rw_exit(&ipst->ips_ill_g_lock); 21948 if (err != NULL) 21949 *err = ENXIO; 21950 return (NULL); 21951 } 21952 GRAB_CONN_LOCK(q); 21953 mutex_enter(&ill->ill_lock); 21954 if (ILL_CAN_LOOKUP(ill)) { 21955 for (ipif = ill->ill_ipif; ipif != NULL; 21956 ipif = ipif->ipif_next) { 21957 if (IPIF_CAN_LOOKUP(ipif) && 21958 (zoneid == ALL_ZONES || 21959 zoneid == ipif->ipif_zoneid || 21960 ipif->ipif_zoneid == ALL_ZONES)) { 21961 ipif_refhold_locked(ipif); 21962 mutex_exit(&ill->ill_lock); 21963 RELEASE_CONN_LOCK(q); 21964 rw_exit(&ipst->ips_ill_g_lock); 21965 return (ipif); 21966 } 21967 } 21968 } else if (ILL_CAN_WAIT(ill, q)) { 21969 ipsq = ill->ill_phyint->phyint_ipsq; 21970 mutex_enter(&ipsq->ipsq_lock); 21971 rw_exit(&ipst->ips_ill_g_lock); 21972 mutex_exit(&ill->ill_lock); 21973 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21974 mutex_exit(&ipsq->ipsq_lock); 21975 RELEASE_CONN_LOCK(q); 21976 *err = EINPROGRESS; 21977 return (NULL); 21978 } 21979 mutex_exit(&ill->ill_lock); 21980 RELEASE_CONN_LOCK(q); 21981 } 21982 rw_exit(&ipst->ips_ill_g_lock); 21983 if (err != NULL) 21984 *err = ENXIO; 21985 return (NULL); 21986 } 21987 21988 typedef struct conn_change_s { 21989 uint_t cc_old_ifindex; 21990 uint_t cc_new_ifindex; 21991 } conn_change_t; 21992 21993 /* 21994 * ipcl_walk function for changing interface index. 21995 */ 21996 static void 21997 conn_change_ifindex(conn_t *connp, caddr_t arg) 21998 { 21999 conn_change_t *connc; 22000 uint_t old_ifindex; 22001 uint_t new_ifindex; 22002 int i; 22003 ilg_t *ilg; 22004 22005 connc = (conn_change_t *)arg; 22006 old_ifindex = connc->cc_old_ifindex; 22007 new_ifindex = connc->cc_new_ifindex; 22008 22009 if (connp->conn_orig_bound_ifindex == old_ifindex) 22010 connp->conn_orig_bound_ifindex = new_ifindex; 22011 22012 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22013 connp->conn_orig_multicast_ifindex = new_ifindex; 22014 22015 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22016 connp->conn_orig_xmit_ifindex = new_ifindex; 22017 22018 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22019 ilg = &connp->conn_ilg[i]; 22020 if (ilg->ilg_orig_ifindex == old_ifindex) 22021 ilg->ilg_orig_ifindex = new_ifindex; 22022 } 22023 } 22024 22025 /* 22026 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22027 * to new_index if it matches the old_index. 22028 * 22029 * Failovers typically happen within a group of ills. But somebody 22030 * can remove an ill from the group after a failover happened. If 22031 * we are setting the ifindex after this, we potentially need to 22032 * look at all the ills rather than just the ones in the group. 22033 * We cut down the work by looking at matching ill_net_types 22034 * and ill_types as we could not possibly grouped them together. 22035 */ 22036 static void 22037 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22038 { 22039 ill_t *ill; 22040 ipif_t *ipif; 22041 uint_t old_ifindex; 22042 uint_t new_ifindex; 22043 ilm_t *ilm; 22044 ill_walk_context_t ctx; 22045 ip_stack_t *ipst = ill_orig->ill_ipst; 22046 22047 old_ifindex = connc->cc_old_ifindex; 22048 new_ifindex = connc->cc_new_ifindex; 22049 22050 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22051 ill = ILL_START_WALK_ALL(&ctx, ipst); 22052 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22053 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22054 (ill_orig->ill_type != ill->ill_type)) { 22055 continue; 22056 } 22057 for (ipif = ill->ill_ipif; ipif != NULL; 22058 ipif = ipif->ipif_next) { 22059 if (ipif->ipif_orig_ifindex == old_ifindex) 22060 ipif->ipif_orig_ifindex = new_ifindex; 22061 } 22062 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22063 if (ilm->ilm_orig_ifindex == old_ifindex) 22064 ilm->ilm_orig_ifindex = new_ifindex; 22065 } 22066 } 22067 rw_exit(&ipst->ips_ill_g_lock); 22068 } 22069 22070 /* 22071 * We first need to ensure that the new index is unique, and 22072 * then carry the change across both v4 and v6 ill representation 22073 * of the physical interface. 22074 */ 22075 /* ARGSUSED */ 22076 int 22077 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22078 ip_ioctl_cmd_t *ipip, void *ifreq) 22079 { 22080 ill_t *ill; 22081 ill_t *ill_other; 22082 phyint_t *phyi; 22083 int old_index; 22084 conn_change_t connc; 22085 struct ifreq *ifr = (struct ifreq *)ifreq; 22086 struct lifreq *lifr = (struct lifreq *)ifreq; 22087 uint_t index; 22088 ill_t *ill_v4; 22089 ill_t *ill_v6; 22090 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22091 22092 if (ipip->ipi_cmd_type == IF_CMD) 22093 index = ifr->ifr_index; 22094 else 22095 index = lifr->lifr_index; 22096 22097 /* 22098 * Only allow on physical interface. Also, index zero is illegal. 22099 * 22100 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22101 * 22102 * 1) If PHYI_FAILED is set, a failover could have happened which 22103 * implies a possible failback might have to happen. As failback 22104 * depends on the old index, we should fail setting the index. 22105 * 22106 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22107 * any addresses or multicast memberships are failed over to 22108 * a non-STANDBY interface. As failback depends on the old 22109 * index, we should fail setting the index for this case also. 22110 * 22111 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22112 * Be consistent with PHYI_FAILED and fail the ioctl. 22113 */ 22114 ill = ipif->ipif_ill; 22115 phyi = ill->ill_phyint; 22116 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22117 ipif->ipif_id != 0 || index == 0) { 22118 return (EINVAL); 22119 } 22120 old_index = phyi->phyint_ifindex; 22121 22122 /* If the index is not changing, no work to do */ 22123 if (old_index == index) 22124 return (0); 22125 22126 /* 22127 * Use ill_lookup_on_ifindex to determine if the 22128 * new index is unused and if so allow the change. 22129 */ 22130 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22131 ipst); 22132 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22133 ipst); 22134 if (ill_v6 != NULL || ill_v4 != NULL) { 22135 if (ill_v4 != NULL) 22136 ill_refrele(ill_v4); 22137 if (ill_v6 != NULL) 22138 ill_refrele(ill_v6); 22139 return (EBUSY); 22140 } 22141 22142 /* 22143 * The new index is unused. Set it in the phyint. 22144 * Locate the other ill so that we can send a routing 22145 * sockets message. 22146 */ 22147 if (ill->ill_isv6) { 22148 ill_other = phyi->phyint_illv4; 22149 } else { 22150 ill_other = phyi->phyint_illv6; 22151 } 22152 22153 phyi->phyint_ifindex = index; 22154 22155 connc.cc_old_ifindex = old_index; 22156 connc.cc_new_ifindex = index; 22157 ip_change_ifindex(ill, &connc); 22158 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22159 22160 /* Send the routing sockets message */ 22161 ip_rts_ifmsg(ipif); 22162 if (ill_other != NULL) 22163 ip_rts_ifmsg(ill_other->ill_ipif); 22164 22165 return (0); 22166 } 22167 22168 /* ARGSUSED */ 22169 int 22170 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22171 ip_ioctl_cmd_t *ipip, void *ifreq) 22172 { 22173 struct ifreq *ifr = (struct ifreq *)ifreq; 22174 struct lifreq *lifr = (struct lifreq *)ifreq; 22175 22176 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22177 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22178 /* Get the interface index */ 22179 if (ipip->ipi_cmd_type == IF_CMD) { 22180 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22181 } else { 22182 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22183 } 22184 return (0); 22185 } 22186 22187 /* ARGSUSED */ 22188 int 22189 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22190 ip_ioctl_cmd_t *ipip, void *ifreq) 22191 { 22192 struct lifreq *lifr = (struct lifreq *)ifreq; 22193 22194 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22195 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22196 /* Get the interface zone */ 22197 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22198 lifr->lifr_zoneid = ipif->ipif_zoneid; 22199 return (0); 22200 } 22201 22202 /* 22203 * Set the zoneid of an interface. 22204 */ 22205 /* ARGSUSED */ 22206 int 22207 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22208 ip_ioctl_cmd_t *ipip, void *ifreq) 22209 { 22210 struct lifreq *lifr = (struct lifreq *)ifreq; 22211 int err = 0; 22212 boolean_t need_up = B_FALSE; 22213 zone_t *zptr; 22214 zone_status_t status; 22215 zoneid_t zoneid; 22216 22217 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22218 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22219 if (!is_system_labeled()) 22220 return (ENOTSUP); 22221 zoneid = GLOBAL_ZONEID; 22222 } 22223 22224 /* cannot assign instance zero to a non-global zone */ 22225 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22226 return (ENOTSUP); 22227 22228 /* 22229 * Cannot assign to a zone that doesn't exist or is shutting down. In 22230 * the event of a race with the zone shutdown processing, since IP 22231 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22232 * interface will be cleaned up even if the zone is shut down 22233 * immediately after the status check. If the interface can't be brought 22234 * down right away, and the zone is shut down before the restart 22235 * function is called, we resolve the possible races by rechecking the 22236 * zone status in the restart function. 22237 */ 22238 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22239 return (EINVAL); 22240 status = zone_status_get(zptr); 22241 zone_rele(zptr); 22242 22243 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22244 return (EINVAL); 22245 22246 if (ipif->ipif_flags & IPIF_UP) { 22247 /* 22248 * If the interface is already marked up, 22249 * we call ipif_down which will take care 22250 * of ditching any IREs that have been set 22251 * up based on the old interface address. 22252 */ 22253 err = ipif_logical_down(ipif, q, mp); 22254 if (err == EINPROGRESS) 22255 return (err); 22256 ipif_down_tail(ipif); 22257 need_up = B_TRUE; 22258 } 22259 22260 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22261 return (err); 22262 } 22263 22264 static int 22265 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22266 queue_t *q, mblk_t *mp, boolean_t need_up) 22267 { 22268 int err = 0; 22269 ip_stack_t *ipst; 22270 22271 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22272 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22273 22274 if (CONN_Q(q)) 22275 ipst = CONNQ_TO_IPST(q); 22276 else 22277 ipst = ILLQ_TO_IPST(q); 22278 22279 /* 22280 * For exclusive stacks we don't allow a different zoneid than 22281 * global. 