xref: /titanic_52/usr/src/uts/common/inet/ip/ip_if.c (revision b02e9a2d4d2071d770e5aa9ae8f83f2bbe1f2ced)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 #include <sys/bitmap.h>
49 
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/strsun.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 
69 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
70 #include <inet/mi.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/mib2.h>
74 #include <inet/ip.h>
75 #include <inet/ip6.h>
76 #include <inet/ip6_asp.h>
77 #include <inet/tcp.h>
78 #include <inet/ip_multi.h>
79 #include <inet/ip_ire.h>
80 #include <inet/ip_ftable.h>
81 #include <inet/ip_rts.h>
82 #include <inet/ip_ndp.h>
83 #include <inet/ip_if.h>
84 #include <inet/ip_impl.h>
85 #include <inet/tun.h>
86 #include <inet/sctp_ip.h>
87 #include <inet/ip_netinfo.h>
88 #include <inet/mib2.h>
89 
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/sadb.h>
93 #include <inet/ipsec_impl.h>
94 #include <sys/iphada.h>
95 
96 
97 #include <netinet/igmp.h>
98 #include <inet/ip_listutils.h>
99 #include <inet/ipclassifier.h>
100 #include <sys/mac.h>
101 
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104 
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107 
108 /* The character which tells where the ill_name ends */
109 #define	IPIF_SEPARATOR_CHAR	':'
110 
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 	int	ipft_cmd;
114 	pfi_t	ipft_pfi;
115 	int	ipft_min_size;
116 	int	ipft_flags;
117 } ipft_t;
118 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
119 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
120 
121 typedef struct ip_sock_ar_s {
122 	union {
123 		area_t	ip_sock_area;
124 		ared_t	ip_sock_ared;
125 		areq_t	ip_sock_areq;
126 	} ip_sock_ar_u;
127 	queue_t	*ip_sock_ar_q;
128 } ip_sock_ar_t;
129 
130 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
131 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
132 		    char *value, caddr_t cp, cred_t *ioc_cr);
133 
134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
135 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
136 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137     mblk_t *mp, boolean_t need_up);
138 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139     mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
141     queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
143     mblk_t *mp, boolean_t need_up);
144 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
145     mblk_t *mp);
146 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
147     queue_t *q, mblk_t *mp, boolean_t need_up);
148 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
149     int ioccmd, struct linkblk *li, boolean_t doconsist);
150 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
151 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
152 static void	ipsq_flush(ill_t *ill);
153 
154 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155     queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void	ipsq_delete(ipsq_t *);
157 
158 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 		    boolean_t initialize);
160 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
161 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
163 		    boolean_t isv6);
164 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
165 static void	ipif_delete_cache_ire(ire_t *, char *);
166 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
167 static void	ipif_free(ipif_t *ipif);
168 static void	ipif_free_tail(ipif_t *ipif);
169 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
170 static void	ipif_multicast_down(ipif_t *ipif);
171 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
172 static void	ipif_set_default(ipif_t *ipif);
173 static int	ipif_set_values(queue_t *q, mblk_t *mp,
174     char *interf_name, uint_t *ppa);
175 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
176     queue_t *q);
177 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
178     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
179     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
180 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
181 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
182 
183 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
184 static int	ill_arp_off(ill_t *ill);
185 static int	ill_arp_on(ill_t *ill);
186 static void	ill_delete_interface_type(ill_if_t *);
187 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188 static void	ill_dl_down(ill_t *ill);
189 static void	ill_down(ill_t *ill);
190 static void	ill_downi(ire_t *ire, char *ill_arg);
191 static void	ill_free_mib(ill_t *ill);
192 static void	ill_glist_delete(ill_t *);
193 static boolean_t ill_has_usable_ipif(ill_t *);
194 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
195 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
196 static void	ill_phyint_free(ill_t *ill);
197 static void	ill_phyint_reinit(ill_t *ill);
198 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
199 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
200 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
202 static void	ill_stq_cache_delete(ire_t *, char *);
203 
204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207     in6_addr_t *);
208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     ipaddr_t *);
210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
212     in6_addr_t *);
213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
214     ipaddr_t *);
215 
216 static void	ipif_save_ire(ipif_t *, ire_t *);
217 static void	ipif_remove_ire(ipif_t *, ire_t *);
218 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
219 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
220 
221 /*
222  * Per-ill IPsec capabilities management.
223  */
224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
225 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
226 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
227 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
229 static void ill_capability_proto(ill_t *, int, mblk_t *);
230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
231     boolean_t);
232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
234 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
240     dl_capability_sub_t *);
241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
243 static void ill_capability_lso_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
246 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
247 static void	ill_capability_dls_disable(ill_t *);
248 
249 static void	illgrp_cache_delete(ire_t *, char *);
250 static void	illgrp_delete(ill_t *ill);
251 static void	illgrp_reset_schednext(ill_t *ill);
252 
253 static ill_t	*ill_prev_usesrc(ill_t *);
254 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
255 static void	ill_disband_usesrc_group(ill_t *);
256 
257 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
258 
259 #ifdef DEBUG
260 static	void	ill_trace_cleanup(const ill_t *);
261 static	void	ipif_trace_cleanup(const ipif_t *);
262 #endif
263 
264 /*
265  * if we go over the memory footprint limit more than once in this msec
266  * interval, we'll start pruning aggressively.
267  */
268 int ip_min_frag_prune_time = 0;
269 
270 /*
271  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
272  * and the IPsec DOI
273  */
274 #define	MAX_IPSEC_ALGS	256
275 
276 #define	BITSPERBYTE	8
277 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
278 
279 #define	IPSEC_ALG_ENABLE(algs, algid) \
280 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
281 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
282 
283 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
284 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
285 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
286 
287 typedef uint8_t ipsec_capab_elem_t;
288 
289 /*
290  * Per-algorithm parameters.  Note that at present, only encryption
291  * algorithms have variable keysize (IKE does not provide a way to negotiate
292  * auth algorithm keysize).
293  *
294  * All sizes here are in bits.
295  */
296 typedef struct
297 {
298 	uint16_t	minkeylen;
299 	uint16_t	maxkeylen;
300 } ipsec_capab_algparm_t;
301 
302 /*
303  * Per-ill capabilities.
304  */
305 struct ill_ipsec_capab_s {
306 	ipsec_capab_elem_t *encr_hw_algs;
307 	ipsec_capab_elem_t *auth_hw_algs;
308 	uint32_t algs_size;	/* size of _hw_algs in bytes */
309 	/* algorithm key lengths */
310 	ipsec_capab_algparm_t *encr_algparm;
311 	uint32_t encr_algparm_size;
312 	uint32_t encr_algparm_end;
313 };
314 
315 /*
316  * The field values are larger than strictly necessary for simple
317  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
318  */
319 static area_t	ip_area_template = {
320 	AR_ENTRY_ADD,			/* area_cmd */
321 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
322 					/* area_name_offset */
323 	/* area_name_length temporarily holds this structure length */
324 	sizeof (area_t),			/* area_name_length */
325 	IP_ARP_PROTO_TYPE,		/* area_proto */
326 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
327 	IP_ADDR_LEN,			/* area_proto_addr_length */
328 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
329 					/* area_proto_mask_offset */
330 	0,				/* area_flags */
331 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
332 					/* area_hw_addr_offset */
333 	/* Zero length hw_addr_length means 'use your idea of the address' */
334 	0				/* area_hw_addr_length */
335 };
336 
337 /*
338  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
339  * support
340  */
341 static area_t	ip6_area_template = {
342 	AR_ENTRY_ADD,			/* area_cmd */
343 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
344 					/* area_name_offset */
345 	/* area_name_length temporarily holds this structure length */
346 	sizeof (area_t),			/* area_name_length */
347 	IP_ARP_PROTO_TYPE,		/* area_proto */
348 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
349 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
350 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
351 					/* area_proto_mask_offset */
352 	0,				/* area_flags */
353 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
354 					/* area_hw_addr_offset */
355 	/* Zero length hw_addr_length means 'use your idea of the address' */
356 	0				/* area_hw_addr_length */
357 };
358 
359 static ared_t	ip_ared_template = {
360 	AR_ENTRY_DELETE,
361 	sizeof (ared_t) + IP_ADDR_LEN,
362 	sizeof (ared_t),
363 	IP_ARP_PROTO_TYPE,
364 	sizeof (ared_t),
365 	IP_ADDR_LEN
366 };
367 
368 static ared_t	ip6_ared_template = {
369 	AR_ENTRY_DELETE,
370 	sizeof (ared_t) + IPV6_ADDR_LEN,
371 	sizeof (ared_t),
372 	IP_ARP_PROTO_TYPE,
373 	sizeof (ared_t),
374 	IPV6_ADDR_LEN
375 };
376 
377 /*
378  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
379  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
380  * areq is used).
381  */
382 static areq_t	ip_areq_template = {
383 	AR_ENTRY_QUERY,			/* cmd */
384 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
385 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
386 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
387 	sizeof (areq_t),			/* target addr offset */
388 	IP_ADDR_LEN,			/* target addr_length */
389 	0,				/* flags */
390 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
391 	IP_ADDR_LEN,			/* sender addr length */
392 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
393 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
394 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
395 	/* anything else filled in by the code */
396 };
397 
398 static arc_t	ip_aru_template = {
399 	AR_INTERFACE_UP,
400 	sizeof (arc_t),		/* Name offset */
401 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
402 };
403 
404 static arc_t	ip_ard_template = {
405 	AR_INTERFACE_DOWN,
406 	sizeof (arc_t),		/* Name offset */
407 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
408 };
409 
410 static arc_t	ip_aron_template = {
411 	AR_INTERFACE_ON,
412 	sizeof (arc_t),		/* Name offset */
413 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
414 };
415 
416 static arc_t	ip_aroff_template = {
417 	AR_INTERFACE_OFF,
418 	sizeof (arc_t),		/* Name offset */
419 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
420 };
421 
422 
423 static arma_t	ip_arma_multi_template = {
424 	AR_MAPPING_ADD,
425 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
426 				/* Name offset */
427 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
428 	IP_ARP_PROTO_TYPE,
429 	sizeof (arma_t),			/* proto_addr_offset */
430 	IP_ADDR_LEN,				/* proto_addr_length */
431 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
432 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
433 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
434 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
435 	IP_MAX_HW_LEN,				/* hw_addr_length */
436 	0,					/* hw_mapping_start */
437 };
438 
439 static ipft_t	ip_ioctl_ftbl[] = {
440 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
441 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
442 		IPFT_F_NO_REPLY },
443 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
444 		IPFT_F_NO_REPLY },
445 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
446 	{ 0 }
447 };
448 
449 /* Simple ICMP IP Header Template */
450 static ipha_t icmp_ipha = {
451 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
452 };
453 
454 /* Flag descriptors for ip_ipif_report */
455 static nv_t	ipif_nv_tbl[] = {
456 	{ IPIF_UP,		"UP" },
457 	{ IPIF_BROADCAST,	"BROADCAST" },
458 	{ ILLF_DEBUG,		"DEBUG" },
459 	{ PHYI_LOOPBACK,	"LOOPBACK" },
460 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
461 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
462 	{ PHYI_RUNNING,		"RUNNING" },
463 	{ ILLF_NOARP,		"NOARP" },
464 	{ PHYI_PROMISC,		"PROMISC" },
465 	{ PHYI_ALLMULTI,	"ALLMULTI" },
466 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
467 	{ ILLF_MULTICAST,	"MULTICAST" },
468 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
469 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
470 	{ IPIF_DHCPRUNNING,	"DHCP" },
471 	{ IPIF_PRIVATE,		"PRIVATE" },
472 	{ IPIF_NOXMIT,		"NOXMIT" },
473 	{ IPIF_NOLOCAL,		"NOLOCAL" },
474 	{ IPIF_DEPRECATED,	"DEPRECATED" },
475 	{ IPIF_PREFERRED,	"PREFERRED" },
476 	{ IPIF_TEMPORARY,	"TEMPORARY" },
477 	{ IPIF_ADDRCONF,	"ADDRCONF" },
478 	{ PHYI_VIRTUAL,		"VIRTUAL" },
479 	{ ILLF_ROUTER,		"ROUTER" },
480 	{ ILLF_NONUD,		"NONUD" },
481 	{ IPIF_ANYCAST,		"ANYCAST" },
482 	{ ILLF_NORTEXCH,	"NORTEXCH" },
483 	{ ILLF_IPV4,		"IPV4" },
484 	{ ILLF_IPV6,		"IPV6" },
485 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
486 	{ PHYI_FAILED,		"FAILED" },
487 	{ PHYI_STANDBY,		"STANDBY" },
488 	{ PHYI_INACTIVE,	"INACTIVE" },
489 	{ PHYI_OFFLINE,		"OFFLINE" },
490 };
491 
492 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
493 
494 static ip_m_t	ip_m_tbl[] = {
495 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
496 	    ip_ether_v6intfid },
497 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
498 	    ip_nodef_v6intfid },
499 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
500 	    ip_nodef_v6intfid },
501 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
502 	    ip_nodef_v6intfid },
503 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_ether_v6intfid },
505 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
506 	    ip_ib_v6intfid },
507 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
508 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
509 	    ip_nodef_v6intfid }
510 };
511 
512 static ill_t	ill_null;		/* Empty ILL for init. */
513 char	ipif_loopback_name[] = "lo0";
514 static char *ipv4_forward_suffix = ":ip_forwarding";
515 static char *ipv6_forward_suffix = ":ip6_forwarding";
516 static	sin6_t	sin6_null;	/* Zero address for quick clears */
517 static	sin_t	sin_null;	/* Zero address for quick clears */
518 
519 /* When set search for unused ipif_seqid */
520 static ipif_t	ipif_zero;
521 
522 /*
523  * ppa arena is created after these many
524  * interfaces have been plumbed.
525  */
526 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
527 
528 /*
529  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
530  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
531  * set through platform specific code (Niagara/Ontario).
532  */
533 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
534 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
535 
536 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
537 
538 static uint_t
539 ipif_rand(ip_stack_t *ipst)
540 {
541 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
542 	    12345;
543 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
544 }
545 
546 /*
547  * Allocate per-interface mibs.
548  * Returns true if ok. False otherwise.
549  *  ipsq  may not yet be allocated (loopback case ).
550  */
551 static boolean_t
552 ill_allocate_mibs(ill_t *ill)
553 {
554 	/* Already allocated? */
555 	if (ill->ill_ip_mib != NULL) {
556 		if (ill->ill_isv6)
557 			ASSERT(ill->ill_icmp6_mib != NULL);
558 		return (B_TRUE);
559 	}
560 
561 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
562 	    KM_NOSLEEP);
563 	if (ill->ill_ip_mib == NULL) {
564 		return (B_FALSE);
565 	}
566 
567 	/* Setup static information */
568 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
569 	    sizeof (mib2_ipIfStatsEntry_t));
570 	if (ill->ill_isv6) {
571 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
572 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
573 		    sizeof (mib2_ipv6AddrEntry_t));
574 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
575 		    sizeof (mib2_ipv6RouteEntry_t));
576 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
577 		    sizeof (mib2_ipv6NetToMediaEntry_t));
578 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
579 		    sizeof (ipv6_member_t));
580 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
581 		    sizeof (ipv6_grpsrc_t));
582 	} else {
583 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
584 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
585 		    sizeof (mib2_ipAddrEntry_t));
586 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
587 		    sizeof (mib2_ipRouteEntry_t));
588 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
589 		    sizeof (mib2_ipNetToMediaEntry_t));
590 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
591 		    sizeof (ip_member_t));
592 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
593 		    sizeof (ip_grpsrc_t));
594 
595 		/*
596 		 * For a v4 ill, we are done at this point, because per ill
597 		 * icmp mibs are only used for v6.
598 		 */
599 		return (B_TRUE);
600 	}
601 
602 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
603 	    KM_NOSLEEP);
604 	if (ill->ill_icmp6_mib == NULL) {
605 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
606 		ill->ill_ip_mib = NULL;
607 		return (B_FALSE);
608 	}
609 	/* static icmp info */
610 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
611 	    sizeof (mib2_ipv6IfIcmpEntry_t);
612 	/*
613 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
614 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
615 	 * -> ill_phyint_reinit
616 	 */
617 	return (B_TRUE);
618 }
619 
620 /*
621  * Common code for preparation of ARP commands.  Two points to remember:
622  * 	1) The ill_name is tacked on at the end of the allocated space so
623  *	   the templates name_offset field must contain the total space
624  *	   to allocate less the name length.
625  *
626  *	2) The templates name_length field should contain the *template*
627  *	   length.  We use it as a parameter to bcopy() and then write
628  *	   the real ill_name_length into the name_length field of the copy.
629  * (Always called as writer.)
630  */
631 mblk_t *
632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
633 {
634 	arc_t	*arc = (arc_t *)template;
635 	char	*cp;
636 	int	len;
637 	mblk_t	*mp;
638 	uint_t	name_length = ill->ill_name_length;
639 	uint_t	template_len = arc->arc_name_length;
640 
641 	len = arc->arc_name_offset + name_length;
642 	mp = allocb(len, BPRI_HI);
643 	if (mp == NULL)
644 		return (NULL);
645 	cp = (char *)mp->b_rptr;
646 	mp->b_wptr = (uchar_t *)&cp[len];
647 	if (template_len)
648 		bcopy(template, cp, template_len);
649 	if (len > template_len)
650 		bzero(&cp[template_len], len - template_len);
651 	mp->b_datap->db_type = M_PROTO;
652 
653 	arc = (arc_t *)cp;
654 	arc->arc_name_length = name_length;
655 	cp = (char *)arc + arc->arc_name_offset;
656 	bcopy(ill->ill_name, cp, name_length);
657 
658 	if (addr) {
659 		area_t	*area = (area_t *)mp->b_rptr;
660 
661 		cp = (char *)area + area->area_proto_addr_offset;
662 		bcopy(addr, cp, area->area_proto_addr_length);
663 		if (area->area_cmd == AR_ENTRY_ADD) {
664 			cp = (char *)area;
665 			len = area->area_proto_addr_length;
666 			if (area->area_proto_mask_offset)
667 				cp += area->area_proto_mask_offset;
668 			else
669 				cp += area->area_proto_addr_offset + len;
670 			while (len-- > 0)
671 				*cp++ = (char)~0;
672 		}
673 	}
674 	return (mp);
675 }
676 
677 mblk_t *
678 ipif_area_alloc(ipif_t *ipif)
679 {
680 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
681 	    (char *)&ipif->ipif_lcl_addr));
682 }
683 
684 mblk_t *
685 ipif_ared_alloc(ipif_t *ipif)
686 {
687 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
688 	    (char *)&ipif->ipif_lcl_addr));
689 }
690 
691 mblk_t *
692 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
693 {
694 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
695 	    (char *)&addr));
696 }
697 
698 /*
699  * Completely vaporize a lower level tap and all associated interfaces.
700  * ill_delete is called only out of ip_close when the device control
701  * stream is being closed.
702  */
703 void
704 ill_delete(ill_t *ill)
705 {
706 	ipif_t	*ipif;
707 	ill_t	*prev_ill;
708 	ip_stack_t	*ipst = ill->ill_ipst;
709 
710 	/*
711 	 * ill_delete may be forcibly entering the ipsq. The previous
712 	 * ioctl may not have completed and may need to be aborted.
713 	 * ipsq_flush takes care of it. If we don't need to enter the
714 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
715 	 * ill_delete_tail is sufficient.
716 	 */
717 	ipsq_flush(ill);
718 
719 	/*
720 	 * Nuke all interfaces.  ipif_free will take down the interface,
721 	 * remove it from the list, and free the data structure.
722 	 * Walk down the ipif list and remove the logical interfaces
723 	 * first before removing the main ipif. We can't unplumb
724 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
725 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
726 	 * POINTOPOINT.
727 	 *
728 	 * If ill_ipif was not properly initialized (i.e low on memory),
729 	 * then no interfaces to clean up. In this case just clean up the
730 	 * ill.
731 	 */
732 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
733 		ipif_free(ipif);
734 
735 	/*
736 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
737 	 * So nobody can be using this mp now. Free the mp allocated for
738 	 * honoring ILLF_NOARP
739 	 */
740 	freemsg(ill->ill_arp_on_mp);
741 	ill->ill_arp_on_mp = NULL;
742 
743 	/* Clean up msgs on pending upcalls for mrouted */
744 	reset_mrt_ill(ill);
745 
746 	/*
747 	 * ipif_free -> reset_conn_ipif will remove all multicast
748 	 * references for IPv4. For IPv6, we need to do it here as
749 	 * it points only at ills.
750 	 */
751 	reset_conn_ill(ill);
752 
753 	/*
754 	 * ill_down will arrange to blow off any IRE's dependent on this
755 	 * ILL, and shut down fragmentation reassembly.
756 	 */
757 	ill_down(ill);
758 
759 	/* Let SCTP know, so that it can remove this from its list. */
760 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
761 
762 	/*
763 	 * If an address on this ILL is being used as a source address then
764 	 * clear out the pointers in other ILLs that point to this ILL.
765 	 */
766 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
767 	if (ill->ill_usesrc_grp_next != NULL) {
768 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
769 			ill_disband_usesrc_group(ill);
770 		} else {	/* consumer of the usesrc ILL */
771 			prev_ill = ill_prev_usesrc(ill);
772 			prev_ill->ill_usesrc_grp_next =
773 			    ill->ill_usesrc_grp_next;
774 		}
775 	}
776 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
777 }
778 
779 static void
780 ipif_non_duplicate(ipif_t *ipif)
781 {
782 	ill_t *ill = ipif->ipif_ill;
783 	mutex_enter(&ill->ill_lock);
784 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
785 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
786 		ASSERT(ill->ill_ipif_dup_count > 0);
787 		ill->ill_ipif_dup_count--;
788 	}
789 	mutex_exit(&ill->ill_lock);
790 }
791 
792 /*
793  * ill_delete_tail is called from ip_modclose after all references
794  * to the closing ill are gone. The wait is done in ip_modclose
795  */
796 void
797 ill_delete_tail(ill_t *ill)
798 {
799 	mblk_t	**mpp;
800 	ipif_t	*ipif;
801 	ip_stack_t	*ipst = ill->ill_ipst;
802 
803 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
804 		ipif_non_duplicate(ipif);
805 		ipif_down_tail(ipif);
806 	}
807 
808 	ASSERT(ill->ill_ipif_dup_count == 0 &&
809 	    ill->ill_arp_down_mp == NULL &&
810 	    ill->ill_arp_del_mapping_mp == NULL);
811 
812 	/*
813 	 * If polling capability is enabled (which signifies direct
814 	 * upcall into IP and driver has ill saved as a handle),
815 	 * we need to make sure that unbind has completed before we
816 	 * let the ill disappear and driver no longer has any reference
817 	 * to this ill.
818 	 */
819 	mutex_enter(&ill->ill_lock);
820 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
821 		cv_wait(&ill->ill_cv, &ill->ill_lock);
822 	mutex_exit(&ill->ill_lock);
823 
824 	/*
825 	 * Clean up polling and soft ring capabilities
826 	 */
827 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
828 		ill_capability_dls_disable(ill);
829 
830 	if (ill->ill_net_type != IRE_LOOPBACK)
831 		qprocsoff(ill->ill_rq);
832 
833 	/*
834 	 * We do an ipsq_flush once again now. New messages could have
835 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
836 	 * could also have landed up if an ioctl thread had looked up
837 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
838 	 * enqueued the ioctl when we did the ipsq_flush last time.
839 	 */
840 	ipsq_flush(ill);
841 
842 	/*
843 	 * Free capabilities.
844 	 */
845 	if (ill->ill_ipsec_capab_ah != NULL) {
846 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
847 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
848 		ill->ill_ipsec_capab_ah = NULL;
849 	}
850 
851 	if (ill->ill_ipsec_capab_esp != NULL) {
852 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
853 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
854 		ill->ill_ipsec_capab_esp = NULL;
855 	}
856 
857 	if (ill->ill_mdt_capab != NULL) {
858 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
859 		ill->ill_mdt_capab = NULL;
860 	}
861 
862 	if (ill->ill_hcksum_capab != NULL) {
863 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
864 		ill->ill_hcksum_capab = NULL;
865 	}
866 
867 	if (ill->ill_zerocopy_capab != NULL) {
868 		kmem_free(ill->ill_zerocopy_capab,
869 		    sizeof (ill_zerocopy_capab_t));
870 		ill->ill_zerocopy_capab = NULL;
871 	}
872 
873 	if (ill->ill_lso_capab != NULL) {
874 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
875 		ill->ill_lso_capab = NULL;
876 	}
877 
878 	if (ill->ill_dls_capab != NULL) {
879 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
880 		ill->ill_dls_capab->ill_unbind_conn = NULL;
881 		kmem_free(ill->ill_dls_capab,
882 		    sizeof (ill_dls_capab_t) +
883 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
884 		ill->ill_dls_capab = NULL;
885 	}
886 
887 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
888 
889 	while (ill->ill_ipif != NULL)
890 		ipif_free_tail(ill->ill_ipif);
891 
892 	/*
893 	 * We have removed all references to ilm from conn and the ones joined
894 	 * within the kernel.
895 	 *
896 	 * We don't walk conns, mrts and ires because
897 	 *
898 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
899 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
900 	 *    ill references.
901 	 */
902 	ASSERT(ilm_walk_ill(ill) == 0);
903 	/*
904 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
905 	 * could free the phyint. No more reference to the phyint after this
906 	 * point.
907 	 */
908 	(void) ill_glist_delete(ill);
909 
910 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
911 	if (ill->ill_ndd_name != NULL)
912 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
913 	rw_exit(&ipst->ips_ip_g_nd_lock);
914 
915 
916 	if (ill->ill_frag_ptr != NULL) {
917 		uint_t count;
918 
919 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
920 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
921 		}
922 		mi_free(ill->ill_frag_ptr);
923 		ill->ill_frag_ptr = NULL;
924 		ill->ill_frag_hash_tbl = NULL;
925 	}
926 
927 	freemsg(ill->ill_nd_lla_mp);
928 	/* Free all retained control messages. */
929 	mpp = &ill->ill_first_mp_to_free;
930 	do {
931 		while (mpp[0]) {
932 			mblk_t  *mp;
933 			mblk_t  *mp1;
934 
935 			mp = mpp[0];
936 			mpp[0] = mp->b_next;
937 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
938 				mp1->b_next = NULL;
939 				mp1->b_prev = NULL;
940 			}
941 			freemsg(mp);
942 		}
943 	} while (mpp++ != &ill->ill_last_mp_to_free);
944 
945 	ill_free_mib(ill);
946 
947 #ifdef DEBUG
948 	ill_trace_cleanup(ill);
949 #endif
950 
951 	/* Drop refcnt here */
952 	netstack_rele(ill->ill_ipst->ips_netstack);
953 	ill->ill_ipst = NULL;
954 }
955 
956 static void
957 ill_free_mib(ill_t *ill)
958 {
959 	ip_stack_t *ipst = ill->ill_ipst;
960 
961 	/*
962 	 * MIB statistics must not be lost, so when an interface
963 	 * goes away the counter values will be added to the global
964 	 * MIBs.
965 	 */
966 	if (ill->ill_ip_mib != NULL) {
967 		if (ill->ill_isv6) {
968 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
969 			    ill->ill_ip_mib);
970 		} else {
971 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
972 			    ill->ill_ip_mib);
973 		}
974 
975 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
976 		ill->ill_ip_mib = NULL;
977 	}
978 	if (ill->ill_icmp6_mib != NULL) {
979 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
980 		    ill->ill_icmp6_mib);
981 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
982 		ill->ill_icmp6_mib = NULL;
983 	}
984 }
985 
986 /*
987  * Concatenate together a physical address and a sap.
988  *
989  * Sap_lengths are interpreted as follows:
990  *   sap_length == 0	==>	no sap
991  *   sap_length > 0	==>	sap is at the head of the dlpi address
992  *   sap_length < 0	==>	sap is at the tail of the dlpi address
993  */
994 static void
995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
996     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
997 {
998 	uint16_t sap_addr = (uint16_t)sap_src;
999 
1000 	if (sap_length == 0) {
1001 		if (phys_src == NULL)
1002 			bzero(dst, phys_length);
1003 		else
1004 			bcopy(phys_src, dst, phys_length);
1005 	} else if (sap_length < 0) {
1006 		if (phys_src == NULL)
1007 			bzero(dst, phys_length);
1008 		else
1009 			bcopy(phys_src, dst, phys_length);
1010 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1011 	} else {
1012 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1013 		if (phys_src == NULL)
1014 			bzero((char *)dst + sap_length, phys_length);
1015 		else
1016 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1017 	}
1018 }
1019 
1020 /*
1021  * Generate a dl_unitdata_req mblk for the device and address given.
1022  * addr_length is the length of the physical portion of the address.
1023  * If addr is NULL include an all zero address of the specified length.
1024  * TRUE? In any case, addr_length is taken to be the entire length of the
1025  * dlpi address, including the absolute value of sap_length.
1026  */
1027 mblk_t *
1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1029 		t_scalar_t sap_length)
1030 {
1031 	dl_unitdata_req_t *dlur;
1032 	mblk_t	*mp;
1033 	t_scalar_t	abs_sap_length;		/* absolute value */
1034 
1035 	abs_sap_length = ABS(sap_length);
1036 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1037 	    DL_UNITDATA_REQ);
1038 	if (mp == NULL)
1039 		return (NULL);
1040 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1041 	/* HACK: accomodate incompatible DLPI drivers */
1042 	if (addr_length == 8)
1043 		addr_length = 6;
1044 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1045 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1046 	dlur->dl_priority.dl_min = 0;
1047 	dlur->dl_priority.dl_max = 0;
1048 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1049 	    (uchar_t *)&dlur[1]);
1050 	return (mp);
1051 }
1052 
1053 /*
1054  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1055  * Return an error if we already have 1 or more ioctls in progress.
1056  * This is used only for non-exclusive ioctls. Currently this is used
1057  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1058  * and thus need to use ipsq_pending_mp_add.
1059  */
1060 boolean_t
1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1062 {
1063 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1064 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1065 	/*
1066 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1067 	 */
1068 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1069 	    (add_mp->b_datap->db_type == M_IOCTL));
1070 
1071 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1072 	/*
1073 	 * Return error if the conn has started closing. The conn
1074 	 * could have finished cleaning up the pending mp list,
1075 	 * If so we should not add another mp to the list negating
1076 	 * the cleanup.
1077 	 */
1078 	if (connp->conn_state_flags & CONN_CLOSING)
1079 		return (B_FALSE);
1080 	/*
1081 	 * Add the pending mp to the head of the list, chained by b_next.
1082 	 * Note down the conn on which the ioctl request came, in b_prev.
1083 	 * This will be used to later get the conn, when we get a response
1084 	 * on the ill queue, from some other module (typically arp)
1085 	 */
1086 	add_mp->b_next = (void *)ill->ill_pending_mp;
1087 	add_mp->b_queue = CONNP_TO_WQ(connp);
1088 	ill->ill_pending_mp = add_mp;
1089 	if (connp != NULL)
1090 		connp->conn_oper_pending_ill = ill;
1091 	return (B_TRUE);
1092 }
1093 
1094 /*
1095  * Retrieve the ill_pending_mp and return it. We have to walk the list
1096  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1097  */
1098 mblk_t *
1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1100 {
1101 	mblk_t	*prev = NULL;
1102 	mblk_t	*curr = NULL;
1103 	uint_t	id;
1104 	conn_t	*connp;
1105 
1106 	/*
1107 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1108 	 * up the pending mp, but it does not know the ioc_id and
1109 	 * passes in a zero for it.
1110 	 */
1111 	mutex_enter(&ill->ill_lock);
1112 	if (ioc_id != 0)
1113 		*connpp = NULL;
1114 
1115 	/* Search the list for the appropriate ioctl based on ioc_id */
1116 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1117 	    prev = curr, curr = curr->b_next) {
1118 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1119 		connp = Q_TO_CONN(curr->b_queue);
1120 		/* Match based on the ioc_id or based on the conn */
1121 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1122 			break;
1123 	}
1124 
1125 	if (curr != NULL) {
1126 		/* Unlink the mblk from the pending mp list */
1127 		if (prev != NULL) {
1128 			prev->b_next = curr->b_next;
1129 		} else {
1130 			ASSERT(ill->ill_pending_mp == curr);
1131 			ill->ill_pending_mp = curr->b_next;
1132 		}
1133 
1134 		/*
1135 		 * conn refcnt must have been bumped up at the start of
1136 		 * the ioctl. So we can safely access the conn.
1137 		 */
1138 		ASSERT(CONN_Q(curr->b_queue));
1139 		*connpp = Q_TO_CONN(curr->b_queue);
1140 		curr->b_next = NULL;
1141 		curr->b_queue = NULL;
1142 	}
1143 
1144 	mutex_exit(&ill->ill_lock);
1145 
1146 	return (curr);
1147 }
1148 
1149 /*
1150  * Add the pending mp to the list. There can be only 1 pending mp
1151  * in the list. Any exclusive ioctl that needs to wait for a response
1152  * from another module or driver needs to use this function to set
1153  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1154  * the other module/driver. This is also used while waiting for the
1155  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1156  */
1157 boolean_t
1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1159     int waitfor)
1160 {
1161 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1162 
1163 	ASSERT(IAM_WRITER_IPIF(ipif));
1164 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1165 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1166 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1167 	/*
1168 	 * The caller may be using a different ipif than the one passed into
1169 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1170 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1171 	 * that `ipsq_current_ipif == ipif'.
1172 	 */
1173 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1174 
1175 	/*
1176 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1177 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1178 	 */
1179 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1180 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1181 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1182 
1183 	if (connp != NULL) {
1184 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1185 		/*
1186 		 * Return error if the conn has started closing. The conn
1187 		 * could have finished cleaning up the pending mp list,
1188 		 * If so we should not add another mp to the list negating
1189 		 * the cleanup.
1190 		 */
1191 		if (connp->conn_state_flags & CONN_CLOSING)
1192 			return (B_FALSE);
1193 	}
1194 	mutex_enter(&ipsq->ipsq_lock);
1195 	ipsq->ipsq_pending_ipif = ipif;
1196 	/*
1197 	 * Note down the queue in b_queue. This will be returned by
1198 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1199 	 * the processing
1200 	 */
1201 	add_mp->b_next = NULL;
1202 	add_mp->b_queue = q;
1203 	ipsq->ipsq_pending_mp = add_mp;
1204 	ipsq->ipsq_waitfor = waitfor;
1205 
1206 	if (connp != NULL)
1207 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1208 	mutex_exit(&ipsq->ipsq_lock);
1209 	return (B_TRUE);
1210 }
1211 
1212 /*
1213  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1214  * queued in the list.
1215  */
1216 mblk_t *
1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1218 {
1219 	mblk_t	*curr = NULL;
1220 
1221 	mutex_enter(&ipsq->ipsq_lock);
1222 	*connpp = NULL;
1223 	if (ipsq->ipsq_pending_mp == NULL) {
1224 		mutex_exit(&ipsq->ipsq_lock);
1225 		return (NULL);
1226 	}
1227 
1228 	/* There can be only 1 such excl message */
1229 	curr = ipsq->ipsq_pending_mp;
1230 	ASSERT(curr != NULL && curr->b_next == NULL);
1231 	ipsq->ipsq_pending_ipif = NULL;
1232 	ipsq->ipsq_pending_mp = NULL;
1233 	ipsq->ipsq_waitfor = 0;
1234 	mutex_exit(&ipsq->ipsq_lock);
1235 
1236 	if (CONN_Q(curr->b_queue)) {
1237 		/*
1238 		 * This mp did a refhold on the conn, at the start of the ioctl.
1239 		 * So we can safely return a pointer to the conn to the caller.
1240 		 */
1241 		*connpp = Q_TO_CONN(curr->b_queue);
1242 	} else {
1243 		*connpp = NULL;
1244 	}
1245 	curr->b_next = NULL;
1246 	curr->b_prev = NULL;
1247 	return (curr);
1248 }
1249 
1250 /*
1251  * Cleanup the ioctl mp queued in ipsq_pending_mp
1252  * - Called in the ill_delete path
1253  * - Called in the M_ERROR or M_HANGUP path on the ill.
1254  * - Called in the conn close path.
1255  */
1256 boolean_t
1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1258 {
1259 	mblk_t	*mp;
1260 	ipsq_t	*ipsq;
1261 	queue_t	*q;
1262 	ipif_t	*ipif;
1263 
1264 	ASSERT(IAM_WRITER_ILL(ill));
1265 	ipsq = ill->ill_phyint->phyint_ipsq;
1266 	mutex_enter(&ipsq->ipsq_lock);
1267 	/*
1268 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1269 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1270 	 * even if it is meant for another ill, since we have to enqueue
1271 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1272 	 * If connp is non-null we are called from the conn close path.
1273 	 */
1274 	mp = ipsq->ipsq_pending_mp;
1275 	if (mp == NULL || (connp != NULL &&
1276 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1277 		mutex_exit(&ipsq->ipsq_lock);
1278 		return (B_FALSE);
1279 	}
1280 	/* Now remove from the ipsq_pending_mp */
1281 	ipsq->ipsq_pending_mp = NULL;
1282 	q = mp->b_queue;
1283 	mp->b_next = NULL;
1284 	mp->b_prev = NULL;
1285 	mp->b_queue = NULL;
1286 
1287 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1288 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1289 	if (ill->ill_move_in_progress) {
1290 		ILL_CLEAR_MOVE(ill);
1291 	} else if (ill->ill_up_ipifs) {
1292 		ill_group_cleanup(ill);
1293 	}
1294 
1295 	ipif = ipsq->ipsq_pending_ipif;
1296 	ipsq->ipsq_pending_ipif = NULL;
1297 	ipsq->ipsq_waitfor = 0;
1298 	ipsq->ipsq_current_ipif = NULL;
1299 	ipsq->ipsq_current_ioctl = 0;
1300 	mutex_exit(&ipsq->ipsq_lock);
1301 
1302 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1303 		if (connp == NULL) {
1304 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1305 		} else {
1306 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1307 			mutex_enter(&ipif->ipif_ill->ill_lock);
1308 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1309 			mutex_exit(&ipif->ipif_ill->ill_lock);
1310 		}
1311 	} else {
1312 		/*
1313 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1314 		 * be just inet_freemsg. we have to restart it
1315 		 * otherwise the thread will be stuck.
1316 		 */
1317 		inet_freemsg(mp);
1318 	}
1319 	return (B_TRUE);
1320 }
1321 
1322 /*
1323  * The ill is closing. Cleanup all the pending mps. Called exclusively
1324  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1325  * knows this ill, and hence nobody can add an mp to this list
1326  */
1327 static void
1328 ill_pending_mp_cleanup(ill_t *ill)
1329 {
1330 	mblk_t	*mp;
1331 	queue_t	*q;
1332 
1333 	ASSERT(IAM_WRITER_ILL(ill));
1334 
1335 	mutex_enter(&ill->ill_lock);
1336 	/*
1337 	 * Every mp on the pending mp list originating from an ioctl
1338 	 * added 1 to the conn refcnt, at the start of the ioctl.
1339 	 * So bump it down now.  See comments in ip_wput_nondata()
1340 	 */
1341 	while (ill->ill_pending_mp != NULL) {
1342 		mp = ill->ill_pending_mp;
1343 		ill->ill_pending_mp = mp->b_next;
1344 		mutex_exit(&ill->ill_lock);
1345 
1346 		q = mp->b_queue;
1347 		ASSERT(CONN_Q(q));
1348 		mp->b_next = NULL;
1349 		mp->b_prev = NULL;
1350 		mp->b_queue = NULL;
1351 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1352 		mutex_enter(&ill->ill_lock);
1353 	}
1354 	ill->ill_pending_ipif = NULL;
1355 
1356 	mutex_exit(&ill->ill_lock);
1357 }
1358 
1359 /*
1360  * Called in the conn close path and ill delete path
1361  */
1362 static void
1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1364 {
1365 	ipsq_t	*ipsq;
1366 	mblk_t	*prev;
1367 	mblk_t	*curr;
1368 	mblk_t	*next;
1369 	queue_t	*q;
1370 	mblk_t	*tmp_list = NULL;
1371 
1372 	ASSERT(IAM_WRITER_ILL(ill));
1373 	if (connp != NULL)
1374 		q = CONNP_TO_WQ(connp);
1375 	else
1376 		q = ill->ill_wq;
1377 
1378 	ipsq = ill->ill_phyint->phyint_ipsq;
1379 	/*
1380 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1381 	 * In the case of ioctl from a conn, there can be only 1 mp
1382 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1383 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1384 	 * ioctls meant for this ill form conn's are not flushed. They will
1385 	 * be processed during ipsq_exit and will not find the ill and will
1386 	 * return error.
1387 	 */
1388 	mutex_enter(&ipsq->ipsq_lock);
1389 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1390 	    curr = next) {
1391 		next = curr->b_next;
1392 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1393 			/* Unlink the mblk from the pending mp list */
1394 			if (prev != NULL) {
1395 				prev->b_next = curr->b_next;
1396 			} else {
1397 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1398 				ipsq->ipsq_xopq_mphead = curr->b_next;
1399 			}
1400 			if (ipsq->ipsq_xopq_mptail == curr)
1401 				ipsq->ipsq_xopq_mptail = prev;
1402 			/*
1403 			 * Create a temporary list and release the ipsq lock
1404 			 * New elements are added to the head of the tmp_list
1405 			 */
1406 			curr->b_next = tmp_list;
1407 			tmp_list = curr;
1408 		} else {
1409 			prev = curr;
1410 		}
1411 	}
1412 	mutex_exit(&ipsq->ipsq_lock);
1413 
1414 	while (tmp_list != NULL) {
1415 		curr = tmp_list;
1416 		tmp_list = curr->b_next;
1417 		curr->b_next = NULL;
1418 		curr->b_prev = NULL;
1419 		curr->b_queue = NULL;
1420 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1421 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1422 			    CONN_CLOSE : NO_COPYOUT, NULL);
1423 		} else {
1424 			/*
1425 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1426 			 * this can't be just inet_freemsg. we have to
1427 			 * restart it otherwise the thread will be stuck.
1428 			 */
1429 			inet_freemsg(curr);
1430 		}
1431 	}
1432 }
1433 
1434 /*
1435  * This conn has started closing. Cleanup any pending ioctl from this conn.
1436  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1437  */
1438 void
1439 conn_ioctl_cleanup(conn_t *connp)
1440 {
1441 	mblk_t *curr;
1442 	ipsq_t	*ipsq;
1443 	ill_t	*ill;
1444 	boolean_t refheld;
1445 
1446 	/*
1447 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1448 	 * ioctl has not yet started, the mp is pending in the list headed by
1449 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1450 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1451 	 * is currently executing now the mp is not queued anywhere but
1452 	 * conn_oper_pending_ill is null. The conn close will wait
1453 	 * till the conn_ref drops to zero.
1454 	 */
1455 	mutex_enter(&connp->conn_lock);
1456 	ill = connp->conn_oper_pending_ill;
1457 	if (ill == NULL) {
1458 		mutex_exit(&connp->conn_lock);
1459 		return;
1460 	}
1461 
1462 	curr = ill_pending_mp_get(ill, &connp, 0);
1463 	if (curr != NULL) {
1464 		mutex_exit(&connp->conn_lock);
1465 		CONN_DEC_REF(connp);
1466 		inet_freemsg(curr);
1467 		return;
1468 	}
1469 	/*
1470 	 * We may not be able to refhold the ill if the ill/ipif
1471 	 * is changing. But we need to make sure that the ill will
1472 	 * not vanish. So we just bump up the ill_waiter count.
1473 	 */
1474 	refheld = ill_waiter_inc(ill);
1475 	mutex_exit(&connp->conn_lock);
1476 	if (refheld) {
1477 		if (ipsq_enter(ill, B_TRUE)) {
1478 			ill_waiter_dcr(ill);
1479 			/*
1480 			 * Check whether this ioctl has started and is
1481 			 * pending now in ipsq_pending_mp. If it is not
1482 			 * found there then check whether this ioctl has
1483 			 * not even started and is in the ipsq_xopq list.
1484 			 */
1485 			if (!ipsq_pending_mp_cleanup(ill, connp))
1486 				ipsq_xopq_mp_cleanup(ill, connp);
1487 			ipsq = ill->ill_phyint->phyint_ipsq;
1488 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1489 			return;
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * The ill is also closing and we could not bump up the
1495 	 * ill_waiter_count or we could not enter the ipsq. Leave
1496 	 * the cleanup to ill_delete
1497 	 */
1498 	mutex_enter(&connp->conn_lock);
1499 	while (connp->conn_oper_pending_ill != NULL)
1500 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1501 	mutex_exit(&connp->conn_lock);
1502 	if (refheld)
1503 		ill_waiter_dcr(ill);
1504 }
1505 
1506 /*
1507  * ipcl_walk function for cleaning up conn_*_ill fields.
1508  */
1509 static void
1510 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1511 {
1512 	ill_t	*ill = (ill_t *)arg;
1513 	ire_t	*ire;
1514 
1515 	mutex_enter(&connp->conn_lock);
1516 	if (connp->conn_multicast_ill == ill) {
1517 		/* Revert to late binding */
1518 		connp->conn_multicast_ill = NULL;
1519 		connp->conn_orig_multicast_ifindex = 0;
1520 	}
1521 	if (connp->conn_incoming_ill == ill)
1522 		connp->conn_incoming_ill = NULL;
1523 	if (connp->conn_outgoing_ill == ill)
1524 		connp->conn_outgoing_ill = NULL;
1525 	if (connp->conn_outgoing_pill == ill)
1526 		connp->conn_outgoing_pill = NULL;
1527 	if (connp->conn_nofailover_ill == ill)
1528 		connp->conn_nofailover_ill = NULL;
1529 	if (connp->conn_xmit_if_ill == ill)
1530 		connp->conn_xmit_if_ill = NULL;
1531 	if (connp->conn_ire_cache != NULL) {
1532 		ire = connp->conn_ire_cache;
1533 		/*
1534 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1535 		 * interface X and ipif coming from interface Y, if interface
1536 		 * X and Y are part of the same IPMPgroup. Thus whenever
1537 		 * interface X goes down, remove all references to it by
1538 		 * checking both on ire_ipif and ire_stq.
1539 		 */
1540 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1541 		    (ire->ire_type == IRE_CACHE &&
1542 		    ire->ire_stq == ill->ill_wq)) {
1543 			connp->conn_ire_cache = NULL;
1544 			mutex_exit(&connp->conn_lock);
1545 			ire_refrele_notr(ire);
1546 			return;
1547 		}
1548 	}
1549 	mutex_exit(&connp->conn_lock);
1550 
1551 }
1552 
1553 /* ARGSUSED */
1554 void
1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1556 {
1557 	ill_t	*ill = q->q_ptr;
1558 	ipif_t	*ipif;
1559 
1560 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1561 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1562 		ipif_non_duplicate(ipif);
1563 		ipif_down_tail(ipif);
1564 	}
1565 	freemsg(mp);
1566 	ipsq_current_finish(ipsq);
1567 }
1568 
1569 /*
1570  * ill_down_start is called when we want to down this ill and bring it up again
1571  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1572  * all interfaces, but don't tear down any plumbing.
1573  */
1574 boolean_t
1575 ill_down_start(queue_t *q, mblk_t *mp)
1576 {
1577 	ill_t	*ill = q->q_ptr;
1578 	ipif_t	*ipif;
1579 
1580 	ASSERT(IAM_WRITER_ILL(ill));
1581 
1582 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1583 		(void) ipif_down(ipif, NULL, NULL);
1584 
1585 	ill_down(ill);
1586 
1587 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1588 
1589 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1590 
1591 	/*
1592 	 * Atomically test and add the pending mp if references are active.
1593 	 */
1594 	mutex_enter(&ill->ill_lock);
1595 	if (!ill_is_quiescent(ill)) {
1596 		/* call cannot fail since `conn_t *' argument is NULL */
1597 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1598 		    mp, ILL_DOWN);
1599 		mutex_exit(&ill->ill_lock);
1600 		return (B_FALSE);
1601 	}
1602 	mutex_exit(&ill->ill_lock);
1603 	return (B_TRUE);
1604 }
1605 
1606 static void
1607 ill_down(ill_t *ill)
1608 {
1609 	ip_stack_t	*ipst = ill->ill_ipst;
1610 
1611 	/* Blow off any IREs dependent on this ILL. */
1612 	ire_walk(ill_downi, (char *)ill, ipst);
1613 
1614 	/* Remove any conn_*_ill depending on this ill */
1615 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1616 
1617 	if (ill->ill_group != NULL) {
1618 		illgrp_delete(ill);
1619 	}
1620 }
1621 
1622 /*
1623  * ire_walk routine used to delete every IRE that depends on queues
1624  * associated with 'ill'.  (Always called as writer.)
1625  */
1626 static void
1627 ill_downi(ire_t *ire, char *ill_arg)
1628 {
1629 	ill_t	*ill = (ill_t *)ill_arg;
1630 
1631 	/*
1632 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1633 	 * interface X and ipif coming from interface Y, if interface
1634 	 * X and Y are part of the same IPMP group. Thus whenever interface
1635 	 * X goes down, remove all references to it by checking both
1636 	 * on ire_ipif and ire_stq.
1637 	 */
1638 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1639 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1640 		ire_delete(ire);
1641 	}
1642 }
1643 
1644 /*
1645  * Remove ire/nce from the fastpath list.
1646  */
1647 void
1648 ill_fastpath_nack(ill_t *ill)
1649 {
1650 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1651 }
1652 
1653 /* Consume an M_IOCACK of the fastpath probe. */
1654 void
1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1656 {
1657 	mblk_t	*mp1 = mp;
1658 
1659 	/*
1660 	 * If this was the first attempt turn on the fastpath probing.
1661 	 */
1662 	mutex_enter(&ill->ill_lock);
1663 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1664 		ill->ill_dlpi_fastpath_state = IDS_OK;
1665 	mutex_exit(&ill->ill_lock);
1666 
1667 	/* Free the M_IOCACK mblk, hold on to the data */
1668 	mp = mp->b_cont;
1669 	freeb(mp1);
1670 	if (mp == NULL)
1671 		return;
1672 	if (mp->b_cont != NULL) {
1673 		/*
1674 		 * Update all IRE's or NCE's that are waiting for
1675 		 * fastpath update.
1676 		 */
1677 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1678 		mp1 = mp->b_cont;
1679 		freeb(mp);
1680 		mp = mp1;
1681 	} else {
1682 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1683 	}
1684 
1685 	freeb(mp);
1686 }
1687 
1688 /*
1689  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1690  * The data portion of the request is a dl_unitdata_req_t template for
1691  * what we would send downstream in the absence of a fastpath confirmation.
1692  */
1693 int
1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1695 {
1696 	struct iocblk	*ioc;
1697 	mblk_t	*mp;
1698 
1699 	if (dlur_mp == NULL)
1700 		return (EINVAL);
1701 
1702 	mutex_enter(&ill->ill_lock);
1703 	switch (ill->ill_dlpi_fastpath_state) {
1704 	case IDS_FAILED:
1705 		/*
1706 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1707 		 * support it.
1708 		 */
1709 		mutex_exit(&ill->ill_lock);
1710 		return (ENOTSUP);
1711 	case IDS_UNKNOWN:
1712 		/* This is the first probe */
1713 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1714 		break;
1715 	default:
1716 		break;
1717 	}
1718 	mutex_exit(&ill->ill_lock);
1719 
1720 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1721 		return (EAGAIN);
1722 
1723 	mp->b_cont = copyb(dlur_mp);
1724 	if (mp->b_cont == NULL) {
1725 		freeb(mp);
1726 		return (EAGAIN);
1727 	}
1728 
1729 	ioc = (struct iocblk *)mp->b_rptr;
1730 	ioc->ioc_count = msgdsize(mp->b_cont);
1731 
1732 	putnext(ill->ill_wq, mp);
1733 	return (0);
1734 }
1735 
1736 void
1737 ill_capability_probe(ill_t *ill)
1738 {
1739 	/*
1740 	 * Do so only if capabilities are still unknown.
1741 	 */
1742 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
1743 		return;
1744 
1745 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1746 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1747 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1748 }
1749 
1750 void
1751 ill_capability_reset(ill_t *ill)
1752 {
1753 	mblk_t *sc_mp = NULL;
1754 	mblk_t *tmp;
1755 
1756 	/*
1757 	 * Note here that we reset the state to UNKNOWN, and later send
1758 	 * down the DL_CAPABILITY_REQ without first setting the state to
1759 	 * INPROGRESS.  We do this in order to distinguish the
1760 	 * DL_CAPABILITY_ACK response which may come back in response to
1761 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1762 	 * also handle the case where the driver doesn't send us back
1763 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1764 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1765 	 * features are turned off until the state reaches IDS_OK.
1766 	 */
1767 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1768 	ill->ill_capab_reneg = B_FALSE;
1769 
1770 	/*
1771 	 * Disable sub-capabilities and request a list of sub-capability
1772 	 * messages which will be sent down to the driver.  Each handler
1773 	 * allocates the corresponding dl_capability_sub_t inside an
1774 	 * mblk, and links it to the existing sc_mp mblk, or return it
1775 	 * as sc_mp if it's the first sub-capability (the passed in
1776 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1777 	 * sc_mp will be pulled-up, before passing it downstream.
1778 	 */
1779 	ill_capability_mdt_reset(ill, &sc_mp);
1780 	ill_capability_hcksum_reset(ill, &sc_mp);
1781 	ill_capability_zerocopy_reset(ill, &sc_mp);
1782 	ill_capability_ipsec_reset(ill, &sc_mp);
1783 	ill_capability_dls_reset(ill, &sc_mp);
1784 	ill_capability_lso_reset(ill, &sc_mp);
1785 
1786 	/* Nothing to send down in order to disable the capabilities? */
1787 	if (sc_mp == NULL)
1788 		return;
1789 
1790 	tmp = msgpullup(sc_mp, -1);
1791 	freemsg(sc_mp);
1792 	if ((sc_mp = tmp) == NULL) {
1793 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1794 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1795 		return;
1796 	}
1797 
1798 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1799 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1800 }
1801 
1802 /*
1803  * Request or set new-style hardware capabilities supported by DLS provider.
1804  */
1805 static void
1806 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1807 {
1808 	mblk_t *mp;
1809 	dl_capability_req_t *capb;
1810 	size_t size = 0;
1811 	uint8_t *ptr;
1812 
1813 	if (reqp != NULL)
1814 		size = MBLKL(reqp);
1815 
1816 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1817 	if (mp == NULL) {
1818 		freemsg(reqp);
1819 		return;
1820 	}
1821 	ptr = mp->b_rptr;
1822 
1823 	capb = (dl_capability_req_t *)ptr;
1824 	ptr += sizeof (dl_capability_req_t);
1825 
1826 	if (reqp != NULL) {
1827 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1828 		capb->dl_sub_length = size;
1829 		bcopy(reqp->b_rptr, ptr, size);
1830 		ptr += size;
1831 		mp->b_cont = reqp->b_cont;
1832 		freeb(reqp);
1833 	}
1834 	ASSERT(ptr == mp->b_wptr);
1835 
1836 	ill_dlpi_send(ill, mp);
1837 }
1838 
1839 static void
1840 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1841 {
1842 	dl_capab_id_t *id_ic;
1843 	uint_t sub_dl_cap = outers->dl_cap;
1844 	dl_capability_sub_t *inners;
1845 	uint8_t *capend;
1846 
1847 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1848 
1849 	/*
1850 	 * Note: range checks here are not absolutely sufficient to
1851 	 * make us robust against malformed messages sent by drivers;
1852 	 * this is in keeping with the rest of IP's dlpi handling.
1853 	 * (Remember, it's coming from something else in the kernel
1854 	 * address space)
1855 	 */
1856 
1857 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1858 	if (capend > mp->b_wptr) {
1859 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1860 		    "malformed sub-capability too long for mblk");
1861 		return;
1862 	}
1863 
1864 	id_ic = (dl_capab_id_t *)(outers + 1);
1865 
1866 	if (outers->dl_length < sizeof (*id_ic) ||
1867 	    (inners = &id_ic->id_subcap,
1868 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1869 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1870 		    "encapsulated capab type %d too long for mblk",
1871 		    inners->dl_cap);
1872 		return;
1873 	}
1874 
1875 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1876 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1877 		    "isn't as expected; pass-thru module(s) detected, "
1878 		    "discarding capability\n", inners->dl_cap));
1879 		return;
1880 	}
1881 
1882 	/* Process the encapsulated sub-capability */
1883 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1884 }
1885 
1886 /*
1887  * Process Multidata Transmit capability negotiation ack received from a
1888  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1889  * DL_CAPABILITY_ACK message.
1890  */
1891 static void
1892 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1893 {
1894 	mblk_t *nmp = NULL;
1895 	dl_capability_req_t *oc;
1896 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1897 	ill_mdt_capab_t **ill_mdt_capab;
1898 	uint_t sub_dl_cap = isub->dl_cap;
1899 	uint8_t *capend;
1900 
1901 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1902 
1903 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1904 
1905 	/*
1906 	 * Note: range checks here are not absolutely sufficient to
1907 	 * make us robust against malformed messages sent by drivers;
1908 	 * this is in keeping with the rest of IP's dlpi handling.
1909 	 * (Remember, it's coming from something else in the kernel
1910 	 * address space)
1911 	 */
1912 
1913 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 	if (capend > mp->b_wptr) {
1915 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1916 		    "malformed sub-capability too long for mblk");
1917 		return;
1918 	}
1919 
1920 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1921 
1922 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1923 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1924 		    "unsupported MDT sub-capability (version %d, expected %d)",
1925 		    mdt_ic->mdt_version, MDT_VERSION_2);
1926 		return;
1927 	}
1928 
1929 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1930 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1931 		    "capability isn't as expected; pass-thru module(s) "
1932 		    "detected, discarding capability\n"));
1933 		return;
1934 	}
1935 
1936 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1937 
1938 		if (*ill_mdt_capab == NULL) {
1939 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1940 			    KM_NOSLEEP);
1941 
1942 			if (*ill_mdt_capab == NULL) {
1943 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1944 				    "could not enable MDT version %d "
1945 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1946 				    ill->ill_name);
1947 				return;
1948 			}
1949 		}
1950 
1951 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1952 		    "MDT version %d (%d bytes leading, %d bytes trailing "
1953 		    "header spaces, %d max pld bufs, %d span limit)\n",
1954 		    ill->ill_name, MDT_VERSION_2,
1955 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1956 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1957 
1958 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1959 		(*ill_mdt_capab)->ill_mdt_on = 1;
1960 		/*
1961 		 * Round the following values to the nearest 32-bit; ULP
1962 		 * may further adjust them to accomodate for additional
1963 		 * protocol headers.  We pass these values to ULP during
1964 		 * bind time.
1965 		 */
1966 		(*ill_mdt_capab)->ill_mdt_hdr_head =
1967 		    roundup(mdt_ic->mdt_hdr_head, 4);
1968 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1969 		    roundup(mdt_ic->mdt_hdr_tail, 4);
1970 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1971 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1972 
1973 		ill->ill_capabilities |= ILL_CAPAB_MDT;
1974 	} else {
1975 		uint_t size;
1976 		uchar_t *rptr;
1977 
1978 		size = sizeof (dl_capability_req_t) +
1979 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1980 
1981 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1982 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1983 			    "could not enable MDT for %s (ENOMEM)\n",
1984 			    ill->ill_name);
1985 			return;
1986 		}
1987 
1988 		rptr = nmp->b_rptr;
1989 		/* initialize dl_capability_req_t */
1990 		oc = (dl_capability_req_t *)nmp->b_rptr;
1991 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1992 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1993 		    sizeof (dl_capab_mdt_t);
1994 		nmp->b_rptr += sizeof (dl_capability_req_t);
1995 
1996 		/* initialize dl_capability_sub_t */
1997 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1998 		nmp->b_rptr += sizeof (*isub);
1999 
2000 		/* initialize dl_capab_mdt_t */
2001 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2002 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2003 
2004 		nmp->b_rptr = rptr;
2005 
2006 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2007 		    "to enable MDT version %d\n", ill->ill_name,
2008 		    MDT_VERSION_2));
2009 
2010 		/* set ENABLE flag */
2011 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2012 
2013 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2014 		ill_dlpi_send(ill, nmp);
2015 	}
2016 }
2017 
2018 static void
2019 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2020 {
2021 	mblk_t *mp;
2022 	dl_capab_mdt_t *mdt_subcap;
2023 	dl_capability_sub_t *dl_subcap;
2024 	int size;
2025 
2026 	if (!ILL_MDT_CAPABLE(ill))
2027 		return;
2028 
2029 	ASSERT(ill->ill_mdt_capab != NULL);
2030 	/*
2031 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2032 	 * structure since it's possible that another thread is still
2033 	 * referring to it.  The structure only gets deallocated when
2034 	 * we destroy the ill.
2035 	 */
2036 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2037 
2038 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2039 
2040 	mp = allocb(size, BPRI_HI);
2041 	if (mp == NULL) {
2042 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2043 		    "request to disable MDT\n"));
2044 		return;
2045 	}
2046 
2047 	mp->b_wptr = mp->b_rptr + size;
2048 
2049 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2050 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2051 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2052 
2053 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2054 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2055 	mdt_subcap->mdt_flags = 0;
2056 	mdt_subcap->mdt_hdr_head = 0;
2057 	mdt_subcap->mdt_hdr_tail = 0;
2058 
2059 	if (*sc_mp != NULL)
2060 		linkb(*sc_mp, mp);
2061 	else
2062 		*sc_mp = mp;
2063 }
2064 
2065 /*
2066  * Send a DL_NOTIFY_REQ to the specified ill to enable
2067  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2068  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2069  * acceleration.
2070  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2071  */
2072 static boolean_t
2073 ill_enable_promisc_notify(ill_t *ill)
2074 {
2075 	mblk_t *mp;
2076 	dl_notify_req_t *req;
2077 
2078 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2079 
2080 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2081 	if (mp == NULL)
2082 		return (B_FALSE);
2083 
2084 	req = (dl_notify_req_t *)mp->b_rptr;
2085 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2086 	    DL_NOTE_PROMISC_OFF_PHYS;
2087 
2088 	ill_dlpi_send(ill, mp);
2089 
2090 	return (B_TRUE);
2091 }
2092 
2093 
2094 /*
2095  * Allocate an IPsec capability request which will be filled by our
2096  * caller to turn on support for one or more algorithms.
2097  */
2098 static mblk_t *
2099 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2100 {
2101 	mblk_t *nmp;
2102 	dl_capability_req_t	*ocap;
2103 	dl_capab_ipsec_t	*ocip;
2104 	dl_capab_ipsec_t	*icip;
2105 	uint8_t			*ptr;
2106 	icip = (dl_capab_ipsec_t *)(isub + 1);
2107 
2108 	/*
2109 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2110 	 * PROMISC_ON/OFF notification from the provider. We need to
2111 	 * do this before enabling the algorithms to avoid leakage of
2112 	 * cleartext packets.
2113 	 */
2114 
2115 	if (!ill_enable_promisc_notify(ill))
2116 		return (NULL);
2117 
2118 	/*
2119 	 * Allocate new mblk which will contain a new capability
2120 	 * request to enable the capabilities.
2121 	 */
2122 
2123 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2124 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2125 	if (nmp == NULL)
2126 		return (NULL);
2127 
2128 	ptr = nmp->b_rptr;
2129 
2130 	/* initialize dl_capability_req_t */
2131 	ocap = (dl_capability_req_t *)ptr;
2132 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2133 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2134 	ptr += sizeof (dl_capability_req_t);
2135 
2136 	/* initialize dl_capability_sub_t */
2137 	bcopy(isub, ptr, sizeof (*isub));
2138 	ptr += sizeof (*isub);
2139 
2140 	/* initialize dl_capab_ipsec_t */
2141 	ocip = (dl_capab_ipsec_t *)ptr;
2142 	bcopy(icip, ocip, sizeof (*icip));
2143 
2144 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2145 	return (nmp);
2146 }
2147 
2148 /*
2149  * Process an IPsec capability negotiation ack received from a DLS Provider.
2150  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2151  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2152  */
2153 static void
2154 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2155 {
2156 	dl_capab_ipsec_t	*icip;
2157 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2158 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2159 	uint_t cipher, nciphers;
2160 	mblk_t *nmp;
2161 	uint_t alg_len;
2162 	boolean_t need_sadb_dump;
2163 	uint_t sub_dl_cap = isub->dl_cap;
2164 	ill_ipsec_capab_t **ill_capab;
2165 	uint64_t ill_capab_flag;
2166 	uint8_t *capend, *ciphend;
2167 	boolean_t sadb_resync;
2168 
2169 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2170 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2171 
2172 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2173 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2174 		ill_capab_flag = ILL_CAPAB_AH;
2175 	} else {
2176 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2177 		ill_capab_flag = ILL_CAPAB_ESP;
2178 	}
2179 
2180 	/*
2181 	 * If the ill capability structure exists, then this incoming
2182 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2183 	 * If this is so, then we'd need to resynchronize the SADB
2184 	 * after re-enabling the offloaded ciphers.
2185 	 */
2186 	sadb_resync = (*ill_capab != NULL);
2187 
2188 	/*
2189 	 * Note: range checks here are not absolutely sufficient to
2190 	 * make us robust against malformed messages sent by drivers;
2191 	 * this is in keeping with the rest of IP's dlpi handling.
2192 	 * (Remember, it's coming from something else in the kernel
2193 	 * address space)
2194 	 */
2195 
2196 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2197 	if (capend > mp->b_wptr) {
2198 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2199 		    "malformed sub-capability too long for mblk");
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * There are two types of acks we process here:
2205 	 * 1. acks in reply to a (first form) generic capability req
2206 	 *    (no ENABLE flag set)
2207 	 * 2. acks in reply to a ENABLE capability req.
2208 	 *    (ENABLE flag set)
2209 	 *
2210 	 * We process the subcapability passed as argument as follows:
2211 	 * 1 do initializations
2212 	 *   1.1 initialize nmp = NULL
2213 	 *   1.2 set need_sadb_dump to B_FALSE
2214 	 * 2 for each cipher in subcapability:
2215 	 *   2.1 if ENABLE flag is set:
2216 	 *	2.1.1 update per-ill ipsec capabilities info
2217 	 *	2.1.2 set need_sadb_dump to B_TRUE
2218 	 *   2.2 if ENABLE flag is not set:
2219 	 *	2.2.1 if nmp is NULL:
2220 	 *		2.2.1.1 allocate and initialize nmp
2221 	 *		2.2.1.2 init current pos in nmp
2222 	 *	2.2.2 copy current cipher to current pos in nmp
2223 	 *	2.2.3 set ENABLE flag in nmp
2224 	 *	2.2.4 update current pos
2225 	 * 3 if nmp is not equal to NULL, send enable request
2226 	 *   3.1 send capability request
2227 	 * 4 if need_sadb_dump is B_TRUE
2228 	 *   4.1 enable promiscuous on/off notifications
2229 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2230 	 *	AH or ESP SA's to interface.
2231 	 */
2232 
2233 	nmp = NULL;
2234 	oalg = NULL;
2235 	need_sadb_dump = B_FALSE;
2236 	icip = (dl_capab_ipsec_t *)(isub + 1);
2237 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2238 
2239 	nciphers = icip->cip_nciphers;
2240 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2241 
2242 	if (ciphend > capend) {
2243 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2244 		    "too many ciphers for sub-capability len");
2245 		return;
2246 	}
2247 
2248 	for (cipher = 0; cipher < nciphers; cipher++) {
2249 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2250 
2251 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2252 			/*
2253 			 * TBD: when we provide a way to disable capabilities
2254 			 * from above, need to manage the request-pending state
2255 			 * and fail if we were not expecting this ACK.
2256 			 */
2257 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2258 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2259 
2260 			/*
2261 			 * Update IPsec capabilities for this ill
2262 			 */
2263 
2264 			if (*ill_capab == NULL) {
2265 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2266 				    ("ill_capability_ipsec_ack: "
2267 				    "allocating ipsec_capab for ill\n"));
2268 				*ill_capab = ill_ipsec_capab_alloc();
2269 
2270 				if (*ill_capab == NULL) {
2271 					cmn_err(CE_WARN,
2272 					    "ill_capability_ipsec_ack: "
2273 					    "could not enable IPsec Hardware "
2274 					    "acceleration for %s (ENOMEM)\n",
2275 					    ill->ill_name);
2276 					return;
2277 				}
2278 			}
2279 
2280 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2281 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2282 
2283 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2284 				cmn_err(CE_WARN,
2285 				    "ill_capability_ipsec_ack: "
2286 				    "malformed IPsec algorithm id %d",
2287 				    ialg->alg_prim);
2288 				continue;
2289 			}
2290 
2291 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2292 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2293 				    ialg->alg_prim);
2294 			} else {
2295 				ipsec_capab_algparm_t *alp;
2296 
2297 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2298 				    ialg->alg_prim);
2299 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2300 				    ialg->alg_prim)) {
2301 					cmn_err(CE_WARN,
2302 					    "ill_capability_ipsec_ack: "
2303 					    "no space for IPsec alg id %d",
2304 					    ialg->alg_prim);
2305 					continue;
2306 				}
2307 				alp = &((*ill_capab)->encr_algparm[
2308 				    ialg->alg_prim]);
2309 				alp->minkeylen = ialg->alg_minbits;
2310 				alp->maxkeylen = ialg->alg_maxbits;
2311 			}
2312 			ill->ill_capabilities |= ill_capab_flag;
2313 			/*
2314 			 * indicate that a capability was enabled, which
2315 			 * will be used below to kick off a SADB dump
2316 			 * to the ill.
2317 			 */
2318 			need_sadb_dump = B_TRUE;
2319 		} else {
2320 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2321 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2322 			    ialg->alg_prim));
2323 
2324 			if (nmp == NULL) {
2325 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2326 				if (nmp == NULL) {
2327 					/*
2328 					 * Sending the PROMISC_ON/OFF
2329 					 * notification request failed.
2330 					 * We cannot enable the algorithms
2331 					 * since the Provider will not
2332 					 * notify IP of promiscous mode
2333 					 * changes, which could lead
2334 					 * to leakage of packets.
2335 					 */
2336 					cmn_err(CE_WARN,
2337 					    "ill_capability_ipsec_ack: "
2338 					    "could not enable IPsec Hardware "
2339 					    "acceleration for %s (ENOMEM)\n",
2340 					    ill->ill_name);
2341 					return;
2342 				}
2343 				/* ptr to current output alg specifier */
2344 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2345 			}
2346 
2347 			/*
2348 			 * Copy current alg specifier, set ENABLE
2349 			 * flag, and advance to next output alg.
2350 			 * For now we enable all IPsec capabilities.
2351 			 */
2352 			ASSERT(oalg != NULL);
2353 			bcopy(ialg, oalg, alg_len);
2354 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2355 			nmp->b_wptr += alg_len;
2356 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2357 		}
2358 
2359 		/* move to next input algorithm specifier */
2360 		ialg = (dl_capab_ipsec_alg_t *)
2361 		    ((char *)ialg + alg_len);
2362 	}
2363 
2364 	if (nmp != NULL)
2365 		/*
2366 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2367 		 * IPsec hardware acceleration.
2368 		 */
2369 		ill_dlpi_send(ill, nmp);
2370 
2371 	if (need_sadb_dump)
2372 		/*
2373 		 * An acknowledgement corresponding to a request to
2374 		 * enable acceleration was received, notify SADB.
2375 		 */
2376 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2377 }
2378 
2379 /*
2380  * Given an mblk with enough space in it, create sub-capability entries for
2381  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2382  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2383  * in preparation for the reset the DL_CAPABILITY_REQ message.
2384  */
2385 static void
2386 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2387     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2388 {
2389 	dl_capab_ipsec_t *oipsec;
2390 	dl_capab_ipsec_alg_t *oalg;
2391 	dl_capability_sub_t *dl_subcap;
2392 	int i, k;
2393 
2394 	ASSERT(nciphers > 0);
2395 	ASSERT(ill_cap != NULL);
2396 	ASSERT(mp != NULL);
2397 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2398 
2399 	/* dl_capability_sub_t for "stype" */
2400 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2401 	dl_subcap->dl_cap = stype;
2402 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2403 	mp->b_wptr += sizeof (dl_capability_sub_t);
2404 
2405 	/* dl_capab_ipsec_t for "stype" */
2406 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2407 	oipsec->cip_version = 1;
2408 	oipsec->cip_nciphers = nciphers;
2409 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2410 
2411 	/* create entries for "stype" AUTH ciphers */
2412 	for (i = 0; i < ill_cap->algs_size; i++) {
2413 		for (k = 0; k < BITSPERBYTE; k++) {
2414 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2415 				continue;
2416 
2417 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2418 			bzero((void *)oalg, sizeof (*oalg));
2419 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2420 			oalg->alg_prim = k + (BITSPERBYTE * i);
2421 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2422 		}
2423 	}
2424 	/* create entries for "stype" ENCR ciphers */
2425 	for (i = 0; i < ill_cap->algs_size; i++) {
2426 		for (k = 0; k < BITSPERBYTE; k++) {
2427 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2428 				continue;
2429 
2430 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2431 			bzero((void *)oalg, sizeof (*oalg));
2432 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2433 			oalg->alg_prim = k + (BITSPERBYTE * i);
2434 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2441  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2442  * POPC instruction, but our macro is more flexible for an arbitrary length
2443  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2444  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2445  * stays that way, we can reduce the number of iterations required.
2446  */
2447 #define	COUNT_1S(val, sum) {					\
2448 	uint8_t x = val & 0xff;					\
2449 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2450 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2451 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2452 }
2453 
2454 /* ARGSUSED */
2455 static void
2456 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2457 {
2458 	mblk_t *mp;
2459 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2460 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2461 	uint64_t ill_capabilities = ill->ill_capabilities;
2462 	int ah_cnt = 0, esp_cnt = 0;
2463 	int ah_len = 0, esp_len = 0;
2464 	int i, size = 0;
2465 
2466 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2467 		return;
2468 
2469 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2470 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2471 
2472 	/* Find out the number of ciphers for AH */
2473 	if (cap_ah != NULL) {
2474 		for (i = 0; i < cap_ah->algs_size; i++) {
2475 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2476 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2477 		}
2478 		if (ah_cnt > 0) {
2479 			size += sizeof (dl_capability_sub_t) +
2480 			    sizeof (dl_capab_ipsec_t);
2481 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2482 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2483 			size += ah_len;
2484 		}
2485 	}
2486 
2487 	/* Find out the number of ciphers for ESP */
2488 	if (cap_esp != NULL) {
2489 		for (i = 0; i < cap_esp->algs_size; i++) {
2490 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2491 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2492 		}
2493 		if (esp_cnt > 0) {
2494 			size += sizeof (dl_capability_sub_t) +
2495 			    sizeof (dl_capab_ipsec_t);
2496 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2497 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2498 			size += esp_len;
2499 		}
2500 	}
2501 
2502 	if (size == 0) {
2503 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2504 		    "there's nothing to reset\n"));
2505 		return;
2506 	}
2507 
2508 	mp = allocb(size, BPRI_HI);
2509 	if (mp == NULL) {
2510 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2511 		    "request to disable IPSEC Hardware Acceleration\n"));
2512 		return;
2513 	}
2514 
2515 	/*
2516 	 * Clear the capability flags for IPsec HA but retain the ill
2517 	 * capability structures since it's possible that another thread
2518 	 * is still referring to them.  The structures only get deallocated
2519 	 * when we destroy the ill.
2520 	 *
2521 	 * Various places check the flags to see if the ill is capable of
2522 	 * hardware acceleration, and by clearing them we ensure that new
2523 	 * outbound IPsec packets are sent down encrypted.
2524 	 */
2525 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2526 
2527 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2528 	if (ah_cnt > 0) {
2529 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2530 		    cap_ah, mp);
2531 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2532 	}
2533 
2534 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2535 	if (esp_cnt > 0) {
2536 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2537 		    cap_esp, mp);
2538 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2539 	}
2540 
2541 	/*
2542 	 * At this point we've composed a bunch of sub-capabilities to be
2543 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2544 	 * by the caller.  Upon receiving this reset message, the driver
2545 	 * must stop inbound decryption (by destroying all inbound SAs)
2546 	 * and let the corresponding packets come in encrypted.
2547 	 */
2548 
2549 	if (*sc_mp != NULL)
2550 		linkb(*sc_mp, mp);
2551 	else
2552 		*sc_mp = mp;
2553 }
2554 
2555 static void
2556 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2557     boolean_t encapsulated)
2558 {
2559 	boolean_t legacy = B_FALSE;
2560 
2561 	/*
2562 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2563 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2564 	 * instructed the driver to disable its advertised capabilities,
2565 	 * so there's no point in accepting any response at this moment.
2566 	 */
2567 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2568 		return;
2569 
2570 	/*
2571 	 * Note that only the following two sub-capabilities may be
2572 	 * considered as "legacy", since their original definitions
2573 	 * do not incorporate the dl_mid_t module ID token, and hence
2574 	 * may require the use of the wrapper sub-capability.
2575 	 */
2576 	switch (subp->dl_cap) {
2577 	case DL_CAPAB_IPSEC_AH:
2578 	case DL_CAPAB_IPSEC_ESP:
2579 		legacy = B_TRUE;
2580 		break;
2581 	}
2582 
2583 	/*
2584 	 * For legacy sub-capabilities which don't incorporate a queue_t
2585 	 * pointer in their structures, discard them if we detect that
2586 	 * there are intermediate modules in between IP and the driver.
2587 	 */
2588 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2589 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2590 		    "%d discarded; %d module(s) present below IP\n",
2591 		    subp->dl_cap, ill->ill_lmod_cnt));
2592 		return;
2593 	}
2594 
2595 	switch (subp->dl_cap) {
2596 	case DL_CAPAB_IPSEC_AH:
2597 	case DL_CAPAB_IPSEC_ESP:
2598 		ill_capability_ipsec_ack(ill, mp, subp);
2599 		break;
2600 	case DL_CAPAB_MDT:
2601 		ill_capability_mdt_ack(ill, mp, subp);
2602 		break;
2603 	case DL_CAPAB_HCKSUM:
2604 		ill_capability_hcksum_ack(ill, mp, subp);
2605 		break;
2606 	case DL_CAPAB_ZEROCOPY:
2607 		ill_capability_zerocopy_ack(ill, mp, subp);
2608 		break;
2609 	case DL_CAPAB_POLL:
2610 		if (!SOFT_RINGS_ENABLED())
2611 			ill_capability_dls_ack(ill, mp, subp);
2612 		break;
2613 	case DL_CAPAB_SOFT_RING:
2614 		if (SOFT_RINGS_ENABLED())
2615 			ill_capability_dls_ack(ill, mp, subp);
2616 		break;
2617 	case DL_CAPAB_LSO:
2618 		ill_capability_lso_ack(ill, mp, subp);
2619 		break;
2620 	default:
2621 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2622 		    subp->dl_cap));
2623 	}
2624 }
2625 
2626 /*
2627  * As part of negotiating polling capability, the driver tells us
2628  * the default (or normal) blanking interval and packet threshold
2629  * (the receive timer fires if blanking interval is reached or
2630  * the packet threshold is reached).
2631  *
2632  * As part of manipulating the polling interval, we always use our
2633  * estimated interval (avg service time * number of packets queued
2634  * on the squeue) but we try to blank for a minimum of
2635  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2636  * packet threshold during this time. When we are not in polling mode
2637  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2638  * rr_min_blank_ratio but up the packet cnt by a ratio of
2639  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2640  * possible although for a shorter interval.
2641  */
2642 #define	RR_MAX_BLANK_RATIO	20
2643 #define	RR_MIN_BLANK_RATIO	10
2644 #define	RR_MAX_PKT_CNT_RATIO	3
2645 #define	RR_MIN_PKT_CNT_RATIO	3
2646 
2647 /*
2648  * These can be tuned via /etc/system.
2649  */
2650 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2651 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2652 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2653 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2654 
2655 static mac_resource_handle_t
2656 ill_ring_add(void *arg, mac_resource_t *mrp)
2657 {
2658 	ill_t			*ill = (ill_t *)arg;
2659 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2660 	ill_rx_ring_t		*rx_ring;
2661 	int			ip_rx_index;
2662 
2663 	ASSERT(mrp != NULL);
2664 	if (mrp->mr_type != MAC_RX_FIFO) {
2665 		return (NULL);
2666 	}
2667 	ASSERT(ill != NULL);
2668 	ASSERT(ill->ill_dls_capab != NULL);
2669 
2670 	mutex_enter(&ill->ill_lock);
2671 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2672 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2673 		ASSERT(rx_ring != NULL);
2674 
2675 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2676 			time_t normal_blank_time =
2677 			    mrfp->mrf_normal_blank_time;
2678 			uint_t normal_pkt_cnt =
2679 			    mrfp->mrf_normal_pkt_count;
2680 
2681 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2682 
2683 	rx_ring->rr_blank = mrfp->mrf_blank;
2684 	rx_ring->rr_handle = mrfp->mrf_arg;
2685 	rx_ring->rr_ill = ill;
2686 	rx_ring->rr_normal_blank_time = normal_blank_time;
2687 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2688 
2689 			rx_ring->rr_max_blank_time =
2690 			    normal_blank_time * rr_max_blank_ratio;
2691 			rx_ring->rr_min_blank_time =
2692 			    normal_blank_time * rr_min_blank_ratio;
2693 			rx_ring->rr_max_pkt_cnt =
2694 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2695 			rx_ring->rr_min_pkt_cnt =
2696 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2697 
2698 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2699 			mutex_exit(&ill->ill_lock);
2700 
2701 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2702 			    (int), ip_rx_index);
2703 			return ((mac_resource_handle_t)rx_ring);
2704 		}
2705 	}
2706 
2707 	/*
2708 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2709 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2710 	 * should be made configurable. Meanwhile it cause no panic because
2711 	 * driver will pass ip_input a NULL handle which will make
2712 	 * IP allocate the default squeue and Polling mode will not
2713 	 * be used for this ring.
2714 	 */
2715 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2716 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2717 
2718 	mutex_exit(&ill->ill_lock);
2719 	return (NULL);
2720 }
2721 
2722 static boolean_t
2723 ill_capability_dls_init(ill_t *ill)
2724 {
2725 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2726 	conn_t 			*connp;
2727 	size_t			sz;
2728 	ip_stack_t *ipst = ill->ill_ipst;
2729 
2730 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2731 		if (ill_dls == NULL) {
2732 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2733 			    "soft_ring enabled for ill=%s (%p) but data "
2734 			    "structs uninitialized\n", ill->ill_name,
2735 			    (void *)ill);
2736 		}
2737 		return (B_TRUE);
2738 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2739 		if (ill_dls == NULL) {
2740 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2741 			    "polling enabled for ill=%s (%p) but data "
2742 			    "structs uninitialized\n", ill->ill_name,
2743 			    (void *)ill);
2744 		}
2745 		return (B_TRUE);
2746 	}
2747 
2748 	if (ill_dls != NULL) {
2749 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2750 		/* Soft_Ring or polling is being re-enabled */
2751 
2752 		connp = ill_dls->ill_unbind_conn;
2753 		ASSERT(rx_ring != NULL);
2754 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2755 		bzero((void *)rx_ring,
2756 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2757 		ill_dls->ill_ring_tbl = rx_ring;
2758 		ill_dls->ill_unbind_conn = connp;
2759 		return (B_TRUE);
2760 	}
2761 
2762 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2763 	    ipst->ips_netstack)) == NULL)
2764 		return (B_FALSE);
2765 
2766 	sz = sizeof (ill_dls_capab_t);
2767 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2768 
2769 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2770 	if (ill_dls == NULL) {
2771 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2772 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2773 		    (void *)ill);
2774 		CONN_DEC_REF(connp);
2775 		return (B_FALSE);
2776 	}
2777 
2778 	/* Allocate space to hold ring table */
2779 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2780 	ill->ill_dls_capab = ill_dls;
2781 	ill_dls->ill_unbind_conn = connp;
2782 	return (B_TRUE);
2783 }
2784 
2785 /*
2786  * ill_capability_dls_disable: disable soft_ring and/or polling
2787  * capability. Since any of the rings might already be in use, need
2788  * to call ip_squeue_clean_all() which gets behind the squeue to disable
2789  * direct calls if necessary.
2790  */
2791 static void
2792 ill_capability_dls_disable(ill_t *ill)
2793 {
2794 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2795 
2796 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2797 		ip_squeue_clean_all(ill);
2798 		ill_dls->ill_tx = NULL;
2799 		ill_dls->ill_tx_handle = NULL;
2800 		ill_dls->ill_dls_change_status = NULL;
2801 		ill_dls->ill_dls_bind = NULL;
2802 		ill_dls->ill_dls_unbind = NULL;
2803 	}
2804 
2805 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2806 }
2807 
2808 static void
2809 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2810     dl_capability_sub_t *isub)
2811 {
2812 	uint_t			size;
2813 	uchar_t			*rptr;
2814 	dl_capab_dls_t	dls, *odls;
2815 	ill_dls_capab_t	*ill_dls;
2816 	mblk_t			*nmp = NULL;
2817 	dl_capability_req_t	*ocap;
2818 	uint_t			sub_dl_cap = isub->dl_cap;
2819 
2820 	if (!ill_capability_dls_init(ill))
2821 		return;
2822 	ill_dls = ill->ill_dls_capab;
2823 
2824 	/* Copy locally to get the members aligned */
2825 	bcopy((void *)idls, (void *)&dls,
2826 	    sizeof (dl_capab_dls_t));
2827 
2828 	/* Get the tx function and handle from dld */
2829 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2830 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2831 
2832 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2833 		ill_dls->ill_dls_change_status =
2834 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2835 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2836 		ill_dls->ill_dls_unbind =
2837 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2838 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2839 	}
2840 
2841 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2842 	    isub->dl_length;
2843 
2844 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2845 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2846 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2847 		    ill->ill_name, (void *)ill);
2848 		return;
2849 	}
2850 
2851 	/* initialize dl_capability_req_t */
2852 	rptr = nmp->b_rptr;
2853 	ocap = (dl_capability_req_t *)rptr;
2854 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2855 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2856 	rptr += sizeof (dl_capability_req_t);
2857 
2858 	/* initialize dl_capability_sub_t */
2859 	bcopy(isub, rptr, sizeof (*isub));
2860 	rptr += sizeof (*isub);
2861 
2862 	odls = (dl_capab_dls_t *)rptr;
2863 	rptr += sizeof (dl_capab_dls_t);
2864 
2865 	/* initialize dl_capab_dls_t to be sent down */
2866 	dls.dls_rx_handle = (uintptr_t)ill;
2867 	dls.dls_rx = (uintptr_t)ip_input;
2868 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2869 
2870 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2871 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2872 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2873 		dls.dls_flags = SOFT_RING_ENABLE;
2874 	} else {
2875 		dls.dls_flags = POLL_ENABLE;
2876 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2877 		    "to enable polling\n", ill->ill_name));
2878 	}
2879 	bcopy((void *)&dls, (void *)odls,
2880 	    sizeof (dl_capab_dls_t));
2881 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2882 	/*
2883 	 * nmp points to a DL_CAPABILITY_REQ message to
2884 	 * enable either soft_ring or polling
2885 	 */
2886 	ill_dlpi_send(ill, nmp);
2887 }
2888 
2889 static void
2890 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2891 {
2892 	mblk_t *mp;
2893 	dl_capab_dls_t *idls;
2894 	dl_capability_sub_t *dl_subcap;
2895 	int size;
2896 
2897 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2898 		return;
2899 
2900 	ASSERT(ill->ill_dls_capab != NULL);
2901 
2902 	size = sizeof (*dl_subcap) + sizeof (*idls);
2903 
2904 	mp = allocb(size, BPRI_HI);
2905 	if (mp == NULL) {
2906 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2907 		    "request to disable soft_ring\n"));
2908 		return;
2909 	}
2910 
2911 	mp->b_wptr = mp->b_rptr + size;
2912 
2913 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2914 	dl_subcap->dl_length = sizeof (*idls);
2915 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2916 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2917 	else
2918 		dl_subcap->dl_cap = DL_CAPAB_POLL;
2919 
2920 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
2921 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2922 		idls->dls_flags = SOFT_RING_DISABLE;
2923 	else
2924 		idls->dls_flags = POLL_DISABLE;
2925 
2926 	if (*sc_mp != NULL)
2927 		linkb(*sc_mp, mp);
2928 	else
2929 		*sc_mp = mp;
2930 }
2931 
2932 /*
2933  * Process a soft_ring/poll capability negotiation ack received
2934  * from a DLS Provider.isub must point to the sub-capability
2935  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
2936  */
2937 static void
2938 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2939 {
2940 	dl_capab_dls_t		*idls;
2941 	uint_t			sub_dl_cap = isub->dl_cap;
2942 	uint8_t			*capend;
2943 
2944 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
2945 	    sub_dl_cap == DL_CAPAB_POLL);
2946 
2947 	if (ill->ill_isv6)
2948 		return;
2949 
2950 	/*
2951 	 * Note: range checks here are not absolutely sufficient to
2952 	 * make us robust against malformed messages sent by drivers;
2953 	 * this is in keeping with the rest of IP's dlpi handling.
2954 	 * (Remember, it's coming from something else in the kernel
2955 	 * address space)
2956 	 */
2957 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2958 	if (capend > mp->b_wptr) {
2959 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
2960 		    "malformed sub-capability too long for mblk");
2961 		return;
2962 	}
2963 
2964 	/*
2965 	 * There are two types of acks we process here:
2966 	 * 1. acks in reply to a (first form) generic capability req
2967 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
2968 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
2969 	 *    capability req.
2970 	 */
2971 	idls = (dl_capab_dls_t *)(isub + 1);
2972 
2973 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
2974 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
2975 		    "capability isn't as expected; pass-thru "
2976 		    "module(s) detected, discarding capability\n"));
2977 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2978 			/*
2979 			 * This is a capability renegotitation case.
2980 			 * The interface better be unusable at this
2981 			 * point other wise bad things will happen
2982 			 * if we disable direct calls on a running
2983 			 * and up interface.
2984 			 */
2985 			ill_capability_dls_disable(ill);
2986 		}
2987 		return;
2988 	}
2989 
2990 	switch (idls->dls_flags) {
2991 	default:
2992 		/* Disable if unknown flag */
2993 	case SOFT_RING_DISABLE:
2994 	case POLL_DISABLE:
2995 		ill_capability_dls_disable(ill);
2996 		break;
2997 	case SOFT_RING_CAPABLE:
2998 	case POLL_CAPABLE:
2999 		/*
3000 		 * If the capability was already enabled, its safe
3001 		 * to disable it first to get rid of stale information
3002 		 * and then start enabling it again.
3003 		 */
3004 		ill_capability_dls_disable(ill);
3005 		ill_capability_dls_capable(ill, idls, isub);
3006 		break;
3007 	case SOFT_RING_ENABLE:
3008 	case POLL_ENABLE:
3009 		mutex_enter(&ill->ill_lock);
3010 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3011 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3012 			ASSERT(ill->ill_dls_capab != NULL);
3013 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3014 		}
3015 		if (sub_dl_cap == DL_CAPAB_POLL &&
3016 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3017 			ASSERT(ill->ill_dls_capab != NULL);
3018 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3019 			ip1dbg(("ill_capability_dls_ack: interface %s "
3020 			    "has enabled polling\n", ill->ill_name));
3021 		}
3022 		mutex_exit(&ill->ill_lock);
3023 		break;
3024 	}
3025 }
3026 
3027 /*
3028  * Process a hardware checksum offload capability negotiation ack received
3029  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3030  * of a DL_CAPABILITY_ACK message.
3031  */
3032 static void
3033 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3034 {
3035 	dl_capability_req_t	*ocap;
3036 	dl_capab_hcksum_t	*ihck, *ohck;
3037 	ill_hcksum_capab_t	**ill_hcksum;
3038 	mblk_t			*nmp = NULL;
3039 	uint_t			sub_dl_cap = isub->dl_cap;
3040 	uint8_t			*capend;
3041 
3042 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3043 
3044 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3045 
3046 	/*
3047 	 * Note: range checks here are not absolutely sufficient to
3048 	 * make us robust against malformed messages sent by drivers;
3049 	 * this is in keeping with the rest of IP's dlpi handling.
3050 	 * (Remember, it's coming from something else in the kernel
3051 	 * address space)
3052 	 */
3053 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3054 	if (capend > mp->b_wptr) {
3055 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3056 		    "malformed sub-capability too long for mblk");
3057 		return;
3058 	}
3059 
3060 	/*
3061 	 * There are two types of acks we process here:
3062 	 * 1. acks in reply to a (first form) generic capability req
3063 	 *    (no ENABLE flag set)
3064 	 * 2. acks in reply to a ENABLE capability req.
3065 	 *    (ENABLE flag set)
3066 	 */
3067 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3068 
3069 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3070 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3071 		    "unsupported hardware checksum "
3072 		    "sub-capability (version %d, expected %d)",
3073 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3074 		return;
3075 	}
3076 
3077 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3078 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3079 		    "checksum capability isn't as expected; pass-thru "
3080 		    "module(s) detected, discarding capability\n"));
3081 		return;
3082 	}
3083 
3084 #define	CURR_HCKSUM_CAPAB				\
3085 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3086 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3087 
3088 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3089 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3090 		/* do ENABLE processing */
3091 		if (*ill_hcksum == NULL) {
3092 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3093 			    KM_NOSLEEP);
3094 
3095 			if (*ill_hcksum == NULL) {
3096 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3097 				    "could not enable hcksum version %d "
3098 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3099 				    ill->ill_name);
3100 				return;
3101 			}
3102 		}
3103 
3104 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3105 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3106 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3107 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3108 		    "has enabled hardware checksumming\n ",
3109 		    ill->ill_name));
3110 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3111 		/*
3112 		 * Enabling hardware checksum offload
3113 		 * Currently IP supports {TCP,UDP}/IPv4
3114 		 * partial and full cksum offload and
3115 		 * IPv4 header checksum offload.
3116 		 * Allocate new mblk which will
3117 		 * contain a new capability request
3118 		 * to enable hardware checksum offload.
3119 		 */
3120 		uint_t	size;
3121 		uchar_t	*rptr;
3122 
3123 		size = sizeof (dl_capability_req_t) +
3124 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3125 
3126 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3127 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3128 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3129 			    ill->ill_name);
3130 			return;
3131 		}
3132 
3133 		rptr = nmp->b_rptr;
3134 		/* initialize dl_capability_req_t */
3135 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3136 		ocap->dl_sub_offset =
3137 		    sizeof (dl_capability_req_t);
3138 		ocap->dl_sub_length =
3139 		    sizeof (dl_capability_sub_t) +
3140 		    isub->dl_length;
3141 		nmp->b_rptr += sizeof (dl_capability_req_t);
3142 
3143 		/* initialize dl_capability_sub_t */
3144 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3145 		nmp->b_rptr += sizeof (*isub);
3146 
3147 		/* initialize dl_capab_hcksum_t */
3148 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3149 		bcopy(ihck, ohck, sizeof (*ihck));
3150 
3151 		nmp->b_rptr = rptr;
3152 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3153 
3154 		/* Set ENABLE flag */
3155 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3156 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3157 
3158 		/*
3159 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3160 		 * hardware checksum acceleration.
3161 		 */
3162 		ill_dlpi_send(ill, nmp);
3163 	} else {
3164 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3165 		    "advertised %x hardware checksum capability flags\n",
3166 		    ill->ill_name, ihck->hcksum_txflags));
3167 	}
3168 }
3169 
3170 static void
3171 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3172 {
3173 	mblk_t *mp;
3174 	dl_capab_hcksum_t *hck_subcap;
3175 	dl_capability_sub_t *dl_subcap;
3176 	int size;
3177 
3178 	if (!ILL_HCKSUM_CAPABLE(ill))
3179 		return;
3180 
3181 	ASSERT(ill->ill_hcksum_capab != NULL);
3182 	/*
3183 	 * Clear the capability flag for hardware checksum offload but
3184 	 * retain the ill_hcksum_capab structure since it's possible that
3185 	 * another thread is still referring to it.  The structure only
3186 	 * gets deallocated when we destroy the ill.
3187 	 */
3188 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3189 
3190 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3191 
3192 	mp = allocb(size, BPRI_HI);
3193 	if (mp == NULL) {
3194 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3195 		    "request to disable hardware checksum offload\n"));
3196 		return;
3197 	}
3198 
3199 	mp->b_wptr = mp->b_rptr + size;
3200 
3201 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3202 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3203 	dl_subcap->dl_length = sizeof (*hck_subcap);
3204 
3205 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3206 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3207 	hck_subcap->hcksum_txflags = 0;
3208 
3209 	if (*sc_mp != NULL)
3210 		linkb(*sc_mp, mp);
3211 	else
3212 		*sc_mp = mp;
3213 }
3214 
3215 static void
3216 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3217 {
3218 	mblk_t *nmp = NULL;
3219 	dl_capability_req_t *oc;
3220 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3221 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3222 	uint_t sub_dl_cap = isub->dl_cap;
3223 	uint8_t *capend;
3224 
3225 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3226 
3227 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3228 
3229 	/*
3230 	 * Note: range checks here are not absolutely sufficient to
3231 	 * make us robust against malformed messages sent by drivers;
3232 	 * this is in keeping with the rest of IP's dlpi handling.
