1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_xmit_if_ill == ill) 1530 connp->conn_xmit_if_ill = NULL; 1531 if (connp->conn_ire_cache != NULL) { 1532 ire = connp->conn_ire_cache; 1533 /* 1534 * ip_newroute creates IRE_CACHE with ire_stq coming from 1535 * interface X and ipif coming from interface Y, if interface 1536 * X and Y are part of the same IPMPgroup. Thus whenever 1537 * interface X goes down, remove all references to it by 1538 * checking both on ire_ipif and ire_stq. 1539 */ 1540 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1541 (ire->ire_type == IRE_CACHE && 1542 ire->ire_stq == ill->ill_wq)) { 1543 connp->conn_ire_cache = NULL; 1544 mutex_exit(&connp->conn_lock); 1545 ire_refrele_notr(ire); 1546 return; 1547 } 1548 } 1549 mutex_exit(&connp->conn_lock); 1550 1551 } 1552 1553 /* ARGSUSED */ 1554 void 1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1556 { 1557 ill_t *ill = q->q_ptr; 1558 ipif_t *ipif; 1559 1560 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1561 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1562 ipif_non_duplicate(ipif); 1563 ipif_down_tail(ipif); 1564 } 1565 freemsg(mp); 1566 ipsq_current_finish(ipsq); 1567 } 1568 1569 /* 1570 * ill_down_start is called when we want to down this ill and bring it up again 1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1572 * all interfaces, but don't tear down any plumbing. 1573 */ 1574 boolean_t 1575 ill_down_start(queue_t *q, mblk_t *mp) 1576 { 1577 ill_t *ill = q->q_ptr; 1578 ipif_t *ipif; 1579 1580 ASSERT(IAM_WRITER_ILL(ill)); 1581 1582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1583 (void) ipif_down(ipif, NULL, NULL); 1584 1585 ill_down(ill); 1586 1587 (void) ipsq_pending_mp_cleanup(ill, NULL); 1588 1589 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1590 1591 /* 1592 * Atomically test and add the pending mp if references are active. 1593 */ 1594 mutex_enter(&ill->ill_lock); 1595 if (!ill_is_quiescent(ill)) { 1596 /* call cannot fail since `conn_t *' argument is NULL */ 1597 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1598 mp, ILL_DOWN); 1599 mutex_exit(&ill->ill_lock); 1600 return (B_FALSE); 1601 } 1602 mutex_exit(&ill->ill_lock); 1603 return (B_TRUE); 1604 } 1605 1606 static void 1607 ill_down(ill_t *ill) 1608 { 1609 ip_stack_t *ipst = ill->ill_ipst; 1610 1611 /* Blow off any IREs dependent on this ILL. */ 1612 ire_walk(ill_downi, (char *)ill, ipst); 1613 1614 /* Remove any conn_*_ill depending on this ill */ 1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1616 1617 if (ill->ill_group != NULL) { 1618 illgrp_delete(ill); 1619 } 1620 } 1621 1622 /* 1623 * ire_walk routine used to delete every IRE that depends on queues 1624 * associated with 'ill'. (Always called as writer.) 1625 */ 1626 static void 1627 ill_downi(ire_t *ire, char *ill_arg) 1628 { 1629 ill_t *ill = (ill_t *)ill_arg; 1630 1631 /* 1632 * ip_newroute creates IRE_CACHE with ire_stq coming from 1633 * interface X and ipif coming from interface Y, if interface 1634 * X and Y are part of the same IPMP group. Thus whenever interface 1635 * X goes down, remove all references to it by checking both 1636 * on ire_ipif and ire_stq. 1637 */ 1638 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1639 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1640 ire_delete(ire); 1641 } 1642 } 1643 1644 /* 1645 * Remove ire/nce from the fastpath list. 1646 */ 1647 void 1648 ill_fastpath_nack(ill_t *ill) 1649 { 1650 nce_fastpath_list_dispatch(ill, NULL, NULL); 1651 } 1652 1653 /* Consume an M_IOCACK of the fastpath probe. */ 1654 void 1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1656 { 1657 mblk_t *mp1 = mp; 1658 1659 /* 1660 * If this was the first attempt turn on the fastpath probing. 1661 */ 1662 mutex_enter(&ill->ill_lock); 1663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1664 ill->ill_dlpi_fastpath_state = IDS_OK; 1665 mutex_exit(&ill->ill_lock); 1666 1667 /* Free the M_IOCACK mblk, hold on to the data */ 1668 mp = mp->b_cont; 1669 freeb(mp1); 1670 if (mp == NULL) 1671 return; 1672 if (mp->b_cont != NULL) { 1673 /* 1674 * Update all IRE's or NCE's that are waiting for 1675 * fastpath update. 1676 */ 1677 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1678 mp1 = mp->b_cont; 1679 freeb(mp); 1680 mp = mp1; 1681 } else { 1682 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1683 } 1684 1685 freeb(mp); 1686 } 1687 1688 /* 1689 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1690 * The data portion of the request is a dl_unitdata_req_t template for 1691 * what we would send downstream in the absence of a fastpath confirmation. 1692 */ 1693 int 1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1695 { 1696 struct iocblk *ioc; 1697 mblk_t *mp; 1698 1699 if (dlur_mp == NULL) 1700 return (EINVAL); 1701 1702 mutex_enter(&ill->ill_lock); 1703 switch (ill->ill_dlpi_fastpath_state) { 1704 case IDS_FAILED: 1705 /* 1706 * Driver NAKed the first fastpath ioctl - assume it doesn't 1707 * support it. 1708 */ 1709 mutex_exit(&ill->ill_lock); 1710 return (ENOTSUP); 1711 case IDS_UNKNOWN: 1712 /* This is the first probe */ 1713 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1714 break; 1715 default: 1716 break; 1717 } 1718 mutex_exit(&ill->ill_lock); 1719 1720 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1721 return (EAGAIN); 1722 1723 mp->b_cont = copyb(dlur_mp); 1724 if (mp->b_cont == NULL) { 1725 freeb(mp); 1726 return (EAGAIN); 1727 } 1728 1729 ioc = (struct iocblk *)mp->b_rptr; 1730 ioc->ioc_count = msgdsize(mp->b_cont); 1731 1732 putnext(ill->ill_wq, mp); 1733 return (0); 1734 } 1735 1736 void 1737 ill_capability_probe(ill_t *ill) 1738 { 1739 /* 1740 * Do so only if capabilities are still unknown. 1741 */ 1742 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1743 return; 1744 1745 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1746 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1747 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1748 } 1749 1750 void 1751 ill_capability_reset(ill_t *ill) 1752 { 1753 mblk_t *sc_mp = NULL; 1754 mblk_t *tmp; 1755 1756 /* 1757 * Note here that we reset the state to UNKNOWN, and later send 1758 * down the DL_CAPABILITY_REQ without first setting the state to 1759 * INPROGRESS. We do this in order to distinguish the 1760 * DL_CAPABILITY_ACK response which may come back in response to 1761 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1762 * also handle the case where the driver doesn't send us back 1763 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1764 * requires the state to be in UNKNOWN anyway. In any case, all 1765 * features are turned off until the state reaches IDS_OK. 1766 */ 1767 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1768 ill->ill_capab_reneg = B_FALSE; 1769 1770 /* 1771 * Disable sub-capabilities and request a list of sub-capability 1772 * messages which will be sent down to the driver. Each handler 1773 * allocates the corresponding dl_capability_sub_t inside an 1774 * mblk, and links it to the existing sc_mp mblk, or return it 1775 * as sc_mp if it's the first sub-capability (the passed in 1776 * sc_mp is NULL). Upon returning from all capability handlers, 1777 * sc_mp will be pulled-up, before passing it downstream. 1778 */ 1779 ill_capability_mdt_reset(ill, &sc_mp); 1780 ill_capability_hcksum_reset(ill, &sc_mp); 1781 ill_capability_zerocopy_reset(ill, &sc_mp); 1782 ill_capability_ipsec_reset(ill, &sc_mp); 1783 ill_capability_dls_reset(ill, &sc_mp); 1784 ill_capability_lso_reset(ill, &sc_mp); 1785 1786 /* Nothing to send down in order to disable the capabilities? */ 1787 if (sc_mp == NULL) 1788 return; 1789 1790 tmp = msgpullup(sc_mp, -1); 1791 freemsg(sc_mp); 1792 if ((sc_mp = tmp) == NULL) { 1793 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1794 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1795 return; 1796 } 1797 1798 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1799 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1800 } 1801 1802 /* 1803 * Request or set new-style hardware capabilities supported by DLS provider. 1804 */ 1805 static void 1806 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1807 { 1808 mblk_t *mp; 1809 dl_capability_req_t *capb; 1810 size_t size = 0; 1811 uint8_t *ptr; 1812 1813 if (reqp != NULL) 1814 size = MBLKL(reqp); 1815 1816 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1817 if (mp == NULL) { 1818 freemsg(reqp); 1819 return; 1820 } 1821 ptr = mp->b_rptr; 1822 1823 capb = (dl_capability_req_t *)ptr; 1824 ptr += sizeof (dl_capability_req_t); 1825 1826 if (reqp != NULL) { 1827 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1828 capb->dl_sub_length = size; 1829 bcopy(reqp->b_rptr, ptr, size); 1830 ptr += size; 1831 mp->b_cont = reqp->b_cont; 1832 freeb(reqp); 1833 } 1834 ASSERT(ptr == mp->b_wptr); 1835 1836 ill_dlpi_send(ill, mp); 1837 } 1838 1839 static void 1840 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1841 { 1842 dl_capab_id_t *id_ic; 1843 uint_t sub_dl_cap = outers->dl_cap; 1844 dl_capability_sub_t *inners; 1845 uint8_t *capend; 1846 1847 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1848 1849 /* 1850 * Note: range checks here are not absolutely sufficient to 1851 * make us robust against malformed messages sent by drivers; 1852 * this is in keeping with the rest of IP's dlpi handling. 1853 * (Remember, it's coming from something else in the kernel 1854 * address space) 1855 */ 1856 1857 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1858 if (capend > mp->b_wptr) { 1859 cmn_err(CE_WARN, "ill_capability_id_ack: " 1860 "malformed sub-capability too long for mblk"); 1861 return; 1862 } 1863 1864 id_ic = (dl_capab_id_t *)(outers + 1); 1865 1866 if (outers->dl_length < sizeof (*id_ic) || 1867 (inners = &id_ic->id_subcap, 1868 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1869 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1870 "encapsulated capab type %d too long for mblk", 1871 inners->dl_cap); 1872 return; 1873 } 1874 1875 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1876 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1877 "isn't as expected; pass-thru module(s) detected, " 1878 "discarding capability\n", inners->dl_cap)); 1879 return; 1880 } 1881 1882 /* Process the encapsulated sub-capability */ 1883 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1884 } 1885 1886 /* 1887 * Process Multidata Transmit capability negotiation ack received from a 1888 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1889 * DL_CAPABILITY_ACK message. 1890 */ 1891 static void 1892 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1893 { 1894 mblk_t *nmp = NULL; 1895 dl_capability_req_t *oc; 1896 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1897 ill_mdt_capab_t **ill_mdt_capab; 1898 uint_t sub_dl_cap = isub->dl_cap; 1899 uint8_t *capend; 1900 1901 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1902 1903 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1904 1905 /* 1906 * Note: range checks here are not absolutely sufficient to 1907 * make us robust against malformed messages sent by drivers; 1908 * this is in keeping with the rest of IP's dlpi handling. 1909 * (Remember, it's coming from something else in the kernel 1910 * address space) 1911 */ 1912 1913 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1914 if (capend > mp->b_wptr) { 1915 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1916 "malformed sub-capability too long for mblk"); 1917 return; 1918 } 1919 1920 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1921 1922 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1923 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1924 "unsupported MDT sub-capability (version %d, expected %d)", 1925 mdt_ic->mdt_version, MDT_VERSION_2); 1926 return; 1927 } 1928 1929 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1937 1938 if (*ill_mdt_capab == NULL) { 1939 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1940 KM_NOSLEEP); 1941 1942 if (*ill_mdt_capab == NULL) { 1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1944 "could not enable MDT version %d " 1945 "for %s (ENOMEM)\n", MDT_VERSION_2, 1946 ill->ill_name); 1947 return; 1948 } 1949 } 1950 1951 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1952 "MDT version %d (%d bytes leading, %d bytes trailing " 1953 "header spaces, %d max pld bufs, %d span limit)\n", 1954 ill->ill_name, MDT_VERSION_2, 1955 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1956 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1957 1958 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1959 (*ill_mdt_capab)->ill_mdt_on = 1; 1960 /* 1961 * Round the following values to the nearest 32-bit; ULP 1962 * may further adjust them to accomodate for additional 1963 * protocol headers. We pass these values to ULP during 1964 * bind time. 1965 */ 1966 (*ill_mdt_capab)->ill_mdt_hdr_head = 1967 roundup(mdt_ic->mdt_hdr_head, 4); 1968 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1969 roundup(mdt_ic->mdt_hdr_tail, 4); 1970 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1971 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1972 1973 ill->ill_capabilities |= ILL_CAPAB_MDT; 1974 } else { 1975 uint_t size; 1976 uchar_t *rptr; 1977 1978 size = sizeof (dl_capability_req_t) + 1979 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1980 1981 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1982 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1983 "could not enable MDT for %s (ENOMEM)\n", 1984 ill->ill_name); 1985 return; 1986 } 1987 1988 rptr = nmp->b_rptr; 1989 /* initialize dl_capability_req_t */ 1990 oc = (dl_capability_req_t *)nmp->b_rptr; 1991 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1992 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1993 sizeof (dl_capab_mdt_t); 1994 nmp->b_rptr += sizeof (dl_capability_req_t); 1995 1996 /* initialize dl_capability_sub_t */ 1997 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1998 nmp->b_rptr += sizeof (*isub); 1999 2000 /* initialize dl_capab_mdt_t */ 2001 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2002 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2003 2004 nmp->b_rptr = rptr; 2005 2006 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2007 "to enable MDT version %d\n", ill->ill_name, 2008 MDT_VERSION_2)); 2009 2010 /* set ENABLE flag */ 2011 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2012 2013 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2014 ill_dlpi_send(ill, nmp); 2015 } 2016 } 2017 2018 static void 2019 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2020 { 2021 mblk_t *mp; 2022 dl_capab_mdt_t *mdt_subcap; 2023 dl_capability_sub_t *dl_subcap; 2024 int size; 2025 2026 if (!ILL_MDT_CAPABLE(ill)) 2027 return; 2028 2029 ASSERT(ill->ill_mdt_capab != NULL); 2030 /* 2031 * Clear the capability flag for MDT but retain the ill_mdt_capab 2032 * structure since it's possible that another thread is still 2033 * referring to it. The structure only gets deallocated when 2034 * we destroy the ill. 2035 */ 2036 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2037 2038 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2039 2040 mp = allocb(size, BPRI_HI); 2041 if (mp == NULL) { 2042 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2043 "request to disable MDT\n")); 2044 return; 2045 } 2046 2047 mp->b_wptr = mp->b_rptr + size; 2048 2049 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2050 dl_subcap->dl_cap = DL_CAPAB_MDT; 2051 dl_subcap->dl_length = sizeof (*mdt_subcap); 2052 2053 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2054 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2055 mdt_subcap->mdt_flags = 0; 2056 mdt_subcap->mdt_hdr_head = 0; 2057 mdt_subcap->mdt_hdr_tail = 0; 2058 2059 if (*sc_mp != NULL) 2060 linkb(*sc_mp, mp); 2061 else 2062 *sc_mp = mp; 2063 } 2064 2065 /* 2066 * Send a DL_NOTIFY_REQ to the specified ill to enable 2067 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2068 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2069 * acceleration. 2070 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2071 */ 2072 static boolean_t 2073 ill_enable_promisc_notify(ill_t *ill) 2074 { 2075 mblk_t *mp; 2076 dl_notify_req_t *req; 2077 2078 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2079 2080 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2081 if (mp == NULL) 2082 return (B_FALSE); 2083 2084 req = (dl_notify_req_t *)mp->b_rptr; 2085 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2086 DL_NOTE_PROMISC_OFF_PHYS; 2087 2088 ill_dlpi_send(ill, mp); 2089 2090 return (B_TRUE); 2091 } 2092 2093 2094 /* 2095 * Allocate an IPsec capability request which will be filled by our 2096 * caller to turn on support for one or more algorithms. 2097 */ 2098 static mblk_t * 2099 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2100 { 2101 mblk_t *nmp; 2102 dl_capability_req_t *ocap; 2103 dl_capab_ipsec_t *ocip; 2104 dl_capab_ipsec_t *icip; 2105 uint8_t *ptr; 2106 icip = (dl_capab_ipsec_t *)(isub + 1); 2107 2108 /* 2109 * The first time around, we send a DL_NOTIFY_REQ to enable 2110 * PROMISC_ON/OFF notification from the provider. We need to 2111 * do this before enabling the algorithms to avoid leakage of 2112 * cleartext packets. 2113 */ 2114 2115 if (!ill_enable_promisc_notify(ill)) 2116 return (NULL); 2117 2118 /* 2119 * Allocate new mblk which will contain a new capability 2120 * request to enable the capabilities. 2121 */ 2122 2123 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2124 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2125 if (nmp == NULL) 2126 return (NULL); 2127 2128 ptr = nmp->b_rptr; 2129 2130 /* initialize dl_capability_req_t */ 2131 ocap = (dl_capability_req_t *)ptr; 2132 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2133 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2134 ptr += sizeof (dl_capability_req_t); 2135 2136 /* initialize dl_capability_sub_t */ 2137 bcopy(isub, ptr, sizeof (*isub)); 2138 ptr += sizeof (*isub); 2139 2140 /* initialize dl_capab_ipsec_t */ 2141 ocip = (dl_capab_ipsec_t *)ptr; 2142 bcopy(icip, ocip, sizeof (*icip)); 2143 2144 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2145 return (nmp); 2146 } 2147 2148 /* 2149 * Process an IPsec capability negotiation ack received from a DLS Provider. 2150 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2151 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2152 */ 2153 static void 2154 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2155 { 2156 dl_capab_ipsec_t *icip; 2157 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2158 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2159 uint_t cipher, nciphers; 2160 mblk_t *nmp; 2161 uint_t alg_len; 2162 boolean_t need_sadb_dump; 2163 uint_t sub_dl_cap = isub->dl_cap; 2164 ill_ipsec_capab_t **ill_capab; 2165 uint64_t ill_capab_flag; 2166 uint8_t *capend, *ciphend; 2167 boolean_t sadb_resync; 2168 2169 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2170 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2171 2172 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2173 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2174 ill_capab_flag = ILL_CAPAB_AH; 2175 } else { 2176 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2177 ill_capab_flag = ILL_CAPAB_ESP; 2178 } 2179 2180 /* 2181 * If the ill capability structure exists, then this incoming 2182 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2183 * If this is so, then we'd need to resynchronize the SADB 2184 * after re-enabling the offloaded ciphers. 2185 */ 2186 sadb_resync = (*ill_capab != NULL); 2187 2188 /* 2189 * Note: range checks here are not absolutely sufficient to 2190 * make us robust against malformed messages sent by drivers; 2191 * this is in keeping with the rest of IP's dlpi handling. 2192 * (Remember, it's coming from something else in the kernel 2193 * address space) 2194 */ 2195 2196 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2197 if (capend > mp->b_wptr) { 2198 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2199 "malformed sub-capability too long for mblk"); 2200 return; 2201 } 2202 2203 /* 2204 * There are two types of acks we process here: 2205 * 1. acks in reply to a (first form) generic capability req 2206 * (no ENABLE flag set) 2207 * 2. acks in reply to a ENABLE capability req. 2208 * (ENABLE flag set) 2209 * 2210 * We process the subcapability passed as argument as follows: 2211 * 1 do initializations 2212 * 1.1 initialize nmp = NULL 2213 * 1.2 set need_sadb_dump to B_FALSE 2214 * 2 for each cipher in subcapability: 2215 * 2.1 if ENABLE flag is set: 2216 * 2.1.1 update per-ill ipsec capabilities info 2217 * 2.1.2 set need_sadb_dump to B_TRUE 2218 * 2.2 if ENABLE flag is not set: 2219 * 2.2.1 if nmp is NULL: 2220 * 2.2.1.1 allocate and initialize nmp 2221 * 2.2.1.2 init current pos in nmp 2222 * 2.2.2 copy current cipher to current pos in nmp 2223 * 2.2.3 set ENABLE flag in nmp 2224 * 2.2.4 update current pos 2225 * 3 if nmp is not equal to NULL, send enable request 2226 * 3.1 send capability request 2227 * 4 if need_sadb_dump is B_TRUE 2228 * 4.1 enable promiscuous on/off notifications 2229 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2230 * AH or ESP SA's to interface. 2231 */ 2232 2233 nmp = NULL; 2234 oalg = NULL; 2235 need_sadb_dump = B_FALSE; 2236 icip = (dl_capab_ipsec_t *)(isub + 1); 2237 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2238 2239 nciphers = icip->cip_nciphers; 2240 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2241 2242 if (ciphend > capend) { 2243 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2244 "too many ciphers for sub-capability len"); 2245 return; 2246 } 2247 2248 for (cipher = 0; cipher < nciphers; cipher++) { 2249 alg_len = sizeof (dl_capab_ipsec_alg_t); 2250 2251 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2252 /* 2253 * TBD: when we provide a way to disable capabilities 2254 * from above, need to manage the request-pending state 2255 * and fail if we were not expecting this ACK. 2256 */ 2257 IPSECHW_DEBUG(IPSECHW_CAPAB, 2258 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2259 2260 /* 2261 * Update IPsec capabilities for this ill 2262 */ 2263 2264 if (*ill_capab == NULL) { 2265 IPSECHW_DEBUG(IPSECHW_CAPAB, 2266 ("ill_capability_ipsec_ack: " 2267 "allocating ipsec_capab for ill\n")); 2268 *ill_capab = ill_ipsec_capab_alloc(); 2269 2270 if (*ill_capab == NULL) { 2271 cmn_err(CE_WARN, 2272 "ill_capability_ipsec_ack: " 2273 "could not enable IPsec Hardware " 2274 "acceleration for %s (ENOMEM)\n", 2275 ill->ill_name); 2276 return; 2277 } 2278 } 2279 2280 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2281 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2282 2283 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2284 cmn_err(CE_WARN, 2285 "ill_capability_ipsec_ack: " 2286 "malformed IPsec algorithm id %d", 2287 ialg->alg_prim); 2288 continue; 2289 } 2290 2291 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2292 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2293 ialg->alg_prim); 2294 } else { 2295 ipsec_capab_algparm_t *alp; 2296 2297 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2298 ialg->alg_prim); 2299 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2300 ialg->alg_prim)) { 2301 cmn_err(CE_WARN, 2302 "ill_capability_ipsec_ack: " 2303 "no space for IPsec alg id %d", 2304 ialg->alg_prim); 2305 continue; 2306 } 2307 alp = &((*ill_capab)->encr_algparm[ 2308 ialg->alg_prim]); 2309 alp->minkeylen = ialg->alg_minbits; 2310 alp->maxkeylen = ialg->alg_maxbits; 2311 } 2312 ill->ill_capabilities |= ill_capab_flag; 2313 /* 2314 * indicate that a capability was enabled, which 2315 * will be used below to kick off a SADB dump 2316 * to the ill. 2317 */ 2318 need_sadb_dump = B_TRUE; 2319 } else { 2320 IPSECHW_DEBUG(IPSECHW_CAPAB, 2321 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2322 ialg->alg_prim)); 2323 2324 if (nmp == NULL) { 2325 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2326 if (nmp == NULL) { 2327 /* 2328 * Sending the PROMISC_ON/OFF 2329 * notification request failed. 2330 * We cannot enable the algorithms 2331 * since the Provider will not 2332 * notify IP of promiscous mode 2333 * changes, which could lead 2334 * to leakage of packets. 2335 */ 2336 cmn_err(CE_WARN, 2337 "ill_capability_ipsec_ack: " 2338 "could not enable IPsec Hardware " 2339 "acceleration for %s (ENOMEM)\n", 2340 ill->ill_name); 2341 return; 2342 } 2343 /* ptr to current output alg specifier */ 2344 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2345 } 2346 2347 /* 2348 * Copy current alg specifier, set ENABLE 2349 * flag, and advance to next output alg. 2350 * For now we enable all IPsec capabilities. 2351 */ 2352 ASSERT(oalg != NULL); 2353 bcopy(ialg, oalg, alg_len); 2354 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2355 nmp->b_wptr += alg_len; 2356 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2357 } 2358 2359 /* move to next input algorithm specifier */ 2360 ialg = (dl_capab_ipsec_alg_t *) 2361 ((char *)ialg + alg_len); 2362 } 2363 2364 if (nmp != NULL) 2365 /* 2366 * nmp points to a DL_CAPABILITY_REQ message to enable 2367 * IPsec hardware acceleration. 2368 */ 2369 ill_dlpi_send(ill, nmp); 2370 2371 if (need_sadb_dump) 2372 /* 2373 * An acknowledgement corresponding to a request to 2374 * enable acceleration was received, notify SADB. 2375 */ 2376 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2377 } 2378 2379 /* 2380 * Given an mblk with enough space in it, create sub-capability entries for 2381 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2382 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2383 * in preparation for the reset the DL_CAPABILITY_REQ message. 2384 */ 2385 static void 2386 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2387 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2388 { 2389 dl_capab_ipsec_t *oipsec; 2390 dl_capab_ipsec_alg_t *oalg; 2391 dl_capability_sub_t *dl_subcap; 2392 int i, k; 2393 2394 ASSERT(nciphers > 0); 2395 ASSERT(ill_cap != NULL); 2396 ASSERT(mp != NULL); 2397 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2398 2399 /* dl_capability_sub_t for "stype" */ 2400 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2401 dl_subcap->dl_cap = stype; 2402 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2403 mp->b_wptr += sizeof (dl_capability_sub_t); 2404 2405 /* dl_capab_ipsec_t for "stype" */ 2406 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2407 oipsec->cip_version = 1; 2408 oipsec->cip_nciphers = nciphers; 2409 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2410 2411 /* create entries for "stype" AUTH ciphers */ 2412 for (i = 0; i < ill_cap->algs_size; i++) { 2413 for (k = 0; k < BITSPERBYTE; k++) { 2414 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2415 continue; 2416 2417 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2418 bzero((void *)oalg, sizeof (*oalg)); 2419 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2420 oalg->alg_prim = k + (BITSPERBYTE * i); 2421 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2422 } 2423 } 2424 /* create entries for "stype" ENCR ciphers */ 2425 for (i = 0; i < ill_cap->algs_size; i++) { 2426 for (k = 0; k < BITSPERBYTE; k++) { 2427 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2428 continue; 2429 2430 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2431 bzero((void *)oalg, sizeof (*oalg)); 2432 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2433 oalg->alg_prim = k + (BITSPERBYTE * i); 2434 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2435 } 2436 } 2437 } 2438 2439 /* 2440 * Macro to count number of 1s in a byte (8-bit word). The total count is 2441 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2442 * POPC instruction, but our macro is more flexible for an arbitrary length 2443 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2444 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2445 * stays that way, we can reduce the number of iterations required. 2446 */ 2447 #define COUNT_1S(val, sum) { \ 2448 uint8_t x = val & 0xff; \ 2449 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2450 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2451 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2452 } 2453 2454 /* ARGSUSED */ 2455 static void 2456 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2457 { 2458 mblk_t *mp; 2459 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2460 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2461 uint64_t ill_capabilities = ill->ill_capabilities; 2462 int ah_cnt = 0, esp_cnt = 0; 2463 int ah_len = 0, esp_len = 0; 2464 int i, size = 0; 2465 2466 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2467 return; 2468 2469 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2470 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2471 2472 /* Find out the number of ciphers for AH */ 2473 if (cap_ah != NULL) { 2474 for (i = 0; i < cap_ah->algs_size; i++) { 2475 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2476 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2477 } 2478 if (ah_cnt > 0) { 2479 size += sizeof (dl_capability_sub_t) + 2480 sizeof (dl_capab_ipsec_t); 2481 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2482 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2483 size += ah_len; 2484 } 2485 } 2486 2487 /* Find out the number of ciphers for ESP */ 2488 if (cap_esp != NULL) { 2489 for (i = 0; i < cap_esp->algs_size; i++) { 2490 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2491 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2492 } 2493 if (esp_cnt > 0) { 2494 size += sizeof (dl_capability_sub_t) + 2495 sizeof (dl_capab_ipsec_t); 2496 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2497 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2498 size += esp_len; 2499 } 2500 } 2501 2502 if (size == 0) { 2503 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2504 "there's nothing to reset\n")); 2505 return; 2506 } 2507 2508 mp = allocb(size, BPRI_HI); 2509 if (mp == NULL) { 2510 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2511 "request to disable IPSEC Hardware Acceleration\n")); 2512 return; 2513 } 2514 2515 /* 2516 * Clear the capability flags for IPsec HA but retain the ill 2517 * capability structures since it's possible that another thread 2518 * is still referring to them. The structures only get deallocated 2519 * when we destroy the ill. 2520 * 2521 * Various places check the flags to see if the ill is capable of 2522 * hardware acceleration, and by clearing them we ensure that new 2523 * outbound IPsec packets are sent down encrypted. 2524 */ 2525 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2526 2527 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2528 if (ah_cnt > 0) { 2529 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2530 cap_ah, mp); 2531 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2532 } 2533 2534 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2535 if (esp_cnt > 0) { 2536 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2537 cap_esp, mp); 2538 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2539 } 2540 2541 /* 2542 * At this point we've composed a bunch of sub-capabilities to be 2543 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2544 * by the caller. Upon receiving this reset message, the driver 2545 * must stop inbound decryption (by destroying all inbound SAs) 2546 * and let the corresponding packets come in encrypted. 2547 */ 2548 2549 if (*sc_mp != NULL) 2550 linkb(*sc_mp, mp); 2551 else 2552 *sc_mp = mp; 2553 } 2554 2555 static void 2556 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2557 boolean_t encapsulated) 2558 { 2559 boolean_t legacy = B_FALSE; 2560 2561 /* 2562 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2563 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2564 * instructed the driver to disable its advertised capabilities, 2565 * so there's no point in accepting any response at this moment. 2566 */ 2567 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2568 return; 2569 2570 /* 2571 * Note that only the following two sub-capabilities may be 2572 * considered as "legacy", since their original definitions 2573 * do not incorporate the dl_mid_t module ID token, and hence 2574 * may require the use of the wrapper sub-capability. 2575 */ 2576 switch (subp->dl_cap) { 2577 case DL_CAPAB_IPSEC_AH: 2578 case DL_CAPAB_IPSEC_ESP: 2579 legacy = B_TRUE; 2580 break; 2581 } 2582 2583 /* 2584 * For legacy sub-capabilities which don't incorporate a queue_t 2585 * pointer in their structures, discard them if we detect that 2586 * there are intermediate modules in between IP and the driver. 2587 */ 2588 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2589 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2590 "%d discarded; %d module(s) present below IP\n", 2591 subp->dl_cap, ill->ill_lmod_cnt)); 2592 return; 2593 } 2594 2595 switch (subp->dl_cap) { 2596 case DL_CAPAB_IPSEC_AH: 2597 case DL_CAPAB_IPSEC_ESP: 2598 ill_capability_ipsec_ack(ill, mp, subp); 2599 break; 2600 case DL_CAPAB_MDT: 2601 ill_capability_mdt_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_HCKSUM: 2604 ill_capability_hcksum_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_ZEROCOPY: 2607 ill_capability_zerocopy_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_POLL: 2610 if (!SOFT_RINGS_ENABLED()) 2611 ill_capability_dls_ack(ill, mp, subp); 2612 break; 2613 case DL_CAPAB_SOFT_RING: 2614 if (SOFT_RINGS_ENABLED()) 2615 ill_capability_dls_ack(ill, mp, subp); 2616 break; 2617 case DL_CAPAB_LSO: 2618 ill_capability_lso_ack(ill, mp, subp); 2619 break; 2620 default: 2621 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2622 subp->dl_cap)); 2623 } 2624 } 2625 2626 /* 2627 * As part of negotiating polling capability, the driver tells us 2628 * the default (or normal) blanking interval and packet threshold 2629 * (the receive timer fires if blanking interval is reached or 2630 * the packet threshold is reached). 2631 * 2632 * As part of manipulating the polling interval, we always use our 2633 * estimated interval (avg service time * number of packets queued 2634 * on the squeue) but we try to blank for a minimum of 2635 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2636 * packet threshold during this time. When we are not in polling mode 2637 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2638 * rr_min_blank_ratio but up the packet cnt by a ratio of 2639 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2640 * possible although for a shorter interval. 2641 */ 2642 #define RR_MAX_BLANK_RATIO 20 2643 #define RR_MIN_BLANK_RATIO 10 2644 #define RR_MAX_PKT_CNT_RATIO 3 2645 #define RR_MIN_PKT_CNT_RATIO 3 2646 2647 /* 2648 * These can be tuned via /etc/system. 2649 */ 2650 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2651 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2652 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2653 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2654 2655 static mac_resource_handle_t 2656 ill_ring_add(void *arg, mac_resource_t *mrp) 2657 { 2658 ill_t *ill = (ill_t *)arg; 2659 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2660 ill_rx_ring_t *rx_ring; 2661 int ip_rx_index; 2662 2663 ASSERT(mrp != NULL); 2664 if (mrp->mr_type != MAC_RX_FIFO) { 2665 return (NULL); 2666 } 2667 ASSERT(ill != NULL); 2668 ASSERT(ill->ill_dls_capab != NULL); 2669 2670 mutex_enter(&ill->ill_lock); 2671 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2672 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2673 ASSERT(rx_ring != NULL); 2674 2675 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2676 time_t normal_blank_time = 2677 mrfp->mrf_normal_blank_time; 2678 uint_t normal_pkt_cnt = 2679 mrfp->mrf_normal_pkt_count; 2680 2681 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2682 2683 rx_ring->rr_blank = mrfp->mrf_blank; 2684 rx_ring->rr_handle = mrfp->mrf_arg; 2685 rx_ring->rr_ill = ill; 2686 rx_ring->rr_normal_blank_time = normal_blank_time; 2687 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2688 2689 rx_ring->rr_max_blank_time = 2690 normal_blank_time * rr_max_blank_ratio; 2691 rx_ring->rr_min_blank_time = 2692 normal_blank_time * rr_min_blank_ratio; 2693 rx_ring->rr_max_pkt_cnt = 2694 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2695 rx_ring->rr_min_pkt_cnt = 2696 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2697 2698 rx_ring->rr_ring_state = ILL_RING_INUSE; 2699 mutex_exit(&ill->ill_lock); 2700 2701 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2702 (int), ip_rx_index); 2703 return ((mac_resource_handle_t)rx_ring); 2704 } 2705 } 2706 2707 /* 2708 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2709 * we have devices which can overwhelm this limit, ILL_MAX_RING 2710 * should be made configurable. Meanwhile it cause no panic because 2711 * driver will pass ip_input a NULL handle which will make 2712 * IP allocate the default squeue and Polling mode will not 2713 * be used for this ring. 2714 */ 2715 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2716 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2717 2718 mutex_exit(&ill->ill_lock); 2719 return (NULL); 2720 } 2721 2722 static boolean_t 2723 ill_capability_dls_init(ill_t *ill) 2724 { 2725 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2726 conn_t *connp; 2727 size_t sz; 2728 ip_stack_t *ipst = ill->ill_ipst; 2729 2730 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2731 if (ill_dls == NULL) { 2732 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2733 "soft_ring enabled for ill=%s (%p) but data " 2734 "structs uninitialized\n", ill->ill_name, 2735 (void *)ill); 2736 } 2737 return (B_TRUE); 2738 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2739 if (ill_dls == NULL) { 2740 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2741 "polling enabled for ill=%s (%p) but data " 2742 "structs uninitialized\n", ill->ill_name, 2743 (void *)ill); 2744 } 2745 return (B_TRUE); 2746 } 2747 2748 if (ill_dls != NULL) { 2749 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2750 /* Soft_Ring or polling is being re-enabled */ 2751 2752 connp = ill_dls->ill_unbind_conn; 2753 ASSERT(rx_ring != NULL); 2754 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2755 bzero((void *)rx_ring, 2756 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2757 ill_dls->ill_ring_tbl = rx_ring; 2758 ill_dls->ill_unbind_conn = connp; 2759 return (B_TRUE); 2760 } 2761 2762 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2763 ipst->ips_netstack)) == NULL) 2764 return (B_FALSE); 2765 2766 sz = sizeof (ill_dls_capab_t); 2767 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2768 2769 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2770 if (ill_dls == NULL) { 2771 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2772 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2773 (void *)ill); 2774 CONN_DEC_REF(connp); 2775 return (B_FALSE); 2776 } 2777 2778 /* Allocate space to hold ring table */ 2779 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2780 ill->ill_dls_capab = ill_dls; 2781 ill_dls->ill_unbind_conn = connp; 2782 return (B_TRUE); 2783 } 2784 2785 /* 2786 * ill_capability_dls_disable: disable soft_ring and/or polling 2787 * capability. Since any of the rings might already be in use, need 2788 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2789 * direct calls if necessary. 2790 */ 2791 static void 2792 ill_capability_dls_disable(ill_t *ill) 2793 { 2794 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2795 2796 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2797 ip_squeue_clean_all(ill); 2798 ill_dls->ill_tx = NULL; 2799 ill_dls->ill_tx_handle = NULL; 2800 ill_dls->ill_dls_change_status = NULL; 2801 ill_dls->ill_dls_bind = NULL; 2802 ill_dls->ill_dls_unbind = NULL; 2803 } 2804 2805 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2806 } 2807 2808 static void 2809 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2810 dl_capability_sub_t *isub) 2811 { 2812 uint_t size; 2813 uchar_t *rptr; 2814 dl_capab_dls_t dls, *odls; 2815 ill_dls_capab_t *ill_dls; 2816 mblk_t *nmp = NULL; 2817 dl_capability_req_t *ocap; 2818 uint_t sub_dl_cap = isub->dl_cap; 2819 2820 if (!ill_capability_dls_init(ill)) 2821 return; 2822 ill_dls = ill->ill_dls_capab; 2823 2824 /* Copy locally to get the members aligned */ 2825 bcopy((void *)idls, (void *)&dls, 2826 sizeof (dl_capab_dls_t)); 2827 2828 /* Get the tx function and handle from dld */ 2829 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2830 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2831 2832 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2833 ill_dls->ill_dls_change_status = 2834 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2835 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2836 ill_dls->ill_dls_unbind = 2837 (ip_dls_unbind_t)dls.dls_ring_unbind; 2838 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2839 } 2840 2841 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2842 isub->dl_length; 2843 2844 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2845 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2846 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2847 ill->ill_name, (void *)ill); 2848 return; 2849 } 2850 2851 /* initialize dl_capability_req_t */ 2852 rptr = nmp->b_rptr; 2853 ocap = (dl_capability_req_t *)rptr; 2854 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2855 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2856 rptr += sizeof (dl_capability_req_t); 2857 2858 /* initialize dl_capability_sub_t */ 2859 bcopy(isub, rptr, sizeof (*isub)); 2860 rptr += sizeof (*isub); 2861 2862 odls = (dl_capab_dls_t *)rptr; 2863 rptr += sizeof (dl_capab_dls_t); 2864 2865 /* initialize dl_capab_dls_t to be sent down */ 2866 dls.dls_rx_handle = (uintptr_t)ill; 2867 dls.dls_rx = (uintptr_t)ip_input; 2868 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2869 2870 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2871 dls.dls_ring_cnt = ip_soft_rings_cnt; 2872 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2873 dls.dls_flags = SOFT_RING_ENABLE; 2874 } else { 2875 dls.dls_flags = POLL_ENABLE; 2876 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2877 "to enable polling\n", ill->ill_name)); 2878 } 2879 bcopy((void *)&dls, (void *)odls, 2880 sizeof (dl_capab_dls_t)); 2881 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2882 /* 2883 * nmp points to a DL_CAPABILITY_REQ message to 2884 * enable either soft_ring or polling 2885 */ 2886 ill_dlpi_send(ill, nmp); 2887 } 2888 2889 static void 2890 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2891 { 2892 mblk_t *mp; 2893 dl_capab_dls_t *idls; 2894 dl_capability_sub_t *dl_subcap; 2895 int size; 2896 2897 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2898 return; 2899 2900 ASSERT(ill->ill_dls_capab != NULL); 2901 2902 size = sizeof (*dl_subcap) + sizeof (*idls); 2903 2904 mp = allocb(size, BPRI_HI); 2905 if (mp == NULL) { 2906 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2907 "request to disable soft_ring\n")); 2908 return; 2909 } 2910 2911 mp->b_wptr = mp->b_rptr + size; 2912 2913 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2914 dl_subcap->dl_length = sizeof (*idls); 2915 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2916 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2917 else 2918 dl_subcap->dl_cap = DL_CAPAB_POLL; 2919 2920 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2921 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2922 idls->dls_flags = SOFT_RING_DISABLE; 2923 else 2924 idls->dls_flags = POLL_DISABLE; 2925 2926 if (*sc_mp != NULL) 2927 linkb(*sc_mp, mp); 2928 else 2929 *sc_mp = mp; 2930 } 2931 2932 /* 2933 * Process a soft_ring/poll capability negotiation ack received 2934 * from a DLS Provider.isub must point to the sub-capability 2935 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2936 */ 2937 static void 2938 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2939 { 2940 dl_capab_dls_t *idls; 2941 uint_t sub_dl_cap = isub->dl_cap; 2942 uint8_t *capend; 2943 2944 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2945 sub_dl_cap == DL_CAPAB_POLL); 2946 2947 if (ill->ill_isv6) 2948 return; 2949 2950 /* 2951 * Note: range checks here are not absolutely sufficient to 2952 * make us robust against malformed messages sent by drivers; 2953 * this is in keeping with the rest of IP's dlpi handling. 2954 * (Remember, it's coming from something else in the kernel 2955 * address space) 2956 */ 2957 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2958 if (capend > mp->b_wptr) { 2959 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2960 "malformed sub-capability too long for mblk"); 2961 return; 2962 } 2963 2964 /* 2965 * There are two types of acks we process here: 2966 * 1. acks in reply to a (first form) generic capability req 2967 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2968 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2969 * capability req. 2970 */ 2971 idls = (dl_capab_dls_t *)(isub + 1); 2972 2973 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2974 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2975 "capability isn't as expected; pass-thru " 2976 "module(s) detected, discarding capability\n")); 2977 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2978 /* 2979 * This is a capability renegotitation case. 2980 * The interface better be unusable at this 2981 * point other wise bad things will happen 2982 * if we disable direct calls on a running 2983 * and up interface. 2984 */ 2985 ill_capability_dls_disable(ill); 2986 } 2987 return; 2988 } 2989 2990 switch (idls->dls_flags) { 2991 default: 2992 /* Disable if unknown flag */ 2993 case SOFT_RING_DISABLE: 2994 case POLL_DISABLE: 2995 ill_capability_dls_disable(ill); 2996 break; 2997 case SOFT_RING_CAPABLE: 2998 case POLL_CAPABLE: 2999 /* 3000 * If the capability was already enabled, its safe 3001 * to disable it first to get rid of stale information 3002 * and then start enabling it again. 3003 */ 3004 ill_capability_dls_disable(ill); 3005 ill_capability_dls_capable(ill, idls, isub); 3006 break; 3007 case SOFT_RING_ENABLE: 3008 case POLL_ENABLE: 3009 mutex_enter(&ill->ill_lock); 3010 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3011 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3012 ASSERT(ill->ill_dls_capab != NULL); 3013 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3014 } 3015 if (sub_dl_cap == DL_CAPAB_POLL && 3016 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 ill->ill_capabilities |= ILL_CAPAB_POLL; 3019 ip1dbg(("ill_capability_dls_ack: interface %s " 3020 "has enabled polling\n", ill->ill_name)); 3021 } 3022 mutex_exit(&ill->ill_lock); 3023 break; 3024 } 3025 } 3026 3027 /* 3028 * Process a hardware checksum offload capability negotiation ack received 3029 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3030 * of a DL_CAPABILITY_ACK message. 3031 */ 3032 static void 3033 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3034 { 3035 dl_capability_req_t *ocap; 3036 dl_capab_hcksum_t *ihck, *ohck; 3037 ill_hcksum_capab_t **ill_hcksum; 3038 mblk_t *nmp = NULL; 3039 uint_t sub_dl_cap = isub->dl_cap; 3040 uint8_t *capend; 3041 3042 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3043 3044 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3045 3046 /* 3047 * Note: range checks here are not absolutely sufficient to 3048 * make us robust against malformed messages sent by drivers; 3049 * this is in keeping with the rest of IP's dlpi handling. 3050 * (Remember, it's coming from something else in the kernel 3051 * address space) 3052 */ 3053 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3054 if (capend > mp->b_wptr) { 3055 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3056 "malformed sub-capability too long for mblk"); 3057 return; 3058 } 3059 3060 /* 3061 * There are two types of acks we process here: 3062 * 1. acks in reply to a (first form) generic capability req 3063 * (no ENABLE flag set) 3064 * 2. acks in reply to a ENABLE capability req. 3065 * (ENABLE flag set) 3066 */ 3067 ihck = (dl_capab_hcksum_t *)(isub + 1); 3068 3069 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3070 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3071 "unsupported hardware checksum " 3072 "sub-capability (version %d, expected %d)", 3073 ihck->hcksum_version, HCKSUM_VERSION_1); 3074 return; 3075 } 3076 3077 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3078 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3079 "checksum capability isn't as expected; pass-thru " 3080 "module(s) detected, discarding capability\n")); 3081 return; 3082 } 3083 3084 #define CURR_HCKSUM_CAPAB \ 3085 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3086 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3087 3088 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3089 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3090 /* do ENABLE processing */ 3091 if (*ill_hcksum == NULL) { 3092 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3093 KM_NOSLEEP); 3094 3095 if (*ill_hcksum == NULL) { 3096 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3097 "could not enable hcksum version %d " 3098 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3099 ill->ill_name); 3100 return; 3101 } 3102 } 3103 3104 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3105 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3106 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3107 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3108 "has enabled hardware checksumming\n ", 3109 ill->ill_name)); 3110 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3111 /* 3112 * Enabling hardware checksum offload 3113 * Currently IP supports {TCP,UDP}/IPv4 3114 * partial and full cksum offload and 3115 * IPv4 header checksum offload. 3116 * Allocate new mblk which will 3117 * contain a new capability request 3118 * to enable hardware checksum offload. 3119 */ 3120 uint_t size; 3121 uchar_t *rptr; 3122 3123 size = sizeof (dl_capability_req_t) + 3124 sizeof (dl_capability_sub_t) + isub->dl_length; 3125 3126 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3127 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3128 "could not enable hardware cksum for %s (ENOMEM)\n", 3129 ill->ill_name); 3130 return; 3131 } 3132 3133 rptr = nmp->b_rptr; 3134 /* initialize dl_capability_req_t */ 3135 ocap = (dl_capability_req_t *)nmp->b_rptr; 3136 ocap->dl_sub_offset = 3137 sizeof (dl_capability_req_t); 3138 ocap->dl_sub_length = 3139 sizeof (dl_capability_sub_t) + 3140 isub->dl_length; 3141 nmp->b_rptr += sizeof (dl_capability_req_t); 3142 3143 /* initialize dl_capability_sub_t */ 3144 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3145 nmp->b_rptr += sizeof (*isub); 3146 3147 /* initialize dl_capab_hcksum_t */ 3148 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3149 bcopy(ihck, ohck, sizeof (*ihck)); 3150 3151 nmp->b_rptr = rptr; 3152 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3153 3154 /* Set ENABLE flag */ 3155 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3156 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3157 3158 /* 3159 * nmp points to a DL_CAPABILITY_REQ message to enable 3160 * hardware checksum acceleration. 3161 */ 3162 ill_dlpi_send(ill, nmp); 3163 } else { 3164 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3165 "advertised %x hardware checksum capability flags\n", 3166 ill->ill_name, ihck->hcksum_txflags)); 3167 } 3168 } 3169 3170 static void 3171 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3172 { 3173 mblk_t *mp; 3174 dl_capab_hcksum_t *hck_subcap; 3175 dl_capability_sub_t *dl_subcap; 3176 int size; 3177 3178 if (!ILL_HCKSUM_CAPABLE(ill)) 3179 return; 3180 3181 ASSERT(ill->ill_hcksum_capab != NULL); 3182 /* 3183 * Clear the capability flag for hardware checksum offload but 3184 * retain the ill_hcksum_capab structure since it's possible that 3185 * another thread is still referring to it. The structure only 3186 * gets deallocated when we destroy the ill. 3187 */ 3188 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3189 3190 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3191 3192 mp = allocb(size, BPRI_HI); 3193 if (mp == NULL) { 3194 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3195 "request to disable hardware checksum offload\n")); 3196 return; 3197 } 3198 3199 mp->b_wptr = mp->b_rptr + size; 3200 3201 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3202 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3203 dl_subcap->dl_length = sizeof (*hck_subcap); 3204 3205 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3206 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3207 hck_subcap->hcksum_txflags = 0; 3208 3209 if (*sc_mp != NULL) 3210 linkb(*sc_mp, mp); 3211 else 3212 *sc_mp = mp; 3213 } 3214 3215 static void 3216 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3217 { 3218 mblk_t *nmp = NULL; 3219 dl_capability_req_t *oc; 3220 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3221 ill_zerocopy_capab_t **ill_zerocopy_capab; 3222 uint_t sub_dl_cap = isub->dl_cap; 3223 uint8_t *capend; 3224 3225 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3226 3227 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3228 3229 /* 3230 * Note: range checks here are not absolutely sufficient to 3231 * make us robust against malformed messages sent by drivers; 3232 * this is in keeping with the rest of IP's dlpi handling. 3233 * (Remember, it's coming from something else in the kernel 3234 * address space) 3235 */ 3236 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3237 if (capend > mp->b_wptr) { 3238 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3239 "malformed sub-capability too long for mblk"); 3240 return; 3241 } 3242 3243 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3244 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3245 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3246 "unsupported ZEROCOPY sub-capability (version %d, " 3247 "expected %d)", zc_ic->zerocopy_version, 3248 ZEROCOPY_VERSION_1); 3249 return; 3250 } 3251 3252 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3253 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3254 "capability isn't as expected; pass-thru module(s) " 3255 "detected, discarding capability\n")); 3256 return; 3257 } 3258 3259 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3260 if (*ill_zerocopy_capab == NULL) { 3261 *ill_zerocopy_capab = 3262 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3263 KM_NOSLEEP); 3264 3265 if (*ill_zerocopy_capab == NULL) { 3266 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3267 "could not enable Zero-copy version %d " 3268 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3269 ill->ill_name); 3270 return; 3271 } 3272 } 3273 3274 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3275 "supports Zero-copy version %d\n", ill->ill_name, 3276 ZEROCOPY_VERSION_1)); 3277 3278 (*ill_zerocopy_capab)->ill_zerocopy_version = 3279 zc_ic->zerocopy_version; 3280 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3281 zc_ic->zerocopy_flags; 3282 3283 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3284 } else { 3285 uint_t size; 3286 uchar_t *rptr; 3287 3288 size = sizeof (dl_capability_req_t) + 3289 sizeof (dl_capability_sub_t) + 3290 sizeof (dl_capab_zerocopy_t); 3291 3292 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3293 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3294 "could not enable zerocopy for %s (ENOMEM)\n", 3295 ill->ill_name); 3296 return; 3297 } 3298 3299 rptr = nmp->b_rptr; 3300 /* initialize dl_capability_req_t */ 3301 oc = (dl_capability_req_t *)rptr; 3302 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3303 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3304 sizeof (dl_capab_zerocopy_t); 3305 rptr += sizeof (dl_capability_req_t); 3306 3307 /* initialize dl_capability_sub_t */ 3308 bcopy(isub, rptr, sizeof (*isub)); 3309 rptr += sizeof (*isub); 3310 3311 /* initialize dl_capab_zerocopy_t */ 3312 zc_oc = (dl_capab_zerocopy_t *)rptr; 3313 *zc_oc = *zc_ic; 3314 3315 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3316 "to enable zero-copy version %d\n", ill->ill_name, 3317 ZEROCOPY_VERSION_1)); 3318 3319 /* set VMSAFE_MEM flag */ 3320 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3321 3322 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3323 ill_dlpi_send(ill, nmp); 3324 } 3325 } 3326 3327 static void 3328 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3329 { 3330 mblk_t *mp; 3331 dl_capab_zerocopy_t *zerocopy_subcap; 3332 dl_capability_sub_t *dl_subcap; 3333 int size; 3334 3335 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3336 return; 3337 3338 ASSERT(ill->ill_zerocopy_capab != NULL); 3339 /* 3340 * Clear the capability flag for Zero-copy but retain the 3341 * ill_zerocopy_capab structure since it's possible that another 3342 * thread is still referring to it. The structure only gets 3343 * deallocated when we destroy the ill. 3344 */ 3345 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3346 3347 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3348 3349 mp = allocb(size, BPRI_HI); 3350 if (mp == NULL) { 3351 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3352 "request to disable Zero-copy\n")); 3353 return; 3354 } 3355 3356 mp->b_wptr = mp->b_rptr + size; 3357 3358 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3359 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3360 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3361 3362 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3363 zerocopy_subcap->zerocopy_version = 3364 ill->ill_zerocopy_capab->ill_zerocopy_version; 3365 zerocopy_subcap->zerocopy_flags = 0; 3366 3367 if (*sc_mp != NULL) 3368 linkb(*sc_mp, mp); 3369 else 3370 *sc_mp = mp; 3371 } 3372 3373 /* 3374 * Process Large Segment Offload capability negotiation ack received from a 3375 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3376 * DL_CAPABILITY_ACK message. 3377 */ 3378 static void 3379 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3380 { 3381 mblk_t *nmp = NULL; 3382 dl_capability_req_t *oc; 3383 dl_capab_lso_t *lso_ic, *lso_oc; 3384 ill_lso_capab_t **ill_lso_capab; 3385 uint_t sub_dl_cap = isub->dl_cap; 3386 uint8_t *capend; 3387 3388 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3389 3390 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3391 3392 /* 3393 * Note: range checks here are not absolutely sufficient to 3394 * make us robust against malformed messages sent by drivers; 3395 * this is in keeping with the rest of IP's dlpi handling. 3396 * (Remember, it's coming from something else in the kernel 3397 * address space) 3398 */ 3399 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3400 if (capend > mp->b_wptr) { 3401 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3402 "malformed sub-capability too long for mblk"); 3403 return; 3404 } 3405 3406 lso_ic = (dl_capab_lso_t *)(isub + 1); 3407 3408 if (lso_ic->lso_version != LSO_VERSION_1) { 3409 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3410 "unsupported LSO sub-capability (version %d, expected %d)", 3411 lso_ic->lso_version, LSO_VERSION_1); 3412 return; 3413 } 3414 3415 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3416 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3417 "capability isn't as expected; pass-thru module(s) " 3418 "detected, discarding capability\n")); 3419 return; 3420 } 3421 3422 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3423 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3424 if (*ill_lso_capab == NULL) { 3425 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3426 KM_NOSLEEP); 3427 3428 if (*ill_lso_capab == NULL) { 3429 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3430 "could not enable LSO version %d " 3431 "for %s (ENOMEM)\n", LSO_VERSION_1, 3432 ill->ill_name); 3433 return; 3434 } 3435 } 3436 3437 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3438 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3439 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3440 ill->ill_capabilities |= ILL_CAPAB_LSO; 3441 3442 ip1dbg(("ill_capability_lso_ack: interface %s " 3443 "has enabled LSO\n ", ill->ill_name)); 3444 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3445 uint_t size; 3446 uchar_t *rptr; 3447 3448 size = sizeof (dl_capability_req_t) + 3449 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3450 3451 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3452 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3453 "could not enable LSO for %s (ENOMEM)\n", 3454 ill->ill_name); 3455 return; 3456 } 3457 3458 rptr = nmp->b_rptr; 3459 /* initialize dl_capability_req_t */ 3460 oc = (dl_capability_req_t *)nmp->b_rptr; 3461 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3462 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3463 sizeof (dl_capab_lso_t); 3464 nmp->b_rptr += sizeof (dl_capability_req_t); 3465 3466 /* initialize dl_capability_sub_t */ 3467 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3468 nmp->b_rptr += sizeof (*isub); 3469 3470 /* initialize dl_capab_lso_t */ 3471 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3472 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3473 3474 nmp->b_rptr = rptr; 3475 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3476 3477 /* set ENABLE flag */ 3478 lso_oc->lso_flags |= LSO_TX_ENABLE; 3479 3480 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3481 ill_dlpi_send(ill, nmp); 3482 } else { 3483 ip1dbg(("ill_capability_lso_ack: interface %s has " 3484 "advertised %x LSO capability flags\n", 3485 ill->ill_name, lso_ic->lso_flags)); 3486 } 3487 } 3488 3489 3490 static void 3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3492 { 3493 mblk_t *mp; 3494 dl_capab_lso_t *lso_subcap; 3495 dl_capability_sub_t *dl_subcap; 3496 int size; 3497 3498 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3499 return; 3500 3501 ASSERT(ill->ill_lso_capab != NULL); 3502 /* 3503 * Clear the capability flag for LSO but retain the 3504 * ill_lso_capab structure since it's possible that another 3505 * thread is still referring to it. The structure only gets 3506 * deallocated when we destroy the ill. 3507 */ 3508 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3509 3510 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3511 3512 mp = allocb(size, BPRI_HI); 3513 if (mp == NULL) { 3514 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3515 "request to disable LSO\n")); 3516 return; 3517 } 3518 3519 mp->b_wptr = mp->b_rptr + size; 3520 3521 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3522 dl_subcap->dl_cap = DL_CAPAB_LSO; 3523 dl_subcap->dl_length = sizeof (*lso_subcap); 3524 3525 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3526 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3527 lso_subcap->lso_flags = 0; 3528 3529 if (*sc_mp != NULL) 3530 linkb(*sc_mp, mp); 3531 else 3532 *sc_mp = mp; 3533 } 3534 3535 /* 3536 * Consume a new-style hardware capabilities negotiation ack. 3537 * Called from ip_rput_dlpi_writer(). 3538 */ 3539 void 3540 ill_capability_ack(ill_t *ill, mblk_t *mp) 3541 { 3542 dl_capability_ack_t *capp; 3543 dl_capability_sub_t *subp, *endp; 3544 3545 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3546 ill->ill_dlpi_capab_state = IDS_OK; 3547 3548 capp = (dl_capability_ack_t *)mp->b_rptr; 3549 3550 if (capp->dl_sub_length == 0) 3551 /* no new-style capabilities */ 3552 return; 3553 3554 /* make sure the driver supplied correct dl_sub_length */ 3555 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3556 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3557 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3558 return; 3559 } 3560 3561 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3562 /* 3563 * There are sub-capabilities. Process the ones we know about. 3564 * Loop until we don't have room for another sub-cap header.. 3565 */ 3566 for (subp = SC(capp, capp->dl_sub_offset), 3567 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3568 subp <= endp; 3569 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3570 3571 switch (subp->dl_cap) { 3572 case DL_CAPAB_ID_WRAPPER: 3573 ill_capability_id_ack(ill, mp, subp); 3574 break; 3575 default: 3576 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3577 break; 3578 } 3579 } 3580 #undef SC 3581 } 3582 3583 /* 3584 * This routine is called to scan the fragmentation reassembly table for 3585 * the specified ILL for any packets that are starting to smell. 3586 * dead_interval is the maximum time in seconds that will be tolerated. It 3587 * will either be the value specified in ip_g_frag_timeout, or zero if the 3588 * ILL is shutting down and it is time to blow everything off. 3589 * 3590 * It returns the number of seconds (as a time_t) that the next frag timer 3591 * should be scheduled for, 0 meaning that the timer doesn't need to be 3592 * re-started. Note that the method of calculating next_timeout isn't 3593 * entirely accurate since time will flow between the time we grab 3594 * current_time and the time we schedule the next timeout. This isn't a 3595 * big problem since this is the timer for sending an ICMP reassembly time 3596 * exceeded messages, and it doesn't have to be exactly accurate. 3597 * 3598 * This function is 3599 * sometimes called as writer, although this is not required. 3600 */ 3601 time_t 3602 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3603 { 3604 ipfb_t *ipfb; 3605 ipfb_t *endp; 3606 ipf_t *ipf; 3607 ipf_t *ipfnext; 3608 mblk_t *mp; 3609 time_t current_time = gethrestime_sec(); 3610 time_t next_timeout = 0; 3611 uint32_t hdr_length; 3612 mblk_t *send_icmp_head; 3613 mblk_t *send_icmp_head_v6; 3614 zoneid_t zoneid; 3615 ip_stack_t *ipst = ill->ill_ipst; 3616 3617 ipfb = ill->ill_frag_hash_tbl; 3618 if (ipfb == NULL) 3619 return (B_FALSE); 3620 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3621 /* Walk the frag hash table. */ 3622 for (; ipfb < endp; ipfb++) { 3623 send_icmp_head = NULL; 3624 send_icmp_head_v6 = NULL; 3625 mutex_enter(&ipfb->ipfb_lock); 3626 while ((ipf = ipfb->ipfb_ipf) != 0) { 3627 time_t frag_time = current_time - ipf->ipf_timestamp; 3628 time_t frag_timeout; 3629 3630 if (frag_time < dead_interval) { 3631 /* 3632 * There are some outstanding fragments 3633 * that will timeout later. Make note of 3634 * the time so that we can reschedule the 3635 * next timeout appropriately. 3636 */ 3637 frag_timeout = dead_interval - frag_time; 3638 if (next_timeout == 0 || 3639 frag_timeout < next_timeout) { 3640 next_timeout = frag_timeout; 3641 } 3642 break; 3643 } 3644 /* Time's up. Get it out of here. */ 3645 hdr_length = ipf->ipf_nf_hdr_len; 3646 ipfnext = ipf->ipf_hash_next; 3647 if (ipfnext) 3648 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3649 *ipf->ipf_ptphn = ipfnext; 3650 mp = ipf->ipf_mp->b_cont; 3651 for (; mp; mp = mp->b_cont) { 3652 /* Extra points for neatness. */ 3653 IP_REASS_SET_START(mp, 0); 3654 IP_REASS_SET_END(mp, 0); 3655 } 3656 mp = ipf->ipf_mp->b_cont; 3657 ill->ill_frag_count -= ipf->ipf_count; 3658 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3659 ipfb->ipfb_count -= ipf->ipf_count; 3660 ASSERT(ipfb->ipfb_frag_pkts > 0); 3661 ipfb->ipfb_frag_pkts--; 3662 /* 3663 * We do not send any icmp message from here because 3664 * we currently are holding the ipfb_lock for this 3665 * hash chain. If we try and send any icmp messages 3666 * from here we may end up via a put back into ip 3667 * trying to get the same lock, causing a recursive 3668 * mutex panic. Instead we build a list and send all 3669 * the icmp messages after we have dropped the lock. 3670 */ 3671 if (ill->ill_isv6) { 3672 if (hdr_length != 0) { 3673 mp->b_next = send_icmp_head_v6; 3674 send_icmp_head_v6 = mp; 3675 } else { 3676 freemsg(mp); 3677 } 3678 } else { 3679 if (hdr_length != 0) { 3680 mp->b_next = send_icmp_head; 3681 send_icmp_head = mp; 3682 } else { 3683 freemsg(mp); 3684 } 3685 } 3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3687 freeb(ipf->ipf_mp); 3688 } 3689 mutex_exit(&ipfb->ipfb_lock); 3690 /* 3691 * Now need to send any icmp messages that we delayed from 3692 * above. 3693 */ 3694 while (send_icmp_head_v6 != NULL) { 3695 ip6_t *ip6h; 3696 3697 mp = send_icmp_head_v6; 3698 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3699 mp->b_next = NULL; 3700 if (mp->b_datap->db_type == M_CTL) 3701 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3702 else 3703 ip6h = (ip6_t *)mp->b_rptr; 3704 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3705 ill, ipst); 3706 if (zoneid == ALL_ZONES) { 3707 freemsg(mp); 3708 } else { 3709 icmp_time_exceeded_v6(ill->ill_wq, mp, 3710 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3711 B_FALSE, zoneid, ipst); 3712 } 3713 } 3714 while (send_icmp_head != NULL) { 3715 ipaddr_t dst; 3716 3717 mp = send_icmp_head; 3718 send_icmp_head = send_icmp_head->b_next; 3719 mp->b_next = NULL; 3720 3721 if (mp->b_datap->db_type == M_CTL) 3722 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3723 else 3724 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3725 3726 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3727 if (zoneid == ALL_ZONES) { 3728 freemsg(mp); 3729 } else { 3730 icmp_time_exceeded(ill->ill_wq, mp, 3731 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3732 ipst); 3733 } 3734 } 3735 } 3736 /* 3737 * A non-dying ILL will use the return value to decide whether to 3738 * restart the frag timer, and for how long. 3739 */ 3740 return (next_timeout); 3741 } 3742 3743 /* 3744 * This routine is called when the approximate count of mblk memory used 3745 * for the specified ILL has exceeded max_count. 3746 */ 3747 void 3748 ill_frag_prune(ill_t *ill, uint_t max_count) 3749 { 3750 ipfb_t *ipfb; 3751 ipf_t *ipf; 3752 size_t count; 3753 3754 /* 3755 * If we are here within ip_min_frag_prune_time msecs remove 3756 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3757 * ill_frag_free_num_pkts. 3758 */ 3759 mutex_enter(&ill->ill_lock); 3760 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3761 (ip_min_frag_prune_time != 0 ? 3762 ip_min_frag_prune_time : msec_per_tick)) { 3763 3764 ill->ill_frag_free_num_pkts++; 3765 3766 } else { 3767 ill->ill_frag_free_num_pkts = 0; 3768 } 3769 ill->ill_last_frag_clean_time = lbolt; 3770 mutex_exit(&ill->ill_lock); 3771 3772 /* 3773 * free ill_frag_free_num_pkts oldest packets from each bucket. 3774 */ 3775 if (ill->ill_frag_free_num_pkts != 0) { 3776 int ix; 3777 3778 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3779 ipfb = &ill->ill_frag_hash_tbl[ix]; 3780 mutex_enter(&ipfb->ipfb_lock); 3781 if (ipfb->ipfb_ipf != NULL) { 3782 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3783 ill->ill_frag_free_num_pkts); 3784 } 3785 mutex_exit(&ipfb->ipfb_lock); 3786 } 3787 } 3788 /* 3789 * While the reassembly list for this ILL is too big, prune a fragment 3790 * queue by age, oldest first. Note that the per ILL count is 3791 * approximate, while the per frag hash bucket counts are accurate. 3792 */ 3793 while (ill->ill_frag_count > max_count) { 3794 int ix; 3795 ipfb_t *oipfb = NULL; 3796 uint_t oldest = UINT_MAX; 3797 3798 count = 0; 3799 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3800 ipfb = &ill->ill_frag_hash_tbl[ix]; 3801 mutex_enter(&ipfb->ipfb_lock); 3802 ipf = ipfb->ipfb_ipf; 3803 if (ipf != NULL && ipf->ipf_gen < oldest) { 3804 oldest = ipf->ipf_gen; 3805 oipfb = ipfb; 3806 } 3807 count += ipfb->ipfb_count; 3808 mutex_exit(&ipfb->ipfb_lock); 3809 } 3810 /* Refresh the per ILL count */ 3811 ill->ill_frag_count = count; 3812 if (oipfb == NULL) { 3813 ill->ill_frag_count = 0; 3814 break; 3815 } 3816 if (count <= max_count) 3817 return; /* Somebody beat us to it, nothing to do */ 3818 mutex_enter(&oipfb->ipfb_lock); 3819 ipf = oipfb->ipfb_ipf; 3820 if (ipf != NULL) { 3821 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3822 } 3823 mutex_exit(&oipfb->ipfb_lock); 3824 } 3825 } 3826 3827 /* 3828 * free 'free_cnt' fragmented packets starting at ipf. 3829 */ 3830 void 3831 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3832 { 3833 size_t count; 3834 mblk_t *mp; 3835 mblk_t *tmp; 3836 ipf_t **ipfp = ipf->ipf_ptphn; 3837 3838 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3839 ASSERT(ipfp != NULL); 3840 ASSERT(ipf != NULL); 3841 3842 while (ipf != NULL && free_cnt-- > 0) { 3843 count = ipf->ipf_count; 3844 mp = ipf->ipf_mp; 3845 ipf = ipf->ipf_hash_next; 3846 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3847 IP_REASS_SET_START(tmp, 0); 3848 IP_REASS_SET_END(tmp, 0); 3849 } 3850 ill->ill_frag_count -= count; 3851 ASSERT(ipfb->ipfb_count >= count); 3852 ipfb->ipfb_count -= count; 3853 ASSERT(ipfb->ipfb_frag_pkts > 0); 3854 ipfb->ipfb_frag_pkts--; 3855 freemsg(mp); 3856 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3857 } 3858 3859 if (ipf) 3860 ipf->ipf_ptphn = ipfp; 3861 ipfp[0] = ipf; 3862 } 3863 3864 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3865 "obsolete and may be removed in a future release of Solaris. Use " \ 3866 "ifconfig(1M) to manipulate the forwarding status of an interface." 3867 3868 /* 3869 * For obsolete per-interface forwarding configuration; 3870 * called in response to ND_GET. 3871 */ 3872 /* ARGSUSED */ 3873 static int 3874 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3875 { 3876 ill_t *ill = (ill_t *)cp; 3877 3878 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3879 3880 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3881 return (0); 3882 } 3883 3884 /* 3885 * For obsolete per-interface forwarding configuration; 3886 * called in response to ND_SET. 3887 */ 3888 /* ARGSUSED */ 3889 static int 3890 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3891 cred_t *ioc_cr) 3892 { 3893 long value; 3894 int retval; 3895 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3896 3897 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3898 3899 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3900 value < 0 || value > 1) { 3901 return (EINVAL); 3902 } 3903 3904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3905 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3906 rw_exit(&ipst->ips_ill_g_lock); 3907 return (retval); 3908 } 3909 3910 /* 3911 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3912 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3913 * up RTS_IFINFO routing socket messages for each interface whose flags we 3914 * change. 3915 */ 3916 int 3917 ill_forward_set(ill_t *ill, boolean_t enable) 3918 { 3919 ill_group_t *illgrp; 3920 ip_stack_t *ipst = ill->ill_ipst; 3921 3922 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3923 3924 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3925 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3926 return (0); 3927 3928 if (IS_LOOPBACK(ill)) 3929 return (EINVAL); 3930 3931 /* 3932 * If the ill is in an IPMP group, set the forwarding policy on all 3933 * members of the group to the same value. 3934 */ 3935 illgrp = ill->ill_group; 3936 if (illgrp != NULL) { 3937 ill_t *tmp_ill; 3938 3939 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3940 tmp_ill = tmp_ill->ill_group_next) { 3941 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3942 (enable ? "Enabling" : "Disabling"), 3943 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3944 tmp_ill->ill_name)); 3945 mutex_enter(&tmp_ill->ill_lock); 3946 if (enable) 3947 tmp_ill->ill_flags |= ILLF_ROUTER; 3948 else 3949 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3950 mutex_exit(&tmp_ill->ill_lock); 3951 if (tmp_ill->ill_isv6) 3952 ill_set_nce_router_flags(tmp_ill, enable); 3953 /* Notify routing socket listeners of this change. */ 3954 ip_rts_ifmsg(tmp_ill->ill_ipif); 3955 } 3956 } else { 3957 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3958 (enable ? "Enabling" : "Disabling"), 3959 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3960 mutex_enter(&ill->ill_lock); 3961 if (enable) 3962 ill->ill_flags |= ILLF_ROUTER; 3963 else 3964 ill->ill_flags &= ~ILLF_ROUTER; 3965 mutex_exit(&ill->ill_lock); 3966 if (ill->ill_isv6) 3967 ill_set_nce_router_flags(ill, enable); 3968 /* Notify routing socket listeners of this change. */ 3969 ip_rts_ifmsg(ill->ill_ipif); 3970 } 3971 3972 return (0); 3973 } 3974 3975 /* 3976 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3977 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3978 * set or clear. 3979 */ 3980 static void 3981 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3982 { 3983 ipif_t *ipif; 3984 nce_t *nce; 3985 3986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3987 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3988 if (nce != NULL) { 3989 mutex_enter(&nce->nce_lock); 3990 if (enable) 3991 nce->nce_flags |= NCE_F_ISROUTER; 3992 else 3993 nce->nce_flags &= ~NCE_F_ISROUTER; 3994 mutex_exit(&nce->nce_lock); 3995 NCE_REFRELE(nce); 3996 } 3997 } 3998 } 3999 4000 /* 4001 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4002 * for this ill. Make sure the v6/v4 question has been answered about this 4003 * ill. The creation of this ndd variable is only for backwards compatibility. 4004 * The preferred way to control per-interface IP forwarding is through the 4005 * ILLF_ROUTER interface flag. 4006 */ 4007 static int 4008 ill_set_ndd_name(ill_t *ill) 4009 { 4010 char *suffix; 4011 ip_stack_t *ipst = ill->ill_ipst; 4012 4013 ASSERT(IAM_WRITER_ILL(ill)); 4014 4015 if (ill->ill_isv6) 4016 suffix = ipv6_forward_suffix; 4017 else 4018 suffix = ipv4_forward_suffix; 4019 4020 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4021 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4022 /* 4023 * Copies over the '\0'. 4024 * Note that strlen(suffix) is always bounded. 4025 */ 4026 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4027 strlen(suffix) + 1); 4028 4029 /* 4030 * Use of the nd table requires holding the reader lock. 4031 * Modifying the nd table thru nd_load/nd_unload requires 4032 * the writer lock. 4033 */ 4034 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4035 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4036 nd_ill_forward_set, (caddr_t)ill)) { 4037 /* 4038 * If the nd_load failed, it only meant that it could not 4039 * allocate a new bunch of room for further NDD expansion. 4040 * Because of that, the ill_ndd_name will be set to 0, and 4041 * this interface is at the mercy of the global ip_forwarding 4042 * variable. 4043 */ 4044 rw_exit(&ipst->ips_ip_g_nd_lock); 4045 ill->ill_ndd_name = NULL; 4046 return (ENOMEM); 4047 } 4048 rw_exit(&ipst->ips_ip_g_nd_lock); 4049 return (0); 4050 } 4051 4052 /* 4053 * Intializes the context structure and returns the first ill in the list 4054 * cuurently start_list and end_list can have values: 4055 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4056 * IP_V4_G_HEAD Traverse IPV4 list only. 4057 * IP_V6_G_HEAD Traverse IPV6 list only. 4058 */ 4059 4060 /* 4061 * We don't check for CONDEMNED ills here. Caller must do that if 4062 * necessary under the ill lock. 4063 */ 4064 ill_t * 4065 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4066 ip_stack_t *ipst) 4067 { 4068 ill_if_t *ifp; 4069 ill_t *ill; 4070 avl_tree_t *avl_tree; 4071 4072 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4073 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4074 4075 /* 4076 * setup the lists to search 4077 */ 4078 if (end_list != MAX_G_HEADS) { 4079 ctx->ctx_current_list = start_list; 4080 ctx->ctx_last_list = end_list; 4081 } else { 4082 ctx->ctx_last_list = MAX_G_HEADS - 1; 4083 ctx->ctx_current_list = 0; 4084 } 4085 4086 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4087 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4088 if (ifp != (ill_if_t *) 4089 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4090 avl_tree = &ifp->illif_avl_by_ppa; 4091 ill = avl_first(avl_tree); 4092 /* 4093 * ill is guaranteed to be non NULL or ifp should have 4094 * not existed. 4095 */ 4096 ASSERT(ill != NULL); 4097 return (ill); 4098 } 4099 ctx->ctx_current_list++; 4100 } 4101 4102 return (NULL); 4103 } 4104 4105 /* 4106 * returns the next ill in the list. ill_first() must have been called 4107 * before calling ill_next() or bad things will happen. 4108 */ 4109 4110 /* 4111 * We don't check for CONDEMNED ills here. Caller must do that if 4112 * necessary under the ill lock. 4113 */ 4114 ill_t * 4115 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4116 { 4117 ill_if_t *ifp; 4118 ill_t *ill; 4119 ip_stack_t *ipst = lastill->ill_ipst; 4120 4121 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4122 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4123 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4124 AVL_AFTER)) != NULL) { 4125 return (ill); 4126 } 4127 4128 /* goto next ill_ifp in the list. */ 4129 ifp = lastill->ill_ifptr->illif_next; 4130 4131 /* make sure not at end of circular list */ 4132 while (ifp == 4133 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4134 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4135 return (NULL); 4136 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4137 } 4138 4139 return (avl_first(&ifp->illif_avl_by_ppa)); 4140 } 4141 4142 /* 4143 * Check interface name for correct format which is name+ppa. 4144 * name can contain characters and digits, the right most digits 4145 * make up the ppa number. use of octal is not allowed, name must contain 4146 * a ppa, return pointer to the start of ppa. 4147 * In case of error return NULL. 4148 */ 4149 static char * 4150 ill_get_ppa_ptr(char *name) 4151 { 4152 int namelen = mi_strlen(name); 4153 4154 int len = namelen; 4155 4156 name += len; 4157 while (len > 0) { 4158 name--; 4159 if (*name < '0' || *name > '9') 4160 break; 4161 len--; 4162 } 4163 4164 /* empty string, all digits, or no trailing digits */ 4165 if (len == 0 || len == (int)namelen) 4166 return (NULL); 4167 4168 name++; 4169 /* check for attempted use of octal */ 4170 if (*name == '0' && len != (int)namelen - 1) 4171 return (NULL); 4172 return (name); 4173 } 4174 4175 /* 4176 * use avl tree to locate the ill. 4177 */ 4178 static ill_t * 4179 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4180 ipsq_func_t func, int *error, ip_stack_t *ipst) 4181 { 4182 char *ppa_ptr = NULL; 4183 int len; 4184 uint_t ppa; 4185 ill_t *ill = NULL; 4186 ill_if_t *ifp; 4187 int list; 4188 ipsq_t *ipsq; 4189 4190 if (error != NULL) 4191 *error = 0; 4192 4193 /* 4194 * get ppa ptr 4195 */ 4196 if (isv6) 4197 list = IP_V6_G_HEAD; 4198 else 4199 list = IP_V4_G_HEAD; 4200 4201 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4202 if (error != NULL) 4203 *error = ENXIO; 4204 return (NULL); 4205 } 4206 4207 len = ppa_ptr - name + 1; 4208 4209 ppa = stoi(&ppa_ptr); 4210 4211 ifp = IP_VX_ILL_G_LIST(list, ipst); 4212 4213 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4214 /* 4215 * match is done on len - 1 as the name is not null 4216 * terminated it contains ppa in addition to the interface 4217 * name. 4218 */ 4219 if ((ifp->illif_name_len == len) && 4220 bcmp(ifp->illif_name, name, len - 1) == 0) { 4221 break; 4222 } else { 4223 ifp = ifp->illif_next; 4224 } 4225 } 4226 4227 4228 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4229 /* 4230 * Even the interface type does not exist. 4231 */ 4232 if (error != NULL) 4233 *error = ENXIO; 4234 return (NULL); 4235 } 4236 4237 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4238 if (ill != NULL) { 4239 /* 4240 * The block comment at the start of ipif_down 4241 * explains the use of the macros used below 4242 */ 4243 GRAB_CONN_LOCK(q); 4244 mutex_enter(&ill->ill_lock); 4245 if (ILL_CAN_LOOKUP(ill)) { 4246 ill_refhold_locked(ill); 4247 mutex_exit(&ill->ill_lock); 4248 RELEASE_CONN_LOCK(q); 4249 return (ill); 4250 } else if (ILL_CAN_WAIT(ill, q)) { 4251 ipsq = ill->ill_phyint->phyint_ipsq; 4252 mutex_enter(&ipsq->ipsq_lock); 4253 mutex_exit(&ill->ill_lock); 4254 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4255 mutex_exit(&ipsq->ipsq_lock); 4256 RELEASE_CONN_LOCK(q); 4257 if (error != NULL) 4258 *error = EINPROGRESS; 4259 return (NULL); 4260 } 4261 mutex_exit(&ill->ill_lock); 4262 RELEASE_CONN_LOCK(q); 4263 } 4264 if (error != NULL) 4265 *error = ENXIO; 4266 return (NULL); 4267 } 4268 4269 /* 4270 * comparison function for use with avl. 4271 */ 4272 static int 4273 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4274 { 4275 uint_t ppa; 4276 uint_t ill_ppa; 4277 4278 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4279 4280 ppa = *((uint_t *)ppa_ptr); 4281 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4282 /* 4283 * We want the ill with the lowest ppa to be on the 4284 * top. 4285 */ 4286 if (ill_ppa < ppa) 4287 return (1); 4288 if (ill_ppa > ppa) 4289 return (-1); 4290 return (0); 4291 } 4292 4293 /* 4294 * remove an interface type from the global list. 4295 */ 4296 static void 4297 ill_delete_interface_type(ill_if_t *interface) 4298 { 4299 ASSERT(interface != NULL); 4300 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4301 4302 avl_destroy(&interface->illif_avl_by_ppa); 4303 if (interface->illif_ppa_arena != NULL) 4304 vmem_destroy(interface->illif_ppa_arena); 4305 4306 remque(interface); 4307 4308 mi_free(interface); 4309 } 4310 4311 /* Defined in ip_netinfo.c */ 4312 extern ddi_taskq_t *eventq_queue_nic; 4313 4314 /* 4315 * remove ill from the global list. 4316 */ 4317 static void 4318 ill_glist_delete(ill_t *ill) 4319 { 4320 char *nicname; 4321 size_t nicnamelen; 4322 hook_nic_event_t *info; 4323 ip_stack_t *ipst; 4324 4325 if (ill == NULL) 4326 return; 4327 ipst = ill->ill_ipst; 4328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4329 4330 if (ill->ill_name != NULL) { 4331 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4332 if (nicname != NULL) { 4333 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4334 nicnamelen = ill->ill_name_length; 4335 } 4336 } else { 4337 nicname = NULL; 4338 nicnamelen = 0; 4339 } 4340 4341 /* 4342 * If the ill was never inserted into the AVL tree 4343 * we skip the if branch. 4344 */ 4345 if (ill->ill_ifptr != NULL) { 4346 /* 4347 * remove from AVL tree and free ppa number 4348 */ 4349 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4350 4351 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4352 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4353 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4354 } 4355 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4356 ill_delete_interface_type(ill->ill_ifptr); 4357 } 4358 4359 /* 4360 * Indicate ill is no longer in the list. 4361 */ 4362 ill->ill_ifptr = NULL; 4363 ill->ill_name_length = 0; 4364 ill->ill_name[0] = '\0'; 4365 ill->ill_ppa = UINT_MAX; 4366 } 4367 4368 /* 4369 * Run the unplumb hook after the NIC has disappeared from being 4370 * visible so that attempts to revalidate its existance will fail. 4371 * 4372 * This needs to be run inside the ill_g_lock perimeter to ensure 4373 * that the ordering of delivered events to listeners matches the 4374 * order of them in the kernel. 4375 */ 4376 if ((info = ill->ill_nic_event_info) != NULL) { 4377 if (info->hne_event != NE_DOWN) { 4378 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4379 "attached for %s\n", info->hne_event, 4380 ill->ill_name)); 4381 if (info->hne_data != NULL) 4382 kmem_free(info->hne_data, info->hne_datalen); 4383 kmem_free(info, sizeof (hook_nic_event_t)); 4384 } else { 4385 if (ddi_taskq_dispatch(eventq_queue_nic, 4386 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4387 == DDI_FAILURE) { 4388 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4389 "failed\n")); 4390 if (info->hne_data != NULL) 4391 kmem_free(info->hne_data, 4392 info->hne_datalen); 4393 kmem_free(info, sizeof (hook_nic_event_t)); 4394 } 4395 } 4396 } 4397 4398 /* Generate NE_UNPLUMB event for ill_name. */ 4399 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4400 if (info != NULL) { 4401 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4402 info->hne_lif = 0; 4403 info->hne_event = NE_UNPLUMB; 4404 info->hne_data = nicname; 4405 info->hne_datalen = nicnamelen; 4406 info->hne_family = ill->ill_isv6 ? 4407 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4408 } else { 4409 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4410 "information for %s (ENOMEM)\n", ill->ill_name)); 4411 if (nicname != NULL) 4412 kmem_free(nicname, nicnamelen); 4413 } 4414 4415 ill->ill_nic_event_info = info; 4416 4417 ill_phyint_free(ill); 4418 rw_exit(&ipst->ips_ill_g_lock); 4419 } 4420 4421 /* 4422 * allocate a ppa, if the number of plumbed interfaces of this type are 4423 * less than ill_no_arena do a linear search to find a unused ppa. 4424 * When the number goes beyond ill_no_arena switch to using an arena. 4425 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4426 * is the return value for an error condition, so allocation starts at one 4427 * and is decremented by one. 4428 */ 4429 static int 4430 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4431 { 4432 ill_t *tmp_ill; 4433 uint_t start, end; 4434 int ppa; 4435 4436 if (ifp->illif_ppa_arena == NULL && 4437 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4438 /* 4439 * Create an arena. 