22282 */ 22283 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22284 zoneid != GLOBAL_ZONEID) 22285 return (EINVAL); 22286 22287 /* Set the new zone id. */ 22288 ipif->ipif_zoneid = zoneid; 22289 22290 /* Update sctp list */ 22291 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22292 22293 if (need_up) { 22294 /* 22295 * Now bring the interface back up. If this 22296 * is the only IPIF for the ILL, ipif_up 22297 * will have to re-bind to the device, so 22298 * we may get back EINPROGRESS, in which 22299 * case, this IOCTL will get completed in 22300 * ip_rput_dlpi when we see the DL_BIND_ACK. 22301 */ 22302 err = ipif_up(ipif, q, mp); 22303 } 22304 return (err); 22305 } 22306 22307 /* ARGSUSED */ 22308 int 22309 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22310 ip_ioctl_cmd_t *ipip, void *if_req) 22311 { 22312 struct lifreq *lifr = (struct lifreq *)if_req; 22313 zoneid_t zoneid; 22314 zone_t *zptr; 22315 zone_status_t status; 22316 22317 ASSERT(ipif->ipif_id != 0); 22318 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22319 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22320 zoneid = GLOBAL_ZONEID; 22321 22322 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22323 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22324 22325 /* 22326 * We recheck the zone status to resolve the following race condition: 22327 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22328 * 2) hme0:1 is up and can't be brought down right away; 22329 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22330 * 3) zone "myzone" is halted; the zone status switches to 22331 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22332 * the interfaces to remove - hme0:1 is not returned because it's not 22333 * yet in "myzone", so it won't be removed; 22334 * 4) the restart function for SIOCSLIFZONE is called; without the 22335 * status check here, we would have hme0:1 in "myzone" after it's been 22336 * destroyed. 22337 * Note that if the status check fails, we need to bring the interface 22338 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22339 * ipif_up_done[_v6](). 22340 */ 22341 status = ZONE_IS_UNINITIALIZED; 22342 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22343 status = zone_status_get(zptr); 22344 zone_rele(zptr); 22345 } 22346 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22347 if (ipif->ipif_isv6) { 22348 (void) ipif_up_done_v6(ipif); 22349 } else { 22350 (void) ipif_up_done(ipif); 22351 } 22352 return (EINVAL); 22353 } 22354 22355 ipif_down_tail(ipif); 22356 22357 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22358 B_TRUE)); 22359 } 22360 22361 /* ARGSUSED */ 22362 int 22363 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22364 ip_ioctl_cmd_t *ipip, void *ifreq) 22365 { 22366 struct lifreq *lifr = ifreq; 22367 22368 ASSERT(q->q_next == NULL); 22369 ASSERT(CONN_Q(q)); 22370 22371 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22372 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22373 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22374 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22375 22376 return (0); 22377 } 22378 22379 22380 /* Find the previous ILL in this usesrc group */ 22381 static ill_t * 22382 ill_prev_usesrc(ill_t *uill) 22383 { 22384 ill_t *ill; 22385 22386 for (ill = uill->ill_usesrc_grp_next; 22387 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22388 ill = ill->ill_usesrc_grp_next) 22389 /* do nothing */; 22390 return (ill); 22391 } 22392 22393 /* 22394 * Release all members of the usesrc group. This routine is called 22395 * from ill_delete when the interface being unplumbed is the 22396 * group head. 22397 */ 22398 static void 22399 ill_disband_usesrc_group(ill_t *uill) 22400 { 22401 ill_t *next_ill, *tmp_ill; 22402 ip_stack_t *ipst = uill->ill_ipst; 22403 22404 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22405 next_ill = uill->ill_usesrc_grp_next; 22406 22407 do { 22408 ASSERT(next_ill != NULL); 22409 tmp_ill = next_ill->ill_usesrc_grp_next; 22410 ASSERT(tmp_ill != NULL); 22411 next_ill->ill_usesrc_grp_next = NULL; 22412 next_ill->ill_usesrc_ifindex = 0; 22413 next_ill = tmp_ill; 22414 } while (next_ill->ill_usesrc_ifindex != 0); 22415 uill->ill_usesrc_grp_next = NULL; 22416 } 22417 22418 /* 22419 * Remove the client usesrc ILL from the list and relink to a new list 22420 */ 22421 int 22422 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22423 { 22424 ill_t *ill, *tmp_ill; 22425 ip_stack_t *ipst = ucill->ill_ipst; 22426 22427 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22428 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22429 22430 /* 22431 * Check if the usesrc client ILL passed in is not already 22432 * in use as a usesrc ILL i.e one whose source address is 22433 * in use OR a usesrc ILL is not already in use as a usesrc 22434 * client ILL 22435 */ 22436 if ((ucill->ill_usesrc_ifindex == 0) || 22437 (uill->ill_usesrc_ifindex != 0)) { 22438 return (-1); 22439 } 22440 22441 ill = ill_prev_usesrc(ucill); 22442 ASSERT(ill->ill_usesrc_grp_next != NULL); 22443 22444 /* Remove from the current list */ 22445 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22446 /* Only two elements in the list */ 22447 ASSERT(ill->ill_usesrc_ifindex == 0); 22448 ill->ill_usesrc_grp_next = NULL; 22449 } else { 22450 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22451 } 22452 22453 if (ifindex == 0) { 22454 ucill->ill_usesrc_ifindex = 0; 22455 ucill->ill_usesrc_grp_next = NULL; 22456 return (0); 22457 } 22458 22459 ucill->ill_usesrc_ifindex = ifindex; 22460 tmp_ill = uill->ill_usesrc_grp_next; 22461 uill->ill_usesrc_grp_next = ucill; 22462 ucill->ill_usesrc_grp_next = 22463 (tmp_ill != NULL) ? tmp_ill : uill; 22464 return (0); 22465 } 22466 22467 /* 22468 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22469 * ip.c for locking details. 22470 */ 22471 /* ARGSUSED */ 22472 int 22473 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22474 ip_ioctl_cmd_t *ipip, void *ifreq) 22475 { 22476 struct lifreq *lifr = (struct lifreq *)ifreq; 22477 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22478 ill_flag_changed = B_FALSE; 22479 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22480 int err = 0, ret; 22481 uint_t ifindex; 22482 phyint_t *us_phyint, *us_cli_phyint; 22483 ipsq_t *ipsq = NULL; 22484 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22485 22486 ASSERT(IAM_WRITER_IPIF(ipif)); 22487 ASSERT(q->q_next == NULL); 22488 ASSERT(CONN_Q(q)); 22489 22490 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22491 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22492 22493 ASSERT(us_cli_phyint != NULL); 22494 22495 /* 22496 * If the client ILL is being used for IPMP, abort. 22497 * Note, this can be done before ipsq_try_enter since we are already 22498 * exclusive on this ILL 22499 */ 22500 if ((us_cli_phyint->phyint_groupname != NULL) || 22501 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22502 return (EINVAL); 22503 } 22504 22505 ifindex = lifr->lifr_index; 22506 if (ifindex == 0) { 22507 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22508 /* non usesrc group interface, nothing to reset */ 22509 return (0); 22510 } 22511 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22512 /* valid reset request */ 22513 reset_flg = B_TRUE; 22514 } 22515 22516 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22517 ip_process_ioctl, &err, ipst); 22518 22519 if (usesrc_ill == NULL) { 22520 return (err); 22521 } 22522 22523 /* 22524 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22525 * group nor can either of the interfaces be used for standy. So 22526 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22527 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22528 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22529 * We are already exlusive on this ipsq i.e ipsq corresponding to 22530 * the usesrc_cli_ill 22531 */ 22532 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22533 NEW_OP, B_TRUE); 22534 if (ipsq == NULL) { 22535 err = EINPROGRESS; 22536 /* Operation enqueued on the ipsq of the usesrc ILL */ 22537 goto done; 22538 } 22539 22540 /* Check if the usesrc_ill is used for IPMP */ 22541 us_phyint = usesrc_ill->ill_phyint; 22542 if ((us_phyint->phyint_groupname != NULL) || 22543 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22544 err = EINVAL; 22545 goto done; 22546 } 22547 22548 /* 22549 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22550 * already a client then return EINVAL 22551 */ 22552 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22553 err = EINVAL; 22554 goto done; 22555 } 22556 22557 /* 22558 * If the ill_usesrc_ifindex field is already set to what it needs to 22559 * be then this is a duplicate operation. 22560 */ 22561 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22562 err = 0; 22563 goto done; 22564 } 22565 22566 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22567 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22568 usesrc_ill->ill_isv6)); 22569 22570 /* 22571 * The next step ensures that no new ires will be created referencing 22572 * the client ill, until the ILL_CHANGING flag is cleared. Then 22573 * we go through an ire walk deleting all ire caches that reference 22574 * the client ill. New ires referencing the client ill that are added 22575 * to the ire table before the ILL_CHANGING flag is set, will be 22576 * cleaned up by the ire walk below. Attempt to add new ires referencing 22577 * the client ill while the ILL_CHANGING flag is set will be failed 22578 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22579 * checks (under the ill_g_usesrc_lock) that the ire being added 22580 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22581 * belong to the same usesrc group. 