3233 	 * (Remember, it's coming from something else in the kernel
3234 	 * address space)
3235 	 */
3236 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3237 	if (capend > mp->b_wptr) {
3238 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3239 		    "malformed sub-capability too long for mblk");
3240 		return;
3241 	}
3242 
3243 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3244 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3245 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3246 		    "unsupported ZEROCOPY sub-capability (version %d, "
3247 		    "expected %d)", zc_ic->zerocopy_version,
3248 		    ZEROCOPY_VERSION_1);
3249 		return;
3250 	}
3251 
3252 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3253 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3254 		    "capability isn't as expected; pass-thru module(s) "
3255 		    "detected, discarding capability\n"));
3256 		return;
3257 	}
3258 
3259 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3260 		if (*ill_zerocopy_capab == NULL) {
3261 			*ill_zerocopy_capab =
3262 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3263 			    KM_NOSLEEP);
3264 
3265 			if (*ill_zerocopy_capab == NULL) {
3266 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3267 				    "could not enable Zero-copy version %d "
3268 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3269 				    ill->ill_name);
3270 				return;
3271 			}
3272 		}
3273 
3274 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3275 		    "supports Zero-copy version %d\n", ill->ill_name,
3276 		    ZEROCOPY_VERSION_1));
3277 
3278 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3279 		    zc_ic->zerocopy_version;
3280 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3281 		    zc_ic->zerocopy_flags;
3282 
3283 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3284 	} else {
3285 		uint_t size;
3286 		uchar_t *rptr;
3287 
3288 		size = sizeof (dl_capability_req_t) +
3289 		    sizeof (dl_capability_sub_t) +
3290 		    sizeof (dl_capab_zerocopy_t);
3291 
3292 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3293 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3294 			    "could not enable zerocopy for %s (ENOMEM)\n",
3295 			    ill->ill_name);
3296 			return;
3297 		}
3298 
3299 		rptr = nmp->b_rptr;
3300 		/* initialize dl_capability_req_t */
3301 		oc = (dl_capability_req_t *)rptr;
3302 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3303 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3304 		    sizeof (dl_capab_zerocopy_t);
3305 		rptr += sizeof (dl_capability_req_t);
3306 
3307 		/* initialize dl_capability_sub_t */
3308 		bcopy(isub, rptr, sizeof (*isub));
3309 		rptr += sizeof (*isub);
3310 
3311 		/* initialize dl_capab_zerocopy_t */
3312 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3313 		*zc_oc = *zc_ic;
3314 
3315 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3316 		    "to enable zero-copy version %d\n", ill->ill_name,
3317 		    ZEROCOPY_VERSION_1));
3318 
3319 		/* set VMSAFE_MEM flag */
3320 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3321 
3322 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3323 		ill_dlpi_send(ill, nmp);
3324 	}
3325 }
3326 
3327 static void
3328 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3329 {
3330 	mblk_t *mp;
3331 	dl_capab_zerocopy_t *zerocopy_subcap;
3332 	dl_capability_sub_t *dl_subcap;
3333 	int size;
3334 
3335 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3336 		return;
3337 
3338 	ASSERT(ill->ill_zerocopy_capab != NULL);
3339 	/*
3340 	 * Clear the capability flag for Zero-copy but retain the
3341 	 * ill_zerocopy_capab structure since it's possible that another
3342 	 * thread is still referring to it.  The structure only gets
3343 	 * deallocated when we destroy the ill.
3344 	 */
3345 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3346 
3347 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3348 
3349 	mp = allocb(size, BPRI_HI);
3350 	if (mp == NULL) {
3351 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3352 		    "request to disable Zero-copy\n"));
3353 		return;
3354 	}
3355 
3356 	mp->b_wptr = mp->b_rptr + size;
3357 
3358 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3359 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3360 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3361 
3362 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3363 	zerocopy_subcap->zerocopy_version =
3364 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3365 	zerocopy_subcap->zerocopy_flags = 0;
3366 
3367 	if (*sc_mp != NULL)
3368 		linkb(*sc_mp, mp);
3369 	else
3370 		*sc_mp = mp;
3371 }
3372 
3373 /*
3374  * Process Large Segment Offload capability negotiation ack received from a
3375  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3376  * DL_CAPABILITY_ACK message.
3377  */
3378 static void
3379 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3380 {
3381 	mblk_t *nmp = NULL;
3382 	dl_capability_req_t *oc;
3383 	dl_capab_lso_t *lso_ic, *lso_oc;
3384 	ill_lso_capab_t **ill_lso_capab;
3385 	uint_t sub_dl_cap = isub->dl_cap;
3386 	uint8_t *capend;
3387 
3388 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3389 
3390 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3391 
3392 	/*
3393 	 * Note: range checks here are not absolutely sufficient to
3394 	 * make us robust against malformed messages sent by drivers;
3395 	 * this is in keeping with the rest of IP's dlpi handling.
3396 	 * (Remember, it's coming from something else in the kernel
3397 	 * address space)
3398 	 */
3399 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3400 	if (capend > mp->b_wptr) {
3401 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3402 		    "malformed sub-capability too long for mblk");
3403 		return;
3404 	}
3405 
3406 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3407 
3408 	if (lso_ic->lso_version != LSO_VERSION_1) {
3409 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3410 		    "unsupported LSO sub-capability (version %d, expected %d)",
3411 		    lso_ic->lso_version, LSO_VERSION_1);
3412 		return;
3413 	}
3414 
3415 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3416 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3417 		    "capability isn't as expected; pass-thru module(s) "
3418 		    "detected, discarding capability\n"));
3419 		return;
3420 	}
3421 
3422 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3423 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3424 		if (*ill_lso_capab == NULL) {
3425 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3426 			    KM_NOSLEEP);
3427 
3428 			if (*ill_lso_capab == NULL) {
3429 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3430 				    "could not enable LSO version %d "
3431 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3432 				    ill->ill_name);
3433 				return;
3434 			}
3435 		}
3436 
3437 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3438 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3439 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3440 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3441 
3442 		ip1dbg(("ill_capability_lso_ack: interface %s "
3443 		    "has enabled LSO\n ", ill->ill_name));
3444 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3445 		uint_t size;
3446 		uchar_t *rptr;
3447 
3448 		size = sizeof (dl_capability_req_t) +
3449 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3450 
3451 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3452 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3453 			    "could not enable LSO for %s (ENOMEM)\n",
3454 			    ill->ill_name);
3455 			return;
3456 		}
3457 
3458 		rptr = nmp->b_rptr;
3459 		/* initialize dl_capability_req_t */
3460 		oc = (dl_capability_req_t *)nmp->b_rptr;
3461 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3462 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3463 		    sizeof (dl_capab_lso_t);
3464 		nmp->b_rptr += sizeof (dl_capability_req_t);
3465 
3466 		/* initialize dl_capability_sub_t */
3467 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3468 		nmp->b_rptr += sizeof (*isub);
3469 
3470 		/* initialize dl_capab_lso_t */
3471 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3472 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3473 
3474 		nmp->b_rptr = rptr;
3475 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3476 
3477 		/* set ENABLE flag */
3478 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3479 
3480 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3481 		ill_dlpi_send(ill, nmp);
3482 	} else {
3483 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3484 		    "advertised %x LSO capability flags\n",
3485 		    ill->ill_name, lso_ic->lso_flags));
3486 	}
3487 }
3488 
3489 
3490 static void
3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3492 {
3493 	mblk_t *mp;
3494 	dl_capab_lso_t *lso_subcap;
3495 	dl_capability_sub_t *dl_subcap;
3496 	int size;
3497 
3498 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3499 		return;
3500 
3501 	ASSERT(ill->ill_lso_capab != NULL);
3502 	/*
3503 	 * Clear the capability flag for LSO but retain the
3504 	 * ill_lso_capab structure since it's possible that another
3505 	 * thread is still referring to it.  The structure only gets
3506 	 * deallocated when we destroy the ill.
3507 	 */
3508 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3509 
3510 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3511 
3512 	mp = allocb(size, BPRI_HI);
3513 	if (mp == NULL) {
3514 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3515 		    "request to disable LSO\n"));
3516 		return;
3517 	}
3518 
3519 	mp->b_wptr = mp->b_rptr + size;
3520 
3521 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3522 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3523 	dl_subcap->dl_length = sizeof (*lso_subcap);
3524 
3525 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3526 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3527 	lso_subcap->lso_flags = 0;
3528 
3529 	if (*sc_mp != NULL)
3530 		linkb(*sc_mp, mp);
3531 	else
3532 		*sc_mp = mp;
3533 }
3534 
3535 /*
3536  * Consume a new-style hardware capabilities negotiation ack.
3537  * Called from ip_rput_dlpi_writer().
3538  */
3539 void
3540 ill_capability_ack(ill_t *ill, mblk_t *mp)
3541 {
3542 	dl_capability_ack_t *capp;
3543 	dl_capability_sub_t *subp, *endp;
3544 
3545 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3546 		ill->ill_dlpi_capab_state = IDS_OK;
3547 
3548 	capp = (dl_capability_ack_t *)mp->b_rptr;
3549 
3550 	if (capp->dl_sub_length == 0)
3551 		/* no new-style capabilities */
3552 		return;
3553 
3554 	/* make sure the driver supplied correct dl_sub_length */
3555 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3556 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3557 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3558 		return;
3559 	}
3560 
3561 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3562 	/*
3563 	 * There are sub-capabilities. Process the ones we know about.
3564 	 * Loop until we don't have room for another sub-cap header..
3565 	 */
3566 	for (subp = SC(capp, capp->dl_sub_offset),
3567 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3568 	    subp <= endp;
3569 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3570 
3571 		switch (subp->dl_cap) {
3572 		case DL_CAPAB_ID_WRAPPER:
3573 			ill_capability_id_ack(ill, mp, subp);
3574 			break;
3575 		default:
3576 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3577 			break;
3578 		}
3579 	}
3580 #undef SC
3581 }
3582 
3583 /*
3584  * This routine is called to scan the fragmentation reassembly table for
3585  * the specified ILL for any packets that are starting to smell.
3586  * dead_interval is the maximum time in seconds that will be tolerated.  It
3587  * will either be the value specified in ip_g_frag_timeout, or zero if the
3588  * ILL is shutting down and it is time to blow everything off.
3589  *
3590  * It returns the number of seconds (as a time_t) that the next frag timer
3591  * should be scheduled for, 0 meaning that the timer doesn't need to be
3592  * re-started.  Note that the method of calculating next_timeout isn't
3593  * entirely accurate since time will flow between the time we grab
3594  * current_time and the time we schedule the next timeout.  This isn't a
3595  * big problem since this is the timer for sending an ICMP reassembly time
3596  * exceeded messages, and it doesn't have to be exactly accurate.
3597  *
3598  * This function is
3599  * sometimes called as writer, although this is not required.
3600  */
3601 time_t
3602 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3603 {
3604 	ipfb_t	*ipfb;
3605 	ipfb_t	*endp;
3606 	ipf_t	*ipf;
3607 	ipf_t	*ipfnext;
3608 	mblk_t	*mp;
3609 	time_t	current_time = gethrestime_sec();
3610 	time_t	next_timeout = 0;
3611 	uint32_t	hdr_length;
3612 	mblk_t	*send_icmp_head;
3613 	mblk_t	*send_icmp_head_v6;
3614 	zoneid_t zoneid;
3615 	ip_stack_t *ipst = ill->ill_ipst;
3616 
3617 	ipfb = ill->ill_frag_hash_tbl;
3618 	if (ipfb == NULL)
3619 		return (B_FALSE);
3620 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3621 	/* Walk the frag hash table. */
3622 	for (; ipfb < endp; ipfb++) {
3623 		send_icmp_head = NULL;
3624 		send_icmp_head_v6 = NULL;
3625 		mutex_enter(&ipfb->ipfb_lock);
3626 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3627 			time_t frag_time = current_time - ipf->ipf_timestamp;
3628 			time_t frag_timeout;
3629 
3630 			if (frag_time < dead_interval) {
3631 				/*
3632 				 * There are some outstanding fragments
3633 				 * that will timeout later.  Make note of
3634 				 * the time so that we can reschedule the
3635 				 * next timeout appropriately.
3636 				 */
3637 				frag_timeout = dead_interval - frag_time;
3638 				if (next_timeout == 0 ||
3639 				    frag_timeout < next_timeout) {
3640 					next_timeout = frag_timeout;
3641 				}
3642 				break;
3643 			}
3644 			/* Time's up.  Get it out of here. */
3645 			hdr_length = ipf->ipf_nf_hdr_len;
3646 			ipfnext = ipf->ipf_hash_next;
3647 			if (ipfnext)
3648 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3649 			*ipf->ipf_ptphn = ipfnext;
3650 			mp = ipf->ipf_mp->b_cont;
3651 			for (; mp; mp = mp->b_cont) {
3652 				/* Extra points for neatness. */
3653 				IP_REASS_SET_START(mp, 0);
3654 				IP_REASS_SET_END(mp, 0);
3655 			}
3656 			mp = ipf->ipf_mp->b_cont;
3657 			ill->ill_frag_count -= ipf->ipf_count;
3658 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3659 			ipfb->ipfb_count -= ipf->ipf_count;
3660 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3661 			ipfb->ipfb_frag_pkts--;
3662 			/*
3663 			 * We do not send any icmp message from here because
3664 			 * we currently are holding the ipfb_lock for this
3665 			 * hash chain. If we try and send any icmp messages
3666 			 * from here we may end up via a put back into ip
3667 			 * trying to get the same lock, causing a recursive
3668 			 * mutex panic. Instead we build a list and send all
3669 			 * the icmp messages after we have dropped the lock.
3670 			 */
3671 			if (ill->ill_isv6) {
3672 				if (hdr_length != 0) {
3673 					mp->b_next = send_icmp_head_v6;
3674 					send_icmp_head_v6 = mp;
3675 				} else {
3676 					freemsg(mp);
3677 				}
3678 			} else {
3679 				if (hdr_length != 0) {
3680 					mp->b_next = send_icmp_head;
3681 					send_icmp_head = mp;
3682 				} else {
3683 					freemsg(mp);
3684 				}
3685 			}
3686 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3687 			freeb(ipf->ipf_mp);
3688 		}
3689 		mutex_exit(&ipfb->ipfb_lock);
3690 		/*
3691 		 * Now need to send any icmp messages that we delayed from
3692 		 * above.
3693 		 */
3694 		while (send_icmp_head_v6 != NULL) {
3695 			ip6_t *ip6h;
3696 
3697 			mp = send_icmp_head_v6;
3698 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3699 			mp->b_next = NULL;
3700 			if (mp->b_datap->db_type == M_CTL)
3701 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3702 			else
3703 				ip6h = (ip6_t *)mp->b_rptr;
3704 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3705 			    ill, ipst);
3706 			if (zoneid == ALL_ZONES) {
3707 				freemsg(mp);
3708 			} else {
3709 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3710 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3711 				    B_FALSE, zoneid, ipst);
3712 			}
3713 		}
3714 		while (send_icmp_head != NULL) {
3715 			ipaddr_t dst;
3716 
3717 			mp = send_icmp_head;
3718 			send_icmp_head = send_icmp_head->b_next;
3719 			mp->b_next = NULL;
3720 
3721 			if (mp->b_datap->db_type == M_CTL)
3722 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3723 			else
3724 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3725 
3726 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3727 			if (zoneid == ALL_ZONES) {
3728 				freemsg(mp);
3729 			} else {
3730 				icmp_time_exceeded(ill->ill_wq, mp,
3731 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3732 				    ipst);
3733 			}
3734 		}
3735 	}
3736 	/*
3737 	 * A non-dying ILL will use the return value to decide whether to
3738 	 * restart the frag timer, and for how long.
3739 	 */
3740 	return (next_timeout);
3741 }
3742 
3743 /*
3744  * This routine is called when the approximate count of mblk memory used
3745  * for the specified ILL has exceeded max_count.
3746  */
3747 void
3748 ill_frag_prune(ill_t *ill, uint_t max_count)
3749 {
3750 	ipfb_t	*ipfb;
3751 	ipf_t	*ipf;
3752 	size_t	count;
3753 
3754 	/*
3755 	 * If we are here within ip_min_frag_prune_time msecs remove
3756 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3757 	 * ill_frag_free_num_pkts.
3758 	 */
3759 	mutex_enter(&ill->ill_lock);
3760 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3761 	    (ip_min_frag_prune_time != 0 ?
3762 	    ip_min_frag_prune_time : msec_per_tick)) {
3763 
3764 		ill->ill_frag_free_num_pkts++;
3765 
3766 	} else {
3767 		ill->ill_frag_free_num_pkts = 0;
3768 	}
3769 	ill->ill_last_frag_clean_time = lbolt;
3770 	mutex_exit(&ill->ill_lock);
3771 
3772 	/*
3773 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3774 	 */
3775 	if (ill->ill_frag_free_num_pkts != 0) {
3776 		int ix;
3777 
3778 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3779 			ipfb = &ill->ill_frag_hash_tbl[ix];
3780 			mutex_enter(&ipfb->ipfb_lock);
3781 			if (ipfb->ipfb_ipf != NULL) {
3782 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3783 				    ill->ill_frag_free_num_pkts);
3784 			}
3785 			mutex_exit(&ipfb->ipfb_lock);
3786 		}
3787 	}
3788 	/*
3789 	 * While the reassembly list for this ILL is too big, prune a fragment
3790 	 * queue by age, oldest first.  Note that the per ILL count is
3791 	 * approximate, while the per frag hash bucket counts are accurate.
3792 	 */
3793 	while (ill->ill_frag_count > max_count) {
3794 		int	ix;
3795 		ipfb_t	*oipfb = NULL;
3796 		uint_t	oldest = UINT_MAX;
3797 
3798 		count = 0;
3799 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3800 			ipfb = &ill->ill_frag_hash_tbl[ix];
3801 			mutex_enter(&ipfb->ipfb_lock);
3802 			ipf = ipfb->ipfb_ipf;
3803 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3804 				oldest = ipf->ipf_gen;
3805 				oipfb = ipfb;
3806 			}
3807 			count += ipfb->ipfb_count;
3808 			mutex_exit(&ipfb->ipfb_lock);
3809 		}
3810 		/* Refresh the per ILL count */
3811 		ill->ill_frag_count = count;
3812 		if (oipfb == NULL) {
3813 			ill->ill_frag_count = 0;
3814 			break;
3815 		}
3816 		if (count <= max_count)
3817 			return;	/* Somebody beat us to it, nothing to do */
3818 		mutex_enter(&oipfb->ipfb_lock);
3819 		ipf = oipfb->ipfb_ipf;
3820 		if (ipf != NULL) {
3821 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3822 		}
3823 		mutex_exit(&oipfb->ipfb_lock);
3824 	}
3825 }
3826 
3827 /*
3828  * free 'free_cnt' fragmented packets starting at ipf.
3829  */
3830 void
3831 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3832 {
3833 	size_t	count;
3834 	mblk_t	*mp;
3835 	mblk_t	*tmp;
3836 	ipf_t **ipfp = ipf->ipf_ptphn;
3837 
3838 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3839 	ASSERT(ipfp != NULL);
3840 	ASSERT(ipf != NULL);
3841 
3842 	while (ipf != NULL && free_cnt-- > 0) {
3843 		count = ipf->ipf_count;
3844 		mp = ipf->ipf_mp;
3845 		ipf = ipf->ipf_hash_next;
3846 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3847 			IP_REASS_SET_START(tmp, 0);
3848 			IP_REASS_SET_END(tmp, 0);
3849 		}
3850 		ill->ill_frag_count -= count;
3851 		ASSERT(ipfb->ipfb_count >= count);
3852 		ipfb->ipfb_count -= count;
3853 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3854 		ipfb->ipfb_frag_pkts--;
3855 		freemsg(mp);
3856 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3857 	}
3858 
3859 	if (ipf)
3860 		ipf->ipf_ptphn = ipfp;
3861 	ipfp[0] = ipf;
3862 }
3863 
3864 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3865 	"obsolete and may be removed in a future release of Solaris.  Use " \
3866 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3867 
3868 /*
3869  * For obsolete per-interface forwarding configuration;
3870  * called in response to ND_GET.
3871  */
3872 /* ARGSUSED */
3873 static int
3874 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3875 {
3876 	ill_t *ill = (ill_t *)cp;
3877 
3878 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3879 
3880 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3881 	return (0);
3882 }
3883 
3884 /*
3885  * For obsolete per-interface forwarding configuration;
3886  * called in response to ND_SET.
3887  */
3888 /* ARGSUSED */
3889 static int
3890 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3891     cred_t *ioc_cr)
3892 {
3893 	long value;
3894 	int retval;
3895 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3896 
3897 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3898 
3899 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3900 	    value < 0 || value > 1) {
3901 		return (EINVAL);
3902 	}
3903 
3904 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3905 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3906 	rw_exit(&ipst->ips_ill_g_lock);
3907 	return (retval);
3908 }
3909 
3910 /*
3911  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
3912  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
3913  * up RTS_IFINFO routing socket messages for each interface whose flags we
3914  * change.
3915  */
3916 int
3917 ill_forward_set(ill_t *ill, boolean_t enable)
3918 {
3919 	ill_group_t *illgrp;
3920 	ip_stack_t	*ipst = ill->ill_ipst;
3921 
3922 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3923 
3924 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3925 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3926 		return (0);
3927 
3928 	if (IS_LOOPBACK(ill))
3929 		return (EINVAL);
3930 
3931 	/*
3932 	 * If the ill is in an IPMP group, set the forwarding policy on all
3933 	 * members of the group to the same value.
3934 	 */
3935 	illgrp = ill->ill_group;
3936 	if (illgrp != NULL) {
3937 		ill_t *tmp_ill;
3938 
3939 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
3940 		    tmp_ill = tmp_ill->ill_group_next) {
3941 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3942 			    (enable ? "Enabling" : "Disabling"),
3943 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
3944 			    tmp_ill->ill_name));
3945 			mutex_enter(&tmp_ill->ill_lock);
3946 			if (enable)
3947 				tmp_ill->ill_flags |= ILLF_ROUTER;
3948 			else
3949 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
3950 			mutex_exit(&tmp_ill->ill_lock);
3951 			if (tmp_ill->ill_isv6)
3952 				ill_set_nce_router_flags(tmp_ill, enable);
3953 			/* Notify routing socket listeners of this change. */
3954 			ip_rts_ifmsg(tmp_ill->ill_ipif);
3955 		}
3956 	} else {
3957 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3958 		    (enable ? "Enabling" : "Disabling"),
3959 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3960 		mutex_enter(&ill->ill_lock);
3961 		if (enable)
3962 			ill->ill_flags |= ILLF_ROUTER;
3963 		else
3964 			ill->ill_flags &= ~ILLF_ROUTER;
3965 		mutex_exit(&ill->ill_lock);
3966 		if (ill->ill_isv6)
3967 			ill_set_nce_router_flags(ill, enable);
3968 		/* Notify routing socket listeners of this change. */
3969 		ip_rts_ifmsg(ill->ill_ipif);
3970 	}
3971 
3972 	return (0);
3973 }
3974 
3975 /*
3976  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3977  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3978  * set or clear.
3979  */
3980 static void
3981 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3982 {
3983 	ipif_t *ipif;
3984 	nce_t *nce;
3985 
3986 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3987 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
3988 		if (nce != NULL) {
3989 			mutex_enter(&nce->nce_lock);
3990 			if (enable)
3991 				nce->nce_flags |= NCE_F_ISROUTER;
3992 			else
3993 				nce->nce_flags &= ~NCE_F_ISROUTER;
3994 			mutex_exit(&nce->nce_lock);
3995 			NCE_REFRELE(nce);
3996 		}
3997 	}
3998 }
3999 
4000 /*
4001  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4002  * for this ill.  Make sure the v6/v4 question has been answered about this
4003  * ill.  The creation of this ndd variable is only for backwards compatibility.
4004  * The preferred way to control per-interface IP forwarding is through the
4005  * ILLF_ROUTER interface flag.
4006  */
4007 static int
4008 ill_set_ndd_name(ill_t *ill)
4009 {
4010 	char *suffix;
4011 	ip_stack_t	*ipst = ill->ill_ipst;
4012 
4013 	ASSERT(IAM_WRITER_ILL(ill));
4014 
4015 	if (ill->ill_isv6)
4016 		suffix = ipv6_forward_suffix;
4017 	else
4018 		suffix = ipv4_forward_suffix;
4019 
4020 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4021 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4022 	/*
4023 	 * Copies over the '\0'.
4024 	 * Note that strlen(suffix) is always bounded.
4025 	 */
4026 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4027 	    strlen(suffix) + 1);
4028 
4029 	/*
4030 	 * Use of the nd table requires holding the reader lock.
4031 	 * Modifying the nd table thru nd_load/nd_unload requires
4032 	 * the writer lock.
4033 	 */
4034 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4035 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4036 	    nd_ill_forward_set, (caddr_t)ill)) {
4037 		/*
4038 		 * If the nd_load failed, it only meant that it could not
4039 		 * allocate a new bunch of room for further NDD expansion.
4040 		 * Because of that, the ill_ndd_name will be set to 0, and
4041 		 * this interface is at the mercy of the global ip_forwarding
4042 		 * variable.
4043 		 */
4044 		rw_exit(&ipst->ips_ip_g_nd_lock);
4045 		ill->ill_ndd_name = NULL;
4046 		return (ENOMEM);
4047 	}
4048 	rw_exit(&ipst->ips_ip_g_nd_lock);
4049 	return (0);
4050 }
4051 
4052 /*
4053  * Intializes the context structure and returns the first ill in the list
4054  * cuurently start_list and end_list can have values:
4055  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4056  * IP_V4_G_HEAD		Traverse IPV4 list only.
4057  * IP_V6_G_HEAD		Traverse IPV6 list only.
4058  */
4059 
4060 /*
4061  * We don't check for CONDEMNED ills here. Caller must do that if
4062  * necessary under the ill lock.
4063  */
4064 ill_t *
4065 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4066     ip_stack_t *ipst)
4067 {
4068 	ill_if_t *ifp;
4069 	ill_t *ill;
4070 	avl_tree_t *avl_tree;
4071 
4072 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4073 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4074 
4075 	/*
4076 	 * setup the lists to search
4077 	 */
4078 	if (end_list != MAX_G_HEADS) {
4079 		ctx->ctx_current_list = start_list;
4080 		ctx->ctx_last_list = end_list;
4081 	} else {
4082 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4083 		ctx->ctx_current_list = 0;
4084 	}
4085 
4086 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4087 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4088 		if (ifp != (ill_if_t *)
4089 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4090 			avl_tree = &ifp->illif_avl_by_ppa;
4091 			ill = avl_first(avl_tree);
4092 			/*
4093 			 * ill is guaranteed to be non NULL or ifp should have
4094 			 * not existed.
4095 			 */
4096 			ASSERT(ill != NULL);
4097 			return (ill);
4098 		}
4099 		ctx->ctx_current_list++;
4100 	}
4101 
4102 	return (NULL);
4103 }
4104 
4105 /*
4106  * returns the next ill in the list. ill_first() must have been called
4107  * before calling ill_next() or bad things will happen.
4108  */
4109 
4110 /*
4111  * We don't check for CONDEMNED ills here. Caller must do that if
4112  * necessary under the ill lock.
4113  */
4114 ill_t *
4115 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4116 {
4117 	ill_if_t *ifp;
4118 	ill_t *ill;
4119 	ip_stack_t	*ipst = lastill->ill_ipst;
4120 
4121 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4122 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4123 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4124 	    AVL_AFTER)) != NULL) {
4125 		return (ill);
4126 	}
4127 
4128 	/* goto next ill_ifp in the list. */
4129 	ifp = lastill->ill_ifptr->illif_next;
4130 
4131 	/* make sure not at end of circular list */
4132 	while (ifp ==
4133 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4134 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4135 			return (NULL);
4136 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4137 	}
4138 
4139 	return (avl_first(&ifp->illif_avl_by_ppa));
4140 }
4141 
4142 /*
4143  * Check interface name for correct format which is name+ppa.
4144  * name can contain characters and digits, the right most digits
4145  * make up the ppa number. use of octal is not allowed, name must contain
4146  * a ppa, return pointer to the start of ppa.
4147  * In case of error return NULL.
4148  */
4149 static char *
4150 ill_get_ppa_ptr(char *name)
4151 {
4152 	int namelen = mi_strlen(name);
4153 
4154 	int len = namelen;
4155 
4156 	name += len;
4157 	while (len > 0) {
4158 		name--;
4159 		if (*name < '0' || *name > '9')
4160 			break;
4161 		len--;
4162 	}
4163 
4164 	/* empty string, all digits, or no trailing digits */
4165 	if (len == 0 || len == (int)namelen)
4166 		return (NULL);
4167 
4168 	name++;
4169 	/* check for attempted use of octal */
4170 	if (*name == '0' && len != (int)namelen - 1)
4171 		return (NULL);
4172 	return (name);
4173 }
4174 
4175 /*
4176  * use avl tree to locate the ill.
4177  */
4178 static ill_t *
4179 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4180     ipsq_func_t func, int *error, ip_stack_t *ipst)
4181 {
4182 	char *ppa_ptr = NULL;
4183 	int len;
4184 	uint_t ppa;
4185 	ill_t *ill = NULL;
4186 	ill_if_t *ifp;
4187 	int list;
4188 	ipsq_t *ipsq;
4189 
4190 	if (error != NULL)
4191 		*error = 0;
4192 
4193 	/*
4194 	 * get ppa ptr
4195 	 */
4196 	if (isv6)
4197 		list = IP_V6_G_HEAD;
4198 	else
4199 		list = IP_V4_G_HEAD;
4200 
4201 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4202 		if (error != NULL)
4203 			*error = ENXIO;
4204 		return (NULL);
4205 	}
4206 
4207 	len = ppa_ptr - name + 1;
4208 
4209 	ppa = stoi(&ppa_ptr);
4210 
4211 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4212 
4213 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4214 		/*
4215 		 * match is done on len - 1 as the name is not null
4216 		 * terminated it contains ppa in addition to the interface
4217 		 * name.
4218 		 */
4219 		if ((ifp->illif_name_len == len) &&
4220 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4221 			break;
4222 		} else {
4223 			ifp = ifp->illif_next;
4224 		}
4225 	}
4226 
4227 
4228 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4229 		/*
4230 		 * Even the interface type does not exist.
4231 		 */
4232 		if (error != NULL)
4233 			*error = ENXIO;
4234 		return (NULL);
4235 	}
4236 
4237 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4238 	if (ill != NULL) {
4239 		/*
4240 		 * The block comment at the start of ipif_down
4241 		 * explains the use of the macros used below
4242 		 */
4243 		GRAB_CONN_LOCK(q);
4244 		mutex_enter(&ill->ill_lock);
4245 		if (ILL_CAN_LOOKUP(ill)) {
4246 			ill_refhold_locked(ill);
4247 			mutex_exit(&ill->ill_lock);
4248 			RELEASE_CONN_LOCK(q);
4249 			return (ill);
4250 		} else if (ILL_CAN_WAIT(ill, q)) {
4251 			ipsq = ill->ill_phyint->phyint_ipsq;
4252 			mutex_enter(&ipsq->ipsq_lock);
4253 			mutex_exit(&ill->ill_lock);
4254 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4255 			mutex_exit(&ipsq->ipsq_lock);
4256 			RELEASE_CONN_LOCK(q);
4257 			if (error != NULL)
4258 				*error = EINPROGRESS;
4259 			return (NULL);
4260 		}
4261 		mutex_exit(&ill->ill_lock);
4262 		RELEASE_CONN_LOCK(q);
4263 	}
4264 	if (error != NULL)
4265 		*error = ENXIO;
4266 	return (NULL);
4267 }
4268 
4269 /*
4270  * comparison function for use with avl.
4271  */
4272 static int
4273 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4274 {
4275 	uint_t ppa;
4276 	uint_t ill_ppa;
4277 
4278 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4279 
4280 	ppa = *((uint_t *)ppa_ptr);
4281 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4282 	/*
4283 	 * We want the ill with the lowest ppa to be on the
4284 	 * top.
4285 	 */
4286 	if (ill_ppa < ppa)
4287 		return (1);
4288 	if (ill_ppa > ppa)
4289 		return (-1);
4290 	return (0);
4291 }
4292 
4293 /*
4294  * remove an interface type from the global list.
4295  */
4296 static void
4297 ill_delete_interface_type(ill_if_t *interface)
4298 {
4299 	ASSERT(interface != NULL);
4300 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4301 
4302 	avl_destroy(&interface->illif_avl_by_ppa);
4303 	if (interface->illif_ppa_arena != NULL)
4304 		vmem_destroy(interface->illif_ppa_arena);
4305 
4306 	remque(interface);
4307 
4308 	mi_free(interface);
4309 }
4310 
4311 /* Defined in ip_netinfo.c */
4312 extern ddi_taskq_t	*eventq_queue_nic;
4313 
4314 /*
4315  * remove ill from the global list.
4316  */
4317 static void
4318 ill_glist_delete(ill_t *ill)
4319 {
4320 	char *nicname;
4321 	size_t nicnamelen;
4322 	hook_nic_event_t *info;
4323 	ip_stack_t	*ipst;
4324 
4325 	if (ill == NULL)
4326 		return;
4327 	ipst = ill->ill_ipst;
4328 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4329 
4330 	if (ill->ill_name != NULL) {
4331 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4332 		if (nicname != NULL) {
4333 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4334 			nicnamelen = ill->ill_name_length;
4335 		}
4336 	} else {
4337 		nicname = NULL;
4338 		nicnamelen = 0;
4339 	}
4340 
4341 	/*
4342 	 * If the ill was never inserted into the AVL tree
4343 	 * we skip the if branch.
4344 	 */
4345 	if (ill->ill_ifptr != NULL) {
4346 		/*
4347 		 * remove from AVL tree and free ppa number
4348 		 */
4349 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4350 
4351 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4352 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4353 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4354 		}
4355 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4356 			ill_delete_interface_type(ill->ill_ifptr);
4357 		}
4358 
4359 		/*
4360 		 * Indicate ill is no longer in the list.
4361 		 */
4362 		ill->ill_ifptr = NULL;
4363 		ill->ill_name_length = 0;
4364 		ill->ill_name[0] = '\0';
4365 		ill->ill_ppa = UINT_MAX;
4366 	}
4367 
4368 	/*
4369 	 * Run the unplumb hook after the NIC has disappeared from being
4370 	 * visible so that attempts to revalidate its existance will fail.
4371 	 *
4372 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4373 	 * that the ordering of delivered events to listeners matches the
4374 	 * order of them in the kernel.
4375 	 */
4376 	if ((info = ill->ill_nic_event_info) != NULL) {
4377 		if (info->hne_event != NE_DOWN) {
4378 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4379 			    "attached for %s\n", info->hne_event,
4380 			    ill->ill_name));
4381 			if (info->hne_data != NULL)
4382 				kmem_free(info->hne_data, info->hne_datalen);
4383 			kmem_free(info, sizeof (hook_nic_event_t));
4384 		} else {
4385 			if (ddi_taskq_dispatch(eventq_queue_nic,
4386 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4387 			    == DDI_FAILURE) {
4388 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4389 				    "failed\n"));
4390 				if (info->hne_data != NULL)
4391 					kmem_free(info->hne_data,
4392 					    info->hne_datalen);
4393 				kmem_free(info, sizeof (hook_nic_event_t));
4394 			}
4395 		}
4396 	}
4397 
4398 	/* Generate NE_UNPLUMB event for ill_name. */
4399 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4400 	if (info != NULL) {
4401 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4402 		info->hne_lif = 0;
4403 		info->hne_event = NE_UNPLUMB;
4404 		info->hne_data = nicname;
4405 		info->hne_datalen = nicnamelen;
4406 		info->hne_family = ill->ill_isv6 ?
4407 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4408 	} else {
4409 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4410 		    "information for %s (ENOMEM)\n", ill->ill_name));
4411 		if (nicname != NULL)
4412 			kmem_free(nicname, nicnamelen);
4413 	}
4414 
4415 	ill->ill_nic_event_info = info;
4416 
4417 	ill_phyint_free(ill);
4418 	rw_exit(&ipst->ips_ill_g_lock);
4419 }
4420 
4421 /*
4422  * allocate a ppa, if the number of plumbed interfaces of this type are
4423  * less than ill_no_arena do a linear search to find a unused ppa.
4424  * When the number goes beyond ill_no_arena switch to using an arena.
4425  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4426  * is the return value for an error condition, so allocation starts at one
4427  * and is decremented by one.
4428  */
4429 static int
4430 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4431 {
4432 	ill_t *tmp_ill;
4433 	uint_t start, end;
4434 	int ppa;
4435 
4436 	if (ifp->illif_ppa_arena == NULL &&
4437 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4438 		/*
4439 		 * Create an arena.
4440 		 */
4441 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4442 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4443 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4444 			/* allocate what has already been assigned */
4445 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4446 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4447 		    tmp_ill, AVL_AFTER)) {
4448 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4449 			    1,		/* size */
4450 			    1,		/* align/quantum */
4451 			    0,		/* phase */
4452 			    0,		/* nocross */
4453 			    /* minaddr */
4454 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4455 			    /* maxaddr */
4456 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4457 			    VM_NOSLEEP|VM_FIRSTFIT);
4458 			if (ppa == 0) {
4459 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4460 				    " failed while switching"));
4461 				vmem_destroy(ifp->illif_ppa_arena);
4462 				ifp->illif_ppa_arena = NULL;
4463 				break;
4464 			}
4465 		}
4466 	}
4467 
4468 	if (ifp->illif_ppa_arena != NULL) {
4469 		if (ill->ill_ppa == UINT_MAX) {
4470 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4471 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4472 			if (ppa == 0)
4473 				return (EAGAIN);
4474 			ill->ill_ppa = --ppa;
4475 		} else {
4476 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4477 			    1, 		/* size */
4478 			    1, 		/* align/quantum */
4479 			    0, 		/* phase */
4480 			    0, 		/* nocross */
4481 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4482 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4483 			    VM_NOSLEEP|VM_FIRSTFIT);
4484 			/*
4485 			 * Most likely the allocation failed because
4486 			 * the requested ppa was in use.
4487 			 */
4488 			if (ppa == 0)
4489 				return (EEXIST);
4490 		}
4491 		return (0);
4492 	}
4493 
4494 	/*
4495 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4496 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4497 	 */
4498 	if (ill->ill_ppa == UINT_MAX) {
4499 		end = UINT_MAX - 1;
4500 		start = 0;
4501 	} else {
4502 		end = start = ill->ill_ppa;
4503 	}
4504 
4505 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4506 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4507 		if (start++ >= end) {
4508 			if (ill->ill_ppa == UINT_MAX)
4509 				return (EAGAIN);
4510 			else
4511 				return (EEXIST);
4512 		}
4513 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4514 	}
4515 	ill->ill_ppa = start;
4516 	return (0);
4517 }
4518 
4519 /*
4520  * Insert ill into the list of configured ill's. Once this function completes,
4521  * the ill is globally visible and is available through lookups. More precisely
4522  * this happens after the caller drops the ill_g_lock.
4523  */
4524 static int
4525 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4526 {
4527 	ill_if_t *ill_interface;
4528 	avl_index_t where = 0;
4529 	int error;
4530 	int name_length;
4531 	int index;
4532 	boolean_t check_length = B_FALSE;
4533 	ip_stack_t	*ipst = ill->ill_ipst;
4534 
4535 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4536 
4537 	name_length = mi_strlen(name) + 1;
4538 
4539 	if (isv6)
4540 		index = IP_V6_G_HEAD;
4541 	else
4542 		index = IP_V4_G_HEAD;
4543 
4544 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4545 	/*
4546 	 * Search for interface type based on name
4547 	 */
4548 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4549 		if ((ill_interface->illif_name_len == name_length) &&
4550 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4551 			break;
4552 		}
4553 		ill_interface = ill_interface->illif_next;
4554 	}
4555 
4556 	/*
4557 	 * Interface type not found, create one.
4558 	 */
4559 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4560 
4561 		ill_g_head_t ghead;
4562 
4563 		/*
4564 		 * allocate ill_if_t structure
4565 		 */
4566 
4567 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4568 		if (ill_interface == NULL) {
4569 			return (ENOMEM);
4570 		}
4571 
4572 
4573 
4574 		(void) strcpy(ill_interface->illif_name, name);
4575 		ill_interface->illif_name_len = name_length;
4576 
4577 		avl_create(&ill_interface->illif_avl_by_ppa,
4578 		    ill_compare_ppa, sizeof (ill_t),
4579 		    offsetof(struct ill_s, ill_avl_byppa));
4580 
4581 		/*
4582 		 * link the structure in the back to maintain order
4583 		 * of configuration for ifconfig output.
4584 		 */
4585 		ghead = ipst->ips_ill_g_heads[index];
4586 		insque(ill_interface, ghead.ill_g_list_tail);
4587 
4588 	}
4589 
4590 	if (ill->ill_ppa == UINT_MAX)
4591 		check_length = B_TRUE;
4592 
4593 	error = ill_alloc_ppa(ill_interface, ill);
4594 	if (error != 0) {
4595 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4596 			ill_delete_interface_type(ill->ill_ifptr);
4597 		return (error);
4598 	}
4599 
4600 	/*
4601 	 * When the ppa is choosen by the system, check that there is
4602 	 * enough space to insert ppa. if a specific ppa was passed in this
4603 	 * check is not required as the interface name passed in will have
4604 	 * the right ppa in it.
4605 	 */
4606 	if (check_length) {
4607 		/*
4608 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4609 		 */
4610 		char buf[sizeof (uint_t) * 3];
4611 
4612 		/*
4613 		 * convert ppa to string to calculate the amount of space
4614 		 * required for it in the name.
4615 		 */
4616 		numtos(ill->ill_ppa, buf);
4617 
4618 		/* Do we have enough space to insert ppa ? */
4619 
4620 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4621 			/* Free ppa and interface type struct */
4622 			if (ill_interface->illif_ppa_arena != NULL) {
4623 				vmem_free(ill_interface->illif_ppa_arena,
4624 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4625 			}
4626 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4627 			    0) {
4628 				ill_delete_interface_type(ill->ill_ifptr);
4629 			}
4630 
4631 			return (EINVAL);
4632 		}
4633 	}
4634 
4635 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4636 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4637 
4638 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4639 	    &where);
4640 	ill->ill_ifptr = ill_interface;
4641 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4642 
4643 	ill_phyint_reinit(ill);
4644 	return (0);
4645 }
4646 
4647 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4648 static boolean_t
4649 ipsq_init(ill_t *ill)
4650 {
4651 	ipsq_t  *ipsq;
4652 
4653 	/* Init the ipsq and impicitly enter as writer */
4654 	ill->ill_phyint->phyint_ipsq =
4655 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4656 	if (ill->ill_phyint->phyint_ipsq == NULL)
4657 		return (B_FALSE);
4658 	ipsq = ill->ill_phyint->phyint_ipsq;
4659 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4660 	ill->ill_phyint->phyint_ipsq_next = NULL;
4661 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4662 	ipsq->ipsq_refs = 1;
4663 	ipsq->ipsq_writer = curthread;
4664 	ipsq->ipsq_reentry_cnt = 1;
4665 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4666 #ifdef DEBUG
4667 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack,
4668 	    IPSQ_STACK_DEPTH);
4669 #endif
4670 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4671 	return (B_TRUE);
4672 }
4673 
4674 /*
4675  * ill_init is called by ip_open when a device control stream is opened.
4676  * It does a few initializations, and shoots a DL_INFO_REQ message down
4677  * to the driver.  The response is later picked up in ip_rput_dlpi and
4678  * used to set up default mechanisms for talking to the driver.  (Always
4679  * called as writer.)
4680  *
4681  * If this function returns error, ip_open will call ip_close which in
4682  * turn will call ill_delete to clean up any memory allocated here that
4683  * is not yet freed.
4684  */
4685 int
4686 ill_init(queue_t *q, ill_t *ill)
4687 {
4688 	int	count;
4689 	dl_info_req_t	*dlir;
4690 	mblk_t	*info_mp;
4691 	uchar_t *frag_ptr;
4692 
4693 	/*
4694 	 * The ill is initialized to zero by mi_alloc*(). In addition
4695 	 * some fields already contain valid values, initialized in
4696 	 * ip_open(), before we reach here.
4697 	 */
4698 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4699 
4700 	ill->ill_rq = q;
4701 	ill->ill_wq = WR(q);
4702 
4703 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4704 	    BPRI_HI);
4705 	if (info_mp == NULL)
4706 		return (ENOMEM);
4707 
4708 	/*
4709 	 * Allocate sufficient space to contain our fragment hash table and
4710 	 * the device name.
4711 	 */
4712 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4713 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4714 	if (frag_ptr == NULL) {
4715 		freemsg(info_mp);
4716 		return (ENOMEM);
4717 	}
4718 	ill->ill_frag_ptr = frag_ptr;
4719 	ill->ill_frag_free_num_pkts = 0;
4720 	ill->ill_last_frag_clean_time = 0;
4721 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4722 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4723 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4724 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4725 		    NULL, MUTEX_DEFAULT, NULL);
4726 	}
4727 
4728 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4729 	if (ill->ill_phyint == NULL) {
4730 		freemsg(info_mp);
4731 		mi_free(frag_ptr);
4732 		return (ENOMEM);
4733 	}
4734 
4735 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4736 	/*
4737 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4738 	 * at this point because of the following reason. If we can't
4739 	 * enter the ipsq at some point and cv_wait, the writer that
4740 	 * wakes us up tries to locate us using the list of all phyints
4741 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4742 	 * If we don't set it now, we risk a missed wakeup.
4743 	 */
4744 	ill->ill_phyint->phyint_illv4 = ill;
4745 	ill->ill_ppa = UINT_MAX;
4746 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4747 
4748 	if (!ipsq_init(ill)) {
4749 		freemsg(info_mp);
4750 		mi_free(frag_ptr);
4751 		mi_free(ill->ill_phyint);
4752 		return (ENOMEM);
4753 	}
4754 
4755 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4756 
4757 
4758 	/* Frag queue limit stuff */
4759 	ill->ill_frag_count = 0;
4760 	ill->ill_ipf_gen = 0;
4761 
4762 	ill->ill_global_timer = INFINITY;
4763 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4764 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4765 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4766 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4767 
4768 	/*
4769 	 * Initialize IPv6 configuration variables.  The IP module is always
4770 	 * opened as an IPv4 module.  Instead tracking down the cases where
4771 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4772 	 * here for convenience, this has no effect until the ill is set to do
4773 	 * IPv6.
4774 	 */
4775 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4776 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4777 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4778 	ill->ill_max_buf = ND_MAX_Q;
4779 	ill->ill_refcnt = 0;
4780 
4781 	/* Send down the Info Request to the driver. */
4782 	info_mp->b_datap->db_type = M_PCPROTO;
4783 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4784 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4785 	dlir->dl_primitive = DL_INFO_REQ;
4786 
4787 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4788 
4789 	qprocson(q);
4790 	ill_dlpi_send(ill, info_mp);
4791 
4792 	return (0);
4793 }
4794 
4795 /*
4796  * ill_dls_info
4797  * creates datalink socket info from the device.
4798  */
4799 int
4800 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4801 {
4802 	size_t	len;
4803 	ill_t	*ill = ipif->ipif_ill;
4804 
4805 	sdl->sdl_family = AF_LINK;
4806 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4807 	sdl->sdl_type = ill->ill_type;
4808 	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4809 	len = strlen(sdl->sdl_data);
4810 	ASSERT(len < 256);
4811 	sdl->sdl_nlen = (uchar_t)len;
4812 	sdl->sdl_alen = ill->ill_phys_addr_length;
4813 	sdl->sdl_slen = 0;
4814 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4815 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4816 
4817 	return (sizeof (struct sockaddr_dl));
4818 }
4819 
4820 /*
4821  * ill_xarp_info
4822  * creates xarp info from the device.
4823  */
4824 static int
4825 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4826 {
4827 	sdl->sdl_family = AF_LINK;
4828 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4829 	sdl->sdl_type = ill->ill_type;
4830 	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4831 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4832 	sdl->sdl_alen = ill->ill_phys_addr_length;
4833 	sdl->sdl_slen = 0;
4834 	return (sdl->sdl_nlen);
4835 }
4836 
4837 static int
4838 loopback_kstat_update(kstat_t *ksp, int rw)
4839 {
4840 	kstat_named_t *kn;
4841 	netstackid_t	stackid;
4842 	netstack_t	*ns;
4843 	ip_stack_t	*ipst;
4844 
4845 	if (ksp == NULL || ksp->ks_data == NULL)
4846 		return (EIO);
4847 
4848 	if (rw == KSTAT_WRITE)
4849 		return (EACCES);
4850 
4851 	kn = KSTAT_NAMED_PTR(ksp);
4852 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4853 
4854 	ns = netstack_find_by_stackid(stackid);
4855 	if (ns == NULL)
4856 		return (-1);
4857 
4858 	ipst = ns->netstack_ip;
4859 	if (ipst == NULL) {
4860 		netstack_rele(ns);
4861 		return (-1);
4862 	}
4863 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4864 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4865 	netstack_rele(ns);
4866 	return (0);
4867 }
4868 
4869 
4870 /*
4871  * Has ifindex been plumbed already.
4872  * Compares both phyint_ifindex and phyint_group_ifindex.
4873  */
4874 static boolean_t
4875 phyint_exists(uint_t index, ip_stack_t *ipst)
4876 {
4877 	phyint_t *phyi;
4878 
4879 	ASSERT(index != 0);
4880 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4881 	/*
4882 	 * Indexes are stored in the phyint - a common structure
4883 	 * to both IPv4 and IPv6.
4884 	 */
4885 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4886 	for (; phyi != NULL;
4887 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4888 	    phyi, AVL_AFTER)) {
4889 		if (phyi->phyint_ifindex == index ||
4890 		    phyi->phyint_group_ifindex == index)
4891 			return (B_TRUE);
4892 	}
4893 	return (B_FALSE);
4894 }
4895 
4896 /* Pick a unique ifindex */
4897 boolean_t
4898 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4899 {
4900 	uint_t starting_index;
4901 
4902 	if (!ipst->ips_ill_index_wrap) {
4903 		*indexp = ipst->ips_ill_index++;
4904 		if (ipst->ips_ill_index == 0) {
4905 			/* Reached the uint_t limit Next time wrap  */
4906 			ipst->ips_ill_index_wrap = B_TRUE;
4907 		}
4908 		return (B_TRUE);
4909 	}
4910 
4911 	/*
4912 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4913 	 * at this point and don't want to call any function that attempts
4914 	 * to get the lock again.
4915 	 */
4916 	starting_index = ipst->ips_ill_index++;
4917 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4918 		if (ipst->ips_ill_index != 0 &&
4919 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4920 			/* found unused index - use it */
4921 			*indexp = ipst->ips_ill_index;
4922 			return (B_TRUE);
4923 		}
4924 	}
4925 
4926 	/*
4927 	 * all interface indicies are inuse.
4928 	 */
4929 	return (B_FALSE);
4930 }
4931 
4932 /*
4933  * Assign a unique interface index for the phyint.
4934  */
4935 static boolean_t
4936 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4937 {
4938 	ASSERT(phyi->phyint_ifindex == 0);
4939 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4940 }
4941 
4942 /*
4943  * Return a pointer to the ill which matches the supplied name.  Note that
4944  * the ill name length includes the null termination character.  (May be
4945  * called as writer.)
4946  * If do_alloc and the interface is "lo0" it will be automatically created.
4947  * Cannot bump up reference on condemned ills. So dup detect can't be done
4948  * using this func.
4949  */
4950 ill_t *
4951 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4952     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4953     ip_stack_t *ipst)
4954 {
4955 	ill_t	*ill;
4956 	ipif_t	*ipif;
4957 	kstat_named_t	*kn;
4958 	boolean_t isloopback;
4959 	ipsq_t *old_ipsq;
4960 	in6_addr_t ov6addr;
4961 
4962 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4963 
4964 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4965 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4966 	rw_exit(&ipst->ips_ill_g_lock);
4967 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4968 		return (ill);
4969 
4970 	/*
4971 	 * Couldn't find it.  Does this happen to be a lookup for the
4972 	 * loopback device and are we allowed to allocate it?
4973 	 */
4974 	if (!isloopback || !do_alloc)
4975 		return (NULL);
4976 
4977 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4978 
4979 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4980 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4981 		rw_exit(&ipst->ips_ill_g_lock);
4982 		return (ill);
4983 	}
4984 
4985 	/* Create the loopback device on demand */
4986 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4987 	    sizeof (ipif_loopback_name), BPRI_MED));
4988 	if (ill == NULL)
4989 		goto done;
4990 
4991 	*ill = ill_null;
4992 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4993 	ill->ill_ipst = ipst;
4994 	netstack_hold(ipst->ips_netstack);
4995 	/*
4996 	 * For exclusive stacks we set the zoneid to zero
4997 	 * to make IP operate as if in the global zone.
4998 	 */
4999 	ill->ill_zoneid = GLOBAL_ZONEID;
5000 
5001 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5002 	if (ill->ill_phyint == NULL)
5003 		goto done;
5004 
5005 	if (isv6)
5006 		ill->ill_phyint->phyint_illv6 = ill;
5007 	else
5008 		ill->ill_phyint->phyint_illv4 = ill;
5009 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5010 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5011 	/* Add room for tcp+ip headers */
5012 	if (isv6) {
5013 		ill->ill_isv6 = B_TRUE;
5014 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5015 	} else {
5016 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5017 	}
5018 	if (!ill_allocate_mibs(ill))
5019 		goto done;
5020 	ill->ill_max_mtu = ill->ill_max_frag;
5021 	/*
5022 	 * ipif_loopback_name can't be pointed at directly because its used
5023 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5024 	 * from the glist, ill_glist_delete() sets the first character of
5025 	 * ill_name to '\0'.
5026 	 */
5027 	ill->ill_name = (char *)ill + sizeof (*ill);
5028 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5029 	ill->ill_name_length = sizeof (ipif_loopback_name);
5030 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5031 
5032 	ill->ill_global_timer = INFINITY;
5033 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5034 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5035 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5036 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5037 
5038 	/* No resolver here. */
5039 	ill->ill_net_type = IRE_LOOPBACK;
5040 
5041 	/* Initialize the ipsq */
5042 	if (!ipsq_init(ill))
5043 		goto done;
5044 
5045 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5046 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5047 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5048 #ifdef DEBUG
5049 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5050 #endif
5051 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5052 	if (ipif == NULL)
5053 		goto done;
5054 
5055 	ill->ill_flags = ILLF_MULTICAST;
5056 
5057 	ov6addr = ipif->ipif_v6lcl_addr;
5058 	/* Set up default loopback address and mask. */
5059 	if (!isv6) {
5060 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5061 
5062 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5063 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5064 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5065 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5066 		    ipif->ipif_v6subnet);
5067 		ill->ill_flags |= ILLF_IPV4;
5068 	} else {
5069 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5070 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5071 		ipif->ipif_v6net_mask = ipv6_all_ones;
5072 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5073 		    ipif->ipif_v6subnet);
5074 		ill->ill_flags |= ILLF_IPV6;
5075 	}
5076 
5077 	/*
5078 	 * Chain us in at the end of the ill list. hold the ill
5079 	 * before we make it globally visible. 1 for the lookup.
5080 	 */
5081 	ill->ill_refcnt = 0;
5082 	ill_refhold(ill);
5083 
5084 	ill->ill_frag_count = 0;
5085 	ill->ill_frag_free_num_pkts = 0;
5086 	ill->ill_last_frag_clean_time = 0;
5087 
5088 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5089 
5090 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5091 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5092 
5093 	/* Let SCTP know so that it can add this to its list */
5094 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5095 
5096 	/*
5097 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5098 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5099 	 * requires to be after ill_glist_insert() since we need the
5100 	 * ill_index set. Pass on ipv6_loopback as the old address.
5101 	 */
5102 	sctp_update_ipif_addr(ipif, ov6addr);
5103 
5104 	/*
5105 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5106 	 */
5107 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5108 		/* Loopback ills aren't in any IPMP group */
5109 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5110 		ipsq_delete(old_ipsq);
5111 	}
5112 
5113 	/*
5114 	 * Delay this till the ipif is allocated as ipif_allocate
5115 	 * de-references ill_phyint for getting the ifindex. We
5116 	 * can't do this before ipif_allocate because ill_phyint_reinit
5117 	 * -> phyint_assign_ifindex expects ipif to be present.
5118 	 */
5119 	mutex_enter(&ill->ill_phyint->phyint_lock);
5120 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5121 	mutex_exit(&ill->ill_phyint->phyint_lock);
5122 
5123 	if (ipst->ips_loopback_ksp == NULL) {
5124 		/* Export loopback interface statistics */
5125 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5126 		    ipif_loopback_name, "net",
5127 		    KSTAT_TYPE_NAMED, 2, 0,
5128 		    ipst->ips_netstack->netstack_stackid);
5129 		if (ipst->ips_loopback_ksp != NULL) {
5130 			ipst->ips_loopback_ksp->ks_update =
5131 			    loopback_kstat_update;
5132 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5133 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5134 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5135 			ipst->ips_loopback_ksp->ks_private =
5136 			    (void *)(uintptr_t)ipst->ips_netstack->
5137 			    netstack_stackid;
5138 			kstat_install(ipst->ips_loopback_ksp);
5139 		}
5140 	}
5141 
5142 	if (error != NULL)
5143 		*error = 0;
5144 	*did_alloc = B_TRUE;
5145 	rw_exit(&ipst->ips_ill_g_lock);
5146 	return (ill);
5147 done:
5148 	if (ill != NULL) {
5149 		if (ill->ill_phyint != NULL) {
5150 			ipsq_t	*ipsq;
5151 
5152 			ipsq = ill->ill_phyint->phyint_ipsq;
5153 			if (ipsq != NULL) {
5154 				ipsq->ipsq_ipst = NULL;
5155 				kmem_free(ipsq, sizeof (ipsq_t));
5156 			}
5157 			mi_free(ill->ill_phyint);
5158 		}
5159 		ill_free_mib(ill);
5160 		if (ill->ill_ipst != NULL)
5161 			netstack_rele(ill->ill_ipst->ips_netstack);
5162 		mi_free(ill);
5163 	}
5164 	rw_exit(&ipst->ips_ill_g_lock);
5165 	if (error != NULL)
5166 		*error = ENOMEM;
5167 	return (NULL);
5168 }
5169 
5170 /*
5171  * For IPP calls - use the ip_stack_t for global stack.
5172  */
5173 ill_t *
5174 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5175     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5176 {
5177 	ip_stack_t	*ipst;
5178 	ill_t		*ill;
5179 
5180 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5181 	if (ipst == NULL) {
5182 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5183 		return (NULL);
5184 	}
5185 
5186 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5187 	netstack_rele(ipst->ips_netstack);
5188 	return (ill);
5189 }
5190 
5191 /*
5192  * Return a pointer to the ill which matches the index and IP version type.
5193  */
5194 ill_t *
5195 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5196     ipsq_func_t func, int *err, ip_stack_t *ipst)
5197 {
5198 	ill_t	*ill;
5199 	ipsq_t  *ipsq;
5200 	phyint_t *phyi;
5201 
5202 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5203 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5204 
5205 	if (err != NULL)
5206 		*err = 0;
5207 
5208 	/*
5209 	 * Indexes are stored in the phyint - a common structure
5210 	 * to both IPv4 and IPv6.
5211 	 */
5212 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5213 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5214 	    (void *) &index, NULL);
5215 	if (phyi != NULL) {
5216 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5217 		if (ill != NULL) {
5218 			/*
5219 			 * The block comment at the start of ipif_down
5220 			 * explains the use of the macros used below
5221 			 */
5222 			GRAB_CONN_LOCK(q);
5223 			mutex_enter(&ill->ill_lock);
5224 			if (ILL_CAN_LOOKUP(ill)) {
5225 				ill_refhold_locked(ill);
5226 				mutex_exit(&ill->ill_lock);
5227 				RELEASE_CONN_LOCK(q);
5228 				rw_exit(&ipst->ips_ill_g_lock);
5229 				return (ill);
5230 			} else if (ILL_CAN_WAIT(ill, q)) {
5231 				ipsq = ill->ill_phyint->phyint_ipsq;
5232 				mutex_enter(&ipsq->ipsq_lock);
5233 				rw_exit(&ipst->ips_ill_g_lock);
5234 				mutex_exit(&ill->ill_lock);
5235 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5236 				mutex_exit(&ipsq->ipsq_lock);
5237 				RELEASE_CONN_LOCK(q);
5238 				if (err != NULL)
5239 					*err = EINPROGRESS;
5240 				return (NULL);
5241 			}
5242 			RELEASE_CONN_LOCK(q);
5243 			mutex_exit(&ill->ill_lock);
5244 		}
5245 	}
5246 	rw_exit(&ipst->ips_ill_g_lock);
5247 	if (err != NULL)
5248 		*err = ENXIO;
5249 	return (NULL);
5250 }
5251 
5252 /*
5253  * Return the ifindex next in sequence after the passed in ifindex.
5254  * If there is no next ifindex for the given protocol, return 0.
5255  */
5256 uint_t
5257 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5258 {
5259 	phyint_t *phyi;
5260 	phyint_t *phyi_initial;
5261 	uint_t   ifindex;
5262 
5263 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5264 
5265 	if (index == 0) {
5266 		phyi = avl_first(
5267 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5268 	} else {
5269 		phyi = phyi_initial = avl_find(
5270 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5271 		    (void *) &index, NULL);
5272 	}
5273 
5274 	for (; phyi != NULL;
5275 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5276 	    phyi, AVL_AFTER)) {
5277 		/*
5278 		 * If we're not returning the first interface in the tree
5279 		 * and we still haven't moved past the phyint_t that
5280 		 * corresponds to index, avl_walk needs to be called again
5281 		 */
5282 		if (!((index != 0) && (phyi == phyi_initial))) {
5283 			if (isv6) {
5284 				if ((phyi->phyint_illv6) &&
5285 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5286 				    (phyi->phyint_illv6->ill_isv6 == 1))
5287 					break;
5288 			} else {
5289 				if ((phyi->phyint_illv4) &&
5290 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5291 				    (phyi->phyint_illv4->ill_isv6 == 0))
5292 					break;
5293 			}
5294 		}
5295 	}
5296 
5297 	rw_exit(&ipst->ips_ill_g_lock);
5298 
5299 	if (phyi != NULL)
5300 		ifindex = phyi->phyint_ifindex;
5301 	else
5302 		ifindex = 0;
5303 
5304 	return (ifindex);
5305 }
5306 
5307 
5308 /*
5309  * Return the ifindex for the named interface.
5310  * If there is no next ifindex for the interface, return 0.
5311  */
5312 uint_t
5313 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5314 {
5315 	phyint_t	*phyi;
5316 	avl_index_t	where = 0;
5317 	uint_t		ifindex;
5318 
5319 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5320 
5321 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5322 	    name, &where)) == NULL) {
5323 		rw_exit(&ipst->ips_ill_g_lock);
5324 		return (0);
5325 	}
5326 
5327 	ifindex = phyi->phyint_ifindex;
5328 
5329 	rw_exit(&ipst->ips_ill_g_lock);
5330 
5331 	return (ifindex);
5332 }
5333 
5334 
5335 /*
5336  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5337  * that gives a running thread a reference to the ill. This reference must be
5338  * released by the thread when it is done accessing the ill and related
5339  * objects. ill_refcnt can not be used to account for static references
5340  * such as other structures pointing to an ill. Callers must generally
5341  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5342  * or be sure that the ill is not being deleted or changing state before
5343  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5344  * ill won't change any of its critical state such as address, netmask etc.
5345  */
5346 void
5347 ill_refhold(ill_t *ill)
5348 {
5349 	mutex_enter(&ill->ill_lock);
5350 	ill->ill_refcnt++;
5351 	ILL_TRACE_REF(ill);
5352 	mutex_exit(&ill->ill_lock);
5353 }
5354 
5355 void
5356 ill_refhold_locked(ill_t *ill)
5357 {
5358 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5359 	ill->ill_refcnt++;
5360 	ILL_TRACE_REF(ill);
5361 }
5362 
5363 int
5364 ill_check_and_refhold(ill_t *ill)
5365 {
5366 	mutex_enter(&ill->ill_lock);
5367 	if (ILL_CAN_LOOKUP(ill)) {
5368 		ill_refhold_locked(ill);
5369 		mutex_exit(&ill->ill_lock);
5370 		return (0);
5371 	}
5372 	mutex_exit(&ill->ill_lock);
5373 	return (ILL_LOOKUP_FAILED);
5374 }
5375 
5376 /*
5377  * Must not be called while holding any locks. Otherwise if this is
5378  * the last reference to be released, there is a chance of recursive mutex
5379  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5380  * to restart an ioctl.
5381  */
5382 void
5383 ill_refrele(ill_t *ill)
5384 {
5385 	mutex_enter(&ill->ill_lock);
5386 	ASSERT(ill->ill_refcnt != 0);
5387 	ill->ill_refcnt--;
5388 	ILL_UNTRACE_REF(ill);
5389 	if (ill->ill_refcnt != 0) {
5390 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5391 		mutex_exit(&ill->ill_lock);
5392 		return;
5393 	}
5394 
5395 	/* Drops the ill_lock */
5396 	ipif_ill_refrele_tail(ill);
5397 }
5398 
5399 /*
5400  * Obtain a weak reference count on the ill. This reference ensures the
5401  * ill won't be freed, but the ill may change any of its critical state
5402  * such as netmask, address etc. Returns an error if the ill has started
5403  * closing.
5404  */
5405 boolean_t
5406 ill_waiter_inc(ill_t *ill)
5407 {
5408 	mutex_enter(&ill->ill_lock);
5409 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5410 		mutex_exit(&ill->ill_lock);
5411 		return (B_FALSE);
5412 	}
5413 	ill->ill_waiters++;
5414 	mutex_exit(&ill->ill_lock);
5415 	return (B_TRUE);
5416 }
5417 
5418 void
5419 ill_waiter_dcr(ill_t *ill)
5420 {
5421 	mutex_enter(&ill->ill_lock);
5422 	ill->ill_waiters--;
5423 	if (ill->ill_waiters == 0)
5424 		cv_broadcast(&ill->ill_cv);
5425 	mutex_exit(&ill->ill_lock);
5426 }
5427 
5428 /*
5429  * Named Dispatch routine to produce a formatted report on all ILLs.
5430  * This report is accessed by using the ndd utility to "get" ND variable
5431  * "ip_ill_status".
5432  */
5433 /* ARGSUSED */
5434 int
5435 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5436 {
5437 	ill_t		*ill;
5438 	ill_walk_context_t ctx;
5439 	ip_stack_t	*ipst;
5440 
5441 	ipst = CONNQ_TO_IPST(q);
5442 
5443 	(void) mi_mpprintf(mp,
5444 	    "ILL      " MI_COL_HDRPAD_STR
5445 	/*   01234567[89ABCDEF] */
5446 	    "rq       " MI_COL_HDRPAD_STR
5447 	/*   01234567[89ABCDEF] */
5448 	    "wq       " MI_COL_HDRPAD_STR
5449 	/*   01234567[89ABCDEF] */
5450 	    "upcnt mxfrg err name");
5451 	/*   12345 12345 123 xxxxxxxx  */
5452 
5453 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5454 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5455 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5456 		(void) mi_mpprintf(mp,
5457 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5458 		    "%05u %05u %03d %s",
5459 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5460 		    ill->ill_ipif_up_count,
5461 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5462 	}
5463 	rw_exit(&ipst->ips_ill_g_lock);
5464 
5465 	return (0);
5466 }
5467 
5468 /*
5469  * Named Dispatch routine to produce a formatted report on all IPIFs.
5470  * This report is accessed by using the ndd utility to "get" ND variable
5471  * "ip_ipif_status".
5472  */
5473 /* ARGSUSED */
5474 int
5475 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5476 {
5477 	char	buf1[INET6_ADDRSTRLEN];
5478 	char	buf2[INET6_ADDRSTRLEN];
5479 	char	buf3[INET6_ADDRSTRLEN];
5480 	char	buf4[INET6_ADDRSTRLEN];
5481 	char	buf5[INET6_ADDRSTRLEN];
5482 	char	buf6[INET6_ADDRSTRLEN];
5483 	char	buf[LIFNAMSIZ];
5484 	ill_t	*ill;
5485 	ipif_t	*ipif;
5486 	nv_t	*nvp;
5487 	uint64_t flags;
5488 	zoneid_t zoneid;
5489 	ill_walk_context_t ctx;
5490 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5491 
5492 	(void) mi_mpprintf(mp,
5493 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5494 	    "\tlocal address\n"
5495 	    "\tsrc address\n"
5496 	    "\tsubnet\n"
5497 	    "\tmask\n"
5498 	    "\tbroadcast\n"
5499 	    "\tp-p-dst");
5500 
5501 	ASSERT(q->q_next == NULL);
5502 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5503 
5504 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5505 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5506 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5507 		for (ipif = ill->ill_ipif; ipif != NULL;
5508 		    ipif = ipif->ipif_next) {
5509 			if (zoneid != GLOBAL_ZONEID &&
5510 			    zoneid != ipif->ipif_zoneid &&
5511 			    ipif->ipif_zoneid != ALL_ZONES)
5512 				continue;
5513 
5514 			ipif_get_name(ipif, buf, sizeof (buf));
5515 			(void) mi_mpprintf(mp,
5516 			    MI_COL_PTRFMT_STR
5517 			    "%04u %05u %u/%u/%u %s %d",
5518 			    (void *)ipif,
5519 			    ipif->ipif_metric, ipif->ipif_mtu,
5520 			    ipif->ipif_ib_pkt_count,
5521 			    ipif->ipif_ob_pkt_count,
5522 			    ipif->ipif_fo_pkt_count,
5523 			    buf,
5524 			    ipif->ipif_zoneid);
5525 
5526 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5527 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5528 
5529 		/* Tack on text strings for any flags. */
5530 		nvp = ipif_nv_tbl;
5531 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5532 			if (nvp->nv_value & flags)
5533 				(void) mi_mpprintf_nr(mp, " %s",
5534 				    nvp->nv_name);
5535 		}
5536 		(void) mi_mpprintf(mp,
5537 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5538 		    inet_ntop(AF_INET6,
5539 		    &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5540 		    inet_ntop(AF_INET6,
5541 		    &ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5542 		    inet_ntop(AF_INET6,
5543 		    &ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5544 		    inet_ntop(AF_INET6,
5545 		    &ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5546 		    inet_ntop(AF_INET6,
5547 		    &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5548 		    inet_ntop(AF_INET6,
5549 		    &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6)));
5550 		}
5551 	}
5552 	rw_exit(&ipst->ips_ill_g_lock);
5553 	return (0);
5554 }
5555 
5556 /*
5557  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5558  * driver.  We construct best guess defaults for lower level information that
5559  * we need.  If an interface is brought up without injection of any overriding
5560  * information from outside, we have to be ready to go with these defaults.
5561  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5562  * we primarely want the dl_provider_style.
5563  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5564  * at which point we assume the other part of the information is valid.
5565  */
5566 void
5567 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5568 {
5569 	uchar_t		*brdcst_addr;
5570 	uint_t		brdcst_addr_length, phys_addr_length;
5571 	t_scalar_t	sap_length;
5572 	dl_info_ack_t	*dlia;
5573 	ip_m_t		*ipm;
5574 	dl_qos_cl_sel1_t *sel1;
5575 
5576 	ASSERT(IAM_WRITER_ILL(ill));
5577 
5578 	/*
5579 	 * Till the ill is fully up ILL_CHANGING will be set and
5580 	 * the ill is not globally visible. So no need for a lock.
5581 	 */
5582 	dlia = (dl_info_ack_t *)mp->b_rptr;
5583 	ill->ill_mactype = dlia->dl_mac_type;
5584 
5585 	ipm = ip_m_lookup(dlia->dl_mac_type);
5586 	if (ipm == NULL) {
5587 		ipm = ip_m_lookup(DL_OTHER);
5588 		ASSERT(ipm != NULL);
5589 	}
5590 	ill->ill_media = ipm;
5591 
5592 	/*
5593 	 * When the new DLPI stuff is ready we'll pull lengths
5594 	 * from dlia.
5595 	 */
5596 	if (dlia->dl_version == DL_VERSION_2) {
5597 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5598 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5599 		    brdcst_addr_length);
5600 		if (brdcst_addr == NULL) {
5601 			brdcst_addr_length = 0;
5602 		}
5603 		sap_length = dlia->dl_sap_length;
5604 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5605 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5606 		    brdcst_addr_length, sap_length, phys_addr_length));
5607 	} else {
5608 		brdcst_addr_length = 6;
5609 		brdcst_addr = ip_six_byte_all_ones;
5610 		sap_length = -2;
5611 		phys_addr_length = brdcst_addr_length;
5612 	}
5613 
5614 	ill->ill_bcast_addr_length = brdcst_addr_length;
5615 	ill->ill_phys_addr_length = phys_addr_length;
5616 	ill->ill_sap_length = sap_length;
5617 	ill->ill_max_frag = dlia->dl_max_sdu;
5618 	ill->ill_max_mtu = ill->ill_max_frag;
5619 
5620 	ill->ill_type = ipm->ip_m_type;
5621 
5622 	if (!ill->ill_dlpi_style_set) {
5623 		if (dlia->dl_provider_style == DL_STYLE2)
5624 			ill->ill_needs_attach = 1;
5625 
5626 		/*
5627 		 * Allocate the first ipif on this ill. We don't delay it
5628 		 * further as ioctl handling assumes atleast one ipif to
5629 		 * be present.
5630 		 *
5631 		 * At this point we don't know whether the ill is v4 or v6.
5632 		 * We will know this whan the SIOCSLIFNAME happens and
5633 		 * the correct value for ill_isv6 will be assigned in
5634 		 * ipif_set_values(). We need to hold the ill lock and
5635 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5636 		 * the wakeup.
5637 		 */
5638 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5639 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5640 		mutex_enter(&ill->ill_lock);
5641 		ASSERT(ill->ill_dlpi_style_set == 0);
5642 		ill->ill_dlpi_style_set = 1;
5643 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5644 		cv_broadcast(&ill->ill_cv);
5645 		mutex_exit(&ill->ill_lock);
5646 		freemsg(mp);
5647 		return;
5648 	}
5649 	ASSERT(ill->ill_ipif != NULL);
5650 	/*
5651 	 * We know whether it is IPv4 or IPv6 now, as this is the
5652 	 * second DL_INFO_ACK we are recieving in response to the
5653 	 * DL_INFO_REQ sent in ipif_set_values.
5654 	 */
5655 	if (ill->ill_isv6)
5656 		ill->ill_sap = IP6_DL_SAP;
5657 	else
5658 		ill->ill_sap = IP_DL_SAP;
5659 	/*
5660 	 * Set ipif_mtu which is used to set the IRE's
5661 	 * ire_max_frag value. The driver could have sent
5662 	 * a different mtu from what it sent last time. No
5663 	 * need to call ipif_mtu_change because IREs have
5664 	 * not yet been created.
5665 	 */
5666 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5667 	/*
5668 	 * Clear all the flags that were set based on ill_bcast_addr_length
5669 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5670 	 * changed now and we need to re-evaluate.
5671 	 */
5672 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5673 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5674 
5675 	/*
5676 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5677 	 * changed now.
5678 	 */
5679 	if (ill->ill_bcast_addr_length == 0) {
5680 		if (ill->ill_resolver_mp != NULL)
5681 			freemsg(ill->ill_resolver_mp);
5682 		if (ill->ill_bcast_mp != NULL)
5683 			freemsg(ill->ill_bcast_mp);
5684 		if (ill->ill_flags & ILLF_XRESOLV)
5685 			ill->ill_net_type = IRE_IF_RESOLVER;
5686 		else
5687 			ill->ill_net_type = IRE_IF_NORESOLVER;
5688 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5689 		    ill->ill_phys_addr_length,
5690 		    ill->ill_sap,
5691 		    ill->ill_sap_length);
5692 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5693 
5694 		if (ill->ill_isv6)
5695 			/*
5696 			 * Note: xresolv interfaces will eventually need NOARP
5697 			 * set here as well, but that will require those
5698 			 * external resolvers to have some knowledge of
5699 			 * that flag and act appropriately. Not to be changed
5700 			 * at present.
5701 			 */
5702 			ill->ill_flags |= ILLF_NONUD;
5703 		else
5704 			ill->ill_flags |= ILLF_NOARP;
5705 
5706 		if (ill->ill_phys_addr_length == 0) {
5707 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5708 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5709 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5710 			} else {
5711 				/* pt-pt supports multicast. */
5712 				ill->ill_flags |= ILLF_MULTICAST;
5713 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5714 			}
5715 		}
5716 	} else {
5717 		ill->ill_net_type = IRE_IF_RESOLVER;
5718 		if (ill->ill_bcast_mp != NULL)
5719 			freemsg(ill->ill_bcast_mp);
5720 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5721 		    ill->ill_bcast_addr_length, ill->ill_sap,
5722 		    ill->ill_sap_length);
5723 		/*
5724 		 * Later detect lack of DLPI driver multicast
5725 		 * capability by catching DL_ENABMULTI errors in
5726 		 * ip_rput_dlpi.
5727 		 */
5728 		ill->ill_flags |= ILLF_MULTICAST;
5729 		if (!ill->ill_isv6)
5730 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5731 	}
5732 	/* By default an interface does not support any CoS marking */
5733 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5734 
5735 	/*
5736 	 * If we get QoS information in DL_INFO_ACK, the device supports
5737 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5738 	 */
5739 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5740 	    dlia->dl_qos_length);
5741 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5742 		ill->ill_flags |= ILLF_COS_ENABLED;
5743 	}
5744 
5745 	/* Clear any previous error indication. */
5746 	ill->ill_error = 0;
5747 	freemsg(mp);
5748 }
5749 
5750 /*
5751  * Perform various checks to verify that an address would make sense as a
5752  * local, remote, or subnet interface address.
5753  */
5754 static boolean_t
5755 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5756 {
5757 	ipaddr_t	net_mask;
5758 
5759 	/*
5760 	 * Don't allow all zeroes, all ones or experimental address, but allow
5761 	 * all ones netmask.
5762 	 */
5763 	if ((net_mask = ip_net_mask(addr)) == 0)
5764 		return (B_FALSE);
5765 	/* A given netmask overrides the "guess" netmask */
5766 	if (subnet_mask != 0)
5767 		net_mask = subnet_mask;
5768 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5769 	    (addr == (addr | ~net_mask)))) {
5770 		return (B_FALSE);
5771 	}
5772 	if (CLASSD(addr))
5773 		return (B_FALSE);
5774 
5775 	return (B_TRUE);
5776 }
5777 
5778 #define	V6_IPIF_LINKLOCAL(p)	\
5779 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5780 
5781 /*
5782  * Compare two given ipifs and check if the second one is better than
5783  * the first one using the order of preference (not taking deprecated
5784  * into acount) specified in ipif_lookup_multicast().
5785  */
5786 static boolean_t
5787 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5788 {
5789 	/* Check the least preferred first. */
5790 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5791 		/* If both ipifs are the same, use the first one. */
5792 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5793 			return (B_FALSE);
5794 		else
5795 			return (B_TRUE);
5796 	}
5797 
5798 	/* For IPv6, check for link local address. */
5799 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5800 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5801 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5802 			/* The second one is equal or less preferred. */
5803 			return (B_FALSE);
5804 		} else {
5805 			return (B_TRUE);
5806 		}
5807 	}
5808 
5809 	/* Then check for point to point interface. */
5810 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5811 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5812 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5813 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5814 			return (B_FALSE);
5815 		} else {
5816 			return (B_TRUE);
5817 		}
5818 	}
5819 
5820 	/* old_ipif is a normal interface, so no need to use the new one. */
5821 	return (B_FALSE);
5822 }
5823 
5824 /*
5825  * Find any non-virtual, not condemned, and up multicast capable interface
5826  * given an IP instance and zoneid.  Order of preference is:
5827  *
5828  * 1. normal
5829  * 1.1 normal, but deprecated
5830  * 2. point to point
5831  * 2.1 point to point, but deprecated
5832  * 3. link local
5833  * 3.1 link local, but deprecated
5834  * 4. loopback.
5835  */
5836 ipif_t *
5837 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5838 {
5839 	ill_t			*ill;
5840 	ill_walk_context_t	ctx;
5841 	ipif_t			*ipif;
5842 	ipif_t			*saved_ipif = NULL;
5843 	ipif_t			*dep_ipif = NULL;
5844 
5845 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5846 	if (isv6)
5847 		ill = ILL_START_WALK_V6(&ctx, ipst);
5848 	else
5849 		ill = ILL_START_WALK_V4(&ctx, ipst);
5850 
5851 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5852 		mutex_enter(&ill->ill_lock);
5853 		if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) ||
5854 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5855 			mutex_exit(&ill->ill_lock);
5856 			continue;
5857 		}
5858 		for (ipif = ill->ill_ipif; ipif != NULL;
5859 		    ipif = ipif->ipif_next) {
5860 			if (zoneid != ipif->ipif_zoneid &&
5861 			    zoneid != ALL_ZONES &&
5862 			    ipif->ipif_zoneid != ALL_ZONES) {
5863 				continue;
5864 			}
5865 			if (!(ipif->ipif_flags & IPIF_UP) ||
5866 			    !IPIF_CAN_LOOKUP(ipif)) {
5867 				continue;
5868 			}
5869 
5870 			/*
5871 			 * Found one candidate.  If it is deprecated,
5872 			 * remember it in dep_ipif.  If it is not deprecated,
5873 			 * remember it in saved_ipif.
5874 			 */
5875 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5876 				if (dep_ipif == NULL) {
5877 					dep_ipif = ipif;
5878 				} else if (ipif_comp_multi(dep_ipif, ipif,
5879 				    isv6)) {
5880 					/*
5881 					 * If the previous dep_ipif does not
5882 					 * belong to the same ill, we've done
5883 					 * a ipif_refhold() on it.  So we need
5884 					 * to release it.
5885 					 */
5886 					if (dep_ipif->ipif_ill != ill)
5887 						ipif_refrele(dep_ipif);
5888 					dep_ipif = ipif;
5889 				}
5890 				continue;
5891 			}
5892 			if (saved_ipif == NULL) {
5893 				saved_ipif = ipif;
5894 			} else {
5895 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5896 					if (saved_ipif->ipif_ill != ill)
5897 						ipif_refrele(saved_ipif);
5898 					saved_ipif = ipif;
5899 				}
5900 			}
5901 		}
5902 		/*
5903 		 * Before going to the next ill, do a ipif_refhold() on the
5904 		 * saved ones.
5905 		 */
5906 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5907 			ipif_refhold_locked(saved_ipif);
5908 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5909 			ipif_refhold_locked(dep_ipif);
5910 		mutex_exit(&ill->ill_lock);
5911 	}
5912 	rw_exit(&ipst->ips_ill_g_lock);
5913 
5914 	/*
5915 	 * If we have only the saved_ipif, return it.  But if we have both
5916 	 * saved_ipif and dep_ipif, check to see which one is better.
5917 	 */
5918 	if (saved_ipif != NULL) {
5919 		if (dep_ipif != NULL) {
5920 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5921 				ipif_refrele(saved_ipif);
5922 				return (dep_ipif);
5923 			} else {
5924 				ipif_refrele(dep_ipif);
5925 				return (saved_ipif);
5926 			}
5927 		}
5928 		return (saved_ipif);
5929 	} else {
5930 		return (dep_ipif);
5931 	}
5932 }
5933 
5934 /*
5935  * This function is called when an application does not specify an interface
5936  * to be used for multicast traffic (joining a group/sending data).  It
5937  * calls ire_lookup_multi() to look for an interface route for the
5938  * specified multicast group.  Doing this allows the administrator to add
5939  * prefix routes for multicast to indicate which interface to be used for
5940  * multicast traffic in the above scenario.  The route could be for all
5941  * multicast (224.0/4), for a single multicast group (a /32 route) or
5942  * anything in between.  If there is no such multicast route, we just find
5943  * any multicast capable interface and return it.  The returned ipif
5944  * is refhold'ed.
5945  */
5946 ipif_t *
5947 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5948 {
5949 	ire_t			*ire;
5950 	ipif_t			*ipif;
5951 
5952 	ire = ire_lookup_multi(group, zoneid, ipst);
5953 	if (ire != NULL) {
5954 		ipif = ire->ire_ipif;
5955 		ipif_refhold(ipif);
5956 		ire_refrele(ire);
5957 		return (ipif);
5958 	}
5959 
5960 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5961 }
5962 
5963 /*
5964  * Look for an ipif with the specified interface address and destination.
5965  * The destination address is used only for matching point-to-point interfaces.
5966  */
5967 ipif_t *
5968 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5969     ipsq_func_t func, int *error, ip_stack_t *ipst)
5970 {
5971 	ipif_t	*ipif;
5972 	ill_t	*ill;
5973 	ill_walk_context_t ctx;
5974 	ipsq_t	*ipsq;
5975 
5976 	if (error != NULL)
5977 		*error = 0;
5978 
5979 	/*
5980 	 * First match all the point-to-point interfaces
5981 	 * before looking at non-point-to-point interfaces.
5982 	 * This is done to avoid returning non-point-to-point
5983 	 * ipif instead of unnumbered point-to-point ipif.
5984 	 */
5985 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5986 	ill = ILL_START_WALK_V4(&ctx, ipst);
5987 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5988 		GRAB_CONN_LOCK(q);
5989 		mutex_enter(&ill->ill_lock);
5990 		for (ipif = ill->ill_ipif; ipif != NULL;
5991 		    ipif = ipif->ipif_next) {
5992 			/* Allow the ipif to be down */
5993 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5994 			    (ipif->ipif_lcl_addr == if_addr) &&
5995 			    (ipif->ipif_pp_dst_addr == dst)) {
5996 				/*
5997 				 * The block comment at the start of ipif_down
5998 				 * explains the use of the macros used below
5999 				 */
6000 				if (IPIF_CAN_LOOKUP(ipif)) {
6001 					ipif_refhold_locked(ipif);
6002 					mutex_exit(&ill->ill_lock);
6003 					RELEASE_CONN_LOCK(q);
6004 					rw_exit(&ipst->ips_ill_g_lock);
6005 					return (ipif);
6006 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6007 					ipsq = ill->ill_phyint->phyint_ipsq;
6008 					mutex_enter(&ipsq->ipsq_lock);
6009 					mutex_exit(&ill->ill_lock);
6010 					rw_exit(&ipst->ips_ill_g_lock);
6011 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6012 					    ill);
6013 					mutex_exit(&ipsq->ipsq_lock);
6014 					RELEASE_CONN_LOCK(q);
6015 					if (error != NULL)
6016 						*error = EINPROGRESS;
6017 					return (NULL);
6018 				}
6019 			}
6020 		}
6021 		mutex_exit(&ill->ill_lock);
6022 		RELEASE_CONN_LOCK(q);
6023 	}
6024 	rw_exit(&ipst->ips_ill_g_lock);
6025 
6026 	/* lookup the ipif based on interface address */
6027 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
6028 	    ipst);
6029 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
6030 	return (ipif);
6031 }
6032 
6033 /*
6034  * Look for an ipif with the specified address. For point-point links
6035  * we look for matches on either the destination address and the local
6036  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6037  * is set.
6038  * Matches on a specific ill if match_ill is set.
6039  */
6040 ipif_t *
6041 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
6042     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
6043 {
6044 	ipif_t  *ipif;
6045 	ill_t   *ill;
6046 	boolean_t ptp = B_FALSE;
6047 	ipsq_t	*ipsq;
6048 	ill_walk_context_t	ctx;
6049 
6050 	if (error != NULL)
6051 		*error = 0;
6052 
6053 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6054 	/*
6055 	 * Repeat twice, first based on local addresses and
6056 	 * next time for pointopoint.
6057 	 */
6058 repeat:
6059 	ill = ILL_START_WALK_V4(&ctx, ipst);
6060 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6061 		if (match_ill != NULL && ill != match_ill) {
6062 			continue;
6063 		}
6064 		GRAB_CONN_LOCK(q);
6065 		mutex_enter(&ill->ill_lock);
6066 		for (ipif = ill->ill_ipif; ipif != NULL;
6067 		    ipif = ipif->ipif_next) {
6068 			if (zoneid != ALL_ZONES &&
6069 			    zoneid != ipif->ipif_zoneid &&
6070 			    ipif->ipif_zoneid != ALL_ZONES)
6071 				continue;
6072 			/* Allow the ipif to be down */
6073 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6074 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6075 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6076 			    (ipif->ipif_pp_dst_addr == addr))) {
6077 				/*
6078 				 * The block comment at the start of ipif_down
6079 				 * explains the use of the macros used below
6080 				 */
6081 				if (IPIF_CAN_LOOKUP(ipif)) {
6082 					ipif_refhold_locked(ipif);
6083 					mutex_exit(&ill->ill_lock);
6084 					RELEASE_CONN_LOCK(q);
6085 					rw_exit(&ipst->ips_ill_g_lock);
6086 					return (ipif);
6087 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6088 					ipsq = ill->ill_phyint->phyint_ipsq;
6089 					mutex_enter(&ipsq->ipsq_lock);
6090 					mutex_exit(&ill->ill_lock);
6091 					rw_exit(&ipst->ips_ill_g_lock);
6092 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6093 					    ill);
6094 					mutex_exit(&ipsq->ipsq_lock);
6095 					RELEASE_CONN_LOCK(q);
6096 					if (error != NULL)
6097 						*error = EINPROGRESS;
6098 					return (NULL);
6099 				}
6100 			}
6101 		}
6102 		mutex_exit(&ill->ill_lock);
6103 		RELEASE_CONN_LOCK(q);
6104 	}
6105 
6106 	/* If we already did the ptp case, then we are done */
6107 	if (ptp) {
6108 		rw_exit(&ipst->ips_ill_g_lock);
6109 		if (error != NULL)
6110 			*error = ENXIO;
6111 		return (NULL);
6112 	}
6113 	ptp = B_TRUE;
6114 	goto repeat;
6115 }
6116 
6117 /*
6118  * Look for an ipif with the specified address. For point-point links
6119  * we look for matches on either the destination address and the local
6120  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6121  * is set.
6122  * Matches on a specific ill if match_ill is set.
6123  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6124  */
6125 zoneid_t
6126 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6127 {
6128 	zoneid_t zoneid;
6129 	ipif_t  *ipif;
6130 	ill_t   *ill;
6131 	boolean_t ptp = B_FALSE;
6132 	ill_walk_context_t	ctx;
6133 
6134 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6135 	/*
6136 	 * Repeat twice, first based on local addresses and
6137 	 * next time for pointopoint.
6138 	 */
6139 repeat:
6140 	ill = ILL_START_WALK_V4(&ctx, ipst);
6141 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6142 		if (match_ill != NULL && ill != match_ill) {
6143 			continue;
6144 		}
6145 		mutex_enter(&ill->ill_lock);
6146 		for (ipif = ill->ill_ipif; ipif != NULL;
6147 		    ipif = ipif->ipif_next) {
6148 			/* Allow the ipif to be down */
6149 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6150 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6151 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6152 			    (ipif->ipif_pp_dst_addr == addr)) &&
6153 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6154 				zoneid = ipif->ipif_zoneid;
6155 				mutex_exit(&ill->ill_lock);
6156 				rw_exit(&ipst->ips_ill_g_lock);
6157 				/*
6158 				 * If ipif_zoneid was ALL_ZONES then we have
6159 				 * a trusted extensions shared IP address.
6160 				 * In that case GLOBAL_ZONEID works to send.
6161 				 */
6162 				if (zoneid == ALL_ZONES)
6163 					zoneid = GLOBAL_ZONEID;
6164 				return (zoneid);
6165 			}
6166 		}
6167 		mutex_exit(&ill->ill_lock);
6168 	}
6169 
6170 	/* If we already did the ptp case, then we are done */
6171 	if (ptp) {
6172 		rw_exit(&ipst->ips_ill_g_lock);
6173 		return (ALL_ZONES);
6174 	}
6175 	ptp = B_TRUE;
6176 	goto repeat;
6177 }
6178 
6179 /*
6180  * Look for an ipif that matches the specified remote address i.e. the
6181  * ipif that would receive the specified packet.
6182  * First look for directly connected interfaces and then do a recursive
6183  * IRE lookup and pick the first ipif corresponding to the source address in the
6184  * ire.
6185  * Returns: held ipif
6186  */
6187 ipif_t *
6188 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6189 {
6190 	ipif_t	*ipif;
6191 	ire_t	*ire;
6192 	ip_stack_t	*ipst = ill->ill_ipst;
6193 
6194 	ASSERT(!ill->ill_isv6);
6195 
6196 	/*
6197 	 * Someone could be changing this ipif currently or change it
6198 	 * after we return this. Thus  a few packets could use the old
6199 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6200 	 * will atomically be updated or cleaned up with the new value
6201 	 * Thus we don't need a lock to check the flags or other attrs below.
6202 	 */
6203 	mutex_enter(&ill->ill_lock);
6204 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6205 		if (!IPIF_CAN_LOOKUP(ipif))
6206 			continue;
6207 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6208 		    ipif->ipif_zoneid != ALL_ZONES)
6209 			continue;
6210 		/* Allow the ipif to be down */
6211 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6212 			if ((ipif->ipif_pp_dst_addr == addr) ||
6213 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6214 			    ipif->ipif_lcl_addr == addr)) {
6215 				ipif_refhold_locked(ipif);
6216 				mutex_exit(&ill->ill_lock);
6217 				return (ipif);
6218 			}
6219 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6220 			ipif_refhold_locked(ipif);
6221 			mutex_exit(&ill->ill_lock);
6222 			return (ipif);
6223 		}
6224 	}
6225 	mutex_exit(&ill->ill_lock);
6226 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6227 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6228 	if (ire != NULL) {
6229 		/*
6230 		 * The callers of this function wants to know the
6231 		 * interface on which they have to send the replies
6232 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6233 		 * derived from different ills, we really don't care
6234 		 * what we return here.
6235 		 */
6236 		ipif = ire->ire_ipif;
6237 		if (ipif != NULL) {
6238 			ipif_refhold(ipif);
6239 			ire_refrele(ire);
6240 			return (ipif);
6241 		}
6242 		ire_refrele(ire);
6243 	}
6244 	/* Pick the first interface */
6245 	ipif = ipif_get_next_ipif(NULL, ill);
6246 	return (ipif);
6247 }
6248 
6249 /*
6250  * This func does not prevent refcnt from increasing. But if
6251  * the caller has taken steps to that effect, then this func
6252  * can be used to determine whether the ill has become quiescent
6253  */
6254 boolean_t
6255 ill_is_quiescent(ill_t *ill)
6256 {
6257 	ipif_t	*ipif;
6258 
6259 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6260 
6261 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6262 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6263 			return (B_FALSE);
6264 		}
6265 	}
6266 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6267 	    ill->ill_nce_cnt != 0) {
6268 		return (B_FALSE);
6269 	}
6270 	return (B_TRUE);
6271 }
6272 
6273 /*
6274  * This func does not prevent refcnt from increasing. But if
6275  * the caller has taken steps to that effect, then this func
6276  * can be used to determine whether the ipif has become quiescent
6277  */
6278 static boolean_t
6279 ipif_is_quiescent(ipif_t *ipif)
6280 {
6281 	ill_t *ill;
6282 
6283 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6284 
6285 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6286 		return (B_FALSE);
6287 	}
6288 
6289 	ill = ipif->ipif_ill;
6290 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6291 	    ill->ill_logical_down) {
6292 		return (B_TRUE);
6293 	}
6294 
6295 	/* This is the last ipif going down or being deleted on this ill */
6296 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6297 		return (B_FALSE);
6298 	}
6299 
6300 	return (B_TRUE);
6301 }
6302 
6303 /*
6304  * This func does not prevent refcnt from increasing. But if
6305  * the caller has taken steps to that effect, then this func
6306  * can be used to determine whether the ipifs marked with IPIF_MOVING
6307  * have become quiescent and can be moved in a failover/failback.
6308  */
6309 static ipif_t *
6310 ill_quiescent_to_move(ill_t *ill)
6311 {
6312 	ipif_t  *ipif;
6313 
6314 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6315 
6316 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6317 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6318 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6319 				return (ipif);
6320 			}
6321 		}
6322 	}
6323 	return (NULL);
6324 }
6325 
6326 /*
6327  * The ipif/ill/ire has been refreled. Do the tail processing.
