xref: /titanic_52/usr/src/uts/common/inet/ip/ip_if.c (revision f345c0beb4c8f75cb54c2e070498e56febd468ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 
47 #include <sys/kmem.h>
48 #include <sys/systm.h>
49 #include <sys/param.h>
50 #include <sys/socket.h>
51 #include <sys/isa_defs.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_types.h>
55 #include <net/if_dl.h>
56 #include <net/route.h>
57 #include <sys/sockio.h>
58 #include <netinet/in.h>
59 #include <netinet/ip6.h>
60 #include <netinet/icmp6.h>
61 #include <netinet/igmp_var.h>
62 #include <sys/strsun.h>
63 #include <sys/policy.h>
64 #include <sys/ethernet.h>
65 
66 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
67 #include <inet/mi.h>
68 #include <inet/nd.h>
69 #include <inet/arp.h>
70 #include <inet/mib2.h>
71 #include <inet/ip.h>
72 #include <inet/ip6.h>
73 #include <inet/ip6_asp.h>
74 #include <inet/tcp.h>
75 #include <inet/ip_multi.h>
76 #include <inet/ip_ire.h>
77 #include <inet/ip_ftable.h>
78 #include <inet/ip_rts.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/ip_if.h>
81 #include <inet/ip_impl.h>
82 #include <inet/tun.h>
83 #include <inet/sctp_ip.h>
84 #include <inet/ip_netinfo.h>
85 #include <inet/mib2.h>
86 
87 #include <net/pfkeyv2.h>
88 #include <inet/ipsec_info.h>
89 #include <inet/sadb.h>
90 #include <inet/ipsec_impl.h>
91 #include <sys/iphada.h>
92 
93 
94 #include <netinet/igmp.h>
95 #include <inet/ip_listutils.h>
96 #include <inet/ipclassifier.h>
97 #include <sys/mac.h>
98 
99 #include <sys/systeminfo.h>
100 #include <sys/bootconf.h>
101 
102 #include <sys/tsol/tndb.h>
103 #include <sys/tsol/tnet.h>
104 
105 /* The character which tells where the ill_name ends */
106 #define	IPIF_SEPARATOR_CHAR	':'
107 
108 /* IP ioctl function table entry */
109 typedef struct ipft_s {
110 	int	ipft_cmd;
111 	pfi_t	ipft_pfi;
112 	int	ipft_min_size;
113 	int	ipft_flags;
114 } ipft_t;
115 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
116 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
117 
118 typedef struct ip_sock_ar_s {
119 	union {
120 		area_t	ip_sock_area;
121 		ared_t	ip_sock_ared;
122 		areq_t	ip_sock_areq;
123 	} ip_sock_ar_u;
124 	queue_t	*ip_sock_ar_q;
125 } ip_sock_ar_t;
126 
127 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
128 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
129 		    char *value, caddr_t cp, cred_t *ioc_cr);
130 
131 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
132 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
133 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
134     mblk_t *mp, boolean_t need_up);
135 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
136     mblk_t *mp, boolean_t need_up);
137 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
138     queue_t *q, mblk_t *mp, boolean_t need_up);
139 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
140     mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
142     mblk_t *mp);
143 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
144     queue_t *q, mblk_t *mp, boolean_t need_up);
145 static int	ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp,
146     sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl);
147 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **);
148 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
149 static void	ipsq_flush(ill_t *ill);
150 static void	ipsq_clean_all(ill_t *ill);
151 static void	ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring);
152 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
153     queue_t *q, mblk_t *mp, boolean_t need_up);
154 static void	ipsq_delete(ipsq_t *);
155 
156 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
157 		    boolean_t initialize);
158 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
159 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
160 static void	ipif_delete_cache_ire(ire_t *, char *);
161 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
162 static void	ipif_free(ipif_t *ipif);
163 static void	ipif_free_tail(ipif_t *ipif);
164 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
165 static void	ipif_multicast_down(ipif_t *ipif);
166 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
167 static void	ipif_set_default(ipif_t *ipif);
168 static int	ipif_set_values(queue_t *q, mblk_t *mp,
169     char *interf_name, uint_t *ppa);
170 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
171     queue_t *q);
172 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
173     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
174     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error);
175 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
176 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
177 
178 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
179 static int	ill_arp_off(ill_t *ill);
180 static int	ill_arp_on(ill_t *ill);
181 static void	ill_delete_interface_type(ill_if_t *);
182 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
183 static void	ill_dl_down(ill_t *ill);
184 static void	ill_down(ill_t *ill);
185 static void	ill_downi(ire_t *ire, char *ill_arg);
186 static void	ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg);
187 static void	ill_down_tail(ill_t *ill);
188 static void	ill_free_mib(ill_t *ill);
189 static void	ill_glist_delete(ill_t *);
190 static boolean_t ill_has_usable_ipif(ill_t *);
191 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
192 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
193 static void	ill_phyint_free(ill_t *ill);
194 static void	ill_phyint_reinit(ill_t *ill);
195 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
196 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
197 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
198 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
199 static void	ill_stq_cache_delete(ire_t *, char *);
200 
201 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
202 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
203 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
204     in6_addr_t *);
205 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
206     ipaddr_t *);
207 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
208 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     in6_addr_t *);
210 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
211     ipaddr_t *);
212 
213 static void	ipif_save_ire(ipif_t *, ire_t *);
214 static void	ipif_remove_ire(ipif_t *, ire_t *);
215 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *);
216 static void 	ip_cgtp_bcast_delete(ire_t *);
217 
218 /*
219  * Per-ill IPsec capabilities management.
220  */
221 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
222 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
223 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
224 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
225 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
226 static void ill_capability_proto(ill_t *, int, mblk_t *);
227 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
228     boolean_t);
229 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
230 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
231 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
232 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
234 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
235 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
236 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
237     dl_capability_sub_t *);
238 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
239 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
240 static void ill_capability_lso_reset(ill_t *, mblk_t **);
241 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
242 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
243 static void ill_capability_dls_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_disable(ill_t *);
245 
246 static void	illgrp_cache_delete(ire_t *, char *);
247 static void	illgrp_delete(ill_t *ill);
248 static void	illgrp_reset_schednext(ill_t *ill);
249 
250 static ill_t	*ill_prev_usesrc(ill_t *);
251 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
252 static void	ill_disband_usesrc_group(ill_t *);
253 
254 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
255 
256 /*
257  * if we go over the memory footprint limit more than once in this msec
258  * interval, we'll start pruning aggressively.
259  */
260 int ip_min_frag_prune_time = 0;
261 
262 /*
263  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
264  * and the IPsec DOI
265  */
266 #define	MAX_IPSEC_ALGS	256
267 
268 #define	BITSPERBYTE	8
269 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
270 
271 #define	IPSEC_ALG_ENABLE(algs, algid) \
272 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
273 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
274 
275 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
276 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
277 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
278 
279 typedef uint8_t ipsec_capab_elem_t;
280 
281 /*
282  * Per-algorithm parameters.  Note that at present, only encryption
283  * algorithms have variable keysize (IKE does not provide a way to negotiate
284  * auth algorithm keysize).
285  *
286  * All sizes here are in bits.
287  */
288 typedef struct
289 {
290 	uint16_t	minkeylen;
291 	uint16_t	maxkeylen;
292 } ipsec_capab_algparm_t;
293 
294 /*
295  * Per-ill capabilities.
296  */
297 struct ill_ipsec_capab_s {
298 	ipsec_capab_elem_t *encr_hw_algs;
299 	ipsec_capab_elem_t *auth_hw_algs;
300 	uint32_t algs_size;	/* size of _hw_algs in bytes */
301 	/* algorithm key lengths */
302 	ipsec_capab_algparm_t *encr_algparm;
303 	uint32_t encr_algparm_size;
304 	uint32_t encr_algparm_end;
305 };
306 
307 /*
308  * List of AH and ESP IPsec acceleration capable ills
309  */
310 typedef struct ipsec_capab_ill_s {
311 	uint_t ill_index;
312 	boolean_t ill_isv6;
313 	struct ipsec_capab_ill_s *next;
314 } ipsec_capab_ill_t;
315 
316 static ipsec_capab_ill_t *ipsec_capab_ills_ah;
317 static ipsec_capab_ill_t *ipsec_capab_ills_esp;
318 krwlock_t ipsec_capab_ills_lock;
319 
320 /*
321  * The field values are larger than strictly necessary for simple
322  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
323  */
324 static area_t	ip_area_template = {
325 	AR_ENTRY_ADD,			/* area_cmd */
326 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
327 					/* area_name_offset */
328 	/* area_name_length temporarily holds this structure length */
329 	sizeof (area_t),			/* area_name_length */
330 	IP_ARP_PROTO_TYPE,		/* area_proto */
331 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
332 	IP_ADDR_LEN,			/* area_proto_addr_length */
333 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
334 					/* area_proto_mask_offset */
335 	0,				/* area_flags */
336 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
337 					/* area_hw_addr_offset */
338 	/* Zero length hw_addr_length means 'use your idea of the address' */
339 	0				/* area_hw_addr_length */
340 };
341 
342 /*
343  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
344  * support
345  */
346 static area_t	ip6_area_template = {
347 	AR_ENTRY_ADD,			/* area_cmd */
348 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
349 					/* area_name_offset */
350 	/* area_name_length temporarily holds this structure length */
351 	sizeof (area_t),			/* area_name_length */
352 	IP_ARP_PROTO_TYPE,		/* area_proto */
353 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
354 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
355 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
356 					/* area_proto_mask_offset */
357 	0,				/* area_flags */
358 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
359 					/* area_hw_addr_offset */
360 	/* Zero length hw_addr_length means 'use your idea of the address' */
361 	0				/* area_hw_addr_length */
362 };
363 
364 static ared_t	ip_ared_template = {
365 	AR_ENTRY_DELETE,
366 	sizeof (ared_t) + IP_ADDR_LEN,
367 	sizeof (ared_t),
368 	IP_ARP_PROTO_TYPE,
369 	sizeof (ared_t),
370 	IP_ADDR_LEN
371 };
372 
373 static ared_t	ip6_ared_template = {
374 	AR_ENTRY_DELETE,
375 	sizeof (ared_t) + IPV6_ADDR_LEN,
376 	sizeof (ared_t),
377 	IP_ARP_PROTO_TYPE,
378 	sizeof (ared_t),
379 	IPV6_ADDR_LEN
380 };
381 
382 /*
383  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
384  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
385  * areq is used).
386  */
387 static areq_t	ip_areq_template = {
388 	AR_ENTRY_QUERY,			/* cmd */
389 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
390 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
391 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
392 	sizeof (areq_t),			/* target addr offset */
393 	IP_ADDR_LEN,			/* target addr_length */
394 	0,				/* flags */
395 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
396 	IP_ADDR_LEN,			/* sender addr length */
397 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
398 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
399 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
400 	/* anything else filled in by the code */
401 };
402 
403 static arc_t	ip_aru_template = {
404 	AR_INTERFACE_UP,
405 	sizeof (arc_t),		/* Name offset */
406 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
407 };
408 
409 static arc_t	ip_ard_template = {
410 	AR_INTERFACE_DOWN,
411 	sizeof (arc_t),		/* Name offset */
412 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
413 };
414 
415 static arc_t	ip_aron_template = {
416 	AR_INTERFACE_ON,
417 	sizeof (arc_t),		/* Name offset */
418 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
419 };
420 
421 static arc_t	ip_aroff_template = {
422 	AR_INTERFACE_OFF,
423 	sizeof (arc_t),		/* Name offset */
424 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
425 };
426 
427 
428 static arma_t	ip_arma_multi_template = {
429 	AR_MAPPING_ADD,
430 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
431 				/* Name offset */
432 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
433 	IP_ARP_PROTO_TYPE,
434 	sizeof (arma_t),			/* proto_addr_offset */
435 	IP_ADDR_LEN,				/* proto_addr_length */
436 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
437 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
438 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
439 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
440 	IP_MAX_HW_LEN,				/* hw_addr_length */
441 	0,					/* hw_mapping_start */
442 };
443 
444 static ipft_t	ip_ioctl_ftbl[] = {
445 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
446 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
447 		IPFT_F_NO_REPLY },
448 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
449 		IPFT_F_NO_REPLY },
450 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
451 	{ 0 }
452 };
453 
454 /* Simple ICMP IP Header Template */
455 static ipha_t icmp_ipha = {
456 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
457 };
458 
459 /* Flag descriptors for ip_ipif_report */
460 static nv_t	ipif_nv_tbl[] = {
461 	{ IPIF_UP,		"UP" },
462 	{ IPIF_BROADCAST,	"BROADCAST" },
463 	{ ILLF_DEBUG,		"DEBUG" },
464 	{ PHYI_LOOPBACK,	"LOOPBACK" },
465 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
466 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
467 	{ PHYI_RUNNING,		"RUNNING" },
468 	{ ILLF_NOARP,		"NOARP" },
469 	{ PHYI_PROMISC,		"PROMISC" },
470 	{ PHYI_ALLMULTI,	"ALLMULTI" },
471 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
472 	{ ILLF_MULTICAST,	"MULTICAST" },
473 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
474 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
475 	{ IPIF_DHCPRUNNING,	"DHCP" },
476 	{ IPIF_PRIVATE,		"PRIVATE" },
477 	{ IPIF_NOXMIT,		"NOXMIT" },
478 	{ IPIF_NOLOCAL,		"NOLOCAL" },
479 	{ IPIF_DEPRECATED,	"DEPRECATED" },
480 	{ IPIF_PREFERRED,	"PREFERRED" },
481 	{ IPIF_TEMPORARY,	"TEMPORARY" },
482 	{ IPIF_ADDRCONF,	"ADDRCONF" },
483 	{ PHYI_VIRTUAL,		"VIRTUAL" },
484 	{ ILLF_ROUTER,		"ROUTER" },
485 	{ ILLF_NONUD,		"NONUD" },
486 	{ IPIF_ANYCAST,		"ANYCAST" },
487 	{ ILLF_NORTEXCH,	"NORTEXCH" },
488 	{ ILLF_IPV4,		"IPV4" },
489 	{ ILLF_IPV6,		"IPV6" },
490 	{ IPIF_MIPRUNNING,	"MIP" },
491 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
492 	{ PHYI_FAILED,		"FAILED" },
493 	{ PHYI_STANDBY,		"STANDBY" },
494 	{ PHYI_INACTIVE,	"INACTIVE" },
495 	{ PHYI_OFFLINE,		"OFFLINE" },
496 };
497 
498 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
499 
500 static ip_m_t	ip_m_tbl[] = {
501 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
502 	    ip_ether_v6intfid },
503 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_nodef_v6intfid },
505 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
506 	    ip_nodef_v6intfid },
507 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
508 	    ip_nodef_v6intfid },
509 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
510 	    ip_ether_v6intfid },
511 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
512 	    ip_ib_v6intfid },
513 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
514 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
515 	    ip_nodef_v6intfid }
516 };
517 
518 static ill_t	ill_null;		/* Empty ILL for init. */
519 char	ipif_loopback_name[] = "lo0";
520 static char *ipv4_forward_suffix = ":ip_forwarding";
521 static char *ipv6_forward_suffix = ":ip6_forwarding";
522 static kstat_t *loopback_ksp = NULL;
523 static	sin6_t	sin6_null;	/* Zero address for quick clears */
524 static	sin_t	sin_null;	/* Zero address for quick clears */
525 static	uint_t	ill_index = 1;	/* Used to assign interface indicies */
526 /* When set search for unused index */
527 static boolean_t ill_index_wrap = B_FALSE;
528 /* When set search for unused ipif_seqid */
529 static ipif_t	ipif_zero;
530 uint_t	ipif_src_random;
531 
532 /*
533  * For details on the protection offered by these locks please refer
534  * to the notes under the Synchronization section at the start of ip.c
535  */
536 krwlock_t	ill_g_lock;		/* The global ill_g_lock */
537 kmutex_t	ip_addr_avail_lock;	/* Address availability check lock */
538 ipsq_t		*ipsq_g_head;		/* List of all ipsq's on the system */
539 
540 krwlock_t	ill_g_usesrc_lock;	/* Protects usesrc related fields */
541 
542 /*
543  * illgrp_head/ifgrp_head is protected by IP's perimeter.
544  */
545 static  ill_group_t *illgrp_head_v4;	/* Head of IPv4 ill groups */
546 ill_group_t *illgrp_head_v6;		/* Head of IPv6 ill groups */
547 
548 ill_g_head_t	ill_g_heads[MAX_G_HEADS];   /* ILL List Head */
549 
550 /*
551  * ppa arena is created after these many
552  * interfaces have been plumbed.
553  */
554 uint_t	ill_no_arena = 12;
555 
556 #pragma align CACHE_ALIGN_SIZE(phyint_g_list)
557 static phyint_list_t phyint_g_list;	/* start of phyint list */
558 
559 /*
560  * Reflects value of FAILBACK variable in IPMP config file
561  * /etc/default/mpathd. Default value is B_TRUE.
562  * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no"
563  * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel.
564  */
565 static boolean_t ipmp_enable_failback = B_TRUE;
566 
567 /*
568  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
569  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
570  * set through platform specific code (Niagara/Ontario).
571  */
572 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
573 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
574 
575 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
576 
577 static uint_t
578 ipif_rand(void)
579 {
580 	ipif_src_random = ipif_src_random * 1103515245 + 12345;
581 	return ((ipif_src_random >> 16) & 0x7fff);
582 }
583 
584 /*
585  * Allocate per-interface mibs.
586  * Returns true if ok. False otherwise.
587  *  ipsq  may not yet be allocated (loopback case ).
588  */
589 static boolean_t
590 ill_allocate_mibs(ill_t *ill)
591 {
592 	/* Already allocated? */
593 	if (ill->ill_ip_mib != NULL) {
594 		if (ill->ill_isv6)
595 			ASSERT(ill->ill_icmp6_mib != NULL);
596 		return (B_TRUE);
597 	}
598 
599 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
600 	    KM_NOSLEEP);
601 	if (ill->ill_ip_mib == NULL) {
602 		return (B_FALSE);
603 	}
604 
605 	/* Setup static information */
606 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
607 	    sizeof (mib2_ipIfStatsEntry_t));
608 	if (ill->ill_isv6) {
609 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
610 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
611 		    sizeof (mib2_ipv6AddrEntry_t));
612 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
613 		    sizeof (mib2_ipv6RouteEntry_t));
614 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
615 		    sizeof (mib2_ipv6NetToMediaEntry_t));
616 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
617 		    sizeof (ipv6_member_t));
618 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
619 		    sizeof (ipv6_grpsrc_t));
620 	} else {
621 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
622 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
623 		    sizeof (mib2_ipAddrEntry_t));
624 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
625 		    sizeof (mib2_ipRouteEntry_t));
626 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
627 		    sizeof (mib2_ipNetToMediaEntry_t));
628 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
629 		    sizeof (ip_member_t));
630 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
631 		    sizeof (ip_grpsrc_t));
632 
633 		/*
634 		 * For a v4 ill, we are done at this point, because per ill
635 		 * icmp mibs are only used for v6.
636 		 */
637 		return (B_TRUE);
638 	}
639 
640 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
641 	    KM_NOSLEEP);
642 	if (ill->ill_icmp6_mib == NULL) {
643 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
644 		ill->ill_ip_mib = NULL;
645 		return (B_FALSE);
646 	}
647 	/* static icmp info */
648 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
649 	    sizeof (mib2_ipv6IfIcmpEntry_t);
650 	/*
651 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
652 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
653 	 * -> ill_phyint_reinit
654 	 */
655 	return (B_TRUE);
656 }
657 
658 /*
659  * Common code for preparation of ARP commands.  Two points to remember:
660  * 	1) The ill_name is tacked on at the end of the allocated space so
661  *	   the templates name_offset field must contain the total space
662  *	   to allocate less the name length.
663  *
664  *	2) The templates name_length field should contain the *template*
665  *	   length.  We use it as a parameter to bcopy() and then write
666  *	   the real ill_name_length into the name_length field of the copy.
667  * (Always called as writer.)
668  */
669 mblk_t *
670 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
671 {
672 	arc_t	*arc = (arc_t *)template;
673 	char	*cp;
674 	int	len;
675 	mblk_t	*mp;
676 	uint_t	name_length = ill->ill_name_length;
677 	uint_t	template_len = arc->arc_name_length;
678 
679 	len = arc->arc_name_offset + name_length;
680 	mp = allocb(len, BPRI_HI);
681 	if (mp == NULL)
682 		return (NULL);
683 	cp = (char *)mp->b_rptr;
684 	mp->b_wptr = (uchar_t *)&cp[len];
685 	if (template_len)
686 		bcopy(template, cp, template_len);
687 	if (len > template_len)
688 		bzero(&cp[template_len], len - template_len);
689 	mp->b_datap->db_type = M_PROTO;
690 
691 	arc = (arc_t *)cp;
692 	arc->arc_name_length = name_length;
693 	cp = (char *)arc + arc->arc_name_offset;
694 	bcopy(ill->ill_name, cp, name_length);
695 
696 	if (addr) {
697 		area_t	*area = (area_t *)mp->b_rptr;
698 
699 		cp = (char *)area + area->area_proto_addr_offset;
700 		bcopy(addr, cp, area->area_proto_addr_length);
701 		if (area->area_cmd == AR_ENTRY_ADD) {
702 			cp = (char *)area;
703 			len = area->area_proto_addr_length;
704 			if (area->area_proto_mask_offset)
705 				cp += area->area_proto_mask_offset;
706 			else
707 				cp += area->area_proto_addr_offset + len;
708 			while (len-- > 0)
709 				*cp++ = (char)~0;
710 		}
711 	}
712 	return (mp);
713 }
714 
715 mblk_t *
716 ipif_area_alloc(ipif_t *ipif)
717 {
718 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
719 	    (char *)&ipif->ipif_lcl_addr));
720 }
721 
722 mblk_t *
723 ipif_ared_alloc(ipif_t *ipif)
724 {
725 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
726 	    (char *)&ipif->ipif_lcl_addr));
727 }
728 
729 mblk_t *
730 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
731 {
732 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
733 	    (char *)&addr));
734 }
735 
736 /*
737  * Completely vaporize a lower level tap and all associated interfaces.
738  * ill_delete is called only out of ip_close when the device control
739  * stream is being closed.
740  */
741 void
742 ill_delete(ill_t *ill)
743 {
744 	ipif_t	*ipif;
745 	ill_t	*prev_ill;
746 
747 	/*
748 	 * ill_delete may be forcibly entering the ipsq. The previous
749 	 * ioctl may not have completed and may need to be aborted.
750 	 * ipsq_flush takes care of it. If we don't need to enter the
751 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
752 	 * ill_delete_tail is sufficient.
753 	 */
754 	ipsq_flush(ill);
755 
756 	/*
757 	 * Nuke all interfaces.  ipif_free will take down the interface,
758 	 * remove it from the list, and free the data structure.
759 	 * Walk down the ipif list and remove the logical interfaces
760 	 * first before removing the main ipif. We can't unplumb
761 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
762 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
763 	 * POINTOPOINT.
764 	 *
765 	 * If ill_ipif was not properly initialized (i.e low on memory),
766 	 * then no interfaces to clean up. In this case just clean up the
767 	 * ill.
768 	 */
769 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
770 		ipif_free(ipif);
771 
772 	/*
773 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
774 	 * So nobody can be using this mp now. Free the mp allocated for
775 	 * honoring ILLF_NOARP
776 	 */
777 	freemsg(ill->ill_arp_on_mp);
778 	ill->ill_arp_on_mp = NULL;
779 
780 	/* Clean up msgs on pending upcalls for mrouted */
781 	reset_mrt_ill(ill);
782 
783 	/*
784 	 * ipif_free -> reset_conn_ipif will remove all multicast
785 	 * references for IPv4. For IPv6, we need to do it here as
786 	 * it points only at ills.
787 	 */
788 	reset_conn_ill(ill);
789 
790 	/*
791 	 * ill_down will arrange to blow off any IRE's dependent on this
792 	 * ILL, and shut down fragmentation reassembly.
793 	 */
794 	ill_down(ill);
795 
796 	/* Let SCTP know, so that it can remove this from its list. */
797 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
798 
799 	/*
800 	 * If an address on this ILL is being used as a source address then
801 	 * clear out the pointers in other ILLs that point to this ILL.
802 	 */
803 	rw_enter(&ill_g_usesrc_lock, RW_WRITER);
804 	if (ill->ill_usesrc_grp_next != NULL) {
805 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
806 			ill_disband_usesrc_group(ill);
807 		} else {	/* consumer of the usesrc ILL */
808 			prev_ill = ill_prev_usesrc(ill);
809 			prev_ill->ill_usesrc_grp_next =
810 			    ill->ill_usesrc_grp_next;
811 		}
812 	}
813 	rw_exit(&ill_g_usesrc_lock);
814 }
815 
816 static void
817 ipif_non_duplicate(ipif_t *ipif)
818 {
819 	ill_t *ill = ipif->ipif_ill;
820 	mutex_enter(&ill->ill_lock);
821 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
822 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
823 		ASSERT(ill->ill_ipif_dup_count > 0);
824 		ill->ill_ipif_dup_count--;
825 	}
826 	mutex_exit(&ill->ill_lock);
827 }
828 
829 /*
830  * Send all deferred messages without waiting for their ACKs.
831  */
832 void
833 ill_send_all_deferred_mp(ill_t *ill)
834 {
835 	mblk_t *mp, *next;
836 
837 	/*
838 	 * Clear ill_dlpi_pending so that the message is not queued in
839 	 * ill_dlpi_send().
840 	 */
841 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
842 
843 	for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) {
844 		next = mp->b_next;
845 		mp->b_next = NULL;
846 		ill_dlpi_send(ill, mp);
847 	}
848 	ill->ill_dlpi_deferred = NULL;
849 }
850 
851 /*
852  * ill_delete_tail is called from ip_modclose after all references
853  * to the closing ill are gone. The wait is done in ip_modclose
854  */
855 void
856 ill_delete_tail(ill_t *ill)
857 {
858 	mblk_t	**mpp;
859 	ipif_t	*ipif;
860 
861 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
862 		ipif_non_duplicate(ipif);
863 		ipif_down_tail(ipif);
864 	}
865 
866 	ASSERT(ill->ill_ipif_dup_count == 0 &&
867 	    ill->ill_arp_down_mp == NULL &&
868 	    ill->ill_arp_del_mapping_mp == NULL);
869 
870 	/*
871 	 * If polling capability is enabled (which signifies direct
872 	 * upcall into IP and driver has ill saved as a handle),
873 	 * we need to make sure that unbind has completed before we
874 	 * let the ill disappear and driver no longer has any reference
875 	 * to this ill.
876 	 */
877 	mutex_enter(&ill->ill_lock);
878 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
879 		cv_wait(&ill->ill_cv, &ill->ill_lock);
880 	mutex_exit(&ill->ill_lock);
881 
882 	/*
883 	 * Clean up polling and soft ring capabilities
884 	 */
885 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
886 		ill_capability_dls_disable(ill);
887 
888 	/*
889 	 * Send the detach if there's one to send (i.e., if we're above a
890 	 * style 2 DLPI driver).
891 	 */
892 	if (ill->ill_detach_mp != NULL) {
893 		ill_dlpi_send(ill, ill->ill_detach_mp);
894 		ill->ill_detach_mp = NULL;
895 	}
896 
897 	if (ill->ill_net_type != IRE_LOOPBACK)
898 		qprocsoff(ill->ill_rq);
899 
900 	/*
901 	 * We do an ipsq_flush once again now. New messages could have
902 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
903 	 * could also have landed up if an ioctl thread had looked up
904 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
905 	 * enqueued the ioctl when we did the ipsq_flush last time.
906 	 */
907 	ipsq_flush(ill);
908 
909 	/*
910 	 * Free capabilities.
911 	 */
912 	if (ill->ill_ipsec_capab_ah != NULL) {
913 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
914 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
915 		ill->ill_ipsec_capab_ah = NULL;
916 	}
917 
918 	if (ill->ill_ipsec_capab_esp != NULL) {
919 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
920 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
921 		ill->ill_ipsec_capab_esp = NULL;
922 	}
923 
924 	if (ill->ill_mdt_capab != NULL) {
925 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
926 		ill->ill_mdt_capab = NULL;
927 	}
928 
929 	if (ill->ill_hcksum_capab != NULL) {
930 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
931 		ill->ill_hcksum_capab = NULL;
932 	}
933 
934 	if (ill->ill_zerocopy_capab != NULL) {
935 		kmem_free(ill->ill_zerocopy_capab,
936 		    sizeof (ill_zerocopy_capab_t));
937 		ill->ill_zerocopy_capab = NULL;
938 	}
939 
940 	if (ill->ill_lso_capab != NULL) {
941 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
942 		ill->ill_lso_capab = NULL;
943 	}
944 
945 	if (ill->ill_dls_capab != NULL) {
946 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
947 		ill->ill_dls_capab->ill_unbind_conn = NULL;
948 		kmem_free(ill->ill_dls_capab,
949 		    sizeof (ill_dls_capab_t) +
950 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
951 		ill->ill_dls_capab = NULL;
952 	}
953 
954 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
955 
956 	while (ill->ill_ipif != NULL)
957 		ipif_free_tail(ill->ill_ipif);
958 
959 	ill_down_tail(ill);
960 
961 	/*
962 	 * We have removed all references to ilm from conn and the ones joined
963 	 * within the kernel.
964 	 *
965 	 * We don't walk conns, mrts and ires because
966 	 *
967 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
968 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
969 	 *    ill references.
970 	 */
971 	ASSERT(ilm_walk_ill(ill) == 0);
972 	/*
973 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
974 	 * could free the phyint. No more reference to the phyint after this
975 	 * point.
976 	 */
977 	(void) ill_glist_delete(ill);
978 
979 	rw_enter(&ip_g_nd_lock, RW_WRITER);
980 	if (ill->ill_ndd_name != NULL)
981 		nd_unload(&ip_g_nd, ill->ill_ndd_name);
982 	rw_exit(&ip_g_nd_lock);
983 
984 
985 	if (ill->ill_frag_ptr != NULL) {
986 		uint_t count;
987 
988 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
989 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
990 		}
991 		mi_free(ill->ill_frag_ptr);
992 		ill->ill_frag_ptr = NULL;
993 		ill->ill_frag_hash_tbl = NULL;
994 	}
995 
996 	freemsg(ill->ill_nd_lla_mp);
997 	/* Free all retained control messages. */
998 	mpp = &ill->ill_first_mp_to_free;
999 	do {
1000 		while (mpp[0]) {
1001 			mblk_t  *mp;
1002 			mblk_t  *mp1;
1003 
1004 			mp = mpp[0];
1005 			mpp[0] = mp->b_next;
1006 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
1007 				mp1->b_next = NULL;
1008 				mp1->b_prev = NULL;
1009 			}
1010 			freemsg(mp);
1011 		}
1012 	} while (mpp++ != &ill->ill_last_mp_to_free);
1013 
1014 	ill_free_mib(ill);
1015 	ILL_TRACE_CLEANUP(ill);
1016 }
1017 
1018 static void
1019 ill_free_mib(ill_t *ill)
1020 {
1021 	/*
1022 	 * MIB statistics must not be lost, so when an interface
1023 	 * goes away the counter values will be added to the global
1024 	 * MIBs.
1025 	 */
1026 	if (ill->ill_ip_mib != NULL) {
1027 		if (ill->ill_isv6)
1028 			ip_mib2_add_ip_stats(&ip6_mib, ill->ill_ip_mib);
1029 		else
1030 			ip_mib2_add_ip_stats(&ip_mib, ill->ill_ip_mib);
1031 
1032 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1033 		ill->ill_ip_mib = NULL;
1034 	}
1035 	if (ill->ill_icmp6_mib != NULL) {
1036 		ip_mib2_add_icmp6_stats(&icmp6_mib, ill->ill_icmp6_mib);
1037 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1038 		ill->ill_icmp6_mib = NULL;
1039 	}
1040 }
1041 
1042 /*
1043  * Concatenate together a physical address and a sap.
1044  *
1045  * Sap_lengths are interpreted as follows:
1046  *   sap_length == 0	==>	no sap
1047  *   sap_length > 0	==>	sap is at the head of the dlpi address
1048  *   sap_length < 0	==>	sap is at the tail of the dlpi address
1049  */
1050 static void
1051 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1052     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1053 {
1054 	uint16_t sap_addr = (uint16_t)sap_src;
1055 
1056 	if (sap_length == 0) {
1057 		if (phys_src == NULL)
1058 			bzero(dst, phys_length);
1059 		else
1060 			bcopy(phys_src, dst, phys_length);
1061 	} else if (sap_length < 0) {
1062 		if (phys_src == NULL)
1063 			bzero(dst, phys_length);
1064 		else
1065 			bcopy(phys_src, dst, phys_length);
1066 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1067 	} else {
1068 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1069 		if (phys_src == NULL)
1070 			bzero((char *)dst + sap_length, phys_length);
1071 		else
1072 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1073 	}
1074 }
1075 
1076 /*
1077  * Generate a dl_unitdata_req mblk for the device and address given.
1078  * addr_length is the length of the physical portion of the address.
1079  * If addr is NULL include an all zero address of the specified length.
1080  * TRUE? In any case, addr_length is taken to be the entire length of the
1081  * dlpi address, including the absolute value of sap_length.
1082  */
1083 mblk_t *
1084 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1085 		t_scalar_t sap_length)
1086 {
1087 	dl_unitdata_req_t *dlur;
1088 	mblk_t	*mp;
1089 	t_scalar_t	abs_sap_length;		/* absolute value */
1090 
1091 	abs_sap_length = ABS(sap_length);
1092 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1093 		DL_UNITDATA_REQ);
1094 	if (mp == NULL)
1095 		return (NULL);
1096 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1097 	/* HACK: accomodate incompatible DLPI drivers */
1098 	if (addr_length == 8)
1099 		addr_length = 6;
1100 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1101 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1102 	dlur->dl_priority.dl_min = 0;
1103 	dlur->dl_priority.dl_max = 0;
1104 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1105 	    (uchar_t *)&dlur[1]);
1106 	return (mp);
1107 }
1108 
1109 /*
1110  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1111  * Return an error if we already have 1 or more ioctls in progress.
1112  * This is used only for non-exclusive ioctls. Currently this is used
1113  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1114  * and thus need to use ipsq_pending_mp_add.
1115  */
1116 boolean_t
1117 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1118 {
1119 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1120 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1121 	/*
1122 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1123 	 */
1124 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1125 	    (add_mp->b_datap->db_type == M_IOCTL));
1126 
1127 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1128 	/*
1129 	 * Return error if the conn has started closing. The conn
1130 	 * could have finished cleaning up the pending mp list,
1131 	 * If so we should not add another mp to the list negating
1132 	 * the cleanup.
1133 	 */
1134 	if (connp->conn_state_flags & CONN_CLOSING)
1135 		return (B_FALSE);
1136 	/*
1137 	 * Add the pending mp to the head of the list, chained by b_next.
1138 	 * Note down the conn on which the ioctl request came, in b_prev.
1139 	 * This will be used to later get the conn, when we get a response
1140 	 * on the ill queue, from some other module (typically arp)
1141 	 */
1142 	add_mp->b_next = (void *)ill->ill_pending_mp;
1143 	add_mp->b_queue = CONNP_TO_WQ(connp);
1144 	ill->ill_pending_mp = add_mp;
1145 	if (connp != NULL)
1146 		connp->conn_oper_pending_ill = ill;
1147 	return (B_TRUE);
1148 }
1149 
1150 /*
1151  * Retrieve the ill_pending_mp and return it. We have to walk the list
1152  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1153  */
1154 mblk_t *
1155 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1156 {
1157 	mblk_t	*prev = NULL;
1158 	mblk_t	*curr = NULL;
1159 	uint_t	id;
1160 	conn_t	*connp;
1161 
1162 	/*
1163 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1164 	 * up the pending mp, but it does not know the ioc_id and
1165 	 * passes in a zero for it.
1166 	 */
1167 	mutex_enter(&ill->ill_lock);
1168 	if (ioc_id != 0)
1169 		*connpp = NULL;
1170 
1171 	/* Search the list for the appropriate ioctl based on ioc_id */
1172 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1173 	    prev = curr, curr = curr->b_next) {
1174 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1175 		connp = Q_TO_CONN(curr->b_queue);
1176 		/* Match based on the ioc_id or based on the conn */
1177 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1178 			break;
1179 	}
1180 
1181 	if (curr != NULL) {
1182 		/* Unlink the mblk from the pending mp list */
1183 		if (prev != NULL) {
1184 			prev->b_next = curr->b_next;
1185 		} else {
1186 			ASSERT(ill->ill_pending_mp == curr);
1187 			ill->ill_pending_mp = curr->b_next;
1188 		}
1189 
1190 		/*
1191 		 * conn refcnt must have been bumped up at the start of
1192 		 * the ioctl. So we can safely access the conn.
1193 		 */
1194 		ASSERT(CONN_Q(curr->b_queue));
1195 		*connpp = Q_TO_CONN(curr->b_queue);
1196 		curr->b_next = NULL;
1197 		curr->b_queue = NULL;
1198 	}
1199 
1200 	mutex_exit(&ill->ill_lock);
1201 
1202 	return (curr);
1203 }
1204 
1205 /*
1206  * Add the pending mp to the list. There can be only 1 pending mp
1207  * in the list. Any exclusive ioctl that needs to wait for a response
1208  * from another module or driver needs to use this function to set
1209  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1210  * the other module/driver. This is also used while waiting for the
1211  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1212  */
1213 boolean_t
1214 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1215     int waitfor)
1216 {
1217 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1218 
1219 	ASSERT(IAM_WRITER_IPIF(ipif));
1220 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1221 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1222 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1223 	/*
1224 	 * The caller may be using a different ipif than the one passed into
1225 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1226 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1227 	 * that `ipsq_current_ipif == ipif'.
1228 	 */
1229 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1230 
1231 	/*
1232 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1233 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1234 	 */
1235 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1236 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1237 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1238 
1239 	if (connp != NULL) {
1240 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1241 		/*
1242 		 * Return error if the conn has started closing. The conn
1243 		 * could have finished cleaning up the pending mp list,
1244 		 * If so we should not add another mp to the list negating
1245 		 * the cleanup.
1246 		 */
1247 		if (connp->conn_state_flags & CONN_CLOSING)
1248 			return (B_FALSE);
1249 	}
1250 	mutex_enter(&ipsq->ipsq_lock);
1251 	ipsq->ipsq_pending_ipif = ipif;
1252 	/*
1253 	 * Note down the queue in b_queue. This will be returned by
1254 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1255 	 * the processing
1256 	 */
1257 	add_mp->b_next = NULL;
1258 	add_mp->b_queue = q;
1259 	ipsq->ipsq_pending_mp = add_mp;
1260 	ipsq->ipsq_waitfor = waitfor;
1261 
1262 	if (connp != NULL)
1263 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1264 	mutex_exit(&ipsq->ipsq_lock);
1265 	return (B_TRUE);
1266 }
1267 
1268 /*
1269  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1270  * queued in the list.
1271  */
1272 mblk_t *
1273 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1274 {
1275 	mblk_t	*curr = NULL;
1276 
1277 	mutex_enter(&ipsq->ipsq_lock);
1278 	*connpp = NULL;
1279 	if (ipsq->ipsq_pending_mp == NULL) {
1280 		mutex_exit(&ipsq->ipsq_lock);
1281 		return (NULL);
1282 	}
1283 
1284 	/* There can be only 1 such excl message */
1285 	curr = ipsq->ipsq_pending_mp;
1286 	ASSERT(curr != NULL && curr->b_next == NULL);
1287 	ipsq->ipsq_pending_ipif = NULL;
1288 	ipsq->ipsq_pending_mp = NULL;
1289 	ipsq->ipsq_waitfor = 0;
1290 	mutex_exit(&ipsq->ipsq_lock);
1291 
1292 	if (CONN_Q(curr->b_queue)) {
1293 		/*
1294 		 * This mp did a refhold on the conn, at the start of the ioctl.
1295 		 * So we can safely return a pointer to the conn to the caller.
1296 		 */
1297 		*connpp = Q_TO_CONN(curr->b_queue);
1298 	} else {
1299 		*connpp = NULL;
1300 	}
1301 	curr->b_next = NULL;
1302 	curr->b_prev = NULL;
1303 	return (curr);
1304 }
1305 
1306 /*
1307  * Cleanup the ioctl mp queued in ipsq_pending_mp
1308  * - Called in the ill_delete path
1309  * - Called in the M_ERROR or M_HANGUP path on the ill.
1310  * - Called in the conn close path.
1311  */
1312 boolean_t
1313 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1314 {
1315 	mblk_t	*mp;
1316 	ipsq_t	*ipsq;
1317 	queue_t	*q;
1318 	ipif_t	*ipif;
1319 
1320 	ASSERT(IAM_WRITER_ILL(ill));
1321 	ipsq = ill->ill_phyint->phyint_ipsq;
1322 	mutex_enter(&ipsq->ipsq_lock);
1323 	/*
1324 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1325 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1326 	 * even if it is meant for another ill, since we have to enqueue
1327 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1328 	 * If connp is non-null we are called from the conn close path.
1329 	 */
1330 	mp = ipsq->ipsq_pending_mp;
1331 	if (mp == NULL || (connp != NULL &&
1332 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1333 		mutex_exit(&ipsq->ipsq_lock);
1334 		return (B_FALSE);
1335 	}
1336 	/* Now remove from the ipsq_pending_mp */
1337 	ipsq->ipsq_pending_mp = NULL;
1338 	q = mp->b_queue;
1339 	mp->b_next = NULL;
1340 	mp->b_prev = NULL;
1341 	mp->b_queue = NULL;
1342 
1343 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1344 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1345 	if (ill->ill_move_in_progress) {
1346 		ILL_CLEAR_MOVE(ill);
1347 	} else if (ill->ill_up_ipifs) {
1348 		ill_group_cleanup(ill);
1349 	}
1350 
1351 	ipif = ipsq->ipsq_pending_ipif;
1352 	ipsq->ipsq_pending_ipif = NULL;
1353 	ipsq->ipsq_waitfor = 0;
1354 	ipsq->ipsq_current_ipif = NULL;
1355 	ipsq->ipsq_current_ioctl = 0;
1356 	mutex_exit(&ipsq->ipsq_lock);
1357 
1358 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1359 		if (connp == NULL) {
1360 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1361 		} else {
1362 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1363 			mutex_enter(&ipif->ipif_ill->ill_lock);
1364 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1365 			mutex_exit(&ipif->ipif_ill->ill_lock);
1366 		}
1367 	} else {
1368 		/*
1369 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1370 		 * be just inet_freemsg. we have to restart it
1371 		 * otherwise the thread will be stuck.
1372 		 */
1373 		inet_freemsg(mp);
1374 	}
1375 	return (B_TRUE);
1376 }
1377 
1378 /*
1379  * The ill is closing. Cleanup all the pending mps. Called exclusively
1380  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1381  * knows this ill, and hence nobody can add an mp to this list
1382  */
1383 static void
1384 ill_pending_mp_cleanup(ill_t *ill)
1385 {
1386 	mblk_t	*mp;
1387 	queue_t	*q;
1388 
1389 	ASSERT(IAM_WRITER_ILL(ill));
1390 
1391 	mutex_enter(&ill->ill_lock);
1392 	/*
1393 	 * Every mp on the pending mp list originating from an ioctl
1394 	 * added 1 to the conn refcnt, at the start of the ioctl.
1395 	 * So bump it down now.  See comments in ip_wput_nondata()
1396 	 */
1397 	while (ill->ill_pending_mp != NULL) {
1398 		mp = ill->ill_pending_mp;
1399 		ill->ill_pending_mp = mp->b_next;
1400 		mutex_exit(&ill->ill_lock);
1401 
1402 		q = mp->b_queue;
1403 		ASSERT(CONN_Q(q));
1404 		mp->b_next = NULL;
1405 		mp->b_prev = NULL;
1406 		mp->b_queue = NULL;
1407 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1408 		mutex_enter(&ill->ill_lock);
1409 	}
1410 	ill->ill_pending_ipif = NULL;
1411 
1412 	mutex_exit(&ill->ill_lock);
1413 }
1414 
1415 /*
1416  * Called in the conn close path and ill delete path
1417  */
1418 static void
1419 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1420 {
1421 	ipsq_t	*ipsq;
1422 	mblk_t	*prev;
1423 	mblk_t	*curr;
1424 	mblk_t	*next;
1425 	queue_t	*q;
1426 	mblk_t	*tmp_list = NULL;
1427 
1428 	ASSERT(IAM_WRITER_ILL(ill));
1429 	if (connp != NULL)
1430 		q = CONNP_TO_WQ(connp);
1431 	else
1432 		q = ill->ill_wq;
1433 
1434 	ipsq = ill->ill_phyint->phyint_ipsq;
1435 	/*
1436 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1437 	 * In the case of ioctl from a conn, there can be only 1 mp
1438 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1439 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1440 	 * ioctls meant for this ill form conn's are not flushed. They will
1441 	 * be processed during ipsq_exit and will not find the ill and will
1442 	 * return error.
1443 	 */
1444 	mutex_enter(&ipsq->ipsq_lock);
1445 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1446 	    curr = next) {
1447 		next = curr->b_next;
1448 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1449 			/* Unlink the mblk from the pending mp list */
1450 			if (prev != NULL) {
1451 				prev->b_next = curr->b_next;
1452 			} else {
1453 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1454 				ipsq->ipsq_xopq_mphead = curr->b_next;
1455 			}
1456 			if (ipsq->ipsq_xopq_mptail == curr)
1457 				ipsq->ipsq_xopq_mptail = prev;
1458 			/*
1459 			 * Create a temporary list and release the ipsq lock
1460 			 * New elements are added to the head of the tmp_list
1461 			 */
1462 			curr->b_next = tmp_list;
1463 			tmp_list = curr;
1464 		} else {
1465 			prev = curr;
1466 		}
1467 	}
1468 	mutex_exit(&ipsq->ipsq_lock);
1469 
1470 	while (tmp_list != NULL) {
1471 		curr = tmp_list;
1472 		tmp_list = curr->b_next;
1473 		curr->b_next = NULL;
1474 		curr->b_prev = NULL;
1475 		curr->b_queue = NULL;
1476 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1477 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1478 			    CONN_CLOSE : NO_COPYOUT, NULL);
1479 		} else {
1480 			/*
1481 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1482 			 * this can't be just inet_freemsg. we have to
1483 			 * restart it otherwise the thread will be stuck.
1484 			 */
1485 			inet_freemsg(curr);
1486 		}
1487 	}
1488 }
1489 
1490 /*
1491  * This conn has started closing. Cleanup any pending ioctl from this conn.
1492  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1493  */
1494 void
1495 conn_ioctl_cleanup(conn_t *connp)
1496 {
1497 	mblk_t *curr;
1498 	ipsq_t	*ipsq;
1499 	ill_t	*ill;
1500 	boolean_t refheld;
1501 
1502 	/*
1503 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1504 	 * ioctl has not yet started, the mp is pending in the list headed by
1505 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1506 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1507 	 * is currently executing now the mp is not queued anywhere but
1508 	 * conn_oper_pending_ill is null. The conn close will wait
1509 	 * till the conn_ref drops to zero.
1510 	 */
1511 	mutex_enter(&connp->conn_lock);
1512 	ill = connp->conn_oper_pending_ill;
1513 	if (ill == NULL) {
1514 		mutex_exit(&connp->conn_lock);
1515 		return;
1516 	}
1517 
1518 	curr = ill_pending_mp_get(ill, &connp, 0);
1519 	if (curr != NULL) {
1520 		mutex_exit(&connp->conn_lock);
1521 		CONN_DEC_REF(connp);
1522 		inet_freemsg(curr);
1523 		return;
1524 	}
1525 	/*
1526 	 * We may not be able to refhold the ill if the ill/ipif
1527 	 * is changing. But we need to make sure that the ill will
1528 	 * not vanish. So we just bump up the ill_waiter count.
1529 	 */
1530 	refheld = ill_waiter_inc(ill);
1531 	mutex_exit(&connp->conn_lock);
1532 	if (refheld) {
1533 		if (ipsq_enter(ill, B_TRUE)) {
1534 			ill_waiter_dcr(ill);
1535 			/*
1536 			 * Check whether this ioctl has started and is
1537 			 * pending now in ipsq_pending_mp. If it is not
1538 			 * found there then check whether this ioctl has
1539 			 * not even started and is in the ipsq_xopq list.
1540 			 */
1541 			if (!ipsq_pending_mp_cleanup(ill, connp))
1542 				ipsq_xopq_mp_cleanup(ill, connp);
1543 			ipsq = ill->ill_phyint->phyint_ipsq;
1544 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1545 			return;
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * The ill is also closing and we could not bump up the
1551 	 * ill_waiter_count or we could not enter the ipsq. Leave
1552 	 * the cleanup to ill_delete
1553 	 */
1554 	mutex_enter(&connp->conn_lock);
1555 	while (connp->conn_oper_pending_ill != NULL)
1556 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1557 	mutex_exit(&connp->conn_lock);
1558 	if (refheld)
1559 		ill_waiter_dcr(ill);
1560 }
1561 
1562 /*
1563  * ipcl_walk function for cleaning up conn_*_ill fields.
1564  */
1565 static void
1566 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1567 {
1568 	ill_t	*ill = (ill_t *)arg;
1569 	ire_t	*ire;
1570 
1571 	mutex_enter(&connp->conn_lock);
1572 	if (connp->conn_multicast_ill == ill) {
1573 		/* Revert to late binding */
1574 		connp->conn_multicast_ill = NULL;
1575 		connp->conn_orig_multicast_ifindex = 0;
1576 	}
1577 	if (connp->conn_incoming_ill == ill)
1578 		connp->conn_incoming_ill = NULL;
1579 	if (connp->conn_outgoing_ill == ill)
1580 		connp->conn_outgoing_ill = NULL;
1581 	if (connp->conn_outgoing_pill == ill)
1582 		connp->conn_outgoing_pill = NULL;
1583 	if (connp->conn_nofailover_ill == ill)
1584 		connp->conn_nofailover_ill = NULL;
1585 	if (connp->conn_xmit_if_ill == ill)
1586 		connp->conn_xmit_if_ill = NULL;
1587 	if (connp->conn_ire_cache != NULL) {
1588 		ire = connp->conn_ire_cache;
1589 		/*
1590 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1591 		 * interface X and ipif coming from interface Y, if interface
1592 		 * X and Y are part of the same IPMPgroup. Thus whenever
1593 		 * interface X goes down, remove all references to it by
1594 		 * checking both on ire_ipif and ire_stq.
1595 		 */
1596 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1597 		    (ire->ire_type == IRE_CACHE &&
1598 		    ire->ire_stq == ill->ill_wq)) {
1599 			connp->conn_ire_cache = NULL;
1600 			mutex_exit(&connp->conn_lock);
1601 			ire_refrele_notr(ire);
1602 			return;
1603 		}
1604 	}
1605 	mutex_exit(&connp->conn_lock);
1606 
1607 }
1608 
1609 /* ARGSUSED */
1610 void
1611 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1612 {
1613 	ill_t	*ill = q->q_ptr;
1614 	ipif_t	*ipif;
1615 
1616 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1617 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1618 		ipif_non_duplicate(ipif);
1619 		ipif_down_tail(ipif);
1620 	}
1621 	ill_down_tail(ill);
1622 	freemsg(mp);
1623 	ipsq_current_finish(ipsq);
1624 }
1625 
1626 /*
1627  * ill_down_start is called when we want to down this ill and bring it up again
1628  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1629  * all interfaces, but don't tear down any plumbing.
1630  */
1631 boolean_t
1632 ill_down_start(queue_t *q, mblk_t *mp)
1633 {
1634 	ill_t	*ill = q->q_ptr;
1635 	ipif_t	*ipif;
1636 
1637 	ASSERT(IAM_WRITER_ILL(ill));
1638 
1639 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1640 		(void) ipif_down(ipif, NULL, NULL);
1641 
1642 	ill_down(ill);
1643 
1644 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1645 
1646 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1647 
1648 	/*
1649 	 * Atomically test and add the pending mp if references are active.
1650 	 */
1651 	mutex_enter(&ill->ill_lock);
1652 	if (!ill_is_quiescent(ill)) {
1653 		/* call cannot fail since `conn_t *' argument is NULL */
1654 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1655 		    mp, ILL_DOWN);
1656 		mutex_exit(&ill->ill_lock);
1657 		return (B_FALSE);
1658 	}
1659 	mutex_exit(&ill->ill_lock);
1660 	return (B_TRUE);
1661 }
1662 
1663 static void
1664 ill_down(ill_t *ill)
1665 {
1666 	/* Blow off any IREs dependent on this ILL. */
1667 	ire_walk(ill_downi, (char *)ill);
1668 
1669 	mutex_enter(&ire_mrtun_lock);
1670 	if (ire_mrtun_count != 0) {
1671 		mutex_exit(&ire_mrtun_lock);
1672 		ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif,
1673 		    (char *)ill, NULL);
1674 	} else {
1675 		mutex_exit(&ire_mrtun_lock);
1676 	}
1677 
1678 	/*
1679 	 * If any interface based forwarding table exists
1680 	 * Blow off the ires there dependent on this ill
1681 	 */
1682 	mutex_enter(&ire_srcif_table_lock);
1683 	if (ire_srcif_table_count > 0) {
1684 		mutex_exit(&ire_srcif_table_lock);
1685 		ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill);
1686 	} else {
1687 		mutex_exit(&ire_srcif_table_lock);
1688 	}
1689 
1690 	/* Remove any conn_*_ill depending on this ill */
1691 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill);
1692 
1693 	if (ill->ill_group != NULL) {
1694 		illgrp_delete(ill);
1695 	}
1696 
1697 }
1698 
1699 static void
1700 ill_down_tail(ill_t *ill)
1701 {
1702 	int	i;
1703 
1704 	/* Destroy ill_srcif_table if it exists */
1705 	/* Lock not reqd really because nobody should be able to access */
1706 	mutex_enter(&ill->ill_lock);
1707 	if (ill->ill_srcif_table != NULL) {
1708 		ill->ill_srcif_refcnt = 0;
1709 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
1710 			rw_destroy(&ill->ill_srcif_table[i].irb_lock);
1711 		}
1712 		kmem_free(ill->ill_srcif_table,
1713 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t));
1714 		ill->ill_srcif_table = NULL;
1715 		ill->ill_srcif_refcnt = 0;
1716 		ill->ill_mrtun_refcnt = 0;
1717 	}
1718 	mutex_exit(&ill->ill_lock);
1719 }
1720 
1721 /*
1722  * ire_walk routine used to delete every IRE that depends on queues
1723  * associated with 'ill'.  (Always called as writer.)
1724  */
1725 static void
1726 ill_downi(ire_t *ire, char *ill_arg)
1727 {
1728 	ill_t	*ill = (ill_t *)ill_arg;
1729 
1730 	/*
1731 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1732 	 * interface X and ipif coming from interface Y, if interface
1733 	 * X and Y are part of the same IPMP group. Thus whenever interface
1734 	 * X goes down, remove all references to it by checking both
1735 	 * on ire_ipif and ire_stq.
1736 	 */
1737 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1738 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1739 		ire_delete(ire);
1740 	}
1741 }
1742 
1743 /*
1744  * A seperate routine for deleting revtun and srcif based routes
1745  * are needed because the ires only deleted when the interface
1746  * is unplumbed. Also these ires have ire_in_ill non-null as well.
1747  * we want to keep mobile IP specific code separate.
1748  */
1749 static void
1750 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg)
1751 {
1752 	ill_t   *ill = (ill_t *)ill_arg;
1753 
1754 	ASSERT(ire->ire_in_ill != NULL);
1755 
1756 	if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) ||
1757 	    (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) {
1758 		ire_delete(ire);
1759 	}
1760 }
1761 
1762 /*
1763  * Remove ire/nce from the fastpath list.
1764  */
1765 void
1766 ill_fastpath_nack(ill_t *ill)
1767 {
1768 	if (ill->ill_isv6) {
1769 		nce_fastpath_list_dispatch(ill, NULL, NULL);
1770 	} else {
1771 		ire_fastpath_list_dispatch(ill, NULL, NULL);
1772 	}
1773 }
1774 
1775 /* Consume an M_IOCACK of the fastpath probe. */
1776 void
1777 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1778 {
1779 	mblk_t	*mp1 = mp;
1780 
1781 	/*
1782 	 * If this was the first attempt turn on the fastpath probing.
1783 	 */
1784 	mutex_enter(&ill->ill_lock);
1785 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1786 		ill->ill_dlpi_fastpath_state = IDS_OK;
1787 	mutex_exit(&ill->ill_lock);
1788 
1789 	/* Free the M_IOCACK mblk, hold on to the data */
1790 	mp = mp->b_cont;
1791 	freeb(mp1);
1792 	if (mp == NULL)
1793 		return;
1794 	if (mp->b_cont != NULL) {
1795 		/*
1796 		 * Update all IRE's or NCE's that are waiting for
1797 		 * fastpath update.
1798 		 */
1799 		if (ill->ill_isv6) {
1800 			/*
1801 			 * update nce's in the fastpath list.
1802 			 */
1803 			nce_fastpath_list_dispatch(ill,
1804 			    ndp_fastpath_update, mp);
1805 		} else {
1806 
1807 			/*
1808 			 * update ire's in the fastpath list.
1809 			 */
1810 			ire_fastpath_list_dispatch(ill,
1811 			    ire_fastpath_update, mp);
1812 			/*
1813 			 * Check if we need to traverse reverse tunnel table.
1814 			 * Since there is only single ire_type (IRE_MIPRTUN)
1815 			 * in the table, we don't need to match on ire_type.
1816 			 * We have to check ire_mrtun_count and not the
1817 			 * ill_mrtun_refcnt since ill_mrtun_refcnt is set
1818 			 * on the incoming ill and here we are dealing with
1819 			 * outgoing ill.
1820 			 */
1821 			mutex_enter(&ire_mrtun_lock);
1822 			if (ire_mrtun_count != 0) {
1823 				mutex_exit(&ire_mrtun_lock);
1824 				ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN,
1825 				    (void (*)(ire_t *, void *))
1826 					ire_fastpath_update, mp, ill);
1827 			} else {
1828 				mutex_exit(&ire_mrtun_lock);
1829 			}
1830 		}
1831 		mp1 = mp->b_cont;
1832 		freeb(mp);
1833 		mp = mp1;
1834 	} else {
1835 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1836 	}
1837 
1838 	freeb(mp);
1839 }
1840 
1841 /*
1842  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1843  * The data portion of the request is a dl_unitdata_req_t template for
1844  * what we would send downstream in the absence of a fastpath confirmation.
1845  */
1846 int
1847 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1848 {
1849 	struct iocblk	*ioc;
1850 	mblk_t	*mp;
1851 
1852 	if (dlur_mp == NULL)
1853 		return (EINVAL);
1854 
1855 	mutex_enter(&ill->ill_lock);
1856 	switch (ill->ill_dlpi_fastpath_state) {
1857 	case IDS_FAILED:
1858 		/*
1859 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1860 		 * support it.
1861 		 */
1862 		mutex_exit(&ill->ill_lock);
1863 		return (ENOTSUP);
1864 	case IDS_UNKNOWN:
1865 		/* This is the first probe */
1866 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1867 		break;
1868 	default:
1869 		break;
1870 	}
1871 	mutex_exit(&ill->ill_lock);
1872 
1873 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1874 		return (EAGAIN);
1875 
1876 	mp->b_cont = copyb(dlur_mp);
1877 	if (mp->b_cont == NULL) {
1878 		freeb(mp);
1879 		return (EAGAIN);
1880 	}
1881 
1882 	ioc = (struct iocblk *)mp->b_rptr;
1883 	ioc->ioc_count = msgdsize(mp->b_cont);
1884 
1885 	putnext(ill->ill_wq, mp);
1886 	return (0);
1887 }
1888 
1889 void
1890 ill_capability_probe(ill_t *ill)
1891 {
1892 	/*
1893 	 * Do so only if negotiation is enabled, capabilities are unknown,
1894 	 * and a capability negotiation is not already in progress.
1895 	 */
1896 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN &&
1897 	    ill->ill_dlpi_capab_state != IDS_RENEG)
1898 		return;
1899 
1900 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1901 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1902 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1903 }
1904 
1905 void
1906 ill_capability_reset(ill_t *ill)
1907 {
1908 	mblk_t *sc_mp = NULL;
1909 	mblk_t *tmp;
1910 
1911 	/*
1912 	 * Note here that we reset the state to UNKNOWN, and later send
1913 	 * down the DL_CAPABILITY_REQ without first setting the state to
1914 	 * INPROGRESS.  We do this in order to distinguish the
1915 	 * DL_CAPABILITY_ACK response which may come back in response to
1916 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1917 	 * also handle the case where the driver doesn't send us back
1918 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1919 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1920 	 * features are turned off until the state reaches IDS_OK.
1921 	 */
1922 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1923 
1924 	/*
1925 	 * Disable sub-capabilities and request a list of sub-capability
1926 	 * messages which will be sent down to the driver.  Each handler
1927 	 * allocates the corresponding dl_capability_sub_t inside an
1928 	 * mblk, and links it to the existing sc_mp mblk, or return it
1929 	 * as sc_mp if it's the first sub-capability (the passed in
1930 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1931 	 * sc_mp will be pulled-up, before passing it downstream.
1932 	 */
1933 	ill_capability_mdt_reset(ill, &sc_mp);
1934 	ill_capability_hcksum_reset(ill, &sc_mp);
1935 	ill_capability_zerocopy_reset(ill, &sc_mp);
1936 	ill_capability_ipsec_reset(ill, &sc_mp);
1937 	ill_capability_dls_reset(ill, &sc_mp);
1938 	ill_capability_lso_reset(ill, &sc_mp);
1939 
1940 	/* Nothing to send down in order to disable the capabilities? */
1941 	if (sc_mp == NULL)
1942 		return;
1943 
1944 	tmp = msgpullup(sc_mp, -1);
1945 	freemsg(sc_mp);
1946 	if ((sc_mp = tmp) == NULL) {
1947 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1948 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1949 		return;
1950 	}
1951 
1952 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1953 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1954 }
1955 
1956 /*
1957  * Request or set new-style hardware capabilities supported by DLS provider.
1958  */
1959 static void
1960 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1961 {
1962 	mblk_t *mp;
1963 	dl_capability_req_t *capb;
1964 	size_t size = 0;
1965 	uint8_t *ptr;
1966 
1967 	if (reqp != NULL)
1968 		size = MBLKL(reqp);
1969 
1970 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1971 	if (mp == NULL) {
1972 		freemsg(reqp);
1973 		return;
1974 	}
1975 	ptr = mp->b_rptr;
1976 
1977 	capb = (dl_capability_req_t *)ptr;
1978 	ptr += sizeof (dl_capability_req_t);
1979 
1980 	if (reqp != NULL) {
1981 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1982 		capb->dl_sub_length = size;
1983 		bcopy(reqp->b_rptr, ptr, size);
1984 		ptr += size;
1985 		mp->b_cont = reqp->b_cont;
1986 		freeb(reqp);
1987 	}
1988 	ASSERT(ptr == mp->b_wptr);
1989 
1990 	ill_dlpi_send(ill, mp);
1991 }
1992 
1993 static void
1994 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1995 {
1996 	dl_capab_id_t *id_ic;
1997 	uint_t sub_dl_cap = outers->dl_cap;
1998 	dl_capability_sub_t *inners;
1999 	uint8_t *capend;
2000 
2001 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
2002 
2003 	/*
2004 	 * Note: range checks here are not absolutely sufficient to
2005 	 * make us robust against malformed messages sent by drivers;
2006 	 * this is in keeping with the rest of IP's dlpi handling.
2007 	 * (Remember, it's coming from something else in the kernel
2008 	 * address space)
2009 	 */
2010 
2011 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
2012 	if (capend > mp->b_wptr) {
2013 		cmn_err(CE_WARN, "ill_capability_id_ack: "
2014 		    "malformed sub-capability too long for mblk");
2015 		return;
2016 	}
2017 
2018 	id_ic = (dl_capab_id_t *)(outers + 1);
2019 
2020 	if (outers->dl_length < sizeof (*id_ic) ||
2021 	    (inners = &id_ic->id_subcap,
2022 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
2023 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
2024 		    "encapsulated capab type %d too long for mblk",
2025 		    inners->dl_cap);
2026 		return;
2027 	}
2028 
2029 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
2030 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
2031 		    "isn't as expected; pass-thru module(s) detected, "
2032 		    "discarding capability\n", inners->dl_cap));
2033 		return;
2034 	}
2035 
2036 	/* Process the encapsulated sub-capability */
2037 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
2038 }
2039 
2040 /*
2041  * Process Multidata Transmit capability negotiation ack received from a
2042  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
2043  * DL_CAPABILITY_ACK message.
2044  */
2045 static void
2046 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2047 {
2048 	mblk_t *nmp = NULL;
2049 	dl_capability_req_t *oc;
2050 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
2051 	ill_mdt_capab_t **ill_mdt_capab;
2052 	uint_t sub_dl_cap = isub->dl_cap;
2053 	uint8_t *capend;
2054 
2055 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
2056 
2057 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
2058 
2059 	/*
2060 	 * Note: range checks here are not absolutely sufficient to
2061 	 * make us robust against malformed messages sent by drivers;
2062 	 * this is in keeping with the rest of IP's dlpi handling.
2063 	 * (Remember, it's coming from something else in the kernel
2064 	 * address space)
2065 	 */
2066 
2067 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2068 	if (capend > mp->b_wptr) {
2069 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2070 		    "malformed sub-capability too long for mblk");
2071 		return;
2072 	}
2073 
2074 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
2075 
2076 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
2077 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
2078 		    "unsupported MDT sub-capability (version %d, expected %d)",
2079 		    mdt_ic->mdt_version, MDT_VERSION_2);
2080 		return;
2081 	}
2082 
2083 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
2084 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
2085 		    "capability isn't as expected; pass-thru module(s) "
2086 		    "detected, discarding capability\n"));
2087 		return;
2088 	}
2089 
2090 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
2091 
2092 		if (*ill_mdt_capab == NULL) {
2093 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
2094 			    KM_NOSLEEP);
2095 
2096 			if (*ill_mdt_capab == NULL) {
2097 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2098 				    "could not enable MDT version %d "
2099 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
2100 				    ill->ill_name);
2101 				return;
2102 			}
2103 		}
2104 
2105 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
2106 		    "MDT version %d (%d bytes leading, %d bytes trailing "
2107 		    "header spaces, %d max pld bufs, %d span limit)\n",
2108 		    ill->ill_name, MDT_VERSION_2,
2109 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
2110 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
2111 
2112 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
2113 		(*ill_mdt_capab)->ill_mdt_on = 1;
2114 		/*
2115 		 * Round the following values to the nearest 32-bit; ULP
2116 		 * may further adjust them to accomodate for additional
2117 		 * protocol headers.  We pass these values to ULP during
2118 		 * bind time.
2119 		 */
2120 		(*ill_mdt_capab)->ill_mdt_hdr_head =
2121 		    roundup(mdt_ic->mdt_hdr_head, 4);
2122 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
2123 		    roundup(mdt_ic->mdt_hdr_tail, 4);
2124 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
2125 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
2126 
2127 		ill->ill_capabilities |= ILL_CAPAB_MDT;
2128 	} else {
2129 		uint_t size;
2130 		uchar_t *rptr;
2131 
2132 		size = sizeof (dl_capability_req_t) +
2133 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2134 
2135 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2136 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2137 			    "could not enable MDT for %s (ENOMEM)\n",
2138 			    ill->ill_name);
2139 			return;
2140 		}
2141 
2142 		rptr = nmp->b_rptr;
2143 		/* initialize dl_capability_req_t */
2144 		oc = (dl_capability_req_t *)nmp->b_rptr;
2145 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2146 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2147 		    sizeof (dl_capab_mdt_t);
2148 		nmp->b_rptr += sizeof (dl_capability_req_t);
2149 
2150 		/* initialize dl_capability_sub_t */
2151 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2152 		nmp->b_rptr += sizeof (*isub);
2153 
2154 		/* initialize dl_capab_mdt_t */
2155 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2156 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2157 
2158 		nmp->b_rptr = rptr;
2159 
2160 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2161 		    "to enable MDT version %d\n", ill->ill_name,
2162 		    MDT_VERSION_2));
2163 
2164 		/* set ENABLE flag */
2165 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2166 
2167 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2168 		ill_dlpi_send(ill, nmp);
2169 	}
2170 }
2171 
2172 static void
2173 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2174 {
2175 	mblk_t *mp;
2176 	dl_capab_mdt_t *mdt_subcap;
2177 	dl_capability_sub_t *dl_subcap;
2178 	int size;
2179 
2180 	if (!ILL_MDT_CAPABLE(ill))
2181 		return;
2182 
2183 	ASSERT(ill->ill_mdt_capab != NULL);
2184 	/*
2185 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2186 	 * structure since it's possible that another thread is still
2187 	 * referring to it.  The structure only gets deallocated when
2188 	 * we destroy the ill.
2189 	 */
2190 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2191 
2192 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2193 
2194 	mp = allocb(size, BPRI_HI);
2195 	if (mp == NULL) {
2196 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2197 		    "request to disable MDT\n"));
2198 		return;
2199 	}
2200 
2201 	mp->b_wptr = mp->b_rptr + size;
2202 
2203 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2204 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2205 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2206 
2207 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2208 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2209 	mdt_subcap->mdt_flags = 0;
2210 	mdt_subcap->mdt_hdr_head = 0;
2211 	mdt_subcap->mdt_hdr_tail = 0;
2212 
2213 	if (*sc_mp != NULL)
2214 		linkb(*sc_mp, mp);
2215 	else
2216 		*sc_mp = mp;
2217 }
2218 
2219 /*
2220  * Send a DL_NOTIFY_REQ to the specified ill to enable
2221  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2222  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2223  * acceleration.
2224  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2225  */
2226 static boolean_t
2227 ill_enable_promisc_notify(ill_t *ill)
2228 {
2229 	mblk_t *mp;
2230 	dl_notify_req_t *req;
2231 
2232 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2233 
2234 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2235 	if (mp == NULL)
2236 		return (B_FALSE);
2237 
2238 	req = (dl_notify_req_t *)mp->b_rptr;
2239 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2240 	    DL_NOTE_PROMISC_OFF_PHYS;
2241 
2242 	ill_dlpi_send(ill, mp);
2243 
2244 	return (B_TRUE);
2245 }
2246 
2247 
2248 /*
2249  * Allocate an IPsec capability request which will be filled by our
2250  * caller to turn on support for one or more algorithms.
2251  */
2252 static mblk_t *
2253 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2254 {
2255 	mblk_t *nmp;
2256 	dl_capability_req_t	*ocap;
2257 	dl_capab_ipsec_t	*ocip;
2258 	dl_capab_ipsec_t	*icip;
2259 	uint8_t			*ptr;
2260 	icip = (dl_capab_ipsec_t *)(isub + 1);
2261 
2262 	/*
2263 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2264 	 * PROMISC_ON/OFF notification from the provider. We need to
2265 	 * do this before enabling the algorithms to avoid leakage of
2266 	 * cleartext packets.
2267 	 */
2268 
2269 	if (!ill_enable_promisc_notify(ill))
2270 		return (NULL);
2271 
2272 	/*
2273 	 * Allocate new mblk which will contain a new capability
2274 	 * request to enable the capabilities.
2275 	 */
2276 
2277 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2278 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2279 	if (nmp == NULL)
2280 		return (NULL);
2281 
2282 	ptr = nmp->b_rptr;
2283 
2284 	/* initialize dl_capability_req_t */
2285 	ocap = (dl_capability_req_t *)ptr;
2286 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2287 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2288 	ptr += sizeof (dl_capability_req_t);
2289 
2290 	/* initialize dl_capability_sub_t */
2291 	bcopy(isub, ptr, sizeof (*isub));
2292 	ptr += sizeof (*isub);
2293 
2294 	/* initialize dl_capab_ipsec_t */
2295 	ocip = (dl_capab_ipsec_t *)ptr;
2296 	bcopy(icip, ocip, sizeof (*icip));
2297 
2298 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2299 	return (nmp);
2300 }
2301 
2302 /*
2303  * Process an IPsec capability negotiation ack received from a DLS Provider.
2304  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2305  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2306  */
2307 static void
2308 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2309 {
2310 	dl_capab_ipsec_t	*icip;
2311 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2312 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2313 	uint_t cipher, nciphers;
2314 	mblk_t *nmp;
2315 	uint_t alg_len;
2316 	boolean_t need_sadb_dump;
2317 	uint_t sub_dl_cap = isub->dl_cap;
2318 	ill_ipsec_capab_t **ill_capab;
2319 	uint64_t ill_capab_flag;
2320 	uint8_t *capend, *ciphend;
2321 	boolean_t sadb_resync;
2322 
2323 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2324 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2325 
2326 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2327 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2328 		ill_capab_flag = ILL_CAPAB_AH;
2329 	} else {
2330 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2331 		ill_capab_flag = ILL_CAPAB_ESP;
2332 	}
2333 
2334 	/*
2335 	 * If the ill capability structure exists, then this incoming
2336 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2337 	 * If this is so, then we'd need to resynchronize the SADB
2338 	 * after re-enabling the offloaded ciphers.
2339 	 */
2340 	sadb_resync = (*ill_capab != NULL);
2341 
2342 	/*
2343 	 * Note: range checks here are not absolutely sufficient to
2344 	 * make us robust against malformed messages sent by drivers;
2345 	 * this is in keeping with the rest of IP's dlpi handling.
2346 	 * (Remember, it's coming from something else in the kernel
2347 	 * address space)
2348 	 */
2349 
2350 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2351 	if (capend > mp->b_wptr) {
2352 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2353 		    "malformed sub-capability too long for mblk");
2354 		return;
2355 	}
2356 
2357 	/*
2358 	 * There are two types of acks we process here:
2359 	 * 1. acks in reply to a (first form) generic capability req
2360 	 *    (no ENABLE flag set)
2361 	 * 2. acks in reply to a ENABLE capability req.
2362 	 *    (ENABLE flag set)
2363 	 *
2364 	 * We process the subcapability passed as argument as follows:
2365 	 * 1 do initializations
2366 	 *   1.1 initialize nmp = NULL
2367 	 *   1.2 set need_sadb_dump to B_FALSE
2368 	 * 2 for each cipher in subcapability:
2369 	 *   2.1 if ENABLE flag is set:
2370 	 *	2.1.1 update per-ill ipsec capabilities info
2371 	 *	2.1.2 set need_sadb_dump to B_TRUE
2372 	 *   2.2 if ENABLE flag is not set:
2373 	 *	2.2.1 if nmp is NULL:
2374 	 *		2.2.1.1 allocate and initialize nmp
2375 	 *		2.2.1.2 init current pos in nmp
2376 	 *	2.2.2 copy current cipher to current pos in nmp
2377 	 *	2.2.3 set ENABLE flag in nmp
2378 	 *	2.2.4 update current pos
2379 	 * 3 if nmp is not equal to NULL, send enable request
2380 	 *   3.1 send capability request
2381 	 * 4 if need_sadb_dump is B_TRUE
2382 	 *   4.1 enable promiscuous on/off notifications
2383 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2384 	 *	AH or ESP SA's to interface.
2385 	 */
2386 
2387 	nmp = NULL;
2388 	oalg = NULL;
2389 	need_sadb_dump = B_FALSE;
2390 	icip = (dl_capab_ipsec_t *)(isub + 1);
2391 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2392 
2393 	nciphers = icip->cip_nciphers;
2394 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2395 
2396 	if (ciphend > capend) {
2397 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2398 		    "too many ciphers for sub-capability len");
2399 		return;
2400 	}
2401 
2402 	for (cipher = 0; cipher < nciphers; cipher++) {
2403 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2404 
2405 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2406 			/*
2407 			 * TBD: when we provide a way to disable capabilities
2408 			 * from above, need to manage the request-pending state
2409 			 * and fail if we were not expecting this ACK.
2410 			 */
2411 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2412 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2413 
2414 			/*
2415 			 * Update IPsec capabilities for this ill
2416 			 */
2417 
2418 			if (*ill_capab == NULL) {
2419 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2420 				    ("ill_capability_ipsec_ack: "
2421 					"allocating ipsec_capab for ill\n"));
2422 				*ill_capab = ill_ipsec_capab_alloc();
2423 
2424 				if (*ill_capab == NULL) {
2425 					cmn_err(CE_WARN,
2426 					    "ill_capability_ipsec_ack: "
2427 					    "could not enable IPsec Hardware "
2428 					    "acceleration for %s (ENOMEM)\n",
2429 					    ill->ill_name);
2430 					return;
2431 				}
2432 			}
2433 
2434 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2435 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2436 
2437 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2438 				cmn_err(CE_WARN,
2439 				    "ill_capability_ipsec_ack: "
2440 				    "malformed IPsec algorithm id %d",
2441 				    ialg->alg_prim);
2442 				continue;
2443 			}
2444 
2445 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2446 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2447 				    ialg->alg_prim);
2448 			} else {
2449 				ipsec_capab_algparm_t *alp;
2450 
2451 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2452 				    ialg->alg_prim);
2453 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2454 				    ialg->alg_prim)) {
2455 					cmn_err(CE_WARN,
2456 					    "ill_capability_ipsec_ack: "
2457 					    "no space for IPsec alg id %d",
2458 					    ialg->alg_prim);
2459 					continue;
2460 				}
2461 				alp = &((*ill_capab)->encr_algparm[
2462 						ialg->alg_prim]);
2463 				alp->minkeylen = ialg->alg_minbits;
2464 				alp->maxkeylen = ialg->alg_maxbits;
2465 			}
2466 			ill->ill_capabilities |= ill_capab_flag;
2467 			/*
2468 			 * indicate that a capability was enabled, which
2469 			 * will be used below to kick off a SADB dump
2470 			 * to the ill.
2471 			 */
2472 			need_sadb_dump = B_TRUE;
2473 		} else {
2474 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2475 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2476 				ialg->alg_prim));
2477 
2478 			if (nmp == NULL) {
2479 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2480 				if (nmp == NULL) {
2481 					/*
2482 					 * Sending the PROMISC_ON/OFF
2483 					 * notification request failed.
2484 					 * We cannot enable the algorithms
2485 					 * since the Provider will not
2486 					 * notify IP of promiscous mode
2487 					 * changes, which could lead
2488 					 * to leakage of packets.
2489 					 */
2490 					cmn_err(CE_WARN,
2491 					    "ill_capability_ipsec_ack: "
2492 					    "could not enable IPsec Hardware "
2493 					    "acceleration for %s (ENOMEM)\n",
2494 					    ill->ill_name);
2495 					return;
2496 				}
2497 				/* ptr to current output alg specifier */
2498 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2499 			}
2500 
2501 			/*
2502 			 * Copy current alg specifier, set ENABLE
2503 			 * flag, and advance to next output alg.
2504 			 * For now we enable all IPsec capabilities.
2505 			 */
2506 			ASSERT(oalg != NULL);
2507 			bcopy(ialg, oalg, alg_len);
2508 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2509 			nmp->b_wptr += alg_len;
2510 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2511 		}
2512 
2513 		/* move to next input algorithm specifier */
2514 		ialg = (dl_capab_ipsec_alg_t *)
2515 		    ((char *)ialg + alg_len);
2516 	}
2517 
2518 	if (nmp != NULL)
2519 		/*
2520 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2521 		 * IPsec hardware acceleration.
2522 		 */
2523 		ill_dlpi_send(ill, nmp);
2524 
2525 	if (need_sadb_dump)
2526 		/*
2527 		 * An acknowledgement corresponding to a request to
2528 		 * enable acceleration was received, notify SADB.
2529 		 */
2530 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2531 }
2532 
2533 /*
2534  * Given an mblk with enough space in it, create sub-capability entries for
2535  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2536  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2537  * in preparation for the reset the DL_CAPABILITY_REQ message.
2538  */
2539 static void
2540 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2541     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2542 {
2543 	dl_capab_ipsec_t *oipsec;
2544 	dl_capab_ipsec_alg_t *oalg;
2545 	dl_capability_sub_t *dl_subcap;
2546 	int i, k;
2547 
2548 	ASSERT(nciphers > 0);
2549 	ASSERT(ill_cap != NULL);
2550 	ASSERT(mp != NULL);
2551 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2552 
2553 	/* dl_capability_sub_t for "stype" */
2554 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2555 	dl_subcap->dl_cap = stype;
2556 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2557 	mp->b_wptr += sizeof (dl_capability_sub_t);
2558 
2559 	/* dl_capab_ipsec_t for "stype" */
2560 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2561 	oipsec->cip_version = 1;
2562 	oipsec->cip_nciphers = nciphers;
2563 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2564 
2565 	/* create entries for "stype" AUTH ciphers */
2566 	for (i = 0; i < ill_cap->algs_size; i++) {
2567 		for (k = 0; k < BITSPERBYTE; k++) {
2568 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2569 				continue;
2570 
2571 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2572 			bzero((void *)oalg, sizeof (*oalg));
2573 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2574 			oalg->alg_prim = k + (BITSPERBYTE * i);
2575 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2576 		}
2577 	}
2578 	/* create entries for "stype" ENCR ciphers */
2579 	for (i = 0; i < ill_cap->algs_size; i++) {
2580 		for (k = 0; k < BITSPERBYTE; k++) {
2581 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2582 				continue;
2583 
2584 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2585 			bzero((void *)oalg, sizeof (*oalg));
2586 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2587 			oalg->alg_prim = k + (BITSPERBYTE * i);
2588 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2589 		}
2590 	}
2591 }
2592 
2593 /*
2594  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2595  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2596  * POPC instruction, but our macro is more flexible for an arbitrary length
2597  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2598  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2599  * stays that way, we can reduce the number of iterations required.
2600  */
2601 #define	COUNT_1S(val, sum) {					\
2602 	uint8_t x = val & 0xff;					\
2603 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2604 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2605 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2606 }
2607 
2608 /* ARGSUSED */
2609 static void
2610 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2611 {
2612 	mblk_t *mp;
2613 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2614 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2615 	uint64_t ill_capabilities = ill->ill_capabilities;
2616 	int ah_cnt = 0, esp_cnt = 0;
2617 	int ah_len = 0, esp_len = 0;
2618 	int i, size = 0;
2619 
2620 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2621 		return;
2622 
2623 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2624 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2625 
2626 	/* Find out the number of ciphers for AH */
2627 	if (cap_ah != NULL) {
2628 		for (i = 0; i < cap_ah->algs_size; i++) {
2629 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2630 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2631 		}
2632 		if (ah_cnt > 0) {
2633 			size += sizeof (dl_capability_sub_t) +
2634 			    sizeof (dl_capab_ipsec_t);
2635 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2636 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2637 			size += ah_len;
2638 		}
2639 	}
2640 
2641 	/* Find out the number of ciphers for ESP */
2642 	if (cap_esp != NULL) {
2643 		for (i = 0; i < cap_esp->algs_size; i++) {
2644 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2645 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2646 		}
2647 		if (esp_cnt > 0) {
2648 			size += sizeof (dl_capability_sub_t) +
2649 			    sizeof (dl_capab_ipsec_t);
2650 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2651 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2652 			size += esp_len;
2653 		}
2654 	}
2655 
2656 	if (size == 0) {
2657 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2658 		    "there's nothing to reset\n"));
2659 		return;
2660 	}
2661 
2662 	mp = allocb(size, BPRI_HI);
2663 	if (mp == NULL) {
2664 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2665 		    "request to disable IPSEC Hardware Acceleration\n"));
2666 		return;
2667 	}
2668 
2669 	/*
2670 	 * Clear the capability flags for IPSec HA but retain the ill
2671 	 * capability structures since it's possible that another thread
2672 	 * is still referring to them.  The structures only get deallocated
2673 	 * when we destroy the ill.
2674 	 *
2675 	 * Various places check the flags to see if the ill is capable of
2676 	 * hardware acceleration, and by clearing them we ensure that new
2677 	 * outbound IPSec packets are sent down encrypted.
2678 	 */
2679 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2680 
2681 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2682 	if (ah_cnt > 0) {
2683 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2684 		    cap_ah, mp);
2685 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2686 	}
2687 
2688 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2689 	if (esp_cnt > 0) {
2690 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2691 		    cap_esp, mp);
2692 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2693 	}
2694 
2695 	/*
2696 	 * At this point we've composed a bunch of sub-capabilities to be
2697 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2698 	 * by the caller.  Upon receiving this reset message, the driver
2699 	 * must stop inbound decryption (by destroying all inbound SAs)
2700 	 * and let the corresponding packets come in encrypted.
2701 	 */
2702 
2703 	if (*sc_mp != NULL)
2704 		linkb(*sc_mp, mp);
2705 	else
2706 		*sc_mp = mp;
2707 }
2708 
2709 static void
2710 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2711     boolean_t encapsulated)
2712 {
2713 	boolean_t legacy = B_FALSE;
2714 
2715 	/*
2716 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2717 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2718 	 * instructed the driver to disable its advertised capabilities,
2719 	 * so there's no point in accepting any response at this moment.
2720 	 */
2721 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2722 		return;
2723 
2724 	/*
2725 	 * Note that only the following two sub-capabilities may be
2726 	 * considered as "legacy", since their original definitions
2727 	 * do not incorporate the dl_mid_t module ID token, and hence
2728 	 * may require the use of the wrapper sub-capability.
2729 	 */
2730 	switch (subp->dl_cap) {
2731 	case DL_CAPAB_IPSEC_AH:
2732 	case DL_CAPAB_IPSEC_ESP:
2733 		legacy = B_TRUE;
2734 		break;
2735 	}
2736 
2737 	/*
2738 	 * For legacy sub-capabilities which don't incorporate a queue_t
2739 	 * pointer in their structures, discard them if we detect that
2740 	 * there are intermediate modules in between IP and the driver.
2741 	 */
2742 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2743 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2744 		    "%d discarded; %d module(s) present below IP\n",
2745 		    subp->dl_cap, ill->ill_lmod_cnt));
2746 		return;
2747 	}
2748 
2749 	switch (subp->dl_cap) {
2750 	case DL_CAPAB_IPSEC_AH:
2751 	case DL_CAPAB_IPSEC_ESP:
2752 		ill_capability_ipsec_ack(ill, mp, subp);
2753 		break;
2754 	case DL_CAPAB_MDT:
2755 		ill_capability_mdt_ack(ill, mp, subp);
2756 		break;
2757 	case DL_CAPAB_HCKSUM:
2758 		ill_capability_hcksum_ack(ill, mp, subp);
2759 		break;
2760 	case DL_CAPAB_ZEROCOPY:
2761 		ill_capability_zerocopy_ack(ill, mp, subp);
2762 		break;
2763 	case DL_CAPAB_POLL:
2764 		if (!SOFT_RINGS_ENABLED())
2765 			ill_capability_dls_ack(ill, mp, subp);
2766 		break;
2767 	case DL_CAPAB_SOFT_RING:
2768 		if (SOFT_RINGS_ENABLED())
2769 			ill_capability_dls_ack(ill, mp, subp);
2770 		break;
2771 	case DL_CAPAB_LSO:
2772 		ill_capability_lso_ack(ill, mp, subp);
2773 		break;
2774 	default:
2775 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2776 		    subp->dl_cap));
2777 	}
2778 }
2779 
2780 /*
2781  * As part of negotiating polling capability, the driver tells us
2782  * the default (or normal) blanking interval and packet threshold
2783  * (the receive timer fires if blanking interval is reached or
2784  * the packet threshold is reached).
2785  *
2786  * As part of manipulating the polling interval, we always use our
2787  * estimated interval (avg service time * number of packets queued
2788  * on the squeue) but we try to blank for a minimum of
2789  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2790  * packet threshold during this time. When we are not in polling mode
2791  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2792  * rr_min_blank_ratio but up the packet cnt by a ratio of
2793  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2794  * possible although for a shorter interval.
2795  */
2796 #define	RR_MAX_BLANK_RATIO	20
2797 #define	RR_MIN_BLANK_RATIO	10
2798 #define	RR_MAX_PKT_CNT_RATIO	3
2799 #define	RR_MIN_PKT_CNT_RATIO	3
2800 
2801 /*
2802  * These can be tuned via /etc/system.
2803  */
2804 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2805 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2806 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2807 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2808 
2809 static mac_resource_handle_t
2810 ill_ring_add(void *arg, mac_resource_t *mrp)
2811 {
2812 	ill_t			*ill = (ill_t *)arg;
2813 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2814 	ill_rx_ring_t		*rx_ring;
2815 	int			ip_rx_index;
2816 
2817 	ASSERT(mrp != NULL);
2818 	if (mrp->mr_type != MAC_RX_FIFO) {
2819 		return (NULL);
2820 	}
2821 	ASSERT(ill != NULL);
2822 	ASSERT(ill->ill_dls_capab != NULL);
2823 
2824 	mutex_enter(&ill->ill_lock);
2825 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2826 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2827 		ASSERT(rx_ring != NULL);
2828 
2829 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2830 			time_t normal_blank_time =
2831 			    mrfp->mrf_normal_blank_time;
2832 			uint_t normal_pkt_cnt =
2833 			    mrfp->mrf_normal_pkt_count;
2834 
2835 			bzero(rx_ring, sizeof (ill_rx_ring_t));
2836 
2837 			rx_ring->rr_blank = mrfp->mrf_blank;
2838 			rx_ring->rr_handle = mrfp->mrf_arg;
2839 			rx_ring->rr_ill = ill;
2840 			rx_ring->rr_normal_blank_time = normal_blank_time;
2841 			rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2842 
2843 			rx_ring->rr_max_blank_time =
2844 			    normal_blank_time * rr_max_blank_ratio;
2845 			rx_ring->rr_min_blank_time =
2846 			    normal_blank_time * rr_min_blank_ratio;
2847 			rx_ring->rr_max_pkt_cnt =
2848 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2849 			rx_ring->rr_min_pkt_cnt =
2850 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2851 
2852 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2853 			mutex_exit(&ill->ill_lock);
2854 
2855 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2856 			    (int), ip_rx_index);
2857 			return ((mac_resource_handle_t)rx_ring);
2858 		}
2859 	}
2860 
2861 	/*
2862 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2863 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2864 	 * should be made configurable. Meanwhile it cause no panic because
2865 	 * driver will pass ip_input a NULL handle which will make
2866 	 * IP allocate the default squeue and Polling mode will not
2867 	 * be used for this ring.
2868 	 */
2869 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2870 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2871 
2872 	mutex_exit(&ill->ill_lock);
2873 	return (NULL);
2874 }
2875 
2876 static boolean_t
2877 ill_capability_dls_init(ill_t *ill)
2878 {
2879 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2880 	conn_t 			*connp;
2881 	size_t			sz;
2882 
2883 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2884 		if (ill_dls == NULL) {
2885 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2886 			    "soft_ring enabled for ill=%s (%p) but data "
2887 			    "structs uninitialized\n", ill->ill_name,
2888 			    (void *)ill);
2889 		}
2890 		return (B_TRUE);
2891 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2892 		if (ill_dls == NULL) {
2893 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2894 			    "polling enabled for ill=%s (%p) but data "
2895 			    "structs uninitialized\n", ill->ill_name,
2896 			(void *)ill);
2897 		}
2898 		return (B_TRUE);
2899 	}
2900 
2901 	if (ill_dls != NULL) {
2902 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2903 		/* Soft_Ring or polling is being re-enabled */
2904 
2905 		connp = ill_dls->ill_unbind_conn;
2906 		ASSERT(rx_ring != NULL);
2907 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2908 		bzero((void *)rx_ring,
2909 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2910 		ill_dls->ill_ring_tbl = rx_ring;
2911 		ill_dls->ill_unbind_conn = connp;
2912 		return (B_TRUE);
2913 	}
2914 
2915 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
2916 		return (B_FALSE);
2917 
2918 	sz = sizeof (ill_dls_capab_t);
2919 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2920 
2921 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2922 	if (ill_dls == NULL) {
2923 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2924 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2925 		    (void *)ill);
2926 		CONN_DEC_REF(connp);
2927 		return (B_FALSE);
2928 	}
2929 
2930 	/* Allocate space to hold ring table */
2931 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2932 	ill->ill_dls_capab = ill_dls;
2933 	ill_dls->ill_unbind_conn = connp;
2934 	return (B_TRUE);
2935 }
2936 
2937 /*
2938  * ill_capability_dls_disable: disable soft_ring and/or polling
2939  * capability. Since any of the rings might already be in use, need
2940  * to call ipsq_clean_all() which gets behind the squeue to disable
2941  * direct calls if necessary.
2942  */
2943 static void
2944 ill_capability_dls_disable(ill_t *ill)
2945 {
2946 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2947 
2948 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2949 		ipsq_clean_all(ill);
2950 		ill_dls->ill_tx = NULL;
2951 		ill_dls->ill_tx_handle = NULL;
2952 		ill_dls->ill_dls_change_status = NULL;
2953 		ill_dls->ill_dls_bind = NULL;
2954 		ill_dls->ill_dls_unbind = NULL;
2955 	}
2956 
2957 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2958 }
2959 
2960 static void
2961 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2962     dl_capability_sub_t *isub)
2963 {
2964 	uint_t			size;
2965 	uchar_t			*rptr;
2966 	dl_capab_dls_t	dls, *odls;
2967 	ill_dls_capab_t	*ill_dls;
2968 	mblk_t			*nmp = NULL;
2969 	dl_capability_req_t	*ocap;
2970 	uint_t			sub_dl_cap = isub->dl_cap;
2971 
2972 	if (!ill_capability_dls_init(ill))
2973 		return;
2974 	ill_dls = ill->ill_dls_capab;
2975 
2976 	/* Copy locally to get the members aligned */
2977 	bcopy((void *)idls, (void *)&dls,
2978 	    sizeof (dl_capab_dls_t));
2979 
2980 	/* Get the tx function and handle from dld */
2981 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2982 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2983 
2984 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2985 		ill_dls->ill_dls_change_status =
2986 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2987 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2988 		ill_dls->ill_dls_unbind =
2989 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2990 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2991 	}
2992 
2993 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2994 	    isub->dl_length;
2995 
2996 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2997 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2998 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2999 		    ill->ill_name, (void *)ill);
3000 		return;
3001 	}
3002 
3003 	/* initialize dl_capability_req_t */
3004 	rptr = nmp->b_rptr;
3005 	ocap = (dl_capability_req_t *)rptr;
3006 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
3007 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
3008 	rptr += sizeof (dl_capability_req_t);
3009 
3010 	/* initialize dl_capability_sub_t */
3011 	bcopy(isub, rptr, sizeof (*isub));
3012 	rptr += sizeof (*isub);
3013 
3014 	odls = (dl_capab_dls_t *)rptr;
3015 	rptr += sizeof (dl_capab_dls_t);
3016 
3017 	/* initialize dl_capab_dls_t to be sent down */
3018 	dls.dls_rx_handle = (uintptr_t)ill;
3019 	dls.dls_rx = (uintptr_t)ip_input;
3020 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
3021 
3022 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
3023 		dls.dls_ring_cnt = ip_soft_rings_cnt;
3024 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
3025 		dls.dls_flags = SOFT_RING_ENABLE;
3026 	} else {
3027 		dls.dls_flags = POLL_ENABLE;
3028 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
3029 		    "to enable polling\n", ill->ill_name));
3030 	}
3031 	bcopy((void *)&dls, (void *)odls,
3032 	    sizeof (dl_capab_dls_t));
3033 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3034 	/*
3035 	 * nmp points to a DL_CAPABILITY_REQ message to
3036 	 * enable either soft_ring or polling
3037 	 */
3038 	ill_dlpi_send(ill, nmp);
3039 }
3040 
3041 static void
3042 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
3043 {
3044 	mblk_t *mp;
3045 	dl_capab_dls_t *idls;
3046 	dl_capability_sub_t *dl_subcap;
3047 	int size;
3048 
3049 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
3050 		return;
3051 
3052 	ASSERT(ill->ill_dls_capab != NULL);
3053 
3054 	size = sizeof (*dl_subcap) + sizeof (*idls);
3055 
3056 	mp = allocb(size, BPRI_HI);
3057 	if (mp == NULL) {
3058 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
3059 		    "request to disable soft_ring\n"));
3060 		return;
3061 	}
3062 
3063 	mp->b_wptr = mp->b_rptr + size;
3064 
3065 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3066 	dl_subcap->dl_length = sizeof (*idls);
3067 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3068 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
3069 	else
3070 		dl_subcap->dl_cap = DL_CAPAB_POLL;
3071 
3072 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
3073 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3074 		idls->dls_flags = SOFT_RING_DISABLE;
3075 	else
3076 		idls->dls_flags = POLL_DISABLE;
3077 
3078 	if (*sc_mp != NULL)
3079 		linkb(*sc_mp, mp);
3080 	else
3081 		*sc_mp = mp;
3082 }
3083 
3084 /*
3085  * Process a soft_ring/poll capability negotiation ack received
3086  * from a DLS Provider.isub must point to the sub-capability
3087  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
3088  */
3089 static void
3090 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3091 {
3092 	dl_capab_dls_t		*idls;
3093 	uint_t			sub_dl_cap = isub->dl_cap;
3094 	uint8_t			*capend;
3095 
3096 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
3097 	    sub_dl_cap == DL_CAPAB_POLL);
3098 
3099 	if (ill->ill_isv6)
3100 		return;
3101 
3102 	/*
3103 	 * Note: range checks here are not absolutely sufficient to
3104 	 * make us robust against malformed messages sent by drivers;
3105 	 * this is in keeping with the rest of IP's dlpi handling.
3106 	 * (Remember, it's coming from something else in the kernel
3107 	 * address space)
3108 	 */
3109 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3110 	if (capend > mp->b_wptr) {
3111 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
3112 		    "malformed sub-capability too long for mblk");
3113 		return;
3114 	}
3115 
3116 	/*
3117 	 * There are two types of acks we process here:
3118 	 * 1. acks in reply to a (first form) generic capability req
3119 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
3120 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
3121 	 *    capability req.
3122 	 */
3123 	idls = (dl_capab_dls_t *)(isub + 1);
3124 
3125 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
3126 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
3127 		    "capability isn't as expected; pass-thru "
3128 		    "module(s) detected, discarding capability\n"));
3129 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
3130 			/*
3131 			 * This is a capability renegotitation case.
3132 			 * The interface better be unusable at this
3133 			 * point other wise bad things will happen
3134 			 * if we disable direct calls on a running
3135 			 * and up interface.
3136 			 */
3137 			ill_capability_dls_disable(ill);
3138 		}
3139 		return;
3140 	}
3141 
3142 	switch (idls->dls_flags) {
3143 	default:
3144 		/* Disable if unknown flag */
3145 	case SOFT_RING_DISABLE:
3146 	case POLL_DISABLE:
3147 		ill_capability_dls_disable(ill);
3148 		break;
3149 	case SOFT_RING_CAPABLE:
3150 	case POLL_CAPABLE:
3151 		/*
3152 		 * If the capability was already enabled, its safe
3153 		 * to disable it first to get rid of stale information
3154 		 * and then start enabling it again.
3155 		 */
3156 		ill_capability_dls_disable(ill);
3157 		ill_capability_dls_capable(ill, idls, isub);
3158 		break;
3159 	case SOFT_RING_ENABLE:
3160 	case POLL_ENABLE:
3161 		mutex_enter(&ill->ill_lock);
3162 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3163 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3164 			ASSERT(ill->ill_dls_capab != NULL);
3165 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3166 		}
3167 		if (sub_dl_cap == DL_CAPAB_POLL &&
3168 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3169 			ASSERT(ill->ill_dls_capab != NULL);
3170 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3171 			ip1dbg(("ill_capability_dls_ack: interface %s "
3172 			    "has enabled polling\n", ill->ill_name));
3173 		}
3174 		mutex_exit(&ill->ill_lock);
3175 		break;
3176 	}
3177 }
3178 
3179 /*
3180  * Process a hardware checksum offload capability negotiation ack received
3181  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3182  * of a DL_CAPABILITY_ACK message.