22582 */ 22583 mutex_enter(&usesrc_cli_ill->ill_lock); 22584 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22585 mutex_exit(&usesrc_cli_ill->ill_lock); 22586 ill_flag_changed = B_TRUE; 22587 22588 if (ipif->ipif_isv6) 22589 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22590 ALL_ZONES, ipst); 22591 else 22592 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22593 ALL_ZONES, ipst); 22594 22595 /* 22596 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22597 * and the ill_usesrc_ifindex fields 22598 */ 22599 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22600 22601 if (reset_flg) { 22602 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22603 if (ret != 0) { 22604 err = EINVAL; 22605 } 22606 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22607 goto done; 22608 } 22609 22610 /* 22611 * Four possibilities to consider: 22612 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22613 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22614 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22615 * 4. Both are part of their respective usesrc groups 22616 */ 22617 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22618 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22619 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22620 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22621 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22622 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22623 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22624 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22625 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22626 /* Insert at head of list */ 22627 usesrc_cli_ill->ill_usesrc_grp_next = 22628 usesrc_ill->ill_usesrc_grp_next; 22629 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22630 } else { 22631 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22632 ifindex); 22633 if (ret != 0) 22634 err = EINVAL; 22635 } 22636 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22637 22638 done: 22639 if (ill_flag_changed) { 22640 mutex_enter(&usesrc_cli_ill->ill_lock); 22641 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22642 mutex_exit(&usesrc_cli_ill->ill_lock); 22643 } 22644 if (ipsq != NULL) 22645 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22646 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22647 ill_refrele(usesrc_ill); 22648 return (err); 22649 } 22650 22651 /* 22652 * comparison function used by avl. 22653 */ 22654 static int 22655 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22656 { 22657 22658 uint_t index; 22659 22660 ASSERT(phyip != NULL && index_ptr != NULL); 22661 22662 index = *((uint_t *)index_ptr); 22663 /* 22664 * let the phyint with the lowest index be on top. 22665 */ 22666 if (((phyint_t *)phyip)->phyint_ifindex < index) 22667 return (1); 22668 if (((phyint_t *)phyip)->phyint_ifindex > index) 22669 return (-1); 22670 return (0); 22671 } 22672 22673 /* 22674 * comparison function used by avl. 22675 */ 22676 static int 22677 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22678 { 22679 ill_t *ill; 22680 int res = 0; 22681 22682 ASSERT(phyip != NULL && name_ptr != NULL); 22683 22684 if (((phyint_t *)phyip)->phyint_illv4) 22685 ill = ((phyint_t *)phyip)->phyint_illv4; 22686 else 22687 ill = ((phyint_t *)phyip)->phyint_illv6; 22688 ASSERT(ill != NULL); 22689 22690 res = strcmp(ill->ill_name, (char *)name_ptr); 22691 if (res > 0) 22692 return (1); 22693 else if (res < 0) 22694 return (-1); 22695 return (0); 22696 } 22697 /* 22698 * This function is called from ill_delete when the ill is being 22699 * unplumbed. We remove the reference from the phyint and we also 22700 * free the phyint when there are no more references to it. 22701 */ 22702 static void 22703 ill_phyint_free(ill_t *ill) 22704 { 22705 phyint_t *phyi; 22706 phyint_t *next_phyint; 22707 ipsq_t *cur_ipsq; 22708 ip_stack_t *ipst = ill->ill_ipst; 22709 22710 ASSERT(ill->ill_phyint != NULL); 22711 22712 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22713 phyi = ill->ill_phyint; 22714 ill->ill_phyint = NULL; 22715 /* 22716 * ill_init allocates a phyint always to store the copy 22717 * of flags relevant to phyint. At that point in time, we could 22718 * not assign the name and hence phyint_illv4/v6 could not be 22719 * initialized. Later in ipif_set_values, we assign the name to 22720 * the ill, at which point in time we assign phyint_illv4/v6. 22721 * Thus we don't rely on phyint_illv6 to be initialized always. 22722 */ 22723 if (ill->ill_flags & ILLF_IPV6) { 22724 phyi->phyint_illv6 = NULL; 22725 } else { 22726 phyi->phyint_illv4 = NULL; 22727 } 22728 /* 22729 * ipif_down removes it from the group when the last ipif goes 22730 * down. 22731 */ 22732 ASSERT(ill->ill_group == NULL); 22733 22734 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22735 return; 22736 22737 /* 22738 * Make sure this phyint was put in the list. 22739 */ 22740 if (phyi->phyint_ifindex > 0) { 22741 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22742 phyi); 22743 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22744 phyi); 22745 } 22746 /* 22747 * remove phyint from the ipsq list. 22748 */ 22749 cur_ipsq = phyi->phyint_ipsq; 22750 if (phyi == cur_ipsq->ipsq_phyint_list) { 22751 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22752 } else { 22753 next_phyint = cur_ipsq->ipsq_phyint_list; 22754 while (next_phyint != NULL) { 22755 if (next_phyint->phyint_ipsq_next == phyi) { 22756 next_phyint->phyint_ipsq_next = 22757 phyi->phyint_ipsq_next; 22758 break; 22759 } 22760 next_phyint = next_phyint->phyint_ipsq_next; 22761 } 22762 ASSERT(next_phyint != NULL); 22763 } 22764 IPSQ_DEC_REF(cur_ipsq, ipst); 22765 22766 if (phyi->phyint_groupname_len != 0) { 22767 ASSERT(phyi->phyint_groupname != NULL); 22768 mi_free(phyi->phyint_groupname); 22769 } 22770 mi_free(phyi); 22771 } 22772 22773 /* 22774 * Attach the ill to the phyint structure which can be shared by both 22775 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22776 * function is called from ipif_set_values and ill_lookup_on_name (for 22777 * loopback) where we know the name of the ill. We lookup the ill and if 22778 * there is one present already with the name use that phyint. Otherwise 22779 * reuse the one allocated by ill_init. 22780 */ 22781 static void 22782 ill_phyint_reinit(ill_t *ill) 22783 { 22784 boolean_t isv6 = ill->ill_isv6; 22785 phyint_t *phyi_old; 22786 phyint_t *phyi; 22787 avl_index_t where = 0; 22788 ill_t *ill_other = NULL; 22789 ipsq_t *ipsq; 22790 ip_stack_t *ipst = ill->ill_ipst; 22791 22792 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22793 22794 phyi_old = ill->ill_phyint; 22795 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22796 phyi_old->phyint_illv6 == NULL)); 22797 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22798 phyi_old->phyint_illv4 == NULL)); 22799 ASSERT(phyi_old->phyint_ifindex == 0); 22800 22801 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22802 ill->ill_name, &where); 22803 22804 /* 22805 * 1. We grabbed the ill_g_lock before inserting this ill into 22806 * the global list of ills. So no other thread could have located 22807 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22808 * 2. Now locate the other protocol instance of this ill. 22809 * 3. Now grab both ill locks in the right order, and the phyint lock of 22810 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22811 * of neither ill can change. 22812 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22813 * other ill. 22814 * 5. Release all locks. 22815 */ 22816 22817 /* 22818 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22819 * we are initializing IPv4. 22820 */ 22821 if (phyi != NULL) { 22822 ill_other = (isv6) ? phyi->phyint_illv4 : 22823 phyi->phyint_illv6; 22824 ASSERT(ill_other->ill_phyint != NULL); 22825 ASSERT((isv6 && !ill_other->ill_isv6) || 22826 (!isv6 && ill_other->ill_isv6)); 22827 GRAB_ILL_LOCKS(ill, ill_other); 22828 /* 22829 * We are potentially throwing away phyint_flags which 22830 * could be different from the one that we obtain from 22831 * ill_other->ill_phyint. But it is okay as we are assuming 22832 * that the state maintained within IP is correct. 22833 */ 22834 mutex_enter(&phyi->phyint_lock); 22835 if (isv6) { 22836 ASSERT(phyi->phyint_illv6 == NULL); 22837 phyi->phyint_illv6 = ill; 22838 } else { 22839 ASSERT(phyi->phyint_illv4 == NULL); 22840 phyi->phyint_illv4 = ill; 22841 } 22842 /* 22843 * This is a new ill, currently undergoing SLIFNAME 22844 * So we could not have joined an IPMP group until now. 22845 */ 22846 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22847 phyi_old->phyint_groupname == NULL); 22848 22849 /* 22850 * This phyi_old is going away. Decref ipsq_refs and 22851 * assert it is zero. The ipsq itself will be freed in 22852 * ipsq_exit 22853 */ 22854 ipsq = phyi_old->phyint_ipsq; 22855 IPSQ_DEC_REF(ipsq, ipst); 22856 ASSERT(ipsq->ipsq_refs == 0); 22857 /* Get the singleton phyint out of the ipsq list */ 22858 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22859 ipsq->ipsq_phyint_list = NULL; 22860 phyi_old->phyint_illv4 = NULL; 22861 phyi_old->phyint_illv6 = NULL; 22862 mi_free(phyi_old); 22863 } else { 22864 mutex_enter(&ill->ill_lock); 22865 /* 22866 * We don't need to acquire any lock, since 22867 * the ill is not yet visible globally and we 22868 * have not yet released the ill_g_lock. 22869 */ 22870 phyi = phyi_old; 22871 mutex_enter(&phyi->phyint_lock); 22872 /* XXX We need a recovery strategy here. */ 22873 if (!phyint_assign_ifindex(phyi, ipst)) 22874 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22875 22876 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22877 (void *)phyi, where); 22878 22879 (void) avl_find(&ipst->ips_phyint_g_list-> 22880 phyint_list_avl_by_index, 22881 &phyi->phyint_ifindex, &where); 22882 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22883 (void *)phyi, where); 22884 } 22885 22886 /* 22887 * Reassigning ill_phyint automatically reassigns the ipsq also. 22888 * pending mp is not affected because that is per ill basis. 22889 */ 22890 ill->ill_phyint = phyi; 22891 22892 /* 22893 * Keep the index on ipif_orig_index to be used by FAILOVER. 22894 * We do this here as when the first ipif was allocated, 22895 * ipif_allocate does not know the right interface index. 22896 */ 22897 22898 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22899 /* 22900 * Now that the phyint's ifindex has been assigned, complete the 22901 * remaining 22902 */ 22903 22904 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22905 if (ill->ill_isv6) { 22906 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22907 ill->ill_phyint->phyint_ifindex; 22908 } 22909 22910 /* 22911 * Generate an event within the hooks framework to indicate that 22912 * a new interface has just been added to IP. For this event to 22913 * be generated, the network interface must, at least, have an 22914 * ifindex assigned to it. 22915 * 22916 * This needs to be run inside the ill_g_lock perimeter to ensure 22917 * that the ordering of delivered events to listeners matches the 22918 * order of them in the kernel. 22919 * 22920 * This function could be called from ill_lookup_on_name. In that case 22921 * the interface is loopback "lo", which will not generate a NIC event. 22922 */ 22923 if (ill->ill_name_length <= 2 || 22924 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22925 hook_nic_event_t *info; 22926 if ((info = ill->ill_nic_event_info) != NULL) { 22927 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22928 "attached for %s\n", info->hne_event, 22929 ill->ill_name)); 22930 if (info->hne_data != NULL) 22931 kmem_free(info->hne_data, info->hne_datalen); 22932 kmem_free(info, sizeof (hook_nic_event_t)); 22933 } 22934 22935 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22936 if (info != NULL) { 22937 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22938 info->hne_lif = 0; 22939 info->hne_event = NE_PLUMB; 22940 info->hne_family = ill->ill_isv6 ? 