6328  * Determine if the ipif or ill in question has become quiescent and if so
6329  * wakeup close and/or restart any queued pending ioctl that is waiting
6330  * for the ipif_down (or ill_down)
6331  */
6332 void
6333 ipif_ill_refrele_tail(ill_t *ill)
6334 {
6335 	mblk_t	*mp;
6336 	conn_t	*connp;
6337 	ipsq_t	*ipsq;
6338 	ipif_t	*ipif;
6339 	dl_notify_ind_t *dlindp;
6340 
6341 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6342 
6343 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6344 	    ill_is_quiescent(ill)) {
6345 		/* ill_close may be waiting */
6346 		cv_broadcast(&ill->ill_cv);
6347 	}
6348 
6349 	/* ipsq can't change because ill_lock  is held */
6350 	ipsq = ill->ill_phyint->phyint_ipsq;
6351 	if (ipsq->ipsq_waitfor == 0) {
6352 		/* Not waiting for anything, just return. */
6353 		mutex_exit(&ill->ill_lock);
6354 		return;
6355 	}
6356 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6357 	    ipsq->ipsq_pending_ipif != NULL);
6358 	/*
6359 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6360 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6361 	 * be zero for restarting an ioctl that ends up downing the ill.
6362 	 */
6363 	ipif = ipsq->ipsq_pending_ipif;
6364 	if (ipif->ipif_ill != ill) {
6365 		/* The ioctl is pending on some other ill. */
6366 		mutex_exit(&ill->ill_lock);
6367 		return;
6368 	}
6369 
6370 	switch (ipsq->ipsq_waitfor) {
6371 	case IPIF_DOWN:
6372 	case IPIF_FREE:
6373 		if (!ipif_is_quiescent(ipif)) {
6374 			mutex_exit(&ill->ill_lock);
6375 			return;
6376 		}
6377 		break;
6378 
6379 	case ILL_DOWN:
6380 	case ILL_FREE:
6381 		/*
6382 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6383 		 * waits synchronously in ip_close, and no message is queued in
6384 		 * ipsq_pending_mp at all in this case
6385 		 */
6386 		if (!ill_is_quiescent(ill)) {
6387 			mutex_exit(&ill->ill_lock);
6388 			return;
6389 		}
6390 
6391 		break;
6392 
6393 	case ILL_MOVE_OK:
6394 		if (ill_quiescent_to_move(ill) != NULL) {
6395 			mutex_exit(&ill->ill_lock);
6396 			return;
6397 		}
6398 
6399 		break;
6400 	default:
6401 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6402 		    (void *)ipsq, ipsq->ipsq_waitfor);
6403 	}
6404 
6405 	/*
6406 	 * Incr refcnt for the qwriter_ip call below which
6407 	 * does a refrele
6408 	 */
6409 	ill_refhold_locked(ill);
6410 	mutex_exit(&ill->ill_lock);
6411 
6412 	mp = ipsq_pending_mp_get(ipsq, &connp);
6413 	ASSERT(mp != NULL);
6414 
6415 	/*
6416 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6417 	 * we can only get here when the current operation decides it
6418 	 * it needs to quiesce via ipsq_pending_mp_add().
6419 	 */
6420 	switch (mp->b_datap->db_type) {
6421 	case M_PCPROTO:
6422 	case M_PROTO:
6423 		/*
6424 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6425 		 */
6426 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6427 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6428 
6429 		switch (dlindp->dl_notification) {
6430 		case DL_NOTE_PHYS_ADDR:
6431 			qwriter_ip(ill, ill->ill_rq, mp,
6432 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6433 			return;
6434 		default:
6435 			ASSERT(0);
6436 		}
6437 		break;
6438 
6439 	case M_ERROR:
6440 	case M_HANGUP:
6441 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6442 		    B_TRUE);
6443 		return;
6444 
6445 	case M_IOCTL:
6446 	case M_IOCDATA:
6447 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6448 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6449 		return;
6450 
6451 	default:
6452 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6453 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6454 	}
6455 }
6456 
6457 #ifdef DEBUG
6458 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6459 static void
6460 th_trace_rrecord(th_trace_t *th_trace)
6461 {
6462 	tr_buf_t *tr_buf;
6463 	uint_t lastref;
6464 
6465 	lastref = th_trace->th_trace_lastref;
6466 	lastref++;
6467 	if (lastref == TR_BUF_MAX)
6468 		lastref = 0;
6469 	th_trace->th_trace_lastref = lastref;
6470 	tr_buf = &th_trace->th_trbuf[lastref];
6471 	tr_buf->tr_time = lbolt;
6472 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6473 }
6474 
6475 static void
6476 th_trace_free(void *value)
6477 {
6478 	th_trace_t *th_trace = value;
6479 
6480 	ASSERT(th_trace->th_refcnt == 0);
6481 	kmem_free(th_trace, sizeof (*th_trace));
6482 }
6483 
6484 /*
6485  * Find or create the per-thread hash table used to track object references.
6486  * The ipst argument is NULL if we shouldn't allocate.
6487  *
6488  * Accesses per-thread data, so there's no need to lock here.
6489  */
6490 static mod_hash_t *
6491 th_trace_gethash(ip_stack_t *ipst)
6492 {
6493 	th_hash_t *thh;
6494 
6495 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6496 		mod_hash_t *mh;
6497 		char name[256];
6498 		size_t objsize, rshift;
6499 		int retv;
6500 
6501 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6502 			return (NULL);
6503 		(void) snprintf(name, sizeof (name), "th_trace_%p", curthread);
6504 
6505 		/*
6506 		 * We use mod_hash_create_extended here rather than the more
6507 		 * obvious mod_hash_create_ptrhash because the latter has a
6508 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6509 		 * block.
6510 		 */
6511 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6512 		    MAX(sizeof (ire_t), sizeof (nce_t)));
6513 		rshift = highbit(objsize);
6514 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6515 		    th_trace_free, mod_hash_byptr, (void *)rshift,
6516 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6517 		if (mh == NULL) {
6518 			kmem_free(thh, sizeof (*thh));
6519 			return (NULL);
6520 		}
6521 		thh->thh_hash = mh;
6522 		thh->thh_ipst = ipst;
6523 		/*
6524 		 * We trace ills, ipifs, ires, and nces.  All of these are
6525 		 * per-IP-stack, so the lock on the thread list is as well.
6526 		 */
6527 		rw_enter(&ip_thread_rwlock, RW_WRITER);
6528 		list_insert_tail(&ip_thread_list, thh);
6529 		rw_exit(&ip_thread_rwlock);
6530 		retv = tsd_set(ip_thread_data, thh);
6531 		ASSERT(retv == 0);
6532 	}
6533 	return (thh != NULL ? thh->thh_hash : NULL);
6534 }
6535 
6536 boolean_t
6537 th_trace_ref(const void *obj, ip_stack_t *ipst)
6538 {
6539 	th_trace_t *th_trace;
6540 	mod_hash_t *mh;
6541 	mod_hash_val_t val;
6542 
6543 	if ((mh = th_trace_gethash(ipst)) == NULL)
6544 		return (B_FALSE);
6545 
6546 	/*
6547 	 * Attempt to locate the trace buffer for this obj and thread.
6548 	 * If it does not exist, then allocate a new trace buffer and
6549 	 * insert into the hash.
6550 	 */
6551 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6552 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6553 		if (th_trace == NULL)
6554 			return (B_FALSE);
6555 
6556 		th_trace->th_id = curthread;
6557 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6558 		    (mod_hash_val_t)th_trace) != 0) {
6559 			kmem_free(th_trace, sizeof (th_trace_t));
6560 			return (B_FALSE);
6561 		}
6562 	} else {
6563 		th_trace = (th_trace_t *)val;
6564 	}
6565 
6566 	ASSERT(th_trace->th_refcnt >= 0 &&
6567 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6568 
6569 	th_trace->th_refcnt++;
6570 	th_trace_rrecord(th_trace);
6571 	return (B_TRUE);
6572 }
6573 
6574 /*
6575  * For the purpose of tracing a reference release, we assume that global
6576  * tracing is always on and that the same thread initiated the reference hold
6577  * is releasing.
6578  */
6579 void
6580 th_trace_unref(const void *obj)
6581 {
6582 	int retv;
6583 	mod_hash_t *mh;
6584 	th_trace_t *th_trace;
6585 	mod_hash_val_t val;
6586 
6587 	mh = th_trace_gethash(NULL);
6588 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6589 	ASSERT(retv == 0);
6590 	th_trace = (th_trace_t *)val;
6591 
6592 	ASSERT(th_trace->th_refcnt > 0);
6593 	th_trace->th_refcnt--;
6594 	th_trace_rrecord(th_trace);
6595 }
6596 
6597 /*
6598  * If tracing has been disabled, then we assume that the reference counts are
6599  * now useless, and we clear them out before destroying the entries.
6600  */
6601 void
6602 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6603 {
6604 	th_hash_t	*thh;
6605 	mod_hash_t	*mh;
6606 	mod_hash_val_t	val;
6607 	th_trace_t	*th_trace;
6608 	int		retv;
6609 
6610 	rw_enter(&ip_thread_rwlock, RW_READER);
6611 	for (thh = list_head(&ip_thread_list); thh != NULL;
6612 	    thh = list_next(&ip_thread_list, thh)) {
6613 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6614 		    &val) == 0) {
6615 			th_trace = (th_trace_t *)val;
6616 			if (trace_disable)
6617 				th_trace->th_refcnt = 0;
6618 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6619 			ASSERT(retv == 0);
6620 		}
6621 	}
6622 	rw_exit(&ip_thread_rwlock);
6623 }
6624 
6625 void
6626 ipif_trace_ref(ipif_t *ipif)
6627 {
6628 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6629 
6630 	if (ipif->ipif_trace_disable)
6631 		return;
6632 
6633 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6634 		ipif->ipif_trace_disable = B_TRUE;
6635 		ipif_trace_cleanup(ipif);
6636 	}
6637 }
6638 
6639 void
6640 ipif_untrace_ref(ipif_t *ipif)
6641 {
6642 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6643 
6644 	if (!ipif->ipif_trace_disable)
6645 		th_trace_unref(ipif);
6646 }
6647 
6648 void
6649 ill_trace_ref(ill_t *ill)
6650 {
6651 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6652 
6653 	if (ill->ill_trace_disable)
6654 		return;
6655 
6656 	if (!th_trace_ref(ill, ill->ill_ipst)) {
6657 		ill->ill_trace_disable = B_TRUE;
6658 		ill_trace_cleanup(ill);
6659 	}
6660 }
6661 
6662 void
6663 ill_untrace_ref(ill_t *ill)
6664 {
6665 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6666 
6667 	if (!ill->ill_trace_disable)
6668 		th_trace_unref(ill);
6669 }
6670 
6671 /*
6672  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6673  * failure, ipif_trace_disable is set.
6674  */
6675 static void
6676 ipif_trace_cleanup(const ipif_t *ipif)
6677 {
6678 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6679 }
6680 
6681 /*
6682  * Called when ill is unplumbed or when memory alloc fails.  Note that on
6683  * failure, ill_trace_disable is set.
6684  */
6685 static void
6686 ill_trace_cleanup(const ill_t *ill)
6687 {
6688 	th_trace_cleanup(ill, ill->ill_trace_disable);
6689 }
6690 #endif /* DEBUG */
6691 
6692 void
6693 ipif_refhold_locked(ipif_t *ipif)
6694 {
6695 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6696 	ipif->ipif_refcnt++;
6697 	IPIF_TRACE_REF(ipif);
6698 }
6699 
6700 void
6701 ipif_refhold(ipif_t *ipif)
6702 {
6703 	ill_t	*ill;
6704 
6705 	ill = ipif->ipif_ill;
6706 	mutex_enter(&ill->ill_lock);
6707 	ipif->ipif_refcnt++;
6708 	IPIF_TRACE_REF(ipif);
6709 	mutex_exit(&ill->ill_lock);
6710 }
6711 
6712 /*
6713  * Must not be called while holding any locks. Otherwise if this is
6714  * the last reference to be released there is a chance of recursive mutex
6715  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6716  * to restart an ioctl.
6717  */
6718 void
6719 ipif_refrele(ipif_t *ipif)
6720 {
6721 	ill_t	*ill;
6722 
6723 	ill = ipif->ipif_ill;
6724 
6725 	mutex_enter(&ill->ill_lock);
6726 	ASSERT(ipif->ipif_refcnt != 0);
6727 	ipif->ipif_refcnt--;
6728 	IPIF_UNTRACE_REF(ipif);
6729 	if (ipif->ipif_refcnt != 0) {
6730 		mutex_exit(&ill->ill_lock);
6731 		return;
6732 	}
6733 
6734 	/* Drops the ill_lock */
6735 	ipif_ill_refrele_tail(ill);
6736 }
6737 
6738 ipif_t *
6739 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6740 {
6741 	ipif_t	*ipif;
6742 
6743 	mutex_enter(&ill->ill_lock);
6744 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6745 	    ipif != NULL; ipif = ipif->ipif_next) {
6746 		if (!IPIF_CAN_LOOKUP(ipif))
6747 			continue;
6748 		ipif_refhold_locked(ipif);
6749 		mutex_exit(&ill->ill_lock);
6750 		return (ipif);
6751 	}
6752 	mutex_exit(&ill->ill_lock);
6753 	return (NULL);
6754 }
6755 
6756 /*
6757  * TODO: make this table extendible at run time
6758  * Return a pointer to the mac type info for 'mac_type'
6759  */
6760 static ip_m_t *
6761 ip_m_lookup(t_uscalar_t mac_type)
6762 {
6763 	ip_m_t	*ipm;
6764 
6765 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6766 		if (ipm->ip_m_mac_type == mac_type)
6767 			return (ipm);
6768 	return (NULL);
6769 }
6770 
6771 /*
6772  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6773  * ipif_arg is passed in to associate it with the correct interface.
6774  * We may need to restart this operation if the ipif cannot be looked up
6775  * due to an exclusive operation that is currently in progress. The restart
6776  * entry point is specified by 'func'
6777  */
6778 int
6779 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6780     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6781     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6782     struct rtsa_s *sp, ip_stack_t *ipst)
6783 {
6784 	ire_t	*ire;
6785 	ire_t	*gw_ire = NULL;
6786 	ipif_t	*ipif = NULL;
6787 	boolean_t ipif_refheld = B_FALSE;
6788 	uint_t	type;
6789 	int	match_flags = MATCH_IRE_TYPE;
6790 	int	error;
6791 	tsol_gc_t *gc = NULL;
6792 	tsol_gcgrp_t *gcgrp = NULL;
6793 	boolean_t gcgrp_xtraref = B_FALSE;
6794 
6795 	ip1dbg(("ip_rt_add:"));
6796 
6797 	if (ire_arg != NULL)
6798 		*ire_arg = NULL;
6799 
6800 	/*
6801 	 * If this is the case of RTF_HOST being set, then we set the netmask
6802 	 * to all ones (regardless if one was supplied).
6803 	 */
6804 	if (flags & RTF_HOST)
6805 		mask = IP_HOST_MASK;
6806 
6807 	/*
6808 	 * Prevent routes with a zero gateway from being created (since
6809 	 * interfaces can currently be plumbed and brought up no assigned
6810 	 * address).
6811 	 */
6812 	if (gw_addr == 0)
6813 		return (ENETUNREACH);
6814 	/*
6815 	 * Get the ipif, if any, corresponding to the gw_addr
6816 	 */
6817 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6818 	    ipst);
6819 	if (ipif != NULL) {
6820 		if (IS_VNI(ipif->ipif_ill)) {
6821 			ipif_refrele(ipif);
6822 			return (EINVAL);
6823 		}
6824 		ipif_refheld = B_TRUE;
6825 	} else if (error == EINPROGRESS) {
6826 		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6827 		return (EINPROGRESS);
6828 	} else {
6829 		error = 0;
6830 	}
6831 
6832 	if (ipif != NULL) {
6833 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6834 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6835 	} else {
6836 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6837 	}
6838 
6839 	/*
6840 	 * GateD will attempt to create routes with a loopback interface
6841 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6842 	 * these routes to be added, but create them as interface routes
6843 	 * since the gateway is an interface address.
6844 	 */
6845 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6846 		flags &= ~RTF_GATEWAY;
6847 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6848 		    mask == IP_HOST_MASK) {
6849 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6850 			    ALL_ZONES, NULL, match_flags, ipst);
6851 			if (ire != NULL) {
6852 				ire_refrele(ire);
6853 				if (ipif_refheld)
6854 					ipif_refrele(ipif);
6855 				return (EEXIST);
6856 			}
6857 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6858 			    "for 0x%x\n", (void *)ipif,
6859 			    ipif->ipif_ire_type,
6860 			    ntohl(ipif->ipif_lcl_addr)));
6861 			ire = ire_create(
6862 			    (uchar_t *)&dst_addr,	/* dest address */
6863 			    (uchar_t *)&mask,		/* mask */
6864 			    (uchar_t *)&ipif->ipif_src_addr,
6865 			    NULL,			/* no gateway */
6866 			    &ipif->ipif_mtu,
6867 			    NULL,
6868 			    ipif->ipif_rq,		/* recv-from queue */
6869 			    NULL,			/* no send-to queue */
6870 			    ipif->ipif_ire_type,	/* LOOPBACK */
6871 			    ipif,
6872 			    0,
6873 			    0,
6874 			    0,
6875 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6876 			    RTF_PRIVATE : 0,
6877 			    &ire_uinfo_null,
6878 			    NULL,
6879 			    NULL,
6880 			    ipst);
6881 
6882 			if (ire == NULL) {
6883 				if (ipif_refheld)
6884 					ipif_refrele(ipif);
6885 				return (ENOMEM);
6886 			}
6887 			error = ire_add(&ire, q, mp, func, B_FALSE);
6888 			if (error == 0)
6889 				goto save_ire;
6890 			if (ipif_refheld)
6891 				ipif_refrele(ipif);
6892 			return (error);
6893 
6894 		}
6895 	}
6896 
6897 	/*
6898 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6899 	 * and the gateway address provided is one of the system's interface
6900 	 * addresses.  By using the routing socket interface and supplying an
6901 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6902 	 * specifying an interface route to be created is available which uses
6903 	 * the interface index that specifies the outgoing interface rather than
6904 	 * the address of an outgoing interface (which may not be able to
6905 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6906 	 * flag, routes can be specified which not only specify the next-hop to
6907 	 * be used when routing to a certain prefix, but also which outgoing
6908 	 * interface should be used.
6909 	 *
6910 	 * Previously, interfaces would have unique addresses assigned to them
6911 	 * and so the address assigned to a particular interface could be used
6912 	 * to identify a particular interface.  One exception to this was the
6913 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6914 	 *
6915 	 * With the advent of IPv6 and its link-local addresses, this
6916 	 * restriction was relaxed and interfaces could share addresses between
6917 	 * themselves.  In fact, typically all of the link-local interfaces on
6918 	 * an IPv6 node or router will have the same link-local address.  In
6919 	 * order to differentiate between these interfaces, the use of an
6920 	 * interface index is necessary and this index can be carried inside a
6921 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6922 	 * of using the interface index, however, is that all of the ipif's that
6923 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6924 	 * cannot be used to differentiate between ipif's (or logical
6925 	 * interfaces) that belong to the same ill (physical interface).
6926 	 *
6927 	 * For example, in the following case involving IPv4 interfaces and
6928 	 * logical interfaces
6929 	 *
6930 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6931 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6932 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6933 	 *
6934 	 * the ipif's corresponding to each of these interface routes can be
6935 	 * uniquely identified by the "gateway" (actually interface address).
6936 	 *
6937 	 * In this case involving multiple IPv6 default routes to a particular
6938 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6939 	 * default route is of interest:
6940 	 *
6941 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6942 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6943 	 */
6944 
6945 	/* RTF_GATEWAY not set */
6946 	if (!(flags & RTF_GATEWAY)) {
6947 		queue_t	*stq;
6948 
6949 		if (sp != NULL) {
6950 			ip2dbg(("ip_rt_add: gateway security attributes "
6951 			    "cannot be set with interface route\n"));
6952 			if (ipif_refheld)
6953 				ipif_refrele(ipif);
6954 			return (EINVAL);
6955 		}
6956 
6957 		/*
6958 		 * As the interface index specified with the RTA_IFP sockaddr is
6959 		 * the same for all ipif's off of an ill, the matching logic
6960 		 * below uses MATCH_IRE_ILL if such an index was specified.
6961 		 * This means that routes sharing the same prefix when added
6962 		 * using a RTA_IFP sockaddr must have distinct interface
6963 		 * indices (namely, they must be on distinct ill's).
6964 		 *
6965 		 * On the other hand, since the gateway address will usually be
6966 		 * different for each ipif on the system, the matching logic
6967 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6968 		 * route.  This means that interface routes for the same prefix
6969 		 * can be created if they belong to distinct ipif's and if a
6970 		 * RTA_IFP sockaddr is not present.
6971 		 */
6972 		if (ipif_arg != NULL) {
6973 			if (ipif_refheld)  {
6974 				ipif_refrele(ipif);
6975 				ipif_refheld = B_FALSE;
6976 			}
6977 			ipif = ipif_arg;
6978 			match_flags |= MATCH_IRE_ILL;
6979 		} else {
6980 			/*
6981 			 * Check the ipif corresponding to the gw_addr
6982 			 */
6983 			if (ipif == NULL)
6984 				return (ENETUNREACH);
6985 			match_flags |= MATCH_IRE_IPIF;
6986 		}
6987 		ASSERT(ipif != NULL);
6988 
6989 		/*
6990 		 * We check for an existing entry at this point.
6991 		 *
6992 		 * Since a netmask isn't passed in via the ioctl interface
6993 		 * (SIOCADDRT), we don't check for a matching netmask in that
6994 		 * case.
6995 		 */
6996 		if (!ioctl_msg)
6997 			match_flags |= MATCH_IRE_MASK;
6998 		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6999 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7000 		if (ire != NULL) {
7001 			ire_refrele(ire);
7002 			if (ipif_refheld)
7003 				ipif_refrele(ipif);
7004 			return (EEXIST);
7005 		}
7006 
7007 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7008 		    ? ipif->ipif_rq : ipif->ipif_wq;
7009 
7010 		/*
7011 		 * Create a copy of the IRE_LOOPBACK,
7012 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7013 		 * the modified address and netmask.
7014 		 */
7015 		ire = ire_create(
7016 		    (uchar_t *)&dst_addr,
7017 		    (uint8_t *)&mask,
7018 		    (uint8_t *)&ipif->ipif_src_addr,
7019 		    NULL,
7020 		    &ipif->ipif_mtu,
7021 		    NULL,
7022 		    NULL,
7023 		    stq,
7024 		    ipif->ipif_net_type,
7025 		    ipif,
7026 		    0,
7027 		    0,
7028 		    0,
7029 		    flags,
7030 		    &ire_uinfo_null,
7031 		    NULL,
7032 		    NULL,
7033 		    ipst);
7034 		if (ire == NULL) {
7035 			if (ipif_refheld)
7036 				ipif_refrele(ipif);
7037 			return (ENOMEM);
7038 		}
7039 
7040 		/*
7041 		 * Some software (for example, GateD and Sun Cluster) attempts
7042 		 * to create (what amount to) IRE_PREFIX routes with the
7043 		 * loopback address as the gateway.  This is primarily done to
7044 		 * set up prefixes with the RTF_REJECT flag set (for example,
7045 		 * when generating aggregate routes.)
7046 		 *
7047 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7048 		 * IRE_LOOPBACK, then we map the request into a
7049 		 * IRE_IF_NORESOLVER.
7050 		 *
7051 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7052 		 * routine, but rather using ire_create() directly.
7053 		 *
7054 		 */
7055 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7056 			ire->ire_type = IRE_IF_NORESOLVER;
7057 
7058 		error = ire_add(&ire, q, mp, func, B_FALSE);
7059 		if (error == 0)
7060 			goto save_ire;
7061 
7062 		/*
7063 		 * In the result of failure, ire_add() will have already
7064 		 * deleted the ire in question, so there is no need to
7065 		 * do that here.
7066 		 */
7067 		if (ipif_refheld)
7068 			ipif_refrele(ipif);
7069 		return (error);
7070 	}
7071 	if (ipif_refheld) {
7072 		ipif_refrele(ipif);
7073 		ipif_refheld = B_FALSE;
7074 	}
7075 
7076 	/*
7077 	 * Get an interface IRE for the specified gateway.
7078 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7079 	 * gateway, it is currently unreachable and we fail the request
7080 	 * accordingly.
7081 	 */
7082 	ipif = ipif_arg;
7083 	if (ipif_arg != NULL)
7084 		match_flags |= MATCH_IRE_ILL;
7085 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7086 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7087 	if (gw_ire == NULL)
7088 		return (ENETUNREACH);
7089 
7090 	/*
7091 	 * We create one of three types of IREs as a result of this request
7092 	 * based on the netmask.  A netmask of all ones (which is automatically
7093 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7094 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7095 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7096 	 * destination prefix.
7097 	 */
7098 	if (mask == IP_HOST_MASK)
7099 		type = IRE_HOST;
7100 	else if (mask == 0)
7101 		type = IRE_DEFAULT;
7102 	else
7103 		type = IRE_PREFIX;
7104 
7105 	/* check for a duplicate entry */
7106 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7107 	    NULL, ALL_ZONES, 0, NULL,
7108 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7109 	if (ire != NULL) {
7110 		ire_refrele(gw_ire);
7111 		ire_refrele(ire);
7112 		return (EEXIST);
7113 	}
7114 
7115 	/* Security attribute exists */
7116 	if (sp != NULL) {
7117 		tsol_gcgrp_addr_t ga;
7118 
7119 		/* find or create the gateway credentials group */
7120 		ga.ga_af = AF_INET;
7121 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7122 
7123 		/* we hold reference to it upon success */
7124 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7125 		if (gcgrp == NULL) {
7126 			ire_refrele(gw_ire);
7127 			return (ENOMEM);
7128 		}
7129 
7130 		/*
7131 		 * Create and add the security attribute to the group; a
7132 		 * reference to the group is made upon allocating a new
7133 		 * entry successfully.  If it finds an already-existing
7134 		 * entry for the security attribute in the group, it simply
7135 		 * returns it and no new reference is made to the group.
7136 		 */
7137 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7138 		if (gc == NULL) {
7139 			/* release reference held by gcgrp_lookup */
7140 			GCGRP_REFRELE(gcgrp);
7141 			ire_refrele(gw_ire);
7142 			return (ENOMEM);
7143 		}
7144 	}
7145 
7146 	/* Create the IRE. */
7147 	ire = ire_create(
7148 	    (uchar_t *)&dst_addr,		/* dest address */
7149 	    (uchar_t *)&mask,			/* mask */
7150 	    /* src address assigned by the caller? */
7151 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7152 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
7153 	    (uchar_t *)&gw_addr,		/* gateway address */
7154 	    &gw_ire->ire_max_frag,
7155 	    NULL,				/* no src nce */
7156 	    NULL,				/* no recv-from queue */
7157 	    NULL,				/* no send-to queue */
7158 	    (ushort_t)type,			/* IRE type */
7159 	    ipif_arg,
7160 	    0,
7161 	    0,
7162 	    0,
7163 	    flags,
7164 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7165 	    gc,					/* security attribute */
7166 	    NULL,
7167 	    ipst);
7168 
7169 	/*
7170 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7171 	 * reference to the 'gcgrp'. We can now release the extra reference
7172 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7173 	 */
7174 	if (gcgrp_xtraref)
7175 		GCGRP_REFRELE(gcgrp);
7176 	if (ire == NULL) {
7177 		if (gc != NULL)
7178 			GC_REFRELE(gc);
7179 		ire_refrele(gw_ire);
7180 		return (ENOMEM);
7181 	}
7182 
7183 	/*
7184 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7185 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7186 	 */
7187 
7188 	/* Add the new IRE. */
7189 	error = ire_add(&ire, q, mp, func, B_FALSE);
7190 	if (error != 0) {
7191 		/*
7192 		 * In the result of failure, ire_add() will have already
7193 		 * deleted the ire in question, so there is no need to
7194 		 * do that here.
7195 		 */
7196 		ire_refrele(gw_ire);
7197 		return (error);
7198 	}
7199 
7200 	if (flags & RTF_MULTIRT) {
7201 		/*
7202 		 * Invoke the CGTP (multirouting) filtering module
7203 		 * to add the dst address in the filtering database.
7204 		 * Replicated inbound packets coming from that address
7205 		 * will be filtered to discard the duplicates.
7206 		 * It is not necessary to call the CGTP filter hook
7207 		 * when the dst address is a broadcast or multicast,
7208 		 * because an IP source address cannot be a broadcast
7209 		 * or a multicast.
7210 		 */
7211 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7212 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7213 		if (ire_dst != NULL) {
7214 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7215 			ire_refrele(ire_dst);
7216 			goto save_ire;
7217 		}
7218 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7219 		    !CLASSD(ire->ire_addr)) {
7220 			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7221 			    ipst->ips_netstack->netstack_stackid,
7222 			    ire->ire_addr,
7223 			    ire->ire_gateway_addr,
7224 			    ire->ire_src_addr,
7225 			    gw_ire->ire_src_addr);
7226 			if (res != 0) {
7227 				ire_refrele(gw_ire);
7228 				ire_delete(ire);
7229 				return (res);
7230 			}
7231 		}
7232 	}
7233 
7234 	/*
7235 	 * Now that the prefix IRE entry has been created, delete any
7236 	 * existing gateway IRE cache entries as well as any IRE caches
7237 	 * using the gateway, and force them to be created through
7238 	 * ip_newroute.
7239 	 */
7240 	if (gc != NULL) {
7241 		ASSERT(gcgrp != NULL);
7242 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7243 	}
7244 
7245 save_ire:
7246 	if (gw_ire != NULL) {
7247 		ire_refrele(gw_ire);
7248 	}
7249 	if (ipif != NULL) {
7250 		/*
7251 		 * Save enough information so that we can recreate the IRE if
7252 		 * the interface goes down and then up.  The metrics associated
7253 		 * with the route will be saved as well when rts_setmetrics() is
7254 		 * called after the IRE has been created.  In the case where
7255 		 * memory cannot be allocated, none of this information will be
7256 		 * saved.
7257 		 */
7258 		ipif_save_ire(ipif, ire);
7259 	}
7260 	if (ioctl_msg)
7261 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7262 	if (ire_arg != NULL) {
7263 		/*
7264 		 * Store the ire that was successfully added into where ire_arg
7265 		 * points to so that callers don't have to look it up
7266 		 * themselves (but they are responsible for ire_refrele()ing
7267 		 * the ire when they are finished with it).
7268 		 */
7269 		*ire_arg = ire;
7270 	} else {
7271 		ire_refrele(ire);		/* Held in ire_add */
7272 	}
7273 	if (ipif_refheld)
7274 		ipif_refrele(ipif);
7275 	return (0);
7276 }
7277 
7278 /*
7279  * ip_rt_delete is called to delete an IPv4 route.
7280  * ipif_arg is passed in to associate it with the correct interface.
7281  * We may need to restart this operation if the ipif cannot be looked up
7282  * due to an exclusive operation that is currently in progress. The restart
7283  * entry point is specified by 'func'
7284  */
7285 /* ARGSUSED4 */
7286 int
7287 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7288     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7289     queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7290 {
7291 	ire_t	*ire = NULL;
7292 	ipif_t	*ipif;
7293 	boolean_t ipif_refheld = B_FALSE;
7294 	uint_t	type;
7295 	uint_t	match_flags = MATCH_IRE_TYPE;
7296 	int	err = 0;
7297 
7298 	ip1dbg(("ip_rt_delete:"));
7299 	/*
7300 	 * If this is the case of RTF_HOST being set, then we set the netmask
7301 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7302 	 */
7303 	if (flags & RTF_HOST) {
7304 		mask = IP_HOST_MASK;
7305 		match_flags |= MATCH_IRE_MASK;
7306 	} else if (rtm_addrs & RTA_NETMASK) {
7307 		match_flags |= MATCH_IRE_MASK;
7308 	}
7309 
7310 	/*
7311 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7312 	 * we check if the gateway address is one of our interfaces first,
7313 	 * and fall back on RTF_GATEWAY routes.
7314 	 *
7315 	 * This makes it possible to delete an original
7316 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7317 	 *
7318 	 * As the interface index specified with the RTA_IFP sockaddr is the
7319 	 * same for all ipif's off of an ill, the matching logic below uses
7320 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7321 	 * sharing the same prefix and interface index as the the route
7322 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7323 	 * is specified in the request.
7324 	 *
7325 	 * On the other hand, since the gateway address will usually be
7326 	 * different for each ipif on the system, the matching logic
7327 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7328 	 * route.  This means that interface routes for the same prefix can be
7329 	 * uniquely identified if they belong to distinct ipif's and if a
7330 	 * RTA_IFP sockaddr is not present.
7331 	 *
7332 	 * For more detail on specifying routes by gateway address and by
7333 	 * interface index, see the comments in ip_rt_add().
7334 	 */
7335 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7336 	    ipst);
7337 	if (ipif != NULL)
7338 		ipif_refheld = B_TRUE;
7339 	else if (err == EINPROGRESS)
7340 		return (err);
7341 	else
7342 		err = 0;
7343 	if (ipif != NULL) {
7344 		if (ipif_arg != NULL) {
7345 			if (ipif_refheld) {
7346 				ipif_refrele(ipif);
7347 				ipif_refheld = B_FALSE;
7348 			}
7349 			ipif = ipif_arg;
7350 			match_flags |= MATCH_IRE_ILL;
7351 		} else {
7352 			match_flags |= MATCH_IRE_IPIF;
7353 		}
7354 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7355 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7356 			    ALL_ZONES, NULL, match_flags, ipst);
7357 		}
7358 		if (ire == NULL) {
7359 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7360 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7361 			    match_flags, ipst);
7362 		}
7363 	}
7364 
7365 	if (ire == NULL) {
7366 		/*
7367 		 * At this point, the gateway address is not one of our own
7368 		 * addresses or a matching interface route was not found.  We
7369 		 * set the IRE type to lookup based on whether
7370 		 * this is a host route, a default route or just a prefix.
7371 		 *
7372 		 * If an ipif_arg was passed in, then the lookup is based on an
7373 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7374 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7375 		 * set as the route being looked up is not a traditional
7376 		 * interface route.
7377 		 */
7378 		match_flags &= ~MATCH_IRE_IPIF;
7379 		match_flags |= MATCH_IRE_GW;
7380 		if (ipif_arg != NULL)
7381 			match_flags |= MATCH_IRE_ILL;
7382 		if (mask == IP_HOST_MASK)
7383 			type = IRE_HOST;
7384 		else if (mask == 0)
7385 			type = IRE_DEFAULT;
7386 		else
7387 			type = IRE_PREFIX;
7388 		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7389 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7390 	}
7391 
7392 	if (ipif_refheld)
7393 		ipif_refrele(ipif);
7394 
7395 	/* ipif is not refheld anymore */
7396 	if (ire == NULL)
7397 		return (ESRCH);
7398 
7399 	if (ire->ire_flags & RTF_MULTIRT) {
7400 		/*
7401 		 * Invoke the CGTP (multirouting) filtering module
7402 		 * to remove the dst address from the filtering database.
7403 		 * Packets coming from that address will no longer be
7404 		 * filtered to remove duplicates.
7405 		 */
7406 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7407 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7408 			    ipst->ips_netstack->netstack_stackid,
7409 			    ire->ire_addr, ire->ire_gateway_addr);
7410 		}
7411 		ip_cgtp_bcast_delete(ire, ipst);
7412 	}
7413 
7414 	ipif = ire->ire_ipif;
7415 	if (ipif != NULL)
7416 		ipif_remove_ire(ipif, ire);
7417 	if (ioctl_msg)
7418 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7419 	ire_delete(ire);
7420 	ire_refrele(ire);
7421 	return (err);
7422 }
7423 
7424 /*
7425  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7426  */
7427 /* ARGSUSED */
7428 int
7429 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7430     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7431 {
7432 	ipaddr_t dst_addr;
7433 	ipaddr_t gw_addr;
7434 	ipaddr_t mask;
7435 	int error = 0;
7436 	mblk_t *mp1;
7437 	struct rtentry *rt;
7438 	ipif_t *ipif = NULL;
7439 	ip_stack_t	*ipst;
7440 
7441 	ASSERT(q->q_next == NULL);
7442 	ipst = CONNQ_TO_IPST(q);
7443 
7444 	ip1dbg(("ip_siocaddrt:"));
7445 	/* Existence of mp1 verified in ip_wput_nondata */
7446 	mp1 = mp->b_cont->b_cont;
7447 	rt = (struct rtentry *)mp1->b_rptr;
7448 
7449 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7450 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7451 
7452 	/*
7453 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7454 	 * to a particular host address.  In this case, we set the netmask to
7455 	 * all ones for the particular destination address.  Otherwise,
7456 	 * determine the netmask to be used based on dst_addr and the interfaces
7457 	 * in use.
7458 	 */
7459 	if (rt->rt_flags & RTF_HOST) {
7460 		mask = IP_HOST_MASK;
7461 	} else {
7462 		/*
7463 		 * Note that ip_subnet_mask returns a zero mask in the case of
7464 		 * default (an all-zeroes address).
7465 		 */
7466 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7467 	}
7468 
7469 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7470 	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7471 	if (ipif != NULL)
7472 		ipif_refrele(ipif);
7473 	return (error);
7474 }
7475 
7476 /*
7477  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7478  */
7479 /* ARGSUSED */
7480 int
7481 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7482     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7483 {
7484 	ipaddr_t dst_addr;
7485 	ipaddr_t gw_addr;
7486 	ipaddr_t mask;
7487 	int error;
7488 	mblk_t *mp1;
7489 	struct rtentry *rt;
7490 	ipif_t *ipif = NULL;
7491 	ip_stack_t	*ipst;
7492 
7493 	ASSERT(q->q_next == NULL);
7494 	ipst = CONNQ_TO_IPST(q);
7495 
7496 	ip1dbg(("ip_siocdelrt:"));
7497 	/* Existence of mp1 verified in ip_wput_nondata */
7498 	mp1 = mp->b_cont->b_cont;
7499 	rt = (struct rtentry *)mp1->b_rptr;
7500 
7501 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7502 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7503 
7504 	/*
7505 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7506 	 * to a particular host address.  In this case, we set the netmask to
7507 	 * all ones for the particular destination address.  Otherwise,
7508 	 * determine the netmask to be used based on dst_addr and the interfaces
7509 	 * in use.
7510 	 */
7511 	if (rt->rt_flags & RTF_HOST) {
7512 		mask = IP_HOST_MASK;
7513 	} else {
7514 		/*
7515 		 * Note that ip_subnet_mask returns a zero mask in the case of
7516 		 * default (an all-zeroes address).
7517 		 */
7518 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7519 	}
7520 
7521 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7522 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7523 	    mp, ip_process_ioctl, ipst);
7524 	if (ipif != NULL)
7525 		ipif_refrele(ipif);
7526 	return (error);
7527 }
7528 
7529 /*
7530  * Enqueue the mp onto the ipsq, chained by b_next.
7531  * b_prev stores the function to be executed later, and b_queue the queue
7532  * where this mp originated.
7533  */
7534 void
7535 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7536     ill_t *pending_ill)
7537 {
7538 	conn_t	*connp = NULL;
7539 
7540 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7541 	ASSERT(func != NULL);
7542 
7543 	mp->b_queue = q;
7544 	mp->b_prev = (void *)func;
7545 	mp->b_next = NULL;
7546 
7547 	switch (type) {
7548 	case CUR_OP:
7549 		if (ipsq->ipsq_mptail != NULL) {
7550 			ASSERT(ipsq->ipsq_mphead != NULL);
7551 			ipsq->ipsq_mptail->b_next = mp;
7552 		} else {
7553 			ASSERT(ipsq->ipsq_mphead == NULL);
7554 			ipsq->ipsq_mphead = mp;
7555 		}
7556 		ipsq->ipsq_mptail = mp;
7557 		break;
7558 
7559 	case NEW_OP:
7560 		if (ipsq->ipsq_xopq_mptail != NULL) {
7561 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7562 			ipsq->ipsq_xopq_mptail->b_next = mp;
7563 		} else {
7564 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7565 			ipsq->ipsq_xopq_mphead = mp;
7566 		}
7567 		ipsq->ipsq_xopq_mptail = mp;
7568 		break;
7569 	default:
7570 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7571 	}
7572 
7573 	if (CONN_Q(q) && pending_ill != NULL) {
7574 		connp = Q_TO_CONN(q);
7575 
7576 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7577 		connp->conn_oper_pending_ill = pending_ill;
7578 	}
7579 }
7580 
7581 /*
7582  * Return the mp at the head of the ipsq. After emptying the ipsq
7583  * look at the next ioctl, if this ioctl is complete. Otherwise
7584  * return, we will resume when we complete the current ioctl.
7585  * The current ioctl will wait till it gets a response from the
7586  * driver below.
7587  */
7588 static mblk_t *
7589 ipsq_dq(ipsq_t *ipsq)
7590 {
7591 	mblk_t	*mp;
7592 
7593 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7594 
7595 	mp = ipsq->ipsq_mphead;
7596 	if (mp != NULL) {
7597 		ipsq->ipsq_mphead = mp->b_next;
7598 		if (ipsq->ipsq_mphead == NULL)
7599 			ipsq->ipsq_mptail = NULL;
7600 		mp->b_next = NULL;
7601 		return (mp);
7602 	}
7603 	if (ipsq->ipsq_current_ipif != NULL)
7604 		return (NULL);
7605 	mp = ipsq->ipsq_xopq_mphead;
7606 	if (mp != NULL) {
7607 		ipsq->ipsq_xopq_mphead = mp->b_next;
7608 		if (ipsq->ipsq_xopq_mphead == NULL)
7609 			ipsq->ipsq_xopq_mptail = NULL;
7610 		mp->b_next = NULL;
7611 		return (mp);
7612 	}
7613 	return (NULL);
7614 }
7615 
7616 /*
7617  * Enter the ipsq corresponding to ill, by waiting synchronously till
7618  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7619  * will have to drain completely before ipsq_enter returns success.
7620  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7621  * and the ipsq_exit logic will start the next enqueued ioctl after
7622  * completion of the current ioctl. If 'force' is used, we don't wait
7623  * for the enqueued ioctls. This is needed when a conn_close wants to
7624  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7625  * of an ill can also use this option. But we dont' use it currently.
7626  */
7627 #define	ENTER_SQ_WAIT_TICKS 100
7628 boolean_t
7629 ipsq_enter(ill_t *ill, boolean_t force)
7630 {
7631 	ipsq_t	*ipsq;
7632 	boolean_t waited_enough = B_FALSE;
7633 
7634 	/*
7635 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7636 	 * Since the <ill-ipsq> assocs could change while we wait for the
7637 	 * writer, it is easier to wait on a fixed global rather than try to
7638 	 * cv_wait on a changing ipsq.
7639 	 */
7640 	mutex_enter(&ill->ill_lock);
7641 	for (;;) {
7642 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7643 			mutex_exit(&ill->ill_lock);
7644 			return (B_FALSE);
7645 		}
7646 
7647 		ipsq = ill->ill_phyint->phyint_ipsq;
7648 		mutex_enter(&ipsq->ipsq_lock);
7649 		if (ipsq->ipsq_writer == NULL &&
7650 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7651 			break;
7652 		} else if (ipsq->ipsq_writer != NULL) {
7653 			mutex_exit(&ipsq->ipsq_lock);
7654 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7655 		} else {
7656 			mutex_exit(&ipsq->ipsq_lock);
7657 			if (force) {
7658 				(void) cv_timedwait(&ill->ill_cv,
7659 				    &ill->ill_lock,
7660 				    lbolt + ENTER_SQ_WAIT_TICKS);
7661 				waited_enough = B_TRUE;
7662 				continue;
7663 			} else {
7664 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7665 			}
7666 		}
7667 	}
7668 
7669 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7670 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7671 	ipsq->ipsq_writer = curthread;
7672 	ipsq->ipsq_reentry_cnt++;
7673 #ifdef DEBUG
7674 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH);
7675 #endif
7676 	mutex_exit(&ipsq->ipsq_lock);
7677 	mutex_exit(&ill->ill_lock);
7678 	return (B_TRUE);
7679 }
7680 
7681 /*
7682  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7683  * certain critical operations like plumbing (i.e. most set ioctls),
7684  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7685  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7686  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7687  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7688  * threads executing in the ipsq. Responses from the driver pertain to the
7689  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7690  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7691  *
7692  * If a thread does not want to reenter the ipsq when it is already writer,
7693  * it must make sure that the specified reentry point to be called later
7694  * when the ipsq is empty, nor any code path starting from the specified reentry
7695  * point must never ever try to enter the ipsq again. Otherwise it can lead
7696  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7697  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7698  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7699  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7700  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7701  * ioctl if the current ioctl has completed. If the current ioctl is still
7702  * in progress it simply returns. The current ioctl could be waiting for
7703  * a response from another module (arp_ or the driver or could be waiting for
7704  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7705  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7706  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7707  * ipsq_current_ipif is clear which happens only on ioctl completion.
7708  */
7709 
7710 /*
7711  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7712  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7713  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7714  * completion.
7715  */
7716 ipsq_t *
7717 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7718     ipsq_func_t func, int type, boolean_t reentry_ok)
7719 {
7720 	ipsq_t	*ipsq;
7721 
7722 	/* Only 1 of ipif or ill can be specified */
7723 	ASSERT((ipif != NULL) ^ (ill != NULL));
7724 	if (ipif != NULL)
7725 		ill = ipif->ipif_ill;
7726 
7727 	/*
7728 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7729 	 * ipsq of an ill can't change when ill_lock is held.
7730 	 */
7731 	GRAB_CONN_LOCK(q);
7732 	mutex_enter(&ill->ill_lock);
7733 	ipsq = ill->ill_phyint->phyint_ipsq;
7734 	mutex_enter(&ipsq->ipsq_lock);
7735 
7736 	/*
7737 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7738 	 *    (Note: If the caller does not specify reentry_ok then neither
7739 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7740 	 *    again. Otherwise it can lead to an infinite loop
7741 	 * 2. Enter the ipsq if there is no current writer and this attempted
7742 	 *    entry is part of the current ioctl or operation
7743 	 * 3. Enter the ipsq if there is no current writer and this is a new
7744 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7745 	 *    empty and there is no ioctl (or operation) currently in progress
7746 	 */
7747 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7748 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7749 	    ipsq->ipsq_current_ipif == NULL))) ||
7750 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7751 		/* Success. */
7752 		ipsq->ipsq_reentry_cnt++;
7753 		ipsq->ipsq_writer = curthread;
7754 		mutex_exit(&ipsq->ipsq_lock);
7755 		mutex_exit(&ill->ill_lock);
7756 		RELEASE_CONN_LOCK(q);
7757 #ifdef DEBUG
7758 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack,
7759 		    IPSQ_STACK_DEPTH);
7760 #endif
7761 		return (ipsq);
7762 	}
7763 
7764 	ipsq_enq(ipsq, q, mp, func, type, ill);
7765 
7766 	mutex_exit(&ipsq->ipsq_lock);
7767 	mutex_exit(&ill->ill_lock);
7768 	RELEASE_CONN_LOCK(q);
7769 	return (NULL);
7770 }
7771 
7772 /*
7773  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7774  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7775  * cannot be entered, the mp is queued for completion.
7776  */
7777 void
7778 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7779     boolean_t reentry_ok)
7780 {
7781 	ipsq_t	*ipsq;
7782 
7783 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7784 
7785 	/*
7786 	 * Drop the caller's refhold on the ill.  This is safe since we either
7787 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7788 	 * IPSQ, in which case we return without accessing ill anymore.  This
7789 	 * is needed because func needs to see the correct refcount.
7790 	 * e.g. removeif can work only then.
7791 	 */
7792 	ill_refrele(ill);
7793 	if (ipsq != NULL) {
7794 		(*func)(ipsq, q, mp, NULL);
7795 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7796 	}
7797 }
7798 
7799 /*
7800  * If there are more than ILL_GRP_CNT ills in a group,
7801  * we use kmem alloc'd buffers, else use the stack
7802  */
7803 #define	ILL_GRP_CNT	14
7804 /*
7805  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7806  * Called by a thread that is currently exclusive on this ipsq.
7807  */
7808 void
7809 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7810 {
7811 	queue_t	*q;
7812 	mblk_t	*mp;
7813 	ipsq_func_t	func;
7814 	int	next;
7815 	ill_t	**ill_list = NULL;
7816 	size_t	ill_list_size = 0;
7817 	int	cnt = 0;
7818 	boolean_t need_ipsq_free = B_FALSE;
7819 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
7820 
7821 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7822 	mutex_enter(&ipsq->ipsq_lock);
7823 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7824 	if (ipsq->ipsq_reentry_cnt != 1) {
7825 		ipsq->ipsq_reentry_cnt--;
7826 		mutex_exit(&ipsq->ipsq_lock);
7827 		return;
7828 	}
7829 
7830 	mp = ipsq_dq(ipsq);
7831 	while (mp != NULL) {
7832 again:
7833 		mutex_exit(&ipsq->ipsq_lock);
7834 		func = (ipsq_func_t)mp->b_prev;
7835 		q = (queue_t *)mp->b_queue;
7836 		mp->b_prev = NULL;
7837 		mp->b_queue = NULL;
7838 
7839 		/*
7840 		 * If 'q' is an conn queue, it is valid, since we did a
7841 		 * a refhold on the connp, at the start of the ioctl.
7842 		 * If 'q' is an ill queue, it is valid, since close of an
7843 		 * ill will clean up the 'ipsq'.
7844 		 */
7845 		(*func)(ipsq, q, mp, NULL);
7846 
7847 		mutex_enter(&ipsq->ipsq_lock);
7848 		mp = ipsq_dq(ipsq);
7849 	}
7850 
7851 	mutex_exit(&ipsq->ipsq_lock);
7852 
7853 	/*
7854 	 * Need to grab the locks in the right order. Need to
7855 	 * atomically check (under ipsq_lock) that there are no
7856 	 * messages before relinquishing the ipsq. Also need to
7857 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7858 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7859 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7860 	 * to grab ill_g_lock as writer.
7861 	 */
7862 	rw_enter(&ipst->ips_ill_g_lock,
7863 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
7864 
7865 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7866 	if (ipsq->ipsq_refs != 0) {
7867 		/* At most 2 ills v4/v6 per phyint */
7868 		cnt = ipsq->ipsq_refs << 1;
7869 		ill_list_size = cnt * sizeof (ill_t *);
7870 		/*
7871 		 * If memory allocation fails, we will do the split
7872 		 * the next time ipsq_exit is called for whatever reason.
7873 		 * As long as the ipsq_split flag is set the need to
7874 		 * split is remembered.
7875 		 */
7876 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7877 		if (ill_list != NULL)
7878 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7879 	}
7880 	mutex_enter(&ipsq->ipsq_lock);
7881 	mp = ipsq_dq(ipsq);
7882 	if (mp != NULL) {
7883 		/* oops, some message has landed up, we can't get out */
7884 		if (ill_list != NULL)
7885 			ill_unlock_ills(ill_list, cnt);
7886 		rw_exit(&ipst->ips_ill_g_lock);
7887 		if (ill_list != NULL)
7888 			kmem_free(ill_list, ill_list_size);
7889 		ill_list = NULL;
7890 		ill_list_size = 0;
7891 		cnt = 0;
7892 		goto again;
7893 	}
7894 
7895 	/*
7896 	 * Split only if no ioctl is pending and if memory alloc succeeded
7897 	 * above.
7898 	 */
7899 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7900 	    ill_list != NULL) {
7901 		/*
7902 		 * No new ill can join this ipsq since we are holding the
7903 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7904 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7905 		 * If so we will retry on the next ipsq_exit.
7906 		 */
7907 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7908 	}
7909 
7910 	/*
7911 	 * We are holding the ipsq lock, hence no new messages can
7912 	 * land up on the ipsq, and there are no messages currently.
7913 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7914 	 * atomically while holding ill locks.
7915 	 */
7916 	ipsq->ipsq_writer = NULL;
7917 	ipsq->ipsq_reentry_cnt--;
7918 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7919 #ifdef DEBUG
7920 	ipsq->ipsq_depth = 0;
7921 #endif
7922 	mutex_exit(&ipsq->ipsq_lock);
7923 	/*
7924 	 * For IPMP this should wake up all ills in this ipsq.
7925 	 * We need to hold the ill_lock while waking up waiters to
7926 	 * avoid missed wakeups. But there is no need to acquire all
7927 	 * the ill locks and then wakeup. If we have not acquired all
7928 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7929 	 * wakes up ills one at a time after getting the right ill_lock
7930 	 */
7931 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7932 	if (ill_list != NULL)
7933 		ill_unlock_ills(ill_list, cnt);
7934 	if (ipsq->ipsq_refs == 0)
7935 		need_ipsq_free = B_TRUE;
7936 	rw_exit(&ipst->ips_ill_g_lock);
7937 	if (ill_list != 0)
7938 		kmem_free(ill_list, ill_list_size);
7939 
7940 	if (need_ipsq_free) {
7941 		/*
7942 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7943 		 * looked up. ipsq can be looked up only thru ill or phyint
7944 		 * and there are no ills/phyint on this ipsq.
7945 		 */
7946 		ipsq_delete(ipsq);
7947 	}
7948 	/*
7949 	 * Now start any igmp or mld timers that could not be started
7950 	 * while inside the ipsq. The timers can't be started while inside
7951 	 * the ipsq, since igmp_start_timers may need to call untimeout()
7952 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7953 	 * there could be a deadlock since the timeout handlers
7954 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
7955 	 * wait in ipsq_enter() trying to get the ipsq.
7956 	 *
7957 	 * However there is one exception to the above. If this thread is
7958 	 * itself the igmp/mld timeout handler thread, then we don't want
7959 	 * to start any new timer until the current handler is done. The
7960 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7961 	 * all others pass B_TRUE.
7962 	 */
7963 	if (start_igmp_timer) {
7964 		mutex_enter(&ipst->ips_igmp_timer_lock);
7965 		next = ipst->ips_igmp_deferred_next;
7966 		ipst->ips_igmp_deferred_next = INFINITY;
7967 		mutex_exit(&ipst->ips_igmp_timer_lock);
7968 
7969 		if (next != INFINITY)
7970 			igmp_start_timers(next, ipst);
7971 	}
7972 
7973 	if (start_mld_timer) {
7974 		mutex_enter(&ipst->ips_mld_timer_lock);
7975 		next = ipst->ips_mld_deferred_next;
7976 		ipst->ips_mld_deferred_next = INFINITY;
7977 		mutex_exit(&ipst->ips_mld_timer_lock);
7978 
7979 		if (next != INFINITY)
7980 			mld_start_timers(next, ipst);
7981 	}
7982 }
7983 
7984 /*
7985  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7986  * and `ioccmd'.
7987  */
7988 void
7989 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7990 {
7991 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7992 
7993 	mutex_enter(&ipsq->ipsq_lock);
7994 	ASSERT(ipsq->ipsq_current_ipif == NULL);
7995 	ASSERT(ipsq->ipsq_current_ioctl == 0);
7996 	ipsq->ipsq_current_ipif = ipif;
7997 	ipsq->ipsq_current_ioctl = ioccmd;
7998 	mutex_exit(&ipsq->ipsq_lock);
7999 }
8000 
8001 /*
8002  * Finish the current exclusive operation on `ipsq'.  Note that other
8003  * operations will not be able to proceed until an ipsq_exit() is done.
8004  */
8005 void
8006 ipsq_current_finish(ipsq_t *ipsq)
8007 {
8008 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8009 
8010 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8011 
8012 	/*
8013 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8014 	 * (but we're careful to never set IPIF_CHANGING in that case).
8015 	 */
8016 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8017 		mutex_enter(&ipif->ipif_ill->ill_lock);
8018 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8019 
8020 		/* Send any queued event */
8021 		ill_nic_info_dispatch(ipif->ipif_ill);
8022 		mutex_exit(&ipif->ipif_ill->ill_lock);
8023 	}
8024 
8025 	mutex_enter(&ipsq->ipsq_lock);
8026 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8027 	ipsq->ipsq_current_ipif = NULL;
8028 	ipsq->ipsq_current_ioctl = 0;
8029 	mutex_exit(&ipsq->ipsq_lock);
8030 }
8031 
8032 /*
8033  * The ill is closing. Flush all messages on the ipsq that originated
8034  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8035  * for this ill since ipsq_enter could not have entered until then.
8036  * New messages can't be queued since the CONDEMNED flag is set.
8037  */
8038 static void
8039 ipsq_flush(ill_t *ill)
8040 {
8041 	queue_t	*q;
8042 	mblk_t	*prev;
8043 	mblk_t	*mp;
8044 	mblk_t	*mp_next;
8045 	ipsq_t	*ipsq;
8046 
8047 	ASSERT(IAM_WRITER_ILL(ill));
8048 	ipsq = ill->ill_phyint->phyint_ipsq;
8049 	/*
8050 	 * Flush any messages sent up by the driver.
8051 	 */
8052 	mutex_enter(&ipsq->ipsq_lock);
8053 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8054 		mp_next = mp->b_next;
8055 		q = mp->b_queue;
8056 		if (q == ill->ill_rq || q == ill->ill_wq) {
8057 			/* Remove the mp from the ipsq */
8058 			if (prev == NULL)
8059 				ipsq->ipsq_mphead = mp->b_next;
8060 			else
8061 				prev->b_next = mp->b_next;
8062 			if (ipsq->ipsq_mptail == mp) {
8063 				ASSERT(mp_next == NULL);
8064 				ipsq->ipsq_mptail = prev;
8065 			}
8066 			inet_freemsg(mp);
8067 		} else {
8068 			prev = mp;
8069 		}
8070 	}
8071 	mutex_exit(&ipsq->ipsq_lock);
8072 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8073 	ipsq_xopq_mp_cleanup(ill, NULL);
8074 	ill_pending_mp_cleanup(ill);
8075 }
8076 
8077 /* ARGSUSED */
8078 int
8079 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8080     ip_ioctl_cmd_t *ipip, void *ifreq)
8081 {
8082 	ill_t	*ill;
8083 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8084 	boolean_t isv6;
8085 	conn_t	*connp;
8086 	ip_stack_t	*ipst;
8087 
8088 	connp = Q_TO_CONN(q);
8089 	ipst = connp->conn_netstack->netstack_ip;
8090 	isv6 = connp->conn_af_isv6;
8091 	/*
8092 	 * Set original index.
8093 	 * Failover and failback move logical interfaces
8094 	 * from one physical interface to another.  The
8095 	 * original index indicates the parent of a logical
8096 	 * interface, in other words, the physical interface
8097 	 * the logical interface will be moved back to on
8098 	 * failback.
8099 	 */
8100 
8101 	/*
8102 	 * Don't allow the original index to be changed
8103 	 * for non-failover addresses, autoconfigured
8104 	 * addresses, or IPv6 link local addresses.
8105 	 */
8106 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8107 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8108 		return (EINVAL);
8109 	}
8110 	/*
8111 	 * The new original index must be in use by some
8112 	 * physical interface.
8113 	 */
8114 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8115 	    NULL, NULL, ipst);
8116 	if (ill == NULL)
8117 		return (ENXIO);
8118 	ill_refrele(ill);
8119 
8120 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8121 	/*
8122 	 * When this ipif gets failed back, don't
8123 	 * preserve the original id, as it is no
8124 	 * longer applicable.
8125 	 */
8126 	ipif->ipif_orig_ipifid = 0;
8127 	/*
8128 	 * For IPv4, change the original index of any
8129 	 * multicast addresses associated with the
8130 	 * ipif to the new value.
8131 	 */
8132 	if (!isv6) {
8133 		ilm_t *ilm;
8134 
8135 		mutex_enter(&ipif->ipif_ill->ill_lock);
8136 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8137 		    ilm = ilm->ilm_next) {
8138 			if (ilm->ilm_ipif == ipif) {
8139 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8140 			}
8141 		}
8142 		mutex_exit(&ipif->ipif_ill->ill_lock);
8143 	}
8144 	return (0);
8145 }
8146 
8147 /* ARGSUSED */
8148 int
8149 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8150     ip_ioctl_cmd_t *ipip, void *ifreq)
8151 {
8152 	struct lifreq *lifr = (struct lifreq *)ifreq;
8153 
8154 	/*
8155 	 * Get the original interface index i.e the one
8156 	 * before FAILOVER if it ever happened.
8157 	 */
8158 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8159 	return (0);
8160 }
8161 
8162 /*
8163  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8164  * refhold and return the associated ipif
8165  */
8166 /* ARGSUSED */
8167 int
8168 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8169     cmd_info_t *ci, ipsq_func_t func)
8170 {
8171 	boolean_t exists;
8172 	struct iftun_req *ta;
8173 	ipif_t	*ipif;
8174 	ill_t	*ill;
8175 	boolean_t isv6;
8176 	mblk_t	*mp1;
8177 	int	error;
8178 	conn_t	*connp;
8179 	ip_stack_t	*ipst;
8180 
8181 	/* Existence verified in ip_wput_nondata */
8182 	mp1 = mp->b_cont->b_cont;
8183 	ta = (struct iftun_req *)mp1->b_rptr;
8184 	/*
8185 	 * Null terminate the string to protect against buffer
8186 	 * overrun. String was generated by user code and may not
8187 	 * be trusted.
8188 	 */
8189 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8190 
8191 	connp = Q_TO_CONN(q);
8192 	isv6 = connp->conn_af_isv6;
8193 	ipst = connp->conn_netstack->netstack_ip;
8194 
8195 	/* Disallows implicit create */
8196 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8197 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8198 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8199 	if (ipif == NULL)
8200 		return (error);
8201 
8202 	if (ipif->ipif_id != 0) {
8203 		/*
8204 		 * We really don't want to set/get tunnel parameters
8205 		 * on virtual tunnel interfaces.  Only allow the
8206 		 * base tunnel to do these.
8207 		 */
8208 		ipif_refrele(ipif);
8209 		return (EINVAL);
8210 	}
8211 
8212 	/*
8213 	 * Send down to tunnel mod for ioctl processing.
8214 	 * Will finish ioctl in ip_rput_other().
8215 	 */
8216 	ill = ipif->ipif_ill;
8217 	if (ill->ill_net_type == IRE_LOOPBACK) {
8218 		ipif_refrele(ipif);
8219 		return (EOPNOTSUPP);
8220 	}
8221 
8222 	if (ill->ill_wq == NULL) {
8223 		ipif_refrele(ipif);
8224 		return (ENXIO);
8225 	}
8226 	/*
8227 	 * Mark the ioctl as coming from an IPv6 interface for
8228 	 * tun's convenience.
8229 	 */
8230 	if (ill->ill_isv6)
8231 		ta->ifta_flags |= 0x80000000;
8232 	ci->ci_ipif = ipif;
8233 	return (0);
8234 }
8235 
8236 /*
8237  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8238  * and return the associated ipif.
8239  * Return value:
8240  *	Non zero: An error has occurred. ci may not be filled out.
8241  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8242  *	a held ipif in ci.ci_ipif.
8243  */
8244 int
8245 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8246     cmd_info_t *ci, ipsq_func_t func)
8247 {
8248 	sin_t		*sin;
8249 	sin6_t		*sin6;
8250 	char		*name;
8251 	struct ifreq    *ifr;
8252 	struct lifreq    *lifr;
8253 	ipif_t		*ipif = NULL;
8254 	ill_t		*ill;
8255 	conn_t		*connp;
8256 	boolean_t	isv6;
8257 	boolean_t	exists;
8258 	int		err;
8259 	mblk_t		*mp1;
8260 	zoneid_t	zoneid;
8261 	ip_stack_t	*ipst;
8262 
8263 	if (q->q_next != NULL) {
8264 		ill = (ill_t *)q->q_ptr;
8265 		isv6 = ill->ill_isv6;
8266 		connp = NULL;
8267 		zoneid = ALL_ZONES;
8268 		ipst = ill->ill_ipst;
8269 	} else {
8270 		ill = NULL;
8271 		connp = Q_TO_CONN(q);
8272 		isv6 = connp->conn_af_isv6;
8273 		zoneid = connp->conn_zoneid;
8274 		if (zoneid == GLOBAL_ZONEID) {
8275 			/* global zone can access ipifs in all zones */
8276 			zoneid = ALL_ZONES;
8277 		}
8278 		ipst = connp->conn_netstack->netstack_ip;
8279 	}
8280 
8281 	/* Has been checked in ip_wput_nondata */
8282 	mp1 = mp->b_cont->b_cont;
8283 
8284 	if (ipip->ipi_cmd_type == IF_CMD) {
8285 		/* This a old style SIOC[GS]IF* command */
8286 		ifr = (struct ifreq *)mp1->b_rptr;
8287 		/*
8288 		 * Null terminate the string to protect against buffer
8289 		 * overrun. String was generated by user code and may not
8290 		 * be trusted.
8291 		 */
8292 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8293 		sin = (sin_t *)&ifr->ifr_addr;
8294 		name = ifr->ifr_name;
8295 		ci->ci_sin = sin;
8296 		ci->ci_sin6 = NULL;
8297 		ci->ci_lifr = (struct lifreq *)ifr;
8298 	} else {
8299 		/* This a new style SIOC[GS]LIF* command */
8300 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8301 		lifr = (struct lifreq *)mp1->b_rptr;
8302 		/*
8303 		 * Null terminate the string to protect against buffer
8304 		 * overrun. String was generated by user code and may not
8305 		 * be trusted.
8306 		 */
8307 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8308 		name = lifr->lifr_name;
8309 		sin = (sin_t *)&lifr->lifr_addr;
8310 		sin6 = (sin6_t *)&lifr->lifr_addr;
8311 		if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) {
8312 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8313 			    LIFNAMSIZ);
8314 		}
8315 		ci->ci_sin = sin;
8316 		ci->ci_sin6 = sin6;
8317 		ci->ci_lifr = lifr;
8318 	}
8319 
8320 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8321 		/*
8322 		 * The ioctl will be failed if the ioctl comes down
8323 		 * an conn stream
8324 		 */
8325 		if (ill == NULL) {
8326 			/*
8327 			 * Not an ill queue, return EINVAL same as the
8328 			 * old error code.
8329 			 */
8330 			return (ENXIO);
8331 		}
8332 		ipif = ill->ill_ipif;
8333 		ipif_refhold(ipif);
8334 	} else {
8335 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8336 		    &exists, isv6, zoneid,
8337 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8338 		    ipst);
8339 		if (ipif == NULL) {
8340 			if (err == EINPROGRESS)
8341 				return (err);
8342 			if (ipip->ipi_cmd == SIOCLIFFAILOVER ||
8343 			    ipip->ipi_cmd == SIOCLIFFAILBACK) {
8344 				/*
8345 				 * Need to try both v4 and v6 since this
8346 				 * ioctl can come down either v4 or v6
8347 				 * socket. The lifreq.lifr_family passed
8348 				 * down by this ioctl is AF_UNSPEC.
8349 				 */
8350 				ipif = ipif_lookup_on_name(name,
8351 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8352 				    zoneid, (connp == NULL) ? q :
8353 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8354 				if (err == EINPROGRESS)
8355 					return (err);
8356 			}
8357 			err = 0;	/* Ensure we don't use it below */
8358 		}
8359 	}
8360 
8361 	/*
8362 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8363 	 */
8364 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8365 		ipif_refrele(ipif);
8366 		return (ENXIO);
8367 	}
8368 
8369 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8370 	    name[0] == '\0') {
8371 		/*
8372 		 * Handle a or a SIOC?IF* with a null name
8373 		 * during plumb (on the ill queue before the I_PLINK).
8374 		 */
8375 		ipif = ill->ill_ipif;
8376 		ipif_refhold(ipif);
8377 	}
8378 
8379 	if (ipif == NULL)
8380 		return (ENXIO);
8381 
8382 	/*
8383 	 * Allow only GET operations if this ipif has been created
8384 	 * temporarily due to a MOVE operation.
8385 	 */
8386 	if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) {
8387 		ipif_refrele(ipif);
8388 		return (EINVAL);
8389 	}
8390 
8391 	ci->ci_ipif = ipif;
8392 	return (0);
8393 }
8394 
8395 /*
8396  * Return the total number of ipifs.
8397  */
8398 static uint_t
8399 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8400 {
8401 	uint_t numifs = 0;
8402 	ill_t	*ill;
8403 	ill_walk_context_t	ctx;
8404 	ipif_t	*ipif;
8405 
8406 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8407 	ill = ILL_START_WALK_V4(&ctx, ipst);
8408 
8409 	while (ill != NULL) {
8410 		for (ipif = ill->ill_ipif; ipif != NULL;
8411 		    ipif = ipif->ipif_next) {
8412 			if (ipif->ipif_zoneid == zoneid ||
8413 			    ipif->ipif_zoneid == ALL_ZONES)
8414 				numifs++;
8415 		}
8416 		ill = ill_next(&ctx, ill);
8417 	}
8418 	rw_exit(&ipst->ips_ill_g_lock);
8419 	return (numifs);
8420 }
8421 
8422 /*
8423  * Return the total number of ipifs.
8424  */
8425 static uint_t
8426 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8427 {
8428 	uint_t numifs = 0;
8429 	ill_t	*ill;
8430 	ipif_t	*ipif;
8431 	ill_walk_context_t	ctx;
8432 
8433 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8434 
8435 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8436 	if (family == AF_INET)
8437 		ill = ILL_START_WALK_V4(&ctx, ipst);
8438 	else if (family == AF_INET6)
8439 		ill = ILL_START_WALK_V6(&ctx, ipst);
8440 	else
8441 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8442 
8443 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8444 		for (ipif = ill->ill_ipif; ipif != NULL;
8445 		    ipif = ipif->ipif_next) {
8446 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8447 			    !(lifn_flags & LIFC_NOXMIT))
8448 				continue;
8449 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8450 			    !(lifn_flags & LIFC_TEMPORARY))
8451 				continue;
8452 			if (((ipif->ipif_flags &
8453 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8454 			    IPIF_DEPRECATED)) ||
8455 			    IS_LOOPBACK(ill) ||
8456 			    !(ipif->ipif_flags & IPIF_UP)) &&
8457 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8458 				continue;
8459 
8460 			if (zoneid != ipif->ipif_zoneid &&
8461 			    ipif->ipif_zoneid != ALL_ZONES &&
8462 			    (zoneid != GLOBAL_ZONEID ||
8463 			    !(lifn_flags & LIFC_ALLZONES)))
8464 				continue;
8465 
8466 			numifs++;
8467 		}
8468 	}
8469 	rw_exit(&ipst->ips_ill_g_lock);
8470 	return (numifs);
8471 }
8472 
8473 uint_t
8474 ip_get_lifsrcofnum(ill_t *ill)
8475 {
8476 	uint_t numifs = 0;
8477 	ill_t	*ill_head = ill;
8478 	ip_stack_t	*ipst = ill->ill_ipst;
8479 
8480 	/*
8481 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8482 	 * other thread may be trying to relink the ILLs in this usesrc group
8483 	 * and adjusting the ill_usesrc_grp_next pointers
8484 	 */
8485 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8486 	if ((ill->ill_usesrc_ifindex == 0) &&
8487 	    (ill->ill_usesrc_grp_next != NULL)) {
8488 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8489 		    ill = ill->ill_usesrc_grp_next)
8490 			numifs++;
8491 	}
8492 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8493 
8494 	return (numifs);
8495 }
8496 
8497 /* Null values are passed in for ipif, sin, and ifreq */
8498 /* ARGSUSED */
8499 int
8500 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8501     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8502 {
8503 	int *nump;
8504 	conn_t *connp = Q_TO_CONN(q);
8505 
8506 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8507 
8508 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8509 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8510 
8511 	*nump = ip_get_numifs(connp->conn_zoneid,
8512 	    connp->conn_netstack->netstack_ip);
8513 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8514 	return (0);
8515 }
8516 
8517 /* Null values are passed in for ipif, sin, and ifreq */
8518 /* ARGSUSED */
8519 int
8520 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8521     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8522 {
8523 	struct lifnum *lifn;
8524 	mblk_t	*mp1;
8525 	conn_t *connp = Q_TO_CONN(q);
8526 
8527 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8528 
8529 	/* Existence checked in ip_wput_nondata */
8530 	mp1 = mp->b_cont->b_cont;
8531 
8532 	lifn = (struct lifnum *)mp1->b_rptr;
8533 	switch (lifn->lifn_family) {
8534 	case AF_UNSPEC:
8535 	case AF_INET:
8536 	case AF_INET6:
8537 		break;
8538 	default:
8539 		return (EAFNOSUPPORT);
8540 	}
8541 
8542 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8543 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8544 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8545 	return (0);
8546 }
8547 
8548 /* ARGSUSED */
8549 int
8550 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8551     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8552 {
8553 	STRUCT_HANDLE(ifconf, ifc);
8554 	mblk_t *mp1;
8555 	struct iocblk *iocp;
8556 	struct ifreq *ifr;
8557 	ill_walk_context_t	ctx;
8558 	ill_t	*ill;
8559 	ipif_t	*ipif;
8560 	struct sockaddr_in *sin;
8561 	int32_t	ifclen;
8562 	zoneid_t zoneid;
8563 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8564 
8565 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8566 
8567 	ip1dbg(("ip_sioctl_get_ifconf"));
8568 	/* Existence verified in ip_wput_nondata */
8569 	mp1 = mp->b_cont->b_cont;
8570 	iocp = (struct iocblk *)mp->b_rptr;
8571 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8572 
8573 	/*
8574 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8575 	 * the user buffer address and length into which the list of struct
8576 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8577 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8578 	 * the SIOCGIFCONF operation was redefined to simply provide
8579 	 * a large output buffer into which we are supposed to jam the ifreq
8580 	 * array.  The same ioctl command code was used, despite the fact that
8581 	 * both the applications and the kernel code had to change, thus making
8582 	 * it impossible to support both interfaces.
8583 	 *
8584 	 * For reasons not good enough to try to explain, the following
8585 	 * algorithm is used for deciding what to do with one of these:
8586 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8587 	 * form with the output buffer coming down as the continuation message.
8588 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8589 	 * and we have to copy in the ifconf structure to find out how big the
8590 	 * output buffer is and where to copy out to.  Sure no problem...
8591 	 *
8592 	 */
8593 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8594 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8595 		int numifs = 0;
8596 		size_t ifc_bufsize;
8597 
8598 		/*
8599 		 * Must be (better be!) continuation of a TRANSPARENT
8600 		 * IOCTL.  We just copied in the ifconf structure.
8601 		 */
8602 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8603 		    (struct ifconf *)mp1->b_rptr);
8604 
8605 		/*
8606 		 * Allocate a buffer to hold requested information.
8607 		 *
8608 		 * If ifc_len is larger than what is needed, we only
8609 		 * allocate what we will use.
8610 		 *
8611 		 * If ifc_len is smaller than what is needed, return
8612 		 * EINVAL.
8613 		 *
8614 		 * XXX: the ill_t structure can hava 2 counters, for
8615 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8616 		 * number of interfaces for a device, so we don't need
8617 		 * to count them here...
8618 		 */
8619 		numifs = ip_get_numifs(zoneid, ipst);
8620 
8621 		ifclen = STRUCT_FGET(ifc, ifc_len);
8622 		ifc_bufsize = numifs * sizeof (struct ifreq);
8623 		if (ifc_bufsize > ifclen) {
8624 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8625 				/* old behaviour */
8626 				return (EINVAL);
8627 			} else {
8628 				ifc_bufsize = ifclen;
8629 			}
8630 		}
8631 
8632 		mp1 = mi_copyout_alloc(q, mp,
8633 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8634 		if (mp1 == NULL)
8635 			return (ENOMEM);
8636 
8637 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8638 	}
8639 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8640 	/*
8641 	 * the SIOCGIFCONF ioctl only knows about
8642 	 * IPv4 addresses, so don't try to tell
8643 	 * it about interfaces with IPv6-only
8644 	 * addresses. (Last parm 'isv6' is B_FALSE)
8645 	 */
8646 
8647 	ifr = (struct ifreq *)mp1->b_rptr;
8648 
8649 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8650 	ill = ILL_START_WALK_V4(&ctx, ipst);
8651 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8652 		for (ipif = ill->ill_ipif; ipif != NULL;
8653 		    ipif = ipif->ipif_next) {
8654 			if (zoneid != ipif->ipif_zoneid &&
8655 			    ipif->ipif_zoneid != ALL_ZONES)
8656 				continue;
8657 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8658 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8659 					/* old behaviour */
8660 					rw_exit(&ipst->ips_ill_g_lock);
8661 					return (EINVAL);
8662 				} else {
8663 					goto if_copydone;
8664 				}
8665 			}
8666 			ipif_get_name(ipif, ifr->ifr_name,
8667 			    sizeof (ifr->ifr_name));
8668 			sin = (sin_t *)&ifr->ifr_addr;
8669 			*sin = sin_null;
8670 			sin->sin_family = AF_INET;
8671 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8672 			ifr++;
8673 		}
8674 	}
8675 if_copydone:
8676 	rw_exit(&ipst->ips_ill_g_lock);
8677 	mp1->b_wptr = (uchar_t *)ifr;
8678 
8679 	if (STRUCT_BUF(ifc) != NULL) {
8680 		STRUCT_FSET(ifc, ifc_len,
8681 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8682 	}
8683 	return (0);
8684 }
8685 
8686 /*
8687  * Get the interfaces using the address hosted on the interface passed in,
8688  * as a source adddress
8689  */
8690 /* ARGSUSED */
8691 int
8692 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8693     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8694 {
8695 	mblk_t *mp1;
8696 	ill_t	*ill, *ill_head;
8697 	ipif_t	*ipif, *orig_ipif;
8698 	int	numlifs = 0;
8699 	size_t	lifs_bufsize, lifsmaxlen;
8700 	struct	lifreq *lifr;
8701 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8702 	uint_t	ifindex;
8703 	zoneid_t zoneid;
8704 	int err = 0;
8705 	boolean_t isv6 = B_FALSE;
8706 	struct	sockaddr_in	*sin;
8707 	struct	sockaddr_in6	*sin6;
8708 	STRUCT_HANDLE(lifsrcof, lifs);
8709 	ip_stack_t		*ipst;
8710 
8711 	ipst = CONNQ_TO_IPST(q);
8712 
8713 	ASSERT(q->q_next == NULL);
8714 
8715 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8716 
8717 	/* Existence verified in ip_wput_nondata */
8718 	mp1 = mp->b_cont->b_cont;
8719 
8720 	/*
8721 	 * Must be (better be!) continuation of a TRANSPARENT
8722 	 * IOCTL.  We just copied in the lifsrcof structure.
8723 	 */
8724 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8725 	    (struct lifsrcof *)mp1->b_rptr);
8726 
8727 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8728 		return (EINVAL);
8729 
8730 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8731 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8732 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8733 	    ip_process_ioctl, &err, ipst);
8734 	if (ipif == NULL) {
8735 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8736 		    ifindex));
8737 		return (err);
8738 	}
8739 
8740 
8741 	/* Allocate a buffer to hold requested information */
8742 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8743 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8744 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8745 	/* The actual size needed is always returned in lifs_len */
8746 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8747 
8748 	/* If the amount we need is more than what is passed in, abort */
8749 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8750 		ipif_refrele(ipif);
8751 		return (0);
8752 	}
8753 
8754 	mp1 = mi_copyout_alloc(q, mp,
8755 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8756 	if (mp1 == NULL) {
8757 		ipif_refrele(ipif);
8758 		return (ENOMEM);
8759 	}
8760 
8761 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8762 	bzero(mp1->b_rptr, lifs_bufsize);
8763 
8764 	lifr = (struct lifreq *)mp1->b_rptr;
8765 
8766 	ill = ill_head = ipif->ipif_ill;
8767 	orig_ipif = ipif;
8768 
8769 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8770 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8771 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8772 
8773 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8774 	for (; (ill != NULL) && (ill != ill_head);
8775 	    ill = ill->ill_usesrc_grp_next) {
8776 
8777 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8778 			break;
8779 
8780 		ipif = ill->ill_ipif;
8781 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8782 		if (ipif->ipif_isv6) {
8783 			sin6 = (sin6_t *)&lifr->lifr_addr;
8784 			*sin6 = sin6_null;
8785 			sin6->sin6_family = AF_INET6;
8786 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8787 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8788 			    &ipif->ipif_v6net_mask);
8789 		} else {
8790 			sin = (sin_t *)&lifr->lifr_addr;
8791 			*sin = sin_null;
8792 			sin->sin_family = AF_INET;
8793 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8794 			lifr->lifr_addrlen = ip_mask_to_plen(
8795 			    ipif->ipif_net_mask);
8796 		}
8797 		lifr++;
8798 	}
8799 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8800 	rw_exit(&ipst->ips_ill_g_lock);
8801 	ipif_refrele(orig_ipif);
8802 	mp1->b_wptr = (uchar_t *)lifr;
8803 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8804 
8805 	return (0);
8806 }
8807 
8808 /* ARGSUSED */
8809 int
8810 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8811     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8812 {
8813 	mblk_t *mp1;
8814 	int	list;
8815 	ill_t	*ill;
8816 	ipif_t	*ipif;
8817 	int	flags;
8818 	int	numlifs = 0;
8819 	size_t	lifc_bufsize;
8820 	struct	lifreq *lifr;
8821 	sa_family_t	family;
8822 	struct	sockaddr_in	*sin;
8823 	struct	sockaddr_in6	*sin6;
8824 	ill_walk_context_t	ctx;
8825 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8826 	int32_t	lifclen;
8827 	zoneid_t zoneid;
8828 	STRUCT_HANDLE(lifconf, lifc);
8829 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8830 
8831 	ip1dbg(("ip_sioctl_get_lifconf"));
8832 
8833 	ASSERT(q->q_next == NULL);
8834 
8835 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8836 
8837 	/* Existence verified in ip_wput_nondata */
8838 	mp1 = mp->b_cont->b_cont;
8839 
8840 	/*
8841 	 * An extended version of SIOCGIFCONF that takes an
8842 	 * additional address family and flags field.
8843 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8844 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8845 	 * interfaces are omitted.
8846 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8847 	 * unless LIFC_TEMPORARY is specified.
8848 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8849 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8850 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8851 	 * has priority over LIFC_NOXMIT.
8852 	 */
8853 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8854 
8855 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8856 		return (EINVAL);
8857 
8858 	/*
8859 	 * Must be (better be!) continuation of a TRANSPARENT
8860 	 * IOCTL.  We just copied in the lifconf structure.
8861 	 */
8862 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8863 
8864 	family = STRUCT_FGET(lifc, lifc_family);
8865 	flags = STRUCT_FGET(lifc, lifc_flags);
8866 
8867 	switch (family) {
8868 	case AF_UNSPEC:
8869 		/*
8870 		 * walk all ILL's.
8871 		 */
8872 		list = MAX_G_HEADS;
8873 		break;
8874 	case AF_INET:
8875 		/*
8876 		 * walk only IPV4 ILL's.
8877 		 */
8878 		list = IP_V4_G_HEAD;
8879 		break;
8880 	case AF_INET6:
8881 		/*
8882 		 * walk only IPV6 ILL's.
8883 		 */
8884 		list = IP_V6_G_HEAD;
8885 		break;
8886 	default:
8887 		return (EAFNOSUPPORT);
8888 	}
8889 
8890 	/*
8891 	 * Allocate a buffer to hold requested information.
8892 	 *
8893 	 * If lifc_len is larger than what is needed, we only
8894 	 * allocate what we will use.
8895 	 *
8896 	 * If lifc_len is smaller than what is needed, return
8897 	 * EINVAL.
8898 	 */
8899 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8900 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8901 	lifclen = STRUCT_FGET(lifc, lifc_len);
8902 	if (lifc_bufsize > lifclen) {
8903 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8904 			return (EINVAL);
8905 		else
8906 			lifc_bufsize = lifclen;
8907 	}
8908 
8909 	mp1 = mi_copyout_alloc(q, mp,
8910 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8911 	if (mp1 == NULL)
8912 		return (ENOMEM);
8913 
8914 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8915 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8916 
8917 	lifr = (struct lifreq *)mp1->b_rptr;
8918 
8919 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8920 	ill = ill_first(list, list, &ctx, ipst);
8921 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8922 		for (ipif = ill->ill_ipif; ipif != NULL;
8923 		    ipif = ipif->ipif_next) {
8924 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8925 			    !(flags & LIFC_NOXMIT))
8926 				continue;
8927 
8928 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8929 			    !(flags & LIFC_TEMPORARY))
8930 				continue;
8931 
8932 			if (((ipif->ipif_flags &
8933 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8934 			    IPIF_DEPRECATED)) ||
8935 			    IS_LOOPBACK(ill) ||
8936 			    !(ipif->ipif_flags & IPIF_UP)) &&
8937 			    (flags & LIFC_EXTERNAL_SOURCE))
8938 				continue;
8939 
8940 			if (zoneid != ipif->ipif_zoneid &&
8941 			    ipif->ipif_zoneid != ALL_ZONES &&
8942 			    (zoneid != GLOBAL_ZONEID ||
8943 			    !(flags & LIFC_ALLZONES)))
8944 				continue;
8945 
8946 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8947 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8948 					rw_exit(&ipst->ips_ill_g_lock);
8949 					return (EINVAL);
8950 				} else {
8951 					goto lif_copydone;
8952 				}
8953 			}
8954 
8955 			ipif_get_name(ipif, lifr->lifr_name,
8956 			    sizeof (lifr->lifr_name));
8957 			if (ipif->ipif_isv6) {
8958 				sin6 = (sin6_t *)&lifr->lifr_addr;
8959 				*sin6 = sin6_null;
8960 				sin6->sin6_family = AF_INET6;
8961 				sin6->sin6_addr =
8962 				    ipif->ipif_v6lcl_addr;
8963 				lifr->lifr_addrlen =
8964 				    ip_mask_to_plen_v6(
8965 				    &ipif->ipif_v6net_mask);
8966 			} else {
8967 				sin = (sin_t *)&lifr->lifr_addr;
8968 				*sin = sin_null;
8969 				sin->sin_family = AF_INET;
8970 				sin->sin_addr.s_addr =
8971 				    ipif->ipif_lcl_addr;
8972 				lifr->lifr_addrlen =
8973 				    ip_mask_to_plen(
8974 				    ipif->ipif_net_mask);
8975 			}
8976 			lifr++;
8977 		}
8978 	}
8979 lif_copydone:
8980 	rw_exit(&ipst->ips_ill_g_lock);
8981 
8982 	mp1->b_wptr = (uchar_t *)lifr;
8983 	if (STRUCT_BUF(lifc) != NULL) {
8984 		STRUCT_FSET(lifc, lifc_len,
8985 		    (int)((uchar_t *)lifr - mp1->b_rptr));
8986 	}
8987 	return (0);
8988 }
8989 
8990 /* ARGSUSED */
8991 int
8992 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
8993     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8994 {
8995 	ip_stack_t	*ipst;
8996 
8997 	if (q->q_next == NULL)
8998 		ipst = CONNQ_TO_IPST(q);
8999 	else
9000 		ipst = ILLQ_TO_IPST(q);
9001 
9002 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9003 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9004 	return (0);
9005 }
9006 
9007 static void
9008 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9009 {
9010 	ip6_asp_t *table;
9011 	size_t table_size;
9012 	mblk_t *data_mp;
9013 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9014 	ip_stack_t	*ipst;
9015 
9016 	if (q->q_next == NULL)
9017 		ipst = CONNQ_TO_IPST(q);
9018 	else
9019 		ipst = ILLQ_TO_IPST(q);
9020 
9021 	/* These two ioctls are I_STR only */
9022 	if (iocp->ioc_count == TRANSPARENT) {
9023 		miocnak(q, mp, 0, EINVAL);
9024 		return;
9025 	}
9026 
9027 	data_mp = mp->b_cont;
9028 	if (data_mp == NULL) {
9029 		/* The user passed us a NULL argument */
9030 		table = NULL;
9031 		table_size = iocp->ioc_count;
9032 	} else {
9033 		/*
9034 		 * The user provided a table.  The stream head
9035 		 * may have copied in the user data in chunks,
9036 		 * so make sure everything is pulled up
9037 		 * properly.
9038 		 */
9039 		if (MBLKL(data_mp) < iocp->ioc_count) {
9040 			mblk_t *new_data_mp;
9041 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9042 			    NULL) {
9043 				miocnak(q, mp, 0, ENOMEM);
9044 				return;
9045 			}
9046 			freemsg(data_mp);
9047 			data_mp = new_data_mp;
9048 			mp->b_cont = data_mp;
9049 		}
9050 		table = (ip6_asp_t *)data_mp->b_rptr;
9051 		table_size = iocp->ioc_count;
9052 	}
9053 
9054 	switch (iocp->ioc_cmd) {
9055 	case SIOCGIP6ADDRPOLICY:
9056 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9057 		if (iocp->ioc_rval == -1)
9058 			iocp->ioc_error = EINVAL;
9059 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9060 		else if (table != NULL &&
9061 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9062 			ip6_asp_t *src = table;
9063 			ip6_asp32_t *dst = (void *)table;
9064 			int count = table_size / sizeof (ip6_asp_t);
9065 			int i;
9066 
9067 			/*
9068 			 * We need to do an in-place shrink of the array
9069 			 * to match the alignment attributes of the
9070 			 * 32-bit ABI looking at it.
9071 			 */
9072 			/* LINTED: logical expression always true: op "||" */
9073 			ASSERT(sizeof (*src) > sizeof (*dst));
9074 			for (i = 1; i < count; i++)
9075 				bcopy(src + i, dst + i, sizeof (*dst));
9076 		}
9077 #endif
9078 		break;
9079 
9080 	case SIOCSIP6ADDRPOLICY:
9081 		ASSERT(mp->b_prev == NULL);
9082 		mp->b_prev = (void *)q;
9083 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9084 		/*
9085 		 * We pass in the datamodel here so that the ip6_asp_replace()
9086 		 * routine can handle converting from 32-bit to native formats
9087 		 * where necessary.
9088 		 *
9089 		 * A better way to handle this might be to convert the inbound
9090 		 * data structure here, and hang it off a new 'mp'; thus the
9091 		 * ip6_asp_replace() logic would always be dealing with native
9092 		 * format data structures..
9093 		 *
9094 		 * (An even simpler way to handle these ioctls is to just
9095 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9096 		 * and just recompile everything that depends on it.)
9097 		 */
9098 #endif
9099 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9100 		    iocp->ioc_flag & IOC_MODELS);
9101 		return;
9102 	}
9103 
9104 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9105 	qreply(q, mp);
9106 }
9107 
9108 static void
9109 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9110 {
9111 	mblk_t 		*data_mp;
9112 	struct dstinforeq	*dir;
9113 	uint8_t		*end, *cur;
9114 	in6_addr_t	*daddr, *saddr;
9115 	ipaddr_t	v4daddr;
9116 	ire_t		*ire;
9117 	char		*slabel, *dlabel;
9118 	boolean_t	isipv4;
9119 	int		match_ire;
9120 	ill_t		*dst_ill;
9121 	ipif_t		*src_ipif, *ire_ipif;
9122 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9123 	zoneid_t	zoneid;
9124 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9125 
9126 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9127 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9128 
9129 	/*
9130 	 * This ioctl is I_STR only, and must have a
9131 	 * data mblk following the M_IOCTL mblk.
9132 	 */
9133 	data_mp = mp->b_cont;
9134 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9135 		miocnak(q, mp, 0, EINVAL);
9136 		return;
9137 	}
9138 
9139 	if (MBLKL(data_mp) < iocp->ioc_count) {
9140 		mblk_t *new_data_mp;
9141 
9142 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9143 			miocnak(q, mp, 0, ENOMEM);
9144 			return;
9145 		}
9146 		freemsg(data_mp);
9147 		data_mp = new_data_mp;
9148 		mp->b_cont = data_mp;
9149 	}
9150 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9151 
9152 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9153 	    end - cur >= sizeof (struct dstinforeq);
9154 	    cur += sizeof (struct dstinforeq)) {
9155 		dir = (struct dstinforeq *)cur;
9156 		daddr = &dir->dir_daddr;
9157 		saddr = &dir->dir_saddr;
9158 
9159 		/*
9160 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9161 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9162 		 * and ipif_select_source[_v6]() do not.
9163 		 */
9164 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9165 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9166 
9167 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9168 		if (isipv4) {
9169 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9170 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9171 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9172 		} else {
9173 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9174 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9175 		}
9176 		if (ire == NULL) {
9177 			dir->dir_dreachable = 0;
9178 
9179 			/* move on to next dst addr */
9180 			continue;
9181 		}
9182 		dir->dir_dreachable = 1;
9183 
9184 		ire_ipif = ire->ire_ipif;
9185 		if (ire_ipif == NULL)
9186 			goto next_dst;
9187 
9188 		/*
9189 		 * We expect to get back an interface ire or a
9190 		 * gateway ire cache entry.  For both types, the
9191 		 * output interface is ire_ipif->ipif_ill.
9192 		 */
9193 		dst_ill = ire_ipif->ipif_ill;
9194 		dir->dir_dmactype = dst_ill->ill_mactype;
9195 
9196 		if (isipv4) {
9197 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9198 		} else {
9199 			src_ipif = ipif_select_source_v6(dst_ill,
9200 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9201 			    zoneid);
9202 		}
9203 		if (src_ipif == NULL)
9204 			goto next_dst;
9205 
9206 		*saddr = src_ipif->ipif_v6lcl_addr;
9207 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9208 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9209 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9210 		dir->dir_sdeprecated =
9211 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9212 		ipif_refrele(src_ipif);
9213 next_dst:
9214 		ire_refrele(ire);
9215 	}
9216 	miocack(q, mp, iocp->ioc_count, 0);
9217 }
9218 
9219 
9220 /*
9221  * Check if this is an address assigned to this machine.
9222  * Skips interfaces that are down by using ire checks.
9223  * Translates mapped addresses to v4 addresses and then
9224  * treats them as such, returning true if the v4 address
9225  * associated with this mapped address is configured.
9226  * Note: Applications will have to be careful what they do
9227  * with the response; use of mapped addresses limits
9228  * what can be done with the socket, especially with
9229  * respect to socket options and ioctls - neither IPv4
9230  * options nor IPv6 sticky options/ancillary data options
9231  * may be used.
9232  */
9233 /* ARGSUSED */
9234 int
9235 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9236     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9237 {
9238 	struct sioc_addrreq *sia;
9239 	sin_t *sin;
9240 	ire_t *ire;
9241 	mblk_t *mp1;
9242 	zoneid_t zoneid;
9243 	ip_stack_t	*ipst;
9244 
9245 	ip1dbg(("ip_sioctl_tmyaddr"));
9246 
9247 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9248 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9249 	ipst = CONNQ_TO_IPST(q);
9250 
9251 	/* Existence verified in ip_wput_nondata */
9252 	mp1 = mp->b_cont->b_cont;
9253 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9254 	sin = (sin_t *)&sia->sa_addr;
9255 	switch (sin->sin_family) {
9256 	case AF_INET6: {
9257 		sin6_t *sin6 = (sin6_t *)sin;
9258 
9259 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9260 			ipaddr_t v4_addr;
9261 
9262 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9263 			    v4_addr);
9264 			ire = ire_ctable_lookup(v4_addr, 0,
9265 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9266 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9267 		} else {
9268 			in6_addr_t v6addr;
9269 
9270 			v6addr = sin6->sin6_addr;
9271 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9272 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9273 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9274 		}
9275 		break;
9276 	}
9277 	case AF_INET: {
9278 		ipaddr_t v4addr;
9279 
9280 		v4addr = sin->sin_addr.s_addr;
9281 		ire = ire_ctable_lookup(v4addr, 0,
9282 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9283 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9284 		break;
9285 	}
9286 	default:
9287 		return (EAFNOSUPPORT);
9288 	}
9289 	if (ire != NULL) {
9290 		sia->sa_res = 1;
9291 		ire_refrele(ire);
9292 	} else {
9293 		sia->sa_res = 0;
9294 	}
9295 	return (0);
9296 }
9297 
9298 /*
9299  * Check if this is an address assigned on-link i.e. neighbor,
9300  * and makes sure it's reachable from the current zone.
9301  * Returns true for my addresses as well.
9302  * Translates mapped addresses to v4 addresses and then
9303  * treats them as such, returning true if the v4 address
9304  * associated with this mapped address is configured.
9305  * Note: Applications will have to be careful what they do
9306  * with the response; use of mapped addresses limits
9307  * what can be done with the socket, especially with
9308  * respect to socket options and ioctls - neither IPv4
9309  * options nor IPv6 sticky options/ancillary data options
9310  * may be used.
9311  */
9312 /* ARGSUSED */
9313 int
9314 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9315     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9316 {
9317 	struct sioc_addrreq *sia;
9318 	sin_t *sin;
9319 	mblk_t	*mp1;
9320 	ire_t *ire = NULL;
9321 	zoneid_t zoneid;
9322 	ip_stack_t	*ipst;
9323 
9324 	ip1dbg(("ip_sioctl_tonlink"));
9325 
9326 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9327 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9328 	ipst = CONNQ_TO_IPST(q);
9329 
9330 	/* Existence verified in ip_wput_nondata */
9331 	mp1 = mp->b_cont->b_cont;
9332 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9333 	sin = (sin_t *)&sia->sa_addr;
9334 
9335 	/*
9336 	 * Match addresses with a zero gateway field to avoid
9337 	 * routes going through a router.
