1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 193 static void ill_down_tail(ill_t *ill); 194 static void ill_free_mib(ill_t *ill); 195 static void ill_glist_delete(ill_t *); 196 static boolean_t ill_has_usable_ipif(ill_t *); 197 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 198 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 199 static void ill_phyint_free(ill_t *ill); 200 static void ill_phyint_reinit(ill_t *ill); 201 static void ill_set_nce_router_flags(ill_t *, boolean_t); 202 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 203 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 204 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 205 static void ill_stq_cache_delete(ire_t *, char *); 206 207 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 208 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 209 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 in6_addr_t *); 211 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 ipaddr_t *); 213 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 214 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 in6_addr_t *); 216 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 217 ipaddr_t *); 218 219 static void ipif_save_ire(ipif_t *, ire_t *); 220 static void ipif_remove_ire(ipif_t *, ire_t *); 221 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 222 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 223 224 /* 225 * Per-ill IPsec capabilities management. 226 */ 227 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 228 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 229 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 230 static void ill_ipsec_capab_delete(ill_t *, uint_t); 231 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 232 static void ill_capability_proto(ill_t *, int, mblk_t *); 233 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 234 boolean_t); 235 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 238 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 240 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 241 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 242 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 243 dl_capability_sub_t *); 244 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 245 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static void ill_capability_lso_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 248 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 249 static void ill_capability_dls_reset(ill_t *, mblk_t **); 250 static void ill_capability_dls_disable(ill_t *); 251 252 static void illgrp_cache_delete(ire_t *, char *); 253 static void illgrp_delete(ill_t *ill); 254 static void illgrp_reset_schednext(ill_t *ill); 255 256 static ill_t *ill_prev_usesrc(ill_t *); 257 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 258 static void ill_disband_usesrc_group(ill_t *); 259 260 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 261 262 /* 263 * if we go over the memory footprint limit more than once in this msec 264 * interval, we'll start pruning aggressively. 265 */ 266 int ip_min_frag_prune_time = 0; 267 268 /* 269 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 270 * and the IPsec DOI 271 */ 272 #define MAX_IPSEC_ALGS 256 273 274 #define BITSPERBYTE 8 275 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 276 277 #define IPSEC_ALG_ENABLE(algs, algid) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 282 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 283 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 284 285 typedef uint8_t ipsec_capab_elem_t; 286 287 /* 288 * Per-algorithm parameters. Note that at present, only encryption 289 * algorithms have variable keysize (IKE does not provide a way to negotiate 290 * auth algorithm keysize). 291 * 292 * All sizes here are in bits. 293 */ 294 typedef struct 295 { 296 uint16_t minkeylen; 297 uint16_t maxkeylen; 298 } ipsec_capab_algparm_t; 299 300 /* 301 * Per-ill capabilities. 302 */ 303 struct ill_ipsec_capab_s { 304 ipsec_capab_elem_t *encr_hw_algs; 305 ipsec_capab_elem_t *auth_hw_algs; 306 uint32_t algs_size; /* size of _hw_algs in bytes */ 307 /* algorithm key lengths */ 308 ipsec_capab_algparm_t *encr_algparm; 309 uint32_t encr_algparm_size; 310 uint32_t encr_algparm_end; 311 }; 312 313 /* 314 * The field values are larger than strictly necessary for simple 315 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 316 */ 317 static area_t ip_area_template = { 318 AR_ENTRY_ADD, /* area_cmd */ 319 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 320 /* area_name_offset */ 321 /* area_name_length temporarily holds this structure length */ 322 sizeof (area_t), /* area_name_length */ 323 IP_ARP_PROTO_TYPE, /* area_proto */ 324 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 325 IP_ADDR_LEN, /* area_proto_addr_length */ 326 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 327 /* area_proto_mask_offset */ 328 0, /* area_flags */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 330 /* area_hw_addr_offset */ 331 /* Zero length hw_addr_length means 'use your idea of the address' */ 332 0 /* area_hw_addr_length */ 333 }; 334 335 /* 336 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 337 * support 338 */ 339 static area_t ip6_area_template = { 340 AR_ENTRY_ADD, /* area_cmd */ 341 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 342 /* area_name_offset */ 343 /* area_name_length temporarily holds this structure length */ 344 sizeof (area_t), /* area_name_length */ 345 IP_ARP_PROTO_TYPE, /* area_proto */ 346 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 347 IPV6_ADDR_LEN, /* area_proto_addr_length */ 348 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 349 /* area_proto_mask_offset */ 350 0, /* area_flags */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 352 /* area_hw_addr_offset */ 353 /* Zero length hw_addr_length means 'use your idea of the address' */ 354 0 /* area_hw_addr_length */ 355 }; 356 357 static ared_t ip_ared_template = { 358 AR_ENTRY_DELETE, 359 sizeof (ared_t) + IP_ADDR_LEN, 360 sizeof (ared_t), 361 IP_ARP_PROTO_TYPE, 362 sizeof (ared_t), 363 IP_ADDR_LEN 364 }; 365 366 static ared_t ip6_ared_template = { 367 AR_ENTRY_DELETE, 368 sizeof (ared_t) + IPV6_ADDR_LEN, 369 sizeof (ared_t), 370 IP_ARP_PROTO_TYPE, 371 sizeof (ared_t), 372 IPV6_ADDR_LEN 373 }; 374 375 /* 376 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 377 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 378 * areq is used). 379 */ 380 static areq_t ip_areq_template = { 381 AR_ENTRY_QUERY, /* cmd */ 382 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 383 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 384 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 385 sizeof (areq_t), /* target addr offset */ 386 IP_ADDR_LEN, /* target addr_length */ 387 0, /* flags */ 388 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 389 IP_ADDR_LEN, /* sender addr length */ 390 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 391 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 392 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 393 /* anything else filled in by the code */ 394 }; 395 396 static arc_t ip_aru_template = { 397 AR_INTERFACE_UP, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_ard_template = { 403 AR_INTERFACE_DOWN, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arc_t ip_aron_template = { 409 AR_INTERFACE_ON, 410 sizeof (arc_t), /* Name offset */ 411 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 412 }; 413 414 static arc_t ip_aroff_template = { 415 AR_INTERFACE_OFF, 416 sizeof (arc_t), /* Name offset */ 417 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 418 }; 419 420 421 static arma_t ip_arma_multi_template = { 422 AR_MAPPING_ADD, 423 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 424 /* Name offset */ 425 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 426 IP_ARP_PROTO_TYPE, 427 sizeof (arma_t), /* proto_addr_offset */ 428 IP_ADDR_LEN, /* proto_addr_length */ 429 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 430 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 431 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 432 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 433 IP_MAX_HW_LEN, /* hw_addr_length */ 434 0, /* hw_mapping_start */ 435 }; 436 437 static ipft_t ip_ioctl_ftbl[] = { 438 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 439 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 444 { 0 } 445 }; 446 447 /* Simple ICMP IP Header Template */ 448 static ipha_t icmp_ipha = { 449 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 450 }; 451 452 /* Flag descriptors for ip_ipif_report */ 453 static nv_t ipif_nv_tbl[] = { 454 { IPIF_UP, "UP" }, 455 { IPIF_BROADCAST, "BROADCAST" }, 456 { ILLF_DEBUG, "DEBUG" }, 457 { PHYI_LOOPBACK, "LOOPBACK" }, 458 { IPIF_POINTOPOINT, "POINTOPOINT" }, 459 { ILLF_NOTRAILERS, "NOTRAILERS" }, 460 { PHYI_RUNNING, "RUNNING" }, 461 { ILLF_NOARP, "NOARP" }, 462 { PHYI_PROMISC, "PROMISC" }, 463 { PHYI_ALLMULTI, "ALLMULTI" }, 464 { PHYI_INTELLIGENT, "INTELLIGENT" }, 465 { ILLF_MULTICAST, "MULTICAST" }, 466 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 467 { IPIF_UNNUMBERED, "UNNUMBERED" }, 468 { IPIF_DHCPRUNNING, "DHCP" }, 469 { IPIF_PRIVATE, "PRIVATE" }, 470 { IPIF_NOXMIT, "NOXMIT" }, 471 { IPIF_NOLOCAL, "NOLOCAL" }, 472 { IPIF_DEPRECATED, "DEPRECATED" }, 473 { IPIF_PREFERRED, "PREFERRED" }, 474 { IPIF_TEMPORARY, "TEMPORARY" }, 475 { IPIF_ADDRCONF, "ADDRCONF" }, 476 { PHYI_VIRTUAL, "VIRTUAL" }, 477 { ILLF_ROUTER, "ROUTER" }, 478 { ILLF_NONUD, "NONUD" }, 479 { IPIF_ANYCAST, "ANYCAST" }, 480 { ILLF_NORTEXCH, "NORTEXCH" }, 481 { ILLF_IPV4, "IPV4" }, 482 { ILLF_IPV6, "IPV6" }, 483 { IPIF_MIPRUNNING, "MIP" }, 484 { IPIF_NOFAILOVER, "NOFAILOVER" }, 485 { PHYI_FAILED, "FAILED" }, 486 { PHYI_STANDBY, "STANDBY" }, 487 { PHYI_INACTIVE, "INACTIVE" }, 488 { PHYI_OFFLINE, "OFFLINE" }, 489 }; 490 491 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 492 493 static ip_m_t ip_m_tbl[] = { 494 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_ether_v6intfid }, 496 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_ether_v6intfid }, 504 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 505 ip_ib_v6intfid }, 506 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 507 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_nodef_v6intfid } 509 }; 510 511 static ill_t ill_null; /* Empty ILL for init. */ 512 char ipif_loopback_name[] = "lo0"; 513 static char *ipv4_forward_suffix = ":ip_forwarding"; 514 static char *ipv6_forward_suffix = ":ip6_forwarding"; 515 static sin6_t sin6_null; /* Zero address for quick clears */ 516 static sin_t sin_null; /* Zero address for quick clears */ 517 518 /* When set search for unused ipif_seqid */ 519 static ipif_t ipif_zero; 520 521 /* 522 * ppa arena is created after these many 523 * interfaces have been plumbed. 524 */ 525 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 526 527 /* 528 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 529 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 530 * set through platform specific code (Niagara/Ontario). 531 */ 532 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 533 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 534 535 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 536 537 static uint_t 538 ipif_rand(ip_stack_t *ipst) 539 { 540 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 541 12345; 542 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 543 } 544 545 /* 546 * Allocate per-interface mibs. 547 * Returns true if ok. False otherwise. 548 * ipsq may not yet be allocated (loopback case ). 549 */ 550 static boolean_t 551 ill_allocate_mibs(ill_t *ill) 552 { 553 /* Already allocated? */ 554 if (ill->ill_ip_mib != NULL) { 555 if (ill->ill_isv6) 556 ASSERT(ill->ill_icmp6_mib != NULL); 557 return (B_TRUE); 558 } 559 560 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 561 KM_NOSLEEP); 562 if (ill->ill_ip_mib == NULL) { 563 return (B_FALSE); 564 } 565 566 /* Setup static information */ 567 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 568 sizeof (mib2_ipIfStatsEntry_t)); 569 if (ill->ill_isv6) { 570 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 571 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 572 sizeof (mib2_ipv6AddrEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 574 sizeof (mib2_ipv6RouteEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 576 sizeof (mib2_ipv6NetToMediaEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 578 sizeof (ipv6_member_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 580 sizeof (ipv6_grpsrc_t)); 581 } else { 582 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 583 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 584 sizeof (mib2_ipAddrEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 586 sizeof (mib2_ipRouteEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 588 sizeof (mib2_ipNetToMediaEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 590 sizeof (ip_member_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 592 sizeof (ip_grpsrc_t)); 593 594 /* 595 * For a v4 ill, we are done at this point, because per ill 596 * icmp mibs are only used for v6. 597 */ 598 return (B_TRUE); 599 } 600 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 605 ill->ill_ip_mib = NULL; 606 return (B_FALSE); 607 } 608 /* static icmp info */ 609 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 610 sizeof (mib2_ipv6IfIcmpEntry_t); 611 /* 612 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 613 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 614 * -> ill_phyint_reinit 615 */ 616 return (B_TRUE); 617 } 618 619 /* 620 * Common code for preparation of ARP commands. Two points to remember: 621 * 1) The ill_name is tacked on at the end of the allocated space so 622 * the templates name_offset field must contain the total space 623 * to allocate less the name length. 624 * 625 * 2) The templates name_length field should contain the *template* 626 * length. We use it as a parameter to bcopy() and then write 627 * the real ill_name_length into the name_length field of the copy. 628 * (Always called as writer.) 629 */ 630 mblk_t * 631 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 632 { 633 arc_t *arc = (arc_t *)template; 634 char *cp; 635 int len; 636 mblk_t *mp; 637 uint_t name_length = ill->ill_name_length; 638 uint_t template_len = arc->arc_name_length; 639 640 len = arc->arc_name_offset + name_length; 641 mp = allocb(len, BPRI_HI); 642 if (mp == NULL) 643 return (NULL); 644 cp = (char *)mp->b_rptr; 645 mp->b_wptr = (uchar_t *)&cp[len]; 646 if (template_len) 647 bcopy(template, cp, template_len); 648 if (len > template_len) 649 bzero(&cp[template_len], len - template_len); 650 mp->b_datap->db_type = M_PROTO; 651 652 arc = (arc_t *)cp; 653 arc->arc_name_length = name_length; 654 cp = (char *)arc + arc->arc_name_offset; 655 bcopy(ill->ill_name, cp, name_length); 656 657 if (addr) { 658 area_t *area = (area_t *)mp->b_rptr; 659 660 cp = (char *)area + area->area_proto_addr_offset; 661 bcopy(addr, cp, area->area_proto_addr_length); 662 if (area->area_cmd == AR_ENTRY_ADD) { 663 cp = (char *)area; 664 len = area->area_proto_addr_length; 665 if (area->area_proto_mask_offset) 666 cp += area->area_proto_mask_offset; 667 else 668 cp += area->area_proto_addr_offset + len; 669 while (len-- > 0) 670 *cp++ = (char)~0; 671 } 672 } 673 return (mp); 674 } 675 676 mblk_t * 677 ipif_area_alloc(ipif_t *ipif) 678 { 679 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 680 (char *)&ipif->ipif_lcl_addr)); 681 } 682 683 mblk_t * 684 ipif_ared_alloc(ipif_t *ipif) 685 { 686 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 687 (char *)&ipif->ipif_lcl_addr)); 688 } 689 690 mblk_t * 691 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 692 { 693 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 694 (char *)&addr)); 695 } 696 697 /* 698 * Completely vaporize a lower level tap and all associated interfaces. 699 * ill_delete is called only out of ip_close when the device control 700 * stream is being closed. 701 */ 702 void 703 ill_delete(ill_t *ill) 704 { 705 ipif_t *ipif; 706 ill_t *prev_ill; 707 ip_stack_t *ipst = ill->ill_ipst; 708 709 /* 710 * ill_delete may be forcibly entering the ipsq. The previous 711 * ioctl may not have completed and may need to be aborted. 712 * ipsq_flush takes care of it. If we don't need to enter the 713 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 714 * ill_delete_tail is sufficient. 715 */ 716 ipsq_flush(ill); 717 718 /* 719 * Nuke all interfaces. ipif_free will take down the interface, 720 * remove it from the list, and free the data structure. 721 * Walk down the ipif list and remove the logical interfaces 722 * first before removing the main ipif. We can't unplumb 723 * zeroth interface first in the case of IPv6 as reset_conn_ill 724 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 725 * POINTOPOINT. 726 * 727 * If ill_ipif was not properly initialized (i.e low on memory), 728 * then no interfaces to clean up. In this case just clean up the 729 * ill. 730 */ 731 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 732 ipif_free(ipif); 733 734 /* 735 * Used only by ill_arp_on and ill_arp_off, which are writers. 736 * So nobody can be using this mp now. Free the mp allocated for 737 * honoring ILLF_NOARP 738 */ 739 freemsg(ill->ill_arp_on_mp); 740 ill->ill_arp_on_mp = NULL; 741 742 /* Clean up msgs on pending upcalls for mrouted */ 743 reset_mrt_ill(ill); 744 745 /* 746 * ipif_free -> reset_conn_ipif will remove all multicast 747 * references for IPv4. For IPv6, we need to do it here as 748 * it points only at ills. 749 */ 750 reset_conn_ill(ill); 751 752 /* 753 * ill_down will arrange to blow off any IRE's dependent on this 754 * ILL, and shut down fragmentation reassembly. 755 */ 756 ill_down(ill); 757 758 /* Let SCTP know, so that it can remove this from its list. */ 759 sctp_update_ill(ill, SCTP_ILL_REMOVE); 760 761 /* 762 * If an address on this ILL is being used as a source address then 763 * clear out the pointers in other ILLs that point to this ILL. 764 */ 765 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 766 if (ill->ill_usesrc_grp_next != NULL) { 767 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 768 ill_disband_usesrc_group(ill); 769 } else { /* consumer of the usesrc ILL */ 770 prev_ill = ill_prev_usesrc(ill); 771 prev_ill->ill_usesrc_grp_next = 772 ill->ill_usesrc_grp_next; 773 } 774 } 775 rw_exit(&ipst->ips_ill_g_usesrc_lock); 776 } 777 778 static void 779 ipif_non_duplicate(ipif_t *ipif) 780 { 781 ill_t *ill = ipif->ipif_ill; 782 mutex_enter(&ill->ill_lock); 783 if (ipif->ipif_flags & IPIF_DUPLICATE) { 784 ipif->ipif_flags &= ~IPIF_DUPLICATE; 785 ASSERT(ill->ill_ipif_dup_count > 0); 786 ill->ill_ipif_dup_count--; 787 } 788 mutex_exit(&ill->ill_lock); 789 } 790 791 /* 792 * ill_delete_tail is called from ip_modclose after all references 793 * to the closing ill are gone. The wait is done in ip_modclose 794 */ 795 void 796 ill_delete_tail(ill_t *ill) 797 { 798 mblk_t **mpp; 799 ipif_t *ipif; 800 ip_stack_t *ipst = ill->ill_ipst; 801 802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 803 ipif_non_duplicate(ipif); 804 ipif_down_tail(ipif); 805 } 806 807 ASSERT(ill->ill_ipif_dup_count == 0 && 808 ill->ill_arp_down_mp == NULL && 809 ill->ill_arp_del_mapping_mp == NULL); 810 811 /* 812 * If polling capability is enabled (which signifies direct 813 * upcall into IP and driver has ill saved as a handle), 814 * we need to make sure that unbind has completed before we 815 * let the ill disappear and driver no longer has any reference 816 * to this ill. 817 */ 818 mutex_enter(&ill->ill_lock); 819 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 820 cv_wait(&ill->ill_cv, &ill->ill_lock); 821 mutex_exit(&ill->ill_lock); 822 823 /* 824 * Clean up polling and soft ring capabilities 825 */ 826 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 827 ill_capability_dls_disable(ill); 828 829 if (ill->ill_net_type != IRE_LOOPBACK) 830 qprocsoff(ill->ill_rq); 831 832 /* 833 * We do an ipsq_flush once again now. New messages could have 834 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 835 * could also have landed up if an ioctl thread had looked up 836 * the ill before we set the ILL_CONDEMNED flag, but not yet 837 * enqueued the ioctl when we did the ipsq_flush last time. 838 */ 839 ipsq_flush(ill); 840 841 /* 842 * Free capabilities. 843 */ 844 if (ill->ill_ipsec_capab_ah != NULL) { 845 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 846 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 847 ill->ill_ipsec_capab_ah = NULL; 848 } 849 850 if (ill->ill_ipsec_capab_esp != NULL) { 851 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 852 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 853 ill->ill_ipsec_capab_esp = NULL; 854 } 855 856 if (ill->ill_mdt_capab != NULL) { 857 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 858 ill->ill_mdt_capab = NULL; 859 } 860 861 if (ill->ill_hcksum_capab != NULL) { 862 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 863 ill->ill_hcksum_capab = NULL; 864 } 865 866 if (ill->ill_zerocopy_capab != NULL) { 867 kmem_free(ill->ill_zerocopy_capab, 868 sizeof (ill_zerocopy_capab_t)); 869 ill->ill_zerocopy_capab = NULL; 870 } 871 872 if (ill->ill_lso_capab != NULL) { 873 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 874 ill->ill_lso_capab = NULL; 875 } 876 877 if (ill->ill_dls_capab != NULL) { 878 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 879 ill->ill_dls_capab->ill_unbind_conn = NULL; 880 kmem_free(ill->ill_dls_capab, 881 sizeof (ill_dls_capab_t) + 882 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 883 ill->ill_dls_capab = NULL; 884 } 885 886 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 887 888 while (ill->ill_ipif != NULL) 889 ipif_free_tail(ill->ill_ipif); 890 891 ill_down_tail(ill); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 /* Drop refcnt here */ 948 netstack_rele(ill->ill_ipst->ips_netstack); 949 ill->ill_ipst = NULL; 950 951 ILL_TRACE_CLEANUP(ill); 952 } 953 954 static void 955 ill_free_mib(ill_t *ill) 956 { 957 ip_stack_t *ipst = ill->ill_ipst; 958 959 /* 960 * MIB statistics must not be lost, so when an interface 961 * goes away the counter values will be added to the global 962 * MIBs. 963 */ 964 if (ill->ill_ip_mib != NULL) { 965 if (ill->ill_isv6) { 966 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 967 ill->ill_ip_mib); 968 } else { 969 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 970 ill->ill_ip_mib); 971 } 972 973 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 974 ill->ill_ip_mib = NULL; 975 } 976 if (ill->ill_icmp6_mib != NULL) { 977 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 978 ill->ill_icmp6_mib); 979 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 980 ill->ill_icmp6_mib = NULL; 981 } 982 } 983 984 /* 985 * Concatenate together a physical address and a sap. 986 * 987 * Sap_lengths are interpreted as follows: 988 * sap_length == 0 ==> no sap 989 * sap_length > 0 ==> sap is at the head of the dlpi address 990 * sap_length < 0 ==> sap is at the tail of the dlpi address 991 */ 992 static void 993 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 994 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 995 { 996 uint16_t sap_addr = (uint16_t)sap_src; 997 998 if (sap_length == 0) { 999 if (phys_src == NULL) 1000 bzero(dst, phys_length); 1001 else 1002 bcopy(phys_src, dst, phys_length); 1003 } else if (sap_length < 0) { 1004 if (phys_src == NULL) 1005 bzero(dst, phys_length); 1006 else 1007 bcopy(phys_src, dst, phys_length); 1008 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1009 } else { 1010 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1011 if (phys_src == NULL) 1012 bzero((char *)dst + sap_length, phys_length); 1013 else 1014 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1015 } 1016 } 1017 1018 /* 1019 * Generate a dl_unitdata_req mblk for the device and address given. 1020 * addr_length is the length of the physical portion of the address. 1021 * If addr is NULL include an all zero address of the specified length. 1022 * TRUE? In any case, addr_length is taken to be the entire length of the 1023 * dlpi address, including the absolute value of sap_length. 1024 */ 1025 mblk_t * 1026 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1027 t_scalar_t sap_length) 1028 { 1029 dl_unitdata_req_t *dlur; 1030 mblk_t *mp; 1031 t_scalar_t abs_sap_length; /* absolute value */ 1032 1033 abs_sap_length = ABS(sap_length); 1034 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1035 DL_UNITDATA_REQ); 1036 if (mp == NULL) 1037 return (NULL); 1038 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1039 /* HACK: accomodate incompatible DLPI drivers */ 1040 if (addr_length == 8) 1041 addr_length = 6; 1042 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1043 dlur->dl_dest_addr_offset = sizeof (*dlur); 1044 dlur->dl_priority.dl_min = 0; 1045 dlur->dl_priority.dl_max = 0; 1046 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1047 (uchar_t *)&dlur[1]); 1048 return (mp); 1049 } 1050 1051 /* 1052 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1053 * Return an error if we already have 1 or more ioctls in progress. 1054 * This is used only for non-exclusive ioctls. Currently this is used 1055 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1056 * and thus need to use ipsq_pending_mp_add. 1057 */ 1058 boolean_t 1059 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1060 { 1061 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1062 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1063 /* 1064 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1065 */ 1066 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1067 (add_mp->b_datap->db_type == M_IOCTL)); 1068 1069 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1070 /* 1071 * Return error if the conn has started closing. The conn 1072 * could have finished cleaning up the pending mp list, 1073 * If so we should not add another mp to the list negating 1074 * the cleanup. 1075 */ 1076 if (connp->conn_state_flags & CONN_CLOSING) 1077 return (B_FALSE); 1078 /* 1079 * Add the pending mp to the head of the list, chained by b_next. 1080 * Note down the conn on which the ioctl request came, in b_prev. 1081 * This will be used to later get the conn, when we get a response 1082 * on the ill queue, from some other module (typically arp) 1083 */ 1084 add_mp->b_next = (void *)ill->ill_pending_mp; 1085 add_mp->b_queue = CONNP_TO_WQ(connp); 1086 ill->ill_pending_mp = add_mp; 1087 if (connp != NULL) 1088 connp->conn_oper_pending_ill = ill; 1089 return (B_TRUE); 1090 } 1091 1092 /* 1093 * Retrieve the ill_pending_mp and return it. We have to walk the list 1094 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1095 */ 1096 mblk_t * 1097 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1098 { 1099 mblk_t *prev = NULL; 1100 mblk_t *curr = NULL; 1101 uint_t id; 1102 conn_t *connp; 1103 1104 /* 1105 * When the conn closes, conn_ioctl_cleanup needs to clean 1106 * up the pending mp, but it does not know the ioc_id and 1107 * passes in a zero for it. 1108 */ 1109 mutex_enter(&ill->ill_lock); 1110 if (ioc_id != 0) 1111 *connpp = NULL; 1112 1113 /* Search the list for the appropriate ioctl based on ioc_id */ 1114 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1115 prev = curr, curr = curr->b_next) { 1116 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1117 connp = Q_TO_CONN(curr->b_queue); 1118 /* Match based on the ioc_id or based on the conn */ 1119 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1120 break; 1121 } 1122 1123 if (curr != NULL) { 1124 /* Unlink the mblk from the pending mp list */ 1125 if (prev != NULL) { 1126 prev->b_next = curr->b_next; 1127 } else { 1128 ASSERT(ill->ill_pending_mp == curr); 1129 ill->ill_pending_mp = curr->b_next; 1130 } 1131 1132 /* 1133 * conn refcnt must have been bumped up at the start of 1134 * the ioctl. So we can safely access the conn. 1135 */ 1136 ASSERT(CONN_Q(curr->b_queue)); 1137 *connpp = Q_TO_CONN(curr->b_queue); 1138 curr->b_next = NULL; 1139 curr->b_queue = NULL; 1140 } 1141 1142 mutex_exit(&ill->ill_lock); 1143 1144 return (curr); 1145 } 1146 1147 /* 1148 * Add the pending mp to the list. There can be only 1 pending mp 1149 * in the list. Any exclusive ioctl that needs to wait for a response 1150 * from another module or driver needs to use this function to set 1151 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1152 * the other module/driver. This is also used while waiting for the 1153 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1154 */ 1155 boolean_t 1156 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1157 int waitfor) 1158 { 1159 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1160 1161 ASSERT(IAM_WRITER_IPIF(ipif)); 1162 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1163 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1164 ASSERT(ipsq->ipsq_pending_mp == NULL); 1165 /* 1166 * The caller may be using a different ipif than the one passed into 1167 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1168 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1169 * that `ipsq_current_ipif == ipif'. 1170 */ 1171 ASSERT(ipsq->ipsq_current_ipif != NULL); 1172 1173 /* 1174 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1175 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1176 */ 1177 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1178 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1179 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1180 1181 if (connp != NULL) { 1182 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1183 /* 1184 * Return error if the conn has started closing. The conn 1185 * could have finished cleaning up the pending mp list, 1186 * If so we should not add another mp to the list negating 1187 * the cleanup. 1188 */ 1189 if (connp->conn_state_flags & CONN_CLOSING) 1190 return (B_FALSE); 1191 } 1192 mutex_enter(&ipsq->ipsq_lock); 1193 ipsq->ipsq_pending_ipif = ipif; 1194 /* 1195 * Note down the queue in b_queue. This will be returned by 1196 * ipsq_pending_mp_get. Caller will then use these values to restart 1197 * the processing 1198 */ 1199 add_mp->b_next = NULL; 1200 add_mp->b_queue = q; 1201 ipsq->ipsq_pending_mp = add_mp; 1202 ipsq->ipsq_waitfor = waitfor; 1203 1204 if (connp != NULL) 1205 connp->conn_oper_pending_ill = ipif->ipif_ill; 1206 mutex_exit(&ipsq->ipsq_lock); 1207 return (B_TRUE); 1208 } 1209 1210 /* 1211 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1212 * queued in the list. 1213 */ 1214 mblk_t * 1215 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1216 { 1217 mblk_t *curr = NULL; 1218 1219 mutex_enter(&ipsq->ipsq_lock); 1220 *connpp = NULL; 1221 if (ipsq->ipsq_pending_mp == NULL) { 1222 mutex_exit(&ipsq->ipsq_lock); 1223 return (NULL); 1224 } 1225 1226 /* There can be only 1 such excl message */ 1227 curr = ipsq->ipsq_pending_mp; 1228 ASSERT(curr != NULL && curr->b_next == NULL); 1229 ipsq->ipsq_pending_ipif = NULL; 1230 ipsq->ipsq_pending_mp = NULL; 1231 ipsq->ipsq_waitfor = 0; 1232 mutex_exit(&ipsq->ipsq_lock); 1233 1234 if (CONN_Q(curr->b_queue)) { 1235 /* 1236 * This mp did a refhold on the conn, at the start of the ioctl. 1237 * So we can safely return a pointer to the conn to the caller. 1238 */ 1239 *connpp = Q_TO_CONN(curr->b_queue); 1240 } else { 1241 *connpp = NULL; 1242 } 1243 curr->b_next = NULL; 1244 curr->b_prev = NULL; 1245 return (curr); 1246 } 1247 1248 /* 1249 * Cleanup the ioctl mp queued in ipsq_pending_mp 1250 * - Called in the ill_delete path 1251 * - Called in the M_ERROR or M_HANGUP path on the ill. 1252 * - Called in the conn close path. 1253 */ 1254 boolean_t 1255 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1256 { 1257 mblk_t *mp; 1258 ipsq_t *ipsq; 1259 queue_t *q; 1260 ipif_t *ipif; 1261 1262 ASSERT(IAM_WRITER_ILL(ill)); 1263 ipsq = ill->ill_phyint->phyint_ipsq; 1264 mutex_enter(&ipsq->ipsq_lock); 1265 /* 1266 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1267 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1268 * even if it is meant for another ill, since we have to enqueue 1269 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1270 * If connp is non-null we are called from the conn close path. 1271 */ 1272 mp = ipsq->ipsq_pending_mp; 1273 if (mp == NULL || (connp != NULL && 1274 mp->b_queue != CONNP_TO_WQ(connp))) { 1275 mutex_exit(&ipsq->ipsq_lock); 1276 return (B_FALSE); 1277 } 1278 /* Now remove from the ipsq_pending_mp */ 1279 ipsq->ipsq_pending_mp = NULL; 1280 q = mp->b_queue; 1281 mp->b_next = NULL; 1282 mp->b_prev = NULL; 1283 mp->b_queue = NULL; 1284 1285 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1286 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1287 if (ill->ill_move_in_progress) { 1288 ILL_CLEAR_MOVE(ill); 1289 } else if (ill->ill_up_ipifs) { 1290 ill_group_cleanup(ill); 1291 } 1292 1293 ipif = ipsq->ipsq_pending_ipif; 1294 ipsq->ipsq_pending_ipif = NULL; 1295 ipsq->ipsq_waitfor = 0; 1296 ipsq->ipsq_current_ipif = NULL; 1297 ipsq->ipsq_current_ioctl = 0; 1298 mutex_exit(&ipsq->ipsq_lock); 1299 1300 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1301 if (connp == NULL) { 1302 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1303 } else { 1304 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1305 mutex_enter(&ipif->ipif_ill->ill_lock); 1306 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1307 mutex_exit(&ipif->ipif_ill->ill_lock); 1308 } 1309 } else { 1310 /* 1311 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1312 * be just inet_freemsg. we have to restart it 1313 * otherwise the thread will be stuck. 1314 */ 1315 inet_freemsg(mp); 1316 } 1317 return (B_TRUE); 1318 } 1319 1320 /* 1321 * The ill is closing. Cleanup all the pending mps. Called exclusively 1322 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1323 * knows this ill, and hence nobody can add an mp to this list 1324 */ 1325 static void 1326 ill_pending_mp_cleanup(ill_t *ill) 1327 { 1328 mblk_t *mp; 1329 queue_t *q; 1330 1331 ASSERT(IAM_WRITER_ILL(ill)); 1332 1333 mutex_enter(&ill->ill_lock); 1334 /* 1335 * Every mp on the pending mp list originating from an ioctl 1336 * added 1 to the conn refcnt, at the start of the ioctl. 1337 * So bump it down now. See comments in ip_wput_nondata() 1338 */ 1339 while (ill->ill_pending_mp != NULL) { 1340 mp = ill->ill_pending_mp; 1341 ill->ill_pending_mp = mp->b_next; 1342 mutex_exit(&ill->ill_lock); 1343 1344 q = mp->b_queue; 1345 ASSERT(CONN_Q(q)); 1346 mp->b_next = NULL; 1347 mp->b_prev = NULL; 1348 mp->b_queue = NULL; 1349 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1350 mutex_enter(&ill->ill_lock); 1351 } 1352 ill->ill_pending_ipif = NULL; 1353 1354 mutex_exit(&ill->ill_lock); 1355 } 1356 1357 /* 1358 * Called in the conn close path and ill delete path 1359 */ 1360 static void 1361 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1362 { 1363 ipsq_t *ipsq; 1364 mblk_t *prev; 1365 mblk_t *curr; 1366 mblk_t *next; 1367 queue_t *q; 1368 mblk_t *tmp_list = NULL; 1369 1370 ASSERT(IAM_WRITER_ILL(ill)); 1371 if (connp != NULL) 1372 q = CONNP_TO_WQ(connp); 1373 else 1374 q = ill->ill_wq; 1375 1376 ipsq = ill->ill_phyint->phyint_ipsq; 1377 /* 1378 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1379 * In the case of ioctl from a conn, there can be only 1 mp 1380 * queued on the ipsq. If an ill is being unplumbed, only messages 1381 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1382 * ioctls meant for this ill form conn's are not flushed. They will 1383 * be processed during ipsq_exit and will not find the ill and will 1384 * return error. 1385 */ 1386 mutex_enter(&ipsq->ipsq_lock); 1387 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1388 curr = next) { 1389 next = curr->b_next; 1390 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1391 /* Unlink the mblk from the pending mp list */ 1392 if (prev != NULL) { 1393 prev->b_next = curr->b_next; 1394 } else { 1395 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1396 ipsq->ipsq_xopq_mphead = curr->b_next; 1397 } 1398 if (ipsq->ipsq_xopq_mptail == curr) 1399 ipsq->ipsq_xopq_mptail = prev; 1400 /* 1401 * Create a temporary list and release the ipsq lock 1402 * New elements are added to the head of the tmp_list 1403 */ 1404 curr->b_next = tmp_list; 1405 tmp_list = curr; 1406 } else { 1407 prev = curr; 1408 } 1409 } 1410 mutex_exit(&ipsq->ipsq_lock); 1411 1412 while (tmp_list != NULL) { 1413 curr = tmp_list; 1414 tmp_list = curr->b_next; 1415 curr->b_next = NULL; 1416 curr->b_prev = NULL; 1417 curr->b_queue = NULL; 1418 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1419 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1420 CONN_CLOSE : NO_COPYOUT, NULL); 1421 } else { 1422 /* 1423 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1424 * this can't be just inet_freemsg. we have to 1425 * restart it otherwise the thread will be stuck. 1426 */ 1427 inet_freemsg(curr); 1428 } 1429 } 1430 } 1431 1432 /* 1433 * This conn has started closing. Cleanup any pending ioctl from this conn. 1434 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1435 */ 1436 void 1437 conn_ioctl_cleanup(conn_t *connp) 1438 { 1439 mblk_t *curr; 1440 ipsq_t *ipsq; 1441 ill_t *ill; 1442 boolean_t refheld; 1443 1444 /* 1445 * Is any exclusive ioctl pending ? If so clean it up. If the 1446 * ioctl has not yet started, the mp is pending in the list headed by 1447 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1448 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1449 * is currently executing now the mp is not queued anywhere but 1450 * conn_oper_pending_ill is null. The conn close will wait 1451 * till the conn_ref drops to zero. 1452 */ 1453 mutex_enter(&connp->conn_lock); 1454 ill = connp->conn_oper_pending_ill; 1455 if (ill == NULL) { 1456 mutex_exit(&connp->conn_lock); 1457 return; 1458 } 1459 1460 curr = ill_pending_mp_get(ill, &connp, 0); 1461 if (curr != NULL) { 1462 mutex_exit(&connp->conn_lock); 1463 CONN_DEC_REF(connp); 1464 inet_freemsg(curr); 1465 return; 1466 } 1467 /* 1468 * We may not be able to refhold the ill if the ill/ipif 1469 * is changing. But we need to make sure that the ill will 1470 * not vanish. So we just bump up the ill_waiter count. 1471 */ 1472 refheld = ill_waiter_inc(ill); 1473 mutex_exit(&connp->conn_lock); 1474 if (refheld) { 1475 if (ipsq_enter(ill, B_TRUE)) { 1476 ill_waiter_dcr(ill); 1477 /* 1478 * Check whether this ioctl has started and is 1479 * pending now in ipsq_pending_mp. If it is not 1480 * found there then check whether this ioctl has 1481 * not even started and is in the ipsq_xopq list. 1482 */ 1483 if (!ipsq_pending_mp_cleanup(ill, connp)) 1484 ipsq_xopq_mp_cleanup(ill, connp); 1485 ipsq = ill->ill_phyint->phyint_ipsq; 1486 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1487 return; 1488 } 1489 } 1490 1491 /* 1492 * The ill is also closing and we could not bump up the 1493 * ill_waiter_count or we could not enter the ipsq. Leave 1494 * the cleanup to ill_delete 1495 */ 1496 mutex_enter(&connp->conn_lock); 1497 while (connp->conn_oper_pending_ill != NULL) 1498 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1499 mutex_exit(&connp->conn_lock); 1500 if (refheld) 1501 ill_waiter_dcr(ill); 1502 } 1503 1504 /* 1505 * ipcl_walk function for cleaning up conn_*_ill fields. 1506 */ 1507 static void 1508 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1509 { 1510 ill_t *ill = (ill_t *)arg; 1511 ire_t *ire; 1512 1513 mutex_enter(&connp->conn_lock); 1514 if (connp->conn_multicast_ill == ill) { 1515 /* Revert to late binding */ 1516 connp->conn_multicast_ill = NULL; 1517 connp->conn_orig_multicast_ifindex = 0; 1518 } 1519 if (connp->conn_incoming_ill == ill) 1520 connp->conn_incoming_ill = NULL; 1521 if (connp->conn_outgoing_ill == ill) 1522 connp->conn_outgoing_ill = NULL; 1523 if (connp->conn_outgoing_pill == ill) 1524 connp->conn_outgoing_pill = NULL; 1525 if (connp->conn_nofailover_ill == ill) 1526 connp->conn_nofailover_ill = NULL; 1527 if (connp->conn_xmit_if_ill == ill) 1528 connp->conn_xmit_if_ill = NULL; 1529 if (connp->conn_ire_cache != NULL) { 1530 ire = connp->conn_ire_cache; 1531 /* 1532 * ip_newroute creates IRE_CACHE with ire_stq coming from 1533 * interface X and ipif coming from interface Y, if interface 1534 * X and Y are part of the same IPMPgroup. Thus whenever 1535 * interface X goes down, remove all references to it by 1536 * checking both on ire_ipif and ire_stq. 1537 */ 1538 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1539 (ire->ire_type == IRE_CACHE && 1540 ire->ire_stq == ill->ill_wq)) { 1541 connp->conn_ire_cache = NULL; 1542 mutex_exit(&connp->conn_lock); 1543 ire_refrele_notr(ire); 1544 return; 1545 } 1546 } 1547 mutex_exit(&connp->conn_lock); 1548 1549 } 1550 1551 /* ARGSUSED */ 1552 void 1553 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1554 { 1555 ill_t *ill = q->q_ptr; 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 ill_down_tail(ill); 1564 freemsg(mp); 1565 ipsq_current_finish(ipsq); 1566 } 1567 1568 /* 1569 * ill_down_start is called when we want to down this ill and bring it up again 1570 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1571 * all interfaces, but don't tear down any plumbing. 1572 */ 1573 boolean_t 1574 ill_down_start(queue_t *q, mblk_t *mp) 1575 { 1576 ill_t *ill = q->q_ptr; 1577 ipif_t *ipif; 1578 1579 ASSERT(IAM_WRITER_ILL(ill)); 1580 1581 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1582 (void) ipif_down(ipif, NULL, NULL); 1583 1584 ill_down(ill); 1585 1586 (void) ipsq_pending_mp_cleanup(ill, NULL); 1587 1588 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1589 1590 /* 1591 * Atomically test and add the pending mp if references are active. 1592 */ 1593 mutex_enter(&ill->ill_lock); 1594 if (!ill_is_quiescent(ill)) { 1595 /* call cannot fail since `conn_t *' argument is NULL */ 1596 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1597 mp, ILL_DOWN); 1598 mutex_exit(&ill->ill_lock); 1599 return (B_FALSE); 1600 } 1601 mutex_exit(&ill->ill_lock); 1602 return (B_TRUE); 1603 } 1604 1605 static void 1606 ill_down(ill_t *ill) 1607 { 1608 ip_stack_t *ipst = ill->ill_ipst; 1609 1610 /* Blow off any IREs dependent on this ILL. */ 1611 ire_walk(ill_downi, (char *)ill, ipst); 1612 1613 mutex_enter(&ipst->ips_ire_mrtun_lock); 1614 if (ipst->ips_ire_mrtun_count != 0) { 1615 mutex_exit(&ipst->ips_ire_mrtun_lock); 1616 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1617 (char *)ill, NULL, ipst); 1618 } else { 1619 mutex_exit(&ipst->ips_ire_mrtun_lock); 1620 } 1621 1622 /* 1623 * If any interface based forwarding table exists 1624 * Blow off the ires there dependent on this ill 1625 */ 1626 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1627 if (ipst->ips_ire_srcif_table_count > 0) { 1628 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1629 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1630 ipst); 1631 } else { 1632 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1633 } 1634 1635 /* Remove any conn_*_ill depending on this ill */ 1636 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1637 1638 if (ill->ill_group != NULL) { 1639 illgrp_delete(ill); 1640 } 1641 } 1642 1643 static void 1644 ill_down_tail(ill_t *ill) 1645 { 1646 int i; 1647 1648 /* Destroy ill_srcif_table if it exists */ 1649 /* Lock not reqd really because nobody should be able to access */ 1650 mutex_enter(&ill->ill_lock); 1651 if (ill->ill_srcif_table != NULL) { 1652 ill->ill_srcif_refcnt = 0; 1653 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1654 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1655 } 1656 kmem_free(ill->ill_srcif_table, 1657 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1658 ill->ill_srcif_table = NULL; 1659 ill->ill_srcif_refcnt = 0; 1660 ill->ill_mrtun_refcnt = 0; 1661 } 1662 mutex_exit(&ill->ill_lock); 1663 } 1664 1665 /* 1666 * ire_walk routine used to delete every IRE that depends on queues 1667 * associated with 'ill'. (Always called as writer.) 1668 */ 1669 static void 1670 ill_downi(ire_t *ire, char *ill_arg) 1671 { 1672 ill_t *ill = (ill_t *)ill_arg; 1673 1674 /* 1675 * ip_newroute creates IRE_CACHE with ire_stq coming from 1676 * interface X and ipif coming from interface Y, if interface 1677 * X and Y are part of the same IPMP group. Thus whenever interface 1678 * X goes down, remove all references to it by checking both 1679 * on ire_ipif and ire_stq. 1680 */ 1681 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1682 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1683 ire_delete(ire); 1684 } 1685 } 1686 1687 /* 1688 * A seperate routine for deleting revtun and srcif based routes 1689 * are needed because the ires only deleted when the interface 1690 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1691 * we want to keep mobile IP specific code separate. 1692 */ 1693 static void 1694 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1695 { 1696 ill_t *ill = (ill_t *)ill_arg; 1697 1698 ASSERT(ire->ire_in_ill != NULL); 1699 1700 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1701 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1702 ire_delete(ire); 1703 } 1704 } 1705 1706 /* 1707 * Remove ire/nce from the fastpath list. 1708 */ 1709 void 1710 ill_fastpath_nack(ill_t *ill) 1711 { 1712 nce_fastpath_list_dispatch(ill, NULL, NULL); 1713 } 1714 1715 /* Consume an M_IOCACK of the fastpath probe. */ 1716 void 1717 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1718 { 1719 mblk_t *mp1 = mp; 1720 1721 /* 1722 * If this was the first attempt turn on the fastpath probing. 1723 */ 1724 mutex_enter(&ill->ill_lock); 1725 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1726 ill->ill_dlpi_fastpath_state = IDS_OK; 1727 mutex_exit(&ill->ill_lock); 1728 1729 /* Free the M_IOCACK mblk, hold on to the data */ 1730 mp = mp->b_cont; 1731 freeb(mp1); 1732 if (mp == NULL) 1733 return; 1734 if (mp->b_cont != NULL) { 1735 /* 1736 * Update all IRE's or NCE's that are waiting for 1737 * fastpath update. 1738 */ 1739 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1740 mp1 = mp->b_cont; 1741 freeb(mp); 1742 mp = mp1; 1743 } else { 1744 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1745 } 1746 1747 freeb(mp); 1748 } 1749 1750 /* 1751 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1752 * The data portion of the request is a dl_unitdata_req_t template for 1753 * what we would send downstream in the absence of a fastpath confirmation. 1754 */ 1755 int 1756 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1757 { 1758 struct iocblk *ioc; 1759 mblk_t *mp; 1760 1761 if (dlur_mp == NULL) 1762 return (EINVAL); 1763 1764 mutex_enter(&ill->ill_lock); 1765 switch (ill->ill_dlpi_fastpath_state) { 1766 case IDS_FAILED: 1767 /* 1768 * Driver NAKed the first fastpath ioctl - assume it doesn't 1769 * support it. 1770 */ 1771 mutex_exit(&ill->ill_lock); 1772 return (ENOTSUP); 1773 case IDS_UNKNOWN: 1774 /* This is the first probe */ 1775 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1776 break; 1777 default: 1778 break; 1779 } 1780 mutex_exit(&ill->ill_lock); 1781 1782 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1783 return (EAGAIN); 1784 1785 mp->b_cont = copyb(dlur_mp); 1786 if (mp->b_cont == NULL) { 1787 freeb(mp); 1788 return (EAGAIN); 1789 } 1790 1791 ioc = (struct iocblk *)mp->b_rptr; 1792 ioc->ioc_count = msgdsize(mp->b_cont); 1793 1794 putnext(ill->ill_wq, mp); 1795 return (0); 1796 } 1797 1798 void 1799 ill_capability_probe(ill_t *ill) 1800 { 1801 /* 1802 * Do so only if negotiation is enabled, capabilities are unknown, 1803 * and a capability negotiation is not already in progress. 1804 */ 1805 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1806 ill->ill_dlpi_capab_state != IDS_RENEG) 1807 return; 1808 1809 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1810 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1811 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1812 } 1813 1814 void 1815 ill_capability_reset(ill_t *ill) 1816 { 1817 mblk_t *sc_mp = NULL; 1818 mblk_t *tmp; 1819 1820 /* 1821 * Note here that we reset the state to UNKNOWN, and later send 1822 * down the DL_CAPABILITY_REQ without first setting the state to 1823 * INPROGRESS. We do this in order to distinguish the 1824 * DL_CAPABILITY_ACK response which may come back in response to 1825 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1826 * also handle the case where the driver doesn't send us back 1827 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1828 * requires the state to be in UNKNOWN anyway. In any case, all 1829 * features are turned off until the state reaches IDS_OK. 1830 */ 1831 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1832 1833 /* 1834 * Disable sub-capabilities and request a list of sub-capability 1835 * messages which will be sent down to the driver. Each handler 1836 * allocates the corresponding dl_capability_sub_t inside an 1837 * mblk, and links it to the existing sc_mp mblk, or return it 1838 * as sc_mp if it's the first sub-capability (the passed in 1839 * sc_mp is NULL). Upon returning from all capability handlers, 1840 * sc_mp will be pulled-up, before passing it downstream. 1841 */ 1842 ill_capability_mdt_reset(ill, &sc_mp); 1843 ill_capability_hcksum_reset(ill, &sc_mp); 1844 ill_capability_zerocopy_reset(ill, &sc_mp); 1845 ill_capability_ipsec_reset(ill, &sc_mp); 1846 ill_capability_dls_reset(ill, &sc_mp); 1847 ill_capability_lso_reset(ill, &sc_mp); 1848 1849 /* Nothing to send down in order to disable the capabilities? */ 1850 if (sc_mp == NULL) 1851 return; 1852 1853 tmp = msgpullup(sc_mp, -1); 1854 freemsg(sc_mp); 1855 if ((sc_mp = tmp) == NULL) { 1856 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1857 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1858 return; 1859 } 1860 1861 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1862 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1863 } 1864 1865 /* 1866 * Request or set new-style hardware capabilities supported by DLS provider. 1867 */ 1868 static void 1869 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1870 { 1871 mblk_t *mp; 1872 dl_capability_req_t *capb; 1873 size_t size = 0; 1874 uint8_t *ptr; 1875 1876 if (reqp != NULL) 1877 size = MBLKL(reqp); 1878 1879 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1880 if (mp == NULL) { 1881 freemsg(reqp); 1882 return; 1883 } 1884 ptr = mp->b_rptr; 1885 1886 capb = (dl_capability_req_t *)ptr; 1887 ptr += sizeof (dl_capability_req_t); 1888 1889 if (reqp != NULL) { 1890 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1891 capb->dl_sub_length = size; 1892 bcopy(reqp->b_rptr, ptr, size); 1893 ptr += size; 1894 mp->b_cont = reqp->b_cont; 1895 freeb(reqp); 1896 } 1897 ASSERT(ptr == mp->b_wptr); 1898 1899 ill_dlpi_send(ill, mp); 1900 } 1901 1902 static void 1903 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1904 { 1905 dl_capab_id_t *id_ic; 1906 uint_t sub_dl_cap = outers->dl_cap; 1907 dl_capability_sub_t *inners; 1908 uint8_t *capend; 1909 1910 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1911 1912 /* 1913 * Note: range checks here are not absolutely sufficient to 1914 * make us robust against malformed messages sent by drivers; 1915 * this is in keeping with the rest of IP's dlpi handling. 1916 * (Remember, it's coming from something else in the kernel 1917 * address space) 1918 */ 1919 1920 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1921 if (capend > mp->b_wptr) { 1922 cmn_err(CE_WARN, "ill_capability_id_ack: " 1923 "malformed sub-capability too long for mblk"); 1924 return; 1925 } 1926 1927 id_ic = (dl_capab_id_t *)(outers + 1); 1928 1929 if (outers->dl_length < sizeof (*id_ic) || 1930 (inners = &id_ic->id_subcap, 1931 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1932 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1933 "encapsulated capab type %d too long for mblk", 1934 inners->dl_cap); 1935 return; 1936 } 1937 1938 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1939 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1940 "isn't as expected; pass-thru module(s) detected, " 1941 "discarding capability\n", inners->dl_cap)); 1942 return; 1943 } 1944 1945 /* Process the encapsulated sub-capability */ 1946 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1947 } 1948 1949 /* 1950 * Process Multidata Transmit capability negotiation ack received from a 1951 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1952 * DL_CAPABILITY_ACK message. 1953 */ 1954 static void 1955 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1956 { 1957 mblk_t *nmp = NULL; 1958 dl_capability_req_t *oc; 1959 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1960 ill_mdt_capab_t **ill_mdt_capab; 1961 uint_t sub_dl_cap = isub->dl_cap; 1962 uint8_t *capend; 1963 1964 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1965 1966 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1967 1968 /* 1969 * Note: range checks here are not absolutely sufficient to 1970 * make us robust against malformed messages sent by drivers; 1971 * this is in keeping with the rest of IP's dlpi handling. 1972 * (Remember, it's coming from something else in the kernel 1973 * address space) 1974 */ 1975 1976 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1977 if (capend > mp->b_wptr) { 1978 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1979 "malformed sub-capability too long for mblk"); 1980 return; 1981 } 1982 1983 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1984 1985 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1986 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1987 "unsupported MDT sub-capability (version %d, expected %d)", 1988 mdt_ic->mdt_version, MDT_VERSION_2); 1989 return; 1990 } 1991 1992 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1993 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1994 "capability isn't as expected; pass-thru module(s) " 1995 "detected, discarding capability\n")); 1996 return; 1997 } 1998 1999 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2000 2001 if (*ill_mdt_capab == NULL) { 2002 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2003 KM_NOSLEEP); 2004 2005 if (*ill_mdt_capab == NULL) { 2006 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2007 "could not enable MDT version %d " 2008 "for %s (ENOMEM)\n", MDT_VERSION_2, 2009 ill->ill_name); 2010 return; 2011 } 2012 } 2013 2014 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2015 "MDT version %d (%d bytes leading, %d bytes trailing " 2016 "header spaces, %d max pld bufs, %d span limit)\n", 2017 ill->ill_name, MDT_VERSION_2, 2018 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2019 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2020 2021 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2022 (*ill_mdt_capab)->ill_mdt_on = 1; 2023 /* 2024 * Round the following values to the nearest 32-bit; ULP 2025 * may further adjust them to accomodate for additional 2026 * protocol headers. We pass these values to ULP during 2027 * bind time. 2028 */ 2029 (*ill_mdt_capab)->ill_mdt_hdr_head = 2030 roundup(mdt_ic->mdt_hdr_head, 4); 2031 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2032 roundup(mdt_ic->mdt_hdr_tail, 4); 2033 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2034 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2035 2036 ill->ill_capabilities |= ILL_CAPAB_MDT; 2037 } else { 2038 uint_t size; 2039 uchar_t *rptr; 2040 2041 size = sizeof (dl_capability_req_t) + 2042 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2043 2044 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2045 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2046 "could not enable MDT for %s (ENOMEM)\n", 2047 ill->ill_name); 2048 return; 2049 } 2050 2051 rptr = nmp->b_rptr; 2052 /* initialize dl_capability_req_t */ 2053 oc = (dl_capability_req_t *)nmp->b_rptr; 2054 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2055 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2056 sizeof (dl_capab_mdt_t); 2057 nmp->b_rptr += sizeof (dl_capability_req_t); 2058 2059 /* initialize dl_capability_sub_t */ 2060 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2061 nmp->b_rptr += sizeof (*isub); 2062 2063 /* initialize dl_capab_mdt_t */ 2064 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2065 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2066 2067 nmp->b_rptr = rptr; 2068 2069 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2070 "to enable MDT version %d\n", ill->ill_name, 2071 MDT_VERSION_2)); 2072 2073 /* set ENABLE flag */ 2074 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2075 2076 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2077 ill_dlpi_send(ill, nmp); 2078 } 2079 } 2080 2081 static void 2082 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2083 { 2084 mblk_t *mp; 2085 dl_capab_mdt_t *mdt_subcap; 2086 dl_capability_sub_t *dl_subcap; 2087 int size; 2088 2089 if (!ILL_MDT_CAPABLE(ill)) 2090 return; 2091 2092 ASSERT(ill->ill_mdt_capab != NULL); 2093 /* 2094 * Clear the capability flag for MDT but retain the ill_mdt_capab 2095 * structure since it's possible that another thread is still 2096 * referring to it. The structure only gets deallocated when 2097 * we destroy the ill. 2098 */ 2099 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2100 2101 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2102 2103 mp = allocb(size, BPRI_HI); 2104 if (mp == NULL) { 2105 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2106 "request to disable MDT\n")); 2107 return; 2108 } 2109 2110 mp->b_wptr = mp->b_rptr + size; 2111 2112 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2113 dl_subcap->dl_cap = DL_CAPAB_MDT; 2114 dl_subcap->dl_length = sizeof (*mdt_subcap); 2115 2116 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2117 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2118 mdt_subcap->mdt_flags = 0; 2119 mdt_subcap->mdt_hdr_head = 0; 2120 mdt_subcap->mdt_hdr_tail = 0; 2121 2122 if (*sc_mp != NULL) 2123 linkb(*sc_mp, mp); 2124 else 2125 *sc_mp = mp; 2126 } 2127 2128 /* 2129 * Send a DL_NOTIFY_REQ to the specified ill to enable 2130 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2131 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2132 * acceleration. 2133 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2134 */ 2135 static boolean_t 2136 ill_enable_promisc_notify(ill_t *ill) 2137 { 2138 mblk_t *mp; 2139 dl_notify_req_t *req; 2140 2141 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2142 2143 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2144 if (mp == NULL) 2145 return (B_FALSE); 2146 2147 req = (dl_notify_req_t *)mp->b_rptr; 2148 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2149 DL_NOTE_PROMISC_OFF_PHYS; 2150 2151 ill_dlpi_send(ill, mp); 2152 2153 return (B_TRUE); 2154 } 2155 2156 2157 /* 2158 * Allocate an IPsec capability request which will be filled by our 2159 * caller to turn on support for one or more algorithms. 2160 */ 2161 static mblk_t * 2162 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2163 { 2164 mblk_t *nmp; 2165 dl_capability_req_t *ocap; 2166 dl_capab_ipsec_t *ocip; 2167 dl_capab_ipsec_t *icip; 2168 uint8_t *ptr; 2169 icip = (dl_capab_ipsec_t *)(isub + 1); 2170 2171 /* 2172 * The first time around, we send a DL_NOTIFY_REQ to enable 2173 * PROMISC_ON/OFF notification from the provider. We need to 2174 * do this before enabling the algorithms to avoid leakage of 2175 * cleartext packets. 2176 */ 2177 2178 if (!ill_enable_promisc_notify(ill)) 2179 return (NULL); 2180 2181 /* 2182 * Allocate new mblk which will contain a new capability 2183 * request to enable the capabilities. 2184 */ 2185 2186 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2187 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2188 if (nmp == NULL) 2189 return (NULL); 2190 2191 ptr = nmp->b_rptr; 2192 2193 /* initialize dl_capability_req_t */ 2194 ocap = (dl_capability_req_t *)ptr; 2195 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2196 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2197 ptr += sizeof (dl_capability_req_t); 2198 2199 /* initialize dl_capability_sub_t */ 2200 bcopy(isub, ptr, sizeof (*isub)); 2201 ptr += sizeof (*isub); 2202 2203 /* initialize dl_capab_ipsec_t */ 2204 ocip = (dl_capab_ipsec_t *)ptr; 2205 bcopy(icip, ocip, sizeof (*icip)); 2206 2207 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2208 return (nmp); 2209 } 2210 2211 /* 2212 * Process an IPsec capability negotiation ack received from a DLS Provider. 2213 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2214 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2215 */ 2216 static void 2217 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2218 { 2219 dl_capab_ipsec_t *icip; 2220 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2221 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2222 uint_t cipher, nciphers; 2223 mblk_t *nmp; 2224 uint_t alg_len; 2225 boolean_t need_sadb_dump; 2226 uint_t sub_dl_cap = isub->dl_cap; 2227 ill_ipsec_capab_t **ill_capab; 2228 uint64_t ill_capab_flag; 2229 uint8_t *capend, *ciphend; 2230 boolean_t sadb_resync; 2231 2232 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2233 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2234 2235 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2236 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2237 ill_capab_flag = ILL_CAPAB_AH; 2238 } else { 2239 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2240 ill_capab_flag = ILL_CAPAB_ESP; 2241 } 2242 2243 /* 2244 * If the ill capability structure exists, then this incoming 2245 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2246 * If this is so, then we'd need to resynchronize the SADB 2247 * after re-enabling the offloaded ciphers. 2248 */ 2249 sadb_resync = (*ill_capab != NULL); 2250 2251 /* 2252 * Note: range checks here are not absolutely sufficient to 2253 * make us robust against malformed messages sent by drivers; 2254 * this is in keeping with the rest of IP's dlpi handling. 2255 * (Remember, it's coming from something else in the kernel 2256 * address space) 2257 */ 2258 2259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2260 if (capend > mp->b_wptr) { 2261 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2262 "malformed sub-capability too long for mblk"); 2263 return; 2264 } 2265 2266 /* 2267 * There are two types of acks we process here: 2268 * 1. acks in reply to a (first form) generic capability req 2269 * (no ENABLE flag set) 2270 * 2. acks in reply to a ENABLE capability req. 2271 * (ENABLE flag set) 2272 * 2273 * We process the subcapability passed as argument as follows: 2274 * 1 do initializations 2275 * 1.1 initialize nmp = NULL 2276 * 1.2 set need_sadb_dump to B_FALSE 2277 * 2 for each cipher in subcapability: 2278 * 2.1 if ENABLE flag is set: 2279 * 2.1.1 update per-ill ipsec capabilities info 2280 * 2.1.2 set need_sadb_dump to B_TRUE 2281 * 2.2 if ENABLE flag is not set: 2282 * 2.2.1 if nmp is NULL: 2283 * 2.2.1.1 allocate and initialize nmp 2284 * 2.2.1.2 init current pos in nmp 2285 * 2.2.2 copy current cipher to current pos in nmp 2286 * 2.2.3 set ENABLE flag in nmp 2287 * 2.2.4 update current pos 2288 * 3 if nmp is not equal to NULL, send enable request 2289 * 3.1 send capability request 2290 * 4 if need_sadb_dump is B_TRUE 2291 * 4.1 enable promiscuous on/off notifications 2292 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2293 * AH or ESP SA's to interface. 2294 */ 2295 2296 nmp = NULL; 2297 oalg = NULL; 2298 need_sadb_dump = B_FALSE; 2299 icip = (dl_capab_ipsec_t *)(isub + 1); 2300 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2301 2302 nciphers = icip->cip_nciphers; 2303 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2304 2305 if (ciphend > capend) { 2306 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2307 "too many ciphers for sub-capability len"); 2308 return; 2309 } 2310 2311 for (cipher = 0; cipher < nciphers; cipher++) { 2312 alg_len = sizeof (dl_capab_ipsec_alg_t); 2313 2314 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2315 /* 2316 * TBD: when we provide a way to disable capabilities 2317 * from above, need to manage the request-pending state 2318 * and fail if we were not expecting this ACK. 2319 */ 2320 IPSECHW_DEBUG(IPSECHW_CAPAB, 2321 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2322 2323 /* 2324 * Update IPsec capabilities for this ill 2325 */ 2326 2327 if (*ill_capab == NULL) { 2328 IPSECHW_DEBUG(IPSECHW_CAPAB, 2329 ("ill_capability_ipsec_ack: " 2330 "allocating ipsec_capab for ill\n")); 2331 *ill_capab = ill_ipsec_capab_alloc(); 2332 2333 if (*ill_capab == NULL) { 2334 cmn_err(CE_WARN, 2335 "ill_capability_ipsec_ack: " 2336 "could not enable IPsec Hardware " 2337 "acceleration for %s (ENOMEM)\n", 2338 ill->ill_name); 2339 return; 2340 } 2341 } 2342 2343 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2344 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2345 2346 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2347 cmn_err(CE_WARN, 2348 "ill_capability_ipsec_ack: " 2349 "malformed IPsec algorithm id %d", 2350 ialg->alg_prim); 2351 continue; 2352 } 2353 2354 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2355 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2356 ialg->alg_prim); 2357 } else { 2358 ipsec_capab_algparm_t *alp; 2359 2360 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2361 ialg->alg_prim); 2362 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2363 ialg->alg_prim)) { 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "no space for IPsec alg id %d", 2367 ialg->alg_prim); 2368 continue; 2369 } 2370 alp = &((*ill_capab)->encr_algparm[ 2371 ialg->alg_prim]); 2372 alp->minkeylen = ialg->alg_minbits; 2373 alp->maxkeylen = ialg->alg_maxbits; 2374 } 2375 ill->ill_capabilities |= ill_capab_flag; 2376 /* 2377 * indicate that a capability was enabled, which 2378 * will be used below to kick off a SADB dump 2379 * to the ill. 2380 */ 2381 need_sadb_dump = B_TRUE; 2382 } else { 2383 IPSECHW_DEBUG(IPSECHW_CAPAB, 2384 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2385 ialg->alg_prim)); 2386 2387 if (nmp == NULL) { 2388 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2389 if (nmp == NULL) { 2390 /* 2391 * Sending the PROMISC_ON/OFF 2392 * notification request failed. 2393 * We cannot enable the algorithms 2394 * since the Provider will not 2395 * notify IP of promiscous mode 2396 * changes, which could lead 2397 * to leakage of packets. 2398 */ 2399 cmn_err(CE_WARN, 2400 "ill_capability_ipsec_ack: " 2401 "could not enable IPsec Hardware " 2402 "acceleration for %s (ENOMEM)\n", 2403 ill->ill_name); 2404 return; 2405 } 2406 /* ptr to current output alg specifier */ 2407 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2408 } 2409 2410 /* 2411 * Copy current alg specifier, set ENABLE 2412 * flag, and advance to next output alg. 2413 * For now we enable all IPsec capabilities. 2414 */ 2415 ASSERT(oalg != NULL); 2416 bcopy(ialg, oalg, alg_len); 2417 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2418 nmp->b_wptr += alg_len; 2419 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2420 } 2421 2422 /* move to next input algorithm specifier */ 2423 ialg = (dl_capab_ipsec_alg_t *) 2424 ((char *)ialg + alg_len); 2425 } 2426 2427 if (nmp != NULL) 2428 /* 2429 * nmp points to a DL_CAPABILITY_REQ message to enable 2430 * IPsec hardware acceleration. 2431 */ 2432 ill_dlpi_send(ill, nmp); 2433 2434 if (need_sadb_dump) 2435 /* 2436 * An acknowledgement corresponding to a request to 2437 * enable acceleration was received, notify SADB. 2438 */ 2439 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2440 } 2441 2442 /* 2443 * Given an mblk with enough space in it, create sub-capability entries for 2444 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2445 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2446 * in preparation for the reset the DL_CAPABILITY_REQ message. 2447 */ 2448 static void 2449 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2450 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2451 { 2452 dl_capab_ipsec_t *oipsec; 2453 dl_capab_ipsec_alg_t *oalg; 2454 dl_capability_sub_t *dl_subcap; 2455 int i, k; 2456 2457 ASSERT(nciphers > 0); 2458 ASSERT(ill_cap != NULL); 2459 ASSERT(mp != NULL); 2460 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2461 2462 /* dl_capability_sub_t for "stype" */ 2463 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2464 dl_subcap->dl_cap = stype; 2465 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2466 mp->b_wptr += sizeof (dl_capability_sub_t); 2467 2468 /* dl_capab_ipsec_t for "stype" */ 2469 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2470 oipsec->cip_version = 1; 2471 oipsec->cip_nciphers = nciphers; 2472 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2473 2474 /* create entries for "stype" AUTH ciphers */ 2475 for (i = 0; i < ill_cap->algs_size; i++) { 2476 for (k = 0; k < BITSPERBYTE; k++) { 2477 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2478 continue; 2479 2480 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2481 bzero((void *)oalg, sizeof (*oalg)); 2482 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2483 oalg->alg_prim = k + (BITSPERBYTE * i); 2484 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2485 } 2486 } 2487 /* create entries for "stype" ENCR ciphers */ 2488 for (i = 0; i < ill_cap->algs_size; i++) { 2489 for (k = 0; k < BITSPERBYTE; k++) { 2490 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2491 continue; 2492 2493 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2494 bzero((void *)oalg, sizeof (*oalg)); 2495 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2496 oalg->alg_prim = k + (BITSPERBYTE * i); 2497 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2498 } 2499 } 2500 } 2501 2502 /* 2503 * Macro to count number of 1s in a byte (8-bit word). The total count is 2504 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2505 * POPC instruction, but our macro is more flexible for an arbitrary length 2506 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2507 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2508 * stays that way, we can reduce the number of iterations required. 2509 */ 2510 #define COUNT_1S(val, sum) { \ 2511 uint8_t x = val & 0xff; \ 2512 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2513 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2514 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2515 } 2516 2517 /* ARGSUSED */ 2518 static void 2519 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2520 { 2521 mblk_t *mp; 2522 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2523 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2524 uint64_t ill_capabilities = ill->ill_capabilities; 2525 int ah_cnt = 0, esp_cnt = 0; 2526 int ah_len = 0, esp_len = 0; 2527 int i, size = 0; 2528 2529 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2530 return; 2531 2532 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2533 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2534 2535 /* Find out the number of ciphers for AH */ 2536 if (cap_ah != NULL) { 2537 for (i = 0; i < cap_ah->algs_size; i++) { 2538 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2539 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2540 } 2541 if (ah_cnt > 0) { 2542 size += sizeof (dl_capability_sub_t) + 2543 sizeof (dl_capab_ipsec_t); 2544 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2545 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2546 size += ah_len; 2547 } 2548 } 2549 2550 /* Find out the number of ciphers for ESP */ 2551 if (cap_esp != NULL) { 2552 for (i = 0; i < cap_esp->algs_size; i++) { 2553 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2554 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2555 } 2556 if (esp_cnt > 0) { 2557 size += sizeof (dl_capability_sub_t) + 2558 sizeof (dl_capab_ipsec_t); 2559 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2560 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2561 size += esp_len; 2562 } 2563 } 2564 2565 if (size == 0) { 2566 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2567 "there's nothing to reset\n")); 2568 return; 2569 } 2570 2571 mp = allocb(size, BPRI_HI); 2572 if (mp == NULL) { 2573 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2574 "request to disable IPSEC Hardware Acceleration\n")); 2575 return; 2576 } 2577 2578 /* 2579 * Clear the capability flags for IPSec HA but retain the ill 2580 * capability structures since it's possible that another thread 2581 * is still referring to them. The structures only get deallocated 2582 * when we destroy the ill. 2583 * 2584 * Various places check the flags to see if the ill is capable of 2585 * hardware acceleration, and by clearing them we ensure that new 2586 * outbound IPSec packets are sent down encrypted. 2587 */ 2588 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2589 2590 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2591 if (ah_cnt > 0) { 2592 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2593 cap_ah, mp); 2594 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2595 } 2596 2597 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2598 if (esp_cnt > 0) { 2599 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2600 cap_esp, mp); 2601 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2602 } 2603 2604 /* 2605 * At this point we've composed a bunch of sub-capabilities to be 2606 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2607 * by the caller. Upon receiving this reset message, the driver 2608 * must stop inbound decryption (by destroying all inbound SAs) 2609 * and let the corresponding packets come in encrypted. 2610 */ 2611 2612 if (*sc_mp != NULL) 2613 linkb(*sc_mp, mp); 2614 else 2615 *sc_mp = mp; 2616 } 2617 2618 static void 2619 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2620 boolean_t encapsulated) 2621 { 2622 boolean_t legacy = B_FALSE; 2623 2624 /* 2625 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2626 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2627 * instructed the driver to disable its advertised capabilities, 2628 * so there's no point in accepting any response at this moment. 2629 */ 2630 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2631 return; 2632 2633 /* 2634 * Note that only the following two sub-capabilities may be 2635 * considered as "legacy", since their original definitions 2636 * do not incorporate the dl_mid_t module ID token, and hence 2637 * may require the use of the wrapper sub-capability. 2638 */ 2639 switch (subp->dl_cap) { 2640 case DL_CAPAB_IPSEC_AH: 2641 case DL_CAPAB_IPSEC_ESP: 2642 legacy = B_TRUE; 2643 break; 2644 } 2645 2646 /* 2647 * For legacy sub-capabilities which don't incorporate a queue_t 2648 * pointer in their structures, discard them if we detect that 2649 * there are intermediate modules in between IP and the driver. 2650 */ 2651 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2652 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2653 "%d discarded; %d module(s) present below IP\n", 2654 subp->dl_cap, ill->ill_lmod_cnt)); 2655 return; 2656 } 2657 2658 switch (subp->dl_cap) { 2659 case DL_CAPAB_IPSEC_AH: 2660 case DL_CAPAB_IPSEC_ESP: 2661 ill_capability_ipsec_ack(ill, mp, subp); 2662 break; 2663 case DL_CAPAB_MDT: 2664 ill_capability_mdt_ack(ill, mp, subp); 2665 break; 2666 case DL_CAPAB_HCKSUM: 2667 ill_capability_hcksum_ack(ill, mp, subp); 2668 break; 2669 case DL_CAPAB_ZEROCOPY: 2670 ill_capability_zerocopy_ack(ill, mp, subp); 2671 break; 2672 case DL_CAPAB_POLL: 2673 if (!SOFT_RINGS_ENABLED()) 2674 ill_capability_dls_ack(ill, mp, subp); 2675 break; 2676 case DL_CAPAB_SOFT_RING: 2677 if (SOFT_RINGS_ENABLED()) 2678 ill_capability_dls_ack(ill, mp, subp); 2679 break; 2680 case DL_CAPAB_LSO: 2681 ill_capability_lso_ack(ill, mp, subp); 2682 break; 2683 default: 2684 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2685 subp->dl_cap)); 2686 } 2687 } 2688 2689 /* 2690 * As part of negotiating polling capability, the driver tells us 2691 * the default (or normal) blanking interval and packet threshold 2692 * (the receive timer fires if blanking interval is reached or 2693 * the packet threshold is reached). 2694 * 2695 * As part of manipulating the polling interval, we always use our 2696 * estimated interval (avg service time * number of packets queued 2697 * on the squeue) but we try to blank for a minimum of 2698 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2699 * packet threshold during this time. When we are not in polling mode 2700 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2701 * rr_min_blank_ratio but up the packet cnt by a ratio of 2702 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2703 * possible although for a shorter interval. 2704 */ 2705 #define RR_MAX_BLANK_RATIO 20 2706 #define RR_MIN_BLANK_RATIO 10 2707 #define RR_MAX_PKT_CNT_RATIO 3 2708 #define RR_MIN_PKT_CNT_RATIO 3 2709 2710 /* 2711 * These can be tuned via /etc/system. 2712 */ 2713 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2714 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2715 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2716 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2717 2718 static mac_resource_handle_t 2719 ill_ring_add(void *arg, mac_resource_t *mrp) 2720 { 2721 ill_t *ill = (ill_t *)arg; 2722 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2723 ill_rx_ring_t *rx_ring; 2724 int ip_rx_index; 2725 2726 ASSERT(mrp != NULL); 2727 if (mrp->mr_type != MAC_RX_FIFO) { 2728 return (NULL); 2729 } 2730 ASSERT(ill != NULL); 2731 ASSERT(ill->ill_dls_capab != NULL); 2732 2733 mutex_enter(&ill->ill_lock); 2734 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2735 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2736 ASSERT(rx_ring != NULL); 2737 2738 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2739 time_t normal_blank_time = 2740 mrfp->mrf_normal_blank_time; 2741 uint_t normal_pkt_cnt = 2742 mrfp->mrf_normal_pkt_count; 2743 2744 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2745 2746 rx_ring->rr_blank = mrfp->mrf_blank; 2747 rx_ring->rr_handle = mrfp->mrf_arg; 2748 rx_ring->rr_ill = ill; 2749 rx_ring->rr_normal_blank_time = normal_blank_time; 2750 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2751 2752 rx_ring->rr_max_blank_time = 2753 normal_blank_time * rr_max_blank_ratio; 2754 rx_ring->rr_min_blank_time = 2755 normal_blank_time * rr_min_blank_ratio; 2756 rx_ring->rr_max_pkt_cnt = 2757 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2758 rx_ring->rr_min_pkt_cnt = 2759 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2760 2761 rx_ring->rr_ring_state = ILL_RING_INUSE; 2762 mutex_exit(&ill->ill_lock); 2763 2764 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2765 (int), ip_rx_index); 2766 return ((mac_resource_handle_t)rx_ring); 2767 } 2768 } 2769 2770 /* 2771 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2772 * we have devices which can overwhelm this limit, ILL_MAX_RING 2773 * should be made configurable. Meanwhile it cause no panic because 2774 * driver will pass ip_input a NULL handle which will make 2775 * IP allocate the default squeue and Polling mode will not 2776 * be used for this ring. 2777 */ 2778 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2779 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2780 2781 mutex_exit(&ill->ill_lock); 2782 return (NULL); 2783 } 2784 2785 static boolean_t 2786 ill_capability_dls_init(ill_t *ill) 2787 { 2788 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2789 conn_t *connp; 2790 size_t sz; 2791 ip_stack_t *ipst = ill->ill_ipst; 2792 2793 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2794 if (ill_dls == NULL) { 2795 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2796 "soft_ring enabled for ill=%s (%p) but data " 2797 "structs uninitialized\n", ill->ill_name, 2798 (void *)ill); 2799 } 2800 return (B_TRUE); 2801 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2802 if (ill_dls == NULL) { 2803 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2804 "polling enabled for ill=%s (%p) but data " 2805 "structs uninitialized\n", ill->ill_name, 2806 (void *)ill); 2807 } 2808 return (B_TRUE); 2809 } 2810 2811 if (ill_dls != NULL) { 2812 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2813 /* Soft_Ring or polling is being re-enabled */ 2814 2815 connp = ill_dls->ill_unbind_conn; 2816 ASSERT(rx_ring != NULL); 2817 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2818 bzero((void *)rx_ring, 2819 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2820 ill_dls->ill_ring_tbl = rx_ring; 2821 ill_dls->ill_unbind_conn = connp; 2822 return (B_TRUE); 2823 } 2824 2825 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2826 ipst->ips_netstack)) == NULL) 2827 return (B_FALSE); 2828 2829 sz = sizeof (ill_dls_capab_t); 2830 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2831 2832 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2833 if (ill_dls == NULL) { 2834 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2835 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2836 (void *)ill); 2837 CONN_DEC_REF(connp); 2838 return (B_FALSE); 2839 } 2840 2841 /* Allocate space to hold ring table */ 2842 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2843 ill->ill_dls_capab = ill_dls; 2844 ill_dls->ill_unbind_conn = connp; 2845 return (B_TRUE); 2846 } 2847 2848 /* 2849 * ill_capability_dls_disable: disable soft_ring and/or polling 2850 * capability. Since any of the rings might already be in use, need 2851 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2852 * direct calls if necessary. 2853 */ 2854 static void 2855 ill_capability_dls_disable(ill_t *ill) 2856 { 2857 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2858 2859 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2860 ip_squeue_clean_all(ill); 2861 ill_dls->ill_tx = NULL; 2862 ill_dls->ill_tx_handle = NULL; 2863 ill_dls->ill_dls_change_status = NULL; 2864 ill_dls->ill_dls_bind = NULL; 2865 ill_dls->ill_dls_unbind = NULL; 2866 } 2867 2868 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2869 } 2870 2871 static void 2872 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2873 dl_capability_sub_t *isub) 2874 { 2875 uint_t size; 2876 uchar_t *rptr; 2877 dl_capab_dls_t dls, *odls; 2878 ill_dls_capab_t *ill_dls; 2879 mblk_t *nmp = NULL; 2880 dl_capability_req_t *ocap; 2881 uint_t sub_dl_cap = isub->dl_cap; 2882 2883 if (!ill_capability_dls_init(ill)) 2884 return; 2885 ill_dls = ill->ill_dls_capab; 2886 2887 /* Copy locally to get the members aligned */ 2888 bcopy((void *)idls, (void *)&dls, 2889 sizeof (dl_capab_dls_t)); 2890 2891 /* Get the tx function and handle from dld */ 2892 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2893 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2894 2895 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2896 ill_dls->ill_dls_change_status = 2897 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2898 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2899 ill_dls->ill_dls_unbind = 2900 (ip_dls_unbind_t)dls.dls_ring_unbind; 2901 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2902 } 2903 2904 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2905 isub->dl_length; 2906 2907 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2908 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2909 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2910 ill->ill_name, (void *)ill); 2911 return; 2912 } 2913 2914 /* initialize dl_capability_req_t */ 2915 rptr = nmp->b_rptr; 2916 ocap = (dl_capability_req_t *)rptr; 2917 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2918 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2919 rptr += sizeof (dl_capability_req_t); 2920 2921 /* initialize dl_capability_sub_t */ 2922 bcopy(isub, rptr, sizeof (*isub)); 2923 rptr += sizeof (*isub); 2924 2925 odls = (dl_capab_dls_t *)rptr; 2926 rptr += sizeof (dl_capab_dls_t); 2927 2928 /* initialize dl_capab_dls_t to be sent down */ 2929 dls.dls_rx_handle = (uintptr_t)ill; 2930 dls.dls_rx = (uintptr_t)ip_input; 2931 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2932 2933 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2934 dls.dls_ring_cnt = ip_soft_rings_cnt; 2935 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2936 dls.dls_flags = SOFT_RING_ENABLE; 2937 } else { 2938 dls.dls_flags = POLL_ENABLE; 2939 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2940 "to enable polling\n", ill->ill_name)); 2941 } 2942 bcopy((void *)&dls, (void *)odls, 2943 sizeof (dl_capab_dls_t)); 2944 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2945 /* 2946 * nmp points to a DL_CAPABILITY_REQ message to 2947 * enable either soft_ring or polling 2948 */ 2949 ill_dlpi_send(ill, nmp); 2950 } 2951 2952 static void 2953 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2954 { 2955 mblk_t *mp; 2956 dl_capab_dls_t *idls; 2957 dl_capability_sub_t *dl_subcap; 2958 int size; 2959 2960 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2961 return; 2962 2963 ASSERT(ill->ill_dls_capab != NULL); 2964 2965 size = sizeof (*dl_subcap) + sizeof (*idls); 2966 2967 mp = allocb(size, BPRI_HI); 2968 if (mp == NULL) { 2969 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2970 "request to disable soft_ring\n")); 2971 return; 2972 } 2973 2974 mp->b_wptr = mp->b_rptr + size; 2975 2976 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2977 dl_subcap->dl_length = sizeof (*idls); 2978 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2979 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2980 else 2981 dl_subcap->dl_cap = DL_CAPAB_POLL; 2982 2983 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2984 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2985 idls->dls_flags = SOFT_RING_DISABLE; 2986 else 2987 idls->dls_flags = POLL_DISABLE; 2988 2989 if (*sc_mp != NULL) 2990 linkb(*sc_mp, mp); 2991 else 2992 *sc_mp = mp; 2993 } 2994 2995 /* 2996 * Process a soft_ring/poll capability negotiation ack received 2997 * from a DLS Provider.isub must point to the sub-capability 2998 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2999 */ 3000 static void 3001 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3002 { 3003 dl_capab_dls_t *idls; 3004 uint_t sub_dl_cap = isub->dl_cap; 3005 uint8_t *capend; 3006 3007 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3008 sub_dl_cap == DL_CAPAB_POLL); 3009 3010 if (ill->ill_isv6) 3011 return; 3012 3013 /* 3014 * Note: range checks here are not absolutely sufficient to 3015 * make us robust against malformed messages sent by drivers; 3016 * this is in keeping with the rest of IP's dlpi handling. 3017 * (Remember, it's coming from something else in the kernel 3018 * address space) 3019 */ 3020 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3021 if (capend > mp->b_wptr) { 3022 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3023 "malformed sub-capability too long for mblk"); 3024 return; 3025 } 3026 3027 /* 3028 * There are two types of acks we process here: 3029 * 1. acks in reply to a (first form) generic capability req 3030 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3031 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3032 * capability req. 3033 */ 3034 idls = (dl_capab_dls_t *)(isub + 1); 3035 3036 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3037 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3038 "capability isn't as expected; pass-thru " 3039 "module(s) detected, discarding capability\n")); 3040 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3041 /* 3042 * This is a capability renegotitation case. 3043 * The interface better be unusable at this 3044 * point other wise bad things will happen 3045 * if we disable direct calls on a running 3046 * and up interface. 3047 */ 3048 ill_capability_dls_disable(ill); 3049 } 3050 return; 3051 } 3052 3053 switch (idls->dls_flags) { 3054 default: 3055 /* Disable if unknown flag */ 3056 case SOFT_RING_DISABLE: 3057 case POLL_DISABLE: 3058 ill_capability_dls_disable(ill); 3059 break; 3060 case SOFT_RING_CAPABLE: 3061 case POLL_CAPABLE: 3062 /* 3063 * If the capability was already enabled, its safe 3064 * to disable it first to get rid of stale information 3065 * and then start enabling it again. 3066 */ 3067 ill_capability_dls_disable(ill); 3068 ill_capability_dls_capable(ill, idls, isub); 3069 break; 3070 case SOFT_RING_ENABLE: 3071 case POLL_ENABLE: 3072 mutex_enter(&ill->ill_lock); 3073 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3074 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3075 ASSERT(ill->ill_dls_capab != NULL); 3076 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3077 } 3078 if (sub_dl_cap == DL_CAPAB_POLL && 3079 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3080 ASSERT(ill->ill_dls_capab != NULL); 3081 ill->ill_capabilities |= ILL_CAPAB_POLL; 3082 ip1dbg(("ill_capability_dls_ack: interface %s " 3083 "has enabled polling\n", ill->ill_name)); 3084 } 3085 mutex_exit(&ill->ill_lock); 3086 break; 3087 } 3088 } 3089 3090 /* 3091 * Process a hardware checksum offload capability negotiation ack received 3092 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3093 * of a DL_CAPABILITY_ACK message. 3094 */ 3095 static void 3096 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3097 { 3098 dl_capability_req_t *ocap; 3099 dl_capab_hcksum_t *ihck, *ohck; 3100 ill_hcksum_capab_t **ill_hcksum; 3101 mblk_t *nmp = NULL; 3102 uint_t sub_dl_cap = isub->dl_cap; 3103 uint8_t *capend; 3104 3105 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3106 3107 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3108 3109 /* 3110 * Note: range checks here are not absolutely sufficient to 3111 * make us robust against malformed messages sent by drivers; 3112 * this is in keeping with the rest of IP's dlpi handling. 3113 * (Remember, it's coming from something else in the kernel 3114 * address space) 3115 */ 3116 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3117 if (capend > mp->b_wptr) { 3118 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3119 "malformed sub-capability too long for mblk"); 3120 return; 3121 } 3122 3123 /* 3124 * There are two types of acks we process here: 3125 * 1. acks in reply to a (first form) generic capability req 3126 * (no ENABLE flag set) 3127 * 2. acks in reply to a ENABLE capability req. 3128 * (ENABLE flag set) 3129 */ 3130 ihck = (dl_capab_hcksum_t *)(isub + 1); 3131 3132 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3133 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3134 "unsupported hardware checksum " 3135 "sub-capability (version %d, expected %d)", 3136 ihck->hcksum_version, HCKSUM_VERSION_1); 3137 return; 3138 } 3139 3140 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3141 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3142 "checksum capability isn't as expected; pass-thru " 3143 "module(s) detected, discarding capability\n")); 3144 return; 3145 } 3146 3147 #define CURR_HCKSUM_CAPAB \ 3148 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3149 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3150 3151 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3152 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3153 /* do ENABLE processing */ 3154 if (*ill_hcksum == NULL) { 3155 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3156 KM_NOSLEEP); 3157 3158 if (*ill_hcksum == NULL) { 3159 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3160 "could not enable hcksum version %d " 3161 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3162 ill->ill_name); 3163 return; 3164 } 3165 } 3166 3167 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3168 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3169 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3170 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3171 "has enabled hardware checksumming\n ", 3172 ill->ill_name)); 3173 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3174 /* 3175 * Enabling hardware checksum offload 3176 * Currently IP supports {TCP,UDP}/IPv4 3177 * partial and full cksum offload and 3178 * IPv4 header checksum offload. 3179 * Allocate new mblk which will 3180 * contain a new capability request 3181 * to enable hardware checksum offload. 3182 */ 3183 uint_t size; 3184 uchar_t *rptr; 3185 3186 size = sizeof (dl_capability_req_t) + 3187 sizeof (dl_capability_sub_t) + isub->dl_length; 3188 3189 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3190 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3191 "could not enable hardware cksum for %s (ENOMEM)\n", 3192 ill->ill_name); 3193 return; 3194 } 3195 3196 rptr = nmp->b_rptr; 3197 /* initialize dl_capability_req_t */ 3198 ocap = (dl_capability_req_t *)nmp->b_rptr; 3199 ocap->dl_sub_offset = 3200 sizeof (dl_capability_req_t); 3201 ocap->dl_sub_length = 3202 sizeof (dl_capability_sub_t) + 3203 isub->dl_length; 3204 nmp->b_rptr += sizeof (dl_capability_req_t); 3205 3206 /* initialize dl_capability_sub_t */ 3207 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3208 nmp->b_rptr += sizeof (*isub); 3209 3210 /* initialize dl_capab_hcksum_t */ 3211 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3212 bcopy(ihck, ohck, sizeof (*ihck)); 3213 3214 nmp->b_rptr = rptr; 3215 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3216 3217 /* Set ENABLE flag */ 3218 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3219 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3220 3221 /* 3222 * nmp points to a DL_CAPABILITY_REQ message to enable 3223 * hardware checksum acceleration. 3224 */ 3225 ill_dlpi_send(ill, nmp); 3226 } else { 3227 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3228 "advertised %x hardware checksum capability flags\n", 3229 ill->ill_name, ihck->hcksum_txflags)); 3230 } 3231 } 3232 3233 static void 3234 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3235 { 3236 mblk_t *mp; 3237 dl_capab_hcksum_t *hck_subcap; 3238 dl_capability_sub_t *dl_subcap; 3239 int size; 3240 3241 if (!ILL_HCKSUM_CAPABLE(ill)) 3242 return; 3243 3244 ASSERT(ill->ill_hcksum_capab != NULL); 3245 /* 3246 * Clear the capability flag for hardware checksum offload but 3247 * retain the ill_hcksum_capab structure since it's possible that 3248 * another thread is still referring to it. The structure only 3249 * gets deallocated when we destroy the ill. 3250 */ 3251 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3252 3253 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3254 3255 mp = allocb(size, BPRI_HI); 3256 if (mp == NULL) { 3257 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3258 "request to disable hardware checksum offload\n")); 3259 return; 3260 } 3261 3262 mp->b_wptr = mp->b_rptr + size; 3263 3264 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3265 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3266 dl_subcap->dl_length = sizeof (*hck_subcap); 3267 3268 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3269 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3270 hck_subcap->hcksum_txflags = 0; 3271 3272 if (*sc_mp != NULL) 3273 linkb(*sc_mp, mp); 3274 else 3275 *sc_mp = mp; 3276 } 3277 3278 static void 3279 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3280 { 3281 mblk_t *nmp = NULL; 3282 dl_capability_req_t *oc; 3283 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3284 ill_zerocopy_capab_t **ill_zerocopy_capab; 3285 uint_t sub_dl_cap = isub->dl_cap; 3286 uint8_t *capend; 3287 3288 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3289 3290 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3291 3292 /* 3293 * Note: range checks here are not absolutely sufficient to 3294 * make us robust against malformed messages sent by drivers; 3295 * this is in keeping with the rest of IP's dlpi handling. 