22941 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22942 info->hne_data = kmem_alloc(ill->ill_name_length, 22943 KM_NOSLEEP); 22944 if (info->hne_data != NULL) { 22945 info->hne_datalen = ill->ill_name_length; 22946 bcopy(ill->ill_name, info->hne_data, 22947 info->hne_datalen); 22948 } else { 22949 ip2dbg(("ill_phyint_reinit: could not attach " 22950 "ill_name information for PLUMB nic event " 22951 "of %s (ENOMEM)\n", ill->ill_name)); 22952 kmem_free(info, sizeof (hook_nic_event_t)); 22953 } 22954 } else 22955 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22956 "event information for %s (ENOMEM)\n", 22957 ill->ill_name)); 22958 22959 ill->ill_nic_event_info = info; 22960 } 22961 22962 RELEASE_ILL_LOCKS(ill, ill_other); 22963 mutex_exit(&phyi->phyint_lock); 22964 } 22965 22966 /* 22967 * Notify any downstream modules of the name of this interface. 22968 * An M_IOCTL is used even though we don't expect a successful reply. 22969 * Any reply message from the driver (presumably an M_IOCNAK) will 22970 * eventually get discarded somewhere upstream. The message format is 22971 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22972 * to IP. 22973 */ 22974 static void 22975 ip_ifname_notify(ill_t *ill, queue_t *q) 22976 { 22977 mblk_t *mp1, *mp2; 22978 struct iocblk *iocp; 22979 struct lifreq *lifr; 22980 22981 mp1 = mkiocb(SIOCSLIFNAME); 22982 if (mp1 == NULL) 22983 return; 22984 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22985 if (mp2 == NULL) { 22986 freeb(mp1); 22987 return; 22988 } 22989 22990 mp1->b_cont = mp2; 22991 iocp = (struct iocblk *)mp1->b_rptr; 22992 iocp->ioc_count = sizeof (struct lifreq); 22993 22994 lifr = (struct lifreq *)mp2->b_rptr; 22995 mp2->b_wptr += sizeof (struct lifreq); 22996 bzero(lifr, sizeof (struct lifreq)); 22997 22998 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22999 lifr->lifr_ppa = ill->ill_ppa; 23000 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23001 23002 putnext(q, mp1); 23003 } 23004 23005 static int 23006 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23007 { 23008 int err; 23009 ip_stack_t *ipst = ill->ill_ipst; 23010 23011 /* Set the obsolete NDD per-interface forwarding name. */ 23012 err = ill_set_ndd_name(ill); 23013 if (err != 0) { 23014 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23015 err); 23016 } 23017 23018 /* Tell downstream modules where they are. */ 23019 ip_ifname_notify(ill, q); 23020 23021 /* 23022 * ill_dl_phys returns EINPROGRESS in the usual case. 23023 * Error cases are ENOMEM ... 23024 */ 23025 err = ill_dl_phys(ill, ipif, mp, q); 23026 23027 /* 23028 * If there is no IRE expiration timer running, get one started. 23029 * igmp and mld timers will be triggered by the first multicast 23030 */ 23031 if (ipst->ips_ip_ire_expire_id == 0) { 23032 /* 23033 * acquire the lock and check again. 23034 */ 23035 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23036 if (ipst->ips_ip_ire_expire_id == 0) { 23037 ipst->ips_ip_ire_expire_id = timeout( 23038 ip_trash_timer_expire, ipst, 23039 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23040 } 23041 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23042 } 23043 23044 if (ill->ill_isv6) { 23045 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23046 if (ipst->ips_mld_slowtimeout_id == 0) { 23047 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23048 (void *)ipst, 23049 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23050 } 23051 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23052 } else { 23053 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23054 if (ipst->ips_igmp_slowtimeout_id == 0) { 23055 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23056 (void *)ipst, 23057 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23058 } 23059 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23060 } 23061 23062 return (err); 23063 } 23064 23065 /* 23066 * Common routine for ppa and ifname setting. Should be called exclusive. 23067 * 23068 * Returns EINPROGRESS when mp has been consumed by queueing it on 23069 * ill_pending_mp and the ioctl will complete in ip_rput. 23070 * 23071 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23072 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23073 * For SLIFNAME, we pass these values back to the userland. 23074 */ 23075 static int 23076 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23077 { 23078 ill_t *ill; 23079 ipif_t *ipif; 23080 ipsq_t *ipsq; 23081 char *ppa_ptr; 23082 char *old_ptr; 23083 char old_char; 23084 int error; 23085 ip_stack_t *ipst; 23086 23087 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23088 ASSERT(q->q_next != NULL); 23089 ASSERT(interf_name != NULL); 23090 23091 ill = (ill_t *)q->q_ptr; 23092 ipst = ill->ill_ipst; 23093 23094 ASSERT(ill->ill_ipst != NULL); 23095 ASSERT(ill->ill_name[0] == '\0'); 23096 ASSERT(IAM_WRITER_ILL(ill)); 23097 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23098 ASSERT(ill->ill_ppa == UINT_MAX); 23099 23100 /* The ppa is sent down by ifconfig or is chosen */ 23101 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23102 return (EINVAL); 23103 } 23104 23105 /* 23106 * make sure ppa passed in is same as ppa in the name. 23107 * This check is not made when ppa == UINT_MAX in that case ppa 23108 * in the name could be anything. System will choose a ppa and 23109 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23110 */ 23111 if (*new_ppa_ptr != UINT_MAX) { 23112 /* stoi changes the pointer */ 23113 old_ptr = ppa_ptr; 23114 /* 23115 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23116 * (they don't have an externally visible ppa). We assign one 23117 * here so that we can manage the interface. Note that in 23118 * the past this value was always 0 for DLPI 1 drivers. 23119 */ 23120 if (*new_ppa_ptr == 0) 23121 *new_ppa_ptr = stoi(&old_ptr); 23122 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23123 return (EINVAL); 23124 } 23125 /* 23126 * terminate string before ppa 23127 * save char at that location. 23128 */ 23129 old_char = ppa_ptr[0]; 23130 ppa_ptr[0] = '\0'; 23131 23132 ill->ill_ppa = *new_ppa_ptr; 23133 /* 23134 * Finish as much work now as possible before calling ill_glist_insert 23135 * which makes the ill globally visible and also merges it with the 23136 * other protocol instance of this phyint. The remaining work is 23137 * done after entering the ipsq which may happen sometime later. 23138 * ill_set_ndd_name occurs after the ill has been made globally visible. 23139 */ 23140 ipif = ill->ill_ipif; 23141 23142 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23143 ipif_assign_seqid(ipif); 23144 23145 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23146 ill->ill_flags |= ILLF_IPV4; 23147 23148 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23149 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23150 23151 if (ill->ill_flags & ILLF_IPV6) { 23152 23153 ill->ill_isv6 = B_TRUE; 23154 if (ill->ill_rq != NULL) { 23155 ill->ill_rq->q_qinfo = &rinit_ipv6; 23156 ill->ill_wq->q_qinfo = &winit_ipv6; 23157 } 23158 23159 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23160 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23161 ipif->ipif_v6src_addr = ipv6_all_zeros; 23162 ipif->ipif_v6subnet = ipv6_all_zeros; 23163 ipif->ipif_v6net_mask = ipv6_all_zeros; 23164 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23165 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23166 /* 23167 * point-to-point or Non-mulicast capable 23168 * interfaces won't do NUD unless explicitly 23169 * configured to do so. 23170 */ 23171 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23172 !(ill->ill_flags & ILLF_MULTICAST)) { 23173 ill->ill_flags |= ILLF_NONUD; 23174 } 23175 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23176 if (ill->ill_flags & ILLF_NOARP) { 23177 /* 23178 * Note: xresolv interfaces will eventually need 23179 * NOARP set here as well, but that will require 23180 * those external resolvers to have some 23181 * knowledge of that flag and act appropriately. 23182 * Not to be changed at present. 23183 */ 23184 ill->ill_flags &= ~ILLF_NOARP; 23185 } 23186 /* 23187 * Set the ILLF_ROUTER flag according to the global 23188 * IPv6 forwarding policy. 23189 */ 23190 if (ipst->ips_ipv6_forward != 0) 23191 ill->ill_flags |= ILLF_ROUTER; 23192 } else if (ill->ill_flags & ILLF_IPV4) { 23193 ill->ill_isv6 = B_FALSE; 23194 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23195 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23196 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23197 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23198 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23199 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23200 /* 23201 * Set the ILLF_ROUTER flag according to the global 23202 * IPv4 forwarding policy. 23203 */ 23204 if (ipst->ips_ip_g_forward != 0) 23205 ill->ill_flags |= ILLF_ROUTER; 23206 } 23207 23208 ASSERT(ill->ill_phyint != NULL); 23209 23210 /* 23211 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23212 * be completed in ill_glist_insert -> ill_phyint_reinit 23213 */ 23214 if (!ill_allocate_mibs(ill)) 23215 return (ENOMEM); 23216 23217 /* 23218 * Pick a default sap until we get the DL_INFO_ACK back from 23219 * the driver. 23220 */ 23221 if (ill->ill_sap == 0) { 23222 if (ill->ill_isv6) 23223 ill->ill_sap = IP6_DL_SAP; 23224 else 23225 ill->ill_sap = IP_DL_SAP; 23226 } 23227 23228 ill->ill_ifname_pending = 1; 23229 ill->ill_ifname_pending_err = 0; 23230 23231 ill_refhold(ill); 23232 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23233 if ((error = ill_glist_insert(ill, interf_name, 23234 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23235 ill->ill_ppa = UINT_MAX; 23236 ill->ill_name[0] = '\0'; 23237 /* 23238 * undo null termination done above. 23239 */ 23240 ppa_ptr[0] = old_char; 23241 rw_exit(&ipst->ips_ill_g_lock); 23242 ill_refrele(ill); 23243 return (error); 23244 } 23245 23246 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23247 23248 /* 23249 * When we return the buffer pointed to by interf_name should contain 23250 * the same name as in ill_name. 23251 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23252 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23253 * so copy full name and update the ppa ptr. 23254 * When ppa passed in != UINT_MAX all values are correct just undo 23255 * null termination, this saves a bcopy. 23256 */ 23257 if (*new_ppa_ptr == UINT_MAX) { 23258 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23259 *new_ppa_ptr = ill->ill_ppa; 23260 } else { 23261 /* 23262 * undo null termination done above. 23263 */ 23264 ppa_ptr[0] = old_char; 23265 } 23266 23267 /* Let SCTP know about this ILL */ 23268 sctp_update_ill(ill, SCTP_ILL_INSERT); 23269 23270 /* and also about the first ipif */ 23271 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 23272 23273 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23274 B_TRUE); 23275 23276 rw_exit(&ipst->ips_ill_g_lock); 23277 ill_refrele(ill); 23278 if (ipsq == NULL) 23279 return (EINPROGRESS); 23280 23281 /* 23282 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23283 */ 23284 if (ipsq->ipsq_current_ipif == NULL) 23285 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23286 else 23287 ASSERT(ipsq->ipsq_current_ipif == ipif); 23288 23289 error = ipif_set_values_tail(ill, ipif, mp, q); 23290 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23291 if (error != 0 && error != EINPROGRESS) { 23292 /* 23293 * restore previous values 23294 */ 23295 ill->ill_isv6 = B_FALSE; 23296 } 23297 return (error); 23298 } 23299 23300 23301 void 23302 ipif_init(ip_stack_t *ipst) 23303 { 23304 hrtime_t hrt; 23305 int i; 23306 23307 /* 23308 * Can't call drv_getparm here as it is too early in the boot. 23309 * As we use ipif_src_random just for picking a different 23310 * source address everytime, this need not be really random. 