4440 */ 4441 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4442 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4443 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4444 /* allocate what has already been assigned */ 4445 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4446 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4447 tmp_ill, AVL_AFTER)) { 4448 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4449 1, /* size */ 4450 1, /* align/quantum */ 4451 0, /* phase */ 4452 0, /* nocross */ 4453 /* minaddr */ 4454 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4455 /* maxaddr */ 4456 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4457 VM_NOSLEEP|VM_FIRSTFIT); 4458 if (ppa == 0) { 4459 ip1dbg(("ill_alloc_ppa: ppa allocation" 4460 " failed while switching")); 4461 vmem_destroy(ifp->illif_ppa_arena); 4462 ifp->illif_ppa_arena = NULL; 4463 break; 4464 } 4465 } 4466 } 4467 4468 if (ifp->illif_ppa_arena != NULL) { 4469 if (ill->ill_ppa == UINT_MAX) { 4470 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4471 1, VM_NOSLEEP|VM_FIRSTFIT); 4472 if (ppa == 0) 4473 return (EAGAIN); 4474 ill->ill_ppa = --ppa; 4475 } else { 4476 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4477 1, /* size */ 4478 1, /* align/quantum */ 4479 0, /* phase */ 4480 0, /* nocross */ 4481 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4482 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4483 VM_NOSLEEP|VM_FIRSTFIT); 4484 /* 4485 * Most likely the allocation failed because 4486 * the requested ppa was in use. 4487 */ 4488 if (ppa == 0) 4489 return (EEXIST); 4490 } 4491 return (0); 4492 } 4493 4494 /* 4495 * No arena is in use and not enough (>ill_no_arena) interfaces have 4496 * been plumbed to create one. Do a linear search to get a unused ppa. 4497 */ 4498 if (ill->ill_ppa == UINT_MAX) { 4499 end = UINT_MAX - 1; 4500 start = 0; 4501 } else { 4502 end = start = ill->ill_ppa; 4503 } 4504 4505 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4506 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4507 if (start++ >= end) { 4508 if (ill->ill_ppa == UINT_MAX) 4509 return (EAGAIN); 4510 else 4511 return (EEXIST); 4512 } 4513 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4514 } 4515 ill->ill_ppa = start; 4516 return (0); 4517 } 4518 4519 /* 4520 * Insert ill into the list of configured ill's. Once this function completes, 4521 * the ill is globally visible and is available through lookups. More precisely 4522 * this happens after the caller drops the ill_g_lock. 4523 */ 4524 static int 4525 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4526 { 4527 ill_if_t *ill_interface; 4528 avl_index_t where = 0; 4529 int error; 4530 int name_length; 4531 int index; 4532 boolean_t check_length = B_FALSE; 4533 ip_stack_t *ipst = ill->ill_ipst; 4534 4535 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4536 4537 name_length = mi_strlen(name) + 1; 4538 4539 if (isv6) 4540 index = IP_V6_G_HEAD; 4541 else 4542 index = IP_V4_G_HEAD; 4543 4544 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4545 /* 4546 * Search for interface type based on name 4547 */ 4548 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4549 if ((ill_interface->illif_name_len == name_length) && 4550 (strcmp(ill_interface->illif_name, name) == 0)) { 4551 break; 4552 } 4553 ill_interface = ill_interface->illif_next; 4554 } 4555 4556 /* 4557 * Interface type not found, create one. 4558 */ 4559 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4560 4561 ill_g_head_t ghead; 4562 4563 /* 4564 * allocate ill_if_t structure 4565 */ 4566 4567 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4568 if (ill_interface == NULL) { 4569 return (ENOMEM); 4570 } 4571 4572 4573 4574 (void) strcpy(ill_interface->illif_name, name); 4575 ill_interface->illif_name_len = name_length; 4576 4577 avl_create(&ill_interface->illif_avl_by_ppa, 4578 ill_compare_ppa, sizeof (ill_t), 4579 offsetof(struct ill_s, ill_avl_byppa)); 4580 4581 /* 4582 * link the structure in the back to maintain order 4583 * of configuration for ifconfig output. 4584 */ 4585 ghead = ipst->ips_ill_g_heads[index]; 4586 insque(ill_interface, ghead.ill_g_list_tail); 4587 4588 } 4589 4590 if (ill->ill_ppa == UINT_MAX) 4591 check_length = B_TRUE; 4592 4593 error = ill_alloc_ppa(ill_interface, ill); 4594 if (error != 0) { 4595 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4596 ill_delete_interface_type(ill->ill_ifptr); 4597 return (error); 4598 } 4599 4600 /* 4601 * When the ppa is choosen by the system, check that there is 4602 * enough space to insert ppa. if a specific ppa was passed in this 4603 * check is not required as the interface name passed in will have 4604 * the right ppa in it. 4605 */ 4606 if (check_length) { 4607 /* 4608 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4609 */ 4610 char buf[sizeof (uint_t) * 3]; 4611 4612 /* 4613 * convert ppa to string to calculate the amount of space 4614 * required for it in the name. 4615 */ 4616 numtos(ill->ill_ppa, buf); 4617 4618 /* Do we have enough space to insert ppa ? */ 4619 4620 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4621 /* Free ppa and interface type struct */ 4622 if (ill_interface->illif_ppa_arena != NULL) { 4623 vmem_free(ill_interface->illif_ppa_arena, 4624 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4625 } 4626 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4627 0) { 4628 ill_delete_interface_type(ill->ill_ifptr); 4629 } 4630 4631 return (EINVAL); 4632 } 4633 } 4634 4635 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4636 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4637 4638 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4639 &where); 4640 ill->ill_ifptr = ill_interface; 4641 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4642 4643 ill_phyint_reinit(ill); 4644 return (0); 4645 } 4646 4647 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4648 static boolean_t 4649 ipsq_init(ill_t *ill) 4650 { 4651 ipsq_t *ipsq; 4652 4653 /* Init the ipsq and impicitly enter as writer */ 4654 ill->ill_phyint->phyint_ipsq = 4655 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4656 if (ill->ill_phyint->phyint_ipsq == NULL) 4657 return (B_FALSE); 4658 ipsq = ill->ill_phyint->phyint_ipsq; 4659 ipsq->ipsq_phyint_list = ill->ill_phyint; 4660 ill->ill_phyint->phyint_ipsq_next = NULL; 4661 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4662 ipsq->ipsq_refs = 1; 4663 ipsq->ipsq_writer = curthread; 4664 ipsq->ipsq_reentry_cnt = 1; 4665 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4666 #ifdef DEBUG 4667 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4668 IPSQ_STACK_DEPTH); 4669 #endif 4670 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4671 return (B_TRUE); 4672 } 4673 4674 /* 4675 * ill_init is called by ip_open when a device control stream is opened. 4676 * It does a few initializations, and shoots a DL_INFO_REQ message down 4677 * to the driver. The response is later picked up in ip_rput_dlpi and 4678 * used to set up default mechanisms for talking to the driver. (Always 4679 * called as writer.) 4680 * 4681 * If this function returns error, ip_open will call ip_close which in 4682 * turn will call ill_delete to clean up any memory allocated here that 4683 * is not yet freed. 4684 */ 4685 int 4686 ill_init(queue_t *q, ill_t *ill) 4687 { 4688 int count; 4689 dl_info_req_t *dlir; 4690 mblk_t *info_mp; 4691 uchar_t *frag_ptr; 4692 4693 /* 4694 * The ill is initialized to zero by mi_alloc*(). In addition 4695 * some fields already contain valid values, initialized in 4696 * ip_open(), before we reach here. 4697 */ 4698 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4699 4700 ill->ill_rq = q; 4701 ill->ill_wq = WR(q); 4702 4703 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4704 BPRI_HI); 4705 if (info_mp == NULL) 4706 return (ENOMEM); 4707 4708 /* 4709 * Allocate sufficient space to contain our fragment hash table and 4710 * the device name. 4711 */ 4712 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4713 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4714 if (frag_ptr == NULL) { 4715 freemsg(info_mp); 4716 return (ENOMEM); 4717 } 4718 ill->ill_frag_ptr = frag_ptr; 4719 ill->ill_frag_free_num_pkts = 0; 4720 ill->ill_last_frag_clean_time = 0; 4721 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4722 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4723 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4724 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4725 NULL, MUTEX_DEFAULT, NULL); 4726 } 4727 4728 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4729 if (ill->ill_phyint == NULL) { 4730 freemsg(info_mp); 4731 mi_free(frag_ptr); 4732 return (ENOMEM); 4733 } 4734 4735 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4736 /* 4737 * For now pretend this is a v4 ill. We need to set phyint_ill* 4738 * at this point because of the following reason. If we can't 4739 * enter the ipsq at some point and cv_wait, the writer that 4740 * wakes us up tries to locate us using the list of all phyints 4741 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4742 * If we don't set it now, we risk a missed wakeup. 4743 */ 4744 ill->ill_phyint->phyint_illv4 = ill; 4745 ill->ill_ppa = UINT_MAX; 4746 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4747 4748 if (!ipsq_init(ill)) { 4749 freemsg(info_mp); 4750 mi_free(frag_ptr); 4751 mi_free(ill->ill_phyint); 4752 return (ENOMEM); 4753 } 4754 4755 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4756 4757 4758 /* Frag queue limit stuff */ 4759 ill->ill_frag_count = 0; 4760 ill->ill_ipf_gen = 0; 4761 4762 ill->ill_global_timer = INFINITY; 4763 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4764 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4765 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4766 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4767 4768 /* 4769 * Initialize IPv6 configuration variables. The IP module is always 4770 * opened as an IPv4 module. Instead tracking down the cases where 4771 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4772 * here for convenience, this has no effect until the ill is set to do 4773 * IPv6. 4774 */ 4775 ill->ill_reachable_time = ND_REACHABLE_TIME; 4776 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4777 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4778 ill->ill_max_buf = ND_MAX_Q; 4779 ill->ill_refcnt = 0; 4780 4781 /* Send down the Info Request to the driver. */ 4782 info_mp->b_datap->db_type = M_PCPROTO; 4783 dlir = (dl_info_req_t *)info_mp->b_rptr; 4784 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4785 dlir->dl_primitive = DL_INFO_REQ; 4786 4787 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4788 4789 qprocson(q); 4790 ill_dlpi_send(ill, info_mp); 4791 4792 return (0); 4793 } 4794 4795 /* 4796 * ill_dls_info 4797 * creates datalink socket info from the device. 4798 */ 4799 int 4800 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4801 { 4802 size_t len; 4803 ill_t *ill = ipif->ipif_ill; 4804 4805 sdl->sdl_family = AF_LINK; 4806 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4807 sdl->sdl_type = ill->ill_type; 4808 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4809 len = strlen(sdl->sdl_data); 4810 ASSERT(len < 256); 4811 sdl->sdl_nlen = (uchar_t)len; 4812 sdl->sdl_alen = ill->ill_phys_addr_length; 4813 sdl->sdl_slen = 0; 4814 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4815 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4816 4817 return (sizeof (struct sockaddr_dl)); 4818 } 4819 4820 /* 4821 * ill_xarp_info 4822 * creates xarp info from the device. 4823 */ 4824 static int 4825 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4826 { 4827 sdl->sdl_family = AF_LINK; 4828 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4829 sdl->sdl_type = ill->ill_type; 4830 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4831 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4832 sdl->sdl_alen = ill->ill_phys_addr_length; 4833 sdl->sdl_slen = 0; 4834 return (sdl->sdl_nlen); 4835 } 4836 4837 static int 4838 loopback_kstat_update(kstat_t *ksp, int rw) 4839 { 4840 kstat_named_t *kn; 4841 netstackid_t stackid; 4842 netstack_t *ns; 4843 ip_stack_t *ipst; 4844 4845 if (ksp == NULL || ksp->ks_data == NULL) 4846 return (EIO); 4847 4848 if (rw == KSTAT_WRITE) 4849 return (EACCES); 4850 4851 kn = KSTAT_NAMED_PTR(ksp); 4852 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4853 4854 ns = netstack_find_by_stackid(stackid); 4855 if (ns == NULL) 4856 return (-1); 4857 4858 ipst = ns->netstack_ip; 4859 if (ipst == NULL) { 4860 netstack_rele(ns); 4861 return (-1); 4862 } 4863 kn[0].value.ui32 = ipst->ips_loopback_packets; 4864 kn[1].value.ui32 = ipst->ips_loopback_packets; 4865 netstack_rele(ns); 4866 return (0); 4867 } 4868 4869 4870 /* 4871 * Has ifindex been plumbed already. 4872 * Compares both phyint_ifindex and phyint_group_ifindex. 4873 */ 4874 static boolean_t 4875 phyint_exists(uint_t index, ip_stack_t *ipst) 4876 { 4877 phyint_t *phyi; 4878 4879 ASSERT(index != 0); 4880 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4881 /* 4882 * Indexes are stored in the phyint - a common structure 4883 * to both IPv4 and IPv6. 4884 */ 4885 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4886 for (; phyi != NULL; 4887 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4888 phyi, AVL_AFTER)) { 4889 if (phyi->phyint_ifindex == index || 4890 phyi->phyint_group_ifindex == index) 4891 return (B_TRUE); 4892 } 4893 return (B_FALSE); 4894 } 4895 4896 /* Pick a unique ifindex */ 4897 boolean_t 4898 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4899 { 4900 uint_t starting_index; 4901 4902 if (!ipst->ips_ill_index_wrap) { 4903 *indexp = ipst->ips_ill_index++; 4904 if (ipst->ips_ill_index == 0) { 4905 /* Reached the uint_t limit Next time wrap */ 4906 ipst->ips_ill_index_wrap = B_TRUE; 4907 } 4908 return (B_TRUE); 4909 } 4910 4911 /* 4912 * Start reusing unused indexes. Note that we hold the ill_g_lock 4913 * at this point and don't want to call any function that attempts 4914 * to get the lock again. 4915 */ 4916 starting_index = ipst->ips_ill_index++; 4917 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4918 if (ipst->ips_ill_index != 0 && 4919 !phyint_exists(ipst->ips_ill_index, ipst)) { 4920 /* found unused index - use it */ 4921 *indexp = ipst->ips_ill_index; 4922 return (B_TRUE); 4923 } 4924 } 4925 4926 /* 4927 * all interface indicies are inuse. 4928 */ 4929 return (B_FALSE); 4930 } 4931 4932 /* 4933 * Assign a unique interface index for the phyint. 4934 */ 4935 static boolean_t 4936 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4937 { 4938 ASSERT(phyi->phyint_ifindex == 0); 4939 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4940 } 4941 4942 /* 4943 * Return a pointer to the ill which matches the supplied name. Note that 4944 * the ill name length includes the null termination character. (May be 4945 * called as writer.) 4946 * If do_alloc and the interface is "lo0" it will be automatically created. 4947 * Cannot bump up reference on condemned ills. So dup detect can't be done 4948 * using this func. 4949 */ 4950 ill_t * 4951 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4952 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4953 ip_stack_t *ipst) 4954 { 4955 ill_t *ill; 4956 ipif_t *ipif; 4957 kstat_named_t *kn; 4958 boolean_t isloopback; 4959 ipsq_t *old_ipsq; 4960 in6_addr_t ov6addr; 4961 4962 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4963 4964 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4965 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4966 rw_exit(&ipst->ips_ill_g_lock); 4967 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4968 return (ill); 4969 4970 /* 4971 * Couldn't find it. Does this happen to be a lookup for the 4972 * loopback device and are we allowed to allocate it? 4973 */ 4974 if (!isloopback || !do_alloc) 4975 return (NULL); 4976 4977 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4978 4979 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4980 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4981 rw_exit(&ipst->ips_ill_g_lock); 4982 return (ill); 4983 } 4984 4985 /* Create the loopback device on demand */ 4986 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4987 sizeof (ipif_loopback_name), BPRI_MED)); 4988 if (ill == NULL) 4989 goto done; 4990 4991 *ill = ill_null; 4992 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4993 ill->ill_ipst = ipst; 4994 netstack_hold(ipst->ips_netstack); 4995 /* 4996 * For exclusive stacks we set the zoneid to zero 4997 * to make IP operate as if in the global zone. 4998 */ 4999 ill->ill_zoneid = GLOBAL_ZONEID; 5000 5001 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5002 if (ill->ill_phyint == NULL) 5003 goto done; 5004 5005 if (isv6) 5006 ill->ill_phyint->phyint_illv6 = ill; 5007 else 5008 ill->ill_phyint->phyint_illv4 = ill; 5009 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5010 ill->ill_max_frag = IP_LOOPBACK_MTU; 5011 /* Add room for tcp+ip headers */ 5012 if (isv6) { 5013 ill->ill_isv6 = B_TRUE; 5014 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5015 } else { 5016 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5017 } 5018 if (!ill_allocate_mibs(ill)) 5019 goto done; 5020 ill->ill_max_mtu = ill->ill_max_frag; 5021 /* 5022 * ipif_loopback_name can't be pointed at directly because its used 5023 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5024 * from the glist, ill_glist_delete() sets the first character of 5025 * ill_name to '\0'. 5026 */ 5027 ill->ill_name = (char *)ill + sizeof (*ill); 5028 (void) strcpy(ill->ill_name, ipif_loopback_name); 5029 ill->ill_name_length = sizeof (ipif_loopback_name); 5030 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5031 5032 ill->ill_global_timer = INFINITY; 5033 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5034 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5035 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5036 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5037 5038 /* No resolver here. */ 5039 ill->ill_net_type = IRE_LOOPBACK; 5040 5041 /* Initialize the ipsq */ 5042 if (!ipsq_init(ill)) 5043 goto done; 5044 5045 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5046 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5047 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5048 #ifdef DEBUG 5049 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5050 #endif 5051 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5052 if (ipif == NULL) 5053 goto done; 5054 5055 ill->ill_flags = ILLF_MULTICAST; 5056 5057 ov6addr = ipif->ipif_v6lcl_addr; 5058 /* Set up default loopback address and mask. */ 5059 if (!isv6) { 5060 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5061 5062 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5064 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5066 ipif->ipif_v6subnet); 5067 ill->ill_flags |= ILLF_IPV4; 5068 } else { 5069 ipif->ipif_v6lcl_addr = ipv6_loopback; 5070 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5071 ipif->ipif_v6net_mask = ipv6_all_ones; 5072 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5073 ipif->ipif_v6subnet); 5074 ill->ill_flags |= ILLF_IPV6; 5075 } 5076 5077 /* 5078 * Chain us in at the end of the ill list. hold the ill 5079 * before we make it globally visible. 1 for the lookup. 5080 */ 5081 ill->ill_refcnt = 0; 5082 ill_refhold(ill); 5083 5084 ill->ill_frag_count = 0; 5085 ill->ill_frag_free_num_pkts = 0; 5086 ill->ill_last_frag_clean_time = 0; 5087 5088 old_ipsq = ill->ill_phyint->phyint_ipsq; 5089 5090 if (ill_glist_insert(ill, "lo", isv6) != 0) 5091 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5092 5093 /* Let SCTP know so that it can add this to its list */ 5094 sctp_update_ill(ill, SCTP_ILL_INSERT); 5095 5096 /* 5097 * We have already assigned ipif_v6lcl_addr above, but we need to 5098 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5099 * requires to be after ill_glist_insert() since we need the 5100 * ill_index set. Pass on ipv6_loopback as the old address. 5101 */ 5102 sctp_update_ipif_addr(ipif, ov6addr); 5103 5104 /* 5105 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5106 */ 5107 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5108 /* Loopback ills aren't in any IPMP group */ 5109 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5110 ipsq_delete(old_ipsq); 5111 } 5112 5113 /* 5114 * Delay this till the ipif is allocated as ipif_allocate 5115 * de-references ill_phyint for getting the ifindex. We 5116 * can't do this before ipif_allocate because ill_phyint_reinit 5117 * -> phyint_assign_ifindex expects ipif to be present. 5118 */ 5119 mutex_enter(&ill->ill_phyint->phyint_lock); 5120 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5121 mutex_exit(&ill->ill_phyint->phyint_lock); 5122 5123 if (ipst->ips_loopback_ksp == NULL) { 5124 /* Export loopback interface statistics */ 5125 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5126 ipif_loopback_name, "net", 5127 KSTAT_TYPE_NAMED, 2, 0, 5128 ipst->ips_netstack->netstack_stackid); 5129 if (ipst->ips_loopback_ksp != NULL) { 5130 ipst->ips_loopback_ksp->ks_update = 5131 loopback_kstat_update; 5132 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5133 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5134 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5135 ipst->ips_loopback_ksp->ks_private = 5136 (void *)(uintptr_t)ipst->ips_netstack-> 5137 netstack_stackid; 5138 kstat_install(ipst->ips_loopback_ksp); 5139 } 5140 } 5141 5142 if (error != NULL) 5143 *error = 0; 5144 *did_alloc = B_TRUE; 5145 rw_exit(&ipst->ips_ill_g_lock); 5146 return (ill); 5147 done: 5148 if (ill != NULL) { 5149 if (ill->ill_phyint != NULL) { 5150 ipsq_t *ipsq; 5151 5152 ipsq = ill->ill_phyint->phyint_ipsq; 5153 if (ipsq != NULL) { 5154 ipsq->ipsq_ipst = NULL; 5155 kmem_free(ipsq, sizeof (ipsq_t)); 5156 } 5157 mi_free(ill->ill_phyint); 5158 } 5159 ill_free_mib(ill); 5160 if (ill->ill_ipst != NULL) 5161 netstack_rele(ill->ill_ipst->ips_netstack); 5162 mi_free(ill); 5163 } 5164 rw_exit(&ipst->ips_ill_g_lock); 5165 if (error != NULL) 5166 *error = ENOMEM; 5167 return (NULL); 5168 } 5169 5170 /* 5171 * For IPP calls - use the ip_stack_t for global stack. 5172 */ 5173 ill_t * 5174 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5175 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5176 { 5177 ip_stack_t *ipst; 5178 ill_t *ill; 5179 5180 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5181 if (ipst == NULL) { 5182 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5183 return (NULL); 5184 } 5185 5186 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5187 netstack_rele(ipst->ips_netstack); 5188 return (ill); 5189 } 5190 5191 /* 5192 * Return a pointer to the ill which matches the index and IP version type. 5193 */ 5194 ill_t * 5195 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5196 ipsq_func_t func, int *err, ip_stack_t *ipst) 5197 { 5198 ill_t *ill; 5199 ipsq_t *ipsq; 5200 phyint_t *phyi; 5201 5202 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5203 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5204 5205 if (err != NULL) 5206 *err = 0; 5207 5208 /* 5209 * Indexes are stored in the phyint - a common structure 5210 * to both IPv4 and IPv6. 5211 */ 5212 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5213 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5214 (void *) &index, NULL); 5215 if (phyi != NULL) { 5216 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5217 if (ill != NULL) { 5218 /* 5219 * The block comment at the start of ipif_down 5220 * explains the use of the macros used below 5221 */ 5222 GRAB_CONN_LOCK(q); 5223 mutex_enter(&ill->ill_lock); 5224 if (ILL_CAN_LOOKUP(ill)) { 5225 ill_refhold_locked(ill); 5226 mutex_exit(&ill->ill_lock); 5227 RELEASE_CONN_LOCK(q); 5228 rw_exit(&ipst->ips_ill_g_lock); 5229 return (ill); 5230 } else if (ILL_CAN_WAIT(ill, q)) { 5231 ipsq = ill->ill_phyint->phyint_ipsq; 5232 mutex_enter(&ipsq->ipsq_lock); 5233 rw_exit(&ipst->ips_ill_g_lock); 5234 mutex_exit(&ill->ill_lock); 5235 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5236 mutex_exit(&ipsq->ipsq_lock); 5237 RELEASE_CONN_LOCK(q); 5238 if (err != NULL) 5239 *err = EINPROGRESS; 5240 return (NULL); 5241 } 5242 RELEASE_CONN_LOCK(q); 5243 mutex_exit(&ill->ill_lock); 5244 } 5245 } 5246 rw_exit(&ipst->ips_ill_g_lock); 5247 if (err != NULL) 5248 *err = ENXIO; 5249 return (NULL); 5250 } 5251 5252 /* 5253 * Return the ifindex next in sequence after the passed in ifindex. 5254 * If there is no next ifindex for the given protocol, return 0. 5255 */ 5256 uint_t 5257 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5258 { 5259 phyint_t *phyi; 5260 phyint_t *phyi_initial; 5261 uint_t ifindex; 5262 5263 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5264 5265 if (index == 0) { 5266 phyi = avl_first( 5267 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5268 } else { 5269 phyi = phyi_initial = avl_find( 5270 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5271 (void *) &index, NULL); 5272 } 5273 5274 for (; phyi != NULL; 5275 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5276 phyi, AVL_AFTER)) { 5277 /* 5278 * If we're not returning the first interface in the tree 5279 * and we still haven't moved past the phyint_t that 5280 * corresponds to index, avl_walk needs to be called again 5281 */ 5282 if (!((index != 0) && (phyi == phyi_initial))) { 5283 if (isv6) { 5284 if ((phyi->phyint_illv6) && 5285 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5286 (phyi->phyint_illv6->ill_isv6 == 1)) 5287 break; 5288 } else { 5289 if ((phyi->phyint_illv4) && 5290 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5291 (phyi->phyint_illv4->ill_isv6 == 0)) 5292 break; 5293 } 5294 } 5295 } 5296 5297 rw_exit(&ipst->ips_ill_g_lock); 5298 5299 if (phyi != NULL) 5300 ifindex = phyi->phyint_ifindex; 5301 else 5302 ifindex = 0; 5303 5304 return (ifindex); 5305 } 5306 5307 5308 /* 5309 * Return the ifindex for the named interface. 5310 * If there is no next ifindex for the interface, return 0. 5311 */ 5312 uint_t 5313 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5314 { 5315 phyint_t *phyi; 5316 avl_index_t where = 0; 5317 uint_t ifindex; 5318 5319 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5320 5321 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5322 name, &where)) == NULL) { 5323 rw_exit(&ipst->ips_ill_g_lock); 5324 return (0); 5325 } 5326 5327 ifindex = phyi->phyint_ifindex; 5328 5329 rw_exit(&ipst->ips_ill_g_lock); 5330 5331 return (ifindex); 5332 } 5333 5334 5335 /* 5336 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5337 * that gives a running thread a reference to the ill. This reference must be 5338 * released by the thread when it is done accessing the ill and related 5339 * objects. ill_refcnt can not be used to account for static references 5340 * such as other structures pointing to an ill. Callers must generally 5341 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5342 * or be sure that the ill is not being deleted or changing state before 5343 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5344 * ill won't change any of its critical state such as address, netmask etc. 5345 */ 5346 void 5347 ill_refhold(ill_t *ill) 5348 { 5349 mutex_enter(&ill->ill_lock); 5350 ill->ill_refcnt++; 5351 ILL_TRACE_REF(ill); 5352 mutex_exit(&ill->ill_lock); 5353 } 5354 5355 void 5356 ill_refhold_locked(ill_t *ill) 5357 { 5358 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5359 ill->ill_refcnt++; 5360 ILL_TRACE_REF(ill); 5361 } 5362 5363 int 5364 ill_check_and_refhold(ill_t *ill) 5365 { 5366 mutex_enter(&ill->ill_lock); 5367 if (ILL_CAN_LOOKUP(ill)) { 5368 ill_refhold_locked(ill); 5369 mutex_exit(&ill->ill_lock); 5370 return (0); 5371 } 5372 mutex_exit(&ill->ill_lock); 5373 return (ILL_LOOKUP_FAILED); 5374 } 5375 5376 /* 5377 * Must not be called while holding any locks. Otherwise if this is 5378 * the last reference to be released, there is a chance of recursive mutex 5379 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5380 * to restart an ioctl. 5381 */ 5382 void 5383 ill_refrele(ill_t *ill) 5384 { 5385 mutex_enter(&ill->ill_lock); 5386 ASSERT(ill->ill_refcnt != 0); 5387 ill->ill_refcnt--; 5388 ILL_UNTRACE_REF(ill); 5389 if (ill->ill_refcnt != 0) { 5390 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5391 mutex_exit(&ill->ill_lock); 5392 return; 5393 } 5394 5395 /* Drops the ill_lock */ 5396 ipif_ill_refrele_tail(ill); 5397 } 5398 5399 /* 5400 * Obtain a weak reference count on the ill. This reference ensures the 5401 * ill won't be freed, but the ill may change any of its critical state 5402 * such as netmask, address etc. Returns an error if the ill has started 5403 * closing. 5404 */ 5405 boolean_t 5406 ill_waiter_inc(ill_t *ill) 5407 { 5408 mutex_enter(&ill->ill_lock); 5409 if (ill->ill_state_flags & ILL_CONDEMNED) { 5410 mutex_exit(&ill->ill_lock); 5411 return (B_FALSE); 5412 } 5413 ill->ill_waiters++; 5414 mutex_exit(&ill->ill_lock); 5415 return (B_TRUE); 5416 } 5417 5418 void 5419 ill_waiter_dcr(ill_t *ill) 5420 { 5421 mutex_enter(&ill->ill_lock); 5422 ill->ill_waiters--; 5423 if (ill->ill_waiters == 0) 5424 cv_broadcast(&ill->ill_cv); 5425 mutex_exit(&ill->ill_lock); 5426 } 5427 5428 /* 5429 * Named Dispatch routine to produce a formatted report on all ILLs. 5430 * This report is accessed by using the ndd utility to "get" ND variable 5431 * "ip_ill_status". 5432 */ 5433 /* ARGSUSED */ 5434 int 5435 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5436 { 5437 ill_t *ill; 5438 ill_walk_context_t ctx; 5439 ip_stack_t *ipst; 5440 5441 ipst = CONNQ_TO_IPST(q); 5442 5443 (void) mi_mpprintf(mp, 5444 "ILL " MI_COL_HDRPAD_STR 5445 /* 01234567[89ABCDEF] */ 5446 "rq " MI_COL_HDRPAD_STR 5447 /* 01234567[89ABCDEF] */ 5448 "wq " MI_COL_HDRPAD_STR 5449 /* 01234567[89ABCDEF] */ 5450 "upcnt mxfrg err name"); 5451 /* 12345 12345 123 xxxxxxxx */ 5452 5453 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5454 ill = ILL_START_WALK_ALL(&ctx, ipst); 5455 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5456 (void) mi_mpprintf(mp, 5457 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5458 "%05u %05u %03d %s", 5459 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5460 ill->ill_ipif_up_count, 5461 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5462 } 5463 rw_exit(&ipst->ips_ill_g_lock); 5464 5465 return (0); 5466 } 5467 5468 /* 5469 * Named Dispatch routine to produce a formatted report on all IPIFs. 5470 * This report is accessed by using the ndd utility to "get" ND variable 5471 * "ip_ipif_status". 5472 */ 5473 /* ARGSUSED */ 5474 int 5475 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5476 { 5477 char buf1[INET6_ADDRSTRLEN]; 5478 char buf2[INET6_ADDRSTRLEN]; 5479 char buf3[INET6_ADDRSTRLEN]; 5480 char buf4[INET6_ADDRSTRLEN]; 5481 char buf5[INET6_ADDRSTRLEN]; 5482 char buf6[INET6_ADDRSTRLEN]; 5483 char buf[LIFNAMSIZ]; 5484 ill_t *ill; 5485 ipif_t *ipif; 5486 nv_t *nvp; 5487 uint64_t flags; 5488 zoneid_t zoneid; 5489 ill_walk_context_t ctx; 5490 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5491 5492 (void) mi_mpprintf(mp, 5493 "IPIF metric mtu in/out/forward name zone flags...\n" 5494 "\tlocal address\n" 5495 "\tsrc address\n" 5496 "\tsubnet\n" 5497 "\tmask\n" 5498 "\tbroadcast\n" 5499 "\tp-p-dst"); 5500 5501 ASSERT(q->q_next == NULL); 5502 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5503 5504 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5505 ill = ILL_START_WALK_ALL(&ctx, ipst); 5506 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5507 for (ipif = ill->ill_ipif; ipif != NULL; 5508 ipif = ipif->ipif_next) { 5509 if (zoneid != GLOBAL_ZONEID && 5510 zoneid != ipif->ipif_zoneid && 5511 ipif->ipif_zoneid != ALL_ZONES) 5512 continue; 5513 5514 ipif_get_name(ipif, buf, sizeof (buf)); 5515 (void) mi_mpprintf(mp, 5516 MI_COL_PTRFMT_STR 5517 "%04u %05u %u/%u/%u %s %d", 5518 (void *)ipif, 5519 ipif->ipif_metric, ipif->ipif_mtu, 5520 ipif->ipif_ib_pkt_count, 5521 ipif->ipif_ob_pkt_count, 5522 ipif->ipif_fo_pkt_count, 5523 buf, 5524 ipif->ipif_zoneid); 5525 5526 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5527 ipif->ipif_ill->ill_phyint->phyint_flags; 5528 5529 /* Tack on text strings for any flags. */ 5530 nvp = ipif_nv_tbl; 5531 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5532 if (nvp->nv_value & flags) 5533 (void) mi_mpprintf_nr(mp, " %s", 5534 nvp->nv_name); 5535 } 5536 (void) mi_mpprintf(mp, 5537 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5538 inet_ntop(AF_INET6, 5539 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5540 inet_ntop(AF_INET6, 5541 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5542 inet_ntop(AF_INET6, 5543 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5544 inet_ntop(AF_INET6, 5545 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5546 inet_ntop(AF_INET6, 5547 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5548 inet_ntop(AF_INET6, 5549 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5550 } 5551 } 5552 rw_exit(&ipst->ips_ill_g_lock); 5553 return (0); 5554 } 5555 5556 /* 5557 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5558 * driver. We construct best guess defaults for lower level information that 5559 * we need. If an interface is brought up without injection of any overriding 5560 * information from outside, we have to be ready to go with these defaults. 5561 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5562 * we primarely want the dl_provider_style. 5563 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5564 * at which point we assume the other part of the information is valid. 5565 */ 5566 void 5567 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5568 { 5569 uchar_t *brdcst_addr; 5570 uint_t brdcst_addr_length, phys_addr_length; 5571 t_scalar_t sap_length; 5572 dl_info_ack_t *dlia; 5573 ip_m_t *ipm; 5574 dl_qos_cl_sel1_t *sel1; 5575 5576 ASSERT(IAM_WRITER_ILL(ill)); 5577 5578 /* 5579 * Till the ill is fully up ILL_CHANGING will be set and 5580 * the ill is not globally visible. So no need for a lock. 5581 */ 5582 dlia = (dl_info_ack_t *)mp->b_rptr; 5583 ill->ill_mactype = dlia->dl_mac_type; 5584 5585 ipm = ip_m_lookup(dlia->dl_mac_type); 5586 if (ipm == NULL) { 5587 ipm = ip_m_lookup(DL_OTHER); 5588 ASSERT(ipm != NULL); 5589 } 5590 ill->ill_media = ipm; 5591 5592 /* 5593 * When the new DLPI stuff is ready we'll pull lengths 5594 * from dlia. 5595 */ 5596 if (dlia->dl_version == DL_VERSION_2) { 5597 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5598 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5599 brdcst_addr_length); 5600 if (brdcst_addr == NULL) { 5601 brdcst_addr_length = 0; 5602 } 5603 sap_length = dlia->dl_sap_length; 5604 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5605 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5606 brdcst_addr_length, sap_length, phys_addr_length)); 5607 } else { 5608 brdcst_addr_length = 6; 5609 brdcst_addr = ip_six_byte_all_ones; 5610 sap_length = -2; 5611 phys_addr_length = brdcst_addr_length; 5612 } 5613 5614 ill->ill_bcast_addr_length = brdcst_addr_length; 5615 ill->ill_phys_addr_length = phys_addr_length; 5616 ill->ill_sap_length = sap_length; 5617 ill->ill_max_frag = dlia->dl_max_sdu; 5618 ill->ill_max_mtu = ill->ill_max_frag; 5619 5620 ill->ill_type = ipm->ip_m_type; 5621 5622 if (!ill->ill_dlpi_style_set) { 5623 if (dlia->dl_provider_style == DL_STYLE2) 5624 ill->ill_needs_attach = 1; 5625 5626 /* 5627 * Allocate the first ipif on this ill. We don't delay it 5628 * further as ioctl handling assumes atleast one ipif to 5629 * be present. 5630 * 5631 * At this point we don't know whether the ill is v4 or v6. 5632 * We will know this whan the SIOCSLIFNAME happens and 5633 * the correct value for ill_isv6 will be assigned in 5634 * ipif_set_values(). We need to hold the ill lock and 5635 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5636 * the wakeup. 5637 */ 5638 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5639 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5640 mutex_enter(&ill->ill_lock); 5641 ASSERT(ill->ill_dlpi_style_set == 0); 5642 ill->ill_dlpi_style_set = 1; 5643 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5644 cv_broadcast(&ill->ill_cv); 5645 mutex_exit(&ill->ill_lock); 5646 freemsg(mp); 5647 return; 5648 } 5649 ASSERT(ill->ill_ipif != NULL); 5650 /* 5651 * We know whether it is IPv4 or IPv6 now, as this is the 5652 * second DL_INFO_ACK we are recieving in response to the 5653 * DL_INFO_REQ sent in ipif_set_values. 5654 */ 5655 if (ill->ill_isv6) 5656 ill->ill_sap = IP6_DL_SAP; 5657 else 5658 ill->ill_sap = IP_DL_SAP; 5659 /* 5660 * Set ipif_mtu which is used to set the IRE's 5661 * ire_max_frag value. The driver could have sent 5662 * a different mtu from what it sent last time. No 5663 * need to call ipif_mtu_change because IREs have 5664 * not yet been created. 5665 */ 5666 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5667 /* 5668 * Clear all the flags that were set based on ill_bcast_addr_length 5669 * and ill_phys_addr_length (in ipif_set_values) as these could have 5670 * changed now and we need to re-evaluate. 5671 */ 5672 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5673 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5674 5675 /* 5676 * Free ill_resolver_mp and ill_bcast_mp as things could have 5677 * changed now. 5678 */ 5679 if (ill->ill_bcast_addr_length == 0) { 5680 if (ill->ill_resolver_mp != NULL) 5681 freemsg(ill->ill_resolver_mp); 5682 if (ill->ill_bcast_mp != NULL) 5683 freemsg(ill->ill_bcast_mp); 5684 if (ill->ill_flags & ILLF_XRESOLV) 5685 ill->ill_net_type = IRE_IF_RESOLVER; 5686 else 5687 ill->ill_net_type = IRE_IF_NORESOLVER; 5688 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5689 ill->ill_phys_addr_length, 5690 ill->ill_sap, 5691 ill->ill_sap_length); 5692 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5693 5694 if (ill->ill_isv6) 5695 /* 5696 * Note: xresolv interfaces will eventually need NOARP 5697 * set here as well, but that will require those 5698 * external resolvers to have some knowledge of 5699 * that flag and act appropriately. Not to be changed 5700 * at present. 5701 */ 5702 ill->ill_flags |= ILLF_NONUD; 5703 else 5704 ill->ill_flags |= ILLF_NOARP; 5705 5706 if (ill->ill_phys_addr_length == 0) { 5707 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5708 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5709 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5710 } else { 5711 /* pt-pt supports multicast. */ 5712 ill->ill_flags |= ILLF_MULTICAST; 5713 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5714 } 5715 } 5716 } else { 5717 ill->ill_net_type = IRE_IF_RESOLVER; 5718 if (ill->ill_bcast_mp != NULL) 5719 freemsg(ill->ill_bcast_mp); 5720 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5721 ill->ill_bcast_addr_length, ill->ill_sap, 5722 ill->ill_sap_length); 5723 /* 5724 * Later detect lack of DLPI driver multicast 5725 * capability by catching DL_ENABMULTI errors in 5726 * ip_rput_dlpi. 5727 */ 5728 ill->ill_flags |= ILLF_MULTICAST; 5729 if (!ill->ill_isv6) 5730 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5731 } 5732 /* By default an interface does not support any CoS marking */ 5733 ill->ill_flags &= ~ILLF_COS_ENABLED; 5734 5735 /* 5736 * If we get QoS information in DL_INFO_ACK, the device supports 5737 * some form of CoS marking, set ILLF_COS_ENABLED. 5738 */ 5739 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5740 dlia->dl_qos_length); 5741 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5742 ill->ill_flags |= ILLF_COS_ENABLED; 5743 } 5744 5745 /* Clear any previous error indication. */ 5746 ill->ill_error = 0; 5747 freemsg(mp); 5748 } 5749 5750 /* 5751 * Perform various checks to verify that an address would make sense as a 5752 * local, remote, or subnet interface address. 5753 */ 5754 static boolean_t 5755 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5756 { 5757 ipaddr_t net_mask; 5758 5759 /* 5760 * Don't allow all zeroes, all ones or experimental address, but allow 5761 * all ones netmask. 5762 */ 5763 if ((net_mask = ip_net_mask(addr)) == 0) 5764 return (B_FALSE); 5765 /* A given netmask overrides the "guess" netmask */ 5766 if (subnet_mask != 0) 5767 net_mask = subnet_mask; 5768 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5769 (addr == (addr | ~net_mask)))) { 5770 return (B_FALSE); 5771 } 5772 if (CLASSD(addr)) 5773 return (B_FALSE); 5774 5775 return (B_TRUE); 5776 } 5777 5778 #define V6_IPIF_LINKLOCAL(p) \ 5779 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5780 5781 /* 5782 * Compare two given ipifs and check if the second one is better than 5783 * the first one using the order of preference (not taking deprecated 5784 * into acount) specified in ipif_lookup_multicast(). 5785 */ 5786 static boolean_t 5787 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5788 { 5789 /* Check the least preferred first. */ 5790 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5791 /* If both ipifs are the same, use the first one. */ 5792 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5793 return (B_FALSE); 5794 else 5795 return (B_TRUE); 5796 } 5797 5798 /* For IPv6, check for link local address. */ 5799 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5800 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5801 V6_IPIF_LINKLOCAL(new_ipif)) { 5802 /* The second one is equal or less preferred. */ 5803 return (B_FALSE); 5804 } else { 5805 return (B_TRUE); 5806 } 5807 } 5808 5809 /* Then check for point to point interface. */ 5810 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5811 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5812 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5813 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5814 return (B_FALSE); 5815 } else { 5816 return (B_TRUE); 5817 } 5818 } 5819 5820 /* old_ipif is a normal interface, so no need to use the new one. */ 5821 return (B_FALSE); 5822 } 5823 5824 /* 5825 * Find any non-virtual, not condemned, and up multicast capable interface 5826 * given an IP instance and zoneid. Order of preference is: 5827 * 5828 * 1. normal 5829 * 1.1 normal, but deprecated 5830 * 2. point to point 5831 * 2.1 point to point, but deprecated 5832 * 3. link local 5833 * 3.1 link local, but deprecated 5834 * 4. loopback. 5835 */ 5836 ipif_t * 5837 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5838 { 5839 ill_t *ill; 5840 ill_walk_context_t ctx; 5841 ipif_t *ipif; 5842 ipif_t *saved_ipif = NULL; 5843 ipif_t *dep_ipif = NULL; 5844 5845 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5846 if (isv6) 5847 ill = ILL_START_WALK_V6(&ctx, ipst); 5848 else 5849 ill = ILL_START_WALK_V4(&ctx, ipst); 5850 5851 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5852 mutex_enter(&ill->ill_lock); 5853 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5854 !(ill->ill_flags & ILLF_MULTICAST)) { 5855 mutex_exit(&ill->ill_lock); 5856 continue; 5857 } 5858 for (ipif = ill->ill_ipif; ipif != NULL; 5859 ipif = ipif->ipif_next) { 5860 if (zoneid != ipif->ipif_zoneid && 5861 zoneid != ALL_ZONES && 5862 ipif->ipif_zoneid != ALL_ZONES) { 5863 continue; 5864 } 5865 if (!(ipif->ipif_flags & IPIF_UP) || 5866 !IPIF_CAN_LOOKUP(ipif)) { 5867 continue; 5868 } 5869 5870 /* 5871 * Found one candidate. If it is deprecated, 5872 * remember it in dep_ipif. If it is not deprecated, 5873 * remember it in saved_ipif. 5874 */ 5875 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5876 if (dep_ipif == NULL) { 5877 dep_ipif = ipif; 5878 } else if (ipif_comp_multi(dep_ipif, ipif, 5879 isv6)) { 5880 /* 5881 * If the previous dep_ipif does not 5882 * belong to the same ill, we've done 5883 * a ipif_refhold() on it. So we need 5884 * to release it. 5885 */ 5886 if (dep_ipif->ipif_ill != ill) 5887 ipif_refrele(dep_ipif); 5888 dep_ipif = ipif; 5889 } 5890 continue; 5891 } 5892 if (saved_ipif == NULL) { 5893 saved_ipif = ipif; 5894 } else { 5895 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5896 if (saved_ipif->ipif_ill != ill) 5897 ipif_refrele(saved_ipif); 5898 saved_ipif = ipif; 5899 } 5900 } 5901 } 5902 /* 5903 * Before going to the next ill, do a ipif_refhold() on the 5904 * saved ones. 5905 */ 5906 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5907 ipif_refhold_locked(saved_ipif); 5908 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5909 ipif_refhold_locked(dep_ipif); 5910 mutex_exit(&ill->ill_lock); 5911 } 5912 rw_exit(&ipst->ips_ill_g_lock); 5913 5914 /* 5915 * If we have only the saved_ipif, return it. But if we have both 5916 * saved_ipif and dep_ipif, check to see which one is better. 5917 */ 5918 if (saved_ipif != NULL) { 5919 if (dep_ipif != NULL) { 5920 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5921 ipif_refrele(saved_ipif); 5922 return (dep_ipif); 5923 } else { 5924 ipif_refrele(dep_ipif); 5925 return (saved_ipif); 5926 } 5927 } 5928 return (saved_ipif); 5929 } else { 5930 return (dep_ipif); 5931 } 5932 } 5933 5934 /* 5935 * This function is called when an application does not specify an interface 5936 * to be used for multicast traffic (joining a group/sending data). It 5937 * calls ire_lookup_multi() to look for an interface route for the 5938 * specified multicast group. Doing this allows the administrator to add 5939 * prefix routes for multicast to indicate which interface to be used for 5940 * multicast traffic in the above scenario. The route could be for all 5941 * multicast (224.0/4), for a single multicast group (a /32 route) or 5942 * anything in between. If there is no such multicast route, we just find 5943 * any multicast capable interface and return it. The returned ipif 5944 * is refhold'ed. 5945 */ 5946 ipif_t * 5947 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5948 { 5949 ire_t *ire; 5950 ipif_t *ipif; 5951 5952 ire = ire_lookup_multi(group, zoneid, ipst); 5953 if (ire != NULL) { 5954 ipif = ire->ire_ipif; 5955 ipif_refhold(ipif); 5956 ire_refrele(ire); 5957 return (ipif); 5958 } 5959 5960 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5961 } 5962 5963 /* 5964 * Look for an ipif with the specified interface address and destination. 5965 * The destination address is used only for matching point-to-point interfaces. 5966 */ 5967 ipif_t * 5968 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5969 ipsq_func_t func, int *error, ip_stack_t *ipst) 5970 { 5971 ipif_t *ipif; 5972 ill_t *ill; 5973 ill_walk_context_t ctx; 5974 ipsq_t *ipsq; 5975 5976 if (error != NULL) 5977 *error = 0; 5978 5979 /* 5980 * First match all the point-to-point interfaces 5981 * before looking at non-point-to-point interfaces. 5982 * This is done to avoid returning non-point-to-point 5983 * ipif instead of unnumbered point-to-point ipif. 5984 */ 5985 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5986 ill = ILL_START_WALK_V4(&ctx, ipst); 5987 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5988 GRAB_CONN_LOCK(q); 5989 mutex_enter(&ill->ill_lock); 5990 for (ipif = ill->ill_ipif; ipif != NULL; 5991 ipif = ipif->ipif_next) { 5992 /* Allow the ipif to be down */ 5993 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5994 (ipif->ipif_lcl_addr == if_addr) && 5995 (ipif->ipif_pp_dst_addr == dst)) { 5996 /* 5997 * The block comment at the start of ipif_down 5998 * explains the use of the macros used below 5999 */ 6000 if (IPIF_CAN_LOOKUP(ipif)) { 6001 ipif_refhold_locked(ipif); 6002 mutex_exit(&ill->ill_lock); 6003 RELEASE_CONN_LOCK(q); 6004 rw_exit(&ipst->ips_ill_g_lock); 6005 return (ipif); 6006 } else if (IPIF_CAN_WAIT(ipif, q)) { 6007 ipsq = ill->ill_phyint->phyint_ipsq; 6008 mutex_enter(&ipsq->ipsq_lock); 6009 mutex_exit(&ill->ill_lock); 6010 rw_exit(&ipst->ips_ill_g_lock); 6011 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6012 ill); 6013 mutex_exit(&ipsq->ipsq_lock); 6014 RELEASE_CONN_LOCK(q); 6015 if (error != NULL) 6016 *error = EINPROGRESS; 6017 return (NULL); 6018 } 6019 } 6020 } 6021 mutex_exit(&ill->ill_lock); 6022 RELEASE_CONN_LOCK(q); 6023 } 6024 rw_exit(&ipst->ips_ill_g_lock); 6025 6026 /* lookup the ipif based on interface address */ 6027 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6028 ipst); 6029 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6030 return (ipif); 6031 } 6032 6033 /* 6034 * Look for an ipif with the specified address. For point-point links 6035 * we look for matches on either the destination address and the local 6036 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6037 * is set. 6038 * Matches on a specific ill if match_ill is set. 6039 */ 6040 ipif_t * 6041 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6042 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6043 { 6044 ipif_t *ipif; 6045 ill_t *ill; 6046 boolean_t ptp = B_FALSE; 6047 ipsq_t *ipsq; 6048 ill_walk_context_t ctx; 6049 6050 if (error != NULL) 6051 *error = 0; 6052 6053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6054 /* 6055 * Repeat twice, first based on local addresses and 6056 * next time for pointopoint. 6057 */ 6058 repeat: 6059 ill = ILL_START_WALK_V4(&ctx, ipst); 6060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6061 if (match_ill != NULL && ill != match_ill) { 6062 continue; 6063 } 6064 GRAB_CONN_LOCK(q); 6065 mutex_enter(&ill->ill_lock); 6066 for (ipif = ill->ill_ipif; ipif != NULL; 6067 ipif = ipif->ipif_next) { 6068 if (zoneid != ALL_ZONES && 6069 zoneid != ipif->ipif_zoneid && 6070 ipif->ipif_zoneid != ALL_ZONES) 6071 continue; 6072 /* Allow the ipif to be down */ 6073 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6074 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6075 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6076 (ipif->ipif_pp_dst_addr == addr))) { 6077 /* 6078 * The block comment at the start of ipif_down 6079 * explains the use of the macros used below 6080 */ 6081 if (IPIF_CAN_LOOKUP(ipif)) { 6082 ipif_refhold_locked(ipif); 6083 mutex_exit(&ill->ill_lock); 6084 RELEASE_CONN_LOCK(q); 6085 rw_exit(&ipst->ips_ill_g_lock); 6086 return (ipif); 6087 } else if (IPIF_CAN_WAIT(ipif, q)) { 6088 ipsq = ill->ill_phyint->phyint_ipsq; 6089 mutex_enter(&ipsq->ipsq_lock); 6090 mutex_exit(&ill->ill_lock); 6091 rw_exit(&ipst->ips_ill_g_lock); 6092 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6093 ill); 6094 mutex_exit(&ipsq->ipsq_lock); 6095 RELEASE_CONN_LOCK(q); 6096 if (error != NULL) 6097 *error = EINPROGRESS; 6098 return (NULL); 6099 } 6100 } 6101 } 6102 mutex_exit(&ill->ill_lock); 6103 RELEASE_CONN_LOCK(q); 6104 } 6105 6106 /* If we already did the ptp case, then we are done */ 6107 if (ptp) { 6108 rw_exit(&ipst->ips_ill_g_lock); 6109 if (error != NULL) 6110 *error = ENXIO; 6111 return (NULL); 6112 } 6113 ptp = B_TRUE; 6114 goto repeat; 6115 } 6116 6117 /* 6118 * Look for an ipif with the specified address. For point-point links 6119 * we look for matches on either the destination address and the local 6120 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6121 * is set. 6122 * Matches on a specific ill if match_ill is set. 6123 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6124 */ 6125 zoneid_t 6126 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6127 { 6128 zoneid_t zoneid; 6129 ipif_t *ipif; 6130 ill_t *ill; 6131 boolean_t ptp = B_FALSE; 6132 ill_walk_context_t ctx; 6133 6134 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6135 /* 6136 * Repeat twice, first based on local addresses and 6137 * next time for pointopoint. 6138 */ 6139 repeat: 6140 ill = ILL_START_WALK_V4(&ctx, ipst); 6141 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6142 if (match_ill != NULL && ill != match_ill) { 6143 continue; 6144 } 6145 mutex_enter(&ill->ill_lock); 6146 for (ipif = ill->ill_ipif; ipif != NULL; 6147 ipif = ipif->ipif_next) { 6148 /* Allow the ipif to be down */ 6149 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6150 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6151 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6152 (ipif->ipif_pp_dst_addr == addr)) && 6153 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6154 zoneid = ipif->ipif_zoneid; 6155 mutex_exit(&ill->ill_lock); 6156 rw_exit(&ipst->ips_ill_g_lock); 6157 /* 6158 * If ipif_zoneid was ALL_ZONES then we have 6159 * a trusted extensions shared IP address. 6160 * In that case GLOBAL_ZONEID works to send. 6161 */ 6162 if (zoneid == ALL_ZONES) 6163 zoneid = GLOBAL_ZONEID; 6164 return (zoneid); 6165 } 6166 } 6167 mutex_exit(&ill->ill_lock); 6168 } 6169 6170 /* If we already did the ptp case, then we are done */ 6171 if (ptp) { 6172 rw_exit(&ipst->ips_ill_g_lock); 6173 return (ALL_ZONES); 6174 } 6175 ptp = B_TRUE; 6176 goto repeat; 6177 } 6178 6179 /* 6180 * Look for an ipif that matches the specified remote address i.e. the 6181 * ipif that would receive the specified packet. 6182 * First look for directly connected interfaces and then do a recursive 6183 * IRE lookup and pick the first ipif corresponding to the source address in the 6184 * ire. 6185 * Returns: held ipif 6186 */ 6187 ipif_t * 6188 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6189 { 6190 ipif_t *ipif; 6191 ire_t *ire; 6192 ip_stack_t *ipst = ill->ill_ipst; 6193 6194 ASSERT(!ill->ill_isv6); 6195 6196 /* 6197 * Someone could be changing this ipif currently or change it 6198 * after we return this. Thus a few packets could use the old 6199 * old values. However structure updates/creates (ire, ilg, ilm etc) 6200 * will atomically be updated or cleaned up with the new value 6201 * Thus we don't need a lock to check the flags or other attrs below. 6202 */ 6203 mutex_enter(&ill->ill_lock); 6204 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6205 if (!IPIF_CAN_LOOKUP(ipif)) 6206 continue; 6207 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6208 ipif->ipif_zoneid != ALL_ZONES) 6209 continue; 6210 /* Allow the ipif to be down */ 6211 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6212 if ((ipif->ipif_pp_dst_addr == addr) || 6213 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6214 ipif->ipif_lcl_addr == addr)) { 6215 ipif_refhold_locked(ipif); 6216 mutex_exit(&ill->ill_lock); 6217 return (ipif); 6218 } 6219 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6220 ipif_refhold_locked(ipif); 6221 mutex_exit(&ill->ill_lock); 6222 return (ipif); 6223 } 6224 } 6225 mutex_exit(&ill->ill_lock); 6226 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6227 NULL, MATCH_IRE_RECURSIVE, ipst); 6228 if (ire != NULL) { 6229 /* 6230 * The callers of this function wants to know the 6231 * interface on which they have to send the replies 6232 * back. For IRE_CACHES that have ire_stq and ire_ipif 6233 * derived from different ills, we really don't care 6234 * what we return here. 6235 */ 6236 ipif = ire->ire_ipif; 6237 if (ipif != NULL) { 6238 ipif_refhold(ipif); 6239 ire_refrele(ire); 6240 return (ipif); 6241 } 6242 ire_refrele(ire); 6243 } 6244 /* Pick the first interface */ 6245 ipif = ipif_get_next_ipif(NULL, ill); 6246 return (ipif); 6247 } 6248 6249 /* 6250 * This func does not prevent refcnt from increasing. But if 6251 * the caller has taken steps to that effect, then this func 6252 * can be used to determine whether the ill has become quiescent 6253 */ 6254 boolean_t 6255 ill_is_quiescent(ill_t *ill) 6256 { 6257 ipif_t *ipif; 6258 6259 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6260 6261 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6262 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6263 return (B_FALSE); 6264 } 6265 } 6266 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6267 ill->ill_nce_cnt != 0) { 6268 return (B_FALSE); 6269 } 6270 return (B_TRUE); 6271 } 6272 6273 /* 6274 * This func does not prevent refcnt from increasing. But if 6275 * the caller has taken steps to that effect, then this func 6276 * can be used to determine whether the ipif has become quiescent 6277 */ 6278 static boolean_t 6279 ipif_is_quiescent(ipif_t *ipif) 6280 { 6281 ill_t *ill; 6282 6283 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6284 6285 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6286 return (B_FALSE); 6287 } 6288 6289 ill = ipif->ipif_ill; 6290 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6291 ill->ill_logical_down) { 6292 return (B_TRUE); 6293 } 6294 6295 /* This is the last ipif going down or being deleted on this ill */ 6296 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6297 return (B_FALSE); 6298 } 6299 6300 return (B_TRUE); 6301 } 6302 6303 /* 6304 * This func does not prevent refcnt from increasing. But if 6305 * the caller has taken steps to that effect, then this func 6306 * can be used to determine whether the ipifs marked with IPIF_MOVING 6307 * have become quiescent and can be moved in a failover/failback. 6308 */ 6309 static ipif_t * 6310 ill_quiescent_to_move(ill_t *ill) 6311 { 6312 ipif_t *ipif; 6313 6314 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6315 6316 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6317 if (ipif->ipif_state_flags & IPIF_MOVING) { 6318 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6319 return (ipif); 6320 } 6321 } 6322 } 6323 return (NULL); 6324 } 6325 6326 /* 6327 * The ipif/ill/ire has been refreled. Do the tail processing. 6328 * Determine if the ipif or ill in question has become quiescent and if so 6329 * wakeup close and/or restart any queued pending ioctl that is waiting 6330 * for the ipif_down (or ill_down) 6331 */ 6332 void 6333 ipif_ill_refrele_tail(ill_t *ill) 6334 { 6335 mblk_t *mp; 6336 conn_t *connp; 6337 ipsq_t *ipsq; 6338 ipif_t *ipif; 6339 dl_notify_ind_t *dlindp; 6340 6341 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6342 6343 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6344 ill_is_quiescent(ill)) { 6345 /* ill_close may be waiting */ 6346 cv_broadcast(&ill->ill_cv); 6347 } 6348 6349 /* ipsq can't change because ill_lock is held */ 6350 ipsq = ill->ill_phyint->phyint_ipsq; 6351 if (ipsq->ipsq_waitfor == 0) { 6352 /* Not waiting for anything, just return. */ 6353 mutex_exit(&ill->ill_lock); 6354 return; 6355 } 6356 ASSERT(ipsq->ipsq_pending_mp != NULL && 6357 ipsq->ipsq_pending_ipif != NULL); 6358 /* 6359 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6360 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6361 * be zero for restarting an ioctl that ends up downing the ill. 6362 */ 6363 ipif = ipsq->ipsq_pending_ipif; 6364 if (ipif->ipif_ill != ill) { 6365 /* The ioctl is pending on some other ill. */ 6366 mutex_exit(&ill->ill_lock); 6367 return; 6368 } 6369 6370 switch (ipsq->ipsq_waitfor) { 6371 case IPIF_DOWN: 6372 case IPIF_FREE: 6373 if (!ipif_is_quiescent(ipif)) { 6374 mutex_exit(&ill->ill_lock); 6375 return; 6376 } 6377 break; 6378 6379 case ILL_DOWN: 6380 case ILL_FREE: 6381 /* 6382 * case ILL_FREE arises only for loopback. otherwise ill_delete 6383 * waits synchronously in ip_close, and no message is queued in 6384 * ipsq_pending_mp at all in this case 6385 */ 6386 if (!ill_is_quiescent(ill)) { 6387 mutex_exit(&ill->ill_lock); 6388 return; 6389 } 6390 6391 break; 6392 6393 case ILL_MOVE_OK: 6394 if (ill_quiescent_to_move(ill) != NULL) { 6395 mutex_exit(&ill->ill_lock); 6396 return; 6397 } 6398 6399 break; 6400 default: 6401 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6402 (void *)ipsq, ipsq->ipsq_waitfor); 6403 } 6404 6405 /* 6406 * Incr refcnt for the qwriter_ip call below which 6407 * does a refrele 6408 */ 6409 ill_refhold_locked(ill); 6410 mutex_exit(&ill->ill_lock); 6411 6412 mp = ipsq_pending_mp_get(ipsq, &connp); 6413 ASSERT(mp != NULL); 6414 6415 /* 6416 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6417 * we can only get here when the current operation decides it 6418 * it needs to quiesce via ipsq_pending_mp_add(). 6419 */ 6420 switch (mp->b_datap->db_type) { 6421 case M_PCPROTO: 6422 case M_PROTO: 6423 /* 6424 * For now, only DL_NOTIFY_IND messages can use this facility. 6425 */ 6426 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6427 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6428 6429 switch (dlindp->dl_notification) { 6430 case DL_NOTE_PHYS_ADDR: 6431 qwriter_ip(ill, ill->ill_rq, mp, 6432 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6433 return; 6434 default: 6435 ASSERT(0); 6436 } 6437 break; 6438 6439 case M_ERROR: 6440 case M_HANGUP: 6441 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6442 B_TRUE); 6443 return; 6444 6445 case M_IOCTL: 6446 case M_IOCDATA: 6447 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6448 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6449 return; 6450 6451 default: 6452 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6453 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6454 } 6455 } 6456 6457 #ifdef DEBUG 6458 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6459 static void 6460 th_trace_rrecord(th_trace_t *th_trace) 6461 { 6462 tr_buf_t *tr_buf; 6463 uint_t lastref; 6464 6465 lastref = th_trace->th_trace_lastref; 6466 lastref++; 6467 if (lastref == TR_BUF_MAX) 6468 lastref = 0; 6469 th_trace->th_trace_lastref = lastref; 6470 tr_buf = &th_trace->th_trbuf[lastref]; 6471 tr_buf->tr_time = lbolt; 6472 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6473 } 6474 6475 static void 6476 th_trace_free(void *value) 6477 { 6478 th_trace_t *th_trace = value; 6479 6480 ASSERT(th_trace->th_refcnt == 0); 6481 kmem_free(th_trace, sizeof (*th_trace)); 6482 } 6483 6484 /* 6485 * Find or create the per-thread hash table used to track object references. 6486 * The ipst argument is NULL if we shouldn't allocate. 6487 * 6488 * Accesses per-thread data, so there's no need to lock here. 6489 */ 6490 static mod_hash_t * 6491 th_trace_gethash(ip_stack_t *ipst) 6492 { 6493 th_hash_t *thh; 6494 6495 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6496 mod_hash_t *mh; 6497 char name[256]; 6498 size_t objsize, rshift; 6499 int retv; 6500 6501 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6502 return (NULL); 6503 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6504 6505 /* 6506 * We use mod_hash_create_extended here rather than the more 6507 * obvious mod_hash_create_ptrhash because the latter has a 6508 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6509 * block. 6510 */ 6511 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6512 MAX(sizeof (ire_t), sizeof (nce_t))); 6513 rshift = highbit(objsize); 6514 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6515 th_trace_free, mod_hash_byptr, (void *)rshift, 6516 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6517 if (mh == NULL) { 6518 kmem_free(thh, sizeof (*thh)); 6519 return (NULL); 6520 } 6521 thh->thh_hash = mh; 6522 thh->thh_ipst = ipst; 6523 /* 6524 * We trace ills, ipifs, ires, and nces. All of these are 6525 * per-IP-stack, so the lock on the thread list is as well. 6526 */ 6527 rw_enter(&ip_thread_rwlock, RW_WRITER); 6528 list_insert_tail(&ip_thread_list, thh); 6529 rw_exit(&ip_thread_rwlock); 6530 retv = tsd_set(ip_thread_data, thh); 6531 ASSERT(retv == 0); 6532 } 6533 return (thh != NULL ? thh->thh_hash : NULL); 6534 } 6535 6536 boolean_t 6537 th_trace_ref(const void *obj, ip_stack_t *ipst) 6538 { 6539 th_trace_t *th_trace; 6540 mod_hash_t *mh; 6541 mod_hash_val_t val; 6542 6543 if ((mh = th_trace_gethash(ipst)) == NULL) 6544 return (B_FALSE); 6545 6546 /* 6547 * Attempt to locate the trace buffer for this obj and thread. 6548 * If it does not exist, then allocate a new trace buffer and 6549 * insert into the hash. 6550 */ 6551 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6552 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6553 if (th_trace == NULL) 6554 return (B_FALSE); 6555 6556 th_trace->th_id = curthread; 6557 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6558 (mod_hash_val_t)th_trace) != 0) { 6559 kmem_free(th_trace, sizeof (th_trace_t)); 6560 return (B_FALSE); 6561 } 6562 } else { 6563 th_trace = (th_trace_t *)val; 6564 } 6565 6566 ASSERT(th_trace->th_refcnt >= 0 && 6567 th_trace->th_refcnt < TR_BUF_MAX - 1); 6568 6569 th_trace->th_refcnt++; 6570 th_trace_rrecord(th_trace); 6571 return (B_TRUE); 6572 } 6573 6574 /* 6575 * For the purpose of tracing a reference release, we assume that global 6576 * tracing is always on and that the same thread initiated the reference hold 6577 * is releasing. 6578 */ 6579 void 6580 th_trace_unref(const void *obj) 6581 { 6582 int retv; 6583 mod_hash_t *mh; 6584 th_trace_t *th_trace; 6585 mod_hash_val_t val; 6586 6587 mh = th_trace_gethash(NULL); 6588 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6589 ASSERT(retv == 0); 6590 th_trace = (th_trace_t *)val; 6591 6592 ASSERT(th_trace->th_refcnt > 0); 6593 th_trace->th_refcnt--; 6594 th_trace_rrecord(th_trace); 6595 } 6596 6597 /* 6598 * If tracing has been disabled, then we assume that the reference counts are 6599 * now useless, and we clear them out before destroying the entries. 6600 */ 6601 void 6602 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6603 { 6604 th_hash_t *thh; 6605 mod_hash_t *mh; 6606 mod_hash_val_t val; 6607 th_trace_t *th_trace; 6608 int retv; 6609 6610 rw_enter(&ip_thread_rwlock, RW_READER); 6611 for (thh = list_head(&ip_thread_list); thh != NULL; 6612 thh = list_next(&ip_thread_list, thh)) { 6613 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6614 &val) == 0) { 6615 th_trace = (th_trace_t *)val; 6616 if (trace_disable) 6617 th_trace->th_refcnt = 0; 6618 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6619 ASSERT(retv == 0); 6620 } 6621 } 6622 rw_exit(&ip_thread_rwlock); 6623 } 6624 6625 void 6626 ipif_trace_ref(ipif_t *ipif) 6627 { 6628 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6629 6630 if (ipif->ipif_trace_disable) 6631 return; 6632 6633 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6634 ipif->ipif_trace_disable = B_TRUE; 6635 ipif_trace_cleanup(ipif); 6636 } 6637 } 6638 6639 void 6640 ipif_untrace_ref(ipif_t *ipif) 6641 { 6642 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6643 6644 if (!ipif->ipif_trace_disable) 6645 th_trace_unref(ipif); 6646 } 6647 6648 void 6649 ill_trace_ref(ill_t *ill) 6650 { 6651 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6652 6653 if (ill->ill_trace_disable) 6654 return; 6655 6656 if (!th_trace_ref(ill, ill->ill_ipst)) { 6657 ill->ill_trace_disable = B_TRUE; 6658 ill_trace_cleanup(ill); 6659 } 6660 } 6661 6662 void 6663 ill_untrace_ref(ill_t *ill) 6664 { 6665 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6666 6667 if (!ill->ill_trace_disable) 6668 th_trace_unref(ill); 6669 } 6670 6671 /* 6672 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6673 * failure, ipif_trace_disable is set. 6674 */ 6675 static void 6676 ipif_trace_cleanup(const ipif_t *ipif) 6677 { 6678 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6679 } 6680 6681 /* 6682 * Called when ill is unplumbed or when memory alloc fails. Note that on 6683 * failure, ill_trace_disable is set. 6684 */ 6685 static void 6686 ill_trace_cleanup(const ill_t *ill) 6687 { 6688 th_trace_cleanup(ill, ill->ill_trace_disable); 6689 } 6690 #endif /* DEBUG */ 6691 6692 void 6693 ipif_refhold_locked(ipif_t *ipif) 6694 { 6695 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6696 ipif->ipif_refcnt++; 6697 IPIF_TRACE_REF(ipif); 6698 } 6699 6700 void 6701 ipif_refhold(ipif_t *ipif) 6702 { 6703 ill_t *ill; 6704 6705 ill = ipif->ipif_ill; 6706 mutex_enter(&ill->ill_lock); 6707 ipif->ipif_refcnt++; 6708 IPIF_TRACE_REF(ipif); 6709 mutex_exit(&ill->ill_lock); 6710 } 6711 6712 /* 6713 * Must not be called while holding any locks. Otherwise if this is 6714 * the last reference to be released there is a chance of recursive mutex 6715 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6716 * to restart an ioctl. 6717 */ 6718 void 6719 ipif_refrele(ipif_t *ipif) 6720 { 6721 ill_t *ill; 6722 6723 ill = ipif->ipif_ill; 6724 6725 mutex_enter(&ill->ill_lock); 6726 ASSERT(ipif->ipif_refcnt != 0); 6727 ipif->ipif_refcnt--; 6728 IPIF_UNTRACE_REF(ipif); 6729 if (ipif->ipif_refcnt != 0) { 6730 mutex_exit(&ill->ill_lock); 6731 return; 6732 } 6733 6734 /* Drops the ill_lock */ 6735 ipif_ill_refrele_tail(ill); 6736 } 6737 6738 ipif_t * 6739 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6740 { 6741 ipif_t *ipif; 6742 6743 mutex_enter(&ill->ill_lock); 6744 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6745 ipif != NULL; ipif = ipif->ipif_next) { 6746 if (!IPIF_CAN_LOOKUP(ipif)) 6747 continue; 6748 ipif_refhold_locked(ipif); 6749 mutex_exit(&ill->ill_lock); 6750 return (ipif); 6751 } 6752 mutex_exit(&ill->ill_lock); 6753 return (NULL); 6754 } 6755 6756 /* 6757 * TODO: make this table extendible at run time 6758 * Return a pointer to the mac type info for 'mac_type' 6759 */ 6760 static ip_m_t * 6761 ip_m_lookup(t_uscalar_t mac_type) 6762 { 6763 ip_m_t *ipm; 6764 6765 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6766 if (ipm->ip_m_mac_type == mac_type) 6767 return (ipm); 6768 return (NULL); 6769 } 6770 6771 /* 6772 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6773 * ipif_arg is passed in to associate it with the correct interface. 6774 * We may need to restart this operation if the ipif cannot be looked up 6775 * due to an exclusive operation that is currently in progress. The restart 6776 * entry point is specified by 'func' 6777 */ 6778 int 6779 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6780 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6781 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6782 struct rtsa_s *sp, ip_stack_t *ipst) 6783 { 6784 ire_t *ire; 6785 ire_t *gw_ire = NULL; 6786 ipif_t *ipif = NULL; 6787 boolean_t ipif_refheld = B_FALSE; 6788 uint_t type; 6789 int match_flags = MATCH_IRE_TYPE; 6790 int error; 6791 tsol_gc_t *gc = NULL; 6792 tsol_gcgrp_t *gcgrp = NULL; 6793 boolean_t gcgrp_xtraref = B_FALSE; 6794 6795 ip1dbg(("ip_rt_add:")); 6796 6797 if (ire_arg != NULL) 6798 *ire_arg = NULL; 6799 6800 /* 6801 * If this is the case of RTF_HOST being set, then we set the netmask 6802 * to all ones (regardless if one was supplied). 6803 */ 6804 if (flags & RTF_HOST) 6805 mask = IP_HOST_MASK; 6806 6807 /* 6808 * Prevent routes with a zero gateway from being created (since 6809 * interfaces can currently be plumbed and brought up no assigned 6810 * address). 6811 */ 6812 if (gw_addr == 0) 6813 return (ENETUNREACH); 6814 /* 6815 * Get the ipif, if any, corresponding to the gw_addr 6816 */ 6817 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6818 ipst); 6819 if (ipif != NULL) { 6820 if (IS_VNI(ipif->ipif_ill)) { 6821 ipif_refrele(ipif); 6822 return (EINVAL); 6823 } 6824 ipif_refheld = B_TRUE; 6825 } else if (error == EINPROGRESS) { 6826 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6827 return (EINPROGRESS); 6828 } else { 6829 error = 0; 6830 } 6831 6832 if (ipif != NULL) { 6833 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6834 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6835 } else { 6836 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6837 } 6838 6839 /* 6840 * GateD will attempt to create routes with a loopback interface 6841 * address as the gateway and with RTF_GATEWAY set. We allow 6842 * these routes to be added, but create them as interface routes 6843 * since the gateway is an interface address. 6844 */ 6845 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6846 flags &= ~RTF_GATEWAY; 6847 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6848 mask == IP_HOST_MASK) { 6849 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6850 ALL_ZONES, NULL, match_flags, ipst); 6851 if (ire != NULL) { 6852 ire_refrele(ire); 6853 if (ipif_refheld) 6854 ipif_refrele(ipif); 6855 return (EEXIST); 6856 } 6857 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6858 "for 0x%x\n", (void *)ipif, 6859 ipif->ipif_ire_type, 6860 ntohl(ipif->ipif_lcl_addr))); 6861 ire = ire_create( 6862 (uchar_t *)&dst_addr, /* dest address */ 6863 (uchar_t *)&mask, /* mask */ 6864 (uchar_t *)&ipif->ipif_src_addr, 6865 NULL, /* no gateway */ 6866 &ipif->ipif_mtu, 6867 NULL, 6868 ipif->ipif_rq, /* recv-from queue */ 6869 NULL, /* no send-to queue */ 6870 ipif->ipif_ire_type, /* LOOPBACK */ 6871 ipif, 6872 0, 6873 0, 6874 0, 6875 (ipif->ipif_flags & IPIF_PRIVATE) ? 6876 RTF_PRIVATE : 0, 6877 &ire_uinfo_null, 6878 NULL, 6879 NULL, 6880 ipst); 6881 6882 if (ire == NULL) { 6883 if (ipif_refheld) 6884 ipif_refrele(ipif); 6885 return (ENOMEM); 6886 } 6887 error = ire_add(&ire, q, mp, func, B_FALSE); 6888 if (error == 0) 6889 goto save_ire; 6890 if (ipif_refheld) 6891 ipif_refrele(ipif); 6892 return (error); 6893 6894 } 6895 } 6896 6897 /* 6898 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6899 * and the gateway address provided is one of the system's interface 6900 * addresses. By using the routing socket interface and supplying an 6901 * RTA_IFP sockaddr with an interface index, an alternate method of 6902 * specifying an interface route to be created is available which uses 6903 * the interface index that specifies the outgoing interface rather than 6904 * the address of an outgoing interface (which may not be able to 6905 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6906 * flag, routes can be specified which not only specify the next-hop to 6907 * be used when routing to a certain prefix, but also which outgoing 6908 * interface should be used. 6909 * 6910 * Previously, interfaces would have unique addresses assigned to them 6911 * and so the address assigned to a particular interface could be used 6912 * to identify a particular interface. One exception to this was the 6913 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6914 * 6915 * With the advent of IPv6 and its link-local addresses, this 6916 * restriction was relaxed and interfaces could share addresses between 6917 * themselves. In fact, typically all of the link-local interfaces on 6918 * an IPv6 node or router will have the same link-local address. In 6919 * order to differentiate between these interfaces, the use of an 6920 * interface index is necessary and this index can be carried inside a 6921 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6922 * of using the interface index, however, is that all of the ipif's that 6923 * are part of an ill have the same index and so the RTA_IFP sockaddr 6924 * cannot be used to differentiate between ipif's (or logical 6925 * interfaces) that belong to the same ill (physical interface). 6926 * 6927 * For example, in the following case involving IPv4 interfaces and 6928 * logical interfaces 6929 * 6930 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6931 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6932 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6933 * 6934 * the ipif's corresponding to each of these interface routes can be 6935 * uniquely identified by the "gateway" (actually interface address). 6936 * 6937 * In this case involving multiple IPv6 default routes to a particular 6938 * link-local gateway, the use of RTA_IFP is necessary to specify which 6939 * default route is of interest: 6940 * 6941 * default fe80::123:4567:89ab:cdef U if0 6942 * default fe80::123:4567:89ab:cdef U if1 6943 */ 6944 6945 /* RTF_GATEWAY not set */ 6946 if (!(flags & RTF_GATEWAY)) { 6947 queue_t *stq; 6948 6949 if (sp != NULL) { 6950 ip2dbg(("ip_rt_add: gateway security attributes " 6951 "cannot be set with interface route\n")); 6952 if (ipif_refheld) 6953 ipif_refrele(ipif); 6954 return (EINVAL); 6955 } 6956 6957 /* 6958 * As the interface index specified with the RTA_IFP sockaddr is 6959 * the same for all ipif's off of an ill, the matching logic 6960 * below uses MATCH_IRE_ILL if such an index was specified. 6961 * This means that routes sharing the same prefix when added 6962 * using a RTA_IFP sockaddr must have distinct interface 6963 * indices (namely, they must be on distinct ill's). 6964 * 6965 * On the other hand, since the gateway address will usually be 6966 * different for each ipif on the system, the matching logic 6967 * uses MATCH_IRE_IPIF in the case of a traditional interface 6968 * route. This means that interface routes for the same prefix 6969 * can be created if they belong to distinct ipif's and if a 6970 * RTA_IFP sockaddr is not present. 6971 */ 6972 if (ipif_arg != NULL) { 6973 if (ipif_refheld) { 6974 ipif_refrele(ipif); 6975 ipif_refheld = B_FALSE; 6976 } 6977 ipif = ipif_arg; 6978 match_flags |= MATCH_IRE_ILL; 6979 } else { 6980 /* 6981 * Check the ipif corresponding to the gw_addr 6982 */ 6983 if (ipif == NULL) 6984 return (ENETUNREACH); 6985 match_flags |= MATCH_IRE_IPIF; 6986 } 6987 ASSERT(ipif != NULL); 6988 6989 /* 6990 * We check for an existing entry at this point. 6991 * 6992 * Since a netmask isn't passed in via the ioctl interface 6993 * (SIOCADDRT), we don't check for a matching netmask in that 6994 * case. 6995 */ 6996 if (!ioctl_msg) 6997 match_flags |= MATCH_IRE_MASK; 6998 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6999 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7000 if (ire != NULL) { 7001 ire_refrele(ire); 7002 if (ipif_refheld) 7003 ipif_refrele(ipif); 7004 return (EEXIST); 7005 } 7006 7007 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7008 ? ipif->ipif_rq : ipif->ipif_wq; 7009 7010 /* 7011 * Create a copy of the IRE_LOOPBACK, 7012 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7013 * the modified address and netmask. 7014 */ 7015 ire = ire_create( 7016 (uchar_t *)&dst_addr, 7017 (uint8_t *)&mask, 7018 (uint8_t *)&ipif->ipif_src_addr, 7019 NULL, 7020 &ipif->ipif_mtu, 7021 NULL, 7022 NULL, 7023 stq, 7024 ipif->ipif_net_type, 7025 ipif, 7026 0, 7027 0, 7028 0, 7029 flags, 7030 &ire_uinfo_null, 7031 NULL, 7032 NULL, 7033 ipst); 7034 if (ire == NULL) { 7035 if (ipif_refheld) 7036 ipif_refrele(ipif); 7037 return (ENOMEM); 7038 } 7039 7040 /* 7041 * Some software (for example, GateD and Sun Cluster) attempts 7042 * to create (what amount to) IRE_PREFIX routes with the 7043 * loopback address as the gateway. This is primarily done to 7044 * set up prefixes with the RTF_REJECT flag set (for example, 7045 * when generating aggregate routes.) 7046 * 7047 * If the IRE type (as defined by ipif->ipif_net_type) is 7048 * IRE_LOOPBACK, then we map the request into a 7049 * IRE_IF_NORESOLVER. 7050 * 7051 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7052 * routine, but rather using ire_create() directly. 7053 * 7054 */ 7055 if (ipif->ipif_net_type == IRE_LOOPBACK) 7056 ire->ire_type = IRE_IF_NORESOLVER; 7057 7058 error = ire_add(&ire, q, mp, func, B_FALSE); 7059 if (error == 0) 7060 goto save_ire; 7061 7062 /* 7063 * In the result of failure, ire_add() will have already 7064 * deleted the ire in question, so there is no need to 7065 * do that here. 7066 */ 7067 if (ipif_refheld) 7068 ipif_refrele(ipif); 7069 return (error); 7070 } 7071 if (ipif_refheld) { 7072 ipif_refrele(ipif); 7073 ipif_refheld = B_FALSE; 7074 } 7075 7076 /* 7077 * Get an interface IRE for the specified gateway. 7078 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7079 * gateway, it is currently unreachable and we fail the request 7080 * accordingly. 7081 */ 7082 ipif = ipif_arg; 7083 if (ipif_arg != NULL) 7084 match_flags |= MATCH_IRE_ILL; 7085 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7086 ALL_ZONES, 0, NULL, match_flags, ipst); 7087 if (gw_ire == NULL) 7088 return (ENETUNREACH); 7089 7090 /* 7091 * We create one of three types of IREs as a result of this request 7092 * based on the netmask. A netmask of all ones (which is automatically 7093 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7094 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7095 * created. Otherwise, an IRE_PREFIX route is created for the 7096 * destination prefix. 7097 */ 7098 if (mask == IP_HOST_MASK) 7099 type = IRE_HOST; 7100 else if (mask == 0) 7101 type = IRE_DEFAULT; 7102 else 7103 type = IRE_PREFIX; 7104 7105 /* check for a duplicate entry */ 7106 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7107 NULL, ALL_ZONES, 0, NULL, 7108 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7109 if (ire != NULL) { 7110 ire_refrele(gw_ire); 7111 ire_refrele(ire); 7112 return (EEXIST); 7113 } 7114 7115 /* Security attribute exists */ 7116 if (sp != NULL) { 7117 tsol_gcgrp_addr_t ga; 7118 7119 /* find or create the gateway credentials group */ 7120 ga.ga_af = AF_INET; 7121 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7122 7123 /* we hold reference to it upon success */ 7124 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7125 if (gcgrp == NULL) { 7126 ire_refrele(gw_ire); 7127 return (ENOMEM); 7128 } 7129 7130 /* 7131 * Create and add the security attribute to the group; a 7132 * reference to the group is made upon allocating a new 7133 * entry successfully. If it finds an already-existing 7134 * entry for the security attribute in the group, it simply 7135 * returns it and no new reference is made to the group. 7136 */ 7137 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7138 if (gc == NULL) { 7139 /* release reference held by gcgrp_lookup */ 7140 GCGRP_REFRELE(gcgrp); 7141 ire_refrele(gw_ire); 7142 return (ENOMEM); 7143 } 7144 } 7145 7146 /* Create the IRE. */ 7147 ire = ire_create( 7148 (uchar_t *)&dst_addr, /* dest address */ 7149 (uchar_t *)&mask, /* mask */ 7150 /* src address assigned by the caller? */ 7151 (uchar_t *)(((src_addr != INADDR_ANY) && 7152 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7153 (uchar_t *)&gw_addr, /* gateway address */ 7154 &gw_ire->ire_max_frag, 7155 NULL, /* no src nce */ 7156 NULL, /* no recv-from queue */ 7157 NULL, /* no send-to queue */ 7158 (ushort_t)type, /* IRE type */ 7159 ipif_arg, 7160 0, 7161 0, 7162 0, 7163 flags, 7164 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7165 gc, /* security attribute */ 7166 NULL, 7167 ipst); 7168 7169 /* 7170 * The ire holds a reference to the 'gc' and the 'gc' holds a 7171 * reference to the 'gcgrp'. We can now release the extra reference 7172 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7173 */ 7174 if (gcgrp_xtraref) 7175 GCGRP_REFRELE(gcgrp); 7176 if (ire == NULL) { 7177 if (gc != NULL) 7178 GC_REFRELE(gc); 7179 ire_refrele(gw_ire); 7180 return (ENOMEM); 7181 } 7182 7183 /* 7184 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7185 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7186 */ 7187 7188 /* Add the new IRE. */ 7189 error = ire_add(&ire, q, mp, func, B_FALSE); 7190 if (error != 0) { 7191 /* 7192 * In the result of failure, ire_add() will have already 7193 * deleted the ire in question, so there is no need to 7194 * do that here. 7195 */ 7196 ire_refrele(gw_ire); 7197 return (error); 7198 } 7199 7200 if (flags & RTF_MULTIRT) { 7201 /* 7202 * Invoke the CGTP (multirouting) filtering module 7203 * to add the dst address in the filtering database. 7204 * Replicated inbound packets coming from that address 7205 * will be filtered to discard the duplicates. 7206 * It is not necessary to call the CGTP filter hook 7207 * when the dst address is a broadcast or multicast, 7208 * because an IP source address cannot be a broadcast 7209 * or a multicast. 7210 */ 7211 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7212 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7213 if (ire_dst != NULL) { 7214 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7215 ire_refrele(ire_dst); 7216 goto save_ire; 7217 } 7218 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7219 !CLASSD(ire->ire_addr)) { 7220 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7221 ipst->ips_netstack->netstack_stackid, 7222 ire->ire_addr, 7223 ire->ire_gateway_addr, 7224 ire->ire_src_addr, 7225 gw_ire->ire_src_addr); 7226 if (res != 0) { 7227 ire_refrele(gw_ire); 7228 ire_delete(ire); 7229 return (res); 7230 } 7231 } 7232 } 7233 7234 /* 7235 * Now that the prefix IRE entry has been created, delete any 7236 * existing gateway IRE cache entries as well as any IRE caches 7237 * using the gateway, and force them to be created through 7238 * ip_newroute. 7239 */ 7240 if (gc != NULL) { 7241 ASSERT(gcgrp != NULL); 7242 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7243 } 7244 7245 save_ire: 7246 if (gw_ire != NULL) { 7247 ire_refrele(gw_ire); 7248 } 7249 if (ipif != NULL) { 7250 /* 7251 * Save enough information so that we can recreate the IRE if 7252 * the interface goes down and then up. The metrics associated 7253 * with the route will be saved as well when rts_setmetrics() is 7254 * called after the IRE has been created. In the case where 7255 * memory cannot be allocated, none of this information will be 7256 * saved. 7257 */ 7258 ipif_save_ire(ipif, ire); 7259 } 7260 if (ioctl_msg) 7261 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7262 if (ire_arg != NULL) { 7263 /* 7264 * Store the ire that was successfully added into where ire_arg 7265 * points to so that callers don't have to look it up 7266 * themselves (but they are responsible for ire_refrele()ing 7267 * the ire when they are finished with it). 7268 */ 7269 *ire_arg = ire; 7270 } else { 7271 ire_refrele(ire); /* Held in ire_add */ 7272 } 7273 if (ipif_refheld) 7274 ipif_refrele(ipif); 7275 return (0); 7276 } 7277 7278 /* 7279 * ip_rt_delete is called to delete an IPv4 route. 7280 * ipif_arg is passed in to associate it with the correct interface. 7281 * We may need to restart this operation if the ipif cannot be looked up 7282 * due to an exclusive operation that is currently in progress. The restart 7283 * entry point is specified by 'func' 7284 */ 7285 /* ARGSUSED4 */ 7286 int 7287 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7288 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7289 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7290 { 7291 ire_t *ire = NULL; 7292 ipif_t *ipif; 7293 boolean_t ipif_refheld = B_FALSE; 7294 uint_t type; 7295 uint_t match_flags = MATCH_IRE_TYPE; 7296 int err = 0; 7297 7298 ip1dbg(("ip_rt_delete:")); 7299 /* 7300 * If this is the case of RTF_HOST being set, then we set the netmask 7301 * to all ones. Otherwise, we use the netmask if one was supplied. 7302 */ 7303 if (flags & RTF_HOST) { 7304 mask = IP_HOST_MASK; 7305 match_flags |= MATCH_IRE_MASK; 7306 } else if (rtm_addrs & RTA_NETMASK) { 7307 match_flags |= MATCH_IRE_MASK; 7308 } 7309 7310 /* 7311 * Note that RTF_GATEWAY is never set on a delete, therefore 7312 * we check if the gateway address is one of our interfaces first, 7313 * and fall back on RTF_GATEWAY routes. 7314 * 7315 * This makes it possible to delete an original 7316 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7317 * 7318 * As the interface index specified with the RTA_IFP sockaddr is the 7319 * same for all ipif's off of an ill, the matching logic below uses 7320 * MATCH_IRE_ILL if such an index was specified. This means a route 7321 * sharing the same prefix and interface index as the the route 7322 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7323 * is specified in the request. 7324 * 7325 * On the other hand, since the gateway address will usually be 7326 * different for each ipif on the system, the matching logic 7327 * uses MATCH_IRE_IPIF in the case of a traditional interface 7328 * route. This means that interface routes for the same prefix can be 7329 * uniquely identified if they belong to distinct ipif's and if a 7330 * RTA_IFP sockaddr is not present. 7331 * 7332 * For more detail on specifying routes by gateway address and by 7333 * interface index, see the comments in ip_rt_add(). 7334 */ 7335 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7336 ipst); 7337 if (ipif != NULL) 7338 ipif_refheld = B_TRUE; 7339 else if (err == EINPROGRESS) 7340 return (err); 7341 else 7342 err = 0; 7343 if (ipif != NULL) { 7344 if (ipif_arg != NULL) { 7345 if (ipif_refheld) { 7346 ipif_refrele(ipif); 7347 ipif_refheld = B_FALSE; 7348 } 7349 ipif = ipif_arg; 7350 match_flags |= MATCH_IRE_ILL; 7351 } else { 7352 match_flags |= MATCH_IRE_IPIF; 7353 } 7354 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7355 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7356 ALL_ZONES, NULL, match_flags, ipst); 7357 } 7358 if (ire == NULL) { 7359 ire = ire_ftable_lookup(dst_addr, mask, 0, 7360 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7361 match_flags, ipst); 7362 } 7363 } 7364 7365 if (ire == NULL) { 7366 /* 7367 * At this point, the gateway address is not one of our own 7368 * addresses or a matching interface route was not found. We 7369 * set the IRE type to lookup based on whether 7370 * this is a host route, a default route or just a prefix. 7371 * 7372 * If an ipif_arg was passed in, then the lookup is based on an 7373 * interface index so MATCH_IRE_ILL is added to match_flags. 7374 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7375 * set as the route being looked up is not a traditional 7376 * interface route. 7377 */ 7378 match_flags &= ~MATCH_IRE_IPIF; 7379 match_flags |= MATCH_IRE_GW; 7380 if (ipif_arg != NULL) 7381 match_flags |= MATCH_IRE_ILL; 7382 if (mask == IP_HOST_MASK) 7383 type = IRE_HOST; 7384 else if (mask == 0) 7385 type = IRE_DEFAULT; 7386 else 7387 type = IRE_PREFIX; 7388 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7389 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7390 } 7391 7392 if (ipif_refheld) 7393 ipif_refrele(ipif); 7394 7395 /* ipif is not refheld anymore */ 7396 if (ire == NULL) 7397 return (ESRCH); 7398 7399 if (ire->ire_flags & RTF_MULTIRT) { 7400 /* 7401 * Invoke the CGTP (multirouting) filtering module 7402 * to remove the dst address from the filtering database. 7403 * Packets coming from that address will no longer be 7404 * filtered to remove duplicates. 