3296 * (Remember, it's coming from something else in the kernel 3297 * address space) 3298 */ 3299 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3300 if (capend > mp->b_wptr) { 3301 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3302 "malformed sub-capability too long for mblk"); 3303 return; 3304 } 3305 3306 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3307 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3308 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3309 "unsupported ZEROCOPY sub-capability (version %d, " 3310 "expected %d)", zc_ic->zerocopy_version, 3311 ZEROCOPY_VERSION_1); 3312 return; 3313 } 3314 3315 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3316 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3317 "capability isn't as expected; pass-thru module(s) " 3318 "detected, discarding capability\n")); 3319 return; 3320 } 3321 3322 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3323 if (*ill_zerocopy_capab == NULL) { 3324 *ill_zerocopy_capab = 3325 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3326 KM_NOSLEEP); 3327 3328 if (*ill_zerocopy_capab == NULL) { 3329 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3330 "could not enable Zero-copy version %d " 3331 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3332 ill->ill_name); 3333 return; 3334 } 3335 } 3336 3337 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3338 "supports Zero-copy version %d\n", ill->ill_name, 3339 ZEROCOPY_VERSION_1)); 3340 3341 (*ill_zerocopy_capab)->ill_zerocopy_version = 3342 zc_ic->zerocopy_version; 3343 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3344 zc_ic->zerocopy_flags; 3345 3346 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3347 } else { 3348 uint_t size; 3349 uchar_t *rptr; 3350 3351 size = sizeof (dl_capability_req_t) + 3352 sizeof (dl_capability_sub_t) + 3353 sizeof (dl_capab_zerocopy_t); 3354 3355 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable zerocopy for %s (ENOMEM)\n", 3358 ill->ill_name); 3359 return; 3360 } 3361 3362 rptr = nmp->b_rptr; 3363 /* initialize dl_capability_req_t */ 3364 oc = (dl_capability_req_t *)rptr; 3365 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3366 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3367 sizeof (dl_capab_zerocopy_t); 3368 rptr += sizeof (dl_capability_req_t); 3369 3370 /* initialize dl_capability_sub_t */ 3371 bcopy(isub, rptr, sizeof (*isub)); 3372 rptr += sizeof (*isub); 3373 3374 /* initialize dl_capab_zerocopy_t */ 3375 zc_oc = (dl_capab_zerocopy_t *)rptr; 3376 *zc_oc = *zc_ic; 3377 3378 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3379 "to enable zero-copy version %d\n", ill->ill_name, 3380 ZEROCOPY_VERSION_1)); 3381 3382 /* set VMSAFE_MEM flag */ 3383 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3384 3385 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3386 ill_dlpi_send(ill, nmp); 3387 } 3388 } 3389 3390 static void 3391 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3392 { 3393 mblk_t *mp; 3394 dl_capab_zerocopy_t *zerocopy_subcap; 3395 dl_capability_sub_t *dl_subcap; 3396 int size; 3397 3398 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3399 return; 3400 3401 ASSERT(ill->ill_zerocopy_capab != NULL); 3402 /* 3403 * Clear the capability flag for Zero-copy but retain the 3404 * ill_zerocopy_capab structure since it's possible that another 3405 * thread is still referring to it. The structure only gets 3406 * deallocated when we destroy the ill. 3407 */ 3408 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3409 3410 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3411 3412 mp = allocb(size, BPRI_HI); 3413 if (mp == NULL) { 3414 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3415 "request to disable Zero-copy\n")); 3416 return; 3417 } 3418 3419 mp->b_wptr = mp->b_rptr + size; 3420 3421 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3422 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3423 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3424 3425 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3426 zerocopy_subcap->zerocopy_version = 3427 ill->ill_zerocopy_capab->ill_zerocopy_version; 3428 zerocopy_subcap->zerocopy_flags = 0; 3429 3430 if (*sc_mp != NULL) 3431 linkb(*sc_mp, mp); 3432 else 3433 *sc_mp = mp; 3434 } 3435 3436 /* 3437 * Process Large Segment Offload capability negotiation ack received from a 3438 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3439 * DL_CAPABILITY_ACK message. 3440 */ 3441 static void 3442 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3443 { 3444 mblk_t *nmp = NULL; 3445 dl_capability_req_t *oc; 3446 dl_capab_lso_t *lso_ic, *lso_oc; 3447 ill_lso_capab_t **ill_lso_capab; 3448 uint_t sub_dl_cap = isub->dl_cap; 3449 uint8_t *capend; 3450 3451 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3452 3453 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3454 3455 /* 3456 * Note: range checks here are not absolutely sufficient to 3457 * make us robust against malformed messages sent by drivers; 3458 * this is in keeping with the rest of IP's dlpi handling. 3459 * (Remember, it's coming from something else in the kernel 3460 * address space) 3461 */ 3462 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3463 if (capend > mp->b_wptr) { 3464 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3465 "malformed sub-capability too long for mblk"); 3466 return; 3467 } 3468 3469 lso_ic = (dl_capab_lso_t *)(isub + 1); 3470 3471 if (lso_ic->lso_version != LSO_VERSION_1) { 3472 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3473 "unsupported LSO sub-capability (version %d, expected %d)", 3474 lso_ic->lso_version, LSO_VERSION_1); 3475 return; 3476 } 3477 3478 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3479 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3480 "capability isn't as expected; pass-thru module(s) " 3481 "detected, discarding capability\n")); 3482 return; 3483 } 3484 3485 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3486 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3487 if (*ill_lso_capab == NULL) { 3488 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3489 KM_NOSLEEP); 3490 3491 if (*ill_lso_capab == NULL) { 3492 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3493 "could not enable LSO version %d " 3494 "for %s (ENOMEM)\n", LSO_VERSION_1, 3495 ill->ill_name); 3496 return; 3497 } 3498 } 3499 3500 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3501 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3502 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3503 ill->ill_capabilities |= ILL_CAPAB_LSO; 3504 3505 ip1dbg(("ill_capability_lso_ack: interface %s " 3506 "has enabled LSO\n ", ill->ill_name)); 3507 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3508 uint_t size; 3509 uchar_t *rptr; 3510 3511 size = sizeof (dl_capability_req_t) + 3512 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3513 3514 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3515 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3516 "could not enable LSO for %s (ENOMEM)\n", 3517 ill->ill_name); 3518 return; 3519 } 3520 3521 rptr = nmp->b_rptr; 3522 /* initialize dl_capability_req_t */ 3523 oc = (dl_capability_req_t *)nmp->b_rptr; 3524 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3525 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3526 sizeof (dl_capab_lso_t); 3527 nmp->b_rptr += sizeof (dl_capability_req_t); 3528 3529 /* initialize dl_capability_sub_t */ 3530 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3531 nmp->b_rptr += sizeof (*isub); 3532 3533 /* initialize dl_capab_lso_t */ 3534 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3535 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3536 3537 nmp->b_rptr = rptr; 3538 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3539 3540 /* set ENABLE flag */ 3541 lso_oc->lso_flags |= LSO_TX_ENABLE; 3542 3543 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3544 ill_dlpi_send(ill, nmp); 3545 } else { 3546 ip1dbg(("ill_capability_lso_ack: interface %s has " 3547 "advertised %x LSO capability flags\n", 3548 ill->ill_name, lso_ic->lso_flags)); 3549 } 3550 } 3551 3552 3553 static void 3554 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3555 { 3556 mblk_t *mp; 3557 dl_capab_lso_t *lso_subcap; 3558 dl_capability_sub_t *dl_subcap; 3559 int size; 3560 3561 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3562 return; 3563 3564 ASSERT(ill->ill_lso_capab != NULL); 3565 /* 3566 * Clear the capability flag for LSO but retain the 3567 * ill_lso_capab structure since it's possible that another 3568 * thread is still referring to it. The structure only gets 3569 * deallocated when we destroy the ill. 3570 */ 3571 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3572 3573 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3574 3575 mp = allocb(size, BPRI_HI); 3576 if (mp == NULL) { 3577 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3578 "request to disable LSO\n")); 3579 return; 3580 } 3581 3582 mp->b_wptr = mp->b_rptr + size; 3583 3584 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3585 dl_subcap->dl_cap = DL_CAPAB_LSO; 3586 dl_subcap->dl_length = sizeof (*lso_subcap); 3587 3588 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3589 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3590 lso_subcap->lso_flags = 0; 3591 3592 if (*sc_mp != NULL) 3593 linkb(*sc_mp, mp); 3594 else 3595 *sc_mp = mp; 3596 } 3597 3598 /* 3599 * Consume a new-style hardware capabilities negotiation ack. 3600 * Called from ip_rput_dlpi_writer(). 3601 */ 3602 void 3603 ill_capability_ack(ill_t *ill, mblk_t *mp) 3604 { 3605 dl_capability_ack_t *capp; 3606 dl_capability_sub_t *subp, *endp; 3607 3608 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3609 ill->ill_dlpi_capab_state = IDS_OK; 3610 3611 capp = (dl_capability_ack_t *)mp->b_rptr; 3612 3613 if (capp->dl_sub_length == 0) 3614 /* no new-style capabilities */ 3615 return; 3616 3617 /* make sure the driver supplied correct dl_sub_length */ 3618 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3619 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3620 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3621 return; 3622 } 3623 3624 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3625 /* 3626 * There are sub-capabilities. Process the ones we know about. 3627 * Loop until we don't have room for another sub-cap header.. 3628 */ 3629 for (subp = SC(capp, capp->dl_sub_offset), 3630 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3631 subp <= endp; 3632 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3633 3634 switch (subp->dl_cap) { 3635 case DL_CAPAB_ID_WRAPPER: 3636 ill_capability_id_ack(ill, mp, subp); 3637 break; 3638 default: 3639 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3640 break; 3641 } 3642 } 3643 #undef SC 3644 } 3645 3646 /* 3647 * This routine is called to scan the fragmentation reassembly table for 3648 * the specified ILL for any packets that are starting to smell. 3649 * dead_interval is the maximum time in seconds that will be tolerated. It 3650 * will either be the value specified in ip_g_frag_timeout, or zero if the 3651 * ILL is shutting down and it is time to blow everything off. 3652 * 3653 * It returns the number of seconds (as a time_t) that the next frag timer 3654 * should be scheduled for, 0 meaning that the timer doesn't need to be 3655 * re-started. Note that the method of calculating next_timeout isn't 3656 * entirely accurate since time will flow between the time we grab 3657 * current_time and the time we schedule the next timeout. This isn't a 3658 * big problem since this is the timer for sending an ICMP reassembly time 3659 * exceeded messages, and it doesn't have to be exactly accurate. 3660 * 3661 * This function is 3662 * sometimes called as writer, although this is not required. 3663 */ 3664 time_t 3665 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3666 { 3667 ipfb_t *ipfb; 3668 ipfb_t *endp; 3669 ipf_t *ipf; 3670 ipf_t *ipfnext; 3671 mblk_t *mp; 3672 time_t current_time = gethrestime_sec(); 3673 time_t next_timeout = 0; 3674 uint32_t hdr_length; 3675 mblk_t *send_icmp_head; 3676 mblk_t *send_icmp_head_v6; 3677 zoneid_t zoneid; 3678 ip_stack_t *ipst = ill->ill_ipst; 3679 3680 ipfb = ill->ill_frag_hash_tbl; 3681 if (ipfb == NULL) 3682 return (B_FALSE); 3683 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3684 /* Walk the frag hash table. */ 3685 for (; ipfb < endp; ipfb++) { 3686 send_icmp_head = NULL; 3687 send_icmp_head_v6 = NULL; 3688 mutex_enter(&ipfb->ipfb_lock); 3689 while ((ipf = ipfb->ipfb_ipf) != 0) { 3690 time_t frag_time = current_time - ipf->ipf_timestamp; 3691 time_t frag_timeout; 3692 3693 if (frag_time < dead_interval) { 3694 /* 3695 * There are some outstanding fragments 3696 * that will timeout later. Make note of 3697 * the time so that we can reschedule the 3698 * next timeout appropriately. 3699 */ 3700 frag_timeout = dead_interval - frag_time; 3701 if (next_timeout == 0 || 3702 frag_timeout < next_timeout) { 3703 next_timeout = frag_timeout; 3704 } 3705 break; 3706 } 3707 /* Time's up. Get it out of here. */ 3708 hdr_length = ipf->ipf_nf_hdr_len; 3709 ipfnext = ipf->ipf_hash_next; 3710 if (ipfnext) 3711 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3712 *ipf->ipf_ptphn = ipfnext; 3713 mp = ipf->ipf_mp->b_cont; 3714 for (; mp; mp = mp->b_cont) { 3715 /* Extra points for neatness. */ 3716 IP_REASS_SET_START(mp, 0); 3717 IP_REASS_SET_END(mp, 0); 3718 } 3719 mp = ipf->ipf_mp->b_cont; 3720 ill->ill_frag_count -= ipf->ipf_count; 3721 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3722 ipfb->ipfb_count -= ipf->ipf_count; 3723 ASSERT(ipfb->ipfb_frag_pkts > 0); 3724 ipfb->ipfb_frag_pkts--; 3725 /* 3726 * We do not send any icmp message from here because 3727 * we currently are holding the ipfb_lock for this 3728 * hash chain. If we try and send any icmp messages 3729 * from here we may end up via a put back into ip 3730 * trying to get the same lock, causing a recursive 3731 * mutex panic. Instead we build a list and send all 3732 * the icmp messages after we have dropped the lock. 3733 */ 3734 if (ill->ill_isv6) { 3735 if (hdr_length != 0) { 3736 mp->b_next = send_icmp_head_v6; 3737 send_icmp_head_v6 = mp; 3738 } else { 3739 freemsg(mp); 3740 } 3741 } else { 3742 if (hdr_length != 0) { 3743 mp->b_next = send_icmp_head; 3744 send_icmp_head = mp; 3745 } else { 3746 freemsg(mp); 3747 } 3748 } 3749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3750 freeb(ipf->ipf_mp); 3751 } 3752 mutex_exit(&ipfb->ipfb_lock); 3753 /* 3754 * Now need to send any icmp messages that we delayed from 3755 * above. 3756 */ 3757 while (send_icmp_head_v6 != NULL) { 3758 ip6_t *ip6h; 3759 3760 mp = send_icmp_head_v6; 3761 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3762 mp->b_next = NULL; 3763 if (mp->b_datap->db_type == M_CTL) 3764 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3765 else 3766 ip6h = (ip6_t *)mp->b_rptr; 3767 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3768 ill, ipst); 3769 if (zoneid == ALL_ZONES) { 3770 freemsg(mp); 3771 } else { 3772 icmp_time_exceeded_v6(ill->ill_wq, mp, 3773 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3774 B_FALSE, zoneid, ipst); 3775 } 3776 } 3777 while (send_icmp_head != NULL) { 3778 ipaddr_t dst; 3779 3780 mp = send_icmp_head; 3781 send_icmp_head = send_icmp_head->b_next; 3782 mp->b_next = NULL; 3783 3784 if (mp->b_datap->db_type == M_CTL) 3785 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3786 else 3787 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3788 3789 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3790 if (zoneid == ALL_ZONES) { 3791 freemsg(mp); 3792 } else { 3793 icmp_time_exceeded(ill->ill_wq, mp, 3794 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3795 ipst); 3796 } 3797 } 3798 } 3799 /* 3800 * A non-dying ILL will use the return value to decide whether to 3801 * restart the frag timer, and for how long. 3802 */ 3803 return (next_timeout); 3804 } 3805 3806 /* 3807 * This routine is called when the approximate count of mblk memory used 3808 * for the specified ILL has exceeded max_count. 3809 */ 3810 void 3811 ill_frag_prune(ill_t *ill, uint_t max_count) 3812 { 3813 ipfb_t *ipfb; 3814 ipf_t *ipf; 3815 size_t count; 3816 3817 /* 3818 * If we are here within ip_min_frag_prune_time msecs remove 3819 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3820 * ill_frag_free_num_pkts. 3821 */ 3822 mutex_enter(&ill->ill_lock); 3823 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3824 (ip_min_frag_prune_time != 0 ? 3825 ip_min_frag_prune_time : msec_per_tick)) { 3826 3827 ill->ill_frag_free_num_pkts++; 3828 3829 } else { 3830 ill->ill_frag_free_num_pkts = 0; 3831 } 3832 ill->ill_last_frag_clean_time = lbolt; 3833 mutex_exit(&ill->ill_lock); 3834 3835 /* 3836 * free ill_frag_free_num_pkts oldest packets from each bucket. 3837 */ 3838 if (ill->ill_frag_free_num_pkts != 0) { 3839 int ix; 3840 3841 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3842 ipfb = &ill->ill_frag_hash_tbl[ix]; 3843 mutex_enter(&ipfb->ipfb_lock); 3844 if (ipfb->ipfb_ipf != NULL) { 3845 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3846 ill->ill_frag_free_num_pkts); 3847 } 3848 mutex_exit(&ipfb->ipfb_lock); 3849 } 3850 } 3851 /* 3852 * While the reassembly list for this ILL is too big, prune a fragment 3853 * queue by age, oldest first. Note that the per ILL count is 3854 * approximate, while the per frag hash bucket counts are accurate. 3855 */ 3856 while (ill->ill_frag_count > max_count) { 3857 int ix; 3858 ipfb_t *oipfb = NULL; 3859 uint_t oldest = UINT_MAX; 3860 3861 count = 0; 3862 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3863 ipfb = &ill->ill_frag_hash_tbl[ix]; 3864 mutex_enter(&ipfb->ipfb_lock); 3865 ipf = ipfb->ipfb_ipf; 3866 if (ipf != NULL && ipf->ipf_gen < oldest) { 3867 oldest = ipf->ipf_gen; 3868 oipfb = ipfb; 3869 } 3870 count += ipfb->ipfb_count; 3871 mutex_exit(&ipfb->ipfb_lock); 3872 } 3873 /* Refresh the per ILL count */ 3874 ill->ill_frag_count = count; 3875 if (oipfb == NULL) { 3876 ill->ill_frag_count = 0; 3877 break; 3878 } 3879 if (count <= max_count) 3880 return; /* Somebody beat us to it, nothing to do */ 3881 mutex_enter(&oipfb->ipfb_lock); 3882 ipf = oipfb->ipfb_ipf; 3883 if (ipf != NULL) { 3884 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3885 } 3886 mutex_exit(&oipfb->ipfb_lock); 3887 } 3888 } 3889 3890 /* 3891 * free 'free_cnt' fragmented packets starting at ipf. 3892 */ 3893 void 3894 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3895 { 3896 size_t count; 3897 mblk_t *mp; 3898 mblk_t *tmp; 3899 ipf_t **ipfp = ipf->ipf_ptphn; 3900 3901 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3902 ASSERT(ipfp != NULL); 3903 ASSERT(ipf != NULL); 3904 3905 while (ipf != NULL && free_cnt-- > 0) { 3906 count = ipf->ipf_count; 3907 mp = ipf->ipf_mp; 3908 ipf = ipf->ipf_hash_next; 3909 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3910 IP_REASS_SET_START(tmp, 0); 3911 IP_REASS_SET_END(tmp, 0); 3912 } 3913 ill->ill_frag_count -= count; 3914 ASSERT(ipfb->ipfb_count >= count); 3915 ipfb->ipfb_count -= count; 3916 ASSERT(ipfb->ipfb_frag_pkts > 0); 3917 ipfb->ipfb_frag_pkts--; 3918 freemsg(mp); 3919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3920 } 3921 3922 if (ipf) 3923 ipf->ipf_ptphn = ipfp; 3924 ipfp[0] = ipf; 3925 } 3926 3927 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3928 "obsolete and may be removed in a future release of Solaris. Use " \ 3929 "ifconfig(1M) to manipulate the forwarding status of an interface." 3930 3931 /* 3932 * For obsolete per-interface forwarding configuration; 3933 * called in response to ND_GET. 3934 */ 3935 /* ARGSUSED */ 3936 static int 3937 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3938 { 3939 ill_t *ill = (ill_t *)cp; 3940 3941 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3942 3943 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3944 return (0); 3945 } 3946 3947 /* 3948 * For obsolete per-interface forwarding configuration; 3949 * called in response to ND_SET. 3950 */ 3951 /* ARGSUSED */ 3952 static int 3953 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3954 cred_t *ioc_cr) 3955 { 3956 long value; 3957 int retval; 3958 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3959 3960 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3961 3962 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3963 value < 0 || value > 1) { 3964 return (EINVAL); 3965 } 3966 3967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3968 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3969 rw_exit(&ipst->ips_ill_g_lock); 3970 return (retval); 3971 } 3972 3973 /* 3974 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3975 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3976 * up RTS_IFINFO routing socket messages for each interface whose flags we 3977 * change. 3978 */ 3979 int 3980 ill_forward_set(ill_t *ill, boolean_t enable) 3981 { 3982 ill_group_t *illgrp; 3983 ip_stack_t *ipst = ill->ill_ipst; 3984 3985 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3986 3987 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3988 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3989 return (0); 3990 3991 if (IS_LOOPBACK(ill)) 3992 return (EINVAL); 3993 3994 /* 3995 * If the ill is in an IPMP group, set the forwarding policy on all 3996 * members of the group to the same value. 3997 */ 3998 illgrp = ill->ill_group; 3999 if (illgrp != NULL) { 4000 ill_t *tmp_ill; 4001 4002 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4003 tmp_ill = tmp_ill->ill_group_next) { 4004 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4005 (enable ? "Enabling" : "Disabling"), 4006 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4007 tmp_ill->ill_name)); 4008 mutex_enter(&tmp_ill->ill_lock); 4009 if (enable) 4010 tmp_ill->ill_flags |= ILLF_ROUTER; 4011 else 4012 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4013 mutex_exit(&tmp_ill->ill_lock); 4014 if (tmp_ill->ill_isv6) 4015 ill_set_nce_router_flags(tmp_ill, enable); 4016 /* Notify routing socket listeners of this change. */ 4017 ip_rts_ifmsg(tmp_ill->ill_ipif); 4018 } 4019 } else { 4020 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4021 (enable ? "Enabling" : "Disabling"), 4022 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4023 mutex_enter(&ill->ill_lock); 4024 if (enable) 4025 ill->ill_flags |= ILLF_ROUTER; 4026 else 4027 ill->ill_flags &= ~ILLF_ROUTER; 4028 mutex_exit(&ill->ill_lock); 4029 if (ill->ill_isv6) 4030 ill_set_nce_router_flags(ill, enable); 4031 /* Notify routing socket listeners of this change. */ 4032 ip_rts_ifmsg(ill->ill_ipif); 4033 } 4034 4035 return (0); 4036 } 4037 4038 /* 4039 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4040 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4041 * set or clear. 4042 */ 4043 static void 4044 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4045 { 4046 ipif_t *ipif; 4047 nce_t *nce; 4048 4049 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4050 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4051 if (nce != NULL) { 4052 mutex_enter(&nce->nce_lock); 4053 if (enable) 4054 nce->nce_flags |= NCE_F_ISROUTER; 4055 else 4056 nce->nce_flags &= ~NCE_F_ISROUTER; 4057 mutex_exit(&nce->nce_lock); 4058 NCE_REFRELE(nce); 4059 } 4060 } 4061 } 4062 4063 /* 4064 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4065 * for this ill. Make sure the v6/v4 question has been answered about this 4066 * ill. The creation of this ndd variable is only for backwards compatibility. 4067 * The preferred way to control per-interface IP forwarding is through the 4068 * ILLF_ROUTER interface flag. 4069 */ 4070 static int 4071 ill_set_ndd_name(ill_t *ill) 4072 { 4073 char *suffix; 4074 ip_stack_t *ipst = ill->ill_ipst; 4075 4076 ASSERT(IAM_WRITER_ILL(ill)); 4077 4078 if (ill->ill_isv6) 4079 suffix = ipv6_forward_suffix; 4080 else 4081 suffix = ipv4_forward_suffix; 4082 4083 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4084 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4085 /* 4086 * Copies over the '\0'. 4087 * Note that strlen(suffix) is always bounded. 4088 */ 4089 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4090 strlen(suffix) + 1); 4091 4092 /* 4093 * Use of the nd table requires holding the reader lock. 4094 * Modifying the nd table thru nd_load/nd_unload requires 4095 * the writer lock. 4096 */ 4097 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4098 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4099 nd_ill_forward_set, (caddr_t)ill)) { 4100 /* 4101 * If the nd_load failed, it only meant that it could not 4102 * allocate a new bunch of room for further NDD expansion. 4103 * Because of that, the ill_ndd_name will be set to 0, and 4104 * this interface is at the mercy of the global ip_forwarding 4105 * variable. 4106 */ 4107 rw_exit(&ipst->ips_ip_g_nd_lock); 4108 ill->ill_ndd_name = NULL; 4109 return (ENOMEM); 4110 } 4111 rw_exit(&ipst->ips_ip_g_nd_lock); 4112 return (0); 4113 } 4114 4115 /* 4116 * Intializes the context structure and returns the first ill in the list 4117 * cuurently start_list and end_list can have values: 4118 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4119 * IP_V4_G_HEAD Traverse IPV4 list only. 4120 * IP_V6_G_HEAD Traverse IPV6 list only. 4121 */ 4122 4123 /* 4124 * We don't check for CONDEMNED ills here. Caller must do that if 4125 * necessary under the ill lock. 4126 */ 4127 ill_t * 4128 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4129 ip_stack_t *ipst) 4130 { 4131 ill_if_t *ifp; 4132 ill_t *ill; 4133 avl_tree_t *avl_tree; 4134 4135 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4136 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4137 4138 /* 4139 * setup the lists to search 4140 */ 4141 if (end_list != MAX_G_HEADS) { 4142 ctx->ctx_current_list = start_list; 4143 ctx->ctx_last_list = end_list; 4144 } else { 4145 ctx->ctx_last_list = MAX_G_HEADS - 1; 4146 ctx->ctx_current_list = 0; 4147 } 4148 4149 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4150 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4151 if (ifp != (ill_if_t *) 4152 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4153 avl_tree = &ifp->illif_avl_by_ppa; 4154 ill = avl_first(avl_tree); 4155 /* 4156 * ill is guaranteed to be non NULL or ifp should have 4157 * not existed. 4158 */ 4159 ASSERT(ill != NULL); 4160 return (ill); 4161 } 4162 ctx->ctx_current_list++; 4163 } 4164 4165 return (NULL); 4166 } 4167 4168 /* 4169 * returns the next ill in the list. ill_first() must have been called 4170 * before calling ill_next() or bad things will happen. 4171 */ 4172 4173 /* 4174 * We don't check for CONDEMNED ills here. Caller must do that if 4175 * necessary under the ill lock. 4176 */ 4177 ill_t * 4178 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4179 { 4180 ill_if_t *ifp; 4181 ill_t *ill; 4182 ip_stack_t *ipst = lastill->ill_ipst; 4183 4184 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4185 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4186 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4187 AVL_AFTER)) != NULL) { 4188 return (ill); 4189 } 4190 4191 /* goto next ill_ifp in the list. */ 4192 ifp = lastill->ill_ifptr->illif_next; 4193 4194 /* make sure not at end of circular list */ 4195 while (ifp == 4196 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4197 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4198 return (NULL); 4199 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4200 } 4201 4202 return (avl_first(&ifp->illif_avl_by_ppa)); 4203 } 4204 4205 /* 4206 * Check interface name for correct format which is name+ppa. 4207 * name can contain characters and digits, the right most digits 4208 * make up the ppa number. use of octal is not allowed, name must contain 4209 * a ppa, return pointer to the start of ppa. 4210 * In case of error return NULL. 4211 */ 4212 static char * 4213 ill_get_ppa_ptr(char *name) 4214 { 4215 int namelen = mi_strlen(name); 4216 4217 int len = namelen; 4218 4219 name += len; 4220 while (len > 0) { 4221 name--; 4222 if (*name < '0' || *name > '9') 4223 break; 4224 len--; 4225 } 4226 4227 /* empty string, all digits, or no trailing digits */ 4228 if (len == 0 || len == (int)namelen) 4229 return (NULL); 4230 4231 name++; 4232 /* check for attempted use of octal */ 4233 if (*name == '0' && len != (int)namelen - 1) 4234 return (NULL); 4235 return (name); 4236 } 4237 4238 /* 4239 * use avl tree to locate the ill. 4240 */ 4241 static ill_t * 4242 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4243 ipsq_func_t func, int *error, ip_stack_t *ipst) 4244 { 4245 char *ppa_ptr = NULL; 4246 int len; 4247 uint_t ppa; 4248 ill_t *ill = NULL; 4249 ill_if_t *ifp; 4250 int list; 4251 ipsq_t *ipsq; 4252 4253 if (error != NULL) 4254 *error = 0; 4255 4256 /* 4257 * get ppa ptr 4258 */ 4259 if (isv6) 4260 list = IP_V6_G_HEAD; 4261 else 4262 list = IP_V4_G_HEAD; 4263 4264 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4265 if (error != NULL) 4266 *error = ENXIO; 4267 return (NULL); 4268 } 4269 4270 len = ppa_ptr - name + 1; 4271 4272 ppa = stoi(&ppa_ptr); 4273 4274 ifp = IP_VX_ILL_G_LIST(list, ipst); 4275 4276 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4277 /* 4278 * match is done on len - 1 as the name is not null 4279 * terminated it contains ppa in addition to the interface 4280 * name. 4281 */ 4282 if ((ifp->illif_name_len == len) && 4283 bcmp(ifp->illif_name, name, len - 1) == 0) { 4284 break; 4285 } else { 4286 ifp = ifp->illif_next; 4287 } 4288 } 4289 4290 4291 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4292 /* 4293 * Even the interface type does not exist. 4294 */ 4295 if (error != NULL) 4296 *error = ENXIO; 4297 return (NULL); 4298 } 4299 4300 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4301 if (ill != NULL) { 4302 /* 4303 * The block comment at the start of ipif_down 4304 * explains the use of the macros used below 4305 */ 4306 GRAB_CONN_LOCK(q); 4307 mutex_enter(&ill->ill_lock); 4308 if (ILL_CAN_LOOKUP(ill)) { 4309 ill_refhold_locked(ill); 4310 mutex_exit(&ill->ill_lock); 4311 RELEASE_CONN_LOCK(q); 4312 return (ill); 4313 } else if (ILL_CAN_WAIT(ill, q)) { 4314 ipsq = ill->ill_phyint->phyint_ipsq; 4315 mutex_enter(&ipsq->ipsq_lock); 4316 mutex_exit(&ill->ill_lock); 4317 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4318 mutex_exit(&ipsq->ipsq_lock); 4319 RELEASE_CONN_LOCK(q); 4320 *error = EINPROGRESS; 4321 return (NULL); 4322 } 4323 mutex_exit(&ill->ill_lock); 4324 RELEASE_CONN_LOCK(q); 4325 } 4326 if (error != NULL) 4327 *error = ENXIO; 4328 return (NULL); 4329 } 4330 4331 /* 4332 * comparison function for use with avl. 4333 */ 4334 static int 4335 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4336 { 4337 uint_t ppa; 4338 uint_t ill_ppa; 4339 4340 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4341 4342 ppa = *((uint_t *)ppa_ptr); 4343 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4344 /* 4345 * We want the ill with the lowest ppa to be on the 4346 * top. 4347 */ 4348 if (ill_ppa < ppa) 4349 return (1); 4350 if (ill_ppa > ppa) 4351 return (-1); 4352 return (0); 4353 } 4354 4355 /* 4356 * remove an interface type from the global list. 4357 */ 4358 static void 4359 ill_delete_interface_type(ill_if_t *interface) 4360 { 4361 ASSERT(interface != NULL); 4362 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4363 4364 avl_destroy(&interface->illif_avl_by_ppa); 4365 if (interface->illif_ppa_arena != NULL) 4366 vmem_destroy(interface->illif_ppa_arena); 4367 4368 remque(interface); 4369 4370 mi_free(interface); 4371 } 4372 4373 /* Defined in ip_netinfo.c */ 4374 extern ddi_taskq_t *eventq_queue_nic; 4375 4376 /* 4377 * remove ill from the global list. 4378 */ 4379 static void 4380 ill_glist_delete(ill_t *ill) 4381 { 4382 char *nicname; 4383 size_t nicnamelen; 4384 hook_nic_event_t *info; 4385 ip_stack_t *ipst; 4386 4387 if (ill == NULL) 4388 return; 4389 ipst = ill->ill_ipst; 4390 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4391 4392 if (ill->ill_name != NULL) { 4393 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4394 if (nicname != NULL) { 4395 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4396 nicnamelen = ill->ill_name_length; 4397 } 4398 } else { 4399 nicname = NULL; 4400 nicnamelen = 0; 4401 } 4402 4403 /* 4404 * If the ill was never inserted into the AVL tree 4405 * we skip the if branch. 4406 */ 4407 if (ill->ill_ifptr != NULL) { 4408 /* 4409 * remove from AVL tree and free ppa number 4410 */ 4411 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4412 4413 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4414 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4415 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4416 } 4417 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4418 ill_delete_interface_type(ill->ill_ifptr); 4419 } 4420 4421 /* 4422 * Indicate ill is no longer in the list. 4423 */ 4424 ill->ill_ifptr = NULL; 4425 ill->ill_name_length = 0; 4426 ill->ill_name[0] = '\0'; 4427 ill->ill_ppa = UINT_MAX; 4428 } 4429 4430 /* 4431 * Run the unplumb hook after the NIC has disappeared from being 4432 * visible so that attempts to revalidate its existance will fail. 4433 * 4434 * This needs to be run inside the ill_g_lock perimeter to ensure 4435 * that the ordering of delivered events to listeners matches the 4436 * order of them in the kernel. 4437 */ 4438 if ((info = ill->ill_nic_event_info) != NULL) { 4439 if (info->hne_event != NE_DOWN) { 4440 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4441 "attached for %s\n", info->hne_event, 4442 ill->ill_name)); 4443 if (info->hne_data != NULL) 4444 kmem_free(info->hne_data, info->hne_datalen); 4445 kmem_free(info, sizeof (hook_nic_event_t)); 4446 } else { 4447 if (ddi_taskq_dispatch(eventq_queue_nic, 4448 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4449 == DDI_FAILURE) { 4450 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4451 "failed\n")); 4452 if (info->hne_data != NULL) 4453 kmem_free(info->hne_data, 4454 info->hne_datalen); 4455 kmem_free(info, sizeof (hook_nic_event_t)); 4456 } 4457 } 4458 } 4459 4460 /* Generate NE_UNPLUMB event for ill_name. */ 4461 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4462 if (info != NULL) { 4463 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4464 info->hne_lif = 0; 4465 info->hne_event = NE_UNPLUMB; 4466 info->hne_data = nicname; 4467 info->hne_datalen = nicnamelen; 4468 info->hne_family = ill->ill_isv6 ? 4469 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4470 } else { 4471 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4472 "information for %s (ENOMEM)\n", ill->ill_name)); 4473 if (nicname != NULL) 4474 kmem_free(nicname, nicnamelen); 4475 } 4476 4477 ill->ill_nic_event_info = info; 4478 4479 ill_phyint_free(ill); 4480 rw_exit(&ipst->ips_ill_g_lock); 4481 } 4482 4483 /* 4484 * allocate a ppa, if the number of plumbed interfaces of this type are 4485 * less than ill_no_arena do a linear search to find a unused ppa. 4486 * When the number goes beyond ill_no_arena switch to using an arena. 4487 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4488 * is the return value for an error condition, so allocation starts at one 4489 * and is decremented by one. 4490 */ 4491 static int 4492 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4493 { 4494 ill_t *tmp_ill; 4495 uint_t start, end; 4496 int ppa; 4497 4498 if (ifp->illif_ppa_arena == NULL && 4499 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4500 /* 4501 * Create an arena. 4502 */ 4503 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4504 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4505 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4506 /* allocate what has already been assigned */ 4507 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4508 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4509 tmp_ill, AVL_AFTER)) { 4510 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4511 1, /* size */ 4512 1, /* align/quantum */ 4513 0, /* phase */ 4514 0, /* nocross */ 4515 /* minaddr */ 4516 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4517 /* maxaddr */ 4518 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4519 VM_NOSLEEP|VM_FIRSTFIT); 4520 if (ppa == 0) { 4521 ip1dbg(("ill_alloc_ppa: ppa allocation" 4522 " failed while switching")); 4523 vmem_destroy(ifp->illif_ppa_arena); 4524 ifp->illif_ppa_arena = NULL; 4525 break; 4526 } 4527 } 4528 } 4529 4530 if (ifp->illif_ppa_arena != NULL) { 4531 if (ill->ill_ppa == UINT_MAX) { 4532 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4533 1, VM_NOSLEEP|VM_FIRSTFIT); 4534 if (ppa == 0) 4535 return (EAGAIN); 4536 ill->ill_ppa = --ppa; 4537 } else { 4538 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4539 1, /* size */ 4540 1, /* align/quantum */ 4541 0, /* phase */ 4542 0, /* nocross */ 4543 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4544 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4545 VM_NOSLEEP|VM_FIRSTFIT); 4546 /* 4547 * Most likely the allocation failed because 4548 * the requested ppa was in use. 4549 */ 4550 if (ppa == 0) 4551 return (EEXIST); 4552 } 4553 return (0); 4554 } 4555 4556 /* 4557 * No arena is in use and not enough (>ill_no_arena) interfaces have 4558 * been plumbed to create one. Do a linear search to get a unused ppa. 4559 */ 4560 if (ill->ill_ppa == UINT_MAX) { 4561 end = UINT_MAX - 1; 4562 start = 0; 4563 } else { 4564 end = start = ill->ill_ppa; 4565 } 4566 4567 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4568 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4569 if (start++ >= end) { 4570 if (ill->ill_ppa == UINT_MAX) 4571 return (EAGAIN); 4572 else 4573 return (EEXIST); 4574 } 4575 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4576 } 4577 ill->ill_ppa = start; 4578 return (0); 4579 } 4580 4581 /* 4582 * Insert ill into the list of configured ill's. Once this function completes, 4583 * the ill is globally visible and is available through lookups. More precisely 4584 * this happens after the caller drops the ill_g_lock. 4585 */ 4586 static int 4587 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4588 { 4589 ill_if_t *ill_interface; 4590 avl_index_t where = 0; 4591 int error; 4592 int name_length; 4593 int index; 4594 boolean_t check_length = B_FALSE; 4595 ip_stack_t *ipst = ill->ill_ipst; 4596 4597 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4598 4599 name_length = mi_strlen(name) + 1; 4600 4601 if (isv6) 4602 index = IP_V6_G_HEAD; 4603 else 4604 index = IP_V4_G_HEAD; 4605 4606 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4607 /* 4608 * Search for interface type based on name 4609 */ 4610 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4611 if ((ill_interface->illif_name_len == name_length) && 4612 (strcmp(ill_interface->illif_name, name) == 0)) { 4613 break; 4614 } 4615 ill_interface = ill_interface->illif_next; 4616 } 4617 4618 /* 4619 * Interface type not found, create one. 4620 */ 4621 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4622 4623 ill_g_head_t ghead; 4624 4625 /* 4626 * allocate ill_if_t structure 4627 */ 4628 4629 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4630 if (ill_interface == NULL) { 4631 return (ENOMEM); 4632 } 4633 4634 4635 4636 (void) strcpy(ill_interface->illif_name, name); 4637 ill_interface->illif_name_len = name_length; 4638 4639 avl_create(&ill_interface->illif_avl_by_ppa, 4640 ill_compare_ppa, sizeof (ill_t), 4641 offsetof(struct ill_s, ill_avl_byppa)); 4642 4643 /* 4644 * link the structure in the back to maintain order 4645 * of configuration for ifconfig output. 4646 */ 4647 ghead = ipst->ips_ill_g_heads[index]; 4648 insque(ill_interface, ghead.ill_g_list_tail); 4649 4650 } 4651 4652 if (ill->ill_ppa == UINT_MAX) 4653 check_length = B_TRUE; 4654 4655 error = ill_alloc_ppa(ill_interface, ill); 4656 if (error != 0) { 4657 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4658 ill_delete_interface_type(ill->ill_ifptr); 4659 return (error); 4660 } 4661 4662 /* 4663 * When the ppa is choosen by the system, check that there is 4664 * enough space to insert ppa. if a specific ppa was passed in this 4665 * check is not required as the interface name passed in will have 4666 * the right ppa in it. 4667 */ 4668 if (check_length) { 4669 /* 4670 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4671 */ 4672 char buf[sizeof (uint_t) * 3]; 4673 4674 /* 4675 * convert ppa to string to calculate the amount of space 4676 * required for it in the name. 4677 */ 4678 numtos(ill->ill_ppa, buf); 4679 4680 /* Do we have enough space to insert ppa ? */ 4681 4682 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4683 /* Free ppa and interface type struct */ 4684 if (ill_interface->illif_ppa_arena != NULL) { 4685 vmem_free(ill_interface->illif_ppa_arena, 4686 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4687 } 4688 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4689 0) { 4690 ill_delete_interface_type(ill->ill_ifptr); 4691 } 4692 4693 return (EINVAL); 4694 } 4695 } 4696 4697 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4698 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4699 4700 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4701 &where); 4702 ill->ill_ifptr = ill_interface; 4703 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4704 4705 ill_phyint_reinit(ill); 4706 return (0); 4707 } 4708 4709 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4710 static boolean_t 4711 ipsq_init(ill_t *ill) 4712 { 4713 ipsq_t *ipsq; 4714 4715 /* Init the ipsq and impicitly enter as writer */ 4716 ill->ill_phyint->phyint_ipsq = 4717 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4718 if (ill->ill_phyint->phyint_ipsq == NULL) 4719 return (B_FALSE); 4720 ipsq = ill->ill_phyint->phyint_ipsq; 4721 ipsq->ipsq_phyint_list = ill->ill_phyint; 4722 ill->ill_phyint->phyint_ipsq_next = NULL; 4723 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4724 ipsq->ipsq_refs = 1; 4725 ipsq->ipsq_writer = curthread; 4726 ipsq->ipsq_reentry_cnt = 1; 4727 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4728 #ifdef ILL_DEBUG 4729 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4730 #endif 4731 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4732 return (B_TRUE); 4733 } 4734 4735 /* 4736 * ill_init is called by ip_open when a device control stream is opened. 4737 * It does a few initializations, and shoots a DL_INFO_REQ message down 4738 * to the driver. The response is later picked up in ip_rput_dlpi and 4739 * used to set up default mechanisms for talking to the driver. (Always 4740 * called as writer.) 4741 * 4742 * If this function returns error, ip_open will call ip_close which in 4743 * turn will call ill_delete to clean up any memory allocated here that 4744 * is not yet freed. 4745 */ 4746 int 4747 ill_init(queue_t *q, ill_t *ill) 4748 { 4749 int count; 4750 dl_info_req_t *dlir; 4751 mblk_t *info_mp; 4752 uchar_t *frag_ptr; 4753 4754 /* 4755 * The ill is initialized to zero by mi_alloc*(). In addition 4756 * some fields already contain valid values, initialized in 4757 * ip_open(), before we reach here. 4758 */ 4759 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4760 4761 ill->ill_rq = q; 4762 ill->ill_wq = WR(q); 4763 4764 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4765 BPRI_HI); 4766 if (info_mp == NULL) 4767 return (ENOMEM); 4768 4769 /* 4770 * Allocate sufficient space to contain our fragment hash table and 4771 * the device name. 4772 */ 4773 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4774 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4775 if (frag_ptr == NULL) { 4776 freemsg(info_mp); 4777 return (ENOMEM); 4778 } 4779 ill->ill_frag_ptr = frag_ptr; 4780 ill->ill_frag_free_num_pkts = 0; 4781 ill->ill_last_frag_clean_time = 0; 4782 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4783 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4784 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4785 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4786 NULL, MUTEX_DEFAULT, NULL); 4787 } 4788 4789 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4790 if (ill->ill_phyint == NULL) { 4791 freemsg(info_mp); 4792 mi_free(frag_ptr); 4793 return (ENOMEM); 4794 } 4795 4796 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4797 /* 4798 * For now pretend this is a v4 ill. We need to set phyint_ill* 4799 * at this point because of the following reason. If we can't 4800 * enter the ipsq at some point and cv_wait, the writer that 4801 * wakes us up tries to locate us using the list of all phyints 4802 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4803 * If we don't set it now, we risk a missed wakeup. 4804 */ 4805 ill->ill_phyint->phyint_illv4 = ill; 4806 ill->ill_ppa = UINT_MAX; 4807 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4808 4809 if (!ipsq_init(ill)) { 4810 freemsg(info_mp); 4811 mi_free(frag_ptr); 4812 mi_free(ill->ill_phyint); 4813 return (ENOMEM); 4814 } 4815 4816 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4817 4818 4819 /* Frag queue limit stuff */ 4820 ill->ill_frag_count = 0; 4821 ill->ill_ipf_gen = 0; 4822 4823 ill->ill_global_timer = INFINITY; 4824 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4825 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4826 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4827 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4828 4829 /* 4830 * Initialize IPv6 configuration variables. The IP module is always 4831 * opened as an IPv4 module. Instead tracking down the cases where 4832 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4833 * here for convenience, this has no effect until the ill is set to do 4834 * IPv6. 4835 */ 4836 ill->ill_reachable_time = ND_REACHABLE_TIME; 4837 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4838 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4839 ill->ill_max_buf = ND_MAX_Q; 4840 ill->ill_refcnt = 0; 4841 4842 /* Send down the Info Request to the driver. */ 4843 info_mp->b_datap->db_type = M_PCPROTO; 4844 dlir = (dl_info_req_t *)info_mp->b_rptr; 4845 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4846 dlir->dl_primitive = DL_INFO_REQ; 4847 4848 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4849 4850 qprocson(q); 4851 ill_dlpi_send(ill, info_mp); 4852 4853 return (0); 4854 } 4855 4856 /* 4857 * ill_dls_info 4858 * creates datalink socket info from the device. 4859 */ 4860 int 4861 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4862 { 4863 size_t len; 4864 ill_t *ill = ipif->ipif_ill; 4865 4866 sdl->sdl_family = AF_LINK; 4867 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4868 sdl->sdl_type = ill->ill_type; 4869 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4870 len = strlen(sdl->sdl_data); 4871 ASSERT(len < 256); 4872 sdl->sdl_nlen = (uchar_t)len; 4873 sdl->sdl_alen = ill->ill_phys_addr_length; 4874 sdl->sdl_slen = 0; 4875 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4876 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4877 4878 return (sizeof (struct sockaddr_dl)); 4879 } 4880 4881 /* 4882 * ill_xarp_info 4883 * creates xarp info from the device. 4884 */ 4885 static int 4886 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4887 { 4888 sdl->sdl_family = AF_LINK; 4889 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4890 sdl->sdl_type = ill->ill_type; 4891 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4892 sizeof (sdl->sdl_data)); 4893 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4894 sdl->sdl_alen = ill->ill_phys_addr_length; 4895 sdl->sdl_slen = 0; 4896 return (sdl->sdl_nlen); 4897 } 4898 4899 static int 4900 loopback_kstat_update(kstat_t *ksp, int rw) 4901 { 4902 kstat_named_t *kn; 4903 netstackid_t stackid; 4904 netstack_t *ns; 4905 ip_stack_t *ipst; 4906 4907 if (ksp == NULL || ksp->ks_data == NULL) 4908 return (EIO); 4909 4910 if (rw == KSTAT_WRITE) 4911 return (EACCES); 4912 4913 kn = KSTAT_NAMED_PTR(ksp); 4914 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4915 4916 ns = netstack_find_by_stackid(stackid); 4917 if (ns == NULL) 4918 return (-1); 4919 4920 ipst = ns->netstack_ip; 4921 if (ipst == NULL) { 4922 netstack_rele(ns); 4923 return (-1); 4924 } 4925 kn[0].value.ui32 = ipst->ips_loopback_packets; 4926 kn[1].value.ui32 = ipst->ips_loopback_packets; 4927 netstack_rele(ns); 4928 return (0); 4929 } 4930 4931 4932 /* 4933 * Has ifindex been plumbed already. 4934 * Compares both phyint_ifindex and phyint_group_ifindex. 4935 */ 4936 static boolean_t 4937 phyint_exists(uint_t index, ip_stack_t *ipst) 4938 { 4939 phyint_t *phyi; 4940 4941 ASSERT(index != 0); 4942 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4943 /* 4944 * Indexes are stored in the phyint - a common structure 4945 * to both IPv4 and IPv6. 4946 */ 4947 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4948 for (; phyi != NULL; 4949 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4950 phyi, AVL_AFTER)) { 4951 if (phyi->phyint_ifindex == index || 4952 phyi->phyint_group_ifindex == index) 4953 return (B_TRUE); 4954 } 4955 return (B_FALSE); 4956 } 4957 4958 /* Pick a unique ifindex */ 4959 boolean_t 4960 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4961 { 4962 uint_t starting_index; 4963 4964 if (!ipst->ips_ill_index_wrap) { 4965 *indexp = ipst->ips_ill_index++; 4966 if (ipst->ips_ill_index == 0) { 4967 /* Reached the uint_t limit Next time wrap */ 4968 ipst->ips_ill_index_wrap = B_TRUE; 4969 } 4970 return (B_TRUE); 4971 } 4972 4973 /* 4974 * Start reusing unused indexes. Note that we hold the ill_g_lock 4975 * at this point and don't want to call any function that attempts 4976 * to get the lock again. 4977 */ 4978 starting_index = ipst->ips_ill_index++; 4979 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4980 if (ipst->ips_ill_index != 0 && 4981 !phyint_exists(ipst->ips_ill_index, ipst)) { 4982 /* found unused index - use it */ 4983 *indexp = ipst->ips_ill_index; 4984 return (B_TRUE); 4985 } 4986 } 4987 4988 /* 4989 * all interface indicies are inuse. 4990 */ 4991 return (B_FALSE); 4992 } 4993 4994 /* 4995 * Assign a unique interface index for the phyint. 4996 */ 4997 static boolean_t 4998 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4999 { 5000 ASSERT(phyi->phyint_ifindex == 0); 5001 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5002 } 5003 5004 /* 5005 * Return a pointer to the ill which matches the supplied name. Note that 5006 * the ill name length includes the null termination character. (May be 5007 * called as writer.) 5008 * If do_alloc and the interface is "lo0" it will be automatically created. 5009 * Cannot bump up reference on condemned ills. So dup detect can't be done 5010 * using this func. 5011 */ 5012 ill_t * 5013 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5014 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5015 ip_stack_t *ipst) 5016 { 5017 ill_t *ill; 5018 ipif_t *ipif; 5019 kstat_named_t *kn; 5020 boolean_t isloopback; 5021 ipsq_t *old_ipsq; 5022 in6_addr_t ov6addr; 5023 5024 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5025 5026 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5027 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5028 rw_exit(&ipst->ips_ill_g_lock); 5029 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5030 return (ill); 5031 5032 /* 5033 * Couldn't find it. Does this happen to be a lookup for the 5034 * loopback device and are we allowed to allocate it? 5035 */ 5036 if (!isloopback || !do_alloc) 5037 return (NULL); 5038 5039 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5040 5041 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5042 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5043 rw_exit(&ipst->ips_ill_g_lock); 5044 return (ill); 5045 } 5046 5047 /* Create the loopback device on demand */ 5048 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5049 sizeof (ipif_loopback_name), BPRI_MED)); 5050 if (ill == NULL) 5051 goto done; 5052 5053 *ill = ill_null; 5054 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5055 ill->ill_ipst = ipst; 5056 netstack_hold(ipst->ips_netstack); 5057 /* 5058 * For exclusive stacks we set the zoneid to zero 5059 * to make IP operate as if in the global zone. 5060 */ 5061 ill->ill_zoneid = GLOBAL_ZONEID; 5062 5063 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5064 if (ill->ill_phyint == NULL) 5065 goto done; 5066 5067 if (isv6) 5068 ill->ill_phyint->phyint_illv6 = ill; 5069 else 5070 ill->ill_phyint->phyint_illv4 = ill; 5071 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5072 ill->ill_max_frag = IP_LOOPBACK_MTU; 5073 /* Add room for tcp+ip headers */ 5074 if (isv6) { 5075 ill->ill_isv6 = B_TRUE; 5076 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5077 } else { 5078 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5079 } 5080 if (!ill_allocate_mibs(ill)) 5081 goto done; 5082 ill->ill_max_mtu = ill->ill_max_frag; 5083 /* 5084 * ipif_loopback_name can't be pointed at directly because its used 5085 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5086 * from the glist, ill_glist_delete() sets the first character of 5087 * ill_name to '\0'. 5088 */ 5089 ill->ill_name = (char *)ill + sizeof (*ill); 5090 (void) strcpy(ill->ill_name, ipif_loopback_name); 5091 ill->ill_name_length = sizeof (ipif_loopback_name); 5092 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5093 5094 ill->ill_global_timer = INFINITY; 5095 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5096 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5097 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5098 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5099 5100 /* No resolver here. */ 5101 ill->ill_net_type = IRE_LOOPBACK; 5102 5103 /* Initialize the ipsq */ 5104 if (!ipsq_init(ill)) 5105 goto done; 5106 5107 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5108 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5109 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5110 #ifdef ILL_DEBUG 5111 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5112 #endif 5113 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5114 if (ipif == NULL) 5115 goto done; 5116 5117 ill->ill_flags = ILLF_MULTICAST; 5118 5119 ov6addr = ipif->ipif_v6lcl_addr; 5120 /* Set up default loopback address and mask. */ 5121 if (!isv6) { 5122 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5123 5124 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5125 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5126 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5127 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5128 ipif->ipif_v6subnet); 5129 ill->ill_flags |= ILLF_IPV4; 5130 } else { 5131 ipif->ipif_v6lcl_addr = ipv6_loopback; 5132 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5133 ipif->ipif_v6net_mask = ipv6_all_ones; 5134 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5135 ipif->ipif_v6subnet); 5136 ill->ill_flags |= ILLF_IPV6; 5137 } 5138 5139 /* 5140 * Chain us in at the end of the ill list. hold the ill 5141 * before we make it globally visible. 1 for the lookup. 5142 */ 5143 ill->ill_refcnt = 0; 5144 ill_refhold(ill); 5145 5146 ill->ill_frag_count = 0; 5147 ill->ill_frag_free_num_pkts = 0; 5148 ill->ill_last_frag_clean_time = 0; 5149 5150 old_ipsq = ill->ill_phyint->phyint_ipsq; 5151 5152 if (ill_glist_insert(ill, "lo", isv6) != 0) 5153 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5154 5155 /* Let SCTP know so that it can add this to its list */ 5156 sctp_update_ill(ill, SCTP_ILL_INSERT); 5157 5158 /* 5159 * We have already assigned ipif_v6lcl_addr above, but we need to 5160 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5161 * requires to be after ill_glist_insert() since we need the 5162 * ill_index set. Pass on ipv6_loopback as the old address. 5163 */ 5164 sctp_update_ipif_addr(ipif, ov6addr); 5165 5166 /* 5167 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5168 */ 5169 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5170 /* Loopback ills aren't in any IPMP group */ 5171 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5172 ipsq_delete(old_ipsq); 5173 } 5174 5175 /* 5176 * Delay this till the ipif is allocated as ipif_allocate 5177 * de-references ill_phyint for getting the ifindex. We 5178 * can't do this before ipif_allocate because ill_phyint_reinit 5179 * -> phyint_assign_ifindex expects ipif to be present. 5180 */ 5181 mutex_enter(&ill->ill_phyint->phyint_lock); 5182 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5183 mutex_exit(&ill->ill_phyint->phyint_lock); 5184 5185 if (ipst->ips_loopback_ksp == NULL) { 5186 /* Export loopback interface statistics */ 5187 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5188 ipif_loopback_name, "net", 5189 KSTAT_TYPE_NAMED, 2, 0, 5190 ipst->ips_netstack->netstack_stackid); 5191 if (ipst->ips_loopback_ksp != NULL) { 5192 ipst->ips_loopback_ksp->ks_update = 5193 loopback_kstat_update; 5194 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5195 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5196 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5197 ipst->ips_loopback_ksp->ks_private = 5198 (void *)(uintptr_t)ipst->ips_netstack-> 5199 netstack_stackid; 5200 kstat_install(ipst->ips_loopback_ksp); 5201 } 5202 } 5203 5204 if (error != NULL) 5205 *error = 0; 5206 *did_alloc = B_TRUE; 5207 rw_exit(&ipst->ips_ill_g_lock); 5208 return (ill); 5209 done: 5210 if (ill != NULL) { 5211 if (ill->ill_phyint != NULL) { 5212 ipsq_t *ipsq; 5213 5214 ipsq = ill->ill_phyint->phyint_ipsq; 5215 if (ipsq != NULL) { 5216 ipsq->ipsq_ipst = NULL; 5217 kmem_free(ipsq, sizeof (ipsq_t)); 5218 } 5219 mi_free(ill->ill_phyint); 5220 } 5221 ill_free_mib(ill); 5222 if (ill->ill_ipst != NULL) 5223 netstack_rele(ill->ill_ipst->ips_netstack); 5224 mi_free(ill); 5225 } 5226 rw_exit(&ipst->ips_ill_g_lock); 5227 if (error != NULL) 5228 *error = ENOMEM; 5229 return (NULL); 5230 } 5231 5232 /* 5233 * For IPP calls - use the ip_stack_t for global stack. 5234 */ 5235 ill_t * 5236 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5237 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5238 { 5239 ip_stack_t *ipst; 5240 ill_t *ill; 5241 5242 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5243 if (ipst == NULL) { 5244 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5245 return (NULL); 5246 } 5247 5248 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5249 netstack_rele(ipst->ips_netstack); 5250 return (ill); 5251 } 5252 5253 /* 5254 * Return a pointer to the ill which matches the index and IP version type. 5255 */ 5256 ill_t * 5257 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5258 ipsq_func_t func, int *err, ip_stack_t *ipst) 5259 { 5260 ill_t *ill; 5261 ipsq_t *ipsq; 5262 phyint_t *phyi; 5263 5264 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5265 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5266 5267 if (err != NULL) 5268 *err = 0; 5269 5270 /* 5271 * Indexes are stored in the phyint - a common structure 5272 * to both IPv4 and IPv6. 5273 */ 5274 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5275 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5276 (void *) &index, NULL); 5277 if (phyi != NULL) { 5278 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5279 if (ill != NULL) { 5280 /* 5281 * The block comment at the start of ipif_down 5282 * explains the use of the macros used below 5283 */ 5284 GRAB_CONN_LOCK(q); 5285 mutex_enter(&ill->ill_lock); 5286 if (ILL_CAN_LOOKUP(ill)) { 5287 ill_refhold_locked(ill); 5288 mutex_exit(&ill->ill_lock); 5289 RELEASE_CONN_LOCK(q); 5290 rw_exit(&ipst->ips_ill_g_lock); 5291 return (ill); 5292 } else if (ILL_CAN_WAIT(ill, q)) { 5293 ipsq = ill->ill_phyint->phyint_ipsq; 5294 mutex_enter(&ipsq->ipsq_lock); 5295 rw_exit(&ipst->ips_ill_g_lock); 5296 mutex_exit(&ill->ill_lock); 5297 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5298 mutex_exit(&ipsq->ipsq_lock); 5299 RELEASE_CONN_LOCK(q); 5300 *err = EINPROGRESS; 5301 return (NULL); 5302 } 5303 RELEASE_CONN_LOCK(q); 5304 mutex_exit(&ill->ill_lock); 5305 } 5306 } 5307 rw_exit(&ipst->ips_ill_g_lock); 5308 if (err != NULL) 5309 *err = ENXIO; 5310 return (NULL); 5311 } 5312 5313 /* 5314 * Return the ifindex next in sequence after the passed in ifindex. 5315 * If there is no next ifindex for the given protocol, return 0. 5316 */ 5317 uint_t 5318 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5319 { 5320 phyint_t *phyi; 5321 phyint_t *phyi_initial; 5322 uint_t ifindex; 5323 5324 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5325 5326 if (index == 0) { 5327 phyi = avl_first( 5328 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5329 } else { 5330 phyi = phyi_initial = avl_find( 5331 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5332 (void *) &index, NULL); 5333 } 5334 5335 for (; phyi != NULL; 5336 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5337 phyi, AVL_AFTER)) { 5338 /* 5339 * If we're not returning the first interface in the tree 5340 * and we still haven't moved past the phyint_t that 5341 * corresponds to index, avl_walk needs to be called again 5342 */ 5343 if (!((index != 0) && (phyi == phyi_initial))) { 5344 if (isv6) { 5345 if ((phyi->phyint_illv6) && 5346 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5347 (phyi->phyint_illv6->ill_isv6 == 1)) 5348 break; 5349 } else { 5350 if ((phyi->phyint_illv4) && 5351 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5352 (phyi->phyint_illv4->ill_isv6 == 0)) 5353 break; 5354 } 5355 } 5356 } 5357 5358 rw_exit(&ipst->ips_ill_g_lock); 5359 5360 if (phyi != NULL) 5361 ifindex = phyi->phyint_ifindex; 5362 else 5363 ifindex = 0; 5364 5365 return (ifindex); 5366 } 5367 5368 5369 /* 5370 * Return the ifindex for the named interface. 5371 * If there is no next ifindex for the interface, return 0. 5372 */ 5373 uint_t 5374 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5375 { 5376 phyint_t *phyi; 5377 avl_index_t where = 0; 5378 uint_t ifindex; 5379 5380 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5381 5382 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5383 name, &where)) == NULL) { 5384 rw_exit(&ipst->ips_ill_g_lock); 5385 return (0); 5386 } 5387 5388 ifindex = phyi->phyint_ifindex; 5389 5390 rw_exit(&ipst->ips_ill_g_lock); 5391 5392 return (ifindex); 5393 } 5394 5395 5396 /* 5397 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5398 * that gives a running thread a reference to the ill. This reference must be 5399 * released by the thread when it is done accessing the ill and related 5400 * objects. ill_refcnt can not be used to account for static references 5401 * such as other structures pointing to an ill. Callers must generally 5402 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5403 * or be sure that the ill is not being deleted or changing state before 5404 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5405 * ill won't change any of its critical state such as address, netmask etc. 5406 */ 5407 void 5408 ill_refhold(ill_t *ill) 5409 { 5410 mutex_enter(&ill->ill_lock); 5411 ill->ill_refcnt++; 5412 ILL_TRACE_REF(ill); 5413 mutex_exit(&ill->ill_lock); 5414 } 5415 5416 void 5417 ill_refhold_locked(ill_t *ill) 5418 { 5419 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5420 ill->ill_refcnt++; 5421 ILL_TRACE_REF(ill); 5422 } 5423 5424 int 5425 ill_check_and_refhold(ill_t *ill) 5426 { 5427 mutex_enter(&ill->ill_lock); 5428 if (ILL_CAN_LOOKUP(ill)) { 5429 ill_refhold_locked(ill); 5430 mutex_exit(&ill->ill_lock); 5431 return (0); 5432 } 5433 mutex_exit(&ill->ill_lock); 5434 return (ILL_LOOKUP_FAILED); 5435 } 5436 5437 /* 5438 * Must not be called while holding any locks. Otherwise if this is 5439 * the last reference to be released, there is a chance of recursive mutex 5440 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5441 * to restart an ioctl. 5442 */ 5443 void 5444 ill_refrele(ill_t *ill) 5445 { 5446 mutex_enter(&ill->ill_lock); 5447 ASSERT(ill->ill_refcnt != 0); 5448 ill->ill_refcnt--; 5449 ILL_UNTRACE_REF(ill); 5450 if (ill->ill_refcnt != 0) { 5451 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5452 mutex_exit(&ill->ill_lock); 5453 return; 5454 } 5455 5456 /* Drops the ill_lock */ 5457 ipif_ill_refrele_tail(ill); 5458 } 5459 5460 /* 5461 * Obtain a weak reference count on the ill. This reference ensures the 5462 * ill won't be freed, but the ill may change any of its critical state 5463 * such as netmask, address etc. Returns an error if the ill has started 5464 * closing. 5465 */ 5466 boolean_t 5467 ill_waiter_inc(ill_t *ill) 5468 { 5469 mutex_enter(&ill->ill_lock); 5470 if (ill->ill_state_flags & ILL_CONDEMNED) { 5471 mutex_exit(&ill->ill_lock); 5472 return (B_FALSE); 5473 } 5474 ill->ill_waiters++; 5475 mutex_exit(&ill->ill_lock); 5476 return (B_TRUE); 5477 } 5478 5479 void 5480 ill_waiter_dcr(ill_t *ill) 5481 { 5482 mutex_enter(&ill->ill_lock); 5483 ill->ill_waiters--; 5484 if (ill->ill_waiters == 0) 5485 cv_broadcast(&ill->ill_cv); 5486 mutex_exit(&ill->ill_lock); 5487 } 5488 5489 /* 5490 * Named Dispatch routine to produce a formatted report on all ILLs. 5491 * This report is accessed by using the ndd utility to "get" ND variable 5492 * "ip_ill_status". 5493 */ 5494 /* ARGSUSED */ 5495 int 5496 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5497 { 5498 ill_t *ill; 5499 ill_walk_context_t ctx; 5500 ip_stack_t *ipst; 5501 5502 ipst = CONNQ_TO_IPST(q); 5503 5504 (void) mi_mpprintf(mp, 5505 "ILL " MI_COL_HDRPAD_STR 5506 /* 01234567[89ABCDEF] */ 5507 "rq " MI_COL_HDRPAD_STR 5508 /* 01234567[89ABCDEF] */ 5509 "wq " MI_COL_HDRPAD_STR 5510 /* 01234567[89ABCDEF] */ 5511 "upcnt mxfrg err name"); 5512 /* 12345 12345 123 xxxxxxxx */ 5513 5514 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5515 ill = ILL_START_WALK_ALL(&ctx, ipst); 5516 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5517 (void) mi_mpprintf(mp, 5518 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5519 "%05u %05u %03d %s", 5520 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5521 ill->ill_ipif_up_count, 5522 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5523 } 5524 rw_exit(&ipst->ips_ill_g_lock); 5525 5526 return (0); 5527 } 5528 5529 /* 5530 * Named Dispatch routine to produce a formatted report on all IPIFs. 5531 * This report is accessed by using the ndd utility to "get" ND variable 5532 * "ip_ipif_status". 5533 */ 5534 /* ARGSUSED */ 5535 int 5536 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5537 { 5538 char buf1[INET6_ADDRSTRLEN]; 5539 char buf2[INET6_ADDRSTRLEN]; 5540 char buf3[INET6_ADDRSTRLEN]; 5541 char buf4[INET6_ADDRSTRLEN]; 5542 char buf5[INET6_ADDRSTRLEN]; 5543 char buf6[INET6_ADDRSTRLEN]; 5544 char buf[LIFNAMSIZ]; 5545 ill_t *ill; 5546 ipif_t *ipif; 5547 nv_t *nvp; 5548 uint64_t flags; 5549 zoneid_t zoneid; 5550 ill_walk_context_t ctx; 5551 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5552 5553 (void) mi_mpprintf(mp, 5554 "IPIF metric mtu in/out/forward name zone flags...\n" 5555 "\tlocal address\n" 5556 "\tsrc address\n" 5557 "\tsubnet\n" 5558 "\tmask\n" 5559 "\tbroadcast\n" 5560 "\tp-p-dst"); 5561 5562 ASSERT(q->q_next == NULL); 5563 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5564 5565 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5566 ill = ILL_START_WALK_ALL(&ctx, ipst); 5567 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5568 for (ipif = ill->ill_ipif; ipif != NULL; 5569 ipif = ipif->ipif_next) { 5570 if (zoneid != GLOBAL_ZONEID && 5571 zoneid != ipif->ipif_zoneid && 5572 ipif->ipif_zoneid != ALL_ZONES) 5573 continue; 5574 (void) mi_mpprintf(mp, 5575 MI_COL_PTRFMT_STR 5576 "%04u %05u %u/%u/%u %s %d", 5577 (void *)ipif, 5578 ipif->ipif_metric, ipif->ipif_mtu, 5579 ipif->ipif_ib_pkt_count, 5580 ipif->ipif_ob_pkt_count, 5581 ipif->ipif_fo_pkt_count, 5582 ipif_get_name(ipif, buf, sizeof (buf)), 5583 ipif->ipif_zoneid); 5584 5585 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5586 ipif->ipif_ill->ill_phyint->phyint_flags; 5587 5588 /* Tack on text strings for any flags. */ 5589 nvp = ipif_nv_tbl; 5590 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5591 if (nvp->nv_value & flags) 5592 (void) mi_mpprintf_nr(mp, " %s", 5593 nvp->nv_name); 5594 } 5595 (void) mi_mpprintf(mp, 5596 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5597 inet_ntop(AF_INET6, 5598 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5599 inet_ntop(AF_INET6, 5600 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5601 inet_ntop(AF_INET6, 5602 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5603 inet_ntop(AF_INET6, 5604 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5605 inet_ntop(AF_INET6, 5606 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5607 inet_ntop(AF_INET6, 5608 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5609 } 5610 } 5611 rw_exit(&ipst->ips_ill_g_lock); 5612 return (0); 5613 } 5614 5615 /* 5616 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5617 * driver. We construct best guess defaults for lower level information that 5618 * we need. If an interface is brought up without injection of any overriding 5619 * information from outside, we have to be ready to go with these defaults. 5620 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5621 * we primarely want the dl_provider_style. 5622 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5623 * at which point we assume the other part of the information is valid. 5624 */ 5625 void 5626 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5627 { 5628 uchar_t *brdcst_addr; 5629 uint_t brdcst_addr_length, phys_addr_length; 5630 t_scalar_t sap_length; 5631 dl_info_ack_t *dlia; 5632 ip_m_t *ipm; 5633 dl_qos_cl_sel1_t *sel1; 5634 5635 ASSERT(IAM_WRITER_ILL(ill)); 5636 5637 /* 5638 * Till the ill is fully up ILL_CHANGING will be set and 5639 * the ill is not globally visible. So no need for a lock. 5640 */ 5641 dlia = (dl_info_ack_t *)mp->b_rptr; 5642 ill->ill_mactype = dlia->dl_mac_type; 5643 5644 ipm = ip_m_lookup(dlia->dl_mac_type); 5645 if (ipm == NULL) { 5646 ipm = ip_m_lookup(DL_OTHER); 5647 ASSERT(ipm != NULL); 5648 } 5649 ill->ill_media = ipm; 5650 5651 /* 5652 * When the new DLPI stuff is ready we'll pull lengths 5653 * from dlia. 5654 */ 5655 if (dlia->dl_version == DL_VERSION_2) { 5656 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5657 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5658 brdcst_addr_length); 5659 if (brdcst_addr == NULL) { 5660 brdcst_addr_length = 0; 5661 } 5662 sap_length = dlia->dl_sap_length; 5663 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5664 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5665 brdcst_addr_length, sap_length, phys_addr_length)); 5666 } else { 5667 brdcst_addr_length = 6; 5668 brdcst_addr = ip_six_byte_all_ones; 5669 sap_length = -2; 5670 phys_addr_length = brdcst_addr_length; 5671 } 5672 5673 ill->ill_bcast_addr_length = brdcst_addr_length; 5674 ill->ill_phys_addr_length = phys_addr_length; 5675 ill->ill_sap_length = sap_length; 5676 ill->ill_max_frag = dlia->dl_max_sdu; 5677 ill->ill_max_mtu = ill->ill_max_frag; 5678 5679 ill->ill_type = ipm->ip_m_type; 5680 5681 if (!ill->ill_dlpi_style_set) { 5682 if (dlia->dl_provider_style == DL_STYLE2) 5683 ill->ill_needs_attach = 1; 5684 5685 /* 5686 * Allocate the first ipif on this ill. We don't delay it 5687 * further as ioctl handling assumes atleast one ipif to 5688 * be present. 5689 * 5690 * At this point we don't know whether the ill is v4 or v6. 5691 * We will know this whan the SIOCSLIFNAME happens and 5692 * the correct value for ill_isv6 will be assigned in 5693 * ipif_set_values(). We need to hold the ill lock and 5694 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5695 * the wakeup. 5696 */ 5697 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5698 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5699 mutex_enter(&ill->ill_lock); 5700 ASSERT(ill->ill_dlpi_style_set == 0); 5701 ill->ill_dlpi_style_set = 1; 5702 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5703 cv_broadcast(&ill->ill_cv); 5704 mutex_exit(&ill->ill_lock); 5705 freemsg(mp); 5706 return; 5707 } 5708 ASSERT(ill->ill_ipif != NULL); 5709 /* 5710 * We know whether it is IPv4 or IPv6 now, as this is the 5711 * second DL_INFO_ACK we are recieving in response to the 5712 * DL_INFO_REQ sent in ipif_set_values. 5713 */ 5714 if (ill->ill_isv6) 5715 ill->ill_sap = IP6_DL_SAP; 5716 else 5717 ill->ill_sap = IP_DL_SAP; 5718 /* 5719 * Set ipif_mtu which is used to set the IRE's 5720 * ire_max_frag value. The driver could have sent 5721 * a different mtu from what it sent last time. No 5722 * need to call ipif_mtu_change because IREs have 5723 * not yet been created. 5724 */ 5725 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5726 /* 5727 * Clear all the flags that were set based on ill_bcast_addr_length 5728 * and ill_phys_addr_length (in ipif_set_values) as these could have 5729 * changed now and we need to re-evaluate. 5730 */ 5731 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5732 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5733 5734 /* 5735 * Free ill_resolver_mp and ill_bcast_mp as things could have 5736 * changed now. 5737 */ 5738 if (ill->ill_bcast_addr_length == 0) { 5739 if (ill->ill_resolver_mp != NULL) 5740 freemsg(ill->ill_resolver_mp); 5741 if (ill->ill_bcast_mp != NULL) 5742 freemsg(ill->ill_bcast_mp); 5743 if (ill->ill_flags & ILLF_XRESOLV) 5744 ill->ill_net_type = IRE_IF_RESOLVER; 5745 else 5746 ill->ill_net_type = IRE_IF_NORESOLVER; 5747 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5748 ill->ill_phys_addr_length, 5749 ill->ill_sap, 5750 ill->ill_sap_length); 5751 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5752 5753 if (ill->ill_isv6) 5754 /* 5755 * Note: xresolv interfaces will eventually need NOARP 5756 * set here as well, but that will require those 5757 * external resolvers to have some knowledge of 5758 * that flag and act appropriately. Not to be changed 5759 * at present. 5760 */ 5761 ill->ill_flags |= ILLF_NONUD; 5762 else 5763 ill->ill_flags |= ILLF_NOARP; 5764 5765 if (ill->ill_phys_addr_length == 0) { 5766 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5767 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5768 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5769 } else { 5770 /* pt-pt supports multicast. */ 5771 ill->ill_flags |= ILLF_MULTICAST; 5772 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5773 } 5774 } 5775 } else { 5776 ill->ill_net_type = IRE_IF_RESOLVER; 5777 if (ill->ill_bcast_mp != NULL) 5778 freemsg(ill->ill_bcast_mp); 5779 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5780 ill->ill_bcast_addr_length, ill->ill_sap, 5781 ill->ill_sap_length); 5782 /* 5783 * Later detect lack of DLPI driver multicast 5784 * capability by catching DL_ENABMULTI errors in 5785 * ip_rput_dlpi. 5786 */ 5787 ill->ill_flags |= ILLF_MULTICAST; 5788 if (!ill->ill_isv6) 5789 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5790 } 5791 /* By default an interface does not support any CoS marking */ 5792 ill->ill_flags &= ~ILLF_COS_ENABLED; 5793 5794 /* 5795 * If we get QoS information in DL_INFO_ACK, the device supports 5796 * some form of CoS marking, set ILLF_COS_ENABLED. 5797 */ 5798 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5799 dlia->dl_qos_length); 5800 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5801 ill->ill_flags |= ILLF_COS_ENABLED; 5802 } 5803 5804 /* Clear any previous error indication. */ 5805 ill->ill_error = 0; 5806 freemsg(mp); 5807 } 5808 5809 /* 5810 * Perform various checks to verify that an address would make sense as a 5811 * local, remote, or subnet interface address. 5812 */ 5813 static boolean_t 5814 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5815 { 5816 ipaddr_t net_mask; 5817 5818 /* 5819 * Don't allow all zeroes, all ones or experimental address, but allow 5820 * all ones netmask. 5821 */ 5822 if ((net_mask = ip_net_mask(addr)) == 0) 5823 return (B_FALSE); 5824 /* A given netmask overrides the "guess" netmask */ 5825 if (subnet_mask != 0) 5826 net_mask = subnet_mask; 5827 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5828 (addr == (addr | ~net_mask)))) { 5829 return (B_FALSE); 5830 } 5831 if (CLASSD(addr)) 5832 return (B_FALSE); 5833 5834 return (B_TRUE); 5835 } 5836 5837 #define V6_IPIF_LINKLOCAL(p) \ 5838 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5839 5840 /* 5841 * Compare two given ipifs and check if the second one is better than 5842 * the first one using the order of preference (not taking deprecated 5843 * into acount) specified in ipif_lookup_multicast(). 5844 */ 5845 static boolean_t 5846 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5847 { 5848 /* Check the least preferred first. */ 5849 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5850 /* If both ipifs are the same, use the first one. */ 5851 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5852 return (B_FALSE); 5853 else 5854 return (B_TRUE); 5855 } 5856 5857 /* For IPv6, check for link local address. */ 5858 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5859 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5860 V6_IPIF_LINKLOCAL(new_ipif)) { 5861 /* The second one is equal or less preferred. */ 5862 return (B_FALSE); 5863 } else { 5864 return (B_TRUE); 5865 } 5866 } 5867 5868 /* Then check for point to point interface. */ 5869 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5870 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5871 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5872 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5873 return (B_FALSE); 5874 } else { 5875 return (B_TRUE); 5876 } 5877 } 5878 5879 /* old_ipif is a normal interface, so no need to use the new one. */ 5880 return (B_FALSE); 5881 } 5882 5883 /* 5884 * Find any non-virtual, not condemned, and up multicast capable interface 5885 * given an IP instance and zoneid. Order of preference is: 5886 * 5887 * 1. normal 5888 * 1.1 normal, but deprecated 5889 * 2. point to point 5890 * 2.1 point to point, but deprecated 5891 * 3. link local 5892 * 3.1 link local, but deprecated 5893 * 4. loopback. 5894 */ 5895 ipif_t * 5896 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5897 { 5898 ill_t *ill; 5899 ill_walk_context_t ctx; 5900 ipif_t *ipif; 5901 ipif_t *saved_ipif = NULL; 5902 ipif_t *dep_ipif = NULL; 5903 5904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5905 if (isv6) 5906 ill = ILL_START_WALK_V6(&ctx, ipst); 5907 else 5908 ill = ILL_START_WALK_V4(&ctx, ipst); 5909 5910 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5911 mutex_enter(&ill->ill_lock); 5912 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5913 !(ill->ill_flags & ILLF_MULTICAST)) { 5914 mutex_exit(&ill->ill_lock); 5915 continue; 5916 } 5917 for (ipif = ill->ill_ipif; ipif != NULL; 5918 ipif = ipif->ipif_next) { 5919 if (zoneid != ipif->ipif_zoneid && 5920 zoneid != ALL_ZONES && 5921 ipif->ipif_zoneid != ALL_ZONES) { 5922 continue; 5923 } 5924 if (!(ipif->ipif_flags & IPIF_UP) || 5925 !IPIF_CAN_LOOKUP(ipif)) { 5926 continue; 5927 } 5928 5929 /* 5930 * Found one candidate. If it is deprecated, 5931 * remember it in dep_ipif. If it is not deprecated, 5932 * remember it in saved_ipif. 5933 */ 5934 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5935 if (dep_ipif == NULL) { 5936 dep_ipif = ipif; 5937 } else if (ipif_comp_multi(dep_ipif, ipif, 5938 isv6)) { 5939 /* 5940 * If the previous dep_ipif does not 5941 * belong to the same ill, we've done 5942 * a ipif_refhold() on it. So we need 5943 * to release it. 5944 */ 5945 if (dep_ipif->ipif_ill != ill) 5946 ipif_refrele(dep_ipif); 5947 dep_ipif = ipif; 5948 } 5949 continue; 5950 } 5951 if (saved_ipif == NULL) { 5952 saved_ipif = ipif; 5953 } else { 5954 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5955 if (saved_ipif->ipif_ill != ill) 5956 ipif_refrele(saved_ipif); 5957 saved_ipif = ipif; 5958 } 5959 } 5960 } 5961 /* 5962 * Before going to the next ill, do a ipif_refhold() on the 5963 * saved ones. 5964 */ 5965 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5966 ipif_refhold_locked(saved_ipif); 5967 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5968 ipif_refhold_locked(dep_ipif); 5969 mutex_exit(&ill->ill_lock); 5970 } 5971 rw_exit(&ipst->ips_ill_g_lock); 5972 5973 /* 5974 * If we have only the saved_ipif, return it. But if we have both 5975 * saved_ipif and dep_ipif, check to see which one is better. 5976 */ 5977 if (saved_ipif != NULL) { 5978 if (dep_ipif != NULL) { 5979 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5980 ipif_refrele(saved_ipif); 5981 return (dep_ipif); 5982 } else { 5983 ipif_refrele(dep_ipif); 5984 return (saved_ipif); 5985 } 5986 } 5987 return (saved_ipif); 5988 } else { 5989 return (dep_ipif); 5990 } 5991 } 5992 5993 /* 5994 * This function is called when an application does not specify an interface 5995 * to be used for multicast traffic (joining a group/sending data). It 5996 * calls ire_lookup_multi() to look for an interface route for the 5997 * specified multicast group. Doing this allows the administrator to add 5998 * prefix routes for multicast to indicate which interface to be used for 5999 * multicast traffic in the above scenario. The route could be for all 6000 * multicast (224.0/4), for a single multicast group (a /32 route) or 6001 * anything in between. If there is no such multicast route, we just find 6002 * any multicast capable interface and return it. The returned ipif 6003 * is refhold'ed. 6004 */ 6005 ipif_t * 6006 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 6007 { 6008 ire_t *ire; 6009 ipif_t *ipif; 6010 6011 ire = ire_lookup_multi(group, zoneid, ipst); 6012 if (ire != NULL) { 6013 ipif = ire->ire_ipif; 6014 ipif_refhold(ipif); 6015 ire_refrele(ire); 6016 return (ipif); 6017 } 6018 6019 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 6020 } 6021 6022 /* 6023 * Look for an ipif with the specified interface address and destination. 6024 * The destination address is used only for matching point-to-point interfaces. 6025 */ 6026 ipif_t * 6027 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 6028 ipsq_func_t func, int *error, ip_stack_t *ipst) 6029 { 6030 ipif_t *ipif; 6031 ill_t *ill; 6032 ill_walk_context_t ctx; 6033 ipsq_t *ipsq; 6034 6035 if (error != NULL) 6036 *error = 0; 6037 6038 /* 6039 * First match all the point-to-point interfaces 6040 * before looking at non-point-to-point interfaces. 6041 * This is done to avoid returning non-point-to-point 6042 * ipif instead of unnumbered point-to-point ipif. 6043 */ 6044 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6045 ill = ILL_START_WALK_V4(&ctx, ipst); 6046 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6047 GRAB_CONN_LOCK(q); 6048 mutex_enter(&ill->ill_lock); 6049 for (ipif = ill->ill_ipif; ipif != NULL; 6050 ipif = ipif->ipif_next) { 6051 /* Allow the ipif to be down */ 6052 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 6053 (ipif->ipif_lcl_addr == if_addr) && 6054 (ipif->ipif_pp_dst_addr == dst)) { 6055 /* 6056 * The block comment at the start of ipif_down 6057 * explains the use of the macros used below 6058 */ 6059 if (IPIF_CAN_LOOKUP(ipif)) { 6060 ipif_refhold_locked(ipif); 6061 mutex_exit(&ill->ill_lock); 6062 RELEASE_CONN_LOCK(q); 6063 rw_exit(&ipst->ips_ill_g_lock); 6064 return (ipif); 6065 } else if (IPIF_CAN_WAIT(ipif, q)) { 6066 ipsq = ill->ill_phyint->phyint_ipsq; 6067 mutex_enter(&ipsq->ipsq_lock); 6068 mutex_exit(&ill->ill_lock); 6069 rw_exit(&ipst->ips_ill_g_lock); 6070 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6071 ill); 6072 mutex_exit(&ipsq->ipsq_lock); 6073 RELEASE_CONN_LOCK(q); 6074 *error = EINPROGRESS; 6075 return (NULL); 6076 } 6077 } 6078 } 6079 mutex_exit(&ill->ill_lock); 6080 RELEASE_CONN_LOCK(q); 6081 } 6082 rw_exit(&ipst->ips_ill_g_lock); 6083 6084 /* lookup the ipif based on interface address */ 6085 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6086 ipst); 6087 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6088 return (ipif); 6089 } 6090 6091 /* 6092 * Look for an ipif with the specified address. For point-point links 6093 * we look for matches on either the destination address and the local 6094 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6095 * is set. 6096 * Matches on a specific ill if match_ill is set. 6097 */ 6098 ipif_t * 6099 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6100 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6101 { 6102 ipif_t *ipif; 6103 ill_t *ill; 6104 boolean_t ptp = B_FALSE; 6105 ipsq_t *ipsq; 6106 ill_walk_context_t ctx; 6107 6108 if (error != NULL) 6109 *error = 0; 6110 6111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6112 /* 6113 * Repeat twice, first based on local addresses and 6114 * next time for pointopoint. 6115 */ 6116 repeat: 6117 ill = ILL_START_WALK_V4(&ctx, ipst); 6118 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6119 if (match_ill != NULL && ill != match_ill) { 6120 continue; 6121 } 6122 GRAB_CONN_LOCK(q); 6123 mutex_enter(&ill->ill_lock); 6124 for (ipif = ill->ill_ipif; ipif != NULL; 6125 ipif = ipif->ipif_next) { 6126 if (zoneid != ALL_ZONES && 6127 zoneid != ipif->ipif_zoneid && 6128 ipif->ipif_zoneid != ALL_ZONES) 6129 continue; 6130 /* Allow the ipif to be down */ 6131 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6132 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6133 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6134 (ipif->ipif_pp_dst_addr == addr))) { 6135 /* 6136 * The block comment at the start of ipif_down 6137 * explains the use of the macros used below 6138 */ 6139 if (IPIF_CAN_LOOKUP(ipif)) { 6140 ipif_refhold_locked(ipif); 6141 mutex_exit(&ill->ill_lock); 6142 RELEASE_CONN_LOCK(q); 6143 rw_exit(&ipst->ips_ill_g_lock); 6144 return (ipif); 6145 } else if (IPIF_CAN_WAIT(ipif, q)) { 6146 ipsq = ill->ill_phyint->phyint_ipsq; 6147 mutex_enter(&ipsq->ipsq_lock); 6148 mutex_exit(&ill->ill_lock); 6149 rw_exit(&ipst->ips_ill_g_lock); 6150 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6151 ill); 6152 mutex_exit(&ipsq->ipsq_lock); 6153 RELEASE_CONN_LOCK(q); 6154 *error = EINPROGRESS; 6155 return (NULL); 6156 } 6157 } 6158 } 6159 mutex_exit(&ill->ill_lock); 6160 RELEASE_CONN_LOCK(q); 6161 } 6162 6163 /* If we already did the ptp case, then we are done */ 6164 if (ptp) { 6165 rw_exit(&ipst->ips_ill_g_lock); 6166 if (error != NULL) 6167 *error = ENXIO; 6168 return (NULL); 6169 } 6170 ptp = B_TRUE; 6171 goto repeat; 6172 } 6173 6174 /* 6175 * Look for an ipif with the specified address. For point-point links 6176 * we look for matches on either the destination address and the local 6177 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6178 * is set. 6179 * Matches on a specific ill if match_ill is set. 6180 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6181 */ 6182 zoneid_t 6183 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6184 { 6185 zoneid_t zoneid; 6186 ipif_t *ipif; 6187 ill_t *ill; 6188 boolean_t ptp = B_FALSE; 6189 ill_walk_context_t ctx; 6190 6191 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6192 /* 6193 * Repeat twice, first based on local addresses and 6194 * next time for pointopoint. 6195 */ 6196 repeat: 6197 ill = ILL_START_WALK_V4(&ctx, ipst); 6198 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6199 if (match_ill != NULL && ill != match_ill) { 6200 continue; 6201 } 6202 mutex_enter(&ill->ill_lock); 6203 for (ipif = ill->ill_ipif; ipif != NULL; 6204 ipif = ipif->ipif_next) { 6205 /* Allow the ipif to be down */ 6206 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6207 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6208 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6209 (ipif->ipif_pp_dst_addr == addr)) && 6210 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6211 zoneid = ipif->ipif_zoneid; 6212 mutex_exit(&ill->ill_lock); 6213 rw_exit(&ipst->ips_ill_g_lock); 6214 /* 6215 * If ipif_zoneid was ALL_ZONES then we have 6216 * a trusted extensions shared IP address. 6217 * In that case GLOBAL_ZONEID works to send. 6218 */ 6219 if (zoneid == ALL_ZONES) 6220 zoneid = GLOBAL_ZONEID; 6221 return (zoneid); 6222 } 6223 } 6224 mutex_exit(&ill->ill_lock); 6225 } 6226 6227 /* If we already did the ptp case, then we are done */ 6228 if (ptp) { 6229 rw_exit(&ipst->ips_ill_g_lock); 6230 return (ALL_ZONES); 6231 } 6232 ptp = B_TRUE; 6233 goto repeat; 6234 } 6235 6236 /* 6237 * Look for an ipif that matches the specified remote address i.e. the 6238 * ipif that would receive the specified packet. 6239 * First look for directly connected interfaces and then do a recursive 6240 * IRE lookup and pick the first ipif corresponding to the source address in the 6241 * ire. 6242 * Returns: held ipif 6243 */ 6244 ipif_t * 6245 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6246 { 6247 ipif_t *ipif; 6248 ire_t *ire; 6249 ip_stack_t *ipst = ill->ill_ipst; 6250 6251 ASSERT(!ill->ill_isv6); 6252 6253 /* 6254 * Someone could be changing this ipif currently or change it 6255 * after we return this. Thus a few packets could use the old 6256 * old values. However structure updates/creates (ire, ilg, ilm etc) 6257 * will atomically be updated or cleaned up with the new value 6258 * Thus we don't need a lock to check the flags or other attrs below. 6259 */ 6260 mutex_enter(&ill->ill_lock); 6261 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6262 if (!IPIF_CAN_LOOKUP(ipif)) 6263 continue; 6264 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6265 ipif->ipif_zoneid != ALL_ZONES) 6266 continue; 6267 /* Allow the ipif to be down */ 6268 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6269 if ((ipif->ipif_pp_dst_addr == addr) || 6270 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6271 ipif->ipif_lcl_addr == addr)) { 6272 ipif_refhold_locked(ipif); 6273 mutex_exit(&ill->ill_lock); 6274 return (ipif); 6275 } 6276 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6277 ipif_refhold_locked(ipif); 6278 mutex_exit(&ill->ill_lock); 6279 return (ipif); 6280 } 6281 } 6282 mutex_exit(&ill->ill_lock); 6283 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6284 NULL, MATCH_IRE_RECURSIVE, ipst); 6285 if (ire != NULL) { 6286 /* 6287 * The callers of this function wants to know the 6288 * interface on which they have to send the replies 6289 * back. For IRE_CACHES that have ire_stq and ire_ipif 6290 * derived from different ills, we really don't care 6291 * what we return here. 6292 */ 6293 ipif = ire->ire_ipif; 6294 if (ipif != NULL) { 6295 ipif_refhold(ipif); 6296 ire_refrele(ire); 6297 return (ipif); 6298 } 6299 ire_refrele(ire); 6300 } 6301 /* Pick the first interface */ 6302 ipif = ipif_get_next_ipif(NULL, ill); 6303 return (ipif); 6304 } 6305 6306 /* 6307 * This func does not prevent refcnt from increasing. But if 6308 * the caller has taken steps to that effect, then this func 6309 * can be used to determine whether the ill has become quiescent 6310 */ 6311 boolean_t 6312 ill_is_quiescent(ill_t *ill) 6313 { 6314 ipif_t *ipif; 6315 6316 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6317 6318 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6319 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6320 return (B_FALSE); 6321 } 6322 } 6323 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6324 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6325 ill->ill_mrtun_refcnt != 0) { 6326 return (B_FALSE); 6327 } 6328 return (B_TRUE); 6329 } 6330 6331 /* 6332 * This func does not prevent refcnt from increasing. But if 6333 * the caller has taken steps to that effect, then this func 6334 * can be used to determine whether the ipif has become quiescent 6335 */ 6336 static boolean_t 6337 ipif_is_quiescent(ipif_t *ipif) 6338 { 6339 ill_t *ill; 6340 6341 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6342 6343 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6344 return (B_FALSE); 6345 } 6346 6347 ill = ipif->ipif_ill; 6348 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6349 ill->ill_logical_down) { 6350 return (B_TRUE); 6351 } 6352 6353 /* This is the last ipif going down or being deleted on this ill */ 6354 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6355 return (B_FALSE); 6356 } 6357 6358 return (B_TRUE); 6359 } 6360 6361 /* 6362 * This func does not prevent refcnt from increasing. But if 6363 * the caller has taken steps to that effect, then this func 6364 * can be used to determine whether the ipifs marked with IPIF_MOVING 6365 * have become quiescent and can be moved in a failover/failback. 6366 */ 6367 static ipif_t * 6368 ill_quiescent_to_move(ill_t *ill) 6369 { 6370 ipif_t *ipif; 6371 6372 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6373 6374 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6375 if (ipif->ipif_state_flags & IPIF_MOVING) { 6376 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6377 return (ipif); 6378 } 6379 } 6380 } 6381 return (NULL); 6382 } 6383 6384 /* 6385 * The ipif/ill/ire has been refreled. Do the tail processing. 6386 * Determine if the ipif or ill in question has become quiescent and if so 6387 * wakeup close and/or restart any queued pending ioctl that is waiting 6388 * for the ipif_down (or ill_down) 6389 */ 6390 void 6391 ipif_ill_refrele_tail(ill_t *ill) 6392 { 6393 mblk_t *mp; 6394 conn_t *connp; 6395 ipsq_t *ipsq; 6396 ipif_t *ipif; 6397 dl_notify_ind_t *dlindp; 6398 6399 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6400 6401 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6402 ill_is_quiescent(ill)) { 6403 /* ill_close may be waiting */ 6404 cv_broadcast(&ill->ill_cv); 6405 } 6406 6407 /* ipsq can't change because ill_lock is held */ 6408 ipsq = ill->ill_phyint->phyint_ipsq; 6409 if (ipsq->ipsq_waitfor == 0) { 6410 /* Not waiting for anything, just return. */ 6411 mutex_exit(&ill->ill_lock); 6412 return; 6413 } 6414 ASSERT(ipsq->ipsq_pending_mp != NULL && 6415 ipsq->ipsq_pending_ipif != NULL); 6416 /* 6417 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6418 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6419 * be zero for restarting an ioctl that ends up downing the ill. 6420 */ 6421 ipif = ipsq->ipsq_pending_ipif; 6422 if (ipif->ipif_ill != ill) { 6423 /* The ioctl is pending on some other ill. */ 6424 mutex_exit(&ill->ill_lock); 6425 return; 6426 } 6427 6428 switch (ipsq->ipsq_waitfor) { 6429 case IPIF_DOWN: 6430 case IPIF_FREE: 6431 if (!ipif_is_quiescent(ipif)) { 6432 mutex_exit(&ill->ill_lock); 6433 return; 6434 } 6435 break; 6436 6437 case ILL_DOWN: 6438 case ILL_FREE: 6439 /* 6440 * case ILL_FREE arises only for loopback. otherwise ill_delete 6441 * waits synchronously in ip_close, and no message is queued in 6442 * ipsq_pending_mp at all in this case 6443 */ 6444 if (!ill_is_quiescent(ill)) { 6445 mutex_exit(&ill->ill_lock); 6446 return; 6447 } 6448 6449 break; 6450 6451 case ILL_MOVE_OK: 6452 if (ill_quiescent_to_move(ill) != NULL) { 6453 mutex_exit(&ill->ill_lock); 6454 return; 6455 } 6456 6457 break; 6458 default: 6459 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6460 (void *)ipsq, ipsq->ipsq_waitfor); 6461 } 6462 6463 /* 6464 * Incr refcnt for the qwriter_ip call below which 6465 * does a refrele 6466 */ 6467 ill_refhold_locked(ill); 6468 mutex_exit(&ill->ill_lock); 6469 6470 mp = ipsq_pending_mp_get(ipsq, &connp); 6471 ASSERT(mp != NULL); 6472 6473 /* 6474 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6475 * we can only get here when the current operation decides it 6476 * it needs to quiesce via ipsq_pending_mp_add(). 6477 */ 6478 switch (mp->b_datap->db_type) { 6479 case M_PCPROTO: 6480 case M_PROTO: 6481 /* 6482 * For now, only DL_NOTIFY_IND messages can use this facility. 6483 */ 6484 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6485 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6486 6487 switch (dlindp->dl_notification) { 6488 case DL_NOTE_PHYS_ADDR: 6489 qwriter_ip(ill, ill->ill_rq, mp, 6490 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6491 return; 6492 default: 6493 ASSERT(0); 6494 } 6495 break; 6496 6497 case M_ERROR: 6498 case M_HANGUP: 6499 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6500 B_TRUE); 6501 return; 6502 6503 case M_IOCTL: 6504 case M_IOCDATA: 6505 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6506 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6507 return; 6508 6509 default: 6510 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6511 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6512 } 6513 } 6514 6515 #ifdef ILL_DEBUG 6516 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6517 void 6518 th_trace_rrecord(th_trace_t *th_trace) 6519 { 6520 tr_buf_t *tr_buf; 6521 uint_t lastref; 6522 6523 lastref = th_trace->th_trace_lastref; 6524 lastref++; 6525 if (lastref == TR_BUF_MAX) 6526 lastref = 0; 6527 th_trace->th_trace_lastref = lastref; 6528 tr_buf = &th_trace->th_trbuf[lastref]; 6529 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6530 } 6531 6532 th_trace_t * 6533 th_trace_ipif_lookup(ipif_t *ipif) 6534 { 6535 int bucket_id; 6536 th_trace_t *th_trace; 6537 6538 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6539 6540 bucket_id = IP_TR_HASH(curthread); 6541 ASSERT(bucket_id < IP_TR_HASH_MAX); 6542 6543 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6544 th_trace = th_trace->th_next) { 6545 if (th_trace->th_id == curthread) 6546 return (th_trace); 6547 } 6548 return (NULL); 6549 } 6550 6551 void 6552 ipif_trace_ref(ipif_t *ipif) 6553 { 6554 int bucket_id; 6555 th_trace_t *th_trace; 6556 6557 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6558 6559 if (ipif->ipif_trace_disable) 6560 return; 6561 6562 /* 6563 * Attempt to locate the trace buffer for the curthread. 