3183  */
3184 static void
3185 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3186 {
3187 	dl_capability_req_t	*ocap;
3188 	dl_capab_hcksum_t	*ihck, *ohck;
3189 	ill_hcksum_capab_t	**ill_hcksum;
3190 	mblk_t			*nmp = NULL;
3191 	uint_t			sub_dl_cap = isub->dl_cap;
3192 	uint8_t			*capend;
3193 
3194 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3195 
3196 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3197 
3198 	/*
3199 	 * Note: range checks here are not absolutely sufficient to
3200 	 * make us robust against malformed messages sent by drivers;
3201 	 * this is in keeping with the rest of IP's dlpi handling.
3202 	 * (Remember, it's coming from something else in the kernel
3203 	 * address space)
3204 	 */
3205 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3206 	if (capend > mp->b_wptr) {
3207 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3208 		    "malformed sub-capability too long for mblk");
3209 		return;
3210 	}
3211 
3212 	/*
3213 	 * There are two types of acks we process here:
3214 	 * 1. acks in reply to a (first form) generic capability req
3215 	 *    (no ENABLE flag set)
3216 	 * 2. acks in reply to a ENABLE capability req.
3217 	 *    (ENABLE flag set)
3218 	 */
3219 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3220 
3221 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3222 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3223 		    "unsupported hardware checksum "
3224 		    "sub-capability (version %d, expected %d)",
3225 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3226 		return;
3227 	}
3228 
3229 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3230 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3231 		    "checksum capability isn't as expected; pass-thru "
3232 		    "module(s) detected, discarding capability\n"));
3233 		return;
3234 	}
3235 
3236 #define	CURR_HCKSUM_CAPAB				\
3237 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3238 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3239 
3240 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3241 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3242 		/* do ENABLE processing */
3243 		if (*ill_hcksum == NULL) {
3244 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3245 			    KM_NOSLEEP);
3246 
3247 			if (*ill_hcksum == NULL) {
3248 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3249 				    "could not enable hcksum version %d "
3250 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3251 				    ill->ill_name);
3252 				return;
3253 			}
3254 		}
3255 
3256 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3257 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3258 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3259 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3260 		    "has enabled hardware checksumming\n ",
3261 		    ill->ill_name));
3262 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3263 		/*
3264 		 * Enabling hardware checksum offload
3265 		 * Currently IP supports {TCP,UDP}/IPv4
3266 		 * partial and full cksum offload and
3267 		 * IPv4 header checksum offload.
3268 		 * Allocate new mblk which will
3269 		 * contain a new capability request
3270 		 * to enable hardware checksum offload.
3271 		 */
3272 		uint_t	size;
3273 		uchar_t	*rptr;
3274 
3275 		size = sizeof (dl_capability_req_t) +
3276 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3277 
3278 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3279 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3280 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3281 			    ill->ill_name);
3282 			return;
3283 		}
3284 
3285 		rptr = nmp->b_rptr;
3286 		/* initialize dl_capability_req_t */
3287 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3288 		ocap->dl_sub_offset =
3289 		    sizeof (dl_capability_req_t);
3290 		ocap->dl_sub_length =
3291 		    sizeof (dl_capability_sub_t) +
3292 		    isub->dl_length;
3293 		nmp->b_rptr += sizeof (dl_capability_req_t);
3294 
3295 		/* initialize dl_capability_sub_t */
3296 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3297 		nmp->b_rptr += sizeof (*isub);
3298 
3299 		/* initialize dl_capab_hcksum_t */
3300 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3301 		bcopy(ihck, ohck, sizeof (*ihck));
3302 
3303 		nmp->b_rptr = rptr;
3304 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3305 
3306 		/* Set ENABLE flag */
3307 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3308 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3309 
3310 		/*
3311 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3312 		 * hardware checksum acceleration.
3313 		 */
3314 		ill_dlpi_send(ill, nmp);
3315 	} else {
3316 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3317 		    "advertised %x hardware checksum capability flags\n",
3318 		    ill->ill_name, ihck->hcksum_txflags));
3319 	}
3320 }
3321 
3322 static void
3323 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3324 {
3325 	mblk_t *mp;
3326 	dl_capab_hcksum_t *hck_subcap;
3327 	dl_capability_sub_t *dl_subcap;
3328 	int size;
3329 
3330 	if (!ILL_HCKSUM_CAPABLE(ill))
3331 		return;
3332 
3333 	ASSERT(ill->ill_hcksum_capab != NULL);
3334 	/*
3335 	 * Clear the capability flag for hardware checksum offload but
3336 	 * retain the ill_hcksum_capab structure since it's possible that
3337 	 * another thread is still referring to it.  The structure only
3338 	 * gets deallocated when we destroy the ill.
3339 	 */
3340 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3341 
3342 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3343 
3344 	mp = allocb(size, BPRI_HI);
3345 	if (mp == NULL) {
3346 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3347 		    "request to disable hardware checksum offload\n"));
3348 		return;
3349 	}
3350 
3351 	mp->b_wptr = mp->b_rptr + size;
3352 
3353 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3354 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3355 	dl_subcap->dl_length = sizeof (*hck_subcap);
3356 
3357 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3358 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3359 	hck_subcap->hcksum_txflags = 0;
3360 
3361 	if (*sc_mp != NULL)
3362 		linkb(*sc_mp, mp);
3363 	else
3364 		*sc_mp = mp;
3365 }
3366 
3367 static void
3368 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3369 {
3370 	mblk_t *nmp = NULL;
3371 	dl_capability_req_t *oc;
3372 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3373 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3374 	uint_t sub_dl_cap = isub->dl_cap;
3375 	uint8_t *capend;
3376 
3377 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3378 
3379 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3380 
3381 	/*
3382 	 * Note: range checks here are not absolutely sufficient to
3383 	 * make us robust against malformed messages sent by drivers;
3384 	 * this is in keeping with the rest of IP's dlpi handling.
3385 	 * (Remember, it's coming from something else in the kernel
3386 	 * address space)
3387 	 */
3388 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3389 	if (capend > mp->b_wptr) {
3390 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3391 		    "malformed sub-capability too long for mblk");
3392 		return;
3393 	}
3394 
3395 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3396 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3397 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3398 		    "unsupported ZEROCOPY sub-capability (version %d, "
3399 		    "expected %d)", zc_ic->zerocopy_version,
3400 		    ZEROCOPY_VERSION_1);
3401 		return;
3402 	}
3403 
3404 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3405 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3406 		    "capability isn't as expected; pass-thru module(s) "
3407 		    "detected, discarding capability\n"));
3408 		return;
3409 	}
3410 
3411 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3412 		if (*ill_zerocopy_capab == NULL) {
3413 			*ill_zerocopy_capab =
3414 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3415 			    KM_NOSLEEP);
3416 
3417 			if (*ill_zerocopy_capab == NULL) {
3418 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3419 				    "could not enable Zero-copy version %d "
3420 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3421 				    ill->ill_name);
3422 				return;
3423 			}
3424 		}
3425 
3426 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3427 		    "supports Zero-copy version %d\n", ill->ill_name,
3428 		    ZEROCOPY_VERSION_1));
3429 
3430 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3431 		    zc_ic->zerocopy_version;
3432 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3433 		    zc_ic->zerocopy_flags;
3434 
3435 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3436 	} else {
3437 		uint_t size;
3438 		uchar_t *rptr;
3439 
3440 		size = sizeof (dl_capability_req_t) +
3441 		    sizeof (dl_capability_sub_t) +
3442 		    sizeof (dl_capab_zerocopy_t);
3443 
3444 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3445 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3446 			    "could not enable zerocopy for %s (ENOMEM)\n",
3447 			    ill->ill_name);
3448 			return;
3449 		}
3450 
3451 		rptr = nmp->b_rptr;
3452 		/* initialize dl_capability_req_t */
3453 		oc = (dl_capability_req_t *)rptr;
3454 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3455 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3456 		    sizeof (dl_capab_zerocopy_t);
3457 		rptr += sizeof (dl_capability_req_t);
3458 
3459 		/* initialize dl_capability_sub_t */
3460 		bcopy(isub, rptr, sizeof (*isub));
3461 		rptr += sizeof (*isub);
3462 
3463 		/* initialize dl_capab_zerocopy_t */
3464 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3465 		*zc_oc = *zc_ic;
3466 
3467 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3468 		    "to enable zero-copy version %d\n", ill->ill_name,
3469 		    ZEROCOPY_VERSION_1));
3470 
3471 		/* set VMSAFE_MEM flag */
3472 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3473 
3474 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3475 		ill_dlpi_send(ill, nmp);
3476 	}
3477 }
3478 
3479 static void
3480 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3481 {
3482 	mblk_t *mp;
3483 	dl_capab_zerocopy_t *zerocopy_subcap;
3484 	dl_capability_sub_t *dl_subcap;
3485 	int size;
3486 
3487 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3488 		return;
3489 
3490 	ASSERT(ill->ill_zerocopy_capab != NULL);
3491 	/*
3492 	 * Clear the capability flag for Zero-copy but retain the
3493 	 * ill_zerocopy_capab structure since it's possible that another
3494 	 * thread is still referring to it.  The structure only gets
3495 	 * deallocated when we destroy the ill.
3496 	 */
3497 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3498 
3499 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3500 
3501 	mp = allocb(size, BPRI_HI);
3502 	if (mp == NULL) {
3503 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3504 		    "request to disable Zero-copy\n"));
3505 		return;
3506 	}
3507 
3508 	mp->b_wptr = mp->b_rptr + size;
3509 
3510 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3511 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3512 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3513 
3514 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3515 	zerocopy_subcap->zerocopy_version =
3516 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3517 	zerocopy_subcap->zerocopy_flags = 0;
3518 
3519 	if (*sc_mp != NULL)
3520 		linkb(*sc_mp, mp);
3521 	else
3522 		*sc_mp = mp;
3523 }
3524 
3525 /*
3526  * Process Large Segment Offload capability negotiation ack received from a
3527  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3528  * DL_CAPABILITY_ACK message.
3529  */
3530 static void
3531 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3532 {
3533 	mblk_t *nmp = NULL;
3534 	dl_capability_req_t *oc;
3535 	dl_capab_lso_t *lso_ic, *lso_oc;
3536 	ill_lso_capab_t **ill_lso_capab;
3537 	uint_t sub_dl_cap = isub->dl_cap;
3538 	uint8_t *capend;
3539 
3540 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3541 
3542 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3543 
3544 	/*
3545 	 * Note: range checks here are not absolutely sufficient to
3546 	 * make us robust against malformed messages sent by drivers;
3547 	 * this is in keeping with the rest of IP's dlpi handling.
3548 	 * (Remember, it's coming from something else in the kernel
3549 	 * address space)
3550 	 */
3551 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3552 	if (capend > mp->b_wptr) {
3553 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3554 		    "malformed sub-capability too long for mblk");
3555 		return;
3556 	}
3557 
3558 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3559 
3560 	if (lso_ic->lso_version != LSO_VERSION_1) {
3561 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3562 		    "unsupported LSO sub-capability (version %d, expected %d)",
3563 		    lso_ic->lso_version, LSO_VERSION_1);
3564 		return;
3565 	}
3566 
3567 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3568 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3569 		    "capability isn't as expected; pass-thru module(s) "
3570 		    "detected, discarding capability\n"));
3571 		return;
3572 	}
3573 
3574 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3575 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3576 		if (*ill_lso_capab == NULL) {
3577 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3578 			    KM_NOSLEEP);
3579 
3580 			if (*ill_lso_capab == NULL) {
3581 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3582 				    "could not enable LSO version %d "
3583 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3584 				    ill->ill_name);
3585 				return;
3586 			}
3587 		}
3588 
3589 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3590 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3591 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3592 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3593 
3594 		ip1dbg(("ill_capability_lso_ack: interface %s "
3595 		    "has enabled LSO\n ", ill->ill_name));
3596 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3597 		uint_t size;
3598 		uchar_t *rptr;
3599 
3600 		size = sizeof (dl_capability_req_t) +
3601 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3602 
3603 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3604 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3605 			    "could not enable LSO for %s (ENOMEM)\n",
3606 			    ill->ill_name);
3607 			return;
3608 		}
3609 
3610 		rptr = nmp->b_rptr;
3611 		/* initialize dl_capability_req_t */
3612 		oc = (dl_capability_req_t *)nmp->b_rptr;
3613 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3614 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3615 		    sizeof (dl_capab_lso_t);
3616 		nmp->b_rptr += sizeof (dl_capability_req_t);
3617 
3618 		/* initialize dl_capability_sub_t */
3619 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3620 		nmp->b_rptr += sizeof (*isub);
3621 
3622 		/* initialize dl_capab_lso_t */
3623 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3624 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3625 
3626 		nmp->b_rptr = rptr;
3627 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3628 
3629 		/* set ENABLE flag */
3630 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3631 
3632 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3633 		ill_dlpi_send(ill, nmp);
3634 	} else {
3635 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3636 		    "advertised %x LSO capability flags\n",
3637 		    ill->ill_name, lso_ic->lso_flags));
3638 	}
3639 }
3640 
3641 
3642 static void
3643 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3644 {
3645 	mblk_t *mp;
3646 	dl_capab_lso_t *lso_subcap;
3647 	dl_capability_sub_t *dl_subcap;
3648 	int size;
3649 
3650 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3651 		return;
3652 
3653 	ASSERT(ill->ill_lso_capab != NULL);
3654 	/*
3655 	 * Clear the capability flag for LSO but retain the
3656 	 * ill_lso_capab structure since it's possible that another
3657 	 * thread is still referring to it.  The structure only gets
3658 	 * deallocated when we destroy the ill.
3659 	 */
3660 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3661 
3662 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3663 
3664 	mp = allocb(size, BPRI_HI);
3665 	if (mp == NULL) {
3666 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3667 		    "request to disable LSO\n"));
3668 		return;
3669 	}
3670 
3671 	mp->b_wptr = mp->b_rptr + size;
3672 
3673 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3674 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3675 	dl_subcap->dl_length = sizeof (*lso_subcap);
3676 
3677 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3678 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3679 	lso_subcap->lso_flags = 0;
3680 
3681 	if (*sc_mp != NULL)
3682 		linkb(*sc_mp, mp);
3683 	else
3684 		*sc_mp = mp;
3685 }
3686 
3687 /*
3688  * Consume a new-style hardware capabilities negotiation ack.
3689  * Called from ip_rput_dlpi_writer().
3690  */
3691 void
3692 ill_capability_ack(ill_t *ill, mblk_t *mp)
3693 {
3694 	dl_capability_ack_t *capp;
3695 	dl_capability_sub_t *subp, *endp;
3696 
3697 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3698 		ill->ill_dlpi_capab_state = IDS_OK;
3699 
3700 	capp = (dl_capability_ack_t *)mp->b_rptr;
3701 
3702 	if (capp->dl_sub_length == 0)
3703 		/* no new-style capabilities */
3704 		return;
3705 
3706 	/* make sure the driver supplied correct dl_sub_length */
3707 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3708 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3709 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3710 		return;
3711 	}
3712 
3713 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3714 	/*
3715 	 * There are sub-capabilities. Process the ones we know about.
3716 	 * Loop until we don't have room for another sub-cap header..
3717 	 */
3718 	for (subp = SC(capp, capp->dl_sub_offset),
3719 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3720 	    subp <= endp;
3721 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3722 
3723 		switch (subp->dl_cap) {
3724 		case DL_CAPAB_ID_WRAPPER:
3725 			ill_capability_id_ack(ill, mp, subp);
3726 			break;
3727 		default:
3728 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3729 			break;
3730 		}
3731 	}
3732 #undef SC
3733 }
3734 
3735 /*
3736  * This routine is called to scan the fragmentation reassembly table for
3737  * the specified ILL for any packets that are starting to smell.
3738  * dead_interval is the maximum time in seconds that will be tolerated.  It
3739  * will either be the value specified in ip_g_frag_timeout, or zero if the
3740  * ILL is shutting down and it is time to blow everything off.
3741  *
3742  * It returns the number of seconds (as a time_t) that the next frag timer
3743  * should be scheduled for, 0 meaning that the timer doesn't need to be
3744  * re-started.  Note that the method of calculating next_timeout isn't
3745  * entirely accurate since time will flow between the time we grab
3746  * current_time and the time we schedule the next timeout.  This isn't a
3747  * big problem since this is the timer for sending an ICMP reassembly time
3748  * exceeded messages, and it doesn't have to be exactly accurate.
3749  *
3750  * This function is
3751  * sometimes called as writer, although this is not required.
3752  */
3753 time_t
3754 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3755 {
3756 	ipfb_t	*ipfb;
3757 	ipfb_t	*endp;
3758 	ipf_t	*ipf;
3759 	ipf_t	*ipfnext;
3760 	mblk_t	*mp;
3761 	time_t	current_time = gethrestime_sec();
3762 	time_t	next_timeout = 0;
3763 	uint32_t	hdr_length;
3764 	mblk_t	*send_icmp_head;
3765 	mblk_t	*send_icmp_head_v6;
3766 	zoneid_t zoneid;
3767 
3768 	ipfb = ill->ill_frag_hash_tbl;
3769 	if (ipfb == NULL)
3770 		return (B_FALSE);
3771 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3772 	/* Walk the frag hash table. */
3773 	for (; ipfb < endp; ipfb++) {
3774 		send_icmp_head = NULL;
3775 		send_icmp_head_v6 = NULL;
3776 		mutex_enter(&ipfb->ipfb_lock);
3777 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3778 			time_t frag_time = current_time - ipf->ipf_timestamp;
3779 			time_t frag_timeout;
3780 
3781 			if (frag_time < dead_interval) {
3782 				/*
3783 				 * There are some outstanding fragments
3784 				 * that will timeout later.  Make note of
3785 				 * the time so that we can reschedule the
3786 				 * next timeout appropriately.
3787 				 */
3788 				frag_timeout = dead_interval - frag_time;
3789 				if (next_timeout == 0 ||
3790 				    frag_timeout < next_timeout) {
3791 					next_timeout = frag_timeout;
3792 				}
3793 				break;
3794 			}
3795 			/* Time's up.  Get it out of here. */
3796 			hdr_length = ipf->ipf_nf_hdr_len;
3797 			ipfnext = ipf->ipf_hash_next;
3798 			if (ipfnext)
3799 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3800 			*ipf->ipf_ptphn = ipfnext;
3801 			mp = ipf->ipf_mp->b_cont;
3802 			for (; mp; mp = mp->b_cont) {
3803 				/* Extra points for neatness. */
3804 				IP_REASS_SET_START(mp, 0);
3805 				IP_REASS_SET_END(mp, 0);
3806 			}
3807 			mp = ipf->ipf_mp->b_cont;
3808 			ill->ill_frag_count -= ipf->ipf_count;
3809 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3810 			ipfb->ipfb_count -= ipf->ipf_count;
3811 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3812 			ipfb->ipfb_frag_pkts--;
3813 			/*
3814 			 * We do not send any icmp message from here because
3815 			 * we currently are holding the ipfb_lock for this
3816 			 * hash chain. If we try and send any icmp messages
3817 			 * from here we may end up via a put back into ip
3818 			 * trying to get the same lock, causing a recursive
3819 			 * mutex panic. Instead we build a list and send all
3820 			 * the icmp messages after we have dropped the lock.
3821 			 */
3822 			if (ill->ill_isv6) {
3823 				if (hdr_length != 0) {
3824 					mp->b_next = send_icmp_head_v6;
3825 					send_icmp_head_v6 = mp;
3826 				} else {
3827 					freemsg(mp);
3828 				}
3829 			} else {
3830 				if (hdr_length != 0) {
3831 					mp->b_next = send_icmp_head;
3832 					send_icmp_head = mp;
3833 				} else {
3834 					freemsg(mp);
3835 				}
3836 			}
3837 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3838 			freeb(ipf->ipf_mp);
3839 		}
3840 		mutex_exit(&ipfb->ipfb_lock);
3841 		/*
3842 		 * Now need to send any icmp messages that we delayed from
3843 		 * above.
3844 		 */
3845 		while (send_icmp_head_v6 != NULL) {
3846 			ip6_t *ip6h;
3847 
3848 			mp = send_icmp_head_v6;
3849 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3850 			mp->b_next = NULL;
3851 			if (mp->b_datap->db_type == M_CTL)
3852 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3853 			else
3854 				ip6h = (ip6_t *)mp->b_rptr;
3855 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3856 			    ill);
3857 			if (zoneid == ALL_ZONES) {
3858 				freemsg(mp);
3859 			} else {
3860 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3861 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3862 				    B_FALSE, zoneid);
3863 			}
3864 		}
3865 		while (send_icmp_head != NULL) {
3866 			ipaddr_t dst;
3867 
3868 			mp = send_icmp_head;
3869 			send_icmp_head = send_icmp_head->b_next;
3870 			mp->b_next = NULL;
3871 
3872 			if (mp->b_datap->db_type == M_CTL)
3873 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3874 			else
3875 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3876 
3877 			zoneid = ipif_lookup_addr_zoneid(dst, ill);
3878 			if (zoneid == ALL_ZONES) {
3879 				freemsg(mp);
3880 			} else {
3881 				icmp_time_exceeded(ill->ill_wq, mp,
3882 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid);
3883 			}
3884 		}
3885 	}
3886 	/*
3887 	 * A non-dying ILL will use the return value to decide whether to
3888 	 * restart the frag timer, and for how long.
3889 	 */
3890 	return (next_timeout);
3891 }
3892 
3893 /*
3894  * This routine is called when the approximate count of mblk memory used
3895  * for the specified ILL has exceeded max_count.
3896  */
3897 void
3898 ill_frag_prune(ill_t *ill, uint_t max_count)
3899 {
3900 	ipfb_t	*ipfb;
3901 	ipf_t	*ipf;
3902 	size_t	count;
3903 
3904 	/*
3905 	 * If we are here within ip_min_frag_prune_time msecs remove
3906 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3907 	 * ill_frag_free_num_pkts.
3908 	 */
3909 	mutex_enter(&ill->ill_lock);
3910 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3911 	    (ip_min_frag_prune_time != 0 ?
3912 	    ip_min_frag_prune_time : msec_per_tick)) {
3913 
3914 		ill->ill_frag_free_num_pkts++;
3915 
3916 	} else {
3917 		ill->ill_frag_free_num_pkts = 0;
3918 	}
3919 	ill->ill_last_frag_clean_time = lbolt;
3920 	mutex_exit(&ill->ill_lock);
3921 
3922 	/*
3923 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3924 	 */
3925 	if (ill->ill_frag_free_num_pkts != 0) {
3926 		int ix;
3927 
3928 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3929 			ipfb = &ill->ill_frag_hash_tbl[ix];
3930 			mutex_enter(&ipfb->ipfb_lock);
3931 			if (ipfb->ipfb_ipf != NULL) {
3932 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3933 				    ill->ill_frag_free_num_pkts);
3934 			}
3935 			mutex_exit(&ipfb->ipfb_lock);
3936 		}
3937 	}
3938 	/*
3939 	 * While the reassembly list for this ILL is too big, prune a fragment
3940 	 * queue by age, oldest first.  Note that the per ILL count is
3941 	 * approximate, while the per frag hash bucket counts are accurate.
3942 	 */
3943 	while (ill->ill_frag_count > max_count) {
3944 		int	ix;
3945 		ipfb_t	*oipfb = NULL;
3946 		uint_t	oldest = UINT_MAX;
3947 
3948 		count = 0;
3949 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3950 			ipfb = &ill->ill_frag_hash_tbl[ix];
3951 			mutex_enter(&ipfb->ipfb_lock);
3952 			ipf = ipfb->ipfb_ipf;
3953 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3954 				oldest = ipf->ipf_gen;
3955 				oipfb = ipfb;
3956 			}
3957 			count += ipfb->ipfb_count;
3958 			mutex_exit(&ipfb->ipfb_lock);
3959 		}
3960 		/* Refresh the per ILL count */
3961 		ill->ill_frag_count = count;
3962 		if (oipfb == NULL) {
3963 			ill->ill_frag_count = 0;
3964 			break;
3965 		}
3966 		if (count <= max_count)
3967 			return;	/* Somebody beat us to it, nothing to do */
3968 		mutex_enter(&oipfb->ipfb_lock);
3969 		ipf = oipfb->ipfb_ipf;
3970 		if (ipf != NULL) {
3971 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3972 		}
3973 		mutex_exit(&oipfb->ipfb_lock);
3974 	}
3975 }
3976 
3977 /*
3978  * free 'free_cnt' fragmented packets starting at ipf.
3979  */
3980 void
3981 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3982 {
3983 	size_t	count;
3984 	mblk_t	*mp;
3985 	mblk_t	*tmp;
3986 	ipf_t **ipfp = ipf->ipf_ptphn;
3987 
3988 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3989 	ASSERT(ipfp != NULL);
3990 	ASSERT(ipf != NULL);
3991 
3992 	while (ipf != NULL && free_cnt-- > 0) {
3993 		count = ipf->ipf_count;
3994 		mp = ipf->ipf_mp;
3995 		ipf = ipf->ipf_hash_next;
3996 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3997 			IP_REASS_SET_START(tmp, 0);
3998 			IP_REASS_SET_END(tmp, 0);
3999 		}
4000 		ill->ill_frag_count -= count;
4001 		ASSERT(ipfb->ipfb_count >= count);
4002 		ipfb->ipfb_count -= count;
4003 		ASSERT(ipfb->ipfb_frag_pkts > 0);
4004 		ipfb->ipfb_frag_pkts--;
4005 		freemsg(mp);
4006 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
4007 	}
4008 
4009 	if (ipf)
4010 		ipf->ipf_ptphn = ipfp;
4011 	ipfp[0] = ipf;
4012 }
4013 
4014 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
4015 	"obsolete and may be removed in a future release of Solaris.  Use " \
4016 	"ifconfig(1M) to manipulate the forwarding status of an interface."
4017 
4018 /*
4019  * For obsolete per-interface forwarding configuration;
4020  * called in response to ND_GET.
4021  */
4022 /* ARGSUSED */
4023 static int
4024 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
4025 {
4026 	ill_t *ill = (ill_t *)cp;
4027 
4028 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
4029 
4030 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
4031 	return (0);
4032 }
4033 
4034 /*
4035  * For obsolete per-interface forwarding configuration;
4036  * called in response to ND_SET.
4037  */
4038 /* ARGSUSED */
4039 static int
4040 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
4041     cred_t *ioc_cr)
4042 {
4043 	long value;
4044 	int retval;
4045 
4046 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
4047 
4048 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
4049 	    value < 0 || value > 1) {
4050 		return (EINVAL);
4051 	}
4052 
4053 	rw_enter(&ill_g_lock, RW_READER);
4054 	retval = ill_forward_set(q, mp, (value != 0), cp);
4055 	rw_exit(&ill_g_lock);
4056 	return (retval);
4057 }
4058 
4059 /*
4060  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
4061  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
4062  * up RTS_IFINFO routing socket messages for each interface whose flags we
4063  * change.
4064  */
4065 /* ARGSUSED */
4066 int
4067 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp)
4068 {
4069 	ill_t *ill = (ill_t *)cp;
4070 	ill_group_t *illgrp;
4071 
4072 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock));
4073 
4074 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
4075 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)) ||
4076 	    (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK))
4077 		return (EINVAL);
4078 
4079 	/*
4080 	 * If the ill is in an IPMP group, set the forwarding policy on all
4081 	 * members of the group to the same value.
4082 	 */
4083 	illgrp = ill->ill_group;
4084 	if (illgrp != NULL) {
4085 		ill_t *tmp_ill;
4086 
4087 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
4088 		    tmp_ill = tmp_ill->ill_group_next) {
4089 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4090 			    (enable ? "Enabling" : "Disabling"),
4091 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
4092 			    tmp_ill->ill_name));
4093 			mutex_enter(&tmp_ill->ill_lock);
4094 			if (enable)
4095 				tmp_ill->ill_flags |= ILLF_ROUTER;
4096 			else
4097 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
4098 			mutex_exit(&tmp_ill->ill_lock);
4099 			if (tmp_ill->ill_isv6)
4100 				ill_set_nce_router_flags(tmp_ill, enable);
4101 			/* Notify routing socket listeners of this change. */
4102 			ip_rts_ifmsg(tmp_ill->ill_ipif);
4103 		}
4104 	} else {
4105 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4106 		    (enable ? "Enabling" : "Disabling"),
4107 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
4108 		mutex_enter(&ill->ill_lock);
4109 		if (enable)
4110 			ill->ill_flags |= ILLF_ROUTER;
4111 		else
4112 			ill->ill_flags &= ~ILLF_ROUTER;
4113 		mutex_exit(&ill->ill_lock);
4114 		if (ill->ill_isv6)
4115 			ill_set_nce_router_flags(ill, enable);
4116 		/* Notify routing socket listeners of this change. */
4117 		ip_rts_ifmsg(ill->ill_ipif);
4118 	}
4119 
4120 	return (0);
4121 }
4122 
4123 /*
4124  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
4125  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
4126  * set or clear.
4127  */
4128 static void
4129 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
4130 {
4131 	ipif_t *ipif;
4132 	nce_t *nce;
4133 
4134 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4135 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
4136 		if (nce != NULL) {
4137 			mutex_enter(&nce->nce_lock);
4138 			if (enable)
4139 				nce->nce_flags |= NCE_F_ISROUTER;
4140 			else
4141 				nce->nce_flags &= ~NCE_F_ISROUTER;
4142 			mutex_exit(&nce->nce_lock);
4143 			NCE_REFRELE(nce);
4144 		}
4145 	}
4146 }
4147 
4148 /*
4149  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4150  * for this ill.  Make sure the v6/v4 question has been answered about this
4151  * ill.  The creation of this ndd variable is only for backwards compatibility.
4152  * The preferred way to control per-interface IP forwarding is through the
4153  * ILLF_ROUTER interface flag.
4154  */
4155 static int
4156 ill_set_ndd_name(ill_t *ill)
4157 {
4158 	char *suffix;
4159 
4160 	ASSERT(IAM_WRITER_ILL(ill));
4161 
4162 	if (ill->ill_isv6)
4163 		suffix = ipv6_forward_suffix;
4164 	else
4165 		suffix = ipv4_forward_suffix;
4166 
4167 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4168 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4169 	/*
4170 	 * Copies over the '\0'.
4171 	 * Note that strlen(suffix) is always bounded.
4172 	 */
4173 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4174 	    strlen(suffix) + 1);
4175 
4176 	/*
4177 	 * Use of the nd table requires holding the reader lock.
4178 	 * Modifying the nd table thru nd_load/nd_unload requires
4179 	 * the writer lock.
4180 	 */
4181 	rw_enter(&ip_g_nd_lock, RW_WRITER);
4182 	if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4183 	    nd_ill_forward_set, (caddr_t)ill)) {
4184 		/*
4185 		 * If the nd_load failed, it only meant that it could not
4186 		 * allocate a new bunch of room for further NDD expansion.
4187 		 * Because of that, the ill_ndd_name will be set to 0, and
4188 		 * this interface is at the mercy of the global ip_forwarding
4189 		 * variable.
4190 		 */
4191 		rw_exit(&ip_g_nd_lock);
4192 		ill->ill_ndd_name = NULL;
4193 		return (ENOMEM);
4194 	}
4195 	rw_exit(&ip_g_nd_lock);
4196 	return (0);
4197 }
4198 
4199 /*
4200  * Intializes the context structure and returns the first ill in the list
4201  * cuurently start_list and end_list can have values:
4202  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4203  * IP_V4_G_HEAD		Traverse IPV4 list only.
4204  * IP_V6_G_HEAD		Traverse IPV6 list only.
4205  */
4206 
4207 /*
4208  * We don't check for CONDEMNED ills here. Caller must do that if
4209  * necessary under the ill lock.
4210  */
4211 ill_t *
4212 ill_first(int start_list, int end_list, ill_walk_context_t *ctx)
4213 {
4214 	ill_if_t *ifp;
4215 	ill_t *ill;
4216 	avl_tree_t *avl_tree;
4217 
4218 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
4219 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4220 
4221 	/*
4222 	 * setup the lists to search
4223 	 */
4224 	if (end_list != MAX_G_HEADS) {
4225 		ctx->ctx_current_list = start_list;
4226 		ctx->ctx_last_list = end_list;
4227 	} else {
4228 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4229 		ctx->ctx_current_list = 0;
4230 	}
4231 
4232 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4233 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list);
4234 		if (ifp != (ill_if_t *)
4235 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) {
4236 			avl_tree = &ifp->illif_avl_by_ppa;
4237 			ill = avl_first(avl_tree);
4238 			/*
4239 			 * ill is guaranteed to be non NULL or ifp should have
4240 			 * not existed.
4241 			 */
4242 			ASSERT(ill != NULL);
4243 			return (ill);
4244 		}
4245 		ctx->ctx_current_list++;
4246 	}
4247 
4248 	return (NULL);
4249 }
4250 
4251 /*
4252  * returns the next ill in the list. ill_first() must have been called
4253  * before calling ill_next() or bad things will happen.
4254  */
4255 
4256 /*
4257  * We don't check for CONDEMNED ills here. Caller must do that if
4258  * necessary under the ill lock.
4259  */
4260 ill_t *
4261 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4262 {
4263 	ill_if_t *ifp;
4264 	ill_t *ill;
4265 
4266 
4267 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
4268 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4269 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list));
4270 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4271 	    AVL_AFTER)) != NULL) {
4272 		return (ill);
4273 	}
4274 
4275 	/* goto next ill_ifp in the list. */
4276 	ifp = lastill->ill_ifptr->illif_next;
4277 
4278 	/* make sure not at end of circular list */
4279 	while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) {
4280 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4281 			return (NULL);
4282 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list);
4283 	}
4284 
4285 	return (avl_first(&ifp->illif_avl_by_ppa));
4286 }
4287 
4288 /*
4289  * Check interface name for correct format which is name+ppa.
4290  * name can contain characters and digits, the right most digits
4291  * make up the ppa number. use of octal is not allowed, name must contain
4292  * a ppa, return pointer to the start of ppa.
4293  * In case of error return NULL.
4294  */
4295 static char *
4296 ill_get_ppa_ptr(char *name)
4297 {
4298 	int namelen = mi_strlen(name);
4299 
4300 	int len = namelen;
4301 
4302 	name += len;
4303 	while (len > 0) {
4304 		name--;
4305 		if (*name < '0' || *name > '9')
4306 			break;
4307 		len--;
4308 	}
4309 
4310 	/* empty string, all digits, or no trailing digits */
4311 	if (len == 0 || len == (int)namelen)
4312 		return (NULL);
4313 
4314 	name++;
4315 	/* check for attempted use of octal */
4316 	if (*name == '0' && len != (int)namelen - 1)
4317 		return (NULL);
4318 	return (name);
4319 }
4320 
4321 /*
4322  * use avl tree to locate the ill.
4323  */
4324 static ill_t *
4325 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4326     ipsq_func_t func, int *error)
4327 {
4328 	char *ppa_ptr = NULL;
4329 	int len;
4330 	uint_t ppa;
4331 	ill_t *ill = NULL;
4332 	ill_if_t *ifp;
4333 	int list;
4334 	ipsq_t *ipsq;
4335 
4336 	if (error != NULL)
4337 		*error = 0;
4338 
4339 	/*
4340 	 * get ppa ptr
4341 	 */
4342 	if (isv6)
4343 		list = IP_V6_G_HEAD;
4344 	else
4345 		list = IP_V4_G_HEAD;
4346 
4347 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4348 		if (error != NULL)
4349 			*error = ENXIO;
4350 		return (NULL);
4351 	}
4352 
4353 	len = ppa_ptr - name + 1;
4354 
4355 	ppa = stoi(&ppa_ptr);
4356 
4357 	ifp = IP_VX_ILL_G_LIST(list);
4358 
4359 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) {
4360 		/*
4361 		 * match is done on len - 1 as the name is not null
4362 		 * terminated it contains ppa in addition to the interface
4363 		 * name.
4364 		 */
4365 		if ((ifp->illif_name_len == len) &&
4366 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4367 			break;
4368 		} else {
4369 			ifp = ifp->illif_next;
4370 		}
4371 	}
4372 
4373 
4374 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) {
4375 		/*
4376 		 * Even the interface type does not exist.
4377 		 */
4378 		if (error != NULL)
4379 			*error = ENXIO;
4380 		return (NULL);
4381 	}
4382 
4383 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4384 	if (ill != NULL) {
4385 		/*
4386 		 * The block comment at the start of ipif_down
4387 		 * explains the use of the macros used below
4388 		 */
4389 		GRAB_CONN_LOCK(q);
4390 		mutex_enter(&ill->ill_lock);
4391 		if (ILL_CAN_LOOKUP(ill)) {
4392 			ill_refhold_locked(ill);
4393 			mutex_exit(&ill->ill_lock);
4394 			RELEASE_CONN_LOCK(q);
4395 			return (ill);
4396 		} else if (ILL_CAN_WAIT(ill, q)) {
4397 			ipsq = ill->ill_phyint->phyint_ipsq;
4398 			mutex_enter(&ipsq->ipsq_lock);
4399 			mutex_exit(&ill->ill_lock);
4400 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4401 			mutex_exit(&ipsq->ipsq_lock);
4402 			RELEASE_CONN_LOCK(q);
4403 			*error = EINPROGRESS;
4404 			return (NULL);
4405 		}
4406 		mutex_exit(&ill->ill_lock);
4407 		RELEASE_CONN_LOCK(q);
4408 	}
4409 	if (error != NULL)
4410 		*error = ENXIO;
4411 	return (NULL);
4412 }
4413 
4414 /*
4415  * comparison function for use with avl.
4416  */
4417 static int
4418 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4419 {
4420 	uint_t ppa;
4421 	uint_t ill_ppa;
4422 
4423 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4424 
4425 	ppa = *((uint_t *)ppa_ptr);
4426 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4427 	/*
4428 	 * We want the ill with the lowest ppa to be on the
4429 	 * top.
4430 	 */
4431 	if (ill_ppa < ppa)
4432 		return (1);
4433 	if (ill_ppa > ppa)
4434 		return (-1);
4435 	return (0);
4436 }
4437 
4438 /*
4439  * remove an interface type from the global list.
4440  */
4441 static void
4442 ill_delete_interface_type(ill_if_t *interface)
4443 {
4444 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
4445 
4446 	ASSERT(interface != NULL);
4447 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4448 
4449 	avl_destroy(&interface->illif_avl_by_ppa);
4450 	if (interface->illif_ppa_arena != NULL)
4451 		vmem_destroy(interface->illif_ppa_arena);
4452 
4453 	remque(interface);
4454 
4455 	mi_free(interface);
4456 }
4457 
4458 /* Defined in ip_netinfo.c */
4459 extern ddi_taskq_t	*eventq_queue_nic;
4460 
4461 /*
4462  * remove ill from the global list.
4463  */
4464 static void
4465 ill_glist_delete(ill_t *ill)
4466 {
4467 	char *nicname;
4468 	size_t nicnamelen;
4469 	hook_nic_event_t *info;
4470 
4471 	if (ill == NULL)
4472 		return;
4473 
4474 	rw_enter(&ill_g_lock, RW_WRITER);
4475 
4476 	if (ill->ill_name != NULL) {
4477 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4478 		if (nicname != NULL) {
4479 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4480 			nicnamelen = ill->ill_name_length;
4481 		}
4482 	} else {
4483 		nicname = NULL;
4484 		nicnamelen = 0;
4485 	}
4486 
4487 	/*
4488 	 * If the ill was never inserted into the AVL tree
4489 	 * we skip the if branch.
4490 	 */
4491 	if (ill->ill_ifptr != NULL) {
4492 		/*
4493 		 * remove from AVL tree and free ppa number
4494 		 */
4495 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4496 
4497 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4498 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4499 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4500 		}
4501 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4502 			ill_delete_interface_type(ill->ill_ifptr);
4503 		}
4504 
4505 		/*
4506 		 * Indicate ill is no longer in the list.
4507 		 */
4508 		ill->ill_ifptr = NULL;
4509 		ill->ill_name_length = 0;
4510 		ill->ill_name[0] = '\0';
4511 		ill->ill_ppa = UINT_MAX;
4512 	}
4513 
4514 	/*
4515 	 * Run the unplumb hook after the NIC has disappeared from being
4516 	 * visible so that attempts to revalidate its existance will fail.
4517 	 *
4518 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4519 	 * that the ordering of delivered events to listeners matches the
4520 	 * order of them in the kernel.
4521 	 */
4522 	if ((info = ill->ill_nic_event_info) != NULL) {
4523 		if (info->hne_event != NE_DOWN) {
4524 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4525 			    "attached for %s\n", info->hne_event,
4526 			    ill->ill_name));
4527 			if (info->hne_data != NULL)
4528 				kmem_free(info->hne_data, info->hne_datalen);
4529 			kmem_free(info, sizeof (hook_nic_event_t));
4530 		} else {
4531 			if (ddi_taskq_dispatch(eventq_queue_nic,
4532 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4533 			    == DDI_FAILURE) {
4534 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4535 				    "failed\n"));
4536 				if (info->hne_data != NULL)
4537 					kmem_free(info->hne_data,
4538 					    info->hne_datalen);
4539 				kmem_free(info, sizeof (hook_nic_event_t));
4540 			}
4541 		}
4542 	}
4543 
4544 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4545 	if (info != NULL) {
4546 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4547 		info->hne_lif = 0;
4548 		info->hne_event = NE_UNPLUMB;
4549 		info->hne_data = nicname;
4550 		info->hne_datalen = nicnamelen;
4551 		info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
4552 	} else {
4553 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4554 		    "information for %s (ENOMEM)\n", ill->ill_name));
4555 		if (nicname != NULL)
4556 			kmem_free(nicname, nicnamelen);
4557 	}
4558 
4559 	ill->ill_nic_event_info = info;
4560 
4561 	ill_phyint_free(ill);
4562 
4563 	rw_exit(&ill_g_lock);
4564 }
4565 
4566 /*
4567  * allocate a ppa, if the number of plumbed interfaces of this type are
4568  * less than ill_no_arena do a linear search to find a unused ppa.
4569  * When the number goes beyond ill_no_arena switch to using an arena.
4570  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4571  * is the return value for an error condition, so allocation starts at one
4572  * and is decremented by one.
4573  */
4574 static int
4575 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4576 {
4577 	ill_t *tmp_ill;
4578 	uint_t start, end;
4579 	int ppa;
4580 
4581 	if (ifp->illif_ppa_arena == NULL &&
4582 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4583 		/*
4584 		 * Create an arena.
4585 		 */
4586 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4587 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4588 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4589 			/* allocate what has already been assigned */
4590 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4591 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4592 		    tmp_ill, AVL_AFTER)) {
4593 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4594 			    1,		/* size */
4595 			    1,		/* align/quantum */
4596 			    0,		/* phase */
4597 			    0,		/* nocross */
4598 		(void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */
4599 		(void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */
4600 			    VM_NOSLEEP|VM_FIRSTFIT);
4601 			if (ppa == 0) {
4602 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4603 				    " failed while switching"));
4604 				vmem_destroy(ifp->illif_ppa_arena);
4605 				ifp->illif_ppa_arena = NULL;
4606 				break;
4607 			}
4608 		}
4609 	}
4610 
4611 	if (ifp->illif_ppa_arena != NULL) {
4612 		if (ill->ill_ppa == UINT_MAX) {
4613 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4614 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4615 			if (ppa == 0)
4616 				return (EAGAIN);
4617 			ill->ill_ppa = --ppa;
4618 		} else {
4619 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4620 			    1, 		/* size */
4621 			    1, 		/* align/quantum */
4622 			    0, 		/* phase */
4623 			    0, 		/* nocross */
4624 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4625 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4626 			    VM_NOSLEEP|VM_FIRSTFIT);
4627 			/*
4628 			 * Most likely the allocation failed because
4629 			 * the requested ppa was in use.
4630 			 */
4631 			if (ppa == 0)
4632 				return (EEXIST);
4633 		}
4634 		return (0);
4635 	}
4636 
4637 	/*
4638 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4639 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4640 	 */
4641 	if (ill->ill_ppa == UINT_MAX) {
4642 		end = UINT_MAX - 1;
4643 		start = 0;
4644 	} else {
4645 		end = start = ill->ill_ppa;
4646 	}
4647 
4648 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4649 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4650 		if (start++ >= end) {
4651 			if (ill->ill_ppa == UINT_MAX)
4652 				return (EAGAIN);
4653 			else
4654 				return (EEXIST);
4655 		}
4656 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4657 	}
4658 	ill->ill_ppa = start;
4659 	return (0);
4660 }
4661 
4662 /*
4663  * Insert ill into the list of configured ill's. Once this function completes,
4664  * the ill is globally visible and is available through lookups. More precisely
4665  * this happens after the caller drops the ill_g_lock.
4666  */
4667 static int
4668 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4669 {
4670 	ill_if_t *ill_interface;
4671 	avl_index_t where = 0;
4672 	int error;
4673 	int name_length;
4674 	int index;
4675 	boolean_t check_length = B_FALSE;
4676 
4677 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
4678 
4679 	name_length = mi_strlen(name) + 1;
4680 
4681 	if (isv6)
4682 		index = IP_V6_G_HEAD;
4683 	else
4684 		index = IP_V4_G_HEAD;
4685 
4686 	ill_interface = IP_VX_ILL_G_LIST(index);
4687 	/*
4688 	 * Search for interface type based on name
4689 	 */
4690 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) {
4691 		if ((ill_interface->illif_name_len == name_length) &&
4692 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4693 			break;
4694 		}
4695 		ill_interface = ill_interface->illif_next;
4696 	}
4697 
4698 	/*
4699 	 * Interface type not found, create one.
4700 	 */
4701 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) {
4702 
4703 		ill_g_head_t ghead;
4704 
4705 		/*
4706 		 * allocate ill_if_t structure
4707 		 */
4708 
4709 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4710 		if (ill_interface == NULL) {
4711 			return (ENOMEM);
4712 		}
4713 
4714 
4715 
4716 		(void) strcpy(ill_interface->illif_name, name);
4717 		ill_interface->illif_name_len = name_length;
4718 
4719 		avl_create(&ill_interface->illif_avl_by_ppa,
4720 		    ill_compare_ppa, sizeof (ill_t),
4721 		    offsetof(struct ill_s, ill_avl_byppa));
4722 
4723 		/*
4724 		 * link the structure in the back to maintain order
4725 		 * of configuration for ifconfig output.
4726 		 */
4727 		ghead = ill_g_heads[index];
4728 		insque(ill_interface, ghead.ill_g_list_tail);
4729 
4730 	}
4731 
4732 	if (ill->ill_ppa == UINT_MAX)
4733 		check_length = B_TRUE;
4734 
4735 	error = ill_alloc_ppa(ill_interface, ill);
4736 	if (error != 0) {
4737 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4738 			ill_delete_interface_type(ill->ill_ifptr);
4739 		return (error);
4740 	}
4741 
4742 	/*
4743 	 * When the ppa is choosen by the system, check that there is
4744 	 * enough space to insert ppa. if a specific ppa was passed in this
4745 	 * check is not required as the interface name passed in will have
4746 	 * the right ppa in it.
4747 	 */
4748 	if (check_length) {
4749 		/*
4750 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4751 		 */
4752 		char buf[sizeof (uint_t) * 3];
4753 
4754 		/*
4755 		 * convert ppa to string to calculate the amount of space
4756 		 * required for it in the name.
4757 		 */
4758 		numtos(ill->ill_ppa, buf);
4759 
4760 		/* Do we have enough space to insert ppa ? */
4761 
4762 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4763 			/* Free ppa and interface type struct */
4764 			if (ill_interface->illif_ppa_arena != NULL) {
4765 				vmem_free(ill_interface->illif_ppa_arena,
4766 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4767 			}
4768 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4769 			    0) {
4770 				ill_delete_interface_type(ill->ill_ifptr);
4771 			}
4772 
4773 			return (EINVAL);
4774 		}
4775 	}
4776 
4777 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4778 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4779 
4780 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4781 	    &where);
4782 	ill->ill_ifptr = ill_interface;
4783 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4784 
4785 	ill_phyint_reinit(ill);
4786 	return (0);
4787 }
4788 
4789 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4790 static boolean_t
4791 ipsq_init(ill_t *ill)
4792 {
4793 	ipsq_t  *ipsq;
4794 
4795 	/* Init the ipsq and impicitly enter as writer */
4796 	ill->ill_phyint->phyint_ipsq =
4797 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4798 	if (ill->ill_phyint->phyint_ipsq == NULL)
4799 		return (B_FALSE);
4800 	ipsq = ill->ill_phyint->phyint_ipsq;
4801 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4802 	ill->ill_phyint->phyint_ipsq_next = NULL;
4803 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4804 	ipsq->ipsq_refs = 1;
4805 	ipsq->ipsq_writer = curthread;
4806 	ipsq->ipsq_reentry_cnt = 1;
4807 #ifdef ILL_DEBUG
4808 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH);
4809 #endif
4810 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4811 	return (B_TRUE);
4812 }
4813 
4814 /*
4815  * ill_init is called by ip_open when a device control stream is opened.
4816  * It does a few initializations, and shoots a DL_INFO_REQ message down
4817  * to the driver.  The response is later picked up in ip_rput_dlpi and
4818  * used to set up default mechanisms for talking to the driver.  (Always
4819  * called as writer.)
4820  *
4821  * If this function returns error, ip_open will call ip_close which in
4822  * turn will call ill_delete to clean up any memory allocated here that
4823  * is not yet freed.
4824  */
4825 int
4826 ill_init(queue_t *q, ill_t *ill)
4827 {
4828 	int	count;
4829 	dl_info_req_t	*dlir;
4830 	mblk_t	*info_mp;
4831 	uchar_t *frag_ptr;
4832 
4833 	/*
4834 	 * The ill is initialized to zero by mi_alloc*(). In addition
4835 	 * some fields already contain valid values, initialized in
4836 	 * ip_open(), before we reach here.
4837 	 */
4838 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4839 
4840 	ill->ill_rq = q;
4841 	ill->ill_wq = WR(q);
4842 
4843 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4844 	    BPRI_HI);
4845 	if (info_mp == NULL)
4846 		return (ENOMEM);
4847 
4848 	/*
4849 	 * Allocate sufficient space to contain our fragment hash table and
4850 	 * the device name.
4851 	 */
4852 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4853 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4854 	if (frag_ptr == NULL) {
4855 		freemsg(info_mp);
4856 		return (ENOMEM);
4857 	}
4858 	ill->ill_frag_ptr = frag_ptr;
4859 	ill->ill_frag_free_num_pkts = 0;
4860 	ill->ill_last_frag_clean_time = 0;
4861 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4862 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4863 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4864 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4865 		    NULL, MUTEX_DEFAULT, NULL);
4866 	}
4867 
4868 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4869 	if (ill->ill_phyint == NULL) {
4870 		freemsg(info_mp);
4871 		mi_free(frag_ptr);
4872 		return (ENOMEM);
4873 	}
4874 
4875 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4876 	/*
4877 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4878 	 * at this point because of the following reason. If we can't
4879 	 * enter the ipsq at some point and cv_wait, the writer that
4880 	 * wakes us up tries to locate us using the list of all phyints
4881 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4882 	 * If we don't set it now, we risk a missed wakeup.
4883 	 */
4884 	ill->ill_phyint->phyint_illv4 = ill;
4885 	ill->ill_ppa = UINT_MAX;
4886 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4887 
4888 	if (!ipsq_init(ill)) {
4889 		freemsg(info_mp);
4890 		mi_free(frag_ptr);
4891 		mi_free(ill->ill_phyint);
4892 		return (ENOMEM);
4893 	}
4894 
4895 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4896 
4897 
4898 	/* Frag queue limit stuff */
4899 	ill->ill_frag_count = 0;
4900 	ill->ill_ipf_gen = 0;
4901 
4902 	ill->ill_global_timer = INFINITY;
4903 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4904 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4905 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4906 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4907 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4908 
4909 	/*
4910 	 * Initialize IPv6 configuration variables.  The IP module is always
4911 	 * opened as an IPv4 module.  Instead tracking down the cases where
4912 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4913 	 * here for convenience, this has no effect until the ill is set to do
4914 	 * IPv6.
4915 	 */
4916 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4917 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4918 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4919 	ill->ill_max_buf = ND_MAX_Q;
4920 	ill->ill_refcnt = 0;
4921 
4922 	/* Send down the Info Request to the driver. */
4923 	info_mp->b_datap->db_type = M_PCPROTO;
4924 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4925 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4926 	dlir->dl_primitive = DL_INFO_REQ;
4927 
4928 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4929 
4930 	qprocson(q);
4931 	ill_dlpi_send(ill, info_mp);
4932 
4933 	return (0);
4934 }
4935 
4936 /*
4937  * ill_dls_info
4938  * creates datalink socket info from the device.
4939  */
4940 int
4941 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4942 {
4943 	size_t	len;
4944 	ill_t	*ill = ipif->ipif_ill;
4945 
4946 	sdl->sdl_family = AF_LINK;
4947 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4948 	sdl->sdl_type = ill->ill_type;
4949 	(void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4950 	len = strlen(sdl->sdl_data);
4951 	ASSERT(len < 256);
4952 	sdl->sdl_nlen = (uchar_t)len;
4953 	sdl->sdl_alen = ill->ill_phys_addr_length;
4954 	sdl->sdl_slen = 0;
4955 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4956 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4957 
4958 	return (sizeof (struct sockaddr_dl));
4959 }
4960 
4961 /*
4962  * ill_xarp_info
4963  * creates xarp info from the device.
4964  */
4965 static int
4966 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4967 {
4968 	sdl->sdl_family = AF_LINK;
4969 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4970 	sdl->sdl_type = ill->ill_type;
4971 	(void) ipif_get_name(ill->ill_ipif, sdl->sdl_data,
4972 	    sizeof (sdl->sdl_data));
4973 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4974 	sdl->sdl_alen = ill->ill_phys_addr_length;
4975 	sdl->sdl_slen = 0;
4976 	return (sdl->sdl_nlen);
4977 }
4978 
4979 static int
4980 loopback_kstat_update(kstat_t *ksp, int rw)
4981 {
4982 	kstat_named_t *kn = KSTAT_NAMED_PTR(ksp);
4983 
4984 	if (rw == KSTAT_WRITE)
4985 		return (EACCES);
4986 	kn[0].value.ui32 = loopback_packets;
4987 	kn[1].value.ui32 = loopback_packets;
4988 	return (0);
4989 }
4990 
4991 
4992 /*
4993  * Has ifindex been plumbed already.
4994  */
4995 static boolean_t
4996 phyint_exists(uint_t index)
4997 {
4998 	phyint_t *phyi;
4999 
5000 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
5001 	/*
5002 	 * Indexes are stored in the phyint - a common structure
5003 	 * to both IPv4 and IPv6.
5004 	 */
5005 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
5006 	    (void *) &index, NULL);
5007 	return (phyi != NULL);
5008 }
5009 
5010 /*
5011  * Assign a unique interface index for the phyint.
5012  */
5013 static boolean_t
5014 phyint_assign_ifindex(phyint_t *phyi)
5015 {
5016 	uint_t starting_index;
5017 
5018 	ASSERT(phyi->phyint_ifindex == 0);
5019 	if (!ill_index_wrap) {
5020 		phyi->phyint_ifindex = ill_index++;
5021 		if (ill_index == 0) {
5022 			/* Reached the uint_t limit Next time wrap  */
5023 			ill_index_wrap = B_TRUE;
5024 		}
5025 		return (B_TRUE);
5026 	}
5027 
5028 	/*
5029 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
5030 	 * at this point and don't want to call any function that attempts
5031 	 * to get the lock again.
5032 	 */
5033 	starting_index = ill_index++;
5034 	for (; ill_index != starting_index; ill_index++) {
5035 		if (ill_index != 0 && !phyint_exists(ill_index)) {
5036 			/* found unused index - use it */
5037 			phyi->phyint_ifindex = ill_index;
5038 			return (B_TRUE);
5039 		}
5040 	}
5041 
5042 	/*
5043 	 * all interface indicies are inuse.
5044 	 */
5045 	return (B_FALSE);
5046 }
5047 
5048 /*
5049  * Return a pointer to the ill which matches the supplied name.  Note that
5050  * the ill name length includes the null termination character.  (May be
5051  * called as writer.)
5052  * If do_alloc and the interface is "lo0" it will be automatically created.
5053  * Cannot bump up reference on condemned ills. So dup detect can't be done
5054  * using this func.
5055  */
5056 ill_t *
5057 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
5058     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc)
5059 {
5060 	ill_t	*ill;
5061 	ipif_t	*ipif;
5062 	kstat_named_t	*kn;
5063 	boolean_t isloopback;
5064 	ipsq_t *old_ipsq;
5065 
5066 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
5067 
5068 	rw_enter(&ill_g_lock, RW_READER);
5069 	ill = ill_find_by_name(name, isv6, q, mp, func, error);
5070 	rw_exit(&ill_g_lock);
5071 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
5072 		return (ill);
5073 
5074 	/*
5075 	 * Couldn't find it.  Does this happen to be a lookup for the
5076 	 * loopback device and are we allowed to allocate it?
5077 	 */
5078 	if (!isloopback || !do_alloc)
5079 		return (NULL);
5080 
5081 	rw_enter(&ill_g_lock, RW_WRITER);
5082 
5083 	ill = ill_find_by_name(name, isv6, q, mp, func, error);
5084 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
5085 		rw_exit(&ill_g_lock);
5086 		return (ill);
5087 	}
5088 
5089 	/* Create the loopback device on demand */
5090 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
5091 	    sizeof (ipif_loopback_name), BPRI_MED));
5092 	if (ill == NULL)
5093 		goto done;
5094 
5095 	*ill = ill_null;
5096 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
5097 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5098 	if (ill->ill_phyint == NULL)
5099 		goto done;
5100 
5101 	if (isv6)
5102 		ill->ill_phyint->phyint_illv6 = ill;
5103 	else
5104 		ill->ill_phyint->phyint_illv4 = ill;
5105 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5106 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5107 	/* Add room for tcp+ip headers */
5108 	if (isv6) {
5109 		ill->ill_isv6 = B_TRUE;
5110 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5111 	} else {
5112 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5113 	}
5114 	if (!ill_allocate_mibs(ill))
5115 		goto done;
5116 	ill->ill_max_mtu = ill->ill_max_frag;
5117 	/*
5118 	 * ipif_loopback_name can't be pointed at directly because its used
5119 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5120 	 * from the glist, ill_glist_delete() sets the first character of
5121 	 * ill_name to '\0'.
5122 	 */
5123 	ill->ill_name = (char *)ill + sizeof (*ill);
5124 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5125 	ill->ill_name_length = sizeof (ipif_loopback_name);
5126 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5127 
5128 	ill->ill_global_timer = INFINITY;
5129 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
5130 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5131 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5132 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5133 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5134 
5135 	/* No resolver here. */
5136 	ill->ill_net_type = IRE_LOOPBACK;
5137 
5138 	/* Initialize the ipsq */
5139 	if (!ipsq_init(ill))
5140 		goto done;
5141 
5142 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5143 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5144 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5145 #ifdef ILL_DEBUG
5146 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5147 #endif
5148 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5149 	if (ipif == NULL)
5150 		goto done;
5151 
5152 	ill->ill_flags = ILLF_MULTICAST;
5153 
5154 	/* Set up default loopback address and mask. */
5155 	if (!isv6) {
5156 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5157 
5158 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5159 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5160 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5161 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5162 		    ipif->ipif_v6subnet);
5163 		ill->ill_flags |= ILLF_IPV4;
5164 	} else {
5165 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5166 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5167 		ipif->ipif_v6net_mask = ipv6_all_ones;
5168 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5169 		    ipif->ipif_v6subnet);
5170 		ill->ill_flags |= ILLF_IPV6;
5171 	}
5172 
5173 	/*
5174 	 * Chain us in at the end of the ill list. hold the ill
5175 	 * before we make it globally visible. 1 for the lookup.
5176 	 */
5177 	ill->ill_refcnt = 0;
5178 	ill_refhold(ill);
5179 
5180 	ill->ill_frag_count = 0;
5181 	ill->ill_frag_free_num_pkts = 0;
5182 	ill->ill_last_frag_clean_time = 0;
5183 
5184 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5185 
5186 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5187 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5188 
5189 	/* Let SCTP know so that it can add this to its list */
5190 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5191 
5192 	/* Let SCTP know about this IPIF, so that it can add it to its list */
5193 	sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
5194 
5195 	/*
5196 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5197 	 */
5198 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5199 		/* Loopback ills aren't in any IPMP group */
5200 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5201 		ipsq_delete(old_ipsq);
5202 	}
5203 
5204 	/*
5205 	 * Delay this till the ipif is allocated as ipif_allocate
5206 	 * de-references ill_phyint for getting the ifindex. We
5207 	 * can't do this before ipif_allocate because ill_phyint_reinit
5208 	 * -> phyint_assign_ifindex expects ipif to be present.
5209 	 */
5210 	mutex_enter(&ill->ill_phyint->phyint_lock);
5211 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5212 	mutex_exit(&ill->ill_phyint->phyint_lock);
5213 
5214 	if (loopback_ksp == NULL) {
5215 		/* Export loopback interface statistics */
5216 		loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net",
5217 		    KSTAT_TYPE_NAMED, 2, 0);
5218 		if (loopback_ksp != NULL) {
5219 			loopback_ksp->ks_update = loopback_kstat_update;
5220 			kn = KSTAT_NAMED_PTR(loopback_ksp);
5221 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5222 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5223 			kstat_install(loopback_ksp);
5224 		}
5225 	}
5226 
5227 	if (error != NULL)
5228 		*error = 0;
5229 	*did_alloc = B_TRUE;
5230 	rw_exit(&ill_g_lock);
5231 	return (ill);
5232 done:
5233 	if (ill != NULL) {
5234 		if (ill->ill_phyint != NULL) {
5235 			ipsq_t	*ipsq;
5236 
5237 			ipsq = ill->ill_phyint->phyint_ipsq;
5238 			if (ipsq != NULL)
5239 				kmem_free(ipsq, sizeof (ipsq_t));
5240 			mi_free(ill->ill_phyint);
5241 		}
5242 		ill_free_mib(ill);
5243 		mi_free(ill);
5244 	}
5245 	rw_exit(&ill_g_lock);
5246 	if (error != NULL)
5247 		*error = ENOMEM;
5248 	return (NULL);
5249 }
5250 
5251 /*
5252  * Return a pointer to the ill which matches the index and IP version type.
5253  */
5254 ill_t *
5255 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5256     ipsq_func_t func, int *err)
5257 {
5258 	ill_t	*ill;
5259 	ipsq_t  *ipsq;
5260 	phyint_t *phyi;
5261 
5262 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5263 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5264 
5265 	if (err != NULL)
5266 		*err = 0;
5267 
5268 	/*
5269 	 * Indexes are stored in the phyint - a common structure
5270 	 * to both IPv4 and IPv6.
5271 	 */
5272 	rw_enter(&ill_g_lock, RW_READER);
5273 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
5274 	    (void *) &index, NULL);
5275 	if (phyi != NULL) {
5276 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5277 		if (ill != NULL) {
5278 			/*
5279 			 * The block comment at the start of ipif_down
5280 			 * explains the use of the macros used below
5281 			 */
5282 			GRAB_CONN_LOCK(q);
5283 			mutex_enter(&ill->ill_lock);
5284 			if (ILL_CAN_LOOKUP(ill)) {
5285 				ill_refhold_locked(ill);
5286 				mutex_exit(&ill->ill_lock);
5287 				RELEASE_CONN_LOCK(q);
5288 				rw_exit(&ill_g_lock);
5289 				return (ill);
5290 			} else if (ILL_CAN_WAIT(ill, q)) {
5291 				ipsq = ill->ill_phyint->phyint_ipsq;
5292 				mutex_enter(&ipsq->ipsq_lock);
5293 				rw_exit(&ill_g_lock);
5294 				mutex_exit(&ill->ill_lock);
5295 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5296 				mutex_exit(&ipsq->ipsq_lock);
5297 				RELEASE_CONN_LOCK(q);
5298 				*err = EINPROGRESS;
5299 				return (NULL);
5300 			}
5301 			RELEASE_CONN_LOCK(q);
5302 			mutex_exit(&ill->ill_lock);
5303 		}
5304 	}
5305 	rw_exit(&ill_g_lock);
5306 	if (err != NULL)
5307 		*err = ENXIO;
5308 	return (NULL);
5309 }
5310 
5311 /*
5312  * Return the ifindex next in sequence after the passed in ifindex.
5313  * If there is no next ifindex for the given protocol, return 0.
5314  */
5315 uint_t
5316 ill_get_next_ifindex(uint_t index, boolean_t isv6)
5317 {
5318 	phyint_t *phyi;
5319 	phyint_t *phyi_initial;
5320 	uint_t   ifindex;
5321 
5322 	rw_enter(&ill_g_lock, RW_READER);
5323 
5324 	if (index == 0) {
5325 		phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
5326 	} else {
5327 		phyi = phyi_initial = avl_find(
5328 		    &phyint_g_list.phyint_list_avl_by_index,
5329 		    (void *) &index, NULL);
5330 	}
5331 
5332 	for (; phyi != NULL;
5333 	    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
5334 	    phyi, AVL_AFTER)) {
5335 		/*
5336 		 * If we're not returning the first interface in the tree
5337 		 * and we still haven't moved past the phyint_t that
5338 		 * corresponds to index, avl_walk needs to be called again
5339 		 */
5340 		if (!((index != 0) && (phyi == phyi_initial))) {
5341 			if (isv6) {
5342 				if ((phyi->phyint_illv6) &&
5343 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5344 				    (phyi->phyint_illv6->ill_isv6 == 1))
5345 					break;
5346 			} else {
5347 				if ((phyi->phyint_illv4) &&
5348 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5349 				    (phyi->phyint_illv4->ill_isv6 == 0))
5350 					break;
5351 			}
5352 		}
5353 	}
5354 
5355 	rw_exit(&ill_g_lock);
5356 
5357 	if (phyi != NULL)
5358 		ifindex = phyi->phyint_ifindex;
5359 	else
5360 		ifindex = 0;
5361 
5362 	return (ifindex);
5363 }
5364 
5365 
5366 /*
5367  * Return the ifindex for the named interface.
5368  * If there is no next ifindex for the interface, return 0.
5369  */
5370 uint_t
5371 ill_get_ifindex_by_name(char *name)
5372 {
5373 	phyint_t	*phyi;
5374 	avl_index_t	where = 0;
5375 	uint_t		ifindex;
5376 
5377 	rw_enter(&ill_g_lock, RW_READER);
5378 
5379 	if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name,
5380 	    name, &where)) == NULL) {
5381 		rw_exit(&ill_g_lock);
5382 		return (0);
5383 	}
5384 
5385 	ifindex = phyi->phyint_ifindex;
5386 
5387 	rw_exit(&ill_g_lock);
5388 
5389 	return (ifindex);
5390 }
5391 
5392 
5393 /*
5394  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5395  * that gives a running thread a reference to the ill. This reference must be
5396  * released by the thread when it is done accessing the ill and related
5397  * objects. ill_refcnt can not be used to account for static references
5398  * such as other structures pointing to an ill. Callers must generally
5399  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5400  * or be sure that the ill is not being deleted or changing state before
5401  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5402  * ill won't change any of its critical state such as address, netmask etc.
5403  */
5404 void
5405 ill_refhold(ill_t *ill)
5406 {
5407 	mutex_enter(&ill->ill_lock);
5408 	ill->ill_refcnt++;
5409 	ILL_TRACE_REF(ill);
5410 	mutex_exit(&ill->ill_lock);
5411 }
5412 
5413 void
5414 ill_refhold_locked(ill_t *ill)
5415 {
5416 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5417 	ill->ill_refcnt++;
5418 	ILL_TRACE_REF(ill);
5419 }
5420 
5421 int
5422 ill_check_and_refhold(ill_t *ill)
5423 {
5424 	mutex_enter(&ill->ill_lock);
5425 	if (ILL_CAN_LOOKUP(ill)) {
5426 		ill_refhold_locked(ill);
5427 		mutex_exit(&ill->ill_lock);
5428 		return (0);
5429 	}
5430 	mutex_exit(&ill->ill_lock);
5431 	return (ILL_LOOKUP_FAILED);
5432 }
5433 
5434 /*
5435  * Must not be called while holding any locks. Otherwise if this is
5436  * the last reference to be released, there is a chance of recursive mutex
5437  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5438  * to restart an ioctl.
5439  */
5440 void
5441 ill_refrele(ill_t *ill)
5442 {
5443 	mutex_enter(&ill->ill_lock);
5444 	ASSERT(ill->ill_refcnt != 0);
5445 	ill->ill_refcnt--;
5446 	ILL_UNTRACE_REF(ill);
5447 	if (ill->ill_refcnt != 0) {
5448 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5449 		mutex_exit(&ill->ill_lock);
5450 		return;
5451 	}
5452 
5453 	/* Drops the ill_lock */
5454 	ipif_ill_refrele_tail(ill);
5455 }
5456 
5457 /*
5458  * Obtain a weak reference count on the ill. This reference ensures the
5459  * ill won't be freed, but the ill may change any of its critical state
5460  * such as netmask, address etc. Returns an error if the ill has started
5461  * closing.
5462  */
5463 boolean_t
5464 ill_waiter_inc(ill_t *ill)
5465 {
5466 	mutex_enter(&ill->ill_lock);
5467 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5468 		mutex_exit(&ill->ill_lock);
5469 		return (B_FALSE);
5470 	}
5471 	ill->ill_waiters++;
5472 	mutex_exit(&ill->ill_lock);
5473 	return (B_TRUE);
5474 }
5475 
5476 void
5477 ill_waiter_dcr(ill_t *ill)
5478 {
5479 	mutex_enter(&ill->ill_lock);
5480 	ill->ill_waiters--;
5481 	if (ill->ill_waiters == 0)
5482 		cv_broadcast(&ill->ill_cv);
5483 	mutex_exit(&ill->ill_lock);
5484 }
5485 
5486 /*
5487  * Named Dispatch routine to produce a formatted report on all ILLs.
5488  * This report is accessed by using the ndd utility to "get" ND variable
5489  * "ip_ill_status".
5490  */
5491 /* ARGSUSED */
5492 int
5493 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5494 {
5495 	ill_t		*ill;
5496 	ill_walk_context_t ctx;
5497 
5498 	(void) mi_mpprintf(mp,
5499 	    "ILL      " MI_COL_HDRPAD_STR
5500 	/*   01234567[89ABCDEF] */
5501 	    "rq       " MI_COL_HDRPAD_STR
5502 	/*   01234567[89ABCDEF] */
5503 	    "wq       " MI_COL_HDRPAD_STR
5504 	/*   01234567[89ABCDEF] */
5505 	    "upcnt mxfrg err name");
5506 	/*   12345 12345 123 xxxxxxxx  */
5507 
5508 	rw_enter(&ill_g_lock, RW_READER);
5509 	ill = ILL_START_WALK_ALL(&ctx);
5510 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5511 		(void) mi_mpprintf(mp,
5512 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5513 		    "%05u %05u %03d %s",
5514 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5515 		    ill->ill_ipif_up_count,
5516 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5517 	}
5518 	rw_exit(&ill_g_lock);
5519 
5520 	return (0);
5521 }
5522 
5523 /*
5524  * Named Dispatch routine to produce a formatted report on all IPIFs.
5525  * This report is accessed by using the ndd utility to "get" ND variable
5526  * "ip_ipif_status".
5527  */
5528 /* ARGSUSED */
5529 int
5530 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5531 {
5532 	char	buf1[INET6_ADDRSTRLEN];
5533 	char	buf2[INET6_ADDRSTRLEN];
5534 	char	buf3[INET6_ADDRSTRLEN];
5535 	char	buf4[INET6_ADDRSTRLEN];
5536 	char	buf5[INET6_ADDRSTRLEN];
5537 	char	buf6[INET6_ADDRSTRLEN];
5538 	char	buf[LIFNAMSIZ];
5539 	ill_t	*ill;
5540 	ipif_t	*ipif;
5541 	nv_t	*nvp;
5542 	uint64_t flags;
5543 	zoneid_t zoneid;
5544 	ill_walk_context_t ctx;
5545 
5546 	(void) mi_mpprintf(mp,
5547 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5548 	    "\tlocal address\n"
5549 	    "\tsrc address\n"
5550 	    "\tsubnet\n"
5551 	    "\tmask\n"
5552 	    "\tbroadcast\n"
5553 	    "\tp-p-dst");
5554 
5555 	ASSERT(q->q_next == NULL);
5556 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5557 
5558 	rw_enter(&ill_g_lock, RW_READER);
5559 	ill = ILL_START_WALK_ALL(&ctx);
5560 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5561 		for (ipif = ill->ill_ipif; ipif != NULL;
5562 		    ipif = ipif->ipif_next) {
5563 			if (zoneid != GLOBAL_ZONEID &&
5564 			    zoneid != ipif->ipif_zoneid &&
5565 			    ipif->ipif_zoneid != ALL_ZONES)
5566 				continue;
5567 			(void) mi_mpprintf(mp,
5568 			    MI_COL_PTRFMT_STR
5569 			    "%04u %05u %u/%u/%u %s %d",
5570 			    (void *)ipif,
5571 			    ipif->ipif_metric, ipif->ipif_mtu,
5572 			    ipif->ipif_ib_pkt_count,
5573 			    ipif->ipif_ob_pkt_count,
5574 			    ipif->ipif_fo_pkt_count,
5575 			    ipif_get_name(ipif, buf, sizeof (buf)),
5576 			    ipif->ipif_zoneid);
5577 
5578 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5579 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5580 
5581 		/* Tack on text strings for any flags. */
5582 		nvp = ipif_nv_tbl;
5583 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5584 			if (nvp->nv_value & flags)
5585 				(void) mi_mpprintf_nr(mp, " %s",
5586 				    nvp->nv_name);
5587 		}
5588 		(void) mi_mpprintf(mp,
5589 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5590 		    inet_ntop(AF_INET6,
5591 			&ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5592 		    inet_ntop(AF_INET6,
5593 			&ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5594 		    inet_ntop(AF_INET6,
5595 			&ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5596 		    inet_ntop(AF_INET6,
5597 			&ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5598 		    inet_ntop(AF_INET6,
5599 			&ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5600 		    inet_ntop(AF_INET6,
5601 			&ipif->ipif_v6pp_dst_addr,
5602 			buf6, sizeof (buf6)));
5603 		}
5604 	}
5605 	rw_exit(&ill_g_lock);
5606 	return (0);
5607 }
5608 
5609 /*
5610  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5611  * driver.  We construct best guess defaults for lower level information that
5612  * we need.  If an interface is brought up without injection of any overriding
5613  * information from outside, we have to be ready to go with these defaults.
5614  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5615  * we primarely want the dl_provider_style.
5616  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5617  * at which point we assume the other part of the information is valid.
5618  */
5619 void
5620 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5621 {
5622 	uchar_t		*brdcst_addr;
5623 	uint_t		brdcst_addr_length, phys_addr_length;
5624 	t_scalar_t	sap_length;
5625 	dl_info_ack_t	*dlia;
5626 	ip_m_t		*ipm;
5627 	dl_qos_cl_sel1_t *sel1;
5628 
5629 	ASSERT(IAM_WRITER_ILL(ill));
5630 
5631 	/*
5632 	 * Till the ill is fully up ILL_CHANGING will be set and
5633 	 * the ill is not globally visible. So no need for a lock.
5634 	 */
5635 	dlia = (dl_info_ack_t *)mp->b_rptr;
5636 	ill->ill_mactype = dlia->dl_mac_type;
5637 
5638 	ipm = ip_m_lookup(dlia->dl_mac_type);
5639 	if (ipm == NULL) {
5640 		ipm = ip_m_lookup(DL_OTHER);
5641 		ASSERT(ipm != NULL);
5642 	}
5643 	ill->ill_media = ipm;
5644 
5645 	/*
5646 	 * When the new DLPI stuff is ready we'll pull lengths
5647 	 * from dlia.
5648 	 */
5649 	if (dlia->dl_version == DL_VERSION_2) {
5650 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5651 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5652 		    brdcst_addr_length);
5653 		if (brdcst_addr == NULL) {
5654 			brdcst_addr_length = 0;
5655 		}
5656 		sap_length = dlia->dl_sap_length;
5657 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5658 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5659 		    brdcst_addr_length, sap_length, phys_addr_length));
5660 	} else {
5661 		brdcst_addr_length = 6;
5662 		brdcst_addr = ip_six_byte_all_ones;
5663 		sap_length = -2;
5664 		phys_addr_length = brdcst_addr_length;
5665 	}
5666 
5667 	ill->ill_bcast_addr_length = brdcst_addr_length;
5668 	ill->ill_phys_addr_length = phys_addr_length;
5669 	ill->ill_sap_length = sap_length;
5670 	ill->ill_max_frag = dlia->dl_max_sdu;
5671 	ill->ill_max_mtu = ill->ill_max_frag;
5672 
5673 	ill->ill_type = ipm->ip_m_type;
5674 
5675 	if (!ill->ill_dlpi_style_set) {
5676 		if (dlia->dl_provider_style == DL_STYLE2)
5677 			ill->ill_needs_attach = 1;
5678 
5679 		/*
5680 		 * Allocate the first ipif on this ill. We don't delay it
5681 		 * further as ioctl handling assumes atleast one ipif to
5682 		 * be present.
5683 		 *
5684 		 * At this point we don't know whether the ill is v4 or v6.
5685 		 * We will know this whan the SIOCSLIFNAME happens and
5686 		 * the correct value for ill_isv6 will be assigned in
5687 		 * ipif_set_values(). We need to hold the ill lock and
5688 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5689 		 * the wakeup.
5690 		 */
5691 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5692 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5693 		mutex_enter(&ill->ill_lock);
5694 		ASSERT(ill->ill_dlpi_style_set == 0);
5695 		ill->ill_dlpi_style_set = 1;
5696 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5697 		cv_broadcast(&ill->ill_cv);
5698 		mutex_exit(&ill->ill_lock);
5699 		freemsg(mp);
5700 		return;
5701 	}
5702 	ASSERT(ill->ill_ipif != NULL);
5703 	/*
5704 	 * We know whether it is IPv4 or IPv6 now, as this is the
5705 	 * second DL_INFO_ACK we are recieving in response to the
5706 	 * DL_INFO_REQ sent in ipif_set_values.
5707 	 */
5708 	if (ill->ill_isv6)
5709 		ill->ill_sap = IP6_DL_SAP;
5710 	else
5711 		ill->ill_sap = IP_DL_SAP;
5712 	/*
5713 	 * Set ipif_mtu which is used to set the IRE's
5714 	 * ire_max_frag value. The driver could have sent
5715 	 * a different mtu from what it sent last time. No
5716 	 * need to call ipif_mtu_change because IREs have
5717 	 * not yet been created.
5718 	 */
5719 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5720 	/*
5721 	 * Clear all the flags that were set based on ill_bcast_addr_length
5722 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5723 	 * changed now and we need to re-evaluate.
5724 	 */
5725 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5726 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5727 
5728 	/*
5729 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5730 	 * changed now.
5731 	 */
5732 	if (ill->ill_bcast_addr_length == 0) {
5733 		if (ill->ill_resolver_mp != NULL)
5734 			freemsg(ill->ill_resolver_mp);
5735 		if (ill->ill_bcast_mp != NULL)
5736 			freemsg(ill->ill_bcast_mp);
5737 		if (ill->ill_flags & ILLF_XRESOLV)
5738 			ill->ill_net_type = IRE_IF_RESOLVER;
5739 		else
5740 			ill->ill_net_type = IRE_IF_NORESOLVER;
5741 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5742 		    ill->ill_phys_addr_length,
5743 		    ill->ill_sap,
5744 		    ill->ill_sap_length);
5745 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5746 
5747 		if (ill->ill_isv6)
5748 			/*
5749 			 * Note: xresolv interfaces will eventually need NOARP
5750 			 * set here as well, but that will require those
5751 			 * external resolvers to have some knowledge of
5752 			 * that flag and act appropriately. Not to be changed
5753 			 * at present.
5754 			 */
5755 			ill->ill_flags |= ILLF_NONUD;
5756 		else
5757 			ill->ill_flags |= ILLF_NOARP;
5758 
5759 		if (ill->ill_phys_addr_length == 0) {
5760 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5761 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5762 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5763 			} else {
5764 				/* pt-pt supports multicast. */
5765 				ill->ill_flags |= ILLF_MULTICAST;
5766 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5767 			}
5768 		}
5769 	} else {
5770 		ill->ill_net_type = IRE_IF_RESOLVER;
5771 		if (ill->ill_bcast_mp != NULL)
5772 			freemsg(ill->ill_bcast_mp);
5773 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5774 		    ill->ill_bcast_addr_length, ill->ill_sap,
5775 		    ill->ill_sap_length);
5776 		/*
5777 		 * Later detect lack of DLPI driver multicast
5778 		 * capability by catching DL_ENABMULTI errors in
5779 		 * ip_rput_dlpi.
5780 		 */
5781 		ill->ill_flags |= ILLF_MULTICAST;
5782 		if (!ill->ill_isv6)
5783 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5784 	}
5785 	/* By default an interface does not support any CoS marking */
5786 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5787 
5788 	/*
5789 	 * If we get QoS information in DL_INFO_ACK, the device supports
5790 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5791 	 */
5792 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5793 	    dlia->dl_qos_length);
5794 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5795 		ill->ill_flags |= ILLF_COS_ENABLED;
5796 	}
5797 
5798 	/* Clear any previous error indication. */
5799 	ill->ill_error = 0;
5800 	freemsg(mp);
5801 }
5802 
5803 /*
5804  * Perform various checks to verify that an address would make sense as a
5805  * local, remote, or subnet interface address.
5806  */
5807 static boolean_t
5808 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5809 {
5810 	ipaddr_t	net_mask;
5811 
5812 	/*
5813 	 * Don't allow all zeroes, all ones or experimental address, but allow
5814 	 * all ones netmask.
5815 	 */
5816 	if ((net_mask = ip_net_mask(addr)) == 0)
5817 		return (B_FALSE);
5818 	/* A given netmask overrides the "guess" netmask */
5819 	if (subnet_mask != 0)
5820 		net_mask = subnet_mask;
5821 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5822 	    (addr == (addr | ~net_mask)))) {
5823 		return (B_FALSE);
5824 	}
5825 	if (CLASSD(addr))
5826 		return (B_FALSE);
5827 
5828 	return (B_TRUE);
5829 }
5830 
5831 /*
5832  * ipif_lookup_group
5833  * Returns held ipif
5834  */
5835 ipif_t *
5836 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid)
5837 {
5838 	ire_t	*ire;
5839 	ipif_t	*ipif;
5840 
5841 	ire = ire_lookup_multi(group, zoneid);
5842 	if (ire == NULL)
5843 		return (NULL);
5844 	ipif = ire->ire_ipif;
5845 	ipif_refhold(ipif);
5846 	ire_refrele(ire);
5847 	return (ipif);
5848 }
5849 
5850 /*
5851  * Look for an ipif with the specified interface address and destination.
5852  * The destination address is used only for matching point-to-point interfaces.
5853  */
5854 ipif_t *
5855 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5856     ipsq_func_t func, int *error)
5857 {
5858 	ipif_t	*ipif;
5859 	ill_t	*ill;
5860 	ill_walk_context_t ctx;
5861 	ipsq_t	*ipsq;
5862 
5863 	if (error != NULL)
5864 		*error = 0;
5865 
5866 	/*
5867 	 * First match all the point-to-point interfaces
5868 	 * before looking at non-point-to-point interfaces.
5869 	 * This is done to avoid returning non-point-to-point
5870 	 * ipif instead of unnumbered point-to-point ipif.
5871 	 */
5872 	rw_enter(&ill_g_lock, RW_READER);
5873 	ill = ILL_START_WALK_V4(&ctx);
5874 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5875 		GRAB_CONN_LOCK(q);
5876 		mutex_enter(&ill->ill_lock);
5877 		for (ipif = ill->ill_ipif; ipif != NULL;
5878 		    ipif = ipif->ipif_next) {
5879 			/* Allow the ipif to be down */
5880 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5881 			    (ipif->ipif_lcl_addr == if_addr) &&
5882 			    (ipif->ipif_pp_dst_addr == dst)) {
5883 				/*
5884 				 * The block comment at the start of ipif_down
5885 				 * explains the use of the macros used below
5886 				 */
5887 				if (IPIF_CAN_LOOKUP(ipif)) {
5888 					ipif_refhold_locked(ipif);
5889 					mutex_exit(&ill->ill_lock);
5890 					RELEASE_CONN_LOCK(q);
5891 					rw_exit(&ill_g_lock);
5892 					return (ipif);
5893 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5894 					ipsq = ill->ill_phyint->phyint_ipsq;
5895 					mutex_enter(&ipsq->ipsq_lock);
5896 					mutex_exit(&ill->ill_lock);
5897 					rw_exit(&ill_g_lock);
5898 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5899 						ill);
5900 					mutex_exit(&ipsq->ipsq_lock);
5901 					RELEASE_CONN_LOCK(q);
5902 					*error = EINPROGRESS;
5903 					return (NULL);
5904 				}
5905 			}
5906 		}
5907 		mutex_exit(&ill->ill_lock);
5908 		RELEASE_CONN_LOCK(q);
5909 	}
5910 	rw_exit(&ill_g_lock);
5911 
5912 	/* lookup the ipif based on interface address */
5913 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error);
5914 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5915 	return (ipif);
5916 }
5917 
5918 /*
5919  * Look for an ipif with the specified address. For point-point links
5920  * we look for matches on either the destination address and the local
5921  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5922  * is set.
5923  * Matches on a specific ill if match_ill is set.
5924  */
5925 ipif_t *
5926 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5927     mblk_t *mp, ipsq_func_t func, int *error)
5928 {
5929 	ipif_t  *ipif;
5930 	ill_t   *ill;
5931 	boolean_t ptp = B_FALSE;
5932 	ipsq_t	*ipsq;
5933 	ill_walk_context_t	ctx;
5934 
5935 	if (error != NULL)
5936 		*error = 0;
5937 
5938 	rw_enter(&ill_g_lock, RW_READER);
5939 	/*
5940 	 * Repeat twice, first based on local addresses and
5941 	 * next time for pointopoint.
5942 	 */
5943 repeat:
5944 	ill = ILL_START_WALK_V4(&ctx);
5945 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5946 		if (match_ill != NULL && ill != match_ill) {
5947 			continue;
5948 		}
5949 		GRAB_CONN_LOCK(q);
5950 		mutex_enter(&ill->ill_lock);
5951 		for (ipif = ill->ill_ipif; ipif != NULL;
5952 		    ipif = ipif->ipif_next) {
5953 			if (zoneid != ALL_ZONES &&
5954 			    zoneid != ipif->ipif_zoneid &&
5955 			    ipif->ipif_zoneid != ALL_ZONES)
5956 				continue;
5957 			/* Allow the ipif to be down */
5958 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5959 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5960 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5961 			    (ipif->ipif_pp_dst_addr == addr))) {
5962 				/*
5963 				 * The block comment at the start of ipif_down
5964 				 * explains the use of the macros used below
5965 				 */
5966 				if (IPIF_CAN_LOOKUP(ipif)) {
5967 					ipif_refhold_locked(ipif);
5968 					mutex_exit(&ill->ill_lock);
5969 					RELEASE_CONN_LOCK(q);
5970 					rw_exit(&ill_g_lock);
5971 					return (ipif);
5972 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5973 					ipsq = ill->ill_phyint->phyint_ipsq;
5974 					mutex_enter(&ipsq->ipsq_lock);
5975 					mutex_exit(&ill->ill_lock);
5976 					rw_exit(&ill_g_lock);
5977 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5978 						ill);
5979 					mutex_exit(&ipsq->ipsq_lock);
5980 					RELEASE_CONN_LOCK(q);
5981 					*error = EINPROGRESS;
5982 					return (NULL);
5983 				}
5984 			}
5985 		}
5986 		mutex_exit(&ill->ill_lock);
5987 		RELEASE_CONN_LOCK(q);
5988 	}
5989 
5990 	/* If we already did the ptp case, then we are done */
5991 	if (ptp) {
5992 		rw_exit(&ill_g_lock);
5993 		if (error != NULL)
5994 			*error = ENXIO;
5995 		return (NULL);
5996 	}
5997 	ptp = B_TRUE;
5998 	goto repeat;
5999 }
6000 
6001 /*
6002  * Look for an ipif with the specified address. For point-point links
6003  * we look for matches on either the destination address and the local
6004  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6005  * is set.
6006  * Matches on a specific ill if match_ill is set.
6007  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6008  */
6009 zoneid_t
6010 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill)
6011 {
6012 	zoneid_t zoneid;
6013 	ipif_t  *ipif;
6014 	ill_t   *ill;
6015 	boolean_t ptp = B_FALSE;
6016 	ill_walk_context_t	ctx;
6017 
6018 	rw_enter(&ill_g_lock, RW_READER);
6019 	/*
6020 	 * Repeat twice, first based on local addresses and
6021 	 * next time for pointopoint.
6022 	 */
6023 repeat:
6024 	ill = ILL_START_WALK_V4(&ctx);
6025 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6026 		if (match_ill != NULL && ill != match_ill) {
6027 			continue;
6028 		}
6029 		mutex_enter(&ill->ill_lock);
6030 		for (ipif = ill->ill_ipif; ipif != NULL;
6031 		    ipif = ipif->ipif_next) {
6032 			/* Allow the ipif to be down */
6033 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6034 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6035 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6036 			    (ipif->ipif_pp_dst_addr == addr)) &&
6037 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6038 				zoneid = ipif->ipif_zoneid;
6039 				mutex_exit(&ill->ill_lock);
6040 				rw_exit(&ill_g_lock);
6041 				/*
6042 				 * If ipif_zoneid was ALL_ZONES then we have
6043 				 * a trusted extensions shared IP address.
6044 				 * In that case GLOBAL_ZONEID works to send.
6045 				 */
6046 				if (zoneid == ALL_ZONES)
6047 					zoneid = GLOBAL_ZONEID;
6048 				return (zoneid);
6049 			}
6050 		}
6051 		mutex_exit(&ill->ill_lock);
6052 	}
6053 
6054 	/* If we already did the ptp case, then we are done */
6055 	if (ptp) {
6056 		rw_exit(&ill_g_lock);
6057 		return (ALL_ZONES);
6058 	}
6059 	ptp = B_TRUE;
6060 	goto repeat;
6061 }
6062 
6063 /*
6064  * Look for an ipif that matches the specified remote address i.e. the
6065  * ipif that would receive the specified packet.
6066  * First look for directly connected interfaces and then do a recursive
6067  * IRE lookup and pick the first ipif corresponding to the source address in the
6068  * ire.
6069  * Returns: held ipif
6070  */
6071 ipif_t *
6072 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6073 {
6074 	ipif_t	*ipif;
6075 	ire_t	*ire;
6076 
6077 	ASSERT(!ill->ill_isv6);
6078 
6079 	/*
6080 	 * Someone could be changing this ipif currently or change it
6081 	 * after we return this. Thus  a few packets could use the old
6082 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6083 	 * will atomically be updated or cleaned up with the new value
6084 	 * Thus we don't need a lock to check the flags or other attrs below.
6085 	 */
6086 	mutex_enter(&ill->ill_lock);
6087 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6088 		if (!IPIF_CAN_LOOKUP(ipif))
6089 			continue;
6090 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6091 		    ipif->ipif_zoneid != ALL_ZONES)
6092 			continue;
6093 		/* Allow the ipif to be down */
6094 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6095 			if ((ipif->ipif_pp_dst_addr == addr) ||
6096 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6097 			    ipif->ipif_lcl_addr == addr)) {
6098 				ipif_refhold_locked(ipif);
6099 				mutex_exit(&ill->ill_lock);
6100 				return (ipif);
6101 			}
6102 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6103 			ipif_refhold_locked(ipif);
6104 			mutex_exit(&ill->ill_lock);
6105 			return (ipif);
6106 		}
6107 	}
6108 	mutex_exit(&ill->ill_lock);
6109 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6110 	    NULL, MATCH_IRE_RECURSIVE);
6111 	if (ire != NULL) {
6112 		/*
6113 		 * The callers of this function wants to know the
6114 		 * interface on which they have to send the replies
6115 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6116 		 * derived from different ills, we really don't care
6117 		 * what we return here.
6118 		 */
6119 		ipif = ire->ire_ipif;
6120 		if (ipif != NULL) {
6121 			ipif_refhold(ipif);
6122 			ire_refrele(ire);
6123 			return (ipif);
6124 		}
6125 		ire_refrele(ire);
6126 	}
6127 	/* Pick the first interface */
6128 	ipif = ipif_get_next_ipif(NULL, ill);
6129 	return (ipif);
6130 }
6131 
6132 /*
6133  * This func does not prevent refcnt from increasing. But if
6134  * the caller has taken steps to that effect, then this func
6135  * can be used to determine whether the ill has become quiescent
6136  */
6137 boolean_t
6138 ill_is_quiescent(ill_t *ill)
6139 {
6140 	ipif_t	*ipif;
6141 
6142 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6143 
6144 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6145 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6146 			return (B_FALSE);
6147 		}
6148 	}
6149 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6150 	    ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 ||
6151 	    ill->ill_mrtun_refcnt != 0) {
6152 		return (B_FALSE);
6153 	}
6154 	return (B_TRUE);
6155 }
6156 
6157 /*
6158  * This func does not prevent refcnt from increasing. But if
6159  * the caller has taken steps to that effect, then this func
6160  * can be used to determine whether the ipif has become quiescent
6161  */
6162 static boolean_t
6163 ipif_is_quiescent(ipif_t *ipif)
6164 {
6165 	ill_t *ill;
6166 
6167 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6168 
6169 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6170 		return (B_FALSE);
6171 	}
6172 
6173 	ill = ipif->ipif_ill;
6174 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6175 	    ill->ill_logical_down) {
6176 		return (B_TRUE);
6177 	}
6178 
6179 	/* This is the last ipif going down or being deleted on this ill */
6180 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6181 		return (B_FALSE);
6182 	}
6183 
6184 	return (B_TRUE);
6185 }
6186 
6187 /*
6188  * This func does not prevent refcnt from increasing. But if
6189  * the caller has taken steps to that effect, then this func
6190  * can be used to determine whether the ipifs marked with IPIF_MOVING
6191  * have become quiescent and can be moved in a failover/failback.
6192  */
6193 static ipif_t *
6194 ill_quiescent_to_move(ill_t *ill)
6195 {
6196 	ipif_t  *ipif;
6197 
6198 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6199 
6200 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6201 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6202 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6203 				return (ipif);
6204 			}
6205 		}
6206 	}
6207 	return (NULL);
6208 }
6209 
6210 /*
6211  * The ipif/ill/ire has been refreled. Do the tail processing.
6212  * Determine if the ipif or ill in question has become quiescent and if so
6213  * wakeup close and/or restart any queued pending ioctl that is waiting
6214  * for the ipif_down (or ill_down)
6215  */
6216 void
6217 ipif_ill_refrele_tail(ill_t *ill)
6218 {
6219 	mblk_t	*mp;
6220 	conn_t	*connp;
6221 	ipsq_t	*ipsq;
6222 	ipif_t	*ipif;
6223 	dl_notify_ind_t *dlindp;
6224 
6225 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6226 
6227 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6228 	    ill_is_quiescent(ill)) {
6229 		/* ill_close may be waiting */
6230 		cv_broadcast(&ill->ill_cv);
6231 	}
6232 
6233 	/* ipsq can't change because ill_lock  is held */
6234 	ipsq = ill->ill_phyint->phyint_ipsq;
6235 	if (ipsq->ipsq_waitfor == 0) {
6236 		/* Not waiting for anything, just return. */
6237 		mutex_exit(&ill->ill_lock);
6238 		return;
6239 	}
6240 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6241 		ipsq->ipsq_pending_ipif != NULL);
6242 	/*
6243 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6244 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6245 	 * be zero for restarting an ioctl that ends up downing the ill.
6246 	 */
6247 	ipif = ipsq->ipsq_pending_ipif;
6248 	if (ipif->ipif_ill != ill) {
6249 		/* The ioctl is pending on some other ill. */
6250 		mutex_exit(&ill->ill_lock);
6251 		return;
6252 	}
6253 
6254 	switch (ipsq->ipsq_waitfor) {
6255 	case IPIF_DOWN:
6256 	case IPIF_FREE:
6257 		if (!ipif_is_quiescent(ipif)) {
6258 			mutex_exit(&ill->ill_lock);
6259 			return;
6260 		}
6261 		break;
6262 
6263 	case ILL_DOWN:
6264 	case ILL_FREE:
6265 		/*
6266 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6267 		 * waits synchronously in ip_close, and no message is queued in
6268 		 * ipsq_pending_mp at all in this case
6269 		 */
6270 		if (!ill_is_quiescent(ill)) {
6271 			mutex_exit(&ill->ill_lock);
6272 			return;
6273 		}
6274 
6275 		break;
6276 
6277 	case ILL_MOVE_OK:
6278 		if (ill_quiescent_to_move(ill) != NULL) {
6279 			mutex_exit(&ill->ill_lock);
6280 			return;
6281 		}
6282 
6283 		break;
6284 	default:
6285 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6286 		    (void *)ipsq, ipsq->ipsq_waitfor);
6287 	}
6288 
6289 	/*
6290 	 * Incr refcnt for the qwriter_ip call below which
6291 	 * does a refrele
6292 	 */
6293 	ill_refhold_locked(ill);
6294 	mutex_exit(&ill->ill_lock);
6295 
6296 	mp = ipsq_pending_mp_get(ipsq, &connp);
6297 	ASSERT(mp != NULL);
6298 
6299 	switch (mp->b_datap->db_type) {
6300 	case M_PCPROTO:
6301 	case M_PROTO:
6302 		/*
6303 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6304 		 */
6305 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6306 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6307 
6308 		switch (dlindp->dl_notification) {
6309 		case DL_NOTE_PHYS_ADDR:
6310 			qwriter_ip(NULL, ill, ill->ill_rq, mp,
6311 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6312 			return;
6313 		default:
6314 			ASSERT(0);
6315 		}
6316 		break;
6317 
6318 	case M_ERROR:
6319 	case M_HANGUP:
6320 		qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail,
6321 		    CUR_OP, B_TRUE);
6322 		return;
6323 
6324 	case M_IOCTL:
6325 	case M_IOCDATA:
6326 		qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6327 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6328 		return;
6329 
6330 	default:
6331 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6332 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6333 	}
6334 }
6335 
6336 #ifdef ILL_DEBUG
6337 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6338 void
6339 th_trace_rrecord(th_trace_t *th_trace)
6340 {
6341 	tr_buf_t *tr_buf;
6342 	uint_t lastref;
6343 
6344 	lastref = th_trace->th_trace_lastref;
6345 	lastref++;
6346 	if (lastref == TR_BUF_MAX)
6347 		lastref = 0;
6348 	th_trace->th_trace_lastref = lastref;
6349 	tr_buf = &th_trace->th_trbuf[lastref];
6350 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH);
6351 }
6352 
6353 th_trace_t *
6354 th_trace_ipif_lookup(ipif_t *ipif)
6355 {
6356 	int bucket_id;
6357 	th_trace_t *th_trace;
6358 
6359 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6360 
6361 	bucket_id = IP_TR_HASH(curthread);
6362 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6363 
6364 	for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL;
6365 	    th_trace = th_trace->th_next) {
6366 		if (th_trace->th_id == curthread)
6367 			return (th_trace);
6368 	}
6369 	return (NULL);
6370 }
6371 
6372 void
6373 ipif_trace_ref(ipif_t *ipif)
6374 {
6375 	int bucket_id;
6376 	th_trace_t *th_trace;
6377 
6378 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6379 
6380 	if (ipif->ipif_trace_disable)
6381 		return;
6382 
6383 	/*
6384 	 * Attempt to locate the trace buffer for the curthread.
