1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <inet/ipclassifier.h> 96 #include <sys/mac.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 typedef struct ip_sock_ar_s { 118 union { 119 area_t ip_sock_area; 120 ared_t ip_sock_ared; 121 areq_t ip_sock_areq; 122 } ip_sock_ar_u; 123 queue_t *ip_sock_ar_q; 124 } ip_sock_ar_t; 125 126 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 127 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 128 char *value, caddr_t cp, cred_t *ioc_cr); 129 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 145 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 static void ipsq_clean_all(ill_t *ill); 150 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 151 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 152 queue_t *q, mblk_t *mp, boolean_t need_up); 153 static void ipsq_delete(ipsq_t *); 154 155 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 156 boolean_t initialize); 157 static void ipif_check_bcast_ires(ipif_t *test_ipif); 158 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 159 static void ipif_delete_cache_ire(ire_t *, char *); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_dl_down(ill_t *ill); 183 static void ill_down(ill_t *ill); 184 static void ill_downi(ire_t *ire, char *ill_arg); 185 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 186 static void ill_down_tail(ill_t *ill); 187 static void ill_free_mib(ill_t *ill); 188 static void ill_glist_delete(ill_t *); 189 static boolean_t ill_has_usable_ipif(ill_t *); 190 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 191 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 192 static void ill_phyint_free(ill_t *ill); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 197 static void ill_stq_cache_delete(ire_t *, char *); 198 199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 202 in6_addr_t *); 203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 ipaddr_t *); 205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 211 static void ipif_save_ire(ipif_t *, ire_t *); 212 static void ipif_remove_ire(ipif_t *, ire_t *); 213 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 214 static void ip_cgtp_bcast_delete(ire_t *); 215 216 /* 217 * Per-ill IPsec capabilities management. 218 */ 219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 220 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 221 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 222 static void ill_ipsec_capab_delete(ill_t *, uint_t); 223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 224 static void ill_capability_proto(ill_t *, int, mblk_t *); 225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 226 boolean_t); 227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 235 dl_capability_sub_t *); 236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 237 238 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 240 static void ill_capability_dls_reset(ill_t *, mblk_t **); 241 static void ill_capability_dls_disable(ill_t *); 242 243 static void illgrp_cache_delete(ire_t *, char *); 244 static void illgrp_delete(ill_t *ill); 245 static void illgrp_reset_schednext(ill_t *ill); 246 247 static ill_t *ill_prev_usesrc(ill_t *); 248 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 249 static void ill_disband_usesrc_group(ill_t *); 250 251 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 252 253 /* 254 * if we go over the memory footprint limit more than once in this msec 255 * interval, we'll start pruning aggressively. 256 */ 257 int ip_min_frag_prune_time = 0; 258 259 /* 260 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 261 * and the IPsec DOI 262 */ 263 #define MAX_IPSEC_ALGS 256 264 265 #define BITSPERBYTE 8 266 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 267 268 #define IPSEC_ALG_ENABLE(algs, algid) \ 269 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 270 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 271 272 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 273 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 274 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 275 276 typedef uint8_t ipsec_capab_elem_t; 277 278 /* 279 * Per-algorithm parameters. Note that at present, only encryption 280 * algorithms have variable keysize (IKE does not provide a way to negotiate 281 * auth algorithm keysize). 282 * 283 * All sizes here are in bits. 284 */ 285 typedef struct 286 { 287 uint16_t minkeylen; 288 uint16_t maxkeylen; 289 } ipsec_capab_algparm_t; 290 291 /* 292 * Per-ill capabilities. 293 */ 294 struct ill_ipsec_capab_s { 295 ipsec_capab_elem_t *encr_hw_algs; 296 ipsec_capab_elem_t *auth_hw_algs; 297 uint32_t algs_size; /* size of _hw_algs in bytes */ 298 /* algorithm key lengths */ 299 ipsec_capab_algparm_t *encr_algparm; 300 uint32_t encr_algparm_size; 301 uint32_t encr_algparm_end; 302 }; 303 304 /* 305 * List of AH and ESP IPsec acceleration capable ills 306 */ 307 typedef struct ipsec_capab_ill_s { 308 uint_t ill_index; 309 boolean_t ill_isv6; 310 struct ipsec_capab_ill_s *next; 311 } ipsec_capab_ill_t; 312 313 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 314 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 315 krwlock_t ipsec_capab_ills_lock; 316 317 /* 318 * The field values are larger than strictly necessary for simple 319 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 320 */ 321 static area_t ip_area_template = { 322 AR_ENTRY_ADD, /* area_cmd */ 323 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 324 /* area_name_offset */ 325 /* area_name_length temporarily holds this structure length */ 326 sizeof (area_t), /* area_name_length */ 327 IP_ARP_PROTO_TYPE, /* area_proto */ 328 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 329 IP_ADDR_LEN, /* area_proto_addr_length */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 331 /* area_proto_mask_offset */ 332 0, /* area_flags */ 333 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 334 /* area_hw_addr_offset */ 335 /* Zero length hw_addr_length means 'use your idea of the address' */ 336 0 /* area_hw_addr_length */ 337 }; 338 339 /* 340 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 341 * support 342 */ 343 static area_t ip6_area_template = { 344 AR_ENTRY_ADD, /* area_cmd */ 345 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 346 /* area_name_offset */ 347 /* area_name_length temporarily holds this structure length */ 348 sizeof (area_t), /* area_name_length */ 349 IP_ARP_PROTO_TYPE, /* area_proto */ 350 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 351 IPV6_ADDR_LEN, /* area_proto_addr_length */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 353 /* area_proto_mask_offset */ 354 0, /* area_flags */ 355 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 356 /* area_hw_addr_offset */ 357 /* Zero length hw_addr_length means 'use your idea of the address' */ 358 0 /* area_hw_addr_length */ 359 }; 360 361 static ared_t ip_ared_template = { 362 AR_ENTRY_DELETE, 363 sizeof (ared_t) + IP_ADDR_LEN, 364 sizeof (ared_t), 365 IP_ARP_PROTO_TYPE, 366 sizeof (ared_t), 367 IP_ADDR_LEN 368 }; 369 370 static ared_t ip6_ared_template = { 371 AR_ENTRY_DELETE, 372 sizeof (ared_t) + IPV6_ADDR_LEN, 373 sizeof (ared_t), 374 IP_ARP_PROTO_TYPE, 375 sizeof (ared_t), 376 IPV6_ADDR_LEN 377 }; 378 379 /* 380 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 381 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 382 * areq is used). 383 */ 384 static areq_t ip_areq_template = { 385 AR_ENTRY_QUERY, /* cmd */ 386 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 387 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 388 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 389 sizeof (areq_t), /* target addr offset */ 390 IP_ADDR_LEN, /* target addr_length */ 391 0, /* flags */ 392 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 393 IP_ADDR_LEN, /* sender addr length */ 394 6, /* xmit_count */ 395 1000, /* (re)xmit_interval in milliseconds */ 396 4 /* max # of requests to buffer */ 397 /* anything else filled in by the code */ 398 }; 399 400 static arc_t ip_aru_template = { 401 AR_INTERFACE_UP, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arc_t ip_ard_template = { 407 AR_INTERFACE_DOWN, 408 sizeof (arc_t), /* Name offset */ 409 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 410 }; 411 412 static arc_t ip_aron_template = { 413 AR_INTERFACE_ON, 414 sizeof (arc_t), /* Name offset */ 415 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 416 }; 417 418 static arc_t ip_aroff_template = { 419 AR_INTERFACE_OFF, 420 sizeof (arc_t), /* Name offset */ 421 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 422 }; 423 424 425 static arma_t ip_arma_multi_template = { 426 AR_MAPPING_ADD, 427 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 428 /* Name offset */ 429 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 430 IP_ARP_PROTO_TYPE, 431 sizeof (arma_t), /* proto_addr_offset */ 432 IP_ADDR_LEN, /* proto_addr_length */ 433 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 434 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 435 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 436 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 437 IP_MAX_HW_LEN, /* hw_addr_length */ 438 0, /* hw_mapping_start */ 439 }; 440 441 static ipft_t ip_ioctl_ftbl[] = { 442 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 443 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 448 { 0 } 449 }; 450 451 /* Simple ICMP IP Header Template */ 452 static ipha_t icmp_ipha = { 453 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 454 }; 455 456 /* Flag descriptors for ip_ipif_report */ 457 static nv_t ipif_nv_tbl[] = { 458 { IPIF_UP, "UP" }, 459 { IPIF_BROADCAST, "BROADCAST" }, 460 { ILLF_DEBUG, "DEBUG" }, 461 { PHYI_LOOPBACK, "LOOPBACK" }, 462 { IPIF_POINTOPOINT, "POINTOPOINT" }, 463 { ILLF_NOTRAILERS, "NOTRAILERS" }, 464 { PHYI_RUNNING, "RUNNING" }, 465 { ILLF_NOARP, "NOARP" }, 466 { PHYI_PROMISC, "PROMISC" }, 467 { PHYI_ALLMULTI, "ALLMULTI" }, 468 { PHYI_INTELLIGENT, "INTELLIGENT" }, 469 { ILLF_MULTICAST, "MULTICAST" }, 470 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 471 { IPIF_UNNUMBERED, "UNNUMBERED" }, 472 { IPIF_DHCPRUNNING, "DHCP" }, 473 { IPIF_PRIVATE, "PRIVATE" }, 474 { IPIF_NOXMIT, "NOXMIT" }, 475 { IPIF_NOLOCAL, "NOLOCAL" }, 476 { IPIF_DEPRECATED, "DEPRECATED" }, 477 { IPIF_PREFERRED, "PREFERRED" }, 478 { IPIF_TEMPORARY, "TEMPORARY" }, 479 { IPIF_ADDRCONF, "ADDRCONF" }, 480 { PHYI_VIRTUAL, "VIRTUAL" }, 481 { ILLF_ROUTER, "ROUTER" }, 482 { ILLF_NONUD, "NONUD" }, 483 { IPIF_ANYCAST, "ANYCAST" }, 484 { ILLF_NORTEXCH, "NORTEXCH" }, 485 { ILLF_IPV4, "IPV4" }, 486 { ILLF_IPV6, "IPV6" }, 487 { IPIF_MIPRUNNING, "MIP" }, 488 { IPIF_NOFAILOVER, "NOFAILOVER" }, 489 { PHYI_FAILED, "FAILED" }, 490 { PHYI_STANDBY, "STANDBY" }, 491 { PHYI_INACTIVE, "INACTIVE" }, 492 { PHYI_OFFLINE, "OFFLINE" }, 493 }; 494 495 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 496 497 static ip_m_t ip_m_tbl[] = { 498 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid }, 506 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_ether_v6intfid }, 508 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 509 ip_ib_v6intfid }, 510 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 511 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 512 ip_nodef_v6intfid } 513 }; 514 515 static ill_t ill_null; /* Empty ILL for init. */ 516 char ipif_loopback_name[] = "lo0"; 517 static char *ipv4_forward_suffix = ":ip_forwarding"; 518 static char *ipv6_forward_suffix = ":ip6_forwarding"; 519 static kstat_t *loopback_ksp = NULL; 520 static sin6_t sin6_null; /* Zero address for quick clears */ 521 static sin_t sin_null; /* Zero address for quick clears */ 522 static uint_t ill_index = 1; /* Used to assign interface indicies */ 523 /* When set search for unused index */ 524 static boolean_t ill_index_wrap = B_FALSE; 525 /* When set search for unused ipif_seqid */ 526 static ipif_t ipif_zero; 527 uint_t ipif_src_random; 528 529 /* 530 * For details on the protection offered by these locks please refer 531 * to the notes under the Synchronization section at the start of ip.c 532 */ 533 krwlock_t ill_g_lock; /* The global ill_g_lock */ 534 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 535 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 536 537 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 538 539 /* 540 * illgrp_head/ifgrp_head is protected by IP's perimeter. 541 */ 542 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 543 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 544 545 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 546 547 /* 548 * ppa arena is created after these many 549 * interfaces have been plumbed. 550 */ 551 uint_t ill_no_arena = 12; 552 553 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 554 static phyint_list_t phyint_g_list; /* start of phyint list */ 555 556 /* 557 * Reflects value of FAILBACK variable in IPMP config file 558 * /etc/default/mpathd. Default value is B_TRUE. 559 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 560 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 561 */ 562 static boolean_t ipmp_enable_failback = B_TRUE; 563 564 /* 565 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 566 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 567 * set through platform specific code (Niagara/Ontario). 568 */ 569 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 570 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 571 572 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 573 574 static uint_t 575 ipif_rand(void) 576 { 577 ipif_src_random = ipif_src_random * 1103515245 + 12345; 578 return ((ipif_src_random >> 16) & 0x7fff); 579 } 580 581 /* 582 * Allocate per-interface mibs. Only used for ipv6. 583 * Returns true if ok. False otherwise. 584 * ipsq may not yet be allocated (loopback case ). 585 */ 586 static boolean_t 587 ill_allocate_mibs(ill_t *ill) 588 { 589 ASSERT(ill->ill_isv6); 590 591 /* Already allocated? */ 592 if (ill->ill_ip6_mib != NULL) { 593 ASSERT(ill->ill_icmp6_mib != NULL); 594 return (B_TRUE); 595 } 596 597 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_ip6_mib == NULL) { 600 return (B_FALSE); 601 } 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 606 ill->ill_ip6_mib = NULL; 607 return (B_FALSE); 608 } 609 /* 610 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 611 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 612 * -> ill_phyint_reinit 613 */ 614 return (B_TRUE); 615 } 616 617 /* 618 * Common code for preparation of ARP commands. Two points to remember: 619 * 1) The ill_name is tacked on at the end of the allocated space so 620 * the templates name_offset field must contain the total space 621 * to allocate less the name length. 622 * 623 * 2) The templates name_length field should contain the *template* 624 * length. We use it as a parameter to bcopy() and then write 625 * the real ill_name_length into the name_length field of the copy. 626 * (Always called as writer.) 627 */ 628 mblk_t * 629 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 630 { 631 arc_t *arc = (arc_t *)template; 632 char *cp; 633 int len; 634 mblk_t *mp; 635 uint_t name_length = ill->ill_name_length; 636 uint_t template_len = arc->arc_name_length; 637 638 len = arc->arc_name_offset + name_length; 639 mp = allocb(len, BPRI_HI); 640 if (mp == NULL) 641 return (NULL); 642 cp = (char *)mp->b_rptr; 643 mp->b_wptr = (uchar_t *)&cp[len]; 644 if (template_len) 645 bcopy(template, cp, template_len); 646 if (len > template_len) 647 bzero(&cp[template_len], len - template_len); 648 mp->b_datap->db_type = M_PROTO; 649 650 arc = (arc_t *)cp; 651 arc->arc_name_length = name_length; 652 cp = (char *)arc + arc->arc_name_offset; 653 bcopy(ill->ill_name, cp, name_length); 654 655 if (addr) { 656 area_t *area = (area_t *)mp->b_rptr; 657 658 cp = (char *)area + area->area_proto_addr_offset; 659 bcopy(addr, cp, area->area_proto_addr_length); 660 if (area->area_cmd == AR_ENTRY_ADD) { 661 cp = (char *)area; 662 len = area->area_proto_addr_length; 663 if (area->area_proto_mask_offset) 664 cp += area->area_proto_mask_offset; 665 else 666 cp += area->area_proto_addr_offset + len; 667 while (len-- > 0) 668 *cp++ = (char)~0; 669 } 670 } 671 return (mp); 672 } 673 674 mblk_t * 675 ipif_area_alloc(ipif_t *ipif) 676 { 677 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 678 (char *)&ipif->ipif_lcl_addr)); 679 } 680 681 mblk_t * 682 ipif_ared_alloc(ipif_t *ipif) 683 { 684 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 685 (char *)&ipif->ipif_lcl_addr)); 686 } 687 688 mblk_t * 689 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 690 { 691 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 692 (char *)&addr)); 693 } 694 695 /* 696 * Completely vaporize a lower level tap and all associated interfaces. 697 * ill_delete is called only out of ip_close when the device control 698 * stream is being closed. 699 */ 700 void 701 ill_delete(ill_t *ill) 702 { 703 ipif_t *ipif; 704 ill_t *prev_ill; 705 706 /* 707 * ill_delete may be forcibly entering the ipsq. The previous 708 * ioctl may not have completed and may need to be aborted. 709 * ipsq_flush takes care of it. If we don't need to enter the 710 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 711 * ill_delete_tail is sufficient. 712 */ 713 ipsq_flush(ill); 714 715 /* 716 * Nuke all interfaces. ipif_free will take down the interface, 717 * remove it from the list, and free the data structure. 718 * Walk down the ipif list and remove the logical interfaces 719 * first before removing the main ipif. We can't unplumb 720 * zeroth interface first in the case of IPv6 as reset_conn_ill 721 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 722 * POINTOPOINT. 723 * 724 * If ill_ipif was not properly initialized (i.e low on memory), 725 * then no interfaces to clean up. In this case just clean up the 726 * ill. 727 */ 728 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 729 ipif_free(ipif); 730 731 /* 732 * Used only by ill_arp_on and ill_arp_off, which are writers. 733 * So nobody can be using this mp now. Free the mp allocated for 734 * honoring ILLF_NOARP 735 */ 736 freemsg(ill->ill_arp_on_mp); 737 ill->ill_arp_on_mp = NULL; 738 739 /* Clean up msgs on pending upcalls for mrouted */ 740 reset_mrt_ill(ill); 741 742 /* 743 * ipif_free -> reset_conn_ipif will remove all multicast 744 * references for IPv4. For IPv6, we need to do it here as 745 * it points only at ills. 746 */ 747 reset_conn_ill(ill); 748 749 /* 750 * ill_down will arrange to blow off any IRE's dependent on this 751 * ILL, and shut down fragmentation reassembly. 752 */ 753 ill_down(ill); 754 755 /* Let SCTP know, so that it can remove this from its list. */ 756 sctp_update_ill(ill, SCTP_ILL_REMOVE); 757 758 /* 759 * If an address on this ILL is being used as a source address then 760 * clear out the pointers in other ILLs that point to this ILL. 761 */ 762 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 763 if (ill->ill_usesrc_grp_next != NULL) { 764 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 765 ill_disband_usesrc_group(ill); 766 } else { /* consumer of the usesrc ILL */ 767 prev_ill = ill_prev_usesrc(ill); 768 prev_ill->ill_usesrc_grp_next = 769 ill->ill_usesrc_grp_next; 770 } 771 } 772 rw_exit(&ill_g_usesrc_lock); 773 } 774 775 static void 776 ipif_non_duplicate(ipif_t *ipif) 777 { 778 ill_t *ill = ipif->ipif_ill; 779 mutex_enter(&ill->ill_lock); 780 if (ipif->ipif_flags & IPIF_DUPLICATE) { 781 ipif->ipif_flags &= ~IPIF_DUPLICATE; 782 ASSERT(ill->ill_ipif_dup_count > 0); 783 ill->ill_ipif_dup_count--; 784 } 785 mutex_exit(&ill->ill_lock); 786 } 787 788 /* 789 * ill_delete_tail is called from ip_modclose after all references 790 * to the closing ill are gone. The wait is done in ip_modclose 791 */ 792 void 793 ill_delete_tail(ill_t *ill) 794 { 795 mblk_t **mpp; 796 ipif_t *ipif; 797 798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 799 ipif_non_duplicate(ipif); 800 ipif_down_tail(ipif); 801 } 802 803 ASSERT(ill->ill_ipif_dup_count == 0 && 804 ill->ill_arp_down_mp == NULL && 805 ill->ill_arp_del_mapping_mp == NULL); 806 807 /* 808 * If polling capability is enabled (which signifies direct 809 * upcall into IP and driver has ill saved as a handle), 810 * we need to make sure that unbind has completed before we 811 * let the ill disappear and driver no longer has any reference 812 * to this ill. 813 */ 814 mutex_enter(&ill->ill_lock); 815 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 816 cv_wait(&ill->ill_cv, &ill->ill_lock); 817 mutex_exit(&ill->ill_lock); 818 819 /* 820 * Clean up polling and soft ring capabilities 821 */ 822 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 823 ill_capability_dls_disable(ill); 824 825 /* 826 * Send the detach if there's one to send (i.e., if we're above a 827 * style 2 DLPI driver). 828 */ 829 if (ill->ill_detach_mp != NULL) { 830 ill_dlpi_send(ill, ill->ill_detach_mp); 831 ill->ill_detach_mp = NULL; 832 } 833 834 if (ill->ill_net_type != IRE_LOOPBACK) 835 qprocsoff(ill->ill_rq); 836 837 /* 838 * We do an ipsq_flush once again now. New messages could have 839 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 840 * could also have landed up if an ioctl thread had looked up 841 * the ill before we set the ILL_CONDEMNED flag, but not yet 842 * enqueued the ioctl when we did the ipsq_flush last time. 843 */ 844 ipsq_flush(ill); 845 846 /* 847 * Free capabilities. 848 */ 849 if (ill->ill_ipsec_capab_ah != NULL) { 850 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 851 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 852 ill->ill_ipsec_capab_ah = NULL; 853 } 854 855 if (ill->ill_ipsec_capab_esp != NULL) { 856 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 857 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 858 ill->ill_ipsec_capab_esp = NULL; 859 } 860 861 if (ill->ill_mdt_capab != NULL) { 862 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 863 ill->ill_mdt_capab = NULL; 864 } 865 866 if (ill->ill_hcksum_capab != NULL) { 867 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 868 ill->ill_hcksum_capab = NULL; 869 } 870 871 if (ill->ill_zerocopy_capab != NULL) { 872 kmem_free(ill->ill_zerocopy_capab, 873 sizeof (ill_zerocopy_capab_t)); 874 ill->ill_zerocopy_capab = NULL; 875 } 876 877 if (ill->ill_dls_capab != NULL) { 878 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 879 ill->ill_dls_capab->ill_unbind_conn = NULL; 880 kmem_free(ill->ill_dls_capab, 881 sizeof (ill_dls_capab_t) + 882 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 883 ill->ill_dls_capab = NULL; 884 } 885 886 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 887 888 while (ill->ill_ipif != NULL) 889 ipif_free_tail(ill->ill_ipif); 890 891 ill_down_tail(ill); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 if (ill->ill_nd_lla_mp != NULL) 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 ILL_TRACE_CLEANUP(ill); 948 } 949 950 static void 951 ill_free_mib(ill_t *ill) 952 { 953 if (ill->ill_ip6_mib != NULL) { 954 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 955 ill->ill_ip6_mib = NULL; 956 } 957 if (ill->ill_icmp6_mib != NULL) { 958 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 959 ill->ill_icmp6_mib = NULL; 960 } 961 } 962 963 /* 964 * Concatenate together a physical address and a sap. 965 * 966 * Sap_lengths are interpreted as follows: 967 * sap_length == 0 ==> no sap 968 * sap_length > 0 ==> sap is at the head of the dlpi address 969 * sap_length < 0 ==> sap is at the tail of the dlpi address 970 */ 971 static void 972 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 973 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 974 { 975 uint16_t sap_addr = (uint16_t)sap_src; 976 977 if (sap_length == 0) { 978 if (phys_src == NULL) 979 bzero(dst, phys_length); 980 else 981 bcopy(phys_src, dst, phys_length); 982 } else if (sap_length < 0) { 983 if (phys_src == NULL) 984 bzero(dst, phys_length); 985 else 986 bcopy(phys_src, dst, phys_length); 987 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 988 } else { 989 bcopy(&sap_addr, dst, sizeof (sap_addr)); 990 if (phys_src == NULL) 991 bzero((char *)dst + sap_length, phys_length); 992 else 993 bcopy(phys_src, (char *)dst + sap_length, phys_length); 994 } 995 } 996 997 /* 998 * Generate a dl_unitdata_req mblk for the device and address given. 999 * addr_length is the length of the physical portion of the address. 1000 * If addr is NULL include an all zero address of the specified length. 1001 * TRUE? In any case, addr_length is taken to be the entire length of the 1002 * dlpi address, including the absolute value of sap_length. 1003 */ 1004 mblk_t * 1005 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1006 t_scalar_t sap_length) 1007 { 1008 dl_unitdata_req_t *dlur; 1009 mblk_t *mp; 1010 t_scalar_t abs_sap_length; /* absolute value */ 1011 1012 abs_sap_length = ABS(sap_length); 1013 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1014 DL_UNITDATA_REQ); 1015 if (mp == NULL) 1016 return (NULL); 1017 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1018 /* HACK: accomodate incompatible DLPI drivers */ 1019 if (addr_length == 8) 1020 addr_length = 6; 1021 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1022 dlur->dl_dest_addr_offset = sizeof (*dlur); 1023 dlur->dl_priority.dl_min = 0; 1024 dlur->dl_priority.dl_max = 0; 1025 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1026 (uchar_t *)&dlur[1]); 1027 return (mp); 1028 } 1029 1030 /* 1031 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1032 * Return an error if we already have 1 or more ioctls in progress. 1033 * This is used only for non-exclusive ioctls. Currently this is used 1034 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1035 * and thus need to use ipsq_pending_mp_add. 1036 */ 1037 boolean_t 1038 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1039 { 1040 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1041 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1042 /* 1043 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1044 */ 1045 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1046 (add_mp->b_datap->db_type == M_IOCTL)); 1047 1048 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1049 /* 1050 * Return error if the conn has started closing. The conn 1051 * could have finished cleaning up the pending mp list, 1052 * If so we should not add another mp to the list negating 1053 * the cleanup. 1054 */ 1055 if (connp->conn_state_flags & CONN_CLOSING) 1056 return (B_FALSE); 1057 /* 1058 * Add the pending mp to the head of the list, chained by b_next. 1059 * Note down the conn on which the ioctl request came, in b_prev. 1060 * This will be used to later get the conn, when we get a response 1061 * on the ill queue, from some other module (typically arp) 1062 */ 1063 add_mp->b_next = (void *)ill->ill_pending_mp; 1064 add_mp->b_queue = CONNP_TO_WQ(connp); 1065 ill->ill_pending_mp = add_mp; 1066 if (connp != NULL) 1067 connp->conn_oper_pending_ill = ill; 1068 return (B_TRUE); 1069 } 1070 1071 /* 1072 * Retrieve the ill_pending_mp and return it. We have to walk the list 1073 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1074 */ 1075 mblk_t * 1076 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1077 { 1078 mblk_t *prev = NULL; 1079 mblk_t *curr = NULL; 1080 uint_t id; 1081 conn_t *connp; 1082 1083 /* 1084 * When the conn closes, conn_ioctl_cleanup needs to clean 1085 * up the pending mp, but it does not know the ioc_id and 1086 * passes in a zero for it. 1087 */ 1088 mutex_enter(&ill->ill_lock); 1089 if (ioc_id != 0) 1090 *connpp = NULL; 1091 1092 /* Search the list for the appropriate ioctl based on ioc_id */ 1093 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1094 prev = curr, curr = curr->b_next) { 1095 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1096 connp = Q_TO_CONN(curr->b_queue); 1097 /* Match based on the ioc_id or based on the conn */ 1098 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1099 break; 1100 } 1101 1102 if (curr != NULL) { 1103 /* Unlink the mblk from the pending mp list */ 1104 if (prev != NULL) { 1105 prev->b_next = curr->b_next; 1106 } else { 1107 ASSERT(ill->ill_pending_mp == curr); 1108 ill->ill_pending_mp = curr->b_next; 1109 } 1110 1111 /* 1112 * conn refcnt must have been bumped up at the start of 1113 * the ioctl. So we can safely access the conn. 1114 */ 1115 ASSERT(CONN_Q(curr->b_queue)); 1116 *connpp = Q_TO_CONN(curr->b_queue); 1117 curr->b_next = NULL; 1118 curr->b_queue = NULL; 1119 } 1120 1121 mutex_exit(&ill->ill_lock); 1122 1123 return (curr); 1124 } 1125 1126 /* 1127 * Add the pending mp to the list. There can be only 1 pending mp 1128 * in the list. Any exclusive ioctl that needs to wait for a response 1129 * from another module or driver needs to use this function to set 1130 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1131 * the other module/driver. This is also used while waiting for the 1132 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1133 */ 1134 boolean_t 1135 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1136 int waitfor) 1137 { 1138 ipsq_t *ipsq; 1139 1140 ASSERT(IAM_WRITER_IPIF(ipif)); 1141 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1142 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1143 /* 1144 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1145 * M_ERROR/M_HANGUP from driver 1146 */ 1147 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1148 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1149 1150 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1151 if (connp != NULL) { 1152 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1153 /* 1154 * Return error if the conn has started closing. The conn 1155 * could have finished cleaning up the pending mp list, 1156 * If so we should not add another mp to the list negating 1157 * the cleanup. 1158 */ 1159 if (connp->conn_state_flags & CONN_CLOSING) 1160 return (B_FALSE); 1161 } 1162 mutex_enter(&ipsq->ipsq_lock); 1163 ipsq->ipsq_pending_ipif = ipif; 1164 /* 1165 * Note down the queue in b_queue. This will be returned by 1166 * ipsq_pending_mp_get. Caller will then use these values to restart 1167 * the processing 1168 */ 1169 add_mp->b_next = NULL; 1170 add_mp->b_queue = q; 1171 ipsq->ipsq_pending_mp = add_mp; 1172 ipsq->ipsq_waitfor = waitfor; 1173 /* 1174 * ipsq_current_ipif is needed to restart the operation from 1175 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1176 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1177 * been set until now. 1178 */ 1179 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1180 ASSERT(ipsq->ipsq_current_ipif == NULL); 1181 ipsq->ipsq_current_ipif = ipif; 1182 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1183 } 1184 if (connp != NULL) 1185 connp->conn_oper_pending_ill = ipif->ipif_ill; 1186 mutex_exit(&ipsq->ipsq_lock); 1187 return (B_TRUE); 1188 } 1189 1190 /* 1191 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1192 * queued in the list. 1193 */ 1194 mblk_t * 1195 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1196 { 1197 mblk_t *curr = NULL; 1198 1199 mutex_enter(&ipsq->ipsq_lock); 1200 *connpp = NULL; 1201 if (ipsq->ipsq_pending_mp == NULL) { 1202 mutex_exit(&ipsq->ipsq_lock); 1203 return (NULL); 1204 } 1205 1206 /* There can be only 1 such excl message */ 1207 curr = ipsq->ipsq_pending_mp; 1208 ASSERT(curr != NULL && curr->b_next == NULL); 1209 ipsq->ipsq_pending_ipif = NULL; 1210 ipsq->ipsq_pending_mp = NULL; 1211 ipsq->ipsq_waitfor = 0; 1212 mutex_exit(&ipsq->ipsq_lock); 1213 1214 if (CONN_Q(curr->b_queue)) { 1215 /* 1216 * This mp did a refhold on the conn, at the start of the ioctl. 1217 * So we can safely return a pointer to the conn to the caller. 1218 */ 1219 *connpp = Q_TO_CONN(curr->b_queue); 1220 } else { 1221 *connpp = NULL; 1222 } 1223 curr->b_next = NULL; 1224 curr->b_prev = NULL; 1225 return (curr); 1226 } 1227 1228 /* 1229 * Cleanup the ioctl mp queued in ipsq_pending_mp 1230 * - Called in the ill_delete path 1231 * - Called in the M_ERROR or M_HANGUP path on the ill. 1232 * - Called in the conn close path. 1233 */ 1234 boolean_t 1235 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1236 { 1237 mblk_t *mp; 1238 ipsq_t *ipsq; 1239 queue_t *q; 1240 ipif_t *ipif; 1241 1242 ASSERT(IAM_WRITER_ILL(ill)); 1243 ipsq = ill->ill_phyint->phyint_ipsq; 1244 mutex_enter(&ipsq->ipsq_lock); 1245 /* 1246 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1247 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1248 * even if it is meant for another ill, since we have to enqueue 1249 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1250 * If connp is non-null we are called from the conn close path. 1251 */ 1252 mp = ipsq->ipsq_pending_mp; 1253 if (mp == NULL || (connp != NULL && 1254 mp->b_queue != CONNP_TO_WQ(connp))) { 1255 mutex_exit(&ipsq->ipsq_lock); 1256 return (B_FALSE); 1257 } 1258 /* Now remove from the ipsq_pending_mp */ 1259 ipsq->ipsq_pending_mp = NULL; 1260 q = mp->b_queue; 1261 mp->b_next = NULL; 1262 mp->b_prev = NULL; 1263 mp->b_queue = NULL; 1264 1265 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1266 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1267 if (ill->ill_move_in_progress) { 1268 ILL_CLEAR_MOVE(ill); 1269 } else if (ill->ill_up_ipifs) { 1270 ill_group_cleanup(ill); 1271 } 1272 1273 ipif = ipsq->ipsq_pending_ipif; 1274 ipsq->ipsq_pending_ipif = NULL; 1275 ipsq->ipsq_waitfor = 0; 1276 ipsq->ipsq_current_ipif = NULL; 1277 mutex_exit(&ipsq->ipsq_lock); 1278 1279 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1280 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1281 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1282 } else { 1283 /* 1284 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1285 * be just inet_freemsg. we have to restart it 1286 * otherwise the thread will be stuck. 1287 */ 1288 inet_freemsg(mp); 1289 } 1290 return (B_TRUE); 1291 } 1292 1293 /* 1294 * The ill is closing. Cleanup all the pending mps. Called exclusively 1295 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1296 * knows this ill, and hence nobody can add an mp to this list 1297 */ 1298 static void 1299 ill_pending_mp_cleanup(ill_t *ill) 1300 { 1301 mblk_t *mp; 1302 queue_t *q; 1303 1304 ASSERT(IAM_WRITER_ILL(ill)); 1305 1306 mutex_enter(&ill->ill_lock); 1307 /* 1308 * Every mp on the pending mp list originating from an ioctl 1309 * added 1 to the conn refcnt, at the start of the ioctl. 1310 * So bump it down now. See comments in ip_wput_nondata() 1311 */ 1312 while (ill->ill_pending_mp != NULL) { 1313 mp = ill->ill_pending_mp; 1314 ill->ill_pending_mp = mp->b_next; 1315 mutex_exit(&ill->ill_lock); 1316 1317 q = mp->b_queue; 1318 ASSERT(CONN_Q(q)); 1319 mp->b_next = NULL; 1320 mp->b_prev = NULL; 1321 mp->b_queue = NULL; 1322 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1323 mutex_enter(&ill->ill_lock); 1324 } 1325 ill->ill_pending_ipif = NULL; 1326 1327 mutex_exit(&ill->ill_lock); 1328 } 1329 1330 /* 1331 * Called in the conn close path and ill delete path 1332 */ 1333 static void 1334 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1335 { 1336 ipsq_t *ipsq; 1337 mblk_t *prev; 1338 mblk_t *curr; 1339 mblk_t *next; 1340 queue_t *q; 1341 mblk_t *tmp_list = NULL; 1342 1343 ASSERT(IAM_WRITER_ILL(ill)); 1344 if (connp != NULL) 1345 q = CONNP_TO_WQ(connp); 1346 else 1347 q = ill->ill_wq; 1348 1349 ipsq = ill->ill_phyint->phyint_ipsq; 1350 /* 1351 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1352 * In the case of ioctl from a conn, there can be only 1 mp 1353 * queued on the ipsq. If an ill is being unplumbed, only messages 1354 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1355 * ioctls meant for this ill form conn's are not flushed. They will 1356 * be processed during ipsq_exit and will not find the ill and will 1357 * return error. 1358 */ 1359 mutex_enter(&ipsq->ipsq_lock); 1360 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1361 curr = next) { 1362 next = curr->b_next; 1363 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1364 /* Unlink the mblk from the pending mp list */ 1365 if (prev != NULL) { 1366 prev->b_next = curr->b_next; 1367 } else { 1368 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1369 ipsq->ipsq_xopq_mphead = curr->b_next; 1370 } 1371 if (ipsq->ipsq_xopq_mptail == curr) 1372 ipsq->ipsq_xopq_mptail = prev; 1373 /* 1374 * Create a temporary list and release the ipsq lock 1375 * New elements are added to the head of the tmp_list 1376 */ 1377 curr->b_next = tmp_list; 1378 tmp_list = curr; 1379 } else { 1380 prev = curr; 1381 } 1382 } 1383 mutex_exit(&ipsq->ipsq_lock); 1384 1385 while (tmp_list != NULL) { 1386 curr = tmp_list; 1387 tmp_list = curr->b_next; 1388 curr->b_next = NULL; 1389 curr->b_prev = NULL; 1390 curr->b_queue = NULL; 1391 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1392 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1393 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1394 } else { 1395 /* 1396 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1397 * this can't be just inet_freemsg. we have to 1398 * restart it otherwise the thread will be stuck. 1399 */ 1400 inet_freemsg(curr); 1401 } 1402 } 1403 } 1404 1405 /* 1406 * This conn has started closing. Cleanup any pending ioctl from this conn. 1407 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1408 */ 1409 void 1410 conn_ioctl_cleanup(conn_t *connp) 1411 { 1412 mblk_t *curr; 1413 ipsq_t *ipsq; 1414 ill_t *ill; 1415 boolean_t refheld; 1416 1417 /* 1418 * Is any exclusive ioctl pending ? If so clean it up. If the 1419 * ioctl has not yet started, the mp is pending in the list headed by 1420 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1421 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1422 * is currently executing now the mp is not queued anywhere but 1423 * conn_oper_pending_ill is null. The conn close will wait 1424 * till the conn_ref drops to zero. 1425 */ 1426 mutex_enter(&connp->conn_lock); 1427 ill = connp->conn_oper_pending_ill; 1428 if (ill == NULL) { 1429 mutex_exit(&connp->conn_lock); 1430 return; 1431 } 1432 1433 curr = ill_pending_mp_get(ill, &connp, 0); 1434 if (curr != NULL) { 1435 mutex_exit(&connp->conn_lock); 1436 CONN_DEC_REF(connp); 1437 inet_freemsg(curr); 1438 return; 1439 } 1440 /* 1441 * We may not be able to refhold the ill if the ill/ipif 1442 * is changing. But we need to make sure that the ill will 1443 * not vanish. So we just bump up the ill_waiter count. 1444 */ 1445 refheld = ill_waiter_inc(ill); 1446 mutex_exit(&connp->conn_lock); 1447 if (refheld) { 1448 if (ipsq_enter(ill, B_TRUE)) { 1449 ill_waiter_dcr(ill); 1450 /* 1451 * Check whether this ioctl has started and is 1452 * pending now in ipsq_pending_mp. If it is not 1453 * found there then check whether this ioctl has 1454 * not even started and is in the ipsq_xopq list. 1455 */ 1456 if (!ipsq_pending_mp_cleanup(ill, connp)) 1457 ipsq_xopq_mp_cleanup(ill, connp); 1458 ipsq = ill->ill_phyint->phyint_ipsq; 1459 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1460 return; 1461 } 1462 } 1463 1464 /* 1465 * The ill is also closing and we could not bump up the 1466 * ill_waiter_count or we could not enter the ipsq. Leave 1467 * the cleanup to ill_delete 1468 */ 1469 mutex_enter(&connp->conn_lock); 1470 while (connp->conn_oper_pending_ill != NULL) 1471 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1472 mutex_exit(&connp->conn_lock); 1473 if (refheld) 1474 ill_waiter_dcr(ill); 1475 } 1476 1477 /* 1478 * ipcl_walk function for cleaning up conn_*_ill fields. 1479 */ 1480 static void 1481 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1482 { 1483 ill_t *ill = (ill_t *)arg; 1484 ire_t *ire; 1485 1486 mutex_enter(&connp->conn_lock); 1487 if (connp->conn_multicast_ill == ill) { 1488 /* Revert to late binding */ 1489 connp->conn_multicast_ill = NULL; 1490 connp->conn_orig_multicast_ifindex = 0; 1491 } 1492 if (connp->conn_incoming_ill == ill) 1493 connp->conn_incoming_ill = NULL; 1494 if (connp->conn_outgoing_ill == ill) 1495 connp->conn_outgoing_ill = NULL; 1496 if (connp->conn_outgoing_pill == ill) 1497 connp->conn_outgoing_pill = NULL; 1498 if (connp->conn_nofailover_ill == ill) 1499 connp->conn_nofailover_ill = NULL; 1500 if (connp->conn_xmit_if_ill == ill) 1501 connp->conn_xmit_if_ill = NULL; 1502 if (connp->conn_ire_cache != NULL) { 1503 ire = connp->conn_ire_cache; 1504 /* 1505 * ip_newroute creates IRE_CACHE with ire_stq coming from 1506 * interface X and ipif coming from interface Y, if interface 1507 * X and Y are part of the same IPMPgroup. Thus whenever 1508 * interface X goes down, remove all references to it by 1509 * checking both on ire_ipif and ire_stq. 1510 */ 1511 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1512 (ire->ire_type == IRE_CACHE && 1513 ire->ire_stq == ill->ill_wq)) { 1514 connp->conn_ire_cache = NULL; 1515 mutex_exit(&connp->conn_lock); 1516 ire_refrele_notr(ire); 1517 return; 1518 } 1519 } 1520 mutex_exit(&connp->conn_lock); 1521 1522 } 1523 1524 /* ARGSUSED */ 1525 void 1526 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1527 { 1528 ill_t *ill = q->q_ptr; 1529 ipif_t *ipif; 1530 1531 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1532 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1533 ipif_non_duplicate(ipif); 1534 ipif_down_tail(ipif); 1535 } 1536 ill_down_tail(ill); 1537 freemsg(mp); 1538 ipsq->ipsq_current_ipif = NULL; 1539 } 1540 1541 /* 1542 * ill_down_start is called when we want to down this ill and bring it up again 1543 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1544 * all interfaces, but don't tear down any plumbing. 1545 */ 1546 boolean_t 1547 ill_down_start(queue_t *q, mblk_t *mp) 1548 { 1549 ill_t *ill; 1550 ipif_t *ipif; 1551 1552 ill = q->q_ptr; 1553 1554 ASSERT(IAM_WRITER_ILL(ill)); 1555 1556 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1557 (void) ipif_down(ipif, NULL, NULL); 1558 1559 ill_down(ill); 1560 1561 (void) ipsq_pending_mp_cleanup(ill, NULL); 1562 mutex_enter(&ill->ill_lock); 1563 /* 1564 * Atomically test and add the pending mp if references are 1565 * still active. 1566 */ 1567 if (!ill_is_quiescent(ill)) { 1568 /* 1569 * Get rid of any pending mps and cleanup. Call will 1570 * not fail since we are passing a null connp. 1571 */ 1572 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1573 mp, ILL_DOWN); 1574 mutex_exit(&ill->ill_lock); 1575 return (B_FALSE); 1576 } 1577 mutex_exit(&ill->ill_lock); 1578 return (B_TRUE); 1579 } 1580 1581 static void 1582 ill_down(ill_t *ill) 1583 { 1584 /* Blow off any IREs dependent on this ILL. */ 1585 ire_walk(ill_downi, (char *)ill); 1586 1587 mutex_enter(&ire_mrtun_lock); 1588 if (ire_mrtun_count != 0) { 1589 mutex_exit(&ire_mrtun_lock); 1590 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1591 (char *)ill, NULL); 1592 } else { 1593 mutex_exit(&ire_mrtun_lock); 1594 } 1595 1596 /* 1597 * If any interface based forwarding table exists 1598 * Blow off the ires there dependent on this ill 1599 */ 1600 mutex_enter(&ire_srcif_table_lock); 1601 if (ire_srcif_table_count > 0) { 1602 mutex_exit(&ire_srcif_table_lock); 1603 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1604 } else { 1605 mutex_exit(&ire_srcif_table_lock); 1606 } 1607 1608 /* Remove any conn_*_ill depending on this ill */ 1609 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1610 1611 if (ill->ill_group != NULL) { 1612 illgrp_delete(ill); 1613 } 1614 1615 } 1616 1617 static void 1618 ill_down_tail(ill_t *ill) 1619 { 1620 int i; 1621 1622 /* Destroy ill_srcif_table if it exists */ 1623 /* Lock not reqd really because nobody should be able to access */ 1624 mutex_enter(&ill->ill_lock); 1625 if (ill->ill_srcif_table != NULL) { 1626 ill->ill_srcif_refcnt = 0; 1627 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1628 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1629 } 1630 kmem_free(ill->ill_srcif_table, 1631 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1632 ill->ill_srcif_table = NULL; 1633 ill->ill_srcif_refcnt = 0; 1634 ill->ill_mrtun_refcnt = 0; 1635 } 1636 mutex_exit(&ill->ill_lock); 1637 } 1638 1639 /* 1640 * ire_walk routine used to delete every IRE that depends on queues 1641 * associated with 'ill'. (Always called as writer.) 1642 */ 1643 static void 1644 ill_downi(ire_t *ire, char *ill_arg) 1645 { 1646 ill_t *ill = (ill_t *)ill_arg; 1647 1648 /* 1649 * ip_newroute creates IRE_CACHE with ire_stq coming from 1650 * interface X and ipif coming from interface Y, if interface 1651 * X and Y are part of the same IPMP group. Thus whenever interface 1652 * X goes down, remove all references to it by checking both 1653 * on ire_ipif and ire_stq. 1654 */ 1655 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1656 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1657 ire_delete(ire); 1658 } 1659 } 1660 1661 /* 1662 * A seperate routine for deleting revtun and srcif based routes 1663 * are needed because the ires only deleted when the interface 1664 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1665 * we want to keep mobile IP specific code separate. 1666 */ 1667 static void 1668 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1669 { 1670 ill_t *ill = (ill_t *)ill_arg; 1671 1672 ASSERT(ire->ire_in_ill != NULL); 1673 1674 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1675 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1676 ire_delete(ire); 1677 } 1678 } 1679 1680 /* 1681 * Remove ire/nce from the fastpath list. 1682 */ 1683 void 1684 ill_fastpath_nack(ill_t *ill) 1685 { 1686 if (ill->ill_isv6) { 1687 nce_fastpath_list_dispatch(ill, NULL, NULL); 1688 } else { 1689 ire_fastpath_list_dispatch(ill, NULL, NULL); 1690 } 1691 } 1692 1693 /* Consume an M_IOCACK of the fastpath probe. */ 1694 void 1695 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1696 { 1697 mblk_t *mp1 = mp; 1698 1699 /* 1700 * If this was the first attempt turn on the fastpath probing. 1701 */ 1702 mutex_enter(&ill->ill_lock); 1703 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1704 ill->ill_dlpi_fastpath_state = IDS_OK; 1705 mutex_exit(&ill->ill_lock); 1706 1707 /* Free the M_IOCACK mblk, hold on to the data */ 1708 mp = mp->b_cont; 1709 freeb(mp1); 1710 if (mp == NULL) 1711 return; 1712 if (mp->b_cont != NULL) { 1713 /* 1714 * Update all IRE's or NCE's that are waiting for 1715 * fastpath update. 1716 */ 1717 if (ill->ill_isv6) { 1718 /* 1719 * update nce's in the fastpath list. 1720 */ 1721 nce_fastpath_list_dispatch(ill, 1722 ndp_fastpath_update, mp); 1723 } else { 1724 1725 /* 1726 * update ire's in the fastpath list. 1727 */ 1728 ire_fastpath_list_dispatch(ill, 1729 ire_fastpath_update, mp); 1730 /* 1731 * Check if we need to traverse reverse tunnel table. 1732 * Since there is only single ire_type (IRE_MIPRTUN) 1733 * in the table, we don't need to match on ire_type. 1734 * We have to check ire_mrtun_count and not the 1735 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1736 * on the incoming ill and here we are dealing with 1737 * outgoing ill. 1738 */ 1739 mutex_enter(&ire_mrtun_lock); 1740 if (ire_mrtun_count != 0) { 1741 mutex_exit(&ire_mrtun_lock); 1742 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1743 (void (*)(ire_t *, void *)) 1744 ire_fastpath_update, mp, ill); 1745 } else { 1746 mutex_exit(&ire_mrtun_lock); 1747 } 1748 } 1749 mp1 = mp->b_cont; 1750 freeb(mp); 1751 mp = mp1; 1752 } else { 1753 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1754 } 1755 1756 freeb(mp); 1757 } 1758 1759 /* 1760 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1761 * The data portion of the request is a dl_unitdata_req_t template for 1762 * what we would send downstream in the absence of a fastpath confirmation. 1763 */ 1764 int 1765 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1766 { 1767 struct iocblk *ioc; 1768 mblk_t *mp; 1769 1770 if (dlur_mp == NULL) 1771 return (EINVAL); 1772 1773 mutex_enter(&ill->ill_lock); 1774 switch (ill->ill_dlpi_fastpath_state) { 1775 case IDS_FAILED: 1776 /* 1777 * Driver NAKed the first fastpath ioctl - assume it doesn't 1778 * support it. 1779 */ 1780 mutex_exit(&ill->ill_lock); 1781 return (ENOTSUP); 1782 case IDS_UNKNOWN: 1783 /* This is the first probe */ 1784 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1785 break; 1786 default: 1787 break; 1788 } 1789 mutex_exit(&ill->ill_lock); 1790 1791 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1792 return (EAGAIN); 1793 1794 mp->b_cont = copyb(dlur_mp); 1795 if (mp->b_cont == NULL) { 1796 freeb(mp); 1797 return (EAGAIN); 1798 } 1799 1800 ioc = (struct iocblk *)mp->b_rptr; 1801 ioc->ioc_count = msgdsize(mp->b_cont); 1802 1803 putnext(ill->ill_wq, mp); 1804 return (0); 1805 } 1806 1807 void 1808 ill_capability_probe(ill_t *ill) 1809 { 1810 /* 1811 * Do so only if negotiation is enabled, capabilities are unknown, 1812 * and a capability negotiation is not already in progress. 1813 */ 1814 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1815 ill->ill_dlpi_capab_state != IDS_RENEG) 1816 return; 1817 1818 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1819 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1820 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1821 } 1822 1823 void 1824 ill_capability_reset(ill_t *ill) 1825 { 1826 mblk_t *sc_mp = NULL; 1827 mblk_t *tmp; 1828 1829 /* 1830 * Note here that we reset the state to UNKNOWN, and later send 1831 * down the DL_CAPABILITY_REQ without first setting the state to 1832 * INPROGRESS. We do this in order to distinguish the 1833 * DL_CAPABILITY_ACK response which may come back in response to 1834 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1835 * also handle the case where the driver doesn't send us back 1836 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1837 * requires the state to be in UNKNOWN anyway. In any case, all 1838 * features are turned off until the state reaches IDS_OK. 1839 */ 1840 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1841 1842 /* 1843 * Disable sub-capabilities and request a list of sub-capability 1844 * messages which will be sent down to the driver. Each handler 1845 * allocates the corresponding dl_capability_sub_t inside an 1846 * mblk, and links it to the existing sc_mp mblk, or return it 1847 * as sc_mp if it's the first sub-capability (the passed in 1848 * sc_mp is NULL). Upon returning from all capability handlers, 1849 * sc_mp will be pulled-up, before passing it downstream. 1850 */ 1851 ill_capability_mdt_reset(ill, &sc_mp); 1852 ill_capability_hcksum_reset(ill, &sc_mp); 1853 ill_capability_zerocopy_reset(ill, &sc_mp); 1854 ill_capability_ipsec_reset(ill, &sc_mp); 1855 ill_capability_dls_reset(ill, &sc_mp); 1856 1857 /* Nothing to send down in order to disable the capabilities? */ 1858 if (sc_mp == NULL) 1859 return; 1860 1861 tmp = msgpullup(sc_mp, -1); 1862 freemsg(sc_mp); 1863 if ((sc_mp = tmp) == NULL) { 1864 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1865 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1866 return; 1867 } 1868 1869 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1870 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1871 } 1872 1873 /* 1874 * Request or set new-style hardware capabilities supported by DLS provider. 1875 */ 1876 static void 1877 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1878 { 1879 mblk_t *mp; 1880 dl_capability_req_t *capb; 1881 size_t size = 0; 1882 uint8_t *ptr; 1883 1884 if (reqp != NULL) 1885 size = MBLKL(reqp); 1886 1887 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1888 if (mp == NULL) { 1889 freemsg(reqp); 1890 return; 1891 } 1892 ptr = mp->b_rptr; 1893 1894 capb = (dl_capability_req_t *)ptr; 1895 ptr += sizeof (dl_capability_req_t); 1896 1897 if (reqp != NULL) { 1898 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1899 capb->dl_sub_length = size; 1900 bcopy(reqp->b_rptr, ptr, size); 1901 ptr += size; 1902 mp->b_cont = reqp->b_cont; 1903 freeb(reqp); 1904 } 1905 ASSERT(ptr == mp->b_wptr); 1906 1907 ill_dlpi_send(ill, mp); 1908 } 1909 1910 static void 1911 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1912 { 1913 dl_capab_id_t *id_ic; 1914 uint_t sub_dl_cap = outers->dl_cap; 1915 dl_capability_sub_t *inners; 1916 uint8_t *capend; 1917 1918 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1919 1920 /* 1921 * Note: range checks here are not absolutely sufficient to 1922 * make us robust against malformed messages sent by drivers; 1923 * this is in keeping with the rest of IP's dlpi handling. 1924 * (Remember, it's coming from something else in the kernel 1925 * address space) 1926 */ 1927 1928 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1929 if (capend > mp->b_wptr) { 1930 cmn_err(CE_WARN, "ill_capability_id_ack: " 1931 "malformed sub-capability too long for mblk"); 1932 return; 1933 } 1934 1935 id_ic = (dl_capab_id_t *)(outers + 1); 1936 1937 if (outers->dl_length < sizeof (*id_ic) || 1938 (inners = &id_ic->id_subcap, 1939 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1940 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1941 "encapsulated capab type %d too long for mblk", 1942 inners->dl_cap); 1943 return; 1944 } 1945 1946 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1947 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1948 "isn't as expected; pass-thru module(s) detected, " 1949 "discarding capability\n", inners->dl_cap)); 1950 return; 1951 } 1952 1953 /* Process the encapsulated sub-capability */ 1954 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1955 } 1956 1957 /* 1958 * Process Multidata Transmit capability negotiation ack received from a 1959 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1960 * DL_CAPABILITY_ACK message. 1961 */ 1962 static void 1963 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1964 { 1965 mblk_t *nmp = NULL; 1966 dl_capability_req_t *oc; 1967 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1968 ill_mdt_capab_t **ill_mdt_capab; 1969 uint_t sub_dl_cap = isub->dl_cap; 1970 uint8_t *capend; 1971 1972 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1973 1974 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1975 1976 /* 1977 * Note: range checks here are not absolutely sufficient to 1978 * make us robust against malformed messages sent by drivers; 1979 * this is in keeping with the rest of IP's dlpi handling. 1980 * (Remember, it's coming from something else in the kernel 1981 * address space) 1982 */ 1983 1984 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1985 if (capend > mp->b_wptr) { 1986 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1987 "malformed sub-capability too long for mblk"); 1988 return; 1989 } 1990 1991 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1992 1993 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1994 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1995 "unsupported MDT sub-capability (version %d, expected %d)", 1996 mdt_ic->mdt_version, MDT_VERSION_2); 1997 return; 1998 } 1999 2000 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2001 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2002 "capability isn't as expected; pass-thru module(s) " 2003 "detected, discarding capability\n")); 2004 return; 2005 } 2006 2007 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2008 2009 if (*ill_mdt_capab == NULL) { 2010 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2011 KM_NOSLEEP); 2012 2013 if (*ill_mdt_capab == NULL) { 2014 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2015 "could not enable MDT version %d " 2016 "for %s (ENOMEM)\n", MDT_VERSION_2, 2017 ill->ill_name); 2018 return; 2019 } 2020 } 2021 2022 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2023 "MDT version %d (%d bytes leading, %d bytes trailing " 2024 "header spaces, %d max pld bufs, %d span limit)\n", 2025 ill->ill_name, MDT_VERSION_2, 2026 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2027 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2028 2029 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2030 (*ill_mdt_capab)->ill_mdt_on = 1; 2031 /* 2032 * Round the following values to the nearest 32-bit; ULP 2033 * may further adjust them to accomodate for additional 2034 * protocol headers. We pass these values to ULP during 2035 * bind time. 2036 */ 2037 (*ill_mdt_capab)->ill_mdt_hdr_head = 2038 roundup(mdt_ic->mdt_hdr_head, 4); 2039 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2040 roundup(mdt_ic->mdt_hdr_tail, 4); 2041 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2042 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2043 2044 ill->ill_capabilities |= ILL_CAPAB_MDT; 2045 } else { 2046 uint_t size; 2047 uchar_t *rptr; 2048 2049 size = sizeof (dl_capability_req_t) + 2050 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2051 2052 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2053 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2054 "could not enable MDT for %s (ENOMEM)\n", 2055 ill->ill_name); 2056 return; 2057 } 2058 2059 rptr = nmp->b_rptr; 2060 /* initialize dl_capability_req_t */ 2061 oc = (dl_capability_req_t *)nmp->b_rptr; 2062 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2063 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2064 sizeof (dl_capab_mdt_t); 2065 nmp->b_rptr += sizeof (dl_capability_req_t); 2066 2067 /* initialize dl_capability_sub_t */ 2068 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2069 nmp->b_rptr += sizeof (*isub); 2070 2071 /* initialize dl_capab_mdt_t */ 2072 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2073 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2074 2075 nmp->b_rptr = rptr; 2076 2077 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2078 "to enable MDT version %d\n", ill->ill_name, 2079 MDT_VERSION_2)); 2080 2081 /* set ENABLE flag */ 2082 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2083 2084 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2085 ill_dlpi_send(ill, nmp); 2086 } 2087 } 2088 2089 static void 2090 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2091 { 2092 mblk_t *mp; 2093 dl_capab_mdt_t *mdt_subcap; 2094 dl_capability_sub_t *dl_subcap; 2095 int size; 2096 2097 if (!ILL_MDT_CAPABLE(ill)) 2098 return; 2099 2100 ASSERT(ill->ill_mdt_capab != NULL); 2101 /* 2102 * Clear the capability flag for MDT but retain the ill_mdt_capab 2103 * structure since it's possible that another thread is still 2104 * referring to it. The structure only gets deallocated when 2105 * we destroy the ill. 2106 */ 2107 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2108 2109 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2110 2111 mp = allocb(size, BPRI_HI); 2112 if (mp == NULL) { 2113 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2114 "request to disable MDT\n")); 2115 return; 2116 } 2117 2118 mp->b_wptr = mp->b_rptr + size; 2119 2120 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2121 dl_subcap->dl_cap = DL_CAPAB_MDT; 2122 dl_subcap->dl_length = sizeof (*mdt_subcap); 2123 2124 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2125 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2126 mdt_subcap->mdt_flags = 0; 2127 mdt_subcap->mdt_hdr_head = 0; 2128 mdt_subcap->mdt_hdr_tail = 0; 2129 2130 if (*sc_mp != NULL) 2131 linkb(*sc_mp, mp); 2132 else 2133 *sc_mp = mp; 2134 } 2135 2136 /* 2137 * Send a DL_NOTIFY_REQ to the specified ill to enable 2138 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2139 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2140 * acceleration. 2141 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2142 */ 2143 static boolean_t 2144 ill_enable_promisc_notify(ill_t *ill) 2145 { 2146 mblk_t *mp; 2147 dl_notify_req_t *req; 2148 2149 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2150 2151 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2152 if (mp == NULL) 2153 return (B_FALSE); 2154 2155 req = (dl_notify_req_t *)mp->b_rptr; 2156 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2157 DL_NOTE_PROMISC_OFF_PHYS; 2158 2159 ill_dlpi_send(ill, mp); 2160 2161 return (B_TRUE); 2162 } 2163 2164 2165 /* 2166 * Allocate an IPsec capability request which will be filled by our 2167 * caller to turn on support for one or more algorithms. 2168 */ 2169 static mblk_t * 2170 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2171 { 2172 mblk_t *nmp; 2173 dl_capability_req_t *ocap; 2174 dl_capab_ipsec_t *ocip; 2175 dl_capab_ipsec_t *icip; 2176 uint8_t *ptr; 2177 icip = (dl_capab_ipsec_t *)(isub + 1); 2178 2179 /* 2180 * The first time around, we send a DL_NOTIFY_REQ to enable 2181 * PROMISC_ON/OFF notification from the provider. We need to 2182 * do this before enabling the algorithms to avoid leakage of 2183 * cleartext packets. 2184 */ 2185 2186 if (!ill_enable_promisc_notify(ill)) 2187 return (NULL); 2188 2189 /* 2190 * Allocate new mblk which will contain a new capability 2191 * request to enable the capabilities. 2192 */ 2193 2194 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2195 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2196 if (nmp == NULL) 2197 return (NULL); 2198 2199 ptr = nmp->b_rptr; 2200 2201 /* initialize dl_capability_req_t */ 2202 ocap = (dl_capability_req_t *)ptr; 2203 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2204 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2205 ptr += sizeof (dl_capability_req_t); 2206 2207 /* initialize dl_capability_sub_t */ 2208 bcopy(isub, ptr, sizeof (*isub)); 2209 ptr += sizeof (*isub); 2210 2211 /* initialize dl_capab_ipsec_t */ 2212 ocip = (dl_capab_ipsec_t *)ptr; 2213 bcopy(icip, ocip, sizeof (*icip)); 2214 2215 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2216 return (nmp); 2217 } 2218 2219 /* 2220 * Process an IPsec capability negotiation ack received from a DLS Provider. 2221 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2222 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2223 */ 2224 static void 2225 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2226 { 2227 dl_capab_ipsec_t *icip; 2228 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2229 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2230 uint_t cipher, nciphers; 2231 mblk_t *nmp; 2232 uint_t alg_len; 2233 boolean_t need_sadb_dump; 2234 uint_t sub_dl_cap = isub->dl_cap; 2235 ill_ipsec_capab_t **ill_capab; 2236 uint64_t ill_capab_flag; 2237 uint8_t *capend, *ciphend; 2238 boolean_t sadb_resync; 2239 2240 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2241 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2242 2243 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2244 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2245 ill_capab_flag = ILL_CAPAB_AH; 2246 } else { 2247 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2248 ill_capab_flag = ILL_CAPAB_ESP; 2249 } 2250 2251 /* 2252 * If the ill capability structure exists, then this incoming 2253 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2254 * If this is so, then we'd need to resynchronize the SADB 2255 * after re-enabling the offloaded ciphers. 2256 */ 2257 sadb_resync = (*ill_capab != NULL); 2258 2259 /* 2260 * Note: range checks here are not absolutely sufficient to 2261 * make us robust against malformed messages sent by drivers; 2262 * this is in keeping with the rest of IP's dlpi handling. 2263 * (Remember, it's coming from something else in the kernel 2264 * address space) 2265 */ 2266 2267 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2268 if (capend > mp->b_wptr) { 2269 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2270 "malformed sub-capability too long for mblk"); 2271 return; 2272 } 2273 2274 /* 2275 * There are two types of acks we process here: 2276 * 1. acks in reply to a (first form) generic capability req 2277 * (no ENABLE flag set) 2278 * 2. acks in reply to a ENABLE capability req. 2279 * (ENABLE flag set) 2280 * 2281 * We process the subcapability passed as argument as follows: 2282 * 1 do initializations 2283 * 1.1 initialize nmp = NULL 2284 * 1.2 set need_sadb_dump to B_FALSE 2285 * 2 for each cipher in subcapability: 2286 * 2.1 if ENABLE flag is set: 2287 * 2.1.1 update per-ill ipsec capabilities info 2288 * 2.1.2 set need_sadb_dump to B_TRUE 2289 * 2.2 if ENABLE flag is not set: 2290 * 2.2.1 if nmp is NULL: 2291 * 2.2.1.1 allocate and initialize nmp 2292 * 2.2.1.2 init current pos in nmp 2293 * 2.2.2 copy current cipher to current pos in nmp 2294 * 2.2.3 set ENABLE flag in nmp 2295 * 2.2.4 update current pos 2296 * 3 if nmp is not equal to NULL, send enable request 2297 * 3.1 send capability request 2298 * 4 if need_sadb_dump is B_TRUE 2299 * 4.1 enable promiscuous on/off notifications 2300 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2301 * AH or ESP SA's to interface. 2302 */ 2303 2304 nmp = NULL; 2305 oalg = NULL; 2306 need_sadb_dump = B_FALSE; 2307 icip = (dl_capab_ipsec_t *)(isub + 1); 2308 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2309 2310 nciphers = icip->cip_nciphers; 2311 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2312 2313 if (ciphend > capend) { 2314 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2315 "too many ciphers for sub-capability len"); 2316 return; 2317 } 2318 2319 for (cipher = 0; cipher < nciphers; cipher++) { 2320 alg_len = sizeof (dl_capab_ipsec_alg_t); 2321 2322 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2323 /* 2324 * TBD: when we provide a way to disable capabilities 2325 * from above, need to manage the request-pending state 2326 * and fail if we were not expecting this ACK. 2327 */ 2328 IPSECHW_DEBUG(IPSECHW_CAPAB, 2329 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2330 2331 /* 2332 * Update IPsec capabilities for this ill 2333 */ 2334 2335 if (*ill_capab == NULL) { 2336 IPSECHW_DEBUG(IPSECHW_CAPAB, 2337 ("ill_capability_ipsec_ack: " 2338 "allocating ipsec_capab for ill\n")); 2339 *ill_capab = ill_ipsec_capab_alloc(); 2340 2341 if (*ill_capab == NULL) { 2342 cmn_err(CE_WARN, 2343 "ill_capability_ipsec_ack: " 2344 "could not enable IPsec Hardware " 2345 "acceleration for %s (ENOMEM)\n", 2346 ill->ill_name); 2347 return; 2348 } 2349 } 2350 2351 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2352 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2353 2354 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2355 cmn_err(CE_WARN, 2356 "ill_capability_ipsec_ack: " 2357 "malformed IPsec algorithm id %d", 2358 ialg->alg_prim); 2359 continue; 2360 } 2361 2362 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2363 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2364 ialg->alg_prim); 2365 } else { 2366 ipsec_capab_algparm_t *alp; 2367 2368 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2369 ialg->alg_prim); 2370 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2371 ialg->alg_prim)) { 2372 cmn_err(CE_WARN, 2373 "ill_capability_ipsec_ack: " 2374 "no space for IPsec alg id %d", 2375 ialg->alg_prim); 2376 continue; 2377 } 2378 alp = &((*ill_capab)->encr_algparm[ 2379 ialg->alg_prim]); 2380 alp->minkeylen = ialg->alg_minbits; 2381 alp->maxkeylen = ialg->alg_maxbits; 2382 } 2383 ill->ill_capabilities |= ill_capab_flag; 2384 /* 2385 * indicate that a capability was enabled, which 2386 * will be used below to kick off a SADB dump 2387 * to the ill. 2388 */ 2389 need_sadb_dump = B_TRUE; 2390 } else { 2391 IPSECHW_DEBUG(IPSECHW_CAPAB, 2392 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2393 ialg->alg_prim)); 2394 2395 if (nmp == NULL) { 2396 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2397 if (nmp == NULL) { 2398 /* 2399 * Sending the PROMISC_ON/OFF 2400 * notification request failed. 2401 * We cannot enable the algorithms 2402 * since the Provider will not 2403 * notify IP of promiscous mode 2404 * changes, which could lead 2405 * to leakage of packets. 2406 */ 2407 cmn_err(CE_WARN, 2408 "ill_capability_ipsec_ack: " 2409 "could not enable IPsec Hardware " 2410 "acceleration for %s (ENOMEM)\n", 2411 ill->ill_name); 2412 return; 2413 } 2414 /* ptr to current output alg specifier */ 2415 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2416 } 2417 2418 /* 2419 * Copy current alg specifier, set ENABLE 2420 * flag, and advance to next output alg. 2421 * For now we enable all IPsec capabilities. 2422 */ 2423 ASSERT(oalg != NULL); 2424 bcopy(ialg, oalg, alg_len); 2425 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2426 nmp->b_wptr += alg_len; 2427 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2428 } 2429 2430 /* move to next input algorithm specifier */ 2431 ialg = (dl_capab_ipsec_alg_t *) 2432 ((char *)ialg + alg_len); 2433 } 2434 2435 if (nmp != NULL) 2436 /* 2437 * nmp points to a DL_CAPABILITY_REQ message to enable 2438 * IPsec hardware acceleration. 2439 */ 2440 ill_dlpi_send(ill, nmp); 2441 2442 if (need_sadb_dump) 2443 /* 2444 * An acknowledgement corresponding to a request to 2445 * enable acceleration was received, notify SADB. 2446 */ 2447 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2448 } 2449 2450 /* 2451 * Given an mblk with enough space in it, create sub-capability entries for 2452 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2453 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2454 * in preparation for the reset the DL_CAPABILITY_REQ message. 2455 */ 2456 static void 2457 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2458 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2459 { 2460 dl_capab_ipsec_t *oipsec; 2461 dl_capab_ipsec_alg_t *oalg; 2462 dl_capability_sub_t *dl_subcap; 2463 int i, k; 2464 2465 ASSERT(nciphers > 0); 2466 ASSERT(ill_cap != NULL); 2467 ASSERT(mp != NULL); 2468 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2469 2470 /* dl_capability_sub_t for "stype" */ 2471 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2472 dl_subcap->dl_cap = stype; 2473 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2474 mp->b_wptr += sizeof (dl_capability_sub_t); 2475 2476 /* dl_capab_ipsec_t for "stype" */ 2477 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2478 oipsec->cip_version = 1; 2479 oipsec->cip_nciphers = nciphers; 2480 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2481 2482 /* create entries for "stype" AUTH ciphers */ 2483 for (i = 0; i < ill_cap->algs_size; i++) { 2484 for (k = 0; k < BITSPERBYTE; k++) { 2485 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2486 continue; 2487 2488 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2489 bzero((void *)oalg, sizeof (*oalg)); 2490 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2491 oalg->alg_prim = k + (BITSPERBYTE * i); 2492 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2493 } 2494 } 2495 /* create entries for "stype" ENCR ciphers */ 2496 for (i = 0; i < ill_cap->algs_size; i++) { 2497 for (k = 0; k < BITSPERBYTE; k++) { 2498 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2499 continue; 2500 2501 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2502 bzero((void *)oalg, sizeof (*oalg)); 2503 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2504 oalg->alg_prim = k + (BITSPERBYTE * i); 2505 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2506 } 2507 } 2508 } 2509 2510 /* 2511 * Macro to count number of 1s in a byte (8-bit word). The total count is 2512 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2513 * POPC instruction, but our macro is more flexible for an arbitrary length 2514 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2515 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2516 * stays that way, we can reduce the number of iterations required. 2517 */ 2518 #define COUNT_1S(val, sum) { \ 2519 uint8_t x = val & 0xff; \ 2520 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2521 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2522 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2523 } 2524 2525 /* ARGSUSED */ 2526 static void 2527 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2528 { 2529 mblk_t *mp; 2530 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2531 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2532 uint64_t ill_capabilities = ill->ill_capabilities; 2533 int ah_cnt = 0, esp_cnt = 0; 2534 int ah_len = 0, esp_len = 0; 2535 int i, size = 0; 2536 2537 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2538 return; 2539 2540 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2541 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2542 2543 /* Find out the number of ciphers for AH */ 2544 if (cap_ah != NULL) { 2545 for (i = 0; i < cap_ah->algs_size; i++) { 2546 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2547 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2548 } 2549 if (ah_cnt > 0) { 2550 size += sizeof (dl_capability_sub_t) + 2551 sizeof (dl_capab_ipsec_t); 2552 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2553 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2554 size += ah_len; 2555 } 2556 } 2557 2558 /* Find out the number of ciphers for ESP */ 2559 if (cap_esp != NULL) { 2560 for (i = 0; i < cap_esp->algs_size; i++) { 2561 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2562 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2563 } 2564 if (esp_cnt > 0) { 2565 size += sizeof (dl_capability_sub_t) + 2566 sizeof (dl_capab_ipsec_t); 2567 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2568 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2569 size += esp_len; 2570 } 2571 } 2572 2573 if (size == 0) { 2574 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2575 "there's nothing to reset\n")); 2576 return; 2577 } 2578 2579 mp = allocb(size, BPRI_HI); 2580 if (mp == NULL) { 2581 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2582 "request to disable IPSEC Hardware Acceleration\n")); 2583 return; 2584 } 2585 2586 /* 2587 * Clear the capability flags for IPSec HA but retain the ill 2588 * capability structures since it's possible that another thread 2589 * is still referring to them. The structures only get deallocated 2590 * when we destroy the ill. 2591 * 2592 * Various places check the flags to see if the ill is capable of 2593 * hardware acceleration, and by clearing them we ensure that new 2594 * outbound IPSec packets are sent down encrypted. 2595 */ 2596 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2597 2598 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2599 if (ah_cnt > 0) { 2600 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2601 cap_ah, mp); 2602 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2603 } 2604 2605 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2606 if (esp_cnt > 0) { 2607 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2608 cap_esp, mp); 2609 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2610 } 2611 2612 /* 2613 * At this point we've composed a bunch of sub-capabilities to be 2614 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2615 * by the caller. Upon receiving this reset message, the driver 2616 * must stop inbound decryption (by destroying all inbound SAs) 2617 * and let the corresponding packets come in encrypted. 2618 */ 2619 2620 if (*sc_mp != NULL) 2621 linkb(*sc_mp, mp); 2622 else 2623 *sc_mp = mp; 2624 } 2625 2626 static void 2627 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2628 boolean_t encapsulated) 2629 { 2630 boolean_t legacy = B_FALSE; 2631 2632 /* 2633 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2634 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2635 * instructed the driver to disable its advertised capabilities, 2636 * so there's no point in accepting any response at this moment. 2637 */ 2638 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2639 return; 2640 2641 /* 2642 * Note that only the following two sub-capabilities may be 2643 * considered as "legacy", since their original definitions 2644 * do not incorporate the dl_mid_t module ID token, and hence 2645 * may require the use of the wrapper sub-capability. 2646 */ 2647 switch (subp->dl_cap) { 2648 case DL_CAPAB_IPSEC_AH: 2649 case DL_CAPAB_IPSEC_ESP: 2650 legacy = B_TRUE; 2651 break; 2652 } 2653 2654 /* 2655 * For legacy sub-capabilities which don't incorporate a queue_t 2656 * pointer in their structures, discard them if we detect that 2657 * there are intermediate modules in between IP and the driver. 2658 */ 2659 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2660 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2661 "%d discarded; %d module(s) present below IP\n", 2662 subp->dl_cap, ill->ill_lmod_cnt)); 2663 return; 2664 } 2665 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 ill_capability_ipsec_ack(ill, mp, subp); 2670 break; 2671 case DL_CAPAB_MDT: 2672 ill_capability_mdt_ack(ill, mp, subp); 2673 break; 2674 case DL_CAPAB_HCKSUM: 2675 ill_capability_hcksum_ack(ill, mp, subp); 2676 break; 2677 case DL_CAPAB_ZEROCOPY: 2678 ill_capability_zerocopy_ack(ill, mp, subp); 2679 break; 2680 case DL_CAPAB_POLL: 2681 if (!SOFT_RINGS_ENABLED()) 2682 ill_capability_dls_ack(ill, mp, subp); 2683 break; 2684 case DL_CAPAB_SOFT_RING: 2685 if (SOFT_RINGS_ENABLED()) 2686 ill_capability_dls_ack(ill, mp, subp); 2687 break; 2688 default: 2689 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2690 subp->dl_cap)); 2691 } 2692 } 2693 2694 /* 2695 * As part of negotiating polling capability, the driver tells us 2696 * the default (or normal) blanking interval and packet threshold 2697 * (the receive timer fires if blanking interval is reached or 2698 * the packet threshold is reached). 2699 * 2700 * As part of manipulating the polling interval, we always use our 2701 * estimated interval (avg service time * number of packets queued 2702 * on the squeue) but we try to blank for a minimum of 2703 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2704 * packet threshold during this time. When we are not in polling mode 2705 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2706 * rr_min_blank_ratio but up the packet cnt by a ratio of 2707 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2708 * possible although for a shorter interval. 2709 */ 2710 #define RR_MAX_BLANK_RATIO 20 2711 #define RR_MIN_BLANK_RATIO 10 2712 #define RR_MAX_PKT_CNT_RATIO 3 2713 #define RR_MIN_PKT_CNT_RATIO 3 2714 2715 /* 2716 * These can be tuned via /etc/system. 2717 */ 2718 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2719 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2720 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2721 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2722 2723 static mac_resource_handle_t 2724 ill_ring_add(void *arg, mac_resource_t *mrp) 2725 { 2726 ill_t *ill = (ill_t *)arg; 2727 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2728 ill_rx_ring_t *rx_ring; 2729 int ip_rx_index; 2730 2731 ASSERT(mrp != NULL); 2732 if (mrp->mr_type != MAC_RX_FIFO) { 2733 return (NULL); 2734 } 2735 ASSERT(ill != NULL); 2736 ASSERT(ill->ill_dls_capab != NULL); 2737 2738 mutex_enter(&ill->ill_lock); 2739 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2740 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2741 ASSERT(rx_ring != NULL); 2742 2743 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2744 time_t normal_blank_time = 2745 mrfp->mrf_normal_blank_time; 2746 uint_t normal_pkt_cnt = 2747 mrfp->mrf_normal_pkt_count; 2748 2749 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2750 2751 rx_ring->rr_blank = mrfp->mrf_blank; 2752 rx_ring->rr_handle = mrfp->mrf_arg; 2753 rx_ring->rr_ill = ill; 2754 rx_ring->rr_normal_blank_time = normal_blank_time; 2755 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2756 2757 rx_ring->rr_max_blank_time = 2758 normal_blank_time * rr_max_blank_ratio; 2759 rx_ring->rr_min_blank_time = 2760 normal_blank_time * rr_min_blank_ratio; 2761 rx_ring->rr_max_pkt_cnt = 2762 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2763 rx_ring->rr_min_pkt_cnt = 2764 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2765 2766 rx_ring->rr_ring_state = ILL_RING_INUSE; 2767 mutex_exit(&ill->ill_lock); 2768 2769 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2770 (int), ip_rx_index); 2771 return ((mac_resource_handle_t)rx_ring); 2772 } 2773 } 2774 2775 /* 2776 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2777 * we have devices which can overwhelm this limit, ILL_MAX_RING 2778 * should be made configurable. Meanwhile it cause no panic because 2779 * driver will pass ip_input a NULL handle which will make 2780 * IP allocate the default squeue and Polling mode will not 2781 * be used for this ring. 2782 */ 2783 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2784 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2785 2786 mutex_exit(&ill->ill_lock); 2787 return (NULL); 2788 } 2789 2790 static boolean_t 2791 ill_capability_dls_init(ill_t *ill) 2792 { 2793 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2794 conn_t *connp; 2795 size_t sz; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2798 if (ill_dls == NULL) { 2799 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2800 "soft_ring enabled for ill=%s (%p) but data " 2801 "structs uninitialized\n", ill->ill_name, 2802 (void *)ill); 2803 } 2804 return (B_TRUE); 2805 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2806 if (ill_dls == NULL) { 2807 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2808 "polling enabled for ill=%s (%p) but data " 2809 "structs uninitialized\n", ill->ill_name, 2810 (void *)ill); 2811 } 2812 return (B_TRUE); 2813 } 2814 2815 if (ill_dls != NULL) { 2816 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2817 /* Soft_Ring or polling is being re-enabled */ 2818 2819 connp = ill_dls->ill_unbind_conn; 2820 ASSERT(rx_ring != NULL); 2821 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2822 bzero((void *)rx_ring, 2823 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2824 ill_dls->ill_ring_tbl = rx_ring; 2825 ill_dls->ill_unbind_conn = connp; 2826 return (B_TRUE); 2827 } 2828 2829 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2830 return (B_FALSE); 2831 2832 sz = sizeof (ill_dls_capab_t); 2833 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2834 2835 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2836 if (ill_dls == NULL) { 2837 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2838 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2839 (void *)ill); 2840 CONN_DEC_REF(connp); 2841 return (B_FALSE); 2842 } 2843 2844 /* Allocate space to hold ring table */ 2845 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2846 ill->ill_dls_capab = ill_dls; 2847 ill_dls->ill_unbind_conn = connp; 2848 return (B_TRUE); 2849 } 2850 2851 /* 2852 * ill_capability_dls_disable: disable soft_ring and/or polling 2853 * capability. Since any of the rings might already be in use, need 2854 * to call ipsq_clean_all() which gets behind the squeue to disable 2855 * direct calls if necessary. 2856 */ 2857 static void 2858 ill_capability_dls_disable(ill_t *ill) 2859 { 2860 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2861 2862 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2863 ipsq_clean_all(ill); 2864 ill_dls->ill_tx = NULL; 2865 ill_dls->ill_tx_handle = NULL; 2866 ill_dls->ill_dls_change_status = NULL; 2867 ill_dls->ill_dls_bind = NULL; 2868 ill_dls->ill_dls_unbind = NULL; 2869 } 2870 2871 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2872 } 2873 2874 static void 2875 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2876 dl_capability_sub_t *isub) 2877 { 2878 uint_t size; 2879 uchar_t *rptr; 2880 dl_capab_dls_t dls, *odls; 2881 ill_dls_capab_t *ill_dls; 2882 mblk_t *nmp = NULL; 2883 dl_capability_req_t *ocap; 2884 uint_t sub_dl_cap = isub->dl_cap; 2885 2886 if (!ill_capability_dls_init(ill)) 2887 return; 2888 ill_dls = ill->ill_dls_capab; 2889 2890 /* Copy locally to get the members aligned */ 2891 bcopy((void *)idls, (void *)&dls, 2892 sizeof (dl_capab_dls_t)); 2893 2894 /* Get the tx function and handle from dld */ 2895 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2896 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2897 2898 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2899 ill_dls->ill_dls_change_status = 2900 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2901 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2902 ill_dls->ill_dls_unbind = 2903 (ip_dls_unbind_t)dls.dls_ring_unbind; 2904 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2905 } 2906 2907 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2908 isub->dl_length; 2909 2910 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2911 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2912 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2913 ill->ill_name, (void *)ill); 2914 return; 2915 } 2916 2917 /* initialize dl_capability_req_t */ 2918 rptr = nmp->b_rptr; 2919 ocap = (dl_capability_req_t *)rptr; 2920 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2921 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2922 rptr += sizeof (dl_capability_req_t); 2923 2924 /* initialize dl_capability_sub_t */ 2925 bcopy(isub, rptr, sizeof (*isub)); 2926 rptr += sizeof (*isub); 2927 2928 odls = (dl_capab_dls_t *)rptr; 2929 rptr += sizeof (dl_capab_dls_t); 2930 2931 /* initialize dl_capab_dls_t to be sent down */ 2932 dls.dls_rx_handle = (uintptr_t)ill; 2933 dls.dls_rx = (uintptr_t)ip_input; 2934 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2935 2936 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2937 dls.dls_ring_cnt = ip_soft_rings_cnt; 2938 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2939 dls.dls_flags = SOFT_RING_ENABLE; 2940 } else { 2941 dls.dls_flags = POLL_ENABLE; 2942 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2943 "to enable polling\n", ill->ill_name)); 2944 } 2945 bcopy((void *)&dls, (void *)odls, 2946 sizeof (dl_capab_dls_t)); 2947 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2948 /* 2949 * nmp points to a DL_CAPABILITY_REQ message to 2950 * enable either soft_ring or polling 2951 */ 2952 ill_dlpi_send(ill, nmp); 2953 } 2954 2955 static void 2956 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2957 { 2958 mblk_t *mp; 2959 dl_capab_dls_t *idls; 2960 dl_capability_sub_t *dl_subcap; 2961 int size; 2962 2963 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2964 return; 2965 2966 ASSERT(ill->ill_dls_capab != NULL); 2967 2968 size = sizeof (*dl_subcap) + sizeof (*idls); 2969 2970 mp = allocb(size, BPRI_HI); 2971 if (mp == NULL) { 2972 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2973 "request to disable soft_ring\n")); 2974 return; 2975 } 2976 2977 mp->b_wptr = mp->b_rptr + size; 2978 2979 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2980 dl_subcap->dl_length = sizeof (*idls); 2981 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2982 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2983 else 2984 dl_subcap->dl_cap = DL_CAPAB_POLL; 2985 2986 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2987 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2988 idls->dls_flags = SOFT_RING_DISABLE; 2989 else 2990 idls->dls_flags = POLL_DISABLE; 2991 2992 if (*sc_mp != NULL) 2993 linkb(*sc_mp, mp); 2994 else 2995 *sc_mp = mp; 2996 } 2997 2998 /* 2999 * Process a soft_ring/poll capability negotiation ack received 3000 * from a DLS Provider.isub must point to the sub-capability 3001 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3002 */ 3003 static void 3004 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3005 { 3006 dl_capab_dls_t *idls; 3007 uint_t sub_dl_cap = isub->dl_cap; 3008 uint8_t *capend; 3009 3010 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3011 sub_dl_cap == DL_CAPAB_POLL); 3012 3013 if (ill->ill_isv6) 3014 return; 3015 3016 /* 3017 * Note: range checks here are not absolutely sufficient to 3018 * make us robust against malformed messages sent by drivers; 3019 * this is in keeping with the rest of IP's dlpi handling. 3020 * (Remember, it's coming from something else in the kernel 3021 * address space) 3022 */ 3023 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3024 if (capend > mp->b_wptr) { 3025 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3026 "malformed sub-capability too long for mblk"); 3027 return; 3028 } 3029 3030 /* 3031 * There are two types of acks we process here: 3032 * 1. acks in reply to a (first form) generic capability req 3033 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3034 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3035 * capability req. 3036 */ 3037 idls = (dl_capab_dls_t *)(isub + 1); 3038 3039 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3040 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3041 "capability isn't as expected; pass-thru " 3042 "module(s) detected, discarding capability\n")); 3043 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3044 /* 3045 * This is a capability renegotitation case. 3046 * The interface better be unusable at this 3047 * point other wise bad things will happen 3048 * if we disable direct calls on a running 3049 * and up interface. 3050 */ 3051 ill_capability_dls_disable(ill); 3052 } 3053 return; 3054 } 3055 3056 switch (idls->dls_flags) { 3057 default: 3058 /* Disable if unknown flag */ 3059 case SOFT_RING_DISABLE: 3060 case POLL_DISABLE: 3061 ill_capability_dls_disable(ill); 3062 break; 3063 case SOFT_RING_CAPABLE: 3064 case POLL_CAPABLE: 3065 /* 3066 * If the capability was already enabled, its safe 3067 * to disable it first to get rid of stale information 3068 * and then start enabling it again. 3069 */ 3070 ill_capability_dls_disable(ill); 3071 ill_capability_dls_capable(ill, idls, isub); 3072 break; 3073 case SOFT_RING_ENABLE: 3074 case POLL_ENABLE: 3075 mutex_enter(&ill->ill_lock); 3076 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3077 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3078 ASSERT(ill->ill_dls_capab != NULL); 3079 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3080 } 3081 if (sub_dl_cap == DL_CAPAB_POLL && 3082 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3083 ASSERT(ill->ill_dls_capab != NULL); 3084 ill->ill_capabilities |= ILL_CAPAB_POLL; 3085 ip1dbg(("ill_capability_dls_ack: interface %s " 3086 "has enabled polling\n", ill->ill_name)); 3087 } 3088 mutex_exit(&ill->ill_lock); 3089 break; 3090 } 3091 } 3092 3093 /* 3094 * Process a hardware checksum offload capability negotiation ack received 3095 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3096 * of a DL_CAPABILITY_ACK message. 3097 */ 3098 static void 3099 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3100 { 3101 dl_capability_req_t *ocap; 3102 dl_capab_hcksum_t *ihck, *ohck; 3103 ill_hcksum_capab_t **ill_hcksum; 3104 mblk_t *nmp = NULL; 3105 uint_t sub_dl_cap = isub->dl_cap; 3106 uint8_t *capend; 3107 3108 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3109 3110 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3111 3112 /* 3113 * Note: range checks here are not absolutely sufficient to 3114 * make us robust against malformed messages sent by drivers; 3115 * this is in keeping with the rest of IP's dlpi handling. 3116 * (Remember, it's coming from something else in the kernel 3117 * address space) 3118 */ 3119 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3120 if (capend > mp->b_wptr) { 3121 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3122 "malformed sub-capability too long for mblk"); 3123 return; 3124 } 3125 3126 /* 3127 * There are two types of acks we process here: 3128 * 1. acks in reply to a (first form) generic capability req 3129 * (no ENABLE flag set) 3130 * 2. acks in reply to a ENABLE capability req. 3131 * (ENABLE flag set) 3132 */ 3133 ihck = (dl_capab_hcksum_t *)(isub + 1); 3134 3135 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3136 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3137 "unsupported hardware checksum " 3138 "sub-capability (version %d, expected %d)", 3139 ihck->hcksum_version, HCKSUM_VERSION_1); 3140 return; 3141 } 3142 3143 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3144 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3145 "checksum capability isn't as expected; pass-thru " 3146 "module(s) detected, discarding capability\n")); 3147 return; 3148 } 3149 3150 #define CURR_HCKSUM_CAPAB \ 3151 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3152 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3153 3154 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3155 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3156 /* do ENABLE processing */ 3157 if (*ill_hcksum == NULL) { 3158 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3159 KM_NOSLEEP); 3160 3161 if (*ill_hcksum == NULL) { 3162 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3163 "could not enable hcksum version %d " 3164 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3165 ill->ill_name); 3166 return; 3167 } 3168 } 3169 3170 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3171 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3172 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3173 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3174 "has enabled hardware checksumming\n ", 3175 ill->ill_name)); 3176 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3177 /* 3178 * Enabling hardware checksum offload 3179 * Currently IP supports {TCP,UDP}/IPv4 3180 * partial and full cksum offload and 3181 * IPv4 header checksum offload. 