23311 */ 23312 hrt = gethrtime(); 23313 ipst->ips_ipif_src_random = 23314 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23315 23316 for (i = 0; i < MAX_G_HEADS; i++) { 23317 ipst->ips_ill_g_heads[i].ill_g_list_head = 23318 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23319 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23320 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23321 } 23322 23323 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23324 ill_phyint_compare_index, 23325 sizeof (phyint_t), 23326 offsetof(struct phyint, phyint_avl_by_index)); 23327 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23328 ill_phyint_compare_name, 23329 sizeof (phyint_t), 23330 offsetof(struct phyint, phyint_avl_by_name)); 23331 } 23332 23333 /* 23334 * This is called by ip_rt_add when src_addr value is other than zero. 23335 * src_addr signifies the source address of the incoming packet. For 23336 * reverse tunnel route we need to create a source addr based routing 23337 * table. This routine creates ip_mrtun_table if it's empty and then 23338 * it adds the route entry hashed by source address. It verifies that 23339 * the outgoing interface is always a non-resolver interface (tunnel). 23340 */ 23341 int 23342 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23343 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23344 ip_stack_t *ipst) 23345 { 23346 ire_t *ire; 23347 ire_t *save_ire; 23348 ipif_t *ipif; 23349 ill_t *in_ill = NULL; 23350 ill_t *out_ill; 23351 queue_t *stq; 23352 mblk_t *dlureq_mp; 23353 int error; 23354 23355 if (ire_arg != NULL) 23356 *ire_arg = NULL; 23357 ASSERT(in_src_addr != INADDR_ANY); 23358 23359 ipif = ipif_arg; 23360 if (ipif != NULL) { 23361 out_ill = ipif->ipif_ill; 23362 } else { 23363 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23364 return (EINVAL); 23365 } 23366 23367 if (src_ipif == NULL) { 23368 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23369 return (EINVAL); 23370 } 23371 in_ill = src_ipif->ipif_ill; 23372 23373 /* 23374 * Check for duplicates. We don't need to 23375 * match out_ill, because the uniqueness of 23376 * a route is only dependent on src_addr and 23377 * in_ill. 23378 */ 23379 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23380 if (ire != NULL) { 23381 ire_refrele(ire); 23382 return (EEXIST); 23383 } 23384 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23385 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23386 ipif->ipif_net_type)); 23387 return (EINVAL); 23388 } 23389 23390 stq = ipif->ipif_wq; 23391 ASSERT(stq != NULL); 23392 23393 /* 23394 * The outgoing interface must be non-resolver 23395 * interface. 23396 */ 23397 dlureq_mp = ill_dlur_gen(NULL, 23398 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23399 out_ill->ill_sap_length); 23400 23401 if (dlureq_mp == NULL) { 23402 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23403 return (ENOMEM); 23404 } 23405 23406 /* Create the IRE. */ 23407 23408 ire = ire_create( 23409 NULL, /* Zero dst addr */ 23410 NULL, /* Zero mask */ 23411 NULL, /* Zero gateway addr */ 23412 NULL, /* Zero ipif_src addr */ 23413 (uint8_t *)&in_src_addr, /* in_src-addr */ 23414 &ipif->ipif_mtu, 23415 NULL, 23416 NULL, /* rfq */ 23417 stq, 23418 IRE_MIPRTUN, 23419 dlureq_mp, 23420 ipif, 23421 in_ill, 23422 0, 23423 0, 23424 0, 23425 flags, 23426 &ire_uinfo_null, 23427 NULL, 23428 NULL, 23429 ipst); 23430 23431 if (ire == NULL) { 23432 freeb(dlureq_mp); 23433 return (ENOMEM); 23434 } 23435 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23436 ire->ire_type)); 23437 save_ire = ire; 23438 ASSERT(save_ire != NULL); 23439 error = ire_add_mrtun(&ire, q, mp, func); 23440 /* 23441 * If ire_add_mrtun() failed, the ire passed in was freed 23442 * so there is no need to do so here. 23443 */ 23444 if (error != 0) { 23445 return (error); 23446 } 23447 23448 /* Duplicate check */ 23449 if (ire != save_ire) { 23450 /* route already exists by now */ 23451 ire_refrele(ire); 23452 return (EEXIST); 23453 } 23454 23455 if (ire_arg != NULL) { 23456 /* 23457 * Store the ire that was just added. the caller 23458 * ip_rts_request responsible for doing ire_refrele() 23459 * on it. 23460 */ 23461 *ire_arg = ire; 23462 } else { 23463 ire_refrele(ire); /* held in ire_add_mrtun */ 23464 } 23465 23466 return (0); 23467 } 23468 23469 /* 23470 * It is called by ip_rt_delete() only when mipagent requests to delete 23471 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23472 */ 23473 23474 int 23475 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23476 { 23477 ire_t *ire = NULL; 23478 23479 if (in_src_addr == INADDR_ANY) 23480 return (EINVAL); 23481 if (src_ipif == NULL) 23482 return (EINVAL); 23483 23484 /* search if this route exists in the ip_mrtun_table */ 23485 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23486 if (ire == NULL) { 23487 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23488 return (ESRCH); 23489 } 23490 ire_delete(ire); 23491 ire_refrele(ire); 23492 return (0); 23493 } 23494 23495 /* 23496 * Lookup the ipif corresponding to the onlink destination address. For 23497 * point-to-point interfaces, it matches with remote endpoint destination 23498 * address. For point-to-multipoint interfaces it only tries to match the 23499 * destination with the interface's subnet address. The longest, most specific 23500 * match is found to take care of such rare network configurations like - 23501 * le0: 129.146.1.1/16 23502 * le1: 129.146.2.2/24 23503 * It is used only by SO_DONTROUTE at the moment. 23504 */ 23505 ipif_t * 23506 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23507 { 23508 ipif_t *ipif, *best_ipif; 23509 ill_t *ill; 23510 ill_walk_context_t ctx; 23511 23512 ASSERT(zoneid != ALL_ZONES); 23513 best_ipif = NULL; 23514 23515 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23516 ill = ILL_START_WALK_V4(&ctx, ipst); 23517 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23518 mutex_enter(&ill->ill_lock); 23519 for (ipif = ill->ill_ipif; ipif != NULL; 23520 ipif = ipif->ipif_next) { 23521 if (!IPIF_CAN_LOOKUP(ipif)) 23522 continue; 23523 if (ipif->ipif_zoneid != zoneid && 23524 ipif->ipif_zoneid != ALL_ZONES) 23525 continue; 23526 /* 23527 * Point-to-point case. Look for exact match with 23528 * destination address. 23529 */ 23530 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23531 if (ipif->ipif_pp_dst_addr == addr) { 23532 ipif_refhold_locked(ipif); 23533 mutex_exit(&ill->ill_lock); 23534 rw_exit(&ipst->ips_ill_g_lock); 23535 if (best_ipif != NULL) 23536 ipif_refrele(best_ipif); 23537 return (ipif); 23538 } 23539 } else if (ipif->ipif_subnet == (addr & 23540 ipif->ipif_net_mask)) { 23541 /* 23542 * Point-to-multipoint case. Looping through to 23543 * find the most specific match. If there are 23544 * multiple best match ipif's then prefer ipif's 23545 * that are UP. If there is only one best match 23546 * ipif and it is DOWN we must still return it. 23547 */ 23548 if ((best_ipif == NULL) || 23549 (ipif->ipif_net_mask > 23550 best_ipif->ipif_net_mask) || 23551 ((ipif->ipif_net_mask == 23552 best_ipif->ipif_net_mask) && 23553 ((ipif->ipif_flags & IPIF_UP) && 23554 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23555 ipif_refhold_locked(ipif); 23556 mutex_exit(&ill->ill_lock); 23557 rw_exit(&ipst->ips_ill_g_lock); 23558 if (best_ipif != NULL) 23559 ipif_refrele(best_ipif); 23560 best_ipif = ipif; 23561 rw_enter(&ipst->ips_ill_g_lock, 23562 RW_READER); 23563 mutex_enter(&ill->ill_lock); 23564 } 23565 } 23566 } 23567 mutex_exit(&ill->ill_lock); 23568 } 23569 rw_exit(&ipst->ips_ill_g_lock); 23570 return (best_ipif); 23571 } 23572 23573 23574 /* 23575 * Save enough information so that we can recreate the IRE if 23576 * the interface goes down and then up. 23577 */ 23578 static void 23579 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23580 { 23581 mblk_t *save_mp; 23582 23583 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23584 if (save_mp != NULL) { 23585 ifrt_t *ifrt; 23586 23587 save_mp->b_wptr += sizeof (ifrt_t); 23588 ifrt = (ifrt_t *)save_mp->b_rptr; 23589 bzero(ifrt, sizeof (ifrt_t)); 23590 ifrt->ifrt_type = ire->ire_type; 23591 ifrt->ifrt_addr = ire->ire_addr; 23592 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23593 ifrt->ifrt_src_addr = ire->ire_src_addr; 23594 ifrt->ifrt_mask = ire->ire_mask; 23595 ifrt->ifrt_flags = ire->ire_flags; 23596 ifrt->ifrt_max_frag = ire->ire_max_frag; 23597 mutex_enter(&ipif->ipif_saved_ire_lock); 23598 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23599 ipif->ipif_saved_ire_mp = save_mp; 23600 ipif->ipif_saved_ire_cnt++; 23601 mutex_exit(&ipif->ipif_saved_ire_lock); 23602 } 23603 } 23604 23605 23606 static void 23607 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23608 { 23609 mblk_t **mpp; 23610 mblk_t *mp; 23611 ifrt_t *ifrt; 23612 23613 /* Remove from ipif_saved_ire_mp list if it is there */ 23614 mutex_enter(&ipif->ipif_saved_ire_lock); 23615 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23616 mpp = &(*mpp)->b_cont) { 23617 /* 23618 * On a given ipif, the triple of address, gateway and 23619 * mask is unique for each saved IRE (in the case of 23620 * ordinary interface routes, the gateway address is 23621 * all-zeroes). 