7405 */ 7406 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7407 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7408 ipst->ips_netstack->netstack_stackid, 7409 ire->ire_addr, ire->ire_gateway_addr); 7410 } 7411 ip_cgtp_bcast_delete(ire, ipst); 7412 } 7413 7414 ipif = ire->ire_ipif; 7415 if (ipif != NULL) 7416 ipif_remove_ire(ipif, ire); 7417 if (ioctl_msg) 7418 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7419 ire_delete(ire); 7420 ire_refrele(ire); 7421 return (err); 7422 } 7423 7424 /* 7425 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7426 */ 7427 /* ARGSUSED */ 7428 int 7429 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7430 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7431 { 7432 ipaddr_t dst_addr; 7433 ipaddr_t gw_addr; 7434 ipaddr_t mask; 7435 int error = 0; 7436 mblk_t *mp1; 7437 struct rtentry *rt; 7438 ipif_t *ipif = NULL; 7439 ip_stack_t *ipst; 7440 7441 ASSERT(q->q_next == NULL); 7442 ipst = CONNQ_TO_IPST(q); 7443 7444 ip1dbg(("ip_siocaddrt:")); 7445 /* Existence of mp1 verified in ip_wput_nondata */ 7446 mp1 = mp->b_cont->b_cont; 7447 rt = (struct rtentry *)mp1->b_rptr; 7448 7449 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7450 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7451 7452 /* 7453 * If the RTF_HOST flag is on, this is a request to assign a gateway 7454 * to a particular host address. In this case, we set the netmask to 7455 * all ones for the particular destination address. Otherwise, 7456 * determine the netmask to be used based on dst_addr and the interfaces 7457 * in use. 7458 */ 7459 if (rt->rt_flags & RTF_HOST) { 7460 mask = IP_HOST_MASK; 7461 } else { 7462 /* 7463 * Note that ip_subnet_mask returns a zero mask in the case of 7464 * default (an all-zeroes address). 7465 */ 7466 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7467 } 7468 7469 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7470 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7471 if (ipif != NULL) 7472 ipif_refrele(ipif); 7473 return (error); 7474 } 7475 7476 /* 7477 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7478 */ 7479 /* ARGSUSED */ 7480 int 7481 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7482 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7483 { 7484 ipaddr_t dst_addr; 7485 ipaddr_t gw_addr; 7486 ipaddr_t mask; 7487 int error; 7488 mblk_t *mp1; 7489 struct rtentry *rt; 7490 ipif_t *ipif = NULL; 7491 ip_stack_t *ipst; 7492 7493 ASSERT(q->q_next == NULL); 7494 ipst = CONNQ_TO_IPST(q); 7495 7496 ip1dbg(("ip_siocdelrt:")); 7497 /* Existence of mp1 verified in ip_wput_nondata */ 7498 mp1 = mp->b_cont->b_cont; 7499 rt = (struct rtentry *)mp1->b_rptr; 7500 7501 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7502 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7503 7504 /* 7505 * If the RTF_HOST flag is on, this is a request to delete a gateway 7506 * to a particular host address. In this case, we set the netmask to 7507 * all ones for the particular destination address. Otherwise, 7508 * determine the netmask to be used based on dst_addr and the interfaces 7509 * in use. 7510 */ 7511 if (rt->rt_flags & RTF_HOST) { 7512 mask = IP_HOST_MASK; 7513 } else { 7514 /* 7515 * Note that ip_subnet_mask returns a zero mask in the case of 7516 * default (an all-zeroes address). 7517 */ 7518 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7519 } 7520 7521 error = ip_rt_delete(dst_addr, mask, gw_addr, 7522 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7523 mp, ip_process_ioctl, ipst); 7524 if (ipif != NULL) 7525 ipif_refrele(ipif); 7526 return (error); 7527 } 7528 7529 /* 7530 * Enqueue the mp onto the ipsq, chained by b_next. 7531 * b_prev stores the function to be executed later, and b_queue the queue 7532 * where this mp originated. 7533 */ 7534 void 7535 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7536 ill_t *pending_ill) 7537 { 7538 conn_t *connp = NULL; 7539 7540 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7541 ASSERT(func != NULL); 7542 7543 mp->b_queue = q; 7544 mp->b_prev = (void *)func; 7545 mp->b_next = NULL; 7546 7547 switch (type) { 7548 case CUR_OP: 7549 if (ipsq->ipsq_mptail != NULL) { 7550 ASSERT(ipsq->ipsq_mphead != NULL); 7551 ipsq->ipsq_mptail->b_next = mp; 7552 } else { 7553 ASSERT(ipsq->ipsq_mphead == NULL); 7554 ipsq->ipsq_mphead = mp; 7555 } 7556 ipsq->ipsq_mptail = mp; 7557 break; 7558 7559 case NEW_OP: 7560 if (ipsq->ipsq_xopq_mptail != NULL) { 7561 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7562 ipsq->ipsq_xopq_mptail->b_next = mp; 7563 } else { 7564 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7565 ipsq->ipsq_xopq_mphead = mp; 7566 } 7567 ipsq->ipsq_xopq_mptail = mp; 7568 break; 7569 default: 7570 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7571 } 7572 7573 if (CONN_Q(q) && pending_ill != NULL) { 7574 connp = Q_TO_CONN(q); 7575 7576 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7577 connp->conn_oper_pending_ill = pending_ill; 7578 } 7579 } 7580 7581 /* 7582 * Return the mp at the head of the ipsq. After emptying the ipsq 7583 * look at the next ioctl, if this ioctl is complete. Otherwise 7584 * return, we will resume when we complete the current ioctl. 7585 * The current ioctl will wait till it gets a response from the 7586 * driver below. 7587 */ 7588 static mblk_t * 7589 ipsq_dq(ipsq_t *ipsq) 7590 { 7591 mblk_t *mp; 7592 7593 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7594 7595 mp = ipsq->ipsq_mphead; 7596 if (mp != NULL) { 7597 ipsq->ipsq_mphead = mp->b_next; 7598 if (ipsq->ipsq_mphead == NULL) 7599 ipsq->ipsq_mptail = NULL; 7600 mp->b_next = NULL; 7601 return (mp); 7602 } 7603 if (ipsq->ipsq_current_ipif != NULL) 7604 return (NULL); 7605 mp = ipsq->ipsq_xopq_mphead; 7606 if (mp != NULL) { 7607 ipsq->ipsq_xopq_mphead = mp->b_next; 7608 if (ipsq->ipsq_xopq_mphead == NULL) 7609 ipsq->ipsq_xopq_mptail = NULL; 7610 mp->b_next = NULL; 7611 return (mp); 7612 } 7613 return (NULL); 7614 } 7615 7616 /* 7617 * Enter the ipsq corresponding to ill, by waiting synchronously till 7618 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7619 * will have to drain completely before ipsq_enter returns success. 7620 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7621 * and the ipsq_exit logic will start the next enqueued ioctl after 7622 * completion of the current ioctl. If 'force' is used, we don't wait 7623 * for the enqueued ioctls. This is needed when a conn_close wants to 7624 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7625 * of an ill can also use this option. But we dont' use it currently. 7626 */ 7627 #define ENTER_SQ_WAIT_TICKS 100 7628 boolean_t 7629 ipsq_enter(ill_t *ill, boolean_t force) 7630 { 7631 ipsq_t *ipsq; 7632 boolean_t waited_enough = B_FALSE; 7633 7634 /* 7635 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7636 * Since the <ill-ipsq> assocs could change while we wait for the 7637 * writer, it is easier to wait on a fixed global rather than try to 7638 * cv_wait on a changing ipsq. 7639 */ 7640 mutex_enter(&ill->ill_lock); 7641 for (;;) { 7642 if (ill->ill_state_flags & ILL_CONDEMNED) { 7643 mutex_exit(&ill->ill_lock); 7644 return (B_FALSE); 7645 } 7646 7647 ipsq = ill->ill_phyint->phyint_ipsq; 7648 mutex_enter(&ipsq->ipsq_lock); 7649 if (ipsq->ipsq_writer == NULL && 7650 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7651 break; 7652 } else if (ipsq->ipsq_writer != NULL) { 7653 mutex_exit(&ipsq->ipsq_lock); 7654 cv_wait(&ill->ill_cv, &ill->ill_lock); 7655 } else { 7656 mutex_exit(&ipsq->ipsq_lock); 7657 if (force) { 7658 (void) cv_timedwait(&ill->ill_cv, 7659 &ill->ill_lock, 7660 lbolt + ENTER_SQ_WAIT_TICKS); 7661 waited_enough = B_TRUE; 7662 continue; 7663 } else { 7664 cv_wait(&ill->ill_cv, &ill->ill_lock); 7665 } 7666 } 7667 } 7668 7669 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7670 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7671 ipsq->ipsq_writer = curthread; 7672 ipsq->ipsq_reentry_cnt++; 7673 #ifdef DEBUG 7674 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7675 #endif 7676 mutex_exit(&ipsq->ipsq_lock); 7677 mutex_exit(&ill->ill_lock); 7678 return (B_TRUE); 7679 } 7680 7681 /* 7682 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7683 * certain critical operations like plumbing (i.e. most set ioctls), 7684 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7685 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7686 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7687 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7688 * threads executing in the ipsq. Responses from the driver pertain to the 7689 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7690 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7691 * 7692 * If a thread does not want to reenter the ipsq when it is already writer, 7693 * it must make sure that the specified reentry point to be called later 7694 * when the ipsq is empty, nor any code path starting from the specified reentry 7695 * point must never ever try to enter the ipsq again. Otherwise it can lead 7696 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7697 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7698 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7699 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7700 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7701 * ioctl if the current ioctl has completed. If the current ioctl is still 7702 * in progress it simply returns. The current ioctl could be waiting for 7703 * a response from another module (arp_ or the driver or could be waiting for 7704 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7705 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7706 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7707 * ipsq_current_ipif is clear which happens only on ioctl completion. 7708 */ 7709 7710 /* 7711 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7712 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7713 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7714 * completion. 7715 */ 7716 ipsq_t * 7717 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7718 ipsq_func_t func, int type, boolean_t reentry_ok) 7719 { 7720 ipsq_t *ipsq; 7721 7722 /* Only 1 of ipif or ill can be specified */ 7723 ASSERT((ipif != NULL) ^ (ill != NULL)); 7724 if (ipif != NULL) 7725 ill = ipif->ipif_ill; 7726 7727 /* 7728 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7729 * ipsq of an ill can't change when ill_lock is held. 7730 */ 7731 GRAB_CONN_LOCK(q); 7732 mutex_enter(&ill->ill_lock); 7733 ipsq = ill->ill_phyint->phyint_ipsq; 7734 mutex_enter(&ipsq->ipsq_lock); 7735 7736 /* 7737 * 1. Enter the ipsq if we are already writer and reentry is ok. 7738 * (Note: If the caller does not specify reentry_ok then neither 7739 * 'func' nor any of its callees must ever attempt to enter the ipsq 7740 * again. Otherwise it can lead to an infinite loop 7741 * 2. Enter the ipsq if there is no current writer and this attempted 7742 * entry is part of the current ioctl or operation 7743 * 3. Enter the ipsq if there is no current writer and this is a new 7744 * ioctl (or operation) and the ioctl (or operation) queue is 7745 * empty and there is no ioctl (or operation) currently in progress 7746 */ 7747 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7748 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7749 ipsq->ipsq_current_ipif == NULL))) || 7750 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7751 /* Success. */ 7752 ipsq->ipsq_reentry_cnt++; 7753 ipsq->ipsq_writer = curthread; 7754 mutex_exit(&ipsq->ipsq_lock); 7755 mutex_exit(&ill->ill_lock); 7756 RELEASE_CONN_LOCK(q); 7757 #ifdef DEBUG 7758 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7759 IPSQ_STACK_DEPTH); 7760 #endif 7761 return (ipsq); 7762 } 7763 7764 ipsq_enq(ipsq, q, mp, func, type, ill); 7765 7766 mutex_exit(&ipsq->ipsq_lock); 7767 mutex_exit(&ill->ill_lock); 7768 RELEASE_CONN_LOCK(q); 7769 return (NULL); 7770 } 7771 7772 /* 7773 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7774 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7775 * cannot be entered, the mp is queued for completion. 7776 */ 7777 void 7778 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7779 boolean_t reentry_ok) 7780 { 7781 ipsq_t *ipsq; 7782 7783 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7784 7785 /* 7786 * Drop the caller's refhold on the ill. This is safe since we either 7787 * entered the IPSQ (and thus are exclusive), or failed to enter the 7788 * IPSQ, in which case we return without accessing ill anymore. This 7789 * is needed because func needs to see the correct refcount. 7790 * e.g. removeif can work only then. 7791 */ 7792 ill_refrele(ill); 7793 if (ipsq != NULL) { 7794 (*func)(ipsq, q, mp, NULL); 7795 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7796 } 7797 } 7798 7799 /* 7800 * If there are more than ILL_GRP_CNT ills in a group, 7801 * we use kmem alloc'd buffers, else use the stack 7802 */ 7803 #define ILL_GRP_CNT 14 7804 /* 7805 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7806 * Called by a thread that is currently exclusive on this ipsq. 7807 */ 7808 void 7809 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7810 { 7811 queue_t *q; 7812 mblk_t *mp; 7813 ipsq_func_t func; 7814 int next; 7815 ill_t **ill_list = NULL; 7816 size_t ill_list_size = 0; 7817 int cnt = 0; 7818 boolean_t need_ipsq_free = B_FALSE; 7819 ip_stack_t *ipst = ipsq->ipsq_ipst; 7820 7821 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7822 mutex_enter(&ipsq->ipsq_lock); 7823 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7824 if (ipsq->ipsq_reentry_cnt != 1) { 7825 ipsq->ipsq_reentry_cnt--; 7826 mutex_exit(&ipsq->ipsq_lock); 7827 return; 7828 } 7829 7830 mp = ipsq_dq(ipsq); 7831 while (mp != NULL) { 7832 again: 7833 mutex_exit(&ipsq->ipsq_lock); 7834 func = (ipsq_func_t)mp->b_prev; 7835 q = (queue_t *)mp->b_queue; 7836 mp->b_prev = NULL; 7837 mp->b_queue = NULL; 7838 7839 /* 7840 * If 'q' is an conn queue, it is valid, since we did a 7841 * a refhold on the connp, at the start of the ioctl. 7842 * If 'q' is an ill queue, it is valid, since close of an 7843 * ill will clean up the 'ipsq'. 7844 */ 7845 (*func)(ipsq, q, mp, NULL); 7846 7847 mutex_enter(&ipsq->ipsq_lock); 7848 mp = ipsq_dq(ipsq); 7849 } 7850 7851 mutex_exit(&ipsq->ipsq_lock); 7852 7853 /* 7854 * Need to grab the locks in the right order. Need to 7855 * atomically check (under ipsq_lock) that there are no 7856 * messages before relinquishing the ipsq. Also need to 7857 * atomically wakeup waiters on ill_cv while holding ill_lock. 7858 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7859 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7860 * to grab ill_g_lock as writer. 7861 */ 7862 rw_enter(&ipst->ips_ill_g_lock, 7863 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7864 7865 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7866 if (ipsq->ipsq_refs != 0) { 7867 /* At most 2 ills v4/v6 per phyint */ 7868 cnt = ipsq->ipsq_refs << 1; 7869 ill_list_size = cnt * sizeof (ill_t *); 7870 /* 7871 * If memory allocation fails, we will do the split 7872 * the next time ipsq_exit is called for whatever reason. 7873 * As long as the ipsq_split flag is set the need to 7874 * split is remembered. 7875 */ 7876 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7877 if (ill_list != NULL) 7878 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7879 } 7880 mutex_enter(&ipsq->ipsq_lock); 7881 mp = ipsq_dq(ipsq); 7882 if (mp != NULL) { 7883 /* oops, some message has landed up, we can't get out */ 7884 if (ill_list != NULL) 7885 ill_unlock_ills(ill_list, cnt); 7886 rw_exit(&ipst->ips_ill_g_lock); 7887 if (ill_list != NULL) 7888 kmem_free(ill_list, ill_list_size); 7889 ill_list = NULL; 7890 ill_list_size = 0; 7891 cnt = 0; 7892 goto again; 7893 } 7894 7895 /* 7896 * Split only if no ioctl is pending and if memory alloc succeeded 7897 * above. 7898 */ 7899 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7900 ill_list != NULL) { 7901 /* 7902 * No new ill can join this ipsq since we are holding the 7903 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7904 * ipsq. ill_split_ipsq may fail due to memory shortage. 7905 * If so we will retry on the next ipsq_exit. 7906 */ 7907 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7908 } 7909 7910 /* 7911 * We are holding the ipsq lock, hence no new messages can 7912 * land up on the ipsq, and there are no messages currently. 7913 * Now safe to get out. Wake up waiters and relinquish ipsq 7914 * atomically while holding ill locks. 7915 */ 7916 ipsq->ipsq_writer = NULL; 7917 ipsq->ipsq_reentry_cnt--; 7918 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7919 #ifdef DEBUG 7920 ipsq->ipsq_depth = 0; 7921 #endif 7922 mutex_exit(&ipsq->ipsq_lock); 7923 /* 7924 * For IPMP this should wake up all ills in this ipsq. 7925 * We need to hold the ill_lock while waking up waiters to 7926 * avoid missed wakeups. But there is no need to acquire all 7927 * the ill locks and then wakeup. If we have not acquired all 7928 * the locks (due to memory failure above) ill_signal_ipsq_ills 7929 * wakes up ills one at a time after getting the right ill_lock 7930 */ 7931 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7932 if (ill_list != NULL) 7933 ill_unlock_ills(ill_list, cnt); 7934 if (ipsq->ipsq_refs == 0) 7935 need_ipsq_free = B_TRUE; 7936 rw_exit(&ipst->ips_ill_g_lock); 7937 if (ill_list != 0) 7938 kmem_free(ill_list, ill_list_size); 7939 7940 if (need_ipsq_free) { 7941 /* 7942 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7943 * looked up. ipsq can be looked up only thru ill or phyint 7944 * and there are no ills/phyint on this ipsq. 7945 */ 7946 ipsq_delete(ipsq); 7947 } 7948 /* 7949 * Now start any igmp or mld timers that could not be started 7950 * while inside the ipsq. The timers can't be started while inside 7951 * the ipsq, since igmp_start_timers may need to call untimeout() 7952 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7953 * there could be a deadlock since the timeout handlers 7954 * mld_timeout_handler / igmp_timeout_handler also synchronously 7955 * wait in ipsq_enter() trying to get the ipsq. 7956 * 7957 * However there is one exception to the above. If this thread is 7958 * itself the igmp/mld timeout handler thread, then we don't want 7959 * to start any new timer until the current handler is done. The 7960 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7961 * all others pass B_TRUE. 7962 */ 7963 if (start_igmp_timer) { 7964 mutex_enter(&ipst->ips_igmp_timer_lock); 7965 next = ipst->ips_igmp_deferred_next; 7966 ipst->ips_igmp_deferred_next = INFINITY; 7967 mutex_exit(&ipst->ips_igmp_timer_lock); 7968 7969 if (next != INFINITY) 7970 igmp_start_timers(next, ipst); 7971 } 7972 7973 if (start_mld_timer) { 7974 mutex_enter(&ipst->ips_mld_timer_lock); 7975 next = ipst->ips_mld_deferred_next; 7976 ipst->ips_mld_deferred_next = INFINITY; 7977 mutex_exit(&ipst->ips_mld_timer_lock); 7978 7979 if (next != INFINITY) 7980 mld_start_timers(next, ipst); 7981 } 7982 } 7983 7984 /* 7985 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7986 * and `ioccmd'. 7987 */ 7988 void 7989 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7990 { 7991 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7992 7993 mutex_enter(&ipsq->ipsq_lock); 7994 ASSERT(ipsq->ipsq_current_ipif == NULL); 7995 ASSERT(ipsq->ipsq_current_ioctl == 0); 7996 ipsq->ipsq_current_ipif = ipif; 7997 ipsq->ipsq_current_ioctl = ioccmd; 7998 mutex_exit(&ipsq->ipsq_lock); 7999 } 8000 8001 /* 8002 * Finish the current exclusive operation on `ipsq'. Note that other 8003 * operations will not be able to proceed until an ipsq_exit() is done. 8004 */ 8005 void 8006 ipsq_current_finish(ipsq_t *ipsq) 8007 { 8008 ipif_t *ipif = ipsq->ipsq_current_ipif; 8009 8010 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8011 8012 /* 8013 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8014 * (but we're careful to never set IPIF_CHANGING in that case). 8015 */ 8016 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8017 mutex_enter(&ipif->ipif_ill->ill_lock); 8018 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8019 8020 /* Send any queued event */ 8021 ill_nic_info_dispatch(ipif->ipif_ill); 8022 mutex_exit(&ipif->ipif_ill->ill_lock); 8023 } 8024 8025 mutex_enter(&ipsq->ipsq_lock); 8026 ASSERT(ipsq->ipsq_current_ipif != NULL); 8027 ipsq->ipsq_current_ipif = NULL; 8028 ipsq->ipsq_current_ioctl = 0; 8029 mutex_exit(&ipsq->ipsq_lock); 8030 } 8031 8032 /* 8033 * The ill is closing. Flush all messages on the ipsq that originated 8034 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8035 * for this ill since ipsq_enter could not have entered until then. 8036 * New messages can't be queued since the CONDEMNED flag is set. 8037 */ 8038 static void 8039 ipsq_flush(ill_t *ill) 8040 { 8041 queue_t *q; 8042 mblk_t *prev; 8043 mblk_t *mp; 8044 mblk_t *mp_next; 8045 ipsq_t *ipsq; 8046 8047 ASSERT(IAM_WRITER_ILL(ill)); 8048 ipsq = ill->ill_phyint->phyint_ipsq; 8049 /* 8050 * Flush any messages sent up by the driver. 8051 */ 8052 mutex_enter(&ipsq->ipsq_lock); 8053 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8054 mp_next = mp->b_next; 8055 q = mp->b_queue; 8056 if (q == ill->ill_rq || q == ill->ill_wq) { 8057 /* Remove the mp from the ipsq */ 8058 if (prev == NULL) 8059 ipsq->ipsq_mphead = mp->b_next; 8060 else 8061 prev->b_next = mp->b_next; 8062 if (ipsq->ipsq_mptail == mp) { 8063 ASSERT(mp_next == NULL); 8064 ipsq->ipsq_mptail = prev; 8065 } 8066 inet_freemsg(mp); 8067 } else { 8068 prev = mp; 8069 } 8070 } 8071 mutex_exit(&ipsq->ipsq_lock); 8072 (void) ipsq_pending_mp_cleanup(ill, NULL); 8073 ipsq_xopq_mp_cleanup(ill, NULL); 8074 ill_pending_mp_cleanup(ill); 8075 } 8076 8077 /* ARGSUSED */ 8078 int 8079 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8080 ip_ioctl_cmd_t *ipip, void *ifreq) 8081 { 8082 ill_t *ill; 8083 struct lifreq *lifr = (struct lifreq *)ifreq; 8084 boolean_t isv6; 8085 conn_t *connp; 8086 ip_stack_t *ipst; 8087 8088 connp = Q_TO_CONN(q); 8089 ipst = connp->conn_netstack->netstack_ip; 8090 isv6 = connp->conn_af_isv6; 8091 /* 8092 * Set original index. 8093 * Failover and failback move logical interfaces 8094 * from one physical interface to another. The 8095 * original index indicates the parent of a logical 8096 * interface, in other words, the physical interface 8097 * the logical interface will be moved back to on 8098 * failback. 8099 */ 8100 8101 /* 8102 * Don't allow the original index to be changed 8103 * for non-failover addresses, autoconfigured 8104 * addresses, or IPv6 link local addresses. 8105 */ 8106 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8107 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8108 return (EINVAL); 8109 } 8110 /* 8111 * The new original index must be in use by some 8112 * physical interface. 8113 */ 8114 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8115 NULL, NULL, ipst); 8116 if (ill == NULL) 8117 return (ENXIO); 8118 ill_refrele(ill); 8119 8120 ipif->ipif_orig_ifindex = lifr->lifr_index; 8121 /* 8122 * When this ipif gets failed back, don't 8123 * preserve the original id, as it is no 8124 * longer applicable. 8125 */ 8126 ipif->ipif_orig_ipifid = 0; 8127 /* 8128 * For IPv4, change the original index of any 8129 * multicast addresses associated with the 8130 * ipif to the new value. 8131 */ 8132 if (!isv6) { 8133 ilm_t *ilm; 8134 8135 mutex_enter(&ipif->ipif_ill->ill_lock); 8136 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8137 ilm = ilm->ilm_next) { 8138 if (ilm->ilm_ipif == ipif) { 8139 ilm->ilm_orig_ifindex = lifr->lifr_index; 8140 } 8141 } 8142 mutex_exit(&ipif->ipif_ill->ill_lock); 8143 } 8144 return (0); 8145 } 8146 8147 /* ARGSUSED */ 8148 int 8149 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8150 ip_ioctl_cmd_t *ipip, void *ifreq) 8151 { 8152 struct lifreq *lifr = (struct lifreq *)ifreq; 8153 8154 /* 8155 * Get the original interface index i.e the one 8156 * before FAILOVER if it ever happened. 8157 */ 8158 lifr->lifr_index = ipif->ipif_orig_ifindex; 8159 return (0); 8160 } 8161 8162 /* 8163 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8164 * refhold and return the associated ipif 8165 */ 8166 /* ARGSUSED */ 8167 int 8168 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8169 cmd_info_t *ci, ipsq_func_t func) 8170 { 8171 boolean_t exists; 8172 struct iftun_req *ta; 8173 ipif_t *ipif; 8174 ill_t *ill; 8175 boolean_t isv6; 8176 mblk_t *mp1; 8177 int error; 8178 conn_t *connp; 8179 ip_stack_t *ipst; 8180 8181 /* Existence verified in ip_wput_nondata */ 8182 mp1 = mp->b_cont->b_cont; 8183 ta = (struct iftun_req *)mp1->b_rptr; 8184 /* 8185 * Null terminate the string to protect against buffer 8186 * overrun. String was generated by user code and may not 8187 * be trusted. 8188 */ 8189 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8190 8191 connp = Q_TO_CONN(q); 8192 isv6 = connp->conn_af_isv6; 8193 ipst = connp->conn_netstack->netstack_ip; 8194 8195 /* Disallows implicit create */ 8196 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8197 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8198 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8199 if (ipif == NULL) 8200 return (error); 8201 8202 if (ipif->ipif_id != 0) { 8203 /* 8204 * We really don't want to set/get tunnel parameters 8205 * on virtual tunnel interfaces. Only allow the 8206 * base tunnel to do these. 8207 */ 8208 ipif_refrele(ipif); 8209 return (EINVAL); 8210 } 8211 8212 /* 8213 * Send down to tunnel mod for ioctl processing. 8214 * Will finish ioctl in ip_rput_other(). 8215 */ 8216 ill = ipif->ipif_ill; 8217 if (ill->ill_net_type == IRE_LOOPBACK) { 8218 ipif_refrele(ipif); 8219 return (EOPNOTSUPP); 8220 } 8221 8222 if (ill->ill_wq == NULL) { 8223 ipif_refrele(ipif); 8224 return (ENXIO); 8225 } 8226 /* 8227 * Mark the ioctl as coming from an IPv6 interface for 8228 * tun's convenience. 8229 */ 8230 if (ill->ill_isv6) 8231 ta->ifta_flags |= 0x80000000; 8232 ci->ci_ipif = ipif; 8233 return (0); 8234 } 8235 8236 /* 8237 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8238 * and return the associated ipif. 8239 * Return value: 8240 * Non zero: An error has occurred. ci may not be filled out. 8241 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8242 * a held ipif in ci.ci_ipif. 8243 */ 8244 int 8245 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8246 cmd_info_t *ci, ipsq_func_t func) 8247 { 8248 sin_t *sin; 8249 sin6_t *sin6; 8250 char *name; 8251 struct ifreq *ifr; 8252 struct lifreq *lifr; 8253 ipif_t *ipif = NULL; 8254 ill_t *ill; 8255 conn_t *connp; 8256 boolean_t isv6; 8257 boolean_t exists; 8258 int err; 8259 mblk_t *mp1; 8260 zoneid_t zoneid; 8261 ip_stack_t *ipst; 8262 8263 if (q->q_next != NULL) { 8264 ill = (ill_t *)q->q_ptr; 8265 isv6 = ill->ill_isv6; 8266 connp = NULL; 8267 zoneid = ALL_ZONES; 8268 ipst = ill->ill_ipst; 8269 } else { 8270 ill = NULL; 8271 connp = Q_TO_CONN(q); 8272 isv6 = connp->conn_af_isv6; 8273 zoneid = connp->conn_zoneid; 8274 if (zoneid == GLOBAL_ZONEID) { 8275 /* global zone can access ipifs in all zones */ 8276 zoneid = ALL_ZONES; 8277 } 8278 ipst = connp->conn_netstack->netstack_ip; 8279 } 8280 8281 /* Has been checked in ip_wput_nondata */ 8282 mp1 = mp->b_cont->b_cont; 8283 8284 if (ipip->ipi_cmd_type == IF_CMD) { 8285 /* This a old style SIOC[GS]IF* command */ 8286 ifr = (struct ifreq *)mp1->b_rptr; 8287 /* 8288 * Null terminate the string to protect against buffer 8289 * overrun. String was generated by user code and may not 8290 * be trusted. 8291 */ 8292 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8293 sin = (sin_t *)&ifr->ifr_addr; 8294 name = ifr->ifr_name; 8295 ci->ci_sin = sin; 8296 ci->ci_sin6 = NULL; 8297 ci->ci_lifr = (struct lifreq *)ifr; 8298 } else { 8299 /* This a new style SIOC[GS]LIF* command */ 8300 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8301 lifr = (struct lifreq *)mp1->b_rptr; 8302 /* 8303 * Null terminate the string to protect against buffer 8304 * overrun. String was generated by user code and may not 8305 * be trusted. 8306 */ 8307 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8308 name = lifr->lifr_name; 8309 sin = (sin_t *)&lifr->lifr_addr; 8310 sin6 = (sin6_t *)&lifr->lifr_addr; 8311 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8312 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8313 LIFNAMSIZ); 8314 } 8315 ci->ci_sin = sin; 8316 ci->ci_sin6 = sin6; 8317 ci->ci_lifr = lifr; 8318 } 8319 8320 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8321 /* 8322 * The ioctl will be failed if the ioctl comes down 8323 * an conn stream 8324 */ 8325 if (ill == NULL) { 8326 /* 8327 * Not an ill queue, return EINVAL same as the 8328 * old error code. 8329 */ 8330 return (ENXIO); 8331 } 8332 ipif = ill->ill_ipif; 8333 ipif_refhold(ipif); 8334 } else { 8335 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8336 &exists, isv6, zoneid, 8337 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8338 ipst); 8339 if (ipif == NULL) { 8340 if (err == EINPROGRESS) 8341 return (err); 8342 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8343 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8344 /* 8345 * Need to try both v4 and v6 since this 8346 * ioctl can come down either v4 or v6 8347 * socket. The lifreq.lifr_family passed 8348 * down by this ioctl is AF_UNSPEC. 8349 */ 8350 ipif = ipif_lookup_on_name(name, 8351 mi_strlen(name), B_FALSE, &exists, !isv6, 8352 zoneid, (connp == NULL) ? q : 8353 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8354 if (err == EINPROGRESS) 8355 return (err); 8356 } 8357 err = 0; /* Ensure we don't use it below */ 8358 } 8359 } 8360 8361 /* 8362 * Old style [GS]IFCMD does not admit IPv6 ipif 8363 */ 8364 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8365 ipif_refrele(ipif); 8366 return (ENXIO); 8367 } 8368 8369 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8370 name[0] == '\0') { 8371 /* 8372 * Handle a or a SIOC?IF* with a null name 8373 * during plumb (on the ill queue before the I_PLINK). 8374 */ 8375 ipif = ill->ill_ipif; 8376 ipif_refhold(ipif); 8377 } 8378 8379 if (ipif == NULL) 8380 return (ENXIO); 8381 8382 /* 8383 * Allow only GET operations if this ipif has been created 8384 * temporarily due to a MOVE operation. 8385 */ 8386 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8387 ipif_refrele(ipif); 8388 return (EINVAL); 8389 } 8390 8391 ci->ci_ipif = ipif; 8392 return (0); 8393 } 8394 8395 /* 8396 * Return the total number of ipifs. 8397 */ 8398 static uint_t 8399 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8400 { 8401 uint_t numifs = 0; 8402 ill_t *ill; 8403 ill_walk_context_t ctx; 8404 ipif_t *ipif; 8405 8406 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8407 ill = ILL_START_WALK_V4(&ctx, ipst); 8408 8409 while (ill != NULL) { 8410 for (ipif = ill->ill_ipif; ipif != NULL; 8411 ipif = ipif->ipif_next) { 8412 if (ipif->ipif_zoneid == zoneid || 8413 ipif->ipif_zoneid == ALL_ZONES) 8414 numifs++; 8415 } 8416 ill = ill_next(&ctx, ill); 8417 } 8418 rw_exit(&ipst->ips_ill_g_lock); 8419 return (numifs); 8420 } 8421 8422 /* 8423 * Return the total number of ipifs. 8424 */ 8425 static uint_t 8426 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8427 { 8428 uint_t numifs = 0; 8429 ill_t *ill; 8430 ipif_t *ipif; 8431 ill_walk_context_t ctx; 8432 8433 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8434 8435 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8436 if (family == AF_INET) 8437 ill = ILL_START_WALK_V4(&ctx, ipst); 8438 else if (family == AF_INET6) 8439 ill = ILL_START_WALK_V6(&ctx, ipst); 8440 else 8441 ill = ILL_START_WALK_ALL(&ctx, ipst); 8442 8443 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8444 for (ipif = ill->ill_ipif; ipif != NULL; 8445 ipif = ipif->ipif_next) { 8446 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8447 !(lifn_flags & LIFC_NOXMIT)) 8448 continue; 8449 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8450 !(lifn_flags & LIFC_TEMPORARY)) 8451 continue; 8452 if (((ipif->ipif_flags & 8453 (IPIF_NOXMIT|IPIF_NOLOCAL| 8454 IPIF_DEPRECATED)) || 8455 IS_LOOPBACK(ill) || 8456 !(ipif->ipif_flags & IPIF_UP)) && 8457 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8458 continue; 8459 8460 if (zoneid != ipif->ipif_zoneid && 8461 ipif->ipif_zoneid != ALL_ZONES && 8462 (zoneid != GLOBAL_ZONEID || 8463 !(lifn_flags & LIFC_ALLZONES))) 8464 continue; 8465 8466 numifs++; 8467 } 8468 } 8469 rw_exit(&ipst->ips_ill_g_lock); 8470 return (numifs); 8471 } 8472 8473 uint_t 8474 ip_get_lifsrcofnum(ill_t *ill) 8475 { 8476 uint_t numifs = 0; 8477 ill_t *ill_head = ill; 8478 ip_stack_t *ipst = ill->ill_ipst; 8479 8480 /* 8481 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8482 * other thread may be trying to relink the ILLs in this usesrc group 8483 * and adjusting the ill_usesrc_grp_next pointers 8484 */ 8485 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8486 if ((ill->ill_usesrc_ifindex == 0) && 8487 (ill->ill_usesrc_grp_next != NULL)) { 8488 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8489 ill = ill->ill_usesrc_grp_next) 8490 numifs++; 8491 } 8492 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8493 8494 return (numifs); 8495 } 8496 8497 /* Null values are passed in for ipif, sin, and ifreq */ 8498 /* ARGSUSED */ 8499 int 8500 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8501 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8502 { 8503 int *nump; 8504 conn_t *connp = Q_TO_CONN(q); 8505 8506 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8507 8508 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8509 nump = (int *)mp->b_cont->b_cont->b_rptr; 8510 8511 *nump = ip_get_numifs(connp->conn_zoneid, 8512 connp->conn_netstack->netstack_ip); 8513 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8514 return (0); 8515 } 8516 8517 /* Null values are passed in for ipif, sin, and ifreq */ 8518 /* ARGSUSED */ 8519 int 8520 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8521 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8522 { 8523 struct lifnum *lifn; 8524 mblk_t *mp1; 8525 conn_t *connp = Q_TO_CONN(q); 8526 8527 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8528 8529 /* Existence checked in ip_wput_nondata */ 8530 mp1 = mp->b_cont->b_cont; 8531 8532 lifn = (struct lifnum *)mp1->b_rptr; 8533 switch (lifn->lifn_family) { 8534 case AF_UNSPEC: 8535 case AF_INET: 8536 case AF_INET6: 8537 break; 8538 default: 8539 return (EAFNOSUPPORT); 8540 } 8541 8542 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8543 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8544 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8545 return (0); 8546 } 8547 8548 /* ARGSUSED */ 8549 int 8550 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8551 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8552 { 8553 STRUCT_HANDLE(ifconf, ifc); 8554 mblk_t *mp1; 8555 struct iocblk *iocp; 8556 struct ifreq *ifr; 8557 ill_walk_context_t ctx; 8558 ill_t *ill; 8559 ipif_t *ipif; 8560 struct sockaddr_in *sin; 8561 int32_t ifclen; 8562 zoneid_t zoneid; 8563 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8564 8565 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8566 8567 ip1dbg(("ip_sioctl_get_ifconf")); 8568 /* Existence verified in ip_wput_nondata */ 8569 mp1 = mp->b_cont->b_cont; 8570 iocp = (struct iocblk *)mp->b_rptr; 8571 zoneid = Q_TO_CONN(q)->conn_zoneid; 8572 8573 /* 8574 * The original SIOCGIFCONF passed in a struct ifconf which specified 8575 * the user buffer address and length into which the list of struct 8576 * ifreqs was to be copied. Since AT&T Streams does not seem to 8577 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8578 * the SIOCGIFCONF operation was redefined to simply provide 8579 * a large output buffer into which we are supposed to jam the ifreq 8580 * array. The same ioctl command code was used, despite the fact that 8581 * both the applications and the kernel code had to change, thus making 8582 * it impossible to support both interfaces. 8583 * 8584 * For reasons not good enough to try to explain, the following 8585 * algorithm is used for deciding what to do with one of these: 8586 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8587 * form with the output buffer coming down as the continuation message. 8588 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8589 * and we have to copy in the ifconf structure to find out how big the 8590 * output buffer is and where to copy out to. Sure no problem... 8591 * 8592 */ 8593 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8594 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8595 int numifs = 0; 8596 size_t ifc_bufsize; 8597 8598 /* 8599 * Must be (better be!) continuation of a TRANSPARENT 8600 * IOCTL. We just copied in the ifconf structure. 8601 */ 8602 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8603 (struct ifconf *)mp1->b_rptr); 8604 8605 /* 8606 * Allocate a buffer to hold requested information. 8607 * 8608 * If ifc_len is larger than what is needed, we only 8609 * allocate what we will use. 8610 * 8611 * If ifc_len is smaller than what is needed, return 8612 * EINVAL. 8613 * 8614 * XXX: the ill_t structure can hava 2 counters, for 8615 * v4 and v6 (not just ill_ipif_up_count) to store the 8616 * number of interfaces for a device, so we don't need 8617 * to count them here... 8618 */ 8619 numifs = ip_get_numifs(zoneid, ipst); 8620 8621 ifclen = STRUCT_FGET(ifc, ifc_len); 8622 ifc_bufsize = numifs * sizeof (struct ifreq); 8623 if (ifc_bufsize > ifclen) { 8624 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8625 /* old behaviour */ 8626 return (EINVAL); 8627 } else { 8628 ifc_bufsize = ifclen; 8629 } 8630 } 8631 8632 mp1 = mi_copyout_alloc(q, mp, 8633 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8634 if (mp1 == NULL) 8635 return (ENOMEM); 8636 8637 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8638 } 8639 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8640 /* 8641 * the SIOCGIFCONF ioctl only knows about 8642 * IPv4 addresses, so don't try to tell 8643 * it about interfaces with IPv6-only 8644 * addresses. (Last parm 'isv6' is B_FALSE) 8645 */ 8646 8647 ifr = (struct ifreq *)mp1->b_rptr; 8648 8649 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8650 ill = ILL_START_WALK_V4(&ctx, ipst); 8651 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8652 for (ipif = ill->ill_ipif; ipif != NULL; 8653 ipif = ipif->ipif_next) { 8654 if (zoneid != ipif->ipif_zoneid && 8655 ipif->ipif_zoneid != ALL_ZONES) 8656 continue; 8657 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8658 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8659 /* old behaviour */ 8660 rw_exit(&ipst->ips_ill_g_lock); 8661 return (EINVAL); 8662 } else { 8663 goto if_copydone; 8664 } 8665 } 8666 ipif_get_name(ipif, ifr->ifr_name, 8667 sizeof (ifr->ifr_name)); 8668 sin = (sin_t *)&ifr->ifr_addr; 8669 *sin = sin_null; 8670 sin->sin_family = AF_INET; 8671 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8672 ifr++; 8673 } 8674 } 8675 if_copydone: 8676 rw_exit(&ipst->ips_ill_g_lock); 8677 mp1->b_wptr = (uchar_t *)ifr; 8678 8679 if (STRUCT_BUF(ifc) != NULL) { 8680 STRUCT_FSET(ifc, ifc_len, 8681 (int)((uchar_t *)ifr - mp1->b_rptr)); 8682 } 8683 return (0); 8684 } 8685 8686 /* 8687 * Get the interfaces using the address hosted on the interface passed in, 8688 * as a source adddress 8689 */ 8690 /* ARGSUSED */ 8691 int 8692 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8693 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8694 { 8695 mblk_t *mp1; 8696 ill_t *ill, *ill_head; 8697 ipif_t *ipif, *orig_ipif; 8698 int numlifs = 0; 8699 size_t lifs_bufsize, lifsmaxlen; 8700 struct lifreq *lifr; 8701 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8702 uint_t ifindex; 8703 zoneid_t zoneid; 8704 int err = 0; 8705 boolean_t isv6 = B_FALSE; 8706 struct sockaddr_in *sin; 8707 struct sockaddr_in6 *sin6; 8708 STRUCT_HANDLE(lifsrcof, lifs); 8709 ip_stack_t *ipst; 8710 8711 ipst = CONNQ_TO_IPST(q); 8712 8713 ASSERT(q->q_next == NULL); 8714 8715 zoneid = Q_TO_CONN(q)->conn_zoneid; 8716 8717 /* Existence verified in ip_wput_nondata */ 8718 mp1 = mp->b_cont->b_cont; 8719 8720 /* 8721 * Must be (better be!) continuation of a TRANSPARENT 8722 * IOCTL. We just copied in the lifsrcof structure. 8723 */ 8724 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8725 (struct lifsrcof *)mp1->b_rptr); 8726 8727 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8728 return (EINVAL); 8729 8730 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8731 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8732 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8733 ip_process_ioctl, &err, ipst); 8734 if (ipif == NULL) { 8735 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8736 ifindex)); 8737 return (err); 8738 } 8739 8740 8741 /* Allocate a buffer to hold requested information */ 8742 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8743 lifs_bufsize = numlifs * sizeof (struct lifreq); 8744 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8745 /* The actual size needed is always returned in lifs_len */ 8746 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8747 8748 /* If the amount we need is more than what is passed in, abort */ 8749 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8750 ipif_refrele(ipif); 8751 return (0); 8752 } 8753 8754 mp1 = mi_copyout_alloc(q, mp, 8755 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8756 if (mp1 == NULL) { 8757 ipif_refrele(ipif); 8758 return (ENOMEM); 8759 } 8760 8761 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8762 bzero(mp1->b_rptr, lifs_bufsize); 8763 8764 lifr = (struct lifreq *)mp1->b_rptr; 8765 8766 ill = ill_head = ipif->ipif_ill; 8767 orig_ipif = ipif; 8768 8769 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8770 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8771 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8772 8773 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8774 for (; (ill != NULL) && (ill != ill_head); 8775 ill = ill->ill_usesrc_grp_next) { 8776 8777 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8778 break; 8779 8780 ipif = ill->ill_ipif; 8781 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8782 if (ipif->ipif_isv6) { 8783 sin6 = (sin6_t *)&lifr->lifr_addr; 8784 *sin6 = sin6_null; 8785 sin6->sin6_family = AF_INET6; 8786 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8787 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8788 &ipif->ipif_v6net_mask); 8789 } else { 8790 sin = (sin_t *)&lifr->lifr_addr; 8791 *sin = sin_null; 8792 sin->sin_family = AF_INET; 8793 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8794 lifr->lifr_addrlen = ip_mask_to_plen( 8795 ipif->ipif_net_mask); 8796 } 8797 lifr++; 8798 } 8799 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8800 rw_exit(&ipst->ips_ill_g_lock); 8801 ipif_refrele(orig_ipif); 8802 mp1->b_wptr = (uchar_t *)lifr; 8803 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8804 8805 return (0); 8806 } 8807 8808 /* ARGSUSED */ 8809 int 8810 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8811 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8812 { 8813 mblk_t *mp1; 8814 int list; 8815 ill_t *ill; 8816 ipif_t *ipif; 8817 int flags; 8818 int numlifs = 0; 8819 size_t lifc_bufsize; 8820 struct lifreq *lifr; 8821 sa_family_t family; 8822 struct sockaddr_in *sin; 8823 struct sockaddr_in6 *sin6; 8824 ill_walk_context_t ctx; 8825 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8826 int32_t lifclen; 8827 zoneid_t zoneid; 8828 STRUCT_HANDLE(lifconf, lifc); 8829 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8830 8831 ip1dbg(("ip_sioctl_get_lifconf")); 8832 8833 ASSERT(q->q_next == NULL); 8834 8835 zoneid = Q_TO_CONN(q)->conn_zoneid; 8836 8837 /* Existence verified in ip_wput_nondata */ 8838 mp1 = mp->b_cont->b_cont; 8839 8840 /* 8841 * An extended version of SIOCGIFCONF that takes an 8842 * additional address family and flags field. 8843 * AF_UNSPEC retrieve both IPv4 and IPv6. 8844 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8845 * interfaces are omitted. 8846 * Similarly, IPIF_TEMPORARY interfaces are omitted 8847 * unless LIFC_TEMPORARY is specified. 8848 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8849 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8850 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8851 * has priority over LIFC_NOXMIT. 8852 */ 8853 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8854 8855 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8856 return (EINVAL); 8857 8858 /* 8859 * Must be (better be!) continuation of a TRANSPARENT 8860 * IOCTL. We just copied in the lifconf structure. 8861 */ 8862 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8863 8864 family = STRUCT_FGET(lifc, lifc_family); 8865 flags = STRUCT_FGET(lifc, lifc_flags); 8866 8867 switch (family) { 8868 case AF_UNSPEC: 8869 /* 8870 * walk all ILL's. 8871 */ 8872 list = MAX_G_HEADS; 8873 break; 8874 case AF_INET: 8875 /* 8876 * walk only IPV4 ILL's. 8877 */ 8878 list = IP_V4_G_HEAD; 8879 break; 8880 case AF_INET6: 8881 /* 8882 * walk only IPV6 ILL's. 8883 */ 8884 list = IP_V6_G_HEAD; 8885 break; 8886 default: 8887 return (EAFNOSUPPORT); 8888 } 8889 8890 /* 8891 * Allocate a buffer to hold requested information. 8892 * 8893 * If lifc_len is larger than what is needed, we only 8894 * allocate what we will use. 8895 * 8896 * If lifc_len is smaller than what is needed, return 8897 * EINVAL. 8898 */ 8899 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8900 lifc_bufsize = numlifs * sizeof (struct lifreq); 8901 lifclen = STRUCT_FGET(lifc, lifc_len); 8902 if (lifc_bufsize > lifclen) { 8903 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8904 return (EINVAL); 8905 else 8906 lifc_bufsize = lifclen; 8907 } 8908 8909 mp1 = mi_copyout_alloc(q, mp, 8910 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8911 if (mp1 == NULL) 8912 return (ENOMEM); 8913 8914 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8915 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8916 8917 lifr = (struct lifreq *)mp1->b_rptr; 8918 8919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8920 ill = ill_first(list, list, &ctx, ipst); 8921 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8922 for (ipif = ill->ill_ipif; ipif != NULL; 8923 ipif = ipif->ipif_next) { 8924 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8925 !(flags & LIFC_NOXMIT)) 8926 continue; 8927 8928 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8929 !(flags & LIFC_TEMPORARY)) 8930 continue; 8931 8932 if (((ipif->ipif_flags & 8933 (IPIF_NOXMIT|IPIF_NOLOCAL| 8934 IPIF_DEPRECATED)) || 8935 IS_LOOPBACK(ill) || 8936 !(ipif->ipif_flags & IPIF_UP)) && 8937 (flags & LIFC_EXTERNAL_SOURCE)) 8938 continue; 8939 8940 if (zoneid != ipif->ipif_zoneid && 8941 ipif->ipif_zoneid != ALL_ZONES && 8942 (zoneid != GLOBAL_ZONEID || 8943 !(flags & LIFC_ALLZONES))) 8944 continue; 8945 8946 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8947 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8948 rw_exit(&ipst->ips_ill_g_lock); 8949 return (EINVAL); 8950 } else { 8951 goto lif_copydone; 8952 } 8953 } 8954 8955 ipif_get_name(ipif, lifr->lifr_name, 8956 sizeof (lifr->lifr_name)); 8957 if (ipif->ipif_isv6) { 8958 sin6 = (sin6_t *)&lifr->lifr_addr; 8959 *sin6 = sin6_null; 8960 sin6->sin6_family = AF_INET6; 8961 sin6->sin6_addr = 8962 ipif->ipif_v6lcl_addr; 8963 lifr->lifr_addrlen = 8964 ip_mask_to_plen_v6( 8965 &ipif->ipif_v6net_mask); 8966 } else { 8967 sin = (sin_t *)&lifr->lifr_addr; 8968 *sin = sin_null; 8969 sin->sin_family = AF_INET; 8970 sin->sin_addr.s_addr = 8971 ipif->ipif_lcl_addr; 8972 lifr->lifr_addrlen = 8973 ip_mask_to_plen( 8974 ipif->ipif_net_mask); 8975 } 8976 lifr++; 8977 } 8978 } 8979 lif_copydone: 8980 rw_exit(&ipst->ips_ill_g_lock); 8981 8982 mp1->b_wptr = (uchar_t *)lifr; 8983 if (STRUCT_BUF(lifc) != NULL) { 8984 STRUCT_FSET(lifc, lifc_len, 8985 (int)((uchar_t *)lifr - mp1->b_rptr)); 8986 } 8987 return (0); 8988 } 8989 8990 /* ARGSUSED */ 8991 int 8992 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8993 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8994 { 8995 ip_stack_t *ipst; 8996 8997 if (q->q_next == NULL) 8998 ipst = CONNQ_TO_IPST(q); 8999 else 9000 ipst = ILLQ_TO_IPST(q); 9001 9002 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9003 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9004 return (0); 9005 } 9006 9007 static void 9008 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9009 { 9010 ip6_asp_t *table; 9011 size_t table_size; 9012 mblk_t *data_mp; 9013 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9014 ip_stack_t *ipst; 9015 9016 if (q->q_next == NULL) 9017 ipst = CONNQ_TO_IPST(q); 9018 else 9019 ipst = ILLQ_TO_IPST(q); 9020 9021 /* These two ioctls are I_STR only */ 9022 if (iocp->ioc_count == TRANSPARENT) { 9023 miocnak(q, mp, 0, EINVAL); 9024 return; 9025 } 9026 9027 data_mp = mp->b_cont; 9028 if (data_mp == NULL) { 9029 /* The user passed us a NULL argument */ 9030 table = NULL; 9031 table_size = iocp->ioc_count; 9032 } else { 9033 /* 9034 * The user provided a table. The stream head 9035 * may have copied in the user data in chunks, 9036 * so make sure everything is pulled up 9037 * properly. 9038 */ 9039 if (MBLKL(data_mp) < iocp->ioc_count) { 9040 mblk_t *new_data_mp; 9041 if ((new_data_mp = msgpullup(data_mp, -1)) == 9042 NULL) { 9043 miocnak(q, mp, 0, ENOMEM); 9044 return; 9045 } 9046 freemsg(data_mp); 9047 data_mp = new_data_mp; 9048 mp->b_cont = data_mp; 9049 } 9050 table = (ip6_asp_t *)data_mp->b_rptr; 9051 table_size = iocp->ioc_count; 9052 } 9053 9054 switch (iocp->ioc_cmd) { 9055 case SIOCGIP6ADDRPOLICY: 9056 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9057 if (iocp->ioc_rval == -1) 9058 iocp->ioc_error = EINVAL; 9059 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9060 else if (table != NULL && 9061 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9062 ip6_asp_t *src = table; 9063 ip6_asp32_t *dst = (void *)table; 9064 int count = table_size / sizeof (ip6_asp_t); 9065 int i; 9066 9067 /* 9068 * We need to do an in-place shrink of the array 9069 * to match the alignment attributes of the 9070 * 32-bit ABI looking at it. 9071 */ 9072 /* LINTED: logical expression always true: op "||" */ 9073 ASSERT(sizeof (*src) > sizeof (*dst)); 9074 for (i = 1; i < count; i++) 9075 bcopy(src + i, dst + i, sizeof (*dst)); 9076 } 9077 #endif 9078 break; 9079 9080 case SIOCSIP6ADDRPOLICY: 9081 ASSERT(mp->b_prev == NULL); 9082 mp->b_prev = (void *)q; 9083 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9084 /* 9085 * We pass in the datamodel here so that the ip6_asp_replace() 9086 * routine can handle converting from 32-bit to native formats 9087 * where necessary. 9088 * 9089 * A better way to handle this might be to convert the inbound 9090 * data structure here, and hang it off a new 'mp'; thus the 9091 * ip6_asp_replace() logic would always be dealing with native 9092 * format data structures.. 9093 * 9094 * (An even simpler way to handle these ioctls is to just 9095 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9096 * and just recompile everything that depends on it.) 9097 */ 9098 #endif 9099 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9100 iocp->ioc_flag & IOC_MODELS); 9101 return; 9102 } 9103 9104 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9105 qreply(q, mp); 9106 } 9107 9108 static void 9109 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9110 { 9111 mblk_t *data_mp; 9112 struct dstinforeq *dir; 9113 uint8_t *end, *cur; 9114 in6_addr_t *daddr, *saddr; 9115 ipaddr_t v4daddr; 9116 ire_t *ire; 9117 char *slabel, *dlabel; 9118 boolean_t isipv4; 9119 int match_ire; 9120 ill_t *dst_ill; 9121 ipif_t *src_ipif, *ire_ipif; 9122 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9123 zoneid_t zoneid; 9124 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9125 9126 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9127 zoneid = Q_TO_CONN(q)->conn_zoneid; 9128 9129 /* 9130 * This ioctl is I_STR only, and must have a 9131 * data mblk following the M_IOCTL mblk. 9132 */ 9133 data_mp = mp->b_cont; 9134 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9135 miocnak(q, mp, 0, EINVAL); 9136 return; 9137 } 9138 9139 if (MBLKL(data_mp) < iocp->ioc_count) { 9140 mblk_t *new_data_mp; 9141 9142 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9143 miocnak(q, mp, 0, ENOMEM); 9144 return; 9145 } 9146 freemsg(data_mp); 9147 data_mp = new_data_mp; 9148 mp->b_cont = data_mp; 9149 } 9150 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9151 9152 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9153 end - cur >= sizeof (struct dstinforeq); 9154 cur += sizeof (struct dstinforeq)) { 9155 dir = (struct dstinforeq *)cur; 9156 daddr = &dir->dir_daddr; 9157 saddr = &dir->dir_saddr; 9158 9159 /* 9160 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9161 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9162 * and ipif_select_source[_v6]() do not. 9163 */ 9164 dir->dir_dscope = ip_addr_scope_v6(daddr); 9165 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9166 9167 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9168 if (isipv4) { 9169 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9170 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9171 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9172 } else { 9173 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9174 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9175 } 9176 if (ire == NULL) { 9177 dir->dir_dreachable = 0; 9178 9179 /* move on to next dst addr */ 9180 continue; 9181 } 9182 dir->dir_dreachable = 1; 9183 9184 ire_ipif = ire->ire_ipif; 9185 if (ire_ipif == NULL) 9186 goto next_dst; 9187 9188 /* 9189 * We expect to get back an interface ire or a 9190 * gateway ire cache entry. For both types, the 9191 * output interface is ire_ipif->ipif_ill. 9192 */ 9193 dst_ill = ire_ipif->ipif_ill; 9194 dir->dir_dmactype = dst_ill->ill_mactype; 9195 9196 if (isipv4) { 9197 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9198 } else { 9199 src_ipif = ipif_select_source_v6(dst_ill, 9200 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9201 zoneid); 9202 } 9203 if (src_ipif == NULL) 9204 goto next_dst; 9205 9206 *saddr = src_ipif->ipif_v6lcl_addr; 9207 dir->dir_sscope = ip_addr_scope_v6(saddr); 9208 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9209 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9210 dir->dir_sdeprecated = 9211 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9212 ipif_refrele(src_ipif); 9213 next_dst: 9214 ire_refrele(ire); 9215 } 9216 miocack(q, mp, iocp->ioc_count, 0); 9217 } 9218 9219 9220 /* 9221 * Check if this is an address assigned to this machine. 9222 * Skips interfaces that are down by using ire checks. 9223 * Translates mapped addresses to v4 addresses and then 9224 * treats them as such, returning true if the v4 address 9225 * associated with this mapped address is configured. 9226 * Note: Applications will have to be careful what they do 9227 * with the response; use of mapped addresses limits 9228 * what can be done with the socket, especially with 9229 * respect to socket options and ioctls - neither IPv4 9230 * options nor IPv6 sticky options/ancillary data options 9231 * may be used. 9232 */ 9233 /* ARGSUSED */ 9234 int 9235 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9236 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9237 { 9238 struct sioc_addrreq *sia; 9239 sin_t *sin; 9240 ire_t *ire; 9241 mblk_t *mp1; 9242 zoneid_t zoneid; 9243 ip_stack_t *ipst; 9244 9245 ip1dbg(("ip_sioctl_tmyaddr")); 9246 9247 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9248 zoneid = Q_TO_CONN(q)->conn_zoneid; 9249 ipst = CONNQ_TO_IPST(q); 9250 9251 /* Existence verified in ip_wput_nondata */ 9252 mp1 = mp->b_cont->b_cont; 9253 sia = (struct sioc_addrreq *)mp1->b_rptr; 9254 sin = (sin_t *)&sia->sa_addr; 9255 switch (sin->sin_family) { 9256 case AF_INET6: { 9257 sin6_t *sin6 = (sin6_t *)sin; 9258 9259 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9260 ipaddr_t v4_addr; 9261 9262 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9263 v4_addr); 9264 ire = ire_ctable_lookup(v4_addr, 0, 9265 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9266 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9267 } else { 9268 in6_addr_t v6addr; 9269 9270 v6addr = sin6->sin6_addr; 9271 ire = ire_ctable_lookup_v6(&v6addr, 0, 9272 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9273 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9274 } 9275 break; 9276 } 9277 case AF_INET: { 9278 ipaddr_t v4addr; 9279 9280 v4addr = sin->sin_addr.s_addr; 9281 ire = ire_ctable_lookup(v4addr, 0, 9282 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9283 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9284 break; 9285 } 9286 default: 9287 return (EAFNOSUPPORT); 9288 } 9289 if (ire != NULL) { 9290 sia->sa_res = 1; 9291 ire_refrele(ire); 9292 } else { 9293 sia->sa_res = 0; 9294 } 9295 return (0); 9296 } 9297 9298 /* 9299 * Check if this is an address assigned on-link i.e. neighbor, 9300 * and makes sure it's reachable from the current zone. 9301 * Returns true for my addresses as well. 9302 * Translates mapped addresses to v4 addresses and then 9303 * treats them as such, returning true if the v4 address 9304 * associated with this mapped address is configured. 9305 * Note: Applications will have to be careful what they do 9306 * with the response; use of mapped addresses limits 9307 * what can be done with the socket, especially with 9308 * respect to socket options and ioctls - neither IPv4 9309 * options nor IPv6 sticky options/ancillary data options 9310 * may be used. 9311 */ 9312 /* ARGSUSED */ 9313 int 9314 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9315 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9316 { 9317 struct sioc_addrreq *sia; 9318 sin_t *sin; 9319 mblk_t *mp1; 9320 ire_t *ire = NULL; 9321 zoneid_t zoneid; 9322 ip_stack_t *ipst; 9323 9324 ip1dbg(("ip_sioctl_tonlink")); 9325 9326 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9327 zoneid = Q_TO_CONN(q)->conn_zoneid; 9328 ipst = CONNQ_TO_IPST(q); 9329 9330 /* Existence verified in ip_wput_nondata */ 9331 mp1 = mp->b_cont->b_cont; 9332 sia = (struct sioc_addrreq *)mp1->b_rptr; 9333 sin = (sin_t *)&sia->sa_addr; 9334 9335 /* 9336 * Match addresses with a zero gateway field to avoid 9337 * routes going through a router. 9338 * Exclude broadcast and multicast addresses. 9339 */ 9340 switch (sin->sin_family) { 9341 case AF_INET6: { 9342 sin6_t *sin6 = (sin6_t *)sin; 9343 9344 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9345 ipaddr_t v4_addr; 9346 9347 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9348 v4_addr); 9349 if (!CLASSD(v4_addr)) { 9350 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9351 NULL, NULL, zoneid, NULL, 9352 MATCH_IRE_GW, ipst); 9353 } 9354 } else { 9355 in6_addr_t v6addr; 9356 in6_addr_t v6gw; 9357 9358 v6addr = sin6->sin6_addr; 9359 v6gw = ipv6_all_zeros; 9360 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9361 ire = ire_route_lookup_v6(&v6addr, 0, 9362 &v6gw, 0, NULL, NULL, zoneid, 9363 NULL, MATCH_IRE_GW, ipst); 9364 } 9365 } 9366 break; 9367 } 9368 case AF_INET: { 9369 ipaddr_t v4addr; 9370 9371 v4addr = sin->sin_addr.s_addr; 9372 if (!CLASSD(v4addr)) { 9373 ire = ire_route_lookup(v4addr, 0, 0, 0, 9374 NULL, NULL, zoneid, NULL, 9375 MATCH_IRE_GW, ipst); 9376 } 9377 break; 9378 } 9379 default: 9380 return (EAFNOSUPPORT); 9381 } 9382 sia->sa_res = 0; 9383 if (ire != NULL) { 9384 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9385 IRE_LOCAL|IRE_LOOPBACK)) { 9386 sia->sa_res = 1; 9387 } 9388 ire_refrele(ire); 9389 } 9390 return (0); 9391 } 9392 9393 /* 9394 * TBD: implement when kernel maintaines a list of site prefixes. 9395 */ 9396 /* ARGSUSED */ 9397 int 9398 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9399 ip_ioctl_cmd_t *ipip, void *ifreq) 9400 { 9401 return (ENXIO); 9402 } 9403 9404 /* ARGSUSED */ 9405 int 9406 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9407 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9408 { 9409 ill_t *ill; 9410 mblk_t *mp1; 9411 conn_t *connp; 9412 boolean_t success; 9413 9414 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9415 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9416 /* ioctl comes down on an conn */ 9417 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9418 connp = Q_TO_CONN(q); 9419 9420 mp->b_datap->db_type = M_IOCTL; 9421 9422 /* 9423 * Send down a copy. (copymsg does not copy b_next/b_prev). 9424 * The original mp contains contaminated b_next values due to 'mi', 9425 * which is needed to do the mi_copy_done. Unfortunately if we 9426 * send down the original mblk itself and if we are popped due to an 9427 * an unplumb before the response comes back from tunnel, 9428 * the streamhead (which does a freemsg) will see this contaminated 9429 * message and the assertion in freemsg about non-null b_next/b_prev 9430 * will panic a DEBUG kernel. 9431 */ 9432 mp1 = copymsg(mp); 9433 if (mp1 == NULL) 9434 return (ENOMEM); 9435 9436 ill = ipif->ipif_ill; 9437 mutex_enter(&connp->conn_lock); 9438 mutex_enter(&ill->ill_lock); 9439 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9440 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9441 mp, 0); 9442 } else { 9443 success = ill_pending_mp_add(ill, connp, mp); 9444 } 9445 mutex_exit(&ill->ill_lock); 9446 mutex_exit(&connp->conn_lock); 9447 9448 if (success) { 9449 ip1dbg(("sending down tunparam request ")); 9450 putnext(ill->ill_wq, mp1); 9451 return (EINPROGRESS); 9452 } else { 9453 /* The conn has started closing */ 9454 freemsg(mp1); 9455 return (EINTR); 9456 } 9457 } 9458 9459 /* 9460 * ARP IOCTLs. 9461 * How does IP get in the business of fronting ARP configuration/queries? 9462 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9463 * are by tradition passed in through a datagram socket. That lands in IP. 9464 * As it happens, this is just as well since the interface is quite crude in 9465 * that it passes in no information about protocol or hardware types, or 9466 * interface association. After making the protocol assumption, IP is in 9467 * the position to look up the name of the ILL, which ARP will need, and 9468 * format a request that can be handled by ARP. The request is passed up 9469 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9470 * back a response. ARP supports its own set of more general IOCTLs, in 9471 * case anyone is interested. 9472 */ 9473 /* ARGSUSED */ 9474 int 9475 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9476 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9477 { 9478 mblk_t *mp1; 9479 mblk_t *mp2; 9480 mblk_t *pending_mp; 9481 ipaddr_t ipaddr; 9482 area_t *area; 9483 struct iocblk *iocp; 9484 conn_t *connp; 9485 struct arpreq *ar; 9486 struct xarpreq *xar; 9487 int flags, alength; 9488 char *lladdr; 9489 ip_stack_t *ipst; 9490 ill_t *ill = ipif->ipif_ill; 9491 boolean_t if_arp_ioctl = B_FALSE; 9492 9493 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9494 connp = Q_TO_CONN(q); 9495 ipst = connp->conn_netstack->netstack_ip; 9496 9497 if (ipip->ipi_cmd_type == XARP_CMD) { 9498 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9499 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9500 ar = NULL; 9501 9502 flags = xar->xarp_flags; 9503 lladdr = LLADDR(&xar->xarp_ha); 9504 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9505 /* 9506 * Validate against user's link layer address length 9507 * input and name and addr length limits. 9508 */ 9509 alength = ill->ill_phys_addr_length; 9510 if (ipip->ipi_cmd == SIOCSXARP) { 9511 if (alength != xar->xarp_ha.sdl_alen || 9512 (alength + xar->xarp_ha.sdl_nlen > 9513 sizeof (xar->xarp_ha.sdl_data))) 9514 return (EINVAL); 9515 } 9516 } else { 9517 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9518 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9519 xar = NULL; 9520 9521 flags = ar->arp_flags; 9522 lladdr = ar->arp_ha.sa_data; 9523 /* 9524 * Theoretically, the sa_family could tell us what link 9525 * layer type this operation is trying to deal with. By 9526 * common usage AF_UNSPEC means ethernet. We'll assume 9527 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9528 * for now. Our new SIOC*XARP ioctls can be used more 9529 * generally. 9530 * 9531 * If the underlying media happens to have a non 6 byte 9532 * address, arp module will fail set/get, but the del 9533 * operation will succeed. 9534 */ 9535 alength = 6; 9536 if ((ipip->ipi_cmd != SIOCDARP) && 9537 (alength != ill->ill_phys_addr_length)) { 9538 return (EINVAL); 9539 } 9540 } 9541 9542 /* 9543 * We are going to pass up to ARP a packet chain that looks 9544 * like: 9545 * 9546 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9547 * 9548 * Get a copy of the original IOCTL mblk to head the chain, 9549 * to be sent up (in mp1). Also get another copy to store 9550 * in the ill_pending_mp list, for matching the response 9551 * when it comes back from ARP. 9552 */ 9553 mp1 = copyb(mp); 9554 pending_mp = copymsg(mp); 9555 if (mp1 == NULL || pending_mp == NULL) { 9556 if (mp1 != NULL) 9557 freeb(mp1); 9558 if (pending_mp != NULL) 9559 inet_freemsg(pending_mp); 9560 return (ENOMEM); 9561 } 9562 9563 ipaddr = sin->sin_addr.s_addr; 9564 9565 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9566 (caddr_t)&ipaddr); 9567 if (mp2 == NULL) { 9568 freeb(mp1); 9569 inet_freemsg(pending_mp); 9570 return (ENOMEM); 9571 } 9572 /* Put together the chain. */ 9573 mp1->b_cont = mp2; 9574 mp1->b_datap->db_type = M_IOCTL; 9575 mp2->b_cont = mp; 9576 mp2->b_datap->db_type = M_DATA; 9577 9578 iocp = (struct iocblk *)mp1->b_rptr; 9579 9580 /* 9581 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9582 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9583 * cp_private field (or cp_rval on 32-bit systems) in place of the 9584 * ioc_count field; set ioc_count to be correct. 9585 */ 9586 iocp->ioc_count = MBLKL(mp1->b_cont); 9587 9588 /* 9589 * Set the proper command in the ARP message. 9590 * Convert the SIOC{G|S|D}ARP calls into our 9591 * AR_ENTRY_xxx calls. 9592 */ 9593 area = (area_t *)mp2->b_rptr; 9594 switch (iocp->ioc_cmd) { 9595 case SIOCDARP: 9596 case SIOCDXARP: 9597 /* 9598 * We defer deleting the corresponding IRE until 9599 * we return from arp. 9600 */ 9601 area->area_cmd = AR_ENTRY_DELETE; 9602 area->area_proto_mask_offset = 0; 9603 break; 9604 case SIOCGARP: 9605 case SIOCGXARP: 9606 area->area_cmd = AR_ENTRY_SQUERY; 9607 area->area_proto_mask_offset = 0; 9608 break; 9609 case SIOCSARP: 9610 case SIOCSXARP: 9611 /* 9612 * Delete the corresponding ire to make sure IP will 9613 * pick up any change from arp. 9614 */ 9615 if (!if_arp_ioctl) { 9616 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9617 } else { 9618 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9619 if (ipif != NULL) { 9620 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9621 ipst); 9622 ipif_refrele(ipif); 9623 } 9624 } 9625 break; 9626 } 9627 iocp->ioc_cmd = area->area_cmd; 9628 9629 /* 9630 * Fill in the rest of the ARP operation fields. 9631 */ 9632 area->area_hw_addr_length = alength; 9633 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9634 9635 /* Translate the flags. */ 9636 if (flags & ATF_PERM) 9637 area->area_flags |= ACE_F_PERMANENT; 9638 if (flags & ATF_PUBL) 9639 area->area_flags |= ACE_F_PUBLISH; 9640 if (flags & ATF_AUTHORITY) 9641 area->area_flags |= ACE_F_AUTHORITY; 9642 9643 /* 9644 * Before sending 'mp' to ARP, we have to clear the b_next 9645 * and b_prev. Otherwise if STREAMS encounters such a message 9646 * in freemsg(), (because ARP can close any time) it can cause 9647 * a panic. But mi code needs the b_next and b_prev values of 9648 * mp->b_cont, to complete the ioctl. So we store it here 9649 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9650 * when the response comes down from ARP. 9651 */ 9652 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9653 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9654 mp->b_cont->b_next = NULL; 9655 mp->b_cont->b_prev = NULL; 9656 9657 mutex_enter(&connp->conn_lock); 9658 mutex_enter(&ill->ill_lock); 9659 /* conn has not yet started closing, hence this can't fail */ 9660 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9661 mutex_exit(&ill->ill_lock); 9662 mutex_exit(&connp->conn_lock); 9663 9664 /* 9665 * Up to ARP it goes. The response will come back in ip_wput() as an 9666 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9667 */ 9668 putnext(ill->ill_rq, mp1); 9669 return (EINPROGRESS); 9670 } 9671 9672 /* 9673 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9674 * the associated sin and refhold and return the associated ipif via `ci'. 9675 */ 9676 int 9677 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9678 cmd_info_t *ci, ipsq_func_t func) 9679 { 9680 mblk_t *mp1; 9681 int err; 9682 sin_t *sin; 9683 conn_t *connp; 9684 ipif_t *ipif; 9685 ire_t *ire = NULL; 9686 ill_t *ill = NULL; 9687 boolean_t exists; 9688 ip_stack_t *ipst; 9689 struct arpreq *ar; 9690 struct xarpreq *xar; 9691 struct sockaddr_dl *sdl; 9692 9693 /* ioctl comes down on a conn */ 9694 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9695 connp = Q_TO_CONN(q); 9696 if (connp->conn_af_isv6) 9697 return (ENXIO); 9698 9699 ipst = connp->conn_netstack->netstack_ip; 9700 9701 /* Verified in ip_wput_nondata */ 9702 mp1 = mp->b_cont->b_cont; 9703 9704 if (ipip->ipi_cmd_type == XARP_CMD) { 9705 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9706 xar = (struct xarpreq *)mp1->b_rptr; 9707 sin = (sin_t *)&xar->xarp_pa; 9708 sdl = &xar->xarp_ha; 9709 9710 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9711 return (ENXIO); 9712 if (sdl->sdl_nlen >= LIFNAMSIZ) 9713 return (EINVAL); 9714 } else { 9715 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9716 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9717 ar = (struct arpreq *)mp1->b_rptr; 9718 sin = (sin_t *)&ar->arp_pa; 9719 } 9720 9721 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9722 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9723 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9724 mp, func, &err, ipst); 9725 if (ipif == NULL) 9726 return (err); 9727 if (ipif->ipif_id != 0 || 9728 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9729 ipif_refrele(ipif); 9730 return (ENXIO); 9731 } 9732 } else { 9733 /* 9734 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9735 * 0: use the IP address to figure out the ill. In the IPMP 9736 * case, a simple forwarding table lookup will return the 9737 * IRE_IF_RESOLVER for the first interface in the group, which 9738 * might not be the interface on which the requested IP 9739 * address was resolved due to the ill selection algorithm 9740 * (see ip_newroute_get_dst_ill()). So we do a cache table 9741 * lookup first: if the IRE cache entry for the IP address is 9742 * still there, it will contain the ill pointer for the right 9743 * interface, so we use that. If the cache entry has been 9744 * flushed, we fall back to the forwarding table lookup. This 9745 * should be rare enough since IRE cache entries have a longer 9746 * life expectancy than ARP cache entries. 9747 */ 9748 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9749 ipst); 9750 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9751 ((ill = ire_to_ill(ire)) == NULL) || 9752 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9753 if (ire != NULL) 9754 ire_refrele(ire); 9755 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9756 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9757 NULL, MATCH_IRE_TYPE, ipst); 9758 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9759 9760 if (ire != NULL) 9761 ire_refrele(ire); 9762 return (ENXIO); 9763 } 9764 } 9765 ASSERT(ire != NULL && ill != NULL); 9766 ipif = ill->ill_ipif; 9767 ipif_refhold(ipif); 9768 ire_refrele(ire); 9769 } 9770 ci->ci_sin = sin; 9771 ci->ci_ipif = ipif; 9772 return (0); 9773 } 9774 9775 /* 9776 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9777 * atomically set/clear the muxids. Also complete the ioctl by acking or 9778 * naking it. Note that the code is structured such that the link type, 9779 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9780 * its clones use the persistent link, while pppd(1M) and perhaps many 9781 * other daemons may use non-persistent link. When combined with some 9782 * ill_t states, linking and unlinking lower streams may be used as 9783 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9784 */ 9785 /* ARGSUSED */ 9786 void 9787 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9788 { 9789 mblk_t *mp1, *mp2; 9790 struct linkblk *li; 9791 struct ipmx_s *ipmxp; 9792 ill_t *ill; 9793 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9794 int err = 0; 9795 boolean_t entered_ipsq = B_FALSE; 9796 boolean_t islink; 9797 ip_stack_t *ipst; 9798 9799 if (CONN_Q(q)) 9800 ipst = CONNQ_TO_IPST(q); 9801 else 9802 ipst = ILLQ_TO_IPST(q); 9803 9804 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9805 ioccmd == I_LINK || ioccmd == I_UNLINK); 9806 9807 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9808 9809 mp1 = mp->b_cont; /* This is the linkblk info */ 9810 li = (struct linkblk *)mp1->b_rptr; 9811 9812 /* 9813 * ARP has added this special mblk, and the utility is asking us 9814 * to perform consistency checks, and also atomically set the 9815 * muxid. Ifconfig is an example. It achieves this by using 9816 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9817 * to /dev/udp[6] stream for use as the mux when plinking the IP 9818 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9819 * and other comments in this routine for more details. 9820 */ 9821 mp2 = mp1->b_cont; /* This is added by ARP */ 9822 9823 /* 9824 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9825 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9826 * get the special mblk above. For backward compatibility, we 9827 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9828 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9829 * not atomic, and can leave the streams unplumbable if the utility 9830 * is interrupted before it does the SIOCSLIFMUXID. 9831 */ 9832 if (mp2 == NULL) { 9833 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9834 if (err == EINPROGRESS) 9835 return; 9836 goto done; 9837 } 9838 9839 /* 9840 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9841 * ARP has appended this last mblk to tell us whether the lower stream 9842 * is an arp-dev stream or an IP module stream. 9843 */ 9844 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9845 if (ipmxp->ipmx_arpdev_stream) { 9846 /* 9847 * The lower stream is the arp-dev stream. 9848 */ 9849 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9850 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9851 if (ill == NULL) { 9852 if (err == EINPROGRESS) 9853 return; 9854 err = EINVAL; 9855 goto done; 9856 } 9857 9858 if (ipsq == NULL) { 9859 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9860 NEW_OP, B_TRUE); 9861 if (ipsq == NULL) { 9862 ill_refrele(ill); 9863 return; 9864 } 9865 entered_ipsq = B_TRUE; 9866 } 9867 ASSERT(IAM_WRITER_ILL(ill)); 9868 ill_refrele(ill); 9869 9870 /* 9871 * To ensure consistency between IP and ARP, the following 9872 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9873 * This is because the muxid's are stored in the IP stream on 9874 * the ill. 9875 * 9876 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9877 * the ARP stream. On an arp-dev stream, IP checks that it is 9878 * not yet plinked, and it also checks that the corresponding 9879 * IP stream is already plinked. 9880 * 9881 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9882 * punlinking the IP stream. IP does not allow punlink of the 9883 * IP stream unless the arp stream has been punlinked. 9884 */ 9885 if ((islink && 9886 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9887 (!islink && ill->ill_arp_muxid != li->l_index)) { 9888 err = EINVAL; 9889 goto done; 9890 } 9891 ill->ill_arp_muxid = islink ? li->l_index : 0; 9892 } else { 9893 /* 9894 * The lower stream is probably an IP module stream. Do 9895 * consistency checking. 9896 */ 9897 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9898 if (err == EINPROGRESS) 9899 return; 9900 } 9901 done: 9902 if (err == 0) 9903 miocack(q, mp, 0, 0); 9904 else 9905 miocnak(q, mp, 0, err); 9906 9907 /* Conn was refheld in ip_sioctl_copyin_setup */ 9908 if (CONN_Q(q)) 9909 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9910 if (entered_ipsq) 9911 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9912 } 9913 9914 /* 9915 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9916 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9917 * module stream). If `doconsist' is set, then do the extended consistency 9918 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9919 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9920 * an error code on failure. 9921 */ 9922 static int 9923 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9924 struct linkblk *li, boolean_t doconsist) 9925 { 9926 ill_t *ill; 9927 queue_t *ipwq, *dwq; 9928 const char *name; 9929 struct qinit *qinfo; 9930 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9931 boolean_t entered_ipsq = B_FALSE; 9932 9933 /* 9934 * Walk the lower stream to verify it's the IP module stream. 9935 * The IP module is identified by its name, wput function, 9936 * and non-NULL q_next. STREAMS ensures that the lower stream 9937 * (li->l_qbot) will not vanish until this ioctl completes. 9938 */ 9939 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9940 qinfo = ipwq->q_qinfo; 9941 name = qinfo->qi_minfo->mi_idname; 9942 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9943 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9944 break; 9945 } 9946 } 9947 9948 /* 9949 * If this isn't an IP module stream, bail. 9950 */ 9951 if (ipwq == NULL) 9952 return (0); 9953 9954 ill = ipwq->q_ptr; 9955 ASSERT(ill != NULL); 9956 9957 if (ipsq == NULL) { 9958 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9959 NEW_OP, B_TRUE); 9960 if (ipsq == NULL) 9961 return (EINPROGRESS); 9962 entered_ipsq = B_TRUE; 9963 } 9964 ASSERT(IAM_WRITER_ILL(ill)); 9965 9966 if (doconsist) { 9967 /* 9968 * Consistency checking requires that I_{P}LINK occurs 9969 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9970 * occurs prior to clearing ill_arp_muxid. 9971 */ 9972 if ((islink && ill->ill_ip_muxid != 0) || 9973 (!islink && ill->ill_arp_muxid != 0)) { 9974 if (entered_ipsq) 9975 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9976 return (EINVAL); 9977 } 9978 } 9979 9980 /* 9981 * As part of I_{P}LINKing, stash the number of downstream modules and 9982 * the read queue of the module immediately below IP in the ill. 9983 * These are used during the capability negotiation below. 9984 */ 9985 ill->ill_lmod_rq = NULL; 9986 ill->ill_lmod_cnt = 0; 9987 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9988 ill->ill_lmod_rq = RD(dwq); 9989 for (; dwq != NULL; dwq = dwq->q_next) 9990 ill->ill_lmod_cnt++; 9991 } 9992 9993 if (doconsist) 9994 ill->ill_ip_muxid = islink ? li->l_index : 0; 9995 9996 /* 9997 * If there's at least one up ipif on this ill, then we're bound to 9998 * the underlying driver via DLPI. In that case, renegotiate 9999 * capabilities to account for any possible change in modules 10000 * interposed between IP and the driver. 10001 */ 10002 if (ill->ill_ipif_up_count > 0) { 10003 if (islink) 10004 ill_capability_probe(ill); 10005 else 10006 ill_capability_reset(ill); 10007 } 10008 10009 if (entered_ipsq) 10010 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10011 10012 return (0); 10013 } 10014 10015 /* 10016 * Search the ioctl command in the ioctl tables and return a pointer 10017 * to the ioctl command information. The ioctl command tables are 10018 * static and fully populated at compile time. 10019 */ 10020 ip_ioctl_cmd_t * 10021 ip_sioctl_lookup(int ioc_cmd) 10022 { 10023 int index; 10024 ip_ioctl_cmd_t *ipip; 10025 ip_ioctl_cmd_t *ipip_end; 10026 10027 if (ioc_cmd == IPI_DONTCARE) 10028 return (NULL); 10029 10030 /* 10031 * Do a 2 step search. First search the indexed table 10032 * based on the least significant byte of the ioctl cmd. 10033 * If we don't find a match, then search the misc table 10034 * serially. 10035 */ 10036 index = ioc_cmd & 0xFF; 10037 if (index < ip_ndx_ioctl_count) { 10038 ipip = &ip_ndx_ioctl_table[index]; 10039 if (ipip->ipi_cmd == ioc_cmd) { 10040 /* Found a match in the ndx table */ 10041 return (ipip); 10042 } 10043 } 10044 10045 /* Search the misc table */ 10046 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10047 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10048 if (ipip->ipi_cmd == ioc_cmd) 10049 /* Found a match in the misc table */ 10050 return (ipip); 10051 } 10052 10053 return (NULL); 10054 } 10055 10056 /* 10057 * Wrapper function for resuming deferred ioctl processing 10058 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10059 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10060 */ 10061 /* ARGSUSED */ 10062 void 10063 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10064 void *dummy_arg) 10065 { 10066 ip_sioctl_copyin_setup(q, mp); 10067 } 10068 10069 /* 10070 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10071 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10072 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10073 * We establish here the size of the block to be copied in. mi_copyin 10074 * arranges for this to happen, an processing continues in ip_wput with 10075 * an M_IOCDATA message. 10076 */ 10077 void 10078 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10079 { 10080 int copyin_size; 10081 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10082 ip_ioctl_cmd_t *ipip; 10083 cred_t *cr; 10084 ip_stack_t *ipst; 10085 10086 if (CONN_Q(q)) 10087 ipst = CONNQ_TO_IPST(q); 10088 else 10089 ipst = ILLQ_TO_IPST(q); 10090 10091 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10092 if (ipip == NULL) { 10093 /* 10094 * The ioctl is not one we understand or own. 10095 * Pass it along to be processed down stream, 10096 * if this is a module instance of IP, else nak 10097 * the ioctl. 10098 */ 10099 if (q->q_next == NULL) { 10100 goto nak; 10101 } else { 10102 putnext(q, mp); 10103 return; 10104 } 10105 } 10106 10107 /* 10108 * If this is deferred, then we will do all the checks when we 10109 * come back. 10110 */ 10111 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10112 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10113 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10114 return; 10115 } 10116 10117 /* 10118 * Only allow a very small subset of IP ioctls on this stream if 10119 * IP is a module and not a driver. Allowing ioctls to be processed 10120 * in this case may cause assert failures or data corruption. 10121 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10122 * ioctls allowed on an IP module stream, after which this stream 10123 * normally becomes a multiplexor (at which time the stream head 10124 * will fail all ioctls). 10125 */ 10126 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10127 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10128 /* 10129 * Pass common Streams ioctls which the IP 10130 * module does not own or consume along to 10131 * be processed down stream. 10132 */ 10133 putnext(q, mp); 10134 return; 10135 } else { 10136 goto nak; 10137 } 10138 } 10139 10140 /* Make sure we have ioctl data to process. */ 10141 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10142 goto nak; 10143 10144 /* 10145 * Prefer dblk credential over ioctl credential; some synthesized 10146 * ioctls have kcred set because there's no way to crhold() 10147 * a credential in some contexts. (ioc_cr is not crfree() by 10148 * the framework; the caller of ioctl needs to hold the reference 10149 * for the duration of the call). 10150 */ 10151 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10152 10153 /* Make sure normal users don't send down privileged ioctls */ 10154 if ((ipip->ipi_flags & IPI_PRIV) && 10155 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10156 /* We checked the privilege earlier but log it here */ 10157 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10158 return; 10159 } 10160 10161 /* 10162 * The ioctl command tables can only encode fixed length 10163 * ioctl data. If the length is variable, the table will 10164 * encode the length as zero. Such special cases are handled 10165 * below in the switch. 10166 */ 10167 if (ipip->ipi_copyin_size != 0) { 10168 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10169 return; 10170 } 10171 10172 switch (iocp->ioc_cmd) { 10173 case O_SIOCGIFCONF: 10174 case SIOCGIFCONF: 10175 /* 10176 * This IOCTL is hilarious. See comments in 10177 * ip_sioctl_get_ifconf for the story. 10178 */ 10179 if (iocp->ioc_count == TRANSPARENT) 10180 copyin_size = SIZEOF_STRUCT(ifconf, 10181 iocp->ioc_flag); 10182 else 10183 copyin_size = iocp->ioc_count; 10184 mi_copyin(q, mp, NULL, copyin_size); 10185 return; 10186 10187 case O_SIOCGLIFCONF: 10188 case SIOCGLIFCONF: 10189 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10190 mi_copyin(q, mp, NULL, copyin_size); 10191 return; 10192 10193 case SIOCGLIFSRCOF: 10194 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10195 mi_copyin(q, mp, NULL, copyin_size); 10196 return; 10197 case SIOCGIP6ADDRPOLICY: 10198 ip_sioctl_ip6addrpolicy(q, mp); 10199 ip6_asp_table_refrele(ipst); 10200 return; 10201 10202 case SIOCSIP6ADDRPOLICY: 10203 ip_sioctl_ip6addrpolicy(q, mp); 10204 return; 10205 10206 case SIOCGDSTINFO: 10207 ip_sioctl_dstinfo(q, mp); 10208 ip6_asp_table_refrele(ipst); 10209 return; 10210 10211 case I_PLINK: 10212 case I_PUNLINK: 10213 case I_LINK: 10214 case I_UNLINK: 10215 /* 10216 * We treat non-persistent link similarly as the persistent 10217 * link case, in terms of plumbing/unplumbing, as well as 10218 * dynamic re-plumbing events indicator. See comments 10219 * in ip_sioctl_plink() for more. 10220 * 10221 * Request can be enqueued in the 'ipsq' while waiting 10222 * to become exclusive. So bump up the conn ref. 10223 */ 10224 if (CONN_Q(q)) 10225 CONN_INC_REF(Q_TO_CONN(q)); 10226 ip_sioctl_plink(NULL, q, mp, NULL); 10227 return; 10228 10229 case ND_GET: 10230 case ND_SET: 10231 /* 10232 * Use of the nd table requires holding the reader lock. 10233 * Modifying the nd table thru nd_load/nd_unload requires 10234 * the writer lock. 10235 */ 10236 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10237 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10238 rw_exit(&ipst->ips_ip_g_nd_lock); 10239 10240 if (iocp->ioc_error) 10241 iocp->ioc_count = 0; 10242 mp->b_datap->db_type = M_IOCACK; 10243 qreply(q, mp); 10244 return; 10245 } 10246 rw_exit(&ipst->ips_ip_g_nd_lock); 10247 /* 10248 * We don't understand this subioctl of ND_GET / ND_SET. 10249 * Maybe intended for some driver / module below us 10250 */ 10251 if (q->q_next) { 10252 putnext(q, mp); 10253 } else { 10254 iocp->ioc_error = ENOENT; 10255 mp->b_datap->db_type = M_IOCNAK; 10256 iocp->ioc_count = 0; 10257 qreply(q, mp); 10258 } 10259 return; 10260 10261 case IP_IOCTL: 10262 ip_wput_ioctl(q, mp); 10263 return; 10264 default: 10265 cmn_err(CE_PANIC, "should not happen "); 10266 } 10267 nak: 10268 if (mp->b_cont != NULL) { 10269 freemsg(mp->b_cont); 10270 mp->b_cont = NULL; 10271 } 10272 iocp->ioc_error = EINVAL; 10273 mp->b_datap->db_type = M_IOCNAK; 10274 iocp->ioc_count = 0; 10275 qreply(q, mp); 10276 } 10277 10278 /* ip_wput hands off ARP IOCTL responses to us */ 10279 void 10280 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10281 { 10282 struct arpreq *ar; 10283 struct xarpreq *xar; 10284 area_t *area; 10285 mblk_t *area_mp; 10286 struct iocblk *iocp; 10287 mblk_t *orig_ioc_mp, *tmp; 10288 struct iocblk *orig_iocp; 10289 ill_t *ill; 10290 conn_t *connp = NULL; 10291 uint_t ioc_id; 10292 mblk_t *pending_mp; 10293 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10294 int *flagsp; 10295 char *storage = NULL; 10296 sin_t *sin; 10297 ipaddr_t addr; 10298 int err; 10299 ip_stack_t *ipst; 10300 10301 ill = q->q_ptr; 10302 ASSERT(ill != NULL); 10303 ipst = ill->ill_ipst; 10304 10305 /* 10306 * We should get back from ARP a packet chain that looks like: 10307 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10308 */ 10309 if (!(area_mp = mp->b_cont) || 10310 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10311 !(orig_ioc_mp = area_mp->b_cont) || 10312 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10313 freemsg(mp); 10314 return; 10315 } 10316 10317 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10318 10319 tmp = (orig_ioc_mp->b_cont)->b_cont; 10320 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10321 (orig_iocp->ioc_cmd == SIOCSXARP) || 10322 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10323 x_arp_ioctl = B_TRUE; 10324 xar = (struct xarpreq *)tmp->b_rptr; 10325 sin = (sin_t *)&xar->xarp_pa; 10326 flagsp = &xar->xarp_flags; 10327 storage = xar->xarp_ha.sdl_data; 10328 if (xar->xarp_ha.sdl_nlen != 0) 10329 ifx_arp_ioctl = B_TRUE; 10330 } else { 10331 ar = (struct arpreq *)tmp->b_rptr; 10332 sin = (sin_t *)&ar->arp_pa; 10333 flagsp = &ar->arp_flags; 10334 storage = ar->arp_ha.sa_data; 10335 } 10336 10337 iocp = (struct iocblk *)mp->b_rptr; 10338 10339 /* 10340 * Pick out the originating queue based on the ioc_id. 10341 */ 10342 ioc_id = iocp->ioc_id; 10343 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10344 if (pending_mp == NULL) { 10345 ASSERT(connp == NULL); 10346 inet_freemsg(mp); 10347 return; 10348 } 10349 ASSERT(connp != NULL); 10350 q = CONNP_TO_WQ(connp); 10351 10352 /* Uncouple the internally generated IOCTL from the original one */ 10353 area = (area_t *)area_mp->b_rptr; 10354 area_mp->b_cont = NULL; 10355 10356 /* 10357 * Restore the b_next and b_prev used by mi code. This is needed 10358 * to complete the ioctl using mi* functions. We stored them in 10359 * the pending mp prior to sending the request to ARP. 10360 */ 10361 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10362 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10363 inet_freemsg(pending_mp); 10364 10365 /* 10366 * We're done if there was an error or if this is not an SIOCG{X}ARP 10367 * Catch the case where there is an IRE_CACHE by no entry in the 10368 * arp table. 