6564 * If it does not exist, then allocate a new trace buffer 6565 * and link it in list of trace bufs for this ipif, at the head 6566 */ 6567 th_trace = th_trace_ipif_lookup(ipif); 6568 if (th_trace == NULL) { 6569 bucket_id = IP_TR_HASH(curthread); 6570 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6571 KM_NOSLEEP); 6572 if (th_trace == NULL) { 6573 ipif->ipif_trace_disable = B_TRUE; 6574 ipif_trace_cleanup(ipif); 6575 return; 6576 } 6577 th_trace->th_id = curthread; 6578 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6579 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6580 if (th_trace->th_next != NULL) 6581 th_trace->th_next->th_prev = &th_trace->th_next; 6582 ipif->ipif_trace[bucket_id] = th_trace; 6583 } 6584 ASSERT(th_trace->th_refcnt >= 0 && 6585 th_trace->th_refcnt < TR_BUF_MAX -1); 6586 th_trace->th_refcnt++; 6587 th_trace_rrecord(th_trace); 6588 } 6589 6590 void 6591 ipif_untrace_ref(ipif_t *ipif) 6592 { 6593 th_trace_t *th_trace; 6594 6595 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6596 6597 if (ipif->ipif_trace_disable) 6598 return; 6599 th_trace = th_trace_ipif_lookup(ipif); 6600 ASSERT(th_trace != NULL); 6601 ASSERT(th_trace->th_refcnt > 0); 6602 6603 th_trace->th_refcnt--; 6604 th_trace_rrecord(th_trace); 6605 } 6606 6607 th_trace_t * 6608 th_trace_ill_lookup(ill_t *ill) 6609 { 6610 th_trace_t *th_trace; 6611 int bucket_id; 6612 6613 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6614 6615 bucket_id = IP_TR_HASH(curthread); 6616 ASSERT(bucket_id < IP_TR_HASH_MAX); 6617 6618 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6619 th_trace = th_trace->th_next) { 6620 if (th_trace->th_id == curthread) 6621 return (th_trace); 6622 } 6623 return (NULL); 6624 } 6625 6626 void 6627 ill_trace_ref(ill_t *ill) 6628 { 6629 int bucket_id; 6630 th_trace_t *th_trace; 6631 6632 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6633 if (ill->ill_trace_disable) 6634 return; 6635 /* 6636 * Attempt to locate the trace buffer for the curthread. 6637 * If it does not exist, then allocate a new trace buffer 6638 * and link it in list of trace bufs for this ill, at the head 6639 */ 6640 th_trace = th_trace_ill_lookup(ill); 6641 if (th_trace == NULL) { 6642 bucket_id = IP_TR_HASH(curthread); 6643 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6644 KM_NOSLEEP); 6645 if (th_trace == NULL) { 6646 ill->ill_trace_disable = B_TRUE; 6647 ill_trace_cleanup(ill); 6648 return; 6649 } 6650 th_trace->th_id = curthread; 6651 th_trace->th_next = ill->ill_trace[bucket_id]; 6652 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6653 if (th_trace->th_next != NULL) 6654 th_trace->th_next->th_prev = &th_trace->th_next; 6655 ill->ill_trace[bucket_id] = th_trace; 6656 } 6657 ASSERT(th_trace->th_refcnt >= 0 && 6658 th_trace->th_refcnt < TR_BUF_MAX - 1); 6659 6660 th_trace->th_refcnt++; 6661 th_trace_rrecord(th_trace); 6662 } 6663 6664 void 6665 ill_untrace_ref(ill_t *ill) 6666 { 6667 th_trace_t *th_trace; 6668 6669 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6670 6671 if (ill->ill_trace_disable) 6672 return; 6673 th_trace = th_trace_ill_lookup(ill); 6674 ASSERT(th_trace != NULL); 6675 ASSERT(th_trace->th_refcnt > 0); 6676 6677 th_trace->th_refcnt--; 6678 th_trace_rrecord(th_trace); 6679 } 6680 6681 /* 6682 * Verify that this thread has no refs to the ipif and free 6683 * the trace buffers 6684 */ 6685 /* ARGSUSED */ 6686 void 6687 ipif_thread_exit(ipif_t *ipif, void *dummy) 6688 { 6689 th_trace_t *th_trace; 6690 6691 mutex_enter(&ipif->ipif_ill->ill_lock); 6692 6693 th_trace = th_trace_ipif_lookup(ipif); 6694 if (th_trace == NULL) { 6695 mutex_exit(&ipif->ipif_ill->ill_lock); 6696 return; 6697 } 6698 ASSERT(th_trace->th_refcnt == 0); 6699 /* unlink th_trace and free it */ 6700 *th_trace->th_prev = th_trace->th_next; 6701 if (th_trace->th_next != NULL) 6702 th_trace->th_next->th_prev = th_trace->th_prev; 6703 th_trace->th_next = NULL; 6704 th_trace->th_prev = NULL; 6705 kmem_free(th_trace, sizeof (th_trace_t)); 6706 6707 mutex_exit(&ipif->ipif_ill->ill_lock); 6708 } 6709 6710 /* 6711 * Verify that this thread has no refs to the ill and free 6712 * the trace buffers 6713 */ 6714 /* ARGSUSED */ 6715 void 6716 ill_thread_exit(ill_t *ill, void *dummy) 6717 { 6718 th_trace_t *th_trace; 6719 6720 mutex_enter(&ill->ill_lock); 6721 6722 th_trace = th_trace_ill_lookup(ill); 6723 if (th_trace == NULL) { 6724 mutex_exit(&ill->ill_lock); 6725 return; 6726 } 6727 ASSERT(th_trace->th_refcnt == 0); 6728 /* unlink th_trace and free it */ 6729 *th_trace->th_prev = th_trace->th_next; 6730 if (th_trace->th_next != NULL) 6731 th_trace->th_next->th_prev = th_trace->th_prev; 6732 th_trace->th_next = NULL; 6733 th_trace->th_prev = NULL; 6734 kmem_free(th_trace, sizeof (th_trace_t)); 6735 6736 mutex_exit(&ill->ill_lock); 6737 } 6738 #endif 6739 6740 #ifdef ILL_DEBUG 6741 void 6742 ip_thread_exit_stack(ip_stack_t *ipst) 6743 { 6744 ill_t *ill; 6745 ipif_t *ipif; 6746 ill_walk_context_t ctx; 6747 6748 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6749 ill = ILL_START_WALK_ALL(&ctx, ipst); 6750 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6751 for (ipif = ill->ill_ipif; ipif != NULL; 6752 ipif = ipif->ipif_next) { 6753 ipif_thread_exit(ipif, NULL); 6754 } 6755 ill_thread_exit(ill, NULL); 6756 } 6757 rw_exit(&ipst->ips_ill_g_lock); 6758 6759 ire_walk(ire_thread_exit, NULL, ipst); 6760 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6761 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6762 } 6763 6764 /* 6765 * This is a function which is called from thread_exit 6766 * that can be used to debug reference count issues in IP. See comment in 6767 * <inet/ip.h> on how it is used. 6768 */ 6769 void 6770 ip_thread_exit(void) 6771 { 6772 netstack_t *ns; 6773 6774 ns = netstack_get_current(); 6775 if (ns != NULL) { 6776 ip_thread_exit_stack(ns->netstack_ip); 6777 netstack_rele(ns); 6778 } 6779 } 6780 6781 /* 6782 * Called when ipif is unplumbed or when memory alloc fails 6783 */ 6784 void 6785 ipif_trace_cleanup(ipif_t *ipif) 6786 { 6787 int i; 6788 th_trace_t *th_trace; 6789 th_trace_t *th_trace_next; 6790 6791 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6792 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6793 th_trace = th_trace_next) { 6794 th_trace_next = th_trace->th_next; 6795 kmem_free(th_trace, sizeof (th_trace_t)); 6796 } 6797 ipif->ipif_trace[i] = NULL; 6798 } 6799 } 6800 6801 /* 6802 * Called when ill is unplumbed or when memory alloc fails 6803 */ 6804 void 6805 ill_trace_cleanup(ill_t *ill) 6806 { 6807 int i; 6808 th_trace_t *th_trace; 6809 th_trace_t *th_trace_next; 6810 6811 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6812 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6813 th_trace = th_trace_next) { 6814 th_trace_next = th_trace->th_next; 6815 kmem_free(th_trace, sizeof (th_trace_t)); 6816 } 6817 ill->ill_trace[i] = NULL; 6818 } 6819 } 6820 6821 #else 6822 void ip_thread_exit(void) {} 6823 #endif 6824 6825 void 6826 ipif_refhold_locked(ipif_t *ipif) 6827 { 6828 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6829 ipif->ipif_refcnt++; 6830 IPIF_TRACE_REF(ipif); 6831 } 6832 6833 void 6834 ipif_refhold(ipif_t *ipif) 6835 { 6836 ill_t *ill; 6837 6838 ill = ipif->ipif_ill; 6839 mutex_enter(&ill->ill_lock); 6840 ipif->ipif_refcnt++; 6841 IPIF_TRACE_REF(ipif); 6842 mutex_exit(&ill->ill_lock); 6843 } 6844 6845 /* 6846 * Must not be called while holding any locks. Otherwise if this is 6847 * the last reference to be released there is a chance of recursive mutex 6848 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6849 * to restart an ioctl. 6850 */ 6851 void 6852 ipif_refrele(ipif_t *ipif) 6853 { 6854 ill_t *ill; 6855 6856 ill = ipif->ipif_ill; 6857 6858 mutex_enter(&ill->ill_lock); 6859 ASSERT(ipif->ipif_refcnt != 0); 6860 ipif->ipif_refcnt--; 6861 IPIF_UNTRACE_REF(ipif); 6862 if (ipif->ipif_refcnt != 0) { 6863 mutex_exit(&ill->ill_lock); 6864 return; 6865 } 6866 6867 /* Drops the ill_lock */ 6868 ipif_ill_refrele_tail(ill); 6869 } 6870 6871 ipif_t * 6872 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6873 { 6874 ipif_t *ipif; 6875 6876 mutex_enter(&ill->ill_lock); 6877 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6878 ipif != NULL; ipif = ipif->ipif_next) { 6879 if (!IPIF_CAN_LOOKUP(ipif)) 6880 continue; 6881 ipif_refhold_locked(ipif); 6882 mutex_exit(&ill->ill_lock); 6883 return (ipif); 6884 } 6885 mutex_exit(&ill->ill_lock); 6886 return (NULL); 6887 } 6888 6889 /* 6890 * TODO: make this table extendible at run time 6891 * Return a pointer to the mac type info for 'mac_type' 6892 */ 6893 static ip_m_t * 6894 ip_m_lookup(t_uscalar_t mac_type) 6895 { 6896 ip_m_t *ipm; 6897 6898 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6899 if (ipm->ip_m_mac_type == mac_type) 6900 return (ipm); 6901 return (NULL); 6902 } 6903 6904 /* 6905 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6906 * ipif_arg is passed in to associate it with the correct interface. 6907 * We may need to restart this operation if the ipif cannot be looked up 6908 * due to an exclusive operation that is currently in progress. The restart 6909 * entry point is specified by 'func' 6910 */ 6911 int 6912 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6913 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6914 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6915 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6916 { 6917 ire_t *ire; 6918 ire_t *gw_ire = NULL; 6919 ipif_t *ipif = NULL; 6920 boolean_t ipif_refheld = B_FALSE; 6921 uint_t type; 6922 int match_flags = MATCH_IRE_TYPE; 6923 int error; 6924 tsol_gc_t *gc = NULL; 6925 tsol_gcgrp_t *gcgrp = NULL; 6926 boolean_t gcgrp_xtraref = B_FALSE; 6927 6928 ip1dbg(("ip_rt_add:")); 6929 6930 if (ire_arg != NULL) 6931 *ire_arg = NULL; 6932 6933 /* 6934 * If this is the case of RTF_HOST being set, then we set the netmask 6935 * to all ones (regardless if one was supplied). 6936 */ 6937 if (flags & RTF_HOST) 6938 mask = IP_HOST_MASK; 6939 6940 /* 6941 * Prevent routes with a zero gateway from being created (since 6942 * interfaces can currently be plumbed and brought up no assigned 6943 * address). 6944 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6945 */ 6946 if (gw_addr == 0 && src_ipif == NULL) 6947 return (ENETUNREACH); 6948 /* 6949 * Get the ipif, if any, corresponding to the gw_addr 6950 */ 6951 if (gw_addr != 0) { 6952 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6953 &error, ipst); 6954 if (ipif != NULL) { 6955 if (IS_VNI(ipif->ipif_ill)) { 6956 ipif_refrele(ipif); 6957 return (EINVAL); 6958 } 6959 ipif_refheld = B_TRUE; 6960 } else if (error == EINPROGRESS) { 6961 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6962 return (EINPROGRESS); 6963 } else { 6964 error = 0; 6965 } 6966 } 6967 6968 if (ipif != NULL) { 6969 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6970 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6971 } else { 6972 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6973 } 6974 6975 /* 6976 * GateD will attempt to create routes with a loopback interface 6977 * address as the gateway and with RTF_GATEWAY set. We allow 6978 * these routes to be added, but create them as interface routes 6979 * since the gateway is an interface address. 6980 */ 6981 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6982 flags &= ~RTF_GATEWAY; 6983 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6984 mask == IP_HOST_MASK) { 6985 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6986 ALL_ZONES, NULL, match_flags, ipst); 6987 if (ire != NULL) { 6988 ire_refrele(ire); 6989 if (ipif_refheld) 6990 ipif_refrele(ipif); 6991 return (EEXIST); 6992 } 6993 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6994 "for 0x%x\n", (void *)ipif, 6995 ipif->ipif_ire_type, 6996 ntohl(ipif->ipif_lcl_addr))); 6997 ire = ire_create( 6998 (uchar_t *)&dst_addr, /* dest address */ 6999 (uchar_t *)&mask, /* mask */ 7000 (uchar_t *)&ipif->ipif_src_addr, 7001 NULL, /* no gateway */ 7002 NULL, 7003 &ipif->ipif_mtu, 7004 NULL, 7005 ipif->ipif_rq, /* recv-from queue */ 7006 NULL, /* no send-to queue */ 7007 ipif->ipif_ire_type, /* LOOPBACK */ 7008 ipif, 7009 NULL, 7010 0, 7011 0, 7012 0, 7013 (ipif->ipif_flags & IPIF_PRIVATE) ? 7014 RTF_PRIVATE : 0, 7015 &ire_uinfo_null, 7016 NULL, 7017 NULL, 7018 ipst); 7019 7020 if (ire == NULL) { 7021 if (ipif_refheld) 7022 ipif_refrele(ipif); 7023 return (ENOMEM); 7024 } 7025 error = ire_add(&ire, q, mp, func, B_FALSE); 7026 if (error == 0) 7027 goto save_ire; 7028 if (ipif_refheld) 7029 ipif_refrele(ipif); 7030 return (error); 7031 7032 } 7033 } 7034 7035 /* 7036 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 7037 * and the gateway address provided is one of the system's interface 7038 * addresses. By using the routing socket interface and supplying an 7039 * RTA_IFP sockaddr with an interface index, an alternate method of 7040 * specifying an interface route to be created is available which uses 7041 * the interface index that specifies the outgoing interface rather than 7042 * the address of an outgoing interface (which may not be able to 7043 * uniquely identify an interface). When coupled with the RTF_GATEWAY 7044 * flag, routes can be specified which not only specify the next-hop to 7045 * be used when routing to a certain prefix, but also which outgoing 7046 * interface should be used. 7047 * 7048 * Previously, interfaces would have unique addresses assigned to them 7049 * and so the address assigned to a particular interface could be used 7050 * to identify a particular interface. One exception to this was the 7051 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 7052 * 7053 * With the advent of IPv6 and its link-local addresses, this 7054 * restriction was relaxed and interfaces could share addresses between 7055 * themselves. In fact, typically all of the link-local interfaces on 7056 * an IPv6 node or router will have the same link-local address. In 7057 * order to differentiate between these interfaces, the use of an 7058 * interface index is necessary and this index can be carried inside a 7059 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 7060 * of using the interface index, however, is that all of the ipif's that 7061 * are part of an ill have the same index and so the RTA_IFP sockaddr 7062 * cannot be used to differentiate between ipif's (or logical 7063 * interfaces) that belong to the same ill (physical interface). 7064 * 7065 * For example, in the following case involving IPv4 interfaces and 7066 * logical interfaces 7067 * 7068 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 7069 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 7070 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 7071 * 7072 * the ipif's corresponding to each of these interface routes can be 7073 * uniquely identified by the "gateway" (actually interface address). 7074 * 7075 * In this case involving multiple IPv6 default routes to a particular 7076 * link-local gateway, the use of RTA_IFP is necessary to specify which 7077 * default route is of interest: 7078 * 7079 * default fe80::123:4567:89ab:cdef U if0 7080 * default fe80::123:4567:89ab:cdef U if1 7081 */ 7082 7083 /* RTF_GATEWAY not set */ 7084 if (!(flags & RTF_GATEWAY)) { 7085 queue_t *stq; 7086 queue_t *rfq = NULL; 7087 ill_t *in_ill = NULL; 7088 7089 if (sp != NULL) { 7090 ip2dbg(("ip_rt_add: gateway security attributes " 7091 "cannot be set with interface route\n")); 7092 if (ipif_refheld) 7093 ipif_refrele(ipif); 7094 return (EINVAL); 7095 } 7096 7097 /* 7098 * As the interface index specified with the RTA_IFP sockaddr is 7099 * the same for all ipif's off of an ill, the matching logic 7100 * below uses MATCH_IRE_ILL if such an index was specified. 7101 * This means that routes sharing the same prefix when added 7102 * using a RTA_IFP sockaddr must have distinct interface 7103 * indices (namely, they must be on distinct ill's). 7104 * 7105 * On the other hand, since the gateway address will usually be 7106 * different for each ipif on the system, the matching logic 7107 * uses MATCH_IRE_IPIF in the case of a traditional interface 7108 * route. This means that interface routes for the same prefix 7109 * can be created if they belong to distinct ipif's and if a 7110 * RTA_IFP sockaddr is not present. 7111 */ 7112 if (ipif_arg != NULL) { 7113 if (ipif_refheld) { 7114 ipif_refrele(ipif); 7115 ipif_refheld = B_FALSE; 7116 } 7117 ipif = ipif_arg; 7118 match_flags |= MATCH_IRE_ILL; 7119 } else { 7120 /* 7121 * Check the ipif corresponding to the gw_addr 7122 */ 7123 if (ipif == NULL) 7124 return (ENETUNREACH); 7125 match_flags |= MATCH_IRE_IPIF; 7126 } 7127 ASSERT(ipif != NULL); 7128 /* 7129 * If src_ipif is not NULL, we have to create 7130 * an ire with non-null ire_in_ill value 7131 */ 7132 if (src_ipif != NULL) { 7133 in_ill = src_ipif->ipif_ill; 7134 } 7135 7136 /* 7137 * We check for an existing entry at this point. 7138 * 7139 * Since a netmask isn't passed in via the ioctl interface 7140 * (SIOCADDRT), we don't check for a matching netmask in that 7141 * case. 7142 */ 7143 if (!ioctl_msg) 7144 match_flags |= MATCH_IRE_MASK; 7145 if (src_ipif != NULL) { 7146 /* Look up in the special table */ 7147 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7148 ipif, src_ipif->ipif_ill, match_flags); 7149 } else { 7150 ire = ire_ftable_lookup(dst_addr, mask, 0, 7151 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7152 NULL, match_flags, ipst); 7153 } 7154 if (ire != NULL) { 7155 ire_refrele(ire); 7156 if (ipif_refheld) 7157 ipif_refrele(ipif); 7158 return (EEXIST); 7159 } 7160 7161 if (src_ipif != NULL) { 7162 /* 7163 * Create the special ire for the IRE table 7164 * which hangs out of ire_in_ill. This ire 7165 * is in-between IRE_CACHE and IRE_INTERFACE. 7166 * Thus rfq is non-NULL. 7167 */ 7168 rfq = ipif->ipif_rq; 7169 } 7170 /* Create the usual interface ires */ 7171 7172 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7173 ? ipif->ipif_rq : ipif->ipif_wq; 7174 7175 /* 7176 * Create a copy of the IRE_LOOPBACK, 7177 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7178 * the modified address and netmask. 7179 */ 7180 ire = ire_create( 7181 (uchar_t *)&dst_addr, 7182 (uint8_t *)&mask, 7183 (uint8_t *)&ipif->ipif_src_addr, 7184 NULL, 7185 NULL, 7186 &ipif->ipif_mtu, 7187 NULL, 7188 rfq, 7189 stq, 7190 ipif->ipif_net_type, 7191 ipif, 7192 in_ill, 7193 0, 7194 0, 7195 0, 7196 flags, 7197 &ire_uinfo_null, 7198 NULL, 7199 NULL, 7200 ipst); 7201 if (ire == NULL) { 7202 if (ipif_refheld) 7203 ipif_refrele(ipif); 7204 return (ENOMEM); 7205 } 7206 7207 /* 7208 * Some software (for example, GateD and Sun Cluster) attempts 7209 * to create (what amount to) IRE_PREFIX routes with the 7210 * loopback address as the gateway. This is primarily done to 7211 * set up prefixes with the RTF_REJECT flag set (for example, 7212 * when generating aggregate routes.) 7213 * 7214 * If the IRE type (as defined by ipif->ipif_net_type) is 7215 * IRE_LOOPBACK, then we map the request into a 7216 * IRE_IF_NORESOLVER. 7217 * 7218 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7219 * routine, but rather using ire_create() directly. 7220 * 7221 */ 7222 if (ipif->ipif_net_type == IRE_LOOPBACK) 7223 ire->ire_type = IRE_IF_NORESOLVER; 7224 7225 error = ire_add(&ire, q, mp, func, B_FALSE); 7226 if (error == 0) 7227 goto save_ire; 7228 7229 /* 7230 * In the result of failure, ire_add() will have already 7231 * deleted the ire in question, so there is no need to 7232 * do that here. 7233 */ 7234 if (ipif_refheld) 7235 ipif_refrele(ipif); 7236 return (error); 7237 } 7238 if (ipif_refheld) { 7239 ipif_refrele(ipif); 7240 ipif_refheld = B_FALSE; 7241 } 7242 7243 if (src_ipif != NULL) { 7244 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7245 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7246 return (EINVAL); 7247 } 7248 /* 7249 * Get an interface IRE for the specified gateway. 7250 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7251 * gateway, it is currently unreachable and we fail the request 7252 * accordingly. 7253 */ 7254 ipif = ipif_arg; 7255 if (ipif_arg != NULL) 7256 match_flags |= MATCH_IRE_ILL; 7257 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7258 ALL_ZONES, 0, NULL, match_flags, ipst); 7259 if (gw_ire == NULL) 7260 return (ENETUNREACH); 7261 7262 /* 7263 * We create one of three types of IREs as a result of this request 7264 * based on the netmask. A netmask of all ones (which is automatically 7265 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7266 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7267 * created. Otherwise, an IRE_PREFIX route is created for the 7268 * destination prefix. 7269 */ 7270 if (mask == IP_HOST_MASK) 7271 type = IRE_HOST; 7272 else if (mask == 0) 7273 type = IRE_DEFAULT; 7274 else 7275 type = IRE_PREFIX; 7276 7277 /* check for a duplicate entry */ 7278 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7279 NULL, ALL_ZONES, 0, NULL, 7280 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7281 if (ire != NULL) { 7282 ire_refrele(gw_ire); 7283 ire_refrele(ire); 7284 return (EEXIST); 7285 } 7286 7287 /* Security attribute exists */ 7288 if (sp != NULL) { 7289 tsol_gcgrp_addr_t ga; 7290 7291 /* find or create the gateway credentials group */ 7292 ga.ga_af = AF_INET; 7293 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7294 7295 /* we hold reference to it upon success */ 7296 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7297 if (gcgrp == NULL) { 7298 ire_refrele(gw_ire); 7299 return (ENOMEM); 7300 } 7301 7302 /* 7303 * Create and add the security attribute to the group; a 7304 * reference to the group is made upon allocating a new 7305 * entry successfully. If it finds an already-existing 7306 * entry for the security attribute in the group, it simply 7307 * returns it and no new reference is made to the group. 7308 */ 7309 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7310 if (gc == NULL) { 7311 /* release reference held by gcgrp_lookup */ 7312 GCGRP_REFRELE(gcgrp); 7313 ire_refrele(gw_ire); 7314 return (ENOMEM); 7315 } 7316 } 7317 7318 /* Create the IRE. */ 7319 ire = ire_create( 7320 (uchar_t *)&dst_addr, /* dest address */ 7321 (uchar_t *)&mask, /* mask */ 7322 /* src address assigned by the caller? */ 7323 (uchar_t *)(((src_addr != INADDR_ANY) && 7324 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7325 (uchar_t *)&gw_addr, /* gateway address */ 7326 NULL, /* no in-srcaddress */ 7327 &gw_ire->ire_max_frag, 7328 NULL, /* no src nce */ 7329 NULL, /* no recv-from queue */ 7330 NULL, /* no send-to queue */ 7331 (ushort_t)type, /* IRE type */ 7332 ipif_arg, 7333 NULL, 7334 0, 7335 0, 7336 0, 7337 flags, 7338 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7339 gc, /* security attribute */ 7340 NULL, 7341 ipst); 7342 7343 /* 7344 * The ire holds a reference to the 'gc' and the 'gc' holds a 7345 * reference to the 'gcgrp'. We can now release the extra reference 7346 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7347 */ 7348 if (gcgrp_xtraref) 7349 GCGRP_REFRELE(gcgrp); 7350 if (ire == NULL) { 7351 if (gc != NULL) 7352 GC_REFRELE(gc); 7353 ire_refrele(gw_ire); 7354 return (ENOMEM); 7355 } 7356 7357 /* 7358 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7359 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7360 */ 7361 7362 /* Add the new IRE. */ 7363 error = ire_add(&ire, q, mp, func, B_FALSE); 7364 if (error != 0) { 7365 /* 7366 * In the result of failure, ire_add() will have already 7367 * deleted the ire in question, so there is no need to 7368 * do that here. 7369 */ 7370 ire_refrele(gw_ire); 7371 return (error); 7372 } 7373 7374 if (flags & RTF_MULTIRT) { 7375 /* 7376 * Invoke the CGTP (multirouting) filtering module 7377 * to add the dst address in the filtering database. 7378 * Replicated inbound packets coming from that address 7379 * will be filtered to discard the duplicates. 7380 * It is not necessary to call the CGTP filter hook 7381 * when the dst address is a broadcast or multicast, 7382 * because an IP source address cannot be a broadcast 7383 * or a multicast. 7384 */ 7385 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7386 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7387 if (ire_dst != NULL) { 7388 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7389 ire_refrele(ire_dst); 7390 goto save_ire; 7391 } 7392 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7393 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7394 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7395 ire->ire_addr, 7396 ire->ire_gateway_addr, 7397 ire->ire_src_addr, 7398 gw_ire->ire_src_addr); 7399 if (res != 0) { 7400 ire_refrele(gw_ire); 7401 ire_delete(ire); 7402 return (res); 7403 } 7404 } 7405 } 7406 7407 /* 7408 * Now that the prefix IRE entry has been created, delete any 7409 * existing gateway IRE cache entries as well as any IRE caches 7410 * using the gateway, and force them to be created through 7411 * ip_newroute. 7412 */ 7413 if (gc != NULL) { 7414 ASSERT(gcgrp != NULL); 7415 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7416 } 7417 7418 save_ire: 7419 if (gw_ire != NULL) { 7420 ire_refrele(gw_ire); 7421 } 7422 /* 7423 * We do not do save_ire for the routes added with RTA_SRCIFP 7424 * flag. This route is only added and deleted by mipagent. 7425 * So, for simplicity of design, we refrain from saving 7426 * ires that are created with srcif value. This may change 7427 * in future if we find more usage of srcifp feature. 7428 */ 7429 if (ipif != NULL && src_ipif == NULL) { 7430 /* 7431 * Save enough information so that we can recreate the IRE if 7432 * the interface goes down and then up. The metrics associated 7433 * with the route will be saved as well when rts_setmetrics() is 7434 * called after the IRE has been created. In the case where 7435 * memory cannot be allocated, none of this information will be 7436 * saved. 7437 */ 7438 ipif_save_ire(ipif, ire); 7439 } 7440 if (ioctl_msg) 7441 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7442 if (ire_arg != NULL) { 7443 /* 7444 * Store the ire that was successfully added into where ire_arg 7445 * points to so that callers don't have to look it up 7446 * themselves (but they are responsible for ire_refrele()ing 7447 * the ire when they are finished with it). 7448 */ 7449 *ire_arg = ire; 7450 } else { 7451 ire_refrele(ire); /* Held in ire_add */ 7452 } 7453 if (ipif_refheld) 7454 ipif_refrele(ipif); 7455 return (0); 7456 } 7457 7458 /* 7459 * ip_rt_delete is called to delete an IPv4 route. 7460 * ipif_arg is passed in to associate it with the correct interface. 7461 * src_ipif is passed to associate the incoming interface of the packet. 7462 * We may need to restart this operation if the ipif cannot be looked up 7463 * due to an exclusive operation that is currently in progress. The restart 7464 * entry point is specified by 'func' 7465 */ 7466 /* ARGSUSED4 */ 7467 int 7468 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7469 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7470 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7471 ip_stack_t *ipst) 7472 { 7473 ire_t *ire = NULL; 7474 ipif_t *ipif; 7475 boolean_t ipif_refheld = B_FALSE; 7476 uint_t type; 7477 uint_t match_flags = MATCH_IRE_TYPE; 7478 int err = 0; 7479 7480 ip1dbg(("ip_rt_delete:")); 7481 /* 7482 * If this is the case of RTF_HOST being set, then we set the netmask 7483 * to all ones. Otherwise, we use the netmask if one was supplied. 7484 */ 7485 if (flags & RTF_HOST) { 7486 mask = IP_HOST_MASK; 7487 match_flags |= MATCH_IRE_MASK; 7488 } else if (rtm_addrs & RTA_NETMASK) { 7489 match_flags |= MATCH_IRE_MASK; 7490 } 7491 7492 /* 7493 * Note that RTF_GATEWAY is never set on a delete, therefore 7494 * we check if the gateway address is one of our interfaces first, 7495 * and fall back on RTF_GATEWAY routes. 7496 * 7497 * This makes it possible to delete an original 7498 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7499 * 7500 * As the interface index specified with the RTA_IFP sockaddr is the 7501 * same for all ipif's off of an ill, the matching logic below uses 7502 * MATCH_IRE_ILL if such an index was specified. This means a route 7503 * sharing the same prefix and interface index as the the route 7504 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7505 * is specified in the request. 7506 * 7507 * On the other hand, since the gateway address will usually be 7508 * different for each ipif on the system, the matching logic 7509 * uses MATCH_IRE_IPIF in the case of a traditional interface 7510 * route. This means that interface routes for the same prefix can be 7511 * uniquely identified if they belong to distinct ipif's and if a 7512 * RTA_IFP sockaddr is not present. 7513 * 7514 * For more detail on specifying routes by gateway address and by 7515 * interface index, see the comments in ip_rt_add(). 7516 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7517 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7518 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7519 * succeed. 7520 */ 7521 if (src_ipif != NULL) { 7522 if (ipif_arg == NULL && gw_addr != 0) { 7523 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7524 q, mp, func, &err, ipst); 7525 if (ipif_arg != NULL) 7526 ipif_refheld = B_TRUE; 7527 } 7528 if (ipif_arg == NULL) { 7529 err = (err == EINPROGRESS) ? err : ESRCH; 7530 return (err); 7531 } 7532 ipif = ipif_arg; 7533 } else { 7534 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7535 q, mp, func, &err, ipst); 7536 if (ipif != NULL) 7537 ipif_refheld = B_TRUE; 7538 else if (err == EINPROGRESS) 7539 return (err); 7540 else 7541 err = 0; 7542 } 7543 if (ipif != NULL) { 7544 if (ipif_arg != NULL) { 7545 if (ipif_refheld) { 7546 ipif_refrele(ipif); 7547 ipif_refheld = B_FALSE; 7548 } 7549 ipif = ipif_arg; 7550 match_flags |= MATCH_IRE_ILL; 7551 } else { 7552 match_flags |= MATCH_IRE_IPIF; 7553 } 7554 if (src_ipif != NULL) { 7555 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7556 ipif, src_ipif->ipif_ill, match_flags); 7557 } else { 7558 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7559 ire = ire_ctable_lookup(dst_addr, 0, 7560 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7561 match_flags, ipst); 7562 } 7563 if (ire == NULL) { 7564 ire = ire_ftable_lookup(dst_addr, mask, 0, 7565 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7566 NULL, match_flags, ipst); 7567 } 7568 } 7569 } 7570 7571 if (ire == NULL) { 7572 /* 7573 * At this point, the gateway address is not one of our own 7574 * addresses or a matching interface route was not found. We 7575 * set the IRE type to lookup based on whether 7576 * this is a host route, a default route or just a prefix. 7577 * 7578 * If an ipif_arg was passed in, then the lookup is based on an 7579 * interface index so MATCH_IRE_ILL is added to match_flags. 7580 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7581 * set as the route being looked up is not a traditional 7582 * interface route. 7583 * Since we do not add gateway route with srcipif, we don't 7584 * expect to find it either. 7585 */ 7586 if (src_ipif != NULL) { 7587 if (ipif_refheld) 7588 ipif_refrele(ipif); 7589 return (ESRCH); 7590 } else { 7591 match_flags &= ~MATCH_IRE_IPIF; 7592 match_flags |= MATCH_IRE_GW; 7593 if (ipif_arg != NULL) 7594 match_flags |= MATCH_IRE_ILL; 7595 if (mask == IP_HOST_MASK) 7596 type = IRE_HOST; 7597 else if (mask == 0) 7598 type = IRE_DEFAULT; 7599 else 7600 type = IRE_PREFIX; 7601 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7602 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7603 ipst); 7604 } 7605 } 7606 7607 if (ipif_refheld) 7608 ipif_refrele(ipif); 7609 7610 /* ipif is not refheld anymore */ 7611 if (ire == NULL) 7612 return (ESRCH); 7613 7614 if (ire->ire_flags & RTF_MULTIRT) { 7615 /* 7616 * Invoke the CGTP (multirouting) filtering module 7617 * to remove the dst address from the filtering database. 7618 * Packets coming from that address will no longer be 7619 * filtered to remove duplicates. 7620 */ 7621 if (ip_cgtp_filter_ops != NULL && 7622 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7623 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7624 ire->ire_addr, ire->ire_gateway_addr); 7625 } 7626 ip_cgtp_bcast_delete(ire, ipst); 7627 } 7628 7629 ipif = ire->ire_ipif; 7630 /* 7631 * Removing from ipif_saved_ire_mp is not necessary 7632 * when src_ipif being non-NULL. ip_rt_add does not 7633 * save the ires which src_ipif being non-NULL. 7634 */ 7635 if (ipif != NULL && src_ipif == NULL) { 7636 ipif_remove_ire(ipif, ire); 7637 } 7638 if (ioctl_msg) 7639 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7640 ire_delete(ire); 7641 ire_refrele(ire); 7642 return (err); 7643 } 7644 7645 /* 7646 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7647 */ 7648 /* ARGSUSED */ 7649 int 7650 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7651 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7652 { 7653 ipaddr_t dst_addr; 7654 ipaddr_t gw_addr; 7655 ipaddr_t mask; 7656 int error = 0; 7657 mblk_t *mp1; 7658 struct rtentry *rt; 7659 ipif_t *ipif = NULL; 7660 ip_stack_t *ipst; 7661 7662 ASSERT(q->q_next == NULL); 7663 ipst = CONNQ_TO_IPST(q); 7664 7665 ip1dbg(("ip_siocaddrt:")); 7666 /* Existence of mp1 verified in ip_wput_nondata */ 7667 mp1 = mp->b_cont->b_cont; 7668 rt = (struct rtentry *)mp1->b_rptr; 7669 7670 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7671 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7672 7673 /* 7674 * If the RTF_HOST flag is on, this is a request to assign a gateway 7675 * to a particular host address. In this case, we set the netmask to 7676 * all ones for the particular destination address. Otherwise, 7677 * determine the netmask to be used based on dst_addr and the interfaces 7678 * in use. 7679 */ 7680 if (rt->rt_flags & RTF_HOST) { 7681 mask = IP_HOST_MASK; 7682 } else { 7683 /* 7684 * Note that ip_subnet_mask returns a zero mask in the case of 7685 * default (an all-zeroes address). 7686 */ 7687 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7688 } 7689 7690 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7691 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7692 if (ipif != NULL) 7693 ipif_refrele(ipif); 7694 return (error); 7695 } 7696 7697 /* 7698 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7699 */ 7700 /* ARGSUSED */ 7701 int 7702 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7703 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7704 { 7705 ipaddr_t dst_addr; 7706 ipaddr_t gw_addr; 7707 ipaddr_t mask; 7708 int error; 7709 mblk_t *mp1; 7710 struct rtentry *rt; 7711 ipif_t *ipif = NULL; 7712 ip_stack_t *ipst; 7713 7714 ASSERT(q->q_next == NULL); 7715 ipst = CONNQ_TO_IPST(q); 7716 7717 ip1dbg(("ip_siocdelrt:")); 7718 /* Existence of mp1 verified in ip_wput_nondata */ 7719 mp1 = mp->b_cont->b_cont; 7720 rt = (struct rtentry *)mp1->b_rptr; 7721 7722 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7723 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7724 7725 /* 7726 * If the RTF_HOST flag is on, this is a request to delete a gateway 7727 * to a particular host address. In this case, we set the netmask to 7728 * all ones for the particular destination address. Otherwise, 7729 * determine the netmask to be used based on dst_addr and the interfaces 7730 * in use. 7731 */ 7732 if (rt->rt_flags & RTF_HOST) { 7733 mask = IP_HOST_MASK; 7734 } else { 7735 /* 7736 * Note that ip_subnet_mask returns a zero mask in the case of 7737 * default (an all-zeroes address). 7738 */ 7739 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7740 } 7741 7742 error = ip_rt_delete(dst_addr, mask, gw_addr, 7743 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7744 B_TRUE, q, mp, ip_process_ioctl, ipst); 7745 if (ipif != NULL) 7746 ipif_refrele(ipif); 7747 return (error); 7748 } 7749 7750 /* 7751 * Enqueue the mp onto the ipsq, chained by b_next. 7752 * b_prev stores the function to be executed later, and b_queue the queue 7753 * where this mp originated. 7754 */ 7755 void 7756 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7757 ill_t *pending_ill) 7758 { 7759 conn_t *connp = NULL; 7760 7761 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7762 ASSERT(func != NULL); 7763 7764 mp->b_queue = q; 7765 mp->b_prev = (void *)func; 7766 mp->b_next = NULL; 7767 7768 switch (type) { 7769 case CUR_OP: 7770 if (ipsq->ipsq_mptail != NULL) { 7771 ASSERT(ipsq->ipsq_mphead != NULL); 7772 ipsq->ipsq_mptail->b_next = mp; 7773 } else { 7774 ASSERT(ipsq->ipsq_mphead == NULL); 7775 ipsq->ipsq_mphead = mp; 7776 } 7777 ipsq->ipsq_mptail = mp; 7778 break; 7779 7780 case NEW_OP: 7781 if (ipsq->ipsq_xopq_mptail != NULL) { 7782 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7783 ipsq->ipsq_xopq_mptail->b_next = mp; 7784 } else { 7785 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7786 ipsq->ipsq_xopq_mphead = mp; 7787 } 7788 ipsq->ipsq_xopq_mptail = mp; 7789 break; 7790 default: 7791 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7792 } 7793 7794 if (CONN_Q(q) && pending_ill != NULL) { 7795 connp = Q_TO_CONN(q); 7796 7797 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7798 connp->conn_oper_pending_ill = pending_ill; 7799 } 7800 } 7801 7802 /* 7803 * Return the mp at the head of the ipsq. After emptying the ipsq 7804 * look at the next ioctl, if this ioctl is complete. Otherwise 7805 * return, we will resume when we complete the current ioctl. 7806 * The current ioctl will wait till it gets a response from the 7807 * driver below. 7808 */ 7809 static mblk_t * 7810 ipsq_dq(ipsq_t *ipsq) 7811 { 7812 mblk_t *mp; 7813 7814 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7815 7816 mp = ipsq->ipsq_mphead; 7817 if (mp != NULL) { 7818 ipsq->ipsq_mphead = mp->b_next; 7819 if (ipsq->ipsq_mphead == NULL) 7820 ipsq->ipsq_mptail = NULL; 7821 mp->b_next = NULL; 7822 return (mp); 7823 } 7824 if (ipsq->ipsq_current_ipif != NULL) 7825 return (NULL); 7826 mp = ipsq->ipsq_xopq_mphead; 7827 if (mp != NULL) { 7828 ipsq->ipsq_xopq_mphead = mp->b_next; 7829 if (ipsq->ipsq_xopq_mphead == NULL) 7830 ipsq->ipsq_xopq_mptail = NULL; 7831 mp->b_next = NULL; 7832 return (mp); 7833 } 7834 return (NULL); 7835 } 7836 7837 /* 7838 * Enter the ipsq corresponding to ill, by waiting synchronously till 7839 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7840 * will have to drain completely before ipsq_enter returns success. 7841 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7842 * and the ipsq_exit logic will start the next enqueued ioctl after 7843 * completion of the current ioctl. If 'force' is used, we don't wait 7844 * for the enqueued ioctls. This is needed when a conn_close wants to 7845 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7846 * of an ill can also use this option. But we dont' use it currently. 7847 */ 7848 #define ENTER_SQ_WAIT_TICKS 100 7849 boolean_t 7850 ipsq_enter(ill_t *ill, boolean_t force) 7851 { 7852 ipsq_t *ipsq; 7853 boolean_t waited_enough = B_FALSE; 7854 7855 /* 7856 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7857 * Since the <ill-ipsq> assocs could change while we wait for the 7858 * writer, it is easier to wait on a fixed global rather than try to 7859 * cv_wait on a changing ipsq. 7860 */ 7861 mutex_enter(&ill->ill_lock); 7862 for (;;) { 7863 if (ill->ill_state_flags & ILL_CONDEMNED) { 7864 mutex_exit(&ill->ill_lock); 7865 return (B_FALSE); 7866 } 7867 7868 ipsq = ill->ill_phyint->phyint_ipsq; 7869 mutex_enter(&ipsq->ipsq_lock); 7870 if (ipsq->ipsq_writer == NULL && 7871 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7872 break; 7873 } else if (ipsq->ipsq_writer != NULL) { 7874 mutex_exit(&ipsq->ipsq_lock); 7875 cv_wait(&ill->ill_cv, &ill->ill_lock); 7876 } else { 7877 mutex_exit(&ipsq->ipsq_lock); 7878 if (force) { 7879 (void) cv_timedwait(&ill->ill_cv, 7880 &ill->ill_lock, 7881 lbolt + ENTER_SQ_WAIT_TICKS); 7882 waited_enough = B_TRUE; 7883 continue; 7884 } else { 7885 cv_wait(&ill->ill_cv, &ill->ill_lock); 7886 } 7887 } 7888 } 7889 7890 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7891 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7892 ipsq->ipsq_writer = curthread; 7893 ipsq->ipsq_reentry_cnt++; 7894 #ifdef ILL_DEBUG 7895 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7896 #endif 7897 mutex_exit(&ipsq->ipsq_lock); 7898 mutex_exit(&ill->ill_lock); 7899 return (B_TRUE); 7900 } 7901 7902 /* 7903 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7904 * certain critical operations like plumbing (i.e. most set ioctls), 7905 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7906 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7907 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7908 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7909 * threads executing in the ipsq. Responses from the driver pertain to the 7910 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7911 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7912 * 7913 * If a thread does not want to reenter the ipsq when it is already writer, 7914 * it must make sure that the specified reentry point to be called later 7915 * when the ipsq is empty, nor any code path starting from the specified reentry 7916 * point must never ever try to enter the ipsq again. Otherwise it can lead 7917 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7918 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7919 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7920 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7921 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7922 * ioctl if the current ioctl has completed. If the current ioctl is still 7923 * in progress it simply returns. The current ioctl could be waiting for 7924 * a response from another module (arp_ or the driver or could be waiting for 7925 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7926 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7927 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7928 * ipsq_current_ipif is clear which happens only on ioctl completion. 7929 */ 7930 7931 /* 7932 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7933 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7934 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7935 * completion. 7936 */ 7937 ipsq_t * 7938 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7939 ipsq_func_t func, int type, boolean_t reentry_ok) 7940 { 7941 ipsq_t *ipsq; 7942 7943 /* Only 1 of ipif or ill can be specified */ 7944 ASSERT((ipif != NULL) ^ (ill != NULL)); 7945 if (ipif != NULL) 7946 ill = ipif->ipif_ill; 7947 7948 /* 7949 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7950 * ipsq of an ill can't change when ill_lock is held. 7951 */ 7952 GRAB_CONN_LOCK(q); 7953 mutex_enter(&ill->ill_lock); 7954 ipsq = ill->ill_phyint->phyint_ipsq; 7955 mutex_enter(&ipsq->ipsq_lock); 7956 7957 /* 7958 * 1. Enter the ipsq if we are already writer and reentry is ok. 7959 * (Note: If the caller does not specify reentry_ok then neither 7960 * 'func' nor any of its callees must ever attempt to enter the ipsq 7961 * again. Otherwise it can lead to an infinite loop 7962 * 2. Enter the ipsq if there is no current writer and this attempted 7963 * entry is part of the current ioctl or operation 7964 * 3. Enter the ipsq if there is no current writer and this is a new 7965 * ioctl (or operation) and the ioctl (or operation) queue is 7966 * empty and there is no ioctl (or operation) currently in progress 7967 */ 7968 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7969 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7970 ipsq->ipsq_current_ipif == NULL))) || 7971 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7972 /* Success. */ 7973 ipsq->ipsq_reentry_cnt++; 7974 ipsq->ipsq_writer = curthread; 7975 mutex_exit(&ipsq->ipsq_lock); 7976 mutex_exit(&ill->ill_lock); 7977 RELEASE_CONN_LOCK(q); 7978 #ifdef ILL_DEBUG 7979 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7980 #endif 7981 return (ipsq); 7982 } 7983 7984 ipsq_enq(ipsq, q, mp, func, type, ill); 7985 7986 mutex_exit(&ipsq->ipsq_lock); 7987 mutex_exit(&ill->ill_lock); 7988 RELEASE_CONN_LOCK(q); 7989 return (NULL); 7990 } 7991 7992 /* 7993 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7994 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7995 * cannot be entered, the mp is queued for completion. 7996 */ 7997 void 7998 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7999 boolean_t reentry_ok) 8000 { 8001 ipsq_t *ipsq; 8002 8003 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 8004 8005 /* 8006 * Drop the caller's refhold on the ill. This is safe since we either 8007 * entered the IPSQ (and thus are exclusive), or failed to enter the 8008 * IPSQ, in which case we return without accessing ill anymore. This 8009 * is needed because func needs to see the correct refcount. 8010 * e.g. removeif can work only then. 8011 */ 8012 ill_refrele(ill); 8013 if (ipsq != NULL) { 8014 (*func)(ipsq, q, mp, NULL); 8015 ipsq_exit(ipsq, B_TRUE, B_TRUE); 8016 } 8017 } 8018 8019 /* 8020 * If there are more than ILL_GRP_CNT ills in a group, 8021 * we use kmem alloc'd buffers, else use the stack 8022 */ 8023 #define ILL_GRP_CNT 14 8024 /* 8025 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 8026 * Called by a thread that is currently exclusive on this ipsq. 8027 */ 8028 void 8029 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 8030 { 8031 queue_t *q; 8032 mblk_t *mp; 8033 ipsq_func_t func; 8034 int next; 8035 ill_t **ill_list = NULL; 8036 size_t ill_list_size = 0; 8037 int cnt = 0; 8038 boolean_t need_ipsq_free = B_FALSE; 8039 ip_stack_t *ipst = ipsq->ipsq_ipst; 8040 8041 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8042 mutex_enter(&ipsq->ipsq_lock); 8043 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 8044 if (ipsq->ipsq_reentry_cnt != 1) { 8045 ipsq->ipsq_reentry_cnt--; 8046 mutex_exit(&ipsq->ipsq_lock); 8047 return; 8048 } 8049 8050 mp = ipsq_dq(ipsq); 8051 while (mp != NULL) { 8052 again: 8053 mutex_exit(&ipsq->ipsq_lock); 8054 func = (ipsq_func_t)mp->b_prev; 8055 q = (queue_t *)mp->b_queue; 8056 mp->b_prev = NULL; 8057 mp->b_queue = NULL; 8058 8059 /* 8060 * If 'q' is an conn queue, it is valid, since we did a 8061 * a refhold on the connp, at the start of the ioctl. 8062 * If 'q' is an ill queue, it is valid, since close of an 8063 * ill will clean up the 'ipsq'. 8064 */ 8065 (*func)(ipsq, q, mp, NULL); 8066 8067 mutex_enter(&ipsq->ipsq_lock); 8068 mp = ipsq_dq(ipsq); 8069 } 8070 8071 mutex_exit(&ipsq->ipsq_lock); 8072 8073 /* 8074 * Need to grab the locks in the right order. Need to 8075 * atomically check (under ipsq_lock) that there are no 8076 * messages before relinquishing the ipsq. Also need to 8077 * atomically wakeup waiters on ill_cv while holding ill_lock. 8078 * Holding ill_g_lock ensures that ipsq list of ills is stable. 8079 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 8080 * to grab ill_g_lock as writer. 8081 */ 8082 rw_enter(&ipst->ips_ill_g_lock, 8083 ipsq->ipsq_split ? RW_WRITER : RW_READER); 8084 8085 /* ipsq_refs can't change while ill_g_lock is held as reader */ 8086 if (ipsq->ipsq_refs != 0) { 8087 /* At most 2 ills v4/v6 per phyint */ 8088 cnt = ipsq->ipsq_refs << 1; 8089 ill_list_size = cnt * sizeof (ill_t *); 8090 /* 8091 * If memory allocation fails, we will do the split 8092 * the next time ipsq_exit is called for whatever reason. 8093 * As long as the ipsq_split flag is set the need to 8094 * split is remembered. 8095 */ 8096 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 8097 if (ill_list != NULL) 8098 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 8099 } 8100 mutex_enter(&ipsq->ipsq_lock); 8101 mp = ipsq_dq(ipsq); 8102 if (mp != NULL) { 8103 /* oops, some message has landed up, we can't get out */ 8104 if (ill_list != NULL) 8105 ill_unlock_ills(ill_list, cnt); 8106 rw_exit(&ipst->ips_ill_g_lock); 8107 if (ill_list != NULL) 8108 kmem_free(ill_list, ill_list_size); 8109 ill_list = NULL; 8110 ill_list_size = 0; 8111 cnt = 0; 8112 goto again; 8113 } 8114 8115 /* 8116 * Split only if no ioctl is pending and if memory alloc succeeded 8117 * above. 8118 */ 8119 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 8120 ill_list != NULL) { 8121 /* 8122 * No new ill can join this ipsq since we are holding the 8123 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 8124 * ipsq. ill_split_ipsq may fail due to memory shortage. 8125 * If so we will retry on the next ipsq_exit. 8126 */ 8127 ipsq->ipsq_split = ill_split_ipsq(ipsq); 8128 } 8129 8130 /* 8131 * We are holding the ipsq lock, hence no new messages can 8132 * land up on the ipsq, and there are no messages currently. 8133 * Now safe to get out. Wake up waiters and relinquish ipsq 8134 * atomically while holding ill locks. 8135 */ 8136 ipsq->ipsq_writer = NULL; 8137 ipsq->ipsq_reentry_cnt--; 8138 ASSERT(ipsq->ipsq_reentry_cnt == 0); 8139 #ifdef ILL_DEBUG 8140 ipsq->ipsq_depth = 0; 8141 #endif 8142 mutex_exit(&ipsq->ipsq_lock); 8143 /* 8144 * For IPMP this should wake up all ills in this ipsq. 8145 * We need to hold the ill_lock while waking up waiters to 8146 * avoid missed wakeups. But there is no need to acquire all 8147 * the ill locks and then wakeup. If we have not acquired all 8148 * the locks (due to memory failure above) ill_signal_ipsq_ills 8149 * wakes up ills one at a time after getting the right ill_lock 8150 */ 8151 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8152 if (ill_list != NULL) 8153 ill_unlock_ills(ill_list, cnt); 8154 if (ipsq->ipsq_refs == 0) 8155 need_ipsq_free = B_TRUE; 8156 rw_exit(&ipst->ips_ill_g_lock); 8157 if (ill_list != 0) 8158 kmem_free(ill_list, ill_list_size); 8159 8160 if (need_ipsq_free) { 8161 /* 8162 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8163 * looked up. ipsq can be looked up only thru ill or phyint 8164 * and there are no ills/phyint on this ipsq. 8165 */ 8166 ipsq_delete(ipsq); 8167 } 8168 /* 8169 * Now start any igmp or mld timers that could not be started 8170 * while inside the ipsq. The timers can't be started while inside 8171 * the ipsq, since igmp_start_timers may need to call untimeout() 8172 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8173 * there could be a deadlock since the timeout handlers 8174 * mld_timeout_handler / igmp_timeout_handler also synchronously 8175 * wait in ipsq_enter() trying to get the ipsq. 8176 * 8177 * However there is one exception to the above. If this thread is 8178 * itself the igmp/mld timeout handler thread, then we don't want 8179 * to start any new timer until the current handler is done. The 8180 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8181 * all others pass B_TRUE. 8182 */ 8183 if (start_igmp_timer) { 8184 mutex_enter(&ipst->ips_igmp_timer_lock); 8185 next = ipst->ips_igmp_deferred_next; 8186 ipst->ips_igmp_deferred_next = INFINITY; 8187 mutex_exit(&ipst->ips_igmp_timer_lock); 8188 8189 if (next != INFINITY) 8190 igmp_start_timers(next, ipst); 8191 } 8192 8193 if (start_mld_timer) { 8194 mutex_enter(&ipst->ips_mld_timer_lock); 8195 next = ipst->ips_mld_deferred_next; 8196 ipst->ips_mld_deferred_next = INFINITY; 8197 mutex_exit(&ipst->ips_mld_timer_lock); 8198 8199 if (next != INFINITY) 8200 mld_start_timers(next, ipst); 8201 } 8202 } 8203 8204 /* 8205 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8206 * and `ioccmd'. 8207 */ 8208 void 8209 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8210 { 8211 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8212 8213 mutex_enter(&ipsq->ipsq_lock); 8214 ASSERT(ipsq->ipsq_current_ipif == NULL); 8215 ASSERT(ipsq->ipsq_current_ioctl == 0); 8216 ipsq->ipsq_current_ipif = ipif; 8217 ipsq->ipsq_current_ioctl = ioccmd; 8218 mutex_exit(&ipsq->ipsq_lock); 8219 } 8220 8221 /* 8222 * Finish the current exclusive operation on `ipsq'. Note that other 8223 * operations will not be able to proceed until an ipsq_exit() is done. 8224 */ 8225 void 8226 ipsq_current_finish(ipsq_t *ipsq) 8227 { 8228 ipif_t *ipif = ipsq->ipsq_current_ipif; 8229 8230 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8231 8232 /* 8233 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8234 * (but we're careful to never set IPIF_CHANGING in that case). 8235 */ 8236 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8237 mutex_enter(&ipif->ipif_ill->ill_lock); 8238 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8239 8240 /* Send any queued event */ 8241 ill_nic_info_dispatch(ipif->ipif_ill); 8242 mutex_exit(&ipif->ipif_ill->ill_lock); 8243 } 8244 8245 mutex_enter(&ipsq->ipsq_lock); 8246 ASSERT(ipsq->ipsq_current_ipif != NULL); 8247 ipsq->ipsq_current_ipif = NULL; 8248 ipsq->ipsq_current_ioctl = 0; 8249 mutex_exit(&ipsq->ipsq_lock); 8250 } 8251 8252 /* 8253 * The ill is closing. Flush all messages on the ipsq that originated 8254 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8255 * for this ill since ipsq_enter could not have entered until then. 8256 * New messages can't be queued since the CONDEMNED flag is set. 8257 */ 8258 static void 8259 ipsq_flush(ill_t *ill) 8260 { 8261 queue_t *q; 8262 mblk_t *prev; 8263 mblk_t *mp; 8264 mblk_t *mp_next; 8265 ipsq_t *ipsq; 8266 8267 ASSERT(IAM_WRITER_ILL(ill)); 8268 ipsq = ill->ill_phyint->phyint_ipsq; 8269 /* 8270 * Flush any messages sent up by the driver. 8271 */ 8272 mutex_enter(&ipsq->ipsq_lock); 8273 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8274 mp_next = mp->b_next; 8275 q = mp->b_queue; 8276 if (q == ill->ill_rq || q == ill->ill_wq) { 8277 /* Remove the mp from the ipsq */ 8278 if (prev == NULL) 8279 ipsq->ipsq_mphead = mp->b_next; 8280 else 8281 prev->b_next = mp->b_next; 8282 if (ipsq->ipsq_mptail == mp) { 8283 ASSERT(mp_next == NULL); 8284 ipsq->ipsq_mptail = prev; 8285 } 8286 inet_freemsg(mp); 8287 } else { 8288 prev = mp; 8289 } 8290 } 8291 mutex_exit(&ipsq->ipsq_lock); 8292 (void) ipsq_pending_mp_cleanup(ill, NULL); 8293 ipsq_xopq_mp_cleanup(ill, NULL); 8294 ill_pending_mp_cleanup(ill); 8295 } 8296 8297 /* ARGSUSED */ 8298 int 8299 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8300 ip_ioctl_cmd_t *ipip, void *ifreq) 8301 { 8302 ill_t *ill; 8303 struct lifreq *lifr = (struct lifreq *)ifreq; 8304 boolean_t isv6; 8305 conn_t *connp; 8306 ip_stack_t *ipst; 8307 8308 connp = Q_TO_CONN(q); 8309 ipst = connp->conn_netstack->netstack_ip; 8310 isv6 = connp->conn_af_isv6; 8311 /* 8312 * Set original index. 8313 * Failover and failback move logical interfaces 8314 * from one physical interface to another. The 8315 * original index indicates the parent of a logical 8316 * interface, in other words, the physical interface 8317 * the logical interface will be moved back to on 8318 * failback. 8319 */ 8320 8321 /* 8322 * Don't allow the original index to be changed 8323 * for non-failover addresses, autoconfigured 8324 * addresses, or IPv6 link local addresses. 8325 */ 8326 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8327 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8328 return (EINVAL); 8329 } 8330 /* 8331 * The new original index must be in use by some 8332 * physical interface. 8333 */ 8334 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8335 NULL, NULL, ipst); 8336 if (ill == NULL) 8337 return (ENXIO); 8338 ill_refrele(ill); 8339 8340 ipif->ipif_orig_ifindex = lifr->lifr_index; 8341 /* 8342 * When this ipif gets failed back, don't 8343 * preserve the original id, as it is no 8344 * longer applicable. 8345 */ 8346 ipif->ipif_orig_ipifid = 0; 8347 /* 8348 * For IPv4, change the original index of any 8349 * multicast addresses associated with the 8350 * ipif to the new value. 8351 */ 8352 if (!isv6) { 8353 ilm_t *ilm; 8354 8355 mutex_enter(&ipif->ipif_ill->ill_lock); 8356 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8357 ilm = ilm->ilm_next) { 8358 if (ilm->ilm_ipif == ipif) { 8359 ilm->ilm_orig_ifindex = lifr->lifr_index; 8360 } 8361 } 8362 mutex_exit(&ipif->ipif_ill->ill_lock); 8363 } 8364 return (0); 8365 } 8366 8367 /* ARGSUSED */ 8368 int 8369 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8370 ip_ioctl_cmd_t *ipip, void *ifreq) 8371 { 8372 struct lifreq *lifr = (struct lifreq *)ifreq; 8373 8374 /* 8375 * Get the original interface index i.e the one 8376 * before FAILOVER if it ever happened. 8377 */ 8378 lifr->lifr_index = ipif->ipif_orig_ifindex; 8379 return (0); 8380 } 8381 8382 /* 8383 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8384 * refhold and return the associated ipif 8385 */ 8386 int 8387 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8388 { 8389 boolean_t exists; 8390 struct iftun_req *ta; 8391 ipif_t *ipif; 8392 ill_t *ill; 8393 boolean_t isv6; 8394 mblk_t *mp1; 8395 int error; 8396 conn_t *connp; 8397 ip_stack_t *ipst; 8398 8399 /* Existence verified in ip_wput_nondata */ 8400 mp1 = mp->b_cont->b_cont; 8401 ta = (struct iftun_req *)mp1->b_rptr; 8402 /* 8403 * Null terminate the string to protect against buffer 8404 * overrun. String was generated by user code and may not 8405 * be trusted. 8406 */ 8407 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8408 8409 connp = Q_TO_CONN(q); 8410 isv6 = connp->conn_af_isv6; 8411 ipst = connp->conn_netstack->netstack_ip; 8412 8413 /* Disallows implicit create */ 8414 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8415 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8416 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8417 if (ipif == NULL) 8418 return (error); 8419 8420 if (ipif->ipif_id != 0) { 8421 /* 8422 * We really don't want to set/get tunnel parameters 8423 * on virtual tunnel interfaces. Only allow the 8424 * base tunnel to do these. 8425 */ 8426 ipif_refrele(ipif); 8427 return (EINVAL); 8428 } 8429 8430 /* 8431 * Send down to tunnel mod for ioctl processing. 8432 * Will finish ioctl in ip_rput_other(). 8433 */ 8434 ill = ipif->ipif_ill; 8435 if (ill->ill_net_type == IRE_LOOPBACK) { 8436 ipif_refrele(ipif); 8437 return (EOPNOTSUPP); 8438 } 8439 8440 if (ill->ill_wq == NULL) { 8441 ipif_refrele(ipif); 8442 return (ENXIO); 8443 } 8444 /* 8445 * Mark the ioctl as coming from an IPv6 interface for 8446 * tun's convenience. 8447 */ 8448 if (ill->ill_isv6) 8449 ta->ifta_flags |= 0x80000000; 8450 *ipifp = ipif; 8451 return (0); 8452 } 8453 8454 /* 8455 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8456 * and return the associated ipif. 8457 * Return value: 8458 * Non zero: An error has occurred. ci may not be filled out. 8459 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8460 * a held ipif in ci.ci_ipif. 8461 */ 8462 int 8463 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8464 cmd_info_t *ci, ipsq_func_t func) 8465 { 8466 sin_t *sin; 8467 sin6_t *sin6; 8468 char *name; 8469 struct ifreq *ifr; 8470 struct lifreq *lifr; 8471 ipif_t *ipif = NULL; 8472 ill_t *ill; 8473 conn_t *connp; 8474 boolean_t isv6; 8475 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8476 boolean_t exists; 8477 int err; 8478 mblk_t *mp1; 8479 zoneid_t zoneid; 8480 ip_stack_t *ipst; 8481 8482 if (q->q_next != NULL) { 8483 ill = (ill_t *)q->q_ptr; 8484 isv6 = ill->ill_isv6; 8485 connp = NULL; 8486 zoneid = ALL_ZONES; 8487 ipst = ill->ill_ipst; 8488 } else { 8489 ill = NULL; 8490 connp = Q_TO_CONN(q); 8491 isv6 = connp->conn_af_isv6; 8492 zoneid = connp->conn_zoneid; 8493 if (zoneid == GLOBAL_ZONEID) { 8494 /* global zone can access ipifs in all zones */ 8495 zoneid = ALL_ZONES; 8496 } 8497 ipst = connp->conn_netstack->netstack_ip; 8498 } 8499 8500 /* Has been checked in ip_wput_nondata */ 8501 mp1 = mp->b_cont->b_cont; 8502 8503 8504 if (cmd_type == IF_CMD) { 8505 /* This a old style SIOC[GS]IF* command */ 8506 ifr = (struct ifreq *)mp1->b_rptr; 8507 /* 8508 * Null terminate the string to protect against buffer 8509 * overrun. String was generated by user code and may not 8510 * be trusted. 8511 */ 8512 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8513 sin = (sin_t *)&ifr->ifr_addr; 8514 name = ifr->ifr_name; 8515 ci->ci_sin = sin; 8516 ci->ci_sin6 = NULL; 8517 ci->ci_lifr = (struct lifreq *)ifr; 8518 } else { 8519 /* This a new style SIOC[GS]LIF* command */ 8520 ASSERT(cmd_type == LIF_CMD); 8521 lifr = (struct lifreq *)mp1->b_rptr; 8522 /* 8523 * Null terminate the string to protect against buffer 8524 * overrun. String was generated by user code and may not 8525 * be trusted. 8526 */ 8527 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8528 name = lifr->lifr_name; 8529 sin = (sin_t *)&lifr->lifr_addr; 8530 sin6 = (sin6_t *)&lifr->lifr_addr; 8531 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8532 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8533 LIFNAMSIZ); 8534 } 8535 ci->ci_sin = sin; 8536 ci->ci_sin6 = sin6; 8537 ci->ci_lifr = lifr; 8538 } 8539 8540 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8541 /* 8542 * The ioctl will be failed if the ioctl comes down 8543 * an conn stream 8544 */ 8545 if (ill == NULL) { 8546 /* 8547 * Not an ill queue, return EINVAL same as the 8548 * old error code. 8549 */ 8550 return (ENXIO); 8551 } 8552 ipif = ill->ill_ipif; 8553 ipif_refhold(ipif); 8554 } else { 8555 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8556 &exists, isv6, zoneid, 8557 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8558 ipst); 8559 if (ipif == NULL) { 8560 if (err == EINPROGRESS) 8561 return (err); 8562 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8563 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8564 /* 8565 * Need to try both v4 and v6 since this 8566 * ioctl can come down either v4 or v6 8567 * socket. The lifreq.lifr_family passed 8568 * down by this ioctl is AF_UNSPEC. 8569 */ 8570 ipif = ipif_lookup_on_name(name, 8571 mi_strlen(name), B_FALSE, &exists, !isv6, 8572 zoneid, (connp == NULL) ? q : 8573 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8574 if (err == EINPROGRESS) 8575 return (err); 8576 } 8577 err = 0; /* Ensure we don't use it below */ 8578 } 8579 } 8580 8581 /* 8582 * Old style [GS]IFCMD does not admit IPv6 ipif 8583 */ 8584 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8585 ipif_refrele(ipif); 8586 return (ENXIO); 8587 } 8588 8589 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8590 name[0] == '\0') { 8591 /* 8592 * Handle a or a SIOC?IF* with a null name 8593 * during plumb (on the ill queue before the I_PLINK). 8594 */ 8595 ipif = ill->ill_ipif; 8596 ipif_refhold(ipif); 8597 } 8598 8599 if (ipif == NULL) 8600 return (ENXIO); 8601 8602 /* 8603 * Allow only GET operations if this ipif has been created 8604 * temporarily due to a MOVE operation. 8605 */ 8606 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8607 ipif_refrele(ipif); 8608 return (EINVAL); 8609 } 8610 8611 ci->ci_ipif = ipif; 8612 return (0); 8613 } 8614 8615 /* 8616 * Return the total number of ipifs. 8617 */ 8618 static uint_t 8619 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8620 { 8621 uint_t numifs = 0; 8622 ill_t *ill; 8623 ill_walk_context_t ctx; 8624 ipif_t *ipif; 8625 8626 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8627 ill = ILL_START_WALK_V4(&ctx, ipst); 8628 8629 while (ill != NULL) { 8630 for (ipif = ill->ill_ipif; ipif != NULL; 8631 ipif = ipif->ipif_next) { 8632 if (ipif->ipif_zoneid == zoneid || 8633 ipif->ipif_zoneid == ALL_ZONES) 8634 numifs++; 8635 } 8636 ill = ill_next(&ctx, ill); 8637 } 8638 rw_exit(&ipst->ips_ill_g_lock); 8639 return (numifs); 8640 } 8641 8642 /* 8643 * Return the total number of ipifs. 8644 */ 8645 static uint_t 8646 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8647 { 8648 uint_t numifs = 0; 8649 ill_t *ill; 8650 ipif_t *ipif; 8651 ill_walk_context_t ctx; 8652 8653 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8654 8655 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8656 if (family == AF_INET) 8657 ill = ILL_START_WALK_V4(&ctx, ipst); 8658 else if (family == AF_INET6) 8659 ill = ILL_START_WALK_V6(&ctx, ipst); 8660 else 8661 ill = ILL_START_WALK_ALL(&ctx, ipst); 8662 8663 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8664 for (ipif = ill->ill_ipif; ipif != NULL; 8665 ipif = ipif->ipif_next) { 8666 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8667 !(lifn_flags & LIFC_NOXMIT)) 8668 continue; 8669 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8670 !(lifn_flags & LIFC_TEMPORARY)) 8671 continue; 8672 if (((ipif->ipif_flags & 8673 (IPIF_NOXMIT|IPIF_NOLOCAL| 8674 IPIF_DEPRECATED)) || 8675 IS_LOOPBACK(ill) || 8676 !(ipif->ipif_flags & IPIF_UP)) && 8677 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8678 continue; 8679 8680 if (zoneid != ipif->ipif_zoneid && 8681 ipif->ipif_zoneid != ALL_ZONES && 8682 (zoneid != GLOBAL_ZONEID || 8683 !(lifn_flags & LIFC_ALLZONES))) 8684 continue; 8685 8686 numifs++; 8687 } 8688 } 8689 rw_exit(&ipst->ips_ill_g_lock); 8690 return (numifs); 8691 } 8692 8693 uint_t 8694 ip_get_lifsrcofnum(ill_t *ill) 8695 { 8696 uint_t numifs = 0; 8697 ill_t *ill_head = ill; 8698 ip_stack_t *ipst = ill->ill_ipst; 8699 8700 /* 8701 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8702 * other thread may be trying to relink the ILLs in this usesrc group 8703 * and adjusting the ill_usesrc_grp_next pointers 8704 */ 8705 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8706 if ((ill->ill_usesrc_ifindex == 0) && 8707 (ill->ill_usesrc_grp_next != NULL)) { 8708 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8709 ill = ill->ill_usesrc_grp_next) 8710 numifs++; 8711 } 8712 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8713 8714 return (numifs); 8715 } 8716 8717 /* Null values are passed in for ipif, sin, and ifreq */ 8718 /* ARGSUSED */ 8719 int 8720 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8721 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8722 { 8723 int *nump; 8724 conn_t *connp = Q_TO_CONN(q); 8725 8726 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8727 8728 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8729 nump = (int *)mp->b_cont->b_cont->b_rptr; 8730 8731 *nump = ip_get_numifs(connp->conn_zoneid, 8732 connp->conn_netstack->netstack_ip); 8733 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8734 return (0); 8735 } 8736 8737 /* Null values are passed in for ipif, sin, and ifreq */ 8738 /* ARGSUSED */ 8739 int 8740 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8741 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8742 { 8743 struct lifnum *lifn; 8744 mblk_t *mp1; 8745 conn_t *connp = Q_TO_CONN(q); 8746 8747 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8748 8749 /* Existence checked in ip_wput_nondata */ 8750 mp1 = mp->b_cont->b_cont; 8751 8752 lifn = (struct lifnum *)mp1->b_rptr; 8753 switch (lifn->lifn_family) { 8754 case AF_UNSPEC: 8755 case AF_INET: 8756 case AF_INET6: 8757 break; 8758 default: 8759 return (EAFNOSUPPORT); 8760 } 8761 8762 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8763 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8764 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8765 return (0); 8766 } 8767 8768 /* ARGSUSED */ 8769 int 8770 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8771 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8772 { 8773 STRUCT_HANDLE(ifconf, ifc); 8774 mblk_t *mp1; 8775 struct iocblk *iocp; 8776 struct ifreq *ifr; 8777 ill_walk_context_t ctx; 8778 ill_t *ill; 8779 ipif_t *ipif; 8780 struct sockaddr_in *sin; 8781 int32_t ifclen; 8782 zoneid_t zoneid; 8783 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8784 8785 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8786 8787 ip1dbg(("ip_sioctl_get_ifconf")); 8788 /* Existence verified in ip_wput_nondata */ 8789 mp1 = mp->b_cont->b_cont; 8790 iocp = (struct iocblk *)mp->b_rptr; 8791 zoneid = Q_TO_CONN(q)->conn_zoneid; 8792 8793 /* 8794 * The original SIOCGIFCONF passed in a struct ifconf which specified 8795 * the user buffer address and length into which the list of struct 8796 * ifreqs was to be copied. Since AT&T Streams does not seem to 8797 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8798 * the SIOCGIFCONF operation was redefined to simply provide 8799 * a large output buffer into which we are supposed to jam the ifreq 8800 * array. The same ioctl command code was used, despite the fact that 8801 * both the applications and the kernel code had to change, thus making 8802 * it impossible to support both interfaces. 8803 * 8804 * For reasons not good enough to try to explain, the following 8805 * algorithm is used for deciding what to do with one of these: 8806 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8807 * form with the output buffer coming down as the continuation message. 8808 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8809 * and we have to copy in the ifconf structure to find out how big the 8810 * output buffer is and where to copy out to. Sure no problem... 8811 * 8812 */ 8813 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8814 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8815 int numifs = 0; 8816 size_t ifc_bufsize; 8817 8818 /* 8819 * Must be (better be!) continuation of a TRANSPARENT 8820 * IOCTL. We just copied in the ifconf structure. 8821 */ 8822 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8823 (struct ifconf *)mp1->b_rptr); 8824 8825 /* 8826 * Allocate a buffer to hold requested information. 8827 * 8828 * If ifc_len is larger than what is needed, we only 8829 * allocate what we will use. 8830 * 8831 * If ifc_len is smaller than what is needed, return 8832 * EINVAL. 8833 * 8834 * XXX: the ill_t structure can hava 2 counters, for 8835 * v4 and v6 (not just ill_ipif_up_count) to store the 8836 * number of interfaces for a device, so we don't need 8837 * to count them here... 8838 */ 8839 numifs = ip_get_numifs(zoneid, ipst); 8840 8841 ifclen = STRUCT_FGET(ifc, ifc_len); 8842 ifc_bufsize = numifs * sizeof (struct ifreq); 8843 if (ifc_bufsize > ifclen) { 8844 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8845 /* old behaviour */ 8846 return (EINVAL); 8847 } else { 8848 ifc_bufsize = ifclen; 8849 } 8850 } 8851 8852 mp1 = mi_copyout_alloc(q, mp, 8853 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8854 if (mp1 == NULL) 8855 return (ENOMEM); 8856 8857 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8858 } 8859 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8860 /* 8861 * the SIOCGIFCONF ioctl only knows about 8862 * IPv4 addresses, so don't try to tell 8863 * it about interfaces with IPv6-only 8864 * addresses. (Last parm 'isv6' is B_FALSE) 8865 */ 8866 8867 ifr = (struct ifreq *)mp1->b_rptr; 8868 8869 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8870 ill = ILL_START_WALK_V4(&ctx, ipst); 8871 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8872 for (ipif = ill->ill_ipif; ipif != NULL; 8873 ipif = ipif->ipif_next) { 8874 if (zoneid != ipif->ipif_zoneid && 8875 ipif->ipif_zoneid != ALL_ZONES) 8876 continue; 8877 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8878 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8879 /* old behaviour */ 8880 rw_exit(&ipst->ips_ill_g_lock); 8881 return (EINVAL); 8882 } else { 8883 goto if_copydone; 8884 } 8885 } 8886 (void) ipif_get_name(ipif, 8887 ifr->ifr_name, 8888 sizeof (ifr->ifr_name)); 8889 sin = (sin_t *)&ifr->ifr_addr; 8890 *sin = sin_null; 8891 sin->sin_family = AF_INET; 8892 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8893 ifr++; 8894 } 8895 } 8896 if_copydone: 8897 rw_exit(&ipst->ips_ill_g_lock); 8898 mp1->b_wptr = (uchar_t *)ifr; 8899 8900 if (STRUCT_BUF(ifc) != NULL) { 8901 STRUCT_FSET(ifc, ifc_len, 8902 (int)((uchar_t *)ifr - mp1->b_rptr)); 8903 } 8904 return (0); 8905 } 8906 8907 /* 8908 * Get the interfaces using the address hosted on the interface passed in, 8909 * as a source adddress 8910 */ 8911 /* ARGSUSED */ 8912 int 8913 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8914 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8915 { 8916 mblk_t *mp1; 8917 ill_t *ill, *ill_head; 8918 ipif_t *ipif, *orig_ipif; 8919 int numlifs = 0; 8920 size_t lifs_bufsize, lifsmaxlen; 8921 struct lifreq *lifr; 8922 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8923 uint_t ifindex; 8924 zoneid_t zoneid; 8925 int err = 0; 8926 boolean_t isv6 = B_FALSE; 8927 struct sockaddr_in *sin; 8928 struct sockaddr_in6 *sin6; 8929 STRUCT_HANDLE(lifsrcof, lifs); 8930 ip_stack_t *ipst; 8931 8932 ipst = CONNQ_TO_IPST(q); 8933 8934 ASSERT(q->q_next == NULL); 8935 8936 zoneid = Q_TO_CONN(q)->conn_zoneid; 8937 8938 /* Existence verified in ip_wput_nondata */ 8939 mp1 = mp->b_cont->b_cont; 8940 8941 /* 8942 * Must be (better be!) continuation of a TRANSPARENT 8943 * IOCTL. We just copied in the lifsrcof structure. 8944 */ 8945 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8946 (struct lifsrcof *)mp1->b_rptr); 8947 8948 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8949 return (EINVAL); 8950 8951 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8952 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8953 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8954 ip_process_ioctl, &err, ipst); 8955 if (ipif == NULL) { 8956 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8957 ifindex)); 8958 return (err); 8959 } 8960 8961 8962 /* Allocate a buffer to hold requested information */ 8963 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8964 lifs_bufsize = numlifs * sizeof (struct lifreq); 8965 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8966 /* The actual size needed is always returned in lifs_len */ 8967 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8968 8969 /* If the amount we need is more than what is passed in, abort */ 8970 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8971 ipif_refrele(ipif); 8972 return (0); 8973 } 8974 8975 mp1 = mi_copyout_alloc(q, mp, 8976 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8977 if (mp1 == NULL) { 8978 ipif_refrele(ipif); 8979 return (ENOMEM); 8980 } 8981 8982 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8983 bzero(mp1->b_rptr, lifs_bufsize); 8984 8985 lifr = (struct lifreq *)mp1->b_rptr; 8986 8987 ill = ill_head = ipif->ipif_ill; 8988 orig_ipif = ipif; 8989 8990 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8991 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8992 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8993 8994 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8995 for (; (ill != NULL) && (ill != ill_head); 8996 ill = ill->ill_usesrc_grp_next) { 8997 8998 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8999 break; 9000 9001 ipif = ill->ill_ipif; 9002 (void) ipif_get_name(ipif, 9003 lifr->lifr_name, sizeof (lifr->lifr_name)); 9004 if (ipif->ipif_isv6) { 9005 sin6 = (sin6_t *)&lifr->lifr_addr; 9006 *sin6 = sin6_null; 9007 sin6->sin6_family = AF_INET6; 9008 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9009 lifr->lifr_addrlen = ip_mask_to_plen_v6( 9010 &ipif->ipif_v6net_mask); 9011 } else { 9012 sin = (sin_t *)&lifr->lifr_addr; 9013 *sin = sin_null; 9014 sin->sin_family = AF_INET; 9015 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9016 lifr->lifr_addrlen = ip_mask_to_plen( 9017 ipif->ipif_net_mask); 9018 } 9019 lifr++; 9020 } 9021 rw_exit(&ipst->ips_ill_g_usesrc_lock); 9022 rw_exit(&ipst->ips_ill_g_lock); 9023 ipif_refrele(orig_ipif); 9024 mp1->b_wptr = (uchar_t *)lifr; 9025 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 9026 9027 return (0); 9028 } 9029 9030 /* ARGSUSED */ 9031 int 9032 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 9033 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9034 { 9035 mblk_t *mp1; 9036 int list; 9037 ill_t *ill; 9038 ipif_t *ipif; 9039 int flags; 9040 int numlifs = 0; 9041 size_t lifc_bufsize; 9042 struct lifreq *lifr; 9043 sa_family_t family; 9044 struct sockaddr_in *sin; 9045 struct sockaddr_in6 *sin6; 9046 ill_walk_context_t ctx; 9047 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9048 int32_t lifclen; 9049 zoneid_t zoneid; 9050 STRUCT_HANDLE(lifconf, lifc); 9051 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9052 9053 ip1dbg(("ip_sioctl_get_lifconf")); 9054 9055 ASSERT(q->q_next == NULL); 9056 9057 zoneid = Q_TO_CONN(q)->conn_zoneid; 9058 9059 /* Existence verified in ip_wput_nondata */ 9060 mp1 = mp->b_cont->b_cont; 9061 9062 /* 9063 * An extended version of SIOCGIFCONF that takes an 9064 * additional address family and flags field. 9065 * AF_UNSPEC retrieve both IPv4 and IPv6. 9066 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9067 * interfaces are omitted. 9068 * Similarly, IPIF_TEMPORARY interfaces are omitted 9069 * unless LIFC_TEMPORARY is specified. 9070 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9071 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9072 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9073 * has priority over LIFC_NOXMIT. 9074 */ 9075 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9076 9077 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9078 return (EINVAL); 9079 9080 /* 9081 * Must be (better be!) continuation of a TRANSPARENT 9082 * IOCTL. We just copied in the lifconf structure. 9083 */ 9084 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9085 9086 family = STRUCT_FGET(lifc, lifc_family); 9087 flags = STRUCT_FGET(lifc, lifc_flags); 9088 9089 switch (family) { 9090 case AF_UNSPEC: 9091 /* 9092 * walk all ILL's. 9093 */ 9094 list = MAX_G_HEADS; 9095 break; 9096 case AF_INET: 9097 /* 9098 * walk only IPV4 ILL's. 9099 */ 9100 list = IP_V4_G_HEAD; 9101 break; 9102 case AF_INET6: 9103 /* 9104 * walk only IPV6 ILL's. 9105 */ 9106 list = IP_V6_G_HEAD; 9107 break; 9108 default: 9109 return (EAFNOSUPPORT); 9110 } 9111 9112 /* 9113 * Allocate a buffer to hold requested information. 9114 * 9115 * If lifc_len is larger than what is needed, we only 9116 * allocate what we will use. 9117 * 9118 * If lifc_len is smaller than what is needed, return 9119 * EINVAL. 9120 */ 9121 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9122 lifc_bufsize = numlifs * sizeof (struct lifreq); 9123 lifclen = STRUCT_FGET(lifc, lifc_len); 9124 if (lifc_bufsize > lifclen) { 9125 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9126 return (EINVAL); 9127 else 9128 lifc_bufsize = lifclen; 9129 } 9130 9131 mp1 = mi_copyout_alloc(q, mp, 9132 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9133 if (mp1 == NULL) 9134 return (ENOMEM); 9135 9136 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9137 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9138 9139 lifr = (struct lifreq *)mp1->b_rptr; 9140 9141 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9142 ill = ill_first(list, list, &ctx, ipst); 9143 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9144 for (ipif = ill->ill_ipif; ipif != NULL; 9145 ipif = ipif->ipif_next) { 9146 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9147 !(flags & LIFC_NOXMIT)) 9148 continue; 9149 9150 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9151 !(flags & LIFC_TEMPORARY)) 9152 continue; 9153 9154 if (((ipif->ipif_flags & 9155 (IPIF_NOXMIT|IPIF_NOLOCAL| 9156 IPIF_DEPRECATED)) || 9157 IS_LOOPBACK(ill) || 9158 !(ipif->ipif_flags & IPIF_UP)) && 9159 (flags & LIFC_EXTERNAL_SOURCE)) 9160 continue; 9161 9162 if (zoneid != ipif->ipif_zoneid && 9163 ipif->ipif_zoneid != ALL_ZONES && 9164 (zoneid != GLOBAL_ZONEID || 9165 !(flags & LIFC_ALLZONES))) 9166 continue; 9167 9168 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9169 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9170 rw_exit(&ipst->ips_ill_g_lock); 9171 return (EINVAL); 9172 } else { 9173 goto lif_copydone; 9174 } 9175 } 9176 9177 (void) ipif_get_name(ipif, lifr->lifr_name, 9178 sizeof (lifr->lifr_name)); 9179 if (ipif->ipif_isv6) { 9180 sin6 = (sin6_t *)&lifr->lifr_addr; 9181 *sin6 = sin6_null; 9182 sin6->sin6_family = AF_INET6; 9183 sin6->sin6_addr = 9184 ipif->ipif_v6lcl_addr; 9185 lifr->lifr_addrlen = 9186 ip_mask_to_plen_v6( 9187 &ipif->ipif_v6net_mask); 9188 } else { 9189 sin = (sin_t *)&lifr->lifr_addr; 9190 *sin = sin_null; 9191 sin->sin_family = AF_INET; 9192 sin->sin_addr.s_addr = 9193 ipif->ipif_lcl_addr; 9194 lifr->lifr_addrlen = 9195 ip_mask_to_plen( 9196 ipif->ipif_net_mask); 9197 } 9198 lifr++; 9199 } 9200 } 9201 lif_copydone: 9202 rw_exit(&ipst->ips_ill_g_lock); 9203 9204 mp1->b_wptr = (uchar_t *)lifr; 9205 if (STRUCT_BUF(lifc) != NULL) { 9206 STRUCT_FSET(lifc, lifc_len, 9207 (int)((uchar_t *)lifr - mp1->b_rptr)); 9208 } 9209 return (0); 9210 } 9211 9212 /* ARGSUSED */ 9213 int 9214 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9215 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9216 { 9217 ip_stack_t *ipst; 9218 9219 if (q->q_next == NULL) 9220 ipst = CONNQ_TO_IPST(q); 9221 else 9222 ipst = ILLQ_TO_IPST(q); 9223 9224 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9225 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9226 return (0); 9227 } 9228 9229 static void 9230 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9231 { 9232 ip6_asp_t *table; 9233 size_t table_size; 9234 mblk_t *data_mp; 9235 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9236 ip_stack_t *ipst; 9237 9238 if (q->q_next == NULL) 9239 ipst = CONNQ_TO_IPST(q); 9240 else 9241 ipst = ILLQ_TO_IPST(q); 9242 9243 /* These two ioctls are I_STR only */ 9244 if (iocp->ioc_count == TRANSPARENT) { 9245 miocnak(q, mp, 0, EINVAL); 9246 return; 9247 } 9248 9249 data_mp = mp->b_cont; 9250 if (data_mp == NULL) { 9251 /* The user passed us a NULL argument */ 9252 table = NULL; 9253 table_size = iocp->ioc_count; 9254 } else { 9255 /* 9256 * The user provided a table. The stream head 9257 * may have copied in the user data in chunks, 9258 * so make sure everything is pulled up 9259 * properly. 9260 */ 9261 if (MBLKL(data_mp) < iocp->ioc_count) { 9262 mblk_t *new_data_mp; 9263 if ((new_data_mp = msgpullup(data_mp, -1)) == 9264 NULL) { 9265 miocnak(q, mp, 0, ENOMEM); 9266 return; 9267 } 9268 freemsg(data_mp); 9269 data_mp = new_data_mp; 9270 mp->b_cont = data_mp; 9271 } 9272 table = (ip6_asp_t *)data_mp->b_rptr; 9273 table_size = iocp->ioc_count; 9274 } 9275 9276 switch (iocp->ioc_cmd) { 9277 case SIOCGIP6ADDRPOLICY: 9278 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9279 if (iocp->ioc_rval == -1) 9280 iocp->ioc_error = EINVAL; 9281 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9282 else if (table != NULL && 9283 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9284 ip6_asp_t *src = table; 9285 ip6_asp32_t *dst = (void *)table; 9286 int count = table_size / sizeof (ip6_asp_t); 9287 int i; 9288 9289 /* 9290 * We need to do an in-place shrink of the array 9291 * to match the alignment attributes of the 9292 * 32-bit ABI looking at it. 9293 */ 9294 /* LINTED: logical expression always true: op "||" */ 9295 ASSERT(sizeof (*src) > sizeof (*dst)); 9296 for (i = 1; i < count; i++) 9297 bcopy(src + i, dst + i, sizeof (*dst)); 9298 } 9299 #endif 9300 break; 9301 9302 case SIOCSIP6ADDRPOLICY: 9303 ASSERT(mp->b_prev == NULL); 9304 mp->b_prev = (void *)q; 9305 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9306 /* 9307 * We pass in the datamodel here so that the ip6_asp_replace() 9308 * routine can handle converting from 32-bit to native formats 9309 * where necessary. 9310 * 9311 * A better way to handle this might be to convert the inbound 9312 * data structure here, and hang it off a new 'mp'; thus the 9313 * ip6_asp_replace() logic would always be dealing with native 9314 * format data structures.. 9315 * 9316 * (An even simpler way to handle these ioctls is to just 9317 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9318 * and just recompile everything that depends on it.) 9319 */ 9320 #endif 9321 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9322 iocp->ioc_flag & IOC_MODELS); 9323 return; 9324 } 9325 9326 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9327 qreply(q, mp); 9328 } 9329 9330 static void 9331 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9332 { 9333 mblk_t *data_mp; 9334 struct dstinforeq *dir; 9335 uint8_t *end, *cur; 9336 in6_addr_t *daddr, *saddr; 9337 ipaddr_t v4daddr; 9338 ire_t *ire; 9339 char *slabel, *dlabel; 9340 boolean_t isipv4; 9341 int match_ire; 9342 ill_t *dst_ill; 9343 ipif_t *src_ipif, *ire_ipif; 9344 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9345 zoneid_t zoneid; 9346 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9347 9348 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9349 zoneid = Q_TO_CONN(q)->conn_zoneid; 9350 9351 /* 9352 * This ioctl is I_STR only, and must have a 9353 * data mblk following the M_IOCTL mblk. 9354 */ 9355 data_mp = mp->b_cont; 9356 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9357 miocnak(q, mp, 0, EINVAL); 9358 return; 9359 } 9360 9361 if (MBLKL(data_mp) < iocp->ioc_count) { 9362 mblk_t *new_data_mp; 9363 9364 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9365 miocnak(q, mp, 0, ENOMEM); 9366 return; 9367 } 9368 freemsg(data_mp); 9369 data_mp = new_data_mp; 9370 mp->b_cont = data_mp; 9371 } 9372 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9373 9374 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9375 end - cur >= sizeof (struct dstinforeq); 9376 cur += sizeof (struct dstinforeq)) { 9377 dir = (struct dstinforeq *)cur; 9378 daddr = &dir->dir_daddr; 9379 saddr = &dir->dir_saddr; 9380 9381 /* 9382 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9383 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9384 * and ipif_select_source[_v6]() do not. 9385 */ 9386 dir->dir_dscope = ip_addr_scope_v6(daddr); 9387 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9388 9389 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9390 if (isipv4) { 9391 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9392 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9393 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9394 } else { 9395 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9396 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9397 } 9398 if (ire == NULL) { 9399 dir->dir_dreachable = 0; 9400 9401 /* move on to next dst addr */ 9402 continue; 9403 } 9404 dir->dir_dreachable = 1; 9405 9406 ire_ipif = ire->ire_ipif; 9407 if (ire_ipif == NULL) 9408 goto next_dst; 9409 9410 /* 9411 * We expect to get back an interface ire or a 9412 * gateway ire cache entry. For both types, the 9413 * output interface is ire_ipif->ipif_ill. 9414 */ 9415 dst_ill = ire_ipif->ipif_ill; 9416 dir->dir_dmactype = dst_ill->ill_mactype; 9417 9418 if (isipv4) { 9419 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9420 } else { 9421 src_ipif = ipif_select_source_v6(dst_ill, 9422 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9423 zoneid); 9424 } 9425 if (src_ipif == NULL) 9426 goto next_dst; 9427 9428 *saddr = src_ipif->ipif_v6lcl_addr; 9429 dir->dir_sscope = ip_addr_scope_v6(saddr); 9430 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9431 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9432 dir->dir_sdeprecated = 9433 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9434 ipif_refrele(src_ipif); 9435 next_dst: 9436 ire_refrele(ire); 9437 } 9438 miocack(q, mp, iocp->ioc_count, 0); 9439 } 9440 9441 9442 /* 9443 * Check if this is an address assigned to this machine. 9444 * Skips interfaces that are down by using ire checks. 9445 * Translates mapped addresses to v4 addresses and then 9446 * treats them as such, returning true if the v4 address 9447 * associated with this mapped address is configured. 9448 * Note: Applications will have to be careful what they do 9449 * with the response; use of mapped addresses limits 9450 * what can be done with the socket, especially with 9451 * respect to socket options and ioctls - neither IPv4 9452 * options nor IPv6 sticky options/ancillary data options 9453 * may be used. 9454 */ 9455 /* ARGSUSED */ 9456 int 9457 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9458 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9459 { 9460 struct sioc_addrreq *sia; 9461 sin_t *sin; 9462 ire_t *ire; 9463 mblk_t *mp1; 9464 zoneid_t zoneid; 9465 ip_stack_t *ipst; 9466 9467 ip1dbg(("ip_sioctl_tmyaddr")); 9468 9469 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9470 zoneid = Q_TO_CONN(q)->conn_zoneid; 9471 ipst = CONNQ_TO_IPST(q); 9472 9473 /* Existence verified in ip_wput_nondata */ 9474 mp1 = mp->b_cont->b_cont; 9475 sia = (struct sioc_addrreq *)mp1->b_rptr; 9476 sin = (sin_t *)&sia->sa_addr; 9477 switch (sin->sin_family) { 9478 case AF_INET6: { 9479 sin6_t *sin6 = (sin6_t *)sin; 9480 9481 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9482 ipaddr_t v4_addr; 9483 9484 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9485 v4_addr); 9486 ire = ire_ctable_lookup(v4_addr, 0, 9487 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9488 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9489 } else { 9490 in6_addr_t v6addr; 9491 9492 v6addr = sin6->sin6_addr; 9493 ire = ire_ctable_lookup_v6(&v6addr, 0, 9494 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9495 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9496 } 9497 break; 9498 } 9499 case AF_INET: { 9500 ipaddr_t v4addr; 9501 9502 v4addr = sin->sin_addr.s_addr; 9503 ire = ire_ctable_lookup(v4addr, 0, 9504 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9505 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9506 break; 9507 } 9508 default: 9509 return (EAFNOSUPPORT); 9510 } 9511 if (ire != NULL) { 9512 sia->sa_res = 1; 9513 ire_refrele(ire); 9514 } else { 9515 sia->sa_res = 0; 9516 } 9517 return (0); 9518 } 9519 9520 /* 9521 * Check if this is an address assigned on-link i.e. neighbor, 9522 * and makes sure it's reachable from the current zone. 9523 * Returns true for my addresses as well. 9524 * Translates mapped addresses to v4 addresses and then 9525 * treats them as such, returning true if the v4 address 9526 * associated with this mapped address is configured. 9527 * Note: Applications will have to be careful what they do 9528 * with the response; use of mapped addresses limits 9529 * what can be done with the socket, especially with 9530 * respect to socket options and ioctls - neither IPv4 9531 * options nor IPv6 sticky options/ancillary data options 9532 * may be used. 9533 */ 9534 /* ARGSUSED */ 9535 int 9536 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9537 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9538 { 9539 struct sioc_addrreq *sia; 9540 sin_t *sin; 9541 mblk_t *mp1; 9542 ire_t *ire = NULL; 9543 zoneid_t zoneid; 9544 ip_stack_t *ipst; 9545 9546 ip1dbg(("ip_sioctl_tonlink")); 9547 9548 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9549 zoneid = Q_TO_CONN(q)->conn_zoneid; 9550 ipst = CONNQ_TO_IPST(q); 9551 9552 /* Existence verified in ip_wput_nondata */ 9553 mp1 = mp->b_cont->b_cont; 9554 sia = (struct sioc_addrreq *)mp1->b_rptr; 9555 sin = (sin_t *)&sia->sa_addr; 9556 9557 /* 9558 * Match addresses with a zero gateway field to avoid 9559 * routes going through a router. 9560 * Exclude broadcast and multicast addresses. 9561 */ 9562 switch (sin->sin_family) { 9563 case AF_INET6: { 9564 sin6_t *sin6 = (sin6_t *)sin; 9565 9566 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9567 ipaddr_t v4_addr; 9568 9569 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9570 v4_addr); 9571 if (!CLASSD(v4_addr)) { 9572 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9573 NULL, NULL, zoneid, NULL, 9574 MATCH_IRE_GW, ipst); 9575 } 9576 } else { 9577 in6_addr_t v6addr; 9578 in6_addr_t v6gw; 9579 9580 v6addr = sin6->sin6_addr; 9581 v6gw = ipv6_all_zeros; 9582 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9583 ire = ire_route_lookup_v6(&v6addr, 0, 9584 &v6gw, 0, NULL, NULL, zoneid, 9585 NULL, MATCH_IRE_GW, ipst); 9586 } 9587 } 9588 break; 9589 } 9590 case AF_INET: { 9591 ipaddr_t v4addr; 9592 9593 v4addr = sin->sin_addr.s_addr; 9594 if (!CLASSD(v4addr)) { 9595 ire = ire_route_lookup(v4addr, 0, 0, 0, 9596 NULL, NULL, zoneid, NULL, 9597 MATCH_IRE_GW, ipst); 9598 } 9599 break; 9600 } 9601 default: 9602 return (EAFNOSUPPORT); 9603 } 9604 sia->sa_res = 0; 9605 if (ire != NULL) { 9606 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9607 IRE_LOCAL|IRE_LOOPBACK)) { 9608 sia->sa_res = 1; 9609 } 9610 ire_refrele(ire); 9611 } 9612 return (0); 9613 } 9614 9615 /* 9616 * TBD: implement when kernel maintaines a list of site prefixes. 9617 */ 9618 /* ARGSUSED */ 9619 int 9620 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9621 ip_ioctl_cmd_t *ipip, void *ifreq) 9622 { 9623 return (ENXIO); 9624 } 9625 9626 /* ARGSUSED */ 9627 int 9628 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9629 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9630 { 9631 ill_t *ill; 9632 mblk_t *mp1; 9633 conn_t *connp; 9634 boolean_t success; 9635 9636 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9637 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9638 /* ioctl comes down on an conn */ 9639 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9640 connp = Q_TO_CONN(q); 9641 9642 mp->b_datap->db_type = M_IOCTL; 9643 9644 /* 9645 * Send down a copy. (copymsg does not copy b_next/b_prev). 9646 * The original mp contains contaminated b_next values due to 'mi', 9647 * which is needed to do the mi_copy_done. Unfortunately if we 9648 * send down the original mblk itself and if we are popped due to an 9649 * an unplumb before the response comes back from tunnel, 9650 * the streamhead (which does a freemsg) will see this contaminated 9651 * message and the assertion in freemsg about non-null b_next/b_prev 9652 * will panic a DEBUG kernel. 9653 */ 9654 mp1 = copymsg(mp); 9655 if (mp1 == NULL) 9656 return (ENOMEM); 9657 9658 ill = ipif->ipif_ill; 9659 mutex_enter(&connp->conn_lock); 9660 mutex_enter(&ill->ill_lock); 9661 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9662 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9663 mp, 0); 9664 } else { 9665 success = ill_pending_mp_add(ill, connp, mp); 9666 } 9667 mutex_exit(&ill->ill_lock); 9668 mutex_exit(&connp->conn_lock); 9669 9670 if (success) { 9671 ip1dbg(("sending down tunparam request ")); 9672 putnext(ill->ill_wq, mp1); 9673 return (EINPROGRESS); 9674 } else { 9675 /* The conn has started closing */ 9676 freemsg(mp1); 9677 return (EINTR); 9678 } 9679 } 9680 9681 static int 9682 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9683 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9684 { 9685 mblk_t *mp1; 9686 mblk_t *mp2; 9687 mblk_t *pending_mp; 9688 ipaddr_t ipaddr; 9689 area_t *area; 9690 struct iocblk *iocp; 9691 conn_t *connp; 9692 struct arpreq *ar; 9693 struct xarpreq *xar; 9694 boolean_t success; 9695 int flags, alength; 9696 char *lladdr; 9697 ip_stack_t *ipst; 9698 9699 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9700 connp = Q_TO_CONN(q); 9701 ipst = connp->conn_netstack->netstack_ip; 9702 9703 iocp = (struct iocblk *)mp->b_rptr; 9704 /* 9705 * ill has already been set depending on whether 9706 * bsd style or interface style ioctl. 9707 */ 9708 ASSERT(ill != NULL); 9709 9710 /* 9711 * Is this one of the new SIOC*XARP ioctls? 9712 */ 9713 if (x_arp_ioctl) { 9714 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9715 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9716 ar = NULL; 9717 9718 flags = xar->xarp_flags; 9719 lladdr = LLADDR(&xar->xarp_ha); 9720 /* 9721 * Validate against user's link layer address length 9722 * input and name and addr length limits. 9723 */ 9724 alength = ill->ill_phys_addr_length; 9725 if (iocp->ioc_cmd == SIOCSXARP) { 9726 if (alength != xar->xarp_ha.sdl_alen || 9727 (alength + xar->xarp_ha.sdl_nlen > 9728 sizeof (xar->xarp_ha.sdl_data))) 9729 return (EINVAL); 9730 } 9731 } else { 9732 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9733 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9734 xar = NULL; 9735 9736 flags = ar->arp_flags; 9737 lladdr = ar->arp_ha.sa_data; 9738 /* 9739 * Theoretically, the sa_family could tell us what link 9740 * layer type this operation is trying to deal with. By 9741 * common usage AF_UNSPEC means ethernet. We'll assume 9742 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9743 * for now. Our new SIOC*XARP ioctls can be used more 9744 * generally. 9745 * 9746 * If the underlying media happens to have a non 6 byte 9747 * address, arp module will fail set/get, but the del 9748 * operation will succeed. 