6385 	 * If it does not exist, then allocate a new trace buffer
6386 	 * and link it in list of trace bufs for this ipif, at the head
6387 	 */
6388 	th_trace = th_trace_ipif_lookup(ipif);
6389 	if (th_trace == NULL) {
6390 		bucket_id = IP_TR_HASH(curthread);
6391 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6392 		    KM_NOSLEEP);
6393 		if (th_trace == NULL) {
6394 			ipif->ipif_trace_disable = B_TRUE;
6395 			ipif_trace_cleanup(ipif);
6396 			return;
6397 		}
6398 		th_trace->th_id = curthread;
6399 		th_trace->th_next = ipif->ipif_trace[bucket_id];
6400 		th_trace->th_prev = &ipif->ipif_trace[bucket_id];
6401 		if (th_trace->th_next != NULL)
6402 			th_trace->th_next->th_prev = &th_trace->th_next;
6403 		ipif->ipif_trace[bucket_id] = th_trace;
6404 	}
6405 	ASSERT(th_trace->th_refcnt >= 0 &&
6406 		th_trace->th_refcnt < TR_BUF_MAX -1);
6407 	th_trace->th_refcnt++;
6408 	th_trace_rrecord(th_trace);
6409 }
6410 
6411 void
6412 ipif_untrace_ref(ipif_t *ipif)
6413 {
6414 	th_trace_t *th_trace;
6415 
6416 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6417 
6418 	if (ipif->ipif_trace_disable)
6419 		return;
6420 	th_trace = th_trace_ipif_lookup(ipif);
6421 	ASSERT(th_trace != NULL);
6422 	ASSERT(th_trace->th_refcnt > 0);
6423 
6424 	th_trace->th_refcnt--;
6425 	th_trace_rrecord(th_trace);
6426 }
6427 
6428 th_trace_t *
6429 th_trace_ill_lookup(ill_t *ill)
6430 {
6431 	th_trace_t *th_trace;
6432 	int bucket_id;
6433 
6434 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6435 
6436 	bucket_id = IP_TR_HASH(curthread);
6437 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6438 
6439 	for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL;
6440 	    th_trace = th_trace->th_next) {
6441 		if (th_trace->th_id == curthread)
6442 			return (th_trace);
6443 	}
6444 	return (NULL);
6445 }
6446 
6447 void
6448 ill_trace_ref(ill_t *ill)
6449 {
6450 	int bucket_id;
6451 	th_trace_t *th_trace;
6452 
6453 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6454 	if (ill->ill_trace_disable)
6455 		return;
6456 	/*
6457 	 * Attempt to locate the trace buffer for the curthread.
6458 	 * If it does not exist, then allocate a new trace buffer
6459 	 * and link it in list of trace bufs for this ill, at the head
6460 	 */
6461 	th_trace = th_trace_ill_lookup(ill);
6462 	if (th_trace == NULL) {
6463 		bucket_id = IP_TR_HASH(curthread);
6464 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6465 		    KM_NOSLEEP);
6466 		if (th_trace == NULL) {
6467 			ill->ill_trace_disable = B_TRUE;
6468 			ill_trace_cleanup(ill);
6469 			return;
6470 		}
6471 		th_trace->th_id = curthread;
6472 		th_trace->th_next = ill->ill_trace[bucket_id];
6473 		th_trace->th_prev = &ill->ill_trace[bucket_id];
6474 		if (th_trace->th_next != NULL)
6475 			th_trace->th_next->th_prev = &th_trace->th_next;
6476 		ill->ill_trace[bucket_id] = th_trace;
6477 	}
6478 	ASSERT(th_trace->th_refcnt >= 0 &&
6479 		th_trace->th_refcnt < TR_BUF_MAX - 1);
6480 
6481 	th_trace->th_refcnt++;
6482 	th_trace_rrecord(th_trace);
6483 }
6484 
6485 void
6486 ill_untrace_ref(ill_t *ill)
6487 {
6488 	th_trace_t *th_trace;
6489 
6490 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6491 
6492 	if (ill->ill_trace_disable)
6493 		return;
6494 	th_trace = th_trace_ill_lookup(ill);
6495 	ASSERT(th_trace != NULL);
6496 	ASSERT(th_trace->th_refcnt > 0);
6497 
6498 	th_trace->th_refcnt--;
6499 	th_trace_rrecord(th_trace);
6500 }
6501 
6502 /*
6503  * Verify that this thread has no refs to the ipif and free
6504  * the trace buffers
6505  */
6506 /* ARGSUSED */
6507 void
6508 ipif_thread_exit(ipif_t *ipif, void *dummy)
6509 {
6510 	th_trace_t *th_trace;
6511 
6512 	mutex_enter(&ipif->ipif_ill->ill_lock);
6513 
6514 	th_trace = th_trace_ipif_lookup(ipif);
6515 	if (th_trace == NULL) {
6516 		mutex_exit(&ipif->ipif_ill->ill_lock);
6517 		return;
6518 	}
6519 	ASSERT(th_trace->th_refcnt == 0);
6520 	/* unlink th_trace and free it */
6521 	*th_trace->th_prev = th_trace->th_next;
6522 	if (th_trace->th_next != NULL)
6523 		th_trace->th_next->th_prev = th_trace->th_prev;
6524 	th_trace->th_next = NULL;
6525 	th_trace->th_prev = NULL;
6526 	kmem_free(th_trace, sizeof (th_trace_t));
6527 
6528 	mutex_exit(&ipif->ipif_ill->ill_lock);
6529 }
6530 
6531 /*
6532  * Verify that this thread has no refs to the ill and free
6533  * the trace buffers
6534  */
6535 /* ARGSUSED */
6536 void
6537 ill_thread_exit(ill_t *ill, void *dummy)
6538 {
6539 	th_trace_t *th_trace;
6540 
6541 	mutex_enter(&ill->ill_lock);
6542 
6543 	th_trace = th_trace_ill_lookup(ill);
6544 	if (th_trace == NULL) {
6545 		mutex_exit(&ill->ill_lock);
6546 		return;
6547 	}
6548 	ASSERT(th_trace->th_refcnt == 0);
6549 	/* unlink th_trace and free it */
6550 	*th_trace->th_prev = th_trace->th_next;
6551 	if (th_trace->th_next != NULL)
6552 		th_trace->th_next->th_prev = th_trace->th_prev;
6553 	th_trace->th_next = NULL;
6554 	th_trace->th_prev = NULL;
6555 	kmem_free(th_trace, sizeof (th_trace_t));
6556 
6557 	mutex_exit(&ill->ill_lock);
6558 }
6559 #endif
6560 
6561 #ifdef ILL_DEBUG
6562 void
6563 ip_thread_exit(void)
6564 {
6565 	ill_t	*ill;
6566 	ipif_t	*ipif;
6567 	ill_walk_context_t	ctx;
6568 
6569 	rw_enter(&ill_g_lock, RW_READER);
6570 	ill = ILL_START_WALK_ALL(&ctx);
6571 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6572 		for (ipif = ill->ill_ipif; ipif != NULL;
6573 		    ipif = ipif->ipif_next) {
6574 			ipif_thread_exit(ipif, NULL);
6575 		}
6576 		ill_thread_exit(ill, NULL);
6577 	}
6578 	rw_exit(&ill_g_lock);
6579 
6580 	ire_walk(ire_thread_exit, NULL);
6581 	ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE);
6582 	ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE);
6583 }
6584 
6585 /*
6586  * Called when ipif is unplumbed or when memory alloc fails
6587  */
6588 void
6589 ipif_trace_cleanup(ipif_t *ipif)
6590 {
6591 	int	i;
6592 	th_trace_t	*th_trace;
6593 	th_trace_t	*th_trace_next;
6594 
6595 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6596 		for (th_trace = ipif->ipif_trace[i]; th_trace != NULL;
6597 		    th_trace = th_trace_next) {
6598 			th_trace_next = th_trace->th_next;
6599 			kmem_free(th_trace, sizeof (th_trace_t));
6600 		}
6601 		ipif->ipif_trace[i] = NULL;
6602 	}
6603 }
6604 
6605 /*
6606  * Called when ill is unplumbed or when memory alloc fails
6607  */
6608 void
6609 ill_trace_cleanup(ill_t *ill)
6610 {
6611 	int	i;
6612 	th_trace_t	*th_trace;
6613 	th_trace_t	*th_trace_next;
6614 
6615 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6616 		for (th_trace = ill->ill_trace[i]; th_trace != NULL;
6617 		    th_trace = th_trace_next) {
6618 			th_trace_next = th_trace->th_next;
6619 			kmem_free(th_trace, sizeof (th_trace_t));
6620 		}
6621 		ill->ill_trace[i] = NULL;
6622 	}
6623 }
6624 
6625 #else
6626 void ip_thread_exit(void) {}
6627 #endif
6628 
6629 void
6630 ipif_refhold_locked(ipif_t *ipif)
6631 {
6632 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6633 	ipif->ipif_refcnt++;
6634 	IPIF_TRACE_REF(ipif);
6635 }
6636 
6637 void
6638 ipif_refhold(ipif_t *ipif)
6639 {
6640 	ill_t	*ill;
6641 
6642 	ill = ipif->ipif_ill;
6643 	mutex_enter(&ill->ill_lock);
6644 	ipif->ipif_refcnt++;
6645 	IPIF_TRACE_REF(ipif);
6646 	mutex_exit(&ill->ill_lock);
6647 }
6648 
6649 /*
6650  * Must not be called while holding any locks. Otherwise if this is
6651  * the last reference to be released there is a chance of recursive mutex
6652  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6653  * to restart an ioctl.
6654  */
6655 void
6656 ipif_refrele(ipif_t *ipif)
6657 {
6658 	ill_t	*ill;
6659 
6660 	ill = ipif->ipif_ill;
6661 
6662 	mutex_enter(&ill->ill_lock);
6663 	ASSERT(ipif->ipif_refcnt != 0);
6664 	ipif->ipif_refcnt--;
6665 	IPIF_UNTRACE_REF(ipif);
6666 	if (ipif->ipif_refcnt != 0) {
6667 		mutex_exit(&ill->ill_lock);
6668 		return;
6669 	}
6670 
6671 	/* Drops the ill_lock */
6672 	ipif_ill_refrele_tail(ill);
6673 }
6674 
6675 ipif_t *
6676 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6677 {
6678 	ipif_t	*ipif;
6679 
6680 	mutex_enter(&ill->ill_lock);
6681 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6682 	    ipif != NULL; ipif = ipif->ipif_next) {
6683 		if (!IPIF_CAN_LOOKUP(ipif))
6684 			continue;
6685 		ipif_refhold_locked(ipif);
6686 		mutex_exit(&ill->ill_lock);
6687 		return (ipif);
6688 	}
6689 	mutex_exit(&ill->ill_lock);
6690 	return (NULL);
6691 }
6692 
6693 /*
6694  * TODO: make this table extendible at run time
6695  * Return a pointer to the mac type info for 'mac_type'
6696  */
6697 static ip_m_t *
6698 ip_m_lookup(t_uscalar_t mac_type)
6699 {
6700 	ip_m_t	*ipm;
6701 
6702 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6703 		if (ipm->ip_m_mac_type == mac_type)
6704 			return (ipm);
6705 	return (NULL);
6706 }
6707 
6708 /*
6709  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6710  * ipif_arg is passed in to associate it with the correct interface.
6711  * We may need to restart this operation if the ipif cannot be looked up
6712  * due to an exclusive operation that is currently in progress. The restart
6713  * entry point is specified by 'func'
6714  */
6715 int
6716 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6717     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
6718     ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp,
6719     ipsq_func_t func, struct rtsa_s *sp)
6720 {
6721 	ire_t	*ire;
6722 	ire_t	*gw_ire = NULL;
6723 	ipif_t	*ipif = NULL;
6724 	boolean_t ipif_refheld = B_FALSE;
6725 	uint_t	type;
6726 	int	match_flags = MATCH_IRE_TYPE;
6727 	int	error;
6728 	tsol_gc_t *gc = NULL;
6729 	tsol_gcgrp_t *gcgrp = NULL;
6730 	boolean_t gcgrp_xtraref = B_FALSE;
6731 
6732 	ip1dbg(("ip_rt_add:"));
6733 
6734 	if (ire_arg != NULL)
6735 		*ire_arg = NULL;
6736 
6737 	/*
6738 	 * If this is the case of RTF_HOST being set, then we set the netmask
6739 	 * to all ones (regardless if one was supplied).
6740 	 */
6741 	if (flags & RTF_HOST)
6742 		mask = IP_HOST_MASK;
6743 
6744 	/*
6745 	 * Prevent routes with a zero gateway from being created (since
6746 	 * interfaces can currently be plumbed and brought up no assigned
6747 	 * address).
6748 	 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0.
6749 	 */
6750 	if (gw_addr == 0 && src_ipif == NULL)
6751 		return (ENETUNREACH);
6752 	/*
6753 	 * Get the ipif, if any, corresponding to the gw_addr
6754 	 */
6755 	if (gw_addr != 0) {
6756 		ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func,
6757 		    &error);
6758 		if (ipif != NULL) {
6759 			if (IS_VNI(ipif->ipif_ill)) {
6760 				ipif_refrele(ipif);
6761 				return (EINVAL);
6762 			}
6763 			ipif_refheld = B_TRUE;
6764 		} else if (error == EINPROGRESS) {
6765 			ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6766 			return (EINPROGRESS);
6767 		} else {
6768 			error = 0;
6769 		}
6770 	}
6771 
6772 	if (ipif != NULL) {
6773 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6774 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6775 	} else {
6776 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6777 	}
6778 
6779 	/*
6780 	 * GateD will attempt to create routes with a loopback interface
6781 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6782 	 * these routes to be added, but create them as interface routes
6783 	 * since the gateway is an interface address.
6784 	 */
6785 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6786 		flags &= ~RTF_GATEWAY;
6787 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6788 		    mask == IP_HOST_MASK) {
6789 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6790 			    ALL_ZONES, NULL, match_flags);
6791 			if (ire != NULL) {
6792 				ire_refrele(ire);
6793 				if (ipif_refheld)
6794 					ipif_refrele(ipif);
6795 				return (EEXIST);
6796 			}
6797 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6798 			    "for 0x%x\n", (void *)ipif,
6799 			    ipif->ipif_ire_type,
6800 			    ntohl(ipif->ipif_lcl_addr)));
6801 			ire = ire_create(
6802 			    (uchar_t *)&dst_addr,	/* dest address */
6803 			    (uchar_t *)&mask,		/* mask */
6804 			    (uchar_t *)&ipif->ipif_src_addr,
6805 			    NULL,			/* no gateway */
6806 			    NULL,
6807 			    &ipif->ipif_mtu,
6808 			    NULL,
6809 			    ipif->ipif_rq,		/* recv-from queue */
6810 			    NULL,			/* no send-to queue */
6811 			    ipif->ipif_ire_type,	/* LOOPBACK */
6812 			    NULL,
6813 			    ipif,
6814 			    NULL,
6815 			    0,
6816 			    0,
6817 			    0,
6818 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6819 			    RTF_PRIVATE : 0,
6820 			    &ire_uinfo_null,
6821 			    NULL,
6822 			    NULL);
6823 
6824 			if (ire == NULL) {
6825 				if (ipif_refheld)
6826 					ipif_refrele(ipif);
6827 				return (ENOMEM);
6828 			}
6829 			error = ire_add(&ire, q, mp, func, B_FALSE);
6830 			if (error == 0)
6831 				goto save_ire;
6832 			if (ipif_refheld)
6833 				ipif_refrele(ipif);
6834 			return (error);
6835 
6836 		}
6837 	}
6838 
6839 	/*
6840 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6841 	 * and the gateway address provided is one of the system's interface
6842 	 * addresses.  By using the routing socket interface and supplying an
6843 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6844 	 * specifying an interface route to be created is available which uses
6845 	 * the interface index that specifies the outgoing interface rather than
6846 	 * the address of an outgoing interface (which may not be able to
6847 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6848 	 * flag, routes can be specified which not only specify the next-hop to
6849 	 * be used when routing to a certain prefix, but also which outgoing
6850 	 * interface should be used.
6851 	 *
6852 	 * Previously, interfaces would have unique addresses assigned to them
6853 	 * and so the address assigned to a particular interface could be used
6854 	 * to identify a particular interface.  One exception to this was the
6855 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6856 	 *
6857 	 * With the advent of IPv6 and its link-local addresses, this
6858 	 * restriction was relaxed and interfaces could share addresses between
6859 	 * themselves.  In fact, typically all of the link-local interfaces on
6860 	 * an IPv6 node or router will have the same link-local address.  In
6861 	 * order to differentiate between these interfaces, the use of an
6862 	 * interface index is necessary and this index can be carried inside a
6863 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6864 	 * of using the interface index, however, is that all of the ipif's that
6865 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6866 	 * cannot be used to differentiate between ipif's (or logical
6867 	 * interfaces) that belong to the same ill (physical interface).
6868 	 *
6869 	 * For example, in the following case involving IPv4 interfaces and
6870 	 * logical interfaces
6871 	 *
6872 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6873 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6874 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6875 	 *
6876 	 * the ipif's corresponding to each of these interface routes can be
6877 	 * uniquely identified by the "gateway" (actually interface address).
6878 	 *
6879 	 * In this case involving multiple IPv6 default routes to a particular
6880 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6881 	 * default route is of interest:
6882 	 *
6883 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6884 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6885 	 */
6886 
6887 	/* RTF_GATEWAY not set */
6888 	if (!(flags & RTF_GATEWAY)) {
6889 		queue_t	*stq;
6890 		queue_t	*rfq = NULL;
6891 		ill_t	*in_ill = NULL;
6892 
6893 		if (sp != NULL) {
6894 			ip2dbg(("ip_rt_add: gateway security attributes "
6895 			    "cannot be set with interface route\n"));
6896 			if (ipif_refheld)
6897 				ipif_refrele(ipif);
6898 			return (EINVAL);
6899 		}
6900 
6901 		/*
6902 		 * As the interface index specified with the RTA_IFP sockaddr is
6903 		 * the same for all ipif's off of an ill, the matching logic
6904 		 * below uses MATCH_IRE_ILL if such an index was specified.
6905 		 * This means that routes sharing the same prefix when added
6906 		 * using a RTA_IFP sockaddr must have distinct interface
6907 		 * indices (namely, they must be on distinct ill's).
6908 		 *
6909 		 * On the other hand, since the gateway address will usually be
6910 		 * different for each ipif on the system, the matching logic
6911 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6912 		 * route.  This means that interface routes for the same prefix
6913 		 * can be created if they belong to distinct ipif's and if a
6914 		 * RTA_IFP sockaddr is not present.
6915 		 */
6916 		if (ipif_arg != NULL) {
6917 			if (ipif_refheld)  {
6918 				ipif_refrele(ipif);
6919 				ipif_refheld = B_FALSE;
6920 			}
6921 			ipif = ipif_arg;
6922 			match_flags |= MATCH_IRE_ILL;
6923 		} else {
6924 			/*
6925 			 * Check the ipif corresponding to the gw_addr
6926 			 */
6927 			if (ipif == NULL)
6928 				return (ENETUNREACH);
6929 			match_flags |= MATCH_IRE_IPIF;
6930 		}
6931 		ASSERT(ipif != NULL);
6932 		/*
6933 		 * If src_ipif is not NULL, we have to create
6934 		 * an ire with non-null ire_in_ill value
6935 		 */
6936 		if (src_ipif != NULL) {
6937 			in_ill = src_ipif->ipif_ill;
6938 		}
6939 
6940 		/*
6941 		 * We check for an existing entry at this point.
6942 		 *
6943 		 * Since a netmask isn't passed in via the ioctl interface
6944 		 * (SIOCADDRT), we don't check for a matching netmask in that
6945 		 * case.
6946 		 */
6947 		if (!ioctl_msg)
6948 			match_flags |= MATCH_IRE_MASK;
6949 		if (src_ipif != NULL) {
6950 			/* Look up in the special table */
6951 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
6952 			    ipif, src_ipif->ipif_ill, match_flags);
6953 		} else {
6954 			ire = ire_ftable_lookup(dst_addr, mask, 0,
6955 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
6956 			    NULL, match_flags);
6957 		}
6958 		if (ire != NULL) {
6959 			ire_refrele(ire);
6960 			if (ipif_refheld)
6961 				ipif_refrele(ipif);
6962 			return (EEXIST);
6963 		}
6964 
6965 		if (src_ipif != NULL) {
6966 			/*
6967 			 * Create the special ire for the IRE table
6968 			 * which hangs out of ire_in_ill. This ire
6969 			 * is in-between IRE_CACHE and IRE_INTERFACE.
6970 			 * Thus rfq is non-NULL.
6971 			 */
6972 			rfq = ipif->ipif_rq;
6973 		}
6974 		/* Create the usual interface ires */
6975 
6976 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
6977 		    ? ipif->ipif_rq : ipif->ipif_wq;
6978 
6979 		/*
6980 		 * Create a copy of the IRE_LOOPBACK,
6981 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
6982 		 * the modified address and netmask.
6983 		 */
6984 		ire = ire_create(
6985 		    (uchar_t *)&dst_addr,
6986 		    (uint8_t *)&mask,
6987 		    (uint8_t *)&ipif->ipif_src_addr,
6988 		    NULL,
6989 		    NULL,
6990 		    &ipif->ipif_mtu,
6991 		    NULL,
6992 		    rfq,
6993 		    stq,
6994 		    ipif->ipif_net_type,
6995 		    ipif->ipif_resolver_mp,
6996 		    ipif,
6997 		    in_ill,
6998 		    0,
6999 		    0,
7000 		    0,
7001 		    flags,
7002 		    &ire_uinfo_null,
7003 		    NULL,
7004 		    NULL);
7005 		if (ire == NULL) {
7006 			if (ipif_refheld)
7007 				ipif_refrele(ipif);
7008 			return (ENOMEM);
7009 		}
7010 
7011 		/*
7012 		 * Some software (for example, GateD and Sun Cluster) attempts
7013 		 * to create (what amount to) IRE_PREFIX routes with the
7014 		 * loopback address as the gateway.  This is primarily done to
7015 		 * set up prefixes with the RTF_REJECT flag set (for example,
7016 		 * when generating aggregate routes.)
7017 		 *
7018 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7019 		 * IRE_LOOPBACK, then we map the request into a
7020 		 * IRE_IF_NORESOLVER.
7021 		 *
7022 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7023 		 * routine, but rather using ire_create() directly.
7024 		 *
7025 		 */
7026 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7027 			ire->ire_type = IRE_IF_NORESOLVER;
7028 
7029 		error = ire_add(&ire, q, mp, func, B_FALSE);
7030 		if (error == 0)
7031 			goto save_ire;
7032 
7033 		/*
7034 		 * In the result of failure, ire_add() will have already
7035 		 * deleted the ire in question, so there is no need to
7036 		 * do that here.
7037 		 */
7038 		if (ipif_refheld)
7039 			ipif_refrele(ipif);
7040 		return (error);
7041 	}
7042 	if (ipif_refheld) {
7043 		ipif_refrele(ipif);
7044 		ipif_refheld = B_FALSE;
7045 	}
7046 
7047 	if (src_ipif != NULL) {
7048 		/* RTA_SRCIFP is not supported on RTF_GATEWAY */
7049 		ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n"));
7050 		return (EINVAL);
7051 	}
7052 	/*
7053 	 * Get an interface IRE for the specified gateway.
7054 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7055 	 * gateway, it is currently unreachable and we fail the request
7056 	 * accordingly.
7057 	 */
7058 	ipif = ipif_arg;
7059 	if (ipif_arg != NULL)
7060 		match_flags |= MATCH_IRE_ILL;
7061 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7062 	    ALL_ZONES, 0, NULL, match_flags);
7063 	if (gw_ire == NULL)
7064 		return (ENETUNREACH);
7065 
7066 	/*
7067 	 * We create one of three types of IREs as a result of this request
7068 	 * based on the netmask.  A netmask of all ones (which is automatically
7069 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7070 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7071 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7072 	 * destination prefix.
7073 	 */
7074 	if (mask == IP_HOST_MASK)
7075 		type = IRE_HOST;
7076 	else if (mask == 0)
7077 		type = IRE_DEFAULT;
7078 	else
7079 		type = IRE_PREFIX;
7080 
7081 	/* check for a duplicate entry */
7082 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7083 	    NULL, ALL_ZONES, 0, NULL,
7084 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW);
7085 	if (ire != NULL) {
7086 		ire_refrele(gw_ire);
7087 		ire_refrele(ire);
7088 		return (EEXIST);
7089 	}
7090 
7091 	/* Security attribute exists */
7092 	if (sp != NULL) {
7093 		tsol_gcgrp_addr_t ga;
7094 
7095 		/* find or create the gateway credentials group */
7096 		ga.ga_af = AF_INET;
7097 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7098 
7099 		/* we hold reference to it upon success */
7100 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7101 		if (gcgrp == NULL) {
7102 			ire_refrele(gw_ire);
7103 			return (ENOMEM);
7104 		}
7105 
7106 		/*
7107 		 * Create and add the security attribute to the group; a
7108 		 * reference to the group is made upon allocating a new
7109 		 * entry successfully.  If it finds an already-existing
7110 		 * entry for the security attribute in the group, it simply
7111 		 * returns it and no new reference is made to the group.
7112 		 */
7113 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7114 		if (gc == NULL) {
7115 			/* release reference held by gcgrp_lookup */
7116 			GCGRP_REFRELE(gcgrp);
7117 			ire_refrele(gw_ire);
7118 			return (ENOMEM);
7119 		}
7120 	}
7121 
7122 	/* Create the IRE. */
7123 	ire = ire_create(
7124 	    (uchar_t *)&dst_addr,		/* dest address */
7125 	    (uchar_t *)&mask,			/* mask */
7126 	    /* src address assigned by the caller? */
7127 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7128 		(flags & RTF_SETSRC)) ?  &src_addr : NULL),
7129 	    (uchar_t *)&gw_addr,		/* gateway address */
7130 	    NULL,				/* no in-srcaddress */
7131 	    &gw_ire->ire_max_frag,
7132 	    NULL,				/* no Fast Path header */
7133 	    NULL,				/* no recv-from queue */
7134 	    NULL,				/* no send-to queue */
7135 	    (ushort_t)type,			/* IRE type */
7136 	    NULL,
7137 	    ipif_arg,
7138 	    NULL,
7139 	    0,
7140 	    0,
7141 	    0,
7142 	    flags,
7143 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7144 	    gc,					/* security attribute */
7145 	    NULL);
7146 	/*
7147 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7148 	 * reference to the 'gcgrp'. We can now release the extra reference
7149 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7150 	 */
7151 	if (gcgrp_xtraref)
7152 		GCGRP_REFRELE(gcgrp);
7153 	if (ire == NULL) {
7154 		if (gc != NULL)
7155 			GC_REFRELE(gc);
7156 		ire_refrele(gw_ire);
7157 		return (ENOMEM);
7158 	}
7159 
7160 	/*
7161 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7162 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7163 	 */
7164 
7165 	/* Add the new IRE. */
7166 	error = ire_add(&ire, q, mp, func, B_FALSE);
7167 	if (error != 0) {
7168 		/*
7169 		 * In the result of failure, ire_add() will have already
7170 		 * deleted the ire in question, so there is no need to
7171 		 * do that here.
7172 		 */
7173 		ire_refrele(gw_ire);
7174 		return (error);
7175 	}
7176 
7177 	if (flags & RTF_MULTIRT) {
7178 		/*
7179 		 * Invoke the CGTP (multirouting) filtering module
7180 		 * to add the dst address in the filtering database.
7181 		 * Replicated inbound packets coming from that address
7182 		 * will be filtered to discard the duplicates.
7183 		 * It is not necessary to call the CGTP filter hook
7184 		 * when the dst address is a broadcast or multicast,
7185 		 * because an IP source address cannot be a broadcast
7186 		 * or a multicast.
7187 		 */
7188 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7189 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
7190 		if (ire_dst != NULL) {
7191 			ip_cgtp_bcast_add(ire, ire_dst);
7192 			ire_refrele(ire_dst);
7193 			goto save_ire;
7194 		}
7195 		if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) {
7196 			int res = ip_cgtp_filter_ops->cfo_add_dest_v4(
7197 			    ire->ire_addr,
7198 			    ire->ire_gateway_addr,
7199 			    ire->ire_src_addr,
7200 			    gw_ire->ire_src_addr);
7201 			if (res != 0) {
7202 				ire_refrele(gw_ire);
7203 				ire_delete(ire);
7204 				return (res);
7205 			}
7206 		}
7207 	}
7208 
7209 	/*
7210 	 * Now that the prefix IRE entry has been created, delete any
7211 	 * existing gateway IRE cache entries as well as any IRE caches
7212 	 * using the gateway, and force them to be created through
7213 	 * ip_newroute.
7214 	 */
7215 	if (gc != NULL) {
7216 		ASSERT(gcgrp != NULL);
7217 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES);
7218 	}
7219 
7220 save_ire:
7221 	if (gw_ire != NULL) {
7222 		ire_refrele(gw_ire);
7223 	}
7224 	/*
7225 	 * We do not do save_ire for the routes added with RTA_SRCIFP
7226 	 * flag. This route is only added and deleted by mipagent.
7227 	 * So, for simplicity of design, we refrain from saving
7228 	 * ires that are created with srcif value. This may change
7229 	 * in future if we find more usage of srcifp feature.
7230 	 */
7231 	if (ipif != NULL && src_ipif == NULL) {
7232 		/*
7233 		 * Save enough information so that we can recreate the IRE if
7234 		 * the interface goes down and then up.  The metrics associated
7235 		 * with the route will be saved as well when rts_setmetrics() is
7236 		 * called after the IRE has been created.  In the case where
7237 		 * memory cannot be allocated, none of this information will be
7238 		 * saved.
7239 		 */
7240 		ipif_save_ire(ipif, ire);
7241 	}
7242 	if (ioctl_msg)
7243 		ip_rts_rtmsg(RTM_OLDADD, ire, 0);
7244 	if (ire_arg != NULL) {
7245 		/*
7246 		 * Store the ire that was successfully added into where ire_arg
7247 		 * points to so that callers don't have to look it up
7248 		 * themselves (but they are responsible for ire_refrele()ing
7249 		 * the ire when they are finished with it).
7250 		 */
7251 		*ire_arg = ire;
7252 	} else {
7253 		ire_refrele(ire);		/* Held in ire_add */
7254 	}
7255 	if (ipif_refheld)
7256 		ipif_refrele(ipif);
7257 	return (0);
7258 }
7259 
7260 /*
7261  * ip_rt_delete is called to delete an IPv4 route.
7262  * ipif_arg is passed in to associate it with the correct interface.
7263  * src_ipif is passed to associate the incoming interface of the packet.
7264  * We may need to restart this operation if the ipif cannot be looked up
7265  * due to an exclusive operation that is currently in progress. The restart
7266  * entry point is specified by 'func'
7267  */
7268 /* ARGSUSED4 */
7269 int
7270 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7271     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
7272     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func)
7273 {
7274 	ire_t	*ire = NULL;
7275 	ipif_t	*ipif;
7276 	boolean_t ipif_refheld = B_FALSE;
7277 	uint_t	type;
7278 	uint_t	match_flags = MATCH_IRE_TYPE;
7279 	int	err = 0;
7280 
7281 	ip1dbg(("ip_rt_delete:"));
7282 	/*
7283 	 * If this is the case of RTF_HOST being set, then we set the netmask
7284 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7285 	 */
7286 	if (flags & RTF_HOST) {
7287 		mask = IP_HOST_MASK;
7288 		match_flags |= MATCH_IRE_MASK;
7289 	} else if (rtm_addrs & RTA_NETMASK) {
7290 		match_flags |= MATCH_IRE_MASK;
7291 	}
7292 
7293 	/*
7294 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7295 	 * we check if the gateway address is one of our interfaces first,
7296 	 * and fall back on RTF_GATEWAY routes.
7297 	 *
7298 	 * This makes it possible to delete an original
7299 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7300 	 *
7301 	 * As the interface index specified with the RTA_IFP sockaddr is the
7302 	 * same for all ipif's off of an ill, the matching logic below uses
7303 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7304 	 * sharing the same prefix and interface index as the the route
7305 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7306 	 * is specified in the request.
7307 	 *
7308 	 * On the other hand, since the gateway address will usually be
7309 	 * different for each ipif on the system, the matching logic
7310 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7311 	 * route.  This means that interface routes for the same prefix can be
7312 	 * uniquely identified if they belong to distinct ipif's and if a
7313 	 * RTA_IFP sockaddr is not present.
7314 	 *
7315 	 * For more detail on specifying routes by gateway address and by
7316 	 * interface index, see the comments in ip_rt_add().
7317 	 * gw_addr could be zero in some cases when both RTA_SRCIFP and
7318 	 * RTA_IFP are specified. If RTA_SRCIFP is specified and  both
7319 	 * RTA_IFP and gateway_addr are NULL/zero, then delete will not
7320 	 * succeed.
7321 	 */
7322 	if (src_ipif != NULL) {
7323 		if (ipif_arg == NULL && gw_addr != 0) {
7324 			ipif_arg = ipif_lookup_interface(gw_addr, dst_addr,
7325 			    q, mp, func, &err);
7326 			if (ipif_arg != NULL)
7327 				ipif_refheld = B_TRUE;
7328 		}
7329 		if (ipif_arg == NULL) {
7330 			err = (err == EINPROGRESS) ? err : ESRCH;
7331 			return (err);
7332 		}
7333 		ipif = ipif_arg;
7334 	} else {
7335 		ipif = ipif_lookup_interface(gw_addr, dst_addr,
7336 			    q, mp, func, &err);
7337 		if (ipif != NULL)
7338 			ipif_refheld = B_TRUE;
7339 		else if (err == EINPROGRESS)
7340 			return (err);
7341 		else
7342 			err = 0;
7343 	}
7344 	if (ipif != NULL) {
7345 		if (ipif_arg != NULL) {
7346 			if (ipif_refheld) {
7347 				ipif_refrele(ipif);
7348 				ipif_refheld = B_FALSE;
7349 			}
7350 			ipif = ipif_arg;
7351 			match_flags |= MATCH_IRE_ILL;
7352 		} else {
7353 			match_flags |= MATCH_IRE_IPIF;
7354 		}
7355 		if (src_ipif != NULL) {
7356 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7357 			    ipif, src_ipif->ipif_ill, match_flags);
7358 		} else {
7359 			if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7360 				ire = ire_ctable_lookup(dst_addr, 0,
7361 				    IRE_LOOPBACK, ipif, ALL_ZONES, NULL,
7362 				    match_flags);
7363 			}
7364 			if (ire == NULL) {
7365 				ire = ire_ftable_lookup(dst_addr, mask, 0,
7366 				    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7367 				    NULL, match_flags);
7368 			}
7369 		}
7370 	}
7371 
7372 	if (ire == NULL) {
7373 		/*
7374 		 * At this point, the gateway address is not one of our own
7375 		 * addresses or a matching interface route was not found.  We
7376 		 * set the IRE type to lookup based on whether
7377 		 * this is a host route, a default route or just a prefix.
7378 		 *
7379 		 * If an ipif_arg was passed in, then the lookup is based on an
7380 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7381 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7382 		 * set as the route being looked up is not a traditional
7383 		 * interface route.
7384 		 * Since we do not add gateway route with srcipif, we don't
7385 		 * expect to find it either.
7386 		 */
7387 		if (src_ipif != NULL) {
7388 			if (ipif_refheld)
7389 				ipif_refrele(ipif);
7390 			return (ESRCH);
7391 		} else {
7392 			match_flags &= ~MATCH_IRE_IPIF;
7393 			match_flags |= MATCH_IRE_GW;
7394 			if (ipif_arg != NULL)
7395 				match_flags |= MATCH_IRE_ILL;
7396 			if (mask == IP_HOST_MASK)
7397 				type = IRE_HOST;
7398 			else if (mask == 0)
7399 				type = IRE_DEFAULT;
7400 			else
7401 				type = IRE_PREFIX;
7402 			ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type,
7403 			    ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags);
7404 		}
7405 	}
7406 
7407 	if (ipif_refheld)
7408 		ipif_refrele(ipif);
7409 
7410 	/* ipif is not refheld anymore */
7411 	if (ire == NULL)
7412 		return (ESRCH);
7413 
7414 	if (ire->ire_flags & RTF_MULTIRT) {
7415 		/*
7416 		 * Invoke the CGTP (multirouting) filtering module
7417 		 * to remove the dst address from the filtering database.
7418 		 * Packets coming from that address will no longer be
7419 		 * filtered to remove duplicates.
7420 		 */
7421 		if (ip_cgtp_filter_ops != NULL) {
7422 			err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr,
7423 			    ire->ire_gateway_addr);
7424 		}
7425 		ip_cgtp_bcast_delete(ire);
7426 	}
7427 
7428 	ipif = ire->ire_ipif;
7429 	/*
7430 	 * Removing from ipif_saved_ire_mp is not necessary
7431 	 * when src_ipif being non-NULL. ip_rt_add does not
7432 	 * save the ires which src_ipif being non-NULL.
7433 	 */
7434 	if (ipif != NULL && src_ipif == NULL) {
7435 		ipif_remove_ire(ipif, ire);
7436 	}
7437 	if (ioctl_msg)
7438 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0);
7439 	ire_delete(ire);
7440 	ire_refrele(ire);
7441 	return (err);
7442 }
7443 
7444 /*
7445  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7446  */
7447 /* ARGSUSED */
7448 int
7449 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7450     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7451 {
7452 	ipaddr_t dst_addr;
7453 	ipaddr_t gw_addr;
7454 	ipaddr_t mask;
7455 	int error = 0;
7456 	mblk_t *mp1;
7457 	struct rtentry *rt;
7458 	ipif_t *ipif = NULL;
7459 
7460 	ip1dbg(("ip_siocaddrt:"));
7461 	/* Existence of mp1 verified in ip_wput_nondata */
7462 	mp1 = mp->b_cont->b_cont;
7463 	rt = (struct rtentry *)mp1->b_rptr;
7464 
7465 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7466 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7467 
7468 	/*
7469 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7470 	 * to a particular host address.  In this case, we set the netmask to
7471 	 * all ones for the particular destination address.  Otherwise,
7472 	 * determine the netmask to be used based on dst_addr and the interfaces
7473 	 * in use.
7474 	 */
7475 	if (rt->rt_flags & RTF_HOST) {
7476 		mask = IP_HOST_MASK;
7477 	} else {
7478 		/*
7479 		 * Note that ip_subnet_mask returns a zero mask in the case of
7480 		 * default (an all-zeroes address).
7481 		 */
7482 		mask = ip_subnet_mask(dst_addr, &ipif);
7483 	}
7484 
7485 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7486 	    NULL, B_TRUE, q, mp, ip_process_ioctl, NULL);
7487 	if (ipif != NULL)
7488 		ipif_refrele(ipif);
7489 	return (error);
7490 }
7491 
7492 /*
7493  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7494  */
7495 /* ARGSUSED */
7496 int
7497 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7498     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7499 {
7500 	ipaddr_t dst_addr;
7501 	ipaddr_t gw_addr;
7502 	ipaddr_t mask;
7503 	int error;
7504 	mblk_t *mp1;
7505 	struct rtentry *rt;
7506 	ipif_t *ipif = NULL;
7507 
7508 	ip1dbg(("ip_siocdelrt:"));
7509 	/* Existence of mp1 verified in ip_wput_nondata */
7510 	mp1 = mp->b_cont->b_cont;
7511 	rt = (struct rtentry *)mp1->b_rptr;
7512 
7513 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7514 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7515 
7516 	/*
7517 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7518 	 * to a particular host address.  In this case, we set the netmask to
7519 	 * all ones for the particular destination address.  Otherwise,
7520 	 * determine the netmask to be used based on dst_addr and the interfaces
7521 	 * in use.
7522 	 */
7523 	if (rt->rt_flags & RTF_HOST) {
7524 		mask = IP_HOST_MASK;
7525 	} else {
7526 		/*
7527 		 * Note that ip_subnet_mask returns a zero mask in the case of
7528 		 * default (an all-zeroes address).
7529 		 */
7530 		mask = ip_subnet_mask(dst_addr, &ipif);
7531 	}
7532 
7533 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7534 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL,
7535 	    B_TRUE, q, mp, ip_process_ioctl);
7536 	if (ipif != NULL)
7537 		ipif_refrele(ipif);
7538 	return (error);
7539 }
7540 
7541 /*
7542  * Enqueue the mp onto the ipsq, chained by b_next.
7543  * b_prev stores the function to be executed later, and b_queue the queue
7544  * where this mp originated.
7545  */
7546 void
7547 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7548     ill_t *pending_ill)
7549 {
7550 	conn_t	*connp = NULL;
7551 
7552 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7553 	ASSERT(func != NULL);
7554 
7555 	mp->b_queue = q;
7556 	mp->b_prev = (void *)func;
7557 	mp->b_next = NULL;
7558 
7559 	switch (type) {
7560 	case CUR_OP:
7561 		if (ipsq->ipsq_mptail != NULL) {
7562 			ASSERT(ipsq->ipsq_mphead != NULL);
7563 			ipsq->ipsq_mptail->b_next = mp;
7564 		} else {
7565 			ASSERT(ipsq->ipsq_mphead == NULL);
7566 			ipsq->ipsq_mphead = mp;
7567 		}
7568 		ipsq->ipsq_mptail = mp;
7569 		break;
7570 
7571 	case NEW_OP:
7572 		if (ipsq->ipsq_xopq_mptail != NULL) {
7573 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7574 			ipsq->ipsq_xopq_mptail->b_next = mp;
7575 		} else {
7576 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7577 			ipsq->ipsq_xopq_mphead = mp;
7578 		}
7579 		ipsq->ipsq_xopq_mptail = mp;
7580 		break;
7581 	default:
7582 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7583 	}
7584 
7585 	if (CONN_Q(q) && pending_ill != NULL) {
7586 		connp = Q_TO_CONN(q);
7587 
7588 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7589 		connp->conn_oper_pending_ill = pending_ill;
7590 	}
7591 }
7592 
7593 /*
7594  * Return the mp at the head of the ipsq. After emptying the ipsq
7595  * look at the next ioctl, if this ioctl is complete. Otherwise
7596  * return, we will resume when we complete the current ioctl.
7597  * The current ioctl will wait till it gets a response from the
7598  * driver below.
7599  */
7600 static mblk_t *
7601 ipsq_dq(ipsq_t *ipsq)
7602 {
7603 	mblk_t	*mp;
7604 
7605 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7606 
7607 	mp = ipsq->ipsq_mphead;
7608 	if (mp != NULL) {
7609 		ipsq->ipsq_mphead = mp->b_next;
7610 		if (ipsq->ipsq_mphead == NULL)
7611 			ipsq->ipsq_mptail = NULL;
7612 		mp->b_next = NULL;
7613 		return (mp);
7614 	}
7615 	if (ipsq->ipsq_current_ipif != NULL)
7616 		return (NULL);
7617 	mp = ipsq->ipsq_xopq_mphead;
7618 	if (mp != NULL) {
7619 		ipsq->ipsq_xopq_mphead = mp->b_next;
7620 		if (ipsq->ipsq_xopq_mphead == NULL)
7621 			ipsq->ipsq_xopq_mptail = NULL;
7622 		mp->b_next = NULL;
7623 		return (mp);
7624 	}
7625 	return (NULL);
7626 }
7627 
7628 /*
7629  * Enter the ipsq corresponding to ill, by waiting synchronously till
7630  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7631  * will have to drain completely before ipsq_enter returns success.
7632  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7633  * and the ipsq_exit logic will start the next enqueued ioctl after
7634  * completion of the current ioctl. If 'force' is used, we don't wait
7635  * for the enqueued ioctls. This is needed when a conn_close wants to
7636  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7637  * of an ill can also use this option. But we dont' use it currently.
7638  */
7639 #define	ENTER_SQ_WAIT_TICKS 100
7640 boolean_t
7641 ipsq_enter(ill_t *ill, boolean_t force)
7642 {
7643 	ipsq_t	*ipsq;
7644 	boolean_t waited_enough = B_FALSE;
7645 
7646 	/*
7647 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7648 	 * Since the <ill-ipsq> assocs could change while we wait for the
7649 	 * writer, it is easier to wait on a fixed global rather than try to
7650 	 * cv_wait on a changing ipsq.
7651 	 */
7652 	mutex_enter(&ill->ill_lock);
7653 	for (;;) {
7654 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7655 			mutex_exit(&ill->ill_lock);
7656 			return (B_FALSE);
7657 		}
7658 
7659 		ipsq = ill->ill_phyint->phyint_ipsq;
7660 		mutex_enter(&ipsq->ipsq_lock);
7661 		if (ipsq->ipsq_writer == NULL &&
7662 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7663 			break;
7664 		} else if (ipsq->ipsq_writer != NULL) {
7665 			mutex_exit(&ipsq->ipsq_lock);
7666 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7667 		} else {
7668 			mutex_exit(&ipsq->ipsq_lock);
7669 			if (force) {
7670 				(void) cv_timedwait(&ill->ill_cv,
7671 				    &ill->ill_lock,
7672 				    lbolt + ENTER_SQ_WAIT_TICKS);
7673 				waited_enough = B_TRUE;
7674 				continue;
7675 			} else {
7676 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7677 			}
7678 		}
7679 	}
7680 
7681 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7682 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7683 	ipsq->ipsq_writer = curthread;
7684 	ipsq->ipsq_reentry_cnt++;
7685 #ifdef ILL_DEBUG
7686 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7687 #endif
7688 	mutex_exit(&ipsq->ipsq_lock);
7689 	mutex_exit(&ill->ill_lock);
7690 	return (B_TRUE);
7691 }
7692 
7693 /*
7694  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7695  * certain critical operations like plumbing (i.e. most set ioctls),
7696  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7697  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7698  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7699  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7700  * threads executing in the ipsq. Responses from the driver pertain to the
7701  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7702  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7703  *
7704  * If a thread does not want to reenter the ipsq when it is already writer,
7705  * it must make sure that the specified reentry point to be called later
7706  * when the ipsq is empty, nor any code path starting from the specified reentry
7707  * point must never ever try to enter the ipsq again. Otherwise it can lead
7708  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7709  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7710  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7711  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7712  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7713  * ioctl if the current ioctl has completed. If the current ioctl is still
7714  * in progress it simply returns. The current ioctl could be waiting for
7715  * a response from another module (arp_ or the driver or could be waiting for
7716  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7717  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7718  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7719  * ipsq_current_ipif is clear which happens only on ioctl completion.
7720  */
7721 
7722 /*
7723  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7724  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7725  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7726  * completion.
7727  */
7728 ipsq_t *
7729 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7730     ipsq_func_t func, int type, boolean_t reentry_ok)
7731 {
7732 	ipsq_t	*ipsq;
7733 
7734 	/* Only 1 of ipif or ill can be specified */
7735 	ASSERT((ipif != NULL) ^ (ill != NULL));
7736 	if (ipif != NULL)
7737 		ill = ipif->ipif_ill;
7738 
7739 	/*
7740 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7741 	 * ipsq of an ill can't change when ill_lock is held.
7742 	 */
7743 	GRAB_CONN_LOCK(q);
7744 	mutex_enter(&ill->ill_lock);
7745 	ipsq = ill->ill_phyint->phyint_ipsq;
7746 	mutex_enter(&ipsq->ipsq_lock);
7747 
7748 	/*
7749 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7750 	 *    (Note: If the caller does not specify reentry_ok then neither
7751 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7752 	 *    again. Otherwise it can lead to an infinite loop
7753 	 * 2. Enter the ipsq if there is no current writer and this attempted
7754 	 *    entry is part of the current ioctl or operation
7755 	 * 3. Enter the ipsq if there is no current writer and this is a new
7756 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7757 	 *    empty and there is no ioctl (or operation) currently in progress
7758 	 */
7759 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7760 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7761 	    ipsq->ipsq_current_ipif == NULL))) ||
7762 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7763 		/* Success. */
7764 		ipsq->ipsq_reentry_cnt++;
7765 		ipsq->ipsq_writer = curthread;
7766 		mutex_exit(&ipsq->ipsq_lock);
7767 		mutex_exit(&ill->ill_lock);
7768 		RELEASE_CONN_LOCK(q);
7769 #ifdef ILL_DEBUG
7770 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7771 #endif
7772 		return (ipsq);
7773 	}
7774 
7775 	ipsq_enq(ipsq, q, mp, func, type, ill);
7776 
7777 	mutex_exit(&ipsq->ipsq_lock);
7778 	mutex_exit(&ill->ill_lock);
7779 	RELEASE_CONN_LOCK(q);
7780 	return (NULL);
7781 }
7782 
7783 /*
7784  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7785  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7786  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7787  * completion.
7788  *
7789  * This function does a refrele on the ipif/ill.
7790  */
7791 void
7792 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7793     ipsq_func_t func, int type, boolean_t reentry_ok)
7794 {
7795 	ipsq_t	*ipsq;
7796 
7797 	ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok);
7798 	/*
7799 	 * Caller must have done a refhold on the ipif. ipif_refrele
7800 	 * happens on the passed ipif. We can do this since we are
7801 	 * already exclusive, or we won't access ipif henceforth, Both
7802 	 * this func and caller will just return if we ipsq_try_enter
7803 	 * fails above. This is needed because func needs to
7804 	 * see the correct refcount. Eg. removeif can work only then.
7805 	 */
7806 	if (ipif != NULL)
7807 		ipif_refrele(ipif);
7808 	else
7809 		ill_refrele(ill);
7810 	if (ipsq != NULL) {
7811 		(*func)(ipsq, q, mp, NULL);
7812 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7813 	}
7814 }
7815 
7816 /*
7817  * If there are more than ILL_GRP_CNT ills in a group,
7818  * we use kmem alloc'd buffers, else use the stack
7819  */
7820 #define	ILL_GRP_CNT	14
7821 /*
7822  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7823  * Called by a thread that is currently exclusive on this ipsq.
7824  */
7825 void
7826 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7827 {
7828 	queue_t	*q;
7829 	mblk_t	*mp;
7830 	ipsq_func_t	func;
7831 	int	next;
7832 	ill_t	**ill_list = NULL;
7833 	size_t	ill_list_size = 0;
7834 	int	cnt = 0;
7835 	boolean_t need_ipsq_free = B_FALSE;
7836 
7837 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7838 	mutex_enter(&ipsq->ipsq_lock);
7839 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7840 	if (ipsq->ipsq_reentry_cnt != 1) {
7841 		ipsq->ipsq_reentry_cnt--;
7842 		mutex_exit(&ipsq->ipsq_lock);
7843 		return;
7844 	}
7845 
7846 	mp = ipsq_dq(ipsq);
7847 	while (mp != NULL) {
7848 again:
7849 		mutex_exit(&ipsq->ipsq_lock);
7850 		func = (ipsq_func_t)mp->b_prev;
7851 		q = (queue_t *)mp->b_queue;
7852 		mp->b_prev = NULL;
7853 		mp->b_queue = NULL;
7854 
7855 		/*
7856 		 * If 'q' is an conn queue, it is valid, since we did a
7857 		 * a refhold on the connp, at the start of the ioctl.
7858 		 * If 'q' is an ill queue, it is valid, since close of an
7859 		 * ill will clean up the 'ipsq'.
7860 		 */
7861 		(*func)(ipsq, q, mp, NULL);
7862 
7863 		mutex_enter(&ipsq->ipsq_lock);
7864 		mp = ipsq_dq(ipsq);
7865 	}
7866 
7867 	mutex_exit(&ipsq->ipsq_lock);
7868 
7869 	/*
7870 	 * Need to grab the locks in the right order. Need to
7871 	 * atomically check (under ipsq_lock) that there are no
7872 	 * messages before relinquishing the ipsq. Also need to
7873 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7874 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7875 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7876 	 * to grab ill_g_lock as writer.
7877 	 */
7878 	rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER);
7879 
7880 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7881 	if (ipsq->ipsq_refs != 0) {
7882 		/* At most 2 ills v4/v6 per phyint */
7883 		cnt = ipsq->ipsq_refs << 1;
7884 		ill_list_size = cnt * sizeof (ill_t *);
7885 		/*
7886 		 * If memory allocation fails, we will do the split
7887 		 * the next time ipsq_exit is called for whatever reason.
7888 		 * As long as the ipsq_split flag is set the need to
7889 		 * split is remembered.
7890 		 */
7891 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7892 		if (ill_list != NULL)
7893 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7894 	}
7895 	mutex_enter(&ipsq->ipsq_lock);
7896 	mp = ipsq_dq(ipsq);
7897 	if (mp != NULL) {
7898 		/* oops, some message has landed up, we can't get out */
7899 		if (ill_list != NULL)
7900 			ill_unlock_ills(ill_list, cnt);
7901 		rw_exit(&ill_g_lock);
7902 		if (ill_list != NULL)
7903 			kmem_free(ill_list, ill_list_size);
7904 		ill_list = NULL;
7905 		ill_list_size = 0;
7906 		cnt = 0;
7907 		goto again;
7908 	}
7909 
7910 	/*
7911 	 * Split only if no ioctl is pending and if memory alloc succeeded
7912 	 * above.
7913 	 */
7914 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7915 		ill_list != NULL) {
7916 		/*
7917 		 * No new ill can join this ipsq since we are holding the
7918 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7919 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7920 		 * If so we will retry on the next ipsq_exit.
7921 		 */
7922 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7923 	}
7924 
7925 	/*
7926 	 * We are holding the ipsq lock, hence no new messages can
7927 	 * land up on the ipsq, and there are no messages currently.
7928 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7929 	 * atomically while holding ill locks.
7930 	 */
7931 	ipsq->ipsq_writer = NULL;
7932 	ipsq->ipsq_reentry_cnt--;
7933 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7934 #ifdef ILL_DEBUG
7935 	ipsq->ipsq_depth = 0;
7936 #endif
7937 	mutex_exit(&ipsq->ipsq_lock);
7938 	/*
7939 	 * For IPMP this should wake up all ills in this ipsq.
7940 	 * We need to hold the ill_lock while waking up waiters to
7941 	 * avoid missed wakeups. But there is no need to acquire all
7942 	 * the ill locks and then wakeup. If we have not acquired all
7943 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7944 	 * wakes up ills one at a time after getting the right ill_lock
7945 	 */
7946 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7947 	if (ill_list != NULL)
7948 		ill_unlock_ills(ill_list, cnt);
7949 	if (ipsq->ipsq_refs == 0)
7950 		need_ipsq_free = B_TRUE;
7951 	rw_exit(&ill_g_lock);
7952 	if (ill_list != 0)
7953 		kmem_free(ill_list, ill_list_size);
7954 
7955 	if (need_ipsq_free) {
7956 		/*
7957 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7958 		 * looked up. ipsq can be looked up only thru ill or phyint
7959 		 * and there are no ills/phyint on this ipsq.
7960 		 */
7961 		ipsq_delete(ipsq);
7962 	}
7963 	/*
7964 	 * Now start any igmp or mld timers that could not be started
7965 	 * while inside the ipsq. The timers can't be started while inside
7966 	 * the ipsq, since igmp_start_timers may need to call untimeout()
7967 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7968 	 * there could be a deadlock since the timeout handlers
7969 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
7970 	 * wait in ipsq_enter() trying to get the ipsq.
7971 	 *
7972 	 * However there is one exception to the above. If this thread is
7973 	 * itself the igmp/mld timeout handler thread, then we don't want
7974 	 * to start any new timer until the current handler is done. The
7975 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7976 	 * all others pass B_TRUE.
7977 	 */
7978 	if (start_igmp_timer) {
7979 		mutex_enter(&igmp_timer_lock);
7980 		next = igmp_deferred_next;
7981 		igmp_deferred_next = INFINITY;
7982 		mutex_exit(&igmp_timer_lock);
7983 
7984 		if (next != INFINITY)
7985 			igmp_start_timers(next);
7986 	}
7987 
7988 	if (start_mld_timer) {
7989 		mutex_enter(&mld_timer_lock);
7990 		next = mld_deferred_next;
7991 		mld_deferred_next = INFINITY;
7992 		mutex_exit(&mld_timer_lock);
7993 
7994 		if (next != INFINITY)
7995 			mld_start_timers(next);
7996 	}
7997 }
7998 
7999 /*
8000  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
8001  * and `ioccmd'.
8002  */
8003 void
8004 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
8005 {
8006 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8007 
8008 	mutex_enter(&ipsq->ipsq_lock);
8009 	ASSERT(ipsq->ipsq_current_ipif == NULL);
8010 	ASSERT(ipsq->ipsq_current_ioctl == 0);
8011 	ipsq->ipsq_current_ipif = ipif;
8012 	ipsq->ipsq_current_ioctl = ioccmd;
8013 	mutex_exit(&ipsq->ipsq_lock);
8014 }
8015 
8016 /*
8017  * Finish the current exclusive operation on `ipsq'.  Note that other
8018  * operations will not be able to proceed until an ipsq_exit() is done.
8019  */
8020 void
8021 ipsq_current_finish(ipsq_t *ipsq)
8022 {
8023 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8024 	hook_nic_event_t *info;
8025 
8026 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8027 
8028 	/*
8029 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8030 	 * (but we're careful to never set IPIF_CHANGING in that case).
8031 	 */
8032 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8033 		mutex_enter(&ipif->ipif_ill->ill_lock);
8034 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8035 		/*
8036 		 * Unhook the nic event message from the ill and enqueue it
8037 		 * into the nic event taskq.
8038 		 */
8039 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
8040 			if (ddi_taskq_dispatch(eventq_queue_nic,
8041 			    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
8042 				ip2dbg(("ipsq_current_finish: "
8043 				    "ddi_taskq_dispatch failed\n"));
8044 				if (info->hne_data != NULL)
8045 					kmem_free(info->hne_data,
8046 					    info->hne_datalen);
8047 				kmem_free(info, sizeof (hook_nic_event_t));
8048 			}
8049 			ipif->ipif_ill->ill_nic_event_info = NULL;
8050 		}
8051 		mutex_exit(&ipif->ipif_ill->ill_lock);
8052 	}
8053 
8054 	mutex_enter(&ipsq->ipsq_lock);
8055 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8056 	ipsq->ipsq_current_ipif = NULL;
8057 	ipsq->ipsq_current_ioctl = 0;
8058 	mutex_exit(&ipsq->ipsq_lock);
8059 }
8060 
8061 /*
8062  * The ill is closing. Flush all messages on the ipsq that originated
8063  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8064  * for this ill since ipsq_enter could not have entered until then.
8065  * New messages can't be queued since the CONDEMNED flag is set.
8066  */
8067 static void
8068 ipsq_flush(ill_t *ill)
8069 {
8070 	queue_t	*q;
8071 	mblk_t	*prev;
8072 	mblk_t	*mp;
8073 	mblk_t	*mp_next;
8074 	ipsq_t	*ipsq;
8075 
8076 	ASSERT(IAM_WRITER_ILL(ill));
8077 	ipsq = ill->ill_phyint->phyint_ipsq;
8078 	/*
8079 	 * Flush any messages sent up by the driver.
8080 	 */
8081 	mutex_enter(&ipsq->ipsq_lock);
8082 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8083 		mp_next = mp->b_next;
8084 		q = mp->b_queue;
8085 		if (q == ill->ill_rq || q == ill->ill_wq) {
8086 			/* Remove the mp from the ipsq */
8087 			if (prev == NULL)
8088 				ipsq->ipsq_mphead = mp->b_next;
8089 			else
8090 				prev->b_next = mp->b_next;
8091 			if (ipsq->ipsq_mptail == mp) {
8092 				ASSERT(mp_next == NULL);
8093 				ipsq->ipsq_mptail = prev;
8094 			}
8095 			inet_freemsg(mp);
8096 		} else {
8097 			prev = mp;
8098 		}
8099 	}
8100 	mutex_exit(&ipsq->ipsq_lock);
8101 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8102 	ipsq_xopq_mp_cleanup(ill, NULL);
8103 	ill_pending_mp_cleanup(ill);
8104 }
8105 
8106 /*
8107  * Clean up one squeue element. ill_inuse_ref is protected by ill_lock.
8108  * The real cleanup happens behind the squeue via ip_squeue_clean function but
8109  * we need to protect ourselfs from 2 threads trying to cleanup at the same
8110  * time (possible with one port going down for aggr and someone tearing down the
8111  * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock
8112  * to indicate when the cleanup has started (1 ref) and when the cleanup
8113  * is done (0 ref). When a new ring gets assigned to squeue, we start by
8114  * putting 2 ref on ill_inuse_ref.
8115  */
8116 static void
8117 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring)
8118 {
8119 	conn_t *connp;
8120 	squeue_t *sqp;
8121 	mblk_t *mp;
8122 
8123 	ASSERT(rx_ring != NULL);
8124 
8125 	/* Just clean one squeue */
8126 	mutex_enter(&ill->ill_lock);
8127 	/*
8128 	 * Reset the ILL_SOFT_RING_ASSIGN bit so that
8129 	 * ip_squeue_soft_ring_affinty() will not go
8130 	 * ahead with assigning rings.
8131 	 */
8132 	ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN;
8133 	while (rx_ring->rr_ring_state == ILL_RING_INPROC)
8134 		/* Some operations pending on the ring. Wait */
8135 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8136 
8137 	if (rx_ring->rr_ring_state != ILL_RING_INUSE) {
8138 		/*
8139 		 * Someone already trying to clean
8140 		 * this squeue or its already been cleaned.
8141 		 */
8142 		mutex_exit(&ill->ill_lock);
8143 		return;
8144 	}
8145 	sqp = rx_ring->rr_sqp;
8146 
8147 	if (sqp == NULL) {
8148 		/*
8149 		 * The rx_ring never had a squeue assigned to it.
8150 		 * We are under ill_lock so we can clean it up
8151 		 * here itself since no one can get to it.
8152 		 */
8153 		rx_ring->rr_blank = NULL;
8154 		rx_ring->rr_handle = NULL;
8155 		rx_ring->rr_sqp = NULL;
8156 		rx_ring->rr_ring_state = ILL_RING_FREE;
8157 		mutex_exit(&ill->ill_lock);
8158 		return;
8159 	}
8160 
8161 	/* Set the state that its being cleaned */
8162 	rx_ring->rr_ring_state = ILL_RING_BEING_FREED;
8163 	ASSERT(sqp != NULL);
8164 	mutex_exit(&ill->ill_lock);
8165 
8166 	/*
8167 	 * Use the preallocated ill_unbind_conn for this purpose
8168 	 */
8169 	connp = ill->ill_dls_capab->ill_unbind_conn;
8170 
8171 	ASSERT(!connp->conn_tcp->tcp_closemp.b_prev);
8172 	TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15);
8173 	if (connp->conn_tcp->tcp_closemp.b_prev == NULL)
8174 		connp->conn_tcp->tcp_closemp_used = 1;
8175 	else
8176 		connp->conn_tcp->tcp_closemp_used++;
8177 	mp = &connp->conn_tcp->tcp_closemp;
8178 	CONN_INC_REF(connp);
8179 	squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL);
8180 
8181 	mutex_enter(&ill->ill_lock);
8182 	while (rx_ring->rr_ring_state != ILL_RING_FREE)
8183 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8184 
8185 	mutex_exit(&ill->ill_lock);
8186 }
8187 
8188 static void
8189 ipsq_clean_all(ill_t *ill)
8190 {
8191 	int idx;
8192 
8193 	/*
8194 	 * No need to clean if poll_capab isn't set for this ill
8195 	 */
8196 	if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)))
8197 		return;
8198 
8199 	for (idx = 0; idx < ILL_MAX_RINGS; idx++) {
8200 		ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx];
8201 		ipsq_clean_ring(ill, ipr);
8202 	}
8203 
8204 	ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING);
8205 }
8206 
8207 /* ARGSUSED */
8208 int
8209 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8210     ip_ioctl_cmd_t *ipip, void *ifreq)
8211 {
8212 	ill_t	*ill;
8213 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8214 	boolean_t isv6;
8215 	conn_t	*connp;
8216 
8217 	connp = Q_TO_CONN(q);
8218 	isv6 = connp->conn_af_isv6;
8219 	/*
8220 	 * Set original index.
8221 	 * Failover and failback move logical interfaces
8222 	 * from one physical interface to another.  The
8223 	 * original index indicates the parent of a logical
8224 	 * interface, in other words, the physical interface
8225 	 * the logical interface will be moved back to on
8226 	 * failback.
8227 	 */
8228 
8229 	/*
8230 	 * Don't allow the original index to be changed
8231 	 * for non-failover addresses, autoconfigured
8232 	 * addresses, or IPv6 link local addresses.
8233 	 */
8234 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8235 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8236 		return (EINVAL);
8237 	}
8238 	/*
8239 	 * The new original index must be in use by some
8240 	 * physical interface.
8241 	 */
8242 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8243 	    NULL, NULL);
8244 	if (ill == NULL)
8245 		return (ENXIO);
8246 	ill_refrele(ill);
8247 
8248 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8249 	/*
8250 	 * When this ipif gets failed back, don't
8251 	 * preserve the original id, as it is no
8252 	 * longer applicable.
8253 	 */
8254 	ipif->ipif_orig_ipifid = 0;
8255 	/*
8256 	 * For IPv4, change the original index of any
8257 	 * multicast addresses associated with the
8258 	 * ipif to the new value.
8259 	 */
8260 	if (!isv6) {
8261 		ilm_t *ilm;
8262 
8263 		mutex_enter(&ipif->ipif_ill->ill_lock);
8264 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8265 		    ilm = ilm->ilm_next) {
8266 			if (ilm->ilm_ipif == ipif) {
8267 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8268 			}
8269 		}
8270 		mutex_exit(&ipif->ipif_ill->ill_lock);
8271 	}
8272 	return (0);
8273 }
8274 
8275 /* ARGSUSED */
8276 int
8277 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8278     ip_ioctl_cmd_t *ipip, void *ifreq)
8279 {
8280 	struct lifreq *lifr = (struct lifreq *)ifreq;
8281 
8282 	/*
8283 	 * Get the original interface index i.e the one
8284 	 * before FAILOVER if it ever happened.
8285 	 */
8286 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8287 	return (0);
8288 }
8289 
8290 /*
8291  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8292  * refhold and return the associated ipif
8293  */
8294 int
8295 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func)
8296 {
8297 	boolean_t exists;
8298 	struct iftun_req *ta;
8299 	ipif_t	*ipif;
8300 	ill_t	*ill;
8301 	boolean_t isv6;
8302 	mblk_t	*mp1;
8303 	int	error;
8304 	conn_t	*connp;
8305 
8306 	/* Existence verified in ip_wput_nondata */
8307 	mp1 = mp->b_cont->b_cont;
8308 	ta = (struct iftun_req *)mp1->b_rptr;
8309 	/*
8310 	 * Null terminate the string to protect against buffer
8311 	 * overrun. String was generated by user code and may not
8312 	 * be trusted.
8313 	 */
8314 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8315 
8316 	connp = Q_TO_CONN(q);
8317 	isv6 = connp->conn_af_isv6;
8318 
8319 	/* Disallows implicit create */
8320 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8321 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8322 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error);
8323 	if (ipif == NULL)
8324 		return (error);
8325 
8326 	if (ipif->ipif_id != 0) {
8327 		/*
8328 		 * We really don't want to set/get tunnel parameters
8329 		 * on virtual tunnel interfaces.  Only allow the
8330 		 * base tunnel to do these.
8331 		 */
8332 		ipif_refrele(ipif);
8333 		return (EINVAL);
8334 	}
8335 
8336 	/*
8337 	 * Send down to tunnel mod for ioctl processing.
8338 	 * Will finish ioctl in ip_rput_other().
8339 	 */
8340 	ill = ipif->ipif_ill;
8341 	if (ill->ill_net_type == IRE_LOOPBACK) {
8342 		ipif_refrele(ipif);
8343 		return (EOPNOTSUPP);
8344 	}
8345 
8346 	if (ill->ill_wq == NULL) {
8347 		ipif_refrele(ipif);
8348 		return (ENXIO);
8349 	}
8350 	/*
8351 	 * Mark the ioctl as coming from an IPv6 interface for
8352 	 * tun's convenience.
8353 	 */
8354 	if (ill->ill_isv6)
8355 		ta->ifta_flags |= 0x80000000;
8356 	*ipifp = ipif;
8357 	return (0);
8358 }
8359 
8360 /*
8361  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8362  * and return the associated ipif.
8363  * Return value:
8364  *	Non zero: An error has occurred. ci may not be filled out.
8365  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8366  *	a held ipif in ci.ci_ipif.
8367  */
8368 int
8369 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags,
8370     cmd_info_t *ci, ipsq_func_t func)
8371 {
8372 	sin_t		*sin;
8373 	sin6_t		*sin6;
8374 	char		*name;
8375 	struct ifreq    *ifr;
8376 	struct lifreq    *lifr;
8377 	ipif_t		*ipif = NULL;
8378 	ill_t		*ill;
8379 	conn_t		*connp;
8380 	boolean_t	isv6;
8381 	struct iocblk   *iocp = (struct iocblk *)mp->b_rptr;
8382 	boolean_t	exists;
8383 	int		err;
8384 	mblk_t		*mp1;
8385 	zoneid_t	zoneid;
8386 
8387 	if (q->q_next != NULL) {
8388 		ill = (ill_t *)q->q_ptr;
8389 		isv6 = ill->ill_isv6;
8390 		connp = NULL;
8391 		zoneid = ALL_ZONES;
8392 	} else {
8393 		ill = NULL;
8394 		connp = Q_TO_CONN(q);
8395 		isv6 = connp->conn_af_isv6;
8396 		zoneid = connp->conn_zoneid;
8397 		if (zoneid == GLOBAL_ZONEID) {
8398 			/* global zone can access ipifs in all zones */
8399 			zoneid = ALL_ZONES;
8400 		}
8401 	}
8402 
8403 	/* Has been checked in ip_wput_nondata */
8404 	mp1 = mp->b_cont->b_cont;
8405 
8406 
8407 	if (cmd_type == IF_CMD) {
8408 		/* This a old style SIOC[GS]IF* command */
8409 		ifr = (struct ifreq *)mp1->b_rptr;
8410 		/*
8411 		 * Null terminate the string to protect against buffer
8412 		 * overrun. String was generated by user code and may not
8413 		 * be trusted.
8414 		 */
8415 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8416 		sin = (sin_t *)&ifr->ifr_addr;
8417 		name = ifr->ifr_name;
8418 		ci->ci_sin = sin;
8419 		ci->ci_sin6 = NULL;
8420 		ci->ci_lifr = (struct lifreq *)ifr;
8421 	} else {
8422 		/* This a new style SIOC[GS]LIF* command */
8423 		ASSERT(cmd_type == LIF_CMD);
8424 		lifr = (struct lifreq *)mp1->b_rptr;
8425 		/*
8426 		 * Null terminate the string to protect against buffer
8427 		 * overrun. String was generated by user code and may not
8428 		 * be trusted.
8429 		 */
8430 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8431 		name = lifr->lifr_name;
8432 		sin = (sin_t *)&lifr->lifr_addr;
8433 		sin6 = (sin6_t *)&lifr->lifr_addr;
8434 		if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) {
8435 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8436 			    LIFNAMSIZ);
8437 		}
8438 		ci->ci_sin = sin;
8439 		ci->ci_sin6 = sin6;
8440 		ci->ci_lifr = lifr;
8441 	}
8442 
8443 
8444 	if (iocp->ioc_cmd == SIOCSLIFNAME) {
8445 		/*
8446 		 * The ioctl will be failed if the ioctl comes down
8447 		 * an conn stream
8448 		 */
8449 		if (ill == NULL) {
8450 			/*
8451 			 * Not an ill queue, return EINVAL same as the
8452 			 * old error code.
8453 			 */
8454 			return (ENXIO);
8455 		}
8456 		ipif = ill->ill_ipif;
8457 		ipif_refhold(ipif);
8458 	} else {
8459 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8460 		    &exists, isv6, zoneid,
8461 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err);
8462 		if (ipif == NULL) {
8463 			if (err == EINPROGRESS)
8464 				return (err);
8465 			if (iocp->ioc_cmd == SIOCLIFFAILOVER ||
8466 			    iocp->ioc_cmd == SIOCLIFFAILBACK) {
8467 				/*
8468 				 * Need to try both v4 and v6 since this
8469 				 * ioctl can come down either v4 or v6
8470 				 * socket. The lifreq.lifr_family passed
8471 				 * down by this ioctl is AF_UNSPEC.
8472 				 */
8473 				ipif = ipif_lookup_on_name(name,
8474 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8475 				    zoneid, (connp == NULL) ? q :
8476 				    CONNP_TO_WQ(connp), mp, func, &err);
8477 				if (err == EINPROGRESS)
8478 					return (err);
8479 			}
8480 			err = 0;	/* Ensure we don't use it below */
8481 		}
8482 	}
8483 
8484 	/*
8485 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8486 	 */
8487 	if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) {
8488 		ipif_refrele(ipif);
8489 		return (ENXIO);
8490 	}
8491 
8492 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8493 	    name[0] == '\0') {
8494 		/*
8495 		 * Handle a or a SIOC?IF* with a null name
8496 		 * during plumb (on the ill queue before the I_PLINK).
8497 		 */
8498 		ipif = ill->ill_ipif;
8499 		ipif_refhold(ipif);
8500 	}
8501 
8502 	if (ipif == NULL)
8503 		return (ENXIO);
8504 
8505 	/*
8506 	 * Allow only GET operations if this ipif has been created
8507 	 * temporarily due to a MOVE operation.
8508 	 */
8509 	if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) {
8510 		ipif_refrele(ipif);
8511 		return (EINVAL);
8512 	}
8513 
8514 	ci->ci_ipif = ipif;
8515 	return (0);
8516 }
8517 
8518 /*
8519  * Return the total number of ipifs.
8520  */
8521 static uint_t
8522 ip_get_numifs(zoneid_t zoneid)
8523 {
8524 	uint_t numifs = 0;
8525 	ill_t	*ill;
8526 	ill_walk_context_t	ctx;
8527 	ipif_t	*ipif;
8528 
8529 	rw_enter(&ill_g_lock, RW_READER);
8530 	ill = ILL_START_WALK_V4(&ctx);
8531 
8532 	while (ill != NULL) {
8533 		for (ipif = ill->ill_ipif; ipif != NULL;
8534 		    ipif = ipif->ipif_next) {
8535 			if (ipif->ipif_zoneid == zoneid ||
8536 			    ipif->ipif_zoneid == ALL_ZONES)
8537 				numifs++;
8538 		}
8539 		ill = ill_next(&ctx, ill);
8540 	}
8541 	rw_exit(&ill_g_lock);
8542 	return (numifs);
8543 }
8544 
8545 /*
8546  * Return the total number of ipifs.
8547  */
8548 static uint_t
8549 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid)
8550 {
8551 	uint_t numifs = 0;
8552 	ill_t	*ill;
8553 	ipif_t	*ipif;
8554 	ill_walk_context_t	ctx;
8555 
8556 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8557 
8558 	rw_enter(&ill_g_lock, RW_READER);
8559 	if (family == AF_INET)
8560 		ill = ILL_START_WALK_V4(&ctx);
8561 	else if (family == AF_INET6)
8562 		ill = ILL_START_WALK_V6(&ctx);
8563 	else
8564 		ill = ILL_START_WALK_ALL(&ctx);
8565 
8566 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8567 		for (ipif = ill->ill_ipif; ipif != NULL;
8568 		    ipif = ipif->ipif_next) {
8569 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8570 			    !(lifn_flags & LIFC_NOXMIT))
8571 				continue;
8572 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8573 			    !(lifn_flags & LIFC_TEMPORARY))
8574 				continue;
8575 			if (((ipif->ipif_flags &
8576 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8577 			    IPIF_DEPRECATED)) ||
8578 			    (ill->ill_phyint->phyint_flags &
8579 			    PHYI_LOOPBACK) ||
8580 			    !(ipif->ipif_flags & IPIF_UP)) &&
8581 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8582 				continue;
8583 
8584 			if (zoneid != ipif->ipif_zoneid &&
8585 			    ipif->ipif_zoneid != ALL_ZONES &&
8586 			    (zoneid != GLOBAL_ZONEID ||
8587 			    !(lifn_flags & LIFC_ALLZONES)))
8588 				continue;
8589 
8590 			numifs++;
8591 		}
8592 	}
8593 	rw_exit(&ill_g_lock);
8594 	return (numifs);
8595 }
8596 
8597 uint_t
8598 ip_get_lifsrcofnum(ill_t *ill)
8599 {
8600 	uint_t numifs = 0;
8601 	ill_t	*ill_head = ill;
8602 
8603 	/*
8604 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8605 	 * other thread may be trying to relink the ILLs in this usesrc group
8606 	 * and adjusting the ill_usesrc_grp_next pointers
8607 	 */
8608 	rw_enter(&ill_g_usesrc_lock, RW_READER);
8609 	if ((ill->ill_usesrc_ifindex == 0) &&
8610 	    (ill->ill_usesrc_grp_next != NULL)) {
8611 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8612 		    ill = ill->ill_usesrc_grp_next)
8613 			numifs++;
8614 	}
8615 	rw_exit(&ill_g_usesrc_lock);
8616 
8617 	return (numifs);
8618 }
8619 
8620 /* Null values are passed in for ipif, sin, and ifreq */
8621 /* ARGSUSED */
8622 int
8623 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8624     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8625 {
8626 	int *nump;
8627 
8628 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8629 
8630 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8631 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8632 
8633 	*nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid);
8634 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8635 	return (0);
8636 }
8637 
8638 /* Null values are passed in for ipif, sin, and ifreq */
8639 /* ARGSUSED */
8640 int
8641 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8642     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8643 {
8644 	struct lifnum *lifn;
8645 	mblk_t	*mp1;
8646 
8647 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8648 
8649 	/* Existence checked in ip_wput_nondata */
8650 	mp1 = mp->b_cont->b_cont;
8651 
8652 	lifn = (struct lifnum *)mp1->b_rptr;
8653 	switch (lifn->lifn_family) {
8654 	case AF_UNSPEC:
8655 	case AF_INET:
8656 	case AF_INET6:
8657 		break;
8658 	default:
8659 		return (EAFNOSUPPORT);
8660 	}
8661 
8662 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8663 	    Q_TO_CONN(q)->conn_zoneid);
8664 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8665 	return (0);
8666 }
8667 
8668 /* ARGSUSED */
8669 int
8670 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8671     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8672 {
8673 	STRUCT_HANDLE(ifconf, ifc);
8674 	mblk_t *mp1;
8675 	struct iocblk *iocp;
8676 	struct ifreq *ifr;
8677 	ill_walk_context_t	ctx;
8678 	ill_t	*ill;
8679 	ipif_t	*ipif;
8680 	struct sockaddr_in *sin;
8681 	int32_t	ifclen;
8682 	zoneid_t zoneid;
8683 
8684 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8685 
8686 	ip1dbg(("ip_sioctl_get_ifconf"));
8687 	/* Existence verified in ip_wput_nondata */
8688 	mp1 = mp->b_cont->b_cont;
8689 	iocp = (struct iocblk *)mp->b_rptr;
8690 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8691 
8692 	/*
8693 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8694 	 * the user buffer address and length into which the list of struct
8695 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8696 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8697 	 * the SIOCGIFCONF operation was redefined to simply provide
8698 	 * a large output buffer into which we are supposed to jam the ifreq
8699 	 * array.  The same ioctl command code was used, despite the fact that
8700 	 * both the applications and the kernel code had to change, thus making
8701 	 * it impossible to support both interfaces.
8702 	 *
8703 	 * For reasons not good enough to try to explain, the following
8704 	 * algorithm is used for deciding what to do with one of these:
8705 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8706 	 * form with the output buffer coming down as the continuation message.
8707 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8708 	 * and we have to copy in the ifconf structure to find out how big the
8709 	 * output buffer is and where to copy out to.  Sure no problem...
8710 	 *
8711 	 */
8712 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8713 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8714 		int numifs = 0;
8715 		size_t ifc_bufsize;
8716 
8717 		/*
8718 		 * Must be (better be!) continuation of a TRANSPARENT
8719 		 * IOCTL.  We just copied in the ifconf structure.
8720 		 */
8721 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8722 		    (struct ifconf *)mp1->b_rptr);
8723 
8724 		/*
8725 		 * Allocate a buffer to hold requested information.
8726 		 *
8727 		 * If ifc_len is larger than what is needed, we only
8728 		 * allocate what we will use.
8729 		 *
8730 		 * If ifc_len is smaller than what is needed, return
8731 		 * EINVAL.
8732 		 *
8733 		 * XXX: the ill_t structure can hava 2 counters, for
8734 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8735 		 * number of interfaces for a device, so we don't need
8736 		 * to count them here...
8737 		 */
8738 		numifs = ip_get_numifs(zoneid);
8739 
8740 		ifclen = STRUCT_FGET(ifc, ifc_len);
8741 		ifc_bufsize = numifs * sizeof (struct ifreq);
8742 		if (ifc_bufsize > ifclen) {
8743 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8744 				/* old behaviour */
8745 				return (EINVAL);
8746 			} else {
8747 				ifc_bufsize = ifclen;
8748 			}
8749 		}
8750 
8751 		mp1 = mi_copyout_alloc(q, mp,
8752 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8753 		if (mp1 == NULL)
8754 			return (ENOMEM);
8755 
8756 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8757 	}
8758 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8759 	/*
8760 	 * the SIOCGIFCONF ioctl only knows about
8761 	 * IPv4 addresses, so don't try to tell
8762 	 * it about interfaces with IPv6-only
8763 	 * addresses. (Last parm 'isv6' is B_FALSE)
8764 	 */
8765 
8766 	ifr = (struct ifreq *)mp1->b_rptr;
8767 
8768 	rw_enter(&ill_g_lock, RW_READER);
8769 	ill = ILL_START_WALK_V4(&ctx);
8770 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8771 		for (ipif = ill->ill_ipif; ipif != NULL;
8772 		    ipif = ipif->ipif_next) {
8773 			if (zoneid != ipif->ipif_zoneid &&
8774 			    ipif->ipif_zoneid != ALL_ZONES)
8775 				continue;
8776 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8777 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8778 					/* old behaviour */
8779 					rw_exit(&ill_g_lock);
8780 					return (EINVAL);
8781 				} else {
8782 					goto if_copydone;
8783 				}
8784 			}
8785 			(void) ipif_get_name(ipif,
8786 			    ifr->ifr_name,
8787 			    sizeof (ifr->ifr_name));
8788 			sin = (sin_t *)&ifr->ifr_addr;
8789 			*sin = sin_null;
8790 			sin->sin_family = AF_INET;
8791 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8792 			ifr++;
8793 		}
8794 	}
8795 if_copydone:
8796 	rw_exit(&ill_g_lock);
8797 	mp1->b_wptr = (uchar_t *)ifr;
8798 
8799 	if (STRUCT_BUF(ifc) != NULL) {
8800 		STRUCT_FSET(ifc, ifc_len,
8801 			(int)((uchar_t *)ifr - mp1->b_rptr));
8802 	}
8803 	return (0);
8804 }
8805 
8806 /*
8807  * Get the interfaces using the address hosted on the interface passed in,
8808  * as a source adddress
8809  */
8810 /* ARGSUSED */
8811 int
8812 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8813     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8814 {
8815 	mblk_t *mp1;
8816 	ill_t	*ill, *ill_head;
8817 	ipif_t	*ipif, *orig_ipif;
8818 	int	numlifs = 0;
8819 	size_t	lifs_bufsize, lifsmaxlen;
8820 	struct	lifreq *lifr;
8821 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8822 	uint_t	ifindex;
8823 	zoneid_t zoneid;
8824 	int err = 0;
8825 	boolean_t isv6 = B_FALSE;
8826 	struct	sockaddr_in	*sin;
8827 	struct	sockaddr_in6	*sin6;
8828 
8829 	STRUCT_HANDLE(lifsrcof, lifs);
8830 
8831 	ASSERT(q->q_next == NULL);
8832 
8833 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8834 
8835 	/* Existence verified in ip_wput_nondata */
8836 	mp1 = mp->b_cont->b_cont;
8837 
8838 	/*
8839 	 * Must be (better be!) continuation of a TRANSPARENT
8840 	 * IOCTL.  We just copied in the lifsrcof structure.
8841 	 */
8842 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8843 	    (struct lifsrcof *)mp1->b_rptr);
8844 
8845 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8846 		return (EINVAL);
8847 
8848 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8849 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8850 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8851 	    ip_process_ioctl, &err);
8852 	if (ipif == NULL) {
8853 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8854 		    ifindex));
8855 		return (err);
8856 	}
8857 
8858 
8859 	/* Allocate a buffer to hold requested information */
8860 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8861 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8862 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8863 	/* The actual size needed is always returned in lifs_len */
8864 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8865 
8866 	/* If the amount we need is more than what is passed in, abort */
8867 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8868 		ipif_refrele(ipif);
8869 		return (0);
8870 	}
8871 
8872 	mp1 = mi_copyout_alloc(q, mp,
8873 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8874 	if (mp1 == NULL) {
8875 		ipif_refrele(ipif);
8876 		return (ENOMEM);
8877 	}
8878 
8879 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8880 	bzero(mp1->b_rptr, lifs_bufsize);
8881 
8882 	lifr = (struct lifreq *)mp1->b_rptr;
8883 
8884 	ill = ill_head = ipif->ipif_ill;
8885 	orig_ipif = ipif;
8886 
8887 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8888 	rw_enter(&ill_g_usesrc_lock, RW_READER);
8889 	rw_enter(&ill_g_lock, RW_READER);
8890 
8891 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8892 	for (; (ill != NULL) && (ill != ill_head);
8893 	    ill = ill->ill_usesrc_grp_next) {
8894 
8895 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8896 			break;
8897 
8898 		ipif = ill->ill_ipif;
8899 		(void) ipif_get_name(ipif,
8900 		    lifr->lifr_name, sizeof (lifr->lifr_name));
8901 		if (ipif->ipif_isv6) {
8902 			sin6 = (sin6_t *)&lifr->lifr_addr;
8903 			*sin6 = sin6_null;
8904 			sin6->sin6_family = AF_INET6;
8905 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8906 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8907 			    &ipif->ipif_v6net_mask);
8908 		} else {
8909 			sin = (sin_t *)&lifr->lifr_addr;
8910 			*sin = sin_null;
8911 			sin->sin_family = AF_INET;
8912 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8913 			lifr->lifr_addrlen = ip_mask_to_plen(
8914 			    ipif->ipif_net_mask);
8915 		}
8916 		lifr++;
8917 	}
8918 	rw_exit(&ill_g_usesrc_lock);
8919 	rw_exit(&ill_g_lock);
8920 	ipif_refrele(orig_ipif);
8921 	mp1->b_wptr = (uchar_t *)lifr;
8922 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8923 
8924 	return (0);
8925 }
8926 
8927 /* ARGSUSED */
8928 int
8929 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8930     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8931 {
8932 	mblk_t *mp1;
8933 	int	list;
8934 	ill_t	*ill;
8935 	ipif_t	*ipif;
8936 	int	flags;
8937 	int	numlifs = 0;
8938 	size_t	lifc_bufsize;
8939 	struct	lifreq *lifr;
8940 	sa_family_t	family;
8941 	struct	sockaddr_in	*sin;
8942 	struct	sockaddr_in6	*sin6;
8943 	ill_walk_context_t	ctx;
8944 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8945 	int32_t	lifclen;
8946 	zoneid_t zoneid;
8947 	STRUCT_HANDLE(lifconf, lifc);
8948 
8949 	ip1dbg(("ip_sioctl_get_lifconf"));
8950 
8951 	ASSERT(q->q_next == NULL);
8952 
8953 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8954 
8955 	/* Existence verified in ip_wput_nondata */
8956 	mp1 = mp->b_cont->b_cont;
8957 
8958 	/*
8959 	 * An extended version of SIOCGIFCONF that takes an
8960 	 * additional address family and flags field.
8961 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8962 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8963 	 * interfaces are omitted.
8964 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8965 	 * unless LIFC_TEMPORARY is specified.
8966 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8967 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8968 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8969 	 * has priority over LIFC_NOXMIT.
8970 	 */
8971 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8972 
8973 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8974 		return (EINVAL);
8975 
8976 	/*
8977 	 * Must be (better be!) continuation of a TRANSPARENT
8978 	 * IOCTL.  We just copied in the lifconf structure.
8979 	 */
8980 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8981 
8982 	family = STRUCT_FGET(lifc, lifc_family);
8983 	flags = STRUCT_FGET(lifc, lifc_flags);
8984 
8985 	switch (family) {
8986 	case AF_UNSPEC:
8987 		/*
8988 		 * walk all ILL's.
8989 		 */
8990 		list = MAX_G_HEADS;
8991 		break;
8992 	case AF_INET:
8993 		/*
8994 		 * walk only IPV4 ILL's.
8995 		 */
8996 		list = IP_V4_G_HEAD;
8997 		break;
8998 	case AF_INET6:
8999 		/*
9000 		 * walk only IPV6 ILL's.
9001 		 */
9002 		list = IP_V6_G_HEAD;
9003 		break;
9004 	default:
9005 		return (EAFNOSUPPORT);
9006 	}
9007 
9008 	/*
9009 	 * Allocate a buffer to hold requested information.
9010 	 *
9011 	 * If lifc_len is larger than what is needed, we only
9012 	 * allocate what we will use.
9013 	 *
9014 	 * If lifc_len is smaller than what is needed, return
9015 	 * EINVAL.
9016 	 */
9017 	numlifs = ip_get_numlifs(family, flags, zoneid);
9018 	lifc_bufsize = numlifs * sizeof (struct lifreq);
9019 	lifclen = STRUCT_FGET(lifc, lifc_len);
9020 	if (lifc_bufsize > lifclen) {
9021 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
9022 			return (EINVAL);
9023 		else
9024 			lifc_bufsize = lifclen;
9025 	}
9026 
9027 	mp1 = mi_copyout_alloc(q, mp,
9028 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
9029 	if (mp1 == NULL)
9030 		return (ENOMEM);
9031 
9032 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
9033 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
9034 
9035 	lifr = (struct lifreq *)mp1->b_rptr;
9036 
9037 	rw_enter(&ill_g_lock, RW_READER);
9038 	ill = ill_first(list, list, &ctx);
9039 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9040 		for (ipif = ill->ill_ipif; ipif != NULL;
9041 		    ipif = ipif->ipif_next) {
9042 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
9043 			    !(flags & LIFC_NOXMIT))
9044 				continue;
9045 
9046 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
9047 			    !(flags & LIFC_TEMPORARY))
9048 				continue;
9049 
9050 			if (((ipif->ipif_flags &
9051 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
9052 			    IPIF_DEPRECATED)) ||
9053 			    (ill->ill_phyint->phyint_flags &
9054 			    PHYI_LOOPBACK) ||
9055 			    !(ipif->ipif_flags & IPIF_UP)) &&
9056 			    (flags & LIFC_EXTERNAL_SOURCE))
9057 				continue;
9058 
9059 			if (zoneid != ipif->ipif_zoneid &&
9060 			    ipif->ipif_zoneid != ALL_ZONES &&
9061 			    (zoneid != GLOBAL_ZONEID ||
9062 			    !(flags & LIFC_ALLZONES)))
9063 				continue;
9064 
9065 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
9066 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
9067 					rw_exit(&ill_g_lock);
9068 					return (EINVAL);
9069 				} else {
9070 					goto lif_copydone;
9071 				}
9072 			}
9073 
9074 			(void) ipif_get_name(ipif,
9075 				lifr->lifr_name,
9076 				sizeof (lifr->lifr_name));
9077 			if (ipif->ipif_isv6) {
9078 				sin6 = (sin6_t *)&lifr->lifr_addr;
9079 				*sin6 = sin6_null;
9080 				sin6->sin6_family = AF_INET6;
9081 				sin6->sin6_addr =
9082 				ipif->ipif_v6lcl_addr;
9083 				lifr->lifr_addrlen =
9084 				ip_mask_to_plen_v6(
9085 				    &ipif->ipif_v6net_mask);
9086 			} else {
9087 				sin = (sin_t *)&lifr->lifr_addr;
9088 				*sin = sin_null;
9089 				sin->sin_family = AF_INET;
9090 				sin->sin_addr.s_addr =
9091 				    ipif->ipif_lcl_addr;
9092 				lifr->lifr_addrlen =
9093 				    ip_mask_to_plen(
9094 				    ipif->ipif_net_mask);
9095 			}
9096 			lifr++;
9097 		}
9098 	}
9099 lif_copydone:
9100 	rw_exit(&ill_g_lock);
9101 
9102 	mp1->b_wptr = (uchar_t *)lifr;
9103 	if (STRUCT_BUF(lifc) != NULL) {
9104 		STRUCT_FSET(lifc, lifc_len,
9105 			(int)((uchar_t *)lifr - mp1->b_rptr));
9106 	}
9107 	return (0);
9108 }
9109 
9110 /* ARGSUSED */
9111 int
9112 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
9113     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9114 {
9115 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9116 	ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9117 	return (0);
9118 }
9119 
9120 static void
9121 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9122 {
9123 	ip6_asp_t *table;
9124 	size_t table_size;
9125 	mblk_t *data_mp;
9126 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9127 
9128 	/* These two ioctls are I_STR only */
9129 	if (iocp->ioc_count == TRANSPARENT) {
9130 		miocnak(q, mp, 0, EINVAL);
9131 		return;
9132 	}
9133 
9134 	data_mp = mp->b_cont;
9135 	if (data_mp == NULL) {
9136 		/* The user passed us a NULL argument */
9137 		table = NULL;
9138 		table_size = iocp->ioc_count;
9139 	} else {
9140 		/*
9141 		 * The user provided a table.  The stream head
9142 		 * may have copied in the user data in chunks,
9143 		 * so make sure everything is pulled up
9144 		 * properly.
9145 		 */
9146 		if (MBLKL(data_mp) < iocp->ioc_count) {
9147 			mblk_t *new_data_mp;
9148 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9149 			    NULL) {
9150 				miocnak(q, mp, 0, ENOMEM);
9151 				return;
9152 			}
9153 			freemsg(data_mp);
9154 			data_mp = new_data_mp;
9155 			mp->b_cont = data_mp;
9156 		}
9157 		table = (ip6_asp_t *)data_mp->b_rptr;
9158 		table_size = iocp->ioc_count;
9159 	}
9160 
9161 	switch (iocp->ioc_cmd) {
9162 	case SIOCGIP6ADDRPOLICY:
9163 		iocp->ioc_rval = ip6_asp_get(table, table_size);
9164 		if (iocp->ioc_rval == -1)
9165 			iocp->ioc_error = EINVAL;
9166 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9167 		else if (table != NULL &&
9168 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9169 			ip6_asp_t *src = table;
9170 			ip6_asp32_t *dst = (void *)table;
9171 			int count = table_size / sizeof (ip6_asp_t);
9172 			int i;
9173 
9174 			/*
9175 			 * We need to do an in-place shrink of the array
9176 			 * to match the alignment attributes of the
9177 			 * 32-bit ABI looking at it.
9178 			 */
9179 			/* LINTED: logical expression always true: op "||" */
9180 			ASSERT(sizeof (*src) > sizeof (*dst));
9181 			for (i = 1; i < count; i++)
9182 				bcopy(src + i, dst + i, sizeof (*dst));
9183 		}
9184 #endif
9185 		break;
9186 
9187 	case SIOCSIP6ADDRPOLICY:
9188 		ASSERT(mp->b_prev == NULL);
9189 		mp->b_prev = (void *)q;
9190 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9191 		/*
9192 		 * We pass in the datamodel here so that the ip6_asp_replace()
9193 		 * routine can handle converting from 32-bit to native formats
9194 		 * where necessary.
9195 		 *
9196 		 * A better way to handle this might be to convert the inbound
9197 		 * data structure here, and hang it off a new 'mp'; thus the
9198 		 * ip6_asp_replace() logic would always be dealing with native
9199 		 * format data structures..
9200 		 *
9201 		 * (An even simpler way to handle these ioctls is to just
9202 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9203 		 * and just recompile everything that depends on it.)
9204 		 */
9205 #endif
9206 		ip6_asp_replace(mp, table, table_size, B_FALSE,
9207 		    iocp->ioc_flag & IOC_MODELS);
9208 		return;
9209 	}
9210 
9211 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9212 	qreply(q, mp);
9213 }
9214 
9215 static void
9216 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9217 {
9218 	mblk_t 		*data_mp;
9219 	struct dstinforeq	*dir;
9220 	uint8_t		*end, *cur;
9221 	in6_addr_t	*daddr, *saddr;
9222 	ipaddr_t	v4daddr;
9223 	ire_t		*ire;
9224 	char		*slabel, *dlabel;
9225 	boolean_t	isipv4;
9226 	int		match_ire;
9227 	ill_t		*dst_ill;
9228 	ipif_t		*src_ipif, *ire_ipif;
9229 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9230 	zoneid_t	zoneid;
9231 
9232 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9233 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9234 
9235 	/*
9236 	 * This ioctl is I_STR only, and must have a
9237 	 * data mblk following the M_IOCTL mblk.
9238 	 */
9239 	data_mp = mp->b_cont;
9240 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9241 		miocnak(q, mp, 0, EINVAL);
9242 		return;
9243 	}
9244 
9245 	if (MBLKL(data_mp) < iocp->ioc_count) {
9246 		mblk_t *new_data_mp;
9247 
9248 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9249 			miocnak(q, mp, 0, ENOMEM);
9250 			return;
9251 		}
9252 		freemsg(data_mp);
9253 		data_mp = new_data_mp;
9254 		mp->b_cont = data_mp;
9255 	}
9256 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9257 
9258 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9259 	    end - cur >= sizeof (struct dstinforeq);
9260 	    cur += sizeof (struct dstinforeq)) {
9261 		dir = (struct dstinforeq *)cur;
9262 		daddr = &dir->dir_daddr;
9263 		saddr = &dir->dir_saddr;
9264 
9265 		/*
9266 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9267 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9268 		 * and ipif_select_source[_v6]() do not.
9269 		 */
9270 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9271 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence);
9272 
9273 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9274 		if (isipv4) {
9275 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9276 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9277 			    0, NULL, NULL, zoneid, 0, NULL, match_ire);
9278 		} else {
9279 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9280 			    0, NULL, NULL, zoneid, 0, NULL, match_ire);
9281 		}
9282 		if (ire == NULL) {
9283 			dir->dir_dreachable = 0;
9284 
9285 			/* move on to next dst addr */
9286 			continue;
9287 		}
9288 		dir->dir_dreachable = 1;
9289 
9290 		ire_ipif = ire->ire_ipif;
9291 		if (ire_ipif == NULL)
9292 			goto next_dst;
9293 
9294 		/*
9295 		 * We expect to get back an interface ire or a
9296 		 * gateway ire cache entry.  For both types, the
9297 		 * output interface is ire_ipif->ipif_ill.
9298 		 */
9299 		dst_ill = ire_ipif->ipif_ill;
9300 		dir->dir_dmactype = dst_ill->ill_mactype;
9301 
9302 		if (isipv4) {
9303 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9304 		} else {
9305 			src_ipif = ipif_select_source_v6(dst_ill,
9306 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9307 			    zoneid);
9308 		}
9309 		if (src_ipif == NULL)
9310 			goto next_dst;
9311 
9312 		*saddr = src_ipif->ipif_v6lcl_addr;
9313 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9314 		slabel = ip6_asp_lookup(saddr, NULL);
9315 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9316 		dir->dir_sdeprecated =
9317 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9318 		ipif_refrele(src_ipif);
9319 next_dst:
9320 		ire_refrele(ire);
9321 	}
9322 	miocack(q, mp, iocp->ioc_count, 0);
9323 }
9324 
9325 
9326 /*
9327  * Check if this is an address assigned to this machine.
9328  * Skips interfaces that are down by using ire checks.
9329  * Translates mapped addresses to v4 addresses and then
9330  * treats them as such, returning true if the v4 address
9331  * associated with this mapped address is configured.