10369 */ 10370 addr = sin->sin_addr.s_addr; 10371 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10372 ire_t *ire; 10373 dl_unitdata_req_t *dlup; 10374 mblk_t *llmp; 10375 int addr_len; 10376 ill_t *ipsqill = NULL; 10377 10378 if (ifx_arp_ioctl) { 10379 /* 10380 * There's no need to lookup the ill, since 10381 * we've already done that when we started 10382 * processing the ioctl and sent the message 10383 * to ARP on that ill. So use the ill that 10384 * is stored in q->q_ptr. 10385 */ 10386 ipsqill = ill; 10387 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10388 ipsqill->ill_ipif, ALL_ZONES, 10389 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10390 } else { 10391 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10392 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10393 if (ire != NULL) 10394 ipsqill = ire_to_ill(ire); 10395 } 10396 10397 if ((x_arp_ioctl) && (ipsqill != NULL)) 10398 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10399 10400 if (ire != NULL) { 10401 /* 10402 * Since the ire obtained from cachetable is used for 10403 * mac addr copying below, treat an incomplete ire as if 10404 * as if we never found it. 10405 */ 10406 if (ire->ire_nce != NULL && 10407 ire->ire_nce->nce_state != ND_REACHABLE) { 10408 ire_refrele(ire); 10409 ire = NULL; 10410 ipsqill = NULL; 10411 goto errack; 10412 } 10413 *flagsp = ATF_INUSE; 10414 llmp = (ire->ire_nce != NULL ? 10415 ire->ire_nce->nce_res_mp : NULL); 10416 if (llmp != NULL && ipsqill != NULL) { 10417 uchar_t *macaddr; 10418 10419 addr_len = ipsqill->ill_phys_addr_length; 10420 if (x_arp_ioctl && ((addr_len + 10421 ipsqill->ill_name_length) > 10422 sizeof (xar->xarp_ha.sdl_data))) { 10423 ire_refrele(ire); 10424 freemsg(mp); 10425 ip_ioctl_finish(q, orig_ioc_mp, 10426 EINVAL, NO_COPYOUT, NULL); 10427 return; 10428 } 10429 *flagsp |= ATF_COM; 10430 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10431 if (ipsqill->ill_sap_length < 0) 10432 macaddr = llmp->b_rptr + 10433 dlup->dl_dest_addr_offset; 10434 else 10435 macaddr = llmp->b_rptr + 10436 dlup->dl_dest_addr_offset + 10437 ipsqill->ill_sap_length; 10438 /* 10439 * For SIOCGARP, MAC address length 10440 * validation has already been done 10441 * before the ioctl was issued to ARP to 10442 * allow it to progress only on 6 byte 10443 * addressable (ethernet like) media. Thus 10444 * the mac address copying can not overwrite 10445 * the sa_data area below. 10446 */ 10447 bcopy(macaddr, storage, addr_len); 10448 } 10449 /* Ditch the internal IOCTL. */ 10450 freemsg(mp); 10451 ire_refrele(ire); 10452 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10453 return; 10454 } 10455 } 10456 10457 /* 10458 * Delete the coresponding IRE_CACHE if any. 10459 * Reset the error if there was one (in case there was no entry 10460 * in arp.) 10461 */ 10462 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10463 ipif_t *ipintf = NULL; 10464 10465 if (ifx_arp_ioctl) { 10466 /* 10467 * There's no need to lookup the ill, since 10468 * we've already done that when we started 10469 * processing the ioctl and sent the message 10470 * to ARP on that ill. So use the ill that 10471 * is stored in q->q_ptr. 10472 */ 10473 ipintf = ill->ill_ipif; 10474 } 10475 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10476 /* 10477 * The address in "addr" may be an entry for a 10478 * router. If that's true, then any off-net 10479 * IRE_CACHE entries that go through the router 10480 * with address "addr" must be clobbered. Use 10481 * ire_walk to achieve this goal. 10482 */ 10483 if (ifx_arp_ioctl) 10484 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10485 ire_delete_cache_gw, (char *)&addr, ill); 10486 else 10487 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10488 ALL_ZONES, ipst); 10489 iocp->ioc_error = 0; 10490 } 10491 } 10492 errack: 10493 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10494 err = iocp->ioc_error; 10495 freemsg(mp); 10496 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10497 return; 10498 } 10499 10500 /* 10501 * Completion of an SIOCG{X}ARP. Translate the information from 10502 * the area_t into the struct {x}arpreq. 10503 */ 10504 if (x_arp_ioctl) { 10505 storage += ill_xarp_info(&xar->xarp_ha, ill); 10506 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10507 sizeof (xar->xarp_ha.sdl_data)) { 10508 freemsg(mp); 10509 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10510 NULL); 10511 return; 10512 } 10513 } 10514 *flagsp = ATF_INUSE; 10515 if (area->area_flags & ACE_F_PERMANENT) 10516 *flagsp |= ATF_PERM; 10517 if (area->area_flags & ACE_F_PUBLISH) 10518 *flagsp |= ATF_PUBL; 10519 if (area->area_flags & ACE_F_AUTHORITY) 10520 *flagsp |= ATF_AUTHORITY; 10521 if (area->area_hw_addr_length != 0) { 10522 *flagsp |= ATF_COM; 10523 /* 10524 * For SIOCGARP, MAC address length validation has 10525 * already been done before the ioctl was issued to ARP 10526 * to allow it to progress only on 6 byte addressable 10527 * (ethernet like) media. Thus the mac address copying 10528 * can not overwrite the sa_data area below. 10529 */ 10530 bcopy((char *)area + area->area_hw_addr_offset, 10531 storage, area->area_hw_addr_length); 10532 } 10533 10534 /* Ditch the internal IOCTL. */ 10535 freemsg(mp); 10536 /* Complete the original. */ 10537 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10538 } 10539 10540 /* 10541 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10542 * interface) create the next available logical interface for this 10543 * physical interface. 10544 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10545 * ipif with the specified name. 10546 * 10547 * If the address family is not AF_UNSPEC then set the address as well. 10548 * 10549 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10550 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10551 * 10552 * Executed as a writer on the ill or ill group. 10553 * So no lock is needed to traverse the ipif chain, or examine the 10554 * phyint flags. 10555 */ 10556 /* ARGSUSED */ 10557 int 10558 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10559 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10560 { 10561 mblk_t *mp1; 10562 struct lifreq *lifr; 10563 boolean_t isv6; 10564 boolean_t exists; 10565 char *name; 10566 char *endp; 10567 char *cp; 10568 int namelen; 10569 ipif_t *ipif; 10570 long id; 10571 ipsq_t *ipsq; 10572 ill_t *ill; 10573 sin_t *sin; 10574 int err = 0; 10575 boolean_t found_sep = B_FALSE; 10576 conn_t *connp; 10577 zoneid_t zoneid; 10578 int orig_ifindex = 0; 10579 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10580 10581 ASSERT(q->q_next == NULL); 10582 ip1dbg(("ip_sioctl_addif\n")); 10583 /* Existence of mp1 has been checked in ip_wput_nondata */ 10584 mp1 = mp->b_cont->b_cont; 10585 /* 10586 * Null terminate the string to protect against buffer 10587 * overrun. String was generated by user code and may not 10588 * be trusted. 10589 */ 10590 lifr = (struct lifreq *)mp1->b_rptr; 10591 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10592 name = lifr->lifr_name; 10593 ASSERT(CONN_Q(q)); 10594 connp = Q_TO_CONN(q); 10595 isv6 = connp->conn_af_isv6; 10596 zoneid = connp->conn_zoneid; 10597 namelen = mi_strlen(name); 10598 if (namelen == 0) 10599 return (EINVAL); 10600 10601 exists = B_FALSE; 10602 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10603 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10604 /* 10605 * Allow creating lo0 using SIOCLIFADDIF. 10606 * can't be any other writer thread. So can pass null below 10607 * for the last 4 args to ipif_lookup_name. 10608 */ 10609 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10610 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10611 /* Prevent any further action */ 10612 if (ipif == NULL) { 10613 return (ENOBUFS); 10614 } else if (!exists) { 10615 /* We created the ipif now and as writer */ 10616 ipif_refrele(ipif); 10617 return (0); 10618 } else { 10619 ill = ipif->ipif_ill; 10620 ill_refhold(ill); 10621 ipif_refrele(ipif); 10622 } 10623 } else { 10624 /* Look for a colon in the name. */ 10625 endp = &name[namelen]; 10626 for (cp = endp; --cp > name; ) { 10627 if (*cp == IPIF_SEPARATOR_CHAR) { 10628 found_sep = B_TRUE; 10629 /* 10630 * Reject any non-decimal aliases for plumbing 10631 * of logical interfaces. Aliases with leading 10632 * zeroes are also rejected as they introduce 10633 * ambiguity in the naming of the interfaces. 10634 * Comparing with "0" takes care of all such 10635 * cases. 10636 */ 10637 if ((strncmp("0", cp+1, 1)) == 0) 10638 return (EINVAL); 10639 10640 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10641 id <= 0 || *endp != '\0') { 10642 return (EINVAL); 10643 } 10644 *cp = '\0'; 10645 break; 10646 } 10647 } 10648 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10649 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10650 if (found_sep) 10651 *cp = IPIF_SEPARATOR_CHAR; 10652 if (ill == NULL) 10653 return (err); 10654 } 10655 10656 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10657 B_TRUE); 10658 10659 /* 10660 * Release the refhold due to the lookup, now that we are excl 10661 * or we are just returning 10662 */ 10663 ill_refrele(ill); 10664 10665 if (ipsq == NULL) 10666 return (EINPROGRESS); 10667 10668 /* 10669 * If the interface is failed, inactive or offlined, look for a working 10670 * interface in the ill group and create the ipif there. If we can't 10671 * find a good interface, create the ipif anyway so that in.mpathd can 10672 * move it to the first repaired interface. 10673 */ 10674 if ((ill->ill_phyint->phyint_flags & 10675 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10676 ill->ill_phyint->phyint_groupname_len != 0) { 10677 phyint_t *phyi; 10678 char *groupname = ill->ill_phyint->phyint_groupname; 10679 10680 /* 10681 * We're looking for a working interface, but it doesn't matter 10682 * if it's up or down; so instead of following the group lists, 10683 * we look at each physical interface and compare the groupname. 10684 * We're only interested in interfaces with IPv4 (resp. IPv6) 10685 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10686 * Otherwise we create the ipif on the failed interface. 10687 */ 10688 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10689 phyi = avl_first(&ipst->ips_phyint_g_list-> 10690 phyint_list_avl_by_index); 10691 for (; phyi != NULL; 10692 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10693 phyint_list_avl_by_index, 10694 phyi, AVL_AFTER)) { 10695 if (phyi->phyint_groupname_len == 0) 10696 continue; 10697 ASSERT(phyi->phyint_groupname != NULL); 10698 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10699 !(phyi->phyint_flags & 10700 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10701 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10702 (phyi->phyint_illv4 != NULL))) { 10703 break; 10704 } 10705 } 10706 rw_exit(&ipst->ips_ill_g_lock); 10707 10708 if (phyi != NULL) { 10709 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10710 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10711 phyi->phyint_illv4); 10712 } 10713 } 10714 10715 /* 10716 * We are now exclusive on the ipsq, so an ill move will be serialized 10717 * before or after us. 10718 */ 10719 ASSERT(IAM_WRITER_ILL(ill)); 10720 ASSERT(ill->ill_move_in_progress == B_FALSE); 10721 10722 if (found_sep && orig_ifindex == 0) { 10723 /* Now see if there is an IPIF with this unit number. */ 10724 for (ipif = ill->ill_ipif; ipif != NULL; 10725 ipif = ipif->ipif_next) { 10726 if (ipif->ipif_id == id) { 10727 err = EEXIST; 10728 goto done; 10729 } 10730 } 10731 } 10732 10733 /* 10734 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10735 * of lo0. We never come here when we plumb lo0:0. It 10736 * happens in ipif_lookup_on_name. 10737 * The specified unit number is ignored when we create the ipif on a 10738 * different interface. However, we save it in ipif_orig_ipifid below so 10739 * that the ipif fails back to the right position. 10740 */ 10741 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10742 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10743 err = ENOBUFS; 10744 goto done; 10745 } 10746 10747 /* Return created name with ioctl */ 10748 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10749 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10750 ip1dbg(("created %s\n", lifr->lifr_name)); 10751 10752 /* Set address */ 10753 sin = (sin_t *)&lifr->lifr_addr; 10754 if (sin->sin_family != AF_UNSPEC) { 10755 err = ip_sioctl_addr(ipif, sin, q, mp, 10756 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10757 } 10758 10759 /* Set ifindex and unit number for failback */ 10760 if (err == 0 && orig_ifindex != 0) { 10761 ipif->ipif_orig_ifindex = orig_ifindex; 10762 if (found_sep) { 10763 ipif->ipif_orig_ipifid = id; 10764 } 10765 } 10766 10767 done: 10768 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10769 return (err); 10770 } 10771 10772 /* 10773 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10774 * interface) delete it based on the IP address (on this physical interface). 10775 * Otherwise delete it based on the ipif_id. 10776 * Also, special handling to allow a removeif of lo0. 10777 */ 10778 /* ARGSUSED */ 10779 int 10780 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10781 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10782 { 10783 conn_t *connp; 10784 ill_t *ill = ipif->ipif_ill; 10785 boolean_t success; 10786 ip_stack_t *ipst; 10787 10788 ipst = CONNQ_TO_IPST(q); 10789 10790 ASSERT(q->q_next == NULL); 10791 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10792 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10793 ASSERT(IAM_WRITER_IPIF(ipif)); 10794 10795 connp = Q_TO_CONN(q); 10796 /* 10797 * Special case for unplumbing lo0 (the loopback physical interface). 10798 * If unplumbing lo0, the incoming address structure has been 10799 * initialized to all zeros. When unplumbing lo0, all its logical 10800 * interfaces must be removed too. 10801 * 10802 * Note that this interface may be called to remove a specific 10803 * loopback logical interface (eg, lo0:1). But in that case 10804 * ipif->ipif_id != 0 so that the code path for that case is the 10805 * same as any other interface (meaning it skips the code directly 10806 * below). 10807 */ 10808 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10809 if (sin->sin_family == AF_UNSPEC && 10810 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10811 /* 10812 * Mark it condemned. No new ref. will be made to ill. 10813 */ 10814 mutex_enter(&ill->ill_lock); 10815 ill->ill_state_flags |= ILL_CONDEMNED; 10816 for (ipif = ill->ill_ipif; ipif != NULL; 10817 ipif = ipif->ipif_next) { 10818 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10819 } 10820 mutex_exit(&ill->ill_lock); 10821 10822 ipif = ill->ill_ipif; 10823 /* unplumb the loopback interface */ 10824 ill_delete(ill); 10825 mutex_enter(&connp->conn_lock); 10826 mutex_enter(&ill->ill_lock); 10827 ASSERT(ill->ill_group == NULL); 10828 10829 /* Are any references to this ill active */ 10830 if (ill_is_quiescent(ill)) { 10831 mutex_exit(&ill->ill_lock); 10832 mutex_exit(&connp->conn_lock); 10833 ill_delete_tail(ill); 10834 mi_free(ill); 10835 return (0); 10836 } 10837 success = ipsq_pending_mp_add(connp, ipif, 10838 CONNP_TO_WQ(connp), mp, ILL_FREE); 10839 mutex_exit(&connp->conn_lock); 10840 mutex_exit(&ill->ill_lock); 10841 if (success) 10842 return (EINPROGRESS); 10843 else 10844 return (EINTR); 10845 } 10846 } 10847 10848 /* 10849 * We are exclusive on the ipsq, so an ill move will be serialized 10850 * before or after us. 10851 */ 10852 ASSERT(ill->ill_move_in_progress == B_FALSE); 10853 10854 if (ipif->ipif_id == 0) { 10855 /* Find based on address */ 10856 if (ipif->ipif_isv6) { 10857 sin6_t *sin6; 10858 10859 if (sin->sin_family != AF_INET6) 10860 return (EAFNOSUPPORT); 10861 10862 sin6 = (sin6_t *)sin; 10863 /* We are a writer, so we should be able to lookup */ 10864 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10865 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10866 if (ipif == NULL) { 10867 /* 10868 * Maybe the address in on another interface in 10869 * the same IPMP group? We check this below. 10870 */ 10871 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10872 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10873 ipst); 10874 } 10875 } else { 10876 ipaddr_t addr; 10877 10878 if (sin->sin_family != AF_INET) 10879 return (EAFNOSUPPORT); 10880 10881 addr = sin->sin_addr.s_addr; 10882 /* We are a writer, so we should be able to lookup */ 10883 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10884 NULL, NULL, NULL, ipst); 10885 if (ipif == NULL) { 10886 /* 10887 * Maybe the address in on another interface in 10888 * the same IPMP group? We check this below. 10889 */ 10890 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10891 NULL, NULL, NULL, NULL, ipst); 10892 } 10893 } 10894 if (ipif == NULL) { 10895 return (EADDRNOTAVAIL); 10896 } 10897 /* 10898 * When the address to be removed is hosted on a different 10899 * interface, we check if the interface is in the same IPMP 10900 * group as the specified one; if so we proceed with the 10901 * removal. 10902 * ill->ill_group is NULL when the ill is down, so we have to 10903 * compare the group names instead. 10904 */ 10905 if (ipif->ipif_ill != ill && 10906 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10907 ill->ill_phyint->phyint_groupname_len == 0 || 10908 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10909 ill->ill_phyint->phyint_groupname) != 0)) { 10910 ipif_refrele(ipif); 10911 return (EADDRNOTAVAIL); 10912 } 10913 10914 /* This is a writer */ 10915 ipif_refrele(ipif); 10916 } 10917 10918 /* 10919 * Can not delete instance zero since it is tied to the ill. 10920 */ 10921 if (ipif->ipif_id == 0) 10922 return (EBUSY); 10923 10924 mutex_enter(&ill->ill_lock); 10925 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10926 mutex_exit(&ill->ill_lock); 10927 10928 ipif_free(ipif); 10929 10930 mutex_enter(&connp->conn_lock); 10931 mutex_enter(&ill->ill_lock); 10932 10933 /* Are any references to this ipif active */ 10934 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10935 mutex_exit(&ill->ill_lock); 10936 mutex_exit(&connp->conn_lock); 10937 ipif_non_duplicate(ipif); 10938 ipif_down_tail(ipif); 10939 ipif_free_tail(ipif); 10940 return (0); 10941 } 10942 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10943 IPIF_FREE); 10944 mutex_exit(&ill->ill_lock); 10945 mutex_exit(&connp->conn_lock); 10946 if (success) 10947 return (EINPROGRESS); 10948 else 10949 return (EINTR); 10950 } 10951 10952 /* 10953 * Restart the removeif ioctl. The refcnt has gone down to 0. 10954 * The ipif is already condemned. So can't find it thru lookups. 10955 */ 10956 /* ARGSUSED */ 10957 int 10958 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10959 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10960 { 10961 ill_t *ill = ipif->ipif_ill; 10962 10963 ASSERT(IAM_WRITER_IPIF(ipif)); 10964 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10965 10966 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10967 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10968 10969 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10970 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10971 ill_delete_tail(ill); 10972 mi_free(ill); 10973 return (0); 10974 } 10975 10976 ipif_non_duplicate(ipif); 10977 ipif_down_tail(ipif); 10978 ipif_free_tail(ipif); 10979 10980 ILL_UNMARK_CHANGING(ill); 10981 return (0); 10982 } 10983 10984 /* 10985 * Set the local interface address. 10986 * Allow an address of all zero when the interface is down. 10987 */ 10988 /* ARGSUSED */ 10989 int 10990 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10991 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10992 { 10993 int err = 0; 10994 in6_addr_t v6addr; 10995 boolean_t need_up = B_FALSE; 10996 10997 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10998 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10999 11000 ASSERT(IAM_WRITER_IPIF(ipif)); 11001 11002 if (ipif->ipif_isv6) { 11003 sin6_t *sin6; 11004 ill_t *ill; 11005 phyint_t *phyi; 11006 11007 if (sin->sin_family != AF_INET6) 11008 return (EAFNOSUPPORT); 11009 11010 sin6 = (sin6_t *)sin; 11011 v6addr = sin6->sin6_addr; 11012 ill = ipif->ipif_ill; 11013 phyi = ill->ill_phyint; 11014 11015 /* 11016 * Enforce that true multicast interfaces have a link-local 11017 * address for logical unit 0. 11018 */ 11019 if (ipif->ipif_id == 0 && 11020 (ill->ill_flags & ILLF_MULTICAST) && 11021 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11022 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11023 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11024 return (EADDRNOTAVAIL); 11025 } 11026 11027 /* 11028 * up interfaces shouldn't have the unspecified address 11029 * unless they also have the IPIF_NOLOCAL flags set and 11030 * have a subnet assigned. 11031 */ 11032 if ((ipif->ipif_flags & IPIF_UP) && 11033 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11034 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11035 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11036 return (EADDRNOTAVAIL); 11037 } 11038 11039 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11040 return (EADDRNOTAVAIL); 11041 } else { 11042 ipaddr_t addr; 11043 11044 if (sin->sin_family != AF_INET) 11045 return (EAFNOSUPPORT); 11046 11047 addr = sin->sin_addr.s_addr; 11048 11049 /* Allow 0 as the local address. */ 11050 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11051 return (EADDRNOTAVAIL); 11052 11053 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11054 } 11055 11056 11057 /* 11058 * Even if there is no change we redo things just to rerun 11059 * ipif_set_default. 11060 */ 11061 if (ipif->ipif_flags & IPIF_UP) { 11062 /* 11063 * Setting a new local address, make sure 11064 * we have net and subnet bcast ire's for 11065 * the old address if we need them. 11066 */ 11067 if (!ipif->ipif_isv6) 11068 ipif_check_bcast_ires(ipif); 11069 /* 11070 * If the interface is already marked up, 11071 * we call ipif_down which will take care 11072 * of ditching any IREs that have been set 11073 * up based on the old interface address. 11074 */ 11075 err = ipif_logical_down(ipif, q, mp); 11076 if (err == EINPROGRESS) 11077 return (err); 11078 ipif_down_tail(ipif); 11079 need_up = 1; 11080 } 11081 11082 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11083 return (err); 11084 } 11085 11086 int 11087 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11088 boolean_t need_up) 11089 { 11090 in6_addr_t v6addr; 11091 in6_addr_t ov6addr; 11092 ipaddr_t addr; 11093 sin6_t *sin6; 11094 int sinlen; 11095 int err = 0; 11096 ill_t *ill = ipif->ipif_ill; 11097 boolean_t need_dl_down; 11098 boolean_t need_arp_down; 11099 struct iocblk *iocp; 11100 11101 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11102 11103 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11104 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11105 ASSERT(IAM_WRITER_IPIF(ipif)); 11106 11107 /* Must cancel any pending timer before taking the ill_lock */ 11108 if (ipif->ipif_recovery_id != 0) 11109 (void) untimeout(ipif->ipif_recovery_id); 11110 ipif->ipif_recovery_id = 0; 11111 11112 if (ipif->ipif_isv6) { 11113 sin6 = (sin6_t *)sin; 11114 v6addr = sin6->sin6_addr; 11115 sinlen = sizeof (struct sockaddr_in6); 11116 } else { 11117 addr = sin->sin_addr.s_addr; 11118 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11119 sinlen = sizeof (struct sockaddr_in); 11120 } 11121 mutex_enter(&ill->ill_lock); 11122 ov6addr = ipif->ipif_v6lcl_addr; 11123 ipif->ipif_v6lcl_addr = v6addr; 11124 sctp_update_ipif_addr(ipif, ov6addr); 11125 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11126 ipif->ipif_v6src_addr = ipv6_all_zeros; 11127 } else { 11128 ipif->ipif_v6src_addr = v6addr; 11129 } 11130 ipif->ipif_addr_ready = 0; 11131 11132 /* 11133 * If the interface was previously marked as a duplicate, then since 11134 * we've now got a "new" address, it should no longer be considered a 11135 * duplicate -- even if the "new" address is the same as the old one. 11136 * Note that if all ipifs are down, we may have a pending ARP down 11137 * event to handle. This is because we want to recover from duplicates 11138 * and thus delay tearing down ARP until the duplicates have been 11139 * removed or disabled. 11140 */ 11141 need_dl_down = need_arp_down = B_FALSE; 11142 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11143 need_arp_down = !need_up; 11144 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11145 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11146 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11147 need_dl_down = B_TRUE; 11148 } 11149 } 11150 11151 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11152 !ill->ill_is_6to4tun) { 11153 queue_t *wqp = ill->ill_wq; 11154 11155 /* 11156 * The local address of this interface is a 6to4 address, 11157 * check if this interface is in fact a 6to4 tunnel or just 11158 * an interface configured with a 6to4 address. We are only 11159 * interested in the former. 11160 */ 11161 if (wqp != NULL) { 11162 while ((wqp->q_next != NULL) && 11163 (wqp->q_next->q_qinfo != NULL) && 11164 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11165 11166 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11167 == TUN6TO4_MODID) { 11168 /* set for use in IP */ 11169 ill->ill_is_6to4tun = 1; 11170 break; 11171 } 11172 wqp = wqp->q_next; 11173 } 11174 } 11175 } 11176 11177 ipif_set_default(ipif); 11178 11179 /* 11180 * When publishing an interface address change event, we only notify 11181 * the event listeners of the new address. It is assumed that if they 11182 * actively care about the addresses assigned that they will have 11183 * already discovered the previous address assigned (if there was one.) 11184 * 11185 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11186 */ 11187 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11188 hook_nic_event_t *info; 11189 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11190 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11191 "attached for %s\n", info->hne_event, 11192 ill->ill_name)); 11193 if (info->hne_data != NULL) 11194 kmem_free(info->hne_data, info->hne_datalen); 11195 kmem_free(info, sizeof (hook_nic_event_t)); 11196 } 11197 11198 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11199 if (info != NULL) { 11200 ip_stack_t *ipst = ill->ill_ipst; 11201 11202 info->hne_nic = 11203 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11204 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11205 info->hne_event = NE_ADDRESS_CHANGE; 11206 info->hne_family = ipif->ipif_isv6 ? 11207 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11208 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11209 if (info->hne_data != NULL) { 11210 info->hne_datalen = sinlen; 11211 bcopy(sin, info->hne_data, sinlen); 11212 } else { 11213 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11214 "address information for ADDRESS_CHANGE nic" 11215 " event of %s (ENOMEM)\n", 11216 ipif->ipif_ill->ill_name)); 11217 kmem_free(info, sizeof (hook_nic_event_t)); 11218 } 11219 } else 11220 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11221 "ADDRESS_CHANGE nic event information for %s " 11222 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11223 11224 ipif->ipif_ill->ill_nic_event_info = info; 11225 } 11226 11227 mutex_exit(&ill->ill_lock); 11228 11229 if (need_up) { 11230 /* 11231 * Now bring the interface back up. If this 11232 * is the only IPIF for the ILL, ipif_up 11233 * will have to re-bind to the device, so 11234 * we may get back EINPROGRESS, in which 11235 * case, this IOCTL will get completed in 11236 * ip_rput_dlpi when we see the DL_BIND_ACK. 11237 */ 11238 err = ipif_up(ipif, q, mp); 11239 } 11240 11241 if (need_dl_down) 11242 ill_dl_down(ill); 11243 if (need_arp_down) 11244 ipif_arp_down(ipif); 11245 11246 return (err); 11247 } 11248 11249 11250 /* 11251 * Restart entry point to restart the address set operation after the 11252 * refcounts have dropped to zero. 11253 */ 11254 /* ARGSUSED */ 11255 int 11256 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11257 ip_ioctl_cmd_t *ipip, void *ifreq) 11258 { 11259 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11261 ASSERT(IAM_WRITER_IPIF(ipif)); 11262 ipif_down_tail(ipif); 11263 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11264 } 11265 11266 /* ARGSUSED */ 11267 int 11268 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11269 ip_ioctl_cmd_t *ipip, void *if_req) 11270 { 11271 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11272 struct lifreq *lifr = (struct lifreq *)if_req; 11273 11274 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11276 /* 11277 * The net mask and address can't change since we have a 11278 * reference to the ipif. So no lock is necessary. 11279 */ 11280 if (ipif->ipif_isv6) { 11281 *sin6 = sin6_null; 11282 sin6->sin6_family = AF_INET6; 11283 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11284 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11285 lifr->lifr_addrlen = 11286 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11287 } else { 11288 *sin = sin_null; 11289 sin->sin_family = AF_INET; 11290 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11291 if (ipip->ipi_cmd_type == LIF_CMD) { 11292 lifr->lifr_addrlen = 11293 ip_mask_to_plen(ipif->ipif_net_mask); 11294 } 11295 } 11296 return (0); 11297 } 11298 11299 /* 11300 * Set the destination address for a pt-pt interface. 11301 */ 11302 /* ARGSUSED */ 11303 int 11304 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11305 ip_ioctl_cmd_t *ipip, void *if_req) 11306 { 11307 int err = 0; 11308 in6_addr_t v6addr; 11309 boolean_t need_up = B_FALSE; 11310 11311 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11312 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11313 ASSERT(IAM_WRITER_IPIF(ipif)); 11314 11315 if (ipif->ipif_isv6) { 11316 sin6_t *sin6; 11317 11318 if (sin->sin_family != AF_INET6) 11319 return (EAFNOSUPPORT); 11320 11321 sin6 = (sin6_t *)sin; 11322 v6addr = sin6->sin6_addr; 11323 11324 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11325 return (EADDRNOTAVAIL); 11326 } else { 11327 ipaddr_t addr; 11328 11329 if (sin->sin_family != AF_INET) 11330 return (EAFNOSUPPORT); 11331 11332 addr = sin->sin_addr.s_addr; 11333 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11334 return (EADDRNOTAVAIL); 11335 11336 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11337 } 11338 11339 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11340 return (0); /* No change */ 11341 11342 if (ipif->ipif_flags & IPIF_UP) { 11343 /* 11344 * If the interface is already marked up, 11345 * we call ipif_down which will take care 11346 * of ditching any IREs that have been set 11347 * up based on the old pp dst address. 11348 */ 11349 err = ipif_logical_down(ipif, q, mp); 11350 if (err == EINPROGRESS) 11351 return (err); 11352 ipif_down_tail(ipif); 11353 need_up = B_TRUE; 11354 } 11355 /* 11356 * could return EINPROGRESS. If so ioctl will complete in 11357 * ip_rput_dlpi_writer 11358 */ 11359 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11360 return (err); 11361 } 11362 11363 static int 11364 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11365 boolean_t need_up) 11366 { 11367 in6_addr_t v6addr; 11368 ill_t *ill = ipif->ipif_ill; 11369 int err = 0; 11370 boolean_t need_dl_down; 11371 boolean_t need_arp_down; 11372 11373 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11374 ipif->ipif_id, (void *)ipif)); 11375 11376 /* Must cancel any pending timer before taking the ill_lock */ 11377 if (ipif->ipif_recovery_id != 0) 11378 (void) untimeout(ipif->ipif_recovery_id); 11379 ipif->ipif_recovery_id = 0; 11380 11381 if (ipif->ipif_isv6) { 11382 sin6_t *sin6; 11383 11384 sin6 = (sin6_t *)sin; 11385 v6addr = sin6->sin6_addr; 11386 } else { 11387 ipaddr_t addr; 11388 11389 addr = sin->sin_addr.s_addr; 11390 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11391 } 11392 mutex_enter(&ill->ill_lock); 11393 /* Set point to point destination address. */ 11394 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11395 /* 11396 * Allow this as a means of creating logical 11397 * pt-pt interfaces on top of e.g. an Ethernet. 11398 * XXX Undocumented HACK for testing. 11399 * pt-pt interfaces are created with NUD disabled. 11400 */ 11401 ipif->ipif_flags |= IPIF_POINTOPOINT; 11402 ipif->ipif_flags &= ~IPIF_BROADCAST; 11403 if (ipif->ipif_isv6) 11404 ill->ill_flags |= ILLF_NONUD; 11405 } 11406 11407 /* 11408 * If the interface was previously marked as a duplicate, then since 11409 * we've now got a "new" address, it should no longer be considered a 11410 * duplicate -- even if the "new" address is the same as the old one. 11411 * Note that if all ipifs are down, we may have a pending ARP down 11412 * event to handle. 11413 */ 11414 need_dl_down = need_arp_down = B_FALSE; 11415 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11416 need_arp_down = !need_up; 11417 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11418 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11419 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11420 need_dl_down = B_TRUE; 11421 } 11422 } 11423 11424 /* Set the new address. */ 11425 ipif->ipif_v6pp_dst_addr = v6addr; 11426 /* Make sure subnet tracks pp_dst */ 11427 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11428 mutex_exit(&ill->ill_lock); 11429 11430 if (need_up) { 11431 /* 11432 * Now bring the interface back up. If this 11433 * is the only IPIF for the ILL, ipif_up 11434 * will have to re-bind to the device, so 11435 * we may get back EINPROGRESS, in which 11436 * case, this IOCTL will get completed in 11437 * ip_rput_dlpi when we see the DL_BIND_ACK. 11438 */ 11439 err = ipif_up(ipif, q, mp); 11440 } 11441 11442 if (need_dl_down) 11443 ill_dl_down(ill); 11444 11445 if (need_arp_down) 11446 ipif_arp_down(ipif); 11447 return (err); 11448 } 11449 11450 /* 11451 * Restart entry point to restart the dstaddress set operation after the 11452 * refcounts have dropped to zero. 11453 */ 11454 /* ARGSUSED */ 11455 int 11456 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11457 ip_ioctl_cmd_t *ipip, void *ifreq) 11458 { 11459 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11461 ipif_down_tail(ipif); 11462 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11463 } 11464 11465 /* ARGSUSED */ 11466 int 11467 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11468 ip_ioctl_cmd_t *ipip, void *if_req) 11469 { 11470 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11471 11472 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11473 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11474 /* 11475 * Get point to point destination address. The addresses can't 11476 * change since we hold a reference to the ipif. 11477 */ 11478 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11479 return (EADDRNOTAVAIL); 11480 11481 if (ipif->ipif_isv6) { 11482 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11483 *sin6 = sin6_null; 11484 sin6->sin6_family = AF_INET6; 11485 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11486 } else { 11487 *sin = sin_null; 11488 sin->sin_family = AF_INET; 11489 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11490 } 11491 return (0); 11492 } 11493 11494 /* 11495 * part of ipmp, make this func return the active/inactive state and 11496 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11497 */ 11498 /* 11499 * This function either sets or clears the IFF_INACTIVE flag. 11500 * 11501 * As long as there are some addresses or multicast memberships on the 11502 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11503 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11504 * will be used for outbound packets. 11505 * 11506 * Caller needs to verify the validity of setting IFF_INACTIVE. 11507 */ 11508 static void 11509 phyint_inactive(phyint_t *phyi) 11510 { 11511 ill_t *ill_v4; 11512 ill_t *ill_v6; 11513 ipif_t *ipif; 11514 ilm_t *ilm; 11515 11516 ill_v4 = phyi->phyint_illv4; 11517 ill_v6 = phyi->phyint_illv6; 11518 11519 /* 11520 * No need for a lock while traversing the list since iam 11521 * a writer 11522 */ 11523 if (ill_v4 != NULL) { 11524 ASSERT(IAM_WRITER_ILL(ill_v4)); 11525 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11526 ipif = ipif->ipif_next) { 11527 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11528 mutex_enter(&phyi->phyint_lock); 11529 phyi->phyint_flags &= ~PHYI_INACTIVE; 11530 mutex_exit(&phyi->phyint_lock); 11531 return; 11532 } 11533 } 11534 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11535 ilm = ilm->ilm_next) { 11536 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11537 mutex_enter(&phyi->phyint_lock); 11538 phyi->phyint_flags &= ~PHYI_INACTIVE; 11539 mutex_exit(&phyi->phyint_lock); 11540 return; 11541 } 11542 } 11543 } 11544 if (ill_v6 != NULL) { 11545 ill_v6 = phyi->phyint_illv6; 11546 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11547 ipif = ipif->ipif_next) { 11548 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11549 mutex_enter(&phyi->phyint_lock); 11550 phyi->phyint_flags &= ~PHYI_INACTIVE; 11551 mutex_exit(&phyi->phyint_lock); 11552 return; 11553 } 11554 } 11555 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11556 ilm = ilm->ilm_next) { 11557 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11558 mutex_enter(&phyi->phyint_lock); 11559 phyi->phyint_flags &= ~PHYI_INACTIVE; 11560 mutex_exit(&phyi->phyint_lock); 11561 return; 11562 } 11563 } 11564 } 11565 mutex_enter(&phyi->phyint_lock); 11566 phyi->phyint_flags |= PHYI_INACTIVE; 11567 mutex_exit(&phyi->phyint_lock); 11568 } 11569 11570 /* 11571 * This function is called only when the phyint flags change. Currently 11572 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11573 * that we can select a good ill. 11574 */ 11575 static void 11576 ip_redo_nomination(phyint_t *phyi) 11577 { 11578 ill_t *ill_v4; 11579 11580 ill_v4 = phyi->phyint_illv4; 11581 11582 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11583 ASSERT(IAM_WRITER_ILL(ill_v4)); 11584 if (ill_v4->ill_group->illgrp_ill_count > 1) 11585 ill_nominate_bcast_rcv(ill_v4->ill_group); 11586 } 11587 } 11588 11589 /* 11590 * Heuristic to check if ill is INACTIVE. 11591 * Checks if ill has an ipif with an usable ip address. 11592 * 11593 * Return values: 11594 * B_TRUE - ill is INACTIVE; has no usable ipif 11595 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11596 */ 11597 static boolean_t 11598 ill_is_inactive(ill_t *ill) 11599 { 11600 ipif_t *ipif; 11601 11602 /* Check whether it is in an IPMP group */ 11603 if (ill->ill_phyint->phyint_groupname == NULL) 11604 return (B_FALSE); 11605 11606 if (ill->ill_ipif_up_count == 0) 11607 return (B_TRUE); 11608 11609 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11610 uint64_t flags = ipif->ipif_flags; 11611 11612 /* 11613 * This ipif is usable if it is IPIF_UP and not a 11614 * dedicated test address. A dedicated test address 11615 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11616 * (note in particular that V6 test addresses are 11617 * link-local data addresses and thus are marked 11618 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11619 */ 11620 if ((flags & IPIF_UP) && 11621 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11622 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11623 return (B_FALSE); 11624 } 11625 return (B_TRUE); 11626 } 11627 11628 /* 11629 * Set interface flags. 11630 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11631 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11632 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11633 * 11634 * NOTE : We really don't enforce that ipif_id zero should be used 11635 * for setting any flags other than IFF_LOGINT_FLAGS. This 11636 * is because applications generally does SICGLIFFLAGS and 11637 * ORs in the new flags (that affects the logical) and does a 11638 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11639 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11640 * flags that will be turned on is correct with respect to 11641 * ipif_id 0. For backward compatibility reasons, it is not done. 11642 */ 11643 /* ARGSUSED */ 11644 int 11645 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11646 ip_ioctl_cmd_t *ipip, void *if_req) 11647 { 11648 uint64_t turn_on; 11649 uint64_t turn_off; 11650 int err; 11651 boolean_t need_up = B_FALSE; 11652 phyint_t *phyi; 11653 ill_t *ill; 11654 uint64_t intf_flags; 11655 boolean_t phyint_flags_modified = B_FALSE; 11656 uint64_t flags; 11657 struct ifreq *ifr; 11658 struct lifreq *lifr; 11659 boolean_t set_linklocal = B_FALSE; 11660 boolean_t zero_source = B_FALSE; 11661 ip_stack_t *ipst; 11662 11663 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11665 11666 ASSERT(IAM_WRITER_IPIF(ipif)); 11667 11668 ill = ipif->ipif_ill; 11669 phyi = ill->ill_phyint; 11670 ipst = ill->ill_ipst; 11671 11672 if (ipip->ipi_cmd_type == IF_CMD) { 11673 ifr = (struct ifreq *)if_req; 11674 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11675 } else { 11676 lifr = (struct lifreq *)if_req; 11677 flags = lifr->lifr_flags; 11678 } 11679 11680 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11681 11682 /* 11683 * Has the flags been set correctly till now ? 11684 */ 11685 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11686 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11687 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11688 /* 11689 * Compare the new flags to the old, and partition 11690 * into those coming on and those going off. 11691 * For the 16 bit command keep the bits above bit 16 unchanged. 11692 */ 11693 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11694 flags |= intf_flags & ~0xFFFF; 11695 11696 /* 11697 * First check which bits will change and then which will 11698 * go on and off 11699 */ 11700 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11701 if (!turn_on) 11702 return (0); /* No change */ 11703 11704 turn_off = intf_flags & turn_on; 11705 turn_on ^= turn_off; 11706 err = 0; 11707 11708 /* 11709 * Don't allow any bits belonging to the logical interface 11710 * to be set or cleared on the replacement ipif that was 11711 * created temporarily during a MOVE. 11712 */ 11713 if (ipif->ipif_replace_zero && 11714 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11715 return (EINVAL); 11716 } 11717 11718 /* 11719 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11720 * IPv6 interfaces. 11721 */ 11722 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11723 return (EINVAL); 11724 11725 /* 11726 * cannot turn off IFF_NOXMIT on VNI interfaces. 11727 */ 11728 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11729 return (EINVAL); 11730 11731 /* 11732 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11733 * interfaces. It makes no sense in that context. 11734 */ 11735 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11736 return (EINVAL); 11737 11738 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11739 zero_source = B_TRUE; 11740 11741 /* 11742 * For IPv6 ipif_id 0, don't allow the interface to be up without 11743 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11744 * If the link local address isn't set, and can be set, it will get 11745 * set later on in this function. 11746 */ 11747 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11748 (flags & IFF_UP) && !zero_source && 11749 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11750 if (ipif_cant_setlinklocal(ipif)) 11751 return (EINVAL); 11752 set_linklocal = B_TRUE; 11753 } 11754 11755 /* 11756 * ILL cannot be part of a usesrc group and and IPMP group at the 11757 * same time. No need to grab ill_g_usesrc_lock here, see 11758 * synchronization notes in ip.c 11759 */ 11760 if (turn_on & PHYI_STANDBY && 11761 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11762 return (EINVAL); 11763 } 11764 11765 /* 11766 * If we modify physical interface flags, we'll potentially need to 11767 * send up two routing socket messages for the changes (one for the 11768 * IPv4 ill, and another for the IPv6 ill). Note that here. 11769 */ 11770 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11771 phyint_flags_modified = B_TRUE; 11772 11773 /* 11774 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11775 * we need to flush the IRE_CACHES belonging to this ill. 11776 * We handle this case here without doing the DOWN/UP dance 11777 * like it is done for other flags. If some other flags are 11778 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11779 * below will handle it by bringing it down and then 11780 * bringing it UP. 11781 */ 11782 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11783 ill_t *ill_v4, *ill_v6; 11784 11785 ill_v4 = phyi->phyint_illv4; 11786 ill_v6 = phyi->phyint_illv6; 11787 11788 /* 11789 * First set the INACTIVE flag if needed. Then delete the ires. 11790 * ire_add will atomically prevent creating new IRE_CACHEs 11791 * unless hidden flag is set. 11792 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11793 */ 11794 if ((turn_on & PHYI_FAILED) && 11795 ((intf_flags & PHYI_STANDBY) || 11796 !ipst->ips_ipmp_enable_failback)) { 11797 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11798 phyi->phyint_flags &= ~PHYI_INACTIVE; 11799 } 11800 if ((turn_off & PHYI_FAILED) && 11801 ((intf_flags & PHYI_STANDBY) || 11802 (!ipst->ips_ipmp_enable_failback && 11803 ill_is_inactive(ill)))) { 11804 phyint_inactive(phyi); 11805 } 11806 11807 if (turn_on & PHYI_STANDBY) { 11808 /* 11809 * We implicitly set INACTIVE only when STANDBY is set. 11810 * INACTIVE is also set on non-STANDBY phyint when user 11811 * disables FAILBACK using configuration file. 11812 * Do not allow STANDBY to be set on such INACTIVE 11813 * phyint 11814 */ 11815 if (phyi->phyint_flags & PHYI_INACTIVE) 11816 return (EINVAL); 11817 if (!(phyi->phyint_flags & PHYI_FAILED)) 11818 phyint_inactive(phyi); 11819 } 11820 if (turn_off & PHYI_STANDBY) { 11821 if (ipst->ips_ipmp_enable_failback) { 11822 /* 11823 * Reset PHYI_INACTIVE. 11824 */ 11825 phyi->phyint_flags &= ~PHYI_INACTIVE; 11826 } else if (ill_is_inactive(ill) && 11827 !(phyi->phyint_flags & PHYI_FAILED)) { 11828 /* 11829 * Need to set INACTIVE, when user sets 11830 * STANDBY on a non-STANDBY phyint and 11831 * later resets STANDBY 11832 */ 11833 phyint_inactive(phyi); 11834 } 11835 } 11836 /* 11837 * We should always send up a message so that the 11838 * daemons come to know of it. Note that the zeroth 11839 * interface can be down and the check below for IPIF_UP 11840 * will not make sense as we are actually setting 11841 * a phyint flag here. We assume that the ipif used 11842 * is always the zeroth ipif. (ip_rts_ifmsg does not 11843 * send up any message for non-zero ipifs). 11844 */ 11845 phyint_flags_modified = B_TRUE; 11846 11847 if (ill_v4 != NULL) { 11848 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11849 IRE_CACHE, ill_stq_cache_delete, 11850 (char *)ill_v4, ill_v4); 11851 illgrp_reset_schednext(ill_v4); 11852 } 11853 if (ill_v6 != NULL) { 11854 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11855 IRE_CACHE, ill_stq_cache_delete, 11856 (char *)ill_v6, ill_v6); 11857 illgrp_reset_schednext(ill_v6); 11858 } 11859 } 11860 11861 /* 11862 * If ILLF_ROUTER changes, we need to change the ip forwarding 11863 * status of the interface and, if the interface is part of an IPMP 11864 * group, all other interfaces that are part of the same IPMP 11865 * group. 11866 */ 11867 if ((turn_on | turn_off) & ILLF_ROUTER) 11868 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11869 11870 /* 11871 * If the interface is not UP and we are not going to 11872 * bring it UP, record the flags and return. When the 11873 * interface comes UP later, the right actions will be 11874 * taken. 11875 */ 11876 if (!(ipif->ipif_flags & IPIF_UP) && 11877 !(turn_on & IPIF_UP)) { 11878 /* Record new flags in their respective places. */ 11879 mutex_enter(&ill->ill_lock); 11880 mutex_enter(&ill->ill_phyint->phyint_lock); 11881 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11882 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11883 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11884 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11885 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11886 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11887 mutex_exit(&ill->ill_lock); 11888 mutex_exit(&ill->ill_phyint->phyint_lock); 11889 11890 /* 11891 * We do the broadcast and nomination here rather 11892 * than waiting for a FAILOVER/FAILBACK to happen. In 11893 * the case of FAILBACK from INACTIVE standby to the 11894 * interface that has been repaired, PHYI_FAILED has not 11895 * been cleared yet. If there are only two interfaces in 11896 * that group, all we have is a FAILED and INACTIVE 11897 * interface. If we do the nomination soon after a failback, 11898 * the broadcast nomination code would select the 11899 * INACTIVE interface for receiving broadcasts as FAILED is 11900 * not yet cleared. As we don't want STANDBY/INACTIVE to 11901 * receive broadcast packets, we need to redo nomination 11902 * when the FAILED is cleared here. Thus, in general we 11903 * always do the nomination here for FAILED, STANDBY 11904 * and OFFLINE. 11905 */ 11906 if (((turn_on | turn_off) & 11907 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11908 ip_redo_nomination(phyi); 11909 } 11910 if (phyint_flags_modified) { 11911 if (phyi->phyint_illv4 != NULL) { 11912 ip_rts_ifmsg(phyi->phyint_illv4-> 11913 ill_ipif); 11914 } 11915 if (phyi->phyint_illv6 != NULL) { 11916 ip_rts_ifmsg(phyi->phyint_illv6-> 11917 ill_ipif); 11918 } 11919 } 11920 return (0); 11921 } else if (set_linklocal || zero_source) { 11922 mutex_enter(&ill->ill_lock); 11923 if (set_linklocal) 11924 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11925 if (zero_source) 11926 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11927 mutex_exit(&ill->ill_lock); 11928 } 11929 11930 /* 11931 * Disallow IPv6 interfaces coming up that have the unspecified address, 11932 * or point-to-point interfaces with an unspecified destination. We do 11933 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11934 * have a subnet assigned, which is how in.ndpd currently manages its 11935 * onlink prefix list when no addresses are configured with those 11936 * prefixes. 11937 */ 11938 if (ipif->ipif_isv6 && 11939 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11940 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11941 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11942 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11943 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11944 return (EINVAL); 11945 } 11946 11947 /* 11948 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11949 * from being brought up. 11950 */ 11951 if (!ipif->ipif_isv6 && 11952 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11953 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11954 return (EINVAL); 11955 } 11956 11957 /* 11958 * The only flag changes that we currently take specific action on 11959 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11960 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11961 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11962 * the flags and bringing it back up again. 11963 */ 11964 if ((turn_on|turn_off) & 11965 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11966 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11967 /* 11968 * Taking this ipif down, make sure we have 11969 * valid net and subnet bcast ire's for other 11970 * logical interfaces, if we need them. 11971 */ 11972 if (!ipif->ipif_isv6) 11973 ipif_check_bcast_ires(ipif); 11974 11975 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11976 !(turn_off & IPIF_UP)) { 11977 need_up = B_TRUE; 11978 if (ipif->ipif_flags & IPIF_UP) 11979 ill->ill_logical_down = 1; 11980 turn_on &= ~IPIF_UP; 11981 } 11982 err = ipif_down(ipif, q, mp); 11983 ip1dbg(("ipif_down returns %d err ", err)); 11984 if (err == EINPROGRESS) 11985 return (err); 11986 ipif_down_tail(ipif); 11987 } 11988 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11989 } 11990 11991 static int 11992 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11993 boolean_t need_up) 11994 { 11995 ill_t *ill; 11996 phyint_t *phyi; 11997 uint64_t turn_on; 11998 uint64_t turn_off; 11999 uint64_t intf_flags; 12000 boolean_t phyint_flags_modified = B_FALSE; 12001 int err = 0; 12002 boolean_t set_linklocal = B_FALSE; 12003 boolean_t zero_source = B_FALSE; 12004 12005 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12006 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12007 12008 ASSERT(IAM_WRITER_IPIF(ipif)); 12009 12010 ill = ipif->ipif_ill; 12011 phyi = ill->ill_phyint; 12012 12013 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12014 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12015 12016 turn_off = intf_flags & turn_on; 12017 turn_on ^= turn_off; 12018 12019 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12020 phyint_flags_modified = B_TRUE; 12021 12022 /* 12023 * Now we change the flags. Track current value of 12024 * other flags in their respective places. 12025 */ 12026 mutex_enter(&ill->ill_lock); 12027 mutex_enter(&phyi->phyint_lock); 12028 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12029 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12030 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12031 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12032 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12033 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12034 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12035 set_linklocal = B_TRUE; 12036 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12037 } 12038 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12039 zero_source = B_TRUE; 12040 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12041 } 12042 mutex_exit(&ill->ill_lock); 12043 mutex_exit(&phyi->phyint_lock); 12044 12045 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12046 ip_redo_nomination(phyi); 12047 12048 if (set_linklocal) 12049 (void) ipif_setlinklocal(ipif); 12050 12051 if (zero_source) 12052 ipif->ipif_v6src_addr = ipv6_all_zeros; 12053 else 12054 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12055 12056 if (need_up) { 12057 /* 12058 * XXX ipif_up really does not know whether a phyint flags 12059 * was modified or not. So, it sends up information on 12060 * only one routing sockets message. As we don't bring up 12061 * the interface and also set STANDBY/FAILED simultaneously 12062 * it should be okay. 12063 */ 12064 err = ipif_up(ipif, q, mp); 12065 } else { 12066 /* 12067 * Make sure routing socket sees all changes to the flags. 12068 * ipif_up_done* handles this when we use ipif_up. 12069 */ 12070 if (phyint_flags_modified) { 12071 if (phyi->phyint_illv4 != NULL) { 12072 ip_rts_ifmsg(phyi->phyint_illv4-> 12073 ill_ipif); 12074 } 12075 if (phyi->phyint_illv6 != NULL) { 12076 ip_rts_ifmsg(phyi->phyint_illv6-> 12077 ill_ipif); 12078 } 12079 } else { 12080 ip_rts_ifmsg(ipif); 12081 } 12082 /* 12083 * Update the flags in SCTP's IPIF list, ipif_up() will do 12084 * this in need_up case. 12085 */ 12086 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12087 } 12088 return (err); 12089 } 12090 12091 /* 12092 * Restart entry point to restart the flags restart operation after the 12093 * refcounts have dropped to zero. 12094 */ 12095 /* ARGSUSED */ 12096 int 12097 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12098 ip_ioctl_cmd_t *ipip, void *if_req) 12099 { 12100 int err; 12101 struct ifreq *ifr = (struct ifreq *)if_req; 12102 struct lifreq *lifr = (struct lifreq *)if_req; 12103 12104 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12105 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12106 12107 ipif_down_tail(ipif); 12108 if (ipip->ipi_cmd_type == IF_CMD) { 12109 /* 12110 * Since ip_sioctl_flags expects an int and ifr_flags 12111 * is a short we need to cast ifr_flags into an int 12112 * to avoid having sign extension cause bits to get 12113 * set that should not be. 12114 */ 12115 err = ip_sioctl_flags_tail(ipif, 12116 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12117 q, mp, B_TRUE); 12118 } else { 12119 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12120 q, mp, B_TRUE); 12121 } 12122 return (err); 12123 } 12124 12125 /* 12126 * Can operate on either a module or a driver queue. 12127 */ 12128 /* ARGSUSED */ 12129 int 12130 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12131 ip_ioctl_cmd_t *ipip, void *if_req) 12132 { 12133 /* 12134 * Has the flags been set correctly till now ? 12135 */ 12136 ill_t *ill = ipif->ipif_ill; 12137 phyint_t *phyi = ill->ill_phyint; 12138 12139 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12141 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12142 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12143 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12144 12145 /* 12146 * Need a lock since some flags can be set even when there are 12147 * references to the ipif. 12148 */ 12149 mutex_enter(&ill->ill_lock); 12150 if (ipip->ipi_cmd_type == IF_CMD) { 12151 struct ifreq *ifr = (struct ifreq *)if_req; 12152 12153 /* Get interface flags (low 16 only). */ 12154 ifr->ifr_flags = ((ipif->ipif_flags | 12155 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12156 } else { 12157 struct lifreq *lifr = (struct lifreq *)if_req; 12158 12159 /* Get interface flags. */ 12160 lifr->lifr_flags = ipif->ipif_flags | 12161 ill->ill_flags | phyi->phyint_flags; 12162 } 12163 mutex_exit(&ill->ill_lock); 12164 return (0); 12165 } 12166 12167 /* ARGSUSED */ 12168 int 12169 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12170 ip_ioctl_cmd_t *ipip, void *if_req) 12171 { 12172 int mtu; 12173 int ip_min_mtu; 12174 struct ifreq *ifr; 12175 struct lifreq *lifr; 12176 ire_t *ire; 12177 ip_stack_t *ipst; 12178 12179 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12180 ipif->ipif_id, (void *)ipif)); 12181 if (ipip->ipi_cmd_type == IF_CMD) { 12182 ifr = (struct ifreq *)if_req; 12183 mtu = ifr->ifr_metric; 12184 } else { 12185 lifr = (struct lifreq *)if_req; 12186 mtu = lifr->lifr_mtu; 12187 } 12188 12189 if (ipif->ipif_isv6) 12190 ip_min_mtu = IPV6_MIN_MTU; 12191 else 12192 ip_min_mtu = IP_MIN_MTU; 12193 12194 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12195 return (EINVAL); 12196 12197 /* 12198 * Change the MTU size in all relevant ire's. 12199 * Mtu change Vs. new ire creation - protocol below. 12200 * First change ipif_mtu and the ire_max_frag of the 12201 * interface ire. Then do an ire walk and change the 12202 * ire_max_frag of all affected ires. During ire_add 12203 * under the bucket lock, set the ire_max_frag of the 12204 * new ire being created from the ipif/ire from which 12205 * it is being derived. If an mtu change happens after 12206 * the ire is added, the new ire will be cleaned up. 12207 * Conversely if the mtu change happens before the ire 12208 * is added, ire_add will see the new value of the mtu. 12209 */ 12210 ipif->ipif_mtu = mtu; 12211 ipif->ipif_flags |= IPIF_FIXEDMTU; 12212 12213 if (ipif->ipif_isv6) 12214 ire = ipif_to_ire_v6(ipif); 12215 else 12216 ire = ipif_to_ire(ipif); 12217 if (ire != NULL) { 12218 ire->ire_max_frag = ipif->ipif_mtu; 12219 ire_refrele(ire); 12220 } 12221 ipst = ipif->ipif_ill->ill_ipst; 12222 if (ipif->ipif_flags & IPIF_UP) { 12223 if (ipif->ipif_isv6) 12224 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12225 ipst); 12226 else 12227 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12228 ipst); 12229 } 12230 /* Update the MTU in SCTP's list */ 12231 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12232 return (0); 12233 } 12234 12235 /* Get interface MTU. */ 12236 /* ARGSUSED */ 12237 int 12238 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12239 ip_ioctl_cmd_t *ipip, void *if_req) 12240 { 12241 struct ifreq *ifr; 12242 struct lifreq *lifr; 12243 12244 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12246 if (ipip->ipi_cmd_type == IF_CMD) { 12247 ifr = (struct ifreq *)if_req; 12248 ifr->ifr_metric = ipif->ipif_mtu; 12249 } else { 12250 lifr = (struct lifreq *)if_req; 12251 lifr->lifr_mtu = ipif->ipif_mtu; 12252 } 12253 return (0); 12254 } 12255 12256 /* Set interface broadcast address. */ 12257 /* ARGSUSED2 */ 12258 int 12259 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12260 ip_ioctl_cmd_t *ipip, void *if_req) 12261 { 12262 ipaddr_t addr; 12263 ire_t *ire; 12264 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12265 12266 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12267 ipif->ipif_id)); 12268 12269 ASSERT(IAM_WRITER_IPIF(ipif)); 12270 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12271 return (EADDRNOTAVAIL); 12272 12273 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12274 12275 if (sin->sin_family != AF_INET) 12276 return (EAFNOSUPPORT); 12277 12278 addr = sin->sin_addr.s_addr; 12279 if (ipif->ipif_flags & IPIF_UP) { 12280 /* 12281 * If we are already up, make sure the new 12282 * broadcast address makes sense. If it does, 12283 * there should be an IRE for it already. 12284 * Don't match on ipif, only on the ill 12285 * since we are sharing these now. Don't use 12286 * MATCH_IRE_ILL_GROUP as we are looking for 12287 * the broadcast ire on this ill and each ill 12288 * in the group has its own broadcast ire. 12289 */ 12290 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12291 ipif, ALL_ZONES, NULL, 12292 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12293 if (ire == NULL) { 12294 return (EINVAL); 12295 } else { 12296 ire_refrele(ire); 12297 } 12298 } 12299 /* 12300 * Changing the broadcast addr for this ipif. 12301 * Make sure we have valid net and subnet bcast 12302 * ire's for other logical interfaces, if needed. 12303 */ 12304 if (addr != ipif->ipif_brd_addr) 12305 ipif_check_bcast_ires(ipif); 12306 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12307 return (0); 12308 } 12309 12310 /* Get interface broadcast address. */ 12311 /* ARGSUSED */ 12312 int 12313 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12314 ip_ioctl_cmd_t *ipip, void *if_req) 12315 { 12316 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12317 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12318 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12319 return (EADDRNOTAVAIL); 12320 12321 /* IPIF_BROADCAST not possible with IPv6 */ 12322 ASSERT(!ipif->ipif_isv6); 12323 *sin = sin_null; 12324 sin->sin_family = AF_INET; 12325 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12326 return (0); 12327 } 12328 12329 /* 12330 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12331 */ 12332 /* ARGSUSED */ 12333 int 12334 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12335 ip_ioctl_cmd_t *ipip, void *if_req) 12336 { 12337 int err = 0; 12338 in6_addr_t v6mask; 12339 12340 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12341 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12342 12343 ASSERT(IAM_WRITER_IPIF(ipif)); 12344 12345 if (ipif->ipif_isv6) { 12346 sin6_t *sin6; 12347 12348 if (sin->sin_family != AF_INET6) 12349 return (EAFNOSUPPORT); 12350 12351 sin6 = (sin6_t *)sin; 12352 v6mask = sin6->sin6_addr; 12353 } else { 12354 ipaddr_t mask; 12355 12356 if (sin->sin_family != AF_INET) 12357 return (EAFNOSUPPORT); 12358 12359 mask = sin->sin_addr.s_addr; 12360 V4MASK_TO_V6(mask, v6mask); 12361 } 12362 12363 /* 12364 * No big deal if the interface isn't already up, or the mask 12365 * isn't really changing, or this is pt-pt. 12366 */ 12367 if (!(ipif->ipif_flags & IPIF_UP) || 12368 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12369 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12370 ipif->ipif_v6net_mask = v6mask; 12371 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12372 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12373 ipif->ipif_v6net_mask, 12374 ipif->ipif_v6subnet); 12375 } 12376 return (0); 12377 } 12378 /* 12379 * Make sure we have valid net and subnet broadcast ire's 12380 * for the old netmask, if needed by other logical interfaces. 12381 */ 12382 if (!ipif->ipif_isv6) 12383 ipif_check_bcast_ires(ipif); 12384 12385 err = ipif_logical_down(ipif, q, mp); 12386 if (err == EINPROGRESS) 12387 return (err); 12388 ipif_down_tail(ipif); 12389 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12390 return (err); 12391 } 12392 12393 static int 12394 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12395 { 12396 in6_addr_t v6mask; 12397 int err = 0; 12398 12399 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12400 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12401 12402 if (ipif->ipif_isv6) { 12403 sin6_t *sin6; 12404 12405 sin6 = (sin6_t *)sin; 12406 v6mask = sin6->sin6_addr; 12407 } else { 12408 ipaddr_t mask; 12409 12410 mask = sin->sin_addr.s_addr; 12411 V4MASK_TO_V6(mask, v6mask); 12412 } 12413 12414 ipif->ipif_v6net_mask = v6mask; 12415 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12416 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12417 ipif->ipif_v6subnet); 12418 } 12419 err = ipif_up(ipif, q, mp); 12420 12421 if (err == 0 || err == EINPROGRESS) { 12422 /* 12423 * The interface must be DL_BOUND if this packet has to 12424 * go out on the wire. Since we only go through a logical 12425 * down and are bound with the driver during an internal 12426 * down/up that is satisfied. 12427 */ 12428 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12429 /* Potentially broadcast an address mask reply. */ 12430 ipif_mask_reply(ipif); 12431 } 12432 } 12433 return (err); 12434 } 12435 12436 /* ARGSUSED */ 12437 int 12438 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12439 ip_ioctl_cmd_t *ipip, void *if_req) 12440 { 12441 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12443 ipif_down_tail(ipif); 12444 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12445 } 12446 12447 /* Get interface net mask. */ 12448 /* ARGSUSED */ 12449 int 12450 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12451 ip_ioctl_cmd_t *ipip, void *if_req) 12452 { 12453 struct lifreq *lifr = (struct lifreq *)if_req; 12454 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12455 12456 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12458 12459 /* 12460 * net mask can't change since we have a reference to the ipif. 12461 */ 12462 if (ipif->ipif_isv6) { 12463 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12464 *sin6 = sin6_null; 12465 sin6->sin6_family = AF_INET6; 12466 sin6->sin6_addr = ipif->ipif_v6net_mask; 12467 lifr->lifr_addrlen = 12468 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12469 } else { 12470 *sin = sin_null; 12471 sin->sin_family = AF_INET; 12472 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12473 if (ipip->ipi_cmd_type == LIF_CMD) { 12474 lifr->lifr_addrlen = 12475 ip_mask_to_plen(ipif->ipif_net_mask); 12476 } 12477 } 12478 return (0); 12479 } 12480 12481 /* ARGSUSED */ 12482 int 12483 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12484 ip_ioctl_cmd_t *ipip, void *if_req) 12485 { 12486 12487 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12488 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12489 /* 12490 * Set interface metric. We don't use this for 12491 * anything but we keep track of it in case it is 12492 * important to routing applications or such. 12493 */ 12494 if (ipip->ipi_cmd_type == IF_CMD) { 12495 struct ifreq *ifr; 12496 12497 ifr = (struct ifreq *)if_req; 12498 ipif->ipif_metric = ifr->ifr_metric; 12499 } else { 12500 struct lifreq *lifr; 12501 12502 lifr = (struct lifreq *)if_req; 12503 ipif->ipif_metric = lifr->lifr_metric; 12504 } 12505 return (0); 12506 } 12507 12508 12509 /* ARGSUSED */ 12510 int 12511 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12512 ip_ioctl_cmd_t *ipip, void *if_req) 12513 { 12514 12515 /* Get interface metric. */ 12516 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12517 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12518 if (ipip->ipi_cmd_type == IF_CMD) { 12519 struct ifreq *ifr; 12520 12521 ifr = (struct ifreq *)if_req; 12522 ifr->ifr_metric = ipif->ipif_metric; 12523 } else { 12524 struct lifreq *lifr; 12525 12526 lifr = (struct lifreq *)if_req; 12527 lifr->lifr_metric = ipif->ipif_metric; 12528 } 12529 12530 return (0); 12531 } 12532 12533 /* ARGSUSED */ 12534 int 12535 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12536 ip_ioctl_cmd_t *ipip, void *if_req) 12537 { 12538 12539 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12540 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12541 /* 12542 * Set the muxid returned from I_PLINK. 12543 */ 12544 if (ipip->ipi_cmd_type == IF_CMD) { 12545 struct ifreq *ifr = (struct ifreq *)if_req; 12546 12547 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12548 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12549 } else { 12550 struct lifreq *lifr = (struct lifreq *)if_req; 12551 12552 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12553 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12554 } 12555 return (0); 12556 } 12557 12558 /* ARGSUSED */ 12559 int 12560 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12561 ip_ioctl_cmd_t *ipip, void *if_req) 12562 { 12563 12564 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12565 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12566 /* 12567 * Get the muxid saved in ill for I_PUNLINK. 12568 */ 12569 if (ipip->ipi_cmd_type == IF_CMD) { 12570 struct ifreq *ifr = (struct ifreq *)if_req; 12571 12572 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12573 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12574 } else { 12575 struct lifreq *lifr = (struct lifreq *)if_req; 12576 12577 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12578 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12579 } 12580 return (0); 12581 } 12582 12583 /* 12584 * Set the subnet prefix. Does not modify the broadcast address. 12585 */ 12586 /* ARGSUSED */ 12587 int 12588 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12589 ip_ioctl_cmd_t *ipip, void *if_req) 12590 { 12591 int err = 0; 12592 in6_addr_t v6addr; 12593 in6_addr_t v6mask; 12594 boolean_t need_up = B_FALSE; 12595 int addrlen; 12596 12597 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12599 12600 ASSERT(IAM_WRITER_IPIF(ipif)); 12601 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12602 12603 if (ipif->ipif_isv6) { 12604 sin6_t *sin6; 12605 12606 if (sin->sin_family != AF_INET6) 12607 return (EAFNOSUPPORT); 12608 12609 sin6 = (sin6_t *)sin; 12610 v6addr = sin6->sin6_addr; 12611 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12612 return (EADDRNOTAVAIL); 12613 } else { 12614 ipaddr_t addr; 12615 12616 if (sin->sin_family != AF_INET) 12617 return (EAFNOSUPPORT); 12618 12619 addr = sin->sin_addr.s_addr; 12620 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12621 return (EADDRNOTAVAIL); 12622 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12623 /* Add 96 bits */ 12624 addrlen += IPV6_ABITS - IP_ABITS; 12625 } 12626 12627 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12628 return (EINVAL); 12629 12630 /* Check if bits in the address is set past the mask */ 12631 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12632 return (EINVAL); 12633 12634 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12635 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12636 return (0); /* No change */ 12637 12638 if (ipif->ipif_flags & IPIF_UP) { 12639 /* 12640 * If the interface is already marked up, 12641 * we call ipif_down which will take care 12642 * of ditching any IREs that have been set 12643 * up based on the old interface address. 12644 */ 12645 err = ipif_logical_down(ipif, q, mp); 12646 if (err == EINPROGRESS) 12647 return (err); 12648 ipif_down_tail(ipif); 12649 need_up = B_TRUE; 12650 } 12651 12652 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12653 return (err); 12654 } 12655 12656 static int 12657 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12658 queue_t *q, mblk_t *mp, boolean_t need_up) 12659 { 12660 ill_t *ill = ipif->ipif_ill; 12661 int err = 0; 12662 12663 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12665 12666 /* Set the new address. */ 12667 mutex_enter(&ill->ill_lock); 12668 ipif->ipif_v6net_mask = v6mask; 12669 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12670 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12671 ipif->ipif_v6subnet); 12672 } 12673 mutex_exit(&ill->ill_lock); 12674 12675 if (need_up) { 12676 /* 12677 * Now bring the interface back up. If this 12678 * is the only IPIF for the ILL, ipif_up 12679 * will have to re-bind to the device, so 12680 * we may get back EINPROGRESS, in which 12681 * case, this IOCTL will get completed in 12682 * ip_rput_dlpi when we see the DL_BIND_ACK. 12683 */ 12684 err = ipif_up(ipif, q, mp); 12685 if (err == EINPROGRESS) 12686 return (err); 12687 } 12688 return (err); 12689 } 12690 12691 /* ARGSUSED */ 12692 int 12693 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12694 ip_ioctl_cmd_t *ipip, void *if_req) 12695 { 12696 int addrlen; 12697 in6_addr_t v6addr; 12698 in6_addr_t v6mask; 12699 struct lifreq *lifr = (struct lifreq *)if_req; 12700 12701 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12703 ipif_down_tail(ipif); 12704 12705 addrlen = lifr->lifr_addrlen; 12706 if (ipif->ipif_isv6) { 12707 sin6_t *sin6; 12708 12709 sin6 = (sin6_t *)sin; 12710 v6addr = sin6->sin6_addr; 12711 } else { 12712 ipaddr_t addr; 12713 12714 addr = sin->sin_addr.s_addr; 12715 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12716 addrlen += IPV6_ABITS - IP_ABITS; 12717 } 12718 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12719 12720 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12721 } 12722 12723 /* ARGSUSED */ 12724 int 12725 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12726 ip_ioctl_cmd_t *ipip, void *if_req) 12727 { 12728 struct lifreq *lifr = (struct lifreq *)if_req; 12729 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12730 12731 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12732 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12733 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12734 12735 if (ipif->ipif_isv6) { 12736 *sin6 = sin6_null; 12737 sin6->sin6_family = AF_INET6; 12738 sin6->sin6_addr = ipif->ipif_v6subnet; 12739 lifr->lifr_addrlen = 12740 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12741 } else { 12742 *sin = sin_null; 12743 sin->sin_family = AF_INET; 12744 sin->sin_addr.s_addr = ipif->ipif_subnet; 12745 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12746 } 12747 return (0); 12748 } 12749 12750 /* 12751 * Set the IPv6 address token. 12752 */ 12753 /* ARGSUSED */ 12754 int 12755 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12756 ip_ioctl_cmd_t *ipi, void *if_req) 12757 { 12758 ill_t *ill = ipif->ipif_ill; 12759 int err; 12760 in6_addr_t v6addr; 12761 in6_addr_t v6mask; 12762 boolean_t need_up = B_FALSE; 12763 int i; 12764 sin6_t *sin6 = (sin6_t *)sin; 12765 struct lifreq *lifr = (struct lifreq *)if_req; 12766 int addrlen; 12767 12768 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12769 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12770 ASSERT(IAM_WRITER_IPIF(ipif)); 12771 12772 addrlen = lifr->lifr_addrlen; 12773 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12774 if (ipif->ipif_id != 0) 12775 return (EINVAL); 12776 12777 if (!ipif->ipif_isv6) 12778 return (EINVAL); 12779 12780 if (addrlen > IPV6_ABITS) 12781 return (EINVAL); 12782 12783 v6addr = sin6->sin6_addr; 12784 12785 /* 12786 * The length of the token is the length from the end. To get 12787 * the proper mask for this, compute the mask of the bits not 12788 * in the token; ie. the prefix, and then xor to get the mask. 12789 */ 12790 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12791 return (EINVAL); 12792 for (i = 0; i < 4; i++) { 12793 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12794 } 12795 12796 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12797 ill->ill_token_length == addrlen) 12798 return (0); /* No change */ 12799 12800 if (ipif->ipif_flags & IPIF_UP) { 12801 err = ipif_logical_down(ipif, q, mp); 12802 if (err == EINPROGRESS) 12803 return (err); 12804 ipif_down_tail(ipif); 12805 need_up = B_TRUE; 12806 } 12807 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12808 return (err); 12809 } 12810 12811 static int 12812 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12813 mblk_t *mp, boolean_t need_up) 12814 { 12815 in6_addr_t v6addr; 12816 in6_addr_t v6mask; 12817 ill_t *ill = ipif->ipif_ill; 12818 int i; 12819 int err = 0; 12820 12821 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12822 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12823 v6addr = sin6->sin6_addr; 12824 /* 12825 * The length of the token is the length from the end. To get 12826 * the proper mask for this, compute the mask of the bits not 12827 * in the token; ie. the prefix, and then xor to get the mask. 12828 */ 12829 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12830 for (i = 0; i < 4; i++) 12831 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12832 12833 mutex_enter(&ill->ill_lock); 12834 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12835 ill->ill_token_length = addrlen; 12836 mutex_exit(&ill->ill_lock); 12837 12838 if (need_up) { 12839 /* 12840 * Now bring the interface back up. If this 12841 * is the only IPIF for the ILL, ipif_up 12842 * will have to re-bind to the device, so 12843 * we may get back EINPROGRESS, in which 12844 * case, this IOCTL will get completed in 12845 * ip_rput_dlpi when we see the DL_BIND_ACK. 12846 */ 12847 err = ipif_up(ipif, q, mp); 12848 if (err == EINPROGRESS) 12849 return (err); 12850 } 12851 return (err); 12852 } 12853 12854 /* ARGSUSED */ 12855 int 12856 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12857 ip_ioctl_cmd_t *ipi, void *if_req) 12858 { 12859 ill_t *ill; 12860 sin6_t *sin6 = (sin6_t *)sin; 12861 struct lifreq *lifr = (struct lifreq *)if_req; 12862 12863 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12864 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12865 if (ipif->ipif_id != 0) 12866 return (EINVAL); 12867 12868 ill = ipif->ipif_ill; 12869 if (!ill->ill_isv6) 12870 return (ENXIO); 12871 12872 *sin6 = sin6_null; 12873 sin6->sin6_family = AF_INET6; 12874 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12875 sin6->sin6_addr = ill->ill_token; 12876 lifr->lifr_addrlen = ill->ill_token_length; 12877 return (0); 12878 } 12879 12880 /* 12881 * Set (hardware) link specific information that might override 12882 * what was acquired through the DL_INFO_ACK. 12883 * The logic is as follows. 12884 * 12885 * become exclusive 12886 * set CHANGING flag 12887 * change mtu on affected IREs 12888 * clear CHANGING flag 12889 * 12890 * An ire add that occurs before the CHANGING flag is set will have its mtu 12891 * changed by the ip_sioctl_lnkinfo. 12892 * 12893 * During the time the CHANGING flag is set, no new ires will be added to the 12894 * bucket, and ire add will fail (due the CHANGING flag). 12895 * 12896 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12897 * before it is added to the bucket. 12898 * 12899 * Obviously only 1 thread can set the CHANGING flag and we need to become 12900 * exclusive to set the flag. 12901 */ 12902 /* ARGSUSED */ 12903 int 12904 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12905 ip_ioctl_cmd_t *ipi, void *if_req) 12906 { 12907 ill_t *ill = ipif->ipif_ill; 12908 ipif_t *nipif; 12909 int ip_min_mtu; 12910 boolean_t mtu_walk = B_FALSE; 12911 struct lifreq *lifr = (struct lifreq *)if_req; 12912 lif_ifinfo_req_t *lir; 12913 ire_t *ire; 12914 12915 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12917 lir = &lifr->lifr_ifinfo; 12918 ASSERT(IAM_WRITER_IPIF(ipif)); 12919 12920 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12921 if (ipif->ipif_id != 0) 12922 return (EINVAL); 12923 12924 /* Set interface MTU. */ 12925 if (ipif->ipif_isv6) 12926 ip_min_mtu = IPV6_MIN_MTU; 12927 else 12928 ip_min_mtu = IP_MIN_MTU; 12929 12930 /* 12931 * Verify values before we set anything. Allow zero to 12932 * mean unspecified. 12933 */ 12934 if (lir->lir_maxmtu != 0 && 12935 (lir->lir_maxmtu > ill->ill_max_frag || 12936 lir->lir_maxmtu < ip_min_mtu)) 12937 return (EINVAL); 12938 if (lir->lir_reachtime != 0 && 12939 lir->lir_reachtime > ND_MAX_REACHTIME) 12940 return (EINVAL); 12941 if (lir->lir_reachretrans != 0 && 12942 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12943 return (EINVAL); 12944 12945 mutex_enter(&ill->ill_lock); 12946 ill->ill_state_flags |= ILL_CHANGING; 12947 for (nipif = ill->ill_ipif; nipif != NULL; 12948 nipif = nipif->ipif_next) { 12949 nipif->ipif_state_flags |= IPIF_CHANGING; 12950 } 12951 12952 mutex_exit(&ill->ill_lock); 12953 12954 if (lir->lir_maxmtu != 0) { 12955 ill->ill_max_mtu = lir->lir_maxmtu; 12956 ill->ill_mtu_userspecified = 1; 12957 mtu_walk = B_TRUE; 12958 } 12959 12960 if (lir->lir_reachtime != 0) 12961 ill->ill_reachable_time = lir->lir_reachtime; 12962 12963 if (lir->lir_reachretrans != 0) 12964 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12965 12966 ill->ill_max_hops = lir->lir_maxhops; 12967 12968 ill->ill_max_buf = ND_MAX_Q; 12969 12970 if (mtu_walk) { 12971 /* 12972 * Set the MTU on all ipifs associated with this ill except 12973 * for those whose MTU was fixed via SIOCSLIFMTU. 12974 */ 12975 for (nipif = ill->ill_ipif; nipif != NULL; 12976 nipif = nipif->ipif_next) { 12977 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12978 continue; 12979 12980 nipif->ipif_mtu = ill->ill_max_mtu; 12981 12982 if (!(nipif->ipif_flags & IPIF_UP)) 12983 continue; 12984 12985 if (nipif->ipif_isv6) 12986 ire = ipif_to_ire_v6(nipif); 12987 else 12988 ire = ipif_to_ire(nipif); 12989 if (ire != NULL) { 12990 ire->ire_max_frag = ipif->ipif_mtu; 12991 ire_refrele(ire); 12992 } 12993 if (ill->ill_isv6) { 12994 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12995 ipif_mtu_change, (char *)nipif, 12996 ill); 12997 } else { 12998 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12999 ipif_mtu_change, (char *)nipif, 13000 ill); 13001 } 13002 } 13003 } 13004 13005 mutex_enter(&ill->ill_lock); 13006 for (nipif = ill->ill_ipif; nipif != NULL; 13007 nipif = nipif->ipif_next) { 13008 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13009 } 13010 ILL_UNMARK_CHANGING(ill); 13011 mutex_exit(&ill->ill_lock); 13012 13013 return (0); 13014 } 13015 13016 /* ARGSUSED */ 13017 int 13018 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13019 ip_ioctl_cmd_t *ipi, void *if_req) 13020 { 13021 struct lif_ifinfo_req *lir; 13022 ill_t *ill = ipif->ipif_ill; 13023 13024 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13026 if (ipif->ipif_id != 0) 13027 return (EINVAL); 13028 13029 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13030 lir->lir_maxhops = ill->ill_max_hops; 13031 lir->lir_reachtime = ill->ill_reachable_time; 13032 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13033 lir->lir_maxmtu = ill->ill_max_mtu; 13034 13035 return (0); 13036 } 13037 13038 /* 13039 * Return best guess as to the subnet mask for the specified address. 13040 * Based on the subnet masks for all the configured interfaces. 13041 * 13042 * We end up returning a zero mask in the case of default, multicast or 13043 * experimental. 13044 */ 13045 static ipaddr_t 13046 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13047 { 13048 ipaddr_t net_mask; 13049 ill_t *ill; 13050 ipif_t *ipif; 13051 ill_walk_context_t ctx; 13052 ipif_t *fallback_ipif = NULL; 13053 13054 net_mask = ip_net_mask(addr); 13055 if (net_mask == 0) { 13056 *ipifp = NULL; 13057 return (0); 13058 } 13059 13060 /* Let's check to see if this is maybe a local subnet route. */ 13061 /* this function only applies to IPv4 interfaces */ 13062 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13063 ill = ILL_START_WALK_V4(&ctx, ipst); 13064 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13065 mutex_enter(&ill->ill_lock); 13066 for (ipif = ill->ill_ipif; ipif != NULL; 13067 ipif = ipif->ipif_next) { 13068 if (!IPIF_CAN_LOOKUP(ipif)) 13069 continue; 13070 if (!(ipif->ipif_flags & IPIF_UP)) 13071 continue; 13072 if ((ipif->ipif_subnet & net_mask) == 13073 (addr & net_mask)) { 13074 /* 13075 * Don't trust pt-pt interfaces if there are 13076 * other interfaces. 13077 */ 13078 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13079 if (fallback_ipif == NULL) { 13080 ipif_refhold_locked(ipif); 13081 fallback_ipif = ipif; 13082 } 13083 continue; 13084 } 13085 13086 /* 13087 * Fine. Just assume the same net mask as the 13088 * directly attached subnet interface is using. 13089 */ 13090 ipif_refhold_locked(ipif); 13091 mutex_exit(&ill->ill_lock); 13092 rw_exit(&ipst->ips_ill_g_lock); 13093 if (fallback_ipif != NULL) 13094 ipif_refrele(fallback_ipif); 13095 *ipifp = ipif; 13096 return (ipif->ipif_net_mask); 13097 } 13098 } 13099 mutex_exit(&ill->ill_lock); 13100 } 13101 rw_exit(&ipst->ips_ill_g_lock); 13102 13103 *ipifp = fallback_ipif; 13104 return ((fallback_ipif != NULL) ? 13105 fallback_ipif->ipif_net_mask : net_mask); 13106 } 13107 13108 /* 13109 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13110 */ 13111 static void 13112 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13113 { 13114 IOCP iocp; 13115 ipft_t *ipft; 13116 ipllc_t *ipllc; 13117 mblk_t *mp1; 13118 cred_t *cr; 13119 int error = 0; 13120 conn_t *connp; 13121 13122 ip1dbg(("ip_wput_ioctl")); 13123 iocp = (IOCP)mp->b_rptr; 13124 mp1 = mp->b_cont; 13125 if (mp1 == NULL) { 13126 iocp->ioc_error = EINVAL; 13127 mp->b_datap->db_type = M_IOCNAK; 13128 iocp->ioc_count = 0; 13129 qreply(q, mp); 13130 return; 13131 } 13132 13133 /* 13134 * These IOCTLs provide various control capabilities to 13135 * upstream agents such as ULPs and processes. There 13136 * are currently two such IOCTLs implemented. They 13137 * are used by TCP to provide update information for 13138 * existing IREs and to forcibly delete an IRE for a 13139 * host that is not responding, thereby forcing an 13140 * attempt at a new route. 13141 */ 13142 iocp->ioc_error = EINVAL; 13143 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13144 goto done; 13145 13146 ipllc = (ipllc_t *)mp1->b_rptr; 13147 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13148 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13149 break; 13150 } 13151 /* 13152 * prefer credential from mblk over ioctl; 13153 * see ip_sioctl_copyin_setup 13154 */ 13155 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13156 13157 /* 13158 * Refhold the conn in case the request gets queued up in some lookup 13159 */ 13160 ASSERT(CONN_Q(q)); 13161 connp = Q_TO_CONN(q); 13162 CONN_INC_REF(connp); 13163 if (ipft->ipft_pfi && 13164 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13165 pullupmsg(mp1, ipft->ipft_min_size))) { 13166 error = (*ipft->ipft_pfi)(q, 13167 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13168 } 13169 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13170 /* 13171 * CONN_OPER_PENDING_DONE happens in the function called 13172 * through ipft_pfi above. 13173 */ 13174 return; 13175 } 13176 13177 CONN_OPER_PENDING_DONE(connp); 13178 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13179 freemsg(mp); 13180 return; 13181 } 13182 iocp->ioc_error = error; 13183 13184 done: 13185 mp->b_datap->db_type = M_IOCACK; 13186 if (iocp->ioc_error) 13187 iocp->ioc_count = 0; 13188 qreply(q, mp); 13189 } 13190 13191 /* 13192 * Lookup an ipif using the sequence id (ipif_seqid) 13193 */ 13194 ipif_t * 13195 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13196 { 13197 ipif_t *ipif; 13198 13199 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13200 13201 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13202 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13203 return (ipif); 13204 } 13205 return (NULL); 13206 } 13207 13208 /* 13209 * Assign a unique id for the ipif. This is used later when we send 13210 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13211 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13212 * IRE is added, we verify that ipif has not disappeared. 13213 */ 13214 13215 static void 13216 ipif_assign_seqid(ipif_t *ipif) 13217 { 13218 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13219 13220 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13221 } 13222 13223 /* 13224 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13225 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13226 * be inserted into the first space available in the list. The value of 13227 * ipif_id will then be set to the appropriate value for its position. 