9749 */ 9750 alength = 6; 9751 if ((iocp->ioc_cmd != SIOCDARP) && 9752 (alength != ill->ill_phys_addr_length)) { 9753 return (EINVAL); 9754 } 9755 } 9756 9757 /* 9758 * We are going to pass up to ARP a packet chain that looks 9759 * like: 9760 * 9761 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9762 * 9763 * Get a copy of the original IOCTL mblk to head the chain, 9764 * to be sent up (in mp1). Also get another copy to store 9765 * in the ill_pending_mp list, for matching the response 9766 * when it comes back from ARP. 9767 */ 9768 mp1 = copyb(mp); 9769 pending_mp = copymsg(mp); 9770 if (mp1 == NULL || pending_mp == NULL) { 9771 if (mp1 != NULL) 9772 freeb(mp1); 9773 if (pending_mp != NULL) 9774 inet_freemsg(pending_mp); 9775 return (ENOMEM); 9776 } 9777 9778 ipaddr = sin->sin_addr.s_addr; 9779 9780 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9781 (caddr_t)&ipaddr); 9782 if (mp2 == NULL) { 9783 freeb(mp1); 9784 inet_freemsg(pending_mp); 9785 return (ENOMEM); 9786 } 9787 /* Put together the chain. */ 9788 mp1->b_cont = mp2; 9789 mp1->b_datap->db_type = M_IOCTL; 9790 mp2->b_cont = mp; 9791 mp2->b_datap->db_type = M_DATA; 9792 9793 iocp = (struct iocblk *)mp1->b_rptr; 9794 9795 /* 9796 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9797 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9798 * cp_private field (or cp_rval on 32-bit systems) in place of the 9799 * ioc_count field; set ioc_count to be correct. 9800 */ 9801 iocp->ioc_count = MBLKL(mp1->b_cont); 9802 9803 /* 9804 * Set the proper command in the ARP message. 9805 * Convert the SIOC{G|S|D}ARP calls into our 9806 * AR_ENTRY_xxx calls. 9807 */ 9808 area = (area_t *)mp2->b_rptr; 9809 switch (iocp->ioc_cmd) { 9810 case SIOCDARP: 9811 case SIOCDXARP: 9812 /* 9813 * We defer deleting the corresponding IRE until 9814 * we return from arp. 9815 */ 9816 area->area_cmd = AR_ENTRY_DELETE; 9817 area->area_proto_mask_offset = 0; 9818 break; 9819 case SIOCGARP: 9820 case SIOCGXARP: 9821 area->area_cmd = AR_ENTRY_SQUERY; 9822 area->area_proto_mask_offset = 0; 9823 break; 9824 case SIOCSARP: 9825 case SIOCSXARP: { 9826 /* 9827 * Delete the corresponding ire to make sure IP will 9828 * pick up any change from arp. 9829 */ 9830 if (!if_arp_ioctl) { 9831 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9832 break; 9833 } else { 9834 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9835 if (ipif != NULL) { 9836 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9837 ipst); 9838 ipif_refrele(ipif); 9839 } 9840 break; 9841 } 9842 } 9843 } 9844 iocp->ioc_cmd = area->area_cmd; 9845 9846 /* 9847 * Before sending 'mp' to ARP, we have to clear the b_next 9848 * and b_prev. Otherwise if STREAMS encounters such a message 9849 * in freemsg(), (because ARP can close any time) it can cause 9850 * a panic. But mi code needs the b_next and b_prev values of 9851 * mp->b_cont, to complete the ioctl. So we store it here 9852 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9853 * when the response comes down from ARP. 9854 */ 9855 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9856 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9857 mp->b_cont->b_next = NULL; 9858 mp->b_cont->b_prev = NULL; 9859 9860 mutex_enter(&connp->conn_lock); 9861 mutex_enter(&ill->ill_lock); 9862 /* conn has not yet started closing, hence this can't fail */ 9863 success = ill_pending_mp_add(ill, connp, pending_mp); 9864 ASSERT(success); 9865 mutex_exit(&ill->ill_lock); 9866 mutex_exit(&connp->conn_lock); 9867 9868 /* 9869 * Fill in the rest of the ARP operation fields. 9870 */ 9871 area->area_hw_addr_length = alength; 9872 bcopy(lladdr, 9873 (char *)area + area->area_hw_addr_offset, 9874 area->area_hw_addr_length); 9875 /* Translate the flags. */ 9876 if (flags & ATF_PERM) 9877 area->area_flags |= ACE_F_PERMANENT; 9878 if (flags & ATF_PUBL) 9879 area->area_flags |= ACE_F_PUBLISH; 9880 if (flags & ATF_AUTHORITY) 9881 area->area_flags |= ACE_F_AUTHORITY; 9882 9883 /* 9884 * Up to ARP it goes. The response will come 9885 * back in ip_wput as an M_IOCACK message, and 9886 * will be handed to ip_sioctl_iocack for 9887 * completion. 9888 */ 9889 putnext(ill->ill_rq, mp1); 9890 return (EINPROGRESS); 9891 } 9892 9893 /* ARGSUSED */ 9894 int 9895 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9896 ip_ioctl_cmd_t *ipip, void *ifreq) 9897 { 9898 struct xarpreq *xar; 9899 boolean_t isv6; 9900 mblk_t *mp1; 9901 int err; 9902 conn_t *connp; 9903 int ifnamelen; 9904 ire_t *ire = NULL; 9905 ill_t *ill = NULL; 9906 struct sockaddr_in *sin; 9907 boolean_t if_arp_ioctl = B_FALSE; 9908 ip_stack_t *ipst; 9909 9910 /* ioctl comes down on an conn */ 9911 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9912 connp = Q_TO_CONN(q); 9913 isv6 = connp->conn_af_isv6; 9914 ipst = connp->conn_netstack->netstack_ip; 9915 9916 /* Existance verified in ip_wput_nondata */ 9917 mp1 = mp->b_cont->b_cont; 9918 9919 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9920 xar = (struct xarpreq *)mp1->b_rptr; 9921 sin = (sin_t *)&xar->xarp_pa; 9922 9923 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9924 (xar->xarp_pa.ss_family != AF_INET)) 9925 return (ENXIO); 9926 9927 ifnamelen = xar->xarp_ha.sdl_nlen; 9928 if (ifnamelen != 0) { 9929 char *cptr, cval; 9930 9931 if (ifnamelen >= LIFNAMSIZ) 9932 return (EINVAL); 9933 9934 /* 9935 * Instead of bcopying a bunch of bytes, 9936 * null-terminate the string in-situ. 9937 */ 9938 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9939 cval = *cptr; 9940 *cptr = '\0'; 9941 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9942 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9943 &err, NULL, ipst); 9944 *cptr = cval; 9945 if (ill == NULL) 9946 return (err); 9947 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9948 ill_refrele(ill); 9949 return (ENXIO); 9950 } 9951 9952 if_arp_ioctl = B_TRUE; 9953 } else { 9954 /* 9955 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9956 * as an extended BSD ioctl. The kernel uses the IP address 9957 * to figure out the network interface. 9958 */ 9959 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9960 ipst); 9961 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9962 ((ill = ire_to_ill(ire)) == NULL) || 9963 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9964 if (ire != NULL) 9965 ire_refrele(ire); 9966 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9967 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9968 NULL, MATCH_IRE_TYPE, ipst); 9969 if ((ire == NULL) || 9970 ((ill = ire_to_ill(ire)) == NULL)) { 9971 if (ire != NULL) 9972 ire_refrele(ire); 9973 return (ENXIO); 9974 } 9975 } 9976 ASSERT(ire != NULL && ill != NULL); 9977 } 9978 9979 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9980 if (if_arp_ioctl) 9981 ill_refrele(ill); 9982 if (ire != NULL) 9983 ire_refrele(ire); 9984 9985 return (err); 9986 } 9987 9988 /* 9989 * ARP IOCTLs. 9990 * How does IP get in the business of fronting ARP configuration/queries? 9991 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9992 * are by tradition passed in through a datagram socket. That lands in IP. 9993 * As it happens, this is just as well since the interface is quite crude in 9994 * that it passes in no information about protocol or hardware types, or 9995 * interface association. After making the protocol assumption, IP is in 9996 * the position to look up the name of the ILL, which ARP will need, and 9997 * format a request that can be handled by ARP. The request is passed up 9998 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9999 * back a response. ARP supports its own set of more general IOCTLs, in 10000 * case anyone is interested. 10001 */ 10002 /* ARGSUSED */ 10003 int 10004 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10005 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 10006 { 10007 struct arpreq *ar; 10008 struct sockaddr_in *sin; 10009 ire_t *ire; 10010 boolean_t isv6; 10011 mblk_t *mp1; 10012 int err; 10013 conn_t *connp; 10014 ill_t *ill; 10015 ip_stack_t *ipst; 10016 10017 /* ioctl comes down on an conn */ 10018 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 10019 connp = Q_TO_CONN(q); 10020 ipst = CONNQ_TO_IPST(q); 10021 isv6 = connp->conn_af_isv6; 10022 if (isv6) 10023 return (ENXIO); 10024 10025 /* Existance verified in ip_wput_nondata */ 10026 mp1 = mp->b_cont->b_cont; 10027 10028 ar = (struct arpreq *)mp1->b_rptr; 10029 sin = (sin_t *)&ar->arp_pa; 10030 10031 /* 10032 * We need to let ARP know on which interface the IP 10033 * address has an ARP mapping. In the IPMP case, a 10034 * simple forwarding table lookup will return the 10035 * IRE_IF_RESOLVER for the first interface in the group, 10036 * which might not be the interface on which the 10037 * requested IP address was resolved due to the ill 10038 * selection algorithm (see ip_newroute_get_dst_ill()). 10039 * So we do a cache table lookup first: if the IRE cache 10040 * entry for the IP address is still there, it will 10041 * contain the ill pointer for the right interface, so 10042 * we use that. If the cache entry has been flushed, we 10043 * fall back to the forwarding table lookup. This should 10044 * be rare enough since IRE cache entries have a longer 10045 * life expectancy than ARP cache entries. 10046 */ 10047 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10048 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10049 ((ill = ire_to_ill(ire)) == NULL)) { 10050 if (ire != NULL) 10051 ire_refrele(ire); 10052 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10053 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10054 NULL, MATCH_IRE_TYPE, ipst); 10055 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10056 if (ire != NULL) 10057 ire_refrele(ire); 10058 return (ENXIO); 10059 } 10060 } 10061 ASSERT(ire != NULL && ill != NULL); 10062 10063 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10064 ire_refrele(ire); 10065 return (err); 10066 } 10067 10068 /* 10069 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10070 * atomically set/clear the muxids. Also complete the ioctl by acking or 10071 * naking it. Note that the code is structured such that the link type, 10072 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10073 * its clones use the persistent link, while pppd(1M) and perhaps many 10074 * other daemons may use non-persistent link. When combined with some 10075 * ill_t states, linking and unlinking lower streams may be used as 10076 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10077 */ 10078 /* ARGSUSED */ 10079 void 10080 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10081 { 10082 mblk_t *mp1, *mp2; 10083 struct linkblk *li; 10084 struct ipmx_s *ipmxp; 10085 ill_t *ill; 10086 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 10087 int err = 0; 10088 boolean_t entered_ipsq = B_FALSE; 10089 boolean_t islink; 10090 ip_stack_t *ipst; 10091 10092 if (CONN_Q(q)) 10093 ipst = CONNQ_TO_IPST(q); 10094 else 10095 ipst = ILLQ_TO_IPST(q); 10096 10097 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 10098 ioccmd == I_LINK || ioccmd == I_UNLINK); 10099 10100 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10101 10102 mp1 = mp->b_cont; /* This is the linkblk info */ 10103 li = (struct linkblk *)mp1->b_rptr; 10104 10105 /* 10106 * ARP has added this special mblk, and the utility is asking us 10107 * to perform consistency checks, and also atomically set the 10108 * muxid. Ifconfig is an example. It achieves this by using 10109 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10110 * to /dev/udp[6] stream for use as the mux when plinking the IP 10111 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10112 * and other comments in this routine for more details. 10113 */ 10114 mp2 = mp1->b_cont; /* This is added by ARP */ 10115 10116 /* 10117 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10118 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10119 * get the special mblk above. For backward compatibility, we 10120 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 10121 * The utility will use SIOCSLIFMUXID to store the muxids. This is 10122 * not atomic, and can leave the streams unplumbable if the utility 10123 * is interrupted before it does the SIOCSLIFMUXID. 10124 */ 10125 if (mp2 == NULL) { 10126 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 10127 if (err == EINPROGRESS) 10128 return; 10129 goto done; 10130 } 10131 10132 /* 10133 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 10134 * ARP has appended this last mblk to tell us whether the lower stream 10135 * is an arp-dev stream or an IP module stream. 10136 */ 10137 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10138 if (ipmxp->ipmx_arpdev_stream) { 10139 /* 10140 * The lower stream is the arp-dev stream. 10141 */ 10142 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10143 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10144 if (ill == NULL) { 10145 if (err == EINPROGRESS) 10146 return; 10147 err = EINVAL; 10148 goto done; 10149 } 10150 10151 if (ipsq == NULL) { 10152 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10153 NEW_OP, B_TRUE); 10154 if (ipsq == NULL) { 10155 ill_refrele(ill); 10156 return; 10157 } 10158 entered_ipsq = B_TRUE; 10159 } 10160 ASSERT(IAM_WRITER_ILL(ill)); 10161 ill_refrele(ill); 10162 10163 /* 10164 * To ensure consistency between IP and ARP, the following 10165 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 10166 * This is because the muxid's are stored in the IP stream on 10167 * the ill. 10168 * 10169 * I_{P}LINK: ifconfig plinks the IP stream before plinking 10170 * the ARP stream. On an arp-dev stream, IP checks that it is 10171 * not yet plinked, and it also checks that the corresponding 10172 * IP stream is already plinked. 10173 * 10174 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 10175 * punlinking the IP stream. IP does not allow punlink of the 10176 * IP stream unless the arp stream has been punlinked. 10177 */ 10178 if ((islink && 10179 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10180 (!islink && ill->ill_arp_muxid != li->l_index)) { 10181 err = EINVAL; 10182 goto done; 10183 } 10184 ill->ill_arp_muxid = islink ? li->l_index : 0; 10185 } else { 10186 /* 10187 * The lower stream is probably an IP module stream. Do 10188 * consistency checking. 10189 */ 10190 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 10191 if (err == EINPROGRESS) 10192 return; 10193 } 10194 done: 10195 if (err == 0) 10196 miocack(q, mp, 0, 0); 10197 else 10198 miocnak(q, mp, 0, err); 10199 10200 /* Conn was refheld in ip_sioctl_copyin_setup */ 10201 if (CONN_Q(q)) 10202 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10203 if (entered_ipsq) 10204 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10205 } 10206 10207 /* 10208 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 10209 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 10210 * module stream). If `doconsist' is set, then do the extended consistency 10211 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 10212 * Returns zero on success, EINPROGRESS if the operation is still pending, or 10213 * an error code on failure. 10214 */ 10215 static int 10216 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 10217 struct linkblk *li, boolean_t doconsist) 10218 { 10219 ill_t *ill; 10220 queue_t *ipwq, *dwq; 10221 const char *name; 10222 struct qinit *qinfo; 10223 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10224 10225 /* 10226 * Walk the lower stream to verify it's the IP module stream. 10227 * The IP module is identified by its name, wput function, 10228 * and non-NULL q_next. STREAMS ensures that the lower stream 10229 * (li->l_qbot) will not vanish until this ioctl completes. 10230 */ 10231 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10232 qinfo = ipwq->q_qinfo; 10233 name = qinfo->qi_minfo->mi_idname; 10234 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10235 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10236 break; 10237 } 10238 } 10239 10240 /* 10241 * If this isn't an IP module stream, bail. 10242 */ 10243 if (ipwq == NULL) 10244 return (0); 10245 10246 ill = ipwq->q_ptr; 10247 ASSERT(ill != NULL); 10248 10249 if (ipsq == NULL) { 10250 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10251 NEW_OP, B_TRUE); 10252 if (ipsq == NULL) 10253 return (EINPROGRESS); 10254 } 10255 ASSERT(IAM_WRITER_ILL(ill)); 10256 10257 if (doconsist) { 10258 /* 10259 * Consistency checking requires that I_{P}LINK occurs 10260 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10261 * occurs prior to clearing ill_arp_muxid. 10262 */ 10263 if ((islink && ill->ill_ip_muxid != 0) || 10264 (!islink && ill->ill_arp_muxid != 0)) { 10265 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10266 return (EINVAL); 10267 } 10268 } 10269 10270 /* 10271 * As part of I_{P}LINKing, stash the number of downstream modules and 10272 * the read queue of the module immediately below IP in the ill. 10273 * These are used during the capability negotiation below. 10274 */ 10275 ill->ill_lmod_rq = NULL; 10276 ill->ill_lmod_cnt = 0; 10277 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10278 ill->ill_lmod_rq = RD(dwq); 10279 for (; dwq != NULL; dwq = dwq->q_next) 10280 ill->ill_lmod_cnt++; 10281 } 10282 10283 if (doconsist) 10284 ill->ill_ip_muxid = islink ? li->l_index : 0; 10285 10286 /* 10287 * If there's at least one up ipif on this ill, then we're bound to 10288 * the underlying driver via DLPI. In that case, renegotiate 10289 * capabilities to account for any possible change in modules 10290 * interposed between IP and the driver. 10291 */ 10292 if (ill->ill_ipif_up_count > 0) { 10293 if (islink) 10294 ill_capability_probe(ill); 10295 else 10296 ill_capability_reset(ill); 10297 } 10298 10299 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10300 return (0); 10301 } 10302 10303 /* 10304 * Search the ioctl command in the ioctl tables and return a pointer 10305 * to the ioctl command information. The ioctl command tables are 10306 * static and fully populated at compile time. 10307 */ 10308 ip_ioctl_cmd_t * 10309 ip_sioctl_lookup(int ioc_cmd) 10310 { 10311 int index; 10312 ip_ioctl_cmd_t *ipip; 10313 ip_ioctl_cmd_t *ipip_end; 10314 10315 if (ioc_cmd == IPI_DONTCARE) 10316 return (NULL); 10317 10318 /* 10319 * Do a 2 step search. First search the indexed table 10320 * based on the least significant byte of the ioctl cmd. 10321 * If we don't find a match, then search the misc table 10322 * serially. 10323 */ 10324 index = ioc_cmd & 0xFF; 10325 if (index < ip_ndx_ioctl_count) { 10326 ipip = &ip_ndx_ioctl_table[index]; 10327 if (ipip->ipi_cmd == ioc_cmd) { 10328 /* Found a match in the ndx table */ 10329 return (ipip); 10330 } 10331 } 10332 10333 /* Search the misc table */ 10334 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10335 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10336 if (ipip->ipi_cmd == ioc_cmd) 10337 /* Found a match in the misc table */ 10338 return (ipip); 10339 } 10340 10341 return (NULL); 10342 } 10343 10344 /* 10345 * Wrapper function for resuming deferred ioctl processing 10346 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10347 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10348 */ 10349 /* ARGSUSED */ 10350 void 10351 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10352 void *dummy_arg) 10353 { 10354 ip_sioctl_copyin_setup(q, mp); 10355 } 10356 10357 /* 10358 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10359 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10360 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10361 * We establish here the size of the block to be copied in. mi_copyin 10362 * arranges for this to happen, an processing continues in ip_wput with 10363 * an M_IOCDATA message. 10364 */ 10365 void 10366 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10367 { 10368 int copyin_size; 10369 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10370 ip_ioctl_cmd_t *ipip; 10371 cred_t *cr; 10372 ip_stack_t *ipst; 10373 10374 if (CONN_Q(q)) 10375 ipst = CONNQ_TO_IPST(q); 10376 else 10377 ipst = ILLQ_TO_IPST(q); 10378 10379 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10380 if (ipip == NULL) { 10381 /* 10382 * The ioctl is not one we understand or own. 10383 * Pass it along to be processed down stream, 10384 * if this is a module instance of IP, else nak 10385 * the ioctl. 10386 */ 10387 if (q->q_next == NULL) { 10388 goto nak; 10389 } else { 10390 putnext(q, mp); 10391 return; 10392 } 10393 } 10394 10395 /* 10396 * If this is deferred, then we will do all the checks when we 10397 * come back. 10398 */ 10399 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10400 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10401 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10402 return; 10403 } 10404 10405 /* 10406 * Only allow a very small subset of IP ioctls on this stream if 10407 * IP is a module and not a driver. Allowing ioctls to be processed 10408 * in this case may cause assert failures or data corruption. 10409 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10410 * ioctls allowed on an IP module stream, after which this stream 10411 * normally becomes a multiplexor (at which time the stream head 10412 * will fail all ioctls). 10413 */ 10414 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10415 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10416 /* 10417 * Pass common Streams ioctls which the IP 10418 * module does not own or consume along to 10419 * be processed down stream. 10420 */ 10421 putnext(q, mp); 10422 return; 10423 } else { 10424 goto nak; 10425 } 10426 } 10427 10428 /* Make sure we have ioctl data to process. */ 10429 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10430 goto nak; 10431 10432 /* 10433 * Prefer dblk credential over ioctl credential; some synthesized 10434 * ioctls have kcred set because there's no way to crhold() 10435 * a credential in some contexts. (ioc_cr is not crfree() by 10436 * the framework; the caller of ioctl needs to hold the reference 10437 * for the duration of the call). 10438 */ 10439 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10440 10441 /* Make sure normal users don't send down privileged ioctls */ 10442 if ((ipip->ipi_flags & IPI_PRIV) && 10443 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10444 /* We checked the privilege earlier but log it here */ 10445 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10446 return; 10447 } 10448 10449 /* 10450 * The ioctl command tables can only encode fixed length 10451 * ioctl data. If the length is variable, the table will 10452 * encode the length as zero. Such special cases are handled 10453 * below in the switch. 10454 */ 10455 if (ipip->ipi_copyin_size != 0) { 10456 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10457 return; 10458 } 10459 10460 switch (iocp->ioc_cmd) { 10461 case O_SIOCGIFCONF: 10462 case SIOCGIFCONF: 10463 /* 10464 * This IOCTL is hilarious. See comments in 10465 * ip_sioctl_get_ifconf for the story. 10466 */ 10467 if (iocp->ioc_count == TRANSPARENT) 10468 copyin_size = SIZEOF_STRUCT(ifconf, 10469 iocp->ioc_flag); 10470 else 10471 copyin_size = iocp->ioc_count; 10472 mi_copyin(q, mp, NULL, copyin_size); 10473 return; 10474 10475 case O_SIOCGLIFCONF: 10476 case SIOCGLIFCONF: 10477 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10478 mi_copyin(q, mp, NULL, copyin_size); 10479 return; 10480 10481 case SIOCGLIFSRCOF: 10482 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10483 mi_copyin(q, mp, NULL, copyin_size); 10484 return; 10485 case SIOCGIP6ADDRPOLICY: 10486 ip_sioctl_ip6addrpolicy(q, mp); 10487 ip6_asp_table_refrele(ipst); 10488 return; 10489 10490 case SIOCSIP6ADDRPOLICY: 10491 ip_sioctl_ip6addrpolicy(q, mp); 10492 return; 10493 10494 case SIOCGDSTINFO: 10495 ip_sioctl_dstinfo(q, mp); 10496 ip6_asp_table_refrele(ipst); 10497 return; 10498 10499 case I_PLINK: 10500 case I_PUNLINK: 10501 case I_LINK: 10502 case I_UNLINK: 10503 /* 10504 * We treat non-persistent link similarly as the persistent 10505 * link case, in terms of plumbing/unplumbing, as well as 10506 * dynamic re-plumbing events indicator. See comments 10507 * in ip_sioctl_plink() for more. 10508 * 10509 * Request can be enqueued in the 'ipsq' while waiting 10510 * to become exclusive. So bump up the conn ref. 10511 */ 10512 if (CONN_Q(q)) 10513 CONN_INC_REF(Q_TO_CONN(q)); 10514 ip_sioctl_plink(NULL, q, mp, NULL); 10515 return; 10516 10517 case ND_GET: 10518 case ND_SET: 10519 /* 10520 * Use of the nd table requires holding the reader lock. 10521 * Modifying the nd table thru nd_load/nd_unload requires 10522 * the writer lock. 10523 */ 10524 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10525 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10526 rw_exit(&ipst->ips_ip_g_nd_lock); 10527 10528 if (iocp->ioc_error) 10529 iocp->ioc_count = 0; 10530 mp->b_datap->db_type = M_IOCACK; 10531 qreply(q, mp); 10532 return; 10533 } 10534 rw_exit(&ipst->ips_ip_g_nd_lock); 10535 /* 10536 * We don't understand this subioctl of ND_GET / ND_SET. 10537 * Maybe intended for some driver / module below us 10538 */ 10539 if (q->q_next) { 10540 putnext(q, mp); 10541 } else { 10542 iocp->ioc_error = ENOENT; 10543 mp->b_datap->db_type = M_IOCNAK; 10544 iocp->ioc_count = 0; 10545 qreply(q, mp); 10546 } 10547 return; 10548 10549 case IP_IOCTL: 10550 ip_wput_ioctl(q, mp); 10551 return; 10552 default: 10553 cmn_err(CE_PANIC, "should not happen "); 10554 } 10555 nak: 10556 if (mp->b_cont != NULL) { 10557 freemsg(mp->b_cont); 10558 mp->b_cont = NULL; 10559 } 10560 iocp->ioc_error = EINVAL; 10561 mp->b_datap->db_type = M_IOCNAK; 10562 iocp->ioc_count = 0; 10563 qreply(q, mp); 10564 } 10565 10566 /* ip_wput hands off ARP IOCTL responses to us */ 10567 void 10568 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10569 { 10570 struct arpreq *ar; 10571 struct xarpreq *xar; 10572 area_t *area; 10573 mblk_t *area_mp; 10574 struct iocblk *iocp; 10575 mblk_t *orig_ioc_mp, *tmp; 10576 struct iocblk *orig_iocp; 10577 ill_t *ill; 10578 conn_t *connp = NULL; 10579 uint_t ioc_id; 10580 mblk_t *pending_mp; 10581 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10582 int *flagsp; 10583 char *storage = NULL; 10584 sin_t *sin; 10585 ipaddr_t addr; 10586 int err; 10587 ip_stack_t *ipst; 10588 10589 ill = q->q_ptr; 10590 ASSERT(ill != NULL); 10591 ipst = ill->ill_ipst; 10592 10593 /* 10594 * We should get back from ARP a packet chain that looks like: 10595 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10596 */ 10597 if (!(area_mp = mp->b_cont) || 10598 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10599 !(orig_ioc_mp = area_mp->b_cont) || 10600 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10601 freemsg(mp); 10602 return; 10603 } 10604 10605 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10606 10607 tmp = (orig_ioc_mp->b_cont)->b_cont; 10608 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10609 (orig_iocp->ioc_cmd == SIOCSXARP) || 10610 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10611 x_arp_ioctl = B_TRUE; 10612 xar = (struct xarpreq *)tmp->b_rptr; 10613 sin = (sin_t *)&xar->xarp_pa; 10614 flagsp = &xar->xarp_flags; 10615 storage = xar->xarp_ha.sdl_data; 10616 if (xar->xarp_ha.sdl_nlen != 0) 10617 ifx_arp_ioctl = B_TRUE; 10618 } else { 10619 ar = (struct arpreq *)tmp->b_rptr; 10620 sin = (sin_t *)&ar->arp_pa; 10621 flagsp = &ar->arp_flags; 10622 storage = ar->arp_ha.sa_data; 10623 } 10624 10625 iocp = (struct iocblk *)mp->b_rptr; 10626 10627 /* 10628 * Pick out the originating queue based on the ioc_id. 10629 */ 10630 ioc_id = iocp->ioc_id; 10631 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10632 if (pending_mp == NULL) { 10633 ASSERT(connp == NULL); 10634 inet_freemsg(mp); 10635 return; 10636 } 10637 ASSERT(connp != NULL); 10638 q = CONNP_TO_WQ(connp); 10639 10640 /* Uncouple the internally generated IOCTL from the original one */ 10641 area = (area_t *)area_mp->b_rptr; 10642 area_mp->b_cont = NULL; 10643 10644 /* 10645 * Restore the b_next and b_prev used by mi code. This is needed 10646 * to complete the ioctl using mi* functions. We stored them in 10647 * the pending mp prior to sending the request to ARP. 10648 */ 10649 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10650 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10651 inet_freemsg(pending_mp); 10652 10653 /* 10654 * We're done if there was an error or if this is not an SIOCG{X}ARP 10655 * Catch the case where there is an IRE_CACHE by no entry in the 10656 * arp table. 10657 */ 10658 addr = sin->sin_addr.s_addr; 10659 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10660 ire_t *ire; 10661 dl_unitdata_req_t *dlup; 10662 mblk_t *llmp; 10663 int addr_len; 10664 ill_t *ipsqill = NULL; 10665 10666 if (ifx_arp_ioctl) { 10667 /* 10668 * There's no need to lookup the ill, since 10669 * we've already done that when we started 10670 * processing the ioctl and sent the message 10671 * to ARP on that ill. So use the ill that 10672 * is stored in q->q_ptr. 10673 */ 10674 ipsqill = ill; 10675 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10676 ipsqill->ill_ipif, ALL_ZONES, 10677 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10678 } else { 10679 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10680 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10681 if (ire != NULL) 10682 ipsqill = ire_to_ill(ire); 10683 } 10684 10685 if ((x_arp_ioctl) && (ipsqill != NULL)) 10686 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10687 10688 if (ire != NULL) { 10689 /* 10690 * Since the ire obtained from cachetable is used for 10691 * mac addr copying below, treat an incomplete ire as if 10692 * as if we never found it. 10693 */ 10694 if (ire->ire_nce != NULL && 10695 ire->ire_nce->nce_state != ND_REACHABLE) { 10696 ire_refrele(ire); 10697 ire = NULL; 10698 ipsqill = NULL; 10699 goto errack; 10700 } 10701 *flagsp = ATF_INUSE; 10702 llmp = (ire->ire_nce != NULL ? 10703 ire->ire_nce->nce_res_mp : NULL); 10704 if (llmp != NULL && ipsqill != NULL) { 10705 uchar_t *macaddr; 10706 10707 addr_len = ipsqill->ill_phys_addr_length; 10708 if (x_arp_ioctl && ((addr_len + 10709 ipsqill->ill_name_length) > 10710 sizeof (xar->xarp_ha.sdl_data))) { 10711 ire_refrele(ire); 10712 freemsg(mp); 10713 ip_ioctl_finish(q, orig_ioc_mp, 10714 EINVAL, NO_COPYOUT, NULL); 10715 return; 10716 } 10717 *flagsp |= ATF_COM; 10718 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10719 if (ipsqill->ill_sap_length < 0) 10720 macaddr = llmp->b_rptr + 10721 dlup->dl_dest_addr_offset; 10722 else 10723 macaddr = llmp->b_rptr + 10724 dlup->dl_dest_addr_offset + 10725 ipsqill->ill_sap_length; 10726 /* 10727 * For SIOCGARP, MAC address length 10728 * validation has already been done 10729 * before the ioctl was issued to ARP to 10730 * allow it to progress only on 6 byte 10731 * addressable (ethernet like) media. Thus 10732 * the mac address copying can not overwrite 10733 * the sa_data area below. 10734 */ 10735 bcopy(macaddr, storage, addr_len); 10736 } 10737 /* Ditch the internal IOCTL. */ 10738 freemsg(mp); 10739 ire_refrele(ire); 10740 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10741 return; 10742 } 10743 } 10744 10745 /* 10746 * Delete the coresponding IRE_CACHE if any. 10747 * Reset the error if there was one (in case there was no entry 10748 * in arp.) 10749 */ 10750 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10751 ipif_t *ipintf = NULL; 10752 10753 if (ifx_arp_ioctl) { 10754 /* 10755 * There's no need to lookup the ill, since 10756 * we've already done that when we started 10757 * processing the ioctl and sent the message 10758 * to ARP on that ill. So use the ill that 10759 * is stored in q->q_ptr. 10760 */ 10761 ipintf = ill->ill_ipif; 10762 } 10763 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10764 /* 10765 * The address in "addr" may be an entry for a 10766 * router. If that's true, then any off-net 10767 * IRE_CACHE entries that go through the router 10768 * with address "addr" must be clobbered. Use 10769 * ire_walk to achieve this goal. 10770 */ 10771 if (ifx_arp_ioctl) 10772 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10773 ire_delete_cache_gw, (char *)&addr, ill); 10774 else 10775 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10776 ALL_ZONES, ipst); 10777 iocp->ioc_error = 0; 10778 } 10779 } 10780 errack: 10781 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10782 err = iocp->ioc_error; 10783 freemsg(mp); 10784 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10785 return; 10786 } 10787 10788 /* 10789 * Completion of an SIOCG{X}ARP. Translate the information from 10790 * the area_t into the struct {x}arpreq. 10791 */ 10792 if (x_arp_ioctl) { 10793 storage += ill_xarp_info(&xar->xarp_ha, ill); 10794 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10795 sizeof (xar->xarp_ha.sdl_data)) { 10796 freemsg(mp); 10797 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10798 NULL); 10799 return; 10800 } 10801 } 10802 *flagsp = ATF_INUSE; 10803 if (area->area_flags & ACE_F_PERMANENT) 10804 *flagsp |= ATF_PERM; 10805 if (area->area_flags & ACE_F_PUBLISH) 10806 *flagsp |= ATF_PUBL; 10807 if (area->area_flags & ACE_F_AUTHORITY) 10808 *flagsp |= ATF_AUTHORITY; 10809 if (area->area_hw_addr_length != 0) { 10810 *flagsp |= ATF_COM; 10811 /* 10812 * For SIOCGARP, MAC address length validation has 10813 * already been done before the ioctl was issued to ARP 10814 * to allow it to progress only on 6 byte addressable 10815 * (ethernet like) media. Thus the mac address copying 10816 * can not overwrite the sa_data area below. 10817 */ 10818 bcopy((char *)area + area->area_hw_addr_offset, 10819 storage, area->area_hw_addr_length); 10820 } 10821 10822 /* Ditch the internal IOCTL. */ 10823 freemsg(mp); 10824 /* Complete the original. */ 10825 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10826 } 10827 10828 /* 10829 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10830 * interface) create the next available logical interface for this 10831 * physical interface. 10832 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10833 * ipif with the specified name. 10834 * 10835 * If the address family is not AF_UNSPEC then set the address as well. 10836 * 10837 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10838 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10839 * 10840 * Executed as a writer on the ill or ill group. 10841 * So no lock is needed to traverse the ipif chain, or examine the 10842 * phyint flags. 10843 */ 10844 /* ARGSUSED */ 10845 int 10846 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10847 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10848 { 10849 mblk_t *mp1; 10850 struct lifreq *lifr; 10851 boolean_t isv6; 10852 boolean_t exists; 10853 char *name; 10854 char *endp; 10855 char *cp; 10856 int namelen; 10857 ipif_t *ipif; 10858 long id; 10859 ipsq_t *ipsq; 10860 ill_t *ill; 10861 sin_t *sin; 10862 int err = 0; 10863 boolean_t found_sep = B_FALSE; 10864 conn_t *connp; 10865 zoneid_t zoneid; 10866 int orig_ifindex = 0; 10867 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10868 10869 ASSERT(q->q_next == NULL); 10870 ip1dbg(("ip_sioctl_addif\n")); 10871 /* Existence of mp1 has been checked in ip_wput_nondata */ 10872 mp1 = mp->b_cont->b_cont; 10873 /* 10874 * Null terminate the string to protect against buffer 10875 * overrun. String was generated by user code and may not 10876 * be trusted. 10877 */ 10878 lifr = (struct lifreq *)mp1->b_rptr; 10879 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10880 name = lifr->lifr_name; 10881 ASSERT(CONN_Q(q)); 10882 connp = Q_TO_CONN(q); 10883 isv6 = connp->conn_af_isv6; 10884 zoneid = connp->conn_zoneid; 10885 namelen = mi_strlen(name); 10886 if (namelen == 0) 10887 return (EINVAL); 10888 10889 exists = B_FALSE; 10890 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10891 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10892 /* 10893 * Allow creating lo0 using SIOCLIFADDIF. 10894 * can't be any other writer thread. So can pass null below 10895 * for the last 4 args to ipif_lookup_name. 10896 */ 10897 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10898 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10899 /* Prevent any further action */ 10900 if (ipif == NULL) { 10901 return (ENOBUFS); 10902 } else if (!exists) { 10903 /* We created the ipif now and as writer */ 10904 ipif_refrele(ipif); 10905 return (0); 10906 } else { 10907 ill = ipif->ipif_ill; 10908 ill_refhold(ill); 10909 ipif_refrele(ipif); 10910 } 10911 } else { 10912 /* Look for a colon in the name. */ 10913 endp = &name[namelen]; 10914 for (cp = endp; --cp > name; ) { 10915 if (*cp == IPIF_SEPARATOR_CHAR) { 10916 found_sep = B_TRUE; 10917 /* 10918 * Reject any non-decimal aliases for plumbing 10919 * of logical interfaces. Aliases with leading 10920 * zeroes are also rejected as they introduce 10921 * ambiguity in the naming of the interfaces. 10922 * Comparing with "0" takes care of all such 10923 * cases. 10924 */ 10925 if ((strncmp("0", cp+1, 1)) == 0) 10926 return (EINVAL); 10927 10928 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10929 id <= 0 || *endp != '\0') { 10930 return (EINVAL); 10931 } 10932 *cp = '\0'; 10933 break; 10934 } 10935 } 10936 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10937 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10938 if (found_sep) 10939 *cp = IPIF_SEPARATOR_CHAR; 10940 if (ill == NULL) 10941 return (err); 10942 } 10943 10944 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10945 B_TRUE); 10946 10947 /* 10948 * Release the refhold due to the lookup, now that we are excl 10949 * or we are just returning 10950 */ 10951 ill_refrele(ill); 10952 10953 if (ipsq == NULL) 10954 return (EINPROGRESS); 10955 10956 /* 10957 * If the interface is failed, inactive or offlined, look for a working 10958 * interface in the ill group and create the ipif there. If we can't 10959 * find a good interface, create the ipif anyway so that in.mpathd can 10960 * move it to the first repaired interface. 10961 */ 10962 if ((ill->ill_phyint->phyint_flags & 10963 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10964 ill->ill_phyint->phyint_groupname_len != 0) { 10965 phyint_t *phyi; 10966 char *groupname = ill->ill_phyint->phyint_groupname; 10967 10968 /* 10969 * We're looking for a working interface, but it doesn't matter 10970 * if it's up or down; so instead of following the group lists, 10971 * we look at each physical interface and compare the groupname. 10972 * We're only interested in interfaces with IPv4 (resp. IPv6) 10973 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10974 * Otherwise we create the ipif on the failed interface. 10975 */ 10976 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10977 phyi = avl_first(&ipst->ips_phyint_g_list-> 10978 phyint_list_avl_by_index); 10979 for (; phyi != NULL; 10980 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10981 phyint_list_avl_by_index, 10982 phyi, AVL_AFTER)) { 10983 if (phyi->phyint_groupname_len == 0) 10984 continue; 10985 ASSERT(phyi->phyint_groupname != NULL); 10986 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10987 !(phyi->phyint_flags & 10988 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10989 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10990 (phyi->phyint_illv4 != NULL))) { 10991 break; 10992 } 10993 } 10994 rw_exit(&ipst->ips_ill_g_lock); 10995 10996 if (phyi != NULL) { 10997 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10998 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10999 phyi->phyint_illv4); 11000 } 11001 } 11002 11003 /* 11004 * We are now exclusive on the ipsq, so an ill move will be serialized 11005 * before or after us. 11006 */ 11007 ASSERT(IAM_WRITER_ILL(ill)); 11008 ASSERT(ill->ill_move_in_progress == B_FALSE); 11009 11010 if (found_sep && orig_ifindex == 0) { 11011 /* Now see if there is an IPIF with this unit number. */ 11012 for (ipif = ill->ill_ipif; ipif != NULL; 11013 ipif = ipif->ipif_next) { 11014 if (ipif->ipif_id == id) { 11015 err = EEXIST; 11016 goto done; 11017 } 11018 } 11019 } 11020 11021 /* 11022 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11023 * of lo0. We never come here when we plumb lo0:0. It 11024 * happens in ipif_lookup_on_name. 11025 * The specified unit number is ignored when we create the ipif on a 11026 * different interface. However, we save it in ipif_orig_ipifid below so 11027 * that the ipif fails back to the right position. 11028 */ 11029 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11030 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11031 err = ENOBUFS; 11032 goto done; 11033 } 11034 11035 /* Return created name with ioctl */ 11036 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11037 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11038 ip1dbg(("created %s\n", lifr->lifr_name)); 11039 11040 /* Set address */ 11041 sin = (sin_t *)&lifr->lifr_addr; 11042 if (sin->sin_family != AF_UNSPEC) { 11043 err = ip_sioctl_addr(ipif, sin, q, mp, 11044 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11045 } 11046 11047 /* Set ifindex and unit number for failback */ 11048 if (err == 0 && orig_ifindex != 0) { 11049 ipif->ipif_orig_ifindex = orig_ifindex; 11050 if (found_sep) { 11051 ipif->ipif_orig_ipifid = id; 11052 } 11053 } 11054 11055 done: 11056 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11057 return (err); 11058 } 11059 11060 /* 11061 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11062 * interface) delete it based on the IP address (on this physical interface). 11063 * Otherwise delete it based on the ipif_id. 11064 * Also, special handling to allow a removeif of lo0. 11065 */ 11066 /* ARGSUSED */ 11067 int 11068 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11069 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11070 { 11071 conn_t *connp; 11072 ill_t *ill = ipif->ipif_ill; 11073 boolean_t success; 11074 ip_stack_t *ipst; 11075 11076 ipst = CONNQ_TO_IPST(q); 11077 11078 ASSERT(q->q_next == NULL); 11079 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11080 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11081 ASSERT(IAM_WRITER_IPIF(ipif)); 11082 11083 connp = Q_TO_CONN(q); 11084 /* 11085 * Special case for unplumbing lo0 (the loopback physical interface). 11086 * If unplumbing lo0, the incoming address structure has been 11087 * initialized to all zeros. When unplumbing lo0, all its logical 11088 * interfaces must be removed too. 11089 * 11090 * Note that this interface may be called to remove a specific 11091 * loopback logical interface (eg, lo0:1). But in that case 11092 * ipif->ipif_id != 0 so that the code path for that case is the 11093 * same as any other interface (meaning it skips the code directly 11094 * below). 11095 */ 11096 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11097 if (sin->sin_family == AF_UNSPEC && 11098 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11099 /* 11100 * Mark it condemned. No new ref. will be made to ill. 11101 */ 11102 mutex_enter(&ill->ill_lock); 11103 ill->ill_state_flags |= ILL_CONDEMNED; 11104 for (ipif = ill->ill_ipif; ipif != NULL; 11105 ipif = ipif->ipif_next) { 11106 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11107 } 11108 mutex_exit(&ill->ill_lock); 11109 11110 ipif = ill->ill_ipif; 11111 /* unplumb the loopback interface */ 11112 ill_delete(ill); 11113 mutex_enter(&connp->conn_lock); 11114 mutex_enter(&ill->ill_lock); 11115 ASSERT(ill->ill_group == NULL); 11116 11117 /* Are any references to this ill active */ 11118 if (ill_is_quiescent(ill)) { 11119 mutex_exit(&ill->ill_lock); 11120 mutex_exit(&connp->conn_lock); 11121 ill_delete_tail(ill); 11122 mi_free(ill); 11123 return (0); 11124 } 11125 success = ipsq_pending_mp_add(connp, ipif, 11126 CONNP_TO_WQ(connp), mp, ILL_FREE); 11127 mutex_exit(&connp->conn_lock); 11128 mutex_exit(&ill->ill_lock); 11129 if (success) 11130 return (EINPROGRESS); 11131 else 11132 return (EINTR); 11133 } 11134 } 11135 11136 /* 11137 * We are exclusive on the ipsq, so an ill move will be serialized 11138 * before or after us. 11139 */ 11140 ASSERT(ill->ill_move_in_progress == B_FALSE); 11141 11142 if (ipif->ipif_id == 0) { 11143 /* Find based on address */ 11144 if (ipif->ipif_isv6) { 11145 sin6_t *sin6; 11146 11147 if (sin->sin_family != AF_INET6) 11148 return (EAFNOSUPPORT); 11149 11150 sin6 = (sin6_t *)sin; 11151 /* We are a writer, so we should be able to lookup */ 11152 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11153 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11154 if (ipif == NULL) { 11155 /* 11156 * Maybe the address in on another interface in 11157 * the same IPMP group? We check this below. 11158 */ 11159 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11160 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11161 ipst); 11162 } 11163 } else { 11164 ipaddr_t addr; 11165 11166 if (sin->sin_family != AF_INET) 11167 return (EAFNOSUPPORT); 11168 11169 addr = sin->sin_addr.s_addr; 11170 /* We are a writer, so we should be able to lookup */ 11171 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11172 NULL, NULL, NULL, ipst); 11173 if (ipif == NULL) { 11174 /* 11175 * Maybe the address in on another interface in 11176 * the same IPMP group? We check this below. 11177 */ 11178 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11179 NULL, NULL, NULL, NULL, ipst); 11180 } 11181 } 11182 if (ipif == NULL) { 11183 return (EADDRNOTAVAIL); 11184 } 11185 /* 11186 * When the address to be removed is hosted on a different 11187 * interface, we check if the interface is in the same IPMP 11188 * group as the specified one; if so we proceed with the 11189 * removal. 11190 * ill->ill_group is NULL when the ill is down, so we have to 11191 * compare the group names instead. 11192 */ 11193 if (ipif->ipif_ill != ill && 11194 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11195 ill->ill_phyint->phyint_groupname_len == 0 || 11196 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11197 ill->ill_phyint->phyint_groupname) != 0)) { 11198 ipif_refrele(ipif); 11199 return (EADDRNOTAVAIL); 11200 } 11201 11202 /* This is a writer */ 11203 ipif_refrele(ipif); 11204 } 11205 11206 /* 11207 * Can not delete instance zero since it is tied to the ill. 11208 */ 11209 if (ipif->ipif_id == 0) 11210 return (EBUSY); 11211 11212 mutex_enter(&ill->ill_lock); 11213 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11214 mutex_exit(&ill->ill_lock); 11215 11216 ipif_free(ipif); 11217 11218 mutex_enter(&connp->conn_lock); 11219 mutex_enter(&ill->ill_lock); 11220 11221 /* Are any references to this ipif active */ 11222 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11223 mutex_exit(&ill->ill_lock); 11224 mutex_exit(&connp->conn_lock); 11225 ipif_non_duplicate(ipif); 11226 ipif_down_tail(ipif); 11227 ipif_free_tail(ipif); 11228 return (0); 11229 } 11230 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11231 IPIF_FREE); 11232 mutex_exit(&ill->ill_lock); 11233 mutex_exit(&connp->conn_lock); 11234 if (success) 11235 return (EINPROGRESS); 11236 else 11237 return (EINTR); 11238 } 11239 11240 /* 11241 * Restart the removeif ioctl. The refcnt has gone down to 0. 11242 * The ipif is already condemned. So can't find it thru lookups. 11243 */ 11244 /* ARGSUSED */ 11245 int 11246 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11247 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11248 { 11249 ill_t *ill; 11250 11251 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11252 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11253 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11254 ill = ipif->ipif_ill; 11255 ASSERT(IAM_WRITER_ILL(ill)); 11256 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11257 (ill->ill_state_flags & IPIF_CONDEMNED)); 11258 ill_delete_tail(ill); 11259 mi_free(ill); 11260 return (0); 11261 } 11262 11263 ill = ipif->ipif_ill; 11264 ASSERT(IAM_WRITER_IPIF(ipif)); 11265 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11266 11267 ipif_non_duplicate(ipif); 11268 ipif_down_tail(ipif); 11269 ipif_free_tail(ipif); 11270 11271 ILL_UNMARK_CHANGING(ill); 11272 return (0); 11273 } 11274 11275 /* 11276 * Set the local interface address. 11277 * Allow an address of all zero when the interface is down. 11278 */ 11279 /* ARGSUSED */ 11280 int 11281 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11282 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11283 { 11284 int err = 0; 11285 in6_addr_t v6addr; 11286 boolean_t need_up = B_FALSE; 11287 11288 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11289 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11290 11291 ASSERT(IAM_WRITER_IPIF(ipif)); 11292 11293 if (ipif->ipif_isv6) { 11294 sin6_t *sin6; 11295 ill_t *ill; 11296 phyint_t *phyi; 11297 11298 if (sin->sin_family != AF_INET6) 11299 return (EAFNOSUPPORT); 11300 11301 sin6 = (sin6_t *)sin; 11302 v6addr = sin6->sin6_addr; 11303 ill = ipif->ipif_ill; 11304 phyi = ill->ill_phyint; 11305 11306 /* 11307 * Enforce that true multicast interfaces have a link-local 11308 * address for logical unit 0. 11309 */ 11310 if (ipif->ipif_id == 0 && 11311 (ill->ill_flags & ILLF_MULTICAST) && 11312 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11313 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11314 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11315 return (EADDRNOTAVAIL); 11316 } 11317 11318 /* 11319 * up interfaces shouldn't have the unspecified address 11320 * unless they also have the IPIF_NOLOCAL flags set and 11321 * have a subnet assigned. 11322 */ 11323 if ((ipif->ipif_flags & IPIF_UP) && 11324 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11325 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11326 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11327 return (EADDRNOTAVAIL); 11328 } 11329 11330 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11331 return (EADDRNOTAVAIL); 11332 } else { 11333 ipaddr_t addr; 11334 11335 if (sin->sin_family != AF_INET) 11336 return (EAFNOSUPPORT); 11337 11338 addr = sin->sin_addr.s_addr; 11339 11340 /* Allow 0 as the local address. */ 11341 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11342 return (EADDRNOTAVAIL); 11343 11344 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11345 } 11346 11347 11348 /* 11349 * Even if there is no change we redo things just to rerun 11350 * ipif_set_default. 11351 */ 11352 if (ipif->ipif_flags & IPIF_UP) { 11353 /* 11354 * Setting a new local address, make sure 11355 * we have net and subnet bcast ire's for 11356 * the old address if we need them. 11357 */ 11358 if (!ipif->ipif_isv6) 11359 ipif_check_bcast_ires(ipif); 11360 /* 11361 * If the interface is already marked up, 11362 * we call ipif_down which will take care 11363 * of ditching any IREs that have been set 11364 * up based on the old interface address. 11365 */ 11366 err = ipif_logical_down(ipif, q, mp); 11367 if (err == EINPROGRESS) 11368 return (err); 11369 ipif_down_tail(ipif); 11370 need_up = 1; 11371 } 11372 11373 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11374 return (err); 11375 } 11376 11377 int 11378 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11379 boolean_t need_up) 11380 { 11381 in6_addr_t v6addr; 11382 in6_addr_t ov6addr; 11383 ipaddr_t addr; 11384 sin6_t *sin6; 11385 int sinlen; 11386 int err = 0; 11387 ill_t *ill = ipif->ipif_ill; 11388 boolean_t need_dl_down; 11389 boolean_t need_arp_down; 11390 struct iocblk *iocp; 11391 11392 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11393 11394 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11395 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11396 ASSERT(IAM_WRITER_IPIF(ipif)); 11397 11398 /* Must cancel any pending timer before taking the ill_lock */ 11399 if (ipif->ipif_recovery_id != 0) 11400 (void) untimeout(ipif->ipif_recovery_id); 11401 ipif->ipif_recovery_id = 0; 11402 11403 if (ipif->ipif_isv6) { 11404 sin6 = (sin6_t *)sin; 11405 v6addr = sin6->sin6_addr; 11406 sinlen = sizeof (struct sockaddr_in6); 11407 } else { 11408 addr = sin->sin_addr.s_addr; 11409 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11410 sinlen = sizeof (struct sockaddr_in); 11411 } 11412 mutex_enter(&ill->ill_lock); 11413 ov6addr = ipif->ipif_v6lcl_addr; 11414 ipif->ipif_v6lcl_addr = v6addr; 11415 sctp_update_ipif_addr(ipif, ov6addr); 11416 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11417 ipif->ipif_v6src_addr = ipv6_all_zeros; 11418 } else { 11419 ipif->ipif_v6src_addr = v6addr; 11420 } 11421 ipif->ipif_addr_ready = 0; 11422 11423 /* 11424 * If the interface was previously marked as a duplicate, then since 11425 * we've now got a "new" address, it should no longer be considered a 11426 * duplicate -- even if the "new" address is the same as the old one. 11427 * Note that if all ipifs are down, we may have a pending ARP down 11428 * event to handle. This is because we want to recover from duplicates 11429 * and thus delay tearing down ARP until the duplicates have been 11430 * removed or disabled. 11431 */ 11432 need_dl_down = need_arp_down = B_FALSE; 11433 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11434 need_arp_down = !need_up; 11435 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11436 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11437 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11438 need_dl_down = B_TRUE; 11439 } 11440 } 11441 11442 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11443 !ill->ill_is_6to4tun) { 11444 queue_t *wqp = ill->ill_wq; 11445 11446 /* 11447 * The local address of this interface is a 6to4 address, 11448 * check if this interface is in fact a 6to4 tunnel or just 11449 * an interface configured with a 6to4 address. We are only 11450 * interested in the former. 11451 */ 11452 if (wqp != NULL) { 11453 while ((wqp->q_next != NULL) && 11454 (wqp->q_next->q_qinfo != NULL) && 11455 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11456 11457 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11458 == TUN6TO4_MODID) { 11459 /* set for use in IP */ 11460 ill->ill_is_6to4tun = 1; 11461 break; 11462 } 11463 wqp = wqp->q_next; 11464 } 11465 } 11466 } 11467 11468 ipif_set_default(ipif); 11469 11470 /* 11471 * When publishing an interface address change event, we only notify 11472 * the event listeners of the new address. It is assumed that if they 11473 * actively care about the addresses assigned that they will have 11474 * already discovered the previous address assigned (if there was one.) 11475 * 11476 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11477 */ 11478 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11479 hook_nic_event_t *info; 11480 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11481 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11482 "attached for %s\n", info->hne_event, 11483 ill->ill_name)); 11484 if (info->hne_data != NULL) 11485 kmem_free(info->hne_data, info->hne_datalen); 11486 kmem_free(info, sizeof (hook_nic_event_t)); 11487 } 11488 11489 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11490 if (info != NULL) { 11491 ip_stack_t *ipst = ill->ill_ipst; 11492 11493 info->hne_nic = 11494 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11495 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11496 info->hne_event = NE_ADDRESS_CHANGE; 11497 info->hne_family = ipif->ipif_isv6 ? 11498 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11499 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11500 if (info->hne_data != NULL) { 11501 info->hne_datalen = sinlen; 11502 bcopy(sin, info->hne_data, sinlen); 11503 } else { 11504 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11505 "address information for ADDRESS_CHANGE nic" 11506 " event of %s (ENOMEM)\n", 11507 ipif->ipif_ill->ill_name)); 11508 kmem_free(info, sizeof (hook_nic_event_t)); 11509 } 11510 } else 11511 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11512 "ADDRESS_CHANGE nic event information for %s " 11513 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11514 11515 ipif->ipif_ill->ill_nic_event_info = info; 11516 } 11517 11518 mutex_exit(&ill->ill_lock); 11519 11520 if (need_up) { 11521 /* 11522 * Now bring the interface back up. If this 11523 * is the only IPIF for the ILL, ipif_up 11524 * will have to re-bind to the device, so 11525 * we may get back EINPROGRESS, in which 11526 * case, this IOCTL will get completed in 11527 * ip_rput_dlpi when we see the DL_BIND_ACK. 11528 */ 11529 err = ipif_up(ipif, q, mp); 11530 } 11531 11532 if (need_dl_down) 11533 ill_dl_down(ill); 11534 if (need_arp_down) 11535 ipif_arp_down(ipif); 11536 11537 return (err); 11538 } 11539 11540 11541 /* 11542 * Restart entry point to restart the address set operation after the 11543 * refcounts have dropped to zero. 11544 */ 11545 /* ARGSUSED */ 11546 int 11547 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11548 ip_ioctl_cmd_t *ipip, void *ifreq) 11549 { 11550 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11551 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11552 ASSERT(IAM_WRITER_IPIF(ipif)); 11553 ipif_down_tail(ipif); 11554 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11555 } 11556 11557 /* ARGSUSED */ 11558 int 11559 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11560 ip_ioctl_cmd_t *ipip, void *if_req) 11561 { 11562 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11563 struct lifreq *lifr = (struct lifreq *)if_req; 11564 11565 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11566 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11567 /* 11568 * The net mask and address can't change since we have a 11569 * reference to the ipif. So no lock is necessary. 11570 */ 11571 if (ipif->ipif_isv6) { 11572 *sin6 = sin6_null; 11573 sin6->sin6_family = AF_INET6; 11574 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11575 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11576 lifr->lifr_addrlen = 11577 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11578 } else { 11579 *sin = sin_null; 11580 sin->sin_family = AF_INET; 11581 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11582 if (ipip->ipi_cmd_type == LIF_CMD) { 11583 lifr->lifr_addrlen = 11584 ip_mask_to_plen(ipif->ipif_net_mask); 11585 } 11586 } 11587 return (0); 11588 } 11589 11590 /* 11591 * Set the destination address for a pt-pt interface. 11592 */ 11593 /* ARGSUSED */ 11594 int 11595 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11596 ip_ioctl_cmd_t *ipip, void *if_req) 11597 { 11598 int err = 0; 11599 in6_addr_t v6addr; 11600 boolean_t need_up = B_FALSE; 11601 11602 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11604 ASSERT(IAM_WRITER_IPIF(ipif)); 11605 11606 if (ipif->ipif_isv6) { 11607 sin6_t *sin6; 11608 11609 if (sin->sin_family != AF_INET6) 11610 return (EAFNOSUPPORT); 11611 11612 sin6 = (sin6_t *)sin; 11613 v6addr = sin6->sin6_addr; 11614 11615 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11616 return (EADDRNOTAVAIL); 11617 } else { 11618 ipaddr_t addr; 11619 11620 if (sin->sin_family != AF_INET) 11621 return (EAFNOSUPPORT); 11622 11623 addr = sin->sin_addr.s_addr; 11624 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11625 return (EADDRNOTAVAIL); 11626 11627 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11628 } 11629 11630 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11631 return (0); /* No change */ 11632 11633 if (ipif->ipif_flags & IPIF_UP) { 11634 /* 11635 * If the interface is already marked up, 11636 * we call ipif_down which will take care 11637 * of ditching any IREs that have been set 11638 * up based on the old pp dst address. 11639 */ 11640 err = ipif_logical_down(ipif, q, mp); 11641 if (err == EINPROGRESS) 11642 return (err); 11643 ipif_down_tail(ipif); 11644 need_up = B_TRUE; 11645 } 11646 /* 11647 * could return EINPROGRESS. If so ioctl will complete in 11648 * ip_rput_dlpi_writer 11649 */ 11650 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11651 return (err); 11652 } 11653 11654 static int 11655 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11656 boolean_t need_up) 11657 { 11658 in6_addr_t v6addr; 11659 ill_t *ill = ipif->ipif_ill; 11660 int err = 0; 11661 boolean_t need_dl_down; 11662 boolean_t need_arp_down; 11663 11664 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11665 ipif->ipif_id, (void *)ipif)); 11666 11667 /* Must cancel any pending timer before taking the ill_lock */ 11668 if (ipif->ipif_recovery_id != 0) 11669 (void) untimeout(ipif->ipif_recovery_id); 11670 ipif->ipif_recovery_id = 0; 11671 11672 if (ipif->ipif_isv6) { 11673 sin6_t *sin6; 11674 11675 sin6 = (sin6_t *)sin; 11676 v6addr = sin6->sin6_addr; 11677 } else { 11678 ipaddr_t addr; 11679 11680 addr = sin->sin_addr.s_addr; 11681 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11682 } 11683 mutex_enter(&ill->ill_lock); 11684 /* Set point to point destination address. */ 11685 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11686 /* 11687 * Allow this as a means of creating logical 11688 * pt-pt interfaces on top of e.g. an Ethernet. 11689 * XXX Undocumented HACK for testing. 11690 * pt-pt interfaces are created with NUD disabled. 11691 */ 11692 ipif->ipif_flags |= IPIF_POINTOPOINT; 11693 ipif->ipif_flags &= ~IPIF_BROADCAST; 11694 if (ipif->ipif_isv6) 11695 ill->ill_flags |= ILLF_NONUD; 11696 } 11697 11698 /* 11699 * If the interface was previously marked as a duplicate, then since 11700 * we've now got a "new" address, it should no longer be considered a 11701 * duplicate -- even if the "new" address is the same as the old one. 11702 * Note that if all ipifs are down, we may have a pending ARP down 11703 * event to handle. 11704 */ 11705 need_dl_down = need_arp_down = B_FALSE; 11706 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11707 need_arp_down = !need_up; 11708 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11709 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11710 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11711 need_dl_down = B_TRUE; 11712 } 11713 } 11714 11715 /* Set the new address. */ 11716 ipif->ipif_v6pp_dst_addr = v6addr; 11717 /* Make sure subnet tracks pp_dst */ 11718 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11719 mutex_exit(&ill->ill_lock); 11720 11721 if (need_up) { 11722 /* 11723 * Now bring the interface back up. If this 11724 * is the only IPIF for the ILL, ipif_up 11725 * will have to re-bind to the device, so 11726 * we may get back EINPROGRESS, in which 11727 * case, this IOCTL will get completed in 11728 * ip_rput_dlpi when we see the DL_BIND_ACK. 11729 */ 11730 err = ipif_up(ipif, q, mp); 11731 } 11732 11733 if (need_dl_down) 11734 ill_dl_down(ill); 11735 11736 if (need_arp_down) 11737 ipif_arp_down(ipif); 11738 return (err); 11739 } 11740 11741 /* 11742 * Restart entry point to restart the dstaddress set operation after the 11743 * refcounts have dropped to zero. 11744 */ 11745 /* ARGSUSED */ 11746 int 11747 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11748 ip_ioctl_cmd_t *ipip, void *ifreq) 11749 { 11750 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11751 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11752 ipif_down_tail(ipif); 11753 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11754 } 11755 11756 /* ARGSUSED */ 11757 int 11758 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11759 ip_ioctl_cmd_t *ipip, void *if_req) 11760 { 11761 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11762 11763 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11765 /* 11766 * Get point to point destination address. The addresses can't 11767 * change since we hold a reference to the ipif. 11768 */ 11769 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11770 return (EADDRNOTAVAIL); 11771 11772 if (ipif->ipif_isv6) { 11773 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11774 *sin6 = sin6_null; 11775 sin6->sin6_family = AF_INET6; 11776 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11777 } else { 11778 *sin = sin_null; 11779 sin->sin_family = AF_INET; 11780 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11781 } 11782 return (0); 11783 } 11784 11785 /* 11786 * part of ipmp, make this func return the active/inactive state and 11787 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11788 */ 11789 /* 11790 * This function either sets or clears the IFF_INACTIVE flag. 11791 * 11792 * As long as there are some addresses or multicast memberships on the 11793 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11794 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11795 * will be used for outbound packets. 11796 * 11797 * Caller needs to verify the validity of setting IFF_INACTIVE. 11798 */ 11799 static void 11800 phyint_inactive(phyint_t *phyi) 11801 { 11802 ill_t *ill_v4; 11803 ill_t *ill_v6; 11804 ipif_t *ipif; 11805 ilm_t *ilm; 11806 11807 ill_v4 = phyi->phyint_illv4; 11808 ill_v6 = phyi->phyint_illv6; 11809 11810 /* 11811 * No need for a lock while traversing the list since iam 11812 * a writer 11813 */ 11814 if (ill_v4 != NULL) { 11815 ASSERT(IAM_WRITER_ILL(ill_v4)); 11816 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11817 ipif = ipif->ipif_next) { 11818 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11819 mutex_enter(&phyi->phyint_lock); 11820 phyi->phyint_flags &= ~PHYI_INACTIVE; 11821 mutex_exit(&phyi->phyint_lock); 11822 return; 11823 } 11824 } 11825 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11826 ilm = ilm->ilm_next) { 11827 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11828 mutex_enter(&phyi->phyint_lock); 11829 phyi->phyint_flags &= ~PHYI_INACTIVE; 11830 mutex_exit(&phyi->phyint_lock); 11831 return; 11832 } 11833 } 11834 } 11835 if (ill_v6 != NULL) { 11836 ill_v6 = phyi->phyint_illv6; 11837 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11838 ipif = ipif->ipif_next) { 11839 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11840 mutex_enter(&phyi->phyint_lock); 11841 phyi->phyint_flags &= ~PHYI_INACTIVE; 11842 mutex_exit(&phyi->phyint_lock); 11843 return; 11844 } 11845 } 11846 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11847 ilm = ilm->ilm_next) { 11848 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11849 mutex_enter(&phyi->phyint_lock); 11850 phyi->phyint_flags &= ~PHYI_INACTIVE; 11851 mutex_exit(&phyi->phyint_lock); 11852 return; 11853 } 11854 } 11855 } 11856 mutex_enter(&phyi->phyint_lock); 11857 phyi->phyint_flags |= PHYI_INACTIVE; 11858 mutex_exit(&phyi->phyint_lock); 11859 } 11860 11861 /* 11862 * This function is called only when the phyint flags change. Currently 11863 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11864 * that we can select a good ill. 11865 */ 11866 static void 11867 ip_redo_nomination(phyint_t *phyi) 11868 { 11869 ill_t *ill_v4; 11870 11871 ill_v4 = phyi->phyint_illv4; 11872 11873 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11874 ASSERT(IAM_WRITER_ILL(ill_v4)); 11875 if (ill_v4->ill_group->illgrp_ill_count > 1) 11876 ill_nominate_bcast_rcv(ill_v4->ill_group); 11877 } 11878 } 11879 11880 /* 11881 * Heuristic to check if ill is INACTIVE. 11882 * Checks if ill has an ipif with an usable ip address. 11883 * 11884 * Return values: 11885 * B_TRUE - ill is INACTIVE; has no usable ipif 11886 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11887 */ 11888 static boolean_t 11889 ill_is_inactive(ill_t *ill) 11890 { 11891 ipif_t *ipif; 11892 11893 /* Check whether it is in an IPMP group */ 11894 if (ill->ill_phyint->phyint_groupname == NULL) 11895 return (B_FALSE); 11896 11897 if (ill->ill_ipif_up_count == 0) 11898 return (B_TRUE); 11899 11900 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11901 uint64_t flags = ipif->ipif_flags; 11902 11903 /* 11904 * This ipif is usable if it is IPIF_UP and not a 11905 * dedicated test address. A dedicated test address 11906 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11907 * (note in particular that V6 test addresses are 11908 * link-local data addresses and thus are marked 11909 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11910 */ 11911 if ((flags & IPIF_UP) && 11912 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11913 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11914 return (B_FALSE); 11915 } 11916 return (B_TRUE); 11917 } 11918 11919 /* 11920 * Set interface flags. 11921 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11922 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11923 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11924 * 11925 * NOTE : We really don't enforce that ipif_id zero should be used 11926 * for setting any flags other than IFF_LOGINT_FLAGS. This 11927 * is because applications generally does SICGLIFFLAGS and 11928 * ORs in the new flags (that affects the logical) and does a 11929 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11930 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11931 * flags that will be turned on is correct with respect to 11932 * ipif_id 0. For backward compatibility reasons, it is not done. 11933 */ 11934 /* ARGSUSED */ 11935 int 11936 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11937 ip_ioctl_cmd_t *ipip, void *if_req) 11938 { 11939 uint64_t turn_on; 11940 uint64_t turn_off; 11941 int err; 11942 boolean_t need_up = B_FALSE; 11943 phyint_t *phyi; 11944 ill_t *ill; 11945 uint64_t intf_flags; 11946 boolean_t phyint_flags_modified = B_FALSE; 11947 uint64_t flags; 11948 struct ifreq *ifr; 11949 struct lifreq *lifr; 11950 boolean_t set_linklocal = B_FALSE; 11951 boolean_t zero_source = B_FALSE; 11952 ip_stack_t *ipst; 11953 11954 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11955 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11956 11957 ASSERT(IAM_WRITER_IPIF(ipif)); 11958 11959 ill = ipif->ipif_ill; 11960 phyi = ill->ill_phyint; 11961 ipst = ill->ill_ipst; 11962 11963 if (ipip->ipi_cmd_type == IF_CMD) { 11964 ifr = (struct ifreq *)if_req; 11965 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11966 } else { 11967 lifr = (struct lifreq *)if_req; 11968 flags = lifr->lifr_flags; 11969 } 11970 11971 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11972 11973 /* 11974 * Has the flags been set correctly till now ? 11975 */ 11976 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11977 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11978 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11979 /* 11980 * Compare the new flags to the old, and partition 11981 * into those coming on and those going off. 11982 * For the 16 bit command keep the bits above bit 16 unchanged. 11983 */ 11984 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11985 flags |= intf_flags & ~0xFFFF; 11986 11987 /* 11988 * First check which bits will change and then which will 11989 * go on and off 11990 */ 11991 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11992 if (!turn_on) 11993 return (0); /* No change */ 11994 11995 turn_off = intf_flags & turn_on; 11996 turn_on ^= turn_off; 11997 err = 0; 11998 11999 /* 12000 * Don't allow any bits belonging to the logical interface 12001 * to be set or cleared on the replacement ipif that was 12002 * created temporarily during a MOVE. 12003 */ 12004 if (ipif->ipif_replace_zero && 12005 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12006 return (EINVAL); 12007 } 12008 12009 /* 12010 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12011 * IPv6 interfaces. 12012 */ 12013 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12014 return (EINVAL); 12015 12016 /* 12017 * cannot turn off IFF_NOXMIT on VNI interfaces. 12018 */ 12019 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 12020 return (EINVAL); 12021 12022 /* 12023 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12024 * interfaces. It makes no sense in that context. 12025 */ 12026 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12027 return (EINVAL); 12028 12029 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12030 zero_source = B_TRUE; 12031 12032 /* 12033 * For IPv6 ipif_id 0, don't allow the interface to be up without 12034 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12035 * If the link local address isn't set, and can be set, it will get 12036 * set later on in this function. 12037 */ 12038 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12039 (flags & IFF_UP) && !zero_source && 12040 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12041 if (ipif_cant_setlinklocal(ipif)) 12042 return (EINVAL); 12043 set_linklocal = B_TRUE; 12044 } 12045 12046 /* 12047 * ILL cannot be part of a usesrc group and and IPMP group at the 12048 * same time. No need to grab ill_g_usesrc_lock here, see 12049 * synchronization notes in ip.c 12050 */ 12051 if (turn_on & PHYI_STANDBY && 12052 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12053 return (EINVAL); 12054 } 12055 12056 /* 12057 * If we modify physical interface flags, we'll potentially need to 12058 * send up two routing socket messages for the changes (one for the 12059 * IPv4 ill, and another for the IPv6 ill). Note that here. 12060 */ 12061 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12062 phyint_flags_modified = B_TRUE; 12063 12064 /* 12065 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12066 * we need to flush the IRE_CACHES belonging to this ill. 12067 * We handle this case here without doing the DOWN/UP dance 12068 * like it is done for other flags. If some other flags are 12069 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12070 * below will handle it by bringing it down and then 12071 * bringing it UP. 12072 */ 12073 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12074 ill_t *ill_v4, *ill_v6; 12075 12076 ill_v4 = phyi->phyint_illv4; 12077 ill_v6 = phyi->phyint_illv6; 12078 12079 /* 12080 * First set the INACTIVE flag if needed. Then delete the ires. 12081 * ire_add will atomically prevent creating new IRE_CACHEs 12082 * unless hidden flag is set. 12083 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12084 */ 12085 if ((turn_on & PHYI_FAILED) && 12086 ((intf_flags & PHYI_STANDBY) || 12087 !ipst->ips_ipmp_enable_failback)) { 12088 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12089 phyi->phyint_flags &= ~PHYI_INACTIVE; 12090 } 12091 if ((turn_off & PHYI_FAILED) && 12092 ((intf_flags & PHYI_STANDBY) || 12093 (!ipst->ips_ipmp_enable_failback && 12094 ill_is_inactive(ill)))) { 12095 phyint_inactive(phyi); 12096 } 12097 12098 if (turn_on & PHYI_STANDBY) { 12099 /* 12100 * We implicitly set INACTIVE only when STANDBY is set. 12101 * INACTIVE is also set on non-STANDBY phyint when user 12102 * disables FAILBACK using configuration file. 12103 * Do not allow STANDBY to be set on such INACTIVE 12104 * phyint 12105 */ 12106 if (phyi->phyint_flags & PHYI_INACTIVE) 12107 return (EINVAL); 12108 if (!(phyi->phyint_flags & PHYI_FAILED)) 12109 phyint_inactive(phyi); 12110 } 12111 if (turn_off & PHYI_STANDBY) { 12112 if (ipst->ips_ipmp_enable_failback) { 12113 /* 12114 * Reset PHYI_INACTIVE. 12115 */ 12116 phyi->phyint_flags &= ~PHYI_INACTIVE; 12117 } else if (ill_is_inactive(ill) && 12118 !(phyi->phyint_flags & PHYI_FAILED)) { 12119 /* 12120 * Need to set INACTIVE, when user sets 12121 * STANDBY on a non-STANDBY phyint and 12122 * later resets STANDBY 12123 */ 12124 phyint_inactive(phyi); 12125 } 12126 } 12127 /* 12128 * We should always send up a message so that the 12129 * daemons come to know of it. Note that the zeroth 12130 * interface can be down and the check below for IPIF_UP 12131 * will not make sense as we are actually setting 12132 * a phyint flag here. We assume that the ipif used 12133 * is always the zeroth ipif. (ip_rts_ifmsg does not 12134 * send up any message for non-zero ipifs). 12135 */ 12136 phyint_flags_modified = B_TRUE; 12137 12138 if (ill_v4 != NULL) { 12139 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12140 IRE_CACHE, ill_stq_cache_delete, 12141 (char *)ill_v4, ill_v4); 12142 illgrp_reset_schednext(ill_v4); 12143 } 12144 if (ill_v6 != NULL) { 12145 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12146 IRE_CACHE, ill_stq_cache_delete, 12147 (char *)ill_v6, ill_v6); 12148 illgrp_reset_schednext(ill_v6); 12149 } 12150 } 12151 12152 /* 12153 * If ILLF_ROUTER changes, we need to change the ip forwarding 12154 * status of the interface and, if the interface is part of an IPMP 12155 * group, all other interfaces that are part of the same IPMP 12156 * group. 12157 */ 12158 if ((turn_on | turn_off) & ILLF_ROUTER) 12159 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 12160 12161 /* 12162 * If the interface is not UP and we are not going to 12163 * bring it UP, record the flags and return. When the 12164 * interface comes UP later, the right actions will be 12165 * taken. 12166 */ 12167 if (!(ipif->ipif_flags & IPIF_UP) && 12168 !(turn_on & IPIF_UP)) { 12169 /* Record new flags in their respective places. */ 12170 mutex_enter(&ill->ill_lock); 12171 mutex_enter(&ill->ill_phyint->phyint_lock); 12172 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12173 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12174 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12175 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12176 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12177 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12178 mutex_exit(&ill->ill_lock); 12179 mutex_exit(&ill->ill_phyint->phyint_lock); 12180 12181 /* 12182 * We do the broadcast and nomination here rather 12183 * than waiting for a FAILOVER/FAILBACK to happen. In 12184 * the case of FAILBACK from INACTIVE standby to the 12185 * interface that has been repaired, PHYI_FAILED has not 12186 * been cleared yet. If there are only two interfaces in 12187 * that group, all we have is a FAILED and INACTIVE 12188 * interface. If we do the nomination soon after a failback, 12189 * the broadcast nomination code would select the 12190 * INACTIVE interface for receiving broadcasts as FAILED is 12191 * not yet cleared. As we don't want STANDBY/INACTIVE to 12192 * receive broadcast packets, we need to redo nomination 12193 * when the FAILED is cleared here. Thus, in general we 12194 * always do the nomination here for FAILED, STANDBY 12195 * and OFFLINE. 12196 */ 12197 if (((turn_on | turn_off) & 12198 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12199 ip_redo_nomination(phyi); 12200 } 12201 if (phyint_flags_modified) { 12202 if (phyi->phyint_illv4 != NULL) { 12203 ip_rts_ifmsg(phyi->phyint_illv4-> 12204 ill_ipif); 12205 } 12206 if (phyi->phyint_illv6 != NULL) { 12207 ip_rts_ifmsg(phyi->phyint_illv6-> 12208 ill_ipif); 12209 } 12210 } 12211 return (0); 12212 } else if (set_linklocal || zero_source) { 12213 mutex_enter(&ill->ill_lock); 12214 if (set_linklocal) 12215 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12216 if (zero_source) 12217 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12218 mutex_exit(&ill->ill_lock); 12219 } 12220 12221 /* 12222 * Disallow IPv6 interfaces coming up that have the unspecified address, 12223 * or point-to-point interfaces with an unspecified destination. We do 12224 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12225 * have a subnet assigned, which is how in.ndpd currently manages its 12226 * onlink prefix list when no addresses are configured with those 12227 * prefixes. 12228 */ 12229 if (ipif->ipif_isv6 && 12230 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12231 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12232 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12233 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12234 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12235 return (EINVAL); 12236 } 12237 12238 /* 12239 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12240 * from being brought up. 12241 */ 12242 if (!ipif->ipif_isv6 && 12243 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12244 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12245 return (EINVAL); 12246 } 12247 12248 /* 12249 * The only flag changes that we currently take specific action on 12250 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12251 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12252 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12253 * the flags and bringing it back up again. 12254 */ 12255 if ((turn_on|turn_off) & 12256 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12257 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12258 /* 12259 * Taking this ipif down, make sure we have 12260 * valid net and subnet bcast ire's for other 12261 * logical interfaces, if we need them. 12262 */ 12263 if (!ipif->ipif_isv6) 12264 ipif_check_bcast_ires(ipif); 12265 12266 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12267 !(turn_off & IPIF_UP)) { 12268 need_up = B_TRUE; 12269 if (ipif->ipif_flags & IPIF_UP) 12270 ill->ill_logical_down = 1; 12271 turn_on &= ~IPIF_UP; 12272 } 12273 err = ipif_down(ipif, q, mp); 12274 ip1dbg(("ipif_down returns %d err ", err)); 12275 if (err == EINPROGRESS) 12276 return (err); 12277 ipif_down_tail(ipif); 12278 } 12279 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12280 } 12281 12282 static int 12283 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12284 boolean_t need_up) 12285 { 12286 ill_t *ill; 12287 phyint_t *phyi; 12288 uint64_t turn_on; 12289 uint64_t turn_off; 12290 uint64_t intf_flags; 12291 boolean_t phyint_flags_modified = B_FALSE; 12292 int err = 0; 12293 boolean_t set_linklocal = B_FALSE; 12294 boolean_t zero_source = B_FALSE; 12295 12296 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12297 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12298 12299 ASSERT(IAM_WRITER_IPIF(ipif)); 12300 12301 ill = ipif->ipif_ill; 12302 phyi = ill->ill_phyint; 12303 12304 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12305 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12306 12307 turn_off = intf_flags & turn_on; 12308 turn_on ^= turn_off; 12309 12310 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12311 phyint_flags_modified = B_TRUE; 12312 12313 /* 12314 * Now we change the flags. Track current value of 12315 * other flags in their respective places. 12316 */ 12317 mutex_enter(&ill->ill_lock); 12318 mutex_enter(&phyi->phyint_lock); 12319 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12320 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12321 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12322 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12323 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12324 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12325 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12326 set_linklocal = B_TRUE; 12327 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12328 } 12329 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12330 zero_source = B_TRUE; 12331 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12332 } 12333 mutex_exit(&ill->ill_lock); 12334 mutex_exit(&phyi->phyint_lock); 12335 12336 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12337 ip_redo_nomination(phyi); 12338 12339 if (set_linklocal) 12340 (void) ipif_setlinklocal(ipif); 12341 12342 if (zero_source) 12343 ipif->ipif_v6src_addr = ipv6_all_zeros; 12344 else 12345 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12346 12347 if (need_up) { 12348 /* 12349 * XXX ipif_up really does not know whether a phyint flags 12350 * was modified or not. So, it sends up information on 12351 * only one routing sockets message. As we don't bring up 12352 * the interface and also set STANDBY/FAILED simultaneously 12353 * it should be okay. 12354 */ 12355 err = ipif_up(ipif, q, mp); 12356 } else { 12357 /* 12358 * Make sure routing socket sees all changes to the flags. 12359 * ipif_up_done* handles this when we use ipif_up. 12360 */ 12361 if (phyint_flags_modified) { 12362 if (phyi->phyint_illv4 != NULL) { 12363 ip_rts_ifmsg(phyi->phyint_illv4-> 12364 ill_ipif); 12365 } 12366 if (phyi->phyint_illv6 != NULL) { 12367 ip_rts_ifmsg(phyi->phyint_illv6-> 12368 ill_ipif); 12369 } 12370 } else { 12371 ip_rts_ifmsg(ipif); 12372 } 12373 /* 12374 * Update the flags in SCTP's IPIF list, ipif_up() will do 12375 * this in need_up case. 12376 */ 12377 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12378 } 12379 return (err); 12380 } 12381 12382 /* 12383 * Restart entry point to restart the flags restart operation after the 12384 * refcounts have dropped to zero. 12385 */ 12386 /* ARGSUSED */ 12387 int 12388 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12389 ip_ioctl_cmd_t *ipip, void *if_req) 12390 { 12391 int err; 12392 struct ifreq *ifr = (struct ifreq *)if_req; 12393 struct lifreq *lifr = (struct lifreq *)if_req; 12394 12395 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12397 12398 ipif_down_tail(ipif); 12399 if (ipip->ipi_cmd_type == IF_CMD) { 12400 /* 12401 * Since ip_sioctl_flags expects an int and ifr_flags 12402 * is a short we need to cast ifr_flags into an int 12403 * to avoid having sign extension cause bits to get 12404 * set that should not be. 12405 */ 12406 err = ip_sioctl_flags_tail(ipif, 12407 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12408 q, mp, B_TRUE); 12409 } else { 12410 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12411 q, mp, B_TRUE); 12412 } 12413 return (err); 12414 } 12415 12416 /* 12417 * Can operate on either a module or a driver queue. 12418 */ 12419 /* ARGSUSED */ 12420 int 12421 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12422 ip_ioctl_cmd_t *ipip, void *if_req) 12423 { 12424 /* 12425 * Has the flags been set correctly till now ? 12426 */ 12427 ill_t *ill = ipif->ipif_ill; 12428 phyint_t *phyi = ill->ill_phyint; 12429 12430 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12431 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12432 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12433 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12434 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12435 12436 /* 12437 * Need a lock since some flags can be set even when there are 12438 * references to the ipif. 12439 */ 12440 mutex_enter(&ill->ill_lock); 12441 if (ipip->ipi_cmd_type == IF_CMD) { 12442 struct ifreq *ifr = (struct ifreq *)if_req; 12443 12444 /* Get interface flags (low 16 only). */ 12445 ifr->ifr_flags = ((ipif->ipif_flags | 12446 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12447 } else { 12448 struct lifreq *lifr = (struct lifreq *)if_req; 12449 12450 /* Get interface flags. */ 12451 lifr->lifr_flags = ipif->ipif_flags | 12452 ill->ill_flags | phyi->phyint_flags; 12453 } 12454 mutex_exit(&ill->ill_lock); 12455 return (0); 12456 } 12457 12458 /* ARGSUSED */ 12459 int 12460 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12461 ip_ioctl_cmd_t *ipip, void *if_req) 12462 { 12463 int mtu; 12464 int ip_min_mtu; 12465 struct ifreq *ifr; 12466 struct lifreq *lifr; 12467 ire_t *ire; 12468 ip_stack_t *ipst; 12469 12470 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12471 ipif->ipif_id, (void *)ipif)); 12472 if (ipip->ipi_cmd_type == IF_CMD) { 12473 ifr = (struct ifreq *)if_req; 12474 mtu = ifr->ifr_metric; 12475 } else { 12476 lifr = (struct lifreq *)if_req; 12477 mtu = lifr->lifr_mtu; 12478 } 12479 12480 if (ipif->ipif_isv6) 12481 ip_min_mtu = IPV6_MIN_MTU; 12482 else 12483 ip_min_mtu = IP_MIN_MTU; 12484 12485 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12486 return (EINVAL); 12487 12488 /* 12489 * Change the MTU size in all relevant ire's. 12490 * Mtu change Vs. new ire creation - protocol below. 12491 * First change ipif_mtu and the ire_max_frag of the 12492 * interface ire. Then do an ire walk and change the 12493 * ire_max_frag of all affected ires. During ire_add 12494 * under the bucket lock, set the ire_max_frag of the 12495 * new ire being created from the ipif/ire from which 12496 * it is being derived. If an mtu change happens after 12497 * the ire is added, the new ire will be cleaned up. 12498 * Conversely if the mtu change happens before the ire 12499 * is added, ire_add will see the new value of the mtu. 12500 */ 12501 ipif->ipif_mtu = mtu; 12502 ipif->ipif_flags |= IPIF_FIXEDMTU; 12503 12504 if (ipif->ipif_isv6) 12505 ire = ipif_to_ire_v6(ipif); 12506 else 12507 ire = ipif_to_ire(ipif); 12508 if (ire != NULL) { 12509 ire->ire_max_frag = ipif->ipif_mtu; 12510 ire_refrele(ire); 12511 } 12512 ipst = ipif->ipif_ill->ill_ipst; 12513 if (ipif->ipif_flags & IPIF_UP) { 12514 if (ipif->ipif_isv6) 12515 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12516 ipst); 12517 else 12518 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12519 ipst); 12520 } 12521 /* Update the MTU in SCTP's list */ 12522 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12523 return (0); 12524 } 12525 12526 /* Get interface MTU. */ 12527 /* ARGSUSED */ 12528 int 12529 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12530 ip_ioctl_cmd_t *ipip, void *if_req) 12531 { 12532 struct ifreq *ifr; 12533 struct lifreq *lifr; 12534 12535 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12536 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12537 if (ipip->ipi_cmd_type == IF_CMD) { 12538 ifr = (struct ifreq *)if_req; 12539 ifr->ifr_metric = ipif->ipif_mtu; 12540 } else { 12541 lifr = (struct lifreq *)if_req; 12542 lifr->lifr_mtu = ipif->ipif_mtu; 12543 } 12544 return (0); 12545 } 12546 12547 /* Set interface broadcast address. */ 12548 /* ARGSUSED2 */ 12549 int 12550 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12551 ip_ioctl_cmd_t *ipip, void *if_req) 12552 { 12553 ipaddr_t addr; 12554 ire_t *ire; 12555 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12556 12557 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12558 ipif->ipif_id)); 12559 12560 ASSERT(IAM_WRITER_IPIF(ipif)); 12561 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12562 return (EADDRNOTAVAIL); 12563 12564 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12565 12566 if (sin->sin_family != AF_INET) 12567 return (EAFNOSUPPORT); 12568 12569 addr = sin->sin_addr.s_addr; 12570 if (ipif->ipif_flags & IPIF_UP) { 12571 /* 12572 * If we are already up, make sure the new 12573 * broadcast address makes sense. If it does, 12574 * there should be an IRE for it already. 12575 * Don't match on ipif, only on the ill 12576 * since we are sharing these now. Don't use 12577 * MATCH_IRE_ILL_GROUP as we are looking for 12578 * the broadcast ire on this ill and each ill 12579 * in the group has its own broadcast ire. 12580 */ 12581 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12582 ipif, ALL_ZONES, NULL, 12583 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12584 if (ire == NULL) { 12585 return (EINVAL); 12586 } else { 12587 ire_refrele(ire); 12588 } 12589 } 12590 /* 12591 * Changing the broadcast addr for this ipif. 12592 * Make sure we have valid net and subnet bcast 12593 * ire's for other logical interfaces, if needed. 12594 */ 12595 if (addr != ipif->ipif_brd_addr) 12596 ipif_check_bcast_ires(ipif); 12597 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12598 return (0); 12599 } 12600 12601 /* Get interface broadcast address. */ 12602 /* ARGSUSED */ 12603 int 12604 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12605 ip_ioctl_cmd_t *ipip, void *if_req) 12606 { 12607 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12608 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12609 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12610 return (EADDRNOTAVAIL); 12611 12612 /* IPIF_BROADCAST not possible with IPv6 */ 12613 ASSERT(!ipif->ipif_isv6); 12614 *sin = sin_null; 12615 sin->sin_family = AF_INET; 12616 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12617 return (0); 12618 } 12619 12620 /* 12621 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12622 */ 12623 /* ARGSUSED */ 12624 int 12625 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12626 ip_ioctl_cmd_t *ipip, void *if_req) 12627 { 12628 int err = 0; 12629 in6_addr_t v6mask; 12630 12631 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12632 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12633 12634 ASSERT(IAM_WRITER_IPIF(ipif)); 12635 12636 if (ipif->ipif_isv6) { 12637 sin6_t *sin6; 12638 12639 if (sin->sin_family != AF_INET6) 12640 return (EAFNOSUPPORT); 12641 12642 sin6 = (sin6_t *)sin; 12643 v6mask = sin6->sin6_addr; 12644 } else { 12645 ipaddr_t mask; 12646 12647 if (sin->sin_family != AF_INET) 12648 return (EAFNOSUPPORT); 12649 12650 mask = sin->sin_addr.s_addr; 12651 V4MASK_TO_V6(mask, v6mask); 12652 } 12653 12654 /* 12655 * No big deal if the interface isn't already up, or the mask 12656 * isn't really changing, or this is pt-pt. 12657 */ 12658 if (!(ipif->ipif_flags & IPIF_UP) || 12659 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12660 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12661 ipif->ipif_v6net_mask = v6mask; 12662 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12663 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12664 ipif->ipif_v6net_mask, 12665 ipif->ipif_v6subnet); 12666 } 12667 return (0); 12668 } 12669 /* 12670 * Make sure we have valid net and subnet broadcast ire's 12671 * for the old netmask, if needed by other logical interfaces. 12672 */ 12673 if (!ipif->ipif_isv6) 12674 ipif_check_bcast_ires(ipif); 12675 12676 err = ipif_logical_down(ipif, q, mp); 12677 if (err == EINPROGRESS) 12678 return (err); 12679 ipif_down_tail(ipif); 12680 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12681 return (err); 12682 } 12683 12684 static int 12685 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12686 { 12687 in6_addr_t v6mask; 12688 int err = 0; 12689 12690 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12691 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12692 12693 if (ipif->ipif_isv6) { 12694 sin6_t *sin6; 12695 12696 sin6 = (sin6_t *)sin; 12697 v6mask = sin6->sin6_addr; 12698 } else { 12699 ipaddr_t mask; 12700 12701 mask = sin->sin_addr.s_addr; 12702 V4MASK_TO_V6(mask, v6mask); 12703 } 12704 12705 ipif->ipif_v6net_mask = v6mask; 12706 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12707 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12708 ipif->ipif_v6subnet); 12709 } 12710 err = ipif_up(ipif, q, mp); 12711 12712 if (err == 0 || err == EINPROGRESS) { 12713 /* 12714 * The interface must be DL_BOUND if this packet has to 12715 * go out on the wire. Since we only go through a logical 12716 * down and are bound with the driver during an internal 12717 * down/up that is satisfied. 12718 */ 12719 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12720 /* Potentially broadcast an address mask reply. */ 12721 ipif_mask_reply(ipif); 12722 } 12723 } 12724 return (err); 12725 } 12726 12727 /* ARGSUSED */ 12728 int 12729 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12730 ip_ioctl_cmd_t *ipip, void *if_req) 12731 { 12732 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12733 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12734 ipif_down_tail(ipif); 12735 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12736 } 12737 12738 /* Get interface net mask. */ 12739 /* ARGSUSED */ 12740 int 12741 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12742 ip_ioctl_cmd_t *ipip, void *if_req) 12743 { 12744 struct lifreq *lifr = (struct lifreq *)if_req; 12745 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12746 12747 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12748 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12749 12750 /* 12751 * net mask can't change since we have a reference to the ipif. 12752 */ 12753 if (ipif->ipif_isv6) { 12754 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12755 *sin6 = sin6_null; 12756 sin6->sin6_family = AF_INET6; 12757 sin6->sin6_addr = ipif->ipif_v6net_mask; 12758 lifr->lifr_addrlen = 12759 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12760 } else { 12761 *sin = sin_null; 12762 sin->sin_family = AF_INET; 12763 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12764 if (ipip->ipi_cmd_type == LIF_CMD) { 12765 lifr->lifr_addrlen = 12766 ip_mask_to_plen(ipif->ipif_net_mask); 12767 } 12768 } 12769 return (0); 12770 } 12771 12772 /* ARGSUSED */ 12773 int 12774 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12775 ip_ioctl_cmd_t *ipip, void *if_req) 12776 { 12777 12778 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12779 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12780 /* 12781 * Set interface metric. We don't use this for 12782 * anything but we keep track of it in case it is 12783 * important to routing applications or such. 12784 */ 12785 if (ipip->ipi_cmd_type == IF_CMD) { 12786 struct ifreq *ifr; 12787 12788 ifr = (struct ifreq *)if_req; 12789 ipif->ipif_metric = ifr->ifr_metric; 12790 } else { 12791 struct lifreq *lifr; 12792 12793 lifr = (struct lifreq *)if_req; 12794 ipif->ipif_metric = lifr->lifr_metric; 12795 } 12796 return (0); 12797 } 12798 12799 12800 /* ARGSUSED */ 12801 int 12802 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12803 ip_ioctl_cmd_t *ipip, void *if_req) 12804 { 12805 12806 /* Get interface metric. */ 12807 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12808 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12809 if (ipip->ipi_cmd_type == IF_CMD) { 12810 struct ifreq *ifr; 12811 12812 ifr = (struct ifreq *)if_req; 12813 ifr->ifr_metric = ipif->ipif_metric; 12814 } else { 12815 struct lifreq *lifr; 12816 12817 lifr = (struct lifreq *)if_req; 12818 lifr->lifr_metric = ipif->ipif_metric; 12819 } 12820 12821 return (0); 12822 } 12823 12824 /* ARGSUSED */ 12825 int 12826 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12827 ip_ioctl_cmd_t *ipip, void *if_req) 12828 { 12829 12830 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12831 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12832 /* 12833 * Set the muxid returned from I_PLINK. 