9338 	 * Exclude broadcast and multicast addresses.
9339 	 */
9340 	switch (sin->sin_family) {
9341 	case AF_INET6: {
9342 		sin6_t *sin6 = (sin6_t *)sin;
9343 
9344 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9345 			ipaddr_t v4_addr;
9346 
9347 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9348 			    v4_addr);
9349 			if (!CLASSD(v4_addr)) {
9350 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9351 				    NULL, NULL, zoneid, NULL,
9352 				    MATCH_IRE_GW, ipst);
9353 			}
9354 		} else {
9355 			in6_addr_t v6addr;
9356 			in6_addr_t v6gw;
9357 
9358 			v6addr = sin6->sin6_addr;
9359 			v6gw = ipv6_all_zeros;
9360 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9361 				ire = ire_route_lookup_v6(&v6addr, 0,
9362 				    &v6gw, 0, NULL, NULL, zoneid,
9363 				    NULL, MATCH_IRE_GW, ipst);
9364 			}
9365 		}
9366 		break;
9367 	}
9368 	case AF_INET: {
9369 		ipaddr_t v4addr;
9370 
9371 		v4addr = sin->sin_addr.s_addr;
9372 		if (!CLASSD(v4addr)) {
9373 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9374 			    NULL, NULL, zoneid, NULL,
9375 			    MATCH_IRE_GW, ipst);
9376 		}
9377 		break;
9378 	}
9379 	default:
9380 		return (EAFNOSUPPORT);
9381 	}
9382 	sia->sa_res = 0;
9383 	if (ire != NULL) {
9384 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9385 		    IRE_LOCAL|IRE_LOOPBACK)) {
9386 			sia->sa_res = 1;
9387 		}
9388 		ire_refrele(ire);
9389 	}
9390 	return (0);
9391 }
9392 
9393 /*
9394  * TBD: implement when kernel maintaines a list of site prefixes.
9395  */
9396 /* ARGSUSED */
9397 int
9398 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9399     ip_ioctl_cmd_t *ipip, void *ifreq)
9400 {
9401 	return (ENXIO);
9402 }
9403 
9404 /* ARGSUSED */
9405 int
9406 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9407     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9408 {
9409 	ill_t  		*ill;
9410 	mblk_t		*mp1;
9411 	conn_t		*connp;
9412 	boolean_t	success;
9413 
9414 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9415 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9416 	/* ioctl comes down on an conn */
9417 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9418 	connp = Q_TO_CONN(q);
9419 
9420 	mp->b_datap->db_type = M_IOCTL;
9421 
9422 	/*
9423 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9424 	 * The original mp contains contaminated b_next values due to 'mi',
9425 	 * which is needed to do the mi_copy_done. Unfortunately if we
9426 	 * send down the original mblk itself and if we are popped due to an
9427 	 * an unplumb before the response comes back from tunnel,
9428 	 * the streamhead (which does a freemsg) will see this contaminated
9429 	 * message and the assertion in freemsg about non-null b_next/b_prev
9430 	 * will panic a DEBUG kernel.
9431 	 */
9432 	mp1 = copymsg(mp);
9433 	if (mp1 == NULL)
9434 		return (ENOMEM);
9435 
9436 	ill = ipif->ipif_ill;
9437 	mutex_enter(&connp->conn_lock);
9438 	mutex_enter(&ill->ill_lock);
9439 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9440 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9441 		    mp, 0);
9442 	} else {
9443 		success = ill_pending_mp_add(ill, connp, mp);
9444 	}
9445 	mutex_exit(&ill->ill_lock);
9446 	mutex_exit(&connp->conn_lock);
9447 
9448 	if (success) {
9449 		ip1dbg(("sending down tunparam request "));
9450 		putnext(ill->ill_wq, mp1);
9451 		return (EINPROGRESS);
9452 	} else {
9453 		/* The conn has started closing */
9454 		freemsg(mp1);
9455 		return (EINTR);
9456 	}
9457 }
9458 
9459 /*
9460  * ARP IOCTLs.
9461  * How does IP get in the business of fronting ARP configuration/queries?
9462  * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9463  * are by tradition passed in through a datagram socket.  That lands in IP.
9464  * As it happens, this is just as well since the interface is quite crude in
9465  * that it passes in no information about protocol or hardware types, or
9466  * interface association.  After making the protocol assumption, IP is in
9467  * the position to look up the name of the ILL, which ARP will need, and
9468  * format a request that can be handled by ARP.  The request is passed up
9469  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9470  * back a response.  ARP supports its own set of more general IOCTLs, in
9471  * case anyone is interested.
9472  */
9473 /* ARGSUSED */
9474 int
9475 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9476     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9477 {
9478 	mblk_t *mp1;
9479 	mblk_t *mp2;
9480 	mblk_t *pending_mp;
9481 	ipaddr_t ipaddr;
9482 	area_t *area;
9483 	struct iocblk *iocp;
9484 	conn_t *connp;
9485 	struct arpreq *ar;
9486 	struct xarpreq *xar;
9487 	int flags, alength;
9488 	char *lladdr;
9489 	ip_stack_t	*ipst;
9490 	ill_t *ill = ipif->ipif_ill;
9491 	boolean_t if_arp_ioctl = B_FALSE;
9492 
9493 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9494 	connp = Q_TO_CONN(q);
9495 	ipst = connp->conn_netstack->netstack_ip;
9496 
9497 	if (ipip->ipi_cmd_type == XARP_CMD) {
9498 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9499 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9500 		ar = NULL;
9501 
9502 		flags = xar->xarp_flags;
9503 		lladdr = LLADDR(&xar->xarp_ha);
9504 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9505 		/*
9506 		 * Validate against user's link layer address length
9507 		 * input and name and addr length limits.
9508 		 */
9509 		alength = ill->ill_phys_addr_length;
9510 		if (ipip->ipi_cmd == SIOCSXARP) {
9511 			if (alength != xar->xarp_ha.sdl_alen ||
9512 			    (alength + xar->xarp_ha.sdl_nlen >
9513 			    sizeof (xar->xarp_ha.sdl_data)))
9514 				return (EINVAL);
9515 		}
9516 	} else {
9517 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9518 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9519 		xar = NULL;
9520 
9521 		flags = ar->arp_flags;
9522 		lladdr = ar->arp_ha.sa_data;
9523 		/*
9524 		 * Theoretically, the sa_family could tell us what link
9525 		 * layer type this operation is trying to deal with. By
9526 		 * common usage AF_UNSPEC means ethernet. We'll assume
9527 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9528 		 * for now. Our new SIOC*XARP ioctls can be used more
9529 		 * generally.
9530 		 *
9531 		 * If the underlying media happens to have a non 6 byte
9532 		 * address, arp module will fail set/get, but the del
9533 		 * operation will succeed.
9534 		 */
9535 		alength = 6;
9536 		if ((ipip->ipi_cmd != SIOCDARP) &&
9537 		    (alength != ill->ill_phys_addr_length)) {
9538 			return (EINVAL);
9539 		}
9540 	}
9541 
9542 	/*
9543 	 * We are going to pass up to ARP a packet chain that looks
9544 	 * like:
9545 	 *
9546 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9547 	 *
9548 	 * Get a copy of the original IOCTL mblk to head the chain,
9549 	 * to be sent up (in mp1). Also get another copy to store
9550 	 * in the ill_pending_mp list, for matching the response
9551 	 * when it comes back from ARP.
9552 	 */
9553 	mp1 = copyb(mp);
9554 	pending_mp = copymsg(mp);
9555 	if (mp1 == NULL || pending_mp == NULL) {
9556 		if (mp1 != NULL)
9557 			freeb(mp1);
9558 		if (pending_mp != NULL)
9559 			inet_freemsg(pending_mp);
9560 		return (ENOMEM);
9561 	}
9562 
9563 	ipaddr = sin->sin_addr.s_addr;
9564 
9565 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9566 	    (caddr_t)&ipaddr);
9567 	if (mp2 == NULL) {
9568 		freeb(mp1);
9569 		inet_freemsg(pending_mp);
9570 		return (ENOMEM);
9571 	}
9572 	/* Put together the chain. */
9573 	mp1->b_cont = mp2;
9574 	mp1->b_datap->db_type = M_IOCTL;
9575 	mp2->b_cont = mp;
9576 	mp2->b_datap->db_type = M_DATA;
9577 
9578 	iocp = (struct iocblk *)mp1->b_rptr;
9579 
9580 	/*
9581 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9582 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9583 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9584 	 * ioc_count field; set ioc_count to be correct.
9585 	 */
9586 	iocp->ioc_count = MBLKL(mp1->b_cont);
9587 
9588 	/*
9589 	 * Set the proper command in the ARP message.
9590 	 * Convert the SIOC{G|S|D}ARP calls into our
9591 	 * AR_ENTRY_xxx calls.
9592 	 */
9593 	area = (area_t *)mp2->b_rptr;
9594 	switch (iocp->ioc_cmd) {
9595 	case SIOCDARP:
9596 	case SIOCDXARP:
9597 		/*
9598 		 * We defer deleting the corresponding IRE until
9599 		 * we return from arp.
9600 		 */
9601 		area->area_cmd = AR_ENTRY_DELETE;
9602 		area->area_proto_mask_offset = 0;
9603 		break;
9604 	case SIOCGARP:
9605 	case SIOCGXARP:
9606 		area->area_cmd = AR_ENTRY_SQUERY;
9607 		area->area_proto_mask_offset = 0;
9608 		break;
9609 	case SIOCSARP:
9610 	case SIOCSXARP:
9611 		/*
9612 		 * Delete the corresponding ire to make sure IP will
9613 		 * pick up any change from arp.
9614 		 */
9615 		if (!if_arp_ioctl) {
9616 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9617 		} else {
9618 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9619 			if (ipif != NULL) {
9620 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9621 				    ipst);
9622 				ipif_refrele(ipif);
9623 			}
9624 		}
9625 		break;
9626 	}
9627 	iocp->ioc_cmd = area->area_cmd;
9628 
9629 	/*
9630 	 * Fill in the rest of the ARP operation fields.
9631 	 */
9632 	area->area_hw_addr_length = alength;
9633 	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9634 
9635 	/* Translate the flags. */
9636 	if (flags & ATF_PERM)
9637 		area->area_flags |= ACE_F_PERMANENT;
9638 	if (flags & ATF_PUBL)
9639 		area->area_flags |= ACE_F_PUBLISH;
9640 	if (flags & ATF_AUTHORITY)
9641 		area->area_flags |= ACE_F_AUTHORITY;
9642 
9643 	/*
9644 	 * Before sending 'mp' to ARP, we have to clear the b_next
9645 	 * and b_prev. Otherwise if STREAMS encounters such a message
9646 	 * in freemsg(), (because ARP can close any time) it can cause
9647 	 * a panic. But mi code needs the b_next and b_prev values of
9648 	 * mp->b_cont, to complete the ioctl. So we store it here
9649 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9650 	 * when the response comes down from ARP.
9651 	 */
9652 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9653 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9654 	mp->b_cont->b_next = NULL;
9655 	mp->b_cont->b_prev = NULL;
9656 
9657 	mutex_enter(&connp->conn_lock);
9658 	mutex_enter(&ill->ill_lock);
9659 	/* conn has not yet started closing, hence this can't fail */
9660 	VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9661 	mutex_exit(&ill->ill_lock);
9662 	mutex_exit(&connp->conn_lock);
9663 
9664 	/*
9665 	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9666 	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9667 	 */
9668 	putnext(ill->ill_rq, mp1);
9669 	return (EINPROGRESS);
9670 }
9671 
9672 /*
9673  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9674  * the associated sin and refhold and return the associated ipif via `ci'.
9675  */
9676 int
9677 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9678     cmd_info_t *ci, ipsq_func_t func)
9679 {
9680 	mblk_t	*mp1;
9681 	int	err;
9682 	sin_t	*sin;
9683 	conn_t	*connp;
9684 	ipif_t	*ipif;
9685 	ire_t	*ire = NULL;
9686 	ill_t	*ill = NULL;
9687 	boolean_t exists;
9688 	ip_stack_t *ipst;
9689 	struct arpreq *ar;
9690 	struct xarpreq *xar;
9691 	struct sockaddr_dl *sdl;
9692 
9693 	/* ioctl comes down on a conn */
9694 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9695 	connp = Q_TO_CONN(q);
9696 	if (connp->conn_af_isv6)
9697 		return (ENXIO);
9698 
9699 	ipst = connp->conn_netstack->netstack_ip;
9700 
9701 	/* Verified in ip_wput_nondata */
9702 	mp1 = mp->b_cont->b_cont;
9703 
9704 	if (ipip->ipi_cmd_type == XARP_CMD) {
9705 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9706 		xar = (struct xarpreq *)mp1->b_rptr;
9707 		sin = (sin_t *)&xar->xarp_pa;
9708 		sdl = &xar->xarp_ha;
9709 
9710 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9711 			return (ENXIO);
9712 		if (sdl->sdl_nlen >= LIFNAMSIZ)
9713 			return (EINVAL);
9714 	} else {
9715 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9716 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9717 		ar = (struct arpreq *)mp1->b_rptr;
9718 		sin = (sin_t *)&ar->arp_pa;
9719 	}
9720 
9721 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9722 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9723 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9724 		    mp, func, &err, ipst);
9725 		if (ipif == NULL)
9726 			return (err);
9727 		if (ipif->ipif_id != 0 ||
9728 		    ipif->ipif_net_type != IRE_IF_RESOLVER) {
9729 			ipif_refrele(ipif);
9730 			return (ENXIO);
9731 		}
9732 	} else {
9733 		/*
9734 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen ==
9735 		 * 0: use the IP address to figure out the ill.	 In the IPMP
9736 		 * case, a simple forwarding table lookup will return the
9737 		 * IRE_IF_RESOLVER for the first interface in the group, which
9738 		 * might not be the interface on which the requested IP
9739 		 * address was resolved due to the ill selection algorithm
9740 		 * (see ip_newroute_get_dst_ill()).  So we do a cache table
9741 		 * lookup first: if the IRE cache entry for the IP address is
9742 		 * still there, it will contain the ill pointer for the right
9743 		 * interface, so we use that. If the cache entry has been
9744 		 * flushed, we fall back to the forwarding table lookup. This
9745 		 * should be rare enough since IRE cache entries have a longer
9746 		 * life expectancy than ARP cache entries.
9747 		 */
9748 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9749 		    ipst);
9750 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9751 		    ((ill = ire_to_ill(ire)) == NULL) ||
9752 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9753 			if (ire != NULL)
9754 				ire_refrele(ire);
9755 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9756 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9757 			    NULL, MATCH_IRE_TYPE, ipst);
9758 			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9759 
9760 				if (ire != NULL)
9761 					ire_refrele(ire);
9762 				return (ENXIO);
9763 			}
9764 		}
9765 		ASSERT(ire != NULL && ill != NULL);
9766 		ipif = ill->ill_ipif;
9767 		ipif_refhold(ipif);
9768 		ire_refrele(ire);
9769 	}
9770 	ci->ci_sin = sin;
9771 	ci->ci_ipif = ipif;
9772 	return (0);
9773 }
9774 
9775 /*
9776  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9777  * atomically set/clear the muxids. Also complete the ioctl by acking or
9778  * naking it.  Note that the code is structured such that the link type,
9779  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9780  * its clones use the persistent link, while pppd(1M) and perhaps many
9781  * other daemons may use non-persistent link.  When combined with some
9782  * ill_t states, linking and unlinking lower streams may be used as
9783  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9784  */
9785 /* ARGSUSED */
9786 void
9787 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9788 {
9789 	mblk_t		*mp1, *mp2;
9790 	struct linkblk	*li;
9791 	struct ipmx_s	*ipmxp;
9792 	ill_t		*ill;
9793 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9794 	int		err = 0;
9795 	boolean_t	entered_ipsq = B_FALSE;
9796 	boolean_t	islink;
9797 	ip_stack_t	*ipst;
9798 
9799 	if (CONN_Q(q))
9800 		ipst = CONNQ_TO_IPST(q);
9801 	else
9802 		ipst = ILLQ_TO_IPST(q);
9803 
9804 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9805 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9806 
9807 	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9808 
9809 	mp1 = mp->b_cont;	/* This is the linkblk info */
9810 	li = (struct linkblk *)mp1->b_rptr;
9811 
9812 	/*
9813 	 * ARP has added this special mblk, and the utility is asking us
9814 	 * to perform consistency checks, and also atomically set the
9815 	 * muxid. Ifconfig is an example.  It achieves this by using
9816 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9817 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9818 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9819 	 * and other comments in this routine for more details.
9820 	 */
9821 	mp2 = mp1->b_cont;	/* This is added by ARP */
9822 
9823 	/*
9824 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9825 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9826 	 * get the special mblk above.  For backward compatibility, we
9827 	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9828 	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9829 	 * not atomic, and can leave the streams unplumbable if the utility
9830 	 * is interrupted before it does the SIOCSLIFMUXID.
9831 	 */
9832 	if (mp2 == NULL) {
9833 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9834 		if (err == EINPROGRESS)
9835 			return;
9836 		goto done;
9837 	}
9838 
9839 	/*
9840 	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9841 	 * ARP has appended this last mblk to tell us whether the lower stream
9842 	 * is an arp-dev stream or an IP module stream.
9843 	 */
9844 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9845 	if (ipmxp->ipmx_arpdev_stream) {
9846 		/*
9847 		 * The lower stream is the arp-dev stream.
9848 		 */
9849 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9850 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9851 		if (ill == NULL) {
9852 			if (err == EINPROGRESS)
9853 				return;
9854 			err = EINVAL;
9855 			goto done;
9856 		}
9857 
9858 		if (ipsq == NULL) {
9859 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9860 			    NEW_OP, B_TRUE);
9861 			if (ipsq == NULL) {
9862 				ill_refrele(ill);
9863 				return;
9864 			}
9865 			entered_ipsq = B_TRUE;
9866 		}
9867 		ASSERT(IAM_WRITER_ILL(ill));
9868 		ill_refrele(ill);
9869 
9870 		/*
9871 		 * To ensure consistency between IP and ARP, the following
9872 		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9873 		 * This is because the muxid's are stored in the IP stream on
9874 		 * the ill.
9875 		 *
9876 		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9877 		 * the ARP stream. On an arp-dev stream, IP checks that it is
9878 		 * not yet plinked, and it also checks that the corresponding
9879 		 * IP stream is already plinked.
9880 		 *
9881 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9882 		 * punlinking the IP stream. IP does not allow punlink of the
9883 		 * IP stream unless the arp stream has been punlinked.
9884 		 */
9885 		if ((islink &&
9886 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9887 		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9888 			err = EINVAL;
9889 			goto done;
9890 		}
9891 		ill->ill_arp_muxid = islink ? li->l_index : 0;
9892 	} else {
9893 		/*
9894 		 * The lower stream is probably an IP module stream.  Do
9895 		 * consistency checking.
9896 		 */
9897 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9898 		if (err == EINPROGRESS)
9899 			return;
9900 	}
9901 done:
9902 	if (err == 0)
9903 		miocack(q, mp, 0, 0);
9904 	else
9905 		miocnak(q, mp, 0, err);
9906 
9907 	/* Conn was refheld in ip_sioctl_copyin_setup */
9908 	if (CONN_Q(q))
9909 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9910 	if (entered_ipsq)
9911 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
9912 }
9913 
9914 /*
9915  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9916  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9917  * module stream).  If `doconsist' is set, then do the extended consistency
9918  * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9919  * Returns zero on success, EINPROGRESS if the operation is still pending, or
9920  * an error code on failure.
9921  */
9922 static int
9923 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9924     struct linkblk *li, boolean_t doconsist)
9925 {
9926 	ill_t  		*ill;
9927 	queue_t		*ipwq, *dwq;
9928 	const char	*name;
9929 	struct qinit	*qinfo;
9930 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9931 	boolean_t	entered_ipsq = B_FALSE;
9932 
9933 	/*
9934 	 * Walk the lower stream to verify it's the IP module stream.
9935 	 * The IP module is identified by its name, wput function,
9936 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9937 	 * (li->l_qbot) will not vanish until this ioctl completes.
9938 	 */
9939 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9940 		qinfo = ipwq->q_qinfo;
9941 		name = qinfo->qi_minfo->mi_idname;
9942 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9943 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9944 			break;
9945 		}
9946 	}
9947 
9948 	/*
9949 	 * If this isn't an IP module stream, bail.
9950 	 */
9951 	if (ipwq == NULL)
9952 		return (0);
9953 
9954 	ill = ipwq->q_ptr;
9955 	ASSERT(ill != NULL);
9956 
9957 	if (ipsq == NULL) {
9958 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9959 		    NEW_OP, B_TRUE);
9960 		if (ipsq == NULL)
9961 			return (EINPROGRESS);
9962 		entered_ipsq = B_TRUE;
9963 	}
9964 	ASSERT(IAM_WRITER_ILL(ill));
9965 
9966 	if (doconsist) {
9967 		/*
9968 		 * Consistency checking requires that I_{P}LINK occurs
9969 		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9970 		 * occurs prior to clearing ill_arp_muxid.
9971 		 */
9972 		if ((islink && ill->ill_ip_muxid != 0) ||
9973 		    (!islink && ill->ill_arp_muxid != 0)) {
9974 			if (entered_ipsq)
9975 				ipsq_exit(ipsq, B_TRUE, B_TRUE);
9976 			return (EINVAL);
9977 		}
9978 	}
9979 
9980 	/*
9981 	 * As part of I_{P}LINKing, stash the number of downstream modules and
9982 	 * the read queue of the module immediately below IP in the ill.
9983 	 * These are used during the capability negotiation below.
9984 	 */
9985 	ill->ill_lmod_rq = NULL;
9986 	ill->ill_lmod_cnt = 0;
9987 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
9988 		ill->ill_lmod_rq = RD(dwq);
9989 		for (; dwq != NULL; dwq = dwq->q_next)
9990 			ill->ill_lmod_cnt++;
9991 	}
9992 
9993 	if (doconsist)
9994 		ill->ill_ip_muxid = islink ? li->l_index : 0;
9995 
9996 	/*
9997 	 * If there's at least one up ipif on this ill, then we're bound to
9998 	 * the underlying driver via DLPI.  In that case, renegotiate
9999 	 * capabilities to account for any possible change in modules
10000 	 * interposed between IP and the driver.
10001 	 */
10002 	if (ill->ill_ipif_up_count > 0) {
10003 		if (islink)
10004 			ill_capability_probe(ill);
10005 		else
10006 			ill_capability_reset(ill);
10007 	}
10008 
10009 	if (entered_ipsq)
10010 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10011 
10012 	return (0);
10013 }
10014 
10015 /*
10016  * Search the ioctl command in the ioctl tables and return a pointer
10017  * to the ioctl command information. The ioctl command tables are
10018  * static and fully populated at compile time.
10019  */
10020 ip_ioctl_cmd_t *
10021 ip_sioctl_lookup(int ioc_cmd)
10022 {
10023 	int index;
10024 	ip_ioctl_cmd_t *ipip;
10025 	ip_ioctl_cmd_t *ipip_end;
10026 
10027 	if (ioc_cmd == IPI_DONTCARE)
10028 		return (NULL);
10029 
10030 	/*
10031 	 * Do a 2 step search. First search the indexed table
10032 	 * based on the least significant byte of the ioctl cmd.
10033 	 * If we don't find a match, then search the misc table
10034 	 * serially.
10035 	 */
10036 	index = ioc_cmd & 0xFF;
10037 	if (index < ip_ndx_ioctl_count) {
10038 		ipip = &ip_ndx_ioctl_table[index];
10039 		if (ipip->ipi_cmd == ioc_cmd) {
10040 			/* Found a match in the ndx table */
10041 			return (ipip);
10042 		}
10043 	}
10044 
10045 	/* Search the misc table */
10046 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10047 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10048 		if (ipip->ipi_cmd == ioc_cmd)
10049 			/* Found a match in the misc table */
10050 			return (ipip);
10051 	}
10052 
10053 	return (NULL);
10054 }
10055 
10056 /*
10057  * Wrapper function for resuming deferred ioctl processing
10058  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10059  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10060  */
10061 /* ARGSUSED */
10062 void
10063 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10064     void *dummy_arg)
10065 {
10066 	ip_sioctl_copyin_setup(q, mp);
10067 }
10068 
10069 /*
10070  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10071  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10072  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10073  * We establish here the size of the block to be copied in.  mi_copyin
10074  * arranges for this to happen, an processing continues in ip_wput with
10075  * an M_IOCDATA message.
10076  */
10077 void
10078 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10079 {
10080 	int	copyin_size;
10081 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10082 	ip_ioctl_cmd_t *ipip;
10083 	cred_t *cr;
10084 	ip_stack_t	*ipst;
10085 
10086 	if (CONN_Q(q))
10087 		ipst = CONNQ_TO_IPST(q);
10088 	else
10089 		ipst = ILLQ_TO_IPST(q);
10090 
10091 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10092 	if (ipip == NULL) {
10093 		/*
10094 		 * The ioctl is not one we understand or own.
10095 		 * Pass it along to be processed down stream,
10096 		 * if this is a module instance of IP, else nak
10097 		 * the ioctl.
10098 		 */
10099 		if (q->q_next == NULL) {
10100 			goto nak;
10101 		} else {
10102 			putnext(q, mp);
10103 			return;
10104 		}
10105 	}
10106 
10107 	/*
10108 	 * If this is deferred, then we will do all the checks when we
10109 	 * come back.
10110 	 */
10111 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10112 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10113 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10114 		return;
10115 	}
10116 
10117 	/*
10118 	 * Only allow a very small subset of IP ioctls on this stream if
10119 	 * IP is a module and not a driver. Allowing ioctls to be processed
10120 	 * in this case may cause assert failures or data corruption.
10121 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10122 	 * ioctls allowed on an IP module stream, after which this stream
10123 	 * normally becomes a multiplexor (at which time the stream head
10124 	 * will fail all ioctls).
10125 	 */
10126 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10127 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10128 			/*
10129 			 * Pass common Streams ioctls which the IP
10130 			 * module does not own or consume along to
10131 			 * be processed down stream.
10132 			 */
10133 			putnext(q, mp);
10134 			return;
10135 		} else {
10136 			goto nak;
10137 		}
10138 	}
10139 
10140 	/* Make sure we have ioctl data to process. */
10141 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10142 		goto nak;
10143 
10144 	/*
10145 	 * Prefer dblk credential over ioctl credential; some synthesized
10146 	 * ioctls have kcred set because there's no way to crhold()
10147 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10148 	 * the framework; the caller of ioctl needs to hold the reference
10149 	 * for the duration of the call).
10150 	 */
10151 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10152 
10153 	/* Make sure normal users don't send down privileged ioctls */
10154 	if ((ipip->ipi_flags & IPI_PRIV) &&
10155 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10156 		/* We checked the privilege earlier but log it here */
10157 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10158 		return;
10159 	}
10160 
10161 	/*
10162 	 * The ioctl command tables can only encode fixed length
10163 	 * ioctl data. If the length is variable, the table will
10164 	 * encode the length as zero. Such special cases are handled
10165 	 * below in the switch.
10166 	 */
10167 	if (ipip->ipi_copyin_size != 0) {
10168 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10169 		return;
10170 	}
10171 
10172 	switch (iocp->ioc_cmd) {
10173 	case O_SIOCGIFCONF:
10174 	case SIOCGIFCONF:
10175 		/*
10176 		 * This IOCTL is hilarious.  See comments in
10177 		 * ip_sioctl_get_ifconf for the story.
10178 		 */
10179 		if (iocp->ioc_count == TRANSPARENT)
10180 			copyin_size = SIZEOF_STRUCT(ifconf,
10181 			    iocp->ioc_flag);
10182 		else
10183 			copyin_size = iocp->ioc_count;
10184 		mi_copyin(q, mp, NULL, copyin_size);
10185 		return;
10186 
10187 	case O_SIOCGLIFCONF:
10188 	case SIOCGLIFCONF:
10189 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10190 		mi_copyin(q, mp, NULL, copyin_size);
10191 		return;
10192 
10193 	case SIOCGLIFSRCOF:
10194 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10195 		mi_copyin(q, mp, NULL, copyin_size);
10196 		return;
10197 	case SIOCGIP6ADDRPOLICY:
10198 		ip_sioctl_ip6addrpolicy(q, mp);
10199 		ip6_asp_table_refrele(ipst);
10200 		return;
10201 
10202 	case SIOCSIP6ADDRPOLICY:
10203 		ip_sioctl_ip6addrpolicy(q, mp);
10204 		return;
10205 
10206 	case SIOCGDSTINFO:
10207 		ip_sioctl_dstinfo(q, mp);
10208 		ip6_asp_table_refrele(ipst);
10209 		return;
10210 
10211 	case I_PLINK:
10212 	case I_PUNLINK:
10213 	case I_LINK:
10214 	case I_UNLINK:
10215 		/*
10216 		 * We treat non-persistent link similarly as the persistent
10217 		 * link case, in terms of plumbing/unplumbing, as well as
10218 		 * dynamic re-plumbing events indicator.  See comments
10219 		 * in ip_sioctl_plink() for more.
10220 		 *
10221 		 * Request can be enqueued in the 'ipsq' while waiting
10222 		 * to become exclusive. So bump up the conn ref.
10223 		 */
10224 		if (CONN_Q(q))
10225 			CONN_INC_REF(Q_TO_CONN(q));
10226 		ip_sioctl_plink(NULL, q, mp, NULL);
10227 		return;
10228 
10229 	case ND_GET:
10230 	case ND_SET:
10231 		/*
10232 		 * Use of the nd table requires holding the reader lock.
10233 		 * Modifying the nd table thru nd_load/nd_unload requires
10234 		 * the writer lock.
10235 		 */
10236 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10237 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10238 			rw_exit(&ipst->ips_ip_g_nd_lock);
10239 
10240 			if (iocp->ioc_error)
10241 				iocp->ioc_count = 0;
10242 			mp->b_datap->db_type = M_IOCACK;
10243 			qreply(q, mp);
10244 			return;
10245 		}
10246 		rw_exit(&ipst->ips_ip_g_nd_lock);
10247 		/*
10248 		 * We don't understand this subioctl of ND_GET / ND_SET.
10249 		 * Maybe intended for some driver / module below us
10250 		 */
10251 		if (q->q_next) {
10252 			putnext(q, mp);
10253 		} else {
10254 			iocp->ioc_error = ENOENT;
10255 			mp->b_datap->db_type = M_IOCNAK;
10256 			iocp->ioc_count = 0;
10257 			qreply(q, mp);
10258 		}
10259 		return;
10260 
10261 	case IP_IOCTL:
10262 		ip_wput_ioctl(q, mp);
10263 		return;
10264 	default:
10265 		cmn_err(CE_PANIC, "should not happen ");
10266 	}
10267 nak:
10268 	if (mp->b_cont != NULL) {
10269 		freemsg(mp->b_cont);
10270 		mp->b_cont = NULL;
10271 	}
10272 	iocp->ioc_error = EINVAL;
10273 	mp->b_datap->db_type = M_IOCNAK;
10274 	iocp->ioc_count = 0;
10275 	qreply(q, mp);
10276 }
10277 
10278 /* ip_wput hands off ARP IOCTL responses to us */
10279 void
10280 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10281 {
10282 	struct arpreq *ar;
10283 	struct xarpreq *xar;
10284 	area_t	*area;
10285 	mblk_t	*area_mp;
10286 	struct iocblk *iocp;
10287 	mblk_t	*orig_ioc_mp, *tmp;
10288 	struct iocblk	*orig_iocp;
10289 	ill_t *ill;
10290 	conn_t *connp = NULL;
10291 	uint_t ioc_id;
10292 	mblk_t *pending_mp;
10293 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10294 	int *flagsp;
10295 	char *storage = NULL;
10296 	sin_t *sin;
10297 	ipaddr_t addr;
10298 	int err;
10299 	ip_stack_t *ipst;
10300 
10301 	ill = q->q_ptr;
10302 	ASSERT(ill != NULL);
10303 	ipst = ill->ill_ipst;
10304 
10305 	/*
10306 	 * We should get back from ARP a packet chain that looks like:
10307 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10308 	 */
10309 	if (!(area_mp = mp->b_cont) ||
10310 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10311 	    !(orig_ioc_mp = area_mp->b_cont) ||
10312 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10313 		freemsg(mp);
10314 		return;
10315 	}
10316 
10317 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10318 
10319 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10320 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10321 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10322 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10323 		x_arp_ioctl = B_TRUE;
10324 		xar = (struct xarpreq *)tmp->b_rptr;
10325 		sin = (sin_t *)&xar->xarp_pa;
10326 		flagsp = &xar->xarp_flags;
10327 		storage = xar->xarp_ha.sdl_data;
10328 		if (xar->xarp_ha.sdl_nlen != 0)
10329 			ifx_arp_ioctl = B_TRUE;
10330 	} else {
10331 		ar = (struct arpreq *)tmp->b_rptr;
10332 		sin = (sin_t *)&ar->arp_pa;
10333 		flagsp = &ar->arp_flags;
10334 		storage = ar->arp_ha.sa_data;
10335 	}
10336 
10337 	iocp = (struct iocblk *)mp->b_rptr;
10338 
10339 	/*
10340 	 * Pick out the originating queue based on the ioc_id.
10341 	 */
10342 	ioc_id = iocp->ioc_id;
10343 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10344 	if (pending_mp == NULL) {
10345 		ASSERT(connp == NULL);
10346 		inet_freemsg(mp);
10347 		return;
10348 	}
10349 	ASSERT(connp != NULL);
10350 	q = CONNP_TO_WQ(connp);
10351 
10352 	/* Uncouple the internally generated IOCTL from the original one */
10353 	area = (area_t *)area_mp->b_rptr;
10354 	area_mp->b_cont = NULL;
10355 
10356 	/*
10357 	 * Restore the b_next and b_prev used by mi code. This is needed
10358 	 * to complete the ioctl using mi* functions. We stored them in
10359 	 * the pending mp prior to sending the request to ARP.
10360 	 */
10361 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10362 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10363 	inet_freemsg(pending_mp);
10364 
10365 	/*
10366 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10367 	 * Catch the case where there is an IRE_CACHE by no entry in the
10368 	 * arp table.
10369 	 */
10370 	addr = sin->sin_addr.s_addr;
10371 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10372 		ire_t			*ire;
10373 		dl_unitdata_req_t	*dlup;
10374 		mblk_t			*llmp;
10375 		int			addr_len;
10376 		ill_t			*ipsqill = NULL;
10377 
10378 		if (ifx_arp_ioctl) {
10379 			/*
10380 			 * There's no need to lookup the ill, since
10381 			 * we've already done that when we started
10382 			 * processing the ioctl and sent the message
10383 			 * to ARP on that ill.  So use the ill that
10384 			 * is stored in q->q_ptr.
10385 			 */
10386 			ipsqill = ill;
10387 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10388 			    ipsqill->ill_ipif, ALL_ZONES,
10389 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10390 		} else {
10391 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10392 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10393 			if (ire != NULL)
10394 				ipsqill = ire_to_ill(ire);
10395 		}
10396 
10397 		if ((x_arp_ioctl) && (ipsqill != NULL))
10398 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10399 
10400 		if (ire != NULL) {
10401 			/*
10402 			 * Since the ire obtained from cachetable is used for
10403 			 * mac addr copying below, treat an incomplete ire as if
10404 			 * as if we never found it.
10405 			 */
10406 			if (ire->ire_nce != NULL &&
10407 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10408 				ire_refrele(ire);
10409 				ire = NULL;
10410 				ipsqill = NULL;
10411 				goto errack;
10412 			}
10413 			*flagsp = ATF_INUSE;
10414 			llmp = (ire->ire_nce != NULL ?
10415 			    ire->ire_nce->nce_res_mp : NULL);
10416 			if (llmp != NULL && ipsqill != NULL) {
10417 				uchar_t *macaddr;
10418 
10419 				addr_len = ipsqill->ill_phys_addr_length;
10420 				if (x_arp_ioctl && ((addr_len +
10421 				    ipsqill->ill_name_length) >
10422 				    sizeof (xar->xarp_ha.sdl_data))) {
10423 					ire_refrele(ire);
10424 					freemsg(mp);
10425 					ip_ioctl_finish(q, orig_ioc_mp,
10426 					    EINVAL, NO_COPYOUT, NULL);
10427 					return;
10428 				}
10429 				*flagsp |= ATF_COM;
10430 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10431 				if (ipsqill->ill_sap_length < 0)
10432 					macaddr = llmp->b_rptr +
10433 					    dlup->dl_dest_addr_offset;
10434 				else
10435 					macaddr = llmp->b_rptr +
10436 					    dlup->dl_dest_addr_offset +
10437 					    ipsqill->ill_sap_length;
10438 				/*
10439 				 * For SIOCGARP, MAC address length
10440 				 * validation has already been done
10441 				 * before the ioctl was issued to ARP to
10442 				 * allow it to progress only on 6 byte
10443 				 * addressable (ethernet like) media. Thus
10444 				 * the mac address copying can not overwrite
10445 				 * the sa_data area below.
10446 				 */
10447 				bcopy(macaddr, storage, addr_len);
10448 			}
10449 			/* Ditch the internal IOCTL. */
10450 			freemsg(mp);
10451 			ire_refrele(ire);
10452 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10453 			return;
10454 		}
10455 	}
10456 
10457 	/*
10458 	 * Delete the coresponding IRE_CACHE if any.
10459 	 * Reset the error if there was one (in case there was no entry
10460 	 * in arp.)
10461 	 */
10462 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10463 		ipif_t *ipintf = NULL;
10464 
10465 		if (ifx_arp_ioctl) {
10466 			/*
10467 			 * There's no need to lookup the ill, since
10468 			 * we've already done that when we started
10469 			 * processing the ioctl and sent the message
10470 			 * to ARP on that ill.  So use the ill that
10471 			 * is stored in q->q_ptr.
10472 			 */
10473 			ipintf = ill->ill_ipif;
10474 		}
10475 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10476 			/*
10477 			 * The address in "addr" may be an entry for a
10478 			 * router. If that's true, then any off-net
10479 			 * IRE_CACHE entries that go through the router
10480 			 * with address "addr" must be clobbered. Use
10481 			 * ire_walk to achieve this goal.
10482 			 */
10483 			if (ifx_arp_ioctl)
10484 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10485 				    ire_delete_cache_gw, (char *)&addr, ill);
10486 			else
10487 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10488 				    ALL_ZONES, ipst);
10489 			iocp->ioc_error = 0;
10490 		}
10491 	}
10492 errack:
10493 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10494 		err = iocp->ioc_error;
10495 		freemsg(mp);
10496 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10497 		return;
10498 	}
10499 
10500 	/*
10501 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10502 	 * the area_t into the struct {x}arpreq.
10503 	 */
10504 	if (x_arp_ioctl) {
10505 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10506 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10507 		    sizeof (xar->xarp_ha.sdl_data)) {
10508 			freemsg(mp);
10509 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10510 			    NULL);
10511 			return;
10512 		}
10513 	}
10514 	*flagsp = ATF_INUSE;
10515 	if (area->area_flags & ACE_F_PERMANENT)
10516 		*flagsp |= ATF_PERM;
10517 	if (area->area_flags & ACE_F_PUBLISH)
10518 		*flagsp |= ATF_PUBL;
10519 	if (area->area_flags & ACE_F_AUTHORITY)
10520 		*flagsp |= ATF_AUTHORITY;
10521 	if (area->area_hw_addr_length != 0) {
10522 		*flagsp |= ATF_COM;
10523 		/*
10524 		 * For SIOCGARP, MAC address length validation has
10525 		 * already been done before the ioctl was issued to ARP
10526 		 * to allow it to progress only on 6 byte addressable
10527 		 * (ethernet like) media. Thus the mac address copying
10528 		 * can not overwrite the sa_data area below.
10529 		 */
10530 		bcopy((char *)area + area->area_hw_addr_offset,
10531 		    storage, area->area_hw_addr_length);
10532 	}
10533 
10534 	/* Ditch the internal IOCTL. */
10535 	freemsg(mp);
10536 	/* Complete the original. */
10537 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10538 }
10539 
10540 /*
10541  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10542  * interface) create the next available logical interface for this
10543  * physical interface.
10544  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10545  * ipif with the specified name.
10546  *
10547  * If the address family is not AF_UNSPEC then set the address as well.
10548  *
10549  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10550  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10551  *
10552  * Executed as a writer on the ill or ill group.
10553  * So no lock is needed to traverse the ipif chain, or examine the
10554  * phyint flags.
10555  */
10556 /* ARGSUSED */
10557 int
10558 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10559     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10560 {
10561 	mblk_t	*mp1;
10562 	struct lifreq *lifr;
10563 	boolean_t	isv6;
10564 	boolean_t	exists;
10565 	char 	*name;
10566 	char	*endp;
10567 	char	*cp;
10568 	int	namelen;
10569 	ipif_t	*ipif;
10570 	long	id;
10571 	ipsq_t	*ipsq;
10572 	ill_t	*ill;
10573 	sin_t	*sin;
10574 	int	err = 0;
10575 	boolean_t found_sep = B_FALSE;
10576 	conn_t	*connp;
10577 	zoneid_t zoneid;
10578 	int	orig_ifindex = 0;
10579 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10580 
10581 	ASSERT(q->q_next == NULL);
10582 	ip1dbg(("ip_sioctl_addif\n"));
10583 	/* Existence of mp1 has been checked in ip_wput_nondata */
10584 	mp1 = mp->b_cont->b_cont;
10585 	/*
10586 	 * Null terminate the string to protect against buffer
10587 	 * overrun. String was generated by user code and may not
10588 	 * be trusted.
10589 	 */
10590 	lifr = (struct lifreq *)mp1->b_rptr;
10591 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10592 	name = lifr->lifr_name;
10593 	ASSERT(CONN_Q(q));
10594 	connp = Q_TO_CONN(q);
10595 	isv6 = connp->conn_af_isv6;
10596 	zoneid = connp->conn_zoneid;
10597 	namelen = mi_strlen(name);
10598 	if (namelen == 0)
10599 		return (EINVAL);
10600 
10601 	exists = B_FALSE;
10602 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10603 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10604 		/*
10605 		 * Allow creating lo0 using SIOCLIFADDIF.
10606 		 * can't be any other writer thread. So can pass null below
10607 		 * for the last 4 args to ipif_lookup_name.
10608 		 */
10609 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10610 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10611 		/* Prevent any further action */
10612 		if (ipif == NULL) {
10613 			return (ENOBUFS);
10614 		} else if (!exists) {
10615 			/* We created the ipif now and as writer */
10616 			ipif_refrele(ipif);
10617 			return (0);
10618 		} else {
10619 			ill = ipif->ipif_ill;
10620 			ill_refhold(ill);
10621 			ipif_refrele(ipif);
10622 		}
10623 	} else {
10624 		/* Look for a colon in the name. */
10625 		endp = &name[namelen];
10626 		for (cp = endp; --cp > name; ) {
10627 			if (*cp == IPIF_SEPARATOR_CHAR) {
10628 				found_sep = B_TRUE;
10629 				/*
10630 				 * Reject any non-decimal aliases for plumbing
10631 				 * of logical interfaces. Aliases with leading
10632 				 * zeroes are also rejected as they introduce
10633 				 * ambiguity in the naming of the interfaces.
10634 				 * Comparing with "0" takes care of all such
10635 				 * cases.
10636 				 */
10637 				if ((strncmp("0", cp+1, 1)) == 0)
10638 					return (EINVAL);
10639 
10640 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10641 				    id <= 0 || *endp != '\0') {
10642 					return (EINVAL);
10643 				}
10644 				*cp = '\0';
10645 				break;
10646 			}
10647 		}
10648 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10649 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10650 		if (found_sep)
10651 			*cp = IPIF_SEPARATOR_CHAR;
10652 		if (ill == NULL)
10653 			return (err);
10654 	}
10655 
10656 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10657 	    B_TRUE);
10658 
10659 	/*
10660 	 * Release the refhold due to the lookup, now that we are excl
10661 	 * or we are just returning
10662 	 */
10663 	ill_refrele(ill);
10664 
10665 	if (ipsq == NULL)
10666 		return (EINPROGRESS);
10667 
10668 	/*
10669 	 * If the interface is failed, inactive or offlined, look for a working
10670 	 * interface in the ill group and create the ipif there. If we can't
10671 	 * find a good interface, create the ipif anyway so that in.mpathd can
10672 	 * move it to the first repaired interface.
10673 	 */
10674 	if ((ill->ill_phyint->phyint_flags &
10675 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10676 	    ill->ill_phyint->phyint_groupname_len != 0) {
10677 		phyint_t *phyi;
10678 		char *groupname = ill->ill_phyint->phyint_groupname;
10679 
10680 		/*
10681 		 * We're looking for a working interface, but it doesn't matter
10682 		 * if it's up or down; so instead of following the group lists,
10683 		 * we look at each physical interface and compare the groupname.
10684 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10685 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10686 		 * Otherwise we create the ipif on the failed interface.
10687 		 */
10688 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10689 		phyi = avl_first(&ipst->ips_phyint_g_list->
10690 		    phyint_list_avl_by_index);
10691 		for (; phyi != NULL;
10692 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
10693 		    phyint_list_avl_by_index,
10694 		    phyi, AVL_AFTER)) {
10695 			if (phyi->phyint_groupname_len == 0)
10696 				continue;
10697 			ASSERT(phyi->phyint_groupname != NULL);
10698 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10699 			    !(phyi->phyint_flags &
10700 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10701 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10702 			    (phyi->phyint_illv4 != NULL))) {
10703 				break;
10704 			}
10705 		}
10706 		rw_exit(&ipst->ips_ill_g_lock);
10707 
10708 		if (phyi != NULL) {
10709 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
10710 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10711 			    phyi->phyint_illv4);
10712 		}
10713 	}
10714 
10715 	/*
10716 	 * We are now exclusive on the ipsq, so an ill move will be serialized
10717 	 * before or after us.
10718 	 */
10719 	ASSERT(IAM_WRITER_ILL(ill));
10720 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10721 
10722 	if (found_sep && orig_ifindex == 0) {
10723 		/* Now see if there is an IPIF with this unit number. */
10724 		for (ipif = ill->ill_ipif; ipif != NULL;
10725 		    ipif = ipif->ipif_next) {
10726 			if (ipif->ipif_id == id) {
10727 				err = EEXIST;
10728 				goto done;
10729 			}
10730 		}
10731 	}
10732 
10733 	/*
10734 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10735 	 * of lo0. We never come here when we plumb lo0:0. It
10736 	 * happens in ipif_lookup_on_name.
10737 	 * The specified unit number is ignored when we create the ipif on a
10738 	 * different interface. However, we save it in ipif_orig_ipifid below so
10739 	 * that the ipif fails back to the right position.
10740 	 */
10741 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10742 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10743 		err = ENOBUFS;
10744 		goto done;
10745 	}
10746 
10747 	/* Return created name with ioctl */
10748 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10749 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10750 	ip1dbg(("created %s\n", lifr->lifr_name));
10751 
10752 	/* Set address */
10753 	sin = (sin_t *)&lifr->lifr_addr;
10754 	if (sin->sin_family != AF_UNSPEC) {
10755 		err = ip_sioctl_addr(ipif, sin, q, mp,
10756 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10757 	}
10758 
10759 	/* Set ifindex and unit number for failback */
10760 	if (err == 0 && orig_ifindex != 0) {
10761 		ipif->ipif_orig_ifindex = orig_ifindex;
10762 		if (found_sep) {
10763 			ipif->ipif_orig_ipifid = id;
10764 		}
10765 	}
10766 
10767 done:
10768 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
10769 	return (err);
10770 }
10771 
10772 /*
10773  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10774  * interface) delete it based on the IP address (on this physical interface).
10775  * Otherwise delete it based on the ipif_id.
10776  * Also, special handling to allow a removeif of lo0.
10777  */
10778 /* ARGSUSED */
10779 int
10780 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10781     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10782 {
10783 	conn_t		*connp;
10784 	ill_t		*ill = ipif->ipif_ill;
10785 	boolean_t	 success;
10786 	ip_stack_t	*ipst;
10787 
10788 	ipst = CONNQ_TO_IPST(q);
10789 
10790 	ASSERT(q->q_next == NULL);
10791 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10792 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10793 	ASSERT(IAM_WRITER_IPIF(ipif));
10794 
10795 	connp = Q_TO_CONN(q);
10796 	/*
10797 	 * Special case for unplumbing lo0 (the loopback physical interface).
10798 	 * If unplumbing lo0, the incoming address structure has been
10799 	 * initialized to all zeros. When unplumbing lo0, all its logical
10800 	 * interfaces must be removed too.
10801 	 *
10802 	 * Note that this interface may be called to remove a specific
10803 	 * loopback logical interface (eg, lo0:1). But in that case
10804 	 * ipif->ipif_id != 0 so that the code path for that case is the
10805 	 * same as any other interface (meaning it skips the code directly
10806 	 * below).
10807 	 */
10808 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10809 		if (sin->sin_family == AF_UNSPEC &&
10810 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10811 			/*
10812 			 * Mark it condemned. No new ref. will be made to ill.
10813 			 */
10814 			mutex_enter(&ill->ill_lock);
10815 			ill->ill_state_flags |= ILL_CONDEMNED;
10816 			for (ipif = ill->ill_ipif; ipif != NULL;
10817 			    ipif = ipif->ipif_next) {
10818 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10819 			}
10820 			mutex_exit(&ill->ill_lock);
10821 
10822 			ipif = ill->ill_ipif;
10823 			/* unplumb the loopback interface */
10824 			ill_delete(ill);
10825 			mutex_enter(&connp->conn_lock);
10826 			mutex_enter(&ill->ill_lock);
10827 			ASSERT(ill->ill_group == NULL);
10828 
10829 			/* Are any references to this ill active */
10830 			if (ill_is_quiescent(ill)) {
10831 				mutex_exit(&ill->ill_lock);
10832 				mutex_exit(&connp->conn_lock);
10833 				ill_delete_tail(ill);
10834 				mi_free(ill);
10835 				return (0);
10836 			}
10837 			success = ipsq_pending_mp_add(connp, ipif,
10838 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10839 			mutex_exit(&connp->conn_lock);
10840 			mutex_exit(&ill->ill_lock);
10841 			if (success)
10842 				return (EINPROGRESS);
10843 			else
10844 				return (EINTR);
10845 		}
10846 	}
10847 
10848 	/*
10849 	 * We are exclusive on the ipsq, so an ill move will be serialized
10850 	 * before or after us.
10851 	 */
10852 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10853 
10854 	if (ipif->ipif_id == 0) {
10855 		/* Find based on address */
10856 		if (ipif->ipif_isv6) {
10857 			sin6_t *sin6;
10858 
10859 			if (sin->sin_family != AF_INET6)
10860 				return (EAFNOSUPPORT);
10861 
10862 			sin6 = (sin6_t *)sin;
10863 			/* We are a writer, so we should be able to lookup */
10864 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10865 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
10866 			if (ipif == NULL) {
10867 				/*
10868 				 * Maybe the address in on another interface in
10869 				 * the same IPMP group? We check this below.
10870 				 */
10871 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10872 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
10873 				    ipst);
10874 			}
10875 		} else {
10876 			ipaddr_t addr;
10877 
10878 			if (sin->sin_family != AF_INET)
10879 				return (EAFNOSUPPORT);
10880 
10881 			addr = sin->sin_addr.s_addr;
10882 			/* We are a writer, so we should be able to lookup */
10883 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
10884 			    NULL, NULL, NULL, ipst);
10885 			if (ipif == NULL) {
10886 				/*
10887 				 * Maybe the address in on another interface in
10888 				 * the same IPMP group? We check this below.
10889 				 */
10890 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
10891 				    NULL, NULL, NULL, NULL, ipst);
10892 			}
10893 		}
10894 		if (ipif == NULL) {
10895 			return (EADDRNOTAVAIL);
10896 		}
10897 		/*
10898 		 * When the address to be removed is hosted on a different
10899 		 * interface, we check if the interface is in the same IPMP
10900 		 * group as the specified one; if so we proceed with the
10901 		 * removal.
10902 		 * ill->ill_group is NULL when the ill is down, so we have to
10903 		 * compare the group names instead.
10904 		 */
10905 		if (ipif->ipif_ill != ill &&
10906 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
10907 		    ill->ill_phyint->phyint_groupname_len == 0 ||
10908 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
10909 		    ill->ill_phyint->phyint_groupname) != 0)) {
10910 			ipif_refrele(ipif);
10911 			return (EADDRNOTAVAIL);
10912 		}
10913 
10914 		/* This is a writer */
10915 		ipif_refrele(ipif);
10916 	}
10917 
10918 	/*
10919 	 * Can not delete instance zero since it is tied to the ill.
10920 	 */
10921 	if (ipif->ipif_id == 0)
10922 		return (EBUSY);
10923 
10924 	mutex_enter(&ill->ill_lock);
10925 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10926 	mutex_exit(&ill->ill_lock);
10927 
10928 	ipif_free(ipif);
10929 
10930 	mutex_enter(&connp->conn_lock);
10931 	mutex_enter(&ill->ill_lock);
10932 
10933 	/* Are any references to this ipif active */
10934 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
10935 		mutex_exit(&ill->ill_lock);
10936 		mutex_exit(&connp->conn_lock);
10937 		ipif_non_duplicate(ipif);
10938 		ipif_down_tail(ipif);
10939 		ipif_free_tail(ipif);
10940 		return (0);
10941 	}
10942 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10943 	    IPIF_FREE);
10944 	mutex_exit(&ill->ill_lock);
10945 	mutex_exit(&connp->conn_lock);
10946 	if (success)
10947 		return (EINPROGRESS);
10948 	else
10949 		return (EINTR);
10950 }
10951 
10952 /*
10953  * Restart the removeif ioctl. The refcnt has gone down to 0.
10954  * The ipif is already condemned. So can't find it thru lookups.
10955  */
10956 /* ARGSUSED */
10957 int
10958 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10959     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10960 {
10961 	ill_t *ill = ipif->ipif_ill;
10962 
10963 	ASSERT(IAM_WRITER_IPIF(ipif));
10964 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10965 
10966 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10967 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10968 
10969 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10970 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10971 		ill_delete_tail(ill);
10972 		mi_free(ill);
10973 		return (0);
10974 	}
10975 
10976 	ipif_non_duplicate(ipif);
10977 	ipif_down_tail(ipif);
10978 	ipif_free_tail(ipif);
10979 
10980 	ILL_UNMARK_CHANGING(ill);
10981 	return (0);
10982 }
10983 
10984 /*
10985  * Set the local interface address.
10986  * Allow an address of all zero when the interface is down.
10987  */
10988 /* ARGSUSED */
10989 int
10990 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10991     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10992 {
10993 	int err = 0;
10994 	in6_addr_t v6addr;
10995 	boolean_t need_up = B_FALSE;
10996 
10997 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10998 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10999 
11000 	ASSERT(IAM_WRITER_IPIF(ipif));
11001 
11002 	if (ipif->ipif_isv6) {
11003 		sin6_t *sin6;
11004 		ill_t *ill;
11005 		phyint_t *phyi;
11006 
11007 		if (sin->sin_family != AF_INET6)
11008 			return (EAFNOSUPPORT);
11009 
11010 		sin6 = (sin6_t *)sin;
11011 		v6addr = sin6->sin6_addr;
11012 		ill = ipif->ipif_ill;
11013 		phyi = ill->ill_phyint;
11014 
11015 		/*
11016 		 * Enforce that true multicast interfaces have a link-local
11017 		 * address for logical unit 0.
11018 		 */
11019 		if (ipif->ipif_id == 0 &&
11020 		    (ill->ill_flags & ILLF_MULTICAST) &&
11021 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11022 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11023 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11024 			return (EADDRNOTAVAIL);
11025 		}
11026 
11027 		/*
11028 		 * up interfaces shouldn't have the unspecified address
11029 		 * unless they also have the IPIF_NOLOCAL flags set and
11030 		 * have a subnet assigned.
11031 		 */
11032 		if ((ipif->ipif_flags & IPIF_UP) &&
11033 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11034 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11035 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11036 			return (EADDRNOTAVAIL);
11037 		}
11038 
11039 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11040 			return (EADDRNOTAVAIL);
11041 	} else {
11042 		ipaddr_t addr;
11043 
11044 		if (sin->sin_family != AF_INET)
11045 			return (EAFNOSUPPORT);
11046 
11047 		addr = sin->sin_addr.s_addr;
11048 
11049 		/* Allow 0 as the local address. */
11050 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11051 			return (EADDRNOTAVAIL);
11052 
11053 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11054 	}
11055 
11056 
11057 	/*
11058 	 * Even if there is no change we redo things just to rerun
11059 	 * ipif_set_default.
11060 	 */
11061 	if (ipif->ipif_flags & IPIF_UP) {
11062 		/*
11063 		 * Setting a new local address, make sure
11064 		 * we have net and subnet bcast ire's for
11065 		 * the old address if we need them.
11066 		 */
11067 		if (!ipif->ipif_isv6)
11068 			ipif_check_bcast_ires(ipif);
11069 		/*
11070 		 * If the interface is already marked up,
11071 		 * we call ipif_down which will take care
11072 		 * of ditching any IREs that have been set
11073 		 * up based on the old interface address.
11074 		 */
11075 		err = ipif_logical_down(ipif, q, mp);
11076 		if (err == EINPROGRESS)
11077 			return (err);
11078 		ipif_down_tail(ipif);
11079 		need_up = 1;
11080 	}
11081 
11082 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11083 	return (err);
11084 }
11085 
11086 int
11087 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11088     boolean_t need_up)
11089 {
11090 	in6_addr_t v6addr;
11091 	in6_addr_t ov6addr;
11092 	ipaddr_t addr;
11093 	sin6_t	*sin6;
11094 	int	sinlen;
11095 	int	err = 0;
11096 	ill_t	*ill = ipif->ipif_ill;
11097 	boolean_t need_dl_down;
11098 	boolean_t need_arp_down;
11099 	struct iocblk *iocp;
11100 
11101 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11102 
11103 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11104 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11105 	ASSERT(IAM_WRITER_IPIF(ipif));
11106 
11107 	/* Must cancel any pending timer before taking the ill_lock */
11108 	if (ipif->ipif_recovery_id != 0)
11109 		(void) untimeout(ipif->ipif_recovery_id);
11110 	ipif->ipif_recovery_id = 0;
11111 
11112 	if (ipif->ipif_isv6) {
11113 		sin6 = (sin6_t *)sin;
11114 		v6addr = sin6->sin6_addr;
11115 		sinlen = sizeof (struct sockaddr_in6);
11116 	} else {
11117 		addr = sin->sin_addr.s_addr;
11118 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11119 		sinlen = sizeof (struct sockaddr_in);
11120 	}
11121 	mutex_enter(&ill->ill_lock);
11122 	ov6addr = ipif->ipif_v6lcl_addr;
11123 	ipif->ipif_v6lcl_addr = v6addr;
11124 	sctp_update_ipif_addr(ipif, ov6addr);
11125 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11126 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11127 	} else {
11128 		ipif->ipif_v6src_addr = v6addr;
11129 	}
11130 	ipif->ipif_addr_ready = 0;
11131 
11132 	/*
11133 	 * If the interface was previously marked as a duplicate, then since
11134 	 * we've now got a "new" address, it should no longer be considered a
11135 	 * duplicate -- even if the "new" address is the same as the old one.
11136 	 * Note that if all ipifs are down, we may have a pending ARP down
11137 	 * event to handle.  This is because we want to recover from duplicates
11138 	 * and thus delay tearing down ARP until the duplicates have been
11139 	 * removed or disabled.
11140 	 */
11141 	need_dl_down = need_arp_down = B_FALSE;
11142 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11143 		need_arp_down = !need_up;
11144 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11145 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11146 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11147 			need_dl_down = B_TRUE;
11148 		}
11149 	}
11150 
11151 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11152 	    !ill->ill_is_6to4tun) {
11153 		queue_t *wqp = ill->ill_wq;
11154 
11155 		/*
11156 		 * The local address of this interface is a 6to4 address,
11157 		 * check if this interface is in fact a 6to4 tunnel or just
11158 		 * an interface configured with a 6to4 address.  We are only
11159 		 * interested in the former.
11160 		 */
11161 		if (wqp != NULL) {
11162 			while ((wqp->q_next != NULL) &&
11163 			    (wqp->q_next->q_qinfo != NULL) &&
11164 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11165 
11166 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11167 				    == TUN6TO4_MODID) {
11168 					/* set for use in IP */
11169 					ill->ill_is_6to4tun = 1;
11170 					break;
11171 				}
11172 				wqp = wqp->q_next;
11173 			}
11174 		}
11175 	}
11176 
11177 	ipif_set_default(ipif);
11178 
11179 	/*
11180 	 * When publishing an interface address change event, we only notify
11181 	 * the event listeners of the new address.  It is assumed that if they
11182 	 * actively care about the addresses assigned that they will have
11183 	 * already discovered the previous address assigned (if there was one.)
11184 	 *
11185 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11186 	 */
11187 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11188 		hook_nic_event_t *info;
11189 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11190 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11191 			    "attached for %s\n", info->hne_event,
11192 			    ill->ill_name));
11193 			if (info->hne_data != NULL)
11194 				kmem_free(info->hne_data, info->hne_datalen);
11195 			kmem_free(info, sizeof (hook_nic_event_t));
11196 		}
11197 
11198 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11199 		if (info != NULL) {
11200 			ip_stack_t	*ipst = ill->ill_ipst;
11201 
11202 			info->hne_nic =
11203 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11204 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11205 			info->hne_event = NE_ADDRESS_CHANGE;
11206 			info->hne_family = ipif->ipif_isv6 ?
11207 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11208 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11209 			if (info->hne_data != NULL) {
11210 				info->hne_datalen = sinlen;
11211 				bcopy(sin, info->hne_data, sinlen);
11212 			} else {
11213 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11214 				    "address information for ADDRESS_CHANGE nic"
11215 				    " event of %s (ENOMEM)\n",
11216 				    ipif->ipif_ill->ill_name));
11217 				kmem_free(info, sizeof (hook_nic_event_t));
11218 			}
11219 		} else
11220 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11221 			    "ADDRESS_CHANGE nic event information for %s "
11222 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11223 
11224 		ipif->ipif_ill->ill_nic_event_info = info;
11225 	}
11226 
11227 	mutex_exit(&ill->ill_lock);
11228 
11229 	if (need_up) {
11230 		/*
11231 		 * Now bring the interface back up.  If this
11232 		 * is the only IPIF for the ILL, ipif_up
11233 		 * will have to re-bind to the device, so
11234 		 * we may get back EINPROGRESS, in which
11235 		 * case, this IOCTL will get completed in
11236 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11237 		 */
11238 		err = ipif_up(ipif, q, mp);
11239 	}
11240 
11241 	if (need_dl_down)
11242 		ill_dl_down(ill);
11243 	if (need_arp_down)
11244 		ipif_arp_down(ipif);
11245 
11246 	return (err);
11247 }
11248 
11249 
11250 /*
11251  * Restart entry point to restart the address set operation after the
11252  * refcounts have dropped to zero.
11253  */
11254 /* ARGSUSED */
11255 int
11256 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11257     ip_ioctl_cmd_t *ipip, void *ifreq)
11258 {
11259 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11260 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11261 	ASSERT(IAM_WRITER_IPIF(ipif));
11262 	ipif_down_tail(ipif);
11263 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11264 }
11265 
11266 /* ARGSUSED */
11267 int
11268 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11269     ip_ioctl_cmd_t *ipip, void *if_req)
11270 {
11271 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11272 	struct lifreq *lifr = (struct lifreq *)if_req;
11273 
11274 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11275 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11276 	/*
11277 	 * The net mask and address can't change since we have a
11278 	 * reference to the ipif. So no lock is necessary.
11279 	 */
11280 	if (ipif->ipif_isv6) {
11281 		*sin6 = sin6_null;
11282 		sin6->sin6_family = AF_INET6;
11283 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11284 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11285 		lifr->lifr_addrlen =
11286 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11287 	} else {
11288 		*sin = sin_null;
11289 		sin->sin_family = AF_INET;
11290 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11291 		if (ipip->ipi_cmd_type == LIF_CMD) {
11292 			lifr->lifr_addrlen =
11293 			    ip_mask_to_plen(ipif->ipif_net_mask);
11294 		}
11295 	}
11296 	return (0);
11297 }
11298 
11299 /*
11300  * Set the destination address for a pt-pt interface.
11301  */
11302 /* ARGSUSED */
11303 int
11304 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11305     ip_ioctl_cmd_t *ipip, void *if_req)
11306 {
11307 	int err = 0;
11308 	in6_addr_t v6addr;
11309 	boolean_t need_up = B_FALSE;
11310 
11311 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11312 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11313 	ASSERT(IAM_WRITER_IPIF(ipif));
11314 
11315 	if (ipif->ipif_isv6) {
11316 		sin6_t *sin6;
11317 
11318 		if (sin->sin_family != AF_INET6)
11319 			return (EAFNOSUPPORT);
11320 
11321 		sin6 = (sin6_t *)sin;
11322 		v6addr = sin6->sin6_addr;
11323 
11324 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11325 			return (EADDRNOTAVAIL);
11326 	} else {
11327 		ipaddr_t addr;
11328 
11329 		if (sin->sin_family != AF_INET)
11330 			return (EAFNOSUPPORT);
11331 
11332 		addr = sin->sin_addr.s_addr;
11333 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11334 			return (EADDRNOTAVAIL);
11335 
11336 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11337 	}
11338 
11339 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11340 		return (0);	/* No change */
11341 
11342 	if (ipif->ipif_flags & IPIF_UP) {
11343 		/*
11344 		 * If the interface is already marked up,
11345 		 * we call ipif_down which will take care
11346 		 * of ditching any IREs that have been set
11347 		 * up based on the old pp dst address.
11348 		 */
11349 		err = ipif_logical_down(ipif, q, mp);
11350 		if (err == EINPROGRESS)
11351 			return (err);
11352 		ipif_down_tail(ipif);
11353 		need_up = B_TRUE;
11354 	}
11355 	/*
11356 	 * could return EINPROGRESS. If so ioctl will complete in
11357 	 * ip_rput_dlpi_writer
11358 	 */
11359 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11360 	return (err);
11361 }
11362 
11363 static int
11364 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11365     boolean_t need_up)
11366 {
11367 	in6_addr_t v6addr;
11368 	ill_t	*ill = ipif->ipif_ill;
11369 	int	err = 0;
11370 	boolean_t need_dl_down;
11371 	boolean_t need_arp_down;
11372 
11373 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11374 	    ipif->ipif_id, (void *)ipif));
11375 
11376 	/* Must cancel any pending timer before taking the ill_lock */
11377 	if (ipif->ipif_recovery_id != 0)
11378 		(void) untimeout(ipif->ipif_recovery_id);
11379 	ipif->ipif_recovery_id = 0;
11380 
11381 	if (ipif->ipif_isv6) {
11382 		sin6_t *sin6;
11383 
11384 		sin6 = (sin6_t *)sin;
11385 		v6addr = sin6->sin6_addr;
11386 	} else {
11387 		ipaddr_t addr;
11388 
11389 		addr = sin->sin_addr.s_addr;
11390 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11391 	}
11392 	mutex_enter(&ill->ill_lock);
11393 	/* Set point to point destination address. */
11394 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11395 		/*
11396 		 * Allow this as a means of creating logical
11397 		 * pt-pt interfaces on top of e.g. an Ethernet.
11398 		 * XXX Undocumented HACK for testing.
11399 		 * pt-pt interfaces are created with NUD disabled.
11400 		 */
11401 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11402 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11403 		if (ipif->ipif_isv6)
11404 			ill->ill_flags |= ILLF_NONUD;
11405 	}
11406 
11407 	/*
11408 	 * If the interface was previously marked as a duplicate, then since
11409 	 * we've now got a "new" address, it should no longer be considered a
11410 	 * duplicate -- even if the "new" address is the same as the old one.
11411 	 * Note that if all ipifs are down, we may have a pending ARP down
11412 	 * event to handle.
11413 	 */
11414 	need_dl_down = need_arp_down = B_FALSE;
11415 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11416 		need_arp_down = !need_up;
11417 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11418 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11419 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11420 			need_dl_down = B_TRUE;
11421 		}
11422 	}
11423 
11424 	/* Set the new address. */
11425 	ipif->ipif_v6pp_dst_addr = v6addr;
11426 	/* Make sure subnet tracks pp_dst */
11427 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11428 	mutex_exit(&ill->ill_lock);
11429 
11430 	if (need_up) {
11431 		/*
11432 		 * Now bring the interface back up.  If this
11433 		 * is the only IPIF for the ILL, ipif_up
11434 		 * will have to re-bind to the device, so
11435 		 * we may get back EINPROGRESS, in which
11436 		 * case, this IOCTL will get completed in
11437 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11438 		 */
11439 		err = ipif_up(ipif, q, mp);
11440 	}
11441 
11442 	if (need_dl_down)
11443 		ill_dl_down(ill);
11444 
11445 	if (need_arp_down)
11446 		ipif_arp_down(ipif);
11447 	return (err);
11448 }
11449 
11450 /*
11451  * Restart entry point to restart the dstaddress set operation after the
11452  * refcounts have dropped to zero.
11453  */
11454 /* ARGSUSED */
11455 int
11456 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11457     ip_ioctl_cmd_t *ipip, void *ifreq)
11458 {
11459 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11460 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11461 	ipif_down_tail(ipif);
11462 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11463 }
11464 
11465 /* ARGSUSED */
11466 int
11467 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11468     ip_ioctl_cmd_t *ipip, void *if_req)
11469 {
11470 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11471 
11472 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11473 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11474 	/*
11475 	 * Get point to point destination address. The addresses can't
11476 	 * change since we hold a reference to the ipif.
11477 	 */
11478 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11479 		return (EADDRNOTAVAIL);
11480 
11481 	if (ipif->ipif_isv6) {
11482 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11483 		*sin6 = sin6_null;
11484 		sin6->sin6_family = AF_INET6;
11485 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11486 	} else {
11487 		*sin = sin_null;
11488 		sin->sin_family = AF_INET;
11489 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11490 	}
11491 	return (0);
11492 }
11493 
11494 /*
11495  * part of ipmp, make this func return the active/inactive state and
11496  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11497  */
11498 /*
11499  * This function either sets or clears the IFF_INACTIVE flag.
11500  *
11501  * As long as there are some addresses or multicast memberships on the
11502  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11503  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11504  * will be used for outbound packets.
11505  *
11506  * Caller needs to verify the validity of setting IFF_INACTIVE.
11507  */
11508 static void
11509 phyint_inactive(phyint_t *phyi)
11510 {
11511 	ill_t *ill_v4;
11512 	ill_t *ill_v6;
11513 	ipif_t *ipif;
11514 	ilm_t *ilm;
11515 
11516 	ill_v4 = phyi->phyint_illv4;
11517 	ill_v6 = phyi->phyint_illv6;
11518 
11519 	/*
11520 	 * No need for a lock while traversing the list since iam
11521 	 * a writer
11522 	 */
11523 	if (ill_v4 != NULL) {
11524 		ASSERT(IAM_WRITER_ILL(ill_v4));
11525 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11526 		    ipif = ipif->ipif_next) {
11527 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11528 				mutex_enter(&phyi->phyint_lock);
11529 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11530 				mutex_exit(&phyi->phyint_lock);
11531 				return;
11532 			}
11533 		}
11534 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11535 		    ilm = ilm->ilm_next) {
11536 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11537 				mutex_enter(&phyi->phyint_lock);
11538 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11539 				mutex_exit(&phyi->phyint_lock);
11540 				return;
11541 			}
11542 		}
11543 	}
11544 	if (ill_v6 != NULL) {
11545 		ill_v6 = phyi->phyint_illv6;
11546 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11547 		    ipif = ipif->ipif_next) {
11548 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11549 				mutex_enter(&phyi->phyint_lock);
11550 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11551 				mutex_exit(&phyi->phyint_lock);
11552 				return;
11553 			}
11554 		}
11555 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11556 		    ilm = ilm->ilm_next) {
11557 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11558 				mutex_enter(&phyi->phyint_lock);
11559 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11560 				mutex_exit(&phyi->phyint_lock);
11561 				return;
11562 			}
11563 		}
11564 	}
11565 	mutex_enter(&phyi->phyint_lock);
11566 	phyi->phyint_flags |= PHYI_INACTIVE;
11567 	mutex_exit(&phyi->phyint_lock);
11568 }
11569 
11570 /*
11571  * This function is called only when the phyint flags change. Currently
11572  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11573  * that we can select a good ill.
11574  */
11575 static void
11576 ip_redo_nomination(phyint_t *phyi)
11577 {
11578 	ill_t *ill_v4;
11579 
11580 	ill_v4 = phyi->phyint_illv4;
11581 
11582 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11583 		ASSERT(IAM_WRITER_ILL(ill_v4));
11584 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11585 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11586 	}
11587 }
11588 
11589 /*
11590  * Heuristic to check if ill is INACTIVE.
11591  * Checks if ill has an ipif with an usable ip address.
11592  *
11593  * Return values:
11594  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11595  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11596  */
11597 static boolean_t
11598 ill_is_inactive(ill_t *ill)
11599 {
11600 	ipif_t *ipif;
11601 
11602 	/* Check whether it is in an IPMP group */
11603 	if (ill->ill_phyint->phyint_groupname == NULL)
11604 		return (B_FALSE);
11605 
11606 	if (ill->ill_ipif_up_count == 0)
11607 		return (B_TRUE);
11608 
11609 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11610 		uint64_t flags = ipif->ipif_flags;
11611 
11612 		/*
11613 		 * This ipif is usable if it is IPIF_UP and not a
11614 		 * dedicated test address.  A dedicated test address
11615 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11616 		 * (note in particular that V6 test addresses are
11617 		 * link-local data addresses and thus are marked
11618 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11619 		 */
11620 		if ((flags & IPIF_UP) &&
11621 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11622 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11623 			return (B_FALSE);
11624 	}
11625 	return (B_TRUE);
11626 }
11627 
11628 /*
11629  * Set interface flags.
11630  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11631  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11632  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11633  *
11634  * NOTE : We really don't enforce that ipif_id zero should be used
11635  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11636  *	  is because applications generally does SICGLIFFLAGS and
11637  *	  ORs in the new flags (that affects the logical) and does a
11638  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11639  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11640  *	  flags that will be turned on is correct with respect to
11641  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11642  */
11643 /* ARGSUSED */
11644 int
11645 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11646     ip_ioctl_cmd_t *ipip, void *if_req)
11647 {
11648 	uint64_t turn_on;
11649 	uint64_t turn_off;
11650 	int	err;
11651 	boolean_t need_up = B_FALSE;
11652 	phyint_t *phyi;
11653 	ill_t *ill;
11654 	uint64_t intf_flags;
11655 	boolean_t phyint_flags_modified = B_FALSE;
11656 	uint64_t flags;
11657 	struct ifreq *ifr;
11658 	struct lifreq *lifr;
11659 	boolean_t set_linklocal = B_FALSE;
11660 	boolean_t zero_source = B_FALSE;
11661 	ip_stack_t *ipst;
11662 
11663 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11664 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11665 
11666 	ASSERT(IAM_WRITER_IPIF(ipif));
11667 
11668 	ill = ipif->ipif_ill;
11669 	phyi = ill->ill_phyint;
11670 	ipst = ill->ill_ipst;
11671 
11672 	if (ipip->ipi_cmd_type == IF_CMD) {
11673 		ifr = (struct ifreq *)if_req;
11674 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11675 	} else {
11676 		lifr = (struct lifreq *)if_req;
11677 		flags = lifr->lifr_flags;
11678 	}
11679 
11680 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11681 
11682 	/*
11683 	 * Has the flags been set correctly till now ?
11684 	 */
11685 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11686 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11687 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11688 	/*
11689 	 * Compare the new flags to the old, and partition
11690 	 * into those coming on and those going off.
11691 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11692 	 */
11693 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11694 		flags |= intf_flags & ~0xFFFF;
11695 
11696 	/*
11697 	 * First check which bits will change and then which will
11698 	 * go on and off
11699 	 */
11700 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11701 	if (!turn_on)
11702 		return (0);	/* No change */
11703 
11704 	turn_off = intf_flags & turn_on;
11705 	turn_on ^= turn_off;
11706 	err = 0;
11707 
11708 	/*
11709 	 * Don't allow any bits belonging to the logical interface
11710 	 * to be set or cleared on the replacement ipif that was
11711 	 * created temporarily during a MOVE.
11712 	 */
11713 	if (ipif->ipif_replace_zero &&
11714 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11715 		return (EINVAL);
11716 	}
11717 
11718 	/*
11719 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11720 	 * IPv6 interfaces.
11721 	 */
11722 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11723 		return (EINVAL);
11724 
11725 	/*
11726 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11727 	 */
11728 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11729 		return (EINVAL);
11730 
11731 	/*
11732 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11733 	 * interfaces.  It makes no sense in that context.
11734 	 */
11735 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11736 		return (EINVAL);
11737 
11738 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11739 		zero_source = B_TRUE;
11740 
11741 	/*
11742 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11743 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11744 	 * If the link local address isn't set, and can be set, it will get
11745 	 * set later on in this function.
11746 	 */
11747 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11748 	    (flags & IFF_UP) && !zero_source &&
11749 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11750 		if (ipif_cant_setlinklocal(ipif))
11751 			return (EINVAL);
11752 		set_linklocal = B_TRUE;
11753 	}
11754 
11755 	/*
11756 	 * ILL cannot be part of a usesrc group and and IPMP group at the
11757 	 * same time. No need to grab ill_g_usesrc_lock here, see
11758 	 * synchronization notes in ip.c
11759 	 */
11760 	if (turn_on & PHYI_STANDBY &&
11761 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11762 		return (EINVAL);
11763 	}
11764 
11765 	/*
11766 	 * If we modify physical interface flags, we'll potentially need to
11767 	 * send up two routing socket messages for the changes (one for the
11768 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11769 	 */
11770 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11771 		phyint_flags_modified = B_TRUE;
11772 
11773 	/*
11774 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11775 	 * we need to flush the IRE_CACHES belonging to this ill.
11776 	 * We handle this case here without doing the DOWN/UP dance
11777 	 * like it is done for other flags. If some other flags are
11778 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11779 	 * below will handle it by bringing it down and then
11780 	 * bringing it UP.
11781 	 */
11782 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11783 		ill_t *ill_v4, *ill_v6;
11784 
11785 		ill_v4 = phyi->phyint_illv4;
11786 		ill_v6 = phyi->phyint_illv6;
11787 
11788 		/*
11789 		 * First set the INACTIVE flag if needed. Then delete the ires.
11790 		 * ire_add will atomically prevent creating new IRE_CACHEs
11791 		 * unless hidden flag is set.
11792 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11793 		 */
11794 		if ((turn_on & PHYI_FAILED) &&
11795 		    ((intf_flags & PHYI_STANDBY) ||
11796 		    !ipst->ips_ipmp_enable_failback)) {
11797 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11798 			phyi->phyint_flags &= ~PHYI_INACTIVE;
11799 		}
11800 		if ((turn_off & PHYI_FAILED) &&
11801 		    ((intf_flags & PHYI_STANDBY) ||
11802 		    (!ipst->ips_ipmp_enable_failback &&
11803 		    ill_is_inactive(ill)))) {
11804 			phyint_inactive(phyi);
11805 		}
11806 
11807 		if (turn_on & PHYI_STANDBY) {
11808 			/*
11809 			 * We implicitly set INACTIVE only when STANDBY is set.
11810 			 * INACTIVE is also set on non-STANDBY phyint when user
11811 			 * disables FAILBACK using configuration file.
11812 			 * Do not allow STANDBY to be set on such INACTIVE
11813 			 * phyint
11814 			 */
11815 			if (phyi->phyint_flags & PHYI_INACTIVE)
11816 				return (EINVAL);
11817 			if (!(phyi->phyint_flags & PHYI_FAILED))
11818 				phyint_inactive(phyi);
11819 		}
11820 		if (turn_off & PHYI_STANDBY) {
11821 			if (ipst->ips_ipmp_enable_failback) {
11822 				/*
11823 				 * Reset PHYI_INACTIVE.
11824 				 */
11825 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11826 			} else if (ill_is_inactive(ill) &&
11827 			    !(phyi->phyint_flags & PHYI_FAILED)) {
11828 				/*
11829 				 * Need to set INACTIVE, when user sets
11830 				 * STANDBY on a non-STANDBY phyint and
11831 				 * later resets STANDBY
11832 				 */
11833 				phyint_inactive(phyi);
11834 			}
11835 		}
11836 		/*
11837 		 * We should always send up a message so that the
11838 		 * daemons come to know of it. Note that the zeroth
11839 		 * interface can be down and the check below for IPIF_UP
11840 		 * will not make sense as we are actually setting
11841 		 * a phyint flag here. We assume that the ipif used
11842 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
11843 		 * send up any message for non-zero ipifs).
11844 		 */
11845 		phyint_flags_modified = B_TRUE;
11846 
11847 		if (ill_v4 != NULL) {
11848 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11849 			    IRE_CACHE, ill_stq_cache_delete,
11850 			    (char *)ill_v4, ill_v4);
11851 			illgrp_reset_schednext(ill_v4);
11852 		}
11853 		if (ill_v6 != NULL) {
11854 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11855 			    IRE_CACHE, ill_stq_cache_delete,
11856 			    (char *)ill_v6, ill_v6);
11857 			illgrp_reset_schednext(ill_v6);
11858 		}
11859 	}
11860 
11861 	/*
11862 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11863 	 * status of the interface and, if the interface is part of an IPMP
11864 	 * group, all other interfaces that are part of the same IPMP
11865 	 * group.
11866 	 */
11867 	if ((turn_on | turn_off) & ILLF_ROUTER)
11868 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11869 
11870 	/*
11871 	 * If the interface is not UP and we are not going to
11872 	 * bring it UP, record the flags and return. When the
11873 	 * interface comes UP later, the right actions will be
11874 	 * taken.
11875 	 */
11876 	if (!(ipif->ipif_flags & IPIF_UP) &&
11877 	    !(turn_on & IPIF_UP)) {
11878 		/* Record new flags in their respective places. */
11879 		mutex_enter(&ill->ill_lock);
11880 		mutex_enter(&ill->ill_phyint->phyint_lock);
11881 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11882 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11883 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11884 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11885 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11886 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11887 		mutex_exit(&ill->ill_lock);
11888 		mutex_exit(&ill->ill_phyint->phyint_lock);
11889 
11890 		/*
11891 		 * We do the broadcast and nomination here rather
11892 		 * than waiting for a FAILOVER/FAILBACK to happen. In
11893 		 * the case of FAILBACK from INACTIVE standby to the
11894 		 * interface that has been repaired, PHYI_FAILED has not
11895 		 * been cleared yet. If there are only two interfaces in
11896 		 * that group, all we have is a FAILED and INACTIVE
11897 		 * interface. If we do the nomination soon after a failback,
11898 		 * the broadcast nomination code would select the
11899 		 * INACTIVE interface for receiving broadcasts as FAILED is
11900 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
11901 		 * receive broadcast packets, we need to redo nomination
11902 		 * when the FAILED is cleared here. Thus, in general we
11903 		 * always do the nomination here for FAILED, STANDBY
11904 		 * and OFFLINE.
11905 		 */
11906 		if (((turn_on | turn_off) &
11907 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
11908 			ip_redo_nomination(phyi);
11909 		}
11910 		if (phyint_flags_modified) {
11911 			if (phyi->phyint_illv4 != NULL) {
11912 				ip_rts_ifmsg(phyi->phyint_illv4->
11913 				    ill_ipif);
11914 			}
11915 			if (phyi->phyint_illv6 != NULL) {
11916 				ip_rts_ifmsg(phyi->phyint_illv6->
11917 				    ill_ipif);
11918 			}
11919 		}
11920 		return (0);
11921 	} else if (set_linklocal || zero_source) {
11922 		mutex_enter(&ill->ill_lock);
11923 		if (set_linklocal)
11924 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11925 		if (zero_source)
11926 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11927 		mutex_exit(&ill->ill_lock);
11928 	}
11929 
11930 	/*
11931 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11932 	 * or point-to-point interfaces with an unspecified destination. We do
11933 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11934 	 * have a subnet assigned, which is how in.ndpd currently manages its
11935 	 * onlink prefix list when no addresses are configured with those
11936 	 * prefixes.
11937 	 */
11938 	if (ipif->ipif_isv6 &&
11939 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11940 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11941 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11942 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11943 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11944 		return (EINVAL);
11945 	}
11946 
11947 	/*
11948 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11949 	 * from being brought up.
11950 	 */
11951 	if (!ipif->ipif_isv6 &&
11952 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11953 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11954 		return (EINVAL);
11955 	}
11956 
11957 	/*
11958 	 * The only flag changes that we currently take specific action on
11959 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
11960 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
11961 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
11962 	 * the flags and bringing it back up again.
11963 	 */
11964 	if ((turn_on|turn_off) &
11965 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11966 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
11967 		/*
11968 		 * Taking this ipif down, make sure we have
11969 		 * valid net and subnet bcast ire's for other
11970 		 * logical interfaces, if we need them.
11971 		 */
11972 		if (!ipif->ipif_isv6)
11973 			ipif_check_bcast_ires(ipif);
11974 
11975 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11976 		    !(turn_off & IPIF_UP)) {
11977 			need_up = B_TRUE;
11978 			if (ipif->ipif_flags & IPIF_UP)
11979 				ill->ill_logical_down = 1;
11980 			turn_on &= ~IPIF_UP;
11981 		}
11982 		err = ipif_down(ipif, q, mp);
11983 		ip1dbg(("ipif_down returns %d err ", err));
11984 		if (err == EINPROGRESS)
11985 			return (err);
11986 		ipif_down_tail(ipif);
11987 	}
11988 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
11989 }
11990 
11991 static int
11992 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
11993     boolean_t need_up)
11994 {
11995 	ill_t	*ill;
11996 	phyint_t *phyi;
11997 	uint64_t turn_on;
11998 	uint64_t turn_off;
11999 	uint64_t intf_flags;
12000 	boolean_t phyint_flags_modified = B_FALSE;
12001 	int	err = 0;
12002 	boolean_t set_linklocal = B_FALSE;
12003 	boolean_t zero_source = B_FALSE;
12004 
12005 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12006 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
12007 
12008 	ASSERT(IAM_WRITER_IPIF(ipif));
12009 
12010 	ill = ipif->ipif_ill;
12011 	phyi = ill->ill_phyint;
12012 
12013 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12014 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12015 
12016 	turn_off = intf_flags & turn_on;
12017 	turn_on ^= turn_off;
12018 
12019 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12020 		phyint_flags_modified = B_TRUE;
12021 
12022 	/*
12023 	 * Now we change the flags. Track current value of
12024 	 * other flags in their respective places.
12025 	 */
12026 	mutex_enter(&ill->ill_lock);
12027 	mutex_enter(&phyi->phyint_lock);
12028 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12029 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12030 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12031 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12032 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12033 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12034 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12035 		set_linklocal = B_TRUE;
12036 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12037 	}
12038 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12039 		zero_source = B_TRUE;
12040 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12041 	}
12042 	mutex_exit(&ill->ill_lock);
12043 	mutex_exit(&phyi->phyint_lock);
12044 
12045 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12046 		ip_redo_nomination(phyi);
12047 
12048 	if (set_linklocal)
12049 		(void) ipif_setlinklocal(ipif);
12050 
12051 	if (zero_source)
12052 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12053 	else
12054 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12055 
12056 	if (need_up) {
12057 		/*
12058 		 * XXX ipif_up really does not know whether a phyint flags
12059 		 * was modified or not. So, it sends up information on
12060 		 * only one routing sockets message. As we don't bring up
12061 		 * the interface and also set STANDBY/FAILED simultaneously
12062 		 * it should be okay.
12063 		 */
12064 		err = ipif_up(ipif, q, mp);
12065 	} else {
12066 		/*
12067 		 * Make sure routing socket sees all changes to the flags.
12068 		 * ipif_up_done* handles this when we use ipif_up.
12069 		 */
12070 		if (phyint_flags_modified) {
12071 			if (phyi->phyint_illv4 != NULL) {
12072 				ip_rts_ifmsg(phyi->phyint_illv4->
12073 				    ill_ipif);
12074 			}
12075 			if (phyi->phyint_illv6 != NULL) {
12076 				ip_rts_ifmsg(phyi->phyint_illv6->
12077 				    ill_ipif);
12078 			}
12079 		} else {
12080 			ip_rts_ifmsg(ipif);
12081 		}
12082 		/*
12083 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12084 		 * this in need_up case.
12085 		 */
12086 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12087 	}
12088 	return (err);
12089 }
12090 
12091 /*
12092  * Restart entry point to restart the flags restart operation after the
12093  * refcounts have dropped to zero.
12094  */
12095 /* ARGSUSED */
12096 int
12097 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12098     ip_ioctl_cmd_t *ipip, void *if_req)
12099 {
12100 	int	err;
12101 	struct ifreq *ifr = (struct ifreq *)if_req;
12102 	struct lifreq *lifr = (struct lifreq *)if_req;
12103 
12104 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12105 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12106 
12107 	ipif_down_tail(ipif);
12108 	if (ipip->ipi_cmd_type == IF_CMD) {
12109 		/*
12110 		 * Since ip_sioctl_flags expects an int and ifr_flags
12111 		 * is a short we need to cast ifr_flags into an int
12112 		 * to avoid having sign extension cause bits to get
12113 		 * set that should not be.
12114 		 */
12115 		err = ip_sioctl_flags_tail(ipif,
12116 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12117 		    q, mp, B_TRUE);
12118 	} else {
12119 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12120 		    q, mp, B_TRUE);
12121 	}
12122 	return (err);
12123 }
12124 
12125 /*
12126  * Can operate on either a module or a driver queue.
12127  */
12128 /* ARGSUSED */
12129 int
12130 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12131     ip_ioctl_cmd_t *ipip, void *if_req)
12132 {
12133 	/*
12134 	 * Has the flags been set correctly till now ?
12135 	 */
12136 	ill_t *ill = ipif->ipif_ill;
12137 	phyint_t *phyi = ill->ill_phyint;
12138 
12139 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12140 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12141 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12142 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12143 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12144 
12145 	/*
12146 	 * Need a lock since some flags can be set even when there are
12147 	 * references to the ipif.
12148 	 */
12149 	mutex_enter(&ill->ill_lock);
12150 	if (ipip->ipi_cmd_type == IF_CMD) {
12151 		struct ifreq *ifr = (struct ifreq *)if_req;
12152 
12153 		/* Get interface flags (low 16 only). */
12154 		ifr->ifr_flags = ((ipif->ipif_flags |
12155 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12156 	} else {
12157 		struct lifreq *lifr = (struct lifreq *)if_req;
12158 
12159 		/* Get interface flags. */
12160 		lifr->lifr_flags = ipif->ipif_flags |
12161 		    ill->ill_flags | phyi->phyint_flags;
12162 	}
12163 	mutex_exit(&ill->ill_lock);
12164 	return (0);
12165 }
12166 
12167 /* ARGSUSED */
12168 int
12169 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12170     ip_ioctl_cmd_t *ipip, void *if_req)
12171 {
12172 	int mtu;
12173 	int ip_min_mtu;
12174 	struct ifreq	*ifr;
12175 	struct lifreq *lifr;
12176 	ire_t	*ire;
12177 	ip_stack_t *ipst;
12178 
12179 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12180 	    ipif->ipif_id, (void *)ipif));
12181 	if (ipip->ipi_cmd_type == IF_CMD) {
12182 		ifr = (struct ifreq *)if_req;
12183 		mtu = ifr->ifr_metric;
12184 	} else {
12185 		lifr = (struct lifreq *)if_req;
12186 		mtu = lifr->lifr_mtu;
12187 	}
12188 
12189 	if (ipif->ipif_isv6)
12190 		ip_min_mtu = IPV6_MIN_MTU;
12191 	else
12192 		ip_min_mtu = IP_MIN_MTU;
12193 
12194 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12195 		return (EINVAL);
12196 
12197 	/*
12198 	 * Change the MTU size in all relevant ire's.
12199 	 * Mtu change Vs. new ire creation - protocol below.
12200 	 * First change ipif_mtu and the ire_max_frag of the
12201 	 * interface ire. Then do an ire walk and change the
12202 	 * ire_max_frag of all affected ires. During ire_add
12203 	 * under the bucket lock, set the ire_max_frag of the
12204 	 * new ire being created from the ipif/ire from which
12205 	 * it is being derived. If an mtu change happens after
12206 	 * the ire is added, the new ire will be cleaned up.
12207 	 * Conversely if the mtu change happens before the ire
12208 	 * is added, ire_add will see the new value of the mtu.
12209 	 */
12210 	ipif->ipif_mtu = mtu;
12211 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12212 
12213 	if (ipif->ipif_isv6)
12214 		ire = ipif_to_ire_v6(ipif);
12215 	else
12216 		ire = ipif_to_ire(ipif);
12217 	if (ire != NULL) {
12218 		ire->ire_max_frag = ipif->ipif_mtu;
12219 		ire_refrele(ire);
12220 	}
12221 	ipst = ipif->ipif_ill->ill_ipst;
12222 	if (ipif->ipif_flags & IPIF_UP) {
12223 		if (ipif->ipif_isv6)
12224 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12225 			    ipst);
12226 		else
12227 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12228 			    ipst);
12229 	}
12230 	/* Update the MTU in SCTP's list */
12231 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12232 	return (0);
12233 }
12234 
12235 /* Get interface MTU. */
12236 /* ARGSUSED */
12237 int
12238 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12239 	ip_ioctl_cmd_t *ipip, void *if_req)
12240 {
12241 	struct ifreq	*ifr;
12242 	struct lifreq	*lifr;
12243 
12244 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12245 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12246 	if (ipip->ipi_cmd_type == IF_CMD) {
12247 		ifr = (struct ifreq *)if_req;
12248 		ifr->ifr_metric = ipif->ipif_mtu;
12249 	} else {
12250 		lifr = (struct lifreq *)if_req;
12251 		lifr->lifr_mtu = ipif->ipif_mtu;
12252 	}
12253 	return (0);
12254 }
12255 
12256 /* Set interface broadcast address. */
12257 /* ARGSUSED2 */
12258 int
12259 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12260 	ip_ioctl_cmd_t *ipip, void *if_req)
12261 {
12262 	ipaddr_t addr;
12263 	ire_t	*ire;
12264 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12265 
12266 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12267 	    ipif->ipif_id));
12268 
12269 	ASSERT(IAM_WRITER_IPIF(ipif));
12270 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12271 		return (EADDRNOTAVAIL);
12272 
12273 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12274 
12275 	if (sin->sin_family != AF_INET)
12276 		return (EAFNOSUPPORT);
12277 
12278 	addr = sin->sin_addr.s_addr;
12279 	if (ipif->ipif_flags & IPIF_UP) {
12280 		/*
12281 		 * If we are already up, make sure the new
12282 		 * broadcast address makes sense.  If it does,
12283 		 * there should be an IRE for it already.
12284 		 * Don't match on ipif, only on the ill
12285 		 * since we are sharing these now. Don't use
12286 		 * MATCH_IRE_ILL_GROUP as we are looking for
12287 		 * the broadcast ire on this ill and each ill
12288 		 * in the group has its own broadcast ire.
12289 		 */
12290 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12291 		    ipif, ALL_ZONES, NULL,
12292 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12293 		if (ire == NULL) {
12294 			return (EINVAL);
12295 		} else {
12296 			ire_refrele(ire);
12297 		}
12298 	}
12299 	/*
12300 	 * Changing the broadcast addr for this ipif.
12301 	 * Make sure we have valid net and subnet bcast
12302 	 * ire's for other logical interfaces, if needed.
12303 	 */
12304 	if (addr != ipif->ipif_brd_addr)
12305 		ipif_check_bcast_ires(ipif);
12306 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12307 	return (0);
12308 }
12309 
12310 /* Get interface broadcast address. */
12311 /* ARGSUSED */
12312 int
12313 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12314     ip_ioctl_cmd_t *ipip, void *if_req)
12315 {
12316 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12317 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12318 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12319 		return (EADDRNOTAVAIL);
12320 
12321 	/* IPIF_BROADCAST not possible with IPv6 */
12322 	ASSERT(!ipif->ipif_isv6);
12323 	*sin = sin_null;
12324 	sin->sin_family = AF_INET;
12325 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12326 	return (0);
12327 }
12328 
12329 /*
12330  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12331  */
12332 /* ARGSUSED */
12333 int
12334 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12335     ip_ioctl_cmd_t *ipip, void *if_req)
12336 {
12337 	int err = 0;
12338 	in6_addr_t v6mask;
12339 
12340 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12341 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12342 
12343 	ASSERT(IAM_WRITER_IPIF(ipif));
12344 
12345 	if (ipif->ipif_isv6) {
12346 		sin6_t *sin6;
12347 
12348 		if (sin->sin_family != AF_INET6)
12349 			return (EAFNOSUPPORT);
12350 
12351 		sin6 = (sin6_t *)sin;
12352 		v6mask = sin6->sin6_addr;
12353 	} else {
12354 		ipaddr_t mask;
12355 
12356 		if (sin->sin_family != AF_INET)
12357 			return (EAFNOSUPPORT);
12358 
12359 		mask = sin->sin_addr.s_addr;
12360 		V4MASK_TO_V6(mask, v6mask);
12361 	}
12362 
12363 	/*
12364 	 * No big deal if the interface isn't already up, or the mask
12365 	 * isn't really changing, or this is pt-pt.