3182 * Allocate new mblk which will 3183 * contain a new capability request 3184 * to enable hardware checksum offload. 3185 */ 3186 uint_t size; 3187 uchar_t *rptr; 3188 3189 size = sizeof (dl_capability_req_t) + 3190 sizeof (dl_capability_sub_t) + isub->dl_length; 3191 3192 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3193 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3194 "could not enable hardware cksum for %s (ENOMEM)\n", 3195 ill->ill_name); 3196 return; 3197 } 3198 3199 rptr = nmp->b_rptr; 3200 /* initialize dl_capability_req_t */ 3201 ocap = (dl_capability_req_t *)nmp->b_rptr; 3202 ocap->dl_sub_offset = 3203 sizeof (dl_capability_req_t); 3204 ocap->dl_sub_length = 3205 sizeof (dl_capability_sub_t) + 3206 isub->dl_length; 3207 nmp->b_rptr += sizeof (dl_capability_req_t); 3208 3209 /* initialize dl_capability_sub_t */ 3210 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3211 nmp->b_rptr += sizeof (*isub); 3212 3213 /* initialize dl_capab_hcksum_t */ 3214 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3215 bcopy(ihck, ohck, sizeof (*ihck)); 3216 3217 nmp->b_rptr = rptr; 3218 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3219 3220 /* Set ENABLE flag */ 3221 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3222 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3223 3224 /* 3225 * nmp points to a DL_CAPABILITY_REQ message to enable 3226 * hardware checksum acceleration. 3227 */ 3228 ill_dlpi_send(ill, nmp); 3229 } else { 3230 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3231 "advertised %x hardware checksum capability flags\n", 3232 ill->ill_name, ihck->hcksum_txflags)); 3233 } 3234 } 3235 3236 static void 3237 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3238 { 3239 mblk_t *mp; 3240 dl_capab_hcksum_t *hck_subcap; 3241 dl_capability_sub_t *dl_subcap; 3242 int size; 3243 3244 if (!ILL_HCKSUM_CAPABLE(ill)) 3245 return; 3246 3247 ASSERT(ill->ill_hcksum_capab != NULL); 3248 /* 3249 * Clear the capability flag for hardware checksum offload but 3250 * retain the ill_hcksum_capab structure since it's possible that 3251 * another thread is still referring to it. The structure only 3252 * gets deallocated when we destroy the ill. 3253 */ 3254 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3255 3256 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3257 3258 mp = allocb(size, BPRI_HI); 3259 if (mp == NULL) { 3260 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3261 "request to disable hardware checksum offload\n")); 3262 return; 3263 } 3264 3265 mp->b_wptr = mp->b_rptr + size; 3266 3267 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3268 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3269 dl_subcap->dl_length = sizeof (*hck_subcap); 3270 3271 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3272 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3273 hck_subcap->hcksum_txflags = 0; 3274 3275 if (*sc_mp != NULL) 3276 linkb(*sc_mp, mp); 3277 else 3278 *sc_mp = mp; 3279 } 3280 3281 static void 3282 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3283 { 3284 mblk_t *nmp = NULL; 3285 dl_capability_req_t *oc; 3286 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3287 ill_zerocopy_capab_t **ill_zerocopy_capab; 3288 uint_t sub_dl_cap = isub->dl_cap; 3289 uint8_t *capend; 3290 3291 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3292 3293 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3294 3295 /* 3296 * Note: range checks here are not absolutely sufficient to 3297 * make us robust against malformed messages sent by drivers; 3298 * this is in keeping with the rest of IP's dlpi handling. 3299 * (Remember, it's coming from something else in the kernel 3300 * address space) 3301 */ 3302 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3303 if (capend > mp->b_wptr) { 3304 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3305 "malformed sub-capability too long for mblk"); 3306 return; 3307 } 3308 3309 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3310 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3311 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3312 "unsupported ZEROCOPY sub-capability (version %d, " 3313 "expected %d)", zc_ic->zerocopy_version, 3314 ZEROCOPY_VERSION_1); 3315 return; 3316 } 3317 3318 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3319 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3320 "capability isn't as expected; pass-thru module(s) " 3321 "detected, discarding capability\n")); 3322 return; 3323 } 3324 3325 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3326 if (*ill_zerocopy_capab == NULL) { 3327 *ill_zerocopy_capab = 3328 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3329 KM_NOSLEEP); 3330 3331 if (*ill_zerocopy_capab == NULL) { 3332 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3333 "could not enable Zero-copy version %d " 3334 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3335 ill->ill_name); 3336 return; 3337 } 3338 } 3339 3340 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3341 "supports Zero-copy version %d\n", ill->ill_name, 3342 ZEROCOPY_VERSION_1)); 3343 3344 (*ill_zerocopy_capab)->ill_zerocopy_version = 3345 zc_ic->zerocopy_version; 3346 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3347 zc_ic->zerocopy_flags; 3348 3349 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3350 } else { 3351 uint_t size; 3352 uchar_t *rptr; 3353 3354 size = sizeof (dl_capability_req_t) + 3355 sizeof (dl_capability_sub_t) + 3356 sizeof (dl_capab_zerocopy_t); 3357 3358 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3359 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3360 "could not enable zerocopy for %s (ENOMEM)\n", 3361 ill->ill_name); 3362 return; 3363 } 3364 3365 rptr = nmp->b_rptr; 3366 /* initialize dl_capability_req_t */ 3367 oc = (dl_capability_req_t *)rptr; 3368 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3369 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3370 sizeof (dl_capab_zerocopy_t); 3371 rptr += sizeof (dl_capability_req_t); 3372 3373 /* initialize dl_capability_sub_t */ 3374 bcopy(isub, rptr, sizeof (*isub)); 3375 rptr += sizeof (*isub); 3376 3377 /* initialize dl_capab_zerocopy_t */ 3378 zc_oc = (dl_capab_zerocopy_t *)rptr; 3379 *zc_oc = *zc_ic; 3380 3381 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3382 "to enable zero-copy version %d\n", ill->ill_name, 3383 ZEROCOPY_VERSION_1)); 3384 3385 /* set VMSAFE_MEM flag */ 3386 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3387 3388 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3389 ill_dlpi_send(ill, nmp); 3390 } 3391 } 3392 3393 static void 3394 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3395 { 3396 mblk_t *mp; 3397 dl_capab_zerocopy_t *zerocopy_subcap; 3398 dl_capability_sub_t *dl_subcap; 3399 int size; 3400 3401 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3402 return; 3403 3404 ASSERT(ill->ill_zerocopy_capab != NULL); 3405 /* 3406 * Clear the capability flag for Zero-copy but retain the 3407 * ill_zerocopy_capab structure since it's possible that another 3408 * thread is still referring to it. The structure only gets 3409 * deallocated when we destroy the ill. 3410 */ 3411 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3412 3413 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3414 3415 mp = allocb(size, BPRI_HI); 3416 if (mp == NULL) { 3417 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3418 "request to disable Zero-copy\n")); 3419 return; 3420 } 3421 3422 mp->b_wptr = mp->b_rptr + size; 3423 3424 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3425 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3426 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3427 3428 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3429 zerocopy_subcap->zerocopy_version = 3430 ill->ill_zerocopy_capab->ill_zerocopy_version; 3431 zerocopy_subcap->zerocopy_flags = 0; 3432 3433 if (*sc_mp != NULL) 3434 linkb(*sc_mp, mp); 3435 else 3436 *sc_mp = mp; 3437 } 3438 3439 /* 3440 * Consume a new-style hardware capabilities negotiation ack. 3441 * Called from ip_rput_dlpi_writer(). 3442 */ 3443 void 3444 ill_capability_ack(ill_t *ill, mblk_t *mp) 3445 { 3446 dl_capability_ack_t *capp; 3447 dl_capability_sub_t *subp, *endp; 3448 3449 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3450 ill->ill_dlpi_capab_state = IDS_OK; 3451 3452 capp = (dl_capability_ack_t *)mp->b_rptr; 3453 3454 if (capp->dl_sub_length == 0) 3455 /* no new-style capabilities */ 3456 return; 3457 3458 /* make sure the driver supplied correct dl_sub_length */ 3459 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3460 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3461 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3462 return; 3463 } 3464 3465 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3466 /* 3467 * There are sub-capabilities. Process the ones we know about. 3468 * Loop until we don't have room for another sub-cap header.. 3469 */ 3470 for (subp = SC(capp, capp->dl_sub_offset), 3471 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3472 subp <= endp; 3473 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3474 3475 switch (subp->dl_cap) { 3476 case DL_CAPAB_ID_WRAPPER: 3477 ill_capability_id_ack(ill, mp, subp); 3478 break; 3479 default: 3480 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3481 break; 3482 } 3483 } 3484 #undef SC 3485 } 3486 3487 /* 3488 * This routine is called to scan the fragmentation reassembly table for 3489 * the specified ILL for any packets that are starting to smell. 3490 * dead_interval is the maximum time in seconds that will be tolerated. It 3491 * will either be the value specified in ip_g_frag_timeout, or zero if the 3492 * ILL is shutting down and it is time to blow everything off. 3493 * 3494 * It returns the number of seconds (as a time_t) that the next frag timer 3495 * should be scheduled for, 0 meaning that the timer doesn't need to be 3496 * re-started. Note that the method of calculating next_timeout isn't 3497 * entirely accurate since time will flow between the time we grab 3498 * current_time and the time we schedule the next timeout. This isn't a 3499 * big problem since this is the timer for sending an ICMP reassembly time 3500 * exceeded messages, and it doesn't have to be exactly accurate. 3501 * 3502 * This function is 3503 * sometimes called as writer, although this is not required. 3504 */ 3505 time_t 3506 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3507 { 3508 ipfb_t *ipfb; 3509 ipfb_t *endp; 3510 ipf_t *ipf; 3511 ipf_t *ipfnext; 3512 mblk_t *mp; 3513 time_t current_time = gethrestime_sec(); 3514 time_t next_timeout = 0; 3515 uint32_t hdr_length; 3516 mblk_t *send_icmp_head; 3517 mblk_t *send_icmp_head_v6; 3518 zoneid_t zoneid; 3519 3520 ipfb = ill->ill_frag_hash_tbl; 3521 if (ipfb == NULL) 3522 return (B_FALSE); 3523 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3524 /* Walk the frag hash table. */ 3525 for (; ipfb < endp; ipfb++) { 3526 send_icmp_head = NULL; 3527 send_icmp_head_v6 = NULL; 3528 mutex_enter(&ipfb->ipfb_lock); 3529 while ((ipf = ipfb->ipfb_ipf) != 0) { 3530 time_t frag_time = current_time - ipf->ipf_timestamp; 3531 time_t frag_timeout; 3532 3533 if (frag_time < dead_interval) { 3534 /* 3535 * There are some outstanding fragments 3536 * that will timeout later. Make note of 3537 * the time so that we can reschedule the 3538 * next timeout appropriately. 3539 */ 3540 frag_timeout = dead_interval - frag_time; 3541 if (next_timeout == 0 || 3542 frag_timeout < next_timeout) { 3543 next_timeout = frag_timeout; 3544 } 3545 break; 3546 } 3547 /* Time's up. Get it out of here. */ 3548 hdr_length = ipf->ipf_nf_hdr_len; 3549 ipfnext = ipf->ipf_hash_next; 3550 if (ipfnext) 3551 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3552 *ipf->ipf_ptphn = ipfnext; 3553 mp = ipf->ipf_mp->b_cont; 3554 for (; mp; mp = mp->b_cont) { 3555 /* Extra points for neatness. */ 3556 IP_REASS_SET_START(mp, 0); 3557 IP_REASS_SET_END(mp, 0); 3558 } 3559 mp = ipf->ipf_mp->b_cont; 3560 ill->ill_frag_count -= ipf->ipf_count; 3561 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3562 ipfb->ipfb_count -= ipf->ipf_count; 3563 ASSERT(ipfb->ipfb_frag_pkts > 0); 3564 ipfb->ipfb_frag_pkts--; 3565 /* 3566 * We do not send any icmp message from here because 3567 * we currently are holding the ipfb_lock for this 3568 * hash chain. If we try and send any icmp messages 3569 * from here we may end up via a put back into ip 3570 * trying to get the same lock, causing a recursive 3571 * mutex panic. Instead we build a list and send all 3572 * the icmp messages after we have dropped the lock. 3573 */ 3574 if (ill->ill_isv6) { 3575 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3576 if (hdr_length != 0) { 3577 mp->b_next = send_icmp_head_v6; 3578 send_icmp_head_v6 = mp; 3579 } else { 3580 freemsg(mp); 3581 } 3582 } else { 3583 BUMP_MIB(&ip_mib, ipReasmFails); 3584 if (hdr_length != 0) { 3585 mp->b_next = send_icmp_head; 3586 send_icmp_head = mp; 3587 } else { 3588 freemsg(mp); 3589 } 3590 } 3591 freeb(ipf->ipf_mp); 3592 } 3593 mutex_exit(&ipfb->ipfb_lock); 3594 /* 3595 * Now need to send any icmp messages that we delayed from 3596 * above. 3597 */ 3598 while (send_icmp_head_v6 != NULL) { 3599 ip6_t *ip6h; 3600 3601 mp = send_icmp_head_v6; 3602 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3603 mp->b_next = NULL; 3604 if (mp->b_datap->db_type == M_CTL) 3605 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3606 else 3607 ip6h = (ip6_t *)mp->b_rptr; 3608 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3609 ill); 3610 if (zoneid == ALL_ZONES) { 3611 freemsg(mp); 3612 } else { 3613 icmp_time_exceeded_v6(ill->ill_wq, mp, 3614 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3615 B_FALSE, zoneid); 3616 } 3617 } 3618 while (send_icmp_head != NULL) { 3619 ipaddr_t dst; 3620 3621 mp = send_icmp_head; 3622 send_icmp_head = send_icmp_head->b_next; 3623 mp->b_next = NULL; 3624 3625 if (mp->b_datap->db_type == M_CTL) 3626 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3627 else 3628 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3629 3630 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3631 if (zoneid == ALL_ZONES) { 3632 freemsg(mp); 3633 } else { 3634 icmp_time_exceeded(ill->ill_wq, mp, 3635 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3636 } 3637 } 3638 } 3639 /* 3640 * A non-dying ILL will use the return value to decide whether to 3641 * restart the frag timer, and for how long. 3642 */ 3643 return (next_timeout); 3644 } 3645 3646 /* 3647 * This routine is called when the approximate count of mblk memory used 3648 * for the specified ILL has exceeded max_count. 3649 */ 3650 void 3651 ill_frag_prune(ill_t *ill, uint_t max_count) 3652 { 3653 ipfb_t *ipfb; 3654 ipf_t *ipf; 3655 size_t count; 3656 3657 /* 3658 * If we are here within ip_min_frag_prune_time msecs remove 3659 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3660 * ill_frag_free_num_pkts. 3661 */ 3662 mutex_enter(&ill->ill_lock); 3663 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3664 (ip_min_frag_prune_time != 0 ? 3665 ip_min_frag_prune_time : msec_per_tick)) { 3666 3667 ill->ill_frag_free_num_pkts++; 3668 3669 } else { 3670 ill->ill_frag_free_num_pkts = 0; 3671 } 3672 ill->ill_last_frag_clean_time = lbolt; 3673 mutex_exit(&ill->ill_lock); 3674 3675 /* 3676 * free ill_frag_free_num_pkts oldest packets from each bucket. 3677 */ 3678 if (ill->ill_frag_free_num_pkts != 0) { 3679 int ix; 3680 3681 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3682 ipfb = &ill->ill_frag_hash_tbl[ix]; 3683 mutex_enter(&ipfb->ipfb_lock); 3684 if (ipfb->ipfb_ipf != NULL) { 3685 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3686 ill->ill_frag_free_num_pkts); 3687 } 3688 mutex_exit(&ipfb->ipfb_lock); 3689 } 3690 } 3691 /* 3692 * While the reassembly list for this ILL is too big, prune a fragment 3693 * queue by age, oldest first. Note that the per ILL count is 3694 * approximate, while the per frag hash bucket counts are accurate. 3695 */ 3696 while (ill->ill_frag_count > max_count) { 3697 int ix; 3698 ipfb_t *oipfb = NULL; 3699 uint_t oldest = UINT_MAX; 3700 3701 count = 0; 3702 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3703 ipfb = &ill->ill_frag_hash_tbl[ix]; 3704 mutex_enter(&ipfb->ipfb_lock); 3705 ipf = ipfb->ipfb_ipf; 3706 if (ipf != NULL && ipf->ipf_gen < oldest) { 3707 oldest = ipf->ipf_gen; 3708 oipfb = ipfb; 3709 } 3710 count += ipfb->ipfb_count; 3711 mutex_exit(&ipfb->ipfb_lock); 3712 } 3713 /* Refresh the per ILL count */ 3714 ill->ill_frag_count = count; 3715 if (oipfb == NULL) { 3716 ill->ill_frag_count = 0; 3717 break; 3718 } 3719 if (count <= max_count) 3720 return; /* Somebody beat us to it, nothing to do */ 3721 mutex_enter(&oipfb->ipfb_lock); 3722 ipf = oipfb->ipfb_ipf; 3723 if (ipf != NULL) { 3724 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3725 } 3726 mutex_exit(&oipfb->ipfb_lock); 3727 } 3728 } 3729 3730 /* 3731 * free 'free_cnt' fragmented packets starting at ipf. 3732 */ 3733 void 3734 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3735 { 3736 size_t count; 3737 mblk_t *mp; 3738 mblk_t *tmp; 3739 ipf_t **ipfp = ipf->ipf_ptphn; 3740 3741 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3742 ASSERT(ipfp != NULL); 3743 ASSERT(ipf != NULL); 3744 3745 while (ipf != NULL && free_cnt-- > 0) { 3746 count = ipf->ipf_count; 3747 mp = ipf->ipf_mp; 3748 ipf = ipf->ipf_hash_next; 3749 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3750 IP_REASS_SET_START(tmp, 0); 3751 IP_REASS_SET_END(tmp, 0); 3752 } 3753 ill->ill_frag_count -= count; 3754 ASSERT(ipfb->ipfb_count >= count); 3755 ipfb->ipfb_count -= count; 3756 ASSERT(ipfb->ipfb_frag_pkts > 0); 3757 ipfb->ipfb_frag_pkts--; 3758 freemsg(mp); 3759 BUMP_MIB(&ip_mib, ipReasmFails); 3760 } 3761 3762 if (ipf) 3763 ipf->ipf_ptphn = ipfp; 3764 ipfp[0] = ipf; 3765 } 3766 3767 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3768 "obsolete and may be removed in a future release of Solaris. Use " \ 3769 "ifconfig(1M) to manipulate the forwarding status of an interface." 3770 3771 /* 3772 * For obsolete per-interface forwarding configuration; 3773 * called in response to ND_GET. 3774 */ 3775 /* ARGSUSED */ 3776 static int 3777 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3778 { 3779 ill_t *ill = (ill_t *)cp; 3780 3781 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3782 3783 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3784 return (0); 3785 } 3786 3787 /* 3788 * For obsolete per-interface forwarding configuration; 3789 * called in response to ND_SET. 3790 */ 3791 /* ARGSUSED */ 3792 static int 3793 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3794 cred_t *ioc_cr) 3795 { 3796 long value; 3797 int retval; 3798 3799 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3800 3801 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3802 value < 0 || value > 1) { 3803 return (EINVAL); 3804 } 3805 3806 rw_enter(&ill_g_lock, RW_READER); 3807 retval = ill_forward_set(q, mp, (value != 0), cp); 3808 rw_exit(&ill_g_lock); 3809 return (retval); 3810 } 3811 3812 /* 3813 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3814 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3815 * up RTS_IFINFO routing socket messages for each interface whose flags we 3816 * change. 3817 */ 3818 /* ARGSUSED */ 3819 int 3820 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3821 { 3822 ill_t *ill = (ill_t *)cp; 3823 ill_group_t *illgrp; 3824 3825 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3826 3827 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3828 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3829 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3830 return (EINVAL); 3831 3832 /* 3833 * If the ill is in an IPMP group, set the forwarding policy on all 3834 * members of the group to the same value. 3835 */ 3836 illgrp = ill->ill_group; 3837 if (illgrp != NULL) { 3838 ill_t *tmp_ill; 3839 3840 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3841 tmp_ill = tmp_ill->ill_group_next) { 3842 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3843 (enable ? "Enabling" : "Disabling"), 3844 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3845 tmp_ill->ill_name)); 3846 mutex_enter(&tmp_ill->ill_lock); 3847 if (enable) 3848 tmp_ill->ill_flags |= ILLF_ROUTER; 3849 else 3850 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3851 mutex_exit(&tmp_ill->ill_lock); 3852 if (tmp_ill->ill_isv6) 3853 ill_set_nce_router_flags(tmp_ill, enable); 3854 /* Notify routing socket listeners of this change. */ 3855 ip_rts_ifmsg(tmp_ill->ill_ipif); 3856 } 3857 } else { 3858 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3859 (enable ? "Enabling" : "Disabling"), 3860 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3861 mutex_enter(&ill->ill_lock); 3862 if (enable) 3863 ill->ill_flags |= ILLF_ROUTER; 3864 else 3865 ill->ill_flags &= ~ILLF_ROUTER; 3866 mutex_exit(&ill->ill_lock); 3867 if (ill->ill_isv6) 3868 ill_set_nce_router_flags(ill, enable); 3869 /* Notify routing socket listeners of this change. */ 3870 ip_rts_ifmsg(ill->ill_ipif); 3871 } 3872 3873 return (0); 3874 } 3875 3876 /* 3877 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3878 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3879 * set or clear. 3880 */ 3881 static void 3882 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3883 { 3884 ipif_t *ipif; 3885 nce_t *nce; 3886 3887 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3888 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3889 if (nce != NULL) { 3890 mutex_enter(&nce->nce_lock); 3891 if (enable) 3892 nce->nce_flags |= NCE_F_ISROUTER; 3893 else 3894 nce->nce_flags &= ~NCE_F_ISROUTER; 3895 mutex_exit(&nce->nce_lock); 3896 NCE_REFRELE(nce); 3897 } 3898 } 3899 } 3900 3901 /* 3902 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3903 * for this ill. Make sure the v6/v4 question has been answered about this 3904 * ill. The creation of this ndd variable is only for backwards compatibility. 3905 * The preferred way to control per-interface IP forwarding is through the 3906 * ILLF_ROUTER interface flag. 3907 */ 3908 static int 3909 ill_set_ndd_name(ill_t *ill) 3910 { 3911 char *suffix; 3912 3913 ASSERT(IAM_WRITER_ILL(ill)); 3914 3915 if (ill->ill_isv6) 3916 suffix = ipv6_forward_suffix; 3917 else 3918 suffix = ipv4_forward_suffix; 3919 3920 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3921 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3922 /* 3923 * Copies over the '\0'. 3924 * Note that strlen(suffix) is always bounded. 3925 */ 3926 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3927 strlen(suffix) + 1); 3928 3929 /* 3930 * Use of the nd table requires holding the reader lock. 3931 * Modifying the nd table thru nd_load/nd_unload requires 3932 * the writer lock. 3933 */ 3934 rw_enter(&ip_g_nd_lock, RW_WRITER); 3935 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3936 nd_ill_forward_set, (caddr_t)ill)) { 3937 /* 3938 * If the nd_load failed, it only meant that it could not 3939 * allocate a new bunch of room for further NDD expansion. 3940 * Because of that, the ill_ndd_name will be set to 0, and 3941 * this interface is at the mercy of the global ip_forwarding 3942 * variable. 3943 */ 3944 rw_exit(&ip_g_nd_lock); 3945 ill->ill_ndd_name = NULL; 3946 return (ENOMEM); 3947 } 3948 rw_exit(&ip_g_nd_lock); 3949 return (0); 3950 } 3951 3952 /* 3953 * Intializes the context structure and returns the first ill in the list 3954 * cuurently start_list and end_list can have values: 3955 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3956 * IP_V4_G_HEAD Traverse IPV4 list only. 3957 * IP_V6_G_HEAD Traverse IPV6 list only. 3958 */ 3959 3960 /* 3961 * We don't check for CONDEMNED ills here. Caller must do that if 3962 * necessary under the ill lock. 3963 */ 3964 ill_t * 3965 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3966 { 3967 ill_if_t *ifp; 3968 ill_t *ill; 3969 avl_tree_t *avl_tree; 3970 3971 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3972 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3973 3974 /* 3975 * setup the lists to search 3976 */ 3977 if (end_list != MAX_G_HEADS) { 3978 ctx->ctx_current_list = start_list; 3979 ctx->ctx_last_list = end_list; 3980 } else { 3981 ctx->ctx_last_list = MAX_G_HEADS - 1; 3982 ctx->ctx_current_list = 0; 3983 } 3984 3985 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3986 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3987 if (ifp != (ill_if_t *) 3988 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3989 avl_tree = &ifp->illif_avl_by_ppa; 3990 ill = avl_first(avl_tree); 3991 /* 3992 * ill is guaranteed to be non NULL or ifp should have 3993 * not existed. 3994 */ 3995 ASSERT(ill != NULL); 3996 return (ill); 3997 } 3998 ctx->ctx_current_list++; 3999 } 4000 4001 return (NULL); 4002 } 4003 4004 /* 4005 * returns the next ill in the list. ill_first() must have been called 4006 * before calling ill_next() or bad things will happen. 4007 */ 4008 4009 /* 4010 * We don't check for CONDEMNED ills here. Caller must do that if 4011 * necessary under the ill lock. 4012 */ 4013 ill_t * 4014 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4015 { 4016 ill_if_t *ifp; 4017 ill_t *ill; 4018 4019 4020 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4021 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4022 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4023 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4024 AVL_AFTER)) != NULL) { 4025 return (ill); 4026 } 4027 4028 /* goto next ill_ifp in the list. */ 4029 ifp = lastill->ill_ifptr->illif_next; 4030 4031 /* make sure not at end of circular list */ 4032 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4033 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4034 return (NULL); 4035 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4036 } 4037 4038 return (avl_first(&ifp->illif_avl_by_ppa)); 4039 } 4040 4041 /* 4042 * Check interface name for correct format which is name+ppa. 4043 * name can contain characters and digits, the right most digits 4044 * make up the ppa number. use of octal is not allowed, name must contain 4045 * a ppa, return pointer to the start of ppa. 4046 * In case of error return NULL. 4047 */ 4048 static char * 4049 ill_get_ppa_ptr(char *name) 4050 { 4051 int namelen = mi_strlen(name); 4052 4053 int len = namelen; 4054 4055 name += len; 4056 while (len > 0) { 4057 name--; 4058 if (*name < '0' || *name > '9') 4059 break; 4060 len--; 4061 } 4062 4063 /* empty string, all digits, or no trailing digits */ 4064 if (len == 0 || len == (int)namelen) 4065 return (NULL); 4066 4067 name++; 4068 /* check for attempted use of octal */ 4069 if (*name == '0' && len != (int)namelen - 1) 4070 return (NULL); 4071 return (name); 4072 } 4073 4074 /* 4075 * use avl tree to locate the ill. 4076 */ 4077 static ill_t * 4078 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4079 ipsq_func_t func, int *error) 4080 { 4081 char *ppa_ptr = NULL; 4082 int len; 4083 uint_t ppa; 4084 ill_t *ill = NULL; 4085 ill_if_t *ifp; 4086 int list; 4087 ipsq_t *ipsq; 4088 4089 if (error != NULL) 4090 *error = 0; 4091 4092 /* 4093 * get ppa ptr 4094 */ 4095 if (isv6) 4096 list = IP_V6_G_HEAD; 4097 else 4098 list = IP_V4_G_HEAD; 4099 4100 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4101 if (error != NULL) 4102 *error = ENXIO; 4103 return (NULL); 4104 } 4105 4106 len = ppa_ptr - name + 1; 4107 4108 ppa = stoi(&ppa_ptr); 4109 4110 ifp = IP_VX_ILL_G_LIST(list); 4111 4112 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4113 /* 4114 * match is done on len - 1 as the name is not null 4115 * terminated it contains ppa in addition to the interface 4116 * name. 4117 */ 4118 if ((ifp->illif_name_len == len) && 4119 bcmp(ifp->illif_name, name, len - 1) == 0) { 4120 break; 4121 } else { 4122 ifp = ifp->illif_next; 4123 } 4124 } 4125 4126 4127 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4128 /* 4129 * Even the interface type does not exist. 4130 */ 4131 if (error != NULL) 4132 *error = ENXIO; 4133 return (NULL); 4134 } 4135 4136 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4137 if (ill != NULL) { 4138 /* 4139 * The block comment at the start of ipif_down 4140 * explains the use of the macros used below 4141 */ 4142 GRAB_CONN_LOCK(q); 4143 mutex_enter(&ill->ill_lock); 4144 if (ILL_CAN_LOOKUP(ill)) { 4145 ill_refhold_locked(ill); 4146 mutex_exit(&ill->ill_lock); 4147 RELEASE_CONN_LOCK(q); 4148 return (ill); 4149 } else if (ILL_CAN_WAIT(ill, q)) { 4150 ipsq = ill->ill_phyint->phyint_ipsq; 4151 mutex_enter(&ipsq->ipsq_lock); 4152 mutex_exit(&ill->ill_lock); 4153 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4154 mutex_exit(&ipsq->ipsq_lock); 4155 RELEASE_CONN_LOCK(q); 4156 *error = EINPROGRESS; 4157 return (NULL); 4158 } 4159 mutex_exit(&ill->ill_lock); 4160 RELEASE_CONN_LOCK(q); 4161 } 4162 if (error != NULL) 4163 *error = ENXIO; 4164 return (NULL); 4165 } 4166 4167 /* 4168 * comparison function for use with avl. 4169 */ 4170 static int 4171 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4172 { 4173 uint_t ppa; 4174 uint_t ill_ppa; 4175 4176 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4177 4178 ppa = *((uint_t *)ppa_ptr); 4179 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4180 /* 4181 * We want the ill with the lowest ppa to be on the 4182 * top. 4183 */ 4184 if (ill_ppa < ppa) 4185 return (1); 4186 if (ill_ppa > ppa) 4187 return (-1); 4188 return (0); 4189 } 4190 4191 /* 4192 * remove an interface type from the global list. 4193 */ 4194 static void 4195 ill_delete_interface_type(ill_if_t *interface) 4196 { 4197 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4198 4199 ASSERT(interface != NULL); 4200 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4201 4202 avl_destroy(&interface->illif_avl_by_ppa); 4203 if (interface->illif_ppa_arena != NULL) 4204 vmem_destroy(interface->illif_ppa_arena); 4205 4206 remque(interface); 4207 4208 mi_free(interface); 4209 } 4210 4211 /* Defined in ip_netinfo.c */ 4212 extern ddi_taskq_t *eventq_queue_nic; 4213 4214 /* 4215 * remove ill from the global list. 4216 */ 4217 static void 4218 ill_glist_delete(ill_t *ill) 4219 { 4220 char *nicname; 4221 size_t nicnamelen; 4222 hook_nic_event_t *info; 4223 4224 if (ill == NULL) 4225 return; 4226 4227 rw_enter(&ill_g_lock, RW_WRITER); 4228 4229 if (ill->ill_name != NULL) { 4230 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4231 if (nicname != NULL) { 4232 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4233 nicnamelen = ill->ill_name_length; 4234 } 4235 } else { 4236 nicname = NULL; 4237 nicnamelen = 0; 4238 } 4239 4240 /* 4241 * If the ill was never inserted into the AVL tree 4242 * we skip the if branch. 4243 */ 4244 if (ill->ill_ifptr != NULL) { 4245 /* 4246 * remove from AVL tree and free ppa number 4247 */ 4248 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4249 4250 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4251 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4252 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4253 } 4254 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4255 ill_delete_interface_type(ill->ill_ifptr); 4256 } 4257 4258 /* 4259 * Indicate ill is no longer in the list. 4260 */ 4261 ill->ill_ifptr = NULL; 4262 ill->ill_name_length = 0; 4263 ill->ill_name[0] = '\0'; 4264 ill->ill_ppa = UINT_MAX; 4265 } 4266 4267 /* 4268 * Run the unplumb hook after the NIC has disappeared from being 4269 * visible so that attempts to revalidate its existance will fail. 4270 * 4271 * This needs to be run inside the ill_g_lock perimeter to ensure 4272 * that the ordering of delivered events to listeners matches the 4273 * order of them in the kernel. 4274 */ 4275 if ((info = ill->ill_nic_event_info) != NULL) { 4276 if (info->hne_event != NE_DOWN) { 4277 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4278 "attached for %s\n", info->hne_event, 4279 ill->ill_name)); 4280 if (info->hne_data != NULL) 4281 kmem_free(info->hne_data, info->hne_datalen); 4282 kmem_free(info, sizeof (hook_nic_event_t)); 4283 } else { 4284 if (ddi_taskq_dispatch(eventq_queue_nic, 4285 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4286 == DDI_FAILURE) { 4287 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4288 "failed\n")); 4289 if (info->hne_data != NULL) 4290 kmem_free(info->hne_data, 4291 info->hne_datalen); 4292 kmem_free(info, sizeof (hook_nic_event_t)); 4293 } 4294 } 4295 } 4296 4297 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4298 if (info != NULL) { 4299 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4300 info->hne_lif = 0; 4301 info->hne_event = NE_UNPLUMB; 4302 info->hne_data = nicname; 4303 info->hne_datalen = nicnamelen; 4304 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 4305 } else { 4306 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4307 "information for %s (ENOMEM)\n", ill->ill_name)); 4308 if (nicname != NULL) 4309 kmem_free(nicname, nicnamelen); 4310 } 4311 4312 ill->ill_nic_event_info = info; 4313 4314 ill_phyint_free(ill); 4315 4316 rw_exit(&ill_g_lock); 4317 } 4318 4319 /* 4320 * allocate a ppa, if the number of plumbed interfaces of this type are 4321 * less than ill_no_arena do a linear search to find a unused ppa. 4322 * When the number goes beyond ill_no_arena switch to using an arena. 4323 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4324 * is the return value for an error condition, so allocation starts at one 4325 * and is decremented by one. 4326 */ 4327 static int 4328 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4329 { 4330 ill_t *tmp_ill; 4331 uint_t start, end; 4332 int ppa; 4333 4334 if (ifp->illif_ppa_arena == NULL && 4335 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4336 /* 4337 * Create an arena. 4338 */ 4339 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4340 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4341 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4342 /* allocate what has already been assigned */ 4343 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4344 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4345 tmp_ill, AVL_AFTER)) { 4346 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4347 1, /* size */ 4348 1, /* align/quantum */ 4349 0, /* phase */ 4350 0, /* nocross */ 4351 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4352 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4353 VM_NOSLEEP|VM_FIRSTFIT); 4354 if (ppa == 0) { 4355 ip1dbg(("ill_alloc_ppa: ppa allocation" 4356 " failed while switching")); 4357 vmem_destroy(ifp->illif_ppa_arena); 4358 ifp->illif_ppa_arena = NULL; 4359 break; 4360 } 4361 } 4362 } 4363 4364 if (ifp->illif_ppa_arena != NULL) { 4365 if (ill->ill_ppa == UINT_MAX) { 4366 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4367 1, VM_NOSLEEP|VM_FIRSTFIT); 4368 if (ppa == 0) 4369 return (EAGAIN); 4370 ill->ill_ppa = --ppa; 4371 } else { 4372 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4373 1, /* size */ 4374 1, /* align/quantum */ 4375 0, /* phase */ 4376 0, /* nocross */ 4377 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4378 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4379 VM_NOSLEEP|VM_FIRSTFIT); 4380 /* 4381 * Most likely the allocation failed because 4382 * the requested ppa was in use. 4383 */ 4384 if (ppa == 0) 4385 return (EEXIST); 4386 } 4387 return (0); 4388 } 4389 4390 /* 4391 * No arena is in use and not enough (>ill_no_arena) interfaces have 4392 * been plumbed to create one. Do a linear search to get a unused ppa. 4393 */ 4394 if (ill->ill_ppa == UINT_MAX) { 4395 end = UINT_MAX - 1; 4396 start = 0; 4397 } else { 4398 end = start = ill->ill_ppa; 4399 } 4400 4401 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4402 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4403 if (start++ >= end) { 4404 if (ill->ill_ppa == UINT_MAX) 4405 return (EAGAIN); 4406 else 4407 return (EEXIST); 4408 } 4409 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4410 } 4411 ill->ill_ppa = start; 4412 return (0); 4413 } 4414 4415 /* 4416 * Insert ill into the list of configured ill's. Once this function completes, 4417 * the ill is globally visible and is available through lookups. More precisely 4418 * this happens after the caller drops the ill_g_lock. 4419 */ 4420 static int 4421 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4422 { 4423 ill_if_t *ill_interface; 4424 avl_index_t where = 0; 4425 int error; 4426 int name_length; 4427 int index; 4428 boolean_t check_length = B_FALSE; 4429 4430 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4431 4432 name_length = mi_strlen(name) + 1; 4433 4434 if (isv6) 4435 index = IP_V6_G_HEAD; 4436 else 4437 index = IP_V4_G_HEAD; 4438 4439 ill_interface = IP_VX_ILL_G_LIST(index); 4440 /* 4441 * Search for interface type based on name 4442 */ 4443 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4444 if ((ill_interface->illif_name_len == name_length) && 4445 (strcmp(ill_interface->illif_name, name) == 0)) { 4446 break; 4447 } 4448 ill_interface = ill_interface->illif_next; 4449 } 4450 4451 /* 4452 * Interface type not found, create one. 4453 */ 4454 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4455 4456 ill_g_head_t ghead; 4457 4458 /* 4459 * allocate ill_if_t structure 4460 */ 4461 4462 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4463 if (ill_interface == NULL) { 4464 return (ENOMEM); 4465 } 4466 4467 4468 4469 (void) strcpy(ill_interface->illif_name, name); 4470 ill_interface->illif_name_len = name_length; 4471 4472 avl_create(&ill_interface->illif_avl_by_ppa, 4473 ill_compare_ppa, sizeof (ill_t), 4474 offsetof(struct ill_s, ill_avl_byppa)); 4475 4476 /* 4477 * link the structure in the back to maintain order 4478 * of configuration for ifconfig output. 4479 */ 4480 ghead = ill_g_heads[index]; 4481 insque(ill_interface, ghead.ill_g_list_tail); 4482 4483 } 4484 4485 if (ill->ill_ppa == UINT_MAX) 4486 check_length = B_TRUE; 4487 4488 error = ill_alloc_ppa(ill_interface, ill); 4489 if (error != 0) { 4490 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4491 ill_delete_interface_type(ill->ill_ifptr); 4492 return (error); 4493 } 4494 4495 /* 4496 * When the ppa is choosen by the system, check that there is 4497 * enough space to insert ppa. if a specific ppa was passed in this 4498 * check is not required as the interface name passed in will have 4499 * the right ppa in it. 4500 */ 4501 if (check_length) { 4502 /* 4503 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4504 */ 4505 char buf[sizeof (uint_t) * 3]; 4506 4507 /* 4508 * convert ppa to string to calculate the amount of space 4509 * required for it in the name. 4510 */ 4511 numtos(ill->ill_ppa, buf); 4512 4513 /* Do we have enough space to insert ppa ? */ 4514 4515 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4516 /* Free ppa and interface type struct */ 4517 if (ill_interface->illif_ppa_arena != NULL) { 4518 vmem_free(ill_interface->illif_ppa_arena, 4519 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4520 } 4521 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4522 0) { 4523 ill_delete_interface_type(ill->ill_ifptr); 4524 } 4525 4526 return (EINVAL); 4527 } 4528 } 4529 4530 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4531 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4532 4533 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4534 &where); 4535 ill->ill_ifptr = ill_interface; 4536 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4537 4538 ill_phyint_reinit(ill); 4539 return (0); 4540 } 4541 4542 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4543 static boolean_t 4544 ipsq_init(ill_t *ill) 4545 { 4546 ipsq_t *ipsq; 4547 4548 /* Init the ipsq and impicitly enter as writer */ 4549 ill->ill_phyint->phyint_ipsq = 4550 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4551 if (ill->ill_phyint->phyint_ipsq == NULL) 4552 return (B_FALSE); 4553 ipsq = ill->ill_phyint->phyint_ipsq; 4554 ipsq->ipsq_phyint_list = ill->ill_phyint; 4555 ill->ill_phyint->phyint_ipsq_next = NULL; 4556 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4557 ipsq->ipsq_refs = 1; 4558 ipsq->ipsq_writer = curthread; 4559 ipsq->ipsq_reentry_cnt = 1; 4560 #ifdef ILL_DEBUG 4561 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4562 #endif 4563 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4564 return (B_TRUE); 4565 } 4566 4567 /* 4568 * ill_init is called by ip_open when a device control stream is opened. 4569 * It does a few initializations, and shoots a DL_INFO_REQ message down 4570 * to the driver. The response is later picked up in ip_rput_dlpi and 4571 * used to set up default mechanisms for talking to the driver. (Always 4572 * called as writer.) 4573 * 4574 * If this function returns error, ip_open will call ip_close which in 4575 * turn will call ill_delete to clean up any memory allocated here that 4576 * is not yet freed. 4577 */ 4578 int 4579 ill_init(queue_t *q, ill_t *ill) 4580 { 4581 int count; 4582 dl_info_req_t *dlir; 4583 mblk_t *info_mp; 4584 uchar_t *frag_ptr; 4585 4586 /* 4587 * The ill is initialized to zero by mi_alloc*(). In addition 4588 * some fields already contain valid values, initialized in 4589 * ip_open(), before we reach here. 4590 */ 4591 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4592 4593 ill->ill_rq = q; 4594 ill->ill_wq = WR(q); 4595 4596 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4597 BPRI_HI); 4598 if (info_mp == NULL) 4599 return (ENOMEM); 4600 4601 /* 4602 * Allocate sufficient space to contain our fragment hash table and 4603 * the device name. 4604 */ 4605 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4606 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4607 if (frag_ptr == NULL) { 4608 freemsg(info_mp); 4609 return (ENOMEM); 4610 } 4611 ill->ill_frag_ptr = frag_ptr; 4612 ill->ill_frag_free_num_pkts = 0; 4613 ill->ill_last_frag_clean_time = 0; 4614 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4615 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4616 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4617 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4618 NULL, MUTEX_DEFAULT, NULL); 4619 } 4620 4621 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4622 if (ill->ill_phyint == NULL) { 4623 freemsg(info_mp); 4624 mi_free(frag_ptr); 4625 return (ENOMEM); 4626 } 4627 4628 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4629 /* 4630 * For now pretend this is a v4 ill. We need to set phyint_ill* 4631 * at this point because of the following reason. If we can't 4632 * enter the ipsq at some point and cv_wait, the writer that 4633 * wakes us up tries to locate us using the list of all phyints 4634 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4635 * If we don't set it now, we risk a missed wakeup. 4636 */ 4637 ill->ill_phyint->phyint_illv4 = ill; 4638 ill->ill_ppa = UINT_MAX; 4639 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4640 4641 if (!ipsq_init(ill)) { 4642 freemsg(info_mp); 4643 mi_free(frag_ptr); 4644 mi_free(ill->ill_phyint); 4645 return (ENOMEM); 4646 } 4647 4648 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4649 4650 4651 /* Frag queue limit stuff */ 4652 ill->ill_frag_count = 0; 4653 ill->ill_ipf_gen = 0; 4654 4655 ill->ill_global_timer = INFINITY; 4656 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4657 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4658 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4659 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4660 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4661 4662 /* 4663 * Initialize IPv6 configuration variables. The IP module is always 4664 * opened as an IPv4 module. Instead tracking down the cases where 4665 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4666 * here for convenience, this has no effect until the ill is set to do 4667 * IPv6. 4668 */ 4669 ill->ill_reachable_time = ND_REACHABLE_TIME; 4670 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4671 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4672 ill->ill_max_buf = ND_MAX_Q; 4673 ill->ill_refcnt = 0; 4674 4675 /* Send down the Info Request to the driver. */ 4676 info_mp->b_datap->db_type = M_PCPROTO; 4677 dlir = (dl_info_req_t *)info_mp->b_rptr; 4678 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4679 dlir->dl_primitive = DL_INFO_REQ; 4680 4681 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4682 4683 qprocson(q); 4684 ill_dlpi_send(ill, info_mp); 4685 4686 return (0); 4687 } 4688 4689 /* 4690 * ill_dls_info 4691 * creates datalink socket info from the device. 4692 */ 4693 int 4694 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4695 { 4696 size_t length; 4697 ill_t *ill = ipif->ipif_ill; 4698 4699 sdl->sdl_family = AF_LINK; 4700 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4701 sdl->sdl_type = ipif->ipif_type; 4702 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4703 length = mi_strlen(sdl->sdl_data); 4704 ASSERT(length < 256); 4705 sdl->sdl_nlen = (uchar_t)length; 4706 sdl->sdl_alen = ill->ill_phys_addr_length; 4707 mutex_enter(&ill->ill_lock); 4708 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4709 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4710 ill->ill_phys_addr_length); 4711 } 4712 mutex_exit(&ill->ill_lock); 4713 sdl->sdl_slen = 0; 4714 return (sizeof (struct sockaddr_dl)); 4715 } 4716 4717 /* 4718 * ill_xarp_info 4719 * creates xarp info from the device. 4720 */ 4721 static int 4722 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4723 { 4724 sdl->sdl_family = AF_LINK; 4725 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4726 sdl->sdl_type = ill->ill_type; 4727 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4728 sizeof (sdl->sdl_data)); 4729 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4730 sdl->sdl_alen = ill->ill_phys_addr_length; 4731 sdl->sdl_slen = 0; 4732 return (sdl->sdl_nlen); 4733 } 4734 4735 static int 4736 loopback_kstat_update(kstat_t *ksp, int rw) 4737 { 4738 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4739 4740 if (rw == KSTAT_WRITE) 4741 return (EACCES); 4742 kn[0].value.ui32 = loopback_packets; 4743 kn[1].value.ui32 = loopback_packets; 4744 return (0); 4745 } 4746 4747 4748 /* 4749 * Has ifindex been plumbed already. 4750 */ 4751 static boolean_t 4752 phyint_exists(uint_t index) 4753 { 4754 phyint_t *phyi; 4755 4756 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4757 /* 4758 * Indexes are stored in the phyint - a common structure 4759 * to both IPv4 and IPv6. 4760 */ 4761 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4762 (void *) &index, NULL); 4763 return (phyi != NULL); 4764 } 4765 4766 /* 4767 * Assign a unique interface index for the phyint. 4768 */ 4769 static boolean_t 4770 phyint_assign_ifindex(phyint_t *phyi) 4771 { 4772 uint_t starting_index; 4773 4774 ASSERT(phyi->phyint_ifindex == 0); 4775 if (!ill_index_wrap) { 4776 phyi->phyint_ifindex = ill_index++; 4777 if (ill_index == 0) { 4778 /* Reached the uint_t limit Next time wrap */ 4779 ill_index_wrap = B_TRUE; 4780 } 4781 return (B_TRUE); 4782 } 4783 4784 /* 4785 * Start reusing unused indexes. Note that we hold the ill_g_lock 4786 * at this point and don't want to call any function that attempts 4787 * to get the lock again. 4788 */ 4789 starting_index = ill_index++; 4790 for (; ill_index != starting_index; ill_index++) { 4791 if (ill_index != 0 && !phyint_exists(ill_index)) { 4792 /* found unused index - use it */ 4793 phyi->phyint_ifindex = ill_index; 4794 return (B_TRUE); 4795 } 4796 } 4797 4798 /* 4799 * all interface indicies are inuse. 4800 */ 4801 return (B_FALSE); 4802 } 4803 4804 /* 4805 * Return a pointer to the ill which matches the supplied name. Note that 4806 * the ill name length includes the null termination character. (May be 4807 * called as writer.) 4808 * If do_alloc and the interface is "lo0" it will be automatically created. 4809 * Cannot bump up reference on condemned ills. So dup detect can't be done 4810 * using this func. 4811 */ 4812 ill_t * 4813 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4814 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4815 { 4816 ill_t *ill; 4817 ipif_t *ipif; 4818 kstat_named_t *kn; 4819 boolean_t isloopback; 4820 ipsq_t *old_ipsq; 4821 4822 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4823 4824 rw_enter(&ill_g_lock, RW_READER); 4825 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4826 rw_exit(&ill_g_lock); 4827 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4828 return (ill); 4829 4830 /* 4831 * Couldn't find it. Does this happen to be a lookup for the 4832 * loopback device and are we allowed to allocate it? 4833 */ 4834 if (!isloopback || !do_alloc) 4835 return (NULL); 4836 4837 rw_enter(&ill_g_lock, RW_WRITER); 4838 4839 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4840 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4841 rw_exit(&ill_g_lock); 4842 return (ill); 4843 } 4844 4845 /* Create the loopback device on demand */ 4846 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4847 sizeof (ipif_loopback_name), BPRI_MED)); 4848 if (ill == NULL) 4849 goto done; 4850 4851 *ill = ill_null; 4852 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4853 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4854 if (ill->ill_phyint == NULL) 4855 goto done; 4856 4857 if (isv6) 4858 ill->ill_phyint->phyint_illv6 = ill; 4859 else 4860 ill->ill_phyint->phyint_illv4 = ill; 4861 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4862 ill->ill_max_frag = IP_LOOPBACK_MTU; 4863 /* Add room for tcp+ip headers */ 4864 if (isv6) { 4865 ill->ill_isv6 = B_TRUE; 4866 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4867 if (!ill_allocate_mibs(ill)) 4868 goto done; 4869 } else { 4870 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4871 } 4872 ill->ill_max_mtu = ill->ill_max_frag; 4873 /* 4874 * ipif_loopback_name can't be pointed at directly because its used 4875 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4876 * from the glist, ill_glist_delete() sets the first character of 4877 * ill_name to '\0'. 4878 */ 4879 ill->ill_name = (char *)ill + sizeof (*ill); 4880 (void) strcpy(ill->ill_name, ipif_loopback_name); 4881 ill->ill_name_length = sizeof (ipif_loopback_name); 4882 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4883 4884 ill->ill_global_timer = INFINITY; 4885 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4886 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4887 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4888 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4889 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4890 4891 /* No resolver here. */ 4892 ill->ill_net_type = IRE_LOOPBACK; 4893 4894 /* Initialize the ipsq */ 4895 if (!ipsq_init(ill)) 4896 goto done; 4897 4898 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4899 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4900 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4901 #ifdef ILL_DEBUG 4902 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4903 #endif 4904 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4905 if (ipif == NULL) 4906 goto done; 4907 4908 ill->ill_flags = ILLF_MULTICAST; 4909 4910 /* Set up default loopback address and mask. */ 4911 if (!isv6) { 4912 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4913 4914 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4915 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4916 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4917 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4918 ipif->ipif_v6subnet); 4919 ill->ill_flags |= ILLF_IPV4; 4920 } else { 4921 ipif->ipif_v6lcl_addr = ipv6_loopback; 4922 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4923 ipif->ipif_v6net_mask = ipv6_all_ones; 4924 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4925 ipif->ipif_v6subnet); 4926 ill->ill_flags |= ILLF_IPV6; 4927 } 4928 4929 /* 4930 * Chain us in at the end of the ill list. hold the ill 4931 * before we make it globally visible. 1 for the lookup. 4932 */ 4933 ill->ill_refcnt = 0; 4934 ill_refhold(ill); 4935 4936 ill->ill_frag_count = 0; 4937 ill->ill_frag_free_num_pkts = 0; 4938 ill->ill_last_frag_clean_time = 0; 4939 4940 old_ipsq = ill->ill_phyint->phyint_ipsq; 4941 4942 if (ill_glist_insert(ill, "lo", isv6) != 0) 4943 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4944 4945 /* Let SCTP know so that it can add this to its list */ 4946 sctp_update_ill(ill, SCTP_ILL_INSERT); 4947 4948 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4949 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4950 4951 /* 4952 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4953 */ 4954 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4955 /* Loopback ills aren't in any IPMP group */ 4956 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4957 ipsq_delete(old_ipsq); 4958 } 4959 4960 /* 4961 * Delay this till the ipif is allocated as ipif_allocate 4962 * de-references ill_phyint for getting the ifindex. We 4963 * can't do this before ipif_allocate because ill_phyint_reinit 4964 * -> phyint_assign_ifindex expects ipif to be present. 4965 */ 4966 mutex_enter(&ill->ill_phyint->phyint_lock); 4967 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4968 mutex_exit(&ill->ill_phyint->phyint_lock); 4969 4970 if (loopback_ksp == NULL) { 4971 /* Export loopback interface statistics */ 4972 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4973 KSTAT_TYPE_NAMED, 2, 0); 4974 if (loopback_ksp != NULL) { 4975 loopback_ksp->ks_update = loopback_kstat_update; 4976 kn = KSTAT_NAMED_PTR(loopback_ksp); 4977 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4978 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4979 kstat_install(loopback_ksp); 4980 } 4981 } 4982 4983 if (error != NULL) 4984 *error = 0; 4985 *did_alloc = B_TRUE; 4986 rw_exit(&ill_g_lock); 4987 return (ill); 4988 done: 4989 if (ill != NULL) { 4990 if (ill->ill_phyint != NULL) { 4991 ipsq_t *ipsq; 4992 4993 ipsq = ill->ill_phyint->phyint_ipsq; 4994 if (ipsq != NULL) 4995 kmem_free(ipsq, sizeof (ipsq_t)); 4996 mi_free(ill->ill_phyint); 4997 } 4998 ill_free_mib(ill); 4999 mi_free(ill); 5000 } 5001 rw_exit(&ill_g_lock); 5002 if (error != NULL) 5003 *error = ENOMEM; 5004 return (NULL); 5005 } 5006 5007 /* 5008 * Return a pointer to the ill which matches the index and IP version type. 5009 */ 5010 ill_t * 5011 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5012 ipsq_func_t func, int *err) 5013 { 5014 ill_t *ill; 5015 ipsq_t *ipsq; 5016 phyint_t *phyi; 5017 5018 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5019 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5020 5021 if (err != NULL) 5022 *err = 0; 5023 5024 /* 5025 * Indexes are stored in the phyint - a common structure 5026 * to both IPv4 and IPv6. 5027 */ 5028 rw_enter(&ill_g_lock, RW_READER); 5029 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5030 (void *) &index, NULL); 5031 if (phyi != NULL) { 5032 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5033 if (ill != NULL) { 5034 /* 5035 * The block comment at the start of ipif_down 5036 * explains the use of the macros used below 5037 */ 5038 GRAB_CONN_LOCK(q); 5039 mutex_enter(&ill->ill_lock); 5040 if (ILL_CAN_LOOKUP(ill)) { 5041 ill_refhold_locked(ill); 5042 mutex_exit(&ill->ill_lock); 5043 RELEASE_CONN_LOCK(q); 5044 rw_exit(&ill_g_lock); 5045 return (ill); 5046 } else if (ILL_CAN_WAIT(ill, q)) { 5047 ipsq = ill->ill_phyint->phyint_ipsq; 5048 mutex_enter(&ipsq->ipsq_lock); 5049 rw_exit(&ill_g_lock); 5050 mutex_exit(&ill->ill_lock); 5051 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5052 mutex_exit(&ipsq->ipsq_lock); 5053 RELEASE_CONN_LOCK(q); 5054 *err = EINPROGRESS; 5055 return (NULL); 5056 } 5057 RELEASE_CONN_LOCK(q); 5058 mutex_exit(&ill->ill_lock); 5059 } 5060 } 5061 rw_exit(&ill_g_lock); 5062 if (err != NULL) 5063 *err = ENXIO; 5064 return (NULL); 5065 } 5066 5067 /* 5068 * Return the ifindex next in sequence after the passed in ifindex. 5069 * If there is no next ifindex for the given protocol, return 0. 5070 */ 5071 uint_t 5072 ill_get_next_ifindex(uint_t index, boolean_t isv6) 5073 { 5074 phyint_t *phyi; 5075 phyint_t *phyi_initial; 5076 uint_t ifindex; 5077 5078 rw_enter(&ill_g_lock, RW_READER); 5079 5080 if (index == 0) { 5081 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 5082 } else { 5083 phyi = phyi_initial = avl_find( 5084 &phyint_g_list.phyint_list_avl_by_index, 5085 (void *) &index, NULL); 5086 } 5087 5088 for (; phyi != NULL; 5089 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 5090 phyi, AVL_AFTER)) { 5091 /* 5092 * If we're not returning the first interface in the tree 5093 * and we still haven't moved past the phyint_t that 5094 * corresponds to index, avl_walk needs to be called again 5095 */ 5096 if (!((index != 0) && (phyi == phyi_initial))) { 5097 if (isv6) { 5098 if ((phyi->phyint_illv6) && 5099 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5100 (phyi->phyint_illv6->ill_isv6 == 1)) 5101 break; 5102 } else { 5103 if ((phyi->phyint_illv4) && 5104 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5105 (phyi->phyint_illv4->ill_isv6 == 0)) 5106 break; 5107 } 5108 } 5109 } 5110 5111 rw_exit(&ill_g_lock); 5112 5113 if (phyi != NULL) 5114 ifindex = phyi->phyint_ifindex; 5115 else 5116 ifindex = 0; 5117 5118 return (ifindex); 5119 } 5120 5121 5122 /* 5123 * Return the ifindex for the named interface. 5124 * If there is no next ifindex for the interface, return 0. 5125 */ 5126 uint_t 5127 ill_get_ifindex_by_name(char *name) 5128 { 5129 phyint_t *phyi; 5130 avl_index_t where = 0; 5131 uint_t ifindex; 5132 5133 rw_enter(&ill_g_lock, RW_READER); 5134 5135 if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 5136 name, &where)) == NULL) { 5137 rw_exit(&ill_g_lock); 5138 return (0); 5139 } 5140 5141 ifindex = phyi->phyint_ifindex; 5142 5143 rw_exit(&ill_g_lock); 5144 5145 return (ifindex); 5146 } 5147 5148 5149 /* 5150 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5151 * that gives a running thread a reference to the ill. This reference must be 5152 * released by the thread when it is done accessing the ill and related 5153 * objects. ill_refcnt can not be used to account for static references 5154 * such as other structures pointing to an ill. Callers must generally 5155 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5156 * or be sure that the ill is not being deleted or changing state before 5157 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5158 * ill won't change any of its critical state such as address, netmask etc. 5159 */ 5160 void 5161 ill_refhold(ill_t *ill) 5162 { 5163 mutex_enter(&ill->ill_lock); 5164 ill->ill_refcnt++; 5165 ILL_TRACE_REF(ill); 5166 mutex_exit(&ill->ill_lock); 5167 } 5168 5169 void 5170 ill_refhold_locked(ill_t *ill) 5171 { 5172 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5173 ill->ill_refcnt++; 5174 ILL_TRACE_REF(ill); 5175 } 5176 5177 int 5178 ill_check_and_refhold(ill_t *ill) 5179 { 5180 mutex_enter(&ill->ill_lock); 5181 if (ILL_CAN_LOOKUP(ill)) { 5182 ill_refhold_locked(ill); 5183 mutex_exit(&ill->ill_lock); 5184 return (0); 5185 } 5186 mutex_exit(&ill->ill_lock); 5187 return (ILL_LOOKUP_FAILED); 5188 } 5189 5190 /* 5191 * Must not be called while holding any locks. Otherwise if this is 5192 * the last reference to be released, there is a chance of recursive mutex 5193 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5194 * to restart an ioctl. 5195 */ 5196 void 5197 ill_refrele(ill_t *ill) 5198 { 5199 mutex_enter(&ill->ill_lock); 5200 ASSERT(ill->ill_refcnt != 0); 5201 ill->ill_refcnt--; 5202 ILL_UNTRACE_REF(ill); 5203 if (ill->ill_refcnt != 0) { 5204 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5205 mutex_exit(&ill->ill_lock); 5206 return; 5207 } 5208 5209 /* Drops the ill_lock */ 5210 ipif_ill_refrele_tail(ill); 5211 } 5212 5213 /* 5214 * Obtain a weak reference count on the ill. This reference ensures the 5215 * ill won't be freed, but the ill may change any of its critical state 5216 * such as netmask, address etc. Returns an error if the ill has started 5217 * closing. 5218 */ 5219 boolean_t 5220 ill_waiter_inc(ill_t *ill) 5221 { 5222 mutex_enter(&ill->ill_lock); 5223 if (ill->ill_state_flags & ILL_CONDEMNED) { 5224 mutex_exit(&ill->ill_lock); 5225 return (B_FALSE); 5226 } 5227 ill->ill_waiters++; 5228 mutex_exit(&ill->ill_lock); 5229 return (B_TRUE); 5230 } 5231 5232 void 5233 ill_waiter_dcr(ill_t *ill) 5234 { 5235 mutex_enter(&ill->ill_lock); 5236 ill->ill_waiters--; 5237 if (ill->ill_waiters == 0) 5238 cv_broadcast(&ill->ill_cv); 5239 mutex_exit(&ill->ill_lock); 5240 } 5241 5242 /* 5243 * Named Dispatch routine to produce a formatted report on all ILLs. 5244 * This report is accessed by using the ndd utility to "get" ND variable 5245 * "ip_ill_status". 5246 */ 5247 /* ARGSUSED */ 5248 int 5249 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5250 { 5251 ill_t *ill; 5252 ill_walk_context_t ctx; 5253 5254 (void) mi_mpprintf(mp, 5255 "ILL " MI_COL_HDRPAD_STR 5256 /* 01234567[89ABCDEF] */ 5257 "rq " MI_COL_HDRPAD_STR 5258 /* 01234567[89ABCDEF] */ 5259 "wq " MI_COL_HDRPAD_STR 5260 /* 01234567[89ABCDEF] */ 5261 "upcnt mxfrg err name"); 5262 /* 12345 12345 123 xxxxxxxx */ 5263 5264 rw_enter(&ill_g_lock, RW_READER); 5265 ill = ILL_START_WALK_ALL(&ctx); 5266 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5267 (void) mi_mpprintf(mp, 5268 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5269 "%05u %05u %03d %s", 5270 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5271 ill->ill_ipif_up_count, 5272 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5273 } 5274 rw_exit(&ill_g_lock); 5275 5276 return (0); 5277 } 5278 5279 /* 5280 * Named Dispatch routine to produce a formatted report on all IPIFs. 5281 * This report is accessed by using the ndd utility to "get" ND variable 5282 * "ip_ipif_status". 5283 */ 5284 /* ARGSUSED */ 5285 int 5286 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5287 { 5288 char buf1[INET6_ADDRSTRLEN]; 5289 char buf2[INET6_ADDRSTRLEN]; 5290 char buf3[INET6_ADDRSTRLEN]; 5291 char buf4[INET6_ADDRSTRLEN]; 5292 char buf5[INET6_ADDRSTRLEN]; 5293 char buf6[INET6_ADDRSTRLEN]; 5294 char buf[LIFNAMSIZ]; 5295 ill_t *ill; 5296 ipif_t *ipif; 5297 nv_t *nvp; 5298 uint64_t flags; 5299 zoneid_t zoneid; 5300 ill_walk_context_t ctx; 5301 5302 (void) mi_mpprintf(mp, 5303 "IPIF metric mtu in/out/forward name zone flags...\n" 5304 "\tlocal address\n" 5305 "\tsrc address\n" 5306 "\tsubnet\n" 5307 "\tmask\n" 5308 "\tbroadcast\n" 5309 "\tp-p-dst"); 5310 5311 ASSERT(q->q_next == NULL); 5312 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5313 5314 rw_enter(&ill_g_lock, RW_READER); 5315 ill = ILL_START_WALK_ALL(&ctx); 5316 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5317 for (ipif = ill->ill_ipif; ipif != NULL; 5318 ipif = ipif->ipif_next) { 5319 if (zoneid != GLOBAL_ZONEID && 5320 zoneid != ipif->ipif_zoneid && 5321 ipif->ipif_zoneid != ALL_ZONES) 5322 continue; 5323 (void) mi_mpprintf(mp, 5324 MI_COL_PTRFMT_STR 5325 "%04u %05u %u/%u/%u %s %d", 5326 (void *)ipif, 5327 ipif->ipif_metric, ipif->ipif_mtu, 5328 ipif->ipif_ib_pkt_count, 5329 ipif->ipif_ob_pkt_count, 5330 ipif->ipif_fo_pkt_count, 5331 ipif_get_name(ipif, buf, sizeof (buf)), 5332 ipif->ipif_zoneid); 5333 5334 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5335 ipif->ipif_ill->ill_phyint->phyint_flags; 5336 5337 /* Tack on text strings for any flags. */ 5338 nvp = ipif_nv_tbl; 5339 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5340 if (nvp->nv_value & flags) 5341 (void) mi_mpprintf_nr(mp, " %s", 5342 nvp->nv_name); 5343 } 5344 (void) mi_mpprintf(mp, 5345 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5346 inet_ntop(AF_INET6, 5347 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5348 inet_ntop(AF_INET6, 5349 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5350 inet_ntop(AF_INET6, 5351 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5352 inet_ntop(AF_INET6, 5353 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5354 inet_ntop(AF_INET6, 5355 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5356 inet_ntop(AF_INET6, 5357 &ipif->ipif_v6pp_dst_addr, 5358 buf6, sizeof (buf6))); 5359 } 5360 } 5361 rw_exit(&ill_g_lock); 5362 return (0); 5363 } 5364 5365 /* 5366 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5367 * driver. We construct best guess defaults for lower level information that 5368 * we need. If an interface is brought up without injection of any overriding 5369 * information from outside, we have to be ready to go with these defaults. 5370 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5371 * we primarely want the dl_provider_style. 5372 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5373 * at which point we assume the other part of the information is valid. 5374 */ 5375 void 5376 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5377 { 5378 uchar_t *brdcst_addr; 5379 uint_t brdcst_addr_length, phys_addr_length; 5380 t_scalar_t sap_length; 5381 dl_info_ack_t *dlia; 5382 ip_m_t *ipm; 5383 dl_qos_cl_sel1_t *sel1; 5384 5385 ASSERT(IAM_WRITER_ILL(ill)); 5386 5387 /* 5388 * Till the ill is fully up ILL_CHANGING will be set and 5389 * the ill is not globally visible. So no need for a lock. 5390 */ 5391 dlia = (dl_info_ack_t *)mp->b_rptr; 5392 ill->ill_mactype = dlia->dl_mac_type; 5393 5394 ipm = ip_m_lookup(dlia->dl_mac_type); 5395 if (ipm == NULL) { 5396 ipm = ip_m_lookup(DL_OTHER); 5397 ASSERT(ipm != NULL); 5398 } 5399 ill->ill_media = ipm; 5400 5401 /* 5402 * When the new DLPI stuff is ready we'll pull lengths 5403 * from dlia. 5404 */ 5405 if (dlia->dl_version == DL_VERSION_2) { 5406 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5407 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5408 brdcst_addr_length); 5409 if (brdcst_addr == NULL) { 5410 brdcst_addr_length = 0; 5411 } 5412 sap_length = dlia->dl_sap_length; 5413 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5414 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5415 brdcst_addr_length, sap_length, phys_addr_length)); 5416 } else { 5417 brdcst_addr_length = 6; 5418 brdcst_addr = ip_six_byte_all_ones; 5419 sap_length = -2; 5420 phys_addr_length = brdcst_addr_length; 5421 } 5422 5423 ill->ill_bcast_addr_length = brdcst_addr_length; 5424 ill->ill_phys_addr_length = phys_addr_length; 5425 ill->ill_sap_length = sap_length; 5426 ill->ill_max_frag = dlia->dl_max_sdu; 5427 ill->ill_max_mtu = ill->ill_max_frag; 5428 5429 ill->ill_type = ipm->ip_m_type; 5430 5431 if (!ill->ill_dlpi_style_set) { 5432 if (dlia->dl_provider_style == DL_STYLE2) 5433 ill->ill_needs_attach = 1; 5434 5435 /* 5436 * Allocate the first ipif on this ill. We don't delay it 5437 * further as ioctl handling assumes atleast one ipif to 5438 * be present. 5439 * 5440 * At this point we don't know whether the ill is v4 or v6. 5441 * We will know this whan the SIOCSLIFNAME happens and 5442 * the correct value for ill_isv6 will be assigned in 5443 * ipif_set_values(). We need to hold the ill lock and 5444 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5445 * the wakeup. 5446 */ 5447 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5448 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5449 mutex_enter(&ill->ill_lock); 5450 ASSERT(ill->ill_dlpi_style_set == 0); 5451 ill->ill_dlpi_style_set = 1; 5452 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5453 cv_broadcast(&ill->ill_cv); 5454 mutex_exit(&ill->ill_lock); 5455 freemsg(mp); 5456 return; 5457 } 5458 ASSERT(ill->ill_ipif != NULL); 5459 /* 5460 * We know whether it is IPv4 or IPv6 now, as this is the 5461 * second DL_INFO_ACK we are recieving in response to the 5462 * DL_INFO_REQ sent in ipif_set_values. 5463 */ 5464 if (ill->ill_isv6) 5465 ill->ill_sap = IP6_DL_SAP; 5466 else 5467 ill->ill_sap = IP_DL_SAP; 5468 /* 5469 * Set ipif_mtu which is used to set the IRE's 5470 * ire_max_frag value. The driver could have sent 5471 * a different mtu from what it sent last time. No 5472 * need to call ipif_mtu_change because IREs have 5473 * not yet been created. 5474 */ 5475 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5476 /* 5477 * Clear all the flags that were set based on ill_bcast_addr_length 5478 * and ill_phys_addr_length (in ipif_set_values) as these could have 5479 * changed now and we need to re-evaluate. 5480 */ 5481 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5482 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5483 5484 /* 5485 * Free ill_resolver_mp and ill_bcast_mp as things could have 5486 * changed now. 5487 */ 5488 if (ill->ill_bcast_addr_length == 0) { 5489 if (ill->ill_resolver_mp != NULL) 5490 freemsg(ill->ill_resolver_mp); 5491 if (ill->ill_bcast_mp != NULL) 5492 freemsg(ill->ill_bcast_mp); 5493 if (ill->ill_flags & ILLF_XRESOLV) 5494 ill->ill_net_type = IRE_IF_RESOLVER; 5495 else 5496 ill->ill_net_type = IRE_IF_NORESOLVER; 5497 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5498 ill->ill_phys_addr_length, 5499 ill->ill_sap, 5500 ill->ill_sap_length); 5501 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5502 5503 if (ill->ill_isv6) 5504 /* 5505 * Note: xresolv interfaces will eventually need NOARP 5506 * set here as well, but that will require those 5507 * external resolvers to have some knowledge of 5508 * that flag and act appropriately. Not to be changed 5509 * at present. 5510 */ 5511 ill->ill_flags |= ILLF_NONUD; 5512 else 5513 ill->ill_flags |= ILLF_NOARP; 5514 5515 if (ill->ill_phys_addr_length == 0) { 5516 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5517 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5518 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5519 } else { 5520 /* pt-pt supports multicast. */ 5521 ill->ill_flags |= ILLF_MULTICAST; 5522 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5523 } 5524 } 5525 } else { 5526 ill->ill_net_type = IRE_IF_RESOLVER; 5527 if (ill->ill_bcast_mp != NULL) 5528 freemsg(ill->ill_bcast_mp); 5529 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5530 ill->ill_bcast_addr_length, ill->ill_sap, 5531 ill->ill_sap_length); 5532 /* 5533 * Later detect lack of DLPI driver multicast 5534 * capability by catching DL_ENABMULTI errors in 5535 * ip_rput_dlpi. 5536 */ 5537 ill->ill_flags |= ILLF_MULTICAST; 5538 if (!ill->ill_isv6) 5539 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5540 } 5541 /* By default an interface does not support any CoS marking */ 5542 ill->ill_flags &= ~ILLF_COS_ENABLED; 5543 5544 /* 5545 * If we get QoS information in DL_INFO_ACK, the device supports 5546 * some form of CoS marking, set ILLF_COS_ENABLED. 5547 */ 5548 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5549 dlia->dl_qos_length); 5550 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5551 ill->ill_flags |= ILLF_COS_ENABLED; 5552 } 5553 5554 /* Clear any previous error indication. */ 5555 ill->ill_error = 0; 5556 freemsg(mp); 5557 } 5558 5559 /* 5560 * Perform various checks to verify that an address would make sense as a 5561 * local, remote, or subnet interface address. 5562 */ 5563 static boolean_t 5564 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5565 { 5566 ipaddr_t net_mask; 5567 5568 /* 5569 * Don't allow all zeroes, all ones or experimental address, but allow 5570 * all ones netmask. 5571 */ 5572 if ((net_mask = ip_net_mask(addr)) == 0) 5573 return (B_FALSE); 5574 /* A given netmask overrides the "guess" netmask */ 5575 if (subnet_mask != 0) 5576 net_mask = subnet_mask; 5577 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5578 (addr == (addr | ~net_mask)))) { 5579 return (B_FALSE); 5580 } 5581 if (CLASSD(addr)) 5582 return (B_FALSE); 5583 5584 return (B_TRUE); 5585 } 5586 5587 /* 5588 * ipif_lookup_group 5589 * Returns held ipif 5590 */ 5591 ipif_t * 5592 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5593 { 5594 ire_t *ire; 5595 ipif_t *ipif; 5596 5597 ire = ire_lookup_multi(group, zoneid); 5598 if (ire == NULL) 5599 return (NULL); 5600 ipif = ire->ire_ipif; 5601 ipif_refhold(ipif); 5602 ire_refrele(ire); 5603 return (ipif); 5604 } 5605 5606 /* 5607 * Look for an ipif with the specified interface address and destination. 5608 * The destination address is used only for matching point-to-point interfaces. 5609 */ 5610 ipif_t * 5611 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5612 ipsq_func_t func, int *error) 5613 { 5614 ipif_t *ipif; 5615 ill_t *ill; 5616 ill_walk_context_t ctx; 5617 ipsq_t *ipsq; 5618 5619 if (error != NULL) 5620 *error = 0; 5621 5622 /* 5623 * First match all the point-to-point interfaces 5624 * before looking at non-point-to-point interfaces. 5625 * This is done to avoid returning non-point-to-point 5626 * ipif instead of unnumbered point-to-point ipif. 5627 */ 5628 rw_enter(&ill_g_lock, RW_READER); 5629 ill = ILL_START_WALK_V4(&ctx); 5630 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5631 GRAB_CONN_LOCK(q); 5632 mutex_enter(&ill->ill_lock); 5633 for (ipif = ill->ill_ipif; ipif != NULL; 5634 ipif = ipif->ipif_next) { 5635 /* Allow the ipif to be down */ 5636 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5637 (ipif->ipif_lcl_addr == if_addr) && 5638 (ipif->ipif_pp_dst_addr == dst)) { 5639 /* 5640 * The block comment at the start of ipif_down 5641 * explains the use of the macros used below 5642 */ 5643 if (IPIF_CAN_LOOKUP(ipif)) { 5644 ipif_refhold_locked(ipif); 5645 mutex_exit(&ill->ill_lock); 5646 RELEASE_CONN_LOCK(q); 5647 rw_exit(&ill_g_lock); 5648 return (ipif); 5649 } else if (IPIF_CAN_WAIT(ipif, q)) { 5650 ipsq = ill->ill_phyint->phyint_ipsq; 5651 mutex_enter(&ipsq->ipsq_lock); 5652 mutex_exit(&ill->ill_lock); 5653 rw_exit(&ill_g_lock); 5654 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5655 ill); 5656 mutex_exit(&ipsq->ipsq_lock); 5657 RELEASE_CONN_LOCK(q); 5658 *error = EINPROGRESS; 5659 return (NULL); 5660 } 5661 } 5662 } 5663 mutex_exit(&ill->ill_lock); 5664 RELEASE_CONN_LOCK(q); 5665 } 5666 rw_exit(&ill_g_lock); 5667 5668 /* lookup the ipif based on interface address */ 5669 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5670 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5671 return (ipif); 5672 } 5673 5674 /* 5675 * Look for an ipif with the specified address. For point-point links 5676 * we look for matches on either the destination address and the local 5677 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5678 * is set. 5679 * Matches on a specific ill if match_ill is set. 5680 */ 5681 ipif_t * 5682 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5683 mblk_t *mp, ipsq_func_t func, int *error) 5684 { 5685 ipif_t *ipif; 5686 ill_t *ill; 5687 boolean_t ptp = B_FALSE; 5688 ipsq_t *ipsq; 5689 ill_walk_context_t ctx; 5690 5691 if (error != NULL) 5692 *error = 0; 5693 5694 rw_enter(&ill_g_lock, RW_READER); 5695 /* 5696 * Repeat twice, first based on local addresses and 5697 * next time for pointopoint. 5698 */ 5699 repeat: 5700 ill = ILL_START_WALK_V4(&ctx); 5701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5702 if (match_ill != NULL && ill != match_ill) { 5703 continue; 5704 } 5705 GRAB_CONN_LOCK(q); 5706 mutex_enter(&ill->ill_lock); 5707 for (ipif = ill->ill_ipif; ipif != NULL; 5708 ipif = ipif->ipif_next) { 5709 if (zoneid != ALL_ZONES && 5710 zoneid != ipif->ipif_zoneid && 5711 ipif->ipif_zoneid != ALL_ZONES) 5712 continue; 5713 /* Allow the ipif to be down */ 5714 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5715 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5716 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5717 (ipif->ipif_pp_dst_addr == addr))) { 5718 /* 5719 * The block comment at the start of ipif_down 5720 * explains the use of the macros used below 5721 */ 5722 if (IPIF_CAN_LOOKUP(ipif)) { 5723 ipif_refhold_locked(ipif); 5724 mutex_exit(&ill->ill_lock); 5725 RELEASE_CONN_LOCK(q); 5726 rw_exit(&ill_g_lock); 5727 return (ipif); 5728 } else if (IPIF_CAN_WAIT(ipif, q)) { 5729 ipsq = ill->ill_phyint->phyint_ipsq; 5730 mutex_enter(&ipsq->ipsq_lock); 5731 mutex_exit(&ill->ill_lock); 5732 rw_exit(&ill_g_lock); 5733 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5734 ill); 5735 mutex_exit(&ipsq->ipsq_lock); 5736 RELEASE_CONN_LOCK(q); 5737 *error = EINPROGRESS; 5738 return (NULL); 5739 } 5740 } 5741 } 5742 mutex_exit(&ill->ill_lock); 5743 RELEASE_CONN_LOCK(q); 5744 } 5745 5746 /* If we already did the ptp case, then we are done */ 5747 if (ptp) { 5748 rw_exit(&ill_g_lock); 5749 if (error != NULL) 5750 *error = ENXIO; 5751 return (NULL); 5752 } 5753 ptp = B_TRUE; 5754 goto repeat; 5755 } 5756 5757 /* 5758 * Look for an ipif with the specified address. For point-point links 5759 * we look for matches on either the destination address and the local 5760 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5761 * is set. 5762 * Matches on a specific ill if match_ill is set. 5763 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5764 */ 5765 zoneid_t 5766 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 5767 { 5768 zoneid_t zoneid; 5769 ipif_t *ipif; 5770 ill_t *ill; 5771 boolean_t ptp = B_FALSE; 5772 ill_walk_context_t ctx; 5773 5774 rw_enter(&ill_g_lock, RW_READER); 5775 /* 5776 * Repeat twice, first based on local addresses and 5777 * next time for pointopoint. 5778 */ 5779 repeat: 5780 ill = ILL_START_WALK_V4(&ctx); 5781 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5782 if (match_ill != NULL && ill != match_ill) { 5783 continue; 5784 } 5785 mutex_enter(&ill->ill_lock); 5786 for (ipif = ill->ill_ipif; ipif != NULL; 5787 ipif = ipif->ipif_next) { 5788 /* Allow the ipif to be down */ 5789 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5790 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5791 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5792 (ipif->ipif_pp_dst_addr == addr)) && 5793 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5794 zoneid = ipif->ipif_zoneid; 5795 mutex_exit(&ill->ill_lock); 5796 rw_exit(&ill_g_lock); 5797 /* 5798 * If ipif_zoneid was ALL_ZONES then we have 5799 * a trusted extensions shared IP address. 5800 * In that case GLOBAL_ZONEID works to send. 5801 */ 5802 if (zoneid == ALL_ZONES) 5803 zoneid = GLOBAL_ZONEID; 5804 return (zoneid); 5805 } 5806 } 5807 mutex_exit(&ill->ill_lock); 5808 } 5809 5810 /* If we already did the ptp case, then we are done */ 5811 if (ptp) { 5812 rw_exit(&ill_g_lock); 5813 return (ALL_ZONES); 5814 } 5815 ptp = B_TRUE; 5816 goto repeat; 5817 } 5818 5819 /* 5820 * Look for an ipif that matches the specified remote address i.e. the 5821 * ipif that would receive the specified packet. 5822 * First look for directly connected interfaces and then do a recursive 5823 * IRE lookup and pick the first ipif corresponding to the source address in the 5824 * ire. 5825 * Returns: held ipif 5826 */ 5827 ipif_t * 5828 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5829 { 5830 ipif_t *ipif; 5831 ire_t *ire; 5832 5833 ASSERT(!ill->ill_isv6); 5834 5835 /* 5836 * Someone could be changing this ipif currently or change it 5837 * after we return this. Thus a few packets could use the old 5838 * old values. However structure updates/creates (ire, ilg, ilm etc) 5839 * will atomically be updated or cleaned up with the new value 5840 * Thus we don't need a lock to check the flags or other attrs below. 5841 */ 5842 mutex_enter(&ill->ill_lock); 5843 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5844 if (!IPIF_CAN_LOOKUP(ipif)) 5845 continue; 5846 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5847 ipif->ipif_zoneid != ALL_ZONES) 5848 continue; 5849 /* Allow the ipif to be down */ 5850 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5851 if ((ipif->ipif_pp_dst_addr == addr) || 5852 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5853 ipif->ipif_lcl_addr == addr)) { 5854 ipif_refhold_locked(ipif); 5855 mutex_exit(&ill->ill_lock); 5856 return (ipif); 5857 } 5858 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5859 ipif_refhold_locked(ipif); 5860 mutex_exit(&ill->ill_lock); 5861 return (ipif); 5862 } 5863 } 5864 mutex_exit(&ill->ill_lock); 5865 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5866 NULL, MATCH_IRE_RECURSIVE); 5867 if (ire != NULL) { 5868 /* 5869 * The callers of this function wants to know the 5870 * interface on which they have to send the replies 5871 * back. For IRE_CACHES that have ire_stq and ire_ipif 5872 * derived from different ills, we really don't care 5873 * what we return here. 5874 */ 5875 ipif = ire->ire_ipif; 5876 if (ipif != NULL) { 5877 ipif_refhold(ipif); 5878 ire_refrele(ire); 5879 return (ipif); 5880 } 5881 ire_refrele(ire); 5882 } 5883 /* Pick the first interface */ 5884 ipif = ipif_get_next_ipif(NULL, ill); 5885 return (ipif); 5886 } 5887 5888 /* 5889 * This func does not prevent refcnt from increasing. But if 5890 * the caller has taken steps to that effect, then this func 5891 * can be used to determine whether the ill has become quiescent 5892 */ 5893 boolean_t 5894 ill_is_quiescent(ill_t *ill) 5895 { 5896 ipif_t *ipif; 5897 5898 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5899 5900 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5901 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5902 return (B_FALSE); 5903 } 5904 } 5905 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5906 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5907 ill->ill_mrtun_refcnt != 0) { 5908 return (B_FALSE); 5909 } 5910 return (B_TRUE); 5911 } 5912 5913 /* 5914 * This func does not prevent refcnt from increasing. But if 5915 * the caller has taken steps to that effect, then this func 5916 * can be used to determine whether the ipif has become quiescent 5917 */ 5918 static boolean_t 5919 ipif_is_quiescent(ipif_t *ipif) 5920 { 5921 ill_t *ill; 5922 5923 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5924 5925 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5926 return (B_FALSE); 5927 } 5928 5929 ill = ipif->ipif_ill; 5930 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 5931 ill->ill_logical_down) { 5932 return (B_TRUE); 5933 } 5934 5935 /* This is the last ipif going down or being deleted on this ill */ 5936 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 5937 return (B_FALSE); 5938 } 5939 5940 return (B_TRUE); 5941 } 5942 5943 /* 5944 * This func does not prevent refcnt from increasing. But if 5945 * the caller has taken steps to that effect, then this func 5946 * can be used to determine whether the ipifs marked with IPIF_MOVING 5947 * have become quiescent and can be moved in a failover/failback. 5948 */ 5949 static ipif_t * 5950 ill_quiescent_to_move(ill_t *ill) 5951 { 5952 ipif_t *ipif; 5953 5954 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5955 5956 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5957 if (ipif->ipif_state_flags & IPIF_MOVING) { 5958 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5959 return (ipif); 5960 } 5961 } 5962 } 5963 return (NULL); 5964 } 5965 5966 /* 5967 * The ipif/ill/ire has been refreled. Do the tail processing. 5968 * Determine if the ipif or ill in question has become quiescent and if so 5969 * wakeup close and/or restart any queued pending ioctl that is waiting 5970 * for the ipif_down (or ill_down) 5971 */ 5972 void 5973 ipif_ill_refrele_tail(ill_t *ill) 5974 { 5975 mblk_t *mp; 5976 conn_t *connp; 5977 ipsq_t *ipsq; 5978 ipif_t *ipif; 5979 5980 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5981 5982 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5983 ill_is_quiescent(ill)) { 5984 /* ill_close may be waiting */ 5985 cv_broadcast(&ill->ill_cv); 5986 } 5987 5988 /* ipsq can't change because ill_lock is held */ 5989 ipsq = ill->ill_phyint->phyint_ipsq; 5990 if (ipsq->ipsq_waitfor == 0) { 5991 /* Not waiting for anything, just return. */ 5992 mutex_exit(&ill->ill_lock); 5993 return; 5994 } 5995 ASSERT(ipsq->ipsq_pending_mp != NULL && 5996 ipsq->ipsq_pending_ipif != NULL); 5997 /* 5998 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5999 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6000 * be zero for restarting an ioctl that ends up downing the ill. 6001 */ 6002 ipif = ipsq->ipsq_pending_ipif; 6003 if (ipif->ipif_ill != ill) { 6004 /* The ioctl is pending on some other ill. */ 6005 mutex_exit(&ill->ill_lock); 6006 return; 6007 } 6008 6009 switch (ipsq->ipsq_waitfor) { 6010 case IPIF_DOWN: 6011 case IPIF_FREE: 6012 if (!ipif_is_quiescent(ipif)) { 6013 mutex_exit(&ill->ill_lock); 6014 return; 6015 } 6016 break; 6017 6018 case ILL_DOWN: 6019 case ILL_FREE: 6020 /* 6021 * case ILL_FREE arises only for loopback. otherwise ill_delete 6022 * waits synchronously in ip_close, and no message is queued in 6023 * ipsq_pending_mp at all in this case 6024 */ 6025 if (!ill_is_quiescent(ill)) { 6026 mutex_exit(&ill->ill_lock); 6027 return; 6028 } 6029 6030 break; 6031 6032 case ILL_MOVE_OK: 6033 if (ill_quiescent_to_move(ill) != NULL) { 6034 mutex_exit(&ill->ill_lock); 6035 return; 6036 } 6037 6038 break; 6039 default: 6040 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6041 (void *)ipsq, ipsq->ipsq_waitfor); 6042 } 6043 6044 /* 6045 * Incr refcnt for the qwriter_ip call below which 6046 * does a refrele 6047 */ 6048 ill_refhold_locked(ill); 6049 mutex_exit(&ill->ill_lock); 6050 6051 mp = ipsq_pending_mp_get(ipsq, &connp); 6052 ASSERT(mp != NULL); 6053 6054 switch (mp->b_datap->db_type) { 6055 case M_ERROR: 6056 case M_HANGUP: 6057 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 6058 ipif_all_down_tail, CUR_OP, B_TRUE); 6059 return; 6060 6061 case M_IOCTL: 6062 case M_IOCDATA: 6063 (void) qwriter_ip(NULL, ill, 6064 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 6065 ip_reprocess_ioctl, CUR_OP, B_TRUE); 6066 return; 6067 6068 default: 6069 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6070 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6071 } 6072 } 6073 6074 #ifdef ILL_DEBUG 6075 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6076 void 6077 th_trace_rrecord(th_trace_t *th_trace) 6078 { 6079 tr_buf_t *tr_buf; 6080 uint_t lastref; 6081 6082 lastref = th_trace->th_trace_lastref; 6083 lastref++; 6084 if (lastref == TR_BUF_MAX) 6085 lastref = 0; 6086 th_trace->th_trace_lastref = lastref; 6087 tr_buf = &th_trace->th_trbuf[lastref]; 6088 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6089 } 6090 6091 th_trace_t * 6092 th_trace_ipif_lookup(ipif_t *ipif) 6093 { 6094 int bucket_id; 6095 th_trace_t *th_trace; 6096 6097 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6098 6099 bucket_id = IP_TR_HASH(curthread); 6100 ASSERT(bucket_id < IP_TR_HASH_MAX); 6101 6102 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6103 th_trace = th_trace->th_next) { 6104 if (th_trace->th_id == curthread) 6105 return (th_trace); 6106 } 6107 return (NULL); 6108 } 6109 6110 void 6111 ipif_trace_ref(ipif_t *ipif) 6112 { 6113 int bucket_id; 6114 th_trace_t *th_trace; 6115 6116 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6117 6118 if (ipif->ipif_trace_disable) 6119 return; 6120 6121 /* 6122 * Attempt to locate the trace buffer for the curthread. 6123 * If it does not exist, then allocate a new trace buffer 6124 * and link it in list of trace bufs for this ipif, at the head 6125 */ 6126 th_trace = th_trace_ipif_lookup(ipif); 6127 if (th_trace == NULL) { 6128 bucket_id = IP_TR_HASH(curthread); 6129 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6130 KM_NOSLEEP); 6131 if (th_trace == NULL) { 6132 ipif->ipif_trace_disable = B_TRUE; 6133 ipif_trace_cleanup(ipif); 6134 return; 6135 } 6136 th_trace->th_id = curthread; 6137 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6138 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6139 if (th_trace->th_next != NULL) 6140 th_trace->th_next->th_prev = &th_trace->th_next; 6141 ipif->ipif_trace[bucket_id] = th_trace; 6142 } 6143 ASSERT(th_trace->th_refcnt >= 0 && 6144 th_trace->th_refcnt < TR_BUF_MAX -1); 6145 th_trace->th_refcnt++; 6146 th_trace_rrecord(th_trace); 6147 } 6148 6149 void 6150 ipif_untrace_ref(ipif_t *ipif) 6151 { 6152 th_trace_t *th_trace; 6153 6154 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6155 6156 if (ipif->ipif_trace_disable) 6157 return; 6158 th_trace = th_trace_ipif_lookup(ipif); 6159 ASSERT(th_trace != NULL); 6160 ASSERT(th_trace->th_refcnt > 0); 6161 6162 th_trace->th_refcnt--; 6163 th_trace_rrecord(th_trace); 6164 } 6165 6166 th_trace_t * 6167 th_trace_ill_lookup(ill_t *ill) 6168 { 6169 th_trace_t *th_trace; 6170 int bucket_id; 6171 6172 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6173 6174 bucket_id = IP_TR_HASH(curthread); 6175 ASSERT(bucket_id < IP_TR_HASH_MAX); 6176 6177 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6178 th_trace = th_trace->th_next) { 6179 if (th_trace->th_id == curthread) 6180 return (th_trace); 6181 } 6182 return (NULL); 6183 } 6184 6185 void 6186 ill_trace_ref(ill_t *ill) 6187 { 6188 int bucket_id; 6189 th_trace_t *th_trace; 6190 6191 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6192 if (ill->ill_trace_disable) 6193 return; 6194 /* 6195 * Attempt to locate the trace buffer for the curthread. 6196 * If it does not exist, then allocate a new trace buffer 6197 * and link it in list of trace bufs for this ill, at the head 6198 */ 6199 th_trace = th_trace_ill_lookup(ill); 6200 if (th_trace == NULL) { 6201 bucket_id = IP_TR_HASH(curthread); 6202 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6203 KM_NOSLEEP); 6204 if (th_trace == NULL) { 6205 ill->ill_trace_disable = B_TRUE; 6206 ill_trace_cleanup(ill); 6207 return; 6208 } 6209 th_trace->th_id = curthread; 6210 th_trace->th_next = ill->ill_trace[bucket_id]; 6211 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6212 if (th_trace->th_next != NULL) 6213 th_trace->th_next->th_prev = &th_trace->th_next; 6214 ill->ill_trace[bucket_id] = th_trace; 6215 } 6216 ASSERT(th_trace->th_refcnt >= 0 && 6217 th_trace->th_refcnt < TR_BUF_MAX - 1); 6218 6219 th_trace->th_refcnt++; 6220 th_trace_rrecord(th_trace); 6221 } 6222 6223 void 6224 ill_untrace_ref(ill_t *ill) 6225 { 6226 th_trace_t *th_trace; 6227 6228 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6229 6230 if (ill->ill_trace_disable) 6231 return; 6232 th_trace = th_trace_ill_lookup(ill); 6233 ASSERT(th_trace != NULL); 6234 ASSERT(th_trace->th_refcnt > 0); 6235 6236 th_trace->th_refcnt--; 6237 th_trace_rrecord(th_trace); 6238 } 6239 6240 /* 6241 * Verify that this thread has no refs to the ipif and free 6242 * the trace buffers 6243 */ 6244 /* ARGSUSED */ 6245 void 6246 ipif_thread_exit(ipif_t *ipif, void *dummy) 6247 { 6248 th_trace_t *th_trace; 6249 6250 mutex_enter(&ipif->ipif_ill->ill_lock); 6251 6252 th_trace = th_trace_ipif_lookup(ipif); 6253 if (th_trace == NULL) { 6254 mutex_exit(&ipif->ipif_ill->ill_lock); 6255 return; 6256 } 6257 ASSERT(th_trace->th_refcnt == 0); 6258 /* unlink th_trace and free it */ 6259 *th_trace->th_prev = th_trace->th_next; 6260 if (th_trace->th_next != NULL) 6261 th_trace->th_next->th_prev = th_trace->th_prev; 6262 th_trace->th_next = NULL; 6263 th_trace->th_prev = NULL; 6264 kmem_free(th_trace, sizeof (th_trace_t)); 6265 6266 mutex_exit(&ipif->ipif_ill->ill_lock); 6267 } 6268 6269 /* 6270 * Verify that this thread has no refs to the ill and free 6271 * the trace buffers 6272 */ 6273 /* ARGSUSED */ 6274 void 6275 ill_thread_exit(ill_t *ill, void *dummy) 6276 { 6277 th_trace_t *th_trace; 6278 6279 mutex_enter(&ill->ill_lock); 6280 6281 th_trace = th_trace_ill_lookup(ill); 6282 if (th_trace == NULL) { 6283 mutex_exit(&ill->ill_lock); 6284 return; 6285 } 6286 ASSERT(th_trace->th_refcnt == 0); 6287 /* unlink th_trace and free it */ 6288 *th_trace->th_prev = th_trace->th_next; 6289 if (th_trace->th_next != NULL) 6290 th_trace->th_next->th_prev = th_trace->th_prev; 6291 th_trace->th_next = NULL; 6292 th_trace->th_prev = NULL; 6293 kmem_free(th_trace, sizeof (th_trace_t)); 6294 6295 mutex_exit(&ill->ill_lock); 6296 } 6297 #endif 6298 6299 #ifdef ILL_DEBUG 6300 void 6301 ip_thread_exit(void) 6302 { 6303 ill_t *ill; 6304 ipif_t *ipif; 6305 ill_walk_context_t ctx; 6306 6307 rw_enter(&ill_g_lock, RW_READER); 6308 ill = ILL_START_WALK_ALL(&ctx); 6309 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6310 for (ipif = ill->ill_ipif; ipif != NULL; 6311 ipif = ipif->ipif_next) { 6312 ipif_thread_exit(ipif, NULL); 6313 } 6314 ill_thread_exit(ill, NULL); 6315 } 6316 rw_exit(&ill_g_lock); 6317 6318 ire_walk(ire_thread_exit, NULL); 6319 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6320 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6321 } 6322 6323 /* 6324 * Called when ipif is unplumbed or when memory alloc fails 6325 */ 6326 void 6327 ipif_trace_cleanup(ipif_t *ipif) 6328 { 6329 int i; 6330 th_trace_t *th_trace; 6331 th_trace_t *th_trace_next; 6332 6333 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6334 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6335 th_trace = th_trace_next) { 6336 th_trace_next = th_trace->th_next; 6337 kmem_free(th_trace, sizeof (th_trace_t)); 6338 } 6339 ipif->ipif_trace[i] = NULL; 6340 } 6341 } 6342 6343 /* 6344 * Called when ill is unplumbed or when memory alloc fails 6345 */ 6346 void 6347 ill_trace_cleanup(ill_t *ill) 6348 { 6349 int i; 6350 th_trace_t *th_trace; 6351 th_trace_t *th_trace_next; 6352 6353 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6354 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6355 th_trace = th_trace_next) { 6356 th_trace_next = th_trace->th_next; 6357 kmem_free(th_trace, sizeof (th_trace_t)); 6358 } 6359 ill->ill_trace[i] = NULL; 6360 } 6361 } 6362 6363 #else 6364 void ip_thread_exit(void) {} 6365 #endif 6366 6367 void 6368 ipif_refhold_locked(ipif_t *ipif) 6369 { 6370 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6371 ipif->ipif_refcnt++; 6372 IPIF_TRACE_REF(ipif); 6373 } 6374 6375 void 6376 ipif_refhold(ipif_t *ipif) 6377 { 6378 ill_t *ill; 6379 6380 ill = ipif->ipif_ill; 6381 mutex_enter(&ill->ill_lock); 6382 ipif->ipif_refcnt++; 6383 IPIF_TRACE_REF(ipif); 6384 mutex_exit(&ill->ill_lock); 6385 } 6386 6387 /* 6388 * Must not be called while holding any locks. Otherwise if this is 6389 * the last reference to be released there is a chance of recursive mutex 6390 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6391 * to restart an ioctl. 