12834 */ 12835 if (ipip->ipi_cmd_type == IF_CMD) { 12836 struct ifreq *ifr = (struct ifreq *)if_req; 12837 12838 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12839 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12840 } else { 12841 struct lifreq *lifr = (struct lifreq *)if_req; 12842 12843 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12844 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12845 } 12846 return (0); 12847 } 12848 12849 /* ARGSUSED */ 12850 int 12851 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12852 ip_ioctl_cmd_t *ipip, void *if_req) 12853 { 12854 12855 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12857 /* 12858 * Get the muxid saved in ill for I_PUNLINK. 12859 */ 12860 if (ipip->ipi_cmd_type == IF_CMD) { 12861 struct ifreq *ifr = (struct ifreq *)if_req; 12862 12863 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12864 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12865 } else { 12866 struct lifreq *lifr = (struct lifreq *)if_req; 12867 12868 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12869 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12870 } 12871 return (0); 12872 } 12873 12874 /* 12875 * Set the subnet prefix. Does not modify the broadcast address. 12876 */ 12877 /* ARGSUSED */ 12878 int 12879 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12880 ip_ioctl_cmd_t *ipip, void *if_req) 12881 { 12882 int err = 0; 12883 in6_addr_t v6addr; 12884 in6_addr_t v6mask; 12885 boolean_t need_up = B_FALSE; 12886 int addrlen; 12887 12888 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12889 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12890 12891 ASSERT(IAM_WRITER_IPIF(ipif)); 12892 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12893 12894 if (ipif->ipif_isv6) { 12895 sin6_t *sin6; 12896 12897 if (sin->sin_family != AF_INET6) 12898 return (EAFNOSUPPORT); 12899 12900 sin6 = (sin6_t *)sin; 12901 v6addr = sin6->sin6_addr; 12902 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12903 return (EADDRNOTAVAIL); 12904 } else { 12905 ipaddr_t addr; 12906 12907 if (sin->sin_family != AF_INET) 12908 return (EAFNOSUPPORT); 12909 12910 addr = sin->sin_addr.s_addr; 12911 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12912 return (EADDRNOTAVAIL); 12913 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12914 /* Add 96 bits */ 12915 addrlen += IPV6_ABITS - IP_ABITS; 12916 } 12917 12918 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12919 return (EINVAL); 12920 12921 /* Check if bits in the address is set past the mask */ 12922 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12923 return (EINVAL); 12924 12925 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12926 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12927 return (0); /* No change */ 12928 12929 if (ipif->ipif_flags & IPIF_UP) { 12930 /* 12931 * If the interface is already marked up, 12932 * we call ipif_down which will take care 12933 * of ditching any IREs that have been set 12934 * up based on the old interface address. 12935 */ 12936 err = ipif_logical_down(ipif, q, mp); 12937 if (err == EINPROGRESS) 12938 return (err); 12939 ipif_down_tail(ipif); 12940 need_up = B_TRUE; 12941 } 12942 12943 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12944 return (err); 12945 } 12946 12947 static int 12948 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12949 queue_t *q, mblk_t *mp, boolean_t need_up) 12950 { 12951 ill_t *ill = ipif->ipif_ill; 12952 int err = 0; 12953 12954 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12955 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12956 12957 /* Set the new address. */ 12958 mutex_enter(&ill->ill_lock); 12959 ipif->ipif_v6net_mask = v6mask; 12960 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12961 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12962 ipif->ipif_v6subnet); 12963 } 12964 mutex_exit(&ill->ill_lock); 12965 12966 if (need_up) { 12967 /* 12968 * Now bring the interface back up. If this 12969 * is the only IPIF for the ILL, ipif_up 12970 * will have to re-bind to the device, so 12971 * we may get back EINPROGRESS, in which 12972 * case, this IOCTL will get completed in 12973 * ip_rput_dlpi when we see the DL_BIND_ACK. 12974 */ 12975 err = ipif_up(ipif, q, mp); 12976 if (err == EINPROGRESS) 12977 return (err); 12978 } 12979 return (err); 12980 } 12981 12982 /* ARGSUSED */ 12983 int 12984 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12985 ip_ioctl_cmd_t *ipip, void *if_req) 12986 { 12987 int addrlen; 12988 in6_addr_t v6addr; 12989 in6_addr_t v6mask; 12990 struct lifreq *lifr = (struct lifreq *)if_req; 12991 12992 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12993 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12994 ipif_down_tail(ipif); 12995 12996 addrlen = lifr->lifr_addrlen; 12997 if (ipif->ipif_isv6) { 12998 sin6_t *sin6; 12999 13000 sin6 = (sin6_t *)sin; 13001 v6addr = sin6->sin6_addr; 13002 } else { 13003 ipaddr_t addr; 13004 13005 addr = sin->sin_addr.s_addr; 13006 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13007 addrlen += IPV6_ABITS - IP_ABITS; 13008 } 13009 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13010 13011 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13012 } 13013 13014 /* ARGSUSED */ 13015 int 13016 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13017 ip_ioctl_cmd_t *ipip, void *if_req) 13018 { 13019 struct lifreq *lifr = (struct lifreq *)if_req; 13020 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13021 13022 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13023 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13024 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13025 13026 if (ipif->ipif_isv6) { 13027 *sin6 = sin6_null; 13028 sin6->sin6_family = AF_INET6; 13029 sin6->sin6_addr = ipif->ipif_v6subnet; 13030 lifr->lifr_addrlen = 13031 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13032 } else { 13033 *sin = sin_null; 13034 sin->sin_family = AF_INET; 13035 sin->sin_addr.s_addr = ipif->ipif_subnet; 13036 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13037 } 13038 return (0); 13039 } 13040 13041 /* 13042 * Set the IPv6 address token. 13043 */ 13044 /* ARGSUSED */ 13045 int 13046 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13047 ip_ioctl_cmd_t *ipi, void *if_req) 13048 { 13049 ill_t *ill = ipif->ipif_ill; 13050 int err; 13051 in6_addr_t v6addr; 13052 in6_addr_t v6mask; 13053 boolean_t need_up = B_FALSE; 13054 int i; 13055 sin6_t *sin6 = (sin6_t *)sin; 13056 struct lifreq *lifr = (struct lifreq *)if_req; 13057 int addrlen; 13058 13059 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13061 ASSERT(IAM_WRITER_IPIF(ipif)); 13062 13063 addrlen = lifr->lifr_addrlen; 13064 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13065 if (ipif->ipif_id != 0) 13066 return (EINVAL); 13067 13068 if (!ipif->ipif_isv6) 13069 return (EINVAL); 13070 13071 if (addrlen > IPV6_ABITS) 13072 return (EINVAL); 13073 13074 v6addr = sin6->sin6_addr; 13075 13076 /* 13077 * The length of the token is the length from the end. To get 13078 * the proper mask for this, compute the mask of the bits not 13079 * in the token; ie. the prefix, and then xor to get the mask. 13080 */ 13081 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13082 return (EINVAL); 13083 for (i = 0; i < 4; i++) { 13084 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13085 } 13086 13087 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13088 ill->ill_token_length == addrlen) 13089 return (0); /* No change */ 13090 13091 if (ipif->ipif_flags & IPIF_UP) { 13092 err = ipif_logical_down(ipif, q, mp); 13093 if (err == EINPROGRESS) 13094 return (err); 13095 ipif_down_tail(ipif); 13096 need_up = B_TRUE; 13097 } 13098 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13099 return (err); 13100 } 13101 13102 static int 13103 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13104 mblk_t *mp, boolean_t need_up) 13105 { 13106 in6_addr_t v6addr; 13107 in6_addr_t v6mask; 13108 ill_t *ill = ipif->ipif_ill; 13109 int i; 13110 int err = 0; 13111 13112 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13113 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13114 v6addr = sin6->sin6_addr; 13115 /* 13116 * The length of the token is the length from the end. To get 13117 * the proper mask for this, compute the mask of the bits not 13118 * in the token; ie. the prefix, and then xor to get the mask. 13119 */ 13120 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13121 for (i = 0; i < 4; i++) 13122 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13123 13124 mutex_enter(&ill->ill_lock); 13125 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13126 ill->ill_token_length = addrlen; 13127 mutex_exit(&ill->ill_lock); 13128 13129 if (need_up) { 13130 /* 13131 * Now bring the interface back up. If this 13132 * is the only IPIF for the ILL, ipif_up 13133 * will have to re-bind to the device, so 13134 * we may get back EINPROGRESS, in which 13135 * case, this IOCTL will get completed in 13136 * ip_rput_dlpi when we see the DL_BIND_ACK. 13137 */ 13138 err = ipif_up(ipif, q, mp); 13139 if (err == EINPROGRESS) 13140 return (err); 13141 } 13142 return (err); 13143 } 13144 13145 /* ARGSUSED */ 13146 int 13147 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13148 ip_ioctl_cmd_t *ipi, void *if_req) 13149 { 13150 ill_t *ill; 13151 sin6_t *sin6 = (sin6_t *)sin; 13152 struct lifreq *lifr = (struct lifreq *)if_req; 13153 13154 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13155 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13156 if (ipif->ipif_id != 0) 13157 return (EINVAL); 13158 13159 ill = ipif->ipif_ill; 13160 if (!ill->ill_isv6) 13161 return (ENXIO); 13162 13163 *sin6 = sin6_null; 13164 sin6->sin6_family = AF_INET6; 13165 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13166 sin6->sin6_addr = ill->ill_token; 13167 lifr->lifr_addrlen = ill->ill_token_length; 13168 return (0); 13169 } 13170 13171 /* 13172 * Set (hardware) link specific information that might override 13173 * what was acquired through the DL_INFO_ACK. 13174 * The logic is as follows. 13175 * 13176 * become exclusive 13177 * set CHANGING flag 13178 * change mtu on affected IREs 13179 * clear CHANGING flag 13180 * 13181 * An ire add that occurs before the CHANGING flag is set will have its mtu 13182 * changed by the ip_sioctl_lnkinfo. 13183 * 13184 * During the time the CHANGING flag is set, no new ires will be added to the 13185 * bucket, and ire add will fail (due the CHANGING flag). 13186 * 13187 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13188 * before it is added to the bucket. 13189 * 13190 * Obviously only 1 thread can set the CHANGING flag and we need to become 13191 * exclusive to set the flag. 13192 */ 13193 /* ARGSUSED */ 13194 int 13195 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13196 ip_ioctl_cmd_t *ipi, void *if_req) 13197 { 13198 ill_t *ill = ipif->ipif_ill; 13199 ipif_t *nipif; 13200 int ip_min_mtu; 13201 boolean_t mtu_walk = B_FALSE; 13202 struct lifreq *lifr = (struct lifreq *)if_req; 13203 lif_ifinfo_req_t *lir; 13204 ire_t *ire; 13205 13206 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13207 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13208 lir = &lifr->lifr_ifinfo; 13209 ASSERT(IAM_WRITER_IPIF(ipif)); 13210 13211 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13212 if (ipif->ipif_id != 0) 13213 return (EINVAL); 13214 13215 /* Set interface MTU. */ 13216 if (ipif->ipif_isv6) 13217 ip_min_mtu = IPV6_MIN_MTU; 13218 else 13219 ip_min_mtu = IP_MIN_MTU; 13220 13221 /* 13222 * Verify values before we set anything. Allow zero to 13223 * mean unspecified. 13224 */ 13225 if (lir->lir_maxmtu != 0 && 13226 (lir->lir_maxmtu > ill->ill_max_frag || 13227 lir->lir_maxmtu < ip_min_mtu)) 13228 return (EINVAL); 13229 if (lir->lir_reachtime != 0 && 13230 lir->lir_reachtime > ND_MAX_REACHTIME) 13231 return (EINVAL); 13232 if (lir->lir_reachretrans != 0 && 13233 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13234 return (EINVAL); 13235 13236 mutex_enter(&ill->ill_lock); 13237 ill->ill_state_flags |= ILL_CHANGING; 13238 for (nipif = ill->ill_ipif; nipif != NULL; 13239 nipif = nipif->ipif_next) { 13240 nipif->ipif_state_flags |= IPIF_CHANGING; 13241 } 13242 13243 mutex_exit(&ill->ill_lock); 13244 13245 if (lir->lir_maxmtu != 0) { 13246 ill->ill_max_mtu = lir->lir_maxmtu; 13247 ill->ill_mtu_userspecified = 1; 13248 mtu_walk = B_TRUE; 13249 } 13250 13251 if (lir->lir_reachtime != 0) 13252 ill->ill_reachable_time = lir->lir_reachtime; 13253 13254 if (lir->lir_reachretrans != 0) 13255 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13256 13257 ill->ill_max_hops = lir->lir_maxhops; 13258 13259 ill->ill_max_buf = ND_MAX_Q; 13260 13261 if (mtu_walk) { 13262 /* 13263 * Set the MTU on all ipifs associated with this ill except 13264 * for those whose MTU was fixed via SIOCSLIFMTU. 13265 */ 13266 for (nipif = ill->ill_ipif; nipif != NULL; 13267 nipif = nipif->ipif_next) { 13268 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13269 continue; 13270 13271 nipif->ipif_mtu = ill->ill_max_mtu; 13272 13273 if (!(nipif->ipif_flags & IPIF_UP)) 13274 continue; 13275 13276 if (nipif->ipif_isv6) 13277 ire = ipif_to_ire_v6(nipif); 13278 else 13279 ire = ipif_to_ire(nipif); 13280 if (ire != NULL) { 13281 ire->ire_max_frag = ipif->ipif_mtu; 13282 ire_refrele(ire); 13283 } 13284 if (ill->ill_isv6) { 13285 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13286 ipif_mtu_change, (char *)nipif, 13287 ill); 13288 } else { 13289 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13290 ipif_mtu_change, (char *)nipif, 13291 ill); 13292 } 13293 } 13294 } 13295 13296 mutex_enter(&ill->ill_lock); 13297 for (nipif = ill->ill_ipif; nipif != NULL; 13298 nipif = nipif->ipif_next) { 13299 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13300 } 13301 ILL_UNMARK_CHANGING(ill); 13302 mutex_exit(&ill->ill_lock); 13303 13304 return (0); 13305 } 13306 13307 /* ARGSUSED */ 13308 int 13309 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13310 ip_ioctl_cmd_t *ipi, void *if_req) 13311 { 13312 struct lif_ifinfo_req *lir; 13313 ill_t *ill = ipif->ipif_ill; 13314 13315 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13316 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13317 if (ipif->ipif_id != 0) 13318 return (EINVAL); 13319 13320 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13321 lir->lir_maxhops = ill->ill_max_hops; 13322 lir->lir_reachtime = ill->ill_reachable_time; 13323 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13324 lir->lir_maxmtu = ill->ill_max_mtu; 13325 13326 return (0); 13327 } 13328 13329 /* 13330 * Return best guess as to the subnet mask for the specified address. 13331 * Based on the subnet masks for all the configured interfaces. 13332 * 13333 * We end up returning a zero mask in the case of default, multicast or 13334 * experimental. 13335 */ 13336 static ipaddr_t 13337 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13338 { 13339 ipaddr_t net_mask; 13340 ill_t *ill; 13341 ipif_t *ipif; 13342 ill_walk_context_t ctx; 13343 ipif_t *fallback_ipif = NULL; 13344 13345 net_mask = ip_net_mask(addr); 13346 if (net_mask == 0) { 13347 *ipifp = NULL; 13348 return (0); 13349 } 13350 13351 /* Let's check to see if this is maybe a local subnet route. */ 13352 /* this function only applies to IPv4 interfaces */ 13353 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13354 ill = ILL_START_WALK_V4(&ctx, ipst); 13355 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13356 mutex_enter(&ill->ill_lock); 13357 for (ipif = ill->ill_ipif; ipif != NULL; 13358 ipif = ipif->ipif_next) { 13359 if (!IPIF_CAN_LOOKUP(ipif)) 13360 continue; 13361 if (!(ipif->ipif_flags & IPIF_UP)) 13362 continue; 13363 if ((ipif->ipif_subnet & net_mask) == 13364 (addr & net_mask)) { 13365 /* 13366 * Don't trust pt-pt interfaces if there are 13367 * other interfaces. 13368 */ 13369 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13370 if (fallback_ipif == NULL) { 13371 ipif_refhold_locked(ipif); 13372 fallback_ipif = ipif; 13373 } 13374 continue; 13375 } 13376 13377 /* 13378 * Fine. Just assume the same net mask as the 13379 * directly attached subnet interface is using. 13380 */ 13381 ipif_refhold_locked(ipif); 13382 mutex_exit(&ill->ill_lock); 13383 rw_exit(&ipst->ips_ill_g_lock); 13384 if (fallback_ipif != NULL) 13385 ipif_refrele(fallback_ipif); 13386 *ipifp = ipif; 13387 return (ipif->ipif_net_mask); 13388 } 13389 } 13390 mutex_exit(&ill->ill_lock); 13391 } 13392 rw_exit(&ipst->ips_ill_g_lock); 13393 13394 *ipifp = fallback_ipif; 13395 return ((fallback_ipif != NULL) ? 13396 fallback_ipif->ipif_net_mask : net_mask); 13397 } 13398 13399 /* 13400 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13401 */ 13402 static void 13403 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13404 { 13405 IOCP iocp; 13406 ipft_t *ipft; 13407 ipllc_t *ipllc; 13408 mblk_t *mp1; 13409 cred_t *cr; 13410 int error = 0; 13411 conn_t *connp; 13412 13413 ip1dbg(("ip_wput_ioctl")); 13414 iocp = (IOCP)mp->b_rptr; 13415 mp1 = mp->b_cont; 13416 if (mp1 == NULL) { 13417 iocp->ioc_error = EINVAL; 13418 mp->b_datap->db_type = M_IOCNAK; 13419 iocp->ioc_count = 0; 13420 qreply(q, mp); 13421 return; 13422 } 13423 13424 /* 13425 * These IOCTLs provide various control capabilities to 13426 * upstream agents such as ULPs and processes. There 13427 * are currently two such IOCTLs implemented. They 13428 * are used by TCP to provide update information for 13429 * existing IREs and to forcibly delete an IRE for a 13430 * host that is not responding, thereby forcing an 13431 * attempt at a new route. 13432 */ 13433 iocp->ioc_error = EINVAL; 13434 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13435 goto done; 13436 13437 ipllc = (ipllc_t *)mp1->b_rptr; 13438 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13439 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13440 break; 13441 } 13442 /* 13443 * prefer credential from mblk over ioctl; 13444 * see ip_sioctl_copyin_setup 13445 */ 13446 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13447 13448 /* 13449 * Refhold the conn in case the request gets queued up in some lookup 13450 */ 13451 ASSERT(CONN_Q(q)); 13452 connp = Q_TO_CONN(q); 13453 CONN_INC_REF(connp); 13454 if (ipft->ipft_pfi && 13455 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13456 pullupmsg(mp1, ipft->ipft_min_size))) { 13457 error = (*ipft->ipft_pfi)(q, 13458 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13459 } 13460 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13461 /* 13462 * CONN_OPER_PENDING_DONE happens in the function called 13463 * through ipft_pfi above. 13464 */ 13465 return; 13466 } 13467 13468 CONN_OPER_PENDING_DONE(connp); 13469 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13470 freemsg(mp); 13471 return; 13472 } 13473 iocp->ioc_error = error; 13474 13475 done: 13476 mp->b_datap->db_type = M_IOCACK; 13477 if (iocp->ioc_error) 13478 iocp->ioc_count = 0; 13479 qreply(q, mp); 13480 } 13481 13482 /* 13483 * Lookup an ipif using the sequence id (ipif_seqid) 13484 */ 13485 ipif_t * 13486 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13487 { 13488 ipif_t *ipif; 13489 13490 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13491 13492 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13493 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13494 return (ipif); 13495 } 13496 return (NULL); 13497 } 13498 13499 /* 13500 * Assign a unique id for the ipif. This is used later when we send 13501 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13502 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13503 * IRE is added, we verify that ipif has not disappeared. 13504 */ 13505 13506 static void 13507 ipif_assign_seqid(ipif_t *ipif) 13508 { 13509 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13510 13511 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13512 } 13513 13514 /* 13515 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13516 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13517 * be inserted into the first space available in the list. The value of 13518 * ipif_id will then be set to the appropriate value for its position. 13519 */ 13520 static int 13521 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13522 { 13523 ill_t *ill; 13524 ipif_t *tipif; 13525 ipif_t **tipifp; 13526 int id; 13527 ip_stack_t *ipst; 13528 13529 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13530 IAM_WRITER_IPIF(ipif)); 13531 13532 ill = ipif->ipif_ill; 13533 ASSERT(ill != NULL); 13534 ipst = ill->ill_ipst; 13535 13536 /* 13537 * In the case of lo0:0 we already hold the ill_g_lock. 13538 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13539 * ipif_insert. Another such caller is ipif_move. 13540 */ 13541 if (acquire_g_lock) 13542 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13543 if (acquire_ill_lock) 13544 mutex_enter(&ill->ill_lock); 13545 id = ipif->ipif_id; 13546 tipifp = &(ill->ill_ipif); 13547 if (id == -1) { /* need to find a real id */ 13548 id = 0; 13549 while ((tipif = *tipifp) != NULL) { 13550 ASSERT(tipif->ipif_id >= id); 13551 if (tipif->ipif_id != id) 13552 break; /* non-consecutive id */ 13553 id++; 13554 tipifp = &(tipif->ipif_next); 13555 } 13556 /* limit number of logical interfaces */ 13557 if (id >= ipst->ips_ip_addrs_per_if) { 13558 if (acquire_ill_lock) 13559 mutex_exit(&ill->ill_lock); 13560 if (acquire_g_lock) 13561 rw_exit(&ipst->ips_ill_g_lock); 13562 return (-1); 13563 } 13564 ipif->ipif_id = id; /* assign new id */ 13565 } else if (id < ipst->ips_ip_addrs_per_if) { 13566 /* we have a real id; insert ipif in the right place */ 13567 while ((tipif = *tipifp) != NULL) { 13568 ASSERT(tipif->ipif_id != id); 13569 if (tipif->ipif_id > id) 13570 break; /* found correct location */ 13571 tipifp = &(tipif->ipif_next); 13572 } 13573 } else { 13574 if (acquire_ill_lock) 13575 mutex_exit(&ill->ill_lock); 13576 if (acquire_g_lock) 13577 rw_exit(&ipst->ips_ill_g_lock); 13578 return (-1); 13579 } 13580 13581 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13582 13583 ipif->ipif_next = tipif; 13584 *tipifp = ipif; 13585 if (acquire_ill_lock) 13586 mutex_exit(&ill->ill_lock); 13587 if (acquire_g_lock) 13588 rw_exit(&ipst->ips_ill_g_lock); 13589 return (0); 13590 } 13591 13592 static void 13593 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13594 { 13595 ipif_t **ipifp; 13596 ill_t *ill = ipif->ipif_ill; 13597 13598 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13599 if (acquire_ill_lock) 13600 mutex_enter(&ill->ill_lock); 13601 else 13602 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13603 13604 ipifp = &ill->ill_ipif; 13605 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13606 if (*ipifp == ipif) { 13607 *ipifp = ipif->ipif_next; 13608 break; 13609 } 13610 } 13611 13612 if (acquire_ill_lock) 13613 mutex_exit(&ill->ill_lock); 13614 } 13615 13616 /* 13617 * Allocate and initialize a new interface control structure. (Always 13618 * called as writer.) 13619 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13620 * is not part of the global linked list of ills. ipif_seqid is unique 13621 * in the system and to preserve the uniqueness, it is assigned only 13622 * when ill becomes part of the global list. At that point ill will 13623 * have a name. If it doesn't get assigned here, it will get assigned 13624 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13625 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13626 * the interface flags or any other information from the DL_INFO_ACK for 13627 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13628 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13629 * second DL_INFO_ACK comes in from the driver. 13630 */ 13631 static ipif_t * 13632 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13633 { 13634 ipif_t *ipif; 13635 phyint_t *phyi; 13636 13637 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13638 ill->ill_name, id, (void *)ill)); 13639 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13640 13641 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13642 return (NULL); 13643 *ipif = ipif_zero; /* start clean */ 13644 13645 ipif->ipif_ill = ill; 13646 ipif->ipif_id = id; /* could be -1 */ 13647 /* 13648 * Inherit the zoneid from the ill; for the shared stack instance 13649 * this is always the global zone 13650 */ 13651 ipif->ipif_zoneid = ill->ill_zoneid; 13652 13653 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13654 13655 ipif->ipif_refcnt = 0; 13656 ipif->ipif_saved_ire_cnt = 0; 13657 13658 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13659 mi_free(ipif); 13660 return (NULL); 13661 } 13662 /* -1 id should have been replaced by real id */ 13663 id = ipif->ipif_id; 13664 ASSERT(id >= 0); 13665 13666 if (ill->ill_name[0] != '\0') 13667 ipif_assign_seqid(ipif); 13668 13669 /* 13670 * Keep a copy of original id in ipif_orig_ipifid. Failback 13671 * will attempt to restore the original id. The SIOCSLIFOINDEX 13672 * ioctl sets ipif_orig_ipifid to zero. 13673 */ 13674 ipif->ipif_orig_ipifid = id; 13675 13676 /* 13677 * We grab the ill_lock and phyint_lock to protect the flag changes. 13678 * The ipif is still not up and can't be looked up until the 13679 * ioctl completes and the IPIF_CHANGING flag is cleared. 13680 */ 13681 mutex_enter(&ill->ill_lock); 13682 mutex_enter(&ill->ill_phyint->phyint_lock); 13683 /* 13684 * Set the running flag when logical interface zero is created. 13685 * For subsequent logical interfaces, a DLPI link down 13686 * notification message may have cleared the running flag to 13687 * indicate the link is down, so we shouldn't just blindly set it. 13688 */ 13689 if (id == 0) 13690 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13691 ipif->ipif_ire_type = ire_type; 13692 phyi = ill->ill_phyint; 13693 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13694 13695 if (ipif->ipif_isv6) { 13696 ill->ill_flags |= ILLF_IPV6; 13697 } else { 13698 ipaddr_t inaddr_any = INADDR_ANY; 13699 13700 ill->ill_flags |= ILLF_IPV4; 13701 13702 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13703 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13704 &ipif->ipif_v6lcl_addr); 13705 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13706 &ipif->ipif_v6src_addr); 13707 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13708 &ipif->ipif_v6subnet); 13709 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13710 &ipif->ipif_v6net_mask); 13711 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13712 &ipif->ipif_v6brd_addr); 13713 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13714 &ipif->ipif_v6pp_dst_addr); 13715 } 13716 13717 /* 13718 * Don't set the interface flags etc. now, will do it in 13719 * ip_ll_subnet_defaults. 13720 */ 13721 if (!initialize) { 13722 mutex_exit(&ill->ill_lock); 13723 mutex_exit(&ill->ill_phyint->phyint_lock); 13724 return (ipif); 13725 } 13726 ipif->ipif_mtu = ill->ill_max_mtu; 13727 13728 if (ill->ill_bcast_addr_length != 0) { 13729 /* 13730 * Later detect lack of DLPI driver multicast 13731 * capability by catching DL_ENABMULTI errors in 13732 * ip_rput_dlpi. 13733 */ 13734 ill->ill_flags |= ILLF_MULTICAST; 13735 if (!ipif->ipif_isv6) 13736 ipif->ipif_flags |= IPIF_BROADCAST; 13737 } else { 13738 if (ill->ill_net_type != IRE_LOOPBACK) { 13739 if (ipif->ipif_isv6) 13740 /* 13741 * Note: xresolv interfaces will eventually need 13742 * NOARP set here as well, but that will require 13743 * those external resolvers to have some 13744 * knowledge of that flag and act appropriately. 13745 * Not to be changed at present. 13746 */ 13747 ill->ill_flags |= ILLF_NONUD; 13748 else 13749 ill->ill_flags |= ILLF_NOARP; 13750 } 13751 if (ill->ill_phys_addr_length == 0) { 13752 if (ill->ill_media && 13753 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13754 ipif->ipif_flags |= IPIF_NOXMIT; 13755 phyi->phyint_flags |= PHYI_VIRTUAL; 13756 } else { 13757 /* pt-pt supports multicast. */ 13758 ill->ill_flags |= ILLF_MULTICAST; 13759 if (ill->ill_net_type == IRE_LOOPBACK) { 13760 phyi->phyint_flags |= 13761 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13762 } else { 13763 ipif->ipif_flags |= IPIF_POINTOPOINT; 13764 } 13765 } 13766 } 13767 } 13768 mutex_exit(&ill->ill_lock); 13769 mutex_exit(&ill->ill_phyint->phyint_lock); 13770 return (ipif); 13771 } 13772 13773 /* 13774 * If appropriate, send a message up to the resolver delete the entry 13775 * for the address of this interface which is going out of business. 13776 * (Always called as writer). 13777 * 13778 * NOTE : We need to check for NULL mps as some of the fields are 13779 * initialized only for some interface types. See ipif_resolver_up() 13780 * for details. 13781 */ 13782 void 13783 ipif_arp_down(ipif_t *ipif) 13784 { 13785 mblk_t *mp; 13786 ill_t *ill = ipif->ipif_ill; 13787 13788 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13789 ASSERT(IAM_WRITER_IPIF(ipif)); 13790 13791 /* Delete the mapping for the local address */ 13792 mp = ipif->ipif_arp_del_mp; 13793 if (mp != NULL) { 13794 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13795 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13796 putnext(ill->ill_rq, mp); 13797 ipif->ipif_arp_del_mp = NULL; 13798 } 13799 13800 /* 13801 * If this is the last ipif that is going down and there are no 13802 * duplicate addresses we may yet attempt to re-probe, then we need to 13803 * clean up ARP completely. 13804 */ 13805 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13806 13807 /* Send up AR_INTERFACE_DOWN message */ 13808 mp = ill->ill_arp_down_mp; 13809 if (mp != NULL) { 13810 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13811 *(unsigned *)mp->b_rptr, ill->ill_name, 13812 ipif->ipif_id)); 13813 putnext(ill->ill_rq, mp); 13814 ill->ill_arp_down_mp = NULL; 13815 } 13816 13817 /* Tell ARP to delete the multicast mappings */ 13818 mp = ill->ill_arp_del_mapping_mp; 13819 if (mp != NULL) { 13820 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13821 *(unsigned *)mp->b_rptr, ill->ill_name, 13822 ipif->ipif_id)); 13823 putnext(ill->ill_rq, mp); 13824 ill->ill_arp_del_mapping_mp = NULL; 13825 } 13826 } 13827 } 13828 13829 /* 13830 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13831 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13832 * that it wants the add_mp allocated in this function to be returned 13833 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13834 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13835 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13836 * as it does a ipif_arp_down after calling this function - which will 13837 * remove what we add here. 13838 * 13839 * Returns -1 on failures and 0 on success. 13840 */ 13841 int 13842 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13843 { 13844 mblk_t *del_mp = NULL; 13845 mblk_t *add_mp = NULL; 13846 mblk_t *mp; 13847 ill_t *ill = ipif->ipif_ill; 13848 phyint_t *phyi = ill->ill_phyint; 13849 ipaddr_t addr, mask, extract_mask = 0; 13850 arma_t *arma; 13851 uint8_t *maddr, *bphys_addr; 13852 uint32_t hw_start; 13853 dl_unitdata_req_t *dlur; 13854 13855 ASSERT(IAM_WRITER_IPIF(ipif)); 13856 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13857 return (0); 13858 13859 /* 13860 * Delete the existing mapping from ARP. Normally ipif_down 13861 * -> ipif_arp_down should send this up to ARP. The only 13862 * reason we would find this when we are switching from 13863 * Multicast to Broadcast where we did not do a down. 13864 */ 13865 mp = ill->ill_arp_del_mapping_mp; 13866 if (mp != NULL) { 13867 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13868 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13869 putnext(ill->ill_rq, mp); 13870 ill->ill_arp_del_mapping_mp = NULL; 13871 } 13872 13873 if (arp_add_mapping_mp != NULL) 13874 *arp_add_mapping_mp = NULL; 13875 13876 /* 13877 * Check that the address is not to long for the constant 13878 * length reserved in the template arma_t. 13879 */ 13880 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13881 return (-1); 13882 13883 /* Add mapping mblk */ 13884 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13885 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13886 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13887 (caddr_t)&addr); 13888 if (add_mp == NULL) 13889 return (-1); 13890 arma = (arma_t *)add_mp->b_rptr; 13891 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13892 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13893 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13894 13895 /* 13896 * Determine the broadcast address. 13897 */ 13898 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13899 if (ill->ill_sap_length < 0) 13900 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13901 else 13902 bphys_addr = (uchar_t *)dlur + 13903 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13904 /* 13905 * Check PHYI_MULTI_BCAST and length of physical 13906 * address to determine if we use the mapping or the 13907 * broadcast address. 13908 */ 13909 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13910 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13911 bphys_addr, maddr, &hw_start, &extract_mask)) 13912 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13913 13914 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13915 (ill->ill_flags & ILLF_MULTICAST)) { 13916 /* Make sure this will not match the "exact" entry. */ 13917 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13918 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13919 (caddr_t)&addr); 13920 if (del_mp == NULL) { 13921 freemsg(add_mp); 13922 return (-1); 13923 } 13924 bcopy(&extract_mask, (char *)arma + 13925 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13926 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13927 /* Use link-layer broadcast address for MULTI_BCAST */ 13928 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13929 ip2dbg(("ipif_arp_setup_multicast: adding" 13930 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13931 } else { 13932 arma->arma_hw_mapping_start = hw_start; 13933 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13934 " ARP setup for %s\n", ill->ill_name)); 13935 } 13936 } else { 13937 freemsg(add_mp); 13938 ASSERT(del_mp == NULL); 13939 /* It is neither MULTICAST nor MULTI_BCAST */ 13940 return (0); 13941 } 13942 ASSERT(add_mp != NULL && del_mp != NULL); 13943 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13944 ill->ill_arp_del_mapping_mp = del_mp; 13945 if (arp_add_mapping_mp != NULL) { 13946 /* The caller just wants the mblks allocated */ 13947 *arp_add_mapping_mp = add_mp; 13948 } else { 13949 /* The caller wants us to send it to arp */ 13950 putnext(ill->ill_rq, add_mp); 13951 } 13952 return (0); 13953 } 13954 13955 /* 13956 * Get the resolver set up for a new interface address. 13957 * (Always called as writer.) 13958 * Called both for IPv4 and IPv6 interfaces, 13959 * though it only sets up the resolver for v6 13960 * if it's an xresolv interface (one using an external resolver). 13961 * Honors ILLF_NOARP. 13962 * The enumerated value res_act is used to tune the behavior. 13963 * If set to Res_act_initial, then we set up all the resolver 13964 * structures for a new interface. If set to Res_act_move, then 13965 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13966 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13967 * asynchronous hardware address change notification. If set to 13968 * Res_act_defend, then we tell ARP that it needs to send a single 13969 * gratuitous message in defense of the address. 13970 * Returns error on failure. 13971 */ 13972 int 13973 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13974 { 13975 caddr_t addr; 13976 mblk_t *arp_up_mp = NULL; 13977 mblk_t *arp_down_mp = NULL; 13978 mblk_t *arp_add_mp = NULL; 13979 mblk_t *arp_del_mp = NULL; 13980 mblk_t *arp_add_mapping_mp = NULL; 13981 mblk_t *arp_del_mapping_mp = NULL; 13982 ill_t *ill = ipif->ipif_ill; 13983 uchar_t *area_p = NULL; 13984 uchar_t *ared_p = NULL; 13985 int err = ENOMEM; 13986 boolean_t was_dup; 13987 13988 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13989 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13990 ASSERT(IAM_WRITER_IPIF(ipif)); 13991 13992 was_dup = B_FALSE; 13993 if (res_act == Res_act_initial) { 13994 ipif->ipif_addr_ready = 0; 13995 /* 13996 * We're bringing an interface up here. There's no way that we 13997 * should need to shut down ARP now. 13998 */ 13999 mutex_enter(&ill->ill_lock); 14000 if (ipif->ipif_flags & IPIF_DUPLICATE) { 14001 ipif->ipif_flags &= ~IPIF_DUPLICATE; 14002 ill->ill_ipif_dup_count--; 14003 was_dup = B_TRUE; 14004 } 14005 mutex_exit(&ill->ill_lock); 14006 } 14007 if (ipif->ipif_recovery_id != 0) 14008 (void) untimeout(ipif->ipif_recovery_id); 14009 ipif->ipif_recovery_id = 0; 14010 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14011 ipif->ipif_addr_ready = 1; 14012 return (0); 14013 } 14014 /* NDP will set the ipif_addr_ready flag when it's ready */ 14015 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14016 return (0); 14017 14018 if (ill->ill_isv6) { 14019 /* 14020 * External resolver for IPv6 14021 */ 14022 ASSERT(res_act == Res_act_initial); 14023 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14024 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14025 area_p = (uchar_t *)&ip6_area_template; 14026 ared_p = (uchar_t *)&ip6_ared_template; 14027 } 14028 } else { 14029 /* 14030 * IPv4 arp case. If the ARP stream has already started 14031 * closing, fail this request for ARP bringup. Else 14032 * record the fact that an ARP bringup is pending. 14033 */ 14034 mutex_enter(&ill->ill_lock); 14035 if (ill->ill_arp_closing) { 14036 mutex_exit(&ill->ill_lock); 14037 err = EINVAL; 14038 goto failed; 14039 } else { 14040 if (ill->ill_ipif_up_count == 0 && 14041 ill->ill_ipif_dup_count == 0 && !was_dup) 14042 ill->ill_arp_bringup_pending = 1; 14043 mutex_exit(&ill->ill_lock); 14044 } 14045 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14046 addr = (caddr_t)&ipif->ipif_lcl_addr; 14047 area_p = (uchar_t *)&ip_area_template; 14048 ared_p = (uchar_t *)&ip_ared_template; 14049 } 14050 } 14051 14052 /* 14053 * Add an entry for the local address in ARP only if it 14054 * is not UNNUMBERED and the address is not INADDR_ANY. 14055 */ 14056 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14057 area_t *area; 14058 14059 /* Now ask ARP to publish our address. */ 14060 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14061 if (arp_add_mp == NULL) 14062 goto failed; 14063 area = (area_t *)arp_add_mp->b_rptr; 14064 if (res_act != Res_act_initial) { 14065 /* 14066 * Copy the new hardware address and length into 14067 * arp_add_mp to be sent to ARP. 14068 */ 14069 area->area_hw_addr_length = ill->ill_phys_addr_length; 14070 bcopy(ill->ill_phys_addr, 14071 ((char *)area + area->area_hw_addr_offset), 14072 area->area_hw_addr_length); 14073 } 14074 14075 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14076 ACE_F_MYADDR; 14077 14078 if (res_act == Res_act_defend) { 14079 area->area_flags |= ACE_F_DEFEND; 14080 /* 14081 * If we're just defending our address now, then 14082 * there's no need to set up ARP multicast mappings. 14083 * The publish command is enough. 14084 */ 14085 goto done; 14086 } 14087 14088 if (res_act != Res_act_initial) 14089 goto arp_setup_multicast; 14090 14091 /* 14092 * Allocate an ARP deletion message so we know we can tell ARP 14093 * when the interface goes down. 14094 */ 14095 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14096 if (arp_del_mp == NULL) 14097 goto failed; 14098 14099 } else { 14100 if (res_act != Res_act_initial) 14101 goto done; 14102 } 14103 /* 14104 * Need to bring up ARP or setup multicast mapping only 14105 * when the first interface is coming UP. 14106 */ 14107 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14108 was_dup) { 14109 goto done; 14110 } 14111 14112 /* 14113 * Allocate an ARP down message (to be saved) and an ARP up 14114 * message. 14115 */ 14116 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14117 if (arp_down_mp == NULL) 14118 goto failed; 14119 14120 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14121 if (arp_up_mp == NULL) 14122 goto failed; 14123 14124 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14125 goto done; 14126 14127 arp_setup_multicast: 14128 /* 14129 * Setup the multicast mappings. This function initializes 14130 * ill_arp_del_mapping_mp also. This does not need to be done for 14131 * IPv6. 14132 */ 14133 if (!ill->ill_isv6) { 14134 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14135 if (err != 0) 14136 goto failed; 14137 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14138 ASSERT(arp_add_mapping_mp != NULL); 14139 } 14140 14141 done: 14142 if (arp_del_mp != NULL) { 14143 ASSERT(ipif->ipif_arp_del_mp == NULL); 14144 ipif->ipif_arp_del_mp = arp_del_mp; 14145 } 14146 if (arp_down_mp != NULL) { 14147 ASSERT(ill->ill_arp_down_mp == NULL); 14148 ill->ill_arp_down_mp = arp_down_mp; 14149 } 14150 if (arp_del_mapping_mp != NULL) { 14151 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14152 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14153 } 14154 if (arp_up_mp != NULL) { 14155 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14156 ill->ill_name, ipif->ipif_id)); 14157 putnext(ill->ill_rq, arp_up_mp); 14158 } 14159 if (arp_add_mp != NULL) { 14160 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14161 ill->ill_name, ipif->ipif_id)); 14162 /* 14163 * If it's an extended ARP implementation, then we'll wait to 14164 * hear that DAD has finished before using the interface. 14165 */ 14166 if (!ill->ill_arp_extend) 14167 ipif->ipif_addr_ready = 1; 14168 putnext(ill->ill_rq, arp_add_mp); 14169 } else { 14170 ipif->ipif_addr_ready = 1; 14171 } 14172 if (arp_add_mapping_mp != NULL) { 14173 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14174 ill->ill_name, ipif->ipif_id)); 14175 putnext(ill->ill_rq, arp_add_mapping_mp); 14176 } 14177 if (res_act != Res_act_initial) 14178 return (0); 14179 14180 if (ill->ill_flags & ILLF_NOARP) 14181 err = ill_arp_off(ill); 14182 else 14183 err = ill_arp_on(ill); 14184 if (err != 0) { 14185 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14186 freemsg(ipif->ipif_arp_del_mp); 14187 freemsg(ill->ill_arp_down_mp); 14188 freemsg(ill->ill_arp_del_mapping_mp); 14189 ipif->ipif_arp_del_mp = NULL; 14190 ill->ill_arp_down_mp = NULL; 14191 ill->ill_arp_del_mapping_mp = NULL; 14192 return (err); 14193 } 14194 return ((ill->ill_ipif_up_count != 0 || was_dup || 14195 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14196 14197 failed: 14198 ip1dbg(("ipif_resolver_up: FAILED\n")); 14199 freemsg(arp_add_mp); 14200 freemsg(arp_del_mp); 14201 freemsg(arp_add_mapping_mp); 14202 freemsg(arp_up_mp); 14203 freemsg(arp_down_mp); 14204 ill->ill_arp_bringup_pending = 0; 14205 return (err); 14206 } 14207 14208 /* 14209 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14210 * just gone back up. 14211 */ 14212 static void 14213 ipif_arp_start_dad(ipif_t *ipif) 14214 { 14215 ill_t *ill = ipif->ipif_ill; 14216 mblk_t *arp_add_mp; 14217 area_t *area; 14218 14219 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14220 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14221 ipif->ipif_lcl_addr == INADDR_ANY || 14222 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14223 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14224 /* 14225 * If we can't contact ARP for some reason, that's not really a 14226 * problem. Just send out the routing socket notification that 14227 * DAD completion would have done, and continue. 14228 */ 14229 ipif_mask_reply(ipif); 14230 ip_rts_ifmsg(ipif); 14231 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14232 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14233 ipif->ipif_addr_ready = 1; 14234 return; 14235 } 14236 14237 /* Setting the 'unverified' flag restarts DAD */ 14238 area = (area_t *)arp_add_mp->b_rptr; 14239 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14240 ACE_F_UNVERIFIED; 14241 putnext(ill->ill_rq, arp_add_mp); 14242 } 14243 14244 static void 14245 ipif_ndp_start_dad(ipif_t *ipif) 14246 { 14247 nce_t *nce; 14248 14249 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14250 if (nce == NULL) 14251 return; 14252 14253 if (!ndp_restart_dad(nce)) { 14254 /* 14255 * If we can't restart DAD for some reason, that's not really a 14256 * problem. Just send out the routing socket notification that 14257 * DAD completion would have done, and continue. 14258 */ 14259 ip_rts_ifmsg(ipif); 14260 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14261 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14262 ipif->ipif_addr_ready = 1; 14263 } 14264 NCE_REFRELE(nce); 14265 } 14266 14267 /* 14268 * Restart duplicate address detection on all interfaces on the given ill. 14269 * 14270 * This is called when an interface transitions from down to up 14271 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14272 * 14273 * Note that since the underlying physical link has transitioned, we must cause 14274 * at least one routing socket message to be sent here, either via DAD 14275 * completion or just by default on the first ipif. (If we don't do this, then 14276 * in.mpathd will see long delays when doing link-based failure recovery.) 14277 */ 14278 void 14279 ill_restart_dad(ill_t *ill, boolean_t went_up) 14280 { 14281 ipif_t *ipif; 14282 14283 if (ill == NULL) 14284 return; 14285 14286 /* 14287 * If layer two doesn't support duplicate address detection, then just 14288 * send the routing socket message now and be done with it. 14289 */ 14290 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14291 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14292 ip_rts_ifmsg(ill->ill_ipif); 14293 return; 14294 } 14295 14296 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14297 if (went_up) { 14298 if (ipif->ipif_flags & IPIF_UP) { 14299 if (ill->ill_isv6) 14300 ipif_ndp_start_dad(ipif); 14301 else 14302 ipif_arp_start_dad(ipif); 14303 } else if (ill->ill_isv6 && 14304 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14305 /* 14306 * For IPv4, the ARP module itself will 14307 * automatically start the DAD process when it 14308 * sees DL_NOTE_LINK_UP. We respond to the 14309 * AR_CN_READY at the completion of that task. 14310 * For IPv6, we must kick off the bring-up 14311 * process now. 14312 */ 14313 ndp_do_recovery(ipif); 14314 } else { 14315 /* 14316 * Unfortunately, the first ipif is "special" 14317 * and represents the underlying ill in the 14318 * routing socket messages. Thus, when this 14319 * one ipif is down, we must still notify so 14320 * that the user knows the IFF_RUNNING status 14321 * change. (If the first ipif is up, then 14322 * we'll handle eventual routing socket 14323 * notification via DAD completion.) 14324 */ 14325 if (ipif == ill->ill_ipif) 14326 ip_rts_ifmsg(ill->ill_ipif); 14327 } 14328 } else { 14329 /* 14330 * After link down, we'll need to send a new routing 14331 * message when the link comes back, so clear 14332 * ipif_addr_ready. 14333 */ 14334 ipif->ipif_addr_ready = 0; 14335 } 14336 } 14337 14338 /* 14339 * If we've torn down links, then notify the user right away. 14340 */ 14341 if (!went_up) 14342 ip_rts_ifmsg(ill->ill_ipif); 14343 } 14344 14345 /* 14346 * Wakeup all threads waiting to enter the ipsq, and sleeping 14347 * on any of the ills in this ipsq. The ill_lock of the ill 14348 * must be held so that waiters don't miss wakeups 14349 */ 14350 static void 14351 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14352 { 14353 phyint_t *phyint; 14354 14355 phyint = ipsq->ipsq_phyint_list; 14356 while (phyint != NULL) { 14357 if (phyint->phyint_illv4) { 14358 if (!caller_holds_lock) 14359 mutex_enter(&phyint->phyint_illv4->ill_lock); 14360 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14361 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14362 if (!caller_holds_lock) 14363 mutex_exit(&phyint->phyint_illv4->ill_lock); 14364 } 14365 if (phyint->phyint_illv6) { 14366 if (!caller_holds_lock) 14367 mutex_enter(&phyint->phyint_illv6->ill_lock); 14368 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14369 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14370 if (!caller_holds_lock) 14371 mutex_exit(&phyint->phyint_illv6->ill_lock); 14372 } 14373 phyint = phyint->phyint_ipsq_next; 14374 } 14375 } 14376 14377 static ipsq_t * 14378 ipsq_create(char *groupname, ip_stack_t *ipst) 14379 { 14380 ipsq_t *ipsq; 14381 14382 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14383 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14384 if (ipsq == NULL) { 14385 return (NULL); 14386 } 14387 14388 if (groupname != NULL) 14389 (void) strcpy(ipsq->ipsq_name, groupname); 14390 else 14391 ipsq->ipsq_name[0] = '\0'; 14392 14393 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14394 ipsq->ipsq_flags |= IPSQ_GROUP; 14395 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14396 ipst->ips_ipsq_g_head = ipsq; 14397 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14398 return (ipsq); 14399 } 14400 14401 /* 14402 * Return an ipsq correspoding to the groupname. If 'create' is true 14403 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14404 * uniquely with an IPMP group. However during IPMP groupname operations, 14405 * multiple IPMP groups may be associated with a single ipsq. But no 14406 * IPMP group can be associated with more than 1 ipsq at any time. 14407 * For example 14408 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14409 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14410 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14411 * 14412 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14413 * status shown below during the execution of the above command. 14414 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14415 * 14416 * After the completion of the above groupname command we return to the stable 14417 * state shown below. 14418 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14419 * hme4 mpk17-85 ipsq2 mpk17-85 1 14420 * 14421 * Because of the above, we don't search based on the ipsq_name since that 14422 * would miss the correct ipsq during certain windows as shown above. 14423 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14424 * natural state. 14425 */ 14426 static ipsq_t * 14427 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14428 ip_stack_t *ipst) 14429 { 14430 ipsq_t *ipsq; 14431 int group_len; 14432 phyint_t *phyint; 14433 14434 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14435 14436 group_len = strlen(groupname); 14437 ASSERT(group_len != 0); 14438 group_len++; 14439 14440 for (ipsq = ipst->ips_ipsq_g_head; 14441 ipsq != NULL; 14442 ipsq = ipsq->ipsq_next) { 14443 /* 14444 * When an ipsq is being split, and ill_split_ipsq 14445 * calls this function, we exclude it from being considered. 14446 */ 14447 if (ipsq == exclude_ipsq) 14448 continue; 14449 14450 /* 14451 * Compare against the ipsq_name. The groupname change happens 14452 * in 2 phases. The 1st phase merges the from group into 14453 * the to group's ipsq, by calling ill_merge_groups and restarts 14454 * the ioctl. The 2nd phase then locates the ipsq again thru 14455 * ipsq_name. At this point the phyint_groupname has not been 14456 * updated. 14457 */ 14458 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14459 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14460 /* 14461 * Verify that an ipmp groupname is exactly 14462 * part of 1 ipsq and is not found in any other 14463 * ipsq. 14464 */ 14465 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14466 NULL); 14467 return (ipsq); 14468 } 14469 14470 /* 14471 * Comparison against ipsq_name alone is not sufficient. 14472 * In the case when groups are currently being 14473 * merged, the ipsq could hold other IPMP groups temporarily. 14474 * so we walk the phyint list and compare against the 14475 * phyint_groupname as well. 14476 */ 14477 phyint = ipsq->ipsq_phyint_list; 14478 while (phyint != NULL) { 14479 if ((group_len == phyint->phyint_groupname_len) && 14480 (bcmp(phyint->phyint_groupname, groupname, 14481 group_len) == 0)) { 14482 /* 14483 * Verify that an ipmp groupname is exactly 14484 * part of 1 ipsq and is not found in any other 14485 * ipsq. 14486 */ 14487 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14488 ipst) == NULL); 14489 return (ipsq); 14490 } 14491 phyint = phyint->phyint_ipsq_next; 14492 } 14493 } 14494 if (create) 14495 ipsq = ipsq_create(groupname, ipst); 14496 return (ipsq); 14497 } 14498 14499 static void 14500 ipsq_delete(ipsq_t *ipsq) 14501 { 14502 ipsq_t *nipsq; 14503 ipsq_t *pipsq = NULL; 14504 ip_stack_t *ipst = ipsq->ipsq_ipst; 14505 14506 /* 14507 * We don't hold the ipsq lock, but we are sure no new 14508 * messages can land up, since the ipsq_refs is zero. 14509 * i.e. this ipsq is unnamed and no phyint or phyint group 14510 * is associated with this ipsq. (Lookups are based on ill_name 14511 * or phyint_groupname) 14512 */ 14513 ASSERT(ipsq->ipsq_refs == 0); 14514 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14515 ASSERT(ipsq->ipsq_pending_mp == NULL); 14516 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14517 /* 14518 * This is not the ipsq of an IPMP group. 14519 */ 14520 ipsq->ipsq_ipst = NULL; 14521 kmem_free(ipsq, sizeof (ipsq_t)); 14522 return; 14523 } 14524 14525 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14526 14527 /* 14528 * Locate the ipsq before we can remove it from 14529 * the singly linked list of ipsq's. 14530 */ 14531 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14532 nipsq = nipsq->ipsq_next) { 14533 if (nipsq == ipsq) { 14534 break; 14535 } 14536 pipsq = nipsq; 14537 } 14538 14539 ASSERT(nipsq == ipsq); 14540 14541 /* unlink ipsq from the list */ 14542 if (pipsq != NULL) 14543 pipsq->ipsq_next = ipsq->ipsq_next; 14544 else 14545 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14546 ipsq->ipsq_ipst = NULL; 14547 kmem_free(ipsq, sizeof (ipsq_t)); 14548 rw_exit(&ipst->ips_ill_g_lock); 14549 } 14550 14551 static void 14552 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14553 queue_t *q) 14554 { 14555 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14556 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14557 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14558 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14559 ASSERT(current_mp != NULL); 14560 14561 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14562 NEW_OP, NULL); 14563 14564 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14565 new_ipsq->ipsq_xopq_mphead != NULL); 14566 14567 /* 14568 * move from old ipsq to the new ipsq. 14569 */ 14570 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14571 if (old_ipsq->ipsq_xopq_mphead != NULL) 14572 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14573 14574 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14575 } 14576 14577 void 14578 ill_group_cleanup(ill_t *ill) 14579 { 14580 ill_t *ill_v4; 14581 ill_t *ill_v6; 14582 ipif_t *ipif; 14583 14584 ill_v4 = ill->ill_phyint->phyint_illv4; 14585 ill_v6 = ill->ill_phyint->phyint_illv6; 14586 14587 if (ill_v4 != NULL) { 14588 mutex_enter(&ill_v4->ill_lock); 14589 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14590 ipif = ipif->ipif_next) { 14591 IPIF_UNMARK_MOVING(ipif); 14592 } 14593 ill_v4->ill_up_ipifs = B_FALSE; 14594 mutex_exit(&ill_v4->ill_lock); 14595 } 14596 14597 if (ill_v6 != NULL) { 14598 mutex_enter(&ill_v6->ill_lock); 14599 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14600 ipif = ipif->ipif_next) { 14601 IPIF_UNMARK_MOVING(ipif); 14602 } 14603 ill_v6->ill_up_ipifs = B_FALSE; 14604 mutex_exit(&ill_v6->ill_lock); 14605 } 14606 } 14607 /* 14608 * This function is called when an ill has had a change in its group status 14609 * to bring up all the ipifs that were up before the change. 14610 */ 14611 int 14612 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14613 { 14614 ipif_t *ipif; 14615 ill_t *ill_v4; 14616 ill_t *ill_v6; 14617 ill_t *from_ill; 14618 int err = 0; 14619 14620 14621 ASSERT(IAM_WRITER_ILL(ill)); 14622 14623 /* 14624 * Except for ipif_state_flags and ill_state_flags the other 14625 * fields of the ipif/ill that are modified below are protected 14626 * implicitly since we are a writer. We would have tried to down 14627 * even an ipif that was already down, in ill_down_ipifs. So we 14628 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14629 */ 14630 ill_v4 = ill->ill_phyint->phyint_illv4; 14631 ill_v6 = ill->ill_phyint->phyint_illv6; 14632 if (ill_v4 != NULL) { 14633 ill_v4->ill_up_ipifs = B_TRUE; 14634 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14635 ipif = ipif->ipif_next) { 14636 mutex_enter(&ill_v4->ill_lock); 14637 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14638 IPIF_UNMARK_MOVING(ipif); 14639 mutex_exit(&ill_v4->ill_lock); 14640 if (ipif->ipif_was_up) { 14641 if (!(ipif->ipif_flags & IPIF_UP)) 14642 err = ipif_up(ipif, q, mp); 14643 ipif->ipif_was_up = B_FALSE; 14644 if (err != 0) { 14645 /* 14646 * Can there be any other error ? 14647 */ 14648 ASSERT(err == EINPROGRESS); 14649 return (err); 14650 } 14651 } 14652 } 14653 mutex_enter(&ill_v4->ill_lock); 14654 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14655 mutex_exit(&ill_v4->ill_lock); 14656 ill_v4->ill_up_ipifs = B_FALSE; 14657 if (ill_v4->ill_move_in_progress) { 14658 ASSERT(ill_v4->ill_move_peer != NULL); 14659 ill_v4->ill_move_in_progress = B_FALSE; 14660 from_ill = ill_v4->ill_move_peer; 14661 from_ill->ill_move_in_progress = B_FALSE; 14662 from_ill->ill_move_peer = NULL; 14663 mutex_enter(&from_ill->ill_lock); 14664 from_ill->ill_state_flags &= ~ILL_CHANGING; 14665 mutex_exit(&from_ill->ill_lock); 14666 if (ill_v6 == NULL) { 14667 if (from_ill->ill_phyint->phyint_flags & 14668 PHYI_STANDBY) { 14669 phyint_inactive(from_ill->ill_phyint); 14670 } 14671 if (ill_v4->ill_phyint->phyint_flags & 14672 PHYI_STANDBY) { 14673 phyint_inactive(ill_v4->ill_phyint); 14674 } 14675 } 14676 ill_v4->ill_move_peer = NULL; 14677 } 14678 } 14679 14680 if (ill_v6 != NULL) { 14681 ill_v6->ill_up_ipifs = B_TRUE; 14682 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14683 ipif = ipif->ipif_next) { 14684 mutex_enter(&ill_v6->ill_lock); 14685 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14686 IPIF_UNMARK_MOVING(ipif); 14687 mutex_exit(&ill_v6->ill_lock); 14688 if (ipif->ipif_was_up) { 14689 if (!(ipif->ipif_flags & IPIF_UP)) 14690 err = ipif_up(ipif, q, mp); 14691 ipif->ipif_was_up = B_FALSE; 14692 if (err != 0) { 14693 /* 14694 * Can there be any other error ? 14695 */ 14696 ASSERT(err == EINPROGRESS); 14697 return (err); 14698 } 14699 } 14700 } 14701 mutex_enter(&ill_v6->ill_lock); 14702 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14703 mutex_exit(&ill_v6->ill_lock); 14704 ill_v6->ill_up_ipifs = B_FALSE; 14705 if (ill_v6->ill_move_in_progress) { 14706 ASSERT(ill_v6->ill_move_peer != NULL); 14707 ill_v6->ill_move_in_progress = B_FALSE; 14708 from_ill = ill_v6->ill_move_peer; 14709 from_ill->ill_move_in_progress = B_FALSE; 14710 from_ill->ill_move_peer = NULL; 14711 mutex_enter(&from_ill->ill_lock); 14712 from_ill->ill_state_flags &= ~ILL_CHANGING; 14713 mutex_exit(&from_ill->ill_lock); 14714 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14715 phyint_inactive(from_ill->ill_phyint); 14716 } 14717 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14718 phyint_inactive(ill_v6->ill_phyint); 14719 } 14720 ill_v6->ill_move_peer = NULL; 14721 } 14722 } 14723 return (0); 14724 } 14725 14726 /* 14727 * bring down all the approriate ipifs. 14728 */ 14729 /* ARGSUSED */ 14730 static void 14731 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14732 { 14733 ipif_t *ipif; 14734 14735 ASSERT(IAM_WRITER_ILL(ill)); 14736 14737 /* 14738 * Except for ipif_state_flags the other fields of the ipif/ill that 14739 * are modified below are protected implicitly since we are a writer 14740 */ 14741 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14742 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14743 continue; 14744 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14745 /* 14746 * We go through the ipif_down logic even if the ipif 14747 * is already down, since routes can be added based 14748 * on down ipifs. Going through ipif_down once again 14749 * will delete any IREs created based on these routes. 14750 */ 14751 if (ipif->ipif_flags & IPIF_UP) 14752 ipif->ipif_was_up = B_TRUE; 14753 /* 14754 * If called with chk_nofailover true ipif is moving. 14755 */ 14756 mutex_enter(&ill->ill_lock); 14757 if (chk_nofailover) { 14758 ipif->ipif_state_flags |= 14759 IPIF_MOVING | IPIF_CHANGING; 14760 } else { 14761 ipif->ipif_state_flags |= IPIF_CHANGING; 14762 } 14763 mutex_exit(&ill->ill_lock); 14764 /* 14765 * Need to re-create net/subnet bcast ires if 14766 * they are dependent on ipif. 14767 */ 14768 if (!ipif->ipif_isv6) 14769 ipif_check_bcast_ires(ipif); 14770 (void) ipif_logical_down(ipif, NULL, NULL); 14771 ipif_non_duplicate(ipif); 14772 ipif_down_tail(ipif); 14773 } 14774 } 14775 } 14776 14777 #define IPSQ_INC_REF(ipsq, ipst) { \ 14778 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14779 (ipsq)->ipsq_refs++; \ 14780 } 14781 14782 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14783 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14784 (ipsq)->ipsq_refs--; \ 14785 if ((ipsq)->ipsq_refs == 0) \ 14786 (ipsq)->ipsq_name[0] = '\0'; \ 14787 } 14788 14789 /* 14790 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14791 * new_ipsq. 14792 */ 14793 static void 14794 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14795 { 14796 phyint_t *phyint; 14797 phyint_t *next_phyint; 14798 14799 /* 14800 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14801 * writer and the ill_lock of the ill in question. Also the dest 14802 * ipsq can't vanish while we hold the ill_g_lock as writer. 14803 */ 14804 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14805 14806 phyint = cur_ipsq->ipsq_phyint_list; 14807 cur_ipsq->ipsq_phyint_list = NULL; 14808 while (phyint != NULL) { 14809 next_phyint = phyint->phyint_ipsq_next; 14810 IPSQ_DEC_REF(cur_ipsq, ipst); 14811 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14812 new_ipsq->ipsq_phyint_list = phyint; 14813 IPSQ_INC_REF(new_ipsq, ipst); 14814 phyint->phyint_ipsq = new_ipsq; 14815 phyint = next_phyint; 14816 } 14817 } 14818 14819 #define SPLIT_SUCCESS 0 14820 #define SPLIT_NOT_NEEDED 1 14821 #define SPLIT_FAILED 2 14822 14823 int 14824 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14825 ip_stack_t *ipst) 14826 { 14827 ipsq_t *newipsq = NULL; 14828 14829 /* 14830 * Assertions denote pre-requisites for changing the ipsq of 14831 * a phyint 14832 */ 14833 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14834 /* 14835 * <ill-phyint> assocs can't change while ill_g_lock 14836 * is held as writer. See ill_phyint_reinit() 14837 */ 14838 ASSERT(phyint->phyint_illv4 == NULL || 14839 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14840 ASSERT(phyint->phyint_illv6 == NULL || 14841 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14842 14843 if ((phyint->phyint_groupname_len != 14844 (strlen(cur_ipsq->ipsq_name) + 1) || 14845 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14846 phyint->phyint_groupname_len) != 0)) { 14847 /* 14848 * Once we fail in creating a new ipsq due to memory shortage, 14849 * don't attempt to create new ipsq again, based on another 14850 * phyint, since we want all phyints belonging to an IPMP group 14851 * to be in the same ipsq even in the event of mem alloc fails. 14852 */ 14853 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14854 cur_ipsq, ipst); 14855 if (newipsq == NULL) { 14856 /* Memory allocation failure */ 14857 return (SPLIT_FAILED); 14858 } else { 14859 /* ipsq_refs protected by ill_g_lock (writer) */ 14860 IPSQ_DEC_REF(cur_ipsq, ipst); 14861 phyint->phyint_ipsq = newipsq; 14862 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14863 newipsq->ipsq_phyint_list = phyint; 14864 IPSQ_INC_REF(newipsq, ipst); 14865 return (SPLIT_SUCCESS); 14866 } 14867 } 14868 return (SPLIT_NOT_NEEDED); 14869 } 14870 14871 /* 14872 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14873 * to do this split 14874 */ 14875 static int 14876 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14877 { 14878 ipsq_t *newipsq; 14879 14880 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14881 /* 14882 * <ill-phyint> assocs can't change while ill_g_lock 14883 * is held as writer. See ill_phyint_reinit() 14884 */ 14885 14886 ASSERT(phyint->phyint_illv4 == NULL || 14887 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14888 ASSERT(phyint->phyint_illv6 == NULL || 14889 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14890 14891 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14892 phyint->phyint_illv4: phyint->phyint_illv6)) { 14893 /* 14894 * ipsq_init failed due to no memory 14895 * caller will use the same ipsq 14896 */ 14897 return (SPLIT_FAILED); 14898 } 14899 14900 /* ipsq_ref is protected by ill_g_lock (writer) */ 14901 IPSQ_DEC_REF(cur_ipsq, ipst); 14902 14903 /* 14904 * This is a new ipsq that is unknown to the world. 14905 * So we don't need to hold ipsq_lock, 14906 */ 14907 newipsq = phyint->phyint_ipsq; 14908 newipsq->ipsq_writer = NULL; 14909 newipsq->ipsq_reentry_cnt--; 14910 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14911 #ifdef ILL_DEBUG 14912 newipsq->ipsq_depth = 0; 14913 #endif 14914 14915 return (SPLIT_SUCCESS); 14916 } 14917 14918 /* 14919 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14920 * ipsq's representing their individual groups or themselves. Return 14921 * whether split needs to be retried again later. 14922 */ 14923 static boolean_t 14924 ill_split_ipsq(ipsq_t *cur_ipsq) 14925 { 14926 phyint_t *phyint; 14927 phyint_t *next_phyint; 14928 int error; 14929 boolean_t need_retry = B_FALSE; 14930 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14931 14932 phyint = cur_ipsq->ipsq_phyint_list; 14933 cur_ipsq->ipsq_phyint_list = NULL; 14934 while (phyint != NULL) { 14935 next_phyint = phyint->phyint_ipsq_next; 14936 /* 14937 * 'created' will tell us whether the callee actually 14938 * created an ipsq. Lack of memory may force the callee 14939 * to return without creating an ipsq. 14940 */ 14941 if (phyint->phyint_groupname == NULL) { 14942 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14943 } else { 14944 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14945 need_retry, ipst); 14946 } 14947 14948 switch (error) { 14949 case SPLIT_FAILED: 14950 need_retry = B_TRUE; 14951 /* FALLTHRU */ 14952 case SPLIT_NOT_NEEDED: 14953 /* 14954 * Keep it on the list. 14955 */ 14956 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14957 cur_ipsq->ipsq_phyint_list = phyint; 14958 break; 14959 case SPLIT_SUCCESS: 14960 break; 14961 default: 14962 ASSERT(0); 14963 } 14964 14965 phyint = next_phyint; 14966 } 14967 return (need_retry); 14968 } 14969 14970 /* 14971 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14972 * and return the ills in the list. This list will be 14973 * needed to unlock all the ills later on by the caller. 14974 * The <ill-ipsq> associations could change between the 14975 * lock and unlock. Hence the unlock can't traverse the 14976 * ipsq to get the list of ills. 14977 */ 14978 static int 14979 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14980 { 14981 int cnt = 0; 14982 phyint_t *phyint; 14983 ip_stack_t *ipst = ipsq->ipsq_ipst; 14984 14985 /* 14986 * The caller holds ill_g_lock to ensure that the ill memberships 14987 * of the ipsq don't change 14988 */ 14989 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14990 14991 phyint = ipsq->ipsq_phyint_list; 14992 while (phyint != NULL) { 14993 if (phyint->phyint_illv4 != NULL) { 14994 ASSERT(cnt < list_max); 14995 list[cnt++] = phyint->phyint_illv4; 14996 } 14997 if (phyint->phyint_illv6 != NULL) { 14998 ASSERT(cnt < list_max); 14999 list[cnt++] = phyint->phyint_illv6; 15000 } 15001 phyint = phyint->phyint_ipsq_next; 15002 } 15003 ill_lock_ills(list, cnt); 15004 return (cnt); 15005 } 15006 15007 void 15008 ill_lock_ills(ill_t **list, int cnt) 15009 { 15010 int i; 15011 15012 if (cnt > 1) { 15013 boolean_t try_again; 15014 do { 15015 try_again = B_FALSE; 15016 for (i = 0; i < cnt - 1; i++) { 15017 if (list[i] < list[i + 1]) { 15018 ill_t *tmp; 15019 15020 /* swap the elements */ 15021 tmp = list[i]; 15022 list[i] = list[i + 1]; 15023 list[i + 1] = tmp; 15024 try_again = B_TRUE; 15025 } 15026 } 15027 } while (try_again); 15028 } 15029 15030 for (i = 0; i < cnt; i++) { 15031 if (i == 0) { 15032 if (list[i] != NULL) 15033 mutex_enter(&list[i]->ill_lock); 15034 else 15035 return; 15036 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15037 mutex_enter(&list[i]->ill_lock); 15038 } 15039 } 15040 } 15041 15042 void 15043 ill_unlock_ills(ill_t **list, int cnt) 15044 { 15045 int i; 15046 15047 for (i = 0; i < cnt; i++) { 15048 if ((i == 0) && (list[i] != NULL)) { 15049 mutex_exit(&list[i]->ill_lock); 15050 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15051 mutex_exit(&list[i]->ill_lock); 15052 } 15053 } 15054 } 15055 15056 /* 15057 * Merge all the ills from 1 ipsq group into another ipsq group. 15058 * The source ipsq group is specified by the ipsq associated with 15059 * 'from_ill'. The destination ipsq group is specified by the ipsq 15060 * associated with 'to_ill' or 'groupname' respectively. 15061 * Note that ipsq itself does not have a reference count mechanism 15062 * and functions don't look up an ipsq and pass it around. Instead 15063 * functions pass around an ill or groupname, and the ipsq is looked 15064 * up from the ill or groupname and the required operation performed 15065 * atomically with the lookup on the ipsq. 15066 */ 15067 static int 15068 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15069 queue_t *q) 15070 { 15071 ipsq_t *old_ipsq; 15072 ipsq_t *new_ipsq; 15073 ill_t **ill_list; 15074 int cnt; 15075 size_t ill_list_size; 15076 boolean_t became_writer_on_new_sq = B_FALSE; 15077 ip_stack_t *ipst = from_ill->ill_ipst; 15078 15079 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15080 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15081 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15082 15083 /* 15084 * Need to hold ill_g_lock as writer and also the ill_lock to 15085 * change the <ill-ipsq> assoc of an ill. Need to hold the 15086 * ipsq_lock to prevent new messages from landing on an ipsq. 15087 */ 15088 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15089 15090 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15091 if (groupname != NULL) 15092 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15093 else { 15094 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15095 } 15096 15097 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15098 15099 /* 15100 * both groups are on the same ipsq. 15101 */ 15102 if (old_ipsq == new_ipsq) { 15103 rw_exit(&ipst->ips_ill_g_lock); 15104 return (0); 15105 } 15106 15107 cnt = old_ipsq->ipsq_refs << 1; 15108 ill_list_size = cnt * sizeof (ill_t *); 15109 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15110 if (ill_list == NULL) { 15111 rw_exit(&ipst->ips_ill_g_lock); 15112 return (ENOMEM); 15113 } 15114 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15115 15116 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15117 mutex_enter(&new_ipsq->ipsq_lock); 15118 if ((new_ipsq->ipsq_writer == NULL && 15119 new_ipsq->ipsq_current_ipif == NULL) || 15120 (new_ipsq->ipsq_writer == curthread)) { 15121 new_ipsq->ipsq_writer = curthread; 15122 new_ipsq->ipsq_reentry_cnt++; 15123 became_writer_on_new_sq = B_TRUE; 15124 } 15125 15126 /* 15127 * We are holding ill_g_lock as writer and all the ill locks of 15128 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15129 * message can land up on the old ipsq even though we don't hold the 15130 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15131 */ 15132 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15133 15134 /* 15135 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15136 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15137 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15138 */ 15139 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15140 15141 /* 15142 * Mark the new ipsq as needing a split since it is currently 15143 * being shared by more than 1 IPMP group. The split will 15144 * occur at the end of ipsq_exit 15145 */ 15146 new_ipsq->ipsq_split = B_TRUE; 15147 15148 /* Now release all the locks */ 15149 mutex_exit(&new_ipsq->ipsq_lock); 15150 ill_unlock_ills(ill_list, cnt); 15151 rw_exit(&ipst->ips_ill_g_lock); 15152 15153 kmem_free(ill_list, ill_list_size); 15154 15155 /* 15156 * If we succeeded in becoming writer on the new ipsq, then 15157 * drain the new ipsq and start processing all enqueued messages 15158 * including the current ioctl we are processing which is either 15159 * a set groupname or failover/failback. 15160 */ 15161 if (became_writer_on_new_sq) 15162 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15163 15164 /* 15165 * syncq has been changed and all the messages have been moved. 15166 */ 15167 mutex_enter(&old_ipsq->ipsq_lock); 15168 old_ipsq->ipsq_current_ipif = NULL; 15169 old_ipsq->ipsq_current_ioctl = 0; 15170 mutex_exit(&old_ipsq->ipsq_lock); 15171 return (EINPROGRESS); 15172 } 15173 15174 /* 15175 * Delete and add the loopback copy and non-loopback copy of 15176 * the BROADCAST ire corresponding to ill and addr. Used to 15177 * group broadcast ires together when ill becomes part of 15178 * a group. 15179 * 15180 * This function is also called when ill is leaving the group 15181 * so that the ires belonging to the group gets re-grouped. 15182 */ 15183 static void 15184 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15185 { 15186 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15187 ire_t **ire_ptpn = &ire_head; 15188 ip_stack_t *ipst = ill->ill_ipst; 15189 15190 /* 15191 * The loopback and non-loopback IREs are inserted in the order in which 15192 * they're found, on the basis that they are correctly ordered (loopback 15193 * first). 15194 */ 15195 for (;;) { 15196 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15197 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15198 if (ire == NULL) 15199 break; 15200 15201 /* 15202 * we are passing in KM_SLEEP because it is not easy to 15203 * go back to a sane state in case of memory failure. 15204 */ 15205 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15206 ASSERT(nire != NULL); 15207 bzero(nire, sizeof (ire_t)); 15208 /* 15209 * Don't use ire_max_frag directly since we don't 15210 * hold on to 'ire' until we add the new ire 'nire' and 15211 * we don't want the new ire to have a dangling reference 15212 * to 'ire'. The ire_max_frag of a broadcast ire must 15213 * be in sync with the ipif_mtu of the associate ipif. 15214 * For eg. this happens as a result of SIOCSLIFNAME, 15215 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15216 * the driver. A change in ire_max_frag triggered as 15217 * as a result of path mtu discovery, or due to an 15218 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15219 * route change -mtu command does not apply to broadcast ires. 15220 * 15221 * XXX We need a recovery strategy here if ire_init fails 15222 */ 15223 if (ire_init(nire, 15224 (uchar_t *)&ire->ire_addr, 15225 (uchar_t *)&ire->ire_mask, 15226 (uchar_t *)&ire->ire_src_addr, 15227 (uchar_t *)&ire->ire_gateway_addr, 15228 (uchar_t *)&ire->ire_in_src_addr, 15229 ire->ire_stq == NULL ? &ip_loopback_mtu : 15230 &ire->ire_ipif->ipif_mtu, 15231 ire->ire_nce, 15232 ire->ire_rfq, 15233 ire->ire_stq, 15234 ire->ire_type, 15235 ire->ire_ipif, 15236 ire->ire_in_ill, 15237 ire->ire_cmask, 15238 ire->ire_phandle, 15239 ire->ire_ihandle, 15240 ire->ire_flags, 15241 &ire->ire_uinfo, 15242 NULL, 15243 NULL, 15244 ipst) == NULL) { 15245 cmn_err(CE_PANIC, "ire_init() failed"); 15246 } 15247 ire_delete(ire); 15248 ire_refrele(ire); 15249 15250 /* 15251 * The newly created IREs are inserted at the tail of the list 15252 * starting with ire_head. As we've just allocated them no one 15253 * knows about them so it's safe. 15254 */ 15255 *ire_ptpn = nire; 15256 ire_ptpn = &nire->ire_next; 15257 } 15258 15259 for (nire = ire_head; nire != NULL; nire = nire_next) { 15260 int error; 15261 ire_t *oire; 15262 /* unlink the IRE from our list before calling ire_add() */ 15263 nire_next = nire->ire_next; 15264 nire->ire_next = NULL; 15265 15266 /* ire_add adds the ire at the right place in the list */ 15267 oire = nire; 15268 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15269 ASSERT(error == 0); 15270 ASSERT(oire == nire); 15271 ire_refrele(nire); /* Held in ire_add */ 15272 } 15273 } 15274 15275 /* 15276 * This function is usually called when an ill is inserted in 15277 * a group and all the ipifs are already UP. As all the ipifs 15278 * are already UP, the broadcast ires have already been created 15279 * and been inserted. But, ire_add_v4 would not have grouped properly. 15280 * We need to re-group for the benefit of ip_wput_ire which 15281 * expects BROADCAST ires to be grouped properly to avoid sending 15282 * more than one copy of the broadcast packet per group. 15283 * 15284 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15285 * because when ipif_up_done ends up calling this, ires have 15286 * already been added before illgrp_insert i.e before ill_group 15287 * has been initialized. 15288 */ 15289 static void 15290 ill_group_bcast_for_xmit(ill_t *ill) 15291 { 15292 ill_group_t *illgrp; 15293 ipif_t *ipif; 15294 ipaddr_t addr; 15295 ipaddr_t net_mask; 15296 ipaddr_t subnet_netmask; 15297 15298 illgrp = ill->ill_group; 15299 15300 /* 15301 * This function is called even when an ill is deleted from 15302 * the group. Hence, illgrp could be null. 15303 */ 15304 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15305 return; 15306 15307 /* 15308 * Delete all the BROADCAST ires matching this ill and add 15309 * them back. This time, ire_add_v4 should take care of 15310 * grouping them with others because ill is part of the 15311 * group. 15312 */ 15313 ill_bcast_delete_and_add(ill, 0); 15314 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15315 15316 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15317 15318 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15319 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15320 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15321 } else { 15322 net_mask = htonl(IN_CLASSA_NET); 15323 } 15324 addr = net_mask & ipif->ipif_subnet; 15325 ill_bcast_delete_and_add(ill, addr); 15326 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15327 15328 subnet_netmask = ipif->ipif_net_mask; 15329 addr = ipif->ipif_subnet; 15330 ill_bcast_delete_and_add(ill, addr); 15331 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15332 } 15333 } 15334 15335 /* 15336 * This function is called from illgrp_delete when ill is being deleted 15337 * from the group. 15338 * 15339 * As ill is not there in the group anymore, any address belonging 15340 * to this ill should be cleared of IRE_MARK_NORECV. 15341 */ 15342 static void 15343 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15344 { 15345 ire_t *ire; 15346 irb_t *irb; 15347 ip_stack_t *ipst = ill->ill_ipst; 15348 15349 ASSERT(ill->ill_group == NULL); 15350 15351 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15352 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15353 15354 if (ire != NULL) { 15355 /* 15356 * IPMP and plumbing operations are serialized on the ipsq, so 15357 * no one will insert or delete a broadcast ire under our feet. 15358 */ 15359 irb = ire->ire_bucket; 15360 rw_enter(&irb->irb_lock, RW_READER); 15361 ire_refrele(ire); 15362 15363 for (; ire != NULL; ire = ire->ire_next) { 15364 if (ire->ire_addr != addr) 15365 break; 15366 if (ire_to_ill(ire) != ill) 15367 continue; 15368 15369 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15370 ire->ire_marks &= ~IRE_MARK_NORECV; 15371 } 15372 rw_exit(&irb->irb_lock); 15373 } 15374 } 15375 15376 /* 15377 * This function must be called only after the broadcast ires 15378 * have been grouped together. For a given address addr, nominate 15379 * only one of the ires whose interface is not FAILED or OFFLINE. 15380 * 15381 * This is also called when an ipif goes down, so that we can nominate 15382 * a different ire with the same address for receiving. 15383 */ 15384 static void 15385 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15386 { 15387 irb_t *irb; 15388 ire_t *ire; 15389 ire_t *ire1; 15390 ire_t *save_ire; 15391 ire_t **irep = NULL; 15392 boolean_t first = B_TRUE; 15393 ire_t *clear_ire = NULL; 15394 ire_t *start_ire = NULL; 15395 ire_t *new_lb_ire; 15396 ire_t *new_nlb_ire; 15397 boolean_t new_lb_ire_used = B_FALSE; 15398 boolean_t new_nlb_ire_used = B_FALSE; 15399 uint64_t match_flags; 15400 uint64_t phyi_flags; 15401 boolean_t fallback = B_FALSE; 15402 uint_t max_frag; 15403 15404 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15405 NULL, MATCH_IRE_TYPE, ipst); 15406 /* 15407 * We may not be able to find some ires if a previous 15408 * ire_create failed. This happens when an ipif goes 15409 * down and we are unable to create BROADCAST ires due 15410 * to memory failure. Thus, we have to check for NULL 15411 * below. This should handle the case for LOOPBACK, 15412 * POINTOPOINT and interfaces with some POINTOPOINT 15413 * logicals for which there are no BROADCAST ires. 15414 */ 15415 if (ire == NULL) 15416 return; 15417 /* 15418 * Currently IRE_BROADCASTS are deleted when an ipif 15419 * goes down which runs exclusively. Thus, setting 15420 * IRE_MARK_RCVD should not race with ire_delete marking 15421 * IRE_MARK_CONDEMNED. We grab the lock below just to 15422 * be consistent with other parts of the code that walks 15423 * a given bucket. 15424 */ 15425 save_ire = ire; 15426 irb = ire->ire_bucket; 15427 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15428 if (new_lb_ire == NULL) { 15429 ire_refrele(ire); 15430 return; 15431 } 15432 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15433 if (new_nlb_ire == NULL) { 15434 ire_refrele(ire); 15435 kmem_cache_free(ire_cache, new_lb_ire); 15436 return; 15437 } 15438 IRB_REFHOLD(irb); 15439 rw_enter(&irb->irb_lock, RW_WRITER); 15440 /* 15441 * Get to the first ire matching the address and the 15442 * group. If the address does not match we are done 15443 * as we could not find the IRE. If the address matches 15444 * we should get to the first one matching the group. 15445 */ 15446 while (ire != NULL) { 15447 if (ire->ire_addr != addr || 15448 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15449 break; 15450 } 15451 ire = ire->ire_next; 15452 } 15453 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15454 start_ire = ire; 15455 redo: 15456 while (ire != NULL && ire->ire_addr == addr && 15457 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15458 /* 15459 * The first ire for any address within a group 15460 * should always be the one with IRE_MARK_NORECV cleared 15461 * so that ip_wput_ire can avoid searching for one. 15462 * Note down the insertion point which will be used 15463 * later. 15464 */ 15465 if (first && (irep == NULL)) 15466 irep = ire->ire_ptpn; 15467 /* 15468 * PHYI_FAILED is set when the interface fails. 15469 * This interface might have become good, but the 15470 * daemon has not yet detected. We should still 15471 * not receive on this. PHYI_OFFLINE should never 15472 * be picked as this has been offlined and soon 15473 * be removed. 15474 */ 15475 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15476 if (phyi_flags & PHYI_OFFLINE) { 15477 ire->ire_marks |= IRE_MARK_NORECV; 15478 ire = ire->ire_next; 15479 continue; 15480 } 15481 if (phyi_flags & match_flags) { 15482 ire->ire_marks |= IRE_MARK_NORECV; 15483 ire = ire->ire_next; 15484 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15485 PHYI_INACTIVE) { 15486 fallback = B_TRUE; 15487 } 15488 continue; 15489 } 15490 if (first) { 15491 /* 15492 * We will move this to the front of the list later 15493 * on. 15494 */ 15495 clear_ire = ire; 15496 ire->ire_marks &= ~IRE_MARK_NORECV; 15497 } else { 15498 ire->ire_marks |= IRE_MARK_NORECV; 15499 } 15500 first = B_FALSE; 15501 ire = ire->ire_next; 15502 } 15503 /* 15504 * If we never nominated anybody, try nominating at least 15505 * an INACTIVE, if we found one. Do it only once though. 15506 */ 15507 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15508 fallback) { 15509 match_flags = PHYI_FAILED; 15510 ire = start_ire; 15511 irep = NULL; 15512 goto redo; 15513 } 15514 ire_refrele(save_ire); 15515 15516 /* 15517 * irep non-NULL indicates that we entered the while loop 15518 * above. If clear_ire is at the insertion point, we don't 15519 * have to do anything. clear_ire will be NULL if all the 15520 * interfaces are failed. 15521 * 15522 * We cannot unlink and reinsert the ire at the right place 15523 * in the list since there can be other walkers of this bucket. 15524 * Instead we delete and recreate the ire 15525 */ 15526 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15527 ire_t *clear_ire_stq = NULL; 15528 15529 bzero(new_lb_ire, sizeof (ire_t)); 15530 /* XXX We need a recovery strategy here. */ 15531 if (ire_init(new_lb_ire, 15532 (uchar_t *)&clear_ire->ire_addr, 15533 (uchar_t *)&clear_ire->ire_mask, 15534 (uchar_t *)&clear_ire->ire_src_addr, 15535 (uchar_t *)&clear_ire->ire_gateway_addr, 15536 (uchar_t *)&clear_ire->ire_in_src_addr, 15537 &clear_ire->ire_max_frag, 15538 NULL, /* let ire_nce_init derive the resolver info */ 15539 clear_ire->ire_rfq, 15540 clear_ire->ire_stq, 15541 clear_ire->ire_type, 15542 clear_ire->ire_ipif, 15543 clear_ire->ire_in_ill, 15544 clear_ire->ire_cmask, 15545 clear_ire->ire_phandle, 15546 clear_ire->ire_ihandle, 15547 clear_ire->ire_flags, 15548 &clear_ire->ire_uinfo, 15549 NULL, 15550 NULL, 15551 ipst) == NULL) 15552 cmn_err(CE_PANIC, "ire_init() failed"); 15553 if (clear_ire->ire_stq == NULL) { 15554 ire_t *ire_next = clear_ire->ire_next; 15555 if (ire_next != NULL && 15556 ire_next->ire_stq != NULL && 15557 ire_next->ire_addr == clear_ire->ire_addr && 15558 ire_next->ire_ipif->ipif_ill == 15559 clear_ire->ire_ipif->ipif_ill) { 15560 clear_ire_stq = ire_next; 15561 15562 bzero(new_nlb_ire, sizeof (ire_t)); 15563 /* XXX We need a recovery strategy here. */ 15564 if (ire_init(new_nlb_ire, 15565 (uchar_t *)&clear_ire_stq->ire_addr, 15566 (uchar_t *)&clear_ire_stq->ire_mask, 15567 (uchar_t *)&clear_ire_stq->ire_src_addr, 15568 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15569 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15570 &clear_ire_stq->ire_max_frag, 15571 NULL, 15572 clear_ire_stq->ire_rfq, 15573 clear_ire_stq->ire_stq, 15574 clear_ire_stq->ire_type, 15575 clear_ire_stq->ire_ipif, 15576 clear_ire_stq->ire_in_ill, 15577 clear_ire_stq->ire_cmask, 15578 clear_ire_stq->ire_phandle, 15579 clear_ire_stq->ire_ihandle, 15580 clear_ire_stq->ire_flags, 15581 &clear_ire_stq->ire_uinfo, 15582 NULL, 15583 NULL, 15584 ipst) == NULL) 15585 cmn_err(CE_PANIC, "ire_init() failed"); 15586 } 15587 } 15588 15589 /* 15590 * Delete the ire. We can't call ire_delete() since 15591 * we are holding the bucket lock. We can't release the 15592 * bucket lock since we can't allow irep to change. So just 15593 * mark it CONDEMNED. The IRB_REFRELE will delete the 15594 * ire from the list and do the refrele. 15595 */ 15596 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15597 irb->irb_marks |= IRB_MARK_CONDEMNED; 15598 15599 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15600 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15601 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15602 } 15603 15604 /* 15605 * Also take care of otherfields like ib/ob pkt count 15606 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15607 */ 15608 15609 /* Set the max_frag before adding the ire */ 15610 max_frag = *new_lb_ire->ire_max_fragp; 15611 new_lb_ire->ire_max_fragp = NULL; 15612 new_lb_ire->ire_max_frag = max_frag; 15613 15614 /* Add the new ire's. Insert at *irep */ 15615 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15616 ire1 = *irep; 15617 if (ire1 != NULL) 15618 ire1->ire_ptpn = &new_lb_ire->ire_next; 15619 new_lb_ire->ire_next = ire1; 15620 /* Link the new one in. */ 15621 new_lb_ire->ire_ptpn = irep; 15622 membar_producer(); 15623 *irep = new_lb_ire; 15624 new_lb_ire_used = B_TRUE; 15625 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15626 new_lb_ire->ire_bucket->irb_ire_cnt++; 15627 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15628 15629 if (clear_ire_stq != NULL) { 15630 /* Set the max_frag before adding the ire */ 15631 max_frag = *new_nlb_ire->ire_max_fragp; 15632 new_nlb_ire->ire_max_fragp = NULL; 15633 new_nlb_ire->ire_max_frag = max_frag; 15634 15635 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15636 irep = &new_lb_ire->ire_next; 15637 /* Add the new ire. Insert at *irep */ 15638 ire1 = *irep; 15639 if (ire1 != NULL) 15640 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15641 new_nlb_ire->ire_next = ire1; 15642 /* Link the new one in. */ 15643 new_nlb_ire->ire_ptpn = irep; 15644 membar_producer(); 15645 *irep = new_nlb_ire; 15646 new_nlb_ire_used = B_TRUE; 15647 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15648 ire_stats_inserted); 15649 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15650 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15651 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15652 } 15653 } 15654 rw_exit(&irb->irb_lock); 15655 if (!new_lb_ire_used) 15656 kmem_cache_free(ire_cache, new_lb_ire); 15657 if (!new_nlb_ire_used) 15658 kmem_cache_free(ire_cache, new_nlb_ire); 15659 IRB_REFRELE(irb); 15660 } 15661 15662 /* 15663 * Whenever an ipif goes down we have to renominate a different 15664 * broadcast ire to receive. Whenever an ipif comes up, we need 15665 * to make sure that we have only one nominated to receive. 15666 */ 15667 static void 15668 ipif_renominate_bcast(ipif_t *ipif) 15669 { 15670 ill_t *ill = ipif->ipif_ill; 15671 ipaddr_t subnet_addr; 15672 ipaddr_t net_addr; 15673 ipaddr_t net_mask = 0; 15674 ipaddr_t subnet_netmask; 15675 ipaddr_t addr; 15676 ill_group_t *illgrp; 15677 ip_stack_t *ipst = ill->ill_ipst; 15678 15679 illgrp = ill->ill_group; 15680 /* 15681 * If this is the last ipif going down, it might take 15682 * the ill out of the group. In that case ipif_down -> 15683 * illgrp_delete takes care of doing the nomination. 15684 * ipif_down does not call for this case. 15685 */ 15686 ASSERT(illgrp != NULL); 15687 15688 /* There could not have been any ires associated with this */ 15689 if (ipif->ipif_subnet == 0) 15690 return; 15691 15692 ill_mark_bcast(illgrp, 0, ipst); 15693 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15694 15695 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15696 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15697 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15698 } else { 15699 net_mask = htonl(IN_CLASSA_NET); 15700 } 15701 addr = net_mask & ipif->ipif_subnet; 15702 ill_mark_bcast(illgrp, addr, ipst); 15703 15704 net_addr = ~net_mask | addr; 15705 ill_mark_bcast(illgrp, net_addr, ipst); 15706 15707 subnet_netmask = ipif->ipif_net_mask; 15708 addr = ipif->ipif_subnet; 15709 ill_mark_bcast(illgrp, addr, ipst); 15710 15711 subnet_addr = ~subnet_netmask | addr; 15712 ill_mark_bcast(illgrp, subnet_addr, ipst); 15713 } 15714 15715 /* 15716 * Whenever we form or delete ill groups, we need to nominate one set of 15717 * BROADCAST ires for receiving in the group. 15718 * 15719 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15720 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15721 * for ill_ipif_up_count to be non-zero. This is the only case where 15722 * ill_ipif_up_count is zero and we would still find the ires. 15723 * 15724 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15725 * ipif is UP and we just have to do the nomination. 15726 * 15727 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15728 * from the group. So, we have to do the nomination. 15729 * 15730 * Because of (3), there could be just one ill in the group. But we have 15731 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15732 * Thus, this function does not optimize when there is only one ill as 15733 * it is not correct for (3). 15734 */ 15735 static void 15736 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15737 { 15738 ill_t *ill; 15739 ipif_t *ipif; 15740 ipaddr_t subnet_addr; 15741 ipaddr_t prev_subnet_addr = 0; 15742 ipaddr_t net_addr; 15743 ipaddr_t prev_net_addr = 0; 15744 ipaddr_t net_mask = 0; 15745 ipaddr_t subnet_netmask; 15746 ipaddr_t addr; 15747 ip_stack_t *ipst; 15748 15749 /* 15750 * When the last memeber is leaving, there is nothing to 15751 * nominate. 15752 */ 15753 if (illgrp->illgrp_ill_count == 0) { 15754 ASSERT(illgrp->illgrp_ill == NULL); 15755 return; 15756 } 15757 15758 ill = illgrp->illgrp_ill; 15759 ASSERT(!ill->ill_isv6); 15760 ipst = ill->ill_ipst; 15761 /* 15762 * We assume that ires with same address and belonging to the 15763 * same group, has been grouped together. Nominating a *single* 15764 * ill in the group for sending and receiving broadcast is done 15765 * by making sure that the first BROADCAST ire (which will be 15766 * the one returned by ire_ctable_lookup for ip_rput and the 15767 * one that will be used in ip_wput_ire) will be the one that 15768 * will not have IRE_MARK_NORECV set. 15769 * 15770 * 1) ip_rput checks and discards packets received on ires marked 15771 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15772 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15773 * first ire in the group for every broadcast address in the group. 15774 * ip_rput will accept packets only on the first ire i.e only 15775 * one copy of the ill. 15776 * 15777 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15778 * packet for the whole group. It needs to send out on the ill 15779 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15780 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15781 * the copy echoed back on other port where the ire is not marked 15782 * with IRE_MARK_NORECV. 15783 * 15784 * Note that we just need to have the first IRE either loopback or 15785 * non-loopback (either of them may not exist if ire_create failed 15786 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15787 * always hit the first one and hence will always accept one copy. 15788 * 15789 * We have a broadcast ire per ill for all the unique prefixes 15790 * hosted on that ill. As we don't have a way of knowing the 15791 * unique prefixes on a given ill and hence in the whole group, 15792 * we just call ill_mark_bcast on all the prefixes that exist 15793 * in the group. For the common case of one prefix, the code 15794 * below optimizes by remebering the last address used for 15795 * markng. In the case of multiple prefixes, this will still 15796 * optimize depending the order of prefixes. 15797 * 15798 * The only unique address across the whole group is 0.0.0.0 and 15799 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15800 * the first ire in the bucket for receiving and disables the 15801 * others. 15802 */ 15803 ill_mark_bcast(illgrp, 0, ipst); 15804 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15805 for (; ill != NULL; ill = ill->ill_group_next) { 15806 15807 for (ipif = ill->ill_ipif; ipif != NULL; 15808 ipif = ipif->ipif_next) { 15809 15810 if (!