12366 	 */
12367 	if (!(ipif->ipif_flags & IPIF_UP) ||
12368 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12369 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12370 		ipif->ipif_v6net_mask = v6mask;
12371 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12372 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12373 			    ipif->ipif_v6net_mask,
12374 			    ipif->ipif_v6subnet);
12375 		}
12376 		return (0);
12377 	}
12378 	/*
12379 	 * Make sure we have valid net and subnet broadcast ire's
12380 	 * for the old netmask, if needed by other logical interfaces.
12381 	 */
12382 	if (!ipif->ipif_isv6)
12383 		ipif_check_bcast_ires(ipif);
12384 
12385 	err = ipif_logical_down(ipif, q, mp);
12386 	if (err == EINPROGRESS)
12387 		return (err);
12388 	ipif_down_tail(ipif);
12389 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12390 	return (err);
12391 }
12392 
12393 static int
12394 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12395 {
12396 	in6_addr_t v6mask;
12397 	int err = 0;
12398 
12399 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12400 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12401 
12402 	if (ipif->ipif_isv6) {
12403 		sin6_t *sin6;
12404 
12405 		sin6 = (sin6_t *)sin;
12406 		v6mask = sin6->sin6_addr;
12407 	} else {
12408 		ipaddr_t mask;
12409 
12410 		mask = sin->sin_addr.s_addr;
12411 		V4MASK_TO_V6(mask, v6mask);
12412 	}
12413 
12414 	ipif->ipif_v6net_mask = v6mask;
12415 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12416 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12417 		    ipif->ipif_v6subnet);
12418 	}
12419 	err = ipif_up(ipif, q, mp);
12420 
12421 	if (err == 0 || err == EINPROGRESS) {
12422 		/*
12423 		 * The interface must be DL_BOUND if this packet has to
12424 		 * go out on the wire. Since we only go through a logical
12425 		 * down and are bound with the driver during an internal
12426 		 * down/up that is satisfied.
12427 		 */
12428 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12429 			/* Potentially broadcast an address mask reply. */
12430 			ipif_mask_reply(ipif);
12431 		}
12432 	}
12433 	return (err);
12434 }
12435 
12436 /* ARGSUSED */
12437 int
12438 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12439     ip_ioctl_cmd_t *ipip, void *if_req)
12440 {
12441 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12442 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12443 	ipif_down_tail(ipif);
12444 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12445 }
12446 
12447 /* Get interface net mask. */
12448 /* ARGSUSED */
12449 int
12450 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12451     ip_ioctl_cmd_t *ipip, void *if_req)
12452 {
12453 	struct lifreq *lifr = (struct lifreq *)if_req;
12454 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12455 
12456 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12457 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12458 
12459 	/*
12460 	 * net mask can't change since we have a reference to the ipif.
12461 	 */
12462 	if (ipif->ipif_isv6) {
12463 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12464 		*sin6 = sin6_null;
12465 		sin6->sin6_family = AF_INET6;
12466 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12467 		lifr->lifr_addrlen =
12468 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12469 	} else {
12470 		*sin = sin_null;
12471 		sin->sin_family = AF_INET;
12472 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12473 		if (ipip->ipi_cmd_type == LIF_CMD) {
12474 			lifr->lifr_addrlen =
12475 			    ip_mask_to_plen(ipif->ipif_net_mask);
12476 		}
12477 	}
12478 	return (0);
12479 }
12480 
12481 /* ARGSUSED */
12482 int
12483 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12484     ip_ioctl_cmd_t *ipip, void *if_req)
12485 {
12486 
12487 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12488 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12489 	/*
12490 	 * Set interface metric.  We don't use this for
12491 	 * anything but we keep track of it in case it is
12492 	 * important to routing applications or such.
12493 	 */
12494 	if (ipip->ipi_cmd_type == IF_CMD) {
12495 		struct ifreq    *ifr;
12496 
12497 		ifr = (struct ifreq *)if_req;
12498 		ipif->ipif_metric = ifr->ifr_metric;
12499 	} else {
12500 		struct lifreq   *lifr;
12501 
12502 		lifr = (struct lifreq *)if_req;
12503 		ipif->ipif_metric = lifr->lifr_metric;
12504 	}
12505 	return (0);
12506 }
12507 
12508 
12509 /* ARGSUSED */
12510 int
12511 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12512     ip_ioctl_cmd_t *ipip, void *if_req)
12513 {
12514 
12515 	/* Get interface metric. */
12516 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12517 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12518 	if (ipip->ipi_cmd_type == IF_CMD) {
12519 		struct ifreq    *ifr;
12520 
12521 		ifr = (struct ifreq *)if_req;
12522 		ifr->ifr_metric = ipif->ipif_metric;
12523 	} else {
12524 		struct lifreq   *lifr;
12525 
12526 		lifr = (struct lifreq *)if_req;
12527 		lifr->lifr_metric = ipif->ipif_metric;
12528 	}
12529 
12530 	return (0);
12531 }
12532 
12533 /* ARGSUSED */
12534 int
12535 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12536     ip_ioctl_cmd_t *ipip, void *if_req)
12537 {
12538 
12539 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12540 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12541 	/*
12542 	 * Set the muxid returned from I_PLINK.
12543 	 */
12544 	if (ipip->ipi_cmd_type == IF_CMD) {
12545 		struct ifreq *ifr = (struct ifreq *)if_req;
12546 
12547 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12548 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12549 	} else {
12550 		struct lifreq *lifr = (struct lifreq *)if_req;
12551 
12552 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12553 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12554 	}
12555 	return (0);
12556 }
12557 
12558 /* ARGSUSED */
12559 int
12560 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12561     ip_ioctl_cmd_t *ipip, void *if_req)
12562 {
12563 
12564 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12565 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12566 	/*
12567 	 * Get the muxid saved in ill for I_PUNLINK.
12568 	 */
12569 	if (ipip->ipi_cmd_type == IF_CMD) {
12570 		struct ifreq *ifr = (struct ifreq *)if_req;
12571 
12572 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12573 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12574 	} else {
12575 		struct lifreq *lifr = (struct lifreq *)if_req;
12576 
12577 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12578 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12579 	}
12580 	return (0);
12581 }
12582 
12583 /*
12584  * Set the subnet prefix. Does not modify the broadcast address.
12585  */
12586 /* ARGSUSED */
12587 int
12588 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12589     ip_ioctl_cmd_t *ipip, void *if_req)
12590 {
12591 	int err = 0;
12592 	in6_addr_t v6addr;
12593 	in6_addr_t v6mask;
12594 	boolean_t need_up = B_FALSE;
12595 	int addrlen;
12596 
12597 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12598 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12599 
12600 	ASSERT(IAM_WRITER_IPIF(ipif));
12601 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12602 
12603 	if (ipif->ipif_isv6) {
12604 		sin6_t *sin6;
12605 
12606 		if (sin->sin_family != AF_INET6)
12607 			return (EAFNOSUPPORT);
12608 
12609 		sin6 = (sin6_t *)sin;
12610 		v6addr = sin6->sin6_addr;
12611 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12612 			return (EADDRNOTAVAIL);
12613 	} else {
12614 		ipaddr_t addr;
12615 
12616 		if (sin->sin_family != AF_INET)
12617 			return (EAFNOSUPPORT);
12618 
12619 		addr = sin->sin_addr.s_addr;
12620 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12621 			return (EADDRNOTAVAIL);
12622 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12623 		/* Add 96 bits */
12624 		addrlen += IPV6_ABITS - IP_ABITS;
12625 	}
12626 
12627 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12628 		return (EINVAL);
12629 
12630 	/* Check if bits in the address is set past the mask */
12631 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12632 		return (EINVAL);
12633 
12634 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12635 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12636 		return (0);	/* No change */
12637 
12638 	if (ipif->ipif_flags & IPIF_UP) {
12639 		/*
12640 		 * If the interface is already marked up,
12641 		 * we call ipif_down which will take care
12642 		 * of ditching any IREs that have been set
12643 		 * up based on the old interface address.
12644 		 */
12645 		err = ipif_logical_down(ipif, q, mp);
12646 		if (err == EINPROGRESS)
12647 			return (err);
12648 		ipif_down_tail(ipif);
12649 		need_up = B_TRUE;
12650 	}
12651 
12652 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12653 	return (err);
12654 }
12655 
12656 static int
12657 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12658     queue_t *q, mblk_t *mp, boolean_t need_up)
12659 {
12660 	ill_t	*ill = ipif->ipif_ill;
12661 	int	err = 0;
12662 
12663 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12664 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12665 
12666 	/* Set the new address. */
12667 	mutex_enter(&ill->ill_lock);
12668 	ipif->ipif_v6net_mask = v6mask;
12669 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12670 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12671 		    ipif->ipif_v6subnet);
12672 	}
12673 	mutex_exit(&ill->ill_lock);
12674 
12675 	if (need_up) {
12676 		/*
12677 		 * Now bring the interface back up.  If this
12678 		 * is the only IPIF for the ILL, ipif_up
12679 		 * will have to re-bind to the device, so
12680 		 * we may get back EINPROGRESS, in which
12681 		 * case, this IOCTL will get completed in
12682 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12683 		 */
12684 		err = ipif_up(ipif, q, mp);
12685 		if (err == EINPROGRESS)
12686 			return (err);
12687 	}
12688 	return (err);
12689 }
12690 
12691 /* ARGSUSED */
12692 int
12693 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12694     ip_ioctl_cmd_t *ipip, void *if_req)
12695 {
12696 	int	addrlen;
12697 	in6_addr_t v6addr;
12698 	in6_addr_t v6mask;
12699 	struct lifreq *lifr = (struct lifreq *)if_req;
12700 
12701 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12702 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12703 	ipif_down_tail(ipif);
12704 
12705 	addrlen = lifr->lifr_addrlen;
12706 	if (ipif->ipif_isv6) {
12707 		sin6_t *sin6;
12708 
12709 		sin6 = (sin6_t *)sin;
12710 		v6addr = sin6->sin6_addr;
12711 	} else {
12712 		ipaddr_t addr;
12713 
12714 		addr = sin->sin_addr.s_addr;
12715 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12716 		addrlen += IPV6_ABITS - IP_ABITS;
12717 	}
12718 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12719 
12720 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12721 }
12722 
12723 /* ARGSUSED */
12724 int
12725 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12726     ip_ioctl_cmd_t *ipip, void *if_req)
12727 {
12728 	struct lifreq *lifr = (struct lifreq *)if_req;
12729 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12730 
12731 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12732 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12733 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12734 
12735 	if (ipif->ipif_isv6) {
12736 		*sin6 = sin6_null;
12737 		sin6->sin6_family = AF_INET6;
12738 		sin6->sin6_addr = ipif->ipif_v6subnet;
12739 		lifr->lifr_addrlen =
12740 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12741 	} else {
12742 		*sin = sin_null;
12743 		sin->sin_family = AF_INET;
12744 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12745 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12746 	}
12747 	return (0);
12748 }
12749 
12750 /*
12751  * Set the IPv6 address token.
12752  */
12753 /* ARGSUSED */
12754 int
12755 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12756     ip_ioctl_cmd_t *ipi, void *if_req)
12757 {
12758 	ill_t *ill = ipif->ipif_ill;
12759 	int err;
12760 	in6_addr_t v6addr;
12761 	in6_addr_t v6mask;
12762 	boolean_t need_up = B_FALSE;
12763 	int i;
12764 	sin6_t *sin6 = (sin6_t *)sin;
12765 	struct lifreq *lifr = (struct lifreq *)if_req;
12766 	int addrlen;
12767 
12768 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12769 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12770 	ASSERT(IAM_WRITER_IPIF(ipif));
12771 
12772 	addrlen = lifr->lifr_addrlen;
12773 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12774 	if (ipif->ipif_id != 0)
12775 		return (EINVAL);
12776 
12777 	if (!ipif->ipif_isv6)
12778 		return (EINVAL);
12779 
12780 	if (addrlen > IPV6_ABITS)
12781 		return (EINVAL);
12782 
12783 	v6addr = sin6->sin6_addr;
12784 
12785 	/*
12786 	 * The length of the token is the length from the end.  To get
12787 	 * the proper mask for this, compute the mask of the bits not
12788 	 * in the token; ie. the prefix, and then xor to get the mask.
12789 	 */
12790 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12791 		return (EINVAL);
12792 	for (i = 0; i < 4; i++) {
12793 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12794 	}
12795 
12796 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12797 	    ill->ill_token_length == addrlen)
12798 		return (0);	/* No change */
12799 
12800 	if (ipif->ipif_flags & IPIF_UP) {
12801 		err = ipif_logical_down(ipif, q, mp);
12802 		if (err == EINPROGRESS)
12803 			return (err);
12804 		ipif_down_tail(ipif);
12805 		need_up = B_TRUE;
12806 	}
12807 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12808 	return (err);
12809 }
12810 
12811 static int
12812 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12813     mblk_t *mp, boolean_t need_up)
12814 {
12815 	in6_addr_t v6addr;
12816 	in6_addr_t v6mask;
12817 	ill_t	*ill = ipif->ipif_ill;
12818 	int	i;
12819 	int	err = 0;
12820 
12821 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12822 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12823 	v6addr = sin6->sin6_addr;
12824 	/*
12825 	 * The length of the token is the length from the end.  To get
12826 	 * the proper mask for this, compute the mask of the bits not
12827 	 * in the token; ie. the prefix, and then xor to get the mask.
12828 	 */
12829 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12830 	for (i = 0; i < 4; i++)
12831 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12832 
12833 	mutex_enter(&ill->ill_lock);
12834 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12835 	ill->ill_token_length = addrlen;
12836 	mutex_exit(&ill->ill_lock);
12837 
12838 	if (need_up) {
12839 		/*
12840 		 * Now bring the interface back up.  If this
12841 		 * is the only IPIF for the ILL, ipif_up
12842 		 * will have to re-bind to the device, so
12843 		 * we may get back EINPROGRESS, in which
12844 		 * case, this IOCTL will get completed in
12845 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12846 		 */
12847 		err = ipif_up(ipif, q, mp);
12848 		if (err == EINPROGRESS)
12849 			return (err);
12850 	}
12851 	return (err);
12852 }
12853 
12854 /* ARGSUSED */
12855 int
12856 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12857     ip_ioctl_cmd_t *ipi, void *if_req)
12858 {
12859 	ill_t *ill;
12860 	sin6_t *sin6 = (sin6_t *)sin;
12861 	struct lifreq *lifr = (struct lifreq *)if_req;
12862 
12863 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12864 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12865 	if (ipif->ipif_id != 0)
12866 		return (EINVAL);
12867 
12868 	ill = ipif->ipif_ill;
12869 	if (!ill->ill_isv6)
12870 		return (ENXIO);
12871 
12872 	*sin6 = sin6_null;
12873 	sin6->sin6_family = AF_INET6;
12874 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12875 	sin6->sin6_addr = ill->ill_token;
12876 	lifr->lifr_addrlen = ill->ill_token_length;
12877 	return (0);
12878 }
12879 
12880 /*
12881  * Set (hardware) link specific information that might override
12882  * what was acquired through the DL_INFO_ACK.
12883  * The logic is as follows.
12884  *
12885  * become exclusive
12886  * set CHANGING flag
12887  * change mtu on affected IREs
12888  * clear CHANGING flag
12889  *
12890  * An ire add that occurs before the CHANGING flag is set will have its mtu
12891  * changed by the ip_sioctl_lnkinfo.
12892  *
12893  * During the time the CHANGING flag is set, no new ires will be added to the
12894  * bucket, and ire add will fail (due the CHANGING flag).
12895  *
12896  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12897  * before it is added to the bucket.
12898  *
12899  * Obviously only 1 thread can set the CHANGING flag and we need to become
12900  * exclusive to set the flag.
12901  */
12902 /* ARGSUSED */
12903 int
12904 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12905     ip_ioctl_cmd_t *ipi, void *if_req)
12906 {
12907 	ill_t		*ill = ipif->ipif_ill;
12908 	ipif_t		*nipif;
12909 	int		ip_min_mtu;
12910 	boolean_t	mtu_walk = B_FALSE;
12911 	struct lifreq	*lifr = (struct lifreq *)if_req;
12912 	lif_ifinfo_req_t *lir;
12913 	ire_t		*ire;
12914 
12915 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12916 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12917 	lir = &lifr->lifr_ifinfo;
12918 	ASSERT(IAM_WRITER_IPIF(ipif));
12919 
12920 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12921 	if (ipif->ipif_id != 0)
12922 		return (EINVAL);
12923 
12924 	/* Set interface MTU. */
12925 	if (ipif->ipif_isv6)
12926 		ip_min_mtu = IPV6_MIN_MTU;
12927 	else
12928 		ip_min_mtu = IP_MIN_MTU;
12929 
12930 	/*
12931 	 * Verify values before we set anything. Allow zero to
12932 	 * mean unspecified.
12933 	 */
12934 	if (lir->lir_maxmtu != 0 &&
12935 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12936 	    lir->lir_maxmtu < ip_min_mtu))
12937 		return (EINVAL);
12938 	if (lir->lir_reachtime != 0 &&
12939 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12940 		return (EINVAL);
12941 	if (lir->lir_reachretrans != 0 &&
12942 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12943 		return (EINVAL);
12944 
12945 	mutex_enter(&ill->ill_lock);
12946 	ill->ill_state_flags |= ILL_CHANGING;
12947 	for (nipif = ill->ill_ipif; nipif != NULL;
12948 	    nipif = nipif->ipif_next) {
12949 		nipif->ipif_state_flags |= IPIF_CHANGING;
12950 	}
12951 
12952 	mutex_exit(&ill->ill_lock);
12953 
12954 	if (lir->lir_maxmtu != 0) {
12955 		ill->ill_max_mtu = lir->lir_maxmtu;
12956 		ill->ill_mtu_userspecified = 1;
12957 		mtu_walk = B_TRUE;
12958 	}
12959 
12960 	if (lir->lir_reachtime != 0)
12961 		ill->ill_reachable_time = lir->lir_reachtime;
12962 
12963 	if (lir->lir_reachretrans != 0)
12964 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12965 
12966 	ill->ill_max_hops = lir->lir_maxhops;
12967 
12968 	ill->ill_max_buf = ND_MAX_Q;
12969 
12970 	if (mtu_walk) {
12971 		/*
12972 		 * Set the MTU on all ipifs associated with this ill except
12973 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12974 		 */
12975 		for (nipif = ill->ill_ipif; nipif != NULL;
12976 		    nipif = nipif->ipif_next) {
12977 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12978 				continue;
12979 
12980 			nipif->ipif_mtu = ill->ill_max_mtu;
12981 
12982 			if (!(nipif->ipif_flags & IPIF_UP))
12983 				continue;
12984 
12985 			if (nipif->ipif_isv6)
12986 				ire = ipif_to_ire_v6(nipif);
12987 			else
12988 				ire = ipif_to_ire(nipif);
12989 			if (ire != NULL) {
12990 				ire->ire_max_frag = ipif->ipif_mtu;
12991 				ire_refrele(ire);
12992 			}
12993 			if (ill->ill_isv6) {
12994 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
12995 				    ipif_mtu_change, (char *)nipif,
12996 				    ill);
12997 			} else {
12998 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
12999 				    ipif_mtu_change, (char *)nipif,
13000 				    ill);
13001 			}
13002 		}
13003 	}
13004 
13005 	mutex_enter(&ill->ill_lock);
13006 	for (nipif = ill->ill_ipif; nipif != NULL;
13007 	    nipif = nipif->ipif_next) {
13008 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13009 	}
13010 	ILL_UNMARK_CHANGING(ill);
13011 	mutex_exit(&ill->ill_lock);
13012 
13013 	return (0);
13014 }
13015 
13016 /* ARGSUSED */
13017 int
13018 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13019     ip_ioctl_cmd_t *ipi, void *if_req)
13020 {
13021 	struct lif_ifinfo_req *lir;
13022 	ill_t *ill = ipif->ipif_ill;
13023 
13024 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13025 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13026 	if (ipif->ipif_id != 0)
13027 		return (EINVAL);
13028 
13029 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13030 	lir->lir_maxhops = ill->ill_max_hops;
13031 	lir->lir_reachtime = ill->ill_reachable_time;
13032 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13033 	lir->lir_maxmtu = ill->ill_max_mtu;
13034 
13035 	return (0);
13036 }
13037 
13038 /*
13039  * Return best guess as to the subnet mask for the specified address.
13040  * Based on the subnet masks for all the configured interfaces.
13041  *
13042  * We end up returning a zero mask in the case of default, multicast or
13043  * experimental.
13044  */
13045 static ipaddr_t
13046 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13047 {
13048 	ipaddr_t net_mask;
13049 	ill_t	*ill;
13050 	ipif_t	*ipif;
13051 	ill_walk_context_t ctx;
13052 	ipif_t	*fallback_ipif = NULL;
13053 
13054 	net_mask = ip_net_mask(addr);
13055 	if (net_mask == 0) {
13056 		*ipifp = NULL;
13057 		return (0);
13058 	}
13059 
13060 	/* Let's check to see if this is maybe a local subnet route. */
13061 	/* this function only applies to IPv4 interfaces */
13062 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13063 	ill = ILL_START_WALK_V4(&ctx, ipst);
13064 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13065 		mutex_enter(&ill->ill_lock);
13066 		for (ipif = ill->ill_ipif; ipif != NULL;
13067 		    ipif = ipif->ipif_next) {
13068 			if (!IPIF_CAN_LOOKUP(ipif))
13069 				continue;
13070 			if (!(ipif->ipif_flags & IPIF_UP))
13071 				continue;
13072 			if ((ipif->ipif_subnet & net_mask) ==
13073 			    (addr & net_mask)) {
13074 				/*
13075 				 * Don't trust pt-pt interfaces if there are
13076 				 * other interfaces.
13077 				 */
13078 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13079 					if (fallback_ipif == NULL) {
13080 						ipif_refhold_locked(ipif);
13081 						fallback_ipif = ipif;
13082 					}
13083 					continue;
13084 				}
13085 
13086 				/*
13087 				 * Fine. Just assume the same net mask as the
13088 				 * directly attached subnet interface is using.
13089 				 */
13090 				ipif_refhold_locked(ipif);
13091 				mutex_exit(&ill->ill_lock);
13092 				rw_exit(&ipst->ips_ill_g_lock);
13093 				if (fallback_ipif != NULL)
13094 					ipif_refrele(fallback_ipif);
13095 				*ipifp = ipif;
13096 				return (ipif->ipif_net_mask);
13097 			}
13098 		}
13099 		mutex_exit(&ill->ill_lock);
13100 	}
13101 	rw_exit(&ipst->ips_ill_g_lock);
13102 
13103 	*ipifp = fallback_ipif;
13104 	return ((fallback_ipif != NULL) ?
13105 	    fallback_ipif->ipif_net_mask : net_mask);
13106 }
13107 
13108 /*
13109  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13110  */
13111 static void
13112 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13113 {
13114 	IOCP	iocp;
13115 	ipft_t	*ipft;
13116 	ipllc_t	*ipllc;
13117 	mblk_t	*mp1;
13118 	cred_t	*cr;
13119 	int	error = 0;
13120 	conn_t	*connp;
13121 
13122 	ip1dbg(("ip_wput_ioctl"));
13123 	iocp = (IOCP)mp->b_rptr;
13124 	mp1 = mp->b_cont;
13125 	if (mp1 == NULL) {
13126 		iocp->ioc_error = EINVAL;
13127 		mp->b_datap->db_type = M_IOCNAK;
13128 		iocp->ioc_count = 0;
13129 		qreply(q, mp);
13130 		return;
13131 	}
13132 
13133 	/*
13134 	 * These IOCTLs provide various control capabilities to
13135 	 * upstream agents such as ULPs and processes.	There
13136 	 * are currently two such IOCTLs implemented.  They
13137 	 * are used by TCP to provide update information for
13138 	 * existing IREs and to forcibly delete an IRE for a
13139 	 * host that is not responding, thereby forcing an
13140 	 * attempt at a new route.
13141 	 */
13142 	iocp->ioc_error = EINVAL;
13143 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13144 		goto done;
13145 
13146 	ipllc = (ipllc_t *)mp1->b_rptr;
13147 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13148 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13149 			break;
13150 	}
13151 	/*
13152 	 * prefer credential from mblk over ioctl;
13153 	 * see ip_sioctl_copyin_setup
13154 	 */
13155 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13156 
13157 	/*
13158 	 * Refhold the conn in case the request gets queued up in some lookup
13159 	 */
13160 	ASSERT(CONN_Q(q));
13161 	connp = Q_TO_CONN(q);
13162 	CONN_INC_REF(connp);
13163 	if (ipft->ipft_pfi &&
13164 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13165 	    pullupmsg(mp1, ipft->ipft_min_size))) {
13166 		error = (*ipft->ipft_pfi)(q,
13167 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13168 	}
13169 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13170 		/*
13171 		 * CONN_OPER_PENDING_DONE happens in the function called
13172 		 * through ipft_pfi above.
13173 		 */
13174 		return;
13175 	}
13176 
13177 	CONN_OPER_PENDING_DONE(connp);
13178 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13179 		freemsg(mp);
13180 		return;
13181 	}
13182 	iocp->ioc_error = error;
13183 
13184 done:
13185 	mp->b_datap->db_type = M_IOCACK;
13186 	if (iocp->ioc_error)
13187 		iocp->ioc_count = 0;
13188 	qreply(q, mp);
13189 }
13190 
13191 /*
13192  * Lookup an ipif using the sequence id (ipif_seqid)
13193  */
13194 ipif_t *
13195 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13196 {
13197 	ipif_t *ipif;
13198 
13199 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13200 
13201 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13202 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13203 			return (ipif);
13204 	}
13205 	return (NULL);
13206 }
13207 
13208 /*
13209  * Assign a unique id for the ipif. This is used later when we send
13210  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13211  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13212  * IRE is added, we verify that ipif has not disappeared.
13213  */
13214 
13215 static void
13216 ipif_assign_seqid(ipif_t *ipif)
13217 {
13218 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13219 
13220 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13221 }
13222 
13223 /*
13224  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13225  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13226  * be inserted into the first space available in the list. The value of
13227  * ipif_id will then be set to the appropriate value for its position.
13228  */
13229 static int
13230 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13231 {
13232 	ill_t *ill;
13233 	ipif_t *tipif;
13234 	ipif_t **tipifp;
13235 	int id;
13236 	ip_stack_t	*ipst;
13237 
13238 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13239 	    IAM_WRITER_IPIF(ipif));
13240 
13241 	ill = ipif->ipif_ill;
13242 	ASSERT(ill != NULL);
13243 	ipst = ill->ill_ipst;
13244 
13245 	/*
13246 	 * In the case of lo0:0 we already hold the ill_g_lock.
13247 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13248 	 * ipif_insert. Another such caller is ipif_move.
13249 	 */
13250 	if (acquire_g_lock)
13251 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13252 	if (acquire_ill_lock)
13253 		mutex_enter(&ill->ill_lock);
13254 	id = ipif->ipif_id;
13255 	tipifp = &(ill->ill_ipif);
13256 	if (id == -1) {	/* need to find a real id */
13257 		id = 0;
13258 		while ((tipif = *tipifp) != NULL) {
13259 			ASSERT(tipif->ipif_id >= id);
13260 			if (tipif->ipif_id != id)
13261 				break; /* non-consecutive id */
13262 			id++;
13263 			tipifp = &(tipif->ipif_next);
13264 		}
13265 		/* limit number of logical interfaces */
13266 		if (id >= ipst->ips_ip_addrs_per_if) {
13267 			if (acquire_ill_lock)
13268 				mutex_exit(&ill->ill_lock);
13269 			if (acquire_g_lock)
13270 				rw_exit(&ipst->ips_ill_g_lock);
13271 			return (-1);
13272 		}
13273 		ipif->ipif_id = id; /* assign new id */
13274 	} else if (id < ipst->ips_ip_addrs_per_if) {
13275 		/* we have a real id; insert ipif in the right place */
13276 		while ((tipif = *tipifp) != NULL) {
13277 			ASSERT(tipif->ipif_id != id);
13278 			if (tipif->ipif_id > id)
13279 				break; /* found correct location */
13280 			tipifp = &(tipif->ipif_next);
13281 		}
13282 	} else {
13283 		if (acquire_ill_lock)
13284 			mutex_exit(&ill->ill_lock);
13285 		if (acquire_g_lock)
13286 			rw_exit(&ipst->ips_ill_g_lock);
13287 		return (-1);
13288 	}
13289 
13290 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13291 
13292 	ipif->ipif_next = tipif;
13293 	*tipifp = ipif;
13294 	if (acquire_ill_lock)
13295 		mutex_exit(&ill->ill_lock);
13296 	if (acquire_g_lock)
13297 		rw_exit(&ipst->ips_ill_g_lock);
13298 	return (0);
13299 }
13300 
13301 static void
13302 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock)
13303 {
13304 	ipif_t	**ipifp;
13305 	ill_t	*ill = ipif->ipif_ill;
13306 
13307 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13308 	if (acquire_ill_lock)
13309 		mutex_enter(&ill->ill_lock);
13310 	else
13311 		ASSERT(MUTEX_HELD(&ill->ill_lock));
13312 
13313 	ipifp = &ill->ill_ipif;
13314 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13315 		if (*ipifp == ipif) {
13316 			*ipifp = ipif->ipif_next;
13317 			break;
13318 		}
13319 	}
13320 
13321 	if (acquire_ill_lock)
13322 		mutex_exit(&ill->ill_lock);
13323 }
13324 
13325 /*
13326  * Allocate and initialize a new interface control structure.  (Always
13327  * called as writer.)
13328  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13329  * is not part of the global linked list of ills. ipif_seqid is unique
13330  * in the system and to preserve the uniqueness, it is assigned only
13331  * when ill becomes part of the global list. At that point ill will
13332  * have a name. If it doesn't get assigned here, it will get assigned
13333  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13334  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13335  * the interface flags or any other information from the DL_INFO_ACK for
13336  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13337  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13338  * second DL_INFO_ACK comes in from the driver.
13339  */
13340 static ipif_t *
13341 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13342 {
13343 	ipif_t	*ipif;
13344 	phyint_t *phyi;
13345 
13346 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13347 	    ill->ill_name, id, (void *)ill));
13348 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13349 
13350 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13351 		return (NULL);
13352 	*ipif = ipif_zero;	/* start clean */
13353 
13354 	ipif->ipif_ill = ill;
13355 	ipif->ipif_id = id;	/* could be -1 */
13356 	/*
13357 	 * Inherit the zoneid from the ill; for the shared stack instance
13358 	 * this is always the global zone
13359 	 */
13360 	ipif->ipif_zoneid = ill->ill_zoneid;
13361 
13362 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13363 
13364 	ipif->ipif_refcnt = 0;
13365 	ipif->ipif_saved_ire_cnt = 0;
13366 
13367 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13368 		mi_free(ipif);
13369 		return (NULL);
13370 	}
13371 	/* -1 id should have been replaced by real id */
13372 	id = ipif->ipif_id;
13373 	ASSERT(id >= 0);
13374 
13375 	if (ill->ill_name[0] != '\0')
13376 		ipif_assign_seqid(ipif);
13377 
13378 	/*
13379 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13380 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13381 	 * ioctl sets ipif_orig_ipifid to zero.
13382 	 */
13383 	ipif->ipif_orig_ipifid = id;
13384 
13385 	/*
13386 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13387 	 * The ipif is still not up and can't be looked up until the
13388 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13389 	 */
13390 	mutex_enter(&ill->ill_lock);
13391 	mutex_enter(&ill->ill_phyint->phyint_lock);
13392 	/*
13393 	 * Set the running flag when logical interface zero is created.
13394 	 * For subsequent logical interfaces, a DLPI link down
13395 	 * notification message may have cleared the running flag to
13396 	 * indicate the link is down, so we shouldn't just blindly set it.
13397 	 */
13398 	if (id == 0)
13399 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13400 	ipif->ipif_ire_type = ire_type;
13401 	phyi = ill->ill_phyint;
13402 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13403 
13404 	if (ipif->ipif_isv6) {
13405 		ill->ill_flags |= ILLF_IPV6;
13406 	} else {
13407 		ipaddr_t inaddr_any = INADDR_ANY;
13408 
13409 		ill->ill_flags |= ILLF_IPV4;
13410 
13411 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13412 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13413 		    &ipif->ipif_v6lcl_addr);
13414 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13415 		    &ipif->ipif_v6src_addr);
13416 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13417 		    &ipif->ipif_v6subnet);
13418 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13419 		    &ipif->ipif_v6net_mask);
13420 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13421 		    &ipif->ipif_v6brd_addr);
13422 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13423 		    &ipif->ipif_v6pp_dst_addr);
13424 	}
13425 
13426 	/*
13427 	 * Don't set the interface flags etc. now, will do it in
13428 	 * ip_ll_subnet_defaults.
13429 	 */
13430 	if (!initialize) {
13431 		mutex_exit(&ill->ill_lock);
13432 		mutex_exit(&ill->ill_phyint->phyint_lock);
13433 		return (ipif);
13434 	}
13435 	ipif->ipif_mtu = ill->ill_max_mtu;
13436 
13437 	if (ill->ill_bcast_addr_length != 0) {
13438 		/*
13439 		 * Later detect lack of DLPI driver multicast
13440 		 * capability by catching DL_ENABMULTI errors in
13441 		 * ip_rput_dlpi.
13442 		 */
13443 		ill->ill_flags |= ILLF_MULTICAST;
13444 		if (!ipif->ipif_isv6)
13445 			ipif->ipif_flags |= IPIF_BROADCAST;
13446 	} else {
13447 		if (ill->ill_net_type != IRE_LOOPBACK) {
13448 			if (ipif->ipif_isv6)
13449 				/*
13450 				 * Note: xresolv interfaces will eventually need
13451 				 * NOARP set here as well, but that will require
13452 				 * those external resolvers to have some
13453 				 * knowledge of that flag and act appropriately.
13454 				 * Not to be changed at present.
13455 				 */
13456 				ill->ill_flags |= ILLF_NONUD;
13457 			else
13458 				ill->ill_flags |= ILLF_NOARP;
13459 		}
13460 		if (ill->ill_phys_addr_length == 0) {
13461 			if (ill->ill_media &&
13462 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13463 				ipif->ipif_flags |= IPIF_NOXMIT;
13464 				phyi->phyint_flags |= PHYI_VIRTUAL;
13465 			} else {
13466 				/* pt-pt supports multicast. */
13467 				ill->ill_flags |= ILLF_MULTICAST;
13468 				if (ill->ill_net_type == IRE_LOOPBACK) {
13469 					phyi->phyint_flags |=
13470 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13471 				} else {
13472 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13473 				}
13474 			}
13475 		}
13476 	}
13477 	mutex_exit(&ill->ill_lock);
13478 	mutex_exit(&ill->ill_phyint->phyint_lock);
13479 	return (ipif);
13480 }
13481 
13482 /*
13483  * If appropriate, send a message up to the resolver delete the entry
13484  * for the address of this interface which is going out of business.
13485  * (Always called as writer).
13486  *
13487  * NOTE : We need to check for NULL mps as some of the fields are
13488  *	  initialized only for some interface types. See ipif_resolver_up()
13489  *	  for details.
13490  */
13491 void
13492 ipif_arp_down(ipif_t *ipif)
13493 {
13494 	mblk_t	*mp;
13495 	ill_t	*ill = ipif->ipif_ill;
13496 
13497 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13498 	ASSERT(IAM_WRITER_IPIF(ipif));
13499 
13500 	/* Delete the mapping for the local address */
13501 	mp = ipif->ipif_arp_del_mp;
13502 	if (mp != NULL) {
13503 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13504 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13505 		putnext(ill->ill_rq, mp);
13506 		ipif->ipif_arp_del_mp = NULL;
13507 	}
13508 
13509 	/*
13510 	 * If this is the last ipif that is going down and there are no
13511 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13512 	 * clean up ARP completely.
13513 	 */
13514 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13515 
13516 		/* Send up AR_INTERFACE_DOWN message */
13517 		mp = ill->ill_arp_down_mp;
13518 		if (mp != NULL) {
13519 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13520 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13521 			    ipif->ipif_id));
13522 			putnext(ill->ill_rq, mp);
13523 			ill->ill_arp_down_mp = NULL;
13524 		}
13525 
13526 		/* Tell ARP to delete the multicast mappings */
13527 		mp = ill->ill_arp_del_mapping_mp;
13528 		if (mp != NULL) {
13529 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13530 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13531 			    ipif->ipif_id));
13532 			putnext(ill->ill_rq, mp);
13533 			ill->ill_arp_del_mapping_mp = NULL;
13534 		}
13535 	}
13536 }
13537 
13538 /*
13539  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13540  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13541  * that it wants the add_mp allocated in this function to be returned
13542  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13543  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13544  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13545  * as it does a ipif_arp_down after calling this function - which will
13546  * remove what we add here.
13547  *
13548  * Returns -1 on failures and 0 on success.
13549  */
13550 int
13551 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13552 {
13553 	mblk_t	*del_mp = NULL;
13554 	mblk_t *add_mp = NULL;
13555 	mblk_t *mp;
13556 	ill_t	*ill = ipif->ipif_ill;
13557 	phyint_t *phyi = ill->ill_phyint;
13558 	ipaddr_t addr, mask, extract_mask = 0;
13559 	arma_t	*arma;
13560 	uint8_t *maddr, *bphys_addr;
13561 	uint32_t hw_start;
13562 	dl_unitdata_req_t *dlur;
13563 
13564 	ASSERT(IAM_WRITER_IPIF(ipif));
13565 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13566 		return (0);
13567 
13568 	/*
13569 	 * Delete the existing mapping from ARP. Normally ipif_down
13570 	 * -> ipif_arp_down should send this up to ARP. The only
13571 	 * reason we would find this when we are switching from
13572 	 * Multicast to Broadcast where we did not do a down.
13573 	 */
13574 	mp = ill->ill_arp_del_mapping_mp;
13575 	if (mp != NULL) {
13576 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13577 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13578 		putnext(ill->ill_rq, mp);
13579 		ill->ill_arp_del_mapping_mp = NULL;
13580 	}
13581 
13582 	if (arp_add_mapping_mp != NULL)
13583 		*arp_add_mapping_mp = NULL;
13584 
13585 	/*
13586 	 * Check that the address is not to long for the constant
13587 	 * length reserved in the template arma_t.
13588 	 */
13589 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13590 		return (-1);
13591 
13592 	/* Add mapping mblk */
13593 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13594 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13595 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13596 	    (caddr_t)&addr);
13597 	if (add_mp == NULL)
13598 		return (-1);
13599 	arma = (arma_t *)add_mp->b_rptr;
13600 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13601 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13602 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13603 
13604 	/*
13605 	 * Determine the broadcast address.
13606 	 */
13607 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13608 	if (ill->ill_sap_length < 0)
13609 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13610 	else
13611 		bphys_addr = (uchar_t *)dlur +
13612 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13613 	/*
13614 	 * Check PHYI_MULTI_BCAST and length of physical
13615 	 * address to determine if we use the mapping or the
13616 	 * broadcast address.
13617 	 */
13618 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13619 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13620 		    bphys_addr, maddr, &hw_start, &extract_mask))
13621 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13622 
13623 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13624 	    (ill->ill_flags & ILLF_MULTICAST)) {
13625 		/* Make sure this will not match the "exact" entry. */
13626 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13627 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13628 		    (caddr_t)&addr);
13629 		if (del_mp == NULL) {
13630 			freemsg(add_mp);
13631 			return (-1);
13632 		}
13633 		bcopy(&extract_mask, (char *)arma +
13634 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13635 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13636 			/* Use link-layer broadcast address for MULTI_BCAST */
13637 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13638 			ip2dbg(("ipif_arp_setup_multicast: adding"
13639 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13640 		} else {
13641 			arma->arma_hw_mapping_start = hw_start;
13642 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13643 			    " ARP setup for %s\n", ill->ill_name));
13644 		}
13645 	} else {
13646 		freemsg(add_mp);
13647 		ASSERT(del_mp == NULL);
13648 		/* It is neither MULTICAST nor MULTI_BCAST */
13649 		return (0);
13650 	}
13651 	ASSERT(add_mp != NULL && del_mp != NULL);
13652 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13653 	ill->ill_arp_del_mapping_mp = del_mp;
13654 	if (arp_add_mapping_mp != NULL) {
13655 		/* The caller just wants the mblks allocated */
13656 		*arp_add_mapping_mp = add_mp;
13657 	} else {
13658 		/* The caller wants us to send it to arp */
13659 		putnext(ill->ill_rq, add_mp);
13660 	}
13661 	return (0);
13662 }
13663 
13664 /*
13665  * Get the resolver set up for a new interface address.
13666  * (Always called as writer.)
13667  * Called both for IPv4 and IPv6 interfaces,
13668  * though it only sets up the resolver for v6
13669  * if it's an xresolv interface (one using an external resolver).
13670  * Honors ILLF_NOARP.
13671  * The enumerated value res_act is used to tune the behavior.
13672  * If set to Res_act_initial, then we set up all the resolver
13673  * structures for a new interface.  If set to Res_act_move, then
13674  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13675  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13676  * asynchronous hardware address change notification.  If set to
13677  * Res_act_defend, then we tell ARP that it needs to send a single
13678  * gratuitous message in defense of the address.
13679  * Returns error on failure.
13680  */
13681 int
13682 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13683 {
13684 	caddr_t	addr;
13685 	mblk_t	*arp_up_mp = NULL;
13686 	mblk_t	*arp_down_mp = NULL;
13687 	mblk_t	*arp_add_mp = NULL;
13688 	mblk_t	*arp_del_mp = NULL;
13689 	mblk_t	*arp_add_mapping_mp = NULL;
13690 	mblk_t	*arp_del_mapping_mp = NULL;
13691 	ill_t	*ill = ipif->ipif_ill;
13692 	uchar_t	*area_p = NULL;
13693 	uchar_t	*ared_p = NULL;
13694 	int	err = ENOMEM;
13695 	boolean_t was_dup;
13696 
13697 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13698 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13699 	ASSERT(IAM_WRITER_IPIF(ipif));
13700 
13701 	was_dup = B_FALSE;
13702 	if (res_act == Res_act_initial) {
13703 		ipif->ipif_addr_ready = 0;
13704 		/*
13705 		 * We're bringing an interface up here.  There's no way that we
13706 		 * should need to shut down ARP now.
13707 		 */
13708 		mutex_enter(&ill->ill_lock);
13709 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13710 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13711 			ill->ill_ipif_dup_count--;
13712 			was_dup = B_TRUE;
13713 		}
13714 		mutex_exit(&ill->ill_lock);
13715 	}
13716 	if (ipif->ipif_recovery_id != 0)
13717 		(void) untimeout(ipif->ipif_recovery_id);
13718 	ipif->ipif_recovery_id = 0;
13719 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13720 		ipif->ipif_addr_ready = 1;
13721 		return (0);
13722 	}
13723 	/* NDP will set the ipif_addr_ready flag when it's ready */
13724 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13725 		return (0);
13726 
13727 	if (ill->ill_isv6) {
13728 		/*
13729 		 * External resolver for IPv6
13730 		 */
13731 		ASSERT(res_act == Res_act_initial);
13732 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13733 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13734 			area_p = (uchar_t *)&ip6_area_template;
13735 			ared_p = (uchar_t *)&ip6_ared_template;
13736 		}
13737 	} else {
13738 		/*
13739 		 * IPv4 arp case. If the ARP stream has already started
13740 		 * closing, fail this request for ARP bringup. Else
13741 		 * record the fact that an ARP bringup is pending.
13742 		 */
13743 		mutex_enter(&ill->ill_lock);
13744 		if (ill->ill_arp_closing) {
13745 			mutex_exit(&ill->ill_lock);
13746 			err = EINVAL;
13747 			goto failed;
13748 		} else {
13749 			if (ill->ill_ipif_up_count == 0 &&
13750 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13751 				ill->ill_arp_bringup_pending = 1;
13752 			mutex_exit(&ill->ill_lock);
13753 		}
13754 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
13755 			addr = (caddr_t)&ipif->ipif_lcl_addr;
13756 			area_p = (uchar_t *)&ip_area_template;
13757 			ared_p = (uchar_t *)&ip_ared_template;
13758 		}
13759 	}
13760 
13761 	/*
13762 	 * Add an entry for the local address in ARP only if it
13763 	 * is not UNNUMBERED and the address is not INADDR_ANY.
13764 	 */
13765 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13766 		area_t *area;
13767 
13768 		/* Now ask ARP to publish our address. */
13769 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13770 		if (arp_add_mp == NULL)
13771 			goto failed;
13772 		area = (area_t *)arp_add_mp->b_rptr;
13773 		if (res_act != Res_act_initial) {
13774 			/*
13775 			 * Copy the new hardware address and length into
13776 			 * arp_add_mp to be sent to ARP.
13777 			 */
13778 			area->area_hw_addr_length = ill->ill_phys_addr_length;
13779 			bcopy(ill->ill_phys_addr,
13780 			    ((char *)area + area->area_hw_addr_offset),
13781 			    area->area_hw_addr_length);
13782 		}
13783 
13784 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13785 		    ACE_F_MYADDR;
13786 
13787 		if (res_act == Res_act_defend) {
13788 			area->area_flags |= ACE_F_DEFEND;
13789 			/*
13790 			 * If we're just defending our address now, then
13791 			 * there's no need to set up ARP multicast mappings.
13792 			 * The publish command is enough.
13793 			 */
13794 			goto done;
13795 		}
13796 
13797 		if (res_act != Res_act_initial)
13798 			goto arp_setup_multicast;
13799 
13800 		/*
13801 		 * Allocate an ARP deletion message so we know we can tell ARP
13802 		 * when the interface goes down.
13803 		 */
13804 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13805 		if (arp_del_mp == NULL)
13806 			goto failed;
13807 
13808 	} else {
13809 		if (res_act != Res_act_initial)
13810 			goto done;
13811 	}
13812 	/*
13813 	 * Need to bring up ARP or setup multicast mapping only
13814 	 * when the first interface is coming UP.
13815 	 */
13816 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13817 	    was_dup) {
13818 		goto done;
13819 	}
13820 
13821 	/*
13822 	 * Allocate an ARP down message (to be saved) and an ARP up
13823 	 * message.
13824 	 */
13825 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13826 	if (arp_down_mp == NULL)
13827 		goto failed;
13828 
13829 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13830 	if (arp_up_mp == NULL)
13831 		goto failed;
13832 
13833 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13834 		goto done;
13835 
13836 arp_setup_multicast:
13837 	/*
13838 	 * Setup the multicast mappings. This function initializes
13839 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13840 	 * IPv6.
13841 	 */
13842 	if (!ill->ill_isv6) {
13843 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13844 		if (err != 0)
13845 			goto failed;
13846 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13847 		ASSERT(arp_add_mapping_mp != NULL);
13848 	}
13849 
13850 done:
13851 	if (arp_del_mp != NULL) {
13852 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13853 		ipif->ipif_arp_del_mp = arp_del_mp;
13854 	}
13855 	if (arp_down_mp != NULL) {
13856 		ASSERT(ill->ill_arp_down_mp == NULL);
13857 		ill->ill_arp_down_mp = arp_down_mp;
13858 	}
13859 	if (arp_del_mapping_mp != NULL) {
13860 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13861 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13862 	}
13863 	if (arp_up_mp != NULL) {
13864 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13865 		    ill->ill_name, ipif->ipif_id));
13866 		putnext(ill->ill_rq, arp_up_mp);
13867 	}
13868 	if (arp_add_mp != NULL) {
13869 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13870 		    ill->ill_name, ipif->ipif_id));
13871 		/*
13872 		 * If it's an extended ARP implementation, then we'll wait to
13873 		 * hear that DAD has finished before using the interface.
13874 		 */
13875 		if (!ill->ill_arp_extend)
13876 			ipif->ipif_addr_ready = 1;
13877 		putnext(ill->ill_rq, arp_add_mp);
13878 	} else {
13879 		ipif->ipif_addr_ready = 1;
13880 	}
13881 	if (arp_add_mapping_mp != NULL) {
13882 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13883 		    ill->ill_name, ipif->ipif_id));
13884 		putnext(ill->ill_rq, arp_add_mapping_mp);
13885 	}
13886 	if (res_act != Res_act_initial)
13887 		return (0);
13888 
13889 	if (ill->ill_flags & ILLF_NOARP)
13890 		err = ill_arp_off(ill);
13891 	else
13892 		err = ill_arp_on(ill);
13893 	if (err != 0) {
13894 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
13895 		freemsg(ipif->ipif_arp_del_mp);
13896 		freemsg(ill->ill_arp_down_mp);
13897 		freemsg(ill->ill_arp_del_mapping_mp);
13898 		ipif->ipif_arp_del_mp = NULL;
13899 		ill->ill_arp_down_mp = NULL;
13900 		ill->ill_arp_del_mapping_mp = NULL;
13901 		return (err);
13902 	}
13903 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13904 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13905 
13906 failed:
13907 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13908 	freemsg(arp_add_mp);
13909 	freemsg(arp_del_mp);
13910 	freemsg(arp_add_mapping_mp);
13911 	freemsg(arp_up_mp);
13912 	freemsg(arp_down_mp);
13913 	ill->ill_arp_bringup_pending = 0;
13914 	return (err);
13915 }
13916 
13917 /*
13918  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13919  * just gone back up.
13920  */
13921 static void
13922 ipif_arp_start_dad(ipif_t *ipif)
13923 {
13924 	ill_t *ill = ipif->ipif_ill;
13925 	mblk_t *arp_add_mp;
13926 	area_t *area;
13927 
13928 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13929 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13930 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13931 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
13932 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
13933 		/*
13934 		 * If we can't contact ARP for some reason, that's not really a
13935 		 * problem.  Just send out the routing socket notification that
13936 		 * DAD completion would have done, and continue.
13937 		 */
13938 		ipif_mask_reply(ipif);
13939 		ip_rts_ifmsg(ipif);
13940 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13941 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13942 		ipif->ipif_addr_ready = 1;
13943 		return;
13944 	}
13945 
13946 	/* Setting the 'unverified' flag restarts DAD */
13947 	area = (area_t *)arp_add_mp->b_rptr;
13948 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
13949 	    ACE_F_UNVERIFIED;
13950 	putnext(ill->ill_rq, arp_add_mp);
13951 }
13952 
13953 static void
13954 ipif_ndp_start_dad(ipif_t *ipif)
13955 {
13956 	nce_t *nce;
13957 
13958 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
13959 	if (nce == NULL)
13960 		return;
13961 
13962 	if (!ndp_restart_dad(nce)) {
13963 		/*
13964 		 * If we can't restart DAD for some reason, that's not really a
13965 		 * problem.  Just send out the routing socket notification that
13966 		 * DAD completion would have done, and continue.
13967 		 */
13968 		ip_rts_ifmsg(ipif);
13969 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13970 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13971 		ipif->ipif_addr_ready = 1;
13972 	}
13973 	NCE_REFRELE(nce);
13974 }
13975 
13976 /*
13977  * Restart duplicate address detection on all interfaces on the given ill.
13978  *
13979  * This is called when an interface transitions from down to up
13980  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13981  *
13982  * Note that since the underlying physical link has transitioned, we must cause
13983  * at least one routing socket message to be sent here, either via DAD
13984  * completion or just by default on the first ipif.  (If we don't do this, then
13985  * in.mpathd will see long delays when doing link-based failure recovery.)
13986  */
13987 void
13988 ill_restart_dad(ill_t *ill, boolean_t went_up)
13989 {
13990 	ipif_t *ipif;
13991 
13992 	if (ill == NULL)
13993 		return;
13994 
13995 	/*
13996 	 * If layer two doesn't support duplicate address detection, then just
13997 	 * send the routing socket message now and be done with it.
13998 	 */
13999 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14000 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14001 		ip_rts_ifmsg(ill->ill_ipif);
14002 		return;
14003 	}
14004 
14005 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14006 		if (went_up) {
14007 			if (ipif->ipif_flags & IPIF_UP) {
14008 				if (ill->ill_isv6)
14009 					ipif_ndp_start_dad(ipif);
14010 				else
14011 					ipif_arp_start_dad(ipif);
14012 			} else if (ill->ill_isv6 &&
14013 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14014 				/*
14015 				 * For IPv4, the ARP module itself will
14016 				 * automatically start the DAD process when it
14017 				 * sees DL_NOTE_LINK_UP.  We respond to the
14018 				 * AR_CN_READY at the completion of that task.
14019 				 * For IPv6, we must kick off the bring-up
14020 				 * process now.
14021 				 */
14022 				ndp_do_recovery(ipif);
14023 			} else {
14024 				/*
14025 				 * Unfortunately, the first ipif is "special"
14026 				 * and represents the underlying ill in the
14027 				 * routing socket messages.  Thus, when this
14028 				 * one ipif is down, we must still notify so
14029 				 * that the user knows the IFF_RUNNING status
14030 				 * change.  (If the first ipif is up, then
14031 				 * we'll handle eventual routing socket
14032 				 * notification via DAD completion.)
14033 				 */
14034 				if (ipif == ill->ill_ipif)
14035 					ip_rts_ifmsg(ill->ill_ipif);
14036 			}
14037 		} else {
14038 			/*
14039 			 * After link down, we'll need to send a new routing
14040 			 * message when the link comes back, so clear
14041 			 * ipif_addr_ready.
14042 			 */
14043 			ipif->ipif_addr_ready = 0;
14044 		}
14045 	}
14046 
14047 	/*
14048 	 * If we've torn down links, then notify the user right away.
14049 	 */
14050 	if (!went_up)
14051 		ip_rts_ifmsg(ill->ill_ipif);
14052 }
14053 
14054 /*
14055  * Wakeup all threads waiting to enter the ipsq, and sleeping
14056  * on any of the ills in this ipsq. The ill_lock of the ill
14057  * must be held so that waiters don't miss wakeups
14058  */
14059 static void
14060 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14061 {
14062 	phyint_t *phyint;
14063 
14064 	phyint = ipsq->ipsq_phyint_list;
14065 	while (phyint != NULL) {
14066 		if (phyint->phyint_illv4) {
14067 			if (!caller_holds_lock)
14068 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14069 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14070 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14071 			if (!caller_holds_lock)
14072 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14073 		}
14074 		if (phyint->phyint_illv6) {
14075 			if (!caller_holds_lock)
14076 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14077 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14078 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14079 			if (!caller_holds_lock)
14080 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14081 		}
14082 		phyint = phyint->phyint_ipsq_next;
14083 	}
14084 }
14085 
14086 static ipsq_t *
14087 ipsq_create(char *groupname, ip_stack_t *ipst)
14088 {
14089 	ipsq_t	*ipsq;
14090 
14091 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14092 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14093 	if (ipsq == NULL) {
14094 		return (NULL);
14095 	}
14096 
14097 	if (groupname != NULL)
14098 		(void) strcpy(ipsq->ipsq_name, groupname);
14099 	else
14100 		ipsq->ipsq_name[0] = '\0';
14101 
14102 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14103 	ipsq->ipsq_flags |= IPSQ_GROUP;
14104 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14105 	ipst->ips_ipsq_g_head = ipsq;
14106 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14107 	return (ipsq);
14108 }
14109 
14110 /*
14111  * Return an ipsq correspoding to the groupname. If 'create' is true
14112  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14113  * uniquely with an IPMP group. However during IPMP groupname operations,
14114  * multiple IPMP groups may be associated with a single ipsq. But no
14115  * IPMP group can be associated with more than 1 ipsq at any time.
14116  * For example
14117  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14118  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14119  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14120  *
14121  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14122  * status shown below during the execution of the above command.
14123  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14124  *
14125  * After the completion of the above groupname command we return to the stable
14126  * state shown below.
14127  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14128  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14129  *
14130  * Because of the above, we don't search based on the ipsq_name since that
14131  * would miss the correct ipsq during certain windows as shown above.
14132  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14133  * natural state.
14134  */
14135 static ipsq_t *
14136 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14137     ip_stack_t *ipst)
14138 {
14139 	ipsq_t	*ipsq;
14140 	int	group_len;
14141 	phyint_t *phyint;
14142 
14143 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14144 
14145 	group_len = strlen(groupname);
14146 	ASSERT(group_len != 0);
14147 	group_len++;
14148 
14149 	for (ipsq = ipst->ips_ipsq_g_head;
14150 	    ipsq != NULL;
14151 	    ipsq = ipsq->ipsq_next) {
14152 		/*
14153 		 * When an ipsq is being split, and ill_split_ipsq
14154 		 * calls this function, we exclude it from being considered.
14155 		 */
14156 		if (ipsq == exclude_ipsq)
14157 			continue;
14158 
14159 		/*
14160 		 * Compare against the ipsq_name. The groupname change happens
14161 		 * in 2 phases. The 1st phase merges the from group into
14162 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14163 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14164 		 * ipsq_name. At this point the phyint_groupname has not been
14165 		 * updated.
14166 		 */
14167 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14168 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14169 			/*
14170 			 * Verify that an ipmp groupname is exactly
14171 			 * part of 1 ipsq and is not found in any other
14172 			 * ipsq.
14173 			 */
14174 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14175 			    NULL);
14176 			return (ipsq);
14177 		}
14178 
14179 		/*
14180 		 * Comparison against ipsq_name alone is not sufficient.
14181 		 * In the case when groups are currently being
14182 		 * merged, the ipsq could hold other IPMP groups temporarily.
14183 		 * so we walk the phyint list and compare against the
14184 		 * phyint_groupname as well.
14185 		 */
14186 		phyint = ipsq->ipsq_phyint_list;
14187 		while (phyint != NULL) {
14188 			if ((group_len == phyint->phyint_groupname_len) &&
14189 			    (bcmp(phyint->phyint_groupname, groupname,
14190 			    group_len) == 0)) {
14191 				/*
14192 				 * Verify that an ipmp groupname is exactly
14193 				 * part of 1 ipsq and is not found in any other
14194 				 * ipsq.
14195 				 */
14196 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14197 				    ipst) == NULL);
14198 				return (ipsq);
14199 			}
14200 			phyint = phyint->phyint_ipsq_next;
14201 		}
14202 	}
14203 	if (create)
14204 		ipsq = ipsq_create(groupname, ipst);
14205 	return (ipsq);
14206 }
14207 
14208 static void
14209 ipsq_delete(ipsq_t *ipsq)
14210 {
14211 	ipsq_t *nipsq;
14212 	ipsq_t *pipsq = NULL;
14213 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14214 
14215 	/*
14216 	 * We don't hold the ipsq lock, but we are sure no new
14217 	 * messages can land up, since the ipsq_refs is zero.
14218 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14219 	 * is associated with this ipsq. (Lookups are based on ill_name
14220 	 * or phyint_groupname)
14221 	 */
14222 	ASSERT(ipsq->ipsq_refs == 0);
14223 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14224 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14225 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14226 		/*
14227 		 * This is not the ipsq of an IPMP group.
14228 		 */
14229 		ipsq->ipsq_ipst = NULL;
14230 		kmem_free(ipsq, sizeof (ipsq_t));
14231 		return;
14232 	}
14233 
14234 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14235 
14236 	/*
14237 	 * Locate the ipsq  before we can remove it from
14238 	 * the singly linked list of ipsq's.
14239 	 */
14240 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14241 	    nipsq = nipsq->ipsq_next) {
14242 		if (nipsq == ipsq) {
14243 			break;
14244 		}
14245 		pipsq = nipsq;
14246 	}
14247 
14248 	ASSERT(nipsq == ipsq);
14249 
14250 	/* unlink ipsq from the list */
14251 	if (pipsq != NULL)
14252 		pipsq->ipsq_next = ipsq->ipsq_next;
14253 	else
14254 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14255 	ipsq->ipsq_ipst = NULL;
14256 	kmem_free(ipsq, sizeof (ipsq_t));
14257 	rw_exit(&ipst->ips_ill_g_lock);
14258 }
14259 
14260 static void
14261 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14262     queue_t *q)
14263 {
14264 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14265 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14266 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14267 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14268 	ASSERT(current_mp != NULL);
14269 
14270 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14271 	    NEW_OP, NULL);
14272 
14273 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14274 	    new_ipsq->ipsq_xopq_mphead != NULL);
14275 
14276 	/*
14277 	 * move from old ipsq to the new ipsq.
14278 	 */
14279 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14280 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14281 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14282 
14283 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14284 }
14285 
14286 void
14287 ill_group_cleanup(ill_t *ill)
14288 {
14289 	ill_t *ill_v4;
14290 	ill_t *ill_v6;
14291 	ipif_t *ipif;
14292 
14293 	ill_v4 = ill->ill_phyint->phyint_illv4;
14294 	ill_v6 = ill->ill_phyint->phyint_illv6;
14295 
14296 	if (ill_v4 != NULL) {
14297 		mutex_enter(&ill_v4->ill_lock);
14298 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14299 		    ipif = ipif->ipif_next) {
14300 			IPIF_UNMARK_MOVING(ipif);
14301 		}
14302 		ill_v4->ill_up_ipifs = B_FALSE;
14303 		mutex_exit(&ill_v4->ill_lock);
14304 	}
14305 
14306 	if (ill_v6 != NULL) {
14307 		mutex_enter(&ill_v6->ill_lock);
14308 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14309 		    ipif = ipif->ipif_next) {
14310 			IPIF_UNMARK_MOVING(ipif);
14311 		}
14312 		ill_v6->ill_up_ipifs = B_FALSE;
14313 		mutex_exit(&ill_v6->ill_lock);
14314 	}
14315 }
14316 /*
14317  * This function is called when an ill has had a change in its group status
14318  * to bring up all the ipifs that were up before the change.
14319  */
14320 int
14321 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14322 {
14323 	ipif_t *ipif;
14324 	ill_t *ill_v4;
14325 	ill_t *ill_v6;
14326 	ill_t *from_ill;
14327 	int err = 0;
14328 
14329 
14330 	ASSERT(IAM_WRITER_ILL(ill));
14331 
14332 	/*
14333 	 * Except for ipif_state_flags and ill_state_flags the other
14334 	 * fields of the ipif/ill that are modified below are protected
14335 	 * implicitly since we are a writer. We would have tried to down
14336 	 * even an ipif that was already down, in ill_down_ipifs. So we
14337 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14338 	 */
14339 	ill_v4 = ill->ill_phyint->phyint_illv4;
14340 	ill_v6 = ill->ill_phyint->phyint_illv6;
14341 	if (ill_v4 != NULL) {
14342 		ill_v4->ill_up_ipifs = B_TRUE;
14343 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14344 		    ipif = ipif->ipif_next) {
14345 			mutex_enter(&ill_v4->ill_lock);
14346 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14347 			IPIF_UNMARK_MOVING(ipif);
14348 			mutex_exit(&ill_v4->ill_lock);
14349 			if (ipif->ipif_was_up) {
14350 				if (!(ipif->ipif_flags & IPIF_UP))
14351 					err = ipif_up(ipif, q, mp);
14352 				ipif->ipif_was_up = B_FALSE;
14353 				if (err != 0) {
14354 					/*
14355 					 * Can there be any other error ?
14356 					 */
14357 					ASSERT(err == EINPROGRESS);
14358 					return (err);
14359 				}
14360 			}
14361 		}
14362 		mutex_enter(&ill_v4->ill_lock);
14363 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14364 		mutex_exit(&ill_v4->ill_lock);
14365 		ill_v4->ill_up_ipifs = B_FALSE;
14366 		if (ill_v4->ill_move_in_progress) {
14367 			ASSERT(ill_v4->ill_move_peer != NULL);
14368 			ill_v4->ill_move_in_progress = B_FALSE;
14369 			from_ill = ill_v4->ill_move_peer;
14370 			from_ill->ill_move_in_progress = B_FALSE;
14371 			from_ill->ill_move_peer = NULL;
14372 			mutex_enter(&from_ill->ill_lock);
14373 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14374 			mutex_exit(&from_ill->ill_lock);
14375 			if (ill_v6 == NULL) {
14376 				if (from_ill->ill_phyint->phyint_flags &
14377 				    PHYI_STANDBY) {
14378 					phyint_inactive(from_ill->ill_phyint);
14379 				}
14380 				if (ill_v4->ill_phyint->phyint_flags &
14381 				    PHYI_STANDBY) {
14382 					phyint_inactive(ill_v4->ill_phyint);
14383 				}
14384 			}
14385 			ill_v4->ill_move_peer = NULL;
14386 		}
14387 	}
14388 
14389 	if (ill_v6 != NULL) {
14390 		ill_v6->ill_up_ipifs = B_TRUE;
14391 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14392 		    ipif = ipif->ipif_next) {
14393 			mutex_enter(&ill_v6->ill_lock);
14394 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14395 			IPIF_UNMARK_MOVING(ipif);
14396 			mutex_exit(&ill_v6->ill_lock);
14397 			if (ipif->ipif_was_up) {
14398 				if (!(ipif->ipif_flags & IPIF_UP))
14399 					err = ipif_up(ipif, q, mp);
14400 				ipif->ipif_was_up = B_FALSE;
14401 				if (err != 0) {
14402 					/*
14403 					 * Can there be any other error ?
14404 					 */
14405 					ASSERT(err == EINPROGRESS);
14406 					return (err);
14407 				}
14408 			}
14409 		}
14410 		mutex_enter(&ill_v6->ill_lock);
14411 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14412 		mutex_exit(&ill_v6->ill_lock);
14413 		ill_v6->ill_up_ipifs = B_FALSE;
14414 		if (ill_v6->ill_move_in_progress) {
14415 			ASSERT(ill_v6->ill_move_peer != NULL);
14416 			ill_v6->ill_move_in_progress = B_FALSE;
14417 			from_ill = ill_v6->ill_move_peer;
14418 			from_ill->ill_move_in_progress = B_FALSE;
14419 			from_ill->ill_move_peer = NULL;
14420 			mutex_enter(&from_ill->ill_lock);
14421 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14422 			mutex_exit(&from_ill->ill_lock);
14423 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14424 				phyint_inactive(from_ill->ill_phyint);
14425 			}
14426 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14427 				phyint_inactive(ill_v6->ill_phyint);
14428 			}
14429 			ill_v6->ill_move_peer = NULL;
14430 		}
14431 	}
14432 	return (0);
14433 }
14434 
14435 /*
14436  * bring down all the approriate ipifs.
14437  */
14438 /* ARGSUSED */
14439 static void
14440 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14441 {
14442 	ipif_t *ipif;
14443 
14444 	ASSERT(IAM_WRITER_ILL(ill));
14445 
14446 	/*
14447 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14448 	 * are modified below are protected implicitly since we are a writer
14449 	 */
14450 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14451 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14452 			continue;
14453 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14454 			/*
14455 			 * We go through the ipif_down logic even if the ipif
14456 			 * is already down, since routes can be added based
14457 			 * on down ipifs. Going through ipif_down once again
14458 			 * will delete any IREs created based on these routes.
14459 			 */
14460 			if (ipif->ipif_flags & IPIF_UP)
14461 				ipif->ipif_was_up = B_TRUE;
14462 			/*
14463 			 * If called with chk_nofailover true ipif is moving.
14464 			 */
14465 			mutex_enter(&ill->ill_lock);
14466 			if (chk_nofailover) {
14467 				ipif->ipif_state_flags |=
14468 				    IPIF_MOVING | IPIF_CHANGING;
14469 			} else {
14470 				ipif->ipif_state_flags |= IPIF_CHANGING;
14471 			}
14472 			mutex_exit(&ill->ill_lock);
14473 			/*
14474 			 * Need to re-create net/subnet bcast ires if
14475 			 * they are dependent on ipif.
14476 			 */
14477 			if (!ipif->ipif_isv6)
14478 				ipif_check_bcast_ires(ipif);
14479 			(void) ipif_logical_down(ipif, NULL, NULL);
14480 			ipif_non_duplicate(ipif);
14481 			ipif_down_tail(ipif);
14482 		}
14483 	}
14484 }
14485 
14486 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14487 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14488 	(ipsq)->ipsq_refs++;				\
14489 }
14490 
14491 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14492 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14493 	(ipsq)->ipsq_refs--;				\
14494 	if ((ipsq)->ipsq_refs == 0)				\
14495 		(ipsq)->ipsq_name[0] = '\0'; 		\
14496 }
14497 
14498 /*
14499  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14500  * new_ipsq.
14501  */
14502 static void
14503 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14504 {
14505 	phyint_t *phyint;
14506 	phyint_t *next_phyint;
14507 
14508 	/*
14509 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14510 	 * writer and the ill_lock of the ill in question. Also the dest
14511 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14512 	 */
14513 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14514 
14515 	phyint = cur_ipsq->ipsq_phyint_list;
14516 	cur_ipsq->ipsq_phyint_list = NULL;
14517 	while (phyint != NULL) {
14518 		next_phyint = phyint->phyint_ipsq_next;
14519 		IPSQ_DEC_REF(cur_ipsq, ipst);
14520 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14521 		new_ipsq->ipsq_phyint_list = phyint;
14522 		IPSQ_INC_REF(new_ipsq, ipst);
14523 		phyint->phyint_ipsq = new_ipsq;
14524 		phyint = next_phyint;
14525 	}
14526 }
14527 
14528 #define	SPLIT_SUCCESS		0
14529 #define	SPLIT_NOT_NEEDED	1
14530 #define	SPLIT_FAILED		2
14531 
14532 int
14533 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14534     ip_stack_t *ipst)
14535 {
14536 	ipsq_t *newipsq = NULL;
14537 
14538 	/*
14539 	 * Assertions denote pre-requisites for changing the ipsq of
14540 	 * a phyint
14541 	 */
14542 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14543 	/*
14544 	 * <ill-phyint> assocs can't change while ill_g_lock
14545 	 * is held as writer. See ill_phyint_reinit()
14546 	 */
14547 	ASSERT(phyint->phyint_illv4 == NULL ||
14548 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14549 	ASSERT(phyint->phyint_illv6 == NULL ||
14550 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14551 
14552 	if ((phyint->phyint_groupname_len !=
14553 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14554 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14555 	    phyint->phyint_groupname_len) != 0)) {
14556 		/*
14557 		 * Once we fail in creating a new ipsq due to memory shortage,
14558 		 * don't attempt to create new ipsq again, based on another
14559 		 * phyint, since we want all phyints belonging to an IPMP group
14560 		 * to be in the same ipsq even in the event of mem alloc fails.
14561 		 */
14562 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14563 		    cur_ipsq, ipst);
14564 		if (newipsq == NULL) {
14565 			/* Memory allocation failure */
14566 			return (SPLIT_FAILED);
14567 		} else {
14568 			/* ipsq_refs protected by ill_g_lock (writer) */
14569 			IPSQ_DEC_REF(cur_ipsq, ipst);
14570 			phyint->phyint_ipsq = newipsq;
14571 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14572 			newipsq->ipsq_phyint_list = phyint;
14573 			IPSQ_INC_REF(newipsq, ipst);
14574 			return (SPLIT_SUCCESS);
14575 		}
14576 	}
14577 	return (SPLIT_NOT_NEEDED);
14578 }
14579 
14580 /*
14581  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14582  * to do this split
14583  */
14584 static int
14585 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14586 {
14587 	ipsq_t *newipsq;
14588 
14589 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14590 	/*
14591 	 * <ill-phyint> assocs can't change while ill_g_lock
14592 	 * is held as writer. See ill_phyint_reinit()
14593 	 */
14594 
14595 	ASSERT(phyint->phyint_illv4 == NULL ||
14596 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14597 	ASSERT(phyint->phyint_illv6 == NULL ||
14598 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14599 
14600 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14601 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14602 		/*
14603 		 * ipsq_init failed due to no memory
14604 		 * caller will use the same ipsq
14605 		 */
14606 		return (SPLIT_FAILED);
14607 	}
14608 
14609 	/* ipsq_ref is protected by ill_g_lock (writer) */
14610 	IPSQ_DEC_REF(cur_ipsq, ipst);
14611 
14612 	/*
14613 	 * This is a new ipsq that is unknown to the world.
14614 	 * So we don't need to hold ipsq_lock,
14615 	 */
14616 	newipsq = phyint->phyint_ipsq;
14617 	newipsq->ipsq_writer = NULL;
14618 	newipsq->ipsq_reentry_cnt--;
14619 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14620 #ifdef DEBUG
14621 	newipsq->ipsq_depth = 0;
14622 #endif
14623 
14624 	return (SPLIT_SUCCESS);
14625 }
14626 
14627 /*
14628  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14629  * ipsq's representing their individual groups or themselves. Return
14630  * whether split needs to be retried again later.
14631  */
14632 static boolean_t
14633 ill_split_ipsq(ipsq_t *cur_ipsq)
14634 {
14635 	phyint_t *phyint;
14636 	phyint_t *next_phyint;
14637 	int	error;
14638 	boolean_t need_retry = B_FALSE;
14639 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
14640 
14641 	phyint = cur_ipsq->ipsq_phyint_list;
14642 	cur_ipsq->ipsq_phyint_list = NULL;
14643 	while (phyint != NULL) {
14644 		next_phyint = phyint->phyint_ipsq_next;
14645 		/*
14646 		 * 'created' will tell us whether the callee actually
14647 		 * created an ipsq. Lack of memory may force the callee
14648 		 * to return without creating an ipsq.
14649 		 */
14650 		if (phyint->phyint_groupname == NULL) {
14651 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14652 		} else {
14653 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14654 			    need_retry, ipst);
14655 		}
14656 
14657 		switch (error) {
14658 		case SPLIT_FAILED:
14659 			need_retry = B_TRUE;
14660 			/* FALLTHRU */
14661 		case SPLIT_NOT_NEEDED:
14662 			/*
14663 			 * Keep it on the list.
14664 			 */
14665 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14666 			cur_ipsq->ipsq_phyint_list = phyint;
14667 			break;
14668 		case SPLIT_SUCCESS:
14669 			break;
14670 		default:
14671 			ASSERT(0);
14672 		}
14673 
14674 		phyint = next_phyint;
14675 	}
14676 	return (need_retry);
14677 }
14678 
14679 /*
14680  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14681  * and return the ills in the list. This list will be
14682  * needed to unlock all the ills later on by the caller.
14683  * The <ill-ipsq> associations could change between the
14684  * lock and unlock. Hence the unlock can't traverse the
14685  * ipsq to get the list of ills.
14686  */
14687 static int
14688 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14689 {
14690 	int	cnt = 0;
14691 	phyint_t	*phyint;
14692 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
14693 
14694 	/*
14695 	 * The caller holds ill_g_lock to ensure that the ill memberships
14696 	 * of the ipsq don't change
14697 	 */
14698 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14699 
14700 	phyint = ipsq->ipsq_phyint_list;
14701 	while (phyint != NULL) {
14702 		if (phyint->phyint_illv4 != NULL) {
14703 			ASSERT(cnt < list_max);
14704 			list[cnt++] = phyint->phyint_illv4;
14705 		}
14706 		if (phyint->phyint_illv6 != NULL) {
14707 			ASSERT(cnt < list_max);
14708 			list[cnt++] = phyint->phyint_illv6;
14709 		}
14710 		phyint = phyint->phyint_ipsq_next;
14711 	}
14712 	ill_lock_ills(list, cnt);
14713 	return (cnt);
14714 }
14715 
14716 void
14717 ill_lock_ills(ill_t **list, int cnt)
14718 {
14719 	int	i;
14720 
14721 	if (cnt > 1) {
14722 		boolean_t try_again;
14723 		do {
14724 			try_again = B_FALSE;
14725 			for (i = 0; i < cnt - 1; i++) {
14726 				if (list[i] < list[i + 1]) {
14727 					ill_t	*tmp;
14728 
14729 					/* swap the elements */
14730 					tmp = list[i];
14731 					list[i] = list[i + 1];
14732 					list[i + 1] = tmp;
14733 					try_again = B_TRUE;
14734 				}
14735 			}
14736 		} while (try_again);
14737 	}
14738 
14739 	for (i = 0; i < cnt; i++) {
14740 		if (i == 0) {
14741 			if (list[i] != NULL)
14742 				mutex_enter(&list[i]->ill_lock);
14743 			else
14744 				return;
14745 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14746 			mutex_enter(&list[i]->ill_lock);
14747 		}
14748 	}
14749 }
14750 
14751 void
14752 ill_unlock_ills(ill_t **list, int cnt)
14753 {
14754 	int	i;
14755 
14756 	for (i = 0; i < cnt; i++) {
14757 		if ((i == 0) && (list[i] != NULL)) {
14758 			mutex_exit(&list[i]->ill_lock);
14759 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14760 			mutex_exit(&list[i]->ill_lock);
14761 		}
14762 	}
14763 }
14764 
14765 /*
14766  * Merge all the ills from 1 ipsq group into another ipsq group.
14767  * The source ipsq group is specified by the ipsq associated with
14768  * 'from_ill'. The destination ipsq group is specified by the ipsq
14769  * associated with 'to_ill' or 'groupname' respectively.
14770  * Note that ipsq itself does not have a reference count mechanism
14771  * and functions don't look up an ipsq and pass it around. Instead
14772  * functions pass around an ill or groupname, and the ipsq is looked
14773  * up from the ill or groupname and the required operation performed
14774  * atomically with the lookup on the ipsq.
14775  */
14776 static int
14777 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14778     queue_t *q)
14779 {
14780 	ipsq_t *old_ipsq;
14781 	ipsq_t *new_ipsq;
14782 	ill_t	**ill_list;
14783 	int	cnt;
14784 	size_t	ill_list_size;
14785 	boolean_t became_writer_on_new_sq = B_FALSE;
14786 	ip_stack_t	*ipst = from_ill->ill_ipst;
14787 
14788 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
14789 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
14790 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
14791 
14792 	/*
14793 	 * Need to hold ill_g_lock as writer and also the ill_lock to
14794 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
14795 	 * ipsq_lock to prevent new messages from landing on an ipsq.
14796 	 */
14797 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14798 
14799 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14800 	if (groupname != NULL)
14801 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
14802 	else {
14803 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14804 	}
14805 
14806 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14807 
14808 	/*
14809 	 * both groups are on the same ipsq.
14810 	 */
14811 	if (old_ipsq == new_ipsq) {
14812 		rw_exit(&ipst->ips_ill_g_lock);
14813 		return (0);
14814 	}
14815 
14816 	cnt = old_ipsq->ipsq_refs << 1;
14817 	ill_list_size = cnt * sizeof (ill_t *);
14818 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14819 	if (ill_list == NULL) {
14820 		rw_exit(&ipst->ips_ill_g_lock);
14821 		return (ENOMEM);
14822 	}
14823 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14824 
14825 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
14826 	mutex_enter(&new_ipsq->ipsq_lock);
14827 	if ((new_ipsq->ipsq_writer == NULL &&
14828 	    new_ipsq->ipsq_current_ipif == NULL) ||
14829 	    (new_ipsq->ipsq_writer == curthread)) {
14830 		new_ipsq->ipsq_writer = curthread;
14831 		new_ipsq->ipsq_reentry_cnt++;
14832 		became_writer_on_new_sq = B_TRUE;
14833 	}
14834 
14835 	/*
14836 	 * We are holding ill_g_lock as writer and all the ill locks of
14837 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14838 	 * message can land up on the old ipsq even though we don't hold the
14839 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14840 	 */
14841 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14842 
14843 	/*
14844 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
14845 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
14846 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
14847 	 */
14848 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
14849 
14850 	/*
14851 	 * Mark the new ipsq as needing a split since it is currently
14852 	 * being shared by more than 1 IPMP group. The split will
14853 	 * occur at the end of ipsq_exit
14854 	 */
14855 	new_ipsq->ipsq_split = B_TRUE;
14856 
14857 	/* Now release all the locks */
14858 	mutex_exit(&new_ipsq->ipsq_lock);
14859 	ill_unlock_ills(ill_list, cnt);
14860 	rw_exit(&ipst->ips_ill_g_lock);
14861 
14862 	kmem_free(ill_list, ill_list_size);
14863 
14864 	/*
14865 	 * If we succeeded in becoming writer on the new ipsq, then
14866 	 * drain the new ipsq and start processing  all enqueued messages
14867 	 * including the current ioctl we are processing which is either
14868 	 * a set groupname or failover/failback.
14869 	 */
14870 	if (became_writer_on_new_sq)
14871 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
14872 
14873 	/*
14874 	 * syncq has been changed and all the messages have been moved.
14875 	 */
14876 	mutex_enter(&old_ipsq->ipsq_lock);
14877 	old_ipsq->ipsq_current_ipif = NULL;
14878 	old_ipsq->ipsq_current_ioctl = 0;
14879 	mutex_exit(&old_ipsq->ipsq_lock);
14880 	return (EINPROGRESS);
14881 }
14882 
14883 /*
14884  * Delete and add the loopback copy and non-loopback copy of
14885  * the BROADCAST ire corresponding to ill and addr. Used to
14886  * group broadcast ires together when ill becomes part of
14887  * a group.
14888  *
14889  * This function is also called when ill is leaving the group
14890  * so that the ires belonging to the group gets re-grouped.
14891  */
14892 static void
14893 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
14894 {
14895 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
14896 	ire_t **ire_ptpn = &ire_head;
14897 	ip_stack_t	*ipst = ill->ill_ipst;
14898 
14899 	/*
14900 	 * The loopback and non-loopback IREs are inserted in the order in which
14901 	 * they're found, on the basis that they are correctly ordered (loopback
14902 	 * first).
14903 	 */
14904 	for (;;) {
14905 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14906 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
14907 		if (ire == NULL)
14908 			break;
14909 
14910 		/*
14911 		 * we are passing in KM_SLEEP because it is not easy to
14912 		 * go back to a sane state in case of memory failure.
14913 		 */
14914 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
14915 		ASSERT(nire != NULL);
14916 		bzero(nire, sizeof (ire_t));
14917 		/*
14918 		 * Don't use ire_max_frag directly since we don't
14919 		 * hold on to 'ire' until we add the new ire 'nire' and
14920 		 * we don't want the new ire to have a dangling reference
14921 		 * to 'ire'. The ire_max_frag of a broadcast ire must
14922 		 * be in sync with the ipif_mtu of the associate ipif.
14923 		 * For eg. this happens as a result of SIOCSLIFNAME,
14924 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
14925 		 * the driver. A change in ire_max_frag triggered as
14926 		 * as a result of path mtu discovery, or due to an
14927 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
14928 		 * route change -mtu command does not apply to broadcast ires.
14929 		 *
14930 		 * XXX We need a recovery strategy here if ire_init fails
14931 		 */
14932 		if (ire_init(nire,
14933 		    (uchar_t *)&ire->ire_addr,
14934 		    (uchar_t *)&ire->ire_mask,
14935 		    (uchar_t *)&ire->ire_src_addr,
14936 		    (uchar_t *)&ire->ire_gateway_addr,
14937 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
14938 		    &ire->ire_ipif->ipif_mtu,
14939 		    ire->ire_nce,
14940 		    ire->ire_rfq,
14941 		    ire->ire_stq,
14942 		    ire->ire_type,
14943 		    ire->ire_ipif,
14944 		    ire->ire_cmask,
14945 		    ire->ire_phandle,
14946 		    ire->ire_ihandle,
14947 		    ire->ire_flags,
14948 		    &ire->ire_uinfo,
14949 		    NULL,
14950 		    NULL,
14951 		    ipst) == NULL) {
14952 			cmn_err(CE_PANIC, "ire_init() failed");
14953 		}
14954 		ire_delete(ire);
14955 		ire_refrele(ire);
14956 
14957 		/*
14958 		 * The newly created IREs are inserted at the tail of the list
14959 		 * starting with ire_head. As we've just allocated them no one
14960 		 * knows about them so it's safe.
14961 		 */
14962 		*ire_ptpn = nire;
14963 		ire_ptpn = &nire->ire_next;
14964 	}
14965 
14966 	for (nire = ire_head; nire != NULL; nire = nire_next) {
14967 		int error;
14968 		ire_t *oire;
14969 		/* unlink the IRE from our list before calling ire_add() */
14970 		nire_next = nire->ire_next;
14971 		nire->ire_next = NULL;
14972 
14973 		/* ire_add adds the ire at the right place in the list */
14974 		oire = nire;
14975 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
14976 		ASSERT(error == 0);
14977 		ASSERT(oire == nire);
14978 		ire_refrele(nire);	/* Held in ire_add */
14979 	}
14980 }
14981 
14982 /*
14983  * This function is usually called when an ill is inserted in
14984  * a group and all the ipifs are already UP. As all the ipifs
14985  * are already UP, the broadcast ires have already been created
14986  * and been inserted. But, ire_add_v4 would not have grouped properly.
14987  * We need to re-group for the benefit of ip_wput_ire which
14988  * expects BROADCAST ires to be grouped properly to avoid sending
14989  * more than one copy of the broadcast packet per group.
14990  *
14991  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
14992  *	  because when ipif_up_done ends up calling this, ires have
14993  *        already been added before illgrp_insert i.e before ill_group
14994  *	  has been initialized.
14995  */
14996 static void
14997 ill_group_bcast_for_xmit(ill_t *ill)
14998 {
14999 	ill_group_t *illgrp;
15000 	ipif_t *ipif;
15001 	ipaddr_t addr;
15002 	ipaddr_t net_mask;
15003 	ipaddr_t subnet_netmask;
15004 
15005 	illgrp = ill->ill_group;
15006 
15007 	/*
15008 	 * This function is called even when an ill is deleted from
15009 	 * the group. Hence, illgrp could be null.
15010 	 */
15011 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15012 		return;
15013 
15014 	/*
15015 	 * Delete all the BROADCAST ires matching this ill and add
15016 	 * them back. This time, ire_add_v4 should take care of
15017 	 * grouping them with others because ill is part of the
15018 	 * group.
15019 	 */
15020 	ill_bcast_delete_and_add(ill, 0);
15021 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15022 
15023 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15024 
15025 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15026 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15027 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15028 		} else {
15029 			net_mask = htonl(IN_CLASSA_NET);
15030 		}
15031 		addr = net_mask & ipif->ipif_subnet;
15032 		ill_bcast_delete_and_add(ill, addr);
15033 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15034 
15035 		subnet_netmask = ipif->ipif_net_mask;
15036 		addr = ipif->ipif_subnet;
15037 		ill_bcast_delete_and_add(ill, addr);
15038 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15039 	}
15040 }
15041 
15042 /*
15043  * This function is called from illgrp_delete when ill is being deleted
15044  * from the group.
15045  *
15046  * As ill is not there in the group anymore, any address belonging
15047  * to this ill should be cleared of IRE_MARK_NORECV.
15048  */
15049 static void
15050 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15051 {
15052 	ire_t *ire;
15053 	irb_t *irb;
15054 	ip_stack_t	*ipst = ill->ill_ipst;
15055 
15056 	ASSERT(ill->ill_group == NULL);
15057 
15058 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15059 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15060 
15061 	if (ire != NULL) {
15062 		/*
15063 		 * IPMP and plumbing operations are serialized on the ipsq, so
15064 		 * no one will insert or delete a broadcast ire under our feet.
15065 		 */
15066 		irb = ire->ire_bucket;
15067 		rw_enter(&irb->irb_lock, RW_READER);
15068 		ire_refrele(ire);
15069 
15070 		for (; ire != NULL; ire = ire->ire_next) {
15071 			if (ire->ire_addr != addr)
15072 				break;
15073 			if (ire_to_ill(ire) != ill)
15074 				continue;
15075 
15076 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15077 			ire->ire_marks &= ~IRE_MARK_NORECV;
15078 		}
15079 		rw_exit(&irb->irb_lock);
15080 	}
15081 }
15082 
15083 /*
15084  * This function must be called only after the broadcast ires
15085  * have been grouped together. For a given address addr, nominate
15086  * only one of the ires whose interface is not FAILED or OFFLINE.
15087  *
15088  * This is also called when an ipif goes down, so that we can nominate
15089  * a different ire with the same address for receiving.
15090  */
15091 static void
15092 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15093 {
15094 	irb_t *irb;
15095 	ire_t *ire;
15096 	ire_t *ire1;
15097 	ire_t *save_ire;
15098 	ire_t **irep = NULL;
15099 	boolean_t first = B_TRUE;
15100 	ire_t *clear_ire = NULL;
15101 	ire_t *start_ire = NULL;
15102 	ire_t	*new_lb_ire;
15103 	ire_t	*new_nlb_ire;
15104 	boolean_t new_lb_ire_used = B_FALSE;
15105 	boolean_t new_nlb_ire_used = B_FALSE;
15106 	uint64_t match_flags;
15107 	uint64_t phyi_flags;
15108 	boolean_t fallback = B_FALSE;
15109 	uint_t	max_frag;
15110 
15111 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15112 	    NULL, MATCH_IRE_TYPE, ipst);
15113 	/*
15114 	 * We may not be able to find some ires if a previous
15115 	 * ire_create failed. This happens when an ipif goes
15116 	 * down and we are unable to create BROADCAST ires due
15117 	 * to memory failure. Thus, we have to check for NULL
15118 	 * below. This should handle the case for LOOPBACK,
15119 	 * POINTOPOINT and interfaces with some POINTOPOINT
15120 	 * logicals for which there are no BROADCAST ires.
15121 	 */
15122 	if (ire == NULL)
15123 		return;
15124 	/*
15125 	 * Currently IRE_BROADCASTS are deleted when an ipif
15126 	 * goes down which runs exclusively. Thus, setting
15127 	 * IRE_MARK_RCVD should not race with ire_delete marking
15128 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15129 	 * be consistent with other parts of the code that walks
15130 	 * a given bucket.
15131 	 */
15132 	save_ire = ire;
15133 	irb = ire->ire_bucket;
15134 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15135 	if (new_lb_ire == NULL) {
15136 		ire_refrele(ire);
15137 		return;
15138 	}
15139 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15140 	if (new_nlb_ire == NULL) {
15141 		ire_refrele(ire);
15142 		kmem_cache_free(ire_cache, new_lb_ire);
15143 		return;
15144 	}
15145 	IRB_REFHOLD(irb);
15146 	rw_enter(&irb->irb_lock, RW_WRITER);
15147 	/*
15148 	 * Get to the first ire matching the address and the
15149 	 * group. If the address does not match we are done
15150 	 * as we could not find the IRE. If the address matches
15151 	 * we should get to the first one matching the group.
15152 	 */
15153 	while (ire != NULL) {
15154 		if (ire->ire_addr != addr ||
15155 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15156 			break;
15157 		}
15158 		ire = ire->ire_next;
15159 	}
15160 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15161 	start_ire = ire;
15162 redo:
15163 	while (ire != NULL && ire->ire_addr == addr &&
15164 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15165 		/*
15166 		 * The first ire for any address within a group
15167 		 * should always be the one with IRE_MARK_NORECV cleared
15168 		 * so that ip_wput_ire can avoid searching for one.
15169 		 * Note down the insertion point which will be used
15170 		 * later.
15171 		 */
15172 		if (first && (irep == NULL))
15173 			irep = ire->ire_ptpn;
15174 		/*
15175 		 * PHYI_FAILED is set when the interface fails.
15176 		 * This interface might have become good, but the
15177 		 * daemon has not yet detected. We should still
15178 		 * not receive on this. PHYI_OFFLINE should never
15179 		 * be picked as this has been offlined and soon
15180 		 * be removed.
15181 		 */
15182 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15183 		if (phyi_flags & PHYI_OFFLINE) {
15184 			ire->ire_marks |= IRE_MARK_NORECV;
15185 			ire = ire->ire_next;
15186 			continue;
15187 		}
15188 		if (phyi_flags & match_flags) {
15189 			ire->ire_marks |= IRE_MARK_NORECV;
15190 			ire = ire->ire_next;
15191 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15192 			    PHYI_INACTIVE) {
15193 				fallback = B_TRUE;
15194 			}
15195 			continue;
15196 		}
15197 		if (first) {
15198 			/*
15199 			 * We will move this to the front of the list later
15200 			 * on.
15201 			 */
15202 			clear_ire = ire;
15203 			ire->ire_marks &= ~IRE_MARK_NORECV;
15204 		} else {
15205 			ire->ire_marks |= IRE_MARK_NORECV;
15206 		}
15207 		first = B_FALSE;
15208 		ire = ire->ire_next;
15209 	}
15210 	/*
15211 	 * If we never nominated anybody, try nominating at least
15212 	 * an INACTIVE, if we found one. Do it only once though.
15213 	 */
15214 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15215 	    fallback) {
15216 		match_flags = PHYI_FAILED;
15217 		ire = start_ire;
15218 		irep = NULL;
15219 		goto redo;
15220 	}
15221 	ire_refrele(save_ire);
15222 
15223 	/*
15224 	 * irep non-NULL indicates that we entered the while loop
15225 	 * above. If clear_ire is at the insertion point, we don't
15226 	 * have to do anything. clear_ire will be NULL if all the
15227 	 * interfaces are failed.
15228 	 *
15229 	 * We cannot unlink and reinsert the ire at the right place
15230 	 * in the list since there can be other walkers of this bucket.
15231 	 * Instead we delete and recreate the ire
15232 	 */
15233 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15234 		ire_t *clear_ire_stq = NULL;
15235 
15236 		bzero(new_lb_ire, sizeof (ire_t));
15237 		/* XXX We need a recovery strategy here. */
15238 		if (ire_init(new_lb_ire,
15239 		    (uchar_t *)&clear_ire->ire_addr,
15240 		    (uchar_t *)&clear_ire->ire_mask,
15241 		    (uchar_t *)&clear_ire->ire_src_addr,
15242 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15243 		    &clear_ire->ire_max_frag,
15244 		    NULL, /* let ire_nce_init derive the resolver info */
15245 		    clear_ire->ire_rfq,
15246 		    clear_ire->ire_stq,
15247 		    clear_ire->ire_type,
15248 		    clear_ire->ire_ipif,
15249 		    clear_ire->ire_cmask,
15250 		    clear_ire->ire_phandle,
15251 		    clear_ire->ire_ihandle,
15252 		    clear_ire->ire_flags,
15253 		    &clear_ire->ire_uinfo,
15254 		    NULL,
15255 		    NULL,
15256 		    ipst) == NULL)
15257 			cmn_err(CE_PANIC, "ire_init() failed");
15258 		if (clear_ire->ire_stq == NULL) {
15259 			ire_t *ire_next = clear_ire->ire_next;
15260 			if (ire_next != NULL &&
15261 			    ire_next->ire_stq != NULL &&
15262 			    ire_next->ire_addr == clear_ire->ire_addr &&
15263 			    ire_next->ire_ipif->ipif_ill ==
15264 			    clear_ire->ire_ipif->ipif_ill) {
15265 				clear_ire_stq = ire_next;
15266 
15267 				bzero(new_nlb_ire, sizeof (ire_t));
15268 				/* XXX We need a recovery strategy here. */
15269 				if (ire_init(new_nlb_ire,
15270 				    (uchar_t *)&clear_ire_stq->ire_addr,
15271 				    (uchar_t *)&clear_ire_stq->ire_mask,
15272 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15273 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15274 				    &clear_ire_stq->ire_max_frag,
15275 				    NULL,
15276 				    clear_ire_stq->ire_rfq,
15277 				    clear_ire_stq->ire_stq,
15278 				    clear_ire_stq->ire_type,
15279 				    clear_ire_stq->ire_ipif,
15280 				    clear_ire_stq->ire_cmask,
15281 				    clear_ire_stq->ire_phandle,
15282 				    clear_ire_stq->ire_ihandle,
15283 				    clear_ire_stq->ire_flags,
15284 				    &clear_ire_stq->ire_uinfo,
15285 				    NULL,
15286 				    NULL,
15287 				    ipst) == NULL)
15288 					cmn_err(CE_PANIC, "ire_init() failed");
15289 			}
15290 		}
15291 
15292 		/*
15293 		 * Delete the ire. We can't call ire_delete() since
15294 		 * we are holding the bucket lock. We can't release the
15295 		 * bucket lock since we can't allow irep to change. So just
15296 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15297 		 * ire from the list and do the refrele.