9332  * Note: Applications will have to be careful what they do
9333  * with the response; use of mapped addresses limits
9334  * what can be done with the socket, especially with
9335  * respect to socket options and ioctls - neither IPv4
9336  * options nor IPv6 sticky options/ancillary data options
9337  * may be used.
9338  */
9339 /* ARGSUSED */
9340 int
9341 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9342     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9343 {
9344 	struct sioc_addrreq *sia;
9345 	sin_t *sin;
9346 	ire_t *ire;
9347 	mblk_t *mp1;
9348 	zoneid_t zoneid;
9349 
9350 	ip1dbg(("ip_sioctl_tmyaddr"));
9351 
9352 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9353 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9354 
9355 	/* Existence verified in ip_wput_nondata */
9356 	mp1 = mp->b_cont->b_cont;
9357 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9358 	sin = (sin_t *)&sia->sa_addr;
9359 	switch (sin->sin_family) {
9360 	case AF_INET6: {
9361 		sin6_t *sin6 = (sin6_t *)sin;
9362 
9363 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9364 			ipaddr_t v4_addr;
9365 
9366 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9367 			    v4_addr);
9368 			ire = ire_ctable_lookup(v4_addr, 0,
9369 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9370 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9371 		} else {
9372 			in6_addr_t v6addr;
9373 
9374 			v6addr = sin6->sin6_addr;
9375 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9376 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9377 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9378 		}
9379 		break;
9380 	}
9381 	case AF_INET: {
9382 		ipaddr_t v4addr;
9383 
9384 		v4addr = sin->sin_addr.s_addr;
9385 		ire = ire_ctable_lookup(v4addr, 0,
9386 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9387 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY);
9388 		break;
9389 	}
9390 	default:
9391 		return (EAFNOSUPPORT);
9392 	}
9393 	if (ire != NULL) {
9394 		sia->sa_res = 1;
9395 		ire_refrele(ire);
9396 	} else {
9397 		sia->sa_res = 0;
9398 	}
9399 	return (0);
9400 }
9401 
9402 /*
9403  * Check if this is an address assigned on-link i.e. neighbor,
9404  * and makes sure it's reachable from the current zone.
9405  * Returns true for my addresses as well.
9406  * Translates mapped addresses to v4 addresses and then
9407  * treats them as such, returning true if the v4 address
9408  * associated with this mapped address is configured.
9409  * Note: Applications will have to be careful what they do
9410  * with the response; use of mapped addresses limits
9411  * what can be done with the socket, especially with
9412  * respect to socket options and ioctls - neither IPv4
9413  * options nor IPv6 sticky options/ancillary data options
9414  * may be used.
9415  */
9416 /* ARGSUSED */
9417 int
9418 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9419     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9420 {
9421 	struct sioc_addrreq *sia;
9422 	sin_t *sin;
9423 	mblk_t	*mp1;
9424 	ire_t *ire = NULL;
9425 	zoneid_t zoneid;
9426 
9427 	ip1dbg(("ip_sioctl_tonlink"));
9428 
9429 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9430 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9431 
9432 	/* Existence verified in ip_wput_nondata */
9433 	mp1 = mp->b_cont->b_cont;
9434 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9435 	sin = (sin_t *)&sia->sa_addr;
9436 
9437 	/*
9438 	 * Match addresses with a zero gateway field to avoid
9439 	 * routes going through a router.
9440 	 * Exclude broadcast and multicast addresses.
9441 	 */
9442 	switch (sin->sin_family) {
9443 	case AF_INET6: {
9444 		sin6_t *sin6 = (sin6_t *)sin;
9445 
9446 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9447 			ipaddr_t v4_addr;
9448 
9449 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9450 			    v4_addr);
9451 			if (!CLASSD(v4_addr)) {
9452 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9453 				    NULL, NULL, zoneid, NULL,
9454 				    MATCH_IRE_GW);
9455 			}
9456 		} else {
9457 			in6_addr_t v6addr;
9458 			in6_addr_t v6gw;
9459 
9460 			v6addr = sin6->sin6_addr;
9461 			v6gw = ipv6_all_zeros;
9462 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9463 				ire = ire_route_lookup_v6(&v6addr, 0,
9464 				    &v6gw, 0, NULL, NULL, zoneid,
9465 				    NULL, MATCH_IRE_GW);
9466 			}
9467 		}
9468 		break;
9469 	}
9470 	case AF_INET: {
9471 		ipaddr_t v4addr;
9472 
9473 		v4addr = sin->sin_addr.s_addr;
9474 		if (!CLASSD(v4addr)) {
9475 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9476 			    NULL, NULL, zoneid, NULL,
9477 			    MATCH_IRE_GW);
9478 		}
9479 		break;
9480 	}
9481 	default:
9482 		return (EAFNOSUPPORT);
9483 	}
9484 	sia->sa_res = 0;
9485 	if (ire != NULL) {
9486 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9487 		    IRE_LOCAL|IRE_LOOPBACK)) {
9488 			sia->sa_res = 1;
9489 		}
9490 		ire_refrele(ire);
9491 	}
9492 	return (0);
9493 }
9494 
9495 /*
9496  * TBD: implement when kernel maintaines a list of site prefixes.
9497  */
9498 /* ARGSUSED */
9499 int
9500 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9501     ip_ioctl_cmd_t *ipip, void *ifreq)
9502 {
9503 	return (ENXIO);
9504 }
9505 
9506 /* ARGSUSED */
9507 int
9508 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9509     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9510 {
9511 	ill_t  		*ill;
9512 	mblk_t		*mp1;
9513 	conn_t		*connp;
9514 	boolean_t	success;
9515 
9516 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9517 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9518 	/* ioctl comes down on an conn */
9519 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9520 	connp = Q_TO_CONN(q);
9521 
9522 	mp->b_datap->db_type = M_IOCTL;
9523 
9524 	/*
9525 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9526 	 * The original mp contains contaminated b_next values due to 'mi',
9527 	 * which is needed to do the mi_copy_done. Unfortunately if we
9528 	 * send down the original mblk itself and if we are popped due to an
9529 	 * an unplumb before the response comes back from tunnel,
9530 	 * the streamhead (which does a freemsg) will see this contaminated
9531 	 * message and the assertion in freemsg about non-null b_next/b_prev
9532 	 * will panic a DEBUG kernel.
9533 	 */
9534 	mp1 = copymsg(mp);
9535 	if (mp1 == NULL)
9536 		return (ENOMEM);
9537 
9538 	ill = ipif->ipif_ill;
9539 	mutex_enter(&connp->conn_lock);
9540 	mutex_enter(&ill->ill_lock);
9541 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9542 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9543 		    mp, 0);
9544 	} else {
9545 		success = ill_pending_mp_add(ill, connp, mp);
9546 	}
9547 	mutex_exit(&ill->ill_lock);
9548 	mutex_exit(&connp->conn_lock);
9549 
9550 	if (success) {
9551 		ip1dbg(("sending down tunparam request "));
9552 		putnext(ill->ill_wq, mp1);
9553 		return (EINPROGRESS);
9554 	} else {
9555 		/* The conn has started closing */
9556 		freemsg(mp1);
9557 		return (EINTR);
9558 	}
9559 }
9560 
9561 static int
9562 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin,
9563     boolean_t x_arp_ioctl, boolean_t if_arp_ioctl)
9564 {
9565 	mblk_t *mp1;
9566 	mblk_t *mp2;
9567 	mblk_t *pending_mp;
9568 	ipaddr_t ipaddr;
9569 	area_t *area;
9570 	struct iocblk *iocp;
9571 	conn_t *connp;
9572 	struct arpreq *ar;
9573 	struct xarpreq *xar;
9574 	boolean_t success;
9575 	int flags, alength;
9576 	char *lladdr;
9577 
9578 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9579 	connp = Q_TO_CONN(q);
9580 
9581 	iocp = (struct iocblk *)mp->b_rptr;
9582 	/*
9583 	 * ill has already been set depending on whether
9584 	 * bsd style or interface style ioctl.
9585 	 */
9586 	ASSERT(ill != NULL);
9587 
9588 	/*
9589 	 * Is this one of the new SIOC*XARP ioctls?
9590 	 */
9591 	if (x_arp_ioctl) {
9592 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9593 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9594 		ar = NULL;
9595 
9596 		flags = xar->xarp_flags;
9597 		lladdr = LLADDR(&xar->xarp_ha);
9598 		/*
9599 		 * Validate against user's link layer address length
9600 		 * input and name and addr length limits.
9601 		 */
9602 		alength = ill->ill_phys_addr_length;
9603 		if (iocp->ioc_cmd == SIOCSXARP) {
9604 			if (alength != xar->xarp_ha.sdl_alen ||
9605 			    (alength + xar->xarp_ha.sdl_nlen >
9606 			    sizeof (xar->xarp_ha.sdl_data)))
9607 				return (EINVAL);
9608 		}
9609 	} else {
9610 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9611 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9612 		xar = NULL;
9613 
9614 		flags = ar->arp_flags;
9615 		lladdr = ar->arp_ha.sa_data;
9616 		/*
9617 		 * Theoretically, the sa_family could tell us what link
9618 		 * layer type this operation is trying to deal with. By
9619 		 * common usage AF_UNSPEC means ethernet. We'll assume
9620 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9621 		 * for now. Our new SIOC*XARP ioctls can be used more
9622 		 * generally.
9623 		 *
9624 		 * If the underlying media happens to have a non 6 byte
9625 		 * address, arp module will fail set/get, but the del
9626 		 * operation will succeed.
9627 		 */
9628 		alength = 6;
9629 		if ((iocp->ioc_cmd != SIOCDARP) &&
9630 		    (alength != ill->ill_phys_addr_length)) {
9631 			return (EINVAL);
9632 		}
9633 	}
9634 
9635 	/*
9636 	 * We are going to pass up to ARP a packet chain that looks
9637 	 * like:
9638 	 *
9639 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9640 	 *
9641 	 * Get a copy of the original IOCTL mblk to head the chain,
9642 	 * to be sent up (in mp1). Also get another copy to store
9643 	 * in the ill_pending_mp list, for matching the response
9644 	 * when it comes back from ARP.
9645 	 */
9646 	mp1 = copyb(mp);
9647 	pending_mp = copymsg(mp);
9648 	if (mp1 == NULL || pending_mp == NULL) {
9649 		if (mp1 != NULL)
9650 			freeb(mp1);
9651 		if (pending_mp != NULL)
9652 			inet_freemsg(pending_mp);
9653 		return (ENOMEM);
9654 	}
9655 
9656 	ipaddr = sin->sin_addr.s_addr;
9657 
9658 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9659 	    (caddr_t)&ipaddr);
9660 	if (mp2 == NULL) {
9661 		freeb(mp1);
9662 		inet_freemsg(pending_mp);
9663 		return (ENOMEM);
9664 	}
9665 	/* Put together the chain. */
9666 	mp1->b_cont = mp2;
9667 	mp1->b_datap->db_type = M_IOCTL;
9668 	mp2->b_cont = mp;
9669 	mp2->b_datap->db_type = M_DATA;
9670 
9671 	iocp = (struct iocblk *)mp1->b_rptr;
9672 
9673 	/*
9674 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9675 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9676 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9677 	 * ioc_count field; set ioc_count to be correct.
9678 	 */
9679 	iocp->ioc_count = MBLKL(mp1->b_cont);
9680 
9681 	/*
9682 	 * Set the proper command in the ARP message.
9683 	 * Convert the SIOC{G|S|D}ARP calls into our
9684 	 * AR_ENTRY_xxx calls.
9685 	 */
9686 	area = (area_t *)mp2->b_rptr;
9687 	switch (iocp->ioc_cmd) {
9688 	case SIOCDARP:
9689 	case SIOCDXARP:
9690 		/*
9691 		 * We defer deleting the corresponding IRE until
9692 		 * we return from arp.
9693 		 */
9694 		area->area_cmd = AR_ENTRY_DELETE;
9695 		area->area_proto_mask_offset = 0;
9696 		break;
9697 	case SIOCGARP:
9698 	case SIOCGXARP:
9699 		area->area_cmd = AR_ENTRY_SQUERY;
9700 		area->area_proto_mask_offset = 0;
9701 		break;
9702 	case SIOCSARP:
9703 	case SIOCSXARP: {
9704 		/*
9705 		 * Delete the corresponding ire to make sure IP will
9706 		 * pick up any change from arp.
9707 		 */
9708 		if (!if_arp_ioctl) {
9709 			(void) ip_ire_clookup_and_delete(ipaddr, NULL);
9710 			break;
9711 		} else {
9712 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9713 			if (ipif != NULL) {
9714 				(void) ip_ire_clookup_and_delete(ipaddr, ipif);
9715 				ipif_refrele(ipif);
9716 			}
9717 			break;
9718 		}
9719 	}
9720 	}
9721 	iocp->ioc_cmd = area->area_cmd;
9722 
9723 	/*
9724 	 * Before sending 'mp' to ARP, we have to clear the b_next
9725 	 * and b_prev. Otherwise if STREAMS encounters such a message
9726 	 * in freemsg(), (because ARP can close any time) it can cause
9727 	 * a panic. But mi code needs the b_next and b_prev values of
9728 	 * mp->b_cont, to complete the ioctl. So we store it here
9729 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9730 	 * when the response comes down from ARP.
9731 	 */
9732 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9733 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9734 	mp->b_cont->b_next = NULL;
9735 	mp->b_cont->b_prev = NULL;
9736 
9737 	mutex_enter(&connp->conn_lock);
9738 	mutex_enter(&ill->ill_lock);
9739 	/* conn has not yet started closing, hence this can't fail */
9740 	success = ill_pending_mp_add(ill, connp, pending_mp);
9741 	ASSERT(success);
9742 	mutex_exit(&ill->ill_lock);
9743 	mutex_exit(&connp->conn_lock);
9744 
9745 	/*
9746 	 * Fill in the rest of the ARP operation fields.
9747 	 */
9748 	area->area_hw_addr_length = alength;
9749 	bcopy(lladdr,
9750 	    (char *)area + area->area_hw_addr_offset,
9751 	    area->area_hw_addr_length);
9752 	/* Translate the flags. */
9753 	if (flags & ATF_PERM)
9754 		area->area_flags |= ACE_F_PERMANENT;
9755 	if (flags & ATF_PUBL)
9756 		area->area_flags |= ACE_F_PUBLISH;
9757 	if (flags & ATF_AUTHORITY)
9758 		area->area_flags |= ACE_F_AUTHORITY;
9759 
9760 	/*
9761 	 * Up to ARP it goes.  The response will come
9762 	 * back in ip_wput as an M_IOCACK message, and
9763 	 * will be handed to ip_sioctl_iocack for
9764 	 * completion.
9765 	 */
9766 	putnext(ill->ill_rq, mp1);
9767 	return (EINPROGRESS);
9768 }
9769 
9770 /* ARGSUSED */
9771 int
9772 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9773     ip_ioctl_cmd_t *ipip, void *ifreq)
9774 {
9775 	struct xarpreq *xar;
9776 	boolean_t isv6;
9777 	mblk_t	*mp1;
9778 	int	err;
9779 	conn_t	*connp;
9780 	int ifnamelen;
9781 	ire_t	*ire = NULL;
9782 	ill_t	*ill = NULL;
9783 	struct sockaddr_in *sin;
9784 	boolean_t if_arp_ioctl = B_FALSE;
9785 
9786 	/* ioctl comes down on an conn */
9787 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9788 	connp = Q_TO_CONN(q);
9789 	isv6 = connp->conn_af_isv6;
9790 
9791 	/* Existance verified in ip_wput_nondata */
9792 	mp1 = mp->b_cont->b_cont;
9793 
9794 	ASSERT(MBLKL(mp1) >= sizeof (*xar));
9795 	xar = (struct xarpreq *)mp1->b_rptr;
9796 	sin = (sin_t *)&xar->xarp_pa;
9797 
9798 	if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) ||
9799 	    (xar->xarp_pa.ss_family != AF_INET))
9800 		return (ENXIO);
9801 
9802 	ifnamelen = xar->xarp_ha.sdl_nlen;
9803 	if (ifnamelen != 0) {
9804 		char	*cptr, cval;
9805 
9806 		if (ifnamelen >= LIFNAMSIZ)
9807 			return (EINVAL);
9808 
9809 		/*
9810 		 * Instead of bcopying a bunch of bytes,
9811 		 * null-terminate the string in-situ.
9812 		 */
9813 		cptr = xar->xarp_ha.sdl_data + ifnamelen;
9814 		cval = *cptr;
9815 		*cptr = '\0';
9816 		ill = ill_lookup_on_name(xar->xarp_ha.sdl_data,
9817 		    B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl,
9818 		    &err, NULL);
9819 		*cptr = cval;
9820 		if (ill == NULL)
9821 			return (err);
9822 		if (ill->ill_net_type != IRE_IF_RESOLVER) {
9823 			ill_refrele(ill);
9824 			return (ENXIO);
9825 		}
9826 
9827 		if_arp_ioctl = B_TRUE;
9828 	} else {
9829 		/*
9830 		 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves
9831 		 * as an extended BSD ioctl. The kernel uses the IP address
9832 		 * to figure out the network interface.
9833 		 */
9834 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL);
9835 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9836 		    ((ill = ire_to_ill(ire)) == NULL) ||
9837 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9838 			if (ire != NULL)
9839 				ire_refrele(ire);
9840 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9841 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9842 			    NULL, MATCH_IRE_TYPE);
9843 			if ((ire == NULL) ||
9844 			    ((ill = ire_to_ill(ire)) == NULL)) {
9845 				if (ire != NULL)
9846 					ire_refrele(ire);
9847 				return (ENXIO);
9848 			}
9849 		}
9850 		ASSERT(ire != NULL && ill != NULL);
9851 	}
9852 
9853 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl);
9854 	if (if_arp_ioctl)
9855 		ill_refrele(ill);
9856 	if (ire != NULL)
9857 		ire_refrele(ire);
9858 
9859 	return (err);
9860 }
9861 
9862 /*
9863  * ARP IOCTLs.
9864  * How does IP get in the business of fronting ARP configuration/queries?
9865  * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9866  * are by tradition passed in through a datagram socket.  That lands in IP.
9867  * As it happens, this is just as well since the interface is quite crude in
9868  * that it passes in no information about protocol or hardware types, or
9869  * interface association.  After making the protocol assumption, IP is in
9870  * the position to look up the name of the ILL, which ARP will need, and
9871  * format a request that can be handled by ARP.	 The request is passed up
9872  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9873  * back a response.  ARP supports its own set of more general IOCTLs, in
9874  * case anyone is interested.
9875  */
9876 /* ARGSUSED */
9877 int
9878 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9879     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9880 {
9881 	struct arpreq *ar;
9882 	struct sockaddr_in *sin;
9883 	ire_t	*ire;
9884 	boolean_t isv6;
9885 	mblk_t	*mp1;
9886 	int	err;
9887 	conn_t	*connp;
9888 	ill_t	*ill;
9889 
9890 	/* ioctl comes down on an conn */
9891 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9892 	connp = Q_TO_CONN(q);
9893 	isv6 = connp->conn_af_isv6;
9894 	if (isv6)
9895 		return (ENXIO);
9896 
9897 	/* Existance verified in ip_wput_nondata */
9898 	mp1 = mp->b_cont->b_cont;
9899 
9900 	ar = (struct arpreq *)mp1->b_rptr;
9901 	sin = (sin_t *)&ar->arp_pa;
9902 
9903 	/*
9904 	 * We need to let ARP know on which interface the IP
9905 	 * address has an ARP mapping. In the IPMP case, a
9906 	 * simple forwarding table lookup will return the
9907 	 * IRE_IF_RESOLVER for the first interface in the group,
9908 	 * which might not be the interface on which the
9909 	 * requested IP address was resolved due to the ill
9910 	 * selection algorithm (see ip_newroute_get_dst_ill()).
9911 	 * So we do a cache table lookup first: if the IRE cache
9912 	 * entry for the IP address is still there, it will
9913 	 * contain the ill pointer for the right interface, so
9914 	 * we use that. If the cache entry has been flushed, we
9915 	 * fall back to the forwarding table lookup. This should
9916 	 * be rare enough since IRE cache entries have a longer
9917 	 * life expectancy than ARP cache entries.
9918 	 */
9919 	ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL);
9920 	if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9921 	    ((ill = ire_to_ill(ire)) == NULL)) {
9922 		if (ire != NULL)
9923 			ire_refrele(ire);
9924 		ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9925 		    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9926 		    NULL, MATCH_IRE_TYPE);
9927 		if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) {
9928 			if (ire != NULL)
9929 				ire_refrele(ire);
9930 			return (ENXIO);
9931 		}
9932 	}
9933 	ASSERT(ire != NULL && ill != NULL);
9934 
9935 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE);
9936 	ire_refrele(ire);
9937 	return (err);
9938 }
9939 
9940 /*
9941  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9942  * atomically set/clear the muxids. Also complete the ioctl by acking or
9943  * naking it.  Note that the code is structured such that the link type,
9944  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9945  * its clones use the persistent link, while pppd(1M) and perhaps many
9946  * other daemons may use non-persistent link.  When combined with some
9947  * ill_t states, linking and unlinking lower streams may be used as
9948  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9949  */
9950 /* ARGSUSED */
9951 void
9952 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9953 {
9954 	mblk_t *mp1;
9955 	mblk_t *mp2;
9956 	struct linkblk *li;
9957 	queue_t	*ipwq;
9958 	char	*name;
9959 	struct qinit *qinfo;
9960 	struct ipmx_s *ipmxp;
9961 	ill_t	*ill = NULL;
9962 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9963 	int	err = 0;
9964 	boolean_t	entered_ipsq = B_FALSE;
9965 	boolean_t islink;
9966 	queue_t *dwq = NULL;
9967 
9968 	ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK ||
9969 	    iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK);
9970 
9971 	islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ?
9972 	    B_TRUE : B_FALSE;
9973 
9974 	mp1 = mp->b_cont;	/* This is the linkblk info */
9975 	li = (struct linkblk *)mp1->b_rptr;
9976 
9977 	/*
9978 	 * ARP has added this special mblk, and the utility is asking us
9979 	 * to perform consistency checks, and also atomically set the
9980 	 * muxid. Ifconfig is an example.  It achieves this by using
9981 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9982 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9983 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9984 	 * and other comments in this routine for more details.
9985 	 */
9986 	mp2 = mp1->b_cont;	/* This is added by ARP */
9987 
9988 	/*
9989 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9990 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9991 	 * get the special mblk above.  For backward compatibility, we just
9992 	 * return success.  The utility will use SIOCSLIFMUXID to store
9993 	 * the muxids.  This is not atomic, and can leave the streams
9994 	 * unplumbable if the utility is interrrupted, before it does the
9995 	 * SIOCSLIFMUXID.
9996 	 */
9997 	if (mp2 == NULL) {
9998 		/*
9999 		 * At this point we don't know whether or not this is the
10000 		 * IP module stream or the ARP device stream.  We need to
10001 		 * walk the lower stream in order to find this out, since
10002 		 * the capability negotiation is done only on the IP module
10003 		 * stream.  IP module instance is identified by the module
10004 		 * name IP, non-null q_next, and it's wput not being ip_lwput.
10005 		 * STREAMS ensures that the lower stream (l_qbot) will not
10006 		 * vanish until this ioctl completes. So we can safely walk
10007 		 * the stream or refer to the q_ptr.
10008 		 */
10009 		ipwq = li->l_qbot;
10010 		while (ipwq != NULL) {
10011 			qinfo = ipwq->q_qinfo;
10012 			name = qinfo->qi_minfo->mi_idname;
10013 			if (name != NULL && name[0] != NULL &&
10014 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10015 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10016 			    (ipwq->q_next != NULL)) {
10017 				break;
10018 			}
10019 			ipwq = ipwq->q_next;
10020 		}
10021 		/*
10022 		 * This looks like an IP module stream, so trigger
10023 		 * the capability reset or re-negotiation if necessary.
10024 		 */
10025 		if (ipwq != NULL) {
10026 			ill = ipwq->q_ptr;
10027 			ASSERT(ill != NULL);
10028 
10029 			if (ipsq == NULL) {
10030 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10031 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10032 				if (ipsq == NULL)
10033 					return;
10034 				entered_ipsq = B_TRUE;
10035 			}
10036 			ASSERT(IAM_WRITER_ILL(ill));
10037 			/*
10038 			 * Store the upper read queue of the module
10039 			 * immediately below IP, and count the total
10040 			 * number of lower modules.  Do this only
10041 			 * for I_PLINK or I_LINK event.
10042 			 */
10043 			ill->ill_lmod_rq = NULL;
10044 			ill->ill_lmod_cnt = 0;
10045 			if (islink && (dwq = ipwq->q_next) != NULL) {
10046 				ill->ill_lmod_rq = RD(dwq);
10047 
10048 				while (dwq != NULL) {
10049 					ill->ill_lmod_cnt++;
10050 					dwq = dwq->q_next;
10051 				}
10052 			}
10053 			/*
10054 			 * There's no point in resetting or re-negotiating if
10055 			 * we are not bound to the driver, so only do this if
10056 			 * the DLPI state is idle (up); we assume such state
10057 			 * since ill_ipif_up_count gets incremented in
10058 			 * ipif_up_done(), which is after we are bound to the
10059 			 * driver.  Note that in the case of logical
10060 			 * interfaces, IP won't rebind to the driver unless
10061 			 * the ill_ipif_up_count is 0, meaning that all other
10062 			 * IP interfaces (including the main ipif) are in the
10063 			 * down state.  Because of this, we use such counter
10064 			 * as an indicator, instead of relying on the IPIF_UP
10065 			 * flag, which is per ipif instance.
10066 			 */
10067 			if (ill->ill_ipif_up_count > 0) {
10068 				if (islink)
10069 					ill_capability_probe(ill);
10070 				else
10071 					ill_capability_reset(ill);
10072 			}
10073 		}
10074 		goto done;
10075 	}
10076 
10077 	/*
10078 	 * This is an I_{P}LINK sent down by ifconfig on
10079 	 * /dev/arp. ARP has appended this last (3rd) mblk,
10080 	 * giving more info. STREAMS ensures that the lower
10081 	 * stream (l_qbot) will not vanish until this ioctl
10082 	 * completes. So we can safely walk the stream or refer
10083 	 * to the q_ptr.
10084 	 */
10085 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
10086 	if (ipmxp->ipmx_arpdev_stream) {
10087 		/*
10088 		 * The operation is occuring on the arp-device
10089 		 * stream.
10090 		 */
10091 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
10092 		    q, mp, ip_sioctl_plink, &err, NULL);
10093 		if (ill == NULL) {
10094 			if (err == EINPROGRESS) {
10095 				return;
10096 			} else {
10097 				err = EINVAL;
10098 				goto done;
10099 			}
10100 		}
10101 
10102 		if (ipsq == NULL) {
10103 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
10104 			    NEW_OP, B_TRUE);
10105 			if (ipsq == NULL) {
10106 				ill_refrele(ill);
10107 				return;
10108 			}
10109 			entered_ipsq = B_TRUE;
10110 		}
10111 		ASSERT(IAM_WRITER_ILL(ill));
10112 		ill_refrele(ill);
10113 		/*
10114 		 * To ensure consistency between IP and ARP,
10115 		 * the following LIFO scheme is used in
10116 		 * plink/punlink. (IP first, ARP last).
10117 		 * This is because the muxid's are stored
10118 		 * in the IP stream on the ill.
10119 		 *
10120 		 * I_{P}LINK: ifconfig plinks the IP stream before
10121 		 * plinking the ARP stream. On an arp-dev
10122 		 * stream, IP checks that it is not yet
10123 		 * plinked, and it also checks that the
10124 		 * corresponding IP stream is already plinked.
10125 		 *
10126 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream
10127 		 * before punlinking the IP stream. IP does
10128 		 * not allow punlink of the IP stream unless
10129 		 * the arp stream has been punlinked.
10130 		 *
10131 		 */
10132 		if ((islink &&
10133 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
10134 		    (!islink &&
10135 		    ill->ill_arp_muxid != li->l_index)) {
10136 			err = EINVAL;
10137 			goto done;
10138 		}
10139 		if (islink) {
10140 			ill->ill_arp_muxid = li->l_index;
10141 		} else {
10142 			ill->ill_arp_muxid = 0;
10143 		}
10144 	} else {
10145 		/*
10146 		 * This must be the IP module stream with or
10147 		 * without arp. Walk the stream and locate the
10148 		 * IP module. An IP module instance is
10149 		 * identified by the module name IP, non-null
10150 		 * q_next, and it's wput not being ip_lwput.
10151 		 */
10152 		ipwq = li->l_qbot;
10153 		while (ipwq != NULL) {
10154 			qinfo = ipwq->q_qinfo;
10155 			name = qinfo->qi_minfo->mi_idname;
10156 			if (name != NULL && name[0] != NULL &&
10157 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10158 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10159 			    (ipwq->q_next != NULL)) {
10160 				break;
10161 			}
10162 			ipwq = ipwq->q_next;
10163 		}
10164 		if (ipwq != NULL) {
10165 			ill = ipwq->q_ptr;
10166 			ASSERT(ill != NULL);
10167 
10168 			if (ipsq == NULL) {
10169 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10170 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10171 				if (ipsq == NULL)
10172 					return;
10173 				entered_ipsq = B_TRUE;
10174 			}
10175 			ASSERT(IAM_WRITER_ILL(ill));
10176 			/*
10177 			 * Return error if the ip_mux_id is
10178 			 * non-zero and command is I_{P}LINK.
10179 			 * If command is I_{P}UNLINK, return
10180 			 * error if the arp-devstr is not
10181 			 * yet punlinked.
10182 			 */
10183 			if ((islink && ill->ill_ip_muxid != 0) ||
10184 			    (!islink && ill->ill_arp_muxid != 0)) {
10185 				err = EINVAL;
10186 				goto done;
10187 			}
10188 			ill->ill_lmod_rq = NULL;
10189 			ill->ill_lmod_cnt = 0;
10190 			if (islink) {
10191 				/*
10192 				 * Store the upper read queue of the module
10193 				 * immediately below IP, and count the total
10194 				 * number of lower modules.
10195 				 */
10196 				if ((dwq = ipwq->q_next) != NULL) {
10197 					ill->ill_lmod_rq = RD(dwq);
10198 
10199 					while (dwq != NULL) {
10200 						ill->ill_lmod_cnt++;
10201 						dwq = dwq->q_next;
10202 					}
10203 				}
10204 				ill->ill_ip_muxid = li->l_index;
10205 			} else {
10206 				ill->ill_ip_muxid = 0;
10207 			}
10208 
10209 			/*
10210 			 * See comments above about resetting/re-
10211 			 * negotiating driver sub-capabilities.
10212 			 */
10213 			if (ill->ill_ipif_up_count > 0) {
10214 				if (islink)
10215 					ill_capability_probe(ill);
10216 				else
10217 					ill_capability_reset(ill);
10218 			}
10219 		}
10220 	}
10221 done:
10222 	iocp->ioc_count = 0;
10223 	iocp->ioc_error = err;
10224 	if (err == 0)
10225 		mp->b_datap->db_type = M_IOCACK;
10226 	else
10227 		mp->b_datap->db_type = M_IOCNAK;
10228 	qreply(q, mp);
10229 
10230 	/* Conn was refheld in ip_sioctl_copyin_setup */
10231 	if (CONN_Q(q))
10232 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
10233 	if (entered_ipsq)
10234 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10235 }
10236 
10237 /*
10238  * Search the ioctl command in the ioctl tables and return a pointer
10239  * to the ioctl command information. The ioctl command tables are
10240  * static and fully populated at compile time.
10241  */
10242 ip_ioctl_cmd_t *
10243 ip_sioctl_lookup(int ioc_cmd)
10244 {
10245 	int index;
10246 	ip_ioctl_cmd_t *ipip;
10247 	ip_ioctl_cmd_t *ipip_end;
10248 
10249 	if (ioc_cmd == IPI_DONTCARE)
10250 		return (NULL);
10251 
10252 	/*
10253 	 * Do a 2 step search. First search the indexed table
10254 	 * based on the least significant byte of the ioctl cmd.
10255 	 * If we don't find a match, then search the misc table
10256 	 * serially.
10257 	 */
10258 	index = ioc_cmd & 0xFF;
10259 	if (index < ip_ndx_ioctl_count) {
10260 		ipip = &ip_ndx_ioctl_table[index];
10261 		if (ipip->ipi_cmd == ioc_cmd) {
10262 			/* Found a match in the ndx table */
10263 			return (ipip);
10264 		}
10265 	}
10266 
10267 	/* Search the misc table */
10268 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10269 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10270 		if (ipip->ipi_cmd == ioc_cmd)
10271 			/* Found a match in the misc table */
10272 			return (ipip);
10273 	}
10274 
10275 	return (NULL);
10276 }
10277 
10278 /*
10279  * Wrapper function for resuming deferred ioctl processing
10280  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10281  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10282  */
10283 /* ARGSUSED */
10284 void
10285 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10286     void *dummy_arg)
10287 {
10288 	ip_sioctl_copyin_setup(q, mp);
10289 }
10290 
10291 /*
10292  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10293  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10294  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10295  * We establish here the size of the block to be copied in.  mi_copyin
10296  * arranges for this to happen, an processing continues in ip_wput with
10297  * an M_IOCDATA message.
10298  */
10299 void
10300 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10301 {
10302 	int	copyin_size;
10303 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10304 	ip_ioctl_cmd_t *ipip;
10305 	cred_t *cr;
10306 
10307 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10308 	if (ipip == NULL) {
10309 		/*
10310 		 * The ioctl is not one we understand or own.
10311 		 * Pass it along to be processed down stream,
10312 		 * if this is a module instance of IP, else nak
10313 		 * the ioctl.
10314 		 */
10315 		if (q->q_next == NULL) {
10316 			goto nak;
10317 		} else {
10318 			putnext(q, mp);
10319 			return;
10320 		}
10321 	}
10322 
10323 	/*
10324 	 * If this is deferred, then we will do all the checks when we
10325 	 * come back.
10326 	 */
10327 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10328 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) {
10329 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10330 		return;
10331 	}
10332 
10333 	/*
10334 	 * Only allow a very small subset of IP ioctls on this stream if
10335 	 * IP is a module and not a driver. Allowing ioctls to be processed
10336 	 * in this case may cause assert failures or data corruption.
10337 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10338 	 * ioctls allowed on an IP module stream, after which this stream
10339 	 * normally becomes a multiplexor (at which time the stream head
10340 	 * will fail all ioctls).
10341 	 */
10342 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10343 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10344 			/*
10345 			 * Pass common Streams ioctls which the IP
10346 			 * module does not own or consume along to
10347 			 * be processed down stream.
10348 			 */
10349 			putnext(q, mp);
10350 			return;
10351 		} else {
10352 			goto nak;
10353 		}
10354 	}
10355 
10356 	/* Make sure we have ioctl data to process. */
10357 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10358 		goto nak;
10359 
10360 	/*
10361 	 * Prefer dblk credential over ioctl credential; some synthesized
10362 	 * ioctls have kcred set because there's no way to crhold()
10363 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10364 	 * the framework; the caller of ioctl needs to hold the reference
10365 	 * for the duration of the call).
10366 	 */
10367 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10368 
10369 	/* Make sure normal users don't send down privileged ioctls */
10370 	if ((ipip->ipi_flags & IPI_PRIV) &&
10371 	    (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) {
10372 		/* We checked the privilege earlier but log it here */
10373 		miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE));
10374 		return;
10375 	}
10376 
10377 	/*
10378 	 * The ioctl command tables can only encode fixed length
10379 	 * ioctl data. If the length is variable, the table will
10380 	 * encode the length as zero. Such special cases are handled
10381 	 * below in the switch.
10382 	 */
10383 	if (ipip->ipi_copyin_size != 0) {
10384 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10385 		return;
10386 	}
10387 
10388 	switch (iocp->ioc_cmd) {
10389 	case O_SIOCGIFCONF:
10390 	case SIOCGIFCONF:
10391 		/*
10392 		 * This IOCTL is hilarious.  See comments in
10393 		 * ip_sioctl_get_ifconf for the story.
10394 		 */
10395 		if (iocp->ioc_count == TRANSPARENT)
10396 			copyin_size = SIZEOF_STRUCT(ifconf,
10397 			    iocp->ioc_flag);
10398 		else
10399 			copyin_size = iocp->ioc_count;
10400 		mi_copyin(q, mp, NULL, copyin_size);
10401 		return;
10402 
10403 	case O_SIOCGLIFCONF:
10404 	case SIOCGLIFCONF:
10405 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10406 		mi_copyin(q, mp, NULL, copyin_size);
10407 		return;
10408 
10409 	case SIOCGLIFSRCOF:
10410 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10411 		mi_copyin(q, mp, NULL, copyin_size);
10412 		return;
10413 	case SIOCGIP6ADDRPOLICY:
10414 		ip_sioctl_ip6addrpolicy(q, mp);
10415 		ip6_asp_table_refrele();
10416 		return;
10417 
10418 	case SIOCSIP6ADDRPOLICY:
10419 		ip_sioctl_ip6addrpolicy(q, mp);
10420 		return;
10421 
10422 	case SIOCGDSTINFO:
10423 		ip_sioctl_dstinfo(q, mp);
10424 		ip6_asp_table_refrele();
10425 		return;
10426 
10427 	case I_PLINK:
10428 	case I_PUNLINK:
10429 	case I_LINK:
10430 	case I_UNLINK:
10431 		/*
10432 		 * We treat non-persistent link similarly as the persistent
10433 		 * link case, in terms of plumbing/unplumbing, as well as
10434 		 * dynamic re-plumbing events indicator.  See comments
10435 		 * in ip_sioctl_plink() for more.
10436 		 *
10437 		 * Request can be enqueued in the 'ipsq' while waiting
10438 		 * to become exclusive. So bump up the conn ref.
10439 		 */
10440 		if (CONN_Q(q))
10441 			CONN_INC_REF(Q_TO_CONN(q));
10442 		ip_sioctl_plink(NULL, q, mp, NULL);
10443 		return;
10444 
10445 	case ND_GET:
10446 	case ND_SET:
10447 		/*
10448 		 * Use of the nd table requires holding the reader lock.
10449 		 * Modifying the nd table thru nd_load/nd_unload requires
10450 		 * the writer lock.
10451 		 */
10452 		rw_enter(&ip_g_nd_lock, RW_READER);
10453 		if (nd_getset(q, ip_g_nd, mp)) {
10454 			rw_exit(&ip_g_nd_lock);
10455 
10456 			if (iocp->ioc_error)
10457 				iocp->ioc_count = 0;
10458 			mp->b_datap->db_type = M_IOCACK;
10459 			qreply(q, mp);
10460 			return;
10461 		}
10462 		rw_exit(&ip_g_nd_lock);
10463 		/*
10464 		 * We don't understand this subioctl of ND_GET / ND_SET.
10465 		 * Maybe intended for some driver / module below us
10466 		 */
10467 		if (q->q_next) {
10468 			putnext(q, mp);
10469 		} else {
10470 			iocp->ioc_error = ENOENT;
10471 			mp->b_datap->db_type = M_IOCNAK;
10472 			iocp->ioc_count = 0;
10473 			qreply(q, mp);
10474 		}
10475 		return;
10476 
10477 	case IP_IOCTL:
10478 		ip_wput_ioctl(q, mp);
10479 		return;
10480 	default:
10481 		cmn_err(CE_PANIC, "should not happen ");
10482 	}
10483 nak:
10484 	if (mp->b_cont != NULL) {
10485 		freemsg(mp->b_cont);
10486 		mp->b_cont = NULL;
10487 	}
10488 	iocp->ioc_error = EINVAL;
10489 	mp->b_datap->db_type = M_IOCNAK;
10490 	iocp->ioc_count = 0;
10491 	qreply(q, mp);
10492 }
10493 
10494 /* ip_wput hands off ARP IOCTL responses to us */
10495 void
10496 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10497 {
10498 	struct arpreq *ar;
10499 	struct xarpreq *xar;
10500 	area_t	*area;
10501 	mblk_t	*area_mp;
10502 	struct iocblk *iocp;
10503 	mblk_t	*orig_ioc_mp, *tmp;
10504 	struct iocblk	*orig_iocp;
10505 	ill_t *ill;
10506 	conn_t *connp = NULL;
10507 	uint_t ioc_id;
10508 	mblk_t *pending_mp;
10509 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10510 	int *flagsp;
10511 	char *storage = NULL;
10512 	sin_t *sin;
10513 	ipaddr_t addr;
10514 	int err;
10515 
10516 	ill = q->q_ptr;
10517 	ASSERT(ill != NULL);
10518 
10519 	/*
10520 	 * We should get back from ARP a packet chain that looks like:
10521 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10522 	 */
10523 	if (!(area_mp = mp->b_cont) ||
10524 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10525 	    !(orig_ioc_mp = area_mp->b_cont) ||
10526 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10527 		freemsg(mp);
10528 		return;
10529 	}
10530 
10531 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10532 
10533 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10534 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10535 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10536 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10537 		x_arp_ioctl = B_TRUE;
10538 		xar = (struct xarpreq *)tmp->b_rptr;
10539 		sin = (sin_t *)&xar->xarp_pa;
10540 		flagsp = &xar->xarp_flags;
10541 		storage = xar->xarp_ha.sdl_data;
10542 		if (xar->xarp_ha.sdl_nlen != 0)
10543 			ifx_arp_ioctl = B_TRUE;
10544 	} else {
10545 		ar = (struct arpreq *)tmp->b_rptr;
10546 		sin = (sin_t *)&ar->arp_pa;
10547 		flagsp = &ar->arp_flags;
10548 		storage = ar->arp_ha.sa_data;
10549 	}
10550 
10551 	iocp = (struct iocblk *)mp->b_rptr;
10552 
10553 	/*
10554 	 * Pick out the originating queue based on the ioc_id.
10555 	 */
10556 	ioc_id = iocp->ioc_id;
10557 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10558 	if (pending_mp == NULL) {
10559 		ASSERT(connp == NULL);
10560 		inet_freemsg(mp);
10561 		return;
10562 	}
10563 	ASSERT(connp != NULL);
10564 	q = CONNP_TO_WQ(connp);
10565 
10566 	/* Uncouple the internally generated IOCTL from the original one */
10567 	area = (area_t *)area_mp->b_rptr;
10568 	area_mp->b_cont = NULL;
10569 
10570 	/*
10571 	 * Restore the b_next and b_prev used by mi code. This is needed
10572 	 * to complete the ioctl using mi* functions. We stored them in
10573 	 * the pending mp prior to sending the request to ARP.
10574 	 */
10575 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10576 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10577 	inet_freemsg(pending_mp);
10578 
10579 	/*
10580 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10581 	 * Catch the case where there is an IRE_CACHE by no entry in the
10582 	 * arp table.
10583 	 */
10584 	addr = sin->sin_addr.s_addr;
10585 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10586 		ire_t			*ire;
10587 		dl_unitdata_req_t	*dlup;
10588 		mblk_t			*llmp;
10589 		int			addr_len;
10590 		ill_t			*ipsqill = NULL;
10591 
10592 		if (ifx_arp_ioctl) {
10593 			/*
10594 			 * There's no need to lookup the ill, since
10595 			 * we've already done that when we started
10596 			 * processing the ioctl and sent the message
10597 			 * to ARP on that ill.  So use the ill that
10598 			 * is stored in q->q_ptr.
10599 			 */
10600 			ipsqill = ill;
10601 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10602 			    ipsqill->ill_ipif, ALL_ZONES,
10603 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
10604 		} else {
10605 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10606 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
10607 			if (ire != NULL)
10608 				ipsqill = ire_to_ill(ire);
10609 		}
10610 
10611 		if ((x_arp_ioctl) && (ipsqill != NULL))
10612 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10613 
10614 		if (ire != NULL) {
10615 			/*
10616 			 * Since the ire obtained from cachetable is used for
10617 			 * mac addr copying below, treat an incomplete ire as if
10618 			 * as if we never found it.
10619 			 */
10620 			if (ire->ire_nce != NULL &&
10621 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10622 				ire_refrele(ire);
10623 				ire = NULL;
10624 				ipsqill = NULL;
10625 				goto errack;
10626 			}
10627 			*flagsp = ATF_INUSE;
10628 			llmp = (ire->ire_nce != NULL ?
10629 			    ire->ire_nce->nce_res_mp : NULL);
10630 			if (llmp != NULL && ipsqill != NULL) {
10631 				uchar_t *macaddr;
10632 
10633 				addr_len = ipsqill->ill_phys_addr_length;
10634 				if (x_arp_ioctl && ((addr_len +
10635 				    ipsqill->ill_name_length) >
10636 				    sizeof (xar->xarp_ha.sdl_data))) {
10637 					ire_refrele(ire);
10638 					freemsg(mp);
10639 					ip_ioctl_finish(q, orig_ioc_mp,
10640 					    EINVAL, NO_COPYOUT, NULL);
10641 					return;
10642 				}
10643 				*flagsp |= ATF_COM;
10644 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10645 				if (ipsqill->ill_sap_length < 0)
10646 					macaddr = llmp->b_rptr +
10647 					    dlup->dl_dest_addr_offset;
10648 				else
10649 					macaddr = llmp->b_rptr +
10650 					    dlup->dl_dest_addr_offset +
10651 					    ipsqill->ill_sap_length;
10652 				/*
10653 				 * For SIOCGARP, MAC address length
10654 				 * validation has already been done
10655 				 * before the ioctl was issued to ARP to
10656 				 * allow it to progress only on 6 byte
10657 				 * addressable (ethernet like) media. Thus
10658 				 * the mac address copying can not overwrite
10659 				 * the sa_data area below.
10660 				 */
10661 				bcopy(macaddr, storage, addr_len);
10662 			}
10663 			/* Ditch the internal IOCTL. */
10664 			freemsg(mp);
10665 			ire_refrele(ire);
10666 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10667 			return;
10668 		}
10669 	}
10670 
10671 	/*
10672 	 * Delete the coresponding IRE_CACHE if any.
10673 	 * Reset the error if there was one (in case there was no entry
10674 	 * in arp.)
10675 	 */
10676 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10677 		ipif_t *ipintf = NULL;
10678 
10679 		if (ifx_arp_ioctl) {
10680 			/*
10681 			 * There's no need to lookup the ill, since
10682 			 * we've already done that when we started
10683 			 * processing the ioctl and sent the message
10684 			 * to ARP on that ill.  So use the ill that
10685 			 * is stored in q->q_ptr.
10686 			 */
10687 			ipintf = ill->ill_ipif;
10688 		}
10689 		if (ip_ire_clookup_and_delete(addr, ipintf)) {
10690 			/*
10691 			 * The address in "addr" may be an entry for a
10692 			 * router. If that's true, then any off-net
10693 			 * IRE_CACHE entries that go through the router
10694 			 * with address "addr" must be clobbered. Use
10695 			 * ire_walk to achieve this goal.
10696 			 */
10697 			if (ifx_arp_ioctl)
10698 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10699 				    ire_delete_cache_gw, (char *)&addr, ill);
10700 			else
10701 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10702 				    ALL_ZONES);
10703 			iocp->ioc_error = 0;
10704 		}
10705 	}
10706 errack:
10707 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10708 		err = iocp->ioc_error;
10709 		freemsg(mp);
10710 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10711 		return;
10712 	}
10713 
10714 	/*
10715 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10716 	 * the area_t into the struct {x}arpreq.
10717 	 */
10718 	if (x_arp_ioctl) {
10719 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10720 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10721 		    sizeof (xar->xarp_ha.sdl_data)) {
10722 			freemsg(mp);
10723 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10724 			    NULL);
10725 			return;
10726 		}
10727 	}
10728 	*flagsp = ATF_INUSE;
10729 	if (area->area_flags & ACE_F_PERMANENT)
10730 		*flagsp |= ATF_PERM;
10731 	if (area->area_flags & ACE_F_PUBLISH)
10732 		*flagsp |= ATF_PUBL;
10733 	if (area->area_flags & ACE_F_AUTHORITY)
10734 		*flagsp |= ATF_AUTHORITY;
10735 	if (area->area_hw_addr_length != 0) {
10736 		*flagsp |= ATF_COM;
10737 		/*
10738 		 * For SIOCGARP, MAC address length validation has
10739 		 * already been done before the ioctl was issued to ARP
10740 		 * to allow it to progress only on 6 byte addressable
10741 		 * (ethernet like) media. Thus the mac address copying
10742 		 * can not overwrite the sa_data area below.
10743 		 */
10744 		bcopy((char *)area + area->area_hw_addr_offset,
10745 		    storage, area->area_hw_addr_length);
10746 	}
10747 
10748 	/* Ditch the internal IOCTL. */
10749 	freemsg(mp);
10750 	/* Complete the original. */
10751 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10752 }
10753 
10754 /*
10755  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10756  * interface) create the next available logical interface for this
10757  * physical interface.
10758  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10759  * ipif with the specified name.
10760  *
10761  * If the address family is not AF_UNSPEC then set the address as well.
10762  *
10763  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10764  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10765  *
10766  * Executed as a writer on the ill or ill group.
10767  * So no lock is needed to traverse the ipif chain, or examine the
10768  * phyint flags.
10769  */
10770 /* ARGSUSED */
10771 int
10772 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10773     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10774 {
10775 	mblk_t	*mp1;
10776 	struct lifreq *lifr;
10777 	boolean_t	isv6;
10778 	boolean_t	exists;
10779 	char 	*name;
10780 	char	*endp;
10781 	char	*cp;
10782 	int	namelen;
10783 	ipif_t	*ipif;
10784 	long	id;
10785 	ipsq_t	*ipsq;
10786 	ill_t	*ill;
10787 	sin_t	*sin;
10788 	int	err = 0;
10789 	boolean_t found_sep = B_FALSE;
10790 	conn_t	*connp;
10791 	zoneid_t zoneid;
10792 	int	orig_ifindex = 0;
10793 
10794 	ip1dbg(("ip_sioctl_addif\n"));
10795 	/* Existence of mp1 has been checked in ip_wput_nondata */
10796 	mp1 = mp->b_cont->b_cont;
10797 	/*
10798 	 * Null terminate the string to protect against buffer
10799 	 * overrun. String was generated by user code and may not
10800 	 * be trusted.
10801 	 */
10802 	lifr = (struct lifreq *)mp1->b_rptr;
10803 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10804 	name = lifr->lifr_name;
10805 	ASSERT(CONN_Q(q));
10806 	connp = Q_TO_CONN(q);
10807 	isv6 = connp->conn_af_isv6;
10808 	zoneid = connp->conn_zoneid;
10809 	namelen = mi_strlen(name);
10810 	if (namelen == 0)
10811 		return (EINVAL);
10812 
10813 	exists = B_FALSE;
10814 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10815 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10816 		/*
10817 		 * Allow creating lo0 using SIOCLIFADDIF.
10818 		 * can't be any other writer thread. So can pass null below
10819 		 * for the last 4 args to ipif_lookup_name.
10820 		 */
10821 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen,
10822 		    B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL);
10823 		/* Prevent any further action */
10824 		if (ipif == NULL) {
10825 			return (ENOBUFS);
10826 		} else if (!exists) {
10827 			/* We created the ipif now and as writer */
10828 			ipif_refrele(ipif);
10829 			return (0);
10830 		} else {
10831 			ill = ipif->ipif_ill;
10832 			ill_refhold(ill);
10833 			ipif_refrele(ipif);
10834 		}
10835 	} else {
10836 		/* Look for a colon in the name. */
10837 		endp = &name[namelen];
10838 		for (cp = endp; --cp > name; ) {
10839 			if (*cp == IPIF_SEPARATOR_CHAR) {
10840 				found_sep = B_TRUE;
10841 				/*
10842 				 * Reject any non-decimal aliases for plumbing
10843 				 * of logical interfaces. Aliases with leading
10844 				 * zeroes are also rejected as they introduce
10845 				 * ambiguity in the naming of the interfaces.
10846 				 * Comparing with "0" takes care of all such
10847 				 * cases.
10848 				 */
10849 				if ((strncmp("0", cp+1, 1)) == 0)
10850 					return (EINVAL);
10851 
10852 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10853 				    id <= 0 || *endp != '\0') {
10854 					return (EINVAL);
10855 				}
10856 				*cp = '\0';
10857 				break;
10858 			}
10859 		}
10860 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10861 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL);
10862 		if (found_sep)
10863 			*cp = IPIF_SEPARATOR_CHAR;
10864 		if (ill == NULL)
10865 			return (err);
10866 	}
10867 
10868 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10869 	    B_TRUE);
10870 
10871 	/*
10872 	 * Release the refhold due to the lookup, now that we are excl
10873 	 * or we are just returning
10874 	 */
10875 	ill_refrele(ill);
10876 
10877 	if (ipsq == NULL)
10878 		return (EINPROGRESS);
10879 
10880 	/*
10881 	 * If the interface is failed, inactive or offlined, look for a working
10882 	 * interface in the ill group and create the ipif there. If we can't
10883 	 * find a good interface, create the ipif anyway so that in.mpathd can
10884 	 * move it to the first repaired interface.
10885 	 */
10886 	if ((ill->ill_phyint->phyint_flags &
10887 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10888 	    ill->ill_phyint->phyint_groupname_len != 0) {
10889 		phyint_t *phyi;
10890 		char *groupname = ill->ill_phyint->phyint_groupname;
10891 
10892 		/*
10893 		 * We're looking for a working interface, but it doesn't matter
10894 		 * if it's up or down; so instead of following the group lists,
10895 		 * we look at each physical interface and compare the groupname.
10896 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10897 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10898 		 * Otherwise we create the ipif on the failed interface.
10899 		 */
10900 		rw_enter(&ill_g_lock, RW_READER);
10901 		phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
10902 		for (; phyi != NULL;
10903 		    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
10904 		    phyi, AVL_AFTER)) {
10905 			if (phyi->phyint_groupname_len == 0)
10906 				continue;
10907 			ASSERT(phyi->phyint_groupname != NULL);
10908 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10909 			    !(phyi->phyint_flags &
10910 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10911 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10912 			    (phyi->phyint_illv4 != NULL))) {
10913 				break;
10914 			}
10915 		}
10916 		rw_exit(&ill_g_lock);
10917 
10918 		if (phyi != NULL) {
10919 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
10920 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10921 			    phyi->phyint_illv4);
10922 		}
10923 	}
10924 
10925 	/*
10926 	 * We are now exclusive on the ipsq, so an ill move will be serialized
10927 	 * before or after us.
10928 	 */
10929 	ASSERT(IAM_WRITER_ILL(ill));
10930 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10931 
10932 	if (found_sep && orig_ifindex == 0) {
10933 		/* Now see if there is an IPIF with this unit number. */
10934 		for (ipif = ill->ill_ipif; ipif != NULL;
10935 		    ipif = ipif->ipif_next) {
10936 			if (ipif->ipif_id == id) {
10937 				err = EEXIST;
10938 				goto done;
10939 			}
10940 		}
10941 	}
10942 
10943 	/*
10944 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10945 	 * of lo0. We never come here when we plumb lo0:0. It
10946 	 * happens in ipif_lookup_on_name.
10947 	 * The specified unit number is ignored when we create the ipif on a
10948 	 * different interface. However, we save it in ipif_orig_ipifid below so
10949 	 * that the ipif fails back to the right position.
10950 	 */
10951 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10952 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10953 		err = ENOBUFS;
10954 		goto done;
10955 	}
10956 
10957 	/* Return created name with ioctl */
10958 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10959 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10960 	ip1dbg(("created %s\n", lifr->lifr_name));
10961 
10962 	/* Set address */
10963 	sin = (sin_t *)&lifr->lifr_addr;
10964 	if (sin->sin_family != AF_UNSPEC) {
10965 		err = ip_sioctl_addr(ipif, sin, q, mp,
10966 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10967 	}
10968 
10969 	/* Set ifindex and unit number for failback */
10970 	if (err == 0 && orig_ifindex != 0) {
10971 		ipif->ipif_orig_ifindex = orig_ifindex;
10972 		if (found_sep) {
10973 			ipif->ipif_orig_ipifid = id;
10974 		}
10975 	}
10976 
10977 done:
10978 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
10979 	return (err);
10980 }
10981 
10982 /*
10983  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10984  * interface) delete it based on the IP address (on this physical interface).
10985  * Otherwise delete it based on the ipif_id.
10986  * Also, special handling to allow a removeif of lo0.
10987  */
10988 /* ARGSUSED */
10989 int
10990 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10991     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10992 {
10993 	conn_t		*connp;
10994 	ill_t		*ill = ipif->ipif_ill;
10995 	boolean_t	 success;
10996 
10997 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10998 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10999 	ASSERT(IAM_WRITER_IPIF(ipif));
11000 
11001 	connp = Q_TO_CONN(q);
11002 	/*
11003 	 * Special case for unplumbing lo0 (the loopback physical interface).
11004 	 * If unplumbing lo0, the incoming address structure has been
11005 	 * initialized to all zeros. When unplumbing lo0, all its logical
11006 	 * interfaces must be removed too.
11007 	 *
11008 	 * Note that this interface may be called to remove a specific
11009 	 * loopback logical interface (eg, lo0:1). But in that case
11010 	 * ipif->ipif_id != 0 so that the code path for that case is the
11011 	 * same as any other interface (meaning it skips the code directly
11012 	 * below).
11013 	 */
11014 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11015 		if (sin->sin_family == AF_UNSPEC &&
11016 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
11017 			/*
11018 			 * Mark it condemned. No new ref. will be made to ill.
11019 			 */
11020 			mutex_enter(&ill->ill_lock);
11021 			ill->ill_state_flags |= ILL_CONDEMNED;
11022 			for (ipif = ill->ill_ipif; ipif != NULL;
11023 			    ipif = ipif->ipif_next) {
11024 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
11025 			}
11026 			mutex_exit(&ill->ill_lock);
11027 
11028 			ipif = ill->ill_ipif;
11029 			/* unplumb the loopback interface */
11030 			ill_delete(ill);
11031 			mutex_enter(&connp->conn_lock);
11032 			mutex_enter(&ill->ill_lock);
11033 			ASSERT(ill->ill_group == NULL);
11034 
11035 			/* Are any references to this ill active */
11036 			if (ill_is_quiescent(ill)) {
11037 				mutex_exit(&ill->ill_lock);
11038 				mutex_exit(&connp->conn_lock);
11039 				ill_delete_tail(ill);
11040 				mi_free(ill);
11041 				return (0);
11042 			}
11043 			success = ipsq_pending_mp_add(connp, ipif,
11044 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
11045 			mutex_exit(&connp->conn_lock);
11046 			mutex_exit(&ill->ill_lock);
11047 			if (success)
11048 				return (EINPROGRESS);
11049 			else
11050 				return (EINTR);
11051 		}
11052 	}
11053 
11054 	/*
11055 	 * We are exclusive on the ipsq, so an ill move will be serialized
11056 	 * before or after us.
11057 	 */
11058 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11059 
11060 	if (ipif->ipif_id == 0) {
11061 		/* Find based on address */
11062 		if (ipif->ipif_isv6) {
11063 			sin6_t *sin6;
11064 
11065 			if (sin->sin_family != AF_INET6)
11066 				return (EAFNOSUPPORT);
11067 
11068 			sin6 = (sin6_t *)sin;
11069 			/* We are a writer, so we should be able to lookup */
11070 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11071 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL);
11072 			if (ipif == NULL) {
11073 				/*
11074 				 * Maybe the address in on another interface in
11075 				 * the same IPMP group? We check this below.
11076 				 */
11077 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11078 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL);
11079 			}
11080 		} else {
11081 			ipaddr_t addr;
11082 
11083 			if (sin->sin_family != AF_INET)
11084 				return (EAFNOSUPPORT);
11085 
11086 			addr = sin->sin_addr.s_addr;
11087 			/* We are a writer, so we should be able to lookup */
11088 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
11089 			    NULL, NULL, NULL);
11090 			if (ipif == NULL) {
11091 				/*
11092 				 * Maybe the address in on another interface in
11093 				 * the same IPMP group? We check this below.
11094 				 */
11095 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
11096 				    NULL, NULL, NULL, NULL);
11097 			}
11098 		}
11099 		if (ipif == NULL) {
11100 			return (EADDRNOTAVAIL);
11101 		}
11102 		/*
11103 		 * When the address to be removed is hosted on a different
11104 		 * interface, we check if the interface is in the same IPMP
11105 		 * group as the specified one; if so we proceed with the
11106 		 * removal.
11107 		 * ill->ill_group is NULL when the ill is down, so we have to
11108 		 * compare the group names instead.
11109 		 */
11110 		if (ipif->ipif_ill != ill &&
11111 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
11112 		    ill->ill_phyint->phyint_groupname_len == 0 ||
11113 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
11114 		    ill->ill_phyint->phyint_groupname) != 0)) {
11115 			ipif_refrele(ipif);
11116 			return (EADDRNOTAVAIL);
11117 		}
11118 
11119 		/* This is a writer */
11120 		ipif_refrele(ipif);
11121 	}
11122 
11123 	/*
11124 	 * Can not delete instance zero since it is tied to the ill.
11125 	 */
11126 	if (ipif->ipif_id == 0)
11127 		return (EBUSY);
11128 
11129 	mutex_enter(&ill->ill_lock);
11130 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
11131 	mutex_exit(&ill->ill_lock);
11132 
11133 	ipif_free(ipif);
11134 
11135 	mutex_enter(&connp->conn_lock);
11136 	mutex_enter(&ill->ill_lock);
11137 
11138 	/* Are any references to this ipif active */
11139 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
11140 		mutex_exit(&ill->ill_lock);
11141 		mutex_exit(&connp->conn_lock);
11142 		ipif_non_duplicate(ipif);
11143 		ipif_down_tail(ipif);
11144 		ipif_free_tail(ipif);
11145 		return (0);
11146 	}
11147 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
11148 	    IPIF_FREE);
11149 	mutex_exit(&ill->ill_lock);
11150 	mutex_exit(&connp->conn_lock);
11151 	if (success)
11152 		return (EINPROGRESS);
11153 	else
11154 		return (EINTR);
11155 }
11156 
11157 /*
11158  * Restart the removeif ioctl. The refcnt has gone down to 0.
11159  * The ipif is already condemned. So can't find it thru lookups.
11160  */
11161 /* ARGSUSED */
11162 int
11163 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
11164     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11165 {
11166 	ill_t *ill;
11167 
11168 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
11169 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11170 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11171 		ill = ipif->ipif_ill;
11172 		ASSERT(IAM_WRITER_ILL(ill));
11173 		ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) &&
11174 		    (ill->ill_state_flags & IPIF_CONDEMNED));
11175 		ill_delete_tail(ill);
11176 		mi_free(ill);
11177 		return (0);
11178 	}
11179 
11180 	ill = ipif->ipif_ill;
11181 	ASSERT(IAM_WRITER_IPIF(ipif));
11182 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
11183 
11184 	ipif_non_duplicate(ipif);
11185 	ipif_down_tail(ipif);
11186 	ipif_free_tail(ipif);
11187 
11188 	ILL_UNMARK_CHANGING(ill);
11189 	return (0);
11190 }
11191 
11192 /*
11193  * Set the local interface address.
11194  * Allow an address of all zero when the interface is down.
11195  */
11196 /* ARGSUSED */
11197 int
11198 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11199     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
11200 {
11201 	int err = 0;
11202 	in6_addr_t v6addr;
11203 	boolean_t need_up = B_FALSE;
11204 
11205 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
11206 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11207 
11208 	ASSERT(IAM_WRITER_IPIF(ipif));
11209 
11210 	if (ipif->ipif_isv6) {
11211 		sin6_t *sin6;
11212 		ill_t *ill;
11213 		phyint_t *phyi;
11214 
11215 		if (sin->sin_family != AF_INET6)
11216 			return (EAFNOSUPPORT);
11217 
11218 		sin6 = (sin6_t *)sin;
11219 		v6addr = sin6->sin6_addr;
11220 		ill = ipif->ipif_ill;
11221 		phyi = ill->ill_phyint;
11222 
11223 		/*
11224 		 * Enforce that true multicast interfaces have a link-local
11225 		 * address for logical unit 0.
11226 		 */
11227 		if (ipif->ipif_id == 0 &&
11228 		    (ill->ill_flags & ILLF_MULTICAST) &&
11229 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11230 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11231 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11232 			return (EADDRNOTAVAIL);
11233 		}
11234 
11235 		/*
11236 		 * up interfaces shouldn't have the unspecified address
11237 		 * unless they also have the IPIF_NOLOCAL flags set and
11238 		 * have a subnet assigned.
11239 		 */
11240 		if ((ipif->ipif_flags & IPIF_UP) &&
11241 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11242 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11243 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11244 			return (EADDRNOTAVAIL);
11245 		}
11246 
11247 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11248 			return (EADDRNOTAVAIL);
11249 	} else {
11250 		ipaddr_t addr;
11251 
11252 		if (sin->sin_family != AF_INET)
11253 			return (EAFNOSUPPORT);
11254 
11255 		addr = sin->sin_addr.s_addr;
11256 
11257 		/* Allow 0 as the local address. */
11258 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11259 			return (EADDRNOTAVAIL);
11260 
11261 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11262 	}
11263 
11264 
11265 	/*
11266 	 * Even if there is no change we redo things just to rerun
11267 	 * ipif_set_default.
11268 	 */
11269 	if (ipif->ipif_flags & IPIF_UP) {
11270 		/*
11271 		 * Setting a new local address, make sure
11272 		 * we have net and subnet bcast ire's for
11273 		 * the old address if we need them.
11274 		 */
11275 		if (!ipif->ipif_isv6)
11276 			ipif_check_bcast_ires(ipif);
11277 		/*
11278 		 * If the interface is already marked up,
11279 		 * we call ipif_down which will take care
11280 		 * of ditching any IREs that have been set
11281 		 * up based on the old interface address.
11282 		 */
11283 		err = ipif_logical_down(ipif, q, mp);
11284 		if (err == EINPROGRESS)
11285 			return (err);
11286 		ipif_down_tail(ipif);
11287 		need_up = 1;
11288 	}
11289 
11290 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11291 	return (err);
11292 }
11293 
11294 int
11295 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11296     boolean_t need_up)
11297 {
11298 	in6_addr_t v6addr;
11299 	ipaddr_t addr;
11300 	sin6_t	*sin6;
11301 	int	sinlen;
11302 	int	err = 0;
11303 	ill_t	*ill = ipif->ipif_ill;
11304 	boolean_t need_dl_down;
11305 	boolean_t need_arp_down;
11306 	struct iocblk *iocp;
11307 
11308 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11309 
11310 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11311 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11312 	ASSERT(IAM_WRITER_IPIF(ipif));
11313 
11314 	/* Must cancel any pending timer before taking the ill_lock */
11315 	if (ipif->ipif_recovery_id != 0)
11316 		(void) untimeout(ipif->ipif_recovery_id);
11317 	ipif->ipif_recovery_id = 0;
11318 
11319 	if (ipif->ipif_isv6) {
11320 		sin6 = (sin6_t *)sin;
11321 		v6addr = sin6->sin6_addr;
11322 		sinlen = sizeof (struct sockaddr_in6);
11323 	} else {
11324 		addr = sin->sin_addr.s_addr;
11325 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11326 		sinlen = sizeof (struct sockaddr_in);
11327 	}
11328 	mutex_enter(&ill->ill_lock);
11329 	ipif->ipif_v6lcl_addr = v6addr;
11330 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11331 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11332 	} else {
11333 		ipif->ipif_v6src_addr = v6addr;
11334 	}
11335 	ipif->ipif_addr_ready = 0;
11336 
11337 	/*
11338 	 * If the interface was previously marked as a duplicate, then since
11339 	 * we've now got a "new" address, it should no longer be considered a
11340 	 * duplicate -- even if the "new" address is the same as the old one.
11341 	 * Note that if all ipifs are down, we may have a pending ARP down
11342 	 * event to handle.  This is because we want to recover from duplicates
11343 	 * and thus delay tearing down ARP until the duplicates have been
11344 	 * removed or disabled.
11345 	 */
11346 	need_dl_down = need_arp_down = B_FALSE;
11347 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11348 		need_arp_down = !need_up;
11349 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11350 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11351 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11352 			need_dl_down = B_TRUE;
11353 		}
11354 	}
11355 
11356 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11357 	    !ill->ill_is_6to4tun) {
11358 		queue_t *wqp = ill->ill_wq;
11359 
11360 		/*
11361 		 * The local address of this interface is a 6to4 address,
11362 		 * check if this interface is in fact a 6to4 tunnel or just
11363 		 * an interface configured with a 6to4 address.  We are only
11364 		 * interested in the former.
11365 		 */
11366 		if (wqp != NULL) {
11367 			while ((wqp->q_next != NULL) &&
11368 			    (wqp->q_next->q_qinfo != NULL) &&
11369 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11370 
11371 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11372 				    == TUN6TO4_MODID) {
11373 					/* set for use in IP */
11374 					ill->ill_is_6to4tun = 1;
11375 					break;
11376 				}
11377 				wqp = wqp->q_next;
11378 			}
11379 		}
11380 	}
11381 
11382 	ipif_set_default(ipif);
11383 
11384 	/*
11385 	 * When publishing an interface address change event, we only notify
11386 	 * the event listeners of the new address.  It is assumed that if they
11387 	 * actively care about the addresses assigned that they will have
11388 	 * already discovered the previous address assigned (if there was one.)
11389 	 *
11390 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11391 	 */
11392 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11393 		hook_nic_event_t *info;
11394 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11395 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11396 			    "attached for %s\n", info->hne_event,
11397 			    ill->ill_name));
11398 			if (info->hne_data != NULL)
11399 				kmem_free(info->hne_data, info->hne_datalen);
11400 			kmem_free(info, sizeof (hook_nic_event_t));
11401 		}
11402 
11403 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11404 		if (info != NULL) {
11405 			info->hne_nic =
11406 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
11407 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11408 			info->hne_event = NE_ADDRESS_CHANGE;
11409 			info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4;
11410 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11411 			if (info->hne_data != NULL) {
11412 				info->hne_datalen = sinlen;
11413 				bcopy(sin, info->hne_data, sinlen);
11414 			} else {
11415 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11416 				    "address information for ADDRESS_CHANGE nic"
11417 				    " event of %s (ENOMEM)\n",
11418 				    ipif->ipif_ill->ill_name));
11419 				kmem_free(info, sizeof (hook_nic_event_t));
11420 			}
11421 		} else
11422 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11423 			    "ADDRESS_CHANGE nic event information for %s "
11424 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11425 
11426 		ipif->ipif_ill->ill_nic_event_info = info;
11427 	}
11428 
11429 	mutex_exit(&ipif->ipif_ill->ill_lock);
11430 
11431 	if (need_up) {
11432 		/*
11433 		 * Now bring the interface back up.  If this
11434 		 * is the only IPIF for the ILL, ipif_up
11435 		 * will have to re-bind to the device, so
11436 		 * we may get back EINPROGRESS, in which
11437 		 * case, this IOCTL will get completed in
11438 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11439 		 */
11440 		err = ipif_up(ipif, q, mp);
11441 	} else {
11442 		/*
11443 		 * Update the IPIF list in SCTP, ipif_up_done() will do it
11444 		 * if need_up is true.
11445 		 */
11446 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11447 	}
11448 
11449 	if (need_dl_down)
11450 		ill_dl_down(ill);
11451 	if (need_arp_down)
11452 		ipif_arp_down(ipif);
11453 
11454 	return (err);
11455 }
11456 
11457 
11458 /*
11459  * Restart entry point to restart the address set operation after the
11460  * refcounts have dropped to zero.
11461  */
11462 /* ARGSUSED */
11463 int
11464 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11465     ip_ioctl_cmd_t *ipip, void *ifreq)
11466 {
11467 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11468 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11469 	ASSERT(IAM_WRITER_IPIF(ipif));
11470 	ipif_down_tail(ipif);
11471 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11472 }
11473 
11474 /* ARGSUSED */
11475 int
11476 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11477     ip_ioctl_cmd_t *ipip, void *if_req)
11478 {
11479 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11480 	struct lifreq *lifr = (struct lifreq *)if_req;
11481 
11482 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11483 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11484 	/*
11485 	 * The net mask and address can't change since we have a
11486 	 * reference to the ipif. So no lock is necessary.
11487 	 */
11488 	if (ipif->ipif_isv6) {
11489 		*sin6 = sin6_null;
11490 		sin6->sin6_family = AF_INET6;
11491 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11492 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11493 		lifr->lifr_addrlen =
11494 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11495 	} else {
11496 		*sin = sin_null;
11497 		sin->sin_family = AF_INET;
11498 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11499 		if (ipip->ipi_cmd_type == LIF_CMD) {
11500 			lifr->lifr_addrlen =
11501 			    ip_mask_to_plen(ipif->ipif_net_mask);
11502 		}
11503 	}
11504 	return (0);
11505 }
11506 
11507 /*
11508  * Set the destination address for a pt-pt interface.
11509  */
11510 /* ARGSUSED */
11511 int
11512 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11513     ip_ioctl_cmd_t *ipip, void *if_req)
11514 {
11515 	int err = 0;
11516 	in6_addr_t v6addr;
11517 	boolean_t need_up = B_FALSE;
11518 
11519 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11520 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11521 	ASSERT(IAM_WRITER_IPIF(ipif));
11522 
11523 	if (ipif->ipif_isv6) {
11524 		sin6_t *sin6;
11525 
11526 		if (sin->sin_family != AF_INET6)
11527 			return (EAFNOSUPPORT);
11528 
11529 		sin6 = (sin6_t *)sin;
11530 		v6addr = sin6->sin6_addr;
11531 
11532 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11533 			return (EADDRNOTAVAIL);
11534 	} else {
11535 		ipaddr_t addr;
11536 
11537 		if (sin->sin_family != AF_INET)
11538 			return (EAFNOSUPPORT);
11539 
11540 		addr = sin->sin_addr.s_addr;
11541 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11542 			return (EADDRNOTAVAIL);
11543 
11544 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11545 	}
11546 
11547 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11548 		return (0);	/* No change */
11549 
11550 	if (ipif->ipif_flags & IPIF_UP) {
11551 		/*
11552 		 * If the interface is already marked up,
11553 		 * we call ipif_down which will take care
11554 		 * of ditching any IREs that have been set
11555 		 * up based on the old pp dst address.
11556 		 */
11557 		err = ipif_logical_down(ipif, q, mp);
11558 		if (err == EINPROGRESS)
11559 			return (err);
11560 		ipif_down_tail(ipif);
11561 		need_up = B_TRUE;
11562 	}
11563 	/*
11564 	 * could return EINPROGRESS. If so ioctl will complete in
11565 	 * ip_rput_dlpi_writer
11566 	 */
11567 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11568 	return (err);
11569 }
11570 
11571 static int
11572 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11573     boolean_t need_up)
11574 {
11575 	in6_addr_t v6addr;
11576 	ill_t	*ill = ipif->ipif_ill;
11577 	int	err = 0;
11578 	boolean_t need_dl_down;
11579 	boolean_t need_arp_down;
11580 
11581 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11582 	    ipif->ipif_id, (void *)ipif));
11583 
11584 	/* Must cancel any pending timer before taking the ill_lock */
11585 	if (ipif->ipif_recovery_id != 0)
11586 		(void) untimeout(ipif->ipif_recovery_id);
11587 	ipif->ipif_recovery_id = 0;
11588 
11589 	if (ipif->ipif_isv6) {
11590 		sin6_t *sin6;
11591 
11592 		sin6 = (sin6_t *)sin;
11593 		v6addr = sin6->sin6_addr;
11594 	} else {
11595 		ipaddr_t addr;
11596 
11597 		addr = sin->sin_addr.s_addr;
11598 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11599 	}
11600 	mutex_enter(&ill->ill_lock);
11601 	/* Set point to point destination address. */
11602 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11603 		/*
11604 		 * Allow this as a means of creating logical
11605 		 * pt-pt interfaces on top of e.g. an Ethernet.
11606 		 * XXX Undocumented HACK for testing.
11607 		 * pt-pt interfaces are created with NUD disabled.
11608 		 */
11609 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11610 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11611 		if (ipif->ipif_isv6)
11612 			ill->ill_flags |= ILLF_NONUD;
11613 	}
11614 
11615 	/*
11616 	 * If the interface was previously marked as a duplicate, then since
11617 	 * we've now got a "new" address, it should no longer be considered a
11618 	 * duplicate -- even if the "new" address is the same as the old one.
11619 	 * Note that if all ipifs are down, we may have a pending ARP down
11620 	 * event to handle.
11621 	 */
11622 	need_dl_down = need_arp_down = B_FALSE;
11623 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11624 		need_arp_down = !need_up;
11625 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11626 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11627 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11628 			need_dl_down = B_TRUE;
11629 		}
11630 	}
11631 
11632 	/* Set the new address. */
11633 	ipif->ipif_v6pp_dst_addr = v6addr;
11634 	/* Make sure subnet tracks pp_dst */
11635 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11636 	mutex_exit(&ill->ill_lock);
11637 
11638 	if (need_up) {
11639 		/*
11640 		 * Now bring the interface back up.  If this
11641 		 * is the only IPIF for the ILL, ipif_up
11642 		 * will have to re-bind to the device, so
11643 		 * we may get back EINPROGRESS, in which
11644 		 * case, this IOCTL will get completed in
11645 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11646 		 */
11647 		err = ipif_up(ipif, q, mp);
11648 	}
11649 
11650 	if (need_dl_down)
11651 		ill_dl_down(ill);
11652 
11653 	if (need_arp_down)
11654 		ipif_arp_down(ipif);
11655 	return (err);
11656 }
11657 
11658 /*
11659  * Restart entry point to restart the dstaddress set operation after the
11660  * refcounts have dropped to zero.
11661  */
11662 /* ARGSUSED */
11663 int
11664 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11665     ip_ioctl_cmd_t *ipip, void *ifreq)
11666 {
11667 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11668 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11669 	ipif_down_tail(ipif);
11670 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11671 }
11672 
11673 /* ARGSUSED */
11674 int
11675 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11676     ip_ioctl_cmd_t *ipip, void *if_req)
11677 {
11678 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11679 
11680 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11681 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11682 	/*
11683 	 * Get point to point destination address. The addresses can't
11684 	 * change since we hold a reference to the ipif.
11685 	 */
11686 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11687 		return (EADDRNOTAVAIL);
11688 
11689 	if (ipif->ipif_isv6) {
11690 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11691 		*sin6 = sin6_null;
11692 		sin6->sin6_family = AF_INET6;
11693 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11694 	} else {
11695 		*sin = sin_null;
11696 		sin->sin_family = AF_INET;
11697 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11698 	}
11699 	return (0);
11700 }
11701 
11702 /*
11703  * part of ipmp, make this func return the active/inactive state and
11704  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11705  */
11706 /*
11707  * This function either sets or clears the IFF_INACTIVE flag.
11708  *
11709  * As long as there are some addresses or multicast memberships on the
11710  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11711  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11712  * will be used for outbound packets.
11713  *
11714  * Caller needs to verify the validity of setting IFF_INACTIVE.
11715  */
11716 static void
11717 phyint_inactive(phyint_t *phyi)
11718 {
11719 	ill_t *ill_v4;
11720 	ill_t *ill_v6;
11721 	ipif_t *ipif;
11722 	ilm_t *ilm;
11723 
11724 	ill_v4 = phyi->phyint_illv4;
11725 	ill_v6 = phyi->phyint_illv6;
11726 
11727 	/*
11728 	 * No need for a lock while traversing the list since iam
11729 	 * a writer
11730 	 */
11731 	if (ill_v4 != NULL) {
11732 		ASSERT(IAM_WRITER_ILL(ill_v4));
11733 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11734 		    ipif = ipif->ipif_next) {
11735 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11736 				mutex_enter(&phyi->phyint_lock);
11737 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11738 				mutex_exit(&phyi->phyint_lock);
11739 				return;
11740 			}
11741 		}
11742 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11743 		    ilm = ilm->ilm_next) {
11744 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11745 				mutex_enter(&phyi->phyint_lock);
11746 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11747 				mutex_exit(&phyi->phyint_lock);
11748 				return;
11749 			}
11750 		}
11751 	}
11752 	if (ill_v6 != NULL) {
11753 		ill_v6 = phyi->phyint_illv6;
11754 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11755 		    ipif = ipif->ipif_next) {
11756 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11757 				mutex_enter(&phyi->phyint_lock);
11758 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11759 				mutex_exit(&phyi->phyint_lock);
11760 				return;
11761 			}
11762 		}
11763 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11764 		    ilm = ilm->ilm_next) {
11765 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11766 				mutex_enter(&phyi->phyint_lock);
11767 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11768 				mutex_exit(&phyi->phyint_lock);
11769 				return;
11770 			}
11771 		}
11772 	}
11773 	mutex_enter(&phyi->phyint_lock);
11774 	phyi->phyint_flags |= PHYI_INACTIVE;
11775 	mutex_exit(&phyi->phyint_lock);
11776 }
11777 
11778 /*
11779  * This function is called only when the phyint flags change. Currently
11780  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11781  * that we can select a good ill.
11782  */
11783 static void
11784 ip_redo_nomination(phyint_t *phyi)
11785 {
11786 	ill_t *ill_v4;
11787 
11788 	ill_v4 = phyi->phyint_illv4;
11789 
11790 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11791 		ASSERT(IAM_WRITER_ILL(ill_v4));
11792 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11793 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11794 	}
11795 }
11796 
11797 /*
11798  * Heuristic to check if ill is INACTIVE.
11799  * Checks if ill has an ipif with an usable ip address.
11800  *
11801  * Return values:
11802  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11803  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11804  */
11805 static boolean_t
11806 ill_is_inactive(ill_t *ill)
11807 {
11808 	ipif_t *ipif;
11809 
11810 	/* Check whether it is in an IPMP group */
11811 	if (ill->ill_phyint->phyint_groupname == NULL)
11812 		return (B_FALSE);
11813 
11814 	if (ill->ill_ipif_up_count == 0)
11815 		return (B_TRUE);
11816 
11817 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11818 		uint64_t flags = ipif->ipif_flags;
11819 
11820 		/*
11821 		 * This ipif is usable if it is IPIF_UP and not a
11822 		 * dedicated test address.  A dedicated test address
11823 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11824 		 * (note in particular that V6 test addresses are
11825 		 * link-local data addresses and thus are marked
11826 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11827 		 */
11828 		if ((flags & IPIF_UP) &&
11829 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11830 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11831 			return (B_FALSE);
11832 	}
11833 	return (B_TRUE);
11834 }
11835 
11836 /*
11837  * Set interface flags.
11838  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11839  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11840  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11841  *
11842  * NOTE : We really don't enforce that ipif_id zero should be used
11843  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11844  *	  is because applications generally does SICGLIFFLAGS and
11845  *	  ORs in the new flags (that affects the logical) and does a
11846  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11847  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11848  *	  flags that will be turned on is correct with respect to
11849  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11850  */
11851 /* ARGSUSED */
11852 int
11853 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11854     ip_ioctl_cmd_t *ipip, void *if_req)
11855 {
11856 	uint64_t turn_on;
11857 	uint64_t turn_off;
11858 	int	err;
11859 	boolean_t need_up = B_FALSE;
11860 	phyint_t *phyi;
11861 	ill_t *ill;
11862 	uint64_t intf_flags;
11863 	boolean_t phyint_flags_modified = B_FALSE;
11864 	uint64_t flags;
11865 	struct ifreq *ifr;
11866 	struct lifreq *lifr;
11867 	boolean_t set_linklocal = B_FALSE;
11868 	boolean_t zero_source = B_FALSE;
11869 
11870 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11871 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11872 
11873 	ASSERT(IAM_WRITER_IPIF(ipif));
11874 
11875 	ill = ipif->ipif_ill;
11876 	phyi = ill->ill_phyint;
11877 
11878 	if (ipip->ipi_cmd_type == IF_CMD) {
11879 		ifr = (struct ifreq *)if_req;
11880 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11881 	} else {
11882 		lifr = (struct lifreq *)if_req;
11883 		flags = lifr->lifr_flags;
11884 	}
11885 
11886 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11887 
11888 	/*
11889 	 * Has the flags been set correctly till now ?
11890 	 */
11891 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11892 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11893 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11894 	/*
11895 	 * Compare the new flags to the old, and partition
11896 	 * into those coming on and those going off.
11897 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11898 	 */
11899 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11900 		flags |= intf_flags & ~0xFFFF;
11901 
11902 	/*
11903 	 * First check which bits will change and then which will
11904 	 * go on and off
11905 	 */
11906 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11907 	if (!turn_on)
11908 		return (0);	/* No change */
11909 
11910 	turn_off = intf_flags & turn_on;
11911 	turn_on ^= turn_off;
11912 	err = 0;
11913 
11914 	/*
11915 	 * Don't allow any bits belonging to the logical interface
11916 	 * to be set or cleared on the replacement ipif that was
11917 	 * created temporarily during a MOVE.
11918 	 */
11919 	if (ipif->ipif_replace_zero &&
11920 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11921 		return (EINVAL);
11922 	}
11923 
11924 	/*
11925 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11926 	 * IPv6 interfaces.
11927 	 */
11928 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11929 		return (EINVAL);
11930 
11931 	/*
11932 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11933 	 * interfaces.  It makes no sense in that context.
11934 	 */
11935 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11936 		return (EINVAL);
11937 
11938 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11939 		zero_source = B_TRUE;
11940 
11941 	/*
11942 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11943 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11944 	 * If the link local address isn't set, and can be set, it will get
11945 	 * set later on in this function.
11946 	 */
11947 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11948 	    (flags & IFF_UP) && !zero_source &&
11949 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11950 		if (ipif_cant_setlinklocal(ipif))
11951 			return (EINVAL);
11952 		set_linklocal = B_TRUE;
11953 	}
11954 
11955 	/*
11956 	 * ILL cannot be part of a usesrc group and and IPMP group at the
11957 	 * same time. No need to grab ill_g_usesrc_lock here, see
11958 	 * synchronization notes in ip.c
11959 	 */
11960 	if (turn_on & PHYI_STANDBY &&
11961 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11962 		return (EINVAL);
11963 	}
11964 
11965 	/*
11966 	 * If we modify physical interface flags, we'll potentially need to
11967 	 * send up two routing socket messages for the changes (one for the
11968 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11969 	 */
11970 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11971 		phyint_flags_modified = B_TRUE;
11972 
11973 	/*
11974 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11975 	 * we need to flush the IRE_CACHES belonging to this ill.
11976 	 * We handle this case here without doing the DOWN/UP dance
11977 	 * like it is done for other flags. If some other flags are
11978 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11979 	 * below will handle it by bringing it down and then
11980 	 * bringing it UP.
11981 	 */
11982 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11983 		ill_t *ill_v4, *ill_v6;
11984 
11985 		ill_v4 = phyi->phyint_illv4;
11986 		ill_v6 = phyi->phyint_illv6;
11987 
11988 		/*
11989 		 * First set the INACTIVE flag if needed. Then delete the ires.
11990 		 * ire_add will atomically prevent creating new IRE_CACHEs
11991 		 * unless hidden flag is set.
11992 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11993 		 */
11994 		if ((turn_on & PHYI_FAILED) &&
11995 		    ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) {
11996 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11997 			phyi->phyint_flags &= ~PHYI_INACTIVE;
11998 		}
11999 		if ((turn_off & PHYI_FAILED) &&
12000 		    ((intf_flags & PHYI_STANDBY) ||
12001 		    (!ipmp_enable_failback && ill_is_inactive(ill)))) {
12002 			phyint_inactive(phyi);
12003 		}
12004 
12005 		if (turn_on & PHYI_STANDBY) {
12006 			/*
12007 			 * We implicitly set INACTIVE only when STANDBY is set.
12008 			 * INACTIVE is also set on non-STANDBY phyint when user
12009 			 * disables FAILBACK using configuration file.
12010 			 * Do not allow STANDBY to be set on such INACTIVE
12011 			 * phyint
12012 			 */
12013 			if (phyi->phyint_flags & PHYI_INACTIVE)
12014 				return (EINVAL);
12015 			if (!(phyi->phyint_flags & PHYI_FAILED))
12016 				phyint_inactive(phyi);
12017 		}
12018 		if (turn_off & PHYI_STANDBY) {
12019 			if (ipmp_enable_failback) {
12020 				/*
12021 				 * Reset PHYI_INACTIVE.
12022 				 */
12023 				phyi->phyint_flags &= ~PHYI_INACTIVE;
12024 			} else if (ill_is_inactive(ill) &&
12025 			    !(phyi->phyint_flags & PHYI_FAILED)) {
12026 				/*
12027 				 * Need to set INACTIVE, when user sets
12028 				 * STANDBY on a non-STANDBY phyint and
12029 				 * later resets STANDBY
12030 				 */
12031 				phyint_inactive(phyi);
12032 			}
12033 		}
12034 		/*
12035 		 * We should always send up a message so that the
12036 		 * daemons come to know of it. Note that the zeroth
12037 		 * interface can be down and the check below for IPIF_UP
12038 		 * will not make sense as we are actually setting
12039 		 * a phyint flag here. We assume that the ipif used
12040 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
12041 		 * send up any message for non-zero ipifs).
12042 		 */
12043 		phyint_flags_modified = B_TRUE;
12044 
12045 		if (ill_v4 != NULL) {
12046 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12047 			    IRE_CACHE, ill_stq_cache_delete,
12048 			    (char *)ill_v4, ill_v4);
12049 			illgrp_reset_schednext(ill_v4);
12050 		}
12051 		if (ill_v6 != NULL) {
12052 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12053 			    IRE_CACHE, ill_stq_cache_delete,
12054 			    (char *)ill_v6, ill_v6);
12055 			illgrp_reset_schednext(ill_v6);
12056 		}
12057 	}
12058 
12059 	/*
12060 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
12061 	 * status of the interface and, if the interface is part of an IPMP
12062 	 * group, all other interfaces that are part of the same IPMP
12063 	 * group.
12064 	 */
12065 	if ((turn_on | turn_off) & ILLF_ROUTER) {
12066 		(void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0),
12067 		    (caddr_t)ill);
12068 	}
12069 
12070 	/*
12071 	 * If the interface is not UP and we are not going to
12072 	 * bring it UP, record the flags and return. When the
12073 	 * interface comes UP later, the right actions will be
12074 	 * taken.
12075 	 */
12076 	if (!(ipif->ipif_flags & IPIF_UP) &&
12077 	    !(turn_on & IPIF_UP)) {
12078 		/* Record new flags in their respective places. */
12079 		mutex_enter(&ill->ill_lock);
12080 		mutex_enter(&ill->ill_phyint->phyint_lock);
12081 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12082 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12083 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12084 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12085 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12086 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12087 		mutex_exit(&ill->ill_lock);
12088 		mutex_exit(&ill->ill_phyint->phyint_lock);
12089 
12090 		/*
12091 		 * We do the broadcast and nomination here rather
12092 		 * than waiting for a FAILOVER/FAILBACK to happen. In
12093 		 * the case of FAILBACK from INACTIVE standby to the
12094 		 * interface that has been repaired, PHYI_FAILED has not
12095 		 * been cleared yet. If there are only two interfaces in
12096 		 * that group, all we have is a FAILED and INACTIVE
12097 		 * interface. If we do the nomination soon after a failback,
12098 		 * the broadcast nomination code would select the
12099 		 * INACTIVE interface for receiving broadcasts as FAILED is
12100 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
12101 		 * receive broadcast packets, we need to redo nomination
12102 		 * when the FAILED is cleared here. Thus, in general we
12103 		 * always do the nomination here for FAILED, STANDBY
12104 		 * and OFFLINE.
12105 		 */
12106 		if (((turn_on | turn_off) &
12107 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
12108 			ip_redo_nomination(phyi);
12109 		}
12110 		if (phyint_flags_modified) {
12111 			if (phyi->phyint_illv4 != NULL) {
12112 				ip_rts_ifmsg(phyi->phyint_illv4->
12113 				    ill_ipif);
12114 			}
12115 			if (phyi->phyint_illv6 != NULL) {
12116 				ip_rts_ifmsg(phyi->phyint_illv6->
12117 				    ill_ipif);
12118 			}
12119 		}
12120 		return (0);
12121 	} else if (set_linklocal || zero_source) {
12122 		mutex_enter(&ill->ill_lock);
12123 		if (set_linklocal)
12124 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
12125 		if (zero_source)
12126 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
12127 		mutex_exit(&ill->ill_lock);
12128 	}
12129 
12130 	/*
12131 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
12132 	 * or point-to-point interfaces with an unspecified destination. We do
12133 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
12134 	 * have a subnet assigned, which is how in.ndpd currently manages its
12135 	 * onlink prefix list when no addresses are configured with those
12136 	 * prefixes.
12137 	 */
12138 	if (ipif->ipif_isv6 &&
12139 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
12140 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
12141 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
12142 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12143 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
12144 		return (EINVAL);
12145 	}
12146 
12147 	/*
12148 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
12149 	 * from being brought up.
12150 	 */
12151 	if (!ipif->ipif_isv6 &&
12152 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12153 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
12154 		return (EINVAL);
12155 	}
12156 
12157 	/*
12158 	 * The only flag changes that we currently take specific action on
12159 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
12160 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
12161 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
12162 	 * the flags and bringing it back up again.
12163 	 */
12164 	if ((turn_on|turn_off) &
12165 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
12166 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
12167 		/*
12168 		 * Taking this ipif down, make sure we have
12169 		 * valid net and subnet bcast ire's for other
12170 		 * logical interfaces, if we need them.
12171 		 */
12172 		if (!ipif->ipif_isv6)
12173 			ipif_check_bcast_ires(ipif);
12174 
12175 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
12176 		    !(turn_off & IPIF_UP)) {
12177 			need_up = B_TRUE;
12178 			if (ipif->ipif_flags & IPIF_UP)
12179 				ill->ill_logical_down = 1;
12180 			turn_on &= ~IPIF_UP;
12181 		}
12182 		err = ipif_down(ipif, q, mp);
12183 		ip1dbg(("ipif_down returns %d err ", err));
12184 		if (err == EINPROGRESS)
12185 			return (err);
12186 		ipif_down_tail(ipif);
12187 	}
12188 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
12189 }
12190 
12191 static int
12192 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
12193     boolean_t need_up)
12194 {
12195 	ill_t	*ill;
12196 	phyint_t *phyi;
12197 	uint64_t turn_on;
12198 	uint64_t turn_off;
12199 	uint64_t intf_flags;
12200 	boolean_t phyint_flags_modified = B_FALSE;
12201 	int	err = 0;
12202 	boolean_t set_linklocal = B_FALSE;
12203 	boolean_t zero_source = B_FALSE;
12204 
12205 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12206 		ipif->ipif_ill->ill_name, ipif->ipif_id));
12207 
12208 	ASSERT(IAM_WRITER_IPIF(ipif));
12209 
12210 	ill = ipif->ipif_ill;
12211 	phyi = ill->ill_phyint;
12212 
12213 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12214 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12215 
12216 	turn_off = intf_flags & turn_on;
12217 	turn_on ^= turn_off;
12218 
12219 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12220 		phyint_flags_modified = B_TRUE;
12221 
12222 	/*
12223 	 * Now we change the flags. Track current value of
12224 	 * other flags in their respective places.
12225 	 */
12226 	mutex_enter(&ill->ill_lock);
12227 	mutex_enter(&phyi->phyint_lock);
12228 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12229 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12230 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12231 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12232 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12233 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12234 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12235 		set_linklocal = B_TRUE;
12236 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12237 	}
12238 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12239 		zero_source = B_TRUE;
12240 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12241 	}
12242 	mutex_exit(&ill->ill_lock);
12243 	mutex_exit(&phyi->phyint_lock);
12244 
12245 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12246 		ip_redo_nomination(phyi);
12247 
12248 	if (set_linklocal)
12249 		(void) ipif_setlinklocal(ipif);
12250 
12251 	if (zero_source)
12252 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12253 	else
12254 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12255 
12256 	if (need_up) {
12257 		/*
12258 		 * XXX ipif_up really does not know whether a phyint flags
12259 		 * was modified or not. So, it sends up information on
12260 		 * only one routing sockets message. As we don't bring up
12261 		 * the interface and also set STANDBY/FAILED simultaneously
12262 		 * it should be okay.
12263 		 */
12264 		err = ipif_up(ipif, q, mp);
12265 	} else {
12266 		/*
12267 		 * Make sure routing socket sees all changes to the flags.
12268 		 * ipif_up_done* handles this when we use ipif_up.
12269 		 */
12270 		if (phyint_flags_modified) {
12271 			if (phyi->phyint_illv4 != NULL) {
12272 				ip_rts_ifmsg(phyi->phyint_illv4->
12273 				    ill_ipif);
12274 			}
12275 			if (phyi->phyint_illv6 != NULL) {
12276 				ip_rts_ifmsg(phyi->phyint_illv6->
12277 				    ill_ipif);
12278 			}
12279 		} else {
12280 			ip_rts_ifmsg(ipif);
12281 		}
12282 	}
12283 	return (err);
12284 }
12285 
12286 /*
12287  * Restart entry point to restart the flags restart operation after the
12288  * refcounts have dropped to zero.
12289  */
12290 /* ARGSUSED */
12291 int
12292 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12293     ip_ioctl_cmd_t *ipip, void *if_req)
12294 {
12295 	int	err;
12296 	struct ifreq *ifr = (struct ifreq *)if_req;
12297 	struct lifreq *lifr = (struct lifreq *)if_req;
12298 
12299 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12300 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12301 
12302 	ipif_down_tail(ipif);
12303 	if (ipip->ipi_cmd_type == IF_CMD) {
12304 		/*
12305 		 * Since ip_sioctl_flags expects an int and ifr_flags
12306 		 * is a short we need to cast ifr_flags into an int
12307 		 * to avoid having sign extension cause bits to get
12308 		 * set that should not be.
12309 		 */
12310 		err = ip_sioctl_flags_tail(ipif,
12311 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12312 		    q, mp, B_TRUE);
12313 	} else {
12314 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12315 		    q, mp, B_TRUE);
12316 	}
12317 	return (err);
12318 }
12319 
12320 /* ARGSUSED */
12321 int
12322 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12323     ip_ioctl_cmd_t *ipip, void *if_req)
12324 {
12325 	/*
12326 	 * Has the flags been set correctly till now ?
12327 	 */
12328 	ill_t *ill = ipif->ipif_ill;
12329 	phyint_t *phyi = ill->ill_phyint;
12330 
12331 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12332 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12333 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12334 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12335 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12336 
12337 	/*
12338 	 * Need a lock since some flags can be set even when there are
12339 	 * references to the ipif.
12340 	 */
12341 	mutex_enter(&ill->ill_lock);
12342 	if (ipip->ipi_cmd_type == IF_CMD) {
12343 		struct ifreq *ifr = (struct ifreq *)if_req;
12344 
12345 		/* Get interface flags (low 16 only). */
12346 		ifr->ifr_flags = ((ipif->ipif_flags |
12347 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12348 	} else {
12349 		struct lifreq *lifr = (struct lifreq *)if_req;
12350 
12351 		/* Get interface flags. */
12352 		lifr->lifr_flags = ipif->ipif_flags |
12353 		    ill->ill_flags | phyi->phyint_flags;
12354 	}
12355 	mutex_exit(&ill->ill_lock);
12356 	return (0);
12357 }
12358 
12359 /* ARGSUSED */
12360 int
12361 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12362     ip_ioctl_cmd_t *ipip, void *if_req)
12363 {
12364 	int mtu;
12365 	int ip_min_mtu;
12366 	struct ifreq	*ifr;
12367 	struct lifreq *lifr;
12368 	ire_t	*ire;
12369 
12370 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12371 	    ipif->ipif_id, (void *)ipif));
12372 	if (ipip->ipi_cmd_type == IF_CMD) {
12373 		ifr = (struct ifreq *)if_req;
12374 		mtu = ifr->ifr_metric;
12375 	} else {
12376 		lifr = (struct lifreq *)if_req;
12377 		mtu = lifr->lifr_mtu;
12378 	}
12379 
12380 	if (ipif->ipif_isv6)
12381 		ip_min_mtu = IPV6_MIN_MTU;
12382 	else
12383 		ip_min_mtu = IP_MIN_MTU;
12384 
12385 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12386 		return (EINVAL);
12387 
12388 	/*
12389 	 * Change the MTU size in all relevant ire's.