6392 */ 6393 void 6394 ipif_refrele(ipif_t *ipif) 6395 { 6396 ill_t *ill; 6397 6398 ill = ipif->ipif_ill; 6399 6400 mutex_enter(&ill->ill_lock); 6401 ASSERT(ipif->ipif_refcnt != 0); 6402 ipif->ipif_refcnt--; 6403 IPIF_UNTRACE_REF(ipif); 6404 if (ipif->ipif_refcnt != 0) { 6405 mutex_exit(&ill->ill_lock); 6406 return; 6407 } 6408 6409 /* Drops the ill_lock */ 6410 ipif_ill_refrele_tail(ill); 6411 } 6412 6413 ipif_t * 6414 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6415 { 6416 ipif_t *ipif; 6417 6418 mutex_enter(&ill->ill_lock); 6419 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6420 ipif != NULL; ipif = ipif->ipif_next) { 6421 if (!IPIF_CAN_LOOKUP(ipif)) 6422 continue; 6423 ipif_refhold_locked(ipif); 6424 mutex_exit(&ill->ill_lock); 6425 return (ipif); 6426 } 6427 mutex_exit(&ill->ill_lock); 6428 return (NULL); 6429 } 6430 6431 /* 6432 * TODO: make this table extendible at run time 6433 * Return a pointer to the mac type info for 'mac_type' 6434 */ 6435 static ip_m_t * 6436 ip_m_lookup(t_uscalar_t mac_type) 6437 { 6438 ip_m_t *ipm; 6439 6440 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6441 if (ipm->ip_m_mac_type == mac_type) 6442 return (ipm); 6443 return (NULL); 6444 } 6445 6446 /* 6447 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6448 * ipif_arg is passed in to associate it with the correct interface. 6449 * We may need to restart this operation if the ipif cannot be looked up 6450 * due to an exclusive operation that is currently in progress. The restart 6451 * entry point is specified by 'func' 6452 */ 6453 int 6454 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6455 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6456 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6457 ipsq_func_t func, struct rtsa_s *sp) 6458 { 6459 ire_t *ire; 6460 ire_t *gw_ire = NULL; 6461 ipif_t *ipif = NULL; 6462 boolean_t ipif_refheld = B_FALSE; 6463 uint_t type; 6464 int match_flags = MATCH_IRE_TYPE; 6465 int error; 6466 tsol_gc_t *gc = NULL; 6467 tsol_gcgrp_t *gcgrp = NULL; 6468 boolean_t gcgrp_xtraref = B_FALSE; 6469 6470 ip1dbg(("ip_rt_add:")); 6471 6472 if (ire_arg != NULL) 6473 *ire_arg = NULL; 6474 6475 /* 6476 * If this is the case of RTF_HOST being set, then we set the netmask 6477 * to all ones (regardless if one was supplied). 6478 */ 6479 if (flags & RTF_HOST) 6480 mask = IP_HOST_MASK; 6481 6482 /* 6483 * Prevent routes with a zero gateway from being created (since 6484 * interfaces can currently be plumbed and brought up no assigned 6485 * address). 6486 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6487 */ 6488 if (gw_addr == 0 && src_ipif == NULL) 6489 return (ENETUNREACH); 6490 /* 6491 * Get the ipif, if any, corresponding to the gw_addr 6492 */ 6493 if (gw_addr != 0) { 6494 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6495 &error); 6496 if (ipif != NULL) { 6497 if (IS_VNI(ipif->ipif_ill)) { 6498 ipif_refrele(ipif); 6499 return (EINVAL); 6500 } 6501 ipif_refheld = B_TRUE; 6502 } else if (error == EINPROGRESS) { 6503 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6504 return (EINPROGRESS); 6505 } else { 6506 error = 0; 6507 } 6508 } 6509 6510 if (ipif != NULL) { 6511 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6512 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6513 } else { 6514 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6515 } 6516 6517 /* 6518 * GateD will attempt to create routes with a loopback interface 6519 * address as the gateway and with RTF_GATEWAY set. We allow 6520 * these routes to be added, but create them as interface routes 6521 * since the gateway is an interface address. 6522 */ 6523 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6524 flags &= ~RTF_GATEWAY; 6525 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6526 mask == IP_HOST_MASK) { 6527 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6528 ALL_ZONES, NULL, match_flags); 6529 if (ire != NULL) { 6530 ire_refrele(ire); 6531 if (ipif_refheld) 6532 ipif_refrele(ipif); 6533 return (EEXIST); 6534 } 6535 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6536 "for 0x%x\n", (void *)ipif, 6537 ipif->ipif_ire_type, 6538 ntohl(ipif->ipif_lcl_addr))); 6539 ire = ire_create( 6540 (uchar_t *)&dst_addr, /* dest address */ 6541 (uchar_t *)&mask, /* mask */ 6542 (uchar_t *)&ipif->ipif_src_addr, 6543 NULL, /* no gateway */ 6544 NULL, 6545 &ipif->ipif_mtu, 6546 NULL, 6547 ipif->ipif_rq, /* recv-from queue */ 6548 NULL, /* no send-to queue */ 6549 ipif->ipif_ire_type, /* LOOPBACK */ 6550 NULL, 6551 ipif, 6552 NULL, 6553 0, 6554 0, 6555 0, 6556 (ipif->ipif_flags & IPIF_PRIVATE) ? 6557 RTF_PRIVATE : 0, 6558 &ire_uinfo_null, 6559 NULL, 6560 NULL); 6561 6562 if (ire == NULL) { 6563 if (ipif_refheld) 6564 ipif_refrele(ipif); 6565 return (ENOMEM); 6566 } 6567 error = ire_add(&ire, q, mp, func, B_FALSE); 6568 if (error == 0) 6569 goto save_ire; 6570 if (ipif_refheld) 6571 ipif_refrele(ipif); 6572 return (error); 6573 6574 } 6575 } 6576 6577 /* 6578 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6579 * and the gateway address provided is one of the system's interface 6580 * addresses. By using the routing socket interface and supplying an 6581 * RTA_IFP sockaddr with an interface index, an alternate method of 6582 * specifying an interface route to be created is available which uses 6583 * the interface index that specifies the outgoing interface rather than 6584 * the address of an outgoing interface (which may not be able to 6585 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6586 * flag, routes can be specified which not only specify the next-hop to 6587 * be used when routing to a certain prefix, but also which outgoing 6588 * interface should be used. 6589 * 6590 * Previously, interfaces would have unique addresses assigned to them 6591 * and so the address assigned to a particular interface could be used 6592 * to identify a particular interface. One exception to this was the 6593 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6594 * 6595 * With the advent of IPv6 and its link-local addresses, this 6596 * restriction was relaxed and interfaces could share addresses between 6597 * themselves. In fact, typically all of the link-local interfaces on 6598 * an IPv6 node or router will have the same link-local address. In 6599 * order to differentiate between these interfaces, the use of an 6600 * interface index is necessary and this index can be carried inside a 6601 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6602 * of using the interface index, however, is that all of the ipif's that 6603 * are part of an ill have the same index and so the RTA_IFP sockaddr 6604 * cannot be used to differentiate between ipif's (or logical 6605 * interfaces) that belong to the same ill (physical interface). 6606 * 6607 * For example, in the following case involving IPv4 interfaces and 6608 * logical interfaces 6609 * 6610 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6611 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6612 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6613 * 6614 * the ipif's corresponding to each of these interface routes can be 6615 * uniquely identified by the "gateway" (actually interface address). 6616 * 6617 * In this case involving multiple IPv6 default routes to a particular 6618 * link-local gateway, the use of RTA_IFP is necessary to specify which 6619 * default route is of interest: 6620 * 6621 * default fe80::123:4567:89ab:cdef U if0 6622 * default fe80::123:4567:89ab:cdef U if1 6623 */ 6624 6625 /* RTF_GATEWAY not set */ 6626 if (!(flags & RTF_GATEWAY)) { 6627 queue_t *stq; 6628 queue_t *rfq = NULL; 6629 ill_t *in_ill = NULL; 6630 6631 if (sp != NULL) { 6632 ip2dbg(("ip_rt_add: gateway security attributes " 6633 "cannot be set with interface route\n")); 6634 if (ipif_refheld) 6635 ipif_refrele(ipif); 6636 return (EINVAL); 6637 } 6638 6639 /* 6640 * As the interface index specified with the RTA_IFP sockaddr is 6641 * the same for all ipif's off of an ill, the matching logic 6642 * below uses MATCH_IRE_ILL if such an index was specified. 6643 * This means that routes sharing the same prefix when added 6644 * using a RTA_IFP sockaddr must have distinct interface 6645 * indices (namely, they must be on distinct ill's). 6646 * 6647 * On the other hand, since the gateway address will usually be 6648 * different for each ipif on the system, the matching logic 6649 * uses MATCH_IRE_IPIF in the case of a traditional interface 6650 * route. This means that interface routes for the same prefix 6651 * can be created if they belong to distinct ipif's and if a 6652 * RTA_IFP sockaddr is not present. 6653 */ 6654 if (ipif_arg != NULL) { 6655 if (ipif_refheld) { 6656 ipif_refrele(ipif); 6657 ipif_refheld = B_FALSE; 6658 } 6659 ipif = ipif_arg; 6660 match_flags |= MATCH_IRE_ILL; 6661 } else { 6662 /* 6663 * Check the ipif corresponding to the gw_addr 6664 */ 6665 if (ipif == NULL) 6666 return (ENETUNREACH); 6667 match_flags |= MATCH_IRE_IPIF; 6668 } 6669 ASSERT(ipif != NULL); 6670 /* 6671 * If src_ipif is not NULL, we have to create 6672 * an ire with non-null ire_in_ill value 6673 */ 6674 if (src_ipif != NULL) { 6675 in_ill = src_ipif->ipif_ill; 6676 } 6677 6678 /* 6679 * We check for an existing entry at this point. 6680 * 6681 * Since a netmask isn't passed in via the ioctl interface 6682 * (SIOCADDRT), we don't check for a matching netmask in that 6683 * case. 6684 */ 6685 if (!ioctl_msg) 6686 match_flags |= MATCH_IRE_MASK; 6687 if (src_ipif != NULL) { 6688 /* Look up in the special table */ 6689 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6690 ipif, src_ipif->ipif_ill, match_flags); 6691 } else { 6692 ire = ire_ftable_lookup(dst_addr, mask, 0, 6693 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6694 NULL, match_flags); 6695 } 6696 if (ire != NULL) { 6697 ire_refrele(ire); 6698 if (ipif_refheld) 6699 ipif_refrele(ipif); 6700 return (EEXIST); 6701 } 6702 6703 if (src_ipif != NULL) { 6704 /* 6705 * Create the special ire for the IRE table 6706 * which hangs out of ire_in_ill. This ire 6707 * is in-between IRE_CACHE and IRE_INTERFACE. 6708 * Thus rfq is non-NULL. 6709 */ 6710 rfq = ipif->ipif_rq; 6711 } 6712 /* Create the usual interface ires */ 6713 6714 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6715 ? ipif->ipif_rq : ipif->ipif_wq; 6716 6717 /* 6718 * Create a copy of the IRE_LOOPBACK, 6719 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6720 * the modified address and netmask. 6721 */ 6722 ire = ire_create( 6723 (uchar_t *)&dst_addr, 6724 (uint8_t *)&mask, 6725 (uint8_t *)&ipif->ipif_src_addr, 6726 NULL, 6727 NULL, 6728 &ipif->ipif_mtu, 6729 NULL, 6730 rfq, 6731 stq, 6732 ipif->ipif_net_type, 6733 ipif->ipif_resolver_mp, 6734 ipif, 6735 in_ill, 6736 0, 6737 0, 6738 0, 6739 flags, 6740 &ire_uinfo_null, 6741 NULL, 6742 NULL); 6743 if (ire == NULL) { 6744 if (ipif_refheld) 6745 ipif_refrele(ipif); 6746 return (ENOMEM); 6747 } 6748 6749 /* 6750 * Some software (for example, GateD and Sun Cluster) attempts 6751 * to create (what amount to) IRE_PREFIX routes with the 6752 * loopback address as the gateway. This is primarily done to 6753 * set up prefixes with the RTF_REJECT flag set (for example, 6754 * when generating aggregate routes.) 6755 * 6756 * If the IRE type (as defined by ipif->ipif_net_type) is 6757 * IRE_LOOPBACK, then we map the request into a 6758 * IRE_IF_NORESOLVER. 6759 * 6760 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6761 * routine, but rather using ire_create() directly. 6762 * 6763 */ 6764 if (ipif->ipif_net_type == IRE_LOOPBACK) 6765 ire->ire_type = IRE_IF_NORESOLVER; 6766 6767 error = ire_add(&ire, q, mp, func, B_FALSE); 6768 if (error == 0) 6769 goto save_ire; 6770 6771 /* 6772 * In the result of failure, ire_add() will have already 6773 * deleted the ire in question, so there is no need to 6774 * do that here. 6775 */ 6776 if (ipif_refheld) 6777 ipif_refrele(ipif); 6778 return (error); 6779 } 6780 if (ipif_refheld) { 6781 ipif_refrele(ipif); 6782 ipif_refheld = B_FALSE; 6783 } 6784 6785 if (src_ipif != NULL) { 6786 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6787 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6788 return (EINVAL); 6789 } 6790 /* 6791 * Get an interface IRE for the specified gateway. 6792 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6793 * gateway, it is currently unreachable and we fail the request 6794 * accordingly. 6795 */ 6796 ipif = ipif_arg; 6797 if (ipif_arg != NULL) 6798 match_flags |= MATCH_IRE_ILL; 6799 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6800 ALL_ZONES, 0, NULL, match_flags); 6801 if (gw_ire == NULL) 6802 return (ENETUNREACH); 6803 6804 /* 6805 * We create one of three types of IREs as a result of this request 6806 * based on the netmask. A netmask of all ones (which is automatically 6807 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6808 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6809 * created. Otherwise, an IRE_PREFIX route is created for the 6810 * destination prefix. 6811 */ 6812 if (mask == IP_HOST_MASK) 6813 type = IRE_HOST; 6814 else if (mask == 0) 6815 type = IRE_DEFAULT; 6816 else 6817 type = IRE_PREFIX; 6818 6819 /* check for a duplicate entry */ 6820 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6821 NULL, ALL_ZONES, 0, NULL, 6822 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6823 if (ire != NULL) { 6824 ire_refrele(gw_ire); 6825 ire_refrele(ire); 6826 return (EEXIST); 6827 } 6828 6829 /* Security attribute exists */ 6830 if (sp != NULL) { 6831 tsol_gcgrp_addr_t ga; 6832 6833 /* find or create the gateway credentials group */ 6834 ga.ga_af = AF_INET; 6835 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6836 6837 /* we hold reference to it upon success */ 6838 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6839 if (gcgrp == NULL) { 6840 ire_refrele(gw_ire); 6841 return (ENOMEM); 6842 } 6843 6844 /* 6845 * Create and add the security attribute to the group; a 6846 * reference to the group is made upon allocating a new 6847 * entry successfully. If it finds an already-existing 6848 * entry for the security attribute in the group, it simply 6849 * returns it and no new reference is made to the group. 6850 */ 6851 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6852 if (gc == NULL) { 6853 /* release reference held by gcgrp_lookup */ 6854 GCGRP_REFRELE(gcgrp); 6855 ire_refrele(gw_ire); 6856 return (ENOMEM); 6857 } 6858 } 6859 6860 /* Create the IRE. */ 6861 ire = ire_create( 6862 (uchar_t *)&dst_addr, /* dest address */ 6863 (uchar_t *)&mask, /* mask */ 6864 /* src address assigned by the caller? */ 6865 (uchar_t *)(((src_addr != INADDR_ANY) && 6866 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6867 (uchar_t *)&gw_addr, /* gateway address */ 6868 NULL, /* no in-srcaddress */ 6869 &gw_ire->ire_max_frag, 6870 NULL, /* no Fast Path header */ 6871 NULL, /* no recv-from queue */ 6872 NULL, /* no send-to queue */ 6873 (ushort_t)type, /* IRE type */ 6874 NULL, 6875 ipif_arg, 6876 NULL, 6877 0, 6878 0, 6879 0, 6880 flags, 6881 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6882 gc, /* security attribute */ 6883 NULL); 6884 /* 6885 * The ire holds a reference to the 'gc' and the 'gc' holds a 6886 * reference to the 'gcgrp'. We can now release the extra reference 6887 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6888 */ 6889 if (gcgrp_xtraref) 6890 GCGRP_REFRELE(gcgrp); 6891 if (ire == NULL) { 6892 if (gc != NULL) 6893 GC_REFRELE(gc); 6894 ire_refrele(gw_ire); 6895 return (ENOMEM); 6896 } 6897 6898 /* 6899 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6900 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6901 */ 6902 6903 /* Add the new IRE. */ 6904 error = ire_add(&ire, q, mp, func, B_FALSE); 6905 if (error != 0) { 6906 /* 6907 * In the result of failure, ire_add() will have already 6908 * deleted the ire in question, so there is no need to 6909 * do that here. 6910 */ 6911 ire_refrele(gw_ire); 6912 return (error); 6913 } 6914 6915 if (flags & RTF_MULTIRT) { 6916 /* 6917 * Invoke the CGTP (multirouting) filtering module 6918 * to add the dst address in the filtering database. 6919 * Replicated inbound packets coming from that address 6920 * will be filtered to discard the duplicates. 6921 * It is not necessary to call the CGTP filter hook 6922 * when the dst address is a broadcast or multicast, 6923 * because an IP source address cannot be a broadcast 6924 * or a multicast. 6925 */ 6926 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6927 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 6928 if (ire_dst != NULL) { 6929 ip_cgtp_bcast_add(ire, ire_dst); 6930 ire_refrele(ire_dst); 6931 goto save_ire; 6932 } 6933 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6934 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6935 ire->ire_addr, 6936 ire->ire_gateway_addr, 6937 ire->ire_src_addr, 6938 gw_ire->ire_src_addr); 6939 if (res != 0) { 6940 ire_refrele(gw_ire); 6941 ire_delete(ire); 6942 return (res); 6943 } 6944 } 6945 } 6946 6947 /* 6948 * Now that the prefix IRE entry has been created, delete any 6949 * existing gateway IRE cache entries as well as any IRE caches 6950 * using the gateway, and force them to be created through 6951 * ip_newroute. 6952 */ 6953 if (gc != NULL) { 6954 ASSERT(gcgrp != NULL); 6955 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 6956 } 6957 6958 save_ire: 6959 if (gw_ire != NULL) { 6960 ire_refrele(gw_ire); 6961 } 6962 /* 6963 * We do not do save_ire for the routes added with RTA_SRCIFP 6964 * flag. This route is only added and deleted by mipagent. 6965 * So, for simplicity of design, we refrain from saving 6966 * ires that are created with srcif value. This may change 6967 * in future if we find more usage of srcifp feature. 6968 */ 6969 if (ipif != NULL && src_ipif == NULL) { 6970 /* 6971 * Save enough information so that we can recreate the IRE if 6972 * the interface goes down and then up. The metrics associated 6973 * with the route will be saved as well when rts_setmetrics() is 6974 * called after the IRE has been created. In the case where 6975 * memory cannot be allocated, none of this information will be 6976 * saved. 6977 */ 6978 ipif_save_ire(ipif, ire); 6979 } 6980 if (ioctl_msg) 6981 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6982 if (ire_arg != NULL) { 6983 /* 6984 * Store the ire that was successfully added into where ire_arg 6985 * points to so that callers don't have to look it up 6986 * themselves (but they are responsible for ire_refrele()ing 6987 * the ire when they are finished with it). 6988 */ 6989 *ire_arg = ire; 6990 } else { 6991 ire_refrele(ire); /* Held in ire_add */ 6992 } 6993 if (ipif_refheld) 6994 ipif_refrele(ipif); 6995 return (0); 6996 } 6997 6998 /* 6999 * ip_rt_delete is called to delete an IPv4 route. 7000 * ipif_arg is passed in to associate it with the correct interface. 7001 * src_ipif is passed to associate the incoming interface of the packet. 7002 * We may need to restart this operation if the ipif cannot be looked up 7003 * due to an exclusive operation that is currently in progress. The restart 7004 * entry point is specified by 'func' 7005 */ 7006 /* ARGSUSED4 */ 7007 int 7008 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7009 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7010 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 7011 { 7012 ire_t *ire = NULL; 7013 ipif_t *ipif; 7014 boolean_t ipif_refheld = B_FALSE; 7015 uint_t type; 7016 uint_t match_flags = MATCH_IRE_TYPE; 7017 int err = 0; 7018 7019 ip1dbg(("ip_rt_delete:")); 7020 /* 7021 * If this is the case of RTF_HOST being set, then we set the netmask 7022 * to all ones. Otherwise, we use the netmask if one was supplied. 7023 */ 7024 if (flags & RTF_HOST) { 7025 mask = IP_HOST_MASK; 7026 match_flags |= MATCH_IRE_MASK; 7027 } else if (rtm_addrs & RTA_NETMASK) { 7028 match_flags |= MATCH_IRE_MASK; 7029 } 7030 7031 /* 7032 * Note that RTF_GATEWAY is never set on a delete, therefore 7033 * we check if the gateway address is one of our interfaces first, 7034 * and fall back on RTF_GATEWAY routes. 7035 * 7036 * This makes it possible to delete an original 7037 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7038 * 7039 * As the interface index specified with the RTA_IFP sockaddr is the 7040 * same for all ipif's off of an ill, the matching logic below uses 7041 * MATCH_IRE_ILL if such an index was specified. This means a route 7042 * sharing the same prefix and interface index as the the route 7043 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7044 * is specified in the request. 7045 * 7046 * On the other hand, since the gateway address will usually be 7047 * different for each ipif on the system, the matching logic 7048 * uses MATCH_IRE_IPIF in the case of a traditional interface 7049 * route. This means that interface routes for the same prefix can be 7050 * uniquely identified if they belong to distinct ipif's and if a 7051 * RTA_IFP sockaddr is not present. 7052 * 7053 * For more detail on specifying routes by gateway address and by 7054 * interface index, see the comments in ip_rt_add(). 7055 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7056 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7057 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7058 * succeed. 7059 */ 7060 if (src_ipif != NULL) { 7061 if (ipif_arg == NULL && gw_addr != 0) { 7062 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7063 q, mp, func, &err); 7064 if (ipif_arg != NULL) 7065 ipif_refheld = B_TRUE; 7066 } 7067 if (ipif_arg == NULL) { 7068 err = (err == EINPROGRESS) ? err : ESRCH; 7069 return (err); 7070 } 7071 ipif = ipif_arg; 7072 } else { 7073 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7074 q, mp, func, &err); 7075 if (ipif != NULL) 7076 ipif_refheld = B_TRUE; 7077 else if (err == EINPROGRESS) 7078 return (err); 7079 else 7080 err = 0; 7081 } 7082 if (ipif != NULL) { 7083 if (ipif_arg != NULL) { 7084 if (ipif_refheld) { 7085 ipif_refrele(ipif); 7086 ipif_refheld = B_FALSE; 7087 } 7088 ipif = ipif_arg; 7089 match_flags |= MATCH_IRE_ILL; 7090 } else { 7091 match_flags |= MATCH_IRE_IPIF; 7092 } 7093 if (src_ipif != NULL) { 7094 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7095 ipif, src_ipif->ipif_ill, match_flags); 7096 } else { 7097 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7098 ire = ire_ctable_lookup(dst_addr, 0, 7099 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7100 match_flags); 7101 } 7102 if (ire == NULL) { 7103 ire = ire_ftable_lookup(dst_addr, mask, 0, 7104 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7105 NULL, match_flags); 7106 } 7107 } 7108 } 7109 7110 if (ire == NULL) { 7111 /* 7112 * At this point, the gateway address is not one of our own 7113 * addresses or a matching interface route was not found. We 7114 * set the IRE type to lookup based on whether 7115 * this is a host route, a default route or just a prefix. 7116 * 7117 * If an ipif_arg was passed in, then the lookup is based on an 7118 * interface index so MATCH_IRE_ILL is added to match_flags. 7119 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7120 * set as the route being looked up is not a traditional 7121 * interface route. 7122 * Since we do not add gateway route with srcipif, we don't 7123 * expect to find it either. 7124 */ 7125 if (src_ipif != NULL) { 7126 if (ipif_refheld) 7127 ipif_refrele(ipif); 7128 return (ESRCH); 7129 } else { 7130 match_flags &= ~MATCH_IRE_IPIF; 7131 match_flags |= MATCH_IRE_GW; 7132 if (ipif_arg != NULL) 7133 match_flags |= MATCH_IRE_ILL; 7134 if (mask == IP_HOST_MASK) 7135 type = IRE_HOST; 7136 else if (mask == 0) 7137 type = IRE_DEFAULT; 7138 else 7139 type = IRE_PREFIX; 7140 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7141 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 7142 if (ire == NULL && type == IRE_HOST) { 7143 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 7144 IRE_HOST_REDIRECT, ipif_arg, NULL, 7145 ALL_ZONES, 0, NULL, match_flags); 7146 } 7147 } 7148 } 7149 7150 if (ipif_refheld) 7151 ipif_refrele(ipif); 7152 7153 /* ipif is not refheld anymore */ 7154 if (ire == NULL) 7155 return (ESRCH); 7156 7157 if (ire->ire_flags & RTF_MULTIRT) { 7158 /* 7159 * Invoke the CGTP (multirouting) filtering module 7160 * to remove the dst address from the filtering database. 7161 * Packets coming from that address will no longer be 7162 * filtered to remove duplicates. 7163 */ 7164 if (ip_cgtp_filter_ops != NULL) { 7165 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7166 ire->ire_gateway_addr); 7167 } 7168 ip_cgtp_bcast_delete(ire); 7169 } 7170 7171 ipif = ire->ire_ipif; 7172 /* 7173 * Removing from ipif_saved_ire_mp is not necessary 7174 * when src_ipif being non-NULL. ip_rt_add does not 7175 * save the ires which src_ipif being non-NULL. 7176 */ 7177 if (ipif != NULL && src_ipif == NULL) { 7178 ipif_remove_ire(ipif, ire); 7179 } 7180 if (ioctl_msg) 7181 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7182 ire_delete(ire); 7183 ire_refrele(ire); 7184 return (err); 7185 } 7186 7187 /* 7188 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7189 */ 7190 /* ARGSUSED */ 7191 int 7192 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7193 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7194 { 7195 ipaddr_t dst_addr; 7196 ipaddr_t gw_addr; 7197 ipaddr_t mask; 7198 int error = 0; 7199 mblk_t *mp1; 7200 struct rtentry *rt; 7201 ipif_t *ipif = NULL; 7202 7203 ip1dbg(("ip_siocaddrt:")); 7204 /* Existence of mp1 verified in ip_wput_nondata */ 7205 mp1 = mp->b_cont->b_cont; 7206 rt = (struct rtentry *)mp1->b_rptr; 7207 7208 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7209 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7210 7211 /* 7212 * If the RTF_HOST flag is on, this is a request to assign a gateway 7213 * to a particular host address. In this case, we set the netmask to 7214 * all ones for the particular destination address. Otherwise, 7215 * determine the netmask to be used based on dst_addr and the interfaces 7216 * in use. 7217 */ 7218 if (rt->rt_flags & RTF_HOST) { 7219 mask = IP_HOST_MASK; 7220 } else { 7221 /* 7222 * Note that ip_subnet_mask returns a zero mask in the case of 7223 * default (an all-zeroes address). 7224 */ 7225 mask = ip_subnet_mask(dst_addr, &ipif); 7226 } 7227 7228 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7229 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7230 if (ipif != NULL) 7231 ipif_refrele(ipif); 7232 return (error); 7233 } 7234 7235 /* 7236 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7237 */ 7238 /* ARGSUSED */ 7239 int 7240 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7241 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7242 { 7243 ipaddr_t dst_addr; 7244 ipaddr_t gw_addr; 7245 ipaddr_t mask; 7246 int error; 7247 mblk_t *mp1; 7248 struct rtentry *rt; 7249 ipif_t *ipif = NULL; 7250 7251 ip1dbg(("ip_siocdelrt:")); 7252 /* Existence of mp1 verified in ip_wput_nondata */ 7253 mp1 = mp->b_cont->b_cont; 7254 rt = (struct rtentry *)mp1->b_rptr; 7255 7256 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7257 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7258 7259 /* 7260 * If the RTF_HOST flag is on, this is a request to delete a gateway 7261 * to a particular host address. In this case, we set the netmask to 7262 * all ones for the particular destination address. Otherwise, 7263 * determine the netmask to be used based on dst_addr and the interfaces 7264 * in use. 7265 */ 7266 if (rt->rt_flags & RTF_HOST) { 7267 mask = IP_HOST_MASK; 7268 } else { 7269 /* 7270 * Note that ip_subnet_mask returns a zero mask in the case of 7271 * default (an all-zeroes address). 7272 */ 7273 mask = ip_subnet_mask(dst_addr, &ipif); 7274 } 7275 7276 error = ip_rt_delete(dst_addr, mask, gw_addr, 7277 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7278 B_TRUE, q, mp, ip_process_ioctl); 7279 if (ipif != NULL) 7280 ipif_refrele(ipif); 7281 return (error); 7282 } 7283 7284 /* 7285 * Enqueue the mp onto the ipsq, chained by b_next. 7286 * b_prev stores the function to be executed later, and b_queue the queue 7287 * where this mp originated. 7288 */ 7289 void 7290 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7291 ill_t *pending_ill) 7292 { 7293 conn_t *connp = NULL; 7294 7295 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7296 ASSERT(func != NULL); 7297 7298 mp->b_queue = q; 7299 mp->b_prev = (void *)func; 7300 mp->b_next = NULL; 7301 7302 switch (type) { 7303 case CUR_OP: 7304 if (ipsq->ipsq_mptail != NULL) { 7305 ASSERT(ipsq->ipsq_mphead != NULL); 7306 ipsq->ipsq_mptail->b_next = mp; 7307 } else { 7308 ASSERT(ipsq->ipsq_mphead == NULL); 7309 ipsq->ipsq_mphead = mp; 7310 } 7311 ipsq->ipsq_mptail = mp; 7312 break; 7313 7314 case NEW_OP: 7315 if (ipsq->ipsq_xopq_mptail != NULL) { 7316 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7317 ipsq->ipsq_xopq_mptail->b_next = mp; 7318 } else { 7319 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7320 ipsq->ipsq_xopq_mphead = mp; 7321 } 7322 ipsq->ipsq_xopq_mptail = mp; 7323 break; 7324 default: 7325 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7326 } 7327 7328 if (CONN_Q(q) && pending_ill != NULL) { 7329 connp = Q_TO_CONN(q); 7330 7331 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7332 connp->conn_oper_pending_ill = pending_ill; 7333 } 7334 } 7335 7336 /* 7337 * Return the mp at the head of the ipsq. After emptying the ipsq 7338 * look at the next ioctl, if this ioctl is complete. Otherwise 7339 * return, we will resume when we complete the current ioctl. 7340 * The current ioctl will wait till it gets a response from the 7341 * driver below. 7342 */ 7343 static mblk_t * 7344 ipsq_dq(ipsq_t *ipsq) 7345 { 7346 mblk_t *mp; 7347 7348 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7349 7350 mp = ipsq->ipsq_mphead; 7351 if (mp != NULL) { 7352 ipsq->ipsq_mphead = mp->b_next; 7353 if (ipsq->ipsq_mphead == NULL) 7354 ipsq->ipsq_mptail = NULL; 7355 mp->b_next = NULL; 7356 return (mp); 7357 } 7358 if (ipsq->ipsq_current_ipif != NULL) 7359 return (NULL); 7360 mp = ipsq->ipsq_xopq_mphead; 7361 if (mp != NULL) { 7362 ipsq->ipsq_xopq_mphead = mp->b_next; 7363 if (ipsq->ipsq_xopq_mphead == NULL) 7364 ipsq->ipsq_xopq_mptail = NULL; 7365 mp->b_next = NULL; 7366 return (mp); 7367 } 7368 return (NULL); 7369 } 7370 7371 /* 7372 * Enter the ipsq corresponding to ill, by waiting synchronously till 7373 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7374 * will have to drain completely before ipsq_enter returns success. 7375 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7376 * and the ipsq_exit logic will start the next enqueued ioctl after 7377 * completion of the current ioctl. If 'force' is used, we don't wait 7378 * for the enqueued ioctls. This is needed when a conn_close wants to 7379 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7380 * of an ill can also use this option. But we dont' use it currently. 7381 */ 7382 #define ENTER_SQ_WAIT_TICKS 100 7383 boolean_t 7384 ipsq_enter(ill_t *ill, boolean_t force) 7385 { 7386 ipsq_t *ipsq; 7387 boolean_t waited_enough = B_FALSE; 7388 7389 /* 7390 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7391 * Since the <ill-ipsq> assocs could change while we wait for the 7392 * writer, it is easier to wait on a fixed global rather than try to 7393 * cv_wait on a changing ipsq. 7394 */ 7395 mutex_enter(&ill->ill_lock); 7396 for (;;) { 7397 if (ill->ill_state_flags & ILL_CONDEMNED) { 7398 mutex_exit(&ill->ill_lock); 7399 return (B_FALSE); 7400 } 7401 7402 ipsq = ill->ill_phyint->phyint_ipsq; 7403 mutex_enter(&ipsq->ipsq_lock); 7404 if (ipsq->ipsq_writer == NULL && 7405 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7406 break; 7407 } else if (ipsq->ipsq_writer != NULL) { 7408 mutex_exit(&ipsq->ipsq_lock); 7409 cv_wait(&ill->ill_cv, &ill->ill_lock); 7410 } else { 7411 mutex_exit(&ipsq->ipsq_lock); 7412 if (force) { 7413 (void) cv_timedwait(&ill->ill_cv, 7414 &ill->ill_lock, 7415 lbolt + ENTER_SQ_WAIT_TICKS); 7416 waited_enough = B_TRUE; 7417 continue; 7418 } else { 7419 cv_wait(&ill->ill_cv, &ill->ill_lock); 7420 } 7421 } 7422 } 7423 7424 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7425 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7426 ipsq->ipsq_writer = curthread; 7427 ipsq->ipsq_reentry_cnt++; 7428 #ifdef ILL_DEBUG 7429 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7430 #endif 7431 mutex_exit(&ipsq->ipsq_lock); 7432 mutex_exit(&ill->ill_lock); 7433 return (B_TRUE); 7434 } 7435 7436 /* 7437 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7438 * certain critical operations like plumbing (i.e. most set ioctls), 7439 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7440 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7441 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7442 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7443 * threads executing in the ipsq. Responses from the driver pertain to the 7444 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7445 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7446 * 7447 * If a thread does not want to reenter the ipsq when it is already writer, 7448 * it must make sure that the specified reentry point to be called later 7449 * when the ipsq is empty, nor any code path starting from the specified reentry 7450 * point must never ever try to enter the ipsq again. Otherwise it can lead 7451 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7452 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7453 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7454 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7455 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7456 * ioctl if the current ioctl has completed. If the current ioctl is still 7457 * in progress it simply returns. The current ioctl could be waiting for 7458 * a response from another module (arp_ or the driver or could be waiting for 7459 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7460 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7461 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7462 * ipsq_current_ipif is clear which happens only on ioctl completion. 7463 */ 7464 7465 /* 7466 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7467 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7468 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7469 * completion. 7470 */ 7471 ipsq_t * 7472 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7473 ipsq_func_t func, int type, boolean_t reentry_ok) 7474 { 7475 ipsq_t *ipsq; 7476 7477 /* Only 1 of ipif or ill can be specified */ 7478 ASSERT((ipif != NULL) ^ (ill != NULL)); 7479 if (ipif != NULL) 7480 ill = ipif->ipif_ill; 7481 7482 /* 7483 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7484 * ipsq of an ill can't change when ill_lock is held. 7485 */ 7486 GRAB_CONN_LOCK(q); 7487 mutex_enter(&ill->ill_lock); 7488 ipsq = ill->ill_phyint->phyint_ipsq; 7489 mutex_enter(&ipsq->ipsq_lock); 7490 7491 /* 7492 * 1. Enter the ipsq if we are already writer and reentry is ok. 7493 * (Note: If the caller does not specify reentry_ok then neither 7494 * 'func' nor any of its callees must ever attempt to enter the ipsq 7495 * again. Otherwise it can lead to an infinite loop 7496 * 2. Enter the ipsq if there is no current writer and this attempted 7497 * entry is part of the current ioctl or operation 7498 * 3. Enter the ipsq if there is no current writer and this is a new 7499 * ioctl (or operation) and the ioctl (or operation) queue is 7500 * empty and there is no ioctl (or operation) currently in progress 7501 */ 7502 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7503 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7504 ipsq->ipsq_current_ipif == NULL))) || 7505 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7506 /* Success. */ 7507 ipsq->ipsq_reentry_cnt++; 7508 ipsq->ipsq_writer = curthread; 7509 mutex_exit(&ipsq->ipsq_lock); 7510 mutex_exit(&ill->ill_lock); 7511 RELEASE_CONN_LOCK(q); 7512 #ifdef ILL_DEBUG 7513 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7514 #endif 7515 return (ipsq); 7516 } 7517 7518 ipsq_enq(ipsq, q, mp, func, type, ill); 7519 7520 mutex_exit(&ipsq->ipsq_lock); 7521 mutex_exit(&ill->ill_lock); 7522 RELEASE_CONN_LOCK(q); 7523 return (NULL); 7524 } 7525 7526 /* 7527 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7528 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7529 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7530 * completion. 7531 * 7532 * This function does a refrele on the ipif/ill. 7533 */ 7534 void 7535 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7536 ipsq_func_t func, int type, boolean_t reentry_ok) 7537 { 7538 ipsq_t *ipsq; 7539 7540 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7541 /* 7542 * Caller must have done a refhold on the ipif. ipif_refrele 7543 * happens on the passed ipif. We can do this since we are 7544 * already exclusive, or we won't access ipif henceforth, Both 7545 * this func and caller will just return if we ipsq_try_enter 7546 * fails above. This is needed because func needs to 7547 * see the correct refcount. Eg. removeif can work only then. 7548 */ 7549 if (ipif != NULL) 7550 ipif_refrele(ipif); 7551 else 7552 ill_refrele(ill); 7553 if (ipsq != NULL) { 7554 (*func)(ipsq, q, mp, NULL); 7555 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7556 } 7557 } 7558 7559 /* 7560 * If there are more than ILL_GRP_CNT ills in a group, 7561 * we use kmem alloc'd buffers, else use the stack 7562 */ 7563 #define ILL_GRP_CNT 14 7564 /* 7565 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7566 * Called by a thread that is currently exclusive on this ipsq. 7567 */ 7568 void 7569 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7570 { 7571 queue_t *q; 7572 mblk_t *mp; 7573 ipsq_func_t func; 7574 int next; 7575 ill_t **ill_list = NULL; 7576 size_t ill_list_size = 0; 7577 int cnt = 0; 7578 boolean_t need_ipsq_free = B_FALSE; 7579 7580 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7581 mutex_enter(&ipsq->ipsq_lock); 7582 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7583 if (ipsq->ipsq_reentry_cnt != 1) { 7584 ipsq->ipsq_reentry_cnt--; 7585 mutex_exit(&ipsq->ipsq_lock); 7586 return; 7587 } 7588 7589 mp = ipsq_dq(ipsq); 7590 while (mp != NULL) { 7591 again: 7592 mutex_exit(&ipsq->ipsq_lock); 7593 func = (ipsq_func_t)mp->b_prev; 7594 q = (queue_t *)mp->b_queue; 7595 mp->b_prev = NULL; 7596 mp->b_queue = NULL; 7597 7598 /* 7599 * If 'q' is an conn queue, it is valid, since we did a 7600 * a refhold on the connp, at the start of the ioctl. 7601 * If 'q' is an ill queue, it is valid, since close of an 7602 * ill will clean up the 'ipsq'. 7603 */ 7604 (*func)(ipsq, q, mp, NULL); 7605 7606 mutex_enter(&ipsq->ipsq_lock); 7607 mp = ipsq_dq(ipsq); 7608 } 7609 7610 mutex_exit(&ipsq->ipsq_lock); 7611 7612 /* 7613 * Need to grab the locks in the right order. Need to 7614 * atomically check (under ipsq_lock) that there are no 7615 * messages before relinquishing the ipsq. Also need to 7616 * atomically wakeup waiters on ill_cv while holding ill_lock. 7617 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7618 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7619 * to grab ill_g_lock as writer. 7620 */ 7621 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7622 7623 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7624 if (ipsq->ipsq_refs != 0) { 7625 /* At most 2 ills v4/v6 per phyint */ 7626 cnt = ipsq->ipsq_refs << 1; 7627 ill_list_size = cnt * sizeof (ill_t *); 7628 /* 7629 * If memory allocation fails, we will do the split 7630 * the next time ipsq_exit is called for whatever reason. 7631 * As long as the ipsq_split flag is set the need to 7632 * split is remembered. 7633 */ 7634 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7635 if (ill_list != NULL) 7636 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7637 } 7638 mutex_enter(&ipsq->ipsq_lock); 7639 mp = ipsq_dq(ipsq); 7640 if (mp != NULL) { 7641 /* oops, some message has landed up, we can't get out */ 7642 if (ill_list != NULL) 7643 ill_unlock_ills(ill_list, cnt); 7644 rw_exit(&ill_g_lock); 7645 if (ill_list != NULL) 7646 kmem_free(ill_list, ill_list_size); 7647 ill_list = NULL; 7648 ill_list_size = 0; 7649 cnt = 0; 7650 goto again; 7651 } 7652 7653 /* 7654 * Split only if no ioctl is pending and if memory alloc succeeded 7655 * above. 7656 */ 7657 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7658 ill_list != NULL) { 7659 /* 7660 * No new ill can join this ipsq since we are holding the 7661 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7662 * ipsq. ill_split_ipsq may fail due to memory shortage. 7663 * If so we will retry on the next ipsq_exit. 7664 */ 7665 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7666 } 7667 7668 /* 7669 * We are holding the ipsq lock, hence no new messages can 7670 * land up on the ipsq, and there are no messages currently. 7671 * Now safe to get out. Wake up waiters and relinquish ipsq 7672 * atomically while holding ill locks. 7673 */ 7674 ipsq->ipsq_writer = NULL; 7675 ipsq->ipsq_reentry_cnt--; 7676 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7677 #ifdef ILL_DEBUG 7678 ipsq->ipsq_depth = 0; 7679 #endif 7680 mutex_exit(&ipsq->ipsq_lock); 7681 /* 7682 * For IPMP this should wake up all ills in this ipsq. 7683 * We need to hold the ill_lock while waking up waiters to 7684 * avoid missed wakeups. But there is no need to acquire all 7685 * the ill locks and then wakeup. If we have not acquired all 7686 * the locks (due to memory failure above) ill_signal_ipsq_ills 7687 * wakes up ills one at a time after getting the right ill_lock 7688 */ 7689 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7690 if (ill_list != NULL) 7691 ill_unlock_ills(ill_list, cnt); 7692 if (ipsq->ipsq_refs == 0) 7693 need_ipsq_free = B_TRUE; 7694 rw_exit(&ill_g_lock); 7695 if (ill_list != 0) 7696 kmem_free(ill_list, ill_list_size); 7697 7698 if (need_ipsq_free) { 7699 /* 7700 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7701 * looked up. ipsq can be looked up only thru ill or phyint 7702 * and there are no ills/phyint on this ipsq. 7703 */ 7704 ipsq_delete(ipsq); 7705 } 7706 /* 7707 * Now start any igmp or mld timers that could not be started 7708 * while inside the ipsq. The timers can't be started while inside 7709 * the ipsq, since igmp_start_timers may need to call untimeout() 7710 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7711 * there could be a deadlock since the timeout handlers 7712 * mld_timeout_handler / igmp_timeout_handler also synchronously 7713 * wait in ipsq_enter() trying to get the ipsq. 7714 * 7715 * However there is one exception to the above. If this thread is 7716 * itself the igmp/mld timeout handler thread, then we don't want 7717 * to start any new timer until the current handler is done. The 7718 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7719 * all others pass B_TRUE. 7720 */ 7721 if (start_igmp_timer) { 7722 mutex_enter(&igmp_timer_lock); 7723 next = igmp_deferred_next; 7724 igmp_deferred_next = INFINITY; 7725 mutex_exit(&igmp_timer_lock); 7726 7727 if (next != INFINITY) 7728 igmp_start_timers(next); 7729 } 7730 7731 if (start_mld_timer) { 7732 mutex_enter(&mld_timer_lock); 7733 next = mld_deferred_next; 7734 mld_deferred_next = INFINITY; 7735 mutex_exit(&mld_timer_lock); 7736 7737 if (next != INFINITY) 7738 mld_start_timers(next); 7739 } 7740 } 7741 7742 /* 7743 * The ill is closing. Flush all messages on the ipsq that originated 7744 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7745 * for this ill since ipsq_enter could not have entered until then. 7746 * New messages can't be queued since the CONDEMNED flag is set. 7747 */ 7748 static void 7749 ipsq_flush(ill_t *ill) 7750 { 7751 queue_t *q; 7752 mblk_t *prev; 7753 mblk_t *mp; 7754 mblk_t *mp_next; 7755 ipsq_t *ipsq; 7756 7757 ASSERT(IAM_WRITER_ILL(ill)); 7758 ipsq = ill->ill_phyint->phyint_ipsq; 7759 /* 7760 * Flush any messages sent up by the driver. 7761 */ 7762 mutex_enter(&ipsq->ipsq_lock); 7763 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7764 mp_next = mp->b_next; 7765 q = mp->b_queue; 7766 if (q == ill->ill_rq || q == ill->ill_wq) { 7767 /* Remove the mp from the ipsq */ 7768 if (prev == NULL) 7769 ipsq->ipsq_mphead = mp->b_next; 7770 else 7771 prev->b_next = mp->b_next; 7772 if (ipsq->ipsq_mptail == mp) { 7773 ASSERT(mp_next == NULL); 7774 ipsq->ipsq_mptail = prev; 7775 } 7776 inet_freemsg(mp); 7777 } else { 7778 prev = mp; 7779 } 7780 } 7781 mutex_exit(&ipsq->ipsq_lock); 7782 (void) ipsq_pending_mp_cleanup(ill, NULL); 7783 ipsq_xopq_mp_cleanup(ill, NULL); 7784 ill_pending_mp_cleanup(ill); 7785 } 7786 7787 /* 7788 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7789 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7790 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7791 * time (possible with one port going down for aggr and someone tearing down the 7792 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7793 * to indicate when the cleanup has started (1 ref) and when the cleanup 7794 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7795 * putting 2 ref on ill_inuse_ref. 7796 */ 7797 static void 7798 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7799 { 7800 conn_t *connp; 7801 squeue_t *sqp; 7802 mblk_t *mp; 7803 7804 ASSERT(rx_ring != NULL); 7805 7806 /* Just clean one squeue */ 7807 mutex_enter(&ill->ill_lock); 7808 /* 7809 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7810 * ip_squeue_soft_ring_affinty() will not go 7811 * ahead with assigning rings. 7812 */ 7813 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7814 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7815 /* Some operations pending on the ring. Wait */ 7816 cv_wait(&ill->ill_cv, &ill->ill_lock); 7817 7818 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7819 /* 7820 * Someone already trying to clean 7821 * this squeue or its already been cleaned. 7822 */ 7823 mutex_exit(&ill->ill_lock); 7824 return; 7825 } 7826 sqp = rx_ring->rr_sqp; 7827 7828 if (sqp == NULL) { 7829 /* 7830 * The rx_ring never had a squeue assigned to it. 7831 * We are under ill_lock so we can clean it up 7832 * here itself since no one can get to it. 7833 */ 7834 rx_ring->rr_blank = NULL; 7835 rx_ring->rr_handle = NULL; 7836 rx_ring->rr_sqp = NULL; 7837 rx_ring->rr_ring_state = ILL_RING_FREE; 7838 mutex_exit(&ill->ill_lock); 7839 return; 7840 } 7841 7842 /* Set the state that its being cleaned */ 7843 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7844 ASSERT(sqp != NULL); 7845 mutex_exit(&ill->ill_lock); 7846 7847 /* 7848 * Use the preallocated ill_unbind_conn for this purpose 7849 */ 7850 connp = ill->ill_dls_capab->ill_unbind_conn; 7851 mp = &connp->conn_tcp->tcp_closemp; 7852 CONN_INC_REF(connp); 7853 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7854 7855 mutex_enter(&ill->ill_lock); 7856 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7857 cv_wait(&ill->ill_cv, &ill->ill_lock); 7858 7859 mutex_exit(&ill->ill_lock); 7860 } 7861 7862 static void 7863 ipsq_clean_all(ill_t *ill) 7864 { 7865 int idx; 7866 7867 /* 7868 * No need to clean if poll_capab isn't set for this ill 7869 */ 7870 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7871 return; 7872 7873 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7874 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7875 ipsq_clean_ring(ill, ipr); 7876 } 7877 7878 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7879 } 7880 7881 /* ARGSUSED */ 7882 int 7883 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7884 ip_ioctl_cmd_t *ipip, void *ifreq) 7885 { 7886 ill_t *ill; 7887 struct lifreq *lifr = (struct lifreq *)ifreq; 7888 boolean_t isv6; 7889 conn_t *connp; 7890 7891 connp = Q_TO_CONN(q); 7892 isv6 = connp->conn_af_isv6; 7893 /* 7894 * Set original index. 7895 * Failover and failback move logical interfaces 7896 * from one physical interface to another. The 7897 * original index indicates the parent of a logical 7898 * interface, in other words, the physical interface 7899 * the logical interface will be moved back to on 7900 * failback. 7901 */ 7902 7903 /* 7904 * Don't allow the original index to be changed 7905 * for non-failover addresses, autoconfigured 7906 * addresses, or IPv6 link local addresses. 7907 */ 7908 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7909 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7910 return (EINVAL); 7911 } 7912 /* 7913 * The new original index must be in use by some 7914 * physical interface. 7915 */ 7916 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7917 NULL, NULL); 7918 if (ill == NULL) 7919 return (ENXIO); 7920 ill_refrele(ill); 7921 7922 ipif->ipif_orig_ifindex = lifr->lifr_index; 7923 /* 7924 * When this ipif gets failed back, don't 7925 * preserve the original id, as it is no 7926 * longer applicable. 7927 */ 7928 ipif->ipif_orig_ipifid = 0; 7929 /* 7930 * For IPv4, change the original index of any 7931 * multicast addresses associated with the 7932 * ipif to the new value. 7933 */ 7934 if (!isv6) { 7935 ilm_t *ilm; 7936 7937 mutex_enter(&ipif->ipif_ill->ill_lock); 7938 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7939 ilm = ilm->ilm_next) { 7940 if (ilm->ilm_ipif == ipif) { 7941 ilm->ilm_orig_ifindex = lifr->lifr_index; 7942 } 7943 } 7944 mutex_exit(&ipif->ipif_ill->ill_lock); 7945 } 7946 return (0); 7947 } 7948 7949 /* ARGSUSED */ 7950 int 7951 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7952 ip_ioctl_cmd_t *ipip, void *ifreq) 7953 { 7954 struct lifreq *lifr = (struct lifreq *)ifreq; 7955 7956 /* 7957 * Get the original interface index i.e the one 7958 * before FAILOVER if it ever happened. 7959 */ 7960 lifr->lifr_index = ipif->ipif_orig_ifindex; 7961 return (0); 7962 } 7963 7964 /* 7965 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7966 * refhold and return the associated ipif 7967 */ 7968 int 7969 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7970 { 7971 boolean_t exists; 7972 struct iftun_req *ta; 7973 ipif_t *ipif; 7974 ill_t *ill; 7975 boolean_t isv6; 7976 mblk_t *mp1; 7977 int error; 7978 conn_t *connp; 7979 7980 /* Existence verified in ip_wput_nondata */ 7981 mp1 = mp->b_cont->b_cont; 7982 ta = (struct iftun_req *)mp1->b_rptr; 7983 /* 7984 * Null terminate the string to protect against buffer 7985 * overrun. String was generated by user code and may not 7986 * be trusted. 7987 */ 7988 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7989 7990 connp = Q_TO_CONN(q); 7991 isv6 = connp->conn_af_isv6; 7992 7993 /* Disallows implicit create */ 7994 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7995 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7996 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7997 if (ipif == NULL) 7998 return (error); 7999 8000 if (ipif->ipif_id != 0) { 8001 /* 8002 * We really don't want to set/get tunnel parameters 8003 * on virtual tunnel interfaces. Only allow the 8004 * base tunnel to do these. 8005 */ 8006 ipif_refrele(ipif); 8007 return (EINVAL); 8008 } 8009 8010 /* 8011 * Send down to tunnel mod for ioctl processing. 8012 * Will finish ioctl in ip_rput_other(). 8013 */ 8014 ill = ipif->ipif_ill; 8015 if (ill->ill_net_type == IRE_LOOPBACK) { 8016 ipif_refrele(ipif); 8017 return (EOPNOTSUPP); 8018 } 8019 8020 if (ill->ill_wq == NULL) { 8021 ipif_refrele(ipif); 8022 return (ENXIO); 8023 } 8024 /* 8025 * Mark the ioctl as coming from an IPv6 interface for 8026 * tun's convenience. 8027 */ 8028 if (ill->ill_isv6) 8029 ta->ifta_flags |= 0x80000000; 8030 *ipifp = ipif; 8031 return (0); 8032 } 8033 8034 /* 8035 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8036 * and return the associated ipif. 8037 * Return value: 8038 * Non zero: An error has occurred. ci may not be filled out. 8039 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8040 * a held ipif in ci.ci_ipif. 8041 */ 8042 int 8043 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8044 cmd_info_t *ci, ipsq_func_t func) 8045 { 8046 sin_t *sin; 8047 sin6_t *sin6; 8048 char *name; 8049 struct ifreq *ifr; 8050 struct lifreq *lifr; 8051 ipif_t *ipif = NULL; 8052 ill_t *ill; 8053 conn_t *connp; 8054 boolean_t isv6; 8055 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8056 boolean_t exists; 8057 int err; 8058 mblk_t *mp1; 8059 zoneid_t zoneid; 8060 8061 if (q->q_next != NULL) { 8062 ill = (ill_t *)q->q_ptr; 8063 isv6 = ill->ill_isv6; 8064 connp = NULL; 8065 zoneid = ALL_ZONES; 8066 } else { 8067 ill = NULL; 8068 connp = Q_TO_CONN(q); 8069 isv6 = connp->conn_af_isv6; 8070 zoneid = connp->conn_zoneid; 8071 if (zoneid == GLOBAL_ZONEID) { 8072 /* global zone can access ipifs in all zones */ 8073 zoneid = ALL_ZONES; 8074 } 8075 } 8076 8077 /* Has been checked in ip_wput_nondata */ 8078 mp1 = mp->b_cont->b_cont; 8079 8080 8081 if (cmd_type == IF_CMD) { 8082 /* This a old style SIOC[GS]IF* command */ 8083 ifr = (struct ifreq *)mp1->b_rptr; 8084 /* 8085 * Null terminate the string to protect against buffer 8086 * overrun. String was generated by user code and may not 8087 * be trusted. 8088 */ 8089 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8090 sin = (sin_t *)&ifr->ifr_addr; 8091 name = ifr->ifr_name; 8092 ci->ci_sin = sin; 8093 ci->ci_sin6 = NULL; 8094 ci->ci_lifr = (struct lifreq *)ifr; 8095 } else { 8096 /* This a new style SIOC[GS]LIF* command */ 8097 ASSERT(cmd_type == LIF_CMD); 8098 lifr = (struct lifreq *)mp1->b_rptr; 8099 /* 8100 * Null terminate the string to protect against buffer 8101 * overrun. String was generated by user code and may not 8102 * be trusted. 8103 */ 8104 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8105 name = lifr->lifr_name; 8106 sin = (sin_t *)&lifr->lifr_addr; 8107 sin6 = (sin6_t *)&lifr->lifr_addr; 8108 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8109 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8110 LIFNAMSIZ); 8111 } 8112 ci->ci_sin = sin; 8113 ci->ci_sin6 = sin6; 8114 ci->ci_lifr = lifr; 8115 } 8116 8117 8118 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8119 /* 8120 * The ioctl will be failed if the ioctl comes down 8121 * an conn stream 8122 */ 8123 if (ill == NULL) { 8124 /* 8125 * Not an ill queue, return EINVAL same as the 8126 * old error code. 8127 */ 8128 return (ENXIO); 8129 } 8130 ipif = ill->ill_ipif; 8131 ipif_refhold(ipif); 8132 } else { 8133 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8134 &exists, isv6, zoneid, 8135 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 8136 if (ipif == NULL) { 8137 if (err == EINPROGRESS) 8138 return (err); 8139 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8140 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8141 /* 8142 * Need to try both v4 and v6 since this 8143 * ioctl can come down either v4 or v6 8144 * socket. The lifreq.lifr_family passed 8145 * down by this ioctl is AF_UNSPEC. 8146 */ 8147 ipif = ipif_lookup_on_name(name, 8148 mi_strlen(name), B_FALSE, &exists, !isv6, 8149 zoneid, (connp == NULL) ? q : 8150 CONNP_TO_WQ(connp), mp, func, &err); 8151 if (err == EINPROGRESS) 8152 return (err); 8153 } 8154 err = 0; /* Ensure we don't use it below */ 8155 } 8156 } 8157 8158 /* 8159 * Old style [GS]IFCMD does not admit IPv6 ipif 8160 */ 8161 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8162 ipif_refrele(ipif); 8163 return (ENXIO); 8164 } 8165 8166 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8167 name[0] == '\0') { 8168 /* 8169 * Handle a or a SIOC?IF* with a null name 8170 * during plumb (on the ill queue before the I_PLINK). 8171 */ 8172 ipif = ill->ill_ipif; 8173 ipif_refhold(ipif); 8174 } 8175 8176 if (ipif == NULL) 8177 return (ENXIO); 8178 8179 /* 8180 * Allow only GET operations if this ipif has been created 8181 * temporarily due to a MOVE operation. 8182 */ 8183 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8184 ipif_refrele(ipif); 8185 return (EINVAL); 8186 } 8187 8188 ci->ci_ipif = ipif; 8189 return (0); 8190 } 8191 8192 /* 8193 * Return the total number of ipifs. 8194 */ 8195 static uint_t 8196 ip_get_numifs(zoneid_t zoneid) 8197 { 8198 uint_t numifs = 0; 8199 ill_t *ill; 8200 ill_walk_context_t ctx; 8201 ipif_t *ipif; 8202 8203 rw_enter(&ill_g_lock, RW_READER); 8204 ill = ILL_START_WALK_V4(&ctx); 8205 8206 while (ill != NULL) { 8207 for (ipif = ill->ill_ipif; ipif != NULL; 8208 ipif = ipif->ipif_next) { 8209 if (ipif->ipif_zoneid == zoneid || 8210 ipif->ipif_zoneid == ALL_ZONES) 8211 numifs++; 8212 } 8213 ill = ill_next(&ctx, ill); 8214 } 8215 rw_exit(&ill_g_lock); 8216 return (numifs); 8217 } 8218 8219 /* 8220 * Return the total number of ipifs. 8221 */ 8222 static uint_t 8223 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8224 { 8225 uint_t numifs = 0; 8226 ill_t *ill; 8227 ipif_t *ipif; 8228 ill_walk_context_t ctx; 8229 8230 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8231 8232 rw_enter(&ill_g_lock, RW_READER); 8233 if (family == AF_INET) 8234 ill = ILL_START_WALK_V4(&ctx); 8235 else if (family == AF_INET6) 8236 ill = ILL_START_WALK_V6(&ctx); 8237 else 8238 ill = ILL_START_WALK_ALL(&ctx); 8239 8240 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8241 for (ipif = ill->ill_ipif; ipif != NULL; 8242 ipif = ipif->ipif_next) { 8243 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8244 !(lifn_flags & LIFC_NOXMIT)) 8245 continue; 8246 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8247 !(lifn_flags & LIFC_TEMPORARY)) 8248 continue; 8249 if (((ipif->ipif_flags & 8250 (IPIF_NOXMIT|IPIF_NOLOCAL| 8251 IPIF_DEPRECATED)) || 8252 (ill->ill_phyint->phyint_flags & 8253 PHYI_LOOPBACK) || 8254 !(ipif->ipif_flags & IPIF_UP)) && 8255 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8256 continue; 8257 8258 if (zoneid != ipif->ipif_zoneid && 8259 ipif->ipif_zoneid != ALL_ZONES && 8260 (zoneid != GLOBAL_ZONEID || 8261 !(lifn_flags & LIFC_ALLZONES))) 8262 continue; 8263 8264 numifs++; 8265 } 8266 } 8267 rw_exit(&ill_g_lock); 8268 return (numifs); 8269 } 8270 8271 uint_t 8272 ip_get_lifsrcofnum(ill_t *ill) 8273 { 8274 uint_t numifs = 0; 8275 ill_t *ill_head = ill; 8276 8277 /* 8278 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8279 * other thread may be trying to relink the ILLs in this usesrc group 8280 * and adjusting the ill_usesrc_grp_next pointers 8281 */ 8282 rw_enter(&ill_g_usesrc_lock, RW_READER); 8283 if ((ill->ill_usesrc_ifindex == 0) && 8284 (ill->ill_usesrc_grp_next != NULL)) { 8285 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8286 ill = ill->ill_usesrc_grp_next) 8287 numifs++; 8288 } 8289 rw_exit(&ill_g_usesrc_lock); 8290 8291 return (numifs); 8292 } 8293 8294 /* Null values are passed in for ipif, sin, and ifreq */ 8295 /* ARGSUSED */ 8296 int 8297 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8298 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8299 { 8300 int *nump; 8301 8302 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8303 8304 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8305 nump = (int *)mp->b_cont->b_cont->b_rptr; 8306 8307 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8308 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8309 return (0); 8310 } 8311 8312 /* Null values are passed in for ipif, sin, and ifreq */ 8313 /* ARGSUSED */ 8314 int 8315 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8316 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8317 { 8318 struct lifnum *lifn; 8319 mblk_t *mp1; 8320 8321 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8322 8323 /* Existence checked in ip_wput_nondata */ 8324 mp1 = mp->b_cont->b_cont; 8325 8326 lifn = (struct lifnum *)mp1->b_rptr; 8327 switch (lifn->lifn_family) { 8328 case AF_UNSPEC: 8329 case AF_INET: 8330 case AF_INET6: 8331 break; 8332 default: 8333 return (EAFNOSUPPORT); 8334 } 8335 8336 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8337 Q_TO_CONN(q)->conn_zoneid); 8338 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8339 return (0); 8340 } 8341 8342 /* ARGSUSED */ 8343 int 8344 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8345 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8346 { 8347 STRUCT_HANDLE(ifconf, ifc); 8348 mblk_t *mp1; 8349 struct iocblk *iocp; 8350 struct ifreq *ifr; 8351 ill_walk_context_t ctx; 8352 ill_t *ill; 8353 ipif_t *ipif; 8354 struct sockaddr_in *sin; 8355 int32_t ifclen; 8356 zoneid_t zoneid; 8357 8358 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8359 8360 ip1dbg(("ip_sioctl_get_ifconf")); 8361 /* Existence verified in ip_wput_nondata */ 8362 mp1 = mp->b_cont->b_cont; 8363 iocp = (struct iocblk *)mp->b_rptr; 8364 zoneid = Q_TO_CONN(q)->conn_zoneid; 8365 8366 /* 8367 * The original SIOCGIFCONF passed in a struct ifconf which specified 8368 * the user buffer address and length into which the list of struct 8369 * ifreqs was to be copied. Since AT&T Streams does not seem to 8370 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8371 * the SIOCGIFCONF operation was redefined to simply provide 8372 * a large output buffer into which we are supposed to jam the ifreq 8373 * array. The same ioctl command code was used, despite the fact that 8374 * both the applications and the kernel code had to change, thus making 8375 * it impossible to support both interfaces. 8376 * 8377 * For reasons not good enough to try to explain, the following 8378 * algorithm is used for deciding what to do with one of these: 8379 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8380 * form with the output buffer coming down as the continuation message. 8381 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8382 * and we have to copy in the ifconf structure to find out how big the 8383 * output buffer is and where to copy out to. Sure no problem... 8384 * 8385 */ 8386 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8387 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8388 int numifs = 0; 8389 size_t ifc_bufsize; 8390 8391 /* 8392 * Must be (better be!) continuation of a TRANSPARENT 8393 * IOCTL. We just copied in the ifconf structure. 8394 */ 8395 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8396 (struct ifconf *)mp1->b_rptr); 8397 8398 /* 8399 * Allocate a buffer to hold requested information. 8400 * 8401 * If ifc_len is larger than what is needed, we only 8402 * allocate what we will use. 8403 * 8404 * If ifc_len is smaller than what is needed, return 8405 * EINVAL. 8406 * 8407 * XXX: the ill_t structure can hava 2 counters, for 8408 * v4 and v6 (not just ill_ipif_up_count) to store the 8409 * number of interfaces for a device, so we don't need 8410 * to count them here... 8411 */ 8412 numifs = ip_get_numifs(zoneid); 8413 8414 ifclen = STRUCT_FGET(ifc, ifc_len); 8415 ifc_bufsize = numifs * sizeof (struct ifreq); 8416 if (ifc_bufsize > ifclen) { 8417 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8418 /* old behaviour */ 8419 return (EINVAL); 8420 } else { 8421 ifc_bufsize = ifclen; 8422 } 8423 } 8424 8425 mp1 = mi_copyout_alloc(q, mp, 8426 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8427 if (mp1 == NULL) 8428 return (ENOMEM); 8429 8430 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8431 } 8432 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8433 /* 8434 * the SIOCGIFCONF ioctl only knows about 8435 * IPv4 addresses, so don't try to tell 8436 * it about interfaces with IPv6-only 8437 * addresses. (Last parm 'isv6' is B_FALSE) 8438 */ 8439 8440 ifr = (struct ifreq *)mp1->b_rptr; 8441 8442 rw_enter(&ill_g_lock, RW_READER); 8443 ill = ILL_START_WALK_V4(&ctx); 8444 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8445 for (ipif = ill->ill_ipif; ipif != NULL; 8446 ipif = ipif->ipif_next) { 8447 if (zoneid != ipif->ipif_zoneid && 8448 ipif->ipif_zoneid != ALL_ZONES) 8449 continue; 8450 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8451 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8452 /* old behaviour */ 8453 rw_exit(&ill_g_lock); 8454 return (EINVAL); 8455 } else { 8456 goto if_copydone; 8457 } 8458 } 8459 (void) ipif_get_name(ipif, 8460 ifr->ifr_name, 8461 sizeof (ifr->ifr_name)); 8462 sin = (sin_t *)&ifr->ifr_addr; 8463 *sin = sin_null; 8464 sin->sin_family = AF_INET; 8465 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8466 ifr++; 8467 } 8468 } 8469 if_copydone: 8470 rw_exit(&ill_g_lock); 8471 mp1->b_wptr = (uchar_t *)ifr; 8472 8473 if (STRUCT_BUF(ifc) != NULL) { 8474 STRUCT_FSET(ifc, ifc_len, 8475 (int)((uchar_t *)ifr - mp1->b_rptr)); 8476 } 8477 return (0); 8478 } 8479 8480 /* 8481 * Get the interfaces using the address hosted on the interface passed in, 8482 * as a source adddress 8483 */ 8484 /* ARGSUSED */ 8485 int 8486 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8487 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8488 { 8489 mblk_t *mp1; 8490 ill_t *ill, *ill_head; 8491 ipif_t *ipif, *orig_ipif; 8492 int numlifs = 0; 8493 size_t lifs_bufsize, lifsmaxlen; 8494 struct lifreq *lifr; 8495 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8496 uint_t ifindex; 8497 zoneid_t zoneid; 8498 int err = 0; 8499 boolean_t isv6 = B_FALSE; 8500 struct sockaddr_in *sin; 8501 struct sockaddr_in6 *sin6; 8502 8503 STRUCT_HANDLE(lifsrcof, lifs); 8504 8505 ASSERT(q->q_next == NULL); 8506 8507 zoneid = Q_TO_CONN(q)->conn_zoneid; 8508 8509 /* Existence verified in ip_wput_nondata */ 8510 mp1 = mp->b_cont->b_cont; 8511 8512 /* 8513 * Must be (better be!) continuation of a TRANSPARENT 8514 * IOCTL. We just copied in the lifsrcof structure. 8515 */ 8516 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8517 (struct lifsrcof *)mp1->b_rptr); 8518 8519 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8520 return (EINVAL); 8521 8522 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8523 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8524 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8525 ip_process_ioctl, &err); 8526 if (ipif == NULL) { 8527 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8528 ifindex)); 8529 return (err); 8530 } 8531 8532 8533 /* Allocate a buffer to hold requested information */ 8534 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8535 lifs_bufsize = numlifs * sizeof (struct lifreq); 8536 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8537 /* The actual size needed is always returned in lifs_len */ 8538 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8539 8540 /* If the amount we need is more than what is passed in, abort */ 8541 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8542 ipif_refrele(ipif); 8543 return (0); 8544 } 8545 8546 mp1 = mi_copyout_alloc(q, mp, 8547 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8548 if (mp1 == NULL) { 8549 ipif_refrele(ipif); 8550 return (ENOMEM); 8551 } 8552 8553 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8554 bzero(mp1->b_rptr, lifs_bufsize); 8555 8556 lifr = (struct lifreq *)mp1->b_rptr; 8557 8558 ill = ill_head = ipif->ipif_ill; 8559 orig_ipif = ipif; 8560 8561 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8562 rw_enter(&ill_g_usesrc_lock, RW_READER); 8563 rw_enter(&ill_g_lock, RW_READER); 8564 8565 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8566 for (; (ill != NULL) && (ill != ill_head); 8567 ill = ill->ill_usesrc_grp_next) { 8568 8569 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8570 break; 8571 8572 ipif = ill->ill_ipif; 8573 (void) ipif_get_name(ipif, 8574 lifr->lifr_name, sizeof (lifr->lifr_name)); 8575 if (ipif->ipif_isv6) { 8576 sin6 = (sin6_t *)&lifr->lifr_addr; 8577 *sin6 = sin6_null; 8578 sin6->sin6_family = AF_INET6; 8579 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8580 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8581 &ipif->ipif_v6net_mask); 8582 } else { 8583 sin = (sin_t *)&lifr->lifr_addr; 8584 *sin = sin_null; 8585 sin->sin_family = AF_INET; 8586 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8587 lifr->lifr_addrlen = ip_mask_to_plen( 8588 ipif->ipif_net_mask); 8589 } 8590 lifr++; 8591 } 8592 rw_exit(&ill_g_usesrc_lock); 8593 rw_exit(&ill_g_lock); 8594 ipif_refrele(orig_ipif); 8595 mp1->b_wptr = (uchar_t *)lifr; 8596 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8597 8598 return (0); 8599 } 8600 8601 /* ARGSUSED */ 8602 int 8603 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8604 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8605 { 8606 mblk_t *mp1; 8607 int list; 8608 ill_t *ill; 8609 ipif_t *ipif; 8610 int flags; 8611 int numlifs = 0; 8612 size_t lifc_bufsize; 8613 struct lifreq *lifr; 8614 sa_family_t family; 8615 struct sockaddr_in *sin; 8616 struct sockaddr_in6 *sin6; 8617 ill_walk_context_t ctx; 8618 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8619 int32_t lifclen; 8620 zoneid_t zoneid; 8621 STRUCT_HANDLE(lifconf, lifc); 8622 8623 ip1dbg(("ip_sioctl_get_lifconf")); 8624 8625 ASSERT(q->q_next == NULL); 8626 8627 zoneid = Q_TO_CONN(q)->conn_zoneid; 8628 8629 /* Existence verified in ip_wput_nondata */ 8630 mp1 = mp->b_cont->b_cont; 8631 8632 /* 8633 * An extended version of SIOCGIFCONF that takes an 8634 * additional address family and flags field. 8635 * AF_UNSPEC retrieve both IPv4 and IPv6. 8636 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8637 * interfaces are omitted. 8638 * Similarly, IPIF_TEMPORARY interfaces are omitted 8639 * unless LIFC_TEMPORARY is specified. 8640 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8641 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8642 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8643 * has priority over LIFC_NOXMIT. 8644 */ 8645 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8646 8647 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8648 return (EINVAL); 8649 8650 /* 8651 * Must be (better be!) continuation of a TRANSPARENT 8652 * IOCTL. We just copied in the lifconf structure. 8653 */ 8654 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8655 8656 family = STRUCT_FGET(lifc, lifc_family); 8657 flags = STRUCT_FGET(lifc, lifc_flags); 8658 8659 switch (family) { 8660 case AF_UNSPEC: 8661 /* 8662 * walk all ILL's. 8663 */ 8664 list = MAX_G_HEADS; 8665 break; 8666 case AF_INET: 8667 /* 8668 * walk only IPV4 ILL's. 8669 */ 8670 list = IP_V4_G_HEAD; 8671 break; 8672 case AF_INET6: 8673 /* 8674 * walk only IPV6 ILL's. 8675 */ 8676 list = IP_V6_G_HEAD; 8677 break; 8678 default: 8679 return (EAFNOSUPPORT); 8680 } 8681 8682 /* 8683 * Allocate a buffer to hold requested information. 8684 * 8685 * If lifc_len is larger than what is needed, we only 8686 * allocate what we will use. 8687 * 8688 * If lifc_len is smaller than what is needed, return 8689 * EINVAL. 8690 */ 8691 numlifs = ip_get_numlifs(family, flags, zoneid); 8692 lifc_bufsize = numlifs * sizeof (struct lifreq); 8693 lifclen = STRUCT_FGET(lifc, lifc_len); 8694 if (lifc_bufsize > lifclen) { 8695 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8696 return (EINVAL); 8697 else 8698 lifc_bufsize = lifclen; 8699 } 8700 8701 mp1 = mi_copyout_alloc(q, mp, 8702 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8703 if (mp1 == NULL) 8704 return (ENOMEM); 8705 8706 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8707 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8708 8709 lifr = (struct lifreq *)mp1->b_rptr; 8710 8711 rw_enter(&ill_g_lock, RW_READER); 8712 ill = ill_first(list, list, &ctx); 8713 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8714 for (ipif = ill->ill_ipif; ipif != NULL; 8715 ipif = ipif->ipif_next) { 8716 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8717 !(flags & LIFC_NOXMIT)) 8718 continue; 8719 8720 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8721 !(flags & LIFC_TEMPORARY)) 8722 continue; 8723 8724 if (((ipif->ipif_flags & 8725 (IPIF_NOXMIT|IPIF_NOLOCAL| 8726 IPIF_DEPRECATED)) || 8727 (ill->ill_phyint->phyint_flags & 8728 PHYI_LOOPBACK) || 8729 !(ipif->ipif_flags & IPIF_UP)) && 8730 (flags & LIFC_EXTERNAL_SOURCE)) 8731 continue; 8732 8733 if (zoneid != ipif->ipif_zoneid && 8734 ipif->ipif_zoneid != ALL_ZONES && 8735 (zoneid != GLOBAL_ZONEID || 8736 !(flags & LIFC_ALLZONES))) 8737 continue; 8738 8739 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8740 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8741 rw_exit(&ill_g_lock); 8742 return (EINVAL); 8743 } else { 8744 goto lif_copydone; 8745 } 8746 } 8747 8748 (void) ipif_get_name(ipif, 8749 lifr->lifr_name, 8750 sizeof (lifr->lifr_name)); 8751 if (ipif->ipif_isv6) { 8752 sin6 = (sin6_t *)&lifr->lifr_addr; 8753 *sin6 = sin6_null; 8754 sin6->sin6_family = AF_INET6; 8755 sin6->sin6_addr = 8756 ipif->ipif_v6lcl_addr; 8757 lifr->lifr_addrlen = 8758 ip_mask_to_plen_v6( 8759 &ipif->ipif_v6net_mask); 8760 } else { 8761 sin = (sin_t *)&lifr->lifr_addr; 8762 *sin = sin_null; 8763 sin->sin_family = AF_INET; 8764 sin->sin_addr.s_addr = 8765 ipif->ipif_lcl_addr; 8766 lifr->lifr_addrlen = 8767 ip_mask_to_plen( 8768 ipif->ipif_net_mask); 8769 } 8770 lifr++; 8771 } 8772 } 8773 lif_copydone: 8774 rw_exit(&ill_g_lock); 8775 8776 mp1->b_wptr = (uchar_t *)lifr; 8777 if (STRUCT_BUF(lifc) != NULL) { 8778 STRUCT_FSET(lifc, lifc_len, 8779 (int)((uchar_t *)lifr - mp1->b_rptr)); 8780 } 8781 return (0); 8782 } 8783 8784 /* ARGSUSED */ 8785 int 8786 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8787 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8788 { 8789 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8790 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8791 return (0); 8792 } 8793 8794 static void 8795 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8796 { 8797 ip6_asp_t *table; 8798 size_t table_size; 8799 mblk_t *data_mp; 8800 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8801 8802 /* These two ioctls are I_STR only */ 8803 if (iocp->ioc_count == TRANSPARENT) { 8804 miocnak(q, mp, 0, EINVAL); 8805 return; 8806 } 8807 8808 data_mp = mp->b_cont; 8809 if (data_mp == NULL) { 8810 /* The user passed us a NULL argument */ 8811 table = NULL; 8812 table_size = iocp->ioc_count; 8813 } else { 8814 /* 8815 * The user provided a table. The stream head 8816 * may have copied in the user data in chunks, 8817 * so make sure everything is pulled up 8818 * properly. 8819 */ 8820 if (MBLKL(data_mp) < iocp->ioc_count) { 8821 mblk_t *new_data_mp; 8822 if ((new_data_mp = msgpullup(data_mp, -1)) == 8823 NULL) { 8824 miocnak(q, mp, 0, ENOMEM); 8825 return; 8826 } 8827 freemsg(data_mp); 8828 data_mp = new_data_mp; 8829 mp->b_cont = data_mp; 8830 } 8831 table = (ip6_asp_t *)data_mp->b_rptr; 8832 table_size = iocp->ioc_count; 8833 } 8834 8835 switch (iocp->ioc_cmd) { 8836 case SIOCGIP6ADDRPOLICY: 8837 iocp->ioc_rval = ip6_asp_get(table, table_size); 8838 if (iocp->ioc_rval == -1) 8839 iocp->ioc_error = EINVAL; 8840 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8841 else if (table != NULL && 8842 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8843 ip6_asp_t *src = table; 8844 ip6_asp32_t *dst = (void *)table; 8845 int count = table_size / sizeof (ip6_asp_t); 8846 int i; 8847 8848 /* 8849 * We need to do an in-place shrink of the array 8850 * to match the alignment attributes of the 8851 * 32-bit ABI looking at it. 8852 */ 8853 /* LINTED: logical expression always true: op "||" */ 8854 ASSERT(sizeof (*src) > sizeof (*dst)); 8855 for (i = 1; i < count; i++) 8856 bcopy(src + i, dst + i, sizeof (*dst)); 8857 } 8858 #endif 8859 break; 8860 8861 case SIOCSIP6ADDRPOLICY: 8862 ASSERT(mp->b_prev == NULL); 8863 mp->b_prev = (void *)q; 8864 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8865 /* 8866 * We pass in the datamodel here so that the ip6_asp_replace() 8867 * routine can handle converting from 32-bit to native formats 8868 * where necessary. 8869 * 8870 * A better way to handle this might be to convert the inbound 8871 * data structure here, and hang it off a new 'mp'; thus the 8872 * ip6_asp_replace() logic would always be dealing with native 8873 * format data structures.. 8874 * 8875 * (An even simpler way to handle these ioctls is to just 8876 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8877 * and just recompile everything that depends on it.) 8878 */ 8879 #endif 8880 ip6_asp_replace(mp, table, table_size, B_FALSE, 8881 iocp->ioc_flag & IOC_MODELS); 8882 return; 8883 } 8884 8885 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8886 qreply(q, mp); 8887 } 8888 8889 static void 8890 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8891 { 8892 mblk_t *data_mp; 8893 struct dstinforeq *dir; 8894 uint8_t *end, *cur; 8895 in6_addr_t *daddr, *saddr; 8896 ipaddr_t v4daddr; 8897 ire_t *ire; 8898 char *slabel, *dlabel; 8899 boolean_t isipv4; 8900 int match_ire; 8901 ill_t *dst_ill; 8902 ipif_t *src_ipif, *ire_ipif; 8903 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8904 zoneid_t zoneid; 8905 8906 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8907 zoneid = Q_TO_CONN(q)->conn_zoneid; 8908 8909 /* 8910 * This ioctl is I_STR only, and must have a 8911 * data mblk following the M_IOCTL mblk. 8912 */ 8913 data_mp = mp->b_cont; 8914 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8915 miocnak(q, mp, 0, EINVAL); 8916 return; 8917 } 8918 8919 if (MBLKL(data_mp) < iocp->ioc_count) { 8920 mblk_t *new_data_mp; 8921 8922 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8923 miocnak(q, mp, 0, ENOMEM); 8924 return; 8925 } 8926 freemsg(data_mp); 8927 data_mp = new_data_mp; 8928 mp->b_cont = data_mp; 8929 } 8930 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8931 8932 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8933 end - cur >= sizeof (struct dstinforeq); 8934 cur += sizeof (struct dstinforeq)) { 8935 dir = (struct dstinforeq *)cur; 8936 daddr = &dir->dir_daddr; 8937 saddr = &dir->dir_saddr; 8938 8939 /* 8940 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8941 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8942 * and ipif_select_source[_v6]() do not. 8943 */ 8944 dir->dir_dscope = ip_addr_scope_v6(daddr); 8945 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8946 8947 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8948 if (isipv4) { 8949 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8950 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8951 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8952 } else { 8953 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8954 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8955 } 8956 if (ire == NULL) { 8957 dir->dir_dreachable = 0; 8958 8959 /* move on to next dst addr */ 8960 continue; 8961 } 8962 dir->dir_dreachable = 1; 8963 8964 ire_ipif = ire->ire_ipif; 8965 if (ire_ipif == NULL) 8966 goto next_dst; 8967 8968 /* 8969 * We expect to get back an interface ire or a 8970 * gateway ire cache entry. For both types, the 8971 * output interface is ire_ipif->ipif_ill. 8972 */ 8973 dst_ill = ire_ipif->ipif_ill; 8974 dir->dir_dmactype = dst_ill->ill_mactype; 8975 8976 if (isipv4) { 8977 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8978 } else { 8979 src_ipif = ipif_select_source_v6(dst_ill, 8980 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 8981 zoneid); 8982 } 8983 if (src_ipif == NULL) 8984 goto next_dst; 8985 8986 *saddr = src_ipif->ipif_v6lcl_addr; 8987 dir->dir_sscope = ip_addr_scope_v6(saddr); 8988 slabel = ip6_asp_lookup(saddr, NULL); 8989 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8990 dir->dir_sdeprecated = 8991 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8992 ipif_refrele(src_ipif); 8993 next_dst: 8994 ire_refrele(ire); 8995 } 8996 miocack(q, mp, iocp->ioc_count, 0); 8997 } 8998 8999 9000 /* 9001 * Check if this is an address assigned to this machine. 9002 * Skips interfaces that are down by using ire checks. 9003 * Translates mapped addresses to v4 addresses and then 9004 * treats them as such, returning true if the v4 address 9005 * associated with this mapped address is configured. 9006 * Note: Applications will have to be careful what they do 9007 * with the response; use of mapped addresses limits 9008 * what can be done with the socket, especially with 9009 * respect to socket options and ioctls - neither IPv4 9010 * options nor IPv6 sticky options/ancillary data options 9011 * may be used. 9012 */ 9013 /* ARGSUSED */ 9014 int 9015 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9016 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9017 { 9018 struct sioc_addrreq *sia; 9019 sin_t *sin; 9020 ire_t *ire; 9021 mblk_t *mp1; 9022 zoneid_t zoneid; 9023 9024 ip1dbg(("ip_sioctl_tmyaddr")); 9025 9026 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9027 zoneid = Q_TO_CONN(q)->conn_zoneid; 9028 9029 /* Existence verified in ip_wput_nondata */ 9030 mp1 = mp->b_cont->b_cont; 9031 sia = (struct sioc_addrreq *)mp1->b_rptr; 9032 sin = (sin_t *)&sia->sa_addr; 9033 switch (sin->sin_family) { 9034 case AF_INET6: { 9035 sin6_t *sin6 = (sin6_t *)sin; 9036 9037 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9038 ipaddr_t v4_addr; 9039 9040 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9041 v4_addr); 9042 ire = ire_ctable_lookup(v4_addr, 0, 9043 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9044 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9045 } else { 9046 in6_addr_t v6addr; 9047 9048 v6addr = sin6->sin6_addr; 9049 ire = ire_ctable_lookup_v6(&v6addr, 0, 9050 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9051 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9052 } 9053 break; 9054 } 9055 case AF_INET: { 9056 ipaddr_t v4addr; 9057 9058 v4addr = sin->sin_addr.s_addr; 9059 ire = ire_ctable_lookup(v4addr, 0, 9060 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9061 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9062 break; 9063 } 9064 default: 9065 return (EAFNOSUPPORT); 9066 } 9067 if (ire != NULL) { 9068 sia->sa_res = 1; 9069 ire_refrele(ire); 9070 } else { 9071 sia->sa_res = 0; 9072 } 9073 return (0); 9074 } 9075 9076 /* 9077 * Check if this is an address assigned on-link i.e. neighbor, 9078 * and makes sure it's reachable from the current zone. 9079 * Returns true for my addresses as well. 9080 * Translates mapped addresses to v4 addresses and then 9081 * treats them as such, returning true if the v4 address 9082 * associated with this mapped address is configured. 9083 * Note: Applications will have to be careful what they do 9084 * with the response; use of mapped addresses limits 9085 * what can be done with the socket, especially with 9086 * respect to socket options and ioctls - neither IPv4 9087 * options nor IPv6 sticky options/ancillary data options 9088 * may be used. 9089 */ 9090 /* ARGSUSED */ 9091 int 9092 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9093 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9094 { 9095 struct sioc_addrreq *sia; 9096 sin_t *sin; 9097 mblk_t *mp1; 9098 ire_t *ire = NULL; 9099 zoneid_t zoneid; 9100 9101 ip1dbg(("ip_sioctl_tonlink")); 9102 9103 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9104 zoneid = Q_TO_CONN(q)->conn_zoneid; 9105 9106 /* Existence verified in ip_wput_nondata */ 9107 mp1 = mp->b_cont->b_cont; 9108 sia = (struct sioc_addrreq *)mp1->b_rptr; 9109 sin = (sin_t *)&sia->sa_addr; 9110 9111 /* 9112 * Match addresses with a zero gateway field to avoid 9113 * routes going through a router. 9114 * Exclude broadcast and multicast addresses. 9115 */ 9116 switch (sin->sin_family) { 9117 case AF_INET6: { 9118 sin6_t *sin6 = (sin6_t *)sin; 9119 9120 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9121 ipaddr_t v4_addr; 9122 9123 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9124 v4_addr); 9125 if (!CLASSD(v4_addr)) { 9126 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9127 NULL, NULL, zoneid, NULL, 9128 MATCH_IRE_GW); 9129 } 9130 } else { 9131 in6_addr_t v6addr; 9132 in6_addr_t v6gw; 9133 9134 v6addr = sin6->sin6_addr; 9135 v6gw = ipv6_all_zeros; 9136 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9137 ire = ire_route_lookup_v6(&v6addr, 0, 9138 &v6gw, 0, NULL, NULL, zoneid, 9139 NULL, MATCH_IRE_GW); 9140 } 9141 } 9142 break; 9143 } 9144 case AF_INET: { 9145 ipaddr_t v4addr; 9146 9147 v4addr = sin->sin_addr.s_addr; 9148 if (!CLASSD(v4addr)) { 9149 ire = ire_route_lookup(v4addr, 0, 0, 0, 9150 NULL, NULL, zoneid, NULL, 9151 MATCH_IRE_GW); 9152 } 9153 break; 9154 } 9155 default: 9156 return (EAFNOSUPPORT); 9157 } 9158 sia->sa_res = 0; 9159 if (ire != NULL) { 9160 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9161 IRE_LOCAL|IRE_LOOPBACK)) { 9162 sia->sa_res = 1; 9163 } 9164 ire_refrele(ire); 9165 } 9166 return (0); 9167 } 9168 9169 /* 9170 * TBD: implement when kernel maintaines a list of site prefixes. 9171 */ 9172 /* ARGSUSED */ 9173 int 9174 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9175 ip_ioctl_cmd_t *ipip, void *ifreq) 9176 { 9177 return (ENXIO); 9178 } 9179 9180 /* ARGSUSED */ 9181 int 9182 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9183 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9184 { 9185 ill_t *ill; 9186 mblk_t *mp1; 9187 conn_t *connp; 9188 boolean_t success; 9189 9190 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9191 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9192 /* ioctl comes down on an conn */ 9193 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9194 connp = Q_TO_CONN(q); 9195 9196 mp->b_datap->db_type = M_IOCTL; 9197 9198 /* 9199 * Send down a copy. (copymsg does not copy b_next/b_prev). 9200 * The original mp contains contaminated b_next values due to 'mi', 9201 * which is needed to do the mi_copy_done. Unfortunately if we 9202 * send down the original mblk itself and if we are popped due to an 9203 * an unplumb before the response comes back from tunnel, 9204 * the streamhead (which does a freemsg) will see this contaminated 9205 * message and the assertion in freemsg about non-null b_next/b_prev 9206 * will panic a DEBUG kernel. 9207 */ 9208 mp1 = copymsg(mp); 9209 if (mp1 == NULL) 9210 return (ENOMEM); 9211 9212 ill = ipif->ipif_ill; 9213 mutex_enter(&connp->conn_lock); 9214 mutex_enter(&ill->ill_lock); 9215 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9216 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9217 mp, 0); 9218 } else { 9219 success = ill_pending_mp_add(ill, connp, mp); 9220 } 9221 mutex_exit(&ill->ill_lock); 9222 mutex_exit(&connp->conn_lock); 9223 9224 if (success) { 9225 ip1dbg(("sending down tunparam request ")); 9226 putnext(ill->ill_wq, mp1); 9227 return (EINPROGRESS); 9228 } else { 9229 /* The conn has started closing */ 9230 freemsg(mp1); 9231 return (EINTR); 9232 } 9233 } 9234 9235 static int 9236 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9237 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9238 { 9239 mblk_t *mp1; 9240 mblk_t *mp2; 9241 mblk_t *pending_mp; 9242 ipaddr_t ipaddr; 9243 area_t *area; 9244 struct iocblk *iocp; 9245 conn_t *connp; 9246 struct arpreq *ar; 9247 struct xarpreq *xar; 9248 boolean_t success; 9249 int flags, alength; 9250 char *lladdr; 9251 9252 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9253 connp = Q_TO_CONN(q); 9254 9255 iocp = (struct iocblk *)mp->b_rptr; 9256 /* 9257 * ill has already been set depending on whether 9258 * bsd style or interface style ioctl. 9259 */ 9260 ASSERT(ill != NULL); 9261 9262 /* 9263 * Is this one of the new SIOC*XARP ioctls? 9264 */ 9265 if (x_arp_ioctl) { 9266 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9267 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9268 ar = NULL; 9269 9270 flags = xar->xarp_flags; 9271 lladdr = LLADDR(&xar->xarp_ha); 9272 /* 9273 * Validate against user's link layer address length 9274 * input and name and addr length limits. 9275 */ 9276 alength = ill->ill_phys_addr_length; 9277 if (iocp->ioc_cmd == SIOCSXARP) { 9278 if (alength != xar->xarp_ha.sdl_alen || 9279 (alength + xar->xarp_ha.sdl_nlen > 9280 sizeof (xar->xarp_ha.sdl_data))) 9281 return (EINVAL); 9282 } 9283 } else { 9284 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9285 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9286 xar = NULL; 9287 9288 flags = ar->arp_flags; 9289 lladdr = ar->arp_ha.sa_data; 9290 /* 9291 * Theoretically, the sa_family could tell us what link 9292 * layer type this operation is trying to deal with. By 9293 * common usage AF_UNSPEC means ethernet. We'll assume 9294 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9295 * for now. Our new SIOC*XARP ioctls can be used more 9296 * generally. 9297 * 9298 * If the underlying media happens to have a non 6 byte 9299 * address, arp module will fail set/get, but the del 9300 * operation will succeed. 9301 */ 9302 alength = 6; 9303 if ((iocp->ioc_cmd != SIOCDARP) && 9304 (alength != ill->ill_phys_addr_length)) { 9305 return (EINVAL); 9306 } 9307 } 9308 9309 /* 9310 * We are going to pass up to ARP a packet chain that looks 9311 * like: 9312 * 9313 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9314 * 9315 * Get a copy of the original IOCTL mblk to head the chain, 9316 * to be sent up (in mp1). Also get another copy to store 9317 * in the ill_pending_mp list, for matching the response 9318 * when it comes back from ARP. 9319 */ 9320 mp1 = copyb(mp); 9321 pending_mp = copymsg(mp); 9322 if (mp1 == NULL || pending_mp == NULL) { 9323 if (mp1 != NULL) 9324 freeb(mp1); 9325 if (pending_mp != NULL) 9326 inet_freemsg(pending_mp); 9327 return (ENOMEM); 9328 } 9329 9330 ipaddr = sin->sin_addr.s_addr; 9331 9332 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9333 (caddr_t)&ipaddr); 9334 if (mp2 == NULL) { 9335 freeb(mp1); 9336 inet_freemsg(pending_mp); 9337 return (ENOMEM); 9338 } 9339 /* Put together the chain. */ 9340 mp1->b_cont = mp2; 9341 mp1->b_datap->db_type = M_IOCTL; 9342 mp2->b_cont = mp; 9343 mp2->b_datap->db_type = M_DATA; 9344 9345 iocp = (struct iocblk *)mp1->b_rptr; 9346 9347 /* 9348 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9349 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9350 * cp_private field (or cp_rval on 32-bit systems) in place of the 9351 * ioc_count field; set ioc_count to be correct. 9352 */ 9353 iocp->ioc_count = MBLKL(mp1->b_cont); 9354 9355 /* 9356 * Set the proper command in the ARP message. 9357 * Convert the SIOC{G|S|D}ARP calls into our 9358 * AR_ENTRY_xxx calls. 9359 */ 9360 area = (area_t *)mp2->b_rptr; 9361 switch (iocp->ioc_cmd) { 9362 case SIOCDARP: 9363 case SIOCDXARP: 9364 /* 9365 * We defer deleting the corresponding IRE until 9366 * we return from arp. 9367 */ 9368 area->area_cmd = AR_ENTRY_DELETE; 9369 area->area_proto_mask_offset = 0; 9370 break; 9371 case SIOCGARP: 9372 case SIOCGXARP: 9373 area->area_cmd = AR_ENTRY_SQUERY; 9374 area->area_proto_mask_offset = 0; 9375 break; 9376 case SIOCSARP: 9377 case SIOCSXARP: { 9378 /* 9379 * Delete the corresponding ire to make sure IP will 9380 * pick up any change from arp. 9381 */ 9382 if (!if_arp_ioctl) { 9383 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9384 break; 9385 } else { 9386 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9387 if (ipif != NULL) { 9388 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9389 ipif_refrele(ipif); 9390 } 9391 break; 9392 } 9393 } 9394 } 9395 iocp->ioc_cmd = area->area_cmd; 9396 9397 /* 9398 * Before sending 'mp' to ARP, we have to clear the b_next 9399 * and b_prev. Otherwise if STREAMS encounters such a message 9400 * in freemsg(), (because ARP can close any time) it can cause 9401 * a panic. But mi code needs the b_next and b_prev values of 9402 * mp->b_cont, to complete the ioctl. So we store it here 9403 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9404 * when the response comes down from ARP. 9405 */ 9406 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9407 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9408 mp->b_cont->b_next = NULL; 9409 mp->b_cont->b_prev = NULL; 9410 9411 mutex_enter(&connp->conn_lock); 9412 mutex_enter(&ill->ill_lock); 9413 /* conn has not yet started closing, hence this can't fail */ 9414 success = ill_pending_mp_add(ill, connp, pending_mp); 9415 ASSERT(success); 9416 mutex_exit(&ill->ill_lock); 9417 mutex_exit(&connp->conn_lock); 9418 9419 /* 9420 * Fill in the rest of the ARP operation fields. 