(ipif->ipif_flags & IPIF_UP) || 15811 ipif->ipif_subnet == 0) { 15812 continue; 15813 } 15814 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15815 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15816 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15817 } else { 15818 net_mask = htonl(IN_CLASSA_NET); 15819 } 15820 addr = net_mask & ipif->ipif_subnet; 15821 if (prev_net_addr == 0 || prev_net_addr != addr) { 15822 ill_mark_bcast(illgrp, addr, ipst); 15823 net_addr = ~net_mask | addr; 15824 ill_mark_bcast(illgrp, net_addr, ipst); 15825 } 15826 prev_net_addr = addr; 15827 15828 subnet_netmask = ipif->ipif_net_mask; 15829 addr = ipif->ipif_subnet; 15830 if (prev_subnet_addr == 0 || 15831 prev_subnet_addr != addr) { 15832 ill_mark_bcast(illgrp, addr, ipst); 15833 subnet_addr = ~subnet_netmask | addr; 15834 ill_mark_bcast(illgrp, subnet_addr, ipst); 15835 } 15836 prev_subnet_addr = addr; 15837 } 15838 } 15839 } 15840 15841 /* 15842 * This function is called while forming ill groups. 15843 * 15844 * Currently, we handle only allmulti groups. We want to join 15845 * allmulti on only one of the ills in the groups. In future, 15846 * when we have link aggregation, we may have to join normal 15847 * multicast groups on multiple ills as switch does inbound load 15848 * balancing. Following are the functions that calls this 15849 * function : 15850 * 15851 * 1) ill_recover_multicast : Interface is coming back UP. 15852 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15853 * will call ill_recover_multicast to recover all the multicast 15854 * groups. We need to make sure that only one member is joined 15855 * in the ill group. 15856 * 15857 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15858 * Somebody is joining allmulti. We need to make sure that only one 15859 * member is joined in the group. 15860 * 15861 * 3) illgrp_insert : If allmulti has already joined, we need to make 15862 * sure that only one member is joined in the group. 15863 * 15864 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15865 * allmulti who we have nominated. We need to pick someother ill. 15866 * 15867 * 5) illgrp_delete : The ill we nominated is leaving the group, 15868 * we need to pick a new ill to join the group. 15869 * 15870 * For (1), (2), (5) - we just have to check whether there is 15871 * a good ill joined in the group. If we could not find any ills 15872 * joined the group, we should join. 15873 * 15874 * For (4), the one that was nominated to receive, left the group. 15875 * There could be nobody joined in the group when this function is 15876 * called. 15877 * 15878 * For (3) - we need to explicitly check whether there are multiple 15879 * ills joined in the group. 15880 * 15881 * For simplicity, we don't differentiate any of the above cases. We 15882 * just leave the group if it is joined on any of them and join on 15883 * the first good ill. 15884 */ 15885 int 15886 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15887 { 15888 ilm_t *ilm; 15889 ill_t *ill; 15890 ill_t *fallback_inactive_ill = NULL; 15891 ill_t *fallback_failed_ill = NULL; 15892 int ret = 0; 15893 15894 /* 15895 * Leave the allmulti on all the ills and start fresh. 15896 */ 15897 for (ill = illgrp->illgrp_ill; ill != NULL; 15898 ill = ill->ill_group_next) { 15899 if (ill->ill_join_allmulti) 15900 (void) ip_leave_allmulti(ill->ill_ipif); 15901 } 15902 15903 /* 15904 * Choose a good ill. Fallback to inactive or failed if 15905 * none available. We need to fallback to FAILED in the 15906 * case where we have 2 interfaces in a group - where 15907 * one of them is failed and another is a good one and 15908 * the good one (not marked inactive) is leaving the group. 15909 */ 15910 ret = 0; 15911 for (ill = illgrp->illgrp_ill; ill != NULL; 15912 ill = ill->ill_group_next) { 15913 /* Never pick an offline interface */ 15914 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15915 continue; 15916 15917 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15918 fallback_failed_ill = ill; 15919 continue; 15920 } 15921 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15922 fallback_inactive_ill = ill; 15923 continue; 15924 } 15925 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15926 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15927 ret = ip_join_allmulti(ill->ill_ipif); 15928 /* 15929 * ip_join_allmulti can fail because of memory 15930 * failures. So, make sure we join at least 15931 * on one ill. 15932 */ 15933 if (ill->ill_join_allmulti) 15934 return (0); 15935 } 15936 } 15937 } 15938 if (ret != 0) { 15939 /* 15940 * If we tried nominating above and failed to do so, 15941 * return error. We might have tried multiple times. 15942 * But, return the latest error. 15943 */ 15944 return (ret); 15945 } 15946 if ((ill = fallback_inactive_ill) != NULL) { 15947 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15948 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15949 ret = ip_join_allmulti(ill->ill_ipif); 15950 return (ret); 15951 } 15952 } 15953 } else if ((ill = fallback_failed_ill) != NULL) { 15954 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15955 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15956 ret = ip_join_allmulti(ill->ill_ipif); 15957 return (ret); 15958 } 15959 } 15960 } 15961 return (0); 15962 } 15963 15964 /* 15965 * This function is called from illgrp_delete after it is 15966 * deleted from the group to reschedule responsibilities 15967 * to a different ill. 15968 */ 15969 static void 15970 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15971 { 15972 ilm_t *ilm; 15973 ipif_t *ipif; 15974 ipaddr_t subnet_addr; 15975 ipaddr_t net_addr; 15976 ipaddr_t net_mask = 0; 15977 ipaddr_t subnet_netmask; 15978 ipaddr_t addr; 15979 ip_stack_t *ipst = ill->ill_ipst; 15980 15981 ASSERT(ill->ill_group == NULL); 15982 /* 15983 * Broadcast Responsibility: 15984 * 15985 * 1. If this ill has been nominated for receiving broadcast 15986 * packets, we need to find a new one. Before we find a new 15987 * one, we need to re-group the ires that are part of this new 15988 * group (assumed by ill_nominate_bcast_rcv). We do this by 15989 * calling ill_group_bcast_for_xmit(ill) which will do the right 15990 * thing for us. 15991 * 15992 * 2. If this ill was not nominated for receiving broadcast 15993 * packets, we need to clear the IRE_MARK_NORECV flag 15994 * so that we continue to send up broadcast packets. 15995 */ 15996 if (!ill->ill_isv6) { 15997 /* 15998 * Case 1 above : No optimization here. Just redo the 15999 * nomination. 16000 */ 16001 ill_group_bcast_for_xmit(ill); 16002 ill_nominate_bcast_rcv(illgrp); 16003 16004 /* 16005 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16006 */ 16007 ill_clear_bcast_mark(ill, 0); 16008 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16009 16010 for (ipif = ill->ill_ipif; ipif != NULL; 16011 ipif = ipif->ipif_next) { 16012 16013 if (!(ipif->ipif_flags & IPIF_UP) || 16014 ipif->ipif_subnet == 0) { 16015 continue; 16016 } 16017 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16018 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16019 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16020 } else { 16021 net_mask = htonl(IN_CLASSA_NET); 16022 } 16023 addr = net_mask & ipif->ipif_subnet; 16024 ill_clear_bcast_mark(ill, addr); 16025 16026 net_addr = ~net_mask | addr; 16027 ill_clear_bcast_mark(ill, net_addr); 16028 16029 subnet_netmask = ipif->ipif_net_mask; 16030 addr = ipif->ipif_subnet; 16031 ill_clear_bcast_mark(ill, addr); 16032 16033 subnet_addr = ~subnet_netmask | addr; 16034 ill_clear_bcast_mark(ill, subnet_addr); 16035 } 16036 } 16037 16038 /* 16039 * Multicast Responsibility. 16040 * 16041 * If we have joined allmulti on this one, find a new member 16042 * in the group to join allmulti. As this ill is already part 16043 * of allmulti, we don't have to join on this one. 16044 * 16045 * If we have not joined allmulti on this one, there is no 16046 * responsibility to handoff. But we need to take new 16047 * responsibility i.e, join allmulti on this one if we need 16048 * to. 16049 */ 16050 if (ill->ill_join_allmulti) { 16051 (void) ill_nominate_mcast_rcv(illgrp); 16052 } else { 16053 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16054 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16055 (void) ip_join_allmulti(ill->ill_ipif); 16056 break; 16057 } 16058 } 16059 } 16060 16061 /* 16062 * We intentionally do the flushing of IRE_CACHES only matching 16063 * on the ill and not on groups. Note that we are already deleted 16064 * from the group. 16065 * 16066 * This will make sure that all IRE_CACHES whose stq is pointing 16067 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16068 * deleted and IRE_CACHES that are not pointing at this ill will 16069 * be left alone. 16070 */ 16071 if (ill->ill_isv6) { 16072 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16073 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16074 } else { 16075 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16076 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16077 } 16078 16079 /* 16080 * Some conn may have cached one of the IREs deleted above. By removing 16081 * the ire reference, we clean up the extra reference to the ill held in 16082 * ire->ire_stq. 16083 */ 16084 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16085 16086 /* 16087 * Re-do source address selection for all the members in the 16088 * group, if they borrowed source address from one of the ipifs 16089 * in this ill. 16090 */ 16091 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16092 if (ill->ill_isv6) { 16093 ipif_update_other_ipifs_v6(ipif, illgrp); 16094 } else { 16095 ipif_update_other_ipifs(ipif, illgrp); 16096 } 16097 } 16098 } 16099 16100 /* 16101 * Delete the ill from the group. The caller makes sure that it is 16102 * in a group and it okay to delete from the group. So, we always 16103 * delete here. 16104 */ 16105 static void 16106 illgrp_delete(ill_t *ill) 16107 { 16108 ill_group_t *illgrp; 16109 ill_group_t *tmpg; 16110 ill_t *tmp_ill; 16111 ip_stack_t *ipst = ill->ill_ipst; 16112 16113 /* 16114 * Reset illgrp_ill_schednext if it was pointing at us. 16115 * We need to do this before we set ill_group to NULL. 16116 */ 16117 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16118 mutex_enter(&ill->ill_lock); 16119 16120 illgrp_reset_schednext(ill); 16121 16122 illgrp = ill->ill_group; 16123 16124 /* Delete the ill from illgrp. */ 16125 if (illgrp->illgrp_ill == ill) { 16126 illgrp->illgrp_ill = ill->ill_group_next; 16127 } else { 16128 tmp_ill = illgrp->illgrp_ill; 16129 while (tmp_ill->ill_group_next != ill) { 16130 tmp_ill = tmp_ill->ill_group_next; 16131 ASSERT(tmp_ill != NULL); 16132 } 16133 tmp_ill->ill_group_next = ill->ill_group_next; 16134 } 16135 ill->ill_group = NULL; 16136 ill->ill_group_next = NULL; 16137 16138 illgrp->illgrp_ill_count--; 16139 mutex_exit(&ill->ill_lock); 16140 rw_exit(&ipst->ips_ill_g_lock); 16141 16142 /* 16143 * As this ill is leaving the group, we need to hand off 16144 * the responsibilities to the other ills in the group, if 16145 * this ill had some responsibilities. 16146 */ 16147 16148 ill_handoff_responsibility(ill, illgrp); 16149 16150 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16151 16152 if (illgrp->illgrp_ill_count == 0) { 16153 16154 ASSERT(illgrp->illgrp_ill == NULL); 16155 if (ill->ill_isv6) { 16156 if (illgrp == ipst->ips_illgrp_head_v6) { 16157 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16158 } else { 16159 tmpg = ipst->ips_illgrp_head_v6; 16160 while (tmpg->illgrp_next != illgrp) { 16161 tmpg = tmpg->illgrp_next; 16162 ASSERT(tmpg != NULL); 16163 } 16164 tmpg->illgrp_next = illgrp->illgrp_next; 16165 } 16166 } else { 16167 if (illgrp == ipst->ips_illgrp_head_v4) { 16168 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16169 } else { 16170 tmpg = ipst->ips_illgrp_head_v4; 16171 while (tmpg->illgrp_next != illgrp) { 16172 tmpg = tmpg->illgrp_next; 16173 ASSERT(tmpg != NULL); 16174 } 16175 tmpg->illgrp_next = illgrp->illgrp_next; 16176 } 16177 } 16178 mutex_destroy(&illgrp->illgrp_lock); 16179 mi_free(illgrp); 16180 } 16181 rw_exit(&ipst->ips_ill_g_lock); 16182 16183 /* 16184 * Even though the ill is out of the group its not necessary 16185 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16186 * We will split the ipsq when phyint_groupname is set to NULL. 16187 */ 16188 16189 /* 16190 * Send a routing sockets message if we are deleting from 16191 * groups with names. 16192 */ 16193 if (ill->ill_phyint->phyint_groupname_len != 0) 16194 ip_rts_ifmsg(ill->ill_ipif); 16195 } 16196 16197 /* 16198 * Re-do source address selection. This is normally called when 16199 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16200 * ipif comes up. 16201 */ 16202 void 16203 ill_update_source_selection(ill_t *ill) 16204 { 16205 ipif_t *ipif; 16206 16207 ASSERT(IAM_WRITER_ILL(ill)); 16208 16209 if (ill->ill_group != NULL) 16210 ill = ill->ill_group->illgrp_ill; 16211 16212 for (; ill != NULL; ill = ill->ill_group_next) { 16213 for (ipif = ill->ill_ipif; ipif != NULL; 16214 ipif = ipif->ipif_next) { 16215 if (ill->ill_isv6) 16216 ipif_recreate_interface_routes_v6(NULL, ipif); 16217 else 16218 ipif_recreate_interface_routes(NULL, ipif); 16219 } 16220 } 16221 } 16222 16223 /* 16224 * Insert ill in a group headed by illgrp_head. The caller can either 16225 * pass a groupname in which case we search for a group with the 16226 * same name to insert in or pass a group to insert in. This function 16227 * would only search groups with names. 16228 * 16229 * NOTE : The caller should make sure that there is at least one ipif 16230 * UP on this ill so that illgrp_scheduler can pick this ill 16231 * for outbound packets. If ill_ipif_up_count is zero, we have 16232 * already sent a DL_UNBIND to the driver and we don't want to 16233 * send anymore packets. We don't assert for ipif_up_count 16234 * to be greater than zero, because ipif_up_done wants to call 16235 * this function before bumping up the ipif_up_count. See 16236 * ipif_up_done() for details. 16237 */ 16238 int 16239 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16240 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16241 { 16242 ill_group_t *illgrp; 16243 ill_t *prev_ill; 16244 phyint_t *phyi; 16245 ip_stack_t *ipst = ill->ill_ipst; 16246 16247 ASSERT(ill->ill_group == NULL); 16248 16249 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16250 mutex_enter(&ill->ill_lock); 16251 16252 if (groupname != NULL) { 16253 /* 16254 * Look for a group with a matching groupname to insert. 16255 */ 16256 for (illgrp = *illgrp_head; illgrp != NULL; 16257 illgrp = illgrp->illgrp_next) { 16258 16259 ill_t *tmp_ill; 16260 16261 /* 16262 * If we have an ill_group_t in the list which has 16263 * no ill_t assigned then we must be in the process of 16264 * removing this group. We skip this as illgrp_delete() 16265 * will remove it from the list. 16266 */ 16267 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16268 ASSERT(illgrp->illgrp_ill_count == 0); 16269 continue; 16270 } 16271 16272 ASSERT(tmp_ill->ill_phyint != NULL); 16273 phyi = tmp_ill->ill_phyint; 16274 /* 16275 * Look at groups which has names only. 16276 */ 16277 if (phyi->phyint_groupname_len == 0) 16278 continue; 16279 /* 16280 * Names are stored in the phyint common to both 16281 * IPv4 and IPv6. 16282 */ 16283 if (mi_strcmp(phyi->phyint_groupname, 16284 groupname) == 0) { 16285 break; 16286 } 16287 } 16288 } else { 16289 /* 16290 * If the caller passes in a NULL "grp_to_insert", we 16291 * allocate one below and insert this singleton. 16292 */ 16293 illgrp = grp_to_insert; 16294 } 16295 16296 ill->ill_group_next = NULL; 16297 16298 if (illgrp == NULL) { 16299 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16300 if (illgrp == NULL) { 16301 return (ENOMEM); 16302 } 16303 illgrp->illgrp_next = *illgrp_head; 16304 *illgrp_head = illgrp; 16305 illgrp->illgrp_ill = ill; 16306 illgrp->illgrp_ill_count = 1; 16307 ill->ill_group = illgrp; 16308 /* 16309 * Used in illgrp_scheduler to protect multiple threads 16310 * from traversing the list. 16311 */ 16312 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16313 } else { 16314 ASSERT(ill->ill_net_type == 16315 illgrp->illgrp_ill->ill_net_type); 16316 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16317 16318 /* Insert ill at tail of this group */ 16319 prev_ill = illgrp->illgrp_ill; 16320 while (prev_ill->ill_group_next != NULL) 16321 prev_ill = prev_ill->ill_group_next; 16322 prev_ill->ill_group_next = ill; 16323 ill->ill_group = illgrp; 16324 illgrp->illgrp_ill_count++; 16325 /* 16326 * Inherit group properties. Currently only forwarding 16327 * is the property we try to keep the same with all the 16328 * ills. When there are more, we will abstract this into 16329 * a function. 16330 */ 16331 ill->ill_flags &= ~ILLF_ROUTER; 16332 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16333 } 16334 mutex_exit(&ill->ill_lock); 16335 rw_exit(&ipst->ips_ill_g_lock); 16336 16337 /* 16338 * 1) When ipif_up_done() calls this function, ipif_up_count 16339 * may be zero as it has not yet been bumped. But the ires 16340 * have already been added. So, we do the nomination here 16341 * itself. But, when ip_sioctl_groupname calls this, it checks 16342 * for ill_ipif_up_count != 0. Thus we don't check for 16343 * ill_ipif_up_count here while nominating broadcast ires for 16344 * receive. 16345 * 16346 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16347 * to group them properly as ire_add() has already happened 16348 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16349 * case, we need to do it here anyway. 16350 */ 16351 if (!ill->ill_isv6) { 16352 ill_group_bcast_for_xmit(ill); 16353 ill_nominate_bcast_rcv(illgrp); 16354 } 16355 16356 if (!ipif_is_coming_up) { 16357 /* 16358 * When ipif_up_done() calls this function, the multicast 16359 * groups have not been joined yet. So, there is no point in 16360 * nomination. ip_join_allmulti will handle groups when 16361 * ill_recover_multicast is called from ipif_up_done() later. 16362 */ 16363 (void) ill_nominate_mcast_rcv(illgrp); 16364 /* 16365 * ipif_up_done calls ill_update_source_selection 16366 * anyway. Moreover, we don't want to re-create 16367 * interface routes while ipif_up_done() still has reference 16368 * to them. Refer to ipif_up_done() for more details. 16369 */ 16370 ill_update_source_selection(ill); 16371 } 16372 16373 /* 16374 * Send a routing sockets message if we are inserting into 16375 * groups with names. 16376 */ 16377 if (groupname != NULL) 16378 ip_rts_ifmsg(ill->ill_ipif); 16379 return (0); 16380 } 16381 16382 /* 16383 * Return the first phyint matching the groupname. There could 16384 * be more than one when there are ill groups. 16385 * 16386 * If 'usable' is set, then we exclude ones that are marked with any of 16387 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16388 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16389 * emulation of ipmp. 16390 */ 16391 phyint_t * 16392 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16393 { 16394 phyint_t *phyi; 16395 16396 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16397 /* 16398 * Group names are stored in the phyint - a common structure 16399 * to both IPv4 and IPv6. 16400 */ 16401 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16402 for (; phyi != NULL; 16403 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16404 phyi, AVL_AFTER)) { 16405 if (phyi->phyint_groupname_len == 0) 16406 continue; 16407 /* 16408 * Skip the ones that should not be used since the callers 16409 * sometime use this for sending packets. 16410 */ 16411 if (usable && (phyi->phyint_flags & 16412 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16413 continue; 16414 16415 ASSERT(phyi->phyint_groupname != NULL); 16416 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16417 return (phyi); 16418 } 16419 return (NULL); 16420 } 16421 16422 16423 /* 16424 * Return the first usable phyint matching the group index. By 'usable' 16425 * we exclude ones that are marked ununsable with any of 16426 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16427 * 16428 * Used only for the ipmp/netinfo emulation of ipmp. 16429 */ 16430 phyint_t * 16431 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16432 { 16433 phyint_t *phyi; 16434 16435 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16436 16437 if (!ipst->ips_ipmp_hook_emulation) 16438 return (NULL); 16439 16440 /* 16441 * Group indicies are stored in the phyint - a common structure 16442 * to both IPv4 and IPv6. 16443 */ 16444 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16445 for (; phyi != NULL; 16446 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16447 phyi, AVL_AFTER)) { 16448 /* Ignore the ones that do not have a group */ 16449 if (phyi->phyint_groupname_len == 0) 16450 continue; 16451 16452 ASSERT(phyi->phyint_group_ifindex != 0); 16453 /* 16454 * Skip the ones that should not be used since the callers 16455 * sometime use this for sending packets. 16456 */ 16457 if (phyi->phyint_flags & 16458 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16459 continue; 16460 if (phyi->phyint_group_ifindex == group_ifindex) 16461 return (phyi); 16462 } 16463 return (NULL); 16464 } 16465 16466 16467 /* 16468 * MT notes on creation and deletion of IPMP groups 16469 * 16470 * Creation and deletion of IPMP groups introduce the need to merge or 16471 * split the associated serialization objects i.e the ipsq's. Normally all 16472 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16473 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16474 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16475 * is a need to change the <ill-ipsq> association and we have to operate on both 16476 * the source and destination IPMP groups. For eg. attempting to set the 16477 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16478 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16479 * source or destination IPMP group are mapped to a single ipsq for executing 16480 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16481 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16482 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16483 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16484 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16485 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16486 * 16487 * In the above example the ioctl handling code locates the current ipsq of hme0 16488 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16489 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16490 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16491 * the destination ipsq. If the destination ipsq is not busy, it also enters 16492 * the destination ipsq exclusively. Now the actual groupname setting operation 16493 * can proceed. If the destination ipsq is busy, the operation is enqueued 16494 * on the destination (merged) ipsq and will be handled in the unwind from 16495 * ipsq_exit. 16496 * 16497 * To prevent other threads accessing the ill while the group name change is 16498 * in progres, we bring down the ipifs which also removes the ill from the 16499 * group. The group is changed in phyint and when the first ipif on the ill 16500 * is brought up, the ill is inserted into the right IPMP group by 16501 * illgrp_insert. 16502 */ 16503 /* ARGSUSED */ 16504 int 16505 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16506 ip_ioctl_cmd_t *ipip, void *ifreq) 16507 { 16508 int i; 16509 char *tmp; 16510 int namelen; 16511 ill_t *ill = ipif->ipif_ill; 16512 ill_t *ill_v4, *ill_v6; 16513 int err = 0; 16514 phyint_t *phyi; 16515 phyint_t *phyi_tmp; 16516 struct lifreq *lifr; 16517 mblk_t *mp1; 16518 char *groupname; 16519 ipsq_t *ipsq; 16520 ip_stack_t *ipst = ill->ill_ipst; 16521 16522 ASSERT(IAM_WRITER_IPIF(ipif)); 16523 16524 /* Existance verified in ip_wput_nondata */ 16525 mp1 = mp->b_cont->b_cont; 16526 lifr = (struct lifreq *)mp1->b_rptr; 16527 groupname = lifr->lifr_groupname; 16528 16529 if (ipif->ipif_id != 0) 16530 return (EINVAL); 16531 16532 phyi = ill->ill_phyint; 16533 ASSERT(phyi != NULL); 16534 16535 if (phyi->phyint_flags & PHYI_VIRTUAL) 16536 return (EINVAL); 16537 16538 tmp = groupname; 16539 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16540 ; 16541 16542 if (i == LIFNAMSIZ) { 16543 /* no null termination */ 16544 return (EINVAL); 16545 } 16546 16547 /* 16548 * Calculate the namelen exclusive of the null 16549 * termination character. 16550 */ 16551 namelen = tmp - groupname; 16552 16553 ill_v4 = phyi->phyint_illv4; 16554 ill_v6 = phyi->phyint_illv6; 16555 16556 /* 16557 * ILL cannot be part of a usesrc group and and IPMP group at the 16558 * same time. No need to grab the ill_g_usesrc_lock here, see 16559 * synchronization notes in ip.c 16560 */ 16561 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16562 return (EINVAL); 16563 } 16564 16565 /* 16566 * mark the ill as changing. 16567 * this should queue all new requests on the syncq. 16568 */ 16569 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16570 16571 if (ill_v4 != NULL) 16572 ill_v4->ill_state_flags |= ILL_CHANGING; 16573 if (ill_v6 != NULL) 16574 ill_v6->ill_state_flags |= ILL_CHANGING; 16575 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16576 16577 if (namelen == 0) { 16578 /* 16579 * Null string means remove this interface from the 16580 * existing group. 16581 */ 16582 if (phyi->phyint_groupname_len == 0) { 16583 /* 16584 * Never was in a group. 16585 */ 16586 err = 0; 16587 goto done; 16588 } 16589 16590 /* 16591 * IPv4 or IPv6 may be temporarily out of the group when all 16592 * the ipifs are down. Thus, we need to check for ill_group to 16593 * be non-NULL. 16594 */ 16595 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16596 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16597 mutex_enter(&ill_v4->ill_lock); 16598 if (!ill_is_quiescent(ill_v4)) { 16599 /* 16600 * ipsq_pending_mp_add will not fail since 16601 * connp is NULL 16602 */ 16603 (void) ipsq_pending_mp_add(NULL, 16604 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16605 mutex_exit(&ill_v4->ill_lock); 16606 err = EINPROGRESS; 16607 goto done; 16608 } 16609 mutex_exit(&ill_v4->ill_lock); 16610 } 16611 16612 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16613 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16614 mutex_enter(&ill_v6->ill_lock); 16615 if (!ill_is_quiescent(ill_v6)) { 16616 (void) ipsq_pending_mp_add(NULL, 16617 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16618 mutex_exit(&ill_v6->ill_lock); 16619 err = EINPROGRESS; 16620 goto done; 16621 } 16622 mutex_exit(&ill_v6->ill_lock); 16623 } 16624 16625 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16626 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16627 mutex_enter(&phyi->phyint_lock); 16628 ASSERT(phyi->phyint_groupname != NULL); 16629 mi_free(phyi->phyint_groupname); 16630 phyi->phyint_groupname = NULL; 16631 phyi->phyint_groupname_len = 0; 16632 16633 /* Restore the ifindex used to be the per interface one */ 16634 phyi->phyint_group_ifindex = 0; 16635 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16636 mutex_exit(&phyi->phyint_lock); 16637 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16638 rw_exit(&ipst->ips_ill_g_lock); 16639 err = ill_up_ipifs(ill, q, mp); 16640 16641 /* 16642 * set the split flag so that the ipsq can be split 16643 */ 16644 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16645 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16646 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16647 16648 } else { 16649 if (phyi->phyint_groupname_len != 0) { 16650 ASSERT(phyi->phyint_groupname != NULL); 16651 /* Are we inserting in the same group ? */ 16652 if (mi_strcmp(groupname, 16653 phyi->phyint_groupname) == 0) { 16654 err = 0; 16655 goto done; 16656 } 16657 } 16658 16659 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16660 /* 16661 * Merge ipsq for the group's. 16662 * This check is here as multiple groups/ills might be 16663 * sharing the same ipsq. 16664 * If we have to merege than the operation is restarted 16665 * on the new ipsq. 16666 */ 16667 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16668 if (phyi->phyint_ipsq != ipsq) { 16669 rw_exit(&ipst->ips_ill_g_lock); 16670 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16671 goto done; 16672 } 16673 /* 16674 * Running exclusive on new ipsq. 16675 */ 16676 16677 ASSERT(ipsq != NULL); 16678 ASSERT(ipsq->ipsq_writer == curthread); 16679 16680 /* 16681 * Check whether the ill_type and ill_net_type matches before 16682 * we allocate any memory so that the cleanup is easier. 16683 * 16684 * We can't group dissimilar ones as we can't load spread 16685 * packets across the group because of potential link-level 16686 * header differences. 16687 */ 16688 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16689 if (phyi_tmp != NULL) { 16690 if ((ill_v4 != NULL && 16691 phyi_tmp->phyint_illv4 != NULL) && 16692 ((ill_v4->ill_net_type != 16693 phyi_tmp->phyint_illv4->ill_net_type) || 16694 (ill_v4->ill_type != 16695 phyi_tmp->phyint_illv4->ill_type))) { 16696 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16697 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16698 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16699 rw_exit(&ipst->ips_ill_g_lock); 16700 return (EINVAL); 16701 } 16702 if ((ill_v6 != NULL && 16703 phyi_tmp->phyint_illv6 != NULL) && 16704 ((ill_v6->ill_net_type != 16705 phyi_tmp->phyint_illv6->ill_net_type) || 16706 (ill_v6->ill_type != 16707 phyi_tmp->phyint_illv6->ill_type))) { 16708 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16709 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16710 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16711 rw_exit(&ipst->ips_ill_g_lock); 16712 return (EINVAL); 16713 } 16714 } 16715 16716 rw_exit(&ipst->ips_ill_g_lock); 16717 16718 /* 16719 * bring down all v4 ipifs. 16720 */ 16721 if (ill_v4 != NULL) { 16722 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16723 } 16724 16725 /* 16726 * bring down all v6 ipifs. 16727 */ 16728 if (ill_v6 != NULL) { 16729 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16730 } 16731 16732 /* 16733 * make sure all ipifs are down and there are no active 16734 * references. Call to ipsq_pending_mp_add will not fail 16735 * since connp is NULL. 16736 */ 16737 if (ill_v4 != NULL) { 16738 mutex_enter(&ill_v4->ill_lock); 16739 if (!ill_is_quiescent(ill_v4)) { 16740 (void) ipsq_pending_mp_add(NULL, 16741 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16742 mutex_exit(&ill_v4->ill_lock); 16743 err = EINPROGRESS; 16744 goto done; 16745 } 16746 mutex_exit(&ill_v4->ill_lock); 16747 } 16748 16749 if (ill_v6 != NULL) { 16750 mutex_enter(&ill_v6->ill_lock); 16751 if (!ill_is_quiescent(ill_v6)) { 16752 (void) ipsq_pending_mp_add(NULL, 16753 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16754 mutex_exit(&ill_v6->ill_lock); 16755 err = EINPROGRESS; 16756 goto done; 16757 } 16758 mutex_exit(&ill_v6->ill_lock); 16759 } 16760 16761 /* 16762 * allocate including space for null terminator 16763 * before we insert. 16764 */ 16765 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16766 if (tmp == NULL) 16767 return (ENOMEM); 16768 16769 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16770 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16771 mutex_enter(&phyi->phyint_lock); 16772 if (phyi->phyint_groupname_len != 0) { 16773 ASSERT(phyi->phyint_groupname != NULL); 16774 mi_free(phyi->phyint_groupname); 16775 } 16776 16777 /* 16778 * setup the new group name. 16779 */ 16780 phyi->phyint_groupname = tmp; 16781 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16782 phyi->phyint_groupname_len = namelen + 1; 16783 16784 if (ipst->ips_ipmp_hook_emulation) { 16785 /* 16786 * If the group already exists we use the existing 16787 * group_ifindex, otherwise we pick a new index here. 16788 */ 16789 if (phyi_tmp != NULL) { 16790 phyi->phyint_group_ifindex = 16791 phyi_tmp->phyint_group_ifindex; 16792 } else { 16793 /* XXX We need a recovery strategy here. */ 16794 if (!ip_assign_ifindex( 16795 &phyi->phyint_group_ifindex, ipst)) 16796 cmn_err(CE_PANIC, 16797 "ip_assign_ifindex() failed"); 16798 } 16799 } 16800 /* 16801 * Select whether the netinfo and hook use the per-interface 16802 * or per-group ifindex. 16803 */ 16804 if (ipst->ips_ipmp_hook_emulation) 16805 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16806 else 16807 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16808 16809 if (ipst->ips_ipmp_hook_emulation && 16810 phyi_tmp != NULL) { 16811 /* First phyint in group - group PLUMB event */ 16812 ill_nic_info_plumb(ill, B_TRUE); 16813 } 16814 mutex_exit(&phyi->phyint_lock); 16815 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16816 rw_exit(&ipst->ips_ill_g_lock); 16817 16818 err = ill_up_ipifs(ill, q, mp); 16819 } 16820 16821 done: 16822 /* 16823 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16824 */ 16825 if (err != EINPROGRESS) { 16826 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16827 if (ill_v4 != NULL) 16828 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16829 if (ill_v6 != NULL) 16830 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16831 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16832 } 16833 return (err); 16834 } 16835 16836 /* ARGSUSED */ 16837 int 16838 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16839 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16840 { 16841 ill_t *ill; 16842 phyint_t *phyi; 16843 struct lifreq *lifr; 16844 mblk_t *mp1; 16845 16846 /* Existence verified in ip_wput_nondata */ 16847 mp1 = mp->b_cont->b_cont; 16848 lifr = (struct lifreq *)mp1->b_rptr; 16849 ill = ipif->ipif_ill; 16850 phyi = ill->ill_phyint; 16851 16852 lifr->lifr_groupname[0] = '\0'; 16853 /* 16854 * ill_group may be null if all the interfaces 16855 * are down. But still, the phyint should always 16856 * hold the name. 16857 */ 16858 if (phyi->phyint_groupname_len != 0) { 16859 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16860 phyi->phyint_groupname_len); 16861 } 16862 16863 return (0); 16864 } 16865 16866 16867 typedef struct conn_move_s { 16868 ill_t *cm_from_ill; 16869 ill_t *cm_to_ill; 16870 int cm_ifindex; 16871 } conn_move_t; 16872 16873 /* 16874 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16875 */ 16876 static void 16877 conn_move(conn_t *connp, caddr_t arg) 16878 { 16879 conn_move_t *connm; 16880 int ifindex; 16881 int i; 16882 ill_t *from_ill; 16883 ill_t *to_ill; 16884 ilg_t *ilg; 16885 ilm_t *ret_ilm; 16886 16887 connm = (conn_move_t *)arg; 16888 ifindex = connm->cm_ifindex; 16889 from_ill = connm->cm_from_ill; 16890 to_ill = connm->cm_to_ill; 16891 16892 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16893 16894 /* All multicast fields protected by conn_lock */ 16895 mutex_enter(&connp->conn_lock); 16896 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16897 if ((connp->conn_outgoing_ill == from_ill) && 16898 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16899 connp->conn_outgoing_ill = to_ill; 16900 connp->conn_incoming_ill = to_ill; 16901 } 16902 16903 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16904 16905 if ((connp->conn_multicast_ill == from_ill) && 16906 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16907 connp->conn_multicast_ill = connm->cm_to_ill; 16908 } 16909 16910 /* Change IP_XMIT_IF associations */ 16911 if ((connp->conn_xmit_if_ill == from_ill) && 16912 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16913 connp->conn_xmit_if_ill = to_ill; 16914 } 16915 /* 16916 * Change the ilg_ill to point to the new one. This assumes 16917 * ilm_move_v6 has moved the ilms to new_ill and the driver 16918 * has been told to receive packets on this interface. 16919 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16920 * But when doing a FAILOVER, it might fail with ENOMEM and so 16921 * some ilms may not have moved. We check to see whether 16922 * the ilms have moved to to_ill. We can't check on from_ill 16923 * as in the process of moving, we could have split an ilm 16924 * in to two - which has the same orig_ifindex and v6group. 16925 * 16926 * For IPv4, ilg_ipif moves implicitly. The code below really 16927 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16928 */ 16929 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16930 ilg = &connp->conn_ilg[i]; 16931 if ((ilg->ilg_ill == from_ill) && 16932 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16933 /* ifindex != 0 indicates failback */ 16934 if (ifindex != 0) { 16935 connp->conn_ilg[i].ilg_ill = to_ill; 16936 continue; 16937 } 16938 16939 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16940 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16941 connp->conn_zoneid); 16942 16943 if (ret_ilm != NULL) 16944 connp->conn_ilg[i].ilg_ill = to_ill; 16945 } 16946 } 16947 mutex_exit(&connp->conn_lock); 16948 } 16949 16950 static void 16951 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16952 { 16953 conn_move_t connm; 16954 ip_stack_t *ipst = from_ill->ill_ipst; 16955 16956 connm.cm_from_ill = from_ill; 16957 connm.cm_to_ill = to_ill; 16958 connm.cm_ifindex = ifindex; 16959 16960 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16961 } 16962 16963 /* 16964 * ilm has been moved from from_ill to to_ill. 16965 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16966 * appropriately. 16967 * 16968 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16969 * the code there de-references ipif_ill to get the ill to 16970 * send multicast requests. It does not work as ipif is on its 16971 * move and already moved when this function is called. 16972 * Thus, we need to use from_ill and to_ill send down multicast 16973 * requests. 16974 */ 16975 static void 16976 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16977 { 16978 ipif_t *ipif; 16979 ilm_t *ilm; 16980 16981 /* 16982 * See whether we need to send down DL_ENABMULTI_REQ on 16983 * to_ill as ilm has just been added. 16984 */ 16985 ASSERT(IAM_WRITER_ILL(to_ill)); 16986 ASSERT(IAM_WRITER_ILL(from_ill)); 16987 16988 ILM_WALKER_HOLD(to_ill); 16989 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16990 16991 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16992 continue; 16993 /* 16994 * no locks held, ill/ipif cannot dissappear as long 16995 * as we are writer. 16996 */ 16997 ipif = to_ill->ill_ipif; 16998 /* 16999 * No need to hold any lock as we are the writer and this 17000 * can only be changed by a writer. 17001 */ 17002 ilm->ilm_is_new = B_FALSE; 17003 17004 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17005 ipif->ipif_flags & IPIF_POINTOPOINT) { 17006 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17007 "resolver\n")); 17008 continue; /* Must be IRE_IF_NORESOLVER */ 17009 } 17010 17011 17012 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17013 ip1dbg(("ilm_send_multicast_reqs: " 17014 "to_ill MULTI_BCAST\n")); 17015 goto from; 17016 } 17017 17018 if (to_ill->ill_isv6) 17019 mld_joingroup(ilm); 17020 else 17021 igmp_joingroup(ilm); 17022 17023 if (to_ill->ill_ipif_up_count == 0) { 17024 /* 17025 * Nobody there. All multicast addresses will be 17026 * re-joined when we get the DL_BIND_ACK bringing the 17027 * interface up. 17028 */ 17029 ilm->ilm_notify_driver = B_FALSE; 17030 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17031 goto from; 17032 } 17033 17034 /* 17035 * For allmulti address, we want to join on only one interface. 17036 * Checking for ilm_numentries_v6 is not correct as you may 17037 * find an ilm with zero address on to_ill, but we may not 17038 * have nominated to_ill for receiving. Thus, if we have 17039 * nominated from_ill (ill_join_allmulti is set), nominate 17040 * only if to_ill is not already nominated (to_ill normally 17041 * should not have been nominated if "from_ill" has already 17042 * been nominated. As we don't prevent failovers from happening 17043 * across groups, we don't assert). 17044 */ 17045 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17046 /* 17047 * There is no need to hold ill locks as we are 17048 * writer on both ills and when ill_join_allmulti 17049 * is changed the thread is always a writer. 17050 */ 17051 if (from_ill->ill_join_allmulti && 17052 !to_ill->ill_join_allmulti) { 17053 (void) ip_join_allmulti(to_ill->ill_ipif); 17054 } 17055 } else if (ilm->ilm_notify_driver) { 17056 17057 /* 17058 * This is a newly moved ilm so we need to tell the 17059 * driver about the new group. There can be more than 17060 * one ilm's for the same group in the list each with a 17061 * different orig_ifindex. We have to inform the driver 17062 * once. In ilm_move_v[4,6] we only set the flag 17063 * ilm_notify_driver for the first ilm. 17064 */ 17065 17066 (void) ip_ll_send_enabmulti_req(to_ill, 17067 &ilm->ilm_v6addr); 17068 } 17069 17070 ilm->ilm_notify_driver = B_FALSE; 17071 17072 /* 17073 * See whether we need to send down DL_DISABMULTI_REQ on 17074 * from_ill as ilm has just been removed. 17075 */ 17076 from: 17077 ipif = from_ill->ill_ipif; 17078 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17079 ipif->ipif_flags & IPIF_POINTOPOINT) { 17080 ip1dbg(("ilm_send_multicast_reqs: " 17081 "from_ill not resolver\n")); 17082 continue; /* Must be IRE_IF_NORESOLVER */ 17083 } 17084 17085 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17086 ip1dbg(("ilm_send_multicast_reqs: " 17087 "from_ill MULTI_BCAST\n")); 17088 continue; 17089 } 17090 17091 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17092 if (from_ill->ill_join_allmulti) 17093 (void) ip_leave_allmulti(from_ill->ill_ipif); 17094 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17095 (void) ip_ll_send_disabmulti_req(from_ill, 17096 &ilm->ilm_v6addr); 17097 } 17098 } 17099 ILM_WALKER_RELE(to_ill); 17100 } 17101 17102 /* 17103 * This function is called when all multicast memberships needs 17104 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17105 * called only once unlike the IPv4 counterpart where it is called after 17106 * every logical interface is moved. The reason is due to multicast 17107 * memberships are joined using an interface address in IPv4 while in 17108 * IPv6, interface index is used. 17109 */ 17110 static void 17111 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17112 { 17113 ilm_t *ilm; 17114 ilm_t *ilm_next; 17115 ilm_t *new_ilm; 17116 ilm_t **ilmp; 17117 int count; 17118 char buf[INET6_ADDRSTRLEN]; 17119 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17120 ip_stack_t *ipst = from_ill->ill_ipst; 17121 17122 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17123 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17124 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17125 17126 if (ifindex == 0) { 17127 /* 17128 * Form the solicited node mcast address which is used later. 17129 */ 17130 ipif_t *ipif; 17131 17132 ipif = from_ill->ill_ipif; 17133 ASSERT(ipif->ipif_id == 0); 17134 17135 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17136 } 17137 17138 ilmp = &from_ill->ill_ilm; 17139 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17140 ilm_next = ilm->ilm_next; 17141 17142 if (ilm->ilm_flags & ILM_DELETED) { 17143 ilmp = &ilm->ilm_next; 17144 continue; 17145 } 17146 17147 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17148 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17149 ASSERT(ilm->ilm_orig_ifindex != 0); 17150 if (ilm->ilm_orig_ifindex == ifindex) { 17151 /* 17152 * We are failing back multicast memberships. 17153 * If the same ilm exists in to_ill, it means somebody 17154 * has joined the same group there e.g. ff02::1 17155 * is joined within the kernel when the interfaces 17156 * came UP. 17157 */ 17158 ASSERT(ilm->ilm_ipif == NULL); 17159 if (new_ilm != NULL) { 17160 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17161 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17162 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17163 new_ilm->ilm_is_new = B_TRUE; 17164 } 17165 } else { 17166 /* 17167 * check if we can just move the ilm 17168 */ 17169 if (from_ill->ill_ilm_walker_cnt != 0) { 17170 /* 17171 * We have walkers we cannot move 17172 * the ilm, so allocate a new ilm, 17173 * this (old) ilm will be marked 17174 * ILM_DELETED at the end of the loop 17175 * and will be freed when the 17176 * last walker exits. 17177 */ 17178 new_ilm = (ilm_t *)mi_zalloc 17179 (sizeof (ilm_t)); 17180 if (new_ilm == NULL) { 17181 ip0dbg(("ilm_move_v6: " 17182 "FAILBACK of IPv6" 17183 " multicast address %s : " 17184 "from %s to" 17185 " %s failed : ENOMEM \n", 17186 inet_ntop(AF_INET6, 17187 &ilm->ilm_v6addr, buf, 17188 sizeof (buf)), 17189 from_ill->ill_name, 17190 to_ill->ill_name)); 17191 17192 ilmp = &ilm->ilm_next; 17193 continue; 17194 } 17195 *new_ilm = *ilm; 17196 /* 17197 * we don't want new_ilm linked to 17198 * ilm's filter list. 17199 */ 17200 new_ilm->ilm_filter = NULL; 17201 } else { 17202 /* 17203 * No walkers we can move the ilm. 17204 * lets take it out of the list. 17205 */ 17206 *ilmp = ilm->ilm_next; 17207 ilm->ilm_next = NULL; 17208 new_ilm = ilm; 17209 } 17210 17211 /* 17212 * if this is the first ilm for the group 17213 * set ilm_notify_driver so that we notify the 17214 * driver in ilm_send_multicast_reqs. 17215 */ 17216 if (ilm_lookup_ill_v6(to_ill, 17217 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17218 new_ilm->ilm_notify_driver = B_TRUE; 17219 17220 new_ilm->ilm_ill = to_ill; 17221 /* Add to the to_ill's list */ 17222 new_ilm->ilm_next = to_ill->ill_ilm; 17223 to_ill->ill_ilm = new_ilm; 17224 /* 17225 * set the flag so that mld_joingroup is 17226 * called in ilm_send_multicast_reqs(). 17227 */ 17228 new_ilm->ilm_is_new = B_TRUE; 17229 } 17230 goto bottom; 17231 } else if (ifindex != 0) { 17232 /* 17233 * If this is FAILBACK (ifindex != 0) and the ifindex 17234 * has not matched above, look at the next ilm. 17235 */ 17236 ilmp = &ilm->ilm_next; 17237 continue; 17238 } 17239 /* 17240 * If we are here, it means ifindex is 0. Failover 17241 * everything. 17242 * 17243 * We need to handle solicited node mcast address 17244 * and all_nodes mcast address differently as they 17245 * are joined witin the kenrel (ipif_multicast_up) 17246 * and potentially from the userland. We are called 17247 * after the ipifs of from_ill has been moved. 17248 * If we still find ilms on ill with solicited node 17249 * mcast address or all_nodes mcast address, it must 17250 * belong to the UP interface that has not moved e.g. 17251 * ipif_id 0 with the link local prefix does not move. 17252 * We join this on the new ill accounting for all the 17253 * userland memberships so that applications don't 17254 * see any failure. 17255 * 17256 * We need to make sure that we account only for the 17257 * solicited node and all node multicast addresses 17258 * that was brought UP on these. In the case of 17259 * a failover from A to B, we might have ilms belonging 17260 * to A (ilm_orig_ifindex pointing at A) on B accounting 17261 * for the membership from the userland. If we are failing 17262 * over from B to C now, we will find the ones belonging 17263 * to A on B. These don't account for the ill_ipif_up_count. 17264 * They just move from B to C. The check below on 17265 * ilm_orig_ifindex ensures that. 17266 */ 17267 if ((ilm->ilm_orig_ifindex == 17268 from_ill->ill_phyint->phyint_ifindex) && 17269 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17270 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17271 &ilm->ilm_v6addr))) { 17272 ASSERT(ilm->ilm_refcnt > 0); 17273 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17274 /* 17275 * For indentation reasons, we are not using a 17276 * "else" here. 17277 */ 17278 if (count == 0) { 17279 ilmp = &ilm->ilm_next; 17280 continue; 17281 } 17282 ilm->ilm_refcnt -= count; 17283 if (new_ilm != NULL) { 17284 /* 17285 * Can find one with the same 17286 * ilm_orig_ifindex, if we are failing 17287 * over to a STANDBY. This happens 17288 * when somebody wants to join a group 17289 * on a STANDBY interface and we 17290 * internally join on a different one. 17291 * If we had joined on from_ill then, a 17292 * failover now will find a new ilm 17293 * with this index. 17294 */ 17295 ip1dbg(("ilm_move_v6: FAILOVER, found" 17296 " new ilm on %s, group address %s\n", 17297 to_ill->ill_name, 17298 inet_ntop(AF_INET6, 17299 &ilm->ilm_v6addr, buf, 17300 sizeof (buf)))); 17301 new_ilm->ilm_refcnt += count; 17302 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17303 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17304 new_ilm->ilm_is_new = B_TRUE; 17305 } 17306 } else { 17307 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17308 if (new_ilm == NULL) { 17309 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17310 " multicast address %s : from %s to" 17311 " %s failed : ENOMEM \n", 17312 inet_ntop(AF_INET6, 17313 &ilm->ilm_v6addr, buf, 17314 sizeof (buf)), from_ill->ill_name, 17315 to_ill->ill_name)); 17316 ilmp = &ilm->ilm_next; 17317 continue; 17318 } 17319 *new_ilm = *ilm; 17320 new_ilm->ilm_filter = NULL; 17321 new_ilm->ilm_refcnt = count; 17322 new_ilm->ilm_timer = INFINITY; 17323 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17324 new_ilm->ilm_is_new = B_TRUE; 17325 /* 17326 * If the to_ill has not joined this 17327 * group we need to tell the driver in 17328 * ill_send_multicast_reqs. 17329 */ 17330 if (ilm_lookup_ill_v6(to_ill, 17331 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17332 new_ilm->ilm_notify_driver = B_TRUE; 17333 17334 new_ilm->ilm_ill = to_ill; 17335 /* Add to the to_ill's list */ 17336 new_ilm->ilm_next = to_ill->ill_ilm; 17337 to_ill->ill_ilm = new_ilm; 17338 ASSERT(new_ilm->ilm_ipif == NULL); 17339 } 17340 if (ilm->ilm_refcnt == 0) { 17341 goto bottom; 17342 } else { 17343 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17344 CLEAR_SLIST(new_ilm->ilm_filter); 17345 ilmp = &ilm->ilm_next; 17346 } 17347 continue; 17348 } else { 17349 /* 17350 * ifindex = 0 means, move everything pointing at 17351 * from_ill. We are doing this becuase ill has 17352 * either FAILED or became INACTIVE. 17353 * 17354 * As we would like to move things later back to 17355 * from_ill, we want to retain the identity of this 17356 * ilm. Thus, we don't blindly increment the reference 17357 * count on the ilms matching the address alone. We 17358 * need to match on the ilm_orig_index also. new_ilm 17359 * was obtained by matching ilm_orig_index also. 17360 */ 17361 if (new_ilm != NULL) { 17362 /* 17363 * This is possible only if a previous restore 17364 * was incomplete i.e restore to 17365 * ilm_orig_ifindex left some ilms because 17366 * of some failures. Thus when we are failing 17367 * again, we might find our old friends there. 17368 */ 17369 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17370 " on %s, group address %s\n", 17371 to_ill->ill_name, 17372 inet_ntop(AF_INET6, 17373 &ilm->ilm_v6addr, buf, 17374 sizeof (buf)))); 17375 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17376 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17377 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17378 new_ilm->ilm_is_new = B_TRUE; 17379 } 17380 } else { 17381 if (from_ill->ill_ilm_walker_cnt != 0) { 17382 new_ilm = (ilm_t *) 17383 mi_zalloc(sizeof (ilm_t)); 17384 if (new_ilm == NULL) { 17385 ip0dbg(("ilm_move_v6: " 17386 "FAILOVER of IPv6" 17387 " multicast address %s : " 17388 "from %s to" 17389 " %s failed : ENOMEM \n", 17390 inet_ntop(AF_INET6, 17391 &ilm->ilm_v6addr, buf, 17392 sizeof (buf)), 17393 from_ill->ill_name, 17394 to_ill->ill_name)); 17395 17396 ilmp = &ilm->ilm_next; 17397 continue; 17398 } 17399 *new_ilm = *ilm; 17400 new_ilm->ilm_filter = NULL; 17401 } else { 17402 *ilmp = ilm->ilm_next; 17403 new_ilm = ilm; 17404 } 17405 /* 17406 * If the to_ill has not joined this 17407 * group we need to tell the driver in 17408 * ill_send_multicast_reqs. 17409 */ 17410 if (ilm_lookup_ill_v6(to_ill, 17411 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17412 new_ilm->ilm_notify_driver = B_TRUE; 17413 17414 /* Add to the to_ill's list */ 17415 new_ilm->ilm_next = to_ill->ill_ilm; 17416 to_ill->ill_ilm = new_ilm; 17417 ASSERT(ilm->ilm_ipif == NULL); 17418 new_ilm->ilm_ill = to_ill; 17419 new_ilm->ilm_is_new = B_TRUE; 17420 } 17421 17422 } 17423 17424 bottom: 17425 /* 17426 * Revert multicast filter state to (EXCLUDE, NULL). 17427 * new_ilm->ilm_is_new should already be set if needed. 17428 */ 17429 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17430 CLEAR_SLIST(new_ilm->ilm_filter); 17431 /* 17432 * We allocated/got a new ilm, free the old one. 17433 */ 17434 if (new_ilm != ilm) { 17435 if (from_ill->ill_ilm_walker_cnt == 0) { 17436 *ilmp = ilm->ilm_next; 17437 ilm->ilm_next = NULL; 17438 FREE_SLIST(ilm->ilm_filter); 17439 FREE_SLIST(ilm->ilm_pendsrcs); 17440 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17441 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17442 mi_free((char *)ilm); 17443 } else { 17444 ilm->ilm_flags |= ILM_DELETED; 17445 from_ill->ill_ilm_cleanup_reqd = 1; 17446 ilmp = &ilm->ilm_next; 17447 } 17448 } 17449 } 17450 } 17451 17452 /* 17453 * Move all the multicast memberships to to_ill. Called when 17454 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17455 * different from IPv6 counterpart as multicast memberships are associated 17456 * with ills in IPv6. This function is called after every ipif is moved 17457 * unlike IPv6, where it is moved only once. 17458 */ 17459 static void 17460 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17461 { 17462 ilm_t *ilm; 17463 ilm_t *ilm_next; 17464 ilm_t *new_ilm; 17465 ilm_t **ilmp; 17466 ip_stack_t *ipst = from_ill->ill_ipst; 17467 17468 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17469 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17470 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17471 17472 ilmp = &from_ill->ill_ilm; 17473 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17474 ilm_next = ilm->ilm_next; 17475 17476 if (ilm->ilm_flags & ILM_DELETED) { 17477 ilmp = &ilm->ilm_next; 17478 continue; 17479 } 17480 17481 ASSERT(ilm->ilm_ipif != NULL); 17482 17483 if (ilm->ilm_ipif != ipif) { 17484 ilmp = &ilm->ilm_next; 17485 continue; 17486 } 17487 17488 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17489 htonl(INADDR_ALLHOSTS_GROUP)) { 17490 new_ilm = ilm_lookup_ipif(ipif, 17491 V4_PART_OF_V6(ilm->ilm_v6addr)); 17492 if (new_ilm != NULL) { 17493 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17494 /* 17495 * We still need to deal with the from_ill. 17496 */ 17497 new_ilm->ilm_is_new = B_TRUE; 17498 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17499 CLEAR_SLIST(new_ilm->ilm_filter); 17500 goto delete_ilm; 17501 } 17502 /* 17503 * If we could not find one e.g. ipif is 17504 * still down on to_ill, we add this ilm 17505 * on ill_new to preserve the reference 17506 * count. 17507 */ 17508 } 17509 /* 17510 * When ipifs move, ilms always move with it 17511 * to the NEW ill. Thus we should never be 17512 * able to find ilm till we really move it here. 17513 */ 17514 ASSERT(ilm_lookup_ipif(ipif, 17515 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17516 17517 if (from_ill->ill_ilm_walker_cnt != 0) { 17518 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17519 if (new_ilm == NULL) { 17520 char buf[INET6_ADDRSTRLEN]; 17521 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17522 " multicast address %s : " 17523 "from %s to" 17524 " %s failed : ENOMEM \n", 17525 inet_ntop(AF_INET, 17526 &ilm->ilm_v6addr, buf, 17527 sizeof (buf)), 17528 from_ill->ill_name, 17529 to_ill->ill_name)); 17530 17531 ilmp = &ilm->ilm_next; 17532 continue; 17533 } 17534 *new_ilm = *ilm; 17535 /* We don't want new_ilm linked to ilm's filter list */ 17536 new_ilm->ilm_filter = NULL; 17537 } else { 17538 /* Remove from the list */ 17539 *ilmp = ilm->ilm_next; 17540 new_ilm = ilm; 17541 } 17542 17543 /* 17544 * If we have never joined this group on the to_ill 17545 * make sure we tell the driver. 17546 */ 17547 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17548 ALL_ZONES) == NULL) 17549 new_ilm->ilm_notify_driver = B_TRUE; 17550 17551 /* Add to the to_ill's list */ 17552 new_ilm->ilm_next = to_ill->ill_ilm; 17553 to_ill->ill_ilm = new_ilm; 17554 new_ilm->ilm_is_new = B_TRUE; 17555 17556 /* 17557 * Revert multicast filter state to (EXCLUDE, NULL) 17558 */ 17559 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17560 CLEAR_SLIST(new_ilm->ilm_filter); 17561 17562 /* 17563 * Delete only if we have allocated a new ilm. 17564 */ 17565 if (new_ilm != ilm) { 17566 delete_ilm: 17567 if (from_ill->ill_ilm_walker_cnt == 0) { 17568 /* Remove from the list */ 17569 *ilmp = ilm->ilm_next; 17570 ilm->ilm_next = NULL; 17571 FREE_SLIST(ilm->ilm_filter); 17572 FREE_SLIST(ilm->ilm_pendsrcs); 17573 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17574 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17575 mi_free((char *)ilm); 17576 } else { 17577 ilm->ilm_flags |= ILM_DELETED; 17578 from_ill->ill_ilm_cleanup_reqd = 1; 17579 ilmp = &ilm->ilm_next; 17580 } 17581 } 17582 } 17583 } 17584 17585 static uint_t 17586 ipif_get_id(ill_t *ill, uint_t id) 17587 { 17588 uint_t unit; 17589 ipif_t *tipif; 17590 boolean_t found = B_FALSE; 17591 ip_stack_t *ipst = ill->ill_ipst; 17592 17593 /* 17594 * During failback, we want to go back to the same id 17595 * instead of the smallest id so that the original 17596 * configuration is maintained. id is non-zero in that 17597 * case. 17598 */ 17599 if (id != 0) { 17600 /* 17601 * While failing back, if we still have an ipif with 17602 * MAX_ADDRS_PER_IF, it means this will be replaced 17603 * as soon as we return from this function. It was 17604 * to set to MAX_ADDRS_PER_IF by the caller so that 17605 * we can choose the smallest id. Thus we return zero 17606 * in that case ignoring the hint. 17607 */ 17608 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17609 return (0); 17610 for (tipif = ill->ill_ipif; tipif != NULL; 17611 tipif = tipif->ipif_next) { 17612 if (tipif->ipif_id == id) { 17613 found = B_TRUE; 17614 break; 17615 } 17616 } 17617 /* 17618 * If somebody already plumbed another logical 17619 * with the same id, we won't be able to find it. 17620 */ 17621 if (!found) 17622 return (id); 17623 } 17624 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17625 found = B_FALSE; 17626 for (tipif = ill->ill_ipif; tipif != NULL; 17627 tipif = tipif->ipif_next) { 17628 if (tipif->ipif_id == unit) { 17629 found = B_TRUE; 17630 break; 17631 } 17632 } 17633 if (!found) 17634 break; 17635 } 17636 return (unit); 17637 } 17638 17639 /* ARGSUSED */ 17640 static int 17641 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17642 ipif_t **rep_ipif_ptr) 17643 { 17644 ill_t *from_ill; 17645 ipif_t *rep_ipif; 17646 uint_t unit; 17647 int err = 0; 17648 ipif_t *to_ipif; 17649 struct iocblk *iocp; 17650 boolean_t failback_cmd; 17651 boolean_t remove_ipif; 17652 int rc; 17653 ip_stack_t *ipst; 17654 17655 ASSERT(IAM_WRITER_ILL(to_ill)); 17656 ASSERT(IAM_WRITER_IPIF(ipif)); 17657 17658 iocp = (struct iocblk *)mp->b_rptr; 17659 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17660 remove_ipif = B_FALSE; 17661 17662 from_ill = ipif->ipif_ill; 17663 ipst = from_ill->ill_ipst; 17664 17665 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17666 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17667 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17668 17669 /* 17670 * Don't move LINK LOCAL addresses as they are tied to 17671 * physical interface. 17672 */ 17673 if (from_ill->ill_isv6 && 17674 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17675 ipif->ipif_was_up = B_FALSE; 17676 IPIF_UNMARK_MOVING(ipif); 17677 return (0); 17678 } 17679 17680 /* 17681 * We set the ipif_id to maximum so that the search for 17682 * ipif_id will pick the lowest number i.e 0 in the 17683 * following 2 cases : 17684 * 17685 * 1) We have a replacement ipif at the head of to_ill. 17686 * We can't remove it yet as we can exceed ip_addrs_per_if 17687 * on to_ill and hence the MOVE might fail. We want to 17688 * remove it only if we could move the ipif. Thus, by 17689 * setting it to the MAX value, we make the search in 17690 * ipif_get_id return the zeroth id. 17691 * 17692 * 2) When DR pulls out the NIC and re-plumbs the interface, 17693 * we might just have a zero address plumbed on the ipif 17694 * with zero id in the case of IPv4. We remove that while 17695 * doing the failback. We want to remove it only if we 17696 * could move the ipif. Thus, by setting it to the MAX 17697 * value, we make the search in ipif_get_id return the 17698 * zeroth id. 17699 * 17700 * Both (1) and (2) are done only when when we are moving 17701 * an ipif (either due to failover/failback) which originally 17702 * belonged to this interface i.e the ipif_orig_ifindex is 17703 * the same as to_ill's ifindex. This is needed so that 17704 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17705 * from B -> A (B is being removed from the group) and 17706 * FAILBACK from A -> B restores the original configuration. 17707 * Without the check for orig_ifindex, the second FAILOVER 17708 * could make the ipif belonging to B replace the A's zeroth 17709 * ipif and the subsequent failback re-creating the replacement 17710 * ipif again. 17711 * 17712 * NOTE : We created the replacement ipif when we did a 17713 * FAILOVER (See below). We could check for FAILBACK and 17714 * then look for replacement ipif to be removed. But we don't 17715 * want to do that because we wan't to allow the possibility 17716 * of a FAILOVER from A -> B (which creates the replacement ipif), 17717 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17718 * from B -> A. 17719 */ 17720 to_ipif = to_ill->ill_ipif; 17721 if ((to_ill->ill_phyint->phyint_ifindex == 17722 ipif->ipif_orig_ifindex) && 17723 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17724 ASSERT(to_ipif->ipif_id == 0); 17725 remove_ipif = B_TRUE; 17726 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17727 } 17728 /* 17729 * Find the lowest logical unit number on the to_ill. 17730 * If we are failing back, try to get the original id 17731 * rather than the lowest one so that the original 17732 * configuration is maintained. 17733 * 17734 * XXX need a better scheme for this. 17735 */ 17736 if (failback_cmd) { 17737 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17738 } else { 17739 unit = ipif_get_id(to_ill, 0); 17740 } 17741 17742 /* Reset back to zero in case we fail below */ 17743 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17744 to_ipif->ipif_id = 0; 17745 17746 if (unit == ipst->ips_ip_addrs_per_if) { 17747 ipif->ipif_was_up = B_FALSE; 17748 IPIF_UNMARK_MOVING(ipif); 17749 return (EINVAL); 17750 } 17751 17752 /* 17753 * ipif is ready to move from "from_ill" to "to_ill". 17754 * 17755 * 1) If we are moving ipif with id zero, create a 17756 * replacement ipif for this ipif on from_ill. If this fails 17757 * fail the MOVE operation. 17758 * 17759 * 2) Remove the replacement ipif on to_ill if any. 17760 * We could remove the replacement ipif when we are moving 17761 * the ipif with id zero. But what if somebody already 17762 * unplumbed it ? Thus we always remove it if it is present. 17763 * We want to do it only if we are sure we are going to 17764 * move the ipif to to_ill which is why there are no 17765 * returns due to error till ipif is linked to to_ill. 17766 * Note that the first ipif that we failback will always 17767 * be zero if it is present. 17768 */ 17769 if (ipif->ipif_id == 0) { 17770 ipaddr_t inaddr_any = INADDR_ANY; 17771 17772 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17773 if (rep_ipif == NULL) { 17774 ipif->ipif_was_up = B_FALSE; 17775 IPIF_UNMARK_MOVING(ipif); 17776 return (ENOMEM); 17777 } 17778 *rep_ipif = ipif_zero; 17779 /* 17780 * Before we put the ipif on the list, store the addresses 17781 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17782 * assumes so. This logic is not any different from what 17783 * ipif_allocate does. 17784 */ 17785 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17786 &rep_ipif->ipif_v6lcl_addr); 17787 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17788 &rep_ipif->ipif_v6src_addr); 17789 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17790 &rep_ipif->ipif_v6subnet); 17791 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17792 &rep_ipif->ipif_v6net_mask); 17793 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17794 &rep_ipif->ipif_v6brd_addr); 17795 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17796 &rep_ipif->ipif_v6pp_dst_addr); 17797 /* 17798 * We mark IPIF_NOFAILOVER so that this can never 17799 * move. 17800 */ 17801 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17802 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17803 rep_ipif->ipif_replace_zero = B_TRUE; 17804 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17805 MUTEX_DEFAULT, NULL); 17806 rep_ipif->ipif_id = 0; 17807 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17808 rep_ipif->ipif_ill = from_ill; 17809 rep_ipif->ipif_orig_ifindex = 17810 from_ill->ill_phyint->phyint_ifindex; 17811 /* Insert at head */ 17812 rep_ipif->ipif_next = from_ill->ill_ipif; 17813 from_ill->ill_ipif = rep_ipif; 17814 /* 17815 * We don't really care to let apps know about 17816 * this interface. 17817 */ 17818 } 17819 17820 if (remove_ipif) { 17821 /* 17822 * We set to a max value above for this case to get 17823 * id zero. ASSERT that we did get one. 17824 */ 17825 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17826 rep_ipif = to_ipif; 17827 to_ill->ill_ipif = rep_ipif->ipif_next; 17828 rep_ipif->ipif_next = NULL; 17829 /* 17830 * If some apps scanned and find this interface, 17831 * it is time to let them know, so that they can 17832 * delete it. 17833 */ 17834 17835 *rep_ipif_ptr = rep_ipif; 17836 } 17837 17838 /* Get it out of the ILL interface list. */ 17839 ipif_remove(ipif, B_FALSE); 17840 17841 /* Assign the new ill */ 17842 ipif->ipif_ill = to_ill; 17843 ipif->ipif_id = unit; 17844 /* id has already been checked */ 17845 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17846 ASSERT(rc == 0); 17847 /* Let SCTP update its list */ 17848 sctp_move_ipif(ipif, from_ill, to_ill); 17849 /* 17850 * Handle the failover and failback of ipif_t between 17851 * ill_t that have differing maximum mtu values. 17852 */ 17853 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17854 if (ipif->ipif_saved_mtu == 0) { 17855 /* 17856 * As this ipif_t is moving to an ill_t 17857 * that has a lower ill_max_mtu, its 17858 * ipif_mtu needs to be saved so it can 17859 * be restored during failback or during 17860 * failover to an ill_t which has a 17861 * higher ill_max_mtu. 17862 */ 17863 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17864 ipif->ipif_mtu = to_ill->ill_max_mtu; 17865 } else { 17866 /* 17867 * The ipif_t is, once again, moving to 17868 * an ill_t that has a lower maximum mtu 17869 * value. 17870 */ 17871 ipif->ipif_mtu = to_ill->ill_max_mtu; 17872 } 17873 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17874 ipif->ipif_saved_mtu != 0) { 17875 /* 17876 * The mtu of this ipif_t had to be reduced 17877 * during an earlier failover; this is an 17878 * opportunity for it to be increased (either as 17879 * part of another failover or a failback). 17880 */ 17881 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17882 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17883 ipif->ipif_saved_mtu = 0; 17884 } else { 17885 ipif->ipif_mtu = to_ill->ill_max_mtu; 17886 } 17887 } 17888 17889 /* 17890 * We preserve all the other fields of the ipif including 17891 * ipif_saved_ire_mp. The routes that are saved here will 17892 * be recreated on the new interface and back on the old 17893 * interface when we move back. 17894 */ 17895 ASSERT(ipif->ipif_arp_del_mp == NULL); 17896 17897 return (err); 17898 } 17899 17900 static int 17901 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17902 int ifindex, ipif_t **rep_ipif_ptr) 17903 { 17904 ipif_t *mipif; 17905 ipif_t *ipif_next; 17906 int err; 17907 17908 /* 17909 * We don't really try to MOVE back things if some of the 17910 * operations fail. The daemon will take care of moving again 17911 * later on. 17912 */ 17913 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17914 ipif_next = mipif->ipif_next; 17915 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17916 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17917 17918 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17919 17920 /* 17921 * When the MOVE fails, it is the job of the 17922 * application to take care of this properly 17923 * i.e try again if it is ENOMEM. 17924 */ 17925 if (mipif->ipif_ill != from_ill) { 17926 /* 17927 * ipif has moved. 17928 * 17929 * Move the multicast memberships associated 17930 * with this ipif to the new ill. For IPv6, we 17931 * do it once after all the ipifs are moved 17932 * (in ill_move) as they are not associated 17933 * with ipifs. 17934 * 17935 * We need to move the ilms as the ipif has 17936 * already been moved to a new ill even 17937 * in the case of errors. Neither 17938 * ilm_free(ipif) will find the ilm 17939 * when somebody unplumbs this ipif nor 17940 * ilm_delete(ilm) will be able to find the 17941 * ilm, if we don't move now. 17942 */ 17943 if (!from_ill->ill_isv6) 17944 ilm_move_v4(from_ill, to_ill, mipif); 17945 } 17946 17947 if (err != 0) 17948 return (err); 17949 } 17950 } 17951 return (0); 17952 } 17953 17954 static int 17955 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17956 { 17957 int ifindex; 17958 int err; 17959 struct iocblk *iocp; 17960 ipif_t *ipif; 17961 ipif_t *rep_ipif_ptr = NULL; 17962 ipif_t *from_ipif = NULL; 17963 boolean_t check_rep_if = B_FALSE; 17964 ip_stack_t *ipst = from_ill->ill_ipst; 17965 17966 iocp = (struct iocblk *)mp->b_rptr; 17967 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17968 /* 17969 * Move everything pointing at from_ill to to_ill. 17970 * We acheive this by passing in 0 as ifindex. 17971 */ 17972 ifindex = 0; 17973 } else { 17974 /* 17975 * Move everything pointing at from_ill whose original 17976 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17977 * We acheive this by passing in ifindex rather than 0. 17978 * Multicast vifs, ilgs move implicitly because ipifs move. 17979 */ 17980 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17981 ifindex = to_ill->ill_phyint->phyint_ifindex; 17982 } 17983 17984 /* 17985 * Determine if there is at least one ipif that would move from 17986 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17987 * ipif (if it exists) on the to_ill would be consumed as a result of 17988 * the move, in which case we need to quiesce the replacement ipif also. 17989 */ 17990 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17991 from_ipif = from_ipif->ipif_next) { 17992 if (((ifindex == 0) || 17993 (ifindex == from_ipif->ipif_orig_ifindex)) && 17994 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17995 check_rep_if = B_TRUE; 17996 break; 17997 } 17998 } 17999 18000 18001 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18002 18003 GRAB_ILL_LOCKS(from_ill, to_ill); 18004 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18005 (void) ipsq_pending_mp_add(NULL, ipif, q, 18006 mp, ILL_MOVE_OK); 18007 RELEASE_ILL_LOCKS(from_ill, to_ill); 18008 return (EINPROGRESS); 18009 } 18010 18011 /* Check if the replacement ipif is quiescent to delete */ 18012 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18013 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18014 to_ill->ill_ipif->ipif_state_flags |= 18015 IPIF_MOVING | IPIF_CHANGING; 18016 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18017 (void) ipsq_pending_mp_add(NULL, ipif, q, 18018 mp, ILL_MOVE_OK); 18019 RELEASE_ILL_LOCKS(from_ill, to_ill); 18020 return (EINPROGRESS); 18021 } 18022 } 18023 RELEASE_ILL_LOCKS(from_ill, to_ill); 18024 18025 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18026 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18027 GRAB_ILL_LOCKS(from_ill, to_ill); 18028 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18029 18030 /* ilm_move is done inside ipif_move for IPv4 */ 18031 if (err == 0 && from_ill->ill_isv6) 18032 ilm_move_v6(from_ill, to_ill, ifindex); 18033 18034 RELEASE_ILL_LOCKS(from_ill, to_ill); 18035 rw_exit(&ipst->ips_ill_g_lock); 18036 18037 /* 18038 * send rts messages and multicast messages. 18039 */ 18040 if (rep_ipif_ptr != NULL) { 18041 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18042 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18043 rep_ipif_ptr->ipif_recovery_id = 0; 18044 } 18045 ip_rts_ifmsg(rep_ipif_ptr); 18046 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18047 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18048 mi_free(rep_ipif_ptr); 18049 } 18050 18051 conn_move_ill(from_ill, to_ill, ifindex); 18052 18053 return (err); 18054 } 18055 18056 /* 18057 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18058 * Also checks for the validity of the arguments. 18059 * Note: We are already exclusive inside the from group. 18060 * It is upto the caller to release refcnt on the to_ill's. 18061 */ 18062 static int 18063 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18064 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18065 { 18066 int dst_index; 18067 ipif_t *ipif_v4, *ipif_v6; 18068 struct lifreq *lifr; 18069 mblk_t *mp1; 18070 boolean_t exists; 18071 sin_t *sin; 18072 int err = 0; 18073 ip_stack_t *ipst; 18074 18075 if (CONN_Q(q)) 18076 ipst = CONNQ_TO_IPST(q); 18077 else 18078 ipst = ILLQ_TO_IPST(q); 18079 18080 18081 if ((mp1 = mp->b_cont) == NULL) 18082 return (EPROTO); 18083 18084 if ((mp1 = mp1->b_cont) == NULL) 18085 return (EPROTO); 18086 18087 lifr = (struct lifreq *)mp1->b_rptr; 18088 sin = (sin_t *)&lifr->lifr_addr; 18089 18090 /* 18091 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18092 * specific operations. 18093 */ 18094 if (sin->sin_family != AF_UNSPEC) 18095 return (EINVAL); 18096 18097 /* 18098 * Get ipif with id 0. We are writer on the from ill. So we can pass 18099 * NULLs for the last 4 args and we know the lookup won't fail 18100 * with EINPROGRESS. 18101 */ 18102 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18103 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18104 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18105 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18106 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18107 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18108 18109 if (ipif_v4 == NULL && ipif_v6 == NULL) 18110 return (ENXIO); 18111 18112 if (ipif_v4 != NULL) { 18113 ASSERT(ipif_v4->ipif_refcnt != 0); 18114 if (ipif_v4->ipif_id != 0) { 18115 err = EINVAL; 18116 goto done; 18117 } 18118 18119 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18120 *ill_from_v4 = ipif_v4->ipif_ill; 18121 } 18122 18123 if (ipif_v6 != NULL) { 18124 ASSERT(ipif_v6->ipif_refcnt != 0); 18125 if (ipif_v6->ipif_id != 0) { 18126 err = EINVAL; 18127 goto done; 18128 } 18129 18130 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18131 *ill_from_v6 = ipif_v6->ipif_ill; 18132 } 18133 18134 err = 0; 18135 dst_index = lifr->lifr_movetoindex; 18136 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18137 q, mp, ip_process_ioctl, &err, ipst); 18138 if (err != 0) { 18139 /* 18140 * There could be only v6. 18141 */ 18142 if (err != ENXIO) 18143 goto done; 18144 err = 0; 18145 } 18146 18147 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18148 q, mp, ip_process_ioctl, &err, ipst); 18149 if (err != 0) { 18150 if (err != ENXIO) 18151 goto done; 18152 if (*ill_to_v4 == NULL) { 18153 err = ENXIO; 18154 goto done; 18155 } 18156 err = 0; 18157 } 18158 18159 /* 18160 * If we have something to MOVE i.e "from" not NULL, 18161 * "to" should be non-NULL. 18162 */ 18163 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18164 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18165 err = EINVAL; 18166 } 18167 18168 done: 18169 if (ipif_v4 != NULL) 18170 ipif_refrele(ipif_v4); 18171 if (ipif_v6 != NULL) 18172 ipif_refrele(ipif_v6); 18173 return (err); 18174 } 18175 18176 /* 18177 * FAILOVER and FAILBACK are modelled as MOVE operations. 18178 * 18179 * We don't check whether the MOVE is within the same group or 18180 * not, because this ioctl can be used as a generic mechanism 18181 * to failover from interface A to B, though things will function 18182 * only if they are really part of the same group. Moreover, 18183 * all ipifs may be down and hence temporarily out of the group. 18184 * 18185 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18186 * down first and then V6. For each we wait for the ipif's to become quiescent. 18187 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18188 * have been deleted and there are no active references. Once quiescent the 18189 * ipif's are moved and brought up on the new ill. 18190 * 18191 * Normally the source ill and destination ill belong to the same IPMP group 18192 * and hence the same ipsq_t. In the event they don't belong to the same 18193 * same group the two ipsq's are first merged into one ipsq - that of the 18194 * to_ill. The multicast memberships on the source and destination ill cannot 18195 * change during the move operation since multicast joins/leaves also have to 18196 * execute on the same ipsq and are hence serialized. 18197 */ 18198 /* ARGSUSED */ 18199 int 18200 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18201 ip_ioctl_cmd_t *ipip, void *ifreq) 18202 { 18203 ill_t *ill_to_v4 = NULL; 18204 ill_t *ill_to_v6 = NULL; 18205 ill_t *ill_from_v4 = NULL; 18206 ill_t *ill_from_v6 = NULL; 18207 int err = 0; 18208 18209 /* 18210 * setup from and to ill's, we can get EINPROGRESS only for 18211 * to_ill's. 18212 */ 18213 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18214 &ill_to_v4, &ill_to_v6); 18215 18216 if (err != 0) { 18217 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18218 goto done; 18219 } 18220 18221 /* 18222 * nothing to do. 18223 */ 18224 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18225 goto done; 18226 } 18227 18228 /* 18229 * nothing to do. 18230 */ 18231 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18232 goto done; 18233 } 18234 18235 /* 18236 * Mark the ill as changing. 18237 * ILL_CHANGING flag is cleared when the ipif's are brought up 18238 * in ill_up_ipifs in case of error they are cleared below. 18239 */ 18240 18241 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18242 if (ill_from_v4 != NULL) 18243 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18244 if (ill_from_v6 != NULL) 18245 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18246 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18247 18248 /* 18249 * Make sure that both src and dst are 18250 * in the same syncq group. If not make it happen. 18251 * We are not holding any locks because we are the writer 18252 * on the from_ipsq and we will hold locks in ill_merge_groups 18253 * to protect to_ipsq against changing. 18254 */ 18255 if (ill_from_v4 != NULL) { 18256 if (ill_from_v4->ill_phyint->phyint_ipsq != 18257 ill_to_v4->ill_phyint->phyint_ipsq) { 18258 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18259 NULL, mp, q); 18260 goto err_ret; 18261 18262 } 18263 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18264 } else { 18265 18266 if (ill_from_v6->ill_phyint->phyint_ipsq != 18267 ill_to_v6->ill_phyint->phyint_ipsq) { 18268 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18269 NULL, mp, q); 18270 goto err_ret; 18271 18272 } 18273 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18274 } 18275 18276 /* 18277 * Now that the ipsq's have been merged and we are the writer 18278 * lets mark to_ill as changing as well. 18279 */ 18280 18281 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18282 if (ill_to_v4 != NULL) 18283 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18284 if (ill_to_v6 != NULL) 18285 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18286 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18287 18288 /* 18289 * Its ok for us to proceed with the move even if 18290 * ill_pending_mp is non null on one of the from ill's as the reply 18291 * should not be looking at the ipif, it should only care about the 18292 * ill itself. 18293 */ 18294 18295 /* 18296 * lets move ipv4 first. 18297 */ 18298 if (ill_from_v4 != NULL) { 18299 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18300 ill_from_v4->ill_move_in_progress = B_TRUE; 18301 ill_to_v4->ill_move_in_progress = B_TRUE; 18302 ill_to_v4->ill_move_peer = ill_from_v4; 18303 ill_from_v4->ill_move_peer = ill_to_v4; 18304 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18305 } 18306 18307 /* 18308 * Now lets move ipv6. 18309 */ 18310 if (err == 0 && ill_from_v6 != NULL) { 18311 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18312 ill_from_v6->ill_move_in_progress = B_TRUE; 18313 ill_to_v6->ill_move_in_progress = B_TRUE; 18314 ill_to_v6->ill_move_peer = ill_from_v6; 18315 ill_from_v6->ill_move_peer = ill_to_v6; 18316 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18317 } 18318 18319 err_ret: 18320 /* 18321 * EINPROGRESS means we are waiting for the ipif's that need to be 18322 * moved to become quiescent. 18323 */ 18324 if (err == EINPROGRESS) { 18325 goto done; 18326 } 18327 18328 /* 18329 * if err is set ill_up_ipifs will not be called 18330 * lets clear the flags. 18331 */ 18332 18333 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18334 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18335 /* 18336 * Some of the clearing may be redundant. But it is simple 18337 * not making any extra checks. 18338 */ 18339 if (ill_from_v6 != NULL) { 18340 ill_from_v6->ill_move_in_progress = B_FALSE; 18341 ill_from_v6->ill_move_peer = NULL; 18342 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18343 } 18344 if (ill_from_v4 != NULL) { 18345 ill_from_v4->ill_move_in_progress = B_FALSE; 18346 ill_from_v4->ill_move_peer = NULL; 18347 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18348 } 18349 if (ill_to_v6 != NULL) { 18350 ill_to_v6->ill_move_in_progress = B_FALSE; 18351 ill_to_v6->ill_move_peer = NULL; 18352 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18353 } 18354 if (ill_to_v4 != NULL) { 18355 ill_to_v4->ill_move_in_progress = B_FALSE; 18356 ill_to_v4->ill_move_peer = NULL; 18357 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18358 } 18359 18360 /* 18361 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18362 * Do this always to maintain proper state i.e even in case of errors. 18363 * As phyint_inactive looks at both v4 and v6 interfaces, 18364 * we need not call on both v4 and v6 interfaces. 18365 */ 18366 if (ill_from_v4 != NULL) { 18367 if ((ill_from_v4->ill_phyint->phyint_flags & 18368 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18369 phyint_inactive(ill_from_v4->ill_phyint); 18370 } 18371 } else if (ill_from_v6 != NULL) { 18372 if ((ill_from_v6->ill_phyint->phyint_flags & 18373 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18374 phyint_inactive(ill_from_v6->ill_phyint); 18375 } 18376 } 18377 18378 if (ill_to_v4 != NULL) { 18379 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18380 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18381 } 18382 } else if (ill_to_v6 != NULL) { 18383 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18384 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18385 } 18386 } 18387 18388 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18389 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18390 18391 no_err: 18392 /* 18393 * lets bring the interfaces up on the to_ill. 18394 */ 18395 if (err == 0) { 18396 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18397 q, mp); 18398 } 18399 18400 if (err == 0) { 18401 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18402 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18403 18404 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18405 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18406 } 18407 done: 18408 18409 if (ill_to_v4 != NULL) { 18410 ill_refrele(ill_to_v4); 18411 } 18412 if (ill_to_v6 != NULL) { 18413 ill_refrele(ill_to_v6); 18414 } 18415 18416 return (err); 18417 } 18418 18419 static void 18420 ill_dl_down(ill_t *ill) 18421 { 18422 /* 18423 * The ill is down; unbind but stay attached since we're still 18424 * associated with a PPA. If we have negotiated DLPI capabilites 18425 * with the data link service provider (IDS_OK) then reset them. 18426 * The interval between unbinding and rebinding is potentially 18427 * unbounded hence we cannot assume things will be the same. 18428 * The DLPI capabilities will be probed again when the data link 18429 * is brought up. 18430 */ 18431 mblk_t *mp = ill->ill_unbind_mp; 18432 hook_nic_event_t *info; 18433 18434 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18435 18436 ill->ill_unbind_mp = NULL; 18437 if (mp != NULL) { 18438 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18439 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18440 ill->ill_name)); 18441 mutex_enter(&ill->ill_lock); 18442 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18443 mutex_exit(&ill->ill_lock); 18444 if (ill->ill_dlpi_capab_state == IDS_OK) 18445 ill_capability_reset(ill); 18446 ill_dlpi_send(ill, mp); 18447 } 18448 18449 /* 18450 * Toss all of our multicast memberships. We could keep them, but 18451 * then we'd have to do bookkeeping of any joins and leaves performed 18452 * by the application while the the interface is down (we can't just 18453 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18454 * on a downed interface). 18455 */ 18456 ill_leave_multicast(ill); 18457 18458 mutex_enter(&ill->ill_lock); 18459 18460 ill->ill_dl_up = 0; 18461 18462 if ((info = ill->ill_nic_event_info) != NULL) { 18463 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18464 info->hne_event, ill->ill_name)); 18465 if (info->hne_data != NULL) 18466 kmem_free(info->hne_data, info->hne_datalen); 18467 kmem_free(info, sizeof (hook_nic_event_t)); 18468 } 18469 18470 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18471 if (info != NULL) { 18472 ip_stack_t *ipst = ill->ill_ipst; 18473 18474 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18475 info->hne_lif = 0; 18476 info->hne_event = NE_DOWN; 18477 info->hne_data = NULL; 18478 info->hne_datalen = 0; 18479 info->hne_family = ill->ill_isv6 ? 18480 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18481 } else 18482 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18483 "information for %s (ENOMEM)\n", ill->ill_name)); 18484 18485 ill->ill_nic_event_info = info; 18486 18487 mutex_exit(&ill->ill_lock); 18488 } 18489 18490 static void 18491 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18492 { 18493 union DL_primitives *dlp; 18494 t_uscalar_t prim; 18495 18496 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18497 18498 dlp = (union DL_primitives *)mp->b_rptr; 18499 prim = dlp->dl_primitive; 18500 18501 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18502 dlpi_prim_str(prim), prim, ill->ill_name)); 18503 18504 switch (prim) { 18505 case DL_PHYS_ADDR_REQ: 18506 { 18507 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18508 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18509 break; 18510 } 18511 case DL_BIND_REQ: 18512 mutex_enter(&ill->ill_lock); 18513 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18514 mutex_exit(&ill->ill_lock); 18515 break; 18516 } 18517 18518 /* 18519 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18520 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18521 * we only wait for the ACK of the DL_UNBIND_REQ. 18522 */ 18523 mutex_enter(&ill->ill_lock); 18524 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18525 (prim == DL_UNBIND_REQ)) { 18526 ill->ill_dlpi_pending = prim; 18527 } 18528 mutex_exit(&ill->ill_lock); 18529 18530 putnext(ill->ill_wq, mp); 18531 } 18532 18533 /* 18534 * Helper function for ill_dlpi_send(). 18535 */ 18536 /* ARGSUSED */ 18537 static void 18538 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18539 { 18540 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18541 } 18542 18543 /* 18544 * Send a DLPI control message to the driver but make sure there 18545 * is only one outstanding message. Uses ill_dlpi_pending to tell 18546 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18547 * when an ACK or a NAK is received to process the next queued message. 18548 */ 18549 void 18550 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18551 { 18552 mblk_t **mpp; 18553 18554 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18555 18556 /* 18557 * To ensure that any DLPI requests for current exclusive operation 18558 * are always completely sent before any DLPI messages for other 18559 * operations, require writer access before enqueuing. 18560 */ 18561 if (!IAM_WRITER_ILL(ill)) { 18562 ill_refhold(ill); 18563 /* qwriter_ip() does the ill_refrele() */ 18564 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18565 NEW_OP, B_TRUE); 18566 return; 18567 } 18568 18569 mutex_enter(&ill->ill_lock); 18570 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18571 /* Must queue message. Tail insertion */ 18572 mpp = &ill->ill_dlpi_deferred; 18573 while (*mpp != NULL) 18574 mpp = &((*mpp)->b_next); 18575 18576 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18577 ill->ill_name)); 18578 18579 *mpp = mp; 18580 mutex_exit(&ill->ill_lock); 18581 return; 18582 } 18583 mutex_exit(&ill->ill_lock); 18584 ill_dlpi_dispatch(ill, mp); 18585 } 18586 18587 /* 18588 * Send all deferred DLPI messages without waiting for their ACKs. 18589 */ 18590 void 18591 ill_dlpi_send_deferred(ill_t *ill) 18592 { 18593 mblk_t *mp, *nextmp; 18594 18595 /* 18596 * Clear ill_dlpi_pending so that the message is not queued in 18597 * ill_dlpi_send(). 18598 */ 18599 mutex_enter(&ill->ill_lock); 18600 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18601 mp = ill->ill_dlpi_deferred; 18602 ill->ill_dlpi_deferred = NULL; 18603 mutex_exit(&ill->ill_lock); 18604 18605 for (; mp != NULL; mp = nextmp) { 18606 nextmp = mp->b_next; 18607 mp->b_next = NULL; 18608 ill_dlpi_send(ill, mp); 18609 } 18610 } 18611 18612 /* 18613 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18614 */ 18615 boolean_t 18616 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18617 { 18618 t_uscalar_t prim_pending; 18619 18620 mutex_enter(&ill->ill_lock); 18621 prim_pending = ill->ill_dlpi_pending; 18622 mutex_exit(&ill->ill_lock); 18623 18624 /* 18625 * During teardown, ill_dlpi_send_deferred() will send requests 18626 * without waiting; don't bother printing any warnings in that case. 18627 */ 18628 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18629 if (prim_pending == DL_PRIM_INVAL) { 18630 (void) mi_strlog(ill->ill_rq, 1, 18631 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18632 "unsolicited ack for %s on %s\n", 18633 dlpi_prim_str(prim), ill->ill_name); 18634 } else { 18635 (void) mi_strlog(ill->ill_rq, 1, 18636 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18637 "unexpected ack for %s on %s (expecting %s)\n", 18638 dlpi_prim_str(prim), ill->ill_name, 18639 dlpi_prim_str(prim_pending)); 18640 } 18641 } 18642 return (prim_pending == prim); 18643 } 18644 18645 /* 18646 * Called when an DLPI control message has been acked or nacked to 18647 * send down the next queued message (if any). 18648 */ 18649 void 18650 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18651 { 18652 mblk_t *mp; 18653 18654 ASSERT(IAM_WRITER_ILL(ill)); 18655 mutex_enter(&ill->ill_lock); 18656 18657 ASSERT(prim != DL_PRIM_INVAL); 18658 ASSERT(ill->ill_dlpi_pending == prim); 18659 18660 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18661 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18662 18663 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18664 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18665 cv_signal(&ill->ill_cv); 18666 mutex_exit(&ill->ill_lock); 18667 return; 18668 } 18669 18670 ill->ill_dlpi_deferred = mp->b_next; 18671 mp->b_next = NULL; 18672 mutex_exit(&ill->ill_lock); 18673 18674 ill_dlpi_dispatch(ill, mp); 18675 } 18676 18677 void 18678 conn_delete_ire(conn_t *connp, caddr_t arg) 18679 { 18680 ipif_t *ipif = (ipif_t *)arg; 18681 ire_t *ire; 18682 18683 /* 18684 * Look at the cached ires on conns which has pointers to ipifs. 18685 * We just call ire_refrele which clears up the reference 18686 * to ire. Called when a conn closes. Also called from ipif_free 18687 * to cleanup indirect references to the stale ipif via the cached ire. 18688 */ 18689 mutex_enter(&connp->conn_lock); 18690 ire = connp->conn_ire_cache; 18691 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18692 connp->conn_ire_cache = NULL; 18693 mutex_exit(&connp->conn_lock); 18694 IRE_REFRELE_NOTR(ire); 18695 return; 18696 } 18697 mutex_exit(&connp->conn_lock); 18698 18699 } 18700 18701 /* 18702 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18703 * of IREs. Those IREs may have been previously cached in the conn structure. 18704 * This ipcl_walk() walker function releases all references to such IREs based 18705 * on the condemned flag. 18706 */ 18707 /* ARGSUSED */ 18708 void 18709 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18710 { 18711 ire_t *ire; 18712 18713 mutex_enter(&connp->conn_lock); 18714 ire = connp->conn_ire_cache; 18715 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18716 connp->conn_ire_cache = NULL; 18717 mutex_exit(&connp->conn_lock); 18718 IRE_REFRELE_NOTR(ire); 18719 return; 18720 } 18721 mutex_exit(&connp->conn_lock); 18722 } 18723 18724 /* 18725 * Take down a specific interface, but don't lose any information about it. 18726 * Also delete interface from its interface group (ifgrp). 18727 * (Always called as writer.) 18728 * This function goes through the down sequence even if the interface is 18729 * already down. There are 2 reasons. 18730 * a. Currently we permit interface routes that depend on down interfaces 18731 * to be added. This behaviour itself is questionable. However it appears 18732 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18733 * time. We go thru the cleanup in order to remove these routes. 18734 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18735 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18736 * down, but we need to cleanup i.e. do ill_dl_down and 18737 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18738 * 18739 * IP-MT notes: 18740 * 18741 * Model of reference to interfaces. 18742 * 18743 * The following members in ipif_t track references to the ipif. 18744 * int ipif_refcnt; Active reference count 18745 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18746 * The following members in ill_t track references to the ill. 18747 * int ill_refcnt; active refcnt 18748 * uint_t ill_ire_cnt; Number of ires referencing ill 18749 * uint_t ill_nce_cnt; Number of nces referencing ill 18750 * 18751 * Reference to an ipif or ill can be obtained in any of the following ways. 18752 * 18753 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18754 * Pointers to ipif / ill from other data structures viz ire and conn. 18755 * Implicit reference to the ipif / ill by holding a reference to the ire. 18756 * 18757 * The ipif/ill lookup functions return a reference held ipif / ill. 18758 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18759 * This is a purely dynamic reference count associated with threads holding 18760 * references to the ipif / ill. Pointers from other structures do not 18761 * count towards this reference count. 18762 * 18763 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18764 * ipif/ill. This is incremented whenever a new ire is created referencing the 18765 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18766 * actually added to the ire hash table. The count is decremented in 18767 * ire_inactive where the ire is destroyed. 18768 * 18769 * nce's reference ill's thru nce_ill and the count of nce's associated with 18770 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18771 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18772 * table. Similarly it is decremented in ndp_inactive() where the nce 18773 * is destroyed. 18774 * 18775 * Flow of ioctls involving interface down/up 18776 * 18777 * The following is the sequence of an attempt to set some critical flags on an 18778 * up interface. 18779 * ip_sioctl_flags 18780 * ipif_down 18781 * wait for ipif to be quiescent 18782 * ipif_down_tail 18783 * ip_sioctl_flags_tail 18784 * 18785 * All set ioctls that involve down/up sequence would have a skeleton similar 18786 * to the above. All the *tail functions are called after the refcounts have 18787 * dropped to the appropriate values. 18788 * 18789 * The mechanism to quiesce an ipif is as follows. 