23622 */ 23623 mp = *mpp; 23624 ifrt = (ifrt_t *)mp->b_rptr; 23625 if (ifrt->ifrt_addr == ire->ire_addr && 23626 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23627 ifrt->ifrt_mask == ire->ire_mask) { 23628 *mpp = mp->b_cont; 23629 ipif->ipif_saved_ire_cnt--; 23630 freeb(mp); 23631 break; 23632 } 23633 } 23634 mutex_exit(&ipif->ipif_saved_ire_lock); 23635 } 23636 23637 23638 /* 23639 * IP multirouting broadcast routes handling 23640 * Append CGTP broadcast IREs to regular ones created 23641 * at ifconfig time. 23642 */ 23643 static void 23644 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23645 { 23646 ire_t *ire_prim; 23647 23648 ASSERT(ire != NULL); 23649 ASSERT(ire_dst != NULL); 23650 23651 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23652 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23653 if (ire_prim != NULL) { 23654 /* 23655 * We are in the special case of broadcasts for 23656 * CGTP. We add an IRE_BROADCAST that holds 23657 * the RTF_MULTIRT flag, the destination 23658 * address of ire_dst and the low level 23659 * info of ire_prim. In other words, CGTP 23660 * broadcast is added to the redundant ipif. 23661 */ 23662 ipif_t *ipif_prim; 23663 ire_t *bcast_ire; 23664 23665 ipif_prim = ire_prim->ire_ipif; 23666 23667 ip2dbg(("ip_cgtp_filter_bcast_add: " 23668 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23669 (void *)ire_dst, (void *)ire_prim, 23670 (void *)ipif_prim)); 23671 23672 bcast_ire = ire_create( 23673 (uchar_t *)&ire->ire_addr, 23674 (uchar_t *)&ip_g_all_ones, 23675 (uchar_t *)&ire_dst->ire_src_addr, 23676 (uchar_t *)&ire->ire_gateway_addr, 23677 NULL, 23678 &ipif_prim->ipif_mtu, 23679 NULL, 23680 ipif_prim->ipif_rq, 23681 ipif_prim->ipif_wq, 23682 IRE_BROADCAST, 23683 ipif_prim->ipif_bcast_mp, 23684 ipif_prim, 23685 NULL, 23686 0, 23687 0, 23688 0, 23689 ire->ire_flags, 23690 &ire_uinfo_null, 23691 NULL, 23692 NULL, 23693 ipst); 23694 23695 if (bcast_ire != NULL) { 23696 23697 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23698 B_FALSE) == 0) { 23699 ip2dbg(("ip_cgtp_filter_bcast_add: " 23700 "added bcast_ire %p\n", 23701 (void *)bcast_ire)); 23702 23703 ipif_save_ire(bcast_ire->ire_ipif, 23704 bcast_ire); 23705 ire_refrele(bcast_ire); 23706 } 23707 } 23708 ire_refrele(ire_prim); 23709 } 23710 } 23711 23712 23713 /* 23714 * IP multirouting broadcast routes handling 23715 * Remove the broadcast ire 23716 */ 23717 static void 23718 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23719 { 23720 ire_t *ire_dst; 23721 23722 ASSERT(ire != NULL); 23723 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23724 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23725 if (ire_dst != NULL) { 23726 ire_t *ire_prim; 23727 23728 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23729 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23730 if (ire_prim != NULL) { 23731 ipif_t *ipif_prim; 23732 ire_t *bcast_ire; 23733 23734 ipif_prim = ire_prim->ire_ipif; 23735 23736 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23737 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23738 (void *)ire_dst, (void *)ire_prim, 23739 (void *)ipif_prim)); 23740 23741 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23742 ire->ire_gateway_addr, 23743 IRE_BROADCAST, 23744 ipif_prim, ALL_ZONES, 23745 NULL, 23746 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23747 MATCH_IRE_MASK, ipst); 23748 23749 if (bcast_ire != NULL) { 23750 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23751 "looked up bcast_ire %p\n", 23752 (void *)bcast_ire)); 23753 ipif_remove_ire(bcast_ire->ire_ipif, 23754 bcast_ire); 23755 ire_delete(bcast_ire); 23756 } 23757 ire_refrele(ire_prim); 23758 } 23759 ire_refrele(ire_dst); 23760 } 23761 } 23762 23763 /* 23764 * IPsec hardware acceleration capabilities related functions. 23765 */ 23766 23767 /* 23768 * Free a per-ill IPsec capabilities structure. 23769 */ 23770 static void 23771 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23772 { 23773 if (capab->auth_hw_algs != NULL) 23774 kmem_free(capab->auth_hw_algs, capab->algs_size); 23775 if (capab->encr_hw_algs != NULL) 23776 kmem_free(capab->encr_hw_algs, capab->algs_size); 23777 if (capab->encr_algparm != NULL) 23778 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23779 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23780 } 23781 23782 /* 23783 * Allocate a new per-ill IPsec capabilities structure. This structure 23784 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23785 * an array which specifies, for each algorithm, whether this algorithm 23786 * is supported by the ill or not. 23787 */ 23788 static ill_ipsec_capab_t * 23789 ill_ipsec_capab_alloc(void) 23790 { 23791 ill_ipsec_capab_t *capab; 23792 uint_t nelems; 23793 23794 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23795 if (capab == NULL) 23796 return (NULL); 23797 23798 /* we need one bit per algorithm */ 23799 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23800 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23801 23802 /* allocate memory to store algorithm flags */ 23803 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23804 if (capab->encr_hw_algs == NULL) 23805 goto nomem; 23806 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23807 if (capab->auth_hw_algs == NULL) 23808 goto nomem; 23809 /* 23810 * Leave encr_algparm NULL for now since we won't need it half 23811 * the time 23812 */ 23813 return (capab); 23814 23815 nomem: 23816 ill_ipsec_capab_free(capab); 23817 return (NULL); 23818 } 23819 23820 /* 23821 * Resize capability array. Since we're exclusive, this is OK. 23822 */ 23823 static boolean_t 23824 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23825 { 23826 ipsec_capab_algparm_t *nalp, *oalp; 23827 uint32_t olen, nlen; 23828 23829 oalp = capab->encr_algparm; 23830 olen = capab->encr_algparm_size; 23831 23832 if (oalp != NULL) { 23833 if (algid < capab->encr_algparm_end) 23834 return (B_TRUE); 23835 } 23836 23837 nlen = (algid + 1) * sizeof (*nalp); 23838 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23839 if (nalp == NULL) 23840 return (B_FALSE); 23841 23842 if (oalp != NULL) { 23843 bcopy(oalp, nalp, olen); 23844 kmem_free(oalp, olen); 23845 } 23846 capab->encr_algparm = nalp; 23847 capab->encr_algparm_size = nlen; 23848 capab->encr_algparm_end = algid + 1; 23849 23850 return (B_TRUE); 23851 } 23852 23853 /* 23854 * Compare the capabilities of the specified ill with the protocol 23855 * and algorithms specified by the SA passed as argument. 23856 * If they match, returns B_TRUE, B_FALSE if they do not match. 23857 * 23858 * The ill can be passed as a pointer to it, or by specifying its index 23859 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23860 * 23861 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23862 * packet is eligible for hardware acceleration, and by 23863 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23864 * to a particular ill. 23865 */ 23866 boolean_t 23867 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23868 ipsa_t *sa, netstack_t *ns) 23869 { 23870 boolean_t sa_isv6; 23871 uint_t algid; 23872 struct ill_ipsec_capab_s *cpp; 23873 boolean_t need_refrele = B_FALSE; 23874 ip_stack_t *ipst = ns->netstack_ip; 23875 23876 if (ill == NULL) { 23877 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23878 NULL, NULL, NULL, ipst); 23879 if (ill == NULL) { 23880 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23881 return (B_FALSE); 23882 } 23883 need_refrele = B_TRUE; 23884 } 23885 23886 /* 23887 * Use the address length specified by the SA to determine 23888 * if it corresponds to a IPv6 address, and fail the matching 23889 * if the isv6 flag passed as argument does not match. 23890 * Note: this check is used for SADB capability checking before 23891 * sending SA information to an ill. 23892 */ 23893 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23894 if (sa_isv6 != ill_isv6) 23895 /* protocol mismatch */ 23896 goto done; 23897 23898 /* 23899 * Check if the ill supports the protocol, algorithm(s) and 23900 * key size(s) specified by the SA, and get the pointers to 23901 * the algorithms supported by the ill. 23902 */ 23903 switch (sa->ipsa_type) { 23904 23905 case SADB_SATYPE_ESP: 23906 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23907 /* ill does not support ESP acceleration */ 23908 goto done; 23909 cpp = ill->ill_ipsec_capab_esp; 23910 algid = sa->ipsa_auth_alg; 23911 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23912 goto done; 23913 algid = sa->ipsa_encr_alg; 23914 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23915 goto done; 23916 if (algid < cpp->encr_algparm_end) { 23917 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23918 if (sa->ipsa_encrkeybits < alp->minkeylen) 23919 goto done; 23920 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23921 goto done; 23922 } 23923 break; 23924 23925 case SADB_SATYPE_AH: 23926 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23927 /* ill does not support AH acceleration */ 23928 goto done; 23929 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23930 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23931 goto done; 23932 break; 23933 } 23934 23935 if (need_refrele) 23936 ill_refrele(ill); 23937 return (B_TRUE); 23938 done: 23939 if (need_refrele) 23940 ill_refrele(ill); 23941 return (B_FALSE); 23942 } 23943 23944 23945 /* 23946 * Add a new ill to the list of IPsec capable ills. 23947 * Called from ill_capability_ipsec_ack() when an ACK was received 23948 * indicating that IPsec hardware processing was enabled for an ill. 23949 * 23950 * ill must point to the ill for which acceleration was enabled. 23951 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23952 */ 23953 static void 23954 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23955 { 23956 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23957 uint_t sa_type; 23958 uint_t ipproto; 23959 ip_stack_t *ipst = ill->ill_ipst; 23960 23961 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23962 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23963 23964 switch (dl_cap) { 23965 case DL_CAPAB_IPSEC_AH: 23966 sa_type = SADB_SATYPE_AH; 23967 ills = &ipst->ips_ipsec_capab_ills_ah; 23968 ipproto = IPPROTO_AH; 23969 break; 23970 case DL_CAPAB_IPSEC_ESP: 23971 sa_type = SADB_SATYPE_ESP; 23972 ills = &ipst->ips_ipsec_capab_ills_esp; 23973 ipproto = IPPROTO_ESP; 23974 break; 23975 } 23976 23977 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23978 23979 /* 23980 * Add ill index to list of hardware accelerators. If 23981 * already in list, do nothing. 23982 */ 23983 for (cur_ill = *ills; cur_ill != NULL && 23984 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23985 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23986 ; 23987 23988 if (cur_ill == NULL) { 23989 /* if this is a new entry for this ill */ 23990 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23991 if (new_ill == NULL) { 23992 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23993 return; 23994 } 23995 23996 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23997 new_ill->ill_isv6 = ill->ill_isv6; 23998 new_ill->next = *ills; 23999 *ills = new_ill; 24000 } else if (!sadb_resync) { 24001 /* not resync'ing SADB and an entry exists for this ill */ 24002 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24003 return; 24004 } 24005 24006 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24007 24008 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24009 /* 24010 * IPsec module for protocol loaded, initiate dump 24011 * of the SADB to this ill. 24012 */ 24013 sadb_ill_download(ill, sa_type); 24014 } 24015 24016 /* 24017 * Remove an ill from the list of IPsec capable ills. 24018 */ 24019 static void 24020 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24021 { 24022 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24023 ip_stack_t *ipst = ill->ill_ipst; 24024 24025 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24026 dl_cap == DL_CAPAB_IPSEC_ESP); 24027 24028 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24029 &ipst->ips_ipsec_capab_ills_esp; 24030 24031 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24032 24033 prev_ill = NULL; 24034 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24035 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24036 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24037 ; 24038 if (cur_ill == NULL) { 24039 /* entry not found */ 24040 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24041 return; 24042 } 24043 if (prev_ill == NULL) { 24044 /* entry at front of list */ 24045 *ills = NULL; 24046 } else { 24047 prev_ill->next = cur_ill->next; 24048 } 24049 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24050 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24051 } 24052 24053 24054 /* 24055 * Handling of DL_CONTROL_REQ messages that must be sent down to 24056 * an ill while having exclusive access. 