9421 */ 9422 area->area_hw_addr_length = alength; 9423 bcopy(lladdr, 9424 (char *)area + area->area_hw_addr_offset, 9425 area->area_hw_addr_length); 9426 /* Translate the flags. */ 9427 if (flags & ATF_PERM) 9428 area->area_flags |= ACE_F_PERMANENT; 9429 if (flags & ATF_PUBL) 9430 area->area_flags |= ACE_F_PUBLISH; 9431 if (flags & ATF_AUTHORITY) 9432 area->area_flags |= ACE_F_AUTHORITY; 9433 9434 /* 9435 * Up to ARP it goes. The response will come 9436 * back in ip_wput as an M_IOCACK message, and 9437 * will be handed to ip_sioctl_iocack for 9438 * completion. 9439 */ 9440 putnext(ill->ill_rq, mp1); 9441 return (EINPROGRESS); 9442 } 9443 9444 /* ARGSUSED */ 9445 int 9446 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9447 ip_ioctl_cmd_t *ipip, void *ifreq) 9448 { 9449 struct xarpreq *xar; 9450 boolean_t isv6; 9451 mblk_t *mp1; 9452 int err; 9453 conn_t *connp; 9454 int ifnamelen; 9455 ire_t *ire = NULL; 9456 ill_t *ill = NULL; 9457 struct sockaddr_in *sin; 9458 boolean_t if_arp_ioctl = B_FALSE; 9459 9460 /* ioctl comes down on an conn */ 9461 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9462 connp = Q_TO_CONN(q); 9463 isv6 = connp->conn_af_isv6; 9464 9465 /* Existance verified in ip_wput_nondata */ 9466 mp1 = mp->b_cont->b_cont; 9467 9468 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9469 xar = (struct xarpreq *)mp1->b_rptr; 9470 sin = (sin_t *)&xar->xarp_pa; 9471 9472 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9473 (xar->xarp_pa.ss_family != AF_INET)) 9474 return (ENXIO); 9475 9476 ifnamelen = xar->xarp_ha.sdl_nlen; 9477 if (ifnamelen != 0) { 9478 char *cptr, cval; 9479 9480 if (ifnamelen >= LIFNAMSIZ) 9481 return (EINVAL); 9482 9483 /* 9484 * Instead of bcopying a bunch of bytes, 9485 * null-terminate the string in-situ. 9486 */ 9487 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9488 cval = *cptr; 9489 *cptr = '\0'; 9490 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9491 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9492 &err, NULL); 9493 *cptr = cval; 9494 if (ill == NULL) 9495 return (err); 9496 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9497 ill_refrele(ill); 9498 return (ENXIO); 9499 } 9500 9501 if_arp_ioctl = B_TRUE; 9502 } else { 9503 /* 9504 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9505 * as an extended BSD ioctl. The kernel uses the IP address 9506 * to figure out the network interface. 9507 */ 9508 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9509 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9510 ((ill = ire_to_ill(ire)) == NULL) || 9511 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9512 if (ire != NULL) 9513 ire_refrele(ire); 9514 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9515 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9516 NULL, MATCH_IRE_TYPE); 9517 if ((ire == NULL) || 9518 ((ill = ire_to_ill(ire)) == NULL)) { 9519 if (ire != NULL) 9520 ire_refrele(ire); 9521 return (ENXIO); 9522 } 9523 } 9524 ASSERT(ire != NULL && ill != NULL); 9525 } 9526 9527 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9528 if (if_arp_ioctl) 9529 ill_refrele(ill); 9530 if (ire != NULL) 9531 ire_refrele(ire); 9532 9533 return (err); 9534 } 9535 9536 /* 9537 * ARP IOCTLs. 9538 * How does IP get in the business of fronting ARP configuration/queries? 9539 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9540 * are by tradition passed in through a datagram socket. That lands in IP. 9541 * As it happens, this is just as well since the interface is quite crude in 9542 * that it passes in no information about protocol or hardware types, or 9543 * interface association. After making the protocol assumption, IP is in 9544 * the position to look up the name of the ILL, which ARP will need, and 9545 * format a request that can be handled by ARP. The request is passed up 9546 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9547 * back a response. ARP supports its own set of more general IOCTLs, in 9548 * case anyone is interested. 9549 */ 9550 /* ARGSUSED */ 9551 int 9552 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9553 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9554 { 9555 struct arpreq *ar; 9556 struct sockaddr_in *sin; 9557 ire_t *ire; 9558 boolean_t isv6; 9559 mblk_t *mp1; 9560 int err; 9561 conn_t *connp; 9562 ill_t *ill; 9563 9564 /* ioctl comes down on an conn */ 9565 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9566 connp = Q_TO_CONN(q); 9567 isv6 = connp->conn_af_isv6; 9568 if (isv6) 9569 return (ENXIO); 9570 9571 /* Existance verified in ip_wput_nondata */ 9572 mp1 = mp->b_cont->b_cont; 9573 9574 ar = (struct arpreq *)mp1->b_rptr; 9575 sin = (sin_t *)&ar->arp_pa; 9576 9577 /* 9578 * We need to let ARP know on which interface the IP 9579 * address has an ARP mapping. In the IPMP case, a 9580 * simple forwarding table lookup will return the 9581 * IRE_IF_RESOLVER for the first interface in the group, 9582 * which might not be the interface on which the 9583 * requested IP address was resolved due to the ill 9584 * selection algorithm (see ip_newroute_get_dst_ill()). 9585 * So we do a cache table lookup first: if the IRE cache 9586 * entry for the IP address is still there, it will 9587 * contain the ill pointer for the right interface, so 9588 * we use that. If the cache entry has been flushed, we 9589 * fall back to the forwarding table lookup. This should 9590 * be rare enough since IRE cache entries have a longer 9591 * life expectancy than ARP cache entries. 9592 */ 9593 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9594 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9595 ((ill = ire_to_ill(ire)) == NULL)) { 9596 if (ire != NULL) 9597 ire_refrele(ire); 9598 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9599 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9600 NULL, MATCH_IRE_TYPE); 9601 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9602 if (ire != NULL) 9603 ire_refrele(ire); 9604 return (ENXIO); 9605 } 9606 } 9607 ASSERT(ire != NULL && ill != NULL); 9608 9609 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9610 ire_refrele(ire); 9611 return (err); 9612 } 9613 9614 /* 9615 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9616 * atomically set/clear the muxids. Also complete the ioctl by acking or 9617 * naking it. Note that the code is structured such that the link type, 9618 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9619 * its clones use the persistent link, while pppd(1M) and perhaps many 9620 * other daemons may use non-persistent link. When combined with some 9621 * ill_t states, linking and unlinking lower streams may be used as 9622 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9623 */ 9624 /* ARGSUSED */ 9625 void 9626 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9627 { 9628 mblk_t *mp1; 9629 mblk_t *mp2; 9630 struct linkblk *li; 9631 queue_t *ipwq; 9632 char *name; 9633 struct qinit *qinfo; 9634 struct ipmx_s *ipmxp; 9635 ill_t *ill = NULL; 9636 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9637 int err = 0; 9638 boolean_t entered_ipsq = B_FALSE; 9639 boolean_t islink; 9640 queue_t *dwq = NULL; 9641 9642 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9643 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9644 9645 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9646 B_TRUE : B_FALSE; 9647 9648 mp1 = mp->b_cont; /* This is the linkblk info */ 9649 li = (struct linkblk *)mp1->b_rptr; 9650 9651 /* 9652 * ARP has added this special mblk, and the utility is asking us 9653 * to perform consistency checks, and also atomically set the 9654 * muxid. Ifconfig is an example. It achieves this by using 9655 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9656 * to /dev/udp[6] stream for use as the mux when plinking the IP 9657 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9658 * and other comments in this routine for more details. 9659 */ 9660 mp2 = mp1->b_cont; /* This is added by ARP */ 9661 9662 /* 9663 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9664 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9665 * get the special mblk above. For backward compatibility, we just 9666 * return success. The utility will use SIOCSLIFMUXID to store 9667 * the muxids. This is not atomic, and can leave the streams 9668 * unplumbable if the utility is interrrupted, before it does the 9669 * SIOCSLIFMUXID. 9670 */ 9671 if (mp2 == NULL) { 9672 /* 9673 * At this point we don't know whether or not this is the 9674 * IP module stream or the ARP device stream. We need to 9675 * walk the lower stream in order to find this out, since 9676 * the capability negotiation is done only on the IP module 9677 * stream. IP module instance is identified by the module 9678 * name IP, non-null q_next, and it's wput not being ip_lwput. 9679 * STREAMS ensures that the lower stream (l_qbot) will not 9680 * vanish until this ioctl completes. So we can safely walk 9681 * the stream or refer to the q_ptr. 9682 */ 9683 ipwq = li->l_qbot; 9684 while (ipwq != NULL) { 9685 qinfo = ipwq->q_qinfo; 9686 name = qinfo->qi_minfo->mi_idname; 9687 if (name != NULL && name[0] != NULL && 9688 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9689 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9690 (ipwq->q_next != NULL)) { 9691 break; 9692 } 9693 ipwq = ipwq->q_next; 9694 } 9695 /* 9696 * This looks like an IP module stream, so trigger 9697 * the capability reset or re-negotiation if necessary. 9698 */ 9699 if (ipwq != NULL) { 9700 ill = ipwq->q_ptr; 9701 ASSERT(ill != NULL); 9702 9703 if (ipsq == NULL) { 9704 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9705 ip_sioctl_plink, NEW_OP, B_TRUE); 9706 if (ipsq == NULL) 9707 return; 9708 entered_ipsq = B_TRUE; 9709 } 9710 ASSERT(IAM_WRITER_ILL(ill)); 9711 /* 9712 * Store the upper read queue of the module 9713 * immediately below IP, and count the total 9714 * number of lower modules. Do this only 9715 * for I_PLINK or I_LINK event. 9716 */ 9717 ill->ill_lmod_rq = NULL; 9718 ill->ill_lmod_cnt = 0; 9719 if (islink && (dwq = ipwq->q_next) != NULL) { 9720 ill->ill_lmod_rq = RD(dwq); 9721 9722 while (dwq != NULL) { 9723 ill->ill_lmod_cnt++; 9724 dwq = dwq->q_next; 9725 } 9726 } 9727 /* 9728 * There's no point in resetting or re-negotiating if 9729 * we are not bound to the driver, so only do this if 9730 * the DLPI state is idle (up); we assume such state 9731 * since ill_ipif_up_count gets incremented in 9732 * ipif_up_done(), which is after we are bound to the 9733 * driver. Note that in the case of logical 9734 * interfaces, IP won't rebind to the driver unless 9735 * the ill_ipif_up_count is 0, meaning that all other 9736 * IP interfaces (including the main ipif) are in the 9737 * down state. Because of this, we use such counter 9738 * as an indicator, instead of relying on the IPIF_UP 9739 * flag, which is per ipif instance. 9740 */ 9741 if (ill->ill_ipif_up_count > 0) { 9742 if (islink) 9743 ill_capability_probe(ill); 9744 else 9745 ill_capability_reset(ill); 9746 } 9747 } 9748 goto done; 9749 } 9750 9751 /* 9752 * This is an I_{P}LINK sent down by ifconfig on 9753 * /dev/arp. ARP has appended this last (3rd) mblk, 9754 * giving more info. STREAMS ensures that the lower 9755 * stream (l_qbot) will not vanish until this ioctl 9756 * completes. So we can safely walk the stream or refer 9757 * to the q_ptr. 9758 */ 9759 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9760 if (ipmxp->ipmx_arpdev_stream) { 9761 /* 9762 * The operation is occuring on the arp-device 9763 * stream. 9764 */ 9765 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9766 q, mp, ip_sioctl_plink, &err, NULL); 9767 if (ill == NULL) { 9768 if (err == EINPROGRESS) { 9769 return; 9770 } else { 9771 err = EINVAL; 9772 goto done; 9773 } 9774 } 9775 9776 if (ipsq == NULL) { 9777 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9778 NEW_OP, B_TRUE); 9779 if (ipsq == NULL) { 9780 ill_refrele(ill); 9781 return; 9782 } 9783 entered_ipsq = B_TRUE; 9784 } 9785 ASSERT(IAM_WRITER_ILL(ill)); 9786 ill_refrele(ill); 9787 /* 9788 * To ensure consistency between IP and ARP, 9789 * the following LIFO scheme is used in 9790 * plink/punlink. (IP first, ARP last). 9791 * This is because the muxid's are stored 9792 * in the IP stream on the ill. 9793 * 9794 * I_{P}LINK: ifconfig plinks the IP stream before 9795 * plinking the ARP stream. On an arp-dev 9796 * stream, IP checks that it is not yet 9797 * plinked, and it also checks that the 9798 * corresponding IP stream is already plinked. 9799 * 9800 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9801 * before punlinking the IP stream. IP does 9802 * not allow punlink of the IP stream unless 9803 * the arp stream has been punlinked. 9804 * 9805 */ 9806 if ((islink && 9807 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9808 (!islink && 9809 ill->ill_arp_muxid != li->l_index)) { 9810 err = EINVAL; 9811 goto done; 9812 } 9813 if (islink) { 9814 ill->ill_arp_muxid = li->l_index; 9815 } else { 9816 ill->ill_arp_muxid = 0; 9817 } 9818 } else { 9819 /* 9820 * This must be the IP module stream with or 9821 * without arp. Walk the stream and locate the 9822 * IP module. An IP module instance is 9823 * identified by the module name IP, non-null 9824 * q_next, and it's wput not being ip_lwput. 9825 */ 9826 ipwq = li->l_qbot; 9827 while (ipwq != NULL) { 9828 qinfo = ipwq->q_qinfo; 9829 name = qinfo->qi_minfo->mi_idname; 9830 if (name != NULL && name[0] != NULL && 9831 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9832 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9833 (ipwq->q_next != NULL)) { 9834 break; 9835 } 9836 ipwq = ipwq->q_next; 9837 } 9838 if (ipwq != NULL) { 9839 ill = ipwq->q_ptr; 9840 ASSERT(ill != NULL); 9841 9842 if (ipsq == NULL) { 9843 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9844 ip_sioctl_plink, NEW_OP, B_TRUE); 9845 if (ipsq == NULL) 9846 return; 9847 entered_ipsq = B_TRUE; 9848 } 9849 ASSERT(IAM_WRITER_ILL(ill)); 9850 /* 9851 * Return error if the ip_mux_id is 9852 * non-zero and command is I_{P}LINK. 9853 * If command is I_{P}UNLINK, return 9854 * error if the arp-devstr is not 9855 * yet punlinked. 9856 */ 9857 if ((islink && ill->ill_ip_muxid != 0) || 9858 (!islink && ill->ill_arp_muxid != 0)) { 9859 err = EINVAL; 9860 goto done; 9861 } 9862 ill->ill_lmod_rq = NULL; 9863 ill->ill_lmod_cnt = 0; 9864 if (islink) { 9865 /* 9866 * Store the upper read queue of the module 9867 * immediately below IP, and count the total 9868 * number of lower modules. 9869 */ 9870 if ((dwq = ipwq->q_next) != NULL) { 9871 ill->ill_lmod_rq = RD(dwq); 9872 9873 while (dwq != NULL) { 9874 ill->ill_lmod_cnt++; 9875 dwq = dwq->q_next; 9876 } 9877 } 9878 ill->ill_ip_muxid = li->l_index; 9879 } else { 9880 ill->ill_ip_muxid = 0; 9881 } 9882 9883 /* 9884 * See comments above about resetting/re- 9885 * negotiating driver sub-capabilities. 9886 */ 9887 if (ill->ill_ipif_up_count > 0) { 9888 if (islink) 9889 ill_capability_probe(ill); 9890 else 9891 ill_capability_reset(ill); 9892 } 9893 } 9894 } 9895 done: 9896 iocp->ioc_count = 0; 9897 iocp->ioc_error = err; 9898 if (err == 0) 9899 mp->b_datap->db_type = M_IOCACK; 9900 else 9901 mp->b_datap->db_type = M_IOCNAK; 9902 qreply(q, mp); 9903 9904 /* Conn was refheld in ip_sioctl_copyin_setup */ 9905 if (CONN_Q(q)) 9906 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9907 if (entered_ipsq) 9908 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9909 } 9910 9911 /* 9912 * Search the ioctl command in the ioctl tables and return a pointer 9913 * to the ioctl command information. The ioctl command tables are 9914 * static and fully populated at compile time. 9915 */ 9916 ip_ioctl_cmd_t * 9917 ip_sioctl_lookup(int ioc_cmd) 9918 { 9919 int index; 9920 ip_ioctl_cmd_t *ipip; 9921 ip_ioctl_cmd_t *ipip_end; 9922 9923 if (ioc_cmd == IPI_DONTCARE) 9924 return (NULL); 9925 9926 /* 9927 * Do a 2 step search. First search the indexed table 9928 * based on the least significant byte of the ioctl cmd. 9929 * If we don't find a match, then search the misc table 9930 * serially. 9931 */ 9932 index = ioc_cmd & 0xFF; 9933 if (index < ip_ndx_ioctl_count) { 9934 ipip = &ip_ndx_ioctl_table[index]; 9935 if (ipip->ipi_cmd == ioc_cmd) { 9936 /* Found a match in the ndx table */ 9937 return (ipip); 9938 } 9939 } 9940 9941 /* Search the misc table */ 9942 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9943 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9944 if (ipip->ipi_cmd == ioc_cmd) 9945 /* Found a match in the misc table */ 9946 return (ipip); 9947 } 9948 9949 return (NULL); 9950 } 9951 9952 /* 9953 * Wrapper function for resuming deferred ioctl processing 9954 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9955 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9956 */ 9957 /* ARGSUSED */ 9958 void 9959 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9960 void *dummy_arg) 9961 { 9962 ip_sioctl_copyin_setup(q, mp); 9963 } 9964 9965 /* 9966 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9967 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9968 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9969 * We establish here the size of the block to be copied in. mi_copyin 9970 * arranges for this to happen, an processing continues in ip_wput with 9971 * an M_IOCDATA message. 9972 */ 9973 void 9974 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9975 { 9976 int copyin_size; 9977 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9978 ip_ioctl_cmd_t *ipip; 9979 cred_t *cr; 9980 9981 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9982 if (ipip == NULL) { 9983 /* 9984 * The ioctl is not one we understand or own. 9985 * Pass it along to be processed down stream, 9986 * if this is a module instance of IP, else nak 9987 * the ioctl. 9988 */ 9989 if (q->q_next == NULL) { 9990 goto nak; 9991 } else { 9992 putnext(q, mp); 9993 return; 9994 } 9995 } 9996 9997 /* 9998 * If this is deferred, then we will do all the checks when we 9999 * come back. 10000 */ 10001 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10002 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 10003 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10004 return; 10005 } 10006 10007 /* 10008 * Only allow a very small subset of IP ioctls on this stream if 10009 * IP is a module and not a driver. Allowing ioctls to be processed 10010 * in this case may cause assert failures or data corruption. 10011 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10012 * ioctls allowed on an IP module stream, after which this stream 10013 * normally becomes a multiplexor (at which time the stream head 10014 * will fail all ioctls). 10015 */ 10016 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10017 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10018 /* 10019 * Pass common Streams ioctls which the IP 10020 * module does not own or consume along to 10021 * be processed down stream. 10022 */ 10023 putnext(q, mp); 10024 return; 10025 } else { 10026 goto nak; 10027 } 10028 } 10029 10030 /* Make sure we have ioctl data to process. */ 10031 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10032 goto nak; 10033 10034 /* 10035 * Prefer dblk credential over ioctl credential; some synthesized 10036 * ioctls have kcred set because there's no way to crhold() 10037 * a credential in some contexts. (ioc_cr is not crfree() by 10038 * the framework; the caller of ioctl needs to hold the reference 10039 * for the duration of the call). 10040 */ 10041 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10042 10043 /* Make sure normal users don't send down privileged ioctls */ 10044 if ((ipip->ipi_flags & IPI_PRIV) && 10045 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 10046 /* We checked the privilege earlier but log it here */ 10047 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 10048 return; 10049 } 10050 10051 /* 10052 * The ioctl command tables can only encode fixed length 10053 * ioctl data. If the length is variable, the table will 10054 * encode the length as zero. Such special cases are handled 10055 * below in the switch. 10056 */ 10057 if (ipip->ipi_copyin_size != 0) { 10058 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10059 return; 10060 } 10061 10062 switch (iocp->ioc_cmd) { 10063 case O_SIOCGIFCONF: 10064 case SIOCGIFCONF: 10065 /* 10066 * This IOCTL is hilarious. See comments in 10067 * ip_sioctl_get_ifconf for the story. 10068 */ 10069 if (iocp->ioc_count == TRANSPARENT) 10070 copyin_size = SIZEOF_STRUCT(ifconf, 10071 iocp->ioc_flag); 10072 else 10073 copyin_size = iocp->ioc_count; 10074 mi_copyin(q, mp, NULL, copyin_size); 10075 return; 10076 10077 case O_SIOCGLIFCONF: 10078 case SIOCGLIFCONF: 10079 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10080 mi_copyin(q, mp, NULL, copyin_size); 10081 return; 10082 10083 case SIOCGLIFSRCOF: 10084 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10085 mi_copyin(q, mp, NULL, copyin_size); 10086 return; 10087 case SIOCGIP6ADDRPOLICY: 10088 ip_sioctl_ip6addrpolicy(q, mp); 10089 ip6_asp_table_refrele(); 10090 return; 10091 10092 case SIOCSIP6ADDRPOLICY: 10093 ip_sioctl_ip6addrpolicy(q, mp); 10094 return; 10095 10096 case SIOCGDSTINFO: 10097 ip_sioctl_dstinfo(q, mp); 10098 ip6_asp_table_refrele(); 10099 return; 10100 10101 case I_PLINK: 10102 case I_PUNLINK: 10103 case I_LINK: 10104 case I_UNLINK: 10105 /* 10106 * We treat non-persistent link similarly as the persistent 10107 * link case, in terms of plumbing/unplumbing, as well as 10108 * dynamic re-plumbing events indicator. See comments 10109 * in ip_sioctl_plink() for more. 10110 * 10111 * Request can be enqueued in the 'ipsq' while waiting 10112 * to become exclusive. So bump up the conn ref. 10113 */ 10114 if (CONN_Q(q)) 10115 CONN_INC_REF(Q_TO_CONN(q)); 10116 ip_sioctl_plink(NULL, q, mp, NULL); 10117 return; 10118 10119 case ND_GET: 10120 case ND_SET: 10121 /* 10122 * Use of the nd table requires holding the reader lock. 10123 * Modifying the nd table thru nd_load/nd_unload requires 10124 * the writer lock. 10125 */ 10126 rw_enter(&ip_g_nd_lock, RW_READER); 10127 if (nd_getset(q, ip_g_nd, mp)) { 10128 rw_exit(&ip_g_nd_lock); 10129 10130 if (iocp->ioc_error) 10131 iocp->ioc_count = 0; 10132 mp->b_datap->db_type = M_IOCACK; 10133 qreply(q, mp); 10134 return; 10135 } 10136 rw_exit(&ip_g_nd_lock); 10137 /* 10138 * We don't understand this subioctl of ND_GET / ND_SET. 10139 * Maybe intended for some driver / module below us 10140 */ 10141 if (q->q_next) { 10142 putnext(q, mp); 10143 } else { 10144 iocp->ioc_error = ENOENT; 10145 mp->b_datap->db_type = M_IOCNAK; 10146 iocp->ioc_count = 0; 10147 qreply(q, mp); 10148 } 10149 return; 10150 10151 case IP_IOCTL: 10152 ip_wput_ioctl(q, mp); 10153 return; 10154 default: 10155 cmn_err(CE_PANIC, "should not happen "); 10156 } 10157 nak: 10158 if (mp->b_cont != NULL) { 10159 freemsg(mp->b_cont); 10160 mp->b_cont = NULL; 10161 } 10162 iocp->ioc_error = EINVAL; 10163 mp->b_datap->db_type = M_IOCNAK; 10164 iocp->ioc_count = 0; 10165 qreply(q, mp); 10166 } 10167 10168 /* ip_wput hands off ARP IOCTL responses to us */ 10169 void 10170 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10171 { 10172 struct arpreq *ar; 10173 struct xarpreq *xar; 10174 area_t *area; 10175 mblk_t *area_mp; 10176 struct iocblk *iocp; 10177 mblk_t *orig_ioc_mp, *tmp; 10178 struct iocblk *orig_iocp; 10179 ill_t *ill; 10180 conn_t *connp = NULL; 10181 uint_t ioc_id; 10182 mblk_t *pending_mp; 10183 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10184 int *flagsp; 10185 char *storage = NULL; 10186 sin_t *sin; 10187 ipaddr_t addr; 10188 int err; 10189 10190 ill = q->q_ptr; 10191 ASSERT(ill != NULL); 10192 10193 /* 10194 * We should get back from ARP a packet chain that looks like: 10195 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10196 */ 10197 if (!(area_mp = mp->b_cont) || 10198 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10199 !(orig_ioc_mp = area_mp->b_cont) || 10200 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10201 freemsg(mp); 10202 return; 10203 } 10204 10205 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10206 10207 tmp = (orig_ioc_mp->b_cont)->b_cont; 10208 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10209 (orig_iocp->ioc_cmd == SIOCSXARP) || 10210 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10211 x_arp_ioctl = B_TRUE; 10212 xar = (struct xarpreq *)tmp->b_rptr; 10213 sin = (sin_t *)&xar->xarp_pa; 10214 flagsp = &xar->xarp_flags; 10215 storage = xar->xarp_ha.sdl_data; 10216 if (xar->xarp_ha.sdl_nlen != 0) 10217 ifx_arp_ioctl = B_TRUE; 10218 } else { 10219 ar = (struct arpreq *)tmp->b_rptr; 10220 sin = (sin_t *)&ar->arp_pa; 10221 flagsp = &ar->arp_flags; 10222 storage = ar->arp_ha.sa_data; 10223 } 10224 10225 iocp = (struct iocblk *)mp->b_rptr; 10226 10227 /* 10228 * Pick out the originating queue based on the ioc_id. 10229 */ 10230 ioc_id = iocp->ioc_id; 10231 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10232 if (pending_mp == NULL) { 10233 ASSERT(connp == NULL); 10234 inet_freemsg(mp); 10235 return; 10236 } 10237 ASSERT(connp != NULL); 10238 q = CONNP_TO_WQ(connp); 10239 10240 /* Uncouple the internally generated IOCTL from the original one */ 10241 area = (area_t *)area_mp->b_rptr; 10242 area_mp->b_cont = NULL; 10243 10244 /* 10245 * Restore the b_next and b_prev used by mi code. This is needed 10246 * to complete the ioctl using mi* functions. We stored them in 10247 * the pending mp prior to sending the request to ARP. 10248 */ 10249 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10250 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10251 inet_freemsg(pending_mp); 10252 10253 /* 10254 * We're done if there was an error or if this is not an SIOCG{X}ARP 10255 * Catch the case where there is an IRE_CACHE by no entry in the 10256 * arp table. 10257 */ 10258 addr = sin->sin_addr.s_addr; 10259 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10260 ire_t *ire; 10261 dl_unitdata_req_t *dlup; 10262 mblk_t *llmp; 10263 int addr_len; 10264 ill_t *ipsqill = NULL; 10265 10266 if (ifx_arp_ioctl) { 10267 /* 10268 * There's no need to lookup the ill, since 10269 * we've already done that when we started 10270 * processing the ioctl and sent the message 10271 * to ARP on that ill. So use the ill that 10272 * is stored in q->q_ptr. 10273 */ 10274 ipsqill = ill; 10275 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10276 ipsqill->ill_ipif, ALL_ZONES, 10277 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10278 } else { 10279 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10280 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10281 if (ire != NULL) 10282 ipsqill = ire_to_ill(ire); 10283 } 10284 10285 if ((x_arp_ioctl) && (ipsqill != NULL)) 10286 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10287 10288 if (ire != NULL) { 10289 /* 10290 * Since the ire obtained from cachetable is used for 10291 * mac addr copying below, treat an incomplete ire as if 10292 * as if we never found it. 10293 */ 10294 if (ire->ire_nce != NULL && 10295 ire->ire_nce->nce_state != ND_REACHABLE) { 10296 ire_refrele(ire); 10297 ire = NULL; 10298 ipsqill = NULL; 10299 goto errack; 10300 } 10301 *flagsp = ATF_INUSE; 10302 llmp = (ire->ire_nce != NULL ? 10303 ire->ire_nce->nce_res_mp : NULL); 10304 if (llmp != NULL && ipsqill != NULL) { 10305 uchar_t *macaddr; 10306 10307 addr_len = ipsqill->ill_phys_addr_length; 10308 if (x_arp_ioctl && ((addr_len + 10309 ipsqill->ill_name_length) > 10310 sizeof (xar->xarp_ha.sdl_data))) { 10311 ire_refrele(ire); 10312 freemsg(mp); 10313 ip_ioctl_finish(q, orig_ioc_mp, 10314 EINVAL, NO_COPYOUT, NULL, NULL); 10315 return; 10316 } 10317 *flagsp |= ATF_COM; 10318 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10319 if (ipsqill->ill_sap_length < 0) 10320 macaddr = llmp->b_rptr + 10321 dlup->dl_dest_addr_offset; 10322 else 10323 macaddr = llmp->b_rptr + 10324 dlup->dl_dest_addr_offset + 10325 ipsqill->ill_sap_length; 10326 /* 10327 * For SIOCGARP, MAC address length 10328 * validation has already been done 10329 * before the ioctl was issued to ARP to 10330 * allow it to progress only on 6 byte 10331 * addressable (ethernet like) media. Thus 10332 * the mac address copying can not overwrite 10333 * the sa_data area below. 10334 */ 10335 bcopy(macaddr, storage, addr_len); 10336 } 10337 /* Ditch the internal IOCTL. */ 10338 freemsg(mp); 10339 ire_refrele(ire); 10340 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10341 return; 10342 } 10343 } 10344 10345 /* 10346 * Delete the coresponding IRE_CACHE if any. 10347 * Reset the error if there was one (in case there was no entry 10348 * in arp.) 10349 */ 10350 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10351 ipif_t *ipintf = NULL; 10352 10353 if (ifx_arp_ioctl) { 10354 /* 10355 * There's no need to lookup the ill, since 10356 * we've already done that when we started 10357 * processing the ioctl and sent the message 10358 * to ARP on that ill. So use the ill that 10359 * is stored in q->q_ptr. 10360 */ 10361 ipintf = ill->ill_ipif; 10362 } 10363 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10364 /* 10365 * The address in "addr" may be an entry for a 10366 * router. If that's true, then any off-net 10367 * IRE_CACHE entries that go through the router 10368 * with address "addr" must be clobbered. Use 10369 * ire_walk to achieve this goal. 10370 */ 10371 if (ifx_arp_ioctl) 10372 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10373 ire_delete_cache_gw, (char *)&addr, ill); 10374 else 10375 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10376 ALL_ZONES); 10377 iocp->ioc_error = 0; 10378 } 10379 } 10380 errack: 10381 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10382 err = iocp->ioc_error; 10383 freemsg(mp); 10384 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10385 return; 10386 } 10387 10388 /* 10389 * Completion of an SIOCG{X}ARP. Translate the information from 10390 * the area_t into the struct {x}arpreq. 10391 */ 10392 if (x_arp_ioctl) { 10393 storage += ill_xarp_info(&xar->xarp_ha, ill); 10394 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10395 sizeof (xar->xarp_ha.sdl_data)) { 10396 freemsg(mp); 10397 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10398 NO_COPYOUT, NULL, NULL); 10399 return; 10400 } 10401 } 10402 *flagsp = ATF_INUSE; 10403 if (area->area_flags & ACE_F_PERMANENT) 10404 *flagsp |= ATF_PERM; 10405 if (area->area_flags & ACE_F_PUBLISH) 10406 *flagsp |= ATF_PUBL; 10407 if (area->area_flags & ACE_F_AUTHORITY) 10408 *flagsp |= ATF_AUTHORITY; 10409 if (area->area_hw_addr_length != 0) { 10410 *flagsp |= ATF_COM; 10411 /* 10412 * For SIOCGARP, MAC address length validation has 10413 * already been done before the ioctl was issued to ARP 10414 * to allow it to progress only on 6 byte addressable 10415 * (ethernet like) media. Thus the mac address copying 10416 * can not overwrite the sa_data area below. 10417 */ 10418 bcopy((char *)area + area->area_hw_addr_offset, 10419 storage, area->area_hw_addr_length); 10420 } 10421 10422 /* Ditch the internal IOCTL. */ 10423 freemsg(mp); 10424 /* Complete the original. */ 10425 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10426 } 10427 10428 /* 10429 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10430 * interface) create the next available logical interface for this 10431 * physical interface. 10432 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10433 * ipif with the specified name. 10434 * 10435 * If the address family is not AF_UNSPEC then set the address as well. 10436 * 10437 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10438 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10439 * 10440 * Executed as a writer on the ill or ill group. 10441 * So no lock is needed to traverse the ipif chain, or examine the 10442 * phyint flags. 10443 */ 10444 /* ARGSUSED */ 10445 int 10446 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10447 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10448 { 10449 mblk_t *mp1; 10450 struct lifreq *lifr; 10451 boolean_t isv6; 10452 boolean_t exists; 10453 char *name; 10454 char *endp; 10455 char *cp; 10456 int namelen; 10457 ipif_t *ipif; 10458 long id; 10459 ipsq_t *ipsq; 10460 ill_t *ill; 10461 sin_t *sin; 10462 int err = 0; 10463 boolean_t found_sep = B_FALSE; 10464 conn_t *connp; 10465 zoneid_t zoneid; 10466 int orig_ifindex = 0; 10467 10468 ip1dbg(("ip_sioctl_addif\n")); 10469 /* Existence of mp1 has been checked in ip_wput_nondata */ 10470 mp1 = mp->b_cont->b_cont; 10471 /* 10472 * Null terminate the string to protect against buffer 10473 * overrun. String was generated by user code and may not 10474 * be trusted. 10475 */ 10476 lifr = (struct lifreq *)mp1->b_rptr; 10477 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10478 name = lifr->lifr_name; 10479 ASSERT(CONN_Q(q)); 10480 connp = Q_TO_CONN(q); 10481 isv6 = connp->conn_af_isv6; 10482 zoneid = connp->conn_zoneid; 10483 namelen = mi_strlen(name); 10484 if (namelen == 0) 10485 return (EINVAL); 10486 10487 exists = B_FALSE; 10488 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10489 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10490 /* 10491 * Allow creating lo0 using SIOCLIFADDIF. 10492 * can't be any other writer thread. So can pass null below 10493 * for the last 4 args to ipif_lookup_name. 10494 */ 10495 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10496 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10497 /* Prevent any further action */ 10498 if (ipif == NULL) { 10499 return (ENOBUFS); 10500 } else if (!exists) { 10501 /* We created the ipif now and as writer */ 10502 ipif_refrele(ipif); 10503 return (0); 10504 } else { 10505 ill = ipif->ipif_ill; 10506 ill_refhold(ill); 10507 ipif_refrele(ipif); 10508 } 10509 } else { 10510 /* Look for a colon in the name. */ 10511 endp = &name[namelen]; 10512 for (cp = endp; --cp > name; ) { 10513 if (*cp == IPIF_SEPARATOR_CHAR) { 10514 found_sep = B_TRUE; 10515 /* 10516 * Reject any non-decimal aliases for plumbing 10517 * of logical interfaces. Aliases with leading 10518 * zeroes are also rejected as they introduce 10519 * ambiguity in the naming of the interfaces. 10520 * Comparing with "0" takes care of all such 10521 * cases. 10522 */ 10523 if ((strncmp("0", cp+1, 1)) == 0) 10524 return (EINVAL); 10525 10526 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10527 id <= 0 || *endp != '\0') { 10528 return (EINVAL); 10529 } 10530 *cp = '\0'; 10531 break; 10532 } 10533 } 10534 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10535 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10536 if (found_sep) 10537 *cp = IPIF_SEPARATOR_CHAR; 10538 if (ill == NULL) 10539 return (err); 10540 } 10541 10542 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10543 B_TRUE); 10544 10545 /* 10546 * Release the refhold due to the lookup, now that we are excl 10547 * or we are just returning 10548 */ 10549 ill_refrele(ill); 10550 10551 if (ipsq == NULL) 10552 return (EINPROGRESS); 10553 10554 /* 10555 * If the interface is failed, inactive or offlined, look for a working 10556 * interface in the ill group and create the ipif there. If we can't 10557 * find a good interface, create the ipif anyway so that in.mpathd can 10558 * move it to the first repaired interface. 10559 */ 10560 if ((ill->ill_phyint->phyint_flags & 10561 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10562 ill->ill_phyint->phyint_groupname_len != 0) { 10563 phyint_t *phyi; 10564 char *groupname = ill->ill_phyint->phyint_groupname; 10565 10566 /* 10567 * We're looking for a working interface, but it doesn't matter 10568 * if it's up or down; so instead of following the group lists, 10569 * we look at each physical interface and compare the groupname. 10570 * We're only interested in interfaces with IPv4 (resp. IPv6) 10571 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10572 * Otherwise we create the ipif on the failed interface. 10573 */ 10574 rw_enter(&ill_g_lock, RW_READER); 10575 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10576 for (; phyi != NULL; 10577 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10578 phyi, AVL_AFTER)) { 10579 if (phyi->phyint_groupname_len == 0) 10580 continue; 10581 ASSERT(phyi->phyint_groupname != NULL); 10582 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10583 !(phyi->phyint_flags & 10584 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10585 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10586 (phyi->phyint_illv4 != NULL))) { 10587 break; 10588 } 10589 } 10590 rw_exit(&ill_g_lock); 10591 10592 if (phyi != NULL) { 10593 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10594 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10595 phyi->phyint_illv4); 10596 } 10597 } 10598 10599 /* 10600 * We are now exclusive on the ipsq, so an ill move will be serialized 10601 * before or after us. 10602 */ 10603 ASSERT(IAM_WRITER_ILL(ill)); 10604 ASSERT(ill->ill_move_in_progress == B_FALSE); 10605 10606 if (found_sep && orig_ifindex == 0) { 10607 /* Now see if there is an IPIF with this unit number. */ 10608 for (ipif = ill->ill_ipif; ipif != NULL; 10609 ipif = ipif->ipif_next) { 10610 if (ipif->ipif_id == id) { 10611 err = EEXIST; 10612 goto done; 10613 } 10614 } 10615 } 10616 10617 /* 10618 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10619 * of lo0. We never come here when we plumb lo0:0. It 10620 * happens in ipif_lookup_on_name. 10621 * The specified unit number is ignored when we create the ipif on a 10622 * different interface. However, we save it in ipif_orig_ipifid below so 10623 * that the ipif fails back to the right position. 10624 */ 10625 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10626 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10627 err = ENOBUFS; 10628 goto done; 10629 } 10630 10631 /* Return created name with ioctl */ 10632 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10633 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10634 ip1dbg(("created %s\n", lifr->lifr_name)); 10635 10636 /* Set address */ 10637 sin = (sin_t *)&lifr->lifr_addr; 10638 if (sin->sin_family != AF_UNSPEC) { 10639 err = ip_sioctl_addr(ipif, sin, q, mp, 10640 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10641 } 10642 10643 /* Set ifindex and unit number for failback */ 10644 if (err == 0 && orig_ifindex != 0) { 10645 ipif->ipif_orig_ifindex = orig_ifindex; 10646 if (found_sep) { 10647 ipif->ipif_orig_ipifid = id; 10648 } 10649 } 10650 10651 done: 10652 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10653 return (err); 10654 } 10655 10656 /* 10657 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10658 * interface) delete it based on the IP address (on this physical interface). 10659 * Otherwise delete it based on the ipif_id. 10660 * Also, special handling to allow a removeif of lo0. 10661 */ 10662 /* ARGSUSED */ 10663 int 10664 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10665 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10666 { 10667 conn_t *connp; 10668 ill_t *ill = ipif->ipif_ill; 10669 boolean_t success; 10670 10671 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10672 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10673 ASSERT(IAM_WRITER_IPIF(ipif)); 10674 10675 connp = Q_TO_CONN(q); 10676 /* 10677 * Special case for unplumbing lo0 (the loopback physical interface). 10678 * If unplumbing lo0, the incoming address structure has been 10679 * initialized to all zeros. When unplumbing lo0, all its logical 10680 * interfaces must be removed too. 10681 * 10682 * Note that this interface may be called to remove a specific 10683 * loopback logical interface (eg, lo0:1). But in that case 10684 * ipif->ipif_id != 0 so that the code path for that case is the 10685 * same as any other interface (meaning it skips the code directly 10686 * below). 10687 */ 10688 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10689 if (sin->sin_family == AF_UNSPEC && 10690 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10691 /* 10692 * Mark it condemned. No new ref. will be made to ill. 10693 */ 10694 mutex_enter(&ill->ill_lock); 10695 ill->ill_state_flags |= ILL_CONDEMNED; 10696 for (ipif = ill->ill_ipif; ipif != NULL; 10697 ipif = ipif->ipif_next) { 10698 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10699 } 10700 mutex_exit(&ill->ill_lock); 10701 10702 ipif = ill->ill_ipif; 10703 /* unplumb the loopback interface */ 10704 ill_delete(ill); 10705 mutex_enter(&connp->conn_lock); 10706 mutex_enter(&ill->ill_lock); 10707 ASSERT(ill->ill_group == NULL); 10708 10709 /* Are any references to this ill active */ 10710 if (ill_is_quiescent(ill)) { 10711 mutex_exit(&ill->ill_lock); 10712 mutex_exit(&connp->conn_lock); 10713 ill_delete_tail(ill); 10714 mi_free(ill); 10715 return (0); 10716 } 10717 success = ipsq_pending_mp_add(connp, ipif, 10718 CONNP_TO_WQ(connp), mp, ILL_FREE); 10719 mutex_exit(&connp->conn_lock); 10720 mutex_exit(&ill->ill_lock); 10721 if (success) 10722 return (EINPROGRESS); 10723 else 10724 return (EINTR); 10725 } 10726 } 10727 10728 /* 10729 * We are exclusive on the ipsq, so an ill move will be serialized 10730 * before or after us. 10731 */ 10732 ASSERT(ill->ill_move_in_progress == B_FALSE); 10733 10734 if (ipif->ipif_id == 0) { 10735 /* Find based on address */ 10736 if (ipif->ipif_isv6) { 10737 sin6_t *sin6; 10738 10739 if (sin->sin_family != AF_INET6) 10740 return (EAFNOSUPPORT); 10741 10742 sin6 = (sin6_t *)sin; 10743 /* We are a writer, so we should be able to lookup */ 10744 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10745 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10746 if (ipif == NULL) { 10747 /* 10748 * Maybe the address in on another interface in 10749 * the same IPMP group? We check this below. 10750 */ 10751 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10752 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10753 } 10754 } else { 10755 ipaddr_t addr; 10756 10757 if (sin->sin_family != AF_INET) 10758 return (EAFNOSUPPORT); 10759 10760 addr = sin->sin_addr.s_addr; 10761 /* We are a writer, so we should be able to lookup */ 10762 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10763 NULL, NULL, NULL); 10764 if (ipif == NULL) { 10765 /* 10766 * Maybe the address in on another interface in 10767 * the same IPMP group? We check this below. 10768 */ 10769 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10770 NULL, NULL, NULL, NULL); 10771 } 10772 } 10773 if (ipif == NULL) { 10774 return (EADDRNOTAVAIL); 10775 } 10776 /* 10777 * When the address to be removed is hosted on a different 10778 * interface, we check if the interface is in the same IPMP 10779 * group as the specified one; if so we proceed with the 10780 * removal. 10781 * ill->ill_group is NULL when the ill is down, so we have to 10782 * compare the group names instead. 10783 */ 10784 if (ipif->ipif_ill != ill && 10785 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10786 ill->ill_phyint->phyint_groupname_len == 0 || 10787 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10788 ill->ill_phyint->phyint_groupname) != 0)) { 10789 ipif_refrele(ipif); 10790 return (EADDRNOTAVAIL); 10791 } 10792 10793 /* This is a writer */ 10794 ipif_refrele(ipif); 10795 } 10796 10797 /* 10798 * Can not delete instance zero since it is tied to the ill. 10799 */ 10800 if (ipif->ipif_id == 0) 10801 return (EBUSY); 10802 10803 mutex_enter(&ill->ill_lock); 10804 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10805 mutex_exit(&ill->ill_lock); 10806 10807 ipif_free(ipif); 10808 10809 mutex_enter(&connp->conn_lock); 10810 mutex_enter(&ill->ill_lock); 10811 10812 /* Are any references to this ipif active */ 10813 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10814 mutex_exit(&ill->ill_lock); 10815 mutex_exit(&connp->conn_lock); 10816 ipif_non_duplicate(ipif); 10817 ipif_down_tail(ipif); 10818 ipif_free_tail(ipif); 10819 return (0); 10820 } 10821 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10822 IPIF_FREE); 10823 mutex_exit(&ill->ill_lock); 10824 mutex_exit(&connp->conn_lock); 10825 if (success) 10826 return (EINPROGRESS); 10827 else 10828 return (EINTR); 10829 } 10830 10831 /* 10832 * Restart the removeif ioctl. The refcnt has gone down to 0. 10833 * The ipif is already condemned. So can't find it thru lookups. 10834 */ 10835 /* ARGSUSED */ 10836 int 10837 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10838 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10839 { 10840 ill_t *ill; 10841 10842 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10843 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10844 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10845 ill = ipif->ipif_ill; 10846 ASSERT(IAM_WRITER_ILL(ill)); 10847 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10848 (ill->ill_state_flags & IPIF_CONDEMNED)); 10849 ill_delete_tail(ill); 10850 mi_free(ill); 10851 return (0); 10852 } 10853 10854 ill = ipif->ipif_ill; 10855 ASSERT(IAM_WRITER_IPIF(ipif)); 10856 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10857 10858 ipif_non_duplicate(ipif); 10859 ipif_down_tail(ipif); 10860 ipif_free_tail(ipif); 10861 10862 ILL_UNMARK_CHANGING(ill); 10863 return (0); 10864 } 10865 10866 /* 10867 * Set the local interface address. 10868 * Allow an address of all zero when the interface is down. 10869 */ 10870 /* ARGSUSED */ 10871 int 10872 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10873 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10874 { 10875 int err = 0; 10876 in6_addr_t v6addr; 10877 boolean_t need_up = B_FALSE; 10878 10879 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10880 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10881 10882 ASSERT(IAM_WRITER_IPIF(ipif)); 10883 10884 if (ipif->ipif_isv6) { 10885 sin6_t *sin6; 10886 ill_t *ill; 10887 phyint_t *phyi; 10888 10889 if (sin->sin_family != AF_INET6) 10890 return (EAFNOSUPPORT); 10891 10892 sin6 = (sin6_t *)sin; 10893 v6addr = sin6->sin6_addr; 10894 ill = ipif->ipif_ill; 10895 phyi = ill->ill_phyint; 10896 10897 /* 10898 * Enforce that true multicast interfaces have a link-local 10899 * address for logical unit 0. 10900 */ 10901 if (ipif->ipif_id == 0 && 10902 (ill->ill_flags & ILLF_MULTICAST) && 10903 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10904 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10905 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10906 return (EADDRNOTAVAIL); 10907 } 10908 10909 /* 10910 * up interfaces shouldn't have the unspecified address 10911 * unless they also have the IPIF_NOLOCAL flags set and 10912 * have a subnet assigned. 10913 */ 10914 if ((ipif->ipif_flags & IPIF_UP) && 10915 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10916 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10917 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10918 return (EADDRNOTAVAIL); 10919 } 10920 10921 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10922 return (EADDRNOTAVAIL); 10923 } else { 10924 ipaddr_t addr; 10925 10926 if (sin->sin_family != AF_INET) 10927 return (EAFNOSUPPORT); 10928 10929 addr = sin->sin_addr.s_addr; 10930 10931 /* Allow 0 as the local address. */ 10932 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10933 return (EADDRNOTAVAIL); 10934 10935 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10936 } 10937 10938 10939 /* 10940 * Even if there is no change we redo things just to rerun 10941 * ipif_set_default. 10942 */ 10943 if (ipif->ipif_flags & IPIF_UP) { 10944 /* 10945 * Setting a new local address, make sure 10946 * we have net and subnet bcast ire's for 10947 * the old address if we need them. 10948 */ 10949 if (!ipif->ipif_isv6) 10950 ipif_check_bcast_ires(ipif); 10951 /* 10952 * If the interface is already marked up, 10953 * we call ipif_down which will take care 10954 * of ditching any IREs that have been set 10955 * up based on the old interface address. 10956 */ 10957 err = ipif_logical_down(ipif, q, mp); 10958 if (err == EINPROGRESS) 10959 return (err); 10960 ipif_down_tail(ipif); 10961 need_up = 1; 10962 } 10963 10964 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10965 return (err); 10966 } 10967 10968 int 10969 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10970 boolean_t need_up) 10971 { 10972 in6_addr_t v6addr; 10973 ipaddr_t addr; 10974 sin6_t *sin6; 10975 int sinlen; 10976 int err = 0; 10977 ill_t *ill = ipif->ipif_ill; 10978 boolean_t need_dl_down; 10979 boolean_t need_arp_down; 10980 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10981 10982 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10983 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10984 ASSERT(IAM_WRITER_IPIF(ipif)); 10985 10986 /* Must cancel any pending timer before taking the ill_lock */ 10987 if (ipif->ipif_recovery_id != 0) 10988 (void) untimeout(ipif->ipif_recovery_id); 10989 ipif->ipif_recovery_id = 0; 10990 10991 if (ipif->ipif_isv6) { 10992 sin6 = (sin6_t *)sin; 10993 v6addr = sin6->sin6_addr; 10994 sinlen = sizeof (struct sockaddr_in6); 10995 } else { 10996 addr = sin->sin_addr.s_addr; 10997 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10998 sinlen = sizeof (struct sockaddr_in); 10999 } 11000 mutex_enter(&ill->ill_lock); 11001 ipif->ipif_v6lcl_addr = v6addr; 11002 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11003 ipif->ipif_v6src_addr = ipv6_all_zeros; 11004 } else { 11005 ipif->ipif_v6src_addr = v6addr; 11006 } 11007 ipif->ipif_addr_ready = 0; 11008 11009 /* 11010 * If the interface was previously marked as a duplicate, then since 11011 * we've now got a "new" address, it should no longer be considered a 11012 * duplicate -- even if the "new" address is the same as the old one. 11013 * Note that if all ipifs are down, we may have a pending ARP down 11014 * event to handle. This is because we want to recover from duplicates 11015 * and thus delay tearing down ARP until the duplicates have been 11016 * removed or disabled. 11017 */ 11018 need_dl_down = need_arp_down = B_FALSE; 11019 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11020 need_arp_down = !need_up; 11021 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11022 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11023 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11024 need_dl_down = B_TRUE; 11025 } 11026 } 11027 11028 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11029 !ill->ill_is_6to4tun) { 11030 queue_t *wqp = ill->ill_wq; 11031 11032 /* 11033 * The local address of this interface is a 6to4 address, 11034 * check if this interface is in fact a 6to4 tunnel or just 11035 * an interface configured with a 6to4 address. We are only 11036 * interested in the former. 11037 */ 11038 if (wqp != NULL) { 11039 while ((wqp->q_next != NULL) && 11040 (wqp->q_next->q_qinfo != NULL) && 11041 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11042 11043 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11044 == TUN6TO4_MODID) { 11045 /* set for use in IP */ 11046 ill->ill_is_6to4tun = 1; 11047 break; 11048 } 11049 wqp = wqp->q_next; 11050 } 11051 } 11052 } 11053 11054 ipif_set_default(ipif); 11055 11056 /* 11057 * When publishing an interface address change event, we only notify 11058 * the event listeners of the new address. It is assumed that if they 11059 * actively care about the addresses assigned that they will have 11060 * already discovered the previous address assigned (if there was one.) 11061 * 11062 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11063 */ 11064 if (iocp->ioc_cmd != SIOCLIFADDIF) { 11065 hook_nic_event_t *info; 11066 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11067 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11068 "attached for %s\n", info->hne_event, 11069 ill->ill_name)); 11070 if (info->hne_data != NULL) 11071 kmem_free(info->hne_data, info->hne_datalen); 11072 kmem_free(info, sizeof (hook_nic_event_t)); 11073 } 11074 11075 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11076 if (info != NULL) { 11077 info->hne_nic = 11078 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11079 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11080 info->hne_event = NE_ADDRESS_CHANGE; 11081 info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4; 11082 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11083 if (info->hne_data != NULL) { 11084 info->hne_datalen = sinlen; 11085 bcopy(sin, info->hne_data, sinlen); 11086 } else { 11087 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11088 "address information for ADDRESS_CHANGE nic" 11089 " event of %s (ENOMEM)\n", 11090 ipif->ipif_ill->ill_name)); 11091 kmem_free(info, sizeof (hook_nic_event_t)); 11092 } 11093 } else 11094 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11095 "ADDRESS_CHANGE nic event information for %s " 11096 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11097 11098 ipif->ipif_ill->ill_nic_event_info = info; 11099 } 11100 11101 mutex_exit(&ipif->ipif_ill->ill_lock); 11102 11103 if (need_up) { 11104 /* 11105 * Now bring the interface back up. If this 11106 * is the only IPIF for the ILL, ipif_up 11107 * will have to re-bind to the device, so 11108 * we may get back EINPROGRESS, in which 11109 * case, this IOCTL will get completed in 11110 * ip_rput_dlpi when we see the DL_BIND_ACK. 11111 */ 11112 err = ipif_up(ipif, q, mp); 11113 } else { 11114 /* 11115 * Update the IPIF list in SCTP, ipif_up_done() will do it 11116 * if need_up is true. 11117 */ 11118 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11119 } 11120 11121 if (need_dl_down) 11122 ill_dl_down(ill); 11123 if (need_arp_down) 11124 ipif_arp_down(ipif); 11125 11126 return (err); 11127 } 11128 11129 11130 /* 11131 * Restart entry point to restart the address set operation after the 11132 * refcounts have dropped to zero. 11133 */ 11134 /* ARGSUSED */ 11135 int 11136 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11137 ip_ioctl_cmd_t *ipip, void *ifreq) 11138 { 11139 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11141 ASSERT(IAM_WRITER_IPIF(ipif)); 11142 ipif_down_tail(ipif); 11143 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11144 } 11145 11146 /* ARGSUSED */ 11147 int 11148 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11149 ip_ioctl_cmd_t *ipip, void *if_req) 11150 { 11151 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11152 struct lifreq *lifr = (struct lifreq *)if_req; 11153 11154 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11155 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11156 /* 11157 * The net mask and address can't change since we have a 11158 * reference to the ipif. So no lock is necessary. 11159 */ 11160 if (ipif->ipif_isv6) { 11161 *sin6 = sin6_null; 11162 sin6->sin6_family = AF_INET6; 11163 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11164 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11165 lifr->lifr_addrlen = 11166 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11167 } else { 11168 *sin = sin_null; 11169 sin->sin_family = AF_INET; 11170 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11171 if (ipip->ipi_cmd_type == LIF_CMD) { 11172 lifr->lifr_addrlen = 11173 ip_mask_to_plen(ipif->ipif_net_mask); 11174 } 11175 } 11176 return (0); 11177 } 11178 11179 /* 11180 * Set the destination address for a pt-pt interface. 11181 */ 11182 /* ARGSUSED */ 11183 int 11184 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11185 ip_ioctl_cmd_t *ipip, void *if_req) 11186 { 11187 int err = 0; 11188 in6_addr_t v6addr; 11189 boolean_t need_up = B_FALSE; 11190 11191 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11192 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11193 ASSERT(IAM_WRITER_IPIF(ipif)); 11194 11195 if (ipif->ipif_isv6) { 11196 sin6_t *sin6; 11197 11198 if (sin->sin_family != AF_INET6) 11199 return (EAFNOSUPPORT); 11200 11201 sin6 = (sin6_t *)sin; 11202 v6addr = sin6->sin6_addr; 11203 11204 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11205 return (EADDRNOTAVAIL); 11206 } else { 11207 ipaddr_t addr; 11208 11209 if (sin->sin_family != AF_INET) 11210 return (EAFNOSUPPORT); 11211 11212 addr = sin->sin_addr.s_addr; 11213 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11214 return (EADDRNOTAVAIL); 11215 11216 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11217 } 11218 11219 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11220 return (0); /* No change */ 11221 11222 if (ipif->ipif_flags & IPIF_UP) { 11223 /* 11224 * If the interface is already marked up, 11225 * we call ipif_down which will take care 11226 * of ditching any IREs that have been set 11227 * up based on the old pp dst address. 11228 */ 11229 err = ipif_logical_down(ipif, q, mp); 11230 if (err == EINPROGRESS) 11231 return (err); 11232 ipif_down_tail(ipif); 11233 need_up = B_TRUE; 11234 } 11235 /* 11236 * could return EINPROGRESS. If so ioctl will complete in 11237 * ip_rput_dlpi_writer 11238 */ 11239 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11240 return (err); 11241 } 11242 11243 static int 11244 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11245 boolean_t need_up) 11246 { 11247 in6_addr_t v6addr; 11248 ill_t *ill = ipif->ipif_ill; 11249 int err = 0; 11250 boolean_t need_dl_down; 11251 boolean_t need_arp_down; 11252 11253 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11254 ipif->ipif_id, (void *)ipif)); 11255 11256 /* Must cancel any pending timer before taking the ill_lock */ 11257 if (ipif->ipif_recovery_id != 0) 11258 (void) untimeout(ipif->ipif_recovery_id); 11259 ipif->ipif_recovery_id = 0; 11260 11261 if (ipif->ipif_isv6) { 11262 sin6_t *sin6; 11263 11264 sin6 = (sin6_t *)sin; 11265 v6addr = sin6->sin6_addr; 11266 } else { 11267 ipaddr_t addr; 11268 11269 addr = sin->sin_addr.s_addr; 11270 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11271 } 11272 mutex_enter(&ill->ill_lock); 11273 /* Set point to point destination address. */ 11274 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11275 /* 11276 * Allow this as a means of creating logical 11277 * pt-pt interfaces on top of e.g. an Ethernet. 11278 * XXX Undocumented HACK for testing. 11279 * pt-pt interfaces are created with NUD disabled. 11280 */ 11281 ipif->ipif_flags |= IPIF_POINTOPOINT; 11282 ipif->ipif_flags &= ~IPIF_BROADCAST; 11283 if (ipif->ipif_isv6) 11284 ill->ill_flags |= ILLF_NONUD; 11285 } 11286 11287 /* 11288 * If the interface was previously marked as a duplicate, then since 11289 * we've now got a "new" address, it should no longer be considered a 11290 * duplicate -- even if the "new" address is the same as the old one. 11291 * Note that if all ipifs are down, we may have a pending ARP down 11292 * event to handle. 11293 */ 11294 need_dl_down = need_arp_down = B_FALSE; 11295 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11296 need_arp_down = !need_up; 11297 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11298 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11299 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11300 need_dl_down = B_TRUE; 11301 } 11302 } 11303 11304 /* Set the new address. */ 11305 ipif->ipif_v6pp_dst_addr = v6addr; 11306 /* Make sure subnet tracks pp_dst */ 11307 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11308 mutex_exit(&ill->ill_lock); 11309 11310 if (need_up) { 11311 /* 11312 * Now bring the interface back up. If this 11313 * is the only IPIF for the ILL, ipif_up 11314 * will have to re-bind to the device, so 11315 * we may get back EINPROGRESS, in which 11316 * case, this IOCTL will get completed in 11317 * ip_rput_dlpi when we see the DL_BIND_ACK. 11318 */ 11319 err = ipif_up(ipif, q, mp); 11320 } 11321 11322 if (need_dl_down) 11323 ill_dl_down(ill); 11324 11325 if (need_arp_down) 11326 ipif_arp_down(ipif); 11327 return (err); 11328 } 11329 11330 /* 11331 * Restart entry point to restart the dstaddress set operation after the 11332 * refcounts have dropped to zero. 11333 */ 11334 /* ARGSUSED */ 11335 int 11336 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11337 ip_ioctl_cmd_t *ipip, void *ifreq) 11338 { 11339 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11340 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11341 ipif_down_tail(ipif); 11342 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11343 } 11344 11345 /* ARGSUSED */ 11346 int 11347 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11348 ip_ioctl_cmd_t *ipip, void *if_req) 11349 { 11350 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11351 11352 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11353 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11354 /* 11355 * Get point to point destination address. The addresses can't 11356 * change since we hold a reference to the ipif. 11357 */ 11358 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11359 return (EADDRNOTAVAIL); 11360 11361 if (ipif->ipif_isv6) { 11362 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11363 *sin6 = sin6_null; 11364 sin6->sin6_family = AF_INET6; 11365 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11366 } else { 11367 *sin = sin_null; 11368 sin->sin_family = AF_INET; 11369 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11370 } 11371 return (0); 11372 } 11373 11374 /* 11375 * part of ipmp, make this func return the active/inactive state and 11376 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11377 */ 11378 /* 11379 * This function either sets or clears the IFF_INACTIVE flag. 11380 * 11381 * As long as there are some addresses or multicast memberships on the 11382 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11383 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11384 * will be used for outbound packets. 11385 * 11386 * Caller needs to verify the validity of setting IFF_INACTIVE. 11387 */ 11388 static void 11389 phyint_inactive(phyint_t *phyi) 11390 { 11391 ill_t *ill_v4; 11392 ill_t *ill_v6; 11393 ipif_t *ipif; 11394 ilm_t *ilm; 11395 11396 ill_v4 = phyi->phyint_illv4; 11397 ill_v6 = phyi->phyint_illv6; 11398 11399 /* 11400 * No need for a lock while traversing the list since iam 11401 * a writer 11402 */ 11403 if (ill_v4 != NULL) { 11404 ASSERT(IAM_WRITER_ILL(ill_v4)); 11405 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11406 ipif = ipif->ipif_next) { 11407 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11408 mutex_enter(&phyi->phyint_lock); 11409 phyi->phyint_flags &= ~PHYI_INACTIVE; 11410 mutex_exit(&phyi->phyint_lock); 11411 return; 11412 } 11413 } 11414 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11415 ilm = ilm->ilm_next) { 11416 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11417 mutex_enter(&phyi->phyint_lock); 11418 phyi->phyint_flags &= ~PHYI_INACTIVE; 11419 mutex_exit(&phyi->phyint_lock); 11420 return; 11421 } 11422 } 11423 } 11424 if (ill_v6 != NULL) { 11425 ill_v6 = phyi->phyint_illv6; 11426 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11427 ipif = ipif->ipif_next) { 11428 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11429 mutex_enter(&phyi->phyint_lock); 11430 phyi->phyint_flags &= ~PHYI_INACTIVE; 11431 mutex_exit(&phyi->phyint_lock); 11432 return; 11433 } 11434 } 11435 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11436 ilm = ilm->ilm_next) { 11437 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11438 mutex_enter(&phyi->phyint_lock); 11439 phyi->phyint_flags &= ~PHYI_INACTIVE; 11440 mutex_exit(&phyi->phyint_lock); 11441 return; 11442 } 11443 } 11444 } 11445 mutex_enter(&phyi->phyint_lock); 11446 phyi->phyint_flags |= PHYI_INACTIVE; 11447 mutex_exit(&phyi->phyint_lock); 11448 } 11449 11450 /* 11451 * This function is called only when the phyint flags change. Currently 11452 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11453 * that we can select a good ill. 11454 */ 11455 static void 11456 ip_redo_nomination(phyint_t *phyi) 11457 { 11458 ill_t *ill_v4; 11459 11460 ill_v4 = phyi->phyint_illv4; 11461 11462 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11463 ASSERT(IAM_WRITER_ILL(ill_v4)); 11464 if (ill_v4->ill_group->illgrp_ill_count > 1) 11465 ill_nominate_bcast_rcv(ill_v4->ill_group); 11466 } 11467 } 11468 11469 /* 11470 * Heuristic to check if ill is INACTIVE. 11471 * Checks if ill has an ipif with an usable ip address. 11472 * 11473 * Return values: 11474 * B_TRUE - ill is INACTIVE; has no usable ipif 11475 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11476 */ 11477 static boolean_t 11478 ill_is_inactive(ill_t *ill) 11479 { 11480 ipif_t *ipif; 11481 11482 /* Check whether it is in an IPMP group */ 11483 if (ill->ill_phyint->phyint_groupname == NULL) 11484 return (B_FALSE); 11485 11486 if (ill->ill_ipif_up_count == 0) 11487 return (B_TRUE); 11488 11489 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11490 uint64_t flags = ipif->ipif_flags; 11491 11492 /* 11493 * This ipif is usable if it is IPIF_UP and not a 11494 * dedicated test address. A dedicated test address 11495 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11496 * (note in particular that V6 test addresses are 11497 * link-local data addresses and thus are marked 11498 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11499 */ 11500 if ((flags & IPIF_UP) && 11501 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11502 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11503 return (B_FALSE); 11504 } 11505 return (B_TRUE); 11506 } 11507 11508 /* 11509 * Set interface flags. 11510 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11511 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11512 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11513 * 11514 * NOTE : We really don't enforce that ipif_id zero should be used 11515 * for setting any flags other than IFF_LOGINT_FLAGS. This 11516 * is because applications generally does SICGLIFFLAGS and 11517 * ORs in the new flags (that affects the logical) and does a 11518 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11519 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11520 * flags that will be turned on is correct with respect to 11521 * ipif_id 0. For backward compatibility reasons, it is not done. 11522 */ 11523 /* ARGSUSED */ 11524 int 11525 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11526 ip_ioctl_cmd_t *ipip, void *if_req) 11527 { 11528 uint64_t turn_on; 11529 uint64_t turn_off; 11530 int err; 11531 boolean_t need_up = B_FALSE; 11532 phyint_t *phyi; 11533 ill_t *ill; 11534 uint64_t intf_flags; 11535 boolean_t phyint_flags_modified = B_FALSE; 11536 uint64_t flags; 11537 struct ifreq *ifr; 11538 struct lifreq *lifr; 11539 boolean_t set_linklocal = B_FALSE; 11540 boolean_t zero_source = B_FALSE; 11541 11542 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11543 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11544 11545 ASSERT(IAM_WRITER_IPIF(ipif)); 11546 11547 ill = ipif->ipif_ill; 11548 phyi = ill->ill_phyint; 11549 11550 if (ipip->ipi_cmd_type == IF_CMD) { 11551 ifr = (struct ifreq *)if_req; 11552 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11553 } else { 11554 lifr = (struct lifreq *)if_req; 11555 flags = lifr->lifr_flags; 11556 } 11557 11558 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11559 11560 /* 11561 * Has the flags been set correctly till now ? 11562 */ 11563 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11564 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11565 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11566 /* 11567 * Compare the new flags to the old, and partition 11568 * into those coming on and those going off. 11569 * For the 16 bit command keep the bits above bit 16 unchanged. 11570 */ 11571 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11572 flags |= intf_flags & ~0xFFFF; 11573 11574 /* 11575 * First check which bits will change and then which will 11576 * go on and off 11577 */ 11578 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11579 if (!turn_on) 11580 return (0); /* No change */ 11581 11582 turn_off = intf_flags & turn_on; 11583 turn_on ^= turn_off; 11584 err = 0; 11585 11586 /* 11587 * Don't allow any bits belonging to the logical interface 11588 * to be set or cleared on the replacement ipif that was 11589 * created temporarily during a MOVE. 11590 */ 11591 if (ipif->ipif_replace_zero && 11592 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11593 return (EINVAL); 11594 } 11595 11596 /* 11597 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11598 * IPv6 interfaces. 11599 */ 11600 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11601 return (EINVAL); 11602 11603 /* 11604 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11605 * interfaces. It makes no sense in that context. 11606 */ 11607 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11608 return (EINVAL); 11609 11610 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11611 zero_source = B_TRUE; 11612 11613 /* 11614 * For IPv6 ipif_id 0, don't allow the interface to be up without 11615 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11616 * If the link local address isn't set, and can be set, it will get 11617 * set later on in this function. 11618 */ 11619 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11620 (flags & IFF_UP) && !zero_source && 11621 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11622 if (ipif_cant_setlinklocal(ipif)) 11623 return (EINVAL); 11624 set_linklocal = B_TRUE; 11625 } 11626 11627 /* 11628 * ILL cannot be part of a usesrc group and and IPMP group at the 11629 * same time. No need to grab ill_g_usesrc_lock here, see 11630 * synchronization notes in ip.c 11631 */ 11632 if (turn_on & PHYI_STANDBY && 11633 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11634 return (EINVAL); 11635 } 11636 11637 /* 11638 * If we modify physical interface flags, we'll potentially need to 11639 * send up two routing socket messages for the changes (one for the 11640 * IPv4 ill, and another for the IPv6 ill). Note that here. 11641 */ 11642 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11643 phyint_flags_modified = B_TRUE; 11644 11645 /* 11646 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11647 * we need to flush the IRE_CACHES belonging to this ill. 11648 * We handle this case here without doing the DOWN/UP dance 11649 * like it is done for other flags. If some other flags are 11650 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11651 * below will handle it by bringing it down and then 11652 * bringing it UP. 11653 */ 11654 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11655 ill_t *ill_v4, *ill_v6; 11656 11657 ill_v4 = phyi->phyint_illv4; 11658 ill_v6 = phyi->phyint_illv6; 11659 11660 /* 11661 * First set the INACTIVE flag if needed. Then delete the ires. 11662 * ire_add will atomically prevent creating new IRE_CACHEs 11663 * unless hidden flag is set. 11664 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11665 */ 11666 if ((turn_on & PHYI_FAILED) && 11667 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11668 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11669 phyi->phyint_flags &= ~PHYI_INACTIVE; 11670 } 11671 if ((turn_off & PHYI_FAILED) && 11672 ((intf_flags & PHYI_STANDBY) || 11673 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11674 phyint_inactive(phyi); 11675 } 11676 11677 if (turn_on & PHYI_STANDBY) { 11678 /* 11679 * We implicitly set INACTIVE only when STANDBY is set. 11680 * INACTIVE is also set on non-STANDBY phyint when user 11681 * disables FAILBACK using configuration file. 11682 * Do not allow STANDBY to be set on such INACTIVE 11683 * phyint 11684 */ 11685 if (phyi->phyint_flags & PHYI_INACTIVE) 11686 return (EINVAL); 11687 if (!(phyi->phyint_flags & PHYI_FAILED)) 11688 phyint_inactive(phyi); 11689 } 11690 if (turn_off & PHYI_STANDBY) { 11691 if (ipmp_enable_failback) { 11692 /* 11693 * Reset PHYI_INACTIVE. 11694 */ 11695 phyi->phyint_flags &= ~PHYI_INACTIVE; 11696 } else if (ill_is_inactive(ill) && 11697 !(phyi->phyint_flags & PHYI_FAILED)) { 11698 /* 11699 * Need to set INACTIVE, when user sets 11700 * STANDBY on a non-STANDBY phyint and 11701 * later resets STANDBY 11702 */ 11703 phyint_inactive(phyi); 11704 } 11705 } 11706 /* 11707 * We should always send up a message so that the 11708 * daemons come to know of it. Note that the zeroth 11709 * interface can be down and the check below for IPIF_UP 11710 * will not make sense as we are actually setting 11711 * a phyint flag here. We assume that the ipif used 11712 * is always the zeroth ipif. (ip_rts_ifmsg does not 11713 * send up any message for non-zero ipifs). 11714 */ 11715 phyint_flags_modified = B_TRUE; 11716 11717 if (ill_v4 != NULL) { 11718 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11719 IRE_CACHE, ill_stq_cache_delete, 11720 (char *)ill_v4, ill_v4); 11721 illgrp_reset_schednext(ill_v4); 11722 } 11723 if (ill_v6 != NULL) { 11724 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11725 IRE_CACHE, ill_stq_cache_delete, 11726 (char *)ill_v6, ill_v6); 11727 illgrp_reset_schednext(ill_v6); 11728 } 11729 } 11730 11731 /* 11732 * If ILLF_ROUTER changes, we need to change the ip forwarding 11733 * status of the interface and, if the interface is part of an IPMP 11734 * group, all other interfaces that are part of the same IPMP 11735 * group. 11736 */ 11737 if ((turn_on | turn_off) & ILLF_ROUTER) { 11738 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11739 (caddr_t)ill); 11740 } 11741 11742 /* 11743 * If the interface is not UP and we are not going to 11744 * bring it UP, record the flags and return. When the 11745 * interface comes UP later, the right actions will be 11746 * taken. 11747 */ 11748 if (!(ipif->ipif_flags & IPIF_UP) && 11749 !(turn_on & IPIF_UP)) { 11750 /* Record new flags in their respective places. */ 11751 mutex_enter(&ill->ill_lock); 11752 mutex_enter(&ill->ill_phyint->phyint_lock); 11753 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11754 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11755 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11756 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11757 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11758 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11759 mutex_exit(&ill->ill_lock); 11760 mutex_exit(&ill->ill_phyint->phyint_lock); 11761 11762 /* 11763 * We do the broadcast and nomination here rather 11764 * than waiting for a FAILOVER/FAILBACK to happen. In 11765 * the case of FAILBACK from INACTIVE standby to the 11766 * interface that has been repaired, PHYI_FAILED has not 11767 * been cleared yet. If there are only two interfaces in 11768 * that group, all we have is a FAILED and INACTIVE 11769 * interface. If we do the nomination soon after a failback, 11770 * the broadcast nomination code would select the 11771 * INACTIVE interface for receiving broadcasts as FAILED is 11772 * not yet cleared. As we don't want STANDBY/INACTIVE to 11773 * receive broadcast packets, we need to redo nomination 11774 * when the FAILED is cleared here. Thus, in general we 11775 * always do the nomination here for FAILED, STANDBY 11776 * and OFFLINE. 11777 */ 11778 if (((turn_on | turn_off) & 11779 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11780 ip_redo_nomination(phyi); 11781 } 11782 if (phyint_flags_modified) { 11783 if (phyi->phyint_illv4 != NULL) { 11784 ip_rts_ifmsg(phyi->phyint_illv4-> 11785 ill_ipif); 11786 } 11787 if (phyi->phyint_illv6 != NULL) { 11788 ip_rts_ifmsg(phyi->phyint_illv6-> 11789 ill_ipif); 11790 } 11791 } 11792 return (0); 11793 } else if (set_linklocal || zero_source) { 11794 mutex_enter(&ill->ill_lock); 11795 if (set_linklocal) 11796 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11797 if (zero_source) 11798 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11799 mutex_exit(&ill->ill_lock); 11800 } 11801 11802 /* 11803 * Disallow IPv6 interfaces coming up that have the unspecified address, 11804 * or point-to-point interfaces with an unspecified destination. We do 11805 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11806 * have a subnet assigned, which is how in.ndpd currently manages its 11807 * onlink prefix list when no addresses are configured with those 11808 * prefixes. 11809 */ 11810 if (ipif->ipif_isv6 && 11811 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11812 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11813 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11814 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11815 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11816 return (EINVAL); 11817 } 11818 11819 /* 11820 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11821 * from being brought up. 11822 */ 11823 if (!ipif->ipif_isv6 && 11824 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11825 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11826 return (EINVAL); 11827 } 11828 11829 /* 11830 * The only flag changes that we currently take specific action on 11831 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11832 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11833 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11834 * the flags and bringing it back up again. 11835 */ 11836 if ((turn_on|turn_off) & 11837 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11838 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11839 /* 11840 * Taking this ipif down, make sure we have 11841 * valid net and subnet bcast ire's for other 11842 * logical interfaces, if we need them. 11843 */ 11844 if (!ipif->ipif_isv6) 11845 ipif_check_bcast_ires(ipif); 11846 11847 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11848 !(turn_off & IPIF_UP)) { 11849 need_up = B_TRUE; 11850 if (ipif->ipif_flags & IPIF_UP) 11851 ill->ill_logical_down = 1; 11852 turn_on &= ~IPIF_UP; 11853 } 11854 err = ipif_down(ipif, q, mp); 11855 ip1dbg(("ipif_down returns %d err ", err)); 11856 if (err == EINPROGRESS) 11857 return (err); 11858 ipif_down_tail(ipif); 11859 } 11860 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11861 } 11862 11863 static int 11864 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11865 boolean_t need_up) 11866 { 11867 ill_t *ill; 11868 phyint_t *phyi; 11869 uint64_t turn_on; 11870 uint64_t turn_off; 11871 uint64_t intf_flags; 11872 boolean_t phyint_flags_modified = B_FALSE; 11873 int err = 0; 11874 boolean_t set_linklocal = B_FALSE; 11875 boolean_t zero_source = B_FALSE; 11876 11877 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11878 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11879 11880 ASSERT(IAM_WRITER_IPIF(ipif)); 11881 11882 ill = ipif->ipif_ill; 11883 phyi = ill->ill_phyint; 11884 11885 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11886 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11887 11888 turn_off = intf_flags & turn_on; 11889 turn_on ^= turn_off; 11890 11891 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11892 phyint_flags_modified = B_TRUE; 11893 11894 /* 11895 * Now we change the flags. Track current value of 11896 * other flags in their respective places. 11897 */ 11898 mutex_enter(&ill->ill_lock); 11899 mutex_enter(&phyi->phyint_lock); 11900 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11901 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11902 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11903 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11904 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11905 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11906 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11907 set_linklocal = B_TRUE; 11908 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11909 } 11910 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11911 zero_source = B_TRUE; 11912 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11913 } 11914 mutex_exit(&ill->ill_lock); 11915 mutex_exit(&phyi->phyint_lock); 11916 11917 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11918 ip_redo_nomination(phyi); 11919 11920 if (set_linklocal) 11921 (void) ipif_setlinklocal(ipif); 11922 11923 if (zero_source) 11924 ipif->ipif_v6src_addr = ipv6_all_zeros; 11925 else 11926 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11927 11928 if (need_up) { 11929 /* 11930 * XXX ipif_up really does not know whether a phyint flags 11931 * was modified or not. So, it sends up information on 11932 * only one routing sockets message. As we don't bring up 11933 * the interface and also set STANDBY/FAILED simultaneously 11934 * it should be okay. 11935 */ 11936 err = ipif_up(ipif, q, mp); 11937 } else { 11938 /* 11939 * Make sure routing socket sees all changes to the flags. 11940 * ipif_up_done* handles this when we use ipif_up. 11941 */ 11942 if (phyint_flags_modified) { 11943 if (phyi->phyint_illv4 != NULL) { 11944 ip_rts_ifmsg(phyi->phyint_illv4-> 11945 ill_ipif); 11946 } 11947 if (phyi->phyint_illv6 != NULL) { 11948 ip_rts_ifmsg(phyi->phyint_illv6-> 11949 ill_ipif); 11950 } 11951 } else { 11952 ip_rts_ifmsg(ipif); 11953 } 11954 } 11955 return (err); 11956 } 11957 11958 /* 11959 * Restart entry point to restart the flags restart operation after the 11960 * refcounts have dropped to zero. 11961 */ 11962 /* ARGSUSED */ 11963 int 11964 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11965 ip_ioctl_cmd_t *ipip, void *if_req) 11966 { 11967 int err; 11968 struct ifreq *ifr = (struct ifreq *)if_req; 11969 struct lifreq *lifr = (struct lifreq *)if_req; 11970 11971 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11973 11974 ipif_down_tail(ipif); 11975 if (ipip->ipi_cmd_type == IF_CMD) { 11976 /* 11977 * Since ip_sioctl_flags expects an int and ifr_flags 11978 * is a short we need to cast ifr_flags into an int 11979 * to avoid having sign extension cause bits to get 11980 * set that should not be. 11981 */ 11982 err = ip_sioctl_flags_tail(ipif, 11983 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11984 q, mp, B_TRUE); 11985 } else { 11986 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11987 q, mp, B_TRUE); 11988 } 11989 return (err); 11990 } 11991 11992 /* ARGSUSED */ 11993 int 11994 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11995 ip_ioctl_cmd_t *ipip, void *if_req) 11996 { 11997 /* 11998 * Has the flags been set correctly till now ? 11999 */ 12000 ill_t *ill = ipif->ipif_ill; 12001 phyint_t *phyi = ill->ill_phyint; 12002 12003 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12004 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12005 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12006 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12007 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12008 12009 /* 12010 * Need a lock since some flags can be set even when there are 12011 * references to the ipif. 12012 */ 12013 mutex_enter(&ill->ill_lock); 12014 if (ipip->ipi_cmd_type == IF_CMD) { 12015 struct ifreq *ifr = (struct ifreq *)if_req; 12016 12017 /* Get interface flags (low 16 only). */ 12018 ifr->ifr_flags = ((ipif->ipif_flags | 12019 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12020 } else { 12021 struct lifreq *lifr = (struct lifreq *)if_req; 12022 12023 /* Get interface flags. */ 12024 lifr->lifr_flags = ipif->ipif_flags | 12025 ill->ill_flags | phyi->phyint_flags; 12026 } 12027 mutex_exit(&ill->ill_lock); 12028 return (0); 12029 } 12030 12031 /* ARGSUSED */ 12032 int 12033 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12034 ip_ioctl_cmd_t *ipip, void *if_req) 12035 { 12036 int mtu; 12037 int ip_min_mtu; 12038 struct ifreq *ifr; 12039 struct lifreq *lifr; 12040 ire_t *ire; 12041 12042 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12043 ipif->ipif_id, (void *)ipif)); 12044 if (ipip->ipi_cmd_type == IF_CMD) { 12045 ifr = (struct ifreq *)if_req; 12046 mtu = ifr->ifr_metric; 12047 } else { 12048 lifr = (struct lifreq *)if_req; 12049 mtu = lifr->lifr_mtu; 12050 } 12051 12052 if (ipif->ipif_isv6) 12053 ip_min_mtu = IPV6_MIN_MTU; 12054 else 12055 ip_min_mtu = IP_MIN_MTU; 12056 12057 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12058 return (EINVAL); 12059 12060 /* 12061 * Change the MTU size in all relevant ire's. 12062 * Mtu change Vs. new ire creation - protocol below. 12063 * First change ipif_mtu and the ire_max_frag of the 12064 * interface ire. Then do an ire walk and change the 12065 * ire_max_frag of all affected ires. During ire_add 12066 * under the bucket lock, set the ire_max_frag of the 12067 * new ire being created from the ipif/ire from which 12068 * it is being derived. If an mtu change happens after 12069 * the ire is added, the new ire will be cleaned up. 12070 * Conversely if the mtu change happens before the ire 12071 * is added, ire_add will see the new value of the mtu. 12072 */ 12073 ipif->ipif_mtu = mtu; 12074 ipif->ipif_flags |= IPIF_FIXEDMTU; 12075 12076 if (ipif->ipif_isv6) 12077 ire = ipif_to_ire_v6(ipif); 12078 else 12079 ire = ipif_to_ire(ipif); 12080 if (ire != NULL) { 12081 ire->ire_max_frag = ipif->ipif_mtu; 12082 ire_refrele(ire); 12083 } 12084 if (ipif->ipif_flags & IPIF_UP) { 12085 if (ipif->ipif_isv6) 12086 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12087 else 12088 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12089 } 12090 /* Update the MTU in SCTP's list */ 12091 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12092 return (0); 12093 } 12094 12095 /* Get interface MTU. */ 12096 /* ARGSUSED */ 12097 int 12098 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12099 ip_ioctl_cmd_t *ipip, void *if_req) 12100 { 12101 struct ifreq *ifr; 12102 struct lifreq *lifr; 12103 12104 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12105 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12106 if (ipip->ipi_cmd_type == IF_CMD) { 12107 ifr = (struct ifreq *)if_req; 12108 ifr->ifr_metric = ipif->ipif_mtu; 12109 } else { 12110 lifr = (struct lifreq *)if_req; 12111 lifr->lifr_mtu = ipif->ipif_mtu; 12112 } 12113 return (0); 12114 } 12115 12116 /* Set interface broadcast address. */ 12117 /* ARGSUSED2 */ 12118 int 12119 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12120 ip_ioctl_cmd_t *ipip, void *if_req) 12121 { 12122 ipaddr_t addr; 12123 ire_t *ire; 12124 12125 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12126 ipif->ipif_id)); 12127 12128 ASSERT(IAM_WRITER_IPIF(ipif)); 12129 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12130 return (EADDRNOTAVAIL); 12131 12132 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12133 12134 if (sin->sin_family != AF_INET) 12135 return (EAFNOSUPPORT); 12136 12137 addr = sin->sin_addr.s_addr; 12138 if (ipif->ipif_flags & IPIF_UP) { 12139 /* 12140 * If we are already up, make sure the new 12141 * broadcast address makes sense. If it does, 12142 * there should be an IRE for it already. 12143 * Don't match on ipif, only on the ill 12144 * since we are sharing these now. Don't use 12145 * MATCH_IRE_ILL_GROUP as we are looking for 12146 * the broadcast ire on this ill and each ill 12147 * in the group has its own broadcast ire. 12148 */ 12149 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12150 ipif, ALL_ZONES, NULL, 12151 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 12152 if (ire == NULL) { 12153 return (EINVAL); 12154 } else { 12155 ire_refrele(ire); 12156 } 12157 } 12158 /* 12159 * Changing the broadcast addr for this ipif. 12160 * Make sure we have valid net and subnet bcast 12161 * ire's for other logical interfaces, if needed. 12162 */ 12163 if (addr != ipif->ipif_brd_addr) 12164 ipif_check_bcast_ires(ipif); 12165 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12166 return (0); 12167 } 12168 12169 /* Get interface broadcast address. */ 12170 /* ARGSUSED */ 12171 int 12172 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12173 ip_ioctl_cmd_t *ipip, void *if_req) 12174 { 12175 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12176 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12177 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12178 return (EADDRNOTAVAIL); 12179 12180 /* IPIF_BROADCAST not possible with IPv6 */ 12181 ASSERT(!ipif->ipif_isv6); 12182 *sin = sin_null; 12183 sin->sin_family = AF_INET; 12184 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12185 return (0); 12186 } 12187 12188 /* 12189 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12190 */ 12191 /* ARGSUSED */ 12192 int 12193 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12194 ip_ioctl_cmd_t *ipip, void *if_req) 12195 { 12196 int err = 0; 12197 in6_addr_t v6mask; 12198 12199 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12200 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12201 12202 ASSERT(IAM_WRITER_IPIF(ipif)); 12203 12204 if (ipif->ipif_isv6) { 12205 sin6_t *sin6; 12206 12207 if (sin->sin_family != AF_INET6) 12208 return (EAFNOSUPPORT); 12209 12210 sin6 = (sin6_t *)sin; 12211 v6mask = sin6->sin6_addr; 12212 } else { 12213 ipaddr_t mask; 12214 12215 if (sin->sin_family != AF_INET) 12216 return (EAFNOSUPPORT); 12217 12218 mask = sin->sin_addr.s_addr; 12219 V4MASK_TO_V6(mask, v6mask); 12220 } 12221 12222 /* 12223 * No big deal if the interface isn't already up, or the mask 12224 * isn't really changing, or this is pt-pt. 12225 */ 12226 if (!(ipif->ipif_flags & IPIF_UP) || 12227 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12228 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12229 ipif->ipif_v6net_mask = v6mask; 12230 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12231 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12232 ipif->ipif_v6net_mask, 12233 ipif->ipif_v6subnet); 12234 } 12235 return (0); 12236 } 12237 /* 12238 * Make sure we have valid net and subnet broadcast ire's 12239 * for the old netmask, if needed by other logical interfaces. 12240 */ 12241 if (!ipif->ipif_isv6) 12242 ipif_check_bcast_ires(ipif); 12243 12244 err = ipif_logical_down(ipif, q, mp); 12245 if (err == EINPROGRESS) 12246 return (err); 12247 ipif_down_tail(ipif); 12248 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12249 return (err); 12250 } 12251 12252 static int 12253 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12254 { 12255 in6_addr_t v6mask; 12256 int err = 0; 12257 12258 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12259 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12260 12261 if (ipif->ipif_isv6) { 12262 sin6_t *sin6; 12263 12264 sin6 = (sin6_t *)sin; 12265 v6mask = sin6->sin6_addr; 12266 } else { 12267 ipaddr_t mask; 12268 12269 mask = sin->sin_addr.s_addr; 12270 V4MASK_TO_V6(mask, v6mask); 12271 } 12272 12273 ipif->ipif_v6net_mask = v6mask; 12274 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12275 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12276 ipif->ipif_v6subnet); 12277 } 12278 err = ipif_up(ipif, q, mp); 12279 12280 if (err == 0 || err == EINPROGRESS) { 12281 /* 12282 * The interface must be DL_BOUND if this packet has to 12283 * go out on the wire. Since we only go through a logical 12284 * down and are bound with the driver during an internal 12285 * down/up that is satisfied. 12286 */ 12287 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12288 /* Potentially broadcast an address mask reply. */ 12289 ipif_mask_reply(ipif); 12290 } 12291 } 12292 return (err); 12293 } 12294 12295 /* ARGSUSED */ 12296 int 12297 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12298 ip_ioctl_cmd_t *ipip, void *if_req) 12299 { 12300 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12302 ipif_down_tail(ipif); 12303 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12304 } 12305 12306 /* Get interface net mask. */ 12307 /* ARGSUSED */ 12308 int 12309 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12310 ip_ioctl_cmd_t *ipip, void *if_req) 12311 { 12312 struct lifreq *lifr = (struct lifreq *)if_req; 12313 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12314 12315 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12316 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12317 12318 /* 12319 * net mask can't change since we have a reference to the ipif. 12320 */ 12321 if (ipif->ipif_isv6) { 12322 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12323 *sin6 = sin6_null; 12324 sin6->sin6_family = AF_INET6; 12325 sin6->sin6_addr = ipif->ipif_v6net_mask; 12326 lifr->lifr_addrlen = 12327 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12328 } else { 12329 *sin = sin_null; 12330 sin->sin_family = AF_INET; 12331 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12332 if (ipip->ipi_cmd_type == LIF_CMD) { 12333 lifr->lifr_addrlen = 12334 ip_mask_to_plen(ipif->ipif_net_mask); 12335 } 12336 } 12337 return (0); 12338 } 12339 12340 /* ARGSUSED */ 12341 int 12342 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12343 ip_ioctl_cmd_t *ipip, void *if_req) 12344 { 12345 12346 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12347 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12348 /* 12349 * Set interface metric. We don't use this for 12350 * anything but we keep track of it in case it is 12351 * important to routing applications or such. 12352 */ 12353 if (ipip->ipi_cmd_type == IF_CMD) { 12354 struct ifreq *ifr; 12355 12356 ifr = (struct ifreq *)if_req; 12357 ipif->ipif_metric = ifr->ifr_metric; 12358 } else { 12359 struct lifreq *lifr; 12360 12361 lifr = (struct lifreq *)if_req; 12362 ipif->ipif_metric = lifr->lifr_metric; 12363 } 12364 return (0); 12365 } 12366 12367 12368 /* ARGSUSED */ 12369 int 12370 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12371 ip_ioctl_cmd_t *ipip, void *if_req) 12372 { 12373 12374 /* Get interface metric. */ 12375 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12376 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12377 if (ipip->ipi_cmd_type == IF_CMD) { 12378 struct ifreq *ifr; 12379 12380 ifr = (struct ifreq *)if_req; 12381 ifr->ifr_metric = ipif->ipif_metric; 12382 } else { 12383 struct lifreq *lifr; 12384 12385 lifr = (struct lifreq *)if_req; 12386 lifr->lifr_metric = ipif->ipif_metric; 12387 } 12388 12389 return (0); 12390 } 12391 12392 /* ARGSUSED */ 12393 int 12394 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12395 ip_ioctl_cmd_t *ipip, void *if_req) 12396 { 12397 12398 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12399 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12400 /* 12401 * Set the muxid returned from I_PLINK. 