13228 */ 13229 static int 13230 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13231 { 13232 ill_t *ill; 13233 ipif_t *tipif; 13234 ipif_t **tipifp; 13235 int id; 13236 ip_stack_t *ipst; 13237 13238 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13239 IAM_WRITER_IPIF(ipif)); 13240 13241 ill = ipif->ipif_ill; 13242 ASSERT(ill != NULL); 13243 ipst = ill->ill_ipst; 13244 13245 /* 13246 * In the case of lo0:0 we already hold the ill_g_lock. 13247 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13248 * ipif_insert. Another such caller is ipif_move. 13249 */ 13250 if (acquire_g_lock) 13251 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13252 if (acquire_ill_lock) 13253 mutex_enter(&ill->ill_lock); 13254 id = ipif->ipif_id; 13255 tipifp = &(ill->ill_ipif); 13256 if (id == -1) { /* need to find a real id */ 13257 id = 0; 13258 while ((tipif = *tipifp) != NULL) { 13259 ASSERT(tipif->ipif_id >= id); 13260 if (tipif->ipif_id != id) 13261 break; /* non-consecutive id */ 13262 id++; 13263 tipifp = &(tipif->ipif_next); 13264 } 13265 /* limit number of logical interfaces */ 13266 if (id >= ipst->ips_ip_addrs_per_if) { 13267 if (acquire_ill_lock) 13268 mutex_exit(&ill->ill_lock); 13269 if (acquire_g_lock) 13270 rw_exit(&ipst->ips_ill_g_lock); 13271 return (-1); 13272 } 13273 ipif->ipif_id = id; /* assign new id */ 13274 } else if (id < ipst->ips_ip_addrs_per_if) { 13275 /* we have a real id; insert ipif in the right place */ 13276 while ((tipif = *tipifp) != NULL) { 13277 ASSERT(tipif->ipif_id != id); 13278 if (tipif->ipif_id > id) 13279 break; /* found correct location */ 13280 tipifp = &(tipif->ipif_next); 13281 } 13282 } else { 13283 if (acquire_ill_lock) 13284 mutex_exit(&ill->ill_lock); 13285 if (acquire_g_lock) 13286 rw_exit(&ipst->ips_ill_g_lock); 13287 return (-1); 13288 } 13289 13290 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13291 13292 ipif->ipif_next = tipif; 13293 *tipifp = ipif; 13294 if (acquire_ill_lock) 13295 mutex_exit(&ill->ill_lock); 13296 if (acquire_g_lock) 13297 rw_exit(&ipst->ips_ill_g_lock); 13298 return (0); 13299 } 13300 13301 static void 13302 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13303 { 13304 ipif_t **ipifp; 13305 ill_t *ill = ipif->ipif_ill; 13306 13307 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13308 if (acquire_ill_lock) 13309 mutex_enter(&ill->ill_lock); 13310 else 13311 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13312 13313 ipifp = &ill->ill_ipif; 13314 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13315 if (*ipifp == ipif) { 13316 *ipifp = ipif->ipif_next; 13317 break; 13318 } 13319 } 13320 13321 if (acquire_ill_lock) 13322 mutex_exit(&ill->ill_lock); 13323 } 13324 13325 /* 13326 * Allocate and initialize a new interface control structure. (Always 13327 * called as writer.) 13328 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13329 * is not part of the global linked list of ills. ipif_seqid is unique 13330 * in the system and to preserve the uniqueness, it is assigned only 13331 * when ill becomes part of the global list. At that point ill will 13332 * have a name. If it doesn't get assigned here, it will get assigned 13333 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13334 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13335 * the interface flags or any other information from the DL_INFO_ACK for 13336 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13337 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13338 * second DL_INFO_ACK comes in from the driver. 13339 */ 13340 static ipif_t * 13341 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13342 { 13343 ipif_t *ipif; 13344 phyint_t *phyi; 13345 13346 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13347 ill->ill_name, id, (void *)ill)); 13348 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13349 13350 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13351 return (NULL); 13352 *ipif = ipif_zero; /* start clean */ 13353 13354 ipif->ipif_ill = ill; 13355 ipif->ipif_id = id; /* could be -1 */ 13356 /* 13357 * Inherit the zoneid from the ill; for the shared stack instance 13358 * this is always the global zone 13359 */ 13360 ipif->ipif_zoneid = ill->ill_zoneid; 13361 13362 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13363 13364 ipif->ipif_refcnt = 0; 13365 ipif->ipif_saved_ire_cnt = 0; 13366 13367 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13368 mi_free(ipif); 13369 return (NULL); 13370 } 13371 /* -1 id should have been replaced by real id */ 13372 id = ipif->ipif_id; 13373 ASSERT(id >= 0); 13374 13375 if (ill->ill_name[0] != '\0') 13376 ipif_assign_seqid(ipif); 13377 13378 /* 13379 * Keep a copy of original id in ipif_orig_ipifid. Failback 13380 * will attempt to restore the original id. The SIOCSLIFOINDEX 13381 * ioctl sets ipif_orig_ipifid to zero. 13382 */ 13383 ipif->ipif_orig_ipifid = id; 13384 13385 /* 13386 * We grab the ill_lock and phyint_lock to protect the flag changes. 13387 * The ipif is still not up and can't be looked up until the 13388 * ioctl completes and the IPIF_CHANGING flag is cleared. 13389 */ 13390 mutex_enter(&ill->ill_lock); 13391 mutex_enter(&ill->ill_phyint->phyint_lock); 13392 /* 13393 * Set the running flag when logical interface zero is created. 13394 * For subsequent logical interfaces, a DLPI link down 13395 * notification message may have cleared the running flag to 13396 * indicate the link is down, so we shouldn't just blindly set it. 13397 */ 13398 if (id == 0) 13399 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13400 ipif->ipif_ire_type = ire_type; 13401 phyi = ill->ill_phyint; 13402 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13403 13404 if (ipif->ipif_isv6) { 13405 ill->ill_flags |= ILLF_IPV6; 13406 } else { 13407 ipaddr_t inaddr_any = INADDR_ANY; 13408 13409 ill->ill_flags |= ILLF_IPV4; 13410 13411 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13412 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13413 &ipif->ipif_v6lcl_addr); 13414 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13415 &ipif->ipif_v6src_addr); 13416 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13417 &ipif->ipif_v6subnet); 13418 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13419 &ipif->ipif_v6net_mask); 13420 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13421 &ipif->ipif_v6brd_addr); 13422 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13423 &ipif->ipif_v6pp_dst_addr); 13424 } 13425 13426 /* 13427 * Don't set the interface flags etc. now, will do it in 13428 * ip_ll_subnet_defaults. 13429 */ 13430 if (!initialize) { 13431 mutex_exit(&ill->ill_lock); 13432 mutex_exit(&ill->ill_phyint->phyint_lock); 13433 return (ipif); 13434 } 13435 ipif->ipif_mtu = ill->ill_max_mtu; 13436 13437 if (ill->ill_bcast_addr_length != 0) { 13438 /* 13439 * Later detect lack of DLPI driver multicast 13440 * capability by catching DL_ENABMULTI errors in 13441 * ip_rput_dlpi. 13442 */ 13443 ill->ill_flags |= ILLF_MULTICAST; 13444 if (!ipif->ipif_isv6) 13445 ipif->ipif_flags |= IPIF_BROADCAST; 13446 } else { 13447 if (ill->ill_net_type != IRE_LOOPBACK) { 13448 if (ipif->ipif_isv6) 13449 /* 13450 * Note: xresolv interfaces will eventually need 13451 * NOARP set here as well, but that will require 13452 * those external resolvers to have some 13453 * knowledge of that flag and act appropriately. 13454 * Not to be changed at present. 13455 */ 13456 ill->ill_flags |= ILLF_NONUD; 13457 else 13458 ill->ill_flags |= ILLF_NOARP; 13459 } 13460 if (ill->ill_phys_addr_length == 0) { 13461 if (ill->ill_media && 13462 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13463 ipif->ipif_flags |= IPIF_NOXMIT; 13464 phyi->phyint_flags |= PHYI_VIRTUAL; 13465 } else { 13466 /* pt-pt supports multicast. */ 13467 ill->ill_flags |= ILLF_MULTICAST; 13468 if (ill->ill_net_type == IRE_LOOPBACK) { 13469 phyi->phyint_flags |= 13470 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13471 } else { 13472 ipif->ipif_flags |= IPIF_POINTOPOINT; 13473 } 13474 } 13475 } 13476 } 13477 mutex_exit(&ill->ill_lock); 13478 mutex_exit(&ill->ill_phyint->phyint_lock); 13479 return (ipif); 13480 } 13481 13482 /* 13483 * If appropriate, send a message up to the resolver delete the entry 13484 * for the address of this interface which is going out of business. 13485 * (Always called as writer). 13486 * 13487 * NOTE : We need to check for NULL mps as some of the fields are 13488 * initialized only for some interface types. See ipif_resolver_up() 13489 * for details. 13490 */ 13491 void 13492 ipif_arp_down(ipif_t *ipif) 13493 { 13494 mblk_t *mp; 13495 ill_t *ill = ipif->ipif_ill; 13496 13497 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13498 ASSERT(IAM_WRITER_IPIF(ipif)); 13499 13500 /* Delete the mapping for the local address */ 13501 mp = ipif->ipif_arp_del_mp; 13502 if (mp != NULL) { 13503 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13504 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13505 putnext(ill->ill_rq, mp); 13506 ipif->ipif_arp_del_mp = NULL; 13507 } 13508 13509 /* 13510 * If this is the last ipif that is going down and there are no 13511 * duplicate addresses we may yet attempt to re-probe, then we need to 13512 * clean up ARP completely. 13513 */ 13514 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13515 13516 /* Send up AR_INTERFACE_DOWN message */ 13517 mp = ill->ill_arp_down_mp; 13518 if (mp != NULL) { 13519 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13520 *(unsigned *)mp->b_rptr, ill->ill_name, 13521 ipif->ipif_id)); 13522 putnext(ill->ill_rq, mp); 13523 ill->ill_arp_down_mp = NULL; 13524 } 13525 13526 /* Tell ARP to delete the multicast mappings */ 13527 mp = ill->ill_arp_del_mapping_mp; 13528 if (mp != NULL) { 13529 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13530 *(unsigned *)mp->b_rptr, ill->ill_name, 13531 ipif->ipif_id)); 13532 putnext(ill->ill_rq, mp); 13533 ill->ill_arp_del_mapping_mp = NULL; 13534 } 13535 } 13536 } 13537 13538 /* 13539 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13540 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13541 * that it wants the add_mp allocated in this function to be returned 13542 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13543 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13544 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13545 * as it does a ipif_arp_down after calling this function - which will 13546 * remove what we add here. 13547 * 13548 * Returns -1 on failures and 0 on success. 13549 */ 13550 int 13551 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13552 { 13553 mblk_t *del_mp = NULL; 13554 mblk_t *add_mp = NULL; 13555 mblk_t *mp; 13556 ill_t *ill = ipif->ipif_ill; 13557 phyint_t *phyi = ill->ill_phyint; 13558 ipaddr_t addr, mask, extract_mask = 0; 13559 arma_t *arma; 13560 uint8_t *maddr, *bphys_addr; 13561 uint32_t hw_start; 13562 dl_unitdata_req_t *dlur; 13563 13564 ASSERT(IAM_WRITER_IPIF(ipif)); 13565 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13566 return (0); 13567 13568 /* 13569 * Delete the existing mapping from ARP. Normally ipif_down 13570 * -> ipif_arp_down should send this up to ARP. The only 13571 * reason we would find this when we are switching from 13572 * Multicast to Broadcast where we did not do a down. 13573 */ 13574 mp = ill->ill_arp_del_mapping_mp; 13575 if (mp != NULL) { 13576 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13577 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13578 putnext(ill->ill_rq, mp); 13579 ill->ill_arp_del_mapping_mp = NULL; 13580 } 13581 13582 if (arp_add_mapping_mp != NULL) 13583 *arp_add_mapping_mp = NULL; 13584 13585 /* 13586 * Check that the address is not to long for the constant 13587 * length reserved in the template arma_t. 13588 */ 13589 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13590 return (-1); 13591 13592 /* Add mapping mblk */ 13593 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13594 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13595 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13596 (caddr_t)&addr); 13597 if (add_mp == NULL) 13598 return (-1); 13599 arma = (arma_t *)add_mp->b_rptr; 13600 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13601 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13602 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13603 13604 /* 13605 * Determine the broadcast address. 13606 */ 13607 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13608 if (ill->ill_sap_length < 0) 13609 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13610 else 13611 bphys_addr = (uchar_t *)dlur + 13612 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13613 /* 13614 * Check PHYI_MULTI_BCAST and length of physical 13615 * address to determine if we use the mapping or the 13616 * broadcast address. 13617 */ 13618 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13619 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13620 bphys_addr, maddr, &hw_start, &extract_mask)) 13621 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13622 13623 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13624 (ill->ill_flags & ILLF_MULTICAST)) { 13625 /* Make sure this will not match the "exact" entry. */ 13626 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13627 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13628 (caddr_t)&addr); 13629 if (del_mp == NULL) { 13630 freemsg(add_mp); 13631 return (-1); 13632 } 13633 bcopy(&extract_mask, (char *)arma + 13634 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13635 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13636 /* Use link-layer broadcast address for MULTI_BCAST */ 13637 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13638 ip2dbg(("ipif_arp_setup_multicast: adding" 13639 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13640 } else { 13641 arma->arma_hw_mapping_start = hw_start; 13642 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13643 " ARP setup for %s\n", ill->ill_name)); 13644 } 13645 } else { 13646 freemsg(add_mp); 13647 ASSERT(del_mp == NULL); 13648 /* It is neither MULTICAST nor MULTI_BCAST */ 13649 return (0); 13650 } 13651 ASSERT(add_mp != NULL && del_mp != NULL); 13652 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13653 ill->ill_arp_del_mapping_mp = del_mp; 13654 if (arp_add_mapping_mp != NULL) { 13655 /* The caller just wants the mblks allocated */ 13656 *arp_add_mapping_mp = add_mp; 13657 } else { 13658 /* The caller wants us to send it to arp */ 13659 putnext(ill->ill_rq, add_mp); 13660 } 13661 return (0); 13662 } 13663 13664 /* 13665 * Get the resolver set up for a new interface address. 13666 * (Always called as writer.) 13667 * Called both for IPv4 and IPv6 interfaces, 13668 * though it only sets up the resolver for v6 13669 * if it's an xresolv interface (one using an external resolver). 13670 * Honors ILLF_NOARP. 13671 * The enumerated value res_act is used to tune the behavior. 13672 * If set to Res_act_initial, then we set up all the resolver 13673 * structures for a new interface. If set to Res_act_move, then 13674 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13675 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13676 * asynchronous hardware address change notification. If set to 13677 * Res_act_defend, then we tell ARP that it needs to send a single 13678 * gratuitous message in defense of the address. 13679 * Returns error on failure. 13680 */ 13681 int 13682 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13683 { 13684 caddr_t addr; 13685 mblk_t *arp_up_mp = NULL; 13686 mblk_t *arp_down_mp = NULL; 13687 mblk_t *arp_add_mp = NULL; 13688 mblk_t *arp_del_mp = NULL; 13689 mblk_t *arp_add_mapping_mp = NULL; 13690 mblk_t *arp_del_mapping_mp = NULL; 13691 ill_t *ill = ipif->ipif_ill; 13692 uchar_t *area_p = NULL; 13693 uchar_t *ared_p = NULL; 13694 int err = ENOMEM; 13695 boolean_t was_dup; 13696 13697 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13698 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13699 ASSERT(IAM_WRITER_IPIF(ipif)); 13700 13701 was_dup = B_FALSE; 13702 if (res_act == Res_act_initial) { 13703 ipif->ipif_addr_ready = 0; 13704 /* 13705 * We're bringing an interface up here. There's no way that we 13706 * should need to shut down ARP now. 13707 */ 13708 mutex_enter(&ill->ill_lock); 13709 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13710 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13711 ill->ill_ipif_dup_count--; 13712 was_dup = B_TRUE; 13713 } 13714 mutex_exit(&ill->ill_lock); 13715 } 13716 if (ipif->ipif_recovery_id != 0) 13717 (void) untimeout(ipif->ipif_recovery_id); 13718 ipif->ipif_recovery_id = 0; 13719 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13720 ipif->ipif_addr_ready = 1; 13721 return (0); 13722 } 13723 /* NDP will set the ipif_addr_ready flag when it's ready */ 13724 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13725 return (0); 13726 13727 if (ill->ill_isv6) { 13728 /* 13729 * External resolver for IPv6 13730 */ 13731 ASSERT(res_act == Res_act_initial); 13732 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13733 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13734 area_p = (uchar_t *)&ip6_area_template; 13735 ared_p = (uchar_t *)&ip6_ared_template; 13736 } 13737 } else { 13738 /* 13739 * IPv4 arp case. If the ARP stream has already started 13740 * closing, fail this request for ARP bringup. Else 13741 * record the fact that an ARP bringup is pending. 13742 */ 13743 mutex_enter(&ill->ill_lock); 13744 if (ill->ill_arp_closing) { 13745 mutex_exit(&ill->ill_lock); 13746 err = EINVAL; 13747 goto failed; 13748 } else { 13749 if (ill->ill_ipif_up_count == 0 && 13750 ill->ill_ipif_dup_count == 0 && !was_dup) 13751 ill->ill_arp_bringup_pending = 1; 13752 mutex_exit(&ill->ill_lock); 13753 } 13754 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13755 addr = (caddr_t)&ipif->ipif_lcl_addr; 13756 area_p = (uchar_t *)&ip_area_template; 13757 ared_p = (uchar_t *)&ip_ared_template; 13758 } 13759 } 13760 13761 /* 13762 * Add an entry for the local address in ARP only if it 13763 * is not UNNUMBERED and the address is not INADDR_ANY. 13764 */ 13765 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13766 area_t *area; 13767 13768 /* Now ask ARP to publish our address. */ 13769 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13770 if (arp_add_mp == NULL) 13771 goto failed; 13772 area = (area_t *)arp_add_mp->b_rptr; 13773 if (res_act != Res_act_initial) { 13774 /* 13775 * Copy the new hardware address and length into 13776 * arp_add_mp to be sent to ARP. 13777 */ 13778 area->area_hw_addr_length = ill->ill_phys_addr_length; 13779 bcopy(ill->ill_phys_addr, 13780 ((char *)area + area->area_hw_addr_offset), 13781 area->area_hw_addr_length); 13782 } 13783 13784 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13785 ACE_F_MYADDR; 13786 13787 if (res_act == Res_act_defend) { 13788 area->area_flags |= ACE_F_DEFEND; 13789 /* 13790 * If we're just defending our address now, then 13791 * there's no need to set up ARP multicast mappings. 13792 * The publish command is enough. 13793 */ 13794 goto done; 13795 } 13796 13797 if (res_act != Res_act_initial) 13798 goto arp_setup_multicast; 13799 13800 /* 13801 * Allocate an ARP deletion message so we know we can tell ARP 13802 * when the interface goes down. 13803 */ 13804 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13805 if (arp_del_mp == NULL) 13806 goto failed; 13807 13808 } else { 13809 if (res_act != Res_act_initial) 13810 goto done; 13811 } 13812 /* 13813 * Need to bring up ARP or setup multicast mapping only 13814 * when the first interface is coming UP. 13815 */ 13816 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13817 was_dup) { 13818 goto done; 13819 } 13820 13821 /* 13822 * Allocate an ARP down message (to be saved) and an ARP up 13823 * message. 13824 */ 13825 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13826 if (arp_down_mp == NULL) 13827 goto failed; 13828 13829 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13830 if (arp_up_mp == NULL) 13831 goto failed; 13832 13833 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13834 goto done; 13835 13836 arp_setup_multicast: 13837 /* 13838 * Setup the multicast mappings. This function initializes 13839 * ill_arp_del_mapping_mp also. This does not need to be done for 13840 * IPv6. 13841 */ 13842 if (!ill->ill_isv6) { 13843 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13844 if (err != 0) 13845 goto failed; 13846 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13847 ASSERT(arp_add_mapping_mp != NULL); 13848 } 13849 13850 done: 13851 if (arp_del_mp != NULL) { 13852 ASSERT(ipif->ipif_arp_del_mp == NULL); 13853 ipif->ipif_arp_del_mp = arp_del_mp; 13854 } 13855 if (arp_down_mp != NULL) { 13856 ASSERT(ill->ill_arp_down_mp == NULL); 13857 ill->ill_arp_down_mp = arp_down_mp; 13858 } 13859 if (arp_del_mapping_mp != NULL) { 13860 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13861 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13862 } 13863 if (arp_up_mp != NULL) { 13864 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13865 ill->ill_name, ipif->ipif_id)); 13866 putnext(ill->ill_rq, arp_up_mp); 13867 } 13868 if (arp_add_mp != NULL) { 13869 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13870 ill->ill_name, ipif->ipif_id)); 13871 /* 13872 * If it's an extended ARP implementation, then we'll wait to 13873 * hear that DAD has finished before using the interface. 13874 */ 13875 if (!ill->ill_arp_extend) 13876 ipif->ipif_addr_ready = 1; 13877 putnext(ill->ill_rq, arp_add_mp); 13878 } else { 13879 ipif->ipif_addr_ready = 1; 13880 } 13881 if (arp_add_mapping_mp != NULL) { 13882 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13883 ill->ill_name, ipif->ipif_id)); 13884 putnext(ill->ill_rq, arp_add_mapping_mp); 13885 } 13886 if (res_act != Res_act_initial) 13887 return (0); 13888 13889 if (ill->ill_flags & ILLF_NOARP) 13890 err = ill_arp_off(ill); 13891 else 13892 err = ill_arp_on(ill); 13893 if (err != 0) { 13894 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13895 freemsg(ipif->ipif_arp_del_mp); 13896 freemsg(ill->ill_arp_down_mp); 13897 freemsg(ill->ill_arp_del_mapping_mp); 13898 ipif->ipif_arp_del_mp = NULL; 13899 ill->ill_arp_down_mp = NULL; 13900 ill->ill_arp_del_mapping_mp = NULL; 13901 return (err); 13902 } 13903 return ((ill->ill_ipif_up_count != 0 || was_dup || 13904 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13905 13906 failed: 13907 ip1dbg(("ipif_resolver_up: FAILED\n")); 13908 freemsg(arp_add_mp); 13909 freemsg(arp_del_mp); 13910 freemsg(arp_add_mapping_mp); 13911 freemsg(arp_up_mp); 13912 freemsg(arp_down_mp); 13913 ill->ill_arp_bringup_pending = 0; 13914 return (err); 13915 } 13916 13917 /* 13918 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13919 * just gone back up. 13920 */ 13921 static void 13922 ipif_arp_start_dad(ipif_t *ipif) 13923 { 13924 ill_t *ill = ipif->ipif_ill; 13925 mblk_t *arp_add_mp; 13926 area_t *area; 13927 13928 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13929 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13930 ipif->ipif_lcl_addr == INADDR_ANY || 13931 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13932 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13933 /* 13934 * If we can't contact ARP for some reason, that's not really a 13935 * problem. Just send out the routing socket notification that 13936 * DAD completion would have done, and continue. 13937 */ 13938 ipif_mask_reply(ipif); 13939 ip_rts_ifmsg(ipif); 13940 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13941 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13942 ipif->ipif_addr_ready = 1; 13943 return; 13944 } 13945 13946 /* Setting the 'unverified' flag restarts DAD */ 13947 area = (area_t *)arp_add_mp->b_rptr; 13948 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13949 ACE_F_UNVERIFIED; 13950 putnext(ill->ill_rq, arp_add_mp); 13951 } 13952 13953 static void 13954 ipif_ndp_start_dad(ipif_t *ipif) 13955 { 13956 nce_t *nce; 13957 13958 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13959 if (nce == NULL) 13960 return; 13961 13962 if (!ndp_restart_dad(nce)) { 13963 /* 13964 * If we can't restart DAD for some reason, that's not really a 13965 * problem. Just send out the routing socket notification that 13966 * DAD completion would have done, and continue. 13967 */ 13968 ip_rts_ifmsg(ipif); 13969 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13970 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13971 ipif->ipif_addr_ready = 1; 13972 } 13973 NCE_REFRELE(nce); 13974 } 13975 13976 /* 13977 * Restart duplicate address detection on all interfaces on the given ill. 13978 * 13979 * This is called when an interface transitions from down to up 13980 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13981 * 13982 * Note that since the underlying physical link has transitioned, we must cause 13983 * at least one routing socket message to be sent here, either via DAD 13984 * completion or just by default on the first ipif. (If we don't do this, then 13985 * in.mpathd will see long delays when doing link-based failure recovery.) 13986 */ 13987 void 13988 ill_restart_dad(ill_t *ill, boolean_t went_up) 13989 { 13990 ipif_t *ipif; 13991 13992 if (ill == NULL) 13993 return; 13994 13995 /* 13996 * If layer two doesn't support duplicate address detection, then just 13997 * send the routing socket message now and be done with it. 13998 */ 13999 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14000 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14001 ip_rts_ifmsg(ill->ill_ipif); 14002 return; 14003 } 14004 14005 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14006 if (went_up) { 14007 if (ipif->ipif_flags & IPIF_UP) { 14008 if (ill->ill_isv6) 14009 ipif_ndp_start_dad(ipif); 14010 else 14011 ipif_arp_start_dad(ipif); 14012 } else if (ill->ill_isv6 && 14013 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14014 /* 14015 * For IPv4, the ARP module itself will 14016 * automatically start the DAD process when it 14017 * sees DL_NOTE_LINK_UP. We respond to the 14018 * AR_CN_READY at the completion of that task. 14019 * For IPv6, we must kick off the bring-up 14020 * process now. 14021 */ 14022 ndp_do_recovery(ipif); 14023 } else { 14024 /* 14025 * Unfortunately, the first ipif is "special" 14026 * and represents the underlying ill in the 14027 * routing socket messages. Thus, when this 14028 * one ipif is down, we must still notify so 14029 * that the user knows the IFF_RUNNING status 14030 * change. (If the first ipif is up, then 14031 * we'll handle eventual routing socket 14032 * notification via DAD completion.) 14033 */ 14034 if (ipif == ill->ill_ipif) 14035 ip_rts_ifmsg(ill->ill_ipif); 14036 } 14037 } else { 14038 /* 14039 * After link down, we'll need to send a new routing 14040 * message when the link comes back, so clear 14041 * ipif_addr_ready. 14042 */ 14043 ipif->ipif_addr_ready = 0; 14044 } 14045 } 14046 14047 /* 14048 * If we've torn down links, then notify the user right away. 14049 */ 14050 if (!went_up) 14051 ip_rts_ifmsg(ill->ill_ipif); 14052 } 14053 14054 /* 14055 * Wakeup all threads waiting to enter the ipsq, and sleeping 14056 * on any of the ills in this ipsq. The ill_lock of the ill 14057 * must be held so that waiters don't miss wakeups 14058 */ 14059 static void 14060 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14061 { 14062 phyint_t *phyint; 14063 14064 phyint = ipsq->ipsq_phyint_list; 14065 while (phyint != NULL) { 14066 if (phyint->phyint_illv4) { 14067 if (!caller_holds_lock) 14068 mutex_enter(&phyint->phyint_illv4->ill_lock); 14069 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14070 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14071 if (!caller_holds_lock) 14072 mutex_exit(&phyint->phyint_illv4->ill_lock); 14073 } 14074 if (phyint->phyint_illv6) { 14075 if (!caller_holds_lock) 14076 mutex_enter(&phyint->phyint_illv6->ill_lock); 14077 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14078 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14079 if (!caller_holds_lock) 14080 mutex_exit(&phyint->phyint_illv6->ill_lock); 14081 } 14082 phyint = phyint->phyint_ipsq_next; 14083 } 14084 } 14085 14086 static ipsq_t * 14087 ipsq_create(char *groupname, ip_stack_t *ipst) 14088 { 14089 ipsq_t *ipsq; 14090 14091 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14092 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14093 if (ipsq == NULL) { 14094 return (NULL); 14095 } 14096 14097 if (groupname != NULL) 14098 (void) strcpy(ipsq->ipsq_name, groupname); 14099 else 14100 ipsq->ipsq_name[0] = '\0'; 14101 14102 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14103 ipsq->ipsq_flags |= IPSQ_GROUP; 14104 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14105 ipst->ips_ipsq_g_head = ipsq; 14106 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14107 return (ipsq); 14108 } 14109 14110 /* 14111 * Return an ipsq correspoding to the groupname. If 'create' is true 14112 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14113 * uniquely with an IPMP group. However during IPMP groupname operations, 14114 * multiple IPMP groups may be associated with a single ipsq. But no 14115 * IPMP group can be associated with more than 1 ipsq at any time. 14116 * For example 14117 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14118 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14119 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14120 * 14121 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14122 * status shown below during the execution of the above command. 14123 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14124 * 14125 * After the completion of the above groupname command we return to the stable 14126 * state shown below. 14127 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14128 * hme4 mpk17-85 ipsq2 mpk17-85 1 14129 * 14130 * Because of the above, we don't search based on the ipsq_name since that 14131 * would miss the correct ipsq during certain windows as shown above. 14132 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14133 * natural state. 14134 */ 14135 static ipsq_t * 14136 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14137 ip_stack_t *ipst) 14138 { 14139 ipsq_t *ipsq; 14140 int group_len; 14141 phyint_t *phyint; 14142 14143 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14144 14145 group_len = strlen(groupname); 14146 ASSERT(group_len != 0); 14147 group_len++; 14148 14149 for (ipsq = ipst->ips_ipsq_g_head; 14150 ipsq != NULL; 14151 ipsq = ipsq->ipsq_next) { 14152 /* 14153 * When an ipsq is being split, and ill_split_ipsq 14154 * calls this function, we exclude it from being considered. 14155 */ 14156 if (ipsq == exclude_ipsq) 14157 continue; 14158 14159 /* 14160 * Compare against the ipsq_name. The groupname change happens 14161 * in 2 phases. The 1st phase merges the from group into 14162 * the to group's ipsq, by calling ill_merge_groups and restarts 14163 * the ioctl. The 2nd phase then locates the ipsq again thru 14164 * ipsq_name. At this point the phyint_groupname has not been 14165 * updated. 14166 */ 14167 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14168 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14169 /* 14170 * Verify that an ipmp groupname is exactly 14171 * part of 1 ipsq and is not found in any other 14172 * ipsq. 14173 */ 14174 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14175 NULL); 14176 return (ipsq); 14177 } 14178 14179 /* 14180 * Comparison against ipsq_name alone is not sufficient. 14181 * In the case when groups are currently being 14182 * merged, the ipsq could hold other IPMP groups temporarily. 14183 * so we walk the phyint list and compare against the 14184 * phyint_groupname as well. 14185 */ 14186 phyint = ipsq->ipsq_phyint_list; 14187 while (phyint != NULL) { 14188 if ((group_len == phyint->phyint_groupname_len) && 14189 (bcmp(phyint->phyint_groupname, groupname, 14190 group_len) == 0)) { 14191 /* 14192 * Verify that an ipmp groupname is exactly 14193 * part of 1 ipsq and is not found in any other 14194 * ipsq. 14195 */ 14196 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14197 ipst) == NULL); 14198 return (ipsq); 14199 } 14200 phyint = phyint->phyint_ipsq_next; 14201 } 14202 } 14203 if (create) 14204 ipsq = ipsq_create(groupname, ipst); 14205 return (ipsq); 14206 } 14207 14208 static void 14209 ipsq_delete(ipsq_t *ipsq) 14210 { 14211 ipsq_t *nipsq; 14212 ipsq_t *pipsq = NULL; 14213 ip_stack_t *ipst = ipsq->ipsq_ipst; 14214 14215 /* 14216 * We don't hold the ipsq lock, but we are sure no new 14217 * messages can land up, since the ipsq_refs is zero. 14218 * i.e. this ipsq is unnamed and no phyint or phyint group 14219 * is associated with this ipsq. (Lookups are based on ill_name 14220 * or phyint_groupname) 14221 */ 14222 ASSERT(ipsq->ipsq_refs == 0); 14223 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14224 ASSERT(ipsq->ipsq_pending_mp == NULL); 14225 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14226 /* 14227 * This is not the ipsq of an IPMP group. 14228 */ 14229 ipsq->ipsq_ipst = NULL; 14230 kmem_free(ipsq, sizeof (ipsq_t)); 14231 return; 14232 } 14233 14234 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14235 14236 /* 14237 * Locate the ipsq before we can remove it from 14238 * the singly linked list of ipsq's. 14239 */ 14240 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14241 nipsq = nipsq->ipsq_next) { 14242 if (nipsq == ipsq) { 14243 break; 14244 } 14245 pipsq = nipsq; 14246 } 14247 14248 ASSERT(nipsq == ipsq); 14249 14250 /* unlink ipsq from the list */ 14251 if (pipsq != NULL) 14252 pipsq->ipsq_next = ipsq->ipsq_next; 14253 else 14254 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14255 ipsq->ipsq_ipst = NULL; 14256 kmem_free(ipsq, sizeof (ipsq_t)); 14257 rw_exit(&ipst->ips_ill_g_lock); 14258 } 14259 14260 static void 14261 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14262 queue_t *q) 14263 { 14264 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14265 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14266 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14267 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14268 ASSERT(current_mp != NULL); 14269 14270 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14271 NEW_OP, NULL); 14272 14273 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14274 new_ipsq->ipsq_xopq_mphead != NULL); 14275 14276 /* 14277 * move from old ipsq to the new ipsq. 14278 */ 14279 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14280 if (old_ipsq->ipsq_xopq_mphead != NULL) 14281 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14282 14283 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14284 } 14285 14286 void 14287 ill_group_cleanup(ill_t *ill) 14288 { 14289 ill_t *ill_v4; 14290 ill_t *ill_v6; 14291 ipif_t *ipif; 14292 14293 ill_v4 = ill->ill_phyint->phyint_illv4; 14294 ill_v6 = ill->ill_phyint->phyint_illv6; 14295 14296 if (ill_v4 != NULL) { 14297 mutex_enter(&ill_v4->ill_lock); 14298 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14299 ipif = ipif->ipif_next) { 14300 IPIF_UNMARK_MOVING(ipif); 14301 } 14302 ill_v4->ill_up_ipifs = B_FALSE; 14303 mutex_exit(&ill_v4->ill_lock); 14304 } 14305 14306 if (ill_v6 != NULL) { 14307 mutex_enter(&ill_v6->ill_lock); 14308 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14309 ipif = ipif->ipif_next) { 14310 IPIF_UNMARK_MOVING(ipif); 14311 } 14312 ill_v6->ill_up_ipifs = B_FALSE; 14313 mutex_exit(&ill_v6->ill_lock); 14314 } 14315 } 14316 /* 14317 * This function is called when an ill has had a change in its group status 14318 * to bring up all the ipifs that were up before the change. 14319 */ 14320 int 14321 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14322 { 14323 ipif_t *ipif; 14324 ill_t *ill_v4; 14325 ill_t *ill_v6; 14326 ill_t *from_ill; 14327 int err = 0; 14328 14329 14330 ASSERT(IAM_WRITER_ILL(ill)); 14331 14332 /* 14333 * Except for ipif_state_flags and ill_state_flags the other 14334 * fields of the ipif/ill that are modified below are protected 14335 * implicitly since we are a writer. We would have tried to down 14336 * even an ipif that was already down, in ill_down_ipifs. So we 14337 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14338 */ 14339 ill_v4 = ill->ill_phyint->phyint_illv4; 14340 ill_v6 = ill->ill_phyint->phyint_illv6; 14341 if (ill_v4 != NULL) { 14342 ill_v4->ill_up_ipifs = B_TRUE; 14343 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14344 ipif = ipif->ipif_next) { 14345 mutex_enter(&ill_v4->ill_lock); 14346 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14347 IPIF_UNMARK_MOVING(ipif); 14348 mutex_exit(&ill_v4->ill_lock); 14349 if (ipif->ipif_was_up) { 14350 if (!(ipif->ipif_flags & IPIF_UP)) 14351 err = ipif_up(ipif, q, mp); 14352 ipif->ipif_was_up = B_FALSE; 14353 if (err != 0) { 14354 /* 14355 * Can there be any other error ? 14356 */ 14357 ASSERT(err == EINPROGRESS); 14358 return (err); 14359 } 14360 } 14361 } 14362 mutex_enter(&ill_v4->ill_lock); 14363 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14364 mutex_exit(&ill_v4->ill_lock); 14365 ill_v4->ill_up_ipifs = B_FALSE; 14366 if (ill_v4->ill_move_in_progress) { 14367 ASSERT(ill_v4->ill_move_peer != NULL); 14368 ill_v4->ill_move_in_progress = B_FALSE; 14369 from_ill = ill_v4->ill_move_peer; 14370 from_ill->ill_move_in_progress = B_FALSE; 14371 from_ill->ill_move_peer = NULL; 14372 mutex_enter(&from_ill->ill_lock); 14373 from_ill->ill_state_flags &= ~ILL_CHANGING; 14374 mutex_exit(&from_ill->ill_lock); 14375 if (ill_v6 == NULL) { 14376 if (from_ill->ill_phyint->phyint_flags & 14377 PHYI_STANDBY) { 14378 phyint_inactive(from_ill->ill_phyint); 14379 } 14380 if (ill_v4->ill_phyint->phyint_flags & 14381 PHYI_STANDBY) { 14382 phyint_inactive(ill_v4->ill_phyint); 14383 } 14384 } 14385 ill_v4->ill_move_peer = NULL; 14386 } 14387 } 14388 14389 if (ill_v6 != NULL) { 14390 ill_v6->ill_up_ipifs = B_TRUE; 14391 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14392 ipif = ipif->ipif_next) { 14393 mutex_enter(&ill_v6->ill_lock); 14394 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14395 IPIF_UNMARK_MOVING(ipif); 14396 mutex_exit(&ill_v6->ill_lock); 14397 if (ipif->ipif_was_up) { 14398 if (!(ipif->ipif_flags & IPIF_UP)) 14399 err = ipif_up(ipif, q, mp); 14400 ipif->ipif_was_up = B_FALSE; 14401 if (err != 0) { 14402 /* 14403 * Can there be any other error ? 14404 */ 14405 ASSERT(err == EINPROGRESS); 14406 return (err); 14407 } 14408 } 14409 } 14410 mutex_enter(&ill_v6->ill_lock); 14411 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14412 mutex_exit(&ill_v6->ill_lock); 14413 ill_v6->ill_up_ipifs = B_FALSE; 14414 if (ill_v6->ill_move_in_progress) { 14415 ASSERT(ill_v6->ill_move_peer != NULL); 14416 ill_v6->ill_move_in_progress = B_FALSE; 14417 from_ill = ill_v6->ill_move_peer; 14418 from_ill->ill_move_in_progress = B_FALSE; 14419 from_ill->ill_move_peer = NULL; 14420 mutex_enter(&from_ill->ill_lock); 14421 from_ill->ill_state_flags &= ~ILL_CHANGING; 14422 mutex_exit(&from_ill->ill_lock); 14423 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14424 phyint_inactive(from_ill->ill_phyint); 14425 } 14426 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14427 phyint_inactive(ill_v6->ill_phyint); 14428 } 14429 ill_v6->ill_move_peer = NULL; 14430 } 14431 } 14432 return (0); 14433 } 14434 14435 /* 14436 * bring down all the approriate ipifs. 14437 */ 14438 /* ARGSUSED */ 14439 static void 14440 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14441 { 14442 ipif_t *ipif; 14443 14444 ASSERT(IAM_WRITER_ILL(ill)); 14445 14446 /* 14447 * Except for ipif_state_flags the other fields of the ipif/ill that 14448 * are modified below are protected implicitly since we are a writer 14449 */ 14450 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14451 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14452 continue; 14453 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14454 /* 14455 * We go through the ipif_down logic even if the ipif 14456 * is already down, since routes can be added based 14457 * on down ipifs. Going through ipif_down once again 14458 * will delete any IREs created based on these routes. 14459 */ 14460 if (ipif->ipif_flags & IPIF_UP) 14461 ipif->ipif_was_up = B_TRUE; 14462 /* 14463 * If called with chk_nofailover true ipif is moving. 14464 */ 14465 mutex_enter(&ill->ill_lock); 14466 if (chk_nofailover) { 14467 ipif->ipif_state_flags |= 14468 IPIF_MOVING | IPIF_CHANGING; 14469 } else { 14470 ipif->ipif_state_flags |= IPIF_CHANGING; 14471 } 14472 mutex_exit(&ill->ill_lock); 14473 /* 14474 * Need to re-create net/subnet bcast ires if 14475 * they are dependent on ipif. 14476 */ 14477 if (!ipif->ipif_isv6) 14478 ipif_check_bcast_ires(ipif); 14479 (void) ipif_logical_down(ipif, NULL, NULL); 14480 ipif_non_duplicate(ipif); 14481 ipif_down_tail(ipif); 14482 } 14483 } 14484 } 14485 14486 #define IPSQ_INC_REF(ipsq, ipst) { \ 14487 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14488 (ipsq)->ipsq_refs++; \ 14489 } 14490 14491 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14492 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14493 (ipsq)->ipsq_refs--; \ 14494 if ((ipsq)->ipsq_refs == 0) \ 14495 (ipsq)->ipsq_name[0] = '\0'; \ 14496 } 14497 14498 /* 14499 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14500 * new_ipsq. 14501 */ 14502 static void 14503 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14504 { 14505 phyint_t *phyint; 14506 phyint_t *next_phyint; 14507 14508 /* 14509 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14510 * writer and the ill_lock of the ill in question. Also the dest 14511 * ipsq can't vanish while we hold the ill_g_lock as writer. 14512 */ 14513 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14514 14515 phyint = cur_ipsq->ipsq_phyint_list; 14516 cur_ipsq->ipsq_phyint_list = NULL; 14517 while (phyint != NULL) { 14518 next_phyint = phyint->phyint_ipsq_next; 14519 IPSQ_DEC_REF(cur_ipsq, ipst); 14520 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14521 new_ipsq->ipsq_phyint_list = phyint; 14522 IPSQ_INC_REF(new_ipsq, ipst); 14523 phyint->phyint_ipsq = new_ipsq; 14524 phyint = next_phyint; 14525 } 14526 } 14527 14528 #define SPLIT_SUCCESS 0 14529 #define SPLIT_NOT_NEEDED 1 14530 #define SPLIT_FAILED 2 14531 14532 int 14533 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14534 ip_stack_t *ipst) 14535 { 14536 ipsq_t *newipsq = NULL; 14537 14538 /* 14539 * Assertions denote pre-requisites for changing the ipsq of 14540 * a phyint 14541 */ 14542 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14543 /* 14544 * <ill-phyint> assocs can't change while ill_g_lock 14545 * is held as writer. See ill_phyint_reinit() 14546 */ 14547 ASSERT(phyint->phyint_illv4 == NULL || 14548 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14549 ASSERT(phyint->phyint_illv6 == NULL || 14550 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14551 14552 if ((phyint->phyint_groupname_len != 14553 (strlen(cur_ipsq->ipsq_name) + 1) || 14554 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14555 phyint->phyint_groupname_len) != 0)) { 14556 /* 14557 * Once we fail in creating a new ipsq due to memory shortage, 14558 * don't attempt to create new ipsq again, based on another 14559 * phyint, since we want all phyints belonging to an IPMP group 14560 * to be in the same ipsq even in the event of mem alloc fails. 14561 */ 14562 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14563 cur_ipsq, ipst); 14564 if (newipsq == NULL) { 14565 /* Memory allocation failure */ 14566 return (SPLIT_FAILED); 14567 } else { 14568 /* ipsq_refs protected by ill_g_lock (writer) */ 14569 IPSQ_DEC_REF(cur_ipsq, ipst); 14570 phyint->phyint_ipsq = newipsq; 14571 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14572 newipsq->ipsq_phyint_list = phyint; 14573 IPSQ_INC_REF(newipsq, ipst); 14574 return (SPLIT_SUCCESS); 14575 } 14576 } 14577 return (SPLIT_NOT_NEEDED); 14578 } 14579 14580 /* 14581 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14582 * to do this split 14583 */ 14584 static int 14585 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14586 { 14587 ipsq_t *newipsq; 14588 14589 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14590 /* 14591 * <ill-phyint> assocs can't change while ill_g_lock 14592 * is held as writer. See ill_phyint_reinit() 14593 */ 14594 14595 ASSERT(phyint->phyint_illv4 == NULL || 14596 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14597 ASSERT(phyint->phyint_illv6 == NULL || 14598 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14599 14600 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14601 phyint->phyint_illv4: phyint->phyint_illv6)) { 14602 /* 14603 * ipsq_init failed due to no memory 14604 * caller will use the same ipsq 14605 */ 14606 return (SPLIT_FAILED); 14607 } 14608 14609 /* ipsq_ref is protected by ill_g_lock (writer) */ 14610 IPSQ_DEC_REF(cur_ipsq, ipst); 14611 14612 /* 14613 * This is a new ipsq that is unknown to the world. 14614 * So we don't need to hold ipsq_lock, 14615 */ 14616 newipsq = phyint->phyint_ipsq; 14617 newipsq->ipsq_writer = NULL; 14618 newipsq->ipsq_reentry_cnt--; 14619 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14620 #ifdef DEBUG 14621 newipsq->ipsq_depth = 0; 14622 #endif 14623 14624 return (SPLIT_SUCCESS); 14625 } 14626 14627 /* 14628 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14629 * ipsq's representing their individual groups or themselves. Return 14630 * whether split needs to be retried again later. 14631 */ 14632 static boolean_t 14633 ill_split_ipsq(ipsq_t *cur_ipsq) 14634 { 14635 phyint_t *phyint; 14636 phyint_t *next_phyint; 14637 int error; 14638 boolean_t need_retry = B_FALSE; 14639 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14640 14641 phyint = cur_ipsq->ipsq_phyint_list; 14642 cur_ipsq->ipsq_phyint_list = NULL; 14643 while (phyint != NULL) { 14644 next_phyint = phyint->phyint_ipsq_next; 14645 /* 14646 * 'created' will tell us whether the callee actually 14647 * created an ipsq. Lack of memory may force the callee 14648 * to return without creating an ipsq. 14649 */ 14650 if (phyint->phyint_groupname == NULL) { 14651 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14652 } else { 14653 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14654 need_retry, ipst); 14655 } 14656 14657 switch (error) { 14658 case SPLIT_FAILED: 14659 need_retry = B_TRUE; 14660 /* FALLTHRU */ 14661 case SPLIT_NOT_NEEDED: 14662 /* 14663 * Keep it on the list. 14664 */ 14665 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14666 cur_ipsq->ipsq_phyint_list = phyint; 14667 break; 14668 case SPLIT_SUCCESS: 14669 break; 14670 default: 14671 ASSERT(0); 14672 } 14673 14674 phyint = next_phyint; 14675 } 14676 return (need_retry); 14677 } 14678 14679 /* 14680 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14681 * and return the ills in the list. This list will be 14682 * needed to unlock all the ills later on by the caller. 14683 * The <ill-ipsq> associations could change between the 14684 * lock and unlock. Hence the unlock can't traverse the 14685 * ipsq to get the list of ills. 14686 */ 14687 static int 14688 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14689 { 14690 int cnt = 0; 14691 phyint_t *phyint; 14692 ip_stack_t *ipst = ipsq->ipsq_ipst; 14693 14694 /* 14695 * The caller holds ill_g_lock to ensure that the ill memberships 14696 * of the ipsq don't change 14697 */ 14698 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14699 14700 phyint = ipsq->ipsq_phyint_list; 14701 while (phyint != NULL) { 14702 if (phyint->phyint_illv4 != NULL) { 14703 ASSERT(cnt < list_max); 14704 list[cnt++] = phyint->phyint_illv4; 14705 } 14706 if (phyint->phyint_illv6 != NULL) { 14707 ASSERT(cnt < list_max); 14708 list[cnt++] = phyint->phyint_illv6; 14709 } 14710 phyint = phyint->phyint_ipsq_next; 14711 } 14712 ill_lock_ills(list, cnt); 14713 return (cnt); 14714 } 14715 14716 void 14717 ill_lock_ills(ill_t **list, int cnt) 14718 { 14719 int i; 14720 14721 if (cnt > 1) { 14722 boolean_t try_again; 14723 do { 14724 try_again = B_FALSE; 14725 for (i = 0; i < cnt - 1; i++) { 14726 if (list[i] < list[i + 1]) { 14727 ill_t *tmp; 14728 14729 /* swap the elements */ 14730 tmp = list[i]; 14731 list[i] = list[i + 1]; 14732 list[i + 1] = tmp; 14733 try_again = B_TRUE; 14734 } 14735 } 14736 } while (try_again); 14737 } 14738 14739 for (i = 0; i < cnt; i++) { 14740 if (i == 0) { 14741 if (list[i] != NULL) 14742 mutex_enter(&list[i]->ill_lock); 14743 else 14744 return; 14745 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14746 mutex_enter(&list[i]->ill_lock); 14747 } 14748 } 14749 } 14750 14751 void 14752 ill_unlock_ills(ill_t **list, int cnt) 14753 { 14754 int i; 14755 14756 for (i = 0; i < cnt; i++) { 14757 if ((i == 0) && (list[i] != NULL)) { 14758 mutex_exit(&list[i]->ill_lock); 14759 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14760 mutex_exit(&list[i]->ill_lock); 14761 } 14762 } 14763 } 14764 14765 /* 14766 * Merge all the ills from 1 ipsq group into another ipsq group. 14767 * The source ipsq group is specified by the ipsq associated with 14768 * 'from_ill'. The destination ipsq group is specified by the ipsq 14769 * associated with 'to_ill' or 'groupname' respectively. 14770 * Note that ipsq itself does not have a reference count mechanism 14771 * and functions don't look up an ipsq and pass it around. Instead 14772 * functions pass around an ill or groupname, and the ipsq is looked 14773 * up from the ill or groupname and the required operation performed 14774 * atomically with the lookup on the ipsq. 14775 */ 14776 static int 14777 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14778 queue_t *q) 14779 { 14780 ipsq_t *old_ipsq; 14781 ipsq_t *new_ipsq; 14782 ill_t **ill_list; 14783 int cnt; 14784 size_t ill_list_size; 14785 boolean_t became_writer_on_new_sq = B_FALSE; 14786 ip_stack_t *ipst = from_ill->ill_ipst; 14787 14788 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14789 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14790 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14791 14792 /* 14793 * Need to hold ill_g_lock as writer and also the ill_lock to 14794 * change the <ill-ipsq> assoc of an ill. Need to hold the 14795 * ipsq_lock to prevent new messages from landing on an ipsq. 14796 */ 14797 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14798 14799 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14800 if (groupname != NULL) 14801 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14802 else { 14803 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14804 } 14805 14806 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14807 14808 /* 14809 * both groups are on the same ipsq. 14810 */ 14811 if (old_ipsq == new_ipsq) { 14812 rw_exit(&ipst->ips_ill_g_lock); 14813 return (0); 14814 } 14815 14816 cnt = old_ipsq->ipsq_refs << 1; 14817 ill_list_size = cnt * sizeof (ill_t *); 14818 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14819 if (ill_list == NULL) { 14820 rw_exit(&ipst->ips_ill_g_lock); 14821 return (ENOMEM); 14822 } 14823 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14824 14825 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14826 mutex_enter(&new_ipsq->ipsq_lock); 14827 if ((new_ipsq->ipsq_writer == NULL && 14828 new_ipsq->ipsq_current_ipif == NULL) || 14829 (new_ipsq->ipsq_writer == curthread)) { 14830 new_ipsq->ipsq_writer = curthread; 14831 new_ipsq->ipsq_reentry_cnt++; 14832 became_writer_on_new_sq = B_TRUE; 14833 } 14834 14835 /* 14836 * We are holding ill_g_lock as writer and all the ill locks of 14837 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14838 * message can land up on the old ipsq even though we don't hold the 14839 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14840 */ 14841 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14842 14843 /* 14844 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14845 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14846 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14847 */ 14848 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14849 14850 /* 14851 * Mark the new ipsq as needing a split since it is currently 14852 * being shared by more than 1 IPMP group. The split will 14853 * occur at the end of ipsq_exit 14854 */ 14855 new_ipsq->ipsq_split = B_TRUE; 14856 14857 /* Now release all the locks */ 14858 mutex_exit(&new_ipsq->ipsq_lock); 14859 ill_unlock_ills(ill_list, cnt); 14860 rw_exit(&ipst->ips_ill_g_lock); 14861 14862 kmem_free(ill_list, ill_list_size); 14863 14864 /* 14865 * If we succeeded in becoming writer on the new ipsq, then 14866 * drain the new ipsq and start processing all enqueued messages 14867 * including the current ioctl we are processing which is either 14868 * a set groupname or failover/failback. 14869 */ 14870 if (became_writer_on_new_sq) 14871 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14872 14873 /* 14874 * syncq has been changed and all the messages have been moved. 14875 */ 14876 mutex_enter(&old_ipsq->ipsq_lock); 14877 old_ipsq->ipsq_current_ipif = NULL; 14878 old_ipsq->ipsq_current_ioctl = 0; 14879 mutex_exit(&old_ipsq->ipsq_lock); 14880 return (EINPROGRESS); 14881 } 14882 14883 /* 14884 * Delete and add the loopback copy and non-loopback copy of 14885 * the BROADCAST ire corresponding to ill and addr. Used to 14886 * group broadcast ires together when ill becomes part of 14887 * a group. 14888 * 14889 * This function is also called when ill is leaving the group 14890 * so that the ires belonging to the group gets re-grouped. 14891 */ 14892 static void 14893 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14894 { 14895 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14896 ire_t **ire_ptpn = &ire_head; 14897 ip_stack_t *ipst = ill->ill_ipst; 14898 14899 /* 14900 * The loopback and non-loopback IREs are inserted in the order in which 14901 * they're found, on the basis that they are correctly ordered (loopback 14902 * first). 14903 */ 14904 for (;;) { 14905 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14906 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14907 if (ire == NULL) 14908 break; 14909 14910 /* 14911 * we are passing in KM_SLEEP because it is not easy to 14912 * go back to a sane state in case of memory failure. 14913 */ 14914 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14915 ASSERT(nire != NULL); 14916 bzero(nire, sizeof (ire_t)); 14917 /* 14918 * Don't use ire_max_frag directly since we don't 14919 * hold on to 'ire' until we add the new ire 'nire' and 14920 * we don't want the new ire to have a dangling reference 14921 * to 'ire'. The ire_max_frag of a broadcast ire must 14922 * be in sync with the ipif_mtu of the associate ipif. 14923 * For eg. this happens as a result of SIOCSLIFNAME, 14924 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14925 * the driver. A change in ire_max_frag triggered as 14926 * as a result of path mtu discovery, or due to an 14927 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14928 * route change -mtu command does not apply to broadcast ires. 14929 * 14930 * XXX We need a recovery strategy here if ire_init fails 14931 */ 14932 if (ire_init(nire, 14933 (uchar_t *)&ire->ire_addr, 14934 (uchar_t *)&ire->ire_mask, 14935 (uchar_t *)&ire->ire_src_addr, 14936 (uchar_t *)&ire->ire_gateway_addr, 14937 ire->ire_stq == NULL ? &ip_loopback_mtu : 14938 &ire->ire_ipif->ipif_mtu, 14939 ire->ire_nce, 14940 ire->ire_rfq, 14941 ire->ire_stq, 14942 ire->ire_type, 14943 ire->ire_ipif, 14944 ire->ire_cmask, 14945 ire->ire_phandle, 14946 ire->ire_ihandle, 14947 ire->ire_flags, 14948 &ire->ire_uinfo, 14949 NULL, 14950 NULL, 14951 ipst) == NULL) { 14952 cmn_err(CE_PANIC, "ire_init() failed"); 14953 } 14954 ire_delete(ire); 14955 ire_refrele(ire); 14956 14957 /* 14958 * The newly created IREs are inserted at the tail of the list 14959 * starting with ire_head. As we've just allocated them no one 14960 * knows about them so it's safe. 14961 */ 14962 *ire_ptpn = nire; 14963 ire_ptpn = &nire->ire_next; 14964 } 14965 14966 for (nire = ire_head; nire != NULL; nire = nire_next) { 14967 int error; 14968 ire_t *oire; 14969 /* unlink the IRE from our list before calling ire_add() */ 14970 nire_next = nire->ire_next; 14971 nire->ire_next = NULL; 14972 14973 /* ire_add adds the ire at the right place in the list */ 14974 oire = nire; 14975 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14976 ASSERT(error == 0); 14977 ASSERT(oire == nire); 14978 ire_refrele(nire); /* Held in ire_add */ 14979 } 14980 } 14981 14982 /* 14983 * This function is usually called when an ill is inserted in 14984 * a group and all the ipifs are already UP. As all the ipifs 14985 * are already UP, the broadcast ires have already been created 14986 * and been inserted. But, ire_add_v4 would not have grouped properly. 14987 * We need to re-group for the benefit of ip_wput_ire which 14988 * expects BROADCAST ires to be grouped properly to avoid sending 14989 * more than one copy of the broadcast packet per group. 14990 * 14991 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14992 * because when ipif_up_done ends up calling this, ires have 14993 * already been added before illgrp_insert i.e before ill_group 14994 * has been initialized. 14995 */ 14996 static void 14997 ill_group_bcast_for_xmit(ill_t *ill) 14998 { 14999 ill_group_t *illgrp; 15000 ipif_t *ipif; 15001 ipaddr_t addr; 15002 ipaddr_t net_mask; 15003 ipaddr_t subnet_netmask; 15004 15005 illgrp = ill->ill_group; 15006 15007 /* 15008 * This function is called even when an ill is deleted from 15009 * the group. Hence, illgrp could be null. 15010 */ 15011 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15012 return; 15013 15014 /* 15015 * Delete all the BROADCAST ires matching this ill and add 15016 * them back. This time, ire_add_v4 should take care of 15017 * grouping them with others because ill is part of the 15018 * group. 15019 */ 15020 ill_bcast_delete_and_add(ill, 0); 15021 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15022 15023 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15024 15025 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15026 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15027 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15028 } else { 15029 net_mask = htonl(IN_CLASSA_NET); 15030 } 15031 addr = net_mask & ipif->ipif_subnet; 15032 ill_bcast_delete_and_add(ill, addr); 15033 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15034 15035 subnet_netmask = ipif->ipif_net_mask; 15036 addr = ipif->ipif_subnet; 15037 ill_bcast_delete_and_add(ill, addr); 15038 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15039 } 15040 } 15041 15042 /* 15043 * This function is called from illgrp_delete when ill is being deleted 15044 * from the group. 15045 * 15046 * As ill is not there in the group anymore, any address belonging 15047 * to this ill should be cleared of IRE_MARK_NORECV. 15048 */ 15049 static void 15050 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15051 { 15052 ire_t *ire; 15053 irb_t *irb; 15054 ip_stack_t *ipst = ill->ill_ipst; 15055 15056 ASSERT(ill->ill_group == NULL); 15057 15058 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15059 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15060 15061 if (ire != NULL) { 15062 /* 15063 * IPMP and plumbing operations are serialized on the ipsq, so 15064 * no one will insert or delete a broadcast ire under our feet. 15065 */ 15066 irb = ire->ire_bucket; 15067 rw_enter(&irb->irb_lock, RW_READER); 15068 ire_refrele(ire); 15069 15070 for (; ire != NULL; ire = ire->ire_next) { 15071 if (ire->ire_addr != addr) 15072 break; 15073 if (ire_to_ill(ire) != ill) 15074 continue; 15075 15076 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15077 ire->ire_marks &= ~IRE_MARK_NORECV; 15078 } 15079 rw_exit(&irb->irb_lock); 15080 } 15081 } 15082 15083 /* 15084 * This function must be called only after the broadcast ires 15085 * have been grouped together. For a given address addr, nominate 15086 * only one of the ires whose interface is not FAILED or OFFLINE. 15087 * 15088 * This is also called when an ipif goes down, so that we can nominate 15089 * a different ire with the same address for receiving. 15090 */ 15091 static void 15092 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15093 { 15094 irb_t *irb; 15095 ire_t *ire; 15096 ire_t *ire1; 15097 ire_t *save_ire; 15098 ire_t **irep = NULL; 15099 boolean_t first = B_TRUE; 15100 ire_t *clear_ire = NULL; 15101 ire_t *start_ire = NULL; 15102 ire_t *new_lb_ire; 15103 ire_t *new_nlb_ire; 15104 boolean_t new_lb_ire_used = B_FALSE; 15105 boolean_t new_nlb_ire_used = B_FALSE; 15106 uint64_t match_flags; 15107 uint64_t phyi_flags; 15108 boolean_t fallback = B_FALSE; 15109 uint_t max_frag; 15110 15111 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15112 NULL, MATCH_IRE_TYPE, ipst); 15113 /* 15114 * We may not be able to find some ires if a previous 15115 * ire_create failed. This happens when an ipif goes 15116 * down and we are unable to create BROADCAST ires due 15117 * to memory failure. Thus, we have to check for NULL 15118 * below. This should handle the case for LOOPBACK, 15119 * POINTOPOINT and interfaces with some POINTOPOINT 15120 * logicals for which there are no BROADCAST ires. 15121 */ 15122 if (ire == NULL) 15123 return; 15124 /* 15125 * Currently IRE_BROADCASTS are deleted when an ipif 15126 * goes down which runs exclusively. Thus, setting 15127 * IRE_MARK_RCVD should not race with ire_delete marking 15128 * IRE_MARK_CONDEMNED. We grab the lock below just to 15129 * be consistent with other parts of the code that walks 15130 * a given bucket. 15131 */ 15132 save_ire = ire; 15133 irb = ire->ire_bucket; 15134 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15135 if (new_lb_ire == NULL) { 15136 ire_refrele(ire); 15137 return; 15138 } 15139 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15140 if (new_nlb_ire == NULL) { 15141 ire_refrele(ire); 15142 kmem_cache_free(ire_cache, new_lb_ire); 15143 return; 15144 } 15145 IRB_REFHOLD(irb); 15146 rw_enter(&irb->irb_lock, RW_WRITER); 15147 /* 15148 * Get to the first ire matching the address and the 15149 * group. If the address does not match we are done 15150 * as we could not find the IRE. If the address matches 15151 * we should get to the first one matching the group. 15152 */ 15153 while (ire != NULL) { 15154 if (ire->ire_addr != addr || 15155 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15156 break; 15157 } 15158 ire = ire->ire_next; 15159 } 15160 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15161 start_ire = ire; 15162 redo: 15163 while (ire != NULL && ire->ire_addr == addr && 15164 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15165 /* 15166 * The first ire for any address within a group 15167 * should always be the one with IRE_MARK_NORECV cleared 15168 * so that ip_wput_ire can avoid searching for one. 15169 * Note down the insertion point which will be used 15170 * later. 15171 */ 15172 if (first && (irep == NULL)) 15173 irep = ire->ire_ptpn; 15174 /* 15175 * PHYI_FAILED is set when the interface fails. 15176 * This interface might have become good, but the 15177 * daemon has not yet detected. We should still 15178 * not receive on this. PHYI_OFFLINE should never 15179 * be picked as this has been offlined and soon 15180 * be removed. 15181 */ 15182 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15183 if (phyi_flags & PHYI_OFFLINE) { 15184 ire->ire_marks |= IRE_MARK_NORECV; 15185 ire = ire->ire_next; 15186 continue; 15187 } 15188 if (phyi_flags & match_flags) { 15189 ire->ire_marks |= IRE_MARK_NORECV; 15190 ire = ire->ire_next; 15191 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15192 PHYI_INACTIVE) { 15193 fallback = B_TRUE; 15194 } 15195 continue; 15196 } 15197 if (first) { 15198 /* 15199 * We will move this to the front of the list later 15200 * on. 15201 */ 15202 clear_ire = ire; 15203 ire->ire_marks &= ~IRE_MARK_NORECV; 15204 } else { 15205 ire->ire_marks |= IRE_MARK_NORECV; 15206 } 15207 first = B_FALSE; 15208 ire = ire->ire_next; 15209 } 15210 /* 15211 * If we never nominated anybody, try nominating at least 15212 * an INACTIVE, if we found one. Do it only once though. 15213 */ 15214 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15215 fallback) { 15216 match_flags = PHYI_FAILED; 15217 ire = start_ire; 15218 irep = NULL; 15219 goto redo; 15220 } 15221 ire_refrele(save_ire); 15222 15223 /* 15224 * irep non-NULL indicates that we entered the while loop 15225 * above. If clear_ire is at the insertion point, we don't 15226 * have to do anything. clear_ire will be NULL if all the 15227 * interfaces are failed. 15228 * 15229 * We cannot unlink and reinsert the ire at the right place 15230 * in the list since there can be other walkers of this bucket. 15231 * Instead we delete and recreate the ire 15232 */ 15233 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15234 ire_t *clear_ire_stq = NULL; 15235 15236 bzero(new_lb_ire, sizeof (ire_t)); 15237 /* XXX We need a recovery strategy here. */ 15238 if (ire_init(new_lb_ire, 15239 (uchar_t *)&clear_ire->ire_addr, 15240 (uchar_t *)&clear_ire->ire_mask, 15241 (uchar_t *)&clear_ire->ire_src_addr, 15242 (uchar_t *)&clear_ire->ire_gateway_addr, 15243 &clear_ire->ire_max_frag, 15244 NULL, /* let ire_nce_init derive the resolver info */ 15245 clear_ire->ire_rfq, 15246 clear_ire->ire_stq, 15247 clear_ire->ire_type, 15248 clear_ire->ire_ipif, 15249 clear_ire->ire_cmask, 15250 clear_ire->ire_phandle, 15251 clear_ire->ire_ihandle, 15252 clear_ire->ire_flags, 15253 &clear_ire->ire_uinfo, 15254 NULL, 15255 NULL, 15256 ipst) == NULL) 15257 cmn_err(CE_PANIC, "ire_init() failed"); 15258 if (clear_ire->ire_stq == NULL) { 15259 ire_t *ire_next = clear_ire->ire_next; 15260 if (ire_next != NULL && 15261 ire_next->ire_stq != NULL && 15262 ire_next->ire_addr == clear_ire->ire_addr && 15263 ire_next->ire_ipif->ipif_ill == 15264 clear_ire->ire_ipif->ipif_ill) { 15265 clear_ire_stq = ire_next; 15266 15267 bzero(new_nlb_ire, sizeof (ire_t)); 15268 /* XXX We need a recovery strategy here. */ 15269 if (ire_init(new_nlb_ire, 15270 (uchar_t *)&clear_ire_stq->ire_addr, 15271 (uchar_t *)&clear_ire_stq->ire_mask, 15272 (uchar_t *)&clear_ire_stq->ire_src_addr, 15273 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15274 &clear_ire_stq->ire_max_frag, 15275 NULL, 15276 clear_ire_stq->ire_rfq, 15277 clear_ire_stq->ire_stq, 15278 clear_ire_stq->ire_type, 15279 clear_ire_stq->ire_ipif, 15280 clear_ire_stq->ire_cmask, 15281 clear_ire_stq->ire_phandle, 15282 clear_ire_stq->ire_ihandle, 15283 clear_ire_stq->ire_flags, 15284 &clear_ire_stq->ire_uinfo, 15285 NULL, 15286 NULL, 15287 ipst) == NULL) 15288 cmn_err(CE_PANIC, "ire_init() failed"); 15289 } 15290 } 15291 15292 /* 15293 * Delete the ire. We can't call ire_delete() since 15294 * we are holding the bucket lock. We can't release the 15295 * bucket lock since we can't allow irep to change. So just 15296 * mark it CONDEMNED. The IRB_REFRELE will delete the 15297 * ire from the list and do the refrele. 15298 */ 15299 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15300 irb->irb_marks |= IRB_MARK_CONDEMNED; 15301 15302 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15303 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15304 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15305 } 15306 15307 /* 15308 * Also take care of otherfields like ib/ob pkt count 15309 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15310 */ 15311 15312 /* Set the max_frag before adding the ire */ 15313 max_frag = *new_lb_ire->ire_max_fragp; 15314 new_lb_ire->ire_max_fragp = NULL; 15315 new_lb_ire->ire_max_frag = max_frag; 15316 15317 /* Add the new ire's. Insert at *irep */ 15318 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15319 ire1 = *irep; 15320 if (ire1 != NULL) 15321 ire1->ire_ptpn = &new_lb_ire->ire_next; 15322 new_lb_ire->ire_next = ire1; 15323 /* Link the new one in. */ 15324 new_lb_ire->ire_ptpn = irep; 15325 membar_producer(); 15326 *irep = new_lb_ire; 15327 new_lb_ire_used = B_TRUE; 15328 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15329 new_lb_ire->ire_bucket->irb_ire_cnt++; 15330 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15331 15332 if (clear_ire_stq != NULL) { 15333 /* Set the max_frag before adding the ire */ 15334 max_frag = *new_nlb_ire->ire_max_fragp; 15335 new_nlb_ire->ire_max_fragp = NULL; 15336 new_nlb_ire->ire_max_frag = max_frag; 15337 15338 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15339 irep = &new_lb_ire->ire_next; 15340 /* Add the new ire. Insert at *irep */ 15341 ire1 = *irep; 15342 if (ire1 != NULL) 15343 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15344 new_nlb_ire->ire_next = ire1; 15345 /* Link the new one in. */ 15346 new_nlb_ire->ire_ptpn = irep; 15347 membar_producer(); 15348 *irep = new_nlb_ire; 15349 new_nlb_ire_used = B_TRUE; 15350 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15351 ire_stats_inserted); 15352 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15353 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15354 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15355 } 15356 } 15357 rw_exit(&irb->irb_lock); 15358 if (!new_lb_ire_used) 15359 kmem_cache_free(ire_cache, new_lb_ire); 15360 if (!new_nlb_ire_used) 15361 kmem_cache_free(ire_cache, new_nlb_ire); 15362 IRB_REFRELE(irb); 15363 } 15364 15365 /* 15366 * Whenever an ipif goes down we have to renominate a different 15367 * broadcast ire to receive. Whenever an ipif comes up, we need 15368 * to make sure that we have only one nominated to receive. 15369 */ 15370 static void 15371 ipif_renominate_bcast(ipif_t *ipif) 15372 { 15373 ill_t *ill = ipif->ipif_ill; 15374 ipaddr_t subnet_addr; 15375 ipaddr_t net_addr; 15376 ipaddr_t net_mask = 0; 15377 ipaddr_t subnet_netmask; 15378 ipaddr_t addr; 15379 ill_group_t *illgrp; 15380 ip_stack_t *ipst = ill->ill_ipst; 15381 15382 illgrp = ill->ill_group; 15383 /* 15384 * If this is the last ipif going down, it might take 15385 * the ill out of the group. In that case ipif_down -> 15386 * illgrp_delete takes care of doing the nomination. 15387 * ipif_down does not call for this case. 15388 */ 15389 ASSERT(illgrp != NULL); 15390 15391 /* There could not have been any ires associated with this */ 15392 if (ipif->ipif_subnet == 0) 15393 return; 15394 15395 ill_mark_bcast(illgrp, 0, ipst); 15396 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15397 15398 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15399 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15400 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15401 } else { 15402 net_mask = htonl(IN_CLASSA_NET); 15403 } 15404 addr = net_mask & ipif->ipif_subnet; 15405 ill_mark_bcast(illgrp, addr, ipst); 15406 15407 net_addr = ~net_mask | addr; 15408 ill_mark_bcast(illgrp, net_addr, ipst); 15409 15410 subnet_netmask = ipif->ipif_net_mask; 15411 addr = ipif->ipif_subnet; 15412 ill_mark_bcast(illgrp, addr, ipst); 15413 15414 subnet_addr = ~subnet_netmask | addr; 15415 ill_mark_bcast(illgrp, subnet_addr, ipst); 15416 } 15417 15418 /* 15419 * Whenever we form or delete ill groups, we need to nominate one set of 15420 * BROADCAST ires for receiving in the group. 15421 * 15422 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15423 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15424 * for ill_ipif_up_count to be non-zero. This is the only case where 15425 * ill_ipif_up_count is zero and we would still find the ires. 15426 * 15427 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15428 * ipif is UP and we just have to do the nomination. 15429 * 15430 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15431 * from the group. So, we have to do the nomination. 15432 * 15433 * Because of (3), there could be just one ill in the group. But we have 15434 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15435 * Thus, this function does not optimize when there is only one ill as 15436 * it is not correct for (3). 15437 */ 15438 static void 15439 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15440 { 15441 ill_t *ill; 15442 ipif_t *ipif; 15443 ipaddr_t subnet_addr; 15444 ipaddr_t prev_subnet_addr = 0; 15445 ipaddr_t net_addr; 15446 ipaddr_t prev_net_addr = 0; 15447 ipaddr_t net_mask = 0; 15448 ipaddr_t subnet_netmask; 15449 ipaddr_t addr; 15450 ip_stack_t *ipst; 15451 15452 /* 15453 * When the last memeber is leaving, there is nothing to 15454 * nominate. 15455 */ 15456 if (illgrp->illgrp_ill_count == 0) { 15457 ASSERT(illgrp->illgrp_ill == NULL); 15458 return; 15459 } 15460 15461 ill = illgrp->illgrp_ill; 15462 ASSERT(!ill->ill_isv6); 15463 ipst = ill->ill_ipst; 15464 /* 15465 * We assume that ires with same address and belonging to the 15466 * same group, has been grouped together. Nominating a *single* 15467 * ill in the group for sending and receiving broadcast is done 15468 * by making sure that the first BROADCAST ire (which will be 15469 * the one returned by ire_ctable_lookup for ip_rput and the 15470 * one that will be used in ip_wput_ire) will be the one that 15471 * will not have IRE_MARK_NORECV set. 15472 * 15473 * 1) ip_rput checks and discards packets received on ires marked 15474 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15475 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15476 * first ire in the group for every broadcast address in the group. 15477 * ip_rput will accept packets only on the first ire i.e only 15478 * one copy of the ill. 15479 * 15480 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15481 * packet for the whole group. It needs to send out on the ill 15482 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15483 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15484 * the copy echoed back on other port where the ire is not marked 15485 * with IRE_MARK_NORECV. 15486 * 15487 * Note that we just need to have the first IRE either loopback or 15488 * non-loopback (either of them may not exist if ire_create failed 15489 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15490 * always hit the first one and hence will always accept one copy. 15491 * 15492 * We have a broadcast ire per ill for all the unique prefixes 15493 * hosted on that ill. As we don't have a way of knowing the 15494 * unique prefixes on a given ill and hence in the whole group, 15495 * we just call ill_mark_bcast on all the prefixes that exist 15496 * in the group. For the common case of one prefix, the code 15497 * below optimizes by remebering the last address used for 15498 * markng. In the case of multiple prefixes, this will still 15499 * optimize depending the order of prefixes. 15500 * 15501 * The only unique address across the whole group is 0.0.0.0 and 15502 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15503 * the first ire in the bucket for receiving and disables the 15504 * others. 15505 */ 15506 ill_mark_bcast(illgrp, 0, ipst); 15507 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15508 for (; ill != NULL; ill = ill->ill_group_next) { 15509 15510 for (ipif = ill->ill_ipif; ipif != NULL; 15511 ipif = ipif->ipif_next) { 15512 15513 if (!(ipif->ipif_flags & IPIF_UP) || 15514 ipif->ipif_subnet == 0) { 15515 continue; 15516 } 15517 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15518 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15519 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15520 } else { 15521 net_mask = htonl(IN_CLASSA_NET); 15522 } 15523 addr = net_mask & ipif->ipif_subnet; 15524 if (prev_net_addr == 0 || prev_net_addr != addr) { 15525 ill_mark_bcast(illgrp, addr, ipst); 15526 net_addr = ~net_mask | addr; 15527 ill_mark_bcast(illgrp, net_addr, ipst); 15528 } 15529 prev_net_addr = addr; 15530 15531 subnet_netmask = ipif->ipif_net_mask; 15532 addr = ipif->ipif_subnet; 15533 if (prev_subnet_addr == 0 || 15534 prev_subnet_addr != addr) { 15535 ill_mark_bcast(illgrp, addr, ipst); 15536 subnet_addr = ~subnet_netmask | addr; 15537 ill_mark_bcast(illgrp, subnet_addr, ipst); 15538 } 15539 prev_subnet_addr = addr; 15540 } 15541 } 15542 } 15543 15544 /* 15545 * This function is called while forming ill groups. 15546 * 15547 * Currently, we handle only allmulti groups. We want to join 15548 * allmulti on only one of the ills in the groups. In future, 15549 * when we have link aggregation, we may have to join normal 15550 * multicast groups on multiple ills as switch does inbound load 15551 * balancing. Following are the functions that calls this 15552 * function : 15553 * 15554 * 1) ill_recover_multicast : Interface is coming back UP. 15555 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15556 * will call ill_recover_multicast to recover all the multicast 15557 * groups. We need to make sure that only one member is joined 15558 * in the ill group. 15559 * 15560 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15561 * Somebody is joining allmulti. We need to make sure that only one 15562 * member is joined in the group. 15563 * 15564 * 3) illgrp_insert : If allmulti has already joined, we need to make 15565 * sure that only one member is joined in the group. 15566 * 15567 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15568 * allmulti who we have nominated. We need to pick someother ill. 15569 * 15570 * 5) illgrp_delete : The ill we nominated is leaving the group, 15571 * we need to pick a new ill to join the group. 15572 * 15573 * For (1), (2), (5) - we just have to check whether there is 15574 * a good ill joined in the group. If we could not find any ills 15575 * joined the group, we should join. 15576 * 15577 * For (4), the one that was nominated to receive, left the group. 15578 * There could be nobody joined in the group when this function is 15579 * called. 15580 * 15581 * For (3) - we need to explicitly check whether there are multiple 15582 * ills joined in the group. 15583 * 15584 * For simplicity, we don't differentiate any of the above cases. We 15585 * just leave the group if it is joined on any of them and join on 15586 * the first good ill. 15587 */ 15588 int 15589 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15590 { 15591 ilm_t *ilm; 15592 ill_t *ill; 15593 ill_t *fallback_inactive_ill = NULL; 15594 ill_t *fallback_failed_ill = NULL; 15595 int ret = 0; 15596 15597 /* 15598 * Leave the allmulti on all the ills and start fresh. 15599 */ 15600 for (ill = illgrp->illgrp_ill; ill != NULL; 15601 ill = ill->ill_group_next) { 15602 if (ill->ill_join_allmulti) 15603 (void) ip_leave_allmulti(ill->ill_ipif); 15604 } 15605 15606 /* 15607 * Choose a good ill. Fallback to inactive or failed if 15608 * none available. We need to fallback to FAILED in the 15609 * case where we have 2 interfaces in a group - where 15610 * one of them is failed and another is a good one and 15611 * the good one (not marked inactive) is leaving the group. 15612 */ 15613 ret = 0; 15614 for (ill = illgrp->illgrp_ill; ill != NULL; 15615 ill = ill->ill_group_next) { 15616 /* Never pick an offline interface */ 15617 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15618 continue; 15619 15620 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15621 fallback_failed_ill = ill; 15622 continue; 15623 } 15624 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15625 fallback_inactive_ill = ill; 15626 continue; 15627 } 15628 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15629 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15630 ret = ip_join_allmulti(ill->ill_ipif); 15631 /* 15632 * ip_join_allmulti can fail because of memory 15633 * failures. So, make sure we join at least 15634 * on one ill. 15635 */ 15636 if (ill->ill_join_allmulti) 15637 return (0); 15638 } 15639 } 15640 } 15641 if (ret != 0) { 15642 /* 15643 * If we tried nominating above and failed to do so, 15644 * return error. We might have tried multiple times. 15645 * But, return the latest error. 15646 */ 15647 return (ret); 15648 } 15649 if ((ill = fallback_inactive_ill) != NULL) { 15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 ret = ip_join_allmulti(ill->ill_ipif); 15653 return (ret); 15654 } 15655 } 15656 } else if ((ill = fallback_failed_ill) != NULL) { 15657 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15658 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15659 ret = ip_join_allmulti(ill->ill_ipif); 15660 return (ret); 15661 } 15662 } 15663 } 15664 return (0); 15665 } 15666 15667 /* 15668 * This function is called from illgrp_delete after it is 15669 * deleted from the group to reschedule responsibilities 15670 * to a different ill. 15671 */ 15672 static void 15673 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15674 { 15675 ilm_t *ilm; 15676 ipif_t *ipif; 15677 ipaddr_t subnet_addr; 15678 ipaddr_t net_addr; 15679 ipaddr_t net_mask = 0; 15680 ipaddr_t subnet_netmask; 15681 ipaddr_t addr; 15682 ip_stack_t *ipst = ill->ill_ipst; 15683 15684 ASSERT(ill->ill_group == NULL); 15685 /* 15686 * Broadcast Responsibility: 15687 * 15688 * 1. If this ill has been nominated for receiving broadcast 15689 * packets, we need to find a new one. Before we find a new 15690 * one, we need to re-group the ires that are part of this new 15691 * group (assumed by ill_nominate_bcast_rcv). We do this by 15692 * calling ill_group_bcast_for_xmit(ill) which will do the right 15693 * thing for us. 15694 * 15695 * 2. If this ill was not nominated for receiving broadcast 15696 * packets, we need to clear the IRE_MARK_NORECV flag 15697 * so that we continue to send up broadcast packets. 15698 */ 15699 if (!ill->ill_isv6) { 15700 /* 15701 * Case 1 above : No optimization here. Just redo the 15702 * nomination. 15703 */ 15704 ill_group_bcast_for_xmit(ill); 15705 ill_nominate_bcast_rcv(illgrp); 15706 15707 /* 15708 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15709 */ 15710 ill_clear_bcast_mark(ill, 0); 15711 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15712 15713 for (ipif = ill->ill_ipif; ipif != NULL; 15714 ipif = ipif->ipif_next) { 15715 15716 if (!(ipif->ipif_flags & IPIF_UP) || 15717 ipif->ipif_subnet == 0) { 15718 continue; 15719 } 15720 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15721 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15722 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15723 } else { 15724 net_mask = htonl(IN_CLASSA_NET); 15725 } 15726 addr = net_mask & ipif->ipif_subnet; 15727 ill_clear_bcast_mark(ill, addr); 15728 15729 net_addr = ~net_mask | addr; 15730 ill_clear_bcast_mark(ill, net_addr); 15731 15732 subnet_netmask = ipif->ipif_net_mask; 15733 addr = ipif->ipif_subnet; 15734 ill_clear_bcast_mark(ill, addr); 15735 15736 subnet_addr = ~subnet_netmask | addr; 15737 ill_clear_bcast_mark(ill, subnet_addr); 15738 } 15739 } 15740 15741 /* 15742 * Multicast Responsibility. 15743 * 15744 * If we have joined allmulti on this one, find a new member 15745 * in the group to join allmulti. As this ill is already part 15746 * of allmulti, we don't have to join on this one. 15747 * 15748 * If we have not joined allmulti on this one, there is no 15749 * responsibility to handoff. But we need to take new 15750 * responsibility i.e, join allmulti on this one if we need 15751 * to. 15752 */ 15753 if (ill->ill_join_allmulti) { 15754 (void) ill_nominate_mcast_rcv(illgrp); 15755 } else { 15756 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15757 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15758 (void) ip_join_allmulti(ill->ill_ipif); 15759 break; 15760 } 15761 } 15762 } 15763 15764 /* 15765 * We intentionally do the flushing of IRE_CACHES only matching 15766 * on the ill and not on groups. Note that we are already deleted 15767 * from the group. 15768 * 15769 * This will make sure that all IRE_CACHES whose stq is pointing 15770 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15771 * deleted and IRE_CACHES that are not pointing at this ill will 15772 * be left alone. 15773 */ 15774 if (ill->ill_isv6) { 15775 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15776 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15777 } else { 15778 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15779 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15780 } 15781 15782 /* 15783 * Some conn may have cached one of the IREs deleted above. By removing 15784 * the ire reference, we clean up the extra reference to the ill held in 15785 * ire->ire_stq. 15786 */ 15787 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15788 15789 /* 15790 * Re-do source address selection for all the members in the 15791 * group, if they borrowed source address from one of the ipifs 15792 * in this ill. 15793 */ 15794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15795 if (ill->ill_isv6) { 15796 ipif_update_other_ipifs_v6(ipif, illgrp); 15797 } else { 15798 ipif_update_other_ipifs(ipif, illgrp); 15799 } 15800 } 15801 } 15802 15803 /* 15804 * Delete the ill from the group. The caller makes sure that it is 15805 * in a group and it okay to delete from the group. So, we always 15806 * delete here. 15807 */ 15808 static void 15809 illgrp_delete(ill_t *ill) 15810 { 15811 ill_group_t *illgrp; 15812 ill_group_t *tmpg; 15813 ill_t *tmp_ill; 15814 ip_stack_t *ipst = ill->ill_ipst; 15815 15816 /* 15817 * Reset illgrp_ill_schednext if it was pointing at us. 15818 * We need to do this before we set ill_group to NULL. 15819 */ 15820 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15821 mutex_enter(&ill->ill_lock); 15822 15823 illgrp_reset_schednext(ill); 15824 15825 illgrp = ill->ill_group; 15826 15827 /* Delete the ill from illgrp. */ 15828 if (illgrp->illgrp_ill == ill) { 15829 illgrp->illgrp_ill = ill->ill_group_next; 15830 } else { 15831 tmp_ill = illgrp->illgrp_ill; 15832 while (tmp_ill->ill_group_next != ill) { 15833 tmp_ill = tmp_ill->ill_group_next; 15834 ASSERT(tmp_ill != NULL); 15835 } 15836 tmp_ill->ill_group_next = ill->ill_group_next; 15837 } 15838 ill->ill_group = NULL; 15839 ill->ill_group_next = NULL; 15840 15841 illgrp->illgrp_ill_count--; 15842 mutex_exit(&ill->ill_lock); 15843 rw_exit(&ipst->ips_ill_g_lock); 15844 15845 /* 15846 * As this ill is leaving the group, we need to hand off 15847 * the responsibilities to the other ills in the group, if 15848 * this ill had some responsibilities. 15849 */ 15850 15851 ill_handoff_responsibility(ill, illgrp); 15852 15853 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15854 15855 if (illgrp->illgrp_ill_count == 0) { 15856 15857 ASSERT(illgrp->illgrp_ill == NULL); 15858 if (ill->ill_isv6) { 15859 if (illgrp == ipst->ips_illgrp_head_v6) { 15860 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15861 } else { 15862 tmpg = ipst->ips_illgrp_head_v6; 15863 while (tmpg->illgrp_next != illgrp) { 15864 tmpg = tmpg->illgrp_next; 15865 ASSERT(tmpg != NULL); 15866 } 15867 tmpg->illgrp_next = illgrp->illgrp_next; 15868 } 15869 } else { 15870 if (illgrp == ipst->ips_illgrp_head_v4) { 15871 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15872 } else { 15873 tmpg = ipst->ips_illgrp_head_v4; 15874 while (tmpg->illgrp_next != illgrp) { 15875 tmpg = tmpg->illgrp_next; 15876 ASSERT(tmpg != NULL); 15877 } 15878 tmpg->illgrp_next = illgrp->illgrp_next; 15879 } 15880 } 15881 mutex_destroy(&illgrp->illgrp_lock); 15882 mi_free(illgrp); 15883 } 15884 rw_exit(&ipst->ips_ill_g_lock); 15885 15886 /* 15887 * Even though the ill is out of the group its not necessary 15888 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15889 * We will split the ipsq when phyint_groupname is set to NULL. 15890 */ 15891 15892 /* 15893 * Send a routing sockets message if we are deleting from 15894 * groups with names. 15895 */ 15896 if (ill->ill_phyint->phyint_groupname_len != 0) 15897 ip_rts_ifmsg(ill->ill_ipif); 15898 } 15899 15900 /* 15901 * Re-do source address selection. This is normally called when 15902 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15903 * ipif comes up. 15904 */ 15905 void 15906 ill_update_source_selection(ill_t *ill) 15907 { 15908 ipif_t *ipif; 15909 15910 ASSERT(IAM_WRITER_ILL(ill)); 15911 15912 if (ill->ill_group != NULL) 15913 ill = ill->ill_group->illgrp_ill; 15914 15915 for (; ill != NULL; ill = ill->ill_group_next) { 15916 for (ipif = ill->ill_ipif; ipif != NULL; 15917 ipif = ipif->ipif_next) { 15918 if (ill->ill_isv6) 15919 ipif_recreate_interface_routes_v6(NULL, ipif); 15920 else 15921 ipif_recreate_interface_routes(NULL, ipif); 15922 } 15923 } 15924 } 15925 15926 /* 15927 * Insert ill in a group headed by illgrp_head. The caller can either 15928 * pass a groupname in which case we search for a group with the 15929 * same name to insert in or pass a group to insert in. This function 15930 * would only search groups with names. 15931 * 15932 * NOTE : The caller should make sure that there is at least one ipif 15933 * UP on this ill so that illgrp_scheduler can pick this ill 15934 * for outbound packets. If ill_ipif_up_count is zero, we have 15935 * already sent a DL_UNBIND to the driver and we don't want to 15936 * send anymore packets. We don't assert for ipif_up_count 15937 * to be greater than zero, because ipif_up_done wants to call 15938 * this function before bumping up the ipif_up_count. See 15939 * ipif_up_done() for details. 15940 */ 15941 int 15942 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15943 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15944 { 15945 ill_group_t *illgrp; 15946 ill_t *prev_ill; 15947 phyint_t *phyi; 15948 ip_stack_t *ipst = ill->ill_ipst; 15949 15950 ASSERT(ill->ill_group == NULL); 15951 15952 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15953 mutex_enter(&ill->ill_lock); 15954 15955 if (groupname != NULL) { 15956 /* 15957 * Look for a group with a matching groupname to insert. 15958 */ 15959 for (illgrp = *illgrp_head; illgrp != NULL; 15960 illgrp = illgrp->illgrp_next) { 15961 15962 ill_t *tmp_ill; 15963 15964 /* 15965 * If we have an ill_group_t in the list which has 15966 * no ill_t assigned then we must be in the process of 15967 * removing this group. We skip this as illgrp_delete() 15968 * will remove it from the list. 15969 */ 15970 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15971 ASSERT(illgrp->illgrp_ill_count == 0); 15972 continue; 15973 } 15974 15975 ASSERT(tmp_ill->ill_phyint != NULL); 15976 phyi = tmp_ill->ill_phyint; 15977 /* 15978 * Look at groups which has names only. 15979 */ 15980 if (phyi->phyint_groupname_len == 0) 15981 continue; 15982 /* 15983 * Names are stored in the phyint common to both 15984 * IPv4 and IPv6. 15985 */ 15986 if (mi_strcmp(phyi->phyint_groupname, 15987 groupname) == 0) { 15988 break; 15989 } 15990 } 15991 } else { 15992 /* 15993 * If the caller passes in a NULL "grp_to_insert", we 15994 * allocate one below and insert this singleton. 