15298 		 */
15299 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15300 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15301 
15302 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15303 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15304 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15305 		}
15306 
15307 		/*
15308 		 * Also take care of otherfields like ib/ob pkt count
15309 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15310 		 */
15311 
15312 		/* Set the max_frag before adding the ire */
15313 		max_frag = *new_lb_ire->ire_max_fragp;
15314 		new_lb_ire->ire_max_fragp = NULL;
15315 		new_lb_ire->ire_max_frag = max_frag;
15316 
15317 		/* Add the new ire's. Insert at *irep */
15318 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15319 		ire1 = *irep;
15320 		if (ire1 != NULL)
15321 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15322 		new_lb_ire->ire_next = ire1;
15323 		/* Link the new one in. */
15324 		new_lb_ire->ire_ptpn = irep;
15325 		membar_producer();
15326 		*irep = new_lb_ire;
15327 		new_lb_ire_used = B_TRUE;
15328 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15329 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15330 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15331 
15332 		if (clear_ire_stq != NULL) {
15333 			/* Set the max_frag before adding the ire */
15334 			max_frag = *new_nlb_ire->ire_max_fragp;
15335 			new_nlb_ire->ire_max_fragp = NULL;
15336 			new_nlb_ire->ire_max_frag = max_frag;
15337 
15338 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15339 			irep = &new_lb_ire->ire_next;
15340 			/* Add the new ire. Insert at *irep */
15341 			ire1 = *irep;
15342 			if (ire1 != NULL)
15343 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15344 			new_nlb_ire->ire_next = ire1;
15345 			/* Link the new one in. */
15346 			new_nlb_ire->ire_ptpn = irep;
15347 			membar_producer();
15348 			*irep = new_nlb_ire;
15349 			new_nlb_ire_used = B_TRUE;
15350 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15351 			    ire_stats_inserted);
15352 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15353 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15354 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15355 		}
15356 	}
15357 	rw_exit(&irb->irb_lock);
15358 	if (!new_lb_ire_used)
15359 		kmem_cache_free(ire_cache, new_lb_ire);
15360 	if (!new_nlb_ire_used)
15361 		kmem_cache_free(ire_cache, new_nlb_ire);
15362 	IRB_REFRELE(irb);
15363 }
15364 
15365 /*
15366  * Whenever an ipif goes down we have to renominate a different
15367  * broadcast ire to receive. Whenever an ipif comes up, we need
15368  * to make sure that we have only one nominated to receive.
15369  */
15370 static void
15371 ipif_renominate_bcast(ipif_t *ipif)
15372 {
15373 	ill_t *ill = ipif->ipif_ill;
15374 	ipaddr_t subnet_addr;
15375 	ipaddr_t net_addr;
15376 	ipaddr_t net_mask = 0;
15377 	ipaddr_t subnet_netmask;
15378 	ipaddr_t addr;
15379 	ill_group_t *illgrp;
15380 	ip_stack_t	*ipst = ill->ill_ipst;
15381 
15382 	illgrp = ill->ill_group;
15383 	/*
15384 	 * If this is the last ipif going down, it might take
15385 	 * the ill out of the group. In that case ipif_down ->
15386 	 * illgrp_delete takes care of doing the nomination.
15387 	 * ipif_down does not call for this case.
15388 	 */
15389 	ASSERT(illgrp != NULL);
15390 
15391 	/* There could not have been any ires associated with this */
15392 	if (ipif->ipif_subnet == 0)
15393 		return;
15394 
15395 	ill_mark_bcast(illgrp, 0, ipst);
15396 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15397 
15398 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15399 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15400 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15401 	} else {
15402 		net_mask = htonl(IN_CLASSA_NET);
15403 	}
15404 	addr = net_mask & ipif->ipif_subnet;
15405 	ill_mark_bcast(illgrp, addr, ipst);
15406 
15407 	net_addr = ~net_mask | addr;
15408 	ill_mark_bcast(illgrp, net_addr, ipst);
15409 
15410 	subnet_netmask = ipif->ipif_net_mask;
15411 	addr = ipif->ipif_subnet;
15412 	ill_mark_bcast(illgrp, addr, ipst);
15413 
15414 	subnet_addr = ~subnet_netmask | addr;
15415 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15416 }
15417 
15418 /*
15419  * Whenever we form or delete ill groups, we need to nominate one set of
15420  * BROADCAST ires for receiving in the group.
15421  *
15422  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15423  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15424  *    for ill_ipif_up_count to be non-zero. This is the only case where
15425  *    ill_ipif_up_count is zero and we would still find the ires.
15426  *
15427  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15428  *    ipif is UP and we just have to do the nomination.
15429  *
15430  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15431  *    from the group. So, we have to do the nomination.
15432  *
15433  * Because of (3), there could be just one ill in the group. But we have
15434  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15435  * Thus, this function does not optimize when there is only one ill as
15436  * it is not correct for (3).
15437  */
15438 static void
15439 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15440 {
15441 	ill_t *ill;
15442 	ipif_t *ipif;
15443 	ipaddr_t subnet_addr;
15444 	ipaddr_t prev_subnet_addr = 0;
15445 	ipaddr_t net_addr;
15446 	ipaddr_t prev_net_addr = 0;
15447 	ipaddr_t net_mask = 0;
15448 	ipaddr_t subnet_netmask;
15449 	ipaddr_t addr;
15450 	ip_stack_t	*ipst;
15451 
15452 	/*
15453 	 * When the last memeber is leaving, there is nothing to
15454 	 * nominate.
15455 	 */
15456 	if (illgrp->illgrp_ill_count == 0) {
15457 		ASSERT(illgrp->illgrp_ill == NULL);
15458 		return;
15459 	}
15460 
15461 	ill = illgrp->illgrp_ill;
15462 	ASSERT(!ill->ill_isv6);
15463 	ipst = ill->ill_ipst;
15464 	/*
15465 	 * We assume that ires with same address and belonging to the
15466 	 * same group, has been grouped together. Nominating a *single*
15467 	 * ill in the group for sending and receiving broadcast is done
15468 	 * by making sure that the first BROADCAST ire (which will be
15469 	 * the one returned by ire_ctable_lookup for ip_rput and the
15470 	 * one that will be used in ip_wput_ire) will be the one that
15471 	 * will not have IRE_MARK_NORECV set.
15472 	 *
15473 	 * 1) ip_rput checks and discards packets received on ires marked
15474 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15475 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15476 	 *    first ire in the group for every broadcast address in the group.
15477 	 *    ip_rput will accept packets only on the first ire i.e only
15478 	 *    one copy of the ill.
15479 	 *
15480 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15481 	 *    packet for the whole group. It needs to send out on the ill
15482 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15483 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15484 	 *    the copy echoed back on other port where the ire is not marked
15485 	 *    with IRE_MARK_NORECV.
15486 	 *
15487 	 * Note that we just need to have the first IRE either loopback or
15488 	 * non-loopback (either of them may not exist if ire_create failed
15489 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15490 	 * always hit the first one and hence will always accept one copy.
15491 	 *
15492 	 * We have a broadcast ire per ill for all the unique prefixes
15493 	 * hosted on that ill. As we don't have a way of knowing the
15494 	 * unique prefixes on a given ill and hence in the whole group,
15495 	 * we just call ill_mark_bcast on all the prefixes that exist
15496 	 * in the group. For the common case of one prefix, the code
15497 	 * below optimizes by remebering the last address used for
15498 	 * markng. In the case of multiple prefixes, this will still
15499 	 * optimize depending the order of prefixes.
15500 	 *
15501 	 * The only unique address across the whole group is 0.0.0.0 and
15502 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15503 	 * the first ire in the bucket for receiving and disables the
15504 	 * others.
15505 	 */
15506 	ill_mark_bcast(illgrp, 0, ipst);
15507 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15508 	for (; ill != NULL; ill = ill->ill_group_next) {
15509 
15510 		for (ipif = ill->ill_ipif; ipif != NULL;
15511 		    ipif = ipif->ipif_next) {
15512 
15513 			if (!(ipif->ipif_flags & IPIF_UP) ||
15514 			    ipif->ipif_subnet == 0) {
15515 				continue;
15516 			}
15517 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15518 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15519 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15520 			} else {
15521 				net_mask = htonl(IN_CLASSA_NET);
15522 			}
15523 			addr = net_mask & ipif->ipif_subnet;
15524 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15525 				ill_mark_bcast(illgrp, addr, ipst);
15526 				net_addr = ~net_mask | addr;
15527 				ill_mark_bcast(illgrp, net_addr, ipst);
15528 			}
15529 			prev_net_addr = addr;
15530 
15531 			subnet_netmask = ipif->ipif_net_mask;
15532 			addr = ipif->ipif_subnet;
15533 			if (prev_subnet_addr == 0 ||
15534 			    prev_subnet_addr != addr) {
15535 				ill_mark_bcast(illgrp, addr, ipst);
15536 				subnet_addr = ~subnet_netmask | addr;
15537 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15538 			}
15539 			prev_subnet_addr = addr;
15540 		}
15541 	}
15542 }
15543 
15544 /*
15545  * This function is called while forming ill groups.
15546  *
15547  * Currently, we handle only allmulti groups. We want to join
15548  * allmulti on only one of the ills in the groups. In future,
15549  * when we have link aggregation, we may have to join normal
15550  * multicast groups on multiple ills as switch does inbound load
15551  * balancing. Following are the functions that calls this
15552  * function :
15553  *
15554  * 1) ill_recover_multicast : Interface is coming back UP.
15555  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15556  *    will call ill_recover_multicast to recover all the multicast
15557  *    groups. We need to make sure that only one member is joined
15558  *    in the ill group.
15559  *
15560  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15561  *    Somebody is joining allmulti. We need to make sure that only one
15562  *    member is joined in the group.
15563  *
15564  * 3) illgrp_insert : If allmulti has already joined, we need to make
15565  *    sure that only one member is joined in the group.
15566  *
15567  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15568  *    allmulti who we have nominated. We need to pick someother ill.
15569  *
15570  * 5) illgrp_delete : The ill we nominated is leaving the group,
15571  *    we need to pick a new ill to join the group.
15572  *
15573  * For (1), (2), (5) - we just have to check whether there is
15574  * a good ill joined in the group. If we could not find any ills
15575  * joined the group, we should join.
15576  *
15577  * For (4), the one that was nominated to receive, left the group.
15578  * There could be nobody joined in the group when this function is
15579  * called.
15580  *
15581  * For (3) - we need to explicitly check whether there are multiple
15582  * ills joined in the group.
15583  *
15584  * For simplicity, we don't differentiate any of the above cases. We
15585  * just leave the group if it is joined on any of them and join on
15586  * the first good ill.
15587  */
15588 int
15589 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15590 {
15591 	ilm_t *ilm;
15592 	ill_t *ill;
15593 	ill_t *fallback_inactive_ill = NULL;
15594 	ill_t *fallback_failed_ill = NULL;
15595 	int ret = 0;
15596 
15597 	/*
15598 	 * Leave the allmulti on all the ills and start fresh.
15599 	 */
15600 	for (ill = illgrp->illgrp_ill; ill != NULL;
15601 	    ill = ill->ill_group_next) {
15602 		if (ill->ill_join_allmulti)
15603 			(void) ip_leave_allmulti(ill->ill_ipif);
15604 	}
15605 
15606 	/*
15607 	 * Choose a good ill. Fallback to inactive or failed if
15608 	 * none available. We need to fallback to FAILED in the
15609 	 * case where we have 2 interfaces in a group - where
15610 	 * one of them is failed and another is a good one and
15611 	 * the good one (not marked inactive) is leaving the group.
15612 	 */
15613 	ret = 0;
15614 	for (ill = illgrp->illgrp_ill; ill != NULL;
15615 	    ill = ill->ill_group_next) {
15616 		/* Never pick an offline interface */
15617 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15618 			continue;
15619 
15620 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15621 			fallback_failed_ill = ill;
15622 			continue;
15623 		}
15624 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15625 			fallback_inactive_ill = ill;
15626 			continue;
15627 		}
15628 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15629 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15630 				ret = ip_join_allmulti(ill->ill_ipif);
15631 				/*
15632 				 * ip_join_allmulti can fail because of memory
15633 				 * failures. So, make sure we join at least
15634 				 * on one ill.
15635 				 */
15636 				if (ill->ill_join_allmulti)
15637 					return (0);
15638 			}
15639 		}
15640 	}
15641 	if (ret != 0) {
15642 		/*
15643 		 * If we tried nominating above and failed to do so,
15644 		 * return error. We might have tried multiple times.
15645 		 * But, return the latest error.
15646 		 */
15647 		return (ret);
15648 	}
15649 	if ((ill = fallback_inactive_ill) != NULL) {
15650 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15651 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15652 				ret = ip_join_allmulti(ill->ill_ipif);
15653 				return (ret);
15654 			}
15655 		}
15656 	} else if ((ill = fallback_failed_ill) != NULL) {
15657 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15658 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15659 				ret = ip_join_allmulti(ill->ill_ipif);
15660 				return (ret);
15661 			}
15662 		}
15663 	}
15664 	return (0);
15665 }
15666 
15667 /*
15668  * This function is called from illgrp_delete after it is
15669  * deleted from the group to reschedule responsibilities
15670  * to a different ill.
15671  */
15672 static void
15673 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15674 {
15675 	ilm_t	*ilm;
15676 	ipif_t	*ipif;
15677 	ipaddr_t subnet_addr;
15678 	ipaddr_t net_addr;
15679 	ipaddr_t net_mask = 0;
15680 	ipaddr_t subnet_netmask;
15681 	ipaddr_t addr;
15682 	ip_stack_t *ipst = ill->ill_ipst;
15683 
15684 	ASSERT(ill->ill_group == NULL);
15685 	/*
15686 	 * Broadcast Responsibility:
15687 	 *
15688 	 * 1. If this ill has been nominated for receiving broadcast
15689 	 * packets, we need to find a new one. Before we find a new
15690 	 * one, we need to re-group the ires that are part of this new
15691 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
15692 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
15693 	 * thing for us.
15694 	 *
15695 	 * 2. If this ill was not nominated for receiving broadcast
15696 	 * packets, we need to clear the IRE_MARK_NORECV flag
15697 	 * so that we continue to send up broadcast packets.
15698 	 */
15699 	if (!ill->ill_isv6) {
15700 		/*
15701 		 * Case 1 above : No optimization here. Just redo the
15702 		 * nomination.
15703 		 */
15704 		ill_group_bcast_for_xmit(ill);
15705 		ill_nominate_bcast_rcv(illgrp);
15706 
15707 		/*
15708 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15709 		 */
15710 		ill_clear_bcast_mark(ill, 0);
15711 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15712 
15713 		for (ipif = ill->ill_ipif; ipif != NULL;
15714 		    ipif = ipif->ipif_next) {
15715 
15716 			if (!(ipif->ipif_flags & IPIF_UP) ||
15717 			    ipif->ipif_subnet == 0) {
15718 				continue;
15719 			}
15720 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15721 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15722 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15723 			} else {
15724 				net_mask = htonl(IN_CLASSA_NET);
15725 			}
15726 			addr = net_mask & ipif->ipif_subnet;
15727 			ill_clear_bcast_mark(ill, addr);
15728 
15729 			net_addr = ~net_mask | addr;
15730 			ill_clear_bcast_mark(ill, net_addr);
15731 
15732 			subnet_netmask = ipif->ipif_net_mask;
15733 			addr = ipif->ipif_subnet;
15734 			ill_clear_bcast_mark(ill, addr);
15735 
15736 			subnet_addr = ~subnet_netmask | addr;
15737 			ill_clear_bcast_mark(ill, subnet_addr);
15738 		}
15739 	}
15740 
15741 	/*
15742 	 * Multicast Responsibility.
15743 	 *
15744 	 * If we have joined allmulti on this one, find a new member
15745 	 * in the group to join allmulti. As this ill is already part
15746 	 * of allmulti, we don't have to join on this one.
15747 	 *
15748 	 * If we have not joined allmulti on this one, there is no
15749 	 * responsibility to handoff. But we need to take new
15750 	 * responsibility i.e, join allmulti on this one if we need
15751 	 * to.
15752 	 */
15753 	if (ill->ill_join_allmulti) {
15754 		(void) ill_nominate_mcast_rcv(illgrp);
15755 	} else {
15756 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15757 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15758 				(void) ip_join_allmulti(ill->ill_ipif);
15759 				break;
15760 			}
15761 		}
15762 	}
15763 
15764 	/*
15765 	 * We intentionally do the flushing of IRE_CACHES only matching
15766 	 * on the ill and not on groups. Note that we are already deleted
15767 	 * from the group.
15768 	 *
15769 	 * This will make sure that all IRE_CACHES whose stq is pointing
15770 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15771 	 * deleted and IRE_CACHES that are not pointing at this ill will
15772 	 * be left alone.
15773 	 */
15774 	if (ill->ill_isv6) {
15775 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15776 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15777 	} else {
15778 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15779 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15780 	}
15781 
15782 	/*
15783 	 * Some conn may have cached one of the IREs deleted above. By removing
15784 	 * the ire reference, we clean up the extra reference to the ill held in
15785 	 * ire->ire_stq.
15786 	 */
15787 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
15788 
15789 	/*
15790 	 * Re-do source address selection for all the members in the
15791 	 * group, if they borrowed source address from one of the ipifs
15792 	 * in this ill.
15793 	 */
15794 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15795 		if (ill->ill_isv6) {
15796 			ipif_update_other_ipifs_v6(ipif, illgrp);
15797 		} else {
15798 			ipif_update_other_ipifs(ipif, illgrp);
15799 		}
15800 	}
15801 }
15802 
15803 /*
15804  * Delete the ill from the group. The caller makes sure that it is
15805  * in a group and it okay to delete from the group. So, we always
15806  * delete here.
15807  */
15808 static void
15809 illgrp_delete(ill_t *ill)
15810 {
15811 	ill_group_t *illgrp;
15812 	ill_group_t *tmpg;
15813 	ill_t *tmp_ill;
15814 	ip_stack_t	*ipst = ill->ill_ipst;
15815 
15816 	/*
15817 	 * Reset illgrp_ill_schednext if it was pointing at us.
15818 	 * We need to do this before we set ill_group to NULL.
15819 	 */
15820 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15821 	mutex_enter(&ill->ill_lock);
15822 
15823 	illgrp_reset_schednext(ill);
15824 
15825 	illgrp = ill->ill_group;
15826 
15827 	/* Delete the ill from illgrp. */
15828 	if (illgrp->illgrp_ill == ill) {
15829 		illgrp->illgrp_ill = ill->ill_group_next;
15830 	} else {
15831 		tmp_ill = illgrp->illgrp_ill;
15832 		while (tmp_ill->ill_group_next != ill) {
15833 			tmp_ill = tmp_ill->ill_group_next;
15834 			ASSERT(tmp_ill != NULL);
15835 		}
15836 		tmp_ill->ill_group_next = ill->ill_group_next;
15837 	}
15838 	ill->ill_group = NULL;
15839 	ill->ill_group_next = NULL;
15840 
15841 	illgrp->illgrp_ill_count--;
15842 	mutex_exit(&ill->ill_lock);
15843 	rw_exit(&ipst->ips_ill_g_lock);
15844 
15845 	/*
15846 	 * As this ill is leaving the group, we need to hand off
15847 	 * the responsibilities to the other ills in the group, if
15848 	 * this ill had some responsibilities.
15849 	 */
15850 
15851 	ill_handoff_responsibility(ill, illgrp);
15852 
15853 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15854 
15855 	if (illgrp->illgrp_ill_count == 0) {
15856 
15857 		ASSERT(illgrp->illgrp_ill == NULL);
15858 		if (ill->ill_isv6) {
15859 			if (illgrp == ipst->ips_illgrp_head_v6) {
15860 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
15861 			} else {
15862 				tmpg = ipst->ips_illgrp_head_v6;
15863 				while (tmpg->illgrp_next != illgrp) {
15864 					tmpg = tmpg->illgrp_next;
15865 					ASSERT(tmpg != NULL);
15866 				}
15867 				tmpg->illgrp_next = illgrp->illgrp_next;
15868 			}
15869 		} else {
15870 			if (illgrp == ipst->ips_illgrp_head_v4) {
15871 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
15872 			} else {
15873 				tmpg = ipst->ips_illgrp_head_v4;
15874 				while (tmpg->illgrp_next != illgrp) {
15875 					tmpg = tmpg->illgrp_next;
15876 					ASSERT(tmpg != NULL);
15877 				}
15878 				tmpg->illgrp_next = illgrp->illgrp_next;
15879 			}
15880 		}
15881 		mutex_destroy(&illgrp->illgrp_lock);
15882 		mi_free(illgrp);
15883 	}
15884 	rw_exit(&ipst->ips_ill_g_lock);
15885 
15886 	/*
15887 	 * Even though the ill is out of the group its not necessary
15888 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
15889 	 * We will split the ipsq when phyint_groupname is set to NULL.
15890 	 */
15891 
15892 	/*
15893 	 * Send a routing sockets message if we are deleting from
15894 	 * groups with names.
15895 	 */
15896 	if (ill->ill_phyint->phyint_groupname_len != 0)
15897 		ip_rts_ifmsg(ill->ill_ipif);
15898 }
15899 
15900 /*
15901  * Re-do source address selection. This is normally called when
15902  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
15903  * ipif comes up.
15904  */
15905 void
15906 ill_update_source_selection(ill_t *ill)
15907 {
15908 	ipif_t *ipif;
15909 
15910 	ASSERT(IAM_WRITER_ILL(ill));
15911 
15912 	if (ill->ill_group != NULL)
15913 		ill = ill->ill_group->illgrp_ill;
15914 
15915 	for (; ill != NULL; ill = ill->ill_group_next) {
15916 		for (ipif = ill->ill_ipif; ipif != NULL;
15917 		    ipif = ipif->ipif_next) {
15918 			if (ill->ill_isv6)
15919 				ipif_recreate_interface_routes_v6(NULL, ipif);
15920 			else
15921 				ipif_recreate_interface_routes(NULL, ipif);
15922 		}
15923 	}
15924 }
15925 
15926 /*
15927  * Insert ill in a group headed by illgrp_head. The caller can either
15928  * pass a groupname in which case we search for a group with the
15929  * same name to insert in or pass a group to insert in. This function
15930  * would only search groups with names.
15931  *
15932  * NOTE : The caller should make sure that there is at least one ipif
15933  *	  UP on this ill so that illgrp_scheduler can pick this ill
15934  *	  for outbound packets. If ill_ipif_up_count is zero, we have
15935  *	  already sent a DL_UNBIND to the driver and we don't want to
15936  *	  send anymore packets. We don't assert for ipif_up_count
15937  *	  to be greater than zero, because ipif_up_done wants to call
15938  *	  this function before bumping up the ipif_up_count. See
15939  *	  ipif_up_done() for details.
15940  */
15941 int
15942 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
15943     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
15944 {
15945 	ill_group_t *illgrp;
15946 	ill_t *prev_ill;
15947 	phyint_t *phyi;
15948 	ip_stack_t	*ipst = ill->ill_ipst;
15949 
15950 	ASSERT(ill->ill_group == NULL);
15951 
15952 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15953 	mutex_enter(&ill->ill_lock);
15954 
15955 	if (groupname != NULL) {
15956 		/*
15957 		 * Look for a group with a matching groupname to insert.
15958 		 */
15959 		for (illgrp = *illgrp_head; illgrp != NULL;
15960 		    illgrp = illgrp->illgrp_next) {
15961 
15962 			ill_t *tmp_ill;
15963 
15964 			/*
15965 			 * If we have an ill_group_t in the list which has
15966 			 * no ill_t assigned then we must be in the process of
15967 			 * removing this group. We skip this as illgrp_delete()
15968 			 * will remove it from the list.
15969 			 */
15970 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
15971 				ASSERT(illgrp->illgrp_ill_count == 0);
15972 				continue;
15973 			}
15974 
15975 			ASSERT(tmp_ill->ill_phyint != NULL);
15976 			phyi = tmp_ill->ill_phyint;
15977 			/*
15978 			 * Look at groups which has names only.
15979 			 */
15980 			if (phyi->phyint_groupname_len == 0)
15981 				continue;
15982 			/*
15983 			 * Names are stored in the phyint common to both
15984 			 * IPv4 and IPv6.
15985 			 */
15986 			if (mi_strcmp(phyi->phyint_groupname,
15987 			    groupname) == 0) {
15988 				break;
15989 			}
15990 		}
15991 	} else {
15992 		/*
15993 		 * If the caller passes in a NULL "grp_to_insert", we
15994 		 * allocate one below and insert this singleton.
15995 		 */
15996 		illgrp = grp_to_insert;
15997 	}
15998 
15999 	ill->ill_group_next = NULL;
16000 
16001 	if (illgrp == NULL) {
16002 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16003 		if (illgrp == NULL) {
16004 			return (ENOMEM);
16005 		}
16006 		illgrp->illgrp_next = *illgrp_head;
16007 		*illgrp_head = illgrp;
16008 		illgrp->illgrp_ill = ill;
16009 		illgrp->illgrp_ill_count = 1;
16010 		ill->ill_group = illgrp;
16011 		/*
16012 		 * Used in illgrp_scheduler to protect multiple threads
16013 		 * from traversing the list.
16014 		 */
16015 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16016 	} else {
16017 		ASSERT(ill->ill_net_type ==
16018 		    illgrp->illgrp_ill->ill_net_type);
16019 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16020 
16021 		/* Insert ill at tail of this group */
16022 		prev_ill = illgrp->illgrp_ill;
16023 		while (prev_ill->ill_group_next != NULL)
16024 			prev_ill = prev_ill->ill_group_next;
16025 		prev_ill->ill_group_next = ill;
16026 		ill->ill_group = illgrp;
16027 		illgrp->illgrp_ill_count++;
16028 		/*
16029 		 * Inherit group properties. Currently only forwarding
16030 		 * is the property we try to keep the same with all the
16031 		 * ills. When there are more, we will abstract this into
16032 		 * a function.
16033 		 */
16034 		ill->ill_flags &= ~ILLF_ROUTER;
16035 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16036 	}
16037 	mutex_exit(&ill->ill_lock);
16038 	rw_exit(&ipst->ips_ill_g_lock);
16039 
16040 	/*
16041 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16042 	 *    may be zero as it has not yet been bumped. But the ires
16043 	 *    have already been added. So, we do the nomination here
16044 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16045 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16046 	 *    ill_ipif_up_count here while nominating broadcast ires for
16047 	 *    receive.
16048 	 *
16049 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16050 	 *    to group them properly as ire_add() has already happened
16051 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16052 	 *    case, we need to do it here anyway.
16053 	 */
16054 	if (!ill->ill_isv6) {
16055 		ill_group_bcast_for_xmit(ill);
16056 		ill_nominate_bcast_rcv(illgrp);
16057 	}
16058 
16059 	if (!ipif_is_coming_up) {
16060 		/*
16061 		 * When ipif_up_done() calls this function, the multicast
16062 		 * groups have not been joined yet. So, there is no point in
16063 		 * nomination. ip_join_allmulti will handle groups when
16064 		 * ill_recover_multicast is called from ipif_up_done() later.
16065 		 */
16066 		(void) ill_nominate_mcast_rcv(illgrp);
16067 		/*
16068 		 * ipif_up_done calls ill_update_source_selection
16069 		 * anyway. Moreover, we don't want to re-create
16070 		 * interface routes while ipif_up_done() still has reference
16071 		 * to them. Refer to ipif_up_done() for more details.
16072 		 */
16073 		ill_update_source_selection(ill);
16074 	}
16075 
16076 	/*
16077 	 * Send a routing sockets message if we are inserting into
16078 	 * groups with names.
16079 	 */
16080 	if (groupname != NULL)
16081 		ip_rts_ifmsg(ill->ill_ipif);
16082 	return (0);
16083 }
16084 
16085 /*
16086  * Return the first phyint matching the groupname. There could
16087  * be more than one when there are ill groups.
16088  *
16089  * If 'usable' is set, then we exclude ones that are marked with any of
16090  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16091  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16092  * emulation of ipmp.
16093  */
16094 phyint_t *
16095 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16096 {
16097 	phyint_t *phyi;
16098 
16099 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16100 	/*
16101 	 * Group names are stored in the phyint - a common structure
16102 	 * to both IPv4 and IPv6.
16103 	 */
16104 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16105 	for (; phyi != NULL;
16106 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16107 	    phyi, AVL_AFTER)) {
16108 		if (phyi->phyint_groupname_len == 0)
16109 			continue;
16110 		/*
16111 		 * Skip the ones that should not be used since the callers
16112 		 * sometime use this for sending packets.
16113 		 */
16114 		if (usable && (phyi->phyint_flags &
16115 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)))
16116 			continue;
16117 
16118 		ASSERT(phyi->phyint_groupname != NULL);
16119 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16120 			return (phyi);
16121 	}
16122 	return (NULL);
16123 }
16124 
16125 
16126 /*
16127  * Return the first usable phyint matching the group index. By 'usable'
16128  * we exclude ones that are marked ununsable with any of
16129  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16130  *
16131  * Used only for the ipmp/netinfo emulation of ipmp.
16132  */
16133 phyint_t *
16134 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16135 {
16136 	phyint_t *phyi;
16137 
16138 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16139 
16140 	if (!ipst->ips_ipmp_hook_emulation)
16141 		return (NULL);
16142 
16143 	/*
16144 	 * Group indicies are stored in the phyint - a common structure
16145 	 * to both IPv4 and IPv6.
16146 	 */
16147 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16148 	for (; phyi != NULL;
16149 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16150 	    phyi, AVL_AFTER)) {
16151 		/* Ignore the ones that do not have a group */
16152 		if (phyi->phyint_groupname_len == 0)
16153 			continue;
16154 
16155 		ASSERT(phyi->phyint_group_ifindex != 0);
16156 		/*
16157 		 * Skip the ones that should not be used since the callers
16158 		 * sometime use this for sending packets.
16159 		 */
16160 		if (phyi->phyint_flags &
16161 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))
16162 			continue;
16163 		if (phyi->phyint_group_ifindex == group_ifindex)
16164 			return (phyi);
16165 	}
16166 	return (NULL);
16167 }
16168 
16169 
16170 /*
16171  * MT notes on creation and deletion of IPMP groups
16172  *
16173  * Creation and deletion of IPMP groups introduce the need to merge or
16174  * split the associated serialization objects i.e the ipsq's. Normally all
16175  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16176  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16177  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16178  * is a need to change the <ill-ipsq> association and we have to operate on both
16179  * the source and destination IPMP groups. For eg. attempting to set the
16180  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16181  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16182  * source or destination IPMP group are mapped to a single ipsq for executing
16183  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16184  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16185  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16186  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16187  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16188  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16189  *
16190  * In the above example the ioctl handling code locates the current ipsq of hme0
16191  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16192  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16193  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16194  * the destination ipsq. If the destination ipsq is not busy, it also enters
16195  * the destination ipsq exclusively. Now the actual groupname setting operation
16196  * can proceed. If the destination ipsq is busy, the operation is enqueued
16197  * on the destination (merged) ipsq and will be handled in the unwind from
16198  * ipsq_exit.
16199  *
16200  * To prevent other threads accessing the ill while the group name change is
16201  * in progres, we bring down the ipifs which also removes the ill from the
16202  * group. The group is changed in phyint and when the first ipif on the ill
16203  * is brought up, the ill is inserted into the right IPMP group by
16204  * illgrp_insert.
16205  */
16206 /* ARGSUSED */
16207 int
16208 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16209     ip_ioctl_cmd_t *ipip, void *ifreq)
16210 {
16211 	int i;
16212 	char *tmp;
16213 	int namelen;
16214 	ill_t *ill = ipif->ipif_ill;
16215 	ill_t *ill_v4, *ill_v6;
16216 	int err = 0;
16217 	phyint_t *phyi;
16218 	phyint_t *phyi_tmp;
16219 	struct lifreq *lifr;
16220 	mblk_t	*mp1;
16221 	char *groupname;
16222 	ipsq_t *ipsq;
16223 	ip_stack_t	*ipst = ill->ill_ipst;
16224 
16225 	ASSERT(IAM_WRITER_IPIF(ipif));
16226 
16227 	/* Existance verified in ip_wput_nondata */
16228 	mp1 = mp->b_cont->b_cont;
16229 	lifr = (struct lifreq *)mp1->b_rptr;
16230 	groupname = lifr->lifr_groupname;
16231 
16232 	if (ipif->ipif_id != 0)
16233 		return (EINVAL);
16234 
16235 	phyi = ill->ill_phyint;
16236 	ASSERT(phyi != NULL);
16237 
16238 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16239 		return (EINVAL);
16240 
16241 	tmp = groupname;
16242 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16243 		;
16244 
16245 	if (i == LIFNAMSIZ) {
16246 		/* no null termination */
16247 		return (EINVAL);
16248 	}
16249 
16250 	/*
16251 	 * Calculate the namelen exclusive of the null
16252 	 * termination character.
16253 	 */
16254 	namelen = tmp - groupname;
16255 
16256 	ill_v4 = phyi->phyint_illv4;
16257 	ill_v6 = phyi->phyint_illv6;
16258 
16259 	/*
16260 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16261 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16262 	 * synchronization notes in ip.c
16263 	 */
16264 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16265 		return (EINVAL);
16266 	}
16267 
16268 	/*
16269 	 * mark the ill as changing.
16270 	 * this should queue all new requests on the syncq.
16271 	 */
16272 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16273 
16274 	if (ill_v4 != NULL)
16275 		ill_v4->ill_state_flags |= ILL_CHANGING;
16276 	if (ill_v6 != NULL)
16277 		ill_v6->ill_state_flags |= ILL_CHANGING;
16278 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16279 
16280 	if (namelen == 0) {
16281 		/*
16282 		 * Null string means remove this interface from the
16283 		 * existing group.
16284 		 */
16285 		if (phyi->phyint_groupname_len == 0) {
16286 			/*
16287 			 * Never was in a group.
16288 			 */
16289 			err = 0;
16290 			goto done;
16291 		}
16292 
16293 		/*
16294 		 * IPv4 or IPv6 may be temporarily out of the group when all
16295 		 * the ipifs are down. Thus, we need to check for ill_group to
16296 		 * be non-NULL.
16297 		 */
16298 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16299 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16300 			mutex_enter(&ill_v4->ill_lock);
16301 			if (!ill_is_quiescent(ill_v4)) {
16302 				/*
16303 				 * ipsq_pending_mp_add will not fail since
16304 				 * connp is NULL
16305 				 */
16306 				(void) ipsq_pending_mp_add(NULL,
16307 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16308 				mutex_exit(&ill_v4->ill_lock);
16309 				err = EINPROGRESS;
16310 				goto done;
16311 			}
16312 			mutex_exit(&ill_v4->ill_lock);
16313 		}
16314 
16315 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16316 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16317 			mutex_enter(&ill_v6->ill_lock);
16318 			if (!ill_is_quiescent(ill_v6)) {
16319 				(void) ipsq_pending_mp_add(NULL,
16320 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16321 				mutex_exit(&ill_v6->ill_lock);
16322 				err = EINPROGRESS;
16323 				goto done;
16324 			}
16325 			mutex_exit(&ill_v6->ill_lock);
16326 		}
16327 
16328 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16329 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16330 		mutex_enter(&phyi->phyint_lock);
16331 		ASSERT(phyi->phyint_groupname != NULL);
16332 		mi_free(phyi->phyint_groupname);
16333 		phyi->phyint_groupname = NULL;
16334 		phyi->phyint_groupname_len = 0;
16335 
16336 		/* Restore the ifindex used to be the per interface one */
16337 		phyi->phyint_group_ifindex = 0;
16338 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16339 		mutex_exit(&phyi->phyint_lock);
16340 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16341 		rw_exit(&ipst->ips_ill_g_lock);
16342 		err = ill_up_ipifs(ill, q, mp);
16343 
16344 		/*
16345 		 * set the split flag so that the ipsq can be split
16346 		 */
16347 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16348 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16349 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16350 
16351 	} else {
16352 		if (phyi->phyint_groupname_len != 0) {
16353 			ASSERT(phyi->phyint_groupname != NULL);
16354 			/* Are we inserting in the same group ? */
16355 			if (mi_strcmp(groupname,
16356 			    phyi->phyint_groupname) == 0) {
16357 				err = 0;
16358 				goto done;
16359 			}
16360 		}
16361 
16362 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16363 		/*
16364 		 * Merge ipsq for the group's.
16365 		 * This check is here as multiple groups/ills might be
16366 		 * sharing the same ipsq.
16367 		 * If we have to merege than the operation is restarted
16368 		 * on the new ipsq.
16369 		 */
16370 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16371 		if (phyi->phyint_ipsq != ipsq) {
16372 			rw_exit(&ipst->ips_ill_g_lock);
16373 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16374 			goto done;
16375 		}
16376 		/*
16377 		 * Running exclusive on new ipsq.
16378 		 */
16379 
16380 		ASSERT(ipsq != NULL);
16381 		ASSERT(ipsq->ipsq_writer == curthread);
16382 
16383 		/*
16384 		 * Check whether the ill_type and ill_net_type matches before
16385 		 * we allocate any memory so that the cleanup is easier.
16386 		 *
16387 		 * We can't group dissimilar ones as we can't load spread
16388 		 * packets across the group because of potential link-level
16389 		 * header differences.
16390 		 */
16391 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16392 		if (phyi_tmp != NULL) {
16393 			if ((ill_v4 != NULL &&
16394 			    phyi_tmp->phyint_illv4 != NULL) &&
16395 			    ((ill_v4->ill_net_type !=
16396 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16397 			    (ill_v4->ill_type !=
16398 			    phyi_tmp->phyint_illv4->ill_type))) {
16399 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16400 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16401 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16402 				rw_exit(&ipst->ips_ill_g_lock);
16403 				return (EINVAL);
16404 			}
16405 			if ((ill_v6 != NULL &&
16406 			    phyi_tmp->phyint_illv6 != NULL) &&
16407 			    ((ill_v6->ill_net_type !=
16408 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16409 			    (ill_v6->ill_type !=
16410 			    phyi_tmp->phyint_illv6->ill_type))) {
16411 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16412 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16413 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16414 				rw_exit(&ipst->ips_ill_g_lock);
16415 				return (EINVAL);
16416 			}
16417 		}
16418 
16419 		rw_exit(&ipst->ips_ill_g_lock);
16420 
16421 		/*
16422 		 * bring down all v4 ipifs.
16423 		 */
16424 		if (ill_v4 != NULL) {
16425 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16426 		}
16427 
16428 		/*
16429 		 * bring down all v6 ipifs.
16430 		 */
16431 		if (ill_v6 != NULL) {
16432 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16433 		}
16434 
16435 		/*
16436 		 * make sure all ipifs are down and there are no active
16437 		 * references. Call to ipsq_pending_mp_add will not fail
16438 		 * since connp is NULL.
16439 		 */
16440 		if (ill_v4 != NULL) {
16441 			mutex_enter(&ill_v4->ill_lock);
16442 			if (!ill_is_quiescent(ill_v4)) {
16443 				(void) ipsq_pending_mp_add(NULL,
16444 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16445 				mutex_exit(&ill_v4->ill_lock);
16446 				err = EINPROGRESS;
16447 				goto done;
16448 			}
16449 			mutex_exit(&ill_v4->ill_lock);
16450 		}
16451 
16452 		if (ill_v6 != NULL) {
16453 			mutex_enter(&ill_v6->ill_lock);
16454 			if (!ill_is_quiescent(ill_v6)) {
16455 				(void) ipsq_pending_mp_add(NULL,
16456 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16457 				mutex_exit(&ill_v6->ill_lock);
16458 				err = EINPROGRESS;
16459 				goto done;
16460 			}
16461 			mutex_exit(&ill_v6->ill_lock);
16462 		}
16463 
16464 		/*
16465 		 * allocate including space for null terminator
16466 		 * before we insert.
16467 		 */
16468 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16469 		if (tmp == NULL)
16470 			return (ENOMEM);
16471 
16472 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16473 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16474 		mutex_enter(&phyi->phyint_lock);
16475 		if (phyi->phyint_groupname_len != 0) {
16476 			ASSERT(phyi->phyint_groupname != NULL);
16477 			mi_free(phyi->phyint_groupname);
16478 		}
16479 
16480 		/*
16481 		 * setup the new group name.
16482 		 */
16483 		phyi->phyint_groupname = tmp;
16484 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16485 		phyi->phyint_groupname_len = namelen + 1;
16486 
16487 		if (ipst->ips_ipmp_hook_emulation) {
16488 			/*
16489 			 * If the group already exists we use the existing
16490 			 * group_ifindex, otherwise we pick a new index here.
16491 			 */
16492 			if (phyi_tmp != NULL) {
16493 				phyi->phyint_group_ifindex =
16494 				    phyi_tmp->phyint_group_ifindex;
16495 			} else {
16496 				/* XXX We need a recovery strategy here. */
16497 				if (!ip_assign_ifindex(
16498 				    &phyi->phyint_group_ifindex, ipst))
16499 					cmn_err(CE_PANIC,
16500 					    "ip_assign_ifindex() failed");
16501 			}
16502 		}
16503 		/*
16504 		 * Select whether the netinfo and hook use the per-interface
16505 		 * or per-group ifindex.
16506 		 */
16507 		if (ipst->ips_ipmp_hook_emulation)
16508 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16509 		else
16510 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16511 
16512 		if (ipst->ips_ipmp_hook_emulation &&
16513 		    phyi_tmp != NULL) {
16514 			/* First phyint in group - group PLUMB event */
16515 			ill_nic_info_plumb(ill, B_TRUE);
16516 		}
16517 		mutex_exit(&phyi->phyint_lock);
16518 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16519 		rw_exit(&ipst->ips_ill_g_lock);
16520 
16521 		err = ill_up_ipifs(ill, q, mp);
16522 	}
16523 
16524 done:
16525 	/*
16526 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16527 	 */
16528 	if (err != EINPROGRESS) {
16529 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16530 		if (ill_v4 != NULL)
16531 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16532 		if (ill_v6 != NULL)
16533 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16534 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16535 	}
16536 	return (err);
16537 }
16538 
16539 /* ARGSUSED */
16540 int
16541 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16542     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16543 {
16544 	ill_t *ill;
16545 	phyint_t *phyi;
16546 	struct lifreq *lifr;
16547 	mblk_t	*mp1;
16548 
16549 	/* Existence verified in ip_wput_nondata */
16550 	mp1 = mp->b_cont->b_cont;
16551 	lifr = (struct lifreq *)mp1->b_rptr;
16552 	ill = ipif->ipif_ill;
16553 	phyi = ill->ill_phyint;
16554 
16555 	lifr->lifr_groupname[0] = '\0';
16556 	/*
16557 	 * ill_group may be null if all the interfaces
16558 	 * are down. But still, the phyint should always
16559 	 * hold the name.
16560 	 */
16561 	if (phyi->phyint_groupname_len != 0) {
16562 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16563 		    phyi->phyint_groupname_len);
16564 	}
16565 
16566 	return (0);
16567 }
16568 
16569 
16570 typedef struct conn_move_s {
16571 	ill_t	*cm_from_ill;
16572 	ill_t	*cm_to_ill;
16573 	int	cm_ifindex;
16574 } conn_move_t;
16575 
16576 /*
16577  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16578  */
16579 static void
16580 conn_move(conn_t *connp, caddr_t arg)
16581 {
16582 	conn_move_t *connm;
16583 	int ifindex;
16584 	int i;
16585 	ill_t *from_ill;
16586 	ill_t *to_ill;
16587 	ilg_t *ilg;
16588 	ilm_t *ret_ilm;
16589 
16590 	connm = (conn_move_t *)arg;
16591 	ifindex = connm->cm_ifindex;
16592 	from_ill = connm->cm_from_ill;
16593 	to_ill = connm->cm_to_ill;
16594 
16595 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16596 
16597 	/* All multicast fields protected by conn_lock */
16598 	mutex_enter(&connp->conn_lock);
16599 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16600 	if ((connp->conn_outgoing_ill == from_ill) &&
16601 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16602 		connp->conn_outgoing_ill = to_ill;
16603 		connp->conn_incoming_ill = to_ill;
16604 	}
16605 
16606 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16607 
16608 	if ((connp->conn_multicast_ill == from_ill) &&
16609 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16610 		connp->conn_multicast_ill = connm->cm_to_ill;
16611 	}
16612 
16613 	/* Change IP_XMIT_IF associations */
16614 	if ((connp->conn_xmit_if_ill == from_ill) &&
16615 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16616 		connp->conn_xmit_if_ill = to_ill;
16617 	}
16618 	/*
16619 	 * Change the ilg_ill to point to the new one. This assumes
16620 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16621 	 * has been told to receive packets on this interface.
16622 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16623 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16624 	 * some ilms may not have moved. We check to see whether
16625 	 * the ilms have moved to to_ill. We can't check on from_ill
16626 	 * as in the process of moving, we could have split an ilm
16627 	 * in to two - which has the same orig_ifindex and v6group.
16628 	 *
16629 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16630 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16631 	 */
16632 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16633 		ilg = &connp->conn_ilg[i];
16634 		if ((ilg->ilg_ill == from_ill) &&
16635 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16636 			/* ifindex != 0 indicates failback */
16637 			if (ifindex != 0) {
16638 				connp->conn_ilg[i].ilg_ill = to_ill;
16639 				continue;
16640 			}
16641 
16642 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16643 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16644 			    connp->conn_zoneid);
16645 
16646 			if (ret_ilm != NULL)
16647 				connp->conn_ilg[i].ilg_ill = to_ill;
16648 		}
16649 	}
16650 	mutex_exit(&connp->conn_lock);
16651 }
16652 
16653 static void
16654 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16655 {
16656 	conn_move_t connm;
16657 	ip_stack_t	*ipst = from_ill->ill_ipst;
16658 
16659 	connm.cm_from_ill = from_ill;
16660 	connm.cm_to_ill = to_ill;
16661 	connm.cm_ifindex = ifindex;
16662 
16663 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16664 }
16665 
16666 /*
16667  * ilm has been moved from from_ill to to_ill.
16668  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16669  * appropriately.
16670  *
16671  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16672  *	  the code there de-references ipif_ill to get the ill to
16673  *	  send multicast requests. It does not work as ipif is on its
16674  *	  move and already moved when this function is called.
16675  *	  Thus, we need to use from_ill and to_ill send down multicast
16676  *	  requests.
16677  */
16678 static void
16679 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16680 {
16681 	ipif_t *ipif;
16682 	ilm_t *ilm;
16683 
16684 	/*
16685 	 * See whether we need to send down DL_ENABMULTI_REQ on
16686 	 * to_ill as ilm has just been added.
16687 	 */
16688 	ASSERT(IAM_WRITER_ILL(to_ill));
16689 	ASSERT(IAM_WRITER_ILL(from_ill));
16690 
16691 	ILM_WALKER_HOLD(to_ill);
16692 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16693 
16694 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16695 			continue;
16696 		/*
16697 		 * no locks held, ill/ipif cannot dissappear as long
16698 		 * as we are writer.
16699 		 */
16700 		ipif = to_ill->ill_ipif;
16701 		/*
16702 		 * No need to hold any lock as we are the writer and this
16703 		 * can only be changed by a writer.
16704 		 */
16705 		ilm->ilm_is_new = B_FALSE;
16706 
16707 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16708 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16709 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16710 			    "resolver\n"));
16711 			continue;		/* Must be IRE_IF_NORESOLVER */
16712 		}
16713 
16714 
16715 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16716 			ip1dbg(("ilm_send_multicast_reqs: "
16717 			    "to_ill MULTI_BCAST\n"));
16718 			goto from;
16719 		}
16720 
16721 		if (to_ill->ill_isv6)
16722 			mld_joingroup(ilm);
16723 		else
16724 			igmp_joingroup(ilm);
16725 
16726 		if (to_ill->ill_ipif_up_count == 0) {
16727 			/*
16728 			 * Nobody there. All multicast addresses will be
16729 			 * re-joined when we get the DL_BIND_ACK bringing the
16730 			 * interface up.
16731 			 */
16732 			ilm->ilm_notify_driver = B_FALSE;
16733 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16734 			goto from;
16735 		}
16736 
16737 		/*
16738 		 * For allmulti address, we want to join on only one interface.
16739 		 * Checking for ilm_numentries_v6 is not correct as you may
16740 		 * find an ilm with zero address on to_ill, but we may not
16741 		 * have nominated to_ill for receiving. Thus, if we have
16742 		 * nominated from_ill (ill_join_allmulti is set), nominate
16743 		 * only if to_ill is not already nominated (to_ill normally
16744 		 * should not have been nominated if "from_ill" has already
16745 		 * been nominated. As we don't prevent failovers from happening
16746 		 * across groups, we don't assert).
16747 		 */
16748 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16749 			/*
16750 			 * There is no need to hold ill locks as we are
16751 			 * writer on both ills and when ill_join_allmulti
16752 			 * is changed the thread is always a writer.
16753 			 */
16754 			if (from_ill->ill_join_allmulti &&
16755 			    !to_ill->ill_join_allmulti) {
16756 				(void) ip_join_allmulti(to_ill->ill_ipif);
16757 			}
16758 		} else if (ilm->ilm_notify_driver) {
16759 
16760 			/*
16761 			 * This is a newly moved ilm so we need to tell the
16762 			 * driver about the new group. There can be more than
16763 			 * one ilm's for the same group in the list each with a
16764 			 * different orig_ifindex. We have to inform the driver
16765 			 * once. In ilm_move_v[4,6] we only set the flag
16766 			 * ilm_notify_driver for the first ilm.
16767 			 */
16768 
16769 			(void) ip_ll_send_enabmulti_req(to_ill,
16770 			    &ilm->ilm_v6addr);
16771 		}
16772 
16773 		ilm->ilm_notify_driver = B_FALSE;
16774 
16775 		/*
16776 		 * See whether we need to send down DL_DISABMULTI_REQ on
16777 		 * from_ill as ilm has just been removed.
16778 		 */
16779 from:
16780 		ipif = from_ill->ill_ipif;
16781 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16782 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16783 			ip1dbg(("ilm_send_multicast_reqs: "
16784 			    "from_ill not resolver\n"));
16785 			continue;		/* Must be IRE_IF_NORESOLVER */
16786 		}
16787 
16788 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16789 			ip1dbg(("ilm_send_multicast_reqs: "
16790 			    "from_ill MULTI_BCAST\n"));
16791 			continue;
16792 		}
16793 
16794 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16795 			if (from_ill->ill_join_allmulti)
16796 				(void) ip_leave_allmulti(from_ill->ill_ipif);
16797 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16798 			(void) ip_ll_send_disabmulti_req(from_ill,
16799 			    &ilm->ilm_v6addr);
16800 		}
16801 	}
16802 	ILM_WALKER_RELE(to_ill);
16803 }
16804 
16805 /*
16806  * This function is called when all multicast memberships needs
16807  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16808  * called only once unlike the IPv4 counterpart where it is called after
16809  * every logical interface is moved. The reason is due to multicast
16810  * memberships are joined using an interface address in IPv4 while in
16811  * IPv6, interface index is used.
16812  */
16813 static void
16814 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16815 {
16816 	ilm_t	*ilm;
16817 	ilm_t	*ilm_next;
16818 	ilm_t	*new_ilm;
16819 	ilm_t	**ilmp;
16820 	int	count;
16821 	char buf[INET6_ADDRSTRLEN];
16822 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16823 	ip_stack_t	*ipst = from_ill->ill_ipst;
16824 
16825 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16826 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16827 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16828 
16829 	if (ifindex == 0) {
16830 		/*
16831 		 * Form the solicited node mcast address which is used later.
16832 		 */
16833 		ipif_t *ipif;
16834 
16835 		ipif = from_ill->ill_ipif;
16836 		ASSERT(ipif->ipif_id == 0);
16837 
16838 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16839 	}
16840 
16841 	ilmp = &from_ill->ill_ilm;
16842 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16843 		ilm_next = ilm->ilm_next;
16844 
16845 		if (ilm->ilm_flags & ILM_DELETED) {
16846 			ilmp = &ilm->ilm_next;
16847 			continue;
16848 		}
16849 
16850 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16851 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16852 		ASSERT(ilm->ilm_orig_ifindex != 0);
16853 		if (ilm->ilm_orig_ifindex == ifindex) {
16854 			/*
16855 			 * We are failing back multicast memberships.
16856 			 * If the same ilm exists in to_ill, it means somebody
16857 			 * has joined the same group there e.g. ff02::1
16858 			 * is joined within the kernel when the interfaces
16859 			 * came UP.
16860 			 */
16861 			ASSERT(ilm->ilm_ipif == NULL);
16862 			if (new_ilm != NULL) {
16863 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16864 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16865 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16866 					new_ilm->ilm_is_new = B_TRUE;
16867 				}
16868 			} else {
16869 				/*
16870 				 * check if we can just move the ilm
16871 				 */
16872 				if (from_ill->ill_ilm_walker_cnt != 0) {
16873 					/*
16874 					 * We have walkers we cannot move
16875 					 * the ilm, so allocate a new ilm,
16876 					 * this (old) ilm will be marked
16877 					 * ILM_DELETED at the end of the loop
16878 					 * and will be freed when the
16879 					 * last walker exits.
16880 					 */
16881 					new_ilm = (ilm_t *)mi_zalloc
16882 					    (sizeof (ilm_t));
16883 					if (new_ilm == NULL) {
16884 						ip0dbg(("ilm_move_v6: "
16885 						    "FAILBACK of IPv6"
16886 						    " multicast address %s : "
16887 						    "from %s to"
16888 						    " %s failed : ENOMEM \n",
16889 						    inet_ntop(AF_INET6,
16890 						    &ilm->ilm_v6addr, buf,
16891 						    sizeof (buf)),
16892 						    from_ill->ill_name,
16893 						    to_ill->ill_name));
16894 
16895 							ilmp = &ilm->ilm_next;
16896 							continue;
16897 					}
16898 					*new_ilm = *ilm;
16899 					/*
16900 					 * we don't want new_ilm linked to
16901 					 * ilm's filter list.
16902 					 */
16903 					new_ilm->ilm_filter = NULL;
16904 				} else {
16905 					/*
16906 					 * No walkers we can move the ilm.
16907 					 * lets take it out of the list.
16908 					 */
16909 					*ilmp = ilm->ilm_next;
16910 					ilm->ilm_next = NULL;
16911 					new_ilm = ilm;
16912 				}
16913 
16914 				/*
16915 				 * if this is the first ilm for the group
16916 				 * set ilm_notify_driver so that we notify the
16917 				 * driver in ilm_send_multicast_reqs.
16918 				 */
16919 				if (ilm_lookup_ill_v6(to_ill,
16920 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16921 					new_ilm->ilm_notify_driver = B_TRUE;
16922 
16923 				new_ilm->ilm_ill = to_ill;
16924 				/* Add to the to_ill's list */
16925 				new_ilm->ilm_next = to_ill->ill_ilm;
16926 				to_ill->ill_ilm = new_ilm;
16927 				/*
16928 				 * set the flag so that mld_joingroup is
16929 				 * called in ilm_send_multicast_reqs().
16930 				 */
16931 				new_ilm->ilm_is_new = B_TRUE;
16932 			}
16933 			goto bottom;
16934 		} else if (ifindex != 0) {
16935 			/*
16936 			 * If this is FAILBACK (ifindex != 0) and the ifindex
16937 			 * has not matched above, look at the next ilm.
16938 			 */
16939 			ilmp = &ilm->ilm_next;
16940 			continue;
16941 		}
16942 		/*
16943 		 * If we are here, it means ifindex is 0. Failover
16944 		 * everything.
16945 		 *
16946 		 * We need to handle solicited node mcast address
16947 		 * and all_nodes mcast address differently as they
16948 		 * are joined witin the kenrel (ipif_multicast_up)
16949 		 * and potentially from the userland. We are called
16950 		 * after the ipifs of from_ill has been moved.
16951 		 * If we still find ilms on ill with solicited node
16952 		 * mcast address or all_nodes mcast address, it must
16953 		 * belong to the UP interface that has not moved e.g.
16954 		 * ipif_id 0 with the link local prefix does not move.
16955 		 * We join this on the new ill accounting for all the
16956 		 * userland memberships so that applications don't
16957 		 * see any failure.
16958 		 *
16959 		 * We need to make sure that we account only for the
16960 		 * solicited node and all node multicast addresses
16961 		 * that was brought UP on these. In the case of
16962 		 * a failover from A to B, we might have ilms belonging
16963 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
16964 		 * for the membership from the userland. If we are failing
16965 		 * over from B to C now, we will find the ones belonging
16966 		 * to A on B. These don't account for the ill_ipif_up_count.
16967 		 * They just move from B to C. The check below on
16968 		 * ilm_orig_ifindex ensures that.
16969 		 */
16970 		if ((ilm->ilm_orig_ifindex ==
16971 		    from_ill->ill_phyint->phyint_ifindex) &&
16972 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
16973 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
16974 		    &ilm->ilm_v6addr))) {
16975 			ASSERT(ilm->ilm_refcnt > 0);
16976 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
16977 			/*
16978 			 * For indentation reasons, we are not using a
16979 			 * "else" here.
16980 			 */
16981 			if (count == 0) {
16982 				ilmp = &ilm->ilm_next;
16983 				continue;
16984 			}
16985 			ilm->ilm_refcnt -= count;
16986 			if (new_ilm != NULL) {
16987 				/*
16988 				 * Can find one with the same
16989 				 * ilm_orig_ifindex, if we are failing
16990 				 * over to a STANDBY. This happens
16991 				 * when somebody wants to join a group
16992 				 * on a STANDBY interface and we
16993 				 * internally join on a different one.
16994 				 * If we had joined on from_ill then, a
16995 				 * failover now will find a new ilm
16996 				 * with this index.
16997 				 */
16998 				ip1dbg(("ilm_move_v6: FAILOVER, found"
16999 				    " new ilm on %s, group address %s\n",
17000 				    to_ill->ill_name,
17001 				    inet_ntop(AF_INET6,
17002 				    &ilm->ilm_v6addr, buf,
17003 				    sizeof (buf))));
17004 				new_ilm->ilm_refcnt += count;
17005 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17006 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17007 					new_ilm->ilm_is_new = B_TRUE;
17008 				}
17009 			} else {
17010 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17011 				if (new_ilm == NULL) {
17012 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17013 					    " multicast address %s : from %s to"
17014 					    " %s failed : ENOMEM \n",
17015 					    inet_ntop(AF_INET6,
17016 					    &ilm->ilm_v6addr, buf,
17017 					    sizeof (buf)), from_ill->ill_name,
17018 					    to_ill->ill_name));
17019 					ilmp = &ilm->ilm_next;
17020 					continue;
17021 				}
17022 				*new_ilm = *ilm;
17023 				new_ilm->ilm_filter = NULL;
17024 				new_ilm->ilm_refcnt = count;
17025 				new_ilm->ilm_timer = INFINITY;
17026 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17027 				new_ilm->ilm_is_new = B_TRUE;
17028 				/*
17029 				 * If the to_ill has not joined this
17030 				 * group we need to tell the driver in
17031 				 * ill_send_multicast_reqs.
17032 				 */
17033 				if (ilm_lookup_ill_v6(to_ill,
17034 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17035 					new_ilm->ilm_notify_driver = B_TRUE;
17036 
17037 				new_ilm->ilm_ill = to_ill;
17038 				/* Add to the to_ill's list */
17039 				new_ilm->ilm_next = to_ill->ill_ilm;
17040 				to_ill->ill_ilm = new_ilm;
17041 				ASSERT(new_ilm->ilm_ipif == NULL);
17042 			}
17043 			if (ilm->ilm_refcnt == 0) {
17044 				goto bottom;
17045 			} else {
17046 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17047 				CLEAR_SLIST(new_ilm->ilm_filter);
17048 				ilmp = &ilm->ilm_next;
17049 			}
17050 			continue;
17051 		} else {
17052 			/*
17053 			 * ifindex = 0 means, move everything pointing at
17054 			 * from_ill. We are doing this becuase ill has
17055 			 * either FAILED or became INACTIVE.
17056 			 *
17057 			 * As we would like to move things later back to
17058 			 * from_ill, we want to retain the identity of this
17059 			 * ilm. Thus, we don't blindly increment the reference
17060 			 * count on the ilms matching the address alone. We
17061 			 * need to match on the ilm_orig_index also. new_ilm
17062 			 * was obtained by matching ilm_orig_index also.
17063 			 */
17064 			if (new_ilm != NULL) {
17065 				/*
17066 				 * This is possible only if a previous restore
17067 				 * was incomplete i.e restore to
17068 				 * ilm_orig_ifindex left some ilms because
17069 				 * of some failures. Thus when we are failing
17070 				 * again, we might find our old friends there.
17071 				 */
17072 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17073 				    " on %s, group address %s\n",
17074 				    to_ill->ill_name,
17075 				    inet_ntop(AF_INET6,
17076 				    &ilm->ilm_v6addr, buf,
17077 				    sizeof (buf))));
17078 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17079 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17080 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17081 					new_ilm->ilm_is_new = B_TRUE;
17082 				}
17083 			} else {
17084 				if (from_ill->ill_ilm_walker_cnt != 0) {
17085 					new_ilm = (ilm_t *)
17086 					    mi_zalloc(sizeof (ilm_t));
17087 					if (new_ilm == NULL) {
17088 						ip0dbg(("ilm_move_v6: "
17089 						    "FAILOVER of IPv6"
17090 						    " multicast address %s : "
17091 						    "from %s to"
17092 						    " %s failed : ENOMEM \n",
17093 						    inet_ntop(AF_INET6,
17094 						    &ilm->ilm_v6addr, buf,
17095 						    sizeof (buf)),
17096 						    from_ill->ill_name,
17097 						    to_ill->ill_name));
17098 
17099 							ilmp = &ilm->ilm_next;
17100 							continue;
17101 					}
17102 					*new_ilm = *ilm;
17103 					new_ilm->ilm_filter = NULL;
17104 				} else {
17105 					*ilmp = ilm->ilm_next;
17106 					new_ilm = ilm;
17107 				}
17108 				/*
17109 				 * If the to_ill has not joined this
17110 				 * group we need to tell the driver in
17111 				 * ill_send_multicast_reqs.
17112 				 */
17113 				if (ilm_lookup_ill_v6(to_ill,
17114 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17115 					new_ilm->ilm_notify_driver = B_TRUE;
17116 
17117 				/* Add to the to_ill's list */
17118 				new_ilm->ilm_next = to_ill->ill_ilm;
17119 				to_ill->ill_ilm = new_ilm;
17120 				ASSERT(ilm->ilm_ipif == NULL);
17121 				new_ilm->ilm_ill = to_ill;
17122 				new_ilm->ilm_is_new = B_TRUE;
17123 			}
17124 
17125 		}
17126 
17127 bottom:
17128 		/*
17129 		 * Revert multicast filter state to (EXCLUDE, NULL).
17130 		 * new_ilm->ilm_is_new should already be set if needed.
17131 		 */
17132 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17133 		CLEAR_SLIST(new_ilm->ilm_filter);
17134 		/*
17135 		 * We allocated/got a new ilm, free the old one.
17136 		 */
17137 		if (new_ilm != ilm) {
17138 			if (from_ill->ill_ilm_walker_cnt == 0) {
17139 				*ilmp = ilm->ilm_next;
17140 				ilm->ilm_next = NULL;
17141 				FREE_SLIST(ilm->ilm_filter);
17142 				FREE_SLIST(ilm->ilm_pendsrcs);
17143 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17144 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17145 				mi_free((char *)ilm);
17146 			} else {
17147 				ilm->ilm_flags |= ILM_DELETED;
17148 				from_ill->ill_ilm_cleanup_reqd = 1;
17149 				ilmp = &ilm->ilm_next;
17150 			}
17151 		}
17152 	}
17153 }
17154 
17155 /*
17156  * Move all the multicast memberships to to_ill. Called when
17157  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17158  * different from IPv6 counterpart as multicast memberships are associated
17159  * with ills in IPv6. This function is called after every ipif is moved
17160  * unlike IPv6, where it is moved only once.
17161  */
17162 static void
17163 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17164 {
17165 	ilm_t	*ilm;
17166 	ilm_t	*ilm_next;
17167 	ilm_t	*new_ilm;
17168 	ilm_t	**ilmp;
17169 	ip_stack_t	*ipst = from_ill->ill_ipst;
17170 
17171 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17172 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17173 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17174 
17175 	ilmp = &from_ill->ill_ilm;
17176 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17177 		ilm_next = ilm->ilm_next;
17178 
17179 		if (ilm->ilm_flags & ILM_DELETED) {
17180 			ilmp = &ilm->ilm_next;
17181 			continue;
17182 		}
17183 
17184 		ASSERT(ilm->ilm_ipif != NULL);
17185 
17186 		if (ilm->ilm_ipif != ipif) {
17187 			ilmp = &ilm->ilm_next;
17188 			continue;
17189 		}
17190 
17191 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17192 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17193 			new_ilm = ilm_lookup_ipif(ipif,
17194 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17195 			if (new_ilm != NULL) {
17196 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17197 				/*
17198 				 * We still need to deal with the from_ill.
17199 				 */
17200 				new_ilm->ilm_is_new = B_TRUE;
17201 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17202 				CLEAR_SLIST(new_ilm->ilm_filter);
17203 				goto delete_ilm;
17204 			}
17205 			/*
17206 			 * If we could not find one e.g. ipif is
17207 			 * still down on to_ill, we add this ilm
17208 			 * on ill_new to preserve the reference
17209 			 * count.
17210 			 */
17211 		}
17212 		/*
17213 		 * When ipifs move, ilms always move with it
17214 		 * to the NEW ill. Thus we should never be
17215 		 * able to find ilm till we really move it here.
17216 		 */
17217 		ASSERT(ilm_lookup_ipif(ipif,
17218 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17219 
17220 		if (from_ill->ill_ilm_walker_cnt != 0) {
17221 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17222 			if (new_ilm == NULL) {
17223 				char buf[INET6_ADDRSTRLEN];
17224 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17225 				    " multicast address %s : "
17226 				    "from %s to"
17227 				    " %s failed : ENOMEM \n",
17228 				    inet_ntop(AF_INET,
17229 				    &ilm->ilm_v6addr, buf,
17230 				    sizeof (buf)),
17231 				    from_ill->ill_name,
17232 				    to_ill->ill_name));
17233 
17234 				ilmp = &ilm->ilm_next;
17235 				continue;
17236 			}
17237 			*new_ilm = *ilm;
17238 			/* We don't want new_ilm linked to ilm's filter list */
17239 			new_ilm->ilm_filter = NULL;
17240 		} else {
17241 			/* Remove from the list */
17242 			*ilmp = ilm->ilm_next;
17243 			new_ilm = ilm;
17244 		}
17245 
17246 		/*
17247 		 * If we have never joined this group on the to_ill
17248 		 * make sure we tell the driver.
17249 		 */
17250 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17251 		    ALL_ZONES) == NULL)
17252 			new_ilm->ilm_notify_driver = B_TRUE;
17253 
17254 		/* Add to the to_ill's list */
17255 		new_ilm->ilm_next = to_ill->ill_ilm;
17256 		to_ill->ill_ilm = new_ilm;
17257 		new_ilm->ilm_is_new = B_TRUE;
17258 
17259 		/*
17260 		 * Revert multicast filter state to (EXCLUDE, NULL)
17261 		 */
17262 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17263 		CLEAR_SLIST(new_ilm->ilm_filter);
17264 
17265 		/*
17266 		 * Delete only if we have allocated a new ilm.
17267 		 */
17268 		if (new_ilm != ilm) {
17269 delete_ilm:
17270 			if (from_ill->ill_ilm_walker_cnt == 0) {
17271 				/* Remove from the list */
17272 				*ilmp = ilm->ilm_next;
17273 				ilm->ilm_next = NULL;
17274 				FREE_SLIST(ilm->ilm_filter);
17275 				FREE_SLIST(ilm->ilm_pendsrcs);
17276 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17277 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17278 				mi_free((char *)ilm);
17279 			} else {
17280 				ilm->ilm_flags |= ILM_DELETED;
17281 				from_ill->ill_ilm_cleanup_reqd = 1;
17282 				ilmp = &ilm->ilm_next;
17283 			}
17284 		}
17285 	}
17286 }
17287 
17288 static uint_t
17289 ipif_get_id(ill_t *ill, uint_t id)
17290 {
17291 	uint_t	unit;
17292 	ipif_t	*tipif;
17293 	boolean_t found = B_FALSE;
17294 	ip_stack_t	*ipst = ill->ill_ipst;
17295 
17296 	/*
17297 	 * During failback, we want to go back to the same id
17298 	 * instead of the smallest id so that the original
17299 	 * configuration is maintained. id is non-zero in that
17300 	 * case.
17301 	 */
17302 	if (id != 0) {
17303 		/*
17304 		 * While failing back, if we still have an ipif with
17305 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17306 		 * as soon as we return from this function. It was
17307 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17308 		 * we can choose the smallest id. Thus we return zero
17309 		 * in that case ignoring the hint.
17310 		 */
17311 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17312 			return (0);
17313 		for (tipif = ill->ill_ipif; tipif != NULL;
17314 		    tipif = tipif->ipif_next) {
17315 			if (tipif->ipif_id == id) {
17316 				found = B_TRUE;
17317 				break;
17318 			}
17319 		}
17320 		/*
17321 		 * If somebody already plumbed another logical
17322 		 * with the same id, we won't be able to find it.
17323 		 */
17324 		if (!found)
17325 			return (id);
17326 	}
17327 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17328 		found = B_FALSE;
17329 		for (tipif = ill->ill_ipif; tipif != NULL;
17330 		    tipif = tipif->ipif_next) {
17331 			if (tipif->ipif_id == unit) {
17332 				found = B_TRUE;
17333 				break;
17334 			}
17335 		}
17336 		if (!found)
17337 			break;
17338 	}
17339 	return (unit);
17340 }
17341 
17342 /* ARGSUSED */
17343 static int
17344 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17345     ipif_t **rep_ipif_ptr)
17346 {
17347 	ill_t	*from_ill;
17348 	ipif_t	*rep_ipif;
17349 	uint_t	unit;
17350 	int err = 0;
17351 	ipif_t	*to_ipif;
17352 	struct iocblk	*iocp;
17353 	boolean_t failback_cmd;
17354 	boolean_t remove_ipif;
17355 	int	rc;
17356 	ip_stack_t	*ipst;
17357 
17358 	ASSERT(IAM_WRITER_ILL(to_ill));
17359 	ASSERT(IAM_WRITER_IPIF(ipif));
17360 
17361 	iocp = (struct iocblk *)mp->b_rptr;
17362 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17363 	remove_ipif = B_FALSE;
17364 
17365 	from_ill = ipif->ipif_ill;
17366 	ipst = from_ill->ill_ipst;
17367 
17368 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17369 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17370 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17371 
17372 	/*
17373 	 * Don't move LINK LOCAL addresses as they are tied to
17374 	 * physical interface.
17375 	 */
17376 	if (from_ill->ill_isv6 &&
17377 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17378 		ipif->ipif_was_up = B_FALSE;
17379 		IPIF_UNMARK_MOVING(ipif);
17380 		return (0);
17381 	}
17382 
17383 	/*
17384 	 * We set the ipif_id to maximum so that the search for
17385 	 * ipif_id will pick the lowest number i.e 0 in the
17386 	 * following 2 cases :
17387 	 *
17388 	 * 1) We have a replacement ipif at the head of to_ill.
17389 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17390 	 *    on to_ill and hence the MOVE might fail. We want to
17391 	 *    remove it only if we could move the ipif. Thus, by
17392 	 *    setting it to the MAX value, we make the search in
17393 	 *    ipif_get_id return the zeroth id.
17394 	 *
17395 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17396 	 *    we might just have a zero address plumbed on the ipif
17397 	 *    with zero id in the case of IPv4. We remove that while
17398 	 *    doing the failback. We want to remove it only if we
17399 	 *    could move the ipif. Thus, by setting it to the MAX
17400 	 *    value, we make the search in ipif_get_id return the
17401 	 *    zeroth id.
17402 	 *
17403 	 * Both (1) and (2) are done only when when we are moving
17404 	 * an ipif (either due to failover/failback) which originally
17405 	 * belonged to this interface i.e the ipif_orig_ifindex is
17406 	 * the same as to_ill's ifindex. This is needed so that
17407 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17408 	 * from B -> A (B is being removed from the group) and
17409 	 * FAILBACK from A -> B restores the original configuration.
17410 	 * Without the check for orig_ifindex, the second FAILOVER
17411 	 * could make the ipif belonging to B replace the A's zeroth
17412 	 * ipif and the subsequent failback re-creating the replacement
17413 	 * ipif again.
17414 	 *
17415 	 * NOTE : We created the replacement ipif when we did a
17416 	 * FAILOVER (See below). We could check for FAILBACK and
17417 	 * then look for replacement ipif to be removed. But we don't
17418 	 * want to do that because we wan't to allow the possibility
17419 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17420 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17421 	 * from B -> A.
17422 	 */
17423 	to_ipif = to_ill->ill_ipif;
17424 	if ((to_ill->ill_phyint->phyint_ifindex ==
17425 	    ipif->ipif_orig_ifindex) &&
17426 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17427 		ASSERT(to_ipif->ipif_id == 0);
17428 		remove_ipif = B_TRUE;
17429 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17430 	}
17431 	/*
17432 	 * Find the lowest logical unit number on the to_ill.
17433 	 * If we are failing back, try to get the original id
17434 	 * rather than the lowest one so that the original
17435 	 * configuration is maintained.
17436 	 *
17437 	 * XXX need a better scheme for this.
17438 	 */
17439 	if (failback_cmd) {
17440 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17441 	} else {
17442 		unit = ipif_get_id(to_ill, 0);
17443 	}
17444 
17445 	/* Reset back to zero in case we fail below */
17446 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17447 		to_ipif->ipif_id = 0;
17448 
17449 	if (unit == ipst->ips_ip_addrs_per_if) {
17450 		ipif->ipif_was_up = B_FALSE;
17451 		IPIF_UNMARK_MOVING(ipif);
17452 		return (EINVAL);
17453 	}
17454 
17455 	/*
17456 	 * ipif is ready to move from "from_ill" to "to_ill".
17457 	 *
17458 	 * 1) If we are moving ipif with id zero, create a
17459 	 *    replacement ipif for this ipif on from_ill. If this fails
17460 	 *    fail the MOVE operation.
17461 	 *
17462 	 * 2) Remove the replacement ipif on to_ill if any.
17463 	 *    We could remove the replacement ipif when we are moving
17464 	 *    the ipif with id zero. But what if somebody already
17465 	 *    unplumbed it ? Thus we always remove it if it is present.
17466 	 *    We want to do it only if we are sure we are going to
17467 	 *    move the ipif to to_ill which is why there are no
17468 	 *    returns due to error till ipif is linked to to_ill.
17469 	 *    Note that the first ipif that we failback will always
17470 	 *    be zero if it is present.
17471 	 */
17472 	if (ipif->ipif_id == 0) {
17473 		ipaddr_t inaddr_any = INADDR_ANY;
17474 
17475 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17476 		if (rep_ipif == NULL) {
17477 			ipif->ipif_was_up = B_FALSE;
17478 			IPIF_UNMARK_MOVING(ipif);
17479 			return (ENOMEM);
17480 		}
17481 		*rep_ipif = ipif_zero;
17482 		/*
17483 		 * Before we put the ipif on the list, store the addresses
17484 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17485 		 * assumes so. This logic is not any different from what
17486 		 * ipif_allocate does.
17487 		 */
17488 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17489 		    &rep_ipif->ipif_v6lcl_addr);
17490 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17491 		    &rep_ipif->ipif_v6src_addr);
17492 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17493 		    &rep_ipif->ipif_v6subnet);
17494 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17495 		    &rep_ipif->ipif_v6net_mask);
17496 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17497 		    &rep_ipif->ipif_v6brd_addr);
17498 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17499 		    &rep_ipif->ipif_v6pp_dst_addr);
17500 		/*
17501 		 * We mark IPIF_NOFAILOVER so that this can never
17502 		 * move.
17503 		 */
17504 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17505 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17506 		rep_ipif->ipif_replace_zero = B_TRUE;
17507 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17508 		    MUTEX_DEFAULT, NULL);
17509 		rep_ipif->ipif_id = 0;
17510 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17511 		rep_ipif->ipif_ill = from_ill;
17512 		rep_ipif->ipif_orig_ifindex =
17513 		    from_ill->ill_phyint->phyint_ifindex;
17514 		/* Insert at head */
17515 		rep_ipif->ipif_next = from_ill->ill_ipif;
17516 		from_ill->ill_ipif = rep_ipif;
17517 		/*
17518 		 * We don't really care to let apps know about
17519 		 * this interface.
17520 		 */
17521 	}
17522 
17523 	if (remove_ipif) {
17524 		/*
17525 		 * We set to a max value above for this case to get
17526 		 * id zero. ASSERT that we did get one.
17527 		 */
17528 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17529 		rep_ipif = to_ipif;
17530 		to_ill->ill_ipif = rep_ipif->ipif_next;
17531 		rep_ipif->ipif_next = NULL;
17532 		/*
17533 		 * If some apps scanned and find this interface,
17534 		 * it is time to let them know, so that they can
17535 		 * delete it.
17536 		 */
17537 
17538 		*rep_ipif_ptr = rep_ipif;
17539 	}
17540 
17541 	/* Get it out of the ILL interface list. */
17542 	ipif_remove(ipif, B_FALSE);
17543 
17544 	/* Assign the new ill */
17545 	ipif->ipif_ill = to_ill;
17546 	ipif->ipif_id = unit;
17547 	/* id has already been checked */
17548 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17549 	ASSERT(rc == 0);
17550 	/* Let SCTP update its list */
17551 	sctp_move_ipif(ipif, from_ill, to_ill);
17552 	/*
17553 	 * Handle the failover and failback of ipif_t between
17554 	 * ill_t that have differing maximum mtu values.
17555 	 */
17556 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17557 		if (ipif->ipif_saved_mtu == 0) {
17558 			/*
17559 			 * As this ipif_t is moving to an ill_t
17560 			 * that has a lower ill_max_mtu, its
17561 			 * ipif_mtu needs to be saved so it can
17562 			 * be restored during failback or during
17563 			 * failover to an ill_t which has a
17564 			 * higher ill_max_mtu.
17565 			 */
17566 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17567 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17568 		} else {
17569 			/*
17570 			 * The ipif_t is, once again, moving to
17571 			 * an ill_t that has a lower maximum mtu
17572 			 * value.
17573 			 */
17574 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17575 		}
17576 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17577 	    ipif->ipif_saved_mtu != 0) {
17578 		/*
17579 		 * The mtu of this ipif_t had to be reduced
17580 		 * during an earlier failover; this is an
17581 		 * opportunity for it to be increased (either as
17582 		 * part of another failover or a failback).
17583 		 */
17584 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17585 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17586 			ipif->ipif_saved_mtu = 0;
17587 		} else {
17588 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17589 		}
17590 	}
17591 
17592 	/*
17593 	 * We preserve all the other fields of the ipif including
17594 	 * ipif_saved_ire_mp. The routes that are saved here will
17595 	 * be recreated on the new interface and back on the old
17596 	 * interface when we move back.
17597 	 */
17598 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17599 
17600 	return (err);
17601 }
17602 
17603 static int
17604 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17605     int ifindex, ipif_t **rep_ipif_ptr)
17606 {
17607 	ipif_t *mipif;
17608 	ipif_t *ipif_next;
17609 	int err;
17610 
17611 	/*
17612 	 * We don't really try to MOVE back things if some of the
17613 	 * operations fail. The daemon will take care of moving again
17614 	 * later on.
17615 	 */
17616 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17617 		ipif_next = mipif->ipif_next;
17618 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17619 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17620 
17621 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17622 
17623 			/*
17624 			 * When the MOVE fails, it is the job of the
17625 			 * application to take care of this properly
17626 			 * i.e try again if it is ENOMEM.
17627 			 */
17628 			if (mipif->ipif_ill != from_ill) {
17629 				/*
17630 				 * ipif has moved.
17631 				 *
17632 				 * Move the multicast memberships associated
17633 				 * with this ipif to the new ill. For IPv6, we
17634 				 * do it once after all the ipifs are moved
17635 				 * (in ill_move) as they are not associated
17636 				 * with ipifs.
17637 				 *
17638 				 * We need to move the ilms as the ipif has
17639 				 * already been moved to a new ill even
17640 				 * in the case of errors. Neither
17641 				 * ilm_free(ipif) will find the ilm
17642 				 * when somebody unplumbs this ipif nor
17643 				 * ilm_delete(ilm) will be able to find the
17644 				 * ilm, if we don't move now.
17645 				 */
17646 				if (!from_ill->ill_isv6)
17647 					ilm_move_v4(from_ill, to_ill, mipif);
17648 			}
17649 
17650 			if (err != 0)
17651 				return (err);
17652 		}
17653 	}
17654 	return (0);
17655 }
17656 
17657 static int
17658 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17659 {
17660 	int ifindex;
17661 	int err;
17662 	struct iocblk	*iocp;
17663 	ipif_t	*ipif;
17664 	ipif_t *rep_ipif_ptr = NULL;
17665 	ipif_t	*from_ipif = NULL;
17666 	boolean_t check_rep_if = B_FALSE;
17667 	ip_stack_t	*ipst = from_ill->ill_ipst;
17668 
17669 	iocp = (struct iocblk *)mp->b_rptr;
17670 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17671 		/*
17672 		 * Move everything pointing at from_ill to to_ill.
17673 		 * We acheive this by passing in 0 as ifindex.
17674 		 */
17675 		ifindex = 0;
17676 	} else {
17677 		/*
17678 		 * Move everything pointing at from_ill whose original
17679 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17680 		 * We acheive this by passing in ifindex rather than 0.
17681 		 * Multicast vifs, ilgs move implicitly because ipifs move.
17682 		 */
17683 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17684 		ifindex = to_ill->ill_phyint->phyint_ifindex;
17685 	}
17686 
17687 	/*
17688 	 * Determine if there is at least one ipif that would move from
17689 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17690 	 * ipif (if it exists) on the to_ill would be consumed as a result of
17691 	 * the move, in which case we need to quiesce the replacement ipif also.
17692 	 */
17693 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17694 	    from_ipif = from_ipif->ipif_next) {
17695 		if (((ifindex == 0) ||
17696 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
17697 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17698 			check_rep_if = B_TRUE;
17699 			break;
17700 		}
17701 	}
17702 
17703 
17704 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17705 
17706 	GRAB_ILL_LOCKS(from_ill, to_ill);
17707 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17708 		(void) ipsq_pending_mp_add(NULL, ipif, q,
17709 		    mp, ILL_MOVE_OK);
17710 		RELEASE_ILL_LOCKS(from_ill, to_ill);
17711 		return (EINPROGRESS);
17712 	}
17713 
17714 	/* Check if the replacement ipif is quiescent to delete */
17715 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17716 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17717 		to_ill->ill_ipif->ipif_state_flags |=
17718 		    IPIF_MOVING | IPIF_CHANGING;
17719 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17720 			(void) ipsq_pending_mp_add(NULL, ipif, q,
17721 			    mp, ILL_MOVE_OK);
17722 			RELEASE_ILL_LOCKS(from_ill, to_ill);
17723 			return (EINPROGRESS);
17724 		}
17725 	}
17726 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17727 
17728 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17729 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17730 	GRAB_ILL_LOCKS(from_ill, to_ill);
17731 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17732 
17733 	/* ilm_move is done inside ipif_move for IPv4 */
17734 	if (err == 0 && from_ill->ill_isv6)
17735 		ilm_move_v6(from_ill, to_ill, ifindex);
17736 
17737 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17738 	rw_exit(&ipst->ips_ill_g_lock);
17739 
17740 	/*
17741 	 * send rts messages and multicast messages.
17742 	 */
17743 	if (rep_ipif_ptr != NULL) {
17744 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
17745 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
17746 			rep_ipif_ptr->ipif_recovery_id = 0;
17747 		}
17748 		ip_rts_ifmsg(rep_ipif_ptr);
17749 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17750 #ifdef DEBUG
17751 		ipif_trace_cleanup(rep_ipif_ptr);
17752 #endif
17753 		mi_free(rep_ipif_ptr);
17754 	}
17755 
17756 	conn_move_ill(from_ill, to_ill, ifindex);
17757 
17758 	return (err);
17759 }
17760 
17761 /*
17762  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17763  * Also checks for the validity of the arguments.
17764  * Note: We are already exclusive inside the from group.
17765  * It is upto the caller to release refcnt on the to_ill's.
17766  */
17767 static int
17768 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17769     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17770 {
17771 	int dst_index;
17772 	ipif_t *ipif_v4, *ipif_v6;
17773 	struct lifreq *lifr;
17774 	mblk_t *mp1;
17775 	boolean_t exists;
17776 	sin_t	*sin;
17777 	int	err = 0;
17778 	ip_stack_t	*ipst;
17779 
17780 	if (CONN_Q(q))
17781 		ipst = CONNQ_TO_IPST(q);
17782 	else
17783 		ipst = ILLQ_TO_IPST(q);
17784 
17785 
17786 	if ((mp1 = mp->b_cont) == NULL)
17787 		return (EPROTO);
17788 
17789 	if ((mp1 = mp1->b_cont) == NULL)
17790 		return (EPROTO);
17791 
17792 	lifr = (struct lifreq *)mp1->b_rptr;
17793 	sin = (sin_t *)&lifr->lifr_addr;
17794 
17795 	/*
17796 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17797 	 * specific operations.
17798 	 */
17799 	if (sin->sin_family != AF_UNSPEC)
17800 		return (EINVAL);
17801 
17802 	/*
17803 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
17804 	 * NULLs for the last 4 args and we know the lookup won't fail
17805 	 * with EINPROGRESS.
17806 	 */
17807 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17808 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17809 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17810 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17811 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17812 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17813 
17814 	if (ipif_v4 == NULL && ipif_v6 == NULL)
17815 		return (ENXIO);
17816 
17817 	if (ipif_v4 != NULL) {
17818 		ASSERT(ipif_v4->ipif_refcnt != 0);
17819 		if (ipif_v4->ipif_id != 0) {
17820 			err = EINVAL;
17821 			goto done;
17822 		}
17823 
17824 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
17825 		*ill_from_v4 = ipif_v4->ipif_ill;
17826 	}
17827 
17828 	if (ipif_v6 != NULL) {
17829 		ASSERT(ipif_v6->ipif_refcnt != 0);
17830 		if (ipif_v6->ipif_id != 0) {
17831 			err = EINVAL;
17832 			goto done;
17833 		}
17834 
17835 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
17836 		*ill_from_v6 = ipif_v6->ipif_ill;
17837 	}
17838 
17839 	err = 0;
17840 	dst_index = lifr->lifr_movetoindex;
17841 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17842 	    q, mp, ip_process_ioctl, &err, ipst);
17843 	if (err != 0) {
17844 		/*
17845 		 * There could be only v6.
17846 		 */
17847 		if (err != ENXIO)
17848 			goto done;
17849 		err = 0;
17850 	}
17851 
17852 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17853 	    q, mp, ip_process_ioctl, &err, ipst);
17854 	if (err != 0) {
17855 		if (err != ENXIO)
17856 			goto done;
17857 		if (*ill_to_v4 == NULL) {
17858 			err = ENXIO;
17859 			goto done;
17860 		}
17861 		err = 0;
17862 	}
17863 
17864 	/*
17865 	 * If we have something to MOVE i.e "from" not NULL,
17866 	 * "to" should be non-NULL.
17867 	 */
17868 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17869 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17870 		err = EINVAL;
17871 	}
17872 
17873 done:
17874 	if (ipif_v4 != NULL)
17875 		ipif_refrele(ipif_v4);
17876 	if (ipif_v6 != NULL)
17877 		ipif_refrele(ipif_v6);
17878 	return (err);
17879 }
17880 
17881 /*
17882  * FAILOVER and FAILBACK are modelled as MOVE operations.
17883  *
17884  * We don't check whether the MOVE is within the same group or
17885  * not, because this ioctl can be used as a generic mechanism
17886  * to failover from interface A to B, though things will function
17887  * only if they are really part of the same group. Moreover,
17888  * all ipifs may be down and hence temporarily out of the group.
17889  *
17890  * ipif's that need to be moved are first brought down; V4 ipifs are brought
17891  * down first and then V6.  For each we wait for the ipif's to become quiescent.
17892  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17893  * have been deleted and there are no active references. Once quiescent the
17894  * ipif's are moved and brought up on the new ill.
17895  *
17896  * Normally the source ill and destination ill belong to the same IPMP group
17897  * and hence the same ipsq_t. In the event they don't belong to the same
17898  * same group the two ipsq's are first merged into one ipsq - that of the
17899  * to_ill. The multicast memberships on the source and destination ill cannot
17900  * change during the move operation since multicast joins/leaves also have to
17901  * execute on the same ipsq and are hence serialized.
17902  */
17903 /* ARGSUSED */
17904 int
17905 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17906     ip_ioctl_cmd_t *ipip, void *ifreq)
17907 {
17908 	ill_t *ill_to_v4 = NULL;
17909 	ill_t *ill_to_v6 = NULL;
17910 	ill_t *ill_from_v4 = NULL;
17911 	ill_t *ill_from_v6 = NULL;
17912 	int err = 0;
17913 
17914 	/*
17915 	 * setup from and to ill's, we can get EINPROGRESS only for
17916 	 * to_ill's.
17917 	 */
17918 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17919 	    &ill_to_v4, &ill_to_v6);
17920 
17921 	if (err != 0) {
17922 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
17923 		goto done;
17924 	}
17925 
17926 	/*
17927 	 * nothing to do.
17928 	 */
17929 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17930 		goto done;
17931 	}
17932 
17933 	/*
17934 	 * nothing to do.
17935 	 */
17936 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
17937 		goto done;
17938 	}
17939 
17940 	/*
17941 	 * Mark the ill as changing.
17942 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
17943 	 * in ill_up_ipifs in case of error they are cleared below.
17944 	 */
17945 
17946 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17947 	if (ill_from_v4 != NULL)
17948 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
17949 	if (ill_from_v6 != NULL)
17950 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
17951 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17952 
17953 	/*
17954 	 * Make sure that both src and dst are
17955 	 * in the same syncq group. If not make it happen.
17956 	 * We are not holding any locks because we are the writer
17957 	 * on the from_ipsq and we will hold locks in ill_merge_groups
17958 	 * to protect to_ipsq against changing.
17959 	 */
17960 	if (ill_from_v4 != NULL) {
17961 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
17962 		    ill_to_v4->ill_phyint->phyint_ipsq) {
17963 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
17964 			    NULL, mp, q);
17965 			goto err_ret;
17966 
17967 		}
17968 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
17969 	} else {
17970 
17971 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
17972 		    ill_to_v6->ill_phyint->phyint_ipsq) {
17973 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
17974 			    NULL, mp, q);
17975 			goto err_ret;
17976 
17977 		}
17978 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
17979 	}
17980 
17981 	/*
17982 	 * Now that the ipsq's have been merged and we are the writer
17983 	 * lets mark to_ill as changing as well.
17984 	 */
17985 
17986 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17987 	if (ill_to_v4 != NULL)
17988 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
17989 	if (ill_to_v6 != NULL)
17990 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
17991 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
17992 
17993 	/*
17994 	 * Its ok for us to proceed with the move even if
17995 	 * ill_pending_mp is non null on one of the from ill's as the reply
17996 	 * should not be looking at the ipif, it should only care about the
17997 	 * ill itself.
17998 	 */
17999 
18000 	/*
18001 	 * lets move ipv4 first.
18002 	 */
18003 	if (ill_from_v4 != NULL) {
18004 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18005 		ill_from_v4->ill_move_in_progress = B_TRUE;
18006 		ill_to_v4->ill_move_in_progress = B_TRUE;
18007 		ill_to_v4->ill_move_peer = ill_from_v4;
18008 		ill_from_v4->ill_move_peer = ill_to_v4;
18009 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18010 	}
18011 
18012 	/*
18013 	 * Now lets move ipv6.
18014 	 */
18015 	if (err == 0 && ill_from_v6 != NULL) {
18016 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18017 		ill_from_v6->ill_move_in_progress = B_TRUE;
18018 		ill_to_v6->ill_move_in_progress = B_TRUE;
18019 		ill_to_v6->ill_move_peer = ill_from_v6;
18020 		ill_from_v6->ill_move_peer = ill_to_v6;
18021 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18022 	}
18023 
18024 err_ret:
18025 	/*
18026 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18027 	 * moved to become quiescent.
18028 	 */
18029 	if (err == EINPROGRESS) {
18030 		goto done;
18031 	}
18032 
18033 	/*
18034 	 * if err is set ill_up_ipifs will not be called
18035 	 * lets clear the flags.
18036 	 */
18037 
18038 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18039 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18040 	/*
18041 	 * Some of the clearing may be redundant. But it is simple
18042 	 * not making any extra checks.
18043 	 */
18044 	if (ill_from_v6 != NULL) {
18045 		ill_from_v6->ill_move_in_progress = B_FALSE;
18046 		ill_from_v6->ill_move_peer = NULL;
18047 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18048 	}
18049 	if (ill_from_v4 != NULL) {
18050 		ill_from_v4->ill_move_in_progress = B_FALSE;
18051 		ill_from_v4->ill_move_peer = NULL;
18052 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18053 	}
18054 	if (ill_to_v6 != NULL) {
18055 		ill_to_v6->ill_move_in_progress = B_FALSE;
18056 		ill_to_v6->ill_move_peer = NULL;
18057 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18058 	}
18059 	if (ill_to_v4 != NULL) {
18060 		ill_to_v4->ill_move_in_progress = B_FALSE;
18061 		ill_to_v4->ill_move_peer = NULL;
18062 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18063 	}
18064 
18065 	/*
18066 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18067 	 * Do this always to maintain proper state i.e even in case of errors.
18068 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18069 	 * we need not call on both v4 and v6 interfaces.
18070 	 */
18071 	if (ill_from_v4 != NULL) {
18072 		if ((ill_from_v4->ill_phyint->phyint_flags &
18073 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18074 			phyint_inactive(ill_from_v4->ill_phyint);
18075 		}
18076 	} else if (ill_from_v6 != NULL) {
18077 		if ((ill_from_v6->ill_phyint->phyint_flags &
18078 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18079 			phyint_inactive(ill_from_v6->ill_phyint);
18080 		}
18081 	}
18082 
18083 	if (ill_to_v4 != NULL) {
18084 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18085 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18086 		}
18087 	} else if (ill_to_v6 != NULL) {
18088 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18089 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18090 		}
18091 	}
18092 
18093 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18094 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18095 
18096 no_err:
18097 	/*
18098 	 * lets bring the interfaces up on the to_ill.
18099 	 */
18100 	if (err == 0) {
18101 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18102 		    q, mp);
18103 	}
18104 
18105 	if (err == 0) {
18106 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18107 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18108 
18109 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18110 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18111 	}
18112 done:
18113 
18114 	if (ill_to_v4 != NULL) {
18115 		ill_refrele(ill_to_v4);
18116 	}
18117 	if (ill_to_v6 != NULL) {
18118 		ill_refrele(ill_to_v6);
18119 	}
18120 
18121 	return (err);
18122 }
18123 
18124 static void
18125 ill_dl_down(ill_t *ill)
18126 {
18127 	/*
18128 	 * The ill is down; unbind but stay attached since we're still
18129 	 * associated with a PPA. If we have negotiated DLPI capabilites
18130 	 * with the data link service provider (IDS_OK) then reset them.
18131 	 * The interval between unbinding and rebinding is potentially
18132 	 * unbounded hence we cannot assume things will be the same.
18133 	 * The DLPI capabilities will be probed again when the data link
18134 	 * is brought up.
18135 	 */
18136 	mblk_t	*mp = ill->ill_unbind_mp;
18137 	hook_nic_event_t *info;
18138 
18139 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18140 
18141 	ill->ill_unbind_mp = NULL;
18142 	if (mp != NULL) {
18143 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18144 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18145 		    ill->ill_name));
18146 		mutex_enter(&ill->ill_lock);
18147 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18148 		mutex_exit(&ill->ill_lock);
18149 		/*
18150 		 * Reset the capabilities if the negotiation is done or is
18151 		 * still in progress. Note that ill_capability_reset() will
18152 		 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent
18153 		 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored.
18154 		 *
18155 		 * Further, reset ill_capab_reneg to be B_FALSE so that the
18156 		 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent
18157 		 * the capabilities renegotiation from happening.
18158 		 */
18159 		if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
18160 			ill_capability_reset(ill);
18161 		ill->ill_capab_reneg = B_FALSE;
18162 
18163 		ill_dlpi_send(ill, mp);
18164 	}
18165 
18166 	/*
18167 	 * Toss all of our multicast memberships.  We could keep them, but
18168 	 * then we'd have to do bookkeeping of any joins and leaves performed
18169 	 * by the application while the the interface is down (we can't just
18170 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18171 	 * on a downed interface).
18172 	 */
18173 	ill_leave_multicast(ill);
18174 
18175 	mutex_enter(&ill->ill_lock);
18176 
18177 	ill->ill_dl_up = 0;
18178 
18179 	if ((info = ill->ill_nic_event_info) != NULL) {
18180 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18181 		    info->hne_event, ill->ill_name));
18182 		if (info->hne_data != NULL)
18183 			kmem_free(info->hne_data, info->hne_datalen);
18184 		kmem_free(info, sizeof (hook_nic_event_t));
18185 	}
18186 
18187 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18188 	if (info != NULL) {
18189 		ip_stack_t	*ipst = ill->ill_ipst;
18190 
18191 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18192 		info->hne_lif = 0;
18193 		info->hne_event = NE_DOWN;
18194 		info->hne_data = NULL;
18195 		info->hne_datalen = 0;
18196 		info->hne_family = ill->ill_isv6 ?