12402 */ 12403 if (ipip->ipi_cmd_type == IF_CMD) { 12404 struct ifreq *ifr = (struct ifreq *)if_req; 12405 12406 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12407 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12408 } else { 12409 struct lifreq *lifr = (struct lifreq *)if_req; 12410 12411 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12412 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12413 } 12414 return (0); 12415 } 12416 12417 /* ARGSUSED */ 12418 int 12419 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12420 ip_ioctl_cmd_t *ipip, void *if_req) 12421 { 12422 12423 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12424 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12425 /* 12426 * Get the muxid saved in ill for I_PUNLINK. 12427 */ 12428 if (ipip->ipi_cmd_type == IF_CMD) { 12429 struct ifreq *ifr = (struct ifreq *)if_req; 12430 12431 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12432 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12433 } else { 12434 struct lifreq *lifr = (struct lifreq *)if_req; 12435 12436 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12437 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12438 } 12439 return (0); 12440 } 12441 12442 /* 12443 * Set the subnet prefix. Does not modify the broadcast address. 12444 */ 12445 /* ARGSUSED */ 12446 int 12447 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12448 ip_ioctl_cmd_t *ipip, void *if_req) 12449 { 12450 int err = 0; 12451 in6_addr_t v6addr; 12452 in6_addr_t v6mask; 12453 boolean_t need_up = B_FALSE; 12454 int addrlen; 12455 12456 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12458 12459 ASSERT(IAM_WRITER_IPIF(ipif)); 12460 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12461 12462 if (ipif->ipif_isv6) { 12463 sin6_t *sin6; 12464 12465 if (sin->sin_family != AF_INET6) 12466 return (EAFNOSUPPORT); 12467 12468 sin6 = (sin6_t *)sin; 12469 v6addr = sin6->sin6_addr; 12470 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12471 return (EADDRNOTAVAIL); 12472 } else { 12473 ipaddr_t addr; 12474 12475 if (sin->sin_family != AF_INET) 12476 return (EAFNOSUPPORT); 12477 12478 addr = sin->sin_addr.s_addr; 12479 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12480 return (EADDRNOTAVAIL); 12481 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12482 /* Add 96 bits */ 12483 addrlen += IPV6_ABITS - IP_ABITS; 12484 } 12485 12486 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12487 return (EINVAL); 12488 12489 /* Check if bits in the address is set past the mask */ 12490 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12491 return (EINVAL); 12492 12493 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12494 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12495 return (0); /* No change */ 12496 12497 if (ipif->ipif_flags & IPIF_UP) { 12498 /* 12499 * If the interface is already marked up, 12500 * we call ipif_down which will take care 12501 * of ditching any IREs that have been set 12502 * up based on the old interface address. 12503 */ 12504 err = ipif_logical_down(ipif, q, mp); 12505 if (err == EINPROGRESS) 12506 return (err); 12507 ipif_down_tail(ipif); 12508 need_up = B_TRUE; 12509 } 12510 12511 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12512 return (err); 12513 } 12514 12515 static int 12516 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12517 queue_t *q, mblk_t *mp, boolean_t need_up) 12518 { 12519 ill_t *ill = ipif->ipif_ill; 12520 int err = 0; 12521 12522 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12523 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12524 12525 /* Set the new address. */ 12526 mutex_enter(&ill->ill_lock); 12527 ipif->ipif_v6net_mask = v6mask; 12528 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12529 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12530 ipif->ipif_v6subnet); 12531 } 12532 mutex_exit(&ill->ill_lock); 12533 12534 if (need_up) { 12535 /* 12536 * Now bring the interface back up. If this 12537 * is the only IPIF for the ILL, ipif_up 12538 * will have to re-bind to the device, so 12539 * we may get back EINPROGRESS, in which 12540 * case, this IOCTL will get completed in 12541 * ip_rput_dlpi when we see the DL_BIND_ACK. 12542 */ 12543 err = ipif_up(ipif, q, mp); 12544 if (err == EINPROGRESS) 12545 return (err); 12546 } 12547 return (err); 12548 } 12549 12550 /* ARGSUSED */ 12551 int 12552 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12553 ip_ioctl_cmd_t *ipip, void *if_req) 12554 { 12555 int addrlen; 12556 in6_addr_t v6addr; 12557 in6_addr_t v6mask; 12558 struct lifreq *lifr = (struct lifreq *)if_req; 12559 12560 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12561 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12562 ipif_down_tail(ipif); 12563 12564 addrlen = lifr->lifr_addrlen; 12565 if (ipif->ipif_isv6) { 12566 sin6_t *sin6; 12567 12568 sin6 = (sin6_t *)sin; 12569 v6addr = sin6->sin6_addr; 12570 } else { 12571 ipaddr_t addr; 12572 12573 addr = sin->sin_addr.s_addr; 12574 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12575 addrlen += IPV6_ABITS - IP_ABITS; 12576 } 12577 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12578 12579 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12580 } 12581 12582 /* ARGSUSED */ 12583 int 12584 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12585 ip_ioctl_cmd_t *ipip, void *if_req) 12586 { 12587 struct lifreq *lifr = (struct lifreq *)if_req; 12588 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12589 12590 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12592 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12593 12594 if (ipif->ipif_isv6) { 12595 *sin6 = sin6_null; 12596 sin6->sin6_family = AF_INET6; 12597 sin6->sin6_addr = ipif->ipif_v6subnet; 12598 lifr->lifr_addrlen = 12599 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12600 } else { 12601 *sin = sin_null; 12602 sin->sin_family = AF_INET; 12603 sin->sin_addr.s_addr = ipif->ipif_subnet; 12604 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12605 } 12606 return (0); 12607 } 12608 12609 /* 12610 * Set the IPv6 address token. 12611 */ 12612 /* ARGSUSED */ 12613 int 12614 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12615 ip_ioctl_cmd_t *ipi, void *if_req) 12616 { 12617 ill_t *ill = ipif->ipif_ill; 12618 int err; 12619 in6_addr_t v6addr; 12620 in6_addr_t v6mask; 12621 boolean_t need_up = B_FALSE; 12622 int i; 12623 sin6_t *sin6 = (sin6_t *)sin; 12624 struct lifreq *lifr = (struct lifreq *)if_req; 12625 int addrlen; 12626 12627 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12629 ASSERT(IAM_WRITER_IPIF(ipif)); 12630 12631 addrlen = lifr->lifr_addrlen; 12632 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12633 if (ipif->ipif_id != 0) 12634 return (EINVAL); 12635 12636 if (!ipif->ipif_isv6) 12637 return (EINVAL); 12638 12639 if (addrlen > IPV6_ABITS) 12640 return (EINVAL); 12641 12642 v6addr = sin6->sin6_addr; 12643 12644 /* 12645 * The length of the token is the length from the end. To get 12646 * the proper mask for this, compute the mask of the bits not 12647 * in the token; ie. the prefix, and then xor to get the mask. 12648 */ 12649 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12650 return (EINVAL); 12651 for (i = 0; i < 4; i++) { 12652 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12653 } 12654 12655 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12656 ill->ill_token_length == addrlen) 12657 return (0); /* No change */ 12658 12659 if (ipif->ipif_flags & IPIF_UP) { 12660 err = ipif_logical_down(ipif, q, mp); 12661 if (err == EINPROGRESS) 12662 return (err); 12663 ipif_down_tail(ipif); 12664 need_up = B_TRUE; 12665 } 12666 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12667 return (err); 12668 } 12669 12670 static int 12671 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12672 mblk_t *mp, boolean_t need_up) 12673 { 12674 in6_addr_t v6addr; 12675 in6_addr_t v6mask; 12676 ill_t *ill = ipif->ipif_ill; 12677 int i; 12678 int err = 0; 12679 12680 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12681 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12682 v6addr = sin6->sin6_addr; 12683 /* 12684 * The length of the token is the length from the end. To get 12685 * the proper mask for this, compute the mask of the bits not 12686 * in the token; ie. the prefix, and then xor to get the mask. 12687 */ 12688 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12689 for (i = 0; i < 4; i++) 12690 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12691 12692 mutex_enter(&ill->ill_lock); 12693 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12694 ill->ill_token_length = addrlen; 12695 mutex_exit(&ill->ill_lock); 12696 12697 if (need_up) { 12698 /* 12699 * Now bring the interface back up. If this 12700 * is the only IPIF for the ILL, ipif_up 12701 * will have to re-bind to the device, so 12702 * we may get back EINPROGRESS, in which 12703 * case, this IOCTL will get completed in 12704 * ip_rput_dlpi when we see the DL_BIND_ACK. 12705 */ 12706 err = ipif_up(ipif, q, mp); 12707 if (err == EINPROGRESS) 12708 return (err); 12709 } 12710 return (err); 12711 } 12712 12713 /* ARGSUSED */ 12714 int 12715 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12716 ip_ioctl_cmd_t *ipi, void *if_req) 12717 { 12718 ill_t *ill; 12719 sin6_t *sin6 = (sin6_t *)sin; 12720 struct lifreq *lifr = (struct lifreq *)if_req; 12721 12722 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12723 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12724 if (ipif->ipif_id != 0) 12725 return (EINVAL); 12726 12727 ill = ipif->ipif_ill; 12728 if (!ill->ill_isv6) 12729 return (ENXIO); 12730 12731 *sin6 = sin6_null; 12732 sin6->sin6_family = AF_INET6; 12733 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12734 sin6->sin6_addr = ill->ill_token; 12735 lifr->lifr_addrlen = ill->ill_token_length; 12736 return (0); 12737 } 12738 12739 /* 12740 * Set (hardware) link specific information that might override 12741 * what was acquired through the DL_INFO_ACK. 12742 * The logic is as follows. 12743 * 12744 * become exclusive 12745 * set CHANGING flag 12746 * change mtu on affected IREs 12747 * clear CHANGING flag 12748 * 12749 * An ire add that occurs before the CHANGING flag is set will have its mtu 12750 * changed by the ip_sioctl_lnkinfo. 12751 * 12752 * During the time the CHANGING flag is set, no new ires will be added to the 12753 * bucket, and ire add will fail (due the CHANGING flag). 12754 * 12755 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12756 * before it is added to the bucket. 12757 * 12758 * Obviously only 1 thread can set the CHANGING flag and we need to become 12759 * exclusive to set the flag. 12760 */ 12761 /* ARGSUSED */ 12762 int 12763 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12764 ip_ioctl_cmd_t *ipi, void *if_req) 12765 { 12766 ill_t *ill = ipif->ipif_ill; 12767 ipif_t *nipif; 12768 int ip_min_mtu; 12769 boolean_t mtu_walk = B_FALSE; 12770 struct lifreq *lifr = (struct lifreq *)if_req; 12771 lif_ifinfo_req_t *lir; 12772 ire_t *ire; 12773 12774 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12775 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12776 lir = &lifr->lifr_ifinfo; 12777 ASSERT(IAM_WRITER_IPIF(ipif)); 12778 12779 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12780 if (ipif->ipif_id != 0) 12781 return (EINVAL); 12782 12783 /* Set interface MTU. */ 12784 if (ipif->ipif_isv6) 12785 ip_min_mtu = IPV6_MIN_MTU; 12786 else 12787 ip_min_mtu = IP_MIN_MTU; 12788 12789 /* 12790 * Verify values before we set anything. Allow zero to 12791 * mean unspecified. 12792 */ 12793 if (lir->lir_maxmtu != 0 && 12794 (lir->lir_maxmtu > ill->ill_max_frag || 12795 lir->lir_maxmtu < ip_min_mtu)) 12796 return (EINVAL); 12797 if (lir->lir_reachtime != 0 && 12798 lir->lir_reachtime > ND_MAX_REACHTIME) 12799 return (EINVAL); 12800 if (lir->lir_reachretrans != 0 && 12801 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12802 return (EINVAL); 12803 12804 mutex_enter(&ill->ill_lock); 12805 ill->ill_state_flags |= ILL_CHANGING; 12806 for (nipif = ill->ill_ipif; nipif != NULL; 12807 nipif = nipif->ipif_next) { 12808 nipif->ipif_state_flags |= IPIF_CHANGING; 12809 } 12810 12811 mutex_exit(&ill->ill_lock); 12812 12813 if (lir->lir_maxmtu != 0) { 12814 ill->ill_max_mtu = lir->lir_maxmtu; 12815 ill->ill_mtu_userspecified = 1; 12816 mtu_walk = B_TRUE; 12817 } 12818 12819 if (lir->lir_reachtime != 0) 12820 ill->ill_reachable_time = lir->lir_reachtime; 12821 12822 if (lir->lir_reachretrans != 0) 12823 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12824 12825 ill->ill_max_hops = lir->lir_maxhops; 12826 12827 ill->ill_max_buf = ND_MAX_Q; 12828 12829 if (mtu_walk) { 12830 /* 12831 * Set the MTU on all ipifs associated with this ill except 12832 * for those whose MTU was fixed via SIOCSLIFMTU. 12833 */ 12834 for (nipif = ill->ill_ipif; nipif != NULL; 12835 nipif = nipif->ipif_next) { 12836 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12837 continue; 12838 12839 nipif->ipif_mtu = ill->ill_max_mtu; 12840 12841 if (!(nipif->ipif_flags & IPIF_UP)) 12842 continue; 12843 12844 if (nipif->ipif_isv6) 12845 ire = ipif_to_ire_v6(nipif); 12846 else 12847 ire = ipif_to_ire(nipif); 12848 if (ire != NULL) { 12849 ire->ire_max_frag = ipif->ipif_mtu; 12850 ire_refrele(ire); 12851 } 12852 if (ill->ill_isv6) { 12853 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12854 ipif_mtu_change, (char *)nipif, 12855 ill); 12856 } else { 12857 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12858 ipif_mtu_change, (char *)nipif, 12859 ill); 12860 } 12861 } 12862 } 12863 12864 mutex_enter(&ill->ill_lock); 12865 for (nipif = ill->ill_ipif; nipif != NULL; 12866 nipif = nipif->ipif_next) { 12867 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12868 } 12869 ILL_UNMARK_CHANGING(ill); 12870 mutex_exit(&ill->ill_lock); 12871 12872 return (0); 12873 } 12874 12875 /* ARGSUSED */ 12876 int 12877 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12878 ip_ioctl_cmd_t *ipi, void *if_req) 12879 { 12880 struct lif_ifinfo_req *lir; 12881 ill_t *ill = ipif->ipif_ill; 12882 12883 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12884 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12885 if (ipif->ipif_id != 0) 12886 return (EINVAL); 12887 12888 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12889 lir->lir_maxhops = ill->ill_max_hops; 12890 lir->lir_reachtime = ill->ill_reachable_time; 12891 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12892 lir->lir_maxmtu = ill->ill_max_mtu; 12893 12894 return (0); 12895 } 12896 12897 /* 12898 * Return best guess as to the subnet mask for the specified address. 12899 * Based on the subnet masks for all the configured interfaces. 12900 * 12901 * We end up returning a zero mask in the case of default, multicast or 12902 * experimental. 12903 */ 12904 static ipaddr_t 12905 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12906 { 12907 ipaddr_t net_mask; 12908 ill_t *ill; 12909 ipif_t *ipif; 12910 ill_walk_context_t ctx; 12911 ipif_t *fallback_ipif = NULL; 12912 12913 net_mask = ip_net_mask(addr); 12914 if (net_mask == 0) { 12915 *ipifp = NULL; 12916 return (0); 12917 } 12918 12919 /* Let's check to see if this is maybe a local subnet route. */ 12920 /* this function only applies to IPv4 interfaces */ 12921 rw_enter(&ill_g_lock, RW_READER); 12922 ill = ILL_START_WALK_V4(&ctx); 12923 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12924 mutex_enter(&ill->ill_lock); 12925 for (ipif = ill->ill_ipif; ipif != NULL; 12926 ipif = ipif->ipif_next) { 12927 if (!IPIF_CAN_LOOKUP(ipif)) 12928 continue; 12929 if (!(ipif->ipif_flags & IPIF_UP)) 12930 continue; 12931 if ((ipif->ipif_subnet & net_mask) == 12932 (addr & net_mask)) { 12933 /* 12934 * Don't trust pt-pt interfaces if there are 12935 * other interfaces. 12936 */ 12937 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12938 if (fallback_ipif == NULL) { 12939 ipif_refhold_locked(ipif); 12940 fallback_ipif = ipif; 12941 } 12942 continue; 12943 } 12944 12945 /* 12946 * Fine. Just assume the same net mask as the 12947 * directly attached subnet interface is using. 12948 */ 12949 ipif_refhold_locked(ipif); 12950 mutex_exit(&ill->ill_lock); 12951 rw_exit(&ill_g_lock); 12952 if (fallback_ipif != NULL) 12953 ipif_refrele(fallback_ipif); 12954 *ipifp = ipif; 12955 return (ipif->ipif_net_mask); 12956 } 12957 } 12958 mutex_exit(&ill->ill_lock); 12959 } 12960 rw_exit(&ill_g_lock); 12961 12962 *ipifp = fallback_ipif; 12963 return ((fallback_ipif != NULL) ? 12964 fallback_ipif->ipif_net_mask : net_mask); 12965 } 12966 12967 /* 12968 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12969 */ 12970 static void 12971 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12972 { 12973 IOCP iocp; 12974 ipft_t *ipft; 12975 ipllc_t *ipllc; 12976 mblk_t *mp1; 12977 cred_t *cr; 12978 int error = 0; 12979 conn_t *connp; 12980 12981 ip1dbg(("ip_wput_ioctl")); 12982 iocp = (IOCP)mp->b_rptr; 12983 mp1 = mp->b_cont; 12984 if (mp1 == NULL) { 12985 iocp->ioc_error = EINVAL; 12986 mp->b_datap->db_type = M_IOCNAK; 12987 iocp->ioc_count = 0; 12988 qreply(q, mp); 12989 return; 12990 } 12991 12992 /* 12993 * These IOCTLs provide various control capabilities to 12994 * upstream agents such as ULPs and processes. There 12995 * are currently two such IOCTLs implemented. They 12996 * are used by TCP to provide update information for 12997 * existing IREs and to forcibly delete an IRE for a 12998 * host that is not responding, thereby forcing an 12999 * attempt at a new route. 13000 */ 13001 iocp->ioc_error = EINVAL; 13002 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13003 goto done; 13004 13005 ipllc = (ipllc_t *)mp1->b_rptr; 13006 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13007 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13008 break; 13009 } 13010 /* 13011 * prefer credential from mblk over ioctl; 13012 * see ip_sioctl_copyin_setup 13013 */ 13014 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13015 13016 /* 13017 * Refhold the conn in case the request gets queued up in some lookup 13018 */ 13019 ASSERT(CONN_Q(q)); 13020 connp = Q_TO_CONN(q); 13021 CONN_INC_REF(connp); 13022 if (ipft->ipft_pfi && 13023 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13024 pullupmsg(mp1, ipft->ipft_min_size))) { 13025 error = (*ipft->ipft_pfi)(q, 13026 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13027 } 13028 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13029 /* 13030 * CONN_OPER_PENDING_DONE happens in the function called 13031 * through ipft_pfi above. 13032 */ 13033 return; 13034 } 13035 13036 CONN_OPER_PENDING_DONE(connp); 13037 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13038 freemsg(mp); 13039 return; 13040 } 13041 iocp->ioc_error = error; 13042 13043 done: 13044 mp->b_datap->db_type = M_IOCACK; 13045 if (iocp->ioc_error) 13046 iocp->ioc_count = 0; 13047 qreply(q, mp); 13048 } 13049 13050 /* 13051 * Lookup an ipif using the sequence id (ipif_seqid) 13052 */ 13053 ipif_t * 13054 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13055 { 13056 ipif_t *ipif; 13057 13058 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13059 13060 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13061 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13062 return (ipif); 13063 } 13064 return (NULL); 13065 } 13066 13067 uint64_t ipif_g_seqid; 13068 13069 /* 13070 * Assign a unique id for the ipif. This is used later when we send 13071 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13072 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13073 * IRE is added, we verify that ipif has not disappeared. 13074 */ 13075 13076 static void 13077 ipif_assign_seqid(ipif_t *ipif) 13078 { 13079 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 13080 } 13081 13082 /* 13083 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13084 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13085 * be inserted into the first space available in the list. The value of 13086 * ipif_id will then be set to the appropriate value for its position. 13087 */ 13088 static int 13089 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13090 { 13091 ill_t *ill; 13092 ipif_t *tipif; 13093 ipif_t **tipifp; 13094 int id; 13095 13096 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13097 IAM_WRITER_IPIF(ipif)); 13098 13099 ill = ipif->ipif_ill; 13100 ASSERT(ill != NULL); 13101 13102 /* 13103 * In the case of lo0:0 we already hold the ill_g_lock. 13104 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13105 * ipif_insert. Another such caller is ipif_move. 13106 */ 13107 if (acquire_g_lock) 13108 rw_enter(&ill_g_lock, RW_WRITER); 13109 if (acquire_ill_lock) 13110 mutex_enter(&ill->ill_lock); 13111 id = ipif->ipif_id; 13112 tipifp = &(ill->ill_ipif); 13113 if (id == -1) { /* need to find a real id */ 13114 id = 0; 13115 while ((tipif = *tipifp) != NULL) { 13116 ASSERT(tipif->ipif_id >= id); 13117 if (tipif->ipif_id != id) 13118 break; /* non-consecutive id */ 13119 id++; 13120 tipifp = &(tipif->ipif_next); 13121 } 13122 /* limit number of logical interfaces */ 13123 if (id >= ip_addrs_per_if) { 13124 if (acquire_ill_lock) 13125 mutex_exit(&ill->ill_lock); 13126 if (acquire_g_lock) 13127 rw_exit(&ill_g_lock); 13128 return (-1); 13129 } 13130 ipif->ipif_id = id; /* assign new id */ 13131 } else if (id < ip_addrs_per_if) { 13132 /* we have a real id; insert ipif in the right place */ 13133 while ((tipif = *tipifp) != NULL) { 13134 ASSERT(tipif->ipif_id != id); 13135 if (tipif->ipif_id > id) 13136 break; /* found correct location */ 13137 tipifp = &(tipif->ipif_next); 13138 } 13139 } else { 13140 if (acquire_ill_lock) 13141 mutex_exit(&ill->ill_lock); 13142 if (acquire_g_lock) 13143 rw_exit(&ill_g_lock); 13144 return (-1); 13145 } 13146 13147 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13148 13149 ipif->ipif_next = tipif; 13150 *tipifp = ipif; 13151 if (acquire_ill_lock) 13152 mutex_exit(&ill->ill_lock); 13153 if (acquire_g_lock) 13154 rw_exit(&ill_g_lock); 13155 return (0); 13156 } 13157 13158 /* 13159 * Allocate and initialize a new interface control structure. (Always 13160 * called as writer.) 13161 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13162 * is not part of the global linked list of ills. ipif_seqid is unique 13163 * in the system and to preserve the uniqueness, it is assigned only 13164 * when ill becomes part of the global list. At that point ill will 13165 * have a name. If it doesn't get assigned here, it will get assigned 13166 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13167 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13168 * the interface flags or any other information from the DL_INFO_ACK for 13169 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13170 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13171 * second DL_INFO_ACK comes in from the driver. 13172 */ 13173 static ipif_t * 13174 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13175 { 13176 ipif_t *ipif; 13177 phyint_t *phyi; 13178 13179 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13180 ill->ill_name, id, (void *)ill)); 13181 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13182 13183 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13184 return (NULL); 13185 *ipif = ipif_zero; /* start clean */ 13186 13187 ipif->ipif_ill = ill; 13188 ipif->ipif_id = id; /* could be -1 */ 13189 ipif->ipif_zoneid = GLOBAL_ZONEID; 13190 13191 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13192 13193 ipif->ipif_refcnt = 0; 13194 ipif->ipif_saved_ire_cnt = 0; 13195 13196 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13197 mi_free(ipif); 13198 return (NULL); 13199 } 13200 /* -1 id should have been replaced by real id */ 13201 id = ipif->ipif_id; 13202 ASSERT(id >= 0); 13203 13204 if (ill->ill_name[0] != '\0') { 13205 ipif_assign_seqid(ipif); 13206 if (ill->ill_phyint->phyint_ifindex != 0) 13207 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13208 } 13209 /* 13210 * Keep a copy of original id in ipif_orig_ipifid. Failback 13211 * will attempt to restore the original id. The SIOCSLIFOINDEX 13212 * ioctl sets ipif_orig_ipifid to zero. 13213 */ 13214 ipif->ipif_orig_ipifid = id; 13215 13216 /* 13217 * We grab the ill_lock and phyint_lock to protect the flag changes. 13218 * The ipif is still not up and can't be looked up until the 13219 * ioctl completes and the IPIF_CHANGING flag is cleared. 13220 */ 13221 mutex_enter(&ill->ill_lock); 13222 mutex_enter(&ill->ill_phyint->phyint_lock); 13223 /* 13224 * Set the running flag when logical interface zero is created. 13225 * For subsequent logical interfaces, a DLPI link down 13226 * notification message may have cleared the running flag to 13227 * indicate the link is down, so we shouldn't just blindly set it. 13228 */ 13229 if (id == 0) 13230 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13231 ipif->ipif_ire_type = ire_type; 13232 phyi = ill->ill_phyint; 13233 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13234 13235 if (ipif->ipif_isv6) { 13236 ill->ill_flags |= ILLF_IPV6; 13237 } else { 13238 ipaddr_t inaddr_any = INADDR_ANY; 13239 13240 ill->ill_flags |= ILLF_IPV4; 13241 13242 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13243 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13244 &ipif->ipif_v6lcl_addr); 13245 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13246 &ipif->ipif_v6src_addr); 13247 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13248 &ipif->ipif_v6subnet); 13249 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13250 &ipif->ipif_v6net_mask); 13251 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13252 &ipif->ipif_v6brd_addr); 13253 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13254 &ipif->ipif_v6pp_dst_addr); 13255 } 13256 13257 /* 13258 * Don't set the interface flags etc. now, will do it in 13259 * ip_ll_subnet_defaults. 13260 */ 13261 if (!initialize) { 13262 mutex_exit(&ill->ill_lock); 13263 mutex_exit(&ill->ill_phyint->phyint_lock); 13264 return (ipif); 13265 } 13266 ipif->ipif_mtu = ill->ill_max_mtu; 13267 13268 if (ill->ill_bcast_addr_length != 0) { 13269 /* 13270 * Later detect lack of DLPI driver multicast 13271 * capability by catching DL_ENABMULTI errors in 13272 * ip_rput_dlpi. 13273 */ 13274 ill->ill_flags |= ILLF_MULTICAST; 13275 if (!ipif->ipif_isv6) 13276 ipif->ipif_flags |= IPIF_BROADCAST; 13277 } else { 13278 if (ill->ill_net_type != IRE_LOOPBACK) { 13279 if (ipif->ipif_isv6) 13280 /* 13281 * Note: xresolv interfaces will eventually need 13282 * NOARP set here as well, but that will require 13283 * those external resolvers to have some 13284 * knowledge of that flag and act appropriately. 13285 * Not to be changed at present. 13286 */ 13287 ill->ill_flags |= ILLF_NONUD; 13288 else 13289 ill->ill_flags |= ILLF_NOARP; 13290 } 13291 if (ill->ill_phys_addr_length == 0) { 13292 if (ill->ill_media && 13293 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13294 ipif->ipif_flags |= IPIF_NOXMIT; 13295 phyi->phyint_flags |= PHYI_VIRTUAL; 13296 } else { 13297 /* pt-pt supports multicast. */ 13298 ill->ill_flags |= ILLF_MULTICAST; 13299 if (ill->ill_net_type == IRE_LOOPBACK) { 13300 phyi->phyint_flags |= 13301 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13302 } else { 13303 ipif->ipif_flags |= IPIF_POINTOPOINT; 13304 } 13305 } 13306 } 13307 } 13308 mutex_exit(&ill->ill_lock); 13309 mutex_exit(&ill->ill_phyint->phyint_lock); 13310 return (ipif); 13311 } 13312 13313 /* 13314 * If appropriate, send a message up to the resolver delete the entry 13315 * for the address of this interface which is going out of business. 13316 * (Always called as writer). 13317 * 13318 * NOTE : We need to check for NULL mps as some of the fields are 13319 * initialized only for some interface types. See ipif_resolver_up() 13320 * for details. 13321 */ 13322 void 13323 ipif_arp_down(ipif_t *ipif) 13324 { 13325 mblk_t *mp; 13326 ill_t *ill = ipif->ipif_ill; 13327 13328 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13329 ASSERT(IAM_WRITER_IPIF(ipif)); 13330 13331 /* Delete the mapping for the local address */ 13332 mp = ipif->ipif_arp_del_mp; 13333 if (mp != NULL) { 13334 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13335 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13336 putnext(ill->ill_rq, mp); 13337 ipif->ipif_arp_del_mp = NULL; 13338 } 13339 13340 /* 13341 * If this is the last ipif that is going down and there are no 13342 * duplicate addresses we may yet attempt to re-probe, then we need to 13343 * clean up ARP completely. 13344 */ 13345 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13346 13347 /* Send up AR_INTERFACE_DOWN message */ 13348 mp = ill->ill_arp_down_mp; 13349 if (mp != NULL) { 13350 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13351 *(unsigned *)mp->b_rptr, ill->ill_name, 13352 ipif->ipif_id)); 13353 putnext(ill->ill_rq, mp); 13354 ill->ill_arp_down_mp = NULL; 13355 } 13356 13357 /* Tell ARP to delete the multicast mappings */ 13358 mp = ill->ill_arp_del_mapping_mp; 13359 if (mp != NULL) { 13360 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13361 *(unsigned *)mp->b_rptr, ill->ill_name, 13362 ipif->ipif_id)); 13363 putnext(ill->ill_rq, mp); 13364 ill->ill_arp_del_mapping_mp = NULL; 13365 } 13366 } 13367 } 13368 13369 /* 13370 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13371 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13372 * that it wants the add_mp allocated in this function to be returned 13373 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13374 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13375 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13376 * as it does a ipif_arp_down after calling this function - which will 13377 * remove what we add here. 13378 * 13379 * Returns -1 on failures and 0 on success. 13380 */ 13381 int 13382 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13383 { 13384 mblk_t *del_mp = NULL; 13385 mblk_t *add_mp = NULL; 13386 mblk_t *mp; 13387 ill_t *ill = ipif->ipif_ill; 13388 phyint_t *phyi = ill->ill_phyint; 13389 ipaddr_t addr, mask, extract_mask = 0; 13390 arma_t *arma; 13391 uint8_t *maddr, *bphys_addr; 13392 uint32_t hw_start; 13393 dl_unitdata_req_t *dlur; 13394 13395 ASSERT(IAM_WRITER_IPIF(ipif)); 13396 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13397 return (0); 13398 13399 /* 13400 * Delete the existing mapping from ARP. Normally ipif_down 13401 * -> ipif_arp_down should send this up to ARP. The only 13402 * reason we would find this when we are switching from 13403 * Multicast to Broadcast where we did not do a down. 13404 */ 13405 mp = ill->ill_arp_del_mapping_mp; 13406 if (mp != NULL) { 13407 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13408 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13409 putnext(ill->ill_rq, mp); 13410 ill->ill_arp_del_mapping_mp = NULL; 13411 } 13412 13413 if (arp_add_mapping_mp != NULL) 13414 *arp_add_mapping_mp = NULL; 13415 13416 /* 13417 * Check that the address is not to long for the constant 13418 * length reserved in the template arma_t. 13419 */ 13420 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13421 return (-1); 13422 13423 /* Add mapping mblk */ 13424 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13425 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13426 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13427 (caddr_t)&addr); 13428 if (add_mp == NULL) 13429 return (-1); 13430 arma = (arma_t *)add_mp->b_rptr; 13431 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13432 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13433 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13434 13435 /* 13436 * Determine the broadcast address. 13437 */ 13438 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13439 if (ill->ill_sap_length < 0) 13440 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13441 else 13442 bphys_addr = (uchar_t *)dlur + 13443 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13444 /* 13445 * Check PHYI_MULTI_BCAST and length of physical 13446 * address to determine if we use the mapping or the 13447 * broadcast address. 13448 */ 13449 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13450 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13451 bphys_addr, maddr, &hw_start, &extract_mask)) 13452 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13453 13454 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13455 (ill->ill_flags & ILLF_MULTICAST)) { 13456 /* Make sure this will not match the "exact" entry. */ 13457 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13458 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13459 (caddr_t)&addr); 13460 if (del_mp == NULL) { 13461 freemsg(add_mp); 13462 return (-1); 13463 } 13464 bcopy(&extract_mask, (char *)arma + 13465 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13466 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13467 /* Use link-layer broadcast address for MULTI_BCAST */ 13468 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13469 ip2dbg(("ipif_arp_setup_multicast: adding" 13470 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13471 } else { 13472 arma->arma_hw_mapping_start = hw_start; 13473 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13474 " ARP setup for %s\n", ill->ill_name)); 13475 } 13476 } else { 13477 freemsg(add_mp); 13478 ASSERT(del_mp == NULL); 13479 /* It is neither MULTICAST nor MULTI_BCAST */ 13480 return (0); 13481 } 13482 ASSERT(add_mp != NULL && del_mp != NULL); 13483 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13484 ill->ill_arp_del_mapping_mp = del_mp; 13485 if (arp_add_mapping_mp != NULL) { 13486 /* The caller just wants the mblks allocated */ 13487 *arp_add_mapping_mp = add_mp; 13488 } else { 13489 /* The caller wants us to send it to arp */ 13490 putnext(ill->ill_rq, add_mp); 13491 } 13492 return (0); 13493 } 13494 13495 /* 13496 * Get the resolver set up for a new interface address. 13497 * (Always called as writer.) 13498 * Called both for IPv4 and IPv6 interfaces, 13499 * though it only sets up the resolver for v6 13500 * if it's an xresolv interface (one using an external resolver). 13501 * Honors ILLF_NOARP. 13502 * The enumerated value res_act is used to tune the behavior. 13503 * If set to Res_act_initial, then we set up all the resolver 13504 * structures for a new interface. If set to Res_act_move, then 13505 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13506 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13507 * asynchronous hardware address change notification. If set to 13508 * Res_act_defend, then we tell ARP that it needs to send a single 13509 * gratuitous message in defense of the address. 13510 * Returns error on failure. 13511 */ 13512 int 13513 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13514 { 13515 caddr_t addr; 13516 mblk_t *arp_up_mp = NULL; 13517 mblk_t *arp_down_mp = NULL; 13518 mblk_t *arp_add_mp = NULL; 13519 mblk_t *arp_del_mp = NULL; 13520 mblk_t *arp_add_mapping_mp = NULL; 13521 mblk_t *arp_del_mapping_mp = NULL; 13522 ill_t *ill = ipif->ipif_ill; 13523 uchar_t *area_p = NULL; 13524 uchar_t *ared_p = NULL; 13525 int err = ENOMEM; 13526 boolean_t was_dup; 13527 13528 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13529 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13530 ASSERT(IAM_WRITER_IPIF(ipif)); 13531 13532 was_dup = B_FALSE; 13533 if (res_act == Res_act_initial) { 13534 ipif->ipif_addr_ready = 0; 13535 /* 13536 * We're bringing an interface up here. There's no way that we 13537 * should need to shut down ARP now. 13538 */ 13539 mutex_enter(&ill->ill_lock); 13540 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13541 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13542 ill->ill_ipif_dup_count--; 13543 was_dup = B_TRUE; 13544 } 13545 mutex_exit(&ill->ill_lock); 13546 } 13547 if (ipif->ipif_recovery_id != 0) 13548 (void) untimeout(ipif->ipif_recovery_id); 13549 ipif->ipif_recovery_id = 0; 13550 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13551 ipif->ipif_addr_ready = 1; 13552 return (0); 13553 } 13554 /* NDP will set the ipif_addr_ready flag when it's ready */ 13555 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13556 return (0); 13557 13558 if (ill->ill_isv6) { 13559 /* 13560 * External resolver for IPv6 13561 */ 13562 ASSERT(res_act == Res_act_initial); 13563 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13564 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13565 area_p = (uchar_t *)&ip6_area_template; 13566 ared_p = (uchar_t *)&ip6_ared_template; 13567 } 13568 } else { 13569 /* 13570 * IPv4 arp case. If the ARP stream has already started 13571 * closing, fail this request for ARP bringup. Else 13572 * record the fact that an ARP bringup is pending. 13573 */ 13574 mutex_enter(&ill->ill_lock); 13575 if (ill->ill_arp_closing) { 13576 mutex_exit(&ill->ill_lock); 13577 err = EINVAL; 13578 goto failed; 13579 } else { 13580 if (ill->ill_ipif_up_count == 0 && 13581 ill->ill_ipif_dup_count == 0 && !was_dup) 13582 ill->ill_arp_bringup_pending = 1; 13583 mutex_exit(&ill->ill_lock); 13584 } 13585 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13586 addr = (caddr_t)&ipif->ipif_lcl_addr; 13587 area_p = (uchar_t *)&ip_area_template; 13588 ared_p = (uchar_t *)&ip_ared_template; 13589 } 13590 } 13591 13592 /* 13593 * Add an entry for the local address in ARP only if it 13594 * is not UNNUMBERED and the address is not INADDR_ANY. 13595 */ 13596 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13597 area_t *area; 13598 13599 /* Now ask ARP to publish our address. */ 13600 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13601 if (arp_add_mp == NULL) 13602 goto failed; 13603 area = (area_t *)arp_add_mp->b_rptr; 13604 if (res_act != Res_act_initial) { 13605 /* 13606 * Copy the new hardware address and length into 13607 * arp_add_mp to be sent to ARP. 13608 */ 13609 area->area_hw_addr_length = 13610 ill->ill_phys_addr_length; 13611 bcopy((char *)ill->ill_phys_addr, 13612 ((char *)area + area->area_hw_addr_offset), 13613 area->area_hw_addr_length); 13614 } 13615 13616 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13617 ACE_F_MYADDR; 13618 13619 if (res_act == Res_act_defend) { 13620 area->area_flags |= ACE_F_DEFEND; 13621 /* 13622 * If we're just defending our address now, then 13623 * there's no need to set up ARP multicast mappings. 13624 * The publish command is enough. 13625 */ 13626 goto done; 13627 } 13628 13629 if (res_act != Res_act_initial) 13630 goto arp_setup_multicast; 13631 13632 /* 13633 * Allocate an ARP deletion message so we know we can tell ARP 13634 * when the interface goes down. 13635 */ 13636 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13637 if (arp_del_mp == NULL) 13638 goto failed; 13639 13640 } else { 13641 if (res_act != Res_act_initial) 13642 goto done; 13643 } 13644 /* 13645 * Need to bring up ARP or setup multicast mapping only 13646 * when the first interface is coming UP. 13647 */ 13648 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13649 was_dup) { 13650 goto done; 13651 } 13652 13653 /* 13654 * Allocate an ARP down message (to be saved) and an ARP up 13655 * message. 13656 */ 13657 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13658 if (arp_down_mp == NULL) 13659 goto failed; 13660 13661 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13662 if (arp_up_mp == NULL) 13663 goto failed; 13664 13665 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13666 goto done; 13667 13668 arp_setup_multicast: 13669 /* 13670 * Setup the multicast mappings. This function initializes 13671 * ill_arp_del_mapping_mp also. This does not need to be done for 13672 * IPv6. 13673 */ 13674 if (!ill->ill_isv6) { 13675 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13676 if (err != 0) 13677 goto failed; 13678 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13679 ASSERT(arp_add_mapping_mp != NULL); 13680 } 13681 13682 done: 13683 if (arp_del_mp != NULL) { 13684 ASSERT(ipif->ipif_arp_del_mp == NULL); 13685 ipif->ipif_arp_del_mp = arp_del_mp; 13686 } 13687 if (arp_down_mp != NULL) { 13688 ASSERT(ill->ill_arp_down_mp == NULL); 13689 ill->ill_arp_down_mp = arp_down_mp; 13690 } 13691 if (arp_del_mapping_mp != NULL) { 13692 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13693 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13694 } 13695 if (arp_up_mp != NULL) { 13696 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13697 ill->ill_name, ipif->ipif_id)); 13698 putnext(ill->ill_rq, arp_up_mp); 13699 } 13700 if (arp_add_mp != NULL) { 13701 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13702 ill->ill_name, ipif->ipif_id)); 13703 /* 13704 * If it's an extended ARP implementation, then we'll wait to 13705 * hear that DAD has finished before using the interface. 13706 */ 13707 if (!ill->ill_arp_extend) 13708 ipif->ipif_addr_ready = 1; 13709 putnext(ill->ill_rq, arp_add_mp); 13710 } else { 13711 ipif->ipif_addr_ready = 1; 13712 } 13713 if (arp_add_mapping_mp != NULL) { 13714 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13715 ill->ill_name, ipif->ipif_id)); 13716 putnext(ill->ill_rq, arp_add_mapping_mp); 13717 } 13718 if (res_act != Res_act_initial) 13719 return (0); 13720 13721 if (ill->ill_flags & ILLF_NOARP) 13722 err = ill_arp_off(ill); 13723 else 13724 err = ill_arp_on(ill); 13725 if (err != 0) { 13726 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13727 freemsg(ipif->ipif_arp_del_mp); 13728 freemsg(ill->ill_arp_down_mp); 13729 freemsg(ill->ill_arp_del_mapping_mp); 13730 ipif->ipif_arp_del_mp = NULL; 13731 ill->ill_arp_down_mp = NULL; 13732 ill->ill_arp_del_mapping_mp = NULL; 13733 return (err); 13734 } 13735 return ((ill->ill_ipif_up_count != 0 || was_dup || 13736 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13737 13738 failed: 13739 ip1dbg(("ipif_resolver_up: FAILED\n")); 13740 freemsg(arp_add_mp); 13741 freemsg(arp_del_mp); 13742 freemsg(arp_add_mapping_mp); 13743 freemsg(arp_up_mp); 13744 freemsg(arp_down_mp); 13745 ill->ill_arp_bringup_pending = 0; 13746 return (err); 13747 } 13748 13749 /* 13750 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13751 * just gone back up. 13752 */ 13753 static void 13754 ipif_arp_start_dad(ipif_t *ipif) 13755 { 13756 ill_t *ill = ipif->ipif_ill; 13757 mblk_t *arp_add_mp; 13758 area_t *area; 13759 13760 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13761 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13762 ipif->ipif_lcl_addr == INADDR_ANY || 13763 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13764 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13765 /* 13766 * If we can't contact ARP for some reason, that's not really a 13767 * problem. Just send out the routing socket notification that 13768 * DAD completion would have done, and continue. 13769 */ 13770 ipif_mask_reply(ipif); 13771 ip_rts_ifmsg(ipif); 13772 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13773 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13774 ipif->ipif_addr_ready = 1; 13775 return; 13776 } 13777 13778 /* Setting the 'unverified' flag restarts DAD */ 13779 area = (area_t *)arp_add_mp->b_rptr; 13780 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13781 ACE_F_UNVERIFIED; 13782 putnext(ill->ill_rq, arp_add_mp); 13783 } 13784 13785 static void 13786 ipif_ndp_start_dad(ipif_t *ipif) 13787 { 13788 nce_t *nce; 13789 13790 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13791 if (nce == NULL) 13792 return; 13793 13794 if (!ndp_restart_dad(nce)) { 13795 /* 13796 * If we can't restart DAD for some reason, that's not really a 13797 * problem. Just send out the routing socket notification that 13798 * DAD completion would have done, and continue. 13799 */ 13800 ip_rts_ifmsg(ipif); 13801 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13802 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13803 ipif->ipif_addr_ready = 1; 13804 } 13805 NCE_REFRELE(nce); 13806 } 13807 13808 /* 13809 * Restart duplicate address detection on all interfaces on the given ill. 13810 * 13811 * This is called when an interface transitions from down to up 13812 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13813 * 13814 * Note that since the underlying physical link has transitioned, we must cause 13815 * at least one routing socket message to be sent here, either via DAD 13816 * completion or just by default on the first ipif. (If we don't do this, then 13817 * in.mpathd will see long delays when doing link-based failure recovery.) 13818 */ 13819 void 13820 ill_restart_dad(ill_t *ill, boolean_t went_up) 13821 { 13822 ipif_t *ipif; 13823 13824 if (ill == NULL) 13825 return; 13826 13827 /* 13828 * If layer two doesn't support duplicate address detection, then just 13829 * send the routing socket message now and be done with it. 13830 */ 13831 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13832 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13833 ip_rts_ifmsg(ill->ill_ipif); 13834 return; 13835 } 13836 13837 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13838 if (went_up) { 13839 if (ipif->ipif_flags & IPIF_UP) { 13840 if (ill->ill_isv6) 13841 ipif_ndp_start_dad(ipif); 13842 else 13843 ipif_arp_start_dad(ipif); 13844 } else if (ill->ill_isv6 && 13845 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13846 /* 13847 * For IPv4, the ARP module itself will 13848 * automatically start the DAD process when it 13849 * sees DL_NOTE_LINK_UP. We respond to the 13850 * AR_CN_READY at the completion of that task. 13851 * For IPv6, we must kick off the bring-up 13852 * process now. 13853 */ 13854 ndp_do_recovery(ipif); 13855 } else { 13856 /* 13857 * Unfortunately, the first ipif is "special" 13858 * and represents the underlying ill in the 13859 * routing socket messages. Thus, when this 13860 * one ipif is down, we must still notify so 13861 * that the user knows the IFF_RUNNING status 13862 * change. (If the first ipif is up, then 13863 * we'll handle eventual routing socket 13864 * notification via DAD completion.) 13865 */ 13866 if (ipif == ill->ill_ipif) 13867 ip_rts_ifmsg(ill->ill_ipif); 13868 } 13869 } else { 13870 /* 13871 * After link down, we'll need to send a new routing 13872 * message when the link comes back, so clear 13873 * ipif_addr_ready. 13874 */ 13875 ipif->ipif_addr_ready = 0; 13876 } 13877 } 13878 13879 /* 13880 * If we've torn down links, then notify the user right away. 13881 */ 13882 if (!went_up) 13883 ip_rts_ifmsg(ill->ill_ipif); 13884 } 13885 13886 /* 13887 * Wakeup all threads waiting to enter the ipsq, and sleeping 13888 * on any of the ills in this ipsq. The ill_lock of the ill 13889 * must be held so that waiters don't miss wakeups 13890 */ 13891 static void 13892 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13893 { 13894 phyint_t *phyint; 13895 13896 phyint = ipsq->ipsq_phyint_list; 13897 while (phyint != NULL) { 13898 if (phyint->phyint_illv4) { 13899 if (!caller_holds_lock) 13900 mutex_enter(&phyint->phyint_illv4->ill_lock); 13901 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13902 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13903 if (!caller_holds_lock) 13904 mutex_exit(&phyint->phyint_illv4->ill_lock); 13905 } 13906 if (phyint->phyint_illv6) { 13907 if (!caller_holds_lock) 13908 mutex_enter(&phyint->phyint_illv6->ill_lock); 13909 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13910 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13911 if (!caller_holds_lock) 13912 mutex_exit(&phyint->phyint_illv6->ill_lock); 13913 } 13914 phyint = phyint->phyint_ipsq_next; 13915 } 13916 } 13917 13918 static ipsq_t * 13919 ipsq_create(char *groupname) 13920 { 13921 ipsq_t *ipsq; 13922 13923 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13924 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13925 if (ipsq == NULL) { 13926 return (NULL); 13927 } 13928 13929 if (groupname != NULL) 13930 (void) strcpy(ipsq->ipsq_name, groupname); 13931 else 13932 ipsq->ipsq_name[0] = '\0'; 13933 13934 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13935 ipsq->ipsq_flags |= IPSQ_GROUP; 13936 ipsq->ipsq_next = ipsq_g_head; 13937 ipsq_g_head = ipsq; 13938 return (ipsq); 13939 } 13940 13941 /* 13942 * Return an ipsq correspoding to the groupname. If 'create' is true 13943 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13944 * uniquely with an IPMP group. However during IPMP groupname operations, 13945 * multiple IPMP groups may be associated with a single ipsq. But no 13946 * IPMP group can be associated with more than 1 ipsq at any time. 13947 * For example 13948 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13949 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13950 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13951 * 13952 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13953 * status shown below during the execution of the above command. 13954 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13955 * 13956 * After the completion of the above groupname command we return to the stable 13957 * state shown below. 13958 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13959 * hme4 mpk17-85 ipsq2 mpk17-85 1 13960 * 13961 * Because of the above, we don't search based on the ipsq_name since that 13962 * would miss the correct ipsq during certain windows as shown above. 13963 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13964 * natural state. 13965 */ 13966 static ipsq_t * 13967 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13968 { 13969 ipsq_t *ipsq; 13970 int group_len; 13971 phyint_t *phyint; 13972 13973 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13974 13975 group_len = strlen(groupname); 13976 ASSERT(group_len != 0); 13977 group_len++; 13978 13979 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13980 /* 13981 * When an ipsq is being split, and ill_split_ipsq 13982 * calls this function, we exclude it from being considered. 13983 */ 13984 if (ipsq == exclude_ipsq) 13985 continue; 13986 13987 /* 13988 * Compare against the ipsq_name. The groupname change happens 13989 * in 2 phases. The 1st phase merges the from group into 13990 * the to group's ipsq, by calling ill_merge_groups and restarts 13991 * the ioctl. The 2nd phase then locates the ipsq again thru 13992 * ipsq_name. At this point the phyint_groupname has not been 13993 * updated. 13994 */ 13995 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13996 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13997 /* 13998 * Verify that an ipmp groupname is exactly 13999 * part of 1 ipsq and is not found in any other 14000 * ipsq. 14001 */ 14002 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 14003 NULL); 14004 return (ipsq); 14005 } 14006 14007 /* 14008 * Comparison against ipsq_name alone is not sufficient. 14009 * In the case when groups are currently being 14010 * merged, the ipsq could hold other IPMP groups temporarily. 14011 * so we walk the phyint list and compare against the 14012 * phyint_groupname as well. 14013 */ 14014 phyint = ipsq->ipsq_phyint_list; 14015 while (phyint != NULL) { 14016 if ((group_len == phyint->phyint_groupname_len) && 14017 (bcmp(phyint->phyint_groupname, groupname, 14018 group_len) == 0)) { 14019 /* 14020 * Verify that an ipmp groupname is exactly 14021 * part of 1 ipsq and is not found in any other 14022 * ipsq. 14023 */ 14024 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 14025 == NULL); 14026 return (ipsq); 14027 } 14028 phyint = phyint->phyint_ipsq_next; 14029 } 14030 } 14031 if (create) 14032 ipsq = ipsq_create(groupname); 14033 return (ipsq); 14034 } 14035 14036 static void 14037 ipsq_delete(ipsq_t *ipsq) 14038 { 14039 ipsq_t *nipsq; 14040 ipsq_t *pipsq = NULL; 14041 14042 /* 14043 * We don't hold the ipsq lock, but we are sure no new 14044 * messages can land up, since the ipsq_refs is zero. 14045 * i.e. this ipsq is unnamed and no phyint or phyint group 14046 * is associated with this ipsq. (Lookups are based on ill_name 14047 * or phyint_group_name) 14048 */ 14049 ASSERT(ipsq->ipsq_refs == 0); 14050 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14051 ASSERT(ipsq->ipsq_pending_mp == NULL); 14052 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14053 /* 14054 * This is not the ipsq of an IPMP group. 14055 */ 14056 kmem_free(ipsq, sizeof (ipsq_t)); 14057 return; 14058 } 14059 14060 rw_enter(&ill_g_lock, RW_WRITER); 14061 14062 /* 14063 * Locate the ipsq before we can remove it from 14064 * the singly linked list of ipsq's. 14065 */ 14066 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 14067 if (nipsq == ipsq) { 14068 break; 14069 } 14070 pipsq = nipsq; 14071 } 14072 14073 ASSERT(nipsq == ipsq); 14074 14075 /* unlink ipsq from the list */ 14076 if (pipsq != NULL) 14077 pipsq->ipsq_next = ipsq->ipsq_next; 14078 else 14079 ipsq_g_head = ipsq->ipsq_next; 14080 kmem_free(ipsq, sizeof (ipsq_t)); 14081 rw_exit(&ill_g_lock); 14082 } 14083 14084 static void 14085 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14086 queue_t *q) 14087 14088 { 14089 14090 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14091 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14092 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14093 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14094 ASSERT(current_mp != NULL); 14095 14096 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14097 NEW_OP, NULL); 14098 14099 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14100 new_ipsq->ipsq_xopq_mphead != NULL); 14101 14102 /* 14103 * move from old ipsq to the new ipsq. 14104 */ 14105 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14106 if (old_ipsq->ipsq_xopq_mphead != NULL) 14107 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14108 14109 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14110 } 14111 14112 void 14113 ill_group_cleanup(ill_t *ill) 14114 { 14115 ill_t *ill_v4; 14116 ill_t *ill_v6; 14117 ipif_t *ipif; 14118 14119 ill_v4 = ill->ill_phyint->phyint_illv4; 14120 ill_v6 = ill->ill_phyint->phyint_illv6; 14121 14122 if (ill_v4 != NULL) { 14123 mutex_enter(&ill_v4->ill_lock); 14124 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14125 ipif = ipif->ipif_next) { 14126 IPIF_UNMARK_MOVING(ipif); 14127 } 14128 ill_v4->ill_up_ipifs = B_FALSE; 14129 mutex_exit(&ill_v4->ill_lock); 14130 } 14131 14132 if (ill_v6 != NULL) { 14133 mutex_enter(&ill_v6->ill_lock); 14134 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14135 ipif = ipif->ipif_next) { 14136 IPIF_UNMARK_MOVING(ipif); 14137 } 14138 ill_v6->ill_up_ipifs = B_FALSE; 14139 mutex_exit(&ill_v6->ill_lock); 14140 } 14141 } 14142 /* 14143 * This function is called when an ill has had a change in its group status 14144 * to bring up all the ipifs that were up before the change. 14145 */ 14146 int 14147 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14148 { 14149 ipif_t *ipif; 14150 ill_t *ill_v4; 14151 ill_t *ill_v6; 14152 ill_t *from_ill; 14153 int err = 0; 14154 14155 14156 ASSERT(IAM_WRITER_ILL(ill)); 14157 14158 /* 14159 * Except for ipif_state_flags and ill_state_flags the other 14160 * fields of the ipif/ill that are modified below are protected 14161 * implicitly since we are a writer. We would have tried to down 14162 * even an ipif that was already down, in ill_down_ipifs. So we 14163 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14164 */ 14165 ill_v4 = ill->ill_phyint->phyint_illv4; 14166 ill_v6 = ill->ill_phyint->phyint_illv6; 14167 if (ill_v4 != NULL) { 14168 ill_v4->ill_up_ipifs = B_TRUE; 14169 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14170 ipif = ipif->ipif_next) { 14171 mutex_enter(&ill_v4->ill_lock); 14172 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14173 IPIF_UNMARK_MOVING(ipif); 14174 mutex_exit(&ill_v4->ill_lock); 14175 if (ipif->ipif_was_up) { 14176 if (!(ipif->ipif_flags & IPIF_UP)) 14177 err = ipif_up(ipif, q, mp); 14178 ipif->ipif_was_up = B_FALSE; 14179 if (err != 0) { 14180 /* 14181 * Can there be any other error ? 14182 */ 14183 ASSERT(err == EINPROGRESS); 14184 return (err); 14185 } 14186 } 14187 } 14188 mutex_enter(&ill_v4->ill_lock); 14189 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14190 mutex_exit(&ill_v4->ill_lock); 14191 ill_v4->ill_up_ipifs = B_FALSE; 14192 if (ill_v4->ill_move_in_progress) { 14193 ASSERT(ill_v4->ill_move_peer != NULL); 14194 ill_v4->ill_move_in_progress = B_FALSE; 14195 from_ill = ill_v4->ill_move_peer; 14196 from_ill->ill_move_in_progress = B_FALSE; 14197 from_ill->ill_move_peer = NULL; 14198 mutex_enter(&from_ill->ill_lock); 14199 from_ill->ill_state_flags &= ~ILL_CHANGING; 14200 mutex_exit(&from_ill->ill_lock); 14201 if (ill_v6 == NULL) { 14202 if (from_ill->ill_phyint->phyint_flags & 14203 PHYI_STANDBY) { 14204 phyint_inactive(from_ill->ill_phyint); 14205 } 14206 if (ill_v4->ill_phyint->phyint_flags & 14207 PHYI_STANDBY) { 14208 phyint_inactive(ill_v4->ill_phyint); 14209 } 14210 } 14211 ill_v4->ill_move_peer = NULL; 14212 } 14213 } 14214 14215 if (ill_v6 != NULL) { 14216 ill_v6->ill_up_ipifs = B_TRUE; 14217 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14218 ipif = ipif->ipif_next) { 14219 mutex_enter(&ill_v6->ill_lock); 14220 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14221 IPIF_UNMARK_MOVING(ipif); 14222 mutex_exit(&ill_v6->ill_lock); 14223 if (ipif->ipif_was_up) { 14224 if (!(ipif->ipif_flags & IPIF_UP)) 14225 err = ipif_up(ipif, q, mp); 14226 ipif->ipif_was_up = B_FALSE; 14227 if (err != 0) { 14228 /* 14229 * Can there be any other error ? 14230 */ 14231 ASSERT(err == EINPROGRESS); 14232 return (err); 14233 } 14234 } 14235 } 14236 mutex_enter(&ill_v6->ill_lock); 14237 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14238 mutex_exit(&ill_v6->ill_lock); 14239 ill_v6->ill_up_ipifs = B_FALSE; 14240 if (ill_v6->ill_move_in_progress) { 14241 ASSERT(ill_v6->ill_move_peer != NULL); 14242 ill_v6->ill_move_in_progress = B_FALSE; 14243 from_ill = ill_v6->ill_move_peer; 14244 from_ill->ill_move_in_progress = B_FALSE; 14245 from_ill->ill_move_peer = NULL; 14246 mutex_enter(&from_ill->ill_lock); 14247 from_ill->ill_state_flags &= ~ILL_CHANGING; 14248 mutex_exit(&from_ill->ill_lock); 14249 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14250 phyint_inactive(from_ill->ill_phyint); 14251 } 14252 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14253 phyint_inactive(ill_v6->ill_phyint); 14254 } 14255 ill_v6->ill_move_peer = NULL; 14256 } 14257 } 14258 return (0); 14259 } 14260 14261 /* 14262 * bring down all the approriate ipifs. 14263 */ 14264 /* ARGSUSED */ 14265 static void 14266 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14267 { 14268 ipif_t *ipif; 14269 14270 ASSERT(IAM_WRITER_ILL(ill)); 14271 14272 /* 14273 * Except for ipif_state_flags the other fields of the ipif/ill that 14274 * are modified below are protected implicitly since we are a writer 14275 */ 14276 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14277 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14278 continue; 14279 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14280 /* 14281 * We go through the ipif_down logic even if the ipif 14282 * is already down, since routes can be added based 14283 * on down ipifs. Going through ipif_down once again 14284 * will delete any IREs created based on these routes. 14285 */ 14286 if (ipif->ipif_flags & IPIF_UP) 14287 ipif->ipif_was_up = B_TRUE; 14288 /* 14289 * If called with chk_nofailover true ipif is moving. 14290 */ 14291 mutex_enter(&ill->ill_lock); 14292 if (chk_nofailover) { 14293 ipif->ipif_state_flags |= 14294 IPIF_MOVING | IPIF_CHANGING; 14295 } else { 14296 ipif->ipif_state_flags |= IPIF_CHANGING; 14297 } 14298 mutex_exit(&ill->ill_lock); 14299 /* 14300 * Need to re-create net/subnet bcast ires if 14301 * they are dependent on ipif. 14302 */ 14303 if (!ipif->ipif_isv6) 14304 ipif_check_bcast_ires(ipif); 14305 (void) ipif_logical_down(ipif, NULL, NULL); 14306 ipif_non_duplicate(ipif); 14307 ipif_down_tail(ipif); 14308 /* 14309 * We don't do ipif_multicast_down for IPv4 in 14310 * ipif_down. We need to set this so that 14311 * ipif_multicast_up will join the 14312 * ALLHOSTS_GROUP on to_ill. 14313 */ 14314 ipif->ipif_multicast_up = B_FALSE; 14315 } 14316 } 14317 } 14318 14319 #define IPSQ_INC_REF(ipsq) { \ 14320 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14321 (ipsq)->ipsq_refs++; \ 14322 } 14323 14324 #define IPSQ_DEC_REF(ipsq) { \ 14325 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14326 (ipsq)->ipsq_refs--; \ 14327 if ((ipsq)->ipsq_refs == 0) \ 14328 (ipsq)->ipsq_name[0] = '\0'; \ 14329 } 14330 14331 /* 14332 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14333 * new_ipsq. 14334 */ 14335 static void 14336 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14337 { 14338 phyint_t *phyint; 14339 phyint_t *next_phyint; 14340 14341 /* 14342 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14343 * writer and the ill_lock of the ill in question. Also the dest 14344 * ipsq can't vanish while we hold the ill_g_lock as writer. 14345 */ 14346 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14347 14348 phyint = cur_ipsq->ipsq_phyint_list; 14349 cur_ipsq->ipsq_phyint_list = NULL; 14350 while (phyint != NULL) { 14351 next_phyint = phyint->phyint_ipsq_next; 14352 IPSQ_DEC_REF(cur_ipsq); 14353 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14354 new_ipsq->ipsq_phyint_list = phyint; 14355 IPSQ_INC_REF(new_ipsq); 14356 phyint->phyint_ipsq = new_ipsq; 14357 phyint = next_phyint; 14358 } 14359 } 14360 14361 #define SPLIT_SUCCESS 0 14362 #define SPLIT_NOT_NEEDED 1 14363 #define SPLIT_FAILED 2 14364 14365 int 14366 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14367 { 14368 ipsq_t *newipsq = NULL; 14369 14370 /* 14371 * Assertions denote pre-requisites for changing the ipsq of 14372 * a phyint 14373 */ 14374 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14375 /* 14376 * <ill-phyint> assocs can't change while ill_g_lock 14377 * is held as writer. See ill_phyint_reinit() 14378 */ 14379 ASSERT(phyint->phyint_illv4 == NULL || 14380 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14381 ASSERT(phyint->phyint_illv6 == NULL || 14382 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14383 14384 if ((phyint->phyint_groupname_len != 14385 (strlen(cur_ipsq->ipsq_name) + 1) || 14386 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14387 phyint->phyint_groupname_len) != 0)) { 14388 /* 14389 * Once we fail in creating a new ipsq due to memory shortage, 14390 * don't attempt to create new ipsq again, based on another 14391 * phyint, since we want all phyints belonging to an IPMP group 14392 * to be in the same ipsq even in the event of mem alloc fails. 14393 */ 14394 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14395 cur_ipsq); 14396 if (newipsq == NULL) { 14397 /* Memory allocation failure */ 14398 return (SPLIT_FAILED); 14399 } else { 14400 /* ipsq_refs protected by ill_g_lock (writer) */ 14401 IPSQ_DEC_REF(cur_ipsq); 14402 phyint->phyint_ipsq = newipsq; 14403 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14404 newipsq->ipsq_phyint_list = phyint; 14405 IPSQ_INC_REF(newipsq); 14406 return (SPLIT_SUCCESS); 14407 } 14408 } 14409 return (SPLIT_NOT_NEEDED); 14410 } 14411 14412 /* 14413 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14414 * to do this split 14415 */ 14416 static int 14417 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14418 { 14419 ipsq_t *newipsq; 14420 14421 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14422 /* 14423 * <ill-phyint> assocs can't change while ill_g_lock 14424 * is held as writer. See ill_phyint_reinit() 14425 */ 14426 14427 ASSERT(phyint->phyint_illv4 == NULL || 14428 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14429 ASSERT(phyint->phyint_illv6 == NULL || 14430 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14431 14432 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14433 phyint->phyint_illv4: phyint->phyint_illv6)) { 14434 /* 14435 * ipsq_init failed due to no memory 14436 * caller will use the same ipsq 14437 */ 14438 return (SPLIT_FAILED); 14439 } 14440 14441 /* ipsq_ref is protected by ill_g_lock (writer) */ 14442 IPSQ_DEC_REF(cur_ipsq); 14443 14444 /* 14445 * This is a new ipsq that is unknown to the world. 14446 * So we don't need to hold ipsq_lock, 14447 */ 14448 newipsq = phyint->phyint_ipsq; 14449 newipsq->ipsq_writer = NULL; 14450 newipsq->ipsq_reentry_cnt--; 14451 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14452 #ifdef ILL_DEBUG 14453 newipsq->ipsq_depth = 0; 14454 #endif 14455 14456 return (SPLIT_SUCCESS); 14457 } 14458 14459 /* 14460 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14461 * ipsq's representing their individual groups or themselves. Return 14462 * whether split needs to be retried again later. 14463 */ 14464 static boolean_t 14465 ill_split_ipsq(ipsq_t *cur_ipsq) 14466 { 14467 phyint_t *phyint; 14468 phyint_t *next_phyint; 14469 int error; 14470 boolean_t need_retry = B_FALSE; 14471 14472 phyint = cur_ipsq->ipsq_phyint_list; 14473 cur_ipsq->ipsq_phyint_list = NULL; 14474 while (phyint != NULL) { 14475 next_phyint = phyint->phyint_ipsq_next; 14476 /* 14477 * 'created' will tell us whether the callee actually 14478 * created an ipsq. Lack of memory may force the callee 14479 * to return without creating an ipsq. 14480 */ 14481 if (phyint->phyint_groupname == NULL) { 14482 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14483 } else { 14484 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14485 need_retry); 14486 } 14487 14488 switch (error) { 14489 case SPLIT_FAILED: 14490 need_retry = B_TRUE; 14491 /* FALLTHRU */ 14492 case SPLIT_NOT_NEEDED: 14493 /* 14494 * Keep it on the list. 14495 */ 14496 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14497 cur_ipsq->ipsq_phyint_list = phyint; 14498 break; 14499 case SPLIT_SUCCESS: 14500 break; 14501 default: 14502 ASSERT(0); 14503 } 14504 14505 phyint = next_phyint; 14506 } 14507 return (need_retry); 14508 } 14509 14510 /* 14511 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14512 * and return the ills in the list. This list will be 14513 * needed to unlock all the ills later on by the caller. 14514 * The <ill-ipsq> associations could change between the 14515 * lock and unlock. Hence the unlock can't traverse the 14516 * ipsq to get the list of ills. 14517 */ 14518 static int 14519 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14520 { 14521 int cnt = 0; 14522 phyint_t *phyint; 14523 14524 /* 14525 * The caller holds ill_g_lock to ensure that the ill memberships 14526 * of the ipsq don't change 14527 */ 14528 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14529 14530 phyint = ipsq->ipsq_phyint_list; 14531 while (phyint != NULL) { 14532 if (phyint->phyint_illv4 != NULL) { 14533 ASSERT(cnt < list_max); 14534 list[cnt++] = phyint->phyint_illv4; 14535 } 14536 if (phyint->phyint_illv6 != NULL) { 14537 ASSERT(cnt < list_max); 14538 list[cnt++] = phyint->phyint_illv6; 14539 } 14540 phyint = phyint->phyint_ipsq_next; 14541 } 14542 ill_lock_ills(list, cnt); 14543 return (cnt); 14544 } 14545 14546 void 14547 ill_lock_ills(ill_t **list, int cnt) 14548 { 14549 int i; 14550 14551 if (cnt > 1) { 14552 boolean_t try_again; 14553 do { 14554 try_again = B_FALSE; 14555 for (i = 0; i < cnt - 1; i++) { 14556 if (list[i] < list[i + 1]) { 14557 ill_t *tmp; 14558 14559 /* swap the elements */ 14560 tmp = list[i]; 14561 list[i] = list[i + 1]; 14562 list[i + 1] = tmp; 14563 try_again = B_TRUE; 14564 } 14565 } 14566 } while (try_again); 14567 } 14568 14569 for (i = 0; i < cnt; i++) { 14570 if (i == 0) { 14571 if (list[i] != NULL) 14572 mutex_enter(&list[i]->ill_lock); 14573 else 14574 return; 14575 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14576 mutex_enter(&list[i]->ill_lock); 14577 } 14578 } 14579 } 14580 14581 void 14582 ill_unlock_ills(ill_t **list, int cnt) 14583 { 14584 int i; 14585 14586 for (i = 0; i < cnt; i++) { 14587 if ((i == 0) && (list[i] != NULL)) { 14588 mutex_exit(&list[i]->ill_lock); 14589 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14590 mutex_exit(&list[i]->ill_lock); 14591 } 14592 } 14593 } 14594 14595 /* 14596 * Merge all the ills from 1 ipsq group into another ipsq group. 14597 * The source ipsq group is specified by the ipsq associated with 14598 * 'from_ill'. The destination ipsq group is specified by the ipsq 14599 * associated with 'to_ill' or 'groupname' respectively. 14600 * Note that ipsq itself does not have a reference count mechanism 14601 * and functions don't look up an ipsq and pass it around. Instead 14602 * functions pass around an ill or groupname, and the ipsq is looked 14603 * up from the ill or groupname and the required operation performed 14604 * atomically with the lookup on the ipsq. 14605 */ 14606 static int 14607 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14608 queue_t *q) 14609 { 14610 ipsq_t *old_ipsq; 14611 ipsq_t *new_ipsq; 14612 ill_t **ill_list; 14613 int cnt; 14614 size_t ill_list_size; 14615 boolean_t became_writer_on_new_sq = B_FALSE; 14616 14617 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14618 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14619 14620 /* 14621 * Need to hold ill_g_lock as writer and also the ill_lock to 14622 * change the <ill-ipsq> assoc of an ill. Need to hold the 14623 * ipsq_lock to prevent new messages from landing on an ipsq. 14624 */ 14625 rw_enter(&ill_g_lock, RW_WRITER); 14626 14627 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14628 if (groupname != NULL) 14629 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14630 else { 14631 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14632 } 14633 14634 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14635 14636 /* 14637 * both groups are on the same ipsq. 14638 */ 14639 if (old_ipsq == new_ipsq) { 14640 rw_exit(&ill_g_lock); 14641 return (0); 14642 } 14643 14644 cnt = old_ipsq->ipsq_refs << 1; 14645 ill_list_size = cnt * sizeof (ill_t *); 14646 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14647 if (ill_list == NULL) { 14648 rw_exit(&ill_g_lock); 14649 return (ENOMEM); 14650 } 14651 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14652 14653 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14654 mutex_enter(&new_ipsq->ipsq_lock); 14655 if ((new_ipsq->ipsq_writer == NULL && 14656 new_ipsq->ipsq_current_ipif == NULL) || 14657 (new_ipsq->ipsq_writer == curthread)) { 14658 new_ipsq->ipsq_writer = curthread; 14659 new_ipsq->ipsq_reentry_cnt++; 14660 became_writer_on_new_sq = B_TRUE; 14661 } 14662 14663 /* 14664 * We are holding ill_g_lock as writer and all the ill locks of 14665 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14666 * message can land up on the old ipsq even though we don't hold the 14667 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14668 */ 14669 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14670 14671 /* 14672 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14673 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14674 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14675 */ 14676 ill_merge_ipsq(old_ipsq, new_ipsq); 14677 14678 /* 14679 * Mark the new ipsq as needing a split since it is currently 14680 * being shared by more than 1 IPMP group. The split will 14681 * occur at the end of ipsq_exit 14682 */ 14683 new_ipsq->ipsq_split = B_TRUE; 14684 14685 /* Now release all the locks */ 14686 mutex_exit(&new_ipsq->ipsq_lock); 14687 ill_unlock_ills(ill_list, cnt); 14688 rw_exit(&ill_g_lock); 14689 14690 kmem_free(ill_list, ill_list_size); 14691 14692 /* 14693 * If we succeeded in becoming writer on the new ipsq, then 14694 * drain the new ipsq and start processing all enqueued messages 14695 * including the current ioctl we are processing which is either 14696 * a set groupname or failover/failback. 14697 */ 14698 if (became_writer_on_new_sq) 14699 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14700 14701 /* 14702 * syncq has been changed and all the messages have been moved. 14703 */ 14704 mutex_enter(&old_ipsq->ipsq_lock); 14705 old_ipsq->ipsq_current_ipif = NULL; 14706 mutex_exit(&old_ipsq->ipsq_lock); 14707 return (EINPROGRESS); 14708 } 14709 14710 /* 14711 * Delete and add the loopback copy and non-loopback copy of 14712 * the BROADCAST ire corresponding to ill and addr. Used to 14713 * group broadcast ires together when ill becomes part of 14714 * a group. 14715 * 14716 * This function is also called when ill is leaving the group 14717 * so that the ires belonging to the group gets re-grouped. 14718 */ 14719 static void 14720 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14721 { 14722 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14723 ire_t **ire_ptpn = &ire_head; 14724 14725 /* 14726 * The loopback and non-loopback IREs are inserted in the order in which 14727 * they're found, on the basis that they are correctly ordered (loopback 14728 * first). 14729 */ 14730 for (;;) { 14731 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14732 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14733 if (ire == NULL) 14734 break; 14735 14736 /* 14737 * we are passing in KM_SLEEP because it is not easy to 14738 * go back to a sane state in case of memory failure. 14739 */ 14740 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14741 ASSERT(nire != NULL); 14742 bzero(nire, sizeof (ire_t)); 14743 /* 14744 * Don't use ire_max_frag directly since we don't 14745 * hold on to 'ire' until we add the new ire 'nire' and 14746 * we don't want the new ire to have a dangling reference 14747 * to 'ire'. The ire_max_frag of a broadcast ire must 14748 * be in sync with the ipif_mtu of the associate ipif. 14749 * For eg. this happens as a result of SIOCSLIFNAME, 14750 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14751 * the driver. A change in ire_max_frag triggered as 14752 * as a result of path mtu discovery, or due to an 14753 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14754 * route change -mtu command does not apply to broadcast ires. 14755 * 14756 * XXX We need a recovery strategy here if ire_init fails 14757 */ 14758 if (ire_init(nire, 14759 (uchar_t *)&ire->ire_addr, 14760 (uchar_t *)&ire->ire_mask, 14761 (uchar_t *)&ire->ire_src_addr, 14762 (uchar_t *)&ire->ire_gateway_addr, 14763 (uchar_t *)&ire->ire_in_src_addr, 14764 ire->ire_stq == NULL ? &ip_loopback_mtu : 14765 &ire->ire_ipif->ipif_mtu, 14766 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 14767 ire->ire_rfq, 14768 ire->ire_stq, 14769 ire->ire_type, 14770 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 14771 ire->ire_ipif, 14772 ire->ire_in_ill, 14773 ire->ire_cmask, 14774 ire->ire_phandle, 14775 ire->ire_ihandle, 14776 ire->ire_flags, 14777 &ire->ire_uinfo, 14778 NULL, 14779 NULL) == NULL) { 14780 cmn_err(CE_PANIC, "ire_init() failed"); 14781 } 14782 ire_delete(ire); 14783 ire_refrele(ire); 14784 14785 /* 14786 * The newly created IREs are inserted at the tail of the list 14787 * starting with ire_head. As we've just allocated them no one 14788 * knows about them so it's safe. 14789 */ 14790 *ire_ptpn = nire; 14791 ire_ptpn = &nire->ire_next; 14792 } 14793 14794 for (nire = ire_head; nire != NULL; nire = nire_next) { 14795 int error; 14796 ire_t *oire; 14797 /* unlink the IRE from our list before calling ire_add() */ 14798 nire_next = nire->ire_next; 14799 nire->ire_next = NULL; 14800 14801 /* ire_add adds the ire at the right place in the list */ 14802 oire = nire; 14803 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14804 ASSERT(error == 0); 14805 ASSERT(oire == nire); 14806 ire_refrele(nire); /* Held in ire_add */ 14807 } 14808 } 14809 14810 /* 14811 * This function is usually called when an ill is inserted in 14812 * a group and all the ipifs are already UP. As all the ipifs 14813 * are already UP, the broadcast ires have already been created 14814 * and been inserted. But, ire_add_v4 would not have grouped properly. 14815 * We need to re-group for the benefit of ip_wput_ire which 14816 * expects BROADCAST ires to be grouped properly to avoid sending 14817 * more than one copy of the broadcast packet per group. 14818 * 14819 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14820 * because when ipif_up_done ends up calling this, ires have 14821 * already been added before illgrp_insert i.e before ill_group 14822 * has been initialized. 14823 */ 14824 static void 14825 ill_group_bcast_for_xmit(ill_t *ill) 14826 { 14827 ill_group_t *illgrp; 14828 ipif_t *ipif; 14829 ipaddr_t addr; 14830 ipaddr_t net_mask; 14831 ipaddr_t subnet_netmask; 14832 14833 illgrp = ill->ill_group; 14834 14835 /* 14836 * This function is called even when an ill is deleted from 14837 * the group. Hence, illgrp could be null. 14838 */ 14839 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14840 return; 14841 14842 /* 14843 * Delete all the BROADCAST ires matching this ill and add 14844 * them back. This time, ire_add_v4 should take care of 14845 * grouping them with others because ill is part of the 14846 * group. 14847 */ 14848 ill_bcast_delete_and_add(ill, 0); 14849 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14850 14851 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14852 14853 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14854 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14855 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14856 } else { 14857 net_mask = htonl(IN_CLASSA_NET); 14858 } 14859 addr = net_mask & ipif->ipif_subnet; 14860 ill_bcast_delete_and_add(ill, addr); 14861 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14862 14863 subnet_netmask = ipif->ipif_net_mask; 14864 addr = ipif->ipif_subnet; 14865 ill_bcast_delete_and_add(ill, addr); 14866 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14867 } 14868 } 14869 14870 /* 14871 * This function is called from illgrp_delete when ill is being deleted 14872 * from the group. 14873 * 14874 * As ill is not there in the group anymore, any address belonging 14875 * to this ill should be cleared of IRE_MARK_NORECV. 14876 */ 14877 static void 14878 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14879 { 14880 ire_t *ire; 14881 irb_t *irb; 14882 14883 ASSERT(ill->ill_group == NULL); 14884 14885 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14886 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14887 14888 if (ire != NULL) { 14889 /* 14890 * IPMP and plumbing operations are serialized on the ipsq, so 14891 * no one will insert or delete a broadcast ire under our feet. 14892 */ 14893 irb = ire->ire_bucket; 14894 rw_enter(&irb->irb_lock, RW_READER); 14895 ire_refrele(ire); 14896 14897 for (; ire != NULL; ire = ire->ire_next) { 14898 if (ire->ire_addr != addr) 14899 break; 14900 if (ire_to_ill(ire) != ill) 14901 continue; 14902 14903 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14904 ire->ire_marks &= ~IRE_MARK_NORECV; 14905 } 14906 rw_exit(&irb->irb_lock); 14907 } 14908 } 14909 14910 /* 14911 * This function must be called only after the broadcast ires 14912 * have been grouped together. For a given address addr, nominate 14913 * only one of the ires whose interface is not FAILED or OFFLINE. 14914 * 14915 * This is also called when an ipif goes down, so that we can nominate 14916 * a different ire with the same address for receiving. 14917 */ 14918 static void 14919 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14920 { 14921 irb_t *irb; 14922 ire_t *ire; 14923 ire_t *ire1; 14924 ire_t *save_ire; 14925 ire_t **irep = NULL; 14926 boolean_t first = B_TRUE; 14927 ire_t *clear_ire = NULL; 14928 ire_t *start_ire = NULL; 14929 ire_t *new_lb_ire; 14930 ire_t *new_nlb_ire; 14931 boolean_t new_lb_ire_used = B_FALSE; 14932 boolean_t new_nlb_ire_used = B_FALSE; 14933 uint64_t match_flags; 14934 uint64_t phyi_flags; 14935 boolean_t fallback = B_FALSE; 14936 14937 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14938 NULL, MATCH_IRE_TYPE); 14939 /* 14940 * We may not be able to find some ires if a previous 14941 * ire_create failed. This happens when an ipif goes 14942 * down and we are unable to create BROADCAST ires due 14943 * to memory failure. Thus, we have to check for NULL 14944 * below. This should handle the case for LOOPBACK, 14945 * POINTOPOINT and interfaces with some POINTOPOINT 14946 * logicals for which there are no BROADCAST ires. 14947 */ 14948 if (ire == NULL) 14949 return; 14950 /* 14951 * Currently IRE_BROADCASTS are deleted when an ipif 14952 * goes down which runs exclusively. Thus, setting 14953 * IRE_MARK_RCVD should not race with ire_delete marking 14954 * IRE_MARK_CONDEMNED. We grab the lock below just to 14955 * be consistent with other parts of the code that walks 14956 * a given bucket. 14957 */ 14958 save_ire = ire; 14959 irb = ire->ire_bucket; 14960 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14961 if (new_lb_ire == NULL) { 14962 ire_refrele(ire); 14963 return; 14964 } 14965 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14966 if (new_nlb_ire == NULL) { 14967 ire_refrele(ire); 14968 kmem_cache_free(ire_cache, new_lb_ire); 14969 return; 14970 } 14971 IRB_REFHOLD(irb); 14972 rw_enter(&irb->irb_lock, RW_WRITER); 14973 /* 14974 * Get to the first ire matching the address and the 14975 * group. If the address does not match we are done 14976 * as we could not find the IRE. If the address matches 14977 * we should get to the first one matching the group. 14978 */ 14979 while (ire != NULL) { 14980 if (ire->ire_addr != addr || 14981 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14982 break; 14983 } 14984 ire = ire->ire_next; 14985 } 14986 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14987 start_ire = ire; 14988 redo: 14989 while (ire != NULL && ire->ire_addr == addr && 14990 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14991 /* 14992 * The first ire for any address within a group 14993 * should always be the one with IRE_MARK_NORECV cleared 14994 * so that ip_wput_ire can avoid searching for one. 14995 * Note down the insertion point which will be used 14996 * later. 14997 */ 14998 if (first && (irep == NULL)) 14999 irep = ire->ire_ptpn; 15000 /* 15001 * PHYI_FAILED is set when the interface fails. 15002 * This interface might have become good, but the 15003 * daemon has not yet detected. We should still 15004 * not receive on this. PHYI_OFFLINE should never 15005 * be picked as this has been offlined and soon 15006 * be removed. 15007 */ 15008 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15009 if (phyi_flags & PHYI_OFFLINE) { 15010 ire->ire_marks |= IRE_MARK_NORECV; 15011 ire = ire->ire_next; 15012 continue; 15013 } 15014 if (phyi_flags & match_flags) { 15015 ire->ire_marks |= IRE_MARK_NORECV; 15016 ire = ire->ire_next; 15017 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15018 PHYI_INACTIVE) { 15019 fallback = B_TRUE; 15020 } 15021 continue; 15022 } 15023 if (first) { 15024 /* 15025 * We will move this to the front of the list later 15026 * on. 15027 */ 15028 clear_ire = ire; 15029 ire->ire_marks &= ~IRE_MARK_NORECV; 15030 } else { 15031 ire->ire_marks |= IRE_MARK_NORECV; 15032 } 15033 first = B_FALSE; 15034 ire = ire->ire_next; 15035 } 15036 /* 15037 * If we never nominated anybody, try nominating at least 15038 * an INACTIVE, if we found one. Do it only once though. 15039 */ 15040 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15041 fallback) { 15042 match_flags = PHYI_FAILED; 15043 ire = start_ire; 15044 irep = NULL; 15045 goto redo; 15046 } 15047 ire_refrele(save_ire); 15048 15049 /* 15050 * irep non-NULL indicates that we entered the while loop 15051 * above. If clear_ire is at the insertion point, we don't 15052 * have to do anything. clear_ire will be NULL if all the 15053 * interfaces are failed. 15054 * 15055 * We cannot unlink and reinsert the ire at the right place 15056 * in the list since there can be other walkers of this bucket. 15057 * Instead we delete and recreate the ire 15058 */ 15059 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15060 ire_t *clear_ire_stq = NULL; 15061 mblk_t *fp_mp = NULL, *res_mp = NULL; 15062 15063 bzero(new_lb_ire, sizeof (ire_t)); 15064 if (clear_ire->ire_nce != NULL) { 15065 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15066 res_mp = clear_ire->ire_nce->nce_res_mp; 15067 } 15068 /* XXX We need a recovery strategy here. */ 15069 if (ire_init(new_lb_ire, 15070 (uchar_t *)&clear_ire->ire_addr, 15071 (uchar_t *)&clear_ire->ire_mask, 15072 (uchar_t *)&clear_ire->ire_src_addr, 15073 (uchar_t *)&clear_ire->ire_gateway_addr, 15074 (uchar_t *)&clear_ire->ire_in_src_addr, 15075 &clear_ire->ire_max_frag, 15076 fp_mp, 15077 clear_ire->ire_rfq, 15078 clear_ire->ire_stq, 15079 clear_ire->ire_type, 15080 res_mp, 15081 clear_ire->ire_ipif, 15082 clear_ire->ire_in_ill, 15083 clear_ire->ire_cmask, 15084 clear_ire->ire_phandle, 15085 clear_ire->ire_ihandle, 15086 clear_ire->ire_flags, 15087 &clear_ire->ire_uinfo, 15088 NULL, 15089 NULL) == NULL) 15090 cmn_err(CE_PANIC, "ire_init() failed"); 15091 if (clear_ire->ire_stq == NULL) { 15092 ire_t *ire_next = clear_ire->ire_next; 15093 if (ire_next != NULL && 15094 ire_next->ire_stq != NULL && 15095 ire_next->ire_addr == clear_ire->ire_addr && 15096 ire_next->ire_ipif->ipif_ill == 15097 clear_ire->ire_ipif->ipif_ill) { 15098 clear_ire_stq = ire_next; 15099 15100 bzero(new_nlb_ire, sizeof (ire_t)); 15101 if (clear_ire_stq->ire_nce != NULL) { 15102 fp_mp = 15103 clear_ire_stq->ire_nce->nce_fp_mp; 15104 res_mp = 15105 clear_ire_stq->ire_nce->nce_res_mp; 15106 } else { 15107 fp_mp = res_mp = NULL; 15108 } 15109 /* XXX We need a recovery strategy here. */ 15110 if (ire_init(new_nlb_ire, 15111 (uchar_t *)&clear_ire_stq->ire_addr, 15112 (uchar_t *)&clear_ire_stq->ire_mask, 15113 (uchar_t *)&clear_ire_stq->ire_src_addr, 15114 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15115 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15116 &clear_ire_stq->ire_max_frag, 15117 fp_mp, 15118 clear_ire_stq->ire_rfq, 15119 clear_ire_stq->ire_stq, 15120 clear_ire_stq->ire_type, 15121 res_mp, 15122 clear_ire_stq->ire_ipif, 15123 clear_ire_stq->ire_in_ill, 15124 clear_ire_stq->ire_cmask, 15125 clear_ire_stq->ire_phandle, 15126 clear_ire_stq->ire_ihandle, 15127 clear_ire_stq->ire_flags, 15128 &clear_ire_stq->ire_uinfo, 15129 NULL, 15130 NULL) == NULL) 15131 cmn_err(CE_PANIC, "ire_init() failed"); 15132 } 15133 } 15134 15135 /* 15136 * Delete the ire. We can't call ire_delete() since 15137 * we are holding the bucket lock. We can't release the 15138 * bucket lock since we can't allow irep to change. So just 15139 * mark it CONDEMNED. The IRB_REFRELE will delete the 15140 * ire from the list and do the refrele. 15141 */ 15142 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15143 irb->irb_marks |= IRB_MARK_CONDEMNED; 15144 15145 if (clear_ire_stq != NULL) { 15146 ire_fastpath_list_delete( 15147 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 15148 clear_ire_stq); 15149 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15150 } 15151 15152 /* 15153 * Also take care of otherfields like ib/ob pkt count 15154 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15155 */ 15156 15157 /* Add the new ire's. Insert at *irep */ 15158 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15159 ire1 = *irep; 15160 if (ire1 != NULL) 15161 ire1->ire_ptpn = &new_lb_ire->ire_next; 15162 new_lb_ire->ire_next = ire1; 15163 /* Link the new one in. */ 15164 new_lb_ire->ire_ptpn = irep; 15165 membar_producer(); 15166 *irep = new_lb_ire; 15167 new_lb_ire_used = B_TRUE; 15168 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15169 new_lb_ire->ire_bucket->irb_ire_cnt++; 15170 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15171 15172 if (clear_ire_stq != NULL) { 15173 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15174 irep = &new_lb_ire->ire_next; 15175 /* Add the new ire. Insert at *irep */ 15176 ire1 = *irep; 15177 if (ire1 != NULL) 15178 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15179 new_nlb_ire->ire_next = ire1; 15180 /* Link the new one in. */ 15181 new_nlb_ire->ire_ptpn = irep; 15182 membar_producer(); 15183 *irep = new_nlb_ire; 15184 new_nlb_ire_used = B_TRUE; 15185 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15186 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15187 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15188 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15189 } 15190 } 15191 rw_exit(&irb->irb_lock); 15192 if (!new_lb_ire_used) 15193 kmem_cache_free(ire_cache, new_lb_ire); 15194 if (!new_nlb_ire_used) 15195 kmem_cache_free(ire_cache, new_nlb_ire); 15196 IRB_REFRELE(irb); 15197 } 15198 15199 /* 15200 * Whenever an ipif goes down we have to renominate a different 15201 * broadcast ire to receive. Whenever an ipif comes up, we need 15202 * to make sure that we have only one nominated to receive. 15203 */ 15204 static void 15205 ipif_renominate_bcast(ipif_t *ipif) 15206 { 15207 ill_t *ill = ipif->ipif_ill; 15208 ipaddr_t subnet_addr; 15209 ipaddr_t net_addr; 15210 ipaddr_t net_mask = 0; 15211 ipaddr_t subnet_netmask; 15212 ipaddr_t addr; 15213 ill_group_t *illgrp; 15214 15215 illgrp = ill->ill_group; 15216 /* 15217 * If this is the last ipif going down, it might take 15218 * the ill out of the group. In that case ipif_down -> 15219 * illgrp_delete takes care of doing the nomination. 15220 * ipif_down does not call for this case. 15221 */ 15222 ASSERT(illgrp != NULL); 15223 15224 /* There could not have been any ires associated with this */ 15225 if (ipif->ipif_subnet == 0) 15226 return; 15227 15228 ill_mark_bcast(illgrp, 0); 15229 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15230 15231 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15232 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15233 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15234 } else { 15235 net_mask = htonl(IN_CLASSA_NET); 15236 } 15237 addr = net_mask & ipif->ipif_subnet; 15238 ill_mark_bcast(illgrp, addr); 15239 15240 net_addr = ~net_mask | addr; 15241 ill_mark_bcast(illgrp, net_addr); 15242 15243 subnet_netmask = ipif->ipif_net_mask; 15244 addr = ipif->ipif_subnet; 15245 ill_mark_bcast(illgrp, addr); 15246 15247 subnet_addr = ~subnet_netmask | addr; 15248 ill_mark_bcast(illgrp, subnet_addr); 15249 } 15250 15251 /* 15252 * Whenever we form or delete ill groups, we need to nominate one set of 15253 * BROADCAST ires for receiving in the group. 15254 * 15255 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15256 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15257 * for ill_ipif_up_count to be non-zero. This is the only case where 15258 * ill_ipif_up_count is zero and we would still find the ires. 15259 * 15260 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15261 * ipif is UP and we just have to do the nomination. 15262 * 15263 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15264 * from the group. So, we have to do the nomination. 15265 * 15266 * Because of (3), there could be just one ill in the group. But we have 15267 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15268 * Thus, this function does not optimize when there is only one ill as 15269 * it is not correct for (3). 15270 */ 15271 static void 15272 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15273 { 15274 ill_t *ill; 15275 ipif_t *ipif; 15276 ipaddr_t subnet_addr; 15277 ipaddr_t prev_subnet_addr = 0; 15278 ipaddr_t net_addr; 15279 ipaddr_t prev_net_addr = 0; 15280 ipaddr_t net_mask = 0; 15281 ipaddr_t subnet_netmask; 15282 ipaddr_t addr; 15283 15284 /* 15285 * When the last memeber is leaving, there is nothing to 15286 * nominate. 