12390 	 * Mtu change Vs. new ire creation - protocol below.
12391 	 * First change ipif_mtu and the ire_max_frag of the
12392 	 * interface ire. Then do an ire walk and change the
12393 	 * ire_max_frag of all affected ires. During ire_add
12394 	 * under the bucket lock, set the ire_max_frag of the
12395 	 * new ire being created from the ipif/ire from which
12396 	 * it is being derived. If an mtu change happens after
12397 	 * the ire is added, the new ire will be cleaned up.
12398 	 * Conversely if the mtu change happens before the ire
12399 	 * is added, ire_add will see the new value of the mtu.
12400 	 */
12401 	ipif->ipif_mtu = mtu;
12402 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12403 
12404 	if (ipif->ipif_isv6)
12405 		ire = ipif_to_ire_v6(ipif);
12406 	else
12407 		ire = ipif_to_ire(ipif);
12408 	if (ire != NULL) {
12409 		ire->ire_max_frag = ipif->ipif_mtu;
12410 		ire_refrele(ire);
12411 	}
12412 	if (ipif->ipif_flags & IPIF_UP) {
12413 		if (ipif->ipif_isv6)
12414 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES);
12415 		else
12416 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES);
12417 	}
12418 	/* Update the MTU in SCTP's list */
12419 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12420 	return (0);
12421 }
12422 
12423 /* Get interface MTU. */
12424 /* ARGSUSED */
12425 int
12426 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12427 	ip_ioctl_cmd_t *ipip, void *if_req)
12428 {
12429 	struct ifreq	*ifr;
12430 	struct lifreq	*lifr;
12431 
12432 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12433 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12434 	if (ipip->ipi_cmd_type == IF_CMD) {
12435 		ifr = (struct ifreq *)if_req;
12436 		ifr->ifr_metric = ipif->ipif_mtu;
12437 	} else {
12438 		lifr = (struct lifreq *)if_req;
12439 		lifr->lifr_mtu = ipif->ipif_mtu;
12440 	}
12441 	return (0);
12442 }
12443 
12444 /* Set interface broadcast address. */
12445 /* ARGSUSED2 */
12446 int
12447 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12448 	ip_ioctl_cmd_t *ipip, void *if_req)
12449 {
12450 	ipaddr_t addr;
12451 	ire_t	*ire;
12452 
12453 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12454 	    ipif->ipif_id));
12455 
12456 	ASSERT(IAM_WRITER_IPIF(ipif));
12457 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12458 		return (EADDRNOTAVAIL);
12459 
12460 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12461 
12462 	if (sin->sin_family != AF_INET)
12463 		return (EAFNOSUPPORT);
12464 
12465 	addr = sin->sin_addr.s_addr;
12466 	if (ipif->ipif_flags & IPIF_UP) {
12467 		/*
12468 		 * If we are already up, make sure the new
12469 		 * broadcast address makes sense.  If it does,
12470 		 * there should be an IRE for it already.
12471 		 * Don't match on ipif, only on the ill
12472 		 * since we are sharing these now. Don't use
12473 		 * MATCH_IRE_ILL_GROUP as we are looking for
12474 		 * the broadcast ire on this ill and each ill
12475 		 * in the group has its own broadcast ire.
12476 		 */
12477 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12478 		    ipif, ALL_ZONES, NULL,
12479 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE));
12480 		if (ire == NULL) {
12481 			return (EINVAL);
12482 		} else {
12483 			ire_refrele(ire);
12484 		}
12485 	}
12486 	/*
12487 	 * Changing the broadcast addr for this ipif.
12488 	 * Make sure we have valid net and subnet bcast
12489 	 * ire's for other logical interfaces, if needed.
12490 	 */
12491 	if (addr != ipif->ipif_brd_addr)
12492 		ipif_check_bcast_ires(ipif);
12493 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12494 	return (0);
12495 }
12496 
12497 /* Get interface broadcast address. */
12498 /* ARGSUSED */
12499 int
12500 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12501     ip_ioctl_cmd_t *ipip, void *if_req)
12502 {
12503 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12504 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12505 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12506 		return (EADDRNOTAVAIL);
12507 
12508 	/* IPIF_BROADCAST not possible with IPv6 */
12509 	ASSERT(!ipif->ipif_isv6);
12510 	*sin = sin_null;
12511 	sin->sin_family = AF_INET;
12512 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12513 	return (0);
12514 }
12515 
12516 /*
12517  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12518  */
12519 /* ARGSUSED */
12520 int
12521 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12522     ip_ioctl_cmd_t *ipip, void *if_req)
12523 {
12524 	int err = 0;
12525 	in6_addr_t v6mask;
12526 
12527 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12528 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12529 
12530 	ASSERT(IAM_WRITER_IPIF(ipif));
12531 
12532 	if (ipif->ipif_isv6) {
12533 		sin6_t *sin6;
12534 
12535 		if (sin->sin_family != AF_INET6)
12536 			return (EAFNOSUPPORT);
12537 
12538 		sin6 = (sin6_t *)sin;
12539 		v6mask = sin6->sin6_addr;
12540 	} else {
12541 		ipaddr_t mask;
12542 
12543 		if (sin->sin_family != AF_INET)
12544 			return (EAFNOSUPPORT);
12545 
12546 		mask = sin->sin_addr.s_addr;
12547 		V4MASK_TO_V6(mask, v6mask);
12548 	}
12549 
12550 	/*
12551 	 * No big deal if the interface isn't already up, or the mask
12552 	 * isn't really changing, or this is pt-pt.
12553 	 */
12554 	if (!(ipif->ipif_flags & IPIF_UP) ||
12555 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12556 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12557 		ipif->ipif_v6net_mask = v6mask;
12558 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12559 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12560 			    ipif->ipif_v6net_mask,
12561 			    ipif->ipif_v6subnet);
12562 		}
12563 		return (0);
12564 	}
12565 	/*
12566 	 * Make sure we have valid net and subnet broadcast ire's
12567 	 * for the old netmask, if needed by other logical interfaces.
12568 	 */
12569 	if (!ipif->ipif_isv6)
12570 		ipif_check_bcast_ires(ipif);
12571 
12572 	err = ipif_logical_down(ipif, q, mp);
12573 	if (err == EINPROGRESS)
12574 		return (err);
12575 	ipif_down_tail(ipif);
12576 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12577 	return (err);
12578 }
12579 
12580 static int
12581 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12582 {
12583 	in6_addr_t v6mask;
12584 	int err = 0;
12585 
12586 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12587 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12588 
12589 	if (ipif->ipif_isv6) {
12590 		sin6_t *sin6;
12591 
12592 		sin6 = (sin6_t *)sin;
12593 		v6mask = sin6->sin6_addr;
12594 	} else {
12595 		ipaddr_t mask;
12596 
12597 		mask = sin->sin_addr.s_addr;
12598 		V4MASK_TO_V6(mask, v6mask);
12599 	}
12600 
12601 	ipif->ipif_v6net_mask = v6mask;
12602 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12603 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12604 		    ipif->ipif_v6subnet);
12605 	}
12606 	err = ipif_up(ipif, q, mp);
12607 
12608 	if (err == 0 || err == EINPROGRESS) {
12609 		/*
12610 		 * The interface must be DL_BOUND if this packet has to
12611 		 * go out on the wire. Since we only go through a logical
12612 		 * down and are bound with the driver during an internal
12613 		 * down/up that is satisfied.
12614 		 */
12615 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12616 			/* Potentially broadcast an address mask reply. */
12617 			ipif_mask_reply(ipif);
12618 		}
12619 	}
12620 	return (err);
12621 }
12622 
12623 /* ARGSUSED */
12624 int
12625 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12626     ip_ioctl_cmd_t *ipip, void *if_req)
12627 {
12628 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12629 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12630 	ipif_down_tail(ipif);
12631 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12632 }
12633 
12634 /* Get interface net mask. */
12635 /* ARGSUSED */
12636 int
12637 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12638     ip_ioctl_cmd_t *ipip, void *if_req)
12639 {
12640 	struct lifreq *lifr = (struct lifreq *)if_req;
12641 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12642 
12643 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12644 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12645 
12646 	/*
12647 	 * net mask can't change since we have a reference to the ipif.
12648 	 */
12649 	if (ipif->ipif_isv6) {
12650 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12651 		*sin6 = sin6_null;
12652 		sin6->sin6_family = AF_INET6;
12653 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12654 		lifr->lifr_addrlen =
12655 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12656 	} else {
12657 		*sin = sin_null;
12658 		sin->sin_family = AF_INET;
12659 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12660 		if (ipip->ipi_cmd_type == LIF_CMD) {
12661 			lifr->lifr_addrlen =
12662 			    ip_mask_to_plen(ipif->ipif_net_mask);
12663 		}
12664 	}
12665 	return (0);
12666 }
12667 
12668 /* ARGSUSED */
12669 int
12670 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12671     ip_ioctl_cmd_t *ipip, void *if_req)
12672 {
12673 
12674 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12675 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12676 	/*
12677 	 * Set interface metric.  We don't use this for
12678 	 * anything but we keep track of it in case it is
12679 	 * important to routing applications or such.
12680 	 */
12681 	if (ipip->ipi_cmd_type == IF_CMD) {
12682 		struct ifreq    *ifr;
12683 
12684 		ifr = (struct ifreq *)if_req;
12685 		ipif->ipif_metric = ifr->ifr_metric;
12686 	} else {
12687 		struct lifreq   *lifr;
12688 
12689 		lifr = (struct lifreq *)if_req;
12690 		ipif->ipif_metric = lifr->lifr_metric;
12691 	}
12692 	return (0);
12693 }
12694 
12695 
12696 /* ARGSUSED */
12697 int
12698 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12699     ip_ioctl_cmd_t *ipip, void *if_req)
12700 {
12701 
12702 	/* Get interface metric. */
12703 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12704 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12705 	if (ipip->ipi_cmd_type == IF_CMD) {
12706 		struct ifreq    *ifr;
12707 
12708 		ifr = (struct ifreq *)if_req;
12709 		ifr->ifr_metric = ipif->ipif_metric;
12710 	} else {
12711 		struct lifreq   *lifr;
12712 
12713 		lifr = (struct lifreq *)if_req;
12714 		lifr->lifr_metric = ipif->ipif_metric;
12715 	}
12716 
12717 	return (0);
12718 }
12719 
12720 /* ARGSUSED */
12721 int
12722 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12723     ip_ioctl_cmd_t *ipip, void *if_req)
12724 {
12725 
12726 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12727 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12728 	/*
12729 	 * Set the muxid returned from I_PLINK.
12730 	 */
12731 	if (ipip->ipi_cmd_type == IF_CMD) {
12732 		struct ifreq *ifr = (struct ifreq *)if_req;
12733 
12734 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12735 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12736 	} else {
12737 		struct lifreq *lifr = (struct lifreq *)if_req;
12738 
12739 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12740 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12741 	}
12742 	return (0);
12743 }
12744 
12745 /* ARGSUSED */
12746 int
12747 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12748     ip_ioctl_cmd_t *ipip, void *if_req)
12749 {
12750 
12751 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12752 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12753 	/*
12754 	 * Get the muxid saved in ill for I_PUNLINK.
12755 	 */
12756 	if (ipip->ipi_cmd_type == IF_CMD) {
12757 		struct ifreq *ifr = (struct ifreq *)if_req;
12758 
12759 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12760 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12761 	} else {
12762 		struct lifreq *lifr = (struct lifreq *)if_req;
12763 
12764 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12765 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12766 	}
12767 	return (0);
12768 }
12769 
12770 /*
12771  * Set the subnet prefix. Does not modify the broadcast address.
12772  */
12773 /* ARGSUSED */
12774 int
12775 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12776     ip_ioctl_cmd_t *ipip, void *if_req)
12777 {
12778 	int err = 0;
12779 	in6_addr_t v6addr;
12780 	in6_addr_t v6mask;
12781 	boolean_t need_up = B_FALSE;
12782 	int addrlen;
12783 
12784 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12785 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12786 
12787 	ASSERT(IAM_WRITER_IPIF(ipif));
12788 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12789 
12790 	if (ipif->ipif_isv6) {
12791 		sin6_t *sin6;
12792 
12793 		if (sin->sin_family != AF_INET6)
12794 			return (EAFNOSUPPORT);
12795 
12796 		sin6 = (sin6_t *)sin;
12797 		v6addr = sin6->sin6_addr;
12798 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12799 			return (EADDRNOTAVAIL);
12800 	} else {
12801 		ipaddr_t addr;
12802 
12803 		if (sin->sin_family != AF_INET)
12804 			return (EAFNOSUPPORT);
12805 
12806 		addr = sin->sin_addr.s_addr;
12807 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12808 			return (EADDRNOTAVAIL);
12809 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12810 		/* Add 96 bits */
12811 		addrlen += IPV6_ABITS - IP_ABITS;
12812 	}
12813 
12814 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12815 		return (EINVAL);
12816 
12817 	/* Check if bits in the address is set past the mask */
12818 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12819 		return (EINVAL);
12820 
12821 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12822 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12823 		return (0);	/* No change */
12824 
12825 	if (ipif->ipif_flags & IPIF_UP) {
12826 		/*
12827 		 * If the interface is already marked up,
12828 		 * we call ipif_down which will take care
12829 		 * of ditching any IREs that have been set
12830 		 * up based on the old interface address.
12831 		 */
12832 		err = ipif_logical_down(ipif, q, mp);
12833 		if (err == EINPROGRESS)
12834 			return (err);
12835 		ipif_down_tail(ipif);
12836 		need_up = B_TRUE;
12837 	}
12838 
12839 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12840 	return (err);
12841 }
12842 
12843 static int
12844 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12845     queue_t *q, mblk_t *mp, boolean_t need_up)
12846 {
12847 	ill_t	*ill = ipif->ipif_ill;
12848 	int	err = 0;
12849 
12850 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12851 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12852 
12853 	/* Set the new address. */
12854 	mutex_enter(&ill->ill_lock);
12855 	ipif->ipif_v6net_mask = v6mask;
12856 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12857 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12858 		    ipif->ipif_v6subnet);
12859 	}
12860 	mutex_exit(&ill->ill_lock);
12861 
12862 	if (need_up) {
12863 		/*
12864 		 * Now bring the interface back up.  If this
12865 		 * is the only IPIF for the ILL, ipif_up
12866 		 * will have to re-bind to the device, so
12867 		 * we may get back EINPROGRESS, in which
12868 		 * case, this IOCTL will get completed in
12869 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12870 		 */
12871 		err = ipif_up(ipif, q, mp);
12872 		if (err == EINPROGRESS)
12873 			return (err);
12874 	}
12875 	return (err);
12876 }
12877 
12878 /* ARGSUSED */
12879 int
12880 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12881     ip_ioctl_cmd_t *ipip, void *if_req)
12882 {
12883 	int	addrlen;
12884 	in6_addr_t v6addr;
12885 	in6_addr_t v6mask;
12886 	struct lifreq *lifr = (struct lifreq *)if_req;
12887 
12888 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12889 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12890 	ipif_down_tail(ipif);
12891 
12892 	addrlen = lifr->lifr_addrlen;
12893 	if (ipif->ipif_isv6) {
12894 		sin6_t *sin6;
12895 
12896 		sin6 = (sin6_t *)sin;
12897 		v6addr = sin6->sin6_addr;
12898 	} else {
12899 		ipaddr_t addr;
12900 
12901 		addr = sin->sin_addr.s_addr;
12902 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12903 		addrlen += IPV6_ABITS - IP_ABITS;
12904 	}
12905 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12906 
12907 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12908 }
12909 
12910 /* ARGSUSED */
12911 int
12912 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12913     ip_ioctl_cmd_t *ipip, void *if_req)
12914 {
12915 	struct lifreq *lifr = (struct lifreq *)if_req;
12916 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12917 
12918 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12919 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12920 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12921 
12922 	if (ipif->ipif_isv6) {
12923 		*sin6 = sin6_null;
12924 		sin6->sin6_family = AF_INET6;
12925 		sin6->sin6_addr = ipif->ipif_v6subnet;
12926 		lifr->lifr_addrlen =
12927 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12928 	} else {
12929 		*sin = sin_null;
12930 		sin->sin_family = AF_INET;
12931 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12932 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12933 	}
12934 	return (0);
12935 }
12936 
12937 /*
12938  * Set the IPv6 address token.
12939  */
12940 /* ARGSUSED */
12941 int
12942 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12943     ip_ioctl_cmd_t *ipi, void *if_req)
12944 {
12945 	ill_t *ill = ipif->ipif_ill;
12946 	int err;
12947 	in6_addr_t v6addr;
12948 	in6_addr_t v6mask;
12949 	boolean_t need_up = B_FALSE;
12950 	int i;
12951 	sin6_t *sin6 = (sin6_t *)sin;
12952 	struct lifreq *lifr = (struct lifreq *)if_req;
12953 	int addrlen;
12954 
12955 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12956 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12957 	ASSERT(IAM_WRITER_IPIF(ipif));
12958 
12959 	addrlen = lifr->lifr_addrlen;
12960 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12961 	if (ipif->ipif_id != 0)
12962 		return (EINVAL);
12963 
12964 	if (!ipif->ipif_isv6)
12965 		return (EINVAL);
12966 
12967 	if (addrlen > IPV6_ABITS)
12968 		return (EINVAL);
12969 
12970 	v6addr = sin6->sin6_addr;
12971 
12972 	/*
12973 	 * The length of the token is the length from the end.  To get
12974 	 * the proper mask for this, compute the mask of the bits not
12975 	 * in the token; ie. the prefix, and then xor to get the mask.
12976 	 */
12977 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12978 		return (EINVAL);
12979 	for (i = 0; i < 4; i++) {
12980 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12981 	}
12982 
12983 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12984 	    ill->ill_token_length == addrlen)
12985 		return (0);	/* No change */
12986 
12987 	if (ipif->ipif_flags & IPIF_UP) {
12988 		err = ipif_logical_down(ipif, q, mp);
12989 		if (err == EINPROGRESS)
12990 			return (err);
12991 		ipif_down_tail(ipif);
12992 		need_up = B_TRUE;
12993 	}
12994 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12995 	return (err);
12996 }
12997 
12998 static int
12999 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
13000     mblk_t *mp, boolean_t need_up)
13001 {
13002 	in6_addr_t v6addr;
13003 	in6_addr_t v6mask;
13004 	ill_t	*ill = ipif->ipif_ill;
13005 	int	i;
13006 	int	err = 0;
13007 
13008 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
13009 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13010 	v6addr = sin6->sin6_addr;
13011 	/*
13012 	 * The length of the token is the length from the end.  To get
13013 	 * the proper mask for this, compute the mask of the bits not
13014 	 * in the token; ie. the prefix, and then xor to get the mask.
13015 	 */
13016 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
13017 	for (i = 0; i < 4; i++)
13018 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13019 
13020 	mutex_enter(&ill->ill_lock);
13021 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
13022 	ill->ill_token_length = addrlen;
13023 	mutex_exit(&ill->ill_lock);
13024 
13025 	if (need_up) {
13026 		/*
13027 		 * Now bring the interface back up.  If this
13028 		 * is the only IPIF for the ILL, ipif_up
13029 		 * will have to re-bind to the device, so
13030 		 * we may get back EINPROGRESS, in which
13031 		 * case, this IOCTL will get completed in
13032 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13033 		 */
13034 		err = ipif_up(ipif, q, mp);
13035 		if (err == EINPROGRESS)
13036 			return (err);
13037 	}
13038 	return (err);
13039 }
13040 
13041 /* ARGSUSED */
13042 int
13043 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13044     ip_ioctl_cmd_t *ipi, void *if_req)
13045 {
13046 	ill_t *ill;
13047 	sin6_t *sin6 = (sin6_t *)sin;
13048 	struct lifreq *lifr = (struct lifreq *)if_req;
13049 
13050 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
13051 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13052 	if (ipif->ipif_id != 0)
13053 		return (EINVAL);
13054 
13055 	ill = ipif->ipif_ill;
13056 	if (!ill->ill_isv6)
13057 		return (ENXIO);
13058 
13059 	*sin6 = sin6_null;
13060 	sin6->sin6_family = AF_INET6;
13061 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
13062 	sin6->sin6_addr = ill->ill_token;
13063 	lifr->lifr_addrlen = ill->ill_token_length;
13064 	return (0);
13065 }
13066 
13067 /*
13068  * Set (hardware) link specific information that might override
13069  * what was acquired through the DL_INFO_ACK.
13070  * The logic is as follows.
13071  *
13072  * become exclusive
13073  * set CHANGING flag
13074  * change mtu on affected IREs
13075  * clear CHANGING flag
13076  *
13077  * An ire add that occurs before the CHANGING flag is set will have its mtu
13078  * changed by the ip_sioctl_lnkinfo.
13079  *
13080  * During the time the CHANGING flag is set, no new ires will be added to the
13081  * bucket, and ire add will fail (due the CHANGING flag).
13082  *
13083  * An ire add that occurs after the CHANGING flag is set will have the right mtu
13084  * before it is added to the bucket.
13085  *
13086  * Obviously only 1 thread can set the CHANGING flag and we need to become
13087  * exclusive to set the flag.
13088  */
13089 /* ARGSUSED */
13090 int
13091 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13092     ip_ioctl_cmd_t *ipi, void *if_req)
13093 {
13094 	ill_t		*ill = ipif->ipif_ill;
13095 	ipif_t		*nipif;
13096 	int		ip_min_mtu;
13097 	boolean_t	mtu_walk = B_FALSE;
13098 	struct lifreq	*lifr = (struct lifreq *)if_req;
13099 	lif_ifinfo_req_t *lir;
13100 	ire_t		*ire;
13101 
13102 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
13103 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13104 	lir = &lifr->lifr_ifinfo;
13105 	ASSERT(IAM_WRITER_IPIF(ipif));
13106 
13107 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13108 	if (ipif->ipif_id != 0)
13109 		return (EINVAL);
13110 
13111 	/* Set interface MTU. */
13112 	if (ipif->ipif_isv6)
13113 		ip_min_mtu = IPV6_MIN_MTU;
13114 	else
13115 		ip_min_mtu = IP_MIN_MTU;
13116 
13117 	/*
13118 	 * Verify values before we set anything. Allow zero to
13119 	 * mean unspecified.
13120 	 */
13121 	if (lir->lir_maxmtu != 0 &&
13122 	    (lir->lir_maxmtu > ill->ill_max_frag ||
13123 	    lir->lir_maxmtu < ip_min_mtu))
13124 		return (EINVAL);
13125 	if (lir->lir_reachtime != 0 &&
13126 	    lir->lir_reachtime > ND_MAX_REACHTIME)
13127 		return (EINVAL);
13128 	if (lir->lir_reachretrans != 0 &&
13129 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
13130 		return (EINVAL);
13131 
13132 	mutex_enter(&ill->ill_lock);
13133 	ill->ill_state_flags |= ILL_CHANGING;
13134 	for (nipif = ill->ill_ipif; nipif != NULL;
13135 	    nipif = nipif->ipif_next) {
13136 		nipif->ipif_state_flags |= IPIF_CHANGING;
13137 	}
13138 
13139 	mutex_exit(&ill->ill_lock);
13140 
13141 	if (lir->lir_maxmtu != 0) {
13142 		ill->ill_max_mtu = lir->lir_maxmtu;
13143 		ill->ill_mtu_userspecified = 1;
13144 		mtu_walk = B_TRUE;
13145 	}
13146 
13147 	if (lir->lir_reachtime != 0)
13148 		ill->ill_reachable_time = lir->lir_reachtime;
13149 
13150 	if (lir->lir_reachretrans != 0)
13151 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
13152 
13153 	ill->ill_max_hops = lir->lir_maxhops;
13154 
13155 	ill->ill_max_buf = ND_MAX_Q;
13156 
13157 	if (mtu_walk) {
13158 		/*
13159 		 * Set the MTU on all ipifs associated with this ill except
13160 		 * for those whose MTU was fixed via SIOCSLIFMTU.
13161 		 */
13162 		for (nipif = ill->ill_ipif; nipif != NULL;
13163 		    nipif = nipif->ipif_next) {
13164 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
13165 				continue;
13166 
13167 			nipif->ipif_mtu = ill->ill_max_mtu;
13168 
13169 			if (!(nipif->ipif_flags & IPIF_UP))
13170 				continue;
13171 
13172 			if (nipif->ipif_isv6)
13173 				ire = ipif_to_ire_v6(nipif);
13174 			else
13175 				ire = ipif_to_ire(nipif);
13176 			if (ire != NULL) {
13177 				ire->ire_max_frag = ipif->ipif_mtu;
13178 				ire_refrele(ire);
13179 			}
13180 			if (ill->ill_isv6) {
13181 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
13182 				    ipif_mtu_change, (char *)nipif,
13183 				    ill);
13184 			} else {
13185 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
13186 				    ipif_mtu_change, (char *)nipif,
13187 				    ill);
13188 			}
13189 		}
13190 	}
13191 
13192 	mutex_enter(&ill->ill_lock);
13193 	for (nipif = ill->ill_ipif; nipif != NULL;
13194 	    nipif = nipif->ipif_next) {
13195 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13196 	}
13197 	ILL_UNMARK_CHANGING(ill);
13198 	mutex_exit(&ill->ill_lock);
13199 
13200 	return (0);
13201 }
13202 
13203 /* ARGSUSED */
13204 int
13205 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13206     ip_ioctl_cmd_t *ipi, void *if_req)
13207 {
13208 	struct lif_ifinfo_req *lir;
13209 	ill_t *ill = ipif->ipif_ill;
13210 
13211 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13212 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13213 	if (ipif->ipif_id != 0)
13214 		return (EINVAL);
13215 
13216 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13217 	lir->lir_maxhops = ill->ill_max_hops;
13218 	lir->lir_reachtime = ill->ill_reachable_time;
13219 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13220 	lir->lir_maxmtu = ill->ill_max_mtu;
13221 
13222 	return (0);
13223 }
13224 
13225 /*
13226  * Return best guess as to the subnet mask for the specified address.
13227  * Based on the subnet masks for all the configured interfaces.
13228  *
13229  * We end up returning a zero mask in the case of default, multicast or
13230  * experimental.
13231  */
13232 static ipaddr_t
13233 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp)
13234 {
13235 	ipaddr_t net_mask;
13236 	ill_t	*ill;
13237 	ipif_t	*ipif;
13238 	ill_walk_context_t ctx;
13239 	ipif_t	*fallback_ipif = NULL;
13240 
13241 	net_mask = ip_net_mask(addr);
13242 	if (net_mask == 0) {
13243 		*ipifp = NULL;
13244 		return (0);
13245 	}
13246 
13247 	/* Let's check to see if this is maybe a local subnet route. */
13248 	/* this function only applies to IPv4 interfaces */
13249 	rw_enter(&ill_g_lock, RW_READER);
13250 	ill = ILL_START_WALK_V4(&ctx);
13251 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13252 		mutex_enter(&ill->ill_lock);
13253 		for (ipif = ill->ill_ipif; ipif != NULL;
13254 		    ipif = ipif->ipif_next) {
13255 			if (!IPIF_CAN_LOOKUP(ipif))
13256 				continue;
13257 			if (!(ipif->ipif_flags & IPIF_UP))
13258 				continue;
13259 			if ((ipif->ipif_subnet & net_mask) ==
13260 			    (addr & net_mask)) {
13261 				/*
13262 				 * Don't trust pt-pt interfaces if there are
13263 				 * other interfaces.
13264 				 */
13265 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13266 					if (fallback_ipif == NULL) {
13267 						ipif_refhold_locked(ipif);
13268 						fallback_ipif = ipif;
13269 					}
13270 					continue;
13271 				}
13272 
13273 				/*
13274 				 * Fine. Just assume the same net mask as the
13275 				 * directly attached subnet interface is using.
13276 				 */
13277 				ipif_refhold_locked(ipif);
13278 				mutex_exit(&ill->ill_lock);
13279 				rw_exit(&ill_g_lock);
13280 				if (fallback_ipif != NULL)
13281 					ipif_refrele(fallback_ipif);
13282 				*ipifp = ipif;
13283 				return (ipif->ipif_net_mask);
13284 			}
13285 		}
13286 		mutex_exit(&ill->ill_lock);
13287 	}
13288 	rw_exit(&ill_g_lock);
13289 
13290 	*ipifp = fallback_ipif;
13291 	return ((fallback_ipif != NULL) ?
13292 	    fallback_ipif->ipif_net_mask : net_mask);
13293 }
13294 
13295 /*
13296  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13297  */
13298 static void
13299 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13300 {
13301 	IOCP	iocp;
13302 	ipft_t	*ipft;
13303 	ipllc_t	*ipllc;
13304 	mblk_t	*mp1;
13305 	cred_t	*cr;
13306 	int	error = 0;
13307 	conn_t	*connp;
13308 
13309 	ip1dbg(("ip_wput_ioctl"));
13310 	iocp = (IOCP)mp->b_rptr;
13311 	mp1 = mp->b_cont;
13312 	if (mp1 == NULL) {
13313 		iocp->ioc_error = EINVAL;
13314 		mp->b_datap->db_type = M_IOCNAK;
13315 		iocp->ioc_count = 0;
13316 		qreply(q, mp);
13317 		return;
13318 	}
13319 
13320 	/*
13321 	 * These IOCTLs provide various control capabilities to
13322 	 * upstream agents such as ULPs and processes.	There
13323 	 * are currently two such IOCTLs implemented.  They
13324 	 * are used by TCP to provide update information for
13325 	 * existing IREs and to forcibly delete an IRE for a
13326 	 * host that is not responding, thereby forcing an
13327 	 * attempt at a new route.
13328 	 */
13329 	iocp->ioc_error = EINVAL;
13330 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13331 		goto done;
13332 
13333 	ipllc = (ipllc_t *)mp1->b_rptr;
13334 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13335 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13336 			break;
13337 	}
13338 	/*
13339 	 * prefer credential from mblk over ioctl;
13340 	 * see ip_sioctl_copyin_setup
13341 	 */
13342 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13343 
13344 	/*
13345 	 * Refhold the conn in case the request gets queued up in some lookup
13346 	 */
13347 	ASSERT(CONN_Q(q));
13348 	connp = Q_TO_CONN(q);
13349 	CONN_INC_REF(connp);
13350 	if (ipft->ipft_pfi &&
13351 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13352 		pullupmsg(mp1, ipft->ipft_min_size))) {
13353 		error = (*ipft->ipft_pfi)(q,
13354 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13355 	}
13356 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13357 		/*
13358 		 * CONN_OPER_PENDING_DONE happens in the function called
13359 		 * through ipft_pfi above.
13360 		 */
13361 		return;
13362 	}
13363 
13364 	CONN_OPER_PENDING_DONE(connp);
13365 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13366 		freemsg(mp);
13367 		return;
13368 	}
13369 	iocp->ioc_error = error;
13370 
13371 done:
13372 	mp->b_datap->db_type = M_IOCACK;
13373 	if (iocp->ioc_error)
13374 		iocp->ioc_count = 0;
13375 	qreply(q, mp);
13376 }
13377 
13378 /*
13379  * Lookup an ipif using the sequence id (ipif_seqid)
13380  */
13381 ipif_t *
13382 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13383 {
13384 	ipif_t *ipif;
13385 
13386 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13387 
13388 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13389 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13390 			return (ipif);
13391 	}
13392 	return (NULL);
13393 }
13394 
13395 uint64_t ipif_g_seqid;
13396 
13397 /*
13398  * Assign a unique id for the ipif. This is used later when we send
13399  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13400  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13401  * IRE is added, we verify that ipif has not disappeared.
13402  */
13403 
13404 static void
13405 ipif_assign_seqid(ipif_t *ipif)
13406 {
13407 	ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1);
13408 }
13409 
13410 /*
13411  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13412  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13413  * be inserted into the first space available in the list. The value of
13414  * ipif_id will then be set to the appropriate value for its position.
13415  */
13416 static int
13417 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13418 {
13419 	ill_t *ill;
13420 	ipif_t *tipif;
13421 	ipif_t **tipifp;
13422 	int id;
13423 
13424 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13425 	    IAM_WRITER_IPIF(ipif));
13426 
13427 	ill = ipif->ipif_ill;
13428 	ASSERT(ill != NULL);
13429 
13430 	/*
13431 	 * In the case of lo0:0 we already hold the ill_g_lock.
13432 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13433 	 * ipif_insert. Another such caller is ipif_move.
13434 	 */
13435 	if (acquire_g_lock)
13436 		rw_enter(&ill_g_lock, RW_WRITER);
13437 	if (acquire_ill_lock)
13438 		mutex_enter(&ill->ill_lock);
13439 	id = ipif->ipif_id;
13440 	tipifp = &(ill->ill_ipif);
13441 	if (id == -1) {	/* need to find a real id */
13442 		id = 0;
13443 		while ((tipif = *tipifp) != NULL) {
13444 			ASSERT(tipif->ipif_id >= id);
13445 			if (tipif->ipif_id != id)
13446 				break; /* non-consecutive id */
13447 			id++;
13448 			tipifp = &(tipif->ipif_next);
13449 		}
13450 		/* limit number of logical interfaces */
13451 		if (id >= ip_addrs_per_if) {
13452 			if (acquire_ill_lock)
13453 				mutex_exit(&ill->ill_lock);
13454 			if (acquire_g_lock)
13455 				rw_exit(&ill_g_lock);
13456 			return (-1);
13457 		}
13458 		ipif->ipif_id = id; /* assign new id */
13459 	} else if (id < ip_addrs_per_if) {
13460 		/* we have a real id; insert ipif in the right place */
13461 		while ((tipif = *tipifp) != NULL) {
13462 			ASSERT(tipif->ipif_id != id);
13463 			if (tipif->ipif_id > id)
13464 				break; /* found correct location */
13465 			tipifp = &(tipif->ipif_next);
13466 		}
13467 	} else {
13468 		if (acquire_ill_lock)
13469 			mutex_exit(&ill->ill_lock);
13470 		if (acquire_g_lock)
13471 			rw_exit(&ill_g_lock);
13472 		return (-1);
13473 	}
13474 
13475 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13476 
13477 	ipif->ipif_next = tipif;
13478 	*tipifp = ipif;
13479 	if (acquire_ill_lock)
13480 		mutex_exit(&ill->ill_lock);
13481 	if (acquire_g_lock)
13482 		rw_exit(&ill_g_lock);
13483 	return (0);
13484 }
13485 
13486 /*
13487  * Allocate and initialize a new interface control structure.  (Always
13488  * called as writer.)
13489  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13490  * is not part of the global linked list of ills. ipif_seqid is unique
13491  * in the system and to preserve the uniqueness, it is assigned only
13492  * when ill becomes part of the global list. At that point ill will
13493  * have a name. If it doesn't get assigned here, it will get assigned
13494  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13495  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13496  * the interface flags or any other information from the DL_INFO_ACK for
13497  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13498  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13499  * second DL_INFO_ACK comes in from the driver.
13500  */
13501 static ipif_t *
13502 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13503 {
13504 	ipif_t	*ipif;
13505 	phyint_t *phyi;
13506 
13507 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13508 	    ill->ill_name, id, (void *)ill));
13509 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13510 
13511 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13512 		return (NULL);
13513 	*ipif = ipif_zero;	/* start clean */
13514 
13515 	ipif->ipif_ill = ill;
13516 	ipif->ipif_id = id;	/* could be -1 */
13517 	ipif->ipif_zoneid = GLOBAL_ZONEID;
13518 
13519 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13520 
13521 	ipif->ipif_refcnt = 0;
13522 	ipif->ipif_saved_ire_cnt = 0;
13523 
13524 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13525 		mi_free(ipif);
13526 		return (NULL);
13527 	}
13528 	/* -1 id should have been replaced by real id */
13529 	id = ipif->ipif_id;
13530 	ASSERT(id >= 0);
13531 
13532 	if (ill->ill_name[0] != '\0') {
13533 		ipif_assign_seqid(ipif);
13534 		if (ill->ill_phyint->phyint_ifindex != 0)
13535 			sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
13536 	}
13537 	/*
13538 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13539 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13540 	 * ioctl sets ipif_orig_ipifid to zero.
13541 	 */
13542 	ipif->ipif_orig_ipifid = id;
13543 
13544 	/*
13545 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13546 	 * The ipif is still not up and can't be looked up until the
13547 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13548 	 */
13549 	mutex_enter(&ill->ill_lock);
13550 	mutex_enter(&ill->ill_phyint->phyint_lock);
13551 	/*
13552 	 * Set the running flag when logical interface zero is created.
13553 	 * For subsequent logical interfaces, a DLPI link down
13554 	 * notification message may have cleared the running flag to
13555 	 * indicate the link is down, so we shouldn't just blindly set it.
13556 	 */
13557 	if (id == 0)
13558 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13559 	ipif->ipif_ire_type = ire_type;
13560 	phyi = ill->ill_phyint;
13561 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13562 
13563 	if (ipif->ipif_isv6) {
13564 		ill->ill_flags |= ILLF_IPV6;
13565 	} else {
13566 		ipaddr_t inaddr_any = INADDR_ANY;
13567 
13568 		ill->ill_flags |= ILLF_IPV4;
13569 
13570 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13571 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13572 		    &ipif->ipif_v6lcl_addr);
13573 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13574 		    &ipif->ipif_v6src_addr);
13575 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13576 		    &ipif->ipif_v6subnet);
13577 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13578 		    &ipif->ipif_v6net_mask);
13579 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13580 		    &ipif->ipif_v6brd_addr);
13581 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13582 		    &ipif->ipif_v6pp_dst_addr);
13583 	}
13584 
13585 	/*
13586 	 * Don't set the interface flags etc. now, will do it in
13587 	 * ip_ll_subnet_defaults.
13588 	 */
13589 	if (!initialize) {
13590 		mutex_exit(&ill->ill_lock);
13591 		mutex_exit(&ill->ill_phyint->phyint_lock);
13592 		return (ipif);
13593 	}
13594 	ipif->ipif_mtu = ill->ill_max_mtu;
13595 
13596 	if (ill->ill_bcast_addr_length != 0) {
13597 		/*
13598 		 * Later detect lack of DLPI driver multicast
13599 		 * capability by catching DL_ENABMULTI errors in
13600 		 * ip_rput_dlpi.
13601 		 */
13602 		ill->ill_flags |= ILLF_MULTICAST;
13603 		if (!ipif->ipif_isv6)
13604 			ipif->ipif_flags |= IPIF_BROADCAST;
13605 	} else {
13606 		if (ill->ill_net_type != IRE_LOOPBACK) {
13607 			if (ipif->ipif_isv6)
13608 				/*
13609 				 * Note: xresolv interfaces will eventually need
13610 				 * NOARP set here as well, but that will require
13611 				 * those external resolvers to have some
13612 				 * knowledge of that flag and act appropriately.
13613 				 * Not to be changed at present.
13614 				 */
13615 				ill->ill_flags |= ILLF_NONUD;
13616 			else
13617 				ill->ill_flags |= ILLF_NOARP;
13618 		}
13619 		if (ill->ill_phys_addr_length == 0) {
13620 			if (ill->ill_media &&
13621 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13622 				ipif->ipif_flags |= IPIF_NOXMIT;
13623 				phyi->phyint_flags |= PHYI_VIRTUAL;
13624 			} else {
13625 				/* pt-pt supports multicast. */
13626 				ill->ill_flags |= ILLF_MULTICAST;
13627 				if (ill->ill_net_type == IRE_LOOPBACK) {
13628 					phyi->phyint_flags |=
13629 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13630 				} else {
13631 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13632 				}
13633 			}
13634 		}
13635 	}
13636 	mutex_exit(&ill->ill_lock);
13637 	mutex_exit(&ill->ill_phyint->phyint_lock);
13638 	return (ipif);
13639 }
13640 
13641 /*
13642  * If appropriate, send a message up to the resolver delete the entry
13643  * for the address of this interface which is going out of business.
13644  * (Always called as writer).
13645  *
13646  * NOTE : We need to check for NULL mps as some of the fields are
13647  *	  initialized only for some interface types. See ipif_resolver_up()
13648  *	  for details.
13649  */
13650 void
13651 ipif_arp_down(ipif_t *ipif)
13652 {
13653 	mblk_t	*mp;
13654 	ill_t	*ill = ipif->ipif_ill;
13655 
13656 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13657 	ASSERT(IAM_WRITER_IPIF(ipif));
13658 
13659 	/* Delete the mapping for the local address */
13660 	mp = ipif->ipif_arp_del_mp;
13661 	if (mp != NULL) {
13662 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13663 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13664 		putnext(ill->ill_rq, mp);
13665 		ipif->ipif_arp_del_mp = NULL;
13666 	}
13667 
13668 	/*
13669 	 * If this is the last ipif that is going down and there are no
13670 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13671 	 * clean up ARP completely.
13672 	 */
13673 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13674 
13675 		/* Send up AR_INTERFACE_DOWN message */
13676 		mp = ill->ill_arp_down_mp;
13677 		if (mp != NULL) {
13678 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13679 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13680 			    ipif->ipif_id));
13681 			putnext(ill->ill_rq, mp);
13682 			ill->ill_arp_down_mp = NULL;
13683 		}
13684 
13685 		/* Tell ARP to delete the multicast mappings */
13686 		mp = ill->ill_arp_del_mapping_mp;
13687 		if (mp != NULL) {
13688 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13689 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13690 			    ipif->ipif_id));
13691 			putnext(ill->ill_rq, mp);
13692 			ill->ill_arp_del_mapping_mp = NULL;
13693 		}
13694 	}
13695 }
13696 
13697 /*
13698  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13699  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13700  * that it wants the add_mp allocated in this function to be returned
13701  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13702  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13703  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13704  * as it does a ipif_arp_down after calling this function - which will
13705  * remove what we add here.
13706  *
13707  * Returns -1 on failures and 0 on success.
13708  */
13709 int
13710 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13711 {
13712 	mblk_t	*del_mp = NULL;
13713 	mblk_t *add_mp = NULL;
13714 	mblk_t *mp;
13715 	ill_t	*ill = ipif->ipif_ill;
13716 	phyint_t *phyi = ill->ill_phyint;
13717 	ipaddr_t addr, mask, extract_mask = 0;
13718 	arma_t	*arma;
13719 	uint8_t *maddr, *bphys_addr;
13720 	uint32_t hw_start;
13721 	dl_unitdata_req_t *dlur;
13722 
13723 	ASSERT(IAM_WRITER_IPIF(ipif));
13724 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13725 		return (0);
13726 
13727 	/*
13728 	 * Delete the existing mapping from ARP. Normally ipif_down
13729 	 * -> ipif_arp_down should send this up to ARP. The only
13730 	 * reason we would find this when we are switching from
13731 	 * Multicast to Broadcast where we did not do a down.
13732 	 */
13733 	mp = ill->ill_arp_del_mapping_mp;
13734 	if (mp != NULL) {
13735 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13736 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13737 		putnext(ill->ill_rq, mp);
13738 		ill->ill_arp_del_mapping_mp = NULL;
13739 	}
13740 
13741 	if (arp_add_mapping_mp != NULL)
13742 		*arp_add_mapping_mp = NULL;
13743 
13744 	/*
13745 	 * Check that the address is not to long for the constant
13746 	 * length reserved in the template arma_t.
13747 	 */
13748 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13749 		return (-1);
13750 
13751 	/* Add mapping mblk */
13752 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13753 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13754 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13755 	    (caddr_t)&addr);
13756 	if (add_mp == NULL)
13757 		return (-1);
13758 	arma = (arma_t *)add_mp->b_rptr;
13759 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13760 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13761 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13762 
13763 	/*
13764 	 * Determine the broadcast address.
13765 	 */
13766 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13767 	if (ill->ill_sap_length < 0)
13768 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13769 	else
13770 		bphys_addr = (uchar_t *)dlur +
13771 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13772 	/*
13773 	 * Check PHYI_MULTI_BCAST and length of physical
13774 	 * address to determine if we use the mapping or the
13775 	 * broadcast address.
13776 	 */
13777 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13778 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13779 		    bphys_addr, maddr, &hw_start, &extract_mask))
13780 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13781 
13782 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13783 	    (ill->ill_flags & ILLF_MULTICAST)) {
13784 		/* Make sure this will not match the "exact" entry. */
13785 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13786 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13787 		    (caddr_t)&addr);
13788 		if (del_mp == NULL) {
13789 			freemsg(add_mp);
13790 			return (-1);
13791 		}
13792 		bcopy(&extract_mask, (char *)arma +
13793 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13794 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13795 			/* Use link-layer broadcast address for MULTI_BCAST */
13796 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13797 			ip2dbg(("ipif_arp_setup_multicast: adding"
13798 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13799 		} else {
13800 			arma->arma_hw_mapping_start = hw_start;
13801 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13802 			    " ARP setup for %s\n", ill->ill_name));
13803 		}
13804 	} else {
13805 		freemsg(add_mp);
13806 		ASSERT(del_mp == NULL);
13807 		/* It is neither MULTICAST nor MULTI_BCAST */
13808 		return (0);
13809 	}
13810 	ASSERT(add_mp != NULL && del_mp != NULL);
13811 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13812 	ill->ill_arp_del_mapping_mp = del_mp;
13813 	if (arp_add_mapping_mp != NULL) {
13814 		/* The caller just wants the mblks allocated */
13815 		*arp_add_mapping_mp = add_mp;
13816 	} else {
13817 		/* The caller wants us to send it to arp */
13818 		putnext(ill->ill_rq, add_mp);
13819 	}
13820 	return (0);
13821 }
13822 
13823 /*
13824  * Get the resolver set up for a new interface address.
13825  * (Always called as writer.)
13826  * Called both for IPv4 and IPv6 interfaces,
13827  * though it only sets up the resolver for v6
13828  * if it's an xresolv interface (one using an external resolver).
13829  * Honors ILLF_NOARP.
13830  * The enumerated value res_act is used to tune the behavior.
13831  * If set to Res_act_initial, then we set up all the resolver
13832  * structures for a new interface.  If set to Res_act_move, then
13833  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13834  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13835  * asynchronous hardware address change notification.  If set to
13836  * Res_act_defend, then we tell ARP that it needs to send a single
13837  * gratuitous message in defense of the address.
13838  * Returns error on failure.
13839  */
13840 int
13841 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13842 {
13843 	caddr_t	addr;
13844 	mblk_t	*arp_up_mp = NULL;
13845 	mblk_t	*arp_down_mp = NULL;
13846 	mblk_t	*arp_add_mp = NULL;
13847 	mblk_t	*arp_del_mp = NULL;
13848 	mblk_t	*arp_add_mapping_mp = NULL;
13849 	mblk_t	*arp_del_mapping_mp = NULL;
13850 	ill_t	*ill = ipif->ipif_ill;
13851 	uchar_t	*area_p = NULL;
13852 	uchar_t	*ared_p = NULL;
13853 	int	err = ENOMEM;
13854 	boolean_t was_dup;
13855 
13856 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13857 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13858 	ASSERT(IAM_WRITER_IPIF(ipif));
13859 
13860 	was_dup = B_FALSE;
13861 	if (res_act == Res_act_initial) {
13862 		ipif->ipif_addr_ready = 0;
13863 		/*
13864 		 * We're bringing an interface up here.  There's no way that we
13865 		 * should need to shut down ARP now.
13866 		 */
13867 		mutex_enter(&ill->ill_lock);
13868 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13869 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13870 			ill->ill_ipif_dup_count--;
13871 			was_dup = B_TRUE;
13872 		}
13873 		mutex_exit(&ill->ill_lock);
13874 	}
13875 	if (ipif->ipif_recovery_id != 0)
13876 		(void) untimeout(ipif->ipif_recovery_id);
13877 	ipif->ipif_recovery_id = 0;
13878 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13879 		ipif->ipif_addr_ready = 1;
13880 		return (0);
13881 	}
13882 	/* NDP will set the ipif_addr_ready flag when it's ready */
13883 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13884 		return (0);
13885 
13886 	if (ill->ill_isv6) {
13887 		/*
13888 		 * External resolver for IPv6
13889 		 */
13890 		ASSERT(res_act == Res_act_initial);
13891 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13892 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13893 			area_p = (uchar_t *)&ip6_area_template;
13894 			ared_p = (uchar_t *)&ip6_ared_template;
13895 		}
13896 	} else {
13897 		/*
13898 		 * IPv4 arp case. If the ARP stream has already started
13899 		 * closing, fail this request for ARP bringup. Else
13900 		 * record the fact that an ARP bringup is pending.
13901 		 */
13902 		mutex_enter(&ill->ill_lock);
13903 		if (ill->ill_arp_closing) {
13904 			mutex_exit(&ill->ill_lock);
13905 			err = EINVAL;
13906 			goto failed;
13907 		} else {
13908 			if (ill->ill_ipif_up_count == 0 &&
13909 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13910 				ill->ill_arp_bringup_pending = 1;
13911 			mutex_exit(&ill->ill_lock);
13912 		}
13913 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
13914 			addr = (caddr_t)&ipif->ipif_lcl_addr;
13915 			area_p = (uchar_t *)&ip_area_template;
13916 			ared_p = (uchar_t *)&ip_ared_template;
13917 		}
13918 	}
13919 
13920 	/*
13921 	 * Add an entry for the local address in ARP only if it
13922 	 * is not UNNUMBERED and the address is not INADDR_ANY.
13923 	 */
13924 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13925 		area_t *area;
13926 
13927 		/* Now ask ARP to publish our address. */
13928 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13929 		if (arp_add_mp == NULL)
13930 			goto failed;
13931 		area = (area_t *)arp_add_mp->b_rptr;
13932 		if (res_act != Res_act_initial) {
13933 			/*
13934 			 * Copy the new hardware address and length into
13935 			 * arp_add_mp to be sent to ARP.
13936 			 */
13937 			area->area_hw_addr_length = ill->ill_phys_addr_length;
13938 			bcopy(ill->ill_phys_addr,
13939 			    ((char *)area + area->area_hw_addr_offset),
13940 			    area->area_hw_addr_length);
13941 		}
13942 
13943 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13944 		    ACE_F_MYADDR;
13945 
13946 		if (res_act == Res_act_defend) {
13947 			area->area_flags |= ACE_F_DEFEND;
13948 			/*
13949 			 * If we're just defending our address now, then
13950 			 * there's no need to set up ARP multicast mappings.
13951 			 * The publish command is enough.
13952 			 */
13953 			goto done;
13954 		}
13955 
13956 		if (res_act != Res_act_initial)
13957 			goto arp_setup_multicast;
13958 
13959 		/*
13960 		 * Allocate an ARP deletion message so we know we can tell ARP
13961 		 * when the interface goes down.
13962 		 */
13963 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13964 		if (arp_del_mp == NULL)
13965 			goto failed;
13966 
13967 	} else {
13968 		if (res_act != Res_act_initial)
13969 			goto done;
13970 	}
13971 	/*
13972 	 * Need to bring up ARP or setup multicast mapping only
13973 	 * when the first interface is coming UP.
13974 	 */
13975 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13976 	    was_dup) {
13977 		goto done;
13978 	}
13979 
13980 	/*
13981 	 * Allocate an ARP down message (to be saved) and an ARP up
13982 	 * message.
13983 	 */
13984 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13985 	if (arp_down_mp == NULL)
13986 		goto failed;
13987 
13988 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13989 	if (arp_up_mp == NULL)
13990 		goto failed;
13991 
13992 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13993 		goto done;
13994 
13995 arp_setup_multicast:
13996 	/*
13997 	 * Setup the multicast mappings. This function initializes
13998 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13999 	 * IPv6.
14000 	 */
14001 	if (!ill->ill_isv6) {
14002 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
14003 		if (err != 0)
14004 			goto failed;
14005 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
14006 		ASSERT(arp_add_mapping_mp != NULL);
14007 	}
14008 
14009 done:
14010 	if (arp_del_mp != NULL) {
14011 		ASSERT(ipif->ipif_arp_del_mp == NULL);
14012 		ipif->ipif_arp_del_mp = arp_del_mp;
14013 	}
14014 	if (arp_down_mp != NULL) {
14015 		ASSERT(ill->ill_arp_down_mp == NULL);
14016 		ill->ill_arp_down_mp = arp_down_mp;
14017 	}
14018 	if (arp_del_mapping_mp != NULL) {
14019 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
14020 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
14021 	}
14022 	if (arp_up_mp != NULL) {
14023 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
14024 		    ill->ill_name, ipif->ipif_id));
14025 		putnext(ill->ill_rq, arp_up_mp);
14026 	}
14027 	if (arp_add_mp != NULL) {
14028 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
14029 		    ill->ill_name, ipif->ipif_id));
14030 		/*
14031 		 * If it's an extended ARP implementation, then we'll wait to
14032 		 * hear that DAD has finished before using the interface.
14033 		 */
14034 		if (!ill->ill_arp_extend)
14035 			ipif->ipif_addr_ready = 1;
14036 		putnext(ill->ill_rq, arp_add_mp);
14037 	} else {
14038 		ipif->ipif_addr_ready = 1;
14039 	}
14040 	if (arp_add_mapping_mp != NULL) {
14041 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
14042 		    ill->ill_name, ipif->ipif_id));
14043 		putnext(ill->ill_rq, arp_add_mapping_mp);
14044 	}
14045 	if (res_act != Res_act_initial)
14046 		return (0);
14047 
14048 	if (ill->ill_flags & ILLF_NOARP)
14049 		err = ill_arp_off(ill);
14050 	else
14051 		err = ill_arp_on(ill);
14052 	if (err != 0) {
14053 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
14054 		freemsg(ipif->ipif_arp_del_mp);
14055 		freemsg(ill->ill_arp_down_mp);
14056 		freemsg(ill->ill_arp_del_mapping_mp);
14057 		ipif->ipif_arp_del_mp = NULL;
14058 		ill->ill_arp_down_mp = NULL;
14059 		ill->ill_arp_del_mapping_mp = NULL;
14060 		return (err);
14061 	}
14062 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
14063 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
14064 
14065 failed:
14066 	ip1dbg(("ipif_resolver_up: FAILED\n"));
14067 	freemsg(arp_add_mp);
14068 	freemsg(arp_del_mp);
14069 	freemsg(arp_add_mapping_mp);
14070 	freemsg(arp_up_mp);
14071 	freemsg(arp_down_mp);
14072 	ill->ill_arp_bringup_pending = 0;
14073 	return (err);
14074 }
14075 
14076 /*
14077  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
14078  * just gone back up.
14079  */
14080 static void
14081 ipif_arp_start_dad(ipif_t *ipif)
14082 {
14083 	ill_t *ill = ipif->ipif_ill;
14084 	mblk_t *arp_add_mp;
14085 	area_t *area;
14086 
14087 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
14088 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14089 	    ipif->ipif_lcl_addr == INADDR_ANY ||
14090 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
14091 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
14092 		/*
14093 		 * If we can't contact ARP for some reason, that's not really a
14094 		 * problem.  Just send out the routing socket notification that
14095 		 * DAD completion would have done, and continue.
14096 		 */
14097 		ipif_mask_reply(ipif);
14098 		ip_rts_ifmsg(ipif);
14099 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14100 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14101 		ipif->ipif_addr_ready = 1;
14102 		return;
14103 	}
14104 
14105 	/* Setting the 'unverified' flag restarts DAD */
14106 	area = (area_t *)arp_add_mp->b_rptr;
14107 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
14108 	    ACE_F_UNVERIFIED;
14109 	putnext(ill->ill_rq, arp_add_mp);
14110 }
14111 
14112 static void
14113 ipif_ndp_start_dad(ipif_t *ipif)
14114 {
14115 	nce_t *nce;
14116 
14117 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
14118 	if (nce == NULL)
14119 		return;
14120 
14121 	if (!ndp_restart_dad(nce)) {
14122 		/*
14123 		 * If we can't restart DAD for some reason, that's not really a
14124 		 * problem.  Just send out the routing socket notification that
14125 		 * DAD completion would have done, and continue.
14126 		 */
14127 		ip_rts_ifmsg(ipif);
14128 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14129 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14130 		ipif->ipif_addr_ready = 1;
14131 	}
14132 	NCE_REFRELE(nce);
14133 }
14134 
14135 /*
14136  * Restart duplicate address detection on all interfaces on the given ill.
14137  *
14138  * This is called when an interface transitions from down to up
14139  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
14140  *
14141  * Note that since the underlying physical link has transitioned, we must cause
14142  * at least one routing socket message to be sent here, either via DAD
14143  * completion or just by default on the first ipif.  (If we don't do this, then
14144  * in.mpathd will see long delays when doing link-based failure recovery.)
14145  */
14146 void
14147 ill_restart_dad(ill_t *ill, boolean_t went_up)
14148 {
14149 	ipif_t *ipif;
14150 
14151 	if (ill == NULL)
14152 		return;
14153 
14154 	/*
14155 	 * If layer two doesn't support duplicate address detection, then just
14156 	 * send the routing socket message now and be done with it.
14157 	 */
14158 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14159 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14160 		ip_rts_ifmsg(ill->ill_ipif);
14161 		return;
14162 	}
14163 
14164 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14165 		if (went_up) {
14166 			if (ipif->ipif_flags & IPIF_UP) {
14167 				if (ill->ill_isv6)
14168 					ipif_ndp_start_dad(ipif);
14169 				else
14170 					ipif_arp_start_dad(ipif);
14171 			} else if (ill->ill_isv6 &&
14172 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14173 				/*
14174 				 * For IPv4, the ARP module itself will
14175 				 * automatically start the DAD process when it
14176 				 * sees DL_NOTE_LINK_UP.  We respond to the
14177 				 * AR_CN_READY at the completion of that task.
14178 				 * For IPv6, we must kick off the bring-up
14179 				 * process now.
14180 				 */
14181 				ndp_do_recovery(ipif);
14182 			} else {
14183 				/*
14184 				 * Unfortunately, the first ipif is "special"
14185 				 * and represents the underlying ill in the
14186 				 * routing socket messages.  Thus, when this
14187 				 * one ipif is down, we must still notify so
14188 				 * that the user knows the IFF_RUNNING status
14189 				 * change.  (If the first ipif is up, then
14190 				 * we'll handle eventual routing socket
14191 				 * notification via DAD completion.)
14192 				 */
14193 				if (ipif == ill->ill_ipif)
14194 					ip_rts_ifmsg(ill->ill_ipif);
14195 			}
14196 		} else {
14197 			/*
14198 			 * After link down, we'll need to send a new routing
14199 			 * message when the link comes back, so clear
14200 			 * ipif_addr_ready.
14201 			 */
14202 			ipif->ipif_addr_ready = 0;
14203 		}
14204 	}
14205 
14206 	/*
14207 	 * If we've torn down links, then notify the user right away.
14208 	 */
14209 	if (!went_up)
14210 		ip_rts_ifmsg(ill->ill_ipif);
14211 }
14212 
14213 /*
14214  * Wakeup all threads waiting to enter the ipsq, and sleeping
14215  * on any of the ills in this ipsq. The ill_lock of the ill
14216  * must be held so that waiters don't miss wakeups
14217  */
14218 static void
14219 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14220 {
14221 	phyint_t *phyint;
14222 
14223 	phyint = ipsq->ipsq_phyint_list;
14224 	while (phyint != NULL) {
14225 		if (phyint->phyint_illv4) {
14226 			if (!caller_holds_lock)
14227 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14228 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14229 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14230 			if (!caller_holds_lock)
14231 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14232 		}
14233 		if (phyint->phyint_illv6) {
14234 			if (!caller_holds_lock)
14235 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14236 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14237 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14238 			if (!caller_holds_lock)
14239 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14240 		}
14241 		phyint = phyint->phyint_ipsq_next;
14242 	}
14243 }
14244 
14245 static ipsq_t *
14246 ipsq_create(char *groupname)
14247 {
14248 	ipsq_t	*ipsq;
14249 
14250 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14251 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14252 	if (ipsq == NULL) {
14253 		return (NULL);
14254 	}
14255 
14256 	if (groupname != NULL)
14257 		(void) strcpy(ipsq->ipsq_name, groupname);
14258 	else
14259 		ipsq->ipsq_name[0] = '\0';
14260 
14261 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14262 	ipsq->ipsq_flags |= IPSQ_GROUP;
14263 	ipsq->ipsq_next = ipsq_g_head;
14264 	ipsq_g_head = ipsq;
14265 	return (ipsq);
14266 }
14267 
14268 /*
14269  * Return an ipsq correspoding to the groupname. If 'create' is true
14270  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14271  * uniquely with an IPMP group. However during IPMP groupname operations,
14272  * multiple IPMP groups may be associated with a single ipsq. But no
14273  * IPMP group can be associated with more than 1 ipsq at any time.
14274  * For example
14275  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14276  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14277  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14278  *
14279  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14280  * status shown below during the execution of the above command.
14281  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14282  *
14283  * After the completion of the above groupname command we return to the stable
14284  * state shown below.
14285  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14286  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14287  *
14288  * Because of the above, we don't search based on the ipsq_name since that
14289  * would miss the correct ipsq during certain windows as shown above.
14290  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14291  * natural state.
14292  */
14293 static ipsq_t *
14294 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq)
14295 {
14296 	ipsq_t	*ipsq;
14297 	int	group_len;
14298 	phyint_t *phyint;
14299 
14300 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
14301 
14302 	group_len = strlen(groupname);
14303 	ASSERT(group_len != 0);
14304 	group_len++;
14305 
14306 	for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) {
14307 		/*
14308 		 * When an ipsq is being split, and ill_split_ipsq
14309 		 * calls this function, we exclude it from being considered.
14310 		 */
14311 		if (ipsq == exclude_ipsq)
14312 			continue;
14313 
14314 		/*
14315 		 * Compare against the ipsq_name. The groupname change happens
14316 		 * in 2 phases. The 1st phase merges the from group into
14317 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14318 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14319 		 * ipsq_name. At this point the phyint_groupname has not been
14320 		 * updated.
14321 		 */
14322 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14323 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14324 			/*
14325 			 * Verify that an ipmp groupname is exactly
14326 			 * part of 1 ipsq and is not found in any other
14327 			 * ipsq.
14328 			 */
14329 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) ==
14330 			    NULL);
14331 			return (ipsq);
14332 		}
14333 
14334 		/*
14335 		 * Comparison against ipsq_name alone is not sufficient.
14336 		 * In the case when groups are currently being
14337 		 * merged, the ipsq could hold other IPMP groups temporarily.
14338 		 * so we walk the phyint list and compare against the
14339 		 * phyint_groupname as well.
14340 		 */
14341 		phyint = ipsq->ipsq_phyint_list;
14342 		while (phyint != NULL) {
14343 			if ((group_len == phyint->phyint_groupname_len) &&
14344 			    (bcmp(phyint->phyint_groupname, groupname,
14345 			    group_len) == 0)) {
14346 				/*
14347 				 * Verify that an ipmp groupname is exactly
14348 				 * part of 1 ipsq and is not found in any other
14349 				 * ipsq.
14350 				 */
14351 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq)
14352 					== NULL);
14353 				return (ipsq);
14354 			}
14355 			phyint = phyint->phyint_ipsq_next;
14356 		}
14357 	}
14358 	if (create)
14359 		ipsq = ipsq_create(groupname);
14360 	return (ipsq);
14361 }
14362 
14363 static void
14364 ipsq_delete(ipsq_t *ipsq)
14365 {
14366 	ipsq_t *nipsq;
14367 	ipsq_t *pipsq = NULL;
14368 
14369 	/*
14370 	 * We don't hold the ipsq lock, but we are sure no new
14371 	 * messages can land up, since the ipsq_refs is zero.
14372 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14373 	 * is associated with this ipsq. (Lookups are based on ill_name
14374 	 * or phyint_group_name)
14375 	 */
14376 	ASSERT(ipsq->ipsq_refs == 0);
14377 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14378 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14379 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14380 		/*
14381 		 * This is not the ipsq of an IPMP group.
14382 		 */
14383 		kmem_free(ipsq, sizeof (ipsq_t));
14384 		return;
14385 	}
14386 
14387 	rw_enter(&ill_g_lock, RW_WRITER);
14388 
14389 	/*
14390 	 * Locate the ipsq  before we can remove it from
14391 	 * the singly linked list of ipsq's.
14392 	 */
14393 	for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) {
14394 		if (nipsq == ipsq) {
14395 			break;
14396 		}
14397 		pipsq = nipsq;
14398 	}
14399 
14400 	ASSERT(nipsq == ipsq);
14401 
14402 	/* unlink ipsq from the list */
14403 	if (pipsq != NULL)
14404 		pipsq->ipsq_next = ipsq->ipsq_next;
14405 	else
14406 		ipsq_g_head = ipsq->ipsq_next;
14407 	kmem_free(ipsq, sizeof (ipsq_t));
14408 	rw_exit(&ill_g_lock);
14409 }
14410 
14411 static void
14412 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14413     queue_t *q)
14414 
14415 {
14416 
14417 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14418 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14419 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14420 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14421 	ASSERT(current_mp != NULL);
14422 
14423 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14424 		NEW_OP, NULL);
14425 
14426 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14427 	    new_ipsq->ipsq_xopq_mphead != NULL);
14428 
14429 	/*
14430 	 * move from old ipsq to the new ipsq.
14431 	 */
14432 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14433 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14434 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14435 
14436 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14437 }
14438 
14439 void
14440 ill_group_cleanup(ill_t *ill)
14441 {
14442 	ill_t *ill_v4;
14443 	ill_t *ill_v6;
14444 	ipif_t *ipif;
14445 
14446 	ill_v4 = ill->ill_phyint->phyint_illv4;
14447 	ill_v6 = ill->ill_phyint->phyint_illv6;
14448 
14449 	if (ill_v4 != NULL) {
14450 		mutex_enter(&ill_v4->ill_lock);
14451 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14452 		    ipif = ipif->ipif_next) {
14453 			IPIF_UNMARK_MOVING(ipif);
14454 		}
14455 		ill_v4->ill_up_ipifs = B_FALSE;
14456 		mutex_exit(&ill_v4->ill_lock);
14457 	}
14458 
14459 	if (ill_v6 != NULL) {
14460 		mutex_enter(&ill_v6->ill_lock);
14461 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14462 		    ipif = ipif->ipif_next) {
14463 			IPIF_UNMARK_MOVING(ipif);
14464 		}
14465 		ill_v6->ill_up_ipifs = B_FALSE;
14466 		mutex_exit(&ill_v6->ill_lock);
14467 	}
14468 }
14469 /*
14470  * This function is called when an ill has had a change in its group status
14471  * to bring up all the ipifs that were up before the change.
14472  */
14473 int
14474 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14475 {
14476 	ipif_t *ipif;
14477 	ill_t *ill_v4;
14478 	ill_t *ill_v6;
14479 	ill_t *from_ill;
14480 	int err = 0;
14481 
14482 
14483 	ASSERT(IAM_WRITER_ILL(ill));
14484 
14485 	/*
14486 	 * Except for ipif_state_flags and ill_state_flags the other
14487 	 * fields of the ipif/ill that are modified below are protected
14488 	 * implicitly since we are a writer. We would have tried to down
14489 	 * even an ipif that was already down, in ill_down_ipifs. So we
14490 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14491 	 */
14492 	ill_v4 = ill->ill_phyint->phyint_illv4;
14493 	ill_v6 = ill->ill_phyint->phyint_illv6;
14494 	if (ill_v4 != NULL) {
14495 		ill_v4->ill_up_ipifs = B_TRUE;
14496 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14497 		    ipif = ipif->ipif_next) {
14498 			mutex_enter(&ill_v4->ill_lock);
14499 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14500 			IPIF_UNMARK_MOVING(ipif);
14501 			mutex_exit(&ill_v4->ill_lock);
14502 			if (ipif->ipif_was_up) {
14503 				if (!(ipif->ipif_flags & IPIF_UP))
14504 					err = ipif_up(ipif, q, mp);
14505 				ipif->ipif_was_up = B_FALSE;
14506 				if (err != 0) {
14507 					/*
14508 					 * Can there be any other error ?
14509 					 */
14510 					ASSERT(err == EINPROGRESS);
14511 					return (err);
14512 				}
14513 			}
14514 		}
14515 		mutex_enter(&ill_v4->ill_lock);
14516 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14517 		mutex_exit(&ill_v4->ill_lock);
14518 		ill_v4->ill_up_ipifs = B_FALSE;
14519 		if (ill_v4->ill_move_in_progress) {
14520 			ASSERT(ill_v4->ill_move_peer != NULL);
14521 			ill_v4->ill_move_in_progress = B_FALSE;
14522 			from_ill = ill_v4->ill_move_peer;
14523 			from_ill->ill_move_in_progress = B_FALSE;
14524 			from_ill->ill_move_peer = NULL;
14525 			mutex_enter(&from_ill->ill_lock);
14526 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14527 			mutex_exit(&from_ill->ill_lock);
14528 			if (ill_v6 == NULL) {
14529 				if (from_ill->ill_phyint->phyint_flags &
14530 				    PHYI_STANDBY) {
14531 					phyint_inactive(from_ill->ill_phyint);
14532 				}
14533 				if (ill_v4->ill_phyint->phyint_flags &
14534 				    PHYI_STANDBY) {
14535 					phyint_inactive(ill_v4->ill_phyint);
14536 				}
14537 			}
14538 			ill_v4->ill_move_peer = NULL;
14539 		}
14540 	}
14541 
14542 	if (ill_v6 != NULL) {
14543 		ill_v6->ill_up_ipifs = B_TRUE;
14544 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14545 		    ipif = ipif->ipif_next) {
14546 			mutex_enter(&ill_v6->ill_lock);
14547 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14548 			IPIF_UNMARK_MOVING(ipif);
14549 			mutex_exit(&ill_v6->ill_lock);
14550 			if (ipif->ipif_was_up) {
14551 				if (!(ipif->ipif_flags & IPIF_UP))
14552 					err = ipif_up(ipif, q, mp);
14553 				ipif->ipif_was_up = B_FALSE;
14554 				if (err != 0) {
14555 					/*
14556 					 * Can there be any other error ?
14557 					 */
14558 					ASSERT(err == EINPROGRESS);
14559 					return (err);
14560 				}
14561 			}
14562 		}
14563 		mutex_enter(&ill_v6->ill_lock);
14564 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14565 		mutex_exit(&ill_v6->ill_lock);
14566 		ill_v6->ill_up_ipifs = B_FALSE;
14567 		if (ill_v6->ill_move_in_progress) {
14568 			ASSERT(ill_v6->ill_move_peer != NULL);
14569 			ill_v6->ill_move_in_progress = B_FALSE;
14570 			from_ill = ill_v6->ill_move_peer;
14571 			from_ill->ill_move_in_progress = B_FALSE;
14572 			from_ill->ill_move_peer = NULL;
14573 			mutex_enter(&from_ill->ill_lock);
14574 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14575 			mutex_exit(&from_ill->ill_lock);
14576 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14577 				phyint_inactive(from_ill->ill_phyint);
14578 			}
14579 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14580 				phyint_inactive(ill_v6->ill_phyint);
14581 			}
14582 			ill_v6->ill_move_peer = NULL;
14583 		}
14584 	}
14585 	return (0);
14586 }
14587 
14588 /*
14589  * bring down all the approriate ipifs.
14590  */
14591 /* ARGSUSED */
14592 static void
14593 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14594 {
14595 	ipif_t *ipif;
14596 
14597 	ASSERT(IAM_WRITER_ILL(ill));
14598 
14599 	/*
14600 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14601 	 * are modified below are protected implicitly since we are a writer
14602 	 */
14603 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14604 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14605 			continue;
14606 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14607 			/*
14608 			 * We go through the ipif_down logic even if the ipif
14609 			 * is already down, since routes can be added based
14610 			 * on down ipifs. Going through ipif_down once again
14611 			 * will delete any IREs created based on these routes.
14612 			 */
14613 			if (ipif->ipif_flags & IPIF_UP)
14614 				ipif->ipif_was_up = B_TRUE;
14615 			/*
14616 			 * If called with chk_nofailover true ipif is moving.
14617 			 */
14618 			mutex_enter(&ill->ill_lock);
14619 			if (chk_nofailover) {
14620 				ipif->ipif_state_flags |=
14621 					IPIF_MOVING | IPIF_CHANGING;
14622 			} else {
14623 				ipif->ipif_state_flags |= IPIF_CHANGING;
14624 			}
14625 			mutex_exit(&ill->ill_lock);
14626 			/*
14627 			 * Need to re-create net/subnet bcast ires if
14628 			 * they are dependent on ipif.
14629 			 */
14630 			if (!ipif->ipif_isv6)
14631 				ipif_check_bcast_ires(ipif);
14632 			(void) ipif_logical_down(ipif, NULL, NULL);
14633 			ipif_non_duplicate(ipif);
14634 			ipif_down_tail(ipif);
14635 			/*
14636 			 * We don't do ipif_multicast_down for IPv4 in
14637 			 * ipif_down. We need to set this so that
14638 			 * ipif_multicast_up will join the
14639 			 * ALLHOSTS_GROUP on to_ill.
14640 			 */
14641 			ipif->ipif_multicast_up = B_FALSE;
14642 		}
14643 	}
14644 }
14645 
14646 #define	IPSQ_INC_REF(ipsq)	{			\
14647 	ASSERT(RW_WRITE_HELD(&ill_g_lock));		\
14648 	(ipsq)->ipsq_refs++;				\
14649 }
14650 
14651 #define	IPSQ_DEC_REF(ipsq)	{			\
14652 	ASSERT(RW_WRITE_HELD(&ill_g_lock));		\
14653 	(ipsq)->ipsq_refs--;				\
14654 	if ((ipsq)->ipsq_refs == 0)				\
14655 		(ipsq)->ipsq_name[0] = '\0'; 		\
14656 }
14657 
14658 /*
14659  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14660  * new_ipsq.
14661  */
14662 static void
14663 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq)
14664 {
14665 	phyint_t *phyint;
14666 	phyint_t *next_phyint;
14667 
14668 	/*
14669 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14670 	 * writer and the ill_lock of the ill in question. Also the dest
14671 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14672 	 */
14673 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14674 
14675 	phyint = cur_ipsq->ipsq_phyint_list;
14676 	cur_ipsq->ipsq_phyint_list = NULL;
14677 	while (phyint != NULL) {
14678 		next_phyint = phyint->phyint_ipsq_next;
14679 		IPSQ_DEC_REF(cur_ipsq);
14680 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14681 		new_ipsq->ipsq_phyint_list = phyint;
14682 		IPSQ_INC_REF(new_ipsq);
14683 		phyint->phyint_ipsq = new_ipsq;
14684 		phyint = next_phyint;
14685 	}
14686 }
14687 
14688 #define	SPLIT_SUCCESS		0
14689 #define	SPLIT_NOT_NEEDED	1
14690 #define	SPLIT_FAILED		2
14691 
14692 int
14693 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry)
14694 {
14695 	ipsq_t *newipsq = NULL;
14696 
14697 	/*
14698 	 * Assertions denote pre-requisites for changing the ipsq of
14699 	 * a phyint
14700 	 */
14701 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14702 	/*
14703 	 * <ill-phyint> assocs can't change while ill_g_lock
14704 	 * is held as writer. See ill_phyint_reinit()
14705 	 */
14706 	ASSERT(phyint->phyint_illv4 == NULL ||
14707 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14708 	ASSERT(phyint->phyint_illv6 == NULL ||
14709 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14710 
14711 	if ((phyint->phyint_groupname_len !=
14712 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14713 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14714 	    phyint->phyint_groupname_len) != 0)) {
14715 		/*
14716 		 * Once we fail in creating a new ipsq due to memory shortage,
14717 		 * don't attempt to create new ipsq again, based on another
14718 		 * phyint, since we want all phyints belonging to an IPMP group
14719 		 * to be in the same ipsq even in the event of mem alloc fails.
14720 		 */
14721 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14722 		    cur_ipsq);
14723 		if (newipsq == NULL) {
14724 			/* Memory allocation failure */
14725 			return (SPLIT_FAILED);
14726 		} else {
14727 			/* ipsq_refs protected by ill_g_lock (writer) */
14728 			IPSQ_DEC_REF(cur_ipsq);
14729 			phyint->phyint_ipsq = newipsq;
14730 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14731 			newipsq->ipsq_phyint_list = phyint;
14732 			IPSQ_INC_REF(newipsq);
14733 			return (SPLIT_SUCCESS);
14734 		}
14735 	}
14736 	return (SPLIT_NOT_NEEDED);
14737 }
14738 
14739 /*
14740  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14741  * to do this split
14742  */
14743 static int
14744 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq)
14745 {
14746 	ipsq_t *newipsq;
14747 
14748 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
14749 	/*
14750 	 * <ill-phyint> assocs can't change while ill_g_lock
14751 	 * is held as writer. See ill_phyint_reinit()
14752 	 */
14753 
14754 	ASSERT(phyint->phyint_illv4 == NULL ||
14755 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14756 	ASSERT(phyint->phyint_illv6 == NULL ||
14757 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14758 
14759 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14760 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14761 		/*
14762 		 * ipsq_init failed due to no memory
14763 		 * caller will use the same ipsq
14764 		 */
14765 		return (SPLIT_FAILED);
14766 	}
14767 
14768 	/* ipsq_ref is protected by ill_g_lock (writer) */
14769 	IPSQ_DEC_REF(cur_ipsq);
14770 
14771 	/*
14772 	 * This is a new ipsq that is unknown to the world.
14773 	 * So we don't need to hold ipsq_lock,
14774 	 */
14775 	newipsq = phyint->phyint_ipsq;
14776 	newipsq->ipsq_writer = NULL;
14777 	newipsq->ipsq_reentry_cnt--;
14778 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14779 #ifdef ILL_DEBUG
14780 	newipsq->ipsq_depth = 0;
14781 #endif
14782 
14783 	return (SPLIT_SUCCESS);
14784 }
14785 
14786 /*
14787  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14788  * ipsq's representing their individual groups or themselves. Return
14789  * whether split needs to be retried again later.
14790  */
14791 static boolean_t
14792 ill_split_ipsq(ipsq_t *cur_ipsq)
14793 {
14794 	phyint_t *phyint;
14795 	phyint_t *next_phyint;
14796 	int	error;
14797 	boolean_t need_retry = B_FALSE;
14798 
14799 	phyint = cur_ipsq->ipsq_phyint_list;
14800 	cur_ipsq->ipsq_phyint_list = NULL;
14801 	while (phyint != NULL) {
14802 		next_phyint = phyint->phyint_ipsq_next;
14803 		/*
14804 		 * 'created' will tell us whether the callee actually
14805 		 * created an ipsq. Lack of memory may force the callee
14806 		 * to return without creating an ipsq.
14807 		 */
14808 		if (phyint->phyint_groupname == NULL) {
14809 			error = ill_split_to_own_ipsq(phyint, cur_ipsq);
14810 		} else {
14811 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14812 					need_retry);
14813 		}
14814 
14815 		switch (error) {
14816 		case SPLIT_FAILED:
14817 			need_retry = B_TRUE;
14818 			/* FALLTHRU */
14819 		case SPLIT_NOT_NEEDED:
14820 			/*
14821 			 * Keep it on the list.
14822 			 */
14823 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14824 			cur_ipsq->ipsq_phyint_list = phyint;
14825 			break;
14826 		case SPLIT_SUCCESS:
14827 			break;
14828 		default:
14829 			ASSERT(0);
14830 		}
14831 
14832 		phyint = next_phyint;
14833 	}
14834 	return (need_retry);
14835 }
14836 
14837 /*
14838  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14839  * and return the ills in the list. This list will be
14840  * needed to unlock all the ills later on by the caller.
14841  * The <ill-ipsq> associations could change between the
14842  * lock and unlock. Hence the unlock can't traverse the
14843  * ipsq to get the list of ills.
14844  */
14845 static int
14846 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14847 {
14848 	int	cnt = 0;
14849 	phyint_t	*phyint;
14850 
14851 	/*
14852 	 * The caller holds ill_g_lock to ensure that the ill memberships
14853 	 * of the ipsq don't change
14854 	 */
14855 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
14856 
14857 	phyint = ipsq->ipsq_phyint_list;
14858 	while (phyint != NULL) {
14859 		if (phyint->phyint_illv4 != NULL) {
14860 			ASSERT(cnt < list_max);
14861 			list[cnt++] = phyint->phyint_illv4;
14862 		}
14863 		if (phyint->phyint_illv6 != NULL) {
14864 			ASSERT(cnt < list_max);
14865 			list[cnt++] = phyint->phyint_illv6;
14866 		}
14867 		phyint = phyint->phyint_ipsq_next;
14868 	}
14869 	ill_lock_ills(list, cnt);
14870 	return (cnt);
14871 }
14872 
14873 void
14874 ill_lock_ills(ill_t **list, int cnt)
14875 {
14876 	int	i;
14877 
14878 	if (cnt > 1) {
14879 		boolean_t try_again;
14880 		do {
14881 			try_again = B_FALSE;
14882 			for (i = 0; i < cnt - 1; i++) {
14883 				if (list[i] < list[i + 1]) {
14884 					ill_t	*tmp;
14885 
14886 					/* swap the elements */
14887 					tmp = list[i];
14888 					list[i] = list[i + 1];
14889 					list[i + 1] = tmp;
14890 					try_again = B_TRUE;
14891 				}
14892 			}
14893 		} while (try_again);
14894 	}
14895 
14896 	for (i = 0; i < cnt; i++) {
14897 		if (i == 0) {
14898 			if (list[i] != NULL)
14899 				mutex_enter(&list[i]->ill_lock);
14900 			else
14901 				return;
14902 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14903 			mutex_enter(&list[i]->ill_lock);
14904 		}
14905 	}
14906 }
14907 
14908 void
14909 ill_unlock_ills(ill_t **list, int cnt)
14910 {
14911 	int	i;
14912 
14913 	for (i = 0; i < cnt; i++) {
14914 		if ((i == 0) && (list[i] != NULL)) {
14915 			mutex_exit(&list[i]->ill_lock);
14916 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14917 			mutex_exit(&list[i]->ill_lock);
14918 		}
14919 	}
14920 }
14921 
14922 /*
14923  * Merge all the ills from 1 ipsq group into another ipsq group.
14924  * The source ipsq group is specified by the ipsq associated with
14925  * 'from_ill'. The destination ipsq group is specified by the ipsq
14926  * associated with 'to_ill' or 'groupname' respectively.
14927  * Note that ipsq itself does not have a reference count mechanism
14928  * and functions don't look up an ipsq and pass it around. Instead
14929  * functions pass around an ill or groupname, and the ipsq is looked
14930  * up from the ill or groupname and the required operation performed
14931  * atomically with the lookup on the ipsq.
14932  */
14933 static int
14934 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14935     queue_t *q)
14936 {
14937 	ipsq_t *old_ipsq;
14938 	ipsq_t *new_ipsq;
14939 	ill_t	**ill_list;
14940 	int	cnt;
14941 	size_t	ill_list_size;
14942 	boolean_t became_writer_on_new_sq = B_FALSE;
14943 
14944 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
14945 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
14946 
14947 	/*
14948 	 * Need to hold ill_g_lock as writer and also the ill_lock to
14949 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
14950 	 * ipsq_lock to prevent new messages from landing on an ipsq.
14951 	 */
14952 	rw_enter(&ill_g_lock, RW_WRITER);
14953 
14954 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14955 	if (groupname != NULL)
14956 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL);
14957 	else {
14958 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14959 	}
14960 
14961 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14962 
14963 	/*
14964 	 * both groups are on the same ipsq.
14965 	 */
14966 	if (old_ipsq == new_ipsq) {
14967 		rw_exit(&ill_g_lock);
14968 		return (0);
14969 	}
14970 
14971 	cnt = old_ipsq->ipsq_refs << 1;
14972 	ill_list_size = cnt * sizeof (ill_t *);
14973 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14974 	if (ill_list == NULL) {
14975 		rw_exit(&ill_g_lock);
14976 		return (ENOMEM);
14977 	}
14978 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14979 
14980 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
14981 	mutex_enter(&new_ipsq->ipsq_lock);
14982 	if ((new_ipsq->ipsq_writer == NULL &&
14983 		new_ipsq->ipsq_current_ipif == NULL) ||
14984 	    (new_ipsq->ipsq_writer == curthread)) {
14985 		new_ipsq->ipsq_writer = curthread;
14986 		new_ipsq->ipsq_reentry_cnt++;
14987 		became_writer_on_new_sq = B_TRUE;
14988 	}
14989 
14990 	/*
14991 	 * We are holding ill_g_lock as writer and all the ill locks of
14992 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14993 	 * message can land up on the old ipsq even though we don't hold the
14994 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14995 	 */
14996 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14997 
14998 	/*
14999 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
15000 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
15001 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
15002 	 */
15003 	ill_merge_ipsq(old_ipsq, new_ipsq);
15004 
15005 	/*
15006 	 * Mark the new ipsq as needing a split since it is currently
15007 	 * being shared by more than 1 IPMP group. The split will
15008 	 * occur at the end of ipsq_exit
15009 	 */
15010 	new_ipsq->ipsq_split = B_TRUE;
15011 
15012 	/* Now release all the locks */
15013 	mutex_exit(&new_ipsq->ipsq_lock);
15014 	ill_unlock_ills(ill_list, cnt);
15015 	rw_exit(&ill_g_lock);
15016 
15017 	kmem_free(ill_list, ill_list_size);
15018 
15019 	/*
15020 	 * If we succeeded in becoming writer on the new ipsq, then
15021 	 * drain the new ipsq and start processing  all enqueued messages
15022 	 * including the current ioctl we are processing which is either
15023 	 * a set groupname or failover/failback.
15024 	 */
15025 	if (became_writer_on_new_sq)
15026 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
15027 
15028 	/*
15029 	 * syncq has been changed and all the messages have been moved.
15030 	 */
15031 	mutex_enter(&old_ipsq->ipsq_lock);
15032 	old_ipsq->ipsq_current_ipif = NULL;
15033 	old_ipsq->ipsq_current_ioctl = 0;
15034 	mutex_exit(&old_ipsq->ipsq_lock);
15035 	return (EINPROGRESS);
15036 }
15037 
15038 /*
15039  * Delete and add the loopback copy and non-loopback copy of
15040  * the BROADCAST ire corresponding to ill and addr. Used to
15041  * group broadcast ires together when ill becomes part of
15042  * a group.
15043  *
15044  * This function is also called when ill is leaving the group
15045  * so that the ires belonging to the group gets re-grouped.
15046  */
15047 static void
15048 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
15049 {
15050 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
15051 	ire_t **ire_ptpn = &ire_head;
15052 
15053 	/*
15054 	 * The loopback and non-loopback IREs are inserted in the order in which
15055 	 * they're found, on the basis that they are correctly ordered (loopback
15056 	 * first).
15057 	 */
15058 	for (;;) {
15059 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15060 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
15061 		if (ire == NULL)
15062 			break;
15063 
15064 		/*
15065 		 * we are passing in KM_SLEEP because it is not easy to
15066 		 * go back to a sane state in case of memory failure.
15067 		 */
15068 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
15069 		ASSERT(nire != NULL);
15070 		bzero(nire, sizeof (ire_t));
15071 		/*
15072 		 * Don't use ire_max_frag directly since we don't
15073 		 * hold on to 'ire' until we add the new ire 'nire' and
15074 		 * we don't want the new ire to have a dangling reference
15075 		 * to 'ire'. The ire_max_frag of a broadcast ire must
15076 		 * be in sync with the ipif_mtu of the associate ipif.
15077 		 * For eg. this happens as a result of SIOCSLIFNAME,
15078 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
15079 		 * the driver. A change in ire_max_frag triggered as
15080 		 * as a result of path mtu discovery, or due to an
15081 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
15082 		 * route change -mtu command does not apply to broadcast ires.
15083 		 *
15084 		 * XXX We need a recovery strategy here if ire_init fails
15085 		 */
15086 		if (ire_init(nire,
15087 		    (uchar_t *)&ire->ire_addr,
15088 		    (uchar_t *)&ire->ire_mask,
15089 		    (uchar_t *)&ire->ire_src_addr,
15090 		    (uchar_t *)&ire->ire_gateway_addr,
15091 		    (uchar_t *)&ire->ire_in_src_addr,
15092 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
15093 			&ire->ire_ipif->ipif_mtu,
15094 		    (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL),
15095 		    ire->ire_rfq,
15096 		    ire->ire_stq,
15097 		    ire->ire_type,
15098 		    (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL),
15099 		    ire->ire_ipif,
15100 		    ire->ire_in_ill,
15101 		    ire->ire_cmask,
15102 		    ire->ire_phandle,
15103 		    ire->ire_ihandle,
15104 		    ire->ire_flags,
15105 		    &ire->ire_uinfo,
15106 		    NULL,
15107 		    NULL) == NULL) {
15108 			cmn_err(CE_PANIC, "ire_init() failed");
15109 		}
15110 		ire_delete(ire);
15111 		ire_refrele(ire);
15112 
15113 		/*
15114 		 * The newly created IREs are inserted at the tail of the list
15115 		 * starting with ire_head. As we've just allocated them no one
15116 		 * knows about them so it's safe.
15117 		 */
15118 		*ire_ptpn = nire;
15119 		ire_ptpn = &nire->ire_next;
15120 	}
15121 
15122 	for (nire = ire_head; nire != NULL; nire = nire_next) {
15123 		int error;
15124 		ire_t *oire;
15125 		/* unlink the IRE from our list before calling ire_add() */
15126 		nire_next = nire->ire_next;
15127 		nire->ire_next = NULL;
15128 
15129 		/* ire_add adds the ire at the right place in the list */
15130 		oire = nire;
15131 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
15132 		ASSERT(error == 0);
15133 		ASSERT(oire == nire);
15134 		ire_refrele(nire);	/* Held in ire_add */
15135 	}
15136 }
15137 
15138 /*
15139  * This function is usually called when an ill is inserted in
15140  * a group and all the ipifs are already UP. As all the ipifs
15141  * are already UP, the broadcast ires have already been created
15142  * and been inserted. But, ire_add_v4 would not have grouped properly.
15143  * We need to re-group for the benefit of ip_wput_ire which
15144  * expects BROADCAST ires to be grouped properly to avoid sending
15145  * more than one copy of the broadcast packet per group.
15146  *
15147  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
15148  *	  because when ipif_up_done ends up calling this, ires have
15149  *        already been added before illgrp_insert i.e before ill_group
15150  *	  has been initialized.
15151  */
15152 static void
15153 ill_group_bcast_for_xmit(ill_t *ill)
15154 {
15155 	ill_group_t *illgrp;
15156 	ipif_t *ipif;
15157 	ipaddr_t addr;
15158 	ipaddr_t net_mask;
15159 	ipaddr_t subnet_netmask;
15160 
15161 	illgrp = ill->ill_group;
15162 
15163 	/*
15164 	 * This function is called even when an ill is deleted from
15165 	 * the group. Hence, illgrp could be null.
15166 	 */
15167 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15168 		return;
15169 
15170 	/*
15171 	 * Delete all the BROADCAST ires matching this ill and add
15172 	 * them back. This time, ire_add_v4 should take care of
15173 	 * grouping them with others because ill is part of the
15174 	 * group.
15175 	 */
15176 	ill_bcast_delete_and_add(ill, 0);
15177 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15178 
15179 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15180 
15181 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15182 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15183 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15184 		} else {
15185 			net_mask = htonl(IN_CLASSA_NET);
15186 		}
15187 		addr = net_mask & ipif->ipif_subnet;
15188 		ill_bcast_delete_and_add(ill, addr);
15189 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15190 
15191 		subnet_netmask = ipif->ipif_net_mask;
15192 		addr = ipif->ipif_subnet;
15193 		ill_bcast_delete_and_add(ill, addr);
15194 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15195 	}
15196 }
15197 
15198 /*
15199  * This function is called from illgrp_delete when ill is being deleted
15200  * from the group.
15201  *
15202  * As ill is not there in the group anymore, any address belonging
15203  * to this ill should be cleared of IRE_MARK_NORECV.
15204  */
15205 static void
15206 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15207 {
15208 	ire_t *ire;
15209 	irb_t *irb;
15210 
15211 	ASSERT(ill->ill_group == NULL);
15212 
15213 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15214 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL);
15215 
15216 	if (ire != NULL) {
15217 		/*
15218 		 * IPMP and plumbing operations are serialized on the ipsq, so
15219 		 * no one will insert or delete a broadcast ire under our feet.
15220 		 */
15221 		irb = ire->ire_bucket;
15222 		rw_enter(&irb->irb_lock, RW_READER);
15223 		ire_refrele(ire);
15224 
15225 		for (; ire != NULL; ire = ire->ire_next) {
15226 			if (ire->ire_addr != addr)
15227 				break;
15228 			if (ire_to_ill(ire) != ill)
15229 				continue;
15230 
15231 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15232 			ire->ire_marks &= ~IRE_MARK_NORECV;
15233 		}
15234 		rw_exit(&irb->irb_lock);
15235 	}
15236 }
15237 
15238 /*
15239  * This function must be called only after the broadcast ires
15240  * have been grouped together. For a given address addr, nominate
15241  * only one of the ires whose interface is not FAILED or OFFLINE.
15242  *
15243  * This is also called when an ipif goes down, so that we can nominate
15244  * a different ire with the same address for receiving.
15245  */
15246 static void
15247 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr)
15248 {
15249 	irb_t *irb;
15250 	ire_t *ire;
15251 	ire_t *ire1;
15252 	ire_t *save_ire;
15253 	ire_t **irep = NULL;
15254 	boolean_t first = B_TRUE;
15255 	ire_t *clear_ire = NULL;
15256 	ire_t *start_ire = NULL;
15257 	ire_t	*new_lb_ire;
15258 	ire_t	*new_nlb_ire;
15259 	boolean_t new_lb_ire_used = B_FALSE;
15260 	boolean_t new_nlb_ire_used = B_FALSE;
15261 	uint64_t match_flags;
15262 	uint64_t phyi_flags;
15263 	boolean_t fallback = B_FALSE;
15264 
15265 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15266 	    NULL, MATCH_IRE_TYPE);
15267 	/*
15268 	 * We may not be able to find some ires if a previous
15269 	 * ire_create failed. This happens when an ipif goes
15270 	 * down and we are unable to create BROADCAST ires due
15271 	 * to memory failure. Thus, we have to check for NULL
15272 	 * below. This should handle the case for LOOPBACK,
15273 	 * POINTOPOINT and interfaces with some POINTOPOINT
15274 	 * logicals for which there are no BROADCAST ires.
15275 	 */
15276 	if (ire == NULL)
15277 		return;
15278 	/*
15279 	 * Currently IRE_BROADCASTS are deleted when an ipif
15280 	 * goes down which runs exclusively. Thus, setting
15281 	 * IRE_MARK_RCVD should not race with ire_delete marking
15282 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15283 	 * be consistent with other parts of the code that walks
15284 	 * a given bucket.
15285 	 */
15286 	save_ire = ire;
15287 	irb = ire->ire_bucket;
15288 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15289 	if (new_lb_ire == NULL) {
15290 		ire_refrele(ire);
15291 		return;
15292 	}
15293 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15294 	if (new_nlb_ire == NULL) {
15295 		ire_refrele(ire);
15296 		kmem_cache_free(ire_cache, new_lb_ire);
15297 		return;
15298 	}
15299 	IRB_REFHOLD(irb);
15300 	rw_enter(&irb->irb_lock, RW_WRITER);
15301 	/*
15302 	 * Get to the first ire matching the address and the
15303 	 * group. If the address does not match we are done
15304 	 * as we could not find the IRE. If the address matches
15305 	 * we should get to the first one matching the group.
15306 	 */
15307 	while (ire != NULL) {
15308 		if (ire->ire_addr != addr ||
15309 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15310 			break;
15311 		}
15312 		ire = ire->ire_next;
15313 	}
15314 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15315 	start_ire = ire;
15316 redo:
15317 	while (ire != NULL && ire->ire_addr == addr &&
15318 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15319 		/*
15320 		 * The first ire for any address within a group
15321 		 * should always be the one with IRE_MARK_NORECV cleared
15322 		 * so that ip_wput_ire can avoid searching for one.
15323 		 * Note down the insertion point which will be used
15324 		 * later.
15325 		 */
15326 		if (first && (irep == NULL))
15327 			irep = ire->ire_ptpn;
15328 		/*
15329 		 * PHYI_FAILED is set when the interface fails.
15330 		 * This interface might have become good, but the
15331 		 * daemon has not yet detected. We should still
15332 		 * not receive on this. PHYI_OFFLINE should never
15333 		 * be picked as this has been offlined and soon
15334 		 * be removed.
15335 		 */
15336 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15337 		if (phyi_flags & PHYI_OFFLINE) {
15338 			ire->ire_marks |= IRE_MARK_NORECV;
15339 			ire = ire->ire_next;
15340 			continue;
15341 		}
15342 		if (phyi_flags & match_flags) {
15343 			ire->ire_marks |= IRE_MARK_NORECV;
15344 			ire = ire->ire_next;
15345 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15346 			    PHYI_INACTIVE) {
15347 				fallback = B_TRUE;
15348 			}
15349 			continue;
15350 		}
15351 		if (first) {
15352 			/*
15353 			 * We will move this to the front of the list later
15354 			 * on.
15355 			 */
15356 			clear_ire = ire;
15357 			ire->ire_marks &= ~IRE_MARK_NORECV;
15358 		} else {
15359 			ire->ire_marks |= IRE_MARK_NORECV;
15360 		}
15361 		first = B_FALSE;
15362 		ire = ire->ire_next;
15363 	}
15364 	/*
15365 	 * If we never nominated anybody, try nominating at least
15366 	 * an INACTIVE, if we found one. Do it only once though.
15367 	 */
15368 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15369 	    fallback) {
15370 		match_flags = PHYI_FAILED;
15371 		ire = start_ire;
15372 		irep = NULL;
15373 		goto redo;
15374 	}
15375 	ire_refrele(save_ire);
15376 
15377 	/*
15378 	 * irep non-NULL indicates that we entered the while loop
15379 	 * above. If clear_ire is at the insertion point, we don't
15380 	 * have to do anything. clear_ire will be NULL if all the
15381 	 * interfaces are failed.
15382 	 *
15383 	 * We cannot unlink and reinsert the ire at the right place
15384 	 * in the list since there can be other walkers of this bucket.