18197 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18198 	} else
18199 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18200 		    "information for %s (ENOMEM)\n", ill->ill_name));
18201 
18202 	ill->ill_nic_event_info = info;
18203 
18204 	mutex_exit(&ill->ill_lock);
18205 }
18206 
18207 static void
18208 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18209 {
18210 	union DL_primitives *dlp;
18211 	t_uscalar_t prim;
18212 
18213 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18214 
18215 	dlp = (union DL_primitives *)mp->b_rptr;
18216 	prim = dlp->dl_primitive;
18217 
18218 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18219 	    dlpi_prim_str(prim), prim, ill->ill_name));
18220 
18221 	switch (prim) {
18222 	case DL_PHYS_ADDR_REQ:
18223 	{
18224 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18225 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18226 		break;
18227 	}
18228 	case DL_BIND_REQ:
18229 		mutex_enter(&ill->ill_lock);
18230 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18231 		mutex_exit(&ill->ill_lock);
18232 		break;
18233 	}
18234 
18235 	/*
18236 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18237 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18238 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18239 	 */
18240 	mutex_enter(&ill->ill_lock);
18241 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18242 	    (prim == DL_UNBIND_REQ)) {
18243 		ill->ill_dlpi_pending = prim;
18244 	}
18245 	mutex_exit(&ill->ill_lock);
18246 
18247 	putnext(ill->ill_wq, mp);
18248 }
18249 
18250 /*
18251  * Helper function for ill_dlpi_send().
18252  */
18253 /* ARGSUSED */
18254 static void
18255 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
18256 {
18257 	ill_dlpi_send((ill_t *)q->q_ptr, mp);
18258 }
18259 
18260 /*
18261  * Send a DLPI control message to the driver but make sure there
18262  * is only one outstanding message. Uses ill_dlpi_pending to tell
18263  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18264  * when an ACK or a NAK is received to process the next queued message.
18265  */
18266 void
18267 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18268 {
18269 	mblk_t **mpp;
18270 
18271 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18272 
18273 	/*
18274 	 * To ensure that any DLPI requests for current exclusive operation
18275 	 * are always completely sent before any DLPI messages for other
18276 	 * operations, require writer access before enqueuing.
18277 	 */
18278 	if (!IAM_WRITER_ILL(ill)) {
18279 		ill_refhold(ill);
18280 		/* qwriter_ip() does the ill_refrele() */
18281 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
18282 		    NEW_OP, B_TRUE);
18283 		return;
18284 	}
18285 
18286 	mutex_enter(&ill->ill_lock);
18287 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18288 		/* Must queue message. Tail insertion */
18289 		mpp = &ill->ill_dlpi_deferred;
18290 		while (*mpp != NULL)
18291 			mpp = &((*mpp)->b_next);
18292 
18293 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18294 		    ill->ill_name));
18295 
18296 		*mpp = mp;
18297 		mutex_exit(&ill->ill_lock);
18298 		return;
18299 	}
18300 	mutex_exit(&ill->ill_lock);
18301 	ill_dlpi_dispatch(ill, mp);
18302 }
18303 
18304 /*
18305  * Send all deferred DLPI messages without waiting for their ACKs.
18306  */
18307 void
18308 ill_dlpi_send_deferred(ill_t *ill)
18309 {
18310 	mblk_t *mp, *nextmp;
18311 
18312 	/*
18313 	 * Clear ill_dlpi_pending so that the message is not queued in
18314 	 * ill_dlpi_send().
18315 	 */
18316 	mutex_enter(&ill->ill_lock);
18317 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
18318 	mp = ill->ill_dlpi_deferred;
18319 	ill->ill_dlpi_deferred = NULL;
18320 	mutex_exit(&ill->ill_lock);
18321 
18322 	for (; mp != NULL; mp = nextmp) {
18323 		nextmp = mp->b_next;
18324 		mp->b_next = NULL;
18325 		ill_dlpi_send(ill, mp);
18326 	}
18327 }
18328 
18329 /*
18330  * Check if the DLPI primitive `prim' is pending; print a warning if not.
18331  */
18332 boolean_t
18333 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
18334 {
18335 	t_uscalar_t pending;
18336 
18337 	mutex_enter(&ill->ill_lock);
18338 	if (ill->ill_dlpi_pending == prim) {
18339 		mutex_exit(&ill->ill_lock);
18340 		return (B_TRUE);
18341 	}
18342 
18343 	/*
18344 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
18345 	 * without waiting, so don't print any warnings in that case.
18346 	 */
18347 	if (ill->ill_state_flags & ILL_CONDEMNED) {
18348 		mutex_exit(&ill->ill_lock);
18349 		return (B_FALSE);
18350 	}
18351 	pending = ill->ill_dlpi_pending;
18352 	mutex_exit(&ill->ill_lock);
18353 
18354 	if (pending == DL_PRIM_INVAL) {
18355 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18356 		    "received unsolicited ack for %s on %s\n",
18357 		    dlpi_prim_str(prim), ill->ill_name);
18358 	} else {
18359 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18360 		    "received unexpected ack for %s on %s (expecting %s)\n",
18361 		    dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending));
18362 	}
18363 	return (B_FALSE);
18364 }
18365 
18366 /*
18367  * Called when an DLPI control message has been acked or nacked to
18368  * send down the next queued message (if any).
18369  */
18370 void
18371 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18372 {
18373 	mblk_t *mp;
18374 
18375 	ASSERT(IAM_WRITER_ILL(ill));
18376 	mutex_enter(&ill->ill_lock);
18377 
18378 	ASSERT(prim != DL_PRIM_INVAL);
18379 	ASSERT(ill->ill_dlpi_pending == prim);
18380 
18381 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18382 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18383 
18384 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18385 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18386 		cv_signal(&ill->ill_cv);
18387 		mutex_exit(&ill->ill_lock);
18388 		return;
18389 	}
18390 
18391 	ill->ill_dlpi_deferred = mp->b_next;
18392 	mp->b_next = NULL;
18393 	mutex_exit(&ill->ill_lock);
18394 
18395 	ill_dlpi_dispatch(ill, mp);
18396 }
18397 
18398 void
18399 conn_delete_ire(conn_t *connp, caddr_t arg)
18400 {
18401 	ipif_t	*ipif = (ipif_t *)arg;
18402 	ire_t	*ire;
18403 
18404 	/*
18405 	 * Look at the cached ires on conns which has pointers to ipifs.
18406 	 * We just call ire_refrele which clears up the reference
18407 	 * to ire. Called when a conn closes. Also called from ipif_free
18408 	 * to cleanup indirect references to the stale ipif via the cached ire.
18409 	 */
18410 	mutex_enter(&connp->conn_lock);
18411 	ire = connp->conn_ire_cache;
18412 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18413 		connp->conn_ire_cache = NULL;
18414 		mutex_exit(&connp->conn_lock);
18415 		IRE_REFRELE_NOTR(ire);
18416 		return;
18417 	}
18418 	mutex_exit(&connp->conn_lock);
18419 
18420 }
18421 
18422 /*
18423  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18424  * of IREs. Those IREs may have been previously cached in the conn structure.
18425  * This ipcl_walk() walker function releases all references to such IREs based
18426  * on the condemned flag.
18427  */
18428 /* ARGSUSED */
18429 void
18430 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18431 {
18432 	ire_t	*ire;
18433 
18434 	mutex_enter(&connp->conn_lock);
18435 	ire = connp->conn_ire_cache;
18436 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18437 		connp->conn_ire_cache = NULL;
18438 		mutex_exit(&connp->conn_lock);
18439 		IRE_REFRELE_NOTR(ire);
18440 		return;
18441 	}
18442 	mutex_exit(&connp->conn_lock);
18443 }
18444 
18445 /*
18446  * Take down a specific interface, but don't lose any information about it.
18447  * Also delete interface from its interface group (ifgrp).
18448  * (Always called as writer.)
18449  * This function goes through the down sequence even if the interface is
18450  * already down. There are 2 reasons.
18451  * a. Currently we permit interface routes that depend on down interfaces
18452  *    to be added. This behaviour itself is questionable. However it appears
18453  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18454  *    time. We go thru the cleanup in order to remove these routes.
18455  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18456  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18457  *    down, but we need to cleanup i.e. do ill_dl_down and
18458  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18459  *
18460  * IP-MT notes:
18461  *
18462  * Model of reference to interfaces.
18463  *
18464  * The following members in ipif_t track references to the ipif.
18465  *	int     ipif_refcnt;    Active reference count
18466  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18467  * The following members in ill_t track references to the ill.
18468  *	int             ill_refcnt;     active refcnt
18469  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18470  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18471  *
18472  * Reference to an ipif or ill can be obtained in any of the following ways.
18473  *
18474  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18475  * Pointers to ipif / ill from other data structures viz ire and conn.
18476  * Implicit reference to the ipif / ill by holding a reference to the ire.
18477  *
18478  * The ipif/ill lookup functions return a reference held ipif / ill.
18479  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18480  * This is a purely dynamic reference count associated with threads holding
18481  * references to the ipif / ill. Pointers from other structures do not
18482  * count towards this reference count.
18483  *
18484  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18485  * ipif/ill. This is incremented whenever a new ire is created referencing the
18486  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18487  * actually added to the ire hash table. The count is decremented in
18488  * ire_inactive where the ire is destroyed.
18489  *
18490  * nce's reference ill's thru nce_ill and the count of nce's associated with
18491  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18492  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
18493  * table. Similarly it is decremented in ndp_inactive() where the nce
18494  * is destroyed.
18495  *
18496  * Flow of ioctls involving interface down/up
18497  *
18498  * The following is the sequence of an attempt to set some critical flags on an
18499  * up interface.
18500  * ip_sioctl_flags
18501  * ipif_down
18502  * wait for ipif to be quiescent
18503  * ipif_down_tail
18504  * ip_sioctl_flags_tail
18505  *
18506  * All set ioctls that involve down/up sequence would have a skeleton similar
18507  * to the above. All the *tail functions are called after the refcounts have
18508  * dropped to the appropriate values.
18509  *
18510  * The mechanism to quiesce an ipif is as follows.
18511  *
18512  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18513  * on the ipif. Callers either pass a flag requesting wait or the lookup
18514  *  functions will return NULL.
18515  *
18516  * Delete all ires referencing this ipif
18517  *
18518  * Any thread attempting to do an ipif_refhold on an ipif that has been
18519  * obtained thru a cached pointer will first make sure that
18520  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18521  * increment the refcount.
18522  *
18523  * The above guarantees that the ipif refcount will eventually come down to
18524  * zero and the ipif will quiesce, once all threads that currently hold a
18525  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18526  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18527  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18528  * drop to zero.
18529  *
18530  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18531  *
18532  * Threads trying to lookup an ipif or ill can pass a flag requesting
18533  * wait and restart if the ipif / ill cannot be looked up currently.
18534  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18535  * failure if the ipif is currently undergoing an exclusive operation, and
18536  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18537  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18538  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18539  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18540  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18541  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18542  * until we release the ipsq_lock, even though the the ill/ipif state flags
18543  * can change after we drop the ill_lock.
18544  *
18545  * An attempt to send out a packet using an ipif that is currently
18546  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18547  * operation and restart it later when the exclusive condition on the ipif ends.
18548  * This is an example of not passing the wait flag to the lookup functions. For
18549  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18550  * out a multicast packet on that ipif will fail while the ipif is
18551  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18552  * currently IPIF_CHANGING will also fail.
18553  */
18554 int
18555 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18556 {
18557 	ill_t		*ill = ipif->ipif_ill;
18558 	phyint_t	*phyi;
18559 	conn_t		*connp;
18560 	boolean_t	success;
18561 	boolean_t	ipif_was_up = B_FALSE;
18562 	ip_stack_t	*ipst = ill->ill_ipst;
18563 
18564 	ASSERT(IAM_WRITER_IPIF(ipif));
18565 
18566 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18567 
18568 	if (ipif->ipif_flags & IPIF_UP) {
18569 		mutex_enter(&ill->ill_lock);
18570 		ipif->ipif_flags &= ~IPIF_UP;
18571 		ASSERT(ill->ill_ipif_up_count > 0);
18572 		--ill->ill_ipif_up_count;
18573 		mutex_exit(&ill->ill_lock);
18574 		ipif_was_up = B_TRUE;
18575 		/* Update status in SCTP's list */
18576 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18577 	}
18578 
18579 	/*
18580 	 * Blow away memberships we established in ipif_multicast_up().
18581 	 */
18582 	ipif_multicast_down(ipif);
18583 
18584 	/*
18585 	 * Remove from the mapping for __sin6_src_id. We insert only
18586 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18587 	 * stored as mapped addresses, we need to check for mapped
18588 	 * INADDR_ANY also.
18589 	 */
18590 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18591 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18592 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18593 		int err;
18594 
18595 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18596 		    ipif->ipif_zoneid, ipst);
18597 		if (err != 0) {
18598 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18599 		}
18600 	}
18601 
18602 	/*
18603 	 * Before we delete the ill from the group (if any), we need
18604 	 * to make sure that we delete all the routes dependent on
18605 	 * this and also any ipifs dependent on this ipif for
18606 	 * source address. We need to do before we delete from
18607 	 * the group because
18608 	 *
18609 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18610 	 *
18611 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18612 	 *    for re-doing source address selection. Note that
18613 	 *    ipif_select_source[_v6] called from
18614 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18615 	 *    because we have already marked down here i.e cleared
18616 	 *    IPIF_UP.
18617 	 */
18618 	if (ipif->ipif_isv6) {
18619 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18620 		    ipst);
18621 	} else {
18622 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18623 		    ipst);
18624 	}
18625 
18626 	/*
18627 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18628 	 * ires have been deleted above. Otherwise a thread could end up
18629 	 * caching an ire in a conn after we have finished the cleanup of the
18630 	 * conn. The caching is done after making sure that the ire is not yet
18631 	 * condemned. Also documented in the block comment above ip_output
18632 	 */
18633 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18634 	/* Also, delete the ires cached in SCTP */
18635 	sctp_ire_cache_flush(ipif);
18636 
18637 	/*
18638 	 * Update any other ipifs which have used "our" local address as
18639 	 * a source address. This entails removing and recreating IRE_INTERFACE
18640 	 * entries for such ipifs.
18641 	 */
18642 	if (ipif->ipif_isv6)
18643 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18644 	else
18645 		ipif_update_other_ipifs(ipif, ill->ill_group);
18646 
18647 	if (ipif_was_up) {
18648 		/*
18649 		 * Check whether it is last ipif to leave this group.
18650 		 * If this is the last ipif to leave, we should remove
18651 		 * this ill from the group as ipif_select_source will not
18652 		 * be able to find any useful ipifs if this ill is selected
18653 		 * for load balancing.
18654 		 *
18655 		 * For nameless groups, we should call ifgrp_delete if this
18656 		 * belongs to some group. As this ipif is going down, we may
18657 		 * need to reconstruct groups.
18658 		 */
18659 		phyi = ill->ill_phyint;
18660 		/*
18661 		 * If the phyint_groupname_len is 0, it may or may not
18662 		 * be in the nameless group. If the phyint_groupname_len is
18663 		 * not 0, then this ill should be part of some group.
18664 		 * As we always insert this ill in the group if
18665 		 * phyint_groupname_len is not zero when the first ipif
18666 		 * comes up (in ipif_up_done), it should be in a group
18667 		 * when the namelen is not 0.
18668 		 *
18669 		 * NOTE : When we delete the ill from the group,it will
18670 		 * blow away all the IRE_CACHES pointing either at this ipif or
18671 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18672 		 * should be pointing at this ill.
18673 		 */
18674 		ASSERT(phyi->phyint_groupname_len == 0 ||
18675 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18676 
18677 		if (phyi->phyint_groupname_len != 0) {
18678 			if (ill->ill_ipif_up_count == 0)
18679 				illgrp_delete(ill);
18680 		}
18681 
18682 		/*
18683 		 * If we have deleted some of the broadcast ires associated
18684 		 * with this ipif, we need to re-nominate somebody else if
18685 		 * the ires that we deleted were the nominated ones.
18686 		 */
18687 		if (ill->ill_group != NULL && !ill->ill_isv6)
18688 			ipif_renominate_bcast(ipif);
18689 	}
18690 
18691 	/*
18692 	 * neighbor-discovery or arp entries for this interface.
18693 	 */
18694 	ipif_ndp_down(ipif);
18695 
18696 	/*
18697 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18698 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18699 	 * and ill_delete -> ipif_free -> ipif_down
18700 	 */
18701 	if (mp == NULL) {
18702 		ASSERT(q == NULL);
18703 		return (0);
18704 	}
18705 
18706 	if (CONN_Q(q)) {
18707 		connp = Q_TO_CONN(q);
18708 		mutex_enter(&connp->conn_lock);
18709 	} else {
18710 		connp = NULL;
18711 	}
18712 	mutex_enter(&ill->ill_lock);
18713 	/*
18714 	 * Are there any ire's pointing to this ipif that are still active ?
18715 	 * If this is the last ipif going down, are there any ire's pointing
18716 	 * to this ill that are still active ?
18717 	 */
18718 	if (ipif_is_quiescent(ipif)) {
18719 		mutex_exit(&ill->ill_lock);
18720 		if (connp != NULL)
18721 			mutex_exit(&connp->conn_lock);
18722 		return (0);
18723 	}
18724 
18725 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18726 	    ill->ill_name, (void *)ill));
18727 	/*
18728 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18729 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18730 	 * which in turn is called by the last refrele on the ipif/ill/ire.
18731 	 */
18732 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18733 	if (!success) {
18734 		/* The conn is closing. So just return */
18735 		ASSERT(connp != NULL);
18736 		mutex_exit(&ill->ill_lock);
18737 		mutex_exit(&connp->conn_lock);
18738 		return (EINTR);
18739 	}
18740 
18741 	mutex_exit(&ill->ill_lock);
18742 	if (connp != NULL)
18743 		mutex_exit(&connp->conn_lock);
18744 	return (EINPROGRESS);
18745 }
18746 
18747 void
18748 ipif_down_tail(ipif_t *ipif)
18749 {
18750 	ill_t	*ill = ipif->ipif_ill;
18751 
18752 	/*
18753 	 * Skip any loopback interface (null wq).
18754 	 * If this is the last logical interface on the ill
18755 	 * have ill_dl_down tell the driver we are gone (unbind)
18756 	 * Note that lun 0 can ipif_down even though
18757 	 * there are other logical units that are up.
18758 	 * This occurs e.g. when we change a "significant" IFF_ flag.
18759 	 */
18760 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18761 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18762 	    ill->ill_dl_up) {
18763 		ill_dl_down(ill);
18764 	}
18765 	ill->ill_logical_down = 0;
18766 
18767 	/*
18768 	 * Have to be after removing the routes in ipif_down_delete_ire.
18769 	 */
18770 	if (ipif->ipif_isv6) {
18771 		if (ill->ill_flags & ILLF_XRESOLV)
18772 			ipif_arp_down(ipif);
18773 	} else {
18774 		ipif_arp_down(ipif);
18775 	}
18776 
18777 	ip_rts_ifmsg(ipif);
18778 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18779 }
18780 
18781 /*
18782  * Bring interface logically down without bringing the physical interface
18783  * down e.g. when the netmask is changed. This avoids long lasting link
18784  * negotiations between an ethernet interface and a certain switches.
18785  */
18786 static int
18787 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18788 {
18789 	/*
18790 	 * The ill_logical_down flag is a transient flag. It is set here
18791 	 * and is cleared once the down has completed in ipif_down_tail.
18792 	 * This flag does not indicate whether the ill stream is in the
18793 	 * DL_BOUND state with the driver. Instead this flag is used by
18794 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18795 	 * the driver. The state of the ill stream i.e. whether it is
18796 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18797 	 */
18798 	ipif->ipif_ill->ill_logical_down = 1;
18799 	return (ipif_down(ipif, q, mp));
18800 }
18801 
18802 /*
18803  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18804  * If the usesrc client ILL is already part of a usesrc group or not,
18805  * in either case a ire_stq with the matching usesrc client ILL will
18806  * locate the IRE's that need to be deleted. We want IREs to be created
18807  * with the new source address.
18808  */
18809 static void
18810 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18811 {
18812 	ill_t	*ucill = (ill_t *)ill_arg;
18813 
18814 	ASSERT(IAM_WRITER_ILL(ucill));
18815 
18816 	if (ire->ire_stq == NULL)
18817 		return;
18818 
18819 	if ((ire->ire_type == IRE_CACHE) &&
18820 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
18821 		ire_delete(ire);
18822 }
18823 
18824 /*
18825  * ire_walk routine to delete every IRE dependent on the interface
18826  * address that is going down.	(Always called as writer.)
18827  * Works for both v4 and v6.
18828  * In addition for checking for ire_ipif matches it also checks for
18829  * IRE_CACHE entries which have the same source address as the
18830  * disappearing ipif since ipif_select_source might have picked
18831  * that source. Note that ipif_down/ipif_update_other_ipifs takes
18832  * care of any IRE_INTERFACE with the disappearing source address.
18833  */
18834 static void
18835 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18836 {
18837 	ipif_t	*ipif = (ipif_t *)ipif_arg;
18838 	ill_t *ire_ill;
18839 	ill_t *ipif_ill;
18840 
18841 	ASSERT(IAM_WRITER_IPIF(ipif));
18842 	if (ire->ire_ipif == NULL)
18843 		return;
18844 
18845 	/*
18846 	 * For IPv4, we derive source addresses for an IRE from ipif's
18847 	 * belonging to the same IPMP group as the IRE's outgoing
18848 	 * interface.  If an IRE's outgoing interface isn't in the
18849 	 * same IPMP group as a particular ipif, then that ipif
18850 	 * couldn't have been used as a source address for this IRE.
18851 	 *
18852 	 * For IPv6, source addresses are only restricted to the IPMP group
18853 	 * if the IRE is for a link-local address or a multicast address.
18854 	 * Otherwise, source addresses for an IRE can be chosen from
18855 	 * interfaces other than the the outgoing interface for that IRE.
18856 	 *
18857 	 * For source address selection details, see ipif_select_source()
18858 	 * and ipif_select_source_v6().
18859 	 */
18860 	if (ire->ire_ipversion == IPV4_VERSION ||
18861 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18862 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18863 		ire_ill = ire->ire_ipif->ipif_ill;
18864 		ipif_ill = ipif->ipif_ill;
18865 
18866 		if (ire_ill->ill_group != ipif_ill->ill_group) {
18867 			return;
18868 		}
18869 	}
18870 
18871 
18872 	if (ire->ire_ipif != ipif) {
18873 		/*
18874 		 * Look for a matching source address.
18875 		 */
18876 		if (ire->ire_type != IRE_CACHE)
18877 			return;
18878 		if (ipif->ipif_flags & IPIF_NOLOCAL)
18879 			return;
18880 
18881 		if (ire->ire_ipversion == IPV4_VERSION) {
18882 			if (ire->ire_src_addr != ipif->ipif_src_addr)
18883 				return;
18884 		} else {
18885 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18886 			    &ipif->ipif_v6lcl_addr))
18887 				return;
18888 		}
18889 		ire_delete(ire);
18890 		return;
18891 	}
18892 	/*
18893 	 * ire_delete() will do an ire_flush_cache which will delete
18894 	 * all ire_ipif matches
18895 	 */
18896 	ire_delete(ire);
18897 }
18898 
18899 /*
18900  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18901  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18902  * 2) when an interface is brought up or down (on that ill).
18903  * This ensures that the IRE_CACHE entries don't retain stale source
18904  * address selection results.
18905  */
18906 void
18907 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18908 {
18909 	ill_t	*ill = (ill_t *)ill_arg;
18910 	ill_t	*ipif_ill;
18911 
18912 	ASSERT(IAM_WRITER_ILL(ill));
18913 	/*
18914 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18915 	 * Hence this should be IRE_CACHE.
18916 	 */
18917 	ASSERT(ire->ire_type == IRE_CACHE);
18918 
18919 	/*
18920 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
18921 	 * We are only interested in IRE_CACHES that has borrowed
18922 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
18923 	 * for which we need to look at ire_ipif->ipif_ill match
18924 	 * with ill.
18925 	 */
18926 	ASSERT(ire->ire_ipif != NULL);
18927 	ipif_ill = ire->ire_ipif->ipif_ill;
18928 	if (ipif_ill == ill || (ill->ill_group != NULL &&
18929 	    ipif_ill->ill_group == ill->ill_group)) {
18930 		ire_delete(ire);
18931 	}
18932 }
18933 
18934 /*
18935  * Delete all the ire whose stq references ill_arg.
18936  */
18937 static void
18938 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18939 {
18940 	ill_t	*ill = (ill_t *)ill_arg;
18941 	ill_t	*ire_ill;
18942 
18943 	ASSERT(IAM_WRITER_ILL(ill));
18944 	/*
18945 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18946 	 * Hence this should be IRE_CACHE.
18947 	 */
18948 	ASSERT(ire->ire_type == IRE_CACHE);
18949 
18950 	/*
18951 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18952 	 * matches ill. We are only interested in IRE_CACHES that
18953 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18954 	 * filtering here.
18955 	 */
18956 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18957 
18958 	if (ire_ill == ill)
18959 		ire_delete(ire);
18960 }
18961 
18962 /*
18963  * This is called when an ill leaves the group. We want to delete
18964  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18965  * pointing at ill.
18966  */
18967 static void
18968 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18969 {
18970 	ill_t	*ill = (ill_t *)ill_arg;
18971 
18972 	ASSERT(IAM_WRITER_ILL(ill));
18973 	ASSERT(ill->ill_group == NULL);
18974 	/*
18975 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18976 	 * Hence this should be IRE_CACHE.
18977 	 */
18978 	ASSERT(ire->ire_type == IRE_CACHE);
18979 	/*
18980 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18981 	 * matches ill. We are interested in both.
18982 	 */
18983 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
18984 	    (ire->ire_ipif->ipif_ill == ill));
18985 
18986 	ire_delete(ire);
18987 }
18988 
18989 /*
18990  * Initiate deallocate of an IPIF. Always called as writer. Called by
18991  * ill_delete or ip_sioctl_removeif.
18992  */
18993 static void
18994 ipif_free(ipif_t *ipif)
18995 {
18996 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
18997 
18998 	ASSERT(IAM_WRITER_IPIF(ipif));
18999 
19000 	if (ipif->ipif_recovery_id != 0)
19001 		(void) untimeout(ipif->ipif_recovery_id);
19002 	ipif->ipif_recovery_id = 0;
19003 
19004 	/* Remove conn references */
19005 	reset_conn_ipif(ipif);
19006 
19007 	/*
19008 	 * Make sure we have valid net and subnet broadcast ire's for the
19009 	 * other ipif's which share them with this ipif.
19010 	 */
19011 	if (!ipif->ipif_isv6)
19012 		ipif_check_bcast_ires(ipif);
19013 
19014 	/*
19015 	 * Take down the interface. We can be called either from ill_delete
19016 	 * or from ip_sioctl_removeif.
19017 	 */
19018 	(void) ipif_down(ipif, NULL, NULL);
19019 
19020 	/*
19021 	 * Now that the interface is down, there's no chance it can still
19022 	 * become a duplicate.  Cancel any timer that may have been set while
19023 	 * tearing down.
19024 	 */
19025 	if (ipif->ipif_recovery_id != 0)
19026 		(void) untimeout(ipif->ipif_recovery_id);
19027 	ipif->ipif_recovery_id = 0;
19028 
19029 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19030 	/* Remove pointers to this ill in the multicast routing tables */
19031 	reset_mrt_vif_ipif(ipif);
19032 	rw_exit(&ipst->ips_ill_g_lock);
19033 }
19034 
19035 /*
19036  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19037  * also ill_move().
19038  */
19039 static void
19040 ipif_free_tail(ipif_t *ipif)
19041 {
19042 	mblk_t	*mp;
19043 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19044 
19045 	/*
19046 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19047 	 */
19048 	mutex_enter(&ipif->ipif_saved_ire_lock);
19049 	mp = ipif->ipif_saved_ire_mp;
19050 	ipif->ipif_saved_ire_mp = NULL;
19051 	mutex_exit(&ipif->ipif_saved_ire_lock);
19052 	freemsg(mp);
19053 
19054 	/*
19055 	 * Need to hold both ill_g_lock and ill_lock while
19056 	 * inserting or removing an ipif from the linked list
19057 	 * of ipifs hanging off the ill.
19058 	 */
19059 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19060 	/*
19061 	 * Remove all IPv4 multicast memberships on the interface now.
19062 	 * IPv6 is not handled here as the multicast memberships are
19063 	 * tied to the ill rather than the ipif.
19064 	 */
19065 	ilm_free(ipif);
19066 
19067 	/*
19068 	 * Since we held the ill_g_lock while doing the ilm_free above,
19069 	 * we can assert the ilms were really deleted and not just marked
19070 	 * ILM_DELETED.
19071 	 */
19072 	ASSERT(ilm_walk_ipif(ipif) == 0);
19073 
19074 #ifdef DEBUG
19075 	ipif_trace_cleanup(ipif);
19076 #endif
19077 
19078 	/* Ask SCTP to take it out of it list */
19079 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19080 
19081 	/* Get it out of the ILL interface list. */
19082 	ipif_remove(ipif, B_TRUE);
19083 	rw_exit(&ipst->ips_ill_g_lock);
19084 
19085 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19086 
19087 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19088 	ASSERT(ipif->ipif_recovery_id == 0);
19089 
19090 	/* Free the memory. */
19091 	mi_free(ipif);
19092 }
19093 
19094 /*
19095  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
19096  * is zero.
19097  */
19098 void
19099 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19100 {
19101 	char	lbuf[LIFNAMSIZ];
19102 	char	*name;
19103 	size_t	name_len;
19104 
19105 	buf[0] = '\0';
19106 	name = ipif->ipif_ill->ill_name;
19107 	name_len = ipif->ipif_ill->ill_name_length;
19108 	if (ipif->ipif_id != 0) {
19109 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19110 		    ipif->ipif_id);
19111 		name = lbuf;
19112 		name_len = mi_strlen(name) + 1;
19113 	}
19114 	len -= 1;
19115 	buf[len] = '\0';
19116 	len = MIN(len, name_len);
19117 	bcopy(name, buf, len);
19118 }
19119 
19120 /*
19121  * Find an IPIF based on the name passed in.  Names can be of the
19122  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19123  * The <phys> string can have forms like <dev><#> (e.g., le0),
19124  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19125  * When there is no colon, the implied unit id is zero. <phys> must
19126  * correspond to the name of an ILL.  (May be called as writer.)
19127  */
19128 static ipif_t *
19129 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19130     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19131     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19132 {
19133 	char	*cp;
19134 	char	*endp;
19135 	long	id;
19136 	ill_t	*ill;
19137 	ipif_t	*ipif;
19138 	uint_t	ire_type;
19139 	boolean_t did_alloc = B_FALSE;
19140 	ipsq_t	*ipsq;
19141 
19142 	if (error != NULL)
19143 		*error = 0;
19144 
19145 	/*
19146 	 * If the caller wants to us to create the ipif, make sure we have a
19147 	 * valid zoneid
19148 	 */
19149 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19150 
19151 	if (namelen == 0) {
19152 		if (error != NULL)
19153 			*error = ENXIO;
19154 		return (NULL);
19155 	}
19156 
19157 	*exists = B_FALSE;
19158 	/* Look for a colon in the name. */
19159 	endp = &name[namelen];
19160 	for (cp = endp; --cp > name; ) {
19161 		if (*cp == IPIF_SEPARATOR_CHAR)
19162 			break;
19163 	}
19164 
19165 	if (*cp == IPIF_SEPARATOR_CHAR) {
19166 		/*
19167 		 * Reject any non-decimal aliases for logical
19168 		 * interfaces. Aliases with leading zeroes
19169 		 * are also rejected as they introduce ambiguity
19170 		 * in the naming of the interfaces.
19171 		 * In order to confirm with existing semantics,
19172 		 * and to not break any programs/script relying
19173 		 * on that behaviour, if<0>:0 is considered to be
19174 		 * a valid interface.
19175 		 *
19176 		 * If alias has two or more digits and the first
19177 		 * is zero, fail.
19178 		 */
19179 		if (&cp[2] < endp && cp[1] == '0') {
19180 			if (error != NULL)
19181 				*error = EINVAL;
19182 			return (NULL);
19183 		}
19184 	}
19185 
19186 	if (cp <= name) {
19187 		cp = endp;
19188 	} else {
19189 		*cp = '\0';
19190 	}
19191 
19192 	/*
19193 	 * Look up the ILL, based on the portion of the name
19194 	 * before the slash. ill_lookup_on_name returns a held ill.
19195 	 * Temporary to check whether ill exists already. If so
19196 	 * ill_lookup_on_name will clear it.
19197 	 */
19198 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19199 	    q, mp, func, error, &did_alloc, ipst);
19200 	if (cp != endp)
19201 		*cp = IPIF_SEPARATOR_CHAR;
19202 	if (ill == NULL)
19203 		return (NULL);
19204 
19205 	/* Establish the unit number in the name. */
19206 	id = 0;
19207 	if (cp < endp && *endp == '\0') {
19208 		/* If there was a colon, the unit number follows. */
19209 		cp++;
19210 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19211 			ill_refrele(ill);
19212 			if (error != NULL)
19213 				*error = ENXIO;
19214 			return (NULL);
19215 		}
19216 	}
19217 
19218 	GRAB_CONN_LOCK(q);
19219 	mutex_enter(&ill->ill_lock);
19220 	/* Now see if there is an IPIF with this unit number. */
19221 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19222 		if (ipif->ipif_id == id) {
19223 			if (zoneid != ALL_ZONES &&
19224 			    zoneid != ipif->ipif_zoneid &&
19225 			    ipif->ipif_zoneid != ALL_ZONES) {
19226 				mutex_exit(&ill->ill_lock);
19227 				RELEASE_CONN_LOCK(q);
19228 				ill_refrele(ill);
19229 				if (error != NULL)
19230 					*error = ENXIO;
19231 				return (NULL);
19232 			}
19233 			/*
19234 			 * The block comment at the start of ipif_down
19235 			 * explains the use of the macros used below
19236 			 */
19237 			if (IPIF_CAN_LOOKUP(ipif)) {
19238 				ipif_refhold_locked(ipif);
19239 				mutex_exit(&ill->ill_lock);
19240 				if (!did_alloc)
19241 					*exists = B_TRUE;
19242 				/*
19243 				 * Drop locks before calling ill_refrele
19244 				 * since it can potentially call into
19245 				 * ipif_ill_refrele_tail which can end up
19246 				 * in trying to acquire any lock.
19247 				 */
19248 				RELEASE_CONN_LOCK(q);
19249 				ill_refrele(ill);
19250 				return (ipif);
19251 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19252 				ipsq = ill->ill_phyint->phyint_ipsq;
19253 				mutex_enter(&ipsq->ipsq_lock);
19254 				mutex_exit(&ill->ill_lock);
19255 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19256 				mutex_exit(&ipsq->ipsq_lock);
19257 				RELEASE_CONN_LOCK(q);
19258 				ill_refrele(ill);
19259 				if (error != NULL)
19260 					*error = EINPROGRESS;
19261 				return (NULL);
19262 			}
19263 		}
19264 	}
19265 	RELEASE_CONN_LOCK(q);
19266 
19267 	if (!do_alloc) {
19268 		mutex_exit(&ill->ill_lock);
19269 		ill_refrele(ill);
19270 		if (error != NULL)
19271 			*error = ENXIO;
19272 		return (NULL);
19273 	}
19274 
19275 	/*
19276 	 * If none found, atomically allocate and return a new one.
19277 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19278 	 * to support "receive only" use of lo0:1 etc. as is still done
19279 	 * below as an initial guess.
19280 	 * However, this is now likely to be overriden later in ipif_up_done()
19281 	 * when we know for sure what address has been configured on the
19282 	 * interface, since we might have more than one loopback interface
19283 	 * with a loopback address, e.g. in the case of zones, and all the
19284 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19285 	 */
19286 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19287 		ire_type = IRE_LOOPBACK;
19288 	else
19289 		ire_type = IRE_LOCAL;
19290 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19291 	if (ipif != NULL)
19292 		ipif_refhold_locked(ipif);
19293 	else if (error != NULL)
19294 		*error = ENOMEM;
19295 	mutex_exit(&ill->ill_lock);
19296 	ill_refrele(ill);
19297 	return (ipif);
19298 }
19299 
19300 /*
19301  * This routine is called whenever a new address comes up on an ipif.  If
19302  * we are configured to respond to address mask requests, then we are supposed
19303  * to broadcast an address mask reply at this time.  This routine is also
19304  * called if we are already up, but a netmask change is made.  This is legal
19305  * but might not make the system manager very popular.	(May be called
19306  * as writer.)
19307  */
19308 void
19309 ipif_mask_reply(ipif_t *ipif)
19310 {
19311 	icmph_t	*icmph;
19312 	ipha_t	*ipha;
19313 	mblk_t	*mp;
19314 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19315 
19316 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19317 
19318 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19319 		return;
19320 
19321 	/* ICMP mask reply is IPv4 only */
19322 	ASSERT(!ipif->ipif_isv6);
19323 	/* ICMP mask reply is not for a loopback interface */
19324 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19325 
19326 	mp = allocb(REPLY_LEN, BPRI_HI);
19327 	if (mp == NULL)
19328 		return;
19329 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19330 
19331 	ipha = (ipha_t *)mp->b_rptr;
19332 	bzero(ipha, REPLY_LEN);
19333 	*ipha = icmp_ipha;
19334 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19335 	ipha->ipha_src = ipif->ipif_src_addr;
19336 	ipha->ipha_dst = ipif->ipif_brd_addr;
19337 	ipha->ipha_length = htons(REPLY_LEN);
19338 	ipha->ipha_ident = 0;
19339 
19340 	icmph = (icmph_t *)&ipha[1];
19341 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19342 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19343 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19344 
19345 	put(ipif->ipif_wq, mp);
19346 
19347 #undef	REPLY_LEN
19348 }
19349 
19350 /*
19351  * When the mtu in the ipif changes, we call this routine through ire_walk
19352  * to update all the relevant IREs.
19353  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19354  */
19355 static void
19356 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19357 {
19358 	ipif_t *ipif = (ipif_t *)ipif_arg;
19359 
19360 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19361 		return;
19362 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19363 }
19364 
19365 /*
19366  * When the mtu in the ill changes, we call this routine through ire_walk
19367  * to update all the relevant IREs.
19368  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19369  */
19370 void
19371 ill_mtu_change(ire_t *ire, char *ill_arg)
19372 {
19373 	ill_t	*ill = (ill_t *)ill_arg;
19374 
19375 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19376 		return;
19377 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19378 }
19379 
19380 /*
19381  * Join the ipif specific multicast groups.
19382  * Must be called after a mapping has been set up in the resolver.  (Always
19383  * called as writer.)
19384  */
19385 void
19386 ipif_multicast_up(ipif_t *ipif)
19387 {
19388 	int err, index;
19389 	ill_t *ill;
19390 
19391 	ASSERT(IAM_WRITER_IPIF(ipif));
19392 
19393 	ill = ipif->ipif_ill;
19394 	index = ill->ill_phyint->phyint_ifindex;
19395 
19396 	ip1dbg(("ipif_multicast_up\n"));
19397 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19398 		return;
19399 
19400 	if (ipif->ipif_isv6) {
19401 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19402 			return;
19403 
19404 		/* Join the all hosts multicast address */
19405 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19406 		/*
19407 		 * Passing B_TRUE means we have to join the multicast
19408 		 * membership on this interface even though this is
19409 		 * FAILED. If we join on a different one in the group,
19410 		 * we will not be able to delete the membership later
19411 		 * as we currently don't track where we join when we
19412 		 * join within the kernel unlike applications where
19413 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19414 		 * for more on this.
19415 		 */
19416 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19417 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19418 		if (err != 0) {
19419 			ip0dbg(("ipif_multicast_up: "
19420 			    "all_hosts_mcast failed %d\n",
19421 			    err));
19422 			return;
19423 		}
19424 		/*
19425 		 * Enable multicast for the solicited node multicast address
19426 		 */
19427 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19428 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19429 
19430 			ipv6_multi.s6_addr32[3] |=
19431 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19432 
19433 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19434 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19435 			    NULL);
19436 			if (err != 0) {
19437 				ip0dbg(("ipif_multicast_up: solicited MC"
19438 				    " failed %d\n", err));
19439 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19440 				    ill, ill->ill_phyint->phyint_ifindex,
19441 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19442 				return;
19443 			}
19444 		}
19445 	} else {
19446 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19447 			return;
19448 
19449 		/* Join the all hosts multicast address */
19450 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19451 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19452 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19453 		if (err) {
19454 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19455 			return;
19456 		}
19457 	}
19458 	ipif->ipif_multicast_up = 1;
19459 }
19460 
19461 /*
19462  * Blow away any multicast groups that we joined in ipif_multicast_up().
19463  * (Explicit memberships are blown away in ill_leave_multicast() when the
19464  * ill is brought down.)
19465  */
19466 static void
19467 ipif_multicast_down(ipif_t *ipif)
19468 {
19469 	int err;
19470 
19471 	ASSERT(IAM_WRITER_IPIF(ipif));
19472 
19473 	ip1dbg(("ipif_multicast_down\n"));
19474 	if (!ipif->ipif_multicast_up)
19475 		return;
19476 
19477 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19478 
19479 	if (!ipif->ipif_isv6) {
19480 		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
19481 		    B_TRUE);
19482 		if (err != 0)
19483 			ip0dbg(("ipif_multicast_down: failed %d\n", err));
19484 
19485 		ipif->ipif_multicast_up = 0;
19486 		return;
19487 	}
19488 
19489 	/*
19490 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19491 	 * we should look for ilms on this ill rather than the ones that have
19492 	 * been failed over here.  They are here temporarily. As
19493 	 * ipif_multicast_up has joined on this ill, we should delete only
19494 	 * from this ill.
19495 	 */
19496 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19497 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19498 	    B_TRUE, B_TRUE);
19499 	if (err != 0) {
19500 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19501 		    err));
19502 	}
19503 	/*
19504 	 * Disable multicast for the solicited node multicast address
19505 	 */
19506 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19507 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19508 
19509 		ipv6_multi.s6_addr32[3] |=
19510 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19511 
19512 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19513 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19514 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19515 
19516 		if (err != 0) {
19517 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19518 			    err));
19519 		}
19520 	}
19521 
19522 	ipif->ipif_multicast_up = 0;
19523 }
19524 
19525 /*
19526  * Used when an interface comes up to recreate any extra routes on this
19527  * interface.
19528  */
19529 static ire_t **
19530 ipif_recover_ire(ipif_t *ipif)
19531 {
19532 	mblk_t	*mp;
19533 	ire_t	**ipif_saved_irep;
19534 	ire_t	**irep;
19535 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19536 
19537 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19538 	    ipif->ipif_id));
19539 
19540 	mutex_enter(&ipif->ipif_saved_ire_lock);
19541 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19542 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19543 	if (ipif_saved_irep == NULL) {
19544 		mutex_exit(&ipif->ipif_saved_ire_lock);
19545 		return (NULL);
19546 	}
19547 
19548 	irep = ipif_saved_irep;
19549 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19550 		ire_t		*ire;
19551 		queue_t		*rfq;
19552 		queue_t		*stq;
19553 		ifrt_t		*ifrt;
19554 		uchar_t		*src_addr;
19555 		uchar_t		*gateway_addr;
19556 		ushort_t	type;
19557 
19558 		/*
19559 		 * When the ire was initially created and then added in
19560 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19561 		 * in the case of a traditional interface route, or as one of
19562 		 * the IRE_OFFSUBNET types (with the exception of
19563 		 * IRE_HOST types ire which is created by icmp_redirect() and
19564 		 * which we don't need to save or recover).  In the case where
19565 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19566 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19567 		 * to satisfy software like GateD and Sun Cluster which creates
19568 		 * routes using the the loopback interface's address as a
19569 		 * gateway.
19570 		 *
19571 		 * As ifrt->ifrt_type reflects the already updated ire_type,
19572 		 * ire_create() will be called in the same way here as
19573 		 * in ip_rt_add(), namely using ipif->ipif_net_type when
19574 		 * the route looks like a traditional interface route (where
19575 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19576 		 * the saved ifrt->ifrt_type.  This means that in the case where
19577 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19578 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19579 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19580 		 */
19581 		ifrt = (ifrt_t *)mp->b_rptr;
19582 		ASSERT(ifrt->ifrt_type != IRE_CACHE);
19583 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19584 			rfq = NULL;
19585 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19586 			    ? ipif->ipif_rq : ipif->ipif_wq;
19587 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19588 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19589 			    : (uint8_t *)&ipif->ipif_src_addr;
19590 			gateway_addr = NULL;
19591 			type = ipif->ipif_net_type;
19592 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19593 			/* Recover multiroute broadcast IRE. */
19594 			rfq = ipif->ipif_rq;
19595 			stq = ipif->ipif_wq;
19596 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19597 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19598 			    : (uint8_t *)&ipif->ipif_src_addr;
19599 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19600 			type = ifrt->ifrt_type;
19601 		} else {
19602 			rfq = NULL;
19603 			stq = NULL;
19604 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19605 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19606 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19607 			type = ifrt->ifrt_type;
19608 		}
19609 
19610 		/*
19611 		 * Create a copy of the IRE with the saved address and netmask.
19612 		 */
19613 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19614 		    "0x%x/0x%x\n",
19615 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19616 		    ntohl(ifrt->ifrt_addr),
19617 		    ntohl(ifrt->ifrt_mask)));
19618 		ire = ire_create(
19619 		    (uint8_t *)&ifrt->ifrt_addr,
19620 		    (uint8_t *)&ifrt->ifrt_mask,
19621 		    src_addr,
19622 		    gateway_addr,
19623 		    &ifrt->ifrt_max_frag,
19624 		    NULL,
19625 		    rfq,
19626 		    stq,
19627 		    type,
19628 		    ipif,
19629 		    0,
19630 		    0,
19631 		    0,
19632 		    ifrt->ifrt_flags,
19633 		    &ifrt->ifrt_iulp_info,
19634 		    NULL,
19635 		    NULL,
19636 		    ipst);
19637 
19638 		if (ire == NULL) {
19639 			mutex_exit(&ipif->ipif_saved_ire_lock);
19640 			kmem_free(ipif_saved_irep,
19641 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19642 			return (NULL);
19643 		}
19644 
19645 		/*
19646 		 * Some software (for example, GateD and Sun Cluster) attempts
19647 		 * to create (what amount to) IRE_PREFIX routes with the
19648 		 * loopback address as the gateway.  This is primarily done to
19649 		 * set up prefixes with the RTF_REJECT flag set (for example,
19650 		 * when generating aggregate routes.)
19651 		 *
19652 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19653 		 * IRE_LOOPBACK, then we map the request into a
19654 		 * IRE_IF_NORESOLVER.
19655 		 */
19656 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19657 			ire->ire_type = IRE_IF_NORESOLVER;
19658 		/*
19659 		 * ire held by ire_add, will be refreled' towards the
19660 		 * the end of ipif_up_done
19661 		 */
19662 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19663 		*irep = ire;
19664 		irep++;
19665 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19666 	}
19667 	mutex_exit(&ipif->ipif_saved_ire_lock);
19668 	return (ipif_saved_irep);
19669 }
19670 
19671 /*
19672  * Used to set the netmask and broadcast address to default values when the
19673  * interface is brought up.  (Always called as writer.)
19674  */
19675 static void
19676 ipif_set_default(ipif_t *ipif)
19677 {
19678 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19679 
19680 	if (!ipif->ipif_isv6) {
19681 		/*
19682 		 * Interface holds an IPv4 address. Default
19683 		 * mask is the natural netmask.
19684 		 */
19685 		if (!ipif->ipif_net_mask) {
19686 			ipaddr_t	v4mask;
19687 
19688 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19689 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19690 		}
19691 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19692 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19693 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19694 		} else {
19695 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19696 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19697 		}
19698 		/*
19699 		 * NOTE: SunOS 4.X does this even if the broadcast address
19700 		 * has been already set thus we do the same here.
19701 		 */
19702 		if (ipif->ipif_flags & IPIF_BROADCAST) {
19703 			ipaddr_t	v4addr;
19704 
19705 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19706 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19707 		}
19708 	} else {
19709 		/*
19710 		 * Interface holds an IPv6-only address.  Default
19711 		 * mask is all-ones.
19712 		 */
19713 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19714 			ipif->ipif_v6net_mask = ipv6_all_ones;
19715 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19716 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19717 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19718 		} else {
19719 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19720 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19721 		}
19722 	}
19723 }
19724 
19725 /*
19726  * Return 0 if this address can be used as local address without causing
19727  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19728  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19729  * Special checks are needed to allow the same IPv6 link-local address
19730  * on different ills.
19731  * TODO: allowing the same site-local address on different ill's.
19732  */
19733 int
19734 ip_addr_availability_check(ipif_t *new_ipif)
19735 {
19736 	in6_addr_t our_v6addr;
19737 	ill_t *ill;
19738 	ipif_t *ipif;
19739 	ill_walk_context_t ctx;
19740 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
19741 
19742 	ASSERT(IAM_WRITER_IPIF(new_ipif));
19743 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
19744 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
19745 
19746 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19747 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19748 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19749 		return (0);
19750 
19751 	our_v6addr = new_ipif->ipif_v6lcl_addr;
19752 
19753 	if (new_ipif->ipif_isv6)
19754 		ill = ILL_START_WALK_V6(&ctx, ipst);
19755 	else
19756 		ill = ILL_START_WALK_V4(&ctx, ipst);
19757 
19758 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19759 		for (ipif = ill->ill_ipif; ipif != NULL;
19760 		    ipif = ipif->ipif_next) {
19761 			if ((ipif == new_ipif) ||
19762 			    !(ipif->ipif_flags & IPIF_UP) ||
19763 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
19764 				continue;
19765 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19766 			    &our_v6addr)) {
19767 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19768 					new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19769 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19770 					ipif->ipif_flags |= IPIF_UNNUMBERED;
19771 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19772 				    new_ipif->ipif_ill != ill)
19773 					continue;
19774 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19775 				    new_ipif->ipif_ill != ill)
19776 					continue;
19777 				else if (new_ipif->ipif_zoneid !=
19778 				    ipif->ipif_zoneid &&
19779 				    ipif->ipif_zoneid != ALL_ZONES &&
19780 				    IS_LOOPBACK(ill))
19781 					continue;
19782 				else if (new_ipif->ipif_ill == ill)
19783 					return (EADDRINUSE);
19784 				else
19785 					return (EADDRNOTAVAIL);
19786 			}
19787 		}
19788 	}
19789 
19790 	return (0);
19791 }
19792 
19793 /*
19794  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19795  * IREs for the ipif.
19796  * When the routine returns EINPROGRESS then mp has been consumed and
19797  * the ioctl will be acked from ip_rput_dlpi.
19798  */
19799 static int
19800 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19801 {
19802 	ill_t	*ill = ipif->ipif_ill;
19803 	boolean_t isv6 = ipif->ipif_isv6;
19804 	int	err = 0;
19805 	boolean_t success;
19806 
19807 	ASSERT(IAM_WRITER_IPIF(ipif));
19808 
19809 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19810 
19811 	/* Shouldn't get here if it is already up. */
19812 	if (ipif->ipif_flags & IPIF_UP)
19813 		return (EALREADY);
19814 
19815 	/* Skip arp/ndp for any loopback interface. */
19816 	if (ill->ill_wq != NULL) {
19817 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
19818 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
19819 
19820 		if (!ill->ill_dl_up) {
19821 			/*
19822 			 * ill_dl_up is not yet set. i.e. we are yet to
19823 			 * DL_BIND with the driver and this is the first
19824 			 * logical interface on the ill to become "up".
19825 			 * Tell the driver to get going (via DL_BIND_REQ).
19826 			 * Note that changing "significant" IFF_ flags
19827 			 * address/netmask etc cause a down/up dance, but
19828 			 * does not cause an unbind (DL_UNBIND) with the driver
19829 			 */
19830 			return (ill_dl_up(ill, ipif, mp, q));
19831 		}
19832 
19833 		/*
19834 		 * ipif_resolver_up may end up sending an
19835 		 * AR_INTERFACE_UP message to ARP, which would, in
19836 		 * turn send a DLPI message to the driver. ioctls are
19837 		 * serialized and so we cannot send more than one
19838 		 * interface up message at a time. If ipif_resolver_up
19839 		 * does send an interface up message to ARP, we get
19840 		 * EINPROGRESS and we will complete in ip_arp_done.
19841 		 */
19842 
19843 		ASSERT(connp != NULL || !CONN_Q(q));
19844 		ASSERT(ipsq->ipsq_pending_mp == NULL);
19845 		if (connp != NULL)
19846 			mutex_enter(&connp->conn_lock);
19847 		mutex_enter(&ill->ill_lock);
19848 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19849 		mutex_exit(&ill->ill_lock);
19850 		if (connp != NULL)
19851 			mutex_exit(&connp->conn_lock);
19852 		if (!success)
19853 			return (EINTR);
19854 
19855 		/*
19856 		 * Crank up IPv6 neighbor discovery
19857 		 * Unlike ARP, this should complete when
19858 		 * ipif_ndp_up returns. However, for
19859 		 * ILLF_XRESOLV interfaces we also send a
19860 		 * AR_INTERFACE_UP to the external resolver.
19861 		 * That ioctl will complete in ip_rput.
19862 		 */
19863 		if (isv6) {
19864 			err = ipif_ndp_up(ipif);
19865 			if (err != 0) {
19866 				if (err != EINPROGRESS)
19867 					mp = ipsq_pending_mp_get(ipsq, &connp);
19868 				return (err);
19869 			}
19870 		}
19871 		/* Now, ARP */
19872 		err = ipif_resolver_up(ipif, Res_act_initial);
19873 		if (err == EINPROGRESS) {
19874 			/* We will complete it in ip_arp_done */
19875 			return (err);
19876 		}
19877 		mp = ipsq_pending_mp_get(ipsq, &connp);
19878 		ASSERT(mp != NULL);
19879 		if (err != 0)
19880 			return (err);
19881 	} else {
19882 		/*
19883 		 * Interfaces without underlying hardware don't do duplicate
19884 		 * address detection.
19885 		 */
19886 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19887 		ipif->ipif_addr_ready = 1;
19888 	}
19889 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19890 }
19891 
19892 /*
19893  * Perform a bind for the physical device.
19894  * When the routine returns EINPROGRESS then mp has been consumed and
19895  * the ioctl will be acked from ip_rput_dlpi.
19896  * Allocate an unbind message and save it until ipif_down.
19897  */
19898 static int
19899 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19900 {
19901 	areq_t	*areq;
19902 	mblk_t	*areq_mp = NULL;
19903 	mblk_t	*bind_mp = NULL;
19904 	mblk_t	*unbind_mp = NULL;
19905 	conn_t	*connp;
19906 	boolean_t success;
19907 	uint16_t sap_addr;
19908 
19909 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19910 	ASSERT(IAM_WRITER_ILL(ill));
19911 	ASSERT(mp != NULL);
19912 
19913 	/* Create a resolver cookie for ARP */
19914 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19915 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
19916 		if (areq_mp == NULL)
19917 			return (ENOMEM);
19918 
19919 		freemsg(ill->ill_resolver_mp);
19920 		ill->ill_resolver_mp = areq_mp;
19921 		areq = (areq_t *)areq_mp->b_rptr;
19922 		sap_addr = ill->ill_sap;
19923 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19924 	}
19925 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19926 	    DL_BIND_REQ);
19927 	if (bind_mp == NULL)
19928 		goto bad;
19929 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19930 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19931 
19932 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19933 	if (unbind_mp == NULL)
19934 		goto bad;
19935 
19936 	/*
19937 	 * Record state needed to complete this operation when the
19938 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
19939 	 */
19940 	ASSERT(WR(q)->q_next == NULL);
19941 	connp = Q_TO_CONN(q);
19942 
19943 	mutex_enter(&connp->conn_lock);
19944 	mutex_enter(&ipif->ipif_ill->ill_lock);
19945 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19946 	mutex_exit(&ipif->ipif_ill->ill_lock);
19947 	mutex_exit(&connp->conn_lock);
19948 	if (!success)
19949 		goto bad;
19950 
19951 	/*
19952 	 * Save the unbind message for ill_dl_down(); it will be consumed when
19953 	 * the interface goes down.
19954 	 */
19955 	ASSERT(ill->ill_unbind_mp == NULL);
19956 	ill->ill_unbind_mp = unbind_mp;
19957 
19958 	ill_dlpi_send(ill, bind_mp);
19959 	/* Send down link-layer capabilities probe if not already done. */
19960 	ill_capability_probe(ill);
19961 
19962 	/*
19963 	 * Sysid used to rely on the fact that netboots set domainname
19964 	 * and the like. Now that miniroot boots aren't strictly netboots
19965 	 * and miniroot network configuration is driven from userland
19966 	 * these things still need to be set. This situation can be detected
19967 	 * by comparing the interface being configured here to the one
19968 	 * dhcack was set to reference by the boot loader. Once sysid is
19969 	 * converted to use dhcp_ipc_getinfo() this call can go away.
19970 	 */
19971 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
19972 	    (strcmp(ill->ill_name, dhcack) == 0) &&
19973 	    (strlen(srpc_domain) == 0)) {
19974 		if (dhcpinit() != 0)
19975 			cmn_err(CE_WARN, "no cached dhcp response");
19976 	}
19977 
19978 	/*
19979 	 * This operation will complete in ip_rput_dlpi with either
19980 	 * a DL_BIND_ACK or DL_ERROR_ACK.
19981 	 */
19982 	return (EINPROGRESS);
19983 bad:
19984 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
19985 	/*
19986 	 * We don't have to check for possible removal from illgrp
19987 	 * as we have not yet inserted in illgrp. For groups
19988 	 * without names, this ipif is still not UP and hence
19989 	 * this could not have possibly had any influence in forming
19990 	 * groups.
19991 	 */
19992 
19993 	freemsg(bind_mp);
19994 	freemsg(unbind_mp);
19995 	return (ENOMEM);
19996 }
19997 
19998 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
19999 
20000 /*
20001  * DLPI and ARP is up.
20002  * Create all the IREs associated with an interface bring up multicast.
20003  * Set the interface flag and finish other initialization
20004  * that potentially had to be differed to after DL_BIND_ACK.
20005  */
20006 int
20007 ipif_up_done(ipif_t *ipif)
20008 {
20009 	ire_t	*ire_array[20];
20010 	ire_t	**irep = ire_array;
20011 	ire_t	**irep1;
20012 	ipaddr_t net_mask = 0;
20013 	ipaddr_t subnet_mask, route_mask;
20014 	ill_t	*ill = ipif->ipif_ill;
20015 	queue_t	*stq;
20016 	ipif_t	 *src_ipif;
20017 	ipif_t   *tmp_ipif;
20018 	boolean_t	flush_ire_cache = B_TRUE;
20019 	int	err = 0;
20020 	phyint_t *phyi;
20021 	ire_t	**ipif_saved_irep = NULL;
20022 	int ipif_saved_ire_cnt;
20023 	int	cnt;
20024 	boolean_t	src_ipif_held = B_FALSE;
20025 	boolean_t	ire_added = B_FALSE;
20026 	boolean_t	loopback = B_FALSE;
20027 	ip_stack_t	*ipst = ill->ill_ipst;
20028 
20029 	ip1dbg(("ipif_up_done(%s:%u)\n",
20030 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
20031 	/* Check if this is a loopback interface */
20032 	if (ipif->ipif_ill->ill_wq == NULL)
20033 		loopback = B_TRUE;
20034 
20035 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20036 	/*
20037 	 * If all other interfaces for this ill are down or DEPRECATED,
20038 	 * or otherwise unsuitable for source address selection, remove
20039 	 * any IRE_CACHE entries for this ill to make sure source
20040 	 * address selection gets to take this new ipif into account.
20041 	 * No need to hold ill_lock while traversing the ipif list since
20042 	 * we are writer
20043 	 */
20044 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20045 	    tmp_ipif = tmp_ipif->ipif_next) {
20046 		if (((tmp_ipif->ipif_flags &
20047 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20048 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20049 		    (tmp_ipif == ipif))
20050 			continue;
20051 		/* first useable pre-existing interface */
20052 		flush_ire_cache = B_FALSE;
20053 		break;
20054 	}
20055 	if (flush_ire_cache)
20056 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20057 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20058 
20059 	/*
20060 	 * Figure out which way the send-to queue should go.  Only
20061 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20062 	 * should show up here.
20063 	 */
20064 	switch (ill->ill_net_type) {
20065 	case IRE_IF_RESOLVER:
20066 		stq = ill->ill_rq;
20067 		break;
20068 	case IRE_IF_NORESOLVER:
20069 	case IRE_LOOPBACK:
20070 		stq = ill->ill_wq;
20071 		break;
20072 	default:
20073 		return (EINVAL);
20074 	}
20075 
20076 	if (IS_LOOPBACK(ill)) {
20077 		/*
20078 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20079 		 * ipif_lookup_on_name(), but in the case of zones we can have
20080 		 * several loopback addresses on lo0. So all the interfaces with
20081 		 * loopback addresses need to be marked IRE_LOOPBACK.
20082 		 */
20083 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20084 		    htonl(INADDR_LOOPBACK))
20085 			ipif->ipif_ire_type = IRE_LOOPBACK;
20086 		else
20087 			ipif->ipif_ire_type = IRE_LOCAL;
20088 	}
20089 
20090 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20091 		/*
20092 		 * Can't use our source address. Select a different
20093 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20094 		 */
20095 		src_ipif = ipif_select_source(ipif->ipif_ill,
20096 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20097 		if (src_ipif == NULL)
20098 			src_ipif = ipif;	/* Last resort */
20099 		else
20100 			src_ipif_held = B_TRUE;
20101 	} else {
20102 		src_ipif = ipif;
20103 	}
20104 
20105 	/* Create all the IREs associated with this interface */
20106 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20107 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20108 
20109 		/*
20110 		 * If we're on a labeled system then make sure that zone-
20111 		 * private addresses have proper remote host database entries.
20112 		 */
20113 		if (is_system_labeled() &&
20114 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20115 		    !tsol_check_interface_address(ipif))
20116 			return (EINVAL);
20117 
20118 		/* Register the source address for __sin6_src_id */
20119 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20120 		    ipif->ipif_zoneid, ipst);
20121 		if (err != 0) {
20122 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20123 			return (err);
20124 		}
20125 
20126 		/* If the interface address is set, create the local IRE. */
20127 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20128 		    (void *)ipif,
20129 		    ipif->ipif_ire_type,
20130 		    ntohl(ipif->ipif_lcl_addr)));
20131 		*irep++ = ire_create(
20132 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20133 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20134 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20135 		    NULL,				/* no gateway */
20136 		    &ip_loopback_mtuplus,		/* max frag size */
20137 		    NULL,
20138 		    ipif->ipif_rq,			/* recv-from queue */
20139 		    NULL,				/* no send-to queue */
20140 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20141 		    ipif,
20142 		    0,
20143 		    0,
20144 		    0,
20145 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20146 		    RTF_PRIVATE : 0,
20147 		    &ire_uinfo_null,
20148 		    NULL,
20149 		    NULL,
20150 		    ipst);
20151 	} else {
20152 		ip1dbg((
20153 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20154 		    ipif->ipif_ire_type,
20155 		    ntohl(ipif->ipif_lcl_addr),
20156 		    (uint_t)ipif->ipif_flags));
20157 	}
20158 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20159 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20160 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20161 	} else {
20162 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20163 	}
20164 
20165 	subnet_mask = ipif->ipif_net_mask;
20166 
20167 	/*
20168 	 * If mask was not specified, use natural netmask of
20169 	 * interface address. Also, store this mask back into the
20170 	 * ipif struct.
20171 	 */
20172 	if (subnet_mask == 0) {
20173 		subnet_mask = net_mask;
20174 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20175 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20176 		    ipif->ipif_v6subnet);
20177 	}
20178 
20179 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20180 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20181 	    ipif->ipif_subnet != INADDR_ANY) {
20182 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20183 
20184 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20185 			route_mask = IP_HOST_MASK;
20186 		} else {
20187 			route_mask = subnet_mask;
20188 		}
20189 
20190 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20191 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20192 		    (void *)ipif, (void *)ill,
20193 		    ill->ill_net_type,
20194 		    ntohl(ipif->ipif_subnet)));
20195 		*irep++ = ire_create(
20196 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20197 		    (uchar_t *)&route_mask,		/* mask */
20198 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20199 		    NULL,				/* no gateway */
20200 		    &ipif->ipif_mtu,			/* max frag */
20201 		    NULL,
20202 		    NULL,				/* no recv queue */
20203 		    stq,				/* send-to queue */
20204 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20205 		    ipif,
20206 		    0,
20207 		    0,
20208 		    0,
20209 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20210 		    &ire_uinfo_null,
20211 		    NULL,
20212 		    NULL,
20213 		    ipst);
20214 	}
20215 
20216 	/*
20217 	 * Create any necessary broadcast IREs.
20218 	 */
20219 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20220 	    (ipif->ipif_flags & IPIF_BROADCAST))
20221 		irep = ipif_create_bcast_ires(ipif, irep);
20222 
20223 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20224 
20225 	/* If an earlier ire_create failed, get out now */
20226 	for (irep1 = irep; irep1 > ire_array; ) {
20227 		irep1--;
20228 		if (*irep1 == NULL) {
20229 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20230 			err = ENOMEM;
20231 			goto bad;
20232 		}
20233 	}
20234 
20235 	/*
20236 	 * Need to atomically check for ip_addr_availablity_check
20237 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20238 	 * from group also.The ill_g_lock is grabbed as reader
20239 	 * just to make sure no new ills or new ipifs are being added
20240 	 * to the system while we are checking the uniqueness of addresses.
20241 	 */
20242 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20243 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20244 	/* Mark it up, and increment counters. */
20245 	ipif->ipif_flags |= IPIF_UP;
20246 	ill->ill_ipif_up_count++;
20247 	err = ip_addr_availability_check(ipif);
20248 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20249 	rw_exit(&ipst->ips_ill_g_lock);
20250 
20251 	if (err != 0) {
20252 		/*
20253 		 * Our address may already be up on the same ill. In this case,
20254 		 * the ARP entry for our ipif replaced the one for the other
20255 		 * ipif. So we don't want to delete it (otherwise the other ipif
20256 		 * would be unable to send packets).
20257 		 * ip_addr_availability_check() identifies this case for us and
20258 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20259 		 * which is the expected error code.
20260 		 */
20261 		if (err == EADDRINUSE) {
20262 			freemsg(ipif->ipif_arp_del_mp);
20263 			ipif->ipif_arp_del_mp = NULL;
20264 			err = EADDRNOTAVAIL;
20265 		}
20266 		ill->ill_ipif_up_count--;
20267 		ipif->ipif_flags &= ~IPIF_UP;
20268 		goto bad;
20269 	}
20270 
20271 	/*
20272 	 * Add in all newly created IREs.  ire_create_bcast() has
20273 	 * already checked for duplicates of the IRE_BROADCAST type.
20274 	 * We want to add before we call ifgrp_insert which wants
20275 	 * to know whether IRE_IF_RESOLVER exists or not.
20276 	 *
20277 	 * NOTE : We refrele the ire though we may branch to "bad"
20278 	 *	  later on where we do ire_delete. This is okay
20279 	 *	  because nobody can delete it as we are running
20280 	 *	  exclusively.
20281 	 */
20282 	for (irep1 = irep; irep1 > ire_array; ) {
20283 		irep1--;
20284 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20285 		/*
20286 		 * refheld by ire_add. refele towards the end of the func
20287 		 */
20288 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20289 	}
20290 	ire_added = B_TRUE;
20291 	/*
20292 	 * Form groups if possible.
20293 	 *
20294 	 * If we are supposed to be in a ill_group with a name, insert it
20295 	 * now as we know that at least one ipif is UP. Otherwise form
20296 	 * nameless groups.
20297 	 *
20298 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20299 	 * this ipif into the appropriate interface group, or create a
20300 	 * new one. If this is already in a nameless group, we try to form
20301 	 * a bigger group looking at other ills potentially sharing this
20302 	 * ipif's prefix.
20303 	 */
20304 	phyi = ill->ill_phyint;
20305 	if (phyi->phyint_groupname_len != 0) {
20306 		ASSERT(phyi->phyint_groupname != NULL);
20307 		if (ill->ill_ipif_up_count == 1) {
20308 			ASSERT(ill->ill_group == NULL);
20309 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20310 			    phyi->phyint_groupname, NULL, B_TRUE);
20311 			if (err != 0) {
20312 				ip1dbg(("ipif_up_done: illgrp allocation "
20313 				    "failed, error %d\n", err));
20314 				goto bad;
20315 			}
20316 		}
20317 		ASSERT(ill->ill_group != NULL);
20318 	}
20319 
20320 	/*
20321 	 * When this is part of group, we need to make sure that
20322 	 * any broadcast ires created because of this ipif coming
20323 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20324 	 * so that we don't receive duplicate broadcast packets.
20325 	 */
20326 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20327 		ipif_renominate_bcast(ipif);
20328 
20329 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20330 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20331 	ipif_saved_irep = ipif_recover_ire(ipif);
20332 
20333 	if (!loopback) {
20334 		/*
20335 		 * If the broadcast address has been set, make sure it makes
20336 		 * sense based on the interface address.
20337 		 * Only match on ill since we are sharing broadcast addresses.
20338 		 */
20339 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20340 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20341 			ire_t	*ire;
20342 
20343 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20344 			    IRE_BROADCAST, ipif, ALL_ZONES,
20345 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20346 
20347 			if (ire == NULL) {
20348 				/*
20349 				 * If there isn't a matching broadcast IRE,
20350 				 * revert to the default for this netmask.
20351 				 */
20352 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20353 				mutex_enter(&ipif->ipif_ill->ill_lock);
20354 				ipif_set_default(ipif);
20355 				mutex_exit(&ipif->ipif_ill->ill_lock);
20356 			} else {
20357 				ire_refrele(ire);
20358 			}
20359 		}
20360 
20361 	}
20362 
20363 	/* This is the first interface on this ill */
20364 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20365 		/*
20366 		 * Need to recover all multicast memberships in the driver.
20367 		 * This had to be deferred until we had attached.
20368 		 */
20369 		ill_recover_multicast(ill);
20370 	}
20371 	/* Join the allhosts multicast address */
20372 	ipif_multicast_up(ipif);
20373 
20374 	if (!loopback) {
20375 		/*
20376 		 * See whether anybody else would benefit from the
20377 		 * new ipif that we added. We call this always rather
20378 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20379 		 * ipif is for the benefit of illgrp_insert (done above)
20380 		 * which does not do source address selection as it does
20381 		 * not want to re-create interface routes that we are
20382 		 * having reference to it here.
20383 		 */
20384 		ill_update_source_selection(ill);
20385 	}
20386 
20387 	for (irep1 = irep; irep1 > ire_array; ) {
20388 		irep1--;
20389 		if (*irep1 != NULL) {
20390 			/* was held in ire_add */
20391 			ire_refrele(*irep1);
20392 		}
20393 	}
20394 
20395 	cnt = ipif_saved_ire_cnt;
20396 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20397 		if (*irep1 != NULL) {
20398 			/* was held in ire_add */
20399 			ire_refrele(*irep1);
20400 		}
20401 	}
20402 
20403 	if (!loopback && ipif->ipif_addr_ready) {
20404 		/* Broadcast an address mask reply. */
20405 		ipif_mask_reply(ipif);
20406 	}
20407 	if (ipif_saved_irep != NULL) {
20408 		kmem_free(ipif_saved_irep,
20409 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20410 	}
20411 	if (src_ipif_held)
20412 		ipif_refrele(src_ipif);
20413 
20414 	/*
20415 	 * This had to be deferred until we had bound.  Tell routing sockets and
20416 	 * others that this interface is up if it looks like the address has
20417 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20418 	 * duplicate address detection to do its thing.
20419 	 */
20420 	if (ipif->ipif_addr_ready) {
20421 		ip_rts_ifmsg(ipif);
20422 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20423 		/* Let SCTP update the status for this ipif */
20424 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20425 	}
20426 	return (0);
20427 
20428 bad:
20429 	ip1dbg(("ipif_up_done: FAILED \n"));
20430 	/*
20431 	 * We don't have to bother removing from ill groups because
20432 	 *
20433 	 * 1) For groups with names, we insert only when the first ipif
20434 	 *    comes up. In that case if it fails, it will not be in any
20435 	 *    group. So, we need not try to remove for that case.
20436 	 *
20437 	 * 2) For groups without names, either we tried to insert ipif_ill
20438 	 *    in a group as singleton or found some other group to become
20439 	 *    a bigger group. For the former, if it fails we don't have
20440 	 *    anything to do as ipif_ill is not in the group and for the
20441 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20442 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20443 	 */
20444 	while (irep > ire_array) {
20445 		irep--;
20446 		if (*irep != NULL) {
20447 			ire_delete(*irep);
20448 			if (ire_added)
20449 				ire_refrele(*irep);
20450 		}
20451 	}
20452 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20453 
20454 	if (ipif_saved_irep != NULL) {
20455 		kmem_free(ipif_saved_irep,
20456 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20457 	}
20458 	if (src_ipif_held)
20459 		ipif_refrele(src_ipif);
20460 
20461 	ipif_arp_down(ipif);
20462 	return (err);
20463 }
20464 
20465 /*
20466  * Turn off the ARP with the ILLF_NOARP flag.
20467  */
20468 static int
20469 ill_arp_off(ill_t *ill)
20470 {
20471 	mblk_t	*arp_off_mp = NULL;
20472 	mblk_t	*arp_on_mp = NULL;
20473 
20474 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20475 
20476 	ASSERT(IAM_WRITER_ILL(ill));
20477 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20478 
20479 	/*
20480 	 * If the on message is still around we've already done
20481 	 * an arp_off without doing an arp_on thus there is no
20482 	 * work needed.
20483 	 */
20484 	if (ill->ill_arp_on_mp != NULL)
20485 		return (0);
20486 
20487 	/*
20488 	 * Allocate an ARP on message (to be saved) and an ARP off message
20489 	 */
20490 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20491 	if (!arp_off_mp)
20492 		return (ENOMEM);
20493 
20494 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20495 	if (!arp_on_mp)
20496 		goto failed;
20497 
20498 	ASSERT(ill->ill_arp_on_mp == NULL);
20499 	ill->ill_arp_on_mp = arp_on_mp;
20500 
20501 	/* Send an AR_INTERFACE_OFF request */
20502 	putnext(ill->ill_rq, arp_off_mp);
20503 	return (0);
20504 failed:
20505 
20506 	if (arp_off_mp)
20507 		freemsg(arp_off_mp);
20508 	return (ENOMEM);
20509 }
20510 
20511 /*
20512  * Turn on ARP by turning off the ILLF_NOARP flag.
20513  */
20514 static int
20515 ill_arp_on(ill_t *ill)
20516 {
20517 	mblk_t	*mp;
20518 
20519 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20520 
20521 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20522 
20523 	ASSERT(IAM_WRITER_ILL(ill));
20524 	/*
20525 	 * Send an AR_INTERFACE_ON request if we have already done
20526 	 * an arp_off (which allocated the message).
20527 	 */
20528 	if (ill->ill_arp_on_mp != NULL) {
20529 		mp = ill->ill_arp_on_mp;
20530 		ill->ill_arp_on_mp = NULL;
20531 		putnext(ill->ill_rq, mp);
20532 	}
20533 	return (0);
20534 }
20535 
20536 /*
20537  * Called after either deleting ill from the group or when setting
20538  * FAILED or STANDBY on the interface.
20539  */
20540 static void
20541 illgrp_reset_schednext(ill_t *ill)
20542 {
20543 	ill_group_t *illgrp;
20544 	ill_t *save_ill;
20545 
20546 	ASSERT(IAM_WRITER_ILL(ill));
20547 	/*
20548 	 * When called from illgrp_delete, ill_group will be non-NULL.
20549 	 * But when called from ip_sioctl_flags, it could be NULL if
20550 	 * somebody is setting FAILED/INACTIVE on some interface which
20551 	 * is not part of a group.
20552 	 */
20553 	illgrp = ill->ill_group;
20554 	if (illgrp == NULL)
20555 		return;
20556 	if (illgrp->illgrp_ill_schednext != ill)
20557 		return;
20558 
20559 	illgrp->illgrp_ill_schednext = NULL;
20560 	save_ill = ill;
20561 	/*
20562 	 * Choose a good ill to be the next one for
20563 	 * outbound traffic. As the flags FAILED/STANDBY is
20564 	 * not yet marked when called from ip_sioctl_flags,
20565 	 * we check for ill separately.
20566 	 */
20567 	for (ill = illgrp->illgrp_ill; ill != NULL;
20568 	    ill = ill->ill_group_next) {
20569 		if ((ill != save_ill) &&
20570 		    !(ill->ill_phyint->phyint_flags &
20571 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20572 			illgrp->illgrp_ill_schednext = ill;
20573 			return;
20574 		}
20575 	}
20576 }
20577 
20578 /*
20579  * Given an ill, find the next ill in the group to be scheduled.
20580  * (This should be called by ip_newroute() before ire_create().)
20581  * The passed in ill may be pulled out of the group, after we have picked
20582  * up a different outgoing ill from the same group. However ire add will
20583  * atomically check this.
20584  */
20585 ill_t *
20586 illgrp_scheduler(ill_t *ill)
20587 {
20588 	ill_t *retill;
20589 	ill_group_t *illgrp;
20590 	int illcnt;
20591 	int i;
20592 	uint64_t flags;
20593 	ip_stack_t	*ipst = ill->ill_ipst;
20594 
20595 	/*
20596 	 * We don't use a lock to check for the ill_group. If this ill
20597 	 * is currently being inserted we may end up just returning this
20598 	 * ill itself. That is ok.
20599 	 */
20600 	if (ill->ill_group == NULL) {
20601 		ill_refhold(ill);
20602 		return (ill);
20603 	}
20604 
20605 	/*
20606 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20607 	 * a set of stable ills. No ill can be added or deleted or change
20608 	 * group while we hold the reader lock.
20609 	 */
20610 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20611 	if ((illgrp = ill->ill_group) == NULL) {
20612 		rw_exit(&ipst->ips_ill_g_lock);
20613 		ill_refhold(ill);
20614 		return (ill);
20615 	}
20616 
20617 	illcnt = illgrp->illgrp_ill_count;
20618 	mutex_enter(&illgrp->illgrp_lock);
20619 	retill = illgrp->illgrp_ill_schednext;
20620 
20621 	if (retill == NULL)
20622 		retill = illgrp->illgrp_ill;
20623 
20624 	/*
20625 	 * We do a circular search beginning at illgrp_ill_schednext
20626 	 * or illgrp_ill. We don't check the flags against the ill lock
20627 	 * since it can change anytime. The ire creation will be atomic
20628 	 * and will fail if the ill is FAILED or OFFLINE.
20629 	 */
20630 	for (i = 0; i < illcnt; i++) {
20631 		flags = retill->ill_phyint->phyint_flags;
20632 
20633 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20634 		    ILL_CAN_LOOKUP(retill)) {
20635 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
20636 			ill_refhold(retill);
20637 			break;
20638 		}
20639 		retill = retill->ill_group_next;
20640 		if (retill == NULL)
20641 			retill = illgrp->illgrp_ill;
20642 	}
20643 	mutex_exit(&illgrp->illgrp_lock);
20644 	rw_exit(&ipst->ips_ill_g_lock);
20645 
20646 	return (i == illcnt ? NULL : retill);
20647 }
20648 
20649 /*
20650  * Checks for availbility of a usable source address (if there is one) when the
20651  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20652  * this selection is done regardless of the destination.
20653  */
20654 boolean_t
20655 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20656 {
20657 	uint_t	ifindex;
20658 	ipif_t	*ipif = NULL;
20659 	ill_t	*uill;
20660 	boolean_t isv6;
20661 	ip_stack_t	*ipst = ill->ill_ipst;
20662 
20663 	ASSERT(ill != NULL);
20664 
20665 	isv6 = ill->ill_isv6;
20666 	ifindex = ill->ill_usesrc_ifindex;
20667 	if (ifindex != 0) {
20668 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20669 		    NULL, ipst);
20670 		if (uill == NULL)
20671 			return (NULL);
20672 		mutex_enter(&uill->ill_lock);
20673 		for (ipif = uill->ill_ipif; ipif != NULL;
20674 		    ipif = ipif->ipif_next) {
20675 			if (!IPIF_CAN_LOOKUP(ipif))
20676 				continue;
20677 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20678 				continue;
20679 			if (!(ipif->ipif_flags & IPIF_UP))
20680 				continue;
20681 			if (ipif->ipif_zoneid != zoneid)
20682 				continue;
20683 			if ((isv6 &&
20684 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20685 			    (ipif->ipif_lcl_addr == INADDR_ANY))
20686 				continue;
20687 			mutex_exit(&uill->ill_lock);
20688 			ill_refrele(uill);
20689 			return (B_TRUE);
20690 		}
20691 		mutex_exit(&uill->ill_lock);
20692 		ill_refrele(uill);
20693 	}
20694 	return (B_FALSE);
20695 }
20696 
20697 /*
20698  * Determine the best source address given a destination address and an ill.
20699  * Prefers non-deprecated over deprecated but will return a deprecated
20700  * address if there is no other choice. If there is a usable source address
20701  * on the interface pointed to by ill_usesrc_ifindex then that is given
20702  * first preference.
20703  *
20704  * Returns NULL if there is no suitable source address for the ill.
20705  * This only occurs when there is no valid source address for the ill.
20706  */
20707 ipif_t *
20708 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20709 {
20710 	ipif_t *ipif;
20711 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
20712 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20713 	int index = 0;
20714 	boolean_t wrapped = B_FALSE;
20715 	boolean_t same_subnet_only = B_FALSE;
20716 	boolean_t ipif_same_found, ipif_other_found;
20717 	boolean_t specific_found;
20718 	ill_t	*till, *usill = NULL;
20719 	tsol_tpc_t *src_rhtp, *dst_rhtp;
20720 	ip_stack_t	*ipst = ill->ill_ipst;
20721 
20722 	if (ill->ill_usesrc_ifindex != 0) {
20723 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
20724 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
20725 		if (usill != NULL)
20726 			ill = usill;	/* Select source from usesrc ILL */
20727 		else
20728 			return (NULL);
20729 	}
20730 
20731 	/*
20732 	 * If we're dealing with an unlabeled destination on a labeled system,
20733 	 * make sure that we ignore source addresses that are incompatible with
20734 	 * the destination's default label.  That destination's default label
20735 	 * must dominate the minimum label on the source address.
20736 	 */
20737 	dst_rhtp = NULL;
20738 	if (is_system_labeled()) {
20739 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20740 		if (dst_rhtp == NULL)
20741 			return (NULL);
20742 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20743 			TPC_RELE(dst_rhtp);
20744 			dst_rhtp = NULL;
20745 		}
20746 	}
20747 
20748 	/*
20749 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20750 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20751 	 * After selecting the right ipif, under ill_lock make sure ipif is
20752 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20753 	 * we retry. Inside the loop we still need to check for CONDEMNED,
20754 	 * but not under a lock.
20755 	 */
20756 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20757 
20758 retry:
20759 	till = ill;
20760 	ipif_arr[0] = NULL;
20761 
20762 	if (till->ill_group != NULL)
20763 		till = till->ill_group->illgrp_ill;
20764 
20765 	/*
20766 	 * Choose one good source address from each ill across the group.
20767 	 * If possible choose a source address in the same subnet as
20768 	 * the destination address.
20769 	 *
20770 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20771 	 * This is okay because of the following.
20772 	 *
20773 	 *    If PHYI_FAILED is set and we still have non-deprecated
20774 	 *    addresses, it means the addresses have not yet been
20775 	 *    failed over to a different interface. We potentially
20776 	 *    select them to create IRE_CACHES, which will be later
20777 	 *    flushed when the addresses move over.
20778 	 *
20779 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
20780 	 *    addresses, it means either the user has configured them
20781 	 *    or PHYI_INACTIVE has not been cleared after the addresses
20782 	 *    been moved over. For the former, in.mpathd does a failover
20783 	 *    when the interface becomes INACTIVE and hence we should
20784 	 *    not find them. Once INACTIVE is set, we don't allow them
20785 	 *    to create logical interfaces anymore. For the latter, a
20786 	 *    flush will happen when INACTIVE is cleared which will
20787 	 *    flush the IRE_CACHES.
20788 	 *
20789 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
20790 	 *    over soon. We potentially select them to create IRE_CACHEs,
20791 	 *    which will be later flushed when the addresses move over.
20792 	 *
20793 	 * NOTE : As ipif_select_source is called to borrow source address
20794 	 * for an ipif that is part of a group, source address selection
20795 	 * will be re-done whenever the group changes i.e either an
20796 	 * insertion/deletion in the group.
20797 	 *
20798 	 * Fill ipif_arr[] with source addresses, using these rules:
20799 	 *
20800 	 *	1. At most one source address from a given ill ends up
20801 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
20802 	 *	   associated with a given ill ends up in ipif_arr[].
20803 	 *
20804 	 *	2. If there is at least one non-deprecated ipif in the
20805 	 *	   IPMP group with a source address on the same subnet as
20806 	 *	   our destination, then fill ipif_arr[] only with
20807 	 *	   source addresses on the same subnet as our destination.
20808 	 *	   Note that because of (1), only the first
20809 	 *	   non-deprecated ipif found with a source address
20810 	 *	   matching the destination ends up in ipif_arr[].
20811 	 *
20812 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
20813 	 *	   addresses not in the same subnet as our destination.
20814 	 *	   Again, because of (1), only the first off-subnet source
20815 	 *	   address will be chosen.
20816 	 *
20817 	 *	4. If there are no non-deprecated ipifs, then just use
20818 	 *	   the source address associated with the last deprecated
20819 	 *	   one we find that happens to be on the same subnet,
20820 	 *	   otherwise the first one not in the same subnet.
20821 	 */
20822 	specific_found = B_FALSE;
20823 	for (; till != NULL; till = till->ill_group_next) {
20824 		ipif_same_found = B_FALSE;
20825 		ipif_other_found = B_FALSE;
20826 		for (ipif = till->ill_ipif; ipif != NULL;
20827 		    ipif = ipif->ipif_next) {
20828 			if (!IPIF_CAN_LOOKUP(ipif))
20829 				continue;
20830 			/* Always skip NOLOCAL and ANYCAST interfaces */
20831 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20832 				continue;
20833 			if (!(ipif->ipif_flags & IPIF_UP) ||
20834 			    !ipif->ipif_addr_ready)
20835 				continue;
20836 			if (ipif->ipif_zoneid != zoneid &&
20837 			    ipif->ipif_zoneid != ALL_ZONES)
20838 				continue;
20839 			/*
20840 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
20841 			 * but are not valid as source addresses.
20842 			 */
20843 			if (ipif->ipif_lcl_addr == INADDR_ANY)
20844 				continue;
20845 
20846 			/*
20847 			 * Check compatibility of local address for
20848 			 * destination's default label if we're on a labeled
20849 			 * system.  Incompatible addresses can't be used at
20850 			 * all.
20851 			 */
20852 			if (dst_rhtp != NULL) {
20853 				boolean_t incompat;
20854 
20855 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20856 				    IPV4_VERSION, B_FALSE);
20857 				if (src_rhtp == NULL)
20858 					continue;
20859 				incompat =
20860 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20861 				    src_rhtp->tpc_tp.tp_doi !=
20862 				    dst_rhtp->tpc_tp.tp_doi ||
20863 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20864 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20865 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20866 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
20867 				TPC_RELE(src_rhtp);
20868 				if (incompat)
20869 					continue;
20870 			}
20871 
20872 			/*
20873 			 * We prefer not to use all all-zones addresses, if we
20874 			 * can avoid it, as they pose problems with unlabeled
20875 			 * destinations.
20876 			 */
20877 			if (ipif->ipif_zoneid != ALL_ZONES) {
20878 				if (!specific_found &&
20879 				    (!same_subnet_only ||
20880 				    (ipif->ipif_net_mask & dst) ==
20881 				    ipif->ipif_subnet)) {
20882 					index = 0;
20883 					specific_found = B_TRUE;
20884 					ipif_other_found = B_FALSE;
20885 				}
20886 			} else {
20887 				if (specific_found)
20888 					continue;
20889 			}
20890 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
20891 				if (ipif_dep == NULL ||
20892 				    (ipif->ipif_net_mask & dst) ==
20893 				    ipif->ipif_subnet)
20894 					ipif_dep = ipif;
20895 				continue;
20896 			}
20897 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20898 				/* found a source address in the same subnet */
20899 				if (!same_subnet_only) {
20900 					same_subnet_only = B_TRUE;
20901 					index = 0;
20902 				}
20903 				ipif_same_found = B_TRUE;
20904 			} else {
20905 				if (same_subnet_only || ipif_other_found)
20906 					continue;
20907 				ipif_other_found = B_TRUE;
20908 			}
20909 			ipif_arr[index++] = ipif;
20910 			if (index == MAX_IPIF_SELECT_SOURCE) {
20911 				wrapped = B_TRUE;
20912 				index = 0;
20913 			}
20914 			if (ipif_same_found)
20915 				break;
20916 		}
20917 	}
20918 
20919 	if (ipif_arr[0] == NULL) {
20920 		ipif = ipif_dep;
20921 	} else {
20922 		if (wrapped)
20923 			index = MAX_IPIF_SELECT_SOURCE;
20924 		ipif = ipif_arr[ipif_rand(ipst) % index];
20925 		ASSERT(ipif != NULL);
20926 	}
20927 
20928 	if (ipif != NULL) {
20929 		mutex_enter(&ipif->ipif_ill->ill_lock);
20930 		if (!IPIF_CAN_LOOKUP(ipif)) {
20931 			mutex_exit(&ipif->ipif_ill->ill_lock);
20932 			goto retry;
20933 		}
20934 		ipif_refhold_locked(ipif);
20935 		mutex_exit(&ipif->ipif_ill->ill_lock);
20936 	}
20937 
20938 	rw_exit(&ipst->ips_ill_g_lock);
20939 	if (usill != NULL)
20940 		ill_refrele(usill);
20941 	if (dst_rhtp != NULL)
20942 		TPC_RELE(dst_rhtp);
20943 
20944 #ifdef DEBUG
20945 	if (ipif == NULL) {
20946 		char buf1[INET6_ADDRSTRLEN];
20947 
20948 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
20949 		    ill->ill_name,
20950 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
20951 	} else {
20952 		char buf1[INET6_ADDRSTRLEN];
20953 		char buf2[INET6_ADDRSTRLEN];
20954 
20955 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
20956 		    ipif->ipif_ill->ill_name,
20957 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
20958 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
20959 		    buf2, sizeof (buf2))));
20960 	}
20961 #endif /* DEBUG */
20962 	return (ipif);
20963 }
20964 
20965 
20966 /*
20967  * If old_ipif is not NULL, see if ipif was derived from old
20968  * ipif and if so, recreate the interface route by re-doing
20969  * source address selection. This happens when ipif_down ->
20970  * ipif_update_other_ipifs calls us.
20971  *
20972  * If old_ipif is NULL, just redo the source address selection
20973  * if needed. This happens when illgrp_insert or ipif_up_done
20974  * calls us.
20975  */
20976 static void
20977 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
20978 {
20979 	ire_t *ire;
20980 	ire_t *ipif_ire;
20981 	queue_t *stq;
20982 	ipif_t *nipif;
20983 	ill_t *ill;
20984 	boolean_t need_rele = B_FALSE;
20985 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
20986 
20987 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
20988 	ASSERT(IAM_WRITER_IPIF(ipif));
20989 
20990 	ill = ipif->ipif_ill;
20991 	if (!(ipif->ipif_flags &
20992 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
20993 		/*
20994 		 * Can't possibly have borrowed the source
20995 		 * from old_ipif.
20996 		 */
20997 		return;
20998 	}
20999 
21000 	/*
21001 	 * Is there any work to be done? No work if the address
21002 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21003 	 * ipif_select_source() does not borrow addresses from
21004 	 * NOLOCAL and ANYCAST interfaces).
21005 	 */
21006 	if ((old_ipif != NULL) &&
21007 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21008 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21009 	    (old_ipif->ipif_flags &
21010 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21011 		return;
21012 	}
21013 
21014 	/*
21015 	 * Perform the same checks as when creating the
21016 	 * IRE_INTERFACE in ipif_up_done.
21017 	 */
21018 	if (!(ipif->ipif_flags & IPIF_UP))
21019 		return;
21020 
21021 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21022 	    (ipif->ipif_subnet == INADDR_ANY))
21023 		return;
21024 
21025 	ipif_ire = ipif_to_ire(ipif);
21026 	if (ipif_ire == NULL)
21027 		return;
21028 
21029 	/*
21030 	 * We know that ipif uses some other source for its
21031 	 * IRE_INTERFACE. Is it using the source of this
21032 	 * old_ipif?
21033 	 */
21034 	if (old_ipif != NULL &&
21035 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21036 		ire_refrele(ipif_ire);
21037 		return;
21038 	}
21039 	if (ip_debug > 2) {
21040 		/* ip1dbg */
21041 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21042 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21043 	}
21044 
21045 	stq = ipif_ire->ire_stq;
21046 
21047 	/*
21048 	 * Can't use our source address. Select a different
21049 	 * source address for the IRE_INTERFACE.
21050 	 */
21051 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21052 	if (nipif == NULL) {
21053 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21054 		nipif = ipif;
21055 	} else {
21056 		need_rele = B_TRUE;
21057 	}
21058 
21059 	ire = ire_create(
21060 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21061 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21062 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21063 	    NULL,				/* no gateway */
21064 	    &ipif->ipif_mtu,			/* max frag */
21065 	    NULL,				/* no src nce */
21066 	    NULL,				/* no recv from queue */
21067 	    stq,				/* send-to queue */
21068 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21069 	    ipif,
21070 	    0,
21071 	    0,
21072 	    0,
21073 	    0,
21074 	    &ire_uinfo_null,
21075 	    NULL,
21076 	    NULL,
21077 	    ipst);
21078 
21079 	if (ire != NULL) {
21080 		ire_t *ret_ire;
21081 		int error;
21082 
21083 		/*
21084 		 * We don't need ipif_ire anymore. We need to delete
21085 		 * before we add so that ire_add does not detect
21086 		 * duplicates.
21087 		 */
21088 		ire_delete(ipif_ire);
21089 		ret_ire = ire;
21090 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21091 		ASSERT(error == 0);
21092 		ASSERT(ire == ret_ire);
21093 		/* Held in ire_add */
21094 		ire_refrele(ret_ire);
21095 	}
21096 	/*
21097 	 * Either we are falling through from above or could not
21098 	 * allocate a replacement.
21099 	 */
21100 	ire_refrele(ipif_ire);
21101 	if (need_rele)
21102 		ipif_refrele(nipif);
21103 }
21104 
21105 /*
21106  * This old_ipif is going away.
21107  *
21108  * Determine if any other ipif's is using our address as
21109  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21110  * IPIF_DEPRECATED).
21111  * Find the IRE_INTERFACE for such ipifs and recreate them
21112  * to use an different source address following the rules in
21113  * ipif_up_done.
21114  *
21115  * This function takes an illgrp as an argument so that illgrp_delete
21116  * can call this to update source address even after deleting the
21117  * old_ipif->ipif_ill from the ill group.
21118  */
21119 static void
21120 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21121 {
21122 	ipif_t *ipif;
21123 	ill_t *ill;
21124 	char	buf[INET6_ADDRSTRLEN];
21125 
21126 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21127 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21128 
21129 	ill = old_ipif->ipif_ill;
21130 
21131 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21132 	    ill->ill_name,
21133 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21134 	    buf, sizeof (buf))));
21135 	/*
21136 	 * If this part of a group, look at all ills as ipif_select_source
21137 	 * borrows source address across all the ills in the group.
21138 	 */
21139 	if (illgrp != NULL)
21140 		ill = illgrp->illgrp_ill;
21141 
21142 	for (; ill != NULL; ill = ill->ill_group_next) {
21143 		for (ipif = ill->ill_ipif; ipif != NULL;
21144 		    ipif = ipif->ipif_next) {
21145 
21146 			if (ipif == old_ipif)
21147 				continue;
21148 
21149 			ipif_recreate_interface_routes(old_ipif, ipif);
21150 		}
21151 	}
21152 }
21153 
21154 /* ARGSUSED */
21155 int
21156 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21157 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21158 {
21159 	/*
21160 	 * ill_phyint_reinit merged the v4 and v6 into a single
21161 	 * ipsq. Could also have become part of a ipmp group in the
21162 	 * process, and we might not have been able to complete the
21163 	 * operation in ipif_set_values, if we could not become
21164 	 * exclusive.  If so restart it here.