15287 */ 15288 if (illgrp->illgrp_ill_count == 0) { 15289 ASSERT(illgrp->illgrp_ill == NULL); 15290 return; 15291 } 15292 15293 ill = illgrp->illgrp_ill; 15294 ASSERT(!ill->ill_isv6); 15295 /* 15296 * We assume that ires with same address and belonging to the 15297 * same group, has been grouped together. Nominating a *single* 15298 * ill in the group for sending and receiving broadcast is done 15299 * by making sure that the first BROADCAST ire (which will be 15300 * the one returned by ire_ctable_lookup for ip_rput and the 15301 * one that will be used in ip_wput_ire) will be the one that 15302 * will not have IRE_MARK_NORECV set. 15303 * 15304 * 1) ip_rput checks and discards packets received on ires marked 15305 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15306 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15307 * first ire in the group for every broadcast address in the group. 15308 * ip_rput will accept packets only on the first ire i.e only 15309 * one copy of the ill. 15310 * 15311 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15312 * packet for the whole group. It needs to send out on the ill 15313 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15314 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15315 * the copy echoed back on other port where the ire is not marked 15316 * with IRE_MARK_NORECV. 15317 * 15318 * Note that we just need to have the first IRE either loopback or 15319 * non-loopback (either of them may not exist if ire_create failed 15320 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15321 * always hit the first one and hence will always accept one copy. 15322 * 15323 * We have a broadcast ire per ill for all the unique prefixes 15324 * hosted on that ill. As we don't have a way of knowing the 15325 * unique prefixes on a given ill and hence in the whole group, 15326 * we just call ill_mark_bcast on all the prefixes that exist 15327 * in the group. For the common case of one prefix, the code 15328 * below optimizes by remebering the last address used for 15329 * markng. In the case of multiple prefixes, this will still 15330 * optimize depending the order of prefixes. 15331 * 15332 * The only unique address across the whole group is 0.0.0.0 and 15333 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15334 * the first ire in the bucket for receiving and disables the 15335 * others. 15336 */ 15337 ill_mark_bcast(illgrp, 0); 15338 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15339 for (; ill != NULL; ill = ill->ill_group_next) { 15340 15341 for (ipif = ill->ill_ipif; ipif != NULL; 15342 ipif = ipif->ipif_next) { 15343 15344 if (!(ipif->ipif_flags & IPIF_UP) || 15345 ipif->ipif_subnet == 0) { 15346 continue; 15347 } 15348 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15349 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15350 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15351 } else { 15352 net_mask = htonl(IN_CLASSA_NET); 15353 } 15354 addr = net_mask & ipif->ipif_subnet; 15355 if (prev_net_addr == 0 || prev_net_addr != addr) { 15356 ill_mark_bcast(illgrp, addr); 15357 net_addr = ~net_mask | addr; 15358 ill_mark_bcast(illgrp, net_addr); 15359 } 15360 prev_net_addr = addr; 15361 15362 subnet_netmask = ipif->ipif_net_mask; 15363 addr = ipif->ipif_subnet; 15364 if (prev_subnet_addr == 0 || 15365 prev_subnet_addr != addr) { 15366 ill_mark_bcast(illgrp, addr); 15367 subnet_addr = ~subnet_netmask | addr; 15368 ill_mark_bcast(illgrp, subnet_addr); 15369 } 15370 prev_subnet_addr = addr; 15371 } 15372 } 15373 } 15374 15375 /* 15376 * This function is called while forming ill groups. 15377 * 15378 * Currently, we handle only allmulti groups. We want to join 15379 * allmulti on only one of the ills in the groups. In future, 15380 * when we have link aggregation, we may have to join normal 15381 * multicast groups on multiple ills as switch does inbound load 15382 * balancing. Following are the functions that calls this 15383 * function : 15384 * 15385 * 1) ill_recover_multicast : Interface is coming back UP. 15386 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15387 * will call ill_recover_multicast to recover all the multicast 15388 * groups. We need to make sure that only one member is joined 15389 * in the ill group. 15390 * 15391 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15392 * Somebody is joining allmulti. We need to make sure that only one 15393 * member is joined in the group. 15394 * 15395 * 3) illgrp_insert : If allmulti has already joined, we need to make 15396 * sure that only one member is joined in the group. 15397 * 15398 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15399 * allmulti who we have nominated. We need to pick someother ill. 15400 * 15401 * 5) illgrp_delete : The ill we nominated is leaving the group, 15402 * we need to pick a new ill to join the group. 15403 * 15404 * For (1), (2), (5) - we just have to check whether there is 15405 * a good ill joined in the group. If we could not find any ills 15406 * joined the group, we should join. 15407 * 15408 * For (4), the one that was nominated to receive, left the group. 15409 * There could be nobody joined in the group when this function is 15410 * called. 15411 * 15412 * For (3) - we need to explicitly check whether there are multiple 15413 * ills joined in the group. 15414 * 15415 * For simplicity, we don't differentiate any of the above cases. We 15416 * just leave the group if it is joined on any of them and join on 15417 * the first good ill. 15418 */ 15419 int 15420 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15421 { 15422 ilm_t *ilm; 15423 ill_t *ill; 15424 ill_t *fallback_inactive_ill = NULL; 15425 ill_t *fallback_failed_ill = NULL; 15426 int ret = 0; 15427 15428 /* 15429 * Leave the allmulti on all the ills and start fresh. 15430 */ 15431 for (ill = illgrp->illgrp_ill; ill != NULL; 15432 ill = ill->ill_group_next) { 15433 if (ill->ill_join_allmulti) 15434 (void) ip_leave_allmulti(ill->ill_ipif); 15435 } 15436 15437 /* 15438 * Choose a good ill. Fallback to inactive or failed if 15439 * none available. We need to fallback to FAILED in the 15440 * case where we have 2 interfaces in a group - where 15441 * one of them is failed and another is a good one and 15442 * the good one (not marked inactive) is leaving the group. 15443 */ 15444 ret = 0; 15445 for (ill = illgrp->illgrp_ill; ill != NULL; 15446 ill = ill->ill_group_next) { 15447 /* Never pick an offline interface */ 15448 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15449 continue; 15450 15451 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15452 fallback_failed_ill = ill; 15453 continue; 15454 } 15455 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15456 fallback_inactive_ill = ill; 15457 continue; 15458 } 15459 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15460 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15461 ret = ip_join_allmulti(ill->ill_ipif); 15462 /* 15463 * ip_join_allmulti can fail because of memory 15464 * failures. So, make sure we join at least 15465 * on one ill. 15466 */ 15467 if (ill->ill_join_allmulti) 15468 return (0); 15469 } 15470 } 15471 } 15472 if (ret != 0) { 15473 /* 15474 * If we tried nominating above and failed to do so, 15475 * return error. We might have tried multiple times. 15476 * But, return the latest error. 15477 */ 15478 return (ret); 15479 } 15480 if ((ill = fallback_inactive_ill) != NULL) { 15481 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15482 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15483 ret = ip_join_allmulti(ill->ill_ipif); 15484 return (ret); 15485 } 15486 } 15487 } else if ((ill = fallback_failed_ill) != NULL) { 15488 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15489 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15490 ret = ip_join_allmulti(ill->ill_ipif); 15491 return (ret); 15492 } 15493 } 15494 } 15495 return (0); 15496 } 15497 15498 /* 15499 * This function is called from illgrp_delete after it is 15500 * deleted from the group to reschedule responsibilities 15501 * to a different ill. 15502 */ 15503 static void 15504 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15505 { 15506 ilm_t *ilm; 15507 ipif_t *ipif; 15508 ipaddr_t subnet_addr; 15509 ipaddr_t net_addr; 15510 ipaddr_t net_mask = 0; 15511 ipaddr_t subnet_netmask; 15512 ipaddr_t addr; 15513 15514 ASSERT(ill->ill_group == NULL); 15515 /* 15516 * Broadcast Responsibility: 15517 * 15518 * 1. If this ill has been nominated for receiving broadcast 15519 * packets, we need to find a new one. Before we find a new 15520 * one, we need to re-group the ires that are part of this new 15521 * group (assumed by ill_nominate_bcast_rcv). We do this by 15522 * calling ill_group_bcast_for_xmit(ill) which will do the right 15523 * thing for us. 15524 * 15525 * 2. If this ill was not nominated for receiving broadcast 15526 * packets, we need to clear the IRE_MARK_NORECV flag 15527 * so that we continue to send up broadcast packets. 15528 */ 15529 if (!ill->ill_isv6) { 15530 /* 15531 * Case 1 above : No optimization here. Just redo the 15532 * nomination. 15533 */ 15534 ill_group_bcast_for_xmit(ill); 15535 ill_nominate_bcast_rcv(illgrp); 15536 15537 /* 15538 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15539 */ 15540 ill_clear_bcast_mark(ill, 0); 15541 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15542 15543 for (ipif = ill->ill_ipif; ipif != NULL; 15544 ipif = ipif->ipif_next) { 15545 15546 if (!(ipif->ipif_flags & IPIF_UP) || 15547 ipif->ipif_subnet == 0) { 15548 continue; 15549 } 15550 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15551 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15552 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15553 } else { 15554 net_mask = htonl(IN_CLASSA_NET); 15555 } 15556 addr = net_mask & ipif->ipif_subnet; 15557 ill_clear_bcast_mark(ill, addr); 15558 15559 net_addr = ~net_mask | addr; 15560 ill_clear_bcast_mark(ill, net_addr); 15561 15562 subnet_netmask = ipif->ipif_net_mask; 15563 addr = ipif->ipif_subnet; 15564 ill_clear_bcast_mark(ill, addr); 15565 15566 subnet_addr = ~subnet_netmask | addr; 15567 ill_clear_bcast_mark(ill, subnet_addr); 15568 } 15569 } 15570 15571 /* 15572 * Multicast Responsibility. 15573 * 15574 * If we have joined allmulti on this one, find a new member 15575 * in the group to join allmulti. As this ill is already part 15576 * of allmulti, we don't have to join on this one. 15577 * 15578 * If we have not joined allmulti on this one, there is no 15579 * responsibility to handoff. But we need to take new 15580 * responsibility i.e, join allmulti on this one if we need 15581 * to. 15582 */ 15583 if (ill->ill_join_allmulti) { 15584 (void) ill_nominate_mcast_rcv(illgrp); 15585 } else { 15586 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15587 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15588 (void) ip_join_allmulti(ill->ill_ipif); 15589 break; 15590 } 15591 } 15592 } 15593 15594 /* 15595 * We intentionally do the flushing of IRE_CACHES only matching 15596 * on the ill and not on groups. Note that we are already deleted 15597 * from the group. 15598 * 15599 * This will make sure that all IRE_CACHES whose stq is pointing 15600 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15601 * deleted and IRE_CACHES that are not pointing at this ill will 15602 * be left alone. 15603 */ 15604 if (ill->ill_isv6) { 15605 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15606 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15607 } else { 15608 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15609 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15610 } 15611 15612 /* 15613 * Some conn may have cached one of the IREs deleted above. By removing 15614 * the ire reference, we clean up the extra reference to the ill held in 15615 * ire->ire_stq. 15616 */ 15617 ipcl_walk(conn_cleanup_stale_ire, NULL); 15618 15619 /* 15620 * Re-do source address selection for all the members in the 15621 * group, if they borrowed source address from one of the ipifs 15622 * in this ill. 15623 */ 15624 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15625 if (ill->ill_isv6) { 15626 ipif_update_other_ipifs_v6(ipif, illgrp); 15627 } else { 15628 ipif_update_other_ipifs(ipif, illgrp); 15629 } 15630 } 15631 } 15632 15633 /* 15634 * Delete the ill from the group. The caller makes sure that it is 15635 * in a group and it okay to delete from the group. So, we always 15636 * delete here. 15637 */ 15638 static void 15639 illgrp_delete(ill_t *ill) 15640 { 15641 ill_group_t *illgrp; 15642 ill_group_t *tmpg; 15643 ill_t *tmp_ill; 15644 15645 /* 15646 * Reset illgrp_ill_schednext if it was pointing at us. 15647 * We need to do this before we set ill_group to NULL. 15648 */ 15649 rw_enter(&ill_g_lock, RW_WRITER); 15650 mutex_enter(&ill->ill_lock); 15651 15652 illgrp_reset_schednext(ill); 15653 15654 illgrp = ill->ill_group; 15655 15656 /* Delete the ill from illgrp. */ 15657 if (illgrp->illgrp_ill == ill) { 15658 illgrp->illgrp_ill = ill->ill_group_next; 15659 } else { 15660 tmp_ill = illgrp->illgrp_ill; 15661 while (tmp_ill->ill_group_next != ill) { 15662 tmp_ill = tmp_ill->ill_group_next; 15663 ASSERT(tmp_ill != NULL); 15664 } 15665 tmp_ill->ill_group_next = ill->ill_group_next; 15666 } 15667 ill->ill_group = NULL; 15668 ill->ill_group_next = NULL; 15669 15670 illgrp->illgrp_ill_count--; 15671 mutex_exit(&ill->ill_lock); 15672 rw_exit(&ill_g_lock); 15673 15674 /* 15675 * As this ill is leaving the group, we need to hand off 15676 * the responsibilities to the other ills in the group, if 15677 * this ill had some responsibilities. 15678 */ 15679 15680 ill_handoff_responsibility(ill, illgrp); 15681 15682 rw_enter(&ill_g_lock, RW_WRITER); 15683 15684 if (illgrp->illgrp_ill_count == 0) { 15685 15686 ASSERT(illgrp->illgrp_ill == NULL); 15687 if (ill->ill_isv6) { 15688 if (illgrp == illgrp_head_v6) { 15689 illgrp_head_v6 = illgrp->illgrp_next; 15690 } else { 15691 tmpg = illgrp_head_v6; 15692 while (tmpg->illgrp_next != illgrp) { 15693 tmpg = tmpg->illgrp_next; 15694 ASSERT(tmpg != NULL); 15695 } 15696 tmpg->illgrp_next = illgrp->illgrp_next; 15697 } 15698 } else { 15699 if (illgrp == illgrp_head_v4) { 15700 illgrp_head_v4 = illgrp->illgrp_next; 15701 } else { 15702 tmpg = illgrp_head_v4; 15703 while (tmpg->illgrp_next != illgrp) { 15704 tmpg = tmpg->illgrp_next; 15705 ASSERT(tmpg != NULL); 15706 } 15707 tmpg->illgrp_next = illgrp->illgrp_next; 15708 } 15709 } 15710 mutex_destroy(&illgrp->illgrp_lock); 15711 mi_free(illgrp); 15712 } 15713 rw_exit(&ill_g_lock); 15714 15715 /* 15716 * Even though the ill is out of the group its not necessary 15717 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15718 * We will split the ipsq when phyint_groupname is set to NULL. 15719 */ 15720 15721 /* 15722 * Send a routing sockets message if we are deleting from 15723 * groups with names. 15724 */ 15725 if (ill->ill_phyint->phyint_groupname_len != 0) 15726 ip_rts_ifmsg(ill->ill_ipif); 15727 } 15728 15729 /* 15730 * Re-do source address selection. This is normally called when 15731 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15732 * ipif comes up. 15733 */ 15734 void 15735 ill_update_source_selection(ill_t *ill) 15736 { 15737 ipif_t *ipif; 15738 15739 ASSERT(IAM_WRITER_ILL(ill)); 15740 15741 if (ill->ill_group != NULL) 15742 ill = ill->ill_group->illgrp_ill; 15743 15744 for (; ill != NULL; ill = ill->ill_group_next) { 15745 for (ipif = ill->ill_ipif; ipif != NULL; 15746 ipif = ipif->ipif_next) { 15747 if (ill->ill_isv6) 15748 ipif_recreate_interface_routes_v6(NULL, ipif); 15749 else 15750 ipif_recreate_interface_routes(NULL, ipif); 15751 } 15752 } 15753 } 15754 15755 /* 15756 * Insert ill in a group headed by illgrp_head. The caller can either 15757 * pass a groupname in which case we search for a group with the 15758 * same name to insert in or pass a group to insert in. This function 15759 * would only search groups with names. 15760 * 15761 * NOTE : The caller should make sure that there is at least one ipif 15762 * UP on this ill so that illgrp_scheduler can pick this ill 15763 * for outbound packets. If ill_ipif_up_count is zero, we have 15764 * already sent a DL_UNBIND to the driver and we don't want to 15765 * send anymore packets. We don't assert for ipif_up_count 15766 * to be greater than zero, because ipif_up_done wants to call 15767 * this function before bumping up the ipif_up_count. See 15768 * ipif_up_done() for details. 15769 */ 15770 int 15771 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15772 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15773 { 15774 ill_group_t *illgrp; 15775 ill_t *prev_ill; 15776 phyint_t *phyi; 15777 15778 ASSERT(ill->ill_group == NULL); 15779 15780 rw_enter(&ill_g_lock, RW_WRITER); 15781 mutex_enter(&ill->ill_lock); 15782 15783 if (groupname != NULL) { 15784 /* 15785 * Look for a group with a matching groupname to insert. 15786 */ 15787 for (illgrp = *illgrp_head; illgrp != NULL; 15788 illgrp = illgrp->illgrp_next) { 15789 15790 ill_t *tmp_ill; 15791 15792 /* 15793 * If we have an ill_group_t in the list which has 15794 * no ill_t assigned then we must be in the process of 15795 * removing this group. We skip this as illgrp_delete() 15796 * will remove it from the list. 15797 */ 15798 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15799 ASSERT(illgrp->illgrp_ill_count == 0); 15800 continue; 15801 } 15802 15803 ASSERT(tmp_ill->ill_phyint != NULL); 15804 phyi = tmp_ill->ill_phyint; 15805 /* 15806 * Look at groups which has names only. 15807 */ 15808 if (phyi->phyint_groupname_len == 0) 15809 continue; 15810 /* 15811 * Names are stored in the phyint common to both 15812 * IPv4 and IPv6. 15813 */ 15814 if (mi_strcmp(phyi->phyint_groupname, 15815 groupname) == 0) { 15816 break; 15817 } 15818 } 15819 } else { 15820 /* 15821 * If the caller passes in a NULL "grp_to_insert", we 15822 * allocate one below and insert this singleton. 15823 */ 15824 illgrp = grp_to_insert; 15825 } 15826 15827 ill->ill_group_next = NULL; 15828 15829 if (illgrp == NULL) { 15830 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15831 if (illgrp == NULL) { 15832 return (ENOMEM); 15833 } 15834 illgrp->illgrp_next = *illgrp_head; 15835 *illgrp_head = illgrp; 15836 illgrp->illgrp_ill = ill; 15837 illgrp->illgrp_ill_count = 1; 15838 ill->ill_group = illgrp; 15839 /* 15840 * Used in illgrp_scheduler to protect multiple threads 15841 * from traversing the list. 15842 */ 15843 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15844 } else { 15845 ASSERT(ill->ill_net_type == 15846 illgrp->illgrp_ill->ill_net_type); 15847 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15848 15849 /* Insert ill at tail of this group */ 15850 prev_ill = illgrp->illgrp_ill; 15851 while (prev_ill->ill_group_next != NULL) 15852 prev_ill = prev_ill->ill_group_next; 15853 prev_ill->ill_group_next = ill; 15854 ill->ill_group = illgrp; 15855 illgrp->illgrp_ill_count++; 15856 /* 15857 * Inherit group properties. Currently only forwarding 15858 * is the property we try to keep the same with all the 15859 * ills. When there are more, we will abstract this into 15860 * a function. 15861 */ 15862 ill->ill_flags &= ~ILLF_ROUTER; 15863 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15864 } 15865 mutex_exit(&ill->ill_lock); 15866 rw_exit(&ill_g_lock); 15867 15868 /* 15869 * 1) When ipif_up_done() calls this function, ipif_up_count 15870 * may be zero as it has not yet been bumped. But the ires 15871 * have already been added. So, we do the nomination here 15872 * itself. But, when ip_sioctl_groupname calls this, it checks 15873 * for ill_ipif_up_count != 0. Thus we don't check for 15874 * ill_ipif_up_count here while nominating broadcast ires for 15875 * receive. 15876 * 15877 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15878 * to group them properly as ire_add() has already happened 15879 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15880 * case, we need to do it here anyway. 15881 */ 15882 if (!ill->ill_isv6) { 15883 ill_group_bcast_for_xmit(ill); 15884 ill_nominate_bcast_rcv(illgrp); 15885 } 15886 15887 if (!ipif_is_coming_up) { 15888 /* 15889 * When ipif_up_done() calls this function, the multicast 15890 * groups have not been joined yet. So, there is no point in 15891 * nomination. ip_join_allmulti will handle groups when 15892 * ill_recover_multicast is called from ipif_up_done() later. 15893 */ 15894 (void) ill_nominate_mcast_rcv(illgrp); 15895 /* 15896 * ipif_up_done calls ill_update_source_selection 15897 * anyway. Moreover, we don't want to re-create 15898 * interface routes while ipif_up_done() still has reference 15899 * to them. Refer to ipif_up_done() for more details. 15900 */ 15901 ill_update_source_selection(ill); 15902 } 15903 15904 /* 15905 * Send a routing sockets message if we are inserting into 15906 * groups with names. 15907 */ 15908 if (groupname != NULL) 15909 ip_rts_ifmsg(ill->ill_ipif); 15910 return (0); 15911 } 15912 15913 /* 15914 * Return the first phyint matching the groupname. There could 15915 * be more than one when there are ill groups. 15916 * 15917 * Needs work: called only from ip_sioctl_groupname 15918 */ 15919 static phyint_t * 15920 phyint_lookup_group(char *groupname) 15921 { 15922 phyint_t *phyi; 15923 15924 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15925 /* 15926 * Group names are stored in the phyint - a common structure 15927 * to both IPv4 and IPv6. 15928 */ 15929 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15930 for (; phyi != NULL; 15931 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15932 phyi, AVL_AFTER)) { 15933 if (phyi->phyint_groupname_len == 0) 15934 continue; 15935 ASSERT(phyi->phyint_groupname != NULL); 15936 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15937 return (phyi); 15938 } 15939 return (NULL); 15940 } 15941 15942 15943 15944 /* 15945 * MT notes on creation and deletion of IPMP groups 15946 * 15947 * Creation and deletion of IPMP groups introduce the need to merge or 15948 * split the associated serialization objects i.e the ipsq's. Normally all 15949 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15950 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15951 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15952 * is a need to change the <ill-ipsq> association and we have to operate on both 15953 * the source and destination IPMP groups. For eg. attempting to set the 15954 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15955 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15956 * source or destination IPMP group are mapped to a single ipsq for executing 15957 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15958 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15959 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15960 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15961 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15962 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15963 * 15964 * In the above example the ioctl handling code locates the current ipsq of hme0 15965 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15966 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15967 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15968 * the destination ipsq. If the destination ipsq is not busy, it also enters 15969 * the destination ipsq exclusively. Now the actual groupname setting operation 15970 * can proceed. If the destination ipsq is busy, the operation is enqueued 15971 * on the destination (merged) ipsq and will be handled in the unwind from 15972 * ipsq_exit. 15973 * 15974 * To prevent other threads accessing the ill while the group name change is 15975 * in progres, we bring down the ipifs which also removes the ill from the 15976 * group. The group is changed in phyint and when the first ipif on the ill 15977 * is brought up, the ill is inserted into the right IPMP group by 15978 * illgrp_insert. 15979 */ 15980 /* ARGSUSED */ 15981 int 15982 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15983 ip_ioctl_cmd_t *ipip, void *ifreq) 15984 { 15985 int i; 15986 char *tmp; 15987 int namelen; 15988 ill_t *ill = ipif->ipif_ill; 15989 ill_t *ill_v4, *ill_v6; 15990 int err = 0; 15991 phyint_t *phyi; 15992 phyint_t *phyi_tmp; 15993 struct lifreq *lifr; 15994 mblk_t *mp1; 15995 char *groupname; 15996 ipsq_t *ipsq; 15997 15998 ASSERT(IAM_WRITER_IPIF(ipif)); 15999 16000 /* Existance verified in ip_wput_nondata */ 16001 mp1 = mp->b_cont->b_cont; 16002 lifr = (struct lifreq *)mp1->b_rptr; 16003 groupname = lifr->lifr_groupname; 16004 16005 if (ipif->ipif_id != 0) 16006 return (EINVAL); 16007 16008 phyi = ill->ill_phyint; 16009 ASSERT(phyi != NULL); 16010 16011 if (phyi->phyint_flags & PHYI_VIRTUAL) 16012 return (EINVAL); 16013 16014 tmp = groupname; 16015 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16016 ; 16017 16018 if (i == LIFNAMSIZ) { 16019 /* no null termination */ 16020 return (EINVAL); 16021 } 16022 16023 /* 16024 * Calculate the namelen exclusive of the null 16025 * termination character. 16026 */ 16027 namelen = tmp - groupname; 16028 16029 ill_v4 = phyi->phyint_illv4; 16030 ill_v6 = phyi->phyint_illv6; 16031 16032 /* 16033 * ILL cannot be part of a usesrc group and and IPMP group at the 16034 * same time. No need to grab the ill_g_usesrc_lock here, see 16035 * synchronization notes in ip.c 16036 */ 16037 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16038 return (EINVAL); 16039 } 16040 16041 /* 16042 * mark the ill as changing. 16043 * this should queue all new requests on the syncq. 16044 */ 16045 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16046 16047 if (ill_v4 != NULL) 16048 ill_v4->ill_state_flags |= ILL_CHANGING; 16049 if (ill_v6 != NULL) 16050 ill_v6->ill_state_flags |= ILL_CHANGING; 16051 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16052 16053 if (namelen == 0) { 16054 /* 16055 * Null string means remove this interface from the 16056 * existing group. 16057 */ 16058 if (phyi->phyint_groupname_len == 0) { 16059 /* 16060 * Never was in a group. 16061 */ 16062 err = 0; 16063 goto done; 16064 } 16065 16066 /* 16067 * IPv4 or IPv6 may be temporarily out of the group when all 16068 * the ipifs are down. Thus, we need to check for ill_group to 16069 * be non-NULL. 16070 */ 16071 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16072 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16073 mutex_enter(&ill_v4->ill_lock); 16074 if (!ill_is_quiescent(ill_v4)) { 16075 /* 16076 * ipsq_pending_mp_add will not fail since 16077 * connp is NULL 16078 */ 16079 (void) ipsq_pending_mp_add(NULL, 16080 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16081 mutex_exit(&ill_v4->ill_lock); 16082 err = EINPROGRESS; 16083 goto done; 16084 } 16085 mutex_exit(&ill_v4->ill_lock); 16086 } 16087 16088 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16089 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16090 mutex_enter(&ill_v6->ill_lock); 16091 if (!ill_is_quiescent(ill_v6)) { 16092 (void) ipsq_pending_mp_add(NULL, 16093 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16094 mutex_exit(&ill_v6->ill_lock); 16095 err = EINPROGRESS; 16096 goto done; 16097 } 16098 mutex_exit(&ill_v6->ill_lock); 16099 } 16100 16101 rw_enter(&ill_g_lock, RW_WRITER); 16102 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16103 mutex_enter(&phyi->phyint_lock); 16104 ASSERT(phyi->phyint_groupname != NULL); 16105 mi_free(phyi->phyint_groupname); 16106 phyi->phyint_groupname = NULL; 16107 phyi->phyint_groupname_len = 0; 16108 mutex_exit(&phyi->phyint_lock); 16109 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16110 rw_exit(&ill_g_lock); 16111 err = ill_up_ipifs(ill, q, mp); 16112 16113 /* 16114 * set the split flag so that the ipsq can be split 16115 */ 16116 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16117 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16118 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16119 16120 } else { 16121 if (phyi->phyint_groupname_len != 0) { 16122 ASSERT(phyi->phyint_groupname != NULL); 16123 /* Are we inserting in the same group ? */ 16124 if (mi_strcmp(groupname, 16125 phyi->phyint_groupname) == 0) { 16126 err = 0; 16127 goto done; 16128 } 16129 } 16130 16131 rw_enter(&ill_g_lock, RW_READER); 16132 /* 16133 * Merge ipsq for the group's. 16134 * This check is here as multiple groups/ills might be 16135 * sharing the same ipsq. 16136 * If we have to merege than the operation is restarted 16137 * on the new ipsq. 16138 */ 16139 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 16140 if (phyi->phyint_ipsq != ipsq) { 16141 rw_exit(&ill_g_lock); 16142 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16143 goto done; 16144 } 16145 /* 16146 * Running exclusive on new ipsq. 16147 */ 16148 16149 ASSERT(ipsq != NULL); 16150 ASSERT(ipsq->ipsq_writer == curthread); 16151 16152 /* 16153 * Check whether the ill_type and ill_net_type matches before 16154 * we allocate any memory so that the cleanup is easier. 16155 * 16156 * We can't group dissimilar ones as we can't load spread 16157 * packets across the group because of potential link-level 16158 * header differences. 16159 */ 16160 phyi_tmp = phyint_lookup_group(groupname); 16161 if (phyi_tmp != NULL) { 16162 if ((ill_v4 != NULL && 16163 phyi_tmp->phyint_illv4 != NULL) && 16164 ((ill_v4->ill_net_type != 16165 phyi_tmp->phyint_illv4->ill_net_type) || 16166 (ill_v4->ill_type != 16167 phyi_tmp->phyint_illv4->ill_type))) { 16168 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16169 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16170 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16171 rw_exit(&ill_g_lock); 16172 return (EINVAL); 16173 } 16174 if ((ill_v6 != NULL && 16175 phyi_tmp->phyint_illv6 != NULL) && 16176 ((ill_v6->ill_net_type != 16177 phyi_tmp->phyint_illv6->ill_net_type) || 16178 (ill_v6->ill_type != 16179 phyi_tmp->phyint_illv6->ill_type))) { 16180 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16181 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16182 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16183 rw_exit(&ill_g_lock); 16184 return (EINVAL); 16185 } 16186 } 16187 16188 rw_exit(&ill_g_lock); 16189 16190 /* 16191 * bring down all v4 ipifs. 16192 */ 16193 if (ill_v4 != NULL) { 16194 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16195 } 16196 16197 /* 16198 * bring down all v6 ipifs. 16199 */ 16200 if (ill_v6 != NULL) { 16201 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16202 } 16203 16204 /* 16205 * make sure all ipifs are down and there are no active 16206 * references. Call to ipsq_pending_mp_add will not fail 16207 * since connp is NULL. 16208 */ 16209 if (ill_v4 != NULL) { 16210 mutex_enter(&ill_v4->ill_lock); 16211 if (!ill_is_quiescent(ill_v4)) { 16212 (void) ipsq_pending_mp_add(NULL, 16213 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16214 mutex_exit(&ill_v4->ill_lock); 16215 err = EINPROGRESS; 16216 goto done; 16217 } 16218 mutex_exit(&ill_v4->ill_lock); 16219 } 16220 16221 if (ill_v6 != NULL) { 16222 mutex_enter(&ill_v6->ill_lock); 16223 if (!ill_is_quiescent(ill_v6)) { 16224 (void) ipsq_pending_mp_add(NULL, 16225 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16226 mutex_exit(&ill_v6->ill_lock); 16227 err = EINPROGRESS; 16228 goto done; 16229 } 16230 mutex_exit(&ill_v6->ill_lock); 16231 } 16232 16233 /* 16234 * allocate including space for null terminator 16235 * before we insert. 16236 */ 16237 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16238 if (tmp == NULL) 16239 return (ENOMEM); 16240 16241 rw_enter(&ill_g_lock, RW_WRITER); 16242 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16243 mutex_enter(&phyi->phyint_lock); 16244 if (phyi->phyint_groupname_len != 0) { 16245 ASSERT(phyi->phyint_groupname != NULL); 16246 mi_free(phyi->phyint_groupname); 16247 } 16248 16249 /* 16250 * setup the new group name. 16251 */ 16252 phyi->phyint_groupname = tmp; 16253 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16254 phyi->phyint_groupname_len = namelen + 1; 16255 mutex_exit(&phyi->phyint_lock); 16256 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16257 rw_exit(&ill_g_lock); 16258 16259 err = ill_up_ipifs(ill, q, mp); 16260 } 16261 16262 done: 16263 /* 16264 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16265 */ 16266 if (err != EINPROGRESS) { 16267 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16268 if (ill_v4 != NULL) 16269 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16270 if (ill_v6 != NULL) 16271 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16272 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16273 } 16274 return (err); 16275 } 16276 16277 /* ARGSUSED */ 16278 int 16279 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16280 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16281 { 16282 ill_t *ill; 16283 phyint_t *phyi; 16284 struct lifreq *lifr; 16285 mblk_t *mp1; 16286 16287 /* Existence verified in ip_wput_nondata */ 16288 mp1 = mp->b_cont->b_cont; 16289 lifr = (struct lifreq *)mp1->b_rptr; 16290 ill = ipif->ipif_ill; 16291 phyi = ill->ill_phyint; 16292 16293 lifr->lifr_groupname[0] = '\0'; 16294 /* 16295 * ill_group may be null if all the interfaces 16296 * are down. But still, the phyint should always 16297 * hold the name. 16298 */ 16299 if (phyi->phyint_groupname_len != 0) { 16300 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16301 phyi->phyint_groupname_len); 16302 } 16303 16304 return (0); 16305 } 16306 16307 16308 typedef struct conn_move_s { 16309 ill_t *cm_from_ill; 16310 ill_t *cm_to_ill; 16311 int cm_ifindex; 16312 } conn_move_t; 16313 16314 /* 16315 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16316 */ 16317 static void 16318 conn_move(conn_t *connp, caddr_t arg) 16319 { 16320 conn_move_t *connm; 16321 int ifindex; 16322 int i; 16323 ill_t *from_ill; 16324 ill_t *to_ill; 16325 ilg_t *ilg; 16326 ilm_t *ret_ilm; 16327 16328 connm = (conn_move_t *)arg; 16329 ifindex = connm->cm_ifindex; 16330 from_ill = connm->cm_from_ill; 16331 to_ill = connm->cm_to_ill; 16332 16333 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16334 16335 /* All multicast fields protected by conn_lock */ 16336 mutex_enter(&connp->conn_lock); 16337 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16338 if ((connp->conn_outgoing_ill == from_ill) && 16339 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16340 connp->conn_outgoing_ill = to_ill; 16341 connp->conn_incoming_ill = to_ill; 16342 } 16343 16344 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16345 16346 if ((connp->conn_multicast_ill == from_ill) && 16347 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16348 connp->conn_multicast_ill = connm->cm_to_ill; 16349 } 16350 16351 /* Change IP_XMIT_IF associations */ 16352 if ((connp->conn_xmit_if_ill == from_ill) && 16353 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16354 connp->conn_xmit_if_ill = to_ill; 16355 } 16356 /* 16357 * Change the ilg_ill to point to the new one. This assumes 16358 * ilm_move_v6 has moved the ilms to new_ill and the driver 16359 * has been told to receive packets on this interface. 16360 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16361 * But when doing a FAILOVER, it might fail with ENOMEM and so 16362 * some ilms may not have moved. We check to see whether 16363 * the ilms have moved to to_ill. We can't check on from_ill 16364 * as in the process of moving, we could have split an ilm 16365 * in to two - which has the same orig_ifindex and v6group. 16366 * 16367 * For IPv4, ilg_ipif moves implicitly. The code below really 16368 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16369 */ 16370 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16371 ilg = &connp->conn_ilg[i]; 16372 if ((ilg->ilg_ill == from_ill) && 16373 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16374 /* ifindex != 0 indicates failback */ 16375 if (ifindex != 0) { 16376 connp->conn_ilg[i].ilg_ill = to_ill; 16377 continue; 16378 } 16379 16380 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16381 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16382 connp->conn_zoneid); 16383 16384 if (ret_ilm != NULL) 16385 connp->conn_ilg[i].ilg_ill = to_ill; 16386 } 16387 } 16388 mutex_exit(&connp->conn_lock); 16389 } 16390 16391 static void 16392 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16393 { 16394 conn_move_t connm; 16395 16396 connm.cm_from_ill = from_ill; 16397 connm.cm_to_ill = to_ill; 16398 connm.cm_ifindex = ifindex; 16399 16400 ipcl_walk(conn_move, (caddr_t)&connm); 16401 } 16402 16403 /* 16404 * ilm has been moved from from_ill to to_ill. 16405 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16406 * appropriately. 16407 * 16408 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16409 * the code there de-references ipif_ill to get the ill to 16410 * send multicast requests. It does not work as ipif is on its 16411 * move and already moved when this function is called. 16412 * Thus, we need to use from_ill and to_ill send down multicast 16413 * requests. 16414 */ 16415 static void 16416 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16417 { 16418 ipif_t *ipif; 16419 ilm_t *ilm; 16420 16421 /* 16422 * See whether we need to send down DL_ENABMULTI_REQ on 16423 * to_ill as ilm has just been added. 16424 */ 16425 ASSERT(IAM_WRITER_ILL(to_ill)); 16426 ASSERT(IAM_WRITER_ILL(from_ill)); 16427 16428 ILM_WALKER_HOLD(to_ill); 16429 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16430 16431 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16432 continue; 16433 /* 16434 * no locks held, ill/ipif cannot dissappear as long 16435 * as we are writer. 16436 */ 16437 ipif = to_ill->ill_ipif; 16438 /* 16439 * No need to hold any lock as we are the writer and this 16440 * can only be changed by a writer. 16441 */ 16442 ilm->ilm_is_new = B_FALSE; 16443 16444 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16445 ipif->ipif_flags & IPIF_POINTOPOINT) { 16446 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16447 "resolver\n")); 16448 continue; /* Must be IRE_IF_NORESOLVER */ 16449 } 16450 16451 16452 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16453 ip1dbg(("ilm_send_multicast_reqs: " 16454 "to_ill MULTI_BCAST\n")); 16455 goto from; 16456 } 16457 16458 if (to_ill->ill_isv6) 16459 mld_joingroup(ilm); 16460 else 16461 igmp_joingroup(ilm); 16462 16463 if (to_ill->ill_ipif_up_count == 0) { 16464 /* 16465 * Nobody there. All multicast addresses will be 16466 * re-joined when we get the DL_BIND_ACK bringing the 16467 * interface up. 16468 */ 16469 ilm->ilm_notify_driver = B_FALSE; 16470 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16471 goto from; 16472 } 16473 16474 /* 16475 * For allmulti address, we want to join on only one interface. 16476 * Checking for ilm_numentries_v6 is not correct as you may 16477 * find an ilm with zero address on to_ill, but we may not 16478 * have nominated to_ill for receiving. Thus, if we have 16479 * nominated from_ill (ill_join_allmulti is set), nominate 16480 * only if to_ill is not already nominated (to_ill normally 16481 * should not have been nominated if "from_ill" has already 16482 * been nominated. As we don't prevent failovers from happening 16483 * across groups, we don't assert). 16484 */ 16485 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16486 /* 16487 * There is no need to hold ill locks as we are 16488 * writer on both ills and when ill_join_allmulti 16489 * is changed the thread is always a writer. 16490 */ 16491 if (from_ill->ill_join_allmulti && 16492 !to_ill->ill_join_allmulti) { 16493 (void) ip_join_allmulti(to_ill->ill_ipif); 16494 } 16495 } else if (ilm->ilm_notify_driver) { 16496 16497 /* 16498 * This is a newly moved ilm so we need to tell the 16499 * driver about the new group. There can be more than 16500 * one ilm's for the same group in the list each with a 16501 * different orig_ifindex. We have to inform the driver 16502 * once. In ilm_move_v[4,6] we only set the flag 16503 * ilm_notify_driver for the first ilm. 16504 */ 16505 16506 (void) ip_ll_send_enabmulti_req(to_ill, 16507 &ilm->ilm_v6addr); 16508 } 16509 16510 ilm->ilm_notify_driver = B_FALSE; 16511 16512 /* 16513 * See whether we need to send down DL_DISABMULTI_REQ on 16514 * from_ill as ilm has just been removed. 16515 */ 16516 from: 16517 ipif = from_ill->ill_ipif; 16518 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16519 ipif->ipif_flags & IPIF_POINTOPOINT) { 16520 ip1dbg(("ilm_send_multicast_reqs: " 16521 "from_ill not resolver\n")); 16522 continue; /* Must be IRE_IF_NORESOLVER */ 16523 } 16524 16525 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16526 ip1dbg(("ilm_send_multicast_reqs: " 16527 "from_ill MULTI_BCAST\n")); 16528 continue; 16529 } 16530 16531 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16532 if (from_ill->ill_join_allmulti) 16533 (void) ip_leave_allmulti(from_ill->ill_ipif); 16534 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16535 (void) ip_ll_send_disabmulti_req(from_ill, 16536 &ilm->ilm_v6addr); 16537 } 16538 } 16539 ILM_WALKER_RELE(to_ill); 16540 } 16541 16542 /* 16543 * This function is called when all multicast memberships needs 16544 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16545 * called only once unlike the IPv4 counterpart where it is called after 16546 * every logical interface is moved. The reason is due to multicast 16547 * memberships are joined using an interface address in IPv4 while in 16548 * IPv6, interface index is used. 16549 */ 16550 static void 16551 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16552 { 16553 ilm_t *ilm; 16554 ilm_t *ilm_next; 16555 ilm_t *new_ilm; 16556 ilm_t **ilmp; 16557 int count; 16558 char buf[INET6_ADDRSTRLEN]; 16559 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16560 16561 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16562 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16563 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16564 16565 if (ifindex == 0) { 16566 /* 16567 * Form the solicited node mcast address which is used later. 16568 */ 16569 ipif_t *ipif; 16570 16571 ipif = from_ill->ill_ipif; 16572 ASSERT(ipif->ipif_id == 0); 16573 16574 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16575 } 16576 16577 ilmp = &from_ill->ill_ilm; 16578 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16579 ilm_next = ilm->ilm_next; 16580 16581 if (ilm->ilm_flags & ILM_DELETED) { 16582 ilmp = &ilm->ilm_next; 16583 continue; 16584 } 16585 16586 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16587 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16588 ASSERT(ilm->ilm_orig_ifindex != 0); 16589 if (ilm->ilm_orig_ifindex == ifindex) { 16590 /* 16591 * We are failing back multicast memberships. 16592 * If the same ilm exists in to_ill, it means somebody 16593 * has joined the same group there e.g. ff02::1 16594 * is joined within the kernel when the interfaces 16595 * came UP. 16596 */ 16597 ASSERT(ilm->ilm_ipif == NULL); 16598 if (new_ilm != NULL) { 16599 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16600 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16601 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16602 new_ilm->ilm_is_new = B_TRUE; 16603 } 16604 } else { 16605 /* 16606 * check if we can just move the ilm 16607 */ 16608 if (from_ill->ill_ilm_walker_cnt != 0) { 16609 /* 16610 * We have walkers we cannot move 16611 * the ilm, so allocate a new ilm, 16612 * this (old) ilm will be marked 16613 * ILM_DELETED at the end of the loop 16614 * and will be freed when the 16615 * last walker exits. 16616 */ 16617 new_ilm = (ilm_t *)mi_zalloc 16618 (sizeof (ilm_t)); 16619 if (new_ilm == NULL) { 16620 ip0dbg(("ilm_move_v6: " 16621 "FAILBACK of IPv6" 16622 " multicast address %s : " 16623 "from %s to" 16624 " %s failed : ENOMEM \n", 16625 inet_ntop(AF_INET6, 16626 &ilm->ilm_v6addr, buf, 16627 sizeof (buf)), 16628 from_ill->ill_name, 16629 to_ill->ill_name)); 16630 16631 ilmp = &ilm->ilm_next; 16632 continue; 16633 } 16634 *new_ilm = *ilm; 16635 /* 16636 * we don't want new_ilm linked to 16637 * ilm's filter list. 16638 */ 16639 new_ilm->ilm_filter = NULL; 16640 } else { 16641 /* 16642 * No walkers we can move the ilm. 16643 * lets take it out of the list. 16644 */ 16645 *ilmp = ilm->ilm_next; 16646 ilm->ilm_next = NULL; 16647 new_ilm = ilm; 16648 } 16649 16650 /* 16651 * if this is the first ilm for the group 16652 * set ilm_notify_driver so that we notify the 16653 * driver in ilm_send_multicast_reqs. 16654 */ 16655 if (ilm_lookup_ill_v6(to_ill, 16656 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16657 new_ilm->ilm_notify_driver = B_TRUE; 16658 16659 new_ilm->ilm_ill = to_ill; 16660 /* Add to the to_ill's list */ 16661 new_ilm->ilm_next = to_ill->ill_ilm; 16662 to_ill->ill_ilm = new_ilm; 16663 /* 16664 * set the flag so that mld_joingroup is 16665 * called in ilm_send_multicast_reqs(). 16666 */ 16667 new_ilm->ilm_is_new = B_TRUE; 16668 } 16669 goto bottom; 16670 } else if (ifindex != 0) { 16671 /* 16672 * If this is FAILBACK (ifindex != 0) and the ifindex 16673 * has not matched above, look at the next ilm. 16674 */ 16675 ilmp = &ilm->ilm_next; 16676 continue; 16677 } 16678 /* 16679 * If we are here, it means ifindex is 0. Failover 16680 * everything. 16681 * 16682 * We need to handle solicited node mcast address 16683 * and all_nodes mcast address differently as they 16684 * are joined witin the kenrel (ipif_multicast_up) 16685 * and potentially from the userland. We are called 16686 * after the ipifs of from_ill has been moved. 16687 * If we still find ilms on ill with solicited node 16688 * mcast address or all_nodes mcast address, it must 16689 * belong to the UP interface that has not moved e.g. 16690 * ipif_id 0 with the link local prefix does not move. 16691 * We join this on the new ill accounting for all the 16692 * userland memberships so that applications don't 16693 * see any failure. 16694 * 16695 * We need to make sure that we account only for the 16696 * solicited node and all node multicast addresses 16697 * that was brought UP on these. In the case of 16698 * a failover from A to B, we might have ilms belonging 16699 * to A (ilm_orig_ifindex pointing at A) on B accounting 16700 * for the membership from the userland. If we are failing 16701 * over from B to C now, we will find the ones belonging 16702 * to A on B. These don't account for the ill_ipif_up_count. 16703 * They just move from B to C. The check below on 16704 * ilm_orig_ifindex ensures that. 16705 */ 16706 if ((ilm->ilm_orig_ifindex == 16707 from_ill->ill_phyint->phyint_ifindex) && 16708 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16709 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16710 &ilm->ilm_v6addr))) { 16711 ASSERT(ilm->ilm_refcnt > 0); 16712 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16713 /* 16714 * For indentation reasons, we are not using a 16715 * "else" here. 16716 */ 16717 if (count == 0) { 16718 ilmp = &ilm->ilm_next; 16719 continue; 16720 } 16721 ilm->ilm_refcnt -= count; 16722 if (new_ilm != NULL) { 16723 /* 16724 * Can find one with the same 16725 * ilm_orig_ifindex, if we are failing 16726 * over to a STANDBY. This happens 16727 * when somebody wants to join a group 16728 * on a STANDBY interface and we 16729 * internally join on a different one. 16730 * If we had joined on from_ill then, a 16731 * failover now will find a new ilm 16732 * with this index. 16733 */ 16734 ip1dbg(("ilm_move_v6: FAILOVER, found" 16735 " new ilm on %s, group address %s\n", 16736 to_ill->ill_name, 16737 inet_ntop(AF_INET6, 16738 &ilm->ilm_v6addr, buf, 16739 sizeof (buf)))); 16740 new_ilm->ilm_refcnt += count; 16741 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16742 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16743 new_ilm->ilm_is_new = B_TRUE; 16744 } 16745 } else { 16746 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16747 if (new_ilm == NULL) { 16748 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16749 " multicast address %s : from %s to" 16750 " %s failed : ENOMEM \n", 16751 inet_ntop(AF_INET6, 16752 &ilm->ilm_v6addr, buf, 16753 sizeof (buf)), from_ill->ill_name, 16754 to_ill->ill_name)); 16755 ilmp = &ilm->ilm_next; 16756 continue; 16757 } 16758 *new_ilm = *ilm; 16759 new_ilm->ilm_filter = NULL; 16760 new_ilm->ilm_refcnt = count; 16761 new_ilm->ilm_timer = INFINITY; 16762 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16763 new_ilm->ilm_is_new = B_TRUE; 16764 /* 16765 * If the to_ill has not joined this 16766 * group we need to tell the driver in 16767 * ill_send_multicast_reqs. 16768 */ 16769 if (ilm_lookup_ill_v6(to_ill, 16770 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16771 new_ilm->ilm_notify_driver = B_TRUE; 16772 16773 new_ilm->ilm_ill = to_ill; 16774 /* Add to the to_ill's list */ 16775 new_ilm->ilm_next = to_ill->ill_ilm; 16776 to_ill->ill_ilm = new_ilm; 16777 ASSERT(new_ilm->ilm_ipif == NULL); 16778 } 16779 if (ilm->ilm_refcnt == 0) { 16780 goto bottom; 16781 } else { 16782 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16783 CLEAR_SLIST(new_ilm->ilm_filter); 16784 ilmp = &ilm->ilm_next; 16785 } 16786 continue; 16787 } else { 16788 /* 16789 * ifindex = 0 means, move everything pointing at 16790 * from_ill. We are doing this becuase ill has 16791 * either FAILED or became INACTIVE. 16792 * 16793 * As we would like to move things later back to 16794 * from_ill, we want to retain the identity of this 16795 * ilm. Thus, we don't blindly increment the reference 16796 * count on the ilms matching the address alone. We 16797 * need to match on the ilm_orig_index also. new_ilm 16798 * was obtained by matching ilm_orig_index also. 16799 */ 16800 if (new_ilm != NULL) { 16801 /* 16802 * This is possible only if a previous restore 16803 * was incomplete i.e restore to 16804 * ilm_orig_ifindex left some ilms because 16805 * of some failures. Thus when we are failing 16806 * again, we might find our old friends there. 16807 */ 16808 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16809 " on %s, group address %s\n", 16810 to_ill->ill_name, 16811 inet_ntop(AF_INET6, 16812 &ilm->ilm_v6addr, buf, 16813 sizeof (buf)))); 16814 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16815 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16816 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16817 new_ilm->ilm_is_new = B_TRUE; 16818 } 16819 } else { 16820 if (from_ill->ill_ilm_walker_cnt != 0) { 16821 new_ilm = (ilm_t *) 16822 mi_zalloc(sizeof (ilm_t)); 16823 if (new_ilm == NULL) { 16824 ip0dbg(("ilm_move_v6: " 16825 "FAILOVER of IPv6" 16826 " multicast address %s : " 16827 "from %s to" 16828 " %s failed : ENOMEM \n", 16829 inet_ntop(AF_INET6, 16830 &ilm->ilm_v6addr, buf, 16831 sizeof (buf)), 16832 from_ill->ill_name, 16833 to_ill->ill_name)); 16834 16835 ilmp = &ilm->ilm_next; 16836 continue; 16837 } 16838 *new_ilm = *ilm; 16839 new_ilm->ilm_filter = NULL; 16840 } else { 16841 *ilmp = ilm->ilm_next; 16842 new_ilm = ilm; 16843 } 16844 /* 16845 * If the to_ill has not joined this 16846 * group we need to tell the driver in 16847 * ill_send_multicast_reqs. 16848 */ 16849 if (ilm_lookup_ill_v6(to_ill, 16850 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16851 new_ilm->ilm_notify_driver = B_TRUE; 16852 16853 /* Add to the to_ill's list */ 16854 new_ilm->ilm_next = to_ill->ill_ilm; 16855 to_ill->ill_ilm = new_ilm; 16856 ASSERT(ilm->ilm_ipif == NULL); 16857 new_ilm->ilm_ill = to_ill; 16858 new_ilm->ilm_is_new = B_TRUE; 16859 } 16860 16861 } 16862 16863 bottom: 16864 /* 16865 * Revert multicast filter state to (EXCLUDE, NULL). 16866 * new_ilm->ilm_is_new should already be set if needed. 16867 */ 16868 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16869 CLEAR_SLIST(new_ilm->ilm_filter); 16870 /* 16871 * We allocated/got a new ilm, free the old one. 16872 */ 16873 if (new_ilm != ilm) { 16874 if (from_ill->ill_ilm_walker_cnt == 0) { 16875 *ilmp = ilm->ilm_next; 16876 ilm->ilm_next = NULL; 16877 FREE_SLIST(ilm->ilm_filter); 16878 FREE_SLIST(ilm->ilm_pendsrcs); 16879 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16880 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16881 mi_free((char *)ilm); 16882 } else { 16883 ilm->ilm_flags |= ILM_DELETED; 16884 from_ill->ill_ilm_cleanup_reqd = 1; 16885 ilmp = &ilm->ilm_next; 16886 } 16887 } 16888 } 16889 } 16890 16891 /* 16892 * Move all the multicast memberships to to_ill. Called when 16893 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16894 * different from IPv6 counterpart as multicast memberships are associated 16895 * with ills in IPv6. This function is called after every ipif is moved 16896 * unlike IPv6, where it is moved only once. 16897 */ 16898 static void 16899 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16900 { 16901 ilm_t *ilm; 16902 ilm_t *ilm_next; 16903 ilm_t *new_ilm; 16904 ilm_t **ilmp; 16905 16906 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16907 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16908 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16909 16910 ilmp = &from_ill->ill_ilm; 16911 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16912 ilm_next = ilm->ilm_next; 16913 16914 if (ilm->ilm_flags & ILM_DELETED) { 16915 ilmp = &ilm->ilm_next; 16916 continue; 16917 } 16918 16919 ASSERT(ilm->ilm_ipif != NULL); 16920 16921 if (ilm->ilm_ipif != ipif) { 16922 ilmp = &ilm->ilm_next; 16923 continue; 16924 } 16925 16926 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16927 htonl(INADDR_ALLHOSTS_GROUP)) { 16928 /* 16929 * We joined this in ipif_multicast_up 16930 * and we never did an ipif_multicast_down 16931 * for IPv4. If nobody else from the userland 16932 * has reference, we free the ilm, and later 16933 * when this ipif comes up on the new ill, 16934 * we will join this again. 16935 */ 16936 if (--ilm->ilm_refcnt == 0) 16937 goto delete_ilm; 16938 16939 new_ilm = ilm_lookup_ipif(ipif, 16940 V4_PART_OF_V6(ilm->ilm_v6addr)); 16941 if (new_ilm != NULL) { 16942 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16943 /* 16944 * We still need to deal with the from_ill. 16945 */ 16946 new_ilm->ilm_is_new = B_TRUE; 16947 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16948 CLEAR_SLIST(new_ilm->ilm_filter); 16949 goto delete_ilm; 16950 } 16951 /* 16952 * If we could not find one e.g. ipif is 16953 * still down on to_ill, we add this ilm 16954 * on ill_new to preserve the reference 16955 * count. 16956 */ 16957 } 16958 /* 16959 * When ipifs move, ilms always move with it 16960 * to the NEW ill. Thus we should never be 16961 * able to find ilm till we really move it here. 16962 */ 16963 ASSERT(ilm_lookup_ipif(ipif, 16964 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16965 16966 if (from_ill->ill_ilm_walker_cnt != 0) { 16967 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16968 if (new_ilm == NULL) { 16969 char buf[INET6_ADDRSTRLEN]; 16970 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16971 " multicast address %s : " 16972 "from %s to" 16973 " %s failed : ENOMEM \n", 16974 inet_ntop(AF_INET, 16975 &ilm->ilm_v6addr, buf, 16976 sizeof (buf)), 16977 from_ill->ill_name, 16978 to_ill->ill_name)); 16979 16980 ilmp = &ilm->ilm_next; 16981 continue; 16982 } 16983 *new_ilm = *ilm; 16984 /* We don't want new_ilm linked to ilm's filter list */ 16985 new_ilm->ilm_filter = NULL; 16986 } else { 16987 /* Remove from the list */ 16988 *ilmp = ilm->ilm_next; 16989 new_ilm = ilm; 16990 } 16991 16992 /* 16993 * If we have never joined this group on the to_ill 16994 * make sure we tell the driver. 16995 */ 16996 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16997 ALL_ZONES) == NULL) 16998 new_ilm->ilm_notify_driver = B_TRUE; 16999 17000 /* Add to the to_ill's list */ 17001 new_ilm->ilm_next = to_ill->ill_ilm; 17002 to_ill->ill_ilm = new_ilm; 17003 new_ilm->ilm_is_new = B_TRUE; 17004 17005 /* 17006 * Revert multicast filter state to (EXCLUDE, NULL) 17007 */ 17008 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17009 CLEAR_SLIST(new_ilm->ilm_filter); 17010 17011 /* 17012 * Delete only if we have allocated a new ilm. 17013 */ 17014 if (new_ilm != ilm) { 17015 delete_ilm: 17016 if (from_ill->ill_ilm_walker_cnt == 0) { 17017 /* Remove from the list */ 17018 *ilmp = ilm->ilm_next; 17019 ilm->ilm_next = NULL; 17020 FREE_SLIST(ilm->ilm_filter); 17021 FREE_SLIST(ilm->ilm_pendsrcs); 17022 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17023 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17024 mi_free((char *)ilm); 17025 } else { 17026 ilm->ilm_flags |= ILM_DELETED; 17027 from_ill->ill_ilm_cleanup_reqd = 1; 17028 ilmp = &ilm->ilm_next; 17029 } 17030 } 17031 } 17032 } 17033 17034 static uint_t 17035 ipif_get_id(ill_t *ill, uint_t id) 17036 { 17037 uint_t unit; 17038 ipif_t *tipif; 17039 boolean_t found = B_FALSE; 17040 17041 /* 17042 * During failback, we want to go back to the same id 17043 * instead of the smallest id so that the original 17044 * configuration is maintained. id is non-zero in that 17045 * case. 17046 */ 17047 if (id != 0) { 17048 /* 17049 * While failing back, if we still have an ipif with 17050 * MAX_ADDRS_PER_IF, it means this will be replaced 17051 * as soon as we return from this function. It was 17052 * to set to MAX_ADDRS_PER_IF by the caller so that 17053 * we can choose the smallest id. Thus we return zero 17054 * in that case ignoring the hint. 17055 */ 17056 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17057 return (0); 17058 for (tipif = ill->ill_ipif; tipif != NULL; 17059 tipif = tipif->ipif_next) { 17060 if (tipif->ipif_id == id) { 17061 found = B_TRUE; 17062 break; 17063 } 17064 } 17065 /* 17066 * If somebody already plumbed another logical 17067 * with the same id, we won't be able to find it. 17068 */ 17069 if (!found) 17070 return (id); 17071 } 17072 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 17073 found = B_FALSE; 17074 for (tipif = ill->ill_ipif; tipif != NULL; 17075 tipif = tipif->ipif_next) { 17076 if (tipif->ipif_id == unit) { 17077 found = B_TRUE; 17078 break; 17079 } 17080 } 17081 if (!found) 17082 break; 17083 } 17084 return (unit); 17085 } 17086 17087 /* ARGSUSED */ 17088 static int 17089 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17090 ipif_t **rep_ipif_ptr) 17091 { 17092 ill_t *from_ill; 17093 ipif_t *rep_ipif; 17094 ipif_t **ipifp; 17095 uint_t unit; 17096 int err = 0; 17097 ipif_t *to_ipif; 17098 struct iocblk *iocp; 17099 boolean_t failback_cmd; 17100 boolean_t remove_ipif; 17101 int rc; 17102 17103 ASSERT(IAM_WRITER_ILL(to_ill)); 17104 ASSERT(IAM_WRITER_IPIF(ipif)); 17105 17106 iocp = (struct iocblk *)mp->b_rptr; 17107 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17108 remove_ipif = B_FALSE; 17109 17110 from_ill = ipif->ipif_ill; 17111 17112 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17113 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17114 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17115 17116 /* 17117 * Don't move LINK LOCAL addresses as they are tied to 17118 * physical interface. 17119 */ 17120 if (from_ill->ill_isv6 && 17121 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17122 ipif->ipif_was_up = B_FALSE; 17123 IPIF_UNMARK_MOVING(ipif); 17124 return (0); 17125 } 17126 17127 /* 17128 * We set the ipif_id to maximum so that the search for 17129 * ipif_id will pick the lowest number i.e 0 in the 17130 * following 2 cases : 17131 * 17132 * 1) We have a replacement ipif at the head of to_ill. 17133 * We can't remove it yet as we can exceed ip_addrs_per_if 17134 * on to_ill and hence the MOVE might fail. We want to 17135 * remove it only if we could move the ipif. Thus, by 17136 * setting it to the MAX value, we make the search in 17137 * ipif_get_id return the zeroth id. 17138 * 17139 * 2) When DR pulls out the NIC and re-plumbs the interface, 17140 * we might just have a zero address plumbed on the ipif 17141 * with zero id in the case of IPv4. We remove that while 17142 * doing the failback. We want to remove it only if we 17143 * could move the ipif. Thus, by setting it to the MAX 17144 * value, we make the search in ipif_get_id return the 17145 * zeroth id. 17146 * 17147 * Both (1) and (2) are done only when when we are moving 17148 * an ipif (either due to failover/failback) which originally 17149 * belonged to this interface i.e the ipif_orig_ifindex is 17150 * the same as to_ill's ifindex. This is needed so that 17151 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17152 * from B -> A (B is being removed from the group) and 17153 * FAILBACK from A -> B restores the original configuration. 17154 * Without the check for orig_ifindex, the second FAILOVER 17155 * could make the ipif belonging to B replace the A's zeroth 17156 * ipif and the subsequent failback re-creating the replacement 17157 * ipif again. 17158 * 17159 * NOTE : We created the replacement ipif when we did a 17160 * FAILOVER (See below). We could check for FAILBACK and 17161 * then look for replacement ipif to be removed. But we don't 17162 * want to do that because we wan't to allow the possibility 17163 * of a FAILOVER from A -> B (which creates the replacement ipif), 17164 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17165 * from B -> A. 17166 */ 17167 to_ipif = to_ill->ill_ipif; 17168 if ((to_ill->ill_phyint->phyint_ifindex == 17169 ipif->ipif_orig_ifindex) && 17170 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17171 ASSERT(to_ipif->ipif_id == 0); 17172 remove_ipif = B_TRUE; 17173 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17174 } 17175 /* 17176 * Find the lowest logical unit number on the to_ill. 17177 * If we are failing back, try to get the original id 17178 * rather than the lowest one so that the original 17179 * configuration is maintained. 17180 * 17181 * XXX need a better scheme for this. 17182 */ 17183 if (failback_cmd) { 17184 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17185 } else { 17186 unit = ipif_get_id(to_ill, 0); 17187 } 17188 17189 /* Reset back to zero in case we fail below */ 17190 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17191 to_ipif->ipif_id = 0; 17192 17193 if (unit == ip_addrs_per_if) { 17194 ipif->ipif_was_up = B_FALSE; 17195 IPIF_UNMARK_MOVING(ipif); 17196 return (EINVAL); 17197 } 17198 17199 /* 17200 * ipif is ready to move from "from_ill" to "to_ill". 17201 * 17202 * 1) If we are moving ipif with id zero, create a 17203 * replacement ipif for this ipif on from_ill. If this fails 17204 * fail the MOVE operation. 17205 * 17206 * 2) Remove the replacement ipif on to_ill if any. 17207 * We could remove the replacement ipif when we are moving 17208 * the ipif with id zero. But what if somebody already 17209 * unplumbed it ? Thus we always remove it if it is present. 17210 * We want to do it only if we are sure we are going to 17211 * move the ipif to to_ill which is why there are no 17212 * returns due to error till ipif is linked to to_ill. 17213 * Note that the first ipif that we failback will always 17214 * be zero if it is present. 17215 */ 17216 if (ipif->ipif_id == 0) { 17217 ipaddr_t inaddr_any = INADDR_ANY; 17218 17219 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17220 if (rep_ipif == NULL) { 17221 ipif->ipif_was_up = B_FALSE; 17222 IPIF_UNMARK_MOVING(ipif); 17223 return (ENOMEM); 17224 } 17225 *rep_ipif = ipif_zero; 17226 /* 17227 * Before we put the ipif on the list, store the addresses 17228 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17229 * assumes so. This logic is not any different from what 17230 * ipif_allocate does. 17231 */ 17232 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17233 &rep_ipif->ipif_v6lcl_addr); 17234 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17235 &rep_ipif->ipif_v6src_addr); 17236 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17237 &rep_ipif->ipif_v6subnet); 17238 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17239 &rep_ipif->ipif_v6net_mask); 17240 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17241 &rep_ipif->ipif_v6brd_addr); 17242 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17243 &rep_ipif->ipif_v6pp_dst_addr); 17244 /* 17245 * We mark IPIF_NOFAILOVER so that this can never 17246 * move. 17247 */ 17248 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17249 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17250 rep_ipif->ipif_replace_zero = B_TRUE; 17251 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17252 MUTEX_DEFAULT, NULL); 17253 rep_ipif->ipif_id = 0; 17254 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17255 rep_ipif->ipif_ill = from_ill; 17256 rep_ipif->ipif_orig_ifindex = 17257 from_ill->ill_phyint->phyint_ifindex; 17258 /* Insert at head */ 17259 rep_ipif->ipif_next = from_ill->ill_ipif; 17260 from_ill->ill_ipif = rep_ipif; 17261 /* 17262 * We don't really care to let apps know about 17263 * this interface. 17264 */ 17265 } 17266 17267 if (remove_ipif) { 17268 /* 17269 * We set to a max value above for this case to get 17270 * id zero. ASSERT that we did get one. 17271 */ 17272 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17273 rep_ipif = to_ipif; 17274 to_ill->ill_ipif = rep_ipif->ipif_next; 17275 rep_ipif->ipif_next = NULL; 17276 /* 17277 * If some apps scanned and find this interface, 17278 * it is time to let them know, so that they can 17279 * delete it. 17280 */ 17281 17282 *rep_ipif_ptr = rep_ipif; 17283 } 17284 17285 /* Get it out of the ILL interface list. */ 17286 ipifp = &ipif->ipif_ill->ill_ipif; 17287 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17288 if (*ipifp == ipif) { 17289 *ipifp = ipif->ipif_next; 17290 break; 17291 } 17292 } 17293 17294 /* Assign the new ill */ 17295 ipif->ipif_ill = to_ill; 17296 ipif->ipif_id = unit; 17297 /* id has already been checked */ 17298 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17299 ASSERT(rc == 0); 17300 /* Let SCTP update its list */ 17301 sctp_move_ipif(ipif, from_ill, to_ill); 17302 /* 17303 * Handle the failover and failback of ipif_t between 17304 * ill_t that have differing maximum mtu values. 17305 */ 17306 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17307 if (ipif->ipif_saved_mtu == 0) { 17308 /* 17309 * As this ipif_t is moving to an ill_t 17310 * that has a lower ill_max_mtu, its 17311 * ipif_mtu needs to be saved so it can 17312 * be restored during failback or during 17313 * failover to an ill_t which has a 17314 * higher ill_max_mtu. 17315 */ 17316 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17317 ipif->ipif_mtu = to_ill->ill_max_mtu; 17318 } else { 17319 /* 17320 * The ipif_t is, once again, moving to 17321 * an ill_t that has a lower maximum mtu 17322 * value. 17323 */ 17324 ipif->ipif_mtu = to_ill->ill_max_mtu; 17325 } 17326 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17327 ipif->ipif_saved_mtu != 0) { 17328 /* 17329 * The mtu of this ipif_t had to be reduced 17330 * during an earlier failover; this is an 17331 * opportunity for it to be increased (either as 17332 * part of another failover or a failback). 17333 */ 17334 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17335 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17336 ipif->ipif_saved_mtu = 0; 17337 } else { 17338 ipif->ipif_mtu = to_ill->ill_max_mtu; 17339 } 17340 } 17341 17342 /* 17343 * We preserve all the other fields of the ipif including 17344 * ipif_saved_ire_mp. The routes that are saved here will 17345 * be recreated on the new interface and back on the old 17346 * interface when we move back. 17347 */ 17348 ASSERT(ipif->ipif_arp_del_mp == NULL); 17349 17350 return (err); 17351 } 17352 17353 static int 17354 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17355 int ifindex, ipif_t **rep_ipif_ptr) 17356 { 17357 ipif_t *mipif; 17358 ipif_t *ipif_next; 17359 int err; 17360 17361 /* 17362 * We don't really try to MOVE back things if some of the 17363 * operations fail. The daemon will take care of moving again 17364 * later on. 17365 */ 17366 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17367 ipif_next = mipif->ipif_next; 17368 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17369 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17370 17371 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17372 17373 /* 17374 * When the MOVE fails, it is the job of the 17375 * application to take care of this properly 17376 * i.e try again if it is ENOMEM. 17377 */ 17378 if (mipif->ipif_ill != from_ill) { 17379 /* 17380 * ipif has moved. 17381 * 17382 * Move the multicast memberships associated 17383 * with this ipif to the new ill. For IPv6, we 17384 * do it once after all the ipifs are moved 17385 * (in ill_move) as they are not associated 17386 * with ipifs. 17387 * 17388 * We need to move the ilms as the ipif has 17389 * already been moved to a new ill even 17390 * in the case of errors. Neither 17391 * ilm_free(ipif) will find the ilm 17392 * when somebody unplumbs this ipif nor 17393 * ilm_delete(ilm) will be able to find the 17394 * ilm, if we don't move now. 17395 */ 17396 if (!from_ill->ill_isv6) 17397 ilm_move_v4(from_ill, to_ill, mipif); 17398 } 17399 17400 if (err != 0) 17401 return (err); 17402 } 17403 } 17404 return (0); 17405 } 17406 17407 static int 17408 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17409 { 17410 int ifindex; 17411 int err; 17412 struct iocblk *iocp; 17413 ipif_t *ipif; 17414 ipif_t *rep_ipif_ptr = NULL; 17415 ipif_t *from_ipif = NULL; 17416 boolean_t check_rep_if = B_FALSE; 17417 17418 iocp = (struct iocblk *)mp->b_rptr; 17419 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17420 /* 17421 * Move everything pointing at from_ill to to_ill. 17422 * We acheive this by passing in 0 as ifindex. 17423 */ 17424 ifindex = 0; 17425 } else { 17426 /* 17427 * Move everything pointing at from_ill whose original 17428 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17429 * We acheive this by passing in ifindex rather than 0. 17430 * Multicast vifs, ilgs move implicitly because ipifs move. 17431 */ 17432 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17433 ifindex = to_ill->ill_phyint->phyint_ifindex; 17434 } 17435 17436 /* 17437 * Determine if there is at least one ipif that would move from 17438 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17439 * ipif (if it exists) on the to_ill would be consumed as a result of 17440 * the move, in which case we need to quiesce the replacement ipif also. 17441 */ 17442 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17443 from_ipif = from_ipif->ipif_next) { 17444 if (((ifindex == 0) || 17445 (ifindex == from_ipif->ipif_orig_ifindex)) && 17446 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17447 check_rep_if = B_TRUE; 17448 break; 17449 } 17450 } 17451 17452 17453 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17454 17455 GRAB_ILL_LOCKS(from_ill, to_ill); 17456 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17457 (void) ipsq_pending_mp_add(NULL, ipif, q, 17458 mp, ILL_MOVE_OK); 17459 RELEASE_ILL_LOCKS(from_ill, to_ill); 17460 return (EINPROGRESS); 17461 } 17462 17463 /* Check if the replacement ipif is quiescent to delete */ 17464 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17465 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17466 to_ill->ill_ipif->ipif_state_flags |= 17467 IPIF_MOVING | IPIF_CHANGING; 17468 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17469 (void) ipsq_pending_mp_add(NULL, ipif, q, 17470 mp, ILL_MOVE_OK); 17471 RELEASE_ILL_LOCKS(from_ill, to_ill); 17472 return (EINPROGRESS); 17473 } 17474 } 17475 RELEASE_ILL_LOCKS(from_ill, to_ill); 17476 17477 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17478 rw_enter(&ill_g_lock, RW_WRITER); 17479 GRAB_ILL_LOCKS(from_ill, to_ill); 17480 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17481 17482 /* ilm_move is done inside ipif_move for IPv4 */ 17483 if (err == 0 && from_ill->ill_isv6) 17484 ilm_move_v6(from_ill, to_ill, ifindex); 17485 17486 RELEASE_ILL_LOCKS(from_ill, to_ill); 17487 rw_exit(&ill_g_lock); 17488 17489 /* 17490 * send rts messages and multicast messages. 17491 */ 17492 if (rep_ipif_ptr != NULL) { 17493 ip_rts_ifmsg(rep_ipif_ptr); 17494 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17495 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17496 mi_free(rep_ipif_ptr); 17497 } 17498 17499 conn_move_ill(from_ill, to_ill, ifindex); 17500 17501 return (err); 17502 } 17503 17504 /* 17505 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17506 * Also checks for the validity of the arguments. 17507 * Note: We are already exclusive inside the from group. 17508 * It is upto the caller to release refcnt on the to_ill's. 17509 */ 17510 static int 17511 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17512 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17513 { 17514 int dst_index; 17515 ipif_t *ipif_v4, *ipif_v6; 17516 struct lifreq *lifr; 17517 mblk_t *mp1; 17518 boolean_t exists; 17519 sin_t *sin; 17520 int err = 0; 17521 17522 if ((mp1 = mp->b_cont) == NULL) 17523 return (EPROTO); 17524 17525 if ((mp1 = mp1->b_cont) == NULL) 17526 return (EPROTO); 17527 17528 lifr = (struct lifreq *)mp1->b_rptr; 17529 sin = (sin_t *)&lifr->lifr_addr; 17530 17531 /* 17532 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17533 * specific operations. 17534 */ 17535 if (sin->sin_family != AF_UNSPEC) 17536 return (EINVAL); 17537 17538 /* 17539 * Get ipif with id 0. We are writer on the from ill. So we can pass 17540 * NULLs for the last 4 args and we know the lookup won't fail 17541 * with EINPROGRESS. 17542 */ 17543 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17544 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17545 ALL_ZONES, NULL, NULL, NULL, NULL); 17546 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17547 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17548 ALL_ZONES, NULL, NULL, NULL, NULL); 17549 17550 if (ipif_v4 == NULL && ipif_v6 == NULL) 17551 return (ENXIO); 17552 17553 if (ipif_v4 != NULL) { 17554 ASSERT(ipif_v4->ipif_refcnt != 0); 17555 if (ipif_v4->ipif_id != 0) { 17556 err = EINVAL; 17557 goto done; 17558 } 17559 17560 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17561 *ill_from_v4 = ipif_v4->ipif_ill; 17562 } 17563 17564 if (ipif_v6 != NULL) { 17565 ASSERT(ipif_v6->ipif_refcnt != 0); 17566 if (ipif_v6->ipif_id != 0) { 17567 err = EINVAL; 17568 goto done; 17569 } 17570 17571 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17572 *ill_from_v6 = ipif_v6->ipif_ill; 17573 } 17574 17575 err = 0; 17576 dst_index = lifr->lifr_movetoindex; 17577 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17578 q, mp, ip_process_ioctl, &err); 17579 if (err != 0) { 17580 /* 17581 * There could be only v6. 17582 */ 17583 if (err != ENXIO) 17584 goto done; 17585 err = 0; 17586 } 17587 17588 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17589 q, mp, ip_process_ioctl, &err); 17590 if (err != 0) { 17591 if (err != ENXIO) 17592 goto done; 17593 if (*ill_to_v4 == NULL) { 17594 err = ENXIO; 17595 goto done; 17596 } 17597 err = 0; 17598 } 17599 17600 /* 17601 * If we have something to MOVE i.e "from" not NULL, 17602 * "to" should be non-NULL. 17603 */ 17604 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17605 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17606 err = EINVAL; 17607 } 17608 17609 done: 17610 if (ipif_v4 != NULL) 17611 ipif_refrele(ipif_v4); 17612 if (ipif_v6 != NULL) 17613 ipif_refrele(ipif_v6); 17614 return (err); 17615 } 17616 17617 /* 17618 * FAILOVER and FAILBACK are modelled as MOVE operations. 17619 * 17620 * We don't check whether the MOVE is within the same group or 17621 * not, because this ioctl can be used as a generic mechanism 17622 * to failover from interface A to B, though things will function 17623 * only if they are really part of the same group. Moreover, 17624 * all ipifs may be down and hence temporarily out of the group. 17625 * 17626 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17627 * down first and then V6. For each we wait for the ipif's to become quiescent. 17628 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17629 * have been deleted and there are no active references. Once quiescent the 17630 * ipif's are moved and brought up on the new ill. 17631 * 17632 * Normally the source ill and destination ill belong to the same IPMP group 17633 * and hence the same ipsq_t. In the event they don't belong to the same 17634 * same group the two ipsq's are first merged into one ipsq - that of the 17635 * to_ill. The multicast memberships on the source and destination ill cannot 17636 * change during the move operation since multicast joins/leaves also have to 17637 * execute on the same ipsq and are hence serialized. 17638 */ 17639 /* ARGSUSED */ 17640 int 17641 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17642 ip_ioctl_cmd_t *ipip, void *ifreq) 17643 { 17644 ill_t *ill_to_v4 = NULL; 17645 ill_t *ill_to_v6 = NULL; 17646 ill_t *ill_from_v4 = NULL; 17647 ill_t *ill_from_v6 = NULL; 17648 int err = 0; 17649 17650 /* 17651 * setup from and to ill's, we can get EINPROGRESS only for 17652 * to_ill's. 17653 */ 17654 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17655 &ill_to_v4, &ill_to_v6); 17656 17657 if (err != 0) { 17658 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17659 goto done; 17660 } 17661 17662 /* 17663 * nothing to do. 17664 */ 17665 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17666 goto done; 17667 } 17668 17669 /* 17670 * nothing to do. 17671 */ 17672 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17673 goto done; 17674 } 17675 17676 /* 17677 * Mark the ill as changing. 17678 * ILL_CHANGING flag is cleared when the ipif's are brought up 17679 * in ill_up_ipifs in case of error they are cleared below. 17680 */ 17681 17682 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17683 if (ill_from_v4 != NULL) 17684 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17685 if (ill_from_v6 != NULL) 17686 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17687 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17688 17689 /* 17690 * Make sure that both src and dst are 17691 * in the same syncq group. If not make it happen. 17692 * We are not holding any locks because we are the writer 17693 * on the from_ipsq and we will hold locks in ill_merge_groups 17694 * to protect to_ipsq against changing. 17695 */ 17696 if (ill_from_v4 != NULL) { 17697 if (ill_from_v4->ill_phyint->phyint_ipsq != 17698 ill_to_v4->ill_phyint->phyint_ipsq) { 17699 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17700 NULL, mp, q); 17701 goto err_ret; 17702 17703 } 17704 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17705 } else { 17706 17707 if (ill_from_v6->ill_phyint->phyint_ipsq != 17708 ill_to_v6->ill_phyint->phyint_ipsq) { 17709 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17710 NULL, mp, q); 17711 goto err_ret; 17712 17713 } 17714 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17715 } 17716 17717 /* 17718 * Now that the ipsq's have been merged and we are the writer 17719 * lets mark to_ill as changing as well. 17720 */ 17721 17722 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17723 if (ill_to_v4 != NULL) 17724 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17725 if (ill_to_v6 != NULL) 17726 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17727 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17728 17729 /* 17730 * Its ok for us to proceed with the move even if 17731 * ill_pending_mp is non null on one of the from ill's as the reply 17732 * should not be looking at the ipif, it should only care about the 17733 * ill itself. 17734 */ 17735 17736 /* 17737 * lets move ipv4 first. 17738 */ 17739 if (ill_from_v4 != NULL) { 17740 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17741 ill_from_v4->ill_move_in_progress = B_TRUE; 17742 ill_to_v4->ill_move_in_progress = B_TRUE; 17743 ill_to_v4->ill_move_peer = ill_from_v4; 17744 ill_from_v4->ill_move_peer = ill_to_v4; 17745 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17746 } 17747 17748 /* 17749 * Now lets move ipv6. 17750 */ 17751 if (err == 0 && ill_from_v6 != NULL) { 17752 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17753 ill_from_v6->ill_move_in_progress = B_TRUE; 17754 ill_to_v6->ill_move_in_progress = B_TRUE; 17755 ill_to_v6->ill_move_peer = ill_from_v6; 17756 ill_from_v6->ill_move_peer = ill_to_v6; 17757 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17758 } 17759 17760 err_ret: 17761 /* 17762 * EINPROGRESS means we are waiting for the ipif's that need to be 17763 * moved to become quiescent. 17764 */ 17765 if (err == EINPROGRESS) { 17766 goto done; 17767 } 17768 17769 /* 17770 * if err is set ill_up_ipifs will not be called 17771 * lets clear the flags. 17772 */ 17773 17774 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17775 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17776 /* 17777 * Some of the clearing may be redundant. But it is simple 17778 * not making any extra checks. 17779 */ 17780 if (ill_from_v6 != NULL) { 17781 ill_from_v6->ill_move_in_progress = B_FALSE; 17782 ill_from_v6->ill_move_peer = NULL; 17783 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17784 } 17785 if (ill_from_v4 != NULL) { 17786 ill_from_v4->ill_move_in_progress = B_FALSE; 17787 ill_from_v4->ill_move_peer = NULL; 17788 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17789 } 17790 if (ill_to_v6 != NULL) { 17791 ill_to_v6->ill_move_in_progress = B_FALSE; 17792 ill_to_v6->ill_move_peer = NULL; 17793 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17794 } 17795 if (ill_to_v4 != NULL) { 17796 ill_to_v4->ill_move_in_progress = B_FALSE; 17797 ill_to_v4->ill_move_peer = NULL; 17798 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17799 } 17800 17801 /* 17802 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17803 * Do this always to maintain proper state i.e even in case of errors. 17804 * As phyint_inactive looks at both v4 and v6 interfaces, 17805 * we need not call on both v4 and v6 interfaces. 17806 */ 17807 if (ill_from_v4 != NULL) { 17808 if ((ill_from_v4->ill_phyint->phyint_flags & 17809 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17810 phyint_inactive(ill_from_v4->ill_phyint); 17811 } 17812 } else if (ill_from_v6 != NULL) { 17813 if ((ill_from_v6->ill_phyint->phyint_flags & 17814 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17815 phyint_inactive(ill_from_v6->ill_phyint); 17816 } 17817 } 17818 17819 if (ill_to_v4 != NULL) { 17820 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17821 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17822 } 17823 } else if (ill_to_v6 != NULL) { 17824 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17825 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17826 } 17827 } 17828 17829 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17830 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17831 17832 no_err: 17833 /* 17834 * lets bring the interfaces up on the to_ill. 17835 */ 17836 if (err == 0) { 17837 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17838 q, mp); 17839 } 17840 17841 if (err == 0) { 17842 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 17843 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 17844 17845 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 17846 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 17847 } 17848 done: 17849 17850 if (ill_to_v4 != NULL) { 17851 ill_refrele(ill_to_v4); 17852 } 17853 if (ill_to_v6 != NULL) { 17854 ill_refrele(ill_to_v6); 17855 } 17856 17857 return (err); 17858 } 17859 17860 static void 17861 ill_dl_down(ill_t *ill) 17862 { 17863 /* 17864 * The ill is down; unbind but stay attached since we're still 17865 * associated with a PPA. If we have negotiated DLPI capabilites 17866 * with the data link service provider (IDS_OK) then reset them. 17867 * The interval between unbinding and rebinding is potentially 17868 * unbounded hence we cannot assume things will be the same. 17869 * The DLPI capabilities will be probed again when the data link 17870 * is brought up. 17871 */ 17872 mblk_t *mp = ill->ill_unbind_mp; 17873 hook_nic_event_t *info; 17874 17875 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17876 17877 ill->ill_unbind_mp = NULL; 17878 if (mp != NULL) { 17879 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17880 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17881 ill->ill_name)); 17882 mutex_enter(&ill->ill_lock); 17883 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17884 mutex_exit(&ill->ill_lock); 17885 if (ill->ill_dlpi_capab_state == IDS_OK) 17886 ill_capability_reset(ill); 17887 ill_dlpi_send(ill, mp); 17888 } 17889 17890 /* 17891 * Toss all of our multicast memberships. We could keep them, but 17892 * then we'd have to do bookkeeping of any joins and leaves performed 17893 * by the application while the the interface is down (we can't just 17894 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17895 * on a downed interface). 17896 */ 17897 ill_leave_multicast(ill); 17898 17899 mutex_enter(&ill->ill_lock); 17900 17901 ill->ill_dl_up = 0; 17902 17903 if ((info = ill->ill_nic_event_info) != NULL) { 17904 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 17905 info->hne_event, ill->ill_name)); 17906 if (info->hne_data != NULL) 17907 kmem_free(info->hne_data, info->hne_datalen); 17908 kmem_free(info, sizeof (hook_nic_event_t)); 17909 } 17910 17911 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 17912 if (info != NULL) { 17913 info->hne_nic = ill->ill_phyint->phyint_ifindex; 17914 info->hne_lif = 0; 17915 info->hne_event = NE_DOWN; 17916 info->hne_data = NULL; 17917 info->hne_datalen = 0; 17918 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 17919 } else 17920 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 17921 "information for %s (ENOMEM)\n", ill->ill_name)); 17922 17923 ill->ill_nic_event_info = info; 17924 17925 mutex_exit(&ill->ill_lock); 17926 } 17927 17928 void 17929 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17930 { 17931 union DL_primitives *dlp; 17932 t_uscalar_t prim; 17933 17934 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17935 17936 dlp = (union DL_primitives *)mp->b_rptr; 17937 prim = dlp->dl_primitive; 17938 17939 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17940 dlpi_prim_str(prim), prim, ill->ill_name)); 17941 17942 switch (prim) { 17943 case DL_PHYS_ADDR_REQ: 17944 { 17945 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17946 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17947 break; 17948 } 17949 case DL_BIND_REQ: 17950 mutex_enter(&ill->ill_lock); 17951 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17952 mutex_exit(&ill->ill_lock); 17953 break; 17954 } 17955 17956 ill->ill_dlpi_pending = prim; 17957 17958 /* 17959 * Some drivers send M_FLUSH up to IP as part of unbind 17960 * request. When this M_FLUSH is sent back to the driver, 17961 * this can go after we send the detach request if the 17962 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17963 * to the M_FLUSH in ip_rput and locally generate another 17964 * M_FLUSH for the correctness. This will get freed in 17965 * ip_wput_nondata. 17966 */ 17967 if (prim == DL_UNBIND_REQ) 17968 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17969 17970 putnext(ill->ill_wq, mp); 17971 } 17972 17973 /* 17974 * Send a DLPI control message to the driver but make sure there 17975 * is only one outstanding message. Uses ill_dlpi_pending to tell 17976 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17977 * when an ACK or a NAK is received to process the next queued message. 17978 * 17979 * We don't protect ill_dlpi_pending with any lock. This is okay as 17980 * every place where its accessed, ip is exclusive while accessing 17981 * ill_dlpi_pending except when this function is called from ill_init() 17982 */ 17983 void 17984 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17985 { 17986 mblk_t **mpp; 17987 17988 ASSERT(IAM_WRITER_ILL(ill)); 17989 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17990 17991 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17992 /* Must queue message. Tail insertion */ 17993 mpp = &ill->ill_dlpi_deferred; 17994 while (*mpp != NULL) 17995 mpp = &((*mpp)->b_next); 17996 17997 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17998 ill->ill_name)); 17999 18000 *mpp = mp; 18001 return; 18002 } 18003 18004 ill_dlpi_dispatch(ill, mp); 18005 } 18006 18007 /* 18008 * Called when an DLPI control message has been acked or nacked to 18009 * send down the next queued message (if any). 18010 */ 18011 void 18012 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18013 { 18014 mblk_t *mp; 18015 18016 ASSERT(IAM_WRITER_ILL(ill)); 18017 18018 ASSERT(prim != DL_PRIM_INVAL); 18019 if (ill->ill_dlpi_pending != prim) { 18020 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18021 (void) mi_strlog(ill->ill_rq, 1, 18022 SL_CONSOLE|SL_ERROR|SL_TRACE, 18023 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18024 dlpi_prim_str(prim), ill->ill_name); 18025 } else { 18026 (void) mi_strlog(ill->ill_rq, 1, 18027 SL_CONSOLE|SL_ERROR|SL_TRACE, 18028 "ill_dlpi_done: unexpected ack for %s from %s " 18029 "(expecting ack for %s)\n", 18030 dlpi_prim_str(prim), ill->ill_name, 18031 dlpi_prim_str(ill->ill_dlpi_pending)); 18032 } 18033 return; 18034 } 18035 18036 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18037 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18038 18039 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18040 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18041 return; 18042 } 18043 18044 ill->ill_dlpi_deferred = mp->b_next; 18045 mp->b_next = NULL; 18046 18047 ill_dlpi_dispatch(ill, mp); 18048 } 18049 18050 void 18051 conn_delete_ire(conn_t *connp, caddr_t arg) 18052 { 18053 ipif_t *ipif = (ipif_t *)arg; 18054 ire_t *ire; 18055 18056 /* 18057 * Look at the cached ires on conns which has pointers to ipifs. 18058 * We just call ire_refrele which clears up the reference 18059 * to ire. Called when a conn closes. Also called from ipif_free 18060 * to cleanup indirect references to the stale ipif via the cached ire. 18061 */ 18062 mutex_enter(&connp->conn_lock); 18063 ire = connp->conn_ire_cache; 18064 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18065 connp->conn_ire_cache = NULL; 18066 mutex_exit(&connp->conn_lock); 18067 IRE_REFRELE_NOTR(ire); 18068 return; 18069 } 18070 mutex_exit(&connp->conn_lock); 18071 18072 } 18073 18074 /* 18075 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18076 * of IREs. Those IREs may have been previously cached in the conn structure. 18077 * This ipcl_walk() walker function releases all references to such IREs based 18078 * on the condemned flag. 18079 */ 18080 /* ARGSUSED */ 18081 void 18082 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18083 { 18084 ire_t *ire; 18085 18086 mutex_enter(&connp->conn_lock); 18087 ire = connp->conn_ire_cache; 18088 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18089 connp->conn_ire_cache = NULL; 18090 mutex_exit(&connp->conn_lock); 18091 IRE_REFRELE_NOTR(ire); 18092 return; 18093 } 18094 mutex_exit(&connp->conn_lock); 18095 } 18096 18097 /* 18098 * Take down a specific interface, but don't lose any information about it. 18099 * Also delete interface from its interface group (ifgrp). 18100 * (Always called as writer.) 18101 * This function goes through the down sequence even if the interface is 18102 * already down. There are 2 reasons. 18103 * a. Currently we permit interface routes that depend on down interfaces 18104 * to be added. This behaviour itself is questionable. However it appears 18105 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18106 * time. We go thru the cleanup in order to remove these routes. 18107 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18108 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18109 * down, but we need to cleanup i.e. do ill_dl_down and 18110 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18111 * 18112 * IP-MT notes: 18113 * 18114 * Model of reference to interfaces. 18115 * 18116 * The following members in ipif_t track references to the ipif. 18117 * int ipif_refcnt; Active reference count 18118 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18119 * The following members in ill_t track references to the ill. 18120 * int ill_refcnt; active refcnt 18121 * uint_t ill_ire_cnt; Number of ires referencing ill 18122 * uint_t ill_nce_cnt; Number of nces referencing ill 18123 * 18124 * Reference to an ipif or ill can be obtained in any of the following ways. 18125 * 18126 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18127 * Pointers to ipif / ill from other data structures viz ire and conn. 18128 * Implicit reference to the ipif / ill by holding a reference to the ire. 18129 * 18130 * The ipif/ill lookup functions return a reference held ipif / ill. 18131 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18132 * This is a purely dynamic reference count associated with threads holding 18133 * references to the ipif / ill. Pointers from other structures do not 18134 * count towards this reference count. 