15385 	 * Instead we delete and recreate the ire
15386 	 */
15387 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15388 		ire_t *clear_ire_stq = NULL;
15389 		mblk_t *fp_mp = NULL, *res_mp = NULL;
15390 
15391 		bzero(new_lb_ire, sizeof (ire_t));
15392 		if (clear_ire->ire_nce != NULL) {
15393 			fp_mp = clear_ire->ire_nce->nce_fp_mp;
15394 			res_mp = clear_ire->ire_nce->nce_res_mp;
15395 		}
15396 		/* XXX We need a recovery strategy here. */
15397 		if (ire_init(new_lb_ire,
15398 		    (uchar_t *)&clear_ire->ire_addr,
15399 		    (uchar_t *)&clear_ire->ire_mask,
15400 		    (uchar_t *)&clear_ire->ire_src_addr,
15401 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15402 		    (uchar_t *)&clear_ire->ire_in_src_addr,
15403 		    &clear_ire->ire_max_frag,
15404 		    fp_mp,
15405 		    clear_ire->ire_rfq,
15406 		    clear_ire->ire_stq,
15407 		    clear_ire->ire_type,
15408 		    res_mp,
15409 		    clear_ire->ire_ipif,
15410 		    clear_ire->ire_in_ill,
15411 		    clear_ire->ire_cmask,
15412 		    clear_ire->ire_phandle,
15413 		    clear_ire->ire_ihandle,
15414 		    clear_ire->ire_flags,
15415 		    &clear_ire->ire_uinfo,
15416 		    NULL,
15417 		    NULL) == NULL)
15418 			cmn_err(CE_PANIC, "ire_init() failed");
15419 		if (clear_ire->ire_stq == NULL) {
15420 			ire_t *ire_next = clear_ire->ire_next;
15421 			if (ire_next != NULL &&
15422 			    ire_next->ire_stq != NULL &&
15423 			    ire_next->ire_addr == clear_ire->ire_addr &&
15424 			    ire_next->ire_ipif->ipif_ill ==
15425 			    clear_ire->ire_ipif->ipif_ill) {
15426 				clear_ire_stq = ire_next;
15427 
15428 				bzero(new_nlb_ire, sizeof (ire_t));
15429 				if (clear_ire_stq->ire_nce != NULL) {
15430 					fp_mp =
15431 					    clear_ire_stq->ire_nce->nce_fp_mp;
15432 					res_mp =
15433 					    clear_ire_stq->ire_nce->nce_res_mp;
15434 				} else {
15435 					fp_mp = res_mp = NULL;
15436 				}
15437 				/* XXX We need a recovery strategy here. */
15438 				if (ire_init(new_nlb_ire,
15439 				    (uchar_t *)&clear_ire_stq->ire_addr,
15440 				    (uchar_t *)&clear_ire_stq->ire_mask,
15441 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15442 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15443 				    (uchar_t *)&clear_ire_stq->ire_in_src_addr,
15444 				    &clear_ire_stq->ire_max_frag,
15445 				    fp_mp,
15446 				    clear_ire_stq->ire_rfq,
15447 				    clear_ire_stq->ire_stq,
15448 				    clear_ire_stq->ire_type,
15449 				    res_mp,
15450 				    clear_ire_stq->ire_ipif,
15451 				    clear_ire_stq->ire_in_ill,
15452 				    clear_ire_stq->ire_cmask,
15453 				    clear_ire_stq->ire_phandle,
15454 				    clear_ire_stq->ire_ihandle,
15455 				    clear_ire_stq->ire_flags,
15456 				    &clear_ire_stq->ire_uinfo,
15457 				    NULL,
15458 				    NULL) == NULL)
15459 					cmn_err(CE_PANIC, "ire_init() failed");
15460 			}
15461 		}
15462 
15463 		/*
15464 		 * Delete the ire. We can't call ire_delete() since
15465 		 * we are holding the bucket lock. We can't release the
15466 		 * bucket lock since we can't allow irep to change. So just
15467 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15468 		 * ire from the list and do the refrele.
15469 		 */
15470 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15471 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15472 
15473 		if (clear_ire_stq != NULL) {
15474 			ire_fastpath_list_delete(
15475 			    (ill_t *)clear_ire_stq->ire_stq->q_ptr,
15476 			    clear_ire_stq);
15477 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15478 		}
15479 
15480 		/*
15481 		 * Also take care of otherfields like ib/ob pkt count
15482 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15483 		 */
15484 
15485 		/* Add the new ire's. Insert at *irep */
15486 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15487 		ire1 = *irep;
15488 		if (ire1 != NULL)
15489 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15490 		new_lb_ire->ire_next = ire1;
15491 		/* Link the new one in. */
15492 		new_lb_ire->ire_ptpn = irep;
15493 		membar_producer();
15494 		*irep = new_lb_ire;
15495 		new_lb_ire_used = B_TRUE;
15496 		BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted);
15497 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15498 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15499 
15500 		if (clear_ire_stq != NULL) {
15501 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15502 			irep = &new_lb_ire->ire_next;
15503 			/* Add the new ire. Insert at *irep */
15504 			ire1 = *irep;
15505 			if (ire1 != NULL)
15506 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15507 			new_nlb_ire->ire_next = ire1;
15508 			/* Link the new one in. */
15509 			new_nlb_ire->ire_ptpn = irep;
15510 			membar_producer();
15511 			*irep = new_nlb_ire;
15512 			new_nlb_ire_used = B_TRUE;
15513 			BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted);
15514 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15515 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15516 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15517 		}
15518 	}
15519 	rw_exit(&irb->irb_lock);
15520 	if (!new_lb_ire_used)
15521 		kmem_cache_free(ire_cache, new_lb_ire);
15522 	if (!new_nlb_ire_used)
15523 		kmem_cache_free(ire_cache, new_nlb_ire);
15524 	IRB_REFRELE(irb);
15525 }
15526 
15527 /*
15528  * Whenever an ipif goes down we have to renominate a different
15529  * broadcast ire to receive. Whenever an ipif comes up, we need
15530  * to make sure that we have only one nominated to receive.
15531  */
15532 static void
15533 ipif_renominate_bcast(ipif_t *ipif)
15534 {
15535 	ill_t *ill = ipif->ipif_ill;
15536 	ipaddr_t subnet_addr;
15537 	ipaddr_t net_addr;
15538 	ipaddr_t net_mask = 0;
15539 	ipaddr_t subnet_netmask;
15540 	ipaddr_t addr;
15541 	ill_group_t *illgrp;
15542 
15543 	illgrp = ill->ill_group;
15544 	/*
15545 	 * If this is the last ipif going down, it might take
15546 	 * the ill out of the group. In that case ipif_down ->
15547 	 * illgrp_delete takes care of doing the nomination.
15548 	 * ipif_down does not call for this case.
15549 	 */
15550 	ASSERT(illgrp != NULL);
15551 
15552 	/* There could not have been any ires associated with this */
15553 	if (ipif->ipif_subnet == 0)
15554 		return;
15555 
15556 	ill_mark_bcast(illgrp, 0);
15557 	ill_mark_bcast(illgrp, INADDR_BROADCAST);
15558 
15559 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15560 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15561 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15562 	} else {
15563 		net_mask = htonl(IN_CLASSA_NET);
15564 	}
15565 	addr = net_mask & ipif->ipif_subnet;
15566 	ill_mark_bcast(illgrp, addr);
15567 
15568 	net_addr = ~net_mask | addr;
15569 	ill_mark_bcast(illgrp, net_addr);
15570 
15571 	subnet_netmask = ipif->ipif_net_mask;
15572 	addr = ipif->ipif_subnet;
15573 	ill_mark_bcast(illgrp, addr);
15574 
15575 	subnet_addr = ~subnet_netmask | addr;
15576 	ill_mark_bcast(illgrp, subnet_addr);
15577 }
15578 
15579 /*
15580  * Whenever we form or delete ill groups, we need to nominate one set of
15581  * BROADCAST ires for receiving in the group.
15582  *
15583  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15584  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15585  *    for ill_ipif_up_count to be non-zero. This is the only case where
15586  *    ill_ipif_up_count is zero and we would still find the ires.
15587  *
15588  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15589  *    ipif is UP and we just have to do the nomination.
15590  *
15591  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15592  *    from the group. So, we have to do the nomination.
15593  *
15594  * Because of (3), there could be just one ill in the group. But we have
15595  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15596  * Thus, this function does not optimize when there is only one ill as
15597  * it is not correct for (3).
15598  */
15599 static void
15600 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15601 {
15602 	ill_t *ill;
15603 	ipif_t *ipif;
15604 	ipaddr_t subnet_addr;
15605 	ipaddr_t prev_subnet_addr = 0;
15606 	ipaddr_t net_addr;
15607 	ipaddr_t prev_net_addr = 0;
15608 	ipaddr_t net_mask = 0;
15609 	ipaddr_t subnet_netmask;
15610 	ipaddr_t addr;
15611 
15612 	/*
15613 	 * When the last memeber is leaving, there is nothing to
15614 	 * nominate.
15615 	 */
15616 	if (illgrp->illgrp_ill_count == 0) {
15617 		ASSERT(illgrp->illgrp_ill == NULL);
15618 		return;
15619 	}
15620 
15621 	ill = illgrp->illgrp_ill;
15622 	ASSERT(!ill->ill_isv6);
15623 	/*
15624 	 * We assume that ires with same address and belonging to the
15625 	 * same group, has been grouped together. Nominating a *single*
15626 	 * ill in the group for sending and receiving broadcast is done
15627 	 * by making sure that the first BROADCAST ire (which will be
15628 	 * the one returned by ire_ctable_lookup for ip_rput and the
15629 	 * one that will be used in ip_wput_ire) will be the one that
15630 	 * will not have IRE_MARK_NORECV set.
15631 	 *
15632 	 * 1) ip_rput checks and discards packets received on ires marked
15633 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15634 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15635 	 *    first ire in the group for every broadcast address in the group.
15636 	 *    ip_rput will accept packets only on the first ire i.e only
15637 	 *    one copy of the ill.
15638 	 *
15639 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15640 	 *    packet for the whole group. It needs to send out on the ill
15641 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15642 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15643 	 *    the copy echoed back on other port where the ire is not marked
15644 	 *    with IRE_MARK_NORECV.
15645 	 *
15646 	 * Note that we just need to have the first IRE either loopback or
15647 	 * non-loopback (either of them may not exist if ire_create failed
15648 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15649 	 * always hit the first one and hence will always accept one copy.
15650 	 *
15651 	 * We have a broadcast ire per ill for all the unique prefixes
15652 	 * hosted on that ill. As we don't have a way of knowing the
15653 	 * unique prefixes on a given ill and hence in the whole group,
15654 	 * we just call ill_mark_bcast on all the prefixes that exist
15655 	 * in the group. For the common case of one prefix, the code
15656 	 * below optimizes by remebering the last address used for
15657 	 * markng. In the case of multiple prefixes, this will still
15658 	 * optimize depending the order of prefixes.
15659 	 *
15660 	 * The only unique address across the whole group is 0.0.0.0 and
15661 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15662 	 * the first ire in the bucket for receiving and disables the
15663 	 * others.
15664 	 */
15665 	ill_mark_bcast(illgrp, 0);
15666 	ill_mark_bcast(illgrp, INADDR_BROADCAST);
15667 	for (; ill != NULL; ill = ill->ill_group_next) {
15668 
15669 		for (ipif = ill->ill_ipif; ipif != NULL;
15670 		    ipif = ipif->ipif_next) {
15671 
15672 			if (!(ipif->ipif_flags & IPIF_UP) ||
15673 			    ipif->ipif_subnet == 0) {
15674 				continue;
15675 			}
15676 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15677 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15678 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15679 			} else {
15680 				net_mask = htonl(IN_CLASSA_NET);
15681 			}
15682 			addr = net_mask & ipif->ipif_subnet;
15683 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15684 				ill_mark_bcast(illgrp, addr);
15685 				net_addr = ~net_mask | addr;
15686 				ill_mark_bcast(illgrp, net_addr);
15687 			}
15688 			prev_net_addr = addr;
15689 
15690 			subnet_netmask = ipif->ipif_net_mask;
15691 			addr = ipif->ipif_subnet;
15692 			if (prev_subnet_addr == 0 ||
15693 			    prev_subnet_addr != addr) {
15694 				ill_mark_bcast(illgrp, addr);
15695 				subnet_addr = ~subnet_netmask | addr;
15696 				ill_mark_bcast(illgrp, subnet_addr);
15697 			}
15698 			prev_subnet_addr = addr;
15699 		}
15700 	}
15701 }
15702 
15703 /*
15704  * This function is called while forming ill groups.
15705  *
15706  * Currently, we handle only allmulti groups. We want to join
15707  * allmulti on only one of the ills in the groups. In future,
15708  * when we have link aggregation, we may have to join normal
15709  * multicast groups on multiple ills as switch does inbound load
15710  * balancing. Following are the functions that calls this
15711  * function :
15712  *
15713  * 1) ill_recover_multicast : Interface is coming back UP.
15714  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15715  *    will call ill_recover_multicast to recover all the multicast
15716  *    groups. We need to make sure that only one member is joined
15717  *    in the ill group.
15718  *
15719  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15720  *    Somebody is joining allmulti. We need to make sure that only one
15721  *    member is joined in the group.
15722  *
15723  * 3) illgrp_insert : If allmulti has already joined, we need to make
15724  *    sure that only one member is joined in the group.
15725  *
15726  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15727  *    allmulti who we have nominated. We need to pick someother ill.
15728  *
15729  * 5) illgrp_delete : The ill we nominated is leaving the group,
15730  *    we need to pick a new ill to join the group.
15731  *
15732  * For (1), (2), (5) - we just have to check whether there is
15733  * a good ill joined in the group. If we could not find any ills
15734  * joined the group, we should join.
15735  *
15736  * For (4), the one that was nominated to receive, left the group.
15737  * There could be nobody joined in the group when this function is
15738  * called.
15739  *
15740  * For (3) - we need to explicitly check whether there are multiple
15741  * ills joined in the group.
15742  *
15743  * For simplicity, we don't differentiate any of the above cases. We
15744  * just leave the group if it is joined on any of them and join on
15745  * the first good ill.
15746  */
15747 int
15748 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15749 {
15750 	ilm_t *ilm;
15751 	ill_t *ill;
15752 	ill_t *fallback_inactive_ill = NULL;
15753 	ill_t *fallback_failed_ill = NULL;
15754 	int ret = 0;
15755 
15756 	/*
15757 	 * Leave the allmulti on all the ills and start fresh.
15758 	 */
15759 	for (ill = illgrp->illgrp_ill; ill != NULL;
15760 	    ill = ill->ill_group_next) {
15761 		if (ill->ill_join_allmulti)
15762 			(void) ip_leave_allmulti(ill->ill_ipif);
15763 	}
15764 
15765 	/*
15766 	 * Choose a good ill. Fallback to inactive or failed if
15767 	 * none available. We need to fallback to FAILED in the
15768 	 * case where we have 2 interfaces in a group - where
15769 	 * one of them is failed and another is a good one and
15770 	 * the good one (not marked inactive) is leaving the group.
15771 	 */
15772 	ret = 0;
15773 	for (ill = illgrp->illgrp_ill; ill != NULL;
15774 	    ill = ill->ill_group_next) {
15775 		/* Never pick an offline interface */
15776 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15777 			continue;
15778 
15779 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15780 			fallback_failed_ill = ill;
15781 			continue;
15782 		}
15783 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15784 			fallback_inactive_ill = ill;
15785 			continue;
15786 		}
15787 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15788 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15789 				ret = ip_join_allmulti(ill->ill_ipif);
15790 				/*
15791 				 * ip_join_allmulti can fail because of memory
15792 				 * failures. So, make sure we join at least
15793 				 * on one ill.
15794 				 */
15795 				if (ill->ill_join_allmulti)
15796 					return (0);
15797 			}
15798 		}
15799 	}
15800 	if (ret != 0) {
15801 		/*
15802 		 * If we tried nominating above and failed to do so,
15803 		 * return error. We might have tried multiple times.
15804 		 * But, return the latest error.
15805 		 */
15806 		return (ret);
15807 	}
15808 	if ((ill = fallback_inactive_ill) != NULL) {
15809 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15810 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15811 				ret = ip_join_allmulti(ill->ill_ipif);
15812 				return (ret);
15813 			}
15814 		}
15815 	} else if ((ill = fallback_failed_ill) != NULL) {
15816 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15817 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15818 				ret = ip_join_allmulti(ill->ill_ipif);
15819 				return (ret);
15820 			}
15821 		}
15822 	}
15823 	return (0);
15824 }
15825 
15826 /*
15827  * This function is called from illgrp_delete after it is
15828  * deleted from the group to reschedule responsibilities
15829  * to a different ill.
15830  */
15831 static void
15832 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15833 {
15834 	ilm_t	*ilm;
15835 	ipif_t	*ipif;
15836 	ipaddr_t subnet_addr;
15837 	ipaddr_t net_addr;
15838 	ipaddr_t net_mask = 0;
15839 	ipaddr_t subnet_netmask;
15840 	ipaddr_t addr;
15841 
15842 	ASSERT(ill->ill_group == NULL);
15843 	/*
15844 	 * Broadcast Responsibility:
15845 	 *
15846 	 * 1. If this ill has been nominated for receiving broadcast
15847 	 * packets, we need to find a new one. Before we find a new
15848 	 * one, we need to re-group the ires that are part of this new
15849 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
15850 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
15851 	 * thing for us.
15852 	 *
15853 	 * 2. If this ill was not nominated for receiving broadcast
15854 	 * packets, we need to clear the IRE_MARK_NORECV flag
15855 	 * so that we continue to send up broadcast packets.
15856 	 */
15857 	if (!ill->ill_isv6) {
15858 		/*
15859 		 * Case 1 above : No optimization here. Just redo the
15860 		 * nomination.
15861 		 */
15862 		ill_group_bcast_for_xmit(ill);
15863 		ill_nominate_bcast_rcv(illgrp);
15864 
15865 		/*
15866 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15867 		 */
15868 		ill_clear_bcast_mark(ill, 0);
15869 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15870 
15871 		for (ipif = ill->ill_ipif; ipif != NULL;
15872 		    ipif = ipif->ipif_next) {
15873 
15874 			if (!(ipif->ipif_flags & IPIF_UP) ||
15875 			    ipif->ipif_subnet == 0) {
15876 				continue;
15877 			}
15878 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15879 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15880 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15881 			} else {
15882 				net_mask = htonl(IN_CLASSA_NET);
15883 			}
15884 			addr = net_mask & ipif->ipif_subnet;
15885 			ill_clear_bcast_mark(ill, addr);
15886 
15887 			net_addr = ~net_mask | addr;
15888 			ill_clear_bcast_mark(ill, net_addr);
15889 
15890 			subnet_netmask = ipif->ipif_net_mask;
15891 			addr = ipif->ipif_subnet;
15892 			ill_clear_bcast_mark(ill, addr);
15893 
15894 			subnet_addr = ~subnet_netmask | addr;
15895 			ill_clear_bcast_mark(ill, subnet_addr);
15896 		}
15897 	}
15898 
15899 	/*
15900 	 * Multicast Responsibility.
15901 	 *
15902 	 * If we have joined allmulti on this one, find a new member
15903 	 * in the group to join allmulti. As this ill is already part
15904 	 * of allmulti, we don't have to join on this one.
15905 	 *
15906 	 * If we have not joined allmulti on this one, there is no
15907 	 * responsibility to handoff. But we need to take new
15908 	 * responsibility i.e, join allmulti on this one if we need
15909 	 * to.
15910 	 */
15911 	if (ill->ill_join_allmulti) {
15912 		(void) ill_nominate_mcast_rcv(illgrp);
15913 	} else {
15914 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15915 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15916 				(void) ip_join_allmulti(ill->ill_ipif);
15917 				break;
15918 			}
15919 		}
15920 	}
15921 
15922 	/*
15923 	 * We intentionally do the flushing of IRE_CACHES only matching
15924 	 * on the ill and not on groups. Note that we are already deleted
15925 	 * from the group.
15926 	 *
15927 	 * This will make sure that all IRE_CACHES whose stq is pointing
15928 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15929 	 * deleted and IRE_CACHES that are not pointing at this ill will
15930 	 * be left alone.
15931 	 */
15932 	if (ill->ill_isv6) {
15933 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15934 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15935 	} else {
15936 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15937 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15938 	}
15939 
15940 	/*
15941 	 * Some conn may have cached one of the IREs deleted above. By removing
15942 	 * the ire reference, we clean up the extra reference to the ill held in
15943 	 * ire->ire_stq.
15944 	 */
15945 	ipcl_walk(conn_cleanup_stale_ire, NULL);
15946 
15947 	/*
15948 	 * Re-do source address selection for all the members in the
15949 	 * group, if they borrowed source address from one of the ipifs
15950 	 * in this ill.
15951 	 */
15952 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15953 		if (ill->ill_isv6) {
15954 			ipif_update_other_ipifs_v6(ipif, illgrp);
15955 		} else {
15956 			ipif_update_other_ipifs(ipif, illgrp);
15957 		}
15958 	}
15959 }
15960 
15961 /*
15962  * Delete the ill from the group. The caller makes sure that it is
15963  * in a group and it okay to delete from the group. So, we always
15964  * delete here.
15965  */
15966 static void
15967 illgrp_delete(ill_t *ill)
15968 {
15969 	ill_group_t *illgrp;
15970 	ill_group_t *tmpg;
15971 	ill_t *tmp_ill;
15972 
15973 	/*
15974 	 * Reset illgrp_ill_schednext if it was pointing at us.
15975 	 * We need to do this before we set ill_group to NULL.
15976 	 */
15977 	rw_enter(&ill_g_lock, RW_WRITER);
15978 	mutex_enter(&ill->ill_lock);
15979 
15980 	illgrp_reset_schednext(ill);
15981 
15982 	illgrp = ill->ill_group;
15983 
15984 	/* Delete the ill from illgrp. */
15985 	if (illgrp->illgrp_ill == ill) {
15986 		illgrp->illgrp_ill = ill->ill_group_next;
15987 	} else {
15988 		tmp_ill = illgrp->illgrp_ill;
15989 		while (tmp_ill->ill_group_next != ill) {
15990 			tmp_ill = tmp_ill->ill_group_next;
15991 			ASSERT(tmp_ill != NULL);
15992 		}
15993 		tmp_ill->ill_group_next = ill->ill_group_next;
15994 	}
15995 	ill->ill_group = NULL;
15996 	ill->ill_group_next = NULL;
15997 
15998 	illgrp->illgrp_ill_count--;
15999 	mutex_exit(&ill->ill_lock);
16000 	rw_exit(&ill_g_lock);
16001 
16002 	/*
16003 	 * As this ill is leaving the group, we need to hand off
16004 	 * the responsibilities to the other ills in the group, if
16005 	 * this ill had some responsibilities.
16006 	 */
16007 
16008 	ill_handoff_responsibility(ill, illgrp);
16009 
16010 	rw_enter(&ill_g_lock, RW_WRITER);
16011 
16012 	if (illgrp->illgrp_ill_count == 0) {
16013 
16014 		ASSERT(illgrp->illgrp_ill == NULL);
16015 		if (ill->ill_isv6) {
16016 			if (illgrp == illgrp_head_v6) {
16017 				illgrp_head_v6 = illgrp->illgrp_next;
16018 			} else {
16019 				tmpg = illgrp_head_v6;
16020 				while (tmpg->illgrp_next != illgrp) {
16021 					tmpg = tmpg->illgrp_next;
16022 					ASSERT(tmpg != NULL);
16023 				}
16024 				tmpg->illgrp_next = illgrp->illgrp_next;
16025 			}
16026 		} else {
16027 			if (illgrp == illgrp_head_v4) {
16028 				illgrp_head_v4 = illgrp->illgrp_next;
16029 			} else {
16030 				tmpg = illgrp_head_v4;
16031 				while (tmpg->illgrp_next != illgrp) {
16032 					tmpg = tmpg->illgrp_next;
16033 					ASSERT(tmpg != NULL);
16034 				}
16035 				tmpg->illgrp_next = illgrp->illgrp_next;
16036 			}
16037 		}
16038 		mutex_destroy(&illgrp->illgrp_lock);
16039 		mi_free(illgrp);
16040 	}
16041 	rw_exit(&ill_g_lock);
16042 
16043 	/*
16044 	 * Even though the ill is out of the group its not necessary
16045 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
16046 	 * We will split the ipsq when phyint_groupname is set to NULL.
16047 	 */
16048 
16049 	/*
16050 	 * Send a routing sockets message if we are deleting from
16051 	 * groups with names.
16052 	 */
16053 	if (ill->ill_phyint->phyint_groupname_len != 0)
16054 		ip_rts_ifmsg(ill->ill_ipif);
16055 }
16056 
16057 /*
16058  * Re-do source address selection. This is normally called when
16059  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
16060  * ipif comes up.
16061  */
16062 void
16063 ill_update_source_selection(ill_t *ill)
16064 {
16065 	ipif_t *ipif;
16066 
16067 	ASSERT(IAM_WRITER_ILL(ill));
16068 
16069 	if (ill->ill_group != NULL)
16070 		ill = ill->ill_group->illgrp_ill;
16071 
16072 	for (; ill != NULL; ill = ill->ill_group_next) {
16073 		for (ipif = ill->ill_ipif; ipif != NULL;
16074 		    ipif = ipif->ipif_next) {
16075 			if (ill->ill_isv6)
16076 				ipif_recreate_interface_routes_v6(NULL, ipif);
16077 			else
16078 				ipif_recreate_interface_routes(NULL, ipif);
16079 		}
16080 	}
16081 }
16082 
16083 /*
16084  * Insert ill in a group headed by illgrp_head. The caller can either
16085  * pass a groupname in which case we search for a group with the
16086  * same name to insert in or pass a group to insert in. This function
16087  * would only search groups with names.
16088  *
16089  * NOTE : The caller should make sure that there is at least one ipif
16090  *	  UP on this ill so that illgrp_scheduler can pick this ill
16091  *	  for outbound packets. If ill_ipif_up_count is zero, we have
16092  *	  already sent a DL_UNBIND to the driver and we don't want to
16093  *	  send anymore packets. We don't assert for ipif_up_count
16094  *	  to be greater than zero, because ipif_up_done wants to call
16095  *	  this function before bumping up the ipif_up_count. See
16096  *	  ipif_up_done() for details.
16097  */
16098 int
16099 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
16100     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
16101 {
16102 	ill_group_t *illgrp;
16103 	ill_t *prev_ill;
16104 	phyint_t *phyi;
16105 
16106 	ASSERT(ill->ill_group == NULL);
16107 
16108 	rw_enter(&ill_g_lock, RW_WRITER);
16109 	mutex_enter(&ill->ill_lock);
16110 
16111 	if (groupname != NULL) {
16112 		/*
16113 		 * Look for a group with a matching groupname to insert.
16114 		 */
16115 		for (illgrp = *illgrp_head; illgrp != NULL;
16116 		    illgrp = illgrp->illgrp_next) {
16117 
16118 			ill_t *tmp_ill;
16119 
16120 			/*
16121 			 * If we have an ill_group_t in the list which has
16122 			 * no ill_t assigned then we must be in the process of
16123 			 * removing this group. We skip this as illgrp_delete()
16124 			 * will remove it from the list.
16125 			 */
16126 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
16127 				ASSERT(illgrp->illgrp_ill_count == 0);
16128 				continue;
16129 			}
16130 
16131 			ASSERT(tmp_ill->ill_phyint != NULL);
16132 			phyi = tmp_ill->ill_phyint;
16133 			/*
16134 			 * Look at groups which has names only.
16135 			 */
16136 			if (phyi->phyint_groupname_len == 0)
16137 				continue;
16138 			/*
16139 			 * Names are stored in the phyint common to both
16140 			 * IPv4 and IPv6.
16141 			 */
16142 			if (mi_strcmp(phyi->phyint_groupname,
16143 			    groupname) == 0) {
16144 				break;
16145 			}
16146 		}
16147 	} else {
16148 		/*
16149 		 * If the caller passes in a NULL "grp_to_insert", we
16150 		 * allocate one below and insert this singleton.
16151 		 */
16152 		illgrp = grp_to_insert;
16153 	}
16154 
16155 	ill->ill_group_next = NULL;
16156 
16157 	if (illgrp == NULL) {
16158 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16159 		if (illgrp == NULL) {
16160 			return (ENOMEM);
16161 		}
16162 		illgrp->illgrp_next = *illgrp_head;
16163 		*illgrp_head = illgrp;
16164 		illgrp->illgrp_ill = ill;
16165 		illgrp->illgrp_ill_count = 1;
16166 		ill->ill_group = illgrp;
16167 		/*
16168 		 * Used in illgrp_scheduler to protect multiple threads
16169 		 * from traversing the list.
16170 		 */
16171 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16172 	} else {
16173 		ASSERT(ill->ill_net_type ==
16174 		    illgrp->illgrp_ill->ill_net_type);
16175 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16176 
16177 		/* Insert ill at tail of this group */
16178 		prev_ill = illgrp->illgrp_ill;
16179 		while (prev_ill->ill_group_next != NULL)
16180 			prev_ill = prev_ill->ill_group_next;
16181 		prev_ill->ill_group_next = ill;
16182 		ill->ill_group = illgrp;
16183 		illgrp->illgrp_ill_count++;
16184 		/*
16185 		 * Inherit group properties. Currently only forwarding
16186 		 * is the property we try to keep the same with all the
16187 		 * ills. When there are more, we will abstract this into
16188 		 * a function.
16189 		 */
16190 		ill->ill_flags &= ~ILLF_ROUTER;
16191 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16192 	}
16193 	mutex_exit(&ill->ill_lock);
16194 	rw_exit(&ill_g_lock);
16195 
16196 	/*
16197 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16198 	 *    may be zero as it has not yet been bumped. But the ires
16199 	 *    have already been added. So, we do the nomination here
16200 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16201 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16202 	 *    ill_ipif_up_count here while nominating broadcast ires for
16203 	 *    receive.
16204 	 *
16205 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16206 	 *    to group them properly as ire_add() has already happened
16207 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16208 	 *    case, we need to do it here anyway.
16209 	 */
16210 	if (!ill->ill_isv6) {
16211 		ill_group_bcast_for_xmit(ill);
16212 		ill_nominate_bcast_rcv(illgrp);
16213 	}
16214 
16215 	if (!ipif_is_coming_up) {
16216 		/*
16217 		 * When ipif_up_done() calls this function, the multicast
16218 		 * groups have not been joined yet. So, there is no point in
16219 		 * nomination. ip_join_allmulti will handle groups when
16220 		 * ill_recover_multicast is called from ipif_up_done() later.
16221 		 */
16222 		(void) ill_nominate_mcast_rcv(illgrp);
16223 		/*
16224 		 * ipif_up_done calls ill_update_source_selection
16225 		 * anyway. Moreover, we don't want to re-create
16226 		 * interface routes while ipif_up_done() still has reference
16227 		 * to them. Refer to ipif_up_done() for more details.
16228 		 */
16229 		ill_update_source_selection(ill);
16230 	}
16231 
16232 	/*
16233 	 * Send a routing sockets message if we are inserting into
16234 	 * groups with names.
16235 	 */
16236 	if (groupname != NULL)
16237 		ip_rts_ifmsg(ill->ill_ipif);
16238 	return (0);
16239 }
16240 
16241 /*
16242  * Return the first phyint matching the groupname. There could
16243  * be more than one when there are ill groups.
16244  *
16245  * Needs work: called only from ip_sioctl_groupname
16246  */
16247 static phyint_t *
16248 phyint_lookup_group(char *groupname)
16249 {
16250 	phyint_t *phyi;
16251 
16252 	ASSERT(RW_LOCK_HELD(&ill_g_lock));
16253 	/*
16254 	 * Group names are stored in the phyint - a common structure
16255 	 * to both IPv4 and IPv6.
16256 	 */
16257 	phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index);
16258 	for (; phyi != NULL;
16259 	    phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index,
16260 	    phyi, AVL_AFTER)) {
16261 		if (phyi->phyint_groupname_len == 0)
16262 			continue;
16263 		ASSERT(phyi->phyint_groupname != NULL);
16264 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16265 			return (phyi);
16266 	}
16267 	return (NULL);
16268 }
16269 
16270 
16271 
16272 /*
16273  * MT notes on creation and deletion of IPMP groups
16274  *
16275  * Creation and deletion of IPMP groups introduce the need to merge or
16276  * split the associated serialization objects i.e the ipsq's. Normally all
16277  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16278  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16279  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16280  * is a need to change the <ill-ipsq> association and we have to operate on both
16281  * the source and destination IPMP groups. For eg. attempting to set the
16282  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16283  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16284  * source or destination IPMP group are mapped to a single ipsq for executing
16285  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16286  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16287  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16288  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16289  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16290  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16291  *
16292  * In the above example the ioctl handling code locates the current ipsq of hme0
16293  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16294  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16295  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16296  * the destination ipsq. If the destination ipsq is not busy, it also enters
16297  * the destination ipsq exclusively. Now the actual groupname setting operation
16298  * can proceed. If the destination ipsq is busy, the operation is enqueued
16299  * on the destination (merged) ipsq and will be handled in the unwind from
16300  * ipsq_exit.
16301  *
16302  * To prevent other threads accessing the ill while the group name change is
16303  * in progres, we bring down the ipifs which also removes the ill from the
16304  * group. The group is changed in phyint and when the first ipif on the ill
16305  * is brought up, the ill is inserted into the right IPMP group by
16306  * illgrp_insert.
16307  */
16308 /* ARGSUSED */
16309 int
16310 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16311     ip_ioctl_cmd_t *ipip, void *ifreq)
16312 {
16313 	int i;
16314 	char *tmp;
16315 	int namelen;
16316 	ill_t *ill = ipif->ipif_ill;
16317 	ill_t *ill_v4, *ill_v6;
16318 	int err = 0;
16319 	phyint_t *phyi;
16320 	phyint_t *phyi_tmp;
16321 	struct lifreq *lifr;
16322 	mblk_t	*mp1;
16323 	char *groupname;
16324 	ipsq_t *ipsq;
16325 
16326 	ASSERT(IAM_WRITER_IPIF(ipif));
16327 
16328 	/* Existance verified in ip_wput_nondata */
16329 	mp1 = mp->b_cont->b_cont;
16330 	lifr = (struct lifreq *)mp1->b_rptr;
16331 	groupname = lifr->lifr_groupname;
16332 
16333 	if (ipif->ipif_id != 0)
16334 		return (EINVAL);
16335 
16336 	phyi = ill->ill_phyint;
16337 	ASSERT(phyi != NULL);
16338 
16339 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16340 		return (EINVAL);
16341 
16342 	tmp = groupname;
16343 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16344 		;
16345 
16346 	if (i == LIFNAMSIZ) {
16347 		/* no null termination */
16348 		return (EINVAL);
16349 	}
16350 
16351 	/*
16352 	 * Calculate the namelen exclusive of the null
16353 	 * termination character.
16354 	 */
16355 	namelen = tmp - groupname;
16356 
16357 	ill_v4 = phyi->phyint_illv4;
16358 	ill_v6 = phyi->phyint_illv6;
16359 
16360 	/*
16361 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16362 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16363 	 * synchronization notes in ip.c
16364 	 */
16365 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16366 		return (EINVAL);
16367 	}
16368 
16369 	/*
16370 	 * mark the ill as changing.
16371 	 * this should queue all new requests on the syncq.
16372 	 */
16373 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16374 
16375 	if (ill_v4 != NULL)
16376 		ill_v4->ill_state_flags |= ILL_CHANGING;
16377 	if (ill_v6 != NULL)
16378 		ill_v6->ill_state_flags |= ILL_CHANGING;
16379 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16380 
16381 	if (namelen == 0) {
16382 		/*
16383 		 * Null string means remove this interface from the
16384 		 * existing group.
16385 		 */
16386 		if (phyi->phyint_groupname_len == 0) {
16387 			/*
16388 			 * Never was in a group.
16389 			 */
16390 			err = 0;
16391 			goto done;
16392 		}
16393 
16394 		/*
16395 		 * IPv4 or IPv6 may be temporarily out of the group when all
16396 		 * the ipifs are down. Thus, we need to check for ill_group to
16397 		 * be non-NULL.
16398 		 */
16399 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16400 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16401 			mutex_enter(&ill_v4->ill_lock);
16402 			if (!ill_is_quiescent(ill_v4)) {
16403 				/*
16404 				 * ipsq_pending_mp_add will not fail since
16405 				 * connp is NULL
16406 				 */
16407 				(void) ipsq_pending_mp_add(NULL,
16408 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16409 				mutex_exit(&ill_v4->ill_lock);
16410 				err = EINPROGRESS;
16411 				goto done;
16412 			}
16413 			mutex_exit(&ill_v4->ill_lock);
16414 		}
16415 
16416 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16417 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16418 			mutex_enter(&ill_v6->ill_lock);
16419 			if (!ill_is_quiescent(ill_v6)) {
16420 				(void) ipsq_pending_mp_add(NULL,
16421 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16422 				mutex_exit(&ill_v6->ill_lock);
16423 				err = EINPROGRESS;
16424 				goto done;
16425 			}
16426 			mutex_exit(&ill_v6->ill_lock);
16427 		}
16428 
16429 		rw_enter(&ill_g_lock, RW_WRITER);
16430 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16431 		mutex_enter(&phyi->phyint_lock);
16432 		ASSERT(phyi->phyint_groupname != NULL);
16433 		mi_free(phyi->phyint_groupname);
16434 		phyi->phyint_groupname = NULL;
16435 		phyi->phyint_groupname_len = 0;
16436 		mutex_exit(&phyi->phyint_lock);
16437 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16438 		rw_exit(&ill_g_lock);
16439 		err = ill_up_ipifs(ill, q, mp);
16440 
16441 		/*
16442 		 * set the split flag so that the ipsq can be split
16443 		 */
16444 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16445 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16446 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16447 
16448 	} else {
16449 		if (phyi->phyint_groupname_len != 0) {
16450 			ASSERT(phyi->phyint_groupname != NULL);
16451 			/* Are we inserting in the same group ? */
16452 			if (mi_strcmp(groupname,
16453 			    phyi->phyint_groupname) == 0) {
16454 				err = 0;
16455 				goto done;
16456 			}
16457 		}
16458 
16459 		rw_enter(&ill_g_lock, RW_READER);
16460 		/*
16461 		 * Merge ipsq for the group's.
16462 		 * This check is here as multiple groups/ills might be
16463 		 * sharing the same ipsq.
16464 		 * If we have to merege than the operation is restarted
16465 		 * on the new ipsq.
16466 		 */
16467 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL);
16468 		if (phyi->phyint_ipsq != ipsq) {
16469 			rw_exit(&ill_g_lock);
16470 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16471 			goto done;
16472 		}
16473 		/*
16474 		 * Running exclusive on new ipsq.
16475 		 */
16476 
16477 		ASSERT(ipsq != NULL);
16478 		ASSERT(ipsq->ipsq_writer == curthread);
16479 
16480 		/*
16481 		 * Check whether the ill_type and ill_net_type matches before
16482 		 * we allocate any memory so that the cleanup is easier.
16483 		 *
16484 		 * We can't group dissimilar ones as we can't load spread
16485 		 * packets across the group because of potential link-level
16486 		 * header differences.
16487 		 */
16488 		phyi_tmp = phyint_lookup_group(groupname);
16489 		if (phyi_tmp != NULL) {
16490 			if ((ill_v4 != NULL &&
16491 			    phyi_tmp->phyint_illv4 != NULL) &&
16492 			    ((ill_v4->ill_net_type !=
16493 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16494 			    (ill_v4->ill_type !=
16495 			    phyi_tmp->phyint_illv4->ill_type))) {
16496 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16497 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16498 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16499 				rw_exit(&ill_g_lock);
16500 				return (EINVAL);
16501 			}
16502 			if ((ill_v6 != NULL &&
16503 			    phyi_tmp->phyint_illv6 != NULL) &&
16504 			    ((ill_v6->ill_net_type !=
16505 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16506 			    (ill_v6->ill_type !=
16507 			    phyi_tmp->phyint_illv6->ill_type))) {
16508 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16509 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16510 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16511 				rw_exit(&ill_g_lock);
16512 				return (EINVAL);
16513 			}
16514 		}
16515 
16516 		rw_exit(&ill_g_lock);
16517 
16518 		/*
16519 		 * bring down all v4 ipifs.
16520 		 */
16521 		if (ill_v4 != NULL) {
16522 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16523 		}
16524 
16525 		/*
16526 		 * bring down all v6 ipifs.
16527 		 */
16528 		if (ill_v6 != NULL) {
16529 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16530 		}
16531 
16532 		/*
16533 		 * make sure all ipifs are down and there are no active
16534 		 * references. Call to ipsq_pending_mp_add will not fail
16535 		 * since connp is NULL.
16536 		 */
16537 		if (ill_v4 != NULL) {
16538 			mutex_enter(&ill_v4->ill_lock);
16539 			if (!ill_is_quiescent(ill_v4)) {
16540 				(void) ipsq_pending_mp_add(NULL,
16541 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16542 				mutex_exit(&ill_v4->ill_lock);
16543 				err = EINPROGRESS;
16544 				goto done;
16545 			}
16546 			mutex_exit(&ill_v4->ill_lock);
16547 		}
16548 
16549 		if (ill_v6 != NULL) {
16550 			mutex_enter(&ill_v6->ill_lock);
16551 			if (!ill_is_quiescent(ill_v6)) {
16552 				(void) ipsq_pending_mp_add(NULL,
16553 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16554 				mutex_exit(&ill_v6->ill_lock);
16555 				err = EINPROGRESS;
16556 				goto done;
16557 			}
16558 			mutex_exit(&ill_v6->ill_lock);
16559 		}
16560 
16561 		/*
16562 		 * allocate including space for null terminator
16563 		 * before we insert.
16564 		 */
16565 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16566 		if (tmp == NULL)
16567 			return (ENOMEM);
16568 
16569 		rw_enter(&ill_g_lock, RW_WRITER);
16570 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16571 		mutex_enter(&phyi->phyint_lock);
16572 		if (phyi->phyint_groupname_len != 0) {
16573 			ASSERT(phyi->phyint_groupname != NULL);
16574 			mi_free(phyi->phyint_groupname);
16575 		}
16576 
16577 		/*
16578 		 * setup the new group name.
16579 		 */
16580 		phyi->phyint_groupname = tmp;
16581 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16582 		phyi->phyint_groupname_len = namelen + 1;
16583 		mutex_exit(&phyi->phyint_lock);
16584 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16585 		rw_exit(&ill_g_lock);
16586 
16587 		err = ill_up_ipifs(ill, q, mp);
16588 	}
16589 
16590 done:
16591 	/*
16592 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16593 	 */
16594 	if (err != EINPROGRESS) {
16595 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16596 		if (ill_v4 != NULL)
16597 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16598 		if (ill_v6 != NULL)
16599 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16600 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16601 	}
16602 	return (err);
16603 }
16604 
16605 /* ARGSUSED */
16606 int
16607 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16608     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16609 {
16610 	ill_t *ill;
16611 	phyint_t *phyi;
16612 	struct lifreq *lifr;
16613 	mblk_t	*mp1;
16614 
16615 	/* Existence verified in ip_wput_nondata */
16616 	mp1 = mp->b_cont->b_cont;
16617 	lifr = (struct lifreq *)mp1->b_rptr;
16618 	ill = ipif->ipif_ill;
16619 	phyi = ill->ill_phyint;
16620 
16621 	lifr->lifr_groupname[0] = '\0';
16622 	/*
16623 	 * ill_group may be null if all the interfaces
16624 	 * are down. But still, the phyint should always
16625 	 * hold the name.
16626 	 */
16627 	if (phyi->phyint_groupname_len != 0) {
16628 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16629 		    phyi->phyint_groupname_len);
16630 	}
16631 
16632 	return (0);
16633 }
16634 
16635 
16636 typedef struct conn_move_s {
16637 	ill_t	*cm_from_ill;
16638 	ill_t	*cm_to_ill;
16639 	int	cm_ifindex;
16640 } conn_move_t;
16641 
16642 /*
16643  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16644  */
16645 static void
16646 conn_move(conn_t *connp, caddr_t arg)
16647 {
16648 	conn_move_t *connm;
16649 	int ifindex;
16650 	int i;
16651 	ill_t *from_ill;
16652 	ill_t *to_ill;
16653 	ilg_t *ilg;
16654 	ilm_t *ret_ilm;
16655 
16656 	connm = (conn_move_t *)arg;
16657 	ifindex = connm->cm_ifindex;
16658 	from_ill = connm->cm_from_ill;
16659 	to_ill = connm->cm_to_ill;
16660 
16661 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16662 
16663 	/* All multicast fields protected by conn_lock */
16664 	mutex_enter(&connp->conn_lock);
16665 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16666 	if ((connp->conn_outgoing_ill == from_ill) &&
16667 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16668 		connp->conn_outgoing_ill = to_ill;
16669 		connp->conn_incoming_ill = to_ill;
16670 	}
16671 
16672 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16673 
16674 	if ((connp->conn_multicast_ill == from_ill) &&
16675 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16676 		connp->conn_multicast_ill = connm->cm_to_ill;
16677 	}
16678 
16679 	/* Change IP_XMIT_IF associations */
16680 	if ((connp->conn_xmit_if_ill == from_ill) &&
16681 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16682 		connp->conn_xmit_if_ill = to_ill;
16683 	}
16684 	/*
16685 	 * Change the ilg_ill to point to the new one. This assumes
16686 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16687 	 * has been told to receive packets on this interface.
16688 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16689 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16690 	 * some ilms may not have moved. We check to see whether
16691 	 * the ilms have moved to to_ill. We can't check on from_ill
16692 	 * as in the process of moving, we could have split an ilm
16693 	 * in to two - which has the same orig_ifindex and v6group.
16694 	 *
16695 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16696 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16697 	 */
16698 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16699 		ilg = &connp->conn_ilg[i];
16700 		if ((ilg->ilg_ill == from_ill) &&
16701 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16702 			/* ifindex != 0 indicates failback */
16703 			if (ifindex != 0) {
16704 				connp->conn_ilg[i].ilg_ill = to_ill;
16705 				continue;
16706 			}
16707 
16708 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16709 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16710 			    connp->conn_zoneid);
16711 
16712 			if (ret_ilm != NULL)
16713 				connp->conn_ilg[i].ilg_ill = to_ill;
16714 		}
16715 	}
16716 	mutex_exit(&connp->conn_lock);
16717 }
16718 
16719 static void
16720 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16721 {
16722 	conn_move_t connm;
16723 
16724 	connm.cm_from_ill = from_ill;
16725 	connm.cm_to_ill = to_ill;
16726 	connm.cm_ifindex = ifindex;
16727 
16728 	ipcl_walk(conn_move, (caddr_t)&connm);
16729 }
16730 
16731 /*
16732  * ilm has been moved from from_ill to to_ill.
16733  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16734  * appropriately.
16735  *
16736  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16737  *	  the code there de-references ipif_ill to get the ill to
16738  *	  send multicast requests. It does not work as ipif is on its
16739  *	  move and already moved when this function is called.
16740  *	  Thus, we need to use from_ill and to_ill send down multicast
16741  *	  requests.
16742  */
16743 static void
16744 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16745 {
16746 	ipif_t *ipif;
16747 	ilm_t *ilm;
16748 
16749 	/*
16750 	 * See whether we need to send down DL_ENABMULTI_REQ on
16751 	 * to_ill as ilm has just been added.
16752 	 */
16753 	ASSERT(IAM_WRITER_ILL(to_ill));
16754 	ASSERT(IAM_WRITER_ILL(from_ill));
16755 
16756 	ILM_WALKER_HOLD(to_ill);
16757 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16758 
16759 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16760 			continue;
16761 		/*
16762 		 * no locks held, ill/ipif cannot dissappear as long
16763 		 * as we are writer.
16764 		 */
16765 		ipif = to_ill->ill_ipif;
16766 		/*
16767 		 * No need to hold any lock as we are the writer and this
16768 		 * can only be changed by a writer.
16769 		 */
16770 		ilm->ilm_is_new = B_FALSE;
16771 
16772 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16773 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16774 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16775 			    "resolver\n"));
16776 			continue;		/* Must be IRE_IF_NORESOLVER */
16777 		}
16778 
16779 
16780 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16781 			ip1dbg(("ilm_send_multicast_reqs: "
16782 			    "to_ill MULTI_BCAST\n"));
16783 			goto from;
16784 		}
16785 
16786 		if (to_ill->ill_isv6)
16787 			mld_joingroup(ilm);
16788 		else
16789 			igmp_joingroup(ilm);
16790 
16791 		if (to_ill->ill_ipif_up_count == 0) {
16792 			/*
16793 			 * Nobody there. All multicast addresses will be
16794 			 * re-joined when we get the DL_BIND_ACK bringing the
16795 			 * interface up.
16796 			 */
16797 			ilm->ilm_notify_driver = B_FALSE;
16798 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16799 			goto from;
16800 		}
16801 
16802 		/*
16803 		 * For allmulti address, we want to join on only one interface.
16804 		 * Checking for ilm_numentries_v6 is not correct as you may
16805 		 * find an ilm with zero address on to_ill, but we may not
16806 		 * have nominated to_ill for receiving. Thus, if we have
16807 		 * nominated from_ill (ill_join_allmulti is set), nominate
16808 		 * only if to_ill is not already nominated (to_ill normally
16809 		 * should not have been nominated if "from_ill" has already
16810 		 * been nominated. As we don't prevent failovers from happening
16811 		 * across groups, we don't assert).
16812 		 */
16813 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16814 			/*
16815 			 * There is no need to hold ill locks as we are
16816 			 * writer on both ills and when ill_join_allmulti
16817 			 * is changed the thread is always a writer.
16818 			 */
16819 			if (from_ill->ill_join_allmulti &&
16820 			    !to_ill->ill_join_allmulti) {
16821 				(void) ip_join_allmulti(to_ill->ill_ipif);
16822 			}
16823 		} else if (ilm->ilm_notify_driver) {
16824 
16825 			/*
16826 			 * This is a newly moved ilm so we need to tell the
16827 			 * driver about the new group. There can be more than
16828 			 * one ilm's for the same group in the list each with a
16829 			 * different orig_ifindex. We have to inform the driver
16830 			 * once. In ilm_move_v[4,6] we only set the flag
16831 			 * ilm_notify_driver for the first ilm.
16832 			 */
16833 
16834 			(void) ip_ll_send_enabmulti_req(to_ill,
16835 			    &ilm->ilm_v6addr);
16836 		}
16837 
16838 		ilm->ilm_notify_driver = B_FALSE;
16839 
16840 		/*
16841 		 * See whether we need to send down DL_DISABMULTI_REQ on
16842 		 * from_ill as ilm has just been removed.
16843 		 */
16844 from:
16845 		ipif = from_ill->ill_ipif;
16846 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16847 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16848 			ip1dbg(("ilm_send_multicast_reqs: "
16849 			    "from_ill not resolver\n"));
16850 			continue;		/* Must be IRE_IF_NORESOLVER */
16851 		}
16852 
16853 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16854 			ip1dbg(("ilm_send_multicast_reqs: "
16855 			    "from_ill MULTI_BCAST\n"));
16856 			continue;
16857 		}
16858 
16859 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16860 			if (from_ill->ill_join_allmulti)
16861 			    (void) ip_leave_allmulti(from_ill->ill_ipif);
16862 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16863 			(void) ip_ll_send_disabmulti_req(from_ill,
16864 		    &ilm->ilm_v6addr);
16865 		}
16866 	}
16867 	ILM_WALKER_RELE(to_ill);
16868 }
16869 
16870 /*
16871  * This function is called when all multicast memberships needs
16872  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16873  * called only once unlike the IPv4 counterpart where it is called after
16874  * every logical interface is moved. The reason is due to multicast
16875  * memberships are joined using an interface address in IPv4 while in
16876  * IPv6, interface index is used.
16877  */
16878 static void
16879 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16880 {
16881 	ilm_t	*ilm;
16882 	ilm_t	*ilm_next;
16883 	ilm_t	*new_ilm;
16884 	ilm_t	**ilmp;
16885 	int	count;
16886 	char buf[INET6_ADDRSTRLEN];
16887 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16888 
16889 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16890 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16891 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
16892 
16893 	if (ifindex == 0) {
16894 		/*
16895 		 * Form the solicited node mcast address which is used later.
16896 		 */
16897 		ipif_t *ipif;
16898 
16899 		ipif = from_ill->ill_ipif;
16900 		ASSERT(ipif->ipif_id == 0);
16901 
16902 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16903 	}
16904 
16905 	ilmp = &from_ill->ill_ilm;
16906 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16907 		ilm_next = ilm->ilm_next;
16908 
16909 		if (ilm->ilm_flags & ILM_DELETED) {
16910 			ilmp = &ilm->ilm_next;
16911 			continue;
16912 		}
16913 
16914 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16915 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16916 		ASSERT(ilm->ilm_orig_ifindex != 0);
16917 		if (ilm->ilm_orig_ifindex == ifindex) {
16918 			/*
16919 			 * We are failing back multicast memberships.
16920 			 * If the same ilm exists in to_ill, it means somebody
16921 			 * has joined the same group there e.g. ff02::1
16922 			 * is joined within the kernel when the interfaces
16923 			 * came UP.
16924 			 */
16925 			ASSERT(ilm->ilm_ipif == NULL);
16926 			if (new_ilm != NULL) {
16927 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16928 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16929 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16930 					new_ilm->ilm_is_new = B_TRUE;
16931 				}
16932 			} else {
16933 				/*
16934 				 * check if we can just move the ilm
16935 				 */
16936 				if (from_ill->ill_ilm_walker_cnt != 0) {
16937 					/*
16938 					 * We have walkers we cannot move
16939 					 * the ilm, so allocate a new ilm,
16940 					 * this (old) ilm will be marked
16941 					 * ILM_DELETED at the end of the loop
16942 					 * and will be freed when the
16943 					 * last walker exits.
16944 					 */
16945 					new_ilm = (ilm_t *)mi_zalloc
16946 					    (sizeof (ilm_t));
16947 					if (new_ilm == NULL) {
16948 						ip0dbg(("ilm_move_v6: "
16949 						    "FAILBACK of IPv6"
16950 						    " multicast address %s : "
16951 						    "from %s to"
16952 						    " %s failed : ENOMEM \n",
16953 						    inet_ntop(AF_INET6,
16954 						    &ilm->ilm_v6addr, buf,
16955 						    sizeof (buf)),
16956 						    from_ill->ill_name,
16957 						    to_ill->ill_name));
16958 
16959 							ilmp = &ilm->ilm_next;
16960 							continue;
16961 					}
16962 					*new_ilm = *ilm;
16963 					/*
16964 					 * we don't want new_ilm linked to
16965 					 * ilm's filter list.
16966 					 */
16967 					new_ilm->ilm_filter = NULL;
16968 				} else {
16969 					/*
16970 					 * No walkers we can move the ilm.
16971 					 * lets take it out of the list.
16972 					 */
16973 					*ilmp = ilm->ilm_next;
16974 					ilm->ilm_next = NULL;
16975 					new_ilm = ilm;
16976 				}
16977 
16978 				/*
16979 				 * if this is the first ilm for the group
16980 				 * set ilm_notify_driver so that we notify the
16981 				 * driver in ilm_send_multicast_reqs.
16982 				 */
16983 				if (ilm_lookup_ill_v6(to_ill,
16984 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16985 					new_ilm->ilm_notify_driver = B_TRUE;
16986 
16987 				new_ilm->ilm_ill = to_ill;
16988 				/* Add to the to_ill's list */
16989 				new_ilm->ilm_next = to_ill->ill_ilm;
16990 				to_ill->ill_ilm = new_ilm;
16991 				/*
16992 				 * set the flag so that mld_joingroup is
16993 				 * called in ilm_send_multicast_reqs().
16994 				 */
16995 				new_ilm->ilm_is_new = B_TRUE;
16996 			}
16997 			goto bottom;
16998 		} else if (ifindex != 0) {
16999 			/*
17000 			 * If this is FAILBACK (ifindex != 0) and the ifindex
17001 			 * has not matched above, look at the next ilm.
17002 			 */
17003 			ilmp = &ilm->ilm_next;
17004 			continue;
17005 		}
17006 		/*
17007 		 * If we are here, it means ifindex is 0. Failover
17008 		 * everything.
17009 		 *
17010 		 * We need to handle solicited node mcast address
17011 		 * and all_nodes mcast address differently as they
17012 		 * are joined witin the kenrel (ipif_multicast_up)
17013 		 * and potentially from the userland. We are called
17014 		 * after the ipifs of from_ill has been moved.
17015 		 * If we still find ilms on ill with solicited node
17016 		 * mcast address or all_nodes mcast address, it must
17017 		 * belong to the UP interface that has not moved e.g.
17018 		 * ipif_id 0 with the link local prefix does not move.
17019 		 * We join this on the new ill accounting for all the
17020 		 * userland memberships so that applications don't
17021 		 * see any failure.
17022 		 *
17023 		 * We need to make sure that we account only for the
17024 		 * solicited node and all node multicast addresses
17025 		 * that was brought UP on these. In the case of
17026 		 * a failover from A to B, we might have ilms belonging
17027 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
17028 		 * for the membership from the userland. If we are failing
17029 		 * over from B to C now, we will find the ones belonging
17030 		 * to A on B. These don't account for the ill_ipif_up_count.
17031 		 * They just move from B to C. The check below on
17032 		 * ilm_orig_ifindex ensures that.
17033 		 */
17034 		if ((ilm->ilm_orig_ifindex ==
17035 		    from_ill->ill_phyint->phyint_ifindex) &&
17036 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
17037 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
17038 		    &ilm->ilm_v6addr))) {
17039 			ASSERT(ilm->ilm_refcnt > 0);
17040 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
17041 			/*
17042 			 * For indentation reasons, we are not using a
17043 			 * "else" here.
17044 			 */
17045 			if (count == 0) {
17046 				ilmp = &ilm->ilm_next;
17047 				continue;
17048 			}
17049 			ilm->ilm_refcnt -= count;
17050 			if (new_ilm != NULL) {
17051 				/*
17052 				 * Can find one with the same
17053 				 * ilm_orig_ifindex, if we are failing
17054 				 * over to a STANDBY. This happens
17055 				 * when somebody wants to join a group
17056 				 * on a STANDBY interface and we
17057 				 * internally join on a different one.
17058 				 * If we had joined on from_ill then, a
17059 				 * failover now will find a new ilm
17060 				 * with this index.
17061 				 */
17062 				ip1dbg(("ilm_move_v6: FAILOVER, found"
17063 				    " new ilm on %s, group address %s\n",
17064 				    to_ill->ill_name,
17065 				    inet_ntop(AF_INET6,
17066 				    &ilm->ilm_v6addr, buf,
17067 				    sizeof (buf))));
17068 				new_ilm->ilm_refcnt += count;
17069 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17070 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17071 					new_ilm->ilm_is_new = B_TRUE;
17072 				}
17073 			} else {
17074 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17075 				if (new_ilm == NULL) {
17076 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17077 					    " multicast address %s : from %s to"
17078 					    " %s failed : ENOMEM \n",
17079 					    inet_ntop(AF_INET6,
17080 					    &ilm->ilm_v6addr, buf,
17081 					    sizeof (buf)), from_ill->ill_name,
17082 					    to_ill->ill_name));
17083 					ilmp = &ilm->ilm_next;
17084 					continue;
17085 				}
17086 				*new_ilm = *ilm;
17087 				new_ilm->ilm_filter = NULL;
17088 				new_ilm->ilm_refcnt = count;
17089 				new_ilm->ilm_timer = INFINITY;
17090 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17091 				new_ilm->ilm_is_new = B_TRUE;
17092 				/*
17093 				 * If the to_ill has not joined this
17094 				 * group we need to tell the driver in
17095 				 * ill_send_multicast_reqs.
17096 				 */
17097 				if (ilm_lookup_ill_v6(to_ill,
17098 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17099 					new_ilm->ilm_notify_driver = B_TRUE;
17100 
17101 				new_ilm->ilm_ill = to_ill;
17102 				/* Add to the to_ill's list */
17103 				new_ilm->ilm_next = to_ill->ill_ilm;
17104 				to_ill->ill_ilm = new_ilm;
17105 				ASSERT(new_ilm->ilm_ipif == NULL);
17106 			}
17107 			if (ilm->ilm_refcnt == 0) {
17108 				goto bottom;
17109 			} else {
17110 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17111 				CLEAR_SLIST(new_ilm->ilm_filter);
17112 				ilmp = &ilm->ilm_next;
17113 			}
17114 			continue;
17115 		} else {
17116 			/*
17117 			 * ifindex = 0 means, move everything pointing at
17118 			 * from_ill. We are doing this becuase ill has
17119 			 * either FAILED or became INACTIVE.
17120 			 *
17121 			 * As we would like to move things later back to
17122 			 * from_ill, we want to retain the identity of this
17123 			 * ilm. Thus, we don't blindly increment the reference
17124 			 * count on the ilms matching the address alone. We
17125 			 * need to match on the ilm_orig_index also. new_ilm
17126 			 * was obtained by matching ilm_orig_index also.
17127 			 */
17128 			if (new_ilm != NULL) {
17129 				/*
17130 				 * This is possible only if a previous restore
17131 				 * was incomplete i.e restore to
17132 				 * ilm_orig_ifindex left some ilms because
17133 				 * of some failures. Thus when we are failing
17134 				 * again, we might find our old friends there.
17135 				 */
17136 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17137 				    " on %s, group address %s\n",
17138 				    to_ill->ill_name,
17139 				    inet_ntop(AF_INET6,
17140 				    &ilm->ilm_v6addr, buf,
17141 				    sizeof (buf))));
17142 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17143 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17144 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17145 					new_ilm->ilm_is_new = B_TRUE;
17146 				}
17147 			} else {
17148 				if (from_ill->ill_ilm_walker_cnt != 0) {
17149 					new_ilm = (ilm_t *)
17150 					    mi_zalloc(sizeof (ilm_t));
17151 					if (new_ilm == NULL) {
17152 						ip0dbg(("ilm_move_v6: "
17153 						    "FAILOVER of IPv6"
17154 						    " multicast address %s : "
17155 						    "from %s to"
17156 						    " %s failed : ENOMEM \n",
17157 						    inet_ntop(AF_INET6,
17158 						    &ilm->ilm_v6addr, buf,
17159 						    sizeof (buf)),
17160 						    from_ill->ill_name,
17161 						    to_ill->ill_name));
17162 
17163 							ilmp = &ilm->ilm_next;
17164 							continue;
17165 					}
17166 					*new_ilm = *ilm;
17167 					new_ilm->ilm_filter = NULL;
17168 				} else {
17169 					*ilmp = ilm->ilm_next;
17170 					new_ilm = ilm;
17171 				}
17172 				/*
17173 				 * If the to_ill has not joined this
17174 				 * group we need to tell the driver in
17175 				 * ill_send_multicast_reqs.
17176 				 */
17177 				if (ilm_lookup_ill_v6(to_ill,
17178 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17179 					new_ilm->ilm_notify_driver = B_TRUE;
17180 
17181 				/* Add to the to_ill's list */
17182 				new_ilm->ilm_next = to_ill->ill_ilm;
17183 				to_ill->ill_ilm = new_ilm;
17184 				ASSERT(ilm->ilm_ipif == NULL);
17185 				new_ilm->ilm_ill = to_ill;
17186 				new_ilm->ilm_is_new = B_TRUE;
17187 			}
17188 
17189 		}
17190 
17191 bottom:
17192 		/*
17193 		 * Revert multicast filter state to (EXCLUDE, NULL).
17194 		 * new_ilm->ilm_is_new should already be set if needed.
17195 		 */
17196 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17197 		CLEAR_SLIST(new_ilm->ilm_filter);
17198 		/*
17199 		 * We allocated/got a new ilm, free the old one.
17200 		 */
17201 		if (new_ilm != ilm) {
17202 			if (from_ill->ill_ilm_walker_cnt == 0) {
17203 				*ilmp = ilm->ilm_next;
17204 				ilm->ilm_next = NULL;
17205 				FREE_SLIST(ilm->ilm_filter);
17206 				FREE_SLIST(ilm->ilm_pendsrcs);
17207 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17208 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17209 				mi_free((char *)ilm);
17210 			} else {
17211 				ilm->ilm_flags |= ILM_DELETED;
17212 				from_ill->ill_ilm_cleanup_reqd = 1;
17213 				ilmp = &ilm->ilm_next;
17214 			}
17215 		}
17216 	}
17217 }
17218 
17219 /*
17220  * Move all the multicast memberships to to_ill. Called when
17221  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17222  * different from IPv6 counterpart as multicast memberships are associated
17223  * with ills in IPv6. This function is called after every ipif is moved
17224  * unlike IPv6, where it is moved only once.
17225  */
17226 static void
17227 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17228 {
17229 	ilm_t	*ilm;
17230 	ilm_t	*ilm_next;
17231 	ilm_t	*new_ilm;
17232 	ilm_t	**ilmp;
17233 
17234 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17235 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17236 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
17237 
17238 	ilmp = &from_ill->ill_ilm;
17239 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17240 		ilm_next = ilm->ilm_next;
17241 
17242 		if (ilm->ilm_flags & ILM_DELETED) {
17243 			ilmp = &ilm->ilm_next;
17244 			continue;
17245 		}
17246 
17247 		ASSERT(ilm->ilm_ipif != NULL);
17248 
17249 		if (ilm->ilm_ipif != ipif) {
17250 			ilmp = &ilm->ilm_next;
17251 			continue;
17252 		}
17253 
17254 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17255 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17256 			/*
17257 			 * We joined this in ipif_multicast_up
17258 			 * and we never did an ipif_multicast_down
17259 			 * for IPv4. If nobody else from the userland
17260 			 * has reference, we free the ilm, and later
17261 			 * when this ipif comes up on the new ill,
17262 			 * we will join this again.
17263 			 */
17264 			if (--ilm->ilm_refcnt == 0)
17265 				goto delete_ilm;
17266 
17267 			new_ilm = ilm_lookup_ipif(ipif,
17268 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17269 			if (new_ilm != NULL) {
17270 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17271 				/*
17272 				 * We still need to deal with the from_ill.
17273 				 */
17274 				new_ilm->ilm_is_new = B_TRUE;
17275 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17276 				CLEAR_SLIST(new_ilm->ilm_filter);
17277 				goto delete_ilm;
17278 			}
17279 			/*
17280 			 * If we could not find one e.g. ipif is
17281 			 * still down on to_ill, we add this ilm
17282 			 * on ill_new to preserve the reference
17283 			 * count.
17284 			 */
17285 		}
17286 		/*
17287 		 * When ipifs move, ilms always move with it
17288 		 * to the NEW ill. Thus we should never be
17289 		 * able to find ilm till we really move it here.
17290 		 */
17291 		ASSERT(ilm_lookup_ipif(ipif,
17292 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17293 
17294 		if (from_ill->ill_ilm_walker_cnt != 0) {
17295 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17296 			if (new_ilm == NULL) {
17297 				char buf[INET6_ADDRSTRLEN];
17298 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17299 				    " multicast address %s : "
17300 				    "from %s to"
17301 				    " %s failed : ENOMEM \n",
17302 				    inet_ntop(AF_INET,
17303 				    &ilm->ilm_v6addr, buf,
17304 				    sizeof (buf)),
17305 				    from_ill->ill_name,
17306 				    to_ill->ill_name));
17307 
17308 				ilmp = &ilm->ilm_next;
17309 				continue;
17310 			}
17311 			*new_ilm = *ilm;
17312 			/* We don't want new_ilm linked to ilm's filter list */
17313 			new_ilm->ilm_filter = NULL;
17314 		} else {
17315 			/* Remove from the list */
17316 			*ilmp = ilm->ilm_next;
17317 			new_ilm = ilm;
17318 		}
17319 
17320 		/*
17321 		 * If we have never joined this group on the to_ill
17322 		 * make sure we tell the driver.
17323 		 */
17324 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17325 		    ALL_ZONES) == NULL)
17326 			new_ilm->ilm_notify_driver = B_TRUE;
17327 
17328 		/* Add to the to_ill's list */
17329 		new_ilm->ilm_next = to_ill->ill_ilm;
17330 		to_ill->ill_ilm = new_ilm;
17331 		new_ilm->ilm_is_new = B_TRUE;
17332 
17333 		/*
17334 		 * Revert multicast filter state to (EXCLUDE, NULL)
17335 		 */
17336 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17337 		CLEAR_SLIST(new_ilm->ilm_filter);
17338 
17339 		/*
17340 		 * Delete only if we have allocated a new ilm.
17341 		 */
17342 		if (new_ilm != ilm) {
17343 delete_ilm:
17344 			if (from_ill->ill_ilm_walker_cnt == 0) {
17345 				/* Remove from the list */
17346 				*ilmp = ilm->ilm_next;
17347 				ilm->ilm_next = NULL;
17348 				FREE_SLIST(ilm->ilm_filter);
17349 				FREE_SLIST(ilm->ilm_pendsrcs);
17350 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17351 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17352 				mi_free((char *)ilm);
17353 			} else {
17354 				ilm->ilm_flags |= ILM_DELETED;
17355 				from_ill->ill_ilm_cleanup_reqd = 1;
17356 				ilmp = &ilm->ilm_next;
17357 			}
17358 		}
17359 	}
17360 }
17361 
17362 static uint_t
17363 ipif_get_id(ill_t *ill, uint_t id)
17364 {
17365 	uint_t	unit;
17366 	ipif_t	*tipif;
17367 	boolean_t found = B_FALSE;
17368 
17369 	/*
17370 	 * During failback, we want to go back to the same id
17371 	 * instead of the smallest id so that the original
17372 	 * configuration is maintained. id is non-zero in that
17373 	 * case.
17374 	 */
17375 	if (id != 0) {
17376 		/*
17377 		 * While failing back, if we still have an ipif with
17378 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17379 		 * as soon as we return from this function. It was
17380 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17381 		 * we can choose the smallest id. Thus we return zero
17382 		 * in that case ignoring the hint.
17383 		 */
17384 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17385 			return (0);
17386 		for (tipif = ill->ill_ipif; tipif != NULL;
17387 		    tipif = tipif->ipif_next) {
17388 			if (tipif->ipif_id == id) {
17389 				found = B_TRUE;
17390 				break;
17391 			}
17392 		}
17393 		/*
17394 		 * If somebody already plumbed another logical
17395 		 * with the same id, we won't be able to find it.
17396 		 */
17397 		if (!found)
17398 			return (id);
17399 	}
17400 	for (unit = 0; unit <= ip_addrs_per_if; unit++) {
17401 		found = B_FALSE;
17402 		for (tipif = ill->ill_ipif; tipif != NULL;
17403 		    tipif = tipif->ipif_next) {
17404 			if (tipif->ipif_id == unit) {
17405 				found = B_TRUE;
17406 				break;
17407 			}
17408 		}
17409 		if (!found)
17410 			break;
17411 	}
17412 	return (unit);
17413 }
17414 
17415 /* ARGSUSED */
17416 static int
17417 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17418     ipif_t **rep_ipif_ptr)
17419 {
17420 	ill_t	*from_ill;
17421 	ipif_t	*rep_ipif;
17422 	ipif_t	**ipifp;
17423 	uint_t	unit;
17424 	int err = 0;
17425 	ipif_t	*to_ipif;
17426 	struct iocblk	*iocp;
17427 	boolean_t failback_cmd;
17428 	boolean_t remove_ipif;
17429 	int	rc;
17430 
17431 	ASSERT(IAM_WRITER_ILL(to_ill));
17432 	ASSERT(IAM_WRITER_IPIF(ipif));
17433 
17434 	iocp = (struct iocblk *)mp->b_rptr;
17435 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17436 	remove_ipif = B_FALSE;
17437 
17438 	from_ill = ipif->ipif_ill;
17439 
17440 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17441 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17442 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
17443 
17444 	/*
17445 	 * Don't move LINK LOCAL addresses as they are tied to
17446 	 * physical interface.
17447 	 */
17448 	if (from_ill->ill_isv6 &&
17449 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17450 		ipif->ipif_was_up = B_FALSE;
17451 		IPIF_UNMARK_MOVING(ipif);
17452 		return (0);
17453 	}
17454 
17455 	/*
17456 	 * We set the ipif_id to maximum so that the search for
17457 	 * ipif_id will pick the lowest number i.e 0 in the
17458 	 * following 2 cases :
17459 	 *
17460 	 * 1) We have a replacement ipif at the head of to_ill.
17461 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17462 	 *    on to_ill and hence the MOVE might fail. We want to
17463 	 *    remove it only if we could move the ipif. Thus, by
17464 	 *    setting it to the MAX value, we make the search in
17465 	 *    ipif_get_id return the zeroth id.
17466 	 *
17467 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17468 	 *    we might just have a zero address plumbed on the ipif
17469 	 *    with zero id in the case of IPv4. We remove that while
17470 	 *    doing the failback. We want to remove it only if we
17471 	 *    could move the ipif. Thus, by setting it to the MAX
17472 	 *    value, we make the search in ipif_get_id return the
17473 	 *    zeroth id.
17474 	 *
17475 	 * Both (1) and (2) are done only when when we are moving
17476 	 * an ipif (either due to failover/failback) which originally
17477 	 * belonged to this interface i.e the ipif_orig_ifindex is
17478 	 * the same as to_ill's ifindex. This is needed so that
17479 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17480 	 * from B -> A (B is being removed from the group) and
17481 	 * FAILBACK from A -> B restores the original configuration.
17482 	 * Without the check for orig_ifindex, the second FAILOVER
17483 	 * could make the ipif belonging to B replace the A's zeroth
17484 	 * ipif and the subsequent failback re-creating the replacement
17485 	 * ipif again.
17486 	 *
17487 	 * NOTE : We created the replacement ipif when we did a
17488 	 * FAILOVER (See below). We could check for FAILBACK and
17489 	 * then look for replacement ipif to be removed. But we don't
17490 	 * want to do that because we wan't to allow the possibility
17491 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17492 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17493 	 * from B -> A.
17494 	 */
17495 	to_ipif = to_ill->ill_ipif;
17496 	if ((to_ill->ill_phyint->phyint_ifindex ==
17497 	    ipif->ipif_orig_ifindex) &&
17498 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17499 		ASSERT(to_ipif->ipif_id == 0);
17500 		remove_ipif = B_TRUE;
17501 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17502 	}
17503 	/*
17504 	 * Find the lowest logical unit number on the to_ill.
17505 	 * If we are failing back, try to get the original id
17506 	 * rather than the lowest one so that the original
17507 	 * configuration is maintained.
17508 	 *
17509 	 * XXX need a better scheme for this.
17510 	 */
17511 	if (failback_cmd) {
17512 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17513 	} else {
17514 		unit = ipif_get_id(to_ill, 0);
17515 	}
17516 
17517 	/* Reset back to zero in case we fail below */
17518 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17519 		to_ipif->ipif_id = 0;
17520 
17521 	if (unit == ip_addrs_per_if) {
17522 		ipif->ipif_was_up = B_FALSE;
17523 		IPIF_UNMARK_MOVING(ipif);
17524 		return (EINVAL);
17525 	}
17526 
17527 	/*
17528 	 * ipif is ready to move from "from_ill" to "to_ill".
17529 	 *
17530 	 * 1) If we are moving ipif with id zero, create a
17531 	 *    replacement ipif for this ipif on from_ill. If this fails
17532 	 *    fail the MOVE operation.
17533 	 *
17534 	 * 2) Remove the replacement ipif on to_ill if any.
17535 	 *    We could remove the replacement ipif when we are moving
17536 	 *    the ipif with id zero. But what if somebody already
17537 	 *    unplumbed it ? Thus we always remove it if it is present.
17538 	 *    We want to do it only if we are sure we are going to
17539 	 *    move the ipif to to_ill which is why there are no
17540 	 *    returns due to error till ipif is linked to to_ill.
17541 	 *    Note that the first ipif that we failback will always
17542 	 *    be zero if it is present.
17543 	 */
17544 	if (ipif->ipif_id == 0) {
17545 		ipaddr_t inaddr_any = INADDR_ANY;
17546 
17547 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17548 		if (rep_ipif == NULL) {
17549 			ipif->ipif_was_up = B_FALSE;
17550 			IPIF_UNMARK_MOVING(ipif);
17551 			return (ENOMEM);
17552 		}
17553 		*rep_ipif = ipif_zero;
17554 		/*
17555 		 * Before we put the ipif on the list, store the addresses
17556 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17557 		 * assumes so. This logic is not any different from what
17558 		 * ipif_allocate does.
17559 		 */
17560 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17561 		    &rep_ipif->ipif_v6lcl_addr);
17562 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17563 		    &rep_ipif->ipif_v6src_addr);
17564 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17565 		    &rep_ipif->ipif_v6subnet);
17566 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17567 		    &rep_ipif->ipif_v6net_mask);
17568 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17569 		    &rep_ipif->ipif_v6brd_addr);
17570 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17571 		    &rep_ipif->ipif_v6pp_dst_addr);
17572 		/*
17573 		 * We mark IPIF_NOFAILOVER so that this can never
17574 		 * move.
17575 		 */
17576 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17577 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17578 		rep_ipif->ipif_replace_zero = B_TRUE;
17579 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17580 		    MUTEX_DEFAULT, NULL);
17581 		rep_ipif->ipif_id = 0;
17582 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17583 		rep_ipif->ipif_ill = from_ill;
17584 		rep_ipif->ipif_orig_ifindex =
17585 		    from_ill->ill_phyint->phyint_ifindex;
17586 		/* Insert at head */
17587 		rep_ipif->ipif_next = from_ill->ill_ipif;
17588 		from_ill->ill_ipif = rep_ipif;
17589 		/*
17590 		 * We don't really care to let apps know about
17591 		 * this interface.
17592 		 */
17593 	}
17594 
17595 	if (remove_ipif) {
17596 		/*
17597 		 * We set to a max value above for this case to get
17598 		 * id zero. ASSERT that we did get one.
17599 		 */
17600 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17601 		rep_ipif = to_ipif;
17602 		to_ill->ill_ipif = rep_ipif->ipif_next;
17603 		rep_ipif->ipif_next = NULL;
17604 		/*
17605 		 * If some apps scanned and find this interface,
17606 		 * it is time to let them know, so that they can
17607 		 * delete it.
17608 		 */
17609 
17610 		*rep_ipif_ptr = rep_ipif;
17611 	}
17612 
17613 	/* Get it out of the ILL interface list. */
17614 	ipifp = &ipif->ipif_ill->ill_ipif;
17615 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
17616 		if (*ipifp == ipif) {
17617 			*ipifp = ipif->ipif_next;
17618 			break;
17619 		}
17620 	}
17621 
17622 	/* Assign the new ill */
17623 	ipif->ipif_ill = to_ill;
17624 	ipif->ipif_id = unit;
17625 	/* id has already been checked */
17626 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17627 	ASSERT(rc == 0);
17628 	/* Let SCTP update its list */
17629 	sctp_move_ipif(ipif, from_ill, to_ill);
17630 	/*
17631 	 * Handle the failover and failback of ipif_t between
17632 	 * ill_t that have differing maximum mtu values.
17633 	 */
17634 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17635 		if (ipif->ipif_saved_mtu == 0) {
17636 			/*
17637 			 * As this ipif_t is moving to an ill_t
17638 			 * that has a lower ill_max_mtu, its
17639 			 * ipif_mtu needs to be saved so it can
17640 			 * be restored during failback or during
17641 			 * failover to an ill_t which has a
17642 			 * higher ill_max_mtu.
17643 			 */
17644 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17645 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17646 		} else {
17647 			/*
17648 			 * The ipif_t is, once again, moving to
17649 			 * an ill_t that has a lower maximum mtu
17650 			 * value.
17651 			 */
17652 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17653 		}
17654 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17655 	    ipif->ipif_saved_mtu != 0) {
17656 		/*
17657 		 * The mtu of this ipif_t had to be reduced
17658 		 * during an earlier failover; this is an
17659 		 * opportunity for it to be increased (either as
17660 		 * part of another failover or a failback).
17661 		 */
17662 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17663 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17664 			ipif->ipif_saved_mtu = 0;
17665 		} else {
17666 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17667 		}
17668 	}
17669 
17670 	/*
17671 	 * We preserve all the other fields of the ipif including
17672 	 * ipif_saved_ire_mp. The routes that are saved here will
17673 	 * be recreated on the new interface and back on the old
17674 	 * interface when we move back.
17675 	 */
17676 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17677 
17678 	return (err);
17679 }
17680 
17681 static int
17682 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17683     int ifindex, ipif_t **rep_ipif_ptr)
17684 {
17685 	ipif_t *mipif;
17686 	ipif_t *ipif_next;
17687 	int err;
17688 
17689 	/*
17690 	 * We don't really try to MOVE back things if some of the
17691 	 * operations fail. The daemon will take care of moving again
17692 	 * later on.
17693 	 */
17694 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17695 		ipif_next = mipif->ipif_next;
17696 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17697 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17698 
17699 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17700 
17701 			/*
17702 			 * When the MOVE fails, it is the job of the
17703 			 * application to take care of this properly
17704 			 * i.e try again if it is ENOMEM.
17705 			 */
17706 			if (mipif->ipif_ill != from_ill) {
17707 				/*
17708 				 * ipif has moved.
17709 				 *
17710 				 * Move the multicast memberships associated
17711 				 * with this ipif to the new ill. For IPv6, we
17712 				 * do it once after all the ipifs are moved
17713 				 * (in ill_move) as they are not associated
17714 				 * with ipifs.
17715 				 *
17716 				 * We need to move the ilms as the ipif has
17717 				 * already been moved to a new ill even
17718 				 * in the case of errors. Neither
17719 				 * ilm_free(ipif) will find the ilm
17720 				 * when somebody unplumbs this ipif nor
17721 				 * ilm_delete(ilm) will be able to find the
17722 				 * ilm, if we don't move now.
17723 				 */
17724 				if (!from_ill->ill_isv6)
17725 					ilm_move_v4(from_ill, to_ill, mipif);
17726 			}
17727 
17728 			if (err != 0)
17729 				return (err);
17730 		}
17731 	}
17732 	return (0);
17733 }
17734 
17735 static int
17736 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17737 {
17738 	int ifindex;
17739 	int err;
17740 	struct iocblk	*iocp;
17741 	ipif_t	*ipif;
17742 	ipif_t *rep_ipif_ptr = NULL;
17743 	ipif_t	*from_ipif = NULL;
17744 	boolean_t check_rep_if = B_FALSE;
17745 
17746 	iocp = (struct iocblk *)mp->b_rptr;
17747 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17748 		/*
17749 		 * Move everything pointing at from_ill to to_ill.
17750 		 * We acheive this by passing in 0 as ifindex.
17751 		 */
17752 		ifindex = 0;
17753 	} else {
17754 		/*
17755 		 * Move everything pointing at from_ill whose original
17756 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17757 		 * We acheive this by passing in ifindex rather than 0.
17758 		 * Multicast vifs, ilgs move implicitly because ipifs move.
17759 		 */
17760 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17761 		ifindex = to_ill->ill_phyint->phyint_ifindex;
17762 	}
17763 
17764 	/*
17765 	 * Determine if there is at least one ipif that would move from
17766 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17767 	 * ipif (if it exists) on the to_ill would be consumed as a result of
17768 	 * the move, in which case we need to quiesce the replacement ipif also.
17769 	 */
17770 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17771 	    from_ipif = from_ipif->ipif_next) {
17772 		if (((ifindex == 0) ||
17773 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
17774 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17775 			check_rep_if = B_TRUE;
17776 			break;
17777 		}
17778 	}
17779 
17780 
17781 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17782 
17783 	GRAB_ILL_LOCKS(from_ill, to_ill);
17784 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17785 		(void) ipsq_pending_mp_add(NULL, ipif, q,
17786 		    mp, ILL_MOVE_OK);
17787 		RELEASE_ILL_LOCKS(from_ill, to_ill);
17788 		return (EINPROGRESS);
17789 	}
17790 
17791 	/* Check if the replacement ipif is quiescent to delete */
17792 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17793 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17794 		to_ill->ill_ipif->ipif_state_flags |=
17795 		    IPIF_MOVING | IPIF_CHANGING;
17796 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17797 			(void) ipsq_pending_mp_add(NULL, ipif, q,
17798 			    mp, ILL_MOVE_OK);
17799 			RELEASE_ILL_LOCKS(from_ill, to_ill);
17800 			return (EINPROGRESS);
17801 		}
17802 	}
17803 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17804 
17805 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17806 	rw_enter(&ill_g_lock, RW_WRITER);
17807 	GRAB_ILL_LOCKS(from_ill, to_ill);
17808 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17809 
17810 	/* ilm_move is done inside ipif_move for IPv4 */
17811 	if (err == 0 && from_ill->ill_isv6)
17812 		ilm_move_v6(from_ill, to_ill, ifindex);
17813 
17814 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17815 	rw_exit(&ill_g_lock);
17816 
17817 	/*
17818 	 * send rts messages and multicast messages.
17819 	 */
17820 	if (rep_ipif_ptr != NULL) {
17821 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
17822 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
17823 			rep_ipif_ptr->ipif_recovery_id = 0;
17824 		}
17825 		ip_rts_ifmsg(rep_ipif_ptr);
17826 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17827 		IPIF_TRACE_CLEANUP(rep_ipif_ptr);
17828 		mi_free(rep_ipif_ptr);
17829 	}
17830 
17831 	conn_move_ill(from_ill, to_ill, ifindex);
17832 
17833 	return (err);
17834 }
17835 
17836 /*
17837  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17838  * Also checks for the validity of the arguments.
17839  * Note: We are already exclusive inside the from group.
17840  * It is upto the caller to release refcnt on the to_ill's.
17841  */
17842 static int
17843 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17844     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17845 {
17846 	int dst_index;
17847 	ipif_t *ipif_v4, *ipif_v6;
17848 	struct lifreq *lifr;
17849 	mblk_t *mp1;
17850 	boolean_t exists;
17851 	sin_t	*sin;
17852 	int	err = 0;
17853 
17854 	if ((mp1 = mp->b_cont) == NULL)
17855 		return (EPROTO);
17856 
17857 	if ((mp1 = mp1->b_cont) == NULL)
17858 		return (EPROTO);
17859 
17860 	lifr = (struct lifreq *)mp1->b_rptr;
17861 	sin = (sin_t *)&lifr->lifr_addr;
17862 
17863 	/*
17864 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17865 	 * specific operations.
17866 	 */
17867 	if (sin->sin_family != AF_UNSPEC)
17868 		return (EINVAL);
17869 
17870 	/*
17871 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
17872 	 * NULLs for the last 4 args and we know the lookup won't fail
17873 	 * with EINPROGRESS.
17874 	 */
17875 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17876 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17877 	    ALL_ZONES, NULL, NULL, NULL, NULL);
17878 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17879 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17880 	    ALL_ZONES, NULL, NULL, NULL, NULL);
17881 
17882 	if (ipif_v4 == NULL && ipif_v6 == NULL)
17883 		return (ENXIO);
17884 
17885 	if (ipif_v4 != NULL) {
17886 		ASSERT(ipif_v4->ipif_refcnt != 0);
17887 		if (ipif_v4->ipif_id != 0) {
17888 			err = EINVAL;
17889 			goto done;
17890 		}
17891 
17892 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
17893 		*ill_from_v4 = ipif_v4->ipif_ill;
17894 	}
17895 
17896 	if (ipif_v6 != NULL) {
17897 		ASSERT(ipif_v6->ipif_refcnt != 0);
17898 		if (ipif_v6->ipif_id != 0) {
17899 			err = EINVAL;
17900 			goto done;
17901 		}
17902 
17903 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
17904 		*ill_from_v6 = ipif_v6->ipif_ill;
17905 	}
17906 
17907 	err = 0;
17908 	dst_index = lifr->lifr_movetoindex;
17909 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17910 	    q, mp, ip_process_ioctl, &err);
17911 	if (err != 0) {
17912 		/*
17913 		 * There could be only v6.
17914 		 */
17915 		if (err != ENXIO)
17916 			goto done;
17917 		err = 0;
17918 	}
17919 
17920 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17921 	    q, mp, ip_process_ioctl, &err);
17922 	if (err != 0) {
17923 		if (err != ENXIO)
17924 			goto done;
17925 		if (*ill_to_v4 == NULL) {
17926 			err = ENXIO;
17927 			goto done;
17928 		}
17929 		err = 0;
17930 	}
17931 
17932 	/*
17933 	 * If we have something to MOVE i.e "from" not NULL,
17934 	 * "to" should be non-NULL.
17935 	 */
17936 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17937 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17938 		err = EINVAL;
17939 	}
17940 
17941 done:
17942 	if (ipif_v4 != NULL)
17943 		ipif_refrele(ipif_v4);
17944 	if (ipif_v6 != NULL)
17945 		ipif_refrele(ipif_v6);
17946 	return (err);
17947 }
17948 
17949 /*
17950  * FAILOVER and FAILBACK are modelled as MOVE operations.
17951  *
17952  * We don't check whether the MOVE is within the same group or
17953  * not, because this ioctl can be used as a generic mechanism
17954  * to failover from interface A to B, though things will function
17955  * only if they are really part of the same group. Moreover,
17956  * all ipifs may be down and hence temporarily out of the group.
17957  *
17958  * ipif's that need to be moved are first brought down; V4 ipifs are brought
17959  * down first and then V6.  For each we wait for the ipif's to become quiescent.
17960  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17961  * have been deleted and there are no active references. Once quiescent the
17962  * ipif's are moved and brought up on the new ill.
17963  *
17964  * Normally the source ill and destination ill belong to the same IPMP group
17965  * and hence the same ipsq_t. In the event they don't belong to the same
17966  * same group the two ipsq's are first merged into one ipsq - that of the
17967  * to_ill. The multicast memberships on the source and destination ill cannot
17968  * change during the move operation since multicast joins/leaves also have to
17969  * execute on the same ipsq and are hence serialized.
17970  */
17971 /* ARGSUSED */
17972 int
17973 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17974     ip_ioctl_cmd_t *ipip, void *ifreq)
17975 {
17976 	ill_t *ill_to_v4 = NULL;
17977 	ill_t *ill_to_v6 = NULL;
17978 	ill_t *ill_from_v4 = NULL;
17979 	ill_t *ill_from_v6 = NULL;
17980 	int err = 0;
17981 
17982 	/*
17983 	 * setup from and to ill's, we can get EINPROGRESS only for
17984 	 * to_ill's.
17985 	 */
17986 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17987 	    &ill_to_v4, &ill_to_v6);
17988 
17989 	if (err != 0) {
17990 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
17991 		goto done;
17992 	}
17993 
17994 	/*
17995 	 * nothing to do.
17996 	 */
17997 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17998 		goto done;
17999 	}
18000 
18001 	/*
18002 	 * nothing to do.
18003 	 */
18004 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
18005 		goto done;
18006 	}
18007 
18008 	/*
18009 	 * Mark the ill as changing.
18010 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
18011 	 * in ill_up_ipifs in case of error they are cleared below.
18012 	 */
18013 
18014 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18015 	if (ill_from_v4 != NULL)
18016 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
18017 	if (ill_from_v6 != NULL)
18018 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
18019 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18020 
18021 	/*
18022 	 * Make sure that both src and dst are
18023 	 * in the same syncq group. If not make it happen.
18024 	 * We are not holding any locks because we are the writer
18025 	 * on the from_ipsq and we will hold locks in ill_merge_groups
18026 	 * to protect to_ipsq against changing.
18027 	 */
18028 	if (ill_from_v4 != NULL) {
18029 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
18030 		    ill_to_v4->ill_phyint->phyint_ipsq) {
18031 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
18032 			    NULL, mp, q);
18033 			goto err_ret;
18034 
18035 		}
18036 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
18037 	} else {
18038 
18039 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
18040 		    ill_to_v6->ill_phyint->phyint_ipsq) {
18041 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
18042 			    NULL, mp, q);
18043 			goto err_ret;
18044 
18045 		}
18046 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
18047 	}
18048 
18049 	/*
18050 	 * Now that the ipsq's have been merged and we are the writer
18051 	 * lets mark to_ill as changing as well.
18052 	 */
18053 
18054 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18055 	if (ill_to_v4 != NULL)
18056 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
18057 	if (ill_to_v6 != NULL)
18058 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
18059 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18060 
18061 	/*
18062 	 * Its ok for us to proceed with the move even if
18063 	 * ill_pending_mp is non null on one of the from ill's as the reply
18064 	 * should not be looking at the ipif, it should only care about the
18065 	 * ill itself.
18066 	 */
18067 
18068 	/*
18069 	 * lets move ipv4 first.
18070 	 */
18071 	if (ill_from_v4 != NULL) {
18072 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18073 		ill_from_v4->ill_move_in_progress = B_TRUE;
18074 		ill_to_v4->ill_move_in_progress = B_TRUE;
18075 		ill_to_v4->ill_move_peer = ill_from_v4;
18076 		ill_from_v4->ill_move_peer = ill_to_v4;
18077 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18078 	}
18079 
18080 	/*
18081 	 * Now lets move ipv6.
18082 	 */
18083 	if (err == 0 && ill_from_v6 != NULL) {
18084 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18085 		ill_from_v6->ill_move_in_progress = B_TRUE;
18086 		ill_to_v6->ill_move_in_progress = B_TRUE;
18087 		ill_to_v6->ill_move_peer = ill_from_v6;
18088 		ill_from_v6->ill_move_peer = ill_to_v6;
18089 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18090 	}
18091 
18092 err_ret:
18093 	/*
18094 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18095 	 * moved to become quiescent.
18096 	 */
18097 	if (err == EINPROGRESS) {
18098 		goto done;
18099 	}
18100 
18101 	/*
18102 	 * if err is set ill_up_ipifs will not be called
18103 	 * lets clear the flags.
18104 	 */
18105 
18106 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18107 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18108 	/*
18109 	 * Some of the clearing may be redundant. But it is simple
18110 	 * not making any extra checks.
18111 	 */
18112 	if (ill_from_v6 != NULL) {
18113 		ill_from_v6->ill_move_in_progress = B_FALSE;
18114 		ill_from_v6->ill_move_peer = NULL;
18115 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18116 	}
18117 	if (ill_from_v4 != NULL) {
18118 		ill_from_v4->ill_move_in_progress = B_FALSE;
18119 		ill_from_v4->ill_move_peer = NULL;
18120 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18121 	}
18122 	if (ill_to_v6 != NULL) {
18123 		ill_to_v6->ill_move_in_progress = B_FALSE;
18124 		ill_to_v6->ill_move_peer = NULL;
18125 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18126 	}
18127 	if (ill_to_v4 != NULL) {
18128 		ill_to_v4->ill_move_in_progress = B_FALSE;
18129 		ill_to_v4->ill_move_peer = NULL;
18130 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18131 	}
18132 
18133 	/*
18134 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18135 	 * Do this always to maintain proper state i.e even in case of errors.
18136 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18137 	 * we need not call on both v4 and v6 interfaces.
18138 	 */
18139 	if (ill_from_v4 != NULL) {
18140 		if ((ill_from_v4->ill_phyint->phyint_flags &
18141 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18142 			phyint_inactive(ill_from_v4->ill_phyint);
18143 		}
18144 	} else if (ill_from_v6 != NULL) {
18145 		if ((ill_from_v6->ill_phyint->phyint_flags &
18146 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18147 			phyint_inactive(ill_from_v6->ill_phyint);
18148 		}
18149 	}
18150 
18151 	if (ill_to_v4 != NULL) {
18152 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18153 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18154 		}
18155 	} else if (ill_to_v6 != NULL) {
18156 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18157 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18158 		}
18159 	}
18160 
18161 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18162 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18163 
18164 no_err:
18165 	/*
18166 	 * lets bring the interfaces up on the to_ill.
18167 	 */
18168 	if (err == 0) {
18169 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18170 		    q, mp);
18171 	}
18172 
18173 	if (err == 0) {
18174 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18175 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18176 
18177 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18178 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18179 	}
18180 done:
18181 
18182 	if (ill_to_v4 != NULL) {
18183 		ill_refrele(ill_to_v4);
18184 	}
18185 	if (ill_to_v6 != NULL) {
18186 		ill_refrele(ill_to_v6);
18187 	}
18188 
18189 	return (err);
18190 }
18191 
18192 static void
18193 ill_dl_down(ill_t *ill)
18194 {
18195 	/*
18196 	 * The ill is down; unbind but stay attached since we're still
18197 	 * associated with a PPA. If we have negotiated DLPI capabilites
18198 	 * with the data link service provider (IDS_OK) then reset them.
18199 	 * The interval between unbinding and rebinding is potentially
18200 	 * unbounded hence we cannot assume things will be the same.
18201 	 * The DLPI capabilities will be probed again when the data link
18202 	 * is brought up.
18203 	 */
18204 	mblk_t	*mp = ill->ill_unbind_mp;
18205 	hook_nic_event_t *info;
18206 
18207 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18208 
18209 	ill->ill_unbind_mp = NULL;
18210 	if (mp != NULL) {
18211 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18212 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18213 		    ill->ill_name));
18214 		mutex_enter(&ill->ill_lock);
18215 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18216 		mutex_exit(&ill->ill_lock);
18217 		if (ill->ill_dlpi_capab_state == IDS_OK)
18218 			ill_capability_reset(ill);
18219 		ill_dlpi_send(ill, mp);
18220 	}
18221 
18222 	/*
18223 	 * Toss all of our multicast memberships.  We could keep them, but
18224 	 * then we'd have to do bookkeeping of any joins and leaves performed
18225 	 * by the application while the the interface is down (we can't just
18226 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18227 	 * on a downed interface).
18228 	 */
18229 	ill_leave_multicast(ill);
18230 
18231 	mutex_enter(&ill->ill_lock);
18232 
18233 	ill->ill_dl_up = 0;
18234 
18235 	if ((info = ill->ill_nic_event_info) != NULL) {
18236 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18237 		    info->hne_event, ill->ill_name));
18238 		if (info->hne_data != NULL)
18239 			kmem_free(info->hne_data, info->hne_datalen);
18240 		kmem_free(info, sizeof (hook_nic_event_t));
18241 	}
18242 
18243 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18244 	if (info != NULL) {
18245 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
18246 		info->hne_lif = 0;
18247 		info->hne_event = NE_DOWN;
18248 		info->hne_data = NULL;
18249 		info->hne_datalen = 0;
18250 		info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
18251 	} else
18252 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18253 		    "information for %s (ENOMEM)\n", ill->ill_name));
18254 
18255 	ill->ill_nic_event_info = info;
18256 
18257 	mutex_exit(&ill->ill_lock);
18258 }
18259 
18260 void
18261 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18262 {
18263 	union DL_primitives *dlp;
18264 	t_uscalar_t prim;
18265 
18266 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18267 
18268 	dlp = (union DL_primitives *)mp->b_rptr;
18269 	prim = dlp->dl_primitive;
18270 
18271 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18272 		dlpi_prim_str(prim), prim, ill->ill_name));
18273 
18274 	switch (prim) {
18275 	case DL_PHYS_ADDR_REQ:
18276 	{
18277 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18278 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18279 		break;
18280 	}
18281 	case DL_BIND_REQ:
18282 		mutex_enter(&ill->ill_lock);
18283 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18284 		mutex_exit(&ill->ill_lock);
18285 		break;
18286 	}
18287 
18288 	/*
18289 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18290 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18291 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18292 	 */
18293 	mutex_enter(&ill->ill_lock);
18294 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18295 	    (prim == DL_UNBIND_REQ)) {
18296 		ill->ill_dlpi_pending = prim;
18297 	}
18298 	mutex_exit(&ill->ill_lock);
18299 
18300 	/*
18301 	 * Some drivers send M_FLUSH up to IP as part of unbind
18302 	 * request.  When this M_FLUSH is sent back to the driver,
18303 	 * this can go after we send the detach request if the
18304 	 * M_FLUSH ends up in IP's syncq. To avoid that, we reply
18305 	 * to the M_FLUSH in ip_rput and locally generate another
18306 	 * M_FLUSH for the correctness.  This will get freed in
18307 	 * ip_wput_nondata.
18308 	 */
18309 	if (prim == DL_UNBIND_REQ)
18310 		(void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW);
18311 
18312 	putnext(ill->ill_wq, mp);
18313 }
18314 
18315 /*
18316  * Send a DLPI control message to the driver but make sure there
18317  * is only one outstanding message. Uses ill_dlpi_pending to tell
18318  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18319  * when an ACK or a NAK is received to process the next queued message.
18320  *
18321  * We don't protect ill_dlpi_pending with any lock. This is okay as
18322  * every place where its accessed, ip is exclusive while accessing
18323  * ill_dlpi_pending except when this function is called from ill_init()
18324  */
18325 void
18326 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18327 {
18328 	mblk_t **mpp;
18329 
18330 	ASSERT(IAM_WRITER_ILL(ill));
18331 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18332 
18333 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18334 		/* Must queue message. Tail insertion */
18335 		mpp = &ill->ill_dlpi_deferred;
18336 		while (*mpp != NULL)
18337 			mpp = &((*mpp)->b_next);
18338 
18339 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18340 		    ill->ill_name));
18341 
18342 		*mpp = mp;
18343 		return;
18344 	}
18345 
18346 	ill_dlpi_dispatch(ill, mp);
18347 }
18348 
18349 /*
18350  * Called when an DLPI control message has been acked or nacked to
18351  * send down the next queued message (if any).