18790 * 18791 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18792 * on the ipif. Callers either pass a flag requesting wait or the lookup 18793 * functions will return NULL. 18794 * 18795 * Delete all ires referencing this ipif 18796 * 18797 * Any thread attempting to do an ipif_refhold on an ipif that has been 18798 * obtained thru a cached pointer will first make sure that 18799 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18800 * increment the refcount. 18801 * 18802 * The above guarantees that the ipif refcount will eventually come down to 18803 * zero and the ipif will quiesce, once all threads that currently hold a 18804 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18805 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18806 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18807 * drop to zero. 18808 * 18809 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18810 * 18811 * Threads trying to lookup an ipif or ill can pass a flag requesting 18812 * wait and restart if the ipif / ill cannot be looked up currently. 18813 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18814 * failure if the ipif is currently undergoing an exclusive operation, and 18815 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18816 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18817 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18818 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18819 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18820 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18821 * until we release the ipsq_lock, even though the the ill/ipif state flags 18822 * can change after we drop the ill_lock. 18823 * 18824 * An attempt to send out a packet using an ipif that is currently 18825 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18826 * operation and restart it later when the exclusive condition on the ipif ends. 18827 * This is an example of not passing the wait flag to the lookup functions. For 18828 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18829 * out a multicast packet on that ipif will fail while the ipif is 18830 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18831 * currently IPIF_CHANGING will also fail. 18832 */ 18833 int 18834 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18835 { 18836 ill_t *ill = ipif->ipif_ill; 18837 phyint_t *phyi; 18838 conn_t *connp; 18839 boolean_t success; 18840 boolean_t ipif_was_up = B_FALSE; 18841 ip_stack_t *ipst = ill->ill_ipst; 18842 18843 ASSERT(IAM_WRITER_IPIF(ipif)); 18844 18845 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18846 18847 if (ipif->ipif_flags & IPIF_UP) { 18848 mutex_enter(&ill->ill_lock); 18849 ipif->ipif_flags &= ~IPIF_UP; 18850 ASSERT(ill->ill_ipif_up_count > 0); 18851 --ill->ill_ipif_up_count; 18852 mutex_exit(&ill->ill_lock); 18853 ipif_was_up = B_TRUE; 18854 /* Update status in SCTP's list */ 18855 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18856 } 18857 18858 /* 18859 * Blow away memberships we established in ipif_multicast_up(). 18860 */ 18861 ipif_multicast_down(ipif); 18862 18863 /* 18864 * Remove from the mapping for __sin6_src_id. We insert only 18865 * when the address is not INADDR_ANY. As IPv4 addresses are 18866 * stored as mapped addresses, we need to check for mapped 18867 * INADDR_ANY also. 18868 */ 18869 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18870 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18871 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18872 int err; 18873 18874 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18875 ipif->ipif_zoneid, ipst); 18876 if (err != 0) { 18877 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18878 } 18879 } 18880 18881 /* 18882 * Before we delete the ill from the group (if any), we need 18883 * to make sure that we delete all the routes dependent on 18884 * this and also any ipifs dependent on this ipif for 18885 * source address. We need to do before we delete from 18886 * the group because 18887 * 18888 * 1) ipif_down_delete_ire de-references ill->ill_group. 18889 * 18890 * 2) ipif_update_other_ipifs needs to walk the whole group 18891 * for re-doing source address selection. Note that 18892 * ipif_select_source[_v6] called from 18893 * ipif_update_other_ipifs[_v6] will not pick this ipif 18894 * because we have already marked down here i.e cleared 18895 * IPIF_UP. 18896 */ 18897 if (ipif->ipif_isv6) { 18898 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18899 ipst); 18900 } else { 18901 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18902 ipst); 18903 } 18904 18905 /* 18906 * Need to add these also to be saved and restored when the 18907 * ipif is brought down and up 18908 */ 18909 mutex_enter(&ipst->ips_ire_mrtun_lock); 18910 if (ipst->ips_ire_mrtun_count != 0) { 18911 mutex_exit(&ipst->ips_ire_mrtun_lock); 18912 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18913 (char *)ipif, NULL, ipst); 18914 } else { 18915 mutex_exit(&ipst->ips_ire_mrtun_lock); 18916 } 18917 18918 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18919 if (ipst->ips_ire_srcif_table_count > 0) { 18920 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18921 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18922 ipst); 18923 } else { 18924 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18925 } 18926 18927 /* 18928 * Cleaning up the conn_ire_cache or conns must be done only after the 18929 * ires have been deleted above. Otherwise a thread could end up 18930 * caching an ire in a conn after we have finished the cleanup of the 18931 * conn. The caching is done after making sure that the ire is not yet 18932 * condemned. Also documented in the block comment above ip_output 18933 */ 18934 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18935 /* Also, delete the ires cached in SCTP */ 18936 sctp_ire_cache_flush(ipif); 18937 18938 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18939 nattymod_clean_ipif(ipif); 18940 18941 /* 18942 * Update any other ipifs which have used "our" local address as 18943 * a source address. This entails removing and recreating IRE_INTERFACE 18944 * entries for such ipifs. 18945 */ 18946 if (ipif->ipif_isv6) 18947 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18948 else 18949 ipif_update_other_ipifs(ipif, ill->ill_group); 18950 18951 if (ipif_was_up) { 18952 /* 18953 * Check whether it is last ipif to leave this group. 18954 * If this is the last ipif to leave, we should remove 18955 * this ill from the group as ipif_select_source will not 18956 * be able to find any useful ipifs if this ill is selected 18957 * for load balancing. 18958 * 18959 * For nameless groups, we should call ifgrp_delete if this 18960 * belongs to some group. As this ipif is going down, we may 18961 * need to reconstruct groups. 18962 */ 18963 phyi = ill->ill_phyint; 18964 /* 18965 * If the phyint_groupname_len is 0, it may or may not 18966 * be in the nameless group. If the phyint_groupname_len is 18967 * not 0, then this ill should be part of some group. 18968 * As we always insert this ill in the group if 18969 * phyint_groupname_len is not zero when the first ipif 18970 * comes up (in ipif_up_done), it should be in a group 18971 * when the namelen is not 0. 18972 * 18973 * NOTE : When we delete the ill from the group,it will 18974 * blow away all the IRE_CACHES pointing either at this ipif or 18975 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18976 * should be pointing at this ill. 18977 */ 18978 ASSERT(phyi->phyint_groupname_len == 0 || 18979 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18980 18981 if (phyi->phyint_groupname_len != 0) { 18982 if (ill->ill_ipif_up_count == 0) 18983 illgrp_delete(ill); 18984 } 18985 18986 /* 18987 * If we have deleted some of the broadcast ires associated 18988 * with this ipif, we need to re-nominate somebody else if 18989 * the ires that we deleted were the nominated ones. 18990 */ 18991 if (ill->ill_group != NULL && !ill->ill_isv6) 18992 ipif_renominate_bcast(ipif); 18993 } 18994 18995 /* 18996 * neighbor-discovery or arp entries for this interface. 18997 */ 18998 ipif_ndp_down(ipif); 18999 19000 /* 19001 * If mp is NULL the caller will wait for the appropriate refcnt. 19002 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 19003 * and ill_delete -> ipif_free -> ipif_down 19004 */ 19005 if (mp == NULL) { 19006 ASSERT(q == NULL); 19007 return (0); 19008 } 19009 19010 if (CONN_Q(q)) { 19011 connp = Q_TO_CONN(q); 19012 mutex_enter(&connp->conn_lock); 19013 } else { 19014 connp = NULL; 19015 } 19016 mutex_enter(&ill->ill_lock); 19017 /* 19018 * Are there any ire's pointing to this ipif that are still active ? 19019 * If this is the last ipif going down, are there any ire's pointing 19020 * to this ill that are still active ? 19021 */ 19022 if (ipif_is_quiescent(ipif)) { 19023 mutex_exit(&ill->ill_lock); 19024 if (connp != NULL) 19025 mutex_exit(&connp->conn_lock); 19026 return (0); 19027 } 19028 19029 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19030 ill->ill_name, (void *)ill)); 19031 /* 19032 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19033 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19034 * which in turn is called by the last refrele on the ipif/ill/ire. 19035 */ 19036 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19037 if (!success) { 19038 /* The conn is closing. So just return */ 19039 ASSERT(connp != NULL); 19040 mutex_exit(&ill->ill_lock); 19041 mutex_exit(&connp->conn_lock); 19042 return (EINTR); 19043 } 19044 19045 mutex_exit(&ill->ill_lock); 19046 if (connp != NULL) 19047 mutex_exit(&connp->conn_lock); 19048 return (EINPROGRESS); 19049 } 19050 19051 void 19052 ipif_down_tail(ipif_t *ipif) 19053 { 19054 ill_t *ill = ipif->ipif_ill; 19055 19056 /* 19057 * Skip any loopback interface (null wq). 19058 * If this is the last logical interface on the ill 19059 * have ill_dl_down tell the driver we are gone (unbind) 19060 * Note that lun 0 can ipif_down even though 19061 * there are other logical units that are up. 19062 * This occurs e.g. when we change a "significant" IFF_ flag. 19063 */ 19064 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19065 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19066 ill->ill_dl_up) { 19067 ill_dl_down(ill); 19068 } 19069 ill->ill_logical_down = 0; 19070 19071 /* 19072 * Have to be after removing the routes in ipif_down_delete_ire. 19073 */ 19074 if (ipif->ipif_isv6) { 19075 if (ill->ill_flags & ILLF_XRESOLV) 19076 ipif_arp_down(ipif); 19077 } else { 19078 ipif_arp_down(ipif); 19079 } 19080 19081 ip_rts_ifmsg(ipif); 19082 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19083 } 19084 19085 /* 19086 * Bring interface logically down without bringing the physical interface 19087 * down e.g. when the netmask is changed. This avoids long lasting link 19088 * negotiations between an ethernet interface and a certain switches. 19089 */ 19090 static int 19091 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19092 { 19093 /* 19094 * The ill_logical_down flag is a transient flag. It is set here 19095 * and is cleared once the down has completed in ipif_down_tail. 19096 * This flag does not indicate whether the ill stream is in the 19097 * DL_BOUND state with the driver. Instead this flag is used by 19098 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19099 * the driver. The state of the ill stream i.e. whether it is 19100 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19101 */ 19102 ipif->ipif_ill->ill_logical_down = 1; 19103 return (ipif_down(ipif, q, mp)); 19104 } 19105 19106 /* 19107 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19108 * If the usesrc client ILL is already part of a usesrc group or not, 19109 * in either case a ire_stq with the matching usesrc client ILL will 19110 * locate the IRE's that need to be deleted. We want IREs to be created 19111 * with the new source address. 19112 */ 19113 static void 19114 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19115 { 19116 ill_t *ucill = (ill_t *)ill_arg; 19117 19118 ASSERT(IAM_WRITER_ILL(ucill)); 19119 19120 if (ire->ire_stq == NULL) 19121 return; 19122 19123 if ((ire->ire_type == IRE_CACHE) && 19124 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19125 ire_delete(ire); 19126 } 19127 19128 /* 19129 * ire_walk routine to delete every IRE dependent on the interface 19130 * address that is going down. (Always called as writer.) 19131 * Works for both v4 and v6. 19132 * In addition for checking for ire_ipif matches it also checks for 19133 * IRE_CACHE entries which have the same source address as the 19134 * disappearing ipif since ipif_select_source might have picked 19135 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19136 * care of any IRE_INTERFACE with the disappearing source address. 19137 */ 19138 static void 19139 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19140 { 19141 ipif_t *ipif = (ipif_t *)ipif_arg; 19142 ill_t *ire_ill; 19143 ill_t *ipif_ill; 19144 19145 ASSERT(IAM_WRITER_IPIF(ipif)); 19146 if (ire->ire_ipif == NULL) 19147 return; 19148 19149 /* 19150 * For IPv4, we derive source addresses for an IRE from ipif's 19151 * belonging to the same IPMP group as the IRE's outgoing 19152 * interface. If an IRE's outgoing interface isn't in the 19153 * same IPMP group as a particular ipif, then that ipif 19154 * couldn't have been used as a source address for this IRE. 19155 * 19156 * For IPv6, source addresses are only restricted to the IPMP group 19157 * if the IRE is for a link-local address or a multicast address. 19158 * Otherwise, source addresses for an IRE can be chosen from 19159 * interfaces other than the the outgoing interface for that IRE. 19160 * 19161 * For source address selection details, see ipif_select_source() 19162 * and ipif_select_source_v6(). 19163 */ 19164 if (ire->ire_ipversion == IPV4_VERSION || 19165 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19166 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19167 ire_ill = ire->ire_ipif->ipif_ill; 19168 ipif_ill = ipif->ipif_ill; 19169 19170 if (ire_ill->ill_group != ipif_ill->ill_group) { 19171 return; 19172 } 19173 } 19174 19175 19176 if (ire->ire_ipif != ipif) { 19177 /* 19178 * Look for a matching source address. 19179 */ 19180 if (ire->ire_type != IRE_CACHE) 19181 return; 19182 if (ipif->ipif_flags & IPIF_NOLOCAL) 19183 return; 19184 19185 if (ire->ire_ipversion == IPV4_VERSION) { 19186 if (ire->ire_src_addr != ipif->ipif_src_addr) 19187 return; 19188 } else { 19189 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19190 &ipif->ipif_v6lcl_addr)) 19191 return; 19192 } 19193 ire_delete(ire); 19194 return; 19195 } 19196 /* 19197 * ire_delete() will do an ire_flush_cache which will delete 19198 * all ire_ipif matches 19199 */ 19200 ire_delete(ire); 19201 } 19202 19203 /* 19204 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19205 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19206 * 2) when an interface is brought up or down (on that ill). 19207 * This ensures that the IRE_CACHE entries don't retain stale source 19208 * address selection results. 19209 */ 19210 void 19211 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19212 { 19213 ill_t *ill = (ill_t *)ill_arg; 19214 ill_t *ipif_ill; 19215 19216 ASSERT(IAM_WRITER_ILL(ill)); 19217 /* 19218 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19219 * Hence this should be IRE_CACHE. 19220 */ 19221 ASSERT(ire->ire_type == IRE_CACHE); 19222 19223 /* 19224 * We are called for IRE_CACHES whose ire_ipif matches ill. 19225 * We are only interested in IRE_CACHES that has borrowed 19226 * the source address from ill_arg e.g. ipif_up_done[_v6] 19227 * for which we need to look at ire_ipif->ipif_ill match 19228 * with ill. 19229 */ 19230 ASSERT(ire->ire_ipif != NULL); 19231 ipif_ill = ire->ire_ipif->ipif_ill; 19232 if (ipif_ill == ill || (ill->ill_group != NULL && 19233 ipif_ill->ill_group == ill->ill_group)) { 19234 ire_delete(ire); 19235 } 19236 } 19237 19238 /* 19239 * Delete all the ire whose stq references ill_arg. 19240 */ 19241 static void 19242 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19243 { 19244 ill_t *ill = (ill_t *)ill_arg; 19245 ill_t *ire_ill; 19246 19247 ASSERT(IAM_WRITER_ILL(ill)); 19248 /* 19249 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19250 * Hence this should be IRE_CACHE. 19251 */ 19252 ASSERT(ire->ire_type == IRE_CACHE); 19253 19254 /* 19255 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19256 * matches ill. We are only interested in IRE_CACHES that 19257 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19258 * filtering here. 19259 */ 19260 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19261 19262 if (ire_ill == ill) 19263 ire_delete(ire); 19264 } 19265 19266 /* 19267 * This is called when an ill leaves the group. We want to delete 19268 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19269 * pointing at ill. 19270 */ 19271 static void 19272 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19273 { 19274 ill_t *ill = (ill_t *)ill_arg; 19275 19276 ASSERT(IAM_WRITER_ILL(ill)); 19277 ASSERT(ill->ill_group == NULL); 19278 /* 19279 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19280 * Hence this should be IRE_CACHE. 19281 */ 19282 ASSERT(ire->ire_type == IRE_CACHE); 19283 /* 19284 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19285 * matches ill. We are interested in both. 19286 */ 19287 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19288 (ire->ire_ipif->ipif_ill == ill)); 19289 19290 ire_delete(ire); 19291 } 19292 19293 /* 19294 * Initiate deallocate of an IPIF. Always called as writer. Called by 19295 * ill_delete or ip_sioctl_removeif. 19296 */ 19297 static void 19298 ipif_free(ipif_t *ipif) 19299 { 19300 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19301 19302 ASSERT(IAM_WRITER_IPIF(ipif)); 19303 19304 if (ipif->ipif_recovery_id != 0) 19305 (void) untimeout(ipif->ipif_recovery_id); 19306 ipif->ipif_recovery_id = 0; 19307 19308 /* Remove conn references */ 19309 reset_conn_ipif(ipif); 19310 19311 /* 19312 * Make sure we have valid net and subnet broadcast ire's for the 19313 * other ipif's which share them with this ipif. 19314 */ 19315 if (!ipif->ipif_isv6) 19316 ipif_check_bcast_ires(ipif); 19317 19318 /* 19319 * Take down the interface. We can be called either from ill_delete 19320 * or from ip_sioctl_removeif. 19321 */ 19322 (void) ipif_down(ipif, NULL, NULL); 19323 19324 /* 19325 * Now that the interface is down, there's no chance it can still 19326 * become a duplicate. Cancel any timer that may have been set while 19327 * tearing down. 19328 */ 19329 if (ipif->ipif_recovery_id != 0) 19330 (void) untimeout(ipif->ipif_recovery_id); 19331 ipif->ipif_recovery_id = 0; 19332 19333 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19334 /* Remove pointers to this ill in the multicast routing tables */ 19335 reset_mrt_vif_ipif(ipif); 19336 rw_exit(&ipst->ips_ill_g_lock); 19337 } 19338 19339 /* 19340 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19341 * also ill_move(). 19342 */ 19343 static void 19344 ipif_free_tail(ipif_t *ipif) 19345 { 19346 mblk_t *mp; 19347 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19348 19349 /* 19350 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19351 */ 19352 mutex_enter(&ipif->ipif_saved_ire_lock); 19353 mp = ipif->ipif_saved_ire_mp; 19354 ipif->ipif_saved_ire_mp = NULL; 19355 mutex_exit(&ipif->ipif_saved_ire_lock); 19356 freemsg(mp); 19357 19358 /* 19359 * Need to hold both ill_g_lock and ill_lock while 19360 * inserting or removing an ipif from the linked list 19361 * of ipifs hanging off the ill. 19362 */ 19363 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19364 /* 19365 * Remove all IPv4 multicast memberships on the interface now. 19366 * IPv6 is not handled here as the multicast memberships are 19367 * tied to the ill rather than the ipif. 19368 */ 19369 ilm_free(ipif); 19370 19371 /* 19372 * Since we held the ill_g_lock while doing the ilm_free above, 19373 * we can assert the ilms were really deleted and not just marked 19374 * ILM_DELETED. 19375 */ 19376 ASSERT(ilm_walk_ipif(ipif) == 0); 19377 19378 IPIF_TRACE_CLEANUP(ipif); 19379 19380 /* Ask SCTP to take it out of it list */ 19381 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19382 19383 /* Get it out of the ILL interface list. */ 19384 ipif_remove(ipif, B_TRUE); 19385 rw_exit(&ipst->ips_ill_g_lock); 19386 19387 mutex_destroy(&ipif->ipif_saved_ire_lock); 19388 19389 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19390 ASSERT(ipif->ipif_recovery_id == 0); 19391 19392 /* Free the memory. */ 19393 mi_free(ipif); 19394 } 19395 19396 /* 19397 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19398 * "ill_name" otherwise. 19399 */ 19400 char * 19401 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19402 { 19403 char lbuf[32]; 19404 char *name; 19405 size_t name_len; 19406 19407 buf[0] = '\0'; 19408 if (!ipif) 19409 return (buf); 19410 name = ipif->ipif_ill->ill_name; 19411 name_len = ipif->ipif_ill->ill_name_length; 19412 if (ipif->ipif_id != 0) { 19413 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19414 ipif->ipif_id); 19415 name = lbuf; 19416 name_len = mi_strlen(name) + 1; 19417 } 19418 len -= 1; 19419 buf[len] = '\0'; 19420 len = MIN(len, name_len); 19421 bcopy(name, buf, len); 19422 return (buf); 19423 } 19424 19425 /* 19426 * Find an IPIF based on the name passed in. Names can be of the 19427 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19428 * The <phys> string can have forms like <dev><#> (e.g., le0), 19429 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19430 * When there is no colon, the implied unit id is zero. <phys> must 19431 * correspond to the name of an ILL. (May be called as writer.) 19432 */ 19433 static ipif_t * 19434 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19435 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19436 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19437 { 19438 char *cp; 19439 char *endp; 19440 long id; 19441 ill_t *ill; 19442 ipif_t *ipif; 19443 uint_t ire_type; 19444 boolean_t did_alloc = B_FALSE; 19445 ipsq_t *ipsq; 19446 19447 if (error != NULL) 19448 *error = 0; 19449 19450 /* 19451 * If the caller wants to us to create the ipif, make sure we have a 19452 * valid zoneid 19453 */ 19454 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19455 19456 if (namelen == 0) { 19457 if (error != NULL) 19458 *error = ENXIO; 19459 return (NULL); 19460 } 19461 19462 *exists = B_FALSE; 19463 /* Look for a colon in the name. */ 19464 endp = &name[namelen]; 19465 for (cp = endp; --cp > name; ) { 19466 if (*cp == IPIF_SEPARATOR_CHAR) 19467 break; 19468 } 19469 19470 if (*cp == IPIF_SEPARATOR_CHAR) { 19471 /* 19472 * Reject any non-decimal aliases for logical 19473 * interfaces. Aliases with leading zeroes 19474 * are also rejected as they introduce ambiguity 19475 * in the naming of the interfaces. 19476 * In order to confirm with existing semantics, 19477 * and to not break any programs/script relying 19478 * on that behaviour, if<0>:0 is considered to be 19479 * a valid interface. 19480 * 19481 * If alias has two or more digits and the first 19482 * is zero, fail. 19483 */ 19484 if (&cp[2] < endp && cp[1] == '0') 19485 return (NULL); 19486 } 19487 19488 if (cp <= name) { 19489 cp = endp; 19490 } else { 19491 *cp = '\0'; 19492 } 19493 19494 /* 19495 * Look up the ILL, based on the portion of the name 19496 * before the slash. ill_lookup_on_name returns a held ill. 19497 * Temporary to check whether ill exists already. If so 19498 * ill_lookup_on_name will clear it. 19499 */ 19500 ill = ill_lookup_on_name(name, do_alloc, isv6, 19501 q, mp, func, error, &did_alloc, ipst); 19502 if (cp != endp) 19503 *cp = IPIF_SEPARATOR_CHAR; 19504 if (ill == NULL) 19505 return (NULL); 19506 19507 /* Establish the unit number in the name. */ 19508 id = 0; 19509 if (cp < endp && *endp == '\0') { 19510 /* If there was a colon, the unit number follows. */ 19511 cp++; 19512 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19513 ill_refrele(ill); 19514 if (error != NULL) 19515 *error = ENXIO; 19516 return (NULL); 19517 } 19518 } 19519 19520 GRAB_CONN_LOCK(q); 19521 mutex_enter(&ill->ill_lock); 19522 /* Now see if there is an IPIF with this unit number. */ 19523 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19524 if (ipif->ipif_id == id) { 19525 if (zoneid != ALL_ZONES && 19526 zoneid != ipif->ipif_zoneid && 19527 ipif->ipif_zoneid != ALL_ZONES) { 19528 mutex_exit(&ill->ill_lock); 19529 RELEASE_CONN_LOCK(q); 19530 ill_refrele(ill); 19531 if (error != NULL) 19532 *error = ENXIO; 19533 return (NULL); 19534 } 19535 /* 19536 * The block comment at the start of ipif_down 19537 * explains the use of the macros used below 19538 */ 19539 if (IPIF_CAN_LOOKUP(ipif)) { 19540 ipif_refhold_locked(ipif); 19541 mutex_exit(&ill->ill_lock); 19542 if (!did_alloc) 19543 *exists = B_TRUE; 19544 /* 19545 * Drop locks before calling ill_refrele 19546 * since it can potentially call into 19547 * ipif_ill_refrele_tail which can end up 19548 * in trying to acquire any lock. 19549 */ 19550 RELEASE_CONN_LOCK(q); 19551 ill_refrele(ill); 19552 return (ipif); 19553 } else if (IPIF_CAN_WAIT(ipif, q)) { 19554 ipsq = ill->ill_phyint->phyint_ipsq; 19555 mutex_enter(&ipsq->ipsq_lock); 19556 mutex_exit(&ill->ill_lock); 19557 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19558 mutex_exit(&ipsq->ipsq_lock); 19559 RELEASE_CONN_LOCK(q); 19560 ill_refrele(ill); 19561 *error = EINPROGRESS; 19562 return (NULL); 19563 } 19564 } 19565 } 19566 RELEASE_CONN_LOCK(q); 19567 19568 if (!do_alloc) { 19569 mutex_exit(&ill->ill_lock); 19570 ill_refrele(ill); 19571 if (error != NULL) 19572 *error = ENXIO; 19573 return (NULL); 19574 } 19575 19576 /* 19577 * If none found, atomically allocate and return a new one. 19578 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19579 * to support "receive only" use of lo0:1 etc. as is still done 19580 * below as an initial guess. 19581 * However, this is now likely to be overriden later in ipif_up_done() 19582 * when we know for sure what address has been configured on the 19583 * interface, since we might have more than one loopback interface 19584 * with a loopback address, e.g. in the case of zones, and all the 19585 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19586 */ 19587 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19588 ire_type = IRE_LOOPBACK; 19589 else 19590 ire_type = IRE_LOCAL; 19591 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19592 if (ipif != NULL) 19593 ipif_refhold_locked(ipif); 19594 else if (error != NULL) 19595 *error = ENOMEM; 19596 mutex_exit(&ill->ill_lock); 19597 ill_refrele(ill); 19598 return (ipif); 19599 } 19600 19601 /* 19602 * This routine is called whenever a new address comes up on an ipif. If 19603 * we are configured to respond to address mask requests, then we are supposed 19604 * to broadcast an address mask reply at this time. This routine is also 19605 * called if we are already up, but a netmask change is made. This is legal 19606 * but might not make the system manager very popular. (May be called 19607 * as writer.) 19608 */ 19609 void 19610 ipif_mask_reply(ipif_t *ipif) 19611 { 19612 icmph_t *icmph; 19613 ipha_t *ipha; 19614 mblk_t *mp; 19615 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19616 19617 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19618 19619 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19620 return; 19621 19622 /* ICMP mask reply is IPv4 only */ 19623 ASSERT(!ipif->ipif_isv6); 19624 /* ICMP mask reply is not for a loopback interface */ 19625 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19626 19627 mp = allocb(REPLY_LEN, BPRI_HI); 19628 if (mp == NULL) 19629 return; 19630 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19631 19632 ipha = (ipha_t *)mp->b_rptr; 19633 bzero(ipha, REPLY_LEN); 19634 *ipha = icmp_ipha; 19635 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19636 ipha->ipha_src = ipif->ipif_src_addr; 19637 ipha->ipha_dst = ipif->ipif_brd_addr; 19638 ipha->ipha_length = htons(REPLY_LEN); 19639 ipha->ipha_ident = 0; 19640 19641 icmph = (icmph_t *)&ipha[1]; 19642 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19643 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19644 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19645 19646 put(ipif->ipif_wq, mp); 19647 19648 #undef REPLY_LEN 19649 } 19650 19651 /* 19652 * When the mtu in the ipif changes, we call this routine through ire_walk 19653 * to update all the relevant IREs. 19654 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19655 */ 19656 static void 19657 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19658 { 19659 ipif_t *ipif = (ipif_t *)ipif_arg; 19660 19661 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19662 return; 19663 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19664 } 19665 19666 /* 19667 * When the mtu in the ill changes, we call this routine through ire_walk 19668 * to update all the relevant IREs. 19669 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19670 */ 19671 void 19672 ill_mtu_change(ire_t *ire, char *ill_arg) 19673 { 19674 ill_t *ill = (ill_t *)ill_arg; 19675 19676 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19677 return; 19678 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19679 } 19680 19681 /* 19682 * Join the ipif specific multicast groups. 19683 * Must be called after a mapping has been set up in the resolver. (Always 19684 * called as writer.) 19685 */ 19686 void 19687 ipif_multicast_up(ipif_t *ipif) 19688 { 19689 int err, index; 19690 ill_t *ill; 19691 19692 ASSERT(IAM_WRITER_IPIF(ipif)); 19693 19694 ill = ipif->ipif_ill; 19695 index = ill->ill_phyint->phyint_ifindex; 19696 19697 ip1dbg(("ipif_multicast_up\n")); 19698 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19699 return; 19700 19701 if (ipif->ipif_isv6) { 19702 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19703 return; 19704 19705 /* Join the all hosts multicast address */ 19706 ip1dbg(("ipif_multicast_up - addmulti\n")); 19707 /* 19708 * Passing B_TRUE means we have to join the multicast 19709 * membership on this interface even though this is 19710 * FAILED. If we join on a different one in the group, 19711 * we will not be able to delete the membership later 19712 * as we currently don't track where we join when we 19713 * join within the kernel unlike applications where 19714 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19715 * for more on this. 19716 */ 19717 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19718 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19719 if (err != 0) { 19720 ip0dbg(("ipif_multicast_up: " 19721 "all_hosts_mcast failed %d\n", 19722 err)); 19723 return; 19724 } 19725 /* 19726 * Enable multicast for the solicited node multicast address 19727 */ 19728 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19729 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19730 19731 ipv6_multi.s6_addr32[3] |= 19732 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19733 19734 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19735 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19736 NULL); 19737 if (err != 0) { 19738 ip0dbg(("ipif_multicast_up: solicited MC" 19739 " failed %d\n", err)); 19740 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19741 ill, ill->ill_phyint->phyint_ifindex, 19742 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19743 return; 19744 } 19745 } 19746 } else { 19747 if (ipif->ipif_lcl_addr == INADDR_ANY) 19748 return; 19749 19750 /* Join the all hosts multicast address */ 19751 ip1dbg(("ipif_multicast_up - addmulti\n")); 19752 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19753 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19754 if (err) { 19755 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19756 return; 19757 } 19758 } 19759 ipif->ipif_multicast_up = 1; 19760 } 19761 19762 /* 19763 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19764 * (Explicit memberships are blown away in ill_leave_multicast() when the 19765 * ill is brought down.) 19766 */ 19767 static void 19768 ipif_multicast_down(ipif_t *ipif) 19769 { 19770 int err; 19771 19772 ASSERT(IAM_WRITER_IPIF(ipif)); 19773 19774 ip1dbg(("ipif_multicast_down\n")); 19775 if (!ipif->ipif_multicast_up) 19776 return; 19777 19778 ip1dbg(("ipif_multicast_down - delmulti\n")); 19779 19780 if (!ipif->ipif_isv6) { 19781 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19782 B_TRUE); 19783 if (err != 0) 19784 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19785 19786 ipif->ipif_multicast_up = 0; 19787 return; 19788 } 19789 19790 /* 19791 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19792 * we should look for ilms on this ill rather than the ones that have 19793 * been failed over here. They are here temporarily. As 19794 * ipif_multicast_up has joined on this ill, we should delete only 19795 * from this ill. 19796 */ 19797 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19798 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19799 B_TRUE, B_TRUE); 19800 if (err != 0) { 19801 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19802 err)); 19803 } 19804 /* 19805 * Disable multicast for the solicited node multicast address 19806 */ 19807 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19808 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19809 19810 ipv6_multi.s6_addr32[3] |= 19811 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19812 19813 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19814 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19815 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19816 19817 if (err != 0) { 19818 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19819 err)); 19820 } 19821 } 19822 19823 ipif->ipif_multicast_up = 0; 19824 } 19825 19826 /* 19827 * Used when an interface comes up to recreate any extra routes on this 19828 * interface. 19829 */ 19830 static ire_t ** 19831 ipif_recover_ire(ipif_t *ipif) 19832 { 19833 mblk_t *mp; 19834 ire_t **ipif_saved_irep; 19835 ire_t **irep; 19836 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19837 19838 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19839 ipif->ipif_id)); 19840 19841 mutex_enter(&ipif->ipif_saved_ire_lock); 19842 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19843 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19844 if (ipif_saved_irep == NULL) { 19845 mutex_exit(&ipif->ipif_saved_ire_lock); 19846 return (NULL); 19847 } 19848 19849 irep = ipif_saved_irep; 19850 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19851 ire_t *ire; 19852 queue_t *rfq; 19853 queue_t *stq; 19854 ifrt_t *ifrt; 19855 uchar_t *src_addr; 19856 uchar_t *gateway_addr; 19857 ushort_t type; 19858 19859 /* 19860 * When the ire was initially created and then added in 19861 * ip_rt_add(), it was created either using ipif->ipif_net_type 19862 * in the case of a traditional interface route, or as one of 19863 * the IRE_OFFSUBNET types (with the exception of 19864 * IRE_HOST types ire which is created by icmp_redirect() and 19865 * which we don't need to save or recover). In the case where 19866 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19867 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19868 * to satisfy software like GateD and Sun Cluster which creates 19869 * routes using the the loopback interface's address as a 19870 * gateway. 19871 * 19872 * As ifrt->ifrt_type reflects the already updated ire_type, 19873 * ire_create() will be called in the same way here as 19874 * in ip_rt_add(), namely using ipif->ipif_net_type when 19875 * the route looks like a traditional interface route (where 19876 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19877 * the saved ifrt->ifrt_type. This means that in the case where 19878 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19879 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19880 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19881 */ 19882 ifrt = (ifrt_t *)mp->b_rptr; 19883 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19884 if (ifrt->ifrt_type & IRE_INTERFACE) { 19885 rfq = NULL; 19886 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19887 ? ipif->ipif_rq : ipif->ipif_wq; 19888 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19889 ? (uint8_t *)&ifrt->ifrt_src_addr 19890 : (uint8_t *)&ipif->ipif_src_addr; 19891 gateway_addr = NULL; 19892 type = ipif->ipif_net_type; 19893 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19894 /* Recover multiroute broadcast IRE. */ 19895 rfq = ipif->ipif_rq; 19896 stq = ipif->ipif_wq; 19897 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19898 ? (uint8_t *)&ifrt->ifrt_src_addr 19899 : (uint8_t *)&ipif->ipif_src_addr; 19900 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19901 type = ifrt->ifrt_type; 19902 } else { 19903 rfq = NULL; 19904 stq = NULL; 19905 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19906 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19907 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19908 type = ifrt->ifrt_type; 19909 } 19910 19911 /* 19912 * Create a copy of the IRE with the saved address and netmask. 19913 */ 19914 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19915 "0x%x/0x%x\n", 19916 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19917 ntohl(ifrt->ifrt_addr), 19918 ntohl(ifrt->ifrt_mask))); 19919 ire = ire_create( 19920 (uint8_t *)&ifrt->ifrt_addr, 19921 (uint8_t *)&ifrt->ifrt_mask, 19922 src_addr, 19923 gateway_addr, 19924 NULL, 19925 &ifrt->ifrt_max_frag, 19926 NULL, 19927 rfq, 19928 stq, 19929 type, 19930 ipif, 19931 NULL, 19932 0, 19933 0, 19934 0, 19935 ifrt->ifrt_flags, 19936 &ifrt->ifrt_iulp_info, 19937 NULL, 19938 NULL, 19939 ipst); 19940 19941 if (ire == NULL) { 19942 mutex_exit(&ipif->ipif_saved_ire_lock); 19943 kmem_free(ipif_saved_irep, 19944 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19945 return (NULL); 19946 } 19947 19948 /* 19949 * Some software (for example, GateD and Sun Cluster) attempts 19950 * to create (what amount to) IRE_PREFIX routes with the 19951 * loopback address as the gateway. This is primarily done to 19952 * set up prefixes with the RTF_REJECT flag set (for example, 19953 * when generating aggregate routes.) 19954 * 19955 * If the IRE type (as defined by ipif->ipif_net_type) is 19956 * IRE_LOOPBACK, then we map the request into a 19957 * IRE_IF_NORESOLVER. 19958 */ 19959 if (ipif->ipif_net_type == IRE_LOOPBACK) 19960 ire->ire_type = IRE_IF_NORESOLVER; 19961 /* 19962 * ire held by ire_add, will be refreled' towards the 19963 * the end of ipif_up_done 19964 */ 19965 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19966 *irep = ire; 19967 irep++; 19968 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19969 } 19970 mutex_exit(&ipif->ipif_saved_ire_lock); 19971 return (ipif_saved_irep); 19972 } 19973 19974 /* 19975 * Used to set the netmask and broadcast address to default values when the 19976 * interface is brought up. (Always called as writer.) 19977 */ 19978 static void 19979 ipif_set_default(ipif_t *ipif) 19980 { 19981 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19982 19983 if (!ipif->ipif_isv6) { 19984 /* 19985 * Interface holds an IPv4 address. Default 19986 * mask is the natural netmask. 19987 */ 19988 if (!ipif->ipif_net_mask) { 19989 ipaddr_t v4mask; 19990 19991 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19992 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19993 } 19994 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19995 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19996 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19997 } else { 19998 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19999 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20000 } 20001 /* 20002 * NOTE: SunOS 4.X does this even if the broadcast address 20003 * has been already set thus we do the same here. 20004 */ 20005 if (ipif->ipif_flags & IPIF_BROADCAST) { 20006 ipaddr_t v4addr; 20007 20008 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20009 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20010 } 20011 } else { 20012 /* 20013 * Interface holds an IPv6-only address. Default 20014 * mask is all-ones. 20015 */ 20016 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20017 ipif->ipif_v6net_mask = ipv6_all_ones; 20018 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20019 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20020 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20021 } else { 20022 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20023 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20024 } 20025 } 20026 } 20027 20028 /* 20029 * Return 0 if this address can be used as local address without causing 20030 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20031 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20032 * Special checks are needed to allow the same IPv6 link-local address 20033 * on different ills. 20034 * TODO: allowing the same site-local address on different ill's. 20035 */ 20036 int 20037 ip_addr_availability_check(ipif_t *new_ipif) 20038 { 20039 in6_addr_t our_v6addr; 20040 ill_t *ill; 20041 ipif_t *ipif; 20042 ill_walk_context_t ctx; 20043 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20044 20045 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20046 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20047 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20048 20049 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20050 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20051 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20052 return (0); 20053 20054 our_v6addr = new_ipif->ipif_v6lcl_addr; 20055 20056 if (new_ipif->ipif_isv6) 20057 ill = ILL_START_WALK_V6(&ctx, ipst); 20058 else 20059 ill = ILL_START_WALK_V4(&ctx, ipst); 20060 20061 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20062 for (ipif = ill->ill_ipif; ipif != NULL; 20063 ipif = ipif->ipif_next) { 20064 if ((ipif == new_ipif) || 20065 !(ipif->ipif_flags & IPIF_UP) || 20066 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20067 continue; 20068 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20069 &our_v6addr)) { 20070 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20071 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20072 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20073 ipif->ipif_flags |= IPIF_UNNUMBERED; 20074 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20075 new_ipif->ipif_ill != ill) 20076 continue; 20077 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20078 new_ipif->ipif_ill != ill) 20079 continue; 20080 else if (new_ipif->ipif_zoneid != 20081 ipif->ipif_zoneid && 20082 ipif->ipif_zoneid != ALL_ZONES && 20083 IS_LOOPBACK(ill)) 20084 continue; 20085 else if (new_ipif->ipif_ill == ill) 20086 return (EADDRINUSE); 20087 else 20088 return (EADDRNOTAVAIL); 20089 } 20090 } 20091 } 20092 20093 return (0); 20094 } 20095 20096 /* 20097 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20098 * IREs for the ipif. 20099 * When the routine returns EINPROGRESS then mp has been consumed and 20100 * the ioctl will be acked from ip_rput_dlpi. 20101 */ 20102 static int 20103 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20104 { 20105 ill_t *ill = ipif->ipif_ill; 20106 boolean_t isv6 = ipif->ipif_isv6; 20107 int err = 0; 20108 boolean_t success; 20109 20110 ASSERT(IAM_WRITER_IPIF(ipif)); 20111 20112 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20113 20114 /* Shouldn't get here if it is already up. */ 20115 if (ipif->ipif_flags & IPIF_UP) 20116 return (EALREADY); 20117 20118 /* Skip arp/ndp for any loopback interface. */ 20119 if (ill->ill_wq != NULL) { 20120 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20121 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20122 20123 if (!ill->ill_dl_up) { 20124 /* 20125 * ill_dl_up is not yet set. i.e. we are yet to 20126 * DL_BIND with the driver and this is the first 20127 * logical interface on the ill to become "up". 20128 * Tell the driver to get going (via DL_BIND_REQ). 20129 * Note that changing "significant" IFF_ flags 20130 * address/netmask etc cause a down/up dance, but 20131 * does not cause an unbind (DL_UNBIND) with the driver 20132 */ 20133 return (ill_dl_up(ill, ipif, mp, q)); 20134 } 20135 20136 /* 20137 * ipif_resolver_up may end up sending an 20138 * AR_INTERFACE_UP message to ARP, which would, in 20139 * turn send a DLPI message to the driver. ioctls are 20140 * serialized and so we cannot send more than one 20141 * interface up message at a time. If ipif_resolver_up 20142 * does send an interface up message to ARP, we get 20143 * EINPROGRESS and we will complete in ip_arp_done. 20144 */ 20145 20146 ASSERT(connp != NULL || !CONN_Q(q)); 20147 ASSERT(ipsq->ipsq_pending_mp == NULL); 20148 if (connp != NULL) 20149 mutex_enter(&connp->conn_lock); 20150 mutex_enter(&ill->ill_lock); 20151 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20152 mutex_exit(&ill->ill_lock); 20153 if (connp != NULL) 20154 mutex_exit(&connp->conn_lock); 20155 if (!success) 20156 return (EINTR); 20157 20158 /* 20159 * Crank up IPv6 neighbor discovery 20160 * Unlike ARP, this should complete when 20161 * ipif_ndp_up returns. However, for 20162 * ILLF_XRESOLV interfaces we also send a 20163 * AR_INTERFACE_UP to the external resolver. 20164 * That ioctl will complete in ip_rput. 20165 */ 20166 if (isv6) { 20167 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20168 if (err != 0) { 20169 if (err != EINPROGRESS) 20170 mp = ipsq_pending_mp_get(ipsq, &connp); 20171 return (err); 20172 } 20173 } 20174 /* Now, ARP */ 20175 err = ipif_resolver_up(ipif, Res_act_initial); 20176 if (err == EINPROGRESS) { 20177 /* We will complete it in ip_arp_done */ 20178 return (err); 20179 } 20180 mp = ipsq_pending_mp_get(ipsq, &connp); 20181 ASSERT(mp != NULL); 20182 if (err != 0) 20183 return (err); 20184 } else { 20185 /* 20186 * Interfaces without underlying hardware don't do duplicate 20187 * address detection. 20188 */ 20189 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20190 ipif->ipif_addr_ready = 1; 20191 } 20192 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20193 } 20194 20195 /* 20196 * Perform a bind for the physical device. 20197 * When the routine returns EINPROGRESS then mp has been consumed and 20198 * the ioctl will be acked from ip_rput_dlpi. 20199 * Allocate an unbind message and save it until ipif_down. 20200 */ 20201 static int 20202 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20203 { 20204 areq_t *areq; 20205 mblk_t *areq_mp = NULL; 20206 mblk_t *bind_mp = NULL; 20207 mblk_t *unbind_mp = NULL; 20208 conn_t *connp; 20209 boolean_t success; 20210 uint16_t sap_addr; 20211 20212 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20213 ASSERT(IAM_WRITER_ILL(ill)); 20214 ASSERT(mp != NULL); 20215 20216 /* Create a resolver cookie for ARP */ 20217 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20218 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 20219 if (areq_mp == NULL) 20220 return (ENOMEM); 20221 20222 freemsg(ill->ill_resolver_mp); 20223 ill->ill_resolver_mp = areq_mp; 20224 areq = (areq_t *)areq_mp->b_rptr; 20225 sap_addr = ill->ill_sap; 20226 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20227 } 20228 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20229 DL_BIND_REQ); 20230 if (bind_mp == NULL) 20231 goto bad; 20232 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20233 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20234 20235 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20236 if (unbind_mp == NULL) 20237 goto bad; 20238 20239 /* 20240 * Record state needed to complete this operation when the 20241 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20242 */ 20243 ASSERT(WR(q)->q_next == NULL); 20244 connp = Q_TO_CONN(q); 20245 20246 mutex_enter(&connp->conn_lock); 20247 mutex_enter(&ipif->ipif_ill->ill_lock); 20248 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20249 mutex_exit(&ipif->ipif_ill->ill_lock); 20250 mutex_exit(&connp->conn_lock); 20251 if (!success) 20252 goto bad; 20253 20254 /* 20255 * Save the unbind message for ill_dl_down(); it will be consumed when 20256 * the interface goes down. 20257 */ 20258 ASSERT(ill->ill_unbind_mp == NULL); 20259 ill->ill_unbind_mp = unbind_mp; 20260 20261 ill_dlpi_send(ill, bind_mp); 20262 /* Send down link-layer capabilities probe if not already done. */ 20263 ill_capability_probe(ill); 20264 20265 /* 20266 * Sysid used to rely on the fact that netboots set domainname 20267 * and the like. Now that miniroot boots aren't strictly netboots 20268 * and miniroot network configuration is driven from userland 20269 * these things still need to be set. This situation can be detected 20270 * by comparing the interface being configured here to the one 20271 * dhcack was set to reference by the boot loader. Once sysid is 20272 * converted to use dhcp_ipc_getinfo() this call can go away. 20273 */ 20274 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20275 (strcmp(ill->ill_name, dhcack) == 0) && 20276 (strlen(srpc_domain) == 0)) { 20277 if (dhcpinit() != 0) 20278 cmn_err(CE_WARN, "no cached dhcp response"); 20279 } 20280 20281 /* 20282 * This operation will complete in ip_rput_dlpi with either 20283 * a DL_BIND_ACK or DL_ERROR_ACK. 20284 */ 20285 return (EINPROGRESS); 20286 bad: 20287 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20288 /* 20289 * We don't have to check for possible removal from illgrp 20290 * as we have not yet inserted in illgrp. For groups 20291 * without names, this ipif is still not UP and hence 20292 * this could not have possibly had any influence in forming 20293 * groups. 20294 */ 20295 20296 freemsg(bind_mp); 20297 freemsg(unbind_mp); 20298 return (ENOMEM); 20299 } 20300 20301 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20302 20303 /* 20304 * DLPI and ARP is up. 20305 * Create all the IREs associated with an interface bring up multicast. 20306 * Set the interface flag and finish other initialization 20307 * that potentially had to be differed to after DL_BIND_ACK. 20308 */ 20309 int 20310 ipif_up_done(ipif_t *ipif) 20311 { 20312 ire_t *ire_array[20]; 20313 ire_t **irep = ire_array; 20314 ire_t **irep1; 20315 ipaddr_t net_mask = 0; 20316 ipaddr_t subnet_mask, route_mask; 20317 ill_t *ill = ipif->ipif_ill; 20318 queue_t *stq; 20319 ipif_t *src_ipif; 20320 ipif_t *tmp_ipif; 20321 boolean_t flush_ire_cache = B_TRUE; 20322 int err = 0; 20323 phyint_t *phyi; 20324 ire_t **ipif_saved_irep = NULL; 20325 int ipif_saved_ire_cnt; 20326 int cnt; 20327 boolean_t src_ipif_held = B_FALSE; 20328 boolean_t ire_added = B_FALSE; 20329 boolean_t loopback = B_FALSE; 20330 ip_stack_t *ipst = ill->ill_ipst; 20331 20332 ip1dbg(("ipif_up_done(%s:%u)\n", 20333 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20334 /* Check if this is a loopback interface */ 20335 if (ipif->ipif_ill->ill_wq == NULL) 20336 loopback = B_TRUE; 20337 20338 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20339 /* 20340 * If all other interfaces for this ill are down or DEPRECATED, 20341 * or otherwise unsuitable for source address selection, remove 20342 * any IRE_CACHE entries for this ill to make sure source 20343 * address selection gets to take this new ipif into account. 20344 * No need to hold ill_lock while traversing the ipif list since 20345 * we are writer 20346 */ 20347 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20348 tmp_ipif = tmp_ipif->ipif_next) { 20349 if (((tmp_ipif->ipif_flags & 20350 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20351 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20352 (tmp_ipif == ipif)) 20353 continue; 20354 /* first useable pre-existing interface */ 20355 flush_ire_cache = B_FALSE; 20356 break; 20357 } 20358 if (flush_ire_cache) 20359 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20360 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20361 20362 /* 20363 * Figure out which way the send-to queue should go. Only 20364 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20365 * should show up here. 20366 */ 20367 switch (ill->ill_net_type) { 20368 case IRE_IF_RESOLVER: 20369 stq = ill->ill_rq; 20370 break; 20371 case IRE_IF_NORESOLVER: 20372 case IRE_LOOPBACK: 20373 stq = ill->ill_wq; 20374 break; 20375 default: 20376 return (EINVAL); 20377 } 20378 20379 if (IS_LOOPBACK(ill)) { 20380 /* 20381 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20382 * ipif_lookup_on_name(), but in the case of zones we can have 20383 * several loopback addresses on lo0. So all the interfaces with 20384 * loopback addresses need to be marked IRE_LOOPBACK. 20385 */ 20386 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20387 htonl(INADDR_LOOPBACK)) 20388 ipif->ipif_ire_type = IRE_LOOPBACK; 20389 else 20390 ipif->ipif_ire_type = IRE_LOCAL; 20391 } 20392 20393 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20394 /* 20395 * Can't use our source address. Select a different 20396 * source address for the IRE_INTERFACE and IRE_LOCAL 20397 */ 20398 src_ipif = ipif_select_source(ipif->ipif_ill, 20399 ipif->ipif_subnet, ipif->ipif_zoneid); 20400 if (src_ipif == NULL) 20401 src_ipif = ipif; /* Last resort */ 20402 else 20403 src_ipif_held = B_TRUE; 20404 } else { 20405 src_ipif = ipif; 20406 } 20407 20408 /* Create all the IREs associated with this interface */ 20409 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20410 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20411 20412 /* 20413 * If we're on a labeled system then make sure that zone- 20414 * private addresses have proper remote host database entries. 20415 */ 20416 if (is_system_labeled() && 20417 ipif->ipif_ire_type != IRE_LOOPBACK && 20418 !tsol_check_interface_address(ipif)) 20419 return (EINVAL); 20420 20421 /* Register the source address for __sin6_src_id */ 20422 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20423 ipif->ipif_zoneid, ipst); 20424 if (err != 0) { 20425 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20426 return (err); 20427 } 20428 20429 /* If the interface address is set, create the local IRE. */ 20430 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20431 (void *)ipif, 20432 ipif->ipif_ire_type, 20433 ntohl(ipif->ipif_lcl_addr))); 20434 *irep++ = ire_create( 20435 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20436 (uchar_t *)&ip_g_all_ones, /* mask */ 20437 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20438 NULL, /* no gateway */ 20439 NULL, 20440 &ip_loopback_mtuplus, /* max frag size */ 20441 NULL, 20442 ipif->ipif_rq, /* recv-from queue */ 20443 NULL, /* no send-to queue */ 20444 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20445 ipif, 20446 NULL, 20447 0, 20448 0, 20449 0, 20450 (ipif->ipif_flags & IPIF_PRIVATE) ? 20451 RTF_PRIVATE : 0, 20452 &ire_uinfo_null, 20453 NULL, 20454 NULL, 20455 ipst); 20456 } else { 20457 ip1dbg(( 20458 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20459 ipif->ipif_ire_type, 20460 ntohl(ipif->ipif_lcl_addr), 20461 (uint_t)ipif->ipif_flags)); 20462 } 20463 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20464 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20465 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20466 } else { 20467 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20468 } 20469 20470 subnet_mask = ipif->ipif_net_mask; 20471 20472 /* 20473 * If mask was not specified, use natural netmask of 20474 * interface address. Also, store this mask back into the 20475 * ipif struct. 20476 */ 20477 if (subnet_mask == 0) { 20478 subnet_mask = net_mask; 20479 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20480 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20481 ipif->ipif_v6subnet); 20482 } 20483 20484 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20485 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20486 ipif->ipif_subnet != INADDR_ANY) { 20487 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20488 20489 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20490 route_mask = IP_HOST_MASK; 20491 } else { 20492 route_mask = subnet_mask; 20493 } 20494 20495 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20496 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20497 (void *)ipif, (void *)ill, 20498 ill->ill_net_type, 20499 ntohl(ipif->ipif_subnet))); 20500 *irep++ = ire_create( 20501 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20502 (uchar_t *)&route_mask, /* mask */ 20503 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20504 NULL, /* no gateway */ 20505 NULL, 20506 &ipif->ipif_mtu, /* max frag */ 20507 NULL, 20508 NULL, /* no recv queue */ 20509 stq, /* send-to queue */ 20510 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20511 ipif, 20512 NULL, 20513 0, 20514 0, 20515 0, 20516 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20517 &ire_uinfo_null, 20518 NULL, 20519 NULL, 20520 ipst); 20521 } 20522 20523 /* 20524 * Create any necessary broadcast IREs. 20525 */ 20526 if ((ipif->ipif_subnet != INADDR_ANY) && 20527 (ipif->ipif_flags & IPIF_BROADCAST)) 20528 irep = ipif_create_bcast_ires(ipif, irep); 20529 20530 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20531 20532 /* If an earlier ire_create failed, get out now */ 20533 for (irep1 = irep; irep1 > ire_array; ) { 20534 irep1--; 20535 if (*irep1 == NULL) { 20536 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20537 err = ENOMEM; 20538 goto bad; 20539 } 20540 } 20541 20542 /* 20543 * Need to atomically check for ip_addr_availablity_check 20544 * under ip_addr_avail_lock, and if it fails got bad, and remove 20545 * from group also.The ill_g_lock is grabbed as reader 20546 * just to make sure no new ills or new ipifs are being added 20547 * to the system while we are checking the uniqueness of addresses. 20548 */ 20549 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20550 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20551 /* Mark it up, and increment counters. */ 20552 ipif->ipif_flags |= IPIF_UP; 20553 ill->ill_ipif_up_count++; 20554 err = ip_addr_availability_check(ipif); 20555 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20556 rw_exit(&ipst->ips_ill_g_lock); 20557 20558 if (err != 0) { 20559 /* 20560 * Our address may already be up on the same ill. In this case, 20561 * the ARP entry for our ipif replaced the one for the other 20562 * ipif. So we don't want to delete it (otherwise the other ipif 20563 * would be unable to send packets). 20564 * ip_addr_availability_check() identifies this case for us and 20565 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20566 * which is the expected error code. 20567 */ 20568 if (err == EADDRINUSE) { 20569 freemsg(ipif->ipif_arp_del_mp); 20570 ipif->ipif_arp_del_mp = NULL; 20571 err = EADDRNOTAVAIL; 20572 } 20573 ill->ill_ipif_up_count--; 20574 ipif->ipif_flags &= ~IPIF_UP; 20575 goto bad; 20576 } 20577 20578 /* 20579 * Add in all newly created IREs. ire_create_bcast() has 20580 * already checked for duplicates of the IRE_BROADCAST type. 20581 * We want to add before we call ifgrp_insert which wants 20582 * to know whether IRE_IF_RESOLVER exists or not. 20583 * 20584 * NOTE : We refrele the ire though we may branch to "bad" 20585 * later on where we do ire_delete. This is okay 20586 * because nobody can delete it as we are running 20587 * exclusively. 20588 */ 20589 for (irep1 = irep; irep1 > ire_array; ) { 20590 irep1--; 20591 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20592 /* 20593 * refheld by ire_add. refele towards the end of the func 20594 */ 20595 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20596 } 20597 ire_added = B_TRUE; 20598 /* 20599 * Form groups if possible. 20600 * 20601 * If we are supposed to be in a ill_group with a name, insert it 20602 * now as we know that at least one ipif is UP. Otherwise form 20603 * nameless groups. 20604 * 20605 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20606 * this ipif into the appropriate interface group, or create a 20607 * new one. If this is already in a nameless group, we try to form 20608 * a bigger group looking at other ills potentially sharing this 20609 * ipif's prefix. 20610 */ 20611 phyi = ill->ill_phyint; 20612 if (phyi->phyint_groupname_len != 0) { 20613 ASSERT(phyi->phyint_groupname != NULL); 20614 if (ill->ill_ipif_up_count == 1) { 20615 ASSERT(ill->ill_group == NULL); 20616 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20617 phyi->phyint_groupname, NULL, B_TRUE); 20618 if (err != 0) { 20619 ip1dbg(("ipif_up_done: illgrp allocation " 20620 "failed, error %d\n", err)); 20621 goto bad; 20622 } 20623 } 20624 ASSERT(ill->ill_group != NULL); 20625 } 20626 20627 /* 20628 * When this is part of group, we need to make sure that 20629 * any broadcast ires created because of this ipif coming 20630 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20631 * so that we don't receive duplicate broadcast packets. 20632 */ 20633 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20634 ipif_renominate_bcast(ipif); 20635 20636 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20637 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20638 ipif_saved_irep = ipif_recover_ire(ipif); 20639 20640 if (!loopback) { 20641 /* 20642 * If the broadcast address has been set, make sure it makes 20643 * sense based on the interface address. 20644 * Only match on ill since we are sharing broadcast addresses. 20645 */ 20646 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20647 (ipif->ipif_flags & IPIF_BROADCAST)) { 20648 ire_t *ire; 20649 20650 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20651 IRE_BROADCAST, ipif, ALL_ZONES, 20652 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20653 20654 if (ire == NULL) { 20655 /* 20656 * If there isn't a matching broadcast IRE, 20657 * revert to the default for this netmask. 20658 */ 20659 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20660 mutex_enter(&ipif->ipif_ill->ill_lock); 20661 ipif_set_default(ipif); 20662 mutex_exit(&ipif->ipif_ill->ill_lock); 20663 } else { 20664 ire_refrele(ire); 20665 } 20666 } 20667 20668 } 20669 20670 /* This is the first interface on this ill */ 20671 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20672 /* 20673 * Need to recover all multicast memberships in the driver. 20674 * This had to be deferred until we had attached. 20675 */ 20676 ill_recover_multicast(ill); 20677 } 20678 /* Join the allhosts multicast address */ 20679 ipif_multicast_up(ipif); 20680 20681 if (!loopback) { 20682 /* 20683 * See whether anybody else would benefit from the 20684 * new ipif that we added. We call this always rather 20685 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20686 * ipif is for the benefit of illgrp_insert (done above) 20687 * which does not do source address selection as it does 20688 * not want to re-create interface routes that we are 20689 * having reference to it here. 20690 */ 20691 ill_update_source_selection(ill); 20692 } 20693 20694 for (irep1 = irep; irep1 > ire_array; ) { 20695 irep1--; 20696 if (*irep1 != NULL) { 20697 /* was held in ire_add */ 20698 ire_refrele(*irep1); 20699 } 20700 } 20701 20702 cnt = ipif_saved_ire_cnt; 20703 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20704 if (*irep1 != NULL) { 20705 /* was held in ire_add */ 20706 ire_refrele(*irep1); 20707 } 20708 } 20709 20710 if (!loopback && ipif->ipif_addr_ready) { 20711 /* Broadcast an address mask reply. */ 20712 ipif_mask_reply(ipif); 20713 } 20714 if (ipif_saved_irep != NULL) { 20715 kmem_free(ipif_saved_irep, 20716 ipif_saved_ire_cnt * sizeof (ire_t *)); 20717 } 20718 if (src_ipif_held) 20719 ipif_refrele(src_ipif); 20720 20721 /* 20722 * This had to be deferred until we had bound. Tell routing sockets and 20723 * others that this interface is up if it looks like the address has 20724 * been validated. Otherwise, if it isn't ready yet, wait for 20725 * duplicate address detection to do its thing. 20726 */ 20727 if (ipif->ipif_addr_ready) { 20728 ip_rts_ifmsg(ipif); 20729 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20730 /* Let SCTP update the status for this ipif */ 20731 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20732 } 20733 return (0); 20734 20735 bad: 20736 ip1dbg(("ipif_up_done: FAILED \n")); 20737 /* 20738 * We don't have to bother removing from ill groups because 20739 * 20740 * 1) For groups with names, we insert only when the first ipif 20741 * comes up. In that case if it fails, it will not be in any 20742 * group. So, we need not try to remove for that case. 20743 * 20744 * 2) For groups without names, either we tried to insert ipif_ill 20745 * in a group as singleton or found some other group to become 20746 * a bigger group. For the former, if it fails we don't have 20747 * anything to do as ipif_ill is not in the group and for the 20748 * latter, there are no failures in illgrp_insert/illgrp_delete 20749 * (ENOMEM can't occur for this. Check ifgrp_insert). 20750 */ 20751 while (irep > ire_array) { 20752 irep--; 20753 if (*irep != NULL) { 20754 ire_delete(*irep); 20755 if (ire_added) 20756 ire_refrele(*irep); 20757 } 20758 } 20759 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20760 20761 if (ipif_saved_irep != NULL) { 20762 kmem_free(ipif_saved_irep, 20763 ipif_saved_ire_cnt * sizeof (ire_t *)); 20764 } 20765 if (src_ipif_held) 20766 ipif_refrele(src_ipif); 20767 20768 ipif_arp_down(ipif); 20769 return (err); 20770 } 20771 20772 /* 20773 * Turn off the ARP with the ILLF_NOARP flag. 20774 */ 20775 static int 20776 ill_arp_off(ill_t *ill) 20777 { 20778 mblk_t *arp_off_mp = NULL; 20779 mblk_t *arp_on_mp = NULL; 20780 20781 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20782 20783 ASSERT(IAM_WRITER_ILL(ill)); 20784 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20785 20786 /* 20787 * If the on message is still around we've already done 20788 * an arp_off without doing an arp_on thus there is no 20789 * work needed. 20790 */ 20791 if (ill->ill_arp_on_mp != NULL) 20792 return (0); 20793 20794 /* 20795 * Allocate an ARP on message (to be saved) and an ARP off message 20796 */ 20797 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20798 if (!arp_off_mp) 20799 return (ENOMEM); 20800 20801 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20802 if (!arp_on_mp) 20803 goto failed; 20804 20805 ASSERT(ill->ill_arp_on_mp == NULL); 20806 ill->ill_arp_on_mp = arp_on_mp; 20807 20808 /* Send an AR_INTERFACE_OFF request */ 20809 putnext(ill->ill_rq, arp_off_mp); 20810 return (0); 20811 failed: 20812 20813 if (arp_off_mp) 20814 freemsg(arp_off_mp); 20815 return (ENOMEM); 20816 } 20817 20818 /* 20819 * Turn on ARP by turning off the ILLF_NOARP flag. 20820 */ 20821 static int 20822 ill_arp_on(ill_t *ill) 20823 { 20824 mblk_t *mp; 20825 20826 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20827 20828 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20829 20830 ASSERT(IAM_WRITER_ILL(ill)); 20831 /* 20832 * Send an AR_INTERFACE_ON request if we have already done 20833 * an arp_off (which allocated the message). 20834 */ 20835 if (ill->ill_arp_on_mp != NULL) { 20836 mp = ill->ill_arp_on_mp; 20837 ill->ill_arp_on_mp = NULL; 20838 putnext(ill->ill_rq, mp); 20839 } 20840 return (0); 20841 } 20842 20843 /* 20844 * Called after either deleting ill from the group or when setting 20845 * FAILED or STANDBY on the interface. 20846 */ 20847 static void 20848 illgrp_reset_schednext(ill_t *ill) 20849 { 20850 ill_group_t *illgrp; 20851 ill_t *save_ill; 20852 20853 ASSERT(IAM_WRITER_ILL(ill)); 20854 /* 20855 * When called from illgrp_delete, ill_group will be non-NULL. 20856 * But when called from ip_sioctl_flags, it could be NULL if 20857 * somebody is setting FAILED/INACTIVE on some interface which 20858 * is not part of a group. 20859 */ 20860 illgrp = ill->ill_group; 20861 if (illgrp == NULL) 20862 return; 20863 if (illgrp->illgrp_ill_schednext != ill) 20864 return; 20865 20866 illgrp->illgrp_ill_schednext = NULL; 20867 save_ill = ill; 20868 /* 20869 * Choose a good ill to be the next one for 20870 * outbound traffic. As the flags FAILED/STANDBY is 20871 * not yet marked when called from ip_sioctl_flags, 20872 * we check for ill separately. 20873 */ 20874 for (ill = illgrp->illgrp_ill; ill != NULL; 20875 ill = ill->ill_group_next) { 20876 if ((ill != save_ill) && 20877 !(ill->ill_phyint->phyint_flags & 20878 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20879 illgrp->illgrp_ill_schednext = ill; 20880 return; 20881 } 20882 } 20883 } 20884 20885 /* 20886 * Given an ill, find the next ill in the group to be scheduled. 20887 * (This should be called by ip_newroute() before ire_create().) 20888 * The passed in ill may be pulled out of the group, after we have picked 20889 * up a different outgoing ill from the same group. However ire add will 20890 * atomically check this. 20891 */ 20892 ill_t * 20893 illgrp_scheduler(ill_t *ill) 20894 { 20895 ill_t *retill; 20896 ill_group_t *illgrp; 20897 int illcnt; 20898 int i; 20899 uint64_t flags; 20900 ip_stack_t *ipst = ill->ill_ipst; 20901 20902 /* 20903 * We don't use a lock to check for the ill_group. If this ill 20904 * is currently being inserted we may end up just returning this 20905 * ill itself. That is ok. 20906 */ 20907 if (ill->ill_group == NULL) { 20908 ill_refhold(ill); 20909 return (ill); 20910 } 20911 20912 /* 20913 * Grab the ill_g_lock as reader to make sure we are dealing with 20914 * a set of stable ills. No ill can be added or deleted or change 20915 * group while we hold the reader lock. 20916 */ 20917 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20918 if ((illgrp = ill->ill_group) == NULL) { 20919 rw_exit(&ipst->ips_ill_g_lock); 20920 ill_refhold(ill); 20921 return (ill); 20922 } 20923 20924 illcnt = illgrp->illgrp_ill_count; 20925 mutex_enter(&illgrp->illgrp_lock); 20926 retill = illgrp->illgrp_ill_schednext; 20927 20928 if (retill == NULL) 20929 retill = illgrp->illgrp_ill; 20930 20931 /* 20932 * We do a circular search beginning at illgrp_ill_schednext 20933 * or illgrp_ill. We don't check the flags against the ill lock 20934 * since it can change anytime. The ire creation will be atomic 20935 * and will fail if the ill is FAILED or OFFLINE. 20936 */ 20937 for (i = 0; i < illcnt; i++) { 20938 flags = retill->ill_phyint->phyint_flags; 20939 20940 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20941 ILL_CAN_LOOKUP(retill)) { 20942 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20943 ill_refhold(retill); 20944 break; 20945 } 20946 retill = retill->ill_group_next; 20947 if (retill == NULL) 20948 retill = illgrp->illgrp_ill; 20949 } 20950 mutex_exit(&illgrp->illgrp_lock); 20951 rw_exit(&ipst->ips_ill_g_lock); 20952 20953 return (i == illcnt ? NULL : retill); 20954 } 20955 20956 /* 20957 * Checks for availbility of a usable source address (if there is one) when the 20958 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20959 * this selection is done regardless of the destination. 20960 */ 20961 boolean_t 20962 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20963 { 20964 uint_t ifindex; 20965 ipif_t *ipif = NULL; 20966 ill_t *uill; 20967 boolean_t isv6; 20968 ip_stack_t *ipst = ill->ill_ipst; 20969 20970 ASSERT(ill != NULL); 20971 20972 isv6 = ill->ill_isv6; 20973 ifindex = ill->ill_usesrc_ifindex; 20974 if (ifindex != 0) { 20975 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20976 NULL, ipst); 20977 if (uill == NULL) 20978 return (NULL); 20979 mutex_enter(&uill->ill_lock); 20980 for (ipif = uill->ill_ipif; ipif != NULL; 20981 ipif = ipif->ipif_next) { 20982 if (!IPIF_CAN_LOOKUP(ipif)) 20983 continue; 20984 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20985 continue; 20986 if (!(ipif->ipif_flags & IPIF_UP)) 20987 continue; 20988 if (ipif->ipif_zoneid != zoneid) 20989 continue; 20990 if ((isv6 && 20991 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20992 (ipif->ipif_lcl_addr == INADDR_ANY)) 20993 continue; 20994 mutex_exit(&uill->ill_lock); 20995 ill_refrele(uill); 20996 return (B_TRUE); 20997 } 20998 mutex_exit(&uill->ill_lock); 20999 ill_refrele(uill); 21000 } 21001 return (B_FALSE); 21002 } 21003 21004 /* 21005 * Determine the best source address given a destination address and an ill. 21006 * Prefers non-deprecated over deprecated but will return a deprecated 21007 * address if there is no other choice. If there is a usable source address 21008 * on the interface pointed to by ill_usesrc_ifindex then that is given 21009 * first preference. 21010 * 21011 * Returns NULL if there is no suitable source address for the ill. 21012 * This only occurs when there is no valid source address for the ill. 21013 */ 21014 ipif_t * 21015 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21016 { 21017 ipif_t *ipif; 21018 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21019 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21020 int index = 0; 21021 boolean_t wrapped = B_FALSE; 21022 boolean_t same_subnet_only = B_FALSE; 21023 boolean_t ipif_same_found, ipif_other_found; 21024 boolean_t specific_found; 21025 ill_t *till, *usill = NULL; 21026 tsol_tpc_t *src_rhtp, *dst_rhtp; 21027 ip_stack_t *ipst = ill->ill_ipst; 21028 21029 if (ill->ill_usesrc_ifindex != 0) { 21030 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21031 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21032 if (usill != NULL) 21033 ill = usill; /* Select source from usesrc ILL */ 21034 else 21035 return (NULL); 21036 } 21037 21038 /* 21039 * If we're dealing with an unlabeled destination on a labeled system, 21040 * make sure that we ignore source addresses that are incompatible with 21041 * the destination's default label. That destination's default label 21042 * must dominate the minimum label on the source address. 21043 */ 21044 dst_rhtp = NULL; 21045 if (is_system_labeled()) { 21046 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21047 if (dst_rhtp == NULL) 21048 return (NULL); 21049 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21050 TPC_RELE(dst_rhtp); 21051 dst_rhtp = NULL; 21052 } 21053 } 21054 21055 /* 21056 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21057 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21058 * After selecting the right ipif, under ill_lock make sure ipif is 21059 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21060 * we retry. Inside the loop we still need to check for CONDEMNED, 21061 * but not under a lock. 21062 */ 21063 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21064 21065 retry: 21066 till = ill; 21067 ipif_arr[0] = NULL; 21068 21069 if (till->ill_group != NULL) 21070 till = till->ill_group->illgrp_ill; 21071 21072 /* 21073 * Choose one good source address from each ill across the group. 21074 * If possible choose a source address in the same subnet as 21075 * the destination address. 21076 * 21077 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21078 * This is okay because of the following. 21079 * 21080 * If PHYI_FAILED is set and we still have non-deprecated 21081 * addresses, it means the addresses have not yet been 21082 * failed over to a different interface. We potentially 21083 * select them to create IRE_CACHES, which will be later 21084 * flushed when the addresses move over. 21085 * 21086 * If PHYI_INACTIVE is set and we still have non-deprecated 21087 * addresses, it means either the user has configured them 21088 * or PHYI_INACTIVE has not been cleared after the addresses 21089 * been moved over. For the former, in.mpathd does a failover 21090 * when the interface becomes INACTIVE and hence we should 21091 * not find them. Once INACTIVE is set, we don't allow them 21092 * to create logical interfaces anymore. For the latter, a 21093 * flush will happen when INACTIVE is cleared which will 21094 * flush the IRE_CACHES. 21095 * 21096 * If PHYI_OFFLINE is set, all the addresses will be failed 21097 * over soon. We potentially select them to create IRE_CACHEs, 21098 * which will be later flushed when the addresses move over. 21099 * 21100 * NOTE : As ipif_select_source is called to borrow source address 21101 * for an ipif that is part of a group, source address selection 21102 * will be re-done whenever the group changes i.e either an 21103 * insertion/deletion in the group. 21104 * 21105 * Fill ipif_arr[] with source addresses, using these rules: 21106 * 21107 * 1. At most one source address from a given ill ends up 21108 * in ipif_arr[] -- that is, at most one of the ipif's 21109 * associated with a given ill ends up in ipif_arr[]. 21110 * 21111 * 2. If there is at least one non-deprecated ipif in the 21112 * IPMP group with a source address on the same subnet as 21113 * our destination, then fill ipif_arr[] only with 21114 * source addresses on the same subnet as our destination. 21115 * Note that because of (1), only the first 21116 * non-deprecated ipif found with a source address 21117 * matching the destination ends up in ipif_arr[]. 21118 * 21119 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21120 * addresses not in the same subnet as our destination. 21121 * Again, because of (1), only the first off-subnet source 21122 * address will be chosen. 21123 * 21124 * 4. If there are no non-deprecated ipifs, then just use 21125 * the source address associated with the last deprecated 21126 * one we find that happens to be on the same subnet, 21127 * otherwise the first one not in the same subnet. 21128 */ 21129 specific_found = B_FALSE; 21130 for (; till != NULL; till = till->ill_group_next) { 21131 ipif_same_found = B_FALSE; 21132 ipif_other_found = B_FALSE; 21133 for (ipif = till->ill_ipif; ipif != NULL; 21134 ipif = ipif->ipif_next) { 21135 if (!IPIF_CAN_LOOKUP(ipif)) 21136 continue; 21137 /* Always skip NOLOCAL and ANYCAST interfaces */ 21138 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21139 continue; 21140 if (!(ipif->ipif_flags & IPIF_UP) || 21141 !ipif->ipif_addr_ready) 21142 continue; 21143 if (ipif->ipif_zoneid != zoneid && 21144 ipif->ipif_zoneid != ALL_ZONES) 21145 continue; 21146 /* 21147 * Interfaces with 0.0.0.0 address are allowed to be UP, 21148 * but are not valid as source addresses. 21149 */ 21150 if (ipif->ipif_lcl_addr == INADDR_ANY) 21151 continue; 21152 21153 /* 21154 * Check compatibility of local address for 21155 * destination's default label if we're on a labeled 21156 * system. Incompatible addresses can't be used at 21157 * all. 21158 */ 21159 if (dst_rhtp != NULL) { 21160 boolean_t incompat; 21161 21162 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21163 IPV4_VERSION, B_FALSE); 21164 if (src_rhtp == NULL) 21165 continue; 21166 incompat = 21167 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21168 src_rhtp->tpc_tp.tp_doi != 21169 dst_rhtp->tpc_tp.tp_doi || 21170 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21171 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21172 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21173 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21174 TPC_RELE(src_rhtp); 21175 if (incompat) 21176 continue; 21177 } 21178 21179 /* 21180 * We prefer not to use all all-zones addresses, if we 21181 * can avoid it, as they pose problems with unlabeled 21182 * destinations. 21183 */ 21184 if (ipif->ipif_zoneid != ALL_ZONES) { 21185 if (!specific_found && 21186 (!same_subnet_only || 21187 (ipif->ipif_net_mask & dst) == 21188 ipif->ipif_subnet)) { 21189 index = 0; 21190 specific_found = B_TRUE; 21191 ipif_other_found = B_FALSE; 21192 } 21193 } else { 21194 if (specific_found) 21195 continue; 21196 } 21197 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21198 if (ipif_dep == NULL || 21199 (ipif->ipif_net_mask & dst) == 21200 ipif->ipif_subnet) 21201 ipif_dep = ipif; 21202 continue; 21203 } 21204 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21205 /* found a source address in the same subnet */ 21206 if (!same_subnet_only) { 21207 same_subnet_only = B_TRUE; 21208 index = 0; 21209 } 21210 ipif_same_found = B_TRUE; 21211 } else { 21212 if (same_subnet_only || ipif_other_found) 21213 continue; 21214 ipif_other_found = B_TRUE; 21215 } 21216 ipif_arr[index++] = ipif; 21217 if (index == MAX_IPIF_SELECT_SOURCE) { 21218 wrapped = B_TRUE; 21219 index = 0; 21220 } 21221 if (ipif_same_found) 21222 break; 21223 } 21224 } 21225 21226 if (ipif_arr[0] == NULL) { 21227 ipif = ipif_dep; 21228 } else { 21229 if (wrapped) 21230 index = MAX_IPIF_SELECT_SOURCE; 21231 ipif = ipif_arr[ipif_rand(ipst) % index]; 21232 ASSERT(ipif != NULL); 21233 } 21234 21235 if (ipif != NULL) { 21236 mutex_enter(&ipif->ipif_ill->ill_lock); 21237 if (!IPIF_CAN_LOOKUP(ipif)) { 21238 mutex_exit(&ipif->ipif_ill->ill_lock); 21239 goto retry; 21240 } 21241 ipif_refhold_locked(ipif); 21242 mutex_exit(&ipif->ipif_ill->ill_lock); 21243 } 21244 21245 rw_exit(&ipst->ips_ill_g_lock); 21246 if (usill != NULL) 21247 ill_refrele(usill); 21248 if (dst_rhtp != NULL) 21249 TPC_RELE(dst_rhtp); 21250 21251 #ifdef DEBUG 21252 if (ipif == NULL) { 21253 char buf1[INET6_ADDRSTRLEN]; 21254 21255 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21256 ill->ill_name, 21257 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21258 } else { 21259 char buf1[INET6_ADDRSTRLEN]; 21260 char buf2[INET6_ADDRSTRLEN]; 21261 21262 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21263 ipif->ipif_ill->ill_name, 21264 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21265 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21266 buf2, sizeof (buf2)))); 21267 } 21268 #endif /* DEBUG */ 21269 return (ipif); 21270 } 21271 21272 21273 /* 21274 * If old_ipif is not NULL, see if ipif was derived from old 21275 * ipif and if so, recreate the interface route by re-doing 21276 * source address selection. This happens when ipif_down -> 21277 * ipif_update_other_ipifs calls us. 21278 * 21279 * If old_ipif is NULL, just redo the source address selection 21280 * if needed. This happens when illgrp_insert or ipif_up_done 21281 * calls us. 21282 */ 21283 static void 21284 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21285 { 21286 ire_t *ire; 21287 ire_t *ipif_ire; 21288 queue_t *stq; 21289 ipif_t *nipif; 21290 ill_t *ill; 21291 boolean_t need_rele = B_FALSE; 21292 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21293 21294 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21295 ASSERT(IAM_WRITER_IPIF(ipif)); 21296 21297 ill = ipif->ipif_ill; 21298 if (!(ipif->ipif_flags & 21299 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21300 /* 21301 * Can't possibly have borrowed the source 21302 * from old_ipif. 21303 */ 21304 return; 21305 } 21306 21307 /* 21308 * Is there any work to be done? No work if the address 21309 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21310 * ipif_select_source() does not borrow addresses from 21311 * NOLOCAL and ANYCAST interfaces). 21312 */ 21313 if ((old_ipif != NULL) && 21314 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21315 (old_ipif->ipif_ill->ill_wq == NULL) || 21316 (old_ipif->ipif_flags & 21317 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21318 return; 21319 } 21320 21321 /* 21322 * Perform the same checks as when creating the 21323 * IRE_INTERFACE in ipif_up_done. 21324 */ 21325 if (!(ipif->ipif_flags & IPIF_UP)) 21326 return; 21327 21328 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21329 (ipif->ipif_subnet == INADDR_ANY)) 21330 return; 21331 21332 ipif_ire = ipif_to_ire(ipif); 21333 if (ipif_ire == NULL) 21334 return; 21335 21336 /* 21337 * We know that ipif uses some other source for its 21338 * IRE_INTERFACE. Is it using the source of this 21339 * old_ipif? 21340 */ 21341 if (old_ipif != NULL && 21342 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21343 ire_refrele(ipif_ire); 21344 return; 21345 } 21346 if (ip_debug > 2) { 21347 /* ip1dbg */ 21348 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21349 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21350 } 21351 21352 stq = ipif_ire->ire_stq; 21353 21354 /* 21355 * Can't use our source address. Select a different 21356 * source address for the IRE_INTERFACE. 21357 */ 21358 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21359 if (nipif == NULL) { 21360 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21361 nipif = ipif; 21362 } else { 21363 need_rele = B_TRUE; 21364 } 21365 21366 ire = ire_create( 21367 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21368 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21369 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21370 NULL, /* no gateway */ 21371 NULL, 21372 &ipif->ipif_mtu, /* max frag */ 21373 NULL, /* no src nce */ 21374 NULL, /* no recv from queue */ 21375 stq, /* send-to queue */ 21376 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21377 ipif, 21378 NULL, 21379 0, 21380 0, 21381 0, 21382 0, 21383 &ire_uinfo_null, 21384 NULL, 21385 NULL, 21386 ipst); 21387 21388 if (ire != NULL) { 21389 ire_t *ret_ire; 21390 int error; 21391 21392 /* 21393 * We don't need ipif_ire anymore. We need to delete 21394 * before we add so that ire_add does not detect 21395 * duplicates. 21396 */ 21397 ire_delete(ipif_ire); 21398 ret_ire = ire; 21399 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21400 ASSERT(error == 0); 21401 ASSERT(ire == ret_ire); 21402 /* Held in ire_add */ 21403 ire_refrele(ret_ire); 21404 } 21405 /* 21406 * Either we are falling through from above or could not 21407 * allocate a replacement. 21408 */ 21409 ire_refrele(ipif_ire); 21410 if (need_rele) 21411 ipif_refrele(nipif); 21412 } 21413 21414 /* 21415 * This old_ipif is going away. 21416 * 21417 * Determine if any other ipif's is using our address as 21418 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21419 * IPIF_DEPRECATED). 21420 * Find the IRE_INTERFACE for such ipifs and recreate them 21421 * to use an different source address following the rules in 21422 * ipif_up_done. 21423 * 21424 * This function takes an illgrp as an argument so that illgrp_delete 21425 * can call this to update source address even after deleting the 21426 * old_ipif->ipif_ill from the ill group. 21427 */ 21428 static void 21429 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21430 { 21431 ipif_t *ipif; 21432 ill_t *ill; 21433 char buf[INET6_ADDRSTRLEN]; 21434 21435 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21436 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21437 21438 ill = old_ipif->ipif_ill; 21439 21440 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21441 ill->ill_name, 21442 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21443 buf, sizeof (buf)))); 21444 /* 21445 * If this part of a group, look at all ills as ipif_select_source 21446 * borrows source address across all the ills in the group. 21447 */ 21448 if (illgrp != NULL) 21449 ill = illgrp->illgrp_ill; 21450 21451 for (; ill != NULL; ill = ill->ill_group_next) { 21452 for (ipif = ill->ill_ipif; ipif != NULL; 21453 ipif = ipif->ipif_next) { 21454 21455 if (ipif == old_ipif) 21456 continue; 21457 21458 ipif_recreate_interface_routes(old_ipif, ipif); 21459 } 21460 } 21461 } 21462 21463 /* ARGSUSED */ 21464 int 21465 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21466 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21467 { 21468 /* 21469 * ill_phyint_reinit merged the v4 and v6 into a single 21470 * ipsq. Could also have become part of a ipmp group in the 21471 * process, and we might not have been able to complete the 21472 * operation in ipif_set_values, if we could not become 21473 * exclusive. If so restart it here. 21474 */ 21475 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21476 } 21477 21478 21479 /* 21480 * Can operate on either a module or a driver queue. 21481 * Returns an error if not a module queue. 21482 */ 21483 /* ARGSUSED */ 21484 int 21485 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21486 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21487 { 21488 queue_t *q1 = q; 21489 char *cp; 21490 char interf_name[LIFNAMSIZ]; 21491 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21492 21493 if (q->q_next == NULL) { 21494 ip1dbg(( 21495 "if_unitsel: IF_UNITSEL: no q_next\n")); 21496 return (EINVAL); 21497 } 21498 21499 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21500 return (EALREADY); 21501 21502 do { 21503 q1 = q1->q_next; 21504 } while (q1->q_next); 21505 cp = q1->q_qinfo->qi_minfo->mi_idname; 21506 (void) sprintf(interf_name, "%s%d", cp, ppa); 21507 21508 /* 21509 * Here we are not going to delay the ioack until after 21510 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21511 * original ioctl message before sending the requests. 21512 */ 21513 return (ipif_set_values(q, mp, interf_name, &ppa)); 21514 } 21515 21516 /* ARGSUSED */ 21517 int 21518 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21519 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21520 { 21521 return (ENXIO); 21522 } 21523 21524 /* 21525 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21526 * `irep'. Returns a pointer to the next free `irep' entry (just like 21527 * ire_check_and_create_bcast()). 21528 */ 21529 static ire_t ** 21530 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21531 { 21532 ipaddr_t addr; 21533 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21534 ipaddr_t subnetmask = ipif->ipif_net_mask; 21535 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21536 21537 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21538 21539 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21540 21541 if (ipif->ipif_lcl_addr == INADDR_ANY || 21542 (ipif->ipif_flags & IPIF_NOLOCAL)) 21543 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21544 21545 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21546 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21547 21548 /* 21549 * For backward compatibility, we create net broadcast IREs based on 21550 * the old "IP address class system", since some old machines only 21551 * respond to these class derived net broadcast. However, we must not 21552 * create these net broadcast IREs if the subnetmask is shorter than 21553 * the IP address class based derived netmask. Otherwise, we may 21554 * create a net broadcast address which is the same as an IP address 21555 * on the subnet -- and then TCP will refuse to talk to that address. 21556 */ 21557 if (netmask < subnetmask) { 21558 addr = netmask & ipif->ipif_subnet; 21559 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21560 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21561 flags); 21562 } 21563 21564 /* 21565 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21566 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21567 * created. Creating these broadcast IREs will only create confusion 21568 * as `addr' will be the same as the IP address. 21569 */ 21570 if (subnetmask != 0xFFFFFFFF) { 21571 addr = ipif->ipif_subnet; 21572 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21573 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21574 irep, flags); 21575 } 21576 21577 return (irep); 21578 } 21579 21580 /* 21581 * Broadcast IRE info structure used in the functions below. Since we 21582 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21583 */ 21584 typedef struct bcast_ireinfo { 21585 uchar_t bi_type; /* BCAST_* value from below */ 21586 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21587 bi_needrep:1, /* do we need to replace it? */ 21588 bi_haverep:1, /* have we replaced it? */ 21589 bi_pad:5; 21590 ipaddr_t bi_addr; /* IRE address */ 21591 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21592 } bcast_ireinfo_t; 21593 21594 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21595 21596 /* 21597 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21598 * return B_TRUE if it should immediately be used to recreate the IRE. 21599 */ 21600 static boolean_t 21601 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21602 { 21603 ipaddr_t addr; 21604 21605 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21606 21607 switch (bireinfop->bi_type) { 21608 case BCAST_NET: 21609 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21610 if (addr != bireinfop->bi_addr) 21611 return (B_FALSE); 21612 break; 21613 case BCAST_SUBNET: 21614 if (ipif->ipif_subnet != bireinfop->bi_addr) 21615 return (B_FALSE); 21616 break; 21617 } 21618 21619 bireinfop->bi_needrep = 1; 21620 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21621 if (bireinfop->bi_backup == NULL) 21622 bireinfop->bi_backup = ipif; 21623 return (B_FALSE); 21624 } 21625 return (B_TRUE); 21626 } 21627 21628 /* 21629 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21630 * them ala ire_check_and_create_bcast(). 21631 */ 21632 static ire_t ** 21633 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21634 { 21635 ipaddr_t mask, addr; 21636 21637 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21638 21639 addr = bireinfop->bi_addr; 21640 irep = ire_create_bcast(ipif, addr, irep); 21641 21642 switch (bireinfop->bi_type) { 21643 case BCAST_NET: 21644 mask = ip_net_mask(ipif->ipif_subnet); 21645 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21646 break; 21647 case BCAST_SUBNET: 21648 mask = ipif->ipif_net_mask; 21649 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21650 break; 21651 } 21652 21653 bireinfop->bi_haverep = 1; 21654 return (irep); 21655 } 21656 21657 /* 21658 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21659 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21660 * that are going away are still needed. If so, have ipif_create_bcast() 21661 * recreate them (except for the deprecated case, as explained below). 21662 */ 21663 static ire_t ** 21664 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21665 ire_t **irep) 21666 { 21667 int i; 21668 ipif_t *ipif; 21669 21670 ASSERT(!ill->ill_isv6); 21671 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21672 /* 21673 * Skip this ipif if it's (a) the one being taken down, (b) 21674 * not in the same zone, or (c) has no valid local address. 21675 */ 21676 if (ipif == test_ipif || 21677 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21678 ipif->ipif_subnet == 0 || 21679 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21680 (IPIF_UP|IPIF_BROADCAST)) 21681 continue; 21682 21683 /* 21684 * For each dying IRE that hasn't yet been replaced, see if 21685 * `ipif' needs it and whether the IRE should be recreated on 21686 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21687 * will return B_FALSE even if `ipif' needs the IRE on the 21688 * hopes that we'll later find a needy non-deprecated ipif. 21689 * However, the ipif is recorded in bi_backup for possible 21690 * subsequent use by ipif_check_bcast_ires(). 21691 */ 21692 for (i = 0; i < BCAST_COUNT; i++) { 21693 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21694 continue; 21695 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21696 continue; 21697 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21698 } 21699 21700 /* 21701 * If we've replaced all of the broadcast IREs that are going 21702 * to be taken down, we know we're done. 21703 */ 21704 for (i = 0; i < BCAST_COUNT; i++) { 21705 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21706 break; 21707 } 21708 if (i == BCAST_COUNT) 21709 break; 21710 } 21711 return (irep); 21712 } 21713 21714 /* 21715 * Check if `test_ipif' (which is going away) is associated with any existing 21716 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21717 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21718 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21719 * 21720 * This is necessary because broadcast IREs are shared. In particular, a 21721 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21722 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21723 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21724 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21725 * same zone, they will share the same set of broadcast IREs. 21726 * 21727 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21728 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21729 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21730 */ 21731 static void 21732 ipif_check_bcast_ires(ipif_t *test_ipif) 21733 { 21734 ill_t *ill = test_ipif->ipif_ill; 21735 ire_t *ire, *ire_array[12]; /* see note above */ 21736 ire_t **irep1, **irep = &ire_array[0]; 21737 uint_t i, willdie; 21738 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21739 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21740 21741 ASSERT(!test_ipif->ipif_isv6); 21742 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21743 21744 /* 21745 * No broadcast IREs for the LOOPBACK interface 21746 * or others such as point to point and IPIF_NOXMIT. 