18135 * 18136 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18137 * ipif/ill. This is incremented whenever a new ire is created referencing the 18138 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18139 * actually added to the ire hash table. The count is decremented in 18140 * ire_inactive where the ire is destroyed. 18141 * 18142 * nce's reference ill's thru nce_ill and the count of nce's associated with 18143 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18144 * ndp_add() where the nce is actually added to the table. Similarly it is 18145 * decremented in ndp_inactive where the nce is destroyed. 18146 * 18147 * Flow of ioctls involving interface down/up 18148 * 18149 * The following is the sequence of an attempt to set some critical flags on an 18150 * up interface. 18151 * ip_sioctl_flags 18152 * ipif_down 18153 * wait for ipif to be quiescent 18154 * ipif_down_tail 18155 * ip_sioctl_flags_tail 18156 * 18157 * All set ioctls that involve down/up sequence would have a skeleton similar 18158 * to the above. All the *tail functions are called after the refcounts have 18159 * dropped to the appropriate values. 18160 * 18161 * The mechanism to quiesce an ipif is as follows. 18162 * 18163 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18164 * on the ipif. Callers either pass a flag requesting wait or the lookup 18165 * functions will return NULL. 18166 * 18167 * Delete all ires referencing this ipif 18168 * 18169 * Any thread attempting to do an ipif_refhold on an ipif that has been 18170 * obtained thru a cached pointer will first make sure that 18171 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18172 * increment the refcount. 18173 * 18174 * The above guarantees that the ipif refcount will eventually come down to 18175 * zero and the ipif will quiesce, once all threads that currently hold a 18176 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18177 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18178 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18179 * drop to zero. 18180 * 18181 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18182 * 18183 * Threads trying to lookup an ipif or ill can pass a flag requesting 18184 * wait and restart if the ipif / ill cannot be looked up currently. 18185 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18186 * failure if the ipif is currently undergoing an exclusive operation, and 18187 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18188 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18189 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18190 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18191 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18192 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18193 * until we release the ipsq_lock, even though the the ill/ipif state flags 18194 * can change after we drop the ill_lock. 18195 * 18196 * An attempt to send out a packet using an ipif that is currently 18197 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18198 * operation and restart it later when the exclusive condition on the ipif ends. 18199 * This is an example of not passing the wait flag to the lookup functions. For 18200 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18201 * out a multicast packet on that ipif will fail while the ipif is 18202 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18203 * currently IPIF_CHANGING will also fail. 18204 */ 18205 int 18206 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18207 { 18208 ill_t *ill = ipif->ipif_ill; 18209 phyint_t *phyi; 18210 conn_t *connp; 18211 boolean_t success; 18212 boolean_t ipif_was_up = B_FALSE; 18213 18214 ASSERT(IAM_WRITER_IPIF(ipif)); 18215 18216 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18217 18218 if (ipif->ipif_flags & IPIF_UP) { 18219 mutex_enter(&ill->ill_lock); 18220 ipif->ipif_flags &= ~IPIF_UP; 18221 ASSERT(ill->ill_ipif_up_count > 0); 18222 --ill->ill_ipif_up_count; 18223 mutex_exit(&ill->ill_lock); 18224 ipif_was_up = B_TRUE; 18225 /* Update status in SCTP's list */ 18226 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18227 } 18228 18229 /* 18230 * Blow away v6 memberships we established in ipif_multicast_up(); the 18231 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18232 * know not to rejoin when the interface is brought back up). 18233 */ 18234 if (ipif->ipif_isv6) 18235 ipif_multicast_down(ipif); 18236 /* 18237 * Remove from the mapping for __sin6_src_id. We insert only 18238 * when the address is not INADDR_ANY. As IPv4 addresses are 18239 * stored as mapped addresses, we need to check for mapped 18240 * INADDR_ANY also. 18241 */ 18242 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18243 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18244 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18245 int err; 18246 18247 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18248 ipif->ipif_zoneid); 18249 if (err != 0) { 18250 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18251 } 18252 } 18253 18254 /* 18255 * Before we delete the ill from the group (if any), we need 18256 * to make sure that we delete all the routes dependent on 18257 * this and also any ipifs dependent on this ipif for 18258 * source address. We need to do before we delete from 18259 * the group because 18260 * 18261 * 1) ipif_down_delete_ire de-references ill->ill_group. 18262 * 18263 * 2) ipif_update_other_ipifs needs to walk the whole group 18264 * for re-doing source address selection. Note that 18265 * ipif_select_source[_v6] called from 18266 * ipif_update_other_ipifs[_v6] will not pick this ipif 18267 * because we have already marked down here i.e cleared 18268 * IPIF_UP. 18269 */ 18270 if (ipif->ipif_isv6) 18271 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18272 else 18273 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18274 18275 /* 18276 * Need to add these also to be saved and restored when the 18277 * ipif is brought down and up 18278 */ 18279 mutex_enter(&ire_mrtun_lock); 18280 if (ire_mrtun_count != 0) { 18281 mutex_exit(&ire_mrtun_lock); 18282 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18283 (char *)ipif, NULL); 18284 } else { 18285 mutex_exit(&ire_mrtun_lock); 18286 } 18287 18288 mutex_enter(&ire_srcif_table_lock); 18289 if (ire_srcif_table_count > 0) { 18290 mutex_exit(&ire_srcif_table_lock); 18291 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18292 } else { 18293 mutex_exit(&ire_srcif_table_lock); 18294 } 18295 18296 /* 18297 * Cleaning up the conn_ire_cache or conns must be done only after the 18298 * ires have been deleted above. Otherwise a thread could end up 18299 * caching an ire in a conn after we have finished the cleanup of the 18300 * conn. The caching is done after making sure that the ire is not yet 18301 * condemned. Also documented in the block comment above ip_output 18302 */ 18303 ipcl_walk(conn_cleanup_stale_ire, NULL); 18304 /* Also, delete the ires cached in SCTP */ 18305 sctp_ire_cache_flush(ipif); 18306 18307 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18308 nattymod_clean_ipif(ipif); 18309 18310 /* 18311 * Update any other ipifs which have used "our" local address as 18312 * a source address. This entails removing and recreating IRE_INTERFACE 18313 * entries for such ipifs. 18314 */ 18315 if (ipif->ipif_isv6) 18316 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18317 else 18318 ipif_update_other_ipifs(ipif, ill->ill_group); 18319 18320 if (ipif_was_up) { 18321 /* 18322 * Check whether it is last ipif to leave this group. 18323 * If this is the last ipif to leave, we should remove 18324 * this ill from the group as ipif_select_source will not 18325 * be able to find any useful ipifs if this ill is selected 18326 * for load balancing. 18327 * 18328 * For nameless groups, we should call ifgrp_delete if this 18329 * belongs to some group. As this ipif is going down, we may 18330 * need to reconstruct groups. 18331 */ 18332 phyi = ill->ill_phyint; 18333 /* 18334 * If the phyint_groupname_len is 0, it may or may not 18335 * be in the nameless group. If the phyint_groupname_len is 18336 * not 0, then this ill should be part of some group. 18337 * As we always insert this ill in the group if 18338 * phyint_groupname_len is not zero when the first ipif 18339 * comes up (in ipif_up_done), it should be in a group 18340 * when the namelen is not 0. 18341 * 18342 * NOTE : When we delete the ill from the group,it will 18343 * blow away all the IRE_CACHES pointing either at this ipif or 18344 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18345 * should be pointing at this ill. 18346 */ 18347 ASSERT(phyi->phyint_groupname_len == 0 || 18348 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18349 18350 if (phyi->phyint_groupname_len != 0) { 18351 if (ill->ill_ipif_up_count == 0) 18352 illgrp_delete(ill); 18353 } 18354 18355 /* 18356 * If we have deleted some of the broadcast ires associated 18357 * with this ipif, we need to re-nominate somebody else if 18358 * the ires that we deleted were the nominated ones. 18359 */ 18360 if (ill->ill_group != NULL && !ill->ill_isv6) 18361 ipif_renominate_bcast(ipif); 18362 } 18363 18364 /* 18365 * neighbor-discovery or arp entries for this interface. 18366 */ 18367 ipif_ndp_down(ipif); 18368 18369 /* 18370 * If mp is NULL the caller will wait for the appropriate refcnt. 18371 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18372 * and ill_delete -> ipif_free -> ipif_down 18373 */ 18374 if (mp == NULL) { 18375 ASSERT(q == NULL); 18376 return (0); 18377 } 18378 18379 if (CONN_Q(q)) { 18380 connp = Q_TO_CONN(q); 18381 mutex_enter(&connp->conn_lock); 18382 } else { 18383 connp = NULL; 18384 } 18385 mutex_enter(&ill->ill_lock); 18386 /* 18387 * Are there any ire's pointing to this ipif that are still active ? 18388 * If this is the last ipif going down, are there any ire's pointing 18389 * to this ill that are still active ? 18390 */ 18391 if (ipif_is_quiescent(ipif)) { 18392 mutex_exit(&ill->ill_lock); 18393 if (connp != NULL) 18394 mutex_exit(&connp->conn_lock); 18395 return (0); 18396 } 18397 18398 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18399 ill->ill_name, (void *)ill)); 18400 /* 18401 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18402 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18403 * which in turn is called by the last refrele on the ipif/ill/ire. 18404 */ 18405 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18406 if (!success) { 18407 /* The conn is closing. So just return */ 18408 ASSERT(connp != NULL); 18409 mutex_exit(&ill->ill_lock); 18410 mutex_exit(&connp->conn_lock); 18411 return (EINTR); 18412 } 18413 18414 mutex_exit(&ill->ill_lock); 18415 if (connp != NULL) 18416 mutex_exit(&connp->conn_lock); 18417 return (EINPROGRESS); 18418 } 18419 18420 void 18421 ipif_down_tail(ipif_t *ipif) 18422 { 18423 ill_t *ill = ipif->ipif_ill; 18424 18425 /* 18426 * Skip any loopback interface (null wq). 18427 * If this is the last logical interface on the ill 18428 * have ill_dl_down tell the driver we are gone (unbind) 18429 * Note that lun 0 can ipif_down even though 18430 * there are other logical units that are up. 18431 * This occurs e.g. when we change a "significant" IFF_ flag. 18432 */ 18433 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18434 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18435 ill->ill_dl_up) { 18436 ill_dl_down(ill); 18437 } 18438 ill->ill_logical_down = 0; 18439 18440 /* 18441 * Have to be after removing the routes in ipif_down_delete_ire. 18442 */ 18443 if (ipif->ipif_isv6) { 18444 if (ill->ill_flags & ILLF_XRESOLV) 18445 ipif_arp_down(ipif); 18446 } else { 18447 ipif_arp_down(ipif); 18448 } 18449 18450 ip_rts_ifmsg(ipif); 18451 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18452 } 18453 18454 /* 18455 * Bring interface logically down without bringing the physical interface 18456 * down e.g. when the netmask is changed. This avoids long lasting link 18457 * negotiations between an ethernet interface and a certain switches. 18458 */ 18459 static int 18460 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18461 { 18462 /* 18463 * The ill_logical_down flag is a transient flag. It is set here 18464 * and is cleared once the down has completed in ipif_down_tail. 18465 * This flag does not indicate whether the ill stream is in the 18466 * DL_BOUND state with the driver. Instead this flag is used by 18467 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18468 * the driver. The state of the ill stream i.e. whether it is 18469 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18470 */ 18471 ipif->ipif_ill->ill_logical_down = 1; 18472 return (ipif_down(ipif, q, mp)); 18473 } 18474 18475 /* 18476 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18477 * If the usesrc client ILL is already part of a usesrc group or not, 18478 * in either case a ire_stq with the matching usesrc client ILL will 18479 * locate the IRE's that need to be deleted. We want IREs to be created 18480 * with the new source address. 18481 */ 18482 static void 18483 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18484 { 18485 ill_t *ucill = (ill_t *)ill_arg; 18486 18487 ASSERT(IAM_WRITER_ILL(ucill)); 18488 18489 if (ire->ire_stq == NULL) 18490 return; 18491 18492 if ((ire->ire_type == IRE_CACHE) && 18493 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18494 ire_delete(ire); 18495 } 18496 18497 /* 18498 * ire_walk routine to delete every IRE dependent on the interface 18499 * address that is going down. (Always called as writer.) 18500 * Works for both v4 and v6. 18501 * In addition for checking for ire_ipif matches it also checks for 18502 * IRE_CACHE entries which have the same source address as the 18503 * disappearing ipif since ipif_select_source might have picked 18504 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18505 * care of any IRE_INTERFACE with the disappearing source address. 18506 */ 18507 static void 18508 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18509 { 18510 ipif_t *ipif = (ipif_t *)ipif_arg; 18511 ill_t *ire_ill; 18512 ill_t *ipif_ill; 18513 18514 ASSERT(IAM_WRITER_IPIF(ipif)); 18515 if (ire->ire_ipif == NULL) 18516 return; 18517 18518 /* 18519 * For IPv4, we derive source addresses for an IRE from ipif's 18520 * belonging to the same IPMP group as the IRE's outgoing 18521 * interface. If an IRE's outgoing interface isn't in the 18522 * same IPMP group as a particular ipif, then that ipif 18523 * couldn't have been used as a source address for this IRE. 18524 * 18525 * For IPv6, source addresses are only restricted to the IPMP group 18526 * if the IRE is for a link-local address or a multicast address. 18527 * Otherwise, source addresses for an IRE can be chosen from 18528 * interfaces other than the the outgoing interface for that IRE. 18529 * 18530 * For source address selection details, see ipif_select_source() 18531 * and ipif_select_source_v6(). 18532 */ 18533 if (ire->ire_ipversion == IPV4_VERSION || 18534 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18535 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18536 ire_ill = ire->ire_ipif->ipif_ill; 18537 ipif_ill = ipif->ipif_ill; 18538 18539 if (ire_ill->ill_group != ipif_ill->ill_group) { 18540 return; 18541 } 18542 } 18543 18544 18545 if (ire->ire_ipif != ipif) { 18546 /* 18547 * Look for a matching source address. 18548 */ 18549 if (ire->ire_type != IRE_CACHE) 18550 return; 18551 if (ipif->ipif_flags & IPIF_NOLOCAL) 18552 return; 18553 18554 if (ire->ire_ipversion == IPV4_VERSION) { 18555 if (ire->ire_src_addr != ipif->ipif_src_addr) 18556 return; 18557 } else { 18558 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18559 &ipif->ipif_v6lcl_addr)) 18560 return; 18561 } 18562 ire_delete(ire); 18563 return; 18564 } 18565 /* 18566 * ire_delete() will do an ire_flush_cache which will delete 18567 * all ire_ipif matches 18568 */ 18569 ire_delete(ire); 18570 } 18571 18572 /* 18573 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18574 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18575 * 2) when an interface is brought up or down (on that ill). 18576 * This ensures that the IRE_CACHE entries don't retain stale source 18577 * address selection results. 18578 */ 18579 void 18580 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18581 { 18582 ill_t *ill = (ill_t *)ill_arg; 18583 ill_t *ipif_ill; 18584 18585 ASSERT(IAM_WRITER_ILL(ill)); 18586 /* 18587 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18588 * Hence this should be IRE_CACHE. 18589 */ 18590 ASSERT(ire->ire_type == IRE_CACHE); 18591 18592 /* 18593 * We are called for IRE_CACHES whose ire_ipif matches ill. 18594 * We are only interested in IRE_CACHES that has borrowed 18595 * the source address from ill_arg e.g. ipif_up_done[_v6] 18596 * for which we need to look at ire_ipif->ipif_ill match 18597 * with ill. 18598 */ 18599 ASSERT(ire->ire_ipif != NULL); 18600 ipif_ill = ire->ire_ipif->ipif_ill; 18601 if (ipif_ill == ill || (ill->ill_group != NULL && 18602 ipif_ill->ill_group == ill->ill_group)) { 18603 ire_delete(ire); 18604 } 18605 } 18606 18607 /* 18608 * Delete all the ire whose stq references ill_arg. 18609 */ 18610 static void 18611 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18612 { 18613 ill_t *ill = (ill_t *)ill_arg; 18614 ill_t *ire_ill; 18615 18616 ASSERT(IAM_WRITER_ILL(ill)); 18617 /* 18618 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18619 * Hence this should be IRE_CACHE. 18620 */ 18621 ASSERT(ire->ire_type == IRE_CACHE); 18622 18623 /* 18624 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18625 * matches ill. We are only interested in IRE_CACHES that 18626 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18627 * filtering here. 18628 */ 18629 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18630 18631 if (ire_ill == ill) 18632 ire_delete(ire); 18633 } 18634 18635 /* 18636 * This is called when an ill leaves the group. We want to delete 18637 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18638 * pointing at ill. 18639 */ 18640 static void 18641 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18642 { 18643 ill_t *ill = (ill_t *)ill_arg; 18644 18645 ASSERT(IAM_WRITER_ILL(ill)); 18646 ASSERT(ill->ill_group == NULL); 18647 /* 18648 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18649 * Hence this should be IRE_CACHE. 18650 */ 18651 ASSERT(ire->ire_type == IRE_CACHE); 18652 /* 18653 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18654 * matches ill. We are interested in both. 18655 */ 18656 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18657 (ire->ire_ipif->ipif_ill == ill)); 18658 18659 ire_delete(ire); 18660 } 18661 18662 /* 18663 * Initiate deallocate of an IPIF. Always called as writer. Called by 18664 * ill_delete or ip_sioctl_removeif. 18665 */ 18666 static void 18667 ipif_free(ipif_t *ipif) 18668 { 18669 ASSERT(IAM_WRITER_IPIF(ipif)); 18670 18671 if (ipif->ipif_recovery_id != 0) 18672 (void) untimeout(ipif->ipif_recovery_id); 18673 ipif->ipif_recovery_id = 0; 18674 18675 /* Remove conn references */ 18676 reset_conn_ipif(ipif); 18677 18678 /* 18679 * Make sure we have valid net and subnet broadcast ire's for the 18680 * other ipif's which share them with this ipif. 18681 */ 18682 if (!ipif->ipif_isv6) 18683 ipif_check_bcast_ires(ipif); 18684 18685 /* 18686 * Take down the interface. We can be called either from ill_delete 18687 * or from ip_sioctl_removeif. 18688 */ 18689 (void) ipif_down(ipif, NULL, NULL); 18690 18691 rw_enter(&ill_g_lock, RW_WRITER); 18692 /* Remove pointers to this ill in the multicast routing tables */ 18693 reset_mrt_vif_ipif(ipif); 18694 rw_exit(&ill_g_lock); 18695 } 18696 18697 static void 18698 ipif_free_tail(ipif_t *ipif) 18699 { 18700 mblk_t *mp; 18701 ipif_t **ipifp; 18702 18703 /* 18704 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18705 */ 18706 mutex_enter(&ipif->ipif_saved_ire_lock); 18707 mp = ipif->ipif_saved_ire_mp; 18708 ipif->ipif_saved_ire_mp = NULL; 18709 mutex_exit(&ipif->ipif_saved_ire_lock); 18710 freemsg(mp); 18711 18712 /* 18713 * Need to hold both ill_g_lock and ill_lock while 18714 * inserting or removing an ipif from the linked list 18715 * of ipifs hanging off the ill. 18716 */ 18717 rw_enter(&ill_g_lock, RW_WRITER); 18718 /* 18719 * Remove all multicast memberships on the interface now. 18720 * This removes IPv4 multicast memberships joined within 18721 * the kernel as ipif_down does not do ipif_multicast_down 18722 * for IPv4. IPv6 is not handled here as the multicast memberships 18723 * are based on ill and not on ipif. 18724 */ 18725 ilm_free(ipif); 18726 18727 /* 18728 * Since we held the ill_g_lock while doing the ilm_free above, 18729 * we can assert the ilms were really deleted and not just marked 18730 * ILM_DELETED. 18731 */ 18732 ASSERT(ilm_walk_ipif(ipif) == 0); 18733 18734 18735 IPIF_TRACE_CLEANUP(ipif); 18736 18737 /* Ask SCTP to take it out of it list */ 18738 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18739 18740 mutex_enter(&ipif->ipif_ill->ill_lock); 18741 /* Get it out of the ILL interface list. */ 18742 ipifp = &ipif->ipif_ill->ill_ipif; 18743 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18744 if (*ipifp == ipif) { 18745 *ipifp = ipif->ipif_next; 18746 break; 18747 } 18748 } 18749 18750 mutex_exit(&ipif->ipif_ill->ill_lock); 18751 rw_exit(&ill_g_lock); 18752 18753 mutex_destroy(&ipif->ipif_saved_ire_lock); 18754 18755 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18756 18757 /* Free the memory. */ 18758 mi_free((char *)ipif); 18759 } 18760 18761 /* 18762 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18763 * "ill_name" otherwise. 18764 */ 18765 char * 18766 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18767 { 18768 char lbuf[32]; 18769 char *name; 18770 size_t name_len; 18771 18772 buf[0] = '\0'; 18773 if (!ipif) 18774 return (buf); 18775 name = ipif->ipif_ill->ill_name; 18776 name_len = ipif->ipif_ill->ill_name_length; 18777 if (ipif->ipif_id != 0) { 18778 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18779 ipif->ipif_id); 18780 name = lbuf; 18781 name_len = mi_strlen(name) + 1; 18782 } 18783 len -= 1; 18784 buf[len] = '\0'; 18785 len = MIN(len, name_len); 18786 bcopy(name, buf, len); 18787 return (buf); 18788 } 18789 18790 /* 18791 * Find an IPIF based on the name passed in. Names can be of the 18792 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18793 * The <phys> string can have forms like <dev><#> (e.g., le0), 18794 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18795 * When there is no colon, the implied unit id is zero. <phys> must 18796 * correspond to the name of an ILL. (May be called as writer.) 18797 */ 18798 static ipif_t * 18799 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18800 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18801 mblk_t *mp, ipsq_func_t func, int *error) 18802 { 18803 char *cp; 18804 char *endp; 18805 long id; 18806 ill_t *ill; 18807 ipif_t *ipif; 18808 uint_t ire_type; 18809 boolean_t did_alloc = B_FALSE; 18810 ipsq_t *ipsq; 18811 18812 if (error != NULL) 18813 *error = 0; 18814 18815 /* 18816 * If the caller wants to us to create the ipif, make sure we have a 18817 * valid zoneid 18818 */ 18819 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18820 18821 if (namelen == 0) { 18822 if (error != NULL) 18823 *error = ENXIO; 18824 return (NULL); 18825 } 18826 18827 *exists = B_FALSE; 18828 /* Look for a colon in the name. */ 18829 endp = &name[namelen]; 18830 for (cp = endp; --cp > name; ) { 18831 if (*cp == IPIF_SEPARATOR_CHAR) 18832 break; 18833 } 18834 18835 if (*cp == IPIF_SEPARATOR_CHAR) { 18836 /* 18837 * Reject any non-decimal aliases for logical 18838 * interfaces. Aliases with leading zeroes 18839 * are also rejected as they introduce ambiguity 18840 * in the naming of the interfaces. 18841 * In order to confirm with existing semantics, 18842 * and to not break any programs/script relying 18843 * on that behaviour, if<0>:0 is considered to be 18844 * a valid interface. 18845 * 18846 * If alias has two or more digits and the first 18847 * is zero, fail. 18848 */ 18849 if (&cp[2] < endp && cp[1] == '0') 18850 return (NULL); 18851 } 18852 18853 if (cp <= name) { 18854 cp = endp; 18855 } else { 18856 *cp = '\0'; 18857 } 18858 18859 /* 18860 * Look up the ILL, based on the portion of the name 18861 * before the slash. ill_lookup_on_name returns a held ill. 18862 * Temporary to check whether ill exists already. If so 18863 * ill_lookup_on_name will clear it. 18864 */ 18865 ill = ill_lookup_on_name(name, do_alloc, isv6, 18866 q, mp, func, error, &did_alloc); 18867 if (cp != endp) 18868 *cp = IPIF_SEPARATOR_CHAR; 18869 if (ill == NULL) 18870 return (NULL); 18871 18872 /* Establish the unit number in the name. */ 18873 id = 0; 18874 if (cp < endp && *endp == '\0') { 18875 /* If there was a colon, the unit number follows. */ 18876 cp++; 18877 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18878 ill_refrele(ill); 18879 if (error != NULL) 18880 *error = ENXIO; 18881 return (NULL); 18882 } 18883 } 18884 18885 GRAB_CONN_LOCK(q); 18886 mutex_enter(&ill->ill_lock); 18887 /* Now see if there is an IPIF with this unit number. */ 18888 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 18889 if (ipif->ipif_id == id) { 18890 if (zoneid != ALL_ZONES && 18891 zoneid != ipif->ipif_zoneid && 18892 ipif->ipif_zoneid != ALL_ZONES) { 18893 mutex_exit(&ill->ill_lock); 18894 RELEASE_CONN_LOCK(q); 18895 ill_refrele(ill); 18896 if (error != NULL) 18897 *error = ENXIO; 18898 return (NULL); 18899 } 18900 /* 18901 * The block comment at the start of ipif_down 18902 * explains the use of the macros used below 18903 */ 18904 if (IPIF_CAN_LOOKUP(ipif)) { 18905 ipif_refhold_locked(ipif); 18906 mutex_exit(&ill->ill_lock); 18907 if (!did_alloc) 18908 *exists = B_TRUE; 18909 /* 18910 * Drop locks before calling ill_refrele 18911 * since it can potentially call into 18912 * ipif_ill_refrele_tail which can end up 18913 * in trying to acquire any lock. 18914 */ 18915 RELEASE_CONN_LOCK(q); 18916 ill_refrele(ill); 18917 return (ipif); 18918 } else if (IPIF_CAN_WAIT(ipif, q)) { 18919 ipsq = ill->ill_phyint->phyint_ipsq; 18920 mutex_enter(&ipsq->ipsq_lock); 18921 mutex_exit(&ill->ill_lock); 18922 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18923 mutex_exit(&ipsq->ipsq_lock); 18924 RELEASE_CONN_LOCK(q); 18925 ill_refrele(ill); 18926 *error = EINPROGRESS; 18927 return (NULL); 18928 } 18929 } 18930 } 18931 RELEASE_CONN_LOCK(q); 18932 18933 if (!do_alloc) { 18934 mutex_exit(&ill->ill_lock); 18935 ill_refrele(ill); 18936 if (error != NULL) 18937 *error = ENXIO; 18938 return (NULL); 18939 } 18940 18941 /* 18942 * If none found, atomically allocate and return a new one. 18943 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18944 * to support "receive only" use of lo0:1 etc. as is still done 18945 * below as an initial guess. 18946 * However, this is now likely to be overriden later in ipif_up_done() 18947 * when we know for sure what address has been configured on the 18948 * interface, since we might have more than one loopback interface 18949 * with a loopback address, e.g. in the case of zones, and all the 18950 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18951 */ 18952 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18953 ire_type = IRE_LOOPBACK; 18954 else 18955 ire_type = IRE_LOCAL; 18956 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18957 if (ipif != NULL) 18958 ipif_refhold_locked(ipif); 18959 else if (error != NULL) 18960 *error = ENOMEM; 18961 mutex_exit(&ill->ill_lock); 18962 ill_refrele(ill); 18963 return (ipif); 18964 } 18965 18966 /* 18967 * This routine is called whenever a new address comes up on an ipif. If 18968 * we are configured to respond to address mask requests, then we are supposed 18969 * to broadcast an address mask reply at this time. This routine is also 18970 * called if we are already up, but a netmask change is made. This is legal 18971 * but might not make the system manager very popular. (May be called 18972 * as writer.) 18973 */ 18974 void 18975 ipif_mask_reply(ipif_t *ipif) 18976 { 18977 icmph_t *icmph; 18978 ipha_t *ipha; 18979 mblk_t *mp; 18980 18981 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18982 18983 if (!ip_respond_to_address_mask_broadcast) 18984 return; 18985 18986 /* ICMP mask reply is IPv4 only */ 18987 ASSERT(!ipif->ipif_isv6); 18988 /* ICMP mask reply is not for a loopback interface */ 18989 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18990 18991 mp = allocb(REPLY_LEN, BPRI_HI); 18992 if (mp == NULL) 18993 return; 18994 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18995 18996 ipha = (ipha_t *)mp->b_rptr; 18997 bzero(ipha, REPLY_LEN); 18998 *ipha = icmp_ipha; 18999 ipha->ipha_ttl = ip_broadcast_ttl; 19000 ipha->ipha_src = ipif->ipif_src_addr; 19001 ipha->ipha_dst = ipif->ipif_brd_addr; 19002 ipha->ipha_length = htons(REPLY_LEN); 19003 ipha->ipha_ident = 0; 19004 19005 icmph = (icmph_t *)&ipha[1]; 19006 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19007 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19008 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19009 if (icmph->icmph_checksum == 0) 19010 icmph->icmph_checksum = 0xffff; 19011 19012 put(ipif->ipif_wq, mp); 19013 19014 #undef REPLY_LEN 19015 } 19016 19017 /* 19018 * When the mtu in the ipif changes, we call this routine through ire_walk 19019 * to update all the relevant IREs. 19020 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19021 */ 19022 static void 19023 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19024 { 19025 ipif_t *ipif = (ipif_t *)ipif_arg; 19026 19027 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19028 return; 19029 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19030 } 19031 19032 /* 19033 * When the mtu in the ill changes, we call this routine through ire_walk 19034 * to update all the relevant IREs. 19035 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19036 */ 19037 void 19038 ill_mtu_change(ire_t *ire, char *ill_arg) 19039 { 19040 ill_t *ill = (ill_t *)ill_arg; 19041 19042 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19043 return; 19044 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19045 } 19046 19047 /* 19048 * Join the ipif specific multicast groups. 19049 * Must be called after a mapping has been set up in the resolver. (Always 19050 * called as writer.) 19051 */ 19052 void 19053 ipif_multicast_up(ipif_t *ipif) 19054 { 19055 int err, index; 19056 ill_t *ill; 19057 19058 ASSERT(IAM_WRITER_IPIF(ipif)); 19059 19060 ill = ipif->ipif_ill; 19061 index = ill->ill_phyint->phyint_ifindex; 19062 19063 ip1dbg(("ipif_multicast_up\n")); 19064 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19065 return; 19066 19067 if (ipif->ipif_isv6) { 19068 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19069 return; 19070 19071 /* Join the all hosts multicast address */ 19072 ip1dbg(("ipif_multicast_up - addmulti\n")); 19073 /* 19074 * Passing B_TRUE means we have to join the multicast 19075 * membership on this interface even though this is 19076 * FAILED. If we join on a different one in the group, 19077 * we will not be able to delete the membership later 19078 * as we currently don't track where we join when we 19079 * join within the kernel unlike applications where 19080 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19081 * for more on this. 19082 */ 19083 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19084 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19085 if (err != 0) { 19086 ip0dbg(("ipif_multicast_up: " 19087 "all_hosts_mcast failed %d\n", 19088 err)); 19089 return; 19090 } 19091 /* 19092 * Enable multicast for the solicited node multicast address 19093 */ 19094 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19095 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19096 19097 ipv6_multi.s6_addr32[3] |= 19098 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19099 19100 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19101 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19102 NULL); 19103 if (err != 0) { 19104 ip0dbg(("ipif_multicast_up: solicited MC" 19105 " failed %d\n", err)); 19106 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19107 ill, ill->ill_phyint->phyint_ifindex, 19108 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19109 return; 19110 } 19111 } 19112 } else { 19113 if (ipif->ipif_lcl_addr == INADDR_ANY) 19114 return; 19115 19116 /* Join the all hosts multicast address */ 19117 ip1dbg(("ipif_multicast_up - addmulti\n")); 19118 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19119 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19120 if (err) { 19121 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19122 return; 19123 } 19124 } 19125 ipif->ipif_multicast_up = 1; 19126 } 19127 19128 /* 19129 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19130 * any explicit memberships are blown away in ill_leave_multicast() when the 19131 * ill is brought down. 19132 */ 19133 static void 19134 ipif_multicast_down(ipif_t *ipif) 19135 { 19136 int err; 19137 19138 ASSERT(IAM_WRITER_IPIF(ipif)); 19139 19140 ip1dbg(("ipif_multicast_down\n")); 19141 if (!ipif->ipif_multicast_up) 19142 return; 19143 19144 ASSERT(ipif->ipif_isv6); 19145 19146 ip1dbg(("ipif_multicast_down - delmulti\n")); 19147 19148 /* 19149 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19150 * we should look for ilms on this ill rather than the ones that have 19151 * been failed over here. They are here temporarily. As 19152 * ipif_multicast_up has joined on this ill, we should delete only 19153 * from this ill. 19154 */ 19155 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19156 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19157 B_TRUE, B_TRUE); 19158 if (err != 0) { 19159 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19160 err)); 19161 } 19162 /* 19163 * Disable multicast for the solicited node multicast address 19164 */ 19165 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19166 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19167 19168 ipv6_multi.s6_addr32[3] |= 19169 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19170 19171 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19172 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19173 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19174 19175 if (err != 0) { 19176 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19177 err)); 19178 } 19179 } 19180 19181 ipif->ipif_multicast_up = 0; 19182 } 19183 19184 /* 19185 * Used when an interface comes up to recreate any extra routes on this 19186 * interface. 19187 */ 19188 static ire_t ** 19189 ipif_recover_ire(ipif_t *ipif) 19190 { 19191 mblk_t *mp; 19192 ire_t **ipif_saved_irep; 19193 ire_t **irep; 19194 19195 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19196 ipif->ipif_id)); 19197 19198 mutex_enter(&ipif->ipif_saved_ire_lock); 19199 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19200 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19201 if (ipif_saved_irep == NULL) { 19202 mutex_exit(&ipif->ipif_saved_ire_lock); 19203 return (NULL); 19204 } 19205 19206 irep = ipif_saved_irep; 19207 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19208 ire_t *ire; 19209 queue_t *rfq; 19210 queue_t *stq; 19211 ifrt_t *ifrt; 19212 uchar_t *src_addr; 19213 uchar_t *gateway_addr; 19214 mblk_t *resolver_mp; 19215 ushort_t type; 19216 19217 /* 19218 * When the ire was initially created and then added in 19219 * ip_rt_add(), it was created either using ipif->ipif_net_type 19220 * in the case of a traditional interface route, or as one of 19221 * the IRE_OFFSUBNET types (with the exception of 19222 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 19223 * which we don't need to save or recover). In the case where 19224 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19225 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19226 * to satisfy software like GateD and Sun Cluster which creates 19227 * routes using the the loopback interface's address as a 19228 * gateway. 19229 * 19230 * As ifrt->ifrt_type reflects the already updated ire_type and 19231 * since ire_create() expects that IRE_IF_NORESOLVER will have 19232 * a valid nce_res_mp field (which doesn't make sense for a 19233 * IRE_LOOPBACK), ire_create() will be called in the same way 19234 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19235 * the route looks like a traditional interface route (where 19236 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19237 * the saved ifrt->ifrt_type. This means that in the case where 19238 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19239 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19240 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19241 */ 19242 ifrt = (ifrt_t *)mp->b_rptr; 19243 if (ifrt->ifrt_type & IRE_INTERFACE) { 19244 rfq = NULL; 19245 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19246 ? ipif->ipif_rq : ipif->ipif_wq; 19247 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19248 ? (uint8_t *)&ifrt->ifrt_src_addr 19249 : (uint8_t *)&ipif->ipif_src_addr; 19250 gateway_addr = NULL; 19251 resolver_mp = ipif->ipif_resolver_mp; 19252 type = ipif->ipif_net_type; 19253 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19254 /* Recover multiroute broadcast IRE. */ 19255 rfq = ipif->ipif_rq; 19256 stq = ipif->ipif_wq; 19257 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19258 ? (uint8_t *)&ifrt->ifrt_src_addr 19259 : (uint8_t *)&ipif->ipif_src_addr; 19260 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19261 resolver_mp = ipif->ipif_bcast_mp; 19262 type = ifrt->ifrt_type; 19263 } else { 19264 rfq = NULL; 19265 stq = NULL; 19266 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19267 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19268 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19269 resolver_mp = NULL; 19270 type = ifrt->ifrt_type; 19271 } 19272 19273 /* 19274 * Create a copy of the IRE with the saved address and netmask. 19275 */ 19276 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19277 "0x%x/0x%x\n", 19278 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19279 ntohl(ifrt->ifrt_addr), 19280 ntohl(ifrt->ifrt_mask))); 19281 ire = ire_create( 19282 (uint8_t *)&ifrt->ifrt_addr, 19283 (uint8_t *)&ifrt->ifrt_mask, 19284 src_addr, 19285 gateway_addr, 19286 NULL, 19287 &ifrt->ifrt_max_frag, 19288 NULL, 19289 rfq, 19290 stq, 19291 type, 19292 resolver_mp, 19293 ipif, 19294 NULL, 19295 0, 19296 0, 19297 0, 19298 ifrt->ifrt_flags, 19299 &ifrt->ifrt_iulp_info, 19300 NULL, 19301 NULL); 19302 19303 if (ire == NULL) { 19304 mutex_exit(&ipif->ipif_saved_ire_lock); 19305 kmem_free(ipif_saved_irep, 19306 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19307 return (NULL); 19308 } 19309 19310 /* 19311 * Some software (for example, GateD and Sun Cluster) attempts 19312 * to create (what amount to) IRE_PREFIX routes with the 19313 * loopback address as the gateway. This is primarily done to 19314 * set up prefixes with the RTF_REJECT flag set (for example, 19315 * when generating aggregate routes.) 19316 * 19317 * If the IRE type (as defined by ipif->ipif_net_type) is 19318 * IRE_LOOPBACK, then we map the request into a 19319 * IRE_IF_NORESOLVER. 19320 */ 19321 if (ipif->ipif_net_type == IRE_LOOPBACK) 19322 ire->ire_type = IRE_IF_NORESOLVER; 19323 /* 19324 * ire held by ire_add, will be refreled' towards the 19325 * the end of ipif_up_done 19326 */ 19327 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19328 *irep = ire; 19329 irep++; 19330 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19331 } 19332 mutex_exit(&ipif->ipif_saved_ire_lock); 19333 return (ipif_saved_irep); 19334 } 19335 19336 /* 19337 * Used to set the netmask and broadcast address to default values when the 19338 * interface is brought up. (Always called as writer.) 19339 */ 19340 static void 19341 ipif_set_default(ipif_t *ipif) 19342 { 19343 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19344 19345 if (!ipif->ipif_isv6) { 19346 /* 19347 * Interface holds an IPv4 address. Default 19348 * mask is the natural netmask. 19349 */ 19350 if (!ipif->ipif_net_mask) { 19351 ipaddr_t v4mask; 19352 19353 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19354 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19355 } 19356 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19357 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19358 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19359 } else { 19360 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19361 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19362 } 19363 /* 19364 * NOTE: SunOS 4.X does this even if the broadcast address 19365 * has been already set thus we do the same here. 19366 */ 19367 if (ipif->ipif_flags & IPIF_BROADCAST) { 19368 ipaddr_t v4addr; 19369 19370 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19371 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19372 } 19373 } else { 19374 /* 19375 * Interface holds an IPv6-only address. Default 19376 * mask is all-ones. 19377 */ 19378 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19379 ipif->ipif_v6net_mask = ipv6_all_ones; 19380 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19381 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19382 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19383 } else { 19384 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19385 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19386 } 19387 } 19388 } 19389 19390 /* 19391 * Return 0 if this address can be used as local address without causing 19392 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19393 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19394 * Special checks are needed to allow the same IPv6 link-local address 19395 * on different ills. 19396 * TODO: allowing the same site-local address on different ill's. 19397 */ 19398 int 19399 ip_addr_availability_check(ipif_t *new_ipif) 19400 { 19401 in6_addr_t our_v6addr; 19402 ill_t *ill; 19403 ipif_t *ipif; 19404 ill_walk_context_t ctx; 19405 19406 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19407 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19408 ASSERT(RW_READ_HELD(&ill_g_lock)); 19409 19410 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19411 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19412 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19413 return (0); 19414 19415 our_v6addr = new_ipif->ipif_v6lcl_addr; 19416 19417 if (new_ipif->ipif_isv6) 19418 ill = ILL_START_WALK_V6(&ctx); 19419 else 19420 ill = ILL_START_WALK_V4(&ctx); 19421 19422 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19423 for (ipif = ill->ill_ipif; ipif != NULL; 19424 ipif = ipif->ipif_next) { 19425 if ((ipif == new_ipif) || 19426 !(ipif->ipif_flags & IPIF_UP) || 19427 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19428 continue; 19429 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19430 &our_v6addr)) { 19431 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19432 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19433 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19434 ipif->ipif_flags |= IPIF_UNNUMBERED; 19435 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19436 new_ipif->ipif_ill != ill) 19437 continue; 19438 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19439 new_ipif->ipif_ill != ill) 19440 continue; 19441 else if (new_ipif->ipif_zoneid != 19442 ipif->ipif_zoneid && 19443 ipif->ipif_zoneid != ALL_ZONES && 19444 (ill->ill_phyint->phyint_flags & 19445 PHYI_LOOPBACK)) 19446 continue; 19447 else if (new_ipif->ipif_ill == ill) 19448 return (EADDRINUSE); 19449 else 19450 return (EADDRNOTAVAIL); 19451 } 19452 } 19453 } 19454 19455 return (0); 19456 } 19457 19458 /* 19459 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19460 * IREs for the ipif. 19461 * When the routine returns EINPROGRESS then mp has been consumed and 19462 * the ioctl will be acked from ip_rput_dlpi. 19463 */ 19464 static int 19465 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19466 { 19467 ill_t *ill = ipif->ipif_ill; 19468 boolean_t isv6 = ipif->ipif_isv6; 19469 int err = 0; 19470 boolean_t success; 19471 19472 ASSERT(IAM_WRITER_IPIF(ipif)); 19473 19474 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19475 19476 /* Shouldn't get here if it is already up. */ 19477 if (ipif->ipif_flags & IPIF_UP) 19478 return (EALREADY); 19479 19480 /* Skip arp/ndp for any loopback interface. */ 19481 if (ill->ill_wq != NULL) { 19482 conn_t *connp = Q_TO_CONN(q); 19483 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19484 19485 if (!ill->ill_dl_up) { 19486 /* 19487 * ill_dl_up is not yet set. i.e. we are yet to 19488 * DL_BIND with the driver and this is the first 19489 * logical interface on the ill to become "up". 19490 * Tell the driver to get going (via DL_BIND_REQ). 19491 * Note that changing "significant" IFF_ flags 19492 * address/netmask etc cause a down/up dance, but 19493 * does not cause an unbind (DL_UNBIND) with the driver 19494 */ 19495 return (ill_dl_up(ill, ipif, mp, q)); 19496 } 19497 19498 /* 19499 * ipif_resolver_up may end up sending an 19500 * AR_INTERFACE_UP message to ARP, which would, in 19501 * turn send a DLPI message to the driver. ioctls are 19502 * serialized and so we cannot send more than one 19503 * interface up message at a time. If ipif_resolver_up 19504 * does send an interface up message to ARP, we get 19505 * EINPROGRESS and we will complete in ip_arp_done. 19506 */ 19507 19508 ASSERT(connp != NULL); 19509 ASSERT(ipsq->ipsq_pending_mp == NULL); 19510 mutex_enter(&connp->conn_lock); 19511 mutex_enter(&ill->ill_lock); 19512 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19513 mutex_exit(&ill->ill_lock); 19514 mutex_exit(&connp->conn_lock); 19515 if (!success) 19516 return (EINTR); 19517 19518 /* 19519 * Crank up IPv6 neighbor discovery 19520 * Unlike ARP, this should complete when 19521 * ipif_ndp_up returns. However, for 19522 * ILLF_XRESOLV interfaces we also send a 19523 * AR_INTERFACE_UP to the external resolver. 19524 * That ioctl will complete in ip_rput. 19525 */ 19526 if (isv6) { 19527 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19528 B_FALSE); 19529 if (err != 0) { 19530 if (err != EINPROGRESS) 19531 mp = ipsq_pending_mp_get(ipsq, &connp); 19532 return (err); 19533 } 19534 } 19535 /* Now, ARP */ 19536 err = ipif_resolver_up(ipif, Res_act_initial); 19537 if (err == EINPROGRESS) { 19538 /* We will complete it in ip_arp_done */ 19539 return (err); 19540 } 19541 mp = ipsq_pending_mp_get(ipsq, &connp); 19542 ASSERT(mp != NULL); 19543 if (err != 0) 19544 return (err); 19545 } else { 19546 /* 19547 * Interfaces without underlying hardware don't do duplicate 19548 * address detection. 19549 */ 19550 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19551 ipif->ipif_addr_ready = 1; 19552 } 19553 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19554 } 19555 19556 /* 19557 * Perform a bind for the physical device. 19558 * When the routine returns EINPROGRESS then mp has been consumed and 19559 * the ioctl will be acked from ip_rput_dlpi. 19560 * Allocate an unbind message and save it until ipif_down. 19561 */ 19562 static int 19563 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19564 { 19565 mblk_t *areq_mp = NULL; 19566 mblk_t *bind_mp = NULL; 19567 mblk_t *unbind_mp = NULL; 19568 conn_t *connp; 19569 boolean_t success; 19570 19571 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19572 ASSERT(IAM_WRITER_ILL(ill)); 19573 19574 ASSERT(mp != NULL); 19575 19576 /* Create a resolver cookie for ARP */ 19577 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19578 areq_t *areq; 19579 uint16_t sap_addr; 19580 19581 areq_mp = ill_arp_alloc(ill, 19582 (uchar_t *)&ip_areq_template, 0); 19583 if (areq_mp == NULL) { 19584 return (ENOMEM); 19585 } 19586 freemsg(ill->ill_resolver_mp); 19587 ill->ill_resolver_mp = areq_mp; 19588 areq = (areq_t *)areq_mp->b_rptr; 19589 sap_addr = ill->ill_sap; 19590 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19591 /* 19592 * Wait till we call ill_pending_mp_add to determine 19593 * the success before we free the ill_resolver_mp and 19594 * attach areq_mp in it's place. 19595 */ 19596 } 19597 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19598 DL_BIND_REQ); 19599 if (bind_mp == NULL) 19600 goto bad; 19601 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19602 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19603 19604 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19605 if (unbind_mp == NULL) 19606 goto bad; 19607 19608 /* 19609 * Record state needed to complete this operation when the 19610 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19611 */ 19612 if (WR(q)->q_next == NULL) { 19613 connp = Q_TO_CONN(q); 19614 mutex_enter(&connp->conn_lock); 19615 } else { 19616 connp = NULL; 19617 } 19618 mutex_enter(&ipif->ipif_ill->ill_lock); 19619 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19620 mutex_exit(&ipif->ipif_ill->ill_lock); 19621 if (connp != NULL) 19622 mutex_exit(&connp->conn_lock); 19623 if (!success) 19624 goto bad; 19625 19626 /* 19627 * Save the unbind message for ill_dl_down(); it will be consumed when 19628 * the interface goes down. 19629 */ 19630 ASSERT(ill->ill_unbind_mp == NULL); 19631 ill->ill_unbind_mp = unbind_mp; 19632 19633 ill_dlpi_send(ill, bind_mp); 19634 /* Send down link-layer capabilities probe if not already done. */ 19635 ill_capability_probe(ill); 19636 19637 /* 19638 * Sysid used to rely on the fact that netboots set domainname 19639 * and the like. Now that miniroot boots aren't strictly netboots 19640 * and miniroot network configuration is driven from userland 19641 * these things still need to be set. This situation can be detected 19642 * by comparing the interface being configured here to the one 19643 * dhcack was set to reference by the boot loader. Once sysid is 19644 * converted to use dhcp_ipc_getinfo() this call can go away. 19645 */ 19646 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19647 (strcmp(ill->ill_name, dhcack) == 0) && 19648 (strlen(srpc_domain) == 0)) { 19649 if (dhcpinit() != 0) 19650 cmn_err(CE_WARN, "no cached dhcp response"); 19651 } 19652 19653 /* 19654 * This operation will complete in ip_rput_dlpi with either 19655 * a DL_BIND_ACK or DL_ERROR_ACK. 19656 */ 19657 return (EINPROGRESS); 19658 bad: 19659 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19660 /* 19661 * We don't have to check for possible removal from illgrp 19662 * as we have not yet inserted in illgrp. For groups 19663 * without names, this ipif is still not UP and hence 19664 * this could not have possibly had any influence in forming 19665 * groups. 19666 */ 19667 19668 if (bind_mp != NULL) 19669 freemsg(bind_mp); 19670 if (unbind_mp != NULL) 19671 freemsg(unbind_mp); 19672 return (ENOMEM); 19673 } 19674 19675 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19676 19677 /* 19678 * DLPI and ARP is up. 19679 * Create all the IREs associated with an interface bring up multicast. 19680 * Set the interface flag and finish other initialization 19681 * that potentially had to be differed to after DL_BIND_ACK. 19682 */ 19683 int 19684 ipif_up_done(ipif_t *ipif) 19685 { 19686 ire_t *ire_array[20]; 19687 ire_t **irep = ire_array; 19688 ire_t **irep1; 19689 ipaddr_t net_mask = 0; 19690 ipaddr_t subnet_mask, route_mask; 19691 ill_t *ill = ipif->ipif_ill; 19692 queue_t *stq; 19693 ipif_t *src_ipif; 19694 ipif_t *tmp_ipif; 19695 boolean_t flush_ire_cache = B_TRUE; 19696 int err = 0; 19697 phyint_t *phyi; 19698 ire_t **ipif_saved_irep = NULL; 19699 int ipif_saved_ire_cnt; 19700 int cnt; 19701 boolean_t src_ipif_held = B_FALSE; 19702 boolean_t ire_added = B_FALSE; 19703 boolean_t loopback = B_FALSE; 19704 19705 ip1dbg(("ipif_up_done(%s:%u)\n", 19706 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19707 /* Check if this is a loopback interface */ 19708 if (ipif->ipif_ill->ill_wq == NULL) 19709 loopback = B_TRUE; 19710 19711 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19712 /* 19713 * If all other interfaces for this ill are down or DEPRECATED, 19714 * or otherwise unsuitable for source address selection, remove 19715 * any IRE_CACHE entries for this ill to make sure source 19716 * address selection gets to take this new ipif into account. 19717 * No need to hold ill_lock while traversing the ipif list since 19718 * we are writer 19719 */ 19720 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19721 tmp_ipif = tmp_ipif->ipif_next) { 19722 if (((tmp_ipif->ipif_flags & 19723 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19724 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19725 (tmp_ipif == ipif)) 19726 continue; 19727 /* first useable pre-existing interface */ 19728 flush_ire_cache = B_FALSE; 19729 break; 19730 } 19731 if (flush_ire_cache) 19732 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19733 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19734 19735 /* 19736 * Figure out which way the send-to queue should go. Only 19737 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19738 * should show up here. 19739 */ 19740 switch (ill->ill_net_type) { 19741 case IRE_IF_RESOLVER: 19742 stq = ill->ill_rq; 19743 break; 19744 case IRE_IF_NORESOLVER: 19745 case IRE_LOOPBACK: 19746 stq = ill->ill_wq; 19747 break; 19748 default: 19749 return (EINVAL); 19750 } 19751 19752 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19753 /* 19754 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19755 * ipif_lookup_on_name(), but in the case of zones we can have 19756 * several loopback addresses on lo0. So all the interfaces with 19757 * loopback addresses need to be marked IRE_LOOPBACK. 19758 */ 19759 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19760 htonl(INADDR_LOOPBACK)) 19761 ipif->ipif_ire_type = IRE_LOOPBACK; 19762 else 19763 ipif->ipif_ire_type = IRE_LOCAL; 19764 } 19765 19766 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19767 /* 19768 * Can't use our source address. Select a different 19769 * source address for the IRE_INTERFACE and IRE_LOCAL 19770 */ 19771 src_ipif = ipif_select_source(ipif->ipif_ill, 19772 ipif->ipif_subnet, ipif->ipif_zoneid); 19773 if (src_ipif == NULL) 19774 src_ipif = ipif; /* Last resort */ 19775 else 19776 src_ipif_held = B_TRUE; 19777 } else { 19778 src_ipif = ipif; 19779 } 19780 19781 /* Create all the IREs associated with this interface */ 19782 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19783 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19784 19785 /* 19786 * If we're on a labeled system then make sure that zone- 19787 * private addresses have proper remote host database entries. 19788 */ 19789 if (is_system_labeled() && 19790 ipif->ipif_ire_type != IRE_LOOPBACK && 19791 !tsol_check_interface_address(ipif)) 19792 return (EINVAL); 19793 19794 /* Register the source address for __sin6_src_id */ 19795 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19796 ipif->ipif_zoneid); 19797 if (err != 0) { 19798 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19799 return (err); 19800 } 19801 19802 /* If the interface address is set, create the local IRE. */ 19803 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19804 (void *)ipif, 19805 ipif->ipif_ire_type, 19806 ntohl(ipif->ipif_lcl_addr))); 19807 *irep++ = ire_create( 19808 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19809 (uchar_t *)&ip_g_all_ones, /* mask */ 19810 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19811 NULL, /* no gateway */ 19812 NULL, 19813 &ip_loopback_mtuplus, /* max frag size */ 19814 NULL, 19815 ipif->ipif_rq, /* recv-from queue */ 19816 NULL, /* no send-to queue */ 19817 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19818 NULL, 19819 ipif, 19820 NULL, 19821 0, 19822 0, 19823 0, 19824 (ipif->ipif_flags & IPIF_PRIVATE) ? 19825 RTF_PRIVATE : 0, 19826 &ire_uinfo_null, 19827 NULL, 19828 NULL); 19829 } else { 19830 ip1dbg(( 19831 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19832 ipif->ipif_ire_type, 19833 ntohl(ipif->ipif_lcl_addr), 19834 (uint_t)ipif->ipif_flags)); 19835 } 19836 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19837 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19838 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19839 } else { 19840 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19841 } 19842 19843 subnet_mask = ipif->ipif_net_mask; 19844 19845 /* 19846 * If mask was not specified, use natural netmask of 19847 * interface address. Also, store this mask back into the 19848 * ipif struct. 19849 */ 19850 if (subnet_mask == 0) { 19851 subnet_mask = net_mask; 19852 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19853 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19854 ipif->ipif_v6subnet); 19855 } 19856 19857 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19858 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19859 ipif->ipif_subnet != INADDR_ANY) { 19860 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19861 19862 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19863 route_mask = IP_HOST_MASK; 19864 } else { 19865 route_mask = subnet_mask; 19866 } 19867 19868 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19869 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19870 (void *)ipif, (void *)ill, 19871 ill->ill_net_type, 19872 ntohl(ipif->ipif_subnet))); 19873 *irep++ = ire_create( 19874 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19875 (uchar_t *)&route_mask, /* mask */ 19876 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19877 NULL, /* no gateway */ 19878 NULL, 19879 &ipif->ipif_mtu, /* max frag */ 19880 NULL, 19881 NULL, /* no recv queue */ 19882 stq, /* send-to queue */ 19883 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19884 ill->ill_resolver_mp, /* xmit header */ 19885 ipif, 19886 NULL, 19887 0, 19888 0, 19889 0, 19890 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19891 &ire_uinfo_null, 19892 NULL, 19893 NULL); 19894 } 19895 19896 /* 19897 * If the interface address is set, create the broadcast IREs. 19898 * 19899 * ire_create_bcast checks if the proposed new IRE matches 19900 * any existing IRE's with the same physical interface (ILL). 19901 * This should get rid of duplicates. 19902 * ire_create_bcast also check IPIF_NOXMIT and does not create 19903 * any broadcast ires. 19904 */ 19905 if ((ipif->ipif_subnet != INADDR_ANY) && 19906 (ipif->ipif_flags & IPIF_BROADCAST)) { 19907 ipaddr_t addr; 19908 19909 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19910 irep = ire_check_and_create_bcast(ipif, 0, irep, 19911 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19912 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19913 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19914 19915 /* 19916 * For backward compatibility, we need to create net 19917 * broadcast ire's based on the old "IP address class 19918 * system." The reason is that some old machines only 19919 * respond to these class derived net broadcast. 19920 * 19921 * But we should not create these net broadcast ire's if 19922 * the subnet_mask is shorter than the IP address class based 19923 * derived netmask. Otherwise, we may create a net 19924 * broadcast address which is the same as an IP address 19925 * on the subnet. Then TCP will refuse to talk to that 19926 * address. 19927 * 19928 * Nor do we need IRE_BROADCAST ire's for the interface 19929 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19930 * interface is already created. Creating these broadcast 19931 * ire's will only create confusion as the "addr" is going 19932 * to be same as that of the IP address of the interface. 19933 */ 19934 if (net_mask < subnet_mask) { 19935 addr = net_mask & ipif->ipif_subnet; 19936 irep = ire_check_and_create_bcast(ipif, addr, irep, 19937 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19938 irep = ire_check_and_create_bcast(ipif, 19939 ~net_mask | addr, irep, 19940 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19941 } 19942 19943 if (subnet_mask != 0xFFFFFFFF) { 19944 addr = ipif->ipif_subnet; 19945 irep = ire_check_and_create_bcast(ipif, addr, irep, 19946 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19947 irep = ire_check_and_create_bcast(ipif, 19948 ~subnet_mask|addr, irep, 19949 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19950 } 19951 } 19952 19953 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19954 19955 /* If an earlier ire_create failed, get out now */ 19956 for (irep1 = irep; irep1 > ire_array; ) { 19957 irep1--; 19958 if (*irep1 == NULL) { 19959 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19960 err = ENOMEM; 19961 goto bad; 19962 } 19963 } 19964 19965 /* 19966 * Need to atomically check for ip_addr_availablity_check 19967 * under ip_addr_avail_lock, and if it fails got bad, and remove 19968 * from group also.The ill_g_lock is grabbed as reader 19969 * just to make sure no new ills or new ipifs are being added 19970 * to the system while we are checking the uniqueness of addresses. 19971 */ 19972 rw_enter(&ill_g_lock, RW_READER); 19973 mutex_enter(&ip_addr_avail_lock); 19974 /* Mark it up, and increment counters. */ 19975 ipif->ipif_flags |= IPIF_UP; 19976 ill->ill_ipif_up_count++; 19977 err = ip_addr_availability_check(ipif); 19978 mutex_exit(&ip_addr_avail_lock); 19979 rw_exit(&ill_g_lock); 19980 19981 if (err != 0) { 19982 /* 19983 * Our address may already be up on the same ill. In this case, 19984 * the ARP entry for our ipif replaced the one for the other 19985 * ipif. So we don't want to delete it (otherwise the other ipif 19986 * would be unable to send packets). 19987 * ip_addr_availability_check() identifies this case for us and 19988 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19989 * which is the expected error code. 19990 */ 19991 if (err == EADDRINUSE) { 19992 freemsg(ipif->ipif_arp_del_mp); 19993 ipif->ipif_arp_del_mp = NULL; 19994 err = EADDRNOTAVAIL; 19995 } 19996 ill->ill_ipif_up_count--; 19997 ipif->ipif_flags &= ~IPIF_UP; 19998 goto bad; 19999 } 20000 20001 /* 20002 * Add in all newly created IREs. ire_create_bcast() has 20003 * already checked for duplicates of the IRE_BROADCAST type. 20004 * We want to add before we call ifgrp_insert which wants 20005 * to know whether IRE_IF_RESOLVER exists or not. 20006 * 20007 * NOTE : We refrele the ire though we may branch to "bad" 20008 * later on where we do ire_delete. This is okay 20009 * because nobody can delete it as we are running 20010 * exclusively. 20011 */ 20012 for (irep1 = irep; irep1 > ire_array; ) { 20013 irep1--; 20014 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20015 /* 20016 * refheld by ire_add. refele towards the end of the func 20017 */ 20018 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20019 } 20020 ire_added = B_TRUE; 20021 /* 20022 * Form groups if possible. 20023 * 20024 * If we are supposed to be in a ill_group with a name, insert it 20025 * now as we know that at least one ipif is UP. Otherwise form 20026 * nameless groups. 20027 * 20028 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20029 * this ipif into the appropriate interface group, or create a 20030 * new one. If this is already in a nameless group, we try to form 20031 * a bigger group looking at other ills potentially sharing this 20032 * ipif's prefix. 20033 */ 20034 phyi = ill->ill_phyint; 20035 if (phyi->phyint_groupname_len != 0) { 20036 ASSERT(phyi->phyint_groupname != NULL); 20037 if (ill->ill_ipif_up_count == 1) { 20038 ASSERT(ill->ill_group == NULL); 20039 err = illgrp_insert(&illgrp_head_v4, ill, 20040 phyi->phyint_groupname, NULL, B_TRUE); 20041 if (err != 0) { 20042 ip1dbg(("ipif_up_done: illgrp allocation " 20043 "failed, error %d\n", err)); 20044 goto bad; 20045 } 20046 } 20047 ASSERT(ill->ill_group != NULL); 20048 } 20049 20050 /* 20051 * When this is part of group, we need to make sure that 20052 * any broadcast ires created because of this ipif coming 20053 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20054 * so that we don't receive duplicate broadcast packets. 20055 */ 20056 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20057 ipif_renominate_bcast(ipif); 20058 20059 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20060 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20061 ipif_saved_irep = ipif_recover_ire(ipif); 20062 20063 if (!loopback) { 20064 /* 20065 * If the broadcast address has been set, make sure it makes 20066 * sense based on the interface address. 20067 * Only match on ill since we are sharing broadcast addresses. 20068 */ 20069 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20070 (ipif->ipif_flags & IPIF_BROADCAST)) { 20071 ire_t *ire; 20072 20073 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20074 IRE_BROADCAST, ipif, ALL_ZONES, 20075 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20076 20077 if (ire == NULL) { 20078 /* 20079 * If there isn't a matching broadcast IRE, 20080 * revert to the default for this netmask. 20081 */ 20082 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20083 mutex_enter(&ipif->ipif_ill->ill_lock); 20084 ipif_set_default(ipif); 20085 mutex_exit(&ipif->ipif_ill->ill_lock); 20086 } else { 20087 ire_refrele(ire); 20088 } 20089 } 20090 20091 } 20092 20093 /* This is the first interface on this ill */ 20094 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20095 /* 20096 * Need to recover all multicast memberships in the driver. 20097 * This had to be deferred until we had attached. 20098 */ 20099 ill_recover_multicast(ill); 20100 } 20101 /* Join the allhosts multicast address */ 20102 ipif_multicast_up(ipif); 20103 20104 if (!loopback) { 20105 /* 20106 * See whether anybody else would benefit from the 20107 * new ipif that we added. We call this always rather 20108 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20109 * ipif is for the benefit of illgrp_insert (done above) 20110 * which does not do source address selection as it does 20111 * not want to re-create interface routes that we are 20112 * having reference to it here. 20113 */ 20114 ill_update_source_selection(ill); 20115 } 20116 20117 for (irep1 = irep; irep1 > ire_array; ) { 20118 irep1--; 20119 if (*irep1 != NULL) { 20120 /* was held in ire_add */ 20121 ire_refrele(*irep1); 20122 } 20123 } 20124 20125 cnt = ipif_saved_ire_cnt; 20126 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20127 if (*irep1 != NULL) { 20128 /* was held in ire_add */ 20129 ire_refrele(*irep1); 20130 } 20131 } 20132 20133 if (!loopback && ipif->ipif_addr_ready) { 20134 /* Broadcast an address mask reply. */ 20135 ipif_mask_reply(ipif); 20136 } 20137 if (ipif_saved_irep != NULL) { 20138 kmem_free(ipif_saved_irep, 20139 ipif_saved_ire_cnt * sizeof (ire_t *)); 20140 } 20141 if (src_ipif_held) 20142 ipif_refrele(src_ipif); 20143 20144 /* 20145 * This had to be deferred until we had bound. Tell routing sockets and 20146 * others that this interface is up if it looks like the address has 20147 * been validated. Otherwise, if it isn't ready yet, wait for 20148 * duplicate address detection to do its thing. 20149 */ 20150 if (ipif->ipif_addr_ready) { 20151 ip_rts_ifmsg(ipif); 20152 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20153 /* Let SCTP update the status for this ipif */ 20154 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20155 } 20156 return (0); 20157 20158 bad: 20159 ip1dbg(("ipif_up_done: FAILED \n")); 20160 /* 20161 * We don't have to bother removing from ill groups because 20162 * 20163 * 1) For groups with names, we insert only when the first ipif 20164 * comes up. In that case if it fails, it will not be in any 20165 * group. So, we need not try to remove for that case. 20166 * 20167 * 2) For groups without names, either we tried to insert ipif_ill 20168 * in a group as singleton or found some other group to become 20169 * a bigger group. For the former, if it fails we don't have 20170 * anything to do as ipif_ill is not in the group and for the 20171 * latter, there are no failures in illgrp_insert/illgrp_delete 20172 * (ENOMEM can't occur for this. Check ifgrp_insert). 20173 */ 20174 while (irep > ire_array) { 20175 irep--; 20176 if (*irep != NULL) { 20177 ire_delete(*irep); 20178 if (ire_added) 20179 ire_refrele(*irep); 20180 } 20181 } 20182 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 20183 20184 if (ipif_saved_irep != NULL) { 20185 kmem_free(ipif_saved_irep, 20186 ipif_saved_ire_cnt * sizeof (ire_t *)); 20187 } 20188 if (src_ipif_held) 20189 ipif_refrele(src_ipif); 20190 20191 ipif_arp_down(ipif); 20192 return (err); 20193 } 20194 20195 /* 20196 * Turn off the ARP with the ILLF_NOARP flag. 20197 */ 20198 static int 20199 ill_arp_off(ill_t *ill) 20200 { 20201 mblk_t *arp_off_mp = NULL; 20202 mblk_t *arp_on_mp = NULL; 20203 20204 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20205 20206 ASSERT(IAM_WRITER_ILL(ill)); 20207 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20208 20209 /* 20210 * If the on message is still around we've already done 20211 * an arp_off without doing an arp_on thus there is no 20212 * work needed. 20213 */ 20214 if (ill->ill_arp_on_mp != NULL) 20215 return (0); 20216 20217 /* 20218 * Allocate an ARP on message (to be saved) and an ARP off message 20219 */ 20220 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20221 if (!arp_off_mp) 20222 return (ENOMEM); 20223 20224 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20225 if (!arp_on_mp) 20226 goto failed; 20227 20228 ASSERT(ill->ill_arp_on_mp == NULL); 20229 ill->ill_arp_on_mp = arp_on_mp; 20230 20231 /* Send an AR_INTERFACE_OFF request */ 20232 putnext(ill->ill_rq, arp_off_mp); 20233 return (0); 20234 failed: 20235 20236 if (arp_off_mp) 20237 freemsg(arp_off_mp); 20238 return (ENOMEM); 20239 } 20240 20241 /* 20242 * Turn on ARP by turning off the ILLF_NOARP flag. 20243 */ 20244 static int 20245 ill_arp_on(ill_t *ill) 20246 { 20247 mblk_t *mp; 20248 20249 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20250 20251 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20252 20253 ASSERT(IAM_WRITER_ILL(ill)); 20254 /* 20255 * Send an AR_INTERFACE_ON request if we have already done 20256 * an arp_off (which allocated the message). 20257 */ 20258 if (ill->ill_arp_on_mp != NULL) { 20259 mp = ill->ill_arp_on_mp; 20260 ill->ill_arp_on_mp = NULL; 20261 putnext(ill->ill_rq, mp); 20262 } 20263 return (0); 20264 } 20265 20266 /* 20267 * Called after either deleting ill from the group or when setting 20268 * FAILED or STANDBY on the interface. 20269 */ 20270 static void 20271 illgrp_reset_schednext(ill_t *ill) 20272 { 20273 ill_group_t *illgrp; 20274 ill_t *save_ill; 20275 20276 ASSERT(IAM_WRITER_ILL(ill)); 20277 /* 20278 * When called from illgrp_delete, ill_group will be non-NULL. 20279 * But when called from ip_sioctl_flags, it could be NULL if 20280 * somebody is setting FAILED/INACTIVE on some interface which 20281 * is not part of a group. 20282 */ 20283 illgrp = ill->ill_group; 20284 if (illgrp == NULL) 20285 return; 20286 if (illgrp->illgrp_ill_schednext != ill) 20287 return; 20288 20289 illgrp->illgrp_ill_schednext = NULL; 20290 save_ill = ill; 20291 /* 20292 * Choose a good ill to be the next one for 20293 * outbound traffic. As the flags FAILED/STANDBY is 20294 * not yet marked when called from ip_sioctl_flags, 20295 * we check for ill separately. 20296 */ 20297 for (ill = illgrp->illgrp_ill; ill != NULL; 20298 ill = ill->ill_group_next) { 20299 if ((ill != save_ill) && 20300 !(ill->ill_phyint->phyint_flags & 20301 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20302 illgrp->illgrp_ill_schednext = ill; 20303 return; 20304 } 20305 } 20306 } 20307 20308 /* 20309 * Given an ill, find the next ill in the group to be scheduled. 20310 * (This should be called by ip_newroute() before ire_create().) 20311 * The passed in ill may be pulled out of the group, after we have picked 20312 * up a different outgoing ill from the same group. However ire add will 20313 * atomically check this. 20314 */ 20315 ill_t * 20316 illgrp_scheduler(ill_t *ill) 20317 { 20318 ill_t *retill; 20319 ill_group_t *illgrp; 20320 int illcnt; 20321 int i; 20322 uint64_t flags; 20323 20324 /* 20325 * We don't use a lock to check for the ill_group. If this ill 20326 * is currently being inserted we may end up just returning this 20327 * ill itself. That is ok. 20328 */ 20329 if (ill->ill_group == NULL) { 20330 ill_refhold(ill); 20331 return (ill); 20332 } 20333 20334 /* 20335 * Grab the ill_g_lock as reader to make sure we are dealing with 20336 * a set of stable ills. No ill can be added or deleted or change 20337 * group while we hold the reader lock. 20338 */ 20339 rw_enter(&ill_g_lock, RW_READER); 20340 if ((illgrp = ill->ill_group) == NULL) { 20341 rw_exit(&ill_g_lock); 20342 ill_refhold(ill); 20343 return (ill); 20344 } 20345 20346 illcnt = illgrp->illgrp_ill_count; 20347 mutex_enter(&illgrp->illgrp_lock); 20348 retill = illgrp->illgrp_ill_schednext; 20349 20350 if (retill == NULL) 20351 retill = illgrp->illgrp_ill; 20352 20353 /* 20354 * We do a circular search beginning at illgrp_ill_schednext 20355 * or illgrp_ill. We don't check the flags against the ill lock 20356 * since it can change anytime. The ire creation will be atomic 20357 * and will fail if the ill is FAILED or OFFLINE. 20358 */ 20359 for (i = 0; i < illcnt; i++) { 20360 flags = retill->ill_phyint->phyint_flags; 20361 20362 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20363 ILL_CAN_LOOKUP(retill)) { 20364 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20365 ill_refhold(retill); 20366 break; 20367 } 20368 retill = retill->ill_group_next; 20369 if (retill == NULL) 20370 retill = illgrp->illgrp_ill; 20371 } 20372 mutex_exit(&illgrp->illgrp_lock); 20373 rw_exit(&ill_g_lock); 20374 20375 return (i == illcnt ? NULL : retill); 20376 } 20377 20378 /* 20379 * Checks for availbility of a usable source address (if there is one) when the 20380 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20381 * this selection is done regardless of the destination. 20382 */ 20383 boolean_t 20384 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20385 { 20386 uint_t ifindex; 20387 ipif_t *ipif = NULL; 20388 ill_t *uill; 20389 boolean_t isv6; 20390 20391 ASSERT(ill != NULL); 20392 20393 isv6 = ill->ill_isv6; 20394 ifindex = ill->ill_usesrc_ifindex; 20395 if (ifindex != 0) { 20396 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20397 NULL); 20398 if (uill == NULL) 20399 return (NULL); 20400 mutex_enter(&uill->ill_lock); 20401 for (ipif = uill->ill_ipif; ipif != NULL; 20402 ipif = ipif->ipif_next) { 20403 if (!IPIF_CAN_LOOKUP(ipif)) 20404 continue; 20405 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20406 continue; 20407 if (!(ipif->ipif_flags & IPIF_UP)) 20408 continue; 20409 if (ipif->ipif_zoneid != zoneid) 20410 continue; 20411 if ((isv6 && 20412 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20413 (ipif->ipif_lcl_addr == INADDR_ANY)) 20414 continue; 20415 mutex_exit(&uill->ill_lock); 20416 ill_refrele(uill); 20417 return (B_TRUE); 20418 } 20419 mutex_exit(&uill->ill_lock); 20420 ill_refrele(uill); 20421 } 20422 return (B_FALSE); 20423 } 20424 20425 /* 20426 * Determine the best source address given a destination address and an ill. 20427 * Prefers non-deprecated over deprecated but will return a deprecated 20428 * address if there is no other choice. If there is a usable source address 20429 * on the interface pointed to by ill_usesrc_ifindex then that is given 20430 * first preference. 20431 * 20432 * Returns NULL if there is no suitable source address for the ill. 20433 * This only occurs when there is no valid source address for the ill. 20434 */ 20435 ipif_t * 20436 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20437 { 20438 ipif_t *ipif; 20439 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20440 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20441 int index = 0; 20442 boolean_t wrapped = B_FALSE; 20443 boolean_t same_subnet_only = B_FALSE; 20444 boolean_t ipif_same_found, ipif_other_found; 20445 boolean_t specific_found; 20446 ill_t *till, *usill = NULL; 20447 tsol_tpc_t *src_rhtp, *dst_rhtp; 20448 20449 if (ill->ill_usesrc_ifindex != 0) { 20450 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20451 NULL, NULL, NULL, NULL); 20452 if (usill != NULL) 20453 ill = usill; /* Select source from usesrc ILL */ 20454 else 20455 return (NULL); 20456 } 20457 20458 /* 20459 * If we're dealing with an unlabeled destination on a labeled system, 20460 * make sure that we ignore source addresses that are incompatible with 20461 * the destination's default label. That destination's default label 20462 * must dominate the minimum label on the source address. 20463 */ 20464 dst_rhtp = NULL; 20465 if (is_system_labeled()) { 20466 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20467 if (dst_rhtp == NULL) 20468 return (NULL); 20469 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20470 TPC_RELE(dst_rhtp); 20471 dst_rhtp = NULL; 20472 } 20473 } 20474 20475 /* 20476 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20477 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20478 * After selecting the right ipif, under ill_lock make sure ipif is 20479 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20480 * we retry. Inside the loop we still need to check for CONDEMNED, 20481 * but not under a lock. 20482 */ 20483 rw_enter(&ill_g_lock, RW_READER); 20484 20485 retry: 20486 till = ill; 20487 ipif_arr[0] = NULL; 20488 20489 if (till->ill_group != NULL) 20490 till = till->ill_group->illgrp_ill; 20491 20492 /* 20493 * Choose one good source address from each ill across the group. 20494 * If possible choose a source address in the same subnet as 20495 * the destination address. 20496 * 20497 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20498 * This is okay because of the following. 20499 * 20500 * If PHYI_FAILED is set and we still have non-deprecated 20501 * addresses, it means the addresses have not yet been 20502 * failed over to a different interface. We potentially 20503 * select them to create IRE_CACHES, which will be later 20504 * flushed when the addresses move over. 20505 * 20506 * If PHYI_INACTIVE is set and we still have non-deprecated 20507 * addresses, it means either the user has configured them 20508 * or PHYI_INACTIVE has not been cleared after the addresses 20509 * been moved over. For the former, in.mpathd does a failover 20510 * when the interface becomes INACTIVE and hence we should 20511 * not find them. Once INACTIVE is set, we don't allow them 20512 * to create logical interfaces anymore. For the latter, a 20513 * flush will happen when INACTIVE is cleared which will 20514 * flush the IRE_CACHES. 20515 * 20516 * If PHYI_OFFLINE is set, all the addresses will be failed 20517 * over soon. We potentially select them to create IRE_CACHEs, 20518 * which will be later flushed when the addresses move over. 20519 * 20520 * NOTE : As ipif_select_source is called to borrow source address 20521 * for an ipif that is part of a group, source address selection 20522 * will be re-done whenever the group changes i.e either an 20523 * insertion/deletion in the group. 20524 * 20525 * Fill ipif_arr[] with source addresses, using these rules: 20526 * 20527 * 1. At most one source address from a given ill ends up 20528 * in ipif_arr[] -- that is, at most one of the ipif's 20529 * associated with a given ill ends up in ipif_arr[]. 20530 * 20531 * 2. If there is at least one non-deprecated ipif in the 20532 * IPMP group with a source address on the same subnet as 20533 * our destination, then fill ipif_arr[] only with 20534 * source addresses on the same subnet as our destination. 20535 * Note that because of (1), only the first 20536 * non-deprecated ipif found with a source address 20537 * matching the destination ends up in ipif_arr[]. 20538 * 20539 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20540 * addresses not in the same subnet as our destination. 20541 * Again, because of (1), only the first off-subnet source 20542 * address will be chosen. 20543 * 20544 * 4. If there are no non-deprecated ipifs, then just use 20545 * the source address associated with the last deprecated 20546 * one we find that happens to be on the same subnet, 20547 * otherwise the first one not in the same subnet. 20548 */ 20549 specific_found = B_FALSE; 20550 for (; till != NULL; till = till->ill_group_next) { 20551 ipif_same_found = B_FALSE; 20552 ipif_other_found = B_FALSE; 20553 for (ipif = till->ill_ipif; ipif != NULL; 20554 ipif = ipif->ipif_next) { 20555 if (!IPIF_CAN_LOOKUP(ipif)) 20556 continue; 20557 /* Always skip NOLOCAL and ANYCAST interfaces */ 20558 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20559 continue; 20560 if (!(ipif->ipif_flags & IPIF_UP) || 20561 !ipif->ipif_addr_ready) 20562 continue; 20563 if (ipif->ipif_zoneid != zoneid && 20564 ipif->ipif_zoneid != ALL_ZONES) 20565 continue; 20566 /* 20567 * Interfaces with 0.0.0.0 address are allowed to be UP, 20568 * but are not valid as source addresses. 20569 */ 20570 if (ipif->ipif_lcl_addr == INADDR_ANY) 20571 continue; 20572 20573 /* 20574 * Check compatibility of local address for 20575 * destination's default label if we're on a labeled 20576 * system. Incompatible addresses can't be used at 20577 * all. 20578 */ 20579 if (dst_rhtp != NULL) { 20580 boolean_t incompat; 20581 20582 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20583 IPV4_VERSION, B_FALSE); 20584 if (src_rhtp == NULL) 20585 continue; 20586 incompat = 20587 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20588 src_rhtp->tpc_tp.tp_doi != 20589 dst_rhtp->tpc_tp.tp_doi || 20590 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20591 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20592 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20593 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20594 TPC_RELE(src_rhtp); 20595 if (incompat) 20596 continue; 20597 } 20598 20599 /* 20600 * We prefer not to use all all-zones addresses, if we 20601 * can avoid it, as they pose problems with unlabeled 20602 * destinations. 20603 */ 20604 if (ipif->ipif_zoneid != ALL_ZONES) { 20605 if (!specific_found && 20606 (!same_subnet_only || 20607 (ipif->ipif_net_mask & dst) == 20608 ipif->ipif_subnet)) { 20609 index = 0; 20610 specific_found = B_TRUE; 20611 ipif_other_found = B_FALSE; 20612 } 20613 } else { 20614 if (specific_found) 20615 continue; 20616 } 20617 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20618 if (ipif_dep == NULL || 20619 (ipif->ipif_net_mask & dst) == 20620 ipif->ipif_subnet) 20621 ipif_dep = ipif; 20622 continue; 20623 } 20624 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20625 /* found a source address in the same subnet */ 20626 if (!same_subnet_only) { 20627 same_subnet_only = B_TRUE; 20628 index = 0; 20629 } 20630 ipif_same_found = B_TRUE; 20631 } else { 20632 if (same_subnet_only || ipif_other_found) 20633 continue; 20634 ipif_other_found = B_TRUE; 20635 } 20636 ipif_arr[index++] = ipif; 20637 if (index == MAX_IPIF_SELECT_SOURCE) { 20638 wrapped = B_TRUE; 20639 index = 0; 20640 } 20641 if (ipif_same_found) 20642 break; 20643 } 20644 } 20645 20646 if (ipif_arr[0] == NULL) { 20647 ipif = ipif_dep; 20648 } else { 20649 if (wrapped) 20650 index = MAX_IPIF_SELECT_SOURCE; 20651 ipif = ipif_arr[ipif_rand() % index]; 20652 ASSERT(ipif != NULL); 20653 } 20654 20655 if (ipif != NULL) { 20656 mutex_enter(&ipif->ipif_ill->ill_lock); 20657 if (!IPIF_CAN_LOOKUP(ipif)) { 20658 mutex_exit(&ipif->ipif_ill->ill_lock); 20659 goto retry; 20660 } 20661 ipif_refhold_locked(ipif); 20662 mutex_exit(&ipif->ipif_ill->ill_lock); 20663 } 20664 20665 rw_exit(&ill_g_lock); 20666 if (usill != NULL) 20667 ill_refrele(usill); 20668 if (dst_rhtp != NULL) 20669 TPC_RELE(dst_rhtp); 20670 20671 #ifdef DEBUG 20672 if (ipif == NULL) { 20673 char buf1[INET6_ADDRSTRLEN]; 20674 20675 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20676 ill->ill_name, 20677 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20678 } else { 20679 char buf1[INET6_ADDRSTRLEN]; 20680 char buf2[INET6_ADDRSTRLEN]; 20681 20682 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20683 ipif->ipif_ill->ill_name, 20684 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20685 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20686 buf2, sizeof (buf2)))); 20687 } 20688 #endif /* DEBUG */ 20689 return (ipif); 20690 } 20691 20692 20693 /* 20694 * If old_ipif is not NULL, see if ipif was derived from old 20695 * ipif and if so, recreate the interface route by re-doing 20696 * source address selection. This happens when ipif_down -> 20697 * ipif_update_other_ipifs calls us. 20698 * 20699 * If old_ipif is NULL, just redo the source address selection 20700 * if needed. This happens when illgrp_insert or ipif_up_done 20701 * calls us. 20702 */ 20703 static void 20704 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20705 { 20706 ire_t *ire; 20707 ire_t *ipif_ire; 20708 queue_t *stq; 20709 ipif_t *nipif; 20710 ill_t *ill; 20711 boolean_t need_rele = B_FALSE; 20712 20713 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20714 ASSERT(IAM_WRITER_IPIF(ipif)); 20715 20716 ill = ipif->ipif_ill; 20717 if (!(ipif->ipif_flags & 20718 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20719 /* 20720 * Can't possibly have borrowed the source 20721 * from old_ipif. 20722 */ 20723 return; 20724 } 20725 20726 /* 20727 * Is there any work to be done? No work if the address 20728 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20729 * ipif_select_source() does not borrow addresses from 20730 * NOLOCAL and ANYCAST interfaces). 20731 */ 20732 if ((old_ipif != NULL) && 20733 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20734 (old_ipif->ipif_ill->ill_wq == NULL) || 20735 (old_ipif->ipif_flags & 20736 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20737 return; 20738 } 20739 20740 /* 20741 * Perform the same checks as when creating the 20742 * IRE_INTERFACE in ipif_up_done. 20743 */ 20744 if (!(ipif->ipif_flags & IPIF_UP)) 20745 return; 20746 20747 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20748 (ipif->ipif_subnet == INADDR_ANY)) 20749 return; 20750 20751 ipif_ire = ipif_to_ire(ipif); 20752 if (ipif_ire == NULL) 20753 return; 20754 20755 /* 20756 * We know that ipif uses some other source for its 20757 * IRE_INTERFACE. Is it using the source of this 20758 * old_ipif? 20759 */ 20760 if (old_ipif != NULL && 20761 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20762 ire_refrele(ipif_ire); 20763 return; 20764 } 20765 if (ip_debug > 2) { 20766 /* ip1dbg */ 20767 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20768 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20769 } 20770 20771 stq = ipif_ire->ire_stq; 20772 20773 /* 20774 * Can't use our source address. Select a different 20775 * source address for the IRE_INTERFACE. 20776 */ 20777 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20778 if (nipif == NULL) { 20779 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20780 nipif = ipif; 20781 } else { 20782 need_rele = B_TRUE; 20783 } 20784 20785 ire = ire_create( 20786 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20787 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20788 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20789 NULL, /* no gateway */ 20790 NULL, 20791 &ipif->ipif_mtu, /* max frag */ 20792 NULL, /* fast path header */ 20793 NULL, /* no recv from queue */ 20794 stq, /* send-to queue */ 20795 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20796 ill->ill_resolver_mp, /* xmit header */ 20797 ipif, 20798 NULL, 20799 0, 20800 0, 20801 0, 20802 0, 20803 &ire_uinfo_null, 20804 NULL, 20805 NULL); 20806 20807 if (ire != NULL) { 20808 ire_t *ret_ire; 20809 int error; 20810 20811 /* 20812 * We don't need ipif_ire anymore. We need to delete 20813 * before we add so that ire_add does not detect 20814 * duplicates. 20815 */ 20816 ire_delete(ipif_ire); 20817 ret_ire = ire; 20818 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 20819 ASSERT(error == 0); 20820 ASSERT(ire == ret_ire); 20821 /* Held in ire_add */ 20822 ire_refrele(ret_ire); 20823 } 20824 /* 20825 * Either we are falling through from above or could not 20826 * allocate a replacement. 20827 */ 20828 ire_refrele(ipif_ire); 20829 if (need_rele) 20830 ipif_refrele(nipif); 20831 } 20832 20833 /* 20834 * This old_ipif is going away. 20835 * 20836 * Determine if any other ipif's is using our address as 20837 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 20838 * IPIF_DEPRECATED). 20839 * Find the IRE_INTERFACE for such ipifs and recreate them 20840 * to use an different source address following the rules in 20841 * ipif_up_done. 20842 * 20843 * This function takes an illgrp as an argument so that illgrp_delete 20844 * can call this to update source address even after deleting the 20845 * old_ipif->ipif_ill from the ill group. 20846 */ 20847 static void 20848 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 20849 { 20850 ipif_t *ipif; 20851 ill_t *ill; 20852 char buf[INET6_ADDRSTRLEN]; 20853 20854 ASSERT(IAM_WRITER_IPIF(old_ipif)); 20855 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 20856 20857 ill = old_ipif->ipif_ill; 20858 20859 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 20860 ill->ill_name, 20861 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 20862 buf, sizeof (buf)))); 20863 /* 20864 * If this part of a group, look at all ills as ipif_select_source 20865 * borrows source address across all the ills in the group. 20866 */ 20867 if (illgrp != NULL) 20868 ill = illgrp->illgrp_ill; 20869 20870 for (; ill != NULL; ill = ill->ill_group_next) { 20871 for (ipif = ill->ill_ipif; ipif != NULL; 20872 ipif = ipif->ipif_next) { 20873 20874 if (ipif == old_ipif) 20875 continue; 20876 20877 ipif_recreate_interface_routes(old_ipif, ipif); 20878 } 20879 } 20880 } 20881 20882 /* ARGSUSED */ 20883 int 20884 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20885 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20886 { 20887 /* 20888 * ill_phyint_reinit merged the v4 and v6 into a single 20889 * ipsq. Could also have become part of a ipmp group in the 20890 * process, and we might not have been able to complete the 20891 * operation in ipif_set_values, if we could not become 20892 * exclusive. If so restart it here. 20893 */ 20894 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20895 } 20896 20897 20898 /* ARGSUSED */ 20899 int 20900 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20901 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20902 { 20903 queue_t *q1 = q; 20904 char *cp; 20905 char interf_name[LIFNAMSIZ]; 20906 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20907 20908 if (!q->q_next) { 20909 ip1dbg(( 20910 "if_unitsel: IF_UNITSEL: no q_next\n")); 20911 return (EINVAL); 20912 } 20913 20914 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20915 return (EALREADY); 20916 20917 do { 20918 q1 = q1->q_next; 20919 } while (q1->q_next); 20920 cp = q1->q_qinfo->qi_minfo->mi_idname; 20921 (void) sprintf(interf_name, "%s%d", cp, ppa); 20922 20923 /* 20924 * Here we are not going to delay the ioack until after 20925 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20926 * original ioctl message before sending the requests. 20927 */ 20928 return (ipif_set_values(q, mp, interf_name, &ppa)); 20929 } 20930 20931 /* ARGSUSED */ 20932 int 20933 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20934 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20935 { 20936 return (ENXIO); 20937 } 20938 20939 /* 20940 * Net and subnet broadcast ire's are now specific to the particular 20941 * physical interface (ill) and not to any one locigal interface (ipif). 20942 * However, if a particular logical interface is being taken down, it's 20943 * associated ire's will be taken down as well. Hence, when we go to 20944 * take down or change the local address, broadcast address or netmask 20945 * of a specific logical interface, we must check to make sure that we 20946 * have valid net and subnet broadcast ire's for the other logical 20947 * interfaces which may have been shared with the logical interface 20948 * being brought down or changed. 20949 * 20950 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20951 * is tied to the first interface coming UP. If that ipif is going down, 20952 * we need to recreate them on the next valid ipif. 20953 * 20954 * Note: assume that the ipif passed in is still up so that it's IRE 20955 * entries are still valid. 