15995 */ 15996 illgrp = grp_to_insert; 15997 } 15998 15999 ill->ill_group_next = NULL; 16000 16001 if (illgrp == NULL) { 16002 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16003 if (illgrp == NULL) { 16004 return (ENOMEM); 16005 } 16006 illgrp->illgrp_next = *illgrp_head; 16007 *illgrp_head = illgrp; 16008 illgrp->illgrp_ill = ill; 16009 illgrp->illgrp_ill_count = 1; 16010 ill->ill_group = illgrp; 16011 /* 16012 * Used in illgrp_scheduler to protect multiple threads 16013 * from traversing the list. 16014 */ 16015 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16016 } else { 16017 ASSERT(ill->ill_net_type == 16018 illgrp->illgrp_ill->ill_net_type); 16019 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16020 16021 /* Insert ill at tail of this group */ 16022 prev_ill = illgrp->illgrp_ill; 16023 while (prev_ill->ill_group_next != NULL) 16024 prev_ill = prev_ill->ill_group_next; 16025 prev_ill->ill_group_next = ill; 16026 ill->ill_group = illgrp; 16027 illgrp->illgrp_ill_count++; 16028 /* 16029 * Inherit group properties. Currently only forwarding 16030 * is the property we try to keep the same with all the 16031 * ills. When there are more, we will abstract this into 16032 * a function. 16033 */ 16034 ill->ill_flags &= ~ILLF_ROUTER; 16035 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16036 } 16037 mutex_exit(&ill->ill_lock); 16038 rw_exit(&ipst->ips_ill_g_lock); 16039 16040 /* 16041 * 1) When ipif_up_done() calls this function, ipif_up_count 16042 * may be zero as it has not yet been bumped. But the ires 16043 * have already been added. So, we do the nomination here 16044 * itself. But, when ip_sioctl_groupname calls this, it checks 16045 * for ill_ipif_up_count != 0. Thus we don't check for 16046 * ill_ipif_up_count here while nominating broadcast ires for 16047 * receive. 16048 * 16049 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16050 * to group them properly as ire_add() has already happened 16051 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16052 * case, we need to do it here anyway. 16053 */ 16054 if (!ill->ill_isv6) { 16055 ill_group_bcast_for_xmit(ill); 16056 ill_nominate_bcast_rcv(illgrp); 16057 } 16058 16059 if (!ipif_is_coming_up) { 16060 /* 16061 * When ipif_up_done() calls this function, the multicast 16062 * groups have not been joined yet. So, there is no point in 16063 * nomination. ip_join_allmulti will handle groups when 16064 * ill_recover_multicast is called from ipif_up_done() later. 16065 */ 16066 (void) ill_nominate_mcast_rcv(illgrp); 16067 /* 16068 * ipif_up_done calls ill_update_source_selection 16069 * anyway. Moreover, we don't want to re-create 16070 * interface routes while ipif_up_done() still has reference 16071 * to them. Refer to ipif_up_done() for more details. 16072 */ 16073 ill_update_source_selection(ill); 16074 } 16075 16076 /* 16077 * Send a routing sockets message if we are inserting into 16078 * groups with names. 16079 */ 16080 if (groupname != NULL) 16081 ip_rts_ifmsg(ill->ill_ipif); 16082 return (0); 16083 } 16084 16085 /* 16086 * Return the first phyint matching the groupname. There could 16087 * be more than one when there are ill groups. 16088 * 16089 * If 'usable' is set, then we exclude ones that are marked with any of 16090 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16091 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16092 * emulation of ipmp. 16093 */ 16094 phyint_t * 16095 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16096 { 16097 phyint_t *phyi; 16098 16099 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16100 /* 16101 * Group names are stored in the phyint - a common structure 16102 * to both IPv4 and IPv6. 16103 */ 16104 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16105 for (; phyi != NULL; 16106 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16107 phyi, AVL_AFTER)) { 16108 if (phyi->phyint_groupname_len == 0) 16109 continue; 16110 /* 16111 * Skip the ones that should not be used since the callers 16112 * sometime use this for sending packets. 16113 */ 16114 if (usable && (phyi->phyint_flags & 16115 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16116 continue; 16117 16118 ASSERT(phyi->phyint_groupname != NULL); 16119 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16120 return (phyi); 16121 } 16122 return (NULL); 16123 } 16124 16125 16126 /* 16127 * Return the first usable phyint matching the group index. By 'usable' 16128 * we exclude ones that are marked ununsable with any of 16129 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16130 * 16131 * Used only for the ipmp/netinfo emulation of ipmp. 16132 */ 16133 phyint_t * 16134 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16135 { 16136 phyint_t *phyi; 16137 16138 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16139 16140 if (!ipst->ips_ipmp_hook_emulation) 16141 return (NULL); 16142 16143 /* 16144 * Group indicies are stored in the phyint - a common structure 16145 * to both IPv4 and IPv6. 16146 */ 16147 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16148 for (; phyi != NULL; 16149 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16150 phyi, AVL_AFTER)) { 16151 /* Ignore the ones that do not have a group */ 16152 if (phyi->phyint_groupname_len == 0) 16153 continue; 16154 16155 ASSERT(phyi->phyint_group_ifindex != 0); 16156 /* 16157 * Skip the ones that should not be used since the callers 16158 * sometime use this for sending packets. 16159 */ 16160 if (phyi->phyint_flags & 16161 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16162 continue; 16163 if (phyi->phyint_group_ifindex == group_ifindex) 16164 return (phyi); 16165 } 16166 return (NULL); 16167 } 16168 16169 16170 /* 16171 * MT notes on creation and deletion of IPMP groups 16172 * 16173 * Creation and deletion of IPMP groups introduce the need to merge or 16174 * split the associated serialization objects i.e the ipsq's. Normally all 16175 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16176 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16177 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16178 * is a need to change the <ill-ipsq> association and we have to operate on both 16179 * the source and destination IPMP groups. For eg. attempting to set the 16180 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16181 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16182 * source or destination IPMP group are mapped to a single ipsq for executing 16183 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16184 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16185 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16186 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16187 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16188 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16189 * 16190 * In the above example the ioctl handling code locates the current ipsq of hme0 16191 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16192 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16193 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16194 * the destination ipsq. If the destination ipsq is not busy, it also enters 16195 * the destination ipsq exclusively. Now the actual groupname setting operation 16196 * can proceed. If the destination ipsq is busy, the operation is enqueued 16197 * on the destination (merged) ipsq and will be handled in the unwind from 16198 * ipsq_exit. 16199 * 16200 * To prevent other threads accessing the ill while the group name change is 16201 * in progres, we bring down the ipifs which also removes the ill from the 16202 * group. The group is changed in phyint and when the first ipif on the ill 16203 * is brought up, the ill is inserted into the right IPMP group by 16204 * illgrp_insert. 16205 */ 16206 /* ARGSUSED */ 16207 int 16208 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16209 ip_ioctl_cmd_t *ipip, void *ifreq) 16210 { 16211 int i; 16212 char *tmp; 16213 int namelen; 16214 ill_t *ill = ipif->ipif_ill; 16215 ill_t *ill_v4, *ill_v6; 16216 int err = 0; 16217 phyint_t *phyi; 16218 phyint_t *phyi_tmp; 16219 struct lifreq *lifr; 16220 mblk_t *mp1; 16221 char *groupname; 16222 ipsq_t *ipsq; 16223 ip_stack_t *ipst = ill->ill_ipst; 16224 16225 ASSERT(IAM_WRITER_IPIF(ipif)); 16226 16227 /* Existance verified in ip_wput_nondata */ 16228 mp1 = mp->b_cont->b_cont; 16229 lifr = (struct lifreq *)mp1->b_rptr; 16230 groupname = lifr->lifr_groupname; 16231 16232 if (ipif->ipif_id != 0) 16233 return (EINVAL); 16234 16235 phyi = ill->ill_phyint; 16236 ASSERT(phyi != NULL); 16237 16238 if (phyi->phyint_flags & PHYI_VIRTUAL) 16239 return (EINVAL); 16240 16241 tmp = groupname; 16242 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16243 ; 16244 16245 if (i == LIFNAMSIZ) { 16246 /* no null termination */ 16247 return (EINVAL); 16248 } 16249 16250 /* 16251 * Calculate the namelen exclusive of the null 16252 * termination character. 16253 */ 16254 namelen = tmp - groupname; 16255 16256 ill_v4 = phyi->phyint_illv4; 16257 ill_v6 = phyi->phyint_illv6; 16258 16259 /* 16260 * ILL cannot be part of a usesrc group and and IPMP group at the 16261 * same time. No need to grab the ill_g_usesrc_lock here, see 16262 * synchronization notes in ip.c 16263 */ 16264 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16265 return (EINVAL); 16266 } 16267 16268 /* 16269 * mark the ill as changing. 16270 * this should queue all new requests on the syncq. 16271 */ 16272 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16273 16274 if (ill_v4 != NULL) 16275 ill_v4->ill_state_flags |= ILL_CHANGING; 16276 if (ill_v6 != NULL) 16277 ill_v6->ill_state_flags |= ILL_CHANGING; 16278 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16279 16280 if (namelen == 0) { 16281 /* 16282 * Null string means remove this interface from the 16283 * existing group. 16284 */ 16285 if (phyi->phyint_groupname_len == 0) { 16286 /* 16287 * Never was in a group. 16288 */ 16289 err = 0; 16290 goto done; 16291 } 16292 16293 /* 16294 * IPv4 or IPv6 may be temporarily out of the group when all 16295 * the ipifs are down. Thus, we need to check for ill_group to 16296 * be non-NULL. 16297 */ 16298 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16299 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16300 mutex_enter(&ill_v4->ill_lock); 16301 if (!ill_is_quiescent(ill_v4)) { 16302 /* 16303 * ipsq_pending_mp_add will not fail since 16304 * connp is NULL 16305 */ 16306 (void) ipsq_pending_mp_add(NULL, 16307 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16308 mutex_exit(&ill_v4->ill_lock); 16309 err = EINPROGRESS; 16310 goto done; 16311 } 16312 mutex_exit(&ill_v4->ill_lock); 16313 } 16314 16315 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16316 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16317 mutex_enter(&ill_v6->ill_lock); 16318 if (!ill_is_quiescent(ill_v6)) { 16319 (void) ipsq_pending_mp_add(NULL, 16320 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16321 mutex_exit(&ill_v6->ill_lock); 16322 err = EINPROGRESS; 16323 goto done; 16324 } 16325 mutex_exit(&ill_v6->ill_lock); 16326 } 16327 16328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16329 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16330 mutex_enter(&phyi->phyint_lock); 16331 ASSERT(phyi->phyint_groupname != NULL); 16332 mi_free(phyi->phyint_groupname); 16333 phyi->phyint_groupname = NULL; 16334 phyi->phyint_groupname_len = 0; 16335 16336 /* Restore the ifindex used to be the per interface one */ 16337 phyi->phyint_group_ifindex = 0; 16338 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16339 mutex_exit(&phyi->phyint_lock); 16340 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16341 rw_exit(&ipst->ips_ill_g_lock); 16342 err = ill_up_ipifs(ill, q, mp); 16343 16344 /* 16345 * set the split flag so that the ipsq can be split 16346 */ 16347 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16348 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16349 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16350 16351 } else { 16352 if (phyi->phyint_groupname_len != 0) { 16353 ASSERT(phyi->phyint_groupname != NULL); 16354 /* Are we inserting in the same group ? */ 16355 if (mi_strcmp(groupname, 16356 phyi->phyint_groupname) == 0) { 16357 err = 0; 16358 goto done; 16359 } 16360 } 16361 16362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16363 /* 16364 * Merge ipsq for the group's. 16365 * This check is here as multiple groups/ills might be 16366 * sharing the same ipsq. 16367 * If we have to merege than the operation is restarted 16368 * on the new ipsq. 16369 */ 16370 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16371 if (phyi->phyint_ipsq != ipsq) { 16372 rw_exit(&ipst->ips_ill_g_lock); 16373 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16374 goto done; 16375 } 16376 /* 16377 * Running exclusive on new ipsq. 16378 */ 16379 16380 ASSERT(ipsq != NULL); 16381 ASSERT(ipsq->ipsq_writer == curthread); 16382 16383 /* 16384 * Check whether the ill_type and ill_net_type matches before 16385 * we allocate any memory so that the cleanup is easier. 16386 * 16387 * We can't group dissimilar ones as we can't load spread 16388 * packets across the group because of potential link-level 16389 * header differences. 16390 */ 16391 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16392 if (phyi_tmp != NULL) { 16393 if ((ill_v4 != NULL && 16394 phyi_tmp->phyint_illv4 != NULL) && 16395 ((ill_v4->ill_net_type != 16396 phyi_tmp->phyint_illv4->ill_net_type) || 16397 (ill_v4->ill_type != 16398 phyi_tmp->phyint_illv4->ill_type))) { 16399 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16400 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16401 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16402 rw_exit(&ipst->ips_ill_g_lock); 16403 return (EINVAL); 16404 } 16405 if ((ill_v6 != NULL && 16406 phyi_tmp->phyint_illv6 != NULL) && 16407 ((ill_v6->ill_net_type != 16408 phyi_tmp->phyint_illv6->ill_net_type) || 16409 (ill_v6->ill_type != 16410 phyi_tmp->phyint_illv6->ill_type))) { 16411 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16412 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16413 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16414 rw_exit(&ipst->ips_ill_g_lock); 16415 return (EINVAL); 16416 } 16417 } 16418 16419 rw_exit(&ipst->ips_ill_g_lock); 16420 16421 /* 16422 * bring down all v4 ipifs. 16423 */ 16424 if (ill_v4 != NULL) { 16425 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16426 } 16427 16428 /* 16429 * bring down all v6 ipifs. 16430 */ 16431 if (ill_v6 != NULL) { 16432 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16433 } 16434 16435 /* 16436 * make sure all ipifs are down and there are no active 16437 * references. Call to ipsq_pending_mp_add will not fail 16438 * since connp is NULL. 16439 */ 16440 if (ill_v4 != NULL) { 16441 mutex_enter(&ill_v4->ill_lock); 16442 if (!ill_is_quiescent(ill_v4)) { 16443 (void) ipsq_pending_mp_add(NULL, 16444 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16445 mutex_exit(&ill_v4->ill_lock); 16446 err = EINPROGRESS; 16447 goto done; 16448 } 16449 mutex_exit(&ill_v4->ill_lock); 16450 } 16451 16452 if (ill_v6 != NULL) { 16453 mutex_enter(&ill_v6->ill_lock); 16454 if (!ill_is_quiescent(ill_v6)) { 16455 (void) ipsq_pending_mp_add(NULL, 16456 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16457 mutex_exit(&ill_v6->ill_lock); 16458 err = EINPROGRESS; 16459 goto done; 16460 } 16461 mutex_exit(&ill_v6->ill_lock); 16462 } 16463 16464 /* 16465 * allocate including space for null terminator 16466 * before we insert. 16467 */ 16468 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16469 if (tmp == NULL) 16470 return (ENOMEM); 16471 16472 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16473 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16474 mutex_enter(&phyi->phyint_lock); 16475 if (phyi->phyint_groupname_len != 0) { 16476 ASSERT(phyi->phyint_groupname != NULL); 16477 mi_free(phyi->phyint_groupname); 16478 } 16479 16480 /* 16481 * setup the new group name. 16482 */ 16483 phyi->phyint_groupname = tmp; 16484 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16485 phyi->phyint_groupname_len = namelen + 1; 16486 16487 if (ipst->ips_ipmp_hook_emulation) { 16488 /* 16489 * If the group already exists we use the existing 16490 * group_ifindex, otherwise we pick a new index here. 16491 */ 16492 if (phyi_tmp != NULL) { 16493 phyi->phyint_group_ifindex = 16494 phyi_tmp->phyint_group_ifindex; 16495 } else { 16496 /* XXX We need a recovery strategy here. */ 16497 if (!ip_assign_ifindex( 16498 &phyi->phyint_group_ifindex, ipst)) 16499 cmn_err(CE_PANIC, 16500 "ip_assign_ifindex() failed"); 16501 } 16502 } 16503 /* 16504 * Select whether the netinfo and hook use the per-interface 16505 * or per-group ifindex. 16506 */ 16507 if (ipst->ips_ipmp_hook_emulation) 16508 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16509 else 16510 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16511 16512 if (ipst->ips_ipmp_hook_emulation && 16513 phyi_tmp != NULL) { 16514 /* First phyint in group - group PLUMB event */ 16515 ill_nic_info_plumb(ill, B_TRUE); 16516 } 16517 mutex_exit(&phyi->phyint_lock); 16518 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16519 rw_exit(&ipst->ips_ill_g_lock); 16520 16521 err = ill_up_ipifs(ill, q, mp); 16522 } 16523 16524 done: 16525 /* 16526 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16527 */ 16528 if (err != EINPROGRESS) { 16529 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16530 if (ill_v4 != NULL) 16531 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16532 if (ill_v6 != NULL) 16533 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16534 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16535 } 16536 return (err); 16537 } 16538 16539 /* ARGSUSED */ 16540 int 16541 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16542 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16543 { 16544 ill_t *ill; 16545 phyint_t *phyi; 16546 struct lifreq *lifr; 16547 mblk_t *mp1; 16548 16549 /* Existence verified in ip_wput_nondata */ 16550 mp1 = mp->b_cont->b_cont; 16551 lifr = (struct lifreq *)mp1->b_rptr; 16552 ill = ipif->ipif_ill; 16553 phyi = ill->ill_phyint; 16554 16555 lifr->lifr_groupname[0] = '\0'; 16556 /* 16557 * ill_group may be null if all the interfaces 16558 * are down. But still, the phyint should always 16559 * hold the name. 16560 */ 16561 if (phyi->phyint_groupname_len != 0) { 16562 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16563 phyi->phyint_groupname_len); 16564 } 16565 16566 return (0); 16567 } 16568 16569 16570 typedef struct conn_move_s { 16571 ill_t *cm_from_ill; 16572 ill_t *cm_to_ill; 16573 int cm_ifindex; 16574 } conn_move_t; 16575 16576 /* 16577 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16578 */ 16579 static void 16580 conn_move(conn_t *connp, caddr_t arg) 16581 { 16582 conn_move_t *connm; 16583 int ifindex; 16584 int i; 16585 ill_t *from_ill; 16586 ill_t *to_ill; 16587 ilg_t *ilg; 16588 ilm_t *ret_ilm; 16589 16590 connm = (conn_move_t *)arg; 16591 ifindex = connm->cm_ifindex; 16592 from_ill = connm->cm_from_ill; 16593 to_ill = connm->cm_to_ill; 16594 16595 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16596 16597 /* All multicast fields protected by conn_lock */ 16598 mutex_enter(&connp->conn_lock); 16599 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16600 if ((connp->conn_outgoing_ill == from_ill) && 16601 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16602 connp->conn_outgoing_ill = to_ill; 16603 connp->conn_incoming_ill = to_ill; 16604 } 16605 16606 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16607 16608 if ((connp->conn_multicast_ill == from_ill) && 16609 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16610 connp->conn_multicast_ill = connm->cm_to_ill; 16611 } 16612 16613 /* Change IP_XMIT_IF associations */ 16614 if ((connp->conn_xmit_if_ill == from_ill) && 16615 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16616 connp->conn_xmit_if_ill = to_ill; 16617 } 16618 /* 16619 * Change the ilg_ill to point to the new one. This assumes 16620 * ilm_move_v6 has moved the ilms to new_ill and the driver 16621 * has been told to receive packets on this interface. 16622 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16623 * But when doing a FAILOVER, it might fail with ENOMEM and so 16624 * some ilms may not have moved. We check to see whether 16625 * the ilms have moved to to_ill. We can't check on from_ill 16626 * as in the process of moving, we could have split an ilm 16627 * in to two - which has the same orig_ifindex and v6group. 16628 * 16629 * For IPv4, ilg_ipif moves implicitly. The code below really 16630 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16631 */ 16632 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16633 ilg = &connp->conn_ilg[i]; 16634 if ((ilg->ilg_ill == from_ill) && 16635 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16636 /* ifindex != 0 indicates failback */ 16637 if (ifindex != 0) { 16638 connp->conn_ilg[i].ilg_ill = to_ill; 16639 continue; 16640 } 16641 16642 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16643 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16644 connp->conn_zoneid); 16645 16646 if (ret_ilm != NULL) 16647 connp->conn_ilg[i].ilg_ill = to_ill; 16648 } 16649 } 16650 mutex_exit(&connp->conn_lock); 16651 } 16652 16653 static void 16654 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16655 { 16656 conn_move_t connm; 16657 ip_stack_t *ipst = from_ill->ill_ipst; 16658 16659 connm.cm_from_ill = from_ill; 16660 connm.cm_to_ill = to_ill; 16661 connm.cm_ifindex = ifindex; 16662 16663 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16664 } 16665 16666 /* 16667 * ilm has been moved from from_ill to to_ill. 16668 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16669 * appropriately. 16670 * 16671 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16672 * the code there de-references ipif_ill to get the ill to 16673 * send multicast requests. It does not work as ipif is on its 16674 * move and already moved when this function is called. 16675 * Thus, we need to use from_ill and to_ill send down multicast 16676 * requests. 16677 */ 16678 static void 16679 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16680 { 16681 ipif_t *ipif; 16682 ilm_t *ilm; 16683 16684 /* 16685 * See whether we need to send down DL_ENABMULTI_REQ on 16686 * to_ill as ilm has just been added. 16687 */ 16688 ASSERT(IAM_WRITER_ILL(to_ill)); 16689 ASSERT(IAM_WRITER_ILL(from_ill)); 16690 16691 ILM_WALKER_HOLD(to_ill); 16692 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16693 16694 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16695 continue; 16696 /* 16697 * no locks held, ill/ipif cannot dissappear as long 16698 * as we are writer. 16699 */ 16700 ipif = to_ill->ill_ipif; 16701 /* 16702 * No need to hold any lock as we are the writer and this 16703 * can only be changed by a writer. 16704 */ 16705 ilm->ilm_is_new = B_FALSE; 16706 16707 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16708 ipif->ipif_flags & IPIF_POINTOPOINT) { 16709 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16710 "resolver\n")); 16711 continue; /* Must be IRE_IF_NORESOLVER */ 16712 } 16713 16714 16715 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16716 ip1dbg(("ilm_send_multicast_reqs: " 16717 "to_ill MULTI_BCAST\n")); 16718 goto from; 16719 } 16720 16721 if (to_ill->ill_isv6) 16722 mld_joingroup(ilm); 16723 else 16724 igmp_joingroup(ilm); 16725 16726 if (to_ill->ill_ipif_up_count == 0) { 16727 /* 16728 * Nobody there. All multicast addresses will be 16729 * re-joined when we get the DL_BIND_ACK bringing the 16730 * interface up. 16731 */ 16732 ilm->ilm_notify_driver = B_FALSE; 16733 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16734 goto from; 16735 } 16736 16737 /* 16738 * For allmulti address, we want to join on only one interface. 16739 * Checking for ilm_numentries_v6 is not correct as you may 16740 * find an ilm with zero address on to_ill, but we may not 16741 * have nominated to_ill for receiving. Thus, if we have 16742 * nominated from_ill (ill_join_allmulti is set), nominate 16743 * only if to_ill is not already nominated (to_ill normally 16744 * should not have been nominated if "from_ill" has already 16745 * been nominated. As we don't prevent failovers from happening 16746 * across groups, we don't assert). 16747 */ 16748 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16749 /* 16750 * There is no need to hold ill locks as we are 16751 * writer on both ills and when ill_join_allmulti 16752 * is changed the thread is always a writer. 16753 */ 16754 if (from_ill->ill_join_allmulti && 16755 !to_ill->ill_join_allmulti) { 16756 (void) ip_join_allmulti(to_ill->ill_ipif); 16757 } 16758 } else if (ilm->ilm_notify_driver) { 16759 16760 /* 16761 * This is a newly moved ilm so we need to tell the 16762 * driver about the new group. There can be more than 16763 * one ilm's for the same group in the list each with a 16764 * different orig_ifindex. We have to inform the driver 16765 * once. In ilm_move_v[4,6] we only set the flag 16766 * ilm_notify_driver for the first ilm. 16767 */ 16768 16769 (void) ip_ll_send_enabmulti_req(to_ill, 16770 &ilm->ilm_v6addr); 16771 } 16772 16773 ilm->ilm_notify_driver = B_FALSE; 16774 16775 /* 16776 * See whether we need to send down DL_DISABMULTI_REQ on 16777 * from_ill as ilm has just been removed. 16778 */ 16779 from: 16780 ipif = from_ill->ill_ipif; 16781 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16782 ipif->ipif_flags & IPIF_POINTOPOINT) { 16783 ip1dbg(("ilm_send_multicast_reqs: " 16784 "from_ill not resolver\n")); 16785 continue; /* Must be IRE_IF_NORESOLVER */ 16786 } 16787 16788 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16789 ip1dbg(("ilm_send_multicast_reqs: " 16790 "from_ill MULTI_BCAST\n")); 16791 continue; 16792 } 16793 16794 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16795 if (from_ill->ill_join_allmulti) 16796 (void) ip_leave_allmulti(from_ill->ill_ipif); 16797 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16798 (void) ip_ll_send_disabmulti_req(from_ill, 16799 &ilm->ilm_v6addr); 16800 } 16801 } 16802 ILM_WALKER_RELE(to_ill); 16803 } 16804 16805 /* 16806 * This function is called when all multicast memberships needs 16807 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16808 * called only once unlike the IPv4 counterpart where it is called after 16809 * every logical interface is moved. The reason is due to multicast 16810 * memberships are joined using an interface address in IPv4 while in 16811 * IPv6, interface index is used. 16812 */ 16813 static void 16814 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16815 { 16816 ilm_t *ilm; 16817 ilm_t *ilm_next; 16818 ilm_t *new_ilm; 16819 ilm_t **ilmp; 16820 int count; 16821 char buf[INET6_ADDRSTRLEN]; 16822 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16823 ip_stack_t *ipst = from_ill->ill_ipst; 16824 16825 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16826 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16827 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16828 16829 if (ifindex == 0) { 16830 /* 16831 * Form the solicited node mcast address which is used later. 16832 */ 16833 ipif_t *ipif; 16834 16835 ipif = from_ill->ill_ipif; 16836 ASSERT(ipif->ipif_id == 0); 16837 16838 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16839 } 16840 16841 ilmp = &from_ill->ill_ilm; 16842 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16843 ilm_next = ilm->ilm_next; 16844 16845 if (ilm->ilm_flags & ILM_DELETED) { 16846 ilmp = &ilm->ilm_next; 16847 continue; 16848 } 16849 16850 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16851 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16852 ASSERT(ilm->ilm_orig_ifindex != 0); 16853 if (ilm->ilm_orig_ifindex == ifindex) { 16854 /* 16855 * We are failing back multicast memberships. 16856 * If the same ilm exists in to_ill, it means somebody 16857 * has joined the same group there e.g. ff02::1 16858 * is joined within the kernel when the interfaces 16859 * came UP. 16860 */ 16861 ASSERT(ilm->ilm_ipif == NULL); 16862 if (new_ilm != NULL) { 16863 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16864 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16865 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16866 new_ilm->ilm_is_new = B_TRUE; 16867 } 16868 } else { 16869 /* 16870 * check if we can just move the ilm 16871 */ 16872 if (from_ill->ill_ilm_walker_cnt != 0) { 16873 /* 16874 * We have walkers we cannot move 16875 * the ilm, so allocate a new ilm, 16876 * this (old) ilm will be marked 16877 * ILM_DELETED at the end of the loop 16878 * and will be freed when the 16879 * last walker exits. 16880 */ 16881 new_ilm = (ilm_t *)mi_zalloc 16882 (sizeof (ilm_t)); 16883 if (new_ilm == NULL) { 16884 ip0dbg(("ilm_move_v6: " 16885 "FAILBACK of IPv6" 16886 " multicast address %s : " 16887 "from %s to" 16888 " %s failed : ENOMEM \n", 16889 inet_ntop(AF_INET6, 16890 &ilm->ilm_v6addr, buf, 16891 sizeof (buf)), 16892 from_ill->ill_name, 16893 to_ill->ill_name)); 16894 16895 ilmp = &ilm->ilm_next; 16896 continue; 16897 } 16898 *new_ilm = *ilm; 16899 /* 16900 * we don't want new_ilm linked to 16901 * ilm's filter list. 16902 */ 16903 new_ilm->ilm_filter = NULL; 16904 } else { 16905 /* 16906 * No walkers we can move the ilm. 16907 * lets take it out of the list. 16908 */ 16909 *ilmp = ilm->ilm_next; 16910 ilm->ilm_next = NULL; 16911 new_ilm = ilm; 16912 } 16913 16914 /* 16915 * if this is the first ilm for the group 16916 * set ilm_notify_driver so that we notify the 16917 * driver in ilm_send_multicast_reqs. 16918 */ 16919 if (ilm_lookup_ill_v6(to_ill, 16920 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16921 new_ilm->ilm_notify_driver = B_TRUE; 16922 16923 new_ilm->ilm_ill = to_ill; 16924 /* Add to the to_ill's list */ 16925 new_ilm->ilm_next = to_ill->ill_ilm; 16926 to_ill->ill_ilm = new_ilm; 16927 /* 16928 * set the flag so that mld_joingroup is 16929 * called in ilm_send_multicast_reqs(). 16930 */ 16931 new_ilm->ilm_is_new = B_TRUE; 16932 } 16933 goto bottom; 16934 } else if (ifindex != 0) { 16935 /* 16936 * If this is FAILBACK (ifindex != 0) and the ifindex 16937 * has not matched above, look at the next ilm. 16938 */ 16939 ilmp = &ilm->ilm_next; 16940 continue; 16941 } 16942 /* 16943 * If we are here, it means ifindex is 0. Failover 16944 * everything. 16945 * 16946 * We need to handle solicited node mcast address 16947 * and all_nodes mcast address differently as they 16948 * are joined witin the kenrel (ipif_multicast_up) 16949 * and potentially from the userland. We are called 16950 * after the ipifs of from_ill has been moved. 16951 * If we still find ilms on ill with solicited node 16952 * mcast address or all_nodes mcast address, it must 16953 * belong to the UP interface that has not moved e.g. 16954 * ipif_id 0 with the link local prefix does not move. 16955 * We join this on the new ill accounting for all the 16956 * userland memberships so that applications don't 16957 * see any failure. 16958 * 16959 * We need to make sure that we account only for the 16960 * solicited node and all node multicast addresses 16961 * that was brought UP on these. In the case of 16962 * a failover from A to B, we might have ilms belonging 16963 * to A (ilm_orig_ifindex pointing at A) on B accounting 16964 * for the membership from the userland. If we are failing 16965 * over from B to C now, we will find the ones belonging 16966 * to A on B. These don't account for the ill_ipif_up_count. 16967 * They just move from B to C. The check below on 16968 * ilm_orig_ifindex ensures that. 16969 */ 16970 if ((ilm->ilm_orig_ifindex == 16971 from_ill->ill_phyint->phyint_ifindex) && 16972 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16973 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16974 &ilm->ilm_v6addr))) { 16975 ASSERT(ilm->ilm_refcnt > 0); 16976 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16977 /* 16978 * For indentation reasons, we are not using a 16979 * "else" here. 16980 */ 16981 if (count == 0) { 16982 ilmp = &ilm->ilm_next; 16983 continue; 16984 } 16985 ilm->ilm_refcnt -= count; 16986 if (new_ilm != NULL) { 16987 /* 16988 * Can find one with the same 16989 * ilm_orig_ifindex, if we are failing 16990 * over to a STANDBY. This happens 16991 * when somebody wants to join a group 16992 * on a STANDBY interface and we 16993 * internally join on a different one. 16994 * If we had joined on from_ill then, a 16995 * failover now will find a new ilm 16996 * with this index. 16997 */ 16998 ip1dbg(("ilm_move_v6: FAILOVER, found" 16999 " new ilm on %s, group address %s\n", 17000 to_ill->ill_name, 17001 inet_ntop(AF_INET6, 17002 &ilm->ilm_v6addr, buf, 17003 sizeof (buf)))); 17004 new_ilm->ilm_refcnt += count; 17005 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17006 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17007 new_ilm->ilm_is_new = B_TRUE; 17008 } 17009 } else { 17010 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17011 if (new_ilm == NULL) { 17012 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17013 " multicast address %s : from %s to" 17014 " %s failed : ENOMEM \n", 17015 inet_ntop(AF_INET6, 17016 &ilm->ilm_v6addr, buf, 17017 sizeof (buf)), from_ill->ill_name, 17018 to_ill->ill_name)); 17019 ilmp = &ilm->ilm_next; 17020 continue; 17021 } 17022 *new_ilm = *ilm; 17023 new_ilm->ilm_filter = NULL; 17024 new_ilm->ilm_refcnt = count; 17025 new_ilm->ilm_timer = INFINITY; 17026 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17027 new_ilm->ilm_is_new = B_TRUE; 17028 /* 17029 * If the to_ill has not joined this 17030 * group we need to tell the driver in 17031 * ill_send_multicast_reqs. 17032 */ 17033 if (ilm_lookup_ill_v6(to_ill, 17034 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17035 new_ilm->ilm_notify_driver = B_TRUE; 17036 17037 new_ilm->ilm_ill = to_ill; 17038 /* Add to the to_ill's list */ 17039 new_ilm->ilm_next = to_ill->ill_ilm; 17040 to_ill->ill_ilm = new_ilm; 17041 ASSERT(new_ilm->ilm_ipif == NULL); 17042 } 17043 if (ilm->ilm_refcnt == 0) { 17044 goto bottom; 17045 } else { 17046 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17047 CLEAR_SLIST(new_ilm->ilm_filter); 17048 ilmp = &ilm->ilm_next; 17049 } 17050 continue; 17051 } else { 17052 /* 17053 * ifindex = 0 means, move everything pointing at 17054 * from_ill. We are doing this becuase ill has 17055 * either FAILED or became INACTIVE. 17056 * 17057 * As we would like to move things later back to 17058 * from_ill, we want to retain the identity of this 17059 * ilm. Thus, we don't blindly increment the reference 17060 * count on the ilms matching the address alone. We 17061 * need to match on the ilm_orig_index also. new_ilm 17062 * was obtained by matching ilm_orig_index also. 17063 */ 17064 if (new_ilm != NULL) { 17065 /* 17066 * This is possible only if a previous restore 17067 * was incomplete i.e restore to 17068 * ilm_orig_ifindex left some ilms because 17069 * of some failures. Thus when we are failing 17070 * again, we might find our old friends there. 17071 */ 17072 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17073 " on %s, group address %s\n", 17074 to_ill->ill_name, 17075 inet_ntop(AF_INET6, 17076 &ilm->ilm_v6addr, buf, 17077 sizeof (buf)))); 17078 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17079 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17080 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17081 new_ilm->ilm_is_new = B_TRUE; 17082 } 17083 } else { 17084 if (from_ill->ill_ilm_walker_cnt != 0) { 17085 new_ilm = (ilm_t *) 17086 mi_zalloc(sizeof (ilm_t)); 17087 if (new_ilm == NULL) { 17088 ip0dbg(("ilm_move_v6: " 17089 "FAILOVER of IPv6" 17090 " multicast address %s : " 17091 "from %s to" 17092 " %s failed : ENOMEM \n", 17093 inet_ntop(AF_INET6, 17094 &ilm->ilm_v6addr, buf, 17095 sizeof (buf)), 17096 from_ill->ill_name, 17097 to_ill->ill_name)); 17098 17099 ilmp = &ilm->ilm_next; 17100 continue; 17101 } 17102 *new_ilm = *ilm; 17103 new_ilm->ilm_filter = NULL; 17104 } else { 17105 *ilmp = ilm->ilm_next; 17106 new_ilm = ilm; 17107 } 17108 /* 17109 * If the to_ill has not joined this 17110 * group we need to tell the driver in 17111 * ill_send_multicast_reqs. 17112 */ 17113 if (ilm_lookup_ill_v6(to_ill, 17114 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17115 new_ilm->ilm_notify_driver = B_TRUE; 17116 17117 /* Add to the to_ill's list */ 17118 new_ilm->ilm_next = to_ill->ill_ilm; 17119 to_ill->ill_ilm = new_ilm; 17120 ASSERT(ilm->ilm_ipif == NULL); 17121 new_ilm->ilm_ill = to_ill; 17122 new_ilm->ilm_is_new = B_TRUE; 17123 } 17124 17125 } 17126 17127 bottom: 17128 /* 17129 * Revert multicast filter state to (EXCLUDE, NULL). 17130 * new_ilm->ilm_is_new should already be set if needed. 17131 */ 17132 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17133 CLEAR_SLIST(new_ilm->ilm_filter); 17134 /* 17135 * We allocated/got a new ilm, free the old one. 17136 */ 17137 if (new_ilm != ilm) { 17138 if (from_ill->ill_ilm_walker_cnt == 0) { 17139 *ilmp = ilm->ilm_next; 17140 ilm->ilm_next = NULL; 17141 FREE_SLIST(ilm->ilm_filter); 17142 FREE_SLIST(ilm->ilm_pendsrcs); 17143 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17144 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17145 mi_free((char *)ilm); 17146 } else { 17147 ilm->ilm_flags |= ILM_DELETED; 17148 from_ill->ill_ilm_cleanup_reqd = 1; 17149 ilmp = &ilm->ilm_next; 17150 } 17151 } 17152 } 17153 } 17154 17155 /* 17156 * Move all the multicast memberships to to_ill. Called when 17157 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17158 * different from IPv6 counterpart as multicast memberships are associated 17159 * with ills in IPv6. This function is called after every ipif is moved 17160 * unlike IPv6, where it is moved only once. 17161 */ 17162 static void 17163 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17164 { 17165 ilm_t *ilm; 17166 ilm_t *ilm_next; 17167 ilm_t *new_ilm; 17168 ilm_t **ilmp; 17169 ip_stack_t *ipst = from_ill->ill_ipst; 17170 17171 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17172 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17173 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17174 17175 ilmp = &from_ill->ill_ilm; 17176 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17177 ilm_next = ilm->ilm_next; 17178 17179 if (ilm->ilm_flags & ILM_DELETED) { 17180 ilmp = &ilm->ilm_next; 17181 continue; 17182 } 17183 17184 ASSERT(ilm->ilm_ipif != NULL); 17185 17186 if (ilm->ilm_ipif != ipif) { 17187 ilmp = &ilm->ilm_next; 17188 continue; 17189 } 17190 17191 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17192 htonl(INADDR_ALLHOSTS_GROUP)) { 17193 new_ilm = ilm_lookup_ipif(ipif, 17194 V4_PART_OF_V6(ilm->ilm_v6addr)); 17195 if (new_ilm != NULL) { 17196 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17197 /* 17198 * We still need to deal with the from_ill. 17199 */ 17200 new_ilm->ilm_is_new = B_TRUE; 17201 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17202 CLEAR_SLIST(new_ilm->ilm_filter); 17203 goto delete_ilm; 17204 } 17205 /* 17206 * If we could not find one e.g. ipif is 17207 * still down on to_ill, we add this ilm 17208 * on ill_new to preserve the reference 17209 * count. 17210 */ 17211 } 17212 /* 17213 * When ipifs move, ilms always move with it 17214 * to the NEW ill. Thus we should never be 17215 * able to find ilm till we really move it here. 17216 */ 17217 ASSERT(ilm_lookup_ipif(ipif, 17218 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17219 17220 if (from_ill->ill_ilm_walker_cnt != 0) { 17221 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17222 if (new_ilm == NULL) { 17223 char buf[INET6_ADDRSTRLEN]; 17224 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17225 " multicast address %s : " 17226 "from %s to" 17227 " %s failed : ENOMEM \n", 17228 inet_ntop(AF_INET, 17229 &ilm->ilm_v6addr, buf, 17230 sizeof (buf)), 17231 from_ill->ill_name, 17232 to_ill->ill_name)); 17233 17234 ilmp = &ilm->ilm_next; 17235 continue; 17236 } 17237 *new_ilm = *ilm; 17238 /* We don't want new_ilm linked to ilm's filter list */ 17239 new_ilm->ilm_filter = NULL; 17240 } else { 17241 /* Remove from the list */ 17242 *ilmp = ilm->ilm_next; 17243 new_ilm = ilm; 17244 } 17245 17246 /* 17247 * If we have never joined this group on the to_ill 17248 * make sure we tell the driver. 17249 */ 17250 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17251 ALL_ZONES) == NULL) 17252 new_ilm->ilm_notify_driver = B_TRUE; 17253 17254 /* Add to the to_ill's list */ 17255 new_ilm->ilm_next = to_ill->ill_ilm; 17256 to_ill->ill_ilm = new_ilm; 17257 new_ilm->ilm_is_new = B_TRUE; 17258 17259 /* 17260 * Revert multicast filter state to (EXCLUDE, NULL) 17261 */ 17262 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17263 CLEAR_SLIST(new_ilm->ilm_filter); 17264 17265 /* 17266 * Delete only if we have allocated a new ilm. 17267 */ 17268 if (new_ilm != ilm) { 17269 delete_ilm: 17270 if (from_ill->ill_ilm_walker_cnt == 0) { 17271 /* Remove from the list */ 17272 *ilmp = ilm->ilm_next; 17273 ilm->ilm_next = NULL; 17274 FREE_SLIST(ilm->ilm_filter); 17275 FREE_SLIST(ilm->ilm_pendsrcs); 17276 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17277 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17278 mi_free((char *)ilm); 17279 } else { 17280 ilm->ilm_flags |= ILM_DELETED; 17281 from_ill->ill_ilm_cleanup_reqd = 1; 17282 ilmp = &ilm->ilm_next; 17283 } 17284 } 17285 } 17286 } 17287 17288 static uint_t 17289 ipif_get_id(ill_t *ill, uint_t id) 17290 { 17291 uint_t unit; 17292 ipif_t *tipif; 17293 boolean_t found = B_FALSE; 17294 ip_stack_t *ipst = ill->ill_ipst; 17295 17296 /* 17297 * During failback, we want to go back to the same id 17298 * instead of the smallest id so that the original 17299 * configuration is maintained. id is non-zero in that 17300 * case. 17301 */ 17302 if (id != 0) { 17303 /* 17304 * While failing back, if we still have an ipif with 17305 * MAX_ADDRS_PER_IF, it means this will be replaced 17306 * as soon as we return from this function. It was 17307 * to set to MAX_ADDRS_PER_IF by the caller so that 17308 * we can choose the smallest id. Thus we return zero 17309 * in that case ignoring the hint. 17310 */ 17311 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17312 return (0); 17313 for (tipif = ill->ill_ipif; tipif != NULL; 17314 tipif = tipif->ipif_next) { 17315 if (tipif->ipif_id == id) { 17316 found = B_TRUE; 17317 break; 17318 } 17319 } 17320 /* 17321 * If somebody already plumbed another logical 17322 * with the same id, we won't be able to find it. 17323 */ 17324 if (!found) 17325 return (id); 17326 } 17327 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17328 found = B_FALSE; 17329 for (tipif = ill->ill_ipif; tipif != NULL; 17330 tipif = tipif->ipif_next) { 17331 if (tipif->ipif_id == unit) { 17332 found = B_TRUE; 17333 break; 17334 } 17335 } 17336 if (!found) 17337 break; 17338 } 17339 return (unit); 17340 } 17341 17342 /* ARGSUSED */ 17343 static int 17344 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17345 ipif_t **rep_ipif_ptr) 17346 { 17347 ill_t *from_ill; 17348 ipif_t *rep_ipif; 17349 uint_t unit; 17350 int err = 0; 17351 ipif_t *to_ipif; 17352 struct iocblk *iocp; 17353 boolean_t failback_cmd; 17354 boolean_t remove_ipif; 17355 int rc; 17356 ip_stack_t *ipst; 17357 17358 ASSERT(IAM_WRITER_ILL(to_ill)); 17359 ASSERT(IAM_WRITER_IPIF(ipif)); 17360 17361 iocp = (struct iocblk *)mp->b_rptr; 17362 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17363 remove_ipif = B_FALSE; 17364 17365 from_ill = ipif->ipif_ill; 17366 ipst = from_ill->ill_ipst; 17367 17368 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17369 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17370 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17371 17372 /* 17373 * Don't move LINK LOCAL addresses as they are tied to 17374 * physical interface. 17375 */ 17376 if (from_ill->ill_isv6 && 17377 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17378 ipif->ipif_was_up = B_FALSE; 17379 IPIF_UNMARK_MOVING(ipif); 17380 return (0); 17381 } 17382 17383 /* 17384 * We set the ipif_id to maximum so that the search for 17385 * ipif_id will pick the lowest number i.e 0 in the 17386 * following 2 cases : 17387 * 17388 * 1) We have a replacement ipif at the head of to_ill. 17389 * We can't remove it yet as we can exceed ip_addrs_per_if 17390 * on to_ill and hence the MOVE might fail. We want to 17391 * remove it only if we could move the ipif. Thus, by 17392 * setting it to the MAX value, we make the search in 17393 * ipif_get_id return the zeroth id. 17394 * 17395 * 2) When DR pulls out the NIC and re-plumbs the interface, 17396 * we might just have a zero address plumbed on the ipif 17397 * with zero id in the case of IPv4. We remove that while 17398 * doing the failback. We want to remove it only if we 17399 * could move the ipif. Thus, by setting it to the MAX 17400 * value, we make the search in ipif_get_id return the 17401 * zeroth id. 17402 * 17403 * Both (1) and (2) are done only when when we are moving 17404 * an ipif (either due to failover/failback) which originally 17405 * belonged to this interface i.e the ipif_orig_ifindex is 17406 * the same as to_ill's ifindex. This is needed so that 17407 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17408 * from B -> A (B is being removed from the group) and 17409 * FAILBACK from A -> B restores the original configuration. 17410 * Without the check for orig_ifindex, the second FAILOVER 17411 * could make the ipif belonging to B replace the A's zeroth 17412 * ipif and the subsequent failback re-creating the replacement 17413 * ipif again. 17414 * 17415 * NOTE : We created the replacement ipif when we did a 17416 * FAILOVER (See below). We could check for FAILBACK and 17417 * then look for replacement ipif to be removed. But we don't 17418 * want to do that because we wan't to allow the possibility 17419 * of a FAILOVER from A -> B (which creates the replacement ipif), 17420 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17421 * from B -> A. 17422 */ 17423 to_ipif = to_ill->ill_ipif; 17424 if ((to_ill->ill_phyint->phyint_ifindex == 17425 ipif->ipif_orig_ifindex) && 17426 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17427 ASSERT(to_ipif->ipif_id == 0); 17428 remove_ipif = B_TRUE; 17429 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17430 } 17431 /* 17432 * Find the lowest logical unit number on the to_ill. 17433 * If we are failing back, try to get the original id 17434 * rather than the lowest one so that the original 17435 * configuration is maintained. 17436 * 17437 * XXX need a better scheme for this. 17438 */ 17439 if (failback_cmd) { 17440 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17441 } else { 17442 unit = ipif_get_id(to_ill, 0); 17443 } 17444 17445 /* Reset back to zero in case we fail below */ 17446 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17447 to_ipif->ipif_id = 0; 17448 17449 if (unit == ipst->ips_ip_addrs_per_if) { 17450 ipif->ipif_was_up = B_FALSE; 17451 IPIF_UNMARK_MOVING(ipif); 17452 return (EINVAL); 17453 } 17454 17455 /* 17456 * ipif is ready to move from "from_ill" to "to_ill". 17457 * 17458 * 1) If we are moving ipif with id zero, create a 17459 * replacement ipif for this ipif on from_ill. If this fails 17460 * fail the MOVE operation. 17461 * 17462 * 2) Remove the replacement ipif on to_ill if any. 17463 * We could remove the replacement ipif when we are moving 17464 * the ipif with id zero. But what if somebody already 17465 * unplumbed it ? Thus we always remove it if it is present. 17466 * We want to do it only if we are sure we are going to 17467 * move the ipif to to_ill which is why there are no 17468 * returns due to error till ipif is linked to to_ill. 17469 * Note that the first ipif that we failback will always 17470 * be zero if it is present. 17471 */ 17472 if (ipif->ipif_id == 0) { 17473 ipaddr_t inaddr_any = INADDR_ANY; 17474 17475 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17476 if (rep_ipif == NULL) { 17477 ipif->ipif_was_up = B_FALSE; 17478 IPIF_UNMARK_MOVING(ipif); 17479 return (ENOMEM); 17480 } 17481 *rep_ipif = ipif_zero; 17482 /* 17483 * Before we put the ipif on the list, store the addresses 17484 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17485 * assumes so. This logic is not any different from what 17486 * ipif_allocate does. 17487 */ 17488 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17489 &rep_ipif->ipif_v6lcl_addr); 17490 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17491 &rep_ipif->ipif_v6src_addr); 17492 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17493 &rep_ipif->ipif_v6subnet); 17494 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17495 &rep_ipif->ipif_v6net_mask); 17496 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17497 &rep_ipif->ipif_v6brd_addr); 17498 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17499 &rep_ipif->ipif_v6pp_dst_addr); 17500 /* 17501 * We mark IPIF_NOFAILOVER so that this can never 17502 * move. 17503 */ 17504 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17505 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17506 rep_ipif->ipif_replace_zero = B_TRUE; 17507 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17508 MUTEX_DEFAULT, NULL); 17509 rep_ipif->ipif_id = 0; 17510 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17511 rep_ipif->ipif_ill = from_ill; 17512 rep_ipif->ipif_orig_ifindex = 17513 from_ill->ill_phyint->phyint_ifindex; 17514 /* Insert at head */ 17515 rep_ipif->ipif_next = from_ill->ill_ipif; 17516 from_ill->ill_ipif = rep_ipif; 17517 /* 17518 * We don't really care to let apps know about 17519 * this interface. 17520 */ 17521 } 17522 17523 if (remove_ipif) { 17524 /* 17525 * We set to a max value above for this case to get 17526 * id zero. ASSERT that we did get one. 17527 */ 17528 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17529 rep_ipif = to_ipif; 17530 to_ill->ill_ipif = rep_ipif->ipif_next; 17531 rep_ipif->ipif_next = NULL; 17532 /* 17533 * If some apps scanned and find this interface, 17534 * it is time to let them know, so that they can 17535 * delete it. 17536 */ 17537 17538 *rep_ipif_ptr = rep_ipif; 17539 } 17540 17541 /* Get it out of the ILL interface list. */ 17542 ipif_remove(ipif, B_FALSE); 17543 17544 /* Assign the new ill */ 17545 ipif->ipif_ill = to_ill; 17546 ipif->ipif_id = unit; 17547 /* id has already been checked */ 17548 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17549 ASSERT(rc == 0); 17550 /* Let SCTP update its list */ 17551 sctp_move_ipif(ipif, from_ill, to_ill); 17552 /* 17553 * Handle the failover and failback of ipif_t between 17554 * ill_t that have differing maximum mtu values. 17555 */ 17556 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17557 if (ipif->ipif_saved_mtu == 0) { 17558 /* 17559 * As this ipif_t is moving to an ill_t 17560 * that has a lower ill_max_mtu, its 17561 * ipif_mtu needs to be saved so it can 17562 * be restored during failback or during 17563 * failover to an ill_t which has a 17564 * higher ill_max_mtu. 17565 */ 17566 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17567 ipif->ipif_mtu = to_ill->ill_max_mtu; 17568 } else { 17569 /* 17570 * The ipif_t is, once again, moving to 17571 * an ill_t that has a lower maximum mtu 17572 * value. 17573 */ 17574 ipif->ipif_mtu = to_ill->ill_max_mtu; 17575 } 17576 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17577 ipif->ipif_saved_mtu != 0) { 17578 /* 17579 * The mtu of this ipif_t had to be reduced 17580 * during an earlier failover; this is an 17581 * opportunity for it to be increased (either as 17582 * part of another failover or a failback). 17583 */ 17584 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17585 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17586 ipif->ipif_saved_mtu = 0; 17587 } else { 17588 ipif->ipif_mtu = to_ill->ill_max_mtu; 17589 } 17590 } 17591 17592 /* 17593 * We preserve all the other fields of the ipif including 17594 * ipif_saved_ire_mp. The routes that are saved here will 17595 * be recreated on the new interface and back on the old 17596 * interface when we move back. 17597 */ 17598 ASSERT(ipif->ipif_arp_del_mp == NULL); 17599 17600 return (err); 17601 } 17602 17603 static int 17604 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17605 int ifindex, ipif_t **rep_ipif_ptr) 17606 { 17607 ipif_t *mipif; 17608 ipif_t *ipif_next; 17609 int err; 17610 17611 /* 17612 * We don't really try to MOVE back things if some of the 17613 * operations fail. The daemon will take care of moving again 17614 * later on. 17615 */ 17616 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17617 ipif_next = mipif->ipif_next; 17618 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17619 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17620 17621 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17622 17623 /* 17624 * When the MOVE fails, it is the job of the 17625 * application to take care of this properly 17626 * i.e try again if it is ENOMEM. 17627 */ 17628 if (mipif->ipif_ill != from_ill) { 17629 /* 17630 * ipif has moved. 17631 * 17632 * Move the multicast memberships associated 17633 * with this ipif to the new ill. For IPv6, we 17634 * do it once after all the ipifs are moved 17635 * (in ill_move) as they are not associated 17636 * with ipifs. 17637 * 17638 * We need to move the ilms as the ipif has 17639 * already been moved to a new ill even 17640 * in the case of errors. Neither 17641 * ilm_free(ipif) will find the ilm 17642 * when somebody unplumbs this ipif nor 17643 * ilm_delete(ilm) will be able to find the 17644 * ilm, if we don't move now. 17645 */ 17646 if (!from_ill->ill_isv6) 17647 ilm_move_v4(from_ill, to_ill, mipif); 17648 } 17649 17650 if (err != 0) 17651 return (err); 17652 } 17653 } 17654 return (0); 17655 } 17656 17657 static int 17658 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17659 { 17660 int ifindex; 17661 int err; 17662 struct iocblk *iocp; 17663 ipif_t *ipif; 17664 ipif_t *rep_ipif_ptr = NULL; 17665 ipif_t *from_ipif = NULL; 17666 boolean_t check_rep_if = B_FALSE; 17667 ip_stack_t *ipst = from_ill->ill_ipst; 17668 17669 iocp = (struct iocblk *)mp->b_rptr; 17670 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17671 /* 17672 * Move everything pointing at from_ill to to_ill. 17673 * We acheive this by passing in 0 as ifindex. 17674 */ 17675 ifindex = 0; 17676 } else { 17677 /* 17678 * Move everything pointing at from_ill whose original 17679 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17680 * We acheive this by passing in ifindex rather than 0. 17681 * Multicast vifs, ilgs move implicitly because ipifs move. 17682 */ 17683 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17684 ifindex = to_ill->ill_phyint->phyint_ifindex; 17685 } 17686 17687 /* 17688 * Determine if there is at least one ipif that would move from 17689 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17690 * ipif (if it exists) on the to_ill would be consumed as a result of 17691 * the move, in which case we need to quiesce the replacement ipif also. 17692 */ 17693 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17694 from_ipif = from_ipif->ipif_next) { 17695 if (((ifindex == 0) || 17696 (ifindex == from_ipif->ipif_orig_ifindex)) && 17697 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17698 check_rep_if = B_TRUE; 17699 break; 17700 } 17701 } 17702 17703 17704 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17705 17706 GRAB_ILL_LOCKS(from_ill, to_ill); 17707 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17708 (void) ipsq_pending_mp_add(NULL, ipif, q, 17709 mp, ILL_MOVE_OK); 17710 RELEASE_ILL_LOCKS(from_ill, to_ill); 17711 return (EINPROGRESS); 17712 } 17713 17714 /* Check if the replacement ipif is quiescent to delete */ 17715 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17716 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17717 to_ill->ill_ipif->ipif_state_flags |= 17718 IPIF_MOVING | IPIF_CHANGING; 17719 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17720 (void) ipsq_pending_mp_add(NULL, ipif, q, 17721 mp, ILL_MOVE_OK); 17722 RELEASE_ILL_LOCKS(from_ill, to_ill); 17723 return (EINPROGRESS); 17724 } 17725 } 17726 RELEASE_ILL_LOCKS(from_ill, to_ill); 17727 17728 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17729 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17730 GRAB_ILL_LOCKS(from_ill, to_ill); 17731 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17732 17733 /* ilm_move is done inside ipif_move for IPv4 */ 17734 if (err == 0 && from_ill->ill_isv6) 17735 ilm_move_v6(from_ill, to_ill, ifindex); 17736 17737 RELEASE_ILL_LOCKS(from_ill, to_ill); 17738 rw_exit(&ipst->ips_ill_g_lock); 17739 17740 /* 17741 * send rts messages and multicast messages. 17742 */ 17743 if (rep_ipif_ptr != NULL) { 17744 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17745 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17746 rep_ipif_ptr->ipif_recovery_id = 0; 17747 } 17748 ip_rts_ifmsg(rep_ipif_ptr); 17749 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17750 #ifdef DEBUG 17751 ipif_trace_cleanup(rep_ipif_ptr); 17752 #endif 17753 mi_free(rep_ipif_ptr); 17754 } 17755 17756 conn_move_ill(from_ill, to_ill, ifindex); 17757 17758 return (err); 17759 } 17760 17761 /* 17762 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17763 * Also checks for the validity of the arguments. 17764 * Note: We are already exclusive inside the from group. 17765 * It is upto the caller to release refcnt on the to_ill's. 17766 */ 17767 static int 17768 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17769 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17770 { 17771 int dst_index; 17772 ipif_t *ipif_v4, *ipif_v6; 17773 struct lifreq *lifr; 17774 mblk_t *mp1; 17775 boolean_t exists; 17776 sin_t *sin; 17777 int err = 0; 17778 ip_stack_t *ipst; 17779 17780 if (CONN_Q(q)) 17781 ipst = CONNQ_TO_IPST(q); 17782 else 17783 ipst = ILLQ_TO_IPST(q); 17784 17785 17786 if ((mp1 = mp->b_cont) == NULL) 17787 return (EPROTO); 17788 17789 if ((mp1 = mp1->b_cont) == NULL) 17790 return (EPROTO); 17791 17792 lifr = (struct lifreq *)mp1->b_rptr; 17793 sin = (sin_t *)&lifr->lifr_addr; 17794 17795 /* 17796 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17797 * specific operations. 17798 */ 17799 if (sin->sin_family != AF_UNSPEC) 17800 return (EINVAL); 17801 17802 /* 17803 * Get ipif with id 0. We are writer on the from ill. So we can pass 17804 * NULLs for the last 4 args and we know the lookup won't fail 17805 * with EINPROGRESS. 17806 */ 17807 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17808 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17809 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17810 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17811 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17812 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17813 17814 if (ipif_v4 == NULL && ipif_v6 == NULL) 17815 return (ENXIO); 17816 17817 if (ipif_v4 != NULL) { 17818 ASSERT(ipif_v4->ipif_refcnt != 0); 17819 if (ipif_v4->ipif_id != 0) { 17820 err = EINVAL; 17821 goto done; 17822 } 17823 17824 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17825 *ill_from_v4 = ipif_v4->ipif_ill; 17826 } 17827 17828 if (ipif_v6 != NULL) { 17829 ASSERT(ipif_v6->ipif_refcnt != 0); 17830 if (ipif_v6->ipif_id != 0) { 17831 err = EINVAL; 17832 goto done; 17833 } 17834 17835 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17836 *ill_from_v6 = ipif_v6->ipif_ill; 17837 } 17838 17839 err = 0; 17840 dst_index = lifr->lifr_movetoindex; 17841 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17842 q, mp, ip_process_ioctl, &err, ipst); 17843 if (err != 0) { 17844 /* 17845 * There could be only v6. 17846 */ 17847 if (err != ENXIO) 17848 goto done; 17849 err = 0; 17850 } 17851 17852 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17853 q, mp, ip_process_ioctl, &err, ipst); 17854 if (err != 0) { 17855 if (err != ENXIO) 17856 goto done; 17857 if (*ill_to_v4 == NULL) { 17858 err = ENXIO; 17859 goto done; 17860 } 17861 err = 0; 17862 } 17863 17864 /* 17865 * If we have something to MOVE i.e "from" not NULL, 17866 * "to" should be non-NULL. 17867 */ 17868 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17869 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17870 err = EINVAL; 17871 } 17872 17873 done: 17874 if (ipif_v4 != NULL) 17875 ipif_refrele(ipif_v4); 17876 if (ipif_v6 != NULL) 17877 ipif_refrele(ipif_v6); 17878 return (err); 17879 } 17880 17881 /* 17882 * FAILOVER and FAILBACK are modelled as MOVE operations. 17883 * 17884 * We don't check whether the MOVE is within the same group or 17885 * not, because this ioctl can be used as a generic mechanism 17886 * to failover from interface A to B, though things will function 17887 * only if they are really part of the same group. Moreover, 17888 * all ipifs may be down and hence temporarily out of the group. 17889 * 17890 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17891 * down first and then V6. For each we wait for the ipif's to become quiescent. 17892 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17893 * have been deleted and there are no active references. Once quiescent the 17894 * ipif's are moved and brought up on the new ill. 17895 * 17896 * Normally the source ill and destination ill belong to the same IPMP group 17897 * and hence the same ipsq_t. In the event they don't belong to the same 17898 * same group the two ipsq's are first merged into one ipsq - that of the 17899 * to_ill. The multicast memberships on the source and destination ill cannot 17900 * change during the move operation since multicast joins/leaves also have to 17901 * execute on the same ipsq and are hence serialized. 17902 */ 17903 /* ARGSUSED */ 17904 int 17905 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17906 ip_ioctl_cmd_t *ipip, void *ifreq) 17907 { 17908 ill_t *ill_to_v4 = NULL; 17909 ill_t *ill_to_v6 = NULL; 17910 ill_t *ill_from_v4 = NULL; 17911 ill_t *ill_from_v6 = NULL; 17912 int err = 0; 17913 17914 /* 17915 * setup from and to ill's, we can get EINPROGRESS only for 17916 * to_ill's. 17917 */ 17918 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17919 &ill_to_v4, &ill_to_v6); 17920 17921 if (err != 0) { 17922 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17923 goto done; 17924 } 17925 17926 /* 17927 * nothing to do. 17928 */ 17929 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17930 goto done; 17931 } 17932 17933 /* 17934 * nothing to do. 17935 */ 17936 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17937 goto done; 17938 } 17939 17940 /* 17941 * Mark the ill as changing. 17942 * ILL_CHANGING flag is cleared when the ipif's are brought up 17943 * in ill_up_ipifs in case of error they are cleared below. 17944 */ 17945 17946 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17947 if (ill_from_v4 != NULL) 17948 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17949 if (ill_from_v6 != NULL) 17950 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17951 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17952 17953 /* 17954 * Make sure that both src and dst are 17955 * in the same syncq group. If not make it happen. 17956 * We are not holding any locks because we are the writer 17957 * on the from_ipsq and we will hold locks in ill_merge_groups 17958 * to protect to_ipsq against changing. 17959 */ 17960 if (ill_from_v4 != NULL) { 17961 if (ill_from_v4->ill_phyint->phyint_ipsq != 17962 ill_to_v4->ill_phyint->phyint_ipsq) { 17963 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17964 NULL, mp, q); 17965 goto err_ret; 17966 17967 } 17968 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17969 } else { 17970 17971 if (ill_from_v6->ill_phyint->phyint_ipsq != 17972 ill_to_v6->ill_phyint->phyint_ipsq) { 17973 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17974 NULL, mp, q); 17975 goto err_ret; 17976 17977 } 17978 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17979 } 17980 17981 /* 17982 * Now that the ipsq's have been merged and we are the writer 17983 * lets mark to_ill as changing as well. 17984 */ 17985 17986 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17987 if (ill_to_v4 != NULL) 17988 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17989 if (ill_to_v6 != NULL) 17990 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17991 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17992 17993 /* 17994 * Its ok for us to proceed with the move even if 17995 * ill_pending_mp is non null on one of the from ill's as the reply 17996 * should not be looking at the ipif, it should only care about the 17997 * ill itself. 17998 */ 17999 18000 /* 18001 * lets move ipv4 first. 18002 */ 18003 if (ill_from_v4 != NULL) { 18004 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18005 ill_from_v4->ill_move_in_progress = B_TRUE; 18006 ill_to_v4->ill_move_in_progress = B_TRUE; 18007 ill_to_v4->ill_move_peer = ill_from_v4; 18008 ill_from_v4->ill_move_peer = ill_to_v4; 18009 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18010 } 18011 18012 /* 18013 * Now lets move ipv6. 18014 */ 18015 if (err == 0 && ill_from_v6 != NULL) { 18016 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18017 ill_from_v6->ill_move_in_progress = B_TRUE; 18018 ill_to_v6->ill_move_in_progress = B_TRUE; 18019 ill_to_v6->ill_move_peer = ill_from_v6; 18020 ill_from_v6->ill_move_peer = ill_to_v6; 18021 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18022 } 18023 18024 err_ret: 18025 /* 18026 * EINPROGRESS means we are waiting for the ipif's that need to be 18027 * moved to become quiescent. 18028 */ 18029 if (err == EINPROGRESS) { 18030 goto done; 18031 } 18032 18033 /* 18034 * if err is set ill_up_ipifs will not be called 18035 * lets clear the flags. 18036 */ 18037 18038 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18039 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18040 /* 18041 * Some of the clearing may be redundant. But it is simple 18042 * not making any extra checks. 18043 */ 18044 if (ill_from_v6 != NULL) { 18045 ill_from_v6->ill_move_in_progress = B_FALSE; 18046 ill_from_v6->ill_move_peer = NULL; 18047 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18048 } 18049 if (ill_from_v4 != NULL) { 18050 ill_from_v4->ill_move_in_progress = B_FALSE; 18051 ill_from_v4->ill_move_peer = NULL; 18052 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18053 } 18054 if (ill_to_v6 != NULL) { 18055 ill_to_v6->ill_move_in_progress = B_FALSE; 18056 ill_to_v6->ill_move_peer = NULL; 18057 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18058 } 18059 if (ill_to_v4 != NULL) { 18060 ill_to_v4->ill_move_in_progress = B_FALSE; 18061 ill_to_v4->ill_move_peer = NULL; 18062 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18063 } 18064 18065 /* 18066 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18067 * Do this always to maintain proper state i.e even in case of errors. 18068 * As phyint_inactive looks at both v4 and v6 interfaces, 18069 * we need not call on both v4 and v6 interfaces. 18070 */ 18071 if (ill_from_v4 != NULL) { 18072 if ((ill_from_v4->ill_phyint->phyint_flags & 18073 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18074 phyint_inactive(ill_from_v4->ill_phyint); 18075 } 18076 } else if (ill_from_v6 != NULL) { 18077 if ((ill_from_v6->ill_phyint->phyint_flags & 18078 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18079 phyint_inactive(ill_from_v6->ill_phyint); 18080 } 18081 } 18082 18083 if (ill_to_v4 != NULL) { 18084 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18085 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18086 } 18087 } else if (ill_to_v6 != NULL) { 18088 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18089 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18090 } 18091 } 18092 18093 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18094 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18095 18096 no_err: 18097 /* 18098 * lets bring the interfaces up on the to_ill. 18099 */ 18100 if (err == 0) { 18101 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18102 q, mp); 18103 } 18104 18105 if (err == 0) { 18106 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18107 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18108 18109 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18110 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18111 } 18112 done: 18113 18114 if (ill_to_v4 != NULL) { 18115 ill_refrele(ill_to_v4); 18116 } 18117 if (ill_to_v6 != NULL) { 18118 ill_refrele(ill_to_v6); 18119 } 18120 18121 return (err); 18122 } 18123 18124 static void 18125 ill_dl_down(ill_t *ill) 18126 { 18127 /* 18128 * The ill is down; unbind but stay attached since we're still 18129 * associated with a PPA. If we have negotiated DLPI capabilites 18130 * with the data link service provider (IDS_OK) then reset them. 18131 * The interval between unbinding and rebinding is potentially 18132 * unbounded hence we cannot assume things will be the same. 18133 * The DLPI capabilities will be probed again when the data link 18134 * is brought up. 18135 */ 18136 mblk_t *mp = ill->ill_unbind_mp; 18137 hook_nic_event_t *info; 18138 18139 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18140 18141 ill->ill_unbind_mp = NULL; 18142 if (mp != NULL) { 18143 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18144 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18145 ill->ill_name)); 18146 mutex_enter(&ill->ill_lock); 18147 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18148 mutex_exit(&ill->ill_lock); 18149 /* 18150 * Reset the capabilities if the negotiation is done or is 18151 * still in progress. Note that ill_capability_reset() will 18152 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18153 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18154 * 18155 * Further, reset ill_capab_reneg to be B_FALSE so that the 18156 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18157 * the capabilities renegotiation from happening. 18158 */ 18159 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18160 ill_capability_reset(ill); 18161 ill->ill_capab_reneg = B_FALSE; 18162 18163 ill_dlpi_send(ill, mp); 18164 } 18165 18166 /* 18167 * Toss all of our multicast memberships. We could keep them, but 18168 * then we'd have to do bookkeeping of any joins and leaves performed 18169 * by the application while the the interface is down (we can't just 18170 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18171 * on a downed interface). 18172 */ 18173 ill_leave_multicast(ill); 18174 18175 mutex_enter(&ill->ill_lock); 18176 18177 ill->ill_dl_up = 0; 18178 18179 if ((info = ill->ill_nic_event_info) != NULL) { 18180 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18181 info->hne_event, ill->ill_name)); 18182 if (info->hne_data != NULL) 18183 kmem_free(info->hne_data, info->hne_datalen); 18184 kmem_free(info, sizeof (hook_nic_event_t)); 18185 } 18186 18187 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18188 if (info != NULL) { 18189 ip_stack_t *ipst = ill->ill_ipst; 18190 18191 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18192 info->hne_lif = 0; 18193 info->hne_event = NE_DOWN; 18194 info->hne_data = NULL; 18195 info->hne_datalen = 0; 18196 info->hne_family = ill->ill_isv6 ? 18197 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18198 } else 18199 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18200 "information for %s (ENOMEM)\n", ill->ill_name)); 18201 18202 ill->ill_nic_event_info = info; 18203 18204 mutex_exit(&ill->ill_lock); 18205 } 18206 18207 static void 18208 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18209 { 18210 union DL_primitives *dlp; 18211 t_uscalar_t prim; 18212 18213 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18214 18215 dlp = (union DL_primitives *)mp->b_rptr; 18216 prim = dlp->dl_primitive; 18217 18218 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18219 dlpi_prim_str(prim), prim, ill->ill_name)); 18220 18221 switch (prim) { 18222 case DL_PHYS_ADDR_REQ: 18223 { 18224 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18225 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18226 break; 18227 } 18228 case DL_BIND_REQ: 18229 mutex_enter(&ill->ill_lock); 18230 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18231 mutex_exit(&ill->ill_lock); 18232 break; 18233 } 18234 18235 /* 18236 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18237 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18238 * we only wait for the ACK of the DL_UNBIND_REQ. 18239 */ 18240 mutex_enter(&ill->ill_lock); 18241 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18242 (prim == DL_UNBIND_REQ)) { 18243 ill->ill_dlpi_pending = prim; 18244 } 18245 mutex_exit(&ill->ill_lock); 18246 18247 putnext(ill->ill_wq, mp); 18248 } 18249 18250 /* 18251 * Helper function for ill_dlpi_send(). 18252 */ 18253 /* ARGSUSED */ 18254 static void 18255 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18256 { 18257 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18258 } 18259 18260 /* 18261 * Send a DLPI control message to the driver but make sure there 18262 * is only one outstanding message. Uses ill_dlpi_pending to tell 18263 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18264 * when an ACK or a NAK is received to process the next queued message. 18265 */ 18266 void 18267 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18268 { 18269 mblk_t **mpp; 18270 18271 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18272 18273 /* 18274 * To ensure that any DLPI requests for current exclusive operation 18275 * are always completely sent before any DLPI messages for other 18276 * operations, require writer access before enqueuing. 18277 */ 18278 if (!IAM_WRITER_ILL(ill)) { 18279 ill_refhold(ill); 18280 /* qwriter_ip() does the ill_refrele() */ 18281 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18282 NEW_OP, B_TRUE); 18283 return; 18284 } 18285 18286 mutex_enter(&ill->ill_lock); 18287 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18288 /* Must queue message. Tail insertion */ 18289 mpp = &ill->ill_dlpi_deferred; 18290 while (*mpp != NULL) 18291 mpp = &((*mpp)->b_next); 18292 18293 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18294 ill->ill_name)); 18295 18296 *mpp = mp; 18297 mutex_exit(&ill->ill_lock); 18298 return; 18299 } 18300 mutex_exit(&ill->ill_lock); 18301 ill_dlpi_dispatch(ill, mp); 18302 } 18303 18304 /* 18305 * Send all deferred DLPI messages without waiting for their ACKs. 18306 */ 18307 void 18308 ill_dlpi_send_deferred(ill_t *ill) 18309 { 18310 mblk_t *mp, *nextmp; 18311 18312 /* 18313 * Clear ill_dlpi_pending so that the message is not queued in 18314 * ill_dlpi_send(). 18315 */ 18316 mutex_enter(&ill->ill_lock); 18317 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18318 mp = ill->ill_dlpi_deferred; 18319 ill->ill_dlpi_deferred = NULL; 18320 mutex_exit(&ill->ill_lock); 18321 18322 for (; mp != NULL; mp = nextmp) { 18323 nextmp = mp->b_next; 18324 mp->b_next = NULL; 18325 ill_dlpi_send(ill, mp); 18326 } 18327 } 18328 18329 /* 18330 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18331 */ 18332 boolean_t 18333 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18334 { 18335 t_uscalar_t pending; 18336 18337 mutex_enter(&ill->ill_lock); 18338 if (ill->ill_dlpi_pending == prim) { 18339 mutex_exit(&ill->ill_lock); 18340 return (B_TRUE); 18341 } 18342 18343 /* 18344 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18345 * without waiting, so don't print any warnings in that case. 18346 */ 18347 if (ill->ill_state_flags & ILL_CONDEMNED) { 18348 mutex_exit(&ill->ill_lock); 18349 return (B_FALSE); 18350 } 18351 pending = ill->ill_dlpi_pending; 18352 mutex_exit(&ill->ill_lock); 18353 18354 if (pending == DL_PRIM_INVAL) { 18355 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18356 "received unsolicited ack for %s on %s\n", 18357 dlpi_prim_str(prim), ill->ill_name); 18358 } else { 18359 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18360 "received unexpected ack for %s on %s (expecting %s)\n", 18361 dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending)); 18362 } 18363 return (B_FALSE); 18364 } 18365 18366 /* 18367 * Called when an DLPI control message has been acked or nacked to 18368 * send down the next queued message (if any). 18369 */ 18370 void 18371 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18372 { 18373 mblk_t *mp; 18374 18375 ASSERT(IAM_WRITER_ILL(ill)); 18376 mutex_enter(&ill->ill_lock); 18377 18378 ASSERT(prim != DL_PRIM_INVAL); 18379 ASSERT(ill->ill_dlpi_pending == prim); 18380 18381 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18382 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18383 18384 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18385 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18386 cv_signal(&ill->ill_cv); 18387 mutex_exit(&ill->ill_lock); 18388 return; 18389 } 18390 18391 ill->ill_dlpi_deferred = mp->b_next; 18392 mp->b_next = NULL; 18393 mutex_exit(&ill->ill_lock); 18394 18395 ill_dlpi_dispatch(ill, mp); 18396 } 18397 18398 void 18399 conn_delete_ire(conn_t *connp, caddr_t arg) 18400 { 18401 ipif_t *ipif = (ipif_t *)arg; 18402 ire_t *ire; 18403 18404 /* 18405 * Look at the cached ires on conns which has pointers to ipifs. 18406 * We just call ire_refrele which clears up the reference 18407 * to ire. Called when a conn closes. Also called from ipif_free 18408 * to cleanup indirect references to the stale ipif via the cached ire. 18409 */ 18410 mutex_enter(&connp->conn_lock); 18411 ire = connp->conn_ire_cache; 18412 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18413 connp->conn_ire_cache = NULL; 18414 mutex_exit(&connp->conn_lock); 18415 IRE_REFRELE_NOTR(ire); 18416 return; 18417 } 18418 mutex_exit(&connp->conn_lock); 18419 18420 } 18421 18422 /* 18423 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18424 * of IREs. Those IREs may have been previously cached in the conn structure. 18425 * This ipcl_walk() walker function releases all references to such IREs based 18426 * on the condemned flag. 18427 */ 18428 /* ARGSUSED */ 18429 void 18430 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18431 { 18432 ire_t *ire; 18433 18434 mutex_enter(&connp->conn_lock); 18435 ire = connp->conn_ire_cache; 18436 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18437 connp->conn_ire_cache = NULL; 18438 mutex_exit(&connp->conn_lock); 18439 IRE_REFRELE_NOTR(ire); 18440 return; 18441 } 18442 mutex_exit(&connp->conn_lock); 18443 } 18444 18445 /* 18446 * Take down a specific interface, but don't lose any information about it. 18447 * Also delete interface from its interface group (ifgrp). 18448 * (Always called as writer.) 18449 * This function goes through the down sequence even if the interface is 18450 * already down. There are 2 reasons. 18451 * a. Currently we permit interface routes that depend on down interfaces 18452 * to be added. This behaviour itself is questionable. However it appears 18453 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18454 * time. We go thru the cleanup in order to remove these routes. 18455 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18456 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18457 * down, but we need to cleanup i.e. do ill_dl_down and 18458 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18459 * 18460 * IP-MT notes: 18461 * 18462 * Model of reference to interfaces. 18463 * 18464 * The following members in ipif_t track references to the ipif. 18465 * int ipif_refcnt; Active reference count 18466 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18467 * The following members in ill_t track references to the ill. 18468 * int ill_refcnt; active refcnt 18469 * uint_t ill_ire_cnt; Number of ires referencing ill 18470 * uint_t ill_nce_cnt; Number of nces referencing ill 18471 * 18472 * Reference to an ipif or ill can be obtained in any of the following ways. 18473 * 18474 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18475 * Pointers to ipif / ill from other data structures viz ire and conn. 18476 * Implicit reference to the ipif / ill by holding a reference to the ire. 18477 * 18478 * The ipif/ill lookup functions return a reference held ipif / ill. 18479 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18480 * This is a purely dynamic reference count associated with threads holding 18481 * references to the ipif / ill. Pointers from other structures do not 18482 * count towards this reference count. 18483 * 18484 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18485 * ipif/ill. This is incremented whenever a new ire is created referencing the 18486 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18487 * actually added to the ire hash table. The count is decremented in 18488 * ire_inactive where the ire is destroyed. 18489 * 18490 * nce's reference ill's thru nce_ill and the count of nce's associated with 18491 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18492 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18493 * table. Similarly it is decremented in ndp_inactive() where the nce 18494 * is destroyed. 18495 * 18496 * Flow of ioctls involving interface down/up 18497 * 18498 * The following is the sequence of an attempt to set some critical flags on an 18499 * up interface. 18500 * ip_sioctl_flags 18501 * ipif_down 18502 * wait for ipif to be quiescent 18503 * ipif_down_tail 18504 * ip_sioctl_flags_tail 18505 * 18506 * All set ioctls that involve down/up sequence would have a skeleton similar 18507 * to the above. All the *tail functions are called after the refcounts have 18508 * dropped to the appropriate values. 18509 * 18510 * The mechanism to quiesce an ipif is as follows. 18511 * 18512 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18513 * on the ipif. Callers either pass a flag requesting wait or the lookup 18514 * functions will return NULL. 18515 * 18516 * Delete all ires referencing this ipif 18517 * 18518 * Any thread attempting to do an ipif_refhold on an ipif that has been 18519 * obtained thru a cached pointer will first make sure that 18520 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18521 * increment the refcount. 18522 * 18523 * The above guarantees that the ipif refcount will eventually come down to 18524 * zero and the ipif will quiesce, once all threads that currently hold a 18525 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18526 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18527 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18528 * drop to zero. 18529 * 18530 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18531 * 18532 * Threads trying to lookup an ipif or ill can pass a flag requesting 18533 * wait and restart if the ipif / ill cannot be looked up currently. 18534 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18535 * failure if the ipif is currently undergoing an exclusive operation, and 18536 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18537 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18538 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18539 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18540 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18541 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18542 * until we release the ipsq_lock, even though the the ill/ipif state flags 18543 * can change after we drop the ill_lock. 18544 * 18545 * An attempt to send out a packet using an ipif that is currently 18546 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18547 * operation and restart it later when the exclusive condition on the ipif ends. 18548 * This is an example of not passing the wait flag to the lookup functions. For 18549 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18550 * out a multicast packet on that ipif will fail while the ipif is 18551 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18552 * currently IPIF_CHANGING will also fail. 18553 */ 18554 int 18555 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18556 { 18557 ill_t *ill = ipif->ipif_ill; 18558 phyint_t *phyi; 18559 conn_t *connp; 18560 boolean_t success; 18561 boolean_t ipif_was_up = B_FALSE; 18562 ip_stack_t *ipst = ill->ill_ipst; 18563 18564 ASSERT(IAM_WRITER_IPIF(ipif)); 18565 18566 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18567 18568 if (ipif->ipif_flags & IPIF_UP) { 18569 mutex_enter(&ill->ill_lock); 18570 ipif->ipif_flags &= ~IPIF_UP; 18571 ASSERT(ill->ill_ipif_up_count > 0); 18572 --ill->ill_ipif_up_count; 18573 mutex_exit(&ill->ill_lock); 18574 ipif_was_up = B_TRUE; 18575 /* Update status in SCTP's list */ 18576 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18577 } 18578 18579 /* 18580 * Blow away memberships we established in ipif_multicast_up(). 18581 */ 18582 ipif_multicast_down(ipif); 18583 18584 /* 18585 * Remove from the mapping for __sin6_src_id. We insert only 18586 * when the address is not INADDR_ANY. As IPv4 addresses are 18587 * stored as mapped addresses, we need to check for mapped 18588 * INADDR_ANY also. 18589 */ 18590 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18591 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18592 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18593 int err; 18594 18595 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18596 ipif->ipif_zoneid, ipst); 18597 if (err != 0) { 18598 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18599 } 18600 } 18601 18602 /* 18603 * Before we delete the ill from the group (if any), we need 18604 * to make sure that we delete all the routes dependent on 18605 * this and also any ipifs dependent on this ipif for 18606 * source address. We need to do before we delete from 18607 * the group because 18608 * 18609 * 1) ipif_down_delete_ire de-references ill->ill_group. 18610 * 18611 * 2) ipif_update_other_ipifs needs to walk the whole group 18612 * for re-doing source address selection. Note that 18613 * ipif_select_source[_v6] called from 18614 * ipif_update_other_ipifs[_v6] will not pick this ipif 18615 * because we have already marked down here i.e cleared 18616 * IPIF_UP. 18617 */ 18618 if (ipif->ipif_isv6) { 18619 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18620 ipst); 18621 } else { 18622 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18623 ipst); 18624 } 18625 18626 /* 18627 * Cleaning up the conn_ire_cache or conns must be done only after the 18628 * ires have been deleted above. Otherwise a thread could end up 18629 * caching an ire in a conn after we have finished the cleanup of the 18630 * conn. The caching is done after making sure that the ire is not yet 18631 * condemned. Also documented in the block comment above ip_output 18632 */ 18633 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18634 /* Also, delete the ires cached in SCTP */ 18635 sctp_ire_cache_flush(ipif); 18636 18637 /* 18638 * Update any other ipifs which have used "our" local address as 18639 * a source address. This entails removing and recreating IRE_INTERFACE 18640 * entries for such ipifs. 18641 */ 18642 if (ipif->ipif_isv6) 18643 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18644 else 18645 ipif_update_other_ipifs(ipif, ill->ill_group); 18646 18647 if (ipif_was_up) { 18648 /* 18649 * Check whether it is last ipif to leave this group. 18650 * If this is the last ipif to leave, we should remove 18651 * this ill from the group as ipif_select_source will not 18652 * be able to find any useful ipifs if this ill is selected 18653 * for load balancing. 18654 * 18655 * For nameless groups, we should call ifgrp_delete if this 18656 * belongs to some group. As this ipif is going down, we may 18657 * need to reconstruct groups. 18658 */ 18659 phyi = ill->ill_phyint; 18660 /* 18661 * If the phyint_groupname_len is 0, it may or may not 18662 * be in the nameless group. If the phyint_groupname_len is 18663 * not 0, then this ill should be part of some group. 18664 * As we always insert this ill in the group if 18665 * phyint_groupname_len is not zero when the first ipif 18666 * comes up (in ipif_up_done), it should be in a group 18667 * when the namelen is not 0. 18668 * 18669 * NOTE : When we delete the ill from the group,it will 18670 * blow away all the IRE_CACHES pointing either at this ipif or 18671 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18672 * should be pointing at this ill. 18673 */ 18674 ASSERT(phyi->phyint_groupname_len == 0 || 18675 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18676 18677 if (phyi->phyint_groupname_len != 0) { 18678 if (ill->ill_ipif_up_count == 0) 18679 illgrp_delete(ill); 18680 } 18681 18682 /* 18683 * If we have deleted some of the broadcast ires associated 18684 * with this ipif, we need to re-nominate somebody else if 18685 * the ires that we deleted were the nominated ones. 18686 */ 18687 if (ill->ill_group != NULL && !ill->ill_isv6) 18688 ipif_renominate_bcast(ipif); 18689 } 18690 18691 /* 18692 * neighbor-discovery or arp entries for this interface. 18693 */ 18694 ipif_ndp_down(ipif); 18695 18696 /* 18697 * If mp is NULL the caller will wait for the appropriate refcnt. 18698 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18699 * and ill_delete -> ipif_free -> ipif_down 18700 */ 18701 if (mp == NULL) { 18702 ASSERT(q == NULL); 18703 return (0); 18704 } 18705 18706 if (CONN_Q(q)) { 18707 connp = Q_TO_CONN(q); 18708 mutex_enter(&connp->conn_lock); 18709 } else { 18710 connp = NULL; 18711 } 18712 mutex_enter(&ill->ill_lock); 18713 /* 18714 * Are there any ire's pointing to this ipif that are still active ? 