18352  */
18353 void
18354 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18355 {
18356 	mblk_t *mp;
18357 
18358 	ASSERT(IAM_WRITER_ILL(ill));
18359 
18360 	ASSERT(prim != DL_PRIM_INVAL);
18361 	if (ill->ill_dlpi_pending != prim) {
18362 		if (ill->ill_dlpi_pending == DL_PRIM_INVAL) {
18363 			(void) mi_strlog(ill->ill_rq, 1,
18364 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18365 			    "ill_dlpi_done: unsolicited ack for %s from %s\n",
18366 			    dlpi_prim_str(prim), ill->ill_name);
18367 		} else {
18368 			(void) mi_strlog(ill->ill_rq, 1,
18369 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18370 			    "ill_dlpi_done: unexpected ack for %s from %s "
18371 			    "(expecting ack for %s)\n",
18372 			    dlpi_prim_str(prim), ill->ill_name,
18373 			    dlpi_prim_str(ill->ill_dlpi_pending));
18374 		}
18375 		return;
18376 	}
18377 
18378 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18379 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18380 
18381 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18382 		mutex_enter(&ill->ill_lock);
18383 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18384 		cv_signal(&ill->ill_cv);
18385 		mutex_exit(&ill->ill_lock);
18386 		return;
18387 	}
18388 
18389 	ill->ill_dlpi_deferred = mp->b_next;
18390 	mp->b_next = NULL;
18391 
18392 	ill_dlpi_dispatch(ill, mp);
18393 }
18394 
18395 void
18396 conn_delete_ire(conn_t *connp, caddr_t arg)
18397 {
18398 	ipif_t	*ipif = (ipif_t *)arg;
18399 	ire_t	*ire;
18400 
18401 	/*
18402 	 * Look at the cached ires on conns which has pointers to ipifs.
18403 	 * We just call ire_refrele which clears up the reference
18404 	 * to ire. Called when a conn closes. Also called from ipif_free
18405 	 * to cleanup indirect references to the stale ipif via the cached ire.
18406 	 */
18407 	mutex_enter(&connp->conn_lock);
18408 	ire = connp->conn_ire_cache;
18409 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18410 		connp->conn_ire_cache = NULL;
18411 		mutex_exit(&connp->conn_lock);
18412 		IRE_REFRELE_NOTR(ire);
18413 		return;
18414 	}
18415 	mutex_exit(&connp->conn_lock);
18416 
18417 }
18418 
18419 /*
18420  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18421  * of IREs. Those IREs may have been previously cached in the conn structure.
18422  * This ipcl_walk() walker function releases all references to such IREs based
18423  * on the condemned flag.
18424  */
18425 /* ARGSUSED */
18426 void
18427 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18428 {
18429 	ire_t	*ire;
18430 
18431 	mutex_enter(&connp->conn_lock);
18432 	ire = connp->conn_ire_cache;
18433 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18434 		connp->conn_ire_cache = NULL;
18435 		mutex_exit(&connp->conn_lock);
18436 		IRE_REFRELE_NOTR(ire);
18437 		return;
18438 	}
18439 	mutex_exit(&connp->conn_lock);
18440 }
18441 
18442 /*
18443  * Take down a specific interface, but don't lose any information about it.
18444  * Also delete interface from its interface group (ifgrp).
18445  * (Always called as writer.)
18446  * This function goes through the down sequence even if the interface is
18447  * already down. There are 2 reasons.
18448  * a. Currently we permit interface routes that depend on down interfaces
18449  *    to be added. This behaviour itself is questionable. However it appears
18450  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18451  *    time. We go thru the cleanup in order to remove these routes.
18452  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18453  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18454  *    down, but we need to cleanup i.e. do ill_dl_down and
18455  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18456  *
18457  * IP-MT notes:
18458  *
18459  * Model of reference to interfaces.
18460  *
18461  * The following members in ipif_t track references to the ipif.
18462  *	int     ipif_refcnt;    Active reference count
18463  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18464  * The following members in ill_t track references to the ill.
18465  *	int             ill_refcnt;     active refcnt
18466  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18467  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18468  *
18469  * Reference to an ipif or ill can be obtained in any of the following ways.
18470  *
18471  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18472  * Pointers to ipif / ill from other data structures viz ire and conn.
18473  * Implicit reference to the ipif / ill by holding a reference to the ire.
18474  *
18475  * The ipif/ill lookup functions return a reference held ipif / ill.
18476  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18477  * This is a purely dynamic reference count associated with threads holding
18478  * references to the ipif / ill. Pointers from other structures do not
18479  * count towards this reference count.
18480  *
18481  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18482  * ipif/ill. This is incremented whenever a new ire is created referencing the
18483  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18484  * actually added to the ire hash table. The count is decremented in
18485  * ire_inactive where the ire is destroyed.
18486  *
18487  * nce's reference ill's thru nce_ill and the count of nce's associated with
18488  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18489  * ndp_add() where the nce is actually added to the table. Similarly it is
18490  * decremented in ndp_inactive where the nce is destroyed.
18491  *
18492  * Flow of ioctls involving interface down/up
18493  *
18494  * The following is the sequence of an attempt to set some critical flags on an
18495  * up interface.
18496  * ip_sioctl_flags
18497  * ipif_down
18498  * wait for ipif to be quiescent
18499  * ipif_down_tail
18500  * ip_sioctl_flags_tail
18501  *
18502  * All set ioctls that involve down/up sequence would have a skeleton similar
18503  * to the above. All the *tail functions are called after the refcounts have
18504  * dropped to the appropriate values.
18505  *
18506  * The mechanism to quiesce an ipif is as follows.
18507  *
18508  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18509  * on the ipif. Callers either pass a flag requesting wait or the lookup
18510  *  functions will return NULL.
18511  *
18512  * Delete all ires referencing this ipif
18513  *
18514  * Any thread attempting to do an ipif_refhold on an ipif that has been
18515  * obtained thru a cached pointer will first make sure that
18516  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18517  * increment the refcount.
18518  *
18519  * The above guarantees that the ipif refcount will eventually come down to
18520  * zero and the ipif will quiesce, once all threads that currently hold a
18521  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18522  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18523  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18524  * drop to zero.
18525  *
18526  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18527  *
18528  * Threads trying to lookup an ipif or ill can pass a flag requesting
18529  * wait and restart if the ipif / ill cannot be looked up currently.
18530  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18531  * failure if the ipif is currently undergoing an exclusive operation, and
18532  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18533  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18534  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18535  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18536  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18537  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18538  * until we release the ipsq_lock, even though the the ill/ipif state flags
18539  * can change after we drop the ill_lock.
18540  *
18541  * An attempt to send out a packet using an ipif that is currently
18542  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18543  * operation and restart it later when the exclusive condition on the ipif ends.
18544  * This is an example of not passing the wait flag to the lookup functions. For
18545  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18546  * out a multicast packet on that ipif will fail while the ipif is
18547  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18548  * currently IPIF_CHANGING will also fail.
18549  */
18550 int
18551 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18552 {
18553 	ill_t		*ill = ipif->ipif_ill;
18554 	phyint_t	*phyi;
18555 	conn_t		*connp;
18556 	boolean_t	success;
18557 	boolean_t	ipif_was_up = B_FALSE;
18558 
18559 	ASSERT(IAM_WRITER_IPIF(ipif));
18560 
18561 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18562 
18563 	if (ipif->ipif_flags & IPIF_UP) {
18564 		mutex_enter(&ill->ill_lock);
18565 		ipif->ipif_flags &= ~IPIF_UP;
18566 		ASSERT(ill->ill_ipif_up_count > 0);
18567 		--ill->ill_ipif_up_count;
18568 		mutex_exit(&ill->ill_lock);
18569 		ipif_was_up = B_TRUE;
18570 		/* Update status in SCTP's list */
18571 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18572 	}
18573 
18574 	/*
18575 	 * Blow away v6 memberships we established in ipif_multicast_up(); the
18576 	 * v4 ones are left alone (as is the ipif_multicast_up flag, so we
18577 	 * know not to rejoin when the interface is brought back up).
18578 	 */
18579 	if (ipif->ipif_isv6)
18580 		ipif_multicast_down(ipif);
18581 	/*
18582 	 * Remove from the mapping for __sin6_src_id. We insert only
18583 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18584 	 * stored as mapped addresses, we need to check for mapped
18585 	 * INADDR_ANY also.
18586 	 */
18587 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18588 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18589 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18590 		int err;
18591 
18592 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18593 		    ipif->ipif_zoneid);
18594 		if (err != 0) {
18595 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18596 		}
18597 	}
18598 
18599 	/*
18600 	 * Before we delete the ill from the group (if any), we need
18601 	 * to make sure that we delete all the routes dependent on
18602 	 * this and also any ipifs dependent on this ipif for
18603 	 * source address. We need to do before we delete from
18604 	 * the group because
18605 	 *
18606 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18607 	 *
18608 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18609 	 *    for re-doing source address selection. Note that
18610 	 *    ipif_select_source[_v6] called from
18611 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18612 	 *    because we have already marked down here i.e cleared
18613 	 *    IPIF_UP.
18614 	 */
18615 	if (ipif->ipif_isv6)
18616 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES);
18617 	else
18618 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES);
18619 
18620 	/*
18621 	 * Need to add these also to be saved and restored when the
18622 	 * ipif is brought down and up
18623 	 */
18624 	mutex_enter(&ire_mrtun_lock);
18625 	if (ire_mrtun_count != 0) {
18626 		mutex_exit(&ire_mrtun_lock);
18627 		ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire,
18628 		    (char *)ipif, NULL);
18629 	} else {
18630 		mutex_exit(&ire_mrtun_lock);
18631 	}
18632 
18633 	mutex_enter(&ire_srcif_table_lock);
18634 	if (ire_srcif_table_count > 0) {
18635 		mutex_exit(&ire_srcif_table_lock);
18636 		ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif);
18637 	} else {
18638 		mutex_exit(&ire_srcif_table_lock);
18639 	}
18640 
18641 	/*
18642 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18643 	 * ires have been deleted above. Otherwise a thread could end up
18644 	 * caching an ire in a conn after we have finished the cleanup of the
18645 	 * conn. The caching is done after making sure that the ire is not yet
18646 	 * condemned. Also documented in the block comment above ip_output
18647 	 */
18648 	ipcl_walk(conn_cleanup_stale_ire, NULL);
18649 	/* Also, delete the ires cached in SCTP */
18650 	sctp_ire_cache_flush(ipif);
18651 
18652 	/* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */
18653 	nattymod_clean_ipif(ipif);
18654 
18655 	/*
18656 	 * Update any other ipifs which have used "our" local address as
18657 	 * a source address. This entails removing and recreating IRE_INTERFACE
18658 	 * entries for such ipifs.
18659 	 */
18660 	if (ipif->ipif_isv6)
18661 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18662 	else
18663 		ipif_update_other_ipifs(ipif, ill->ill_group);
18664 
18665 	if (ipif_was_up) {
18666 		/*
18667 		 * Check whether it is last ipif to leave this group.
18668 		 * If this is the last ipif to leave, we should remove
18669 		 * this ill from the group as ipif_select_source will not
18670 		 * be able to find any useful ipifs if this ill is selected
18671 		 * for load balancing.
18672 		 *
18673 		 * For nameless groups, we should call ifgrp_delete if this
18674 		 * belongs to some group. As this ipif is going down, we may
18675 		 * need to reconstruct groups.
18676 		 */
18677 		phyi = ill->ill_phyint;
18678 		/*
18679 		 * If the phyint_groupname_len is 0, it may or may not
18680 		 * be in the nameless group. If the phyint_groupname_len is
18681 		 * not 0, then this ill should be part of some group.
18682 		 * As we always insert this ill in the group if
18683 		 * phyint_groupname_len is not zero when the first ipif
18684 		 * comes up (in ipif_up_done), it should be in a group
18685 		 * when the namelen is not 0.
18686 		 *
18687 		 * NOTE : When we delete the ill from the group,it will
18688 		 * blow away all the IRE_CACHES pointing either at this ipif or
18689 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18690 		 * should be pointing at this ill.
18691 		 */
18692 		ASSERT(phyi->phyint_groupname_len == 0 ||
18693 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18694 
18695 		if (phyi->phyint_groupname_len != 0) {
18696 			if (ill->ill_ipif_up_count == 0)
18697 				illgrp_delete(ill);
18698 		}
18699 
18700 		/*
18701 		 * If we have deleted some of the broadcast ires associated
18702 		 * with this ipif, we need to re-nominate somebody else if
18703 		 * the ires that we deleted were the nominated ones.
18704 		 */
18705 		if (ill->ill_group != NULL && !ill->ill_isv6)
18706 			ipif_renominate_bcast(ipif);
18707 	}
18708 
18709 	/*
18710 	 * neighbor-discovery or arp entries for this interface.
18711 	 */
18712 	ipif_ndp_down(ipif);
18713 
18714 	/*
18715 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18716 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18717 	 * and ill_delete -> ipif_free -> ipif_down
18718 	 */
18719 	if (mp == NULL) {
18720 		ASSERT(q == NULL);
18721 		return (0);
18722 	}
18723 
18724 	if (CONN_Q(q)) {
18725 		connp = Q_TO_CONN(q);
18726 		mutex_enter(&connp->conn_lock);
18727 	} else {
18728 		connp = NULL;
18729 	}
18730 	mutex_enter(&ill->ill_lock);
18731 	/*
18732 	 * Are there any ire's pointing to this ipif that are still active ?
18733 	 * If this is the last ipif going down, are there any ire's pointing
18734 	 * to this ill that are still active ?
18735 	 */
18736 	if (ipif_is_quiescent(ipif)) {
18737 		mutex_exit(&ill->ill_lock);
18738 		if (connp != NULL)
18739 			mutex_exit(&connp->conn_lock);
18740 		return (0);
18741 	}
18742 
18743 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18744 	    ill->ill_name, (void *)ill));
18745 	/*
18746 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18747 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18748 	 * which in turn is called by the last refrele on the ipif/ill/ire.
18749 	 */
18750 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18751 	if (!success) {
18752 		/* The conn is closing. So just return */
18753 		ASSERT(connp != NULL);
18754 		mutex_exit(&ill->ill_lock);
18755 		mutex_exit(&connp->conn_lock);
18756 		return (EINTR);
18757 	}
18758 
18759 	mutex_exit(&ill->ill_lock);
18760 	if (connp != NULL)
18761 		mutex_exit(&connp->conn_lock);
18762 	return (EINPROGRESS);
18763 }
18764 
18765 void
18766 ipif_down_tail(ipif_t *ipif)
18767 {
18768 	ill_t	*ill = ipif->ipif_ill;
18769 
18770 	/*
18771 	 * Skip any loopback interface (null wq).
18772 	 * If this is the last logical interface on the ill
18773 	 * have ill_dl_down tell the driver we are gone (unbind)
18774 	 * Note that lun 0 can ipif_down even though
18775 	 * there are other logical units that are up.
18776 	 * This occurs e.g. when we change a "significant" IFF_ flag.
18777 	 */
18778 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18779 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18780 	    ill->ill_dl_up) {
18781 		ill_dl_down(ill);
18782 	}
18783 	ill->ill_logical_down = 0;
18784 
18785 	/*
18786 	 * Have to be after removing the routes in ipif_down_delete_ire.
18787 	 */
18788 	if (ipif->ipif_isv6) {
18789 		if (ill->ill_flags & ILLF_XRESOLV)
18790 			ipif_arp_down(ipif);
18791 	} else {
18792 		ipif_arp_down(ipif);
18793 	}
18794 
18795 	ip_rts_ifmsg(ipif);
18796 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18797 }
18798 
18799 /*
18800  * Bring interface logically down without bringing the physical interface
18801  * down e.g. when the netmask is changed. This avoids long lasting link
18802  * negotiations between an ethernet interface and a certain switches.
18803  */
18804 static int
18805 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18806 {
18807 	/*
18808 	 * The ill_logical_down flag is a transient flag. It is set here
18809 	 * and is cleared once the down has completed in ipif_down_tail.
18810 	 * This flag does not indicate whether the ill stream is in the
18811 	 * DL_BOUND state with the driver. Instead this flag is used by
18812 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18813 	 * the driver. The state of the ill stream i.e. whether it is
18814 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18815 	 */
18816 	ipif->ipif_ill->ill_logical_down = 1;
18817 	return (ipif_down(ipif, q, mp));
18818 }
18819 
18820 /*
18821  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18822  * If the usesrc client ILL is already part of a usesrc group or not,
18823  * in either case a ire_stq with the matching usesrc client ILL will
18824  * locate the IRE's that need to be deleted. We want IREs to be created
18825  * with the new source address.
18826  */
18827 static void
18828 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18829 {
18830 	ill_t	*ucill = (ill_t *)ill_arg;
18831 
18832 	ASSERT(IAM_WRITER_ILL(ucill));
18833 
18834 	if (ire->ire_stq == NULL)
18835 		return;
18836 
18837 	if ((ire->ire_type == IRE_CACHE) &&
18838 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
18839 		ire_delete(ire);
18840 }
18841 
18842 /*
18843  * ire_walk routine to delete every IRE dependent on the interface
18844  * address that is going down.	(Always called as writer.)
18845  * Works for both v4 and v6.
18846  * In addition for checking for ire_ipif matches it also checks for
18847  * IRE_CACHE entries which have the same source address as the
18848  * disappearing ipif since ipif_select_source might have picked
18849  * that source. Note that ipif_down/ipif_update_other_ipifs takes
18850  * care of any IRE_INTERFACE with the disappearing source address.
18851  */
18852 static void
18853 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18854 {
18855 	ipif_t	*ipif = (ipif_t *)ipif_arg;
18856 	ill_t *ire_ill;
18857 	ill_t *ipif_ill;
18858 
18859 	ASSERT(IAM_WRITER_IPIF(ipif));
18860 	if (ire->ire_ipif == NULL)
18861 		return;
18862 
18863 	/*
18864 	 * For IPv4, we derive source addresses for an IRE from ipif's
18865 	 * belonging to the same IPMP group as the IRE's outgoing
18866 	 * interface.  If an IRE's outgoing interface isn't in the
18867 	 * same IPMP group as a particular ipif, then that ipif
18868 	 * couldn't have been used as a source address for this IRE.
18869 	 *
18870 	 * For IPv6, source addresses are only restricted to the IPMP group
18871 	 * if the IRE is for a link-local address or a multicast address.
18872 	 * Otherwise, source addresses for an IRE can be chosen from
18873 	 * interfaces other than the the outgoing interface for that IRE.
18874 	 *
18875 	 * For source address selection details, see ipif_select_source()
18876 	 * and ipif_select_source_v6().
18877 	 */
18878 	if (ire->ire_ipversion == IPV4_VERSION ||
18879 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18880 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18881 		ire_ill = ire->ire_ipif->ipif_ill;
18882 		ipif_ill = ipif->ipif_ill;
18883 
18884 		if (ire_ill->ill_group != ipif_ill->ill_group) {
18885 			return;
18886 		}
18887 	}
18888 
18889 
18890 	if (ire->ire_ipif != ipif) {
18891 		/*
18892 		 * Look for a matching source address.
18893 		 */
18894 		if (ire->ire_type != IRE_CACHE)
18895 			return;
18896 		if (ipif->ipif_flags & IPIF_NOLOCAL)
18897 			return;
18898 
18899 		if (ire->ire_ipversion == IPV4_VERSION) {
18900 			if (ire->ire_src_addr != ipif->ipif_src_addr)
18901 				return;
18902 		} else {
18903 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18904 			    &ipif->ipif_v6lcl_addr))
18905 				return;
18906 		}
18907 		ire_delete(ire);
18908 		return;
18909 	}
18910 	/*
18911 	 * ire_delete() will do an ire_flush_cache which will delete
18912 	 * all ire_ipif matches
18913 	 */
18914 	ire_delete(ire);
18915 }
18916 
18917 /*
18918  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18919  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18920  * 2) when an interface is brought up or down (on that ill).
18921  * This ensures that the IRE_CACHE entries don't retain stale source
18922  * address selection results.
18923  */
18924 void
18925 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18926 {
18927 	ill_t	*ill = (ill_t *)ill_arg;
18928 	ill_t	*ipif_ill;
18929 
18930 	ASSERT(IAM_WRITER_ILL(ill));
18931 	/*
18932 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18933 	 * Hence this should be IRE_CACHE.
18934 	 */
18935 	ASSERT(ire->ire_type == IRE_CACHE);
18936 
18937 	/*
18938 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
18939 	 * We are only interested in IRE_CACHES that has borrowed
18940 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
18941 	 * for which we need to look at ire_ipif->ipif_ill match
18942 	 * with ill.
18943 	 */
18944 	ASSERT(ire->ire_ipif != NULL);
18945 	ipif_ill = ire->ire_ipif->ipif_ill;
18946 	if (ipif_ill == ill || (ill->ill_group != NULL &&
18947 	    ipif_ill->ill_group == ill->ill_group)) {
18948 		ire_delete(ire);
18949 	}
18950 }
18951 
18952 /*
18953  * Delete all the ire whose stq references ill_arg.
18954  */
18955 static void
18956 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18957 {
18958 	ill_t	*ill = (ill_t *)ill_arg;
18959 	ill_t	*ire_ill;
18960 
18961 	ASSERT(IAM_WRITER_ILL(ill));
18962 	/*
18963 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18964 	 * Hence this should be IRE_CACHE.
18965 	 */
18966 	ASSERT(ire->ire_type == IRE_CACHE);
18967 
18968 	/*
18969 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18970 	 * matches ill. We are only interested in IRE_CACHES that
18971 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18972 	 * filtering here.
18973 	 */
18974 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18975 
18976 	if (ire_ill == ill)
18977 		ire_delete(ire);
18978 }
18979 
18980 /*
18981  * This is called when an ill leaves the group. We want to delete
18982  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18983  * pointing at ill.
18984  */
18985 static void
18986 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18987 {
18988 	ill_t	*ill = (ill_t *)ill_arg;
18989 
18990 	ASSERT(IAM_WRITER_ILL(ill));
18991 	ASSERT(ill->ill_group == NULL);
18992 	/*
18993 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18994 	 * Hence this should be IRE_CACHE.
18995 	 */
18996 	ASSERT(ire->ire_type == IRE_CACHE);
18997 	/*
18998 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18999 	 * matches ill. We are interested in both.
19000 	 */
19001 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
19002 	    (ire->ire_ipif->ipif_ill == ill));
19003 
19004 	ire_delete(ire);
19005 }
19006 
19007 /*
19008  * Initiate deallocate of an IPIF. Always called as writer. Called by
19009  * ill_delete or ip_sioctl_removeif.
19010  */
19011 static void
19012 ipif_free(ipif_t *ipif)
19013 {
19014 	ASSERT(IAM_WRITER_IPIF(ipif));
19015 
19016 	if (ipif->ipif_recovery_id != 0)
19017 		(void) untimeout(ipif->ipif_recovery_id);
19018 	ipif->ipif_recovery_id = 0;
19019 
19020 	/* Remove conn references */
19021 	reset_conn_ipif(ipif);
19022 
19023 	/*
19024 	 * Make sure we have valid net and subnet broadcast ire's for the
19025 	 * other ipif's which share them with this ipif.
19026 	 */
19027 	if (!ipif->ipif_isv6)
19028 		ipif_check_bcast_ires(ipif);
19029 
19030 	/*
19031 	 * Take down the interface. We can be called either from ill_delete
19032 	 * or from ip_sioctl_removeif.
19033 	 */
19034 	(void) ipif_down(ipif, NULL, NULL);
19035 
19036 	/*
19037 	 * Now that the interface is down, there's no chance it can still
19038 	 * become a duplicate.  Cancel any timer that may have been set while
19039 	 * tearing down.
19040 	 */
19041 	if (ipif->ipif_recovery_id != 0)
19042 		(void) untimeout(ipif->ipif_recovery_id);
19043 	ipif->ipif_recovery_id = 0;
19044 
19045 	rw_enter(&ill_g_lock, RW_WRITER);
19046 	/* Remove pointers to this ill in the multicast routing tables */
19047 	reset_mrt_vif_ipif(ipif);
19048 	rw_exit(&ill_g_lock);
19049 }
19050 
19051 /*
19052  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19053  * also ill_move().
19054  */
19055 static void
19056 ipif_free_tail(ipif_t *ipif)
19057 {
19058 	mblk_t	*mp;
19059 	ipif_t	**ipifp;
19060 
19061 	/*
19062 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19063 	 */
19064 	mutex_enter(&ipif->ipif_saved_ire_lock);
19065 	mp = ipif->ipif_saved_ire_mp;
19066 	ipif->ipif_saved_ire_mp = NULL;
19067 	mutex_exit(&ipif->ipif_saved_ire_lock);
19068 	freemsg(mp);
19069 
19070 	/*
19071 	 * Need to hold both ill_g_lock and ill_lock while
19072 	 * inserting or removing an ipif from the linked list
19073 	 * of ipifs hanging off the ill.
19074 	 */
19075 	rw_enter(&ill_g_lock, RW_WRITER);
19076 	/*
19077 	 * Remove all multicast memberships on the interface now.
19078 	 * This removes IPv4 multicast memberships joined within
19079 	 * the kernel as ipif_down does not do ipif_multicast_down
19080 	 * for IPv4. IPv6 is not handled here as the multicast memberships
19081 	 * are based on ill and not on ipif.
19082 	 */
19083 	ilm_free(ipif);
19084 
19085 	/*
19086 	 * Since we held the ill_g_lock while doing the ilm_free above,
19087 	 * we can assert the ilms were really deleted and not just marked
19088 	 * ILM_DELETED.
19089 	 */
19090 	ASSERT(ilm_walk_ipif(ipif) == 0);
19091 
19092 
19093 	IPIF_TRACE_CLEANUP(ipif);
19094 
19095 	/* Ask SCTP to take it out of it list */
19096 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19097 
19098 	mutex_enter(&ipif->ipif_ill->ill_lock);
19099 	/* Get it out of the ILL interface list. */
19100 	ipifp = &ipif->ipif_ill->ill_ipif;
19101 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
19102 		if (*ipifp == ipif) {
19103 			*ipifp = ipif->ipif_next;
19104 			break;
19105 		}
19106 	}
19107 
19108 	mutex_exit(&ipif->ipif_ill->ill_lock);
19109 	rw_exit(&ill_g_lock);
19110 
19111 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19112 
19113 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19114 	ASSERT(ipif->ipif_recovery_id == 0);
19115 
19116 	/* Free the memory. */
19117 	mi_free((char *)ipif);
19118 }
19119 
19120 /*
19121  * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero,
19122  * "ill_name" otherwise.
19123  */
19124 char *
19125 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19126 {
19127 	char	lbuf[32];
19128 	char	*name;
19129 	size_t	name_len;
19130 
19131 	buf[0] = '\0';
19132 	if (!ipif)
19133 		return (buf);
19134 	name = ipif->ipif_ill->ill_name;
19135 	name_len = ipif->ipif_ill->ill_name_length;
19136 	if (ipif->ipif_id != 0) {
19137 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19138 		    ipif->ipif_id);
19139 		name = lbuf;
19140 		name_len = mi_strlen(name) + 1;
19141 	}
19142 	len -= 1;
19143 	buf[len] = '\0';
19144 	len = MIN(len, name_len);
19145 	bcopy(name, buf, len);
19146 	return (buf);
19147 }
19148 
19149 /*
19150  * Find an IPIF based on the name passed in.  Names can be of the
19151  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19152  * The <phys> string can have forms like <dev><#> (e.g., le0),
19153  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19154  * When there is no colon, the implied unit id is zero. <phys> must
19155  * correspond to the name of an ILL.  (May be called as writer.)
19156  */
19157 static ipif_t *
19158 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19159     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19160     mblk_t *mp, ipsq_func_t func, int *error)
19161 {
19162 	char	*cp;
19163 	char	*endp;
19164 	long	id;
19165 	ill_t	*ill;
19166 	ipif_t	*ipif;
19167 	uint_t	ire_type;
19168 	boolean_t did_alloc = B_FALSE;
19169 	ipsq_t	*ipsq;
19170 
19171 	if (error != NULL)
19172 		*error = 0;
19173 
19174 	/*
19175 	 * If the caller wants to us to create the ipif, make sure we have a
19176 	 * valid zoneid
19177 	 */
19178 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19179 
19180 	if (namelen == 0) {
19181 		if (error != NULL)
19182 			*error = ENXIO;
19183 		return (NULL);
19184 	}
19185 
19186 	*exists = B_FALSE;
19187 	/* Look for a colon in the name. */
19188 	endp = &name[namelen];
19189 	for (cp = endp; --cp > name; ) {
19190 		if (*cp == IPIF_SEPARATOR_CHAR)
19191 			break;
19192 	}
19193 
19194 	if (*cp == IPIF_SEPARATOR_CHAR) {
19195 		/*
19196 		 * Reject any non-decimal aliases for logical
19197 		 * interfaces. Aliases with leading zeroes
19198 		 * are also rejected as they introduce ambiguity
19199 		 * in the naming of the interfaces.
19200 		 * In order to confirm with existing semantics,
19201 		 * and to not break any programs/script relying
19202 		 * on that behaviour, if<0>:0 is considered to be
19203 		 * a valid interface.
19204 		 *
19205 		 * If alias has two or more digits and the first
19206 		 * is zero, fail.
19207 		 */
19208 		if (&cp[2] < endp && cp[1] == '0')
19209 			return (NULL);
19210 	}
19211 
19212 	if (cp <= name) {
19213 		cp = endp;
19214 	} else {
19215 		*cp = '\0';
19216 	}
19217 
19218 	/*
19219 	 * Look up the ILL, based on the portion of the name
19220 	 * before the slash. ill_lookup_on_name returns a held ill.
19221 	 * Temporary to check whether ill exists already. If so
19222 	 * ill_lookup_on_name will clear it.
19223 	 */
19224 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19225 	    q, mp, func, error, &did_alloc);
19226 	if (cp != endp)
19227 		*cp = IPIF_SEPARATOR_CHAR;
19228 	if (ill == NULL)
19229 		return (NULL);
19230 
19231 	/* Establish the unit number in the name. */
19232 	id = 0;
19233 	if (cp < endp && *endp == '\0') {
19234 		/* If there was a colon, the unit number follows. */
19235 		cp++;
19236 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19237 			ill_refrele(ill);
19238 			if (error != NULL)
19239 				*error = ENXIO;
19240 			return (NULL);
19241 		}
19242 	}
19243 
19244 	GRAB_CONN_LOCK(q);
19245 	mutex_enter(&ill->ill_lock);
19246 	/* Now see if there is an IPIF with this unit number. */
19247 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19248 		if (ipif->ipif_id == id) {
19249 			if (zoneid != ALL_ZONES &&
19250 			    zoneid != ipif->ipif_zoneid &&
19251 			    ipif->ipif_zoneid != ALL_ZONES) {
19252 				mutex_exit(&ill->ill_lock);
19253 				RELEASE_CONN_LOCK(q);
19254 				ill_refrele(ill);
19255 				if (error != NULL)
19256 					*error = ENXIO;
19257 				return (NULL);
19258 			}
19259 			/*
19260 			 * The block comment at the start of ipif_down
19261 			 * explains the use of the macros used below
19262 			 */
19263 			if (IPIF_CAN_LOOKUP(ipif)) {
19264 				ipif_refhold_locked(ipif);
19265 				mutex_exit(&ill->ill_lock);
19266 				if (!did_alloc)
19267 					*exists = B_TRUE;
19268 				/*
19269 				 * Drop locks before calling ill_refrele
19270 				 * since it can potentially call into
19271 				 * ipif_ill_refrele_tail which can end up
19272 				 * in trying to acquire any lock.
19273 				 */
19274 				RELEASE_CONN_LOCK(q);
19275 				ill_refrele(ill);
19276 				return (ipif);
19277 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19278 				ipsq = ill->ill_phyint->phyint_ipsq;
19279 				mutex_enter(&ipsq->ipsq_lock);
19280 				mutex_exit(&ill->ill_lock);
19281 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19282 				mutex_exit(&ipsq->ipsq_lock);
19283 				RELEASE_CONN_LOCK(q);
19284 				ill_refrele(ill);
19285 				*error = EINPROGRESS;
19286 				return (NULL);
19287 			}
19288 		}
19289 	}
19290 	RELEASE_CONN_LOCK(q);
19291 
19292 	if (!do_alloc) {
19293 		mutex_exit(&ill->ill_lock);
19294 		ill_refrele(ill);
19295 		if (error != NULL)
19296 			*error = ENXIO;
19297 		return (NULL);
19298 	}
19299 
19300 	/*
19301 	 * If none found, atomically allocate and return a new one.
19302 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19303 	 * to support "receive only" use of lo0:1 etc. as is still done
19304 	 * below as an initial guess.
19305 	 * However, this is now likely to be overriden later in ipif_up_done()
19306 	 * when we know for sure what address has been configured on the
19307 	 * interface, since we might have more than one loopback interface
19308 	 * with a loopback address, e.g. in the case of zones, and all the
19309 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19310 	 */
19311 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19312 		ire_type = IRE_LOOPBACK;
19313 	else
19314 		ire_type = IRE_LOCAL;
19315 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19316 	if (ipif != NULL)
19317 		ipif_refhold_locked(ipif);
19318 	else if (error != NULL)
19319 		*error = ENOMEM;
19320 	mutex_exit(&ill->ill_lock);
19321 	ill_refrele(ill);
19322 	return (ipif);
19323 }
19324 
19325 /*
19326  * This routine is called whenever a new address comes up on an ipif.  If
19327  * we are configured to respond to address mask requests, then we are supposed
19328  * to broadcast an address mask reply at this time.  This routine is also
19329  * called if we are already up, but a netmask change is made.  This is legal
19330  * but might not make the system manager very popular.	(May be called
19331  * as writer.)
19332  */
19333 void
19334 ipif_mask_reply(ipif_t *ipif)
19335 {
19336 	icmph_t	*icmph;
19337 	ipha_t	*ipha;
19338 	mblk_t	*mp;
19339 
19340 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19341 
19342 	if (!ip_respond_to_address_mask_broadcast)
19343 		return;
19344 
19345 	/* ICMP mask reply is IPv4 only */
19346 	ASSERT(!ipif->ipif_isv6);
19347 	/* ICMP mask reply is not for a loopback interface */
19348 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19349 
19350 	mp = allocb(REPLY_LEN, BPRI_HI);
19351 	if (mp == NULL)
19352 		return;
19353 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19354 
19355 	ipha = (ipha_t *)mp->b_rptr;
19356 	bzero(ipha, REPLY_LEN);
19357 	*ipha = icmp_ipha;
19358 	ipha->ipha_ttl = ip_broadcast_ttl;
19359 	ipha->ipha_src = ipif->ipif_src_addr;
19360 	ipha->ipha_dst = ipif->ipif_brd_addr;
19361 	ipha->ipha_length = htons(REPLY_LEN);
19362 	ipha->ipha_ident = 0;
19363 
19364 	icmph = (icmph_t *)&ipha[1];
19365 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19366 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19367 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19368 	if (icmph->icmph_checksum == 0)
19369 		icmph->icmph_checksum = 0xffff;
19370 
19371 	put(ipif->ipif_wq, mp);
19372 
19373 #undef	REPLY_LEN
19374 }
19375 
19376 /*
19377  * When the mtu in the ipif changes, we call this routine through ire_walk
19378  * to update all the relevant IREs.
19379  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19380  */
19381 static void
19382 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19383 {
19384 	ipif_t *ipif = (ipif_t *)ipif_arg;
19385 
19386 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19387 		return;
19388 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19389 }
19390 
19391 /*
19392  * When the mtu in the ill changes, we call this routine through ire_walk
19393  * to update all the relevant IREs.
19394  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19395  */
19396 void
19397 ill_mtu_change(ire_t *ire, char *ill_arg)
19398 {
19399 	ill_t	*ill = (ill_t *)ill_arg;
19400 
19401 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19402 		return;
19403 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19404 }
19405 
19406 /*
19407  * Join the ipif specific multicast groups.
19408  * Must be called after a mapping has been set up in the resolver.  (Always
19409  * called as writer.)
19410  */
19411 void
19412 ipif_multicast_up(ipif_t *ipif)
19413 {
19414 	int err, index;
19415 	ill_t *ill;
19416 
19417 	ASSERT(IAM_WRITER_IPIF(ipif));
19418 
19419 	ill = ipif->ipif_ill;
19420 	index = ill->ill_phyint->phyint_ifindex;
19421 
19422 	ip1dbg(("ipif_multicast_up\n"));
19423 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19424 		return;
19425 
19426 	if (ipif->ipif_isv6) {
19427 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19428 			return;
19429 
19430 		/* Join the all hosts multicast address */
19431 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19432 		/*
19433 		 * Passing B_TRUE means we have to join the multicast
19434 		 * membership on this interface even though this is
19435 		 * FAILED. If we join on a different one in the group,
19436 		 * we will not be able to delete the membership later
19437 		 * as we currently don't track where we join when we
19438 		 * join within the kernel unlike applications where
19439 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19440 		 * for more on this.
19441 		 */
19442 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19443 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19444 		if (err != 0) {
19445 			ip0dbg(("ipif_multicast_up: "
19446 			    "all_hosts_mcast failed %d\n",
19447 			    err));
19448 			return;
19449 		}
19450 		/*
19451 		 * Enable multicast for the solicited node multicast address
19452 		 */
19453 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19454 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19455 
19456 			ipv6_multi.s6_addr32[3] |=
19457 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19458 
19459 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19460 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19461 			    NULL);
19462 			if (err != 0) {
19463 				ip0dbg(("ipif_multicast_up: solicited MC"
19464 				    " failed %d\n", err));
19465 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19466 				    ill, ill->ill_phyint->phyint_ifindex,
19467 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19468 				return;
19469 			}
19470 		}
19471 	} else {
19472 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19473 			return;
19474 
19475 		/* Join the all hosts multicast address */
19476 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19477 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19478 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19479 		if (err) {
19480 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19481 			return;
19482 		}
19483 	}
19484 	ipif->ipif_multicast_up = 1;
19485 }
19486 
19487 /*
19488  * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up();
19489  * any explicit memberships are blown away in ill_leave_multicast() when the
19490  * ill is brought down.
19491  */
19492 static void
19493 ipif_multicast_down(ipif_t *ipif)
19494 {
19495 	int err;
19496 
19497 	ASSERT(IAM_WRITER_IPIF(ipif));
19498 
19499 	ip1dbg(("ipif_multicast_down\n"));
19500 	if (!ipif->ipif_multicast_up)
19501 		return;
19502 
19503 	ASSERT(ipif->ipif_isv6);
19504 
19505 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19506 
19507 	/*
19508 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19509 	 * we should look for ilms on this ill rather than the ones that have
19510 	 * been failed over here.  They are here temporarily. As
19511 	 * ipif_multicast_up has joined on this ill, we should delete only
19512 	 * from this ill.
19513 	 */
19514 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19515 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19516 	    B_TRUE, B_TRUE);
19517 	if (err != 0) {
19518 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19519 		    err));
19520 	}
19521 	/*
19522 	 * Disable multicast for the solicited node multicast address
19523 	 */
19524 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19525 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19526 
19527 		ipv6_multi.s6_addr32[3] |=
19528 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19529 
19530 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19531 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19532 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19533 
19534 		if (err != 0) {
19535 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19536 			    err));
19537 		}
19538 	}
19539 
19540 	ipif->ipif_multicast_up = 0;
19541 }
19542 
19543 /*
19544  * Used when an interface comes up to recreate any extra routes on this
19545  * interface.
19546  */
19547 static ire_t **
19548 ipif_recover_ire(ipif_t *ipif)
19549 {
19550 	mblk_t	*mp;
19551 	ire_t	**ipif_saved_irep;
19552 	ire_t	**irep;
19553 
19554 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19555 	    ipif->ipif_id));
19556 
19557 	mutex_enter(&ipif->ipif_saved_ire_lock);
19558 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19559 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19560 	if (ipif_saved_irep == NULL) {
19561 		mutex_exit(&ipif->ipif_saved_ire_lock);
19562 		return (NULL);
19563 	}
19564 
19565 	irep = ipif_saved_irep;
19566 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19567 		ire_t		*ire;
19568 		queue_t		*rfq;
19569 		queue_t		*stq;
19570 		ifrt_t		*ifrt;
19571 		uchar_t		*src_addr;
19572 		uchar_t		*gateway_addr;
19573 		mblk_t		*resolver_mp;
19574 		ushort_t	type;
19575 
19576 		/*
19577 		 * When the ire was initially created and then added in
19578 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19579 		 * in the case of a traditional interface route, or as one of
19580 		 * the IRE_OFFSUBNET types (with the exception of
19581 		 * IRE_HOST types ire which is created by icmp_redirect() and
19582 		 * which we don't need to save or recover).  In the case where
19583 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19584 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19585 		 * to satisfy software like GateD and Sun Cluster which creates
19586 		 * routes using the the loopback interface's address as a
19587 		 * gateway.
19588 		 *
19589 		 * As ifrt->ifrt_type reflects the already updated ire_type and
19590 		 * since ire_create() expects that IRE_IF_NORESOLVER will have
19591 		 * a valid nce_res_mp field (which doesn't make sense for a
19592 		 * IRE_LOOPBACK), ire_create() will be called in the same way
19593 		 * here as in ip_rt_add(), namely using ipif->ipif_net_type when
19594 		 * the route looks like a traditional interface route (where
19595 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19596 		 * the saved ifrt->ifrt_type.  This means that in the case where
19597 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19598 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19599 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19600 		 */
19601 		ifrt = (ifrt_t *)mp->b_rptr;
19602 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19603 			rfq = NULL;
19604 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19605 			    ? ipif->ipif_rq : ipif->ipif_wq;
19606 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19607 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19608 			    : (uint8_t *)&ipif->ipif_src_addr;
19609 			gateway_addr = NULL;
19610 			resolver_mp = ipif->ipif_resolver_mp;
19611 			type = ipif->ipif_net_type;
19612 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19613 			/* Recover multiroute broadcast IRE. */
19614 			rfq = ipif->ipif_rq;
19615 			stq = ipif->ipif_wq;
19616 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19617 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19618 			    : (uint8_t *)&ipif->ipif_src_addr;
19619 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19620 			resolver_mp = ipif->ipif_bcast_mp;
19621 			type = ifrt->ifrt_type;
19622 		} else {
19623 			rfq = NULL;
19624 			stq = NULL;
19625 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19626 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19627 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19628 			resolver_mp = NULL;
19629 			type = ifrt->ifrt_type;
19630 		}
19631 
19632 		/*
19633 		 * Create a copy of the IRE with the saved address and netmask.
19634 		 */
19635 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19636 		    "0x%x/0x%x\n",
19637 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19638 		    ntohl(ifrt->ifrt_addr),
19639 		    ntohl(ifrt->ifrt_mask)));
19640 		ire = ire_create(
19641 		    (uint8_t *)&ifrt->ifrt_addr,
19642 		    (uint8_t *)&ifrt->ifrt_mask,
19643 		    src_addr,
19644 		    gateway_addr,
19645 		    NULL,
19646 		    &ifrt->ifrt_max_frag,
19647 		    NULL,
19648 		    rfq,
19649 		    stq,
19650 		    type,
19651 		    resolver_mp,
19652 		    ipif,
19653 		    NULL,
19654 		    0,
19655 		    0,
19656 		    0,
19657 		    ifrt->ifrt_flags,
19658 		    &ifrt->ifrt_iulp_info,
19659 		    NULL,
19660 		    NULL);
19661 
19662 		if (ire == NULL) {
19663 			mutex_exit(&ipif->ipif_saved_ire_lock);
19664 			kmem_free(ipif_saved_irep,
19665 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19666 			return (NULL);
19667 		}
19668 
19669 		/*
19670 		 * Some software (for example, GateD and Sun Cluster) attempts
19671 		 * to create (what amount to) IRE_PREFIX routes with the
19672 		 * loopback address as the gateway.  This is primarily done to
19673 		 * set up prefixes with the RTF_REJECT flag set (for example,
19674 		 * when generating aggregate routes.)
19675 		 *
19676 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19677 		 * IRE_LOOPBACK, then we map the request into a
19678 		 * IRE_IF_NORESOLVER.
19679 		 */
19680 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19681 			ire->ire_type = IRE_IF_NORESOLVER;
19682 		/*
19683 		 * ire held by ire_add, will be refreled' towards the
19684 		 * the end of ipif_up_done
19685 		 */
19686 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19687 		*irep = ire;
19688 		irep++;
19689 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19690 	}
19691 	mutex_exit(&ipif->ipif_saved_ire_lock);
19692 	return (ipif_saved_irep);
19693 }
19694 
19695 /*
19696  * Used to set the netmask and broadcast address to default values when the
19697  * interface is brought up.  (Always called as writer.)
19698  */
19699 static void
19700 ipif_set_default(ipif_t *ipif)
19701 {
19702 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19703 
19704 	if (!ipif->ipif_isv6) {
19705 		/*
19706 		 * Interface holds an IPv4 address. Default
19707 		 * mask is the natural netmask.
19708 		 */
19709 		if (!ipif->ipif_net_mask) {
19710 			ipaddr_t	v4mask;
19711 
19712 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19713 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19714 		}
19715 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19716 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19717 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19718 		} else {
19719 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19720 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19721 		}
19722 		/*
19723 		 * NOTE: SunOS 4.X does this even if the broadcast address
19724 		 * has been already set thus we do the same here.
19725 		 */
19726 		if (ipif->ipif_flags & IPIF_BROADCAST) {
19727 			ipaddr_t	v4addr;
19728 
19729 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19730 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19731 		}
19732 	} else {
19733 		/*
19734 		 * Interface holds an IPv6-only address.  Default
19735 		 * mask is all-ones.
19736 		 */
19737 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19738 			ipif->ipif_v6net_mask = ipv6_all_ones;
19739 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19740 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19741 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19742 		} else {
19743 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19744 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19745 		}
19746 	}
19747 }
19748 
19749 /*
19750  * Return 0 if this address can be used as local address without causing
19751  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19752  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19753  * Special checks are needed to allow the same IPv6 link-local address
19754  * on different ills.
19755  * TODO: allowing the same site-local address on different ill's.
19756  */
19757 int
19758 ip_addr_availability_check(ipif_t *new_ipif)
19759 {
19760 	in6_addr_t our_v6addr;
19761 	ill_t *ill;
19762 	ipif_t *ipif;
19763 	ill_walk_context_t ctx;
19764 
19765 	ASSERT(IAM_WRITER_IPIF(new_ipif));
19766 	ASSERT(MUTEX_HELD(&ip_addr_avail_lock));
19767 	ASSERT(RW_READ_HELD(&ill_g_lock));
19768 
19769 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19770 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19771 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19772 		return (0);
19773 
19774 	our_v6addr = new_ipif->ipif_v6lcl_addr;
19775 
19776 	if (new_ipif->ipif_isv6)
19777 		ill = ILL_START_WALK_V6(&ctx);
19778 	else
19779 		ill = ILL_START_WALK_V4(&ctx);
19780 
19781 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19782 		for (ipif = ill->ill_ipif; ipif != NULL;
19783 		    ipif = ipif->ipif_next) {
19784 			if ((ipif == new_ipif) ||
19785 			    !(ipif->ipif_flags & IPIF_UP) ||
19786 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
19787 				continue;
19788 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19789 			    &our_v6addr)) {
19790 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19791 				    new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19792 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19793 				    ipif->ipif_flags |= IPIF_UNNUMBERED;
19794 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19795 				    new_ipif->ipif_ill != ill)
19796 					continue;
19797 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19798 				    new_ipif->ipif_ill != ill)
19799 					continue;
19800 				else if (new_ipif->ipif_zoneid !=
19801 				    ipif->ipif_zoneid &&
19802 				    ipif->ipif_zoneid != ALL_ZONES &&
19803 				    (ill->ill_phyint->phyint_flags &
19804 				    PHYI_LOOPBACK))
19805 					continue;
19806 				else if (new_ipif->ipif_ill == ill)
19807 					return (EADDRINUSE);
19808 				else
19809 					return (EADDRNOTAVAIL);
19810 			}
19811 		}
19812 	}
19813 
19814 	return (0);
19815 }
19816 
19817 /*
19818  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19819  * IREs for the ipif.
19820  * When the routine returns EINPROGRESS then mp has been consumed and
19821  * the ioctl will be acked from ip_rput_dlpi.
19822  */
19823 static int
19824 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19825 {
19826 	ill_t	*ill = ipif->ipif_ill;
19827 	boolean_t isv6 = ipif->ipif_isv6;
19828 	int	err = 0;
19829 	boolean_t success;
19830 
19831 	ASSERT(IAM_WRITER_IPIF(ipif));
19832 
19833 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19834 
19835 	/* Shouldn't get here if it is already up. */
19836 	if (ipif->ipif_flags & IPIF_UP)
19837 		return (EALREADY);
19838 
19839 	/* Skip arp/ndp for any loopback interface. */
19840 	if (ill->ill_wq != NULL) {
19841 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
19842 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
19843 
19844 		if (!ill->ill_dl_up) {
19845 			/*
19846 			 * ill_dl_up is not yet set. i.e. we are yet to
19847 			 * DL_BIND with the driver and this is the first
19848 			 * logical interface on the ill to become "up".
19849 			 * Tell the driver to get going (via DL_BIND_REQ).
19850 			 * Note that changing "significant" IFF_ flags
19851 			 * address/netmask etc cause a down/up dance, but
19852 			 * does not cause an unbind (DL_UNBIND) with the driver
19853 			 */
19854 			return (ill_dl_up(ill, ipif, mp, q));
19855 		}
19856 
19857 		/*
19858 		 * ipif_resolver_up may end up sending an
19859 		 * AR_INTERFACE_UP message to ARP, which would, in
19860 		 * turn send a DLPI message to the driver. ioctls are
19861 		 * serialized and so we cannot send more than one
19862 		 * interface up message at a time. If ipif_resolver_up
19863 		 * does send an interface up message to ARP, we get
19864 		 * EINPROGRESS and we will complete in ip_arp_done.
19865 		 */
19866 
19867 		ASSERT(connp != NULL || !CONN_Q(q));
19868 		ASSERT(ipsq->ipsq_pending_mp == NULL);
19869 		if (connp != NULL)
19870 			mutex_enter(&connp->conn_lock);
19871 		mutex_enter(&ill->ill_lock);
19872 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19873 		mutex_exit(&ill->ill_lock);
19874 		if (connp != NULL)
19875 			mutex_exit(&connp->conn_lock);
19876 		if (!success)
19877 			return (EINTR);
19878 
19879 		/*
19880 		 * Crank up IPv6 neighbor discovery
19881 		 * Unlike ARP, this should complete when
19882 		 * ipif_ndp_up returns. However, for
19883 		 * ILLF_XRESOLV interfaces we also send a
19884 		 * AR_INTERFACE_UP to the external resolver.
19885 		 * That ioctl will complete in ip_rput.
19886 		 */
19887 		if (isv6) {
19888 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr);
19889 			if (err != 0) {
19890 				if (err != EINPROGRESS)
19891 					mp = ipsq_pending_mp_get(ipsq, &connp);
19892 				return (err);
19893 			}
19894 		}
19895 		/* Now, ARP */
19896 		err = ipif_resolver_up(ipif, Res_act_initial);
19897 		if (err == EINPROGRESS) {
19898 			/* We will complete it in ip_arp_done */
19899 			return (err);
19900 		}
19901 		mp = ipsq_pending_mp_get(ipsq, &connp);
19902 		ASSERT(mp != NULL);
19903 		if (err != 0)
19904 			return (err);
19905 	} else {
19906 		/*
19907 		 * Interfaces without underlying hardware don't do duplicate
19908 		 * address detection.
19909 		 */
19910 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19911 		ipif->ipif_addr_ready = 1;
19912 	}
19913 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19914 }
19915 
19916 /*
19917  * Perform a bind for the physical device.
19918  * When the routine returns EINPROGRESS then mp has been consumed and
19919  * the ioctl will be acked from ip_rput_dlpi.
19920  * Allocate an unbind message and save it until ipif_down.
19921  */
19922 static int
19923 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19924 {
19925 	mblk_t	*areq_mp = NULL;
19926 	mblk_t	*bind_mp = NULL;
19927 	mblk_t	*unbind_mp = NULL;
19928 	conn_t	*connp;
19929 	boolean_t success;
19930 
19931 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19932 	ASSERT(IAM_WRITER_ILL(ill));
19933 
19934 	ASSERT(mp != NULL);
19935 
19936 	/* Create a resolver cookie for ARP */
19937 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19938 		areq_t		*areq;
19939 		uint16_t	sap_addr;
19940 
19941 		areq_mp = ill_arp_alloc(ill,
19942 			(uchar_t *)&ip_areq_template, 0);
19943 		if (areq_mp == NULL) {
19944 			return (ENOMEM);
19945 		}
19946 		freemsg(ill->ill_resolver_mp);
19947 		ill->ill_resolver_mp = areq_mp;
19948 		areq = (areq_t *)areq_mp->b_rptr;
19949 		sap_addr = ill->ill_sap;
19950 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19951 		/*
19952 		 * Wait till we call ill_pending_mp_add to determine
19953 		 * the success before we free the ill_resolver_mp and
19954 		 * attach areq_mp in it's place.
19955 		 */
19956 	}
19957 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19958 	    DL_BIND_REQ);
19959 	if (bind_mp == NULL)
19960 		goto bad;
19961 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19962 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19963 
19964 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19965 	if (unbind_mp == NULL)
19966 		goto bad;
19967 
19968 	/*
19969 	 * Record state needed to complete this operation when the
19970 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
19971 	 */
19972 	ASSERT(WR(q)->q_next == NULL);
19973 	connp = Q_TO_CONN(q);
19974 
19975 	mutex_enter(&connp->conn_lock);
19976 	mutex_enter(&ipif->ipif_ill->ill_lock);
19977 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19978 	mutex_exit(&ipif->ipif_ill->ill_lock);
19979 	mutex_exit(&connp->conn_lock);
19980 	if (!success)
19981 		goto bad;
19982 
19983 	/*
19984 	 * Save the unbind message for ill_dl_down(); it will be consumed when
19985 	 * the interface goes down.
19986 	 */
19987 	ASSERT(ill->ill_unbind_mp == NULL);
19988 	ill->ill_unbind_mp = unbind_mp;
19989 
19990 	ill_dlpi_send(ill, bind_mp);
19991 	/* Send down link-layer capabilities probe if not already done. */
19992 	ill_capability_probe(ill);
19993 
19994 	/*
19995 	 * Sysid used to rely on the fact that netboots set domainname
19996 	 * and the like. Now that miniroot boots aren't strictly netboots
19997 	 * and miniroot network configuration is driven from userland
19998 	 * these things still need to be set. This situation can be detected
19999 	 * by comparing the interface being configured here to the one
20000 	 * dhcack was set to reference by the boot loader. Once sysid is
20001 	 * converted to use dhcp_ipc_getinfo() this call can go away.
20002 	 */
20003 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
20004 	    (strcmp(ill->ill_name, dhcack) == 0) &&
20005 	    (strlen(srpc_domain) == 0)) {
20006 		if (dhcpinit() != 0)
20007 			cmn_err(CE_WARN, "no cached dhcp response");
20008 	}
20009 
20010 	/*
20011 	 * This operation will complete in ip_rput_dlpi with either
20012 	 * a DL_BIND_ACK or DL_ERROR_ACK.
20013 	 */
20014 	return (EINPROGRESS);
20015 bad:
20016 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
20017 	/*
20018 	 * We don't have to check for possible removal from illgrp
20019 	 * as we have not yet inserted in illgrp. For groups
20020 	 * without names, this ipif is still not UP and hence
20021 	 * this could not have possibly had any influence in forming
20022 	 * groups.
20023 	 */
20024 
20025 	freemsg(bind_mp);
20026 	freemsg(unbind_mp);
20027 	return (ENOMEM);
20028 }
20029 
20030 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20031 
20032 /*
20033  * DLPI and ARP is up.
20034  * Create all the IREs associated with an interface bring up multicast.
20035  * Set the interface flag and finish other initialization
20036  * that potentially had to be differed to after DL_BIND_ACK.
20037  */
20038 int
20039 ipif_up_done(ipif_t *ipif)
20040 {
20041 	ire_t	*ire_array[20];
20042 	ire_t	**irep = ire_array;
20043 	ire_t	**irep1;
20044 	ipaddr_t net_mask = 0;
20045 	ipaddr_t subnet_mask, route_mask;
20046 	ill_t	*ill = ipif->ipif_ill;
20047 	queue_t	*stq;
20048 	ipif_t	 *src_ipif;
20049 	ipif_t   *tmp_ipif;
20050 	boolean_t	flush_ire_cache = B_TRUE;
20051 	int	err = 0;
20052 	phyint_t *phyi;
20053 	ire_t	**ipif_saved_irep = NULL;
20054 	int ipif_saved_ire_cnt;
20055 	int	cnt;
20056 	boolean_t	src_ipif_held = B_FALSE;
20057 	boolean_t	ire_added = B_FALSE;
20058 	boolean_t	loopback = B_FALSE;
20059 
20060 	ip1dbg(("ipif_up_done(%s:%u)\n",
20061 		ipif->ipif_ill->ill_name, ipif->ipif_id));
20062 	/* Check if this is a loopback interface */
20063 	if (ipif->ipif_ill->ill_wq == NULL)
20064 		loopback = B_TRUE;
20065 
20066 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20067 	/*
20068 	 * If all other interfaces for this ill are down or DEPRECATED,
20069 	 * or otherwise unsuitable for source address selection, remove
20070 	 * any IRE_CACHE entries for this ill to make sure source
20071 	 * address selection gets to take this new ipif into account.
20072 	 * No need to hold ill_lock while traversing the ipif list since
20073 	 * we are writer
20074 	 */
20075 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20076 		tmp_ipif = tmp_ipif->ipif_next) {
20077 		if (((tmp_ipif->ipif_flags &
20078 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20079 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20080 		    (tmp_ipif == ipif))
20081 			continue;
20082 		/* first useable pre-existing interface */
20083 		flush_ire_cache = B_FALSE;
20084 		break;
20085 	}
20086 	if (flush_ire_cache)
20087 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20088 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20089 
20090 	/*
20091 	 * Figure out which way the send-to queue should go.  Only
20092 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20093 	 * should show up here.
20094 	 */
20095 	switch (ill->ill_net_type) {
20096 	case IRE_IF_RESOLVER:
20097 		stq = ill->ill_rq;
20098 		break;
20099 	case IRE_IF_NORESOLVER:
20100 	case IRE_LOOPBACK:
20101 		stq = ill->ill_wq;
20102 		break;
20103 	default:
20104 		return (EINVAL);
20105 	}
20106 
20107 	if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) {
20108 		/*
20109 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20110 		 * ipif_lookup_on_name(), but in the case of zones we can have
20111 		 * several loopback addresses on lo0. So all the interfaces with
20112 		 * loopback addresses need to be marked IRE_LOOPBACK.
20113 		 */
20114 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20115 		    htonl(INADDR_LOOPBACK))
20116 			ipif->ipif_ire_type = IRE_LOOPBACK;
20117 		else
20118 			ipif->ipif_ire_type = IRE_LOCAL;
20119 	}
20120 
20121 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20122 		/*
20123 		 * Can't use our source address. Select a different
20124 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20125 		 */
20126 		src_ipif = ipif_select_source(ipif->ipif_ill,
20127 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20128 		if (src_ipif == NULL)
20129 			src_ipif = ipif;	/* Last resort */
20130 		else
20131 			src_ipif_held = B_TRUE;
20132 	} else {
20133 		src_ipif = ipif;
20134 	}
20135 
20136 	/* Create all the IREs associated with this interface */
20137 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20138 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20139 
20140 		/*
20141 		 * If we're on a labeled system then make sure that zone-
20142 		 * private addresses have proper remote host database entries.
20143 		 */
20144 		if (is_system_labeled() &&
20145 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20146 		    !tsol_check_interface_address(ipif))
20147 			return (EINVAL);
20148 
20149 		/* Register the source address for __sin6_src_id */
20150 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20151 		    ipif->ipif_zoneid);
20152 		if (err != 0) {
20153 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20154 			return (err);
20155 		}
20156 
20157 		/* If the interface address is set, create the local IRE. */
20158 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20159 			(void *)ipif,
20160 			ipif->ipif_ire_type,
20161 			ntohl(ipif->ipif_lcl_addr)));
20162 		*irep++ = ire_create(
20163 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20164 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20165 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20166 		    NULL,				/* no gateway */
20167 		    NULL,
20168 		    &ip_loopback_mtuplus,		/* max frag size */
20169 		    NULL,
20170 		    ipif->ipif_rq,			/* recv-from queue */
20171 		    NULL,				/* no send-to queue */
20172 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20173 		    NULL,
20174 		    ipif,
20175 		    NULL,
20176 		    0,
20177 		    0,
20178 		    0,
20179 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20180 		    RTF_PRIVATE : 0,
20181 		    &ire_uinfo_null,
20182 		    NULL,
20183 		    NULL);
20184 	} else {
20185 		ip1dbg((
20186 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20187 		    ipif->ipif_ire_type,
20188 		    ntohl(ipif->ipif_lcl_addr),
20189 		    (uint_t)ipif->ipif_flags));
20190 	}
20191 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20192 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20193 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20194 	} else {
20195 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20196 	}
20197 
20198 	subnet_mask = ipif->ipif_net_mask;
20199 
20200 	/*
20201 	 * If mask was not specified, use natural netmask of
20202 	 * interface address. Also, store this mask back into the
20203 	 * ipif struct.
20204 	 */
20205 	if (subnet_mask == 0) {
20206 		subnet_mask = net_mask;
20207 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20208 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20209 		    ipif->ipif_v6subnet);
20210 	}
20211 
20212 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20213 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20214 	    ipif->ipif_subnet != INADDR_ANY) {
20215 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20216 
20217 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20218 			route_mask = IP_HOST_MASK;
20219 		} else {
20220 			route_mask = subnet_mask;
20221 		}
20222 
20223 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20224 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20225 			(void *)ipif, (void *)ill,
20226 			ill->ill_net_type,
20227 			ntohl(ipif->ipif_subnet)));
20228 		*irep++ = ire_create(
20229 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20230 		    (uchar_t *)&route_mask,		/* mask */
20231 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20232 		    NULL,				/* no gateway */
20233 		    NULL,
20234 		    &ipif->ipif_mtu,			/* max frag */
20235 		    NULL,
20236 		    NULL,				/* no recv queue */
20237 		    stq,				/* send-to queue */
20238 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20239 		    ill->ill_resolver_mp,		/* xmit header */
20240 		    ipif,
20241 		    NULL,
20242 		    0,
20243 		    0,
20244 		    0,
20245 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20246 		    &ire_uinfo_null,
20247 		    NULL,
20248 		    NULL);
20249 	}
20250 
20251 	/*
20252 	 * If the interface address is set, create the broadcast IREs.
20253 	 *
20254 	 * ire_create_bcast checks if the proposed new IRE matches
20255 	 * any existing IRE's with the same physical interface (ILL).
20256 	 * This should get rid of duplicates.
20257 	 * ire_create_bcast also check IPIF_NOXMIT and does not create
20258 	 * any broadcast ires.
20259 	 */
20260 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20261 	    (ipif->ipif_flags & IPIF_BROADCAST)) {
20262 		ipaddr_t addr;
20263 
20264 		ip1dbg(("ipif_up_done: creating broadcast IRE\n"));
20265 		irep = ire_check_and_create_bcast(ipif, 0, irep,
20266 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20267 		irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep,
20268 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20269 
20270 		/*
20271 		 * For backward compatibility, we need to create net
20272 		 * broadcast ire's based on the old "IP address class
20273 		 * system."  The reason is that some old machines only
20274 		 * respond to these class derived net broadcast.
20275 		 *
20276 		 * But we should not create these net broadcast ire's if
20277 		 * the subnet_mask is shorter than the IP address class based
20278 		 * derived netmask.  Otherwise, we may create a net
20279 		 * broadcast address which is the same as an IP address
20280 		 * on the subnet.  Then TCP will refuse to talk to that
20281 		 * address.
20282 		 *
20283 		 * Nor do we need IRE_BROADCAST ire's for the interface
20284 		 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that
20285 		 * interface is already created.  Creating these broadcast
20286 		 * ire's will only create confusion as the "addr" is going
20287 		 * to be same as that of the IP address of the interface.
20288 		 */
20289 		if (net_mask < subnet_mask) {
20290 			addr = net_mask & ipif->ipif_subnet;
20291 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20292 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20293 			irep = ire_check_and_create_bcast(ipif,
20294 			    ~net_mask | addr, irep,
20295 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20296 		}
20297 
20298 		if (subnet_mask != 0xFFFFFFFF) {
20299 			addr = ipif->ipif_subnet;
20300 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20301 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20302 			irep = ire_check_and_create_bcast(ipif,
20303 			    ~subnet_mask|addr, irep,
20304 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20305 		}
20306 	}
20307 
20308 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20309 
20310 	/* If an earlier ire_create failed, get out now */
20311 	for (irep1 = irep; irep1 > ire_array; ) {
20312 		irep1--;
20313 		if (*irep1 == NULL) {
20314 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20315 			err = ENOMEM;
20316 			goto bad;
20317 		}
20318 	}
20319 
20320 	/*
20321 	 * Need to atomically check for ip_addr_availablity_check
20322 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20323 	 * from group also.The ill_g_lock is grabbed as reader
20324 	 * just to make sure no new ills or new ipifs are being added
20325 	 * to the system while we are checking the uniqueness of addresses.
20326 	 */
20327 	rw_enter(&ill_g_lock, RW_READER);
20328 	mutex_enter(&ip_addr_avail_lock);
20329 	/* Mark it up, and increment counters. */
20330 	ipif->ipif_flags |= IPIF_UP;
20331 	ill->ill_ipif_up_count++;
20332 	err = ip_addr_availability_check(ipif);
20333 	mutex_exit(&ip_addr_avail_lock);
20334 	rw_exit(&ill_g_lock);
20335 
20336 	if (err != 0) {
20337 		/*
20338 		 * Our address may already be up on the same ill. In this case,
20339 		 * the ARP entry for our ipif replaced the one for the other
20340 		 * ipif. So we don't want to delete it (otherwise the other ipif
20341 		 * would be unable to send packets).
20342 		 * ip_addr_availability_check() identifies this case for us and
20343 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20344 		 * which is the expected error code.
20345 		 */
20346 		if (err == EADDRINUSE) {
20347 			freemsg(ipif->ipif_arp_del_mp);
20348 			ipif->ipif_arp_del_mp = NULL;
20349 			err = EADDRNOTAVAIL;
20350 		}
20351 		ill->ill_ipif_up_count--;
20352 		ipif->ipif_flags &= ~IPIF_UP;
20353 		goto bad;
20354 	}
20355 
20356 	/*
20357 	 * Add in all newly created IREs.  ire_create_bcast() has
20358 	 * already checked for duplicates of the IRE_BROADCAST type.
20359 	 * We want to add before we call ifgrp_insert which wants
20360 	 * to know whether IRE_IF_RESOLVER exists or not.
20361 	 *
20362 	 * NOTE : We refrele the ire though we may branch to "bad"
20363 	 *	  later on where we do ire_delete. This is okay
20364 	 *	  because nobody can delete it as we are running
20365 	 *	  exclusively.
20366 	 */
20367 	for (irep1 = irep; irep1 > ire_array; ) {
20368 		irep1--;
20369 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20370 		/*
20371 		 * refheld by ire_add. refele towards the end of the func
20372 		 */
20373 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20374 	}
20375 	ire_added = B_TRUE;
20376 	/*
20377 	 * Form groups if possible.
20378 	 *
20379 	 * If we are supposed to be in a ill_group with a name, insert it
20380 	 * now as we know that at least one ipif is UP. Otherwise form
20381 	 * nameless groups.
20382 	 *
20383 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20384 	 * this ipif into the appropriate interface group, or create a
20385 	 * new one. If this is already in a nameless group, we try to form
20386 	 * a bigger group looking at other ills potentially sharing this
20387 	 * ipif's prefix.
20388 	 */
20389 	phyi = ill->ill_phyint;
20390 	if (phyi->phyint_groupname_len != 0) {
20391 		ASSERT(phyi->phyint_groupname != NULL);
20392 		if (ill->ill_ipif_up_count == 1) {
20393 			ASSERT(ill->ill_group == NULL);
20394 			err = illgrp_insert(&illgrp_head_v4, ill,
20395 			    phyi->phyint_groupname, NULL, B_TRUE);
20396 			if (err != 0) {
20397 				ip1dbg(("ipif_up_done: illgrp allocation "
20398 				    "failed, error %d\n", err));
20399 				goto bad;
20400 			}
20401 		}
20402 		ASSERT(ill->ill_group != NULL);
20403 	}
20404 
20405 	/*
20406 	 * When this is part of group, we need to make sure that
20407 	 * any broadcast ires created because of this ipif coming
20408 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20409 	 * so that we don't receive duplicate broadcast packets.
20410 	 */
20411 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20412 		ipif_renominate_bcast(ipif);
20413 
20414 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20415 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20416 	ipif_saved_irep = ipif_recover_ire(ipif);
20417 
20418 	if (!loopback) {
20419 		/*
20420 		 * If the broadcast address has been set, make sure it makes
20421 		 * sense based on the interface address.
20422 		 * Only match on ill since we are sharing broadcast addresses.
20423 		 */
20424 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20425 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20426 			ire_t	*ire;
20427 
20428 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20429 			    IRE_BROADCAST, ipif, ALL_ZONES,
20430 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20431 
20432 			if (ire == NULL) {
20433 				/*
20434 				 * If there isn't a matching broadcast IRE,
20435 				 * revert to the default for this netmask.
20436 				 */
20437 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20438 				mutex_enter(&ipif->ipif_ill->ill_lock);
20439 				ipif_set_default(ipif);
20440 				mutex_exit(&ipif->ipif_ill->ill_lock);
20441 			} else {
20442 				ire_refrele(ire);
20443 			}
20444 		}
20445 
20446 	}
20447 
20448 	/* This is the first interface on this ill */
20449 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20450 		/*
20451 		 * Need to recover all multicast memberships in the driver.
20452 		 * This had to be deferred until we had attached.
20453 		 */
20454 		ill_recover_multicast(ill);
20455 	}
20456 	/* Join the allhosts multicast address */
20457 	ipif_multicast_up(ipif);
20458 
20459 	if (!loopback) {
20460 		/*
20461 		 * See whether anybody else would benefit from the
20462 		 * new ipif that we added. We call this always rather
20463 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20464 		 * ipif is for the benefit of illgrp_insert (done above)
20465 		 * which does not do source address selection as it does
20466 		 * not want to re-create interface routes that we are
20467 		 * having reference to it here.
20468 		 */
20469 		ill_update_source_selection(ill);
20470 	}
20471 
20472 	for (irep1 = irep; irep1 > ire_array; ) {
20473 		irep1--;
20474 		if (*irep1 != NULL) {
20475 			/* was held in ire_add */
20476 			ire_refrele(*irep1);
20477 		}
20478 	}
20479 
20480 	cnt = ipif_saved_ire_cnt;
20481 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20482 		if (*irep1 != NULL) {
20483 			/* was held in ire_add */
20484 			ire_refrele(*irep1);
20485 		}
20486 	}
20487 
20488 	if (!loopback && ipif->ipif_addr_ready) {
20489 		/* Broadcast an address mask reply. */
20490 		ipif_mask_reply(ipif);
20491 	}
20492 	if (ipif_saved_irep != NULL) {
20493 		kmem_free(ipif_saved_irep,
20494 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20495 	}
20496 	if (src_ipif_held)
20497 		ipif_refrele(src_ipif);
20498 
20499 	/*
20500 	 * This had to be deferred until we had bound.  Tell routing sockets and
20501 	 * others that this interface is up if it looks like the address has
20502 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20503 	 * duplicate address detection to do its thing.
20504 	 */
20505 	if (ipif->ipif_addr_ready) {
20506 		ip_rts_ifmsg(ipif);
20507 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20508 		/* Let SCTP update the status for this ipif */
20509 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20510 	}
20511 	return (0);
20512 
20513 bad:
20514 	ip1dbg(("ipif_up_done: FAILED \n"));
20515 	/*
20516 	 * We don't have to bother removing from ill groups because
20517 	 *
20518 	 * 1) For groups with names, we insert only when the first ipif
20519 	 *    comes up. In that case if it fails, it will not be in any
20520 	 *    group. So, we need not try to remove for that case.
20521 	 *
20522 	 * 2) For groups without names, either we tried to insert ipif_ill
20523 	 *    in a group as singleton or found some other group to become
20524 	 *    a bigger group. For the former, if it fails we don't have
20525 	 *    anything to do as ipif_ill is not in the group and for the
20526 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20527 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20528 	 */
20529 	while (irep > ire_array) {
20530 		irep--;
20531 		if (*irep != NULL) {
20532 			ire_delete(*irep);
20533 			if (ire_added)
20534 				ire_refrele(*irep);
20535 		}
20536 	}
20537 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid);
20538 
20539 	if (ipif_saved_irep != NULL) {
20540 		kmem_free(ipif_saved_irep,
20541 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20542 	}
20543 	if (src_ipif_held)
20544 		ipif_refrele(src_ipif);
20545 
20546 	ipif_arp_down(ipif);
20547 	return (err);
20548 }
20549 
20550 /*
20551  * Turn off the ARP with the ILLF_NOARP flag.
20552  */
20553 static int
20554 ill_arp_off(ill_t *ill)
20555 {
20556 	mblk_t	*arp_off_mp = NULL;
20557 	mblk_t	*arp_on_mp = NULL;
20558 
20559 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20560 
20561 	ASSERT(IAM_WRITER_ILL(ill));
20562 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20563 
20564 	/*
20565 	 * If the on message is still around we've already done
20566 	 * an arp_off without doing an arp_on thus there is no
20567 	 * work needed.
20568 	 */
20569 	if (ill->ill_arp_on_mp != NULL)
20570 		return (0);
20571 
20572 	/*
20573 	 * Allocate an ARP on message (to be saved) and an ARP off message
20574 	 */
20575 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20576 	if (!arp_off_mp)
20577 		return (ENOMEM);
20578 
20579 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20580 	if (!arp_on_mp)
20581 		goto failed;
20582 
20583 	ASSERT(ill->ill_arp_on_mp == NULL);
20584 	ill->ill_arp_on_mp = arp_on_mp;
20585 
20586 	/* Send an AR_INTERFACE_OFF request */
20587 	putnext(ill->ill_rq, arp_off_mp);
20588 	return (0);
20589 failed:
20590 
20591 	if (arp_off_mp)
20592 		freemsg(arp_off_mp);
20593 	return (ENOMEM);
20594 }
20595 
20596 /*
20597  * Turn on ARP by turning off the ILLF_NOARP flag.
20598  */
20599 static int
20600 ill_arp_on(ill_t *ill)
20601 {
20602 	mblk_t	*mp;
20603 
20604 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20605 
20606 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20607 
20608 	ASSERT(IAM_WRITER_ILL(ill));
20609 	/*
20610 	 * Send an AR_INTERFACE_ON request if we have already done
20611 	 * an arp_off (which allocated the message).
20612 	 */
20613 	if (ill->ill_arp_on_mp != NULL) {
20614 		mp = ill->ill_arp_on_mp;
20615 		ill->ill_arp_on_mp = NULL;
20616 		putnext(ill->ill_rq, mp);
20617 	}
20618 	return (0);
20619 }
20620 
20621 /*
20622  * Called after either deleting ill from the group or when setting
20623  * FAILED or STANDBY on the interface.
20624  */
20625 static void
20626 illgrp_reset_schednext(ill_t *ill)
20627 {
20628 	ill_group_t *illgrp;
20629 	ill_t *save_ill;
20630 
20631 	ASSERT(IAM_WRITER_ILL(ill));
20632 	/*
20633 	 * When called from illgrp_delete, ill_group will be non-NULL.
20634 	 * But when called from ip_sioctl_flags, it could be NULL if
20635 	 * somebody is setting FAILED/INACTIVE on some interface which
20636 	 * is not part of a group.
20637 	 */
20638 	illgrp = ill->ill_group;
20639 	if (illgrp == NULL)
20640 		return;
20641 	if (illgrp->illgrp_ill_schednext != ill)
20642 		return;
20643 
20644 	illgrp->illgrp_ill_schednext = NULL;
20645 	save_ill = ill;
20646 	/*
20647 	 * Choose a good ill to be the next one for
20648 	 * outbound traffic. As the flags FAILED/STANDBY is
20649 	 * not yet marked when called from ip_sioctl_flags,
20650 	 * we check for ill separately.
20651 	 */
20652 	for (ill = illgrp->illgrp_ill; ill != NULL;
20653 	    ill = ill->ill_group_next) {
20654 		if ((ill != save_ill) &&
20655 		    !(ill->ill_phyint->phyint_flags &
20656 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20657 			illgrp->illgrp_ill_schednext = ill;
20658 			return;
20659 		}
20660 	}
20661 }
20662 
20663 /*
20664  * Given an ill, find the next ill in the group to be scheduled.
20665  * (This should be called by ip_newroute() before ire_create().)
20666  * The passed in ill may be pulled out of the group, after we have picked
20667  * up a different outgoing ill from the same group. However ire add will
20668  * atomically check this.
20669  */
20670 ill_t *
20671 illgrp_scheduler(ill_t *ill)
20672 {
20673 	ill_t *retill;
20674 	ill_group_t *illgrp;
20675 	int illcnt;
20676 	int i;
20677 	uint64_t flags;
20678 
20679 	/*
20680 	 * We don't use a lock to check for the ill_group. If this ill
20681 	 * is currently being inserted we may end up just returning this
20682 	 * ill itself. That is ok.
20683 	 */
20684 	if (ill->ill_group == NULL) {
20685 		ill_refhold(ill);
20686 		return (ill);
20687 	}
20688 
20689 	/*
20690 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20691 	 * a set of stable ills. No ill can be added or deleted or change
20692 	 * group while we hold the reader lock.
20693 	 */
20694 	rw_enter(&ill_g_lock, RW_READER);
20695 	if ((illgrp = ill->ill_group) == NULL) {
20696 		rw_exit(&ill_g_lock);
20697 		ill_refhold(ill);
20698 		return (ill);
20699 	}
20700 
20701 	illcnt = illgrp->illgrp_ill_count;
20702 	mutex_enter(&illgrp->illgrp_lock);
20703 	retill = illgrp->illgrp_ill_schednext;
20704 
20705 	if (retill == NULL)
20706 		retill = illgrp->illgrp_ill;
20707 
20708 	/*
20709 	 * We do a circular search beginning at illgrp_ill_schednext
20710 	 * or illgrp_ill. We don't check the flags against the ill lock
20711 	 * since it can change anytime. The ire creation will be atomic
20712 	 * and will fail if the ill is FAILED or OFFLINE.
20713 	 */
20714 	for (i = 0; i < illcnt; i++) {
20715 		flags = retill->ill_phyint->phyint_flags;
20716 
20717 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20718 		    ILL_CAN_LOOKUP(retill)) {
20719 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
20720 			ill_refhold(retill);
20721 			break;
20722 		}
20723 		retill = retill->ill_group_next;
20724 		if (retill == NULL)
20725 			retill = illgrp->illgrp_ill;
20726 	}
20727 	mutex_exit(&illgrp->illgrp_lock);
20728 	rw_exit(&ill_g_lock);
20729 
20730 	return (i == illcnt ? NULL : retill);
20731 }
20732 
20733 /*
20734  * Checks for availbility of a usable source address (if there is one) when the
20735  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20736  * this selection is done regardless of the destination.
20737  */
20738 boolean_t
20739 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20740 {
20741 	uint_t	ifindex;
20742 	ipif_t	*ipif = NULL;
20743 	ill_t	*uill;
20744 	boolean_t isv6;
20745 
20746 	ASSERT(ill != NULL);
20747 
20748 	isv6 = ill->ill_isv6;
20749 	ifindex = ill->ill_usesrc_ifindex;
20750 	if (ifindex != 0) {
20751 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20752 		    NULL);
20753 		if (uill == NULL)
20754 			return (NULL);
20755 		mutex_enter(&uill->ill_lock);
20756 		for (ipif = uill->ill_ipif; ipif != NULL;
20757 		    ipif = ipif->ipif_next) {
20758 			if (!IPIF_CAN_LOOKUP(ipif))
20759 				continue;
20760 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20761 				continue;
20762 			if (!(ipif->ipif_flags & IPIF_UP))
20763 				continue;
20764 			if (ipif->ipif_zoneid != zoneid)
20765 				continue;
20766 			if ((isv6 &&
20767 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20768 			    (ipif->ipif_lcl_addr == INADDR_ANY))
20769 				continue;
20770 			mutex_exit(&uill->ill_lock);
20771 			ill_refrele(uill);
20772 			return (B_TRUE);
20773 		}
20774 		mutex_exit(&uill->ill_lock);
20775 		ill_refrele(uill);
20776 	}
20777 	return (B_FALSE);
20778 }
20779 
20780 /*
20781  * Determine the best source address given a destination address and an ill.
20782  * Prefers non-deprecated over deprecated but will return a deprecated
20783  * address if there is no other choice. If there is a usable source address
20784  * on the interface pointed to by ill_usesrc_ifindex then that is given
20785  * first preference.
20786  *
20787  * Returns NULL if there is no suitable source address for the ill.
20788  * This only occurs when there is no valid source address for the ill.
20789  */
20790 ipif_t *
20791 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20792 {
20793 	ipif_t *ipif;
20794 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
20795 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20796 	int index = 0;
20797 	boolean_t wrapped = B_FALSE;
20798 	boolean_t same_subnet_only = B_FALSE;
20799 	boolean_t ipif_same_found, ipif_other_found;
20800 	boolean_t specific_found;
20801 	ill_t	*till, *usill = NULL;
20802 	tsol_tpc_t *src_rhtp, *dst_rhtp;
20803 
20804 	if (ill->ill_usesrc_ifindex != 0) {
20805 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE,
20806 		    NULL, NULL, NULL, NULL);
20807 		if (usill != NULL)
20808 			ill = usill;	/* Select source from usesrc ILL */
20809 		else
20810 			return (NULL);
20811 	}
20812 
20813 	/*
20814 	 * If we're dealing with an unlabeled destination on a labeled system,
20815 	 * make sure that we ignore source addresses that are incompatible with
20816 	 * the destination's default label.  That destination's default label
20817 	 * must dominate the minimum label on the source address.
20818 	 */
20819 	dst_rhtp = NULL;
20820 	if (is_system_labeled()) {
20821 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20822 		if (dst_rhtp == NULL)
20823 			return (NULL);
20824 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20825 			TPC_RELE(dst_rhtp);
20826 			dst_rhtp = NULL;
20827 		}
20828 	}
20829 
20830 	/*
20831 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20832 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20833 	 * After selecting the right ipif, under ill_lock make sure ipif is
20834 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20835 	 * we retry. Inside the loop we still need to check for CONDEMNED,
20836 	 * but not under a lock.
20837 	 */
20838 	rw_enter(&ill_g_lock, RW_READER);
20839 
20840 retry:
20841 	till = ill;
20842 	ipif_arr[0] = NULL;
20843 
20844 	if (till->ill_group != NULL)
20845 		till = till->ill_group->illgrp_ill;
20846 
20847 	/*
20848 	 * Choose one good source address from each ill across the group.
20849 	 * If possible choose a source address in the same subnet as
20850 	 * the destination address.
20851 	 *
20852 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20853 	 * This is okay because of the following.
20854 	 *
20855 	 *    If PHYI_FAILED is set and we still have non-deprecated
20856 	 *    addresses, it means the addresses have not yet been
20857 	 *    failed over to a different interface. We potentially
20858 	 *    select them to create IRE_CACHES, which will be later
20859 	 *    flushed when the addresses move over.
20860 	 *
20861 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
20862 	 *    addresses, it means either the user has configured them
20863 	 *    or PHYI_INACTIVE has not been cleared after the addresses
20864 	 *    been moved over. For the former, in.mpathd does a failover
20865 	 *    when the interface becomes INACTIVE and hence we should
20866 	 *    not find them. Once INACTIVE is set, we don't allow them
20867 	 *    to create logical interfaces anymore. For the latter, a
20868 	 *    flush will happen when INACTIVE is cleared which will
20869 	 *    flush the IRE_CACHES.
20870 	 *
20871 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
20872 	 *    over soon. We potentially select them to create IRE_CACHEs,
20873 	 *    which will be later flushed when the addresses move over.
20874 	 *
20875 	 * NOTE : As ipif_select_source is called to borrow source address
20876 	 * for an ipif that is part of a group, source address selection
20877 	 * will be re-done whenever the group changes i.e either an
20878 	 * insertion/deletion in the group.
20879 	 *
20880 	 * Fill ipif_arr[] with source addresses, using these rules:
20881 	 *
20882 	 *	1. At most one source address from a given ill ends up
20883 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
20884 	 *	   associated with a given ill ends up in ipif_arr[].
20885 	 *
20886 	 *	2. If there is at least one non-deprecated ipif in the
20887 	 *	   IPMP group with a source address on the same subnet as
20888 	 *	   our destination, then fill ipif_arr[] only with
20889 	 *	   source addresses on the same subnet as our destination.
20890 	 *	   Note that because of (1), only the first
20891 	 *	   non-deprecated ipif found with a source address
20892 	 *	   matching the destination ends up in ipif_arr[].
20893 	 *
20894 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
20895 	 *	   addresses not in the same subnet as our destination.
20896 	 *	   Again, because of (1), only the first off-subnet source
20897 	 *	   address will be chosen.
20898 	 *
20899 	 *	4. If there are no non-deprecated ipifs, then just use
20900 	 *	   the source address associated with the last deprecated
20901 	 *	   one we find that happens to be on the same subnet,
20902 	 *	   otherwise the first one not in the same subnet.
20903 	 */
20904 	specific_found = B_FALSE;
20905 	for (; till != NULL; till = till->ill_group_next) {
20906 		ipif_same_found = B_FALSE;
20907 		ipif_other_found = B_FALSE;
20908 		for (ipif = till->ill_ipif; ipif != NULL;
20909 		    ipif = ipif->ipif_next) {
20910 			if (!IPIF_CAN_LOOKUP(ipif))
20911 				continue;
20912 			/* Always skip NOLOCAL and ANYCAST interfaces */
20913 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20914 				continue;
20915 			if (!(ipif->ipif_flags & IPIF_UP) ||
20916 			    !ipif->ipif_addr_ready)
20917 				continue;
20918 			if (ipif->ipif_zoneid != zoneid &&
20919 			    ipif->ipif_zoneid != ALL_ZONES)
20920 				continue;
20921 			/*
20922 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
20923 			 * but are not valid as source addresses.
20924 			 */
20925 			if (ipif->ipif_lcl_addr == INADDR_ANY)
20926 				continue;
20927 
20928 			/*
20929 			 * Check compatibility of local address for
20930 			 * destination's default label if we're on a labeled
20931 			 * system.  Incompatible addresses can't be used at
20932 			 * all.
20933 			 */
20934 			if (dst_rhtp != NULL) {
20935 				boolean_t incompat;
20936 
20937 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20938 				    IPV4_VERSION, B_FALSE);
20939 				if (src_rhtp == NULL)
20940 					continue;
20941 				incompat =
20942 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20943 				    src_rhtp->tpc_tp.tp_doi !=
20944 				    dst_rhtp->tpc_tp.tp_doi ||
20945 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20946 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20947 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20948 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
20949 				TPC_RELE(src_rhtp);
20950 				if (incompat)
20951 					continue;
20952 			}
20953 
20954 			/*
20955 			 * We prefer not to use all all-zones addresses, if we
20956 			 * can avoid it, as they pose problems with unlabeled
20957 			 * destinations.
20958 			 */
20959 			if (ipif->ipif_zoneid != ALL_ZONES) {
20960 				if (!specific_found &&
20961 				    (!same_subnet_only ||
20962 				    (ipif->ipif_net_mask & dst) ==
20963 				    ipif->ipif_subnet)) {
20964 					index = 0;
20965 					specific_found = B_TRUE;
20966 					ipif_other_found = B_FALSE;
20967 				}
20968 			} else {
20969 				if (specific_found)
20970 					continue;
20971 			}
20972 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
20973 				if (ipif_dep == NULL ||
20974 				    (ipif->ipif_net_mask & dst) ==
20975 				    ipif->ipif_subnet)
20976 					ipif_dep = ipif;
20977 				continue;
20978 			}
20979 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20980 				/* found a source address in the same subnet */
20981 				if (!same_subnet_only) {
20982 					same_subnet_only = B_TRUE;
20983 					index = 0;
20984 				}
20985 				ipif_same_found = B_TRUE;
20986 			} else {
20987 				if (same_subnet_only || ipif_other_found)
20988 					continue;
20989 				ipif_other_found = B_TRUE;
20990 			}
20991 			ipif_arr[index++] = ipif;
20992 			if (index == MAX_IPIF_SELECT_SOURCE) {
20993 				wrapped = B_TRUE;
20994 				index = 0;
20995 			}
20996 			if (ipif_same_found)
20997 				break;
20998 		}
20999 	}
21000 
21001 	if (ipif_arr[0] == NULL) {
21002 		ipif = ipif_dep;
21003 	} else {
21004 		if (wrapped)
21005 			index = MAX_IPIF_SELECT_SOURCE;
21006 		ipif = ipif_arr[ipif_rand() % index];
21007 		ASSERT(ipif != NULL);
21008 	}
21009 
21010 	if (ipif != NULL) {
21011 		mutex_enter(&ipif->ipif_ill->ill_lock);
21012 		if (!IPIF_CAN_LOOKUP(ipif)) {
21013 			mutex_exit(&ipif->ipif_ill->ill_lock);
21014 			goto retry;
21015 		}
21016 		ipif_refhold_locked(ipif);
21017 		mutex_exit(&ipif->ipif_ill->ill_lock);
21018 	}
21019 
21020 	rw_exit(&ill_g_lock);
21021 	if (usill != NULL)
21022 		ill_refrele(usill);
21023 	if (dst_rhtp != NULL)
21024 		TPC_RELE(dst_rhtp);
21025 
21026 #ifdef DEBUG
21027 	if (ipif == NULL) {
21028 		char buf1[INET6_ADDRSTRLEN];
21029 
21030 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
21031 		    ill->ill_name,
21032 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
21033 	} else {
21034 		char buf1[INET6_ADDRSTRLEN];
21035 		char buf2[INET6_ADDRSTRLEN];
21036 
21037 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
21038 		    ipif->ipif_ill->ill_name,
21039 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
21040 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
21041 		    buf2, sizeof (buf2))));
21042 	}
21043 #endif /* DEBUG */
21044 	return (ipif);
21045 }
21046 
21047 
21048 /*
21049  * If old_ipif is not NULL, see if ipif was derived from old
21050  * ipif and if so, recreate the interface route by re-doing
21051  * source address selection. This happens when ipif_down ->
21052  * ipif_update_other_ipifs calls us.
21053  *
21054  * If old_ipif is NULL, just redo the source address selection
21055  * if needed. This happens when illgrp_insert or ipif_up_done
21056  * calls us.
21057  */
21058 static void
21059 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
21060 {
21061 	ire_t *ire;
21062 	ire_t *ipif_ire;
21063 	queue_t *stq;
21064 	ipif_t *nipif;
21065 	ill_t *ill;
21066 	boolean_t need_rele = B_FALSE;
21067 
21068 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
21069 	ASSERT(IAM_WRITER_IPIF(ipif));
21070 
21071 	ill = ipif->ipif_ill;
21072 	if (!(ipif->ipif_flags &
21073 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
21074 		/*
21075 		 * Can't possibly have borrowed the source
21076 		 * from old_ipif.
21077 		 */
21078 		return;
21079 	}
21080 
21081 	/*
21082 	 * Is there any work to be done? No work if the address
21083 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21084 	 * ipif_select_source() does not borrow addresses from
21085 	 * NOLOCAL and ANYCAST interfaces).
21086 	 */
21087 	if ((old_ipif != NULL) &&
21088 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21089 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21090 	    (old_ipif->ipif_flags &
21091 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21092 		return;
21093 	}
21094 
21095 	/*
21096 	 * Perform the same checks as when creating the
21097 	 * IRE_INTERFACE in ipif_up_done.
21098 	 */
21099 	if (!(ipif->ipif_flags & IPIF_UP))
21100 		return;
21101 
21102 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21103 	    (ipif->ipif_subnet == INADDR_ANY))
21104 		return;
21105 
21106 	ipif_ire = ipif_to_ire(ipif);
21107 	if (ipif_ire == NULL)
21108 		return;
21109 
21110 	/*
21111 	 * We know that ipif uses some other source for its
21112 	 * IRE_INTERFACE. Is it using the source of this
21113 	 * old_ipif?
21114 	 */
21115 	if (old_ipif != NULL &&
21116 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21117 		ire_refrele(ipif_ire);
21118 		return;
21119 	}
21120 	if (ip_debug > 2) {
21121 		/* ip1dbg */
21122 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21123 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21124 	}
21125 
21126 	stq = ipif_ire->ire_stq;
21127 
21128 	/*
21129 	 * Can't use our source address. Select a different
21130 	 * source address for the IRE_INTERFACE.
21131 	 */
21132 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21133 	if (nipif == NULL) {
21134 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21135 		nipif = ipif;
21136 	} else {
21137 		need_rele = B_TRUE;
21138 	}
21139 
21140 	ire = ire_create(
21141 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21142 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21143 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21144 	    NULL,				/* no gateway */
21145 	    NULL,
21146 	    &ipif->ipif_mtu,			/* max frag */
21147 	    NULL,				/* fast path header */
21148 	    NULL,				/* no recv from queue */
21149 	    stq,				/* send-to queue */
21150 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21151 	    ill->ill_resolver_mp,		/* xmit header */
21152 	    ipif,
21153 	    NULL,
21154 	    0,
21155 	    0,
21156 	    0,
21157 	    0,
21158 	    &ire_uinfo_null,
21159 	    NULL,
21160 	    NULL);
21161 
21162 	if (ire != NULL) {
21163 		ire_t *ret_ire;
21164 		int error;
21165 
21166 		/*
21167 		 * We don't need ipif_ire anymore. We need to delete
21168 		 * before we add so that ire_add does not detect
21169 		 * duplicates.
21170 		 */
21171 		ire_delete(ipif_ire);
21172 		ret_ire = ire;
21173 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21174 		ASSERT(error == 0);
21175 		ASSERT(ire == ret_ire);
21176 		/* Held in ire_add */
21177 		ire_refrele(ret_ire);
21178 	}
21179 	/*
21180 	 * Either we are falling through from above or could not
21181 	 * allocate a replacement.
21182 	 */
21183 	ire_refrele(ipif_ire);
21184 	if (need_rele)
21185 		ipif_refrele(nipif);
21186 }
21187 
21188 /*
21189  * This old_ipif is going away.
21190  *
21191  * Determine if any other ipif's is using our address as
21192  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21193  * IPIF_DEPRECATED).
21194  * Find the IRE_INTERFACE for such ipifs and recreate them
21195  * to use an different source address following the rules in
21196  * ipif_up_done.
21197  *
21198  * This function takes an illgrp as an argument so that illgrp_delete
21199  * can call this to update source address even after deleting the
21200  * old_ipif->ipif_ill from the ill group.
21201  */
21202 static void
21203 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21204 {
21205 	ipif_t *ipif;
21206 	ill_t *ill;
21207 	char	buf[INET6_ADDRSTRLEN];
21208 
21209 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21210 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21211 
21212 	ill = old_ipif->ipif_ill;
21213 
21214 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21215 	    ill->ill_name,
21216 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21217 	    buf, sizeof (buf))));
21218 	/*
21219 	 * If this part of a group, look at all ills as ipif_select_source
21220 	 * borrows source address across all the ills in the group.
21221 	 */
21222 	if (illgrp != NULL)
21223 		ill = illgrp->illgrp_ill;
21224 
21225 	for (; ill != NULL; ill = ill->ill_group_next) {
21226 		for (ipif = ill->ill_ipif; ipif != NULL;
21227 		    ipif = ipif->ipif_next) {
21228 
21229 			if (ipif == old_ipif)
21230 				continue;
21231 
21232 			ipif_recreate_interface_routes(old_ipif, ipif);
21233 		}
21234 	}
21235 }
21236 
21237 /* ARGSUSED */
21238 int
21239 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21240 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21241 {
21242 	/*
21243 	 * ill_phyint_reinit merged the v4 and v6 into a single
21244 	 * ipsq. Could also have become part of a ipmp group in the
21245 	 * process, and we might not have been able to complete the
21246 	 * operation in ipif_set_values, if we could not become
21247 	 * exclusive.  If so restart it here.
21248 	 */
21249 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21250 }
21251 
21252 
21253 /* ARGSUSED */
21254 int
21255 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21256     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21257 {
21258 	queue_t		*q1 = q;
21259 	char 		*cp;
21260 	char		interf_name[LIFNAMSIZ];
21261 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21262 
21263 	if (!q->q_next) {
21264 		ip1dbg((
21265 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21266 		return (EINVAL);
21267 	}
21268 
21269 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21270 		return (EALREADY);
21271 
21272 	do {
21273 		q1 = q1->q_next;
21274 	} while (q1->q_next);
21275 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21276 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21277 
21278 	/*
21279 	 * Here we are not going to delay the ioack until after
21280 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21281 	 * original ioctl message before sending the requests.
21282 	 */
21283 	return (ipif_set_values(q, mp, interf_name, &ppa));
21284 }
21285 
21286 /* ARGSUSED */
21287 int
21288 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21289     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21290 {
21291 	return (ENXIO);
21292 }
21293 
21294 /*
21295  * Net and subnet broadcast ire's are now specific to the particular
21296  * physical interface (ill) and not to any one locigal interface (ipif).
21297  * However, if a particular logical interface is being taken down, it's
21298  * associated ire's will be taken down as well.  Hence, when we go to
21299  * take down or change the local address, broadcast address or netmask
21300  * of a specific logical interface, we must check to make sure that we
21301  * have valid net and subnet broadcast ire's for the other logical
21302  * interfaces which may have been shared with the logical interface
21303  * being brought down or changed.
21304  *
21305  * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it
21306  * is tied to the first interface coming UP. If that ipif is going down,
21307  * we need to recreate them on the next valid ipif.
21308  *
21309  * Note: assume that the ipif passed in is still up so that it's IRE
21310  * entries are still valid.
21311  */
21312 static void
21313 ipif_check_bcast_ires(ipif_t *test_ipif)
21314 {
21315 	ipif_t	*ipif;
21316 	ire_t	*test_subnet_ire, *test_net_ire;
21317 	ire_t	*test_allzero_ire, *test_allone_ire;
21318 	ire_t	*ire_array[12];
21319 	ire_t	**irep = &ire_array[0];
21320 	ire_t	**irep1;
21321 
21322 	ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask;
21323 	ipaddr_t test_net_addr, test_subnet_addr;
21324 	ipaddr_t test_net_mask, test_subnet_mask;
21325 	boolean_t need_net_bcast_ire = B_FALSE;
21326 	boolean_t need_subnet_bcast_ire = B_FALSE;
21327 	boolean_t allzero_bcast_ire_created = B_FALSE;
21328 	boolean_t allone_bcast_ire_created = B_FALSE;
21329 	boolean_t net_bcast_ire_created = B_FALSE;
21330 	boolean_t subnet_bcast_ire_created = B_FALSE;
21331 
21332 	ipif_t  *backup_ipif_net = (ipif_t *)NULL;
21333 	ipif_t  *backup_ipif_subnet = (ipif_t *)NULL;
21334 	ipif_t  *backup_ipif_allzeros = (ipif_t *)NULL;
21335 	ipif_t  *backup_ipif_allones = (ipif_t *)NULL;
21336 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
21337 
21338 	ASSERT(!test_ipif->ipif_isv6);
21339 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21340 
21341 	/*
21342 	 * No broadcast IREs for the LOOPBACK interface
21343 	 * or others such as point to point and IPIF_NOXMIT.