20956 */ 20957 static void 20958 ipif_check_bcast_ires(ipif_t *test_ipif) 20959 { 20960 ipif_t *ipif; 20961 ire_t *test_subnet_ire, *test_net_ire; 20962 ire_t *test_allzero_ire, *test_allone_ire; 20963 ire_t *ire_array[12]; 20964 ire_t **irep = &ire_array[0]; 20965 ire_t **irep1; 20966 20967 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20968 ipaddr_t test_net_addr, test_subnet_addr; 20969 ipaddr_t test_net_mask, test_subnet_mask; 20970 boolean_t need_net_bcast_ire = B_FALSE; 20971 boolean_t need_subnet_bcast_ire = B_FALSE; 20972 boolean_t allzero_bcast_ire_created = B_FALSE; 20973 boolean_t allone_bcast_ire_created = B_FALSE; 20974 boolean_t net_bcast_ire_created = B_FALSE; 20975 boolean_t subnet_bcast_ire_created = B_FALSE; 20976 20977 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20978 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20979 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20980 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20981 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20982 20983 ASSERT(!test_ipif->ipif_isv6); 20984 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20985 20986 /* 20987 * No broadcast IREs for the LOOPBACK interface 20988 * or others such as point to point and IPIF_NOXMIT. 20989 */ 20990 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20991 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20992 return; 20993 20994 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20995 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20996 20997 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20998 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20999 21000 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21001 test_subnet_mask = test_ipif->ipif_net_mask; 21002 21003 /* 21004 * If no net mask set, assume the default based on net class. 21005 */ 21006 if (test_subnet_mask == 0) 21007 test_subnet_mask = test_net_mask; 21008 21009 /* 21010 * Check if there is a network broadcast ire associated with this ipif 21011 */ 21012 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21013 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21014 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21015 21016 /* 21017 * Check if there is a subnet broadcast IRE associated with this ipif 21018 */ 21019 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21020 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21021 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21022 21023 /* 21024 * No broadcast ire's associated with this ipif. 21025 */ 21026 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21027 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21028 return; 21029 } 21030 21031 /* 21032 * We have established which bcast ires have to be replaced. 21033 * Next we try to locate ipifs that match there ires. 21034 * The rules are simple: If we find an ipif that matches on the subnet 21035 * address it will also match on the net address, the allzeros and 21036 * allones address. Any ipif that matches only on the net address will 21037 * also match the allzeros and allones addresses. 21038 * The other criterion is the ipif_flags. We look for non-deprecated 21039 * (and non-anycast and non-nolocal) ipifs as the best choice. 21040 * ipifs with check_flags matching (deprecated, etc) are used only 21041 * if good ipifs are not available. While looping, we save existing 21042 * deprecated ipifs as backup_ipif. 21043 * We loop through all the ipifs for this ill looking for ipifs 21044 * whose broadcast addr match the ipif passed in, but do not have 21045 * their own broadcast ires. For creating 0.0.0.0 and 21046 * 255.255.255.255 we just need an ipif on this ill to create. 21047 */ 21048 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21049 ipif = ipif->ipif_next) { 21050 21051 ASSERT(!ipif->ipif_isv6); 21052 /* 21053 * Already checked the ipif passed in. 21054 */ 21055 if (ipif == test_ipif) { 21056 continue; 21057 } 21058 21059 /* 21060 * We only need to recreate broadcast ires if another ipif in 21061 * the same zone uses them. The new ires must be created in the 21062 * same zone. 21063 */ 21064 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21065 continue; 21066 } 21067 21068 /* 21069 * Only interested in logical interfaces with valid local 21070 * addresses or with the ability to broadcast. 21071 */ 21072 if ((ipif->ipif_subnet == 0) || 21073 !(ipif->ipif_flags & IPIF_BROADCAST) || 21074 (ipif->ipif_flags & IPIF_NOXMIT) || 21075 !(ipif->ipif_flags & IPIF_UP)) { 21076 continue; 21077 } 21078 /* 21079 * Check if there is a net broadcast ire for this 21080 * net address. If it turns out that the ipif we are 21081 * about to take down owns this ire, we must make a 21082 * new one because it is potentially going away. 21083 */ 21084 if (test_net_ire && (!net_bcast_ire_created)) { 21085 net_mask = ip_net_mask(ipif->ipif_subnet); 21086 net_addr = net_mask & ipif->ipif_subnet; 21087 if (net_addr == test_net_addr) { 21088 need_net_bcast_ire = B_TRUE; 21089 /* 21090 * Use DEPRECATED ipif only if no good 21091 * ires are available. subnet_addr is 21092 * a better match than net_addr. 21093 */ 21094 if ((ipif->ipif_flags & check_flags) && 21095 (backup_ipif_net == NULL)) { 21096 backup_ipif_net = ipif; 21097 } 21098 } 21099 } 21100 /* 21101 * Check if there is a subnet broadcast ire for this 21102 * net address. If it turns out that the ipif we are 21103 * about to take down owns this ire, we must make a 21104 * new one because it is potentially going away. 21105 */ 21106 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21107 subnet_mask = ipif->ipif_net_mask; 21108 subnet_addr = ipif->ipif_subnet; 21109 if (subnet_addr == test_subnet_addr) { 21110 need_subnet_bcast_ire = B_TRUE; 21111 if ((ipif->ipif_flags & check_flags) && 21112 (backup_ipif_subnet == NULL)) { 21113 backup_ipif_subnet = ipif; 21114 } 21115 } 21116 } 21117 21118 21119 /* Short circuit here if this ipif is deprecated */ 21120 if (ipif->ipif_flags & check_flags) { 21121 if ((test_allzero_ire != NULL) && 21122 (!allzero_bcast_ire_created) && 21123 (backup_ipif_allzeros == NULL)) { 21124 backup_ipif_allzeros = ipif; 21125 } 21126 if ((test_allone_ire != NULL) && 21127 (!allone_bcast_ire_created) && 21128 (backup_ipif_allones == NULL)) { 21129 backup_ipif_allones = ipif; 21130 } 21131 continue; 21132 } 21133 21134 /* 21135 * Found an ipif which has the same broadcast ire as the 21136 * ipif passed in and the ipif passed in "owns" the ire. 21137 * Create new broadcast ire's for this broadcast addr. 21138 */ 21139 if (need_net_bcast_ire && !net_bcast_ire_created) { 21140 irep = ire_create_bcast(ipif, net_addr, irep); 21141 irep = ire_create_bcast(ipif, 21142 ~net_mask | net_addr, irep); 21143 net_bcast_ire_created = B_TRUE; 21144 } 21145 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21146 irep = ire_create_bcast(ipif, subnet_addr, irep); 21147 irep = ire_create_bcast(ipif, 21148 ~subnet_mask | subnet_addr, irep); 21149 subnet_bcast_ire_created = B_TRUE; 21150 } 21151 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21152 irep = ire_create_bcast(ipif, 0, irep); 21153 allzero_bcast_ire_created = B_TRUE; 21154 } 21155 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21156 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21157 allone_bcast_ire_created = B_TRUE; 21158 } 21159 /* 21160 * Once we have created all the appropriate ires, we 21161 * just break out of this loop to add what we have created. 21162 * This has been indented similar to ire_match_args for 21163 * readability. 21164 */ 21165 if (((test_net_ire == NULL) || 21166 (net_bcast_ire_created)) && 21167 ((test_subnet_ire == NULL) || 21168 (subnet_bcast_ire_created)) && 21169 ((test_allzero_ire == NULL) || 21170 (allzero_bcast_ire_created)) && 21171 ((test_allone_ire == NULL) || 21172 (allone_bcast_ire_created))) { 21173 break; 21174 } 21175 } 21176 21177 /* 21178 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21179 * exist. 6 pairs of bcast ires are needed. 21180 * Note - the old ires are deleted in ipif_down. 21181 */ 21182 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21183 ipif = backup_ipif_net; 21184 irep = ire_create_bcast(ipif, net_addr, irep); 21185 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21186 net_bcast_ire_created = B_TRUE; 21187 } 21188 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21189 backup_ipif_subnet) { 21190 ipif = backup_ipif_subnet; 21191 irep = ire_create_bcast(ipif, subnet_addr, irep); 21192 irep = ire_create_bcast(ipif, 21193 ~subnet_mask | subnet_addr, irep); 21194 subnet_bcast_ire_created = B_TRUE; 21195 } 21196 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21197 backup_ipif_allzeros) { 21198 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21199 allzero_bcast_ire_created = B_TRUE; 21200 } 21201 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21202 backup_ipif_allones) { 21203 irep = ire_create_bcast(backup_ipif_allones, 21204 INADDR_BROADCAST, irep); 21205 allone_bcast_ire_created = B_TRUE; 21206 } 21207 21208 /* 21209 * If we can't create all of them, don't add any of them. 21210 * Code in ip_wput_ire and ire_to_ill assumes that we 21211 * always have a non-loopback copy and loopback copy 21212 * for a given address. 21213 */ 21214 for (irep1 = irep; irep1 > ire_array; ) { 21215 irep1--; 21216 if (*irep1 == NULL) { 21217 ip0dbg(("ipif_check_bcast_ires: can't create " 21218 "IRE_BROADCAST, memory allocation failure\n")); 21219 while (irep > ire_array) { 21220 irep--; 21221 if (*irep != NULL) 21222 ire_delete(*irep); 21223 } 21224 goto bad; 21225 } 21226 } 21227 for (irep1 = irep; irep1 > ire_array; ) { 21228 int error; 21229 21230 irep1--; 21231 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21232 if (error == 0) { 21233 ire_refrele(*irep1); /* Held in ire_add */ 21234 } 21235 } 21236 bad: 21237 if (test_allzero_ire != NULL) 21238 ire_refrele(test_allzero_ire); 21239 if (test_allone_ire != NULL) 21240 ire_refrele(test_allone_ire); 21241 if (test_net_ire != NULL) 21242 ire_refrele(test_net_ire); 21243 if (test_subnet_ire != NULL) 21244 ire_refrele(test_subnet_ire); 21245 } 21246 21247 /* 21248 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21249 * from lifr_flags and the name from lifr_name. 21250 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21251 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21252 * Returns EINPROGRESS when mp has been consumed by queueing it on 21253 * ill_pending_mp and the ioctl will complete in ip_rput. 21254 */ 21255 /* ARGSUSED */ 21256 int 21257 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21258 ip_ioctl_cmd_t *ipip, void *if_req) 21259 { 21260 int err; 21261 ill_t *ill; 21262 struct lifreq *lifr = (struct lifreq *)if_req; 21263 21264 ASSERT(ipif != NULL); 21265 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21266 ASSERT(q->q_next != NULL); 21267 21268 ill = (ill_t *)q->q_ptr; 21269 /* 21270 * If we are not writer on 'q' then this interface exists already 21271 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21272 * So return EALREADY 21273 */ 21274 if (ill != ipif->ipif_ill) 21275 return (EALREADY); 21276 21277 if (ill->ill_name[0] != '\0') 21278 return (EALREADY); 21279 21280 /* 21281 * Set all the flags. Allows all kinds of override. Provide some 21282 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21283 * unless there is either multicast/broadcast support in the driver 21284 * or it is a pt-pt link. 21285 */ 21286 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21287 /* Meaningless to IP thus don't allow them to be set. */ 21288 ip1dbg(("ip_setname: EINVAL 1\n")); 21289 return (EINVAL); 21290 } 21291 /* 21292 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21293 * ill_bcast_addr_length info. 21294 */ 21295 if (!ill->ill_needs_attach && 21296 ((lifr->lifr_flags & IFF_MULTICAST) && 21297 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21298 ill->ill_bcast_addr_length == 0)) { 21299 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21300 ip1dbg(("ip_setname: EINVAL 2\n")); 21301 return (EINVAL); 21302 } 21303 if ((lifr->lifr_flags & IFF_BROADCAST) && 21304 ((lifr->lifr_flags & IFF_IPV6) || 21305 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21306 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21307 ip1dbg(("ip_setname: EINVAL 3\n")); 21308 return (EINVAL); 21309 } 21310 if (lifr->lifr_flags & IFF_UP) { 21311 /* Can only be set with SIOCSLIFFLAGS */ 21312 ip1dbg(("ip_setname: EINVAL 4\n")); 21313 return (EINVAL); 21314 } 21315 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21316 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21317 ip1dbg(("ip_setname: EINVAL 5\n")); 21318 return (EINVAL); 21319 } 21320 /* 21321 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21322 */ 21323 if ((lifr->lifr_flags & IFF_XRESOLV) && 21324 !(lifr->lifr_flags & IFF_IPV6) && 21325 !(ipif->ipif_isv6)) { 21326 ip1dbg(("ip_setname: EINVAL 6\n")); 21327 return (EINVAL); 21328 } 21329 21330 /* 21331 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21332 * we have all the flags here. So, we assign rather than we OR. 21333 * We can't OR the flags here because we don't want to set 21334 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21335 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21336 * on lifr_flags value here. 21337 */ 21338 /* 21339 * This ill has not been inserted into the global list. 21340 * So we are still single threaded and don't need any lock 21341 */ 21342 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21343 ~IFF_DUPLICATE; 21344 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21345 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21346 21347 /* We started off as V4. */ 21348 if (ill->ill_flags & ILLF_IPV6) { 21349 ill->ill_phyint->phyint_illv6 = ill; 21350 ill->ill_phyint->phyint_illv4 = NULL; 21351 } 21352 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21353 return (err); 21354 } 21355 21356 /* ARGSUSED */ 21357 int 21358 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21359 ip_ioctl_cmd_t *ipip, void *if_req) 21360 { 21361 /* 21362 * ill_phyint_reinit merged the v4 and v6 into a single 21363 * ipsq. Could also have become part of a ipmp group in the 21364 * process, and we might not have been able to complete the 21365 * slifname in ipif_set_values, if we could not become 21366 * exclusive. If so restart it here 21367 */ 21368 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21369 } 21370 21371 /* 21372 * Return a pointer to the ipif which matches the index, IP version type and 21373 * zoneid. 21374 */ 21375 ipif_t * 21376 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21377 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21378 { 21379 ill_t *ill; 21380 ipsq_t *ipsq; 21381 phyint_t *phyi; 21382 ipif_t *ipif; 21383 21384 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21385 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21386 21387 if (err != NULL) 21388 *err = 0; 21389 21390 /* 21391 * Indexes are stored in the phyint - a common structure 21392 * to both IPv4 and IPv6. 21393 */ 21394 21395 rw_enter(&ill_g_lock, RW_READER); 21396 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21397 (void *) &index, NULL); 21398 if (phyi != NULL) { 21399 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21400 if (ill == NULL) { 21401 rw_exit(&ill_g_lock); 21402 if (err != NULL) 21403 *err = ENXIO; 21404 return (NULL); 21405 } 21406 GRAB_CONN_LOCK(q); 21407 mutex_enter(&ill->ill_lock); 21408 if (ILL_CAN_LOOKUP(ill)) { 21409 for (ipif = ill->ill_ipif; ipif != NULL; 21410 ipif = ipif->ipif_next) { 21411 if (IPIF_CAN_LOOKUP(ipif) && 21412 (zoneid == ALL_ZONES || 21413 zoneid == ipif->ipif_zoneid || 21414 ipif->ipif_zoneid == ALL_ZONES)) { 21415 ipif_refhold_locked(ipif); 21416 mutex_exit(&ill->ill_lock); 21417 RELEASE_CONN_LOCK(q); 21418 rw_exit(&ill_g_lock); 21419 return (ipif); 21420 } 21421 } 21422 } else if (ILL_CAN_WAIT(ill, q)) { 21423 ipsq = ill->ill_phyint->phyint_ipsq; 21424 mutex_enter(&ipsq->ipsq_lock); 21425 rw_exit(&ill_g_lock); 21426 mutex_exit(&ill->ill_lock); 21427 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21428 mutex_exit(&ipsq->ipsq_lock); 21429 RELEASE_CONN_LOCK(q); 21430 *err = EINPROGRESS; 21431 return (NULL); 21432 } 21433 mutex_exit(&ill->ill_lock); 21434 RELEASE_CONN_LOCK(q); 21435 } 21436 rw_exit(&ill_g_lock); 21437 if (err != NULL) 21438 *err = ENXIO; 21439 return (NULL); 21440 } 21441 21442 typedef struct conn_change_s { 21443 uint_t cc_old_ifindex; 21444 uint_t cc_new_ifindex; 21445 } conn_change_t; 21446 21447 /* 21448 * ipcl_walk function for changing interface index. 21449 */ 21450 static void 21451 conn_change_ifindex(conn_t *connp, caddr_t arg) 21452 { 21453 conn_change_t *connc; 21454 uint_t old_ifindex; 21455 uint_t new_ifindex; 21456 int i; 21457 ilg_t *ilg; 21458 21459 connc = (conn_change_t *)arg; 21460 old_ifindex = connc->cc_old_ifindex; 21461 new_ifindex = connc->cc_new_ifindex; 21462 21463 if (connp->conn_orig_bound_ifindex == old_ifindex) 21464 connp->conn_orig_bound_ifindex = new_ifindex; 21465 21466 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21467 connp->conn_orig_multicast_ifindex = new_ifindex; 21468 21469 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21470 connp->conn_orig_xmit_ifindex = new_ifindex; 21471 21472 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21473 ilg = &connp->conn_ilg[i]; 21474 if (ilg->ilg_orig_ifindex == old_ifindex) 21475 ilg->ilg_orig_ifindex = new_ifindex; 21476 } 21477 } 21478 21479 /* 21480 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21481 * to new_index if it matches the old_index. 21482 * 21483 * Failovers typically happen within a group of ills. But somebody 21484 * can remove an ill from the group after a failover happened. If 21485 * we are setting the ifindex after this, we potentially need to 21486 * look at all the ills rather than just the ones in the group. 21487 * We cut down the work by looking at matching ill_net_types 21488 * and ill_types as we could not possibly grouped them together. 21489 */ 21490 static void 21491 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21492 { 21493 ill_t *ill; 21494 ipif_t *ipif; 21495 uint_t old_ifindex; 21496 uint_t new_ifindex; 21497 ilm_t *ilm; 21498 ill_walk_context_t ctx; 21499 21500 old_ifindex = connc->cc_old_ifindex; 21501 new_ifindex = connc->cc_new_ifindex; 21502 21503 rw_enter(&ill_g_lock, RW_READER); 21504 ill = ILL_START_WALK_ALL(&ctx); 21505 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21506 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21507 (ill_orig->ill_type != ill->ill_type)) { 21508 continue; 21509 } 21510 for (ipif = ill->ill_ipif; ipif != NULL; 21511 ipif = ipif->ipif_next) { 21512 if (ipif->ipif_orig_ifindex == old_ifindex) 21513 ipif->ipif_orig_ifindex = new_ifindex; 21514 } 21515 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21516 if (ilm->ilm_orig_ifindex == old_ifindex) 21517 ilm->ilm_orig_ifindex = new_ifindex; 21518 } 21519 } 21520 rw_exit(&ill_g_lock); 21521 } 21522 21523 /* 21524 * We first need to ensure that the new index is unique, and 21525 * then carry the change across both v4 and v6 ill representation 21526 * of the physical interface. 21527 */ 21528 /* ARGSUSED */ 21529 int 21530 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21531 ip_ioctl_cmd_t *ipip, void *ifreq) 21532 { 21533 ill_t *ill; 21534 ill_t *ill_other; 21535 phyint_t *phyi; 21536 int old_index; 21537 conn_change_t connc; 21538 struct ifreq *ifr = (struct ifreq *)ifreq; 21539 struct lifreq *lifr = (struct lifreq *)ifreq; 21540 uint_t index; 21541 ill_t *ill_v4; 21542 ill_t *ill_v6; 21543 21544 if (ipip->ipi_cmd_type == IF_CMD) 21545 index = ifr->ifr_index; 21546 else 21547 index = lifr->lifr_index; 21548 21549 /* 21550 * Only allow on physical interface. Also, index zero is illegal. 21551 * 21552 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21553 * 21554 * 1) If PHYI_FAILED is set, a failover could have happened which 21555 * implies a possible failback might have to happen. As failback 21556 * depends on the old index, we should fail setting the index. 21557 * 21558 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21559 * any addresses or multicast memberships are failed over to 21560 * a non-STANDBY interface. As failback depends on the old 21561 * index, we should fail setting the index for this case also. 21562 * 21563 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21564 * Be consistent with PHYI_FAILED and fail the ioctl. 21565 */ 21566 ill = ipif->ipif_ill; 21567 phyi = ill->ill_phyint; 21568 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21569 ipif->ipif_id != 0 || index == 0) { 21570 return (EINVAL); 21571 } 21572 old_index = phyi->phyint_ifindex; 21573 21574 /* If the index is not changing, no work to do */ 21575 if (old_index == index) 21576 return (0); 21577 21578 /* 21579 * Use ill_lookup_on_ifindex to determine if the 21580 * new index is unused and if so allow the change. 21581 */ 21582 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21583 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21584 if (ill_v6 != NULL || ill_v4 != NULL) { 21585 if (ill_v4 != NULL) 21586 ill_refrele(ill_v4); 21587 if (ill_v6 != NULL) 21588 ill_refrele(ill_v6); 21589 return (EBUSY); 21590 } 21591 21592 /* 21593 * The new index is unused. Set it in the phyint. 21594 * Locate the other ill so that we can send a routing 21595 * sockets message. 21596 */ 21597 if (ill->ill_isv6) { 21598 ill_other = phyi->phyint_illv4; 21599 } else { 21600 ill_other = phyi->phyint_illv6; 21601 } 21602 21603 phyi->phyint_ifindex = index; 21604 21605 connc.cc_old_ifindex = old_index; 21606 connc.cc_new_ifindex = index; 21607 ip_change_ifindex(ill, &connc); 21608 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21609 21610 /* Send the routing sockets message */ 21611 ip_rts_ifmsg(ipif); 21612 if (ill_other != NULL) 21613 ip_rts_ifmsg(ill_other->ill_ipif); 21614 21615 return (0); 21616 } 21617 21618 /* ARGSUSED */ 21619 int 21620 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21621 ip_ioctl_cmd_t *ipip, void *ifreq) 21622 { 21623 struct ifreq *ifr = (struct ifreq *)ifreq; 21624 struct lifreq *lifr = (struct lifreq *)ifreq; 21625 21626 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21627 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21628 /* Get the interface index */ 21629 if (ipip->ipi_cmd_type == IF_CMD) { 21630 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21631 } else { 21632 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21633 } 21634 return (0); 21635 } 21636 21637 /* ARGSUSED */ 21638 int 21639 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21640 ip_ioctl_cmd_t *ipip, void *ifreq) 21641 { 21642 struct lifreq *lifr = (struct lifreq *)ifreq; 21643 21644 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21645 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21646 /* Get the interface zone */ 21647 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21648 lifr->lifr_zoneid = ipif->ipif_zoneid; 21649 return (0); 21650 } 21651 21652 /* 21653 * Set the zoneid of an interface. 21654 */ 21655 /* ARGSUSED */ 21656 int 21657 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21658 ip_ioctl_cmd_t *ipip, void *ifreq) 21659 { 21660 struct lifreq *lifr = (struct lifreq *)ifreq; 21661 int err = 0; 21662 boolean_t need_up = B_FALSE; 21663 zone_t *zptr; 21664 zone_status_t status; 21665 zoneid_t zoneid; 21666 21667 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21668 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21669 if (!is_system_labeled()) 21670 return (ENOTSUP); 21671 zoneid = GLOBAL_ZONEID; 21672 } 21673 21674 /* cannot assign instance zero to a non-global zone */ 21675 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21676 return (ENOTSUP); 21677 21678 /* 21679 * Cannot assign to a zone that doesn't exist or is shutting down. In 21680 * the event of a race with the zone shutdown processing, since IP 21681 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21682 * interface will be cleaned up even if the zone is shut down 21683 * immediately after the status check. If the interface can't be brought 21684 * down right away, and the zone is shut down before the restart 21685 * function is called, we resolve the possible races by rechecking the 21686 * zone status in the restart function. 21687 */ 21688 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21689 return (EINVAL); 21690 status = zone_status_get(zptr); 21691 zone_rele(zptr); 21692 21693 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21694 return (EINVAL); 21695 21696 if (ipif->ipif_flags & IPIF_UP) { 21697 /* 21698 * If the interface is already marked up, 21699 * we call ipif_down which will take care 21700 * of ditching any IREs that have been set 21701 * up based on the old interface address. 21702 */ 21703 err = ipif_logical_down(ipif, q, mp); 21704 if (err == EINPROGRESS) 21705 return (err); 21706 ipif_down_tail(ipif); 21707 need_up = B_TRUE; 21708 } 21709 21710 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21711 return (err); 21712 } 21713 21714 static int 21715 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21716 queue_t *q, mblk_t *mp, boolean_t need_up) 21717 { 21718 int err = 0; 21719 21720 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21721 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21722 21723 /* Set the new zone id. */ 21724 ipif->ipif_zoneid = zoneid; 21725 21726 /* Update sctp list */ 21727 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21728 21729 if (need_up) { 21730 /* 21731 * Now bring the interface back up. If this 21732 * is the only IPIF for the ILL, ipif_up 21733 * will have to re-bind to the device, so 21734 * we may get back EINPROGRESS, in which 21735 * case, this IOCTL will get completed in 21736 * ip_rput_dlpi when we see the DL_BIND_ACK. 21737 */ 21738 err = ipif_up(ipif, q, mp); 21739 } 21740 return (err); 21741 } 21742 21743 /* ARGSUSED */ 21744 int 21745 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21746 ip_ioctl_cmd_t *ipip, void *if_req) 21747 { 21748 struct lifreq *lifr = (struct lifreq *)if_req; 21749 zoneid_t zoneid; 21750 zone_t *zptr; 21751 zone_status_t status; 21752 21753 ASSERT(ipif->ipif_id != 0); 21754 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21755 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21756 zoneid = GLOBAL_ZONEID; 21757 21758 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21760 21761 /* 21762 * We recheck the zone status to resolve the following race condition: 21763 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21764 * 2) hme0:1 is up and can't be brought down right away; 21765 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21766 * 3) zone "myzone" is halted; the zone status switches to 21767 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21768 * the interfaces to remove - hme0:1 is not returned because it's not 21769 * yet in "myzone", so it won't be removed; 21770 * 4) the restart function for SIOCSLIFZONE is called; without the 21771 * status check here, we would have hme0:1 in "myzone" after it's been 21772 * destroyed. 21773 * Note that if the status check fails, we need to bring the interface 21774 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21775 * ipif_up_done[_v6](). 21776 */ 21777 status = ZONE_IS_UNINITIALIZED; 21778 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21779 status = zone_status_get(zptr); 21780 zone_rele(zptr); 21781 } 21782 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21783 if (ipif->ipif_isv6) { 21784 (void) ipif_up_done_v6(ipif); 21785 } else { 21786 (void) ipif_up_done(ipif); 21787 } 21788 return (EINVAL); 21789 } 21790 21791 ipif_down_tail(ipif); 21792 21793 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21794 B_TRUE)); 21795 } 21796 21797 /* ARGSUSED */ 21798 int 21799 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21800 ip_ioctl_cmd_t *ipip, void *ifreq) 21801 { 21802 struct lifreq *lifr = ifreq; 21803 21804 ASSERT(q->q_next == NULL); 21805 ASSERT(CONN_Q(q)); 21806 21807 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21808 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21809 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21810 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21811 21812 return (0); 21813 } 21814 21815 21816 /* Find the previous ILL in this usesrc group */ 21817 static ill_t * 21818 ill_prev_usesrc(ill_t *uill) 21819 { 21820 ill_t *ill; 21821 21822 for (ill = uill->ill_usesrc_grp_next; 21823 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21824 ill = ill->ill_usesrc_grp_next) 21825 /* do nothing */; 21826 return (ill); 21827 } 21828 21829 /* 21830 * Release all members of the usesrc group. This routine is called 21831 * from ill_delete when the interface being unplumbed is the 21832 * group head. 21833 */ 21834 static void 21835 ill_disband_usesrc_group(ill_t *uill) 21836 { 21837 ill_t *next_ill, *tmp_ill; 21838 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 21839 next_ill = uill->ill_usesrc_grp_next; 21840 21841 do { 21842 ASSERT(next_ill != NULL); 21843 tmp_ill = next_ill->ill_usesrc_grp_next; 21844 ASSERT(tmp_ill != NULL); 21845 next_ill->ill_usesrc_grp_next = NULL; 21846 next_ill->ill_usesrc_ifindex = 0; 21847 next_ill = tmp_ill; 21848 } while (next_ill->ill_usesrc_ifindex != 0); 21849 uill->ill_usesrc_grp_next = NULL; 21850 } 21851 21852 /* 21853 * Remove the client usesrc ILL from the list and relink to a new list 21854 */ 21855 int 21856 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 21857 { 21858 ill_t *ill, *tmp_ill; 21859 21860 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 21861 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 21862 21863 /* 21864 * Check if the usesrc client ILL passed in is not already 21865 * in use as a usesrc ILL i.e one whose source address is 21866 * in use OR a usesrc ILL is not already in use as a usesrc 21867 * client ILL 21868 */ 21869 if ((ucill->ill_usesrc_ifindex == 0) || 21870 (uill->ill_usesrc_ifindex != 0)) { 21871 return (-1); 21872 } 21873 21874 ill = ill_prev_usesrc(ucill); 21875 ASSERT(ill->ill_usesrc_grp_next != NULL); 21876 21877 /* Remove from the current list */ 21878 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 21879 /* Only two elements in the list */ 21880 ASSERT(ill->ill_usesrc_ifindex == 0); 21881 ill->ill_usesrc_grp_next = NULL; 21882 } else { 21883 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 21884 } 21885 21886 if (ifindex == 0) { 21887 ucill->ill_usesrc_ifindex = 0; 21888 ucill->ill_usesrc_grp_next = NULL; 21889 return (0); 21890 } 21891 21892 ucill->ill_usesrc_ifindex = ifindex; 21893 tmp_ill = uill->ill_usesrc_grp_next; 21894 uill->ill_usesrc_grp_next = ucill; 21895 ucill->ill_usesrc_grp_next = 21896 (tmp_ill != NULL) ? tmp_ill : uill; 21897 return (0); 21898 } 21899 21900 /* 21901 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 21902 * ip.c for locking details. 21903 */ 21904 /* ARGSUSED */ 21905 int 21906 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21907 ip_ioctl_cmd_t *ipip, void *ifreq) 21908 { 21909 struct lifreq *lifr = (struct lifreq *)ifreq; 21910 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 21911 ill_flag_changed = B_FALSE; 21912 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 21913 int err = 0, ret; 21914 uint_t ifindex; 21915 phyint_t *us_phyint, *us_cli_phyint; 21916 ipsq_t *ipsq = NULL; 21917 21918 ASSERT(IAM_WRITER_IPIF(ipif)); 21919 ASSERT(q->q_next == NULL); 21920 ASSERT(CONN_Q(q)); 21921 21922 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21923 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21924 21925 ASSERT(us_cli_phyint != NULL); 21926 21927 /* 21928 * If the client ILL is being used for IPMP, abort. 21929 * Note, this can be done before ipsq_try_enter since we are already 21930 * exclusive on this ILL 21931 */ 21932 if ((us_cli_phyint->phyint_groupname != NULL) || 21933 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21934 return (EINVAL); 21935 } 21936 21937 ifindex = lifr->lifr_index; 21938 if (ifindex == 0) { 21939 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21940 /* non usesrc group interface, nothing to reset */ 21941 return (0); 21942 } 21943 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21944 /* valid reset request */ 21945 reset_flg = B_TRUE; 21946 } 21947 21948 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21949 ip_process_ioctl, &err); 21950 21951 if (usesrc_ill == NULL) { 21952 return (err); 21953 } 21954 21955 /* 21956 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21957 * group nor can either of the interfaces be used for standy. So 21958 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21959 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21960 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21961 * We are already exlusive on this ipsq i.e ipsq corresponding to 21962 * the usesrc_cli_ill 21963 */ 21964 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21965 NEW_OP, B_TRUE); 21966 if (ipsq == NULL) { 21967 err = EINPROGRESS; 21968 /* Operation enqueued on the ipsq of the usesrc ILL */ 21969 goto done; 21970 } 21971 21972 /* Check if the usesrc_ill is used for IPMP */ 21973 us_phyint = usesrc_ill->ill_phyint; 21974 if ((us_phyint->phyint_groupname != NULL) || 21975 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21976 err = EINVAL; 21977 goto done; 21978 } 21979 21980 /* 21981 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21982 * already a client then return EINVAL 21983 */ 21984 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21985 err = EINVAL; 21986 goto done; 21987 } 21988 21989 /* 21990 * If the ill_usesrc_ifindex field is already set to what it needs to 21991 * be then this is a duplicate operation. 21992 */ 21993 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21994 err = 0; 21995 goto done; 21996 } 21997 21998 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21999 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22000 usesrc_ill->ill_isv6)); 22001 22002 /* 22003 * The next step ensures that no new ires will be created referencing 22004 * the client ill, until the ILL_CHANGING flag is cleared. Then 22005 * we go through an ire walk deleting all ire caches that reference 22006 * the client ill. New ires referencing the client ill that are added 22007 * to the ire table before the ILL_CHANGING flag is set, will be 22008 * cleaned up by the ire walk below. Attempt to add new ires referencing 22009 * the client ill while the ILL_CHANGING flag is set will be failed 22010 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22011 * checks (under the ill_g_usesrc_lock) that the ire being added 22012 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22013 * belong to the same usesrc group. 22014 */ 22015 mutex_enter(&usesrc_cli_ill->ill_lock); 22016 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22017 mutex_exit(&usesrc_cli_ill->ill_lock); 22018 ill_flag_changed = B_TRUE; 22019 22020 if (ipif->ipif_isv6) 22021 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22022 ALL_ZONES); 22023 else 22024 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22025 ALL_ZONES); 22026 22027 /* 22028 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22029 * and the ill_usesrc_ifindex fields 22030 */ 22031 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 22032 22033 if (reset_flg) { 22034 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22035 if (ret != 0) { 22036 err = EINVAL; 22037 } 22038 rw_exit(&ill_g_usesrc_lock); 22039 goto done; 22040 } 22041 22042 /* 22043 * Four possibilities to consider: 22044 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22045 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22046 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22047 * 4. Both are part of their respective usesrc groups 22048 */ 22049 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22050 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22051 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22052 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22053 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22054 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22055 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22056 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22057 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22058 /* Insert at head of list */ 22059 usesrc_cli_ill->ill_usesrc_grp_next = 22060 usesrc_ill->ill_usesrc_grp_next; 22061 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22062 } else { 22063 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22064 ifindex); 22065 if (ret != 0) 22066 err = EINVAL; 22067 } 22068 rw_exit(&ill_g_usesrc_lock); 22069 22070 done: 22071 if (ill_flag_changed) { 22072 mutex_enter(&usesrc_cli_ill->ill_lock); 22073 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22074 mutex_exit(&usesrc_cli_ill->ill_lock); 22075 } 22076 if (ipsq != NULL) 22077 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22078 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22079 ill_refrele(usesrc_ill); 22080 return (err); 22081 } 22082 22083 /* 22084 * comparison function used by avl. 22085 */ 22086 static int 22087 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22088 { 22089 22090 uint_t index; 22091 22092 ASSERT(phyip != NULL && index_ptr != NULL); 22093 22094 index = *((uint_t *)index_ptr); 22095 /* 22096 * let the phyint with the lowest index be on top. 22097 */ 22098 if (((phyint_t *)phyip)->phyint_ifindex < index) 22099 return (1); 22100 if (((phyint_t *)phyip)->phyint_ifindex > index) 22101 return (-1); 22102 return (0); 22103 } 22104 22105 /* 22106 * comparison function used by avl. 22107 */ 22108 static int 22109 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22110 { 22111 ill_t *ill; 22112 int res = 0; 22113 22114 ASSERT(phyip != NULL && name_ptr != NULL); 22115 22116 if (((phyint_t *)phyip)->phyint_illv4) 22117 ill = ((phyint_t *)phyip)->phyint_illv4; 22118 else 22119 ill = ((phyint_t *)phyip)->phyint_illv6; 22120 ASSERT(ill != NULL); 22121 22122 res = strcmp(ill->ill_name, (char *)name_ptr); 22123 if (res > 0) 22124 return (1); 22125 else if (res < 0) 22126 return (-1); 22127 return (0); 22128 } 22129 /* 22130 * This function is called from ill_delete when the ill is being 22131 * unplumbed. We remove the reference from the phyint and we also 22132 * free the phyint when there are no more references to it. 22133 */ 22134 static void 22135 ill_phyint_free(ill_t *ill) 22136 { 22137 phyint_t *phyi; 22138 phyint_t *next_phyint; 22139 ipsq_t *cur_ipsq; 22140 22141 ASSERT(ill->ill_phyint != NULL); 22142 22143 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22144 phyi = ill->ill_phyint; 22145 ill->ill_phyint = NULL; 22146 /* 22147 * ill_init allocates a phyint always to store the copy 22148 * of flags relevant to phyint. At that point in time, we could 22149 * not assign the name and hence phyint_illv4/v6 could not be 22150 * initialized. Later in ipif_set_values, we assign the name to 22151 * the ill, at which point in time we assign phyint_illv4/v6. 22152 * Thus we don't rely on phyint_illv6 to be initialized always. 22153 */ 22154 if (ill->ill_flags & ILLF_IPV6) { 22155 phyi->phyint_illv6 = NULL; 22156 } else { 22157 phyi->phyint_illv4 = NULL; 22158 } 22159 /* 22160 * ipif_down removes it from the group when the last ipif goes 22161 * down. 22162 */ 22163 ASSERT(ill->ill_group == NULL); 22164 22165 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22166 return; 22167 22168 /* 22169 * Make sure this phyint was put in the list. 22170 */ 22171 if (phyi->phyint_ifindex > 0) { 22172 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 22173 phyi); 22174 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 22175 phyi); 22176 } 22177 /* 22178 * remove phyint from the ipsq list. 22179 */ 22180 cur_ipsq = phyi->phyint_ipsq; 22181 if (phyi == cur_ipsq->ipsq_phyint_list) { 22182 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22183 } else { 22184 next_phyint = cur_ipsq->ipsq_phyint_list; 22185 while (next_phyint != NULL) { 22186 if (next_phyint->phyint_ipsq_next == phyi) { 22187 next_phyint->phyint_ipsq_next = 22188 phyi->phyint_ipsq_next; 22189 break; 22190 } 22191 next_phyint = next_phyint->phyint_ipsq_next; 22192 } 22193 ASSERT(next_phyint != NULL); 22194 } 22195 IPSQ_DEC_REF(cur_ipsq); 22196 22197 if (phyi->phyint_groupname_len != 0) { 22198 ASSERT(phyi->phyint_groupname != NULL); 22199 mi_free(phyi->phyint_groupname); 22200 } 22201 mi_free(phyi); 22202 } 22203 22204 /* 22205 * Attach the ill to the phyint structure which can be shared by both 22206 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22207 * function is called from ipif_set_values and ill_lookup_on_name (for 22208 * loopback) where we know the name of the ill. We lookup the ill and if 22209 * there is one present already with the name use that phyint. Otherwise 22210 * reuse the one allocated by ill_init. 22211 */ 22212 static void 22213 ill_phyint_reinit(ill_t *ill) 22214 { 22215 boolean_t isv6 = ill->ill_isv6; 22216 phyint_t *phyi_old; 22217 phyint_t *phyi; 22218 avl_index_t where = 0; 22219 ill_t *ill_other = NULL; 22220 ipsq_t *ipsq; 22221 22222 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22223 22224 phyi_old = ill->ill_phyint; 22225 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22226 phyi_old->phyint_illv6 == NULL)); 22227 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22228 phyi_old->phyint_illv4 == NULL)); 22229 ASSERT(phyi_old->phyint_ifindex == 0); 22230 22231 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 22232 ill->ill_name, &where); 22233 22234 /* 22235 * 1. We grabbed the ill_g_lock before inserting this ill into 22236 * the global list of ills. So no other thread could have located 22237 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22238 * 2. Now locate the other protocol instance of this ill. 22239 * 3. Now grab both ill locks in the right order, and the phyint lock of 22240 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22241 * of neither ill can change. 22242 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22243 * other ill. 22244 * 5. Release all locks. 22245 */ 22246 22247 /* 22248 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22249 * we are initializing IPv4. 22250 */ 22251 if (phyi != NULL) { 22252 ill_other = (isv6) ? phyi->phyint_illv4 : 22253 phyi->phyint_illv6; 22254 ASSERT(ill_other->ill_phyint != NULL); 22255 ASSERT((isv6 && !ill_other->ill_isv6) || 22256 (!isv6 && ill_other->ill_isv6)); 22257 GRAB_ILL_LOCKS(ill, ill_other); 22258 /* 22259 * We are potentially throwing away phyint_flags which 22260 * could be different from the one that we obtain from 22261 * ill_other->ill_phyint. But it is okay as we are assuming 22262 * that the state maintained within IP is correct. 22263 */ 22264 mutex_enter(&phyi->phyint_lock); 22265 if (isv6) { 22266 ASSERT(phyi->phyint_illv6 == NULL); 22267 phyi->phyint_illv6 = ill; 22268 } else { 22269 ASSERT(phyi->phyint_illv4 == NULL); 22270 phyi->phyint_illv4 = ill; 22271 } 22272 /* 22273 * This is a new ill, currently undergoing SLIFNAME 22274 * So we could not have joined an IPMP group until now. 22275 */ 22276 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22277 phyi_old->phyint_groupname == NULL); 22278 22279 /* 22280 * This phyi_old is going away. Decref ipsq_refs and 22281 * assert it is zero. The ipsq itself will be freed in 22282 * ipsq_exit 22283 */ 22284 ipsq = phyi_old->phyint_ipsq; 22285 IPSQ_DEC_REF(ipsq); 22286 ASSERT(ipsq->ipsq_refs == 0); 22287 /* Get the singleton phyint out of the ipsq list */ 22288 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22289 ipsq->ipsq_phyint_list = NULL; 22290 phyi_old->phyint_illv4 = NULL; 22291 phyi_old->phyint_illv6 = NULL; 22292 mi_free(phyi_old); 22293 } else { 22294 mutex_enter(&ill->ill_lock); 22295 /* 22296 * We don't need to acquire any lock, since 22297 * the ill is not yet visible globally and we 22298 * have not yet released the ill_g_lock. 22299 */ 22300 phyi = phyi_old; 22301 mutex_enter(&phyi->phyint_lock); 22302 /* XXX We need a recovery strategy here. */ 22303 if (!phyint_assign_ifindex(phyi)) 22304 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22305 22306 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22307 (void *)phyi, where); 22308 22309 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22310 &phyi->phyint_ifindex, &where); 22311 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22312 (void *)phyi, where); 22313 } 22314 22315 /* 22316 * Reassigning ill_phyint automatically reassigns the ipsq also. 22317 * pending mp is not affected because that is per ill basis. 22318 */ 22319 ill->ill_phyint = phyi; 22320 22321 /* 22322 * Keep the index on ipif_orig_index to be used by FAILOVER. 22323 * We do this here as when the first ipif was allocated, 22324 * ipif_allocate does not know the right interface index. 22325 */ 22326 22327 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22328 /* 22329 * Now that the phyint's ifindex has been assigned, complete the 22330 * remaining 22331 */ 22332 if (ill->ill_isv6) { 22333 ill->ill_ip6_mib->ipv6IfIndex = 22334 ill->ill_phyint->phyint_ifindex; 22335 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22336 ill->ill_phyint->phyint_ifindex; 22337 } 22338 22339 /* 22340 * Generate an event within the hooks framework to indicate that 22341 * a new interface has just been added to IP. For this event to 22342 * be generated, the network interface must, at least, have an 22343 * ifindex assigned to it. 22344 * 22345 * This needs to be run inside the ill_g_lock perimeter to ensure 22346 * that the ordering of delivered events to listeners matches the 22347 * order of them in the kernel. 22348 * 22349 * This function could be called from ill_lookup_on_name. In that case 22350 * the interface is loopback "lo", which will not generate a NIC event. 22351 */ 22352 if (ill->ill_name_length <= 2 || 22353 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22354 hook_nic_event_t *info; 22355 if ((info = ill->ill_nic_event_info) != NULL) { 22356 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22357 "attached for %s\n", info->hne_event, 22358 ill->ill_name)); 22359 if (info->hne_data != NULL) 22360 kmem_free(info->hne_data, info->hne_datalen); 22361 kmem_free(info, sizeof (hook_nic_event_t)); 22362 } 22363 22364 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22365 if (info != NULL) { 22366 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22367 info->hne_lif = 0; 22368 info->hne_event = NE_PLUMB; 22369 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 22370 info->hne_data = kmem_alloc(ill->ill_name_length, 22371 KM_NOSLEEP); 22372 if (info->hne_data != NULL) { 22373 info->hne_datalen = ill->ill_name_length; 22374 bcopy(ill->ill_name, info->hne_data, 22375 info->hne_datalen); 22376 } else { 22377 ip2dbg(("ill_phyint_reinit: could not attach " 22378 "ill_name information for PLUMB nic event " 22379 "of %s (ENOMEM)\n", ill->ill_name)); 22380 kmem_free(info, sizeof (hook_nic_event_t)); 22381 } 22382 } else 22383 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22384 "event information for %s (ENOMEM)\n", 22385 ill->ill_name)); 22386 22387 ill->ill_nic_event_info = info; 22388 } 22389 22390 RELEASE_ILL_LOCKS(ill, ill_other); 22391 mutex_exit(&phyi->phyint_lock); 22392 } 22393 22394 /* 22395 * Notify any downstream modules of the name of this interface. 22396 * An M_IOCTL is used even though we don't expect a successful reply. 22397 * Any reply message from the driver (presumably an M_IOCNAK) will 22398 * eventually get discarded somewhere upstream. The message format is 22399 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22400 * to IP. 22401 */ 22402 static void 22403 ip_ifname_notify(ill_t *ill, queue_t *q) 22404 { 22405 mblk_t *mp1, *mp2; 22406 struct iocblk *iocp; 22407 struct lifreq *lifr; 22408 22409 mp1 = mkiocb(SIOCSLIFNAME); 22410 if (mp1 == NULL) 22411 return; 22412 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22413 if (mp2 == NULL) { 22414 freeb(mp1); 22415 return; 22416 } 22417 22418 mp1->b_cont = mp2; 22419 iocp = (struct iocblk *)mp1->b_rptr; 22420 iocp->ioc_count = sizeof (struct lifreq); 22421 22422 lifr = (struct lifreq *)mp2->b_rptr; 22423 mp2->b_wptr += sizeof (struct lifreq); 22424 bzero(lifr, sizeof (struct lifreq)); 22425 22426 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22427 lifr->lifr_ppa = ill->ill_ppa; 22428 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22429 22430 putnext(q, mp1); 22431 } 22432 22433 static boolean_t ip_trash_timer_started = B_FALSE; 22434 22435 static int 22436 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22437 { 22438 int err; 22439 22440 /* Set the obsolete NDD per-interface forwarding name. */ 22441 err = ill_set_ndd_name(ill); 22442 if (err != 0) { 22443 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22444 err); 22445 } 22446 22447 /* Tell downstream modules where they are. */ 22448 ip_ifname_notify(ill, q); 22449 22450 /* 22451 * ill_dl_phys returns EINPROGRESS in the usual case. 22452 * Error cases are ENOMEM ... 22453 */ 22454 err = ill_dl_phys(ill, ipif, mp, q); 22455 22456 /* 22457 * If there is no IRE expiration timer running, get one started. 22458 * igmp and mld timers will be triggered by the first multicast 22459 */ 22460 if (!ip_trash_timer_started) { 22461 /* 22462 * acquire the lock and check again. 22463 */ 22464 mutex_enter(&ip_trash_timer_lock); 22465 if (!ip_trash_timer_started) { 22466 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22467 MSEC_TO_TICK(ip_timer_interval)); 22468 ip_trash_timer_started = B_TRUE; 22469 } 22470 mutex_exit(&ip_trash_timer_lock); 22471 } 22472 22473 if (ill->ill_isv6) { 22474 mutex_enter(&mld_slowtimeout_lock); 22475 if (mld_slowtimeout_id == 0) { 22476 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22477 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22478 } 22479 mutex_exit(&mld_slowtimeout_lock); 22480 } else { 22481 mutex_enter(&igmp_slowtimeout_lock); 22482 if (igmp_slowtimeout_id == 0) { 22483 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22484 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22485 } 22486 mutex_exit(&igmp_slowtimeout_lock); 22487 } 22488 22489 return (err); 22490 } 22491 22492 /* 22493 * Common routine for ppa and ifname setting. Should be called exclusive. 22494 * 22495 * Returns EINPROGRESS when mp has been consumed by queueing it on 22496 * ill_pending_mp and the ioctl will complete in ip_rput. 22497 * 22498 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22499 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22500 * For SLIFNAME, we pass these values back to the userland. 22501 */ 22502 static int 22503 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22504 { 22505 ill_t *ill; 22506 ipif_t *ipif; 22507 ipsq_t *ipsq; 22508 char *ppa_ptr; 22509 char *old_ptr; 22510 char old_char; 22511 int error; 22512 22513 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22514 ASSERT(q->q_next != NULL); 22515 ASSERT(interf_name != NULL); 22516 22517 ill = (ill_t *)q->q_ptr; 22518 22519 ASSERT(ill->ill_name[0] == '\0'); 22520 ASSERT(IAM_WRITER_ILL(ill)); 22521 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22522 ASSERT(ill->ill_ppa == UINT_MAX); 22523 22524 /* The ppa is sent down by ifconfig or is chosen */ 22525 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22526 return (EINVAL); 22527 } 22528 22529 /* 22530 * make sure ppa passed in is same as ppa in the name. 22531 * This check is not made when ppa == UINT_MAX in that case ppa 22532 * in the name could be anything. System will choose a ppa and 22533 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22534 */ 22535 if (*new_ppa_ptr != UINT_MAX) { 22536 /* stoi changes the pointer */ 22537 old_ptr = ppa_ptr; 22538 /* 22539 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22540 * (they don't have an externally visible ppa). We assign one 22541 * here so that we can manage the interface. Note that in 22542 * the past this value was always 0 for DLPI 1 drivers. 22543 */ 22544 if (*new_ppa_ptr == 0) 22545 *new_ppa_ptr = stoi(&old_ptr); 22546 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22547 return (EINVAL); 22548 } 22549 /* 22550 * terminate string before ppa 22551 * save char at that location. 22552 */ 22553 old_char = ppa_ptr[0]; 22554 ppa_ptr[0] = '\0'; 22555 22556 ill->ill_ppa = *new_ppa_ptr; 22557 /* 22558 * Finish as much work now as possible before calling ill_glist_insert 22559 * which makes the ill globally visible and also merges it with the 22560 * other protocol instance of this phyint. The remaining work is 22561 * done after entering the ipsq which may happen sometime later. 22562 * ill_set_ndd_name occurs after the ill has been made globally visible. 22563 */ 22564 ipif = ill->ill_ipif; 22565 22566 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22567 ipif_assign_seqid(ipif); 22568 22569 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22570 ill->ill_flags |= ILLF_IPV4; 22571 22572 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22573 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22574 22575 if (ill->ill_flags & ILLF_IPV6) { 22576 22577 ill->ill_isv6 = B_TRUE; 22578 if (ill->ill_rq != NULL) { 22579 ill->ill_rq->q_qinfo = &rinit_ipv6; 22580 ill->ill_wq->q_qinfo = &winit_ipv6; 22581 } 22582 22583 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22584 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22585 ipif->ipif_v6src_addr = ipv6_all_zeros; 22586 ipif->ipif_v6subnet = ipv6_all_zeros; 22587 ipif->ipif_v6net_mask = ipv6_all_zeros; 22588 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22589 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22590 /* 22591 * point-to-point or Non-mulicast capable 22592 * interfaces won't do NUD unless explicitly 22593 * configured to do so. 22594 */ 22595 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22596 !(ill->ill_flags & ILLF_MULTICAST)) { 22597 ill->ill_flags |= ILLF_NONUD; 22598 } 22599 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22600 if (ill->ill_flags & ILLF_NOARP) { 22601 /* 22602 * Note: xresolv interfaces will eventually need 22603 * NOARP set here as well, but that will require 22604 * those external resolvers to have some 22605 * knowledge of that flag and act appropriately. 22606 * Not to be changed at present. 22607 */ 22608 ill->ill_flags &= ~ILLF_NOARP; 22609 } 22610 /* 22611 * Set the ILLF_ROUTER flag according to the global 22612 * IPv6 forwarding policy. 22613 */ 22614 if (ipv6_forward != 0) 22615 ill->ill_flags |= ILLF_ROUTER; 22616 } else if (ill->ill_flags & ILLF_IPV4) { 22617 ill->ill_isv6 = B_FALSE; 22618 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22619 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22620 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22621 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22622 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22623 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22624 /* 22625 * Set the ILLF_ROUTER flag according to the global 22626 * IPv4 forwarding policy. 22627 */ 22628 if (ip_g_forward != 0) 22629 ill->ill_flags |= ILLF_ROUTER; 22630 } 22631 22632 ASSERT(ill->ill_phyint != NULL); 22633 22634 /* 22635 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 22636 * be completed in ill_glist_insert -> ill_phyint_reinit 22637 */ 22638 if (ill->ill_isv6) { 22639 /* allocate v6 mib */ 22640 if (!ill_allocate_mibs(ill)) 22641 return (ENOMEM); 22642 } 22643 22644 /* 22645 * Pick a default sap until we get the DL_INFO_ACK back from 22646 * the driver. 22647 */ 22648 if (ill->ill_sap == 0) { 22649 if (ill->ill_isv6) 22650 ill->ill_sap = IP6_DL_SAP; 22651 else 22652 ill->ill_sap = IP_DL_SAP; 22653 } 22654 22655 ill->ill_ifname_pending = 1; 22656 ill->ill_ifname_pending_err = 0; 22657 22658 ill_refhold(ill); 22659 rw_enter(&ill_g_lock, RW_WRITER); 22660 if ((error = ill_glist_insert(ill, interf_name, 22661 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22662 ill->ill_ppa = UINT_MAX; 22663 ill->ill_name[0] = '\0'; 22664 /* 22665 * undo null termination done above. 22666 */ 22667 ppa_ptr[0] = old_char; 22668 rw_exit(&ill_g_lock); 22669 ill_refrele(ill); 22670 return (error); 22671 } 22672 22673 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22674 22675 /* 22676 * When we return the buffer pointed to by interf_name should contain 22677 * the same name as in ill_name. 22678 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22679 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22680 * so copy full name and update the ppa ptr. 22681 * When ppa passed in != UINT_MAX all values are correct just undo 22682 * null termination, this saves a bcopy. 22683 */ 22684 if (*new_ppa_ptr == UINT_MAX) { 22685 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22686 *new_ppa_ptr = ill->ill_ppa; 22687 } else { 22688 /* 22689 * undo null termination done above. 22690 */ 22691 ppa_ptr[0] = old_char; 22692 } 22693 22694 /* Let SCTP know about this ILL */ 22695 sctp_update_ill(ill, SCTP_ILL_INSERT); 22696 22697 /* and also about the first ipif */ 22698 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22699 22700 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22701 B_TRUE); 22702 22703 rw_exit(&ill_g_lock); 22704 ill_refrele(ill); 22705 if (ipsq == NULL) 22706 return (EINPROGRESS); 22707 22708 /* 22709 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22710 * due to the phyint merge in ill_phyint_reinit. 22711 */ 22712 ASSERT(ipsq->ipsq_current_ipif == NULL || 22713 ipsq->ipsq_current_ipif == ipif); 22714 ipsq->ipsq_current_ipif = ipif; 22715 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22716 error = ipif_set_values_tail(ill, ipif, mp, q); 22717 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22718 if (error != 0 && error != EINPROGRESS) { 22719 /* 22720 * restore previous values 22721 */ 22722 ill->ill_isv6 = B_FALSE; 22723 } 22724 return (error); 22725 } 22726 22727 22728 extern void (*ip_cleanup_func)(void); 22729 22730 void 22731 ipif_init(void) 22732 { 22733 hrtime_t hrt; 22734 int i; 22735 22736 /* 22737 * Can't call drv_getparm here as it is too early in the boot. 22738 * As we use ipif_src_random just for picking a different 22739 * source address everytime, this need not be really random. 22740 */ 22741 hrt = gethrtime(); 22742 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22743 22744 for (i = 0; i < MAX_G_HEADS; i++) { 22745 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22746 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22747 } 22748 22749 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22750 ill_phyint_compare_index, 22751 sizeof (phyint_t), 22752 offsetof(struct phyint, phyint_avl_by_index)); 22753 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22754 ill_phyint_compare_name, 22755 sizeof (phyint_t), 22756 offsetof(struct phyint, phyint_avl_by_name)); 22757 22758 ip_cleanup_func = ip_thread_exit; 22759 } 22760 22761 /* 22762 * This is called by ip_rt_add when src_addr value is other than zero. 22763 * src_addr signifies the source address of the incoming packet. For 22764 * reverse tunnel route we need to create a source addr based routing 22765 * table. This routine creates ip_mrtun_table if it's empty and then 22766 * it adds the route entry hashed by source address. It verifies that 22767 * the outgoing interface is always a non-resolver interface (tunnel). 22768 */ 22769 int 22770 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22771 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22772 { 22773 ire_t *ire; 22774 ire_t *save_ire; 22775 ipif_t *ipif; 22776 ill_t *in_ill = NULL; 22777 ill_t *out_ill; 22778 queue_t *stq; 22779 mblk_t *dlureq_mp; 22780 int error; 22781 22782 if (ire_arg != NULL) 22783 *ire_arg = NULL; 22784 ASSERT(in_src_addr != INADDR_ANY); 22785 22786 ipif = ipif_arg; 22787 if (ipif != NULL) { 22788 out_ill = ipif->ipif_ill; 22789 } else { 22790 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22791 return (EINVAL); 22792 } 22793 22794 if (src_ipif == NULL) { 22795 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22796 return (EINVAL); 22797 } 22798 in_ill = src_ipif->ipif_ill; 22799 22800 /* 22801 * Check for duplicates. We don't need to 22802 * match out_ill, because the uniqueness of 22803 * a route is only dependent on src_addr and 22804 * in_ill. 22805 */ 22806 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22807 if (ire != NULL) { 22808 ire_refrele(ire); 22809 return (EEXIST); 22810 } 22811 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22812 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22813 ipif->ipif_net_type)); 22814 return (EINVAL); 22815 } 22816 22817 stq = ipif->ipif_wq; 22818 ASSERT(stq != NULL); 22819 22820 /* 22821 * The outgoing interface must be non-resolver 22822 * interface. 22823 */ 22824 dlureq_mp = ill_dlur_gen(NULL, 22825 out_ill->ill_phys_addr_length, out_ill->ill_sap, 22826 out_ill->ill_sap_length); 22827 22828 if (dlureq_mp == NULL) { 22829 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 22830 return (ENOMEM); 22831 } 22832 22833 /* Create the IRE. */ 22834 22835 ire = ire_create( 22836 NULL, /* Zero dst addr */ 22837 NULL, /* Zero mask */ 22838 NULL, /* Zero gateway addr */ 22839 NULL, /* Zero ipif_src addr */ 22840 (uint8_t *)&in_src_addr, /* in_src-addr */ 22841 &ipif->ipif_mtu, 22842 NULL, 22843 NULL, /* rfq */ 22844 stq, 22845 IRE_MIPRTUN, 22846 dlureq_mp, 22847 ipif, 22848 in_ill, 22849 0, 22850 0, 22851 0, 22852 flags, 22853 &ire_uinfo_null, 22854 NULL, 22855 NULL); 22856 22857 if (ire == NULL) { 22858 freeb(dlureq_mp); 22859 return (ENOMEM); 22860 } 22861 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 22862 ire->ire_type)); 22863 save_ire = ire; 22864 ASSERT(save_ire != NULL); 22865 error = ire_add_mrtun(&ire, q, mp, func); 22866 /* 22867 * If ire_add_mrtun() failed, the ire passed in was freed 22868 * so there is no need to do so here. 22869 */ 22870 if (error != 0) { 22871 return (error); 22872 } 22873 22874 /* Duplicate check */ 22875 if (ire != save_ire) { 22876 /* route already exists by now */ 22877 ire_refrele(ire); 22878 return (EEXIST); 22879 } 22880 22881 if (ire_arg != NULL) { 22882 /* 22883 * Store the ire that was just added. the caller 22884 * ip_rts_request responsible for doing ire_refrele() 22885 * on it. 22886 */ 22887 *ire_arg = ire; 22888 } else { 22889 ire_refrele(ire); /* held in ire_add_mrtun */ 22890 } 22891 22892 return (0); 22893 } 22894 22895 /* 22896 * It is called by ip_rt_delete() only when mipagent requests to delete 22897 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 22898 */ 22899 22900 int 22901 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 22902 { 22903 ire_t *ire = NULL; 22904 22905 if (in_src_addr == INADDR_ANY) 22906 return (EINVAL); 22907 if (src_ipif == NULL) 22908 return (EINVAL); 22909 22910 /* search if this route exists in the ip_mrtun_table */ 22911 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 22912 if (ire == NULL) { 22913 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 22914 return (ESRCH); 22915 } 22916 ire_delete(ire); 22917 ire_refrele(ire); 22918 return (0); 22919 } 22920 22921 /* 22922 * Lookup the ipif corresponding to the onlink destination address. For 22923 * point-to-point interfaces, it matches with remote endpoint destination 22924 * address. For point-to-multipoint interfaces it only tries to match the 22925 * destination with the interface's subnet address. The longest, most specific 22926 * match is found to take care of such rare network configurations like - 22927 * le0: 129.146.1.1/16 22928 * le1: 129.146.2.2/24 22929 * It is used only by SO_DONTROUTE at the moment. 22930 */ 22931 ipif_t * 22932 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 22933 { 22934 ipif_t *ipif, *best_ipif; 22935 ill_t *ill; 22936 ill_walk_context_t ctx; 22937 22938 ASSERT(zoneid != ALL_ZONES); 22939 best_ipif = NULL; 22940 22941 rw_enter(&ill_g_lock, RW_READER); 22942 ill = ILL_START_WALK_V4(&ctx); 22943 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22944 mutex_enter(&ill->ill_lock); 22945 for (ipif = ill->ill_ipif; ipif != NULL; 22946 ipif = ipif->ipif_next) { 22947 if (!IPIF_CAN_LOOKUP(ipif)) 22948 continue; 22949 if (ipif->ipif_zoneid != zoneid && 22950 ipif->ipif_zoneid != ALL_ZONES) 22951 continue; 22952 /* 22953 * Point-to-point case. Look for exact match with 22954 * destination address. 22955 */ 22956 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 22957 if (ipif->ipif_pp_dst_addr == addr) { 22958 ipif_refhold_locked(ipif); 22959 mutex_exit(&ill->ill_lock); 22960 rw_exit(&ill_g_lock); 22961 if (best_ipif != NULL) 22962 ipif_refrele(best_ipif); 22963 return (ipif); 22964 } 22965 } else if (ipif->ipif_subnet == (addr & 22966 ipif->ipif_net_mask)) { 22967 /* 22968 * Point-to-multipoint case. Looping through to 22969 * find the most specific match. If there are 22970 * multiple best match ipif's then prefer ipif's 22971 * that are UP. If there is only one best match 22972 * ipif and it is DOWN we must still return it. 22973 */ 22974 if ((best_ipif == NULL) || 22975 (ipif->ipif_net_mask > 22976 best_ipif->ipif_net_mask) || 22977 ((ipif->ipif_net_mask == 22978 best_ipif->ipif_net_mask) && 22979 ((ipif->ipif_flags & IPIF_UP) && 22980 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22981 ipif_refhold_locked(ipif); 22982 mutex_exit(&ill->ill_lock); 22983 rw_exit(&ill_g_lock); 22984 if (best_ipif != NULL) 22985 ipif_refrele(best_ipif); 22986 best_ipif = ipif; 22987 rw_enter(&ill_g_lock, RW_READER); 22988 mutex_enter(&ill->ill_lock); 22989 } 22990 } 22991 } 22992 mutex_exit(&ill->ill_lock); 22993 } 22994 rw_exit(&ill_g_lock); 22995 return (best_ipif); 22996 } 22997 22998 22999 /* 23000 * Save enough information so that we can recreate the IRE if 23001 * the interface goes down and then up. 23002 */ 23003 static void 23004 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23005 { 23006 mblk_t *save_mp; 23007 23008 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23009 if (save_mp != NULL) { 23010 ifrt_t *ifrt; 23011 23012 save_mp->b_wptr += sizeof (ifrt_t); 23013 ifrt = (ifrt_t *)save_mp->b_rptr; 23014 bzero(ifrt, sizeof (ifrt_t)); 23015 ifrt->ifrt_type = ire->ire_type; 23016 ifrt->ifrt_addr = ire->ire_addr; 23017 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23018 ifrt->ifrt_src_addr = ire->ire_src_addr; 23019 ifrt->ifrt_mask = ire->ire_mask; 23020 ifrt->ifrt_flags = ire->ire_flags; 23021 ifrt->ifrt_max_frag = ire->ire_max_frag; 23022 mutex_enter(&ipif->ipif_saved_ire_lock); 23023 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23024 ipif->ipif_saved_ire_mp = save_mp; 23025 ipif->ipif_saved_ire_cnt++; 23026 mutex_exit(&ipif->ipif_saved_ire_lock); 23027 } 23028 } 23029 23030 23031 static void 23032 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23033 { 23034 mblk_t **mpp; 23035 mblk_t *mp; 23036 ifrt_t *ifrt; 23037 23038 /* Remove from ipif_saved_ire_mp list if it is there */ 23039 mutex_enter(&ipif->ipif_saved_ire_lock); 23040 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23041 mpp = &(*mpp)->b_cont) { 23042 /* 23043 * On a given ipif, the triple of address, gateway and 23044 * mask is unique for each saved IRE (in the case of 23045 * ordinary interface routes, the gateway address is 23046 * all-zeroes). 23047 */ 23048 mp = *mpp; 23049 ifrt = (ifrt_t *)mp->b_rptr; 23050 if (ifrt->ifrt_addr == ire->ire_addr && 23051 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23052 ifrt->ifrt_mask == ire->ire_mask) { 23053 *mpp = mp->b_cont; 23054 ipif->ipif_saved_ire_cnt--; 23055 freeb(mp); 23056 break; 23057 } 23058 } 23059 mutex_exit(&ipif->ipif_saved_ire_lock); 23060 } 23061 23062 23063 /* 23064 * IP multirouting broadcast routes handling 23065 * Append CGTP broadcast IREs to regular ones created 23066 * at ifconfig time. 23067 */ 23068 static void 23069 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 23070 { 23071 ire_t *ire_prim; 23072 23073 ASSERT(ire != NULL); 23074 ASSERT(ire_dst != NULL); 23075 23076 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23077 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23078 if (ire_prim != NULL) { 23079 /* 23080 * We are in the special case of broadcasts for 23081 * CGTP. We add an IRE_BROADCAST that holds 23082 * the RTF_MULTIRT flag, the destination 23083 * address of ire_dst and the low level 23084 * info of ire_prim. In other words, CGTP 23085 * broadcast is added to the redundant ipif. 23086 */ 23087 ipif_t *ipif_prim; 23088 ire_t *bcast_ire; 23089 23090 ipif_prim = ire_prim->ire_ipif; 23091 23092 ip2dbg(("ip_cgtp_filter_bcast_add: " 23093 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23094 (void *)ire_dst, (void *)ire_prim, 23095 (void *)ipif_prim)); 23096 23097 bcast_ire = ire_create( 23098 (uchar_t *)&ire->ire_addr, 23099 (uchar_t *)&ip_g_all_ones, 23100 (uchar_t *)&ire_dst->ire_src_addr, 23101 (uchar_t *)&ire->ire_gateway_addr, 23102 NULL, 23103 &ipif_prim->ipif_mtu, 23104 NULL, 23105 ipif_prim->ipif_rq, 23106 ipif_prim->ipif_wq, 23107 IRE_BROADCAST, 23108 ipif_prim->ipif_bcast_mp, 23109 ipif_prim, 23110 NULL, 23111 0, 23112 0, 23113 0, 23114 ire->ire_flags, 23115 &ire_uinfo_null, 23116 NULL, 23117 NULL); 23118 23119 if (bcast_ire != NULL) { 23120 23121 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23122 B_FALSE) == 0) { 23123 ip2dbg(("ip_cgtp_filter_bcast_add: " 23124 "added bcast_ire %p\n", 23125 (void *)bcast_ire)); 23126 23127 ipif_save_ire(bcast_ire->ire_ipif, 23128 bcast_ire); 23129 ire_refrele(bcast_ire); 23130 } 23131 } 23132 ire_refrele(ire_prim); 23133 } 23134 } 23135 23136 23137 /* 23138 * IP multirouting broadcast routes handling 23139 * Remove the broadcast ire 23140 */ 23141 static void 23142 ip_cgtp_bcast_delete(ire_t *ire) 23143 { 23144 ire_t *ire_dst; 23145 23146 ASSERT(ire != NULL); 23147 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23148 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23149 if (ire_dst != NULL) { 23150 ire_t *ire_prim; 23151 23152 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23153 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23154 if (ire_prim != NULL) { 23155 ipif_t *ipif_prim; 23156 ire_t *bcast_ire; 23157 23158 ipif_prim = ire_prim->ire_ipif; 23159 23160 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23161 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23162 (void *)ire_dst, (void *)ire_prim, 23163 (void *)ipif_prim)); 23164 23165 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23166 ire->ire_gateway_addr, 23167 IRE_BROADCAST, 23168 ipif_prim, ALL_ZONES, 23169 NULL, 23170 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23171 MATCH_IRE_MASK); 23172 23173 if (bcast_ire != NULL) { 23174 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23175 "looked up bcast_ire %p\n", 23176 (void *)bcast_ire)); 23177 ipif_remove_ire(bcast_ire->ire_ipif, 23178 bcast_ire); 23179 ire_delete(bcast_ire); 23180 } 23181 ire_refrele(ire_prim); 23182 } 23183 ire_refrele(ire_dst); 23184 } 23185 } 23186 23187 /* 23188 * IPsec hardware acceleration capabilities related functions. 23189 */ 23190 23191 /* 23192 * Free a per-ill IPsec capabilities structure. 23193 */ 23194 static void 23195 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23196 { 23197 if (capab->auth_hw_algs != NULL) 23198 kmem_free(capab->auth_hw_algs, capab->algs_size); 23199 if (capab->encr_hw_algs != NULL) 23200 kmem_free(capab->encr_hw_algs, capab->algs_size); 23201 if (capab->encr_algparm != NULL) 23202 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23203 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23204 } 23205 23206 /* 23207 * Allocate a new per-ill IPsec capabilities structure. This structure 23208 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23209 * an array which specifies, for each algorithm, whether this algorithm 23210 * is supported by the ill or not. 23211 */ 23212 static ill_ipsec_capab_t * 23213 ill_ipsec_capab_alloc(void) 23214 { 23215 ill_ipsec_capab_t *capab; 23216 uint_t nelems; 23217 23218 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23219 if (capab == NULL) 23220 return (NULL); 23221 23222 /* we need one bit per algorithm */ 23223 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23224 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23225 23226 /* allocate memory to store algorithm flags */ 23227 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23228 if (capab->encr_hw_algs == NULL) 23229 goto nomem; 23230 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23231 if (capab->auth_hw_algs == NULL) 23232 goto nomem; 23233 /* 23234 * Leave encr_algparm NULL for now since we won't need it half 23235 * the time 23236 */ 23237 return (capab); 23238 23239 nomem: 23240 ill_ipsec_capab_free(capab); 23241 return (NULL); 23242 } 23243 23244 /* 23245 * Resize capability array. Since we're exclusive, this is OK. 23246 */ 23247 static boolean_t 23248 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23249 { 23250 ipsec_capab_algparm_t *nalp, *oalp; 23251 uint32_t olen, nlen; 23252 23253 oalp = capab->encr_algparm; 23254 olen = capab->encr_algparm_size; 23255 23256 if (oalp != NULL) { 23257 if (algid < capab->encr_algparm_end) 23258 return (B_TRUE); 23259 } 23260 23261 nlen = (algid + 1) * sizeof (*nalp); 23262 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23263 if (nalp == NULL) 23264 return (B_FALSE); 23265 23266 if (oalp != NULL) { 23267 bcopy(oalp, nalp, olen); 23268 kmem_free(oalp, olen); 23269 } 23270 capab->encr_algparm = nalp; 23271 capab->encr_algparm_size = nlen; 23272 capab->encr_algparm_end = algid + 1; 23273 23274 return (B_TRUE); 23275 } 23276 23277 /* 23278 * Compare the capabilities of the specified ill with the protocol 23279 * and algorithms specified by the SA passed as argument. 23280 * If they match, returns B_TRUE, B_FALSE if they do not match. 23281 * 23282 * The ill can be passed as a pointer to it, or by specifying its index 23283 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23284 * 23285 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23286 * packet is eligible for hardware acceleration, and by 23287 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23288 * to a particular ill. 23289 */ 23290 boolean_t 23291 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23292 ipsa_t *sa) 23293 { 23294 boolean_t sa_isv6; 23295 uint_t algid; 23296 struct ill_ipsec_capab_s *cpp; 23297 boolean_t need_refrele = B_FALSE; 23298 23299 if (ill == NULL) { 23300 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23301 NULL, NULL, NULL); 23302 if (ill == NULL) { 23303 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23304 return (B_FALSE); 23305 } 23306 need_refrele = B_TRUE; 23307 } 23308 23309 /* 23310 * Use the address length specified by the SA to determine 23311 * if it corresponds to a IPv6 address, and fail the matching 23312 * if the isv6 flag passed as argument does not match. 23313 * Note: this check is used for SADB capability checking before 23314 * sending SA information to an ill. 23315 */ 23316 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23317 if (sa_isv6 != ill_isv6) 23318 /* protocol mismatch */ 23319 goto done; 23320 23321 /* 23322 * Check if the ill supports the protocol, algorithm(s) and 23323 * key size(s) specified by the SA, and get the pointers to 23324 * the algorithms supported by the ill. 23325 */ 23326 switch (sa->ipsa_type) { 23327 23328 case SADB_SATYPE_ESP: 23329 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23330 /* ill does not support ESP acceleration */ 23331 goto done; 23332 cpp = ill->ill_ipsec_capab_esp; 23333 algid = sa->ipsa_auth_alg; 23334 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23335 goto done; 23336 algid = sa->ipsa_encr_alg; 23337 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23338 goto done; 23339 if (algid < cpp->encr_algparm_end) { 23340 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23341 if (sa->ipsa_encrkeybits < alp->minkeylen) 23342 goto done; 23343 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23344 goto done; 23345 } 23346 break; 23347 23348 case SADB_SATYPE_AH: 23349 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23350 /* ill does not support AH acceleration */ 23351 goto done; 23352 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23353 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23354 goto done; 23355 break; 23356 } 23357 23358 if (need_refrele) 23359 ill_refrele(ill); 23360 return (B_TRUE); 23361 done: 23362 if (need_refrele) 23363 ill_refrele(ill); 23364 return (B_FALSE); 23365 } 23366 23367 23368 /* 23369 * Add a new ill to the list of IPsec capable ills. 23370 * Called from ill_capability_ipsec_ack() when an ACK was received 23371 * indicating that IPsec hardware processing was enabled for an ill. 23372 * 23373 * ill must point to the ill for which acceleration was enabled. 23374 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23375 */ 23376 static void 23377 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23378 { 23379 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23380 uint_t sa_type; 23381 uint_t ipproto; 23382 23383 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23384 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23385 23386 switch (dl_cap) { 23387 case DL_CAPAB_IPSEC_AH: 23388 sa_type = SADB_SATYPE_AH; 23389 ills = &ipsec_capab_ills_ah; 23390 ipproto = IPPROTO_AH; 23391 break; 23392 case DL_CAPAB_IPSEC_ESP: 23393 sa_type = SADB_SATYPE_ESP; 23394 ills = &ipsec_capab_ills_esp; 23395 ipproto = IPPROTO_ESP; 23396 break; 23397 } 23398 23399 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23400 23401 /* 23402 * Add ill index to list of hardware accelerators. If 23403 * already in list, do nothing. 23404 */ 23405 for (cur_ill = *ills; cur_ill != NULL && 23406 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23407 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23408 ; 23409 23410 if (cur_ill == NULL) { 23411 /* if this is a new entry for this ill */ 23412 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23413 if (new_ill == NULL) { 23414 rw_exit(&ipsec_capab_ills_lock); 23415 return; 23416 } 23417 23418 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23419 new_ill->ill_isv6 = ill->ill_isv6; 23420 new_ill->next = *ills; 23421 *ills = new_ill; 23422 } else if (!sadb_resync) { 23423 /* not resync'ing SADB and an entry exists for this ill */ 23424 rw_exit(&ipsec_capab_ills_lock); 23425 return; 23426 } 23427 23428 rw_exit(&ipsec_capab_ills_lock); 23429 23430 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23431 /* 23432 * IPsec module for protocol loaded, initiate dump 23433 * of the SADB to this ill. 23434 */ 23435 sadb_ill_download(ill, sa_type); 23436 } 23437 23438 /* 23439 * Remove an ill from the list of IPsec capable ills. 23440 */ 23441 static void 23442 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23443 { 23444 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23445 23446 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23447 dl_cap == DL_CAPAB_IPSEC_ESP); 23448 23449 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23450 &ipsec_capab_ills_esp; 23451 23452 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23453 23454 prev_ill = NULL; 23455 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23456 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23457 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23458 ; 23459 if (cur_ill == NULL) { 23460 /* entry not found */ 23461 rw_exit(&ipsec_capab_ills_lock); 23462 return; 23463 } 23464 if (prev_ill == NULL) { 23465 /* entry at front of list */ 23466 *ills = NULL; 23467 } else { 23468 prev_ill->next = cur_ill->next; 23469 } 23470 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23471 rw_exit(&ipsec_capab_ills_lock); 23472 } 23473 23474 23475 /* 23476 * Handling of DL_CONTROL_REQ messages that must be sent down to 23477 * an ill while having exclusive access. 23478 */ 23479 /* ARGSUSED */ 23480 static void 23481 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23482 { 23483 ill_t *ill = (ill_t *)q->q_ptr; 23484 23485 ill_dlpi_send(ill, mp); 23486 } 23487 23488 23489 /* 23490 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23491 * supporting the specified IPsec protocol acceleration. 23492 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23493 * We free the mblk and, if sa is non-null, release the held referece. 23494 */ 23495 void 23496 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23497 { 23498 ipsec_capab_ill_t *ici, *cur_ici; 23499 ill_t *ill; 23500 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23501 23502 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23503 ipsec_capab_ills_esp; 23504 23505 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23506 23507 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23508 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23509 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23510 23511 /* 23512 * Handle the case where the ill goes away while the SADB is 23513 * attempting to send messages. If it's going away, it's 23514 * nuking its shadow SADB, so we don't care.. 23515 */ 23516 23517 if (ill == NULL) 23518 continue; 23519 23520 if (sa != NULL) { 23521 /* 23522 * Make sure capabilities match before 23523 * sending SA to ill. 23524 */ 23525 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23526 cur_ici->ill_isv6, sa)) { 23527 ill_refrele(ill); 23528 continue; 23529 } 23530 23531 mutex_enter(&sa->ipsa_lock); 23532 sa->ipsa_flags |= IPSA_F_HW; 23533 mutex_exit(&sa->ipsa_lock); 23534 } 23535 23536 /* 23537 * Copy template message, and add it to the front 23538 * of the mblk ship list. We want to avoid holding 23539 * the ipsec_capab_ills_lock while sending the 23540 * message to the ills. 23541 * 23542 * The b_next and b_prev are temporarily used 23543 * to build a list of mblks to be sent down, and to 23544 * save the ill to which they must be sent. 23545 */ 23546 nmp = copymsg(mp); 23547 if (nmp == NULL) { 23548 ill_refrele(ill); 23549 continue; 23550 } 23551 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23552 nmp->b_next = mp_ship_list; 23553 mp_ship_list = nmp; 23554 nmp->b_prev = (mblk_t *)ill; 23555 } 23556 23557 rw_exit(&ipsec_capab_ills_lock); 23558 23559 nmp = mp_ship_list; 23560 while (nmp != NULL) { 23561 /* restore the mblk to a sane state */ 23562 next_mp = nmp->b_next; 23563 nmp->b_next = NULL; 23564 ill = (ill_t *)nmp->b_prev; 23565 nmp->b_prev = NULL; 23566 23567 /* 23568 * Ship the mblk to the ill, must be exclusive. Keep the 23569 * reference to the ill as qwriter_ip() does a ill_referele(). 23570 */ 23571 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23572 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23573 23574 nmp = next_mp; 23575 } 23576 23577 if (sa != NULL) 23578 IPSA_REFRELE(sa); 23579 freemsg(mp); 23580 } 23581 23582 23583 /* 23584 * Derive an interface id from the link layer address. 23585 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23586 */ 23587 static boolean_t 23588 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23589 { 23590 char *addr; 23591 23592 if (phys_length != ETHERADDRL) 23593 return (B_FALSE); 23594 23595 /* Form EUI-64 like address */ 23596 addr = (char *)&v6addr->s6_addr32[2]; 23597 bcopy((char *)phys_addr, addr, 3); 23598 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23599 addr[3] = (char)0xff; 23600 addr[4] = (char)0xfe; 23601 bcopy((char *)phys_addr + 3, addr + 5, 3); 23602 return (B_TRUE); 23603 } 23604 23605 /* ARGSUSED */ 23606 static boolean_t 23607 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23608 { 23609 return (B_FALSE); 23610 } 23611 23612 /* ARGSUSED */ 23613 static boolean_t 23614 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23615 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23616 { 23617 /* 23618 * Multicast address mappings used over Ethernet/802.X. 23619 * This address is used as a base for mappings. 23620 */ 23621 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23622 0x00, 0x00, 0x00}; 23623 23624 /* 23625 * Extract low order 32 bits from IPv6 multicast address. 23626 * Or that into the link layer address, starting from the 23627 * second byte. 23628 */ 23629 *hw_start = 2; 23630 v6_extract_mask->s6_addr32[0] = 0; 23631 v6_extract_mask->s6_addr32[1] = 0; 23632 v6_extract_mask->s6_addr32[2] = 0; 23633 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23634 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23635 return (B_TRUE); 23636 } 23637 23638 /* 23639 * Indicate by return value whether multicast is supported. If not, 23640 * this code should not touch/change any parameters. 23641 */ 23642 /* ARGSUSED */ 23643 static boolean_t 23644 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23645 uint32_t *hw_start, ipaddr_t *extract_mask) 23646 { 23647 /* 23648 * Multicast address mappings used over Ethernet/802.X. 23649 * This address is used as a base for mappings. 23650 */ 23651 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23652 0x00, 0x00, 0x00 }; 23653 23654 if (phys_length != ETHERADDRL) 23655 return (B_FALSE); 23656 23657 *extract_mask = htonl(0x007fffff); 23658 *hw_start = 2; 23659 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23660 return (B_TRUE); 23661 } 23662 23663 /* 23664 * Derive IPoIB interface id from the link layer address. 23665 */ 23666 static boolean_t 23667 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23668 { 23669 char *addr; 23670 23671 if (phys_length != 20) 23672 return (B_FALSE); 23673 addr = (char *)&v6addr->s6_addr32[2]; 23674 bcopy(phys_addr + 12, addr, 8); 23675 /* 23676 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23677 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23678 * rules. In these cases, the IBA considers these GUIDs to be in 23679 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23680 * required; vendors are required not to assign global EUI-64's 23681 * that differ only in u/l bit values, thus guaranteeing uniqueness 23682 * of the interface identifier. Whether the GUID is in modified 23683 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23684 * bit set to 1. 23685 */ 23686 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23687 return (B_TRUE); 23688 } 23689 23690 /* 23691 * Note on mapping from multicast IP addresses to IPoIB multicast link 23692 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23693 * The format of an IPoIB multicast address is: 23694 * 23695 * 4 byte QPN Scope Sign. Pkey 23696 * +--------------------------------------------+ 23697 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23698 * +--------------------------------------------+ 23699 * 23700 * The Scope and Pkey components are properties of the IBA port and 23701 * network interface. They can be ascertained from the broadcast address. 23702 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23703 */ 23704 23705 static boolean_t 23706 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23707 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23708 { 23709 /* 23710 * Base IPoIB IPv6 multicast address used for mappings. 23711 * Does not contain the IBA scope/Pkey values. 23712 */ 23713 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23714 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23715 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23716 23717 /* 23718 * Extract low order 80 bits from IPv6 multicast address. 23719 * Or that into the link layer address, starting from the 23720 * sixth byte. 23721 */ 23722 *hw_start = 6; 23723 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23724 23725 /* 23726 * Now fill in the IBA scope/Pkey values from the broadcast address. 23727 */ 23728 *(maddr + 5) = *(bphys_addr + 5); 23729 *(maddr + 8) = *(bphys_addr + 8); 23730 *(maddr + 9) = *(bphys_addr + 9); 23731 23732 v6_extract_mask->s6_addr32[0] = 0; 23733 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23734 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23735 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23736 return (B_TRUE); 23737 } 23738 23739 static boolean_t 23740 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23741 uint32_t *hw_start, ipaddr_t *extract_mask) 23742 { 23743 /* 23744 * Base IPoIB IPv4 multicast address used for mappings. 23745 * Does not contain the IBA scope/Pkey values. 23746 */ 23747 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23748 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23749 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23750 23751 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23752 return (B_FALSE); 23753 23754 /* 23755 * Extract low order 28 bits from IPv4 multicast address. 23756 * Or that into the link layer address, starting from the 23757 * sixteenth byte. 23758 */ 23759 *extract_mask = htonl(0x0fffffff); 23760 *hw_start = 16; 23761 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23762 23763 /* 23764 * Now fill in the IBA scope/Pkey values from the broadcast address. 23765 */ 23766 *(maddr + 5) = *(bphys_addr + 5); 23767 *(maddr + 8) = *(bphys_addr + 8); 23768 *(maddr + 9) = *(bphys_addr + 9); 23769 return (B_TRUE); 23770 } 23771 23772 /* 23773 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23774 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23775 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23776 * the link-local address is preferred. 23777 */ 23778 boolean_t 23779 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23780 { 23781 ipif_t *ipif; 23782 ipif_t *maybe_ipif = NULL; 23783 23784 mutex_enter(&ill->ill_lock); 23785 if (ill->ill_state_flags & ILL_CONDEMNED) { 23786 mutex_exit(&ill->ill_lock); 23787 if (ipifp != NULL) 23788 *ipifp = NULL; 23789 return (B_FALSE); 23790 } 23791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23792 if (!IPIF_CAN_LOOKUP(ipif)) 23793 continue; 23794 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23795 ipif->ipif_zoneid != ALL_ZONES) 23796 continue; 23797 if ((ipif->ipif_flags & flags) != flags) 23798 continue; 23799 23800 if (ipifp == NULL) { 23801 mutex_exit(&ill->ill_lock); 23802 ASSERT(maybe_ipif == NULL); 23803 return (B_TRUE); 23804 } 23805 if (!ill->ill_isv6 || 23806 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23807 ipif_refhold_locked(ipif); 23808 mutex_exit(&ill->ill_lock); 23809 *ipifp = ipif; 23810 return (B_TRUE); 23811 } 23812 if (maybe_ipif == NULL) 23813 maybe_ipif = ipif; 23814 } 23815 if (ipifp != NULL) { 23816 if (maybe_ipif != NULL) 23817 ipif_refhold_locked(maybe_ipif); 23818 *ipifp = maybe_ipif; 23819 } 23820 mutex_exit(&ill->ill_lock); 23821 return (maybe_ipif != NULL); 23822 } 23823 23824 /* 23825 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23826 */ 23827 boolean_t 23828 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23829 { 23830 ill_t *illg; 23831 23832 /* 23833 * We look at the passed-in ill first without grabbing ill_g_lock. 23834 */ 23835 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23836 return (B_TRUE); 23837 } 23838 rw_enter(&ill_g_lock, RW_READER); 23839 if (ill->ill_group == NULL) { 23840 /* ill not in a group */ 23841 rw_exit(&ill_g_lock); 23842 return (B_FALSE); 23843 } 23844 23845 /* 23846 * There's no ipif in the zone on ill, however ill is part of an IPMP 23847 * group. We need to look for an ipif in the zone on all the ills in the 23848 * group. 23849 */ 23850 illg = ill->ill_group->illgrp_ill; 23851 do { 23852 /* 23853 * We don't call ipif_lookup_zoneid() on ill as we already know 23854 * that it's not there. 23855 */ 23856 if (illg != ill && 23857 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23858 break; 23859 } 23860 } while ((illg = illg->ill_group_next) != NULL); 23861 rw_exit(&ill_g_lock); 23862 return (illg != NULL); 23863 } 23864 23865 /* 23866 * Check if this ill is only being used to send ICMP probes for IPMP 23867 */ 23868 boolean_t 23869 ill_is_probeonly(ill_t *ill) 23870 { 23871 /* 23872 * Check if the interface is FAILED, or INACTIVE 23873 */ 23874 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23875 return (B_TRUE); 23876 23877 return (B_FALSE); 23878 } 23879 23880 /* 23881 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 23882 * If a pointer to an ipif_t is returned then the caller will need to do 23883 * an ill_refrele(). 23884 */ 23885 ipif_t * 23886 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6) 23887 { 23888 ipif_t *ipif; 23889 ill_t *ill; 23890 23891 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 23892 23893 if (ill == NULL) 23894 return (NULL); 23895 23896 mutex_enter(&ill->ill_lock); 23897 if (ill->ill_state_flags & ILL_CONDEMNED) { 23898 mutex_exit(&ill->ill_lock); 23899 ill_refrele(ill); 23900 return (NULL); 23901 } 23902 23903 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23904 if (!IPIF_CAN_LOOKUP(ipif)) 23905 continue; 23906 if (lifidx == ipif->ipif_id) { 23907 ipif_refhold_locked(ipif); 23908 break; 23909 } 23910 } 23911 23912 mutex_exit(&ill->ill_lock); 23913 ill_refrele(ill); 23914 return (ipif); 23915 } 23916