18715 * If this is the last ipif going down, are there any ire's pointing 18716 * to this ill that are still active ? 18717 */ 18718 if (ipif_is_quiescent(ipif)) { 18719 mutex_exit(&ill->ill_lock); 18720 if (connp != NULL) 18721 mutex_exit(&connp->conn_lock); 18722 return (0); 18723 } 18724 18725 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18726 ill->ill_name, (void *)ill)); 18727 /* 18728 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18729 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18730 * which in turn is called by the last refrele on the ipif/ill/ire. 18731 */ 18732 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18733 if (!success) { 18734 /* The conn is closing. So just return */ 18735 ASSERT(connp != NULL); 18736 mutex_exit(&ill->ill_lock); 18737 mutex_exit(&connp->conn_lock); 18738 return (EINTR); 18739 } 18740 18741 mutex_exit(&ill->ill_lock); 18742 if (connp != NULL) 18743 mutex_exit(&connp->conn_lock); 18744 return (EINPROGRESS); 18745 } 18746 18747 void 18748 ipif_down_tail(ipif_t *ipif) 18749 { 18750 ill_t *ill = ipif->ipif_ill; 18751 18752 /* 18753 * Skip any loopback interface (null wq). 18754 * If this is the last logical interface on the ill 18755 * have ill_dl_down tell the driver we are gone (unbind) 18756 * Note that lun 0 can ipif_down even though 18757 * there are other logical units that are up. 18758 * This occurs e.g. when we change a "significant" IFF_ flag. 18759 */ 18760 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18761 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18762 ill->ill_dl_up) { 18763 ill_dl_down(ill); 18764 } 18765 ill->ill_logical_down = 0; 18766 18767 /* 18768 * Have to be after removing the routes in ipif_down_delete_ire. 18769 */ 18770 if (ipif->ipif_isv6) { 18771 if (ill->ill_flags & ILLF_XRESOLV) 18772 ipif_arp_down(ipif); 18773 } else { 18774 ipif_arp_down(ipif); 18775 } 18776 18777 ip_rts_ifmsg(ipif); 18778 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18779 } 18780 18781 /* 18782 * Bring interface logically down without bringing the physical interface 18783 * down e.g. when the netmask is changed. This avoids long lasting link 18784 * negotiations between an ethernet interface and a certain switches. 18785 */ 18786 static int 18787 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18788 { 18789 /* 18790 * The ill_logical_down flag is a transient flag. It is set here 18791 * and is cleared once the down has completed in ipif_down_tail. 18792 * This flag does not indicate whether the ill stream is in the 18793 * DL_BOUND state with the driver. Instead this flag is used by 18794 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18795 * the driver. The state of the ill stream i.e. whether it is 18796 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18797 */ 18798 ipif->ipif_ill->ill_logical_down = 1; 18799 return (ipif_down(ipif, q, mp)); 18800 } 18801 18802 /* 18803 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18804 * If the usesrc client ILL is already part of a usesrc group or not, 18805 * in either case a ire_stq with the matching usesrc client ILL will 18806 * locate the IRE's that need to be deleted. We want IREs to be created 18807 * with the new source address. 18808 */ 18809 static void 18810 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18811 { 18812 ill_t *ucill = (ill_t *)ill_arg; 18813 18814 ASSERT(IAM_WRITER_ILL(ucill)); 18815 18816 if (ire->ire_stq == NULL) 18817 return; 18818 18819 if ((ire->ire_type == IRE_CACHE) && 18820 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18821 ire_delete(ire); 18822 } 18823 18824 /* 18825 * ire_walk routine to delete every IRE dependent on the interface 18826 * address that is going down. (Always called as writer.) 18827 * Works for both v4 and v6. 18828 * In addition for checking for ire_ipif matches it also checks for 18829 * IRE_CACHE entries which have the same source address as the 18830 * disappearing ipif since ipif_select_source might have picked 18831 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18832 * care of any IRE_INTERFACE with the disappearing source address. 18833 */ 18834 static void 18835 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18836 { 18837 ipif_t *ipif = (ipif_t *)ipif_arg; 18838 ill_t *ire_ill; 18839 ill_t *ipif_ill; 18840 18841 ASSERT(IAM_WRITER_IPIF(ipif)); 18842 if (ire->ire_ipif == NULL) 18843 return; 18844 18845 /* 18846 * For IPv4, we derive source addresses for an IRE from ipif's 18847 * belonging to the same IPMP group as the IRE's outgoing 18848 * interface. If an IRE's outgoing interface isn't in the 18849 * same IPMP group as a particular ipif, then that ipif 18850 * couldn't have been used as a source address for this IRE. 18851 * 18852 * For IPv6, source addresses are only restricted to the IPMP group 18853 * if the IRE is for a link-local address or a multicast address. 18854 * Otherwise, source addresses for an IRE can be chosen from 18855 * interfaces other than the the outgoing interface for that IRE. 18856 * 18857 * For source address selection details, see ipif_select_source() 18858 * and ipif_select_source_v6(). 18859 */ 18860 if (ire->ire_ipversion == IPV4_VERSION || 18861 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18862 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18863 ire_ill = ire->ire_ipif->ipif_ill; 18864 ipif_ill = ipif->ipif_ill; 18865 18866 if (ire_ill->ill_group != ipif_ill->ill_group) { 18867 return; 18868 } 18869 } 18870 18871 18872 if (ire->ire_ipif != ipif) { 18873 /* 18874 * Look for a matching source address. 18875 */ 18876 if (ire->ire_type != IRE_CACHE) 18877 return; 18878 if (ipif->ipif_flags & IPIF_NOLOCAL) 18879 return; 18880 18881 if (ire->ire_ipversion == IPV4_VERSION) { 18882 if (ire->ire_src_addr != ipif->ipif_src_addr) 18883 return; 18884 } else { 18885 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18886 &ipif->ipif_v6lcl_addr)) 18887 return; 18888 } 18889 ire_delete(ire); 18890 return; 18891 } 18892 /* 18893 * ire_delete() will do an ire_flush_cache which will delete 18894 * all ire_ipif matches 18895 */ 18896 ire_delete(ire); 18897 } 18898 18899 /* 18900 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18901 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18902 * 2) when an interface is brought up or down (on that ill). 18903 * This ensures that the IRE_CACHE entries don't retain stale source 18904 * address selection results. 18905 */ 18906 void 18907 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18908 { 18909 ill_t *ill = (ill_t *)ill_arg; 18910 ill_t *ipif_ill; 18911 18912 ASSERT(IAM_WRITER_ILL(ill)); 18913 /* 18914 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18915 * Hence this should be IRE_CACHE. 18916 */ 18917 ASSERT(ire->ire_type == IRE_CACHE); 18918 18919 /* 18920 * We are called for IRE_CACHES whose ire_ipif matches ill. 18921 * We are only interested in IRE_CACHES that has borrowed 18922 * the source address from ill_arg e.g. ipif_up_done[_v6] 18923 * for which we need to look at ire_ipif->ipif_ill match 18924 * with ill. 18925 */ 18926 ASSERT(ire->ire_ipif != NULL); 18927 ipif_ill = ire->ire_ipif->ipif_ill; 18928 if (ipif_ill == ill || (ill->ill_group != NULL && 18929 ipif_ill->ill_group == ill->ill_group)) { 18930 ire_delete(ire); 18931 } 18932 } 18933 18934 /* 18935 * Delete all the ire whose stq references ill_arg. 18936 */ 18937 static void 18938 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18939 { 18940 ill_t *ill = (ill_t *)ill_arg; 18941 ill_t *ire_ill; 18942 18943 ASSERT(IAM_WRITER_ILL(ill)); 18944 /* 18945 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18946 * Hence this should be IRE_CACHE. 18947 */ 18948 ASSERT(ire->ire_type == IRE_CACHE); 18949 18950 /* 18951 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18952 * matches ill. We are only interested in IRE_CACHES that 18953 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18954 * filtering here. 18955 */ 18956 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18957 18958 if (ire_ill == ill) 18959 ire_delete(ire); 18960 } 18961 18962 /* 18963 * This is called when an ill leaves the group. We want to delete 18964 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18965 * pointing at ill. 18966 */ 18967 static void 18968 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18969 { 18970 ill_t *ill = (ill_t *)ill_arg; 18971 18972 ASSERT(IAM_WRITER_ILL(ill)); 18973 ASSERT(ill->ill_group == NULL); 18974 /* 18975 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18976 * Hence this should be IRE_CACHE. 18977 */ 18978 ASSERT(ire->ire_type == IRE_CACHE); 18979 /* 18980 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18981 * matches ill. We are interested in both. 18982 */ 18983 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18984 (ire->ire_ipif->ipif_ill == ill)); 18985 18986 ire_delete(ire); 18987 } 18988 18989 /* 18990 * Initiate deallocate of an IPIF. Always called as writer. Called by 18991 * ill_delete or ip_sioctl_removeif. 18992 */ 18993 static void 18994 ipif_free(ipif_t *ipif) 18995 { 18996 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18997 18998 ASSERT(IAM_WRITER_IPIF(ipif)); 18999 19000 if (ipif->ipif_recovery_id != 0) 19001 (void) untimeout(ipif->ipif_recovery_id); 19002 ipif->ipif_recovery_id = 0; 19003 19004 /* Remove conn references */ 19005 reset_conn_ipif(ipif); 19006 19007 /* 19008 * Make sure we have valid net and subnet broadcast ire's for the 19009 * other ipif's which share them with this ipif. 19010 */ 19011 if (!ipif->ipif_isv6) 19012 ipif_check_bcast_ires(ipif); 19013 19014 /* 19015 * Take down the interface. We can be called either from ill_delete 19016 * or from ip_sioctl_removeif. 19017 */ 19018 (void) ipif_down(ipif, NULL, NULL); 19019 19020 /* 19021 * Now that the interface is down, there's no chance it can still 19022 * become a duplicate. Cancel any timer that may have been set while 19023 * tearing down. 19024 */ 19025 if (ipif->ipif_recovery_id != 0) 19026 (void) untimeout(ipif->ipif_recovery_id); 19027 ipif->ipif_recovery_id = 0; 19028 19029 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19030 /* Remove pointers to this ill in the multicast routing tables */ 19031 reset_mrt_vif_ipif(ipif); 19032 rw_exit(&ipst->ips_ill_g_lock); 19033 } 19034 19035 /* 19036 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19037 * also ill_move(). 19038 */ 19039 static void 19040 ipif_free_tail(ipif_t *ipif) 19041 { 19042 mblk_t *mp; 19043 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19044 19045 /* 19046 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19047 */ 19048 mutex_enter(&ipif->ipif_saved_ire_lock); 19049 mp = ipif->ipif_saved_ire_mp; 19050 ipif->ipif_saved_ire_mp = NULL; 19051 mutex_exit(&ipif->ipif_saved_ire_lock); 19052 freemsg(mp); 19053 19054 /* 19055 * Need to hold both ill_g_lock and ill_lock while 19056 * inserting or removing an ipif from the linked list 19057 * of ipifs hanging off the ill. 19058 */ 19059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19060 /* 19061 * Remove all IPv4 multicast memberships on the interface now. 19062 * IPv6 is not handled here as the multicast memberships are 19063 * tied to the ill rather than the ipif. 19064 */ 19065 ilm_free(ipif); 19066 19067 /* 19068 * Since we held the ill_g_lock while doing the ilm_free above, 19069 * we can assert the ilms were really deleted and not just marked 19070 * ILM_DELETED. 19071 */ 19072 ASSERT(ilm_walk_ipif(ipif) == 0); 19073 19074 #ifdef DEBUG 19075 ipif_trace_cleanup(ipif); 19076 #endif 19077 19078 /* Ask SCTP to take it out of it list */ 19079 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19080 19081 /* Get it out of the ILL interface list. */ 19082 ipif_remove(ipif, B_TRUE); 19083 rw_exit(&ipst->ips_ill_g_lock); 19084 19085 mutex_destroy(&ipif->ipif_saved_ire_lock); 19086 19087 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19088 ASSERT(ipif->ipif_recovery_id == 0); 19089 19090 /* Free the memory. */ 19091 mi_free(ipif); 19092 } 19093 19094 /* 19095 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19096 * is zero. 19097 */ 19098 void 19099 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19100 { 19101 char lbuf[LIFNAMSIZ]; 19102 char *name; 19103 size_t name_len; 19104 19105 buf[0] = '\0'; 19106 name = ipif->ipif_ill->ill_name; 19107 name_len = ipif->ipif_ill->ill_name_length; 19108 if (ipif->ipif_id != 0) { 19109 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19110 ipif->ipif_id); 19111 name = lbuf; 19112 name_len = mi_strlen(name) + 1; 19113 } 19114 len -= 1; 19115 buf[len] = '\0'; 19116 len = MIN(len, name_len); 19117 bcopy(name, buf, len); 19118 } 19119 19120 /* 19121 * Find an IPIF based on the name passed in. Names can be of the 19122 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19123 * The <phys> string can have forms like <dev><#> (e.g., le0), 19124 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19125 * When there is no colon, the implied unit id is zero. <phys> must 19126 * correspond to the name of an ILL. (May be called as writer.) 19127 */ 19128 static ipif_t * 19129 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19130 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19131 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19132 { 19133 char *cp; 19134 char *endp; 19135 long id; 19136 ill_t *ill; 19137 ipif_t *ipif; 19138 uint_t ire_type; 19139 boolean_t did_alloc = B_FALSE; 19140 ipsq_t *ipsq; 19141 19142 if (error != NULL) 19143 *error = 0; 19144 19145 /* 19146 * If the caller wants to us to create the ipif, make sure we have a 19147 * valid zoneid 19148 */ 19149 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19150 19151 if (namelen == 0) { 19152 if (error != NULL) 19153 *error = ENXIO; 19154 return (NULL); 19155 } 19156 19157 *exists = B_FALSE; 19158 /* Look for a colon in the name. */ 19159 endp = &name[namelen]; 19160 for (cp = endp; --cp > name; ) { 19161 if (*cp == IPIF_SEPARATOR_CHAR) 19162 break; 19163 } 19164 19165 if (*cp == IPIF_SEPARATOR_CHAR) { 19166 /* 19167 * Reject any non-decimal aliases for logical 19168 * interfaces. Aliases with leading zeroes 19169 * are also rejected as they introduce ambiguity 19170 * in the naming of the interfaces. 19171 * In order to confirm with existing semantics, 19172 * and to not break any programs/script relying 19173 * on that behaviour, if<0>:0 is considered to be 19174 * a valid interface. 19175 * 19176 * If alias has two or more digits and the first 19177 * is zero, fail. 19178 */ 19179 if (&cp[2] < endp && cp[1] == '0') { 19180 if (error != NULL) 19181 *error = EINVAL; 19182 return (NULL); 19183 } 19184 } 19185 19186 if (cp <= name) { 19187 cp = endp; 19188 } else { 19189 *cp = '\0'; 19190 } 19191 19192 /* 19193 * Look up the ILL, based on the portion of the name 19194 * before the slash. ill_lookup_on_name returns a held ill. 19195 * Temporary to check whether ill exists already. If so 19196 * ill_lookup_on_name will clear it. 19197 */ 19198 ill = ill_lookup_on_name(name, do_alloc, isv6, 19199 q, mp, func, error, &did_alloc, ipst); 19200 if (cp != endp) 19201 *cp = IPIF_SEPARATOR_CHAR; 19202 if (ill == NULL) 19203 return (NULL); 19204 19205 /* Establish the unit number in the name. */ 19206 id = 0; 19207 if (cp < endp && *endp == '\0') { 19208 /* If there was a colon, the unit number follows. */ 19209 cp++; 19210 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19211 ill_refrele(ill); 19212 if (error != NULL) 19213 *error = ENXIO; 19214 return (NULL); 19215 } 19216 } 19217 19218 GRAB_CONN_LOCK(q); 19219 mutex_enter(&ill->ill_lock); 19220 /* Now see if there is an IPIF with this unit number. */ 19221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19222 if (ipif->ipif_id == id) { 19223 if (zoneid != ALL_ZONES && 19224 zoneid != ipif->ipif_zoneid && 19225 ipif->ipif_zoneid != ALL_ZONES) { 19226 mutex_exit(&ill->ill_lock); 19227 RELEASE_CONN_LOCK(q); 19228 ill_refrele(ill); 19229 if (error != NULL) 19230 *error = ENXIO; 19231 return (NULL); 19232 } 19233 /* 19234 * The block comment at the start of ipif_down 19235 * explains the use of the macros used below 19236 */ 19237 if (IPIF_CAN_LOOKUP(ipif)) { 19238 ipif_refhold_locked(ipif); 19239 mutex_exit(&ill->ill_lock); 19240 if (!did_alloc) 19241 *exists = B_TRUE; 19242 /* 19243 * Drop locks before calling ill_refrele 19244 * since it can potentially call into 19245 * ipif_ill_refrele_tail which can end up 19246 * in trying to acquire any lock. 19247 */ 19248 RELEASE_CONN_LOCK(q); 19249 ill_refrele(ill); 19250 return (ipif); 19251 } else if (IPIF_CAN_WAIT(ipif, q)) { 19252 ipsq = ill->ill_phyint->phyint_ipsq; 19253 mutex_enter(&ipsq->ipsq_lock); 19254 mutex_exit(&ill->ill_lock); 19255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19256 mutex_exit(&ipsq->ipsq_lock); 19257 RELEASE_CONN_LOCK(q); 19258 ill_refrele(ill); 19259 if (error != NULL) 19260 *error = EINPROGRESS; 19261 return (NULL); 19262 } 19263 } 19264 } 19265 RELEASE_CONN_LOCK(q); 19266 19267 if (!do_alloc) { 19268 mutex_exit(&ill->ill_lock); 19269 ill_refrele(ill); 19270 if (error != NULL) 19271 *error = ENXIO; 19272 return (NULL); 19273 } 19274 19275 /* 19276 * If none found, atomically allocate and return a new one. 19277 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19278 * to support "receive only" use of lo0:1 etc. as is still done 19279 * below as an initial guess. 19280 * However, this is now likely to be overriden later in ipif_up_done() 19281 * when we know for sure what address has been configured on the 19282 * interface, since we might have more than one loopback interface 19283 * with a loopback address, e.g. in the case of zones, and all the 19284 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19285 */ 19286 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19287 ire_type = IRE_LOOPBACK; 19288 else 19289 ire_type = IRE_LOCAL; 19290 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19291 if (ipif != NULL) 19292 ipif_refhold_locked(ipif); 19293 else if (error != NULL) 19294 *error = ENOMEM; 19295 mutex_exit(&ill->ill_lock); 19296 ill_refrele(ill); 19297 return (ipif); 19298 } 19299 19300 /* 19301 * This routine is called whenever a new address comes up on an ipif. If 19302 * we are configured to respond to address mask requests, then we are supposed 19303 * to broadcast an address mask reply at this time. This routine is also 19304 * called if we are already up, but a netmask change is made. This is legal 19305 * but might not make the system manager very popular. (May be called 19306 * as writer.) 19307 */ 19308 void 19309 ipif_mask_reply(ipif_t *ipif) 19310 { 19311 icmph_t *icmph; 19312 ipha_t *ipha; 19313 mblk_t *mp; 19314 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19315 19316 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19317 19318 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19319 return; 19320 19321 /* ICMP mask reply is IPv4 only */ 19322 ASSERT(!ipif->ipif_isv6); 19323 /* ICMP mask reply is not for a loopback interface */ 19324 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19325 19326 mp = allocb(REPLY_LEN, BPRI_HI); 19327 if (mp == NULL) 19328 return; 19329 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19330 19331 ipha = (ipha_t *)mp->b_rptr; 19332 bzero(ipha, REPLY_LEN); 19333 *ipha = icmp_ipha; 19334 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19335 ipha->ipha_src = ipif->ipif_src_addr; 19336 ipha->ipha_dst = ipif->ipif_brd_addr; 19337 ipha->ipha_length = htons(REPLY_LEN); 19338 ipha->ipha_ident = 0; 19339 19340 icmph = (icmph_t *)&ipha[1]; 19341 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19342 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19343 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19344 19345 put(ipif->ipif_wq, mp); 19346 19347 #undef REPLY_LEN 19348 } 19349 19350 /* 19351 * When the mtu in the ipif changes, we call this routine through ire_walk 19352 * to update all the relevant IREs. 19353 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19354 */ 19355 static void 19356 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19357 { 19358 ipif_t *ipif = (ipif_t *)ipif_arg; 19359 19360 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19361 return; 19362 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19363 } 19364 19365 /* 19366 * When the mtu in the ill changes, we call this routine through ire_walk 19367 * to update all the relevant IREs. 19368 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19369 */ 19370 void 19371 ill_mtu_change(ire_t *ire, char *ill_arg) 19372 { 19373 ill_t *ill = (ill_t *)ill_arg; 19374 19375 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19376 return; 19377 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19378 } 19379 19380 /* 19381 * Join the ipif specific multicast groups. 19382 * Must be called after a mapping has been set up in the resolver. (Always 19383 * called as writer.) 19384 */ 19385 void 19386 ipif_multicast_up(ipif_t *ipif) 19387 { 19388 int err, index; 19389 ill_t *ill; 19390 19391 ASSERT(IAM_WRITER_IPIF(ipif)); 19392 19393 ill = ipif->ipif_ill; 19394 index = ill->ill_phyint->phyint_ifindex; 19395 19396 ip1dbg(("ipif_multicast_up\n")); 19397 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19398 return; 19399 19400 if (ipif->ipif_isv6) { 19401 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19402 return; 19403 19404 /* Join the all hosts multicast address */ 19405 ip1dbg(("ipif_multicast_up - addmulti\n")); 19406 /* 19407 * Passing B_TRUE means we have to join the multicast 19408 * membership on this interface even though this is 19409 * FAILED. If we join on a different one in the group, 19410 * we will not be able to delete the membership later 19411 * as we currently don't track where we join when we 19412 * join within the kernel unlike applications where 19413 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19414 * for more on this. 19415 */ 19416 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19417 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19418 if (err != 0) { 19419 ip0dbg(("ipif_multicast_up: " 19420 "all_hosts_mcast failed %d\n", 19421 err)); 19422 return; 19423 } 19424 /* 19425 * Enable multicast for the solicited node multicast address 19426 */ 19427 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19428 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19429 19430 ipv6_multi.s6_addr32[3] |= 19431 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19432 19433 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19434 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19435 NULL); 19436 if (err != 0) { 19437 ip0dbg(("ipif_multicast_up: solicited MC" 19438 " failed %d\n", err)); 19439 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19440 ill, ill->ill_phyint->phyint_ifindex, 19441 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19442 return; 19443 } 19444 } 19445 } else { 19446 if (ipif->ipif_lcl_addr == INADDR_ANY) 19447 return; 19448 19449 /* Join the all hosts multicast address */ 19450 ip1dbg(("ipif_multicast_up - addmulti\n")); 19451 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19452 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19453 if (err) { 19454 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19455 return; 19456 } 19457 } 19458 ipif->ipif_multicast_up = 1; 19459 } 19460 19461 /* 19462 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19463 * (Explicit memberships are blown away in ill_leave_multicast() when the 19464 * ill is brought down.) 19465 */ 19466 static void 19467 ipif_multicast_down(ipif_t *ipif) 19468 { 19469 int err; 19470 19471 ASSERT(IAM_WRITER_IPIF(ipif)); 19472 19473 ip1dbg(("ipif_multicast_down\n")); 19474 if (!ipif->ipif_multicast_up) 19475 return; 19476 19477 ip1dbg(("ipif_multicast_down - delmulti\n")); 19478 19479 if (!ipif->ipif_isv6) { 19480 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19481 B_TRUE); 19482 if (err != 0) 19483 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19484 19485 ipif->ipif_multicast_up = 0; 19486 return; 19487 } 19488 19489 /* 19490 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19491 * we should look for ilms on this ill rather than the ones that have 19492 * been failed over here. They are here temporarily. As 19493 * ipif_multicast_up has joined on this ill, we should delete only 19494 * from this ill. 19495 */ 19496 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19497 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19498 B_TRUE, B_TRUE); 19499 if (err != 0) { 19500 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19501 err)); 19502 } 19503 /* 19504 * Disable multicast for the solicited node multicast address 19505 */ 19506 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19507 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19508 19509 ipv6_multi.s6_addr32[3] |= 19510 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19511 19512 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19513 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19514 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19515 19516 if (err != 0) { 19517 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19518 err)); 19519 } 19520 } 19521 19522 ipif->ipif_multicast_up = 0; 19523 } 19524 19525 /* 19526 * Used when an interface comes up to recreate any extra routes on this 19527 * interface. 19528 */ 19529 static ire_t ** 19530 ipif_recover_ire(ipif_t *ipif) 19531 { 19532 mblk_t *mp; 19533 ire_t **ipif_saved_irep; 19534 ire_t **irep; 19535 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19536 19537 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19538 ipif->ipif_id)); 19539 19540 mutex_enter(&ipif->ipif_saved_ire_lock); 19541 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19542 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19543 if (ipif_saved_irep == NULL) { 19544 mutex_exit(&ipif->ipif_saved_ire_lock); 19545 return (NULL); 19546 } 19547 19548 irep = ipif_saved_irep; 19549 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19550 ire_t *ire; 19551 queue_t *rfq; 19552 queue_t *stq; 19553 ifrt_t *ifrt; 19554 uchar_t *src_addr; 19555 uchar_t *gateway_addr; 19556 ushort_t type; 19557 19558 /* 19559 * When the ire was initially created and then added in 19560 * ip_rt_add(), it was created either using ipif->ipif_net_type 19561 * in the case of a traditional interface route, or as one of 19562 * the IRE_OFFSUBNET types (with the exception of 19563 * IRE_HOST types ire which is created by icmp_redirect() and 19564 * which we don't need to save or recover). In the case where 19565 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19566 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19567 * to satisfy software like GateD and Sun Cluster which creates 19568 * routes using the the loopback interface's address as a 19569 * gateway. 19570 * 19571 * As ifrt->ifrt_type reflects the already updated ire_type, 19572 * ire_create() will be called in the same way here as 19573 * in ip_rt_add(), namely using ipif->ipif_net_type when 19574 * the route looks like a traditional interface route (where 19575 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19576 * the saved ifrt->ifrt_type. This means that in the case where 19577 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19578 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19579 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19580 */ 19581 ifrt = (ifrt_t *)mp->b_rptr; 19582 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19583 if (ifrt->ifrt_type & IRE_INTERFACE) { 19584 rfq = NULL; 19585 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19586 ? ipif->ipif_rq : ipif->ipif_wq; 19587 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19588 ? (uint8_t *)&ifrt->ifrt_src_addr 19589 : (uint8_t *)&ipif->ipif_src_addr; 19590 gateway_addr = NULL; 19591 type = ipif->ipif_net_type; 19592 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19593 /* Recover multiroute broadcast IRE. */ 19594 rfq = ipif->ipif_rq; 19595 stq = ipif->ipif_wq; 19596 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19597 ? (uint8_t *)&ifrt->ifrt_src_addr 19598 : (uint8_t *)&ipif->ipif_src_addr; 19599 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19600 type = ifrt->ifrt_type; 19601 } else { 19602 rfq = NULL; 19603 stq = NULL; 19604 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19605 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19606 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19607 type = ifrt->ifrt_type; 19608 } 19609 19610 /* 19611 * Create a copy of the IRE with the saved address and netmask. 19612 */ 19613 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19614 "0x%x/0x%x\n", 19615 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19616 ntohl(ifrt->ifrt_addr), 19617 ntohl(ifrt->ifrt_mask))); 19618 ire = ire_create( 19619 (uint8_t *)&ifrt->ifrt_addr, 19620 (uint8_t *)&ifrt->ifrt_mask, 19621 src_addr, 19622 gateway_addr, 19623 &ifrt->ifrt_max_frag, 19624 NULL, 19625 rfq, 19626 stq, 19627 type, 19628 ipif, 19629 0, 19630 0, 19631 0, 19632 ifrt->ifrt_flags, 19633 &ifrt->ifrt_iulp_info, 19634 NULL, 19635 NULL, 19636 ipst); 19637 19638 if (ire == NULL) { 19639 mutex_exit(&ipif->ipif_saved_ire_lock); 19640 kmem_free(ipif_saved_irep, 19641 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19642 return (NULL); 19643 } 19644 19645 /* 19646 * Some software (for example, GateD and Sun Cluster) attempts 19647 * to create (what amount to) IRE_PREFIX routes with the 19648 * loopback address as the gateway. This is primarily done to 19649 * set up prefixes with the RTF_REJECT flag set (for example, 19650 * when generating aggregate routes.) 19651 * 19652 * If the IRE type (as defined by ipif->ipif_net_type) is 19653 * IRE_LOOPBACK, then we map the request into a 19654 * IRE_IF_NORESOLVER. 19655 */ 19656 if (ipif->ipif_net_type == IRE_LOOPBACK) 19657 ire->ire_type = IRE_IF_NORESOLVER; 19658 /* 19659 * ire held by ire_add, will be refreled' towards the 19660 * the end of ipif_up_done 19661 */ 19662 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19663 *irep = ire; 19664 irep++; 19665 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19666 } 19667 mutex_exit(&ipif->ipif_saved_ire_lock); 19668 return (ipif_saved_irep); 19669 } 19670 19671 /* 19672 * Used to set the netmask and broadcast address to default values when the 19673 * interface is brought up. (Always called as writer.) 19674 */ 19675 static void 19676 ipif_set_default(ipif_t *ipif) 19677 { 19678 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19679 19680 if (!ipif->ipif_isv6) { 19681 /* 19682 * Interface holds an IPv4 address. Default 19683 * mask is the natural netmask. 19684 */ 19685 if (!ipif->ipif_net_mask) { 19686 ipaddr_t v4mask; 19687 19688 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19689 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19690 } 19691 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19692 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19693 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19694 } else { 19695 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19696 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19697 } 19698 /* 19699 * NOTE: SunOS 4.X does this even if the broadcast address 19700 * has been already set thus we do the same here. 19701 */ 19702 if (ipif->ipif_flags & IPIF_BROADCAST) { 19703 ipaddr_t v4addr; 19704 19705 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19706 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19707 } 19708 } else { 19709 /* 19710 * Interface holds an IPv6-only address. Default 19711 * mask is all-ones. 19712 */ 19713 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19714 ipif->ipif_v6net_mask = ipv6_all_ones; 19715 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19716 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19717 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19718 } else { 19719 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19720 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19721 } 19722 } 19723 } 19724 19725 /* 19726 * Return 0 if this address can be used as local address without causing 19727 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19728 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19729 * Special checks are needed to allow the same IPv6 link-local address 19730 * on different ills. 19731 * TODO: allowing the same site-local address on different ill's. 19732 */ 19733 int 19734 ip_addr_availability_check(ipif_t *new_ipif) 19735 { 19736 in6_addr_t our_v6addr; 19737 ill_t *ill; 19738 ipif_t *ipif; 19739 ill_walk_context_t ctx; 19740 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19741 19742 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19743 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19744 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19745 19746 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19747 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19748 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19749 return (0); 19750 19751 our_v6addr = new_ipif->ipif_v6lcl_addr; 19752 19753 if (new_ipif->ipif_isv6) 19754 ill = ILL_START_WALK_V6(&ctx, ipst); 19755 else 19756 ill = ILL_START_WALK_V4(&ctx, ipst); 19757 19758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19759 for (ipif = ill->ill_ipif; ipif != NULL; 19760 ipif = ipif->ipif_next) { 19761 if ((ipif == new_ipif) || 19762 !(ipif->ipif_flags & IPIF_UP) || 19763 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19764 continue; 19765 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19766 &our_v6addr)) { 19767 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19768 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19769 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19770 ipif->ipif_flags |= IPIF_UNNUMBERED; 19771 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19772 new_ipif->ipif_ill != ill) 19773 continue; 19774 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19775 new_ipif->ipif_ill != ill) 19776 continue; 19777 else if (new_ipif->ipif_zoneid != 19778 ipif->ipif_zoneid && 19779 ipif->ipif_zoneid != ALL_ZONES && 19780 IS_LOOPBACK(ill)) 19781 continue; 19782 else if (new_ipif->ipif_ill == ill) 19783 return (EADDRINUSE); 19784 else 19785 return (EADDRNOTAVAIL); 19786 } 19787 } 19788 } 19789 19790 return (0); 19791 } 19792 19793 /* 19794 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19795 * IREs for the ipif. 19796 * When the routine returns EINPROGRESS then mp has been consumed and 19797 * the ioctl will be acked from ip_rput_dlpi. 19798 */ 19799 static int 19800 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19801 { 19802 ill_t *ill = ipif->ipif_ill; 19803 boolean_t isv6 = ipif->ipif_isv6; 19804 int err = 0; 19805 boolean_t success; 19806 19807 ASSERT(IAM_WRITER_IPIF(ipif)); 19808 19809 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19810 19811 /* Shouldn't get here if it is already up. */ 19812 if (ipif->ipif_flags & IPIF_UP) 19813 return (EALREADY); 19814 19815 /* Skip arp/ndp for any loopback interface. */ 19816 if (ill->ill_wq != NULL) { 19817 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19818 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19819 19820 if (!ill->ill_dl_up) { 19821 /* 19822 * ill_dl_up is not yet set. i.e. we are yet to 19823 * DL_BIND with the driver and this is the first 19824 * logical interface on the ill to become "up". 19825 * Tell the driver to get going (via DL_BIND_REQ). 19826 * Note that changing "significant" IFF_ flags 19827 * address/netmask etc cause a down/up dance, but 19828 * does not cause an unbind (DL_UNBIND) with the driver 19829 */ 19830 return (ill_dl_up(ill, ipif, mp, q)); 19831 } 19832 19833 /* 19834 * ipif_resolver_up may end up sending an 19835 * AR_INTERFACE_UP message to ARP, which would, in 19836 * turn send a DLPI message to the driver. ioctls are 19837 * serialized and so we cannot send more than one 19838 * interface up message at a time. If ipif_resolver_up 19839 * does send an interface up message to ARP, we get 19840 * EINPROGRESS and we will complete in ip_arp_done. 19841 */ 19842 19843 ASSERT(connp != NULL || !CONN_Q(q)); 19844 ASSERT(ipsq->ipsq_pending_mp == NULL); 19845 if (connp != NULL) 19846 mutex_enter(&connp->conn_lock); 19847 mutex_enter(&ill->ill_lock); 19848 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19849 mutex_exit(&ill->ill_lock); 19850 if (connp != NULL) 19851 mutex_exit(&connp->conn_lock); 19852 if (!success) 19853 return (EINTR); 19854 19855 /* 19856 * Crank up IPv6 neighbor discovery 19857 * Unlike ARP, this should complete when 19858 * ipif_ndp_up returns. However, for 19859 * ILLF_XRESOLV interfaces we also send a 19860 * AR_INTERFACE_UP to the external resolver. 19861 * That ioctl will complete in ip_rput. 19862 */ 19863 if (isv6) { 19864 err = ipif_ndp_up(ipif); 19865 if (err != 0) { 19866 if (err != EINPROGRESS) 19867 mp = ipsq_pending_mp_get(ipsq, &connp); 19868 return (err); 19869 } 19870 } 19871 /* Now, ARP */ 19872 err = ipif_resolver_up(ipif, Res_act_initial); 19873 if (err == EINPROGRESS) { 19874 /* We will complete it in ip_arp_done */ 19875 return (err); 19876 } 19877 mp = ipsq_pending_mp_get(ipsq, &connp); 19878 ASSERT(mp != NULL); 19879 if (err != 0) 19880 return (err); 19881 } else { 19882 /* 19883 * Interfaces without underlying hardware don't do duplicate 19884 * address detection. 19885 */ 19886 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19887 ipif->ipif_addr_ready = 1; 19888 } 19889 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19890 } 19891 19892 /* 19893 * Perform a bind for the physical device. 19894 * When the routine returns EINPROGRESS then mp has been consumed and 19895 * the ioctl will be acked from ip_rput_dlpi. 19896 * Allocate an unbind message and save it until ipif_down. 19897 */ 19898 static int 19899 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19900 { 19901 areq_t *areq; 19902 mblk_t *areq_mp = NULL; 19903 mblk_t *bind_mp = NULL; 19904 mblk_t *unbind_mp = NULL; 19905 conn_t *connp; 19906 boolean_t success; 19907 uint16_t sap_addr; 19908 19909 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19910 ASSERT(IAM_WRITER_ILL(ill)); 19911 ASSERT(mp != NULL); 19912 19913 /* Create a resolver cookie for ARP */ 19914 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19915 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19916 if (areq_mp == NULL) 19917 return (ENOMEM); 19918 19919 freemsg(ill->ill_resolver_mp); 19920 ill->ill_resolver_mp = areq_mp; 19921 areq = (areq_t *)areq_mp->b_rptr; 19922 sap_addr = ill->ill_sap; 19923 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19924 } 19925 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19926 DL_BIND_REQ); 19927 if (bind_mp == NULL) 19928 goto bad; 19929 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19930 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19931 19932 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19933 if (unbind_mp == NULL) 19934 goto bad; 19935 19936 /* 19937 * Record state needed to complete this operation when the 19938 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19939 */ 19940 ASSERT(WR(q)->q_next == NULL); 19941 connp = Q_TO_CONN(q); 19942 19943 mutex_enter(&connp->conn_lock); 19944 mutex_enter(&ipif->ipif_ill->ill_lock); 19945 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19946 mutex_exit(&ipif->ipif_ill->ill_lock); 19947 mutex_exit(&connp->conn_lock); 19948 if (!success) 19949 goto bad; 19950 19951 /* 19952 * Save the unbind message for ill_dl_down(); it will be consumed when 19953 * the interface goes down. 19954 */ 19955 ASSERT(ill->ill_unbind_mp == NULL); 19956 ill->ill_unbind_mp = unbind_mp; 19957 19958 ill_dlpi_send(ill, bind_mp); 19959 /* Send down link-layer capabilities probe if not already done. */ 19960 ill_capability_probe(ill); 19961 19962 /* 19963 * Sysid used to rely on the fact that netboots set domainname 19964 * and the like. Now that miniroot boots aren't strictly netboots 19965 * and miniroot network configuration is driven from userland 19966 * these things still need to be set. This situation can be detected 19967 * by comparing the interface being configured here to the one 19968 * dhcack was set to reference by the boot loader. Once sysid is 19969 * converted to use dhcp_ipc_getinfo() this call can go away. 19970 */ 19971 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19972 (strcmp(ill->ill_name, dhcack) == 0) && 19973 (strlen(srpc_domain) == 0)) { 19974 if (dhcpinit() != 0) 19975 cmn_err(CE_WARN, "no cached dhcp response"); 19976 } 19977 19978 /* 19979 * This operation will complete in ip_rput_dlpi with either 19980 * a DL_BIND_ACK or DL_ERROR_ACK. 19981 */ 19982 return (EINPROGRESS); 19983 bad: 19984 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19985 /* 19986 * We don't have to check for possible removal from illgrp 19987 * as we have not yet inserted in illgrp. For groups 19988 * without names, this ipif is still not UP and hence 19989 * this could not have possibly had any influence in forming 19990 * groups. 19991 */ 19992 19993 freemsg(bind_mp); 19994 freemsg(unbind_mp); 19995 return (ENOMEM); 19996 } 19997 19998 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19999 20000 /* 20001 * DLPI and ARP is up. 20002 * Create all the IREs associated with an interface bring up multicast. 20003 * Set the interface flag and finish other initialization 20004 * that potentially had to be differed to after DL_BIND_ACK. 20005 */ 20006 int 20007 ipif_up_done(ipif_t *ipif) 20008 { 20009 ire_t *ire_array[20]; 20010 ire_t **irep = ire_array; 20011 ire_t **irep1; 20012 ipaddr_t net_mask = 0; 20013 ipaddr_t subnet_mask, route_mask; 20014 ill_t *ill = ipif->ipif_ill; 20015 queue_t *stq; 20016 ipif_t *src_ipif; 20017 ipif_t *tmp_ipif; 20018 boolean_t flush_ire_cache = B_TRUE; 20019 int err = 0; 20020 phyint_t *phyi; 20021 ire_t **ipif_saved_irep = NULL; 20022 int ipif_saved_ire_cnt; 20023 int cnt; 20024 boolean_t src_ipif_held = B_FALSE; 20025 boolean_t ire_added = B_FALSE; 20026 boolean_t loopback = B_FALSE; 20027 ip_stack_t *ipst = ill->ill_ipst; 20028 20029 ip1dbg(("ipif_up_done(%s:%u)\n", 20030 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20031 /* Check if this is a loopback interface */ 20032 if (ipif->ipif_ill->ill_wq == NULL) 20033 loopback = B_TRUE; 20034 20035 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20036 /* 20037 * If all other interfaces for this ill are down or DEPRECATED, 20038 * or otherwise unsuitable for source address selection, remove 20039 * any IRE_CACHE entries for this ill to make sure source 20040 * address selection gets to take this new ipif into account. 20041 * No need to hold ill_lock while traversing the ipif list since 20042 * we are writer 20043 */ 20044 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20045 tmp_ipif = tmp_ipif->ipif_next) { 20046 if (((tmp_ipif->ipif_flags & 20047 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20048 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20049 (tmp_ipif == ipif)) 20050 continue; 20051 /* first useable pre-existing interface */ 20052 flush_ire_cache = B_FALSE; 20053 break; 20054 } 20055 if (flush_ire_cache) 20056 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20057 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20058 20059 /* 20060 * Figure out which way the send-to queue should go. Only 20061 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20062 * should show up here. 20063 */ 20064 switch (ill->ill_net_type) { 20065 case IRE_IF_RESOLVER: 20066 stq = ill->ill_rq; 20067 break; 20068 case IRE_IF_NORESOLVER: 20069 case IRE_LOOPBACK: 20070 stq = ill->ill_wq; 20071 break; 20072 default: 20073 return (EINVAL); 20074 } 20075 20076 if (IS_LOOPBACK(ill)) { 20077 /* 20078 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20079 * ipif_lookup_on_name(), but in the case of zones we can have 20080 * several loopback addresses on lo0. So all the interfaces with 20081 * loopback addresses need to be marked IRE_LOOPBACK. 20082 */ 20083 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20084 htonl(INADDR_LOOPBACK)) 20085 ipif->ipif_ire_type = IRE_LOOPBACK; 20086 else 20087 ipif->ipif_ire_type = IRE_LOCAL; 20088 } 20089 20090 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20091 /* 20092 * Can't use our source address. Select a different 20093 * source address for the IRE_INTERFACE and IRE_LOCAL 20094 */ 20095 src_ipif = ipif_select_source(ipif->ipif_ill, 20096 ipif->ipif_subnet, ipif->ipif_zoneid); 20097 if (src_ipif == NULL) 20098 src_ipif = ipif; /* Last resort */ 20099 else 20100 src_ipif_held = B_TRUE; 20101 } else { 20102 src_ipif = ipif; 20103 } 20104 20105 /* Create all the IREs associated with this interface */ 20106 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20107 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20108 20109 /* 20110 * If we're on a labeled system then make sure that zone- 20111 * private addresses have proper remote host database entries. 20112 */ 20113 if (is_system_labeled() && 20114 ipif->ipif_ire_type != IRE_LOOPBACK && 20115 !tsol_check_interface_address(ipif)) 20116 return (EINVAL); 20117 20118 /* Register the source address for __sin6_src_id */ 20119 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20120 ipif->ipif_zoneid, ipst); 20121 if (err != 0) { 20122 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20123 return (err); 20124 } 20125 20126 /* If the interface address is set, create the local IRE. */ 20127 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20128 (void *)ipif, 20129 ipif->ipif_ire_type, 20130 ntohl(ipif->ipif_lcl_addr))); 20131 *irep++ = ire_create( 20132 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20133 (uchar_t *)&ip_g_all_ones, /* mask */ 20134 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20135 NULL, /* no gateway */ 20136 &ip_loopback_mtuplus, /* max frag size */ 20137 NULL, 20138 ipif->ipif_rq, /* recv-from queue */ 20139 NULL, /* no send-to queue */ 20140 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20141 ipif, 20142 0, 20143 0, 20144 0, 20145 (ipif->ipif_flags & IPIF_PRIVATE) ? 20146 RTF_PRIVATE : 0, 20147 &ire_uinfo_null, 20148 NULL, 20149 NULL, 20150 ipst); 20151 } else { 20152 ip1dbg(( 20153 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20154 ipif->ipif_ire_type, 20155 ntohl(ipif->ipif_lcl_addr), 20156 (uint_t)ipif->ipif_flags)); 20157 } 20158 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20159 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20160 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20161 } else { 20162 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20163 } 20164 20165 subnet_mask = ipif->ipif_net_mask; 20166 20167 /* 20168 * If mask was not specified, use natural netmask of 20169 * interface address. Also, store this mask back into the 20170 * ipif struct. 20171 */ 20172 if (subnet_mask == 0) { 20173 subnet_mask = net_mask; 20174 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20175 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20176 ipif->ipif_v6subnet); 20177 } 20178 20179 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20180 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20181 ipif->ipif_subnet != INADDR_ANY) { 20182 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20183 20184 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20185 route_mask = IP_HOST_MASK; 20186 } else { 20187 route_mask = subnet_mask; 20188 } 20189 20190 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20191 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20192 (void *)ipif, (void *)ill, 20193 ill->ill_net_type, 20194 ntohl(ipif->ipif_subnet))); 20195 *irep++ = ire_create( 20196 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20197 (uchar_t *)&route_mask, /* mask */ 20198 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20199 NULL, /* no gateway */ 20200 &ipif->ipif_mtu, /* max frag */ 20201 NULL, 20202 NULL, /* no recv queue */ 20203 stq, /* send-to queue */ 20204 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20205 ipif, 20206 0, 20207 0, 20208 0, 20209 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20210 &ire_uinfo_null, 20211 NULL, 20212 NULL, 20213 ipst); 20214 } 20215 20216 /* 20217 * Create any necessary broadcast IREs. 20218 */ 20219 if ((ipif->ipif_subnet != INADDR_ANY) && 20220 (ipif->ipif_flags & IPIF_BROADCAST)) 20221 irep = ipif_create_bcast_ires(ipif, irep); 20222 20223 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20224 20225 /* If an earlier ire_create failed, get out now */ 20226 for (irep1 = irep; irep1 > ire_array; ) { 20227 irep1--; 20228 if (*irep1 == NULL) { 20229 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20230 err = ENOMEM; 20231 goto bad; 20232 } 20233 } 20234 20235 /* 20236 * Need to atomically check for ip_addr_availablity_check 20237 * under ip_addr_avail_lock, and if it fails got bad, and remove 20238 * from group also.The ill_g_lock is grabbed as reader 20239 * just to make sure no new ills or new ipifs are being added 20240 * to the system while we are checking the uniqueness of addresses. 20241 */ 20242 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20243 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20244 /* Mark it up, and increment counters. */ 20245 ipif->ipif_flags |= IPIF_UP; 20246 ill->ill_ipif_up_count++; 20247 err = ip_addr_availability_check(ipif); 20248 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20249 rw_exit(&ipst->ips_ill_g_lock); 20250 20251 if (err != 0) { 20252 /* 20253 * Our address may already be up on the same ill. In this case, 20254 * the ARP entry for our ipif replaced the one for the other 20255 * ipif. So we don't want to delete it (otherwise the other ipif 20256 * would be unable to send packets). 20257 * ip_addr_availability_check() identifies this case for us and 20258 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20259 * which is the expected error code. 20260 */ 20261 if (err == EADDRINUSE) { 20262 freemsg(ipif->ipif_arp_del_mp); 20263 ipif->ipif_arp_del_mp = NULL; 20264 err = EADDRNOTAVAIL; 20265 } 20266 ill->ill_ipif_up_count--; 20267 ipif->ipif_flags &= ~IPIF_UP; 20268 goto bad; 20269 } 20270 20271 /* 20272 * Add in all newly created IREs. ire_create_bcast() has 20273 * already checked for duplicates of the IRE_BROADCAST type. 20274 * We want to add before we call ifgrp_insert which wants 20275 * to know whether IRE_IF_RESOLVER exists or not. 20276 * 20277 * NOTE : We refrele the ire though we may branch to "bad" 20278 * later on where we do ire_delete. This is okay 20279 * because nobody can delete it as we are running 20280 * exclusively. 20281 */ 20282 for (irep1 = irep; irep1 > ire_array; ) { 20283 irep1--; 20284 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20285 /* 20286 * refheld by ire_add. refele towards the end of the func 20287 */ 20288 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20289 } 20290 ire_added = B_TRUE; 20291 /* 20292 * Form groups if possible. 20293 * 20294 * If we are supposed to be in a ill_group with a name, insert it 20295 * now as we know that at least one ipif is UP. Otherwise form 20296 * nameless groups. 20297 * 20298 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20299 * this ipif into the appropriate interface group, or create a 20300 * new one. If this is already in a nameless group, we try to form 20301 * a bigger group looking at other ills potentially sharing this 20302 * ipif's prefix. 20303 */ 20304 phyi = ill->ill_phyint; 20305 if (phyi->phyint_groupname_len != 0) { 20306 ASSERT(phyi->phyint_groupname != NULL); 20307 if (ill->ill_ipif_up_count == 1) { 20308 ASSERT(ill->ill_group == NULL); 20309 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20310 phyi->phyint_groupname, NULL, B_TRUE); 20311 if (err != 0) { 20312 ip1dbg(("ipif_up_done: illgrp allocation " 20313 "failed, error %d\n", err)); 20314 goto bad; 20315 } 20316 } 20317 ASSERT(ill->ill_group != NULL); 20318 } 20319 20320 /* 20321 * When this is part of group, we need to make sure that 20322 * any broadcast ires created because of this ipif coming 20323 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20324 * so that we don't receive duplicate broadcast packets. 20325 */ 20326 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20327 ipif_renominate_bcast(ipif); 20328 20329 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20330 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20331 ipif_saved_irep = ipif_recover_ire(ipif); 20332 20333 if (!loopback) { 20334 /* 20335 * If the broadcast address has been set, make sure it makes 20336 * sense based on the interface address. 20337 * Only match on ill since we are sharing broadcast addresses. 20338 */ 20339 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20340 (ipif->ipif_flags & IPIF_BROADCAST)) { 20341 ire_t *ire; 20342 20343 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20344 IRE_BROADCAST, ipif, ALL_ZONES, 20345 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20346 20347 if (ire == NULL) { 20348 /* 20349 * If there isn't a matching broadcast IRE, 20350 * revert to the default for this netmask. 20351 */ 20352 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20353 mutex_enter(&ipif->ipif_ill->ill_lock); 20354 ipif_set_default(ipif); 20355 mutex_exit(&ipif->ipif_ill->ill_lock); 20356 } else { 20357 ire_refrele(ire); 20358 } 20359 } 20360 20361 } 20362 20363 /* This is the first interface on this ill */ 20364 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20365 /* 20366 * Need to recover all multicast memberships in the driver. 20367 * This had to be deferred until we had attached. 20368 */ 20369 ill_recover_multicast(ill); 20370 } 20371 /* Join the allhosts multicast address */ 20372 ipif_multicast_up(ipif); 20373 20374 if (!loopback) { 20375 /* 20376 * See whether anybody else would benefit from the 20377 * new ipif that we added. We call this always rather 20378 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20379 * ipif is for the benefit of illgrp_insert (done above) 20380 * which does not do source address selection as it does 20381 * not want to re-create interface routes that we are 20382 * having reference to it here. 20383 */ 20384 ill_update_source_selection(ill); 20385 } 20386 20387 for (irep1 = irep; irep1 > ire_array; ) { 20388 irep1--; 20389 if (*irep1 != NULL) { 20390 /* was held in ire_add */ 20391 ire_refrele(*irep1); 20392 } 20393 } 20394 20395 cnt = ipif_saved_ire_cnt; 20396 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20397 if (*irep1 != NULL) { 20398 /* was held in ire_add */ 20399 ire_refrele(*irep1); 20400 } 20401 } 20402 20403 if (!loopback && ipif->ipif_addr_ready) { 20404 /* Broadcast an address mask reply. */ 20405 ipif_mask_reply(ipif); 20406 } 20407 if (ipif_saved_irep != NULL) { 20408 kmem_free(ipif_saved_irep, 20409 ipif_saved_ire_cnt * sizeof (ire_t *)); 20410 } 20411 if (src_ipif_held) 20412 ipif_refrele(src_ipif); 20413 20414 /* 20415 * This had to be deferred until we had bound. Tell routing sockets and 20416 * others that this interface is up if it looks like the address has 20417 * been validated. Otherwise, if it isn't ready yet, wait for 20418 * duplicate address detection to do its thing. 20419 */ 20420 if (ipif->ipif_addr_ready) { 20421 ip_rts_ifmsg(ipif); 20422 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20423 /* Let SCTP update the status for this ipif */ 20424 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20425 } 20426 return (0); 20427 20428 bad: 20429 ip1dbg(("ipif_up_done: FAILED \n")); 20430 /* 20431 * We don't have to bother removing from ill groups because 20432 * 20433 * 1) For groups with names, we insert only when the first ipif 20434 * comes up. In that case if it fails, it will not be in any 20435 * group. So, we need not try to remove for that case. 20436 * 20437 * 2) For groups without names, either we tried to insert ipif_ill 20438 * in a group as singleton or found some other group to become 20439 * a bigger group. For the former, if it fails we don't have 20440 * anything to do as ipif_ill is not in the group and for the 20441 * latter, there are no failures in illgrp_insert/illgrp_delete 20442 * (ENOMEM can't occur for this. Check ifgrp_insert). 20443 */ 20444 while (irep > ire_array) { 20445 irep--; 20446 if (*irep != NULL) { 20447 ire_delete(*irep); 20448 if (ire_added) 20449 ire_refrele(*irep); 20450 } 20451 } 20452 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20453 20454 if (ipif_saved_irep != NULL) { 20455 kmem_free(ipif_saved_irep, 20456 ipif_saved_ire_cnt * sizeof (ire_t *)); 20457 } 20458 if (src_ipif_held) 20459 ipif_refrele(src_ipif); 20460 20461 ipif_arp_down(ipif); 20462 return (err); 20463 } 20464 20465 /* 20466 * Turn off the ARP with the ILLF_NOARP flag. 20467 */ 20468 static int 20469 ill_arp_off(ill_t *ill) 20470 { 20471 mblk_t *arp_off_mp = NULL; 20472 mblk_t *arp_on_mp = NULL; 20473 20474 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20475 20476 ASSERT(IAM_WRITER_ILL(ill)); 20477 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20478 20479 /* 20480 * If the on message is still around we've already done 20481 * an arp_off without doing an arp_on thus there is no 20482 * work needed. 20483 */ 20484 if (ill->ill_arp_on_mp != NULL) 20485 return (0); 20486 20487 /* 20488 * Allocate an ARP on message (to be saved) and an ARP off message 20489 */ 20490 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20491 if (!arp_off_mp) 20492 return (ENOMEM); 20493 20494 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20495 if (!arp_on_mp) 20496 goto failed; 20497 20498 ASSERT(ill->ill_arp_on_mp == NULL); 20499 ill->ill_arp_on_mp = arp_on_mp; 20500 20501 /* Send an AR_INTERFACE_OFF request */ 20502 putnext(ill->ill_rq, arp_off_mp); 20503 return (0); 20504 failed: 20505 20506 if (arp_off_mp) 20507 freemsg(arp_off_mp); 20508 return (ENOMEM); 20509 } 20510 20511 /* 20512 * Turn on ARP by turning off the ILLF_NOARP flag. 20513 */ 20514 static int 20515 ill_arp_on(ill_t *ill) 20516 { 20517 mblk_t *mp; 20518 20519 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20520 20521 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20522 20523 ASSERT(IAM_WRITER_ILL(ill)); 20524 /* 20525 * Send an AR_INTERFACE_ON request if we have already done 20526 * an arp_off (which allocated the message). 20527 */ 20528 if (ill->ill_arp_on_mp != NULL) { 20529 mp = ill->ill_arp_on_mp; 20530 ill->ill_arp_on_mp = NULL; 20531 putnext(ill->ill_rq, mp); 20532 } 20533 return (0); 20534 } 20535 20536 /* 20537 * Called after either deleting ill from the group or when setting 20538 * FAILED or STANDBY on the interface. 20539 */ 20540 static void 20541 illgrp_reset_schednext(ill_t *ill) 20542 { 20543 ill_group_t *illgrp; 20544 ill_t *save_ill; 20545 20546 ASSERT(IAM_WRITER_ILL(ill)); 20547 /* 20548 * When called from illgrp_delete, ill_group will be non-NULL. 20549 * But when called from ip_sioctl_flags, it could be NULL if 20550 * somebody is setting FAILED/INACTIVE on some interface which 20551 * is not part of a group. 20552 */ 20553 illgrp = ill->ill_group; 20554 if (illgrp == NULL) 20555 return; 20556 if (illgrp->illgrp_ill_schednext != ill) 20557 return; 20558 20559 illgrp->illgrp_ill_schednext = NULL; 20560 save_ill = ill; 20561 /* 20562 * Choose a good ill to be the next one for 20563 * outbound traffic. As the flags FAILED/STANDBY is 20564 * not yet marked when called from ip_sioctl_flags, 20565 * we check for ill separately. 20566 */ 20567 for (ill = illgrp->illgrp_ill; ill != NULL; 20568 ill = ill->ill_group_next) { 20569 if ((ill != save_ill) && 20570 !(ill->ill_phyint->phyint_flags & 20571 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20572 illgrp->illgrp_ill_schednext = ill; 20573 return; 20574 } 20575 } 20576 } 20577 20578 /* 20579 * Given an ill, find the next ill in the group to be scheduled. 20580 * (This should be called by ip_newroute() before ire_create().) 20581 * The passed in ill may be pulled out of the group, after we have picked 20582 * up a different outgoing ill from the same group. However ire add will 20583 * atomically check this. 20584 */ 20585 ill_t * 20586 illgrp_scheduler(ill_t *ill) 20587 { 20588 ill_t *retill; 20589 ill_group_t *illgrp; 20590 int illcnt; 20591 int i; 20592 uint64_t flags; 20593 ip_stack_t *ipst = ill->ill_ipst; 20594 20595 /* 20596 * We don't use a lock to check for the ill_group. If this ill 20597 * is currently being inserted we may end up just returning this 20598 * ill itself. That is ok. 20599 */ 20600 if (ill->ill_group == NULL) { 20601 ill_refhold(ill); 20602 return (ill); 20603 } 20604 20605 /* 20606 * Grab the ill_g_lock as reader to make sure we are dealing with 20607 * a set of stable ills. No ill can be added or deleted or change 20608 * group while we hold the reader lock. 20609 */ 20610 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20611 if ((illgrp = ill->ill_group) == NULL) { 20612 rw_exit(&ipst->ips_ill_g_lock); 20613 ill_refhold(ill); 20614 return (ill); 20615 } 20616 20617 illcnt = illgrp->illgrp_ill_count; 20618 mutex_enter(&illgrp->illgrp_lock); 20619 retill = illgrp->illgrp_ill_schednext; 20620 20621 if (retill == NULL) 20622 retill = illgrp->illgrp_ill; 20623 20624 /* 20625 * We do a circular search beginning at illgrp_ill_schednext 20626 * or illgrp_ill. We don't check the flags against the ill lock 20627 * since it can change anytime. The ire creation will be atomic 20628 * and will fail if the ill is FAILED or OFFLINE. 20629 */ 20630 for (i = 0; i < illcnt; i++) { 20631 flags = retill->ill_phyint->phyint_flags; 20632 20633 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20634 ILL_CAN_LOOKUP(retill)) { 20635 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20636 ill_refhold(retill); 20637 break; 20638 } 20639 retill = retill->ill_group_next; 20640 if (retill == NULL) 20641 retill = illgrp->illgrp_ill; 20642 } 20643 mutex_exit(&illgrp->illgrp_lock); 20644 rw_exit(&ipst->ips_ill_g_lock); 20645 20646 return (i == illcnt ? NULL : retill); 20647 } 20648 20649 /* 20650 * Checks for availbility of a usable source address (if there is one) when the 20651 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20652 * this selection is done regardless of the destination. 20653 */ 20654 boolean_t 20655 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20656 { 20657 uint_t ifindex; 20658 ipif_t *ipif = NULL; 20659 ill_t *uill; 20660 boolean_t isv6; 20661 ip_stack_t *ipst = ill->ill_ipst; 20662 20663 ASSERT(ill != NULL); 20664 20665 isv6 = ill->ill_isv6; 20666 ifindex = ill->ill_usesrc_ifindex; 20667 if (ifindex != 0) { 20668 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20669 NULL, ipst); 20670 if (uill == NULL) 20671 return (NULL); 20672 mutex_enter(&uill->ill_lock); 20673 for (ipif = uill->ill_ipif; ipif != NULL; 20674 ipif = ipif->ipif_next) { 20675 if (!IPIF_CAN_LOOKUP(ipif)) 20676 continue; 20677 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20678 continue; 20679 if (!(ipif->ipif_flags & IPIF_UP)) 20680 continue; 20681 if (ipif->ipif_zoneid != zoneid) 20682 continue; 20683 if ((isv6 && 20684 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20685 (ipif->ipif_lcl_addr == INADDR_ANY)) 20686 continue; 20687 mutex_exit(&uill->ill_lock); 20688 ill_refrele(uill); 20689 return (B_TRUE); 20690 } 20691 mutex_exit(&uill->ill_lock); 20692 ill_refrele(uill); 20693 } 20694 return (B_FALSE); 20695 } 20696 20697 /* 20698 * Determine the best source address given a destination address and an ill. 20699 * Prefers non-deprecated over deprecated but will return a deprecated 20700 * address if there is no other choice. If there is a usable source address 20701 * on the interface pointed to by ill_usesrc_ifindex then that is given 20702 * first preference. 20703 * 20704 * Returns NULL if there is no suitable source address for the ill. 20705 * This only occurs when there is no valid source address for the ill. 20706 */ 20707 ipif_t * 20708 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20709 { 20710 ipif_t *ipif; 20711 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20712 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20713 int index = 0; 20714 boolean_t wrapped = B_FALSE; 20715 boolean_t same_subnet_only = B_FALSE; 20716 boolean_t ipif_same_found, ipif_other_found; 20717 boolean_t specific_found; 20718 ill_t *till, *usill = NULL; 20719 tsol_tpc_t *src_rhtp, *dst_rhtp; 20720 ip_stack_t *ipst = ill->ill_ipst; 20721 20722 if (ill->ill_usesrc_ifindex != 0) { 20723 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20724 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20725 if (usill != NULL) 20726 ill = usill; /* Select source from usesrc ILL */ 20727 else 20728 return (NULL); 20729 } 20730 20731 /* 20732 * If we're dealing with an unlabeled destination on a labeled system, 20733 * make sure that we ignore source addresses that are incompatible with 20734 * the destination's default label. That destination's default label 20735 * must dominate the minimum label on the source address. 20736 */ 20737 dst_rhtp = NULL; 20738 if (is_system_labeled()) { 20739 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20740 if (dst_rhtp == NULL) 20741 return (NULL); 20742 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20743 TPC_RELE(dst_rhtp); 20744 dst_rhtp = NULL; 20745 } 20746 } 20747 20748 /* 20749 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20750 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20751 * After selecting the right ipif, under ill_lock make sure ipif is 20752 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20753 * we retry. Inside the loop we still need to check for CONDEMNED, 20754 * but not under a lock. 20755 */ 20756 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20757 20758 retry: 20759 till = ill; 20760 ipif_arr[0] = NULL; 20761 20762 if (till->ill_group != NULL) 20763 till = till->ill_group->illgrp_ill; 20764 20765 /* 20766 * Choose one good source address from each ill across the group. 20767 * If possible choose a source address in the same subnet as 20768 * the destination address. 20769 * 20770 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20771 * This is okay because of the following. 20772 * 20773 * If PHYI_FAILED is set and we still have non-deprecated 20774 * addresses, it means the addresses have not yet been 20775 * failed over to a different interface. We potentially 20776 * select them to create IRE_CACHES, which will be later 20777 * flushed when the addresses move over. 20778 * 20779 * If PHYI_INACTIVE is set and we still have non-deprecated 20780 * addresses, it means either the user has configured them 20781 * or PHYI_INACTIVE has not been cleared after the addresses 20782 * been moved over. For the former, in.mpathd does a failover 20783 * when the interface becomes INACTIVE and hence we should 20784 * not find them. Once INACTIVE is set, we don't allow them 20785 * to create logical interfaces anymore. For the latter, a 20786 * flush will happen when INACTIVE is cleared which will 20787 * flush the IRE_CACHES. 20788 * 20789 * If PHYI_OFFLINE is set, all the addresses will be failed 20790 * over soon. We potentially select them to create IRE_CACHEs, 20791 * which will be later flushed when the addresses move over. 20792 * 20793 * NOTE : As ipif_select_source is called to borrow source address 20794 * for an ipif that is part of a group, source address selection 20795 * will be re-done whenever the group changes i.e either an 20796 * insertion/deletion in the group. 20797 * 20798 * Fill ipif_arr[] with source addresses, using these rules: 20799 * 20800 * 1. At most one source address from a given ill ends up 20801 * in ipif_arr[] -- that is, at most one of the ipif's 20802 * associated with a given ill ends up in ipif_arr[]. 20803 * 20804 * 2. If there is at least one non-deprecated ipif in the 20805 * IPMP group with a source address on the same subnet as 20806 * our destination, then fill ipif_arr[] only with 20807 * source addresses on the same subnet as our destination. 20808 * Note that because of (1), only the first 20809 * non-deprecated ipif found with a source address 20810 * matching the destination ends up in ipif_arr[]. 20811 * 20812 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20813 * addresses not in the same subnet as our destination. 20814 * Again, because of (1), only the first off-subnet source 20815 * address will be chosen. 20816 * 20817 * 4. If there are no non-deprecated ipifs, then just use 20818 * the source address associated with the last deprecated 20819 * one we find that happens to be on the same subnet, 20820 * otherwise the first one not in the same subnet. 20821 */ 20822 specific_found = B_FALSE; 20823 for (; till != NULL; till = till->ill_group_next) { 20824 ipif_same_found = B_FALSE; 20825 ipif_other_found = B_FALSE; 20826 for (ipif = till->ill_ipif; ipif != NULL; 20827 ipif = ipif->ipif_next) { 20828 if (!IPIF_CAN_LOOKUP(ipif)) 20829 continue; 20830 /* Always skip NOLOCAL and ANYCAST interfaces */ 20831 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20832 continue; 20833 if (!(ipif->ipif_flags & IPIF_UP) || 20834 !ipif->ipif_addr_ready) 20835 continue; 20836 if (ipif->ipif_zoneid != zoneid && 20837 ipif->ipif_zoneid != ALL_ZONES) 20838 continue; 20839 /* 20840 * Interfaces with 0.0.0.0 address are allowed to be UP, 20841 * but are not valid as source addresses. 20842 */ 20843 if (ipif->ipif_lcl_addr == INADDR_ANY) 20844 continue; 20845 20846 /* 20847 * Check compatibility of local address for 20848 * destination's default label if we're on a labeled 20849 * system. Incompatible addresses can't be used at 20850 * all. 20851 */ 20852 if (dst_rhtp != NULL) { 20853 boolean_t incompat; 20854 20855 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20856 IPV4_VERSION, B_FALSE); 20857 if (src_rhtp == NULL) 20858 continue; 20859 incompat = 20860 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20861 src_rhtp->tpc_tp.tp_doi != 20862 dst_rhtp->tpc_tp.tp_doi || 20863 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20864 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20865 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20866 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20867 TPC_RELE(src_rhtp); 20868 if (incompat) 20869 continue; 20870 } 20871 20872 /* 20873 * We prefer not to use all all-zones addresses, if we 20874 * can avoid it, as they pose problems with unlabeled 20875 * destinations. 20876 */ 20877 if (ipif->ipif_zoneid != ALL_ZONES) { 20878 if (!specific_found && 20879 (!same_subnet_only || 20880 (ipif->ipif_net_mask & dst) == 20881 ipif->ipif_subnet)) { 20882 index = 0; 20883 specific_found = B_TRUE; 20884 ipif_other_found = B_FALSE; 20885 } 20886 } else { 20887 if (specific_found) 20888 continue; 20889 } 20890 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20891 if (ipif_dep == NULL || 20892 (ipif->ipif_net_mask & dst) == 20893 ipif->ipif_subnet) 20894 ipif_dep = ipif; 20895 continue; 20896 } 20897 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20898 /* found a source address in the same subnet */ 20899 if (!same_subnet_only) { 20900 same_subnet_only = B_TRUE; 20901 index = 0; 20902 } 20903 ipif_same_found = B_TRUE; 20904 } else { 20905 if (same_subnet_only || ipif_other_found) 20906 continue; 20907 ipif_other_found = B_TRUE; 20908 } 20909 ipif_arr[index++] = ipif; 20910 if (index == MAX_IPIF_SELECT_SOURCE) { 20911 wrapped = B_TRUE; 20912 index = 0; 20913 } 20914 if (ipif_same_found) 20915 break; 20916 } 20917 } 20918 20919 if (ipif_arr[0] == NULL) { 20920 ipif = ipif_dep; 20921 } else { 20922 if (wrapped) 20923 index = MAX_IPIF_SELECT_SOURCE; 20924 ipif = ipif_arr[ipif_rand(ipst) % index]; 20925 ASSERT(ipif != NULL); 20926 } 20927 20928 if (ipif != NULL) { 20929 mutex_enter(&ipif->ipif_ill->ill_lock); 20930 if (!IPIF_CAN_LOOKUP(ipif)) { 20931 mutex_exit(&ipif->ipif_ill->ill_lock); 20932 goto retry; 20933 } 20934 ipif_refhold_locked(ipif); 20935 mutex_exit(&ipif->ipif_ill->ill_lock); 20936 } 20937 20938 rw_exit(&ipst->ips_ill_g_lock); 20939 if (usill != NULL) 20940 ill_refrele(usill); 20941 if (dst_rhtp != NULL) 20942 TPC_RELE(dst_rhtp); 20943 20944 #ifdef DEBUG 20945 if (ipif == NULL) { 20946 char buf1[INET6_ADDRSTRLEN]; 20947 20948 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20949 ill->ill_name, 20950 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20951 } else { 20952 char buf1[INET6_ADDRSTRLEN]; 20953 char buf2[INET6_ADDRSTRLEN]; 20954 20955 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20956 ipif->ipif_ill->ill_name, 20957 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20958 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20959 buf2, sizeof (buf2)))); 20960 } 20961 #endif /* DEBUG */ 20962 return (ipif); 20963 } 20964 20965 20966 /* 20967 * If old_ipif is not NULL, see if ipif was derived from old 20968 * ipif and if so, recreate the interface route by re-doing 20969 * source address selection. This happens when ipif_down -> 20970 * ipif_update_other_ipifs calls us. 20971 * 20972 * If old_ipif is NULL, just redo the source address selection 20973 * if needed. This happens when illgrp_insert or ipif_up_done 20974 * calls us. 20975 */ 20976 static void 20977 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20978 { 20979 ire_t *ire; 20980 ire_t *ipif_ire; 20981 queue_t *stq; 20982 ipif_t *nipif; 20983 ill_t *ill; 20984 boolean_t need_rele = B_FALSE; 20985 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20986 20987 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20988 ASSERT(IAM_WRITER_IPIF(ipif)); 20989 20990 ill = ipif->ipif_ill; 20991 if (!(ipif->ipif_flags & 20992 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20993 /* 20994 * Can't possibly have borrowed the source 20995 * from old_ipif. 20996 */ 20997 return; 20998 } 20999 21000 /* 21001 * Is there any work to be done? No work if the address 21002 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21003 * ipif_select_source() does not borrow addresses from 21004 * NOLOCAL and ANYCAST interfaces). 21005 */ 21006 if ((old_ipif != NULL) && 21007 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21008 (old_ipif->ipif_ill->ill_wq == NULL) || 21009 (old_ipif->ipif_flags & 21010 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21011 return; 21012 } 21013 21014 /* 21015 * Perform the same checks as when creating the 21016 * IRE_INTERFACE in ipif_up_done. 21017 */ 21018 if (!(ipif->ipif_flags & IPIF_UP)) 21019 return; 21020 21021 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21022 (ipif->ipif_subnet == INADDR_ANY)) 21023 return; 21024 21025 ipif_ire = ipif_to_ire(ipif); 21026 if (ipif_ire == NULL) 21027 return; 21028 21029 /* 21030 * We know that ipif uses some other source for its 21031 * IRE_INTERFACE. Is it using the source of this 21032 * old_ipif? 21033 */ 21034 if (old_ipif != NULL && 21035 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21036 ire_refrele(ipif_ire); 21037 return; 21038 } 21039 if (ip_debug > 2) { 21040 /* ip1dbg */ 21041 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21042 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21043 } 21044 21045 stq = ipif_ire->ire_stq; 21046 21047 /* 21048 * Can't use our source address. Select a different 21049 * source address for the IRE_INTERFACE. 21050 */ 21051 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21052 if (nipif == NULL) { 21053 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21054 nipif = ipif; 21055 } else { 21056 need_rele = B_TRUE; 21057 } 21058 21059 ire = ire_create( 21060 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21061 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21062 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21063 NULL, /* no gateway */ 21064 &ipif->ipif_mtu, /* max frag */ 21065 NULL, /* no src nce */ 21066 NULL, /* no recv from queue */ 21067 stq, /* send-to queue */ 21068 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21069 ipif, 21070 0, 21071 0, 21072 0, 21073 0, 21074 &ire_uinfo_null, 21075 NULL, 21076 NULL, 21077 ipst); 21078 21079 if (ire != NULL) { 21080 ire_t *ret_ire; 21081 int error; 21082 21083 /* 21084 * We don't need ipif_ire anymore. We need to delete 21085 * before we add so that ire_add does not detect 21086 * duplicates. 21087 */ 21088 ire_delete(ipif_ire); 21089 ret_ire = ire; 21090 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21091 ASSERT(error == 0); 21092 ASSERT(ire == ret_ire); 21093 /* Held in ire_add */ 21094 ire_refrele(ret_ire); 21095 } 21096 /* 21097 * Either we are falling through from above or could not 21098 * allocate a replacement. 21099 */ 21100 ire_refrele(ipif_ire); 21101 if (need_rele) 21102 ipif_refrele(nipif); 21103 } 21104 21105 /* 21106 * This old_ipif is going away. 21107 * 21108 * Determine if any other ipif's is using our address as 21109 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21110 * IPIF_DEPRECATED). 21111 * Find the IRE_INTERFACE for such ipifs and recreate them 21112 * to use an different source address following the rules in 21113 * ipif_up_done. 21114 * 21115 * This function takes an illgrp as an argument so that illgrp_delete 21116 * can call this to update source address even after deleting the 21117 * old_ipif->ipif_ill from the ill group. 21118 */ 21119 static void 21120 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21121 { 21122 ipif_t *ipif; 21123 ill_t *ill; 21124 char buf[INET6_ADDRSTRLEN]; 21125 21126 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21127 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21128 21129 ill = old_ipif->ipif_ill; 21130 21131 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21132 ill->ill_name, 21133 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21134 buf, sizeof (buf)))); 21135 /* 21136 * If this part of a group, look at all ills as ipif_select_source 21137 * borrows source address across all the ills in the group. 21138 */ 21139 if (illgrp != NULL) 21140 ill = illgrp->illgrp_ill; 21141 21142 for (; ill != NULL; ill = ill->ill_group_next) { 21143 for (ipif = ill->ill_ipif; ipif != NULL; 21144 ipif = ipif->ipif_next) { 21145 21146 if (ipif == old_ipif) 21147 continue; 21148 21149 ipif_recreate_interface_routes(old_ipif, ipif); 21150 } 21151 } 21152 } 21153 21154 /* ARGSUSED */ 21155 int 21156 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21157 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21158 { 21159 /* 21160 * ill_phyint_reinit merged the v4 and v6 into a single 21161 * ipsq. Could also have become part of a ipmp group in the 21162 * process, and we might not have been able to complete the 21163 * operation in ipif_set_values, if we could not become 21164 * exclusive. If so restart it here. 21165 */ 21166 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21167 } 21168 21169 21170 /* 21171 * Can operate on either a module or a driver queue. 21172 * Returns an error if not a module queue. 21173 */ 21174 /* ARGSUSED */ 21175 int 21176 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21177 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21178 { 21179 queue_t *q1 = q; 21180 char *cp; 21181 char interf_name[LIFNAMSIZ]; 21182 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21183 21184 if (q->q_next == NULL) { 21185 ip1dbg(( 21186 "if_unitsel: IF_UNITSEL: no q_next\n")); 21187 return (EINVAL); 21188 } 21189 21190 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21191 return (EALREADY); 21192 21193 do { 21194 q1 = q1->q_next; 21195 } while (q1->q_next); 21196 cp = q1->q_qinfo->qi_minfo->mi_idname; 21197 (void) sprintf(interf_name, "%s%d", cp, ppa); 21198 21199 /* 21200 * Here we are not going to delay the ioack until after 21201 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21202 * original ioctl message before sending the requests. 21203 */ 21204 return (ipif_set_values(q, mp, interf_name, &ppa)); 21205 } 21206 21207 /* ARGSUSED */ 21208 int 21209 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21210 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21211 { 21212 return (ENXIO); 21213 } 21214 21215 /* 21216 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21217 * `irep'. Returns a pointer to the next free `irep' entry (just like 21218 * ire_check_and_create_bcast()). 21219 */ 21220 static ire_t ** 21221 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21222 { 21223 ipaddr_t addr; 21224 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21225 ipaddr_t subnetmask = ipif->ipif_net_mask; 21226 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21227 21228 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21229 21230 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21231 21232 if (ipif->ipif_lcl_addr == INADDR_ANY || 21233 (ipif->ipif_flags & IPIF_NOLOCAL)) 21234 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21235 21236 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21237 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21238 21239 /* 21240 * For backward compatibility, we create net broadcast IREs based on 21241 * the old "IP address class system", since some old machines only 21242 * respond to these class derived net broadcast. However, we must not 21243 * create these net broadcast IREs if the subnetmask is shorter than 21244 * the IP address class based derived netmask. Otherwise, we may 21245 * create a net broadcast address which is the same as an IP address 21246 * on the subnet -- and then TCP will refuse to talk to that address. 21247 */ 21248 if (netmask < subnetmask) { 21249 addr = netmask & ipif->ipif_subnet; 21250 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21251 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21252 flags); 21253 } 21254 21255 /* 21256 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21257 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21258 * created. Creating these broadcast IREs will only create confusion 21259 * as `addr' will be the same as the IP address. 21260 */ 21261 if (subnetmask != 0xFFFFFFFF) { 21262 addr = ipif->ipif_subnet; 21263 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21264 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21265 irep, flags); 21266 } 21267 21268 return (irep); 21269 } 21270 21271 /* 21272 * Broadcast IRE info structure used in the functions below. Since we 21273 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21274 */ 21275 typedef struct bcast_ireinfo { 21276 uchar_t bi_type; /* BCAST_* value from below */ 21277 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21278 bi_needrep:1, /* do we need to replace it? */ 21279 bi_haverep:1, /* have we replaced it? */ 21280 bi_pad:5; 21281 ipaddr_t bi_addr; /* IRE address */ 21282 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21283 } bcast_ireinfo_t; 21284 21285 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21286 21287 /* 21288 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21289 * return B_TRUE if it should immediately be used to recreate the IRE. 21290 */ 21291 static boolean_t 21292 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21293 { 21294 ipaddr_t addr; 21295 21296 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21297 21298 switch (bireinfop->bi_type) { 21299 case BCAST_NET: 21300 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21301 if (addr != bireinfop->bi_addr) 21302 return (B_FALSE); 21303 break; 21304 case BCAST_SUBNET: 21305 if (ipif->ipif_subnet != bireinfop->bi_addr) 21306 return (B_FALSE); 21307 break; 21308 } 21309 21310 bireinfop->bi_needrep = 1; 21311 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21312 if (bireinfop->bi_backup == NULL) 21313 bireinfop->bi_backup = ipif; 21314 return (B_FALSE); 21315 } 21316 return (B_TRUE); 21317 } 21318 21319 /* 21320 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21321 * them ala ire_check_and_create_bcast(). 21322 */ 21323 static ire_t ** 21324 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21325 { 21326 ipaddr_t mask, addr; 21327 21328 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21329 21330 addr = bireinfop->bi_addr; 21331 irep = ire_create_bcast(ipif, addr, irep); 21332 21333 switch (bireinfop->bi_type) { 21334 case BCAST_NET: 21335 mask = ip_net_mask(ipif->ipif_subnet); 21336 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21337 break; 21338 case BCAST_SUBNET: 21339 mask = ipif->ipif_net_mask; 21340 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21341 break; 21342 } 21343 21344 bireinfop->bi_haverep = 1; 21345 return (irep); 21346 } 21347 21348 /* 21349 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21350 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21351 * that are going away are still needed. If so, have ipif_create_bcast() 21352 * recreate them (except for the deprecated case, as explained below). 21353 */ 21354 static ire_t ** 21355 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21356 ire_t **irep) 21357 { 21358 int i; 21359 ipif_t *ipif; 21360 21361 ASSERT(!ill->ill_isv6); 21362 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21363 /* 21364 * Skip this ipif if it's (a) the one being taken down, (b) 21365 * not in the same zone, or (c) has no valid local address. 21366 */ 21367 if (ipif == test_ipif || 21368 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21369 ipif->ipif_subnet == 0 || 21370 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21371 (IPIF_UP|IPIF_BROADCAST)) 21372 continue; 21373 21374 /* 21375 * For each dying IRE that hasn't yet been replaced, see if 21376 * `ipif' needs it and whether the IRE should be recreated on 21377 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21378 * will return B_FALSE even if `ipif' needs the IRE on the 21379 * hopes that we'll later find a needy non-deprecated ipif. 21380 * However, the ipif is recorded in bi_backup for possible 21381 * subsequent use by ipif_check_bcast_ires(). 21382 */ 21383 for (i = 0; i < BCAST_COUNT; i++) { 21384 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21385 continue; 21386 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21387 continue; 21388 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21389 } 21390 21391 /* 21392 * If we've replaced all of the broadcast IREs that are going 21393 * to be taken down, we know we're done. 21394 */ 21395 for (i = 0; i < BCAST_COUNT; i++) { 21396 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21397 break; 21398 } 21399 if (i == BCAST_COUNT) 21400 break; 21401 } 21402 return (irep); 21403 } 21404 21405 /* 21406 * Check if `test_ipif' (which is going away) is associated with any existing 21407 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21408 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21409 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21410 * 21411 * This is necessary because broadcast IREs are shared. In particular, a 21412 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21413 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21414 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21415 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21416 * same zone, they will share the same set of broadcast IREs. 21417 * 21418 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21419 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21420 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21421 */ 21422 static void 21423 ipif_check_bcast_ires(ipif_t *test_ipif) 21424 { 21425 ill_t *ill = test_ipif->ipif_ill; 21426 ire_t *ire, *ire_array[12]; /* see note above */ 21427 ire_t **irep1, **irep = &ire_array[0]; 21428 uint_t i, willdie; 21429 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21430 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21431 21432 ASSERT(!test_ipif->ipif_isv6); 21433 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21434 21435 /* 21436 * No broadcast IREs for the LOOPBACK interface 21437 * or others such as point to point and IPIF_NOXMIT. 21438 */ 21439 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21440 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21441 return; 21442 21443 bzero(bireinfo, sizeof (bireinfo)); 21444 bireinfo[0].bi_type = BCAST_ALLZEROES; 21445 bireinfo[0].bi_addr = 0; 21446 21447 bireinfo[1].bi_type = BCAST_ALLONES; 21448 bireinfo[1].bi_addr = INADDR_BROADCAST; 21449 21450 bireinfo[2].bi_type = BCAST_NET; 21451 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21452 21453 if (test_ipif->ipif_net_mask != 0) 21454 mask = test_ipif->ipif_net_mask; 21455 bireinfo[3].bi_type = BCAST_SUBNET; 21456 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21457 21458 /* 21459 * Figure out what (if any) broadcast IREs will die as a result of 21460 * `test_ipif' going away. If none will die, we're done. 21461 */ 21462 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21463 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21464 test_ipif, ALL_ZONES, NULL, 21465 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21466 if (ire != NULL) { 21467 willdie++; 21468 bireinfo[i].bi_willdie = 1; 21469 ire_refrele(ire); 21470 } 21471 } 21472 21473 if (willdie == 0) 21474 return; 21475 21476 /* 21477 * Walk through all the ipifs that will be affected by the dying IREs, 21478 * and recreate the IREs as necessary. 21479 */ 21480 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21481 21482 /* 21483 * Scan through the set of broadcast IREs and see if there are any 21484 * that we need to replace that have not yet been replaced. If so, 21485 * replace them using the appropriate backup ipif. 21486 */ 21487 for (i = 0; i < BCAST_COUNT; i++) { 21488 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21489 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21490 &bireinfo[i], irep); 21491 } 21492 21493 /* 21494 * If we can't create all of them, don't add any of them. (Code in 21495 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21496 * non-loopback copy and loopback copy for a given address.) 