21747 */ 21748 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21749 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21750 return; 21751 21752 bzero(bireinfo, sizeof (bireinfo)); 21753 bireinfo[0].bi_type = BCAST_ALLZEROES; 21754 bireinfo[0].bi_addr = 0; 21755 21756 bireinfo[1].bi_type = BCAST_ALLONES; 21757 bireinfo[1].bi_addr = INADDR_BROADCAST; 21758 21759 bireinfo[2].bi_type = BCAST_NET; 21760 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21761 21762 if (test_ipif->ipif_net_mask != 0) 21763 mask = test_ipif->ipif_net_mask; 21764 bireinfo[3].bi_type = BCAST_SUBNET; 21765 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21766 21767 /* 21768 * Figure out what (if any) broadcast IREs will die as a result of 21769 * `test_ipif' going away. If none will die, we're done. 21770 */ 21771 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21772 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21773 test_ipif, ALL_ZONES, NULL, 21774 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21775 if (ire != NULL) { 21776 willdie++; 21777 bireinfo[i].bi_willdie = 1; 21778 ire_refrele(ire); 21779 } 21780 } 21781 21782 if (willdie == 0) 21783 return; 21784 21785 /* 21786 * Walk through all the ipifs that will be affected by the dying IREs, 21787 * and recreate the IREs as necessary. 21788 */ 21789 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21790 21791 /* 21792 * Scan through the set of broadcast IREs and see if there are any 21793 * that we need to replace that have not yet been replaced. If so, 21794 * replace them using the appropriate backup ipif. 21795 */ 21796 for (i = 0; i < BCAST_COUNT; i++) { 21797 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21798 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21799 &bireinfo[i], irep); 21800 } 21801 21802 /* 21803 * If we can't create all of them, don't add any of them. (Code in 21804 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21805 * non-loopback copy and loopback copy for a given address.) 21806 */ 21807 for (irep1 = irep; irep1 > ire_array; ) { 21808 irep1--; 21809 if (*irep1 == NULL) { 21810 ip0dbg(("ipif_check_bcast_ires: can't create " 21811 "IRE_BROADCAST, memory allocation failure\n")); 21812 while (irep > ire_array) { 21813 irep--; 21814 if (*irep != NULL) 21815 ire_delete(*irep); 21816 } 21817 return; 21818 } 21819 } 21820 21821 for (irep1 = irep; irep1 > ire_array; ) { 21822 irep1--; 21823 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21824 ire_refrele(*irep1); /* Held in ire_add */ 21825 } 21826 } 21827 21828 /* 21829 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21830 * from lifr_flags and the name from lifr_name. 21831 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21832 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21833 * Returns EINPROGRESS when mp has been consumed by queueing it on 21834 * ill_pending_mp and the ioctl will complete in ip_rput. 21835 * 21836 * Can operate on either a module or a driver queue. 21837 * Returns an error if not a module queue. 21838 */ 21839 /* ARGSUSED */ 21840 int 21841 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21842 ip_ioctl_cmd_t *ipip, void *if_req) 21843 { 21844 int err; 21845 ill_t *ill; 21846 struct lifreq *lifr = (struct lifreq *)if_req; 21847 21848 ASSERT(ipif != NULL); 21849 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21850 21851 if (q->q_next == NULL) { 21852 ip1dbg(( 21853 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21854 return (EINVAL); 21855 } 21856 21857 ill = (ill_t *)q->q_ptr; 21858 /* 21859 * If we are not writer on 'q' then this interface exists already 21860 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21861 * So return EALREADY 21862 */ 21863 if (ill != ipif->ipif_ill) 21864 return (EALREADY); 21865 21866 if (ill->ill_name[0] != '\0') 21867 return (EALREADY); 21868 21869 /* 21870 * Set all the flags. Allows all kinds of override. Provide some 21871 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21872 * unless there is either multicast/broadcast support in the driver 21873 * or it is a pt-pt link. 21874 */ 21875 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21876 /* Meaningless to IP thus don't allow them to be set. */ 21877 ip1dbg(("ip_setname: EINVAL 1\n")); 21878 return (EINVAL); 21879 } 21880 /* 21881 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21882 * ill_bcast_addr_length info. 21883 */ 21884 if (!ill->ill_needs_attach && 21885 ((lifr->lifr_flags & IFF_MULTICAST) && 21886 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21887 ill->ill_bcast_addr_length == 0)) { 21888 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21889 ip1dbg(("ip_setname: EINVAL 2\n")); 21890 return (EINVAL); 21891 } 21892 if ((lifr->lifr_flags & IFF_BROADCAST) && 21893 ((lifr->lifr_flags & IFF_IPV6) || 21894 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21895 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21896 ip1dbg(("ip_setname: EINVAL 3\n")); 21897 return (EINVAL); 21898 } 21899 if (lifr->lifr_flags & IFF_UP) { 21900 /* Can only be set with SIOCSLIFFLAGS */ 21901 ip1dbg(("ip_setname: EINVAL 4\n")); 21902 return (EINVAL); 21903 } 21904 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21905 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21906 ip1dbg(("ip_setname: EINVAL 5\n")); 21907 return (EINVAL); 21908 } 21909 /* 21910 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21911 */ 21912 if ((lifr->lifr_flags & IFF_XRESOLV) && 21913 !(lifr->lifr_flags & IFF_IPV6) && 21914 !(ipif->ipif_isv6)) { 21915 ip1dbg(("ip_setname: EINVAL 6\n")); 21916 return (EINVAL); 21917 } 21918 21919 /* 21920 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21921 * we have all the flags here. So, we assign rather than we OR. 21922 * We can't OR the flags here because we don't want to set 21923 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21924 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21925 * on lifr_flags value here. 21926 */ 21927 /* 21928 * This ill has not been inserted into the global list. 21929 * So we are still single threaded and don't need any lock 21930 */ 21931 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21932 ~IFF_DUPLICATE; 21933 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21934 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21935 21936 /* We started off as V4. */ 21937 if (ill->ill_flags & ILLF_IPV6) { 21938 ill->ill_phyint->phyint_illv6 = ill; 21939 ill->ill_phyint->phyint_illv4 = NULL; 21940 } 21941 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21942 return (err); 21943 } 21944 21945 /* ARGSUSED */ 21946 int 21947 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21948 ip_ioctl_cmd_t *ipip, void *if_req) 21949 { 21950 /* 21951 * ill_phyint_reinit merged the v4 and v6 into a single 21952 * ipsq. Could also have become part of a ipmp group in the 21953 * process, and we might not have been able to complete the 21954 * slifname in ipif_set_values, if we could not become 21955 * exclusive. If so restart it here 21956 */ 21957 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21958 } 21959 21960 /* 21961 * Return a pointer to the ipif which matches the index, IP version type and 21962 * zoneid. 21963 */ 21964 ipif_t * 21965 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21966 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21967 { 21968 ill_t *ill; 21969 ipsq_t *ipsq; 21970 phyint_t *phyi; 21971 ipif_t *ipif; 21972 21973 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21974 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21975 21976 if (err != NULL) 21977 *err = 0; 21978 21979 /* 21980 * Indexes are stored in the phyint - a common structure 21981 * to both IPv4 and IPv6. 21982 */ 21983 21984 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21985 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21986 (void *) &index, NULL); 21987 if (phyi != NULL) { 21988 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21989 if (ill == NULL) { 21990 rw_exit(&ipst->ips_ill_g_lock); 21991 if (err != NULL) 21992 *err = ENXIO; 21993 return (NULL); 21994 } 21995 GRAB_CONN_LOCK(q); 21996 mutex_enter(&ill->ill_lock); 21997 if (ILL_CAN_LOOKUP(ill)) { 21998 for (ipif = ill->ill_ipif; ipif != NULL; 21999 ipif = ipif->ipif_next) { 22000 if (IPIF_CAN_LOOKUP(ipif) && 22001 (zoneid == ALL_ZONES || 22002 zoneid == ipif->ipif_zoneid || 22003 ipif->ipif_zoneid == ALL_ZONES)) { 22004 ipif_refhold_locked(ipif); 22005 mutex_exit(&ill->ill_lock); 22006 RELEASE_CONN_LOCK(q); 22007 rw_exit(&ipst->ips_ill_g_lock); 22008 return (ipif); 22009 } 22010 } 22011 } else if (ILL_CAN_WAIT(ill, q)) { 22012 ipsq = ill->ill_phyint->phyint_ipsq; 22013 mutex_enter(&ipsq->ipsq_lock); 22014 rw_exit(&ipst->ips_ill_g_lock); 22015 mutex_exit(&ill->ill_lock); 22016 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22017 mutex_exit(&ipsq->ipsq_lock); 22018 RELEASE_CONN_LOCK(q); 22019 *err = EINPROGRESS; 22020 return (NULL); 22021 } 22022 mutex_exit(&ill->ill_lock); 22023 RELEASE_CONN_LOCK(q); 22024 } 22025 rw_exit(&ipst->ips_ill_g_lock); 22026 if (err != NULL) 22027 *err = ENXIO; 22028 return (NULL); 22029 } 22030 22031 typedef struct conn_change_s { 22032 uint_t cc_old_ifindex; 22033 uint_t cc_new_ifindex; 22034 } conn_change_t; 22035 22036 /* 22037 * ipcl_walk function for changing interface index. 22038 */ 22039 static void 22040 conn_change_ifindex(conn_t *connp, caddr_t arg) 22041 { 22042 conn_change_t *connc; 22043 uint_t old_ifindex; 22044 uint_t new_ifindex; 22045 int i; 22046 ilg_t *ilg; 22047 22048 connc = (conn_change_t *)arg; 22049 old_ifindex = connc->cc_old_ifindex; 22050 new_ifindex = connc->cc_new_ifindex; 22051 22052 if (connp->conn_orig_bound_ifindex == old_ifindex) 22053 connp->conn_orig_bound_ifindex = new_ifindex; 22054 22055 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22056 connp->conn_orig_multicast_ifindex = new_ifindex; 22057 22058 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22059 connp->conn_orig_xmit_ifindex = new_ifindex; 22060 22061 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22062 ilg = &connp->conn_ilg[i]; 22063 if (ilg->ilg_orig_ifindex == old_ifindex) 22064 ilg->ilg_orig_ifindex = new_ifindex; 22065 } 22066 } 22067 22068 /* 22069 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22070 * to new_index if it matches the old_index. 22071 * 22072 * Failovers typically happen within a group of ills. But somebody 22073 * can remove an ill from the group after a failover happened. If 22074 * we are setting the ifindex after this, we potentially need to 22075 * look at all the ills rather than just the ones in the group. 22076 * We cut down the work by looking at matching ill_net_types 22077 * and ill_types as we could not possibly grouped them together. 22078 */ 22079 static void 22080 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22081 { 22082 ill_t *ill; 22083 ipif_t *ipif; 22084 uint_t old_ifindex; 22085 uint_t new_ifindex; 22086 ilm_t *ilm; 22087 ill_walk_context_t ctx; 22088 ip_stack_t *ipst = ill_orig->ill_ipst; 22089 22090 old_ifindex = connc->cc_old_ifindex; 22091 new_ifindex = connc->cc_new_ifindex; 22092 22093 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22094 ill = ILL_START_WALK_ALL(&ctx, ipst); 22095 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22096 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22097 (ill_orig->ill_type != ill->ill_type)) { 22098 continue; 22099 } 22100 for (ipif = ill->ill_ipif; ipif != NULL; 22101 ipif = ipif->ipif_next) { 22102 if (ipif->ipif_orig_ifindex == old_ifindex) 22103 ipif->ipif_orig_ifindex = new_ifindex; 22104 } 22105 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22106 if (ilm->ilm_orig_ifindex == old_ifindex) 22107 ilm->ilm_orig_ifindex = new_ifindex; 22108 } 22109 } 22110 rw_exit(&ipst->ips_ill_g_lock); 22111 } 22112 22113 /* 22114 * We first need to ensure that the new index is unique, and 22115 * then carry the change across both v4 and v6 ill representation 22116 * of the physical interface. 22117 */ 22118 /* ARGSUSED */ 22119 int 22120 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22121 ip_ioctl_cmd_t *ipip, void *ifreq) 22122 { 22123 ill_t *ill; 22124 ill_t *ill_other; 22125 phyint_t *phyi; 22126 int old_index; 22127 conn_change_t connc; 22128 struct ifreq *ifr = (struct ifreq *)ifreq; 22129 struct lifreq *lifr = (struct lifreq *)ifreq; 22130 uint_t index; 22131 ill_t *ill_v4; 22132 ill_t *ill_v6; 22133 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22134 22135 if (ipip->ipi_cmd_type == IF_CMD) 22136 index = ifr->ifr_index; 22137 else 22138 index = lifr->lifr_index; 22139 22140 /* 22141 * Only allow on physical interface. Also, index zero is illegal. 22142 * 22143 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22144 * 22145 * 1) If PHYI_FAILED is set, a failover could have happened which 22146 * implies a possible failback might have to happen. As failback 22147 * depends on the old index, we should fail setting the index. 22148 * 22149 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22150 * any addresses or multicast memberships are failed over to 22151 * a non-STANDBY interface. As failback depends on the old 22152 * index, we should fail setting the index for this case also. 22153 * 22154 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22155 * Be consistent with PHYI_FAILED and fail the ioctl. 22156 */ 22157 ill = ipif->ipif_ill; 22158 phyi = ill->ill_phyint; 22159 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22160 ipif->ipif_id != 0 || index == 0) { 22161 return (EINVAL); 22162 } 22163 old_index = phyi->phyint_ifindex; 22164 22165 /* If the index is not changing, no work to do */ 22166 if (old_index == index) 22167 return (0); 22168 22169 /* 22170 * Use ill_lookup_on_ifindex to determine if the 22171 * new index is unused and if so allow the change. 22172 */ 22173 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22174 ipst); 22175 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22176 ipst); 22177 if (ill_v6 != NULL || ill_v4 != NULL) { 22178 if (ill_v4 != NULL) 22179 ill_refrele(ill_v4); 22180 if (ill_v6 != NULL) 22181 ill_refrele(ill_v6); 22182 return (EBUSY); 22183 } 22184 22185 /* 22186 * The new index is unused. Set it in the phyint. 22187 * Locate the other ill so that we can send a routing 22188 * sockets message. 22189 */ 22190 if (ill->ill_isv6) { 22191 ill_other = phyi->phyint_illv4; 22192 } else { 22193 ill_other = phyi->phyint_illv6; 22194 } 22195 22196 phyi->phyint_ifindex = index; 22197 22198 /* Update SCTP's ILL list */ 22199 sctp_ill_reindex(ill, old_index); 22200 22201 connc.cc_old_ifindex = old_index; 22202 connc.cc_new_ifindex = index; 22203 ip_change_ifindex(ill, &connc); 22204 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22205 22206 /* Send the routing sockets message */ 22207 ip_rts_ifmsg(ipif); 22208 if (ill_other != NULL) 22209 ip_rts_ifmsg(ill_other->ill_ipif); 22210 22211 return (0); 22212 } 22213 22214 /* ARGSUSED */ 22215 int 22216 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22217 ip_ioctl_cmd_t *ipip, void *ifreq) 22218 { 22219 struct ifreq *ifr = (struct ifreq *)ifreq; 22220 struct lifreq *lifr = (struct lifreq *)ifreq; 22221 22222 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22223 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22224 /* Get the interface index */ 22225 if (ipip->ipi_cmd_type == IF_CMD) { 22226 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22227 } else { 22228 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22229 } 22230 return (0); 22231 } 22232 22233 /* ARGSUSED */ 22234 int 22235 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22236 ip_ioctl_cmd_t *ipip, void *ifreq) 22237 { 22238 struct lifreq *lifr = (struct lifreq *)ifreq; 22239 22240 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22242 /* Get the interface zone */ 22243 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22244 lifr->lifr_zoneid = ipif->ipif_zoneid; 22245 return (0); 22246 } 22247 22248 /* 22249 * Set the zoneid of an interface. 22250 */ 22251 /* ARGSUSED */ 22252 int 22253 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22254 ip_ioctl_cmd_t *ipip, void *ifreq) 22255 { 22256 struct lifreq *lifr = (struct lifreq *)ifreq; 22257 int err = 0; 22258 boolean_t need_up = B_FALSE; 22259 zone_t *zptr; 22260 zone_status_t status; 22261 zoneid_t zoneid; 22262 22263 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22264 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22265 if (!is_system_labeled()) 22266 return (ENOTSUP); 22267 zoneid = GLOBAL_ZONEID; 22268 } 22269 22270 /* cannot assign instance zero to a non-global zone */ 22271 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22272 return (ENOTSUP); 22273 22274 /* 22275 * Cannot assign to a zone that doesn't exist or is shutting down. In 22276 * the event of a race with the zone shutdown processing, since IP 22277 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22278 * interface will be cleaned up even if the zone is shut down 22279 * immediately after the status check. If the interface can't be brought 22280 * down right away, and the zone is shut down before the restart 22281 * function is called, we resolve the possible races by rechecking the 22282 * zone status in the restart function. 22283 */ 22284 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22285 return (EINVAL); 22286 status = zone_status_get(zptr); 22287 zone_rele(zptr); 22288 22289 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22290 return (EINVAL); 22291 22292 if (ipif->ipif_flags & IPIF_UP) { 22293 /* 22294 * If the interface is already marked up, 22295 * we call ipif_down which will take care 22296 * of ditching any IREs that have been set 22297 * up based on the old interface address. 22298 */ 22299 err = ipif_logical_down(ipif, q, mp); 22300 if (err == EINPROGRESS) 22301 return (err); 22302 ipif_down_tail(ipif); 22303 need_up = B_TRUE; 22304 } 22305 22306 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22307 return (err); 22308 } 22309 22310 static int 22311 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22312 queue_t *q, mblk_t *mp, boolean_t need_up) 22313 { 22314 int err = 0; 22315 ip_stack_t *ipst; 22316 22317 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22318 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22319 22320 if (CONN_Q(q)) 22321 ipst = CONNQ_TO_IPST(q); 22322 else 22323 ipst = ILLQ_TO_IPST(q); 22324 22325 /* 22326 * For exclusive stacks we don't allow a different zoneid than 22327 * global. 22328 */ 22329 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22330 zoneid != GLOBAL_ZONEID) 22331 return (EINVAL); 22332 22333 /* Set the new zone id. */ 22334 ipif->ipif_zoneid = zoneid; 22335 22336 /* Update sctp list */ 22337 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22338 22339 if (need_up) { 22340 /* 22341 * Now bring the interface back up. If this 22342 * is the only IPIF for the ILL, ipif_up 22343 * will have to re-bind to the device, so 22344 * we may get back EINPROGRESS, in which 22345 * case, this IOCTL will get completed in 22346 * ip_rput_dlpi when we see the DL_BIND_ACK. 22347 */ 22348 err = ipif_up(ipif, q, mp); 22349 } 22350 return (err); 22351 } 22352 22353 /* ARGSUSED */ 22354 int 22355 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22356 ip_ioctl_cmd_t *ipip, void *if_req) 22357 { 22358 struct lifreq *lifr = (struct lifreq *)if_req; 22359 zoneid_t zoneid; 22360 zone_t *zptr; 22361 zone_status_t status; 22362 22363 ASSERT(ipif->ipif_id != 0); 22364 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22365 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22366 zoneid = GLOBAL_ZONEID; 22367 22368 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22369 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22370 22371 /* 22372 * We recheck the zone status to resolve the following race condition: 22373 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22374 * 2) hme0:1 is up and can't be brought down right away; 22375 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22376 * 3) zone "myzone" is halted; the zone status switches to 22377 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22378 * the interfaces to remove - hme0:1 is not returned because it's not 22379 * yet in "myzone", so it won't be removed; 22380 * 4) the restart function for SIOCSLIFZONE is called; without the 22381 * status check here, we would have hme0:1 in "myzone" after it's been 22382 * destroyed. 22383 * Note that if the status check fails, we need to bring the interface 22384 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22385 * ipif_up_done[_v6](). 22386 */ 22387 status = ZONE_IS_UNINITIALIZED; 22388 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22389 status = zone_status_get(zptr); 22390 zone_rele(zptr); 22391 } 22392 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22393 if (ipif->ipif_isv6) { 22394 (void) ipif_up_done_v6(ipif); 22395 } else { 22396 (void) ipif_up_done(ipif); 22397 } 22398 return (EINVAL); 22399 } 22400 22401 ipif_down_tail(ipif); 22402 22403 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22404 B_TRUE)); 22405 } 22406 22407 /* ARGSUSED */ 22408 int 22409 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22410 ip_ioctl_cmd_t *ipip, void *ifreq) 22411 { 22412 struct lifreq *lifr = ifreq; 22413 22414 ASSERT(q->q_next == NULL); 22415 ASSERT(CONN_Q(q)); 22416 22417 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22418 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22419 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22420 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22421 22422 return (0); 22423 } 22424 22425 22426 /* Find the previous ILL in this usesrc group */ 22427 static ill_t * 22428 ill_prev_usesrc(ill_t *uill) 22429 { 22430 ill_t *ill; 22431 22432 for (ill = uill->ill_usesrc_grp_next; 22433 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22434 ill = ill->ill_usesrc_grp_next) 22435 /* do nothing */; 22436 return (ill); 22437 } 22438 22439 /* 22440 * Release all members of the usesrc group. This routine is called 22441 * from ill_delete when the interface being unplumbed is the 22442 * group head. 22443 */ 22444 static void 22445 ill_disband_usesrc_group(ill_t *uill) 22446 { 22447 ill_t *next_ill, *tmp_ill; 22448 ip_stack_t *ipst = uill->ill_ipst; 22449 22450 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22451 next_ill = uill->ill_usesrc_grp_next; 22452 22453 do { 22454 ASSERT(next_ill != NULL); 22455 tmp_ill = next_ill->ill_usesrc_grp_next; 22456 ASSERT(tmp_ill != NULL); 22457 next_ill->ill_usesrc_grp_next = NULL; 22458 next_ill->ill_usesrc_ifindex = 0; 22459 next_ill = tmp_ill; 22460 } while (next_ill->ill_usesrc_ifindex != 0); 22461 uill->ill_usesrc_grp_next = NULL; 22462 } 22463 22464 /* 22465 * Remove the client usesrc ILL from the list and relink to a new list 22466 */ 22467 int 22468 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22469 { 22470 ill_t *ill, *tmp_ill; 22471 ip_stack_t *ipst = ucill->ill_ipst; 22472 22473 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22474 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22475 22476 /* 22477 * Check if the usesrc client ILL passed in is not already 22478 * in use as a usesrc ILL i.e one whose source address is 22479 * in use OR a usesrc ILL is not already in use as a usesrc 22480 * client ILL 22481 */ 22482 if ((ucill->ill_usesrc_ifindex == 0) || 22483 (uill->ill_usesrc_ifindex != 0)) { 22484 return (-1); 22485 } 22486 22487 ill = ill_prev_usesrc(ucill); 22488 ASSERT(ill->ill_usesrc_grp_next != NULL); 22489 22490 /* Remove from the current list */ 22491 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22492 /* Only two elements in the list */ 22493 ASSERT(ill->ill_usesrc_ifindex == 0); 22494 ill->ill_usesrc_grp_next = NULL; 22495 } else { 22496 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22497 } 22498 22499 if (ifindex == 0) { 22500 ucill->ill_usesrc_ifindex = 0; 22501 ucill->ill_usesrc_grp_next = NULL; 22502 return (0); 22503 } 22504 22505 ucill->ill_usesrc_ifindex = ifindex; 22506 tmp_ill = uill->ill_usesrc_grp_next; 22507 uill->ill_usesrc_grp_next = ucill; 22508 ucill->ill_usesrc_grp_next = 22509 (tmp_ill != NULL) ? tmp_ill : uill; 22510 return (0); 22511 } 22512 22513 /* 22514 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22515 * ip.c for locking details. 22516 */ 22517 /* ARGSUSED */ 22518 int 22519 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22520 ip_ioctl_cmd_t *ipip, void *ifreq) 22521 { 22522 struct lifreq *lifr = (struct lifreq *)ifreq; 22523 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22524 ill_flag_changed = B_FALSE; 22525 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22526 int err = 0, ret; 22527 uint_t ifindex; 22528 phyint_t *us_phyint, *us_cli_phyint; 22529 ipsq_t *ipsq = NULL; 22530 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22531 22532 ASSERT(IAM_WRITER_IPIF(ipif)); 22533 ASSERT(q->q_next == NULL); 22534 ASSERT(CONN_Q(q)); 22535 22536 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22537 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22538 22539 ASSERT(us_cli_phyint != NULL); 22540 22541 /* 22542 * If the client ILL is being used for IPMP, abort. 22543 * Note, this can be done before ipsq_try_enter since we are already 22544 * exclusive on this ILL 22545 */ 22546 if ((us_cli_phyint->phyint_groupname != NULL) || 22547 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22548 return (EINVAL); 22549 } 22550 22551 ifindex = lifr->lifr_index; 22552 if (ifindex == 0) { 22553 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22554 /* non usesrc group interface, nothing to reset */ 22555 return (0); 22556 } 22557 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22558 /* valid reset request */ 22559 reset_flg = B_TRUE; 22560 } 22561 22562 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22563 ip_process_ioctl, &err, ipst); 22564 22565 if (usesrc_ill == NULL) { 22566 return (err); 22567 } 22568 22569 /* 22570 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22571 * group nor can either of the interfaces be used for standy. So 22572 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22573 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22574 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22575 * We are already exlusive on this ipsq i.e ipsq corresponding to 22576 * the usesrc_cli_ill 22577 */ 22578 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22579 NEW_OP, B_TRUE); 22580 if (ipsq == NULL) { 22581 err = EINPROGRESS; 22582 /* Operation enqueued on the ipsq of the usesrc ILL */ 22583 goto done; 22584 } 22585 22586 /* Check if the usesrc_ill is used for IPMP */ 22587 us_phyint = usesrc_ill->ill_phyint; 22588 if ((us_phyint->phyint_groupname != NULL) || 22589 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22590 err = EINVAL; 22591 goto done; 22592 } 22593 22594 /* 22595 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22596 * already a client then return EINVAL 22597 */ 22598 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22599 err = EINVAL; 22600 goto done; 22601 } 22602 22603 /* 22604 * If the ill_usesrc_ifindex field is already set to what it needs to 22605 * be then this is a duplicate operation. 22606 */ 22607 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22608 err = 0; 22609 goto done; 22610 } 22611 22612 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22613 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22614 usesrc_ill->ill_isv6)); 22615 22616 /* 22617 * The next step ensures that no new ires will be created referencing 22618 * the client ill, until the ILL_CHANGING flag is cleared. Then 22619 * we go through an ire walk deleting all ire caches that reference 22620 * the client ill. New ires referencing the client ill that are added 22621 * to the ire table before the ILL_CHANGING flag is set, will be 22622 * cleaned up by the ire walk below. Attempt to add new ires referencing 22623 * the client ill while the ILL_CHANGING flag is set will be failed 22624 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22625 * checks (under the ill_g_usesrc_lock) that the ire being added 22626 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22627 * belong to the same usesrc group. 22628 */ 22629 mutex_enter(&usesrc_cli_ill->ill_lock); 22630 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22631 mutex_exit(&usesrc_cli_ill->ill_lock); 22632 ill_flag_changed = B_TRUE; 22633 22634 if (ipif->ipif_isv6) 22635 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22636 ALL_ZONES, ipst); 22637 else 22638 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22639 ALL_ZONES, ipst); 22640 22641 /* 22642 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22643 * and the ill_usesrc_ifindex fields 22644 */ 22645 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22646 22647 if (reset_flg) { 22648 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22649 if (ret != 0) { 22650 err = EINVAL; 22651 } 22652 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22653 goto done; 22654 } 22655 22656 /* 22657 * Four possibilities to consider: 22658 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22659 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22660 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22661 * 4. Both are part of their respective usesrc groups 22662 */ 22663 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22664 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22665 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22666 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22667 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22668 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22669 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22670 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22671 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22672 /* Insert at head of list */ 22673 usesrc_cli_ill->ill_usesrc_grp_next = 22674 usesrc_ill->ill_usesrc_grp_next; 22675 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22676 } else { 22677 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22678 ifindex); 22679 if (ret != 0) 22680 err = EINVAL; 22681 } 22682 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22683 22684 done: 22685 if (ill_flag_changed) { 22686 mutex_enter(&usesrc_cli_ill->ill_lock); 22687 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22688 mutex_exit(&usesrc_cli_ill->ill_lock); 22689 } 22690 if (ipsq != NULL) 22691 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22692 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22693 ill_refrele(usesrc_ill); 22694 return (err); 22695 } 22696 22697 /* 22698 * comparison function used by avl. 22699 */ 22700 static int 22701 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22702 { 22703 22704 uint_t index; 22705 22706 ASSERT(phyip != NULL && index_ptr != NULL); 22707 22708 index = *((uint_t *)index_ptr); 22709 /* 22710 * let the phyint with the lowest index be on top. 22711 */ 22712 if (((phyint_t *)phyip)->phyint_ifindex < index) 22713 return (1); 22714 if (((phyint_t *)phyip)->phyint_ifindex > index) 22715 return (-1); 22716 return (0); 22717 } 22718 22719 /* 22720 * comparison function used by avl. 22721 */ 22722 static int 22723 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22724 { 22725 ill_t *ill; 22726 int res = 0; 22727 22728 ASSERT(phyip != NULL && name_ptr != NULL); 22729 22730 if (((phyint_t *)phyip)->phyint_illv4) 22731 ill = ((phyint_t *)phyip)->phyint_illv4; 22732 else 22733 ill = ((phyint_t *)phyip)->phyint_illv6; 22734 ASSERT(ill != NULL); 22735 22736 res = strcmp(ill->ill_name, (char *)name_ptr); 22737 if (res > 0) 22738 return (1); 22739 else if (res < 0) 22740 return (-1); 22741 return (0); 22742 } 22743 /* 22744 * This function is called from ill_delete when the ill is being 22745 * unplumbed. We remove the reference from the phyint and we also 22746 * free the phyint when there are no more references to it. 22747 */ 22748 static void 22749 ill_phyint_free(ill_t *ill) 22750 { 22751 phyint_t *phyi; 22752 phyint_t *next_phyint; 22753 ipsq_t *cur_ipsq; 22754 ip_stack_t *ipst = ill->ill_ipst; 22755 22756 ASSERT(ill->ill_phyint != NULL); 22757 22758 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22759 phyi = ill->ill_phyint; 22760 ill->ill_phyint = NULL; 22761 /* 22762 * ill_init allocates a phyint always to store the copy 22763 * of flags relevant to phyint. At that point in time, we could 22764 * not assign the name and hence phyint_illv4/v6 could not be 22765 * initialized. Later in ipif_set_values, we assign the name to 22766 * the ill, at which point in time we assign phyint_illv4/v6. 22767 * Thus we don't rely on phyint_illv6 to be initialized always. 22768 */ 22769 if (ill->ill_flags & ILLF_IPV6) { 22770 phyi->phyint_illv6 = NULL; 22771 } else { 22772 phyi->phyint_illv4 = NULL; 22773 } 22774 /* 22775 * ipif_down removes it from the group when the last ipif goes 22776 * down. 22777 */ 22778 ASSERT(ill->ill_group == NULL); 22779 22780 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22781 return; 22782 22783 /* 22784 * Make sure this phyint was put in the list. 22785 */ 22786 if (phyi->phyint_ifindex > 0) { 22787 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22788 phyi); 22789 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22790 phyi); 22791 } 22792 /* 22793 * remove phyint from the ipsq list. 22794 */ 22795 cur_ipsq = phyi->phyint_ipsq; 22796 if (phyi == cur_ipsq->ipsq_phyint_list) { 22797 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22798 } else { 22799 next_phyint = cur_ipsq->ipsq_phyint_list; 22800 while (next_phyint != NULL) { 22801 if (next_phyint->phyint_ipsq_next == phyi) { 22802 next_phyint->phyint_ipsq_next = 22803 phyi->phyint_ipsq_next; 22804 break; 22805 } 22806 next_phyint = next_phyint->phyint_ipsq_next; 22807 } 22808 ASSERT(next_phyint != NULL); 22809 } 22810 IPSQ_DEC_REF(cur_ipsq, ipst); 22811 22812 if (phyi->phyint_groupname_len != 0) { 22813 ASSERT(phyi->phyint_groupname != NULL); 22814 mi_free(phyi->phyint_groupname); 22815 } 22816 mi_free(phyi); 22817 } 22818 22819 /* 22820 * Attach the ill to the phyint structure which can be shared by both 22821 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22822 * function is called from ipif_set_values and ill_lookup_on_name (for 22823 * loopback) where we know the name of the ill. We lookup the ill and if 22824 * there is one present already with the name use that phyint. Otherwise 22825 * reuse the one allocated by ill_init. 22826 */ 22827 static void 22828 ill_phyint_reinit(ill_t *ill) 22829 { 22830 boolean_t isv6 = ill->ill_isv6; 22831 phyint_t *phyi_old; 22832 phyint_t *phyi; 22833 avl_index_t where = 0; 22834 ill_t *ill_other = NULL; 22835 ipsq_t *ipsq; 22836 ip_stack_t *ipst = ill->ill_ipst; 22837 22838 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22839 22840 phyi_old = ill->ill_phyint; 22841 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22842 phyi_old->phyint_illv6 == NULL)); 22843 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22844 phyi_old->phyint_illv4 == NULL)); 22845 ASSERT(phyi_old->phyint_ifindex == 0); 22846 22847 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22848 ill->ill_name, &where); 22849 22850 /* 22851 * 1. We grabbed the ill_g_lock before inserting this ill into 22852 * the global list of ills. So no other thread could have located 22853 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22854 * 2. Now locate the other protocol instance of this ill. 22855 * 3. Now grab both ill locks in the right order, and the phyint lock of 22856 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22857 * of neither ill can change. 22858 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22859 * other ill. 22860 * 5. Release all locks. 22861 */ 22862 22863 /* 22864 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22865 * we are initializing IPv4. 22866 */ 22867 if (phyi != NULL) { 22868 ill_other = (isv6) ? phyi->phyint_illv4 : 22869 phyi->phyint_illv6; 22870 ASSERT(ill_other->ill_phyint != NULL); 22871 ASSERT((isv6 && !ill_other->ill_isv6) || 22872 (!isv6 && ill_other->ill_isv6)); 22873 GRAB_ILL_LOCKS(ill, ill_other); 22874 /* 22875 * We are potentially throwing away phyint_flags which 22876 * could be different from the one that we obtain from 22877 * ill_other->ill_phyint. But it is okay as we are assuming 22878 * that the state maintained within IP is correct. 22879 */ 22880 mutex_enter(&phyi->phyint_lock); 22881 if (isv6) { 22882 ASSERT(phyi->phyint_illv6 == NULL); 22883 phyi->phyint_illv6 = ill; 22884 } else { 22885 ASSERT(phyi->phyint_illv4 == NULL); 22886 phyi->phyint_illv4 = ill; 22887 } 22888 /* 22889 * This is a new ill, currently undergoing SLIFNAME 22890 * So we could not have joined an IPMP group until now. 22891 */ 22892 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22893 phyi_old->phyint_groupname == NULL); 22894 22895 /* 22896 * This phyi_old is going away. Decref ipsq_refs and 22897 * assert it is zero. The ipsq itself will be freed in 22898 * ipsq_exit 22899 */ 22900 ipsq = phyi_old->phyint_ipsq; 22901 IPSQ_DEC_REF(ipsq, ipst); 22902 ASSERT(ipsq->ipsq_refs == 0); 22903 /* Get the singleton phyint out of the ipsq list */ 22904 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22905 ipsq->ipsq_phyint_list = NULL; 22906 phyi_old->phyint_illv4 = NULL; 22907 phyi_old->phyint_illv6 = NULL; 22908 mi_free(phyi_old); 22909 } else { 22910 mutex_enter(&ill->ill_lock); 22911 /* 22912 * We don't need to acquire any lock, since 22913 * the ill is not yet visible globally and we 22914 * have not yet released the ill_g_lock. 22915 */ 22916 phyi = phyi_old; 22917 mutex_enter(&phyi->phyint_lock); 22918 /* XXX We need a recovery strategy here. */ 22919 if (!phyint_assign_ifindex(phyi, ipst)) 22920 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22921 22922 /* No IPMP group yet, thus the hook uses the ifindex */ 22923 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22924 22925 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22926 (void *)phyi, where); 22927 22928 (void) avl_find(&ipst->ips_phyint_g_list-> 22929 phyint_list_avl_by_index, 22930 &phyi->phyint_ifindex, &where); 22931 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22932 (void *)phyi, where); 22933 } 22934 22935 /* 22936 * Reassigning ill_phyint automatically reassigns the ipsq also. 22937 * pending mp is not affected because that is per ill basis. 22938 */ 22939 ill->ill_phyint = phyi; 22940 22941 /* 22942 * Keep the index on ipif_orig_index to be used by FAILOVER. 22943 * We do this here as when the first ipif was allocated, 22944 * ipif_allocate does not know the right interface index. 22945 */ 22946 22947 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22948 /* 22949 * Now that the phyint's ifindex has been assigned, complete the 22950 * remaining 22951 */ 22952 22953 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22954 if (ill->ill_isv6) { 22955 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22956 ill->ill_phyint->phyint_ifindex; 22957 ill->ill_mcast_type = ipst->ips_mld_max_version; 22958 } else { 22959 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22960 } 22961 22962 /* 22963 * Generate an event within the hooks framework to indicate that 22964 * a new interface has just been added to IP. For this event to 22965 * be generated, the network interface must, at least, have an 22966 * ifindex assigned to it. 22967 * 22968 * This needs to be run inside the ill_g_lock perimeter to ensure 22969 * that the ordering of delivered events to listeners matches the 22970 * order of them in the kernel. 22971 * 22972 * This function could be called from ill_lookup_on_name. In that case 22973 * the interface is loopback "lo", which will not generate a NIC event. 22974 */ 22975 if (ill->ill_name_length <= 2 || 22976 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22977 /* 22978 * Generate nic plumb event for ill_name even if 22979 * ipmp_hook_emulation is set. That avoids generating events 22980 * for the ill_names should ipmp_hook_emulation be turned on 22981 * later. 22982 */ 22983 ill_nic_info_plumb(ill, B_FALSE); 22984 } 22985 RELEASE_ILL_LOCKS(ill, ill_other); 22986 mutex_exit(&phyi->phyint_lock); 22987 } 22988 22989 /* 22990 * Allocate a NE_PLUMB nic info event and store in the ill. 22991 * If 'group' is set we do it for the group name, otherwise the ill name. 22992 * It will be sent when we leave the ipsq. 22993 */ 22994 void 22995 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22996 { 22997 phyint_t *phyi = ill->ill_phyint; 22998 ip_stack_t *ipst = ill->ill_ipst; 22999 hook_nic_event_t *info; 23000 char *name; 23001 int namelen; 23002 23003 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23004 23005 if ((info = ill->ill_nic_event_info) != NULL) { 23006 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23007 "attached for %s\n", info->hne_event, 23008 ill->ill_name)); 23009 if (info->hne_data != NULL) 23010 kmem_free(info->hne_data, info->hne_datalen); 23011 kmem_free(info, sizeof (hook_nic_event_t)); 23012 ill->ill_nic_event_info = NULL; 23013 } 23014 23015 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23016 if (info == NULL) { 23017 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23018 "event information for %s (ENOMEM)\n", 23019 ill->ill_name)); 23020 return; 23021 } 23022 23023 if (group) { 23024 ASSERT(phyi->phyint_groupname_len != 0); 23025 namelen = phyi->phyint_groupname_len; 23026 name = phyi->phyint_groupname; 23027 } else { 23028 namelen = ill->ill_name_length; 23029 name = ill->ill_name; 23030 } 23031 23032 info->hne_nic = phyi->phyint_hook_ifindex; 23033 info->hne_lif = 0; 23034 info->hne_event = NE_PLUMB; 23035 info->hne_family = ill->ill_isv6 ? 23036 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23037 23038 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23039 if (info->hne_data != NULL) { 23040 info->hne_datalen = namelen; 23041 bcopy(name, info->hne_data, info->hne_datalen); 23042 } else { 23043 ip2dbg(("ill_nic_info_plumb: could not attach " 23044 "name information for PLUMB nic event " 23045 "of %s (ENOMEM)\n", name)); 23046 kmem_free(info, sizeof (hook_nic_event_t)); 23047 info = NULL; 23048 } 23049 ill->ill_nic_event_info = info; 23050 } 23051 23052 /* 23053 * Unhook the nic event message from the ill and enqueue it 23054 * into the nic event taskq. 23055 */ 23056 void 23057 ill_nic_info_dispatch(ill_t *ill) 23058 { 23059 hook_nic_event_t *info; 23060 23061 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23062 23063 if ((info = ill->ill_nic_event_info) != NULL) { 23064 if (ddi_taskq_dispatch(eventq_queue_nic, 23065 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23066 ip2dbg(("ill_nic_info_dispatch: " 23067 "ddi_taskq_dispatch failed\n")); 23068 if (info->hne_data != NULL) 23069 kmem_free(info->hne_data, info->hne_datalen); 23070 kmem_free(info, sizeof (hook_nic_event_t)); 23071 } 23072 ill->ill_nic_event_info = NULL; 23073 } 23074 } 23075 23076 /* 23077 * Notify any downstream modules of the name of this interface. 23078 * An M_IOCTL is used even though we don't expect a successful reply. 23079 * Any reply message from the driver (presumably an M_IOCNAK) will 23080 * eventually get discarded somewhere upstream. The message format is 23081 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23082 * to IP. 23083 */ 23084 static void 23085 ip_ifname_notify(ill_t *ill, queue_t *q) 23086 { 23087 mblk_t *mp1, *mp2; 23088 struct iocblk *iocp; 23089 struct lifreq *lifr; 23090 23091 mp1 = mkiocb(SIOCSLIFNAME); 23092 if (mp1 == NULL) 23093 return; 23094 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23095 if (mp2 == NULL) { 23096 freeb(mp1); 23097 return; 23098 } 23099 23100 mp1->b_cont = mp2; 23101 iocp = (struct iocblk *)mp1->b_rptr; 23102 iocp->ioc_count = sizeof (struct lifreq); 23103 23104 lifr = (struct lifreq *)mp2->b_rptr; 23105 mp2->b_wptr += sizeof (struct lifreq); 23106 bzero(lifr, sizeof (struct lifreq)); 23107 23108 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23109 lifr->lifr_ppa = ill->ill_ppa; 23110 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23111 23112 putnext(q, mp1); 23113 } 23114 23115 static int 23116 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23117 { 23118 int err; 23119 ip_stack_t *ipst = ill->ill_ipst; 23120 23121 /* Set the obsolete NDD per-interface forwarding name. */ 23122 err = ill_set_ndd_name(ill); 23123 if (err != 0) { 23124 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23125 err); 23126 } 23127 23128 /* Tell downstream modules where they are. */ 23129 ip_ifname_notify(ill, q); 23130 23131 /* 23132 * ill_dl_phys returns EINPROGRESS in the usual case. 23133 * Error cases are ENOMEM ... 23134 */ 23135 err = ill_dl_phys(ill, ipif, mp, q); 23136 23137 /* 23138 * If there is no IRE expiration timer running, get one started. 23139 * igmp and mld timers will be triggered by the first multicast 23140 */ 23141 if (ipst->ips_ip_ire_expire_id == 0) { 23142 /* 23143 * acquire the lock and check again. 23144 */ 23145 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23146 if (ipst->ips_ip_ire_expire_id == 0) { 23147 ipst->ips_ip_ire_expire_id = timeout( 23148 ip_trash_timer_expire, ipst, 23149 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23150 } 23151 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23152 } 23153 23154 if (ill->ill_isv6) { 23155 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23156 if (ipst->ips_mld_slowtimeout_id == 0) { 23157 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23158 (void *)ipst, 23159 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23160 } 23161 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23162 } else { 23163 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23164 if (ipst->ips_igmp_slowtimeout_id == 0) { 23165 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23166 (void *)ipst, 23167 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23168 } 23169 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23170 } 23171 23172 return (err); 23173 } 23174 23175 /* 23176 * Common routine for ppa and ifname setting. Should be called exclusive. 23177 * 23178 * Returns EINPROGRESS when mp has been consumed by queueing it on 23179 * ill_pending_mp and the ioctl will complete in ip_rput. 23180 * 23181 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23182 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23183 * For SLIFNAME, we pass these values back to the userland. 23184 */ 23185 static int 23186 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23187 { 23188 ill_t *ill; 23189 ipif_t *ipif; 23190 ipsq_t *ipsq; 23191 char *ppa_ptr; 23192 char *old_ptr; 23193 char old_char; 23194 int error; 23195 ip_stack_t *ipst; 23196 23197 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23198 ASSERT(q->q_next != NULL); 23199 ASSERT(interf_name != NULL); 23200 23201 ill = (ill_t *)q->q_ptr; 23202 ipst = ill->ill_ipst; 23203 23204 ASSERT(ill->ill_ipst != NULL); 23205 ASSERT(ill->ill_name[0] == '\0'); 23206 ASSERT(IAM_WRITER_ILL(ill)); 23207 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23208 ASSERT(ill->ill_ppa == UINT_MAX); 23209 23210 /* The ppa is sent down by ifconfig or is chosen */ 23211 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23212 return (EINVAL); 23213 } 23214 23215 /* 23216 * make sure ppa passed in is same as ppa in the name. 23217 * This check is not made when ppa == UINT_MAX in that case ppa 23218 * in the name could be anything. System will choose a ppa and 23219 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23220 */ 23221 if (*new_ppa_ptr != UINT_MAX) { 23222 /* stoi changes the pointer */ 23223 old_ptr = ppa_ptr; 23224 /* 23225 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23226 * (they don't have an externally visible ppa). We assign one 23227 * here so that we can manage the interface. Note that in 23228 * the past this value was always 0 for DLPI 1 drivers. 23229 */ 23230 if (*new_ppa_ptr == 0) 23231 *new_ppa_ptr = stoi(&old_ptr); 23232 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23233 return (EINVAL); 23234 } 23235 /* 23236 * terminate string before ppa 23237 * save char at that location. 23238 */ 23239 old_char = ppa_ptr[0]; 23240 ppa_ptr[0] = '\0'; 23241 23242 ill->ill_ppa = *new_ppa_ptr; 23243 /* 23244 * Finish as much work now as possible before calling ill_glist_insert 23245 * which makes the ill globally visible and also merges it with the 23246 * other protocol instance of this phyint. The remaining work is 23247 * done after entering the ipsq which may happen sometime later. 23248 * ill_set_ndd_name occurs after the ill has been made globally visible. 23249 */ 23250 ipif = ill->ill_ipif; 23251 23252 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23253 ipif_assign_seqid(ipif); 23254 23255 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23256 ill->ill_flags |= ILLF_IPV4; 23257 23258 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23259 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23260 23261 if (ill->ill_flags & ILLF_IPV6) { 23262 23263 ill->ill_isv6 = B_TRUE; 23264 if (ill->ill_rq != NULL) { 23265 ill->ill_rq->q_qinfo = &rinit_ipv6; 23266 ill->ill_wq->q_qinfo = &winit_ipv6; 23267 } 23268 23269 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23270 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23271 ipif->ipif_v6src_addr = ipv6_all_zeros; 23272 ipif->ipif_v6subnet = ipv6_all_zeros; 23273 ipif->ipif_v6net_mask = ipv6_all_zeros; 23274 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23275 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23276 /* 23277 * point-to-point or Non-mulicast capable 23278 * interfaces won't do NUD unless explicitly 23279 * configured to do so. 23280 */ 23281 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23282 !(ill->ill_flags & ILLF_MULTICAST)) { 23283 ill->ill_flags |= ILLF_NONUD; 23284 } 23285 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23286 if (ill->ill_flags & ILLF_NOARP) { 23287 /* 23288 * Note: xresolv interfaces will eventually need 23289 * NOARP set here as well, but that will require 23290 * those external resolvers to have some 23291 * knowledge of that flag and act appropriately. 23292 * Not to be changed at present. 23293 */ 23294 ill->ill_flags &= ~ILLF_NOARP; 23295 } 23296 /* 23297 * Set the ILLF_ROUTER flag according to the global 23298 * IPv6 forwarding policy. 23299 */ 23300 if (ipst->ips_ipv6_forward != 0) 23301 ill->ill_flags |= ILLF_ROUTER; 23302 } else if (ill->ill_flags & ILLF_IPV4) { 23303 ill->ill_isv6 = B_FALSE; 23304 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23305 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23306 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23307 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23308 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23309 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23310 /* 23311 * Set the ILLF_ROUTER flag according to the global 23312 * IPv4 forwarding policy. 23313 */ 23314 if (ipst->ips_ip_g_forward != 0) 23315 ill->ill_flags |= ILLF_ROUTER; 23316 } 23317 23318 ASSERT(ill->ill_phyint != NULL); 23319 23320 /* 23321 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23322 * be completed in ill_glist_insert -> ill_phyint_reinit 23323 */ 23324 if (!ill_allocate_mibs(ill)) 23325 return (ENOMEM); 23326 23327 /* 23328 * Pick a default sap until we get the DL_INFO_ACK back from 23329 * the driver. 23330 */ 23331 if (ill->ill_sap == 0) { 23332 if (ill->ill_isv6) 23333 ill->ill_sap = IP6_DL_SAP; 23334 else 23335 ill->ill_sap = IP_DL_SAP; 23336 } 23337 23338 ill->ill_ifname_pending = 1; 23339 ill->ill_ifname_pending_err = 0; 23340 23341 ill_refhold(ill); 23342 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23343 if ((error = ill_glist_insert(ill, interf_name, 23344 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23345 ill->ill_ppa = UINT_MAX; 23346 ill->ill_name[0] = '\0'; 23347 /* 23348 * undo null termination done above. 23349 */ 23350 ppa_ptr[0] = old_char; 23351 rw_exit(&ipst->ips_ill_g_lock); 23352 ill_refrele(ill); 23353 return (error); 23354 } 23355 23356 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23357 23358 /* 23359 * When we return the buffer pointed to by interf_name should contain 23360 * the same name as in ill_name. 23361 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23362 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23363 * so copy full name and update the ppa ptr. 23364 * When ppa passed in != UINT_MAX all values are correct just undo 23365 * null termination, this saves a bcopy. 23366 */ 23367 if (*new_ppa_ptr == UINT_MAX) { 23368 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23369 *new_ppa_ptr = ill->ill_ppa; 23370 } else { 23371 /* 23372 * undo null termination done above. 23373 */ 23374 ppa_ptr[0] = old_char; 23375 } 23376 23377 /* Let SCTP know about this ILL */ 23378 sctp_update_ill(ill, SCTP_ILL_INSERT); 23379 23380 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23381 B_TRUE); 23382 23383 rw_exit(&ipst->ips_ill_g_lock); 23384 ill_refrele(ill); 23385 if (ipsq == NULL) 23386 return (EINPROGRESS); 23387 23388 /* 23389 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23390 */ 23391 if (ipsq->ipsq_current_ipif == NULL) 23392 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23393 else 23394 ASSERT(ipsq->ipsq_current_ipif == ipif); 23395 23396 error = ipif_set_values_tail(ill, ipif, mp, q); 23397 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23398 if (error != 0 && error != EINPROGRESS) { 23399 /* 23400 * restore previous values 23401 */ 23402 ill->ill_isv6 = B_FALSE; 23403 } 23404 return (error); 23405 } 23406 23407 23408 void 23409 ipif_init(ip_stack_t *ipst) 23410 { 23411 hrtime_t hrt; 23412 int i; 23413 23414 /* 23415 * Can't call drv_getparm here as it is too early in the boot. 23416 * As we use ipif_src_random just for picking a different 23417 * source address everytime, this need not be really random. 23418 */ 23419 hrt = gethrtime(); 23420 ipst->ips_ipif_src_random = 23421 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23422 23423 for (i = 0; i < MAX_G_HEADS; i++) { 23424 ipst->ips_ill_g_heads[i].ill_g_list_head = 23425 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23426 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23427 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23428 } 23429 23430 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23431 ill_phyint_compare_index, 23432 sizeof (phyint_t), 23433 offsetof(struct phyint, phyint_avl_by_index)); 23434 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23435 ill_phyint_compare_name, 23436 sizeof (phyint_t), 23437 offsetof(struct phyint, phyint_avl_by_name)); 23438 } 23439 23440 /* 23441 * This is called by ip_rt_add when src_addr value is other than zero. 23442 * src_addr signifies the source address of the incoming packet. For 23443 * reverse tunnel route we need to create a source addr based routing 23444 * table. This routine creates ip_mrtun_table if it's empty and then 23445 * it adds the route entry hashed by source address. It verifies that 23446 * the outgoing interface is always a non-resolver interface (tunnel). 23447 */ 23448 int 23449 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23450 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23451 ip_stack_t *ipst) 23452 { 23453 ire_t *ire; 23454 ire_t *save_ire; 23455 ipif_t *ipif; 23456 ill_t *in_ill = NULL; 23457 ill_t *out_ill; 23458 queue_t *stq; 23459 mblk_t *dlureq_mp; 23460 int error; 23461 23462 if (ire_arg != NULL) 23463 *ire_arg = NULL; 23464 ASSERT(in_src_addr != INADDR_ANY); 23465 23466 ipif = ipif_arg; 23467 if (ipif != NULL) { 23468 out_ill = ipif->ipif_ill; 23469 } else { 23470 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23471 return (EINVAL); 23472 } 23473 23474 if (src_ipif == NULL) { 23475 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23476 return (EINVAL); 23477 } 23478 in_ill = src_ipif->ipif_ill; 23479 23480 /* 23481 * Check for duplicates. We don't need to 23482 * match out_ill, because the uniqueness of 23483 * a route is only dependent on src_addr and 23484 * in_ill. 23485 */ 23486 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23487 if (ire != NULL) { 23488 ire_refrele(ire); 23489 return (EEXIST); 23490 } 23491 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23492 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23493 ipif->ipif_net_type)); 23494 return (EINVAL); 23495 } 23496 23497 stq = ipif->ipif_wq; 23498 ASSERT(stq != NULL); 23499 23500 /* 23501 * The outgoing interface must be non-resolver 23502 * interface. 23503 */ 23504 dlureq_mp = ill_dlur_gen(NULL, 23505 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23506 out_ill->ill_sap_length); 23507 23508 if (dlureq_mp == NULL) { 23509 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23510 return (ENOMEM); 23511 } 23512 23513 /* Create the IRE. */ 23514 23515 ire = ire_create( 23516 NULL, /* Zero dst addr */ 23517 NULL, /* Zero mask */ 23518 NULL, /* Zero gateway addr */ 23519 NULL, /* Zero ipif_src addr */ 23520 (uint8_t *)&in_src_addr, /* in_src-addr */ 23521 &ipif->ipif_mtu, 23522 NULL, 23523 NULL, /* rfq */ 23524 stq, 23525 IRE_MIPRTUN, 23526 ipif, 23527 in_ill, 23528 0, 23529 0, 23530 0, 23531 flags, 23532 &ire_uinfo_null, 23533 NULL, 23534 NULL, 23535 ipst); 23536 23537 if (ire == NULL) { 23538 freeb(dlureq_mp); 23539 return (ENOMEM); 23540 } 23541 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23542 ire->ire_type)); 23543 save_ire = ire; 23544 ASSERT(save_ire != NULL); 23545 error = ire_add_mrtun(&ire, q, mp, func); 23546 /* 23547 * If ire_add_mrtun() failed, the ire passed in was freed 23548 * so there is no need to do so here. 23549 */ 23550 if (error != 0) { 23551 return (error); 23552 } 23553 23554 /* Duplicate check */ 23555 if (ire != save_ire) { 23556 /* route already exists by now */ 23557 ire_refrele(ire); 23558 return (EEXIST); 23559 } 23560 23561 if (ire_arg != NULL) { 23562 /* 23563 * Store the ire that was just added. the caller 23564 * ip_rts_request responsible for doing ire_refrele() 23565 * on it. 23566 */ 23567 *ire_arg = ire; 23568 } else { 23569 ire_refrele(ire); /* held in ire_add_mrtun */ 23570 } 23571 23572 return (0); 23573 } 23574 23575 /* 23576 * It is called by ip_rt_delete() only when mipagent requests to delete 23577 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23578 */ 23579 23580 int 23581 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23582 { 23583 ire_t *ire = NULL; 23584 23585 if (in_src_addr == INADDR_ANY) 23586 return (EINVAL); 23587 if (src_ipif == NULL) 23588 return (EINVAL); 23589 23590 /* search if this route exists in the ip_mrtun_table */ 23591 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23592 if (ire == NULL) { 23593 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23594 return (ESRCH); 23595 } 23596 ire_delete(ire); 23597 ire_refrele(ire); 23598 return (0); 23599 } 23600 23601 /* 23602 * Lookup the ipif corresponding to the onlink destination address. For 23603 * point-to-point interfaces, it matches with remote endpoint destination 23604 * address. For point-to-multipoint interfaces it only tries to match the 23605 * destination with the interface's subnet address. The longest, most specific 23606 * match is found to take care of such rare network configurations like - 23607 * le0: 129.146.1.1/16 23608 * le1: 129.146.2.2/24 23609 * It is used only by SO_DONTROUTE at the moment. 23610 */ 23611 ipif_t * 23612 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23613 { 23614 ipif_t *ipif, *best_ipif; 23615 ill_t *ill; 23616 ill_walk_context_t ctx; 23617 23618 ASSERT(zoneid != ALL_ZONES); 23619 best_ipif = NULL; 23620 23621 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23622 ill = ILL_START_WALK_V4(&ctx, ipst); 23623 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23624 mutex_enter(&ill->ill_lock); 23625 for (ipif = ill->ill_ipif; ipif != NULL; 23626 ipif = ipif->ipif_next) { 23627 if (!IPIF_CAN_LOOKUP(ipif)) 23628 continue; 23629 if (ipif->ipif_zoneid != zoneid && 23630 ipif->ipif_zoneid != ALL_ZONES) 23631 continue; 23632 /* 23633 * Point-to-point case. Look for exact match with 23634 * destination address. 23635 */ 23636 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23637 if (ipif->ipif_pp_dst_addr == addr) { 23638 ipif_refhold_locked(ipif); 23639 mutex_exit(&ill->ill_lock); 23640 rw_exit(&ipst->ips_ill_g_lock); 23641 if (best_ipif != NULL) 23642 ipif_refrele(best_ipif); 23643 return (ipif); 23644 } 23645 } else if (ipif->ipif_subnet == (addr & 23646 ipif->ipif_net_mask)) { 23647 /* 23648 * Point-to-multipoint case. Looping through to 23649 * find the most specific match. If there are 23650 * multiple best match ipif's then prefer ipif's 23651 * that are UP. If there is only one best match 23652 * ipif and it is DOWN we must still return it. 23653 */ 23654 if ((best_ipif == NULL) || 23655 (ipif->ipif_net_mask > 23656 best_ipif->ipif_net_mask) || 23657 ((ipif->ipif_net_mask == 23658 best_ipif->ipif_net_mask) && 23659 ((ipif->ipif_flags & IPIF_UP) && 23660 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23661 ipif_refhold_locked(ipif); 23662 mutex_exit(&ill->ill_lock); 23663 rw_exit(&ipst->ips_ill_g_lock); 23664 if (best_ipif != NULL) 23665 ipif_refrele(best_ipif); 23666 best_ipif = ipif; 23667 rw_enter(&ipst->ips_ill_g_lock, 23668 RW_READER); 23669 mutex_enter(&ill->ill_lock); 23670 } 23671 } 23672 } 23673 mutex_exit(&ill->ill_lock); 23674 } 23675 rw_exit(&ipst->ips_ill_g_lock); 23676 return (best_ipif); 23677 } 23678 23679 23680 /* 23681 * Save enough information so that we can recreate the IRE if 23682 * the interface goes down and then up. 23683 */ 23684 static void 23685 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23686 { 23687 mblk_t *save_mp; 23688 23689 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23690 if (save_mp != NULL) { 23691 ifrt_t *ifrt; 23692 23693 save_mp->b_wptr += sizeof (ifrt_t); 23694 ifrt = (ifrt_t *)save_mp->b_rptr; 23695 bzero(ifrt, sizeof (ifrt_t)); 23696 ifrt->ifrt_type = ire->ire_type; 23697 ifrt->ifrt_addr = ire->ire_addr; 23698 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23699 ifrt->ifrt_src_addr = ire->ire_src_addr; 23700 ifrt->ifrt_mask = ire->ire_mask; 23701 ifrt->ifrt_flags = ire->ire_flags; 23702 ifrt->ifrt_max_frag = ire->ire_max_frag; 23703 mutex_enter(&ipif->ipif_saved_ire_lock); 23704 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23705 ipif->ipif_saved_ire_mp = save_mp; 23706 ipif->ipif_saved_ire_cnt++; 23707 mutex_exit(&ipif->ipif_saved_ire_lock); 23708 } 23709 } 23710 23711 23712 static void 23713 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23714 { 23715 mblk_t **mpp; 23716 mblk_t *mp; 23717 ifrt_t *ifrt; 23718 23719 /* Remove from ipif_saved_ire_mp list if it is there */ 23720 mutex_enter(&ipif->ipif_saved_ire_lock); 23721 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23722 mpp = &(*mpp)->b_cont) { 23723 /* 23724 * On a given ipif, the triple of address, gateway and 23725 * mask is unique for each saved IRE (in the case of 23726 * ordinary interface routes, the gateway address is 23727 * all-zeroes). 23728 */ 23729 mp = *mpp; 23730 ifrt = (ifrt_t *)mp->b_rptr; 23731 if (ifrt->ifrt_addr == ire->ire_addr && 23732 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23733 ifrt->ifrt_mask == ire->ire_mask) { 23734 *mpp = mp->b_cont; 23735 ipif->ipif_saved_ire_cnt--; 23736 freeb(mp); 23737 break; 23738 } 23739 } 23740 mutex_exit(&ipif->ipif_saved_ire_lock); 23741 } 23742 23743 23744 /* 23745 * IP multirouting broadcast routes handling 23746 * Append CGTP broadcast IREs to regular ones created 23747 * at ifconfig time. 23748 */ 23749 static void 23750 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23751 { 23752 ire_t *ire_prim; 23753 23754 ASSERT(ire != NULL); 23755 ASSERT(ire_dst != NULL); 23756 23757 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23758 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23759 if (ire_prim != NULL) { 23760 /* 23761 * We are in the special case of broadcasts for 23762 * CGTP. We add an IRE_BROADCAST that holds 23763 * the RTF_MULTIRT flag, the destination 23764 * address of ire_dst and the low level 23765 * info of ire_prim. In other words, CGTP 23766 * broadcast is added to the redundant ipif. 23767 */ 23768 ipif_t *ipif_prim; 23769 ire_t *bcast_ire; 23770 23771 ipif_prim = ire_prim->ire_ipif; 23772 23773 ip2dbg(("ip_cgtp_filter_bcast_add: " 23774 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23775 (void *)ire_dst, (void *)ire_prim, 23776 (void *)ipif_prim)); 23777 23778 bcast_ire = ire_create( 23779 (uchar_t *)&ire->ire_addr, 23780 (uchar_t *)&ip_g_all_ones, 23781 (uchar_t *)&ire_dst->ire_src_addr, 23782 (uchar_t *)&ire->ire_gateway_addr, 23783 NULL, 23784 &ipif_prim->ipif_mtu, 23785 NULL, 23786 ipif_prim->ipif_rq, 23787 ipif_prim->ipif_wq, 23788 IRE_BROADCAST, 23789 ipif_prim, 23790 NULL, 23791 0, 23792 0, 23793 0, 23794 ire->ire_flags, 23795 &ire_uinfo_null, 23796 NULL, 23797 NULL, 23798 ipst); 23799 23800 if (bcast_ire != NULL) { 23801 23802 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23803 B_FALSE) == 0) { 23804 ip2dbg(("ip_cgtp_filter_bcast_add: " 23805 "added bcast_ire %p\n", 23806 (void *)bcast_ire)); 23807 23808 ipif_save_ire(bcast_ire->ire_ipif, 23809 bcast_ire); 23810 ire_refrele(bcast_ire); 23811 } 23812 } 23813 ire_refrele(ire_prim); 23814 } 23815 } 23816 23817 23818 /* 23819 * IP multirouting broadcast routes handling 23820 * Remove the broadcast ire 23821 */ 23822 static void 23823 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23824 { 23825 ire_t *ire_dst; 23826 23827 ASSERT(ire != NULL); 23828 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23829 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23830 if (ire_dst != NULL) { 23831 ire_t *ire_prim; 23832 23833 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23834 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23835 if (ire_prim != NULL) { 23836 ipif_t *ipif_prim; 23837 ire_t *bcast_ire; 23838 23839 ipif_prim = ire_prim->ire_ipif; 23840 23841 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23842 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23843 (void *)ire_dst, (void *)ire_prim, 23844 (void *)ipif_prim)); 23845 23846 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23847 ire->ire_gateway_addr, 23848 IRE_BROADCAST, 23849 ipif_prim, ALL_ZONES, 23850 NULL, 23851 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23852 MATCH_IRE_MASK, ipst); 23853 23854 if (bcast_ire != NULL) { 23855 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23856 "looked up bcast_ire %p\n", 23857 (void *)bcast_ire)); 23858 ipif_remove_ire(bcast_ire->ire_ipif, 23859 bcast_ire); 23860 ire_delete(bcast_ire); 23861 } 23862 ire_refrele(ire_prim); 23863 } 23864 ire_refrele(ire_dst); 23865 } 23866 } 23867 23868 /* 23869 * IPsec hardware acceleration capabilities related functions. 23870 */ 23871 23872 /* 23873 * Free a per-ill IPsec capabilities structure. 23874 */ 23875 static void 23876 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23877 { 23878 if (capab->auth_hw_algs != NULL) 23879 kmem_free(capab->auth_hw_algs, capab->algs_size); 23880 if (capab->encr_hw_algs != NULL) 23881 kmem_free(capab->encr_hw_algs, capab->algs_size); 23882 if (capab->encr_algparm != NULL) 23883 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23884 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23885 } 23886 23887 /* 23888 * Allocate a new per-ill IPsec capabilities structure. This structure 23889 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23890 * an array which specifies, for each algorithm, whether this algorithm 23891 * is supported by the ill or not. 23892 */ 23893 static ill_ipsec_capab_t * 23894 ill_ipsec_capab_alloc(void) 23895 { 23896 ill_ipsec_capab_t *capab; 23897 uint_t nelems; 23898 23899 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23900 if (capab == NULL) 23901 return (NULL); 23902 23903 /* we need one bit per algorithm */ 23904 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23905 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23906 23907 /* allocate memory to store algorithm flags */ 23908 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23909 if (capab->encr_hw_algs == NULL) 23910 goto nomem; 23911 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23912 if (capab->auth_hw_algs == NULL) 23913 goto nomem; 23914 /* 23915 * Leave encr_algparm NULL for now since we won't need it half 23916 * the time 23917 */ 23918 return (capab); 23919 23920 nomem: 23921 ill_ipsec_capab_free(capab); 23922 return (NULL); 23923 } 23924 23925 /* 23926 * Resize capability array. Since we're exclusive, this is OK. 23927 */ 23928 static boolean_t 23929 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23930 { 23931 ipsec_capab_algparm_t *nalp, *oalp; 23932 uint32_t olen, nlen; 23933 23934 oalp = capab->encr_algparm; 23935 olen = capab->encr_algparm_size; 23936 23937 if (oalp != NULL) { 23938 if (algid < capab->encr_algparm_end) 23939 return (B_TRUE); 23940 } 23941 23942 nlen = (algid + 1) * sizeof (*nalp); 23943 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23944 if (nalp == NULL) 23945 return (B_FALSE); 23946 23947 if (oalp != NULL) { 23948 bcopy(oalp, nalp, olen); 23949 kmem_free(oalp, olen); 23950 } 23951 capab->encr_algparm = nalp; 23952 capab->encr_algparm_size = nlen; 23953 capab->encr_algparm_end = algid + 1; 23954 23955 return (B_TRUE); 23956 } 23957 23958 /* 23959 * Compare the capabilities of the specified ill with the protocol 23960 * and algorithms specified by the SA passed as argument. 23961 * If they match, returns B_TRUE, B_FALSE if they do not match. 23962 * 23963 * The ill can be passed as a pointer to it, or by specifying its index 23964 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23965 * 23966 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23967 * packet is eligible for hardware acceleration, and by 23968 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23969 * to a particular ill. 23970 */ 23971 boolean_t 23972 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23973 ipsa_t *sa, netstack_t *ns) 23974 { 23975 boolean_t sa_isv6; 23976 uint_t algid; 23977 struct ill_ipsec_capab_s *cpp; 23978 boolean_t need_refrele = B_FALSE; 23979 ip_stack_t *ipst = ns->netstack_ip; 23980 23981 if (ill == NULL) { 23982 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23983 NULL, NULL, NULL, ipst); 23984 if (ill == NULL) { 23985 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23986 return (B_FALSE); 23987 } 23988 need_refrele = B_TRUE; 23989 } 23990 23991 /* 23992 * Use the address length specified by the SA to determine 23993 * if it corresponds to a IPv6 address, and fail the matching 23994 * if the isv6 flag passed as argument does not match. 23995 * Note: this check is used for SADB capability checking before 23996 * sending SA information to an ill. 23997 */ 23998 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23999 if (sa_isv6 != ill_isv6) 24000 /* protocol mismatch */ 24001 goto done; 24002 24003 /* 24004 * Check if the ill supports the protocol, algorithm(s) and 24005 * key size(s) specified by the SA, and get the pointers to 24006 * the algorithms supported by the ill. 24007 */ 24008 switch (sa->ipsa_type) { 24009 24010 case SADB_SATYPE_ESP: 24011 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24012 /* ill does not support ESP acceleration */ 24013 goto done; 24014 cpp = ill->ill_ipsec_capab_esp; 24015 algid = sa->ipsa_auth_alg; 24016 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24017 goto done; 24018 algid = sa->ipsa_encr_alg; 24019 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24020 goto done; 24021 if (algid < cpp->encr_algparm_end) { 24022 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24023 if (sa->ipsa_encrkeybits < alp->minkeylen) 24024 goto done; 24025 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24026 goto done; 24027 } 24028 break; 24029 24030 case SADB_SATYPE_AH: 24031 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24032 /* ill does not support AH acceleration */ 24033 goto done; 24034 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24035 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24036 goto done; 24037 break; 24038 } 24039 24040 if (need_refrele) 24041 ill_refrele(ill); 24042 return (B_TRUE); 24043 done: 24044 if (need_refrele) 24045 ill_refrele(ill); 24046 return (B_FALSE); 24047 } 24048 24049 24050 /* 24051 * Add a new ill to the list of IPsec capable ills. 24052 * Called from ill_capability_ipsec_ack() when an ACK was received 24053 * indicating that IPsec hardware processing was enabled for an ill. 24054 * 24055 * ill must point to the ill for which acceleration was enabled. 24056 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24057 */ 24058 static void 24059 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24060 { 24061 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24062 uint_t sa_type; 24063 uint_t ipproto; 24064 ip_stack_t *ipst = ill->ill_ipst; 24065 24066 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24067 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24068 24069 switch (dl_cap) { 24070 case DL_CAPAB_IPSEC_AH: 24071 sa_type = SADB_SATYPE_AH; 24072 ills = &ipst->ips_ipsec_capab_ills_ah; 24073 ipproto = IPPROTO_AH; 24074 break; 24075 case DL_CAPAB_IPSEC_ESP: 24076 sa_type = SADB_SATYPE_ESP; 24077 ills = &ipst->ips_ipsec_capab_ills_esp; 24078 ipproto = IPPROTO_ESP; 24079 break; 24080 } 24081 24082 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24083 24084 /* 24085 * Add ill index to list of hardware accelerators. If 24086 * already in list, do nothing. 24087 */ 24088 for (cur_ill = *ills; cur_ill != NULL && 24089 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24090 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24091 ; 24092 24093 if (cur_ill == NULL) { 24094 /* if this is a new entry for this ill */ 24095 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24096 if (new_ill == NULL) { 24097 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24098 return; 24099 } 24100 24101 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24102 new_ill->ill_isv6 = ill->ill_isv6; 24103 new_ill->next = *ills; 24104 *ills = new_ill; 24105 } else if (!sadb_resync) { 24106 /* not resync'ing SADB and an entry exists for this ill */ 24107 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24108 return; 24109 } 24110 24111 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24112 24113 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24114 /* 24115 * IPsec module for protocol loaded, initiate dump 24116 * of the SADB to this ill. 24117 */ 24118 sadb_ill_download(ill, sa_type); 24119 } 24120 24121 /* 24122 * Remove an ill from the list of IPsec capable ills. 24123 */ 24124 static void 24125 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24126 { 24127 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24128 ip_stack_t *ipst = ill->ill_ipst; 24129 24130 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24131 dl_cap == DL_CAPAB_IPSEC_ESP); 24132 24133 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24134 &ipst->ips_ipsec_capab_ills_esp; 24135 24136 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24137 24138 prev_ill = NULL; 24139 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24140 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24141 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24142 ; 24143 if (cur_ill == NULL) { 24144 /* entry not found */ 24145 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24146 return; 24147 } 24148 if (prev_ill == NULL) { 24149 /* entry at front of list */ 24150 *ills = NULL; 24151 } else { 24152 prev_ill->next = cur_ill->next; 24153 } 24154 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24155 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24156 } 24157 24158 /* 24159 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24160 * supporting the specified IPsec protocol acceleration. 24161 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24162 * We free the mblk and, if sa is non-null, release the held referece. 24163 */ 24164 void 24165 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24166 netstack_t *ns) 24167 { 24168 ipsec_capab_ill_t *ici, *cur_ici; 24169 ill_t *ill; 24170 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24171 ip_stack_t *ipst = ns->netstack_ip; 24172 24173 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24174 ipst->ips_ipsec_capab_ills_esp; 24175 24176 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24177 24178 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24179 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24180 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24181 24182 /* 24183 * Handle the case where the ill goes away while the SADB is 24184 * attempting to send messages. If it's going away, it's 24185 * nuking its shadow SADB, so we don't care.. 24186 */ 24187 24188 if (ill == NULL) 24189 continue; 24190 24191 if (sa != NULL) { 24192 /* 24193 * Make sure capabilities match before 24194 * sending SA to ill. 24195 */ 24196 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24197 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24198 ill_refrele(ill); 24199 continue; 24200 } 24201 24202 mutex_enter(&sa->ipsa_lock); 24203 sa->ipsa_flags |= IPSA_F_HW; 24204 mutex_exit(&sa->ipsa_lock); 24205 } 24206 24207 /* 24208 * Copy template message, and add it to the front 24209 * of the mblk ship list. We want to avoid holding 24210 * the ipsec_capab_ills_lock while sending the 24211 * message to the ills. 24212 * 24213 * The b_next and b_prev are temporarily used 24214 * to build a list of mblks to be sent down, and to 24215 * save the ill to which they must be sent. 24216 */ 24217 nmp = copymsg(mp); 24218 if (nmp == NULL) { 24219 ill_refrele(ill); 24220 continue; 24221 } 24222 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24223 nmp->b_next = mp_ship_list; 24224 mp_ship_list = nmp; 24225 nmp->b_prev = (mblk_t *)ill; 24226 } 24227 24228 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24229 24230 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 24231 /* restore the mblk to a sane state */ 24232 next_mp = nmp->b_next; 24233 nmp->b_next = NULL; 24234 ill = (ill_t *)nmp->b_prev; 24235 nmp->b_prev = NULL; 24236 24237 ill_dlpi_send(ill, nmp); 24238 ill_refrele(ill); 24239 } 24240 24241 if (sa != NULL) 24242 IPSA_REFRELE(sa); 24243 freemsg(mp); 24244 } 24245 24246 /* 24247 * Derive an interface id from the link layer address. 24248 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24249 */ 24250 static boolean_t 24251 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24252 { 24253 char *addr; 24254 24255 if (phys_length != ETHERADDRL) 24256 return (B_FALSE); 24257 24258 /* Form EUI-64 like address */ 24259 addr = (char *)&v6addr->s6_addr32[2]; 24260 bcopy((char *)phys_addr, addr, 3); 24261 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24262 addr[3] = (char)0xff; 24263 addr[4] = (char)0xfe; 24264 bcopy((char *)phys_addr + 3, addr + 5, 3); 24265 return (B_TRUE); 24266 } 24267 24268 /* ARGSUSED */ 24269 static boolean_t 24270 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24271 { 24272 return (B_FALSE); 24273 } 24274 24275 /* ARGSUSED */ 24276 static boolean_t 24277 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24278 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24279 { 24280 /* 24281 * Multicast address mappings used over Ethernet/802.X. 24282 * This address is used as a base for mappings. 24283 */ 24284 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24285 0x00, 0x00, 0x00}; 24286 24287 /* 24288 * Extract low order 32 bits from IPv6 multicast address. 24289 * Or that into the link layer address, starting from the 24290 * second byte. 24291 */ 24292 *hw_start = 2; 24293 v6_extract_mask->s6_addr32[0] = 0; 24294 v6_extract_mask->s6_addr32[1] = 0; 24295 v6_extract_mask->s6_addr32[2] = 0; 24296 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24297 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24298 return (B_TRUE); 24299 } 24300 24301 /* 24302 * Indicate by return value whether multicast is supported. If not, 24303 * this code should not touch/change any parameters. 24304 */ 24305 /* ARGSUSED */ 24306 static boolean_t 24307 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24308 uint32_t *hw_start, ipaddr_t *extract_mask) 24309 { 24310 /* 24311 * Multicast address mappings used over Ethernet/802.X. 24312 * This address is used as a base for mappings. 24313 */ 24314 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24315 0x00, 0x00, 0x00 }; 24316 24317 if (phys_length != ETHERADDRL) 24318 return (B_FALSE); 24319 24320 *extract_mask = htonl(0x007fffff); 24321 *hw_start = 2; 24322 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24323 return (B_TRUE); 24324 } 24325 24326 /* 24327 * Derive IPoIB interface id from the link layer address. 24328 */ 24329 static boolean_t 24330 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24331 { 24332 char *addr; 24333 24334 if (phys_length != 20) 24335 return (B_FALSE); 24336 addr = (char *)&v6addr->s6_addr32[2]; 24337 bcopy(phys_addr + 12, addr, 8); 24338 /* 24339 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24340 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24341 * rules. In these cases, the IBA considers these GUIDs to be in 24342 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24343 * required; vendors are required not to assign global EUI-64's 24344 * that differ only in u/l bit values, thus guaranteeing uniqueness 24345 * of the interface identifier. Whether the GUID is in modified 24346 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24347 * bit set to 1. 24348 */ 24349 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24350 return (B_TRUE); 24351 } 24352 24353 /* 24354 * Note on mapping from multicast IP addresses to IPoIB multicast link 24355 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24356 * The format of an IPoIB multicast address is: 24357 * 24358 * 4 byte QPN Scope Sign. Pkey 24359 * +--------------------------------------------+ 24360 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24361 * +--------------------------------------------+ 24362 * 24363 * The Scope and Pkey components are properties of the IBA port and 24364 * network interface. They can be ascertained from the broadcast address. 24365 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24366 */ 24367 24368 static boolean_t 24369 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24370 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24371 { 24372 /* 24373 * Base IPoIB IPv6 multicast address used for mappings. 24374 * Does not contain the IBA scope/Pkey values. 24375 */ 24376 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24377 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24378 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24379 24380 /* 24381 * Extract low order 80 bits from IPv6 multicast address. 24382 * Or that into the link layer address, starting from the 24383 * sixth byte. 24384 */ 24385 *hw_start = 6; 24386 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24387 24388 /* 24389 * Now fill in the IBA scope/Pkey values from the broadcast address. 24390 */ 24391 *(maddr + 5) = *(bphys_addr + 5); 24392 *(maddr + 8) = *(bphys_addr + 8); 24393 *(maddr + 9) = *(bphys_addr + 9); 24394 24395 v6_extract_mask->s6_addr32[0] = 0; 24396 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24397 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24398 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24399 return (B_TRUE); 24400 } 24401 24402 static boolean_t 24403 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24404 uint32_t *hw_start, ipaddr_t *extract_mask) 24405 { 24406 /* 24407 * Base IPoIB IPv4 multicast address used for mappings. 24408 * Does not contain the IBA scope/Pkey values. 24409 */ 24410 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24411 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24412 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24413 24414 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24415 return (B_FALSE); 24416 24417 /* 24418 * Extract low order 28 bits from IPv4 multicast address. 24419 * Or that into the link layer address, starting from the 24420 * sixteenth byte. 24421 */ 24422 *extract_mask = htonl(0x0fffffff); 24423 *hw_start = 16; 24424 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24425 24426 /* 24427 * Now fill in the IBA scope/Pkey values from the broadcast address. 24428 */ 24429 *(maddr + 5) = *(bphys_addr + 5); 24430 *(maddr + 8) = *(bphys_addr + 8); 24431 *(maddr + 9) = *(bphys_addr + 9); 24432 return (B_TRUE); 24433 } 24434 24435 /* 24436 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24437 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24438 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24439 * the link-local address is preferred. 24440 */ 24441 boolean_t 24442 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24443 { 24444 ipif_t *ipif; 24445 ipif_t *maybe_ipif = NULL; 24446 24447 mutex_enter(&ill->ill_lock); 24448 if (ill->ill_state_flags & ILL_CONDEMNED) { 24449 mutex_exit(&ill->ill_lock); 24450 if (ipifp != NULL) 24451 *ipifp = NULL; 24452 return (B_FALSE); 24453 } 24454 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24455 if (!IPIF_CAN_LOOKUP(ipif)) 24456 continue; 24457 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24458 ipif->ipif_zoneid != ALL_ZONES) 24459 continue; 24460 if ((ipif->ipif_flags & flags) != flags) 24461 continue; 24462 24463 if (ipifp == NULL) { 24464 mutex_exit(&ill->ill_lock); 24465 ASSERT(maybe_ipif == NULL); 24466 return (B_TRUE); 24467 } 24468 if (!ill->ill_isv6 || 24469 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24470 ipif_refhold_locked(ipif); 24471 mutex_exit(&ill->ill_lock); 24472 *ipifp = ipif; 24473 return (B_TRUE); 24474 } 24475 if (maybe_ipif == NULL) 24476 maybe_ipif = ipif; 24477 } 24478 if (ipifp != NULL) { 24479 if (maybe_ipif != NULL) 24480 ipif_refhold_locked(maybe_ipif); 24481 *ipifp = maybe_ipif; 24482 } 24483 mutex_exit(&ill->ill_lock); 24484 return (maybe_ipif != NULL); 24485 } 24486 24487 /* 24488 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24489 */ 24490 boolean_t 24491 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24492 { 24493 ill_t *illg; 24494 ip_stack_t *ipst = ill->ill_ipst; 24495 24496 /* 24497 * We look at the passed-in ill first without grabbing ill_g_lock. 24498 */ 24499 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24500 return (B_TRUE); 24501 } 24502 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24503 if (ill->ill_group == NULL) { 24504 /* ill not in a group */ 24505 rw_exit(&ipst->ips_ill_g_lock); 24506 return (B_FALSE); 24507 } 24508 24509 /* 24510 * There's no ipif in the zone on ill, however ill is part of an IPMP 24511 * group. We need to look for an ipif in the zone on all the ills in the 24512 * group. 24513 */ 24514 illg = ill->ill_group->illgrp_ill; 24515 do { 24516 /* 24517 * We don't call ipif_lookup_zoneid() on ill as we already know 24518 * that it's not there. 24519 */ 24520 if (illg != ill && 24521 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24522 break; 24523 } 24524 } while ((illg = illg->ill_group_next) != NULL); 24525 rw_exit(&ipst->ips_ill_g_lock); 24526 return (illg != NULL); 24527 } 24528 24529 /* 24530 * Check if this ill is only being used to send ICMP probes for IPMP 24531 */ 24532 boolean_t 24533 ill_is_probeonly(ill_t *ill) 24534 { 24535 /* 24536 * Check if the interface is FAILED, or INACTIVE 24537 */ 24538 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24539 return (B_TRUE); 24540 24541 return (B_FALSE); 24542 } 24543 24544 /* 24545 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24546 * If a pointer to an ipif_t is returned then the caller will need to do 24547 * an ill_refrele(). 24548 * 24549 * If there is no real interface which matches the ifindex, then it looks 24550 * for a group that has a matching index. In the case of a group match the 24551 * lifidx must be zero. We don't need emulate the logical interfaces 24552 * since IP Filter's use of netinfo doesn't use that. 24553 */ 24554 ipif_t * 24555 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24556 ip_stack_t *ipst) 24557 { 24558 ipif_t *ipif; 24559 ill_t *ill; 24560 24561 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24562 ipst); 24563 24564 if (ill == NULL) { 24565 /* Fallback to group names only if hook_emulation set */ 24566 if (!ipst->ips_ipmp_hook_emulation) 24567 return (NULL); 24568 24569 if (lifidx != 0) 24570 return (NULL); 24571 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24572 if (ill == NULL) 24573 return (NULL); 24574 } 24575 24576 mutex_enter(&ill->ill_lock); 24577 if (ill->ill_state_flags & ILL_CONDEMNED) { 24578 mutex_exit(&ill->ill_lock); 24579 ill_refrele(ill); 24580 return (NULL); 24581 } 24582 24583 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24584 if (!IPIF_CAN_LOOKUP(ipif)) 24585 continue; 24586 if (lifidx == ipif->ipif_id) { 24587 ipif_refhold_locked(ipif); 24588 break; 24589 } 24590 } 24591 24592 mutex_exit(&ill->ill_lock); 24593 ill_refrele(ill); 24594 return (ipif); 24595 } 24596 24597 /* 24598 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24599 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24600 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24601 * for details. 24602 */ 24603 void 24604 ill_fastpath_flush(ill_t *ill) 24605 { 24606 ip_stack_t *ipst = ill->ill_ipst; 24607 24608 nce_fastpath_list_dispatch(ill, NULL, NULL); 24609 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24610 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24611 } 24612 24613 /* 24614 * Set the physical address information for `ill' to the contents of the 24615 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24616 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24617 * EINPROGRESS will be returned. 24618 */ 24619 int 24620 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24621 { 24622 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24623 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24624 24625 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24626 24627 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24628 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24629 /* Changing DL_IPV6_TOKEN is not yet supported */ 24630 return (0); 24631 } 24632 24633 /* 24634 * We need to store up to two copies of `mp' in `ill'. Due to the 24635 * design of ipsq_pending_mp_add(), we can't pass them as separate 24636 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24637 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24638 */ 24639 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24640 freemsg(mp); 24641 return (ENOMEM); 24642 } 24643 24644 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24645 24646 /* 24647 * If we can quiesce the ill, then set the address. If not, then 24648 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24649 */ 24650 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24651 mutex_enter(&ill->ill_lock); 24652 if (!ill_is_quiescent(ill)) { 24653 /* call cannot fail since `conn_t *' argument is NULL */ 24654 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24655 mp, ILL_DOWN); 24656 mutex_exit(&ill->ill_lock); 24657 return (EINPROGRESS); 24658 } 24659 mutex_exit(&ill->ill_lock); 24660 24661 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24662 return (0); 24663 } 24664 24665 /* 24666 * Once the ill associated with `q' has quiesced, set its physical address 24667 * information to the values in `addrmp'. Note that two copies of `addrmp' 24668 * are passed (linked by b_cont), since we sometimes need to save two distinct 24669 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24670 * failure (we'll free the other copy if it's not needed). Since the ill_t 24671 * is quiesced, we know any stale IREs with the old address information have 24672 * already been removed, so we don't need to call ill_fastpath_flush(). 24673 */ 24674 /* ARGSUSED */ 24675 static void 24676 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24677 { 24678 ill_t *ill = q->q_ptr; 24679 mblk_t *addrmp2 = unlinkb(addrmp); 24680 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24681 uint_t addrlen, addroff; 24682 24683 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24684 24685 addroff = dlindp->dl_addr_offset; 24686 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24687 24688 switch (dlindp->dl_data) { 24689 case DL_IPV6_LINK_LAYER_ADDR: 24690 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24691 freemsg(addrmp2); 24692 break; 24693 24694 case DL_CURR_PHYS_ADDR: 24695 freemsg(ill->ill_phys_addr_mp); 24696 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24697 ill->ill_phys_addr_mp = addrmp; 24698 ill->ill_phys_addr_length = addrlen; 24699 24700 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24701 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24702 else 24703 freemsg(addrmp2); 24704 break; 24705 default: 24706 ASSERT(0); 24707 } 24708 24709 /* 24710 * If there are ipifs to bring up, ill_up_ipifs() will return 24711 * EINPROGRESS, and ipsq_current_finish() will be called by 24712 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24713 * brought up. 24714 */ 24715 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24716 ipsq_current_finish(ipsq); 24717 } 24718 24719 /* 24720 * Helper routine for setting the ill_nd_lla fields. 24721 */ 24722 void 24723 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24724 { 24725 freemsg(ill->ill_nd_lla_mp); 24726 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24727 ill->ill_nd_lla_mp = ndmp; 24728 ill->ill_nd_lla_len = addrlen; 24729 } 24730 24731 major_t IP_MAJ; 24732 #define IP "ip" 24733 24734 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24735 #define UDPDEV "/devices/pseudo/udp@0:udp" 24736 24737 /* 24738 * Issue REMOVEIF ioctls to have the loopback interfaces 24739 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24740 * the former going away when the user-level processes in the zone 24741 * are killed * and the latter are cleaned up by the stream head 24742 * str_stack_shutdown callback that undoes all I_PLINKs. 24743 */ 24744 void 24745 ip_loopback_cleanup(ip_stack_t *ipst) 24746 { 24747 int error; 24748 ldi_handle_t lh = NULL; 24749 ldi_ident_t li = NULL; 24750 int rval; 24751 cred_t *cr; 24752 struct strioctl iocb; 24753 struct lifreq lifreq; 24754 24755 IP_MAJ = ddi_name_to_major(IP); 24756 24757 #ifdef NS_DEBUG 24758 (void) printf("ip_loopback_cleanup() stackid %d\n", 24759 ipst->ips_netstack->netstack_stackid); 24760 #endif 24761 24762 bzero(&lifreq, sizeof (lifreq)); 24763 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24764 24765 error = ldi_ident_from_major(IP_MAJ, &li); 24766 if (error) { 24767 #ifdef DEBUG 24768 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24769 error); 24770 #endif 24771 return; 24772 } 24773 24774 cr = zone_get_kcred(netstackid_to_zoneid( 24775 ipst->ips_netstack->netstack_stackid)); 24776 ASSERT(cr != NULL); 24777 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24778 if (error) { 24779 #ifdef DEBUG 24780 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24781 error); 24782 #endif 24783 goto out; 24784 } 24785 iocb.ic_cmd = SIOCLIFREMOVEIF; 24786 iocb.ic_timout = 15; 24787 iocb.ic_len = sizeof (lifreq); 24788 iocb.ic_dp = (char *)&lifreq; 24789 24790 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24791 /* LINTED - statement has no consequent */ 24792 if (error) { 24793 #ifdef NS_DEBUG 24794 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24795 "UDP6 error %d\n", error); 24796 #endif 24797 } 24798 (void) ldi_close(lh, FREAD|FWRITE, cr); 24799 lh = NULL; 24800 24801 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24802 if (error) { 24803 #ifdef NS_DEBUG 24804 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24805 error); 24806 #endif 24807 goto out; 24808 } 24809 24810 iocb.ic_cmd = SIOCLIFREMOVEIF; 24811 iocb.ic_timout = 15; 24812 iocb.ic_len = sizeof (lifreq); 24813 iocb.ic_dp = (char *)&lifreq; 24814 24815 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24816 /* LINTED - statement has no consequent */ 24817 if (error) { 24818 #ifdef NS_DEBUG 24819 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24820 "UDP error %d\n", error); 24821 #endif 24822 } 24823 (void) ldi_close(lh, FREAD|FWRITE, cr); 24824 lh = NULL; 24825 24826 out: 24827 /* Close layered handles */ 24828 if (lh) 24829 (void) ldi_close(lh, FREAD|FWRITE, cr); 24830 if (li) 24831 ldi_ident_release(li); 24832 24833 crfree(cr); 24834 } 24835