21344 	 */
21345 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21346 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21347 		return;
21348 
21349 	test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST,
21350 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21351 
21352 	test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST,
21353 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21354 
21355 	test_net_mask = ip_net_mask(test_ipif->ipif_subnet);
21356 	test_subnet_mask = test_ipif->ipif_net_mask;
21357 
21358 	/*
21359 	 * If no net mask set, assume the default based on net class.
21360 	 */
21361 	if (test_subnet_mask == 0)
21362 		test_subnet_mask = test_net_mask;
21363 
21364 	/*
21365 	 * Check if there is a network broadcast ire associated with this ipif
21366 	 */
21367 	test_net_addr = test_net_mask  & test_ipif->ipif_subnet;
21368 	test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST,
21369 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21370 
21371 	/*
21372 	 * Check if there is a subnet broadcast IRE associated with this ipif
21373 	 */
21374 	test_subnet_addr = test_subnet_mask  & test_ipif->ipif_subnet;
21375 	test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST,
21376 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF));
21377 
21378 	/*
21379 	 * No broadcast ire's associated with this ipif.
21380 	 */
21381 	if ((test_subnet_ire == NULL) && (test_net_ire == NULL) &&
21382 	    (test_allzero_ire == NULL) && (test_allone_ire == NULL)) {
21383 		return;
21384 	}
21385 
21386 	/*
21387 	 * We have established which bcast ires have to be replaced.
21388 	 * Next we try to locate ipifs that match there ires.
21389 	 * The rules are simple: If we find an ipif that matches on the subnet
21390 	 * address it will also match on the net address, the allzeros and
21391 	 * allones address. Any ipif that matches only on the net address will
21392 	 * also match the allzeros and allones addresses.
21393 	 * The other criterion is the ipif_flags. We look for non-deprecated
21394 	 * (and non-anycast and non-nolocal) ipifs as the best choice.
21395 	 * ipifs with check_flags matching (deprecated, etc) are used only
21396 	 * if good ipifs are not available. While looping, we save existing
21397 	 * deprecated ipifs as backup_ipif.
21398 	 * We loop through all the ipifs for this ill looking for ipifs
21399 	 * whose broadcast addr match the ipif passed in, but do not have
21400 	 * their own broadcast ires. For creating 0.0.0.0 and
21401 	 * 255.255.255.255 we just need an ipif on this ill to create.
21402 	 */
21403 	for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL;
21404 	    ipif = ipif->ipif_next) {
21405 
21406 		ASSERT(!ipif->ipif_isv6);
21407 		/*
21408 		 * Already checked the ipif passed in.
21409 		 */
21410 		if (ipif == test_ipif) {
21411 			continue;
21412 		}
21413 
21414 		/*
21415 		 * We only need to recreate broadcast ires if another ipif in
21416 		 * the same zone uses them. The new ires must be created in the
21417 		 * same zone.
21418 		 */
21419 		if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) {
21420 			continue;
21421 		}
21422 
21423 		/*
21424 		 * Only interested in logical interfaces with valid local
21425 		 * addresses or with the ability to broadcast.
21426 		 */
21427 		if ((ipif->ipif_subnet == 0) ||
21428 		    !(ipif->ipif_flags & IPIF_BROADCAST) ||
21429 		    (ipif->ipif_flags & IPIF_NOXMIT) ||
21430 		    !(ipif->ipif_flags & IPIF_UP)) {
21431 			continue;
21432 		}
21433 		/*
21434 		 * Check if there is a net broadcast ire for this
21435 		 * net address.  If it turns out that the ipif we are
21436 		 * about to take down owns this ire, we must make a
21437 		 * new one because it is potentially going away.
21438 		 */
21439 		if (test_net_ire && (!net_bcast_ire_created)) {
21440 			net_mask = ip_net_mask(ipif->ipif_subnet);
21441 			net_addr = net_mask & ipif->ipif_subnet;
21442 			if (net_addr == test_net_addr) {
21443 				need_net_bcast_ire = B_TRUE;
21444 				/*
21445 				 * Use DEPRECATED ipif only if no good
21446 				 * ires are available. subnet_addr is
21447 				 * a better match than net_addr.
21448 				 */
21449 				if ((ipif->ipif_flags & check_flags) &&
21450 				    (backup_ipif_net == NULL)) {
21451 					backup_ipif_net = ipif;
21452 				}
21453 			}
21454 		}
21455 		/*
21456 		 * Check if there is a subnet broadcast ire for this
21457 		 * net address.  If it turns out that the ipif we are
21458 		 * about to take down owns this ire, we must make a
21459 		 * new one because it is potentially going away.
21460 		 */
21461 		if (test_subnet_ire && (!subnet_bcast_ire_created)) {
21462 			subnet_mask = ipif->ipif_net_mask;
21463 			subnet_addr = ipif->ipif_subnet;
21464 			if (subnet_addr == test_subnet_addr) {
21465 				need_subnet_bcast_ire = B_TRUE;
21466 				if ((ipif->ipif_flags & check_flags) &&
21467 				    (backup_ipif_subnet == NULL)) {
21468 					backup_ipif_subnet = ipif;
21469 				}
21470 			}
21471 		}
21472 
21473 
21474 		/* Short circuit here if this ipif is deprecated */
21475 		if (ipif->ipif_flags & check_flags) {
21476 			if ((test_allzero_ire != NULL) &&
21477 			    (!allzero_bcast_ire_created) &&
21478 			    (backup_ipif_allzeros == NULL)) {
21479 				backup_ipif_allzeros = ipif;
21480 			}
21481 			if ((test_allone_ire != NULL) &&
21482 			    (!allone_bcast_ire_created) &&
21483 			    (backup_ipif_allones == NULL)) {
21484 				backup_ipif_allones = ipif;
21485 			}
21486 			continue;
21487 		}
21488 
21489 		/*
21490 		 * Found an ipif which has the same broadcast ire as the
21491 		 * ipif passed in and the ipif passed in "owns" the ire.
21492 		 * Create new broadcast ire's for this broadcast addr.
21493 		 */
21494 		if (need_net_bcast_ire && !net_bcast_ire_created) {
21495 			irep = ire_create_bcast(ipif, net_addr, irep);
21496 			irep = ire_create_bcast(ipif,
21497 			    ~net_mask | net_addr, irep);
21498 			net_bcast_ire_created = B_TRUE;
21499 		}
21500 		if (need_subnet_bcast_ire && !subnet_bcast_ire_created) {
21501 			irep = ire_create_bcast(ipif, subnet_addr, irep);
21502 			irep = ire_create_bcast(ipif,
21503 			    ~subnet_mask | subnet_addr, irep);
21504 			subnet_bcast_ire_created = B_TRUE;
21505 		}
21506 		if (test_allzero_ire != NULL && !allzero_bcast_ire_created) {
21507 			irep = ire_create_bcast(ipif, 0, irep);
21508 			allzero_bcast_ire_created = B_TRUE;
21509 		}
21510 		if (test_allone_ire != NULL && !allone_bcast_ire_created) {
21511 			irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep);
21512 			allone_bcast_ire_created = B_TRUE;
21513 		}
21514 		/*
21515 		 * Once we have created all the appropriate ires, we
21516 		 * just break out of this loop to add what we have created.
21517 		 * This has been indented similar to ire_match_args for
21518 		 * readability.
21519 		 */
21520 		if (((test_net_ire == NULL) ||
21521 			(net_bcast_ire_created)) &&
21522 		    ((test_subnet_ire == NULL) ||
21523 			(subnet_bcast_ire_created)) &&
21524 		    ((test_allzero_ire == NULL) ||
21525 			(allzero_bcast_ire_created)) &&
21526 		    ((test_allone_ire == NULL) ||
21527 			(allone_bcast_ire_created))) {
21528 			break;
21529 		}
21530 	}
21531 
21532 	/*
21533 	 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs
21534 	 * exist. 6 pairs of bcast ires are needed.
21535 	 * Note - the old ires are deleted in ipif_down.
21536 	 */
21537 	if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) {
21538 		ipif = backup_ipif_net;
21539 		irep = ire_create_bcast(ipif, net_addr, irep);
21540 		irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep);
21541 		net_bcast_ire_created = B_TRUE;
21542 	}
21543 	if (need_subnet_bcast_ire && !subnet_bcast_ire_created &&
21544 	    backup_ipif_subnet) {
21545 		ipif = backup_ipif_subnet;
21546 		irep = ire_create_bcast(ipif, subnet_addr, irep);
21547 		irep = ire_create_bcast(ipif,
21548 		    ~subnet_mask | subnet_addr, irep);
21549 		subnet_bcast_ire_created = B_TRUE;
21550 	}
21551 	if (test_allzero_ire != NULL && !allzero_bcast_ire_created &&
21552 	    backup_ipif_allzeros) {
21553 		irep = ire_create_bcast(backup_ipif_allzeros, 0, irep);
21554 		allzero_bcast_ire_created = B_TRUE;
21555 	}
21556 	if (test_allone_ire != NULL && !allone_bcast_ire_created &&
21557 	    backup_ipif_allones) {
21558 		irep = ire_create_bcast(backup_ipif_allones,
21559 		    INADDR_BROADCAST, irep);
21560 		allone_bcast_ire_created = B_TRUE;
21561 	}
21562 
21563 	/*
21564 	 * If we can't create all of them, don't add any of them.
21565 	 * Code in ip_wput_ire and ire_to_ill assumes that we
21566 	 * always have a non-loopback copy and loopback copy
21567 	 * for a given address.
21568 	 */
21569 	for (irep1 = irep; irep1 > ire_array; ) {
21570 		irep1--;
21571 		if (*irep1 == NULL) {
21572 			ip0dbg(("ipif_check_bcast_ires: can't create "
21573 			    "IRE_BROADCAST, memory allocation failure\n"));
21574 			while (irep > ire_array) {
21575 				irep--;
21576 				if (*irep != NULL)
21577 					ire_delete(*irep);
21578 			}
21579 			goto bad;
21580 		}
21581 	}
21582 	for (irep1 = irep; irep1 > ire_array; ) {
21583 		int error;
21584 
21585 		irep1--;
21586 		error = ire_add(irep1, NULL, NULL, NULL, B_FALSE);
21587 		if (error == 0) {
21588 			ire_refrele(*irep1);		/* Held in ire_add */
21589 		}
21590 	}
21591 bad:
21592 	if (test_allzero_ire != NULL)
21593 		ire_refrele(test_allzero_ire);
21594 	if (test_allone_ire != NULL)
21595 		ire_refrele(test_allone_ire);
21596 	if (test_net_ire != NULL)
21597 		ire_refrele(test_net_ire);
21598 	if (test_subnet_ire != NULL)
21599 		ire_refrele(test_subnet_ire);
21600 }
21601 
21602 /*
21603  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21604  * from lifr_flags and the name from lifr_name.
21605  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21606  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21607  * Returns EINPROGRESS when mp has been consumed by queueing it on
21608  * ill_pending_mp and the ioctl will complete in ip_rput.
21609  */
21610 /* ARGSUSED */
21611 int
21612 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21613     ip_ioctl_cmd_t *ipip, void *if_req)
21614 {
21615 	int	err;
21616 	ill_t	*ill;
21617 	struct lifreq *lifr = (struct lifreq *)if_req;
21618 
21619 	ASSERT(ipif != NULL);
21620 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21621 	ASSERT(q->q_next != NULL);
21622 
21623 	ill = (ill_t *)q->q_ptr;
21624 	/*
21625 	 * If we are not writer on 'q' then this interface exists already
21626 	 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif.
21627 	 * So return EALREADY
21628 	 */
21629 	if (ill != ipif->ipif_ill)
21630 		return (EALREADY);
21631 
21632 	if (ill->ill_name[0] != '\0')
21633 		return (EALREADY);
21634 
21635 	/*
21636 	 * Set all the flags. Allows all kinds of override. Provide some
21637 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21638 	 * unless there is either multicast/broadcast support in the driver
21639 	 * or it is a pt-pt link.
21640 	 */
21641 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21642 		/* Meaningless to IP thus don't allow them to be set. */
21643 		ip1dbg(("ip_setname: EINVAL 1\n"));
21644 		return (EINVAL);
21645 	}
21646 	/*
21647 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21648 	 * ill_bcast_addr_length info.
21649 	 */
21650 	if (!ill->ill_needs_attach &&
21651 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21652 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21653 	    ill->ill_bcast_addr_length == 0)) {
21654 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21655 		ip1dbg(("ip_setname: EINVAL 2\n"));
21656 		return (EINVAL);
21657 	}
21658 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21659 	    ((lifr->lifr_flags & IFF_IPV6) ||
21660 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21661 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21662 		ip1dbg(("ip_setname: EINVAL 3\n"));
21663 		return (EINVAL);
21664 	}
21665 	if (lifr->lifr_flags & IFF_UP) {
21666 		/* Can only be set with SIOCSLIFFLAGS */
21667 		ip1dbg(("ip_setname: EINVAL 4\n"));
21668 		return (EINVAL);
21669 	}
21670 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21671 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21672 		ip1dbg(("ip_setname: EINVAL 5\n"));
21673 		return (EINVAL);
21674 	}
21675 	/*
21676 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21677 	 */
21678 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21679 	    !(lifr->lifr_flags & IFF_IPV6) &&
21680 	    !(ipif->ipif_isv6)) {
21681 		ip1dbg(("ip_setname: EINVAL 6\n"));
21682 		return (EINVAL);
21683 	}
21684 
21685 	/*
21686 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21687 	 * we have all the flags here. So, we assign rather than we OR.
21688 	 * We can't OR the flags here because we don't want to set
21689 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21690 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21691 	 * on lifr_flags value here.
21692 	 */
21693 	/*
21694 	 * This ill has not been inserted into the global list.
21695 	 * So we are still single threaded and don't need any lock
21696 	 */
21697 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21698 	    ~IFF_DUPLICATE;
21699 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21700 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21701 
21702 	/* We started off as V4. */
21703 	if (ill->ill_flags & ILLF_IPV6) {
21704 		ill->ill_phyint->phyint_illv6 = ill;
21705 		ill->ill_phyint->phyint_illv4 = NULL;
21706 	}
21707 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
21708 	return (err);
21709 }
21710 
21711 /* ARGSUSED */
21712 int
21713 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21714     ip_ioctl_cmd_t *ipip, void *if_req)
21715 {
21716 	/*
21717 	 * ill_phyint_reinit merged the v4 and v6 into a single
21718 	 * ipsq. Could also have become part of a ipmp group in the
21719 	 * process, and we might not have been able to complete the
21720 	 * slifname in ipif_set_values, if we could not become
21721 	 * exclusive.  If so restart it here
21722 	 */
21723 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21724 }
21725 
21726 /*
21727  * Return a pointer to the ipif which matches the index, IP version type and
21728  * zoneid.
21729  */
21730 ipif_t *
21731 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21732     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
21733 {
21734 	ill_t	*ill;
21735 	ipsq_t  *ipsq;
21736 	phyint_t *phyi;
21737 	ipif_t	*ipif;
21738 
21739 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21740 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
21741 
21742 	if (err != NULL)
21743 		*err = 0;
21744 
21745 	/*
21746 	 * Indexes are stored in the phyint - a common structure
21747 	 * to both IPv4 and IPv6.
21748 	 */
21749 
21750 	rw_enter(&ill_g_lock, RW_READER);
21751 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index,
21752 	    (void *) &index, NULL);
21753 	if (phyi != NULL) {
21754 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
21755 		if (ill == NULL) {
21756 			rw_exit(&ill_g_lock);
21757 			if (err != NULL)
21758 				*err = ENXIO;
21759 			return (NULL);
21760 		}
21761 		GRAB_CONN_LOCK(q);
21762 		mutex_enter(&ill->ill_lock);
21763 		if (ILL_CAN_LOOKUP(ill)) {
21764 			for (ipif = ill->ill_ipif; ipif != NULL;
21765 			    ipif = ipif->ipif_next) {
21766 				if (IPIF_CAN_LOOKUP(ipif) &&
21767 				    (zoneid == ALL_ZONES ||
21768 				    zoneid == ipif->ipif_zoneid ||
21769 				    ipif->ipif_zoneid == ALL_ZONES)) {
21770 					ipif_refhold_locked(ipif);
21771 					mutex_exit(&ill->ill_lock);
21772 					RELEASE_CONN_LOCK(q);
21773 					rw_exit(&ill_g_lock);
21774 					return (ipif);
21775 				}
21776 			}
21777 		} else if (ILL_CAN_WAIT(ill, q)) {
21778 			ipsq = ill->ill_phyint->phyint_ipsq;
21779 			mutex_enter(&ipsq->ipsq_lock);
21780 			rw_exit(&ill_g_lock);
21781 			mutex_exit(&ill->ill_lock);
21782 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
21783 			mutex_exit(&ipsq->ipsq_lock);
21784 			RELEASE_CONN_LOCK(q);
21785 			*err = EINPROGRESS;
21786 			return (NULL);
21787 		}
21788 		mutex_exit(&ill->ill_lock);
21789 		RELEASE_CONN_LOCK(q);
21790 	}
21791 	rw_exit(&ill_g_lock);
21792 	if (err != NULL)
21793 		*err = ENXIO;
21794 	return (NULL);
21795 }
21796 
21797 typedef struct conn_change_s {
21798 	uint_t cc_old_ifindex;
21799 	uint_t cc_new_ifindex;
21800 } conn_change_t;
21801 
21802 /*
21803  * ipcl_walk function for changing interface index.
21804  */
21805 static void
21806 conn_change_ifindex(conn_t *connp, caddr_t arg)
21807 {
21808 	conn_change_t *connc;
21809 	uint_t old_ifindex;
21810 	uint_t new_ifindex;
21811 	int i;
21812 	ilg_t *ilg;
21813 
21814 	connc = (conn_change_t *)arg;
21815 	old_ifindex = connc->cc_old_ifindex;
21816 	new_ifindex = connc->cc_new_ifindex;
21817 
21818 	if (connp->conn_orig_bound_ifindex == old_ifindex)
21819 		connp->conn_orig_bound_ifindex = new_ifindex;
21820 
21821 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
21822 		connp->conn_orig_multicast_ifindex = new_ifindex;
21823 
21824 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
21825 		connp->conn_orig_xmit_ifindex = new_ifindex;
21826 
21827 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21828 		ilg = &connp->conn_ilg[i];
21829 		if (ilg->ilg_orig_ifindex == old_ifindex)
21830 			ilg->ilg_orig_ifindex = new_ifindex;
21831 	}
21832 }
21833 
21834 /*
21835  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21836  * to new_index if it matches the old_index.
21837  *
21838  * Failovers typically happen within a group of ills. But somebody
21839  * can remove an ill from the group after a failover happened. If
21840  * we are setting the ifindex after this, we potentially need to
21841  * look at all the ills rather than just the ones in the group.
21842  * We cut down the work by looking at matching ill_net_types
21843  * and ill_types as we could not possibly grouped them together.
21844  */
21845 static void
21846 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21847 {
21848 	ill_t *ill;
21849 	ipif_t *ipif;
21850 	uint_t old_ifindex;
21851 	uint_t new_ifindex;
21852 	ilm_t *ilm;
21853 	ill_walk_context_t ctx;
21854 
21855 	old_ifindex = connc->cc_old_ifindex;
21856 	new_ifindex = connc->cc_new_ifindex;
21857 
21858 	rw_enter(&ill_g_lock, RW_READER);
21859 	ill = ILL_START_WALK_ALL(&ctx);
21860 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21861 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21862 			(ill_orig->ill_type != ill->ill_type)) {
21863 			continue;
21864 		}
21865 		for (ipif = ill->ill_ipif; ipif != NULL;
21866 				ipif = ipif->ipif_next) {
21867 			if (ipif->ipif_orig_ifindex == old_ifindex)
21868 				ipif->ipif_orig_ifindex = new_ifindex;
21869 		}
21870 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21871 			if (ilm->ilm_orig_ifindex == old_ifindex)
21872 				ilm->ilm_orig_ifindex = new_ifindex;
21873 		}
21874 	}
21875 	rw_exit(&ill_g_lock);
21876 }
21877 
21878 /*
21879  * We first need to ensure that the new index is unique, and
21880  * then carry the change across both v4 and v6 ill representation
21881  * of the physical interface.
21882  */
21883 /* ARGSUSED */
21884 int
21885 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21886     ip_ioctl_cmd_t *ipip, void *ifreq)
21887 {
21888 	ill_t		*ill;
21889 	ill_t		*ill_other;
21890 	phyint_t	*phyi;
21891 	int		old_index;
21892 	conn_change_t	connc;
21893 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21894 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21895 	uint_t	index;
21896 	ill_t	*ill_v4;
21897 	ill_t	*ill_v6;
21898 
21899 	if (ipip->ipi_cmd_type == IF_CMD)
21900 		index = ifr->ifr_index;
21901 	else
21902 		index = lifr->lifr_index;
21903 
21904 	/*
21905 	 * Only allow on physical interface. Also, index zero is illegal.
21906 	 *
21907 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21908 	 *
21909 	 * 1) If PHYI_FAILED is set, a failover could have happened which
21910 	 *    implies a possible failback might have to happen. As failback
21911 	 *    depends on the old index, we should fail setting the index.
21912 	 *
21913 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21914 	 *    any addresses or multicast memberships are failed over to
21915 	 *    a non-STANDBY interface. As failback depends on the old
21916 	 *    index, we should fail setting the index for this case also.
21917 	 *
21918 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21919 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
21920 	 */
21921 	ill = ipif->ipif_ill;
21922 	phyi = ill->ill_phyint;
21923 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21924 	    ipif->ipif_id != 0 || index == 0) {
21925 		return (EINVAL);
21926 	}
21927 	old_index = phyi->phyint_ifindex;
21928 
21929 	/* If the index is not changing, no work to do */
21930 	if (old_index == index)
21931 		return (0);
21932 
21933 	/*
21934 	 * Use ill_lookup_on_ifindex to determine if the
21935 	 * new index is unused and if so allow the change.
21936 	 */
21937 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL);
21938 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL);
21939 	if (ill_v6 != NULL || ill_v4 != NULL) {
21940 		if (ill_v4 != NULL)
21941 			ill_refrele(ill_v4);
21942 		if (ill_v6 != NULL)
21943 			ill_refrele(ill_v6);
21944 		return (EBUSY);
21945 	}
21946 
21947 	/*
21948 	 * The new index is unused. Set it in the phyint.
21949 	 * Locate the other ill so that we can send a routing
21950 	 * sockets message.
21951 	 */
21952 	if (ill->ill_isv6) {
21953 		ill_other = phyi->phyint_illv4;
21954 	} else {
21955 		ill_other = phyi->phyint_illv6;
21956 	}
21957 
21958 	phyi->phyint_ifindex = index;
21959 
21960 	connc.cc_old_ifindex = old_index;
21961 	connc.cc_new_ifindex = index;
21962 	ip_change_ifindex(ill, &connc);
21963 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc);
21964 
21965 	/* Send the routing sockets message */
21966 	ip_rts_ifmsg(ipif);
21967 	if (ill_other != NULL)
21968 		ip_rts_ifmsg(ill_other->ill_ipif);
21969 
21970 	return (0);
21971 }
21972 
21973 /* ARGSUSED */
21974 int
21975 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21976     ip_ioctl_cmd_t *ipip, void *ifreq)
21977 {
21978 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21979 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21980 
21981 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21982 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21983 	/* Get the interface index */
21984 	if (ipip->ipi_cmd_type == IF_CMD) {
21985 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21986 	} else {
21987 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21988 	}
21989 	return (0);
21990 }
21991 
21992 /* ARGSUSED */
21993 int
21994 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21995     ip_ioctl_cmd_t *ipip, void *ifreq)
21996 {
21997 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21998 
21999 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
22000 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22001 	/* Get the interface zone */
22002 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22003 	lifr->lifr_zoneid = ipif->ipif_zoneid;
22004 	return (0);
22005 }
22006 
22007 /*
22008  * Set the zoneid of an interface.
22009  */
22010 /* ARGSUSED */
22011 int
22012 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22013     ip_ioctl_cmd_t *ipip, void *ifreq)
22014 {
22015 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22016 	int err = 0;
22017 	boolean_t need_up = B_FALSE;
22018 	zone_t *zptr;
22019 	zone_status_t status;
22020 	zoneid_t zoneid;
22021 
22022 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22023 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
22024 		if (!is_system_labeled())
22025 			return (ENOTSUP);
22026 		zoneid = GLOBAL_ZONEID;
22027 	}
22028 
22029 	/* cannot assign instance zero to a non-global zone */
22030 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
22031 		return (ENOTSUP);
22032 
22033 	/*
22034 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
22035 	 * the event of a race with the zone shutdown processing, since IP
22036 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
22037 	 * interface will be cleaned up even if the zone is shut down
22038 	 * immediately after the status check. If the interface can't be brought
22039 	 * down right away, and the zone is shut down before the restart
22040 	 * function is called, we resolve the possible races by rechecking the
22041 	 * zone status in the restart function.
22042 	 */
22043 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
22044 		return (EINVAL);
22045 	status = zone_status_get(zptr);
22046 	zone_rele(zptr);
22047 
22048 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
22049 		return (EINVAL);
22050 
22051 	if (ipif->ipif_flags & IPIF_UP) {
22052 		/*
22053 		 * If the interface is already marked up,
22054 		 * we call ipif_down which will take care
22055 		 * of ditching any IREs that have been set
22056 		 * up based on the old interface address.
22057 		 */
22058 		err = ipif_logical_down(ipif, q, mp);
22059 		if (err == EINPROGRESS)
22060 			return (err);
22061 		ipif_down_tail(ipif);
22062 		need_up = B_TRUE;
22063 	}
22064 
22065 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
22066 	return (err);
22067 }
22068 
22069 static int
22070 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
22071     queue_t *q, mblk_t *mp, boolean_t need_up)
22072 {
22073 	int	err = 0;
22074 
22075 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22076 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22077 
22078 	/* Set the new zone id. */
22079 	ipif->ipif_zoneid = zoneid;
22080 
22081 	/* Update sctp list */
22082 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22083 
22084 	if (need_up) {
22085 		/*
22086 		 * Now bring the interface back up.  If this
22087 		 * is the only IPIF for the ILL, ipif_up
22088 		 * will have to re-bind to the device, so
22089 		 * we may get back EINPROGRESS, in which
22090 		 * case, this IOCTL will get completed in
22091 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22092 		 */
22093 		err = ipif_up(ipif, q, mp);
22094 	}
22095 	return (err);
22096 }
22097 
22098 /* ARGSUSED */
22099 int
22100 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22101     ip_ioctl_cmd_t *ipip, void *if_req)
22102 {
22103 	struct lifreq *lifr = (struct lifreq *)if_req;
22104 	zoneid_t zoneid;
22105 	zone_t *zptr;
22106 	zone_status_t status;
22107 
22108 	ASSERT(ipif->ipif_id != 0);
22109 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22110 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22111 		zoneid = GLOBAL_ZONEID;
22112 
22113 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22114 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22115 
22116 	/*
22117 	 * We recheck the zone status to resolve the following race condition:
22118 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22119 	 * 2) hme0:1 is up and can't be brought down right away;
22120 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22121 	 * 3) zone "myzone" is halted; the zone status switches to
22122 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22123 	 * the interfaces to remove - hme0:1 is not returned because it's not
22124 	 * yet in "myzone", so it won't be removed;
22125 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22126 	 * status check here, we would have hme0:1 in "myzone" after it's been
22127 	 * destroyed.
22128 	 * Note that if the status check fails, we need to bring the interface
22129 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22130 	 * ipif_up_done[_v6]().
22131 	 */
22132 	status = ZONE_IS_UNINITIALIZED;
22133 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22134 		status = zone_status_get(zptr);
22135 		zone_rele(zptr);
22136 	}
22137 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22138 		if (ipif->ipif_isv6) {
22139 			(void) ipif_up_done_v6(ipif);
22140 		} else {
22141 			(void) ipif_up_done(ipif);
22142 		}
22143 		return (EINVAL);
22144 	}
22145 
22146 	ipif_down_tail(ipif);
22147 
22148 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22149 	    B_TRUE));
22150 }
22151 
22152 /* ARGSUSED */
22153 int
22154 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22155 	ip_ioctl_cmd_t *ipip, void *ifreq)
22156 {
22157 	struct lifreq	*lifr = ifreq;
22158 
22159 	ASSERT(q->q_next == NULL);
22160 	ASSERT(CONN_Q(q));
22161 
22162 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22163 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22164 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22165 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22166 
22167 	return (0);
22168 }
22169 
22170 
22171 /* Find the previous ILL in this usesrc group */
22172 static ill_t *
22173 ill_prev_usesrc(ill_t *uill)
22174 {
22175 	ill_t *ill;
22176 
22177 	for (ill = uill->ill_usesrc_grp_next;
22178 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22179 	    ill = ill->ill_usesrc_grp_next)
22180 		/* do nothing */;
22181 	return (ill);
22182 }
22183 
22184 /*
22185  * Release all members of the usesrc group. This routine is called
22186  * from ill_delete when the interface being unplumbed is the
22187  * group head.
22188  */
22189 static void
22190 ill_disband_usesrc_group(ill_t *uill)
22191 {
22192 	ill_t *next_ill, *tmp_ill;
22193 	ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock));
22194 	next_ill = uill->ill_usesrc_grp_next;
22195 
22196 	do {
22197 		ASSERT(next_ill != NULL);
22198 		tmp_ill = next_ill->ill_usesrc_grp_next;
22199 		ASSERT(tmp_ill != NULL);
22200 		next_ill->ill_usesrc_grp_next = NULL;
22201 		next_ill->ill_usesrc_ifindex = 0;
22202 		next_ill = tmp_ill;
22203 	} while (next_ill->ill_usesrc_ifindex != 0);
22204 	uill->ill_usesrc_grp_next = NULL;
22205 }
22206 
22207 /*
22208  * Remove the client usesrc ILL from the list and relink to a new list
22209  */
22210 int
22211 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22212 {
22213 	ill_t *ill, *tmp_ill;
22214 
22215 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22216 	    (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock));
22217 
22218 	/*
22219 	 * Check if the usesrc client ILL passed in is not already
22220 	 * in use as a usesrc ILL i.e one whose source address is
22221 	 * in use OR a usesrc ILL is not already in use as a usesrc
22222 	 * client ILL
22223 	 */
22224 	if ((ucill->ill_usesrc_ifindex == 0) ||
22225 	    (uill->ill_usesrc_ifindex != 0)) {
22226 		return (-1);
22227 	}
22228 
22229 	ill = ill_prev_usesrc(ucill);
22230 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22231 
22232 	/* Remove from the current list */
22233 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22234 		/* Only two elements in the list */
22235 		ASSERT(ill->ill_usesrc_ifindex == 0);
22236 		ill->ill_usesrc_grp_next = NULL;
22237 	} else {
22238 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22239 	}
22240 
22241 	if (ifindex == 0) {
22242 		ucill->ill_usesrc_ifindex = 0;
22243 		ucill->ill_usesrc_grp_next = NULL;
22244 		return (0);
22245 	}
22246 
22247 	ucill->ill_usesrc_ifindex = ifindex;
22248 	tmp_ill = uill->ill_usesrc_grp_next;
22249 	uill->ill_usesrc_grp_next = ucill;
22250 	ucill->ill_usesrc_grp_next =
22251 	    (tmp_ill != NULL) ? tmp_ill : uill;
22252 	return (0);
22253 }
22254 
22255 /*
22256  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22257  * ip.c for locking details.
22258  */
22259 /* ARGSUSED */
22260 int
22261 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22262     ip_ioctl_cmd_t *ipip, void *ifreq)
22263 {
22264 	struct lifreq *lifr = (struct lifreq *)ifreq;
22265 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22266 	    ill_flag_changed = B_FALSE;
22267 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22268 	int err = 0, ret;
22269 	uint_t ifindex;
22270 	phyint_t *us_phyint, *us_cli_phyint;
22271 	ipsq_t *ipsq = NULL;
22272 
22273 	ASSERT(IAM_WRITER_IPIF(ipif));
22274 	ASSERT(q->q_next == NULL);
22275 	ASSERT(CONN_Q(q));
22276 
22277 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22278 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22279 
22280 	ASSERT(us_cli_phyint != NULL);
22281 
22282 	/*
22283 	 * If the client ILL is being used for IPMP, abort.
22284 	 * Note, this can be done before ipsq_try_enter since we are already
22285 	 * exclusive on this ILL
22286 	 */
22287 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22288 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22289 		return (EINVAL);
22290 	}
22291 
22292 	ifindex = lifr->lifr_index;
22293 	if (ifindex == 0) {
22294 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22295 			/* non usesrc group interface, nothing to reset */
22296 			return (0);
22297 		}
22298 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22299 		/* valid reset request */
22300 		reset_flg = B_TRUE;
22301 	}
22302 
22303 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22304 	    ip_process_ioctl, &err);
22305 
22306 	if (usesrc_ill == NULL) {
22307 		return (err);
22308 	}
22309 
22310 	/*
22311 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22312 	 * group nor can either of the interfaces be used for standy. So
22313 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22314 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22315 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22316 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22317 	 * the usesrc_cli_ill
22318 	 */
22319 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22320 	    NEW_OP, B_TRUE);
22321 	if (ipsq == NULL) {
22322 		err = EINPROGRESS;
22323 		/* Operation enqueued on the ipsq of the usesrc ILL */
22324 		goto done;
22325 	}
22326 
22327 	/* Check if the usesrc_ill is used for IPMP */
22328 	us_phyint = usesrc_ill->ill_phyint;
22329 	if ((us_phyint->phyint_groupname != NULL) ||
22330 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22331 		err = EINVAL;
22332 		goto done;
22333 	}
22334 
22335 	/*
22336 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22337 	 * already a client then return EINVAL
22338 	 */
22339 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22340 		err = EINVAL;
22341 		goto done;
22342 	}
22343 
22344 	/*
22345 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22346 	 * be then this is a duplicate operation.
22347 	 */
22348 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22349 		err = 0;
22350 		goto done;
22351 	}
22352 
22353 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22354 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22355 	    usesrc_ill->ill_isv6));
22356 
22357 	/*
22358 	 * The next step ensures that no new ires will be created referencing
22359 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22360 	 * we go through an ire walk deleting all ire caches that reference
22361 	 * the client ill. New ires referencing the client ill that are added
22362 	 * to the ire table before the ILL_CHANGING flag is set, will be
22363 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22364 	 * the client ill while the ILL_CHANGING flag is set will be failed
22365 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22366 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22367 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22368 	 * belong to the same usesrc group.
22369 	 */
22370 	mutex_enter(&usesrc_cli_ill->ill_lock);
22371 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22372 	mutex_exit(&usesrc_cli_ill->ill_lock);
22373 	ill_flag_changed = B_TRUE;
22374 
22375 	if (ipif->ipif_isv6)
22376 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22377 		    ALL_ZONES);
22378 	else
22379 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22380 		    ALL_ZONES);
22381 
22382 	/*
22383 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22384 	 * and the ill_usesrc_ifindex fields
22385 	 */
22386 	rw_enter(&ill_g_usesrc_lock, RW_WRITER);
22387 
22388 	if (reset_flg) {
22389 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22390 		if (ret != 0) {
22391 			err = EINVAL;
22392 		}
22393 		rw_exit(&ill_g_usesrc_lock);
22394 		goto done;
22395 	}
22396 
22397 	/*
22398 	 * Four possibilities to consider:
22399 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22400 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22401 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22402 	 * 4. Both are part of their respective usesrc groups
22403 	 */
22404 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22405 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22406 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22407 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22408 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22409 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22410 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22411 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22412 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22413 		/* Insert at head of list */
22414 		usesrc_cli_ill->ill_usesrc_grp_next =
22415 		    usesrc_ill->ill_usesrc_grp_next;
22416 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22417 	} else {
22418 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22419 		    ifindex);
22420 		if (ret != 0)
22421 			err = EINVAL;
22422 	}
22423 	rw_exit(&ill_g_usesrc_lock);
22424 
22425 done:
22426 	if (ill_flag_changed) {
22427 		mutex_enter(&usesrc_cli_ill->ill_lock);
22428 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22429 		mutex_exit(&usesrc_cli_ill->ill_lock);
22430 	}
22431 	if (ipsq != NULL)
22432 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22433 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22434 	ill_refrele(usesrc_ill);
22435 	return (err);
22436 }
22437 
22438 /*
22439  * comparison function used by avl.
22440  */
22441 static int
22442 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22443 {
22444 
22445 	uint_t index;
22446 
22447 	ASSERT(phyip != NULL && index_ptr != NULL);
22448 
22449 	index = *((uint_t *)index_ptr);
22450 	/*
22451 	 * let the phyint with the lowest index be on top.
22452 	 */
22453 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22454 		return (1);
22455 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22456 		return (-1);
22457 	return (0);
22458 }
22459 
22460 /*
22461  * comparison function used by avl.
22462  */
22463 static int
22464 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22465 {
22466 	ill_t *ill;
22467 	int res = 0;
22468 
22469 	ASSERT(phyip != NULL && name_ptr != NULL);
22470 
22471 	if (((phyint_t *)phyip)->phyint_illv4)
22472 		ill = ((phyint_t *)phyip)->phyint_illv4;
22473 	else
22474 		ill = ((phyint_t *)phyip)->phyint_illv6;
22475 	ASSERT(ill != NULL);
22476 
22477 	res = strcmp(ill->ill_name, (char *)name_ptr);
22478 	if (res > 0)
22479 		return (1);
22480 	else if (res < 0)
22481 		return (-1);
22482 	return (0);
22483 }
22484 /*
22485  * This function is called from ill_delete when the ill is being
22486  * unplumbed. We remove the reference from the phyint and we also
22487  * free the phyint when there are no more references to it.
22488  */
22489 static void
22490 ill_phyint_free(ill_t *ill)
22491 {
22492 	phyint_t *phyi;
22493 	phyint_t *next_phyint;
22494 	ipsq_t *cur_ipsq;
22495 
22496 	ASSERT(ill->ill_phyint != NULL);
22497 
22498 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
22499 	phyi = ill->ill_phyint;
22500 	ill->ill_phyint = NULL;
22501 	/*
22502 	 * ill_init allocates a phyint always to store the copy
22503 	 * of flags relevant to phyint. At that point in time, we could
22504 	 * not assign the name and hence phyint_illv4/v6 could not be
22505 	 * initialized. Later in ipif_set_values, we assign the name to
22506 	 * the ill, at which point in time we assign phyint_illv4/v6.
22507 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22508 	 */
22509 	if (ill->ill_flags & ILLF_IPV6) {
22510 		phyi->phyint_illv6 = NULL;
22511 	} else {
22512 		phyi->phyint_illv4 = NULL;
22513 	}
22514 	/*
22515 	 * ipif_down removes it from the group when the last ipif goes
22516 	 * down.
22517 	 */
22518 	ASSERT(ill->ill_group == NULL);
22519 
22520 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22521 		return;
22522 
22523 	/*
22524 	 * Make sure this phyint was put in the list.
22525 	 */
22526 	if (phyi->phyint_ifindex > 0) {
22527 		avl_remove(&phyint_g_list.phyint_list_avl_by_index,
22528 		    phyi);
22529 		avl_remove(&phyint_g_list.phyint_list_avl_by_name,
22530 		    phyi);
22531 	}
22532 	/*
22533 	 * remove phyint from the ipsq list.
22534 	 */
22535 	cur_ipsq = phyi->phyint_ipsq;
22536 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22537 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22538 	} else {
22539 		next_phyint = cur_ipsq->ipsq_phyint_list;
22540 		while (next_phyint != NULL) {
22541 			if (next_phyint->phyint_ipsq_next == phyi) {
22542 				next_phyint->phyint_ipsq_next =
22543 					phyi->phyint_ipsq_next;
22544 				break;
22545 			}
22546 			next_phyint = next_phyint->phyint_ipsq_next;
22547 		}
22548 		ASSERT(next_phyint != NULL);
22549 	}
22550 	IPSQ_DEC_REF(cur_ipsq);
22551 
22552 	if (phyi->phyint_groupname_len != 0) {
22553 		ASSERT(phyi->phyint_groupname != NULL);
22554 		mi_free(phyi->phyint_groupname);
22555 	}
22556 	mi_free(phyi);
22557 }
22558 
22559 /*
22560  * Attach the ill to the phyint structure which can be shared by both
22561  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22562  * function is called from ipif_set_values and ill_lookup_on_name (for
22563  * loopback) where we know the name of the ill. We lookup the ill and if
22564  * there is one present already with the name use that phyint. Otherwise
22565  * reuse the one allocated by ill_init.
22566  */
22567 static void
22568 ill_phyint_reinit(ill_t *ill)
22569 {
22570 	boolean_t isv6 = ill->ill_isv6;
22571 	phyint_t *phyi_old;
22572 	phyint_t *phyi;
22573 	avl_index_t where = 0;
22574 	ill_t	*ill_other = NULL;
22575 	ipsq_t	*ipsq;
22576 
22577 	ASSERT(RW_WRITE_HELD(&ill_g_lock));
22578 
22579 	phyi_old = ill->ill_phyint;
22580 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22581 	    phyi_old->phyint_illv6 == NULL));
22582 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22583 	    phyi_old->phyint_illv4 == NULL));
22584 	ASSERT(phyi_old->phyint_ifindex == 0);
22585 
22586 	phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name,
22587 	    ill->ill_name, &where);
22588 
22589 	/*
22590 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22591 	 *    the global list of ills. So no other thread could have located
22592 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22593 	 * 2. Now locate the other protocol instance of this ill.
22594 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22595 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22596 	 *    of neither ill can change.
22597 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22598 	 *    other ill.
22599 	 * 5. Release all locks.
22600 	 */
22601 
22602 	/*
22603 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22604 	 * we are initializing IPv4.
22605 	 */
22606 	if (phyi != NULL) {
22607 		ill_other = (isv6) ? phyi->phyint_illv4 :
22608 		    phyi->phyint_illv6;
22609 		ASSERT(ill_other->ill_phyint != NULL);
22610 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22611 		    (!isv6 && ill_other->ill_isv6));
22612 		GRAB_ILL_LOCKS(ill, ill_other);
22613 		/*
22614 		 * We are potentially throwing away phyint_flags which
22615 		 * could be different from the one that we obtain from
22616 		 * ill_other->ill_phyint. But it is okay as we are assuming
22617 		 * that the state maintained within IP is correct.
22618 		 */
22619 		mutex_enter(&phyi->phyint_lock);
22620 		if (isv6) {
22621 			ASSERT(phyi->phyint_illv6 == NULL);
22622 			phyi->phyint_illv6 = ill;
22623 		} else {
22624 			ASSERT(phyi->phyint_illv4 == NULL);
22625 			phyi->phyint_illv4 = ill;
22626 		}
22627 		/*
22628 		 * This is a new ill, currently undergoing SLIFNAME
22629 		 * So we could not have joined an IPMP group until now.
22630 		 */
22631 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22632 		    phyi_old->phyint_groupname == NULL);
22633 
22634 		/*
22635 		 * This phyi_old is going away. Decref ipsq_refs and
22636 		 * assert it is zero. The ipsq itself will be freed in
22637 		 * ipsq_exit
22638 		 */
22639 		ipsq = phyi_old->phyint_ipsq;
22640 		IPSQ_DEC_REF(ipsq);
22641 		ASSERT(ipsq->ipsq_refs == 0);
22642 		/* Get the singleton phyint out of the ipsq list */
22643 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22644 		ipsq->ipsq_phyint_list = NULL;
22645 		phyi_old->phyint_illv4 = NULL;
22646 		phyi_old->phyint_illv6 = NULL;
22647 		mi_free(phyi_old);
22648 	} else {
22649 		mutex_enter(&ill->ill_lock);
22650 		/*
22651 		 * We don't need to acquire any lock, since
22652 		 * the ill is not yet visible globally  and we
22653 		 * have not yet released the ill_g_lock.
22654 		 */
22655 		phyi = phyi_old;
22656 		mutex_enter(&phyi->phyint_lock);
22657 		/* XXX We need a recovery strategy here. */
22658 		if (!phyint_assign_ifindex(phyi))
22659 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22660 
22661 		avl_insert(&phyint_g_list.phyint_list_avl_by_name,
22662 		    (void *)phyi, where);
22663 
22664 		(void) avl_find(&phyint_g_list.phyint_list_avl_by_index,
22665 		    &phyi->phyint_ifindex, &where);
22666 		avl_insert(&phyint_g_list.phyint_list_avl_by_index,
22667 		    (void *)phyi, where);
22668 	}
22669 
22670 	/*
22671 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
22672 	 * pending mp is not affected because that is per ill basis.
22673 	 */
22674 	ill->ill_phyint = phyi;
22675 
22676 	/*
22677 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
22678 	 * We do this here as when the first ipif was allocated,
22679 	 * ipif_allocate does not know the right interface index.
22680 	 */
22681 
22682 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22683 	/*
22684 	 * Now that the phyint's ifindex has been assigned, complete the
22685 	 * remaining
22686 	 */
22687 
22688 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
22689 	if (ill->ill_isv6) {
22690 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22691 		    ill->ill_phyint->phyint_ifindex;
22692 	}
22693 
22694 	/*
22695 	 * Generate an event within the hooks framework to indicate that
22696 	 * a new interface has just been added to IP.  For this event to
22697 	 * be generated, the network interface must, at least, have an
22698 	 * ifindex assigned to it.
22699 	 *
22700 	 * This needs to be run inside the ill_g_lock perimeter to ensure
22701 	 * that the ordering of delivered events to listeners matches the
22702 	 * order of them in the kernel.
22703 	 *
22704 	 * This function could be called from ill_lookup_on_name. In that case
22705 	 * the interface is loopback "lo", which will not generate a NIC event.
22706 	 */
22707 	if (ill->ill_name_length <= 2 ||
22708 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22709 		hook_nic_event_t *info;
22710 		if ((info = ill->ill_nic_event_info) != NULL) {
22711 			ip2dbg(("ill_phyint_reinit: unexpected nic event %d "
22712 			    "attached for %s\n", info->hne_event,
22713 			    ill->ill_name));
22714 			if (info->hne_data != NULL)
22715 				kmem_free(info->hne_data, info->hne_datalen);
22716 			kmem_free(info, sizeof (hook_nic_event_t));
22717 		}
22718 
22719 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22720 		if (info != NULL) {
22721 			info->hne_nic = ill->ill_phyint->phyint_ifindex;
22722 			info->hne_lif = 0;
22723 			info->hne_event = NE_PLUMB;
22724 			info->hne_family = ill->ill_isv6 ? ipv6 : ipv4;
22725 			info->hne_data = kmem_alloc(ill->ill_name_length,
22726 			    KM_NOSLEEP);
22727 			if (info->hne_data != NULL) {
22728 				info->hne_datalen = ill->ill_name_length;
22729 				bcopy(ill->ill_name, info->hne_data,
22730 				    info->hne_datalen);
22731 			} else {
22732 				ip2dbg(("ill_phyint_reinit: could not attach "
22733 				    "ill_name information for PLUMB nic event "
22734 				    "of %s (ENOMEM)\n", ill->ill_name));
22735 				kmem_free(info, sizeof (hook_nic_event_t));
22736 			}
22737 		} else
22738 			ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic "
22739 			    "event information for %s (ENOMEM)\n",
22740 			    ill->ill_name));
22741 
22742 		ill->ill_nic_event_info = info;
22743 	}
22744 
22745 	RELEASE_ILL_LOCKS(ill, ill_other);
22746 	mutex_exit(&phyi->phyint_lock);
22747 }
22748 
22749 /*
22750  * Notify any downstream modules of the name of this interface.
22751  * An M_IOCTL is used even though we don't expect a successful reply.
22752  * Any reply message from the driver (presumably an M_IOCNAK) will
22753  * eventually get discarded somewhere upstream.  The message format is
22754  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22755  * to IP.
22756  */
22757 static void
22758 ip_ifname_notify(ill_t *ill, queue_t *q)
22759 {
22760 	mblk_t *mp1, *mp2;
22761 	struct iocblk *iocp;
22762 	struct lifreq *lifr;
22763 
22764 	mp1 = mkiocb(SIOCSLIFNAME);
22765 	if (mp1 == NULL)
22766 		return;
22767 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22768 	if (mp2 == NULL) {
22769 		freeb(mp1);
22770 		return;
22771 	}
22772 
22773 	mp1->b_cont = mp2;
22774 	iocp = (struct iocblk *)mp1->b_rptr;
22775 	iocp->ioc_count = sizeof (struct lifreq);
22776 
22777 	lifr = (struct lifreq *)mp2->b_rptr;
22778 	mp2->b_wptr += sizeof (struct lifreq);
22779 	bzero(lifr, sizeof (struct lifreq));
22780 
22781 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22782 	lifr->lifr_ppa = ill->ill_ppa;
22783 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22784 
22785 	putnext(q, mp1);
22786 }
22787 
22788 static boolean_t ip_trash_timer_started = B_FALSE;
22789 
22790 static int
22791 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22792 {
22793 	int err;
22794 
22795 	/* Set the obsolete NDD per-interface forwarding name. */
22796 	err = ill_set_ndd_name(ill);
22797 	if (err != 0) {
22798 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22799 		    err);
22800 	}
22801 
22802 	/* Tell downstream modules where they are. */
22803 	ip_ifname_notify(ill, q);
22804 
22805 	/*
22806 	 * ill_dl_phys returns EINPROGRESS in the usual case.
22807 	 * Error cases are ENOMEM ...
22808 	 */
22809 	err = ill_dl_phys(ill, ipif, mp, q);
22810 
22811 	/*
22812 	 * If there is no IRE expiration timer running, get one started.
22813 	 * igmp and mld timers will be triggered by the first multicast
22814 	 */
22815 	if (!ip_trash_timer_started) {
22816 		/*
22817 		 * acquire the lock and check again.
22818 		 */
22819 		mutex_enter(&ip_trash_timer_lock);
22820 		if (!ip_trash_timer_started) {
22821 			ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL,
22822 			    MSEC_TO_TICK(ip_timer_interval));
22823 			ip_trash_timer_started = B_TRUE;
22824 		}
22825 		mutex_exit(&ip_trash_timer_lock);
22826 	}
22827 
22828 	if (ill->ill_isv6) {
22829 		mutex_enter(&mld_slowtimeout_lock);
22830 		if (mld_slowtimeout_id == 0) {
22831 			mld_slowtimeout_id = timeout(mld_slowtimo, NULL,
22832 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22833 		}
22834 		mutex_exit(&mld_slowtimeout_lock);
22835 	} else {
22836 		mutex_enter(&igmp_slowtimeout_lock);
22837 		if (igmp_slowtimeout_id == 0) {
22838 			igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL,
22839 				MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22840 		}
22841 		mutex_exit(&igmp_slowtimeout_lock);
22842 	}
22843 
22844 	return (err);
22845 }
22846 
22847 /*
22848  * Common routine for ppa and ifname setting. Should be called exclusive.
22849  *
22850  * Returns EINPROGRESS when mp has been consumed by queueing it on
22851  * ill_pending_mp and the ioctl will complete in ip_rput.
22852  *
22853  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22854  * the new name and new ppa in lifr_name and lifr_ppa respectively.
22855  * For SLIFNAME, we pass these values back to the userland.
22856  */
22857 static int
22858 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22859 {
22860 	ill_t	*ill;
22861 	ipif_t	*ipif;
22862 	ipsq_t	*ipsq;
22863 	char	*ppa_ptr;
22864 	char	*old_ptr;
22865 	char	old_char;
22866 	int	error;
22867 
22868 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22869 	ASSERT(q->q_next != NULL);
22870 	ASSERT(interf_name != NULL);
22871 
22872 	ill = (ill_t *)q->q_ptr;
22873 
22874 	ASSERT(ill->ill_name[0] == '\0');
22875 	ASSERT(IAM_WRITER_ILL(ill));
22876 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22877 	ASSERT(ill->ill_ppa == UINT_MAX);
22878 
22879 	/* The ppa is sent down by ifconfig or is chosen */
22880 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22881 		return (EINVAL);
22882 	}
22883 
22884 	/*
22885 	 * make sure ppa passed in is same as ppa in the name.
22886 	 * This check is not made when ppa == UINT_MAX in that case ppa
22887 	 * in the name could be anything. System will choose a ppa and
22888 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22889 	 */
22890 	if (*new_ppa_ptr != UINT_MAX) {
22891 		/* stoi changes the pointer */
22892 		old_ptr = ppa_ptr;
22893 		/*
22894 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22895 		 * (they don't have an externally visible ppa).  We assign one
22896 		 * here so that we can manage the interface.  Note that in
22897 		 * the past this value was always 0 for DLPI 1 drivers.
22898 		 */
22899 		if (*new_ppa_ptr == 0)
22900 			*new_ppa_ptr = stoi(&old_ptr);
22901 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22902 			return (EINVAL);
22903 	}
22904 	/*
22905 	 * terminate string before ppa
22906 	 * save char at that location.
22907 	 */
22908 	old_char = ppa_ptr[0];
22909 	ppa_ptr[0] = '\0';
22910 
22911 	ill->ill_ppa = *new_ppa_ptr;
22912 	/*
22913 	 * Finish as much work now as possible before calling ill_glist_insert
22914 	 * which makes the ill globally visible and also merges it with the
22915 	 * other protocol instance of this phyint. The remaining work is
22916 	 * done after entering the ipsq which may happen sometime later.
22917 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
22918 	 */
22919 	ipif = ill->ill_ipif;
22920 
22921 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22922 	ipif_assign_seqid(ipif);
22923 
22924 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22925 		ill->ill_flags |= ILLF_IPV4;
22926 
22927 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
22928 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22929 
22930 	if (ill->ill_flags & ILLF_IPV6) {
22931 
22932 		ill->ill_isv6 = B_TRUE;
22933 		if (ill->ill_rq != NULL) {
22934 			ill->ill_rq->q_qinfo = &rinit_ipv6;
22935 			ill->ill_wq->q_qinfo = &winit_ipv6;
22936 		}
22937 
22938 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22939 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22940 		ipif->ipif_v6src_addr = ipv6_all_zeros;
22941 		ipif->ipif_v6subnet = ipv6_all_zeros;
22942 		ipif->ipif_v6net_mask = ipv6_all_zeros;
22943 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
22944 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22945 		/*
22946 		 * point-to-point or Non-mulicast capable
22947 		 * interfaces won't do NUD unless explicitly
22948 		 * configured to do so.
22949 		 */
22950 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22951 		    !(ill->ill_flags & ILLF_MULTICAST)) {
22952 			ill->ill_flags |= ILLF_NONUD;
22953 		}
22954 		/* Make sure IPv4 specific flag is not set on IPv6 if */
22955 		if (ill->ill_flags & ILLF_NOARP) {
22956 			/*
22957 			 * Note: xresolv interfaces will eventually need
22958 			 * NOARP set here as well, but that will require
22959 			 * those external resolvers to have some
22960 			 * knowledge of that flag and act appropriately.
22961 			 * Not to be changed at present.
22962 			 */
22963 			ill->ill_flags &= ~ILLF_NOARP;
22964 		}
22965 		/*
22966 		 * Set the ILLF_ROUTER flag according to the global
22967 		 * IPv6 forwarding policy.
22968 		 */
22969 		if (ipv6_forward != 0)
22970 			ill->ill_flags |= ILLF_ROUTER;
22971 	} else if (ill->ill_flags & ILLF_IPV4) {
22972 		ill->ill_isv6 = B_FALSE;
22973 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22974 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22975 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22976 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22977 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22978 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22979 		/*
22980 		 * Set the ILLF_ROUTER flag according to the global
22981 		 * IPv4 forwarding policy.
22982 		 */
22983 		if (ip_g_forward != 0)
22984 			ill->ill_flags |= ILLF_ROUTER;
22985 	}
22986 
22987 	ASSERT(ill->ill_phyint != NULL);
22988 
22989 	/*
22990 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
22991 	 * be completed in ill_glist_insert -> ill_phyint_reinit
22992 	 */
22993 	if (!ill_allocate_mibs(ill))
22994 		return (ENOMEM);
22995 
22996 	/*
22997 	 * Pick a default sap until we get the DL_INFO_ACK back from
22998 	 * the driver.
22999 	 */
23000 	if (ill->ill_sap == 0) {
23001 		if (ill->ill_isv6)
23002 			ill->ill_sap  = IP6_DL_SAP;
23003 		else
23004 			ill->ill_sap  = IP_DL_SAP;
23005 	}
23006 
23007 	ill->ill_ifname_pending = 1;
23008 	ill->ill_ifname_pending_err = 0;
23009 
23010 	ill_refhold(ill);
23011 	rw_enter(&ill_g_lock, RW_WRITER);
23012 	if ((error = ill_glist_insert(ill, interf_name,
23013 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23014 		ill->ill_ppa = UINT_MAX;
23015 		ill->ill_name[0] = '\0';
23016 		/*
23017 		 * undo null termination done above.
23018 		 */
23019 		ppa_ptr[0] = old_char;
23020 		rw_exit(&ill_g_lock);
23021 		ill_refrele(ill);
23022 		return (error);
23023 	}
23024 
23025 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23026 
23027 	/*
23028 	 * When we return the buffer pointed to by interf_name should contain
23029 	 * the same name as in ill_name.
23030 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23031 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23032 	 * so copy full name and update the ppa ptr.
23033 	 * When ppa passed in != UINT_MAX all values are correct just undo
23034 	 * null termination, this saves a bcopy.
23035 	 */
23036 	if (*new_ppa_ptr == UINT_MAX) {
23037 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23038 		*new_ppa_ptr = ill->ill_ppa;
23039 	} else {
23040 		/*
23041 		 * undo null termination done above.
23042 		 */
23043 		ppa_ptr[0] = old_char;
23044 	}
23045 
23046 	/* Let SCTP know about this ILL */
23047 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23048 
23049 	/* and also about the first ipif */
23050 	sctp_update_ipif(ipif, SCTP_IPIF_INSERT);
23051 
23052 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23053 	    B_TRUE);
23054 
23055 	rw_exit(&ill_g_lock);
23056 	ill_refrele(ill);
23057 	if (ipsq == NULL)
23058 		return (EINPROGRESS);
23059 
23060 	/*
23061 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23062 	 */
23063 	if (ipsq->ipsq_current_ipif == NULL)
23064 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23065 	else
23066 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23067 
23068 	error = ipif_set_values_tail(ill, ipif, mp, q);
23069 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23070 	if (error != 0 && error != EINPROGRESS) {
23071 		/*
23072 		 * restore previous values
23073 		 */
23074 		ill->ill_isv6 = B_FALSE;
23075 	}
23076 	return (error);
23077 }
23078 
23079 
23080 extern void (*ip_cleanup_func)(void);
23081 
23082 void
23083 ipif_init(void)
23084 {
23085 	hrtime_t hrt;
23086 	int i;
23087 
23088 	/*
23089 	 * Can't call drv_getparm here as it is too early in the boot.
23090 	 * As we use ipif_src_random just for picking a different
23091 	 * source address everytime, this need not be really random.
23092 	 */
23093 	hrt = gethrtime();
23094 	ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23095 
23096 	for (i = 0; i < MAX_G_HEADS; i++) {
23097 		ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i];
23098 		ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i];
23099 	}
23100 
23101 	avl_create(&phyint_g_list.phyint_list_avl_by_index,
23102 	    ill_phyint_compare_index,
23103 	    sizeof (phyint_t),
23104 	    offsetof(struct phyint, phyint_avl_by_index));
23105 	avl_create(&phyint_g_list.phyint_list_avl_by_name,
23106 	    ill_phyint_compare_name,
23107 	    sizeof (phyint_t),
23108 	    offsetof(struct phyint, phyint_avl_by_name));
23109 
23110 	ip_cleanup_func = ip_thread_exit;
23111 }
23112 
23113 /*
23114  * This is called by ip_rt_add when src_addr value is other than zero.
23115  * src_addr signifies the source address of the incoming packet. For
23116  * reverse tunnel route we need to create a source addr based routing
23117  * table. This routine creates ip_mrtun_table if it's empty and then
23118  * it adds the route entry hashed by source address. It verifies that
23119  * the outgoing interface is always a non-resolver interface (tunnel).
23120  */
23121 int
23122 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg,
23123     ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func)
23124 {
23125 	ire_t   *ire;
23126 	ire_t	*save_ire;
23127 	ipif_t  *ipif;
23128 	ill_t   *in_ill = NULL;
23129 	ill_t	*out_ill;
23130 	queue_t	*stq;
23131 	mblk_t	*dlureq_mp;
23132 	int	error;
23133 
23134 	if (ire_arg != NULL)
23135 		*ire_arg = NULL;
23136 	ASSERT(in_src_addr != INADDR_ANY);
23137 
23138 	ipif = ipif_arg;
23139 	if (ipif != NULL) {
23140 		out_ill = ipif->ipif_ill;
23141 	} else {
23142 		ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n"));
23143 		return (EINVAL);
23144 	}
23145 
23146 	if (src_ipif == NULL) {
23147 		ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n"));
23148 		return (EINVAL);
23149 	}
23150 	in_ill = src_ipif->ipif_ill;
23151 
23152 	/*
23153 	 * Check for duplicates. We don't need to
23154 	 * match out_ill, because the uniqueness of
23155 	 * a route is only dependent on src_addr and
23156 	 * in_ill.
23157 	 */
23158 	ire = ire_mrtun_lookup(in_src_addr, in_ill);
23159 	if (ire != NULL) {
23160 		ire_refrele(ire);
23161 		return (EEXIST);
23162 	}
23163 	if (ipif->ipif_net_type != IRE_IF_NORESOLVER) {
23164 		ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n",
23165 		    ipif->ipif_net_type));
23166 		return (EINVAL);
23167 	}
23168 
23169 	stq = ipif->ipif_wq;
23170 	ASSERT(stq != NULL);
23171 
23172 	/*
23173 	 * The outgoing interface must be non-resolver
23174 	 * interface.
23175 	 */
23176 	dlureq_mp = ill_dlur_gen(NULL,
23177 	    out_ill->ill_phys_addr_length, out_ill->ill_sap,
23178 	    out_ill->ill_sap_length);
23179 
23180 	if (dlureq_mp == NULL) {
23181 		ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
23182 		return (ENOMEM);
23183 	}
23184 
23185 	/* Create the IRE. */
23186 
23187 	ire = ire_create(
23188 	    NULL,				/* Zero dst addr */
23189 	    NULL,				/* Zero mask */
23190 	    NULL,				/* Zero gateway addr */
23191 	    NULL,				/* Zero ipif_src addr */
23192 	    (uint8_t *)&in_src_addr,		/* in_src-addr */
23193 	    &ipif->ipif_mtu,
23194 	    NULL,
23195 	    NULL,				/* rfq */
23196 	    stq,
23197 	    IRE_MIPRTUN,
23198 	    dlureq_mp,
23199 	    ipif,
23200 	    in_ill,
23201 	    0,
23202 	    0,
23203 	    0,
23204 	    flags,
23205 	    &ire_uinfo_null,
23206 	    NULL,
23207 	    NULL);
23208 
23209 	if (ire == NULL) {
23210 		freeb(dlureq_mp);
23211 		return (ENOMEM);
23212 	}
23213 	ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n",
23214 	    ire->ire_type));
23215 	save_ire = ire;
23216 	ASSERT(save_ire != NULL);
23217 	error = ire_add_mrtun(&ire, q, mp, func);
23218 	/*
23219 	 * If ire_add_mrtun() failed, the ire passed in was freed
23220 	 * so there is no need to do so here.
23221 	 */
23222 	if (error != 0) {
23223 		return (error);
23224 	}
23225 
23226 	/* Duplicate check */
23227 	if (ire != save_ire) {
23228 		/* route already exists by now */
23229 		ire_refrele(ire);
23230 		return (EEXIST);
23231 	}
23232 
23233 	if (ire_arg != NULL) {
23234 		/*
23235 		 * Store the ire that was just added. the caller
23236 		 * ip_rts_request responsible for doing ire_refrele()
23237 		 * on it.
23238 		 */
23239 		*ire_arg = ire;
23240 	} else {
23241 		ire_refrele(ire);	/* held in ire_add_mrtun */
23242 	}
23243 
23244 	return (0);
23245 }
23246 
23247 /*
23248  * It is called by ip_rt_delete() only when mipagent requests to delete
23249  * a reverse tunnel route that was added by ip_mrtun_rt_add() before.
23250  */
23251 
23252 int
23253 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif)
23254 {
23255 	ire_t   *ire = NULL;
23256 
23257 	if (in_src_addr == INADDR_ANY)
23258 		return (EINVAL);
23259 	if (src_ipif == NULL)
23260 		return (EINVAL);
23261 
23262 	/* search if this route exists in the ip_mrtun_table */
23263 	ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill);
23264 	if (ire == NULL) {
23265 		ip2dbg(("ip_mrtun_rt_delete: ire not found\n"));
23266 		return (ESRCH);
23267 	}
23268 	ire_delete(ire);
23269 	ire_refrele(ire);
23270 	return (0);
23271 }
23272 
23273 /*
23274  * Lookup the ipif corresponding to the onlink destination address. For
23275  * point-to-point interfaces, it matches with remote endpoint destination
23276  * address. For point-to-multipoint interfaces it only tries to match the
23277  * destination with the interface's subnet address. The longest, most specific
23278  * match is found to take care of such rare network configurations like -
23279  * le0: 129.146.1.1/16
23280  * le1: 129.146.2.2/24
23281  * It is used only by SO_DONTROUTE at the moment.
23282  */
23283 ipif_t *
23284 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid)
23285 {
23286 	ipif_t	*ipif, *best_ipif;
23287 	ill_t	*ill;
23288 	ill_walk_context_t ctx;
23289 
23290 	ASSERT(zoneid != ALL_ZONES);
23291 	best_ipif = NULL;
23292 
23293 	rw_enter(&ill_g_lock, RW_READER);
23294 	ill = ILL_START_WALK_V4(&ctx);
23295 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23296 		mutex_enter(&ill->ill_lock);
23297 		for (ipif = ill->ill_ipif; ipif != NULL;
23298 		    ipif = ipif->ipif_next) {
23299 			if (!IPIF_CAN_LOOKUP(ipif))
23300 				continue;
23301 			if (ipif->ipif_zoneid != zoneid &&
23302 			    ipif->ipif_zoneid != ALL_ZONES)
23303 				continue;
23304 			/*
23305 			 * Point-to-point case. Look for exact match with
23306 			 * destination address.
23307 			 */
23308 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23309 				if (ipif->ipif_pp_dst_addr == addr) {
23310 					ipif_refhold_locked(ipif);
23311 					mutex_exit(&ill->ill_lock);
23312 					rw_exit(&ill_g_lock);
23313 					if (best_ipif != NULL)
23314 						ipif_refrele(best_ipif);
23315 					return (ipif);
23316 				}
23317 			} else if (ipif->ipif_subnet == (addr &
23318 			    ipif->ipif_net_mask)) {
23319 				/*
23320 				 * Point-to-multipoint case. Looping through to
23321 				 * find the most specific match. If there are
23322 				 * multiple best match ipif's then prefer ipif's
23323 				 * that are UP. If there is only one best match
23324 				 * ipif and it is DOWN we must still return it.
23325 				 */
23326 				if ((best_ipif == NULL) ||
23327 				    (ipif->ipif_net_mask >
23328 				    best_ipif->ipif_net_mask) ||
23329 				    ((ipif->ipif_net_mask ==
23330 				    best_ipif->ipif_net_mask) &&
23331 				    ((ipif->ipif_flags & IPIF_UP) &&
23332 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23333 					ipif_refhold_locked(ipif);
23334 					mutex_exit(&ill->ill_lock);
23335 					rw_exit(&ill_g_lock);
23336 					if (best_ipif != NULL)
23337 						ipif_refrele(best_ipif);
23338 					best_ipif = ipif;
23339 					rw_enter(&ill_g_lock, RW_READER);
23340 					mutex_enter(&ill->ill_lock);
23341 				}
23342 			}
23343 		}
23344 		mutex_exit(&ill->ill_lock);
23345 	}
23346 	rw_exit(&ill_g_lock);
23347 	return (best_ipif);
23348 }
23349 
23350 
23351 /*
23352  * Save enough information so that we can recreate the IRE if
23353  * the interface goes down and then up.
23354  */
23355 static void
23356 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23357 {
23358 	mblk_t	*save_mp;
23359 
23360 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23361 	if (save_mp != NULL) {
23362 		ifrt_t	*ifrt;
23363 
23364 		save_mp->b_wptr += sizeof (ifrt_t);
23365 		ifrt = (ifrt_t *)save_mp->b_rptr;
23366 		bzero(ifrt, sizeof (ifrt_t));
23367 		ifrt->ifrt_type = ire->ire_type;
23368 		ifrt->ifrt_addr = ire->ire_addr;
23369 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23370 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23371 		ifrt->ifrt_mask = ire->ire_mask;
23372 		ifrt->ifrt_flags = ire->ire_flags;
23373 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23374 		mutex_enter(&ipif->ipif_saved_ire_lock);
23375 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23376 		ipif->ipif_saved_ire_mp = save_mp;
23377 		ipif->ipif_saved_ire_cnt++;
23378 		mutex_exit(&ipif->ipif_saved_ire_lock);
23379 	}
23380 }
23381 
23382 
23383 static void
23384 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23385 {
23386 	mblk_t	**mpp;
23387 	mblk_t	*mp;
23388 	ifrt_t	*ifrt;
23389 
23390 	/* Remove from ipif_saved_ire_mp list if it is there */
23391 	mutex_enter(&ipif->ipif_saved_ire_lock);
23392 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23393 	    mpp = &(*mpp)->b_cont) {
23394 		/*
23395 		 * On a given ipif, the triple of address, gateway and
23396 		 * mask is unique for each saved IRE (in the case of
23397 		 * ordinary interface routes, the gateway address is
23398 		 * all-zeroes).
23399 		 */
23400 		mp = *mpp;
23401 		ifrt = (ifrt_t *)mp->b_rptr;
23402 		if (ifrt->ifrt_addr == ire->ire_addr &&
23403 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23404 		    ifrt->ifrt_mask == ire->ire_mask) {
23405 			*mpp = mp->b_cont;
23406 			ipif->ipif_saved_ire_cnt--;
23407 			freeb(mp);
23408 			break;
23409 		}
23410 	}
23411 	mutex_exit(&ipif->ipif_saved_ire_lock);
23412 }
23413 
23414 
23415 /*
23416  * IP multirouting broadcast routes handling
23417  * Append CGTP broadcast IREs to regular ones created
23418  * at ifconfig time.
23419  */
23420 static void
23421 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst)
23422 {
23423 	ire_t *ire_prim;
23424 
23425 	ASSERT(ire != NULL);
23426 	ASSERT(ire_dst != NULL);
23427 
23428 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23429 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23430 	if (ire_prim != NULL) {
23431 		/*
23432 		 * We are in the special case of broadcasts for
23433 		 * CGTP. We add an IRE_BROADCAST that holds
23434 		 * the RTF_MULTIRT flag, the destination
23435 		 * address of ire_dst and the low level
23436 		 * info of ire_prim. In other words, CGTP
23437 		 * broadcast is added to the redundant ipif.
23438 		 */
23439 		ipif_t *ipif_prim;
23440 		ire_t  *bcast_ire;
23441 
23442 		ipif_prim = ire_prim->ire_ipif;
23443 
23444 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23445 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23446 		    (void *)ire_dst, (void *)ire_prim,
23447 		    (void *)ipif_prim));
23448 
23449 		bcast_ire = ire_create(
23450 		    (uchar_t *)&ire->ire_addr,
23451 		    (uchar_t *)&ip_g_all_ones,
23452 		    (uchar_t *)&ire_dst->ire_src_addr,
23453 		    (uchar_t *)&ire->ire_gateway_addr,
23454 		    NULL,
23455 		    &ipif_prim->ipif_mtu,
23456 		    NULL,
23457 		    ipif_prim->ipif_rq,
23458 		    ipif_prim->ipif_wq,
23459 		    IRE_BROADCAST,
23460 		    ipif_prim->ipif_bcast_mp,
23461 		    ipif_prim,
23462 		    NULL,
23463 		    0,
23464 		    0,
23465 		    0,
23466 		    ire->ire_flags,
23467 		    &ire_uinfo_null,
23468 		    NULL,
23469 		    NULL);
23470 
23471 		if (bcast_ire != NULL) {
23472 
23473 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23474 			    B_FALSE) == 0) {
23475 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23476 				    "added bcast_ire %p\n",
23477 				    (void *)bcast_ire));
23478 
23479 				ipif_save_ire(bcast_ire->ire_ipif,
23480 				    bcast_ire);
23481 				ire_refrele(bcast_ire);
23482 			}
23483 		}
23484 		ire_refrele(ire_prim);
23485 	}
23486 }
23487 
23488 
23489 /*
23490  * IP multirouting broadcast routes handling
23491  * Remove the broadcast ire
23492  */
23493 static void
23494 ip_cgtp_bcast_delete(ire_t *ire)
23495 {
23496 	ire_t *ire_dst;
23497 
23498 	ASSERT(ire != NULL);
23499 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23500 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23501 	if (ire_dst != NULL) {
23502 		ire_t *ire_prim;
23503 
23504 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23505 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23506 		if (ire_prim != NULL) {
23507 			ipif_t *ipif_prim;
23508 			ire_t  *bcast_ire;
23509 
23510 			ipif_prim = ire_prim->ire_ipif;
23511 
23512 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23513 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23514 			    (void *)ire_dst, (void *)ire_prim,
23515 			    (void *)ipif_prim));
23516 
23517 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23518 			    ire->ire_gateway_addr,
23519 			    IRE_BROADCAST,
23520 			    ipif_prim, ALL_ZONES,
23521 			    NULL,
23522 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23523 			    MATCH_IRE_MASK);
23524 
23525 			if (bcast_ire != NULL) {
23526 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23527 				    "looked up bcast_ire %p\n",
23528 				    (void *)bcast_ire));
23529 				ipif_remove_ire(bcast_ire->ire_ipif,
23530 					bcast_ire);
23531 				ire_delete(bcast_ire);
23532 			}
23533 			ire_refrele(ire_prim);
23534 		}
23535 		ire_refrele(ire_dst);
23536 	}
23537 }
23538 
23539 /*
23540  * IPsec hardware acceleration capabilities related functions.
23541  */
23542 
23543 /*
23544  * Free a per-ill IPsec capabilities structure.
23545  */
23546 static void
23547 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23548 {
23549 	if (capab->auth_hw_algs != NULL)
23550 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23551 	if (capab->encr_hw_algs != NULL)
23552 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23553 	if (capab->encr_algparm != NULL)
23554 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23555 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23556 }
23557 
23558 /*
23559  * Allocate a new per-ill IPsec capabilities structure. This structure
23560  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23561  * an array which specifies, for each algorithm, whether this algorithm
23562  * is supported by the ill or not.
23563  */
23564 static ill_ipsec_capab_t *
23565 ill_ipsec_capab_alloc(void)
23566 {
23567 	ill_ipsec_capab_t *capab;
23568 	uint_t nelems;
23569 
23570 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23571 	if (capab == NULL)
23572 		return (NULL);
23573 
23574 	/* we need one bit per algorithm */
23575 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23576 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23577 
23578 	/* allocate memory to store algorithm flags */
23579 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23580 	if (capab->encr_hw_algs == NULL)
23581 		goto nomem;
23582 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23583 	if (capab->auth_hw_algs == NULL)
23584 		goto nomem;
23585 	/*
23586 	 * Leave encr_algparm NULL for now since we won't need it half
23587 	 * the time
23588 	 */
23589 	return (capab);
23590 
23591 nomem:
23592 	ill_ipsec_capab_free(capab);
23593 	return (NULL);
23594 }
23595 
23596 /*
23597  * Resize capability array.  Since we're exclusive, this is OK.
23598  */
23599 static boolean_t
23600 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23601 {
23602 	ipsec_capab_algparm_t *nalp, *oalp;
23603 	uint32_t olen, nlen;
23604 
23605 	oalp = capab->encr_algparm;
23606 	olen = capab->encr_algparm_size;
23607 
23608 	if (oalp != NULL) {
23609 		if (algid < capab->encr_algparm_end)
23610 			return (B_TRUE);
23611 	}
23612 
23613 	nlen = (algid + 1) * sizeof (*nalp);
23614 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23615 	if (nalp == NULL)
23616 		return (B_FALSE);
23617 
23618 	if (oalp != NULL) {
23619 		bcopy(oalp, nalp, olen);
23620 		kmem_free(oalp, olen);
23621 	}
23622 	capab->encr_algparm = nalp;
23623 	capab->encr_algparm_size = nlen;
23624 	capab->encr_algparm_end = algid + 1;
23625 
23626 	return (B_TRUE);
23627 }
23628 
23629 /*
23630  * Compare the capabilities of the specified ill with the protocol
23631  * and algorithms specified by the SA passed as argument.
23632  * If they match, returns B_TRUE, B_FALSE if they do not match.
23633  *
23634  * The ill can be passed as a pointer to it, or by specifying its index
23635  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23636  *
23637  * Called by ipsec_out_is_accelerated() do decide whether an outbound
23638  * packet is eligible for hardware acceleration, and by
23639  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23640  * to a particular ill.
23641  */
23642 boolean_t
23643 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23644     ipsa_t *sa)
23645 {
23646 	boolean_t sa_isv6;
23647 	uint_t algid;
23648 	struct ill_ipsec_capab_s *cpp;
23649 	boolean_t need_refrele = B_FALSE;
23650 
23651 	if (ill == NULL) {
23652 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23653 		    NULL, NULL, NULL);
23654 		if (ill == NULL) {
23655 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23656 			return (B_FALSE);
23657 		}
23658 		need_refrele = B_TRUE;
23659 	}
23660 
23661 	/*
23662 	 * Use the address length specified by the SA to determine
23663 	 * if it corresponds to a IPv6 address, and fail the matching
23664 	 * if the isv6 flag passed as argument does not match.
23665 	 * Note: this check is used for SADB capability checking before
23666 	 * sending SA information to an ill.
23667 	 */
23668 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23669 	if (sa_isv6 != ill_isv6)
23670 		/* protocol mismatch */
23671 		goto done;
23672 
23673 	/*
23674 	 * Check if the ill supports the protocol, algorithm(s) and
23675 	 * key size(s) specified by the SA, and get the pointers to
23676 	 * the algorithms supported by the ill.
23677 	 */
23678 	switch (sa->ipsa_type) {
23679 
23680 	case SADB_SATYPE_ESP:
23681 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23682 			/* ill does not support ESP acceleration */
23683 			goto done;
23684 		cpp = ill->ill_ipsec_capab_esp;
23685 		algid = sa->ipsa_auth_alg;
23686 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23687 			goto done;
23688 		algid = sa->ipsa_encr_alg;
23689 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23690 			goto done;
23691 		if (algid < cpp->encr_algparm_end) {
23692 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23693 			if (sa->ipsa_encrkeybits < alp->minkeylen)
23694 				goto done;
23695 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
23696 				goto done;
23697 		}
23698 		break;
23699 
23700 	case SADB_SATYPE_AH:
23701 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23702 			/* ill does not support AH acceleration */
23703 			goto done;
23704 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23705 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
23706 			goto done;
23707 		break;
23708 	}
23709 
23710 	if (need_refrele)
23711 		ill_refrele(ill);
23712 	return (B_TRUE);
23713 done:
23714 	if (need_refrele)
23715 		ill_refrele(ill);
23716 	return (B_FALSE);
23717 }
23718 
23719 
23720 /*
23721  * Add a new ill to the list of IPsec capable ills.
23722  * Called from ill_capability_ipsec_ack() when an ACK was received
23723  * indicating that IPsec hardware processing was enabled for an ill.
23724  *
23725  * ill must point to the ill for which acceleration was enabled.
23726  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23727  */
23728 static void
23729 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23730 {
23731 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23732 	uint_t sa_type;
23733 	uint_t ipproto;
23734 
23735 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23736 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
23737 
23738 	switch (dl_cap) {
23739 	case DL_CAPAB_IPSEC_AH:
23740 		sa_type = SADB_SATYPE_AH;
23741 		ills = &ipsec_capab_ills_ah;
23742 		ipproto = IPPROTO_AH;
23743 		break;
23744 	case DL_CAPAB_IPSEC_ESP:
23745 		sa_type = SADB_SATYPE_ESP;
23746 		ills = &ipsec_capab_ills_esp;
23747 		ipproto = IPPROTO_ESP;
23748 		break;
23749 	}
23750 
23751 	rw_enter(&ipsec_capab_ills_lock, RW_WRITER);
23752 
23753 	/*
23754 	 * Add ill index to list of hardware accelerators. If
23755 	 * already in list, do nothing.
23756 	 */
23757 	for (cur_ill = *ills; cur_ill != NULL &&
23758 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23759 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23760 		;
23761 
23762 	if (cur_ill == NULL) {
23763 		/* if this is a new entry for this ill */
23764 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23765 		if (new_ill == NULL) {
23766 			rw_exit(&ipsec_capab_ills_lock);
23767 			return;
23768 		}
23769 
23770 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23771 		new_ill->ill_isv6 = ill->ill_isv6;
23772 		new_ill->next = *ills;
23773 		*ills = new_ill;
23774 	} else if (!sadb_resync) {
23775 		/* not resync'ing SADB and an entry exists for this ill */
23776 		rw_exit(&ipsec_capab_ills_lock);
23777 		return;
23778 	}
23779 
23780 	rw_exit(&ipsec_capab_ills_lock);
23781 
23782 	if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23783 		/*
23784 		 * IPsec module for protocol loaded, initiate dump
23785 		 * of the SADB to this ill.
23786 		 */
23787 		sadb_ill_download(ill, sa_type);
23788 }
23789 
23790 /*
23791  * Remove an ill from the list of IPsec capable ills.
23792  */
23793 static void
23794 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23795 {
23796 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23797 
23798 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23799 	    dl_cap == DL_CAPAB_IPSEC_ESP);
23800 
23801 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah :
23802 	    &ipsec_capab_ills_esp;
23803 
23804 	rw_enter(&ipsec_capab_ills_lock, RW_WRITER);
23805 
23806 	prev_ill = NULL;
23807 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23808 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23809 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23810 		;
23811 	if (cur_ill == NULL) {
23812 		/* entry not found */
23813 		rw_exit(&ipsec_capab_ills_lock);
23814 		return;
23815 	}
23816 	if (prev_ill == NULL) {
23817 		/* entry at front of list */
23818 		*ills = NULL;
23819 	} else {
23820 		prev_ill->next = cur_ill->next;
23821 	}
23822 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23823 	rw_exit(&ipsec_capab_ills_lock);
23824 }
23825 
23826 
23827 /*
23828  * Handling of DL_CONTROL_REQ messages that must be sent down to
23829  * an ill while having exclusive access.
23830  */
23831 /* ARGSUSED */
23832 static void
23833 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
23834 {
23835 	ill_t *ill = (ill_t *)q->q_ptr;
23836 
23837 	ill_dlpi_send(ill, mp);
23838 }
23839 
23840 
23841 /*
23842  * Called by SADB to send a DL_CONTROL_REQ message to every ill
23843  * supporting the specified IPsec protocol acceleration.
23844  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23845  * We free the mblk and, if sa is non-null, release the held referece.
23846  */
23847 void
23848 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa)
23849 {
23850 	ipsec_capab_ill_t *ici, *cur_ici;
23851 	ill_t *ill;
23852 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23853 
23854 	ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah :
23855 	    ipsec_capab_ills_esp;
23856 
23857 	rw_enter(&ipsec_capab_ills_lock, RW_READER);
23858 
23859 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23860 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23861 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL);
23862 
23863 		/*
23864 		 * Handle the case where the ill goes away while the SADB is
23865 		 * attempting to send messages.  If it's going away, it's
23866 		 * nuking its shadow SADB, so we don't care..
23867 		 */
23868 
23869 		if (ill == NULL)
23870 			continue;
23871 
23872 		if (sa != NULL) {
23873 			/*
23874 			 * Make sure capabilities match before
23875 			 * sending SA to ill.
23876 			 */
23877 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
23878 			    cur_ici->ill_isv6, sa)) {
23879 				ill_refrele(ill);
23880 				continue;
23881 			}
23882 
23883 			mutex_enter(&sa->ipsa_lock);
23884 			sa->ipsa_flags |= IPSA_F_HW;
23885 			mutex_exit(&sa->ipsa_lock);
23886 		}
23887 
23888 		/*
23889 		 * Copy template message, and add it to the front
23890 		 * of the mblk ship list. We want to avoid holding
23891 		 * the ipsec_capab_ills_lock while sending the
23892 		 * message to the ills.
23893 		 *
23894 		 * The b_next and b_prev are temporarily used
23895 		 * to build a list of mblks to be sent down, and to
23896 		 * save the ill to which they must be sent.
23897 		 */
23898 		nmp = copymsg(mp);
23899 		if (nmp == NULL) {
23900 			ill_refrele(ill);
23901 			continue;
23902 		}
23903 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23904 		nmp->b_next = mp_ship_list;
23905 		mp_ship_list = nmp;
23906 		nmp->b_prev = (mblk_t *)ill;
23907 	}
23908 
23909 	rw_exit(&ipsec_capab_ills_lock);
23910 
23911 	nmp = mp_ship_list;
23912 	while (nmp != NULL) {
23913 		/* restore the mblk to a sane state */
23914 		next_mp = nmp->b_next;
23915 		nmp->b_next = NULL;
23916 		ill = (ill_t *)nmp->b_prev;
23917 		nmp->b_prev = NULL;
23918 
23919 		/*
23920 		 * Ship the mblk to the ill, must be exclusive. Keep the
23921 		 * reference to the ill as qwriter_ip() does a ill_referele().
23922 		 */
23923 		(void) qwriter_ip(NULL, ill, ill->ill_wq, nmp,
23924 		    ill_ipsec_capab_send_writer, NEW_OP, B_TRUE);
23925 
23926 		nmp = next_mp;
23927 	}
23928 
23929 	if (sa != NULL)
23930 		IPSA_REFRELE(sa);
23931 	freemsg(mp);
23932 }
23933 
23934 
23935 /*
23936  * Derive an interface id from the link layer address.
23937  * Knows about IEEE 802 and IEEE EUI-64 mappings.
23938  */
23939 static boolean_t
23940 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23941 {
23942 	char		*addr;
23943 
23944 	if (phys_length != ETHERADDRL)
23945 		return (B_FALSE);
23946 
23947 	/* Form EUI-64 like address */
23948 	addr = (char *)&v6addr->s6_addr32[2];
23949 	bcopy((char *)phys_addr, addr, 3);
23950 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
23951 	addr[3] = (char)0xff;
23952 	addr[4] = (char)0xfe;
23953 	bcopy((char *)phys_addr + 3, addr + 5, 3);
23954 	return (B_TRUE);
23955 }
23956 
23957 /* ARGSUSED */
23958 static boolean_t
23959 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23960 {
23961 	return (B_FALSE);
23962 }
23963 
23964 /* ARGSUSED */
23965 static boolean_t
23966 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23967     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23968 {
23969 	/*
23970 	 * Multicast address mappings used over Ethernet/802.X.
23971 	 * This address is used as a base for mappings.
23972 	 */
23973 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23974 	    0x00, 0x00, 0x00};
23975 
23976 	/*
23977 	 * Extract low order 32 bits from IPv6 multicast address.
23978 	 * Or that into the link layer address, starting from the
23979 	 * second byte.
23980 	 */
23981 	*hw_start = 2;
23982 	v6_extract_mask->s6_addr32[0] = 0;
23983 	v6_extract_mask->s6_addr32[1] = 0;
23984 	v6_extract_mask->s6_addr32[2] = 0;
23985 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23986 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23987 	return (B_TRUE);
23988 }
23989 
23990 /*
23991  * Indicate by return value whether multicast is supported. If not,
23992  * this code should not touch/change any parameters.
23993  */
23994 /* ARGSUSED */
23995 static boolean_t
23996 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23997     uint32_t *hw_start, ipaddr_t *extract_mask)
23998 {
23999 	/*
24000 	 * Multicast address mappings used over Ethernet/802.X.
24001 	 * This address is used as a base for mappings.
24002 	 */
24003 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
24004 	    0x00, 0x00, 0x00 };
24005 
24006 	if (phys_length != ETHERADDRL)
24007 		return (B_FALSE);
24008 
24009 	*extract_mask = htonl(0x007fffff);
24010 	*hw_start = 2;
24011 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
24012 	return (B_TRUE);
24013 }
24014 
24015 /*
24016  * Derive IPoIB interface id from the link layer address.
24017  */
24018 static boolean_t
24019 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24020 {
24021 	char		*addr;
24022 
24023 	if (phys_length != 20)
24024 		return (B_FALSE);
24025 	addr = (char *)&v6addr->s6_addr32[2];
24026 	bcopy(phys_addr + 12, addr, 8);
24027 	/*
24028 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
24029 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
24030 	 * rules. In these cases, the IBA considers these GUIDs to be in
24031 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
24032 	 * required; vendors are required not to assign global EUI-64's
24033 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
24034 	 * of the interface identifier. Whether the GUID is in modified
24035 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
24036 	 * bit set to 1.
24037 	 */
24038 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
24039 	return (B_TRUE);
24040 }
24041 
24042 /*
24043  * Note on mapping from multicast IP addresses to IPoIB multicast link
24044  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
24045  * The format of an IPoIB multicast address is:
24046  *
24047  *  4 byte QPN      Scope Sign.  Pkey
24048  * +--------------------------------------------+
24049  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
24050  * +--------------------------------------------+
24051  *
24052  * The Scope and Pkey components are properties of the IBA port and
24053  * network interface. They can be ascertained from the broadcast address.
24054  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
24055  */
24056 
24057 static boolean_t
24058 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24059     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24060 {
24061 	/*
24062 	 * Base IPoIB IPv6 multicast address used for mappings.
24063 	 * Does not contain the IBA scope/Pkey values.
24064 	 */
24065 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24066 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
24067 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24068 
24069 	/*
24070 	 * Extract low order 80 bits from IPv6 multicast address.
24071 	 * Or that into the link layer address, starting from the
24072 	 * sixth byte.
24073 	 */
24074 	*hw_start = 6;
24075 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
24076 
24077 	/*
24078 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24079 	 */
24080 	*(maddr + 5) = *(bphys_addr + 5);
24081 	*(maddr + 8) = *(bphys_addr + 8);
24082 	*(maddr + 9) = *(bphys_addr + 9);
24083 
24084 	v6_extract_mask->s6_addr32[0] = 0;
24085 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
24086 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
24087 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24088 	return (B_TRUE);
24089 }
24090 
24091 static boolean_t
24092 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24093     uint32_t *hw_start, ipaddr_t *extract_mask)
24094 {
24095 	/*
24096 	 * Base IPoIB IPv4 multicast address used for mappings.
24097 	 * Does not contain the IBA scope/Pkey values.
24098 	 */
24099 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24100 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
24101 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24102 
24103 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
24104 		return (B_FALSE);
24105 
24106 	/*
24107 	 * Extract low order 28 bits from IPv4 multicast address.
24108 	 * Or that into the link layer address, starting from the
24109 	 * sixteenth byte.
24110 	 */
24111 	*extract_mask = htonl(0x0fffffff);
24112 	*hw_start = 16;
24113 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
24114 
24115 	/*
24116 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24117 	 */
24118 	*(maddr + 5) = *(bphys_addr + 5);
24119 	*(maddr + 8) = *(bphys_addr + 8);
24120 	*(maddr + 9) = *(bphys_addr + 9);
24121 	return (B_TRUE);
24122 }
24123 
24124 /*
24125  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
24126  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
24127  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
24128  * the link-local address is preferred.
24129  */
24130 boolean_t
24131 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24132 {
24133 	ipif_t	*ipif;
24134 	ipif_t	*maybe_ipif = NULL;
24135 
24136 	mutex_enter(&ill->ill_lock);
24137 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24138 		mutex_exit(&ill->ill_lock);
24139 		if (ipifp != NULL)
24140 			*ipifp = NULL;
24141 		return (B_FALSE);
24142 	}
24143 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24144 		if (!IPIF_CAN_LOOKUP(ipif))
24145 			continue;
24146 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
24147 		    ipif->ipif_zoneid != ALL_ZONES)
24148 			continue;
24149 		if ((ipif->ipif_flags & flags) != flags)
24150 			continue;
24151 
24152 		if (ipifp == NULL) {
24153 			mutex_exit(&ill->ill_lock);
24154 			ASSERT(maybe_ipif == NULL);
24155 			return (B_TRUE);
24156 		}
24157 		if (!ill->ill_isv6 ||
24158 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
24159 			ipif_refhold_locked(ipif);
24160 			mutex_exit(&ill->ill_lock);
24161 			*ipifp = ipif;
24162 			return (B_TRUE);
24163 		}
24164 		if (maybe_ipif == NULL)
24165 			maybe_ipif = ipif;
24166 	}
24167 	if (ipifp != NULL) {
24168 		if (maybe_ipif != NULL)
24169 			ipif_refhold_locked(maybe_ipif);
24170 		*ipifp = maybe_ipif;
24171 	}
24172 	mutex_exit(&ill->ill_lock);
24173 	return (maybe_ipif != NULL);
24174 }
24175 
24176 /*
24177  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24178  */
24179 boolean_t
24180 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24181 {
24182 	ill_t *illg;
24183 
24184 	/*
24185 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24186 	 */
24187 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24188 		return (B_TRUE);
24189 	}
24190 	rw_enter(&ill_g_lock, RW_READER);
24191 	if (ill->ill_group == NULL) {
24192 		/* ill not in a group */
24193 		rw_exit(&ill_g_lock);
24194 		return (B_FALSE);
24195 	}
24196 
24197 	/*
24198 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24199 	 * group. We need to look for an ipif in the zone on all the ills in the
24200 	 * group.
24201 	 */
24202 	illg = ill->ill_group->illgrp_ill;
24203 	do {
24204 		/*
24205 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24206 		 * that it's not there.
24207 		 */
24208 		if (illg != ill &&
24209 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24210 			break;
24211 		}
24212 	} while ((illg = illg->ill_group_next) != NULL);
24213 	rw_exit(&ill_g_lock);
24214 	return (illg != NULL);
24215 }
24216 
24217 /*
24218  * Check if this ill is only being used to send ICMP probes for IPMP
24219  */
24220 boolean_t
24221 ill_is_probeonly(ill_t *ill)
24222 {
24223 	/*
24224 	 * Check if the interface is FAILED, or INACTIVE
24225 	 */
24226 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24227 		return (B_TRUE);
24228 
24229 	return (B_FALSE);
24230 }
24231 
24232 /*
24233  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24234  * If a pointer to an ipif_t is returned then the caller will need to do
24235  * an ill_refrele().
24236  */
24237 ipif_t *
24238 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6)
24239 {
24240 	ipif_t *ipif;
24241 	ill_t *ill;
24242 
24243 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL);
24244 
24245 	if (ill == NULL)
24246 		return (NULL);
24247 
24248 	mutex_enter(&ill->ill_lock);
24249 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24250 		mutex_exit(&ill->ill_lock);
24251 		ill_refrele(ill);
24252 		return (NULL);
24253 	}
24254 
24255 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24256 		if (!IPIF_CAN_LOOKUP(ipif))
24257 			continue;
24258 		if (lifidx == ipif->ipif_id) {
24259 			ipif_refhold_locked(ipif);
24260 			break;
24261 		}
24262 	}
24263 
24264 	mutex_exit(&ill->ill_lock);
24265 	ill_refrele(ill);
24266 	return (ipif);
24267 }
24268 
24269 /*
24270  * Flush the fastpath by deleting any IRE's that are waiting for the fastpath,
24271  * and any IRE's that are using the fastpath.  There are two exceptions:
24272  * IRE_MIPRTUN and IRE_BROADCAST are difficult to recreate, so instead we just
24273  * nuke their nce_fp_mp's; see ire_fastpath_flush() for details.
24274  */
24275 void
24276 ill_fastpath_flush(ill_t *ill)
24277 {
24278 	if (ill->ill_isv6) {
24279 		nce_fastpath_list_dispatch(ill, NULL, NULL);
24280 		ndp_walk(ill, (pfi_t)ndp_fastpath_flush, NULL);
24281 	} else {
24282 		ire_fastpath_list_dispatch(ill, NULL, NULL);
24283 		ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE,
24284 		    IRE_CACHE | IRE_BROADCAST, ire_fastpath_flush, NULL, ill);
24285 		mutex_enter(&ire_mrtun_lock);
24286 		if (ire_mrtun_count != 0) {
24287 			mutex_exit(&ire_mrtun_lock);
24288 			ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN,
24289 			    ire_fastpath_flush, NULL, ill);
24290 		} else {
24291 			mutex_exit(&ire_mrtun_lock);
24292 		}
24293 	}
24294 }
24295 
24296 /*
24297  * Set the physical address information for `ill' to the contents of the
24298  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24299  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24300  * EINPROGRESS will be returned.
24301  */
24302 int
24303 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24304 {
24305 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24306 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24307 
24308 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24309 
24310 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24311 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24312 		/* Changing DL_IPV6_TOKEN is not yet supported */
24313 		return (0);
24314 	}
24315 
24316 	/*
24317 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24318 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24319 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24320 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24321 	 */
24322 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24323 		freemsg(mp);
24324 		return (ENOMEM);
24325 	}
24326 
24327 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24328 
24329 	/*
24330 	 * If we can quiesce the ill, then set the address.  If not, then
24331 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24332 	 */
24333 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24334 	mutex_enter(&ill->ill_lock);
24335 	if (!ill_is_quiescent(ill)) {
24336 		/* call cannot fail since `conn_t *' argument is NULL */
24337 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24338 		    mp, ILL_DOWN);
24339 		mutex_exit(&ill->ill_lock);
24340 		return (EINPROGRESS);
24341 	}
24342 	mutex_exit(&ill->ill_lock);
24343 
24344 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24345 	return (0);
24346 }
24347 
24348 /*
24349  * Once the ill associated with `q' has quiesced, set its physical address
24350  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24351  * are passed (linked by b_cont), since we sometimes need to save two distinct
24352  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24353  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24354  * is quiesced, we know any stale IREs with the old address information have
24355  * already been removed, so we don't need to call ill_fastpath_flush().
24356  */
24357 /* ARGSUSED */
24358 static void
24359 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24360 {
24361 	ill_t		*ill = q->q_ptr;
24362 	mblk_t		*addrmp2 = unlinkb(addrmp);
24363 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24364 	uint_t		addrlen, addroff;
24365 
24366 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24367 	mutex_enter(&ill->ill_lock);
24368 	ASSERT(ill_is_quiescent(ill));
24369 	mutex_exit(&ill->ill_lock);
24370 
24371 	addroff	= dlindp->dl_addr_offset;
24372 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24373 
24374 	switch (dlindp->dl_data) {
24375 	case DL_IPV6_LINK_LAYER_ADDR:
24376 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24377 		freemsg(addrmp2);
24378 		break;
24379 
24380 	case DL_CURR_PHYS_ADDR:
24381 		freemsg(ill->ill_phys_addr_mp);
24382 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24383 		ill->ill_phys_addr_mp = addrmp;
24384 		ill->ill_phys_addr_length = addrlen;
24385 
24386 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24387 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24388 		else
24389 			freemsg(addrmp2);
24390 		break;
24391 	default:
24392 		ASSERT(0);
24393 	}
24394 
24395 	/*
24396 	 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero,
24397 	 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer()
24398 	 * or ip_arp_done() when the last ipif is brought up.
24399 	 */
24400 	if (ill_up_ipifs(ill, q, addrmp) == 0)
24401 		ipsq_current_finish(ipsq);
24402 }
24403 
24404 /*
24405  * Helper routine for setting the ill_nd_lla fields.
24406  */
24407 void
24408 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24409 {
24410 	freemsg(ill->ill_nd_lla_mp);
24411 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24412 	ill->ill_nd_lla_mp = ndmp;
24413 	ill->ill_nd_lla_len = addrlen;
24414 }
24415