21497 */ 21498 for (irep1 = irep; irep1 > ire_array; ) { 21499 irep1--; 21500 if (*irep1 == NULL) { 21501 ip0dbg(("ipif_check_bcast_ires: can't create " 21502 "IRE_BROADCAST, memory allocation failure\n")); 21503 while (irep > ire_array) { 21504 irep--; 21505 if (*irep != NULL) 21506 ire_delete(*irep); 21507 } 21508 return; 21509 } 21510 } 21511 21512 for (irep1 = irep; irep1 > ire_array; ) { 21513 irep1--; 21514 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21515 ire_refrele(*irep1); /* Held in ire_add */ 21516 } 21517 } 21518 21519 /* 21520 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21521 * from lifr_flags and the name from lifr_name. 21522 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21523 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21524 * Returns EINPROGRESS when mp has been consumed by queueing it on 21525 * ill_pending_mp and the ioctl will complete in ip_rput. 21526 * 21527 * Can operate on either a module or a driver queue. 21528 * Returns an error if not a module queue. 21529 */ 21530 /* ARGSUSED */ 21531 int 21532 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21533 ip_ioctl_cmd_t *ipip, void *if_req) 21534 { 21535 int err; 21536 ill_t *ill; 21537 struct lifreq *lifr = (struct lifreq *)if_req; 21538 21539 ASSERT(ipif != NULL); 21540 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21541 21542 if (q->q_next == NULL) { 21543 ip1dbg(( 21544 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21545 return (EINVAL); 21546 } 21547 21548 ill = (ill_t *)q->q_ptr; 21549 /* 21550 * If we are not writer on 'q' then this interface exists already 21551 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21552 * So return EALREADY 21553 */ 21554 if (ill != ipif->ipif_ill) 21555 return (EALREADY); 21556 21557 if (ill->ill_name[0] != '\0') 21558 return (EALREADY); 21559 21560 /* 21561 * Set all the flags. Allows all kinds of override. Provide some 21562 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21563 * unless there is either multicast/broadcast support in the driver 21564 * or it is a pt-pt link. 21565 */ 21566 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21567 /* Meaningless to IP thus don't allow them to be set. */ 21568 ip1dbg(("ip_setname: EINVAL 1\n")); 21569 return (EINVAL); 21570 } 21571 /* 21572 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21573 * ill_bcast_addr_length info. 21574 */ 21575 if (!ill->ill_needs_attach && 21576 ((lifr->lifr_flags & IFF_MULTICAST) && 21577 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21578 ill->ill_bcast_addr_length == 0)) { 21579 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21580 ip1dbg(("ip_setname: EINVAL 2\n")); 21581 return (EINVAL); 21582 } 21583 if ((lifr->lifr_flags & IFF_BROADCAST) && 21584 ((lifr->lifr_flags & IFF_IPV6) || 21585 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21586 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21587 ip1dbg(("ip_setname: EINVAL 3\n")); 21588 return (EINVAL); 21589 } 21590 if (lifr->lifr_flags & IFF_UP) { 21591 /* Can only be set with SIOCSLIFFLAGS */ 21592 ip1dbg(("ip_setname: EINVAL 4\n")); 21593 return (EINVAL); 21594 } 21595 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21596 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21597 ip1dbg(("ip_setname: EINVAL 5\n")); 21598 return (EINVAL); 21599 } 21600 /* 21601 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21602 */ 21603 if ((lifr->lifr_flags & IFF_XRESOLV) && 21604 !(lifr->lifr_flags & IFF_IPV6) && 21605 !(ipif->ipif_isv6)) { 21606 ip1dbg(("ip_setname: EINVAL 6\n")); 21607 return (EINVAL); 21608 } 21609 21610 /* 21611 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21612 * we have all the flags here. So, we assign rather than we OR. 21613 * We can't OR the flags here because we don't want to set 21614 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21615 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21616 * on lifr_flags value here. 21617 */ 21618 /* 21619 * This ill has not been inserted into the global list. 21620 * So we are still single threaded and don't need any lock 21621 */ 21622 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21623 ~IFF_DUPLICATE; 21624 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21625 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21626 21627 /* We started off as V4. */ 21628 if (ill->ill_flags & ILLF_IPV6) { 21629 ill->ill_phyint->phyint_illv6 = ill; 21630 ill->ill_phyint->phyint_illv4 = NULL; 21631 } 21632 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21633 return (err); 21634 } 21635 21636 /* ARGSUSED */ 21637 int 21638 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21639 ip_ioctl_cmd_t *ipip, void *if_req) 21640 { 21641 /* 21642 * ill_phyint_reinit merged the v4 and v6 into a single 21643 * ipsq. Could also have become part of a ipmp group in the 21644 * process, and we might not have been able to complete the 21645 * slifname in ipif_set_values, if we could not become 21646 * exclusive. If so restart it here 21647 */ 21648 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21649 } 21650 21651 /* 21652 * Return a pointer to the ipif which matches the index, IP version type and 21653 * zoneid. 21654 */ 21655 ipif_t * 21656 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21657 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21658 { 21659 ill_t *ill; 21660 ipif_t *ipif = NULL; 21661 21662 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21663 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21664 21665 if (err != NULL) 21666 *err = 0; 21667 21668 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21669 if (ill != NULL) { 21670 mutex_enter(&ill->ill_lock); 21671 for (ipif = ill->ill_ipif; ipif != NULL; 21672 ipif = ipif->ipif_next) { 21673 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21674 zoneid == ipif->ipif_zoneid || 21675 ipif->ipif_zoneid == ALL_ZONES)) { 21676 ipif_refhold_locked(ipif); 21677 break; 21678 } 21679 } 21680 mutex_exit(&ill->ill_lock); 21681 ill_refrele(ill); 21682 if (ipif == NULL && err != NULL) 21683 *err = ENXIO; 21684 } 21685 return (ipif); 21686 } 21687 21688 typedef struct conn_change_s { 21689 uint_t cc_old_ifindex; 21690 uint_t cc_new_ifindex; 21691 } conn_change_t; 21692 21693 /* 21694 * ipcl_walk function for changing interface index. 21695 */ 21696 static void 21697 conn_change_ifindex(conn_t *connp, caddr_t arg) 21698 { 21699 conn_change_t *connc; 21700 uint_t old_ifindex; 21701 uint_t new_ifindex; 21702 int i; 21703 ilg_t *ilg; 21704 21705 connc = (conn_change_t *)arg; 21706 old_ifindex = connc->cc_old_ifindex; 21707 new_ifindex = connc->cc_new_ifindex; 21708 21709 if (connp->conn_orig_bound_ifindex == old_ifindex) 21710 connp->conn_orig_bound_ifindex = new_ifindex; 21711 21712 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21713 connp->conn_orig_multicast_ifindex = new_ifindex; 21714 21715 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21716 connp->conn_orig_xmit_ifindex = new_ifindex; 21717 21718 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21719 ilg = &connp->conn_ilg[i]; 21720 if (ilg->ilg_orig_ifindex == old_ifindex) 21721 ilg->ilg_orig_ifindex = new_ifindex; 21722 } 21723 } 21724 21725 /* 21726 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21727 * to new_index if it matches the old_index. 21728 * 21729 * Failovers typically happen within a group of ills. But somebody 21730 * can remove an ill from the group after a failover happened. If 21731 * we are setting the ifindex after this, we potentially need to 21732 * look at all the ills rather than just the ones in the group. 21733 * We cut down the work by looking at matching ill_net_types 21734 * and ill_types as we could not possibly grouped them together. 21735 */ 21736 static void 21737 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21738 { 21739 ill_t *ill; 21740 ipif_t *ipif; 21741 uint_t old_ifindex; 21742 uint_t new_ifindex; 21743 ilm_t *ilm; 21744 ill_walk_context_t ctx; 21745 ip_stack_t *ipst = ill_orig->ill_ipst; 21746 21747 old_ifindex = connc->cc_old_ifindex; 21748 new_ifindex = connc->cc_new_ifindex; 21749 21750 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21751 ill = ILL_START_WALK_ALL(&ctx, ipst); 21752 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21753 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21754 (ill_orig->ill_type != ill->ill_type)) { 21755 continue; 21756 } 21757 for (ipif = ill->ill_ipif; ipif != NULL; 21758 ipif = ipif->ipif_next) { 21759 if (ipif->ipif_orig_ifindex == old_ifindex) 21760 ipif->ipif_orig_ifindex = new_ifindex; 21761 } 21762 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21763 if (ilm->ilm_orig_ifindex == old_ifindex) 21764 ilm->ilm_orig_ifindex = new_ifindex; 21765 } 21766 } 21767 rw_exit(&ipst->ips_ill_g_lock); 21768 } 21769 21770 /* 21771 * We first need to ensure that the new index is unique, and 21772 * then carry the change across both v4 and v6 ill representation 21773 * of the physical interface. 21774 */ 21775 /* ARGSUSED */ 21776 int 21777 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21778 ip_ioctl_cmd_t *ipip, void *ifreq) 21779 { 21780 ill_t *ill; 21781 ill_t *ill_other; 21782 phyint_t *phyi; 21783 int old_index; 21784 conn_change_t connc; 21785 struct ifreq *ifr = (struct ifreq *)ifreq; 21786 struct lifreq *lifr = (struct lifreq *)ifreq; 21787 uint_t index; 21788 ill_t *ill_v4; 21789 ill_t *ill_v6; 21790 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21791 21792 if (ipip->ipi_cmd_type == IF_CMD) 21793 index = ifr->ifr_index; 21794 else 21795 index = lifr->lifr_index; 21796 21797 /* 21798 * Only allow on physical interface. Also, index zero is illegal. 21799 * 21800 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21801 * 21802 * 1) If PHYI_FAILED is set, a failover could have happened which 21803 * implies a possible failback might have to happen. As failback 21804 * depends on the old index, we should fail setting the index. 21805 * 21806 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21807 * any addresses or multicast memberships are failed over to 21808 * a non-STANDBY interface. As failback depends on the old 21809 * index, we should fail setting the index for this case also. 21810 * 21811 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21812 * Be consistent with PHYI_FAILED and fail the ioctl. 21813 */ 21814 ill = ipif->ipif_ill; 21815 phyi = ill->ill_phyint; 21816 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21817 ipif->ipif_id != 0 || index == 0) { 21818 return (EINVAL); 21819 } 21820 old_index = phyi->phyint_ifindex; 21821 21822 /* If the index is not changing, no work to do */ 21823 if (old_index == index) 21824 return (0); 21825 21826 /* 21827 * Use ill_lookup_on_ifindex to determine if the 21828 * new index is unused and if so allow the change. 21829 */ 21830 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21831 ipst); 21832 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21833 ipst); 21834 if (ill_v6 != NULL || ill_v4 != NULL) { 21835 if (ill_v4 != NULL) 21836 ill_refrele(ill_v4); 21837 if (ill_v6 != NULL) 21838 ill_refrele(ill_v6); 21839 return (EBUSY); 21840 } 21841 21842 /* 21843 * The new index is unused. Set it in the phyint. 21844 * Locate the other ill so that we can send a routing 21845 * sockets message. 21846 */ 21847 if (ill->ill_isv6) { 21848 ill_other = phyi->phyint_illv4; 21849 } else { 21850 ill_other = phyi->phyint_illv6; 21851 } 21852 21853 phyi->phyint_ifindex = index; 21854 21855 /* Update SCTP's ILL list */ 21856 sctp_ill_reindex(ill, old_index); 21857 21858 connc.cc_old_ifindex = old_index; 21859 connc.cc_new_ifindex = index; 21860 ip_change_ifindex(ill, &connc); 21861 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21862 21863 /* Send the routing sockets message */ 21864 ip_rts_ifmsg(ipif); 21865 if (ill_other != NULL) 21866 ip_rts_ifmsg(ill_other->ill_ipif); 21867 21868 return (0); 21869 } 21870 21871 /* ARGSUSED */ 21872 int 21873 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21874 ip_ioctl_cmd_t *ipip, void *ifreq) 21875 { 21876 struct ifreq *ifr = (struct ifreq *)ifreq; 21877 struct lifreq *lifr = (struct lifreq *)ifreq; 21878 21879 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21880 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21881 /* Get the interface index */ 21882 if (ipip->ipi_cmd_type == IF_CMD) { 21883 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21884 } else { 21885 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21886 } 21887 return (0); 21888 } 21889 21890 /* ARGSUSED */ 21891 int 21892 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21893 ip_ioctl_cmd_t *ipip, void *ifreq) 21894 { 21895 struct lifreq *lifr = (struct lifreq *)ifreq; 21896 21897 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21898 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21899 /* Get the interface zone */ 21900 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21901 lifr->lifr_zoneid = ipif->ipif_zoneid; 21902 return (0); 21903 } 21904 21905 /* 21906 * Set the zoneid of an interface. 21907 */ 21908 /* ARGSUSED */ 21909 int 21910 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21911 ip_ioctl_cmd_t *ipip, void *ifreq) 21912 { 21913 struct lifreq *lifr = (struct lifreq *)ifreq; 21914 int err = 0; 21915 boolean_t need_up = B_FALSE; 21916 zone_t *zptr; 21917 zone_status_t status; 21918 zoneid_t zoneid; 21919 21920 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21921 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21922 if (!is_system_labeled()) 21923 return (ENOTSUP); 21924 zoneid = GLOBAL_ZONEID; 21925 } 21926 21927 /* cannot assign instance zero to a non-global zone */ 21928 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21929 return (ENOTSUP); 21930 21931 /* 21932 * Cannot assign to a zone that doesn't exist or is shutting down. In 21933 * the event of a race with the zone shutdown processing, since IP 21934 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21935 * interface will be cleaned up even if the zone is shut down 21936 * immediately after the status check. If the interface can't be brought 21937 * down right away, and the zone is shut down before the restart 21938 * function is called, we resolve the possible races by rechecking the 21939 * zone status in the restart function. 21940 */ 21941 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21942 return (EINVAL); 21943 status = zone_status_get(zptr); 21944 zone_rele(zptr); 21945 21946 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21947 return (EINVAL); 21948 21949 if (ipif->ipif_flags & IPIF_UP) { 21950 /* 21951 * If the interface is already marked up, 21952 * we call ipif_down which will take care 21953 * of ditching any IREs that have been set 21954 * up based on the old interface address. 21955 */ 21956 err = ipif_logical_down(ipif, q, mp); 21957 if (err == EINPROGRESS) 21958 return (err); 21959 ipif_down_tail(ipif); 21960 need_up = B_TRUE; 21961 } 21962 21963 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21964 return (err); 21965 } 21966 21967 static int 21968 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21969 queue_t *q, mblk_t *mp, boolean_t need_up) 21970 { 21971 int err = 0; 21972 ip_stack_t *ipst; 21973 21974 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21976 21977 if (CONN_Q(q)) 21978 ipst = CONNQ_TO_IPST(q); 21979 else 21980 ipst = ILLQ_TO_IPST(q); 21981 21982 /* 21983 * For exclusive stacks we don't allow a different zoneid than 21984 * global. 21985 */ 21986 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21987 zoneid != GLOBAL_ZONEID) 21988 return (EINVAL); 21989 21990 /* Set the new zone id. */ 21991 ipif->ipif_zoneid = zoneid; 21992 21993 /* Update sctp list */ 21994 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21995 21996 if (need_up) { 21997 /* 21998 * Now bring the interface back up. If this 21999 * is the only IPIF for the ILL, ipif_up 22000 * will have to re-bind to the device, so 22001 * we may get back EINPROGRESS, in which 22002 * case, this IOCTL will get completed in 22003 * ip_rput_dlpi when we see the DL_BIND_ACK. 22004 */ 22005 err = ipif_up(ipif, q, mp); 22006 } 22007 return (err); 22008 } 22009 22010 /* ARGSUSED */ 22011 int 22012 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22013 ip_ioctl_cmd_t *ipip, void *if_req) 22014 { 22015 struct lifreq *lifr = (struct lifreq *)if_req; 22016 zoneid_t zoneid; 22017 zone_t *zptr; 22018 zone_status_t status; 22019 22020 ASSERT(ipif->ipif_id != 0); 22021 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22022 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22023 zoneid = GLOBAL_ZONEID; 22024 22025 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22026 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22027 22028 /* 22029 * We recheck the zone status to resolve the following race condition: 22030 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22031 * 2) hme0:1 is up and can't be brought down right away; 22032 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22033 * 3) zone "myzone" is halted; the zone status switches to 22034 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22035 * the interfaces to remove - hme0:1 is not returned because it's not 22036 * yet in "myzone", so it won't be removed; 22037 * 4) the restart function for SIOCSLIFZONE is called; without the 22038 * status check here, we would have hme0:1 in "myzone" after it's been 22039 * destroyed. 22040 * Note that if the status check fails, we need to bring the interface 22041 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22042 * ipif_up_done[_v6](). 22043 */ 22044 status = ZONE_IS_UNINITIALIZED; 22045 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22046 status = zone_status_get(zptr); 22047 zone_rele(zptr); 22048 } 22049 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22050 if (ipif->ipif_isv6) { 22051 (void) ipif_up_done_v6(ipif); 22052 } else { 22053 (void) ipif_up_done(ipif); 22054 } 22055 return (EINVAL); 22056 } 22057 22058 ipif_down_tail(ipif); 22059 22060 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22061 B_TRUE)); 22062 } 22063 22064 /* ARGSUSED */ 22065 int 22066 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22067 ip_ioctl_cmd_t *ipip, void *ifreq) 22068 { 22069 struct lifreq *lifr = ifreq; 22070 22071 ASSERT(q->q_next == NULL); 22072 ASSERT(CONN_Q(q)); 22073 22074 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22075 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22076 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22077 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22078 22079 return (0); 22080 } 22081 22082 22083 /* Find the previous ILL in this usesrc group */ 22084 static ill_t * 22085 ill_prev_usesrc(ill_t *uill) 22086 { 22087 ill_t *ill; 22088 22089 for (ill = uill->ill_usesrc_grp_next; 22090 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22091 ill = ill->ill_usesrc_grp_next) 22092 /* do nothing */; 22093 return (ill); 22094 } 22095 22096 /* 22097 * Release all members of the usesrc group. This routine is called 22098 * from ill_delete when the interface being unplumbed is the 22099 * group head. 22100 */ 22101 static void 22102 ill_disband_usesrc_group(ill_t *uill) 22103 { 22104 ill_t *next_ill, *tmp_ill; 22105 ip_stack_t *ipst = uill->ill_ipst; 22106 22107 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22108 next_ill = uill->ill_usesrc_grp_next; 22109 22110 do { 22111 ASSERT(next_ill != NULL); 22112 tmp_ill = next_ill->ill_usesrc_grp_next; 22113 ASSERT(tmp_ill != NULL); 22114 next_ill->ill_usesrc_grp_next = NULL; 22115 next_ill->ill_usesrc_ifindex = 0; 22116 next_ill = tmp_ill; 22117 } while (next_ill->ill_usesrc_ifindex != 0); 22118 uill->ill_usesrc_grp_next = NULL; 22119 } 22120 22121 /* 22122 * Remove the client usesrc ILL from the list and relink to a new list 22123 */ 22124 int 22125 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22126 { 22127 ill_t *ill, *tmp_ill; 22128 ip_stack_t *ipst = ucill->ill_ipst; 22129 22130 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22131 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22132 22133 /* 22134 * Check if the usesrc client ILL passed in is not already 22135 * in use as a usesrc ILL i.e one whose source address is 22136 * in use OR a usesrc ILL is not already in use as a usesrc 22137 * client ILL 22138 */ 22139 if ((ucill->ill_usesrc_ifindex == 0) || 22140 (uill->ill_usesrc_ifindex != 0)) { 22141 return (-1); 22142 } 22143 22144 ill = ill_prev_usesrc(ucill); 22145 ASSERT(ill->ill_usesrc_grp_next != NULL); 22146 22147 /* Remove from the current list */ 22148 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22149 /* Only two elements in the list */ 22150 ASSERT(ill->ill_usesrc_ifindex == 0); 22151 ill->ill_usesrc_grp_next = NULL; 22152 } else { 22153 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22154 } 22155 22156 if (ifindex == 0) { 22157 ucill->ill_usesrc_ifindex = 0; 22158 ucill->ill_usesrc_grp_next = NULL; 22159 return (0); 22160 } 22161 22162 ucill->ill_usesrc_ifindex = ifindex; 22163 tmp_ill = uill->ill_usesrc_grp_next; 22164 uill->ill_usesrc_grp_next = ucill; 22165 ucill->ill_usesrc_grp_next = 22166 (tmp_ill != NULL) ? tmp_ill : uill; 22167 return (0); 22168 } 22169 22170 /* 22171 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22172 * ip.c for locking details. 22173 */ 22174 /* ARGSUSED */ 22175 int 22176 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22177 ip_ioctl_cmd_t *ipip, void *ifreq) 22178 { 22179 struct lifreq *lifr = (struct lifreq *)ifreq; 22180 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22181 ill_flag_changed = B_FALSE; 22182 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22183 int err = 0, ret; 22184 uint_t ifindex; 22185 phyint_t *us_phyint, *us_cli_phyint; 22186 ipsq_t *ipsq = NULL; 22187 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22188 22189 ASSERT(IAM_WRITER_IPIF(ipif)); 22190 ASSERT(q->q_next == NULL); 22191 ASSERT(CONN_Q(q)); 22192 22193 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22194 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22195 22196 ASSERT(us_cli_phyint != NULL); 22197 22198 /* 22199 * If the client ILL is being used for IPMP, abort. 22200 * Note, this can be done before ipsq_try_enter since we are already 22201 * exclusive on this ILL 22202 */ 22203 if ((us_cli_phyint->phyint_groupname != NULL) || 22204 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22205 return (EINVAL); 22206 } 22207 22208 ifindex = lifr->lifr_index; 22209 if (ifindex == 0) { 22210 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22211 /* non usesrc group interface, nothing to reset */ 22212 return (0); 22213 } 22214 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22215 /* valid reset request */ 22216 reset_flg = B_TRUE; 22217 } 22218 22219 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22220 ip_process_ioctl, &err, ipst); 22221 22222 if (usesrc_ill == NULL) { 22223 return (err); 22224 } 22225 22226 /* 22227 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22228 * group nor can either of the interfaces be used for standy. So 22229 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22230 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22231 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22232 * We are already exlusive on this ipsq i.e ipsq corresponding to 22233 * the usesrc_cli_ill 22234 */ 22235 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22236 NEW_OP, B_TRUE); 22237 if (ipsq == NULL) { 22238 err = EINPROGRESS; 22239 /* Operation enqueued on the ipsq of the usesrc ILL */ 22240 goto done; 22241 } 22242 22243 /* Check if the usesrc_ill is used for IPMP */ 22244 us_phyint = usesrc_ill->ill_phyint; 22245 if ((us_phyint->phyint_groupname != NULL) || 22246 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22247 err = EINVAL; 22248 goto done; 22249 } 22250 22251 /* 22252 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22253 * already a client then return EINVAL 22254 */ 22255 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22256 err = EINVAL; 22257 goto done; 22258 } 22259 22260 /* 22261 * If the ill_usesrc_ifindex field is already set to what it needs to 22262 * be then this is a duplicate operation. 22263 */ 22264 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22265 err = 0; 22266 goto done; 22267 } 22268 22269 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22270 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22271 usesrc_ill->ill_isv6)); 22272 22273 /* 22274 * The next step ensures that no new ires will be created referencing 22275 * the client ill, until the ILL_CHANGING flag is cleared. Then 22276 * we go through an ire walk deleting all ire caches that reference 22277 * the client ill. New ires referencing the client ill that are added 22278 * to the ire table before the ILL_CHANGING flag is set, will be 22279 * cleaned up by the ire walk below. Attempt to add new ires referencing 22280 * the client ill while the ILL_CHANGING flag is set will be failed 22281 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22282 * checks (under the ill_g_usesrc_lock) that the ire being added 22283 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22284 * belong to the same usesrc group. 22285 */ 22286 mutex_enter(&usesrc_cli_ill->ill_lock); 22287 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22288 mutex_exit(&usesrc_cli_ill->ill_lock); 22289 ill_flag_changed = B_TRUE; 22290 22291 if (ipif->ipif_isv6) 22292 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22293 ALL_ZONES, ipst); 22294 else 22295 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22296 ALL_ZONES, ipst); 22297 22298 /* 22299 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22300 * and the ill_usesrc_ifindex fields 22301 */ 22302 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22303 22304 if (reset_flg) { 22305 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22306 if (ret != 0) { 22307 err = EINVAL; 22308 } 22309 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22310 goto done; 22311 } 22312 22313 /* 22314 * Four possibilities to consider: 22315 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22316 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22317 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22318 * 4. Both are part of their respective usesrc groups 22319 */ 22320 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22321 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22322 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22323 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22324 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22325 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22326 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22327 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22328 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22329 /* Insert at head of list */ 22330 usesrc_cli_ill->ill_usesrc_grp_next = 22331 usesrc_ill->ill_usesrc_grp_next; 22332 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22333 } else { 22334 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22335 ifindex); 22336 if (ret != 0) 22337 err = EINVAL; 22338 } 22339 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22340 22341 done: 22342 if (ill_flag_changed) { 22343 mutex_enter(&usesrc_cli_ill->ill_lock); 22344 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22345 mutex_exit(&usesrc_cli_ill->ill_lock); 22346 } 22347 if (ipsq != NULL) 22348 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22349 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22350 ill_refrele(usesrc_ill); 22351 return (err); 22352 } 22353 22354 /* 22355 * comparison function used by avl. 22356 */ 22357 static int 22358 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22359 { 22360 22361 uint_t index; 22362 22363 ASSERT(phyip != NULL && index_ptr != NULL); 22364 22365 index = *((uint_t *)index_ptr); 22366 /* 22367 * let the phyint with the lowest index be on top. 22368 */ 22369 if (((phyint_t *)phyip)->phyint_ifindex < index) 22370 return (1); 22371 if (((phyint_t *)phyip)->phyint_ifindex > index) 22372 return (-1); 22373 return (0); 22374 } 22375 22376 /* 22377 * comparison function used by avl. 22378 */ 22379 static int 22380 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22381 { 22382 ill_t *ill; 22383 int res = 0; 22384 22385 ASSERT(phyip != NULL && name_ptr != NULL); 22386 22387 if (((phyint_t *)phyip)->phyint_illv4) 22388 ill = ((phyint_t *)phyip)->phyint_illv4; 22389 else 22390 ill = ((phyint_t *)phyip)->phyint_illv6; 22391 ASSERT(ill != NULL); 22392 22393 res = strcmp(ill->ill_name, (char *)name_ptr); 22394 if (res > 0) 22395 return (1); 22396 else if (res < 0) 22397 return (-1); 22398 return (0); 22399 } 22400 /* 22401 * This function is called from ill_delete when the ill is being 22402 * unplumbed. We remove the reference from the phyint and we also 22403 * free the phyint when there are no more references to it. 22404 */ 22405 static void 22406 ill_phyint_free(ill_t *ill) 22407 { 22408 phyint_t *phyi; 22409 phyint_t *next_phyint; 22410 ipsq_t *cur_ipsq; 22411 ip_stack_t *ipst = ill->ill_ipst; 22412 22413 ASSERT(ill->ill_phyint != NULL); 22414 22415 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22416 phyi = ill->ill_phyint; 22417 ill->ill_phyint = NULL; 22418 /* 22419 * ill_init allocates a phyint always to store the copy 22420 * of flags relevant to phyint. At that point in time, we could 22421 * not assign the name and hence phyint_illv4/v6 could not be 22422 * initialized. Later in ipif_set_values, we assign the name to 22423 * the ill, at which point in time we assign phyint_illv4/v6. 22424 * Thus we don't rely on phyint_illv6 to be initialized always. 22425 */ 22426 if (ill->ill_flags & ILLF_IPV6) { 22427 phyi->phyint_illv6 = NULL; 22428 } else { 22429 phyi->phyint_illv4 = NULL; 22430 } 22431 /* 22432 * ipif_down removes it from the group when the last ipif goes 22433 * down. 22434 */ 22435 ASSERT(ill->ill_group == NULL); 22436 22437 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22438 return; 22439 22440 /* 22441 * Make sure this phyint was put in the list. 22442 */ 22443 if (phyi->phyint_ifindex > 0) { 22444 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22445 phyi); 22446 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22447 phyi); 22448 } 22449 /* 22450 * remove phyint from the ipsq list. 22451 */ 22452 cur_ipsq = phyi->phyint_ipsq; 22453 if (phyi == cur_ipsq->ipsq_phyint_list) { 22454 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22455 } else { 22456 next_phyint = cur_ipsq->ipsq_phyint_list; 22457 while (next_phyint != NULL) { 22458 if (next_phyint->phyint_ipsq_next == phyi) { 22459 next_phyint->phyint_ipsq_next = 22460 phyi->phyint_ipsq_next; 22461 break; 22462 } 22463 next_phyint = next_phyint->phyint_ipsq_next; 22464 } 22465 ASSERT(next_phyint != NULL); 22466 } 22467 IPSQ_DEC_REF(cur_ipsq, ipst); 22468 22469 if (phyi->phyint_groupname_len != 0) { 22470 ASSERT(phyi->phyint_groupname != NULL); 22471 mi_free(phyi->phyint_groupname); 22472 } 22473 mi_free(phyi); 22474 } 22475 22476 /* 22477 * Attach the ill to the phyint structure which can be shared by both 22478 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22479 * function is called from ipif_set_values and ill_lookup_on_name (for 22480 * loopback) where we know the name of the ill. We lookup the ill and if 22481 * there is one present already with the name use that phyint. Otherwise 22482 * reuse the one allocated by ill_init. 22483 */ 22484 static void 22485 ill_phyint_reinit(ill_t *ill) 22486 { 22487 boolean_t isv6 = ill->ill_isv6; 22488 phyint_t *phyi_old; 22489 phyint_t *phyi; 22490 avl_index_t where = 0; 22491 ill_t *ill_other = NULL; 22492 ipsq_t *ipsq; 22493 ip_stack_t *ipst = ill->ill_ipst; 22494 22495 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22496 22497 phyi_old = ill->ill_phyint; 22498 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22499 phyi_old->phyint_illv6 == NULL)); 22500 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22501 phyi_old->phyint_illv4 == NULL)); 22502 ASSERT(phyi_old->phyint_ifindex == 0); 22503 22504 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22505 ill->ill_name, &where); 22506 22507 /* 22508 * 1. We grabbed the ill_g_lock before inserting this ill into 22509 * the global list of ills. So no other thread could have located 22510 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22511 * 2. Now locate the other protocol instance of this ill. 22512 * 3. Now grab both ill locks in the right order, and the phyint lock of 22513 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22514 * of neither ill can change. 22515 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22516 * other ill. 22517 * 5. Release all locks. 22518 */ 22519 22520 /* 22521 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22522 * we are initializing IPv4. 22523 */ 22524 if (phyi != NULL) { 22525 ill_other = (isv6) ? phyi->phyint_illv4 : 22526 phyi->phyint_illv6; 22527 ASSERT(ill_other->ill_phyint != NULL); 22528 ASSERT((isv6 && !ill_other->ill_isv6) || 22529 (!isv6 && ill_other->ill_isv6)); 22530 GRAB_ILL_LOCKS(ill, ill_other); 22531 /* 22532 * We are potentially throwing away phyint_flags which 22533 * could be different from the one that we obtain from 22534 * ill_other->ill_phyint. But it is okay as we are assuming 22535 * that the state maintained within IP is correct. 22536 */ 22537 mutex_enter(&phyi->phyint_lock); 22538 if (isv6) { 22539 ASSERT(phyi->phyint_illv6 == NULL); 22540 phyi->phyint_illv6 = ill; 22541 } else { 22542 ASSERT(phyi->phyint_illv4 == NULL); 22543 phyi->phyint_illv4 = ill; 22544 } 22545 /* 22546 * This is a new ill, currently undergoing SLIFNAME 22547 * So we could not have joined an IPMP group until now. 22548 */ 22549 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22550 phyi_old->phyint_groupname == NULL); 22551 22552 /* 22553 * This phyi_old is going away. Decref ipsq_refs and 22554 * assert it is zero. The ipsq itself will be freed in 22555 * ipsq_exit 22556 */ 22557 ipsq = phyi_old->phyint_ipsq; 22558 IPSQ_DEC_REF(ipsq, ipst); 22559 ASSERT(ipsq->ipsq_refs == 0); 22560 /* Get the singleton phyint out of the ipsq list */ 22561 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22562 ipsq->ipsq_phyint_list = NULL; 22563 phyi_old->phyint_illv4 = NULL; 22564 phyi_old->phyint_illv6 = NULL; 22565 mi_free(phyi_old); 22566 } else { 22567 mutex_enter(&ill->ill_lock); 22568 /* 22569 * We don't need to acquire any lock, since 22570 * the ill is not yet visible globally and we 22571 * have not yet released the ill_g_lock. 22572 */ 22573 phyi = phyi_old; 22574 mutex_enter(&phyi->phyint_lock); 22575 /* XXX We need a recovery strategy here. */ 22576 if (!phyint_assign_ifindex(phyi, ipst)) 22577 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22578 22579 /* No IPMP group yet, thus the hook uses the ifindex */ 22580 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22581 22582 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22583 (void *)phyi, where); 22584 22585 (void) avl_find(&ipst->ips_phyint_g_list-> 22586 phyint_list_avl_by_index, 22587 &phyi->phyint_ifindex, &where); 22588 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22589 (void *)phyi, where); 22590 } 22591 22592 /* 22593 * Reassigning ill_phyint automatically reassigns the ipsq also. 22594 * pending mp is not affected because that is per ill basis. 22595 */ 22596 ill->ill_phyint = phyi; 22597 22598 /* 22599 * Keep the index on ipif_orig_index to be used by FAILOVER. 22600 * We do this here as when the first ipif was allocated, 22601 * ipif_allocate does not know the right interface index. 22602 */ 22603 22604 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22605 /* 22606 * Now that the phyint's ifindex has been assigned, complete the 22607 * remaining 22608 */ 22609 22610 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22611 if (ill->ill_isv6) { 22612 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22613 ill->ill_phyint->phyint_ifindex; 22614 ill->ill_mcast_type = ipst->ips_mld_max_version; 22615 } else { 22616 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22617 } 22618 22619 /* 22620 * Generate an event within the hooks framework to indicate that 22621 * a new interface has just been added to IP. For this event to 22622 * be generated, the network interface must, at least, have an 22623 * ifindex assigned to it. 22624 * 22625 * This needs to be run inside the ill_g_lock perimeter to ensure 22626 * that the ordering of delivered events to listeners matches the 22627 * order of them in the kernel. 22628 * 22629 * This function could be called from ill_lookup_on_name. In that case 22630 * the interface is loopback "lo", which will not generate a NIC event. 22631 */ 22632 if (ill->ill_name_length <= 2 || 22633 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22634 /* 22635 * Generate nic plumb event for ill_name even if 22636 * ipmp_hook_emulation is set. That avoids generating events 22637 * for the ill_names should ipmp_hook_emulation be turned on 22638 * later. 22639 */ 22640 ill_nic_info_plumb(ill, B_FALSE); 22641 } 22642 RELEASE_ILL_LOCKS(ill, ill_other); 22643 mutex_exit(&phyi->phyint_lock); 22644 } 22645 22646 /* 22647 * Allocate a NE_PLUMB nic info event and store in the ill. 22648 * If 'group' is set we do it for the group name, otherwise the ill name. 22649 * It will be sent when we leave the ipsq. 22650 */ 22651 void 22652 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22653 { 22654 phyint_t *phyi = ill->ill_phyint; 22655 ip_stack_t *ipst = ill->ill_ipst; 22656 hook_nic_event_t *info; 22657 char *name; 22658 int namelen; 22659 22660 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22661 22662 if ((info = ill->ill_nic_event_info) != NULL) { 22663 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22664 "attached for %s\n", info->hne_event, 22665 ill->ill_name)); 22666 if (info->hne_data != NULL) 22667 kmem_free(info->hne_data, info->hne_datalen); 22668 kmem_free(info, sizeof (hook_nic_event_t)); 22669 ill->ill_nic_event_info = NULL; 22670 } 22671 22672 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22673 if (info == NULL) { 22674 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22675 "event information for %s (ENOMEM)\n", 22676 ill->ill_name)); 22677 return; 22678 } 22679 22680 if (group) { 22681 ASSERT(phyi->phyint_groupname_len != 0); 22682 namelen = phyi->phyint_groupname_len; 22683 name = phyi->phyint_groupname; 22684 } else { 22685 namelen = ill->ill_name_length; 22686 name = ill->ill_name; 22687 } 22688 22689 info->hne_nic = phyi->phyint_hook_ifindex; 22690 info->hne_lif = 0; 22691 info->hne_event = NE_PLUMB; 22692 info->hne_family = ill->ill_isv6 ? 22693 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22694 22695 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22696 if (info->hne_data != NULL) { 22697 info->hne_datalen = namelen; 22698 bcopy(name, info->hne_data, info->hne_datalen); 22699 } else { 22700 ip2dbg(("ill_nic_info_plumb: could not attach " 22701 "name information for PLUMB nic event " 22702 "of %s (ENOMEM)\n", name)); 22703 kmem_free(info, sizeof (hook_nic_event_t)); 22704 info = NULL; 22705 } 22706 ill->ill_nic_event_info = info; 22707 } 22708 22709 /* 22710 * Unhook the nic event message from the ill and enqueue it 22711 * into the nic event taskq. 22712 */ 22713 void 22714 ill_nic_info_dispatch(ill_t *ill) 22715 { 22716 hook_nic_event_t *info; 22717 22718 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22719 22720 if ((info = ill->ill_nic_event_info) != NULL) { 22721 if (ddi_taskq_dispatch(eventq_queue_nic, 22722 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22723 ip2dbg(("ill_nic_info_dispatch: " 22724 "ddi_taskq_dispatch failed\n")); 22725 if (info->hne_data != NULL) 22726 kmem_free(info->hne_data, info->hne_datalen); 22727 kmem_free(info, sizeof (hook_nic_event_t)); 22728 } 22729 ill->ill_nic_event_info = NULL; 22730 } 22731 } 22732 22733 /* 22734 * Notify any downstream modules of the name of this interface. 22735 * An M_IOCTL is used even though we don't expect a successful reply. 22736 * Any reply message from the driver (presumably an M_IOCNAK) will 22737 * eventually get discarded somewhere upstream. The message format is 22738 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22739 * to IP. 22740 */ 22741 static void 22742 ip_ifname_notify(ill_t *ill, queue_t *q) 22743 { 22744 mblk_t *mp1, *mp2; 22745 struct iocblk *iocp; 22746 struct lifreq *lifr; 22747 22748 mp1 = mkiocb(SIOCSLIFNAME); 22749 if (mp1 == NULL) 22750 return; 22751 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22752 if (mp2 == NULL) { 22753 freeb(mp1); 22754 return; 22755 } 22756 22757 mp1->b_cont = mp2; 22758 iocp = (struct iocblk *)mp1->b_rptr; 22759 iocp->ioc_count = sizeof (struct lifreq); 22760 22761 lifr = (struct lifreq *)mp2->b_rptr; 22762 mp2->b_wptr += sizeof (struct lifreq); 22763 bzero(lifr, sizeof (struct lifreq)); 22764 22765 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22766 lifr->lifr_ppa = ill->ill_ppa; 22767 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22768 22769 putnext(q, mp1); 22770 } 22771 22772 static int 22773 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22774 { 22775 int err; 22776 ip_stack_t *ipst = ill->ill_ipst; 22777 22778 /* Set the obsolete NDD per-interface forwarding name. */ 22779 err = ill_set_ndd_name(ill); 22780 if (err != 0) { 22781 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22782 err); 22783 } 22784 22785 /* Tell downstream modules where they are. */ 22786 ip_ifname_notify(ill, q); 22787 22788 /* 22789 * ill_dl_phys returns EINPROGRESS in the usual case. 22790 * Error cases are ENOMEM ... 22791 */ 22792 err = ill_dl_phys(ill, ipif, mp, q); 22793 22794 /* 22795 * If there is no IRE expiration timer running, get one started. 22796 * igmp and mld timers will be triggered by the first multicast 22797 */ 22798 if (ipst->ips_ip_ire_expire_id == 0) { 22799 /* 22800 * acquire the lock and check again. 22801 */ 22802 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22803 if (ipst->ips_ip_ire_expire_id == 0) { 22804 ipst->ips_ip_ire_expire_id = timeout( 22805 ip_trash_timer_expire, ipst, 22806 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22807 } 22808 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22809 } 22810 22811 if (ill->ill_isv6) { 22812 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22813 if (ipst->ips_mld_slowtimeout_id == 0) { 22814 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22815 (void *)ipst, 22816 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22817 } 22818 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22819 } else { 22820 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22821 if (ipst->ips_igmp_slowtimeout_id == 0) { 22822 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22823 (void *)ipst, 22824 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22825 } 22826 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22827 } 22828 22829 return (err); 22830 } 22831 22832 /* 22833 * Common routine for ppa and ifname setting. Should be called exclusive. 22834 * 22835 * Returns EINPROGRESS when mp has been consumed by queueing it on 22836 * ill_pending_mp and the ioctl will complete in ip_rput. 22837 * 22838 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22839 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22840 * For SLIFNAME, we pass these values back to the userland. 22841 */ 22842 static int 22843 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22844 { 22845 ill_t *ill; 22846 ipif_t *ipif; 22847 ipsq_t *ipsq; 22848 char *ppa_ptr; 22849 char *old_ptr; 22850 char old_char; 22851 int error; 22852 ip_stack_t *ipst; 22853 22854 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22855 ASSERT(q->q_next != NULL); 22856 ASSERT(interf_name != NULL); 22857 22858 ill = (ill_t *)q->q_ptr; 22859 ipst = ill->ill_ipst; 22860 22861 ASSERT(ill->ill_ipst != NULL); 22862 ASSERT(ill->ill_name[0] == '\0'); 22863 ASSERT(IAM_WRITER_ILL(ill)); 22864 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22865 ASSERT(ill->ill_ppa == UINT_MAX); 22866 22867 /* The ppa is sent down by ifconfig or is chosen */ 22868 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22869 return (EINVAL); 22870 } 22871 22872 /* 22873 * make sure ppa passed in is same as ppa in the name. 22874 * This check is not made when ppa == UINT_MAX in that case ppa 22875 * in the name could be anything. System will choose a ppa and 22876 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22877 */ 22878 if (*new_ppa_ptr != UINT_MAX) { 22879 /* stoi changes the pointer */ 22880 old_ptr = ppa_ptr; 22881 /* 22882 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22883 * (they don't have an externally visible ppa). We assign one 22884 * here so that we can manage the interface. Note that in 22885 * the past this value was always 0 for DLPI 1 drivers. 22886 */ 22887 if (*new_ppa_ptr == 0) 22888 *new_ppa_ptr = stoi(&old_ptr); 22889 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22890 return (EINVAL); 22891 } 22892 /* 22893 * terminate string before ppa 22894 * save char at that location. 22895 */ 22896 old_char = ppa_ptr[0]; 22897 ppa_ptr[0] = '\0'; 22898 22899 ill->ill_ppa = *new_ppa_ptr; 22900 /* 22901 * Finish as much work now as possible before calling ill_glist_insert 22902 * which makes the ill globally visible and also merges it with the 22903 * other protocol instance of this phyint. The remaining work is 22904 * done after entering the ipsq which may happen sometime later. 22905 * ill_set_ndd_name occurs after the ill has been made globally visible. 22906 */ 22907 ipif = ill->ill_ipif; 22908 22909 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22910 ipif_assign_seqid(ipif); 22911 22912 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22913 ill->ill_flags |= ILLF_IPV4; 22914 22915 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22916 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22917 22918 if (ill->ill_flags & ILLF_IPV6) { 22919 22920 ill->ill_isv6 = B_TRUE; 22921 if (ill->ill_rq != NULL) { 22922 ill->ill_rq->q_qinfo = &iprinitv6; 22923 ill->ill_wq->q_qinfo = &ipwinitv6; 22924 } 22925 22926 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22927 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22928 ipif->ipif_v6src_addr = ipv6_all_zeros; 22929 ipif->ipif_v6subnet = ipv6_all_zeros; 22930 ipif->ipif_v6net_mask = ipv6_all_zeros; 22931 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22932 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22933 /* 22934 * point-to-point or Non-mulicast capable 22935 * interfaces won't do NUD unless explicitly 22936 * configured to do so. 22937 */ 22938 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22939 !(ill->ill_flags & ILLF_MULTICAST)) { 22940 ill->ill_flags |= ILLF_NONUD; 22941 } 22942 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22943 if (ill->ill_flags & ILLF_NOARP) { 22944 /* 22945 * Note: xresolv interfaces will eventually need 22946 * NOARP set here as well, but that will require 22947 * those external resolvers to have some 22948 * knowledge of that flag and act appropriately. 22949 * Not to be changed at present. 22950 */ 22951 ill->ill_flags &= ~ILLF_NOARP; 22952 } 22953 /* 22954 * Set the ILLF_ROUTER flag according to the global 22955 * IPv6 forwarding policy. 22956 */ 22957 if (ipst->ips_ipv6_forward != 0) 22958 ill->ill_flags |= ILLF_ROUTER; 22959 } else if (ill->ill_flags & ILLF_IPV4) { 22960 ill->ill_isv6 = B_FALSE; 22961 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22962 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22963 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22964 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22965 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22966 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22967 /* 22968 * Set the ILLF_ROUTER flag according to the global 22969 * IPv4 forwarding policy. 22970 */ 22971 if (ipst->ips_ip_g_forward != 0) 22972 ill->ill_flags |= ILLF_ROUTER; 22973 } 22974 22975 ASSERT(ill->ill_phyint != NULL); 22976 22977 /* 22978 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22979 * be completed in ill_glist_insert -> ill_phyint_reinit 22980 */ 22981 if (!ill_allocate_mibs(ill)) 22982 return (ENOMEM); 22983 22984 /* 22985 * Pick a default sap until we get the DL_INFO_ACK back from 22986 * the driver. 22987 */ 22988 if (ill->ill_sap == 0) { 22989 if (ill->ill_isv6) 22990 ill->ill_sap = IP6_DL_SAP; 22991 else 22992 ill->ill_sap = IP_DL_SAP; 22993 } 22994 22995 ill->ill_ifname_pending = 1; 22996 ill->ill_ifname_pending_err = 0; 22997 22998 ill_refhold(ill); 22999 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23000 if ((error = ill_glist_insert(ill, interf_name, 23001 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23002 ill->ill_ppa = UINT_MAX; 23003 ill->ill_name[0] = '\0'; 23004 /* 23005 * undo null termination done above. 23006 */ 23007 ppa_ptr[0] = old_char; 23008 rw_exit(&ipst->ips_ill_g_lock); 23009 ill_refrele(ill); 23010 return (error); 23011 } 23012 23013 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23014 23015 /* 23016 * When we return the buffer pointed to by interf_name should contain 23017 * the same name as in ill_name. 23018 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23019 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23020 * so copy full name and update the ppa ptr. 23021 * When ppa passed in != UINT_MAX all values are correct just undo 23022 * null termination, this saves a bcopy. 23023 */ 23024 if (*new_ppa_ptr == UINT_MAX) { 23025 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23026 *new_ppa_ptr = ill->ill_ppa; 23027 } else { 23028 /* 23029 * undo null termination done above. 23030 */ 23031 ppa_ptr[0] = old_char; 23032 } 23033 23034 /* Let SCTP know about this ILL */ 23035 sctp_update_ill(ill, SCTP_ILL_INSERT); 23036 23037 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23038 B_TRUE); 23039 23040 rw_exit(&ipst->ips_ill_g_lock); 23041 ill_refrele(ill); 23042 if (ipsq == NULL) 23043 return (EINPROGRESS); 23044 23045 /* 23046 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23047 */ 23048 if (ipsq->ipsq_current_ipif == NULL) 23049 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23050 else 23051 ASSERT(ipsq->ipsq_current_ipif == ipif); 23052 23053 error = ipif_set_values_tail(ill, ipif, mp, q); 23054 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23055 if (error != 0 && error != EINPROGRESS) { 23056 /* 23057 * restore previous values 23058 */ 23059 ill->ill_isv6 = B_FALSE; 23060 } 23061 return (error); 23062 } 23063 23064 23065 void 23066 ipif_init(ip_stack_t *ipst) 23067 { 23068 hrtime_t hrt; 23069 int i; 23070 23071 /* 23072 * Can't call drv_getparm here as it is too early in the boot. 23073 * As we use ipif_src_random just for picking a different 23074 * source address everytime, this need not be really random. 23075 */ 23076 hrt = gethrtime(); 23077 ipst->ips_ipif_src_random = 23078 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23079 23080 for (i = 0; i < MAX_G_HEADS; i++) { 23081 ipst->ips_ill_g_heads[i].ill_g_list_head = 23082 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23083 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23084 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23085 } 23086 23087 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23088 ill_phyint_compare_index, 23089 sizeof (phyint_t), 23090 offsetof(struct phyint, phyint_avl_by_index)); 23091 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23092 ill_phyint_compare_name, 23093 sizeof (phyint_t), 23094 offsetof(struct phyint, phyint_avl_by_name)); 23095 } 23096 23097 /* 23098 * Lookup the ipif corresponding to the onlink destination address. For 23099 * point-to-point interfaces, it matches with remote endpoint destination 23100 * address. For point-to-multipoint interfaces it only tries to match the 23101 * destination with the interface's subnet address. The longest, most specific 23102 * match is found to take care of such rare network configurations like - 23103 * le0: 129.146.1.1/16 23104 * le1: 129.146.2.2/24 23105 * It is used only by SO_DONTROUTE at the moment. 23106 */ 23107 ipif_t * 23108 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23109 { 23110 ipif_t *ipif, *best_ipif; 23111 ill_t *ill; 23112 ill_walk_context_t ctx; 23113 23114 ASSERT(zoneid != ALL_ZONES); 23115 best_ipif = NULL; 23116 23117 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23118 ill = ILL_START_WALK_V4(&ctx, ipst); 23119 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23120 mutex_enter(&ill->ill_lock); 23121 for (ipif = ill->ill_ipif; ipif != NULL; 23122 ipif = ipif->ipif_next) { 23123 if (!IPIF_CAN_LOOKUP(ipif)) 23124 continue; 23125 if (ipif->ipif_zoneid != zoneid && 23126 ipif->ipif_zoneid != ALL_ZONES) 23127 continue; 23128 /* 23129 * Point-to-point case. Look for exact match with 23130 * destination address. 23131 */ 23132 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23133 if (ipif->ipif_pp_dst_addr == addr) { 23134 ipif_refhold_locked(ipif); 23135 mutex_exit(&ill->ill_lock); 23136 rw_exit(&ipst->ips_ill_g_lock); 23137 if (best_ipif != NULL) 23138 ipif_refrele(best_ipif); 23139 return (ipif); 23140 } 23141 } else if (ipif->ipif_subnet == (addr & 23142 ipif->ipif_net_mask)) { 23143 /* 23144 * Point-to-multipoint case. Looping through to 23145 * find the most specific match. If there are 23146 * multiple best match ipif's then prefer ipif's 23147 * that are UP. If there is only one best match 23148 * ipif and it is DOWN we must still return it. 23149 */ 23150 if ((best_ipif == NULL) || 23151 (ipif->ipif_net_mask > 23152 best_ipif->ipif_net_mask) || 23153 ((ipif->ipif_net_mask == 23154 best_ipif->ipif_net_mask) && 23155 ((ipif->ipif_flags & IPIF_UP) && 23156 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23157 ipif_refhold_locked(ipif); 23158 mutex_exit(&ill->ill_lock); 23159 rw_exit(&ipst->ips_ill_g_lock); 23160 if (best_ipif != NULL) 23161 ipif_refrele(best_ipif); 23162 best_ipif = ipif; 23163 rw_enter(&ipst->ips_ill_g_lock, 23164 RW_READER); 23165 mutex_enter(&ill->ill_lock); 23166 } 23167 } 23168 } 23169 mutex_exit(&ill->ill_lock); 23170 } 23171 rw_exit(&ipst->ips_ill_g_lock); 23172 return (best_ipif); 23173 } 23174 23175 23176 /* 23177 * Save enough information so that we can recreate the IRE if 23178 * the interface goes down and then up. 23179 */ 23180 static void 23181 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23182 { 23183 mblk_t *save_mp; 23184 23185 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23186 if (save_mp != NULL) { 23187 ifrt_t *ifrt; 23188 23189 save_mp->b_wptr += sizeof (ifrt_t); 23190 ifrt = (ifrt_t *)save_mp->b_rptr; 23191 bzero(ifrt, sizeof (ifrt_t)); 23192 ifrt->ifrt_type = ire->ire_type; 23193 ifrt->ifrt_addr = ire->ire_addr; 23194 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23195 ifrt->ifrt_src_addr = ire->ire_src_addr; 23196 ifrt->ifrt_mask = ire->ire_mask; 23197 ifrt->ifrt_flags = ire->ire_flags; 23198 ifrt->ifrt_max_frag = ire->ire_max_frag; 23199 mutex_enter(&ipif->ipif_saved_ire_lock); 23200 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23201 ipif->ipif_saved_ire_mp = save_mp; 23202 ipif->ipif_saved_ire_cnt++; 23203 mutex_exit(&ipif->ipif_saved_ire_lock); 23204 } 23205 } 23206 23207 23208 static void 23209 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23210 { 23211 mblk_t **mpp; 23212 mblk_t *mp; 23213 ifrt_t *ifrt; 23214 23215 /* Remove from ipif_saved_ire_mp list if it is there */ 23216 mutex_enter(&ipif->ipif_saved_ire_lock); 23217 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23218 mpp = &(*mpp)->b_cont) { 23219 /* 23220 * On a given ipif, the triple of address, gateway and 23221 * mask is unique for each saved IRE (in the case of 23222 * ordinary interface routes, the gateway address is 23223 * all-zeroes). 23224 */ 23225 mp = *mpp; 23226 ifrt = (ifrt_t *)mp->b_rptr; 23227 if (ifrt->ifrt_addr == ire->ire_addr && 23228 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23229 ifrt->ifrt_mask == ire->ire_mask) { 23230 *mpp = mp->b_cont; 23231 ipif->ipif_saved_ire_cnt--; 23232 freeb(mp); 23233 break; 23234 } 23235 } 23236 mutex_exit(&ipif->ipif_saved_ire_lock); 23237 } 23238 23239 23240 /* 23241 * IP multirouting broadcast routes handling 23242 * Append CGTP broadcast IREs to regular ones created 23243 * at ifconfig time. 23244 */ 23245 static void 23246 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23247 { 23248 ire_t *ire_prim; 23249 23250 ASSERT(ire != NULL); 23251 ASSERT(ire_dst != NULL); 23252 23253 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23254 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23255 if (ire_prim != NULL) { 23256 /* 23257 * We are in the special case of broadcasts for 23258 * CGTP. We add an IRE_BROADCAST that holds 23259 * the RTF_MULTIRT flag, the destination 23260 * address of ire_dst and the low level 23261 * info of ire_prim. In other words, CGTP 23262 * broadcast is added to the redundant ipif. 23263 */ 23264 ipif_t *ipif_prim; 23265 ire_t *bcast_ire; 23266 23267 ipif_prim = ire_prim->ire_ipif; 23268 23269 ip2dbg(("ip_cgtp_filter_bcast_add: " 23270 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23271 (void *)ire_dst, (void *)ire_prim, 23272 (void *)ipif_prim)); 23273 23274 bcast_ire = ire_create( 23275 (uchar_t *)&ire->ire_addr, 23276 (uchar_t *)&ip_g_all_ones, 23277 (uchar_t *)&ire_dst->ire_src_addr, 23278 (uchar_t *)&ire->ire_gateway_addr, 23279 &ipif_prim->ipif_mtu, 23280 NULL, 23281 ipif_prim->ipif_rq, 23282 ipif_prim->ipif_wq, 23283 IRE_BROADCAST, 23284 ipif_prim, 23285 0, 23286 0, 23287 0, 23288 ire->ire_flags, 23289 &ire_uinfo_null, 23290 NULL, 23291 NULL, 23292 ipst); 23293 23294 if (bcast_ire != NULL) { 23295 23296 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23297 B_FALSE) == 0) { 23298 ip2dbg(("ip_cgtp_filter_bcast_add: " 23299 "added bcast_ire %p\n", 23300 (void *)bcast_ire)); 23301 23302 ipif_save_ire(bcast_ire->ire_ipif, 23303 bcast_ire); 23304 ire_refrele(bcast_ire); 23305 } 23306 } 23307 ire_refrele(ire_prim); 23308 } 23309 } 23310 23311 23312 /* 23313 * IP multirouting broadcast routes handling 23314 * Remove the broadcast ire 23315 */ 23316 static void 23317 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23318 { 23319 ire_t *ire_dst; 23320 23321 ASSERT(ire != NULL); 23322 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23323 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23324 if (ire_dst != NULL) { 23325 ire_t *ire_prim; 23326 23327 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23328 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23329 if (ire_prim != NULL) { 23330 ipif_t *ipif_prim; 23331 ire_t *bcast_ire; 23332 23333 ipif_prim = ire_prim->ire_ipif; 23334 23335 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23336 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23337 (void *)ire_dst, (void *)ire_prim, 23338 (void *)ipif_prim)); 23339 23340 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23341 ire->ire_gateway_addr, 23342 IRE_BROADCAST, 23343 ipif_prim, ALL_ZONES, 23344 NULL, 23345 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23346 MATCH_IRE_MASK, ipst); 23347 23348 if (bcast_ire != NULL) { 23349 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23350 "looked up bcast_ire %p\n", 23351 (void *)bcast_ire)); 23352 ipif_remove_ire(bcast_ire->ire_ipif, 23353 bcast_ire); 23354 ire_delete(bcast_ire); 23355 } 23356 ire_refrele(ire_prim); 23357 } 23358 ire_refrele(ire_dst); 23359 } 23360 } 23361 23362 /* 23363 * IPsec hardware acceleration capabilities related functions. 23364 */ 23365 23366 /* 23367 * Free a per-ill IPsec capabilities structure. 23368 */ 23369 static void 23370 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23371 { 23372 if (capab->auth_hw_algs != NULL) 23373 kmem_free(capab->auth_hw_algs, capab->algs_size); 23374 if (capab->encr_hw_algs != NULL) 23375 kmem_free(capab->encr_hw_algs, capab->algs_size); 23376 if (capab->encr_algparm != NULL) 23377 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23378 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23379 } 23380 23381 /* 23382 * Allocate a new per-ill IPsec capabilities structure. This structure 23383 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23384 * an array which specifies, for each algorithm, whether this algorithm 23385 * is supported by the ill or not. 23386 */ 23387 static ill_ipsec_capab_t * 23388 ill_ipsec_capab_alloc(void) 23389 { 23390 ill_ipsec_capab_t *capab; 23391 uint_t nelems; 23392 23393 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23394 if (capab == NULL) 23395 return (NULL); 23396 23397 /* we need one bit per algorithm */ 23398 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23399 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23400 23401 /* allocate memory to store algorithm flags */ 23402 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23403 if (capab->encr_hw_algs == NULL) 23404 goto nomem; 23405 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23406 if (capab->auth_hw_algs == NULL) 23407 goto nomem; 23408 /* 23409 * Leave encr_algparm NULL for now since we won't need it half 23410 * the time 23411 */ 23412 return (capab); 23413 23414 nomem: 23415 ill_ipsec_capab_free(capab); 23416 return (NULL); 23417 } 23418 23419 /* 23420 * Resize capability array. Since we're exclusive, this is OK. 23421 */ 23422 static boolean_t 23423 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23424 { 23425 ipsec_capab_algparm_t *nalp, *oalp; 23426 uint32_t olen, nlen; 23427 23428 oalp = capab->encr_algparm; 23429 olen = capab->encr_algparm_size; 23430 23431 if (oalp != NULL) { 23432 if (algid < capab->encr_algparm_end) 23433 return (B_TRUE); 23434 } 23435 23436 nlen = (algid + 1) * sizeof (*nalp); 23437 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23438 if (nalp == NULL) 23439 return (B_FALSE); 23440 23441 if (oalp != NULL) { 23442 bcopy(oalp, nalp, olen); 23443 kmem_free(oalp, olen); 23444 } 23445 capab->encr_algparm = nalp; 23446 capab->encr_algparm_size = nlen; 23447 capab->encr_algparm_end = algid + 1; 23448 23449 return (B_TRUE); 23450 } 23451 23452 /* 23453 * Compare the capabilities of the specified ill with the protocol 23454 * and algorithms specified by the SA passed as argument. 23455 * If they match, returns B_TRUE, B_FALSE if they do not match. 23456 * 23457 * The ill can be passed as a pointer to it, or by specifying its index 23458 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23459 * 23460 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23461 * packet is eligible for hardware acceleration, and by 23462 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23463 * to a particular ill. 23464 */ 23465 boolean_t 23466 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23467 ipsa_t *sa, netstack_t *ns) 23468 { 23469 boolean_t sa_isv6; 23470 uint_t algid; 23471 struct ill_ipsec_capab_s *cpp; 23472 boolean_t need_refrele = B_FALSE; 23473 ip_stack_t *ipst = ns->netstack_ip; 23474 23475 if (ill == NULL) { 23476 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23477 NULL, NULL, NULL, ipst); 23478 if (ill == NULL) { 23479 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23480 return (B_FALSE); 23481 } 23482 need_refrele = B_TRUE; 23483 } 23484 23485 /* 23486 * Use the address length specified by the SA to determine 23487 * if it corresponds to a IPv6 address, and fail the matching 23488 * if the isv6 flag passed as argument does not match. 23489 * Note: this check is used for SADB capability checking before 23490 * sending SA information to an ill. 23491 */ 23492 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23493 if (sa_isv6 != ill_isv6) 23494 /* protocol mismatch */ 23495 goto done; 23496 23497 /* 23498 * Check if the ill supports the protocol, algorithm(s) and 23499 * key size(s) specified by the SA, and get the pointers to 23500 * the algorithms supported by the ill. 23501 */ 23502 switch (sa->ipsa_type) { 23503 23504 case SADB_SATYPE_ESP: 23505 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23506 /* ill does not support ESP acceleration */ 23507 goto done; 23508 cpp = ill->ill_ipsec_capab_esp; 23509 algid = sa->ipsa_auth_alg; 23510 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23511 goto done; 23512 algid = sa->ipsa_encr_alg; 23513 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23514 goto done; 23515 if (algid < cpp->encr_algparm_end) { 23516 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23517 if (sa->ipsa_encrkeybits < alp->minkeylen) 23518 goto done; 23519 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23520 goto done; 23521 } 23522 break; 23523 23524 case SADB_SATYPE_AH: 23525 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23526 /* ill does not support AH acceleration */ 23527 goto done; 23528 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23529 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23530 goto done; 23531 break; 23532 } 23533 23534 if (need_refrele) 23535 ill_refrele(ill); 23536 return (B_TRUE); 23537 done: 23538 if (need_refrele) 23539 ill_refrele(ill); 23540 return (B_FALSE); 23541 } 23542 23543 23544 /* 23545 * Add a new ill to the list of IPsec capable ills. 23546 * Called from ill_capability_ipsec_ack() when an ACK was received 23547 * indicating that IPsec hardware processing was enabled for an ill. 23548 * 23549 * ill must point to the ill for which acceleration was enabled. 23550 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23551 */ 23552 static void 23553 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23554 { 23555 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23556 uint_t sa_type; 23557 uint_t ipproto; 23558 ip_stack_t *ipst = ill->ill_ipst; 23559 23560 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23561 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23562 23563 switch (dl_cap) { 23564 case DL_CAPAB_IPSEC_AH: 23565 sa_type = SADB_SATYPE_AH; 23566 ills = &ipst->ips_ipsec_capab_ills_ah; 23567 ipproto = IPPROTO_AH; 23568 break; 23569 case DL_CAPAB_IPSEC_ESP: 23570 sa_type = SADB_SATYPE_ESP; 23571 ills = &ipst->ips_ipsec_capab_ills_esp; 23572 ipproto = IPPROTO_ESP; 23573 break; 23574 } 23575 23576 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23577 23578 /* 23579 * Add ill index to list of hardware accelerators. If 23580 * already in list, do nothing. 23581 */ 23582 for (cur_ill = *ills; cur_ill != NULL && 23583 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23584 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23585 ; 23586 23587 if (cur_ill == NULL) { 23588 /* if this is a new entry for this ill */ 23589 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23590 if (new_ill == NULL) { 23591 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23592 return; 23593 } 23594 23595 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23596 new_ill->ill_isv6 = ill->ill_isv6; 23597 new_ill->next = *ills; 23598 *ills = new_ill; 23599 } else if (!sadb_resync) { 23600 /* not resync'ing SADB and an entry exists for this ill */ 23601 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23602 return; 23603 } 23604 23605 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23606 23607 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23608 /* 23609 * IPsec module for protocol loaded, initiate dump 23610 * of the SADB to this ill. 23611 */ 23612 sadb_ill_download(ill, sa_type); 23613 } 23614 23615 /* 23616 * Remove an ill from the list of IPsec capable ills. 23617 */ 23618 static void 23619 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23620 { 23621 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23622 ip_stack_t *ipst = ill->ill_ipst; 23623 23624 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23625 dl_cap == DL_CAPAB_IPSEC_ESP); 23626 23627 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23628 &ipst->ips_ipsec_capab_ills_esp; 23629 23630 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23631 23632 prev_ill = NULL; 23633 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23634 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23635 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23636 ; 23637 if (cur_ill == NULL) { 23638 /* entry not found */ 23639 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23640 return; 23641 } 23642 if (prev_ill == NULL) { 23643 /* entry at front of list */ 23644 *ills = NULL; 23645 } else { 23646 prev_ill->next = cur_ill->next; 23647 } 23648 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23649 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23650 } 23651 23652 /* 23653 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23654 * supporting the specified IPsec protocol acceleration. 23655 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23656 * We free the mblk and, if sa is non-null, release the held referece. 23657 */ 23658 void 23659 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23660 netstack_t *ns) 23661 { 23662 ipsec_capab_ill_t *ici, *cur_ici; 23663 ill_t *ill; 23664 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23665 ip_stack_t *ipst = ns->netstack_ip; 23666 23667 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23668 ipst->ips_ipsec_capab_ills_esp; 23669 23670 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23671 23672 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23673 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23674 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23675 23676 /* 23677 * Handle the case where the ill goes away while the SADB is 23678 * attempting to send messages. If it's going away, it's 23679 * nuking its shadow SADB, so we don't care.. 23680 */ 23681 23682 if (ill == NULL) 23683 continue; 23684 23685 if (sa != NULL) { 23686 /* 23687 * Make sure capabilities match before 23688 * sending SA to ill. 23689 */ 23690 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23691 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23692 ill_refrele(ill); 23693 continue; 23694 } 23695 23696 mutex_enter(&sa->ipsa_lock); 23697 sa->ipsa_flags |= IPSA_F_HW; 23698 mutex_exit(&sa->ipsa_lock); 23699 } 23700 23701 /* 23702 * Copy template message, and add it to the front 23703 * of the mblk ship list. We want to avoid holding 23704 * the ipsec_capab_ills_lock while sending the 23705 * message to the ills. 23706 * 23707 * The b_next and b_prev are temporarily used 23708 * to build a list of mblks to be sent down, and to 23709 * save the ill to which they must be sent. 23710 */ 23711 nmp = copymsg(mp); 23712 if (nmp == NULL) { 23713 ill_refrele(ill); 23714 continue; 23715 } 23716 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23717 nmp->b_next = mp_ship_list; 23718 mp_ship_list = nmp; 23719 nmp->b_prev = (mblk_t *)ill; 23720 } 23721 23722 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23723 23724 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23725 /* restore the mblk to a sane state */ 23726 next_mp = nmp->b_next; 23727 nmp->b_next = NULL; 23728 ill = (ill_t *)nmp->b_prev; 23729 nmp->b_prev = NULL; 23730 23731 ill_dlpi_send(ill, nmp); 23732 ill_refrele(ill); 23733 } 23734 23735 if (sa != NULL) 23736 IPSA_REFRELE(sa); 23737 freemsg(mp); 23738 } 23739 23740 /* 23741 * Derive an interface id from the link layer address. 23742 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23743 */ 23744 static boolean_t 23745 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23746 { 23747 char *addr; 23748 23749 if (phys_length != ETHERADDRL) 23750 return (B_FALSE); 23751 23752 /* Form EUI-64 like address */ 23753 addr = (char *)&v6addr->s6_addr32[2]; 23754 bcopy((char *)phys_addr, addr, 3); 23755 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23756 addr[3] = (char)0xff; 23757 addr[4] = (char)0xfe; 23758 bcopy((char *)phys_addr + 3, addr + 5, 3); 23759 return (B_TRUE); 23760 } 23761 23762 /* ARGSUSED */ 23763 static boolean_t 23764 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23765 { 23766 return (B_FALSE); 23767 } 23768 23769 /* ARGSUSED */ 23770 static boolean_t 23771 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23772 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23773 { 23774 /* 23775 * Multicast address mappings used over Ethernet/802.X. 23776 * This address is used as a base for mappings. 23777 */ 23778 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23779 0x00, 0x00, 0x00}; 23780 23781 /* 23782 * Extract low order 32 bits from IPv6 multicast address. 23783 * Or that into the link layer address, starting from the 23784 * second byte. 23785 */ 23786 *hw_start = 2; 23787 v6_extract_mask->s6_addr32[0] = 0; 23788 v6_extract_mask->s6_addr32[1] = 0; 23789 v6_extract_mask->s6_addr32[2] = 0; 23790 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23791 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23792 return (B_TRUE); 23793 } 23794 23795 /* 23796 * Indicate by return value whether multicast is supported. If not, 23797 * this code should not touch/change any parameters. 23798 */ 23799 /* ARGSUSED */ 23800 static boolean_t 23801 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23802 uint32_t *hw_start, ipaddr_t *extract_mask) 23803 { 23804 /* 23805 * Multicast address mappings used over Ethernet/802.X. 23806 * This address is used as a base for mappings. 23807 */ 23808 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23809 0x00, 0x00, 0x00 }; 23810 23811 if (phys_length != ETHERADDRL) 23812 return (B_FALSE); 23813 23814 *extract_mask = htonl(0x007fffff); 23815 *hw_start = 2; 23816 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23817 return (B_TRUE); 23818 } 23819 23820 /* 23821 * Derive IPoIB interface id from the link layer address. 23822 */ 23823 static boolean_t 23824 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23825 { 23826 char *addr; 23827 23828 if (phys_length != 20) 23829 return (B_FALSE); 23830 addr = (char *)&v6addr->s6_addr32[2]; 23831 bcopy(phys_addr + 12, addr, 8); 23832 /* 23833 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23834 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23835 * rules. In these cases, the IBA considers these GUIDs to be in 23836 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23837 * required; vendors are required not to assign global EUI-64's 23838 * that differ only in u/l bit values, thus guaranteeing uniqueness 23839 * of the interface identifier. Whether the GUID is in modified 23840 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23841 * bit set to 1. 23842 */ 23843 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23844 return (B_TRUE); 23845 } 23846 23847 /* 23848 * Note on mapping from multicast IP addresses to IPoIB multicast link 23849 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23850 * The format of an IPoIB multicast address is: 23851 * 23852 * 4 byte QPN Scope Sign. Pkey 23853 * +--------------------------------------------+ 23854 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23855 * +--------------------------------------------+ 23856 * 23857 * The Scope and Pkey components are properties of the IBA port and 23858 * network interface. They can be ascertained from the broadcast address. 23859 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23860 */ 23861 23862 static boolean_t 23863 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23864 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23865 { 23866 /* 23867 * Base IPoIB IPv6 multicast address used for mappings. 23868 * Does not contain the IBA scope/Pkey values. 23869 */ 23870 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23871 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23872 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23873 23874 /* 23875 * Extract low order 80 bits from IPv6 multicast address. 23876 * Or that into the link layer address, starting from the 23877 * sixth byte. 23878 */ 23879 *hw_start = 6; 23880 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23881 23882 /* 23883 * Now fill in the IBA scope/Pkey values from the broadcast address. 23884 */ 23885 *(maddr + 5) = *(bphys_addr + 5); 23886 *(maddr + 8) = *(bphys_addr + 8); 23887 *(maddr + 9) = *(bphys_addr + 9); 23888 23889 v6_extract_mask->s6_addr32[0] = 0; 23890 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23891 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23892 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23893 return (B_TRUE); 23894 } 23895 23896 static boolean_t 23897 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23898 uint32_t *hw_start, ipaddr_t *extract_mask) 23899 { 23900 /* 23901 * Base IPoIB IPv4 multicast address used for mappings. 23902 * Does not contain the IBA scope/Pkey values. 23903 */ 23904 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23905 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23906 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23907 23908 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23909 return (B_FALSE); 23910 23911 /* 23912 * Extract low order 28 bits from IPv4 multicast address. 23913 * Or that into the link layer address, starting from the 23914 * sixteenth byte. 23915 */ 23916 *extract_mask = htonl(0x0fffffff); 23917 *hw_start = 16; 23918 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23919 23920 /* 23921 * Now fill in the IBA scope/Pkey values from the broadcast address. 23922 */ 23923 *(maddr + 5) = *(bphys_addr + 5); 23924 *(maddr + 8) = *(bphys_addr + 8); 23925 *(maddr + 9) = *(bphys_addr + 9); 23926 return (B_TRUE); 23927 } 23928 23929 /* 23930 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23931 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23932 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23933 * the link-local address is preferred. 23934 */ 23935 boolean_t 23936 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23937 { 23938 ipif_t *ipif; 23939 ipif_t *maybe_ipif = NULL; 23940 23941 mutex_enter(&ill->ill_lock); 23942 if (ill->ill_state_flags & ILL_CONDEMNED) { 23943 mutex_exit(&ill->ill_lock); 23944 if (ipifp != NULL) 23945 *ipifp = NULL; 23946 return (B_FALSE); 23947 } 23948 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23949 if (!IPIF_CAN_LOOKUP(ipif)) 23950 continue; 23951 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23952 ipif->ipif_zoneid != ALL_ZONES) 23953 continue; 23954 if ((ipif->ipif_flags & flags) != flags) 23955 continue; 23956 23957 if (ipifp == NULL) { 23958 mutex_exit(&ill->ill_lock); 23959 ASSERT(maybe_ipif == NULL); 23960 return (B_TRUE); 23961 } 23962 if (!ill->ill_isv6 || 23963 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23964 ipif_refhold_locked(ipif); 23965 mutex_exit(&ill->ill_lock); 23966 *ipifp = ipif; 23967 return (B_TRUE); 23968 } 23969 if (maybe_ipif == NULL) 23970 maybe_ipif = ipif; 23971 } 23972 if (ipifp != NULL) { 23973 if (maybe_ipif != NULL) 23974 ipif_refhold_locked(maybe_ipif); 23975 *ipifp = maybe_ipif; 23976 } 23977 mutex_exit(&ill->ill_lock); 23978 return (maybe_ipif != NULL); 23979 } 23980 23981 /* 23982 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23983 */ 23984 boolean_t 23985 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23986 { 23987 ill_t *illg; 23988 ip_stack_t *ipst = ill->ill_ipst; 23989 23990 /* 23991 * We look at the passed-in ill first without grabbing ill_g_lock. 23992 */ 23993 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23994 return (B_TRUE); 23995 } 23996 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23997 if (ill->ill_group == NULL) { 23998 /* ill not in a group */ 23999 rw_exit(&ipst->ips_ill_g_lock); 24000 return (B_FALSE); 24001 } 24002 24003 /* 24004 * There's no ipif in the zone on ill, however ill is part of an IPMP 24005 * group. We need to look for an ipif in the zone on all the ills in the 24006 * group. 24007 */ 24008 illg = ill->ill_group->illgrp_ill; 24009 do { 24010 /* 24011 * We don't call ipif_lookup_zoneid() on ill as we already know 24012 * that it's not there. 24013 */ 24014 if (illg != ill && 24015 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24016 break; 24017 } 24018 } while ((illg = illg->ill_group_next) != NULL); 24019 rw_exit(&ipst->ips_ill_g_lock); 24020 return (illg != NULL); 24021 } 24022 24023 /* 24024 * Check if this ill is only being used to send ICMP probes for IPMP 24025 */ 24026 boolean_t 24027 ill_is_probeonly(ill_t *ill) 24028 { 24029 /* 24030 * Check if the interface is FAILED, or INACTIVE 24031 */ 24032 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24033 return (B_TRUE); 24034 24035 return (B_FALSE); 24036 } 24037 24038 /* 24039 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24040 * If a pointer to an ipif_t is returned then the caller will need to do 24041 * an ill_refrele(). 24042 * 24043 * If there is no real interface which matches the ifindex, then it looks 24044 * for a group that has a matching index. In the case of a group match the 24045 * lifidx must be zero. We don't need emulate the logical interfaces 24046 * since IP Filter's use of netinfo doesn't use that. 24047 */ 24048 ipif_t * 24049 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24050 ip_stack_t *ipst) 24051 { 24052 ipif_t *ipif; 24053 ill_t *ill; 24054 24055 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24056 ipst); 24057 24058 if (ill == NULL) { 24059 /* Fallback to group names only if hook_emulation set */ 24060 if (!ipst->ips_ipmp_hook_emulation) 24061 return (NULL); 24062 24063 if (lifidx != 0) 24064 return (NULL); 24065 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24066 if (ill == NULL) 24067 return (NULL); 24068 } 24069 24070 mutex_enter(&ill->ill_lock); 24071 if (ill->ill_state_flags & ILL_CONDEMNED) { 24072 mutex_exit(&ill->ill_lock); 24073 ill_refrele(ill); 24074 return (NULL); 24075 } 24076 24077 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24078 if (!IPIF_CAN_LOOKUP(ipif)) 24079 continue; 24080 if (lifidx == ipif->ipif_id) { 24081 ipif_refhold_locked(ipif); 24082 break; 24083 } 24084 } 24085 24086 mutex_exit(&ill->ill_lock); 24087 ill_refrele(ill); 24088 return (ipif); 24089 } 24090 24091 /* 24092 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24093 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24094 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24095 * for details. 24096 */ 24097 void 24098 ill_fastpath_flush(ill_t *ill) 24099 { 24100 ip_stack_t *ipst = ill->ill_ipst; 24101 24102 nce_fastpath_list_dispatch(ill, NULL, NULL); 24103 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24104 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24105 } 24106 24107 /* 24108 * Set the physical address information for `ill' to the contents of the 24109 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24110 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24111 * EINPROGRESS will be returned. 24112 */ 24113 int 24114 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24115 { 24116 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24117 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24118 24119 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24120 24121 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24122 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24123 /* Changing DL_IPV6_TOKEN is not yet supported */ 24124 return (0); 24125 } 24126 24127 /* 24128 * We need to store up to two copies of `mp' in `ill'. Due to the 24129 * design of ipsq_pending_mp_add(), we can't pass them as separate 24130 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24131 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24132 */ 24133 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24134 freemsg(mp); 24135 return (ENOMEM); 24136 } 24137 24138 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24139 24140 /* 24141 * If we can quiesce the ill, then set the address. If not, then 24142 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24143 */ 24144 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24145 mutex_enter(&ill->ill_lock); 24146 if (!ill_is_quiescent(ill)) { 24147 /* call cannot fail since `conn_t *' argument is NULL */ 24148 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24149 mp, ILL_DOWN); 24150 mutex_exit(&ill->ill_lock); 24151 return (EINPROGRESS); 24152 } 24153 mutex_exit(&ill->ill_lock); 24154 24155 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24156 return (0); 24157 } 24158 24159 /* 24160 * Once the ill associated with `q' has quiesced, set its physical address 24161 * information to the values in `addrmp'. Note that two copies of `addrmp' 24162 * are passed (linked by b_cont), since we sometimes need to save two distinct 24163 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24164 * failure (we'll free the other copy if it's not needed). Since the ill_t 24165 * is quiesced, we know any stale IREs with the old address information have 24166 * already been removed, so we don't need to call ill_fastpath_flush(). 24167 */ 24168 /* ARGSUSED */ 24169 static void 24170 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24171 { 24172 ill_t *ill = q->q_ptr; 24173 mblk_t *addrmp2 = unlinkb(addrmp); 24174 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24175 uint_t addrlen, addroff; 24176 24177 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24178 24179 addroff = dlindp->dl_addr_offset; 24180 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24181 24182 switch (dlindp->dl_data) { 24183 case DL_IPV6_LINK_LAYER_ADDR: 24184 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24185 freemsg(addrmp2); 24186 break; 24187 24188 case DL_CURR_PHYS_ADDR: 24189 freemsg(ill->ill_phys_addr_mp); 24190 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24191 ill->ill_phys_addr_mp = addrmp; 24192 ill->ill_phys_addr_length = addrlen; 24193 24194 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24195 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24196 else 24197 freemsg(addrmp2); 24198 break; 24199 default: 24200 ASSERT(0); 24201 } 24202 24203 /* 24204 * If there are ipifs to bring up, ill_up_ipifs() will return 24205 * EINPROGRESS, and ipsq_current_finish() will be called by 24206 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24207 * brought up. 24208 */ 24209 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24210 ipsq_current_finish(ipsq); 24211 } 24212 24213 /* 24214 * Helper routine for setting the ill_nd_lla fields. 24215 */ 24216 void 24217 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24218 { 24219 freemsg(ill->ill_nd_lla_mp); 24220 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24221 ill->ill_nd_lla_mp = ndmp; 24222 ill->ill_nd_lla_len = addrlen; 24223 } 24224 24225 major_t IP_MAJ; 24226 #define IP "ip" 24227 24228 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24229 #define UDPDEV "/devices/pseudo/udp@0:udp" 24230 24231 /* 24232 * Issue REMOVEIF ioctls to have the loopback interfaces 24233 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24234 * the former going away when the user-level processes in the zone 24235 * are killed * and the latter are cleaned up by the stream head 24236 * str_stack_shutdown callback that undoes all I_PLINKs. 24237 */ 24238 void 24239 ip_loopback_cleanup(ip_stack_t *ipst) 24240 { 24241 int error; 24242 ldi_handle_t lh = NULL; 24243 ldi_ident_t li = NULL; 24244 int rval; 24245 cred_t *cr; 24246 struct strioctl iocb; 24247 struct lifreq lifreq; 24248 24249 IP_MAJ = ddi_name_to_major(IP); 24250 24251 #ifdef NS_DEBUG 24252 (void) printf("ip_loopback_cleanup() stackid %d\n", 24253 ipst->ips_netstack->netstack_stackid); 24254 #endif 24255 24256 bzero(&lifreq, sizeof (lifreq)); 24257 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24258 24259 error = ldi_ident_from_major(IP_MAJ, &li); 24260 if (error) { 24261 #ifdef DEBUG 24262 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24263 error); 24264 #endif 24265 return; 24266 } 24267 24268 cr = zone_get_kcred(netstackid_to_zoneid( 24269 ipst->ips_netstack->netstack_stackid)); 24270 ASSERT(cr != NULL); 24271 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24272 if (error) { 24273 #ifdef DEBUG 24274 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24275 error); 24276 #endif 24277 goto out; 24278 } 24279 iocb.ic_cmd = SIOCLIFREMOVEIF; 24280 iocb.ic_timout = 15; 24281 iocb.ic_len = sizeof (lifreq); 24282 iocb.ic_dp = (char *)&lifreq; 24283 24284 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24285 /* LINTED - statement has no consequent */ 24286 if (error) { 24287 #ifdef NS_DEBUG 24288 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24289 "UDP6 error %d\n", error); 24290 #endif 24291 } 24292 (void) ldi_close(lh, FREAD|FWRITE, cr); 24293 lh = NULL; 24294 24295 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24296 if (error) { 24297 #ifdef NS_DEBUG 24298 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24299 error); 24300 #endif 24301 goto out; 24302 } 24303 24304 iocb.ic_cmd = SIOCLIFREMOVEIF; 24305 iocb.ic_timout = 15; 24306 iocb.ic_len = sizeof (lifreq); 24307 iocb.ic_dp = (char *)&lifreq; 24308 24309 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24310 /* LINTED - statement has no consequent */ 24311 if (error) { 24312 #ifdef NS_DEBUG 24313 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24314 "UDP error %d\n", error); 24315 #endif 24316 } 24317 (void) ldi_close(lh, FREAD|FWRITE, cr); 24318 lh = NULL; 24319 24320 out: 24321 /* Close layered handles */ 24322 if (lh) 24323 (void) ldi_close(lh, FREAD|FWRITE, cr); 24324 if (li) 24325 ldi_ident_release(li); 24326 24327 crfree(cr); 24328 } 24329