24057 */ 24058 /* ARGSUSED */ 24059 static void 24060 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24061 { 24062 ill_t *ill = (ill_t *)q->q_ptr; 24063 24064 ill_dlpi_send(ill, mp); 24065 } 24066 24067 24068 /* 24069 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24070 * supporting the specified IPsec protocol acceleration. 24071 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24072 * We free the mblk and, if sa is non-null, release the held referece. 24073 */ 24074 void 24075 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24076 netstack_t *ns) 24077 { 24078 ipsec_capab_ill_t *ici, *cur_ici; 24079 ill_t *ill; 24080 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24081 ip_stack_t *ipst = ns->netstack_ip; 24082 24083 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24084 ipst->ips_ipsec_capab_ills_esp; 24085 24086 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24087 24088 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24089 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24090 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24091 24092 /* 24093 * Handle the case where the ill goes away while the SADB is 24094 * attempting to send messages. If it's going away, it's 24095 * nuking its shadow SADB, so we don't care.. 24096 */ 24097 24098 if (ill == NULL) 24099 continue; 24100 24101 if (sa != NULL) { 24102 /* 24103 * Make sure capabilities match before 24104 * sending SA to ill. 24105 */ 24106 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24107 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24108 ill_refrele(ill); 24109 continue; 24110 } 24111 24112 mutex_enter(&sa->ipsa_lock); 24113 sa->ipsa_flags |= IPSA_F_HW; 24114 mutex_exit(&sa->ipsa_lock); 24115 } 24116 24117 /* 24118 * Copy template message, and add it to the front 24119 * of the mblk ship list. We want to avoid holding 24120 * the ipsec_capab_ills_lock while sending the 24121 * message to the ills. 24122 * 24123 * The b_next and b_prev are temporarily used 24124 * to build a list of mblks to be sent down, and to 24125 * save the ill to which they must be sent. 24126 */ 24127 nmp = copymsg(mp); 24128 if (nmp == NULL) { 24129 ill_refrele(ill); 24130 continue; 24131 } 24132 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24133 nmp->b_next = mp_ship_list; 24134 mp_ship_list = nmp; 24135 nmp->b_prev = (mblk_t *)ill; 24136 } 24137 24138 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24139 24140 nmp = mp_ship_list; 24141 while (nmp != NULL) { 24142 /* restore the mblk to a sane state */ 24143 next_mp = nmp->b_next; 24144 nmp->b_next = NULL; 24145 ill = (ill_t *)nmp->b_prev; 24146 nmp->b_prev = NULL; 24147 24148 /* 24149 * Ship the mblk to the ill, must be exclusive. Keep the 24150 * reference to the ill as qwriter_ip() does a ill_referele(). 24151 */ 24152 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 24153 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 24154 24155 nmp = next_mp; 24156 } 24157 24158 if (sa != NULL) 24159 IPSA_REFRELE(sa); 24160 freemsg(mp); 24161 } 24162 24163 24164 /* 24165 * Derive an interface id from the link layer address. 24166 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24167 */ 24168 static boolean_t 24169 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24170 { 24171 char *addr; 24172 24173 if (phys_length != ETHERADDRL) 24174 return (B_FALSE); 24175 24176 /* Form EUI-64 like address */ 24177 addr = (char *)&v6addr->s6_addr32[2]; 24178 bcopy((char *)phys_addr, addr, 3); 24179 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24180 addr[3] = (char)0xff; 24181 addr[4] = (char)0xfe; 24182 bcopy((char *)phys_addr + 3, addr + 5, 3); 24183 return (B_TRUE); 24184 } 24185 24186 /* ARGSUSED */ 24187 static boolean_t 24188 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24189 { 24190 return (B_FALSE); 24191 } 24192 24193 /* ARGSUSED */ 24194 static boolean_t 24195 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24196 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24197 { 24198 /* 24199 * Multicast address mappings used over Ethernet/802.X. 24200 * This address is used as a base for mappings. 24201 */ 24202 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24203 0x00, 0x00, 0x00}; 24204 24205 /* 24206 * Extract low order 32 bits from IPv6 multicast address. 24207 * Or that into the link layer address, starting from the 24208 * second byte. 24209 */ 24210 *hw_start = 2; 24211 v6_extract_mask->s6_addr32[0] = 0; 24212 v6_extract_mask->s6_addr32[1] = 0; 24213 v6_extract_mask->s6_addr32[2] = 0; 24214 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24215 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24216 return (B_TRUE); 24217 } 24218 24219 /* 24220 * Indicate by return value whether multicast is supported. If not, 24221 * this code should not touch/change any parameters. 24222 */ 24223 /* ARGSUSED */ 24224 static boolean_t 24225 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24226 uint32_t *hw_start, ipaddr_t *extract_mask) 24227 { 24228 /* 24229 * Multicast address mappings used over Ethernet/802.X. 24230 * This address is used as a base for mappings. 24231 */ 24232 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24233 0x00, 0x00, 0x00 }; 24234 24235 if (phys_length != ETHERADDRL) 24236 return (B_FALSE); 24237 24238 *extract_mask = htonl(0x007fffff); 24239 *hw_start = 2; 24240 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24241 return (B_TRUE); 24242 } 24243 24244 /* 24245 * Derive IPoIB interface id from the link layer address. 24246 */ 24247 static boolean_t 24248 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24249 { 24250 char *addr; 24251 24252 if (phys_length != 20) 24253 return (B_FALSE); 24254 addr = (char *)&v6addr->s6_addr32[2]; 24255 bcopy(phys_addr + 12, addr, 8); 24256 /* 24257 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24258 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24259 * rules. In these cases, the IBA considers these GUIDs to be in 24260 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24261 * required; vendors are required not to assign global EUI-64's 24262 * that differ only in u/l bit values, thus guaranteeing uniqueness 24263 * of the interface identifier. Whether the GUID is in modified 24264 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24265 * bit set to 1. 24266 */ 24267 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24268 return (B_TRUE); 24269 } 24270 24271 /* 24272 * Note on mapping from multicast IP addresses to IPoIB multicast link 24273 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24274 * The format of an IPoIB multicast address is: 24275 * 24276 * 4 byte QPN Scope Sign. Pkey 24277 * +--------------------------------------------+ 24278 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24279 * +--------------------------------------------+ 24280 * 24281 * The Scope and Pkey components are properties of the IBA port and 24282 * network interface. They can be ascertained from the broadcast address. 24283 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24284 */ 24285 24286 static boolean_t 24287 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24288 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24289 { 24290 /* 24291 * Base IPoIB IPv6 multicast address used for mappings. 24292 * Does not contain the IBA scope/Pkey values. 24293 */ 24294 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24295 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24296 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24297 24298 /* 24299 * Extract low order 80 bits from IPv6 multicast address. 24300 * Or that into the link layer address, starting from the 24301 * sixth byte. 24302 */ 24303 *hw_start = 6; 24304 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24305 24306 /* 24307 * Now fill in the IBA scope/Pkey values from the broadcast address. 24308 */ 24309 *(maddr + 5) = *(bphys_addr + 5); 24310 *(maddr + 8) = *(bphys_addr + 8); 24311 *(maddr + 9) = *(bphys_addr + 9); 24312 24313 v6_extract_mask->s6_addr32[0] = 0; 24314 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24315 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24316 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24317 return (B_TRUE); 24318 } 24319 24320 static boolean_t 24321 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24322 uint32_t *hw_start, ipaddr_t *extract_mask) 24323 { 24324 /* 24325 * Base IPoIB IPv4 multicast address used for mappings. 24326 * Does not contain the IBA scope/Pkey values. 24327 */ 24328 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24329 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24330 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24331 24332 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24333 return (B_FALSE); 24334 24335 /* 24336 * Extract low order 28 bits from IPv4 multicast address. 24337 * Or that into the link layer address, starting from the 24338 * sixteenth byte. 24339 */ 24340 *extract_mask = htonl(0x0fffffff); 24341 *hw_start = 16; 24342 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24343 24344 /* 24345 * Now fill in the IBA scope/Pkey values from the broadcast address. 24346 */ 24347 *(maddr + 5) = *(bphys_addr + 5); 24348 *(maddr + 8) = *(bphys_addr + 8); 24349 *(maddr + 9) = *(bphys_addr + 9); 24350 return (B_TRUE); 24351 } 24352 24353 /* 24354 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24355 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24356 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24357 * the link-local address is preferred. 