21165 	 */
21166 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21167 }
21168 
21169 
21170 /*
21171  * Can operate on either a module or a driver queue.
21172  * Returns an error if not a module queue.
21173  */
21174 /* ARGSUSED */
21175 int
21176 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21177     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21178 {
21179 	queue_t		*q1 = q;
21180 	char 		*cp;
21181 	char		interf_name[LIFNAMSIZ];
21182 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21183 
21184 	if (q->q_next == NULL) {
21185 		ip1dbg((
21186 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21187 		return (EINVAL);
21188 	}
21189 
21190 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21191 		return (EALREADY);
21192 
21193 	do {
21194 		q1 = q1->q_next;
21195 	} while (q1->q_next);
21196 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21197 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21198 
21199 	/*
21200 	 * Here we are not going to delay the ioack until after
21201 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21202 	 * original ioctl message before sending the requests.
21203 	 */
21204 	return (ipif_set_values(q, mp, interf_name, &ppa));
21205 }
21206 
21207 /* ARGSUSED */
21208 int
21209 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21210     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21211 {
21212 	return (ENXIO);
21213 }
21214 
21215 /*
21216  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
21217  * `irep'.  Returns a pointer to the next free `irep' entry (just like
21218  * ire_check_and_create_bcast()).
21219  */
21220 static ire_t **
21221 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
21222 {
21223 	ipaddr_t addr;
21224 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
21225 	ipaddr_t subnetmask = ipif->ipif_net_mask;
21226 	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
21227 
21228 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
21229 
21230 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
21231 
21232 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
21233 	    (ipif->ipif_flags & IPIF_NOLOCAL))
21234 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
21235 
21236 	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
21237 	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
21238 
21239 	/*
21240 	 * For backward compatibility, we create net broadcast IREs based on
21241 	 * the old "IP address class system", since some old machines only
21242 	 * respond to these class derived net broadcast.  However, we must not
21243 	 * create these net broadcast IREs if the subnetmask is shorter than
21244 	 * the IP address class based derived netmask.  Otherwise, we may
21245 	 * create a net broadcast address which is the same as an IP address
21246 	 * on the subnet -- and then TCP will refuse to talk to that address.
21247 	 */
21248 	if (netmask < subnetmask) {
21249 		addr = netmask & ipif->ipif_subnet;
21250 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21251 		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
21252 		    flags);
21253 	}
21254 
21255 	/*
21256 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
21257 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
21258 	 * created.  Creating these broadcast IREs will only create confusion
21259 	 * as `addr' will be the same as the IP address.
21260 	 */
21261 	if (subnetmask != 0xFFFFFFFF) {
21262 		addr = ipif->ipif_subnet;
21263 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21264 		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
21265 		    irep, flags);
21266 	}
21267 
21268 	return (irep);
21269 }
21270 
21271 /*
21272  * Broadcast IRE info structure used in the functions below.  Since we
21273  * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
21274  */
21275 typedef struct bcast_ireinfo {
21276 	uchar_t		bi_type;	/* BCAST_* value from below */
21277 	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
21278 			bi_needrep:1,	/* do we need to replace it? */
21279 			bi_haverep:1,	/* have we replaced it? */
21280 			bi_pad:5;
21281 	ipaddr_t	bi_addr;	/* IRE address */
21282 	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
21283 } bcast_ireinfo_t;
21284 
21285 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
21286 
21287 /*
21288  * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
21289  * return B_TRUE if it should immediately be used to recreate the IRE.
21290  */
21291 static boolean_t
21292 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
21293 {
21294 	ipaddr_t addr;
21295 
21296 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
21297 
21298 	switch (bireinfop->bi_type) {
21299 	case BCAST_NET:
21300 		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
21301 		if (addr != bireinfop->bi_addr)
21302 			return (B_FALSE);
21303 		break;
21304 	case BCAST_SUBNET:
21305 		if (ipif->ipif_subnet != bireinfop->bi_addr)
21306 			return (B_FALSE);
21307 		break;
21308 	}
21309 
21310 	bireinfop->bi_needrep = 1;
21311 	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
21312 		if (bireinfop->bi_backup == NULL)
21313 			bireinfop->bi_backup = ipif;
21314 		return (B_FALSE);
21315 	}
21316 	return (B_TRUE);
21317 }
21318 
21319 /*
21320  * Create the broadcast IREs described by `bireinfop' on `ipif', and return
21321  * them ala ire_check_and_create_bcast().
21322  */
21323 static ire_t **
21324 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
21325 {
21326 	ipaddr_t mask, addr;
21327 
21328 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
21329 
21330 	addr = bireinfop->bi_addr;
21331 	irep = ire_create_bcast(ipif, addr, irep);
21332 
21333 	switch (bireinfop->bi_type) {
21334 	case BCAST_NET:
21335 		mask = ip_net_mask(ipif->ipif_subnet);
21336 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21337 		break;
21338 	case BCAST_SUBNET:
21339 		mask = ipif->ipif_net_mask;
21340 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21341 		break;
21342 	}
21343 
21344 	bireinfop->bi_haverep = 1;
21345 	return (irep);
21346 }
21347 
21348 /*
21349  * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
21350  * going away, and determine if any of the broadcast IREs (named by `bireinfop')
21351  * that are going away are still needed.  If so, have ipif_create_bcast()
21352  * recreate them (except for the deprecated case, as explained below).
21353  */
21354 static ire_t **
21355 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
21356     ire_t **irep)
21357 {
21358 	int i;
21359 	ipif_t *ipif;
21360 
21361 	ASSERT(!ill->ill_isv6);
21362 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
21363 		/*
21364 		 * Skip this ipif if it's (a) the one being taken down, (b)
21365 		 * not in the same zone, or (c) has no valid local address.
21366 		 */
21367 		if (ipif == test_ipif ||
21368 		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
21369 		    ipif->ipif_subnet == 0 ||
21370 		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
21371 		    (IPIF_UP|IPIF_BROADCAST))
21372 			continue;
21373 
21374 		/*
21375 		 * For each dying IRE that hasn't yet been replaced, see if
21376 		 * `ipif' needs it and whether the IRE should be recreated on
21377 		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
21378 		 * will return B_FALSE even if `ipif' needs the IRE on the
21379 		 * hopes that we'll later find a needy non-deprecated ipif.
21380 		 * However, the ipif is recorded in bi_backup for possible
21381 		 * subsequent use by ipif_check_bcast_ires().
21382 		 */
21383 		for (i = 0; i < BCAST_COUNT; i++) {
21384 			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
21385 				continue;
21386 			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
21387 				continue;
21388 			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
21389 		}
21390 
21391 		/*
21392 		 * If we've replaced all of the broadcast IREs that are going
21393 		 * to be taken down, we know we're done.
21394 		 */
21395 		for (i = 0; i < BCAST_COUNT; i++) {
21396 			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
21397 				break;
21398 		}
21399 		if (i == BCAST_COUNT)
21400 			break;
21401 	}
21402 	return (irep);
21403 }
21404 
21405 /*
21406  * Check if `test_ipif' (which is going away) is associated with any existing
21407  * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
21408  * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
21409  * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
21410  *
21411  * This is necessary because broadcast IREs are shared.  In particular, a
21412  * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
21413  * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
21414  * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
21415  * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
21416  * same zone, they will share the same set of broadcast IREs.
21417  *
21418  * Note: the upper bound of 12 IREs comes from the worst case of replacing all
21419  * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
21420  * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
21421  */
21422 static void
21423 ipif_check_bcast_ires(ipif_t *test_ipif)
21424 {
21425 	ill_t		*ill = test_ipif->ipif_ill;
21426 	ire_t		*ire, *ire_array[12]; 		/* see note above */
21427 	ire_t		**irep1, **irep = &ire_array[0];
21428 	uint_t 		i, willdie;
21429 	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
21430 	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
21431 
21432 	ASSERT(!test_ipif->ipif_isv6);
21433 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21434 
21435 	/*
21436 	 * No broadcast IREs for the LOOPBACK interface
21437 	 * or others such as point to point and IPIF_NOXMIT.
21438 	 */
21439 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21440 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21441 		return;
21442 
21443 	bzero(bireinfo, sizeof (bireinfo));
21444 	bireinfo[0].bi_type = BCAST_ALLZEROES;
21445 	bireinfo[0].bi_addr = 0;
21446 
21447 	bireinfo[1].bi_type = BCAST_ALLONES;
21448 	bireinfo[1].bi_addr = INADDR_BROADCAST;
21449 
21450 	bireinfo[2].bi_type = BCAST_NET;
21451 	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
21452 
21453 	if (test_ipif->ipif_net_mask != 0)
21454 		mask = test_ipif->ipif_net_mask;
21455 	bireinfo[3].bi_type = BCAST_SUBNET;
21456 	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
21457 
21458 	/*
21459 	 * Figure out what (if any) broadcast IREs will die as a result of
21460 	 * `test_ipif' going away.  If none will die, we're done.
21461 	 */
21462 	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
21463 		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
21464 		    test_ipif, ALL_ZONES, NULL,
21465 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
21466 		if (ire != NULL) {
21467 			willdie++;
21468 			bireinfo[i].bi_willdie = 1;
21469 			ire_refrele(ire);
21470 		}
21471 	}
21472 
21473 	if (willdie == 0)
21474 		return;
21475 
21476 	/*
21477 	 * Walk through all the ipifs that will be affected by the dying IREs,
21478 	 * and recreate the IREs as necessary.
21479 	 */
21480 	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
21481 
21482 	/*
21483 	 * Scan through the set of broadcast IREs and see if there are any
21484 	 * that we need to replace that have not yet been replaced.  If so,
21485 	 * replace them using the appropriate backup ipif.
21486 	 */
21487 	for (i = 0; i < BCAST_COUNT; i++) {
21488 		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
21489 			irep = ipif_create_bcast(bireinfo[i].bi_backup,
21490 			    &bireinfo[i], irep);
21491 	}
21492 
21493 	/*
21494 	 * If we can't create all of them, don't add any of them.  (Code in
21495 	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
21496 	 * non-loopback copy and loopback copy for a given address.)
21497 	 */
21498 	for (irep1 = irep; irep1 > ire_array; ) {
21499 		irep1--;
21500 		if (*irep1 == NULL) {
21501 			ip0dbg(("ipif_check_bcast_ires: can't create "
21502 			    "IRE_BROADCAST, memory allocation failure\n"));
21503 			while (irep > ire_array) {
21504 				irep--;
21505 				if (*irep != NULL)
21506 					ire_delete(*irep);
21507 			}
21508 			return;
21509 		}
21510 	}
21511 
21512 	for (irep1 = irep; irep1 > ire_array; ) {
21513 		irep1--;
21514 		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
21515 			ire_refrele(*irep1);		/* Held in ire_add */
21516 	}
21517 }
21518 
21519 /*
21520  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21521  * from lifr_flags and the name from lifr_name.
21522  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21523  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21524  * Returns EINPROGRESS when mp has been consumed by queueing it on
21525  * ill_pending_mp and the ioctl will complete in ip_rput.
21526  *
21527  * Can operate on either a module or a driver queue.
21528  * Returns an error if not a module queue.
21529  */
21530 /* ARGSUSED */
21531 int
21532 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21533     ip_ioctl_cmd_t *ipip, void *if_req)
21534 {
21535 	int	err;
21536 	ill_t	*ill;
21537 	struct lifreq *lifr = (struct lifreq *)if_req;
21538 
21539 	ASSERT(ipif != NULL);
21540 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21541 
21542 	if (q->q_next == NULL) {
21543 		ip1dbg((
21544 		    "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21545 		return (EINVAL);
21546 	}
21547 
21548 	ill = (ill_t *)q->q_ptr;
21549 	/*
21550 	 * If we are not writer on 'q' then this interface exists already
21551 	 * and previous lookups (ipif_extract_lifreq()) found this ipif.
21552 	 * So return EALREADY
21553 	 */
21554 	if (ill != ipif->ipif_ill)
21555 		return (EALREADY);
21556 
21557 	if (ill->ill_name[0] != '\0')
21558 		return (EALREADY);
21559 
21560 	/*
21561 	 * Set all the flags. Allows all kinds of override. Provide some
21562 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21563 	 * unless there is either multicast/broadcast support in the driver
21564 	 * or it is a pt-pt link.
21565 	 */
21566 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21567 		/* Meaningless to IP thus don't allow them to be set. */
21568 		ip1dbg(("ip_setname: EINVAL 1\n"));
21569 		return (EINVAL);
21570 	}
21571 	/*
21572 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21573 	 * ill_bcast_addr_length info.
21574 	 */
21575 	if (!ill->ill_needs_attach &&
21576 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21577 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21578 	    ill->ill_bcast_addr_length == 0)) {
21579 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21580 		ip1dbg(("ip_setname: EINVAL 2\n"));
21581 		return (EINVAL);
21582 	}
21583 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21584 	    ((lifr->lifr_flags & IFF_IPV6) ||
21585 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21586 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21587 		ip1dbg(("ip_setname: EINVAL 3\n"));
21588 		return (EINVAL);
21589 	}
21590 	if (lifr->lifr_flags & IFF_UP) {
21591 		/* Can only be set with SIOCSLIFFLAGS */
21592 		ip1dbg(("ip_setname: EINVAL 4\n"));
21593 		return (EINVAL);
21594 	}
21595 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21596 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21597 		ip1dbg(("ip_setname: EINVAL 5\n"));
21598 		return (EINVAL);
21599 	}
21600 	/*
21601 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21602 	 */
21603 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21604 	    !(lifr->lifr_flags & IFF_IPV6) &&
21605 	    !(ipif->ipif_isv6)) {
21606 		ip1dbg(("ip_setname: EINVAL 6\n"));
21607 		return (EINVAL);
21608 	}
21609 
21610 	/*
21611 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21612 	 * we have all the flags here. So, we assign rather than we OR.
21613 	 * We can't OR the flags here because we don't want to set
21614 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21615 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21616 	 * on lifr_flags value here.
21617 	 */
21618 	/*
21619 	 * This ill has not been inserted into the global list.
21620 	 * So we are still single threaded and don't need any lock
21621 	 */
21622 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21623 	    ~IFF_DUPLICATE;
21624 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21625 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21626 
21627 	/* We started off as V4. */
21628 	if (ill->ill_flags & ILLF_IPV6) {
21629 		ill->ill_phyint->phyint_illv6 = ill;
21630 		ill->ill_phyint->phyint_illv4 = NULL;
21631 	}
21632 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
21633 	return (err);
21634 }
21635 
21636 /* ARGSUSED */
21637 int
21638 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21639     ip_ioctl_cmd_t *ipip, void *if_req)
21640 {
21641 	/*
21642 	 * ill_phyint_reinit merged the v4 and v6 into a single
21643 	 * ipsq. Could also have become part of a ipmp group in the
21644 	 * process, and we might not have been able to complete the
21645 	 * slifname in ipif_set_values, if we could not become
21646 	 * exclusive.  If so restart it here
21647 	 */
21648 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21649 }
21650 
21651 /*
21652  * Return a pointer to the ipif which matches the index, IP version type and
21653  * zoneid.
21654  */
21655 ipif_t *
21656 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21657     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
21658 {
21659 	ill_t	*ill;
21660 	ipif_t	*ipif = NULL;
21661 
21662 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21663 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
21664 
21665 	if (err != NULL)
21666 		*err = 0;
21667 
21668 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
21669 	if (ill != NULL) {
21670 		mutex_enter(&ill->ill_lock);
21671 		for (ipif = ill->ill_ipif; ipif != NULL;
21672 		    ipif = ipif->ipif_next) {
21673 			if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
21674 			    zoneid == ipif->ipif_zoneid ||
21675 			    ipif->ipif_zoneid == ALL_ZONES)) {
21676 				ipif_refhold_locked(ipif);
21677 				break;
21678 			}
21679 		}
21680 		mutex_exit(&ill->ill_lock);
21681 		ill_refrele(ill);
21682 		if (ipif == NULL && err != NULL)
21683 			*err = ENXIO;
21684 	}
21685 	return (ipif);
21686 }
21687 
21688 typedef struct conn_change_s {
21689 	uint_t cc_old_ifindex;
21690 	uint_t cc_new_ifindex;
21691 } conn_change_t;
21692 
21693 /*
21694  * ipcl_walk function for changing interface index.
21695  */
21696 static void
21697 conn_change_ifindex(conn_t *connp, caddr_t arg)
21698 {
21699 	conn_change_t *connc;
21700 	uint_t old_ifindex;
21701 	uint_t new_ifindex;
21702 	int i;
21703 	ilg_t *ilg;
21704 
21705 	connc = (conn_change_t *)arg;
21706 	old_ifindex = connc->cc_old_ifindex;
21707 	new_ifindex = connc->cc_new_ifindex;
21708 
21709 	if (connp->conn_orig_bound_ifindex == old_ifindex)
21710 		connp->conn_orig_bound_ifindex = new_ifindex;
21711 
21712 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
21713 		connp->conn_orig_multicast_ifindex = new_ifindex;
21714 
21715 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
21716 		connp->conn_orig_xmit_ifindex = new_ifindex;
21717 
21718 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21719 		ilg = &connp->conn_ilg[i];
21720 		if (ilg->ilg_orig_ifindex == old_ifindex)
21721 			ilg->ilg_orig_ifindex = new_ifindex;
21722 	}
21723 }
21724 
21725 /*
21726  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21727  * to new_index if it matches the old_index.
21728  *
21729  * Failovers typically happen within a group of ills. But somebody
21730  * can remove an ill from the group after a failover happened. If
21731  * we are setting the ifindex after this, we potentially need to
21732  * look at all the ills rather than just the ones in the group.
21733  * We cut down the work by looking at matching ill_net_types
21734  * and ill_types as we could not possibly grouped them together.
21735  */
21736 static void
21737 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21738 {
21739 	ill_t *ill;
21740 	ipif_t *ipif;
21741 	uint_t old_ifindex;
21742 	uint_t new_ifindex;
21743 	ilm_t *ilm;
21744 	ill_walk_context_t ctx;
21745 	ip_stack_t	*ipst = ill_orig->ill_ipst;
21746 
21747 	old_ifindex = connc->cc_old_ifindex;
21748 	new_ifindex = connc->cc_new_ifindex;
21749 
21750 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21751 	ill = ILL_START_WALK_ALL(&ctx, ipst);
21752 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21753 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21754 		    (ill_orig->ill_type != ill->ill_type)) {
21755 			continue;
21756 		}
21757 		for (ipif = ill->ill_ipif; ipif != NULL;
21758 		    ipif = ipif->ipif_next) {
21759 			if (ipif->ipif_orig_ifindex == old_ifindex)
21760 				ipif->ipif_orig_ifindex = new_ifindex;
21761 		}
21762 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21763 			if (ilm->ilm_orig_ifindex == old_ifindex)
21764 				ilm->ilm_orig_ifindex = new_ifindex;
21765 		}
21766 	}
21767 	rw_exit(&ipst->ips_ill_g_lock);
21768 }
21769 
21770 /*
21771  * We first need to ensure that the new index is unique, and
21772  * then carry the change across both v4 and v6 ill representation
21773  * of the physical interface.
21774  */
21775 /* ARGSUSED */
21776 int
21777 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21778     ip_ioctl_cmd_t *ipip, void *ifreq)
21779 {
21780 	ill_t		*ill;
21781 	ill_t		*ill_other;
21782 	phyint_t	*phyi;
21783 	int		old_index;
21784 	conn_change_t	connc;
21785 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21786 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21787 	uint_t	index;
21788 	ill_t	*ill_v4;
21789 	ill_t	*ill_v6;
21790 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21791 
21792 	if (ipip->ipi_cmd_type == IF_CMD)
21793 		index = ifr->ifr_index;
21794 	else
21795 		index = lifr->lifr_index;
21796 
21797 	/*
21798 	 * Only allow on physical interface. Also, index zero is illegal.
21799 	 *
21800 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21801 	 *
21802 	 * 1) If PHYI_FAILED is set, a failover could have happened which
21803 	 *    implies a possible failback might have to happen. As failback
21804 	 *    depends on the old index, we should fail setting the index.
21805 	 *
21806 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21807 	 *    any addresses or multicast memberships are failed over to
21808 	 *    a non-STANDBY interface. As failback depends on the old
21809 	 *    index, we should fail setting the index for this case also.
21810 	 *
21811 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21812 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
21813 	 */
21814 	ill = ipif->ipif_ill;
21815 	phyi = ill->ill_phyint;
21816 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21817 	    ipif->ipif_id != 0 || index == 0) {
21818 		return (EINVAL);
21819 	}
21820 	old_index = phyi->phyint_ifindex;
21821 
21822 	/* If the index is not changing, no work to do */
21823 	if (old_index == index)
21824 		return (0);
21825 
21826 	/*
21827 	 * Use ill_lookup_on_ifindex to determine if the
21828 	 * new index is unused and if so allow the change.
21829 	 */
21830 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
21831 	    ipst);
21832 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
21833 	    ipst);
21834 	if (ill_v6 != NULL || ill_v4 != NULL) {
21835 		if (ill_v4 != NULL)
21836 			ill_refrele(ill_v4);
21837 		if (ill_v6 != NULL)
21838 			ill_refrele(ill_v6);
21839 		return (EBUSY);
21840 	}
21841 
21842 	/*
21843 	 * The new index is unused. Set it in the phyint.
21844 	 * Locate the other ill so that we can send a routing
21845 	 * sockets message.
21846 	 */
21847 	if (ill->ill_isv6) {
21848 		ill_other = phyi->phyint_illv4;
21849 	} else {
21850 		ill_other = phyi->phyint_illv6;
21851 	}
21852 
21853 	phyi->phyint_ifindex = index;
21854 
21855 	/* Update SCTP's ILL list */
21856 	sctp_ill_reindex(ill, old_index);
21857 
21858 	connc.cc_old_ifindex = old_index;
21859 	connc.cc_new_ifindex = index;
21860 	ip_change_ifindex(ill, &connc);
21861 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
21862 
21863 	/* Send the routing sockets message */
21864 	ip_rts_ifmsg(ipif);
21865 	if (ill_other != NULL)
21866 		ip_rts_ifmsg(ill_other->ill_ipif);
21867 
21868 	return (0);
21869 }
21870 
21871 /* ARGSUSED */
21872 int
21873 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21874     ip_ioctl_cmd_t *ipip, void *ifreq)
21875 {
21876 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21877 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21878 
21879 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21880 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21881 	/* Get the interface index */
21882 	if (ipip->ipi_cmd_type == IF_CMD) {
21883 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21884 	} else {
21885 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21886 	}
21887 	return (0);
21888 }
21889 
21890 /* ARGSUSED */
21891 int
21892 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21893     ip_ioctl_cmd_t *ipip, void *ifreq)
21894 {
21895 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21896 
21897 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
21898 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21899 	/* Get the interface zone */
21900 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21901 	lifr->lifr_zoneid = ipif->ipif_zoneid;
21902 	return (0);
21903 }
21904 
21905 /*
21906  * Set the zoneid of an interface.
21907  */
21908 /* ARGSUSED */
21909 int
21910 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21911     ip_ioctl_cmd_t *ipip, void *ifreq)
21912 {
21913 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21914 	int err = 0;
21915 	boolean_t need_up = B_FALSE;
21916 	zone_t *zptr;
21917 	zone_status_t status;
21918 	zoneid_t zoneid;
21919 
21920 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21921 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
21922 		if (!is_system_labeled())
21923 			return (ENOTSUP);
21924 		zoneid = GLOBAL_ZONEID;
21925 	}
21926 
21927 	/* cannot assign instance zero to a non-global zone */
21928 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
21929 		return (ENOTSUP);
21930 
21931 	/*
21932 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
21933 	 * the event of a race with the zone shutdown processing, since IP
21934 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
21935 	 * interface will be cleaned up even if the zone is shut down
21936 	 * immediately after the status check. If the interface can't be brought
21937 	 * down right away, and the zone is shut down before the restart
21938 	 * function is called, we resolve the possible races by rechecking the
21939 	 * zone status in the restart function.
21940 	 */
21941 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
21942 		return (EINVAL);
21943 	status = zone_status_get(zptr);
21944 	zone_rele(zptr);
21945 
21946 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
21947 		return (EINVAL);
21948 
21949 	if (ipif->ipif_flags & IPIF_UP) {
21950 		/*
21951 		 * If the interface is already marked up,
21952 		 * we call ipif_down which will take care
21953 		 * of ditching any IREs that have been set
21954 		 * up based on the old interface address.
21955 		 */
21956 		err = ipif_logical_down(ipif, q, mp);
21957 		if (err == EINPROGRESS)
21958 			return (err);
21959 		ipif_down_tail(ipif);
21960 		need_up = B_TRUE;
21961 	}
21962 
21963 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
21964 	return (err);
21965 }
21966 
21967 static int
21968 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
21969     queue_t *q, mblk_t *mp, boolean_t need_up)
21970 {
21971 	int	err = 0;
21972 	ip_stack_t	*ipst;
21973 
21974 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
21975 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21976 
21977 	if (CONN_Q(q))
21978 		ipst = CONNQ_TO_IPST(q);
21979 	else
21980 		ipst = ILLQ_TO_IPST(q);
21981 
21982 	/*
21983 	 * For exclusive stacks we don't allow a different zoneid than
21984 	 * global.
21985 	 */
21986 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
21987 	    zoneid != GLOBAL_ZONEID)
21988 		return (EINVAL);
21989 
21990 	/* Set the new zone id. */
21991 	ipif->ipif_zoneid = zoneid;
21992 
21993 	/* Update sctp list */
21994 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
21995 
21996 	if (need_up) {
21997 		/*
21998 		 * Now bring the interface back up.  If this
21999 		 * is the only IPIF for the ILL, ipif_up
22000 		 * will have to re-bind to the device, so
22001 		 * we may get back EINPROGRESS, in which
22002 		 * case, this IOCTL will get completed in
22003 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22004 		 */
22005 		err = ipif_up(ipif, q, mp);
22006 	}
22007 	return (err);
22008 }
22009 
22010 /* ARGSUSED */
22011 int
22012 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22013     ip_ioctl_cmd_t *ipip, void *if_req)
22014 {
22015 	struct lifreq *lifr = (struct lifreq *)if_req;
22016 	zoneid_t zoneid;
22017 	zone_t *zptr;
22018 	zone_status_t status;
22019 
22020 	ASSERT(ipif->ipif_id != 0);
22021 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22022 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22023 		zoneid = GLOBAL_ZONEID;
22024 
22025 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22026 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22027 
22028 	/*
22029 	 * We recheck the zone status to resolve the following race condition:
22030 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22031 	 * 2) hme0:1 is up and can't be brought down right away;
22032 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22033 	 * 3) zone "myzone" is halted; the zone status switches to
22034 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22035 	 * the interfaces to remove - hme0:1 is not returned because it's not
22036 	 * yet in "myzone", so it won't be removed;
22037 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22038 	 * status check here, we would have hme0:1 in "myzone" after it's been
22039 	 * destroyed.
22040 	 * Note that if the status check fails, we need to bring the interface
22041 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22042 	 * ipif_up_done[_v6]().
22043 	 */
22044 	status = ZONE_IS_UNINITIALIZED;
22045 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22046 		status = zone_status_get(zptr);
22047 		zone_rele(zptr);
22048 	}
22049 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22050 		if (ipif->ipif_isv6) {
22051 			(void) ipif_up_done_v6(ipif);
22052 		} else {
22053 			(void) ipif_up_done(ipif);
22054 		}
22055 		return (EINVAL);
22056 	}
22057 
22058 	ipif_down_tail(ipif);
22059 
22060 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22061 	    B_TRUE));
22062 }
22063 
22064 /* ARGSUSED */
22065 int
22066 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22067 	ip_ioctl_cmd_t *ipip, void *ifreq)
22068 {
22069 	struct lifreq	*lifr = ifreq;
22070 
22071 	ASSERT(q->q_next == NULL);
22072 	ASSERT(CONN_Q(q));
22073 
22074 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22075 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22076 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22077 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22078 
22079 	return (0);
22080 }
22081 
22082 
22083 /* Find the previous ILL in this usesrc group */
22084 static ill_t *
22085 ill_prev_usesrc(ill_t *uill)
22086 {
22087 	ill_t *ill;
22088 
22089 	for (ill = uill->ill_usesrc_grp_next;
22090 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22091 	    ill = ill->ill_usesrc_grp_next)
22092 		/* do nothing */;
22093 	return (ill);
22094 }
22095 
22096 /*
22097  * Release all members of the usesrc group. This routine is called
22098  * from ill_delete when the interface being unplumbed is the
22099  * group head.
22100  */
22101 static void
22102 ill_disband_usesrc_group(ill_t *uill)
22103 {
22104 	ill_t *next_ill, *tmp_ill;
22105 	ip_stack_t	*ipst = uill->ill_ipst;
22106 
22107 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22108 	next_ill = uill->ill_usesrc_grp_next;
22109 
22110 	do {
22111 		ASSERT(next_ill != NULL);
22112 		tmp_ill = next_ill->ill_usesrc_grp_next;
22113 		ASSERT(tmp_ill != NULL);
22114 		next_ill->ill_usesrc_grp_next = NULL;
22115 		next_ill->ill_usesrc_ifindex = 0;
22116 		next_ill = tmp_ill;
22117 	} while (next_ill->ill_usesrc_ifindex != 0);
22118 	uill->ill_usesrc_grp_next = NULL;
22119 }
22120 
22121 /*
22122  * Remove the client usesrc ILL from the list and relink to a new list
22123  */
22124 int
22125 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22126 {
22127 	ill_t *ill, *tmp_ill;
22128 	ip_stack_t	*ipst = ucill->ill_ipst;
22129 
22130 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22131 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22132 
22133 	/*
22134 	 * Check if the usesrc client ILL passed in is not already
22135 	 * in use as a usesrc ILL i.e one whose source address is
22136 	 * in use OR a usesrc ILL is not already in use as a usesrc
22137 	 * client ILL
22138 	 */
22139 	if ((ucill->ill_usesrc_ifindex == 0) ||
22140 	    (uill->ill_usesrc_ifindex != 0)) {
22141 		return (-1);
22142 	}
22143 
22144 	ill = ill_prev_usesrc(ucill);
22145 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22146 
22147 	/* Remove from the current list */
22148 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22149 		/* Only two elements in the list */
22150 		ASSERT(ill->ill_usesrc_ifindex == 0);
22151 		ill->ill_usesrc_grp_next = NULL;
22152 	} else {
22153 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22154 	}
22155 
22156 	if (ifindex == 0) {
22157 		ucill->ill_usesrc_ifindex = 0;
22158 		ucill->ill_usesrc_grp_next = NULL;
22159 		return (0);
22160 	}
22161 
22162 	ucill->ill_usesrc_ifindex = ifindex;
22163 	tmp_ill = uill->ill_usesrc_grp_next;
22164 	uill->ill_usesrc_grp_next = ucill;
22165 	ucill->ill_usesrc_grp_next =
22166 	    (tmp_ill != NULL) ? tmp_ill : uill;
22167 	return (0);
22168 }
22169 
22170 /*
22171  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22172  * ip.c for locking details.
22173  */
22174 /* ARGSUSED */
22175 int
22176 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22177     ip_ioctl_cmd_t *ipip, void *ifreq)
22178 {
22179 	struct lifreq *lifr = (struct lifreq *)ifreq;
22180 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22181 	    ill_flag_changed = B_FALSE;
22182 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22183 	int err = 0, ret;
22184 	uint_t ifindex;
22185 	phyint_t *us_phyint, *us_cli_phyint;
22186 	ipsq_t *ipsq = NULL;
22187 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22188 
22189 	ASSERT(IAM_WRITER_IPIF(ipif));
22190 	ASSERT(q->q_next == NULL);
22191 	ASSERT(CONN_Q(q));
22192 
22193 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22194 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22195 
22196 	ASSERT(us_cli_phyint != NULL);
22197 
22198 	/*
22199 	 * If the client ILL is being used for IPMP, abort.
22200 	 * Note, this can be done before ipsq_try_enter since we are already
22201 	 * exclusive on this ILL
22202 	 */
22203 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22204 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22205 		return (EINVAL);
22206 	}
22207 
22208 	ifindex = lifr->lifr_index;
22209 	if (ifindex == 0) {
22210 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22211 			/* non usesrc group interface, nothing to reset */
22212 			return (0);
22213 		}
22214 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22215 		/* valid reset request */
22216 		reset_flg = B_TRUE;
22217 	}
22218 
22219 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22220 	    ip_process_ioctl, &err, ipst);
22221 
22222 	if (usesrc_ill == NULL) {
22223 		return (err);
22224 	}
22225 
22226 	/*
22227 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22228 	 * group nor can either of the interfaces be used for standy. So
22229 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22230 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22231 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22232 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22233 	 * the usesrc_cli_ill
22234 	 */
22235 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22236 	    NEW_OP, B_TRUE);
22237 	if (ipsq == NULL) {
22238 		err = EINPROGRESS;
22239 		/* Operation enqueued on the ipsq of the usesrc ILL */
22240 		goto done;
22241 	}
22242 
22243 	/* Check if the usesrc_ill is used for IPMP */
22244 	us_phyint = usesrc_ill->ill_phyint;
22245 	if ((us_phyint->phyint_groupname != NULL) ||
22246 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22247 		err = EINVAL;
22248 		goto done;
22249 	}
22250 
22251 	/*
22252 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22253 	 * already a client then return EINVAL
22254 	 */
22255 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22256 		err = EINVAL;
22257 		goto done;
22258 	}
22259 
22260 	/*
22261 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22262 	 * be then this is a duplicate operation.
22263 	 */
22264 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22265 		err = 0;
22266 		goto done;
22267 	}
22268 
22269 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22270 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22271 	    usesrc_ill->ill_isv6));
22272 
22273 	/*
22274 	 * The next step ensures that no new ires will be created referencing
22275 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22276 	 * we go through an ire walk deleting all ire caches that reference
22277 	 * the client ill. New ires referencing the client ill that are added
22278 	 * to the ire table before the ILL_CHANGING flag is set, will be
22279 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22280 	 * the client ill while the ILL_CHANGING flag is set will be failed
22281 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22282 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22283 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22284 	 * belong to the same usesrc group.
22285 	 */
22286 	mutex_enter(&usesrc_cli_ill->ill_lock);
22287 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22288 	mutex_exit(&usesrc_cli_ill->ill_lock);
22289 	ill_flag_changed = B_TRUE;
22290 
22291 	if (ipif->ipif_isv6)
22292 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22293 		    ALL_ZONES, ipst);
22294 	else
22295 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22296 		    ALL_ZONES, ipst);
22297 
22298 	/*
22299 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22300 	 * and the ill_usesrc_ifindex fields
22301 	 */
22302 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22303 
22304 	if (reset_flg) {
22305 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22306 		if (ret != 0) {
22307 			err = EINVAL;
22308 		}
22309 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22310 		goto done;
22311 	}
22312 
22313 	/*
22314 	 * Four possibilities to consider:
22315 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22316 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22317 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22318 	 * 4. Both are part of their respective usesrc groups
22319 	 */
22320 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22321 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22322 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22323 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22324 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22325 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22326 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22327 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22328 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22329 		/* Insert at head of list */
22330 		usesrc_cli_ill->ill_usesrc_grp_next =
22331 		    usesrc_ill->ill_usesrc_grp_next;
22332 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22333 	} else {
22334 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22335 		    ifindex);
22336 		if (ret != 0)
22337 			err = EINVAL;
22338 	}
22339 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22340 
22341 done:
22342 	if (ill_flag_changed) {
22343 		mutex_enter(&usesrc_cli_ill->ill_lock);
22344 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22345 		mutex_exit(&usesrc_cli_ill->ill_lock);
22346 	}
22347 	if (ipsq != NULL)
22348 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22349 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22350 	ill_refrele(usesrc_ill);
22351 	return (err);
22352 }
22353 
22354 /*
22355  * comparison function used by avl.
22356  */
22357 static int
22358 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22359 {
22360 
22361 	uint_t index;
22362 
22363 	ASSERT(phyip != NULL && index_ptr != NULL);
22364 
22365 	index = *((uint_t *)index_ptr);
22366 	/*
22367 	 * let the phyint with the lowest index be on top.
22368 	 */
22369 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22370 		return (1);
22371 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22372 		return (-1);
22373 	return (0);
22374 }
22375 
22376 /*
22377  * comparison function used by avl.
22378  */
22379 static int
22380 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22381 {
22382 	ill_t *ill;
22383 	int res = 0;
22384 
22385 	ASSERT(phyip != NULL && name_ptr != NULL);
22386 
22387 	if (((phyint_t *)phyip)->phyint_illv4)
22388 		ill = ((phyint_t *)phyip)->phyint_illv4;
22389 	else
22390 		ill = ((phyint_t *)phyip)->phyint_illv6;
22391 	ASSERT(ill != NULL);
22392 
22393 	res = strcmp(ill->ill_name, (char *)name_ptr);
22394 	if (res > 0)
22395 		return (1);
22396 	else if (res < 0)
22397 		return (-1);
22398 	return (0);
22399 }
22400 /*
22401  * This function is called from ill_delete when the ill is being
22402  * unplumbed. We remove the reference from the phyint and we also
22403  * free the phyint when there are no more references to it.
22404  */
22405 static void
22406 ill_phyint_free(ill_t *ill)
22407 {
22408 	phyint_t *phyi;
22409 	phyint_t *next_phyint;
22410 	ipsq_t *cur_ipsq;
22411 	ip_stack_t	*ipst = ill->ill_ipst;
22412 
22413 	ASSERT(ill->ill_phyint != NULL);
22414 
22415 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22416 	phyi = ill->ill_phyint;
22417 	ill->ill_phyint = NULL;
22418 	/*
22419 	 * ill_init allocates a phyint always to store the copy
22420 	 * of flags relevant to phyint. At that point in time, we could
22421 	 * not assign the name and hence phyint_illv4/v6 could not be
22422 	 * initialized. Later in ipif_set_values, we assign the name to
22423 	 * the ill, at which point in time we assign phyint_illv4/v6.
22424 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22425 	 */
22426 	if (ill->ill_flags & ILLF_IPV6) {
22427 		phyi->phyint_illv6 = NULL;
22428 	} else {
22429 		phyi->phyint_illv4 = NULL;
22430 	}
22431 	/*
22432 	 * ipif_down removes it from the group when the last ipif goes
22433 	 * down.
22434 	 */
22435 	ASSERT(ill->ill_group == NULL);
22436 
22437 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22438 		return;
22439 
22440 	/*
22441 	 * Make sure this phyint was put in the list.
22442 	 */
22443 	if (phyi->phyint_ifindex > 0) {
22444 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22445 		    phyi);
22446 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22447 		    phyi);
22448 	}
22449 	/*
22450 	 * remove phyint from the ipsq list.
22451 	 */
22452 	cur_ipsq = phyi->phyint_ipsq;
22453 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22454 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22455 	} else {
22456 		next_phyint = cur_ipsq->ipsq_phyint_list;
22457 		while (next_phyint != NULL) {
22458 			if (next_phyint->phyint_ipsq_next == phyi) {
22459 				next_phyint->phyint_ipsq_next =
22460 				    phyi->phyint_ipsq_next;
22461 				break;
22462 			}
22463 			next_phyint = next_phyint->phyint_ipsq_next;
22464 		}
22465 		ASSERT(next_phyint != NULL);
22466 	}
22467 	IPSQ_DEC_REF(cur_ipsq, ipst);
22468 
22469 	if (phyi->phyint_groupname_len != 0) {
22470 		ASSERT(phyi->phyint_groupname != NULL);
22471 		mi_free(phyi->phyint_groupname);
22472 	}
22473 	mi_free(phyi);
22474 }
22475 
22476 /*
22477  * Attach the ill to the phyint structure which can be shared by both
22478  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22479  * function is called from ipif_set_values and ill_lookup_on_name (for
22480  * loopback) where we know the name of the ill. We lookup the ill and if
22481  * there is one present already with the name use that phyint. Otherwise
22482  * reuse the one allocated by ill_init.
22483  */
22484 static void
22485 ill_phyint_reinit(ill_t *ill)
22486 {
22487 	boolean_t isv6 = ill->ill_isv6;
22488 	phyint_t *phyi_old;
22489 	phyint_t *phyi;
22490 	avl_index_t where = 0;
22491 	ill_t	*ill_other = NULL;
22492 	ipsq_t	*ipsq;
22493 	ip_stack_t	*ipst = ill->ill_ipst;
22494 
22495 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22496 
22497 	phyi_old = ill->ill_phyint;
22498 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22499 	    phyi_old->phyint_illv6 == NULL));
22500 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22501 	    phyi_old->phyint_illv4 == NULL));
22502 	ASSERT(phyi_old->phyint_ifindex == 0);
22503 
22504 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22505 	    ill->ill_name, &where);
22506 
22507 	/*
22508 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22509 	 *    the global list of ills. So no other thread could have located
22510 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22511 	 * 2. Now locate the other protocol instance of this ill.
22512 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22513 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22514 	 *    of neither ill can change.
22515 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22516 	 *    other ill.
22517 	 * 5. Release all locks.
22518 	 */
22519 
22520 	/*
22521 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22522 	 * we are initializing IPv4.
22523 	 */
22524 	if (phyi != NULL) {
22525 		ill_other = (isv6) ? phyi->phyint_illv4 :
22526 		    phyi->phyint_illv6;
22527 		ASSERT(ill_other->ill_phyint != NULL);
22528 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22529 		    (!isv6 && ill_other->ill_isv6));
22530 		GRAB_ILL_LOCKS(ill, ill_other);
22531 		/*
22532 		 * We are potentially throwing away phyint_flags which
22533 		 * could be different from the one that we obtain from
22534 		 * ill_other->ill_phyint. But it is okay as we are assuming
22535 		 * that the state maintained within IP is correct.
22536 		 */
22537 		mutex_enter(&phyi->phyint_lock);
22538 		if (isv6) {
22539 			ASSERT(phyi->phyint_illv6 == NULL);
22540 			phyi->phyint_illv6 = ill;
22541 		} else {
22542 			ASSERT(phyi->phyint_illv4 == NULL);
22543 			phyi->phyint_illv4 = ill;
22544 		}
22545 		/*
22546 		 * This is a new ill, currently undergoing SLIFNAME
22547 		 * So we could not have joined an IPMP group until now.
22548 		 */
22549 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22550 		    phyi_old->phyint_groupname == NULL);
22551 
22552 		/*
22553 		 * This phyi_old is going away. Decref ipsq_refs and
22554 		 * assert it is zero. The ipsq itself will be freed in
22555 		 * ipsq_exit
22556 		 */
22557 		ipsq = phyi_old->phyint_ipsq;
22558 		IPSQ_DEC_REF(ipsq, ipst);
22559 		ASSERT(ipsq->ipsq_refs == 0);
22560 		/* Get the singleton phyint out of the ipsq list */
22561 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22562 		ipsq->ipsq_phyint_list = NULL;
22563 		phyi_old->phyint_illv4 = NULL;
22564 		phyi_old->phyint_illv6 = NULL;
22565 		mi_free(phyi_old);
22566 	} else {
22567 		mutex_enter(&ill->ill_lock);
22568 		/*
22569 		 * We don't need to acquire any lock, since
22570 		 * the ill is not yet visible globally  and we
22571 		 * have not yet released the ill_g_lock.
22572 		 */
22573 		phyi = phyi_old;
22574 		mutex_enter(&phyi->phyint_lock);
22575 		/* XXX We need a recovery strategy here. */
22576 		if (!phyint_assign_ifindex(phyi, ipst))
22577 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22578 
22579 		/* No IPMP group yet, thus the hook uses the ifindex */
22580 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
22581 
22582 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22583 		    (void *)phyi, where);
22584 
22585 		(void) avl_find(&ipst->ips_phyint_g_list->
22586 		    phyint_list_avl_by_index,
22587 		    &phyi->phyint_ifindex, &where);
22588 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22589 		    (void *)phyi, where);
22590 	}
22591 
22592 	/*
22593 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
22594 	 * pending mp is not affected because that is per ill basis.
22595 	 */
22596 	ill->ill_phyint = phyi;
22597 
22598 	/*
22599 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
22600 	 * We do this here as when the first ipif was allocated,
22601 	 * ipif_allocate does not know the right interface index.
22602 	 */
22603 
22604 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22605 	/*
22606 	 * Now that the phyint's ifindex has been assigned, complete the
22607 	 * remaining
22608 	 */
22609 
22610 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
22611 	if (ill->ill_isv6) {
22612 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22613 		    ill->ill_phyint->phyint_ifindex;
22614 		ill->ill_mcast_type = ipst->ips_mld_max_version;
22615 	} else {
22616 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
22617 	}
22618 
22619 	/*
22620 	 * Generate an event within the hooks framework to indicate that
22621 	 * a new interface has just been added to IP.  For this event to
22622 	 * be generated, the network interface must, at least, have an
22623 	 * ifindex assigned to it.
22624 	 *
22625 	 * This needs to be run inside the ill_g_lock perimeter to ensure
22626 	 * that the ordering of delivered events to listeners matches the
22627 	 * order of them in the kernel.
22628 	 *
22629 	 * This function could be called from ill_lookup_on_name. In that case
22630 	 * the interface is loopback "lo", which will not generate a NIC event.
22631 	 */
22632 	if (ill->ill_name_length <= 2 ||
22633 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22634 		/*
22635 		 * Generate nic plumb event for ill_name even if
22636 		 * ipmp_hook_emulation is set. That avoids generating events
22637 		 * for the ill_names should ipmp_hook_emulation be turned on
22638 		 * later.
22639 		 */
22640 		ill_nic_info_plumb(ill, B_FALSE);
22641 	}
22642 	RELEASE_ILL_LOCKS(ill, ill_other);
22643 	mutex_exit(&phyi->phyint_lock);
22644 }
22645 
22646 /*
22647  * Allocate a NE_PLUMB nic info event and store in the ill.
22648  * If 'group' is set we do it for the group name, otherwise the ill name.
22649  * It will be sent when we leave the ipsq.
22650  */
22651 void
22652 ill_nic_info_plumb(ill_t *ill, boolean_t group)
22653 {
22654 	phyint_t	*phyi = ill->ill_phyint;
22655 	ip_stack_t	*ipst = ill->ill_ipst;
22656 	hook_nic_event_t *info;
22657 	char		*name;
22658 	int		namelen;
22659 
22660 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22661 
22662 	if ((info = ill->ill_nic_event_info) != NULL) {
22663 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
22664 		    "attached for %s\n", info->hne_event,
22665 		    ill->ill_name));
22666 		if (info->hne_data != NULL)
22667 			kmem_free(info->hne_data, info->hne_datalen);
22668 		kmem_free(info, sizeof (hook_nic_event_t));
22669 		ill->ill_nic_event_info = NULL;
22670 	}
22671 
22672 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22673 	if (info == NULL) {
22674 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
22675 		    "event information for %s (ENOMEM)\n",
22676 		    ill->ill_name));
22677 		return;
22678 	}
22679 
22680 	if (group) {
22681 		ASSERT(phyi->phyint_groupname_len != 0);
22682 		namelen = phyi->phyint_groupname_len;
22683 		name = phyi->phyint_groupname;
22684 	} else {
22685 		namelen = ill->ill_name_length;
22686 		name = ill->ill_name;
22687 	}
22688 
22689 	info->hne_nic = phyi->phyint_hook_ifindex;
22690 	info->hne_lif = 0;
22691 	info->hne_event = NE_PLUMB;
22692 	info->hne_family = ill->ill_isv6 ?
22693 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
22694 
22695 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
22696 	if (info->hne_data != NULL) {
22697 		info->hne_datalen = namelen;
22698 		bcopy(name, info->hne_data, info->hne_datalen);
22699 	} else {
22700 		ip2dbg(("ill_nic_info_plumb: could not attach "
22701 		    "name information for PLUMB nic event "
22702 		    "of %s (ENOMEM)\n", name));
22703 		kmem_free(info, sizeof (hook_nic_event_t));
22704 		info = NULL;
22705 	}
22706 	ill->ill_nic_event_info = info;
22707 }
22708 
22709 /*
22710  * Unhook the nic event message from the ill and enqueue it
22711  * into the nic event taskq.
22712  */
22713 void
22714 ill_nic_info_dispatch(ill_t *ill)
22715 {
22716 	hook_nic_event_t *info;
22717 
22718 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22719 
22720 	if ((info = ill->ill_nic_event_info) != NULL) {
22721 		if (ddi_taskq_dispatch(eventq_queue_nic,
22722 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
22723 			ip2dbg(("ill_nic_info_dispatch: "
22724 			    "ddi_taskq_dispatch failed\n"));
22725 			if (info->hne_data != NULL)
22726 				kmem_free(info->hne_data, info->hne_datalen);
22727 			kmem_free(info, sizeof (hook_nic_event_t));
22728 		}
22729 		ill->ill_nic_event_info = NULL;
22730 	}
22731 }
22732 
22733 /*
22734  * Notify any downstream modules of the name of this interface.
22735  * An M_IOCTL is used even though we don't expect a successful reply.
22736  * Any reply message from the driver (presumably an M_IOCNAK) will
22737  * eventually get discarded somewhere upstream.  The message format is
22738  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22739  * to IP.
22740  */
22741 static void
22742 ip_ifname_notify(ill_t *ill, queue_t *q)
22743 {
22744 	mblk_t *mp1, *mp2;
22745 	struct iocblk *iocp;
22746 	struct lifreq *lifr;
22747 
22748 	mp1 = mkiocb(SIOCSLIFNAME);
22749 	if (mp1 == NULL)
22750 		return;
22751 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22752 	if (mp2 == NULL) {
22753 		freeb(mp1);
22754 		return;
22755 	}
22756 
22757 	mp1->b_cont = mp2;
22758 	iocp = (struct iocblk *)mp1->b_rptr;
22759 	iocp->ioc_count = sizeof (struct lifreq);
22760 
22761 	lifr = (struct lifreq *)mp2->b_rptr;
22762 	mp2->b_wptr += sizeof (struct lifreq);
22763 	bzero(lifr, sizeof (struct lifreq));
22764 
22765 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22766 	lifr->lifr_ppa = ill->ill_ppa;
22767 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22768 
22769 	putnext(q, mp1);
22770 }
22771 
22772 static int
22773 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22774 {
22775 	int err;
22776 	ip_stack_t	*ipst = ill->ill_ipst;
22777 
22778 	/* Set the obsolete NDD per-interface forwarding name. */
22779 	err = ill_set_ndd_name(ill);
22780 	if (err != 0) {
22781 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22782 		    err);
22783 	}
22784 
22785 	/* Tell downstream modules where they are. */
22786 	ip_ifname_notify(ill, q);
22787 
22788 	/*
22789 	 * ill_dl_phys returns EINPROGRESS in the usual case.
22790 	 * Error cases are ENOMEM ...
22791 	 */
22792 	err = ill_dl_phys(ill, ipif, mp, q);
22793 
22794 	/*
22795 	 * If there is no IRE expiration timer running, get one started.
22796 	 * igmp and mld timers will be triggered by the first multicast
22797 	 */
22798 	if (ipst->ips_ip_ire_expire_id == 0) {
22799 		/*
22800 		 * acquire the lock and check again.
22801 		 */
22802 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
22803 		if (ipst->ips_ip_ire_expire_id == 0) {
22804 			ipst->ips_ip_ire_expire_id = timeout(
22805 			    ip_trash_timer_expire, ipst,
22806 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
22807 		}
22808 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
22809 	}
22810 
22811 	if (ill->ill_isv6) {
22812 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
22813 		if (ipst->ips_mld_slowtimeout_id == 0) {
22814 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
22815 			    (void *)ipst,
22816 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22817 		}
22818 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
22819 	} else {
22820 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
22821 		if (ipst->ips_igmp_slowtimeout_id == 0) {
22822 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
22823 			    (void *)ipst,
22824 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22825 		}
22826 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
22827 	}
22828 
22829 	return (err);
22830 }
22831 
22832 /*
22833  * Common routine for ppa and ifname setting. Should be called exclusive.
22834  *
22835  * Returns EINPROGRESS when mp has been consumed by queueing it on
22836  * ill_pending_mp and the ioctl will complete in ip_rput.
22837  *
22838  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22839  * the new name and new ppa in lifr_name and lifr_ppa respectively.
22840  * For SLIFNAME, we pass these values back to the userland.
22841  */
22842 static int
22843 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22844 {
22845 	ill_t	*ill;
22846 	ipif_t	*ipif;
22847 	ipsq_t	*ipsq;
22848 	char	*ppa_ptr;
22849 	char	*old_ptr;
22850 	char	old_char;
22851 	int	error;
22852 	ip_stack_t	*ipst;
22853 
22854 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22855 	ASSERT(q->q_next != NULL);
22856 	ASSERT(interf_name != NULL);
22857 
22858 	ill = (ill_t *)q->q_ptr;
22859 	ipst = ill->ill_ipst;
22860 
22861 	ASSERT(ill->ill_ipst != NULL);
22862 	ASSERT(ill->ill_name[0] == '\0');
22863 	ASSERT(IAM_WRITER_ILL(ill));
22864 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22865 	ASSERT(ill->ill_ppa == UINT_MAX);
22866 
22867 	/* The ppa is sent down by ifconfig or is chosen */
22868 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22869 		return (EINVAL);
22870 	}
22871 
22872 	/*
22873 	 * make sure ppa passed in is same as ppa in the name.
22874 	 * This check is not made when ppa == UINT_MAX in that case ppa
22875 	 * in the name could be anything. System will choose a ppa and
22876 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22877 	 */
22878 	if (*new_ppa_ptr != UINT_MAX) {
22879 		/* stoi changes the pointer */
22880 		old_ptr = ppa_ptr;
22881 		/*
22882 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22883 		 * (they don't have an externally visible ppa).  We assign one
22884 		 * here so that we can manage the interface.  Note that in
22885 		 * the past this value was always 0 for DLPI 1 drivers.
22886 		 */
22887 		if (*new_ppa_ptr == 0)
22888 			*new_ppa_ptr = stoi(&old_ptr);
22889 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22890 			return (EINVAL);
22891 	}
22892 	/*
22893 	 * terminate string before ppa
22894 	 * save char at that location.
22895 	 */
22896 	old_char = ppa_ptr[0];
22897 	ppa_ptr[0] = '\0';
22898 
22899 	ill->ill_ppa = *new_ppa_ptr;
22900 	/*
22901 	 * Finish as much work now as possible before calling ill_glist_insert
22902 	 * which makes the ill globally visible and also merges it with the
22903 	 * other protocol instance of this phyint. The remaining work is
22904 	 * done after entering the ipsq which may happen sometime later.
22905 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
22906 	 */
22907 	ipif = ill->ill_ipif;
22908 
22909 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22910 	ipif_assign_seqid(ipif);
22911 
22912 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22913 		ill->ill_flags |= ILLF_IPV4;
22914 
22915 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
22916 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22917 
22918 	if (ill->ill_flags & ILLF_IPV6) {
22919 
22920 		ill->ill_isv6 = B_TRUE;
22921 		if (ill->ill_rq != NULL) {
22922 			ill->ill_rq->q_qinfo = &iprinitv6;
22923 			ill->ill_wq->q_qinfo = &ipwinitv6;
22924 		}
22925 
22926 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22927 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22928 		ipif->ipif_v6src_addr = ipv6_all_zeros;
22929 		ipif->ipif_v6subnet = ipv6_all_zeros;
22930 		ipif->ipif_v6net_mask = ipv6_all_zeros;
22931 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
22932 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22933 		/*
22934 		 * point-to-point or Non-mulicast capable
22935 		 * interfaces won't do NUD unless explicitly
22936 		 * configured to do so.
22937 		 */
22938 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22939 		    !(ill->ill_flags & ILLF_MULTICAST)) {
22940 			ill->ill_flags |= ILLF_NONUD;
22941 		}
22942 		/* Make sure IPv4 specific flag is not set on IPv6 if */
22943 		if (ill->ill_flags & ILLF_NOARP) {
22944 			/*
22945 			 * Note: xresolv interfaces will eventually need
22946 			 * NOARP set here as well, but that will require
22947 			 * those external resolvers to have some
22948 			 * knowledge of that flag and act appropriately.
22949 			 * Not to be changed at present.
22950 			 */
22951 			ill->ill_flags &= ~ILLF_NOARP;
22952 		}
22953 		/*
22954 		 * Set the ILLF_ROUTER flag according to the global
22955 		 * IPv6 forwarding policy.
22956 		 */
22957 		if (ipst->ips_ipv6_forward != 0)
22958 			ill->ill_flags |= ILLF_ROUTER;
22959 	} else if (ill->ill_flags & ILLF_IPV4) {
22960 		ill->ill_isv6 = B_FALSE;
22961 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22962 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22963 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22964 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22965 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22966 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22967 		/*
22968 		 * Set the ILLF_ROUTER flag according to the global
22969 		 * IPv4 forwarding policy.
22970 		 */
22971 		if (ipst->ips_ip_g_forward != 0)
22972 			ill->ill_flags |= ILLF_ROUTER;
22973 	}
22974 
22975 	ASSERT(ill->ill_phyint != NULL);
22976 
22977 	/*
22978 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
22979 	 * be completed in ill_glist_insert -> ill_phyint_reinit
22980 	 */
22981 	if (!ill_allocate_mibs(ill))
22982 		return (ENOMEM);
22983 
22984 	/*
22985 	 * Pick a default sap until we get the DL_INFO_ACK back from
22986 	 * the driver.
22987 	 */
22988 	if (ill->ill_sap == 0) {
22989 		if (ill->ill_isv6)
22990 			ill->ill_sap  = IP6_DL_SAP;
22991 		else
22992 			ill->ill_sap  = IP_DL_SAP;
22993 	}
22994 
22995 	ill->ill_ifname_pending = 1;
22996 	ill->ill_ifname_pending_err = 0;
22997 
22998 	ill_refhold(ill);
22999 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23000 	if ((error = ill_glist_insert(ill, interf_name,
23001 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23002 		ill->ill_ppa = UINT_MAX;
23003 		ill->ill_name[0] = '\0';
23004 		/*
23005 		 * undo null termination done above.
23006 		 */
23007 		ppa_ptr[0] = old_char;
23008 		rw_exit(&ipst->ips_ill_g_lock);
23009 		ill_refrele(ill);
23010 		return (error);
23011 	}
23012 
23013 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23014 
23015 	/*
23016 	 * When we return the buffer pointed to by interf_name should contain
23017 	 * the same name as in ill_name.
23018 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23019 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23020 	 * so copy full name and update the ppa ptr.
23021 	 * When ppa passed in != UINT_MAX all values are correct just undo
23022 	 * null termination, this saves a bcopy.
23023 	 */
23024 	if (*new_ppa_ptr == UINT_MAX) {
23025 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23026 		*new_ppa_ptr = ill->ill_ppa;
23027 	} else {
23028 		/*
23029 		 * undo null termination done above.
23030 		 */
23031 		ppa_ptr[0] = old_char;
23032 	}
23033 
23034 	/* Let SCTP know about this ILL */
23035 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23036 
23037 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23038 	    B_TRUE);
23039 
23040 	rw_exit(&ipst->ips_ill_g_lock);
23041 	ill_refrele(ill);
23042 	if (ipsq == NULL)
23043 		return (EINPROGRESS);
23044 
23045 	/*
23046 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23047 	 */
23048 	if (ipsq->ipsq_current_ipif == NULL)
23049 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23050 	else
23051 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23052 
23053 	error = ipif_set_values_tail(ill, ipif, mp, q);
23054 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23055 	if (error != 0 && error != EINPROGRESS) {
23056 		/*
23057 		 * restore previous values
23058 		 */
23059 		ill->ill_isv6 = B_FALSE;
23060 	}
23061 	return (error);
23062 }
23063 
23064 
23065 void
23066 ipif_init(ip_stack_t *ipst)
23067 {
23068 	hrtime_t hrt;
23069 	int i;
23070 
23071 	/*
23072 	 * Can't call drv_getparm here as it is too early in the boot.
23073 	 * As we use ipif_src_random just for picking a different
23074 	 * source address everytime, this need not be really random.
23075 	 */
23076 	hrt = gethrtime();
23077 	ipst->ips_ipif_src_random =
23078 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23079 
23080 	for (i = 0; i < MAX_G_HEADS; i++) {
23081 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23082 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23083 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23084 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23085 	}
23086 
23087 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23088 	    ill_phyint_compare_index,
23089 	    sizeof (phyint_t),
23090 	    offsetof(struct phyint, phyint_avl_by_index));
23091 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23092 	    ill_phyint_compare_name,
23093 	    sizeof (phyint_t),
23094 	    offsetof(struct phyint, phyint_avl_by_name));
23095 }
23096 
23097 /*
23098  * Lookup the ipif corresponding to the onlink destination address. For
23099  * point-to-point interfaces, it matches with remote endpoint destination
23100  * address. For point-to-multipoint interfaces it only tries to match the
23101  * destination with the interface's subnet address. The longest, most specific
23102  * match is found to take care of such rare network configurations like -
23103  * le0: 129.146.1.1/16
23104  * le1: 129.146.2.2/24
23105  * It is used only by SO_DONTROUTE at the moment.
23106  */
23107 ipif_t *
23108 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23109 {
23110 	ipif_t	*ipif, *best_ipif;
23111 	ill_t	*ill;
23112 	ill_walk_context_t ctx;
23113 
23114 	ASSERT(zoneid != ALL_ZONES);
23115 	best_ipif = NULL;
23116 
23117 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23118 	ill = ILL_START_WALK_V4(&ctx, ipst);
23119 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23120 		mutex_enter(&ill->ill_lock);
23121 		for (ipif = ill->ill_ipif; ipif != NULL;
23122 		    ipif = ipif->ipif_next) {
23123 			if (!IPIF_CAN_LOOKUP(ipif))
23124 				continue;
23125 			if (ipif->ipif_zoneid != zoneid &&
23126 			    ipif->ipif_zoneid != ALL_ZONES)
23127 				continue;
23128 			/*
23129 			 * Point-to-point case. Look for exact match with
23130 			 * destination address.
23131 			 */
23132 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23133 				if (ipif->ipif_pp_dst_addr == addr) {
23134 					ipif_refhold_locked(ipif);
23135 					mutex_exit(&ill->ill_lock);
23136 					rw_exit(&ipst->ips_ill_g_lock);
23137 					if (best_ipif != NULL)
23138 						ipif_refrele(best_ipif);
23139 					return (ipif);
23140 				}
23141 			} else if (ipif->ipif_subnet == (addr &
23142 			    ipif->ipif_net_mask)) {
23143 				/*
23144 				 * Point-to-multipoint case. Looping through to
23145 				 * find the most specific match. If there are
23146 				 * multiple best match ipif's then prefer ipif's
23147 				 * that are UP. If there is only one best match
23148 				 * ipif and it is DOWN we must still return it.
23149 				 */
23150 				if ((best_ipif == NULL) ||
23151 				    (ipif->ipif_net_mask >
23152 				    best_ipif->ipif_net_mask) ||
23153 				    ((ipif->ipif_net_mask ==
23154 				    best_ipif->ipif_net_mask) &&
23155 				    ((ipif->ipif_flags & IPIF_UP) &&
23156 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23157 					ipif_refhold_locked(ipif);
23158 					mutex_exit(&ill->ill_lock);
23159 					rw_exit(&ipst->ips_ill_g_lock);
23160 					if (best_ipif != NULL)
23161 						ipif_refrele(best_ipif);
23162 					best_ipif = ipif;
23163 					rw_enter(&ipst->ips_ill_g_lock,
23164 					    RW_READER);
23165 					mutex_enter(&ill->ill_lock);
23166 				}
23167 			}
23168 		}
23169 		mutex_exit(&ill->ill_lock);
23170 	}
23171 	rw_exit(&ipst->ips_ill_g_lock);
23172 	return (best_ipif);
23173 }
23174 
23175 
23176 /*
23177  * Save enough information so that we can recreate the IRE if
23178  * the interface goes down and then up.
23179  */
23180 static void
23181 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23182 {
23183 	mblk_t	*save_mp;
23184 
23185 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23186 	if (save_mp != NULL) {
23187 		ifrt_t	*ifrt;
23188 
23189 		save_mp->b_wptr += sizeof (ifrt_t);
23190 		ifrt = (ifrt_t *)save_mp->b_rptr;
23191 		bzero(ifrt, sizeof (ifrt_t));
23192 		ifrt->ifrt_type = ire->ire_type;
23193 		ifrt->ifrt_addr = ire->ire_addr;
23194 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23195 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23196 		ifrt->ifrt_mask = ire->ire_mask;
23197 		ifrt->ifrt_flags = ire->ire_flags;
23198 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23199 		mutex_enter(&ipif->ipif_saved_ire_lock);
23200 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23201 		ipif->ipif_saved_ire_mp = save_mp;
23202 		ipif->ipif_saved_ire_cnt++;
23203 		mutex_exit(&ipif->ipif_saved_ire_lock);
23204 	}
23205 }
23206 
23207 
23208 static void
23209 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23210 {
23211 	mblk_t	**mpp;
23212 	mblk_t	*mp;
23213 	ifrt_t	*ifrt;
23214 
23215 	/* Remove from ipif_saved_ire_mp list if it is there */
23216 	mutex_enter(&ipif->ipif_saved_ire_lock);
23217 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23218 	    mpp = &(*mpp)->b_cont) {
23219 		/*
23220 		 * On a given ipif, the triple of address, gateway and
23221 		 * mask is unique for each saved IRE (in the case of
23222 		 * ordinary interface routes, the gateway address is
23223 		 * all-zeroes).
23224 		 */
23225 		mp = *mpp;
23226 		ifrt = (ifrt_t *)mp->b_rptr;
23227 		if (ifrt->ifrt_addr == ire->ire_addr &&
23228 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23229 		    ifrt->ifrt_mask == ire->ire_mask) {
23230 			*mpp = mp->b_cont;
23231 			ipif->ipif_saved_ire_cnt--;
23232 			freeb(mp);
23233 			break;
23234 		}
23235 	}
23236 	mutex_exit(&ipif->ipif_saved_ire_lock);
23237 }
23238 
23239 
23240 /*
23241  * IP multirouting broadcast routes handling
23242  * Append CGTP broadcast IREs to regular ones created
23243  * at ifconfig time.
23244  */
23245 static void
23246 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23247 {
23248 	ire_t *ire_prim;
23249 
23250 	ASSERT(ire != NULL);
23251 	ASSERT(ire_dst != NULL);
23252 
23253 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23254 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23255 	if (ire_prim != NULL) {
23256 		/*
23257 		 * We are in the special case of broadcasts for
23258 		 * CGTP. We add an IRE_BROADCAST that holds
23259 		 * the RTF_MULTIRT flag, the destination
23260 		 * address of ire_dst and the low level
23261 		 * info of ire_prim. In other words, CGTP
23262 		 * broadcast is added to the redundant ipif.
23263 		 */
23264 		ipif_t *ipif_prim;
23265 		ire_t  *bcast_ire;
23266 
23267 		ipif_prim = ire_prim->ire_ipif;
23268 
23269 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23270 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23271 		    (void *)ire_dst, (void *)ire_prim,
23272 		    (void *)ipif_prim));
23273 
23274 		bcast_ire = ire_create(
23275 		    (uchar_t *)&ire->ire_addr,
23276 		    (uchar_t *)&ip_g_all_ones,
23277 		    (uchar_t *)&ire_dst->ire_src_addr,
23278 		    (uchar_t *)&ire->ire_gateway_addr,
23279 		    &ipif_prim->ipif_mtu,
23280 		    NULL,
23281 		    ipif_prim->ipif_rq,
23282 		    ipif_prim->ipif_wq,
23283 		    IRE_BROADCAST,
23284 		    ipif_prim,
23285 		    0,
23286 		    0,
23287 		    0,
23288 		    ire->ire_flags,
23289 		    &ire_uinfo_null,
23290 		    NULL,
23291 		    NULL,
23292 		    ipst);
23293 
23294 		if (bcast_ire != NULL) {
23295 
23296 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23297 			    B_FALSE) == 0) {
23298 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23299 				    "added bcast_ire %p\n",
23300 				    (void *)bcast_ire));
23301 
23302 				ipif_save_ire(bcast_ire->ire_ipif,
23303 				    bcast_ire);
23304 				ire_refrele(bcast_ire);
23305 			}
23306 		}
23307 		ire_refrele(ire_prim);
23308 	}
23309 }
23310 
23311 
23312 /*
23313  * IP multirouting broadcast routes handling
23314  * Remove the broadcast ire
23315  */
23316 static void
23317 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23318 {
23319 	ire_t *ire_dst;
23320 
23321 	ASSERT(ire != NULL);
23322 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23323 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23324 	if (ire_dst != NULL) {
23325 		ire_t *ire_prim;
23326 
23327 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23328 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23329 		if (ire_prim != NULL) {
23330 			ipif_t *ipif_prim;
23331 			ire_t  *bcast_ire;
23332 
23333 			ipif_prim = ire_prim->ire_ipif;
23334 
23335 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23336 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23337 			    (void *)ire_dst, (void *)ire_prim,
23338 			    (void *)ipif_prim));
23339 
23340 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23341 			    ire->ire_gateway_addr,
23342 			    IRE_BROADCAST,
23343 			    ipif_prim, ALL_ZONES,
23344 			    NULL,
23345 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23346 			    MATCH_IRE_MASK, ipst);
23347 
23348 			if (bcast_ire != NULL) {
23349 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23350 				    "looked up bcast_ire %p\n",
23351 				    (void *)bcast_ire));
23352 				ipif_remove_ire(bcast_ire->ire_ipif,
23353 				    bcast_ire);
23354 				ire_delete(bcast_ire);
23355 			}
23356 			ire_refrele(ire_prim);
23357 		}
23358 		ire_refrele(ire_dst);
23359 	}
23360 }
23361 
23362 /*
23363  * IPsec hardware acceleration capabilities related functions.
23364  */
23365 
23366 /*
23367  * Free a per-ill IPsec capabilities structure.
23368  */
23369 static void
23370 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23371 {
23372 	if (capab->auth_hw_algs != NULL)
23373 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23374 	if (capab->encr_hw_algs != NULL)
23375 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23376 	if (capab->encr_algparm != NULL)
23377 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23378 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23379 }
23380 
23381 /*
23382  * Allocate a new per-ill IPsec capabilities structure. This structure
23383  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23384  * an array which specifies, for each algorithm, whether this algorithm
23385  * is supported by the ill or not.
23386  */
23387 static ill_ipsec_capab_t *
23388 ill_ipsec_capab_alloc(void)
23389 {
23390 	ill_ipsec_capab_t *capab;
23391 	uint_t nelems;
23392 
23393 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23394 	if (capab == NULL)
23395 		return (NULL);
23396 
23397 	/* we need one bit per algorithm */
23398 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23399 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23400 
23401 	/* allocate memory to store algorithm flags */
23402 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23403 	if (capab->encr_hw_algs == NULL)
23404 		goto nomem;
23405 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23406 	if (capab->auth_hw_algs == NULL)
23407 		goto nomem;
23408 	/*
23409 	 * Leave encr_algparm NULL for now since we won't need it half
23410 	 * the time
23411 	 */
23412 	return (capab);
23413 
23414 nomem:
23415 	ill_ipsec_capab_free(capab);
23416 	return (NULL);
23417 }
23418 
23419 /*
23420  * Resize capability array.  Since we're exclusive, this is OK.
23421  */
23422 static boolean_t
23423 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23424 {
23425 	ipsec_capab_algparm_t *nalp, *oalp;
23426 	uint32_t olen, nlen;
23427 
23428 	oalp = capab->encr_algparm;
23429 	olen = capab->encr_algparm_size;
23430 
23431 	if (oalp != NULL) {
23432 		if (algid < capab->encr_algparm_end)
23433 			return (B_TRUE);
23434 	}
23435 
23436 	nlen = (algid + 1) * sizeof (*nalp);
23437 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23438 	if (nalp == NULL)
23439 		return (B_FALSE);
23440 
23441 	if (oalp != NULL) {
23442 		bcopy(oalp, nalp, olen);
23443 		kmem_free(oalp, olen);
23444 	}
23445 	capab->encr_algparm = nalp;
23446 	capab->encr_algparm_size = nlen;
23447 	capab->encr_algparm_end = algid + 1;
23448 
23449 	return (B_TRUE);
23450 }
23451 
23452 /*
23453  * Compare the capabilities of the specified ill with the protocol
23454  * and algorithms specified by the SA passed as argument.
23455  * If they match, returns B_TRUE, B_FALSE if they do not match.
23456  *
23457  * The ill can be passed as a pointer to it, or by specifying its index
23458  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23459  *
23460  * Called by ipsec_out_is_accelerated() do decide whether an outbound
23461  * packet is eligible for hardware acceleration, and by
23462  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23463  * to a particular ill.
23464  */
23465 boolean_t
23466 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23467     ipsa_t *sa, netstack_t *ns)
23468 {
23469 	boolean_t sa_isv6;
23470 	uint_t algid;
23471 	struct ill_ipsec_capab_s *cpp;
23472 	boolean_t need_refrele = B_FALSE;
23473 	ip_stack_t	*ipst = ns->netstack_ip;
23474 
23475 	if (ill == NULL) {
23476 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23477 		    NULL, NULL, NULL, ipst);
23478 		if (ill == NULL) {
23479 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23480 			return (B_FALSE);
23481 		}
23482 		need_refrele = B_TRUE;
23483 	}
23484 
23485 	/*
23486 	 * Use the address length specified by the SA to determine
23487 	 * if it corresponds to a IPv6 address, and fail the matching
23488 	 * if the isv6 flag passed as argument does not match.
23489 	 * Note: this check is used for SADB capability checking before
23490 	 * sending SA information to an ill.
23491 	 */
23492 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23493 	if (sa_isv6 != ill_isv6)
23494 		/* protocol mismatch */
23495 		goto done;
23496 
23497 	/*
23498 	 * Check if the ill supports the protocol, algorithm(s) and
23499 	 * key size(s) specified by the SA, and get the pointers to
23500 	 * the algorithms supported by the ill.
23501 	 */
23502 	switch (sa->ipsa_type) {
23503 
23504 	case SADB_SATYPE_ESP:
23505 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23506 			/* ill does not support ESP acceleration */
23507 			goto done;
23508 		cpp = ill->ill_ipsec_capab_esp;
23509 		algid = sa->ipsa_auth_alg;
23510 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23511 			goto done;
23512 		algid = sa->ipsa_encr_alg;
23513 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23514 			goto done;
23515 		if (algid < cpp->encr_algparm_end) {
23516 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23517 			if (sa->ipsa_encrkeybits < alp->minkeylen)
23518 				goto done;
23519 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
23520 				goto done;
23521 		}
23522 		break;
23523 
23524 	case SADB_SATYPE_AH:
23525 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23526 			/* ill does not support AH acceleration */
23527 			goto done;
23528 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23529 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
23530 			goto done;
23531 		break;
23532 	}
23533 
23534 	if (need_refrele)
23535 		ill_refrele(ill);
23536 	return (B_TRUE);
23537 done:
23538 	if (need_refrele)
23539 		ill_refrele(ill);
23540 	return (B_FALSE);
23541 }
23542 
23543 
23544 /*
23545  * Add a new ill to the list of IPsec capable ills.
23546  * Called from ill_capability_ipsec_ack() when an ACK was received
23547  * indicating that IPsec hardware processing was enabled for an ill.
23548  *
23549  * ill must point to the ill for which acceleration was enabled.
23550  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23551  */
23552 static void
23553 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23554 {
23555 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23556 	uint_t sa_type;
23557 	uint_t ipproto;
23558 	ip_stack_t	*ipst = ill->ill_ipst;
23559 
23560 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23561 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
23562 
23563 	switch (dl_cap) {
23564 	case DL_CAPAB_IPSEC_AH:
23565 		sa_type = SADB_SATYPE_AH;
23566 		ills = &ipst->ips_ipsec_capab_ills_ah;
23567 		ipproto = IPPROTO_AH;
23568 		break;
23569 	case DL_CAPAB_IPSEC_ESP:
23570 		sa_type = SADB_SATYPE_ESP;
23571 		ills = &ipst->ips_ipsec_capab_ills_esp;
23572 		ipproto = IPPROTO_ESP;
23573 		break;
23574 	}
23575 
23576 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23577 
23578 	/*
23579 	 * Add ill index to list of hardware accelerators. If
23580 	 * already in list, do nothing.
23581 	 */
23582 	for (cur_ill = *ills; cur_ill != NULL &&
23583 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23584 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23585 		;
23586 
23587 	if (cur_ill == NULL) {
23588 		/* if this is a new entry for this ill */
23589 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23590 		if (new_ill == NULL) {
23591 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23592 			return;
23593 		}
23594 
23595 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23596 		new_ill->ill_isv6 = ill->ill_isv6;
23597 		new_ill->next = *ills;
23598 		*ills = new_ill;
23599 	} else if (!sadb_resync) {
23600 		/* not resync'ing SADB and an entry exists for this ill */
23601 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23602 		return;
23603 	}
23604 
23605 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23606 
23607 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23608 		/*
23609 		 * IPsec module for protocol loaded, initiate dump
23610 		 * of the SADB to this ill.
23611 		 */
23612 		sadb_ill_download(ill, sa_type);
23613 }
23614 
23615 /*
23616  * Remove an ill from the list of IPsec capable ills.
23617  */
23618 static void
23619 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23620 {
23621 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23622 	ip_stack_t	*ipst = ill->ill_ipst;
23623 
23624 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23625 	    dl_cap == DL_CAPAB_IPSEC_ESP);
23626 
23627 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
23628 	    &ipst->ips_ipsec_capab_ills_esp;
23629 
23630 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23631 
23632 	prev_ill = NULL;
23633 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23634 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23635 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23636 		;
23637 	if (cur_ill == NULL) {
23638 		/* entry not found */
23639 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23640 		return;
23641 	}
23642 	if (prev_ill == NULL) {
23643 		/* entry at front of list */
23644 		*ills = NULL;
23645 	} else {
23646 		prev_ill->next = cur_ill->next;
23647 	}
23648 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23649 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23650 }
23651 
23652 /*
23653  * Called by SADB to send a DL_CONTROL_REQ message to every ill
23654  * supporting the specified IPsec protocol acceleration.
23655  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23656  * We free the mblk and, if sa is non-null, release the held referece.
23657  */
23658 void
23659 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
23660     netstack_t *ns)
23661 {
23662 	ipsec_capab_ill_t *ici, *cur_ici;
23663 	ill_t *ill;
23664 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23665 	ip_stack_t	*ipst = ns->netstack_ip;
23666 
23667 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
23668 	    ipst->ips_ipsec_capab_ills_esp;
23669 
23670 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
23671 
23672 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23673 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23674 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
23675 
23676 		/*
23677 		 * Handle the case where the ill goes away while the SADB is
23678 		 * attempting to send messages.  If it's going away, it's
23679 		 * nuking its shadow SADB, so we don't care..
23680 		 */
23681 
23682 		if (ill == NULL)
23683 			continue;
23684 
23685 		if (sa != NULL) {
23686 			/*
23687 			 * Make sure capabilities match before
23688 			 * sending SA to ill.
23689 			 */
23690 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
23691 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
23692 				ill_refrele(ill);
23693 				continue;
23694 			}
23695 
23696 			mutex_enter(&sa->ipsa_lock);
23697 			sa->ipsa_flags |= IPSA_F_HW;
23698 			mutex_exit(&sa->ipsa_lock);
23699 		}
23700 
23701 		/*
23702 		 * Copy template message, and add it to the front
23703 		 * of the mblk ship list. We want to avoid holding
23704 		 * the ipsec_capab_ills_lock while sending the
23705 		 * message to the ills.
23706 		 *
23707 		 * The b_next and b_prev are temporarily used
23708 		 * to build a list of mblks to be sent down, and to
23709 		 * save the ill to which they must be sent.
23710 		 */
23711 		nmp = copymsg(mp);
23712 		if (nmp == NULL) {
23713 			ill_refrele(ill);
23714 			continue;
23715 		}
23716 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23717 		nmp->b_next = mp_ship_list;
23718 		mp_ship_list = nmp;
23719 		nmp->b_prev = (mblk_t *)ill;
23720 	}
23721 
23722 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23723 
23724 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
23725 		/* restore the mblk to a sane state */
23726 		next_mp = nmp->b_next;
23727 		nmp->b_next = NULL;
23728 		ill = (ill_t *)nmp->b_prev;
23729 		nmp->b_prev = NULL;
23730 
23731 		ill_dlpi_send(ill, nmp);
23732 		ill_refrele(ill);
23733 	}
23734 
23735 	if (sa != NULL)
23736 		IPSA_REFRELE(sa);
23737 	freemsg(mp);
23738 }
23739 
23740 /*
23741  * Derive an interface id from the link layer address.
23742  * Knows about IEEE 802 and IEEE EUI-64 mappings.
23743  */
23744 static boolean_t
23745 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23746 {
23747 	char		*addr;
23748 
23749 	if (phys_length != ETHERADDRL)
23750 		return (B_FALSE);
23751 
23752 	/* Form EUI-64 like address */
23753 	addr = (char *)&v6addr->s6_addr32[2];
23754 	bcopy((char *)phys_addr, addr, 3);
23755 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
23756 	addr[3] = (char)0xff;
23757 	addr[4] = (char)0xfe;
23758 	bcopy((char *)phys_addr + 3, addr + 5, 3);
23759 	return (B_TRUE);
23760 }
23761 
23762 /* ARGSUSED */
23763 static boolean_t
23764 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23765 {
23766 	return (B_FALSE);
23767 }
23768 
23769 /* ARGSUSED */
23770 static boolean_t
23771 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23772     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23773 {
23774 	/*
23775 	 * Multicast address mappings used over Ethernet/802.X.
23776 	 * This address is used as a base for mappings.
23777 	 */
23778 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23779 	    0x00, 0x00, 0x00};
23780 
23781 	/*
23782 	 * Extract low order 32 bits from IPv6 multicast address.
23783 	 * Or that into the link layer address, starting from the
23784 	 * second byte.
23785 	 */
23786 	*hw_start = 2;
23787 	v6_extract_mask->s6_addr32[0] = 0;
23788 	v6_extract_mask->s6_addr32[1] = 0;
23789 	v6_extract_mask->s6_addr32[2] = 0;
23790 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23791 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23792 	return (B_TRUE);
23793 }
23794 
23795 /*
23796  * Indicate by return value whether multicast is supported. If not,
23797  * this code should not touch/change any parameters.
23798  */
23799 /* ARGSUSED */
23800 static boolean_t
23801 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23802     uint32_t *hw_start, ipaddr_t *extract_mask)
23803 {
23804 	/*
23805 	 * Multicast address mappings used over Ethernet/802.X.
23806 	 * This address is used as a base for mappings.
23807 	 */
23808 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
23809 	    0x00, 0x00, 0x00 };
23810 
23811 	if (phys_length != ETHERADDRL)
23812 		return (B_FALSE);
23813 
23814 	*extract_mask = htonl(0x007fffff);
23815 	*hw_start = 2;
23816 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
23817 	return (B_TRUE);
23818 }
23819 
23820 /*
23821  * Derive IPoIB interface id from the link layer address.
23822  */
23823 static boolean_t
23824 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23825 {
23826 	char		*addr;
23827 
23828 	if (phys_length != 20)
23829 		return (B_FALSE);
23830 	addr = (char *)&v6addr->s6_addr32[2];
23831 	bcopy(phys_addr + 12, addr, 8);
23832 	/*
23833 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
23834 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
23835 	 * rules. In these cases, the IBA considers these GUIDs to be in
23836 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
23837 	 * required; vendors are required not to assign global EUI-64's
23838 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
23839 	 * of the interface identifier. Whether the GUID is in modified
23840 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
23841 	 * bit set to 1.
23842 	 */
23843 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
23844 	return (B_TRUE);
23845 }
23846 
23847 /*
23848  * Note on mapping from multicast IP addresses to IPoIB multicast link
23849  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
23850  * The format of an IPoIB multicast address is:
23851  *
23852  *  4 byte QPN      Scope Sign.  Pkey
23853  * +--------------------------------------------+
23854  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
23855  * +--------------------------------------------+
23856  *
23857  * The Scope and Pkey components are properties of the IBA port and
23858  * network interface. They can be ascertained from the broadcast address.
23859  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
23860  */
23861 
23862 static boolean_t
23863 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23864     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23865 {
23866 	/*
23867 	 * Base IPoIB IPv6 multicast address used for mappings.
23868 	 * Does not contain the IBA scope/Pkey values.
23869 	 */
23870 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23871 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
23872 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23873 
23874 	/*
23875 	 * Extract low order 80 bits from IPv6 multicast address.
23876 	 * Or that into the link layer address, starting from the
23877 	 * sixth byte.
23878 	 */
23879 	*hw_start = 6;
23880 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
23881 
23882 	/*
23883 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23884 	 */
23885 	*(maddr + 5) = *(bphys_addr + 5);
23886 	*(maddr + 8) = *(bphys_addr + 8);
23887 	*(maddr + 9) = *(bphys_addr + 9);
23888 
23889 	v6_extract_mask->s6_addr32[0] = 0;
23890 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
23891 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
23892 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23893 	return (B_TRUE);
23894 }
23895 
23896 static boolean_t
23897 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23898     uint32_t *hw_start, ipaddr_t *extract_mask)
23899 {
23900 	/*
23901 	 * Base IPoIB IPv4 multicast address used for mappings.
23902 	 * Does not contain the IBA scope/Pkey values.
23903 	 */
23904 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23905 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
23906 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23907 
23908 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
23909 		return (B_FALSE);
23910 
23911 	/*
23912 	 * Extract low order 28 bits from IPv4 multicast address.
23913 	 * Or that into the link layer address, starting from the
23914 	 * sixteenth byte.
23915 	 */
23916 	*extract_mask = htonl(0x0fffffff);
23917 	*hw_start = 16;
23918 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
23919 
23920 	/*
23921 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23922 	 */
23923 	*(maddr + 5) = *(bphys_addr + 5);
23924 	*(maddr + 8) = *(bphys_addr + 8);
23925 	*(maddr + 9) = *(bphys_addr + 9);
23926 	return (B_TRUE);
23927 }
23928 
23929 /*
23930  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
23931  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
23932  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
23933  * the link-local address is preferred.
23934  */
23935 boolean_t
23936 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23937 {
23938 	ipif_t	*ipif;
23939 	ipif_t	*maybe_ipif = NULL;
23940 
23941 	mutex_enter(&ill->ill_lock);
23942 	if (ill->ill_state_flags & ILL_CONDEMNED) {
23943 		mutex_exit(&ill->ill_lock);
23944 		if (ipifp != NULL)
23945 			*ipifp = NULL;
23946 		return (B_FALSE);
23947 	}
23948 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23949 		if (!IPIF_CAN_LOOKUP(ipif))
23950 			continue;
23951 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
23952 		    ipif->ipif_zoneid != ALL_ZONES)
23953 			continue;
23954 		if ((ipif->ipif_flags & flags) != flags)
23955 			continue;
23956 
23957 		if (ipifp == NULL) {
23958 			mutex_exit(&ill->ill_lock);
23959 			ASSERT(maybe_ipif == NULL);
23960 			return (B_TRUE);
23961 		}
23962 		if (!ill->ill_isv6 ||
23963 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
23964 			ipif_refhold_locked(ipif);
23965 			mutex_exit(&ill->ill_lock);
23966 			*ipifp = ipif;
23967 			return (B_TRUE);
23968 		}
23969 		if (maybe_ipif == NULL)
23970 			maybe_ipif = ipif;
23971 	}
23972 	if (ipifp != NULL) {
23973 		if (maybe_ipif != NULL)
23974 			ipif_refhold_locked(maybe_ipif);
23975 		*ipifp = maybe_ipif;
23976 	}
23977 	mutex_exit(&ill->ill_lock);
23978 	return (maybe_ipif != NULL);
23979 }
23980 
23981 /*
23982  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
23983  */
23984 boolean_t
23985 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23986 {
23987 	ill_t *illg;
23988 	ip_stack_t	*ipst = ill->ill_ipst;
23989 
23990 	/*
23991 	 * We look at the passed-in ill first without grabbing ill_g_lock.
23992 	 */
23993 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
23994 		return (B_TRUE);
23995 	}
23996 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23997 	if (ill->ill_group == NULL) {
23998 		/* ill not in a group */
23999 		rw_exit(&ipst->ips_ill_g_lock);
24000 		return (B_FALSE);
24001 	}
24002 
24003 	/*
24004 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24005 	 * group. We need to look for an ipif in the zone on all the ills in the
24006 	 * group.
24007 	 */
24008 	illg = ill->ill_group->illgrp_ill;
24009 	do {
24010 		/*
24011 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24012 		 * that it's not there.
24013 		 */
24014 		if (illg != ill &&
24015 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24016 			break;
24017 		}
24018 	} while ((illg = illg->ill_group_next) != NULL);
24019 	rw_exit(&ipst->ips_ill_g_lock);
24020 	return (illg != NULL);
24021 }
24022 
24023 /*
24024  * Check if this ill is only being used to send ICMP probes for IPMP
24025  */
24026 boolean_t
24027 ill_is_probeonly(ill_t *ill)
24028 {
24029 	/*
24030 	 * Check if the interface is FAILED, or INACTIVE
24031 	 */
24032 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24033 		return (B_TRUE);
24034 
24035 	return (B_FALSE);
24036 }
24037 
24038 /*
24039  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24040  * If a pointer to an ipif_t is returned then the caller will need to do
24041  * an ill_refrele().
24042  *
24043  * If there is no real interface which matches the ifindex, then it looks
24044  * for a group that has a matching index. In the case of a group match the
24045  * lifidx must be zero. We don't need emulate the logical interfaces
24046  * since IP Filter's use of netinfo doesn't use that.
24047  */
24048 ipif_t *
24049 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24050     ip_stack_t *ipst)
24051 {
24052 	ipif_t *ipif;
24053 	ill_t *ill;
24054 
24055 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24056 	    ipst);
24057 
24058 	if (ill == NULL) {
24059 		/* Fallback to group names only if hook_emulation set */
24060 		if (!ipst->ips_ipmp_hook_emulation)
24061 			return (NULL);
24062 
24063 		if (lifidx != 0)
24064 			return (NULL);
24065 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24066 		if (ill == NULL)
24067 			return (NULL);
24068 	}
24069 
24070 	mutex_enter(&ill->ill_lock);
24071 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24072 		mutex_exit(&ill->ill_lock);
24073 		ill_refrele(ill);
24074 		return (NULL);
24075 	}
24076 
24077 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24078 		if (!IPIF_CAN_LOOKUP(ipif))
24079 			continue;
24080 		if (lifidx == ipif->ipif_id) {
24081 			ipif_refhold_locked(ipif);
24082 			break;
24083 		}
24084 	}
24085 
24086 	mutex_exit(&ill->ill_lock);
24087 	ill_refrele(ill);
24088 	return (ipif);
24089 }
24090 
24091 /*
24092  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24093  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24094  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24095  * for details.
24096  */
24097 void
24098 ill_fastpath_flush(ill_t *ill)
24099 {
24100 	ip_stack_t *ipst = ill->ill_ipst;
24101 
24102 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24103 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24104 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24105 }
24106 
24107 /*
24108  * Set the physical address information for `ill' to the contents of the
24109  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24110  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24111  * EINPROGRESS will be returned.
24112  */
24113 int
24114 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24115 {
24116 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24117 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24118 
24119 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24120 
24121 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24122 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24123 		/* Changing DL_IPV6_TOKEN is not yet supported */
24124 		return (0);
24125 	}
24126 
24127 	/*
24128 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24129 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24130 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24131 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24132 	 */
24133 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24134 		freemsg(mp);
24135 		return (ENOMEM);
24136 	}
24137 
24138 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24139 
24140 	/*
24141 	 * If we can quiesce the ill, then set the address.  If not, then
24142 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24143 	 */
24144 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24145 	mutex_enter(&ill->ill_lock);
24146 	if (!ill_is_quiescent(ill)) {
24147 		/* call cannot fail since `conn_t *' argument is NULL */
24148 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24149 		    mp, ILL_DOWN);
24150 		mutex_exit(&ill->ill_lock);
24151 		return (EINPROGRESS);
24152 	}
24153 	mutex_exit(&ill->ill_lock);
24154 
24155 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24156 	return (0);
24157 }
24158 
24159 /*
24160  * Once the ill associated with `q' has quiesced, set its physical address
24161  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24162  * are passed (linked by b_cont), since we sometimes need to save two distinct
24163  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24164  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24165  * is quiesced, we know any stale IREs with the old address information have
24166  * already been removed, so we don't need to call ill_fastpath_flush().
24167  */
24168 /* ARGSUSED */
24169 static void
24170 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24171 {
24172 	ill_t		*ill = q->q_ptr;
24173 	mblk_t		*addrmp2 = unlinkb(addrmp);
24174 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24175 	uint_t		addrlen, addroff;
24176 
24177 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24178 
24179 	addroff	= dlindp->dl_addr_offset;
24180 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24181 
24182 	switch (dlindp->dl_data) {
24183 	case DL_IPV6_LINK_LAYER_ADDR:
24184 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24185 		freemsg(addrmp2);
24186 		break;
24187 
24188 	case DL_CURR_PHYS_ADDR:
24189 		freemsg(ill->ill_phys_addr_mp);
24190 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24191 		ill->ill_phys_addr_mp = addrmp;
24192 		ill->ill_phys_addr_length = addrlen;
24193 
24194 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24195 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24196 		else
24197 			freemsg(addrmp2);
24198 		break;
24199 	default:
24200 		ASSERT(0);
24201 	}
24202 
24203 	/*
24204 	 * If there are ipifs to bring up, ill_up_ipifs() will return
24205 	 * EINPROGRESS, and ipsq_current_finish() will be called by
24206 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
24207 	 * brought up.
24208 	 */
24209 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
24210 		ipsq_current_finish(ipsq);
24211 }
24212 
24213 /*
24214  * Helper routine for setting the ill_nd_lla fields.
24215  */
24216 void
24217 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24218 {
24219 	freemsg(ill->ill_nd_lla_mp);
24220 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24221 	ill->ill_nd_lla_mp = ndmp;
24222 	ill->ill_nd_lla_len = addrlen;
24223 }
24224 
24225 major_t IP_MAJ;
24226 #define	IP	"ip"
24227 
24228 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24229 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24230 
24231 /*
24232  * Issue REMOVEIF ioctls to have the loopback interfaces
24233  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24234  * the former going away when the user-level processes in the zone
24235  * are killed  * and the latter are cleaned up by the stream head
24236  * str_stack_shutdown callback that undoes all I_PLINKs.
24237  */
24238 void
24239 ip_loopback_cleanup(ip_stack_t *ipst)
24240 {
24241 	int error;
24242 	ldi_handle_t	lh = NULL;
24243 	ldi_ident_t	li = NULL;
24244 	int		rval;
24245 	cred_t		*cr;
24246 	struct strioctl iocb;
24247 	struct lifreq	lifreq;
24248 
24249 	IP_MAJ = ddi_name_to_major(IP);
24250 
24251 #ifdef NS_DEBUG
24252 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24253 	    ipst->ips_netstack->netstack_stackid);
24254 #endif
24255 
24256 	bzero(&lifreq, sizeof (lifreq));
24257 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24258 
24259 	error = ldi_ident_from_major(IP_MAJ, &li);
24260 	if (error) {
24261 #ifdef DEBUG
24262 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24263 		    error);
24264 #endif
24265 		return;
24266 	}
24267 
24268 	cr = zone_get_kcred(netstackid_to_zoneid(
24269 	    ipst->ips_netstack->netstack_stackid));
24270 	ASSERT(cr != NULL);
24271 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24272 	if (error) {
24273 #ifdef DEBUG
24274 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24275 		    error);
24276 #endif
24277 		goto out;
24278 	}
24279 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24280 	iocb.ic_timout = 15;
24281 	iocb.ic_len = sizeof (lifreq);
24282 	iocb.ic_dp = (char *)&lifreq;
24283 
24284 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24285 	/* LINTED - statement has no consequent */
24286 	if (error) {
24287 #ifdef NS_DEBUG
24288 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24289 		    "UDP6 error %d\n", error);
24290 #endif
24291 	}
24292 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24293 	lh = NULL;
24294 
24295 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24296 	if (error) {
24297 #ifdef NS_DEBUG
24298 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24299 		    error);
24300 #endif
24301 		goto out;
24302 	}
24303 
24304 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24305 	iocb.ic_timout = 15;
24306 	iocb.ic_len = sizeof (lifreq);
24307 	iocb.ic_dp = (char *)&lifreq;
24308 
24309 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24310 	/* LINTED - statement has no consequent */
24311 	if (error) {
24312 #ifdef NS_DEBUG
24313 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24314 		    "UDP error %d\n", error);
24315 #endif
24316 	}
24317 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24318 	lh = NULL;
24319 
24320 out:
24321 	/* Close layered handles */
24322 	if (lh)
24323 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24324 	if (li)
24325 		ldi_ident_release(li);
24326 
24327 	crfree(cr);
24328 }
24329