24358 */ 24359 boolean_t 24360 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24361 { 24362 ipif_t *ipif; 24363 ipif_t *maybe_ipif = NULL; 24364 24365 mutex_enter(&ill->ill_lock); 24366 if (ill->ill_state_flags & ILL_CONDEMNED) { 24367 mutex_exit(&ill->ill_lock); 24368 if (ipifp != NULL) 24369 *ipifp = NULL; 24370 return (B_FALSE); 24371 } 24372 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24373 if (!IPIF_CAN_LOOKUP(ipif)) 24374 continue; 24375 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24376 ipif->ipif_zoneid != ALL_ZONES) 24377 continue; 24378 if ((ipif->ipif_flags & flags) != flags) 24379 continue; 24380 24381 if (ipifp == NULL) { 24382 mutex_exit(&ill->ill_lock); 24383 ASSERT(maybe_ipif == NULL); 24384 return (B_TRUE); 24385 } 24386 if (!ill->ill_isv6 || 24387 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24388 ipif_refhold_locked(ipif); 24389 mutex_exit(&ill->ill_lock); 24390 *ipifp = ipif; 24391 return (B_TRUE); 24392 } 24393 if (maybe_ipif == NULL) 24394 maybe_ipif = ipif; 24395 } 24396 if (ipifp != NULL) { 24397 if (maybe_ipif != NULL) 24398 ipif_refhold_locked(maybe_ipif); 24399 *ipifp = maybe_ipif; 24400 } 24401 mutex_exit(&ill->ill_lock); 24402 return (maybe_ipif != NULL); 24403 } 24404 24405 /* 24406 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24407 */ 24408 boolean_t 24409 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24410 { 24411 ill_t *illg; 24412 ip_stack_t *ipst = ill->ill_ipst; 24413 24414 /* 24415 * We look at the passed-in ill first without grabbing ill_g_lock. 24416 */ 24417 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24418 return (B_TRUE); 24419 } 24420 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24421 if (ill->ill_group == NULL) { 24422 /* ill not in a group */ 24423 rw_exit(&ipst->ips_ill_g_lock); 24424 return (B_FALSE); 24425 } 24426 24427 /* 24428 * There's no ipif in the zone on ill, however ill is part of an IPMP 24429 * group. We need to look for an ipif in the zone on all the ills in the 24430 * group. 24431 */ 24432 illg = ill->ill_group->illgrp_ill; 24433 do { 24434 /* 24435 * We don't call ipif_lookup_zoneid() on ill as we already know 24436 * that it's not there. 24437 */ 24438 if (illg != ill && 24439 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24440 break; 24441 } 24442 } while ((illg = illg->ill_group_next) != NULL); 24443 rw_exit(&ipst->ips_ill_g_lock); 24444 return (illg != NULL); 24445 } 24446 24447 /* 24448 * Check if this ill is only being used to send ICMP probes for IPMP 24449 */ 24450 boolean_t 24451 ill_is_probeonly(ill_t *ill) 24452 { 24453 /* 24454 * Check if the interface is FAILED, or INACTIVE 24455 */ 24456 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24457 return (B_TRUE); 24458 24459 return (B_FALSE); 24460 } 24461 24462 /* 24463 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24464 * If a pointer to an ipif_t is returned then the caller will need to do 24465 * an ill_refrele(). 24466 */ 24467 ipif_t * 24468 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24469 ip_stack_t *ipst) 24470 { 24471 ipif_t *ipif; 24472 ill_t *ill; 24473 24474 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24475 ipst); 24476 24477 if (ill == NULL) 24478 return (NULL); 24479 24480 mutex_enter(&ill->ill_lock); 24481 if (ill->ill_state_flags & ILL_CONDEMNED) { 24482 mutex_exit(&ill->ill_lock); 24483 ill_refrele(ill); 24484 return (NULL); 24485 } 24486 24487 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24488 if (!IPIF_CAN_LOOKUP(ipif)) 24489 continue; 24490 if (lifidx == ipif->ipif_id) { 24491 ipif_refhold_locked(ipif); 24492 break; 24493 } 24494 } 24495 24496 mutex_exit(&ill->ill_lock); 24497 ill_refrele(ill); 24498 return (ipif); 24499 } 24500 24501 /* 24502 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24503 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24504 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24505 * for details. 24506 */ 24507 void 24508 ill_fastpath_flush(ill_t *ill) 24509 { 24510 ip_stack_t *ipst = ill->ill_ipst; 24511 24512 nce_fastpath_list_dispatch(ill, NULL, NULL); 24513 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24514 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24515 } 24516 24517 /* 24518 * Set the physical address information for `ill' to the contents of the 24519 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24520 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24521 * EINPROGRESS will be returned. 24522 */ 24523 int 24524 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24525 { 24526 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24527 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24528 24529 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24530 24531 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24532 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24533 /* Changing DL_IPV6_TOKEN is not yet supported */ 24534 return (0); 24535 } 24536 24537 /* 24538 * We need to store up to two copies of `mp' in `ill'. Due to the 24539 * design of ipsq_pending_mp_add(), we can't pass them as separate 24540 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24541 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24542 */ 24543 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24544 freemsg(mp); 24545 return (ENOMEM); 24546 } 24547 24548 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24549 24550 /* 24551 * If we can quiesce the ill, then set the address. If not, then 24552 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24553 */ 24554 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24555 mutex_enter(&ill->ill_lock); 24556 if (!ill_is_quiescent(ill)) { 24557 /* call cannot fail since `conn_t *' argument is NULL */ 24558 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24559 mp, ILL_DOWN); 24560 mutex_exit(&ill->ill_lock); 24561 return (EINPROGRESS); 24562 } 24563 mutex_exit(&ill->ill_lock); 24564 24565 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24566 return (0); 24567 } 24568 24569 /* 24570 * Once the ill associated with `q' has quiesced, set its physical address 24571 * information to the values in `addrmp'. Note that two copies of `addrmp' 24572 * are passed (linked by b_cont), since we sometimes need to save two distinct 24573 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24574 * failure (we'll free the other copy if it's not needed). Since the ill_t 24575 * is quiesced, we know any stale IREs with the old address information have 24576 * already been removed, so we don't need to call ill_fastpath_flush(). 24577 */ 24578 /* ARGSUSED */ 24579 static void 24580 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24581 { 24582 ill_t *ill = q->q_ptr; 24583 mblk_t *addrmp2 = unlinkb(addrmp); 24584 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24585 uint_t addrlen, addroff; 24586 24587 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24588 mutex_enter(&ill->ill_lock); 24589 ASSERT(ill_is_quiescent(ill)); 24590 mutex_exit(&ill->ill_lock); 24591 24592 addroff = dlindp->dl_addr_offset; 24593 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24594 24595 switch (dlindp->dl_data) { 24596 case DL_IPV6_LINK_LAYER_ADDR: 24597 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24598 freemsg(addrmp2); 24599 break; 24600 24601 case DL_CURR_PHYS_ADDR: 24602 freemsg(ill->ill_phys_addr_mp); 24603 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24604 ill->ill_phys_addr_mp = addrmp; 24605 ill->ill_phys_addr_length = addrlen; 24606 24607 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24608 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24609 else 24610 freemsg(addrmp2); 24611 break; 24612 default: 24613 ASSERT(0); 24614 } 24615 24616 /* 24617 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24618 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24619 * or ip_arp_done() when the last ipif is brought up. 24620 */ 24621 if (ill_up_ipifs(ill, q, addrmp) == 0) 24622 ipsq_current_finish(ipsq); 24623 } 24624 24625 /* 24626 * Helper routine for setting the ill_nd_lla fields. 24627 */ 24628 void 24629 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24630 { 24631 freemsg(ill->ill_nd_lla_mp); 24632 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24633 ill->ill_nd_lla_mp = ndmp; 24634 ill->ill_nd_lla_len = addrlen; 24635 } 24636 24637 24638 24639 major_t IP_MAJ; 24640 #define IP "ip" 24641 24642 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24643 #define UDPDEV "/devices/pseudo/udp@0:udp" 24644 24645 /* 24646 * Issue REMOVEIF ioctls to have the loopback interfaces 24647 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24648 * the former going away when the user-level processes in the zone 24649 * are killed * and the latter are cleaned up by the stream head 24650 * str_stack_shutdown callback that undoes all I_PLINKs. 24651 */ 24652 void 24653 ip_loopback_cleanup(ip_stack_t *ipst) 24654 { 24655 int error; 24656 ldi_handle_t lh = NULL; 24657 ldi_ident_t li = NULL; 24658 int rval; 24659 cred_t *cr; 24660 struct strioctl iocb; 24661 struct lifreq lifreq; 24662 24663 IP_MAJ = ddi_name_to_major(IP); 24664 24665 #ifdef NS_DEBUG 24666 (void) printf("ip_loopback_cleanup() stackid %d\n", 24667 ipst->ips_netstack->netstack_stackid); 24668 #endif 24669 24670 bzero(&lifreq, sizeof (lifreq)); 24671 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24672 24673 error = ldi_ident_from_major(IP_MAJ, &li); 24674 if (error) { 24675 #ifdef DEBUG 24676 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24677 error); 24678 #endif 24679 return; 24680 } 24681 24682 cr = zone_get_kcred(netstackid_to_zoneid( 24683 ipst->ips_netstack->netstack_stackid)); 24684 ASSERT(cr != NULL); 24685 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24686 if (error) { 24687 #ifdef DEBUG 24688 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24689 error); 24690 #endif 24691 goto out; 24692 } 24693 iocb.ic_cmd = SIOCLIFREMOVEIF; 24694 iocb.ic_timout = 15; 24695 iocb.ic_len = sizeof (lifreq); 24696 iocb.ic_dp = (char *)&lifreq; 24697 24698 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24699 /* LINTED - statement has no consequent */ 24700 if (error) { 24701 #ifdef NS_DEBUG 24702 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24703 "UDP6 error %d\n", error); 24704 #endif 24705 } 24706 (void) ldi_close(lh, FREAD|FWRITE, cr); 24707 lh = NULL; 24708 24709 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24710 if (error) { 24711 #ifdef NS_DEBUG 24712 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24713 error); 24714 #endif 24715 goto out; 24716 } 24717 24718 iocb.ic_cmd = SIOCLIFREMOVEIF; 24719 iocb.ic_timout = 15; 24720 iocb.ic_len = sizeof (lifreq); 24721 iocb.ic_dp = (char *)&lifreq; 24722 24723 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24724 /* LINTED - statement has no consequent */ 24725 if (error) { 24726 #ifdef NS_DEBUG 24727 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24728 "UDP error %d\n", error); 24729 #endif 24730 } 24731 (void) ldi_close(lh, FREAD|FWRITE, cr); 24732 lh = NULL; 24733 24734 out: 24735 /* Close layered handles */ 24736 if (lh) 24737 (void) ldi_close(lh, FREAD|FWRITE, cr); 24738 if (li) 24739 ldi_ident_release(li); 24740 24741 crfree(cr); 24742 } 24743